
HAL Id: tel-01885958
https://theses.hal.science/tel-01885958

Submitted on 2 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Représentations à base de parties pour la vision 3D de
haut niveau
Stefan Kinauer

To cite this version:
Stefan Kinauer. Représentations à base de parties pour la vision 3D de haut niveau. Mathématiques
générales [math.GM]. Université Paris Saclay (COmUE), 2018. Français. �NNT : 2018SACLC059�.
�tel-01885958�

https://theses.hal.science/tel-01885958
https://hal.archives-ouvertes.fr

N
N

T
:2

01
8S

A
C

LC
05

9

Représentations à base de parties pour la
vision 3D de haut niveau

Part-Based Representations for High-Level 3D Vision

Thèse de doctorat de l’Université Paris-Saclay
préparée à CentraleSupélec

Ecole doctorale n◦580 Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat: Traitement du signal et des images

Thèse présentée et soutenue à Gif-sur-Yvette, le 31 août 2018, par

Stefan Kinauer

Composition du Jury :

Nikos Paragios
Professeur, CentraleSupélec (CVN) Président
Stefanos Zafeiriou
Reader, Imperial College London Rapporteur
Dimitris Samaras
Associate Professor, Stony Brook University Rapporteur
Celine Hudelot
Professeur des Universités, CentraleSupélec (MICS) Examinateur
Chaohui Wang
Maître de Conférences, Université Paris-Est Examinateur
Iasonas Kokkinos
Senior Lecturer, University College London Directeur de thèse

Acknowledgments

First of all, I want to thank Iasonas, my advisor, who had the patience and en-
durance to stick with me throughout this thesis. Many things I learned in these
years, are due to his model and advice. His practical and hands-on approach shaped
my PhD and when deadlines were closing in, Iasonas was never shy of throwing ev-
erything into it. His effort and dedication was motivating and inspiring. My special
thanks are due to letting me form and develop his algorithmic “baby”.

Second, I would like to thank Dimitris Samaras and Stefanos Zafeiriou who
agreed to review this thesis, as well as Celine Hudelot, Nikos Paragios and Chaohui
Wang who accepted to act as jury over my PhD defense.

Third, I want to acknowledge the support grant of the European Union for the
RECONFIG project to which I contributed in my PhD. Not only was this project
successful in terms of project goals, but it also enabled my research and widened
my insight into related research fields. I also want to thank INRIA and the Ecole
Centrale de Paris (now CentraleSupelec) for providing me a home during the last
years and the setup for my work. And not the least I want to thank again Nikos,
the (former) head of the laboratory, for giving me the opportunity to do my PhD
with CentraleSupelec.

I had the pleasure of working with a number of great colleagues throughout
my PhD. I want to mention especially Maxim, Alp and Siddhartha collaborated
closely with me on two papers. Furthermore it is important to mention Jie Ying
who helped me a great deal with correcting language-based errors in my thesis, and
Khue and Maxim who translated the abstract into French.

Next to above mentioned friends, I want to say thanks also to Mihir, Khue,
Jiaqian, Enzo, Hari, Puneet, Maria, Stavros, Marie-Carol, Eugene, Evgenios, Er-
wan, Haithem, Raphael, Matthew and Eva. Their moral support and also technical
advice were indispensable in these years. There are even more colleagues to be men-
tioned, and all together they made these years entertaining, funny and instructive.

I also want to mention my colleagues in the RECONFIG project. Our contact
was always very friendly and cooperative, such that the time spent together on the
project was fun, enjoyable and productive.

Moreover I want to thank Natalia, the good soul of the lab, who held the lab
afloat with her organizational skills. She helped me and others countless times while
settling in and with bureaucracy within the school and public institutions.

And finally not forgotten is the help I received from my family at home. Without
the education and liberty they let me obtain, their love and moral support I would
not be here.

My special thoughts go to Paola who never doubted me, who always found the
right words and has become my best friend and so much more.

Abstract

In this work we use Deformable Part Models (DPMs) to learn and detect object
parts in three dimensions. Given a single RGB image of an object, the objective is
to determine the location of the object’s parts. This is a problem of high relevance
for many practical applications. The resulting optimization problem is non-convex
and challenging due to its large solution space.

Our first contribution consists in extending DPMs into the third dimension
through an efficient Branch-and-Bound algorithm that operates over a three-
dimensional pose space. We exploit the problem structure and devise a customized,
efficient algorithm that is two orders of magnitude faster than a naive approach. Ad-
ditionally to being fast, we also inherit the global-optimality guarantees of Branch-
and-Bound algorithms. An object class is modeled by several viewpoint-specific
models. We derive each model’s three-dimensional geometry from a class-specific
three-dimensional structure, but train viewpoint-specific part appearance terms.
We demonstrate our approach on the task of three-dimensional object pose estima-
tion, learning three-dimensional part models based on deep learning features and
determining the object pose within a fraction of a second.

Our second contribution allows us to perform efficient inference with part-based
models where the part connections form a graph with loops, thereby extending
the set of part relationships that can be modelled. For this, we use the Alternat-
ing Direction Method of Multipliers (ADMM) in combination with the introduced
Branch-and-Bound algorithm. With ADMM we decouple a potentially hard prob-
lem and solve iteratively a set of smaller and easier sub-problems to reach an ap-
proximately optimal solution. We compute three-dimensional unary and pairwise
model parameters in a Convolutional Neural Network for three-dimensional human
pose estimation. Then we append the developed inference algorithm as final layer
to this neural network to improve precision. This yields state of the art performance
on the Human3.6M dataset in the three-dimensional human pose estimation task.

Résumé

Dans cette thèse, nous utilisons des modèles de parties déformables (Deformable
Part Models – DPMs) pour apprendre à détecter des parties d’objets. Pour une
image d’un objet, l’objectif est de déterminer l’emplacement des parties de cet
objet dans l’image. Ceci est un problème de haute importance pour de nombreuses
applications pratiques. Le problème d’optimisation qui en résulte est non-convexe
et difficile en raison de son grand espace de recherche.

Notre première contribution consiste à étendre les DPMs à la troisième dimen-
sion, grâce à un algorithme par séparation et évaluation (Branch-and-Bound) ef-
ficace qui fonctionne sur un espace de pose en 3D. Nous exploitons la structure
du problème et élaborons un algorithme personnalisé et efficace qui est deux fois
plus rapide qu’une approche naïve. En plus d’être rapide, notre algorithme hérite
également de la garantie d’optimalité globale des algorithmes par séparation et
évaluation. L’appartenance d’un object a une classe est caractérisée par plusieurs
modèles de point de vue. Nous dérivons pour chaque modèle tridimensionnel, une
structure tridimensionnels spécifiques a la classe de l’objet. Cependant, nous en-
trainons un algorithm prenant en compte chaque sous point de vue de l’apparence.
Nous démontrons notre approche sur la tache de l’estimation tridimensionnel de la
posture, via l’apprentissage de plusieurs modèles pour chaque partie basé sur des
caractéristiques provenant de l’apprentissage profond et de determiner la posture
de l’objet en une fraction de second.

Notre deuxième contribution nous permet d’effectuer une inférence efficace sur
des modèles où les connexions des parties forment un graphe avec des boucles, éten-
dant ainsi l’ensemble des relations de parties qui peuvent être modélisées. Pour cela,
nous utilisons l’algorithme des directions alternées (Alternating Direction Method
of Multipliers – ADMM) en combinaison avec l’algorithme par séparation et éval-
uation introduit. Avec ADMM, nous découplons un problème potentiellement dif-
ficile et résolvons itérativement un ensemble de sous-problèmes plus petits et plus
faciles pour atteindre une solution approximativement optimale. Nous calculons les
paramètres unaires et paires du modèle via un Réseaux Neuronal Convolutif pour
la determination de la posture tridimensionnel. L’inference développée est utilisée
comme dernière couche du réseau neural afin d’améliorer la precision. Cela permet
d’obtenir une performance à l’état de l’art sur le jeu de données Human3.6M pour
la tâche d’estimation de pose humaine en 3D.

Contents

1 Overview 7

2 Background / Previous Work 11
2.1 Object Representation . 12

2.1.1 Object Detection with Sliding Windows 14
2.1.2 Part-Based Models . 18
2.1.3 Convolutional Neural Networks 22

2.2 Optimization Methods for Part-Based Models 27
2.2.1 Generalized Distance Transform with Dynamic Programming 27
2.2.2 Cascades . 30
2.2.3 Dual-Tree Branch-and-Bound 31

2.3 Model Learning . 35
2.3.1 Support Vector Machines (SVMs) 35
2.3.2 Structured SVM . 36
2.3.3 Latent Variable SVM . 38

2.4 Outlook . 39

3 3D Object Pose Estimation with 2D Unary Potentials 41
3.1 Prior Work on 3D Pose Estimation 42
3.2 3D DPM - Modeling . 46

3.2.1 3D DPM with 2D Unary Potentials 46
3.2.2 Viewpoint-Independent Structure 48
3.2.3 Viewpoint-Specific Models . 52
3.2.4 Model Training . 54

3.3 3D DPM - Inference . 56
3.3.1 Joint Inference with Depth Variables 56
3.3.2 Anchoring in Depth . 61

3.4 Evaluation . 62
3.4.1 Model Validation . 62
3.4.2 Runtime Performance . 66

4 Monocular 3D Human Pose Estimation 69
4.1 Prior Work in Human Pose Estimation 70
4.2 DPM and Inference in Higher Dimensions 73

4.2.1 Deformable Part Models in 3D 73
4.2.2 Inference with Dual-Tree Branch-and-Bound in 3D 74

4.3 Training with Deep Supervision . 74
4.4 DPM Inference on Arbitrary Graph Topologies 76

4.4.1 Graph Decomposition with ADMM 78
4.4.2 Inference of ADMM-Augmented Subproblem 82

viii Contents

4.4.3 Inference Visualization . 83
4.5 Results on 3D Human Pose Estimation 90

4.5.1 Evaluation Setup . 90
4.5.2 Implementation Details . 90
4.5.3 Quantitative Comparison . 91
4.5.4 Ablation Study with Graph Topologies 91
4.5.5 Improvement of 2D Joint Localizations 99
4.5.6 Qualitative Evaluation on the Leeds Sports Dataset 100
4.5.7 Runtime . 101

5 Future Work 103
5.1 Conclusion . 103
5.2 Future Work . 104

5.2.1 Applications . 104
5.2.2 Optimization Algorithm . 105

A DPMs for Viewpoint Invariant Detection in Robotics 107
A.1 Object Detection for Identity Anchoring 107

A.1.1 Identity Anchoring . 108
A.1.2 Exigence of Practical Applications in Robotics 108
A.1.3 Previous Approaches to Object Detection in Robotics 110

A.2 Efficient Implementation . 112
A.2.1 DPM Training . 112
A.2.2 Data Collection . 113
A.2.3 Inference Algorithms for Object Detection 114

Bibliography 117

List of Figures

1.1 3D human pose estimation example (Leeds Sports Dataset
[Johnson 2010]). The body pose in (a) is easily detectable for the
human eye. The obtained solution is indicated in (b) and (c). . . . 7
(a) . 7
(b) . 7
(c) . 7

1.2 Summary of results in one figure. In (a)-(c) we illustrate results
presented in Chapter 3 where (a) shows a 3-dimensional mesh of a
car that adapts to the given image instance in (b) and (c) to recover
the objects’ pose. [Kinauer 2016] In (d)-(g) we demonstrate human
pose estimation in 3D of Chapter 4. The input image (d) is given to
our CNN which predicts the 3D human pose, illustrated in (e) in the
image and in (f), (g) in new perspectives, respectively. 9

2.1 Instances of the “car” object class. A car detector should detect the
cars in all three images. The instances exhibit variation in the car’s
model, color, scale, the camera’s viewpoint and the background. . . 12

2.2 Top row: results of a car detector. Bottom row: results of a car
detector with parts. We point out that we have created this and
further examples of object detection in Section 2.1 by running the
object detector of [Girshick 2012]. Where needed, we have adapted
the models, for example by removing object parts in the context of
rigid object models. 13

2.3 Object detector example. We apply a “bicycle”, a “person” and a
“car” detector. The detections are indicated as red bounding boxes. 15

2.4 HOG-feature pyramid for an example image. An object detector is
run against all pyramid levels, removing the need of training differ-
ent object detectors for different scales. We depict 6 pyramid levels
of HOG features, computed by successively downscaling the input
image and extracting the features. As a result, at different pyramid
levels different levels of details stand out. 16

2.5 A “person” model with 6 mixture models. We can identify the rough
head shape and varying portions of the human body. The second
mixture model is the mirrored mixture model of the first one, simi-
larly are the fourth and sixth ones mirrored mixture models of the
third and fifth one. 17
(a) M1 . 17
(b) M2 . 17
(c) M3 . 17
(d) M4 . 17

2 List of Figures

(e) M5 . 17
(f) M6 . 17

2.6 Illustration of a sliding window object detector. A window of the
size of the model, M6 of Figure 2.5f, is slid over the feature pyra-
mid levels and the corresponding score according to Equation 2.1 is
calculated. The resulting scores are visualized as a heat-map, where
red corresponds to high scores and blue to low scores. In the last
column we show the bounding boxes that correspond to scores over
a certain threshold value. A detection in a high-resolution pyramid
level corresponds to small bounding box, and vice versa. 18

2.7 Example of non-maximum suppression. In the image on the left
there are several almost redundant detections. In the image on the
right, strongly overlapping bounding boxes have been removed using
non-maximum suppression (NMS). 19
(a) Detection results for “person”. Several redundant bounding

boxes clutter the detections. 19
(b) Final detections after applying NMS. Strongly overlapping

bounding boxes have been removed. 19
2.8 Example DPM and its factor graph. 21
2.9 Visualization of a “person” DPM. The top row shows the root-filter,

w1, that by itself offers a rigid model identical to the model in Fig-
ure 2.5. The bottom row shows the part filters, w2, ..., wN , in their
spatial configuration. The green arrows illustrate the flexibility of
part positions, 1/C1,2, ..., 1/C1,N , of the corresponding parts, such
that a long arrow corresponds to a small penalty for a deformation
in this direction. Each column represents one mixture model. We
show 3 out of 6 mixture models, since the other 3 are mirrored equiv-
alents. 22

2.10 Object part detection with DPMs. The blue rectangle stands for
the low-resolution center part, the red rectangles indicate the other
parts. Two people are detected with the same mixture model, but
the flexible pairwise term allows varying poses. 23

2.11 Neural Network with a convolutional and a fully connected layer. In a
convolutional layer, neurons of the layer are connected to overlapping
subsets of neurons in the layer below. Edge weights are shared in
this layer. We visualize this by coloring edges accordingly in red,
green and blue. In fully connected layers, all neurons of the layer are
connected to all neurons of the layer below. Here, parameters are
not shared. For reasons of clarity we single out the edges to a single
node in both layers. 24

2.12 Visualization of features of the ZF-net [Zeiler 2014]. The visualiza-
tions are created using deconvolutions of individual features in the
first, second and third layer. 25

List of Figures 3

2.13 Comparison of HOG features with conv5 activations over several
scales [Girshick 2015b]. The first column shows the input image,
the remaining columns correspond to features extracted at different
scales of the image pyramid. The first row displays the HOG fea-
ture pyramid, similar to Figure 2.4. In rows 2 to 4, the activations
of 1 channel (out of 256) of the 5-th convolutional layer are visu-
alized. The network is trained on the ImageNet dataset for scene
classification. The chosen channel corresponds to the “head” label. 26

2.14 Generalized Distance Transform (GDT) [Felzenszwalb 2004]. (a) an
example input. (b) the result after the first pass over the vertical
dimension. (c) the final result. 29

2.15 Left: Input image with object detection result. Right: Binary maps
demonstrating hypotheses pruning. The inference with cascades ac-
celerates detection by pruning hypotheses below a certain threshold
with simplified models. From top to bottom and left to right, the
maps show the increasingly complex models are evaluated only on
small portions of the image, indicated in white. [Felzenszwalb 2010a] 31
(a) Input image with detected object. The object is delineated in

red, the object parts in blue bounding boxes. 31
(b) Evaluation of part appearance models. The binary images in-

dicate where the part appearance model was evaluated in the
course of the inference. The images from left to right and top
to bottom refer to object parts i = 2, ..., 7. Large black parts
indicate that significant portions have been skipped to save
computation time. The appearance model of the center node
i = 1 is evaluated everywhere and is not shown in this figure. 31

2.16 Object detection with Branch-and-Bound [Kokkinos 2011]. The first
figure shows the original image with the optimal object bounding box
in red. The second image illustrates which intervals the algorithm
evaluated and therefore spent time on. The colors refer to the upper
bound computed for the respective interval. The third image displays
the exact score of the detector, evaluated densely. For both images
on the right, blue stands for low scores and red stands for high scores. 33

2.17 Precomputing the unary potential. Left: example unary potential
given as array. Right: resulting Kd-Tree. 34

2.18 Linear SVM in a 2 dimensional example case. 2.18a: Input data for
binary classification into triangles and circles. 2.18b: Potential linear
classifiers, all of which can correctly classify the given data points.
2.18c: The solution found by SVM maximizes the margin, in other
words, the space around the separating line. 35
(a) . 35
(b) . 35
(c) . 35

4 List of Figures

3.1 Example 3D DPM and its factor graph. 47

3.2 Mesh extracted with NRSfM for the “bicycle”-class. Data points,
marked by “X”, are drawn in a common coordinate system, each
color corresponding to a different keypoint. The associated point on
the mesh is shown as a filled circle. The computation of one nominal
offset, µi,j , is indicated in dark blue. 48

3.3 A wheelchair under varying viewpoint angles. The same three se-
lected landmarks and their surrounding image patches are enlarged
in both images (b) and (c). The corresponding image patches show
a high degree of similarity in image (b) and (c). The landmarks’ rel-
ative position to each other is indicated by the dashed triangles. We
overlay the triangle of the landmarks in image (b) onto image (c) to
highlight change under rotation. This motivates us to subdivide the
viewing sphere into a small number of viewpoint bins and to train a
DPM for every bin. 53

3.4 Illustration of the calculation of the pairwise term, P̄i,j(ξi, ξj). For
better readability the third dimension is not shown. The interval,
Γi, is given as the center (xi, yi, zi) and the half size (xsi , ysi , zsi) (light
red color). The interval, Γj , is given as the center (xj , yj , zj) and
the half size (xsj , ysj , zsj) (light green color). We subsume the nominal
offset, µ, under the interval, Γjµ, with the center being (xj +µx , yj +
µy , zj + µz)T . This corresponds to a shift of the interval, Γj , by µ.
We illustrate the individual terms of Equation 3.20 in blue. 61

3.5 Illustration of the Hausdorff Distance between two shapes X and Y .
The Hausdorff Distance is computed as the maximum between the
smallest distance from a point onX to any Y such that no other point
on X would yield a larger distance, and its symmetric counterpart
with X and Y exchanged. Image from [Commons 2007]. 63

3.6 Example images of the PASCAL3D+ dataset with object detections.
We have chosen 3 positive examples per category in the first three
columns and one failure case in the fourth column. Yellow indicates
small distance to the camera, whereas blue signifies a large distance. 66

3.7 Runtime comparison between the GDT-based optimization in blue
and the Branch-and-Bound based optimization in yellow (proposed).
The x-axis gives the number of discrete depth values available in the
solution space. The y-axis shows the resulting runtime in seconds.
The computation with GDT for a depth resolution greater than 300
was impossible due to memory limits. 67

List of Figures 5

3.8 Acceleration of Branch-and-Bound by eliminating equivalent solu-
tions by anchoring the model at a certain depth. The ground truth’s
depth range is between 80 and 120. The x-axis gives the number
of discrete depth values available in the solution space. The y-axis
shows the resulting runtime in seconds. The red curve shows runtime
for Branch-and-Bound without anchoring the center node’s depth.
The yellow curve shows performance with anchoring of the center
node’s depth in the middle of the available depth space. 67

4.1 Overview over our approach for 3D human pose estimation. A CNN
computes unary and pairwise potentials in 3D. The subsequent dis-
crete optimization via ADMM and Branch-and-Bound finds the most
coherent pose among all possible configurations. 73

4.2 Unary 3D coordinates via quantized regression. Left: Sigmoid func-
tion on classified voxels and regressed residual vectors (in black) for
two joints. Right: Regressed residual vectors for all joints. To ef-
ficiently regress the unary 3D coordinates, we use a combination of
classification and regression. We first quantize the 3D space into
voxels. We then estimate the score of each joint belonging to each
of these voxels using a classifier. Finally we regress a residual vector
per voxel, ri(v), which indicates the offset between the center of the
voxel and the continuous 3D position of each joint (Equation 4.2). . 75

4.3 Example human body representations. In (a) 16 body joints as they
are used in the Human MPII dataset, connected as a tree-shaped
graph following the kinematic chain. In (b) we show the same 16
joints, now connected with additional edges, representing transitive
(green) and symmetric (red) relations. This graph contains loops. . 77

4.4 Example graph decomposition. It is obvious that there are many
alternative graph decompositions. 79
(a) A loopy graph G has to be decomposed into loop-free sub-

graphs. 79
(b) Star-shaped subgraph G1 . 79
(c) Star-shaped subgraph G2 . 79
(d) Star-shaped subgraph G3 . 79

4.5 Selected graph configurations. 92
4.6 Monocular 3D pose estimation results on LSP dataset: we observe

that our results transfer to unseen datasets, with highly different
statistics from the Human3.6M dataset. 101

4.7 Runtime of Branch-and-Bound with varying size of label space, |Ω3D|.
The time spent on building unary tree is displayed in red. The time
spent in the Branch-and-Bound algorithm is depicted in blue. . . . 102

6 List of Figures

A.1 Left: Example of multiple toy cars. Right: Toy car bounding boxes
obtained by our DPM object detector. We train a single model that
covers the visual variability of all three car configurations. The ob-
jects are detected within one pass of the detection algorithm. 110

A.2 Determination of 3D coordinates based on 2D image coordinates and
the robot’s geometry. The robot’s viewing ray to the object, deter-
mined by the robot’s joints and the center of the object’s bounding
box, is intersected with the floor plane to determine the object’s 3D
position. 113

A.3 The effect of retraining DPMs in a specific environment. The model
is a shampoo-bottle. On the left is the input image. In the middle a
true positive and a false positive detection is found. On the right we
show the result after retraining the model with additional negative
samples (Figure A.4). 115

A.4 Additional negative samples in the laboratory setup we add to the
training set in order to diminish false detections of the shampoo-
bottle. 115

Chapter 1

Overview

(a) (b) (c)

Figure 1.1: 3D human pose estimation example (Leeds Sports Dataset
[Johnson 2010]). The body pose in (a) is easily detectable for the human eye.
The obtained solution is indicated in (b) and (c).

Looking at an image and recognizing not only the visible objects but also the 3D
shape and pose of these objects is an easy task for humans. If we look at Figure 1.1a
then we instantly understand the player’s pose. We do this by drawing from our
knowledge of objects and materials, lighting and perspective. For computers, this is
a challenging task. In this thesis we predict the 3D structure of objects and humans
by localizing the major (body) parts (see Figure 1.1b, 1.1c).

In particular, we advance algorithms for efficient structured prediction in 3D.
We follow the Deformable Part Model (DPM) paradigm and model objects as
collection of object parts, connected by geometric relationships. The detection
of these inter-connected object parts requires solving a non-convex optimization
problem. We solve this problem efficiently and exactly in a 3D pose space using a
Branch-and-Bound approach.

The work is structured as follows:

• In Chapter 2 we provide the necessary background to the remainder of this
thesis. We develop object representations for object detection and object
pose estimation, going from rigid to part-based models. Specifically we focus
on Deformable Part Models (DPMs). We consider DPMs that use not only
classical Histogram of Oriented Gradients-based image representations, but
also rich features computed by Convolutional Neural Networks (CNNs), and

8 Chapter 1. Overview

we discuss the connection between CNNs and DPMs. Then we present op-
timization methods for DPMs, covering both linear (Generalized Distance
Transform [Felzenszwalb 2004]) and sublinear methods, such as Cascades
[Felzenszwalb 2010a], and describe the central ideas of the Dual-Tree Branch-
and-Bound algorithm for DPMs. Finally, we cover training criteria and meth-
ods for the models formulated in the previous sections.

• In Chapter 3 we extend Branch-and-Bound to 3 dimensions. We analyze the
given problem structure and devise a customized, efficient inference algorithm.
This algorithm guarantees optimality and its runtime is a fraction of a second,
despite the large label space in 3D.

We learn object models based on CNN features, where DPM object parts
correspond to partially annotated keypoints. To cover images from varying
viewpoints, we train a small number of viewpoint-specific object models. We
use soft pairwise constraints that allow small deformations and render predic-
tion robust to minor perspective changes. We demonstrate our approach for
object keypoint detection on the PASCAL3D+ dataset.

• In Chapter 4 we expand the expressivity of object models, allowing pairwise
relationships to form loops. The complexity of the optimization of these mod-
els depends on the graph that is formed by the pairwise connections between
object parts. In particular, loops make the problem harder. Our contribution
allows us to perform inference with DPMs where the part relationships form
a graph with loops. We propose to apply the Alternating Direction Method
of Multipliers (ADMM), an approximate optimization scheme, that subdi-
vides the original problem into sub-problems. ADMM steers iteratively these
partial solutions towards a commonly agreed solution. The resulting ADMM
term is naturally incorporated in our inference algorithm, maintaining the
efficiency of our contribution from the previous chapter.

To evaluate this approach, we train a CNN for human pose estimation in 3D
and augment its functionality by integrating our optimization approach into
the last layer of the network. This ensures the structural consistency of the
solution. We demonstrate the benefits of this approach on the Human3.6M
dataset and obtain state of the art results.

We have presented above summarized contributions mainly in two published papers.

• Firstly, the techniques in Chapter 3 are described in the paper “Monocular
Surface Reconstruction using 3D Deformable Part Models” [Kinauer 2016],
accepted at the workshop “Geometry Meets Deep Learning” of the European
Conference on Computer Vision (ECCV) 2016. This workshop aims at recov-
ering 3D geometry from image data in the context of deep neural networks.
Our work seems well positioned in this workshop, recovering the 3D pose
of objects from 2D images while exploiting rich deep learning features. We

9

depict results with this technique in Figure 1.2 (a)-(c), where, based on a
3-dimensional mesh (a), we extract a car’s 3D shape (b) and (c).

• Secondly, the more advanced optimization techniques in Chapter 4 have been
reviewed and accepted in the conference on Energy Minimization Methods
in Computer Vision and Pattern Recognition 2017 (EMMCVPR). Under the
title “Structured Output Prediction and Learning for Deep Monocular 3D
Human Pose Estimation” [Kinauer 2017] we have presented the optimization
of 3D graphical models using ADMM and Branch-and-Bound for human pose
estimation. Figure 1.2 (d)-(g) illustrates an example input and output, where
(d) is the input image and (e)-(g) the output, the estimated pose under dif-
ferent viewpoints.

In the paper “Robot-Robot Gesturing for Anchoring Representations”
[Kontaxakis 2018], we employ part-based object detection methods in a more ap-
plied setting. The article aims at implicit robot-robot communication for object
identity anchoring. To this end we translate the object detector of [Girshick 2012]
to a practical application in a robotics environment. We defer the details to the
Appendix A as this work does not provide a high degree of novelty, but applies
known techniques, providing insights into their practicability for real-world scenar-
ios. This work has been accepted as Regular Paper in the IEEE Transactions on
Robotics (T-RO) journal.

(a) (b) (c)

(d) (e) (f) (g)

Figure 1.2: Summary of results in one figure. In (a)-(c) we illustrate results pre-
sented in Chapter 3 where (a) shows a 3-dimensional mesh of a car that adapts to
the given image instance in (b) and (c) to recover the objects’ pose. [Kinauer 2016]
In (d)-(g) we demonstrate human pose estimation in 3D of Chapter 4. The input
image (d) is given to our CNN which predicts the 3D human pose, illustrated in (e)
in the image and in (f), (g) in new perspectives, respectively.

10 Chapter 1. Overview

Table of Acronyms

DPM Deformable Part Model
DTBB Dual-Tree Branch-and-Bound
ADMM Alternating Direction Method of Multipliers
MRF Markov Random Field
DP Dynamic Programming
GDT Generalized Distance Transform
SVM Support Vector Machine
NMS Non-Maximum Suppression
mAP mean Average Precision
CNN Convolutional Neural Network
R-CNN Region-based Convolutional Neural Network
HOG Histogram of Oriented Gradients
NRSfM Non-Rigid Structure from Motion

Chapter 2

Background / Previous Work

Contents
2.1 Object Representation . 12

2.1.1 Object Detection with Sliding Windows 14
2.1.2 Part-Based Models . 18
2.1.3 Convolutional Neural Networks 22

2.2 Optimization Methods for Part-Based Models 27
2.2.1 Generalized Distance Transform with Dynamic Programming 27
2.2.2 Cascades . 30
2.2.3 Dual-Tree Branch-and-Bound 31

2.3 Model Learning . 35
2.3.1 Support Vector Machines (SVMs) 35
2.3.2 Structured SVM . 36
2.3.3 Latent Variable SVM . 38

2.4 Outlook . 39

This chapter provides the basis for the contributions of this thesis, and covers
problem aspects related to representation, optimization and learning with part-
based models. The chapter is divided into three parts:

In the first part we introduce a basic technique for object detection, the sliding
window detector. We refine the object representation by introducing object parts,
following the Deformable Part Model paradigm. This allows for object and human
pose estimation. We describe how results can be improved by employing Convolu-
tional Neural Networks to replace the classical hand-crafted image representations.
Additionally we highlight that a Deformable Part Model can be simulated by a
Convolutional Neural Network and that both concepts blend together naturally.

In the second part we present the optimization problem that arises from De-
formable Part Models and we discuss optimization algorithms for this specific prob-
lem class. We examine a common dynamic programming approach that is efficiently
implemented with generalized distance transforms. The complexity of this problem
is originally quadratic but the approach with dynamic programming and gener-
alized distance transforms is linear in the number of pixels. Complementary to
this, we make known the optimization with Cascades. Finally we introduce the
Dual-Tree Branch-and-Bound algorithm which reduces the best-case complexity to

12 Chapter 2. Background / Previous Work

logarithmic in the number of pixels. We build on this optimization algorithm in the
subsequent chapters.

In the third part we discuss learning algorithms for Deformable Part Models.
We begin with standard support vector machines for binary classification, from
where we advance to structured support vector machines. These serve in training
the Deformable Part Models. If there are no part-level annotations, latent variable
support vector machines are an effective tool to train DPMs. Finally, we show how
a CNN is trained with stochastic gradient descent.

2.1 Object Representation

We structure the first part following the progression from simple towards more
challenging and complex problems, extending object detection along different axes
towards the problem of deformable object pose estimation. This sets the stage for
the main goal of this thesis which is to advance object and human pose estimation
in 3D.

Object detection is the task of detecting the position of an object in a given
image. As illustrated in Figure 2.1, this is a challenging task: a “car”-detector
should be able to detect all kinds of cars, from a middle-class limousine, over a
vintage car to a minivan (Figure 2.1, (a), (b) and (c), respectively). Furthermore
we observe cars of varying colors, viewpoints and scales. Although cars exhibit large
visual variability, they all belong to the same object class. One classic approach is
to capture an object’s appearance with a rigid object model based on image features
that are roughly invariant to appearance variability [Dalal 2005]. Then the location
of an object matching the model is determined by the “sliding window” algorithm
(Figure 2.2a).

(a) (b) (c)

Figure 2.1: Instances of the “car” object class. A car detector should detect the
cars in all three images. The instances exhibit variation in the car’s model, color,
scale, the camera’s viewpoint and the background.

We describe two different directions to improve upon this: (i) by obtaining more
detailed information about the object, namely the object’s geometry and pose, and
(ii) by using better features to increase accuracy and robustness. The former has
been shown to improve detection performance slightly over a simpler one-component

2.1. Object Representation 13

(a)

(b)

Figure 2.2: Top row: results of a car detector. Bottom row: results of a car detector
with parts.
We point out that we have created this and further examples of object detection
in Section 2.1 by running the object detector of [Girshick 2012]. Where needed, we
have adapted the models, for example by removing object parts in the context of
rigid object models.

model [Divvala 2012, Felzenszwalb 2008], but we emphasize that retrieving the ob-
ject’s pose goes beyond object detection and instead further describes the shape of
the object instance. The latter is achieved through deep learning and has received
great attention in many fields of computer vision research in recent years. In this
thesis we profit from these advances, but the development of these techniques is not
the focus of this thesis. Instead we focus on the optimization problems in context
with part-based models.

(i) Object Pose The results shown in Figure 2.2a may suffice for estimating
the location of the object, but we may want to extract more detailed information
about the object in the image, namely the object’s geometry and pose. Therefore
the object can not be treated as a big rectangle, as shown in Figure 2.2a. Instead
we divide the object into smaller entities, introducing object parts, that together
make up a more thorough object description (see Figure 2.2b). This gives more
comprehensive information about the object’s geometry and pose which is useful
in many practical applications. As consequence the optimization problem becomes
considerably more complex as combinations of parts have to be taken into account.
We consider efficient optimization methods for the resulting optimization problem
in Section 2.2.

14 Chapter 2. Background / Previous Work

(ii) Improved Features What we described so far is the state of the art for
object detection with part-based models in 2010. In subsequent years, Convo-
lutional Neural Networks improved object detection and pose estimation results
[Girshick 2014, Wei 2016, Cao 2016]. Convolutional Neural Networks learn to com-
pute features optimized for a given task and training data. The object models
presented so far are largely agnostic to the features that specify the resulting opti-
mization problem. Consequently, Deformable Part Models are improved by learned
features [Savalle 2014, Ranjan 2015, Ouyang 2015, Girshick 2015b].

Moreover, Deformable Part Models can be expressed as layers of Convolu-
tional Neural Networks [Girshick 2015b]. This allows for a natural integration
of Deformable Part Models and Convolutional Neural Networks. We use the
combination of both approaches throughout this thesis.

Having outlined the two main axes related to object representation, we now
move in more detail from object detection with sliding windows to object pose
estimation.

2.1.1 Object Detection with Sliding Windows

The goal object detection is to find an object of a certain object class in an image
and describe it by a tightly enclosing bounding box. As an example we show in
Figure 2.3 a street image and apply an object detector for “bicycle”, “person” and
“car” and show the respective results.

To simplify the task of object detection, we think of an image not of a grid
of color values, but operate on an intermediate representation, namely features.
Working directly with the colored pixels of an image poses a number of challenges,
for example sensitivity to lighting conditions, color, shifts, rotations, noise and
distortions. Thus a variety of feature descriptors, hereafter just called features, have
been developed in the interest of abstracting the image from pixelwise color values
to a more robust representation, for example [Harris 1988, Lowe 2004, Swain 1991,
Dalal 2005, Viola 2001, Tola 2010]. Most features are calculated based on gradients
which reduces the effect of lighting and coloring in the image. Earlier features
[Harris 1988, Lowe 2004] have been used to determine interest points, like corners, of
an image. These sparse points are useful for image stitching and instance detection
[Hartley 2003, Szeliski 2006]. Features like Histogram of Oriented Gradients (HOG)
[Dalal 2005] or Daisy features [Tola 2010] are computed densely over the image.
They form an image representation designed to be robust to illumination and color
changes, small offsets and slight rotation. The exact choice of features is irrelevant
for the methods presented here, so we will generically denote a stacked feature
vector as f(ξ). The vector f is formed by stacking the features that are extracted
around image coordinate, ξ, where the coordinate ξ lies within an input image I.

Scale variation causes further difficulty because objects can appear at dif-
ferent sizes and resolutions in the image. Consequently the features cover-
ing the object diverge from one scale to another. To deal with the effect

2.1. Object Representation 15

Figure 2.3: Object detector example. We apply a “bicycle”, a “person” and a “car”
detector. The detections are indicated as red bounding boxes.

of scale variation in the image, feature pyramids are an established technique
([Shneier 1980, Adelson 1984]). Feature pyramids are computed by iteratively
downsampling the image and computing features, constituting a multi-scale pyra-
mid of features [Felzenszwalb 2010b, Dalal 2005, Dollár 2009, He 2014, Ren 2017].
The advantage of feature pyramids is that instead of having different object de-
tectors for different scales, the same object detector is run against every pyramid
level, essentially removing scale variation from the problem. We illustrate a HOG
feature pyramid for the previous example image in Figure 2.4, as computed by
[Girshick 2012], and demonstrate its use with the sliding window object detector
(Figure 2.6).

2.1.1.1 Sliding Windows Detection

A discriminatively trained object model provides a scoring function for the presence
of an object. The object detector of [Dalal 2005] compares an image patch with an
object model by computing the inner product between the patch’s features f and
the model weight vector w:

S = 〈f, w〉 (2.1)

If the score, S, is greater than the model-specific threshold, θ, then an object is
detected. Both model-specific parameters constitute the model, M := (w, θ). By
means of the weight vector, w, the model defines the features that characterize
an object of the wanted class. We can visualize the weight vector, w, by showing

16 Chapter 2. Background / Previous Work

Figure 2.4: HOG-feature pyramid for an example image. An object detector is run
against all pyramid levels, removing the need of training different object detectors
for different scales. We depict 6 pyramid levels of HOG features, computed by
successively downscaling the input image and extracting the features. As a result,
at different pyramid levels different levels of details stand out.

the features that reach the highest score, see Figure 2.5 (a) to (f) for examples of
a “person” model. Such a model, M , including the threshold parameter, can be
learned from training data with support vector machines (SVMs) [Steinwart 2008].
Learning with support vector machines is shortly presented in Section 2.3.1. For
clarity in our examples, we simplified the “person” model of [Girshick 2012] by
removing object parts, yielding essentially the model of [Dalal 2005]. Models with
parts are treated in Section 2.1.2.

Instance and viewpoint variation can be handled with mixture models. For
example, an image of the same car from behind or from the side may look very dif-
ferent. Multiple mixture models enrich object models to better capture visual vari-
ability of real-world objects [Weber 2000, Felzenszwalb 2010b, Schneiderman 2000,
Sheikh 2005, McKenna 1999, Moghaddam 1995]. A multiple mixture model, MM ,
consists of a number of K mixture models, MM := {M1,M2, ...,MK}, where
M1, ...,MK are each models, for instance Mi = (wi, θi). To detect all objects of
one class in an image, the corresponding object detector is run once for each of its

2.1. Object Representation 17

mixtures M1, ...,MK and the resulting detections are accumulated.

(a) M1 (b) M2 (c) M3 (d) M4 (e) M5 (f) M6

Figure 2.5: A “person” model with 6 mixture models. We can identify the rough
head shape and varying portions of the human body. The second mixture model is
the mirrored mixture model of the first one, similarly are the fourth and sixth ones
mirrored mixture models of the third and fifth one.

Based on the described object model, we can detect objects at one specific
location in an image. To detect objects everywhere in the image, the detector
needs to be run for all possible patches in the image. This is called the “sliding
window” approach: (i) An image patch is selected, (ii) features are extracted within
the selected image patch and (iii) the score for object to be within the patch is
calculated according to Equation 2.1. This sequence is repeated with varying image
patches until all possible image patches have been covered. It resembles looking at
the input image through a window that slides across the image, thus the term
“sliding windows”. The window leaves free only a patch that matches the model’s
size at a time.

We demonstrate this algorithm in Figure 2.6 with the person model M6 of Fig-
ure 2.5f. First, the image is represented as a HOG feature pyramid (first column).
Second, a 11×4 window of features, matching M6, is cut out and its score is com-
puted according to Equation 2.1 with weight vector w of model M6. This yields
one pixel of the heat map (second column). Red stands for high scores, blue for
low scores. This step is repeated with a shifted window until the heat map is com-
pleted. Third, the scores are thresholded with the threshold parameter θ of M6.
All windows that correspond to scores above the threshold are shown in red in the
last column.

Non-maximum suppression (NMS) is a greedy algorithm that removes redun-
dant candidate solutions that overlap strongly with other candidates. This is of-
ten necessary because the close vicinity of detections also receives a high detec-
tion score. This is also true between neighboring feature pyramid levels. In Fig-
ure 2.7a we depict all detections obtained by a person detector above a certain

18 Chapter 2. Background / Previous Work

Figure 2.6: Illustration of a sliding window object detector. A window of the size
of the model, M6 of Figure 2.5f, is slid over the feature pyramid levels and the
corresponding score according to Equation 2.1 is calculated. The resulting scores
are visualized as a heat-map, where red corresponds to high scores and blue to
low scores. In the last column we show the bounding boxes that correspond to
scores over a certain threshold value. A detection in a high-resolution pyramid
level corresponds to small bounding box, and vice versa.

threshold. We count 10 detections in the image, but they correspond onlsen-
tially to 2 true and 2 false-positive detections. To eliminate heavily overlapping
bounding boxes, all candidate bounding boxes are sorted by their detection score.
Then NMS steps through the list and adds the current element to the solution
set if the solution set does not already contain an element with which it overlaps
strongly. In [Girshick 2012, Girshick 2014, Zitnick 2014, Bourdev 2010, Liu 2016]
the overlap is quantified by the “intersection over union” (IoU) measure, computed
as IoU = (A ∩ B)/(A ∪ B) for candidates A and B. As result, selected detections
prevail and neighboring bounding boxes are discarded, as shown in Figure 2.7b.

2.1.2 Part-Based Models

The techniques presented so far allow to detect objects and to mark them by a
rectangular bounding box. Now we go a step further and extract the locations
of object parts, which we jointly refer to as the object’s pose. This serves two
purposes: Firstly, the object’s pose is valuable information for real-world applica-
tions. Secondly, a richer model can improve detection performance; the work of
[Felzenszwalb 2008] shows an improvement of average precision from 0.24 to 0.34

2.1. Object Representation 19

(a) Detection results for “person”. Several redun-
dant bounding boxes clutter the detections.

(b) Final detections after applying NMS. Strongly
overlapping bounding boxes have been removed.

Figure 2.7: Example of non-maximum suppression. In the image on the left there
are several almost redundant detections. In the image on the right, strongly overlap-
ping bounding boxes have been removed using non-maximum suppression (NMS).

by moving from rigid models (Section 2.1.1.1) to part-based models.
In this chapter we describe the Deformable Part Model (DPM) following

the sequence of works [Felzenszwalb 2005, Felzenszwalb 2008, Felzenszwalb 2010b],
while the idea has been developed in a long line of research [Fischler 1973,
Ioffe 2001, Fergus 2003, Felzenszwalb 2005, Crandall 2005, Fergus 2005, Burl 1998,
Yuille 1992]. More current results with DPMs are discussed in Section 3.1.

2.1.2.1 The Score Function of a DPM

Formally, a DPM is a graphical model [Koller 2009] where object parts are nodes, Ξ,
in an undirected graph, G = (Ξ, E), where the edges, E, model pairwise constraints
between object parts. Let the object consist of N parts, then its associated graph
has N nodes, Ξ := {ξ1, ..., ξN}. A variable ξi specifies the location of the i-th object
part and has a sample space equal to the image’s coordinate space.

Based on this structure, the DPM score function is defined as

S(Ξ) =
N∑
i=1
Ui(ξi) +

∑
(i,j)∈E

P(i,j)(ξi, ξj), (2.2)

consisting of unary terms, Ui, for each part i and pairwise terms, Pi,j , for each edge
(i, j) ∈ E. The object pose, Ξ∗, is found as the argmax of the score function:

Ξ∗ = arg max
Ξ

S(Ξ). (2.3)

The unary term for the i-th part,

Ui(ξi) = 〈f(ξi), wi〉, (2.4)

20 Chapter 2. Background / Previous Work

is the inner product of the feature vector f(ξi), computed around the presumed
location for part i, ξi, and the model’s weight vector for the i-th part, wi. The
features, f(ξi), may be extracted from distinct levels of the feature pyramid and
therefore have a specific resolution in image space.
The pairwise term,

Pi,j(ξi, ξj) := −(ξi − ξj − µi,j)TCi,j(ξi − ξj − µi,j), (i, j) ∈ E, (2.5)

constrains the relative positions of part i and part j. This term incurs a quadratic
penalty to the score if the difference, ξi − ξj , is not equal to the nominal offset
µi,j ∈ R2. This penalty is weighted by the diagonal precision matrix Ci,j . The
pairwise term acts as a spring between pairs of parts that permits small deviations
from a nominal position, but prevents large deformations.

In [Felzenszwalb 2010b], the set of edges forms a star-shaped graph such that
every part is connected to a single central part that is identified with the object’s
position. Without loss of generality, we will always denote the “center” or “root”
node with the index 1. This determines the set of edges to be E = {(1, j)|j ∈
{2, ..., N}}. In distinction to the “center” node (index 1), the nodes with indices
{2, ..., N} are referred to as part nodes. Thus the object’s position, ξ1, determines
the maximum score of associated poses as sum over individual part contributions:

S(ξ1) =
N∑
i=1

max
ξi

(Ui(ξi) + Pi,1(ξi, ξ1)), (2.6)

with P1,1(ξ1, ξ1) = 0. We make use of this star-shaped graph structure in this thesis,
until we loosen the restraints again in Chapter 4 and allow loopy graphs.

We visualize an example DPM with 4 nodes in Figure 2.8. On the left we show
a very simple star-shaped graph where part nodes, ξ2, ξ3 and ξ4, are connected to
the root node, ξ1. On the right we visualize this DPM as factor graph, displaying
unary and pairwise potentials as factors in connection with the part positions. The
variables ξ1, ξ2, ξ3 and ξ4 are framed in squares and the factors are depicted as
circles.

We note that this graphical model can be interpreted probabilistically as Markov
Random Field (MRF). In this context the variables determining the pose, Ξ =
{ξ1, ..., ξN}, are random variables. The edges, E, describe conditional dependencies,
specifically that variables, ξi and ξj , are conditionally independent if there does not
exist an edge, (i, j) /∈ E (Markov property). Then, as stated by the Hammersley-
Clifford Theorem [Hammersley 1971], the MRF corresponds a Gibbs distribution:

S(Ξ) = 1
Z

N∏
i=1

eUi(ξi) ∗
∏

(i,j)∈E
eP(i,j)(ξi,ξj). (2.7)

We obtain the score function in Equation 2.2 by taking the logarithm of the prob-
ability distribution, S. We note that the maximum a posteriori probability (MAP)

2.1. Object Representation 21

(a) Graph of a star-shaped DPM
with 4 parts.

(b) Factor graph of a star-shaped
DPM with 4 parts. Random vari-
ables are depicted as squares, factors
as circles.

Figure 2.8: Example DPM and its factor graph.

estimate of this distribution is equivalent to the argmax of the score function 2.3.
The normalization factor, Z =

∑
ΩN
(∏N

i=1 e
Ui(ξi) ∗

∏
(i,j)∈E e

P(i,j)(ξi,ξj)), with ΩN

being the pose sample space consisting of N part positions, is an additive constant
under the logarithm and therefore irrelevant for the optimization.

2.1.2.2 DPM - Visualizations

A visualization of a “person” DPM is shown in Figure 2.9. The top row shows
the “center”-part of the “person” model, identical to the previous, rigid “person”
model (Figure 2.5). The other parts are visualized in the bottom row. Every
part j is placed relative to the center part according to the pairwise offsets µ1,j .
We explicitly indicate the flexibility of the corresponding pairwise term by yellow
arrows. The size of an arrow cross relates to the inverse of C1,j , such that a long
arrow conveys a flexible pairwise relation. We point out that this model contains
parts that operate with features of different resolutions. [Felzenszwalb 2008] argues
that a low resolution center part covers the general appearance of an object, whereas
the other parts capture the object’s finer details.

The relative part positions are not rigid, as illustrated in Figure 2.10. Both
detected persons are assigned to the mixture on the right of Figure 2.9. We observe
that the arrangement of parts (red rectangles) adapts to the image, resulting in two
different poses between both persons. The blue rectangle corresponds to the center
part to which all other parts are connected via pairwise terms. Due to its lower
resolution, the center part covers a larger area than the other parts.

22 Chapter 2. Background / Previous Work

(a) (b) (c)

Figure 2.9: Visualization of a “person” DPM. The top row shows the root-filter,
w1, that by itself offers a rigid model identical to the model in Figure 2.5. The
bottom row shows the part filters, w2, ..., wN , in their spatial configuration. The
green arrows illustrate the flexibility of part positions, 1/C1,2, ..., 1/C1,N , of the
corresponding parts, such that a long arrow corresponds to a small penalty for a
deformation in this direction. Each column represents one mixture model. We show
3 out of 6 mixture models, since the other 3 are mirrored equivalents.

2.1.3 Convolutional Neural Networks

The DPM of [Felzenszwalb 2010b] set the state of the art in object detection on the
PASCAL VOC benchmark [Everingham 2010] at the time of its publication. In the
following years, Convolutional Neural Networks established themselves to be one of
the most successful methods for object detection [Ren 2015, Sermanet 2013], pose
estimation [Newell 2016, Toshev 2014, Tompson 2014] and a variety of other com-
puter vision tasks [Simonyan 2014, Long 2015, Chen 2016b, Kokkinos 2016]. This
data-driven approach has been facilitated by the growing computing capabilities

2.1. Object Representation 23

Figure 2.10: Object part detection with DPMs. The blue rectangle stands for the
low-resolution center part, the red rectangles indicate the other parts. Two people
are detected with the same mixture model, but the flexible pairwise term allows
varying poses.

of modern graphics cards and large amounts of available training data. It turns
out that hand-crafted features like HOG are the bottleneck for object detection
performance and the results are improved by learned features [Girshick 2015b]. In
this chapter we describe briefly Convolutional Neural Networks, leading to features
learned from data, and then turn to the integration of DPMs with Convolutional
Neural Networks.

2.1.3.1 Convolutional Architecture

A Convolutional Neural Network (CNN) is a feedforward neural network that con-
tains convolutional layers [LeCun 1998]. In a convolutional layer, the neurons are
connected to a neighborhood of neurons in the layer below. In contrast a multi-
layer perceptron employs fully-connected layers where every neuron of one layer
is connected to all neurons in the previous layer. A peculiarity of convolutional
layers is that edge weights are shared among nodes of the same layer, more pre-
cisely, the same convolution parameters are used for each neuron. Due to this
weight-sharing, the convolutional layer contains fewer parameters than a compara-
ble fully-connected layer. This reduces over-fitting and improves generalization of
CNNs over fully connected networks [LeCun 1989]. Additionally, the emphasis on
neighboring neurons in the underlying layers promotes locality and shared weights
drive the computation of shift-invariant features [LeCun 1995].

We visualize a convolutional and a fully-connected layer in Figure 2.11.
“Layer 1” is a convolutional layer, each neuron is connected to 3 neurons in
“Layer 0”. The edge weights are shared among this layer: The same set of 3 weights
is used for all neurons in “Layer 1”. The edges are colored accordingly in red, green

24 Chapter 2. Background / Previous Work

and blue, indicating shared parameters. The fully-connected layer simply connects
every node of “Layer 2” with every node of “Layer 1” underneath.

Figure 2.11: Neural Network with a convolutional and a fully connected layer. In
a convolutional layer, neurons of the layer are connected to overlapping subsets of
neurons in the layer below. Edge weights are shared in this layer. We visualize
this by coloring edges accordingly in red, green and blue. In fully connected layers,
all neurons of the layer are connected to all neurons of the layer below. Here,
parameters are not shared. For reasons of clarity we single out the edges to a single
node in both layers.

The work by Krizhevsky et al. [Krizhevsky 2012] made CNNs popular by ob-
taining state of the art results on image classification by a wide margin (15.4% top
5 test error rate over 26.2%). Two years later, Girshick et al. [Girshick 2014] trans-
ferred this success to the task of object detection, followed by improved versions
[Girshick 2015a, Ren 2015]. The idea behind this work is to feed the network a
large number of region proposals and select the best-scoring proposals via NMS.

2.1.3.2 Dense Feature Maps

A CNN does not only classify images, but computes, as intermediate results, image
features in the inner layers of the network. The complexity of features computed
in a CNN depends on the number of layers up to the feature map and size of the
receptive field. The receptive field is the neighborhood to which every neuron is
connected in layers below. As an example, assume that every node in the layers
of a CNN is connected to a 3×3 neighborhood, as in [Simonyan 2014]. Thus the
receptive field of a neuron in the first layer is 3×3. Then the receptive field of a
neuron in the second layer is 5×5 in relation to the zero-th layer, 7×7 in the next

2.1. Object Representation 25

layer and so forth. This allows the CNN to learn increasingly complex features
on an increasingly large support in the input image. These features are highly
discriminative and show a large visual variability.

This is illustrated in the work on ZF-nets [Zeiler 2014] who provide insight into
what the CNN is learning by illustrating the features of various layers. Figure 2.12
shows the features computed by the first three layers of the ZF-network trained
on the ImageNet dataset for image classification. While the first layer contains
some basic shapes like lines or pairs of lines in certain directions, the second layer
contains more complex shapes like circles and corners. The third layer is activated
on patterns and shapes that look like wheels of a car, for example.

(a) (b) (c)

Figure 2.12: Visualization of features of the ZF-net [Zeiler 2014]. The visualizations
are created using deconvolutions of individual features in the first, second and third
layer.

We turn now to how CNNs can be used in conjunction with DPMs. The unary
term, as previously introduced for the DPM formalism, is computed as the inner
product between feature vector, f(ξ), and model specific weight vector, w, (Equa-
tion 2.4). Such a feature vector, f(ξ), can be obtained as the activation of the
neuron at the indicated position, ξ, in a certain layer. These feature vectors form
dense feature maps that can be used to efficiently compute dense unary potentials.

In [Girshick 2015b, Savalle 2014], convolutional features are used to compute a
pyramid of dense feature maps. Some feature maps are shown in Figure 2.13. The
first column shows the input image, the other columns contain feature pyramid
levels. Figure 2.13 compares HOG features (first row) with convolutional features,
more precisely the activation of one channel of the 5-th layer of their CNN (other
rows). The chosen channel corresponds to a “head”, an important feature for labels
that involve humans in the original classification task [Russakovsky 2015]. A high
activation is displayed in white, a low activation is shown as black. The activations
are scale sensitive, peaking at level 6 for the face image.

26 Chapter 2. Background / Previous Work

Figure 2.13: Comparison of HOG features with conv5 activations over several scales
[Girshick 2015b]. The first column shows the input image, the remaining columns
correspond to features extracted at different scales of the image pyramid. The first
row displays the HOG feature pyramid, similar to Figure 2.4. In rows 2 to 4, the
activations of 1 channel (out of 256) of the 5-th convolutional layer are visualized.
The network is trained on the ImageNet dataset for scene classification. The chosen
channel corresponds to the “head” label.

2.1.3.3 Part-Based Models and Convolutional Neural Networks

So far we have introduced the DPM as a graphical model approach for object de-
tection and pose estimation. Furthermore we have briefly characterized CNNs that
can be used for object detection and who calculate features learned from training
data. Girshick et al. [Girshick 2015b] argue that both ideas blend naturally and
that in fact a DPM can be expressed as CNN.

In order to prove that DPMs are CNNs, [Girshick 2015b] propose a CNN that
simulates the optimization of a DPM. They propose a CNN that consists of two
phases: (i) computation of dense feature maps over an image pyramid (see Fig-
ure 2.13) and (ii) DPM-style optimization by unrolling the steps of the optimization
into layers of a convolutional network architecture. This results in a unified CNN
that detects object with DPMs, based on CNN features.

Beyond the insight that DPMs are CNNs, this work confirms that the com-
bination of DPMs and CNN features improves performance for object detection.
[Girshick 2015b] reports a detection performance of 33.7% mAP with HOG fea-
tures and 44.4% mAP with CNN features on the PASCAL VOC 2007 benchmark
[Everingham a]. Similarly, the work of [Savalle 2014] compares DPMs with HOG
features and DPMs with features of a very similar CNN and reports improvements
for detection (48.2% mAP on the same benchmark). In this thesis, we apply the
same idea in Chapter 3 to obtain unary potentials based on convolutional features.

2.2. Optimization Methods for Part-Based Models 27

2.2 Optimization Methods for Part-Based Models

In the second part of this introductory chapter, we show how to optimize efficiently
star-shaped DPMs like the ones introduced in Section 2.1.2 in 2D. We will address
this limitation in Chapter 4 and expand to loopy graph structures. Our objective
here is to maximize the following score function, S, as introduced in Equation 2.2:

S(Ξ) =
N∑
i=1
Ui(ξi) +

∑
(i,j)∈E

P(i,j)(ξi, ξj), (2.8)

The problem is computationally challenging to solve due to the large size of
the solution space. Denote the set of pixel coordinates within an image as Ω2D,
such that each variable can take on |Ω2D| distinct values, in particular the number
of pixels in the image. If the input image contains |Ω2D| pixels, there are |Ω2D|N
different object poses. However, in a star-shaped DPM, all parts are connected
only to one common center part, rendering their contribution to the score function
independent from each other, following the Markov property of the MRF. Thus the
complexity of a sliding windows implementation is O(N |Ω2D|2), quadratic in the
size of the input image.

A variety of approaches have been proposed to efficiently solve a pairwise MRF
of this type. We first focus on a dynamic programming approach with generalized
distance transforms (Section 2.2.1), reducing the algorithm’s complexity to linear
in image size. We also consider a cascaded optimization (Section 2.2.2), which
is a complementary acceleration technique. In the final part of this section, we
introduce a Branch-and-Bound implementation that accelerates optimization to a
near logarithmic runtime. This approach is central for the rest of this thesis.

2.2.1 Generalized Distance Transform with Dynamic Program-
ming

[Felzenszwalb 2005] combines dynamic programming with the Generalized Distance
Transform of [Felzenszwalb 2005] to an efficient inference procedure. This makes
inference possible within about 10 seconds per image [Felzenszwalb 2010a] on a
single CPU core and 2 seconds on a multi-core system [Felzenszwalb 2010b].

2.2.1.1 Dynamic Programming

Dynamic programming (DP) [Bellman 1952, Bellman 2015] is a general program-
ming technique designed to reduce computational complexity by re-using already
computed magnitudes. DP reduces the complexity of inference on loop-free graph-
ical models from O(|Ω2D|N) with a naive implementation to O(N |Ω2D|2) with DP,
where N is the number of nodes in the MRF.

DP was originally proposed to break down sequential problems, like computation
of shortest paths, recursively into simpler partial problems. The application of
dynamic programming to non-serial problems is referred to as the max-product

28 Chapter 2. Background / Previous Work

algorithm [Weiss 2001, Pearl 2014]. Since the term dynamic programming is used
also in the context of tree-structured DPMs, we will omit the more precise term
“max-product” in favor of “dynamic programming” to avoid confusion.

Assume a small-sized DPM that involves three object parts. For this example
we view a chain-structured graph instead of a star-structured one. So we consider
the score function S to be

S(ξ1, ξ2, ξ3) = U1(ξ1) + U2(ξ2) + U3(ξ3) + P1,2(ξ1, ξ2) + P2,3(ξ2, ξ3). (2.9)

The task is to compute the set of variable values (ξ1, ξ2, ξ3)T that maximizes
S(ξ1, ξ2, ξ3). Using commutations, we obtain

max
ξ1,ξ2,ξ3

S(ξ1, ξ2, ξ3) =

= max
ξ1

max
ξ2

max
ξ3

(
U1(ξ1) + U2(ξ2) + U3(ξ3) + P1,2(ξ1, ξ2) + P2,3(ξ2, ξ3)

)
(2.10)

= max
ξ1

max
ξ2

max
ξ3

(
U1(ξ1) + P1,2(ξ1, ξ2) + U2(ξ2) + P2,3(ξ2, ξ3) + U3(ξ3)

)
(2.11)

= max
ξ1

max
ξ2

(
U1(ξ1) + P1,2(ξ1, ξ2) + U2(ξ2) + max

ξ3

(
P2,3(ξ2, ξ3) + U3(ξ3)

)
︸ ︷︷ ︸

m3→2(ξ2)

)

(2.12)

= max
ξ1

(
U1(ξ1) + max

ξ2

(
U2(ξ2) + P1,2(ξ1, ξ2) +m3→2(ξ2)

)
︸ ︷︷ ︸

m2→1(ξ1)

)
(2.13)

= max
ξ1

(
U1(ξ1) +m2→1(ξ1)

)
(2.14)

The commutability of sums and maximization allow us to move the max-operators
further inside, creating smaller, nested optimization problems. The problem in
Equation 2.10 can now be solved by recursively solving subproblems. First, the
smallest problem, m3→2, is solved, returning a function of ξ2. Since the domain of
ξ2 is the set of pixels and therefore discrete, this function can be stored as array.
Second, the second smallest problem, m2→1, is solved, using the already computed
sub-solution m3→2. Again the resulting function of ξ1 is stored as matrix. Finally
the original problem can be solved as in Equation 2.14. By utilizing the already
computed m2→1, the problem has become considerably easier to solve. The gain in
computational efficiency is explained by avoiding to re-compute partial results.

2.2.1.2 Generalized Distance Transform

The Generalized Distance Transform (GDT) [Felzenszwalb 2004] accelerates the
computation of subproblems of the form mj→i(ξi) = maxξj Uj(ξj) +Pi,j(ξi, ξj). DP

2.2. Optimization Methods for Part-Based Models 29

allows one to perform inference of a loop-free DPM by solving N subproblems of this
type. A naive implementation of these subproblems runs in the order of O(|Ω2D|2)
each, with GDT they can be solved in O(|Ω2D|).

GDT accommodate to a more general class of problems, only requiring that the
term P is a distance and that the unary term, U , is embedded in a grid on which
the distance is computed. In case the distance is separable over dimensions, like the
pairwise term of the DPM (Equation 2.5), the distance transform can be computed
as successive 1-dimensional operations:

mj→i(ξi) = max
ξj
Uj(ξj) + Ci,jx (ξix − ξjx − µi,jx)2 + Ci,jy (ξiy − ξjy − µi,jy)2 (2.15)

= max
ξjy

(
max
ξjx

(Uξj (ξj) + Ci,jx (ξix − ξjx − µi,jx)2) + Ci,jy (ξiy − ξjy − µi,jy)2). (2.16)
The nominal offset µi,j and quadratic weight Ci,j , as in the definition of the pairwise
term (Equation 2.5), is omitted here, but can be incorporated in the calculation
of the parabolas. Equation 2.16 describes a 2-dimensional distance transform as
concatenation of two 1-dimensional operations. Figure 2.14 visualizes this approach.
From the input image in Figure 2.14a, showing an example unary term U , first the
GDT over columns is computed (Figure 2.14b) and in a second pass over rows the
final result is obtained (Figure 2.14c).

(a) (b) (c)

Figure 2.14: Generalized Distance Transform (GDT) [Felzenszwalb 2004]. (a) an
example input. (b) the result after the first pass over the vertical dimension. (c)
the final result.

The GDT in 1D consists of two steps: (i) computing the lower envelope of
parabolas anchored at the grid points and (ii) sampling of the envelope at the grid
locations.
Step (i) A grid point g ∈ Ω2D generates a parabola rooted at (g,U(g)). The lower
envelope is computed first for a single grid point and is updated incrementally with
parabolas for all grid points. The lower envelope is maintained in a combinatorical
data structure, keeping track in which interval a parabola is below all others.
Step (ii) The distance transform is computed by sampling the lower envelope at
the grid points.

30 Chapter 2. Background / Previous Work

Both steps are computable in O(Ω2D), resulting in a linear overall complexity.

2.2.2 Cascades

Cascades for object detection with DPMs [Felzenszwalb 2010a] accelerate inference
by applying a series of simplified object classifiers, successively narrowing down the
search space for subsequent, increasingly complex classifiers. [Felzenszwalb 2010a]
report an average runtime of 10.1 seconds with GDT and DP and 0.313 seconds
with Cascades for the motorbike-object class.

Evaluation of a complex classifier like DPM with many parts is considerably
slower than a simple classifier with few or no moving parts. [Felzenszwalb 2010a]
propose to apply a hierarchy of simpler classifiers in a sliding window fashion.
Assume a DPM defined for a star-shaped graph G = (V,E) with N nodes, including
the center node. The hierarchy of classifiers consists of N models based on the sub-
graphs G1, ..., GN−1, GN , with Gi containing the first i parts of the original model.
Graph GN corresponds to the original DPM.

A hypothesis is defined by the location of the center node; the part locations refer
only to the center node. The location of each part, ξi, is determined independently,
given the center node position, ξ1, in order to maximize the part’s contribution to
the score (Equation 2.6. Each partial model, from G1 to GN , is applied successively
to the image, generating a set of hypotheses as base for the next larger partial
model. These hypotheses are pruned based on thresholds, tτ , for each stage, τ . If
the score of a hypothesis, associated with ξ1, at stage τ is lower than threshold, tτ ,
the hypothesis is discarded and is not evaluated in later stages. Furthermore the
score computation of the additional part is narrowed to image portions where the
previous score of the hypothesis plus the pairwise term of this part, P1,i, is above
a certain threshold, t′τ . As consequence, the evaluation of the partial models is
avoided in large portions of the image for all but the first partial model.

Figure 2.15 illustrates the process of stepwise pruning hypotheses. On the left
a test image is overlaid by the final bounding boxes (red for the object bounding
box, blue for the part bounding boxes). The images on the right show in white
where part appearance models for parts, i = {2, ..., 6}, have been evaluated. White
indicates the locations that have to be evaluated with the corresponding part and
corresponding partial model.

To further accelerate detection, [Felzenszwalb 2010a] propose to create 2N mod-
els in the hierarchy by duplicating the hierarchy of DPMs and simplifying the ap-
pearance models of the first N models. The appearance model is simplified by
reducing the features’ dimensions by projecting the features into a subspace ob-
tained by Principle Component Analysis (PCA). Simplified appearance models are
evaluated about 6 times faster than the full ones. For these simplified models dif-
ferent thresholds are determined.

Cascaded detection speeds up inference by a factor of 7.8 without the simpli-
fied appearance models and by a factor of 22 with PCA approximated appearance
models.

2.2. Optimization Methods for Part-Based Models 31

(a) (b)

Figure 2.15: Left: Input image with object detection result. Right: Binary maps
demonstrating hypotheses pruning. The inference with cascades accelerates de-
tection by pruning hypotheses below a certain threshold with simplified models.
From top to bottom and left to right, the maps show the increasingly complex
models are evaluated only on small portions of the image, indicated in white.
[Felzenszwalb 2010a]

2.2.3 Dual-Tree Branch-and-Bound

The DP algorithm in Section 2.2.1.1 improves over a sliding window approach by
avoiding to repeat computations, speeding up inference from quadratic to linear in
the number of pixels. Yet all part scores are computed at least once. This can
be avoided with Dual-Tree Branch-and-Bound (DTBB) [Kokkinos 2011], reducing
runtime to logarithmic in the best-case scenario. The algorithm is efficient because
it attributes computational resources only to interesting parts of the image.

In the remainder of this chapter, we present the main ideas for DTBB, but we
will defer some technical details to Chapter 3. This establishes the base for the 3D
Branch-and-Bound algorithm in Chapter 3 and 4.

2.2.3.1 General Branch-and-Bound

Branch-and-Bound searches over intervals, based on an upper bound of the score
function in the interval. The general Branch-and-Bound algorithm works as follows:
Initialize a priority queue with an interval that contains the full label space. Then
iteratively execute the following two steps:

1. Branch: Pick the top interval from the priority queue and split the interval
into two child intervals.

2. Bound: Determine the upper bound of the score for both child intervals and
push them onto the priority queue with the upper bound as sorting criterion.

The stopping criterion is reached when an interval is picked that contains only one
element. This is the globally optimal solution.

32 Chapter 2. Background / Previous Work

2.2.3.2 Branch-and-Bound for DPM

For optimization of star-shaped DPMs, the objective is to maximize the score func-
tion

S(Ξ) =
N∑
i=1
Ui(ξi) +

N∑
i=2
P(1,i)(ξ1, ξi) (2.17)

(2.18)

as described in Equation 2.2). This assigns a label to every node in the graph G =
(V,E). The label space, Ω2D, of each node in V consists of the set of coordinates
of the input image, that is, |Ω2D| = w∗h, with w representing the width and h

representing the height of the image.
Due to the star-shaped graph structure, the elements of the sum in the right

hand term are independent of each other and relate solely to the position of the
center node. As in Equation 2.6 we can write the score of a pose, Ξ = {ξ1, ..., ξN},
as a function of the center node, ξ1:

S(ξ1) =
N∑
i=1

max
ξi

(Ui(ξi) + P1,i(ξ1, ξi)), (2.19)

We consider an example of detecting a bicycle in Figure 2.16a. In Figure 2.16b
the exact score is displayed, evaluating Equation 2.19 for every pixel. In this exam-
ple the score’s maximum is closely focused around one point, allowing the Branch-
and-Bound algorithm to disregard significant parts of the image. A similarly peaked
score distribution is common in natural images. The DTBB profits from this, as
illustrated in Figure 2.16c where we show which intervals of the image are evaluated
during inference. Large portions of the image are covered by few large rectangles,
saving computation time. The subdivision is finer around the actual detection loca-
tion, indicating that the algorithm spends its resources on interesting areas of the
image.

Branch-and-Bound consists of splitting the image into intervals and determining
a fast computable upper bound for each of those solution intervals. The next
iteration picks the interval with the currently best upper bound. Thus intervals
with a high upper bound are prioritized to be refined over intervals with a low
upper bound. Intervals with a low upper bound will be sorted to the end of the
queue and will therefore effectively be skipped, saving computational resources. In
practice, large parts of the image contain no or little image evidence for a part,
allowing the algorithm to focus on the relevant image parts (Figure 2.16c).

2.2.3.3 Dual-Tree Branch-and-Bound

Now we apply Branch-and-Bound to maximize the score, maxξ1 S(ξ1), Equa-
tion 2.19. In particular we divide the label space of ξ1 into two parts (two rectangu-
lar intervals) and compute an upper bound for each of those. In order to compute

2.2. Optimization Methods for Part-Based Models 33

(a) (b) (c)

Figure 2.16: Object detection with Branch-and-Bound [Kokkinos 2011]. The first
figure shows the original image with the optimal object bounding box in red. The
second image illustrates which intervals the algorithm evaluated and therefore spent
time on. The colors refer to the upper bound computed for the respective interval.
The third image displays the exact score of the detector, evaluated densely. For
both images on the right, blue stands for low scores and red stands for high scores.

an upper bound over an interval of labels for ξ1, we need to compute an upper
bound of the sum of N part contributions, each another optimization problem:
Spartial(ξi|ξ1) := maxξi(Ui(ξi) + P1,i(ξ1, ξi)). This problem is again upper bounded
over intervals. This constitutes the Dual-Tree Branch-and-Bound, consisting of two
nested Branch-and-Bound levels, one for the center node and one for each part
node.

Part Upper Bound As required by the Bound-step, an upper bound of the i-th
part contribution, Spartial(ξi), needs to be computed. For the sake of clarity we
simplify this problem by replacing the pairwise term, P1,i(ξ1, ξi), by a quadratic
function, ||ξi||22. In Chapter 3 we discuss in detail the bounding of the full pairwise
term.

Then the upper bound for maxξi(Ui(ξi) + ||ξi||22) can be efficiently computed
over an interval ν as

max
ξi∈ν

(
Ui(ξi) + ||ξi||22

)
≤ max

ξi∈ν
U(ξi) + max

ξi∈ν
||ξi||22. (2.20)

The inequality in Equation 2.20 decouples the unary term U(ξi) from the quadratic
term ||ξi||22, allowing it to efficiently compute an upper bound:

• maxξi∈ν ||ξi||22 can be computed analytically for any rectangular interval
[xνa, xνb]× [yνa , yνb], corresponding to a node ν, as x2

b + y2
b .

• maxξi∈ν U(ξi) can be precomputed for every interval.

Then the maximum score of part i is determined as the maximum over intervals
maxKk=1 maxξi∈νk Spartial(ξi), with

⋂
ν1, ..., νK = Ω2D that cover the image space.

We need to precompute the upper bound only over certain intervals. We note
that splitting the label space, Ω2D, repeatedly into 2 equally sized parts in the

34 Chapter 2. Background / Previous Work

branching step corresponds to traversing a Kd-Tree over the image domain, where
the Kd-Tree’s root represents the full image domain and the tree’s leaves correspond
to image pixels. The Kd-Tree’s inner nodes correspond to rectangular image inter-
vals. In such a tree the leaves contain the unary potentials, U . The Kd-Tree’s inner
nodes are filled with the maximum over their child nodes. It takes linear runtime in
the number of pixels to create this tree. This is illustrated in Figure 2.17. On the
left we show an example unary potential as array. On the right we show a resulting
Kd-Tree, built by incrementally splitting the array into two intervals and assigning
every tree node the maximum of its children.

(a) (b)

Figure 2.17: Precomputing the unary potential. Left: example unary potential
given as array. Right: resulting Kd-Tree.

To avoid confusion, we point the reader towards the double use of the word
node: there are nodes within a Kd-Tree and there are nodes as part of the graph,
G = (V,E), describing the DPM. We refer to a node within a Kd-Tree explicitly as
“Kd-Tree node” or as “interval”, indicating its connection to a rectangular interval
in the image. Otherwise a “node” belongs to the DPM graph, G.

Center Upper Bound In order to compute an upper bound of the score, S(ξ1),
with ξ1 with an interval ν, the Dual-Tree Branch-and-Bound traverses two sets of
trees in parallel. In every branch-step the DTBB descends in two trees: in the Kd-
Tree for the center node and in the set of N Kd-Trees for parts. In the bound-step,
the upper bound for the center node is computed as sum over the upper bounds
of part contributions. Smaller intervals ν for the part nodes render the estimation
of the parts’ contributions to the final score more precise, as the tightness of the
inequality in Equation 2.20 depends on the size of the interval, ν. Larger intervals
cover greater portions of the image space, thus reducing the computational cost for
upper-bounding. To trade-off between computational cost and tightness of upper
bounds, DTBB traverses the Kd-Trees of the center node at the same rate as the
Kd-Trees of the other part nodes.

2.3. Model Learning 35

2.3 Model Learning

Up to now we have described part-based models to represent objects and discussed
efficient methods to optimize these graphical models. Now we turn towards learning
the parameters of these models from given training data. We start from binary
classification models for detection before moving to structured models that are
appropriate for training DPMs. Then we discuss the special case when the training
data lacks part annotations.

2.3.1 Support Vector Machines (SVMs)

Support Vector Machines (SVM) can be used to train linear classifiers, dividing
datapoints of two classes by a hyperplane in feature space. The task is to find a
linear classifier w, given a set of annotated data points (x1, y1), ..., (xn, yn), with
f(xi) the feature vector for xi and yi ∈ {−1; +1} the corresponding labels. Please
refer to Figure 2.18 as an example. The triangles and circles correspond to a label
yi of −1 and +1, respectively. Here, the feature space is 2-dimensional, so we plot

(a) (b) (c)

Figure 2.18: Linear SVM in a 2 dimensional example case. 2.18a: Input data for
binary classification into triangles and circles. 2.18b: Potential linear classifiers, all
of which can correctly classify the given data points. 2.18c: The solution found by
SVM maximizes the margin, in other words, the space around the separating line.

the features as u-v-coordinates and the hyperplane reduces to a straight line in 2D.
The black lines in Figure 2.18b show several options of valid classifiers w each of
which separating perfectly datapoints of the two classes. A data point with features
f(x) is labeled with as

y =

+1 if 〈f(x), w〉+ b ≥ 1
−1 if 〈f(x), w〉+ b ≤ −1

(2.21)

In general, infinitely many hyperplanes will label the training set correctly if data
is separable on the training set. SVM chooses the hyperplane that maximizes the
minimum margin, in other words, it maximizes the minimum distance between the
separating hyperplane and the data points (Figure 2.18c). This ensures maximum
stability to small perturbations of the input data and generalization to test data.

36 Chapter 2. Background / Previous Work

SVM training is efficient and yields good performance if given sufficiently separable
features.

To ensure the data is correctly labeled, we need yi〈f(xi), w〉+b ≥ 1. The distance
between hyperplane and its closest (supporting) data points with yi〈f(xi), w〉+b = 1
is computed as 1/||w||. To maximize the margin, we solve the following optimization
problem:

max 1
||w||

= min ||w|| (2.22)

s.t. yi(〈f(xi), w〉+ b) ≥ 1 ∀i

This convex optimization problem can be solved with a primal-dual for-
mulation [Mangasarian 1999, Frie 1998] or subgradient descent [Zhang 2004,
Shalev-Shwartz 2011].

The “hard” SVM has two downsides: Firstly it is very susceptive to outliers
and secondly training data are usually not perfectly separable. To address this,
the soft margin SVM [Cortes 1995] allows some points to lie within the margin
or to be wrongly classified. For every point that does not satisfy the hard mar-
gin constraint, a penalty has to be payed. To allow points to be misclassified,
[Cortes 1995, Vapnik 1998] introduced slack variables ζi for each constraint in Equa-
tion 2.22, and the optimization problem is written as

min
w,ζ≥0

1
2〈w,w〉+ c

n

n∑
i

ζi (2.23)

s.t. yi(〈f(xi), w〉+ b) ≥ 1− ζi ∀i,

with parameter c determining the strictness of the SVM. Setting parameter c =∞,
the problem reduces to the previous case (Equation 2.22). If ζi = 0 ∀i, the soft-
and hard-margin solutions are identical.

2.3.2 Structured SVM

The structured support vector machine (SSVM) is the extension of SVM towards
structured output prediction. To this end, [Tsochantaridis 2004] propose a feature
function that includes the labels. Thus a structured label, ȳ = (ȳ1, ..., ȳd)T ∈ {0, 1}d,
is determined as ȳ = arg maxy〈w, f(x, y)〉. Analogous to SVM, a slack variable ζi
is introduced for every data pair (xi, yi), i = {1, ..., n}, that subsumes the loss
occurring for this pair. [Tsochantaridis 2004] distinguishes between margin and
slack rescaling to upper bound the loss, resulting in slightly different algorithms
[Blaschko 2016]. We will follow the path of margin rescaling, summing up the loss
of labeling and the classification score

∆M (y, ȳ) = max
ȳ∈Y

(∆(y, ȳ)− wT f(x, y) + wT (f(x, ȳ))), (2.24)

2.3. Model Learning 37

with

∆(y, ȳ) =
d∑
l=1
1(y

l
6= ȳ

l
) (2.25)

being the number of differing labels between y and ȳ over all d dimensions, indexed
by (.)

l
. Plugging this into Equation 2.23, we obtain

min
w,ζ≥0

1
2〈w,w〉+ c

n

n∑
i

ζi (2.26)

s.t. ∀i, ∀yi ∈ Y : wT [f(xi, yi)− f(xi, ȳi)] ≥ ∆(y, ȳi)− ζi.

If the slack variable, ζi, equals 0, then the constraint simplifies to

〈w, f(xi, yi)〉 − 〈w, f(xi, ȳi)〉 ≥ ∆(y, ȳi), (2.27)

such that the score difference between the ground truth configuration and any other
configuration is larger than the loss incurred by that labeling.

Although the output space Y may be very large (in the application of DPM,
this is usually the number of pixels in the image), [Joachims 2009] state that this
quadratic problem can be solved efficiently. [Joachims 2009] proposes a cutting-
plane algorithm that solves this problem and is linear in the number of data sam-
ples. The important insight is that only very few constraints are active at any
point and involved in reaching an approximately optimal solution. It is suffi-
cient to take only a subset of constraints into consideration, called the working
set [Tsochantaridis 2004]. To this end, they propose the “1-slack” formulation, sub-
suming all slack variables in one single slack ζ. The number of constraints increases
as the slack has to account for all combinations of solutions yi for all data points
(xi, yi) at once. The following optimization problem is derived:

min
w,ζ≥0

1
2〈w

T , w〉+ cζ (2.28)

s.t. 1
n
wT

n∑
i=1

(f(xi, yi)− f(xi, ŷi)) ≥
1
n

n∑
i=1

∆(yi, ŷi)− ζ ∀(ŷ1, ..., ŷn) ∈ Y n.

This results in an iterative algorithm. Initially, the working setW of constraints
is the empty set. Then, each iteration of the “1-slack” algorithm consists of two
steps: First, the quadratic problem is solved for the current working set of con-
straints, W . Second, this working set is iteratively extended by the most violated
constraint per data sample. To this end, compute

W = W ∪ arg max
ŷ

wT f(xi, ŷ) + ∆(yi, ŷ) (2.29)

adding the most violated constraint to the set, W . These two steps are repeated
until the constraint violation including the new constraints falls below a chosen

38 Chapter 2. Background / Previous Work

threshold ε.

2.3.3 Latent Variable SVM

The goal is to train a DPM such that the model predicts the training data correctly.
To this end it is useful to reformulate the DPM such that it depends linearly on the
model parameters. In a second step we discuss the latent SVM approach presented
in [Felzenszwalb 2008].

We write the score function of the DPM, as given in Equation 2.2, for a star-
shaped graph:

S(Ξ) =
N∑
i=1
Ui(ξi) +

∑
(1,i)∈E

P(1,i)(ξ1, ξi), (2.30)

where the unary term, Ui(ξi) = 〈wi, f(ξi)〉, is a inner product between the model
weight vector, wi, and the feature vector f of coordinate ξi.

The pairwise term, P1,i(ξ1, ξi), as in Equation 2.5, can be expanded in order to
yield the linear coefficients, a2, ..., aN , b2, ...bN , up to a constant with respect to the
pose, ξ1, ..., ξN :

P1,i(ξ1, ξi) = −(ξ1 − ξi − µ1,i)TC1,i(ξ1 − ξi − µ1,i) (2.31)
= 〈diag(C1,i)︸ ︷︷ ︸

ai

, (ξ1 − ξi)2〉+ 〈−2diag(C1,i)µ1,i︸ ︷︷ ︸
bi

, (ξ1 − ξi)〉+ 〈diag(C1,i), µ2
1,i〉︸ ︷︷ ︸

constant

,

(2.32)

where diag(.) extracts the main diagonal as vector from a quadratic matrix. We
identify pairwise features as ξ̃i = ξ1 − ξi and ξ̃2

i = (ξ1 − ξi)2.
We now stack the part unary weight vectors, w1, ..., wN , and pair-

wise parameters, a2, ..., aN , b2, ...bN , to a model parameter vector, β :=
(w1, ..., wN , a2, ..., aN , b2, ...bN)T . Similarly we stack the unary features,
f(ξ1), ..., f(ξN), with the pairwise features, ξ̃2, ..., ξ̃N , ξ̃

2
2 , ..., ξ̃

2
N)T . This gives the

optimization problem as inner product between model parameters and feature vec-
tors:

max
Ξ

S(Ξ) = max
ξ1,...,ξN

N∑
i=1
Ui(ξi) +

∑
(i,j)∈E

P(1,i)(ξ1, ξi) (2.33)

= max
ξ1,...,ξN

N∑
i=1
〈wi, f(ξi), 〉+

∑
(1,i)∈E

〈
(ai
bi

)
,

(
ξ̃i
ξ̃2
i

)
〉 (2.34)

= max
ξ1,...,ξN

〈β, f(Ξ)〉. (2.35)

We discuss now the training of this DPM with latent SVM. Latent variable
SVM (LSVM) was adapted by [Felzenszwalb 2008] to train DPMs within a few
hours from the bounding boxes on the PASCAL VOC dataset. The PASCAL VOC
dataset [Everingham 2010] does not annotate object parts, thus requiring to train

2.4. Outlook 39

the DPM model with weak supervision.
To train the model, one can minimize a hinge loss of the following form:

β∗(D) = arg min
β

λ||β||2 +
m∑
i=1

max(0, 1− yiSβ(xi)), (2.36)

with D being the set of labeled examples, D = {(x1, y1), ..., (xm, ym)}, where yi
is 1 for positive samples and −1 for negative samples and xi is the i-th training
image, and Sβ(xi) is the DPM score function. To account for the missing part
annotations, the latent variables, z1, ..., zm, are introduced. The score function,
Sβ(xi) = maxzi〈β, fxi(zi)〉, computes the maximum score with respect to the latent
variables zi.

[Felzenszwalb 2008] notes that the score function Sβ(xi) is the maximum of
functions, each linear in β, and thus convex. Consequently, the hinge loss in Equa-
tion 2.36 is convex for yi = −1. If the latent variables, zi, are fixed for every
sample, xi, defining a series of fixed latent variables, zi, then the loss function is
even convex for positive samples with yi = 1. After initialization of the latent vari-
ables heuristically such that they roughly cover the given bounding box for each
instance, Felzenszwalb et al. suggest the following iterative training algorithm:

• Fix all latent variables, zi, and optimize the model parameters, β, as standard
SVM.

• Fix the model parameters, β, and optimize the latent variables, zi, for all
positive samples as arg maxzi〈β, fxi(zi)〉.

This training algorithm solves iteratively a convex and a concave optimization prob-
lem. This guarantees converge to a local optimum [Yuille 2003].

2.4 Outlook

Having outlined the background for the thesis, we now turn to an overview of
our main contributions. In Chapter 3 we learn 3D DPMs for 3D object detection
with parts. Due to the additional dimension, the label space, Ω3D, is now cubic
in the image’s resolution. This corresponds typically to a multiplying factor of
more than 100, rendering approaches with GDT impractical. We thus extend the
DTBB algorithm and customize it to exploit the discrepancy between 2D unary
and 3D pairwise potentials. Our detection algorithm runs in a fraction of a second
while reaching the global optimum. In Chapter 4 we turn towards inference for 3D
human pose estimation based on 3D unaries. To this end, we integrate the inference
algorithm into a CNN layer, augmenting the CNNs capabilities with efficient, global
inference for star-shaped DPMs. Motivated by the structure of the human skeleton,
we search to employ richer graph structures, especially loopy models. To this end,
we overcome the limitation of star-shaped graph structures by applying ADMM,
a graph decomposition algorithm. We show that efficient inference is possible for

40 Chapter 2. Background / Previous Work

loopy graphs by combining ADMM with DTBB. Experiments confirm that these
models benefit the pose estimation accuracy.

Chapter 3

3D Object Pose Estimation
with 2D Unary Potentials

Contents
3.1 Prior Work on 3D Pose Estimation 42
3.2 3D DPM - Modeling . 46

3.2.1 3D DPM with 2D Unary Potentials 46
3.2.2 Viewpoint-Independent Structure 48
3.2.3 Viewpoint-Specific Models . 52
3.2.4 Model Training . 54

3.3 3D DPM - Inference . 56
3.3.1 Joint Inference with Depth Variables 56
3.3.2 Anchoring in Depth . 61

3.4 Evaluation . 62
3.4.1 Model Validation . 62
3.4.2 Runtime Performance . 66

This chapter proposes an extension of the Deformable Part Model (DPM) to
3D. Our focus lies on pose estimation in 3D, namely the estimation of the location
of object parts in 3D space. The output of our system includes a more detailed
object description in terms of object parts and their relative 3D position. Thus it
resembles a coarse object reconstruction when given the rough object location.

There are different approaches to obtain 3D reconstructions, but they require
either specialized hardware or multiple images: One avenue is the use of depth
sensors, like the kinect camera and impressive reconstructions have been achieved
[Newcombe 2011, Whelan 2012, Sturm 2012, Hornung 2013]. While these cameras
have become available for consumers, they usually fail for larger ranges and specular
surfaces. Without this specialized hardware, another avenue for object reconstruc-
tion are stereo methods. Based on at least two images of the same object from
different perspectives corresponding points are found and the 3D location is trian-
gulated (refer to [Hartley 2003, Seitz 2006] for a comprehensive treatment of the
topic). However, often there is only a single image available, leading to single,
monocular image reconstructions.

We aim at solving 3D reconstruction from single, monocular images with min-
imal requirements. We approach the challenging task of 3D pose estimation by

42 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

applying a DPM in 3D, representing objects within an object class. We train this
DPM from 2D annotations without requiring the existence of 3D CAD models or
3D keypoint locations. For loop-free DPMs efficient and exact optimization is pos-
sible, linear in the number of pixels with GDT and DP (Section 2.2.1). In 3D,
the number of pixels is cubic in the granularity of the discretization along each
dimension. Therefore the number of operations needed for inference is cubic in the
discretization of the solution space, resulting in augmented optimization runtime
(tens of seconds instead of a fraction of a second).

Our main contribution lies in an algorithm for solving the resulting optimiza-
tion problem. We adapt the Branch-and-Bound algorithm (Section 2.2.3) to 3-
dimensional problems. A straightforward implementation of a 3D Branch-and-
Bound would extend each unary tree by one dimension, copying the unary for
each depth in the discretization. This idea has one main weakness: The size of
the Kd-Trees would again be linear in the number of pixels and therefore cubic in
the discretization. Creating these trees is costly in computation time and memory.
Instead we propose to exploit the structure of the unary term and traverse a 2D
unary tree and a tree corresponding to depth in parallel. This approach avoids
instanciating a full 3D volume, but does not discard potential solutions. It allows
us to reduce complexity from linear in the number of pixels to logarithmic in the
number of pixels and runtime is typically a fraction of a second. Note that we
achieve the global optimum in every case. The exact runtime depends on the image
instance, however our experiments show very little variance.

In this chapter, we first analyze approaches that existed in the literature prior
to our approach. We then describe how an object class is modeled as a DPM in
3D. A single compact 3D model is created from minimal annotations, namely the
silhouette and a few manually annotated object keypoints. Then we train viewpoint-
specific model parameters using structured SVM (SSVM), based on CNN features.
We customize a Branch-and-Bound approach to efficiently solve the resulting opti-
mization problem. Finally we validate our approach by comparing its performance
to the state of the art method on the PASCAL3D+ dataset.

3.1 Prior Work on 3D Pose Estimation

There is a long line of research for object detection in general, and part-based
object detection and pose estimation in specific, but a much smaller portion is
dedicated to 3-dimensional problems. We focus on works that are closely related
to our work, namely 3D part-based pose estimation from a single RGB image. In
this context, we discuss three different aspects, (i) training data annotation, (ii)
modeling approach and (iii) inference problem in 3D part-based models.

Training Data Annotation
Part-based object models contain more parameters than similar simple, rigid mod-
els. Thus larger amounts of training data are needed in order to train such

3.1. Prior Work on 3D Pose Estimation 43

a model. There are large datasets for 2D object detection [Everingham 2010,
Russakovsky 2015, Lin 2014], where an object is annotated as a bounding box.
However, creating detailed, part-based annotations is tedious and therefore expen-
sive. To obtain 3D models, annotations in 3D are favourable, but creating 3D
annotations by hand is hard, although tools have been created to aid annotation
[Xiang 2014].

To circumvent this obstacle, synthetically created models, computer-aided de-
sign (CAD) models, are available for a range of different objects, for exam-
ple in [Chang 2015] and the Google 3D Warehouse collection. Synthetically
generated models and images possess different characteristics to natural objects
and scenes [Aubry 2014, Massa 2016]. This leads to inferior performance if a
model is trained exclusively on synthetic data and tested on real-world images
[Yu 2010, Michels 2005, Pepik 2015a].

Realistic CAD models are used in [Aubry 2014, Lim 2014] in combination with
part-based models. [Aubry 2014] extracts a large number of distinctive “parts”
from rendered CAD models. In a test image these parts are recognized and com-
bined for a final result, enforcing consistency with a DPM-like formulation. More
sophisticated, [Lim 2014] adapt to natural occurrences by weighting the importance
of parts according to natural occlusion statistics and discriminativity. Therefore a
small amount of annotated real-world images is needed, where the annotated parts
need to coincide with the parts contained in the models trained on CAD models.

[Liebelt 2010] proposes to take advantage of synthetical CAD models to learn
the objects 3D geometry, but uses real-world photos to learn appearance terms.
The parts are defined on the grid points of a regular grid covering the object. The
same grid is laid over the rendering of a 3D CAD model and allows to connect the
appearance from natural images with the geometry of CAD models. This relieves
them from part-based annotations on real-world photos and diminishes the effects
of using synthetically generated models.

A different approach has been taken by [Kar 2015] by utilizing a minimum
amount of annotations on real-world data. Based on the non-rigid structure
from motion (NRSfM) algorithm of [Torresani 2008, Bregler 2000], they use only
silhouette data and a few 2D keypoints. From this they generate a 3D visual hull
for each object category and estimate a shape deformation basis.

Modeling
3D reconstruction from a single 2D image is an ill-posed problem, because there
are infinitely many scenes giving rise to the same image. This can be remedied
by imposing priors on the expected reconstruction, giving preference to a certain
solution. Three main flavors have been explored for 3D object reconstruction: Basis
models, exemplars and part-based models.

[Kar 2015] proposes a shape bases approach that is purely data-driven. A single
shape is rigid, but the linear combination of deformation bases allows for class-
specific deformations in order to adapt to an image at test time. These coeffi-
cients are determined in a gradient descent optimization. To recover high fre-

44 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

quency shape details, the shape is refined in a final step by exploiting shading cues
[Barron 2012, Barron 2015]. The first step depends on the quality of the initial
object segmentation and is furthermore susceptible to local optima. A similar idea
has been developed in [Blanz 1999], where faces are modelled as a linear combina-
tion of face basis shapes. This idea reaches state of the art results on face shape
reconstruction in [Booth 2017] who derive an iterative optimization scheme that
incorporates a learnable texture model to adapt to “in the wild” instances. The
main contribution of [Prasad 2010] is to reconstruct objects based on edge curvature
features instead of requiring full correspondences on the training set.

The work [Trigeorgis 2016] proposes to learn to deform a face mean shape such
that the shape aligns with the given image instance. The deformation in each
iteration is calculated by a neural network and is thus not limited to the basis
shapes estimated in above mentioned works.

A model-free approach relies on comparing new images to annotated training
data, so called exemplars. This simplicity comes at the price of requiring large
amounts of data from which to draw exemplars, as well as a high computational
cost in order to compute the comparison of exemplars with the input image.

An exemplar approach is demonstrated in [Aubry 2014], where parts of rendered
CAD models are used as exemplars and combined to obtain a full object reconstruc-
tion in 3D, as mentioned above. In contrast to [Malisiewicz 2011] who align CAD
models as a whole with the image, [Aubry 2014] searches viewpoint-specific parts
in the image. The exemplars are extracted from rendered CAD models, resulting
in presumably distinctive 2D patches. To account for the visual variation of chairs
and the viewpoint change, more than 800K exemplars are extracted from 1393 CAD
models.

An advancement is described in [Massa 2016] where exemplars are compared
to the input image in terms of CNN features. The image features are transformed
to match more closely the features created from rendered CAD models. The com-
putation of similarity is parallelized in the parallel structure of neural networks,
reducing runtime from minutes to seconds.

Lastly, there has been a range of part-based 3D models, structured as a
graph connected by pairwise constraints and closely related to DPMs. We will
characterize some of them in the following section.

Optimization of 3D Part-Based Models
[Lim 2014] formulates a star-shaped DPM with a large number of mixture mod-
els, each corresponding to a 3D pose of the object. Each mixture models are ob-
tained from rendered CAD models, therefore reducing inference to solving many
2-dimensional problems, solvable with DP (Section 2.2.1).

[Hejrati 2014] reconstructs 3D objects by finding a 3D shape that matches the
image evidence. The shape is formed as a linear combination of basis shapes, each
consisting of a number of keypoints associated with a local template, encoding the
visual appearance, similar to DPM part filters [Felzenszwalb 2008]. To this end, the
3D optimization is avoided by “rendering” part templates into a global 2D object

3.1. Prior Work on 3D Pose Estimation 45

template for a large number of viewpoint parameters.
[Fidler 2012] create a 3D part-based model by gluing 2D parts onto 3D cuboids,

resulting in an MRF in the form of a tree of depth 3: The cuboid center, the cuboid
face position in relation to the cuboid center and the 2D part position in relation
to the face center. Via DP (Section 2.2.1.1) the score function is maximized for
a discrete set of viewpoint angles. The maximum score corresponds to the final
viewpoint. The location of parts on faces and the deformation of faces on the
cuboid correspond to a star-shaped MRF. Both problems are solved in 2D with
GDT (Section 2.2.1.2).

[Pepik 2012a] describes a full 3D DPM with 3D part locations as the 3D ex-
tension of [Felzenszwalb 2010b]. The unary terms are defined as HOG features for
discrete viewpoint bins, whereas the 3D structure is defined once for the model.
For inference, the 3D problem is reduced to multiple 2D problems by discretizing
the desired viewpoint range and solving individual 2D problems with GDT

The training of such a model with latent 3D parts is detailed in [Pepik 2012b].
During training, the latent variables, namely the part positions in 3D, have to be
inferred. This is the same problem as the inference during test time, where the part
filters are fixed. This non-convex optimization problem is solved with standard
coordinate descent and thus can get stuck in local optima.

Similarly, [Pepik 2015c] defines a 3D DPM with 3D pairwise terms and
viewpoint-specific part filters. At test time the problem is projected into the image
plane and the part filters are interpolated from neighboring viewpoints. Still, they
do not optimize in 3D.

The work of [Pepik 2015b] is based on the success of CNNs for object detection
and results in an aligned 3D CAD model with the image. This approach proposes
a pipeline that successively builds up a 3D model, but also avoids part inference in
3D. First, a rough object bounding box is determined using RCNN [Girshick 2014].
Second, from this CNN a viewpoint is regressed as well. Third, within the region of
the bounding box, a 2D DPM is applied to determine the location of 2D keypoints.
Fourth, due to correspondence of located keypoints to points on the CAD model,
the detection can be lifted into 3D.

Similarities to our Work
We have discussed three model approaches in the previous section, namely the
linear combination of basis shapes and exemplar methods and part-based mod-
els, like DPMs. We argue that a DPM is the more flexible model than the
former, because its independent parts allow to express poses beyond the linear
combination of basis shapes. Additionally the Branch-and-Bound optimization for
DPMs guarantees finding the global optimum, whereas the parameters of a basis
model are estimated with an iterative scheme that can end up in a local opti-
mum [Blanz 1999, Prasad 2010]. Furthermore the DPM allows for a more compact
model representation with fewer parameters, benefiting its generalization in absence
of abundant training data.

Regarding the use of data annotation, we follow the ideas of [Kar 2015], relying

46 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

only on silhouette and a few manually annotated keypoints. This results in less
precise and articulated object models that those trained with 3D CAD models.
Despite these restrictions, we show appealing performance in reconstructing 3D
object models.

Similar to the work of [Pepik 2015c], we deduce the 3D pairwise terms from one
global 3D object structure. Unary terms, specific to a discretized viewpoint, follow
the ideas in [Felzenszwalb 2008, Pepik 2012a, Zhu 2015, Fan 2005, Kushal 2007,
Yan 2007, Stockman 1987]

The work by Pepik et al. [Pepik 2015c] comes closest to a realization of true
3D DPMs. However, in the end no inference method is proposed for part-based 3D
object pose estimation or 3D object reconstruction. In this chapter we present an
efficient and exact inference method for 3D DPMs with 3D parts. For comparison,
we also implement inference with 3D GDT, as hinted at in [Pepik 2015c]. We
compare the runtime of both approaches in Section 3.4.

3.2 3D DPM - Modeling

In this chapter we apply a DPM as a flexible and trainable model to represent a 3D
object structure. In order to advance the DPM from 2D to 3D, first we introduce
depth variables for every object part. Our goal is to build a compact 3D structure
for which we derive viewpoint-specific parameters. To this end, we describe sys-
tematically how to build and train such a model. We use a non-rigid structure from
motion algorithm to form a 3D mesh for each object category, on which we base the
graph of the DPM. From this, we derive viewpoint-specific mixture models to reflect
viewpoint-specific appearance variability. Finally, the remaining viewpoint-specific
model parameters are trained using SSVM.

3.2.1 3D DPM with 2D Unary Potentials

We consider a DPM, as presented in Section 2.1.2.1, with graph, G = (V,E), where
E = {(1, j)|j ∈ {2, ..., N}}, and variables, Ξ = (ξ1, ..., ξN). The N -tuple, Ξ, of
2-dimensional image coordinates is the object’s configuration. We raise the label
space into the third dimension, from coordinates in a 2-dimensional image plane,
Ω2D, with |Ω2D| = w∗h, to a volumetric label space, Ω3D := {1, ..., w}×{1, ..., h}×
{1, ..., d}. Thus the desired output consists of an N -tuple of 3-dimensional vectors,
encompassing 3D coordinates of all object parts i ∈ {1, ..., N}. We refer to the third
coordinate dimension also as depth or “z”-coordinate.

We opt for a joint optimization over these three dimensions. Consequently
we stack the two dimensional image coordinates, ξi ∈ R2, with an additional “z”
variable to yield ξi := (ξix , ξiy , ξiz)

T ∈ R3, a 3-dimensional coordinate. Again, we
write (.)

X
to index a specific element in a vector.

3.2. 3D DPM - Modeling 47

The DPM score function, S, is

S(ξ1, ..., ξN) =
N∑
i=1
Ui(ξi) +

∑
(i,j)∈E

P(i,j)(ξi, ξj), (3.1)

where the unary term

Ui(ξi) = Ui((ξix , ξiy)) = 〈w, f(ξix , ξiy)〉 (3.2)

is independent of the third coordinate. The pairwise term

Pi,j(ξi, ξj) = (ξi − ξj − µi,j)TCi,j(ξi − ξj − µi,j) (3.3)

is the extension of Equation 2.5 to the third dimension, with µi,j ∈ R3 and diagonal
matrix Ci,j ∈ R3×3 being parameters in 3D. This pairwise term implicitly assumes
an orthographic projection, that is, deviations of (ξi − ξj) from the nominal offset
µi,j are punished in short and in long distance from the camera equally. This is
a good approximation for large distances, but may introduce inaccuracies at close
distances.

The new MRF is illustrated in Figure 3.1 as a factor graph. Squares depict
variables in the optimization problem and circles depict the factors, namely the
unary and the pairwise terms. The depth, accentuated by variables ξiz in green, is
not observed directly in the image, hence is not connected to the unary terms Ui.
Although the third dimension has no effect on the unary potential, it may influence
other variables via pairwise potentials.

(a) Graph of a star-shaped DPM
with 4 parts. We emphasize the 3
dimensions, x, y, z, of the variables,
ξ1, ..., ξ4.

(b) Factor graph representing the DPM
score function in 3D with added depth
variables. Variables are displayed as
squares and factors are shown as cir-
cles. The newly introduced variables
ξiz , i = {1, ..., 4}, are drawn in green.
We indicate the stacked variables ξi
with light grey rectangles.

Figure 3.1: Example 3D DPM and its factor graph.

48 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

3.2.2 Viewpoint-Independent Structure

We start by describing how we construct the 3D structure that is common to all
viewpoint-specific DPMs of the same object class. To this end, we follow [Kar 2015]
to obtain a 3D mesh from 2D keypoints and 2D silhouettes. We then refine this
mesh such that nodes of the mesh correspond to object-specific keypoints.

[Bregler 2000] propose a non-rigid structure from motion (NRSfM) technique,
applied to a video of people to obtain the 3D structure of a face. This approach esti-
mates jointly the 3D positions of class-specific keypoints and the camera viewpoint
for each training instance. In [Kar 2015] model object shapes as linear combina-
tion of a “mean shape” and deformation bases. The basis shapes are estimated
in an energy formulation using silhouette information, namely ground truth object
segmentation masks. As result, they obtain an estimate of the viewpoint for each
training instance and a 3D object shape corresponding to the object’s visual hull.

We associate the annotated keypoints (lifted to 3D by NRSfM) to points on the
“mean shape” mesh by determining the closest mesh node to the mean of the 3D
keypoints. Figure 3.2 visualizes the keypoints of all training instances in a common
coordinate frame. Then we refine the model by adding mesh points to the model
using Geodesic Surface Remeshing [Peyré 2006]. This ensures that the shape is
sampled with roughly equidistant points. Our final DPM contains 100 nodes.

Figure 3.2: Mesh extracted with NRSfM for the “bicycle”-class. Data points,
marked by “X”, are drawn in a common coordinate system, each color correspond-
ing to a different keypoint. The associated point on the mesh is shown as a filled
circle. The computation of one nominal offset, µi,j , is indicated in dark blue.

We compute the 3D nominal offsets, µi,j , as the difference between nodes i and
j of the refined graph (see Figure 3.2). The result is an articulated 3D object model
for each category. We show some object models in Table 3.1. For each object
class we provide 4 different views: in the top-left we show the object mesh with
100 nodes with a triangulation shown in blue for better visibility. In the top-right

3.2. 3D DPM - Modeling 49

we provide a simplified structure that is based only on the annotated (between 7
and 16) keypoints of the training dataset. In the bottom-left we show one possible
100-node star structure. For better orientation, we color code the object’s depth.
Finally, in the bottom-right we show a detection result by our approach, illustrated
by the simplified graph structure that is based on the annotated keypoints.

Object Mesh Simplified Representation
Star Structure Example Detection

Aeroplane

Bicycle

continued on the next page

50 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

Object Mesh Simplified Representation
Star Structure Example Detection

Boat

Bus

Car

continued on the next page

3.2. 3D DPM - Modeling 51

Object Mesh Simplified Representation
Star Structure Example Detection

Chair

Motorbike

Train

continued on the next page

52 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

Object Mesh Simplified Representation
Star Structure Example Detection

TV-Monitor

Table 3.1: We illustrate our object class models in 4 different ways. Top left quad-
rant: the object structure extracted by NRSfM. A sub-sampled mesh with 100
nodes is visualized in blue. Top right quadrant: A simplified representation based
on the keypoints that are annotated in the PASCAL3D+ dataset. The black lines
have been added for clarity. Bottom left quadrant: a star structured graph based
on the sub-sampled mesh in the left column. The color encodes depth in a canonical
coordinate space (red is close, purple is far). Bottom right quadrant: an example
detection pictured in the simplified representation. The model successfully adapts
to the given image instance.

3.2.3 Viewpoint-Specific Models

We model an object by a set of DPMs, specific to a number of discretized viewpoint
bins. We thereby render object detection robust to viewpoint changes. In this
section we define viewpoint-specific models for 3D object detection.

Most objects look very different from various viewpoints, although the object
itself does not change. A single model is often insufficient or needs to be complex to
capture the vast differences in appearance. So we create a small number of models
for each object class such that each model is responsible for a range of viewpoint
angles. Therefore one model only has to detect objects under slight viewpoint
changes from its canonical viewpoint.

The motivation of our approach is illustrated by Figure 3.3. Due to a large
viewpoint rotation, the visual appearance of the wheelchair in Figure 3.3a and 3.3b
is very distinct. Thus corresponding keypoints are unlikely to be found in both
images. We treat this case with two separate models. Under moderate viewpoint
changes, the local appearance of points on the object is expected to stay approx-
imately constant, illustrated by the enlarged image patches around corresponding

3.2. 3D DPM - Modeling 53

landmarks in both Figure 3.3b and 3.3c. Yet the landmarks seem to move in rela-
tion to each other. The arrangement of these landmarks is highlighted by the red
and green dashed triangles. The superposition of the configuration from Figure 3.3b
onto Figure 3.3c shows that the global arrangement of object parts is sensitive to the
viewpoint angle. The DPM accommodates such variations of relative part positions
in its flexible pairwise terms.

(a) (b) (c)

Figure 3.3: A wheelchair under varying viewpoint angles. The same three selected
landmarks and their surrounding image patches are enlarged in both images (b) and
(c). The corresponding image patches show a high degree of similarity in image (b)
and (c). The landmarks’ relative position to each other is indicated by the dashed
triangles. We overlay the triangle of the landmarks in image (b) onto image (c) to
highlight change under rotation. This motivates us to subdivide the viewing sphere
into a small number of viewpoint bins and to train a DPM for every bin.

We divide the sphere of viewing angles in V evenly spaced viewpoint bins (in
our experiments we use V = 8 viewpoint bins). For object pose estimation, we dis-
cretize the viewpoint only along the azimuth, such that the range of azimuth for bin
v is

[
(v − 1)(2π/V); v(2π/V)[, for v = {1, ...,V}. The azimuth exhibits the highest

variance over instances, especially the in-plane rotation is rare in natural images
and, for example, cars are rarely photographed from below or above a certain view-
point. For every viewpoint bin we compute the central angle αv = (v−0.5)(2π/V).
Then we define the viewpoint-specific score function Sv for the v-th viewpoint bin
as

Sv(ξ1, ..., ξN) =
N∑
i=1
〈wi,v, f(ξi)〉︸ ︷︷ ︸
Ui,v(ξi)

+
∑

(i,j)∈E
−(ξi − ξj −Rvµi,j)TCi,j,v(ξi − ξj −Rvµi,j)︸ ︷︷ ︸

=Pi,j,v(ξi,ξj)

,

(3.4)
where wi,v is the viewpoint-specific weight vector for part i, f(ξi) is the feature
vector extracted for position ξi and Rv is the rotation matrix for the rotation in
azimuth by αv.

54 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

A large number of viewpoints provides a more faithful adaption to the particular
viewpoint present in an image. The main disadvantage is that the more models need
to be trained, the less data samples remain to train each one of them. We argue
that a small number of viewpoint-specific models is sufficient, because each model
pertains a certain tolerance to small viewpoint changes.

Our choice to model an object by a combination of DPMs, each capable of
detecting the object within a certain range of viewpoint angles, is further supported
by the robustness of deep learning features. It has been noted [Goodfellow 2009,
Le 2013] that deep features are fairly robust to small out-of-plane rotations.

3.2.4 Model Training

After having outlined the 3D score function and the derivation of a viewpoint-
specific mixture model, we now turn to model training. Discriminative training
allows us to design a cost function such that the model’s prediction is approximating
the ground truth labels. We train the parameters for the unary, wv, and pairwise
potentials, Ci,j,v, jointly and end-to-end, using a structured SVM (Section 3.2.4),
solved by a cutting-plane optimizer.

We have defined the viewpoint-independent structure of our model, namely the
pairwise offsets, µi,j , in a canonical camera viewpoint, in Section 3.2.2 and derived
the viewpoint-specific offsets as Rvµi,j by rotating them into viewpoint bin v (Sec-
tion 3.2.3). Now we are left to estimate the viewpoint-specific model parameters,
namely the weight vector in the unary potentials and precision matrix, Ci,j,v, in the
pairwise term. For this we need as training data the viewpoint and the 3D keypoint
coordinates from each training sample. The ground truth viewpoint annotation is
used during training to assign training instances to the corresponding viewpoint-
specific model. The 3D keypoints are needed to train the model parameters. We
follow [Kar 2015] and apply NRSfM to obtain these keypoints. We train unary
parameters, wi,v, only for nodes that correspond to annotated keypoints and are
therefore precisely localized in the training images. For the remaining nodes we set
the unary term to 0.

As discussed in Section 3.2.3, an object is modeled by V separate DPMs, each
corresponding to one viewpoint bin. In the following paragraphs we explain the
training of a single mixture model for object detection in 3D, corresponding to a
specific viewpoint, v ∈ {1, ...,V}. We assume that training data has been assigned
to the viewpoint bin, so that we train the model for a viewpoint bin with the samples
assigned to this bin only.

We recognize similarities in the learning to the idea of [Felzenszwalb 2008] in
that they train a set of object models to reflect a variability of the object that
is not captured by a single DPM. Their approach resembles a viewpoint classifi-
cation, but the lack of viewpoint annotations may lead to misclassified samples
and consequently a weaker classifier. In contrast to the latent variable approach in
[Girshick 2012, Felzenszwalb 2008] and Appendix A, we use ground truth viewpoint
annotations to assign training instances to the correct mixture. This reduces the

3.2. 3D DPM - Modeling 55

potential error introduced by false bin assignments and allows to train on a more
semantically consistent subset.

The score function, Sv(ξ1, ..., ξN), as in Equation 3.1, can be written as an inner
product

Sv(ξ1, ..., ξN) =
N∑
i=1
Ui,v(ξi) +

∑
(i,j)∈E

Pi,j,v(ξi, ξj) (3.5)

=
N∑
i=1
〈fU (ξi), wi,v〉+

∑
(i,j)∈E

〈fPv , wPv〉 (3.6)

= 〈
(
fU
fPv

)
,
(
wUv
wPv

)
〉, (3.7)

with fU and fPv being stacked unary and pairwise features, respectively, and wUv
and wPv being the stacked viewpoint-specific weight vectors for unary and pairwise
potentials, respectively. We will now explain these in detail.

The unary potential, as in Equation 3.2, is computed as Ui,v(ξi) = 〈fU (ξi), wi,v〉.
We stack the part weight vectors, w1,v, ..., wN,v, to obtain the weight vector wUv .
Similarly we obtain the feature vectors, fU := (fU (ξ1), ..., fU (ξN))T , by stacking
part feature vectors. The feature vector for the i-th part, fU (ξi), is computed from
a deep convolutional network, extracted around coordinate, ξi. We use the DeepLab
Network [Chen 2016b], a CNN trained for semantic segmentation, and we extract
the activations in the 3-rd and 5-th layer of the network. This rich unary feature
vector, fU (ξi), has D = 769 dimensions for each part position ξi.

The pairwise features are computed as fP,v = (ξi−ξj−Rvµi,j)2, (i, j) ∈ E, with
Rv being the rotation matrix for the v-th viewpoint bin. These geometric features
describe the squared difference of the location of part j and its nominal position
in relation to part i. The inner product, 〈fP,v, wPv〉, computes the sum of pairwise
terms in the DPM score function in Equation 3.1,

∑
(i,j)∈E Pi,j,v(ξi, ξj), with wPv

being the stacked precision matrices, Ci,j,v, This results in a 3(N − 1)-dimensional
weight vector for the pairwise term, wPv .

We train this linear classifier with SSVM as described in Section 2.3.2. Let
Ξ=(ξ1, ..., ξN) and Ξ̄=(ξ̄1, ..., ξ̄N) be the ground truth object configuration and an
arbitrary object configuration, respectively. We replace the loss function proposed
in Equation 2.25 by the mean euclidean distance, ∆(Ξ, Ξ̄) = 1

N

∑N
i=1 ||ξi − ξ̄i||2. It

penalizes how much the predicted 3D coordinates deviate from the ground truth
position of the associated keypoints. Additionally, this loss decomposes over object
parts, leveraging the tractability of the loss augmented inference during training
(Equation 3.9).

The most violated constraint is found by solving the optimization problem

Ξ̄k = arg max
Ξ̄

Skv (Ξ̄) + ∆(Ξ, Ξ̄), (3.8)

where Skv is the score function based on the weight vector wk
v of iteration, k. This

56 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

corresponds to the update step for the working set in Equation 2.29 of the SSVM
algorithm. Intuitively, the label configuration Ξk receives a high score with the
model of iteration k, but causes a high loss and is added to the working set of
constraints for the (k + 1)-th iteration.

The problem is equivalent to maximizing the score of the 3D DPM (Equa-
tion 3.1) with modified unaries.

S̃v(Ξ̄) =
N∑
i=1

(
Ui,v(ξ̄i) + δ(ξi, ξ̄i)

)
+

∑
(i,j)∈E

Pi,j,v(ξ̄i, ξ̄j), (3.9)

where the partial loss δ(ξi, ξ̄i) = (1/N)||ξi−ξ̄i||2, incurred by the respective labeling,
is added to the unary potential.

Thus the complexity of calculating the most violated constraint is identical to
the complexity of our inference algorithm. We note that this is possible because
the loss function decomposes over object parts, allowing for efficient optimization
of Equation 3.9. With this, the joint training of unary and pairwise terms is carried
out within the tractable time of a few hours per model and viewpoint.

3.3 3D DPM - Inference

In the last section we have introduced and trained a 3D viewpoint-specific mixture
model. The optimization problem is very similar to the well-known DPM opti-
mization, presented in Section 2.2.1, but the higher dimensionality renders these
approaches inefficient. We present an efficient inference method for the 3D opti-
mization problem by customizing Branch-and-Bound to the given problem. We
then show that there is a set of equivalent solutions to this problem, and we can
further accelerate Branch-and-Bound by committing all computational resources to
exactly one of the equivalent solutions.

3.3.1 Joint Inference with Depth Variables

In this section we delineate our algorithmic approach to solving the optimization
problem, arg maxξ1,...,ξN S(ξ1, ..., ξN), defined in Equation 3.1. We first show a
straight forward adaption of Dual-Tree Branch-and-Bound (DTBB, Section 2.2.3)
to the 3D problem. Then we customize the DTBB, considering the problem’s spe-
cial structure to save computational resources. This approach renders memory
requirements for data structures independent of depth resolution.

We solve a 3D optimization problem where each part can take a value in Ω3D =
(1, ..., w)×(1, ..., h)×(1, ..., d), with w and h being the width and the height of the
input image, respectively. The maximum depth, d, is set to encompass the depth
of an object within the image.

A straight forward approach to solve inference of a 3D DPM is to extend the
2-dimensional unaries to 3D by stacking d replicas of the 2D unary array to yield a
3-dimensional unary. Then one treats the depth variables ξ

z
as another dimension of

3.3. 3D DPM - Inference 57

the variables ξ and constructs a 3 dimensional Kd-Tree upon the now 3-dimensional
unaries. The inference follows Algorithm 1.

1: function TraverseTree
2: PQ := priority queue
3: PQ← (Ω3D, 0.0)
4: while NOT isEmpty(PQ) do
5: ν ← PQ.pop()
6: if |ν| == 1 then
7: return ν
8: else
9:

10: νleft ← ν.leftChild
11: νright ← ν.rightChild
12: PQ←

(
νleft, S̄(νleft)

)
13: PQ ←

(
νright, S̄(νright)

)
14:
15:
16:
17:

18:
19:
20: end if
21: end while
22: return { }
23: end function

Algorithm 1: Tree Traversal
in Dual-Tree Branch-and-
Bound. The interval, ν, is a
3-dimensional cube in the label
space, Ω3D. This requires the
creation of a Kd-Tree on a
3-dimensional volume.

1: function TraverseWithDepthTree
2: PQ := priority queue
3: PQ← ((Ω2D,Ωz), 0.0)
4: while NOT isEmpty(PQ) do
5: (ν, κ)← PQ.pop()
6: if (ν, κ) are leaf nodes then
7: return (ν, κ)
8: else
9: if |ν| ≥ |κ| then

10: νleft ← ν.leftChild
11: νright ← ν.rightChild
12: PQ←

(
(νleft, κ), S̄(νleft, κ)

)
13: PQ←

(
(νright, κ), S̄(νright, κ)

)
14: else
15: κleft ← κ.leftChild
16: κright ← κ.rightChild
17: PQ←

(
(ν, κleft), S̄(ν, κleft)

)
18: PQ←

(
(ν, κright), S̄(ν, κright)

)
19: end if
20: end if
21: end while
22: return { }
23: end function

Algorithm 2: Tree Traversal with a
separated Kd-Tree for depth variables.
The interval, ν, corresponds to a 2-
dimensional rectangle in the x and y di-
mension. The interval, κ, represents the
z-dimension in a 1-dimensional interval.
By treating these dimensions separately,
it is enough to create a 2D and a 1D Kd-
Tree and combine them to 3D intervals
on the fly without explicitly instantiating
a 3D volume.

We explain Algorithm 1 line by line. In line 3, we initialize the priority queue,
PQ, with the solution space as a whole. This priority queue, PQ, sorts the contained
intervals by their upper bound in descending order, thus retrieving first the most
promising candidates. Line 4 enters a loop that continues until the priority queue,
PQ, is empty or the algorithm terminates with a solution. In line 5, the top scoring

58 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

interval is popped from the priority queue, PQ, and stored as interval, ν. Line 6
asks if the interval, ν contains only a single element. If true then this is the global
solution and is returned in line 7. Otherwise each iteration executes now the two
Branch-and-Bound steps: Firstly, in line 10 and 11 the interval, ν, is split into two
sub-intervals, νleft and νright, in the (branch-step). This corresponds to traversing
from the node ν to its left and right children in the Kd-Tree. Secondly, in line 12
and 13 an upper bound of the score of both intervals, νleft and νright, is estimated
(bound-step), and the sub-spaces are inserted into the priority queue, PQ, with
their upper bound. The computation of the upper bound of intervals is detailed in
Section 3.3.1.1.

We analyze this approach: The memory required for the Kd-Tree is in
O(w∗h∗d), since the 3D volume is explicitly represented. Analogously, the run-
time required to construct the Kd-Tree is O(w∗h∗d). In both aspects our proposed
algorithm is a factor of d faster and requires d times less memory.

Our approach is more efficient in both memory and computational requirements.
The key idea is to separate the depth dimension from the 2 image dimensions, avoid-
ing to instantiate a 3 dimensional data structure. To this end we create a Kd-Tree
for the 2D unary potentials and an additional Kd-Tree over the one-dimensional
depth domain, Ωz = {1, ..., d}. In the branch-step of the Branch-and-Bound, we tra-
verse either the 2-dimensional Kd-Tree for the unaries or the 1-dimensional Kd-Tree
for the depth.

We explain Algorithm 2 in detail. We denote intervals in the unary Kd-Tree
with ν and intervals in the separate Kd-Tree for depth with κ. The tuple of both
correspond to a 3D interval. Similar to Algorithm 1, line 3 initializes the priority
queue, PQ, with the whole solution space, described by the tuple of root nodes
of the 2D and 1D Kd-Tree. Line 4 enters a loop that continues until the priority
queue, PQ, is empty or the algorithm terminates with a solution. In line 5, the top
scoring 3D interval is popped from the priority queue, PQ, and stored in the tuple,
(ν, κ). Again, as in Algorithm 1, this interval is the solution if it contains only one
element (line 6) and is returned (line 7). Otherwise the iteration executes now the
two Branch-and-Bound steps:
Branch: To split the interval (ν, κ) into two sub-intervals, similarly to Algorithm 1,
we test which dimension is the largest one in line 9. Depending on this, the interval
ν or the interval κ is split in line 10 and 11 or line 15 and 16, respectively. This
corresponds to descending in the unary Kd-Tree or the depth Kd-Tree to its left
and right children, respectively.
Bound: In line 12 and 13 the upper bound of the score of both sub-intervals,
(νleft, κ) and (νright, κ), is estimated and the intervals are inserted into the priority
queue, PQ, with their respective upper bound. The computation of the upper
bound of intervals is identical to Algorithm 1 and is detailed in Section 3.3.1.1.
Line 17 and 18 function analog for the depth Kd-Tree.

We analyze the presented Algorithm 2. The memory required for the Kd-Tree
is in O(w∗h+ d), because the 3D volume is represented in a 2D and a 1D Kd-Tree.
Analogously, the runtime required to construct the Kd-Trees is O(w∗h + d). The

3.3. 3D DPM - Inference 59

summand d can be canceled out, assuming w and h to be in the same order of
magnitude as d. Thus our approach is a factor of d more efficient and requires
d-times less memory.

3.3.1.1 Upper Bound Computation

In this section the computation of the upper bound of the score over intervals of
part positions is detailed. This follows the original DTBB [Kokkinos 2011]. To this
end a geometric bound is derived for pairwise potentials.

In lines 12 and 13 of Algorithm 1 we search to compute an upper bound, S̄(ν),
of the exact maximum score, maxξ1,...,ξN S(ξ1, ..., ξN), with ξ1 being in an interval,
ν. The same problem is solved in Algorithm 2, lines 12, 13, 17 and 18. An upper
bound can be estimated efficiently by applying

max
ξ1,...,ξN

S(ξ1, ..., ξN) = max
ξ1∈ν

(
U1(ξ1) +

N∑
j=2

max
ξj

Sjξ1(ξj)
)

(3.10)

≤ max
ξ1∈ν

(
U1(ξ1)

)
+

N∑
j=2

max
ξ1∈ν

max
ξj

Sjξ1(ξj) (3.11)

= max
ξ1∈ν

(
U1(ξ1)

)
+

N∑
j=2

max
ξj

S̄jν(ξj) (3.12)

where S̄jν(ξj) = maxξ1∈ν Sjξ1(ξj) is the best score the part position ξj can achieve
when the center node lies within interval ν. The bound over the unary potential,
maxξ1∈ν U1(ξ), is precomputed in a Kd-Tree. The upper bound (Equation 3.11)
decouples the choice of ξ1 in its unary term, U1, from the computation of the
maximum part contributions S̄jν , conditioned on the interval, ν, instead of the exact
choice of ξ1. Thus an upper bound over the score in Equation 3.10 can be computed
separately by parts, allowing for efficient computation. The Inequality 3.11 is exact
if the interval, ν, consists of only one single element.
The part contribution can be upper-bounded itself as

max
ξj

S̄jν(ξj) = max
ξj

(
Uj(ξj) + max

ξ1∈ν
P1,j(ξ1, ξj)

)
(3.13)

≤ max
υ∈Y

(
max
ξj∈υ
Uj(ξj) + max

ξj∈υ
max
ξ1∈ν
P1,j(ξ1, ξj)

)
(3.14)

where Y is a partitioning of the solution space Ω. In particular, every level of a Kd-
Tree gives a partition of the solution space, Ω. Again the upper bound decouples
the unary from the pairwise term, but limits the variable, ξj , to lie within the
same partition, υ. The inequality in Equation 3.13 becomes equality when the
partitioning contains only individual elements, |υ| = 1, ∀υ ∈ Y and |Y | = |Ω|. The
size of the partitions of Y determine the tightness of the upper bound, S̄jν . The
smaller are the partitions of Y , the tighter is the estimation, but the more costly
is its computation. In order to balance both factors, the size of partitions, υ, is

60 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

aligned with the size of the interval ν. In other words, the DTBB descends in the
Kd-Tree of parts 2, ..., N in parallel to the descent in the primary Kd-Tree (line 10
and 11, 15 and 16, Algorithm 2) once per Branch-and-Bound iteration.

We detail the computation of the upper bound (Equation 3.14) of the pairwise
term P̄i,j(ξi, ξj), with ξi ∈ ([xi − xsi ;xi + xsi], [yi − ysi ; yi + ysi], [zi − zsi ; zi + zsi])T
lying in an interval, Γi, of the i-th Kd-Tree and ξj ∈ ([xj−xsj ;xj +xsj], [yj−ysj ; yj +
ysj], [zj − zsj ; zj + zsj])T lying in an interval, Γj , of the j-th Kd-Tree. Please refer to
Figure 3.4 for an illustration. We drop part indices from the offset µi,j and precision
matrix Ci,j for better readability, as there is no possible confusion.

P̄i,j(ξi, ξj) = max
ξi∈Γi

max
ξj∈Γj

−(ξi − ξj − µ)TC(ξi − ξj − µ) (3.15)

= max
ξi∈Γi

max
ξj∈Γj

−(ξi − ξj − µ)TC(ξi − ξj − µ) (3.16)

= − min
ξix∈Γix
ξjx∈Γjx

(ξix−ξjx−µx)
2Cx − min

ξiy ∈Γiy
ξjy ∈Γjy

(ξiy−ξjy−µy)
2Cy − min

ξiz ∈Γiz
ξjz ∈Γjz

(ξiz−ξjz−µz)
2Cz .

(3.17)

We simplify this formulation by replacing (ξj + µ) by ξjµ and accordingly
shift the interval Γj with center (xj , yj , zj) by µ, yielding interval Γjµ with cen-
ter (xjµ, yjµ, zjµ) := (xj , yj , zj) + (µx, µy , µz) (compare Figure 3.4):

= − min
ξix∈Γix
ξjµx∈Γjµx

(ξix−ξjµx)2Cx − min
ξiy ∈Γiy
ξjµy ∈Γjµy

(ξiy−ξjµy)2Cy − min
ξiz ∈Γiz
ξjµz ∈Γjµz

(ξiz−ξjµz)
2Cz

(3.18)
= −(min

ξix∈Γix
ξjµx∈Γjµx

|ξix−ξjµx |)
2Cx − (min

ξiy ∈Γiy
ξjµy ∈Γjµy

|ξiy−ξjµy |)
2Cy − (min

ξiz ∈Γiz
ξjµz ∈Γjµy

|ξiz−ξjµz |)
2Cz

(3.19)
= −max(0, |xi − xjµ| − (xsi + xsj))2Cx

−max(0, |yi − yjµ| − (ysi + ysj))2Cy

−max(0, |zi − zjµ| − (zsi + zsj))2Cz . (3.20)

The last reformulation can be visualized using Figure 3.4. The square term is
minimized when both coordinates, ξi and ξjµ, take on values as close as possible
to each other within their respective intervals. This is calculated as the absolute
difference of interval centers, (xi, yi, zi) and (xjµ, yjµ, zjµ), minus the sum of the
intervals’ half sizes, xsi , ysi , zsi and xsj , ysj , zsj . If this term is negative in a dimension,
then this dimension’s contribution is 0, as in the y-dimension in the example of
Figure 3.4.

3.3. 3D DPM - Inference 61

Figure 3.4: Illustration of the calculation of the pairwise term, P̄i,j(ξi, ξj). For
better readability the third dimension is not shown. The interval, Γi, is given as
the center (xi, yi, zi) and the half size (xsi , ysi , zsi) (light red color). The interval,
Γj , is given as the center (xj , yj , zj) and the half size (xsj , ysj , zsj) (light green color).
We subsume the nominal offset, µ, under the interval, Γjµ, with the center being
(xj + µx , yj + µy , zj + µz)T . This corresponds to a shift of the interval, Γj , by µ.
We illustrate the individual terms of Equation 3.20 in blue.

3.3.2 Anchoring in Depth

We can accelerate inference by recognizing the special structure of the presented
optimization problem. The problem’s score is invariant to global shifts in the depth
dimension. Therefore anchoring the model’s center node at a certain depth avoids
exploring equivalent solutions and accelerates convergence.

The ambiguity between scale and depth is well known in 3D reconstruction
problems. In the monocular setting, distinguishing if an object is small in the image
because it is far away from the camera or because the object is small by itself, is a
challenging task. This ambiguity has another consequence for our approach. Due
to the assumed orthographic camera projection, objects will appear the same and
have the same size regardless of depth. This is reflected in the DPM score for 3D
with depth variables. The detection score is determined according to Equation 3.1.
We show that we can add a constant offset, o, in depth and still yield the same
score. Since the unary term is invariant to depth, it is sufficient to consider at the
pairwise term

Pi,j(
(

ξix
ξiy
ξiz +o

)
),
(

ξjx
ξjy
ξjz +o

)
) =

 (ξix−ξjx−µi,jx)2

(ξiy−ξjy−µi,jy)2

((ξiz +o)−(ξjz +o)−µi,jz)2

T(Ci,jx
Ci,jy
Ci,jz

)
(3.21)

= Pi,j(
(
ξix
ξiy
ξiz

)
),
(
ξjx
ξjy
ξjz

)
). (3.22)

62 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

Therefore the pairwise term decomposes over the variables’ dimensions, because the
coefficient matrix, Ci,j , is assumed to be diagonal. This yields Equation 3.21. We
can see that the offset o cancels out. This implies that relative depth is independent
of absolute depth.

The optimization problem in 3.1 may have multiple equivalent solutions, indis-
tinguishable by score, given more available depth layers than the model occupies.
Our Branch-and-Bound approach would explore all intervals containing one of the
solutions. There are two main ideas to consider. Firstly, reduce the available depth
range. This is ideal only if the object is represented exactly within this depth range.
Secondly, we propose to provide ample depth layers to the algorithm, but fix the
center node’s depth to a depth φ, for example, to φ = Ωz/2. This eliminates all
equivalent solutions except one, where ξ1z = φ. The solutions where the center
node is not at the anchor depth will yield low upper bounds in the first iterations,
narrowing down the further considered label space in the depth dimension to an
adequate size.

3.4 Evaluation

We demonstrate the validity of our approach and the efficiency of our implementa-
tion for 3D object detection on the challenging PASCAL3D+ dataset [Xiang 2014].
From 2D images of objects like cars, bicycles, etc., we infer the object’s 3D key-
points. The result resembles a sparse 3D object reconstruction. We analyze the
quantitative and qualitative performance, as well as the runtime behaviour with
respect to an increasing number of depth labels.

3.4.1 Model Validation

The PASCAL3D+ dataset [Xiang 2014] is an extension to the challenging PASCAL
VOC 2012 dataset [Everingham 2010] and contains 3D object annotation for 12
object classes. We follow the practice of [Kar 2015], using a test set of 1408 images
out of 10 categories: plane, bike, boat, bus, car, chair, sofa, train, tv-monitor and
motor-bike. However, the initial NRSfM-step failed for the “sofa” category due to
the scarcity of training images, so we removed it from all evaluation. For all classes,
the best matching 3D CAD model and the best viewpoint alignment are given. We
use the viewpoint-aligned 3D CAD models for evaluation only. Furthermore every
object instance is annotated with an occlusion label and comes with between 7 and
16 manually annotated 2D keypoints.

As metric to evaluate our approach, we compute the Hausdorff Distance dH
[Huttenlocher 1993], following [Kar 2015]:

dH(X,Y) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}, (3.23)

where X and Y are sets of points on the surface of the ground truth solution and
the inferred shape, respectively, and d(x, y) the euclidean distance. The Hausdorff

3.4. Evaluation 63

metric punishes the largest minimum distance between any points on the surface of
the two shapes. This is illustrated in Figure 3.5. The greatest distance from any
point on one shape to the closest point on the other shape is measured for both
shapes X and Y .

Figure 3.5: Illustration of the Hausdorff Distance between two shapes X and Y .
The Hausdorff Distance is computed as the maximum between the smallest distance
from a point on X to any Y such that no other point on X would yield a larger
distance, and its symmetric counterpart with X and Y exchanged. Image from
[Commons 2007].

We use a viewpoint prediction system at test time to choose a viewpoint bin
[Bregler 2000]. An alternative is to test all viewpoint models on the input image
and chose the best performing one. This would increase the runtime proportionally
to the number of viewpoint bins.

We evaluate our approach with the Hausdorff metric and verify that it yields
competitive results. To this end, we compute the Hausdorff distance (Equation 3.23)
between the predicted mesh and the ground truth mesh, defined by the annotated
CAD model. We show these results in Table 3.2. Additionally we test our approach
in a multi-scale fashion: We create an image pyramid with 3 levels by re-scaling the
input image. Then we run our algorithm against this pyramid. We show in Table 3.2
that this improves reconstruction quality, indicating a certain scale sensitivity of
our model. In most categories we are competitive to [Kar 2015]. Our keypoint
model is not very articulated, resulting in a lower score than the one obtained in
the competing approach. In average over all categories we achieve improved results
(3.81) over the competition (4.03) in the Hausdorff metric.

We present qualitative results of our object detection algorithm for a selection
of instances of the PASCAL3D+ dataset in Figure 3.6. Some images are displayed
in a low resolution, as they are scaled up and cropped to adequately show the small
objects within. The estimated depth is encoded in color with yellow representing
close surfaces and blue signifying large distance to the camera. We aid the viewer’s
depth perception by showing the surface’s triangle mesh in thin blue lines. The
transparent black lines within the detected structure highlight the model’s star-

64 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

plane bicycle boat bus car
Kar et al. [Kar 2015] 2.2 4.4 6.0 3.9 3.2
ours 2.4 4.1 6.1 4.1 3.1
ours multiscale 2.4 4.0 5.7 3.8 3.1

chair train tv-monitor motorbike mean
Kar et al. [Kar 2015] 2.6 6.6 4.5 2.9 4.03
ours 3.2 6.3 3.4 3.0 3.97
ours multiscale 3.0 6.0 3.3 3.0 3.81

Table 3.2: The Hausdorff error with respect to the centered ground-truth CAD
models provided in PASCAL3D+ (lower is better). We show our 9 categories and
the mean over those categories.

shaped graph structure. In every row, the first three columns display positive
examples, whereas in the fourth column we show a failure case for each category.
Failure cases arise due to mainly three reasons:

• Low resolution Keypoints cannot reliably be detected below a certain spatial
resolution. We find examples of this in the tv-monitor and the plane category,
as they often appear far in the background or at large distances. The failure
case of tv-monitor in Figure 3.6 serves as example.

• Extreme perspective Images of the PASCAL3D+ dataset are taken from
all possible perspectives. While we explicitly deal with viewpoint rotation in
azimuth, rare camera angles and extreme close-up views can not be adequately
handled. We attribute difficulties with objects close to the camera largely to
projective distortion. As example we consider the failure cases for cars, trains
and motorbike in Figure 3.6.

• Large intra-class variation The PASCAL3D+ dataset is challenging be-
cause of its high variability even within one object class. The boat category,
for example, contains sailing boats as much as steamboats and rowing boats,
and the chair category extends from armchairs to folding chairs. These in-
stances are dissimilar not just visually, but also by structure. The failure
cases in the boat and chair categories in Figure 3.6 are examples of this. To
improve performance a more diverse set of object models would be necessary:
for instance the boat category has diverse shapes, including steam boats and
rowing boats.

3.4. Evaluation 65

66 Chapter 3. 3D Object Pose Estimation with 2D Unary Potentials

Figure 3.6: Example images of the PASCAL3D+ dataset with object detections.
We have chosen 3 positive examples per category in the first three columns and one
failure case in the fourth column. Yellow indicates small distance to the camera,
whereas blue signifies a large distance.

3.4.2 Runtime Performance

Firstly, we compare the runtime of two alternative implementations: A GDT-based
implementation in the spirit of Felzenszwalb et al. [Felzenszwalb 2010b] and our
Branch-and-Bound approach. Figure 3.7 illustrates the scalability of our approach
(yellow line) in comparison to the long time “standard”-solution using GDT and
dynamic programming (blue line).

Using a single depth layer, both approaches perform almost identically. With
an increasing number of depth layers, the runtime required for the GDT-based
approach increases linearly, whereas the Branch-and-Bound approach remains sub-
linear. We notice that beyond 150 depth layers the increase of runtime in our
approach is marginal. Keypoints beyond a certain depth are punished by the pair-
wise term for being too far from the depth that has been determined as anchor
depth. Consequently further depth layers will be largely ignored by Branch-and-
Bound. Already with a moderate amount of 100 discrete depth values available to
the algorithm, our approach (yellow line) is about two orders of magnitude faster
than the GDT-based solution (blue line). We also observe that the memory con-
sumption for GDT is directly proportional to the number of depth layers, but our
implementation of Branch-and-Bound with depth separate from the unary potential
retains a constant memory footprint.

Secondly, we show the benefits of anchoring the solution at a certain depth, as
described in Section 3.3.2. We measure the influence on performance for a variety of
available depth layers Ωz between 120 and 400, and compare to the runtime without
anchoring the central node’s depth (Figure 3.8). We observe that runtime without
anchoring increases almost linearly with a number of depth layers larger than ∼100,
the ground truth depth range. This confirms that indeed all equal solutions are
explored. In contrast, the runtime of Branch-and-Bound with anchoring increases
only marginally with the number of depth layers.

3.4. Evaluation 67

Figure 3.7: Runtime comparison between the GDT-based optimization in blue and
the Branch-and-Bound based optimization in yellow (proposed). The x-axis gives
the number of discrete depth values available in the solution space. The y-axis
shows the resulting runtime in seconds. The computation with GDT for a depth
resolution greater than 300 was impossible due to memory limits.

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

30

Depth range

T
im

e
 i
n

 s
e

c
o

n
d

s

Branch−and−Bound without anchoring
Branch−and−Bound with anchoring

Figure 3.8: Acceleration of Branch-and-Bound by eliminating equivalent solutions
by anchoring the model at a certain depth. The ground truth’s depth range is
between 80 and 120. The x-axis gives the number of discrete depth values available
in the solution space. The y-axis shows the resulting runtime in seconds. The red
curve shows runtime for Branch-and-Bound without anchoring the center node’s
depth. The yellow curve shows performance with anchoring of the center node’s
depth in the middle of the available depth space.

Chapter 4

Monocular 3D Human Pose
Estimation

Contents
4.1 Prior Work in Human Pose Estimation 70
4.2 DPM and Inference in Higher Dimensions 73

4.2.1 Deformable Part Models in 3D 73
4.2.2 Inference with Dual-Tree Branch-and-Bound in 3D 74

4.3 Training with Deep Supervision 74
4.4 DPM Inference on Arbitrary Graph Topologies 76

4.4.1 Graph Decomposition with ADMM 78
4.4.2 Inference of ADMM-Augmented Subproblem 82
4.4.3 Inference Visualization . 83

4.5 Results on 3D Human Pose Estimation 90
4.5.1 Evaluation Setup . 90
4.5.2 Implementation Details . 90
4.5.3 Quantitative Comparison . 91
4.5.4 Ablation Study with Graph Topologies 91
4.5.5 Improvement of 2D Joint Localizations 99
4.5.6 Qualitative Evaluation on the Leeds Sports Dataset 100
4.5.7 Runtime . 101

3D human pose estimation is an important building block for human-computer
interfaces and other real-world applications. The adequate representation of the
human body is challenging due to the increased complexity that comes with more
realistic models, for example in the form of interconnected body joint locations in
3D. The computational burdens can be reduced by breaking down the problem into
a 2D and then 3D problem, but leads to inferior detection precision. This chap-
ter explores further the DPM in 3 dimensions, its efficient inference with Branch-
and-Bound and its extension to arbitrary, especially loopy graph topologies. In
[Kinauer 2017] we apply these techniques to 3D human pose estimation and show
state of the art results on the Human3.6M dataset. To this end, we harvest the
power of deep neural networks to generate the parameters of an optimization prob-
lem. The result is a combination between state of the art CNN methods and a
discrete optimization stage to refine results and resolve eventual ambiguities.

70 Chapter 4. Monocular 3D Human Pose Estimation

4.1 Prior Work in Human Pose Estimation

Human pose estimation from monocular images is a well researched topic in com-
puter vision, especially in contrary to pose estimation of inanimate objects. The
great number of works on human pose estimation is consequent because humans are
more articulated and more frequently deformed than most objects in daily life. We
focus on the development from 2D to 3D human pose estimation and the two major
challenges that come with it: firstly, the question of how to represent the human
body and encode 3D priors into the models, and secondly, the question of how to
handle the computational demands of algorithms in 3D. We start with 2D human
pose estimation, then discuss, as in-between step, 3D human pose estimation as
lifting of 2D detections into 3D, and finally talk about full 3D approaches.

2D Human Pose Estimation Human Pose Estimation is most commonly
phrased as the location of a number of keypoints, usually corresponding to body
joints, like the elbows, the wrists, the neck, the hips, the knees and the feet.
The research community has developed models with a varying number of model
nodes, mostly between 14 and 27 [Andriluka 2014, Ladicky 2013, Pishchulin 2012,
Ramanan 2007, Johnson 2010, Toshev 2014, Pishchulin 2016, Insafutdinov 2016,
Newell 2016, Wei 2016, Chen 2014, Yang 2011, Yang 2013] in order to represent
the human body well without over-parameterizing it. We follow this trend
and use a set of 16 body joints, aligning with [Andriluka 2014]. The works of
[Bogo 2016, Lassner 2017] go a step further to reconstruct a full body model that
includes the body shape.

The 2D human pose estimation problem has been solved efficiently and with
convincing results even under challenging circumstances like “in-the-wild” images
with multiple persons and in a wide range of poses, like in [Insafutdinov 2016]
and [Cao 2016] as state of the art. 2D human pose estimation has improved
considerably through the use of neural networks, similarly to the case of ob-
ject detection (Section 2.1.3). State of the art works without neural networks
[Andriluka 2014, Yang 2013] correctly detect about 44% of body joints on the MPII-
Human pose dataset [Andriluka 2014]. One year later the work of [Tompson 2015]
almost doubled performance, correctly detecting 82% of body joints by harnessing
the power of CNNs. State of the art works achieve 91.6% in [Güler 2016] and 92.1%
in [Ke 2018] of correctly detected body joints on the MPII benchmark.

2D Human Pose Estimation with Lifting While 2D human pose estimation
has attained a high level of precision and reliability, the arguably more difficult
3D task has not yet reached this level of success. In this section we describe the
transition from purely 2D approaches towards 3D approaches.

To transfer the success of 2D to 3D pose estimation, the 3D problem can
be treated as a 2D problem that is lifted into the third dimension in a sub-
sequent step. This has two advantages: Firstly, it avoids the computation-
ally heavy burden of dealing with 3 dimensions at once. Secondly, it al-

4.1. Prior Work in Human Pose Estimation 71

lows to easily exploit large datasets with 2D landmark annotations, for ex-
ample [Andriluka 2014, Johnson 2010, Ferrari 2008, Dantone 2013]. 3D anno-
tated datasets are difficult to obtain with current outdoor motion capture sys-
tems [Vlasic 2007, Ionescu 2011, Pons-Moll 2011] and are hence scarce (H3D
[Bourdev 2009]) or of limited variation due to laboratory environments (HumanEva
[Sigal 2010] and Human3.6M datasets [Ionescu 2014]).

The lifting step requires to add prior knowledge in the form of constraints to
the originally ill-posed problem in order to obtain a plausible solution. We present
different ideas that incorporate a 3D prior into the lifting step. These models come
mainly in two flavors: exemplar-based and as basis shapes.

The exemplar approach is simple: the best matching 3D exemplar is found
and aligned to 2D joint detections. [Jiang 2010, Yasin 2016, Chen 2016a] use this
approach to lift 2D detections to 3D. The method to generate 2D detections from
the image can vary, [Yasin 2016] use a random forest in combination with a DPM
like energy, [Chen 2016a] apply a CNN to obtain 2D joint positions. [Jiang 2010]
assume 2D joint locations to be given. All three methods project a large number of
3D exemplars into 2D and use a slightly modified k-nn algorithm to determine the
best match. A final optimization or warping procedure refines the result in order
to better match the image evidence. In [Jiang 2010] the number of exemplars is
extended by combining upper and lower body parts from different poses. The result
is a likely human pose lying in the set of poses in the training data. [Chen 2016a]
reach a performance only slightly inferior to [Zhou 2016], discussed in the next
paragraph.

Basis-based methods, for example [Ramakrishna 2012, Zhou 2015,
Akhter 2015, Zhou 2016], form a more compact model representation by summa-
rizing a large number of poses in a small number of bases. New, unseen poses are
generated as linear combinations of these basis shapes. An optimization scheme
is in place to align the predicted shape to the 2D image by estimating camera
rotation and position parameters [Ramakrishna 2012] and enforce plausibility
constraints [Akhter 2015]. The best-performing approach of [Zhou 2016] uses a
CNN to predict dense 2D joint location probabilities to which the 3D model is
aligned. Although the matching does not influence the probabilities computed for
each joint, the 2D detection precision is improved during the lifting step, indicating
the potential of full 3D approaches.

3D Human Pose Estimation The main disadvantage of lifting-based ap-
proaches is that errors made in 2D detection cannot be recovered and propagate to
3D.

A bridge between lifting approaches and full 3D approaches is the work of
[Tome 2017]. This work attempts to amend the problem of error propagation by
iterating 2D and 3D joint position estimation. Indeed they report improved perfor-
mance over the course of iterations.

In recent works [Mehta 2017, Pavlakos 2016, Li 2014], joint 3D approaches are

72 Chapter 4. Monocular 3D Human Pose Estimation

explored and the isolated 2D estimation is avoided. When the depth and 2D image
positions are determined jointly, errors in the 2D prediction can be recovered in 3D.
This is shown to boost the precision of predictions in the process. [Pavlakos 2016]
report a per joint 3D error of 78.10mm in a 2D-3D decoupled variant, and a per
joint 3D error of 69.77mm in their joint 3D prediction approach.

Challenges lie in the large number of parameters that have to be learned and
in memory and efficiency considerations. The work of [Pavlakos 2016] proposes a
neural network that predicts 3D joint positions from a single network. To this end,
they discretize the 3D pose space into a regular grid and predict a dense likelihood
volume for every joint to be present at a given grid node. To reduce computational
overhead a coarse-to-fine prediction scheme is proposed: The z-dimension is at first
discretized in a low resolution and the first part of the network is trained to predict
this low-resolution target. Subsequent network parts build on top of these first
predicted heat maps, as well as on the features predicted for this image. The first
part of this coarse-to-fine approach, with a single depth layer, can be trained with
2D human pose annotated datasets.

In [Li 2014] an approach is proposed that avoids a 3D volumetric representation
by regressing the 3D coordinate for each joint directly from the input image. This
is very memory efficient, but is outperformed by the volumetric representation of
[Pavlakos 2016]. This indicates that a 3D volumetric representation, can be more
effective for training a neural network [Pavlakos 2016].

Similarities to our Work In our work we aim at full 3D human pose estimation
by joint estimation of image and depth coordinates. Similarly to [Pavlakos 2016]
we demonstrate in Section 4.5.5 that the joint optimization of 2D and 3D poses
improves 2D localization considerably.

In this chapter we implement a final optimization stage into our CNN that
combines local appearance with semi-global pairwise offsets. A similar idea has
been proposed for 2D human pose estimation in [Yang 2016, Tompson 2014]. Both
works approximate the MRF inference by a loopy belief propagation approach.
[Yang 2016] rolls out three iterations of loopy belief propagation in the last three
layers of the CNN, while [Tompson 2014] modifies the probability function for better
integration with back-propagation. In a feed-forward architecture this limits the
loopy belief propagation to a fixed number of iterations. Instead we propose a
single inference layer that efficiently optimizes loopy MRF problems for DPMs.
Considering memory consumption in 3D and computational performance, we choose
a Branch-and-Bound approach and combine it with ADMM.

The prediction of high-resolution volumetric probability maps is computation-
ally challenging. We follow the approach of [Girshick 2015a, Güler 2016] and com-
bine both approaches [Pavlakos 2016] and [Li 2014]: we discretize the 3D volume to
predict likelihoods densely for every joint and we regress joint refinements as offset
from the coarse grid locations.

4.2. DPM and Inference in Higher Dimensions 73

4.2 DPM and Inference in Higher Dimensions

In this section we discuss the extension of DTBB from 2 to 3 dimensions, in other
words, we move from 2-dimensional inference problems in the image plane to infer-
ence of objects in a 3-dimensional space. With this, the articulated 3D structure of
objects can be inferred in one step. This requires careful algorithmic design since
the memory and computational complexity increases with every dimension of the
solution space. In our approach all dimensions are inferred jointly, such that the
depth estimate can correct and robustify the x and y coordinates of the object
within the image and vice versa.

In opposition to the previous chapter we now consider a 3-dimensional unary
term and image-dependent pairwise potentials. This affects how the depth, z, is
treated. Firstly, in Chapter 3 the unary term is 2-dimensional, linked to the x and
y dimension of the input image. Now we obtain 3-dimensional unary potentials
directly from a neural network trained to predict 3-dimensional unaries, in x, y
and z dimension. And secondly, in Chapter 3 the pairwise terms are independent
of the image. Now we train a neural network to predict the parameters of the
3-dimensional pairwise term based on the input image.

We recall that the inferred depth is determined by the unary term and the
pairwise term. The unary and pairwise potentials in turn are the output of the
neural network and the neural network computes them using the original image as
input (compare to Figure 4.1).

FCNN ADMM

Input Image

Unary

Pairwise

Figure 4.1: Overview over our approach for 3D human pose estimation. A CNN
computes unary and pairwise potentials in 3D. The subsequent discrete optimization
via ADMM and Branch-and-Bound finds the most coherent pose among all possible
configurations.

4.2.1 Deformable Part Models in 3D

We now describe the DPM for 3-dimensional problems. Identically to the previous
chapter (Chapter 3), an object is represented by N object parts. This results in
an N -tuple of 3-dimensional coordinates Ξ = (ξ1, ..., ξN), ξ1,...,N ∈ R3, to denote an

74 Chapter 4. Monocular 3D Human Pose Estimation

object. These object parts can move independently of each other in the volume Ω3D
spanned by the image dimensions and the depth. We denote this dimensionality
with |Ω3D| = w×h×d, the width and height of the image and the number of discrete
depth layers, respectively. The number of depth layers d needs to be set to ade-
quately represent the object’s dimensionality. This magnitude is mainly limited by
the capacity of the neural network and the memory required during optimization.

The score function S(Ξ) is defined alike Equation 2.2 for star-shaped graphs as

S(Ξ) =
N∑
i=1
Ui(ξi) +

N∑
j=2
P1,j(ξ1, ξj). (4.1)

with Ui being the unary potential for node i and P1,j being the pairwise potential
between the center node and part nodes j ∈ {2, ..., N}. The unary term Ui(ξi) is
defined explicitly for every coordinate ξi ∈ Ω3D, the 3D volume.

4.2.2 Inference with Dual-Tree Branch-and-Bound in 3D

The inference with Branch-and-Bound of a 3-dimensional DPM is largely guided
by the inference with DTBB proposed for a 2-dimensional DPM. The unary term
Ui(ξi) is again precomputed using the Kd-Tree data structure. Instead of a tree
over the 2-dimensional image plane, we now construct a Kd-Tree over the 3D unary
volume for each part i. Accordingly, the tree traversal operates on 3-dimensional
(instead of 2-dimensional) intervals until reaching a single voxel (instead of a pixel).

This extension to 3D allows inference of 3D DPMs at a very beneficial compro-
mise between speed and resolution. Notably, we do not relax the score function
or otherwise approximate the optimum, but we compute the global optimum. The
global optimum of the score function 4.1 is determined by optimizing jointly the
2D position and depth of object parts.

Moving from a 2D plane to a 3D volume brings the question of scalability regard-
ing memory consumption and computational complexity of the algorithm applied.
The creation of the necessary data structures causes an overhead in memory con-
sumption and runtime, linear in the number of voxels O(w∗h∗d), where w, h and
d are the width, height of the image and the number of discretized depth layers,
respectively. The runtime of the Branch-and-Bound inference is characterized anal-
ogously to the DTBB in 2D as O(N∗log(w∗h∗d)) best-case runtime. The worst-case
runtime is quadratic in the number of voxels. We confirm experimentally that the
runtime is indeed near-logarithmic in practice. The construction of the unary tree
is linear in the number of voxels and quickly dominates runtime (Section 4.5.7). We
note that the tree construction can be trivially parallelized to alleviate its overhead.

4.3 Training with Deep Supervision

We apply a deep network to predict the unary potentials as well as the pairwise
potentials in 3D for the DPM in Equation 4.1. Computing the unary potentials in a

4.3. Training with Deep Supervision 75

3D volume is challenging in terms of memory consumption and computation speed.
For a good trade-off between accuracy and speed/memory consumption, we opt for
a combination of a coarse volumetric classification and a continuous regression for
high precision refinement. The pairwise term is determined by regression in 3D.

Architecture We use a ResNet [He 2016], a fully Convolutional Neural Network
(CNN) of 151 layers, as the trunk of our system. We implement 2D and 3D branches
as single convolutional layers to compute unary and pairwise terms.

Unary Term We use a combination of classification and regression is used to
attack the image-based regression problem. In the classification stage we associate
a confidence value with a set of non-overlapping depth intervals, corresponding
to a coarse quantization of the depth value. If we have d classes and a depth
range of, say Dr units, the k-th class is associated with a quantized depth of qk =
kDrd . This however may be at a very coarse depth resolution. We refine this
coarse estimate by combining it with the results af a regression layer that aims at
recovering the residual between the ground-truth depth values and their quantized
depth estimates. As shown in Figure 4.2 this strategy allows us to “retarget” the
voxels to 3D positions that lie closer to the actual part positions, without requiring
the exhaustive sampling of the 3D space. In particular a voxel v lying at the k-th
depth interval will become associated with a novel 3D position of part i,

pvi = v
Dr

d
+ ri(v), (4.2)

where rj(v) is the residual regressed by our network for the i-th part type at voxel v.

Figure 4.2: Unary 3D coordinates via quantized regression. Left: Sigmoid function
on classified voxels and regressed residual vectors (in black) for two joints. Right:
Regressed residual vectors for all joints. To efficiently regress the unary 3D coordi-
nates, we use a combination of classification and regression. We first quantize the
3D space into voxels. We then estimate the score of each joint belonging to each of
these voxels using a classifier. Finally we regress a residual vector per voxel, ri(v),
which indicates the offset between the center of the voxel and the continuous 3D
position of each joint (Equation 4.2).

76 Chapter 4. Monocular 3D Human Pose Estimation

• Classification We train a classifier for every joint j, using sigmoid cross
entropy loss that assigns a classification score to each voxel if this voxel is
the location of joint j. The ground truth for this classifier arises from the L2
distance of the voxel to the ground truth joint location. This classification
score is the unary score Uj(pvj) in the subsequent discrete optimization stage.

• Regression To refine each voxels’ position v, we regress 3D offsets rj(v) using
the smooth L1 loss. This loss is active only for voxels who are close to the
3D ground truth annotation. With this, we compute the final position of the
unary sample as per Equation 4.2.

Pairwise Term

• Offset Regression For the pairwise terms, we regress vectors that point
from each 3D joint to others, µi,j . Similar to the unary coordinates, we
regress these quantities in a fully-convolutional manner. The smooth L1 loss
for the pairwise offsets between a specific joint and the rest of the joints is
only active on pixels within certain proximity to the specific joint.

• 2D Detection In the second step we select one specific offset per pair of
parts out of the set of offsets regressed in the previous paragraph. We train
2D joint classifiers and select for each joint j the offset for which the j-th
classifier outputs the highest classification score. The loss for this classifier
is computed as the L2 distance between the pixel and the ground truth joint
location in 2D.

4.4 DPM Inference on Arbitrary Graph Topologies

In this chapter we will extend the Branch-and-Bound approach, presented in Sec-
tion 4.2, to loopy graph topologies. As a result we observe higher precision in 3D
human pose estimation. To tackle the more challenging optimization problem we
use the Alternating Direction Method of Multipliers (ADMM) to approximately
solve the inference problem.

The DPM treats an object as set of object parts, each with an individual
visual appearance, and a relation to other parts. In [Felzenszwalb 2010b] the
model has a star structure, connecting all object parts to one center part. This
yields good performance for object detection, improving over single part models
[Dalal 2005, Zhu 2006, Bosch 2007]. The underlying assumption is that the posi-
tion of the object center limits the possible locations of the parts around it, in
distance and direction. In turn, the object parts’ positions help to determine the
center’s position, rendering the approach more robust. Given the a human’s torso,
constraints limit the range of positions of the elbow, like the distance to the torso
and a certain angle. The position of the hand is constrained to the position of the
elbow which is in turn constrained by the torso. This transitive relation over one
intermediate actuator is respectively weaker than a direct relation and an estimate

4.4. DPM Inference on Arbitrary Graph Topologies 77

(a) (b)

Figure 4.3: Example human body representations. In (a) 16 body joints as they are
used in the Human MPII dataset, connected as a tree-shaped graph following the
kinematic chain. In (b) we show the same 16 joints, now connected with additional
edges, representing transitive (green) and symmetric (red) relations. This graph
contains loops.

will be less precise. Because of this, many works use a tree-shaped model to rep-
resent the human body [Ferrari 2008, Felzenszwalb 2005, Eichner 2012, Yang 2011,
Wang 2008, Ramanan 2007, Ronfard 2002]. We visualize an example tree structure
in Figure 4.3a, also often called stick-figure. We note that the resulting optimization
problem can be solved exactly using GDTs [Felzenszwalb 2004] and max-product
[Pearl 2014], because the graph is loop-free.

Yet still transitive relations can contribute to stabilize human joint detection
in the presence of occlusion, confusion with other humans in the image and other
errors. Additionally, connections between symmetric body parts, for example right
to left leg or right to left arm, are found to help amending the double-counting
problem [Yang 2016, Sigal 2006, Wang 2008, Tian 2010]. Naturally a human’s legs
look alike and this is reflected within the model. Because of that, many human pose
estimation systems suffer from either confusing the two legs or assigning both legs
to the same location. Erroneously placing the left and the right leg on top of each
other is referred to as double-counting. Therefore we follow [Yang 2016, Sigal 2006,
Tian 2010] and advocate the use of additional edges in the graph. We exemplify
transitive and symmetric edges, in green and red, respectively, by augmenting the
stick figure model in Figure 4.3b. This richer structure seems to capture more
faithfully the structure of humans and improves detection performance, as we show
in Section 4.5.4. However, any edge added to a tree will create loops, rendering
the problem hard. We propose an approximate optimization algorithm based on

78 Chapter 4. Monocular 3D Human Pose Estimation

the Branch-and-Bound algorithm presented in the Chapter 3. Our method covers
tree-structured problems as well as loopy problems.

4.4.1 Graph Decomposition with ADMM

We briefly introduce the Alternating Direction Method of Multipliers (ADMM),
a method we use to perform approximate optimization of a non-convex objective.
ADMM breaks complex problems into subproblems and coordinates them via dual
variables [Boyd 2011]. We apply this technique to decompose loopy graph topolo-
gies for DPMs into star-shaped subgraphs. The energy corresponding to these
subgraphs can be globally optimized using Branch-and-Bound. With this we ob-
tain an efficient optimization algorithm for DPMs not only on star-shaped graphs,
but on arbitrary graph structures, including tree-shaped and loopy graphs. As ob-
jects are in general not star-shaped, different graph topologies often provide more
faithful approximations of real-world objects. This has the potential of improving
detection precision, as we show in Section 4.5.4.

4.4.1.1 Graph Splitting

The optimization problem, as described in Equation 4.1, is given as

arg max
Ξ

S(Ξ) = arg max
ξ1,...,ξN

N∑
i=1
Ui(ξi) +

∑
(i,j)∈E

P(i,j)(ξi, ξj), (4.3)

with graph G = (V,E) and E = {(i, 1)| i∈{2, ..., N}}. We extend the set of edges
E to an arbitrary set of edges E◦ = {(i, j)| i, j∈{1, ..., N}, i 6= j} and G := (V,E◦).
This new problem is more challenging because inference on general loopy MRFs
with multiple labels is NP-hard [Batra 2010, Shimony 1994]. Approximations can
be determined using loopy belief propagation [Murphy 1999], but convergence is
not guaranteed. We resort to a different approximate optimization method, based
on the “divide and conquer” principle: we split graph G into star-shaped subgraphs
using ADMM. This is similar in the idea of [Boussaid 2014] where a loopy graph is
split into loop-free chains in the context of landmark detection.

These star-shaped subgraphs can be optimized efficiently with Branch-and-
Bound (Section 4.2). Solutions obtained for the subgraphs are brought to an agree-
ment with each other by introducing consensus variables. These consensus variables
are updated iteratively and communicated through dual variables.

In general, there are various ways to split the graph, but we enforce partitions
following three requirements:

• The union of vertices in subgraphs constitute the full set of vertices,
⋃K
s=1 Vs =

V .

• The union of edges in subgraphs constitute the full set of edges,
⋃K
s=1Es = E◦.

• Every subgraph has at least 2 vertices, |Vs| > 1, ∀s.

4.4. DPM Inference on Arbitrary Graph Topologies 79

For convenience we chose a partition where edges are disjunct between subgraphs,
Es1 ∩ Es2 = ∅, ∀s1 6= s2. We visualize a decomposition of an example graph in
Figure 4.4. From an original graph of 5 nodes with loops, 3 partitions are created,
obeying the above conditions. All nodes are covered at least by one subgraph and
all edges occur exactly once. We note that a subgraph consisting of a single node is
never necessary to partition the graph, but would increase the number of subgraphs,
therefore slowing down convergence. Since inference on star-shaped graphs can be
done exactly and efficiently, we seek to maximize the size of subgraphs and reduce
the number of part problems.

(a) A loopy graph
G has to be decom-
posed into loop-free
subgraphs.

(b) Star-shaped sub-
graph G1

(c) Star-shaped sub-
graph G2

(d) Star-shaped sub-
graph G3

Figure 4.4: Example graph decomposition. It is obvious that there are many alter-
native graph decompositions.

4.4.1.2 The Alternating Direction Method of Multipliers Algorithm

ADMM decomposes loopy graphs for MRF optimization problems into tree-
structured subproblems who are coordinated by a master problem. In ADMM,
an optimization problem with constraints is relaxed to its Lagrangian form and
then augmented with a quadratic term for faster convergence.

In this section we provide a general formulation of ADMM and the next chapters
adapt the general formulation to our specific MRF problem.

We closely follow [Boyd 2011] and assume the following optimization problem:

min
x,z

f(x) + g(z), (4.4)

for x ∈ Rn and z ∈ Rm variables of the functions f and g respectively. Additionally
the constraints

Ax+Bz = c (4.5)

are given, with A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp. This optimization problem can
be relaxed by its Lagrangian L with the dual variable y ∈ Rp

L(x, z, y)f(x) + g(z) + yT (Ax+Bz − c), (4.6)

80 Chapter 4. Monocular 3D Human Pose Estimation

and dropping the constraints of 4.5.
In ADMM this term is augmented by a quadratic term, yielding the augmented

Lagrangian

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + ρ

2 ||Ax+Bz − c||22. (4.7)

This formulation does not change the optimum of the Lagrangian in Equation 4.6
because the parabola’s peak coincides with the constraints of Equation 4.5, but
delivers faster convergence rates [Boyd 2011].

In summary, the ADMM algorithm iteratively solves the following three steps:

xk+1 := arg min
x

Lρ(x, zk, yk) (4.8)

zk+1 := arg min
z

Lρ(xk+1, z, yk) (4.9)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c), (4.10)

with iteration counter k and step width ρ > 0. The hyper-parameter ρ influences
the step width of the updates on the dual variable y, as well as the steepness
of the parabola augmenting the Lagrangian. This affects convergence speed and
the optimum reached. For small ρ typically more iterations are needed to reach
convergence than for large ρ. Setting ρ to a large value increases the probability
that the algorithm gets stuck in a local optimum or oscillates around a solution.

4.4.1.3 Human Pose Estimation with ADMM

We now apply ADMM to inference on arbitrary graph topologies in the context of
DPMs. To this end, we decouple the graph into star-shaped subgraphs. This allows
us to optimize the subproblems with Branch-and-Bound.

We reformulate problem 4.3 as follows:

arg max
Ξ

S(Ξ) = arg max
Ξ1,...,ΞK

K∑
s=1

Ss(Ξs), (4.11)

s.t. Ξs(r) = u(r), ∀r ∈ R, (4.12)

splitting graphG such that subgraphsGs are star-shaped with nodes Vs and edge set
Es, as described in Section 4.4.1.1. The variables Ξs are copies of Ξ = (ξ1, ..., ξN),
with Ξs(i) the i-th part position. Nodes r ∈ R are the nodes shared among graphs
Gs.

To avoid double-counting of shared nodes, we define

Ss(Ξs) =
∑
i∈Vs

1
γi
Ui(ξi) +

∑
(i,j)∈Es

P(i,j)(ξi, ξj), (4.13)

with γi =
∑K
s=1 I(i ∈ Vs) being the multiplicity of occurrences in different subgraphs

Gs, and I(.) the indicator function.

4.4. DPM Inference on Arbitrary Graph Topologies 81

The constraints to Equation 4.12 coordinate the solutions on the subgraphs
Gs: All corresponding variables Ξs(r), with s = {σ|r ∈ Vσ} the subgraphs that
contain the shared node r, are forced to agree on one common value u(r), ensuring
consistency. We call u(r) consensus variables. These constraints are now relaxed
into the Lagrangian form

arg max
Ξ

K∑
s=1

Ss(Ξs)−
K∑
s=1

∑
r∈R∩Vs

ys(r)(Ξs(r)− u(r)), (4.14)

introducing the Lagrangian multipliers ys(r) for each constraint in Equation 4.3.
The augmented Lagrangian introduced in Equation 4.7 takes the following expres-
sion for our case:

Lρ(Ξ, u, y) =
K∑
s=1

Ss(Ξs)︸ ︷︷ ︸
f(x)

+ 0︸︷︷︸
g(z)

−
K∑
s=1

∑
r∈R∩Vs

ys(r)(Ξs(r)− u(r))

︸ ︷︷ ︸
yT (Ax+Bz−c)

−ρ2

K∑
s=1

∑
r∈R∩Vs

||Ξs(r)− u(r))||22︸ ︷︷ ︸
||Ax+Bz−c||22

, (4.15)

adding a quadratic penalty for deviations from the agreement u(r), weighted by a
parameter ρ > 0. We annotate the corresponding terms in ADMM (Equation 4.7)
in curly brackets below Equation 4.15. The consensus variables u(r) correspond to
the vector z. Function g(z) = 0 is a constant function.

Following ADMM, an iterative optimization scheme is devised from this formu-
lation, involving (i) solving the subproblems, (ii) computing the consensus solution
among them and (iii) updating the dual variables in the subproblems. Hence, the
problem 4.3 is solved approximately by iteratively performing the following three
steps:

(i) Ξt+1 = arg max
Ξ

Lρ(Ξ, ut, yt) (4.16)

(ii) ut+1 = arg max
u

Lρ(Ξt+1, u, yt) (4.17)

(iii) yt+1(r) =yt + ρ(Ξt+1(r)− ut+1(r)) (4.18)

The first step (i) requires the inference of the subproblems in star-shaped sub-
graphs, created by the reformulation in Equation 4.12. To align individual solu-
tions the function Lρ comprises the DPM energy Ss and the sum of a linear and
a quadratic term, drawing individual solutions to a common solution. We describe
the efficient computation of this problem below.

The second step (ii) computes the consensus solutions u(r). The solution can

82 Chapter 4. Monocular 3D Human Pose Estimation

be found in closed form by setting the partial derivative for u(r) to 0. We yield

∀r ∈ R : ∂Lρ(Ξt+1
s , u, yt)
∂u(r) = −

K∑
s=1

yts(r)︸ ︷︷ ︸
= 0

−ρ
K∑
s=1

(Ξt+1
s (r)− u(r)) != 0 (4.19)

⇔ u(r) = 1
K

K∑
s=1

Ξt+1
s (r), (4.20)

using in Equation 4.19 the fact that the dual of L is invariant to global shifts in y.
The consensus value u(r) turns out to be indeed the average over split nodes Ξs(r).

Step (iii) updates the dual variables ys using step width ρ, driving the partial
solutions closer together in the next iteration. For our experiments we set ρ = 1
constant. Variations with variable ρ are discussed, for example, in [Rockafellar 1976,
He 2000]. We observe occasionally small oscillations. Convergence is reached when
all shared nodes agree on one value, Ξs(r) = u(r),∀s, ∀r ∈ R ∩ Vs.

4.4.2 Inference of ADMM-Augmented Subproblem

In the previous chapter we have outlined the iterative ADMM algorithm to solve
DPMs with arbitrary edge sets approximately. We will now detail the efficient
calculation of step (i) in one iteration of the ADMM algorithm (4.16). We show
that it decouples over the chosen graph partitions Gs = (Vs, Es) and the result-
ing subproblems can be efficiently optimized by adapting our Branch-and-Bound
approach.

The first of these three steps consists of maximizing Lρ(Ξ, ut, yt). For better
readability we will drop iteration counter t. This term decouples over partitions as

Lρ(Ξ, u, y) (4.21)

=
K∑
s=1

Ss(Ξs)−
K∑
s=1

∑
r∈R∩Vs

ys(r)(Ξs(r)− u(r))− ρ

2

K∑
s=1

∑
r∈R∩Vs

||Ξs(r)− u(r))||22

(4.22)

=
K∑
s=1

(
Ss(Ξs)−

∑
r∈R∩Vs

ys(r)(Ξs(r)− u(r))−
∑

r∈R∩Vs

ρ

2 ||Ξs(r)− u(r))||22
)
,

(4.23)

a sum of DPM-like energies. In contrary to the traditional DPM energy, two sum-
mands are added to the score function, a linear and a quadratic term in the variables
Ξs. We write explicitly the score function for a specific subproblem s as

S′s(Ξs) =
∑
i∈Vs
Ui(ξi) +

∑
(i,j)∈Es

P(i,j)(ξi, ξj) +
∑

r∈R∩Vs
Ar(Ξs(r)|y, u), (4.24)

4.4. DPM Inference on Arbitrary Graph Topologies 83

with the ADMM-induced term

Ar(Ξs(r)|y, u) = −ys(r)(Ξs(r)− u(r))− (ρ/2)||Ξs(r)− u(r)||22. (4.25)

We note that the additional term Ar(Ξs(r)|y, u) behaves much like the unary po-
tential, depending on only one node at a time. So we treat the linear and the
quadratic term as an additional, parameterized unary term. In Branch-and-Bound
we use the fact that maxξj U(ξj) + maxξj Pi,j(ξi, ξj) ≥ maxξj

(
U(ξj) + Pi,j(ξi, ξj)

)
to compute an upper bound that independently calculates upper bounds for unary
and pairwise potentials. We extend this inequality to compute an upper bound
including a third term originating from the ADMM formulation. Without loss of
generality we assume node 1 to be the center node and we rename nodes Vs to be
{1, ..., Ns} and compute the upper bound S̄′s as

S̄′s(ν1, ..., νNs) =
∑
i∈Vs

max
ξi∈νi

Ui(ξi) +
∑

j∈{2,...,Ns}
max
ξ1∈ν1
ξj∈νj

P1,j(ξ1, ξj) +
∑

r∈R∩Vs
max
ξr∈νr

Ar(ξr|y, u)

(4.26)

≥ max
ξ1∈ν1
...

ξNs∈νNs

(∑
i∈Vs
Ui(ξi) +

∑
j∈{2,...,Ns}

P1,j(ξ1, ξj) +
∑

r∈R∩Vs
Ar(ξr|y, u)

)
(4.27)

= max
ξ1∈ν1
...

ξNs∈νNs

S′s(ξi∈Vs) (4.28)

with νi corresponding to an interval in the label space Ω3D for variable ξi.
To compute maxξr∈νr Ar(ξr|y, u) = −ys(r)(Ξs(r)−u(r))− (ρ/2)||Ξs(r)−u(r)||22

for one shared node r, we note that the term decouples over dimensions. Therefore
the upper bound is determined as the sum over contributions, computed indepen-
dently for a 1-dimensional interval in x, y and z dimension.

max
ξr∈νr

Ar(ξr|y, u) = −
∑

d∈{x,y,z}
yds (r)(Ξds(r)− ud(r)) + (ρ/2)(Ξds(r)− ud(r))2. (4.29)

The quadratic’s peak is computed as pd = yds (r)/ρ+ ud(r). Then

max
ξr∈νr

Adr(ξr|y, u) =

Adr(pd|y, u) if pd ∈ νdr
max(Adr(ξdνlow |y, u),Adr(ξdνhigh |y, u)) else

(4.30)

where interval νdr =̂ [ξdνlow ; ξdνhigh].

4.4.3 Inference Visualization

We illustrate the progression of the ADMM-guided inference to give the reader an
intuitive understanding of how differing partial solutions work together. The task

84 Chapter 4. Monocular 3D Human Pose Estimation

is to determine the pose of the human in a test image Figure 4.5a. The result of our
algorithm is shown in Figure 4.5c. For comparison, we provide the ground truth
skeleton in Figure 4.5b.

The chosen instance is challenging due to the occlusion of the left elbow. This
results in a unary term for the left elbow that is spread out over a wide range of
positions (Figure 4.5d). If we were to take only the unary potential into account, we
would obtain the pose displayed in Figure 4.5e, where the left elbow (black circle)
deviates clearly from its correct position. The solution determined by our approach
corrects this mistake to a certain degree (Figure 4.5f). The detailed process is
elaborated next.

(a) Test image (b) Ground truth solution (c) Solution with ADMM

(d) Unary potential for left (oc-
cluded) elbow

(e) Solution computed as max-
imum over unary potentials.
The position of the left elbow
(black circle) is far off its cor-
rect position.

(f) Solution with ADMM, cor-
responding to (c). The position
of the left elbow (black circle)
has improved over the “unary-
only” solution of (e).

We show the change of partial solutions over the first 6 iterations. To reduce
complexity, we focus on one single node of the example image, the “left elbow”.
This node is part of three subgraphs, visualized as graphs in red, blue and magenta,
shown in individual columns in Table 4.1 and 4.2). Each row corresponds to one
iteration. Convergence is reached in iteration 6. A partial solution consists of
the coordinates of all contained nodes, annotated with small crosses. Additionally
we show the graph structure corresponding to the respective subproblem. The left
elbow node is again marked with a black circle, as in all illustrations in this chapter.

4.4. DPM Inference on Arbitrary Graph Topologies 85

Its ground truth position is marked as a green cross.
Table 4.2 allows deeper insight into the score function that drives each sub-

problem. For each iteration we depict the unary term plus ADMM-term, Ui +Ai,
as derived in Equation 4.24, specific to each subproblem. We illustrate every grid
point in its refined location by a half-transparent 3D sphere. Blue stands for low,
red for intermediate and yellow for high score values. The color coding does not
reflect absolute magnitudes as the quadratic term, Ai, changes the value range con-
siderably. Instead we indicate relative magnitudes, showing the 85% lowest scores
in a blue color and the highest 1.5% scores in a yellow color. The other values in
between are depicted in red.

The maximum of the unary for the left elbow is found roughly at the position
of the left kidney (yellow color in Table 4.2, first row). It is obvious that the CNN
misses the position of the left wrist as clue to where the left elbow has to be. The
pairwise term that connects wrist and elbow is contained in the third subproblem.
Thus the partial solution of the third subproblem successfully recovers the position
of the left elbow. The other two subproblems do not contain the edge from wrist
to elbow. Thus the partial solutions in the first iteration diverge greatly between
the first two and the third slave (Table 4.1, first row). In the next iteration, the
ADMM term draws the partial solutions of the first two slaves towards the solution
of the third slave and vice versa. The subproblems converge on a common solution
in iteration 6.

86 Chapter 4. Monocular 3D Human Pose Estimation

Slave 1 Slave 2 Slave 3 Iter-
ation

1

2

3

continued on the next page

4.4. DPM Inference on Arbitrary Graph Topologies 87

Slave 1 Slave 2 Slave 3 Iter-
ation

4

5

6

Table 4.1: Visualization of the per-slave solution over 6 ADMM iterations. We
display only slaves that contain the left elbow. Ground truth joint locations are
marked with green crosses.

88 Chapter 4. Monocular 3D Human Pose Estimation

Slave 1 Slave 2 Slave 3 Iter-
ation

1

2

3

continued on the next page

4.4. DPM Inference on Arbitrary Graph Topologies 89

Slave 1 Slave 2 Slave 3 Iter-
ation

4

5

6

Table 4.2: Visualization of the extended unary potential, Ui + Ai, over 6 ADMM
iterations, where node i corresponds to the left elbow. The partial solution found
in the respective iteration is marked with a black circle. In the 0-th iteration the
ADMM-term is zero, so the visualization is identical for all three slaves. The colors
indicate relative magnitude, with the lower 85% in blue, intermediate values in red
and the highest 1.5% in yellow. Best viewed in color.

90 Chapter 4. Monocular 3D Human Pose Estimation

4.5 Results on 3D Human Pose Estimation

We demonstrate the performance of the described techniques for task of 3D human
pose estimation, showing that loopy graph structures deliver state of the art results
on the Human3.6M dataset. The performance of 4 different graph structures is
analyzed, showing improved performance of loopy graph structures.

4.5.1 Evaluation Setup

In 2014 the largest dataset for 3D human pose estimation, the Human3.6M dataset
[Ionescu 2014] has been published. The dataset comprises of 3.6 million video
frames, recorded by four cameras in a controlled environment. For each pose,
17 3D body joints are annotated using a motion capture system. In these video
sequences, 11 professional actors perform various daily actions like “sitting on a
chair”, “eating” and “walking”. The video sequences of actors S1 to S8 and S10 are
used for training, sequences S9 and S11 remain for testing. This follows the practice
in recent literature [Pavlakos 2016, Li 2015, Zhou 2016]. We have sub-sampled the
video sequences from 50fps to 10fps to remove very similar frames and reduce data
size. We also notice that several annotations suffer from drift in the ground truth.
These samples have been removed from the testing set. The remaining testing set
consists of about 100k frames.

To evaluate the performance of our system, we use the mean euclidean distance
over joints of the prediction to the ground truth annotation. As we can not deduce
the absolute scale and depth of the body, we first apply the Procrustes transforma-
tion. This transformation is estimated as to best align two shapes by transforming
one by scaling, rotating and translating. The resulting “reconstruction error” is
measured in millimeters.

4.5.2 Implementation Details

Our network is initialized with the ResNet weights trained on the Human MPII
dataset [Andriluka 2014] for 2D human pose estimation. We train our network
on the Human3.6M dataset [Ionescu 2014] (detailed description of the dataset in
Section 4.5.1). We scale the images to the size 320×320 pixels. The network’s down-
scale factor is 16, yielding a 20×20×1024 3D feature map as input to the described
2D and 3D branches. We perform data augmentation by cropping and rotating
input images. This increases the network’s ability to generalize and robustness
towards occlusion and rotations.

We determine a fixed precision term Ci,j = 0.001 for all joints by cross-
validation.

We observe that inserting MPII training data samples while training with Hu-
man3.6M improves performance. The MPII is based on a slightly different set of
joints and is annotated in 2D. Following [Sun 2017], we adapt the human body la-
belling of the Human3.6M dataset to the MPII dataset. To this end we add a joint

4.5. Results on 3D Human Pose Estimation 91

“thorax” between the shoulders and remove the joints “neck” and “chin”. This re-
sults in 16 joint annotations identical to the MPII annotation. When training with
a Human MPII sample, we deactivate all losses for the unary term generation and
leave active only the losses for 2D classification and pairwise offset regression. Addi-
tionally we modify the loss for the pairwise offset regression such that the predicted
depth component is ignored.

4.5.3 Quantitative Comparison

We compare the performance of our approach with state of the art works
[Yasin 2016, Rogez 2016, Tome 2017, Pavlakos 2016]. The results are summarized
in Table 4.3. We first evaluate the performance of our neural network before the
subsequent optimization with ADMM. To this end, we use the highest scoring con-
figuration predicted by the unary term alone, denoted as “Unary”. This method
(53.48mm) performs close to the state of the art ([Pavlakos 2016], 53.2mm). This
serves as a baseline in the following ablation study to analyze various graph topolo-
gies. Then, under “ADMM”, we calculate the reconstruction error of the estimated
pose after the optimization with Branch-and-Bound and ADMM. Our approach
that unites a deep network with a final discrete optimization scheme, clearly out-
performs prior works (50.87mm).

Average error

Yasin et al. [Yasin 2016] 108.3
Rogez et al. [Rogez 2016] 88.1
Tome et al. [Tome 2017] 70.7
Pavlakos et al. [Pavlakos 2016] 1 53.2

(Ours)Unary 53.48
(Ours)ADMM 50.87

Table 4.3: A comparison of our approach with recent literature based on the reconstruction
error.

4.5.4 Ablation Study with Graph Topologies

To analyze the effects of varying graph layouts, we performed an ablation study for
3D human pose estimation on the well known Human3.6M dataset [Ionescu 2014].
We experiment with a variety of graph structures and monitor its impact on the
performance. We have picked a number of configurations by hand, as testing ex-
haustively all possible graph configurations is prohibitive (for 16 nodes there are
already ∼ 7.2 ∗ 1016 spanning trees). Furthermore the interpretability is higher for
certain models than for a random selection.

The following graph configurations have been evaluated:

92 Chapter 4. Monocular 3D Human Pose Estimation

(a) center star (b) stick figure (c) extended stick figure (d) 2-hop

Figure 4.5: Selected graph configurations.

• center star (Figure 4.5a) describes the graph topology where all joints are
connected to one central root node at the human’s torso.

• stick figure (Figure 4.5b) is a graph that directly corresponds to the hu-
man skeleton, for instance the wrist is connected to the elbow, the elbow is
connected to the shoulder, and so on.

• extended stick figure (Figure 4.5c) is an extension to “stick figure”, con-
taining all its edges plus additional connections between the elbows of left and
right arm, left and right knee, head to shoulders and torso to knees.

• 2-hop (Figure 4.5d) follows the human skeleton like “stick figure” and adds
connections from every joint to its indirect (2-)neighbours in the skeleton.
This connects, for example, hand with shoulder and ankle to hips and left to
right knee.

In Table 4.4 we report the average reconstruction error for each of the 15 human
action categories present in the Human3.6M benchmark, as well as the average re-
construction error over all categories in the last column. In the first line we state the
results obtained using the unary potentials only as baseline. In the following lines we
analyze the influence of different graph structures on the performance, measured
as average reconstruction error. The “center star” configuration performs better
than “unary only”, indicating that the body center can infer some meaningful in-
formation about the other body parts. Better performs the “stick figure”, the most
prominent representative in human pose estimation. Clearly the shoulder knows
better where the elbow has to be than the center node, thus this structure per-
forms better than “center star”. Its extension, the “extended stick figure”, slightly
improves over the normal stick figure. The “2-hop” configuration performs best in
this line. Its additional connections roughly follow the body’s structure and seem
to help to resolve occlusions and improves accuracy.

4.5. Results on 3D Human Pose Estimation 93

Directions Discussion Eating Greeting Phoning Photo

UNARY alone 49.69 49.45 47.77 50.69 54.80 57.35
center star 49.41 49.26 47.35 49.93 50.97 56.12
stick figure 49.13 49.19 47.15 49.70 50.50 55.57
extended stick figure 49.16 49.07 47.35 49.82 50.67 55.45
2-hop 48.89 48.75 47.07 49.40 49.82 55.31

Posing Purchases Sitting Sit. Down Smoking Waiting

UNARY alone 43.76 44.11 65.39 95.76 53.53 46.27
center star 43.62 43.43 61.50 78.09 52.51 45.88
stick figure 43.53 43.59 60.14 79.46 51.52 45.74
extended stick figure 43.60 43.57 59.94 78.51 51.42 46.01
2-hop 43.30 43.47 60.48 78.20 51.69 45.63

Walk Dog Walking Walk Tog. Average

UNARY alone 51.53 41.59 49.52 53.48
center star 50.63 41.08 49.41 51.42
stick figure 50.59 40.73 49.33 51.12
extended stick figure 50.39 40.89 49.32 51.08
2-hop 50.16 40.74 49.17 50.87

Table 4.4: Comparison of average reconstruction errors for different graph topolo-
gies.

We complete this ablation study with some visual examples from the Hu-
man3.6M dataset (Table 4.5). We have selected image instances where the variation
is well visible and show the ground truth body pose and two of the graph config-
urations presented above in Figure 4.5 or the “unary alone” solution. Table 4.5 is
subdivided into five blocks:

I This block illustrates two examples where the unary term alone fails to localize
a foot. The pairwise terms correct this mistake and stabilize locally noisy
detections.

II The “center star” configuration does not connect the feet to the knees or the
head to the neck, resulting in partially bizarre human poses. The “stick figure”
configuration connects neighboring body joints and improves these cases.

III In both examples the pose detected with the “stick figure” configuration is
wrong but seems locally plausible. This corresponds to the “stick figure” con-
figuration. However the additional edges in the “extended stickfigure” config-
uration between knees and elbows can resolve the errors.

IV When joints are occluded, the pairwise terms help finding a probable pose. In
both examples shown here, the partially redundant edges of “2-hop” stabilize
the pose estimation against local outliers.

V We show three instances where the human pose estimation fails to predict the
human pose accurately. In the first case the pairwise predictions are erroneous,
falsifying even correct unary localizations. In the other two cases, the unary
fails to predict certain joints completely, not allowing for a recovery with our
technique.

In conclusion, more edges result in a more stable output, as outliers are balanced

94 Chapter 4. Monocular 3D Human Pose Estimation

out by complementary edges. We observe that some edges are more informative
and provide more reliable information than others.

Ground Truth Unary Only 2-hop

I

Ground Truth center star stick figure

II

continued on the next page

4.5. Results on 3D Human Pose Estimation 95

Ground Truth stick figure extended stick figure

III

Ground Truth extended stick figure 2-hop

IV

continued on the next page

96 Chapter 4. Monocular 3D Human Pose Estimation

Ground Truth Unary Only 2-hop

V

Table 4.5: Human pose estimation results. The first column shows the ground
truth pose, the remaining two columns show the pose determined from the unary
potential alone or by ADMM with one of the four analyzed graph configurations,
“center star”, “stick figure”, “extended stick figure” and “2-hop”.

In Table 4.6 we show the estimated poses of instances in different action cat-
egories and two additional views to visualize the 3D structure of the poses. The
results have been obtained using the “2-hop” configuration.

4.5. Results on 3D Human Pose Estimation 97

Input Ground Truth 2-hop -60◦ 60◦

continued on the next page

98 Chapter 4. Monocular 3D Human Pose Estimation

Input Ground Truth 2-hop -60◦ 60◦

continued on the next page

4.5. Results on 3D Human Pose Estimation 99

Input Ground Truth 2-hop -60◦ 60◦

Table 4.6: Success cases on the Human3.6M dataset.

4.5.5 Improvement of 2D Joint Localizations

Our system is designed to jointly optimize image coordinates of joints and their
respective depth. As elaborated in Section 4.1, this has the advantage that the depth
can influence and potentially correct the 2D pose. We quantify the improvements
by computing the 2D mean euclidean distance to the ground truth pose in 2D. The
results are shown in Table 4.7. As expected, any optimization scheme improves the
results of the “unary only” version. The best 2D error is achieved with the “2-hop”
graph structure. The “center star” configuration performs slightly worse than the
other graph structures, underlining that the other configurations are more faithful
to the human body structure. Our approach clearly improves upon the results of
[Zhou 2016] even though they use temporal information.

100 Chapter 4. Monocular 3D Human Pose Estimation

Approach 2D error (pixel)

Unary 6.06
Center Star 5.71
Stick Figure 5.65
Extended Stick Figure 5.65
2-hop 5.62

[Zhou 2016], no temporal smoothness 11.25
[Zhou 2016], with temporal smoothness 10.85

Table 4.7: 2D errors on the Human3.6M dataset. The error is computed as 2D
mean euclidean distance to the ground truth on the testing set (Section 4.5.1).

4.5.6 Qualitative Evaluation on the Leeds Sports Dataset

So far we have analyzed the quantitative results on the Human3.6M dataset. We
now augment the evaluation by a qualitative analysis on a second dataset, the
Leeds Sports Dataset (LSP) [Johnson 2010]. This dataset is comprised of 2000
images of sport activities, ranging from Baseball to Badminton and Football. The
dataset is challenging because of the wide range of poses and varying backgrounds,
containing people and clutter of varying kinds. This distinguishes qualitatively
the LSP from the Human3.6M dataset. To visualize the recovered 3D structure
of the human pose we present several views of the same input image with super-
imposed stick figures. The underlying graph structure used for inference is the
“2-hop”-configuration as presented above (Figure 4.5), but we chose the stick-figure
representation for visualization as this serves the clarity of the illustration.

4.5. Results on 3D Human Pose Estimation 101

Figure 4.6: Monocular 3D pose estimation results on LSP dataset: we observe that
our results transfer to unseen datasets, with highly different statistics from the
Human3.6M dataset.

4.5.7 Runtime

Wemeasure the inference runtime for different sizes of label space, Ω3D. We measure
separately the runtime of the two main components: creation of the Kd-Tree as
necessary data structure and the tree traversal, the core part of the inference for
which we implement the 3D Branch-and-Bound.

The Kd-Tree construction scales linearly in the number of voxels, since every
voxel has to be touched at least once to determine the maximum over all voxels
(Section 2.2.3). For a volume of Ω3D = 20×20×20 this takes on average 0.37
seconds. The trees need to be created only once in the first iteration of ADMM. In
the remaining iterations the same unary trees can be reused without alteration. The
ADMM term is treated separately, as described in Section 4.4.2. We note that we

102 Chapter 4. Monocular 3D Human Pose Estimation

use a single-threaded implementation for tree creation. A parallelization is possible
to accelerate this task.

We view the time needed to solve one subproblem for one ADMM iteration, given
the Kd-Trees for the unary potentials. In Section 4.4.2 we explain how the ADMM
term can be bounded over intervals in its parametric form, instead of explicitly
computing its values for each voxel. Due to the efficient bounding of the ADMM
term, the computational overhead is marginal. The runtime of inference on the
volume, |Ω3D| = 20∗20∗20 = 8000, takes on average 0.015 seconds.

Figure 4.7 relates the runtime of both subtasks, Kd-Tree creation and inference,
with each other. As expected, we observe that the linear complexity for the Kd-Tree
creation outweighs the logarithmic runtime for tree traversal even for small label
spaces.

Figure 4.7: Runtime of Branch-and-Bound with varying size of label space, |Ω3D|.
The time spent on building unary tree is displayed in red. The time spent in the
Branch-and-Bound algorithm is depicted in blue.

Chapter 5

Future Work

Contents
5.1 Conclusion . 103
5.2 Future Work . 104

5.2.1 Applications . 104
5.2.2 Optimization Algorithm . 105

5.1 Conclusion

In this work we have presented two main tasks: (i) Efficient 3D object detection
based 2D unaries; (ii) Full 3D inference as a deep network layer in combination
with a graph decomposition strategy to deal with loopy graph structures;

(i) Efficient 3D object detection based 2D unaries
In Chapter 3 we advance the state of the art in 3D object detection. We
capture viewpoint dependent variation by a combination of a small number of
viewpoint-specific models. Each viewpoint-specific model can handle certain
viewpoint variation by letting object parts move in relation to each other. To
this end, we present a 3D Deformable Part Model, where every part node can
move freely in space. The unary features are in 2D, so we take advantage of
this structural particularity and devise a tailored inference algorithm. The
proposed optimization algorithm does not trade accuracy for speed by decou-
pling the 2D and 3D components, but performs joint inference in 3D without
materializing the unary potentials as 3D volumes. This enables inferece with
100 nodes and a volumetric labelspace within a fraction of a second.

(ii) 3D Inference as a deep network layer
In Chapter 4 we integrate 3D Deformable Part Models into CNNs, enabling
the neural network to perform inference on pairwise MRFs. MRF inference in
3D is exact for star-shape graphs and reaches close to real-time performance.
We additionally extend the star-shaped graphs to more flexible, loopy graphs.
This is achieved by applying ADMM, a graph decomposition algorithm that
iteratively steers partial solutions towards an agreeable collective solution. We
integrate the extra parametric term directly into our inference algorithm as to
minimize computational overhead. A number of varying graph structures is

104 Chapter 5. Future Work

evaluated with regard to its performance for human pose estimation. Pairwise
terms beyond the kinematic body structure offer additional merit.
In our approach, one single network predicts the unary potentials as well as
the parameters for the pairwise potentials. The results confirm that these
different aspects of the same data can complement each other. We show that
the combination of local appearance terms and far-fetching pairwise terms
provides gains over a purely local approach. We demonstrate the potential of
our approach by improving the state of the art in 3D human pose estimation.

5.2 Future Work

In the previous section we summarized the contributions of this thesis. For future
investigation we strive to advance our work in terms of applications as well as in
technical aspects.

5.2.1 Applications

Multi-view 3D Tracking It is desirable for research purposes to minimize con-
ditions and requirements in setting and setup. For real-world applications the al-
gorithm has to be tailored to the given data and conditions, even if this does not
result in the most general algorithm. Consider a surveillance scenario, where a
number of cameras is monitoring humans’ actions. To optimize performance it is
useful to include subsequent camera frames and the geometric setup of the record-
ing cameras. The former equates to 3D tracking of human pose, the latter has ties
to wide-baseline stereo vision.

Precursors in literature include the works [Lepetit 2004, Pilet 2005] who pro-
pose wide-baseline point matching, without regarding object structures. Closer in
setup and objective is [Starck 2003], where a human model is animated to match
frames recorded in a multi-view camera setup. This requires a studio setup, an
elaborate matching procedure, and relies heavily on a computer created model to
well represent the image data. A pictorial body model is used in [Knoop 2006],
where 3D and 2D camera inputs are fused to find the best matching pose in an
involved and heuristic pipeline.

In continuation of this work, one idea is to first create unary and pairwise terms
as proposed in Chapter 4 for every camera and frame, and then find the best human
pose over time and in several camera frames. Making use of our advances in 3D
optimization, the pose can be optimized jointly for all frames. To this end, one can
establish time-links, similarly to [Zhou 2016, Cherian 2014], across different time
frames. To account for the cameras’ geometric setup, a common coordinate system
can be established. One can follow the ideas of [Newcombe 2011, Curless 1996]
and overlay 3D unary volumes after projecting them into the common coordinate
system. To avoid large 3D volumes, alternatively a sparse candidate representation
can be implemented as in Chapter 4, where the estimated pose is penalized for its
distance to candidates in individual frames.

5.2. Future Work 105

Domain Specific Knowledge The energy formulation of DPMs provides a prin-
cipled way to incorporate domain knowledge. Pairwise terms are not restricted to
the 3D position of two joints, but can also include further appearance features that
refer to material properties or color histograms. On the example of human pose
estimation, we can model human limbs, namely the limb’s end-points, instead of
individual body joints. Then the pairwise term can enforce a certain ratio of limb
lengths, for instance a ratio of 1 : 1 between left and right femoral and a the model’s
dimensionality increases, but also facilitates to capture constraints of limb lenghts
or joint angles. We note that additional information and features can be stored
in variables with higher dimensions. In the context of object detection, the fourth
dimension might be occupied by a color value, a material property or an occlusion
flag. For example, the pairwise term could constrain the parts to have a similar
color or specularity, potentially ruling out false positives.

3D Multi-person Pose Estimation In Chapter 4 we focus solely on 3D hu-
man pose estimation with one person. Many current works deal with the ar-
guably more difficult problem of multiple person pose estimation in 2D [Cao 2016,
Pishchulin 2016, Insafutdinov 2016]. In 3D this problem has been investigated
only in recent years [Andriluka 2010, Belagiannis 2014]. Our approach for infer-
ence with loopy graph structures allows to solve similar energies as proposed in
[Andriluka 2010] or [Pishchulin 2016, Insafutdinov 2016] in 2D. The main idea is to
introduce pairwise terms between joints of different people that act like a repellent
force, separating detected people in the image.

5.2.2 Optimization Algorithm

As last point we want to emphasize that the algorithms presented in this thesis
are not limited to the presented applications, but have the potential to be used
as general optimization algorithm. Its guarantee to find the global optimum and
best-case logarithmic runtime are intriguing properties for discrete optimization
problems. In the light of this thesis we envision to extend the Branch-and-Bound
algorithm into higher dimensions, extended it with novel energy terms and higher
level terms.

Appendix A

DPMs for Viewpoint Invariant
Detection in Robotics

Contents
A.1 Object Detection for Identity Anchoring 107

A.1.1 Identity Anchoring . 108
A.1.2 Exigence of Practical Applications in Robotics 108
A.1.3 Previous Approaches to Object Detection in Robotics 110

A.2 Efficient Implementation . 112
A.2.1 DPM Training . 112
A.2.2 Data Collection . 113
A.2.3 Inference Algorithms for Object Detection 114

In this chapter we will describe the object detection component we have im-
plemented in the course of the RECONFIG project. As of the beginning of the
RECONFIG project, utilizing DPMs was the state of the art in object detection.
We implemented this as modular block in the Robot Operating System (ROS), a
widely used framework in robotics. In such a way we provide easy access to effi-
cient object detection with DPMs to the hands of the robotics community. The
focus lies on the challenges of implementing for a real-world setup and practical
usability than on theoretical advances in the field of computer vision. This chapter
is thus different to the following chapters in that it does not extend the state of
the art in computer vision, but sheds light on the applicability of computer vision
algorithms in a practical robotics setting. We pursue two objectives with this chap-
ter: Firstly, we emphasize the importance of putting theory to practice, discuss
its specific challenges and make these methods available to the research commu-
nity. Secondly, we describe an implementation of an object detection system with
DPMs and illustrate the capacities and limitations of object detection with DPMs of
[Felzenszwalb 2010b, Dubout 2012]. We advance upon these methods in Chapter 3
and 4.

A.1 Object Detection for Identity Anchoring

In robotics, object detection is a fundamental element of many applications. Either
an object needs to be grasped or avoided, any kind of interaction requires either

108 Appendix A. DPMs for Viewpoint Invariant Detection in Robotics

perfect predetermined knowledge of all objects in the scenario or an object detection
method to determine the existence and location, eventually also the state of objects
in the scenario. For research purposes and in controlled environments, easily recog-
nized visual markers are often used as tool to simplify object detection. In a more
general, real-world scenario this is often not possible, but additional properties are
desired. We argue that current solutions do not fulfill these needs and propose the
use of DPMs in the next section.

A.1.1 Identity Anchoring

Identity anchoring is a fundamental element of communication of any kind, namely
agreeing on a common symbol to describe a certain object. To cooperate on a
given task, two agents need to have the same understanding of the physical ob-
ject of interest. Assume that agent A wants to transmit the identity of “car” to
agent B, together with the symbol “car”, in order to establish the relationship be-
tween symbol and identity. In order to minimize hardware requirements and mutual
understanding, we transmit the identity of the object to agent B by indicating a
real-world instance in its surroundings. Agent B is then free to create a suitable rep-
resentation of this object by itself, such as a 3D model, anchoring the corresponding
symbol “car”.

For agents with different means of perception, identity anchoring can be achieved
via implicit communication. We propose to mimic human communication by let-
ting the robot agent A perform a pointing gesture towards the object. Agent B
perceives the pointing gesture and infers the correct object identity and connects it
with the transmitted symbol. Using pointing gestures removes the need of having
a common coordinate system established, something that can be difficult to set up,
for example in a natural desaster scenario. Additionally, pointing gestures possess
the advantage that robot-to-robot communication becomes perceivable and inter-
pretable by humans. In the RECONFIG project an agent detects an object in order
to carify the meaning of a symbol for the other agents by pointing to it.

A.1.2 Exigence of Practical Applications in Robotics

There is a number of premises that have to be taken into consideration especially
in a realistic, cooperative robotics scenario. From here we identify a number of
desired properties of object detection systems that constitute a demanding practical
challenge.

Uncontrolled Environment The environment may be uncontrolled, as is for
many practical applications. Therefore the background can be cluttered, which
leads to strong gradients that might distract classifiers. Additionally the back-
ground is dynamic in a real-world scenario, negating any possibilities of explicitly
taking a certain difficult background into account during training. Hence the de-
tection algorithm has to deal with general backgrounds during test time.

Moderate Occlusions It can not be guaranteed that the sought object is com-

A.1. Object Detection for Identity Anchoring 109

pletely visible due to other objects in the scene obstructing the view of a robotic
agent. An object detection system needs to be able to handle at least slight occlu-
sions with other objects.

Varying Viewpoints A typical characteristic of robots is to be able to move
around in the environment. Thus the camera records images of objects from any
viewing angle of the viewing sphere. One approach is to move around in the scene to
obtain a more opportune viewing angle, but this costs time and energy and secondly
might not be possible to physical constraints of the scene. Being able to detect
objects from any potential viewpoint is important in uncontrolled environments.

Interactive Framerates In an interactive environment, robots have to be
aware of changes in their environment. Specifically, the robot might have to ob-
serve permanently its environment while moving around in order to detect new
objects of interest. A standard camera delivers a constant stream of video frames
of 24 frames per second. Assuming that changes happen in a speed comparably to
human interactions and robotic movements, it seems reasonable to expect a result
at least at 1-2 frames per second. This involves that the vision module responds
in fractions of a second, so that the robot can react in interactive frame rates.
This is required when cooperating with humans, for example a household robot, or
dynamic processes, like robots playing football.

Sensory Modalities The quality of and equipment with sensors may vary
considerably. In context of the RECONFIG project, we consider two different
sensors: A Kinect camera recording RGB-D and a simple RGB camera. As to
provide most general solutions, we opt to work on minimal means, specifically with
an RGB image without depth channel. The resolution of the cameras is limited to
a VGA-sized images (480× 360 pixels).

Limited Computational Resources A fully independent robotic agent is
naturally limited in the resources available to it to process sensor data and make
decisions. This is especially true for graphics cards, not only because of the addi-
tional weight of the GPU and the required cooling, but also due to the higher power
consumption. If the algorithm is to be deployed on the robot itself, the available
computing resources are severely diminished in comparison to a modern working
station with a GPU and large main memory. Although we run all computations
on separate hardware, we consider this a viable point to increase the range of ap-
plications where resources are limited, and refrain from using GPUs and memory
intensive computations.

Trainable Models for Intra-Class Variation Typically a robot’s action is
not defined by the color or texture of an object, but its identity and member of
an object class. Therefore we want to create an object detector that does not only
determine the presence of a specific object instance, but detects the instance of an
object class. The visual appearance may vary considerably between instances of
this class. For the RECONFIG project we train a single model to detect a set of
toy cars (Figure A.1). These cars can be put together in varying configurations,
but shall still be detected by the object detector.

Multiple Objects For every-day scenes it is common to encounter several

110 Appendix A. DPMs for Viewpoint Invariant Detection in Robotics

object instances of the same class, such as several cars on the street. Likewise it is
possible that there are several objects of the same class in a robotics scenario, for
example a number of toy cars on the floor. If the robot’s task is to pick up all toy
cars, all of them are relevant and should to be detected.

(a) (b)

Figure A.1: Left: Example of multiple toy cars. Right: Toy car bounding boxes
obtained by our DPM object detector. We train a single model that covers the
visual variability of all three car configurations. The objects are detected within
one pass of the detection algorithm.

A.1.3 Previous Approaches to Object Detection in Robotics

There is a number of approaches implemented for ROS that enable object detection
“out of the box”. We characterize these and show that they can not cope with the
challenges identified above. They all pose certain conditions either on the camera’s
modalities or on the scene and object, for example a dominant plane and depth
sensors [ROS 2012b] or strongly textured objects [ROS 2012a].

The ROS tabletop_object_detector [ROS 2012b] provides simple object de-
tection for objects on a flat supporting surface. This method subdivides 3D ob-
ject detection into object segmentation and object recognition. Segmentation is
performed by determining the dominant plane with a RANSAC scheme. Hereby
subsequent segmentation of the remaining objects is simplified. The object is rec-
ognized by fitting the segmentation to available object models in a ICP-motivated
procedure. This method requires the existence of a dominant plane in the image,
additionally objects can not overlap to not disturb segmentation and finally the
available models have to fit the extracted point cloud accurately.

A more flexible approach is implemented in the ROS object_recognition_tod
package [ROS 2012a]. In a bag-of-features approach, 2D features are extracted
from the input image and a RANSAC scheme is applied to find the object’s po-
sition according to the model’s features. A similar approach is taken by the ROS
Find-Object package [Labbé, M. 2011], basing detection on recognizing individ-
ual features of the model within the input image. To avoid mismatches, matching
features with a Nearest Neighbor Distance Ratio below a certain threshold are

A.1. Object Detection for Identity Anchoring 111

discarded. The Nearest Neighbour Distance Ratio is computed as the distance be-
tween the two closest matches. Both approaches do not require a special geometry
of the scene, but depend on texture on objects as features. As is typical for bag-of-
feature approaches, there no structure between keypoints is enforced, simplifying
the computation at the price of reduced precision.

Finally there are approaches that require depth as input. In recent years,
the Kinect camera has become almost commodity hardware. A depth value is
calculated for every pixel from the distortion of an infrared pattern, emitted
by the Kinect itself. While this provides additional clues for the object detec-
tor, the additional hardware is an additional requirement. For a re-configurable
environment, the Kinect camera can not be assumed. Thus approaches like
[ROS 2012b, Lysenkov 2013b, Lysenkov 2013a, Prankl 2015, Astua 2014] can not
or can only partially be applied.

In the attempt to amend challenge of detecting transparent or highly translucent
objects, [Lysenkov 2013b, Lysenkov 2013a] search consequently “holes” in the depth
channel of a certain shape. Therefore during training, a 3D model of the object
is built and template silhouettes specific for each considered viewpoint are created
from this model. Since this method capitalizes specifically on the properties of the
Kinect camera, this approach is not applicable with RGB input alone. Additionally,
this approach will break down for overlapping objects or for objects in front of
non-responsive backgrounds, for instance a highly specular surface, not allowing to
extract the silhouette of the object.

The v4r_ros_wrappers-package is a ROS wrapper for the V4R library based
on [Prankl 2015]. They form models of 3D point clouds by merging at least par-
tially overlapping 3D images of Kinect cameras. They advocate to use the method
of [Aldoma 2013] to perform inference with the created models. Herein a number
of recognition pipelines is applied to the same input data, producing a number of
detection hypotheses. Each pipeline is based on different features, highlighting ei-
ther local or global, 2D or 3D features. These detection hypotheses are fused in the
final verification stage, designed to assert geometrical consistency with the scene.
A similar approach is proposed in [Astua 2014], where a method is devised to com-
bine and profit specifically from 2D and 3D cues. From depth images, contours
are extracted and a relation is established to the model’s contours over correla-
tions. From RGB images, sparse SURF descriptors [Bay 2006] are extracted and
matched with the model’s features using an approximate Nearest Neighbours search
[Muja 2009]. A third approach of combining different modalities like depth and 2D
images is implemented in the ROS object_recognition_linemod package. Based
on [Hinterstoisser 2011], features of multiple modalities are combined to yield an
improved detection result. They argue that RGB template matching by means of
image gradients breaks down under heavy background clutter and 3D surface nor-
mals can heal this weakness by providing complementary information. To combine
both kinds of gradients, a similarity measure between object templates and the
gradients of the RGB-D input is computed in a sliding window fashion. Although
these methods are applicable on 2D images alone, their detection performance would

112 Appendix A. DPMs for Viewpoint Invariant Detection in Robotics

suffer from the lack of 3D complements.
We notice that all of above presented 3D methods rely on creating a number

of templates of the sought object to deal with viewpoint variation. This always
necessitates the trade-off between speed and detection rate. Inference in 3D is
avoided to retain close real time performance, as it is often required in robotics.
Our proposed method also avoids 3D inference, but our models are robust towards
viewpoint changes, requiring a small number of viewpoint-specific models to achieve
high detection rates.

A.2 Efficient Implementation

In this section we describe the practical realization of our object detection system.
It fulfills the identified requirements to be trainable for varying object classes, dif-
fering viewpoints and deformable objects, detection is based on RGB images and
runtime is close to real time. We first describe the training process in the robotics
environment. Then, for inference, we improve the baseline OpenCV implementation
with the accelerated approach of [Dubout 2012].

The goal is to identify a sought object in the current camera frame. The location
of the object is returned as bounding box around the object in the image plane.
Using the center of the bounding box, together with the robot’s geometry and
viewing direction, the intersection with the floor plane is computed, which gives
the approximate 3D position of the object (Figure A.2). Based on this, further
actions can be performed on the object by the robot, for instance to indicate the
objects position to other robots.

A.2.1 DPM Training

We train the DPM mixture model discriminatively for every object class using the
code by [Girshick 2012, Felzenszwalb 2008]. A mixture model is constituted by
a set of individual object models, called mixtures. Each mixture reflects a part
of the variability of the object that a single DPM would not be able to capture.
This variability may come from different viewpoints, deformation states or instance
variability. We follow this approach and train a mixture model using latent SVM,
assigning training samples to mixtures based on a heuristic. The mixture assign-
ments are modelled by latent variables and are updated alternating with the models’
parameters. The algorithm is initialized by matching the aspect ratio of annotated
bounding boxes. After updating the models parameters, the instance assignments
are remade to lie in the best matching mixture. By inspecting the resulting models,
we find that this roughly approximates a viewpoint classification (compare Fig-
ure A.1, rows 4 and 5 versus rows 6 and 7). We set the number of mixtures and
object parts according to the visual complexity and variability of the object class.
The simplest object, a single red ball without noticeable texture (Figure A.1, first
row), can be well represented by a single mixture with only 1 center or root node.
The object is almost invariant to viewpoint variations and there is no intra-class

A.2. Efficient Implementation 113

Figure A.2: Determination of 3D coordinates based on 2D image coordinates and
the robot’s geometry. The robot’s viewing ray to the object, determined by the
robot’s joints and the center of the object’s bounding box, is intersected with the
floor plane to determine the object’s 3D position.

variation requiring several mixtures. In contrary, the toy cars (Figure A.1, third
column) consist of a number of configurable parts, from which we build three pro-
totypical instances in the training set. This model is trained with 6 mixtures and 8
object parts each, to reflect the instance variability and effect of viewpoint changes.
We report a training time of up to 10 hours on a single machine for models with
several mixtures and parts, but less than 1 hour for the simple ball model.

A.2.2 Data Collection

For each object we train a DPM [Felzenszwalb 2008, Girshick 2012] from training
data we collect in a laboratory environment. Object instances spanning the intra-
class variability are photographed from varying viewpoints. We annotate these
images by hand with a 2D bounding box. As such we create a training set of
positive samples. We exemplify our dataset created for various toys in Figure A.1,
rows 1 to 3. Depending on the object’s complexity and intra-class variability we
create between 60 and 674 positive instances with annotations. As negative training
set we use the PASCAL VOC dataset [Everingham 2010, Everingham b], as none of
their images contain the toy objects we use. This dataset contains over 11k images,
presenting a wide variety of natural scenes and objects. Empirically this yields
high recall with few false positives in our application setup. We demonstrate that
augmenting the set of negative samples with images in the laboratory environment
diminishes false positives in Figure A.3.

114 Appendix A. DPMs for Viewpoint Invariant Detection in Robotics

Sample
Image 1

Sample
Image 2

Sample
Image 3

Root Mixture
Component 1

Inverse HOG
[Vondrick 2013]

Root Mixture
Component 2

Inverse HOG
[Vondrick 2013]

Table A.1: Visualization of our dataset of toys and the trained deformable part
models, ordered by columns. Column one: The simple ball model; Row two: Various
colored toy figures. Row three: Configurable toy cars. For each we show three
samples from our dataset. The resulting model is illustrated in the rows 4-7. Row
4 show the HOG features of one mixture component’s root node, row 5 displays
Hoggles [Vondrick 2013] as an alternative visualization. Rows 5 and 6 mirror this
for a second out of six mixture components. The ball model consists of only one
component.

A.2.3 Inference Algorithms for Object Detection

Having trained a DPM for the sought object, we compare two implementations for
inference: one relying on the OpenCV implementation [(OpenCV) 2014] for object
detection and one relying on the implementation by [Dubout 2012]. We realize

A.2. Efficient Implementation 115

(a) (b) (c)

Figure A.3: The effect of retraining DPMs in a specific environment. The model is
a shampoo-bottle. On the left is the input image. In the middle a true positive and
a false positive detection is found. On the right we show the result after retraining
the model with additional negative samples (Figure A.4).

(a) (b) (c)

Figure A.4: Additional negative samples in the laboratory setup we add to the
training set in order to diminish false detections of the shampoo-bottle.

both variants as ROS-nodes in the ROS framework to facilitate integration within
robotics projects. The object detection modules take an input image from a ROS-
topic and infers object locations within the image, based on the previously trained
object model.

A.2.3.1 OpenCV Baseline Method

The OpenCV implementation is based directly on [Felzenszwalb 2010b]. The unary
terms are calculated as convolution of part features with the features computed
from the input image. GDTs with DP is used to compute potential detections
(see Section 2.2.1). Often there are multiple, heavily overlapping detections around
the location of an object. To yield only one detection per object, non-maximum
suppression is applied as post-processing step. For this implementation we measure
a runtime of approximately 2 seconds per frame in VGA resolution (480× 360), 10
pyramid levels and 6 mixture components.

116 Appendix A. DPMs for Viewpoint Invariant Detection in Robotics

A.2.3.2 Accelerated Object Detection

The model trained in the previous section (Section A.2.1) scores high for objects
within the model’s specific capacity of visual variation. However, the model is
trained on cropped and scaled image instances, simplifying training, but defining
the object’s scale. To extend the model’s capabilities to instances of varying scale,
the established approach is to compute feature pyramid. The input image is re-sized
over various scales, the features are extracted on each scale and constitute thus the
feature pyramid. Then inference is done on all levels of the pyramid.

The computational bottleneck is the computation of the convolutions between
the image features and the model’s weight vectors. Recognizing this, [Dubout 2012]
replace convolutions by multiplications in frequency domain using Fourier trans-
forms. Their work contributes in three main ways to a higher performance, but
yield the same optimum, up to numerical precision. Firstly, the convolution via
Fast Fourier Transform is efficient and is known to speed up convolutions. The
larger are the filters, the greater is the benefit of using the Fourier Transformation
for convolution. The DPM is calculated with rectangular filters with side length
between 7 and 11, depending on the object’s aspect ratio. Secondly, the Fourier
Transforms of the model, the transformed weight vectors in the model, are cached
and therefore do not have to be recomputed in subsequent inferences. This turns
this computation into a static overhead like training, such that during test time the
cached Fourier transforms are available to rapidly compute the unary potentials.
Thirdly, [Dubout 2012] avoid saving the Fourier Transforms at all pyramid levels,
but propose a patchwork approach. Specifically, input images of varying scales are
composed into one patchwork image of a fixed size. The Fourier Transforms of
the model are pre-computed for this patchwork size. This also reduces the com-
putational expenses to transform the input image features. The implementation of
[Dubout 2012] runs in 0.4 seconds in average. This is about 4-5 times faster than
the OpenCV implementation with equal detection performance.

Bibliography

[Adelson 1984] Edward H Adelson, Charles H Anderson, James R Bergen, Peter J
Burt and Joan M Ogden. Pyramid methods in image processing. RCA
engineer, vol. 29, no. 6, pages 33–41, 1984. (Cited on page 15.)

[Akhter 2015] Ijaz Akhter and Michael J Black. Pose-conditioned joint angle limits
for 3D human pose reconstruction. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1446–1455, 2015. (Cited
on page 71.)

[Aldoma 2013] Aitor Aldoma, Federico Tombari, Johann Prankl, Andreas Richts-
feld, Luigi Di Stefano and Markus Vincze. Multimodal cue integration
through hypotheses verification for RGB-D object recognition and 6DOF pose
estimation. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pages 2104–2111. IEEE, 2013. (Cited on page 111.)

[Andriluka 2010] Mykhaylo Andriluka, Stefan Roth and Bernt Schiele. Monocular
3d pose estimation and tracking by detection. In Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on, pages 623–630. IEEE,
2010. (Cited on page 105.)

[Andriluka 2014] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler and Bernt
Schiele. 2d human pose estimation: New benchmark and state of the art
analysis. In Proceedings of the IEEE Conference on computer Vision and
Pattern Recognition, pages 3686–3693, 2014. (Cited on pages 70, 71 and 90.)

[Astua 2014] Carlos Astua, Ramon Barber, Jonathan Crespo and Alberto Jardon.
Object detection techniques applied on mobile robot semantic navigation.
Sensors, vol. 14, no. 4, pages 6734–6757, 2014. (Cited on page 111.)

[Aubry 2014] Mathieu Aubry, Daniel Maturana, Alexei A Efros, Bryan C Russell
and Josef Sivic. Seeing 3d chairs: exemplar part-based 2d-3d alignment
using a large dataset of cad models. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3762–3769, 2014. (Cited
on pages 43 and 44.)

[Barron 2012] Jonathan T Barron and Jitendra Malik. Color constancy, intrinsic
images, and shape estimation. In European Conference on Computer Vision,
pages 57–70. Springer, 2012. (Cited on page 44.)

[Barron 2015] Jonathan T Barron and Jitendra Malik. Shape, illumination, and
reflectance from shading. IEEE transactions on pattern analysis and machine
intelligence, vol. 37, no. 8, pages 1670–1687, 2015. (Cited on page 44.)

118 Bibliography

[Batra 2010] Dhruv Batra, Andrew C Gallagher, Devi Parikh and Tsuhan Chen.
Beyond trees: MRF inference via outer-planar decomposition. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
2496–2503. IEEE, 2010. (Cited on page 78.)

[Bay 2006] Herbert Bay, Tinne Tuytelaars and Luc Van Gool. Surf: Speeded up
robust features. Computer vision–ECCV 2006, pages 404–417, 2006. (Cited
on page 111.)

[Belagiannis 2014] Vasileios Belagiannis, Sikandar Amin, Mykhaylo Andriluka,
Bernt Schiele, Nassir Navab and Slobodan Ilic. 3D pictorial structures for
multiple human pose estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1669–1676, 2014. (Cited
on page 105.)

[Bellman 1952] Richard Bellman. On the theory of dynamic programming. Pro-
ceedings of the National Academy of Sciences, vol. 38, no. 8, pages 716–719,
1952. (Cited on page 27.)

[Bellman 2015] Richard E Bellman and Stuart E Dreyfus. Applied dynamic pro-
gramming. Princeton university press, 2015. (Cited on page 27.)

[Blanz 1999] Volker Blanz and Thomas Vetter. A morphable model for the synthesis
of 3D faces. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, pages 187–194. ACM Press/Addison-
Wesley Publishing Co., 1999. (Cited on pages 44 and 45.)

[Blaschko 2016] Matthew B Blaschko. Slack and Margin Rescaling as Convex Ex-
tensions of Supermodular Functions. arXiv preprint arXiv:1606.05918, 2016.
(Cited on page 36.)

[Bogo 2016] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler,
Javier Romero and Michael J Black. Keep it SMPL: Automatic estimation
of 3D human pose and shape from a single image. In European Conference
on Computer Vision, pages 561–578. Springer, 2016. (Cited on page 70.)

[Booth 2017] James Booth, Epameinondas Antonakos, Stylianos Ploumpis, George
Trigeorgis, Yannis Panagakis, Stefanos Zafeiriouet al. 3D Face Morphable
Models “In-the-Wild”. In Proceedings of the IEEE Conference on Comput-
erVision and Pattern Recognition, 2017. (Cited on page 44.)

[Bosch 2007] Anna Bosch, Andrew Zisserman and Xavier Munoz. Representing
shape with a spatial pyramid kernel. In Proceedings of the 6th ACM in-
ternational conference on Image and video retrieval, pages 401–408. ACM,
2007. (Cited on page 76.)

[Bourdev 2009] Lubomir Bourdev and Jitendra Malik. Poselets: Body part de-
tectors trained using 3d human pose annotations. In Computer Vision,

Bibliography 119

2009 IEEE 12th International Conference on, pages 1365–1372. IEEE, 2009.
(Cited on page 71.)

[Bourdev 2010] Lubomir Bourdev, Subhransu Maji, Thomas Brox and Jitendra
Malik. Detecting people using mutually consistent poselet activations. In
European conference on computer vision, pages 168–181. Springer, 2010.
(Cited on page 18.)

[Boussaid 2014] Haithem Boussaid and Iasonas Kokkinos. Fast and exact: ADMM-
based discriminative shape segmentation with loopy part models. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4058–4065, 2014. (Cited on page 78.)

[Boyd 2011] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato and Jonathan
Eckstein. Distributed optimization and statistical learning via the alternat-
ing direction method of multipliers. Foundations and Trends R© in Machine
Learning, vol. 3, no. 1, pages 1–122, 2011. (Cited on pages 78, 79 and 80.)

[Bregler 2000] Christoph Bregler, Aaron Hertzmann and Henning Biermann. Re-
covering non-rigid 3D shape from image streams. In Computer Vision and
Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 2,
pages 690–696. IEEE, 2000. (Cited on pages 43, 48 and 63.)

[Burl 1998] Michael C Burl, Markus Weber and Pietro Perona. A probabilistic
approach to object recognition using local photometry and global geometry.
In European conference on computer vision, pages 628–641. Springer, 1998.
(Cited on page 19.)

[Cao 2016] Zhe Cao, Tomas Simon, Shih-En Wei and Yaser Sheikh. Realtime
multi-person 2d pose estimation using part affinity fields. arXiv preprint
arXiv:1611.08050, 2016. (Cited on pages 14, 70 and 105.)

[Chang 2015] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanra-
han, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song,
Hao Suet al. Shapenet: An information-rich 3d model repository. arXiv
preprint arXiv:1512.03012, 2015. (Cited on page 43.)

[Chen 2014] Xianjie Chen and Alan L Yuille. Articulated pose estimation by a
graphical model with image dependent pairwise relations. In Advances in
Neural Information Processing Systems, pages 1736–1744, 2014. (Cited on
page 70.)

[Chen 2016a] Ching-Hang Chen and Deva Ramanan. 3D Human Pose Estimation=
2D Pose Estimation+ Matching. arXiv preprint arXiv:1612.06524, 2016.
(Cited on page 71.)

[Chen 2016b] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin
Murphy and Alan L Yuille. Deeplab: Semantic image segmentation with

120 Bibliography

deep convolutional nets, atrous convolution, and fully connected crfs. arXiv
preprint arXiv:1606.00915, 2016. (Cited on pages 22 and 55.)

[Cherian 2014] Anoop Cherian, Julien Mairal, Karteek Alahari and Cordelia
Schmid. Mixing body-part sequences for human pose estimation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2353–2360, 2014. (Cited on page 104.)

[Commons 2007] Wikimedia Commons. Hausdorff distance. https://commons.
wikimedia.org/wiki/File:Hausdorff_distance_sample.svg, 2007. Ac-
cessed: 21/10/2017 under GNU Free Documentation License, Version 1.2 or
later. (Cited on pages 4 and 63.)

[Cortes 1995] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, vol. 20, no. 3, pages 273–297, 1995. (Cited on page 36.)

[Crandall 2005] David Crandall, Pedro Felzenszwalb and Daniel Huttenlocher. Spa-
tial priors for part-based recognition using statistical models. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1, pages 10–17. IEEE, 2005. (Cited on page 19.)

[Curless 1996] Brian Curless and Marc Levoy. A volumetric method for building
complex models from range images. In Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques, pages 303–312.
ACM, 1996. (Cited on page 104.)

[Dalal 2005] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1, pages 886–893.
IEEE, 2005. (Cited on pages 12, 14, 15, 16 and 76.)

[Dantone 2013] Matthias Dantone, Juergen Gall, Christian Leistner and Luc
Van Gool. Human pose estimation using body parts dependent joint re-
gressors. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3041–3048, 2013. (Cited on page 71.)

[Divvala 2012] Santosh K Divvala, Alexei A Efros and Martial Hebert. How im-
portant are “deformable parts” in the deformable parts model? In European
Conference on Computer Vision, pages 31–40. Springer, 2012. (Cited on
page 13.)

[Dollár 2009] Piotr Dollár, Zhuowen Tu, Pietro Perona and Serge Belongie. Integral
channel features. 2009. (Cited on page 15.)

[Dubout 2012] Charles Dubout and François Fleuret. Exact acceleration of linear
object detectors. Computer Vision–ECCV 2012, pages 301–311, 2012. (Cited
on pages 107, 112, 114 and 116.)

https://commons.wikimedia.org/wiki/File:Hausdorff_distance_sample.svg
https://commons.wikimedia.org/wiki/File:Hausdorff_distance_sample.svg

Bibliography 121

[Eichner 2012] Marcin Eichner, Manuel Marin-Jimenez, Andrew Zisserman and
Vittorio Ferrari. 2d articulated human pose estimation and retrieval in (al-
most) unconstrained still images. International journal of computer vision,
vol. 99, no. 2, pages 190–214, 2012. (Cited on page 77.)

[Everingham a] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn
and A. Zisserman. The PASCAL Visual Object Classes Challenge 2007
(VOC2007) Results. http://www.pascal-network.org/challenges/VOC/
voc2007/workshop/index.html. (Cited on page 26.)

[Everingham b] M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn and A. Zisserman. The PASCAL Visual Object
Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html. (Cited
on page 113.)

[Everingham 2010] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn and Andrew Zisserman. The pascal visual object classes (voc)
challenge. International journal of computer vision, vol. 88, no. 2, pages
303–338, 2010. (Cited on pages 22, 38, 43, 62 and 113.)

[Fan 2005] Zhi-Gang Fan and Bao-Liang Lu. Fast recognition of multi-view faces
with feature selection. In Computer vision, 2005. ICCV 2005. Tenth IEEE
international conference on, volume 1, pages 76–81. IEEE, 2005. (Cited on
page 46.)

[Felzenszwalb 2004] Pedro Felzenszwalb and Daniel Huttenlocher. Distance trans-
forms of sampled functions. Rapport technique, Cornell University, 2004.
(Cited on pages 3, 8, 28, 29 and 77.)

[Felzenszwalb 2005] Pedro F Felzenszwalb and Daniel P Huttenlocher. Pictorial
structures for object recognition. International journal of computer vision,
vol. 61, no. 1, pages 55–79, 2005. (Cited on pages 19, 27 and 77.)

[Felzenszwalb 2008] Pedro Felzenszwalb, David McAllester and Deva Ramanan. A
discriminatively trained, multiscale, deformable part model. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,
pages 1–8. IEEE, 2008. (Cited on pages 13, 18, 19, 21, 38, 39, 44, 46, 54,
112 and 113.)

[Felzenszwalb 2010a] Pedro F Felzenszwalb, Ross B Girshick and David McAllester.
Cascade object detection with deformable part models. In Computer vision
and pattern recognition (CVPR), 2010 IEEE conference on, pages 2241–
2248. IEEE, 2010. (Cited on pages 3, 8, 27, 30 and 31.)

[Felzenszwalb 2010b] Pedro F Felzenszwalb, Ross B Girshick, David McAllester and
Deva Ramanan. Object detection with discriminatively trained part-based

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html

122 Bibliography

models. IEEE transactions on pattern analysis and machine intelligence,
vol. 32, no. 9, pages 1627–1645, 2010. (Cited on pages 15, 16, 19, 20, 22, 27,
45, 66, 76, 107 and 115.)

[Fergus 2003] Robert Fergus, Pietro Perona and Andrew Zisserman. Object class
recognition by unsupervised scale-invariant learning. In Computer Vision
and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society
Conference on, volume 2, pages II–II. IEEE, 2003. (Cited on page 19.)

[Fergus 2005] Robert Fergus, Pietro Perona and Andrew Zisserman. A sparse object
category model for efficient learning and exhaustive recognition. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1, pages 380–387. IEEE, 2005. (Cited on page 19.)

[Ferrari 2008] Vittorio Ferrari, Manuel Marin-Jimenez and Andrew Zisserman. Pro-
gressive search space reduction for human pose estimation. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,
pages 1–8. IEEE, 2008. (Cited on pages 71 and 77.)

[Fidler 2012] Sanja Fidler, Sven Dickinson and Raquel Urtasun. 3d object detection
and viewpoint estimation with a deformable 3d cuboid model. In Advances
in neural information processing systems, pages 611–619, 2012. (Cited on
page 45.)

[Fischler 1973] Martin A Fischler and Robert A Elschlager. The representation and
matching of pictorial structures. IEEE Transactions on computers, vol. 100,
no. 1, pages 67–92, 1973. (Cited on page 19.)

[Frie 1998] Thilo-Thomas Frie, Nello Cristianini and Colin Campbell. The kernel-
adatron algorithm: a fast and simple learning procedure for support vector
machines. In Machine Learning: Proceedings of the Fifteenth International
Conference (ICML’98), pages 188–196, 1998. (Cited on page 36.)

[Girshick 2012] R. B. Girshick, P. F. Felzenszwalb and D. McAllester.
Discriminatively Trained Deformable Part Models, Release 5.
http://people.cs.uchicago.edu/ rbg/latent-release5/, 2012. (Cited on
pages 1, 9, 13, 15, 16, 18, 54, 112 and 113.)

[Girshick 2014] Ross Girshick, Jeff Donahue, Trevor Darrell and Jitendra Malik.
Rich feature hierarchies for accurate object detection and semantic segmen-
tation. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 580–587, 2014. (Cited on pages 14, 18, 24 and 45.)

[Girshick 2015a] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 1440–1448, 2015. (Cited on
pages 24 and 72.)

Bibliography 123

[Girshick 2015b] Ross Girshick, Forrest Iandola, Trevor Darrell and Jitendra Malik.
Deformable part models are convolutional neural networks. In Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition, pages
437–446, 2015. (Cited on pages 3, 14, 23, 25 and 26.)

[Goodfellow 2009] Ian Goodfellow, Honglak Lee, Quoc V Le, Andrew Saxe and An-
drew Y Ng. Measuring invariances in deep networks. In Advances in neural
information processing systems, pages 646–654, 2009. (Cited on page 54.)

[Güler 2016] Rıza Alp Güler, George Trigeorgis, Epameinondas Antonakos, Patrick
Snape, Stefanos Zafeiriou and Iasonas Kokkinos. Densereg: Fully convolu-
tional dense shape regression in-the-wild. arXiv preprint arXiv:1612.01202,
2016. (Cited on pages 70 and 72.)

[Hammersley 1971] John M Hammersley and Peter Clifford. Markov fields on finite
graphs and lattices. 1971. (Cited on page 20.)

[Harris 1988] Chris Harris and Mike Stephens. A combined corner and edge detec-
tor. In Alvey vision conference, volume 15, pages 10–5244. Manchester, UK,
1988. (Cited on page 14.)

[Hartley 2003] Richard Hartley and Andrew Zisserman. Multiple view geometry
in computer vision. Cambridge university press, 2003. (Cited on pages 14
and 41.)

[He 2000] BS He, Hai Yang and SL Wang. Alternating direction method with self-
adaptive penalty parameters for monotone variational inequalities. Journal
of Optimization Theory and applications, vol. 106, no. 2, pages 337–356,
2000. (Cited on page 82.)

[He 2014] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Spatial pyra-
mid pooling in deep convolutional networks for visual recognition. In Euro-
pean Conference on Computer Vision, pages 346–361. Springer, 2014. (Cited
on page 15.)

[He 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016. (Cited on
page 75.)

[Hejrati 2014] Mohsen Hejrati and Deva Ramanan. Analysis by synthesis: 3d ob-
ject recognition by object reconstruction. In Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on, pages 2449–2456. IEEE,
2014. (Cited on page 44.)

[Hinterstoisser 2011] S. Hinterstoisser S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab and V. Lepetit. Multimodal Templates for Real-Time Detection of
Texture-less Objects in Heavily Cluttered Scenes. 2011. (Cited on page 111.)

124 Bibliography

[Hornung 2013] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss
and Wolfram Burgard. OctoMap: An efficient probabilistic 3D mapping
framework based on octrees. Autonomous Robots, vol. 34, no. 3, pages 189–
206, 2013. (Cited on page 41.)

[Huttenlocher 1993] Daniel P. Huttenlocher, Gregory A. Klanderman and
William J Rucklidge. Comparing images using the Hausdorff distance. IEEE
Transactions on pattern analysis and machine intelligence, vol. 15, no. 9,
pages 850–863, 1993. (Cited on page 62.)

[Insafutdinov 2016] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres,
Mykhaylo Andriluka and Bernt Schiele. Deepercut: A deeper, stronger,
and faster multi-person pose estimation model. In European Conference on
Computer Vision, pages 34–50. Springer, 2016. (Cited on pages 70 and 105.)

[Ioffe 2001] Sergey Ioffe and David A. Forsyth. Probabilistic methods for finding
people. International Journal of Computer Vision, vol. 43, no. 1, pages 45–
68, 2001. (Cited on page 19.)

[Ionescu 2011] Catalin Ionescu, Fuxin Li and Cristian Sminchisescu. Latent struc-
tured models for human pose estimation. In Computer Vision (ICCV), 2011
IEEE International Conference on, pages 2220–2227. IEEE, 2011. (Cited on
page 71.)

[Ionescu 2014] Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Smin-
chisescu. Human3.6m: Large scale datasets and predictive methods for 3d
human sensing in natural environments. IEEE transactions on pattern anal-
ysis and machine intelligence, vol. 36, no. 7, pages 1325–1339, 2014. (Cited
on pages 71, 90 and 91.)

[Jiang 2010] Hao Jiang. 3D human pose reconstruction using millions of exem-
plars. In Pattern Recognition (ICPR), 2010 20th International Conference
on, pages 1674–1677. IEEE, 2010. (Cited on page 71.)

[Joachims 2009] Thorsten Joachims, Thomas Finley and Chun-Nam John Yu.
Cutting-plane training of structural SVMs. Machine Learning, vol. 77, no. 1,
pages 27–59, 2009. (Cited on page 37.)

[Johnson 2010] Sam Johnson and Mark Everingham. Clustered Pose and Nonlin-
ear Appearance Models for Human Pose Estimation. In Proceedings of the
British Machine Vision Conference, 2010. doi:10.5244/C.24.12. (Cited on
pages 1, 7, 70, 71 and 100.)

[Kar 2015] Abhishek Kar, Shubham Tulsiani, Joao Carreira and Jitendra Malik.
Category-specific object reconstruction from a single image. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1966–1974, 2015. (Cited on pages 43, 45, 48, 54, 62, 63 and 64.)

Bibliography 125

[Ke 2018] Lipeng Ke, Ming-Ching Chang, Honggang Qi and Siwei Lyu. Multi-
Scale Structure-Aware Network for Human Pose Estimation. arXiv preprint
arXiv:1803.09894, 2018. (Cited on page 70.)

[Kinauer 2016] Stefan Kinauer, Maxim Berman and Iasonas Kokkinos. Monocular
Surface Reconstruction using 3D Deformable Part Models. In Computer
Vision–ECCV 2016 Workshops, pages 296–308. Springer, 2016. (Cited on
pages 1, 8 and 9.)

[Kinauer 2017] Stefan Kinauer, Riza Alp Güler, Siddhartha Chandra and Iasonas
Kokkinos. Structured output prediction and learning for deep monocular 3d
human pose estimation. In International Workshop on Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition, pages 34–48.
Springer, 2017. (Cited on pages 9 and 69.)

[Knoop 2006] Steffen Knoop, Stefan Vacek and Rüdiger Dillmann. Sensor fusion
for 3D human body tracking with an articulated 3D body model. In Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, pages 1686–1691. IEEE, 2006. (Cited on page 104.)

[Kokkinos 2011] Iasonas Kokkinos. Rapid deformable object detection using dual-
tree branch-and-bound. In Advances in Neural Information Processing Sys-
tems, pages 2681–2689, 2011. (Cited on pages 3, 31, 33 and 59.)

[Kokkinos 2016] Iasonas Kokkinos. Ubernet: Training a universal convolutional
neural network for low-, mid-, and high-level vision using diverse datasets
and limited memory. arXiv preprint arXiv:1609.02132, vol. 2, 2016. (Cited
on page 22.)

[Koller 2009] Daphne Koller and Nir Friedman. Probabilistic graphical models:
principles and techniques. MIT press, 2009. (Cited on page 19.)

[Kontaxakis 2018] Polychronis Kontaxakis, Khurram Gulzar, Stefan Kinauer, Ia-
sonas Kokkinos and Ville Kyrki. Robot-Robot Gesturing for Anchoring Rep-
resentations. IEEE Transactions on Robotics, 2018. To be published. (Cited
on page 9.)

[Krizhevsky 2012] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012. (Cited on
page 24.)

[Kushal 2007] Akash Kushal, Cordelia Schmid and Jean Ponce. Flexible object mod-
els for category-level 3d object recognition. In Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.
(Cited on page 46.)

126 Bibliography

[Labbé, M. 2011] Labbé, M. Find-Object. http://introlab.github.io/
find-object, 2011. accessed 2017-11-15. (Cited on page 110.)

[Ladicky 2013] Lubor Ladicky, Philip HS Torr and Andrew Zisserman. Human pose
estimation using a joint pixel-wise and part-wise formulation. In proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3578–3585, 2013. (Cited on page 70.)

[Lassner 2017] Christoph Lassner, Javier Romero, Martin Kiefel, Federica Bogo,
Michael J Black and Peter V Gehler. Unite the people: Closing the loop
between 3d and 2d human representations. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017. (Cited on page 70.)

[Le 2013] Quoc V Le. Building high-level features using large scale unsupervised
learning. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pages 8595–8598. IEEE, 2013. (Cited on
page 54.)

[LeCun 1989] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard and Lawrence D Jackel. Backpropaga-
tion applied to handwritten zip code recognition. Neural computation, vol. 1,
no. 4, pages 541–551, 1989. (Cited on page 23.)

[LeCun 1995] Yann LeCun, Yoshua Bengioet al. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks,
vol. 3361, no. 10, page 1995, 1995. (Cited on page 23.)

[LeCun 1998] Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings of the
IEEE, vol. 86, no. 11, pages 2278–2324, 1998. (Cited on page 23.)

[Lepetit 2004] Vincent Lepetit, Julien Pilet and Pascal Fua. Point matching as a
classification problem for fast and robust object pose estimation. In Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, volume 2, pages II–II. IEEE, 2004.
(Cited on page 104.)

[Li 2014] Sijin Li and Antoni B Chan. 3d human pose estimation from monocular
images with deep convolutional neural network. In Asian Conference on
Computer Vision, pages 332–347. Springer, 2014. (Cited on pages 71 and 72.)

[Li 2015] Sijin Li, Weichen Zhang and Antoni B Chan. Maximum-margin structured
learning with deep networks for 3d human pose estimation. In Proceedings of
the IEEE International Conference on Computer Vision, pages 2848–2856,
2015. (Cited on page 90.)

[Liebelt 2010] Joerg Liebelt and Cordelia Schmid. Multi-view object class detection
with a 3d geometric model. In Computer Vision and Pattern Recognition

http://introlab.github.io/find-object
http://introlab.github.io/find-object

Bibliography 127

(CVPR), 2010 IEEE Conference on, pages 1688–1695. IEEE, 2010. (Cited
on page 43.)

[Lim 2014] Joseph J Lim, Aditya Khosla and Antonio Torralba. Fpm: Fine pose
parts-based model with 3d cad models. In European Conference on Computer
Vision, pages 478–493. Springer, 2014. (Cited on pages 43 and 44.)

[Lin 2014] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In European conference on computer vision,
pages 740–755. Springer, 2014. (Cited on page 43.)

[Liu 2016] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu and Alexander C Berg. Ssd: Single shot multibox
detector. In European conference on computer vision, pages 21–37. Springer,
2016. (Cited on page 18.)

[Long 2015] Jonathan Long, Evan Shelhamer and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3431–3440,
2015. (Cited on page 22.)

[Lowe 2004] David G Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, vol. 60, no. 2, pages 91–110,
2004. (Cited on page 14.)

[Lysenkov 2013a] Ilya Lysenkov, Victor Eruhimov and Gary Bradski. Recogni-
tion and pose estimation of rigid transparent objects with a kinect sensor.
Robotics, page 273, 2013. (Cited on page 111.)

[Lysenkov 2013b] Ilya Lysenkov and Vincent Rabaud. Pose estimation of rigid
transparent objects in transparent clutter. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages 162–169. IEEE,
2013. (Cited on page 111.)

[Malisiewicz 2011] Tomasz Malisiewicz, Abhinav Gupta and Alexei A Efros. En-
semble of exemplar-svms for object detection and beyond. In Computer Vi-
sion (ICCV), 2011 IEEE International Conference on, pages 89–96. IEEE,
2011. (Cited on page 44.)

[Mangasarian 1999] Olvi L Mangasarian and David R Musicant. Successive over-
relaxation for support vector machines. IEEE Transactions on Neural Net-
works, vol. 10, no. 5, pages 1032–1037, 1999. (Cited on page 36.)

[Massa 2016] Francisco Massa, Bryan C Russell and Mathieu Aubry. Deep exemplar
2d-3d detection by adapting from real to rendered views. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
6024–6033, 2016. (Cited on pages 43 and 44.)

128 Bibliography

[McKenna 1999] Stephen J McKenna, Yogesh Raja and Shaogang Gong. Tracking
colour objects using adaptive mixture models. Image and vision computing,
vol. 17, no. 3-4, pages 225–231, 1999. (Cited on page 16.)

[Mehta 2017] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr
Sotnychenko, Weipeng Xu and Christian Theobalt. Monocular 3d human
pose estimation in the wild using improved cnn supervision. In 3D Vision
(3DV), 2017 Fifth International Conference on, 2017. (Cited on page 71.)

[Michels 2005] Jeff Michels, Ashutosh Saxena and Andrew Y Ng. High speed obsta-
cle avoidance using monocular vision and reinforcement learning. In Pro-
ceedings of the 22nd international conference on Machine learning, pages
593–600. ACM, 2005. (Cited on page 43.)

[Moghaddam 1995] Baback Moghaddam and Alex Pentland. Probabilistic visual
learning for object detection. In Computer Vision, 1995. Proceedings., Fifth
International Conference on, pages 786–793. IEEE, 1995. (Cited on page 16.)

[Muja 2009] Marius Muja and David Lowe. Flann-fast library for approximate near-
est neighbors user manual. Computer Science Department, University of
British Columbia, Vancouver, BC, Canada, 2009. (Cited on page 111.)

[Murphy 1999] Kevin P Murphy, Yair Weiss and Michael I Jordan. Loopy belief
propagation for approximate inference: An empirical study. In Proceedings
of the Fifteenth conference on Uncertainty in artificial intelligence, pages
467–475. Morgan Kaufmann Publishers Inc., 1999. (Cited on page 78.)

[Newcombe 2011] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shot-
ton, Steve Hodges and Andrew Fitzgibbon. KinectFusion: Real-time dense
surface mapping and tracking. In Mixed and augmented reality (ISMAR),
2011 10th IEEE international symposium on, pages 127–136. IEEE, 2011.
(Cited on pages 41 and 104.)

[Newell 2016] Alejandro Newell, Kaiyu Yang and Jia Deng. Stacked hourglass net-
works for human pose estimation. In European Conference on Computer
Vision, pages 483–499. Springer, 2016. (Cited on pages 22 and 70.)

[(OpenCV) 2014] Open Source Computer Vision (OpenCV). LatentSVMDetec-
tor. https://opencv.org/, Documentation under https://docs.opencv.
org/2.4.10/modules/objdetect/doc/latent_svm.html, 2014. (Cited on
page 114.)

[Ouyang 2015] Wanli Ouyang, Xiaogang Wang, Xingyu Zeng, Shi Qiu, Ping
Luo, Yonglong Tian, Hongsheng Li, Shuo Yang, Zhe Wang, Chen-Change
Loyet al. Deepid-net: Deformable deep convolutional neural networks for ob-
ject detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2403–2412, 2015. (Cited on page 14.)

https://opencv.org/
https://docs.opencv.org/2.4.10/modules/objdetect/doc/latent_svm.html
https://docs.opencv.org/2.4.10/modules/objdetect/doc/latent_svm.html

Bibliography 129

[Pavlakos 2016] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpanis and
Kostas Daniilidis. Coarse-to-fine volumetric prediction for single-image 3D
human pose. arXiv preprint arXiv:1611.07828, 2016. (Cited on pages 71, 72,
90 and 91.)

[Pearl 2014] Judea Pearl. Probabilistic reasoning in intelligent systems: networks
of plausible inference. Morgan Kaufmann, 2014. (Cited on pages 28 and 77.)

[Pepik 2012a] Bojan Pepik, Peter Gehler, Michael Stark and Bernt Schiele. 3d2pm–
3d deformable part models. In European Conference on Computer Vision,
pages 356–370. Springer, 2012. (Cited on pages 45 and 46.)

[Pepik 2012b] Bojan Pepik, Michael Stark, Peter Gehler and Bernt Schiele. Teach-
ing 3d geometry to deformable part models. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pages 3362–3369. IEEE,
2012. (Cited on page 45.)

[Pepik 2015a] Bojan Pepik, Rodrigo Benenson, Tobias Ritschel and Bernt Schiele.
What is holding back convnets for detection? In German Conference on
Pattern Recognition, pages 517–528. Springer, 2015. (Cited on page 43.)

[Pepik 2015b] Bojan Pepik, Michael Stark, Peter Gehler, Tobias Ritschel and Bernt
Schiele. 3d object class detection in the wild. In Computer Vision and Pattern
Recognition Workshops (CVPRW), 2015 IEEE Conference on, pages 1–10.
IEEE, 2015. (Cited on page 45.)

[Pepik 2015c] Bojan Pepik, Michael Stark, Peter Gehler and Bernt Schiele. Multi-
view and 3d deformable part models. IEEE transactions on pattern analysis
and machine intelligence, vol. 37, no. 11, pages 2232–2245, 2015. (Cited on
pages 45 and 46.)

[Peyré 2006] Gabriel Peyré and Laurent D Cohen. Geodesic remeshing using front
propagation. International Journal of Computer Vision, vol. 69, no. 1, page
145, 2006. (Cited on page 48.)

[Pilet 2005] Julien Pilet, Vincent Lepetit and Pascal Fua. Real-time nonrigid sur-
face detection. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1, pages 822–828.
IEEE, 2005. (Cited on page 104.)

[Pishchulin 2012] Leonid Pishchulin, Arjun Jain, Mykhaylo Andriluka, Thorsten
Thormählen and Bernt Schiele. Articulated people detection and pose esti-
mation: Reshaping the future. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 3178–3185. IEEE, 2012. (Cited
on page 70.)

[Pishchulin 2016] Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern An-
dres, Mykhaylo Andriluka, Peter V Gehler and Bernt Schiele. Deepcut: Joint

130 Bibliography

subset partition and labeling for multi person pose estimation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4929–4937, 2016. (Cited on pages 70 and 105.)

[Pons-Moll 2011] Gerard Pons-Moll, Andreas Baak, Juergen Gall, Laura Leal-
Taixe, Meinard Mueller, Hans-Peter Seidel and Bodo Rosenhahn. Outdoor
human motion capture using inverse kinematics and von mises-fisher sam-
pling. In Computer Vision (ICCV), 2011 IEEE International Conference on,
pages 1243–1250. IEEE, 2011. (Cited on page 71.)

[Prankl 2015] Johann Prankl, Aitor Aldoma, Alexander Svejda and Markus Vincze.
RGB-D object modelling for object recognition and tracking. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on,
pages 96–103. IEEE, 2015. (Cited on page 111.)

[Prasad 2010] Mukta Prasad, Andrew Fitzgibbon, Andrew Zisserman and Luc
Van Gool. Finding nemo: Deformable object class modelling using curve
matching. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 1720–1727. IEEE, 2010. (Cited on pages 44 and 45.)

[Ramakrishna 2012] Varun Ramakrishna, Takeo Kanade and Yaser Sheikh. Recon-
structing 3d human pose from 2d image landmarks. Computer Vision–ECCV
2012, pages 573–586, 2012. (Cited on page 71.)

[Ramanan 2007] Deva Ramanan. Learning to parse images of articulated bodies. In
Advances in neural information processing systems, pages 1129–1136, 2007.
(Cited on pages 70 and 77.)

[Ranjan 2015] Rajeev Ranjan, Vishal M Patel and Rama Chellappa. A deep pyra-
mid deformable part model for face detection. In Biometrics Theory, Appli-
cations and Systems (BTAS), 2015 IEEE 7th International Conference on,
pages 1–8. IEEE, 2015. (Cited on page 14.)

[Ren 2015] Shaoqing Ren, Kaiming He, Ross Girshick and Jian Sun. Faster R-CNN:
Towards real-time object detection with region proposal networks. In Ad-
vances in neural information processing systems, pages 91–99, 2015. (Cited
on pages 22 and 24.)

[Ren 2017] Shaoqing Ren, Kaiming He, Ross Girshick, Xiangyu Zhang and Jian
Sun. Object detection networks on convolutional feature maps. IEEE trans-
actions on pattern analysis and machine intelligence, vol. 39, no. 7, pages
1476–1481, 2017. (Cited on page 15.)

[Rockafellar 1976] R Tyrrell Rockafellar. Monotone operators and the proximal
point algorithm. SIAM journal on control and optimization, vol. 14, no. 5,
pages 877–898, 1976. (Cited on page 82.)

Bibliography 131

[Rogez 2016] Grégory Rogez and Cordelia Schmid. MoCap-guided data augmenta-
tion for 3D pose estimation in the wild. In Advances in Neural Information
Processing Systems, pages 3108–3116, 2016. (Cited on page 91.)

[Ronfard 2002] Rémi Ronfard, Cordelia Schmid and Bill Triggs. Learning to parse
pictures of people. In European Conference on Computer Vision, pages 700–
714. Springer, 2002. (Cited on page 77.)

[ROS 2012a] ROS. ros object_recognition_tod. http://wg-perception.github.
io/tod/index.html#tod, 2012. Accessed: 25/10/2017 under BSD license.
(Cited on page 110.)

[ROS 2012b] ROS. ros tabletop_object_detector. http://wiki.ros.org/
tabletop_object_detector, 2012. Accessed: 24/10/2017 under BSD li-
cense. (Cited on pages 110 and 111.)

[Russakovsky 2015] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), vol. 115, no. 3, pages 211–252, 2015. (Cited on pages 25 and 43.)

[Savalle 2014] Pierre-André Savalle, Stavros Tsogkas, George Papandreou and Ia-
sonas Kokkinos. Deformable part models with cnn features. In European
Conference on Computer Vision, Parts and Attributes Workshop, 2014.
(Cited on pages 14, 25 and 26.)

[Schneiderman 2000] Henry Schneiderman and Takeo Kanade. A statistical method
for 3D object detection applied to faces and cars. In Computer Vision and
Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 1,
pages 746–751. IEEE, 2000. (Cited on page 16.)

[Seitz 2006] Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein and
Richard Szeliski. A comparison and evaluation of multi-view stereo recon-
struction algorithms. In Computer vision and pattern recognition, 2006
IEEE Computer Society Conference on, volume 1, pages 519–528. IEEE,
2006. (Cited on page 41.)

[Sermanet 2013] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu,
Rob Fergus and Yann LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. arXiv preprint arXiv:1312.6229,
2013. (Cited on page 22.)

[Shalev-Shwartz 2011] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro and An-
drew Cotter. Pegasos: Primal estimated sub-gradient solver for svm. Math-
ematical programming, vol. 127, no. 1, pages 3–30, 2011. (Cited on page 36.)

http://wg-perception.github.io/tod/index.html#tod
http://wg-perception.github.io/tod/index.html#tod
http://wiki.ros.org/tabletop_object_detector
http://wiki.ros.org/tabletop_object_detector

132 Bibliography

[Sheikh 2005] Yaser Sheikh and Mubarak Shah. Bayesian modeling of dynamic
scenes for object detection. IEEE transactions on pattern analysis and ma-
chine intelligence, vol. 27, no. 11, pages 1778–1792, 2005. (Cited on page 16.)

[Shimony 1994] Solomon Eyal Shimony. Finding MAPs for belief networks is NP-
hard. Artificial Intelligence, vol. 68, no. 2, pages 399–410, 1994. (Cited on
page 78.)

[Shneier 1980] Michael Shneier. Extracting linear features from images using pyra-
mids. Rapport technique, MARYLAND UNIV COLLEGE PARK COM-
PUTER VISION LAB, 1980. (Cited on page 15.)

[Sigal 2006] Leonid Sigal and Michael J Black. Measure locally, reason globally:
Occlusion-sensitive articulated pose estimation. In Computer Vision and
Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2,
pages 2041–2048. IEEE, 2006. (Cited on page 77.)

[Sigal 2010] Leonid Sigal, Alexandru O Balan and Michael J Black. Humaneva:
Synchronized video and motion capture dataset and baseline algorithm for
evaluation of articulated human motion. International journal of computer
vision, vol. 87, no. 1, pages 4–27, 2010. (Cited on page 71.)

[Simonyan 2014] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014. (Cited on pages 22 and 24.)

[Starck 2003] Jonathan Starck and Adrian Hilton. Model-based multiple view re-
construction of people. In null, page 915. IEEE, 2003. (Cited on page 104.)

[Steinwart 2008] Ingo Steinwart and Andreas Christmann. Support vector ma-
chines. Springer Science & Business Media, 2008. (Cited on page 16.)

[Stockman 1987] George Stockman. Object recognition and localization via pose
clustering. Computer vision, graphics, and image processing, vol. 40, no. 3,
pages 361–387, 1987. (Cited on page 46.)

[Sturm 2012] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard
and Daniel Cremers. A benchmark for the evaluation of RGB-D SLAM
systems. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Inter-
national Conference on, pages 573–580. IEEE, 2012. (Cited on page 41.)

[Sun 2017] Xiao Sun, Jiaxiang Shang, Shuang Liang and Yichen Wei. Compo-
sitional Human Pose Regression. arXiv preprint arXiv:1704.00159, 2017.
(Cited on page 90.)

[Swain 1991] Michael J Swain and Dana H Ballard. Color indexing. International
journal of computer vision, vol. 7, no. 1, pages 11–32, 1991. (Cited on
page 14.)

Bibliography 133

[Szeliski 2006] Richard Szeliski. Image alignment and stitching: A tutorial. Foun-
dations and Trends R© in Computer Graphics and Vision, vol. 2, no. 1, pages
1–104, 2006. (Cited on page 14.)

[Tian 2010] Tai-Peng Tian and Stan Sclaroff. Fast globally optimal 2d human detec-
tion with loopy graph models. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 81–88. IEEE, 2010. (Cited on
page 77.)

[Tola 2010] Engin Tola, Vincent Lepetit and Pascal Fua. Daisy: An efficient dense
descriptor applied to wide-baseline stereo. IEEE transactions on pattern
analysis and machine intelligence, vol. 32, no. 5, pages 815–830, 2010. (Cited
on page 14.)

[Tome 2017] Denis Tome, Chris Russell and Lourdes Agapito. Lifting from the
Deep: Convolutional 3D Pose Estimation from a Single Image. arXiv
preprint arXiv:1701.00295, 2017. (Cited on pages 71 and 91.)

[Tompson 2014] Jonathan J Tompson, Arjun Jain, Yann LeCun and Christoph
Bregler. Joint training of a convolutional network and a graphical model
for human pose estimation. In Advances in neural information processing
systems, pages 1799–1807, 2014. (Cited on pages 22 and 72.)

[Tompson 2015] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun and
Christoph Bregler. Efficient object localization using convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 648–656, 2015. (Cited on page 70.)

[Torresani 2008] Lorenzo Torresani, Aaron Hertzmann and Chris Bregler. Nonrigid
structure-from-motion: Estimating shape and motion with hierarchical pri-
ors. IEEE transactions on pattern analysis and machine intelligence, vol. 30,
no. 5, pages 878–892, 2008. (Cited on page 43.)

[Toshev 2014] Alexander Toshev and Christian Szegedy. Deeppose: Human pose
estimation via deep neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1653–1660, 2014. (Cited
on pages 22 and 70.)

[Trigeorgis 2016] George Trigeorgis, Patrick Snape, Mihalis A Nicolaou,
Epameinondas Antonakos and Stefanos Zafeiriou. Mnemonic descent
method: A recurrent process applied for end-to-end face alignment. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 4177–4187, 2016. (Cited on page 44.)

[Tsochantaridis 2004] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims and Yasemin Altun. Support vector machine learning for inter-
dependent and structured output spaces. In Proceedings of the twenty-first

134 Bibliography

international conference on Machine learning, page 104. ACM, 2004. (Cited
on pages 36 and 37.)

[Vapnik 1998] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learn-
ing theory, volume 1. Wiley New York, 1998. (Cited on page 36.)

[Viola 2001] Paul Viola and Michael Jones. Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer-
ence on, volume 1, pages I–I. IEEE, 2001. (Cited on page 14.)

[Vlasic 2007] Daniel Vlasic, Rolf Adelsberger, Giovanni Vannucci, John Barnwell,
Markus Gross, Wojciech Matusik and Jovan Popović. Practical motion cap-
ture in everyday surroundings. In ACM transactions on graphics (TOG),
volume 26, page 35. Acm, 2007. (Cited on page 71.)

[Vondrick 2013] Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz and Antonio
Torralba. Hoggles: Visualizing object detection features. In Proceedings of
the IEEE International Conference on Computer Vision, pages 1–8, 2013.
(Cited on page 114.)

[Wang 2008] Yang Wang and Greg Mori. Multiple tree models for occlusion and
spatial constraints in human pose estimation. In European Conference on
Computer Vision, pages 710–724. Springer, 2008. (Cited on page 77.)

[Weber 2000] Markus Weber, Max Welling and Pietro Perona. Towards automatic
discovery of object categories. In Computer Vision and Pattern Recognition,
2000. Proceedings. IEEE Conference on, volume 2, pages 101–108. IEEE,
2000. (Cited on page 16.)

[Wei 2016] Shih-En Wei, Varun Ramakrishna, Takeo Kanade and Yaser Sheikh.
Convolutional pose machines. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4724–4732, 2016. (Cited
on pages 14 and 70.)

[Weiss 2001] Yair Weiss and William T Freeman. On the optimality of solutions
of the max-product belief-propagation algorithm in arbitrary graphs. IEEE
Transactions on Information Theory, vol. 47, no. 2, pages 736–744, 2001.
(Cited on page 28.)

[Whelan 2012] Thomas Whelan, Michael Kaess, Maurice Fallon, Hordur Johanns-
son, John Leonard and John McDonald. Kintinuous: Spatially extended
kinectfusion. 2012. (Cited on page 41.)

[Xiang 2014] Yu Xiang, Roozbeh Mottaghi and Silvio Savarese. Beyond pascal: A
benchmark for 3d object detection in the wild. In Applications of Computer
Vision (WACV), 2014 IEEEWinter Conference on, pages 75–82. IEEE, 2014.
(Cited on pages 43 and 62.)

Bibliography 135

[Yan 2007] Pingkun Yan, Saad M Khan and Mubarak Shah. 3d model based object
class detection in an arbitrary view. In Computer Vision, 2007. ICCV 2007.
IEEE 11th International Conference on, pages 1–6. IEEE, 2007. (Cited on
page 46.)

[Yang 2011] Yi Yang and Deva Ramanan. Articulated pose estimation with flexible
mixtures-of-parts. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 1385–1392. IEEE, 2011. (Cited on pages 70
and 77.)

[Yang 2013] Yi Yang and Deva Ramanan. Articulated human detection with flexible
mixtures of parts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 12, pages 2878–2890, 2013. (Cited on page 70.)

[Yang 2016] Wei Yang, Wanli Ouyang, Hongsheng Li and Xiaogang Wang. End-to-
end learning of deformable mixture of parts and deep convolutional neural
networks for human pose estimation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3073–3082, 2016. (Cited
on pages 72 and 77.)

[Yasin 2016] Hashim Yasin, Umar Iqbal, Bjorn Kruger, Andreas Weber and Juergen
Gall. A dual-source approach for 3D pose estimation from a single image.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4948–4956, 2016. (Cited on pages 71 and 91.)

[Yu 2010] Jie Yu, Dirk Farin, Christof Krüger and Bernt Schiele. Improving per-
son detection using synthetic training data. In Image Processing (ICIP),
2010 17th IEEE International Conference on, pages 3477–3480. IEEE, 2010.
(Cited on page 43.)

[Yuille 1992] Alan L Yuille, Peter W Hallinan and David S Cohen. Feature extrac-
tion from faces using deformable templates. International journal of com-
puter vision, vol. 8, no. 2, pages 99–111, 1992. (Cited on page 19.)

[Yuille 2003] Alan L Yuille and Anand Rangarajan. The concave-convex procedure.
Neural computation, vol. 15, no. 4, pages 915–936, 2003. (Cited on page 39.)

[Zeiler 2014] Matthew D Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In European conference on computer vision, pages
818–833. Springer, 2014. (Cited on pages 2 and 25.)

[Zhang 2004] Tong Zhang. Solving large scale linear prediction problems using
stochastic gradient descent algorithms. In Proceedings of the twenty-first
international conference on Machine learning, page 116. ACM, 2004. (Cited
on page 36.)

[Zhou 2015] Xiaowei Zhou, Spyridon Leonardos, Xiaoyan Hu and Kostas Daniilidis.
3D shape estimation from 2D landmarks: A convex relaxation approach.

136 Bibliography

In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4447–4455, 2015. (Cited on page 71.)

[Zhou 2016] Xiaowei Zhou, Menglong Zhu, Spyridon Leonardos, Konstantinos G
Derpanis and Kostas Daniilidis. Sparseness meets deepness: 3D human pose
estimation from monocular video. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4966–4975, 2016. (Cited
on pages 71, 90, 99, 100 and 104.)

[Zhu 2006] Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng and Shai Avidan. Fast
human detection using a cascade of histograms of oriented gradients. In
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, volume 2, pages 1491–1498. IEEE, 2006. (Cited on page 76.)

[Zhu 2015] Menglong Zhu, Xiaowei Zhou and Kostas Daniilidis. Single image pop-
up from discriminatively learned parts. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 927–935, 2015. (Cited on
page 46.)

[Zitnick 2014] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object
proposals from edges. In European Conference on Computer Vision, pages
391–405. Springer, 2014. (Cited on page 18.)

Bibliography 137

Titre: Représentations à base de parties pour la vision 3D de haut niveau

Mots clés: vision par ordinateur, optimisation, intelligence artificielle

Résumé: Dans cette thèse, nous utilisons des
modèles de parties déformables (Deformable Part
Models – DPMs) pour apprendre à détecter des
parties d’objets. Pour une image d’un objet,
l’objectif est de déterminer l’emplacement des
parties de cet objet dans l’image. Le prob-
lème d’optimisation qui en résulte est non-convexe
et difficile en raison de son grand espace de
recherche.
Notre première contribution consiste à étendre les
DPMs à la troisième dimension, grâce à un al-
gorithme par séparation et évaluation (Branch-
and-Bound). Nous élaborons un algorithme per-
sonnalisé qui est deux fois plus rapide qu’une
approche naïve et garantit l’optimalité globale.
Nous dérivons pour le modèle 3-dimensionnel une
structure 3-dimensionnel. Cependant, nous en-
trainons un algorithme prenant en compte chaque
sous point de vue de l’apparence. Nous démon-

trons notre approche sur la tache de l’estimation
3-dimensionnel de la posture, en déterminant la
posture de l’objet dans une fraction de second.
Notre deuxième contribution nous permet
d’effectuer une inférence efficace sur des modèles
où les connexions des parties forment un graphe
avec des boucles, étendant ainsi des modèles plus
riches. Pour cela, nous utilisons l’algorithme
des directions alternées (Alternating Direction
Method of Multipliers – ADMM) pour découpler
le problème et résoudre itérativement un ensem-
ble de sous-problèmes plus faciles. Nous calculons
les paramètres du modèle via un Réseaux Neu-
ronal Convolutif pour la determination de la pos-
ture 3-dimensionnel. L’inference développée est
utilisée comme dernière couche du réseau neural.
Cela permet d’obtenir une performance à l’état de
l’art pour la tâche d’estimation de pose humaine
en 3D.

Title: Part-Based Representations for High-Level 3D Vision

Keywords: computer vision, optimization, artificial intelligence

Abstract: In this work we use Deformable Part
Models (DPMs) to learn and detect object parts
in 3 dimensions. Given a single RGB image of an
object, the objective is to determine the location
of the object’s parts. The resulting optimization
problem is non-convex and challenging due to its
large solution space.
Our first contribution consists in extending DPMs
into the third dimension through an efficient
Branch-and-Bound algorithm. We devise a cus-
tomized algorithm that is two orders of magni-
tude faster than a naive approach and guaran-
tees global-optimality. We derive the model’s
3-dimensional geometry from one 3-dimensional
structure, but train viewpoint-specific part ap-
pearance terms based on deep learning features.

We demonstrate our approach on the task of 3D
object pose estimation, determining the object
pose within a fraction of a second.
Our second contribution allows us to perform ef-
ficient inference with part-based models where
the part connections form a graph with loops,
thereby allowing for richer models. For this, we
use the Alternating Direction Method of Multipli-
ers (ADMM) to decouple the problem and solve
iteratively a set of easier sub-problems. We com-
pute 3-dimensional model parameters in a Convo-
lutional Neural Network for 3D human pose esti-
mation. Then we append the developed inference
algorithm as final layer to this neural network.
This yields state of the art performance in the 3D
human pose estimation task.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

