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Summary

Français
Cette thèse s’intéresse au problème de positionnement (position et orientation) dans un contexte de
réalité augmentée et aborde spéciiquement les solutions à base de capteurs embarqués.

Aujourd’hui, les performances atteintes par les vinss (système de navigation vision-inertiels)
commencent à être compatibles avec les besoins spéciiques de cette application. Néanmoins, ces
systèmes de positionnement se basent tous sur des corrections de trajectoire issues des informations
visuelles à relativement haute fréquence ain de remédier à la rapide dérive des capteurs inertiels
bas-coûts. Cela pose problème lorsque l’environnement visuel n’est pas favorable; par exemple lors
de la présence de fumée, d’une illumination de mauvaise qualité, de lou de bougé ou encore lorsque
l’environnement est fortement dynamique ou peu texturé.

Parallèlement, des travaux récents menés par l’entreprise Sysnav ont démontré qu’il était possible
de réduire la dérive de l’intégration inertielle en exploitant le champ magnétique, grâce à un
nouveau type d’umi (unité de mesure inertielle) composée – en plus des accéléromètres et gyromètres
traditionnels – d’un réseau de magnétomètres. Celui-ci fournit une mesure du gradient du champ
magnétique local à chaque instant qui est exploitée en formulant des hypothèses raisonnables sur le
champ. Ce capteur est composé seulement de composants bas-coûts et les algorithmes associés ont
un surcoût en calcul faible. Néanmoins, cette méthode de navigation à l’estime est également mise
en défaut si les hypothèses sur le champ ne sont pas vériiées au moins localement autour du capteur,
par exemple en environnement extérieur, ou en présence de perturbations instationnaires du champ.

Nos travaux portent sur le développement d’une solution de navigation à l’estime robuste combinant
toutes ces sources d’informations : magnétiques, visuelles et inertielles.

Un premier travail fusionne de façon lâche (loose fusion) des informations de poses issues
d’un algorithme d’alignement d’image d’un capteur de profondeur avec celles issues d’un iltre de
navigation à l’estime magnéto-inertiel. La logique de l’estimation repose sur la connaissance et la
détection des modes de défaillance de chaque estimateur ain d’obtenir une navigation plus robuste.

Un deuxième travail présente une façon statistiquement cohérente d’insérer des termes d’erreurs
issues des mesures de gradient magnétiques dans les méthodes d’ajustement de faisceaux classiquement
utilisées dans les algorithmes de slam (localisation et cartographie simultanée), déjà étendues par
ailleurs aux vins. Nous développons une approche par préintégration des mesures magnétiques,
inspirées de techniques proposées dans la littérature pour le traitement des données inertielles.

Un troisième travail met en œuvre un ekf (iltre de Kalman étendu) pour la navigation sur les
mêmes données. Nous utilisons une structure de iltre inspirée du iltre msckf proposé par de
Mourikis et Roumeliotis en 2007, que nous implémentons dans la formulation en racine carrée du
iltre d’information. Comparé à l’approche par ajustement de faisceaux, ce iltre est plus eicient,
ce qui laisse entrevoir une implémentation simple sur processeur embarqué.

Ces méthodes sont toutes testées et validées sur des données issues de capteurs réels, dans des
scénarios présentant des diicultés à la fois pour la vision et pour le capteur magnéto-inertiel. Nous
démontrons sur ces essais le gain de robustesse issu de la fusion, et nous étudions les performances
des diférentes combinaisons de capteurs possibles : magnéto-inertielles, vision-inertielles et vision-
magnéto-inertielles.

Enin, un dernier travail concerne certaines propriétés plus ines de la solution basée iltrage. Il
est reconnu dans la littérature que ces iltres ne sont pas statistiquement consistants, notamment à
cause de l’accumulation des erreurs de linéarisation. Nous explorons et appliquons des solutions
à cette problématique d’inconsistance. S’inspirant de travaux récents sur l’utilisation d’erreurs
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non-linéaires dans le iltre de Kalman, nous étudions le rôle de la paramétrisation de l’état et du
choix de l’erreur iltrée dans le cas particulier de notre problème. Il est montré que, pour certains de
ces choix, l’estimateur présente des propriétés intéressantes liées à sa consistance; son comportement
s’en trouve amélioré.

English
This thesis addresses the positioning in 6dof (position and orientation) issues arising from ar
(Augmented Reality) applications and focuses on embedded sensors based solutions.

Nowadays, performance reached by vinss (Visual-Inertial Navigation Systems) is starting to be
adequate for ar applications. Nonetheless, those systems are based on position correction from
visual sensors involved at relatively high frequency in order to mitigate the quick drift of low-cost
inertial sensors. This is a problem when visual environment is not favorable. As for instance in
foggy or smoky environments, in presence of bad or changing illumination, motion blur, or when
the scene is highly dynamic.

In parallel, recent works conducted at the company Sysnav have shown that it was feasible to
leverage magnetic ield to reduce inertial translation drift thanks to a new type of imu (Inertial
Measurement Unit), consisting – in addition to the accelerometers and gyrometers – in a network of
magnetometers, which allows measuring magnetic ield gradient at each instant. This information
is exploited with reasonable assumptions about the magnetic ield. This system has the advantage
of using only low-cost sensors and induces only low computational overhead. However, this dead-
reckoning technique fails if the assumed hypotheses are not fulilled, at least in the vicinity of
the sensor. This is the case generally outdoor, or when the magnetic ield disturbances are not
stationary.

Our work aims to develop a robust dead-reckoning solution combining information from all these
sources: magnetic, visual, and inertial sensors.

A irst work does a loose fusion between pose information from a depth image alignment algorithm
with those from a magneto-inertial dead-reckoning ilter. This system is mainly based on detecting
and taking into account the failure modes of each estimator in order to gain robustness.

A second work presents a statistically consistent way to integrate error terms from magnetic
gradient values into the bundle adjustment algorithm classically used in slam (Simultaneous
Localization and Mapping), which has been already extended to vins. We develop an approach using
preintegration of magnetic measurement inspired by techniques proposed in the literature for inertial
data handling.

A third work implements an ekf (Extended Kalman Filter) for dead-reckoning on the same data.
We use a ilter structure inspired from the msckf (Multi-State Constraint Filter), proposed in 2007
by Mourikis and Roumeliotis, that we implement in its information square-root form. Compared
to the bundle adjustment approach, the ilter is more eicient, which could open the way to an
implementation on embedded processor.

All these methods are tested and validated on real sensors data, on scenarios diicult for vision
or magneto-inertial sensors. We show on these trajectories robustness gain from the fusion, and we
study the performance of diferent combinations of sensors: magneto-inertial, vision-inertial and
vision-magneto-inertial.

Finally, a last contribution relates to ine grain properties of the iltering solution. It is recognized
in the literature that those ilters loose their statistical consistency, in particular because linearization
errors accumulations. We explore and apply solutions to this issue. Inspired by recent works on the
use of non-linear error in the Kalman ilter, we study the role of the error state parametrization
in the particular case of our problem. It is shown that, with a certain choice of parametrization,
the estimator presents interesting properties linked to its consistency; its behavior is found to be
improved.
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Conventions and Notations
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Figure 1: Reference coordinate frames at play in the general problem, with associated typical
measurements.

Matrix and manifold elements notations
Bold capital letters X denote matrices or elements of manifold.
Parenthesis are used to denote the Cartesian product of two elements a ∈ A, b ∈ B 7→ (a, b) ∈ A×B
Brackets are for matrices and the concatenation of two compatible matrices.
For a vector x = [x1, x2, x3]T, x2 denotes its second component x2 and x2:3 is the sub-vector
[x2, x3]T.

Matrix vectorization and Kronecker Product
For matrices, we deine the vectorization operation Vec () so that:

Vec
([

x11 x12

x21 x22

])
=
[
x11, x21, x12, x22

]T
. (1)

We also use the Kronecker product specially for noise and error derivations, it is deined as:

A⊗B :=




A1,1B A1,2B · · · A1,pB
A2,1B A2,2B · · · A2,pB

...
... . . . ...

Ak,1B Ak,2B · · · Ak,pB


 , , With A ∈ R

k×p and B ∈ R
m×p. (2)

This operator is specially handy to express the vectorized version of a product of three matrices:
Vec (ABC) =

(
CT ⊗A

)
Vec (B) (3)

Which proves particularly useful to diferentiate with respect to a matrix coeicients.

Symbol accent
We use a tilde symbol x̃ for measured quantities or generally quantities that can be derived directly
or indirectly from sensor reading. This is a rather unconventional choice, that might disturb at irst
reader coming from a theoretical automatic background, where the tilde often denotes an error
variables. More conventionally though, we use a hat X̂ for estimated version of a quantity.
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Conventions and Notations

Reference frames convention
The world coordinates (i.e. the frame in which the systems navigate) are always deined such
that the gravity vector writes g ≃ [0, 0,−9.81]T. When ambiguous, the reference frame in which a
quantity is expressed will be noted in exponent: w stands for the world gravity-aligned reference
frame, b for the current body reference frame and c for the camera frame. The Figure 1 summarizes
the chosen notations.

Rotation parametrization and SO(3) Group notation
For rotations, we use the convention that R

w transforms a vector from body frame to world frame
by left multiplying it. For the sake of clarity of the developments, we represent the attitude of
the sensor as a rotation matrix belonging to the matrix Special Orthogonal Group. This group is
denoted SO(3) and its associated Lie algebra so(3) — the set of skew symmetric matrices. Any
element of so(3) can be identiied with a vector of R3: [x]× ∈ so(3) with x ∈ R

3 and vex so that
vex([x]×) = x. exp and log are the standard exponential map and logarithm on matrices. We will
for conciseness often use “vectorized” versions of exp and log in the case of SO(3):

ExpSO(3) (δθ) :
R

3 → SO(3)
δθ 7→ exp([δθ]×)

(4)

and LogSO(3) (R) : SO(3)→ R
3 the inverse function. With these conventions,

LogSO(3)

(
ExpSO(3) (x)

)
= x (5)

Other Matrix Lie Group Notations
For other matrix Lie group, that would be introduced f9or instance in Chapter 7. We will
employ notation similar to the above. A (matrix) element of the Lie algebra m will be noted
m∧ = log(M) ∈ m, M ∈ M (this is the equivalent to [θ]× on so(3)). And can be identiied to an
element m ∈ R

n. We write the vectorized version of exp and log maps as ExpM (m) and LogM (M)
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Spaces
R

n Euclidean space of dimension n
R

n×m Matrices of n rows and m columns
O(n) the orthogonal matrix group of size n
SO(3) the special orthogonal matrix group, rotation matrix
so(3) its Lie algebra
SE(3) the special euclidean matrix group, rigid transform matrix

Constants
0n×m zero matrix of size n×m

In the identity matrix of size n× n or corresponding linear application.
N (u, Σ) the Gaussian distribution of mean u and covariance Σ

Operators
X ⊞ δX retraction operator from tangent space to manifold
A⊗B the Kronecker product of matrices A and B

Ẋ the total time derivative of vector or matrix X

∂A the partial derivative operator ∂
∂Vec(A) with respect to the coeicients of Vec (A)

‖x‖Σ the Mahalanobis norm of invertible covariance Σ: ‖x‖Σ = xTΣ−1x.
Σ

1
2 With Σ a matrix: a square root matrix of Σ

[x]× for x ∈ R
3 matrix of application with y y 7→ x× y (cross-product)

ex, exp(x) depending on the context, will denote the scalar exponential or the matrix expo-
nential, or the lie group exponential.

ExpM (x) For M a matrix Lie group, the “vectorized” matrix lie group exponential
LogM (X) For M a matrix Lie group, the “vectorized” lie group logarithm.

Symbols
g gravity vector
R Rotation matrix, element of SO(3)

B Magnetic ield
∇B Magnetic ield gradient as a 3× 3 matrix
v Speed
p Position
l landmark position parameters (generally [x, y, z] 3D position)
o pixel coordinate in an image
π projection function of a camera as a function from R

3 → R
2

ξ Pose (orientation and position) of an object.
ξa←b Pose (orientation and position) of object b in object a frame
π−1 “retroprojection” function of a camera R

2 → S2 or R
2 × R

+ → R
3.

Table 1: List of reserved symbol
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Introduction
This thesis deals with navigation, i.e., the capability to know the position of a mobile object while
it moves relative to a reference frame. Navigation is an old issue and was initially closely related
to maritime journeys. The diiculty arising from the navigation at sea was mainly because, for
human sense, the sea does not provide any visible distinctive landmark. Scientists all around the
world have thus used their creativity to ind technical solutions to ease maritime navigation. Along
the centuries, more an more sophisticated tools were developed to extend navigation capability to
aerial, terrestrial, submarine, and space navigation and improve accuracy and reliability.

Two class of methods are used altogether in navigation. The irst class is dead-reckoning, that
estimate the displacement relative to a previous position at a particular time. The second is
landmark-based navigation, which estimates the position of the object relative to known landmarks.

The most spectacular landmark-based system is undoubtedly the satellite positioning systems,
launched in the second half of the 20th century. These systems provide a meter-accurate position
all around the globe. This class of methods is called gnss (Global Navigation Satellite System).

However, the requirements for navigation and positioning difers vastly from applications to
another, and gnss, despite its global nature, does not answer every application need.

One of these applications that will keep on growing in the next few years is spatially aware
computer applications, whose a hard instance is the ar (Augmented Reality). ar requires a very high
precision localization and orientation knowledge relative to its close, generally indoor, environment.

ar’s ultimate goal is to seamlessly integrate, into the real world perceived, additional – computer-
generated – information. To do so, ar technology tries to cheat on the subject senses to provide him
with information in the most natural way for a human. Two senses are preferred for this purpose:
sight, and sound. They are nowadays combined in most advanced ar experiences. ar enables
new ways to interact with sophisticated computer systems in numerous ields: urban turn-by-turn
navigation, surgery, facilities maintenance, it also enables new possibilities in arts, fashion, interior
design, tourism, e-commerce, or gaming. This technology might even become, in the future, the
main human-machine interface, superseding the standard (touch)-screen, mouse, and keyboard.

Compared to the traditional interface paradigm ar aims to simulate the spatialization of infor-
mation in a way human will naturally understand. This means reprojecting object image as if they
were entirely part of the 3D world and generating a sound signal which human ears can localize
spatially. Being able to create such signal involves several technologies:

• one generating the information that the eyes and ears will understand (a headset with ar
glasses and earphone)

• one modeling the real world suiciently to spatialize in a relevant way the information (a
mapping system)

• inally one allowing to sense the movement of the subject and position it in the environment
(a localization system).

The work presented in this thesis focused exclusively on the latter.
Such a localization system must have the following properties:
• Full 6dof pose. The spatialization needed for 3D virtual object reprojection requires knowing

the position and orientation of the eye of the subject.
• High-frequency. A high enough frequency position refresh rate is required; otherwise, the user

feels uncomfortable scattered movements. In practice, the framerate requirement is higher
than video or animation movies, because of the more intrusive nature of ar.

• Small-latency. A large latency will cause the subject to be sick quickly. Human senses can
already perceive few milliseconds of delay.

1



Introduction

Figure 0.1: An quadcopter drone equipped with camera and inertial sensors for navigation purpose

• Smoothness of estimation. The localization system should give a smooth positioning estimate
for avoiding gross artifacts on the reprojected image.

Moreover, for general public adoption there are also severe constraints on the technical solution:
• Infrastructureless. This provides easy installation of the system and does not require complex

deployment.
• Battery powered. This provides higher movement freedom.
• Light and small system. In order to be carried by a human. Ideally being integrated into

lightweight glasses.
• Low price. It should be afordable enough for mass market. This mainly constrains the usable

sensor technology.
• Robustness to dynamic and environment. In order to cover the range of movement and

location where the user would want to use such a system.
Interestingly, these properties and constraints are shared with another application: position

estimation in mobile robotic. This is particularly valid for autonomous drone – as the one depicted
on Figure 0.1: each point above also applies. In practice, the algorithm and systems employed in
both applications (augmented reality and mobile drone) are very similar.

State-of-the-art localization systems for AR headset, principles and limitations
During the three years of the thesis, some headsets were released for mass-market by industrial
companies. Some examples are given in Figure 0.2. The localization systems employed provide
6dof at high frequency, small latency, and relatively accurate localization. The novelty of the
headsets of the last years is their focus on infra-structureless position estimation.

Internally, these systems position tracking is based on the following principle: an imu signal
(acceleration and rotation speed) is integrated to predict a pose knowing the previous one, while
visual measurements are used to correct this prediction, that otherwise would quickly drift. The
details on how the image processing is done can vary greatly, and we will go through some example
along the thesis.

Depending on technical details these processes are called vio (Visual-Inertial Odometry) or slam
(Simultaneous Localization and Mapping), and the system is broadly called vins (Visual-Inertial
Navigation System). More precisely, vio names the process of reducing the drift of the imu with
short-term visual information. This is a pure dead-reckoning process where position errors will
accumulate with time. In contrast, slam often refers to the simultaneous construction and storage
of a map of the environment in computer memory. This map can then be reused by the tracking
component to reduce to correct the drift of the vio.

These tracking components are not perfect, however. They mainly rely on the quality of visual
data, which highly depends on the environment and can not be guaranteed beforehand. These
systems thus employ an advanced failure detection logic. They notify the user of these failures,

2



(a) (b)

(c) (d)

Figure 0.2: Example of products released during this doctoral work with AR capable localization
without infrastructure. (a) High-end smartphone with precise 6dof (position and orien-
tation) localization capabilities and plane detection for augmented reality through the
screen. (b) Virtual-reality headset and controllers. (c)-(d) Augmented reality headset
with see-through screen. All these systems are equipped with cameras and imu (Inertial
Measurement Unit) for the 6dof positional tracking. As noticed immediately, nowadays,
headset systems are still bulky and invasive which limits their social acceptation.
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which degrades the interaction. Typical failure cases occur when the environment is diicult to
understand for the visual processing subsystem or when it does not provide enough information,
for instance because of the absence of light, the presence of smoke, in a highly dynamic scene, etc.
Besides, these systems are somewhat bulky, and battery duration is still an unsolved problem.

The novelty of our work: exploiting opportunistic magnetic ield disturbances
to complete the visual-inertial information
In this thesis, we propose a new sensor that could complete the vio and solve some of its issues.
In this document – by analogy to the imu abbreviation – we will name this sensor a mimu
(Magneto-Inertial Measurement Unit).

The mimu contains – in addition to gyrometers and accelerometers – a magnetometers array and
has the capability to leverage the local disturbance of magnetic ield to improve positional tracking.
A technique that we call in this thesis mi-dr (Magneto-Inertial Dead-Reckoning).

We will explore how the addition of the mimu can be used to improve the vinss that are used
in a ar context. In particular, we will focus on the improvement of the vio, the dead-reckoning
component of these systems.

mag mag

mag
gyr

acc

Figure 0.3: Diagram of a 2D mimu sensor. Accelerometer (acc) and gyrometers (gyr) are completed
by several magnetometers (mag). The relative positions of the sensors are precisely
known.

General Contributions and Thesis Outline
The subject is investigated broadly, from the point of view of sensor choices, estimator choices, and
theoretical aspects of the fusion estimator.

We study, describe, implement and evaluate dead-reckoning systems (hardware and software)
that fuse information from a mimu with information from visual sensors. By combining the mi-dr
and vio techniques, we show that we are able to improve the robustness of the dead-reckoning in
scenario challenging for both mi-dr and vio. We present results of two diferent sensor choices
(depth sensor + mimu and monocular camera + mimu) and several sensor fusion algorithms. We
attempt to derive the estimators from consistent mathematic framework and error modeling of each
sensor, and we evaluate them on real data, captured with a prototype mounted speciically for this
work. Finally, on the theoretical part, we also investigate ine estimator properties that are linked
with the notion of consistency of the estimation, observability, and invariance.

This document is separated in two parts.
The irst part presents general notions and a irst attempt to fuse visual information with mimu

sensor. It goes from Chapter 1 to Chapter 3:
• The Chapter 1 comes back briely on the core technology that provides dead-reckoning

capabilities: inertial navigation. We present the formulation of inertial navigation problems
through its historical use in high-end inertial navigation and describes how these equations
can be leveraged with low-cost sensors.
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• The Chapter 2 presents the mimu and the mi-dr technologies. These technologies signiicantly
improve low-cost inertial navigation. mimu is at the center of this work: investigating the
practicality and usefulness of such a technology compared/alongside to vio algorithm is the
main issue addressed in the thesis and, among the rich literature on vins, its use is the main
feature that distinguishes our work.

• Finally, the Chapter 3 describes a irst loosely coupled approach of the fusion problem. We
investigate fusion possibilities between an active depth sensor and the mimu. This chapter
mainly relates the work done during the irst half of the doctoral work.

The second part of the thesis focus on a second sensor choice that is closer to the state-of-the-art
in vins. We investigate 6dof dead-reckoning by tight fusion between a monocular camera and a
mimu. We study in this context two diferent estimation paradigms: optimization and iltering.

• Chapter 4 is a digest review of the related work about monocular vins, slam and vio. It is
an an organized subjective selection of recent and interesting work in the ield.

• Chapter 5 presents a mathematically sound way to integrate the mi-dr ideas into the bundle
adjustment problem: an energy minimization formulation often used to solve for the positioning
problem in robotic and slam community. We demonstrate the usefulness of this energy in
an application to incrementally solve the optimization problem. We show the beneits of the
fusion on real data.

• Chapter 6 presents an alternative way to fuse the same information through a less computa-
tionally intensive iltering approach. We show that the improvement of robustness observed
in the previous chapter is still achieved within this framework.

• Finally, Chapter 7 focuses on theoretical aspects of the iltering approach and study its
consistency property. This is done with the help of invariance theory from the theoretical
automatic community. It is the most technical chapter of the document.

Publications relating the doctoral work
Parts of this thesis were also presented in the following publications:

• Caruso, D., Sanfourche, M., Le Besnerais, G., and Vissiere, D. (2016). Infrastructureless
Indoor Navigation With an Hybrid Magneto-inertial and Depth Sensor System. In 2016
International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcalà de
Henares

• Caruso, D., Eudes, A., Sanfourche, M., Vissiere, D., and Le Besnerais, G. (2017a). An Inverse
Square-root Filter for Robust Indoor/Outdoor Magneto-visual-inertial Odometry. In 2017
International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo

• Caruso, D., Eudes, A., Sanfourche, M., Vissiere, D., and Le Besnerais, G. (2017b). Robust
Indoor/Outdoor Navigation through Magneto-visual-inertial Optimization-based Estimation.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver

• Caruso, D., Eudes, A., Sanfourche, M., Vissière, D., and Le Besnerais, G. (2017c). A Robust
Indoor/Outdoor Navigation Filter Fusing Data from Vision and Magneto-Inertial Measurement
Unit. Sensors, 17(12):2795

These contributions are all presented in Chapters 1 to 6, with more details than in the original
publications. In particular, the Chapter 5 goes well beyond the conference paper [Caruso et al.,
2017b]. The Chapter 7 is a late and new contribution on the subject that has not been published
at the time of writing.
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Chapter 1

General Notions About Inertial Sensors and
Navigation

This chapter reviews briely high end navigation solution in Section 1.1, then describes
the inertial sensor model we will use in Section 1.2 and focuses in Section 1.3 on the
mechanization equations of strapdown case, which is the only sensor coniguration that can
be implemented with the low-cost sensors we are interested in. Equations of Section 1.2
together with the error model briely presented in Section 1.3 will be very often referred to
in subsequent chapters.

1.1 Strapdown Inertial Navigation
1.1.1 The Navigation Problem and its Application Solved by INS
The problem of inertial navigation can actually be summarized in a very simple way: knowing at
each time t either the attitude or the rotational velocity ω(t), the speciic acceleration1 a(t), and the
local value of the gravitational ield g(p(t)), an ins (Inertial Navigation System) aims to estimate
the evolution of the position, orientation and speed of an object it is attached to, with respect to
another reference frame. In order to reach this goal, it proceeds through a pure integration of the
kinematic movement equation. This integration process is called dead-reckoning.

The main advantage of these systems is that they do not rely on external references once
the initialization point has been given to the ins, which makes them highly robust to external
disturbances or sabotage, especially compared to architecture based localization systems, such as
the gnsss. For this reason, ins are extensively used in products relying critically on their position
estimate such that aircraft, boat, submarines, missile, space-ship, satellites. Being critical for these
military and industrial applications, ins have been extensively developed after the beginning of the
second half of the 20th century.

These eforts made the ield a very mature engineering domain which is largely understood and
mastered by these industrial and academic experts. For instance, the complete mathematical model
of earth navigation and how to discretize it in a computer program to do the estimation is described
extensively in [Savage, 2000]2. On the hardware side, accelerometers products are mainly based on
the measurement of the movement a seismic mass (the measurement processes per se being very
diverse) while gyroscopes are either mechanical (based on the conservation of angular momentum
of a spinning mass), optical (based on Sagnac efect [Sagnac, 1914]), or vibrating mass (based on
Coriolis efect).

In the vast majority of applications, however, the need for localization is not expressed in an
inertial frame but in an earth anchored frame or as a relative position with respect to an object

1 The speciic acceleration is deined as the kinematics acceleration minus the local gravity vector. This is the
only quantity measurable by an accelerometer. It can also be thought as the sum of the non-gravitational forces
applied to the accelerometer. The fact that only speciic acceleration is physically measurable strongly correlates
the problems of attitude and position estimation. This is actually one of the reasons for the diiculty of doing
inertial navigation.

2for the speciic case of strapdown montage as deined in Section 1.1.2
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Chapter 1 General Notions About Inertial Sensors and Navigation

ixed in the earth frame. The art of high-end inertial navigation is to correctly model the earth
dynamic and its coupling with the estimation error.3

Yet, ins have some laws that make their usage not itted for many situations. These caveats
emerge mainly from the fact that dead-reckoning accumulates even the sightliest error made at
each instant of the trajectory. As a consequence, high-end INS are big, bulky and expensive, and
still presents a limited but non-zero drift. Cheaper sensors are available, but their drift can be so
gross that trajectory reconstruction is out of reach. For this reason, the main point of designing an
ins is to choose a strategy to mitigate his drift with information from other sensors. Hence, from
the point a view of an inertial navigation engineer, most of the present thesis boils down to address
this unique issue, investigating diferent complementary sensors and algorithms.

Finally, there are some cases where inertial information is of weak interest. Consider the case of
relative positioning with respect to an object moving with unknown and non-trivial dynamic. An
instance of this problem can be the tracking the position of a pedestrian in a large mobile platform
such as a boat. Pure exteroceptive sensor solution could, however, be of interest in such corner case.

1.1.2 Strapdown IMU
The imu we use in this work are all of the strapdown kind described by [Savage, 2000]. In this kind
of imu, accelerometers and gyrometers are rigidly attached on a solid platform, in contrast to a
gyrostabilized platform where accelerometer orientation is stabilized in the inertial frame. This has
two implications: (i) the attitude is not given by the gyroscopes directly, but has to be integrated
from the rotational velocity by the computer; (ii) the accelerometer measurement reading has to
be rotated in the inertial frame using the current attitude estimate. The main law of strapdown
montage was historically the additional pressure on the computer part of the ins caused by the
need to integrate the rotational rate and the higher frequency of processing required to deal with
the strong coupling of attitude estimate and translational drift. However, with today embedded
computations power, this is hardly ever a problem.4 Nowadays, the majority of imus are strapdown
montage because they are easier to build mechanically, are smaller and lighter.

1.1.3 MEMS IMU and Inertial Navigation
Strapdown systems are of particular interest also because they can be implemented using only
very cheap mems (MicroElectroMechanical System) chips. This allowed to put imus into a variety
of mass market electronic systems, the best example being the smartphones, for which high-end
products have gained some augmented reality capabilities.5 The lack of accuracy of these sensors
prevents their use for positioning, but the attitude can actually be well estimated if one assumes that
accelerometers measure the gravity direction when the device is at rest (used as an inclinometer).

1.1.4 Example of Complementary Sensors
In order to correct inertial sensors integration, several complementary sensors have been investigated.
The sensor modality depends highly on the application. For instance, on the high-end part of
the spectrum, satellite rely on star tracker, boats are measuring speed relative to the water with
speed logs, aircraft are using Pitot probes to measure their airspeed. The gnss measurement can
also complete all these systems, either using their output of position or using directly the phase
of the signal received – a technique sometimes called GPS speed measurement. On these vehicle
applications, a model of the motion dynamic can also provide valuable information. For pedestrian
and robots navigation, where low-cost, light imu prevails, we usually distinguish outdoor and indoor
applications. Outdoor applications are easier as gnss provides a solution for positioning with meter

3Which can lead to surprising results as, for instance, the famous 84 minutes period Schueller oscillation, that
involves a coupling between the error of position and the direction of gravity in a spherical earth. [Savage, 2000]

4specially if comparing with the heavy visual processing involved in the next chapters
5Through companies frameworks ARKit or ARCore (respectively from Apple and Google)
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accuracy and magnetometers can be used as a compass for heading. Indoor, the situation is more
complicated: systems relying on an external infrastructure exist, for instance, based on purposely
placed ultra-wideband emitters or Bluetooth beacon or based on an opportunistic signal such as
WiFi. Visual sensors – [Li and Mourikis, 2013], [Leutenegger et al., 2015] – or lidar – [Zhang
and Singh, 2015] – also provides a way for helping the navigation, without necessarily relying on
an infrastructure. The magneto-inertial dead-reckoning technique, at the heart of this thesis, also
provides valuable correction.

1.2 Inertial Sensor Model
In this section, we describe the mathematical model of sensors and the strapdown equations that
will be used throughout this work.

1.2.1 From Raw Sensor Signal to Physical Quantity
1.2.1.1 Inertial Vector from 3 Inertial Single-axis

The tri-axis inertial sensors we use are actually built from three single-axis mems sensors. These
single-axis sensors are designed to output a signal proportional to the quantity of interest (rotational
velocity for gyrometers, acceleration for accelerometers). However, their models have to be calibrated
individually before using them as measurements of acceleration or rotational velocity. We describe
here the calibration model for mems accelerometers and gyrometers.

We model the signal output by a single-axis sensor xm at time t with the following linear form:

xm(t) = fTx(t) + b, (1.1)

were f is a 3-components vector scale factor, and b a scalar bias of the single-axis. f encodes both
the direction and the scale factor of the measurement.

Moreover, the combination of the three axis is never totally orthogonal because of the precision
of the mechanical assembly. Assuming the three sensors are located at the same point, which is
reasonable for inertial sensors integrated into a chip, the full tri-axe sensor measures actually:

xm(t) =




fT

1

fT

2

fT

3




︸ ︷︷ ︸
F

x +




b1

b2

b3




︸ ︷︷ ︸
b

(1.2)

Inverting this relation gives the relation between the measurement vector and the physical quantity
of interest:

x(t) = F−1 (xm(t)− b) . (1.3)
The calibration of an inertial tri-axe is the estimation of the quantities F−1and b. As in practice,

these coeicients can also be inluenced by environmental factors such as the temperature, or even
gravity direction; this efects also have to be taken into account. We call the application of (1.3) to
raw signal sensor calibration compensation step. All the online estimators we develop afterward
deal with these compensated measurement x as input and rely on a simpliied model of the body
and earth dynamic that we present in the next section.

1.3 Mechanization Equations
1.3.1 Flat-Earth Approximation
The modelization of inertial navigation on earth uses traditionally the following reference frames [Sav-
age, 2015]:

13



Chapter 1 General Notions About Inertial Sensors and Navigation

g

World frame
ω̃

b,ãb
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R
w

, p
w

Body frame

Figure 1.1: Reference frame used for writing the mechanization equation in this work. World frame
is aligned with z direction pointing upwards and with random x and y direction. The
measurement from accelerometers and gyrometers are given in the body frame.

• The body frame, b, which is the frame whose directions are parallel to the calibrated accelerom-
eter sensitive axes.

• The navigation frame whose z axis is parallel to the local gravity direction, in the opposite
direction. The other axis can be chosen freely depending on the application, for instance with
x pointing towards the north at each time.

• The earth frame, which is a frame anchored to a point on earth, this frame is rotating with
the earth.

• The inertial frame, which is the true inertial frame in which earth is rotating.
However, throughout this work, we will assume a non-rotating lat earth approximation that
simpliies the reference frame deinition along with mechanization equations. More precisely, we
assume that:

• The earth frame is actually an – non-rotating – inertial frame.
• The direction of gravity does not change in this frame.

The irst assumption neglects the rotational velocity of the earth, which is relevant if the gyrometers
is not precise enough to measure it correctly. Within this irst assumption, the second assumption
is then valid only for a relatively constrained area around one position on earth. This assumption
its in practice our targeted pedestrian application well, where the area covered does not exceed a
few square kilometers

Within these assumptions, inertial, earth and navigation frame can be deined to be the same
at each time. In practice, we will call this frame the world frame, w. It is deined with the z-axis
pointing upwards, its origin at the switch-on time of the imu, and two other axis x and y chosen at
random to form a direct frame.6 The reference frame are depicted on Figure 1.1.

1.3.2 Continuous Model in World Frame
The full continuous equations in the general case – including all reference frame and Coriolis efect
– can be found in [Savage, 2015, Sec.2] and are not given here.

With the previous approximation, these continuous time derivatives of inertial quantities boil
down to:

Ṙ
w(t) = R

w(t)[ωb(t)]× (1.4)
v̇w(t) = R

wab
s(t) + g (1.5)

ṗw(t) = vw(t) (1.6)

Where ωb(t) is the rotational velocity of world frame versus body frame and ab
s(t) is the speciic

acceleration measured in body frame, that is the acceleration of the body frame in world frame
after removing the gravitational part of it. These quantities are precisely the one measured and
sampled by a strapdown imu.

6This randomness comes from the diiculty to measure heading.
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1.3.3 Integration of the Model in the World Frame
Adapting the integral formulation of [Savage, 2015, Sec. 3] to the previous approximation, we get
between time tk and tk+1 (note that we drop hereafter the X(tk) notation for the more concise Xk):

R
w
k+1 = R

w
k ∆̃Rkk+1, (1.7)

vw
k+1 = vw

k + gw∆t + R
w
k ∆̃vkk+1, (1.8)

pw
k+1 = pw

k + R
w
k vb

k∆t +
1

2
gw∆t2

ij + R
w
k ∆̃pkk+1, (1.9)

This integration is exact – within our assumption – with ∆̃vkk+1 and ∆̃pkk+1 deined by the
following continuous integrals:

∆̃Rkk+1
def
= ∆Rk(tk+1), (1.10)

∆̃vkk+1
def
= ∆̃vk(tk+1), (1.11)

∆̃pkk+1
def
=

∫ tk+1

tk

∆̃vk(τ)dτ, (1.12)

with the notation (1.13)

∆Rk(τ)
def
= I3 +

∫ τ

tk

∆Rk(s)
[
ωb(s)

]
× ds (1.14)

and ∆̃vk(τ)
def
=

∫ τ

tk

∆Rk(s)ab(s)ds. (1.15)

The strategy employed to compute these integrals will depend on trade-of between accuracy,
implementation complexity, and computation time. Alternative goes from the simple Euler method
to high order Runge-Kutta integration scheme. Note that [Savage, 2015] decomposes integrals
(1.11)-(1.12) further in order to simplify their computation with assumption of piecewise constant
acceleration and rotational velocity in the body frame, as well as to manage the approximation in
case of non constant values.7

In practice, the ins algorithm computes these integrals from the measurement received by
accelerometer and gyrometers, and the result is afected by the residual error of calibration
compensation. The model of the error has to be known when designing Bayesian inference methods
as will be done in this thesis; we thus describe one popular model that will be used in the thesis in
the following section. The structure of this model will be discussed further and advantageously
used in the optimization process described in Chapter 5.

1.4 Residual Error Models in Compensated Measurement
Even after the calibration compensation, the resulting vector measurement sufers from inaccuracy,
that will propagate into the integrals computation (1.10)-(1.12). These inaccuracies have diferent

7 The author introduces an angular vector φ, an delta speed η, and a delta position κ that are linked to ours such
that:

∆Rkk+1 = Exp (φ) (1.16)

∆̃vk;k+1 =

[
I3 +

(
1 − cos φ

φ2

)
[φ]

×
+

(
φ − sin φ

φ3

)
[φ]2

×

]
η (1.17)

∆̃pk;k+1 =

[
I3 + 2

(
φ − sin φ

φ3

)
[φ]

×
+

1

φ2

(
1

2
− 1 − cos φ

φ2

)
[φ]2

×

]
κ (1.18)

These expressions have the advantage that under the assumption of constant rotational velocity and acceleration
in body frame, φ, η and κ stems from trivial integration. Whereas ours ∆̃vk(tk+1) and ∆̃pk(tk+1) derive from
trivial integration under the assumption of constant acceleration in world frame.
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physical sources: sensor mis-calibration or calibration aging, sensor bias random walk, sensor bias
reset at switch on, adc (Analog to Digitial Converter) quantization, mems thermodynamical white
noise, etc.

In this study, we will use the following residual noise sensor model for gyroscopes and accelerom-
eters.

ãb
k = ab(tk) + ba + ηa, ηa ∝ N (0, σ2

aI3) (1.19)
ω̃b

k = ωb(tk) + bg + ηω, ηω ∝ N (0, σ2
gI3) (1.20)

ηa, ηω are Gaussian noise corrupting the measurement and bg, ba the biases of the sensors. The
noise distribution is assumed to be isotropic, for sensor symmetry reasons. We assume the biases
follow a 1st order Gauss-Markov model, which is, in practice, a common assumption in visual-inertial
literature, as for instance in [Leutenegger et al., 2015]:

ḃg(t) = − 1

τg

bg + ηbg (1.21)

ḃa(t) = − 1

τa

ba + ηba (1.22)

Generating noises ηbg and ηba both satisfy:

(zero mean) ∀t, ❊ (ηbx(t)) = 06×1, (1.23)
(no time correlation) ∀t1, t2 ❊

(
ηbx(t1).ηbx(t2)T

)
= Wcxδ(t2 − t1), (1.24)

with Wcx = diag(σ2
bx;cI3), (1.25)

Where δ is the kronecker symbol : ∀x ∈ R
∗ δ(x) = 0, δ(0) = 1. The units of τb, τa, σbg;c and σba;c

are respectively s, s, rad
s2

1√
Hz

and m
s3

1√
Hz

and are characteristics of the imu. These parameters
model the stochastic behavior of the inertial sensor. These can be determined by the Allan Variance
method. A technical explanation of this method for application to optic iber gyrometer is given
in [IEEE, 1998] and a more digest review in [El-Sheimy et al., 2008].

The main advantage of this model compared to a pure random walk model (with τx →∞), is
that the bias evolution model is bounded, which is more consistent with the a priori knowledge one
generally assume on the residual bias after sensor calibration compensation.

Discretization of the evolution of biases leads to the following equations:

bgk+1 = − exp
(

∆tij

τg

)
bgk

+ ηbg (1.26)

bak+1 = − exp
(

∆tij

τa

)
bak + ηba (1.27)

that can be used in a discretized ilter for instance. The ηx appearing in (1.26) and (1.27) will be
then modeled as discrete random variables with Gaussian density N (0, W ), W being computed as
(tk+1 − tk)Wc [Simon, 2006, p. 231].
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Chapter 2

Magneto-inertial Dead-reckoning
In this chapter we describe the principles and the history of magneto-inertial navigation.

We present in Section 2.2 the mimu sensor and explain how local gradient of magnetic
ield is measured from a magnetometer array. The Section 2.3 presents how this gradient
is used to infer information on the trajectory of the mimu and presents fundamentals
equations that will be used throughout the thesis. The Sections 2.4 and 2.5 shows results
obtained by a dead-reckoning approach using only the mimu data, and try to identify
opportunities for fusing with visual sensors.

2.1 Magneto-inertial Principles and History
In order to correct the drift of pure inertial navigation, the magneto-inertial dead-reckoning technique
leverages local stationary disturbances. The general idea of the technique is the following: by
modeling spatially the disturbances B(p, t1) in the vicinity of the device at time t1 we can retrieve
the displacement of the device between t1 and t2 by: (i) assuming a stationary disturbance, (ii)
assuming that the function p→ B(p, t1) is bijective in the vicinity of the device position at time t1

and t2. The second assumption can be seen as very strong for a general vector ield, but as the ield
is a continuous physical quantity, the inverse function theorem states that provided a non-singular
gradient at point p, this relation is at least locally invertible. This condition will thus be fulilled if
the sensor is small enough and does not move too fast.

We draw in Figures 2.1 contour plots representing the logarithm of the gradient norm of the
magnetic ield in a room along with a point cloud of the environment as reconstructed by the
vins system of Chapter 6. The contour plot aligned with the point cloud shows that the three
objects in the room generate a magnetic ield perturbation around them. These perturbations
are actually present everywhere indoor and are a valuable source of information if exploited with
magneto-inertial technique.

This idea of using local stationary magnetic disturbance to help inertial navigation was irst
introduced in the seminal paper [Vissiere et al., 2007] that tried to use this information into a
purely inertial dead-reckoning system, only using one magnetometer. The idea was then inally
fully developed by [Dorveaux, 2011] that presented a non-linear observer fusing information from
a magnetometer array with an imu to reconstruct velocity. The estimator was proven to be
asymptotically stable, and the authors showed experimental 2D trajectory results. Other irst-hand
details over the magneto-inertial navigation principles along with further indoor 3D trajectories can
be found in the author Ph.D. thesis [Dorveaux, 2011]. Further theoretical results on observability
were also discussed in [Batista et al., 2013] and an application to registration of indoor terrestrial
laser scanner data has been presented in [Hullo, 2013].

Very recently, tremendous progress has been shown with the technology. The authors of [Chesneau
et al., 2016] build a dead-reckoning EKF around the mimu sensor extending ideas of [Dorveaux,
2011] with the aim of improving the dead-reckoning robustness to non-stationary ields. The same
author also studied how to handle the non-observable heading problem in indoor facilities by
leveraging the mimu sensor characteristics in [Chesneau et al., 2017]. The authors show impressive
results with inal drift error typically of the order of 1% of trajectory length. Interestingly, this
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Chapter 2 Magneto-inertial Dead-reckoning

recent progress came both from an algorithm improvement but also thanks to Sysnav’s efort to
master the design and hardware of the mimu sensor.1

2.2 Hardware: the Strapdown MIMU
The mimu hardware can be described as regular imu extended with an array of magnetometers
spatially distributed around the tri-axis accelerometer. The diagram on Figure 2.2 depicts one
possible coniguration. This section shows how to use a general coniguration of sensors to retrieve
the value and gradient of magnetic ield.

2.2.1 Computing Magnetic Gradient from Magnetometers Network
The magnetic sensors of the mimu are treated slightly diferently than the inertial sensor: part of
their raw measurement are reduced to a measure of the local gradient of magnetic ield.

For each individual single-axis magnetometer the same model as inertial sensor is used:

Bmi = fi
TB + bi, (2.1)

where Bmi is the sensor signal and fi the sensitivity vector and bi the bias of the measurement.
The fundamental idea of using the array of magnetometers is a smoothness assumption on the

value of the ield inside the convex hull of the sensors positions. We can for instance assume that
the ield follows a law described by a truncated Taylor expansion around a central magnetometer
so that:

B(p) ≃ B(p0) +∇B(p0)(p− p0) + . . . (2.2)

Where B(p0) and ∇B(p0) are respectively the magnetic ield and its gradient at the central
magnetometer (thus labeled 0, see Figure 2.2). Note that in the present manuscript, we limit the
development up to the irst order terms to avoid complexifying notation, yet the method could
theoretically cope with higher orders. This would even be necessary if the size of the array were
signiicant compared to the typical distance of ield variation.

Within this irst order assumption, the magnetometer i placed at dxi with respect to the center
of the network measures:

Bmi = fi
T (B(p0) +∇B(p0)dxi) + bi (2.3)

The online estimation algorithms will use as input these two quantities and not the individual mag-
netometers measurement. The following describes how they are computed from each magnetometers
measurement:

Using identity (3) to vectorize the gradient matrix, the measurement equation equivalently writes:

Bmi =
([

1, dxi
T
]
⊗ fi

T
)[

B(p0)
Vec (∇B(p0))

]
+ bi (2.4)

Concatenating these equations for the entire array of n single-axis magnetometers yields:

Bm =




[
1, dx1

T
]
⊗ f1

T

...[
1, dxn

T
]
⊗ fn

T




︸ ︷︷ ︸
Cmag

[
B(p0)

Vec (∇B(p0))

]
+ b (2.5)

1 The reader will notice that the last two papers were published during the second and third year of the doctoral
work presented in this report. One key aspect of the thesis work, which might not be relected in the subsequent
chapters, is the fact the author had to deal with an always improving mimu sensors, which had some consequences
of the fusing strategy tried and used.
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Figure 2.1: Volumetric map of the gradient of magnetic ield sliced at diferent heights (see boxed
values) of an indoor room scene shown in the top right image. The contour plot depicts
the spectral norm of the gradient. The blue/yellow point cloud is estimated by the
vision-based estimator of Chapter 6 and,in spite of its roughness, helps to localize the
objects generating magnetic perturbations. The volumetric map is built with a moving
mimu sensor in a motion capture room and completed with a standard interpolation
technique. Gradient unit are arbitrary.
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Figure 2.2: Schematic of the mimu harware principles. It combines a central accelerometer and
magnetometer with a network of peripherals magnetometers. Every sensors are rigidly
attached, a gyrometers is used to measure the rigid body rotational velocity.

Figure 2.3: mimu system built by the company Sysnav. The white box contains the sensorboard
with mems accelerometer, gyrometers and the array of magnetometers. The black boxes
contains a battery, control, and recording facilities.
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2.2 Hardware: the Strapdown MIMU

The magnetic ield and gradient are deduced by a least squares minimization as:

B∗0, Vec(∇B∗0) = arg min
B0,Vec(∇B0)

∥∥∥∥Cmag

[
B(p0)

Vec (∇B(p0))

]
+ b−Bm

∥∥∥∥
2

(2.6)

This can be solved with a linear solution. The following conditions need to be satisied though:
• Cmag and bi have to be known. As for the inertial sensors, this is the role of the oline

calibration.
• Cmag has to be full rank. This has to be guaranteed during the design of the magnetometer

network.
The second condition can be partially relaxed taking into account particularity of the magnetic
ield.

Reduced geometrical constraint with Maxwell equation
The fact that Cmag has to be full rank imposes strong constraint over the geometry of the
magnetometers network: in particular, their position vector have to form a basis of 3D space. Some
of these constraints can be mitigated by exploiting the Maxwell equation of electromagnetism in
the vacuum (without any charge or current density). These equations state diferential constraint
on the electric and magnetic ield E(p, t), B(p, t):

∇.E = 0 (2.7)
∇.B = 0 (2.8)

∇×E = −∂B

∂t
(2.9)

∇×B =
1

c

∂E

∂t
(2.10)

The second equation states that the divergences (deined as the trace of the gradient) of the magnetic
ield is zero. The fourth one states that, in a stationary electric ield, the curl of the magnetic ield
is also null, which translates directly into the symmetry of its gradient.2

Keeping that in mind, we can actually solve the following constrained minimization problem
instead:

B0, Vec(∇B0) = arg min
B0,Vec(∇B0)

∥∥∥∥Cmag

[
B(p0)

Vec (∇B(p0))

]
+ bi −Bm

∥∥∥∥
2

s.t. tr (∇B0) = 0

∇B0 = ∇BT

0

(2.11)

Which is equivalent to the reparametrized problem:

B0, Vec(∇B0) = arg min
B0,Vec(∇B0)

∥∥∥∥Cmag

[
I3 03

03 P∇B

] [
B0

gB

]
+ bi −Bm

∥∥∥∥
2

(2.12)

Where gB ∈ R
5 and P∇B ∈ R

9×5. P∇B is deined as the matrix of the application generating the
vectorized gradient matrix from minimal gradient coordinates:

R
5 → R

9



g1

g2

g3

g4

g5



7→ Vec






g1 g2 g3

g2 g4 g5

g3 g5 −g1 − g4




 (2.13)

2In practice, considering the electric ield as stationary is often a valid assumption: the term 1
c

∂E
∂t

can be neglected,
as the inverse of the speed of light appearing in factor is very small; signal with frequency high enough to bother
us would not even be in the bandwidth of the sensor we use.
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This matrix will be used at several places over the document, mainly to propagate noise from a
magnetic gradient to an expression in which it appears. In this last formulation, only the matrix
Cmag

[
I3 03

03 P∇B

]
has to be invertible. This allows more freedom in the geometrical coniguration

of the sensor. It makes it possible to reduce the size of the magnetometer array along one dimension
and to build a planar sensor as pictured in Figure 2.3.

2.2.2 A Word on Calibration of the MIMU Sensor
As for inertial sensors, the fi and b parameters are calibrated by an oline process. This process
involves recording the mimu response to a uniform ield under diferent orientations. The scale
factor and biases parameters are found as the ones that make the output norm invariant by rotation.
Simultaneously, sensors are registered in the same reference frame by using the fact that every
single-axis sensor measures a projection of the same uniform ield.

The calibration algorithm is described in more details in the two publications [Dorveaux et al.,
2009, 2010], alternatives methods have also been proposed in [Renaudin et al., 2010]. Contrarily to
inertial sensors, magnetometers are exteroceptive sensors: they measure a physical ield related
to the environment, and not to their own motion. For this reason, they need to be calibrated in
their inal environment: (see [Gebre-Egziabher et al., 2001]). In our particular case magnetometers
calibration is essential, because, contrarily to inertial sensors, we will assume in the following that
the calibration compensated magnetometers are not residually biased, so that we do not need to
estimate magnetometers biases in the online process.

2.2.3 Compensated Sensor Noise Model
We will assume compensated measurements are corrupted by Gaussian noises ηBb

k
, η∇Bb

k
such that:

B̃b
k = Bk + ηBb

k
(2.14)

Vec
(
∇B̃b

k

)
= Vec (∇Bk) + P∇Bη∇Bb

k
, (2.15)

where ηBb
k
∝ N (0, ΣB) , ΣB ∈ R

3×3 and η∇Bb
k
∝ N (0, Σ∇B) , Σ∇B ∈ R

5×5. The units of ηBb
k

and η∇Bb
k

are respectively Gauss and Gauss per meters. The covariances can be deduced from
magnetometers white noise and calibration of uncertainty corrupting Cmag.

2.3 Magneto-inertial Dynamical Equation for Dead-Reckoning
This section describes the fundamental equation that will be used throughout this work and also
introduces some new notations common to the chapters Chapters 5 to 7.

2.3.1 Continuous Model
With ambient magnetic ield described as a general function of space and time: (p, t) 7→ Bw(p, t),
the measurable magnetic ield by of a non-rotated sensor that follows a path p(t) writes at each
time Bw(p(t), t) and its evolution is expressed with the total derivative dBw(p,t)

dt
. Using the chain

rule, one has:

dBw(p(t), t)

dt

∣∣∣∣
(p(t),t)

=
∂Bw(p, t)

∂p

∣∣∣∣
(p(t),t)

dp(t)

dt

∣∣∣∣
t

+
∂Bw(p, t)

∂t

∣∣∣∣
(p(t),t)

(2.16)

which can be noted, introducing the gradient notation and recognizing the velocity in world frame,
as:

dBw(p(t), t)

dt

∣∣∣∣
(p(t),t)

= ∇Bw(p, t)vw(t) +
∂Bw(p, t)

∂t

∣∣∣∣
(p(t),t)

(2.17)
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Figure 2.4: Diagram of the data low of the mi-dr EKF ilter of [Chesneau et al., 2016]

which states that the variation of the ield seen by the magnetometers is related to the time derivative
of the magnetic ield in world frame, its spatial gradient, and the velocity of the magnetometers
also in world frame. Note that the gradient notation here denotes the perfect gradient of the ield
at p of which the measurement as expressed in Section 2.2.1 is only an approximation. Assuming a
stationary ield, and dropping the explicit ield dependence on time and position, we are left with
the following diferential equation:

Ḃw = ∇Bwvw, (2.18)

In a strapdown setup, the gradient is measured in body frame so that we prefer to express the
equation in the following way:

Ḃw = R
w∇Bb

R
wTvw, (2.19)

or even, with the magnetic ield or speed expressed in body frame:

Ḃb = − [ω]×Bb +∇Bbvb, (2.20)

2.3.2 Integration of the Model and its Discretization
The continuous model can be integrated between two instant with general numerical integration
method or used in a continuous Kalman ilter formulation. One way to integrate the diferential
equation will be presented in Chapter 5 when dealing with preintegrated measurement.

2.4 Navigation Performance, Limits, and Discussion
2.4.1 The Magneto-inertial Dead-Reckoning Filter
The straightforward way to make use of the magnetic equation (2.20) is to build an ekf (Extended
Kalman Filter) around it. One possible ilter datalow simpliied from [Chesneau et al., 2016] is
depicted on Figure 2.4. In such ilter, the discrete state is:

Xk =
(
R

w
k , pw

k , vb
k, Bb

k, bgk
, bgk

)
(2.21)

The magnetic ield in body frame is included into the state, even if it is directly measured by the
mimu: its direct measurement is used to correct the Kalman ilter with the trivial measurement
function:

h(Xk) = Bb
k (2.22)

In turn, equation (2.20) combined with the imu discrete prediction (1.7)-(1.9), Page 15, are used to
compute state propagation.

2.4.2 Results of Pure MI-DR
In favorable magnetic environment, mi-dr shows accurate trajectory results with mems sensors.
Figure 2.5 shows results of the mi-dr, a full featured ilter implementation of [Chesneau et al., 2017]
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Chapter 2 Magneto-inertial Dead-reckoning

on a pedestrian competition at the Indoor Positioning and Indoor Navigation (IPIN) conference
2016. The metric used for ranking in the competition was the third quartile of translational errors
at control points. On trajectory of Figure 2.5, its value is 2.32m and can be read on the histogram
Figure 2.5e.

2.4.3 Validity of MI-DR Hypothesis and Failures Mode
The main failure modes of the mi-dr are related to the assumption made about the magnetic ield
and how its gradient is measured. Three major failure cases can be identiied:

1. the magnetic ield gradient can be singular for an extended period along the path. Outdoor,
this is the general case, as illustrated Figure 2.6 that shows results of the mi-dr ilter on an
outdoor/indoor trajectory recorded with our monocular/MIMU setup. The blue part of the
curves denotes area with low-gradient, for instance, in the outdoor part. However, this can
also happen locally indoor. In this case, the velocity disappears from the ield propagation
equations. This is a problem, especially for low-end imus targeted by the present work,
that are unable to keep a consistent positioning without relatively high-frequency correction.
Because of the necessarily limited accuracy of the gradient measurement, the ield needs
only to be almost singular in order these efects to impact mi-dr. The real quantity to
monitor to detect this case is, therefore, the gradient magnitude related to the accuracy of its
measurement.

2. the ield spatial higher order derivatives can be very strong close to ferrous materials. This
has two efects: (i) if the higher order efects are strong in the volume occupied by the array
of magnetometers itself, the spatial discretization when computing gradient will not be able
to represent the ield correctly in the vicinity of the sensor, leading to integration error in the
computation of (2.20); (ii) if the higher orders cannot be neglected over the distance between
positions at which two consecutive magnetometers sample occurred, the ield value predicted
by the propagation step of the ilter will be corrupted by errors. These efects will also depend
on the way the integrals are actually computed. [Dorveaux, 2011, Section 3.4] provides some
insight on these issues on a one-dimensional toy case. Solutions involve mainly low-level signal
processing and sensor design issues that are not discussed further in this thesis.

3. The ield in practice is not stationary. This fundamental assumption is the main practical
limitation of the method. Luckily, the high-frequency components used for telecommunication
(radio, wi-fi or gsm network) are far out of the bandwidth the pedestrian dynamic involves,
and does not perturb mi-dr technique. Yet, a general indoor environment can break this
assumption in a various number of expected and unexpected way. Some examples are non-
static ferrous material structures due to elevators, electric engines, metallic coins close to the
sensors in the pocket of the pedestrian, etc. Note however that progress was made recently
to relax this stationarity assumption: in the work of [Chesneau et al., 2016], the authors
estimate the instationarity of known frequency arising from power line interference along with
the position and orientation of a mimu sensor.

Let us briely comment on the diiculties associated with these failure modes. The irst two cases
are easily detected with instantaneous measurement3 at time k respectively with a threshold on the
smallest singular values of the gradient and with the residual of the least squares optimization (2.11).
The last case cannot be detected solely from raw measurement at time k, which is problematic. In
particular, raw Kalman iltering is very sensitive to such wrong models, and alternative estimation
techniques have to be found.

One of the simplest ways to increase the ilter robustness is to deactivate the magnetic feedback
on the state when environmental conditions are explicitly considered as bad. However, this can

3Assuming we are not in, highly unlikely, pathological cases where the irst order model of magnetic ield its well
the network array measurement but does not represent the ield in between sensors because of higher orders.
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Figure 2.5: Results of the mi-dr of [Chesneau et al., 2017] on the competition track of IPIN 2016.
Blue trajectory is the estimate, red line are error at control point. The histogram
represents the translational error distribution at control points. Images and results are
from Chesneau et al.
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Figure 2.6: Trajectory reconstructed by mi-dr of [Chesneau et al., 2017] in an indoor/outdoor
trajectory. Strong drift appears in outdoor part.

be thought defeating the purpose of magneto-inertial systems: since magnetic information can be
unusable for an eventually extended period, imu integration error would thus become signiicant.
A complete navigation solution would necessarily require either a very high-performance imu, or
either additional exteroceptive sensors to handle these corner case.

2.5 Conclusion and Opportunities for Fusing with Visual Sensors
This section exposed basics of magneto-inertial dead-reckoning technique and discussed sensors,
models, performance, and limits. We concluded that, even if mimu systems can reach good accuracy
in its nominal conditions, a 100 % available system would, however, need additional sensors,
especially if aiming for full available augmented-reality localization application. That being said,
this conclusion can actually be made for a lot of alternative infrastructure-less positioning solutions
for ar, particularly for those being majoritarily developed the last few years: monocular or stereo
vins or depth-sensor based slam.

In fact, there are some reasons why fusing mimu based navigation with these alternatives would
be of practical interest:

Reducing the drift by unit of time Visual sensors are often used in a slam context, where a map
of the environment is maintained and used for the localization. The best examples in literature
are found in [Klein and Murray, 2007] [Strasdat et al., 2011] [Engel et al., 2014a] [Whelan et al.,
2015] [Mur-Artal et al., 2015]. In these systems, drifts occur during the construction of the map
and these methods can be drift free once the map of the operation area is built. This is in contrast
to the dead-reckoning approach where drift will occur proportionally to the time.

Increasing operating range to outdoor scenes Visual-based systems have the beneits to also
work reliably outdoor. This is in contrast with mi-dr which is not able to cope with the low gradient
magnitude of general outdoor scenes.
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Increasing operating range to dark scenes Analogously, passive visual-based systems struggle
with low light areas or hdr (High Dynamic Range) environment mainly because of the limited
dynamic of the camera sensors. In contrast, mi-dr performance does not depend on the lighting
conditions. Active vision sensors such as depth sensor do not sufer from dark scenes but have a
very limited range.

Providing more information for outlier rejection In a visual-magneto-inertial setup, accelerome-
ters and gyrometers can nearly be always trusted as they virtually do not depend on environment
assumptions. Advanced vins estimator have logic to reject the error of their model (outliers) that
is based on the integrity of inertial sensors. These heuristics often relies on a prior on the motion
estimates fed with imu and previous inliers sensor measurements. ([Civera et al., 2010]). The
corruption of this prior with outliers would have dramatic consequences on the future rejection.
Using multiple sensor modalities improves this prior, and in turn, can make outliers measurement
detection more powerful. As a result, in practice, a consistent mi-dr ilter would helps such outlier
detection logic.

Reducing the power consumption of visual-based navigation Visual slam or odometry are
generally not eicient from a power consumption point of view. This is mainly because of the need
for heavy computation – from dense image processing to optimization based slam algorithm. More
advanced methods developed in academia even involve gpgpu (General-purpose Processing on
Graphics Processing Units) computing and depth sensors that are likely to be too demanding for
the targeted embedded purposes. In contrast, mi-dr is based on a few mems sensors on a iltering
framework with a low-dimensional state – the simpliied ilter of 2.4.1 has a state of dimension 18.
A full-featured mi-dr has only a few more states, which is way less than state-of-the-art vins ilters.
It is likely that the mimu hardware could be even fully integrated on a chip in order to reduce
its consumption further. In our opinion, mimu then ofers opportunities to reduce visual-based
navigation power consumption by leveraging the quality of speed estimate to reduce the need for
high frame-rate from the camera. Visual-based navigation power eiciency is mainly an industrial
issue, and few academic papers targeted low-power systems explicitly. Some recent works dealing
with the subject are described in [Zhang et al., 2017c], [Boikos and Bouganis, 2017] and [Hong
et al., 2014].
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Chapter 3

A irst grasp of the fusion problem
This chapter introduces the problem of fusing a mimu sensor with visual sensors

through a irst example. The Section 3.1 describes the camera hardware we will use, and
some prerequisites on calibration, harmonization, and synchronization of sensors. Then
Sections 3.2 to 3.6 describe a irst example of an estimator fusing the mi-dr techniques
with a depth image alignment technique designed to work with commercial grade depth
sensor. This estimator is tested on diferent diicult scenarios with data from real sensors,
showing higher robustness compared to depth sensor based or mimu-based method.

This chapter has been the subject of the irst year of the doctoral work in was the object
of a communication at the International Indoor Positioning and Indoor Navigation (IPIN)
2016 [Caruso et al., 2016].

3.1 Hardware, Calibration and Synchronization Prerequisites
Throughout this thesis, the mimu sensor from the company Sysnav depicted in Figure 2.3 is rigidly
mounted with either conventional or depth cameras. In the present chapter, we use a commercial
rgbd (Red-Green-Blue-Depth) sensor – the Asus Xtion Pro – providing a depth image registered
with a rgbd image. The hardware is depicted in Figure 3.1. The second part of the thesis will
focus primarily on the monocular case, where the vision sensor is a simple grayscale camera.

The use of the information provided by these diferent sensors requires identifying beforehand
some parameters of the combined hardware, namely the camera intrinsic calibration and the
spatial harmonization of the camera and mimu sensor. An accurate fusion also relies on accurate
timestamping of all the data. Thus, a synchronization strategy must be implemented.

This section gives some details about the camera model we employ, its calibration, the harmo-
nization of sensors, and how we handled synchronization in the hardware prototype developed.

3.1.1 Camera Models
A camera captures the projection of a 3D environment onto a 2D image. It is associated to a
projection functions π : R3 → R

2, that projects a 3D point in camera frame to a 2D location on
the image.

The geometrical calibration process aims to identify this function precisely.
The projection function π is commonly searched in a parametrized family of function which

depends on the a priori knowledge on the camera projection. The most commonly used family
of projection functions is the pinhole projection model (Figure 3.2), that can be used for low
ield-of-view imaging device (up to roughly 70 deg) and that writes

πpinhole :

R
3 → R

2

lc 7→
[

fx
lc
1

lc
3

+ cx

fy
lc
2

lc
3

+ cy

]
. (3.1)
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Figure 3.1: Hybrid sensor combining mimu + RGBD camera used in this chapter. (a) Views
of the system; (b) schematic view of the coordinate frames at play; (c) Schematic
of electronic of the prototype built for the experiment of this chapters. Note that
mimu microcontroller is cadenced with Asus Xtion clock (clk arrow). This simple hack
allows timestamping consistently Asus Xtion image with respect to mimu digitization
of sensors.
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Figure 3.2: Pinhole camera model (from OpenCV documentation).

This family of function is parametrized by the focal length fx, fy and the position of optical center
cx, cy. This model is handy for geometrical image processing: its main feature is that lines in the
3D world projects into lines in the image coordinates. Such property has interesting application,
for instance for designing fast stereo matching algorithms.

Nonetheless, this model rarely its practical lens and a generic camera image generally exhibits
distortion compared to this idealized model. Literature suggests several ways to model these
distortions, with diferent parametrizations. In visual slam or odometry, the distortion correction
is often seen as a pre-processing step: irst, the image is numerically undistorted – which involves
pixel interpolation – then the slam algorithm is run on these undistorted images using an ideal
pinhole assumption. However, distortion correction techniques have some limits: irst, The validity
of the obtained pinhole model is limited to one half-space in front of the camera, with a singularity
on the plane z = 0; secondly, they involve substantial interpolation if the distortion coeicients are
high. It is possible to use other parametric camera models dedicated to wide ield-of-view cameras,
with interesting beneits for visual navigation, as demonstrated in our previous work [Caruso et al.,
2015].

Being aware of induced limitations, we will nevertheless, for the experimental part of the thesis,
use the distortion pre-correction paradigm. Yet we will try to present equations using a generic
projection function π, so that the algorithm described could be formally applied to a broader class
of sensors.

We will also use the notation π−1 for the “retroprojection” function, either mapping pixel point
coordinate onto bearing vector π−1 : R2 → S2 or either mapping pixel coordinate and depth to 3D
point location in camera frame π−1 : R2 × R

+ → R
3 depending on the context. Note, that it is a

slight abuse of notation, because π as deined above, is not invertible.
A camera model should also ideally include the temporal behavior of the camera, such as

exposition time, or rolling shutter efects. In practice, we observed that ignoring these temporal
efects may degrade the quality of the position estimate.

3.1.2 Camera Calibration Process
The simplest way to calibrate a camera is to use planar checkerboard pattern [Zhang, 2000]. The
idea is to minimize the reprojection error from checkerboard corners into a set of images viewing
the checkerboard under diferent points-of-view. This minimization is done over the full model
parameters, including distortion, and, in doing so, sets the camera reference frame. Special care
must be taken to cover the whole 3D ield-of-view. The technique using planar targetboard were
presented in [Zhang, 2000]. We have used here the implementation of the Kalibr calibration
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toolbox ([Maye et al., 2013]).

Remarks: Camera calibration can also refer to a photometric calibration of the imaging system,
which is necessary for some slam methods relying on photoconsistency (see [Engel et al., 2018]).
In this thesis, we see a camera as a pure and ideal geometrical imaging device and disregard the
photometric properties of the camera, hence ignoring efect such as focus blur, chromatic aberration,
etc.

3.1.3 Extrinsics Calibration and Camera/Imu Synchronization
In order to fuse the visual information with the mimu sensor precisely, the transformation from
camera frame to the mimu frame is required. This transform is generally referred as the extrinsic
camera transform. Two strategies are employed in the literature. Some authors estimate this
transform oline (prior to the use of the system) while other authors estimate the transform online
(during the run of the position estimation algorithm). We mainly focused on the irst strategy in
this work.

For oline estimation of the camera/imu transform, we again relied on the Kalibr calibration
toolbox from ethz. The calibration problem is expressed as a large minimization problem that
estimates the trajectory of the accelerometers in the checkerboard frame along with the extrinsic
camera transformation. The error terms of the optimization stem from the accelerometers reading,
the gyrometers reading, the targetboard corners detection and the stochastic model of the biases.
The originality of the toolbox is that it expresses the position as a continuous function of time,
leveraging Bspline expressiveness. In this framework, a rotational velocity relates directly to
the ”orientation spline” derivative, while the acceleration relates to the ”position spline” second
derivative.

Additionally to spatial calibration, the camera and the mimu also need to be synchronized. For
practical reasons, in the considered prototype, the imaging sensor and the mimu are not fully
integrated, their driving electronics are not aware one of another. Hence, the internal timestamps
given by the two sensors are out-of-sync and require correction. If we assume that the quartz clocks
driving their electronics are synchronous – which is the case for the hardware used in this chapter
thanks to an electronic hack, see Figure 3.1c – we still have to estimate an ofset between the
timestamp of the camera and the timestamp of the mimu data. The continuous position expression
in Kalibr allows easily computing the Jacobian of the optimized cost function with respect to
this ofset and thus estimating it alongside the other quantities within the same gradient-based
algorithm. We observed generally sub-millisecond reproducibility for this time ofset estimation.

We have not used all the features of the Kalibr toolbox. It is, for instance, compatible with
multiple cameras, and has been extended recently in [Rehder et al., 2016] to estimate imu scale
factor and sensitive axis position, with very impressive accuracy.

In this remaining of this chapter, we describe an instance of a simple estimator fusing data from
the mi-dr ekf output and from a pose diference inferred from the depth image stream of the Asus
Xtion Pro.

3.2 Depth Sensor Based Navigation
3.2.1 Related Work
One of the fundamental problem faced by passive computer vision is the 3D understanding of the
environment. This is also true for the visual odometry and slam problem. The 3D structure can
be inferred either by using multi-view geometry with a passive device or exploiting active devices
such as time-of-light (ToF) or structured light sensors.

“Depth” Camera has been popularized in the robotic community since the release of the technology
of the company Primesense in the Microsoft Kinect gaming device. The most popular provided
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Figure 3.3: Architecture of the proposed pose estimation algorithm

a depth image registered with conventional color images to form a 4-channels rgbd image. This
sensor had a lot of exciting features: it provided direct access to a high resolution (640x480) image
where each pixel encoded a depth measurement and ofered a direct 3D information from the
environment, without having to deal with the diiculty of building a custom-made stereo ring
and implementing an eicient stereo matching algorithm. The technology also has some strong
advantages compared to classical stereo ring: because the triangulation relies on a projected infrared
pattern, it is robust to the lack of texture in the scene, is a bit less sensitive to motion blur, and
does not sufer from repetitive patterns in textures. Furthermore, its price was very competitive.
However, it shares some caveats of the standard stereo-vision: it requires a signiicant baseline
between the IR projector and the receiver to obtain a good triangulation accuracy, its depth image
exhibits holes, corresponding to shadows created by foreground objects, and it fails in the presence
of specular relections (mirror efect). Besides, structure sensors are highly sensitive to sun IR
illumination, which makes them mostly useless outdoor during the daytime.

In the years following Kinect release, numerous works have been dedicated to this new sensor
for trajectory and 3D environment reconstruction. Some works use sparse visual features detected
on an RGB image [Henry et al., 2014] to infer movement while others use a dense alignment
that minimizes either geometric [Izadi et al., 2011] [Jaimez and González-Jiménez, 2015] and/or
photometric criteria [Kerl et al., 2013b]. A few methods are hybrid spares/dense techniques though,
combining advantages from both worlds: sparse features are used as an initial tracking guess that
is reined by dense tracking [Henry et al., 2014].

Secondly, as visual odometry is prone to drift, many works construct a map of the environment
in order to achieve higher accuracy [Henry et al., 2014; Kerl et al., 2013a; Izadi et al., 2011;
Whelan et al., 2012, 2015], but this signiicantly increases computational workload and memory
requirements.

Some works also combined structure sensor with an imu for localization purpose, among the
ones using a rgbd sensor [Guo and Roumeliotis, 2013] uses the association between the RGB and
depth image to form 3D measurement of an image feature in an ekf ilter. In [Qayyum et al., 2013]
the authors extend the range of application of their ekf by introducing a measurement equation
corresponding to a directional constraint computed from the essential matrix when the depth
image is not available. [Brunetto et al., 2015] focuses on mobile device and use a loosely coupled
approach based on two ekfs, one for translation, one for orientation, taking as input the pose of a
slam algorithm and the inertial sensors. They explicitly note that they do not use magnetometer
information because of ield disturbances. Finally, the authors of [dos Santos Fernandes et al., 2013]
use sparse features detected on the RGB image for coarse alignment against a keyframe and reine
with a dense photometric error constrained on the measured depth image. The inertial information
helps sparse features matching and loop closure detection. Their method leverages magnetic ield
as a bearing constraint and, as noted by the author, will not work in magnetically disturbed ields.
For drift reduction, they build and solve a pose-graph optimization problem with SE(3) constraints
resulting from photometric alignment solely, without inertial data.
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3.2.2 Inspiration, Choices, and Expected Gains
A simpliied outline of our estimator is given in Figure 3.3. The algorithm solves for the pose of the
system and is built on a prediction/correction principle:

The Prediction Step
The prediction step generates a predicted depth image by warping a stored depth keyframe according
to an input predicted pose. It is described in Section 3.3. The predicted pose is computed by
integrating mi-dr ekf speed output between the previous pose estimate and the current camera
pose.

Correction step
The correction step leverages a depth image alignment algorithm to reine the predicted translation
between the current frame and the last keyframe. It is described in Section 3.4.

These predicted and corrected poses are actually maintained relative to the stored reference
keyframe. Thus, the last step composes this relative pose with the current keyframe pose to return
the inal pose in the world frame (the world frame is thus anchored at the irst keyframe position).
We use such a keyframe scheme to annihilate slow drift in case of no or minimal motion. We select
a new keyframe only when enough movement is detected – and we forget the previous keyframe.
We introduced at diferent steps of the algorithm s aimed at rejecting the contribution of one or the
other block of sensors.

Let us underline some choices that were made for our system:
• No map of the environment is built. In contrast with [Izadi et al., 2011] [Henry et al., 2014]

and [dos Santos Fernandes et al., 2013], we focused on short term motion consistency, which
is the expected gain provided by the mi-dr technique. If, without doubt, mapping will be
necessary for applications, it requires a process an order of magnitude more computationally
demanding compared to the tracking. Besides, in our opinion, (i) focusing on an as robust as
possible tracking component would simplify the mapping component at the end and (ii) the
mapping technique would highly depend on the quality of the tracking component. Mapping
is undoubtedly a natural extension of this work though.

• The correction step does not reine the rotational part of the movement. First, we noticed that
adding these extra degrees of freedom sometimes leads to instability in the image alignment
process, mainly when the environment does not contain much information. Avoiding injection
of short-term visual information into the attitude estimate also makes it independent of the
visual environment and depth image noise/laws. Furthermore, this reinement is actually
not needed as the orientation estimation from the mi-dr is much cleaner than the output of
the alignment process. One could argue that a slightly bad rotation prediction (because of
bias, mis-calibration, or synchronization error) could bias the estimate of translation in the
alignment process. In practice, such a bias has not been observed and is probably hidden
behind other error sources from the depth sensor.

• We do not use the RGB image in the alignment process, contrarily to [Kerl et al., 2013b] for
instance. Indeed, we have found that this choice makes our system more robust to changing
illumination conditions, motion blur, specular material, and rolling shutter artifacts appearing
on the Asus Xtion RGB sensor. It admittedly will be less robust in non-geometrically
structured scenes. We could have circumvented the bad quality of the Asus Xtion RGB
camera by using yet another conventional camera, but it would have complexiied the oline
extrinsic calibration process.

• Finally, our algorithm for depth alignment is close to the range low based odometry presented
in [Jaimez and González-Jiménez, 2015], except that: we use keyframing, we do not use
their weight expression but a robust estimator instead, and the rotations parameters are not
optimized on during alignment.

We expect to demonstrate a gain of robustness in various challenging situations for our hybrid
odometry system:
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• Compared to the mi-dr alone, we expect the depth alignment algorithm to improve dead-
reckoning performance in the case of a non-stationary perturbation or when the magnetic
gradient is not strong enough to correct the integration of inertial sensor.

• Compared to visual odometry methods alone, we expect to increase the frequency bandwidth
of the system and to complete the navigation when the environment renders the movement
unobservable to vision.

• By sensor data cross-validation, we hope to be able to detect big inconsistencies between
blocks of sensors and to choose the most reliable estimate of the transform between current
pose and last keyframe pose. This cross-validation should allow iltering out errors that are
harder to detect a priori with solely the data from one or the other block of sensors.

The next sections will describe the details of the algorithm and experimental results obtained on
a real dataset.

3.3 Depth Image Warping and Prediction
3.3.1 Depth Image Warping
First, we describe the synthesis of a warped depth image from a source depth image Dsrc and
an input rigid transform ξ. Let ξ be the transform between the camera frame at source image
timestamp and camera frame at destination image time, a pixel o from the source image with depth
value Dsrc(o) should be transformed in the destination image at a location o′ with depth value d′,
according to the following warping function wξ:

wξ : (o, d)→ (o′, d′) ∈ R
2 × R

+ (3.2)

where o′ and d′ are deined with the following operations:

(unproject 3D point from source) X = π−1(o, Dsrc(o)) (3.3)
(warp pixel) o′ = π (ξX) (3.4)
(transform depth) d′ = [ξX]3 . (3.5)

Forward warping A diiculty of that kind of image warping is that o′ will not have, in general,
integer coordinates in the destination image. Thus, it is necessary, after computing the warp
function for every pixel, to reconstruct the virtual image by an interpolation, on the regular pixel
grid of the destination image, of the warped values, which are lying on a non-regular grid. This
process could reveal cumbersome.

Reverse warping A classical way to avoid the problematic interpolation is to use the reverse-
warping function. If the warp-function is invertible and its inverse easy to compute, we can retrieve
the value of a pixel in destination image by applying the inverse function on it, ind the pixel
loating coordinate in the source image, and interpolate over the regular grid of values in the source
image. This process is more straightforward than the interpolation on an irregular grid.

Forward warping with splitting on the destination grid However, this is impossible to do for
the prediction of a new depth image from the stored depth keyframe image, because the warping
function (and thus its inverse) requires the depth value at the pixel source coordinates. We thus
adopt the following strategy: we use a forward image warping to propagate each depth value to a
new 2D position in the destination image, and we split the contribution of this warped pixel over
the four closest pixels in the destination image. Each adjacent pixel is associated with a weight
that depends on its center distance to the warped coordinate. We accumulate into two temporaries
arrays for each pixel the sum of these contributions and weights. The inal image is then computed
as the division of the temporary value array by the weight array.
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Care must be taken during this process, because occlusion could create a smoothed depth at the
border of objects, by averaging far and close points. We handle these cases the following way: if the
diference between the accumulated value (divided by weight) in the temporary array and a new
value is signiicant – we choose three times the depth noise level – then we only retain the smaller
depth value for the destination pixel. The interpretation of this situation is that the farthest point
is actually occluded by the closest one in the new point of view and thus should be discarded.

Note that for the residual computation presented in next section, this process is not necessary.
This is because the residual we use can be computed by interpolation of the current image at the
keyframe-warped coordinates o′, which is a simple bilinear interpolation on a regular grid.

3.3.2 Depth Image Prediction from Last Keyframe
Here we describe the construction of the predicted image built from both the mi-dr ekf output
and the depth image of the last keyframe.

We assume that the previous frame Dk (with timestamp tk) already has a pose estimate
relative to the last keyframe, we call it ξkf←k. When a new depth image Dk+1 is received (with
timestamp tk+1) we exploit the mi-dr ekf output since time tk to compute the displacement
ξk←k+1

mi =
(
R

k←k+1
mi , Tk←k+1

mi
)

as follows:

R
k←k+1
mi = Rmi(tk)Rmi(tk+1)T (3.6)

Tk←k+1
mi = Rmi(tk)

∑

p∈V

Rmi(tp)Tvb
p;mi (tp − tp−1) (3.7)

In the latter equation, {tp}p∈V denotes the timestamp of the data emitted by the mimu sensors
and integrated in the EKF between tk and tk+1. Since the sensors are not synchronized, but
only timestamped in the same time-frame, we use linear interpolation for velocity and a SLERP
interpolation for the rotation matrix when necessary. This is to correct for slight diferences of
timestamps between mimu sample and images. The predicted transform ξkf←k+1

pred = ξkf←kξk←k+1
mi

is used for warping the last keyframe image depth Dkf to synthesize a predicted image Dpred with
algorithm of Section 3.3.1. This predicted image is used as a starting point to the depth alignment
algorithm presented in Section 3.4 (with splitting of transformed pixel contributions on neighbor
pixels)

As an alternative to mi-dr based prediction, visual-only navigation literature often leverages a
simple damped motion model where the translational speed evolution veriies an exponential decay:

v̇w = −αvw (3.8)

with α ∈ R
+ being a ixed constant, parameter of the algorithm, that drives how fast the speed

should go down to zero in the absence of visual information measurement. This translates in
discrete form, assuming a constant frame rate 1

∆t
, to:

Tk←k+1 = −e−α∆tTk←k−1 (3.9)

which can be computed from the previous corrected version of Tk←k−1. We use this model as a
default prediction when the output of mi-dr cannot be trusted.

3.4 Robust Depth Image Alignment for Motion Estimation
In this section, we describe the depth image alignment algorithm used for the correction of the
predicted pose. Its role is to compute a correction vector δT∗ that best aligns the current image
with the predicted depth image. Correcting the translation solely is suicient because the predicted
depth is already rotation corrected by the prediction step described in Section 3.3.2.
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Figure 3.4: Residual computation. Rolling shutter correction is explained in Section 3.5.1

3.4.1 Alignment Error Function
More precisely, from the predicted depth image Dpred, we aim to ind the optimal translation –
as a kind of rigid body transform – that parametrizes the warping function wξ. We search it by
optimizing a depth alignment criterion.

This criterion relates the diference between the warped version of the (already warped) Dpred
and the current depth image Dk+1.

Mathematically, the criterion writes:

δT∗ = arg min
δT

(
∑

u∈C
ρ

(
ru(δT)

σu(δT)

))
(3.10)

with:

ru(δT) =

{
Dk+1(o′u)− d′u if Dk+1(o′u), Dpred(ou) are valid

0 otherwise (3.11)

and:

(a robust norm) ρ : R→ R (3.12)
(unprojected 3D point) Xu = π−1(ou, Dpred(ou)) (3.13)

(warped pixel) o′u = π (Xu + δT) (3.14)
(transformed depth) d′u = [Xu + δT]3 (3.15)

Note that, this involves the same operations as the warping function wξ deined in previous section,
but we rewrote them in the special case where the ξ rotation is Identity.
C denotes here the entire pixel array: we sum all residuals between pair of pixels in warped and

current image that are both valid; if there are invalid pixels (because of shadows, out-of-range
measurement or out-of-bound warping) in either the warped or current image, they participate
in the cost as (constant) zero residuals. Note that the facts that a pixel participates in the cost
depends on δT and thus will change across iterations. The Figure 3.4 shows a residual image before
alignment.
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3.4.2 Weighting
The precision at which this criterion should be true difers for each pixel. The cost function accounts
for this through the weighting functions σu and ρ.

In one hand, closer pixels have less noise in their depth measurement, which is encoded in the cost
through the weight 1

σ2
u

. σu is an estimate of uncertainty of the residual, and can be approximately
propagated from uncertainty on Xu and on Dk+1 with a irst order propagation:

σ2
u(δT) =

{
∂ru

∂Xu

∣∣∣
δT

ΣXu

∂ru

∂Xu

∣∣∣
T

δT
+ σ2

z if Dk+1(o′u) is valid
1 otherwise

(3.16)

In the above formula, σz is the uncertainty on the depth image value Dk+1 at pixel location o′ – we
use for this quantity, the axial noise developed in [Nguyen et al., 2012] – and ΣXu

is the covariance
of the position of point Xu; it depends originally on the uncertainty of the depth estimated in
the original keyframe (and not the predicted depth image computed from original keyframe).
Propagating the uncertainty rigorously would be cumbersome. Rigorously, the uncertainty of the
depth should propagate through the prediction warping. However, we assume here the main source
of uncertainty comes from the noise in the depth measurement in the keyframe and that we have a
small rotation and translation between the two frames to be aligned. Within these conditions, we
can use the following simple form:

ΣXu
≃




0 0 0
0 0 0
0 0 σz


 (3.17)

Where we use the same σz as previously deined, and the irst terms of (3.16) is simpliied as:

σ2
u =

(
∂ru

∂[Xu]3

∣∣∣∣
δT

)2

σ2
z + σ2

z

This simpliication can seem pretty rough. But we decided not to over-complicate the algorithm,
considering even the main assumption of an independent zero-mean noise per pixel on depth image
was observed to be very wrong with the real sensor: the Asus Xtion Pro we used, exhibited strong
point-cloud distortion and quantization noise.1

In the other hand, this iterative scheme also encodes a robust t-Student weighting function
through ρ, in the line of [Kerl et al., 2013b], which leads to an improved alignment robustness to
high residuals arising from edges, occlusions, nonrigid scenes or depth sensors high noise. One
issue is that the cost function (3.10) is not occlusion aware: if the corrected translation creates new
occlusions, then two pixels of diferent predicted depth could project to the same pixel in the newly
warped image, and we can expect at least one of the two residuals to be very high. Nevertheless,
provided that the translation initialization is good enough the predicted image should be suiciently
close to the current image and this efect would appear on a minimal number of pixels. This will
easily be mitigated by the robust estimator, which would thus down-weight the residual coming
from the farthest point of the two warped coordinates.2 Note that the use of a robust norm ρ, is
equivalent to weighting each residual by a weight function wρ that changes at each iteration.

1For distortion, the authors of [Teichman et al., 2013] propose to correct these distortions by applying correction
stored in a look-up table. We thought it was overkill for our purposes, particularly when considering the sensitivity
of this correction to mechanical constraint applied to the camera showed by the same author on one’s author blog
(http://alexteichman.com) as a follow-up remark. For quantization noise, the authors of [Bonnabel et al., 2014b]
prefer to reine the estimated covariance of alignment using a non-independent Gaussian error model. We have
not thoroughly investigated these issues in the present work.

2 One solution to prevents high residual in the case of new occlusion could be to recompute the full warp again
from non-warped keyframe depth image at each new iteration using the predicted orientation and the corrected
value of the translation, as this prediction warping process handles some part of self-occlusions efects, in contrast
with the direct cost function evaluation.
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Figure 3.5: Typical efect of the depth alignment on the residuals. The residuals are drastically
improved. High residual remains around the edges, but are down-weighted by the robust
estimator. Also, we can perceive clear circular distortion in the residual map after
optimization.

3.4.3 Optimization
This criterion is minimized with an irls (Iteratively Reweighted Least-Square) strategy and a
Gauss-Newton like3 algorithm so that at the iteration i we solve the following linear problem:

min
δTi

∑

u

w2
ρ( ru

σu
)

σ2
u(δTi-1)

(
∂ru

∂δT

∣∣∣∣
δTi-1

δTi − ru

)2

, (3.18)

where wρ : R→ R is the weighting function associated with the chosen robust norm. This can also
be written with the following matrix form:

min
δTi

‖Wi (Ji.δTi − r)‖2
2 . (3.19)

We describe how this linear least squares is solved in the next section.
In order to increase convergence basin, we use a pyramidal scheme with a number of resolution

levels that depends on whether the inertial prediction was judged reliable or not, according to a
criterion described in Section 3.5.2. For real-time reasons, we set the number of iterations to a ixed
number per level. The efect of the optimization on the residual image is shown on Figure 3.5; as
can be seen, the residual image magnitude drops drastically, but exhibits a faint circular pattern.
This pattern is a systematic error which comes from a kind of mis-calibration in the depth sensor,
that is not corrected for.

Once the optimal translation δT∗ is retrieved, and, if optimization result is trusted (see conditions
in Section 3.5.2), this vector is added to the predicted translation, the sum of the two being the
corrected translation estimate between current frame and keyframe.

3.4.4 Dealing with Underconstrained Estimation
It might happen, in some scenes, that the two input depth images do not entirely constrain the 3D
translation. This occurs, for instance, when viewing solely parallel planes or, more generally, when
the normal vectors of all surfaces perceived do no form a proper basis of R3.

3GN-“like” because the number of residual, thus the cost deinition - changes at each iteration
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In this case, the correction translation becomes unobservable along one or two directions. This is
dangerous and can lead to uncontrolled divergence of the optimization along these directions. We
thus try to detect this case explicitly in the algorithm. This carefulness is even more critical in
our fusion problem. We would like to retain the initialization values for the translation along the
unobservable directions – as this values stem from the meaningful prediction done by the mimu –
but still optimize along the observable directions. We solve this issue by explicitly constraining the
increment at each iteration along the subspace of the observable directions. We employ the method
described hereafter to do so.

Recall the linear least-square problem one need to solve at each iteration:

min
δT
‖W (JiδTi − r)‖2

2 . (3.20)

Before constructing the normal equation, we start by identifying the rank of the matrix WJi with
the help of a rank-revealing qr decomposition4. The rank tolerance is set, empirically, higher
than the machine epsilon in order to account for noise in the data. Depending on the rank value,
two cases can be distinguished. If its rank is 3, we simply use this decomposition to solve the
least squares problem. Otherwise, they are numerically non-observable directions. In this case, we
explicitly form the approximated Hessian matrix I = JT

i WTWJi, and compute an approximate
inverse I

† using a truncated eigenvalues decomposition:

I
† =

rank∑

k=1

1

λk

ukuT
k (3.21)

Where λk is the k-th largest eigenvalue and uk the associated eigenvector. The rank is determined
as the number of eigenvalue above an empirically chosen threshold. A truncated increment is then:

δTi = I
†JT

i WTr (3.22)

This strategy constrains the optimization process over the locally observable subspace and
prevents polluting the initial solution with noise due to bad matrix conditioning.

3.4.5 Limitations of Depth Alignment for Trajectory Reconstruction
One main limitation of this iterative depth alignment algorithm is its convergence basin. A lousy
initialization would surely lead to a wrong translation estimate. Actually, the use of this algorithm
without any prediction leads to very wrong trajectories on our dataset. If the pyramidal strategy for
depth-only based navigation improves, indeed, the convergence basin, it shows limits, for instance
when the trajectory involves very high dynamic motion.

Furthermore, a non-static scene will drastically degrade the accuracy of the alignment. For
instance, assume that a large rigid body moves in front of the depth sensor; in that case, the cost
function is likely to have two strong local minima: one aligning the static scene, and one aligning
the moving rigid body (see an example in Figure 3.7). Without proper initialization, the wrong
one could be chosen. Of course, the robust loss could cope with local motions of the scene, but it
reveals ineicient when a big part of the image is not static.

Moreover, the number of iterations before convergence is hard to deine and, being a dense
algorithm, the alignment algorithm is computationally demanding, especially on lowest levels of the
pyramid, which is a problem if targeting embedded devices.

Another limitation comes from the sensor itself: its operational range. Obstacles after 3 meters
are noisy, and not even detected after 5 meters. This is a problem in larger rooms where, often, the
only good obstacle detected is the loor, which provides only one observable direction for the depth
alignment algorithm.

4We use ColPivHouseholderQR function from C++ Eigen library.

40



3.5 Preprocessing and a Switch-based Fusion Strategy

For all of these limitations, the initialization from mi-dr estimate helps: if the initialization is
good enough, it reduces the number of iterations and makes the optimization choose a minimum
closer to the one aligning the static part of the scene. The switch strategy presented in the next
section is an attempt to exploit this and to handle failures cases of sensors.

3.5 Preprocessing and a Switch-based Fusion Strategy
This section details the full estimator pipeline. And in particular its switch strategy. Its main idea
is to leverage prior knowledge of failure modes and failure detection logic in order to select – switch
between – the best estimate of the translation components. On the diagram of Figure 3.6, this
selection is represented by the switches 1 and 2; the Section 3.5.2 explains their behaviors.

3.5.1 Depth Image Preprocessing and Rolling-shutter Compensation
As often done when dealing with this kind of low-cost depth sensor – for instance in [Izadi et al.,
2011] – we apply an adaptive bilateral ilter on all received depth images. In particular, this makes
the gradient of the depth image smoother, which is beneicial for the diferentiation of the residual
of the cost function.

Furthermore, low-cost sensors are generally equipped with a rolling shutter mechanism (RS):
every row of the image is actually exposed at slightly diferent time. This phenomenon is hard
to model in the cost function (3.10) (see [Kerl et al., 2015]). We propose to account for the RS
by a dedicated preprocessing step. More precisely, we correct solely for the RS distortions that
are created by the rotational part of the movement R

k←k+1. We proceed by assuming a constant
rotational velocity over the entire image capture time. ω1←2 = log R

k←k+1

tk+1−tk
, we use the depth image

warping process described in Section 3.3.1 using for each line the rotation:

Rline = exp
so(3) (ωk←k+1(tline − tcenter line)) (3.23)

as the rigid transform ξ. tline is the timestamp of the current line, and tcenter line is the instant of
exposure of the centerline. The diference between the two is proportional to the distance of the
current line to the centerline, the coeicient being roughly calibrated oline by ilming a TV screen
with a known refreshing rate.

Admittedly, rolling-shutter artifacts created by translation would still impact the image alignment
algorithm negatively. However, they are generally of lower magnitude compared to the one created
by rotational movement, at least for the kind of movement we are interested in.

Note that, the previous formula implicitly says that all inter-frame transforms estimated by the
alignment algorithm are between instants of the center line exposure.

3.5.2 Correction and Consistency Checks
The switches 1 and 2 are driven by consistency checks between prediction steps and depth alignment.
Consistency checks are embedded in the pyramidal optimization process of (3.10). The predicted
depth map is irst synthesized at a coarse spatial resolution corresponding to the highest level of
the multi resolution pyramid. With this image we compute a rough initial value of the cost (3.10)
which is used to assess the consistency of visual and magneto-inertial information by a threshold
test (corresponding to the switch 1 in Figure 3.6).

If the initial cost is smaller than some threshold thc, the two information are lagged as consistent
and the pyramidal optimization proceeds (Switch 1 connects the EKF block). Otherwise, an
inconsistency is detected. We then discard the predicted translation and use the default motion
model (3.9) instead (Switch 1 points towards block ‘Default prediction MM”, MM standing for
“motion model”).

In both cases, the pyramidal optimization described in Section 3.3 is run. We then examine the
inal (minimal) cost with another threshold test (Switch 2 in Figure 3.6). If this cost is too high, it
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Figure 3.6: Detailed data low of the estimator

Figure 3.7: Depth alignment on non static environment. Here a moving pedestrian was registered
instead of the static environment. (see the high residual on the door in the background,
while the body of the pedestrian shows smaller residual, except for occlusion efects)

means that there was a problem with the visual data (for instance because of a non-rigid scene): we
discard them completely and the mi-dr prediction is rehabilitated and promoted as the estimator
output (Switch 1 points towards EKF and Switch 2 points to the predicted translation). Otherwise,
the visual information is considered relevant, and the corrected translation can be used (Switch 2
points towards the corrected translation).

These heuristics allow our estimator to be more robust to the violation of the assumptions related
to one block of sensors or the other. This will be demonstrated on real data in the experimental
part. Note, as already mentioned, that the rotational part of the mi-dr ilter is always kept as the
inal orientation estimate.

3.6 Result in Indoor Environment
3.6.1 Implementation
The complete algorithm has been implemented in C and C++ language within the ros (Robotic
Operating System) framework. Due to real-time constraints, we limit the computation of the
depth alignment algorithm to 2 iterations per pyramid level and do not iterate at the lowest level –
whose size is 640x480 px. The entire pipeline processes a new frame faster than the 30 ms between
subsequent images on an Intel NUC with an Intel Core i5-6260U CPU.
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We present results in examples demonstrating sensor complementarity in various challenging
situations, and we show quantitative comparisons results in a motion capture equipped room.

For analysis, we compare the results of our framework under diferent conigurations:
• mi-dr: the mi-dr ilter of Chapter 2.
• mi-dr+da: presented system with described depth alignment as visual correction step.
• mm+da: system (1) using only the default motion model – switch 1 forced to MM.
• mi-dr+dvo: presented system with DVO [Kerl et al., 2013b] as the visual correction step –

thus also using image intensity alignment instead of depth alignment.
• mm+dvo: system (3) using only the default motion model – switch 1 forced to MM.
Note that DVO from [Kerl et al., 2013b] does not incorporate unobservable directions handling

and uses an additional RGB error term in the cost function. Moreover, for fairness, we let DVO
optimize only over the translational components – original author’s implementation optimizes on
full rigid body transform.

We also show results of the pure integration of the output velocity of the mimu ilter mi-dr
and ground truth (GT) when available. When comparing with ground truth data, the estimated
positions were aligned with the ground truth transform on the irst pose only.

3.6.2 Typical result
The Figure 3.8 shows a typical result from our estimator. This trajectory does not show any
major diiculties, except for its relatively high dynamic compared to traditional rgbd dataset –
translational speed is nearly always between 1 or 2 meters by second. The pedestrian is walking
several times the same loop indoor, carrying the systems in a traditional Normandy house. The
space in which the pedestrian evolves is rather narrow, such that the limited range of the device
is not a problem, and the gradient of the magnetic ield is adequate for mi-dr technique most of
the time. The Figure 3.8a shows the trajectory along with a map of the environment reprojected
from the irst loop estimate only for visualization. Note how better the loops superimpose in
Figure 3.8c compared to Figure 3.8b. The inal drift is reduced by 1.1 to 0.2 % of the trajectory
length compared to the mi-dr estimate.

3.6.3 Robustness Gain Compared to the MI-DR ilter
Non-stationary magnetic perturbation (Figure 3.9) In this experiment, we take the system
by hand from a table, move it along some circle in the horizontal plane 20 times. During the
irst ten circles, no magnetic perturbation is generated, except the natural stationary one of the
indoor location. In the next ten circles, a magnet is chaotically moved close to the mimu sensor.
Reconstructed trajectories are depicted in Figure 3.9.

The circle movements of the hand-held system are well reconstructed by mi-dr during the irst
30 second despite a slight drift, which is corrected by the image alignment process on mi-dr+da
version. After the magnet starts moving, the efect of the perturbation over the mi-dr estimate
is clearly visible and induces a massive drift along the y-axis and minor perturbations along the
x-axis. This drift is mainly corrected by the depth based step of our estimator. Here, the inal drift
is 10 centimeters for 14meters of trajectory. This drift has been computed by comparison with the
trajectory estimated by the map-based methods of [Kahler et al., 2015], that is virtually drift-free
in this situation where the visual system always looks at the same place.

Environment with no magnetic gradient (Figure 3.10) In this experiment, we recorded a tra-
jectory in the center of an empty motion capture room where the gradient is particularly weak.
We display in Figure 3.10 the reconstructed speed along with the color-coded magnitude of the
gradient. On blue regions, the mi-dr prediction is rejected directly, and the default motion model
is used as a prediction. Figure 3.10 clearly shows the speed error introduced in low gradient areas
on mi-dr estimate and the better speed reconstruction of our mi-dr+da hybrid solution.
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(a) Trajectory and point-cloud unprojected from estimated position during the entire irst loop.

(b) mi-dr estimate

(c) mi-dr+da estimate

Figure 3.8: Example of typical result in favorable environment. Loop error decrease from 1.1 %
to 0.2 % of trajectory length with the proposed fusion scheme compared to the mi-dr
estimate.
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of measured gradient is depicted with same code as in Figure 3.12b. In case of low
gradient our fused estimate still allows tracking accurately the speed of the sensor.
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3.6.4 Robustness Compared to Depth Map Alignment Based Navigation
(Figure 3.11)

To prove this point, we tried our system in a staircase. Staircase environments are not such a problem
for depth sensor pointing downwards because of the stair step that provides a well-constrained
alignment cost. On the other hand, this narrow environment is a challenge if the camera points
straight ahead, and thus for two reasons:

• First, because of minimal range limitation of the sensor: in this small environment the sensor
can be blocked by a wall at less than a few dozen of centimeters, below its minimal range.

• Secondly, even if the range is acceptable, chances are that the sensor is seeing only one or two
lat walls, making some directions of translation unobservable.

This experiment is depicted on Figure 3.11. In this experiment, we are starting from the irst
loor, going down to the ground loor, walking up to the second loor and inally going back to
the initial position with a hand-held system. We depict the results of our system compared to the
motion model based systems. With or without mi-dr prediction, we observe poor performance from
mi-dr+dvo and mm+dvo here. This is mainly because of the bad quality of the photoconsistency
assumption DVO is based on: inside the staircase the contrast is low compared to the vignetting
errors of the sensor, as we can see in the RGB images timeline on Figure 3.11. Vignetting attracts
the estimated transform towards an erroneous stationary solution, whatever the prediction input.
The inal position error of the proposed mi-dr+da here is 0.12 % of the total length: 4.7cm over
40 meters of trajectory.

3.6.5 Experiment Within a Motion Capture Room

We recorded a trajectory with our system in a motion capture room. The room was populated with
a desktop, closet and some electronic devices to create texture, depth variability, and magnetic
gradient. Note however that the environment is unfavorable because the room is rather large. This
translates into issues with the limited range of the vision sensor, and also implies areas with low
magnetic gradient as shown in Figure 3.12b which depicts 3D groundtruth trajectory is plotted
colored according to local magnetic gradient norm.

Figures 3.12a, 3.12c and 3.12c present position and speed compared to ground truth for the
diferent conigurations. Several comments can be made. First, Figure 3.12a shows that the mimu
prediction reduces the total drift: the mi-dr+da and mi-dr+dvo trajectories are both closer to
the ground truth trajectory than mm+da and mm+dvo. Second, compared to the mi-dr ekf
predictions all vision-based corrections signiicantly reduce the drift.

Third, if looking inely at the error over each axes in the inertial frame, we can notice that, while
indeed greatly reducing the drift on the horizontal plane, the mimu prediction introduces a small
drift along the vertical axis. Indeed, along z axis, mm+da and mm+dvo show less drift than
mi-dr+da and mi-dr+dvo. On this trajectory, still along z axis, mm+dvo and mm+da perform
sensibly the same with a slight advantage for mm+da. We suspect this upward drift comes from
small residual biases of accelerometers or other mis-calibrations of our system. However, the total
drift with mi-dr+da remains very limited: 37 cm for a 70m trajectory (0.53%).

Finally, speed estimation is evaluated in Figure 3.12c. Note that the speed estimates are obtained
by position diferentiation, except from mi-dr solutions for which they are read directly in the
output of the ilter. Here motion model based estimation sometimes loses track in case of poor
visual information (for instance between 70 and 75s or just before 90s). This is probably due to the
limited range of the sensor compared to the size of the room. Note also the bias appearing near
areas with weak magnetic gradient (blue zone in the ground truth trajectory in Figure 3.12b).
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Figure 3.11: Results of trajectory reconstruction in a situation of lost observability from vision
block sensor. Depth and image based movement reconstruction fail because the data
is not informative enough. The trajectory spans over three loors. Details in Sec. 3.6.4.
3.11a: All estimated trajectories aligned on ground loor level. 3.11b: Images that
were captured by camera every second between irst and second loor,showing poor
visual environment.
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3.7 Conclusion of this Chapter
The chapter irst gave some details on the framework of the thesis. We described the hardware we
used, some general prerequisites for using a camera combined with the mimu sensors, and practical
solutions to the platform calibration and synchronization we used. Finally, we presented a way
to fuse information of a depth camera with those of a mimu in order to gain some robustness in
challenging environments. We showed a series of irst results on challenging trajectories, each one
focusing on a failure mode of one or the other sensor block. The employed strategy shows good
results in the limited cases depicted here but also has some weaknesses.

Simple odometry This estimator is purposely kept simple (no map, no loop closure) in order to be
computationally lightweight. It could be extended further, optimizing in inverse depth domain (as
for instance in [Gutierrez-Gomez et al., 2016]), reining the occlusion handling in the cost function,
or as already said, by doing image to model tracking, building a map and handling loop-closures.
As mapping comes with a signiicant increase in memory requirement and computational load, it
would depend on the applications speciic requirements and constraints. However, we argue that
even using a mapping strategy, robust odometry is critical.

The sensor modality chosen cannot handle some situations If the sensors complement them-
selves well in presented scenarios, they both fail at least on the following scenario: consider an
outdoor or semi-outdoor case. As already said, the depth alignment algorithm would only be able
to detect the loor and correct the estimate vertically, and thus would rely extensively on the input
prediction for horizontal. However, chances are in this kind of environment that the magnetic
gradient will also be weak, that would also deteriorate mimu-baked input prediction. Consequently,
the fusion strategy would be useless in this case.

More generally, even if the environment is structured enough for depth alignment, they are a
lot of practical cases where the convergence of alignment would fail with a default motion model.
As we can not exclude the magnetic ield to be unusable for an extended period, the “fallback”
visual-inertial systems should work as accurately as possible and should thus be a premium focus of
the work. This imply, for instance, information feedback from vision to the inertial biases estimates.

We will advocate in next chapters that tight fusion of magneto-inertial and visual information is
the right path for further robustness improvement.

Hardware engineering was diicult The hardware used in the described work is an issue by itself.
Depth sensors are not standard technologies: even if some competitors have made other depth
sensor products since Primesense (for instance, Intel, PMDtech, structure.io, etc.). These sensors
are often packaged into a consumer product which makes them diicult to sync with an external
clock. Also, diferences in technology and performance of depth sensors, lead to very diferent
frame rate, depth range, and resolution. It could render the algorithm performance very sensor
dependent, a situation far from ideal. General cameras are much more standard, simple and more
straightforward to integrate.

In a sense, it also did not feel right to combine such a inely tuned and mastered mimu sensor
with such a bad quality visual hardware. If developing algorithms for a stock of already distributed
sensors can be an appealing challenge – for instance making vins works on standard smartphones
for Augmented Reality purposes – the use of a mimu sensor would inevitably involve hardware
designed explicitly for ar. It is not unreasonable to think this specialized hardware would have
been thought entirely for this purpose, with a completely integrated data acquisition pipeline. We
argue that the development of the algorithm should not be separated from the development of
the hardware and that ideally, algorithm and hardware should be developed concurrently with a
co-conception approach.

The second part of the thesis will focus on methods that do not require a depth image as
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input. Precisely, we will describe dead-reckoning algorithm relying on a mimu sensor and a regular
monocular camera (well calibrated and of superior quality).
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Figure 3.12: Result for a trajectory in motion capture room; (a): Position in inertial frame. The
mimu position estimate present signiicant drift that is corrected by image alignment,
whatever the alignment method used. In turn, the mimu predicted translation conig-
uration shows more accurate position estimate than with the default motion model,
except along the z axis (see Section 3.6.5); (b): GT trajectory with color-coded mag-
netic gradient norm; (c): 3D trajectory of the best performing coniguration against
ground truth. Environment is visualized by reprojecting point cloud from ground truth
poses; (d): Speed in inertial frame along x axis and local gradient level: Motion Model
estimates are sometimes loosing track of the speed and a bias appears on mimu speed
estimate near no-gradient area.
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Chapter 4

A Non-exhaustive Review of the
State-of-the-Art in VINS

This chapter is an attempt to make a digest state-of-the-art review of existing vins.
We propose one way to classify vins algorithm and focus mainly on the case where the
visual sensor used is a monocular camera. We present selected works from the recent
literature that are highly relevant, in our opinion. The review is done from the point of
view of algorithm mainly. We will use the presented classiication to introduce algorithms
presented in subsequent chapters.

4.1 Objective of this chapter
An exhaustive state-of-the-art presentation about general vision-based navigation – including also
standalone vision navigation system – would be too rich for this thesis chapter. The reader interested
in a more general review about visual-based navigation and slam could refer to the following review
papers: [Cadena et al., 2016; Santoso et al., 2017]; we will reference here nearly exclusively methods
that use an imu.

Also, the goal is not to retrace the history of slam or vins systems, and we admittedly exhibit
a strong bias towards recent to very recent publications presenting concrete implementations of
vins in generic, ar or drone applications. We also target a comprehensive and contextualized list
of pointers towards the most interesting – in our opinion – publications, open-source codes, and
datasets. We think these would interest anybody willing to start designing a vins nowadays.

Despite our bias towards recent work, the reader must keep in mind that rare are the concepts
and ideas in visual-inertial navigation that were not already proposed two or even three decades
ago: application, context, implementation, and engineering matter.

4.2 Utils: Bayesian Inference, Manifold and Lie Group.
4.2.1 Bayesian Inference in a Nutshell
The most powerful tool for determination of valuable parameters from noisy data is Bayesian
inference. In our context, this technique aims at answering the following questions: ”Knowing all
the observations from my sensor, their noise model, and some prior knowledge on the parameters I
seek, how evolves my knowledge about these values? What is then the most representative value of
my parameters?”

One way to answer the second question is to solve for the value of parameters whose probability
is maximal knowing all data one has about the system. We write formally the map (Maximum A
Posteriori) estimator as:

θ̂map = arg max
θ

p(Θ = θ|Z, I). (4.1)

In the Bayesian approach, the parameter θ to be estimated – in our particular application, this
will represent trajectory or geometrical parameters of the movement – is seen as a realization of a
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random variable Θ, Z is the random variable corresponding to received observations (polluted by a
noise), and I denotes information one has a priori on Θ. p denotes here a probability distribution of
Θ knowing realization of Z and prior information; this distribution is called the posterior distribution
p(Θ|Z = zobs, I) because it can be written after the observation zobs has been recorded, thus the
notation map for the estimate.

In practical situations encountered in the problem at hand, the map problem can be translated
into a non-linear least square minimization problem, which is generally solved by local descent
algorithm. This translation goes like this:

Because of Bayes rule one has:

p(Θ|Z = zobs, I) ∝ p(Z|Θ, I)p(Θ|I) (4.2)

Because I carries only information on Θ , that simpliies in:

∝ p( Z | Θ )︸ ︷︷ ︸
direct model of sensor

p( Θ | I )︸ ︷︷ ︸
prior on parameter

(4.3)

Where the direct model of the sensor is assumed to be known beforehand. Applying the monotone
function − log yields another expression of the map estimate:

θ̂map = arg min
θ

[− log(p(Z = z|Θ = θ)p(Θ = θ|I))] (4.4)

= arg min
θ

[− log(p(Z = z|Θ = θ))− log(p(Θ = θ|I))] (4.5)

And, in the case where the sensor model writes: z = h(θ) + η with η a realization of a noise
following a Gaussian distribution N (0, Σobs) and that prior also follows a Gaussian distribution on
Θ, N (θp, Σp), the previous map problem writes as a nnls (Non-Linear Least Squares) problem:

θ̂map = arg min
θ
‖h(θ)− zobs‖Σ2

obs
+ ‖θ − θp‖Σ2

p
(4.6)

However in the general case where the measurement errors are not Gaussian distributed we have to
write instead the more general formulation:

arg max
θ

p(Θ = θ|Z = zobs, I) = arg min
θ

f(h(θ), zobs) + g(θ, θp) (4.7)

and f and g are log-likelihood terms stemming from hypotheses on the sensor model and prior1.
One critical aspect here is the correct modeling of the conditional independence of parameters

and observations in the inference problem. Indeed, in the case when θ is a vector of parameters and
z a vector of observations, it is likely some observations are independent from one set of parameters,
conditionally on another set of parameter. From a distribution probability point of view it means we
can decompose p(Z = z|Θ = θ) into a product of factors p(zij |θpk) where zij and θpk are sub-vector
of parameters. Each one of these factors would then corresponds to a new element in the nnls sum
(4.6).

These dependencies can be formalized on a graph such as a Bayesian Network or a Factor Graph,
and several in the slam estimation community are based on this formalism: [Dellaert and Kaess,
2006; Carlone et al., 2014; Kaess et al., 2012]. These conditional independencies also ultimately
relect the sparsity of the matrices involved in the non-linear numerical solvers, that can and must
be exploited for very fast inference or very large-scale problem. The Figure 4.1 shows an example
of probability distribution decomposition through its conditional independence pattern. It pictures
its associated factor graph, on which black square are representing factors (here the probability of
measuring the observation knowing the state). Round elements are representing parameters. The
igure also shows a translation of this structure as a least squares cost function that assumes that
all factors are Gaussian distributed with unit covariance.

1Chapter 5 will suggest some way to choose f and g for our problem
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θ11 θ12 θ13

θ2

p(zodom1|θ11, θ1;2) p(zodom2|θ11, θ1;2)

p(zobs1|θ1;2, θ2) p(zobs1|θ1;3, θ2)

p = p(zodom1|θ11, θ1;2)p(zodom2|θ1;1, θ1;2)p(zobs1|θ1;2, θ2)p(zobs1|θ1;3, θ2)

C = ‖θ2;2 − θ1;1 − zodom1‖2
+ ‖θ3;3 − θ2;2 − zodom2‖2

+ ‖f(θ2, θ1;2)− zobs1‖2
+ ‖f(θ2, θ1;3)− zobs2‖2

Figure 4.1: Representation of a factor graph, its translation in probability density function, and in
a nnls function in the case where all distributions are Gaussian.

4.2.2 Inference on Manifold
In geometric computer vision algorithm and slam, diferentiable manifolds have a irst-class function.
Indeed, one has often to solve for a variable that belongs to a Manifold: for instance a rotation of
the camera belongs to SO(3), a 3D pose to SE(3) or a similarity transform between two frames (as
can be derived by a monocular slam system) lies in Sim(3).

However, methods to solve the inference problem, such that the ekf or Gauss-newton optimization
algorithm, often implicitly assume a Euclidean space for their variables. This is a problem: irst,
these methods do not deal well with an over-parametrized version of the element of a manifold,
as they explore the parametrization space as if it was euclidean; for instance a gradient descent
update on a unit-quaternion by component-wise diferentiation would lead to an unnormalized
quaternion; secondly, it is often not possible to build a global, and minimal, parametrization of the
manifold that does not have singularity points ; for instance there are speciic coniguration where,
ininitesimal perturbation of Euler-angles parameters does not form a basis of the SO(3) tangent
space, leading to a degradation of local descent performance.

In order to solve this problem, one can rely on a local parametrization of the state when
diferentiating. This local parametrization is also often used to deine an uncertainty distribution:
for instance a noisy rotation would be expressed as a average rotation perturbated by a “small”
rotation element. This small rotation distribution would be expressed in the tangent space of the
average one. The coordinate of the local perturbation could then be assumed to follow for instance
a Gaussian distribution.

4.2.3 Filtering Versus Optimization
Two numerical tools are generally employed to solve for the map estimate. The irst one is iterative
optimization that will converge to the map estimate if the problem can be cast with a convex
formulation, or to a local minimum otherwise – that one generally hope to be the map. The second
is Kalman iltering method, that process the data incrementally as times goes and converges, for
linear problems, to the map estimate for state variables corresponding to the current time. The
Kalman methodology is often applied to non-linear problems though, even if one generally loses
their convergence properties. For vins, both approaches have been proposed: [Leutenegger et al.,
2013; Forster et al., 2017; Konolige et al., 2010; Usenko et al., 2016] all rely on an optimization
paradigm while [Mourikis and Roumeliotis, 2007; Davison et al., 2007; Paul et al., 2017; Brossard
et al., 2017] rely on iltering. In practice, these two tools are generally mixed together in solution
of literature. Some work are thus more exactly seen as intermediary between pure non-linear
optimization and pure iltering.

The two approaches can be seen as solvers or approximate solvers for the same probability model
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and cost function, so that one can think separately of the problem deinition (through the model)
and of the algorithmic design (through the solver).2

Because of the number of parameters to estimate in vins (the entire trajectory, thus the position
and inertial state at each instant), the iterative optimization on the full problem is often intractable:
for real-time systems, some approximations have to be made. One approximation is to marginalize
from the posterior probability the parameters for which one already has good estimates. These can
be, for instance, positions of the device at timestamps too old compared to the current timestamp –
in which case we obtain a ixed-lag smoother – but other marginalization strategies can be imagined
like the one we describe in Chapter 5.

An important advantage of optimization-based approach compared to pure iltering are their
capabilities to update the linearization point of a block of parameters in θ when θ estimation is
reined – of course at the expense of more computation. This is of particular interest because
linearization error has repeatedly been shown to be a source of signiicant issues in vins and visual
SLAM ilter.

4.3 Two Diferent Kinds of Approaches for Fusion
From the rich literature on vins, we can distinguish two approaches to fuse the information from a
camera and an imu. First, a part of vision-community started developing vo (Visual Odometry)
and slam disregarding the imu completely. These pure visual systems – whose examples are for
instance found in [Mouragnon et al., 2006; Sanfourche et al., 2013; Engel et al., 2013; Forster et al.,
2014; Engel et al., 2018] – thus relied exclusively on the images processing to infer the motion.
This has some drawbacks : one of them being the relatively low temporal bandwidth of traditional
visual sensor. As a result, visual-odometry algorithms performances degrade with the camera is
following high dynamic motion. Furthermore, if the framerate of cameras is sometimes set higher
than the traditional 20-30Hz (e.g., in [Forster et al., 2014; Engel et al., 2013]) in order to cope with
the issue, the computational load associated with high-frequency image processing is not negligible.
The idea of using an imu to help these visual systems emerged in this community as a necessity,
however often more as an afterthought. For this reason, a lot of vins in academic research were
developed as extensions of purely visual systems, often using a low-cost imu, sometimes with rough
calibration and integration.

Among instances of this irst approach we can cite : [Forster et al., 2014, 2017] which integrates
into their advanced vo pipeline a motion prior whose rotational part arises from gyroscopes. They
do not fully leverage the imu, as accelerometers are not used; they prefer a motion model for the
translational part of the motion prior instead. They hence avoid the diiculty of precise attitude
estimation for gravity addition to the accelerometer’s signal. [Forster et al., 2015] is a step forward
compared to [Forster et al., 2014]. The odometry algorithm presented in [Forster et al., 2014] is used
to initialize a bundle adjustment integrating statistically consistent inertial constraints. [Konolige
et al., 2010] uses the imu in a very simple way: vo provides incremental pose estimation through
local stereo bundle adjustment and the imu is used as inclinometer (absolute roll and pitch) reference
and yaw rate measurement. They thus rely on a quasi-static assumption: a sound approximation
for the slowly moving robot they used in their experiments that would fail in general. [Tardif et al.,
2010] presents a similar approach in which the incremental pose estimation is used to correct the
full mechanization equation integration in an ekf. [Mur-Artal and Tardos, 2017] uses the full imu
signal mainly to initialize and ind the vertical direction and scale of their visual-constructed map.
Albeit they smooth the position estimate with both gyrometers and accelerometers, the original
slam system [Mur-Artal et al., 2015] is pretty robust on its own already, and it is probable that

2However, depending on the methodology chosen for a particular application, some issues related to non modeled
efects would be handled quite diferently. Robustiication in an optimization framework would generally involve
slightly tuning the cost function, while in a iltering framework it would be instead done through an adaptive
gain scheme. Also, non-linear efects would have to be handled diferently, so that the two paradigms involve
inally somewhat diferent viewpoints.
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the localization accuracy of the fused system comes mainly from its mapping strategy. The imu
beneits being reduced to very short-term prediction and gravity direction estimation.

This approach has advantages: these methods can cope pretty well with low-cost, not cleanly
integrated sensors while being able to estimate quantities not observable with cameras solely:
attitude (i.e. gravity direction) and scale (unobservable in the case of a monocular camera).
However, these also have some disadvantages: the imu is often not leveraged to its full potential.
One consequence is that these methods require full pose observability at each instant from the
vision pipeline and can hardly cope with a total loss of visual information. They also tend to be
computationally expensive, as the visual pipeline has to be highly robust by itself.

In contrast, another approach aims to use visual information to correct a “good quality” inertial
propagation. This is closer to high-end inertial navigation and can be seen as the reciprocal of the
previous approach. This latter approach is used for instance in [Mourikis and Roumeliotis, 2007;
Li et al., 2014; Paul et al., 2017; Bloesch et al., 2015] or in [Leutenegger et al., 2015; Qin et al.,
2017]; the irst set of work are using a iltering paradigm, while the second one are using a more
computationally demanding optimization framework.

The diference between the two approaches distinguished here is, admittedly a bit blurry and
sometimes quite subjective. However, we noticed that this distinction is quite relevant. Furthermore,
the author’s chosen approach can often either be explained partly by technical reasons – the wish
to use of-the-shelf already integrated sensors – and partly by expertise domain reasons: computer-
vision researcher and laboratory tends to disregard inertial navigation, and not to be able achieve a
high quality integration of sensor by themselves.3

In contrast, we argue that the choice of algorithm can not be decoupled from the targeted
hardware and that both should be developed concurrently, with the same efort: there is at least as
many beneits to take from hardware improvement as from advanced algorithm. We tried, during
this work, to keep this idea in mind; we were lucky enough to work on nicely integrated mimu
hardware and to get help from experimented engineers at Sysnav in order to use it.

A terminology often used in literature to classify the fusion algorithm is their tightness. In
principles, loosely coupled systems fuse the output of a purely visual position estimator with the
output of inertial navigation position, without interaction between both estimators. In contrast,
tightly coupled approaches fuse information from camera with information from the imu in the same
fusion estimator. This terminology superimposes roughly with the two approaches distinguished
above but, again, this distinction does not partition without ambiguity the diverse set of visual-
inertial systems. Yet some “level of tightness” is of interest to describe a VINS solution, we will
deine three level in the following and use them to classify works from literature.

4.4 Dead-eckoning/Vision-Inertial Odometry
4.4.1 Extracting Information from Image Sequences
The exploitation of images for motion and localization requires extracting the information in a
series of images. This extraction can be done in diverse ways, which can be classiied both by the
amount of data extracted, and by the nature of extracted information. The amount of data leads to
the sparse and dense terminology. A sparse method extracts very localized areas of the image that
are considered of particular interest, while a dense method uses the whole image. Orthogonally,
the nature of extracted data leads to the indirect and direct terminology. The indirect methods
translate the information of the image into geometrically meaningful value – for instance pixel
coordinates of a geometric features – while the direct method ”recovers the unknown parameters
[in our case movement parameters] directly from measurable image quantities at each pixel in the
image” ([Irani and Anandan, 2000]). vio algorithms can be classiied according to these two criteria
in the following four families.

3One reason for this fact is the requirement for highly specialized test bench to calibrate imu with high-precision.
Such setups are generally not directly accessible to computer-vision researchers in “standard laboratory”.
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Indirect+Sparse
Indirect and sparse approaches have been the most commonly used in literature. In this combination,
images are summarized as a few geometrical features which are localized in the pixel array. The
most common features are corners (i.e. a pixel in the image whose pixels around are majoritarily
either darker or brighter) or edges (an area in the image where the image gradient is strong along
one direction).

Once detected for the irst time in an image, features have to be recognized from one image of
the sequence to another. Two categories of methods are used for this temporal matching.

The irst one is close to sparse optical low techniques. These methods try to register (align)
the local appearance of the feature in the image pattern translation. The inal patch alignment
gives the new coordinates of the features. This is generally done iteratively with subpixel accuracy
([Lucas and Kanade, 1981; Bouguet, 2000]). Doing so assume a high enough framerate in order
to have small movement between frames, and assumes, a features is to be found around the same
coordinates in the next images, then a gradient descent of the diference of intensity between patch
to reine this irst estimate. This features tracking method is used for instance in [Li et al., 2014;
Tsotsos et al., 2012, 2015; Qin et al., 2017; Weiss et al., 2012].

This tracking method is adequate for corner tracking, but not for edges, because of the aperture
problem (edges position is ambiguous along the direction parallel to the edge). It can be circumvented
by restricting the search space to the epipolar line in the next image in the speciic case where this
line is known at matching step (i.e. if a reasonable estimate of translation direction and rotation is
available. See for instance in [Yu and Mourikis, 2017]).

A second method for features tracking relies on an abstracted appearance descriptor. Descriptors
are either a binary string or a set of real numbers, associated to a distance, which describe the
local appearance of the image. A simple descriptor would be a vectorized version of intensity
values around a corner; but this lacks robustness to rotation and scale, change of viewpoint and
illumination. More advanced descriptors stem from statistical learning approaches and are designed
to present “learned” invariance to the change of appearance created by a range of motions. In
such descriptor-based approach, at each frame, instances of features are detected and described.
Then the features are matched to features extracted from previous frames thanks to the descriptor
distances and some epipolar geometry constraints. If a descriptor is discriminative enough, this
allows recognizing features whatever their current location in the new image and thus does not
require high video framerate.

Authors of following publications use a descriptor paradigm: [Weiss et al., 2012] uses simply
patch intensity while [Konolige et al., 2010] uses a zncc descriptor. [Leutenegger et al., 2015]
uses a more advanced descriptor called “brisk” ([Leutenegger et al., 2011]) for corners tracking ,
brisk are crafted for robustness to aine and scale transform and lightning changes. [Paul et al.,
2017] gives a interesting comparison of the optical low tracking versus frame-to-frame descriptor
matching in a vins context.

Whatever the tracking paradigm chosen, in an indirect + sparse approach the information of the
image is translated into pixel coordinates to feed an estimator.

Direct+Sparse
This paradigm still reduces the image to a inite set of areas in the pixel array but avoids translating
the image content into high-level geometrical features. Instead, the raw pixel intensity in these
areas is directly given to the position estimator. The position estimator seeks to minimize the
photoconsistency error in these areas through a patch alignment process – which is parametrized by
quantities of interest for the localization problem, rather than feature position in the image space.
For instance, [Bloesch et al., 2015, 2017] uses directly a photoconsistency error as a measurement
equation in a Kalman ilter whose prediction is computed by the imu. [Forster et al., 2017] is
based on the same idea, the authors combine direct and indirect methods in order to retain the
large convergence basin of indirect methods, and accuracy of direct ones. Another relevant work
is related in [Engel et al., 2018], using this time an optimization framework to estimate structure
and motion, using photoconsistency error instead of the traditional reprojection error of bundle
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adjustment algorithms. This work has not been adapted to use an imu (yet).

Direct+Dense or Direct+Semi-Dense
Some works try to exploit most of the information available in the images. For instance [Engel
et al., 2013, 2014a], introduced what they call semi-dense odometry, a direct formulation which
exploit all areas of image where gradient magnitude is strong enough. Alignment of the entire image
then leads to position tracking. [Usenko et al., 2016] extended this purely visual-based method
with information from an imu. Fully dense methods also exist in vision community (see [Newcombe
et al., 2011]), but we are not aware of fully dense methods coupled with an imu. Besides, fully
dense methods are generally not eicient for localization because they waste computation budget
on image areas that are not informative.

Indirect+Dense
It is not easy to igure what such a method would be. One could imagine for instance that the
image processing steps would estimate a geometric quantity densely over the image, such as optical
low, depth or disparity, and then provide these estimate to the position estimator instead of the
raw image. In fact, this is exactly what is done in methods relying on the 3D estimate on structured
light depth sensor and rgbd sensor. Indeed, these sensors internally transform an infrared image
to a dense depth image that is then used in the position estimator. Hence, our method presented
in Sections 3.2 and 3.6 its perfectly this category. This is similarly the case for all icp variant of
literature using Kinect-like sensors as input, for instance [Izadi et al., 2011; Niessner et al., 2014;
Bonnabel et al., 2014a; Jaimez and González-Jiménez, 2015].

4.4.1.1 Requirement for a robust image processing pipeline

Bad features tracking or matching will degrade the estimate severely, features tracking thus needs
to be robust both to non-modeled random events that could alter the appearance of features
in the image, and to wrong matches due to algorithm mistakes. Several strategies are used;
for descriptors matching, consensus-based strategy is the most widely used, generally through a
randomized heuristics such as the ransac (RANdom SAmple Consensus) algorithm [Fischler and
Bolles, 1981]. Depending on the problem and assumptions several variants are used in features
tracking: 5pt-ransac for two central images, 2pt-ransac [Bazin et al., 2010; Troiani et al., 2014]
for central images with known rotation. Another alternative is to model the probability of outliers
(i.e. a data that does not it the model assumption) explicitly into the estimator. This is the
approach chosen in the features tracking component of [Forster et al., 2017].

However, this is impossible to guarantee that the visual processing frontend will not make any
mistake; thus these outliers rejection schemes have to be completed by a robustiication of the
position estimator itself with respect to its inputs coming from image processing. This can be
done for instance by optimizing robust loss instead of L2 norm [Triggs et al., 2000] or by using a
priori information on the motion to further remove gross image processing error (for instance 1-pt
ransac if a covariance on the matching is available [Civera et al., 2010]).

4.4.2 Fusion with an IMU

While one usually distinguishes between tight and loose estimators, we propose here, unconvention-
ally, to deine three levels of “tightness”, that correspond to how the image information is actually
used in the algorithmic submodule fusing the information with the imu (submodule which is called
fusion estimator hereafter). Our terminology is also summarized in Figure 4.2.4

4Note that our tightness deinition is not orthogonal to the choices of Indirect/direct Sparse/Dense visual method,
although this terminology was only dealing with the visual processing pipeline, whereas the tightness notion is
linked with how the imu is used.
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Figure 4.2: Diferent structure of estimator using our classiication. (a)-(b) two examples of
loose fusion based on sparse-indirect and direct visual processing; (c) tight fusion; (d)
“supertight” fusion. (See Section 4.4.2.1)
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4.4.2.1 Diferent fusion tightness

Loose: one vision estimator giving position or relative position that feeds a fusion estimator.
In loosely coupled approaches, the images are summarized into geometrical information on the
movement of the camera. This information is then, in a second step, fed to an estimator whose
role is to fuse this piece of information with the imu measurement. This is particularly handy in
stereo ring settings, which are suicient to retrieve relative metric translation and rotation. This is
exploited for instance in [Tardif et al., 2010] and [Konolige et al., 2010].

However, loose approaches have also been tried also in a monocular context: for instance, [Weiss
et al., 2012] exploits the epipolar constraint to derive a scaled velocity and use this as an update of
an ekf. One diiculty of those approaches, though, is to cope with the metric scale estimation. Two
scale-retrieval ilters (one ekf and one non-linear) are compared in [Grabe et al., 2013]. Both works
focus on the restrictive case where a dominant plane is present in the image – which is generally
true for quadcopter applications but not in general, and speciically not in the case of interest of
this thesis.

As the visual processing is isolated in the loose approach, it can be used indiferently with all
combination of direct/indirect and sparse/dense visual algorithm.

Tight: image preprocessing that feeds an estimator It is well recognized that in the case of
monocular and imu fusion, loosely coupled approaches are not optimal. The tight fusion estimator
approach can reach higher accuracy by using information extracted from images, without reducing
them to a piece of information on the camera movement. This also allows iner selection of image
data, leveraging easily information from imu and past states for features tracking for instance.

This paradigm is used in numerous works. In some, the fusion estimator takes, corners or edges
coordinates as input. [Kleinert and Schleith, 2010; Tsotsos et al., 2012; Hernandez et al., 2015; Li
et al., 2014; Leutenegger et al., 2015; Paul et al., 2017] all use corner features into optimization
or iltering based estimators. The “structureless” visual-inertial bundle adjustment in [Forster
et al., 2015] can also be classiied as tight fusion. [Yu and Mourikis, 2015, 2017] both work with line
features coordinates as input. [Diel et al., 2005; Lynen et al., 2013b] use constraints arising from
sparse optical low measurement into the fusion estimators and work, again, with the assumption of
a dominant plane in the image.

In some works (e.g.[Tsotsos et al., 2012; Qin et al., 2017; Leutenegger et al., 2015]), using such
feature’s image coordinates requires augmenting the estimated state with the 3D position of the
corner or edges, in a full Structure-from-Motion-like approach.

We also classify into the tight category one approach based on dense visual odometry presented
in [Usenko et al., 2016]. In this approach, one unique estimator minimizes an error combining
photometric terms and inertial terms, which would advocate to classify it as supertight (see next
section). However, the photometric terms expression relies on a dense depth map estimated on a
reference image; this depth map is originating from a separated triangulation process, which uses
both temporal and stereo matching. The fact that part of the image processing is done separately
from the position tracking makes us classify this method in tight albeit the distinction starts to
blur in this case.

Super-tight: one unique estimator handle IMU and raw image information directly Finally,
the last approach, that we call here “super-tight” formulate directly one fusion estimator that
takes as input areas of images, without any or with few image processing transformation (no
features tracking or dense depth map generation). The perfect example of such an estimator is
given in [Bloesch et al., 2017], where an Iterated Extended Kalman Filter is used for the fusion.
The measurement equation derives from a photometric error term such that minimizing this term
corresponds to an klt (Kanade–Lucas–Tomasi feature tracker) iterative tracking of features, but
whose iteration are constrained by the ilter covariance on features depth and position.

One extension of the svo algorithm of [Forster et al., 2017] can also be seen as an instance of
super-tight fusion. The authors process, into the same optimization, relative rotation between
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frames coming from gyroscopes with direct error measurement to estimate position and depth of
features simultaneously. However, they disregard the estimation of sensors biases.

An extension of the direct optimization-based method of [Engel et al., 2018] with the inertial
error of other indirect bundle adjustments (as in [Leutenegger et al., 2015]) would also lead to an
instance of a super-tight algorithm. If no such work has been published yet, we guess this is only a
matter of time.

In the end, which level tightness should we choose? Loose fusion is well-suited for integrating
3rd-party sensors into a system; for instance, a high-end imu/gnss product integrating closed source
proprietary processing software. In this case, loose fusion can be exploited to leverage expertise
contained in the commercial product software without having to develop it oneself. Loose fusion
does not bother with accurate sensor modeling and is then easier – and thus faster – to implement.
It could also be used in the case of very bad quality sensors, for which information could be seen
more as a “hint” and not a proper measurement with Gaussian noise. However, as a drawback,
loose fusion cannot leverage the sensor complementarity fully, requires a consolidated vision-based
pose estimate at each instant, and has repeatedly been shown to be outperformed by tight estimator
for vins. We argue that except for the case of sophisticated high-end 3rd-party sensors, we should
prefer tight fusion, especially in the problem at hand.

It is not clear which of the tight and super-tight category is better. They mainly difer from how
the visual information is handled. The question of which to choose boils down to the question of
which visual processing paradigm is better between direct and indirect. This question has not been
soundly answered in the community (see for instances the very thorough comparison done in [Yang
et al., 2017; Engel et al., 2016; Platinsky et al., 2017]).

In a nutshell, indirect methods are naturally less sensitive to lousy illumination conditions and
mis-calibration while direct methods are more sensitive to these sources of error and require camera
photometric calibration to reach their full potential. However, direct methods easily handle poorly
structured scenes, with few strong corners or edges in contrast to corner-based methods. Also,
indirect methods often provide a broader convergence basin as their cost function tend to be a bit
more convex compared to direct methods as claimed in [Engel et al., 2018].

4.5 Dead-Reckoning plus Localization
One very useful practical application is the combination of dead-reckoning technology with a visual
relocalization system. This allows estimating an absolute position in a map reference frame, whereas
dead-reckoning output can only be given in its own reference frame. In contrast to full slam, these
systems do not have to build the map simultaneously and thus are generally less complex and
computationally more tractable. We foresee this DR+Reloc approach will be the instance of VINS
the most useful in the future, especially in ar or autonomous automotive.

It is here assumed that a map (even incomplete or partially obsolete) of the environment is
given. This map can, for instance, be constructed through batch visual-inertial bundle adjustment
beforehand, or even exploiting eventually a more complete/expensive set of sensors. Being an oline
process, this map construction could be built on an exact solution to a statistically sound map
solution.

In this case, one thus needs a way to (i) relocalize into the map, (ii) use this information to
correct the dead-reckoning process.

Generally, these methods are built around a fast and low-latency vio algorithm for local motion
consistency and a slow and high-latency correction for localization in the map.

[Middelberg et al., 2014] proposes for the relocalization step a remote localization server archi-
tecture that takes from vio a local 3D map of features, matches it with a global 3D point-cloud
in memory and sends a position correction back to the dead-reckoning system. The optimization
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involved in vio is then augmented with error terms that are built from diferences of position
between the local pose estimate and the global pose from the server.

[Lynen et al., 2015] uses an expensive image retrieval strategy based on bag-of-(binary)-words
where word dictionary is actually a discretization of the space of features descriptors (image retrieval
and descriptors matching is a vast subject on its own). They then retrieve 3D-2D matches that they
use individually as a measurement equation into their tight fusion ilter, efectively constraining the
global position.

One problem the last approach is that the map is seen as exactly known at runtime, however,
the construction of the map should be assumed to be polluted by error as well; [DuToit et al.,
2016, 2017] extend previously cited references by integrating map uncertainty considerations, and
studying the efect of the relocalization pipeline on the consistency of their vio ekf. Compared to
previous works, they also boost runtime performance by exploiting the prior position knowledge to
bypass image retrieval logic except for the irst map relocalization.

Similar techniques are used in the open source framework [Schneider et al., 2017].

Note that all these approaches exploit speciically created map. The exploitation of already
existing data would be of a strong interest in relocalization application. One example of such
development is given in [Larnaout et al., 2012; Antigny et al., 2017] that uses GIS data information
or urban furniture position to constraint the localization in urban areas. If, for indoor applications,
such data are often inexistent, no doubt that, this kind of data would be highly valuable for
large-scale urban ar.

4.6 SLAM
Regarding vins slam, loose fusion approaches have been used in [Shen et al., 2013; Lynen et al.,
2013a; Engel et al., 2014b]. Among those, [Lynen et al., 2013a] estimates explicitly the scale factor
of a full-featured monocular slam subsystem by feeding its output (a position in its scaled map)
into an ekf taking also imu as input – the scale factor is there a state of the ilter. [Engel et al.,
2014b] fuses the output of a monocular slam position with the navigation ilter of a commercial
drone: the slam position is scaled correctly through fusion with a pressure sensor, and an ekf fuses
it with pose increment from the drone internal odometry and motion model. [Shen et al., 2013] uses
similar ideas, but regularly retrieves the monocular map scale thanks to a very low-frequency second
camera, they fuse this also scaled pose through an ekf that uses the accelerometer, gyrometers and
mechanization equations for the prediction directly.

Among tighter fusion scheme, the majority of systems relies on a dual-layer scheme: lower-layer is
an eicient vio sub-modules – built with a tight approach – while the upper-layer handles long loop
closure to correct the signiicant drift in the trajectory. This upper layer relies on full visual-inertial
bundle adjustment cost function [Mourikis and Roumeliotis, 2008] or an approximation of it, [Qin
et al., 2017; Nerurkar et al., 2014].

There also exist tight single-layer vins slam. For instance [Mur-Artal and Tardos, 2017] integrate
into their full-featured optimization-based monocular slam solution error terms arising from imu.
[Neunert et al., 2016] uses one ilter with persistent positions of iducial markers in the state, but
their solution is hence restricted to small specially equipped areas.

From the point of view of statistical consistency, however, one diiculty of vins slam, is to keep
a consistent estimate while separating the inference problem into a fast low-latency dead-reckoning
and a high latency map reinement process. All previous tight approaches are either not adequate
for long-term operation or either rely on approximations of the map estimate – employed in the
oline map building process.

We are aware of work trying to handle this speciic issue ([Kaess et al., 2012]) explicitly, but their
solution has not been widely used to our best knowledge. In our opinion, it is not clear nowadays
how the frontier between the map inference/reinement processes and the dead-reckoning should be
handled in the general case.
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4.7 Other Considerations and Topic of Research
Previous sections focused on outline algorithm used in monocular vins. The present section briely
relates interesting works in other research topics that are useful for monocular vins design.

Estimator initialization
One of the issues of the vins problem in its standard formulation is that, in general, the map
estimator translates into a non-convex and non-linear problem. Thus, statistically consistent and
precise solution of the problem relies on a good irst estimate. At initialization time, no estimate of
pose and – more importantly of attitude – exists a priori. Systems then either rely on assumptions
on the world, on the dynamic or on the state, or either try to formulate an (approximated) convex
or closed form solution to the problem to initialize more accurately iterative estimators. [Mur-Artal
and Tardos, 2017] proposes to start tracking the movement with a pure monocular method and
initialize attitude lately and scale through a cascade of optimization problem: irst solving for
gyroscopes biases, then attitude, and accelerometer biases. [Yang and Shen, 2016] proposes a linear
approximation of vins cost function that can be used to estimate attitude, velocity, accelerometer
biases and camera-imu extrinsic parameters and scene geometry. But gyrometers biases have to be
known. In [Martinelli, 2013a; Kaiser et al., 2017], the authors propose a method to estimate speed,
attitude, and biases, assuming the extrinsics are known. They particularly focus on the minimal
data cases, in order to design fast initialization methods.

Embeddability and Power Consumption
Recently, some work focused on reducing vins and specially vio power consumption: [Hong et al.,
2014; Zhang et al., 2017c,b] Several ways are explored, from algorithm performance/accuracy
trade-ofs to speciic hardware choice (fpga, general purpose or specialized co-processor, etc.).
Particularly, the work of [Zhang et al., 2017c] is very complete. The authors show that a vio based
on the same principles that are presented in the Chapter 5 of the present thesis can be implemented
to consume less than 2 watts of power – which would correspond, after a rough computation of
ours, to more than eight hours of operation on a standard smartphone battery.

Estimate consistency
The consistency of one estimator is linked to its capability to predict its own error. Having an
accurate error estimation is useful in some vins applications per se. In the case of a double layer
vio+Reloc or of slam, this uncertainty can be used by the upper-layer ([Nerurkar et al., 2014]) or
by the relocalization submodule [DuToit et al., 2017].

The inal consistency of one estimator depend on many factors: from precise sensors error
modeling to smart handling of linearization errors. Visual navigation development has a long
history of analysis of the algorithmic sources of such inconsistencies.

The nees (Normalized Estimation Error Squared) metric can be used to assess the consistency of a
Bayesian estimator. This consistency is cumbersome to assess on real data and is generally calculated
in simulated environments, which is ideal for tracking algorithmic sources of inconsistencies.

The Chapter 7 will deal with estimator properties related to consistency and will review the
literature briely on the issue of consistency in vins.

Alternative approaches: new sensors
Some approaches for vins are more experimental at the time of writing. On a sensor side, some
work leverage the so-called event-camera: instead of sending images at ixed framerate, these sensors
send asynchronous pixel events, triggered by a change of received intensity for each pixel. In this
particular case, a lot of visual processing have to be reinvented. Diverse teams are researching in
this direction right now, and some of them fuse event-camera with an imu for dead-reckoning: [Zhu
et al., 2017; Vidal et al., 2018].5 The main advantages of such a camera are their high temporal

5despite using a very diferent imaging device, these methods perfectly its the indirect tight paradigm by adapting
visual corner tracking on event time series instead of video stream
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bandwidth and high dynamic range pixel, which could ultimately reduce the use of an imu to a
gravity alignment sensor.

Alternative approaches: the deep-learning paragraph
Finally, the author of this thesis admittedly disdained the deep-learning (r)evolution that still kept
growing in computer vision during the three years of the doctoral work. In fact, visual navigation
methods have been a safe-harbor: they were nearly unafected by deep-learning hegemony until
now. Attempts to apply black-boxes deep-learning techniques to the vins problem does not
show satisfactory results for 6dof low-latency, high accuracy, high-frequency pose estimation
(see [Rambach et al., 2016; Clark et al., 2017]).6 Nevertheless, this situation might not last for
long. If we irmly do not believe in end-to-end diferentiable and learned vins algorithm for our
application, a lot of its submodules could be improved by deep-learning.

Letting aside the undoubted and obvious beneits from integrating high-level semantic information
– which deep learning excels at inferring – into the slam and relocalization module, one might
think about other direct beneits: on the image processing part [DeTone et al., 2017; Yi et al.,
2016] method could supersede corner detection and tracking for more meaningful corners and a
more robust tracking7, [Czarnowski et al., 2017] ideas (deep-learned features registration for robust
rotation inference between two images) could help bringing some robustness to direct methods; on
the estimation part [Li et al., 2017] could help to recover the scale of monocular+inertial setup
in the case of a uniform velocity motion through a strong learned visual prior; inally, activity
recognition from inertial data [Yang et al., 2015; Um et al., 2016] could help classify the current
motion at each timestamp, which in turn could be useful for adding learned activity-dependant
motion prior into more traditional iltering methods.

Nevertheless, the main issue of the deep-learning techniques is their computational and memory
requirement at runtime, which often exceeds by far traditional approaches for low-level image
processing and computer vision. This has and would surely slow down their adoption for our use
case.

4.8 Interesting Available Resources
In a tradition of publishing open-source versions of slam algorithms8, some resources have been
made available by some research teams for the the research community. We point towards the
most interesting works we are aware of in Table 4.1 and Table 4.2. The former lists self-contained
open-source estimators, while the latter lists datasets that can be used to develop, test, and
benchmark vins algorithms.

If these open-source algorithms are a good starting point, they surely are not as robust as
industrial vins. The datasets also are good baseline, but somewhat restricted, they would not
suice to engineer a complete and robust vins in our opinion.9

4.9 Position of the Work Presented in Following Chapters
In this chapter, we have exposed concepts used and attempted a classiication of vins algorithms.
We gave for each type, examples from very recent literature.

We are now going to use this terminology to position the work presented in Chapters 5 to 7.
First, we will only focus on the dead-reckoning subsystem (called vio in this chapter). We

still do not address the problem of localization, relocalization or slam. Secondly, we will use an
6and in our opinion, there is little to no sense applying deep-learning methods to learn the mechanization equations

of inertial navigation.
7which is totally in phase with features detector/descriptor history: they became more and more based on a learning

process across times.
8which has historically been demonstrated as being the best way to communicate about one’s research in vision-based

navigation (see the exceptional success and dissemination of [Klein and Murray, 2007])
9the late contribution of [Schubert et al., 2018], added after the review of the thesis report, increases drastically the

quantity and quality of the available public resources.
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Name Publications s/d i/d IMU Inference Type
orb-slam [Mur-Artal and Tardos, 2017] s i not released bacth optim SLAM
dso [Engel et al., 2018] s d not yet optim+marg DR
svo [Forster et al., 2017] s i/d gyr only optim DR
okvis [Leutenegger et al., 2015] s i yes optim+marg DR
msckf [Paul et al., 2017] s i yes EKF ilter DR
rovio [Bloesch et al., 2015] s d yes EKF ilter DR
maplab [Schneider et al., 2017] s i/d yes EKF ilteri DR+reloc

i but uses oline batch optimization for map construction

Table 4.1: Released research vins algorithm; s/d is for sparse/dense; i/d is for indirect/direct.

Name Publications synced application
Euroc Datasets [Burri et al., 2016] yes quadrotor (indoor)
Mars-VINS [Paul et al., 2017] clk-drift pedestrian (indoor)
Canoe-VINS [Miller et al., 2018] yes canoe (outdoor)
Zurich-Urban [Majdik et al., 2017] yes quadrotor (outdoor)
PennCOSYVIO [Pfrommer et al., 2017] mixed pedestrian (indoor)
MaplabCLA [Schneider et al., 2017] yes pedestrian (indoor)
PerceptIn Ironsides [Zheng et al., 2018] yes robotic (arm)
ShutTUMii NotReleasedYet yes pedestrian (indoor)
ViTUM [Schubert et al., 2018] yes pedestrian (indoor)

ii IMU format given is not exploitable yet for serious VINS fusion,
it could be eventually ixed. For now this dataset is mainly useful for pure visual odometry.

Table 4.2: VINS Public Datasets
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4.9 Position of the Work Presented in Following Chapters

indirect approach that extracts corners in the image and tracks them by sparse KLT tracking.
In our implementation features will be extracted independently from the position estimate; thus
our methods would be classiied as tight fusion. The choice has been made for two reasons: irst,
because it has repeatedly shown to be more fruitful than loose fusion, secondly, and in contrast
to “supertight” fusion, an indirect tight approach still permits to separate the image processing
step from the fusion estimator. This renders these approaches more easy to begin with, as we can
prototype the vision frontend rapidly with the help of open-source resources and makes the solution
architecture more modular, which is an advantage from an implementation point of view.

We will present two kinds of estimators, one based cost minimization in Chapter 5 and one based
on iltering in Chapter 6.
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Chapter 5

A joint-optimization approach
In this chapter, we solve the magneto-inertial monocular sensor fusion problem through

a non-linear least-squares optimization technique. We build a joint minimization problem
between poses, speed, magnetic ield and visual landmark positions and present a way to
solve it for real-time dead-reckoning purposes. Section 5.1 recalls the cost functions that are
usually used in visual-inertial bundle adjustment and slam, and introduces the notion of
preintegrated measurement for accelerometers and gyrometers. The Section 5.2 highlights
the main contribution of the chapter: the extension of the preintegration technique to
express a full magneto-inertial robust error term. The Section 5.3 recalls a irst order
method to optimize the cost function on manifold. Finally, the Sections 5.5 and 5.6
show an application of the derived error term to a sliding window smoother solving for
magneto-visuo-inertial dead-reckoning. A preliminary version of this work was presented
at the 2017 International Conference on Intelligent Robots and Systems [Caruso et al.,
2017b].

5.1 Visual-inertial bundle adjustment
5.1.1 Visual Only Cost Function
As seen in Chapter 4, numerous modern monocular slam systems (for instance [Klein and Murray,
2007] or [Mur-Artal et al., 2015]) can be seen as a real-time incremental solution to the bundle
adjustment problem. Bundle adjustment in a pure visual case is well studied and is described
in [Triggs et al., 2000] as “the problem of reining a visual reconstruction to produce jointly optimal
3D structure and viewing parameters (camera pose and calibration) estimates”. The name “Bundle
Adjustment” refers actually in the literature more to the cost function of the problem at hand than
to the algorithm used to minimize it. This cost is often written as a non-linear least-squares. If
we assume that the intrinsic calibration of each camera is known, the cost for an instance of the
problem with cameras indexed by i and landmarks indexed by j writes:

E(X) =
∑

(i,l)∈O
‖rproj;il(ξi, lw

l )‖2
ΣC

, (5.1)

where O is the set of pair of index (i, l) for which camera i at pose ξi = (Rw
i , pi) sees the landmark

l at 3D position ll. X is an element of the Cartesian product of all variables spaces, ξ and l of the
problem. The igure 5.1a sketches a situation associated to this cost function. The symbol X will
serve as the general unknown of the minimization process throughout this chapter. We will name
it, very generically, the state.

The residual rproj;il is generally chosen as the diference – in pixel coordinates – between the
observation of the landmark in image i, oil, and the predicted observation, knowing the camera
pose ξi and the landmark position ll. Formally, it writes:

SO(3)× R
3 × R

3 → R
2

rproj;il : ξi, ll 7→ π
(
R

T

i (lw
l − pi)

)
− oil (5.2)
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with π the camera projection function.
Cost function (5.1) is generally solved by a gradient-based irst order or quasi-Newton methods,

such as a Gauss-Newton, Dogleg or Levenberg-Marquardt algorithms.
One of the problem of dead-reckoning or slam systems that relies upon only the cost (5.1),

is that this cost is invariant by a global change of scale. Hence, the reconstructed poses and
geometry scale factor is ambiguous. In approaches solving (5.1) incrementally on sliding window
(such as [Mouragnon et al., 2006]), this can even lead to severe scale drift between diferent part of
the trajectory. For this reason some constraints on the scale have to be found and integrated into
the cost. These constrained can be derived from a priori knowledge on the environment [Lothe
et al., 2010] or on the movement [Scaramuzza et al., 2009]. They can also be derived from other
sensors measurement function, in our case, an imu.

5.1.2 Visual-inertial Cost Function
One advantage of the cost function formulation is that it can be extended to account for other
sensors. As these sensors do not necessarily relate frame poses and landmark positions directly, the
price to paid to add additional sensor is often a growth of the state dimension through the inclusion
of secondary variables. These variables are qualiied here as secondary because they are not of
direct interest but are unknown and necessary for the cost function evaluation and optimization. In
fact, they are even sometimes called nuisance parameters or ancillary variables.

In particular, the bundle adjustment cost function can be extended to take into account the
information from calibrated raw imu data captured between two successive frames. Please refer to
Figure 5.1b for a schematic situation associated to such cost function.

In this case, it is required to include 3 secondary variables by frame: (i) the instantaneous speed
at frame timestamp, (ii) the accelerometers biases at frame timestamp, and (iii) the gyrometers
biases at frame timestamp. We name this set the imu state and note their union si =

[
vi, bgi

, bai

]

The monocular cost function is then extended as:

E(X) =
∑

(i,l)∈O
‖rproj;il(ξi, ll)‖2

ΣC
+

N−1∑

i=0

∥∥rimu;i(ξi, si, ξi+1, si+1)
∥∥2

Σimu;i
(5.3)

where we introduced the function rimu;i that correspond to a constraint between subsequent poses
arising from imu data, and Σimu;i, the covariance of this residual. We also introduced N , the
number of frame, and we assume now that these frames are temporally ordered.

How to eiciently build the residual rimu;i was the object of recent publications [Lupton and
Sukkarieh, 2012], [Forster et al., 2015], [Eckenhof et al., 2016]. We will recall their technique in
Section 5.1.3.

Remark: In the cost function (5.3) and now for the other cost functions that will appear in this
chapter, the ξ variables will represent the pose of the IMU frame – generally centered around the
accelerometer position – and not the one of the camera frame, as it was the case in the previous
section. Reprojection error computation will take into account additional transformation due to
the rigid body transform between the camera frame and the imu frame.1

5.1.3 Inertial Residual and Preintegrated Inertial Measurement
This section describes how the imu residual rimu;i and its covariance Σimu;i can be computed. We
irst present in Section 5.1.3.1 a general way to transform any continuous evolution model as an
error term in a non-linear optimization algorithm, then present the eicient approach traditionally
used in the visual-inertial case as popularized by [Lupton and Sukkarieh, 2012] and [Forster et al.,

1We assume this transform is known after oline calibration step, but it could also be part of the state and be
estimated as a secondary variable.
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5.1 Visual-inertial bundle adjustment

(a) Structure of bundle adjustment problem.

(b) Structure of visual-inertial bundle adjustment problem.

(c) Structure of visual magneto-inertial problem with magnetic map.

(d) Structure of visual-magneto-inertial problem used in this work.

Figure 5.1: Bundle adjustment problems
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2015]. The aim of this section is to build the foundation on which we can base a useful and eicient
mimu error term, which will be done in Section 5.2.

5.1.3.1 A general way to use continuous propagation model as an error term between
subsequent frame

The continuous model of Chapter 1 fed by received input measurement between time ti and time tj

could be used to propagate from the pose/imu estimate at time ti to the pose/imu estimate at time
tj :

N
(

(ξ̂i, ŝi), 0
)

−→︸︷︷︸
propagation

N
(
(ξpred;j, spred;j), Σpred;j

)
(5.4)

Where, in practice, the computation involves several Kalman ilter propagation step, including irst
order propagation of uncertainty. Then the diference between the state (ξpred; j, spred;j) and the
current estimate (ξ̂j , ŝj) – the one we are optimizing on – can be used to build a residual term
between time ti and tj :

(ξ̂pred;j, ŝpred;j) ⊟ (ξ̂j, ŝj) ∝ N
(

0, Σξpred;j

)
(5.5)

Where we used an abstract ⊟ operator to form the residual, which, to the irst order, behaves as a
centered Gaussian vector which covariance is known from the propagation step. The Jacobian -
needed in an gradient based optimization – could be computed by the chain rule applied through
the propagation steps (5.4).

One problem with this approach though, is that both predicted j mean value and covariance
depend on the initial estimate, through the propagation process. However, this dependence is not
made explicit in closed-form. This means that the propagation has to be recomputed each time
the ith pose/imu state changes. This would be ineicient to do in an iterative solver, for which
estimate changes potentially at each iteration. This is especially true in the case of interest where
the preintegrated measurements will be used to create a constraint between images. These images
are received at a rate order of magnitude smaller than the imu sample rate. Thus, numerous inertial
measurements are to be integrated to build the residual between successive frames. This technique

Figure 5.2: IMU residual computed with a propEKF Strategy (Section 5.1.3.1)

can be applied as soon as we have a continuous model for the evolution of the state. We name
it ”propEKF error term” for convenience. This propEKF strategy is for instance described and
used in the context of Visual-inertial bundle adjustment in [Leutenegger et al., 2015].2 A diagram
presenting this technique is depicted on Figure 5.2.

2 Note that, even if [Leutenegger et al., 2015] describes indeed imu error term construction with a propEKF strategy,
their later open-sourced implementation (https://github.com/ethz-asl/okvis) is based on the preintegrated
measurement presented in Section 5.1.3.2
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5.1 Visual-inertial bundle adjustment

5.1.3.2 Exploiting the structure of inertial propagation

In the case of inertial constraint between subsequent frames or keyframes of a visual-based opti-
mization, it is actually possible to avoid recomputing propagation at each iteration of the nonlinear
solver. This involves a slight change of the deinition of the residual error that better exploits the
structure of the inertial propagation equations. This idea was introduced by [Lupton and Sukkarieh,
2012] and is often used since in optimization based vins. We describe it in this subsection.

But before that, please note that the following computations assume the knowledge of the sensors
biases – the efect of unknown biases will be however discussed at the end of the section. Also, in
order to ease the reading of the following, we use a blue color and a tilde accent to distinguish
quantities that can be computed directly from received measurements (up to the measurement
noise and biases knowledge), without any dependencies on the state estimate. State estimates are
hereafter accented with a hat. We also simplify notation x(ti) to xi when ti refers to an image
timestamp.

Recalling (1.7)-(1.9), Page 15 of Chapter 1, integrating the body evolution model diferential
equation of strapdown lat-earth body dynamic between ti and tj yields:

R
w
j = R

w
i ∆̃Rij , (5.6)

vw
j = vw

i + gw∆t + R
w
i ∆̃vij , (5.7)

pw
j = pw

i + vw
i ∆t +

1

2
gw∆t2

ij

︸ ︷︷ ︸
Free Fall

+R
w
i ∆̃pij (5.8)

Where ∆t is the duration between ti and tj and we recall also the expressions of the blue integrals:

∆̃Rij
def
= ∆Ri(tj)

def
= I3 +

∫ tj

ti

∆Ri(τ)
[
ωb(τ)

]
× dτ (5.9)

∆̃vij
def
= ∆̃vi(tj)

def
=
∫ tj

ti
∆Ri(τ)ab(τ)dτ (5.10)

∆̃pij

def
= ∆̃pi(tj)

def
=
∫ tj

ti
∆̃vi(τ)dτ (5.11)

These quantities are decorated with a tilde to signify they are actually integrated measurements.
In fact, the authors of [Lupton and Sukkarieh, 2012] calls these integrals preintegrated measurements.
They suggest building the inertial error terms between subsequent frames using the following ”delta
quantities”:

ˆ∆Rij
def
= R̂

wT

i R̂
w
j (5.12)

ˆ∆vij

bi def
= ∆R̂

T

ijv̂
bj

j − v̂bi

i − R̂
wT

i gw∆t (5.13)

ˆ∆pij

bi def
= R̂

wT

i

[
p̂j

w − p̂w
i −

1

2
gw∆t2

]
− v̂bi

i ∆t (5.14)

These quantities can be computed from the current estimate of each state variables and represent
actually poses and speed diferences – expressed in the body frame at time ti – relative to a predicted
(virtual) position computed as if the body frame was in free fall. The situation is depicted on
the diagram 5.3. Using such delta quantities, the imu residual term of Lupton and Sukkarieh is
expressed as:

rimu;i =




LogSO(3)

(
ˆ∆Rij∆̃R

T

ij

)

ˆ∆vij − ∆̃vij

ˆ∆pij − ∆̃pij


 ∈ R

9 (5.15)
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Chapter 5 A joint-optimization approach

The preintegration approximation consists in assuming that the preintegrated measurements error
follows a Gaussian distribution, ie. that the residual (5.15) satisies:

rimu;i ∝ N (0, Σimu;i) (5.16)

Under this assumption, the residual can be used to derive standard non-linear least squares problem.
It is expected that the validity of this Gaussianity assumption will degrade with the duration of

preintegration, and thus that one should not use this error terms between temporally far instants.
How far is too temporally far has to be considered relative to the quality of the imu sensor.

The integrals along with the covariance Σimu;i are computed thanks to data sample received
between ti and tj . From a numerical standpoint, we assume that ωb(τ) – the rotational speed in
body frame – and ∆R

bi

i (τ)ab(τ) – the acceleration in bi frame – are constant between two mimu
samples.3

This leads to the following approximated expressions:

∆̃Rij ≃ Exp (ω̃i;k∆ti) .Exp (ω̃i;k+1∆ti;k+1) . . . . .Exp (ω̃i;N ∆ti;N )

∆̃vij ≃
∑

k≤N

∆̃Rikãb
i;k∆ti;k (5.17)

∆̃pij ≃
∑

k≤N

∆̃vik +
1

2
∆̃Rikãb

i;k∆t2
i;k,

where we have indexed the time of reception of imu data in between image the following way:

time

ti tj

ti;0 ti;1 ti;2 ti;N

Image timestamp

Inertial timestamp

and where ∆tk = ti:k+1 − ti:k is the duration between two imu samples except for k = 0 ;
∆t0 = ti:0 − ti and k = N ; ∆tN = ti:N − tj in order to account for boundaries.

It is possible to use a recursive algorithm to compute the three previous quantities and the
covariance Σimu;ij incrementally from the sequence of received measurements. Details of computation
are found in [Forster et al., 2015]. In a gradient-based optimization context, the Jacobian of the
residual with respect to the state vector can be easily computed from (5.15), (5.12)-(5.14).

Using the error term (5.15) instead of the propEKF one comes with some beneits:
• Eiciency. Compared to Section 5.1.3.2, the integration of measurements can be done only

once, at the reception of the imu data, as the integrals do not depend on the state. This is of
interest, because this integration is computationally expensive if the error term summarized
many measurements. While if using the propEKF strategy, we would need to recompute the
propagation. From a computing architecture point of view, this preintegration can even be
computed in a diferent thread/processing unit than the one running the full optimization
process. Preintegrating the measurement does not implicitly assume having an accurate
estimation of the current state in contrast to propEKF one.

• Accuracy. As already said relying on the error term of section 5.1.3.1 would require reprop-
agation of the model, otherwise the residual would introduce large linearization error into
the optimization. As the preintegrated measurements do not depend on the pose or speed
estimates at any time, their expressions are valid if these estimates change, and this reduces
linearization errors.

3Two remarks about the numerical integration strategy: irst, we could use higher order measurement model for
computing these integrals: by itting polynomial function through the data before computing the integral; secondly,
the assumption of ab(τ) itself being constant between two samples instead of ∆R

bi
i

(τ)ab(τ) could be used. This
would come at the cost of slightly more complicated computations, and was already stated in Footnote 7, Page 15
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5.2 Addition of Magneto-inertial Constraint

Figure 5.3: IMU residual based on preintegrated quantities of Section 5.1.3.2

A particular case where such preintegrated measurements are of interest is the algorithm initialization
phases, where estimates can be far from true values. The formulation allows to still integrate and
“summarize” the high frequency received data, even if the state is not totally initialized yet. This
case arises typically, when the system is waiting to aggregate enough low-frequency measurement
(GPS, visual measurement, etc) to render the state observable. This property was used in the
original paper [Lupton and Sukkarieh, 2012] in the case of a stereo-inertial estimator initialization.

Taking the non zero biases into account
As said in the beginning of the section, the pitfall of the previous presentation is that it does not
deal with the biases, yet the preintegrated measurements ∆̃Rij , ∆̃vij and ∆̃pij and the covariance
Σimu;i actually depend on the bias estimate used to compensate the measurements as discussed in
(1.3) of Chapter 1, Page 13. In the case where the biases are unknown and should be estimated
along with the trajectory, Lupton and Sukkarieh suggest using a irst-order perturbation technique
on ∆̃Rij , ∆̃vij and ∆̃pij to correct them for biases estimate evolution since their integration. They
also propose to ignore the dependency of Σimu;i with respect to the bias. In this case, the complete
imu residual, including bias perturbations, can be written as:

rimu;i =




Log
(

∆Rij

(
∆̃RijExp

(
∂bgi

∆̃Rij(b̂gi
− bg int;i)

))
−1
)

∆vij − ∆̃vij + ∂bgi
∆̃vij(b̂gi

− bg int;i) + ∂bai
∆̃vij(b̂ai − baint;i)

∆pij − ∆̃pij + ∂bgi
∆̃pij(b̂gi

− bg int;i) + ∂bai
∆̃pij(b̂ai − baint;i)


 (5.18)

Where we used the shortcut notations for partial derivatives ∂bA = ∂A
∂b

to makes a Taylor
expansion appears and where baint;i and bg int;i are the reference constant bias value used during
the preintegration step. These irst order approximation can in practice be assumed suicient if the
imu is reasonably calibrated. In this case, the perturbations(b̂×i − b×int;i) are small, and we thus
leverage the gains of eiciency from preintegrated measurements while dealing with bias variations.

5.2 Addition of Magneto-inertial Constraint
We now aim at including into the cost function the constraint on the poses related to the evolution
of the measured magnetic ield

One can imagine at least two paths to extend the vins cost function (5.3) with this information.
The irst one would be to estimate a magnetic map as a secondary variable; the second one would
be to use magnetic evolution and gradient to build a constraint on subsequent frame only, similarly
to how mi-dr ilter of Chapter 2 works. The cost function structure in the irst case is represented
in Figure 5.1c while the one used in the second case is depicted on Figure 5.1d.
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Chapter 5 A joint-optimization approach

In the irst case, assuming we can parameterize the magnetic environment with a vector of
parameters, mw

magn, we could try to minimize a cost function with the following form:

E(X) =
∑

(i,l)∈O
‖rproj;il(ξi, ll)‖2

ΣC
+

N−1∑

i=0

‖rimu;i(ξi, si, ξi+1, si+1)‖2
Σimu;i

+

N−1∑

i=0

‖rB̃(ξi, mw
magn)‖2

ΣB̃

(5.19)

This formulation is appealing and would be natural, specially from people used to slam formulation
and bundle adjustment. In this formulation, mw

magn is a map of the world magnetic ield, and rB̃ is
the residual between the predicted measurement knowing the map and the magnetic ield actually
measured by the sensor: a problem very similar to the classical bundle adjustment one with mw

magn
playing the role of landmark positions variables.

However, we argue that this formulation is hardly practical in our case. It is not very clear
how the magnetic ield should be parameterized (i.e. what would be the deinition of mw

magn) for
odometry or large scale mapping applications. Simple parametrization as constant magnetic ield or
aine magnetic ield would fail. One could think relying on a volumetric description of the magnetic
ield, but this would require a lot of memory space, and practical uses (for instance for volume
occupancy map) would need to discretize the space coarsely. Such a description would be too rough
to exploit the local perturbation of magnetic ield that mimu is designed to measure. Moreover, it
would be wrong to assume this magnetic map is static for extended duration: for instance, any
movement of metal in a room since the map creation would lead to an obsolete magnetic map with
potentially large errors, that would in return corrupt the position estimate. Designing a system
robust enough to deal with these kinds of long-term non-stationarities would be a challenge in our
opinion.

Instead, we use measurements of the magnetic ield and its gradient between two instants to
extract information on the corresponding relative pose. We do not add the map of magnetic
ield mw

magn into the state as secondary variable, but instead we add, for each frame, a variable
representing the magnetic ield at the current location: si =

[
Bb

i , vw
i , bgi

, bai

]

The cost function we seek to minimize would hence writes:

E(X) =
∑

(i,j)∈O
‖rproj;il(ξi, lj)‖2

ΣC
(landmark reprojection error)

+

N−1∑

i=0

‖rmimu;i(ξi, si, ξi+1, si+1)‖2
Σmimu;i (relative constraint on subsequent mimu states)

(5.20)

+

N−1∑

i=0

‖rB̃(Bi)‖2
ΣB̃

(direct magnetic variable measurement)

We will call this cost function the mvins (Magneto-Visual-Inertial Navigation System) cost function.
There are two diferences with respect to the cost 5.3 used for vins. First the direct measurement
of the magnetic component of the state leads to the addition of a residual rB̃. It writes simply as
the diference between the instate magnetic ield at time i and the measured ield at time i:

R
3 → R

3

rB̃ : Bb
i 7→ Bb

i − B̃b
i (5.21)

Where Bb
i is the current estimated value of the magnetic ield at time ti and B̃b

i stems from the
magnetometers reading. The covariance ΣB̃ simply derives from the known characteristics of the
magnetometers noise and is a tuning variable.
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5.2 Addition of Magneto-inertial Constraint

The second term of (5.20) is also diferent from the rimu;i residual of Section 5.1.3.2. It is a
constraint between subsequent poses, speeds, magnetic ields and biases. Note that we have to
express the constraint on subsequent magnetic ields in a residual term depending jointly on imu
data. Indeed, as the magnetic constraint arises from inertial measurement coupled with gradient
measurement, its associated error will be correlated with the imu constraints error between poses.

This mimu contraint rmimu;i, as we choose to call it in the following, is derived in the next section.

5.2.1 Applying Preintegrated Measurement Technique to MIMU
Measurement

In a irst approach to build rmimu;i residual, it would be possible to use the propEKF strategy for
the mi-dr continuous model that was presented in Chapter 2, Page 23 and that we write here again:

Ṙ
w(t) = R

w(t)[ωb(t)]× (5.22)
v̇w(t) = R

w(t)ab
s(t) + g (5.23)

ṗw(t) = vw(t) (5.24)
Ḃw(t) = R

w(t)∇Bb(t)Rw(t)
T
vw(t) (5.25)

ḃg(t) = − 1

τg

bg + ηbg (5.26)

ḃa(t) = − 1

τa

ba + ηba. (5.27)

We show in this section that the structure of these equations of propagation can again be leveraged
to deine an error between two instants ti and ti that is statistically consistent and does not require
full recomputation of the propagation each time the estimate at time ti changes. While preintegrated
quantities have been derived for the inertial part of the model, extending the approach to handle
additional magnetic equations is not straightforward. In the following, we introduce three new
preintegrated quantities that we call magneto-inertial preintegrated measurements.

As done with the inertial model, we assume constant and known biases to derive the expression
of the residuals, and we discuss bias evolution afterwards.

Following the path of the preintegrated imu measurement, the main idea is to integrate the
magnetic ield prediction equation by separating contribution of initial speed, gravity, and speciic
acceleration. The process is depicted graphically on Figure 5.4.

We thus pursue the integration of the continuous equation (5.25) between time ti and time tj .
One has:

∫ tj

ti

Ḃw(τ)dτ =

∫ tj

ti

R
w(τ)∇Bb(τ)RwT(τ)vw(τ)dτ (5.28)

splitting vw(τ) thanks to its closed form expression (5.7) one get:

Bw
j −Bw

i =

∫ tj

ti

R
w(τ)∇Bb(τ)RwT(τ)

[
vw

i + (τ − ti)g + R
w
i ∆̃vi(τ)

]
dτ (5.29)

and factorizing by Ri the integral and using notation ∆Ri(τ) of (5.9):

Bw
j −Bw

i = R
w
i

∫ tj

ti

∆Ri(τ)∇Bb(τ)∆Ri(τ)
T
dτ R

w
i

Tvw
i

+ R
w
i

∫ tj

ti

∆Ri(τ)∇Bb(τ)∆Ri(τ)
T
(τ − ti)dτ R

w
i

Tg

+ R
w
i

∫ tj

ti

∆Ri(τ)∇Bb(τ)∆Ri(τ)
T
∆̃vi(τ) dτ (5.30)
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Chapter 5 A joint-optimization approach

This decomposition shows three new integrals that can be computed only from measurements
received from gyrometers, accelerometers and gradient of magnetic ield : as a consequence, we will
write them hereafter in blue and with a tilde. These integrals have a clear physical interpretation:
the irst one is the variation of the magnetic ield associated with the uniform velocity movement of
the device between ti and tj . The second one is the one stems from gravity efects on the movement.
Both integrals combined represent the magnetic ield variation that would have been perceived if
the device was in free fall. Both are 3×3 symmetric matrices with zero trace. The last integral
corresponds to the variation due to the integration of the speciic acceleration between ti and tj

and it is a vector of dimension 3. For convenience, we will name these integrals with the following
symbols:

(initial speed) ∆̃Bv;ij
def
=

∫ tj

ti

∆̃Ri(τ)∇B̃b(τ)∆̃Ri(τ)
T
dτ, (5.31)

(gravity) ∆̃Bg;ij
def
=

∫ tj

ti

∆̃Ri(τ)∇B̃b(τ)∆̃Ri(τ)
T

[τ − ti] dτ, (5.32)

(speciic acceleration) ∆̃Ba;ij
def
=

∫ tj

ti

∆̃Ri(τ)∇B̃b(τ)∆̃Ri(τ)
T
∆̃vi(τ)dτ, (5.33)

with ∆̃Ri(τ) and ∆̃vi(τ) deined as in (5.9) and (5.11).

Expressing the magnetic ield in the body frame one has:

Bb
j = ∆Rij

[
Bb

i + ∆̃Bv;ijR
w
i

Tvw
i︸ ︷︷ ︸

initial speed contribution

+ ∆̃Bg;ijR
w
i

Tgw

︸ ︷︷ ︸
gravity contribution︸ ︷︷ ︸

free fall contribution

(5.34)

+ ∆̃Ba;ij︸ ︷︷ ︸
speciic acceleration contribution

]
. (5.35)

This decomposition separates nicely what depends on the measured input and what depends on
the state we are optimizing on. We name the three new integrals preintegrated magneto-inertial
measurements, and we exploit this structure to express an eicient magneto-inertial error term
rmimu;i, similarly to what was done for rimu;i.

rmimu;i is deined as the following function of the state and of the preintegrated measurement:

rmimu;i
def
=

[
rimu;i
rmag;i

]
∈ R

12 (5.36)

rmag;i
def
= Bbi

i −∆Rj

[
B

bj

j − ∆̃Bv;ijvb
i − ∆̃Bg;ijR

T

i gw − ∆̃Ba:ij

]
. (5.37)

and where rimu;i is the residual (5.15).
This residual is – similarly to rimu;i – eicient to compute and so are Jacobians with respect to

state parameters. Indeed, the preintegrated terms can be computed only once, at measurement
reception; only the sum of the 5 terms in (5.37) needs to be computed at each iteration.

Bias estimation and preintegrated magneto-inertial measurement If inertial sensors biases
are estimated online, the bias estimates can change after the computation of the preintegrated
measurement. In order to cope with this, the preintegration step also computes the derivatives
of the magnetic residual with respect to inertial biases, as done for imu preintegration. During
optimization, preintegrated measurements are corrected to the irst order with biases evolution
since the time of their computation.

80



5.2 Addition of Magneto-inertial Constraint

(a)

(b)

Figure 5.4: (a) Residual computed from propEKF strategy; (b) Decomposition of magnetic predic-
tion with free fall and speciic acceleration terms.
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Chapter 5 A joint-optimization approach

5.2.1.1 Computing the covariance of the MIMU error term

The covariance Σmimu;i we would like to write in (5.19) actually would depend on the state. It
is, for instance, evident from the expression of rmag;i that the noise polluting the preintegrated
measurements will have a stronger impact on rmag;i at high speed. This section addresses practically
this issue.

Similarly to what is done for imu preintegration, we approximate the errors in magneto-inertial
preintegrated quantities by assuming that they are related to the ”true ones”– that would be
computed with perfect sensors – by the following relation:




∆̃Rij

∆̃vij

∆̃pij

Vec
(

∆̃Bv;ij

)

Vec
(

∆̃Bg;ij

)

∆̃Ba:ij




=




ExpSO(3) (ǫ1:3) ∆Rij

∆vij + ǫ4:6

∆pij + ǫ7:9

Vec (∆Bv;ij) + P∇B(ǫ10:14)
Vec (∆Bg;ij) + P∇B(ǫ15:19)

∆Ba:ij + ǫ20:23




, (5.38)

with ǫ a centered Gaussian vector:

ǫ ∝ N (023×1, Σpreint;ij). (5.39)

Σpreint;ij is the covariance matrix of the preintegrated measurements. This covariance is computed
iteratively during the reception of the mimu data alongside the integrals. P∇B is the (constant)
9×5 gradient operator deined in (2.13), Page 21. The top left corner of Σpreint;ij is exactly the 9×9
covariance of the preintegrated imu measurements (without magnetometer) Σimu;i that is derived
in [Forster et al., 2015] (and that we do not recall in this thesis):

Σpreint;ij =

[
Σimu;i ∗
∗ ∗

]
(5.40)

Under this approximation, the probability density of the mimu residual (conditioned on the state)
is also a Gaussian, but whose covariance depends on the value of the state, as already noted:

rmimu;i ∝ N (012×1, AXΣpreint;ijAT

X) (5.41)

AX =

[
I9 09×5 09×5 09×3

03×9 vi ⊗ I3P∇B gT
R

w
i ⊗ I3P∇B I3

]
(5.42)

and we write the corresponding non-linear error term function:

[
rT

imu;i rT

mag;i
]

(AXΣpreint;ijAT

X)−1

[
rimu;i
rmag;i

]
. (5.43)

It yields the rmimu;i terms in the cost (5.20) with Σmimu;i = AXΣpreint;ijAT

X. The dependence of
the covariance with respect to the state implies that (5.20) does not take the form of a classical
nonlinear least squares – that expects known and constant covariance. In order to circumvent
this, and to get a pure sum of squared residuals, we can use the “whitened” residual vector
(AXΣpreint;ijAT

X)−
1
2

[
rimu;i
rmag;i

]
whose squared value is indeed exactly equal to (5.43). Doing so has

at least three practical drawbacks though:
• First, the computation of (AXΣpreint;ijAT

X)−
1
2 has to occur each time the estimate changes

(basically at each iteration), which is thus way less eicient than the computation needed
for the imu residual, where the covariance inverse could be computed once. Moreover, this
matrix has a size of 12×12, which is not negligible for real-time with a lot of residual.
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5.2 Addition of Magneto-inertial Constraint

• Secondly, the correlation between the magnetic residuals and the imu ones prevents applying
a robust loss function solely to the additional constraints arising from magnetic information.

• Finally, the Jacobian of the whitened residual required for optimization are non-trivial to
compute analytically. This is because the complexity of the dependence of the residual with
respect to the state: a matrix inverse square root has to be computed!

The next section solves the two irst issues and discusses the last one.

5.2.1.2 Robust Weighting and fast MIMU residual computation

The matrix Σmimu;i of the previous section was computed assuming the magneto-inertial preinte-
grated measurements error ǫ was a random variable following a centered Gaussian density. This
uncertainty was then propagated to the residual expression.

We stress that these computations only considered the mimu sensor noise as sources of error
and entirely disregarded errors arising in the modeling of the magnetic evolution. Indeed, the
assumptions of non-curved or non-stationary magnetic ield are in practice another source of error,
that is not modeled. Such errors lead to outliers in the magnetic prediction (in the same way
outliers afect visual predictions), that can be tackled using a robust loss function. On the other
hand, imu errors are correctly modeled as Gaussian and the corresponding residuals should not be
down-weighted by the robust estimation process. In this section, we rework a bit the expression
on the mimu residual to allow the use of a robust loss function on the magnetic part of the mimu
residual, without afecting the pure imu residual.

The idea is to leverage the Schur complement on the matrix (AXΣpreint;ijAT

X) in the equation
(5.43), in order to split the error term in two parts (see Appendix A, Page 169):

rT

imu;iΣ
−1
imu;irimu;i + (rmag;i −BXrimu;i)

TC−1
X (rmag;i −BXrimu;i) (5.44)

Where BX ∈ R
3×9 and CX ∈ R

3×3 are matrices that depends on the state whose expressions are
not given here but can be retrieved easily by applying the Schur complement technique.

Doing so reveals the fact – hidden until now – that the mimu total cost function can actually
be expressed as the sum of two squared terms, one corresponding to rimu;i of Section 5.1.3.2 and
an additional one. Because of the correlation between rmag;i and rimu;i this additional one is not
directly a weighted version of rmag;i, but a combination of rmag;i and rimu;i. If the form of the
second term of (5.44) can be seen as a least squares term with covariance CX – similarly to the full
residual of the last section – this covariance still depends explicitly on the estimate, which is not
the canonical least squares cost function. We can however, once again, whiten the residual and use
C
− 1

2

X (rmag;i −BXrimu;i) as a non-linear residual with Identity covariance.
This decomposition in two additive terms suits the initial motivation of applying the robust loss

function only to the additional constraint that magnetometers involve; we are now able to robustify
the cost function (5.44) the following way:

‖rimu;i‖2
Σimu;i + ρ

(
C
− 1

2

X (rmag;i −BXrimu;i)
)

+ cst with ρ a robust norm

Which, Moreover, as CX is a small 3×3 matrix, this computation is way more eicient than the
one of (AXΣpreint;ijAT

X)−
1
2

[
rimu;i
rmag;i

]
raised in previous section.

Unfortunately, the Jacobian matrix of this residual is still not straightforward to compute, because
of the C

− 1
2

X term. We thought about diferent alternatives to compute it:

1. Use the residual C
− 1

2

X (rmag;i −BXrimu;i) as a non-linear error term and compute its Jacobian
with respect to the state by leveraging a code diferentiation library; thus avoiding painful
analytical chain rule through the square root inverse operation.
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2. Recompute at each iteration the weighting matrix CX in an irls fashion along with the weight
implied by the use of a robust loss function – and thus ignore its dependence with respect
the state when computing the Jacobian. This approximation could slow down convergence
though.

3. Use the residual (rmag;i−BXrimu;i) and compute the matrix C
− 1

2

X once, at the irst estimate of
the body speed and attitude. This method is the cheapest one but would introduce signiicant
errors during initialization.

In contrast to the algorithm presented in [Caruso et al., 2017b] where the third solution was
implemented, we use the irst, more exact, solution in the rest of this chapter.

5.3 Gradient-based Optimization on Manifold
This section recalls how to do gradient based optimization with a state that belongs to a manifold.
It essentially borrows notions presented for instance in a robotic context in [Wagner et al., 2011]
and [Hertzberg et al., 2013].

5.3.1 State Manifold and Local parametrization
The state X we optimize on belongs to a compound manifold X that is not a vector space because of
the rotations variables R

w. We use the local tangent space of the manifold to express a perturbation
around a state, and we write δX(X̂) the element of the tangent plane at the current linearization
point X̂. This element is decomposed as:

δX(X̂) = [δξ1 · · · δξN︸ ︷︷ ︸
frame pose

, δs1 · · · δsN︸ ︷︷ ︸
mimu state

, δlp1
· · · δlpM︸ ︷︷ ︸

landmarks state

]T (5.45)

For the optimization over X , we need to deine a retraction operator. This operator expresses the
link between a perturbation in tangent space and the perturbed states on the manifold. We use
the ⊞ operator symbol for the retraction operator, so that X ⊞ δX(X) computes a new state in X
from a perturbation around some previous state X.

In this chapter, we deine a retraction operator as regular addition operation for all components
of the state except for keyframe pose states where we use:

ξ ⊞ δξ = [p + δξ1:3, RExp (δξ4:6)] (5.46)

We deine the inverse operator ⊟ as the binary operator giving the perturbation element between
two elements of X . It is deined as regular minus operation except for keyframe pose states for
which it is:

δξ12(ξ1) = ξ2 ⊟ ξ1 =
[
p2 − p1, Log(R−1

1 R2)
]

(5.47)

This operator is of importance in a gradient descent based method as it deines how the Jacobian
should be computed and how the state should be updated.

5.3.2 Levenberg-Marquard Algorithm on Manifold
In this chapter, we minimize the cost E(X) iteratively through a Levenberg-Marquardt algorithm
adapted to optimization on the state manifold using the retraction operator of previous sections.
We note X̂ the current estimate and r

(
X̂ ⊞ δX

)
the concatenation of all residual error terms,

already weighted by their covariance.
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LM is a Gauss-Newton descent algorithm which relies on a approximation of the norm of the
residual vector for a perturbation along the linearization point tangent space. This approximation
writes:

‖r
(

X̂ ⊞ δX
)
‖2 ≃ ‖(r(X̂) + Jr|X̂δX‖2, (5.48)

where Jr|X̂ is the Jacobian of the residual function around X̂. A damped minimizer of (5.48) is
found by inverting the modiied normal equation:

(Jr|TX̂Jr|X̂ + λD)δX = Jr|TX̂r(X̂) (5.49)

λ ∈ R
+ is called the damping factor of the Levenberg-Marquardt method and D is a diagonal

matrix – we choose the diagonal of Jr|TX̂Jr|X̂ matrix, which is a classical choice in bundle adjustment.
After each iteration, the increment δX is applied with the following update rule:

X̂← X̂ ⊞ δX. (5.50)

In the Levenberg-Marquardt scheme, the parameter lambda is not constant from one iteration to
another; its absolute value is increased if the last iteration actually reduced the error, and decreased
otherwise.

Note that, in practice, we will take into account robust cost function through an irls scheme as
described in Section 3.4.3, Page 39.

5.4 Testing the MIMU Preintegrated Residual
We irst tested if the minimization of the cost function (5.20) without any visual observation was
able to reconstruct a trajectory efectively. To do so, we built an optimization problem with only
the magneto-inertial part of the cost function. More precisely, on a data sequence from a real
mimu system, we selected keyframes regularly, and we preintegrated magneto-inertial measurements
in between these keyframes. Then we built the error term between mimu and pose states at the
chosen keyframes. The resulting cost function is optimized incrementally with the algorithm of
Section 5.3.2.

In order to initialize the irst poses and biases variables correctly, we use for the irst 10 seconds
high-frequency keyframes and initialize the very irst attitude estimate from accelerometer reading,
assuming the device is at rest. The subsequent variables are initialized from magneto-inertial
propagation from previous estimates.

This test has two goals:
• Unitary test. Verify that the implementation of the mimu residual was correct.
• Proof of concept. Verify that we could build a meaningful magnetic prediction over duration

large enough with respect to typical inter-keyframe duration in a slam or bundle adjustment
system – roughly one second.

The second goal is actually important: typically the duration between two keyframes is two or
three orders of magnitude higher than the mimu sample period. The mi-dr ilter of Chapter 2,
even if based on the same equation prediction, predicts and corrects the magnetic ield state at
high frequency (325 Hz). Such a frequency is not compatible with optimization based inference, in
which we only predict states, including magnetic ield state, at frame or keyframe rate.

The Figure 5.5 shows a trajectory reconstruction experiment, using only the magnetic and inertial
residual, with varying durations between keyframes. We compare our preintegrated measurement
residual with a residual obtained by merely assuming that the magnetic ield gradient is constant in
the inertial frame during the entire integration duration – estimating its value alongside the state.
Top graphics depict results of the ”constant gradient” residual, while bottom ones depict results
obtained with our preintegrated strategy. From the results, we draw the following conclusion:

• Both residuals allow building a consistent trajectory when used over a small duration. Indeed,
we observe that the three loors of the house are well reconstructed for a duration between
keyframes of 80ms, and the trajectory of diferent loors superimpose roughly.
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• The preintegrated magneto-inertial measurements allow reconstructing a trajectory even
for moderate durations between keyframe. Indeed, if the bottom plot of Figure 5.5 shows
trajectories becoming piecewise linear when reducing the number of keyframes, the global
shape of trajectory stays the same. This is in contrast with what we observe on the top graphics:
with residuals derived under a constant gradient assumption, the estimated trajectory degrades
quickly with longer durations between keyframes.
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Figure 5.5: Magnetic prediction experiment. A Trajectory across three loors of a house is recon-
structed by a batch optimization with only magneto-inertial error terms. We test for
diferent duration of preintegration between pose states (in subcaption). Top graphics as-
sume a uniform magnetic gradient over all the duration of integration, bottom ones stem
from the use of the preintegrated residuals rmimu;i and rmag;i deined in Section 5.2.1.
With the constant gradient assumption the quality of error terms degrades quickly with
increasing integration duration, contrarily to the presented approach.
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5.5 Application: a Sliding Window Smoother
Solving the full bundle adjustment problem is generally of interest for oline reconstruction, but
does not it real-time purposes, because it is too computationally expensive to solve for large
problems. Practical algorithms rely on either conditioning on or marginalization of past states.

Based on the full mvins cost function (5.20), Page 78, we implemented a sliding-window smoother
compatible with real-time, that relies on marginalization of landmark, past pose and past mimu
states.

5.5.1 Algorithm Overview
The cost function is maintained internally using the factor graph formalism through the use of the
gtsam4 library.

The next sections will detail the algorithm steps. A general outline is given hereafter, and a
diagram of the algorithm is depicted on Figure 5.6. When an image is acquired:

1. Corner features that are already present in the previous frame are tracked by optical low, and
– if the new frame is a keyframe – new corners are detected, using a visual corner detection
algorithm. In parallel, we preintegrate all magneto-inertial measurement having a timestamp
between the last and the current image instant to form a preintegrated error term between
the two frames.

2. A selection of new landmarks are triangulated from previous and new observations.
3. New variables are added to the cost function: current pose state, mimu state, and newly

activated landmarks. Error terms are also added: preintegrated constraints, new observations
of already activated landmarks, observations of newly activated landmarks.

4. We select the variables to marginalize and drop some errors terms. Marginalization is pursued
to create a new prior error term.

5. The new state is found minimizing the cost function.
6. Finally, the next image is waited for.

5.5.2 Marginalization of States
In order to bound the computational time, we forget past states and modify the cost function
accordingly through marginalization. Next section explains the transformation of the cost that is
involved by the marginalization process, while the Section 5.5.2.2 describes the marginalization
scheme we use, I.e., how we select the variables to be marginalized at each time step.

5.5.2.1 Marginalization of Variables in a SLAM problem

Assume we want to remove the variables Xk;marg from the cost function while keeping the variables
Xk;keep. We can partition the total cost function in two terms as:

E(Xk) = Emarg(Xk;keep, Xk;marg) + Ekeep(Xk;keep). (5.51)

Emarg(Xk;keep, Xk;marg) contains squared residuals implying the state to be marginalized, while
Ekeep(Xk;keep) contains all other residuals. The marginalization of Xk;marg is based on the Gauss-
Newton approximation of the cost function. Without any loss of generality5 we can write the
approximation the following way:

Emarg(Xk ⊞ δX) = ‖rmarg(Xk) + JδX‖2
Σmarg (5.52)

4https://bitbucket.org/gtborg/gtsam
5Note that this is indeed also true if a robust loss function is used for some residual. In this case Σmarg will relect

the weighting factor induced by IRLS technique.
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Figure 5.6: Diagram of the pipeline of the sliding window estimator as implemented with gtsam
library.

This cost function can be separated in two residuals with the help of a QR decomposition of
Σ
− 1

2margJ:

Emarg(Xk ⊞ δX) = ‖Σ
1
2margrmarg(Xk) + Σ

1
2margJδX‖2 (5.53)

(Doing the QR decomposition) (5.54)

=

∥∥∥∥Σ
− 1

2margrmarg(Xk) +
[
O1 O2

] [R1 R12

0 R2

] [
δXk;marg
δXk;keep

]∥∥∥∥
2

(5.55)

(Using L2 norm invariance to orthogonal application) (5.56)

=

∥∥∥∥
[
OT

1

OT

2

]
Σ
− 1

2margrmarg(Xk) +

[
R1 R12

0 R2

] [
δXk;marg
δXk;keep

]∥∥∥∥
2

(5.57)

=
∥∥∥OT

1 Σ
− 1

2margrmarg(Xk) + R1δXk;marg + R12δXk;keep

∥∥∥
2

+
∥∥∥OT

2 Σ
− 1

2margrmarg(Xk) + R2δXk;keep

∥∥∥
2

(5.58)

The irst part of (5.58) is the only term in the linearized total cost E that depends on δXk;marg.
Assuming that R1 is invertible, this can always be set to zero by choosing δXk;marg accordingly.
Hence, we can just approximate the cost function Emarg(Xk ⊞ δX) with:

Emarg(Xk ⊞ δX) ≃ ‖OT

2 Σ
1
2margrmarg(Xk) + R2δXk;keep‖2. (5.59)

We will call this new residual rprior;k. Marginalizing the variables Xk,marg is exactly replacing
Emarg(Xk ⊞ δX) by ‖rprior;k‖2 in the cost function for all subsequent time steps.6

It is important to note the consequence of such a transformation of the global cost: by using this
marginalization technique, we actually ix the linearization points for the marginalized variables and

6This process is simply called “reduction” by the authors of [Triggs et al., 2000]. Note that this is indeed exact
marginalization – in probability theoretical sense – if error distributions are Gaussian and residual linear.
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give up the possibility to relinearize associated residuals. Notably, this means that the presented
algorithm will accumulate linearization errors exactly as an ekf does. Compared to the ekf
however, one possible beneit could be to use the full non-linear cost function and do several solver
iterations before marginalization to get a better linearization point.

Besides, one important and deep drawback of marginalizing is that long loop-closure cannot
be handled consistently easily, as variables are removed from the state a soon as they leave the
sliding window. We stress here that marginalization is a solution to a purely computational cost
problem: from the point-of-view of the quality of the estimation, it would always have been better
to optimize the full cost function.

5.5.2.2 Marginalization Strategy: Double Sliding Windows

It is known that some marginalization choices break the sparsity of the slam cost function and
impacts negatively the performance. [Sibley et al., 2010] shows that Hessian ill-in occurs when the
prior residual afects the landmark geometry in the slam problem. To avoid this, we adopt here the
marginalization strategy of [Leutenegger et al., 2015]. This strategy drops, before marginalization,
reprojection error terms associated either with non-keyframe or to landmarks that are still visible
in some recent keyframes to avoid a joint prior on keyframe and landmarks. In particular, we
retain the ”double window” aspect of their strategy: we keep a reduced set of very recent mimu and
pose states and a set of older and more temporally separated keyframe pose states. The irst set
involves mainly short-term mimu prediction through rmimu;i between each frame, while the second
set involves medium-term information carried from landmark observations only.

The cost to be optimized at time step k is then of the form:

E(Xk) =
∑

(i,j)∈Ok

‖rproj;il(ξi, lj)‖2
ΣC

+
∑

i∈Sk

‖rmeas(Bi)‖2
Σmag

+
∑

i∈Sk

‖rmimu(ξi, si, ξi+1, si+1)‖2
Σimu;i + ‖rprior;k({ξi}i∈Υk

, ξk−|Sk|, sk−|Sk|)‖2. (5.60)

where Ok is the set of pairs time step/landmark leading to reprojection error still in the cost
function at time k, Sk is the set of time steps for which the pose and mimu states are still in
the visual-magneto-inertial sliding window at time k and Υk the set of time steps for which the
pose variables are still in the visual window but whose mimu tates have been already discarded.
A diagram summarizing the diferent time windows and variables of the problem is presented in
Figure 5.7.

Care should also be taken to avoid inconsistencies related to the use of two diferent linearization
points for the same variable (as in the EKF approach of [Li and Mourikis, 2013] or [Engel et al.,
2018]). This happens if the estimate of some variable changes after having been included in the prior –
because the prior still carry information linearized around the estimate at the time of marginalization.
We use here a ixed Jacobian approach, which deinitively ixes the linearization point of all variables
already included in the prior, which is equivalent to the modiied Levenberg-Marquardt algorithm
described in the next section.

5.5.3 Handling the Linearization Point of the Prior Term within a
Levenberg-Marquardt Algorithm

As already said, maintaining a prior linear with respect to some component of the state amounts to
choose a ixed linearization point and to restrict the estimation to the tangent space around that
component at the time of marginalization. In order to avoid introducing two diferent linearization
points and tangent spaces for one variable, the Levenberg-Marquardt algorithm is modiied in a way
that all variables are not linearized around the most recent estimate in the Jacobian computation,
but sometimes around an earlier estimate.
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Figure 5.7: State and cost function minimized at each time step by the sliding window smoother.

This trick is popular in the slam community, as a workaround to numerical issues and some
problems of false observability. It is for instance used by [Engel et al., 2018] or [Leutenegger et al.,
2015].7

Following these references, we deine the current estimate by a perturbation ∆X of the lineariza-
tion point along the tangent space: Xlin ⊞ ∆X. We seek at each iteration to minimize a irst
order approximation of the norm of the residual vector with respect to a perturbation along the
linearization point tangent space:

‖r (Xlin ⊞ (∆X + δX)) ‖2 ≃ ‖(r(Xlin ⊞ ∆X) + Jr|XlinδX‖2. (5.61)

Where Jr|Xlin is indeed the Jacobian of the residual function around Xlin (and not around Xlin⊞∆X).
A damped solution is found by inverting:

(Jr|TXlinJr|Xlin + λD)δX = Jr|TXlin(r(Xlin ⊞ ∆X)) (5.62)

With λ ∈ R
+ the damping factor of the Levenberg-Marquardt method and D a diagonal matrix;

we choose the diagonal of Jr|TXlin
Jr|Xlin matrix. After each iteration, the increment δX is applied

with the following update rule:
∆X←∆X + δX. (5.63)

At the end of each iteration, but only for states for which the linearization point has not been ixed
yet, we update the linearization point through:

Xlin ← Xlin ⊞ ∆X. (5.64)

This trick is, all-in-all, a small variation of the Levenberg-Marquardt algorithm that is easy to
implement.

7According to the authors of [Engel et al., 2018] this strategy for ixing the linearization point has strong beneicial
efects on quality of the estimate, specially for very long trajectories. We have not evaluated this point in the
present work.
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5.5.4 System Initialization
The cost function we optimize is not convex. The iterative solver thus requires a good initial
estimate of the state. As we build and solve the cost function incrementally, estimates for new
poses, speed, and magnetic ield can be deduced from mimu propagation and previous estimates,
and estimate for new landmark can be computed from triangulation.

For the very irst estimate, this is not possible though, as we do not have any starting point to
integrate or poses to triangulate from. Instead, we use the mi-dr ilter of [Chesneau et al., 2016] to
initialize a irst set of keyframes poses and mimu estimates. From these known poses, we triangulate
a irst set of landmarks to initialize a local map and start the non-linear optimization.8 This method,
admittedly, only provides a useful initialization in the working domain of the magneto-inertial dead
reckoning system. However, contrarily to other commonly used methods, it does not assume that
the device is at rest during initialization. Works describing alternatives methods for initialization
were given Section 4.7.

5.5.5 Gauge Fixing
Four degrees of freedom are known to be unobservable: the heading and the global position. If not
handled carefully, the (Gauss-Newton approximation of) Hessian of the optimization process will
be rank deicient and numerical errors will arise. We ix the gauge by setting an error term on the
irst keyframe translation and heading. This indeed ixes the general absolute orientation around
gravity and absolute position that are otherwise unobservable and avoid optimization failures.

5.5.6 Features Tracking and Keyframe Selection
We intentionally use a simple method for corner association from image to images. Bucketed
detection of Harris corner is done in each keyframe; corners are then tracked with OpenCV9

pyramidal klt algorithm in all subsequent frames. Tracking is done between successive frame:
the template is reinitialized at each frame; thus one can restrain to an eicient translational klt
formulation which assuming small movement between successive frames. The tracking keeps going
on until either: (i) the feature goes out of scope; (ii) the feature tracking failed; (iii) the feature is
classiied as an outlier.

This is also well known that corner tracked by translational klt with reinitialization of templates
will drift on image space. A common strategy is to register regularly the currently tracked patch
with the one at the time of corner irst detection. The obtained registration error magnitude is used
to assess the drift: if larger than a threshold the features are classiied as outliers. This registration
is generally done through an aine transform of the patch [Bouguet, 2000], which is quite expensive
to compute. In our implementation, we keep the idea of monitoring regularly point appearance
change with respect to the irst detection but, instead of aine registration, we compare ORB
descriptor [Rublee et al., 2011] between irst corner detection and current features location in image
space. This descriptor is designed to be roughly invariant to point-of-view changes and is a cheap
alternative to aine registration. In practice, we observed that this strategy is particularly useful to
remove early points lying on the border of occluding contours.

For grossly non-static features rejection, we also run a 2-point ransac algorithm ([Bazin et al.,
2010],[Troiani et al., 2014]) from the last keyframe to the current frame, using the relative orientation
from the unbiased integrated gyroscope, corrected with the current bias estimate. We do it before
descriptor computation. These two outlier rejection tests render our features tracking strategy

8 The mi-dr ilter of [Chesneau et al., 2016] being an ekf, it also needs a good initial estimate of the attitude
and speed, which may make the reader think that we just moved the problem away. However, we empirically
observe that the mi-dr ilter converges very quickly, with a broad convergence basin, and is not that sensitive to
initialization error. Furthermore, the linearization error that the ekf induces during initialization phase does not
propagate to the non-linear estimator, as we only use estimated values as an initialization point.

9http://opencv.org
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somewhat conservative: we prune many features. This is not such an issue in our case, as our
estimator can handle situations with few or even zero features thanks to the tight fusion.

We triangulate a landmark only if the rotation-corrected pixel disparity of its observations is
larger than a threshold, and integrated into the cost function only if the initial triangulation gave
reprojection error lower than a threshold. This threshold is chosen loose in order to make visual
information enter the cost function, even if the poses used for their triangulation were not accurate.
This is of particular relevance when the estimate drifted in the absence of visual information for a
signiicant duration.

For keyframe selection, we use the strategy of [Engel et al., 2018]: the new keyframe decision
is triggered by a threshold on a linear combination of average disparity and rotation corrected
disparity since the last keyframe.

5.6 Experiment on Real Data
5.6.1 Hardware and Dataset
5.6.1.1 Hardware

Two hardware prototypes were used during the second part of this thesis. They are both depicted
on Figure 5.8. The irst hardware (a) featured strong synchronization capabilities, with camera
triggered by the mimu hardware, while the second hardware (b) did not provide such a feature:
resynchronization had to be handled by software.

If hardware (a) was tried at irst for monocular/MIMU experiment, this unit showed mediocre
results. We suspect the ferric connectors of the camera were perturbing too much the magnetic ield.
On hardware (b), a large distance between the mimu hardware and the camera was introduced to
minimize as much as possible the efect of the camera ferric parts on the ield measured by the
mimu. Note that this distance is necessary here only because the camera is a commercial camera,
that was not explicitly designed to reduce its magnetic footprint. Nothing prevents a priori having
a magnetically neutral camera. In wait for a fully integrated prototype, we used montage (b) for
the dataset recording.

As in hardware (b) mimu and images are not synchronized, and as the presented sliding window
algorithm expects a synchronized stream of data, we run our algorithm oline, after a synchronization
preprocessing of the data. The synchronization preprocessing consists in measuring the delay between
imu sample timestamp and images timestamp in the beginning and the end of the trajectory. We
use here the Kalibr toolbox of [Furgale et al., 2013], and compensate clock drift and ofset between
the two sensors.10

5.6.1.2 Datasets Used for Experiment

In order to test our algorithm, we recorded mimu and camera data while carrying the hardware and
walking around. The environment of the dataset mainly consists of a building, its no lit basement,
and its outdoor neighborhood. The movement results from the fast walk of a pedestrian and the
camera is mostly looking forward (i.e., with z-axis in the direction of the movement). The main
characteristics of the dataset are summarized in Figure 5.9.

Unfortunately, as the scene traveled is mainly indoor, it was not possible to obtain a ground truth
by gnss. We furthermore stress that the trajectories depicted on the satellite map of Figure 5.9,
are from our estimator pose output. In order to assess the quality of our estimate, and particularly
its scale, we provide superpositions of estimated trajectories with an orthoimage from the IGN11

having half-meter pixel resolution. Each trajectory was aligned using the detection of a ixed
10Note that we documented in Appendix C, the detrimental efect of a slight missynchronization on the position

estimate.
11http://ign.fr/
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(a) (b)

Figure 5.8: Hardware used for the dataset capture. The prototype (a) featured strong synchro-
nization capabilities, with camera trigger controlled by the mimu ardware, while the
prototype (b) did not provide such a features: resynchronization must be handled by
software. We used montage (b) for the experiment because the large distance between
mimu sensor and camera permits to remove any efect related to ferric parts of the
camera on the ield measured by the MIMU.

checkerboard marker at the starting position. Position and heading of the checkerboard are set
only once for all trajectory (and not once per trajectory).

5.6.2 Implementation Details and Parameters Choice

We use the matlab12 wrapper of the factor-graph based gtsam13 library for the cost function
construction, maintenance and minimization. We build the magneto-inertial preintegrated measure-
ment on top of the pure imu one already included in the library and whose implementation follows
closely the description of [Forster et al., 2015].

For robustifying the magnetic residual, we use the Tukey M-Estimator loss function depicted in
Figure 5.10.14

Compared to classical alternatives choice (for instance Huber or Cauchy norm) Tukey loss is
pretty aggressive: the lat extreme regions do indeed discard totally the inluence of outliers during
the algorithm iterations.

In order to improve further the robustness of the solution, we sometimes avoid inserting the
magneto-inertial residual between frames and prefer to insert a pure inertial residual. Indeed, in
the case of very low gradients of the magnetic ield, the added information is mainly noise and
tends to corrupt the estimate. We use a ixed threshold on the spectral norm of the gradient matrix
to decide if the full mimu residual should be used.

The following table summarizes the main parameters we had to set along with how reasonable
default values have been chosen, and their values in our experiments when we could disclose them.

12http://mathworks.com
13https://bitbucket.org/gtborg/gtsam/
14If we were to deine the problem as a Maximum A Posteriori estimation, this loss should match some expected

residual probability density. However, we do not actually seek to justify our cost function as a MAP estimator.
The robust loss is here considered as a parameter of the algorithm which is tuned empirically.
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Figure 5.9: Dataset characteristics (a) All trajectories of the dataset superimposed with satellite
image of the environment. (b) Main characteristics of the Indoor/Outdoor dataset.
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Figure 5.10: Tukey biweight loss function used on the magnetic part of the residual in rmimu;i
compared to the L2 loss and the Cauchy loss used for landmark observation error.

Parameters Tuning cue Value
Covariance of gyro white noise from Allan Variance 8e-5 rad.s−1.

√
Hz−1

Covariance of acc white noise from Allan Variance 3e-3 m.s−2.
√

Hz−1

Gyro random walk from Allan Variance 1e-5 rad.s−2.
√

Hz−1

Acc random walk from Allan Variance 1e-4 m.s−3.
√

Hz−1

Gyro random walk time constant from Allan Variance 1800s
Acc random walk time constant from Allan Variance 1800s
Covariance of magnetometers white noise peak to peak noise n.c.
Uncertainty of magnetic gradient and pre-
diction

magnetometers noise through gradient
computation (ampliied)

n.c.

Visual window size [Leutenegger et al., 2015] 7
Visual-magneto-inertial window size [Leutenegger et al., 2015] 3
Uncertainty of observation point roughly one pixel

√
2 pixels

Robust norm on visual observation arbitrary Huber with default scale
Robust norm on magnetic residual arbitrary Tukey with default scale
Max initial reprojection error arbitrary 15

Table 5.1: List of parameters tuned for the sliding window smoother. A majority of them are tuned
based on sensors characteristics. Few of them are chosen empirically.

5.6.3 Results discussion on an Indoor/Outdoor/Dark dataset
In the following results we will call our full system mvins, while vins will denote our systems
without magnetic error term. mi-dr ilter will denote the ilter presented in Chapter 2 (ekf on
mimu). We show in this section comparative results of each of these algorithms, demonstrating
that the magnetic error terms render mvins systems more robust to bad illumination situation.

5.6.3.1 Results of MVINS Compared to VINS

Figure 5.11 illustrates a typical case where the magneto-inertial residual improves robustness of the
estimator in low light area. Figure 5.12 shows the Z estimated for each method on the same dataset.
In dark areas, the vins estimate starts to drift because too few corner points are detected for an
extended duration. Then, the vins estimate becomes very discontinuous before going eventually
back near to the trajectory of mvins estimate when new corners can again be detected. The
observations presented are actually not speciic to this dataset but quite general over all trajectories
tested.

This sudden return to a correct position is best seen on the following Z-proile of the trajectory.
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Figure 5.11: Typical improvement of our system compared to pure vins in dark area. Traj4
dataset.
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Figure 5.12: Z-proile on the Traj4 dataset. Line and background color are the same as in 5.11

This efect could seem surprising for people used to pure visual odometry. It actually arises
thanks to the correlation lying into the prior residual. These are able to correct the trajectory when
the local speed becomes locally observable again. Note that, on this graphics, this efect appears
in the part of the trajectory still annotated in darkness. The darkness part of the trajectory (in
red) is deined here and hereafter as all instant where the received image intensity average is below
a threshold; it does not imply that no vision corners could be used at all. That is why the vins
trajectory seems to correct itself toward the mvins trajectory right in the middle of a dark area. In
fact, the correction appears at a time step where visual features are detected on a small part of the
image, while most of it is totally black.

5.6.3.2 Results of MVINS Compared to MI-DR

The Figure 5.13 shows the results on three trajectories, each one doing loops through outdoor and
indoor scenes. The right part of the igure shows mvins trajectories with color-coded information
on the environment to report parts of the trajectory which are in dark or outdoor conditions (the
latter ones being detected by a weak magnetic gradient).

We observe the following general trend. mi-dr ilter exhibits a signiicant drift and even an
erratic trajectory in the weak gradient part of the trajectory (in blue). These phenomena appear on
all trajectories and always lead to a higher inal drift. In contrast, vins does not exhibit signiicant
drift in outdoor scenes, and mvins method closely follows the vins estimate in the areas which are
diicult for mi-dr ilter.

5.6.3.3 Comparison of Least Squares and Robust Magnetic Error

The previous results could not have been obtained with a standard L2 loss function. In fact, we
observe that the robust loss function drastically improves robustness when magnetic ield does not
follow mi-dr hypotheses. One example of this behavior can be illustrated on Traj3.

On the Figure 5.14, we draw in pale yellow the trajectory obtained without the robust loss on
magnetic prediction residual. As can be seen, in the outdoor area of the trajectory, the non-robust
estimator output becomes suddenly erratic for some time. This corresponds to a moment when the
measured gradient is above the threshold – so that magnetic prediction residuals are not discarded
– but the magnetic ield perceived is not totally stationary for some reasons. In contrast to the
non-robust version, the robust version stays smooth all along the trajectory and also drifts slower.

On the Figure 5.16, we can assess precisely the efect of the robust norm in the case of Traj3.
The igure shows curves that describe the following quantities across times: the magnetic residual,
the robust norm induced weight of this residual at the end of iterations and the vision reprojection
error distribution. (each colored line is a quantile of the distribution.) The bad behavior of the
non-robust estimator occurs at 160 seconds. The middle curve in gray shows that indeed, at
that timestamp, the robust estimator downweight the magnetic residual drastically (up to utterly
annihilating it), while the value of the residual becomes big in absolute value. This means that
they are non-modeled efect in the magnetic ield that robust loss succeeds in coping with.
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Figure 5.13: Overview of Traj1, Traj2, and Traj3 trajectories as reconstructed by the MI-DR
ilter, our sliding-window smoother without magnetic residual, and our full sliding
window smoother. The right part of the plot is a color-coded description of the visual
and magnetic environment.
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Figure 5.14: Inluence of the robust norm on Traj3 dataset. mvins-nonrobust is the sliding window
estimator with full magneto-inertial residual but where robust norm is not employed on
the magnetic part. Final drift: mvins-nonrobust: 3.62m, vins: 1.173m, mvins:1.14m

The beneicial efect of the robust loss was also signiicant on Traj5 dataset as shown in
Figure 5.15. In this trajectory, strong non-stationarities of the magnetic ield completely corrupts
mi-dr ilter estimate, the three loors of the trajectory are not even recognizable. The trajectory
of the non-robust version of our sliding window estimator tends to drift erratically in the same
direction as mi-dr estimate while mvins stays close to the better performing vins optimization
method. mvins even improve the vins estimate in the basement area (in red), which is better
handled (note the smoothness of the yellow curves with compared to the red one). Final drift is
also improved as shown in the table on Figure 5.15.

5.6.4 A Word about Runtime Performance
The implementation used for the experiment was a matlab/gtsam prototype not designed to be
run in real-time. However, the method should be able to ultimately run in real-time on a modern
embedded processor with a proper implementation. Indeed, [Qin et al., 2017], presents a very
similar algorithm – without magnetometers error term – that run in real-time on a smartphone.

The diference between our algorithm and theirs potentially impacting negatively the performance
are the following:

• ours adds a vector of dimension three by timestep to the state. In results, the Jacobian and
Hessian matrices are slightly bigger.

• ours add some computation overhead during propagation to propagate the preintegrated
magneto-inertial measurement and their derivative with respect to biases.

• ours add two new residual term of size three that depends exclusively on the mimu states and
pose (not on landmark position). In results, Jacobian are bigger.

Note that in contrast, the following performance critical aspects of the algorithm are not modiied:
• integration of constraint inter-keyframe is done only once in the preintegration process
• global sparsity structure of the optimization is not modiied
We argue that the runtime performance will not be drastically reduced compared to [Qin et al.,

2017]. We, however, admit these minor overheads could lead to a slightly diferent trade-of between
performance and accuracy. The main parameters which can be tuned to lower computational
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Figure 5.15: Inluence of the robust loss on Traj5 dataset.(a) estimate trajectory (b) environmental
condition along the trajectory (c) inal translational drift (% of trajectory length).
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burden, if required, are the number of features tracked or the size of the sliding windows.
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5.7 Trajectory Quality After a Long Run of the Estimator
This section documents a problematic phenomenon we observe on our estimate that is not fully
understood and corrected yet. We still describe here for exhaustivity.

5.7.1 Corruption of Local Consistency Trajectory Estimate
If the addition of magnetometer information renders the trajectory smoother indeed when vision
information is temporarily unavailable, we still observed on our real data discontinuous trajectories,
especially after a long run duration of the algorithm. This efect is generally signiicant and visible on
our dataset at the end of trajectories where the pedestrian comes back in front of the checkerboard
marking the starting point. An example is shown in the left side of Figure 5.17. On the left part
of the igure, we draw the trajectory obtained by the mvins estimator presented in Section 5.5,
along with the reconstructed position of landmark used in the estimator. We also show a zoom over
the part of the trajectory corresponding to the closure of the main loop. Traj3 dataset starts at
the position indicated on the igure and follow the loop clockwise. The zoomed version shows the
trajectory when the system comes back to the start position, which is marked by a checkerboard.
The landmarks in the transparent blue areas are actually detected on the checkerboard.

Before analyzing it, let us stress that these colored point-clouds represent the estimated landmark
positions. We underline these point-clouds are not a map of the environment, as the landmarks are
instantaneously marginalized when the tracking of the corresponding image features is lost. Conse-
quently, (i) the colored dots represent the position of the landmark at their time of marginalization;
(ii) several dots can represent the same physical corner, as we do not try to detect old points again
once their features track has ended; (iii) the position drift transmits to the point cloud, making
potentially objects appear or several time.

As can be seen on the bottom left drawing, the checkerboard does not appear solely twice, but
many times. Its position actually drifts from bottom left to top right of the igure, before stabilizing.
Simultaneously the trajectory – mainly doing circle looking at the checkerboard, seems to be very
discontinuous (and not as smooth as the movement really is). We conclude that the trajectory
actually drifts for roughly one meter in a few seconds; this is totally inconsistent with the relative
low drifts since the beginning of the trajectory.

What we observe here is actually strong corrections of the position of all keyframes currently in
the windows. This correction occurs through the linear prior error term. If one is interested in the
local movement, (for instance if using this estimate for control or of augmented reality applications)
these kinds of erratic correction would be dramatic: they arise from estimator mechanics and do
not correspond to physical movement!

It seems such corrections arise from long-term correlation – accumulated into the prior – between
biases, speed, position, and heading.

5.7.1.1 Workaround

This efect is not totally described in literature and research papers, however, by looking at diferent
open-source implementations of similar systems, we note that some of them present step that would
indeed workaround such an issue. These “workarounds” are rarely explicitly documented. We list
hereafter three of these strategies found in [Leutenegger et al., 2015], [Qin et al., 2017] and [Engel
et al., 2018].

Constrained the gauge at each step by ixing oldest pose in window This strategy is used
in [Leutenegger et al., 2015]. Even if not advertised in their paper, their open source implementation
constrains the optimization problem to have the oldest pose of the visual window ixed.
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They actually ind at each timestep the minimum of the optimization problem:

E(Xk) =
∑

(i,j)∈Ok

‖rproj;il(ξi, lj)‖2
ΣC

+
∑

i∈Sk

‖rimu(ξi, si, ξi+1, si+1)‖2
Σimu;i

+ ‖rprior;k({ξi}i∈Υk
, ξk−|Sk|, sk−|Sk|)‖2 + ‖rixed(ξoldest)‖2

1
ǫ

I4
(5.65)

Where rixed is the diference between yaw angle, global position of current estimate and yaw angle
and global position of the estimate of the oldest frame in the window at last timestep. ǫ is around
the machine epsilon.

This error term is only added for computing iterations, and not during the marginalization phase
of the algorithm. We argue however that the use of this artiicial error term to ix the Gauge is
not ideal. Indeed, during optimization of the cost, it plays the role of a pose measurement that
forbids movement of absolute position. However, this position is correlated with the biases estimate.
Fixing the position, also imposes a strong constraint on the bias estimate, and could slow down its
convergence.

Start
Start

Landmarks detected on checkerboard

Figure 5.17: Left: Overview of the output trajectory and used 3D landmark on Traj3 of the
sliding window estimator. Right: Overview of the output trajectory and used 3D
landmark on Traj3 of the sliding window estimator modiied in order to ix the irst
keyframe pose of the window at each instant. See text for explanation.

Free Gauge Optimization and State Reset In contrast, [Qin et al., 2017], does not ix anything
during the optimization and optimize directly the cost (5.60). However, in order to smooth the
estimate, they transform (thanks to a rigid transform) the found minimizer so that the yaw angle
and the absolute position of the irst keyframe are exactly the same as before the optimization.
They hence enforce continuity of the estimate.
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Projection of Iteration Increment on known observable Subspace Another strategy is to project
at each iteration the linear increment in a way that applying it does not change the value of some
combination of variables. This approach seems to be used in the code of [Engel et al., 2018].

We implemented a variant of the irst workaround. We observed a trajectory that is displayed on
the right of Figure 5.17. The trajectory obtained is indeed smoother over the entire duration, but
also exhibits stronger drift compared to when not using the workaround. This error stems mainly
from heading drift.

We are thus facing a trade-of between two desirable properties for our dead-reckoning systems:
low drift versus local continuity of the estimate.
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5.8 Discussion and Conclusion of this chapter
5.8.1 Chapter Summary
In this chapter, we presented a way to use magnetometers information into an optimization
framework.

Inspired by recent work on preintegration technique for imu data, we formalized magneto-inertial
preintegration measurements. These preintegrated measurements were used to build magneto-
inertial error terms that actually retain the computational beneits of the pure imu preintegrated
measurements and can thus be used in an optimization-based framework with small overhead. We
validated that these mimu error terms can be used alone to reconstruct a trajectory.

As an application of these error terms, we build a sliding window smoother based on the
developed cost function that combines constraint coming from visual and magnetic information.
We implemented a marginalization strategy in order to keep computational cost bounded.

We showed on real and realistic datasets that the resulting cost function was indeed adequate for
fusing the data from a monocular camera and the mimu system advantageously, taking beneits
from both sensor strength.

We also assessed the critical requirement of using a robust loss on magneto-inertial residual in
order to ilter out the efect of non modeled magnetic ield efect.

5.8.2 Limitations and Critics
Here are some limitations and some criticisms one might object with respect to the work presented
here, of which we are fully aware.

• the evaluation method is not perfect. Its main weak point is the absence of ground truth
trajectory along the entire trajectory. If we were careful not to overclaim result, it would be
necessary to have a dataset where a ground truth is available all along the trajectory in order
to compute a more signiicant metric (for instance the root-mean-square error of the position
vector). This kind of ground truth can be given by a motion capture room for indoor parts
and gnss for outdoor parts of the trajectory. Note that in both cases, these ground truth
acquisition technique constraint the environment to either indoor or either outdoor scenes,
which is not the scenario we were aiming for.

• in order to implement practically the cost function, we had to rely on early marginalizations of
variables, thus ixing linearization point early in the process. Actually, in our implementation,
only the irst three poses, mimu states, and landmarks (the visual magneto-inertial window)
are not yet linearized around a point. Realizing that, the reader might wonder if there are
really any beneits from using the full non-linear error term on such a few states, compared
to a pure iltering framework for instance. We actually bring some performance comparison
between a ilter and the sliding window smoother presented here in Section 6.7.

• our system does not exploit visual information at their full potential: it does not detect nor
correct for loop closures

• our system shows local trajectory discontinuities, we admit that it is not clear yet, if there
arises from hardware issues, remaining implementation wrongness or estimator properties,
and should be investigated further. Section 6.7 will come back briely on this issues that also
appears in pure iltering context.

5.8.3 Possible Extensions of the work
A fully real-time implementation would be a requirement, as already remarked. This should
only require careful programming, without strong changes to the algorithm. Having such an
implementation would enable easier and deeper experiments. For instance, coupled with a larger
database of datasets, it would enable practical benchmarking capabilities and parameters grid
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search, which we think is a requirement for developing such an algorithm for real application, at
least from an engineering point of view.

We also think at this point that the development of a proper hardware, combining the two sensors
through a real co-conception approach, is another substantial requirement for further performance
improvements. This would require skills and resource well beyond the ones used in this work though.

But the most interesting extension of this work would be without any doubt inclusion of this
new dead-reckoning approach into a full slam framework featuring:

• batch optimization along trajectories through either a pose graph or a full bundle adjustment
optimization

• loop closure handling in the past portion of one trajectory
• relocalization capabilities and loop closure handling in a known map.

Such systems are for instance described in [McDonald et al., 2013] or more recently in [Schneider
et al., 2017]. The development of such a complete system would require a lot of work and was
considered as out of reach for the remaining of the thesis. Furthermore, it was unclear if this work
would answer to our central question: ”are mi-dr and mimu useful alongside vins system?”. Indeed,
we had the intuition that the magneto-inertial ideas would not bring a lot of improvement to the
listed slam features: in our understanding, magnetic-aided loop closure would actually require
mapping the magnetic ield at a more or less coarse level. That could be a challenge for reasons we
already explained in Section 5.2. We guess that images, as a more abundant source of information,
are way more suited for loop closure detection and relocalization pose computation.

In between the time this work was done and the writing of the thesis, two new open-source
software were released that could serve as a basis of such a slam system: [Schneider et al., 2017]
and [Qin et al., 2017]. Notably, the irst one is designed to be modular, and research oriented. It
was used as the basis for successful experiments: [Burri et al., 2015; Bürki et al., 2016; Fehr et al.,
2016] If these systems had been released earlier, we would surely have taken the time to integrate
our dead-reckoning system into their framework. Instead, we focused on using a cheaper estimator
for solving the dead-reckoning problem.

Some work is also needed to include the last progress of mi-dr technique, into our optimization
framework. Such as rejection of power line magnetic interferences described in [Chesneau et al.,
2016].

We also rejected rather quickly, at the beginning of this chapter, the possibility of mapping the
magnetic ield and gave some challenges associated. These challenges are not easy to handle in
our opinion and could be addressed: (through magnetic ingerprinting method) we considered the
subject as out of our scope for this thesis.

5.8.4 The Remaining of the Dissertation
The remaining of the thesis focus of a iltering approach solving the same sensor fusion problem. Such
iltering approach, because being very lightweight, could be implemented on embedded hardware
more eiciently than the approach presented in this chapter and would be of strong interest in real
applications.

Recalling that ”iltering is merely the irst half-iteration of a nonlinear optimization procedure”
[Triggs et al., 2000], we also wanted to verify that the overhead induces by optimization was actually
bringing some accuracy gain to our solution, for instance, compared to state-of-the-art ilter, as
often claimed (e.g., in [Leutenegger et al., 2015]).

The Chapter 6 describes the implementation of an inverse square root ilter to solve for the fusion
problem, while Chapter 7 build on theoretical properties linked with the parametrization of the
ilter.
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Chapter 6

Why (not) ilter?

In this chapter, we study an estimator based on a iltering approach designed to run in
bounded time and more eiciently than the sliding window smoother presented in Chapter 5.
If the approach of Chapter 5 could be seen as trying to use magneto-inertial techniques in
methods developed by the vision-based navigation community, this present chapter does the
opposite: using visual information into the preferred estimator used for mi-dr technology,
namely the EKF. This work was described thoroughly in the article [Caruso et al., 2017c],
which is here reproduced entirely along with contextualizing comments and a comparison
with the estimator of previous chapter.

6.0 Chapter Introduction

As noted in the introductory chapter of this second part of the thesis, two paradigms have competed
for solving the vins sensor fusion problem: optimization and iltering. The work [Strasdat et al.,
2012] argued very solidly in 2012 that, regarding visual slam, there were little reasons to use a
iltering scheme compared to sparse optimization, as this was more computationally expensive for
the same precision. Their analysis was done in the context of pure visual slam, where the 3D map
is as of interests as the position. But in fact, if one is more interested in a robust position estimate,
as in the dead-reckoning problem we want to solve, a lot of usable estimators cannot be described
as pure bundle adjustment or pure iltering: the two extremes studied in [Strasdat et al., 2012]

For instance, their speciic deinition of iltering, excluded the msckf (Multi-State Constraint
Filter) ilter formulation of [Mourikis and Roumeliotis, 2007] or the sliding window smoother
of Chapter 5. These kinds of algorithms belong actually to a middle ground between the ilter
and bundle adjustment deinition of [Strasdat et al., 2012]. Often, algorithms of the literature
are said ilter- or optimization-based depending on with which “extreme” they shared the most
characteristics.

All these “hybrid” estimator (e.g., full bundle adjustment, ekf-slam (EKF-SLAM) sliding
window smoother based on optimization and marginalization, iterative extended Kalman ilter,
exactly sparse information ilter, etc.) can actually be described in a uniied manner in a Bayesian
network of factor graph framework. From this point of view, these inference processes difer mainly
– and often merely – from the marginalization (or conditioning) strategy employed.

In this chapter, we describe an estimator that is best described as an inverse square root ilter.
The approach is to extend the mi-dr ekf presented in Chapter 2 with visual information. To do so,
we borrow ideas of the msckf ilter of [Mourikis and Roumeliotis, 2007]: inertial data are used to
feed a dynamic model to propagate the ilter, while landmark visual observations are used to create
a measurement equation linking subsequent poses; following msckf methodology this measurement
equation is used without having to augment the ilter state with proper landmark estimate; a very
interesting property for computational reasons. Also, the presented ilter shares with ekf the fact
that variables are marginalized as soon as possible. (earlier than in the sliding windows smoother
of Section 5.5).
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Chapter 6 Why (not) ilter?

Reading notes This work was described thoroughly in the article [Caruso et al., 2017c], which is
reproduced entirely starting from next page. The reader that have already read Chapter 5 could
safely skip the irst few sections of this chapter and goes directly through Section 6.4, Page 117 and
Section 6.5 Page 123. These sections present the speciicity of the ilter estimator and its result
on our dataset. Also, notes that the speed state is here expressed in body frames instead of the
world frame as done in Chapter 5. The Section 6.7 is an addition compared to the original article
and concludes the chapter by an explicit comparison between the ilter described and the sliding
window estimator of the previous chapter.
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6.1 Introduction
6.1.1 Motivation
Infrastructure-less navigation and positioning in indoor location is a technical prerequisite for
numerous industrial and consumer applications: ranging from lone worker safety in industrial
facilities, to augmented reality. Still, it remains an open challenge to eiciently and reliably combine
embedded sensors to reconstruct a position or a trajectory. In the present work, we address
this challenge restricting ourselves to the following sensors: mems gyroscopes, accelerometers,
magnetometers and a standard industrial vision camera. We motivate this choice by the fact
these sensors are cheap and can easily be embedded in a wearable form factor, which makes this
combination appealing for pedestrian applications. Moreover, vins (Visual-Inertial Navigation
Systems) literature, showed recently tremendous progress in the past few years.

6.1.2 State of the Art and Contribution
Indeed, if a wide range of embedded visual sensors were previously presented to solve the problem,
such as rotating LIDARs [Zhang et al., 2014] or depth sensors [Guo and Roumeliotis, 2013], much
of the recent eforts focused on conventional cameras, as they are cheap, and already present in a
wide range of lightweight devices, such as smart-phones. While authors of [Konolige et al., 2010;
Leutenegger et al., 2015; Usenko et al., 2016] rely on multiple embedded cameras; single cameras
solutions have been shown to provide good results. For instance, authors of [Li and Mourikis,
2013; Hernandez et al., 2015] present eicient iltering methods for monocular vins. Nonetheless,
monocular vins remains highly sensitive to degenerate motions scenarios. For instance, the scale
factor is weakly constrained in case of a steady motion and pure rotation motions must be tackled
with special care in the estimation process. Moreover, current vins implementations rely heavily
on high-frequency visual corrections (10–20 Hz), and break when the visual environment is not
adequate for more than a few seconds (bad illumination, presence of smoke, motion blur, etc.).

Compared to the previous literature, we explore a sensor suite alternative to vins and able to
provide precise and robust navigation information. We combine the vision sensor with a mimu
(Magneto-Inertial Measurement Unit), i.e., an imu sensor augmented with an array of magnetome-
ters. Within a stationary and non-uniform magnetic environment, the magnetic measurements
render the body speed observable, which has been shown to improve motion prediction signiicantly
compared to imu alone [Dorveaux et al., 2011; Chesneau et al., 2016]. This technique, named
Magneto-Inertial Dead-Reckoning (MI-DR) hereafter, is perfectly itted for indoor navigation as
human-made environment, wall, loor, and pieces of furniture all perturb the magnetic ield in a
signiicant way. As a result, the open-loop position error of this method is often around a few
percents of the trajectory length in indoor environments (see [Chesneau et al., 2017]). MI-DR fails
however in places where the gradient of the magnetic ield vanishes, (commonly outdoor) and lacks
robustness when the magnetic environment is not stationary.

We have already presented various approaches to fuse the information from mimu sensor with
vision sensors for dead-reckoning estimation. In [Caruso et al., 2016], we proposed a semi-tight
fusion scheme combining a depth sensor with a mimu to increase robustness and availability of
the position/orientation informations. Yet, we inally turned towards conventional monocular
cameras, mainly because the limited range of depth sensors makes them unable to improve the
mi-dr estimation in large rooms or outdoor. In order to still be able to estimate the scale accurately,
we also turned towards a fully tight fusion scheme, which includes estimation of camera pose, current
speed, magnetic ield and inertial sensor biases. We investigated an optimization-based solution
in [Caruso et al., 2017b] and a ilter-based solution in [Caruso et al., 2017a]. Here we present an
extension of the work presented in the conference paper [Caruso et al., 2017a] with new results
and a slightly diferent implementation of the ilter. The used estimator is still inspired by the
pure vins method presented in [Wu et al., 2015] for the visual measurements and by the magnetic
prediction and measurement process of [Chesneau et al., 2016] for the mimu handling process. We
will call it mi-msckf for Magneto-inertial Multi-State Constraint Kalman Filter. As in [Caruso
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et al., 2017a], we choose a square-root implementation which leads to better overall conditioning
of matrices operations involved in the iltering process. The inverse form is also computationally
interesting for high-dimensionality measurements [Anderson and Moore, 1979, p.141].

We show on experimental data that the mimu provides robustness in situations where vision fails,
and that, reciprocally, vision allows the system to handle cases where the magnetic gradient is to
low for the mimu to work correctly, typically in outdoor situations.

6.1.3 Paper Organization

After introducing general notations and conventions in Section 6.2, we describe the dynamic model
our ilter is built on in Section 6.3, with a focus on the magnetic prediction equation, less known in
the visual-inertial literature. This section also presents the model discretization and error model of
the sensors. The Section 6.4 describes the ilter design: chosen state and equations for propagation
and measurement update steps. The last section (Section 6.5) presents comparative results of
trajectory estimation obtained on real datasets.

6.2 Notations [Same as in this thesis]
6.2.1 General Conventions

Bold capital letters X denote matrices or elements of manifold. Parenthesis are used to denote the
Cartesian product of two elements a ∈ A, b ∈ B 7→ (a, b) ∈ A×B and brackets for the concatenation
of two row vectors. For a vector x = [x1, x2, x3]T, x2 denotes its second component x2 and x2:3 is
the sub-vector [x2, x3]T. For matrices, we deine the vectorization operation Vec () so that:

Vec
([

x11 x12

x21 x22

])
=
[
x11, x21, x12, x22

]T
. (6.1)

A⊗ B will denote the Kronecker product of matrices A and B. ∂A will be a shorthand for the
derivative with respect to the coeicients of Vec (A). The notation ‖x‖Σ is the Mahalanobis norm
of invertible covariance Σ: ‖x‖Σ = xTΣ−1x. In is the identity matrix of size n and 0n×m the zero
matrix of size n×m. In is the identity matrix of size n× n or corresponding application. O(n) is
the orthogonal matrix group of size n.

6.2.2 Reserved Symbols

Generally and except stated otherwise we use the following symbols: p for the translational part of
the body pose, R for its rotational part. v for the velocity, ba and bg for inertial sensor bias, B for
the magnetic ield, ∇B for its 3×3 gradient matrix. ω is used for the rotational speed and a for the
speciic acceleration. 3D landmark positions are noted with the letter l and these observations into
an image with the letter o. We use a tilde symbol for measured quantities or generally quantities
that can be derived from sensor reading. We use a hat for estimated versions of a physical quantity.
g symbol is kept for the gravity vector in inertial coordinates. The world coordinates are deined
such that the gravity vector writes g ≃ [0, 0,−9.81]T. When ambiguous, the reference frame in
which a quantity is expressed will be noted in exponent: w stands for the world gravity-aligned
reference frame, b for the current body reference frame and c for the camera frame. The Figure 6.1
summarizes the chosen notations.
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g

World frame
ω̃

b,ãb

∇B̃b,B̃b

R
w, pw

Body frame

o
c
1,oc

2,oc
3

Tc

b

Camera frame

lw
1

lw
2

lw
3

landmarks in world

Figure 6.1: Reference coordinate frames at play in the problem, with associated typical measure-
ments.

6.2.3 Rotation Parametrization

For rotations, we use the convention that R
w transforms a vector from body frame to world frame

by left-multiplying it. For the sake of clarity of the developments, we represent the attitude of the
sensor as a rotation matrix. The Special Orthogonal Group is denoted SO(3)and its associated
Lie algebra so(3)– the set of skew symmetric matrices. Any element of so(3)can be identiied with
a vector of R

3: [x]× ∈ so(3) with x ∈ R
3 and vex so that vex([x]×) = x. exp and log are the

standard exponential map and logarithm on SO(3). As in [Forster et al., 2015], we use vectorized
versions of exp and log:

Exp :
R

3 → SO(3)
δθ 7→ exp([δθ]×)

(6.2)

and Log : SO(3)→ R
3 the inverse function. With these conventions, Log(Exp(x)) = x.

6.3 On-Board Sensors and Evolution Model
6.3.1 Sensing Hardware

The mimu sensors (see Figure 6.2) provide raw measurements of biased proper acceleration ãb, biased
angular velocity ω̃b, magnetic ield B̃b and its gradients ∇B̃b. The latter is a 3× 3 matrix which
elements are estimated by inite diferences between signals recorded on an array of magnetometers.
These sensors are carefully calibrated oline and registered in the same spatial coordinate frame
with a method similar to [Dorveaux et al., 2009]. The resulting mimu coordinate frame, centered
around the magnetometer and accelerometer (which are assumed colocalized here), will be used
as the body frame in all subsequent derivations. We use a global shutter camera modeled as a
pinhole camera with instantaneous exposure. In practice, recorded real images are undistorted
using intrinsic calibration parameters. Intrinsic parameters (focal length in pixels (fx, fy), principal
point coordinates (cx, cy) and distortion coeicients) are assumed to be known from a preliminary
calibration. The pinhole camera projection function π maps a landmark 3D coordinates lc expressed
in the camera frame to the pixel coordinates of its projection onto the image:

π :

R
3 → R

2

lc 7→
[

fx
lc
1

lc
3

+ cx

fy
lc
2

lc
3

+ cy

]
. (6.3)
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Figure 6.2: Schematic view of on-board sensors. In addition to accelerometers and gyrometers,
the MIMU includes several magnetometers: a central one and at least three peripheral
ones in order to compute the full 3× 3 matrix of magnetic ield gradients. The camera
is rigidly attached to the mimu sensor.

The camera is rigidly attached to the mimu sensor board. The transformation (Rb
c , pb

c ) between
the camera frame and the body frame is assumed to be known. We could alternatively include this
transform into the state ilter as done in [Hesch et al., 2014] for instance.

Since hardware synchronization was not possible with the components used here, we use a
datation approach. In the online estimation process we make the simplifying assumption that
images are captured simultaneously with the mimu sample closest in time. More precisely, the
image information at time timagep

is processed using the state estimate at time tmimuk
with k such

as:
k = arg mink,tmimuk

<timagep
|tmimuk

− timagep
|.

The temporal error done with this approach is always smaller than the sampling period of the
mimu sensors, which is often below the exposure time of the camera. Besides, this approximation
significantly simplifies time management as all measurements are indexed by the mimu time sampling.

6.3.2 Evolution Model
In order to estimate the position and orientation of the body coordinate frame in the world frame,
one has to track an estimate of its speed and of the magnetic ield at the current position of its
center. We model the evolution of these quantities with the following diferential equations:

Ṙ
w(t) = R

w(t)[ωb(t)]×, (6.4)
ṗw(t) = R

w(t)vb(t), (6.5)
v̇b(t) = −[ωb(t)]×vb(t) + R

wT(t)gw + ab(t), (6.6)
Ḃb(t) = −[ωb(t)]×Bb(t) +∇Bb(t)vb(t). (6.7)

This model relies on the following assumptions on the environment:
• Flat-earth approximation. We assume that the enu (East-North-Up) earth frame at ilter

initialization is an inertial frame.
• Stationary magnetic ield in the world frame—although possibly spatially non-uniform,

leading to the spatial gradient in (6.7).
The irst assumption is, in practice, often used in vins literature, in which gyroscopes are not

precise enough to measure earth rotational speed (roughly 7× 10−5 rad/s). However, if high-end
gyroscopes had been used, it is likely that an estimate based on the simple model (6.4)–(6.7) would
introduce some error, confusing earth rotational velocity with biases estimates. In our opinion
though, even in the case of high-end hardware, it is not clear that the visual pipeline used in
this work would be able to provide information reliable enough to estimate biases with suicient
accuracy to be inluenced by earth rotational speed. This would be a great challenge to address.
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Note also that the world frame difers from the enu frame deined at ilter initialization: they
both have their origin at the position of the center of the body frame at initial time, but they can
difer by a rotation around the gravity direction, as the heading is not observable at initialization.

Equation (6.7) is the key equation for MI-DR. It relates the evolution of the magnetic ield with
kinematics quantities and local magnetic gradient. It actually renders the body velocity observable
provided the matrix ∇Bb is invertible. However, it fails to give useful translational information if
the magnetic ield is uniform. This happens outdoor, where the magnetic ield is uniformly equal to
the earth magnetic ield. In the latter situation, magnetic gradients can vanish a few meters away
from a wall, ceiling or loor.

Also, the stationarity assumption can be challenged in some environments, or punctually if pieces
of metal are moving in the vicinity of the magnetometers even if some nonstationarities can be
modeled—as the case of power-line interference [Chesneau et al., 2016].

6.3.3 Model Discretization
The model will be used in a discrete extended Kalman iltering framework described in Section 6.4
below. We thus discretize it the following way:

R
w
k+1 = R

w
k ∆̃Rkk+1, (6.8)

pw
k+1 = pw

k + R
w
k vb

k∆t +
1

2
gw∆t2

ij + R
w
k ∆̃pkk+1, (6.9)

vb
k+1 = ∆̃R

T

kk+1

(
vb

k + R
w
k

Tgw∆t + ∆̃vkk+1

)
, (6.10)

Bb
k+1 = ∆̃R

T

kk+1

(
Bb

k + ∆̃Bv;kk+1vb
k + ∆̃Bg;kk+1R

w
k

Tgw + ∆̃Ba;kk+1

)
. (6.11)

where we introduced the following notation corresponding to continuous integrals:

∆̃Rkk+1
def
= ∆Rk(tk+1), (6.12)

∆̃vkk+1
def
= ∆̃vk(tk+1), (6.13)

∆̃pkk+1
def
=

∫ tk+1

tk

∆̃vk(τ)dτ, (6.14)

∆̃Bv;kk+1
def
=

∫ tk+1

tk

∆Rk(τ)∇Bb(τ)∆Rk(τ)T
dτ, (6.15)

∆̃Bg;kk+1
def
=

∫ tk+1

tk

∆Rk(τ)∇Bb(τ)∆Rk(τ)T [τ − tk] dτ, (6.16)

∆̃Ba;kk+1
def
=

∫ tk+1

tk

∆Rk(τ)∇Bb(τ)∆Rk(τ)T∆ṽk(τ)dτ, (6.17)

with ∆Rk(τ)
def
= I3 +

∫ τ

tk

∆Rk(s)
[
ωb(s)

]
× ds and ∆̃vk(τ)

def
=

∫ τ

tk

∆Rk(s)ab(s)ds. (6.18)

The notation ∆Rk(τ ) is the rotation matrix that transforms point in body frame at time τ to the
corresponding point in body frame at time tk, that can be deduced from gyroscopes integration.

These integrals can be computed from unbiased mimu measurements. We thus estimate the
biases of the accelerometers and gyrometers along with previously quantities. These are assumed
to follow a irst-order Gauss-Markov stochastic evolution:

ḃg(t) = − 1

τg

bg + ηbg, (6.19)

ḃa(t) = − 1

τa

ba + ηba. (6.20)
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where generating noises ηbg and ηba satisfy:

E ([ηbg(t), ηba(t)]) = 06×1, (6.21)
E
(
[ηbg(t1), ηba(t1)].[ηbg(t2), ηba(t2)]T

)
= Wcδ(t2 − t1), (6.22)

Wc = diag(σ2
bg;cI3, σ2

ba;cI3). (6.23)

τb, τa, σbg;c and σba;c are expressed in s, s, rad
s2

1√
Hz

and m
s3

1√
Hz

respectively and are characteristics
of the IMU. Discretization of the evolution of biases leads to:

bgk+1 = − exp
(

∆tij

τg

)
bgk

+ ηbg (6.24)

bak+1 = − exp
(

∆tij

τa

)
bak + ηba (6.25)

The η
x

appearing in (6.24) and (6.25) will be then modeled as discrete random variables with
Gaussian density N (0, W ), W being computed as (tk+1 − tk)Wc [Simon, 2010] (p. 231).

The presented models discretization exhibits integrals that all have to be computed numerically
in order to build the ilter on. Normally, the choice of the numerical integration method depends
on the required accuracy. In the current implementation though, we take a very simple approach:
we assume that the biases, acceleration and magnetic ield gradient—the last two are in world
frame—are constant between two mimu sample and use the following identity:

∆̃Rkk+1 ≃ Exp
((

ω̃b
k − bgk

)
∆tk

)
, (6.26)

∆̃vkk+1 ≃
(
ãb

k − bak

)
∆tk , (6.27)

∆̃pkk+1 ≃
1

2

(
ãb

k − bak

)
∆t2

k , (6.28)

∆̃Bv;kk+1 ≃ ∇B̃b
k∆tk , (6.29)

∆̃Bg;kk+1 ≃
1

2
∇B̃b

k∆t2
k , (6.30)

∆̃Ba;kk+1 ≃ ∇B̃b
k

1

2

(
ãb

k − bak

)
∆t2

k. (6.31)

The error induced by this simple integration scheme is limited by the relatively high frequency of
mimu sample (325 Hz).

6.3.4 Sensors Error Model
Sensors errors propagate through the discrete model when used for iltering. We assume that the
noisy sensor reading at time k (the input vector of the ilter) can be written:

ũk =




ãb
k

ω̃b
k

Vec
(
∇B̃b

k

)




︸ ︷︷ ︸
measurement

=




ak

ωk

Vec (∇Bk)




︸ ︷︷ ︸
real values

+




I3 03 03×5

03 I3 03×5

03 03 P∇B







ηab
k

ηωb
k

η∇Bb
k




︸ ︷︷ ︸
input noise δuk∈R11

(6.32)

The noise δuk is assumed to be Gaussian δuk ∝ N (0, Σu) and is a sensor characteristic.
We use here:

Σu =




σ2
ωI3 03×3 03×5

03×3 σ2
aI3 03×5

05×3 05×3 Σ∇B


 with σω in rad

s
, σa in m

s2
and Σ∇B in Gauss

m
∈ R

5×5. (6.33)

Note that P∇B relects that we explicitly exploit the symmetry in the magnetic ield from Maxwell
equation. They implies that the gradient should be a symmetric matrix and of zero trace and thus
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has 5 degrees of freedom, instead of the nine coeicient of the full matrix. P∇B ∈ R
9×5 is thus

the matrix of the application generating the vectorized gradient matrix from minimal gradient
coordinates:

R
5 → R

9



g1

g2

g3

g4

g5



7→ Vec






g1 g2 g3

g2 g4 g5

g3 g5 −g1 − g4




 (6.34)

6.4 Tight Fusion Filter
This section describe thoroughly the mi-msckf ilter that is used in the experimental Section 6.5.
Section 6.4.1 describes the parametrization of the state of the ilter. Section 6.4.2 is dedicated to
the propagation step while Section 6.4.3 details the magnetic and visual measurement equations.

6.4.1 State and Error State
We deine the state space at time index k, Xk as a manifold which is compound of :

• the keyframe poses state space Kk, which elements are the poses of a set of N past frames at
time indexes {i1, ...iN} not necessarily temporally successive but close in time. With poses
written ξi = (Rw

i , pw
i ), this part of the state have the following form:

(
ξi1

, · · · , ξiN

)
∈ Kk =

(
SO(3)× R

3
)N (6.35)

• the current mimu state S space which elements have the following form:

sk =
(
ξk, vb

k, Bb
k, bak, bgk

)T ∈ SO(3)× R
3 × R

12 (6.36)

A complete state space element at time index k is thus noted:

Xk =
(
ξi1

, · · · , ξiN
, sk

)
∈ Xk = Kk × S (6.37)

We use the Lie group structure of this manifold and its tangent space to (i) deine the error
tracked by the ilter and (ii) deine the Jacobian of the measurement process. This derives from
the fact that a perturbation around an element can be expressed as an element of its Lie algebra.
We use the ⊞ operator symbol, so that Xk ⊞ δXk computes a new state in Xk from a tangent
perturbation δXk around Xk. We deine it as regular addition operation for all components of the
state except for pose states where we use:

ξ ⊞ δξ = (Exp (δξ4:6) R, p + δξ1:3) (6.38)

Similarly we deine the reciprocal operator ⊟ as the binary operator giving the perturbation
element between two states of X . It is deined as regular minus operation except for pose states for
which it is:

ξ2 ⊟ ξ1 =
[
Log(R2R

−1
1 )T , pT

2 − pT

1

]T (6.39)

We here deine the error state as the application ⊟ operator between the true state and the
estimated state, noted hereafter with an hat. It is thus an element of the tangent space at the
current estimate.

ek
def
= Xk ⊟ X̂k ⇔ Xk = X̂k ⊞ ek (6.40)
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Note that this implies a parametrization of the rotation error in world frame, and is diferent
from our previous work [Caruso et al., 2017a] where rotation error was parametrized in the body
frame.

The iltering process propagates the estimated mean, along with an estimate of uncertainty.
This uncertainty is represented as a Gaussian density of the error state ek ∝ N (0, Pk) in order to
take advantage of the Lie group structure deined previously, i.e., a minimal parametrization and a
locally Euclidean structure in tangent space.

For numerical reasons, the covariance Pk will be tracked by the ilter in an square-root information
form, such that we have the relationship Pk = (Ŝ

T

k Ŝk)−1 with Ŝk an upper triangular matrix.
The next section describes how this quantity evolves through the diferent steps of the ilter:
propagation and update.

6.4.2 Propagation/Augmentation/Marginalization
At the time of arrival of a new imu data k + 1, Xk|k and Ŝk|k are propagated. This is summarized
by Figure 6.3 and splitted in three steps. First, the mimu state sk is propagated with discretized
model (Section 6.4.2.1), then the full state is augmented with the resulting new mimu state sk+1

(Section 6.4.2.2). Finally, some part of this augmented state are marginalized before the update
step (Section 6.4.2.3).

New mimu data without image New data contains a keyframe

State at time k

ξi1
ξi2

ξi3

sk

ξk

State augmentation

ξi1
ξi2

ξi3

sk

ξk

sk+1

ξk+1

Marginalisation

ξi1
ξi2

ξi3

sksk

ξk

sk+1

ξk+1

State at time k+1

ξi1
ξi2

ξi3

sk+1

ξk+1

State at time k

ξi1
ξi2

ξi3

sk

ξk

State augmentation

ξi1
ξi2

ξi3

sk

ξk

sk+1

ξk+1

Marginalisation

ξi1
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ξi3

sksk
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ξk+1

State at time k+1

ξi2
ξi3

ξk

sk+1

ξk+1

Figure 6.3: Illustration of state augmentation and marginalization across time as described in
Section 6.4.2.

6.4.2.1 Propagation

Keyframe poses states are estimation of physical quantities blocked at ixed instant in time, their error
do not evolve with time and thus they are propagated with an identity function. Besides, the current
mimu state error is propagated according to

sk+1 = fmimu(sk, ũk, ηk) (6.41)

where the discrete mimu process function fmimu summarizes (6.8)–(6.11) and (6.24)–(6.25).
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The mimu state error is increased from the three sources of uncertainty: the stochastic model of
biases, the measurement noise δuk on the input vector and the uncertainty of the previous estimate:

emimu,k+1 = fmimu(ŝk ⊞ emimu
k , ũk − δuk, ηk) ⊟ fmimu(ŝk, ũk, 0) (6.42)

≃ Φmimu
k+1,kemimu

k + Gmimu
k+1,kδuk + Cmimu

k+1,kηk + O
(
emimu

k , δuk, ηk

)
(6.43)

The expression of matrices Φmimu
k+1,k, Gmimu

k+1,k, Cmimu
k+1,k are derived by 1st order development of

(6.42):

Φmimu
k+1,k =




I3 03 03 03 Φmimu
k+1,kRbg

03[
−Rk(vb

k∆t + ∆̃pkk+1)
]
×

I3 Rk∆t 03 Φmimu
k+1,kpbg

Φmimu
k+1,kpbg

R
T

k+1 [gw]×∆t 03 ∆R 03 Φmimu
k+1,kvbg

Φmimu
k+1,kvba

∆R
T∆̃Bg;kk+1 [gw]× 03 ∆R

T∆̃Bv;kk+1 ∆R
T Φmimu

k+1,kBbg

Φmimu
k+1,kBba

03 03 03 03 − exp
(
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τg

)
03

03 03 03 03 03 − exp
(
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)




(6.44)

Gmimu
k+1,k =




−Φmimu
k+1,kRbg

0 0

−Φmimu
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−Φmimu
k+1,kpba

0
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0
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Cmimu
k+1,k =




0 0
0 0
0 0
0 0
I3 0
0 I3




(6.45)

Φmimu
k+1,kRbg

= −Rk∆t (6.46)

Φmimu
k+1,kvbg

= −∆t [vk+1]× + ∂bgk

(
∆̃vkk+1

)
(6.47)

Φmimu
k+1,kBbg

= −∆t [Bk+1]× (6.48)

+ ∆R
T
(
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)
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(
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(
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)
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(
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))
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T∂bg

(
∆̃Ba;kk+1

)
(6.49)

Φmimu
k+1,kpbg

= Rk∂bgk

(
∆̃pkk+1

)
(6.50)

Φmimu
k+1,kvba

= ∆R
T∂bak

(
∆̃vkk+1

)
(6.51)

Φmimu
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= Rk∂bak

(
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)
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Φmimu
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= ∆R
T∂bak

(
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)
(6.53)

Gmimu
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= ∆R
T
(
vT

k ⊗ I3

)
∂∇B

(
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(
∆̃Bv;kk+1
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(
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(
Vec

(
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))
P∇B + ∆R
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(
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)
P∇B

(6.54)

where P∇B is deined as in (6.34). Note that we wrote here the transition and noise matrices as a
function of the integrals (6.12)–(6.17), independently of the way the are computed, so that these
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expressions are still valid if one choose to compute the integrals with a more sophisticated scheme.
Derivative of these integrals with respect to the biases are also required: these quantities should be
computed simultaneously with the integrals. In our implementation, they are computed easily with
the approximations made in (6.26)–(6.31).

6.4.2.2 State Augmentation

When mimu sample k + 1 arrives, the mimu propagation function is used to augment the state
with the new current mimu state ŝk+1 = fmimu(ŝk, ũk, 0), leading to the augmented state X̂⊕

k+1|k.
The error state square root information matrix is augmented accordingly to [Wu et al., 2015],
Ŝ
⊕
k+1|k using the Jacobian derived in previous subsection.

X̂⊕
k+1|k

def
=
(
Xk|k, sk+1

)
(6.55)

Ŝ
⊕
k+1|k

def
=

[
Ŝk|k 0
V1 V2

]
(6.56)

with

V1 = [018×6, · · · , 018×6, Q
− 1

2

k+1Φmimu
k+1,kk+1,k

] (6.57)

V2 = Q
− 1

2

k+1 (6.58)

and the discrete model noise at Qk time k :

Qk+1 =
(
Gmimu

k+1,kCmimu
k+1,k

)(Σu 0
0 W

)(
Gmimu

k+1,k

T

Cmimu
k+1,k

T

)
. (6.59)

6.4.2.3 Marginalization of Old State

Then, in order to bound the size of X̂k+1|k, some part of it are marginalized. The state elements
to be marginalized depend on the type of data available at the current timestamps as depicted in
Figure 6.3. If only mimu data (without a new keyframe image attached) are arriving at time k,
sk is marginalized. If mimu data and a new keyframe image are available at time k, the oldest
keyframe pose is marginalized together with the non-pose element of sk. Note that since the image
frame rate is well below mimu frequency, the irst case happens more often than the second case.

Within the square root information form, marginalization is done similarly to [Wu et al., 2015].
With Πk being the matrix permutation putting the to marginalize error states at the beginning,
a QR decomposition of a square root information matrix of the permuted augmented error state
vector writes:

Ŝ
⊕
k+1|kΠk = OpRp,

Op ∈ O(n)
Rp ∈ R

n (6.60)

= Op

[∗ ∗
0 Ŝk+1|k

]
(6.61)

We obtain the predicted state X̂k+1|k removing marginalized states, and its—upper triangular—
square-root information matrix Ŝk+1|k. If no measurement update has to be performed at current
time step they can be used directly as Xk+1|k+1 and Ŝk+1|k+1 for the next propagation.1

1The marginalization of a joint Gaussian distribution with a square-root information form is not often demonstrated
in book or lecture but can be deduced from the full information form Λjoint:

if Λjoint =

[
ΛM ΛMR

ΛT

MR
ΛR

]
= Ŝ

T

jointŜjoint =

[
Ŝ

T

M ŜM Ŝ
T

M ŜMR

Ŝ
T

MRŜM Ŝ
T

RŜR + Ŝ
T

MRŜMR

]
with Ŝjoint =

[
ŜM ŜMR

0 ŜR

]

(6.62)
then the square root information matrix resulting from marginalization of the the M variables is: Ŝ

marg
R = ŜR.

This is deduced by calculus from the usually demonstrated fact that: Λ
marg
R

= ΛR − ΛMRΛ−1
M

ΛT

RM
)
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6.4.3 Measurement Update
The ilter processes two kinds of measurement: (i) the magnetic one that compares the magnetic
ield measured at the current timestamp with the magnetic ield predicted by the ilter; (ii) the
visual measurement equation for features for which tracking has just ended.

We irst briely recall the update process of the inverse square root ilter on a manifold. Let us
suppose that some measurement occurs that can be modeled as:

h(Xk+1) = h̃k+1 + ηh ∈ R
nm , ηh ∼ N (0, Σh) (6.63)

with nm the dimension of the measurement vector. Writing the dimension of the predicted state as
ns, the measurement error zk+1 = h(X̂k+1|k)− h̃k+1 and H the jacobian of the application:

R
ns → R

nm

δX 7→ h(X̂k+1|k ⊞ δX)
, (6.64)

the update step inds the tangent correction δX∗ that minimizes the following linearized cost:

C(δX) = ‖δX‖2
Pk+1|k

+ ‖HδX− zk+1‖2
Σh

=
∥∥∥Ŝk+1|k.δX

∥∥∥
2

+
∥∥∥Σ
− 1

2

h (HδX− zk+1)
∥∥∥

2

=

∥∥∥∥∥

[
Ŝk+1|k

Σ
− 1

2

h H

]
δX−

[
0

Σ
− 1

2

h zk+1

]∥∥∥∥∥

2

. (6.65)

The optimum point can be obtained by of a thin qr decomposition:
[

Ŝk+1|k

Σ
− 1

2

h H

]
= OuRu,

Ou ∈ O(ns + nm)
Ru ∈ R

ns+nm
(6.66)

C(δX) =

∥∥∥∥∥RuδX−OT

u

[
0

Σ
− 1

2

h zk+1

]∥∥∥∥∥

2

, (6.67)

Ru being upper triangular, δX∗ is eiciently computed by back-substitution. This optimal
correction is inally applied to the predicted state with the retraction operator :

Xk+1|k+1 = X̂k+1|k ⊞ δX∗ (6.68)
Ŝk+1|k = RuJ

−1
r . (6.69)

With Jr being the Jacobian at e = 0 of:

R
ns → R

ns

e 7→ (X̂k+1|k ⊞ (δX∗ + e)) ⊟ (X̂k+1|k ⊞ δX∗). (6.70)

Intuitively, this Jacobian transforms the square-root information matrix from the tangent space of
predicted state to the tangent space of the updated state. Note that, in the current parametrization
choice (cf. (6.38)), this Jacobian is the identity matrix; this was not the case in our previous work
[Caruso et al., 2017a] where the rotation error was expressed in body frame.

121



[Caruso et al., 2017c] 6.4 Tight Fusion Filter

6.4.3.1 Magnetic Measurement Update

The magnetic measurement update is the simplest and uses at mimu frequency the direct magnetic
ield measurement which writes:

hB(Xk) = P Bb
Xk (6.71)

ΣhB
= σ2

BI3 (6.72)

with P Bb
the projection operator from the state space to the coordinates of the state corresponding

to Bb. σB is the noise of the magnetometers reading.

6.4.3.2 Opportunistic Feature Tracks Measurement Update

We use the feature tracks in the same way as proposed by [Mourikis and Roumeliotis, 2007]. We
derive here the equation for completeness.

When a feature track ends or when the frame in which the feature was detected is about to be
marginalized, we process the entire feature track as a measurement constraining the pose of each
in-state frame where the feature was detected.

The predicted reprojection of feature i in frame at time t is written:

pri
t(ξt, lw

i ) = π
(

R
b
c

T
(

R
w
t

T (lw
i − pw

t )− pb
c

))
∈ R

2 (6.73)

with lw
i ∈ R

3 the 3D-position of the features i in inertial coordinates and π : R3→R
2 the projection

function of the camera. We recall that (Rb
c , pb

c ) is the known transform between the body frame
and the camera frame. lw

i is computed by a fast triangulation function from known in-state poses
and the measured observation, noted oit.

By stacking all these reprojections, we can write the non linear measurement function:

hfi(X, lw
i ) =




·
pri

t(ξt, lw
i )

·


 =



·

oit

·


+ ηfi , (6.74)

with ηfi is assumed to be an additive Gaussian white noise : ηfi ∼ N (0, ΣC), ΣC = σcI2m. We
note subsequently oi the vector resulting from stacking of 2-vector observation oit.

The attentive reader may note that this measurement equation is not of the form of (6.63),
because lw

i is not part of our state: for this reason, we can not directly use (6.65) and (6.67). Worse,
the computed lw estimate is correlated with the current state error, so that we can not just use it
as a ixed constant. The solution used here aims at expressing a projection of the residual that
depends only on the poses, up to the irst order.

We start by linearizing the residual then proceeds the minimization in two steps to extract the
used measurement equation. Linearization of ri : X, lw

i 7→ (hfi(X, lw
i )− oi) yields:

ri(Xk+1|k ⊞ δX, lw
i + δlw

i )

≃ F iδX + Ef δlw
i +

(
hfi(Xk+1|k, lw

i )− oi

)

= FkδX + Ef δlw
i − δoi

(6.75)

δoi = hfi(Xk+1|k, lw
i )− oi is the 2m-vector of predicted residual error. Ef is a 2m× 3 matrix

of rank 3 ; m denoting the number of observations for the feature. The rank of Ef is guaranteed
during the triangulation. Its qr decomposition writes:

Ef = [OE1, OE0]

[
RE1

02m−3×2m

]
(6.76)

OE1 ∈ R
2m×3, OE0 ∈ R

2m×2m−3, RE1 ∈ GL3(R); (6.77)

122



6.5 Experimental Study [Caruso et al., 2017c]

Properties of square orthogonal matrices on the L2 norm of vectors allow to split the cost function
into two terms, one depending only on the current predicted state vector.

min
δX,δlw

i

‖ri‖2
ΣC

= min
δX,δlw

i

∥∥∥∥
[

OT

E1

OT

E0

]
ri

∥∥∥∥
2

ΣC

= min
δX,δlw

i

∥∥OT

E1F iδX + RE1δlw
i −OT

E1δoi

∥∥2

ΣC

+ min
δX

∥∥∥QT

E0F iδX −OT

E0δoi

∥∥∥
2

ΣC

(6.78)

As RE1 is invertible, the irst term of the quantity to be minimized can be reduced to zero for
all δX. Minimization reduces thus to:

min
δX

∥∥OT

E0F iδX −OT

E0δoi

∥∥2

ΣC
(6.79)

Finally, the previous linearized residual is used in the cost function (6.65), i.e., we use for the H

matrix, the z error vector and the covariance of measurement Σh the quantities:
Hf = OT

E0F i, zf = OT

E0δoi, Σhf
= σCI2m−3. (6.80)

Note that everything happens here as if we introduced the features position into the state,
but instantly marginalized it.

6.4.4 Filter Initialization
One sensitive issue in a vins ilter is initialization. It usually involves some speciic algorithm as
described in [Yang and Shen, 2016; Dong-Si and Mourikis, 2012] for instance. In our implementation,
we proceed as follows: after switch on, the current state is initialized at the origin with an attitude
matching the current acceleration direction and a zero speed, both with high variance. The ilter is
then run using the high-frequency magnetic update equation in order to get a stabilized trajectory
rapidly from the irst few seconds. This trajectory is used to bootstrap the irst keyframe poses
state and then to start using features information. This initialization process relies on the empirical
observation that the mi-dr ilter convergence basin is large. Admittedly, it would degrade severely
the ilter if the system’s switch on occurs in an area where magneto-inertial dead-reckoning is not
reliable.

6.5 Experimental Study
6.5.1 Hardware Prototype Description and Data Syncing
The sensor system is pictured on Figure 6.4. The camera is rigidly attached 47 cm away of the mimu
system to avoid any potential magnetic perturbation. Such a large distance is necessary because
the of-the-shelf camera has not been speciically designed for reducing its magnetic footprint.
Reducing the hardware to a wearable size would involve sensors co-design that was not in the
scope of this work. For the vision part, we use an IDS uEye 3241-LE equipped with a Lensagon
BM4018S118 lens. It provides around 100 degrees of ield of view. Camera intrinsics and extrinsic
parameters are calibrated with the Kalibr toolbox [Furgale et al., 2013]. The mimu provides data
at 325 Hz, the camera at 20 Hz. Magnetometers, accelerometers and gyro-meters are all MEMS
sensors digitized with sigma-delta ADCs which were carefully calibrated.

The camera and mimu provide timestamps computed from diferent clocks. We synchronize them
oline: timestamps shifts are estimated both at the start and at the end of the records by the
checkerboard-based Kalibr calibration toolbox; clock drift is then deduced and corrected for.

The camera exposure time is ixed at 10 milliseconds maximum, reducing worst-case motion blur
and allowing to timestamp each image observation accordingly. However, this choice limits the
camera’s ability to adapt to a very low-light environment.
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Figure 6.4: The sensor setup used in this work. The white box on the left side contains the mimu
sensor, the camera is on the right side. Both sensors are rigidly attached through a
non-magnetic, non conductive material (wood).

6.5.2 Filter Parameters Tuning
Most parameters of the ilter are chosen in a deterministic and consistent fashion. mimu noise
standard deviation σa, σω, σB and biases evolution parameters τbg, τba, σbg;c, σba;c are derived from
sensors characteristics measured empirically with an Allan standard deviation. The pixel reprojection
noise σC is set to

√
2, which is the diagonal size of a pixel. Only the magnetic part of covariance Σ∇B

is tuned empirically. It is set higher than what would derive from the covariance of magnetometers
white noise, so as to absorb some modeling errors of the magnetic ield, such as small non-
stationarities or high values of the 2nd order spatial term. Note that parameter tuning is unchanged
for all presented datasets in order to draw fair conclusions.

6.5.3 Visual Processing Implementation
The visual processing pipeline aims at constantly tracking 200 interest points well spread in the
image. In order to enforce a proper repartition of corners across the entire image, we use a bucket
strategy. Harris-corner response is computed over the whole image, and we retain only the strongest
features in buckets for which the number of already tracked points is below a threshold. We use
here a partition of the image in 6× 8 buckets. Detected corners are tracked from frame to frame
with OpenCV pyramidal klt algorithm until either:

• they go out of the ield of view;
• the tracking fails;
• they are classiied as outliers;
• the frame where they were irst detected is to be marginalized at next propagation step.
We ran a 2-point ransac algorithm between subsequent frames for outliers detection and rejection,

using the relative orientation from the integrated gyroscope as rotation between the two frames.
An ended feature track is used as a measurement, only if:
• it spans at least three poses;
• its initial triangulation did not exhibit any degeneracy;
• its re-projection error is below a threshold.
Contrarily to our previous implementation [Caruso et al., 2017a], this threshold is dynamically

set with a χ2 threshold. As a result, the criterion becomes looser when the estimated uncertainty
of relative poses increases.
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In order to make the visual pipeline more robust to dark areas, we normalize each input image
by its averaged intensity before corner detection and tracking. Some very dark images then become
usable for corner detection despite a signiicant increase of the photometric noise which afects them.
Noise ampliication leads to spurious features track, but these are most often correctly rejected
by our outlier rejection strategy. Overall, we found that normalization signiicantly improves the
performance of pure msckf vins algorithm on our dataset. Some raw/normalized images are
presented in Figure 6.5.

Figure 6.5: Image processing pipeline. (Left): Raw input images. (Right): after rectiication,
intensity normalization, and corner detection. On the second example, the normalization
reveals a faint signal, but it is too noisy for corner detection to works.

Note that, in contrast with the tuning of the ilter, the parameters of the vision pipeline (klt
window size, number of octaves in the pyramid of klt, ransac threshold and minimum Harris
score for corner detection) were chosen empirically.

6.5.4 Trajectory Evaluation
6.5.4.1 Dataset Presentation

We evaluate our algorithm on a dataset of ive test trajectories. A pedestrian is carrying the system
depicted in Figure 6.4 and walks through an industrial facility. Trajectories are speciically designed
to be challenging for mi-dr and vins: they are partly done outdoor, with very low magnetic ield
gradient, and they also contain portions visually non-informative made in the non-lit basement
of the building. Detailed results on Traj2 and Traj5 are presented on Figures 6.6 , 6.7 and 6.8,
the others being more briely depicted in Figure 6.9. In all cases, a dedicated plot indicates with a
color code the parts of the trajectory where the magnetic ield gradient vanishes and parts of the
trajectories where the mean intensity is low.

6.5.4.2 Overall Comparison

Three estimators derived from the presented ilter have been compared. The mi-dr is the presented
ilter without any visual update. msckf is the presented ilter without any magnetic update.
mi-msckf is the proposed ilter fusing both information. Moreover, we also compare our results
with the state of the art vins ilter of [Paul et al., 2017].

Unfortunately, we do not have access to a ground truth trajectory for our datasets. We then
consider three evaluation criteria:

• the estimated trajectories are superimposed to a georeferenced orthoimage in which one pixel
represents precisely 0.5 m. We compute an alignment of the trajectory when the checkerboard
detected for the irst time in the sequence. This alignment results from setting manually
the position and heading of the checkerboard frame relative to the coordinates system of the
satellite image. Note that no manual scale alignment has been made; hence this visualization
allows to evaluate roughly the correctness of the global scale of the estimate, for instance on
Figure 6.6a;

• the z proile is globally known as the pedestrian walks along lat corridors—except when he
takes stairs to change levels;
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Figure 6.6: (a) Overview of trajectory Traj2 as reconstructed by the three ilters. (b) Visualisation
of dark areas and low-gradient areas over the entire trajectory surimposed on mi-msckf
estimate. (c) Height proile of the three estimators on this trajectory.
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• a translational error is computed each time the system comes back to its initial position,
thanks to a static checkerboard placed at starting point. This criterion can be visualized in
Figure 6.6c for Traj2 where it is clear the mi-dr estimate is less stable vertically over the
entire trajectory.

The last criterion can be quantitatively evaluated: results are displayed in Table 6.1 with an
error given in percentage of the trajectory length. Next sections emphasize some diferences in the
behaviors of the tested methods.

Traj1 Traj2 Traj3 Traj4 Traj5
MI-DR 1.11 1.98 1.81 1.54 2.87

MSCKF (VINS) 0.33 0.63 0.59 1.05 0.21
MI-MSCKF 0.20 0.31 0.49 0.71 0.15

State of the art vins [Paul et al., 2017] 0.26 0.52 0.79 0.62 0.20

Table 6.1: Summary of inal drift error on full dataset (% of trajectory length).

6.5.4.3 The Fused Estimate Improves MI-DR in Outdoor Trajectories

The Figure 6.6 shows the three versions of our ilter on Traj2. The trajectory estimated by mi-dr is
very close to the others until some point in the outdoor part—note that the outdoor part corresponds
to the weak gradient part of the trajectory as depicted on Figure 6.6b. During this outdoor part,
as expected, the mi-dr drifts away compared to the two vision-based estimates which directly leads
to a higher inal translation error. The same efect is also clearly visible on Traj3, see Figure 6.9b.

6.5.4.4 Data Fusion Improves Local Consistency

By reducing the drift in dark areas or low gradient areas, the fused estimates improve the local
position estimate consistency, an efect which is not always visible on the metrics of Table 6.1.

The beneit of magnetometry information in this sense is demonstrated in the details of results on
the Traj2 displayed in Figure 6.7. The two left plots show a similar situation: the vins estimate
(red) is for a few seconds strongly corrected by the ilter, leading to non-continuous estimates
(see green circles). The mi-msckf ilter stays smoother during the entire trajectories, thanks to
the speed observability provided by Equation (6.7). Interestingly, the pure vins estimate joins the
mi-msckf estimate later in the sequence, which makes the temporary drift mostly invisible in the
inal loop error metric of Table 6.1. This correction happens when visual information becomes
available again. It means that the vins ilter is still able to correct itself after reasonable drift
through the information stored in the prior.

The same efect occurs on all trajectories. Consider for instance the trajectory Traj5 depicted
on Figure 6.8, where the lowest part also goes through the dark basement of the building. The
msckf drifts vertically before being corrected when the pedestrian takes the stair up again. This
efect is depicted on details in Figure 6.8c, which clariies the evolution of the estimated height with
respect to time.

In turn, visual information also helps trajectory consistency. It is clearly visible on the strong
vertical drift of mi-dr displayed on Figure 6.6c around 250 s. Again, this drift is corrected as soon
as magnetic gradients become suiciently high to make speed observable again. Note the horizontal
drift was never corrected though, leading to the larger inal drift shown in Table 6.1.

The reader may have noticed at that point that Figure 6.8c shows that mi-dr fails badly on
Traj5. Yet, we would like to stress that the fully fused estimate is still able to outperform the
vins estimate, leveraging magnetic information correctly beyond the breaking point of mi-dr. The
reason for the failure of mi-dr is a nonstationary local magnetic ield in the irst few seconds of
Traj5. It perturbs the mi-dr initialization, which has dramatic consequences on all the rest of the
trajectory.
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Figure 6.7: Details of estimation results on Traj2 showing a diferent behavior between the msckf
and mi-msckf ilter. Left and middle plots: while transitioning from dark area
to lit environment some strong ilter correction happen for the msckf and lead to
discontinuities of the position estimate. In the same areas, mi-msckf stays smoother.
Right plot: here the device is laid on the ground at the end of the trajectory. A large
drift of msckf occurs, as visual information does not provide any feedback on position.
Here again, the mi-msckf appears more stable.

128



6.5 Experimental Study [Caruso et al., 2017c]

−10 0 10 20 30
−10

0

10

x (m)

y
(m

)

MI-DR MSCKF MI-MSCKF

0

20−20
−10 0

0

5

x (m)

y (m)

z
(m

)

Darkness Weak ∇B̃
b

(a) (b)

−5 0 5 10 15 20 25 30

0

5

vertical drift of VINS

x (m)

z
(m

)

200 220 240 260 280 300 320 340

−2.00

0.00

2.00 vertical drift

of VINS

z
(m

)

darkness

weak ∇B̃
b

200 220 240 260 280 300 320 340
−0.20

0.00

0.20

0.40

0.60

t (s)

∆
z

(m
)

(b)
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of dark areas and low-gradient areas over the entire trajectory surimposed on mi-msckf
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The fact that the fused estimate prevents local drift could be, in our opinion, highly beneicial to
the long-term performance of an Extended Kalman Filter strategy. Indeed, it could reduce overall
linearization errors and the maximum magnitude of corrections, which are recognized, in vins
community, as an important drawback of iltering approaches compared to bundle adjustment or
optimization-based methods.

6.5.4.5 Comparison with a State of the Art Filter

We also ran the released binary version 2 of [Paul et al., 2017] on our dataset. Indeed, we think it
is the state-of-the-art in vins ilters for pedestrian navigation. As [Paul et al., 2017] takes only
stereo images (even if their method works well with monocular setup also) we had to trick slightly
their software to use a monocular input: we generate an virtual black image for the second input
image of their software. Note that, to be as fair as possible, we have entered in their code the
same normalized monocular images we use. In doing so, we observed that normalization has also
drastically improved the performance of their ilter on our data.

An in-depth and comprehensive comparison between the two implementations is diicult as the
code of [Paul et al., 2017] is not open. If inertial handling in both implementations should be close,
the visual pipeline is very sensitive to parameters value and implementation details that are not
known by us. Nevertheless, Table 6.1 demonstrates that both ilters compare reasonably and are
clearly below 1% of trajectory length error.

We also observed in [Paul et al., 2017] implementation the presence of strong ilters correction
after dark areas, as in described in Section 6.5.4.4. It indicates that this local consistency problem,
which is essentially solved by the proposed fused estimate, is indeed a general issue of all vins
ilters.

6.6 Conclusions
This work presented a ilter to fuse information from a magnetometer array with other sensors
traditionally used in vins. We described in detail, the method we used and discussed its results
on real datasets. Comparing the results of three estimators—one using only magnetic-inertial
information, one using only visual-inertial information and one fusing both pieces of information

—we showed that the fused estimate leads to a more robust trajectory estimate. First, our fused
estimate is able to reconstruct the trajectory outdoor where mi-dr techniques break because of
the lack of gradient; secondly, our system avoids the unrealistic trajectory correction of vins after
signiicant duration without proper illumination. One trajectory also highlighted the need for either
robust estimation technique or outlier rejection scheme for magnetic information. This should
deserve more work in the future.

We think that the proposed approach could help to improve localization systems for ar that are
currently using vins with consumer grade cameras and imus. Not only this combination extends the
applicability domain of traditional vins to degraded environments, but we also foresee opportunities
to reduce power consumption. Indeed, taking advantages of the good trajectories given by the
mi-dr in various conditions, it might be possible to reduce the computational load of the visual
pipeline, which could be of signiicant interest in practical applications.

2available on https://github.com/MARSLab-UMN/MARS-VINS, we used the commit 8531daf.
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Figure 6.9: Summary of trajectories on the remaining sequences of the dataset. (Left): Estimate of
the three coniguration of our ilter. (Right) Color coded mi-msckf trajectory showing
areas of weak gradient and weak illumination. (a) Traj1 Length: ∼530 m; (b) Traj3
Length: ∼368 m; (c) Traj4 Length: ∼180 m.
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6.7 Conclusion of the Chapter
Note This section is an addition to the journal paper and presents new results.

6.7.1 Diference with the Sliding Window Smoother of Chapter 5
This chapter presented a mvins method relying on an ekf. This ilter exploits the magnetic and
visual information somewhat similarly to the optimization method described in Chapter 5, but with
some diferences that we underline hereafter:

• High-frequency magnetometer measurement. The presented ilter processes magnetic ield
value measurement at the mimu sample rate. This is in contrast to the sliding window smoother
where magnetic ield value measurement was used at the image sample rate only (even if
preintegrated magneto-inertial measurements were computed using gradient information at
325Hz).

• Delayed landmark measurement. Landmark are marginalized as soon as their corresponding
feature track ends, and do not inluence position estimate until then. This is in contrast with
the sliding window smoother that integrates landmarks and reprojection residual in its cost
function as soon as they can be triangulated.

• Earlier marginalization of mimu states. In contrast with the sliding windows smoother of
Chapter 5, mimu variables (magnetic ield, speed, and biases) are marginalized earlier: there
is no short-term window as in the previous chapter.

• Non-robust cost The msckf cannot be robustiied with a robust loss. A χ2 gating test is used
instead before applying the update step. This test gives a binary answer: either the landmark
is used, either it is not. This is in contrast with the robust loss used in previous chapters that
blurs the frontier between outliers and inliers in optimization.

The implementation of the ilter whose results are depicted in this chapter shares with the
optimization the image processing and features tracking part while the inference process has been
reimplemented from scratch. Note that it was not a necessity; indeed, one could see the msckf ilter
as a diferent marginalization strategy for the cost function (5.19), Page 78. In results, mi-msckf
could be implemented using factor-graph machinery that gtsam library internally uses. We actually
started with this approach, yielding the inverse square root ilter presented in our paper [Caruso
et al., 2017a].

In contrast, the results presented in this chapter were obtained with an entirely diferent imple-
mentation of the ilter leveraging solely raw c++ and Eigen3 linear algebra library and discarding
gtsam library totally (it is also the case for the following chapter results). The aim of this
reimplementation was to stop relying on the inference process of gtsam, taken as a black box
in [Caruso et al., 2017a] and [Caruso et al., 2017b]. Also, this permits investigating ine properties
of the ilter that are presented in the next chapter: the experiments presented in Chapter 7 required
more control on the parametrization of the state that what was provided by the gtsam library
API.

6.7.2 How does optimization based and iltering based estimators compare?
As can be seen in Table 6.2, the order of magnitude of the drift of both methods are similar, with a
slight improvement coming from optimization method on Traj3, Traj4, Traj5. However, the
diference in percentage of trajectory length stays small. Detailed comparison are provided on
Figure 6.11.

This would advocate in our opinion in favor of iltering approach for pure dead-reckoning
applications: they seem to attain similar accuracy while being lighter and easier to implement.

3http://eigen.tuxfamily.org



Traj1 Traj2 Traj3 Traj4 Traj5
MI-DR 1.11 1.98 1.81 1.54 2.87

MSCKF (VINS) 0.13 0.40 0.36 0.38 0.34
MI-MSCKF 0.34 0.33 0.55 0.32 0.23
VINS optim 0.35 0.54 0.32 0.29 0.25

MVINS optim 0.53 0.43 0.31 0.25 0.18

Table 6.2: Summary of inal drift error on full dataset (% of trajectory length). Note: these number
can no be compared directly to the number in MDPI paper, because the way outlier are
handled is slightly diferent, they can however be compared to number of chapter 7.

More importantly, we observe the same discontinuities of trajectories at the end of long run of
the estimator (see Figure 6.10 and Figures 6.11a and 6.11b); a phenomenon already observed for
the sliding windows smoother and noted in Section 5.7.

This fact is intriguing, as the implementation of [Paul et al., 2017] does not exhibit such behaviors
on our data, despite showing a slightly higher drift in general (see for instance how the yellow curve
on Figure 6.11a behaves diferently from the blue and red ones).

If a workaround was used to mask this efect in Section 5.7, it was not entirely satisfying, both
from a theoretical point of view and from a drift point of view. This phenomenon motivated us
to study more theoretical property that might explain it in a iltering context; one candidate was
the known lack of consistency often remarked in ilter-based slam systems and for which several
solutions exist in the literature. This was the original motivation of the work presented in next
chapter.



Figure 6.10: Instability and trajectory discontinuity of the mi-msckf. Similarly to the sliding
window smoother of Chapter 5, after a long run of the ilter, the trajectory becomes
unstable. View on Traj1: the left trajectory is the beginning of the trajectory, the
right (discontinuous) part is the end. The green point cloud is the reprojection of point
belonging to a ixed targetboard at the beginning of the trajectory while the blue one
is the same at the end of the trajectory. The blue one is distorted, proving the drift of
the ilter simultaneously to its instability
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Figure 6.11: Comparison of mvins ilter, mvins optim and state-of-the-art vins algorithm on our
dataset. For Traj1 to Traj3, we focus on the beginning of the trajectory in order
to visualize drift and local behavior at the end of the trajectory. Our ilter and
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Chapter 7

Invariance and consistency properties of
MVINS ilters

This chapter deals with ine properties of the iltering approach presented in Chapter 6.
After exposing our motivations and some notations speciic to this chapter in Section 7.1,
we start in Section 7.2 by observing, on real data, that the ilter of the previous chapter
is not consistent in general. These inconsistencies arise from both linearization errors
and the way feature-tracks are handled in the visual update step. We then show and
demonstrate how the behavior of the ilter can be altered by a change of parametrization in
Section 7.3. We analyze the result of a new parametrization built around symmetries of
the ilter model and show – on real data – that the resulting ilter exhibits better consistency
and invariance properties. This work has not been published in peer-reviewed conference
or journal at the time of writing.

7.1 Introduction

7.1.1 Motivation

It is well-known that the ekf-slam and the msckf are not consistent. By ”not consistent”, we
mean here that the error and its propagation are not well represented by the estimated covariance
matrix of the ilter (or its inverse in information ilter). Several old and recent works in slam and
visual odometry community have shown that some parts of this inconsistency arise from phenomena
involving the estimator chosen solely; i.e., they also appear in the case of data simulated with true
gaussian noises, as was demonstrated for instance in the simulation result of [Hesch et al., 2014].
Recently some works linked the error deinition used to build the ekf with its consistency properties.
In [Barrau and Bonnabel, 2015], the authors introduce a beneicial error reparametrization for
SLAM problem, that had been extended to 3D-VINS model in [Zhang et al., 2017a].

The work presented in this chapter was initially an attempt to solve the discontinuous trajectory
we observed after a long run of our ilter, and also to determine if these inconsistencies were a
signiicant issue on our data, and inally, to extend modelization work from other parts of the vins
community to our mvins framework.1

7.1.2 Kalman Filtering with Non-linear Error

In this chapter, we study the iltering approach with a very general formulation of the Kalman ilter.
We assume that uncertainty of the iltering process is represented through a covariance matrix Σe

1No need to maintain uselessly any suspense here; the methods presented, even if they have interesting properties
that we demonstrate, did not solve our practical problem of trajectory discontinuity presented in Section 5.7.
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of a non-linear error vector e deined through an abstract ⊞ operator, such that:

X︸︷︷︸
true

= X̂︸︷︷︸
estimated

⊞ e︸︷︷︸
error

(7.1)

e ∝ N (0, Σe) (7.2)

The binary operator ⊞ is sometimes called the retraction operator. We already employed this
notation in previous chapters; it was required mainly to seamlessly use gradient-based algorithms or
Kalman update equation with variables belonging to the SO(3) Lie group. However, we emphasize
that the choice of the error – and simultaneously of retraction operator – is merely a design choice.
For instance, if we were to ilter on position p and orientation R of a device, we could see both
variables together as an element of SE(3) group and thus ilter on an error in SE(3) Lie algebra
such as,

(⊞ deinition ) ξ = ExpSE(3) (e) ξ̂ (7.3)

with e ∈ R
6, ξ, ξ̂ ∈ SE(3), (7.4)

or we could alternatively choose to ilter on an error built on the space SO(3)× R
3, for instance,

deined as

ξ = (R, p) , ξ̂ = (R̂, p̂) (7.5)

(⊞ deinition )

{
R = ExpSO(3) (eR) R̂

p = ep + p̂
(7.6)

with R̂, R ∈ SO(3), p̂, p ∈ R
3, e = [eR, ep] ∈ R

6. (7.7)

This choice changes the space in which the uncertainty of the ilter is approximated as Gaussian
and governs the linearization process of the ilter. For these reasons, it has quite naturally some
impact on the ilter performance.

In this chapter, we will introduce an alternative choice with respect to the one adopted in the
previous chapter for the ⊞ operator for mi-msckf ilter, and we will study the efect of such a
change on the iltering process.

This error operator must verify expected properties for an error such as X0 ⊞ 0 = X0 and have a
reciprocal operator ⊟ so that e = X ⊟ X̂ around zero. To use it in a ekf, we also need it to be
continuous and diferentiable at least in the vicinity of zero.

Within this framework, general continuous and discrete ekf algorithms can be written. Let us
consider a generic discrete model:

(propagation) Xk+1 = f(Xk, ũk, ηk),

(measurement) y = h(Xk, νk) (7.8)

with:
ũk ∝ N (uk, Σuk

), ηk ∝ N (0, Ση), νk ∝ N (0, Σc)

In this case, the Kalman equations write:
• Propagation:

X̂k+1|k = f(X̂k, ũk, 0) (7.9)
Σek+1|k = Φk+1ΣekΦk+1

T + Gk+1ΣuGk+1
T + Ck+1ΣηCk+1

T (7.10)

Where ũk is a corrupted measurement of the input uk and matrices Φk+1, Gk+1, Ck+1 are
respectively the Jacobian matrices of the process function f with respect to the state, the
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input, and the stochastic input of the model:

Φk+1 =
∂

∂e

(
f(X̂k ⊞ e, uk, η) ⊟ f(X̂k, ũk, 0)

)∣∣∣∣
e=0,uk=ũk,η=0

(7.11)

Gk+1 =
∂

∂uk

(
f(X̂k ⊞ e, uk, η) ⊟ f(X̂k, ũk, 0)

)∣∣∣∣
e=0,uk=ũk,η=0

(7.12)

Ck+1 =
∂

∂η

(
f(X̂k ⊞ e, uk, η) ⊟ f(X̂k, ũk, 0)

)∣∣∣∣
e=0,uk=ũk,η=0

(7.13)

• Update with measurement ỹk+1:

X̂k+1 = X̂k ⊞


Kk+1︸ ︷︷ ︸

Gain

(
ỹk+1 − h(X̂k+1|k, 0)

)

︸ ︷︷ ︸
innovation


 (7.14)

Σek+1 = (I−Kk+1Hk+1)Σek+1|k (7.15)

Where the linearized measurement matrix Hk+1 is deined as:

Hk+1 =
∂

∂e

(
h(X̂k+1|k ⊞ e)

)∣∣∣∣
e=0

(7.16)

and Kk+1 is the Kalman gain deined here as:

Kk+1 = Σek+1|kHT

k+1

(
Hk+1Σek+1|kHk+1 + Σc

)−1

︸ ︷︷ ︸
S
−1

k+1
: inverse covariance of innovation

(7.17)

Note that the choice of the error is in theory entirely decoupled from how the mean estimates
are kept in memory. For instance, in the mi-dr ilter, we could store the speed and magnetic
ield estimates in world frame while using an error for magnetic and speed in body frame. In the
previous chapter we were actually storing the speed and magnetic in body frame; if we were to do
the opposite and to keep the error in world frame, it would correspond to choosing the following
retraction operator:

X̂k ⊞ e =




eeR R̂
w,

eeR(v̂w + R̂
wev),

p̂w + ep,

eeR(B̂w + R̂
weB),

b̂g + ebg
,

b̂a + eba
,




(7.18)

Of course, to obtain a valid ilter, we need to use the corresponding transition matrix and measure-
ment matrix.

In this chapter, we will choose to write the magnetic ield B and the velocity v in world frame
instead of body frame.

Finally, we want to underline that, as done in this introduction, it was preferred in this chapter
the traditional formulation of the Kalman ilter for demonstrations, i.e. with uncertainty kept as
a covariance matrix instead of square root information matrix and with a Kalman gain feedback
instead of the least squares update used in Chapter 6. However, the experimental results presented
hereafter were still obtained from an inverse square root ilter as presented in Chapter 6, albeit
modiied according to the change of parametrization. Note that the inverse square root formulation
does not change the conclusions as both formulations are equivalent except for numerical properties.
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7.2 Consistency Problem of the Filtering Approach
7.2.1 Unobservabilities in the MVINS Model
We recall here the mvins model we used in previous chapter. The deterministic part of the mvins
model, as used in a msckf framework, writes:

State :

Xk = (Rw
k−nc, pw

k−nc, . . . , R
w
k−1, pw

k−1︸ ︷︷ ︸
stochastic clones

| R
w
k , pw

k , vw
k , Bw

k , bgk
, bak︸ ︷︷ ︸

current state

) (7.19)

We recall we name here ”stochastic clones” the poses of past keyframes still in the sliding window,
as originally done in the msckf seminal paper [Mourikis and Roumeliotis, 2007].

MIMU state dynamic: The function f is deined by the following discrete model. (see Section 6.3.3
for symbol deinition.)

(inertial prediction)





R
w
k+1 = R

w
k ∆̃Rkk+1,

vw
k+1 = vw

k + gw∆tk;k+1 + R
w
k ∆̃vkk+1,

pw
k+1 = pw

k + vw
k ∆tk;k+1 + 1

2 gw∆t2
k;k+1 + R

w
k ∆̃pkk+1,

(7.20)

(magnetic prediction) Bw
k+1 = Bw

k + Rk∆̃Bv;kk+1R
T

k vw
k

+ Rk∆̃Bg;kk+1R
w
k

Tgw + Rk∆̃Ba;kk+1. (7.21)

(bias model)





bgk+1 = e
∆tk;k+1

τbg bgk
+ ηbg

bak+1 = e
∆tk;k+1

τba bak + ηba

(7.22)

Magnetic measurement: This is still a direct measurement of magnetic ield state, in body frame.

hmagn(Xk) = R
wTBw

k (7.23)

Visual measurement: As in previous chapter, Section 6.4.3.2 Page 122, the Hfeat matrix is based
on the following linearization:

hfeat(X̂ ⊞ e, l∗ + δl) = hfeat(X̂, l∗) + Fe + Eδl + o(e, δl) (7.24)

where F are the Jacobian of the measurement function with respect to the state (in fact solely part
associated to stochastic clones) and E the Jacobian to the landmark position parameters l.2 In
this expression, the linearization point l∗ is computed by a triangulation algorithm, with poses of
the current state assumed known. The measurement matrix Hfeat is computed by projecting this
equation over the nullspace of E with (by QR decomposition):

E = [O1, O0]

[
R
0

]
, [O1, O0] ∈ O, and R an upper triangular matrix (7.25)

Hfeat = OT

0 F (7.26)

It is well-known that the vins part of the model has four degrees of freedom that are not
observable: one degree of rotation around the gravity vector, and three degrees of translation.

2The landmark parametrization can be chosen indiferently: e.g. 3D position of landmark in world frame, 3D
position in the coordinate frame of the irst camera which has seen it, inverse depth parametrization on irst ray,
etc.
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Figure 7.1: Covariance of heading on a real dataset with various initial covariance for ilter of
Chapter 6 (log scale). The irst 6.5 seconds are ilter initialization, where only magnetic
update is employed. Albeit being non observable in the mvins model, the covariance
of heading decreases as soon as visual measurement are used. This is striking if this
covariance was initialized with very high values. This phenomenon is inconsistent with
an observability analysis. The blue curves has slightly diferent shape for scale reason
(see text)

[Jones and Soatto, 2011; Martinelli, 2013b]. These degrees of freedom correspond to the invariance
of the entire model to the change of the world reference frame anchor point and heading. The
additional magnetic information of the mvins model does not bring any absolute heading or position
information neither, so it stays invariant to such a change of reference frame.3 Consequently, the
rotation around gravity and absolute translation are also unobservable mvins.

7.2.2 Observation on Real Data

7.2.2.1 Spurious gain of information on unobservable angle yaw

The Figure 7.1 depicts the uncertainty of the ilter on the heading degree of freedom.4 Five instances
of the ilter of Chapter 6 are run with diferent initialization mean and covariance value and the
same input data. The initialization values only difer from the initial uncertainty of the heading
angle. We use for these experiments real data: the irst few seconds of dataset Traj5 of our
Indoor/Outdoor dataset.

We observe that for high initial uncertainty, the heading uncertainty estimated by the ilter
ends up lower than the initial uncertainty. This is a sign of inconsistency of the estimator, as the
model does not provide information on the absolute heading. Interestingly, this drastic decrease
of uncertainty co-occurs with the irst use of visual measurements, proving these are the primary
source of this inconsistency.

Note that as we use a logarithmic scale on this plot, we can see a small increase of uncertainty
due to gyroscope noise at the smallest value of the initial uncertainty (see blue curve corresponding
to an initial uncertainty of 1.10−2 rad), while they are hidden at the higher uncertainty levels.

3We recall that we do not use the magnetic ield as a north direction measure, as assuming the perceived magnetic
ield is equal to the earth magnetic ield is a dangerous assumption in indoor environments.

4More precisely the corresponding diagonal value of the covariance.
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7.2.2.2 A deinition of ilter invariance

We will work in this chapter with a deinition of the invariance of an EKF to unobservable stochastic
transform which was proposed in [Zhang et al., 2017a] (Deinition 3). This deinition has the
advantage to be speciic to the EKF, to deal directly on the EKF state (in a broad sense, i.e., the
mean and covariance) and to represent a natural characteristic we would want for such a ilter in a
very concrete way.

We start with the following deinition the unobservable transformation of the ilter model.
Deinition 1. (Unobservable transformation of a model) A transformation – as a function of
element of the state space T : X → X – is an unobservable transformation for discrete model such
as (7.8) at a timestamp i, if the iteration of subsequent discrete propagation steps starting for any
initial conditions Xa

i and Xb
i = T (Xa

i ) leads to the same output measurement at each subsequent
time step:

∀n > i, h(Xa
n) = h(Xb

n) (7.27)
This deinition means that, in what concerns the deterministic part of the model, applying an

unobservable transformation to the initial conditions does not change the measurement sequence
value in the future time steps.

Regarding the corresponding ilter behavior, that property would translate to the innovation
sequence of the ilter to be the same in the case the ilter was initialized with Xa

0 or Xb
0.

However, in an EKF, the initialization also includes the choice of the irst covariance. This value
is set either by the user, either by a speciic initialization process. In the previous deinitions,
this initial condition on the uncertainty is disregarded entirely. Thus, one can introduce, as done
in [Zhang et al., 2017a], the concept of stochastic transform of an ekf state and covariance.
Deinition 2. (Stochastic transform of an EKF state) Assume we have an EKF built on a non-linear
error e. Let TS be a transformation of an element of the state space deined as a two-argument
function TS : (X ,RN ) → X , where the second argument is seen as a stochastic input of the
transformation drawn from a centered Gaussian distribution of covariance Σ. We will call a
stochastic transform of an EKF state at time k the following transformation:

X̂k 7→ TS(X̂k, 0) (7.28)
Σek 7→MΣekMT + NΣNT (7.29)

With:

M =
∂

∂e

(
TS(X̂ ⊞ e, 0) ⊟ TS(X̂, 0)

)∣∣∣∣
e=0

(7.30)

N =
∂

∂η

(
TS(X̂, η) ⊟ TS(X̂, 0)

)∣∣∣∣
η=0

(7.31)

The usefulness of such transformation might not be intuitive. We will thus illustrate it by a
concrete example, the case of reference frame change for a running ilter.

Let’s assume a navigation Kalman ilter is tracking the 6dof ξA←b position of a rigid body with
respect to a reference frame A. But for some reason 5 we would like it to track the position of
the same rigid body with respect to a new reference frame, B. Imagine we got an estimate of the
transform T B←A at the current time but with uncertainty Σ. In that case, we would transform the
estimate and covariance of the ilter in the following way:

ξ̂
A←b 7→ ξ̂

B←A
ξ̂
A←b (7.32)

Σek 7→ Adj
ξ̂
A←bΣekAdjT

ξ̂
A←b + Σ, (Adj

ξ̂
A←b is the adjoint in SE(3)) (7.33)

5One possible reason would be switching the ilter to a “rendezvous” maneuver mode between a robot and a moving
base station, that would require switching to a reference frame in which the moving base station is ixed at some
point.
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7.3 A New Filter with Invariance Properties

This gives an intuitive idea of the transformation involved by the stochastic transform of an ekf
state and covariance.

Finally, the main deinition introduced by [Zhang et al., 2017a] is written hereafter.6 It gives a
meaning to the invariance to a stochastic unobservable transform.

Deinition 3. (Invariance of an EKF output to unobservable stochastic transform) The EKF output
is said to be invariant to an unobservable stochastic transformation if both following statements
are true:

1. For all η ∈ R
N the stochastic transform TS : (X , η)→ X describes a unobservable transfor-

mation of the model/output on which the EKF is based on.

2. For any two estimate and covariance of the EKF at time i, say (X̂a

i , Σe
a

i ) and (X̂b

i , Σe
b

i ), so
that b-quantities are computed from the stochastic transformation of a-quantities, we have
equality of output sequence of two instances of the ilter using respectively a- and b-quantities
as initialization values:

∀n > i, h(X̂a
n) = h(X̂b

n) (7.34)

The invariance of an ekf output to unobservable stochastic transform is one property we would
expect from a ilter to respect symmetry of the original model. Intuitively, this last deinition
states that, whatever are the unobservable quantities values initialized to, and whatever are the
initial uncertainty along the unobservable direction in the initial covariance, the innovation
sequence of the ilter should not change.

In the case of our mvins model, this means that all the estimated trajectories with same data
but diferent initialization values would be related to a reference one by a rotation around gravity
and an arbitrary translation. One of the corollaries is that a ilter respecting Deinition 3 should
not have its mean estimate sequence modiied by changing the initial heading uncertainty solely.
The next section will show that this is not true for ilter presented in Chapter 6.

7.2.2.3 The ilter of the previous chapter is not invariant to unobservable stochastic
transform

We analyze the same data of trajectory depicted in Figure 7.1, but we now look at the position
estimate of the diferent ilter instances. Figure 7.2 shows that the mean estimate of the ilter
changes with the initial uncertainty of the ilter along the unobservable heading direction. Again,
the efect appears as soon as the ilter starts using visual information.

7.2.2.4 Conclusion

The ilter of Chapter 6 does not fully mimic the invariance of the original system, and this comes
mainly from how the visual measurements are handled. The next section will be dedicated to a
new ilter that is invariant to unobservable stochastic transforms of the mvins model.

7.3 A New Filter with Invariance Properties
7.3.1 Literature Study on EKF Invariance Issues
7.3.1.1 Full Batch Optimization/Bundle Adjustment

The demonstrated lack of invariance to unobservable stochastic transformations of the ilter of
Chapter 6 comes from errors induced by the linearization process implied by the ekf methodology.
The authors of [Huang et al., 2008] demonstrated that this stems mainly from the fact some

6Note that if we rewrote [Zhang et al., 2017a] deinitions slightly to give them more context, Deinition 3 is exactly
equivalent to their deinition of unobservable stochastic transform
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Figure 7.2: X position during initialization with various initial covariance on unobservable heading
for ilter of Chapter 6. All other initialization values ixed, the X position depends on
the initial heading covariance, showing that the ilter does not respect the property of
invariance to stochastic unobservable transform.

variables are used in several measurements but with two diferent linearization points. A full
batch optimization, or full bundle adjustment, relinearizes the cost function around the estimate
of the entire history of states at each iteration, and does not sufer from these source of spurious
observability.

However, these batch optimizations methods are far too heavy for real-time purposes, and
practical real-time estimators marginalize past poses similarly to what is done in Chapter 5. This
marginalization could lead to the same inconsistencies as iltering, as for instance noted by [Engel
et al., 2018].

On another hand, we are aware of two attempts to solve incrementally, eiciently, and consistently
the full batch optimization problem: one presented in [Michael Kaess et al., 2012] and the other
presented in [Keivan et al., 2016]. The irst one relies on independence structure of the constraint
graph, partial marginalization, and controlled relinearizations, the second one relies on conditioning
on some state and a sliding window with adaptive size. Nevertheless, these methods are still more
computationally intensive than pure iltering.

7.3.1.2 First Jacobian estimate

For vins ilters, spurious observability of the yaw can be related to linearizations of the same
variable for two diferent updates of the ilter. Hence, a workaround is to ix the linearization point
of a variable at the irst linearization point needed by the algorithm. In practice, this means, all
the subsequent Jacobian with respect to this variable will be computed at this linearization point,
even if the estimate of this variable was reined since.

This idea was introduced for an ekf-slam based vins system in [Huang et al., 2009] and for
msckf in [Li and Mourikis, 2012]. This idea was also used in an optimization context in [Engel
et al., 2018], but using image intensity error term instead of geometrical reprojection error; note
that, as these authors do not use an imu, the full device orientation is unobservable in their case, in
contrast to our work of Chapter 5. We also have exploited the same idea in Chapter 5 within a
reprojection error minimization framework, and using imu and magnetic data.

One issue with this workaround is that it is not clear what is lost by not using the last –
and hopefully more accurate – linearization point, compared to what is gained by the improved
consistency.
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7.3 A New Filter with Invariance Properties

7.3.1.3 Observability-constrained EKF

In our opinion, the theoretical and empirical evidence supporting the approaches reviewed in the
two preceding sections are not totally convincing. Therefore, we have considered another piece of
work which focuses on reparametrization.

Another idea, introduced by [Huang et al., 2010] and adapted to ekf-slam vins and msckf
in [Hesch et al., 2013], is to modify artiicially the transition matrix and the measurement matrix
in order to enforce the ilter invariance to stochastic transform property. This method is referred as
oc-ekf (Observability Constrained EKF) in the literature.

The advantage of the oc-ekf method compared to the previous approach is that, at each time,
the most recent estimate point is used as linearization point. The main disadvantage comes from
the fact that the modiication of the transition and measurement matrices, albeit being small in
general case in the sense of Frobenius norm, is not strongly mathematically founded, and could
have unexpected results, especially in the case where the ilter estimate is far from the real estimate.

Also, the proofs or empirical evidence of the usefulness of the irst-jacobian-estimate and
observability-constrained methods found in the literature are not totally convincing in our opinion.

7.3.1.4 Inluence of Parametrization of State

The inluence of parametrization on the consistency property of the ilter has been the subject
of some research recently. The authors of [Sola, 2010] study the efect of parametrization on the
consistency of the ekf-slam algorithm. It has also been known for a long time that the robocentric
parametrization – in which features are expressed relatively to current camera pose – improves
consistency. (see for instance [Castellanos et al., 2007, 2004]). The paper [Huang et al., 2014] claims
to improve consistency by parameterizing the rotation error in the world frame instead of the body
frame.

However, the most promising work regarding this idea is arising from the theory of invariance
of estimators ([Martin and Salaun, 2007; Bonnabel et al., 2008]). These ideas were since applied
successfully to famous ekf tool; for instance in [Bonnabel and Barrau, 2017]. This line of research
attempts to exploit the geometrical symmetries of the problem to improve the ilter consistency and
behavior. It has been recently applied to slam problems in [Barrau and Bonnabel, 2015], where
the author show one can solve the false observability issue with an elegant mathematical framework
and without relying on previously presented Observability-Constraint hack. Valuable information
about the methodology applied to obtain these results can be found in the Ph.D. thesis of Axel
Barrau : [Barrau, 2015]. This “invariant“ parametrization was after extended to the case of vins in
[Zhang et al., 2017a].

Other interesting work can be found in [Brossard et al., 2017] that explores these ideas in the
context of Unscented Kalman Filter, and in [Robert and Perrot, 2017] that applied them in the
context of an industrial-grade navigation system.

We decided to take inspiration from this last line of research because of its more theoretically
grounded framework. We thus applied the idea of Lie group based parametrization of the error of
[Barrau and Bonnabel, 2015] to the particular case of our mvins system.

7.3.2 Invariant Kalman Filter for MVINS has no guaranteed convergence
properties

We take inspiration from the iekf (Invariant-EKF) theory introduced in [Bonnabel and Barrau,
2017]. In this work, they demonstrate that, for a certain class of systems and errors, the the iekf
achieves provable local asymptotically stability: a deterministic property the ekf does not provide
in general. This property basically guarantees that the ilter can not diverge, if initialized close to
the real trajectory, whatever the actual trajectory followed by the system.

In order to use their proven result, we will, solely for this subsection, use the continuous model
through the process function fc of the mi-dr model. These equation were given in (1.4)-(1.6),
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Page 14 and (2.18), Page 23.
Unfortunately, as we will show in the following, even without including the biases estimate in

the state as done in iekf theory, the mi-dr continuous time model does not it the framework
of [Bonnabel and Barrau, 2017].

The key point of the framework is to exhibit a non-linear error ǫ(t) which relates the estimate X̂
tracked by the ilter and the real value X and that follows an autonomous propagation:

ǫ̇(t) = g(ǫ(t), u(t)), (7.35)

In other words, the evolution of the chosen non-linear error solely depends on the input and the
error (and does not depend on the estimate or the real trajectory). In order to ind this error,
[Bonnabel and Barrau, 2017] suggest relying on the system symmetry through the use of Lie group
structure of the state. They show that for a state embedded in a matrix Lie group G for which the
continuous model writes:

dX(t)

dt
= fc(X(t), u(t)) (7.36)

with X ∈ G, the errors deined by ǫR = XX̂−1 (“right-invariant” error) and ǫL = X̂−1X (“left-
invariant” error) follow an autonomous propagation if and only if the propagation model veriies
the following equality:

∀t > 0, X, Y ∈ G,

fc (XY, u(t)) = fc (X, u(t)) Y + Xfc (Y, u(t))−Xfc (In, u(t)) Y
(7.37)

Moreover, assuming that the measurement process can be written in the following form:

h(X) = X−1d (7.38)

with d a known vector, the authors prove, under reasonable assumptions similar to the linear
Kalman ilter case, the local stability of the iekf built on the error eR. This is a sound mathematical
result which, to our knowledge, has no equivalent in the ekf literature.

7.3.2.1 Another Matrix Lie group embedding for the MI-DR state

We thus study in this chapter ilters based on the following matrix Lie group embedding, named
SE3(3) by the authors of [Bonnabel and Barrau, 2017], of the mi-dr state (visual information are
disregarded in in this section):

X =

[
R

w vw pw Bw

03×1 I3×3

]
R

w ∈ SO(3), vw, pw, Bw ∈ R
3 (7.39)

X−1 =

[
R

wT −R
wTvw − R

wTpw − R
wTBw

03×1 I3×3

]
(7.40)

The form of the magnetic observation in this formalism follows (7.38):

h(X) = −R
wTBw = X−1

[
05×1

−1

]
, (7.41)

which makes us focus on the “right-invariant” error that writes:

ǫ = XX̂−1 =

[
R

w
R̂

w
k

T

vw − R
w

R̂wT

v̂w pw − R
w

R̂wT

p̂w Bw − R
w

R̂
w
k

T

B̂w

03×1 I3×3

]
(7.42)

This error can actually be associated to a vector error through the vectorized matrix Lie group
logarithm LogSE3(3) (ǫ).
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If we were trying to build an iekf based on this error, the following simple computations prove
that condition (7.37) is not veriied. This is because of the magnetic prediction equation as shown
hereafter.

Recall that the continuous model of mi-dr writes:

Ṙ
w = R

w[ωb]×, (7.43)
v̇w = R

wab + gw, (7.44)
ṗw = vw, (7.45)
Ḃw = R

w∇Bb
R

wTvw. (7.46)

It can be written in matrix form (we drop frame exponent hereafter for readability):

Ẋ = fc(X, u) =

[
R [ω]× Ra + g v R∇BR

T v
03×1 03×1 03×1 03×1

]
(7.47)

In order to verify (7.37), we proceed by separating the process function fc in three terms:

f(X, u) = X

[
[ω]× a 03×1 03×1

03×1 03×1 03×1 03×1

]
+

[
03×1 g 03×1 03×1

03×1 03×1 03×1 03×1

]

+

[
03×1 03×1 v R∇BR

T v
03×1 03×1 03×1 03×1

]
(7.48)

The irst term is right-invariant while the second term is stationary, both verify easily the charac-
terization of (7.37). We will focus on the last one, that requires a bit more work.

The left-hand side of (7.37) is:

f(X1X2, u(t)) =

[
03×2 R1v2 + v1 R1R2∇B(R1R2)T (v1 + R1v2)
03×2 03×1 03×1

]
(7.49)

While its right-hand side writes:

f(X1, u(t))X2 + X1f(X2, u(t))−X1f(In, u(t))X2 (7.50)

=

[
03×2 R1v2 R1R2∇B(R2)T v2

03×2 03×1 03×1

]
+

[
03×2 v1 R1∇B(R1)T v1

03×2 03×1 03×1

]
+ 06×6 (7.51)

The diference of the two sides does not give zero but instead the following matrix :
[
03×3 R1(R2∇BR

T

2 −∇B)(R1)T v1

03×3 03×1

]
(7.52)

We conclude that, for mvins system, we can not build autonomous equation the same way it was
done in [Bonnabel and Barrau, 2017]; nor leverage associated stability property of the iekf. And,
contrarily to the pure vins model, this is not because of the biases of the sensors, but because of
the ”idealized sensor” continuous model.

Note also, that, for readability, we only handle the magneto-inertial dynamic and measurement
here. However, we would draw the same conclusion for the full mvins system, including poses states
from the stochastic cloning of the msckf technique.

Nevertheless, the idea of this new parametrization is retained: as demonstrated in [Barrau and
Bonnabel, 2015], this idea stays interesting from a consistency point of view. We will exhibits a
ilter that has the property of invariance to unobservable stochastic transform for the mvins model,
extending the application of this idea to vins that was already presented in [Zhang et al., 2017a].
In the next sections, we do focus on the particular case of mvins model; the reader interested
by the theory could refer to [Barrau, 2015] for more general results and background on invariant
parametrization applied to navigation systems.
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7.3.3 A Right-Invariant EKF invariant to Unobservable Stochastic
Transformation

We leverage the “right-invariant” error presented in the previous section. But we add to the state
the estimated biases so that the matrix Lie group used to form the error is now:

X =




R v p B
0 1 0 0
0 0 1 0
0 0 0 1

06×5

05×6

I3 bg ba1

0 1 0
0 0 1




(7.53)

We will name the matrix Lie group that contains the matrix element of this form with the symbol
M.7 Also, in order to lighten the notation in the following derivation we will write groups elements,
group product and group inverse in a reduced form, dropping the trivial term of the matrix:

X1 =




R1

v1

p1

B1

bg1
ba1




, X1X2 =




R1R2

v1 + R1v2

p1 + R1p2

B1 + R1B2

bg1 + bg2
ba1 + ba2




, X−1
2 =




R
T
2

R
T
2 v2

R
T
2 p2

R
T
2 B2

−bg2
−ba2




, X1, X2 ∈M (7.54)

Its Lie algebra m is the set of matrices of the following form:

e∧ =




[eθ]× ev ep eB

03×3 03×1 03×1 03×1
06×5

05×6
03×3 ebg

eba

03×3 03×1 03×1


 , e∧ ∈ m (7.55)

with e =
[
eT

θ eT

v eT

p eT

B eT

bg
eT

ba

]T

∈ R
18

We will use the exponential operator on this Lie group to associate an element of the group to
an element of its Lie algebra (on matrix Lie group it is equivalent to matrix exponential).

In order to keep notation succinct, we will use the shortcut eeR for ExpSO(3) (eR) and exp(e∧) for
ExpM (e∧). One has:

exp(e∧) =




eeR

Jr(−eR)ev

Jr(−eR)ep

Jr(−eR)eB

ebg

eba




(7.56)

Where R
3 → R

3×3 : θ 7→ Jr(θ) is the right jacobian of SO(3) 8, a function deined as:

Jr(θ) = I3 −
1− cos ‖θ‖
‖θ‖2

[θ]× +
‖θ‖ − sin ‖θ‖
‖θ‖3

[θ]
2
× (7.58)

7M is used here as a shortcut for the group SE3(3) × R
6 with notations of [Bonnabel and Barrau, 2017]

8this Jacobian is more often encountered in the exponential map of SE(3) group:

ExpSE(3)

(
eT

R
, eT

p
]
)

=

[
eeR Jr(−eR)ep

0 1

]
(7.57)
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We use the Lie algebra to deine the error by the following ⊞ and ⊟ operators:

Xk = X̂k ⊞ ek = exp(e∧k )X̂k =




eeR R̂
w

Jr(−eR)ev + eeR v̂w

Jr(−eR)ep + eeR p̂

Jr(−eR)eB + eeRB̂w

ebg
+ b̂g

eba
+ b̂a




(7.59)

ek = Xk ⊟ X̂k = LogM

(
XkX̂−1

k

)
=




eR

Jr(−eR)−1(v− RR̂
T v̂)

Jr(−eR)−1(p− RR̂
T p̂)

Jr(−eR)−1(B− RR̂
T B̂)

bg − b̂g

bg − b̂a



∈ R

18 (7.60)

with eR = LogSO(3)

(
RR̂

T
)

(7.61)

and we build an EKF on ek with the methodology presented in the beginning of this chapter.

7.3.3.1 Invariance of the ilter to unobservable stochastic transformation

This section now proves that the ilter based on the previous error is invariant to any unobservable
transform of mvins model. We draw inspiration from the work presented in [Zhang et al., 2017a]
that studied the invariance to stochastic unobservable transform for the vins model. We mainly
use their way of presenting results and proofs and extend them to the mvins case. We also took
care to ix some of their unfortunate inaccuracies in theorem statements and proofs.

We irst explicitly parametrize the family of unobservable transform for the model.

Deinition 4. (Unobservable stochastic transform for mvins-dr model) We parametrize the family
of unobservable stochastic transform for the model in the following way:

T (X, θ, η)
def
=




e(η1+θ1)g
R

e(η1+θ1)gv
e(η1+θ1)gp + θ2:4 + η2:4

e(η1+θ1)gB
bg

ba




, with X =




R

v
p
B
bg

ba



∈M, η ∈ R

4, θ ∈ R
4 (7.62)

Which spans the set of composition of rotation around the gravity vector and global translation of
world coordinates.

Note that we can decompose this unobservable stochastic transform into two transforms that
the authors [Zhang et al., 2017a] call stochastic identity transform T (X̂, 0, η) and deterministic
transform T (X̂, θ, 0) the following way:

T (X̂, θ, η) = T
(
T (X̂, θ, 0), 0, η

)
= T

(
T (X̂, 0, η), θ, 0

)
(7.63)

This results stems from the identity exp
so(3)(a +b) = exp

so(3)(a)exp
so(3)(b) if a and b are collinear.

We will use this decomposition to prove that the ilter is invariant to all unobservable stochastic
transform: we irst prove that it is invariant to the family of (deterministic) transform T (· , θ, 0)
then prove that it is invariant to the family of stochastic transform at identity T (· , 0, η).
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Invariance to T (· , θ, 0) We will irst exhibit a suicient condition for the invariance to T (· , θ, 0),
and then show that our parametrization fulills this condition.

Property 1. The output of an EKF for the mvins model is invariant under T (· , θ, 0) if there
exists a constant invertible matrix Wθ such that:

∀e,∀X̂, T (X̂ ⊞ e, θ, 0) = T (X̂, θ, 0) ⊞ Wθe (7.64)

Proof. Let us consider an EKF built on the model with a choice of error verifying (7.64) and
let us assume that two such ilters are running simultaneously. The irst starts from the ini-
tial estimate (X̂i, ΣX̂i

) at time i. The second starts from the initial estimate (Ŷi, ΣŶi
) =

(T (X̂i, θ, 0), WθΣX̂i
WT

θ ), a deterministic transform of the irst one. We will show that after one
propagation and one update, the two ilter estimate and covariance are still related one to the other
with the same unobservable deterministic transform. Conclusion will be drawn by recursion.

The propagation yields for the irst ilter prediction:
{

X̂i+1|i = f(X̂i, ui, 0)

ΣX̂i+1|i
= ΦX̂i+1

ΣX̂i
ΦX̂i+1

T + GcX̂i+1
Σu,ηGcX̂i+1

T
(7.65)

(where we condensed the noise from measurement noise and stochastic model matrices Gc =
diag(Gmimu

k+1,k, Cmimu
k+1,k) and Σu,η = diag(Σu, Ση).)

While for the second, one gets,
{

Ŷi+1|i = f(T (X̂i, θ, 0), ui, 0)

ΣŶi+1|i
= ΦŶi+1

WθΣX̂i
WT

θ ΦŶi+1

T + GcŶi+1
Σu,ηGcŶi+1

T
(7.66)

As, in the mvins model the function f always commutes with T (this is seen intuitively as T
corresponds solely to a change of reference frame that does not afect the model), the second ilter
prediction writes equivalently:

{
Ŷi+1|i = T (X̂i+1, θ, 0)

ΣŶi+1|i
= ΦŶi+1

WθΣX̂i
WT

θ ΦŶi+1

T + GcŶi+1
Σu,ηGcŶi+1

T
(7.67)

According to the deinition of transition matrices Φs and measurement/stochastic model Jacobians
, we can show that:

ΦŶi+1
= WθΦX̂i+1

W−1
θ GcŶi+1

= WθGcX̂i+1
(7.68)

So that the second ilter prediction at time i + 1 also writes:
{

Ŷi+1|i = T (X̂i+1, θ, 0)

ΣŶi+1|i = WθΣX̂i+1|i
WT

θ

(7.69)

The second part of this proof inspects how this second ilter estimates are transformed by the
ilter update step. Going back to the deinition of the measurement matrices Hs, and Kalman gain
Ks of Equations (7.16) and (7.17), Page 141, we can show that:

HŶi+1
= HX̂i+1

W−1
θ (7.70)

KŶi+1
= WθKX̂i+1

(7.71)
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So that if we compute the update equation for the second ilter, we have:

Ŷi+1 = Ŷi+1|i ⊞ KŶi+1
z (7.72)

= T
(

X̂i+1|i, θ, 0
)
⊞ WθKX̂i+1

z (7.73)

(Using the hypothesis of the property to be demonstrated:) (7.74)

= T
(

X̂i+1|i ⊞ KX̂i+1
z, θ, 0

)
(7.75)

= T
(

X̂i+1, θ, 0
)

(7.76)

and, regarding the covariance:

(7.77)
ΣŶi+1

= (I−KŶi+1
HŶT

i+1
)ΣŶi+1|i

(7.78)

= (I−WθKX̂i+1
HX̂T

i+1
W−1

θ )WθΣX̂i+1
WT

θ (7.79)

= WθΣX̂i+1
WT

θ (7.80)

We conclude that after propagation, the second ilter mean and covariance estimates at time i + 1
are transformed from those of the irst ilter the same way than they were at time i. By recursion,
we deduce that:

∀n > i, Ŷn+1|n = T (X̂n+1|n, θ, 0) (7.81)

Which induces that h(Ŷn+1|n) = h(X̂n+1|n) for all n > i, which concludes the proof.
�

The condition (7.64) is veriied for our parametrization with:

Wθ =




eθ1g 0 0 0 0
0 eθ1g 0 0 0

[θ2:4]× eθ1g 0 eθ1g 0 0
0 0 0 eθ1g 0
0 0 0 0 I6




(7.82)

which proves the invariance to T (· , θ, 0). The demonstration consists mainly in calculus with SO(3)
properties and is rejected in Appendix B.1, Page 171.

Invariance to T (· , 0, η) The invariance to stochastic identity transform will be proven leveraging
the following property:

Property 2. The output of an ekf for the mvins system is invariant under T (· , 0, η) if:

∀n and i ≥ 0, Hn+i+1Φn+iΦn+i−1...ΦiNi = 0 (7.83)

Proof. Let us consider an ekf built on the model with a error verifying (7.83) and suppose two
instances of it are started. The irst one from estimate (X̂i, ΣX̂i

) at time i. The second from
estimate (X̂i, ΣX̂i

+ NiΣNT

i ), an unobservable stochastic transform of the irst one. By calling the
subsequent estimate of the second ilter Ŷn and ΣŶn

, we will show by recursion the fact that:

∀n ≥ i, Ŷn = X̂n and ΣŶn
= ΣX̂n

+ ΦnΦn−1...ΦiNiΣNT

i ΦT

i ...ΦT

n−1ΦT

n (7.84)

Which irst equality induces that the ilter output is invariant to identity stochastic transform.
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• Initialization: For n = i it is true by assumption.
• Recursion: Assume for one n ≥ i we have:

Ŷn = X̂n and ΣŶn
= ΣX̂n

+

n∏

k=i

(Φk)NiΣX̂i
NT

i

i∏

k=n

(ΦT

k ) (7.85)

Then prediction for the second ilter writes:

Ŷn+1|n = X̂n+1|n = f(X̂n) and (7.86)

ΣŶn+1|n
= Φn+1ΣX̂n

ΦT

n+1 + GckΣuk,ηk
Gck

T +

n+1∏

k=i

(Φk)NiΣX̂i
NT

i

i∏

k=n+1

(ΦT

k ) (7.87)

The covariance of innovation writes:

SŶn+1
= Hn+1Φn+1|nΣX̂n

ΦT

n+1|n + GckΣuk,ηk
Gck

THT

n+1 (7.88)

+ Hn+1

n+1∏

k=i

(Φk)NiΣX̂i
NT

i

i∏

k=n+1

(ΦT

k )HT

n+1

︸ ︷︷ ︸
0 (by assumption of (7.83))

(7.89)

= Hn+1ΣX̂n+1|n
HT

n+1 (7.90)

= SX̂n+1
(7.91)

And the Kalman gain writes:

KŶn+1
= ΣŶn+1|n

HT

n+1S−1

X̂n+1

(by previous derivation) (7.92)

= ΣX̂n+1|n
HT

n+1S−1

X̂n+1

(by recursion assumption) (7.93)

= KX̂n+1
(7.94)

Which inally yields:

Ŷn+1 = X̂n+1|n ⊞ KX̂n+1
(7.95)

= X̂n+1 (7.96)
and (7.97)

ΣŶn+1
=
(

I−KX̂n+1

)
ΣŶn

(7.98)

= ΣX̂n+1
+

n+1∏

k=i

(Φk)NiΣX̂i
NT

i

i∏

k=n+1

(ΦT

k ) (7.99)

We demonstrated by mathematical induction that:

∀n ≥ i, Ŷn = X̂n and ΣŶn
= ΣX̂n

+ ΦnΦn−1...ΦiNiΣNT

i ΦT

i ...ΦT

n−1ΦT

n (7.100)

whose irst part induces that the ilter is invariant to identity stochastic transform.
�

The goal is now to show that in our msckf formulation, we indeed, have the Property 2 veriied.

Remark: In the Property 2, the measurement Hs and transition Φs matrices are those used
efectively by the ilter, ie. linearized at the estimated values, which are, in general, diferent of
the real (and unknown) values. Also, since we use an msckf approach in practice, we have to
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compute these matrices in the way msckf ilter does, implying the stochastic cloned states, and
the elimination of landmark from the measurement equation.9

First, we will compute Ni, as in Deinition 2. Secondly, we will compute the structure of
the transition matrix Φ (which is diferent of the transition matrix given in previous chapter
Section 6.4.2.1, Page 118 because of the choice of the error used in this section). We will be able to
show that Ni is left unchanged by left multiplication with a member of the family of all possible
transition functions Φ. We will inally show that for both magnetic and visual measurement update,
the linearized measurement matrices H involved are so that the Property 2 is veriied. We will
conclude that the msckf ilter based on the error (7.61) is invariant to any stochastic unobservable
transform of the mvins system.

(i) Computation of Ni We recall that the matrix Ni at time i, is deined as (cf. Deinition 2,
Page 144):

Ni =
∂

∂η
(T (Xi, 0, η) ⊟ T (Xi, 0, 0))

∣∣∣∣
η=0

(7.101)

Taking into account the stochastic cloned part of the state. The computation of Ni leads to:

Ni =




...
...

g 03

03 I3

...
...

g 03

03 03

03 I3

03 03

03 03

03 03








nc stochastic clones





current state

(7.102)

Remarkably, this matrix does not depend on the state estimate, thanks to the choice of the
parametrization.

(ii) Structure of transition matrix Φ Computation of Φk+1 is rejected in Appendix B.2. We only
need some part of the structure of Φk+1 here.

Recall that in the msckf algorithm, the prediction step can also involve stochastic cloning: we
write Φ in the following form:

Φk+1 =

[
ΦSc1

k+1 ΦSc2
k+1

0 Φmimu
k+1

]
(7.103)

where [ΦSc1
k+1 ΦSc2

k+1] is a matrix with zeros and ones only whose exact expression depends on if
stochastic cloning occurs at time k or not.

Φmimu
k+1 structure writes:

Φmimu
k+1 =




I3×3 ∗ 03×3 ∗ ∗ ∗
∆tk [g]× ∗ 03×3 ∗ ∗ ∗
∆t2

k

2 [g]× ∗ I3×3 ∗ ∗ ∗
Rk∆̃Bg;kk+1R

T
k [g]× ∗ 03×3 ∗ ∗ ∗

03×3 ∗ 03×3 ∗ ∗ ∗
03×3 ∗ 03×3 ∗ ∗ ∗




(7.104)

9In contrast with [Zhang et al., 2017a], we work here directly on the msckf state for proving the property of
invariance to unobservable stochastic transform.
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With this structure, we verify easily that Φk+1Nk = Nk and that, by recursion, we have:

∀n and i ≥ 0, Φn+iΦn+i−1...ΦiNi = Ni (7.105)

This is very handy to prove condition (7.83) as it is suicient to show that HNi = 0. We now prove
it both for magnetic and visual measurement.

(iii.a) Magnetic update This case is easy. The magnetic update is related directly to the current
states (and not to stochastic clones of poses):

hmagn(Xk) = R
T
k Bk

Computing the irst order approximation yields:

hmagn(Xk ⊞ e) = R
T
k e−eR (eeRBk + Jr(−eR)eB)

hmagn(Xk ⊞ e) = hmagn(Xk) + R
T
k eB + o(‖e‖)

Thus the measurement matrix to use is:

Hmagnk
=
[
03×6nc 03×3 03×3 03×3 R

T

k 03×3 03×3

]

And we have by simple computation:

Hmagnk
Ni = 0 (7.106)

This proves the condition (7.83) if we had only the magnetic measurement equation.

(iii.b) Visual update The mi-msckf ilter processes also visual measurement. For these, showing
the relation is more cumbersome by direct computation. This is because the way the landmark
position parameters are eliminated from the measurement function in the msckf technique. Instead,
we propose to leverage the invariance of the reprojection function hfeat to demonstrate the result
without having to compute Hfeat explicitly.

Using the notation of the introduction of this chapter (7.24), Page 142, we are going to show
that HfeatNi = 0.

We assume here that landmarks are parameterized by their position l in world frame. One trick
is to note that we have the following equality:

∀X̂ ∈M, η ∈ R
4, l ∈ R

3, hfeat(X̂, l) = hfeat(T (X̂, 0, η), eη1gl + η2:4) (7.107)

which merely translates frame invariance deinition.
The fact that this equality is true for all vector η allows to diferentiate both side of the equality

with respect to η. Using the chain rule, one has:

FN i + E∂η(eη1gl + η2:4) = 0 (7.108)
FN i = E

[
[l]× g, I3

]
(7.109)

We have recalled at the beginning of the paragraph the expression of measurement matrix used for
landmark measurement error. We can write further:

HfeatNi = OT

0 FNi = OT

0 E
[
[l]× g, I3

]
(7.110)

But, by deinition of O0, ((7.25), Page 142). OT

0 E = 0 and the condition (7.83) holds: HfeatNi = 0.
Note: if we were to use an inverse depth in irst ray parametrization of features, the condition

is also true, and can be demonstrated similarly. ∀X̂, η, l, h(X̂, l) = h(T (X̂, 0, η), d) so that by
diferentiating with respect to η one directly has: 0 = FN i.

We thus have proven that the output of a ekf for the mvins system is invariant under T (· , 0, η).
Combined with the invariance to deterministic transform proved in (7.82) and using the equality

noticed in (7.63), we prove that the ekf is invariant to any stochastic unobservable transform of
the mvins system.
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7.3.3.2 How does this relate to OC-EKF technique?

The oc-ekf has been proposed for vins in [Hesch et al., 2012] to enforce the condition (7.83) by
artiicially modifying the transition function and the measurement process functions. The conditions
(7.83):

∀n and i ≥ 0, Hn+i+1Φn+iΦn+i−1...ΦiNi = 0

is enforced the following way.
• At each new propagated state they explicitly compute Nk+1 thanks to the deinition:

Nk+1 =
∂

∂η

(
T (X̂k+1|k, 0, η) ⊟ T (X̂k+1|k, 0, 0)

)∣∣∣∣
η=0

(7.111)

• Before propagating covariance of the ilter, oc-ekf slightly modiies the transition matrix
Φk+1,k to Φ∗k+1,k that respects the constraint:

Nk+1 = Φ∗k+1,kNk (7.112)

It inds the matrix Φ∗k+1,k either by an analytical solution, either by solving the minimization
problem:

min
Φ∗

k+1,k

∥∥Φ∗k+1,k − Φk+1,k

∥∥
Frobenius (7.113)

s.t. Nk+1 = Φ∗k+1,kNk (7.114)

and uses this matrix instead of the original one to propagate covariance.
• Similarly, the measurement matrix Hk+1 is modiied to satisfy:

Nk+1Hk+1 = 0 (7.115)

by minimizing again the problem:

min
H∗

k+1

∥∥H∗k+1 −Hk+1

∥∥
Frobenius (7.116)

s.t. H∗k+1Nk = 0 (7.117)

All in all, the result is that the oc-ekf methodology applied to Chapter 6 estimator also veriies
Deinition 3. However, it is not clear this artiicial modiication does not introduce unexpected
problems, as it stems quite arbitrarily (in our opinion) from a Frobenius norm minimization.

7.3.4 Numerical Results
On the same data as previous experiments, the ilter heading uncertainty and position output is
given in Figure 7.3. This igure is to be analyzed comparatively to the previous Figures 7.1 and 7.2.

The translation of this diference of behavior on the trajectory can be assessed on Figure 7.4.
This igure represents the result of three versions of the mi-msckf ilter.

• MI-MSCKF the version of Chapter 6.
• RI-MI-MSCKF the version with the parametrization of Section 7.3.3.
• MI-MSCKF-OC which is the mi-msckf implemented with an observability-constrained

strategy to enforce invariance to unobservable stochastic transforms.
We did the following experiments: we ran the three ilters exactly in the same conditions and with
the same measurements. They were initialized with the same mean and covariance estimate using
the true heading and a large heading covariance. Thus, we would expect the three trajectories to
superimpose on the satellite map without any registration step, as they were all initialized with the
correct heading.
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Figure 7.3: (a): heading uncertainty propagated by the invariant ilter with diferent initial heading
uncertainty. (b): the x position estimated by the ilter with the same diferent initial
heading uncertainty. The ive curves on (b) igure cannot be distinguished. With the
new parametrization, the initial heading uncertainty does not inluence the position
estimate of the ilter, and the ilter does not reduce its estimation of heading uncertainty
as expected by analysis of unobservable modes of the mvins model. Those graphics are
to be compared to the one depicting the behavior of the parametrization of Chapter 6
in Figure 7.1, Page 143 and Figure 7.2, Page 146.
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Figure 7.4: Results of trajectories of mi-msckf, ri-mi-msckf and MI-MSCKF-OC on Traj1 when
initialized with the correct heading value and a large covariance on it. (The two last
trajectories are nearly identical and can hardly be distinguished) Because of lack of
invariance of the mi-msckf to stochastic unobservable transformation, the heading gets
corrupted near the beginning of the trajectory, in the same time the heading covariance
decreases. This translates to a rotated trajectory for this non invariant ilter, while the
two other ilters are correctly aligned with the map.

This is indeed what is observed for ri-mi-msckf and mi-msckf-oc ilters. But not for mi-msckf,
whose trajectory output is rotated. For the two last ilters, inal drifts are nearly insensitive to initial
covariance while for the irst one, angular drift strongly depends on the initial heading covariance.
The behavior of mi-msckf leads to a low translational drift but a strong heading drift compared to
the irst pose estimate. Table 7.1 shows that this behavior is quite general on the entire dataset
with mi-msckf showing a very large angular drift compared to all other methods. In fact, this drift
is mainly created during the irst seconds of the ilter run, so that, the trajectory shape does not
show signiicant visible heading drift. These numerical results also clearly show that for all other
methods the inal drift is insensitive to the magnitude of initial heading covariance.

7.4 Conclusion of this Chapter
In an attempt to solve the discontinuity of the trajectory noted in the end of Chapter 5 and
Chapter 6, we investigated Invariant (and observability-constrained) version of the mi-msckf
algorithm. We proposed a new error parametrization of the mi-msckf and demonstrated that
this parametrization comes with invariance to unobservable stochastic transform property. This
property has been rigorously deined. It is naturally expected from an ekf when iltering with
partially unobservable states.

We have shown on real data that the proposed parametrization and OC-EKF provided im-
provements in the behavior of the ilter in a speciic case, where the initial heading uncertainty is
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Traj1 Traj2 Traj3 Traj4 Traj5

mi-msckf 0.35 0.33 0.54 0.32 0.23
mi-msckf-lcov 0.33 0.38 0.56 0.30 0.20

ri-mi-msckf 0.38 0.33 0.55 0.30 0.23
ri-mi-msckf-lcov 0.38 0.34 0.55 0.30 0.23

oc-mi-msckf 0.38 0.33 0.55 0.30 0.23
oc-mi-msckf-lcov 0.38 0.33 0.55 0.30 0.23

(a) Final translational drift (% of trajectory length)
Traj1 Traj2 Traj3 Traj4 Traj5

mi-msckf 0.401 2.440 0.047 3.458 1.962
mi-msckf-lcov 2.584 7.186 5.153 12.047 8.230

ri-mi-msckf 0.715 2.507 0.057 3.910 1.995
ri-mi-msckf-lcov 0.715 2.507 0.057 3.910 1.995

oc-mi-msckf 0.717 2.485 0.010 3.854 1.991
oc-mi-msckf-lcov 0.717 2.485 0.010 3.854 1.991

(b) Final angular drift (deg)

Table 7.1: Final translational and angular drift for various ilters. The LCov suix denotes try with
a high covariance of the initial heading. For original mi-msckf ilter, the angular drift
strongly depends on the initial heading uncertainty, while it does not for the others.)
Note that the numbers can not be compared to previous chapter as outlier rejection
scheme has been slightly modiied to ensure every ilter uses exactly the same visual
information as input (non-deterministic ransac step was bypassed).
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substantial.
Even if it was not demonstrated here by lack of time, we guess that this improvement could

be beneicial in the case of temporary observability of the heading. In our speciic case, we could
imagine observing the north direction only in the outdoor part of the trajectory for instance, which
occurs several minutes after the initialization. This outdoor scenes could be detected thanks to
the very low gradient measurement. In that speciic case, it is likely that the standard mi-msckf
would sufer from linearization error and inconsistencies because of the non-consistent decrease of
the covariance observed at the beginning of the trajectory, while invariant parametrization and
observability constrained version would react better to this new observation.
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Conclusion
This work initially aimed to answer the question: “Can a mimu improves visual-inertial navigation
systems?”. Noting that the two technologies had complementary failure modes and applicability
domains, we focused on combining their respective strengths to improve the – now well-established –
vins-based position tracking. As we were willing to derive the fairest possible conclusion, we have
put many eforts on building a state-of-the-art visual-inertial odometry system and attempted to
introduce magneto-inertial dead-reckoning ideas into them. We described mathematically sound
ways to tackle the fusion problem and we found that mimu can indeed improves vio estimate by
increasing estimation robustness to unfavorable visual environments. We demonstrated that fact
on a real dataset and non-caricatural scenarios. This is the primary result of the thesis.

Recall of our contributions
We started by a proof-of-concept using a depth sensor system combined with the mimu hardware,
where we showed that exploiting the stationary magnetic ield disturbances leads to improved
robustness in scenarios complicated for a simple incremental 3D-3D alignment algorithm or for
situations where mi-dr techniques failed. Noticing exclusively passive sensors were actually used in
state-of-the-art position tracking for ar, we investigated the passive vision sensor case subsequently.
This coniguration was more diicult to handle from an algorithm point of view as the 3D geometry
should be inferred from regular 2D images and thus required a tight fusion of all of the sensors
information for best performances. We presented two distinct ways to fuse magneto-inertial and
visual information tightly; the irst one was based on an optimization paradigm and the second
one on iltering. Our primary contributions on this issue were: (i) a consistent derivation of a
magneto-inertial residual that can be used in a bundle adjustment framework, foundation of several
slam algorithms for position tracking; (ii) a thorough description of an application of the former to
a sliding-window smoother; (iii) the evaluation of the dead-reckoning performance on a real dataset;
(iv) the description of a iltering formulation of the sensor fusion problem with its evaluation on
the same dataset; and inally (v) a study of an invariant version of the ilter, and of related ilter
behavior improvement in speciic situations diicult for the standard ekf methodology.

Improvements and perspectives
Regarding the implemented algorithm, some directions are still left to work on. First, one should
work to identify what causes the discontinuity of the trajectory presented in Section 5.7 and
Section 6.7 and answer why this efect does not appear on [Paul et al., 2017] for instance. Secondly,
our mvins dead-reckoning could also be integrated into a pose-graph slam or relocalization
framework with multi-session features as described for instance in [McDonald et al., 2013; Qin
et al., 2017; Schneider et al., 2017]. We believe that the framework of [Schneider et al., 2017] is a
perfect candidate for this work and that our work could improve the ease of constructing the visual
map in challenging conditions.

Also, our algorithm could be extended to deal with omnidirectional or multi-cameras to improve
further the robustness of our method in speciic scenarios as demonstrated in [Paul et al., 2017;
Forster et al., 2017].

About the applications of invariance theory to our problem, we show results on real-data of
speciic situations in which the behavior of the invariant ilter outperforms the non-invariant one.
We noticed though that these improvements did not drastically change the global shape of the
trajectories obtained. This might mean that the algorithmic source of inconsistencies was hidden
behind more substantial errors from uncontrolled other sources that have yet to be found. It is not
clear yet if this remark is general for vins ilters or if this is speciic to our implementation. On
this subject also, we note that more experiments could be made: the more consistent orientation
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behavior of the ilters could bring beneits in the case of intermittent measure of heading, but this
has not been thoroughly tested yet.

On an applicative side, this work made a signiicant step in the use of a mimu to improve vins
navigation for pedestrian dead-reckoning and exploration scenarios but some work is still needed
in the evaluation of this solution for speciic use-cases: other technical and scientiic challenges
would also have to be overcome depending on the application among which hardware integration
of the mimu sensors in ar headset, size reduction or mvins in-the-ield calibration algorithm.
All these subjects lead directly or indirectly to exciting future topic of research. Our successful
proof-of-concept should encourage looking closely at these.

In general, thanks to its improved availability, magneto-visual-inertial navigation systems could
bring beneits in traditional application of vins where high reliability and integrity is paramount,
and, thanks to its reduced power consumption overhead compared to an imu, it could bring beneits
in every embedded application relying on battery as the source of power. We think that mimu
could help to reduce the power consumption of vins by decreasing the computational load on the
camera and image processing, for an equal tracking quality; proving strictly this claim would need
more research and engineering.

At a time where some ask if the new event-camera hardware does solve wholly the vins problem
([Vidal et al., 2017]), our work presented a new and promising orthogonal way to improve vins that
could potentially also be used in conjunction with future generations of optical sensors.
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Appendix A

Computation of BX and CX of Chapter 5
This sections explicits the computation of matrices BX and CX used in Section 5.2.1.2 of the thesis.

We recall Σpreint denoted the covariance matrix of the preintegrated measurements. It can be
written:

Σpreint =

[
Σi ∗
∗ ∗

]
(A.1)

We dropped here ij indices compared the Chapter 5 and reduced the notation imu to i. We have
said that, under this approximation, the probability density of the mimu residual (conditioned on
the state) is also a Gaussian, but whose covariance depends on the value of the state:

rmimu ∝ N (012×1, AXΣpreintA
T

X) (A.2)

AX =

[
I9 09×5 09×5 09×3

03×9 vi ⊗ I3P∇B gT
R

w
i ⊗ I3P∇B I3

]
(A.3)

We will write in this appendix the covariance of the mimu error terms with the following decompo-
sition:

Σmimu = (AXΣpreintA
T

X) =

[
Σi ΣT

m;i
Σm;i Σm

]
(A.4)

The inverse of this covariance can be computed leveraging the Schur complement of the covariance
matrix. This ones writes (Σm −Σm;iΣ

−1
i ΣT

m;i). One has:

Σ−1
mimu =

[
I9 −Σ−1

i ΣT

m
0 I3

][
Σ−1

i 0

0 (Σm −Σm;iΣ
−1
i ΣT

m;i)
−1

] [
I9 −ΣmΣ−1

i
0 I3

]
(A.5)

Finally, the error term rT

mimuΣmimurmimu writes equivalently:

rT

imuΣ−1
i rimu︸ ︷︷ ︸

Pure inertial error term

(A.6)

+ (A.7)

(rimu −Σm;iΣ
−1
i︸ ︷︷ ︸

BX

rmag)T

−1

(Σm −Σm;iΣ
−1
i ΣT

m;i)
−1

︸ ︷︷ ︸
CX

(rimu −Σm;iΣ
−1
i︸ ︷︷ ︸

BX

rmag) (A.8)

Where we have made the matrices BX and CX appeared :

BX = Σm;iΣ
−1
i (A.9)

CX = Σm −Σm;iΣ
−1
i ΣT

m;i (A.10)

In previous expression Σmand Σm;iboth depend on the state. We clarify what can be precomputed
at preintegration time by introducing SX =

[
vi ⊗ I3P∇B gT

R
w
i ⊗ I3P∇B I3

]
the non-trivial
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Appendix A Computation of BX and CX of Chapter 5

bottom-right corner of AX:

BX = SX [Σpreint]10:23;10:23 Σ−1
i︸ ︷︷ ︸

precomputed

(A.11)

CX = SX

(
[Σpreint]10:23;10:23 − [Σpreint]10:23;10:23 Σ−1

i [Σpreint]
T

10:23;10:23

)

︸ ︷︷ ︸
precomputed

ST

X (A.12)
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Appendix B

Appendices of Chapter 7

B.1 Proof of Invariance to T (· , θ, 0)

The aim is to prove that for the following unobservable stochastic transform and retraction operator:

T (X, θ, η)
def
=




e(η1+θ1)g
R

e(η1+θ1)gv
e(η1+θ1)gp + θ2:4 + η2:4

e(η1+θ1)gB
bg

ba




, Xk ⊞ ek =




eeR R̂
w

Jr(−eR)ev + eeR v̂w

Jr(−eR)ep + eeR p̂

Jr(−eR)eB + eeRB̂w

ebg
+ b̂g

eba
+ b̂a




(B.1)

we have:
∀e,∀X, T (X ⊞ e, θ, 0) = T (X, θ, 0) ⊞ Wθe (B.2)

with

Wθ =




eθ1g 0 0 0 0
0 eθ1g 0 0 0

[θ2:4]× eθ1g 0 eθ1g 0 0
0 0 0 eθ1g 0
0 0 0 0 I6




. (B.3)

We will prove it by a direct computation. We will need the following identity though:

∀R ∈ SO(3), eR ∈ so(3), RJr(−eR) = Jr(−ReR)R (B.4)
∀R ∈ SO(3), a ∈ so(3)3, Jr(a) [a]× = I3 − ea (B.5)

Both can be shown using Jr deinition and Rodriguez formula for rotation:

Jr(θ) = I3 −
1− cos ‖θ‖
‖θ‖2

[θ]× +
‖θ‖ − sin ‖θ‖
‖θ‖3

[θ]
2
× (B.6)

eθ = I3 +
sin θ

‖θ‖ [θ]× +
(1− cos(θ))

‖θ‖2
[θ]

2
× (B.7)

Computation of T (X ⊞ e, θ, 0)

T (X ⊞ e, θ, 0) =




eθ1geeRR
w

eθ1g (Jr(−eR)ev + eeRvw)
eθ1g (Jr(−eR)ep + eeRp) + θ2:4

eθ1g (Jr(−eR)eB + eeRBw)
ebg

+ bg

eba
+ ba




(B.8)
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Computation of T (X, θ, 0) ⊞ Wθe

T (X, θ, 0) ⊞ Wθe =




eeθ1geReθ1g
R

w
(

Jr(−eθ1geR)eθ1gev + eeθ1geReθ1gvw
)

(
Jr(−eθ1geR)(eθ1gep + [θ2:4]× eθ1geR) + eeθ1geR(eθ1gp + θ2:4)

)
(

Jr(−eθ1geR)eθ1geB + eeθ1geReθ1gBw
)

ebg
+ bg

eba
+ ba




(B.9)

Now we will do the diference between these element per element to proves the egality:
• Rotation:

one has eθ1geeRR
w − eeθ1geReθ1g

R
w = 0. By deinition of the Adjoint on SO(3).

• Velocity:
one has eθ1g (Jr(−eR)ev + eeRvw)−

(
Jr(−eθ1geR)eθ1gev + eeθ1geReθ1gvw

)
= 0 using (B.4)

• Position. See afterward.
• Magnetic ield:

one has eθ1g (Jr(−eR)eB + eeRBw)−
(

Jr(−eθ1geR)eθ1geB + eeθ1geReθ1gBw
)

= 0 using (B.4).
• Biases.

This is trivial.
The equality for position is a bit more complicated. One has:

eθ1g (Jr(−eR)ep + eeRp) + θ2:4

−
(

Jr(−eθ1geR)(eθ1gep + [θ2:4]× eθ1geR) + eeθ1geR(eθ1gp + θ2:4)
)

(B.10)

(using (B.4) is not enough to ind zero, it remains:) (B.11)

= θ2:4 − Jr(−eθ1geR) [θ2:4]× eθ1geR + eeθ1geRθ2:4 (B.12)
(using [a]× b = − [b]× a:) (B.13)

= θ2:4 − Jr(−eθ1geR)
[
−eθ1geR

]
× θ2:4 + eeθ1geRθ2:4 (B.14)

(using (B.5):) (B.15)

= θ2:4 − (I3 − eeθ1geR)θ2:4 + eeθ1geRθ2:4 (B.16)
= 0 (B.17)

B.2 Expression of transition matrix Φ in invariant
parametrization

In this appendix we write the full mimu state propagation with the parametrization of Chapter 7,
Page 139.

State :

Xk = (Rw
k , vw

k , pw
k , Bw

k , bgk
, bak) (B.18)
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B.2 Expression of transition matrix Φ in invariant parametrization

Current State dynamic: The discrete state dynamic writes

R
w
k+1 = R

w
k ∆̃Rkk+1, (B.19)

vw
k+1 = vw

k + gw∆tk;k+1 + R
w
k ∆̃vkk+1, (B.20)

pw
k+1 = pw

k + R
w
k vb

k∆tk;k+1 +
1

2
gw∆t2

k;k+1 + R
w
k ∆̃pkk+1, (B.21)

Bw
k+1 = ∆̃R

T

kk+1Bw
k + Rk∆̃Bv;kk+1Rkvw

k + Rk∆̃Bg;kk+1R
w
k

Tgw + Rk∆̃Ba;kk+1. (B.22)

bgk+1 = e
1

τbg
∆tk;k+1

bgk
+ ηbg (B.23)

bak+1 = e
1

τba
∆tk;k+1bak + ηba (B.24)

We recall the deinition of the transition matrix:

Φk+1 =
∂

∂e

(
f(X̂k ⊞ e, uk, η) ⊟ f(X̂k, ũk, 0)

)∣∣∣∣
e=0,uk=ũk,η=0

(B.25)

Φmimu
k+1,k =




I3 03 03 03 Φmimu
k+1,kRbg

03

∆ti [g]× I3 03 03 Φmimu
k+1,kvbg

Φmimu
k+1,kvba

∆t2
i

2 [g]× ∆tI3 I3 03 Φmimu
k+1,kpbg

Φmimu
k+1,kpbg

Rk∆̃Bg;iR
T
k [g]× 03 Rk∆̃Bg;iR

T
k I3 Φmimu

k+1,kBbg

Φmimu
k+1,kBba

03 03 03 03 − exp
(

∆t
τg

)
03

03 03 03 03 03 − exp
(

∆t
τa

)




(B.26)

Φmimu
k+1,kRbg

= −Rk∂bg
(∆̃Rk;k+1), (B.27)

Φmimu
k+1,kvbg

= −∆t [vk+1]× Rk − ∂bg

(
∆̃vkk+1

)
(B.28)

Φmimu
k+1,kBbg

= −∆t [Bk+1]× Rk (B.29)

−
(
vT

k R⊗ R
T
)

∂bg

(
Vec

(
∆̃Bv;kk+1

))

−
(
gT

Rk ⊗ R
T
)

∂bg

(
Vec

(
∆̃Bg;kk+1

))

− ∂bgk
∆̃Ba;kk+1 (B.30)

Φmimu
k+1,kpbg

= −∆t [pk]× Rk − ∂bgk

(
∆̃pkk+1

)
(B.31)

Φmimu
k+1,kvba

= −Rk∂bak

(
∆̃vkk+1

)
(B.32)

Φmimu
k+1,kpba

= −Rk∂bak

(
∆̃pkk+1

)
(B.33)

Φmimu
k+1,kBba

= −Rk∂bak

(
∆̃Ba;kk+1

)
(B.34)
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Appendix C

Efect of Slightly Bad Sensor
Synchronization on the Estimate of MVINS
The efect of a slight error of datation of sensors can be dramatic in a tight fusion scheme. We
relate in this appendix, a detrimental efect we observed that was arising due to the changes of
camera exposure time.

On our indoor/outdoor dataset, the change of exposure time varies from 0 (outdoor) to 15 ms
(indoor). This can be seen on the following igures:

0 50 100 150 200 250 300 350 400 450

0

5

10

15

t (s)

ex
po

sit
io
n
tim

e
(m

s)

delay cam/imu estimated
0.5*(exposure-exposureref)

Figure C.1: Exposure of the camera across time. In light gray, the delay between camera and mimu
timestamp estimated by the ilter of [Paul et al., 2017]

This induces two problems. First the visual observations are not temporally well-deined. Because
the images are actually integrated over the exposure time. This is a problem because vins algorithms
generally assume an observation corresponds actually to an instant in time. Secondly, the best
unique timestamp we can associate to an image is the middle of the exposition time. However, this
is not what camera sensors generally send as timestamp. The sensor used in these experiments was
actually giving the end of exposition.

Since we had access to the exposition time for each frame, we were able to correct the timestamp
given by the camera of each image in order it to represent the middle of the exposition of the image.
The following igure shows the efect of this correction on the results of the ilter of Chapter 6 on
Traj1 of our dataset.

Even if this correction magnitude was at max of 7 ms, taking it into account the exposure time
in timestamp correction improves drastically the inal drift.

175



Appendix C Efect of Slightly Bad Sensor Synchronization on the Estimate of MVINS
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Figure C.2: Efect of synchronization error on the Traj1 trajectory. Poses are from mvins ilter of
Chapter 6.

176



Bibliography
Anderson, B. and Moore, J. (1979). Optimal Filtering. Prentice-Hall.

Antigny, N., Servières, M., and Renaudin, V. (2017). Pedestrian Track Estimation with Hand-
held Monocular Camera and Inertial-Magnetic Sensor for Urban Augmented Reality. In 2017
International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan.

Barrau, A. (2015). Filtres de Kalman Étendus Reposant Sur Une Variable d’erreur Non Linéaire
Avec Applications à La Navigation. PhD thesis. 2015ENMP0080.

Barrau, A. and Bonnabel, S. (2015). An EKF-SLAM algorithm with consistency properties.
arXiv:1510.06263 [cs].

Batista, P., Petit, N., Silvestre, C., and Oliveira, P. (2013). Further results on the observability in
magneto-inertial navigation. In American Control Conference (ACC), 2013, pages 2503–2508.
IEEE.

Bazin, J., Demonceaux, C., Vasseur, P., and Kweon, I. (2010). Motion estimation by decoupling
rotation and translation in catadioptric vision. Computer Vision and Image Understanding,
114(2):254–273.

Bloesch, M., Burri, M., Omari, S., Hutter, M., and Siegwart, R. (2017). Iterated extended Kalman
ilter based visual-inertial odometry using direct photometric feedback. The International Journal
of Robotics Research, 36(10):1053–1072.

Bloesch, M., Omari, S., Hutter, M., and Siegwart, R. (2015). Robust visual inertial odometry
using a direct EKF-based approach. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference On, pages 298–304. IEEE.

Boikos, K. and Bouganis, C. S. (2017). A high-performance system-on-chip architecture for direct
tracking for SLAM. In 2017 27th International Conference on Field Programmable Logic and
Applications (FPL), pages 1–7.

Bonnabel, S., Barczyk, M., and Goulette, F. (2014a). On the Covariance of ICP-based Scan-matching
Techniques. arXiv:1410.7632 [cs].

Bonnabel, S., Barczyk, M., and Goulette, F. (2014b). On the covariance of scan-matching techniques
for localization. arXiv preprint arXiv:1410.7632.

Bonnabel, S. and Barrau, A. (2017). The Invariant Extended Kalman Filter as a Stable Observer.
IEEE Transactions on Automatic Control, 62(4):1797–1812.

Bonnabel, S., Martin, P., and Rouchon, P. (2008). Non-linear observer on Lie Groups for left-
invariant dynamics with right-equivariant output. In 2008 IFAC World Congress, pages 8594–8598,
Seoul, South Korea.

Bouguet, J.-y. (2000). Pyramidal implementation of the Lucas Kanade feature tracker. Intel
Corporation, Microprocessor Research Labs.

Brossard, M., Bonnabel, S., and Barrau, A. (2017). Unscented Kalman Filtering on Lie Groups for
Fusion of IMU and Monocular Vision.

177



BIBLIOGRAPHY

Brunetto, N., Salti, S., Fioraio, N., Cavallari, T., and Stefano, L. (2015). Fusion of Inertial
and Visual Measurements for RGB-D SLAM on Mobile Devices. In Proceedings of the IEEE
International Conference on Computer Vision Workshops, pages 1–9.

Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M. W., and Siegwart,
R. (2016). The EuRoC micro aerial vehicle datasets. The International Journal of Robotics
Research, 35(10):1157–1163.

Burri, M., Oleynikova, H., Achtelik, M. W., and Siegwart, R. (2015). Real-time visual-inertial
mapping, re-localization and planning onboard mavs in unknown environments. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference On, pages 1872–1878.
IEEE.

Bürki, M., Gilitschenski, I., Stumm, E., Siegwart, R., and Nieto, J. (2016). Appearance-based
landmark selection for eicient long-term visual localization. In Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference On, pages 4137–4143. IEEE.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., and Leonard,
J. J. (2016). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the
Robust-Perception Age. IEEE Transactions on Robotics, 32(6):1309–1332.

Carlone, L., Kira, Z., Beall, C., Indelman, V., and Dellaert, F. (2014). Eliminating conditionally
independent sets in factor graphs: A unifying perspective based on smart factors. In Robotics
and Automation (ICRA), 2014 IEEE International Conference On, pages 4290–4297. IEEE.

Caruso, D., Engel, J., and Cremers, D. (2015). Large-Scale Direct SLAM for Omnidirectional
Cameras. In International Conference on Intelligent Robots and Systems (IROS).

Caruso, D., Eudes, A., Sanfourche, M., Vissiere, D., and Le Besnerais, G. (2017a). An Inverse
Square-root Filter for Robust Indoor/Outdoor Magneto-visual-inertial Odometry. In 2017
International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo.

Caruso, D., Eudes, A., Sanfourche, M., Vissiere, D., and Le Besnerais, G. (2017b). Robust
Indoor/Outdoor Navigation through Magneto-visual-inertial Optimization-based Estimation. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver.

Caruso, D., Eudes, A., Sanfourche, M., Vissière, D., and Le Besnerais, G. (2017c). A Robust
Indoor/Outdoor Navigation Filter Fusing Data from Vision and Magneto-Inertial Measurement
Unit. Sensors, 17(12):2795.

Caruso, D., Sanfourche, M., Le Besnerais, G., and Vissiere, D. (2016). Infrastructureless Indoor
Navigation With an Hybrid Magneto-inertial and Depth Sensor System. In 2016 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcalà de Henares.

Castellanos, J., Martinez-Cantin, R., Tardós, J., and Neira, J. (2007). Robocentric map joining:
Improving the consistency of EKF-SLAM. Robotics and Autonomous Systems, 55(1):21–29.

Castellanos, J. A., Neira, J., and Tardós, J. D. (2004). Limits to the consistency of EKF-based
SLAM. IFAC Proceedings Volumes, 37(8):716–721.

Chesneau, C.-I., Hillion, M., Hullo, J.-F., Thibault, G., and Prieur, C. (2017). Improving magneto-
inertial attitude and position estimation by means of magnetic heading observer. In Indoor
Positioning and Indoor Navigation (IPIN), 2017 International Conference On, Sapporo, Japan.

Chesneau, C.-I., Hillion, M., and Prieur, C. (2016). Motion estimation of a rigid body with an
EKF using magneto-inertial measurements. In Indoor Positioning and Indoor Navigation (IPIN),
2016 International Conference On, pages 1–6. IEEE.

178



BIBLIOGRAPHY

Civera, J., Grasa, O. G., Davison, A. J., and Montiel, J. M. M. (2010). 1-Point RANSAC for
extended Kalman iltering: Application to real-time structure from motion and visual odometry.
Journal of Field Robotics, 27(5):609–631.

Clark, R., Wang, S., Wen, H., Markham, A., and Trigoni, N. (2017). VINet: Visual-Inertial
Odometry as a Sequence-to-Sequence Learning Problem. arXiv:1701.08376 [cs].

Czarnowski, J., Leutenegger, S., and Davison, A. J. (2017). Semantic Texture for Robust Dense
Tracking. arXiv preprint arXiv:1708.08844.

Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007). MonoSLAM: Real-Time Single
Camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1052–
1067.

Dellaert, F. and Kaess, M. (2006). Square Root SAM: Simultaneous localization and mapping via
square root information smoothing. The International Journal of Robotics Research, 25(12):1181–
1203.

DeTone, D., Malisiewicz, T., and Rabinovich, A. (2017). SuperPoint: Self-Supervised Interest Point
Detection and Description. arXiv:1712.07629 [cs].

Diel, D. D., DeBitetto, P., and Teller, S. (2005). Epipolar Constraints for Vision-Aided Inertial Navi-
gation. In Seventh IEEE Workshops on Application of Computer Vision, 2005. WACV/MOTIONS
’05 Volume 1, volume 2, pages 221–228.

Dong-Si, T.-C. and Mourikis, A. (2012). Estimator initialization in vision-aided inertial navigation
with unknown camera-IMU calibration. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1064–1071.

Dorveaux, E. (2011). Magneto-Inertial Navigation: Principles and Application to an Indoor
Pedometer. PhD thesis, École Nationale Supérieure des Mines de Paris.

Dorveaux, E., Boudot, T., Hillion, M., and Petit, N. (2011). Combining inertial measurements and
distributed magnetometry for motion estimation. In American Control Conference (ACC), 2011,
pages 4249–4256.

Dorveaux, E., Vissiere, D., Martin, A.-P., and Petit, N. (2009). Iterative calibration method for
inertial and magnetic sensors. In Decision and Control, 2009 Held Jointly with the 2009 28th
Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference On,
pages 8296–8303. IEEE.

Dorveaux, E., Vissiere, D., and Petit, N. (2010). On-the-ield calibration of an array of sensors. In
American Control Conference (ACC), 2010, pages 6795–6802. IEEE.

dos Santos Fernandes, C., Rangel do Nascimento, E., and Montenegro Campos, M. F. (2013).
Visual and Inertial Data Fusion for Globally Consistent Point Cloud Registration. In Graphics,
Patterns and Images (SIBGRAPI), 2013 26th SIBGRAPI-Conference On, pages 210–217. IEEE.

DuToit, R. C., Hesch, J. A., Nerurkar, E. D., and Roumeliotis, S. I. (2016). Consistent Map-based
3D Localization on Mobile Devices. arXiv:1604.08087 [cs].

DuToit, R. C., Hesch, J. A., Nerurkar, E. D., and Roumeliotis, S. I. (2017). Consistent map-based
3D localization on mobile devices. In Robotics and Automation (ICRA), 2017 IEEE International
Conference On, pages 6253–6260. IEEE.

Eckenhof, K., Geneva, P., and Huang, G. (2016). High-Accuracy Preintegration for Visual-Inertial
Navigation. Technical report, Technical Report RPNG-2016-001, University of Delaware.

179



BIBLIOGRAPHY

El-Sheimy, N., Hou, H., and Niu, X. (2008). Analysis and Modeling of Inertial Sensors Using Allan
Variance. IEEE Transactions on Instrumentation and Measurement, 57(1):140–149.

Engel, J., Koltun, V., and Cremers, D. (2016). Direct Sparse Odometry. In arXiv:1607.02565.

Engel, J., Koltun, V., and Cremers, D. (2018). Direct Sparse Odometry. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(3):611–625.

Engel, J., Schöps, T., and Cremers, D. (2014a). LSD-SLAM: Large-Scale Direct Monocular SLAM.
In European Conference on Computer Vision (ECCV).

Engel, J., Sturm, J., and Cremers, D. (2013). Semi-Dense Visual Odometry for a Monocular Camera.
In Proceedings of the IEEE International Conference on Computer Vision, pages 1449–1456.
Citeseer.

Engel, J., Sturm, J., and Cremers, D. (2014b). Scale-Aware Navigation of a Low-Cost Quadrocopter
with a Monocular Camera. Robotics and Autonomous Systems (RAS).

Fehr, M., Dymczyk, M., Lynen, S., and Siegwart, R. (2016). Reshaping our model of the world
over time. In Robotics and Automation (ICRA), 2016 IEEE International Conference On, pages
2449–2455. IEEE.

Fischler, M. A. and Bolles, R. C. (1981). Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM,
24(6):381–395.

Forster, C., Carlone, L., Dellaert, F., and Scaramuzza, D. (2015). On-Manifold Preintegration
Theory for Fast and Accurate Visual-Inertial Navigation. arXiv preprint arXiv:1512.02363.

Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). SVO: Fast Semi-Direct Monocular Visual
Odometry. In Proc. IEEE Intl. Conf. on Robotics and Automation.

Forster, C., Zhang, Z., Gassner, M., Werlberger, M., and Scaramuzza, D. (2017). SVO: Semi-Direct
Visual Odometry for Monocular and Multi-Camera Systems. IEEE Transactions on Robotics,
33(2).

Furgale, P., Rehder, J., and Siegwart, R. (2013). Uniied temporal and spatial calibration for
multi-sensor systems. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference On, pages 1280–1286. IEEE.

Gebre-Egziabher, D., Elkaim, G. H., Powell, J. D., and Parkinson, B. W. (2001). A non-linear,
two-step estimation algorithm for calibrating solid-state strapdown magnetometers. In 8th
International St. Petersburg Conference on Navigation Systems (IEEE/AIAA).

Grabe, V., Bulthof, H. H., and Giordano, P. R. (2013). A comparison of scale estimation schemes
for a quadrotor UAV based on optical low and IMU measurements. In Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference On, pages 5193–5200. IEEE.

Guo, C. and Roumeliotis, S. I. (2013). IMU-RGBD camera navigation using point and plane
features. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
On, pages 3164–3171. IEEE.

Gutierrez-Gomez, D., Mayol-Cuevas, W., and Guerrero, J. J. (2016). Dense RGB-D visual odometry
using inverse depth. Robotics and Autonomous Systems, 75:571–583.

Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2014). RGB-D mapping: Using depth
cameras for dense 3D modeling of indoor environments. In Experimental Robotics, pages 477–491.
Springer.

180



BIBLIOGRAPHY

Hernandez, J., Tsotsos, K., and Soatto, S. (2015). Observability, identiiability and sensitivity of
vision-aided inertial navigation. In Robotics and Automation (ICRA), 2015 IEEE International
Conference On, pages 2319–2325. IEEE.

Hertzberg, C., Wagner, R., Frese, U., and Schröder, L. (2013). Integrating generic sensor fusion
algorithms with sound state representations through encapsulation of manifolds. Information
Fusion, 14(1):57–77.

Hesch, J. A., Kottas, D. G., Bowman, S. L., and Roumeliotis, S. I. (2012). Observability-constrained
vision-aided inertial navigation. University of Minnesota, Dept. of Comp. Sci. & Eng., MARS
Lab, Tech. Rep, 1.

Hesch, J. A., Kottas, D. G., Bowman, S. L., and Roumeliotis, S. I. (2013). Towards consistent
vision-aided inertial navigation. In Algorithmic Foundations of Robotics X, pages 559–574.
Springer.

Hesch, J. A., Kottas, D. G., Bowman, S. L., and Roumeliotis, S. I. (2014). Camera-IMU-based
localization: Observability analysis and consistency improvement. The International Journal of
Robotics Research, 33(1):182–201.

Hong, I., Kim, G., Kim, Y., Kim, D., Nam, B. G., and Yoo, H. J. (2014). A 27mW reconigurable
marker-less logarithmic camera pose estimation engine for mobile augmented reality processor.
In 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC), pages 209–212.

Huang, G., Anastasios I. Mourikis, and Stergios I. Roumeliotis (2010). Observability-based Rules
for Designing Consistent EKF SLAM Estimators. The International Journal of Robotics Research,
29(5):502–528.

Huang, G., Kaess, M., and Leonard, J. J. (2014). Towards consistent visual-inertial navigation.
In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 4926–4933.
IEEE.

Huang, G. P., Mourikis, A. I., and Roumeliotis, S. I. (2008). Analysis and improvement of the
consistency of extended Kalman ilter based SLAM. In Robotics and Automation, 2008. ICRA
2008. IEEE International Conference On, pages 473–479. IEEE.

Huang, G. P., Mourikis, A. I., and Roumeliotis, S. I. (2009). A First-Estimates Jacobian EKF for
Improving SLAM Consistency. In Experimental Robotics, Springer Tracts in Advanced Robotics,
pages 373–382. Springer, Berlin, Heidelberg.

Hullo, J.-F. (2013). Consolidation de Relevés Laser d’intérieurs Construits : Pour Une Approche
Probabiliste Initialisée Par Géolocalisation. Strasbourg.

IEEE (1998). IEEE Standard Speciication Format Guide and Test Procedure for Single-Axis
Interferometric Fiber Optic Gyros. publisher not identiied, Place of publication not identiied.
OCLC: 812595703.

Irani, M. and Anandan, P. (2000). About Direct Methods. In Proceedings of the International
Workshop on Vision Algorithms: Theory and Practice, ICCV ’99, pages 267–277, London, UK,
UK. Springer-Verlag.

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S.,
Freeman, D., Davison, A., and others (2011). KinectFusion: Real-time 3D reconstruction and
interaction using a moving depth camera. In Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology, pages 559–568. ACM.

Jaimez, M. and González-Jiménez, J. (2015). Fast Visual Odometry for 3-D Range Sensors. IEEE
Transactions on Robotics, 31(4):809–822.

181



BIBLIOGRAPHY

Jones, E. S. and Soatto, S. (2011). Visual-inertial navigation, mapping and localization: A scalable
real-time causal approach. The International Journal of Robotics Research, 30(4):407–430.

Kaess, M., Williams, S., Indelman, V., Roberts, R., Leonard, J. J., and Dellaert, F. (2012).
Concurrent iltering and smoothing. In Information Fusion (FUSION), 2012 15th International
Conference On, pages 1300–1307. IEEE.

Kahler, O., Prisacariu, V. A., Ren, C. Y., Sun, X., Torr, P. H. S., and Murray, D. W. (2015). Very
High Frame Rate Volumetric Integration of Depth Images on Mobile Device. IEEE Transactions
on Visualization and Computer Graphics, 22(11).

Kaiser, J., Martinelli, A., Fontana, F., and Scaramuzza, D. (2017). Simultaneous State Initialization
and Gyroscope Bias Calibration in Visual Inertial Aided Navigation. IEEE Robotics and
Automation Letters, 2(1):18–25.

Keivan, N., Patron-Perez, A., and Sibley, G. (2016). Asynchronous adaptive conditioning for
visual-inertial slam. In Experimental Robotics, pages 309–321. Springer.

Kerl, C., Stueckler, J., and Cremers, D. (2015). Dense Continuous-Time Tracking and Mapping
with Rolling Shutter RGB-D Cameras. In IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile.

Kerl, C., Sturm, J., and Cremers, D. (2013a). Dense visual SLAM for RGB-D cameras. In Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference On, pages 2100–2106.
IEEE.

Kerl, C., Sturm, J., and Cremers, D. (2013b). Robust odometry estimation for rgb-d cameras. In
Robotics and Automation (ICRA), 2013 IEEE International Conference On, pages 3748–3754.
IEEE.

Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small AR workspaces. In Mixed
and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium On,
pages 225–234. IEEE.

Kleinert, M. and Schleith, S. (2010). Inertial aided monocular SLAM for GPS-denied navigation.
In 2010 IEEE Conference on Multisensor Fusion and Integration, pages 20–25.

Konolige, K., Agrawal, M., and Sola, J. (2010). Large-scale visual odometry for rough terrain. In
Robotics Research, pages 201–212. Springer.

Larnaout, D., Bourgeois, S., gay-bellile, V., and Dhome, M. (2012). Towards Bundle Adjustment
with GIS Constraints for Online Geo-Localization of a Vehicle In Urban Center. pages 348–355.

Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). BRISK: Binary robust invariant scalable
keypoints. In Computer Vision (ICCV), 2011 IEEE International Conference On, pages 2548–2555.
IEEE.

Leutenegger, S., Furgale, P. T., Rabaud, V., Chli, M., Konolige, K., and Siegwart, R. (2013).
Keyframe-Based Visual-Inertial SLAM using Nonlinear Optimization. In Robotics: Science and
Systems.

Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and Furgale, P. (2015). Keyframe-based
visual–inertial odometry using nonlinear optimization. The International Journal of Robotics
Research, 34(3):314–334.

Li and Mourikis, A. I. (2012). Consistency of EKF-Based Visual-Inertial Odometry. Technical
report.

182



BIBLIOGRAPHY

Li, M. and Mourikis, A. I. (2013). High-precision, consistent EKF-based visual–inertial odometry.
The International Journal of Robotics Research, 32(6):690–711.

Li, M., Yu, H., Zheng, X., and Mourikis, A. I. (2014). High-idelity sensor modeling and self-
calibration in vision-aided inertial navigation. In Robotics and Automation (ICRA), 2014 IEEE
International Conference On, pages 409–416. IEEE.

Li, R., Wang, S., Long, Z., and Gu, D. (2017). UnDeepVO: Monocular Visual Odometry through
Unsupervised Deep Learning. arXiv preprint arXiv:1709.06841.

Lothe, P., Bourgeois, S., Royer, E., Dhome, M., and Naudet-Collette, S. (2010). Real-time vehicle
global localisation with a single camera in dense urban areas: Exploitation of coarse 3d city
models. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference On, pages
863–870. IEEE.

Lucas, B. D. and Kanade, T. (1981). An Iterative Image Registration Technique with an Application
to Stereo Vision. In Proceedings of the 7th International Joint Conference on Artiicial Intelligence
- Volume 2, IJCAI’81, pages 674–679, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Lupton, T. and Sukkarieh, S. (2012). Visual-Inertial-Aided Navigation for High-Dynamic Motion
in Built Environments Without Initial Conditions. IEEE Transactions on Robotics, 28(1):61–76.

Lynen, S., Achtelik, M. W., Weiss, S., Chli, M., and Siegwart, R. (2013a). A robust and modular
multi-sensor fusion approach applied to mav navigation. In Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference On, pages 3923–3929. IEEE.

Lynen, S., Omari, S., Wüest, M., Achtelik, M., and Siegwart, R. (2013b). Tightly Coupled Visual-
Inertial Navigation System Using Optical Flow. IFAC Proceedings Volumes, 46(30):251–256.

Lynen, S., Sattler, T., Bosse, M., Hesch, J., Pollefeys, M., and Siegwart, R. (2015). Get Out of My
Lab: Large-scale, Real-Time Visual-Inertial Localization. In Robotics: Science and Systems.

Majdik, A. L., Till, C., and Scaramuzza, D. (2017). The Zurich urban micro aerial vehicle dataset.
The International Journal of Robotics Research, 36(3):269–273.

Martin, P. and Salaun, E. (2007). Invariant observers for attitude and heading estimation from
low-cost inertial and magnetic sensors. pages 1039–1045. IEEE.

Martinelli, A. (2013a). Closed-form solution of visual-inertial structure from motion. International
Journal of Computer Vision, page online.

Martinelli, A. (2013b). Visual-inertial structure from motion: Observability and resolvability. In
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
4235–4242.

Maye, J., Furgale, P., and Siegwart, R. (2013). Self-supervised calibration for robotic systems. In
2013 IEEE Intelligent Vehicles Symposium (IV), pages 473–480.

McDonald, J., Kaess, M., Cadena, C., Neira, J., and Leonard, J. J. (2013). Real-time 6-DOF
multi-session visual SLAM over large-scale environments. Robotics and Autonomous Systems,
61(10):1144–1158.

Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J Leonard, and Frank
Dellaert (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The
International Journal of Robotics Research, 31(2):216–235.

Middelberg, S., Sattler, T., Untzelmann, O., and Kobbelt, L. (2014). Scalable 6-dof localization on
mobile devices. In European Conference on Computer Vision, pages 268–283. Springer.

183



BIBLIOGRAPHY

Miller, M., Chung, S.-J., and Hutchinson, S. (2018). The Visual–Inertial Canoe Dataset. The
International Journal of Robotics Research, 37(1):13–20.

Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., and Sayd, P. (2006). Real Time Localization
and 3D Reconstruction. In 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 1, pages 363–370.

Mourikis, A. I. and Roumeliotis, S. I. (2007). A Multi-State Constraint Kalman Filter for Vision-
aided Inertial Navigation. In Proceedings 2007 IEEE International Conference on Robotics and
Automation, pages 3565–3572.

Mourikis, A. I. and Roumeliotis, S. I. (2008). A dual-layer estimator architecture for long-term
localization. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE
Computer Society Conference On, pages 1–8. IEEE.

Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). ORB-SLAM: A Versatile and Accurate
Monocular SLAM System. arXiv:1502.00956 [cs].

Mur-Artal, R. and Tardos, J. D. (2017). Visual-Inertial Monocular SLAM With Map Reuse. IEEE
Robotics and Automation Letters, 2(2):796–803.

Nerurkar, E. D., Wu, K. J., and Roumeliotis, S. I. (2014). C-KLAM: Constrained keyframe-based
localization and mapping. In Robotics and Automation (ICRA), 2014 IEEE International
Conference On, pages 3638–3643. IEEE.

Neunert, M., Bloesch, M., and Buchli, J. (2016). An open source, iducial based, visual-inertial
motion capture system. In 2016 19th International Conference on Information Fusion (FUSION),
pages 1523–1530.

Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. (2011). DTAM: Dense tracking and mapping
in real-time. In Computer Vision (ICCV), 2011 IEEE International Conference On, pages
2320–2327. IEEE.

Nguyen, C. V., Izadi, S., and Lovell, D. (2012). Modeling Kinect Sensor Noise for Improved 3D
Reconstruction and Tracking. pages 524–530. IEEE.

Niessner, M., Dai, A., and Fisher, M. (2014). Combining Inertial Navigation and ICP for Real-time
3D Surface Reconstruction. In Eurographics (Short Papers), pages 13–16. Citeseer.

Paul, M. K., Wu, K., Hesch, J. A., Nerurkar, E. D., and Roumeliotis, S. I. (2017). A comparative
analysis of tightly-coupled monocular, binocular, and stereo VINS. In Robotics and Automation
(ICRA), 2017 IEEE International Conference On, pages 165–172. IEEE.

Pfrommer, B., Sanket, N., Daniilidis, K., and Cleveland, J. (2017). PennCOSYVIO: A challenging
Visual Inertial Odometry benchmark. In 2017 IEEE International Conference on Robotics and
Automation, ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017, pages 3847–3854.

Platinsky, L., Davison, A., and Leutenegger, S. (2017). Monocular visual odometry: Sparse joint
optimisation or dense alternation? pages 5126–5133.

Qayyum, U., Kim, J., and others (2013). Inertial-kinect fusion for outdoor 3d navigation. In
Australasian Conference on Robotics and Automation (ACRA).

Qin, T., Li, P., and Shen, S. (2017). VINS-Mono: A Robust and Versatile Monocular Visual-Inertial
State Estimator. arXiv:1708.03852 [cs].

Rambach, J. R., Tewari, A., Pagani, A., and Stricker, D. (2016). Learning to Fuse: A Deep Learning
Approach to Visual-Inertial Camera Pose Estimation. In 2016 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR), pages 71–76.

184



BIBLIOGRAPHY

Rehder, J., Nikolic, J., Schneider, T., Hinzmann, T., and Siegwart, R. (2016). Extending kalibr:
Calibrating the extrinsics of multiple IMUs and of individual axes. In Robotics and Automation
(ICRA), 2016 IEEE International Conference On, pages 4304–4311. IEEE.

Renaudin, V., Afzal, M. H., and Lachapelle, G. (2010). Complete Triaxis Magnetometer Calibration
in the Magnetic Domain. https://www.hindawi.com/journals/js/2010/967245/.

Robert, E. and Perrot, T. (2017). Invariant iltering versus other robust iltering methods applied
to integrated navigation. In Integrated Navigation Systems (ICINS), 2017 24th Saint Petersburg
International Conference On, pages 1–7. IEEE.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: An eicient alternative to
SIFT or SURF. In Computer Vision (ICCV), 2011 IEEE International Conference On, pages
2564–2571. IEEE.

Sagnac, G. (1914). Efet tourbillonnaire optique. La circulation de l’éther lumineux dans un
interférographe tournant. J. Phys. Theor. Appl., 4(1):177–195.

Sanfourche, M., Vittori, V., and Le Besnerais, G. (2013). eVO: A realtime embedded stereo
odometry for MAV applications. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference On, pages 2107–2114. IEEE.

Santoso, F., Garratt, M. A., and Anavatti, S. G. (2017). Visual-Inertial Navigation Systems for
Aerial Robotics: Sensor Fusion and Technology. IEEE Transactions on Automation Science and
Engineering, 14(1):260–275.

Savage, P. G. (2000). Strapdown Analytics. Strapdown Associates.

Savage, P. G. (2015). Computational Elements For Strapdown Systems, WBN-14010.

Scaramuzza, D., Fraundorfer, F., Pollefeys, M., and Siegwart, R. (2009). Absolute scale in structure
from motion from a single vehicle mounted camera by exploiting nonholonomic constraints. In
2009 IEEE 12th International Conference on Computer Vision, pages 1413–1419.

Schneider, T., Dymczyk, M., Fehr, M., Egger, K., Lynen, S., Gilitschenski, I., and Siegwart, R.
(2017). Maplab: An Open Framework for Research in Visual-inertial Mapping and Localization.
arXiv:1711.10250 [cs].

Schubert, D., Goll, T., Demmel, N., Usenko, V., Stückler, J., and Cremers, D. (2018). The TUM
VI Benchmark for Evaluating Visual-Inertial Odometry. arXiv:1804.06120 [cs].

Shen, S., Mulgaonkar, Y., Michael, N., and Kumar, V. (2013). Vision-Based State Estimation
and Trajectory Control Towards High-Speed Flight with a Quadrotor. In Robotics: Science and
Systems, volume 1. Citeseer.

Sibley, G., Matthies, L., and Sukhatme, G. (2010). Sliding window ilter with application to
planetary landing. Journal of Field Robotics, 27(5):587–608.

Simon, D. (2006). Optimal State Estimation: Kalman, H [Ininity] and Nonlinear Approaches.
Wiley-Interscience, Hoboken, N.J. OCLC: ocm64084871.

Simon, D. (2010). Kalman iltering with state constraints: A survey of linear and nonlinear
algorithms. IET Control Theory Applications, 4(8):1303–1318.

Sola, J. (2010). Consistency of the monocular ekf-slam algorithm for three diferent landmark
parametrizations. In Robotics and Automation (ICRA), 2010 IEEE International Conference On,
pages 3513–3518. IEEE.

185



BIBLIOGRAPHY

Strasdat, H., Davison, A. J., Montiel, J. M. M., and Konolige, K. (2011). Double window optimisation
for constant time visual SLAM. In Computer Vision (ICCV), 2011 IEEE International Conference
On, pages 2352–2359. IEEE.

Strasdat, H., Montiel, J. M., and Davison, A. J. (2012). Visual SLAM: Why ilter? Image and
Vision Computing, 30(2):65–77.

Tardif, J.-P., George, M., Laverne, M., Kelly, A., and Stentz, A. (2010). A new approach to
vision-aided inertial navigation. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference On, pages 4161–4168. IEEE.

Teichman, A., Miller, S., and Thrun, S. (2013). Unsupervised Intrinsic Calibration of Depth Sensors
via SLAM. volume 09.

Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. (2000). Bundle adjustment—a
modern synthesis. In Vision Algorithms: Theory and Practice, pages 298–372. Springer.

Troiani, C., Martinelli, A., Laugier, C., and Scaramuzza, D. (2014). 2-point-based outlier rejection
for camera-imu systems with applications to micro aerial vehicles. In Robotics and Automation
(ICRA), 2014 IEEE International Conference On, pages 5530–5536. IEEE.

Tsotsos, K., Chiuso, A., and Soatto, S. (2015). Robust inference for visual-inertial sensor fusion. In
Robotics and Automation (ICRA), 2015 IEEE International Conference On, pages 5203–5210.
IEEE.

Tsotsos, K., Pretto, A., and Soatto, S. (2012). Visual-inertial ego-motion estimation for humanoid
platforms. In Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International Conference
On, pages 704–711. IEEE.

Um, T. T., Babakeshizadeh, V., and Kulic, D. (2016). Exercise Motion Classiication from
Large-Scale Wearable Sensor Data Using Convolutional Neural Networks. arXiv preprint
arXiv:1610.07031.

Usenko, V., Engel, J., Stückler, J., and Cremers, D. (2016). Direct visual-inertial odometry with
stereo cameras. In Robotics and Automation (ICRA), 2016 IEEE International Conference On,
pages 1885–1892. IEEE.

Vidal, A. R., Rebecq, H., Horstschaefer, T., and Scaramuzza, D. (2017). Ultimate SLAM?
Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios.
arXiv:1709.06310 [cs].

Vidal, A. R., Rebecq, H., Horstschaefer, T., and Scaramuzza, D. (2018). Ultimate SLAM? Combining
Events, Images, and IMU for Robust Visual SLAM in HDR and High-Speed Scenarios. IEEE
Robotics and Automation Letters, 3(2):994–1001.

Vissiere, D., Martin, A., and Petit, N. (2007). Using magnetic disturbances to improve IMU-based
position estimation. In Control Conference (ECC), 2007 European, pages 2853–2858. IEEE.

Wagner, R., Birbach, O., and Frese, U. (2011). Rapid development of manifold-based graph
optimization systems for multi-sensor calibration and SLAM. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3305–3312.

Weiss, S., Achtelik, M. W., Lynen, S., Chli, M., and Siegwart, R. (2012). Real-time onboard
visual-inertial state estimation and self-calibration of mavs in unknown environments. In Robotics
and Automation (ICRA), 2012 IEEE International Conference On, pages 957–964. IEEE.

Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., and McDonald, J. (2012).
Kintinuous: Spatially extended kinectfusion.

186



BIBLIOGRAPHY

Whelan, T., Leutenegger, S., Salas-Moreno, R., Glocker, B., and Davison, A. (2015). ElasticFusion:
Dense SLAM without a pose graph. Robotics: Science and Systems.

Wu, K., Ahmed, A., Georgiou, G. A., and Roumeliotis, S. I. (2015). A Square Root Inverse Filter for
Eicient Vision-aided Inertial Navigation on Mobile Devices. In Robotics: Science and Systems.
Citeseer.

Yang, J., Nguyen, M. N., San, P. P., Li, X., and Krishnaswamy, S. (2015). Deep Convolutional
Neural Networks on Multichannel Time Series for Human Activity Recognition. In IJCAI, pages
3995–4001.

Yang, N., Wang, R., Gao, X., and Cremers, D. (2017). Challenges in Monocular Visual Odometry:
Photometric Calibration, Motion Bias and Rolling Shutter Efect. arXiv:1705.04300 [cs].

Yang, Z. and Shen, S. (2016). Monocular Visual-Inertial State Estimation With Online Initializa-
tion and Camera-IMU Extrinsic Calibration. IEEE Transactions on Automation Science and
Engineering, PP(99):1–13.

Yi, K. M., Trulls, E., Lepetit, V., and Fua, P. (2016). LIFT: Learned Invariant Feature Transform.
In Proceedings of the European Conference on Computer Vision, Amsterdam, Nederlands.

Yu, H. and Mourikis, A. I. (2015). Vision-aided inertial navigation with line features and a
rolling-shutter camera. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference On, pages 892–899. IEEE.

Yu, H. and Mourikis, A. I. (2017). Edge-based visual-inertial odometry. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 6670–6677.

Zhang, J., Kaess, M., and Singh, S. (2014). Real-time depth enhanced monocular odometry. In
Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference On,
pages 4973–4980. IEEE.

Zhang, J. and Singh, S. (2015). Visual-lidar odometry and mapping: Low-drift, robust, and fast.
In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 2174–2181.
IEEE.

Zhang, T., Wu, K., Su, D., Huang, S., and Dissanayake, G. (2017a). An Invariant-EKF VINS
Algorithm for Improving Consistency. arXiv:1702.07920 [cs].

Zhang, Z. (2000). A Flexible New Technique for Camera Calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22.

Zhang, Z., Liu, S., Tsai, G., Hu, H., Chu, C.-C., and Zheng, F. (2017b). PIRVS: An Advanced Visual-
Inertial SLAM System with Flexible Sensor Fusion and Hardware Co-Design. arXiv:1710.00893
[cs].

Zhang, Z., Suleiman, A. A., Carlone, L., Sze, V., and Karaman, S. (2017c). Visual-Inertial Odometry
on Chip: An Algorithm-and-Hardware Co-design Approach.

Zheng, F., Tsai, G., Zhang, Z., Liu, S., Chu, C.-C., and Hu, H. (2018). PI-VIO: Robust and Eicient
Stereo Visual Inertial Odometry using Points and Lines. arXiv:1803.02403 [cs].

Zhu, A., Atanasov, N., and Daniilidis, K. (2017). Event-based visual inertial odometry. In Proc.
IEEE Int. Conf. Comput. Vis. Pattern Recog, volume 3.

187







Titre : Amélioration des méthodes de navigation vision-inertiel par exploitation des perturbations 

magnétiques stationnaires de l’environnement

Mots clés : Fusion de capteurs, Navigation, Odométrie Visuelle, SLAM, Filtrage Non-linéaire

Résumé : Cette  thèse  s'intéresse  au  problème 

du positionnement (position et orientation) dans 

un  contexte  de  réalité  augmentée  et  aborde 

spécifiquement les solutions à base de capteurs 

embarqués.

Aujourd'hui, les  systèmes de navigation vision-

inertiel  commencent  à  combler  les  besoins 

spécifiques de cette application. Néanmoins, ces 

systèmes se basent tous sur des corrections de 

trajectoire  issues  des  informations  visuelles  à 

haute fréquence afin de pallier la rapide dérive 

des  capteurs  inertiels  bas-coûts.  Pour  cette 

raison,  ces  méthodes  sont  mises  en  défaut 

lorsque l'environnement visuel est défavorable.

Parallèlement, des travaux récents menés par la 

société Sysnav ont démontré qu'il  est  possible 

de réduire la dérive de l'intégration inertielle en 

exploitant  le  champ  magnétique,  grâce  à  un 

nouveau  type  d'UMI bas-coût  composée  –  en 

plus  des  accéléromètres  et  gyromètres 

traditionnels  –  d'un  réseau  de  magnétomètres. 

Néanmoins, cette méthode est également mise

en défaut si des hypothèses de non-uniformité et 

de stationarité du champ magnétique ne sont pas 

vérifiées localement autour du capteur.

Nos travaux portent sur le développement d'une 

solution  de  navigation  à  l'estime  robuste 

combinant  toutes  ces  sources  d'information: 

magnétiques, visuelles et inertielles.

Nous  présentons  plusieurs  approches  pour  la 

fusion de ces données, basées sur des méthodes 

de  filtrage  ou  d’optimisation,  et  nous 

développons un modèle de prédiction du champ 

magnétique  inspiré  d'approximation  proposées 

en inertiel et permettant d’intégrer efficacement 

des  termes  magnétiques  dans  les  méthodes 

d’ajustement de faisceaux. Les performances de 

ces différentes approches sont évaluées sur des 

données réelles et nous démontrons le bénéfice 

de  la  fusion  de  données  comparées  aux 

solutions  vision-inertielles  ou  magnéto-

inertielles.  Des propriétés  théoriques  de  ces 

méthodes liées à la théorie de l’invariance des 

estimateurs sont également étudiées.

Title : Improving Visual-Inertial Navigation Using Stationary Environmental Magnetic Disturbances

Keywords : Sensor Fusion, Navigation, Visual Odometry, SLAM, Non-linear Filtering

Abstract  : This  thesis  addresses  the issue of 

positioning  in  6-DOF  that  arises  from 

augmented reality applications and focuses on 

embedded sensors based solutions.

Nowadays, the performance reached by visual-

inertial  navigation  systems  is  starting  to  be 

adequate  for  AR  applications.  Nonetheless, 

those systems are based on position correction 

from  visual  sensors  involved  at  a  relatively 

high  frequency to  mitigate  the  quick  drift  of 

low-cost  inertial  sensors.  This  is  a  problem 

when the visual  environment is  unfavorable.  

In  parallel,  recent  works  have  shown  it  was 

feasible  to  leverage  magnetic  field  to  reduce 

inertial integration drift thanks to a new type of 

low-cost sensor, which includes – in addition to 

the accelerometers and gyrometers – a network 

of magnetometers. 

Yet, this magnetic approach for dead-reckoning 

fails if stationarity and non-uniformity hypoth-

esis on the magnetic field are unfulfilled in the 

vicinity of the sensor.

We develop a  robust  dead-reckoning solution 

combining simultaneously information from all 

these  sources:  magnetic,  visual,  and  inertial 

sensor. We present several approaches to solve 

for the fusion problem, using either filtering or 

non-linear  optimization  paradigm and we de-

velop  an  efficient  way to  use  magnetic  error 

term in a classical bundle adjustment that was 

inspired  from  already  used  idea  for  inertial 

term. We evaluate the performance of these es-

timators on data from real sensors. We demon-

strate  the  benefits  of  the  fusion  compared  to 

visual-inertial  and  magneto-inertial  solutions. 

Finally, we study theoretical properties of  the 

estimators that are linked to invariance theory.
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