
HAL Id: tel-01886895
https://theses.hal.science/tel-01886895

Submitted on 3 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DCA based Approaches for Mathematical Programs
with Equilibrium Constraints

Thi Minh Tam Nguyen

To cite this version:
Thi Minh Tam Nguyen. DCA based Approaches for Mathematical Programs with Equilibrium
Constraints. Operations Research [math.OC]. Université de Lorraine, 2018. English. �NNT :
2018LORR0113�. �tel-01886895�

https://theses.hal.science/tel-01886895
https://hal.archives-ouvertes.fr

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

THÈSE

en vue de l’obtention du titre de

DOCTEUR DE L’UNIVERSITÉ DE LORRAINE

(arrêté ministériel du 7 Août 2006)

Spécialité Mathématiques appliquées

présentée par

NGUYEN THI MINH TAM

Titre de la thèse :

Approches basées sur DCA pour la

programmation mathématique avec des

contraintes d’equilibre

—
DCA based Approaches for Mathematical
Programs with Equilibrium Constraints

soutenue le 10 septembre 2018

Composition du Jury :

Rapporteurs Mounir HADDOU Professeur, INSA Rennes
Pierre MARECHAL Professeur, Université Toulouse III - Paul Sabatier

Examinateurs Tao PHAM DINH Professeur, INSA de Rouen
Sophie HENNEQUIN MCF, HDR, Université de Lorraine

Directrice de thèse Hoai An LE THI Professeur, Université de Lorraine

Thèse préparée au sein du LITA et du département Informatique &
Applications, LGIPM, Université de Lorraine, Metz, France

Remerciements

Tout d’abord, je voudrais exprimer ma profonde reconnaissance à Madame Hoai An Le
Thi, Professeur à l’Université de Lorraine et Directrice de ma thèse, pour m’avoir ac-
cordé l’opportunité de travailler avec elle au sein du LITA et du département Informa-
tique & Applications, LGIPM, Université de Lorraine. Je la remercie très sincèrement
de m’avoir donné des précieux conseils, de m’avoir encouragée et soutenue tout au
long de ce travail avec patience, enthousiasme et rigueur. Je lui suis également très
reconnaissante d’avoir corrigé mes articles et cette thèse. Ses commentaires critiques
m’ont permis d’acquérir progressivement une maturité dans le domaine de la recherche
scientifique. Sans son encadrement, il m’aurait été impossible de finaliser cette thèse.

Je souhaite ensuite exprimer toute ma gratitude à Monsieur Tao Pham Dinh, Pro-
fesseur à l’INSA de Rouen, pour les connaissances précieuses et les documents très
intéressants qu’il a partagés avec moi. Ses encouragements et ses conseils ont été im-
portants pour cette recherche. Je voudrais le remercier aussi pour l’honneur qu’il me
fait en participant au jury de ma thèse.

Je souhaite remercier vivement Monsieur Mounir Haddou, Professeur à l’INSA Rennes,
et Monsieur Pierre Maréchal, Professeur à l’Université Toulouse III - Paul Sabatier
pour m’avoir fait l’honneur d’accepter d’être rapporteurs de ma thèse et pour leurs
temps précieux consacrés.

Je souhaite également remercier Madame Sophie Hennequin, Mâıtre de Conférences à
l’Université de Lorraine pour m’avoir fait l’honneur d’accepter d’être membre du jury.

Cette thèse a été réalisée au sein du LITA et du département Informatique & Applica-
tions, LGIPM, Université de Lorraine, Metz, France, où j’ai rencontré des personnes
sympathiques et très gentilles. Merci à Minh Thuy, Bich Thuy, Tran Thuy, Hoai
Minh, Duy Nhat, Vinh Thanh, Xuan Thanh, Tran Bach, Viet Anh, Dinh Chien, Nhu
Tuan, Sara, Sarah, ... pour leurs soutiens et leurs encouragements, ainsi que pour
les agréables moments passés ensemble lors de mon séjour en France. Je voudrais
remercier particulièrement Docteur Vinh Thanh Ho et Docteur Duy Nhat Phan pour
leurs aides et leurs grands soutiens tout au long de mes études. Je souhaite remercier
Monsieur Van Ngai Huynh, Professeur à l’Université de Quy Nhon (Vietnam) pour
ses encouragements et nos discussions scientifiques. Je remercie également Madame
Annie Hetet, Secrétaire du département Informatique & Applications, pour sa grande
disponibilité et son aide très spontanée.

1

2

Je souhaite remercier le Gouvernement Vietnamien qui a financé mes études en France.
Je n’oublie pas de remercier toute l’équipe du personnel de l’Université nationale
d’agriculture du Vietnam pour son soutien.

Enfin et surtout, je souhaite exprimer ma grande gratitude à tous les membres de ma
famille: mes parents, mes beaux parents, mon mari, mes enfants, mes frères, mes belles
soeurs pour leur soutien inconditionnel, leurs encouragements et leurs aides tout au
long de ce parcours.

NGUYEN Thi Minh Tam

Née le 04 Octobre, 1979 (Viet Nam)

Tél : 07 83 28 80 88

E-mail : thi-minh-tam.nguyen@univ-loraine.fr

Adresse personnelle : D203, CU Technopole 3, 14 impasse des Linières, 57070,
Metz, France

Adresse professionnelle : Bureau UM-AN1-34, Département Informatique &
Applications, LGIPM, Université de Lorraine, 3 rue Augustin Fresnel, 57073
Metz, France

Situation Actuelle

Doctorante au département Informatique & Applications, LGIPM, Université de Lor-
raine. Encadrée par Prof. Hoai An Le Thi.

Sujet de thèse : Approches basées sur DCA pour la programmation
mathématique avec des contraintes d’équilibre

Experience Professionnelle

2002–2014 Enseignante, Université nationale d’agriculture du Vietnam, Vietnam

Diplôme et Formation

2018 au
present

Doctorante en Mathématiques appliquées, département Informatique
& Applications, LGIPM, Université de Lorraine, Metz, France.

2015–2017 Doctorante en Mathématiques appliquées, Laboratoire
d’Informatique Théorique et Appliquée (LITA), Université de
Lorraine, Metz, France.

2001–2003 Master en Mathématiques, Ecole normale supérieure de Hanoi - Hanoi
Ville, Vietnam.

1997–2001 Diplôme universitaire en Mathématiques, Ecole normale supérieure
de Hanoi - Hanoi Ville, Vietnam.

Publications

Refereed international journal papers

[1] Hoai An Le Thi, Thi Minh Tam Nguyen, Tao Pham Dinh. On Solving Difference
of Convex Functions Programs with Linear Complementarity Constraints Submitted.

[2] Thi Minh Tam Nguyen, Hoai An Le Thi. A DCA Approach for a Maximum Flow
Network Interdiction Problem Submitted.

[3] Thi Minh Tam Nguyen, Hoai An Le Thi. DCA based Algorithms for Solving a
Class of Mathematical Programs with Equilibrium Constraints Submitted.

Refereed papers in books / Refereed international conference papers

[1] Thi Minh Tam Nguyen, Hoai An Le Thi: A DC Programming Approach to the
Continuous Equilibrium Network Design Problem. In: Nguyen et al. (eds) Advanced
Computational Methods for Knowledge Engineering. ICCSAMA 2016. Advances in
Intelligent Systems and Computing, Vol 453, pp.3-16, Springer, 2016.

Communications in national / International conferences

[1] Thi Minh Tam Nguyen, Hoai An Le Thi, Tao Pham Dinh. DC Programming and
DCA for Solving Quadratic Programs with Linear Complemetarity Constraints. Pre-
sentation in the 18th French-German-Italian Conference on Optimization, Paderborn,
Germany, September 25-28, 2017.

[2] Thi Minh Tam Nguyen, Hoai An Le Thi. DCA based Algorithms for Solving a Class
of Mathematical Programs with Equilibrium Constraints. Accepted for presentation
in the 29th European Conference on Operational Research, Spain, July 8-11, 2018.

5

6 Publications

Contents

Résumé 17

Introduction générale 19

1 Preliminary 27

1.1 DC programming and DCA . 27

1.1.1 Fundamental convex analysis 27

1.1.2 Standard DC optimization . 30

1.1.3 General DC optimization . 33

1.2 Penalty Techniques . 37

2 DC Programs with Linear Complementarity Constraints 39

2.1 Introduction . 39

2.2 Stationarity concepts . 42

2.3 Solution methods based on DC programming and DCA 43

2.3.1 Reformulations of the DCLCC via penalty functions 43

2.3.2 Standard DCA schemes for solving the penalized problem when
p ∈ {p1, p2} . 45

2.3.3 General DCA schemes for solving the penalized problem when
p ∈ {p3, p4} . 49

2.3.4 Performance analysis on DCA based algorithms 55

2.4 Applications . 55

2.4.1 Quadratic problems with linear complementarity constraints . . 56

7

8 Contents

2.4.2 Asymmetric eigenvalue complementarity problems 57

2.5 Numerical experiments . 60

2.5.1 Numerical results on QPLCCs 60

2.5.2 Numerical results on EiCPs . 63

2.5.2.1 DCA based algorithms and KNITRO solver 63

2.5.2.2 Ei-DCA3 and DCA-NLP 65

2.6 Conclusions . 65

3 DC Programs with variational inequality constraints 67

3.1 Introduction . 67

3.2 Solution methods . 69

3.2.1 Reformulation of the MPEC (3.1) 69

3.2.2 DCA based algorithms . 72

3.3 A particular case: the objective function has Lipschitz continuous gradient 78

3.4 Application to the second-best toll pricing problem with fixed demands 79

3.5 Numerical experiments . 82

3.6 Conclusions . 84

4 A class of bilevel optimization problems with binary upper level vari-
ables 87

4.1 Introduction . 87

4.2 Solution method . 89

4.2.1 Exact penalty formulation for the problem (4.3) 89

4.2.2 Solving the penalized problem by DCA 91

4.3 Application to a maximum flow network interdiction problem 93

4.3.1 Related works . 93

4.3.2 Problem formulation . 93

4.3.3 MILP formulation of (4.17) . 95

4.4 Numerical results . 98

Contents 9

4.5 Conclusions . 99

5 Continuous equilibrium network design problem 101

5.1 Introduction . 101

5.2 Problem formulation . 103

5.3 Solution method by DC programming and DCA 104

5.4 Numerical results . 107

5.5 Conclusions . 110

Conclusions 111

10 Contents

List of Figures

4.1 Rectangular grid network with n1 = 3, n2 = 4 [89] 98

5.1 16-link network [11] . 108

11

12 List of Figures

List of Tables

2.1 DC formulations for the QPLCC . 56

2.2 DC formulations for the EiCP . 59

2.3 Comparative results of the DCA schemes and KNITRO on QPLCCs.
Best results are written in bold. 62

2.4 Comparative results of the DCA schemes and KNITRO on EiCPs. Best
results are written in bold. 64

2.5 Comparative results of Ei-DCA3 and DCA-NLP on EiCPs. Better re-
sults are written in bold. 66

3.1 The number of variables and Complementarity Constraints (CCs) . . . 83

3.2 Comparative results of the algorithms Best results are written in bold.
denotes the number of tollable links. 86

4.1 Comparative results of DCA BP and CPLEX on the networks A1 . . . 99

4.2 Comparative results of DCA BP and CPLEX on the networks A2 . . . 99

4.3 Comparative results of DCA BP and CPLEX on the networks A3 . . . 100

5.1 Level of travel demand . 107

5.2 Abbreviation of method names . 108

5.3 Numerical results of DCA CENDP and the existing algorithms in case I109

5.4 Numerical results of DCA CENDP and the existing algorithms in case
II . 109

13

Abbreviations and Notations

Throughout the dissertation, we use uppercase letters to denote matrices, and lower-
case letters for vectors. Vectors are also regarded as matrices with one column. Some
of the abbreviations and notations used in the dissertation are summarized as follows.

Abbreviations

CENDP Continuous Equilibrium Network Design Problem
DC Difference of Convex functions
DCA DC Algorithm
ADCA Accelerated DC Algorithm
DCLCC DC program/Programming with Linear Complementarity Constraints
EiCP Eigenvalue Complementarity Problem
KKT Karush-Kuhn-Tucker
MFIN Maximum Flow Interdiction Network
MILP Mixed-Integer Linear Program
MPCC Mathematical Program with Complementarity Constraints
MPLCC Mathematical Program/Programming with Linear Complementarity Constraints
MPEC Mathematical Program/Programming with Equilibrium Constraints
QPLCC Quadratic Problem with Linear Complementarity Constraints
SBTP Second-Best Toll Pricing
OD Origin-Destination

Spaces

R the set of real numbers

R the set of extended real numbers, R = R ∪ {±∞}
Rn the set of real column vectors of size n
Rn

+ the set of nonnegative real column vectors of size n
Rm×n the set of real matrices of size m-by-n

15

16 Notation

Vectors

z> the transpose of a vector z
{zk} a sequence of vectors z1, z2, z3, ...
x>y or 〈x, y〉 the standard inner product of vectors in Rn

‖x‖ the Euclidean norm of a vector x ∈ Rn

min(x, y) the vector whose i-th component is min(xi, yi)
x ◦ y the Hadamard product of x and y

Matrices

A> the transpose of a matrix A
‖A‖ the spectral norm of a matrix A
I the identity matrix of appropriate order
Ik the identity matrix of order k
det(A) the determinant of a matrix A
λmin(A) the smallest eigenvalue of A
λmax(A) the largest eigenvalue of A

Functions

∇f the gradient of a function f : Rn → R
f ∗ the conjugate of f
∂f(x) the subdifferential of f at x
∂↑f(x) the Clarke subdifferential of f at x
f ↑(x, v) the Clarke derivative of f at x in the direction v
χC the indicator function of a set C
ΠC(x) the projection of a vector x onto a set C
JxF (x, y) the partial Jacobian matrix of a function F : Rn+m → Rp(p ≥ 2) with respect

to x.

Sets

conv C the convex hull of a set C
dom f the effective domain of a function f
NC(x) the normal cone of a set C at x ∈ C

Résumé

Dans cette thèse, nous étudions des approches basées sur la programmation DC
(Difference of Convex functions) et DCA (DC Algorithm) pour la programmation
mathématique avec des contraintes d’équilibre, notée MPEC (Mathematical Program-
ming with Equilibrum Constraints en anglais). Etant un sujet classique et difficile
de la programmation mathématique et de la recherche opérationnelle, et de par ses
diverses applications importantes, MPEC a attiré l’attention de nombreux chercheurs
depuis plusieurs années.

La thèse se compose de quatre chapitres principaux. Le chapitre 2 étudie une classe
de programmes mathématiques avec des contraintes de complémentarité linéaire. En
utilisant quatre fonctions de pénalité, nous reformulons le problème considéré comme
des problèmes DC standard, i.e minimisation d’une fonction DC sous les contraintes
convexes. Nous développons ensuite des algorithmes appropriés basés sur DCA pour
résoudre les problèmes DC résultants. Deux d’entre eux sont reformulés encore sous
la forme des problèmes DC généraux (i.e. minimisation d’une fonction DC sous des
contraintes DC) pour que les sous-problèmes convexes dans DCA soient plus faciles à
résoudre. Après la conception de DCA pour le problème considéré, nous développons
ces schémas DCA pour deux cas particuliers: la programmation quadratique avec des
contraintes de complémentarité linéaire, et le problème de complémentarité aux valeurs
propres.

Le chapitre 3 aborde une classe de programmes mathématiques avec des contraintes
d’inégalité variationnelle. Nous utilisons une technique de pénalisation pour reformuler
le problème considéré comme un programme DC. Une variante de DCA et sa version
accélérée sont proposées pour résoudre ce programme DC. Comme application, nous
résolvons le problème de détermination du prix de péages dans un réseau de transport
avec des demandes fixes (“the second-best toll pricing problem with fixed demands”
en anglais).

Le chapitre 4 se concentre sur une classe de problèmes d’optimisation à deux niveaux
avec des variables binaires dans le niveau supérieur. En utilisant une fonction de
pénalité exacte, nous reformulons le problème considéré comme un programme DC
standard pour lequel nous developpons un algorithme efficace basé sur DCA. Nous
appliquons l’algorithme proposé pour résoudre le problème d’interdiction de flot max-
imum dans un réseau (“maximum flow network interdiction problem” en anglais).

Dans le chapitre 5, nous nous intéressons au problème de conception de réseau

17

18 Résumé

d’équilibre continu (“continuous equilibrium network design problem” en anglais).
Il est modélisé sous forme d’un programme mathématique avec des contraintes de
complémentarité, brièvement nommé MPCC (Mathematical Program with Comple-
mentarity Constraints en anglais). Nous reformulons ce problème MPCC comme un
programme DC général et proposons un schéma DCA approprié pour le problème
résultant.

Abstract

In this dissertation, we investigate approaches based on DC (Difference of Convex
functions) programming and DCA (DC Algorithm) for mathematical programs with
equilibrium constraints. Being a classical and challenging topic of nonconvex optimiza-
tion, and because of its many important applications, mathematical programming with
equilibrium constraints has attracted the attention of many researchers since many
years.

The dissertation consists of four main chapters. Chapter 2 studies a class of math-
ematical programs with linear complementarity constraints. By using four penalty
functions, we reformulate the considered problem as standard DC programs, i.e. min-
imizing a DC function on a convex set. The appropriate DCA schemes are developed
to solve these four DC programs. Two among them are reformulated again as general
DC programs (i.e. minimizing a DC function under DC constraints) in order that the
convex subproblems in DCA are easier to solve. After designing DCA for the consid-
ered problem, we show how to develop these DCA schemes for solving the quadratic
problem with linear complementarity constraints and the asymmetric eigenvalue com-
plementarity problem.

Chapter 3 addresses a class of mathematical programs with variational inequality con-
straints. We use a penalty technique to recast the considered problem as a DC program.
A variant of DCA and its accelerated version are proposed to solve this DC program.
As an application, we tackle the second-best toll pricing problem with fixed demands.

Chapter 4 focuses on a class of bilevel optimization problems with binary upper level
variables. By using an exact penalty function, we express the bilevel problem as a
standard DC program for which an efficient DCA scheme is developed. We apply the
proposed algorithm to solve a maximum flow network interdiction problem.

In chapter 5, we are interested in the continuous equilibrium network design prob-
lem. It was formulated as a Mathematical Program with Complementarity Constraints
(MPCC). We reformulate this MPCC problem as a general DC program and then pro-
pose a suitable DCA scheme for the resulting problem.

Introduction générale

Cadre général et motivations

La programmation mathématique avec des contraintes d’équilibre, notée MPEC
(Mathematical Programming with Equilibrum Constraints en anglais) est une classe de
problèmes d’optimisation dont les contraintes contiennent une inégalité variationnelle
paramétrique. Plus précisément, le problème est décrit comme suit:

(P) min f(x, y)

s.t. (x, y) ∈ Ω,

x ∈ C(y), (v − x)TF (x, y) ≥ 0,∀v ∈ C(y), (VI)

où Ω est un sous-ensemble fermé, non vide de Rn+m, f : Rn+m → R, F : Rn+m → Rn

sont des fonctions données, C : Rm → 2Rn est une application multivoque à valeurs
convexes fermées, c’est-à-dire, pour tout y dans Rm, C(y) est un sous-ensemble convexe
fermé de Rn.

La formulation ci-dessus du MPEC englobe de nombreuses classes de problèmes dont
la plus importante est celle où C(y) est l’orthant non négatif de Rn pour tout y dans
Y , la projection de Ω sur Rm. Dans ce cas, les contraintes d’inégalité variationnelle
(VI) (Variational Inequality en anglais) du problème (P) sont équivalentes au système
de complémentarité suivant

x ≥ 0, F (x, y) ≥ 0, xTF (x, y) = 0,

et le problème (P) devient ainsi un programme mathématique avec des contraintes
de complémentarité, brièvement nommé MPCC (Mathematical Program with Com-
plementarity Constraints en anglais). De plus, sous des hypothèses appropriées, le
problème (P) peut être formulé sous la forme d’un MPCC [66]. Les MPCCs con-
stituent donc une sous-classe primordiale de MPEC, et la plupart des travaux dans
la littérature sur la MPEC sont dédiés à MPCCs. Un cas particulier important du
MPCC est la programmation mathématique avec des contraintes de complémentarité
linéaire (MPLCC) qui consiste à minimiser une fonction continûment différentiable sur
un ensemble défini par des contraintes linéaires et des contraintes de complémentarité
linéaire. De nombreuses applications peuvent être modélisées sous la forme MPLCC.
De plus, certains problèmes d’optimisation NP-difficiles peuvent être reformulés comme
MPLCCs.

19

20 Introduction générale

Par ailleurs, dans le cas où F (x, y) est la dérivée partielle par rapport à la variable x
d’une fonction à valeur réelle θ(x, y) qui est convexe en x, l’ensemble des valeurs de
x satisfaisant les contraintes (VI) dans (P) est l’ensemble des solutions optimales du
problème suivant en la variable x

min{θ(x, y) : x ∈ C(y)}.

Ce cas particulier de MPEC est connu comme un programme mathématique à deux
niveaux.

MPEC a de nombreuses applications en ingénierie et en économie. Cependant, il est
connu que ce problème est très difficile, même lorsque la fonction objectif est linéaire.
Les contraintes non convexes d’inégalité variationnelle (resp. de complémentarité) sont
considérées comme la cause principale de la difficulté de MPEC (resp. MPCC). De plus,
tous les solutions réalisables de MPEC ne vérifient pas la qualification des contraintes
de Mangasarian-Fromovitz, par conséquent la majorité des algorithmes standard pour
la programmation non linéaire ne peuvent pas être directement appliqués à MPEC.

Etant un sujet classique et difficile de la programmation mathématique et de la
recherche opérationnelle, et de par ses diverses applications importantes, MPEC a
attiré l’attention de nombreux chercheurs depuis plusieurs années. Un grand nombre
de travaux ont été développés pour la résolution de MPEC (dont la plupart concer-
nent MPCC). Pour surmonter la difficulté principale liée aux contraintes d’inégalité
variationnelle/de complémentarité, de nombreuses reformulations de MPEC ont été
introduites. Citons les approches populaires comme les techniques de relaxation de ces
contraintes (ensembliste ou fonctionnelle, voir par exemple [12, 37, 38, 59, 91, 94, 98]),
les techniques de lissage (remplacer ces contraintes par une suite de contraintes
différentiables, voir par exemple [15, 22, 25, 56]), et les techniques de pénalisation
(utiliser une fonction de pénalité pour reformuler ces contraintes puis pénaliser la nou-
velle contrainte dans la fonction objectif, voir par exemple [29, 30, 58, 67, 92] et les
références citées ci-dessous concernant les méthodes basées sur la programmation DC
(Difference of Convex functions) et DCA (DC algorithm)). Plusieurs méthodes pour la
programmation non linéaire ont été également adaptées à la résolution de MPEC, par
exemple, celles basées sur la programmation quadratique séquentielle (voir par exemple
[21, 32, 62, 66, 85]), les méthodes de points intérieurs (voir par exemple [53, 64, 66, 87]).
Ces approches ne trouvent qu’un point stationnaire de MPEC. Les algorithmes exactes
afin de trouver une solution optimale ont été principalement développés pour MPEC
avec des contraintes d’inégalité variationnelle affine et/ou MPLCC dans lesquelles la
fonction objectif est convexe. La plupart d’entre eux sont basés sur les méthodes
par Séparation et Evaluation (”Branch-and-Bound” en anglais) (voir par exemple
[4, 6, 36, 63, 72, 73, 80, 106]). En outre, divers méthodes heuristiques sont développées
telles que celles basées sur l’analyse de sensibilité [20] et le recuit simulé [19]. En
général, il est très difficile de trouver une solution optimale de MPEC.

Parmi les approches citées plus haut, nous sommes particulièrement intéressés par les
techniques de pénalisation basées sur la programmation DC et DCA qui sont reconnus
comme des outils puissants d’optimisation non convexe. Durant ces dix dernières
années, ces outils ont été exploités pour traiter plusieurs cas particuliers de MPEC (voir

Introduction générale 21

par exemple [31, 44, 46, 49, 51, 75, 76]). La programmation DC et DCA constituent
l’épine dorsale de l’optimisation non convexe et de l’optimisation globale. Ils ont été
introduits par Pham Dinh Tao dans leur forme préliminaire en 1985 et intensivement
développés, tant sur les aspects théoriques qu’algorithmiques, depuis 1994 à travers
de nombreux travaux conjoints de Le Thi Hoai An et Pham Dinh Tao pour devenir
maintenant classiques et de plus en plus populaires. Un problème DC standard est de
la forme

α = inf{f(x) := g(x)− h(x) : x ∈ Rn},
où g et h sont des fonctions convexes définies sur Rn et à valeurs dans R ∪ {+∞},
semi-continues inférieurement et propres. La fonction f est appelée fonction DC avec
les composantes DC g et h, et l’expression g − h est appelée une décomposition DC
de f . DCA est basé sur la dualité DC et des conditions d’optimalité locale. La
construction de DCA implique les composantes DC g et h et non la fonction DC f elle-
même. Chaque fonction DC admet une infinité des décompositions DC qui influencent
considérablement la qualité (la rapidité, l’efficacité, la globalité de la solution obtenue,
etc.) de DCA. Ainsi, au point de vue algorithmique, la recherche d’une “bonne”
décomposition DC est cruciale.

L’utilisation de la programmation DC et DCA dans cette thèse est motivée/justifiée
par plusieurs raisons [47, 82]:

• DCA a été appliqué avec succès à de nombreux programmes non convexes de
grandes dimensions dans divers domaines des sciences appliquées (voir par ex-
emple la liste de références dans [42, 47]). En particulier, DCA a déjà résolu
efficacement plusieurs cas particuliers du MPEC tels que la programmation
à deux niveaux [49, 51], des problèmes de complémentarité linéaire [46], des
programmes linéaires avec des contraintes de complémentarité linéaire [31] et
des problèmes de complémentarité aux valeurs propres [44, 75, 76]. Bien qu’il
s’agisse d’une approche d’optimisation locale, DCA fournit souvent une solution
globale et s’avère plus robuste et efficace que les méthodes standard.
• DCA est une philosophie plutôt qu’un algorithme. Pour chaque problème, nous

pouvons concevoir une famille d’algorithmes basés sur DCA. La flexibilité de
DCA sur le choix des décomposition DC peut offrir des schémas DCA plus
performants que des méthodes standard.
• L’analyse convexe fournit des outils puissants pour prouver la convergence

de DCA dans un cadre général. Donc, tous les algorithmes basés sur DCA
bénéficient (au moins) des propriétés de convergence générales du schéma DCA
générique qui ont été démontrées.

Il est important de noter qu’avec les techniques de reformulation en programmation
DC et les décompositions DC appropriées, la plupart des algorithmes existants en
optimisation convexe/non convexe sont retrouvés comme cas particuliers de DCA.

Nos contributions

Dans cette thèse, nous étudions les approches basées sur la programmation DC et DCA
pour résoudre les trois sous-classes suivantes de MPEC:

22 Introduction générale

• La première classe est MPLCC dans laquelle la fonction objectif est une fonc-
tion DC. Cette classe de problèmes est appelée la programmation DC avec
des contraintes de complémentarité linéaires, notée brièvement DCLCC (DC
programming with Linear Complementarity Constraints en Anglais). Puisque
presque toutes les fonctions non convexes sont DC et une fonction convexe peut
être également considérée comme une fonction DC, DCLCC constitue la plus
large classe des problèmes MPLCC. Et jusqu’à maintenant aucune approche
dans la litérature n’aborde cette générale classe DCLCC.
• La seconde classe est MPEC dans laquelle la fonction objectif est une fonction

DC, Ω = X×Y où X est un polyèdre borné et Y un ensemble convexe compact,
F est une fonction continûment différentiable dont les matrices jacobiennes
partielles sont Lipschitziennes, et C(y) = X. En plus du cas général, nous
étudions un cas particulier où la fonction objectif est une fonction continûment
différentiable dont le gradient est Lipschitzien. Cette étude est motivée par des
nombreuses applications importantes de ce modèle, en particulier le problème de
détermination du prix de péages dans un réseau de transport avec des demandes
fixes.
• La troisième classe est la programmation mathématique à deux niveaux où

la fonction objectif au niveau supérieur est la somme d’une fonction convexe
et la fonction valeur d’un programme linéaire, et les variables dans ce niveau
sont binaires. Cette étude est suscitée par des applications importantes de type
d’allocation de ressource dans plusieur domaines dont dans la sécurité et l’armée
dont le problème d’interdiction des flots maximum dans un réseau.

En plus des trois classes de probblèmes ci-dessus, nous étudions également un challenge
dans les réseaux de transport - la conception de réseau d’équilibre continu (Contin-
uous equilibrium network design problem) sous la forme d’un MPCC difficile où la
fonction objectif est fractionnaire et certaines contraintes sont non convexes (en plus
de contraint de complémantarité).

Grâce aux techniques de pénalité, nous reformulons les problèmes considérés comme
des programmes DC et développons des algorithmes basés sur DCA pour leur
résolution. Nous donnons ci-après une description détaillée des nos contributions.

Concernant la première classe de problèmes (DCLCC), comme cela a été indiqué plus
haut, la difficulté principale réside dans les contraintes de complémentarité. Afin de
surmonter cette difficulté, nous introduisons quatre fonctions de pénalité (trois parmi
elles sont nouvelles parmi les travaux utilisant la pénalité pour MPLCC) pour rem-
placer les contraintes de complémentarité par des nouvelles contraintes, puis pénalisons
ces dernières à la fonction objectif. Par la suite, le DCLCC est reformulé comme
des problèmes DC standard, i.e minimisation d’une fonction DC sous les contraintes
convexes. Nous prouvons que la pénalisation est exacte (dans le cas où l’ensemble de
contraintes linéaires est borné), c.à.d le problème original est équivalent aux problèmes
pénalisés. Ces résultats constituent des contributions cruciales sur le plan théorique qui
permettent de faire le pont entre MPLCC et la programmation DC. Nous développons
ensuite des algorithmes appropriés basés sur DCA pour résoudre les problèmes DC
résultants. Deux d’entre eux sont reformulés encore sous la forme des problèmes DC

Introduction générale 23

généraux (i.e. minimisation d’une fonction DC sous des contraintes DC) pour que
les sous-problèmes convexes dans DCA soient plus faciles à résoudre. La convergence
des schémas DCA est soigneuseument étudiée. Nous montrons que, sous certaines
hypothèses raisonnables, chaque point d’accumulation de la suite générée par toutes
les versions de DCA, est un point stationnaire de DCLCC. De plus, quand la fonc-
tion objectif est convexe, certains schémas DCA ont des propriétés de convergence
intéressantes telles que la convergence finie, l’optimalité locale, ...

Après la conception de DCA pour DCLCC, nous développons ces schémas DCA
pour deux cas particuliers: la programmation quadratique avec des contraintes de
complémentarité linéaire et le problème de complémentarité aux valeurs propres. Ce
dernier problème est reformulé en DCLCC dans lequel la fonction objectif n’est ni con-
vexe ni quadratique. Les versions DCA correspondantes sont simples, elles consistent
à résoudre successivement des problèmes quadratiques convexes à contraintes linéaires.
Nous les testons sur nombreux jeux de données, dont plusieurs ont un grand nombre
de contraintes de complémentarité (de 512 à 3200). Les résultats numériques montrent
l’efficacité de nos algorithmes et leur supériorité par rapport au solveur KNITRO (un
solveur avancé pour des problèmes d’optimisation non linéaires, incluant MPECs) et
à un autre schéma DCA dans la littérature pour le problème de complémentarité aux
valeurs propres.

En résumé, nos contributions significatives dans cette partie portent à la fois sur la
théorie et les algorithmes, et ces résultats sont validés par nombreuses expérimentations
numériques sur deux problèmes difficiles de DCLCC. Nous offrons quatre schémas DCA
génériques résolvant la plus large classe des problèmes MPLCCs.

La seconde classe de problèmes considérée dans cette thèse est également assez large
pour couvrir nombreux problèmes rencontrés en pratique, car la fonction objectif est
DC. Si la pénalité exacte (avec les fonctions de pénalité proposées) a été prouvée
pour DCLCC, il n’en n’est pas de même pour cette seconde classe de problèmes de
MPEC. Plus précisément, la pénalité exacte est valide pour certains cas particuliers
(par exemple, pour une fonction objectif continûment differentiable, [68]) et non pour
le cas général où l’objectif est une fonction DC. De plus, la fonction de pénalité exacte
utilisée dans [68] n’est pas favorable à l’utilisation de DCA car il est difficile à mettre en
évidence une formulation DC du problème pénalisé. Nous utilisons la même fonction
de pénalité inexacte introduite dans [68] pour pénaliser la contrainte d’inégalité varia-
tionnelle, cela nous permet de reformuler le problème pénalisé comme un programme
DC auquel DCA peut être appliqué. Malgré que la pénalité exacte n’est pas vérifiée
pour cette fonction de pénalité, il a été prouvé qu’avec un paramèttre de pénalité
suffisament grand, les solutions optimales du problème original se trouvent dans la
région où la valeur de la fonction pénalitée est petite. Ceci justifie les techniques de
pénalisation pour ce problème. Il est à noter qu’il existe très peu de travaux dans la
litérature proposant des méthodes numériques pour MPEC basées sur les techniques de
pénalisation, en particulier pour le cas où l’objectif est une fonction DC. La nouveauté
et l’originalité de notre travail réside dans le développement des algorithmes avancés
basés sur DCA - DCA ρ et ADCA ρ (Accelerated DCA ρ), qui sortent du cadre de
DCA standard. En fait, la formulation DC nécessite le calcul d’un paramètre ρ qui

24 Introduction générale

peut être obtenu via la constante de Lipschitz du gradient de la fonction de pénalité.
En pratique, cette constante de Lipschitz est généralement estimée par une valeur as-
sez élevée qui pourrait rendre le DCA inefficace. Ainsi, nous proposons une variante
de DCA (DCA ρ), dans laquelle une mise à jour de ρ est effectuée à chaque itération
et la convexité de H (la second fonction dans la décomposition de l’objectif) n’est
pas nécessaire [50]. De plus, étant motivé par le succès des algorithmes accélérés en
optimisation convexe / non convexe récemment développés pour améliorer le taux de
convergence (voir par exemple [8, 55, 84, 104, 50]), nous offrons également une version
accélérée de l’algorithme proposé qui incorpore une étape d’extrapolation. Nous prou-
vons que la convergence de DCA reste valable pour ces versions avancées, c.à.d. chaque
point d’accumulation de la suite générée par nos algorithmes est un point critique du
problème pénalisé.

Après l’étude du cas général, nous considérons un cas particulier où la fonction objectif
est une fonction continûment différentiable dont le gradient est Lipschitzien. Les ver-
sions DCAs correspondantes sont assez simples, elles nécessitent le calcul de projection
d’un point sur un polyèdre et/ou sur un ensemble compact. Comme application, nous
résolvons le problème de détermination du prix de péages dans un réseau de transport
avec des demandes fixes (“the second-best toll pricing problem with fixed demands” en
anglais). Les résultats numériques sur plusieurs données indiquent que nos approches
sont prometteuses.

Pour la troisième classe de problèmes, la difficulté se trouve non seulement dans la
fonction objectif non convexe, mais aussi dans les variables binaires. Bien que la pro-
grammation à deux niveaux peut être considérée comme un cas particulier de MPEC,
notre technique de résolution est différente, elle ne doit pas passer par MPEC. En
fait, la structure particulière du problème, à savoir la fonction valeur d’un programme
linéaire et les variables binaires, nous permettent de montrer que sa fonction objec-
tif est une fonction DC, et ce problème à deux niveaux devient un problème DC (à
un niveau) avec des variables binaires. Dès lors, en utilisant des nouveaux résultats
de la pénalité exacte pour la programmation DC [48], nous pénalisons les contraintes
binaires et reformulons ainsi ce dernier problème en un problème DC standard pour
lequel nous proposons ensuite un algorithme approprié basé sur DCA. En outre, nous
montrons que lorsque la partie convexe dans la fonction objectif est linéaire, nous pou-
vons choisir le paramètre de pénalité comme un nombre positif arbitraire, et la suite
générée par DCA contient toujours des valeurs binaires, Nous appliquons l’algorithme
proposé pour résoudre le problème d’interdiction de flot maximum dans un réseau
(“maximum flow network interdiction problem” en anglais). Il s’agit d’une application
très importante dans le domaine d’allocation de ressources. Le schéma DCA pour ce
problème est simple, il consiste à résoudre successivement des programmes linéaires
avec contraintes de bôıte dont les solutions sont binaires. Afin d’évaluer la qualité de
la solution trouvée par DCA, nous reformulons le problème d’application comme un
programme linéaire en variables mixtes binaires qui peut être résolu globalement par
le logiciel CPLEX. Les résultats numériques montrent que DCA fournit souvent une
solution globale en peu de temps.

Le dernier problème étudié dans cette thèse est une application de MPCC. C’est un

Introduction générale 25

des problèmes les plus difficiles dans le domaine de transport, à savoir la conception
de réseau d’équilibre continu (“continuous equilibrium network design problem” en
anglais). Ce problème consiste à déterminer les extensions de capacité des liaisons
existantes afin de minimiser le coût total de déplacement plus le coût d’investissement
pour ces extensions, lorsque les flux de liaison sont sous contraintes d’équilibre. Il
est modélisé sous forme d’un MPCC dans [100]. La double difficulté de ce MPCC
vient des contraintes de complémentarité et des fonctions de coût de déplacement non
convexes qui sont des fonctions fractionnaires. En introduisant de nouvelles variables
et basant sur une technique de pénalisation, nous transformons le problème MPCC en
un programme DC général pour lequel nous développons un DCA approprié.

Organisation de la Thèse

La thèse est composée de cinq chapitres.

• Le chapitre 1 présente des outils théoriques et algorithmiques servant des
références aux autres. Il s’agit de la Programmation DC et DCA ainsi que
des résultats concernant des techniques de pénalisation en optimisation non
convexe, et plus particulièrement en programmation DC.
• Le chapitre 2 étudie les méthodes de résolution basées sur la programmation

DC et DCA pour DCLCC en général, et pour la programmation quadra-
tique avec contraintes de complémentarité linéaire ainsi que le problème de
complémentarité aux valeurs propres asymétriques en particulier.
• Le chapitre 3 concerne la deuxième classe de problème de MPEC, pour le cas

général où l’objectif est une fonction DC et pour le cas particulier où la fonc-
tion objectif est une fonction continûment différentiable dont le gradient est
Lipschitzien ainsi que son application au problème de détermination du prix de
péages dans un réseau de transport avec des demandes fixes.
• Le chapitre 4 se rapporte à la programmation à deux niveaux avec des variables

binaires dans le niveau supérieur et son application à un problème d’interdiction
de flots maximum.
• Enfin, le chapitre 5 étudie le problème de conception de réseau d’équilibre con-

tinu via MPCC.

26 Introduction générale

Chapter 1

Preliminary

This chapter presents a brief introduction to DC programming and DCA, and some
results concerning the penalty techniques for nonconvex optimization problems.

1.1 DC programming and DCA

In this section, we first recall some basic properties of convex analysis and then present
some main points of DC programming and DCA. These contents are extracted from
[41, 43, 45, 81, 82, 86, 88].

Throughout this section, X denotes the Euclidean space Rn and R = R∪{±∞} is the
set of extended real numbers.

1.1.1 Fundamental convex analysis

A subset C of X is said to be convex if (1 − λ)x + λy ∈ C for any x, y ∈ C and any
λ ∈ [0, 1].

The convex hull of a set C, denoted by convC is the set of all convex combinations of
points in C.

Let C be a convex set. A function f : C → (−∞,+∞] is said to be convex on C if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), ∀x, y ∈ C, ∀λ ∈ [0, 1].

A real-valued function f on a convex set C is said to be strictly convex on C if the
inequality above holds strictly whenever x 6= y and 0 < λ < 1.

The effective domain of a convex function f on C, denoted by domf , is the set

domf = {x ∈ X : f(x) < +∞}

27

28 Chapter 1. Preliminary

Clear, domf is a convex set in X.

A convex function f is called proper if domf 6= ∅ and f(x) > −∞ for all x.

A function f : C → [−∞,+∞] is said to be lower semi-continuous at a point x of C if

f(x) ≤ lim inf
y→x

f(y).

Denote by Γ0(X) the set of all proper lower semi-continuous convex functions on X.

Let ρ be a nonnegative number and C be a convex subset of X. A function θ : C →
(−∞,+∞] is said to be ρ–convex if

θ[λx+ (1− λ)y] ≤ λθ(x) + (1− λ)θ(y)− λ(1− λ)

2
ρ‖x− y‖2

for all x, y ∈ C and λ ∈ (0, 1).

It is easy to see that θ is ρ–convex if and only if θ − (ρ/2)‖ · ‖2 is convex on C.

The modulus of strong convexity of θ on C, denoted by ρ(θ, C) or ρ(θ) if C = X, is
given by

ρ(θ, C) = sup{ρ ≥ 0 : θ − (ρ/2)‖ · ‖2 is convex on C}.

θ is said to be strongly convex on C if ρ(θ, C) > 0.

A vector y is said to be a subgradient of a convex function f at a point x0 if

f(x) ≥ f(x0) + 〈x− x0, y〉, ∀x ∈ X.

The set of all subgradients of f at x0 is called the subdifferential of f at x0 and is
denoted by ∂f(x0). If ∂f(x) is not empty, f is said to be subdifferentiable at x.
The effective domain of ∂f, denoted by dom ∂f is the set

dom ∂f = {x ∈ X : ∂f(x) 6= ∅}.

For ε > 0, a vector y is said to be an ε–subgradient of a convex function f at a point
x0 if

f(x) ≥ (f(x0)− ε) + 〈x− x0, y〉, ∀x ∈ X.

The set of all ε–subgradients of f at x0 is called the ε–subdifferential of f at x0 and is
denoted by ∂εf(x0).

Proposition 1.1. Let f be a proper convex function. Then

1. ∂εf(x) is a closed convex set, for any x ∈ X and ε ≥ 0.

2. ri(domf) ⊂ dom ∂f ⊂ domf
where ri(domf) stands for the relative interior of domf .

3. If f is differentiable at x ∈ domf , then ∂f(x) = {∇f(x)}.
4. x0 ∈ argmin{f(x) : x ∈ X} if and only if 0 ∈ ∂f(x0).

Chapter 1. Preliminary 29

Let C be a nonempty convex subset of Rn. The indicator function of C, denoted by
χC , is the function

χC(x) =

{
0 if x ∈ C
+∞ otherwise

(1.1)

The normal cone of C at x ∈ C, denoted NC(x), is given by

NC(x) = ∂χC(x) = {u ∈ Rn : 〈u, y − x〉 ≤ 0 ∀y ∈ C}.

A function f : Rn → Rm is said to be Lipschitz continuous on C if there exists a real
number λ ≥ 0 such that

‖f(x1)− f(x2)‖ ≤ λ‖x1 − x2‖ ∀x1, x2 ∈ C.

Such a number λ is called a Lipschitz constant of f on C.

A function f : Rn → (−∞,+∞] is said to be locally Lipschitz at x ∈ Rn if there exists
a neighborhood Ux of x such that f is Lipschitz continuous on Ux.

Let f : Rn → (−∞,+∞] be a locally Lipschitz function at a given x ∈ Rn. The Clarke
directional derivative and the Clarke subdifferential of f at x is given by the following
formulas.

f ↑(x, v) = lim sup
(t,y)→(0+,x)

f(y + tv)− f(y)

t
,

∂↑f(x) =
{
x∗ ∈ Rn : 〈x∗, v〉 ≤ f ↑(x, v) ∀v ∈ Rn

}
.

If f is continuously differentiable at x then ∂↑f(x) = ∇f(x). When f is a convex
function, then ∂↑f(x) coincides with the subdifferential ∂f(x).

Conjugates of convex functions

The conjugate of a function f : X → R is the function f ∗ : X → R, defined by

f ∗(y) = sup
x∈X
{〈x, y〉 − f(x)}.

Proposition 1.2. Let f ∈ Γ0(X). Then we have

1. f ∗ ∈ Γ0(X) and f ∗∗ = f .

2. f(x) + f ∗(y) ≥ 〈x, y〉, for any x, y ∈ X.

3. f(x) + f ∗(y) = 〈x, y〉 ⇔ y ∈ ∂f(x)⇔ x ∈ ∂f ∗(y).

Polyhedral Functions

A polyhedral set is a closed convex set that has the form

C = {x ∈ X : 〈bi, x〉 ≤ βi, ∀i = 1, . . . ,m}

30 Chapter 1. Preliminary

where bi ∈ X and βi ∈ R for all i = 1, . . . ,m.

A function f ∈ Γ0(X) is said to be polyhedral if

f(x) = max{〈ai, x〉 − αi : i = 1, . . . , k}+ χC(x), ∀x ∈ X (1.2)

where ai ∈ X, αi ∈ R for all i = 1, . . . , k and C is a nonempty polyhedral set. It is
clear that dom f = C.

Proposition 1.3. [86] Let f be a polyhedral convex function, and x ∈ domf . The
following statements hold.

1. f is subdifferentiable at x, and ∂f(x) is a polyhedral convex set. In particular,
if f is defined by (1.2) with C = X then

∂f(x) = conv{ai : i ∈ I(x)}

where I(x) = {i ∈ {1, . . . , k} : 〈ai, x〉 − αi = f(x)}.
2. The conjugate f ∗ is a polyhedral convex function. Moreover, if C = X then

domf ∗ = conv{ai : i = 1, . . . , k},

f ∗(y) = inf

{
k∑
i=1

λiαi :
k∑
i=1

λiai = y,
k∑
i=1

λi = 1, λi ≥ 0,∀i = 1, . . . , k

}
.

In particular,
f ∗(ai) = αi, ∀i = 1, . . . , k.

DC functions

A function f is called DC function on X if it is of the form

f(x) = g(x)− h(x), x ∈ X

where g, h ∈ Γ0(X). One says that g−h is a DC decomposition of f and the functions
g, h are its DC components. If, in addition, g and h are finite at all points of X then
f is said to be a finite DC function on X. The set of DC functions (resp. finite DC
functions) on X is denoted by DC(X) (resp. DCf (X)).

Remark 1.1. If f is a DC function with DC decomposition f = g − h then for every
θ ∈ Γ0(X) finite on X, f = (g+ θ)− (h+ θ) is another DC decomposition of f . Thus,
a DC function has infinitely many DC decompositions.

1.1.2 Standard DC optimization

Standard DC program

In the sequel, we use the convention +∞− (+∞) = +∞.

Chapter 1. Preliminary 31

A so-called standard DC program takes the form

(P) α = inf{f(x) := g(x)− h(x) : x ∈ X},

where g, h ∈ Γ0(X).

Remark 1.2. The constrained DC program whose feasible set C is closed convex always
can be converted into the unconstrained DC program by adding the indicator function
χC of C to the first DC component, i.e.

inf{f(x) := g(x)− h(x) : x ∈ C} = inf{g(x) + χC(x)− h(x) : x ∈ X}.

The dual program of (P) is also a DC program with the same optimal value and defined
by

(D) α = inf{h∗(y)− g∗(y) : y ∈ X}.

It is noted that there is a perfect symmetry between primal and dual programs (P)
and (D): the dual program of (D) is exactly (P).

We will always keep the following assumption that is deduced from the finiteness of α

dom g ⊂ domh and domh∗ ⊂ dom g∗. (1.3)

Polyhedral DC program

In the problem (P), if one of the DC components g and h is polyhedral, we call (P) a
polyhedral DC program.

Optimality conditions for DC standard programs

A point x∗ is said to be a local minimizer of g − h if x∗ ∈ dom g ∩ domh and there is
a neighborhood U of x∗ such that

g(x)− h(x) ≥ g(x∗)− h(x∗), ∀x ∈ U. (1.4)

A point x∗ is said to be a critical point of g − h if

∂g(x∗) ∩ ∂h(x∗) 6= ∅. (1.5)

Optimality conditions for DC standard programs are shown in the following theorem
(see [81]).

Theorem 1.1. i) Global optimality condition:
x∗ is an optimal solution of the problem (P) if and only if

∂εh(x∗) ⊂ ∂εg(x∗), ∀ε > 0.

32 Chapter 1. Preliminary

ii) Necessary condition for local optimality :
if x∗ is a local minimizer of g − h, then

∂h(x∗) ⊂ ∂g(x∗).

iii) Sufficient condition for local optimality:
Let x∗ be a critical point of g − h and y∗ ∈ ∂g(x∗) ∩ ∂h(x∗). Let U be a
neighborhood of x∗ such that (U ∩ dom g) ⊂ dom ∂h. If for any x ∈ U ∩ dom g,
there is y ∈ ∂h(x) such that h∗(y)− g∗(y) ≥ h∗(y∗)− g∗(y∗), then x∗ is a local
minimizer of g − h. More precisely,

g(x)− h(x) ≥ g(x∗)− h(x∗), ∀x ∈ U ∩ dom g.

Remark 1.3. a) By the symmetry of the DC duality, Theorem 1.1 has its corre-
sponding dual part.

b) The necessary local optimality condition ∂h(x∗) ⊂ ∂g(x∗) is also sufficient for
many important classes of programs, for example, if h is polyhedral convex, or
when f is locally convex at x∗, i.e. there exists a convex neighborhood U of
x∗ such that f is finite and convex on U . We know that a polyhedral convex
function is differentiable everywhere except on a set of measure zero. Thus, if
h is a polyhedral convex function, then a critical point of g−h is almost always
a local solution to (P).

c) If f = g − h is actually convex on X, we call (P) a “false” DC program.
Furthermore, if ri(dom g) ∩ ri(domh) 6= ∅ and x∗ ∈ dom g such that g is con-
tinuous at x∗, then 0 ∈ ∂f(x∗) ⇔ ∂h(x∗) ⊂ ∂g(x∗). Thus, in this case, the
local optimality is also sufficient for the global optimality. If, in addition, h is
differentiable, a critical point is also a global solution.

Standard DC algorithm

The idea of DCA for solving the problem (P) is that each iteration k of DCA ap-
proximates the concave part −h by its affine majorization (that corresponds to taking
yk ∈ ∂h(xk)) and minimizes the resulting convex function. This algorithm can be
summarized as follows.

Algorithm 1.1

Initialization. Choose an initial point x0 ∈ X, set k := 0.
Repeat

1. Compute yk ∈ ∂h(xk).
2. Compute xk+1 ∈ arg min{g(x)− h(xk)− 〈x− xk, yk〉 : x ∈ X}.
3. Set k := k + 1.

Until convergence of {xk}.

The convergence properties of DCA was completely investigated in [81]. The following
theorem indicates some important results.

Chapter 1. Preliminary 33

Theorem 1.2. Let {xk} and {yk} be the sequences generated by Algorithm 1.1. Then
the following statements hold.

i) The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing.

ii) If g(xk+1)−h(xk+1) = g(xk)−h(xk) then xk, xk+1 are the critical points of g−h.
In this case, Algorithm 1.1. terminates after a finite number of iterations.

iii) If ρ(g) + ρ(h) > 0 (resp. ρ(h∗) + ρ(g∗) > 0), then the sequence {‖xk+1− xk‖2}
(resp. {‖yk+1 − yk‖2}) converges.

iv) If the optimal value α is finite and the sequences {xk} and {yk} are bounded,
then every limit point x∗ (resp. y∗) of the sequence {xk} (resp. {yk}) is a
critical point of g − h (resp. h∗ − g∗).

v) For polyhedral DC programs, the sequences {xk} and {yk} contain finitely many
elements and DCA has a finite convergence. Especially, if h is differentiable at
x∗, then x∗ is a local minimizer of the problem (P).

Remark 1.4. a) When h is a polyhedral function, the calculation of the subdiffer-
ential ∂h(xk) is explicit by Proposition 1.3. With a fixed choice of subgradients
of h, the sequence {yk} has only finitely many different elements. This leads to
finite convergence of DCA.

b) DCA’s distinctive feature relies upon the fact that DCA deals with the convex
DC components g and h but not with the DC function f itself. Moreover,
a DC function f has infinitely many DC decompositions which have crucial
implications for the qualities (e.g. convergence speed, robustness, efficiency,
globality of computed solutions) of DCA. For a given DC program, the choice
of optimal DC decompositions is still open. Of course, this depends strongly on
the very specific structure of the problem being considered.

1.1.3 General DC optimization

A general DC program is of the form

min
x

f0(x) (1.6)

s.t x ∈ C,
fi(x) ≤ 0, i = 1, ...,m,

where C is a nonempty closed convex set in Rn; fi : Rn → R(i = 0, 1, ...,m) are DC
functions.

This class of nonconvex programs is the most general in DC programming and more
difficult than standard DC programs because of the nonconvexity of the constraints.
Two approaches for the problem (1.6) were proposed in [43]. The first one employs a
penalty technique in DC programming to reformulate the problem (1.6) as a standard
DC program. The second one linearizes concave parts in DC constraints to build convex
inner approximations of the feasible set. Before presenting these two approaches, we
recall some definitions.

34 Chapter 1. Preliminary

Let F be the feasible set of (1.6). A point x∗ ∈ F is a Karush-Kuhn-Tucker (KKT)
point for the problem (1.6) if there exist nonnegative scalars λi, i = 1, ...,m such that{

0 ∈ ∂↑f0(x∗) +
∑m

i=1 λi∂
↑fi(x

∗) +NC(x∗),

λifi(x
∗) = 0, i = 1, . . . ,m.

(1.7)

Denote

p(x) = max {f1(x), f2(x), ..., fm(x)} ,
I(x) = {i ∈ {1, ...,m} : fi(x) = p(x)} ; p+(x) = max{p(x), 0}.

One says that the extended Mangasarian-Fromowitz constraint qualification (EMFCQ)
is satisfied at x∗ ∈ F with I(x∗) 6= ∅ if there is a vector d ∈ cone(C − {x∗}) (the cone
hull of C − {x∗}) such that

f ↑i (x∗, d) < 0 ∀i ∈ I(x∗).

When f ′is are continuously differentiable, then f ↑i (x∗, d) = 〈∇fi(x∗), d〉. Therefore, the
EMFCQ becomes the well-known Mangasarian-Fromowitz constraint qualification.

General DCA using l∞-penalty function with updated penalty parameter

Consider the following penalized problems

min
x

φk(x) = f0(x) + βkp
+(x) (1.8)

s.t x ∈ C,

where βk are penalty parameters. Since fi(x), i = 1, . . . ,m are DC functions, so is p+.
Suppose that f0 and p+ are decomposed into the difference of two convex functions as
follows

f0(x) = g0(x)− h0(x), p+(x) = p1(x)− p2(x)

where g0, h0, p1, p2 are convex functions defined on the whole space. Then a DC de-
composition of φk can be chosen to be

φk(x) = gk(x)− hk(x)

where

gk(x) = g0(x) + βkp1(x), hk(x) = h0(x) + βkp2(x).

DCA with updated penalty parameter is described in the following algorithm.

Algorithm 1.2

Initialization: Take an initial point x1 ∈ C, δ > 0, an inital penalty parameter β1 > 0
and set k := 1.

1. Compute yk ∈ ∂hk(xk).

Chapter 1. Preliminary 35

2. Compute xk+1 by solving the convex program

min
{
gk(x)− 〈x, yk〉 : x ∈ C

}
.

3. Stopping test.
Stop if xk+1 = xk and p(xk) ≤ 0.

4. Penalty parameter update.
Compute rk = min

{
p(xk), p(xk+1)

}
and set

βk+1 =

{
βk if either βk ≥ ‖xk+1 − xk‖−1 or rk ≤ 0,

βk + δ if βk < ‖xk+1 − xk‖−1 and rk > 0

5. Set k := k + 1 and go to Step 1.

In the global convergence theorem, the authors use the following assumptions.

Assumption 1.1. fi(i = 0, ...,m) are locally Lipschitz functions at every point of C.

Assumption 1.2. Either gk or hk is differentiable on C, and ρ(g0) + ρ(h0) + ρ(p1) +
ρ(p2) > 0.

Assumption 1.3. The EMFCQ is satisfied at any x ∈ Rn with p(x) ≥ 0.

Theorem 1.3. Suppose that C is a nonempty closed convex set in Rn and fi, i =
0, 1, . . . ,m are DC functions on C. Suppose further that Assumptions 1.1-1.3 are
verified. Let δ > 0, β1 > 0 be given and {xk} be a sequence generated by Algorithm
1.2. Then Algorithm 1.2 either stops, after finitely many iterations, at a KKT point
xk for the problem (1.6) or generates an infinite sequence {xk} of iterates such that
limk→∞ ‖xk+1−xk‖ = 0 and every limit point x∞ of the sequence {xk} is a KKT point
of the problem (1.6).

This theorem is proved in detail in [43].

General DCA using slack variables with updated parameter

Since fi(i = 0, ...,m) are DC functions, they can be decomposed into the difference of
two convex functions as follows fi(x) = gi(x)− hi(x), x ∈ Rn, i = 0, ...,m.

In this second approach, at each iteration, one solves the following convex subproblem,
which is obtained by replacing the concave parts of the DC structure with their affine
majorization.

min g0(x)− 〈yk0 , x〉 (1.9)

s.t. x ∈ C,
gi(x)− hi(xk)− 〈yki , x− xk〉 ≤ 0, i = 1, ...,m,

where xk ∈ Rn is the current iterate, yki ∈ ∂hi(xk) for i = 0, ...,m. However, the inner
convex approximation of the feasible set of the problem (1.6) is quite often poor and

36 Chapter 1. Preliminary

can lead to infeasibility of the convex subproblem (1.9). To deal with the infeasibility
of subproblems, a relaxation technique was proposed. Instead of (1.9), the authors
consider the subproblem

min g0(x)− 〈yk0 , x〉+ tks (1.10)

s.t. x ∈ C,
gi(x)− hi(xk)− 〈yki , x− xk〉 ≤ s, i = 1, ...,m, (1.11)

s ≥ 0,

where tk > 0 is a penalty parameter. Clearly, (1.10) is a convex problem that is always
feasible. Moreover, the Slater constraint qualification is satisfied for the constraints
of (1.10), thus the Karush-Kuhn-Tucker (KKT) optimality condition holds for some
solution (xk+1, sk+1) of (1.10). The algorithm is summarized as follows.

Algorithm 1.3

Initialization. Choose an initial point x1 ∈ C; δ1, δ2 > 0, an initial penalty parameter
t1 > 0. Set k := 1.

1. Compute yki ∈ ∂hi(xk), i = 0, ...,m.

2. Compute (xk+1, sk+1) as a solution to the convex problem (1.10) and the La-
grange multipliers λk+1

i associated with the constraints (1.11).

3. Stopping test
If xk+1 = xk and sk+1 = 0, then stop, otherwise go to Step 4.

4. Penalty parameter update.
Compute

rk = min

(
‖xk+1 − xk‖−1,

m∑
i=1

|λk+1
i |+ δ1

)
and set

tk+1 =

{
tk if tk ≥ rk,
tk + δ2 if tk < rk.

5. Set k := k + 1 and go to Step 1.

The global convergence of the above algorithm is shown in the theorem below.

Theorem 1.4. Suppose that C is a nonempty closed convex set in Rn and fi, i =
0, 1, . . . ,m are DC functions on C such that Assumptions 1.1 and 1.3 are verified.
Suppose further that for each i = 0, ...,m either gi or hi is differentiable on C and that

ρ = ρ(g0) + ρ(h0) + min{ρ(gi) : i = 1, . . . ,m} > 0.

Let δ1, δ2 > 0, t1 > 0 be given and {xk} be a sequence generated by Algorithm 1.3.
Then Algorithm 1.3 either stops, after finitely many iterations, at a KKT point xk

for the problem (1.6) or generates an infinite sequence {xk} of iterates such that
limk→∞ ‖xk+1 − xk‖ = 0 and every limit point x∞ of the sequence {xk} is a KKT
point of the problem (1.6).

The proof of this theorem is presented in [43].

Chapter 1. Preliminary 37

1.2 Penalty Techniques

In nonconvex optimization, we often face problems in which one or several constraints
are complex and difficult to handle directly. The penalty approach is used to transform
such a problem into a simpler problem or into a sequence of simpler problems by
penalizing difficult constraints. We now present some results concerning this approach.
The following content is drawn from [7, 48].

Consider the problem

min f(x) (1.12)

s.t. gi(x) ≤ 0, i = 1, ...,m,

hj(x) = 0, j = 1, ..., l,

x ∈ C,

where f, gi, hj : Rn → R are continuous functions and C is a nonempty set in Rn.

Let F be the feasible set of (1.12). We assume throughout this section that F is
nonempty. Consider the following penalized problem

min{f(x) + tp(x) : x ∈ C} (1.13)

where t is a positive number and p : Rn → R is a function satisfying the properties
below:

i) p is continuous on Rn,
ii) p(x) ≥ 0,∀x ∈ C,
iii) p(x) = 0, x ∈ C ⇔ x ∈ F .

Such a number t is called a penalty parameter and p is called a penalty function.

We say that the exact penalty holds if there exists a number t0 ≥ 0 such that for all
t > t0 the problems (1.12), (1.13) are equivalent in the sense that they have the same
optimal value and the same optimal solution set.

The relationship between the problems (1.12) and (1.13) is shown in the next theorem.

Theorem 1.5. [7] Suppose that f, gi, hj : Rn → R, i = 1, ...,m; j = 1, ..., l are continu-
ous functions, C is a nonempty set in Rn and p is a function satisfying the properties
i)-iii). Furthermore, suppose that for each t there exists an optimal solution xt to the
penalized problem (1.13). If {xt} is contained in a compact set of X, then

1. θ = lim
t→∞

θ(t), where θ, θ(t) are the optimal value of (1.12) and (1.13) respec-

tively.
2. Every limit point of {xt} is an optimal solution to the problem (1.12) and

lim
t→∞

tp(xt) = 0.

Error bounds for concave inequality systems over polyhedral convex sets

38 Chapter 1. Preliminary

Theorem 1.6. [48] Let C be a nonempty bounded polyhedral convex set in Rn and let
h be a concave function on K defined by

h(x) =
m∑
j=1

min{hij(x) : i ∈ Jj},

where J1, ..., Jm are finite index sets and hij are differentiable concave functions on K.
If S = {x ∈ C : h(x) ≤ 0} is nonempty then there exists τ > 0 such that

d(x, S) ≤ τh+(x) ∀x ∈ C,

where d(x, S) = inf{‖x− z‖ : z ∈ S}, h+(x) = max(h(x), 0).

Exact penalty via error bounds

Consider the problem

α = min{f(x) : x ∈ C, g(x) ≤ 0}, (1.14)

and the penalized problem

α(t) = min{f(x) + tg(x) : x ∈ C}, (1.15)

where C is a subset of Rn, f is a real-valued function defined on C and g : Rn → R is a
nonnegative function on C. Let P and Pt be the optimal solution set of the problems
(1.14) and (1.15) respectively.

Proposition 1.4. [48] Suppose that f is a Lipschitz continuous function on C with
Lipschitz constant L and that g is a nonnegative finite function on C. If S = {x ∈ C :
g(x) ≤ 0} is nonempty and there exists ` > 0 such that

d(x, S) ≤ `g(x) ∀x ∈ C,

then one has:
i) α(t) = α and P ⊂ Pt for all t ≥ L`,

ii) Pt = P for all t > L`.

Exact penalty for concave inequalities constraints

Theorem 1.7. [48] Suppose that C be a nonempty bounded polyhedral convex set in
Rn and that h be a concave function on C defined as in Theorem 1.6. If S = {x ∈
C : h(x) ≤ 0} is nonempty and f is a Lipschitz continuous function on C, then there
exists t0 > 0 such that for all t ≥ t0 the following problems are equivalent.

min{f(x) : x ∈ C, h(x) ≤ 0}, (1.16)

min{f(x) + th+(x) : x ∈ C}. (1.17)

Chapter 2

DC Programs with Linear
Complementarity Constraints

Abstract: We address a large class of Mathematical Programs with Linear Complementarity
Constraints which minimizes a continuously differentiable DC function on a set defined by
linear constraints and linear complementarity constraints, named DC programs with Linear
Complementarity Constraints. Using exact penalty techniques, we reformulate the considered
problem, via four penalty functions, as standard DC programs. The DCA schemes are then
developed to solve the resulting problems. Two particular cases are considered: quadratic
problems with linear complementarity constraints and asymmetric eigenvalue complementar-
ity problems. Numerical experiments are performed on several benchmark data illustrate the
effectiveness of proposed DCA schemes.

2.1 Introduction

The Mathematical Program with Linear Complementarity Constraints (MPLCC) is
an important subclass of the Mathematical Program with Equilibrium Constraints
(MPEC). It consists of minimizing a continuously differentiable function on a set de-
fined by linear constraints and pairs of complementary variables. The problem has a
wide range of applications in engineering, economics, and mathematics itself (see, e.g.,
[10, 27, 28, 34, 39, 79]). Several NP-hard problems such as bilevel programs, the asym-
metric eigenvalue complementarity problem, zero-norm optimization problems can be
efficiently solved by reformulating them as MPLCCs. However, solving the MPLCC
is known to be very difficult, even when the objective function is linear, due to the
non-convexity of linear complementarity constraints. The NP-hardness of the linear
bilevel programming problem, a special case of the MPLCC, was proved in [5].

Related works

1. The material of this chapter is based on the following work:
Hoai An Le Thi, Thi Minh Tam Nguyen, Tao Pham Dinh. On Solving Difference of Convex Functions
Programs with Linear Complementarity Constraints. Submitted

39

40 DC Programs with Linear Complementarity Constraints

To date, many approaches have been proposed to deal with the MPEC in general and
the MPLCC in particular. Under appropriate assumptions, an MPEC can be expressed
in the form of a Mathematical Program with Complementarity Constraints (MPCC)
by replacing the variational inequality constraints with its Karush-Kuhn-Tucker rep-
resentation. Therefore, MPCCs constitute a crucial subclass of MPECs and most of
the literature on MPECs have been concerned with this subclass. Complementarity
constraints are considered as the main cause rendering MPCCs difficult to solve. To
overcome this matter, various reformulations of MPCCs have been proposed. The pop-
ular approaches include relaxation techniques (see, e.g., [12, 37, 38, 59, 91, 94, 98]),
smoothing techniques (see, e.g., [15, 22, 25, 56]) and penalization techniques (see, e.g.,
[29, 30, 58, 67, 92]). The idea of relaxation techniques is to replace the complemen-
tarity constraints {G(z) ≥ 0, H(z) ≥ 0, G(z)>H(z) = 0} by extended constraints with
favorable properties, for example,
• {Gi(z) ≥ 0, Hi(z) ≥ 0, Gi(z)Hi(z) ≤ t} [91],
• {Gi(z) ≥ 0, Hi(z) ≥ 0, G(z)TH(z) ≤ t} [91],
• {Gi(z) ≥ −t,Hi(z) ≥ −t, (Gi(z)− t)(Hi(z)− t) ≤ 0} [37],
• {Gi(z)Hi(z)− t2 ≤ 0, (Gi(z) + t)(Hi(z) + t)− t2 ≥ 0} [59],
• {Gi(z) ≥ 0, Hi(z) ≥ 0, ϕ(Gi(z) − t,Hi(z) − t) ≤ 0} [38], where ϕ : R2 → R is

defined by

ϕ(a, b) =

{
ab if a+ b ≥ 0,
−(a2 + b2)/2 if a+ b < 0,

where t > 0 is a relaxation parameter.

Smoothing methods are often based on a reformulation of the complementarity con-
straints as a system of equations φ(Gi(z), Hi(z)) = 0, where φ : R2 → R is a so-called
NCP function. Since NCP functions are not differentiable, they are replaced by smooth
functions, for example,
• φmin

t (a, b) = a+ b−
√

(a− b)2 + 4t2 [15],

• φFB
t (a, b) = a+ b−

√
a2 + b2 + t [22],

• φt(a, b) = −t ln [exp(−a/t) + exp(−b/t)] [56],
where t > 0 is a smoothing parameter. Besides, the smoothing method in [25] replaces
the constraints Gi(z)Hi(z) = 0 by θt(Gi(z)) + θt(Hi(z)) ≤ 1, where θt : R+ → [0, 1] is
a smooth function and satisfies some appropriate conditions.

Most penalty techniques applied to MPCCs transform the considered problem into a
problem with simpler constraints or into a sequence of such problems by penalizing
the constraint G(z)>H(z) = 0. For example, Hu and Ralph [29] gave a class of smooth
penalty functions including the function G(z)>H(z). Mangasarian and Pang [67] (resp.
Jara-Moroni et al. [31]) used the penalty function p1(y, w) =

∑m
i=1 min(yi, wi) to pe-

nalize the constraint y>w in the MPLCC (resp. in the linear program with linear
complementarity constrains, abbreviated as LPLCC). In [67], the authors proved that
the exact penalty holds in the case the objective function is concave and bounded
below on the set defined by the linear constraints. Some works used a penalty function
to penalize all constraints of the MPCC (see, e.g. [30, 92]). In [92], the authors proved
that the exact penalty holds, this result requires checking the Mangasarian-Fromovitz
type conditions at a feasible point, which is not easy. Besides, an exact penaliza-

DC Programs with Linear Complementarity Constraints 41

tion technique which penalizes all the constraints except the linear complementarity
constraints of the form

{
y ≥ 0, w ≥ 0, y>w

}
can be found in [33, 61].

Several methods for solving nonlinear programs are also adapted for solution of
MPCCs, for example, the methods based on sequential quadratic programming (see,
e.g., [21, 32, 62, 66, 85]), interior point methods (see, e.g., [53, 64, 66, 87]). These
approaches only find a stationary point of MPCCs. The algorithms for finding a
globally optimal solution have been mainly suggested for MPLCCs with convex ob-
jectives. Most of which are based on the branch-and-bound methods (see, e.g.,
[4, 6, 36, 63, 106]). A survey of algorithms for solving MPLCCs can be found in
[34]. In general, finding a globally optimal solution to MPLCCs is very hard when the
number of complementarity constraints is large.

Recently, several methods based on DC programming and DCA have been given to
handle some special cases of the MPLCC. Le Thi and Pham Dinh [46] proposed four
equivalent optimization formulations of a LPLCC, and transformed them into standard
DC programs. Suitable DCA versions were developed to solve the resulting problems.
Following the work in [46], Jara-Moroni et al. [31] studied the DC penalty formulations
and the corresponding DCA schemes for computing stationary points of the general
LPLCC. DCA was also extensively developed for symmetric and asymmetric eigenvalue
complementarity problems in [44] and [76] respectively, and for quadratic eigenvalue
complementarity problems in [75].

Our contributions

The purpose of this chapter is to investigate new approaches based on DC program-
ming and DCA for solving the DC programs with linear complementarity constraints
(DCLCC), a large class of MPLCCs in which the objective function is a continuously
differentiable DC function. To the best of our knowledge, this is the first work in the
literature which addresses the general DCLCC. Let us consider the DCLCC of the
form

min f(x, y) = g(x, y)− h(x, y) (2.1)

s.t. Ax+By + a ≤ 0,

Nx+My + q = w,

y ≥ 0, w ≥ 0, y>w = 0,

where the functions g, h : Rn+m → R are convex and continuously differentiable,
a ∈ Rp, q ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, N ∈ Rm×n,M ∈ Rm×m.

Our main idea is to introduce a penalty function p(y, w) to replace the constraint
y>w = 0 in (2.1) by p(y, w) ≤ 0, and then penalize this constraint to the objective
function. In this way, the DCLCC (2.1) is reformulated as a DC program for which
DCA can be investigated. A natural penalty function has been used in previous works
is p1(y, w) =

∑m
i=1 min(yi, wi) (see, e.g., [67] for MPLCCs, [49] for bilevel programs

and [31] for LPLCCs). However, the relationship between the critical points of the
penalized problem and the stationary points of the MPCC has been only considered
for LPLCCs. In this chapter, besides p1, we consider three new penalty functions

42 DC Programs with Linear Complementarity Constraints

and prove that exact penalty holds for all the four penalty functions when the linear
constraint set is bounded. By the penalty technique we get four DC formulations of
(2.1) which are standard DC programs. We develop suitable DCA schemes to handle
these four DC programs. Two among them are reformulated again as general DC
programs in order that the convex subproblems in DCA is easier to solve. We prove
that, under some reasonable assumptions, every limit point of the sequences generated
by each DCA version is a stationary point of the DCLCC. Especially, for some penalty
functions, the corresponding DCA schemes enjoy interesting convergence properties
and local optimality (they converge after a finite number of iterations to a stationary
point of the DCLCC, and in most cases, such a stationary point is a local solution).

After designing DCA for the general DCLCC, we show how to develop these DCA
schemes for solving the quadratic problem with linear complementarity constraints
and the asymmetric eigenvalue complementarity problem. The corresponding DCA
versions are simple, they consist of successively solving convex quadratic programs
with linear constraints. We test them on several instances of two above problems, 18
out of 42 test problems have a large number of complementarity constraints (from 512
to 3200).

The rest of the chapter is organized as follows. Section 2.2 presents some stationarity
concepts for the DCLCC. Section 2.3 discusses the solution methods for the DCLCC.
Section 2.4 shows how to apply the proposed methods to solve the quadratic problem
with linear complementarity constraints and the asymmetric eigenvalue complemen-
tarity problem. The numerical results are reported in Section 2.5 and some conclusions
are given in Section 2.6.

2.2 Stationarity concepts

For reader’s convenience, we present some stationarity concepts for the DCLCC. These
concepts are based on that studied in [66, 90] for MPCCs. Let F denote the feasible
set of the problem (2.1). For each (x∗, y∗, w∗) ∈ F , we define the index sets:

Iy(y
∗, w∗) = {i : 0 = y∗i < w∗i }, Iw(y∗, w∗) = {i : y∗i > w∗i = 0},

I0(y∗, w∗) = {i : y∗i = w∗i = 0}.
Définition 2.2.1. A point z∗ = (x∗, y∗, w∗) ∈ F is said to be:

a) weakly stationary, iff there exist multipliers β ∈ Rp and νy, νw ∈ Rm such that

∇xf(x∗, y∗) + A>β −N>νw = 0,

∇yf(x∗, y∗) +B>β −M>νw − νy = 0,

β ≥ 0, β>(Ax∗ +By∗ + a) = 0,

νwi = 0, i ∈ Iy(y∗, w∗),
νyi = 0, i ∈ Iw(y∗, w∗),

b) strongly stationary, iff it is weakly stationary and

νyi ≥ 0, νwi ≥ 0 ∀i ∈ I0(y∗, w∗),

DC Programs with Linear Complementarity Constraints 43

c) B-stationary, iff

∇xf(x∗, y∗)>dx+∇yf(x∗, y∗)>dy ≥ 0, ∀(dx, dy, dw) ∈ T (z∗,F),

where T (z∗,F) is the tangent cone of F at z∗.
2

Remark 2.1. i) If (x∗, y∗, w∗) is a strongly stationary point of the problem (2.1), then
it is also a B-stationary point of (2.1) [90].
ii) If f(x, y) is convex and (x∗, y∗, w∗) is a B-stationary point of (2.1), then (x∗, y∗, w∗)
is a local solution to (2.1) [66].

2.3 Solution methods based on DC programming

and DCA

2.3.1 Reformulations of the DCLCC via penalty functions

Let C be the set defined by linear constraints of (2.1), i.e.

C =
{

(x, y, w) ∈ Rn+2m : Ax+By + a ≤ 0, Nx+My + q = w, y ≥ 0, w ≥ 0
}
.

Obviously, C is a polyhedron in Rn+2m. We assume throughout this chapter that C is
nonempty.

Define the function ψ : R2 → R by ψ ∈
{
ψmin, ψFB

}
, with

ψmin(a, b) = min(a, b) (the min function),

ψFB(a, b) = a+ b−
√
a2 + b2 (the Fischer-Burmeister function).

It is straightforward to prove that ψ satisfies the following properties:
i) ψ is concave and continuous on R2

+;
ii) ψ(a, b) ≥ 0,∀a, b ≥ 0;
iii) ψ(a, b) = 0⇔ ab = 0, a ≥ 0, b ≥ 0.

Hence, the constraint y>w = 0 in (2.1) can be replaced by

either
m∑
i=1

ψ(yi, wi) = 0 or max
i=1,...,m

ψ(yi, wi) = 0.

Now let p denote one of the four penalty functions pi : Rn+m → R, i = 1, . . . , 4, defined

44 DC Programs with Linear Complementarity Constraints

below

p1(y, w) :=
m∑
i=1

ψmin(yi, wi) =
m∑
i=1

min(yi, wi), (2.2)

p2(y, w) :=
m∑
i=1

ψFB(yi, wi) =
m∑
i=1

(yi + wi −
√

(yi)2 + (wi)2), (2.3)

p3(y, w) := max
i=1,...,m

ψmin(yi, wi) = max
i=1,...,m

min(yi, wi), (2.4)

p4(y, w) := max
i=1,...,m

ψFB(yi, wi) = max
i=1,...,m

(yi + wi −
√

(yi)2 + (wi)2). (2.5)

Then the feasible set F of (2.1) can be expressed as

F = {(x, y, w) ∈ C : p(y, w) ≤ 0},

and the problem (2.1) is rewritten in the form

min {f(x, y) : (x, y, w) ∈ C, p(y, w) ≤ 0} . (2.6)

Consider now the penalized problem:

min{f(x, y) + tp(y, w) : (x, y, w) ∈ C}. (2.7)

The following theorem shows that when C is bounded, the exact penalty for the problem
(2.6) holds, that is, (2.6) is equivalent to (2.7) with a sufficiently large t.

Theorem 2.1. Suppose that C is bounded and the feasible set F of (2.1) is nonempty.
Then, there exists a positive number t0 such that for all t ≥ t0, the problems (2.6) and
(2.7) are equivalent in the sense that they have the same optimal value and the same
optimal solution set.

Proof We first prove that there exists τ > 0 such that

d((x, y, w),F) ≤ τp(y, w), ∀(x, y, w) ∈ C.

According to Theorem 1.6 in Chapter 1, there exists τ1 > 0 such that

d((x, y, w),F) ≤ τ1p1(y, w), ∀(x, y, w) ∈ C. (2.8)

On the other hand, one has

p1(y, w) ≤ 2 +
√

2

2
p2(y, w), ∀y, w ≥ 0. (2.9)

Indeed, if 0 < a ≤ b, then

a+ b−
√
a2 + b2 =

2ab

a+ b+
√
a2 + b2

=
2a

a

b
+ 1 +

√(a
b

)2

+ 1

≥ 2a

2 +
√

2
.

DC Programs with Linear Complementarity Constraints 45

Similarly, if 0 < b ≤ a, then

a+ b−
√
a2 + b2 ≥ 2b

2 +
√

2
.

Consequently,

a+ b−
√
a2 + b2 ≥ 2

2 +
√

2
min(a, b), ∀a, b ≥ 0.

Therefore, the inequality (2.9) holds.
Moreover, it is easy to see that

p1(y, w) ≤ mp3(y, w), p2(y, w) ≤ mp4(y, w), ∀y, w ≥ 0. (2.10)

It follows from (2.8)-(2.10) that

d((x, y, w),F) ≤ τp(y, w), ∀(x, y, w) ∈ C with τ =
2 +
√

2

2
mτ1.

Obviously, f is a Lipschitz continuous function on C (since f is continuously differen-
tiable and C is compact) and if (x, y, w) ∈ C, then p(y, w) ≥ 0. As a consequence of
Proposition 1.4 in Chapter 1, there exists a positive number t0 such that for all t ≥ t0,
the problems (2.6) and (2.7) are equivalent.

A similar result to Theorem 2.1 for the penalty function p1 was presented in ([66],
Theorem 2.4.3) for mathematical programs with affine equilibrium constraints.

In the next two subsections, we will present the DCA schemes for the problem (2.7)
corresponding to the penalty functions defined by (2.2)-(2.5).

2.3.2 Standard DCA schemes for solving the penalized prob-
lem when p ∈ {p1, p2}

When p(y, w) = p1(y, w), the problem (2.7) is written as the standard DC program:

min{F 1
t (x, y, w) := G1(x, y, w)−H1

t (x, y, w) : (x, y, w) ∈ Rn+2m}, (2.11)

where

G1(x, y, w) = g(x, y) + χC(x, y, w), H1
t (x, y, w) = h(x, y)− t

m∑
i=1

ψmin(yi, wi).

When p(y, w) = p2(y, w), the problem (2.7) can also be expressed as the standard DC
program:

min{F 2
t (x, y, w) := G1(x, y, w)−H2

t (x, y, w) : (x, y, w) ∈ Rn+2m}, (2.12)

where

H2
t (x, y, w) = h(x, y)− t

m∑
i=1

ψFB(yi, wi).

46 DC Programs with Linear Complementarity Constraints

According to the generic DCA scheme for solving standard DC programs, each iteration
of DCA applied to (2.11) (resp. (2.12)) consists of first computing a subgradient

(xk, yk, wk) ∈ ∂H1
t (xk, yk, wk) (resp. (xk, yk, wk) ∈ ∂H2

t (xk, yk, wk)),

and then solving the convex problem

min{g(x, y)− (xk)>x− (yk)>y − (wk)>w : (x, y, w) ∈ C}. (2.13)

Hence, the two corresponding DCAs to solve (2.11) and (2.12) differ from one another
only on the first step.
A subgradient (x, y, w) ∈ ∂H1

t (x, y, w) can be calculated as follows:

x = ∇xh(x, y), y = ∇yh(x, y) + tŷ, w = tŵ, (2.14)

with (ŷi, ŵi) ∈ ∂(−ψmin)(yi, wi).
Since

−ψmin(yi, wi) = max(−yi,−wi),

a subgradient (ŷi, ŵi) ∈ ∂(−ψmin)(yi, wi) can be selected to be

ŷi =

{
−1 if yi < wi,
0 if yi ≥ wi,

ŵi =

{
0 if yi < wi,
−1 if yi ≥ wi.

(2.15)

A subgradient (x, y, w) ∈ ∂H2
t (x, y, w) can also be calculated by (2.14) with (ŷi, ŵi) ∈

∂(−ψFB)(yi, wi).
By the definition of the function ψFB, we have

−ψFB(yi, wi) =
√

(yi)2 + (wi)2 − yi − wi,

hence a subgradient (ŷi, ŵi) ∈ ∂(−ψFB)(yi, wi) can be chosen as follows:

ŷi =


yi√

(yi)2 + (wi)2
− 1 if (yi, wi) 6= (0, 0),

−1 if yi = wi = 0,
(2.16)

ŵi =


wi√

(yi)2 + (wi)2
− 1 if (yi, wi) 6= (0, 0),

−1 if yi = wi = 0.
(2.17)

The DCA schemes applied to (2.11) and (2.12) are described in the following algo-
rithms.

Algorithm 2.1 Standard DCA for solving (2.11) (DCA1)

Initialization: Choose a point z1 = (x1, y1, w1) ∈ Rn+2m and a sufficiently small
positive number ε. Set k := 1.

1. Compute (xk, yk, wk) ∈ ∂H1
t (xk, yk, wk) using (2.14), (2.15).

2. Compute zk+1 = (xk+1, yk+1, wk+1) as an optimal solution to (2.13).

DC Programs with Linear Complementarity Constraints 47

3. If

‖zk+1 − zk‖ ≤ ε(‖zk‖+ 1) or |F 1
t (zk+1)− F 1

t (zk)| ≤ ε(|F 1
t (zk)|+ 1)

then stop, otherwise set k := k + 1 and go to Step 1.

Algorithm 2.2 Standard DCA for solving (2.12) (DCA2)

Initialization: Choose a point z1 = (x1, y1, w1) ∈ Rn+2m and a sufficiently small
positive number ε. Set k := 1.

1. Compute (xk, yk, wk) ∈ ∂H2
t (xk, yk, wk) using (2.14), (2.16), and (2.17).

2. Compute zk+1 = (xk+1, yk+1, wk+1) as an optimal solution to (2.13).
3. If

‖zk+1 − zk‖ ≤ ε(‖zk‖+ 1) or |F 2
t (zk+1)− F 2

t (zk)| ≤ ε(|F 2
t (zk)|+ 1)

then stop, otherwise set k := k + 1 and go to Step 1.

Remark 2.2. The choice of a good penalty parameter is difficult, hence in practice,
we update penalty parameters as follows.

DCA1 with updated penalty parameter

Initialization: Choose a point (x1, y1, w1) ∈ Rn+2m, a penalty parameter t1 > 0, a
parameter δ > 1, an upper bound tmax and sufficiently small positive numbers ε1, ε2.
Set k := 1.

1. Compute (xk, yk, wk) ∈ ∂H1
t (xk, yk, wk) via (2.14), (2.15).

2. Compute (xk+1, yk+1, wk+1) as a solution to the convex program (2.13).
3. Compute vk = max

i=1,...,m
min(yk+1

i , wk+1
i). If

‖zk+1 − zk‖ ≤ ε1(‖zk‖+ 1) or |F 1
tk

(zk+1)− F 1
tk

(zk)| ≤ ε1(|F 1
tk

(zk)|+ 1)

and vk ≤ ε2, then stop, otherwise go to Step 4.
4. Update penalty parameter

Set tk+1 =

{
tk if vk ≤ ε2,
min(δtk, tmax) if vk > ε2.

5. Set k := k + 1 and go to Step 1.

The stopping condition in this algorithm ensures that the feasibility error for the
complementarity constraints does not exceed ε2.
The strategy for updating penalty parameters in DCA2 is similar to the one in DCA1.

The following theorem indicates the convergence properties of DCA1 and DCA2.

Theorem 2.2. The following statements hold:
i) DCA1 (resp. DCA2) generates the sequence {zk = (xk, yk, wk)} in C such that
{F 1

t (zk)} (resp. {F 2
t (zk)} is decreasing.

ii) If the optimal value of the problem (2.11) (resp. (2.12)) is finite and the sequence
{zk} is bounded, then every limit point z∗ = (x∗, y∗, w∗) of {zk} is a critical point
of the problem (2.11) (resp. (2.12)).

48 DC Programs with Linear Complementarity Constraints

iii) Furthermore, if min(y∗, w∗) = 0 then z∗ is a weakly stationary point of the
DCLCC (2.1). If, in addition, y∗i 6= w∗i for all i ∈ {1, 2, . . . ,m}, then (x∗, y∗, w∗)
is a strongly stationary point of (2.1).

Proof i) and ii) are derived from the convergence properties of DCA (see Theorem 1.2
in Chapter 1). The techniques for proving iii) for DCA1 and DCA2 are similar, thus
we only present the proof of iii) for DCA1.
Clearly, (x∗, y∗, w∗) ∈ C. Since min(y∗, w∗) = 0, (x∗, y∗, w∗) is feasible for the DCLCC
(2.1).
According to ii), (x∗, y∗, w∗) is a critical point of (2.11), therefore there exists (x, y, w) ∈
∂H1

t (x∗, y∗, w∗) such that

(x, y, w) ∈ ∂G1(x∗, y∗, w∗).

It follows that

(∇xh(x∗, y∗),∇yh(x∗, y∗) + tŷ, tŵ) ∈ (∇xg(x∗, y∗),∇yg(x∗, y∗), 0) +NC(z
∗),

where (ŷi, ŵi) ∈ ∂(−ψmin)(y∗i , w
∗
i), NC(z

∗) is the normal cone of C at z∗. Thus

0 ∈ (∇xg(x∗, y∗),∇yg(x∗, y∗), 0)− (∇xh(x∗, y∗),∇yh(x∗, y∗) + tŷ, tŵ) +NC(z
∗).

This implies that (x∗, y∗, w∗) is an optimal solution to the problem

min g(x, y)−∇xh(x∗, y∗)>x− (∇yh(x∗, y∗) + tŷ)>y − tŵ>w
s.t. Ax+By + a ≤ 0,

Nx+My + q = w,

y ≥ 0, w ≥ 0.

Accordingly, there exist multipliers β, νy, νw such that

∇xf(x∗, y∗) + A>β −N>(tŵ + νw) = 0, (2.18)

∇yf(x∗, y∗) +B>β −M>(tŵ + νw)− tŷ − νy = 0, (2.19)

β ≥ 0, β>(Ax∗ +By∗ + a) = 0, (2.20)

νyi ≥ 0, νyi y
∗
i = 0, i = 1, . . . ,m, (2.21)

νwi ≥ 0, νwi w
∗
i = 0, i = 1, . . . ,m. (2.22)

Set νy = νy + tŷ, νw = νw + tŵ.
For i ∈ Iw(y∗, w∗), we have y∗i > w∗i = 0. Hence, ŷi = 0 and νyi = 0.
Similarly, ŵi = 0 and νwi = 0 for i ∈ Iy(y∗, w∗).
Therefore, one has

∇xf(x∗, y∗) + A>β −N>νw = 0, (2.23)

∇yf(x∗, y∗) +B>β −M>νw − νy = 0, (2.24)

νyi = 0, i ∈ Iw(y∗, w∗) (2.25)

νwi = 0, i ∈ Iy(y∗, w∗). (2.26)

DC Programs with Linear Complementarity Constraints 49

By (2.20) and (2.23)-(2.26), it follows that (x∗, y∗, w∗) is a weakly stationary point of
the DCLCC (2.1).
If y∗i 6= w∗i for all i ∈ {1, 2, . . . ,m}, then I0(y∗, w∗) = ∅. Consequently, (x∗, y∗, w∗) is
also a strongly stationary point of (2.1).

When f is convex, take g = f , h = 0, then H1
t is convex polyhedral. Thus, (2.11) is a

polyhedral DC program. Because of the finite convergence of DCA for polyhedral DC
programs and Theorem 2.2, we have the following corollary:

Corollary 2.1. Suppose that f is a continuously differentiable convex function and
the optimal value of the problem (2.11) is finite. The following statements hold.

i) DCA1 generates the sequence
{
zk = (xk, yk, wk)

}
containing finitely many dif-

ferent elements in C such that the sequence {F 1
t (zk)} is decreasing. Thus, DCA1

terminates after a finite number of iterations.
ii) Assume that DCA1 terminates at zk+1 = (xk+1, yk+1, wk+1). Then, zk+1 is a

critical point of (2.11).
iii) Moreover, if min(yk+1, wk+1) = 0, then (xk+1, yk+1, wk+1) is a weakly stationary

point of the DCLCC (2.1). If, in addition, yk+1
i 6= wk+1

i , ∀i ∈ {1, . . . ,m}, then
(xk+1, yk+1, wk+1) is a local solution to (2.1).

2.3.3 General DCA schemes for solving the penalized prob-
lem when p ∈ {p3, p4}

When p(y, w) = p3(y, w), the problem (2.7) can also be expressed as a standard DC
program. A DC decomposition of f(x, y) + tp3(y, w) can be chosen as (see, e.g., [81])

f(x, y) + tp3(y, w) = Gt(x, y, w)−Ht(x, y, w),

where

Gt(x, y, w) = g(x, y) + tmax
i
{−
∑
j 6=i

ψmin(yi, wi)},

Ht(x, y, w) = h(x, y)− t
m∑
i=1

ψmin(yi, wi).

However, this decomposition leads to hard subproblems because their objective func-
tions contain the maximum of m nonsmooth functions. For overcoming this difficulty,
we consider the following equivalent formulation of the problem (2.7)

min{f(x, y) + ts : (x, y, w) ∈ C, ψmin(yi, wi) ≤ s, i = 1, . . . ,m; s ≥ 0}

which can be reformulated as the next general DC program:

min{F 3
t (x, y, w, s) := G3

t (x, y, w, s)−H3(x, y, w, s) : (x, y, w) ∈ C,
s ≥ 0,−s− [−ψmin(yi, wi)] ≤ 0, i = 1, . . . ,m}, (2.27)

where G3
t (x, y, w, s) = g(x, y) + ts, H3(x, y, w, s) = h(x, y).

Adapting the second DCA scheme presented in Chapter 1 for general DC programs,

50 DC Programs with Linear Complementarity Constraints

we propose a DCA for solving the problem (2.27) as follows. At each iteration k, we
compute

(yki , w
k
i) ∈ ∂(−ψmin)(yki , w

k
i), i = 1, . . . ,m,

and then solve the convex subproblem

min{g(x, y) + ts−∇xh(xk, yk)>x−∇yh(xk, yk)>y : (x, y, w) ∈ C, s ≥ 0,

−s+ ψmin(yki , w
k
i)− yki (yi − yki)− wki (wi − wki) ≤ 0, i = 1, . . . ,m}. (2.28)

The general DCA applied to (2.27) can be described as follows.

Algorithm 2.3 General DCA for solving (2.27) (DCA3)

Initialization: Choose a point X1 = (x1, y1, w1, s1) ∈ Rn+2m+1, and a sufficiently
small positive number ε. Set k := 1.

1. Compute (yki , w
k
i) ∈ ∂(−ψmin)(yki , w

k
i), i = 1, ...,m using (2.15).

2. Solve the convex problem (2.28) to obtain Xk+1 = (xk+1, yk+1, wk+1, sk+1).
3. If

‖Xk+1 −Xk‖ ≤ ε(‖Xk‖+ 1) or |F 3
t (Xk+1)− F 3

t (Xk)| ≤ ε(|F 3
t (Xk)|+ 1)

then stop, otherwise set k := k + 1 and go to Step 1.

Remark 2.3. In the implementation of DCA3, we update penalty parameters as fol-
lows.

DCA3 with updated penalty parameter

Initialization: Choose a point X1 = (x1, y1, w1, s1) ∈ Rn+2m+1, an penalty parameter
t1 > 0, parameters δ > 1, δ1 > 0, an upper bound tmax and sufficiently small positive
numbers ε1, ε2. Set k := 1.

1. Compute (yki , w
k
i) ∈ ∂(−ψmin)(yki , w

k
i), i = 1, ...,m using (2.15).

2. Compute Xk+1 = (xk+1, yk+1, wk+1, sk+1) as an optimal solution to (2.28) and
the Lagrange multipliers λk+1

i associated with the last m constrains.
3. If

‖Xk+1 −Xk‖ ≤ ε1(‖Xk‖+ 1) or |F 3
tk

(Xk+1)− F 3
tk

(Xk)| ≤ ε1(|F 3
tk

(Xk)|+ 1)

and sk+1 ≤ ε2 then stop, otherwise go to Step 4.
4. Update penalty parameter

Compute

rk = min

(
‖Xk+1 −Xk‖−1,

m∑
i=1

|λk+1
i |+ δ1

)
and set

tk+1 =

{
tk if tk ≥ rk,
min(δtk, tmax) if tk < rk.

5. Set k := k + 1 and go to Step 1.

DC Programs with Linear Complementarity Constraints 51

Similarly, when p(y, w) = p4(y, w), the problem (2.7) can be reformulated as the
following general DC program

min{F 3
t (x, y, w, s) = G3

t (x, y, w, s)−H3(x, y, w, s) :

(x, y, w) ∈ C; s ≥ 0;−s− [−ψFB(yi, wi)] ≤ 0, i = 1, . . . ,m}. (2.29)

Hence, the general DCA applied on (2.29) is summarized in Algorithm 2.4 below.

Algorithm 2.4 General DCA for solving (2.29) (DCA4)

Initialization: Choose a point X1 = (x1, y1, w1, s1) ∈ Rn+2m+1, and a sufficiently
small positive number ε. Set k := 1.

1. Calculate (yki , w
k
i) ∈ ∂(−ψFB)(yki , w

k
i), i = 1, ...,m using (2.16) and (2.17).

2. Calculate Xk+1 = (xk+1, yk+1, wk+1, sk+1), an optimal solution to the next con-
vex problem

min{g(x, y) + ts−∇xh(xk, yk)>x−∇yh(xk, yk)>y : (x, y, w) ∈ C, s ≥ 0,

−s+ ψFB(yki , w
k
i)− yki (yi − yki)− wki (wi − wki) ≤ 0, i = 1, . . . ,m}.

3. If

‖Xk+1 −Xk‖ ≤ ε(‖Xk‖+ 1) or |F 3
t (Xk+1)− F 3

t (Xk)| ≤ ε(|F 3
t (Xk)|+ 1)

then stop, otherwise set k := k + 1 and go to Step 1.

Remark 2.4. In practice, we also update penalty parameters in DCA4 by a similar
way in DCA3.

The convergence properties of DCA3 and DCA4 are shown in the following theorem.

Theorem 2.3. Suppose that either g or h are strongly convex and the optimal value of
the problem (2.27) (resp. (2.29)) is finite. Let

{
Xk = (xk, yk, wk, sk)

}
be the sequence

generated by DCA3 (resp. DCA4). The following statements hold:
i)
{
F 3
t (Xk)

}
is decreasing.

ii) If the sequence
{
Xk
}

is bounded and X∗ = (x∗, y∗, w∗, s∗) is a limit point of{
Xk
}

satisfying s∗ = 0, then (x∗, y∗, w∗) is a weakly stationary point of the
DCLCC (2.1). Moreover, if y∗i 6= w∗i for all i ∈ {1, 2, . . . ,m}, then (x∗, y∗, w∗)
is a strongly stationary point of (2.1).

Since the techniques for proving Theorem 2.3 for DCA3 and DCA4 are similar, we
only present the proof of this theorem for DCA3. We first prove the following lemma
based on the proof of Lemma 1 in [43].

Lemma 2.1. Let ϕ(x, y, w) = f(x, y) + tp3(y, w). Then, DCA3 generates the sequence
{Xk = (xk, yk, wk, sk)} satisfying

ϕ(xk, yk, wk)− ϕ(xk+1, yk+1, wk+1) ≥ ρ(g) + ρ(h)

2

(
‖xk − xk+1‖2 + ‖yk − yk+1‖2

)
,

52 DC Programs with Linear Complementarity Constraints

for all k = 2, 3, . . ., where

ρ(g) = sup
{
ρ ≥ 0 : g − ρ

2
‖ · ‖2 is convex on Rn+m

}
.

Proof Since Xk+1 = (xk+1, yk+1, wk+1, sk+1) is a solution to the problem (2.28) and the
constraints of this problem satisfy the Slater constraint qualification, for each k, there
exist multipliers λki ∈ R (i = 1, . . . ,m) and µk ∈ R such that

0 ∈ (∇xg(xk+1, yk+1),∇yg(xk+1, yk+1), 0)− (∇xh(xk, yk),∇yh(xk, yk), 0)

+NC(x
k+1, yk+1, wk+1)− (0, λk ◦ yk, λk ◦ wk), (2.30)

t =
m∑
i=1

λki + µk, (2.31)

(xk+1, yk+1, wk+1) ∈ C, (2.32)

λki ≥ 0, (2.33)

− sk+1 + ψmin(yki , w
k
i)− yki (yk+1

i − yki)− wki (wk+1
i − wki) ≤ 0, ∀i, (2.34)

λki [ψ
min(yki , w

k
i)− yki (yk+1

i − yki)− wki (wk+1
i − wki)− sk+1] = 0, ∀i, (2.35)

sk+1 ≥ 0, µk ≥ 0, sk+1µk = 0. (2.36)

Here, x ◦ y stands for the Hadamard product between x and y, (x ◦ y)i = xiyi.
By (2.30) and (2.32), one has[

∇xg(xk+1, yk+1)−∇xh(xk, yk)
]>

(xk − xk+1)

+
[
∇yg(xk+1, yk+1)−∇yh(xk, yk)

]>
(yk − yk+1)

−
m∑
i=1

λki y
k
i (y

k
i − yk+1

i)−
m∑
i=1

λkiw
k
i (w

k
i − wk+1

i) ≥ 0, k = 2, 3, (2.37)

By the convexity and the differentiability of the functions g and h, one has

g(xk, yk) ≥ g(xk+1, yk+1) +∇xg(xk+1, yk+1)>(xk − xk+1)

+∇yg(xk+1, yk+1)>(yk − yk+1) +
ρ(g)

2

(
‖xk − xk+1‖2 + ‖yk − yk+1‖2

)
, (2.38)

h(xk+1, yk+1) ≥ h(xk, yk) +∇xh(xk, yk)>(xk+1 − xk) +∇yh(xk, yk)>(yk+1 − yk)

+
ρ(h)

2

(
‖xk − xk+1‖2 + ‖yk − yk+1‖2

)
. (2.39)

From (2.37)-(2.39) it follows that

f(xk, yk)− f(xk+1, yk+1) ≥
m∑
i=1

λki y
k
i (y

k
i − yk+1

i) +
m∑
i=1

λkiw
k
i (w

k
i − wk+1

i)

+
ρ(g) + ρ(h)

2

(
‖xk − xk+1‖2 + ‖yk − yk+1‖2

)
, k = 2, 3, (2.40)

Since (yki , w
k
i) ∈ ∂(−ψmin)(yki , w

k
i), we have

−ψmin(yk+1
i , wk+1

i) ≥ −ψmin(yki , w
k
i) + yki (y

k+1
i − yki) + wki (w

k+1
i − wki).

DC Programs with Linear Complementarity Constraints 53

This inequality together with (2.34) implies

ψmin(yk+1
i , wk+1

i) ≤ sk+1, i = 1, . . . ,m or p3(yk+1, wk+1) ≤ sk+1.

By (2.31), (2.35) and (2.36), for k = 2, 3, . . . , one has

m∑
i=1

λki y
k
i (y

k
i − yk+1

i) +
m∑
i=1

λkiw
k
i (w

k
i − wk+1

i)

= −
m∑
i=1

λkiψ
min(yi

k, wki) +
m∑
i=1

λki s
k+1 = −

m∑
i=1

λkiψ
min(yki , w

k
i) + (t− µk)sk+1

≥ −(t− µk)p3(yk, wk) + tsk+1 ≥ −tp3(yk, wk) + tp3(yk+1, wk+1).

Therefore, by (2.40), we have

ϕ(xk, yk, wk)− ϕ(xk+1, yk+1, wk+1) ≥ ρ(g) + ρ(h)

2

(
‖xk − xk+1‖2 + ‖yk − yk+1‖2

)
,

for all k = 2, 3,

We now present the proof of Theorem 2.3 for DCA3.
Proof i) can be proved similarly to the proof in [60]. We only need to prove ii).
Since X∗ is a limit point of {Xk}, there exists a subsequence

{
Xkj+1

}
of {Xk} such

that limj→∞X
kj+1 = X∗.

Because of Lemma 2.1, the sequence {ϕ(xk, yk, wk)} is decreasing. Furthermore, this
sequence is bounded below by the optimal value of (2.27), therefore, it converges. This
implies that

lim
k→∞
‖xk − xk+1‖ = 0, lim

k→∞
‖yk − yk+1‖ = 0,

and consequently

lim
j→∞

xkj = lim
j→∞

xkj+1 = x∗, lim
j→∞

ykj = lim
j→∞

ykj+1 = y∗,

lim
j→∞

wkj = lim
j→∞

wkj+1 = Nx∗ +My∗ + q = w∗.

By (2.31), (2.33), and (2.36), the sequences
{
λk
}

and
{
µk
}

are bounded. Moreover
the sequence {(yk, wk)} is bounded. Without loss of generality, assume that

lim
j→∞

λkj = λ∗, lim
j→∞

µkj = µ∗, lim
j→∞

ykj = y∗, lim
j→∞

wkj = w∗.

By (2.30), (2.32), (2.34), and let j →∞ one has

0 ∈ (∇xg(x∗, y∗),∇yg(x∗, y∗), 0)

− (∇xh(x∗, y∗),∇yh(x∗, y∗) + λ∗ ◦ y∗, λ∗ ◦ w∗) +NC(x
∗, y∗, w∗), (2.41)

(x∗, y∗, w∗) ∈ C, ψmin(y∗i , w
∗
i) ≤ s∗. (2.42)

It follows from (2.42) and s∗ = 0 that (x∗, y∗, w∗) is a feasible point of the DCLCC
(2.1).

Since the function −ψmin is continuous and (y
kj
i , w

kj
i) ∈ ∂(−ψmin)(y

kj
i , w

kj
i), one gets

(y∗i , w
∗
i) ∈ ∂(−ψmin)(y∗i , w

∗
i), i = 1, . . . ,m. (2.43)

54 DC Programs with Linear Complementarity Constraints

From (2.41) and (2.43), using the similar reasoning as in the proof of Theorem 2.2,
(x∗, y∗, w∗) is a weakly stationary point of (2.1).
If y∗i 6= w∗i for all i ∈ {1, 2, . . . ,m}, then I0(y∗, w∗) = ∅. Consequently, (x∗, y∗, w∗) is
also a strongly stationary point of (2.1).

When f is convex, the finite convergence of DCA3 is indicated in the following theorem.

Theorem 2.4. Suppose that f is a continuously differentiable convex function and the
optimal value of the problem (2.27) is finite. The following statements hold:

i) DCA3 generates the sequence
{
Xk = (xk, yk, wk, sk)

}
containing finitely many

different elements such that the sequence {F 3
t (Xk)} is decreasing. Thus, DCA3

stops after a finite number of iterations.
ii) Assume that DCA3 terminates at Xk+1 = (xk+1, yk+1, wk+1, sk+1) satisfy-

ing sk+1 = 0. Then, (xk+1, yk+1, wk+1) is a weakly stationary point of the
DCLCC (2.1). Furthermore, if yk+1

i 6= wk+1
i for all i ∈ {1, . . . ,m}, then

(xk+1, yk+1, wk+1) is a local solution to (2.1).

Proof i) Since f is convex, take g = f , h = 0, the subproblem (2.28) becomes:

min {f(x, y) + ts : (x, y, w) ∈ C, s ≥ 0,

−s+ ψmin(yki , w
k
i)− yki (yi − yki)− wki (wi − wki) ≤ 0, i = 1, . . . ,m}. (2.44)

Set Ik = {i ∈ {1, . . . ,m} : yki < wki } and note that,

ψmin(yki , w
k
i) + yki y

k
i + wkiw

k
i = 0,

the problem (2.44) can be rewritten as

min{f(x, y) + ts : (x, y, w) ∈ C; yi ≤ s, i ∈ Ik; wi ≤ s, i /∈ Ik; s ≥ 0}. (2.45)

Clearly, {F 3
t (Xk)} is decreasing because Xk+1 is an optimal solution to (2.44) while

Xk is a feasible point of (2.44).
For each Ik, X

k+1 is a solution to (2.45). Since the number of subsets Ik of {1, . . . ,m}
is finite, the sequence {Xk} has only finitely many different elements. This leads to
F 3
t (Xk) = F 3

t (Xk+1) after a finite number of iterations, that is, i) is proved.
ii) Assume that DCA3 terminates at Xk+1 = (xk+1, yk+1, wk+1, sk+1) and sk+1 = 0.
Since Xk+1 is a solution to (2.44), there exist multipliers β, νy, νw, λki , µ

k such that
Xk+1 and these multipliers satisfy the KKT conditions including the following:

∇xf(xk+1, yk+1) + A>β −N>(λk ◦ wk + νw) = 0, (2.46)

∇yf(xk+1, yk+1) +B>β −M>(λk ◦ wk + νw)− λk ◦ yk − νy = 0, (2.47)

(xk+1, yk+1, wk+1) ∈ C, (2.48)

β ≥ 0, β>(Axk+1 +Byk+1 + a) = 0, (2.49)

νyi ≥ 0, νyi y
k+1
i = 0, i = 1, . . . ,m, (2.50)

νwi ≥ 0, νwi w
k+1
i = 0, i = 1, . . . ,m, (2.51)

ψmin(yki , w
k
i)− yki (yk+1

i − yki)− wki (wk+1
i − wki) ≤ sk+1, i = 1, . . . ,m. (2.52)

DC Programs with Linear Complementarity Constraints 55

By (2.52), one has

ψmin(yk+1
i , wk+1

i) ≤ sk+1, ∀i or min(yk+1
i , wk+1

i) ≤ sk+1, i = 1, . . . ,m,

and hence (xk+1, yk+1, wk+1) is feasible for (2.1).
Set νy = νy + λk ◦ yk, νw = νw + λk ◦ wk, by (2.46) and (2.47) one has

∇xf(xk+1, yk+1) + A>β −N>νw = 0, (2.53)

∇yf(xk+1, yk+1) +B>β −M>νw − νy = 0, (2.54)

Xk+1 is a solution to the problem (2.44), therefore it is also a solution to (2.45). It
follows that yk+1

i = 0 for i ∈ Ik, wk+1
i = 0 for i /∈ Ik.

For i ∈ Iw(yk+1, wk+1), we have yk+1
i > wk+1

i = 0, thus i /∈ Ik, that is, yki ≥ wki which
leads to yki = 0. Consequently,

νyi = νyi = 0, i ∈ Iw(yk+1, wk+1). (2.55)

Similarly,
νwi = νwi = 0, i ∈ Iy(yk+1, wk+1). (2.56)

By (2.49) and (2.53)-(2.56), (xk+1, yk+1, wk+1) is a weakly stationary point of the
DCLCC (2.1).
If yk+1

i 6= wk+1
i for all i ∈ {1, . . . ,m} then (xk+1, yk+1, wk+1) is a strongly stationary

point, hence it is also a B-stationary point. Since the objective function of (2.1) is
convex, (xk+1, yk+1, wk+1) is a local minimum of this problem (according to Remark
2.1).

2.3.4 Performance analysis on DCA based algorithms

The standard DC formulations of the problem (2.7) are similar, they have the same
first DC component while their second DC component are distinguished by ψmin or
ψFB. The general DC formulations of (2.7) are also similar, they have the same DC
decomposition of objective function and the same first DC component in the DC
constraints. Therefore, in terms of running time, DCA1 (resp. DCA3) should be
faster than DCA2 (resp. DCA4). The reason is that computing a subgradient of −ψmin

requires less time than that of −ψFB. Furthermore, DCA1 (resp. DCA2) is expected
to be faster than DCA3 (resp. DCA4). It is because each subproblem in the general
DCA schemes contains more m+ 1 constraints than each subproblem in the standard
DCA schemes, while their objective functions have the same form (being the sum of
g(x, y) and a linear function). These observations are confirmed by computational
results in our experiments.

2.4 Applications

In this section, we show how to apply the proposed algorithms to solve the Quadratic
Problem with Linear Complementarity Constraints (QPLCC) and the asymmetric
Eigenvalue Complementarity Problem (EiCP).

56 DC Programs with Linear Complementarity Constraints

2.4.1 Quadratic problems with linear complementarity con-
straints

We address a special case of the DCLCC (2.1) where f is a quadratic function of the
form

f(x, y) =
1

2

[
x
y

]>
P

[
x
y

]
+ [c> d>]

[
x
y

]
Here, the matrix P ∈ R(n+m)×(n+m) is symmetric, c ∈ Rn, d ∈ Rm. Let us consider the
DC decomposition f(x, y) = g(x, y)− h(x, y), where

g(x, y) =
1

2

[
x
y

]>
(P + ρI)

[
x
y

]
+ [c> d>]

[
x
y

]
, h(x, y) =

1

2
ρ(‖x‖2 + ‖y‖2),

with ρ = 0 if P is positive semidefinite, −λmin(P) + 0.001 otherwise (λmin(P) denotes
the smallest eigenvalue of P). The DC formulations of the penalized problem (2.7)
corresponding to the four penalty functions are summarized in Table 2.1.

Table 2.1 – DC formulations for the QPLCC

Penalty function DC formulations function
p1(y, w) min{F 1

t (x, y, w) = G1(x, y, w)−H1
t (x, y, w) : (x, y, w) ∈ Rn+2m},

G1(x, y, w) =
1

2

[
x
y

]>
(P + ρI)

[
x
y

]
+ [c> d>]

[
x
y

]
+ χC(x, y, w),

H1
t (x, y, w) =

1

2
ρ(‖x‖2 + ‖y‖2)− t

∑m
i=1 ψ

min(yi, wi).

p2(y, w) min{F 2
t (x, y, w) = G1(x, y, w)−H2

t (x, y, w) : (x, y, w) ∈ Rn+2m},
H2
t (x, y, w) =

1

2
ρ(‖x‖2 + ‖y‖2)− t

∑m
i=1 ψ

FB(yi, wi).

p3(y, w) min {F 3
t (x, y, w, s) = G3

t (x, y, w, s)−H3(x, y, w, s) :
(x, y, w) ∈ C; −s− [−ψmin(yi, wi)] ≤ 0, i = 1, . . . ,m; s ≥ 0},

G3
t (x, y, w, s) =

1

2

[
x
y

]>
(P + ρI)

[
x
y

]
+ [c> d>]

[
x
y

]
+ ts,

H3(x, y, w, s) =
1

2
ρ(‖x‖2 + ‖y‖2).

p4(y, w) min {F 3
t (x, y, w, s) = G3

t (x, y, w, s)−H3(x, y, w, s) :
(x, y, w) ∈ C; −s− [−ψFB(yi, wi)] ≤ 0, i = 1, . . . ,m; s ≥ 0}.

Then, the two steps in each iteration k of corresponding DCA schemes are described
as follow.

QP-DCA1.
• Compute (xk, yk, wk) ∈ ∂H1

t (xk, yk, wk) by the following formulas:

xk = ρxk, yk = ρyk + tŷk, wk = tŵk, (2.57)

where ŷki, ŵ
k
i are calculated using (2.15).

DC Programs with Linear Complementarity Constraints 57

• Compute (xk+1, yk+1, wk+1) as a solution to the quadratic program with linear
constraints:

min
1

2

[
x
y

]>
(P + ρI)

[
x
y

]
+ [(c− xk)> (d− yk)>]

[
x
y

]
−(wk)Tw (2.58)

s.t. (x, y, w) ∈ C.
QP-DCA2.

• Compute (xk, yk, wk) ∈ ∂H2
t (xk, yk, wk) by (2.57), where ŷki, ŵ

k
i are calculated

using (2.16) and (2.17).
• Compute (xk+1, yk+1, wk+1) by solving (2.58).

QP-DCA3.
• Compute (yki , w

k
i) ∈ ∂(−ψmin)(yki , w

k
i), i = 1, . . . ,m using (2.15).

• Compute (xk+1, yk+1, wk+1, sk+1) by solving the quadratic program with linear
constraints:

min
1

2

[
x
y

]>
(P + ρI)

[
x
y

]
+ [(c− ρxk)> (d− ρyk)>]

[
x
y

]
+ ts (2.59)

s.t. (x, y, w) ∈ C, s ≥ 0,

ψmin(yki , w
k
i)− yki (yi − yki)− wki (wi − wki)− s ≤ 0, i = 1, . . . ,m.

QP-DCA4.
• Compute (yki , w

k
i) ∈ ∂(−ψFB)(yki , w

k
i), i = 1, . . . ,m using (2.16) and (2.17).

• Compute (xk+1, yk+1, wk+1, sk+1) as a solution to the quadratic program with
linear constraints:

min
1

2

[
x
y

]>
(P + ρI)

[
x
y

]
+ [(c− ρxk)> (d− ρyk)>]

[
x
y

]
+ ts(2.60)

s.t. (x, y, w) ∈ C, s ≥ 0

ψFB(yki , w
k
i)− yki (yi − yki)− wki (wi − wki)− s ≤ 0, i = 1, . . . ,m.

2.4.2 Asymmetric eigenvalue complementarity problems

Let A be a square matrix of order n and B be an n × n symmetric positive definite
matrix. The eigenvalue complementarity problem is to find a real number λ > 0 and
a vector y ∈ Rn \ {0} such that

w = (λB − A)y, w ≥ 0, y ≥ 0, yTw = 0.

For any solution (λ, y) to the EiCP, λ is said to be a complementary eigenvalue of
(A,B) and y is called a corresponding complementary eigenvector. As mentioned in
[35], the class of the matrix A plays a very important role in the solution of the EiCP.
When A is symmetric, the EiCP is equivalent to the problem of finding a stationary
point of the Rayleigh function on the simplex. However, this is no longer true when A
is asymmetric. In this application, we consider the case where A is asymmetric. Let

v = 1/λ, u = vy,

58 DC Programs with Linear Complementarity Constraints

the EiCP can be transformed into the following MPLCC [35, 76]

min
u,v,y,w

{f(u, v, y) := ‖u− vy‖2 : w = By − Au, eTy = 1,

lb ≤ v ≤ ub, u ≥ 0; y ≥ 0, w ≥ 0, yTw = 0}. (2.61)

where e denotes the all-ones vector, lb =
λmin(B)

λmax(D)
, D =

1

2
(A + A>), ub is the optimal

value of the linear program below

max
u,v,y
{v : By − Au ≥ 0, eTy = 1, eTu = v, u ≥ 0, y ≥ 0, v ≥ 0}.

If this problem is unbounded, we can take ub to be a sufficiently large positive number.
Note that, (λ, y) is a solution to the EiCP iff (y/λ, 1/λ, y, w) is a solution to the
MPLCC problem (2.61) with zero objective value.

Let ρ1 := max{4ub, 2ub + 2}, ρ2 = max{2u2
b + 4ub, 4ub + 2}. Using the same reasoning

as in [76], we chose the following DC decomposition of f :

f(u, v, y) = g(u, v, y)− h(u, v, y),

where

g(u, v, y) =
(ρ1

2
+ 1
)
‖u‖2 +

ρ1 + ρ2

2
v2 +

ρ1 + ρ2

2
‖y‖2,

h(u, v, y) = g(u, v, y)− f(u, v, y).

Therefore, the problem (2.61) takes the form of (2.1) in which x = (u, v) and the set
of linear constraints is

C =

{
(u, v, y, w) ∈ R3n+1 :

w = By − Au, eTy = 1, lb ≤ v ≤ ub,
u ≥ 0, y ≥ 0, w ≥ 0

}
.

The DC formulations of the penalized problem (2.7) corresponding to the four penalty
functions are summarized in Table 2.2.
The two steps in each iteration k of corresponding DCA schemes can be described as
follow.

Ei-DCA1.
• Compute (uk, vk, yk, wk) ∈ ∂H1

t (uk, vk, yk, wk) by the formulas below:

uk = ∇uh(uk, vk, yk), vk = ∇vh(uk, vk, yk), (2.62)

yk = ∇yh(uk, vk, yk) + tŷk, wk = tŵk, (2.63)

where

∇uh(u, v, y) = ρ1u+ 2vy, (2.64)

∇vh(u, v, y) = (ρ1 + ρ2)v + 2yTu− 2v‖y‖2 (2.65)

∇yh(u, v, y) = (ρ1 + ρ2)y + 2vu− 2v2y. (2.66)

and ŷki, ŵ
k
i are computed using (2.15).

DC Programs with Linear Complementarity Constraints 59

Table 2.2 – DC formulations for the EiCP

penalty DC formulations
function
p1(y, w) min{F 1

t (u, v, y, w) = G1(u, v, y, w)−H1
t (u, v, y, w) : (u, v, y, w) ∈ R3n+1},

G1(u, v, y, w) = g(u, v, y) + χC(u, v, y, w),
H1
t (u, v, y, w) = g(u, v, y)− f(u, v, y)− t

∑m
i=1 ψ

min(yi, wi).
p2(y, w) min{F 2

t (u, v, y, w) = G1(u, v, y, w)−H2
t (u, v, y, w) : (u, v, y, w) ∈ R3n+1},

H2
t (u, v, y, w) = g(u, v, y)− f(u, v, y)− t

∑m
i=1 ψ

FB(yi, wi).
p3(y, w) min {F 3

t (u, v, y, w, s) = G3
t (u, v, y, w, s)−H3(u, v, y, w, s) :

(u, v, y, w) ∈ C; −s− [−ψmin(yi, wi)] ≤ 0, i = 1, . . . ,m; s ≥ 0},
G3
t (u, v, y, w, s) = g(u, v, y) + ts, H3(u, v, y, w, s) = g(u, v, y)− f(u, v, y).

p4(y, w) min {F 3
t (u, v, y, w, s) = G3

t (u, v, y, w, s)−H3(u, v, y, w, s) :
(u, v, y, w) ∈ C; −s− [−ψFB(yi, wi)] ≤ 0, i = 1, . . . ,m; s ≥ 0},

• Compute (uk+1, vk+1, yk+1, wk+1) as the optimal solution to the convex quadratic
program:

min g(u, v, y)− (uk)Tu− (vk)Tv − (yk)Ty − (wk)Tw (2.67)

s.t. (u, v, y, w) ∈ C.

Ei-DCA2.
• Compute (uk, vk, yk, wk) ∈ ∂H2

t (uk, vk, yk, wk) by (2.62)-(2.66), where ŷki and

ŵki are calculated using (2.16) and (2.17).
• Compute (uk+1, vk+1, yk+1, wk+1) by solving (2.67).

Ei-DCA3.
• Compute (yki , w

k
i) ∈ ∂(−ψmin)(yki , w

k
i), i = 1, . . . ,m using (2.15).

• Compute (uk+1, vk+1, yk+1, wk+1, sk+1) as the optimal solution to the convex
quadratic program:

min g(u, v, y) + ts−∇uh(uk, vk, yk)Tu

−∇vh(uk, vk, yk)Tv −∇yh(uk, vk, yk)Ty

s.t. (u, v, y, w) ∈ C, s ≥ 0

ψmin(yki , w
k
i)− yki (yi − yki)− wki (wi − wki)− s ≤ 0, i = 1, . . . ,m.

Ei-DCA4.
• Compute (yki , w

k
i) ∈ ∂(−ψFB)(yki , w

k
i), i = 1, . . . ,m using (2.16) and (2.17).

• Compute (uk+1, vk+1, yk+1, wk+1, sk+1) as the optimal solution to the convex
quadratic program:

min g(u, v, y) + ts−∇uh(uk, vk, yk)Tu (2.68)

−∇vh(uk, vk, yk)Tv −∇yh(uk, vk, yk)Ty

s.t. (u, v, y, w) ∈ C, s ≥ 0

ψFB(yki , w
k
i)− yki (yi − yki)− wki (wi − wki)− s ≤ 0, i = 1, . . . ,m.

60 DC Programs with Linear Complementarity Constraints

2.5 Numerical experiments

The proposed algorithms are tested on two sets of test problems:

• Quadratic Problems with Linear Complementarity Constraints in MacMPEC
[52], a collection of MPEC test problems in AMPL.
• Asymmetric Eigenvalue Complementarity Problems with data taken from Ma-

trix Market 2, a visual repository of test data.

To evaluate the performance of the DCA schemes, we compare them with KNITRO
solver 3, an advanced solver for nonlinear optimization problems including MPCCs, via
NEO server 4. For the second set of test problems, we also make a comparison of DCA3
with a DCA based algorithm to solve the EiCP developed in [76] (we call DCA-NLP).
The five versions of DCA are coded in Matlab R2013b and run on an HP computer
Intel(R) Core(TM) i5-3470 CPU, 3.2GHz, 8 Go of RAM. The software CPLEX 12.6
is used to solve convex quadratic programs. We take ε1 = ε2 = 10−6, tmax = 106 for
all DCA based algorithms.

2.5.1 Numerical results on QPLCCs

We tested the four DCA schemes on a collection of 24 QPLCCs in MacMPEC. These
algorithms require choosing an initial penalty parameter t1 and a parameter δ that
can affect the quality of solutions. Finding good theoretical choices of such param-
eters is difficult and beyond the scope of this chapter. Observing from several nu-
merical experiments on different values of these parameters that these values could
not be large, we take t1 = 10 and δ = 2 for the test problems from 1 to 15 and
24. For the other test problems, t1 and δ are selected in the sets {1, 2, 5, 10} and
{1.2, 1.5, 2, 4, 4.5, 5, 5.5, 6.5, 7, 7.5, 9, 9.5} respectively such that the corresponding value
of the objective function is the smallest one. In the experiments, we compare the
value of objective function obtained by the DCA schemes and KNITRO as well as the
computing time (in seconds) of the DCA schemes. We also report the CPU time of
KNITRO, but as it is executed in NEO server - another computing environment, it is
not fair to compare with DCAs. The computational results are summarized in Table
2.3. From these results, we observe that:

• In terms of the objective function value: Overall, the general DCA versions
(QP-DCA3 and QP-DCA4) are better than KNITRO while the standard DCA
schemes (QP-DCA1 and QP-DCA2) are comparable with KNITRO. More pre-
cisely, all algorithms yield the same objective values in 4/24 test problems
(numbers 1, 2, 14, 15). QP-DCA4 outperforms KNITRO on 11/24 problems
and comparable with KNITRO on the problems 9-13 (the objective function
values obtained by QP-DCA4 and KNITRO are in the interval [1.4e-5,1.6e-5]

2. https://math.nist.gov/MatrixMarket/matrices.html

3. https://www.artelys.com/en/optimization-tools/knitro

4. https://neos-server.org/neos/solvers

DC Programs with Linear Complementarity Constraints 61

for the problems 9, 10 and in the interval [2.1e-6,6.6e-6] for the problems 11-
13). For the eight remaining problems, QP-DCA4 and KNITRO give the same
objective values. QP-DCA3 is also superior to KNITRO on 11/24 problems
but it furnishes a slightly worse solution than KNITRO in the problems 11, 20
and 22. QP-DCA1 (resp. QP-DCA2) is better than KNITRO in 8/24 (resp.
9/24) problems and worse than KNITRO in 7/24 problems. It is noted that
QP-DCA3 and QP-DCA4 find a very good solution to the problem 24 (the
value of the objective function is −683.0330 compared to −230.0386 found by
KNITRO) whereas QP-DCA1 and QP-DCA2 do not find a feasible solution to
this problem after 3600 seconds. Among the proposed algorithms, the general
DCA schemes are comparable while for the standard DCA schemes, QP-DCA2
provides better solutions in the test problems with a medium number of com-
plementarity constraints (the problems from 17 to 23).
• In terms of computing time, QP-DCA1 is the most efficient among the DCA

based algorithms, it is faster than all the other DCA schemes on 16/24 problems.
On average, it is 1.33 times faster than QP-DCA2 and around 2.2 times faster
than QP-DCA3 and QP-DCA4. We also notice that QP-DCA1 (resp. QP-
DCA3) is faster than QP-DCA2 (resp. QP-DCA4) on 17/24 problems, and QP-
DCA1 (resp. QP-DCA2) is faster than QP-DCA3 (resp. QP-DCA4) on 21/24
problems (resp. 18/24 problems). Moreover, we observe that the computing
time of DCA versions is quite steady, it ranges between 0.01 seconds and 15.03
seconds whereas the computing time of KNITRO solver via NEOS server ranges
from 0.005 seconds to 102.148 seconds.

62
D

C
P

rogram
s

w
ith

L
in

ear
C

om
p
lem

en
tarity

C
on

strain
ts

Table 2.3 – Comparative results of the DCA schemes and KNITRO on QPLCCs. Best results are written in bold.

Problem Value of Objective Function computing time (seconds)
No. Name n m p QP-DCA1 QP-DCA2 QP-DCA3 QP-DCA4 KNITRO QP-DCA1 QP-DCA2 QP-DCA3 QP-DCA4 KNITRO
1 bard1 2 3 1 17 17 17 17 17 0.0150 0.0286 0.0171 0.0512 0.0055
2 bard2 8 4 5 -6598 -6598 -6598 -6598 -6598 0.0141 0.0240 0.0172 0.0308 0.0055
3 bilevel2 8 12 5 -6600 -6598 -6600 -6600 -6600 0.0273 0.0238 0.0379 0.0493 0.0115
4 flp4-1 50 30 30 1.2382e-11 1.2382e-11 2.6276e-10 2.6276e-10 8.7744e-7 0.0215 0.0261 0.0278 0.0321 0.0407
5 flp4-2 50 60 50 4.2481e-12 4.2481e-12 2.5837e-10 2.5837e-10 1.3337e-7 0.0424 0.0416 0.0451 0.0434 0.0767
6 flp4-3 70 70 100 1.1257e-10 1.1257e-10 3.9103e-11 3.9103e-11 1.4551e-7 0.0913 0.0887 0.0923 0.0907 0.1174
7 flp4-4 100 100 150 1.2111e-11 1.2111e-11 4.9565e-11 4.9565e-11 1.0818e-7 0.3876 0.2926 0.2117 0.2691 0.2012
8 nash1 4 2 2 2.7572e-19 2.7572e-19 1.8788e-19 1.8788e-19 2.5506e-17 0.0121 0.0158 0.0225 0.0153 0.0051
9 portfl-i-1 75 12 13 1.5025e-5 1.5028e-5 1.5025e-5 1.5030e-5 1.5188e-5 0.0155 0.0392 0.0261 0.0433 0.0094
10 portfl-i-2 75 12 13 1.4577e-5 1.4578e-5 1.4573e-5 1.4579e-5 1.4574e-5 0.0149 0.0243 0.0188 0.0359 0.0099
11 portfl-i-3 75 12 13 1.3739e-4 1.3739e-4 1.3739e-4 6.2666e-6 6.5513e-6 0.0150 0.0393 0.0188 0.0443 0.0755
12 portfl-i-4 75 12 13 2.1811e-6 2.1801e-6 2.1791e-6 2.1813e-6 3.4806e-6 0.0154 0.0257 0.0183 0.0507 0.0120
13 portfl-i-6 75 12 13 2.3620e-6 2.3648e-6 2.3618e-6 2.3640e-6 6.5325e-6 0.0158 0.0232 0.0189 0.0352 0.0078
14 qpec-1 10 20 0 80 80 80 80 80 0.1032 0.0249 0.0342 0.0308 0.0051
15 qpec-2 10 20 0 45 45 45 45 45 0.0158 0.0206 0.0555 0.0934 0.0062
16 qpec-100-1 5 100 2 0.1533 0.2066 0.0990 0.0990 0.1092 0.4607 2.3859 1.9873 2.8956 0.1041
17 qpec-100-2 10 100 2 -5.5510 -6.2910 -6.5907 -6.5907 -6.2605 3.2278 4.0573 4.3072 3.2104 1.5854
18 qpec-100-3 10 100 4 -5.2950 -5.3511 -5.4806 -5.4806 -5.4806 1.1423 1.6828 4.2007 3.0418 0.0933
19 qpec-100-4 20 100 4 -3.4068 -3.6042 -4.0920 -4.0648 -1.3680 1.2022 2.7990 1.5081 2.0983 0.1841
20 qpec-200-1 10 200 4 -1.9090 -1.9336 -1.9346 -1.9348 -1.9348 4.2381 2.2344 7.3003 10.0591 0.7155
21 qpec-200-2 20 200 4 -21.8682 -23.5043 -24.0410 -24.0410 -21.7179 3.9500 5.4249 15.0262 12.4366 102.148
22 qpec-200-3 20 200 8 -1.8059 -1.8521 -1.9483 -1.9534 -1.9534 3.2055 5.1374 4.0850 4.7170 7.7648
23 qpec-200-4 40 200 8 -5.5872 -5.9927 -6.1672 -6.2014 -4.9308 2.5588 3.1809 5,3053 5.8601 63.5179
24 ralphmod 4 100 0 – – -683.0330 -683.0330 -230.0386 – – 4.0380 4.5280 1.0070

Average 0.9040 1.2018 2.0175 2.0734 7.4046

DC Programs with Linear Complementarity Constraints 63

2.5.2 Numerical results on EiCPs

In this numerical experiments, B is the identity matrix of order n and A is an asym-
metric square matrix in Matrix Market. The names of matrix A are listed in the
second column of Table 2.4. The 18 test problems in this case have a large number of
complementarity constraints (from 512 to 3200). For the proposed DCA schemes, the
parameters t1 and δ are chosen as follows: t1 = 10, δ = 2.

2.5.2.1 DCA based algorithms and KNITRO solver

As before, we are interested in the value of objective function obtained by the DCA
versions and KNITRO as well as the computing time (in seconds) of the DCA schemes.
The numerical results are reported in Table 2.4. We observe from these results that:

• In terms of the objective function value, Ei-DCA3 is the best. Ei-DCA3 out-
performs KNITRO in all cases and yields a global optimal solution to (2.61)
with the accuracy less than 10−6 (resp. 10−5) in 15/18 (resp. 17/18) prob-
lems. Ei-DCA4 comes after, it is better than KNITRO in 17/18 problems (for
which it gives a global optimal solution to the EiCP with the accuracy less than
10−5). Both Ei-DCA1 and Ei-DCA2 outperform KNITRO on 16/18 problems.
Ei-DCA1 (resp. Ei-DCA2) provides a global optimal solution to the EiCP with
the accuracy less than 10−5 in 15/18 (resp. 16/18) problems and fails (i.e. does
not find a feasible solution after 3600 seconds) in the problems 4 and 6 (resp.
the problem 4). KNITRO yields solutions to the EiCP with the worst accuracy
(greater than 10−4) in 7/18 test problems and finds an infeasible solution in
the problems 4 and 6. We also notice that the general DCA schemes provide a
very good solution in the problem 4 (the values of objective function less than
1.1−10) while the other algorithms fail in this problem. Among standard (resp.
general) DCA versions, Ei-DCA1 is better than Ei-DCA2 in 10/18 test prob-
lems and only worse than Ei-DCA2 in the problems 6 and 12 (resp. Ei-DCA3
outperforms Ei-DCA4 in 14/18 problems and is comparable to Ei-DCA4 in the
remaining problems).
• In terms of computing time, although the test problems have the large dimen-

sion, the DCA based algorithms still run fairly fast (less than 12 seconds). On
average, Ei-DCA1 is fastest and it is also faster than all the other DCA schemes
on 8/18 problems.

64
D

C
P

rogram
s

w
ith

L
in

ear
C

om
p
lem

en
tarity

C
on

strain
ts

Table 2.4 – Comparative results of the DCA schemes and KNITRO on EiCPs. Best results are written in bold.

Problem Value of Objective Function computing time (seconds)
No. Name n Ei-DCA1 Ei-DCA2 Ei-DCA3 Ei-DCA4 KNITRO Ei-DCA1 Ei-DCA2 Ei-DCA3 Ei-DCA4 KNITRO
1 dwa512 512 5.6656e-6 7.9248e-5 5.5293e-6 1.7379e-6 8.3814e-4 0.8686 1.1377 1.2514 1.2868 2.2281
2 dwb512 512 3.0900e-9 4.3922e-6 3.4041e-9 7.2344e-7 1.1767e-6 0.1046 0.3674 0.1040 0.2066 0.4616
3 west0655 655 1.8638e-6 2.6080e-6 1.4025e-6 1.6185e-6 9.1148e-4 0.4723 0.7319 0.3884 0.7724 18.0686
4 qh768 768 – – 2.0198e-11 1.0484e-10 – – – 0.1549 0.1909 –
5 rdb800l 800 2.0102e-8 4.5556e-6 2.1420e-8 1.8555e-6 4.7724e-6 0.7571 1.6451 1.1036 1.5707 0.8154
6 qh882 882 – 2.6568e-7 3.7900e-8 1.9447e-7 – – 0.2081 0.1894 0.4158 –
7 rdb968 968 2.0829e-7 1.9912e-7 2.0750e-7 4.4420e-6 3.9908e-6 0.2590 0.0692 0.2973 1.8652 0.5274
8 west0989 989 9.1056e-7 1.4321e-7 9.2937e-7 1.1738e-6 4.5971e-4 0.5286 0.9077 0.7057 0.5233 65.1368
9 tub1000 1000 5.1065e-8 9.5377e-7 5.0393e-8 1.4111e-7 7.5573e-5 0.5872 0.0814 1.1054 0.7667 6.4924
10 rdb1250 1250 1.3308e-7 7.1673e-6 1.3330e-7 5.0640e-6 5.2706e-5 3.4227 9.3372 5.2022 4.4787 2.9550
11 rdb1250l 1250 1.7334e-8 2.9591e-6 1.5632e-8 4.7407e-6 3.0654e-5 1.4015 4.9601 2.4995 4.0606 1.0916
12 mahindas 1258 9.1371e-5 9.0167e-10 8.4940e-5 7.5615e-5 1.2418e-2 2.0424 0.3481 2.9327 3.4825 14.8657
13 west1505 1505 5.6225e-7 3.2082e-7 5.7380e-7 1.3148e-6 9.6668e-4 1.1789 1.0767 1.2412 0.7941 208.224
14 west2021 2021 9.9915e-7 2.4175e-7 9.6340e-7 9.6909e-7 5.4344e-4 1.7936 1.7572 0.5231 1.1817 458.994
15 dw2048 2048 2.8063e-9 6.7402e-6 3.2703e-9 1.3635e-6 1.2467e-4 0.4949 0.6153 0.8453 1.0875 1.3047
16 rdb2048 2048 1.9521e-7 3.6344e-6 1.9949e-7 4.3934e-6 1.7117e-5 4.1138 8.3240 6.9954 6.1358 5.4121
17 rdb2048l 2048 1.1858e-8 1.4351e-6 1.1147e-8 5.6413e-6 2.4557e-6 3.3448 4.4478 6.8582 3.9519 2.8792
18 rdb3200l 3200 9.2192e-9 1.0654e-6 8.4147e-9 3.9040e-6 1.7606e-5 5.3747 6.3130 11.2058 6.9516 7.8334

Average 1.6715 2.4899 2.4224 2.2068 49.8306

DC Programs with Linear Complementarity Constraints 65

2.5.2.2 Ei-DCA3 and DCA-NLP

We compare Ei-DCA3 (the best among our DCA versions) with the DCA for NLP1
in [76], which solves the problem

min{F (u, v, y, w) = ‖u− vy‖2 + yTw : (u, v, y, w) ∈ C}. (2.69)

Two DC decompositions of F have been introduced in [76]. We have tested the corre-
sponding DCA schemes on the 18 above problems and observed that the DCA corre-
sponding to the following DC decomposition is better

F (u, v, y, w) = G(u, v, y, w)−H(u, v, y, w),

where (ρ1, ρ2 are given above)

G(u, v, y, w) =
(ρ1

2
+ 1
)
‖u‖2 +

ρ1 + ρ2

2
v2 +

ρ1 + ρ2

2
‖y‖2 +

‖y + w‖2

4
,

H(u, v, y, w) = G(u, v, y, w)− F (u, v, y, w).

Therefore, we compare Ei-DCA3 with the DCA corresponding to this decomposition.

We are interested in the value of OBJ = ‖u − vy‖2 + yTw obtained by the two com-
parative DCA schemes and their running time. Note that, (λ, y) is a solution to the
EiCP iff (y/λ, 1/λ, y, w) is a solution to the problem (2.69) with zero objective value.
Thus, OBJ = 0 means (1/v, y) is an optimal solution to the EiCP. For DCA-NLP, we
choose all tolerances to be 10−6 in order to get the better values of OBJ. The stopping
condition of Ei-DCA3 is the same as that of DCA-NLP. The computational results are
presented in the Table 2.5. It can be observed from these results that:

• In terms of the value of OBJ, Ei-DCA3 slightly outperforms DCA-NLP in most
of the test problems, namely 12/18 problems. Ei-DCA3 (resp. DCA-NLP)
provides a solution to the EiCP with the accuracy less than 10−6 in 15/18
problems (resp. 12/18).
• In terms of computing time, Ei-DCA3 is faster than DCA-NLP in 12/18 prob-

lems. On average, Ei-DCA3 is 1.62 times faster than DCA-NLP.

2.6 Conclusions

We have proposed four DCA schemes to handle a large class of MPLCC, namely
DCLCC. Using four penalty functions based on the min/Fischer-Burmeister function
to penalize the complementarity constraints, we reformulated the DCLCC as standard
DC programs. Two of which were reformulated again as general DC programs (to get
more suitable DCA versions). The DCA schemes were developed to solve the resulting
DC programs. Numerical experiments on several QPLCCs in MacMPEC and EiCPs
with data taken from Matrix Market prove the efficiency of the proposed algorithms

66 DC Programs with Linear Complementarity Constraints

Table 2.5 – Comparative results of Ei-DCA3 and DCA-NLP on EiCPs. Better results
are written in bold.

Problem OBJ computing time (sec.)
No. name n Ei-DCA3 DCA-NLP Ei-DCA3 DCA-NLP
1 dwa512 512 5.5293e-6 2.1564e-5 1.2307 2.1237
2 dwb512 512 4.1885e-9 4.1418e-9 0.0787 0.1310
3 west0655 655 1.4025e-6 1.9909e-5 0.3956 1.5826
4 qh768 768 1.0460e-11 9.4662e-7 0.0692 0.3435
5 rdb800l 800 2.5274e-8 5.2809e-8 0.1691 0.1662
6 qh882 882 8.6202e-8 8.2785e-7 0.1403 0.3921
7 rdb968 968 6.2662e-7 7.1265e-7 0.2465 0.2103
8 west0989 989 9.2947e-7 6.5392e-6 0.7206 1.0402
9 tub1000 1000 5.3887e-8 9.2770e-9 0.0818 0.2995
10 rdb1250 1250 1.7966e-7 5.2805e-8 0.3572 0.3548
11 rdb1250l 1250 1.7213e-8 3.8323e-8 0.3079 0.3472
12 mahindas 1258 8.4940e-5 7.0250e-5 2.9528 4.6294
13 west1505 1505 5.7388e-7 5.0368e-6 1.3004 1.7622
14 west2021 2021 9.6340e-7 4.1319e-6 0.5227 2.5443
15 dw2048 2048 4.3089e-9 3.8237e-9 0.4497 0.5972
16 rdb2048 2048 2.6495e-7 3.3079e-8 0.7130 0.6755
17 rdb2048l 2048 1.1761e-8 2.3748e-8 0.6927 0.5891
18 rdb3200l 3200 1.1036e-8 1.7553e-8 1.2316 1.1173

Average 0.6478 1.0503

(especially general DCAs) and their superiority in comparing with the KNITRO solver
and a previous DCA scheme for the asymmetric eigenvalue complementarity problems.
Our approaches may also be applied to DCLCC problems with a large number of com-
plementarity constraints. The promising numerical results suggested us to investigate,
in future works, these DCA schemes for other applications of DCLCC.

Chapter 3

DC Programs with variational
inequality constraints

Abstract: We address a class of Mathematical Programs with Equilibrium Constraints
(MPECs) in which the objective function is a DC function, the constraint set is defined
by a variational inequality and the Cartesian product of a polytope and a compact convex set.
Furthermore, we investigate a particular case where the objective function is continuously
differentiable with Lipschitz continuous gradient. By using a penalty technique, we reformu-
late the considered problem as a DC program. A variant of DCA and its accelerated version
are proposed to solve this DC program. Numerical experiments on the second-best toll pricing
problem with fixed demands illustrate the efficiency of the proposed algorithms.

3.1 Introduction

We consider a class of MPECs of the form:

min f(x, y) = g(x, y)− h(x, y) (3.1)

s.t. x ∈ X, y ∈ Y,
F (x, y)>(v − x) ≥ 0 ∀v ∈ X, (3.2)

where g, h : Rn+m → R are convex functions, F : Rn+m → Rn is a continuously
differentiable function, X is a polytope and Y is a compact convex set. We further
assume that the partial Jacobian matrices JxF, JyF of F are Lipschitz continuous on
Ω with Ω = X × Y.

This type of problems appears in several applications in transportation and economics
such as the second-best toll pricing problem [40], the continuous network design prob-
lem [54], the Nash-Cournot oligopolistic equilibrium market model [73]. In general,

1. The material of this chapter is developed from the following work:
Thi Minh Tam Nguyen, Hoai An Le Thi. DCA based Algorithms for Solving a Class of Mathematical
Programs with Equilibrium Constraints Submitted.

67

68 DC Programs with variational inequality constraints

the MPEC problem (3.1) is hard to solve due to the variational inequality constraint
(3.2), which is nonconvex and is not explicitly given as a constraint of a standard
optimization problem.

Related works

An approach to deal with the problem (3.1) is to reformulate it as a Mathemati-
cal Program with Complementarity Constraints (MPCC). The resulting problem was
solved by smoothing methods [15, 25], the penalty interior-point algorithm, piecewise
sequential quadratic programming method [66], the penalty techniques [65], etc. The
drawback of this approach is that it increases the number of variables of the original
problem and when F (x, y) is not affine, apart from complementarity constraints, the
remaining constraint set of the resulting MPCC is nonconvex. Another approach is to
use penalty techniques [26, 68, 105]. This approach replaces the variational inequality
constraint with a smooth/nonsmooth equation and penalize it. The penalized prob-
lems in general are nonconvex, and hence they are still difficult. In this direction, only
a few works in the literature offer algorithms to compute their solutions. In [68], the
authors studied the properties of a class of penalty functions, both exact and inexact,
and proved that the exact penalty holds in the case where the objective function is
continuously differentiable. The MPEC problem (3.1) was also solved by replacing v
in (3.2) with the extreme points of X and employing the cutting constraint algorithm
as in [40]. Nevertheless, at each iteration of this algorithm, we have to deal with a
master problem and a subproblem, where the former is nonconvex. When the solution
set of the variational inequality (3.2) is singleton, the MPEC problem (3.1) can be
restated as an optimization problem in the variable y. This optimization problem was
solved by numerical methods based on nonsmooth optimization techniques [77, 78],
gradient-based methods [11]. If, in addition, Y is a box, then the problem in the
variable y was solved by sensitivity analysis based heuristic algorithms [20]. Some
algorithms based on branch-and-bound have been proposed to find a global soltion to
the MPEC problem (3.1) in the case where F (x, y) is affine and f(x, y) is convex (see,
e.g., [72, 73, 80]).

Our contributions

In this chapter, we propose two algorithms based on DC programming and DCA
to solve the MPEC problem (3.1). We use the inexact penalty function in [68] to
penalize the variational inequality constraint. The reason for this choice is that this
penaty function is continuously differentiable with Lipschitz continuous gradient on
Ω, and therefore it is a DC function on Ω. This property of the penalty function
permits us to reformulate the penalized problem as a DC program. The DCA scheme
applied to this DC program requires computing a parameter ρ which can be obtained
via the Lipschitz constant of the gradient of the penalty function. In practice, this
Lipschitz constant is usually estimated by a quite large value that could make the
DCA inefficient. Therefore, we propose a variant of DCA, named DCA ρ, in which
ρ is updated at each iteration. This algorithm is inspired from DCA-like scheme
proposed in [50]. Moreover, recently, acceleration techniques have been developed for
improving the convergence rate of proximal gradient algorithms (see, e.g., [8, 55, 104]),

DC Programs with variational inequality constraints 69

DCA and DCA-like [84, 50]. Motivated by the success of the accelerated algorithms for
solving convex/nonconvex optimization problems, we also offer an accelerated version
of DCA ρ, called ADCA ρ, that incorporates an extrapolation step into DCA ρ. We
prove that the convergence of DCA is still valid for the proposed algorithms, i.e. every
limit point of the sequence generated by DCA ρ/ADCA ρ is a critical point of the
penalized problem. Afterward, we consider a special case where the objective function
has Lipschitz continuous gradient. The variants of DCA in this case lead to the simple
subproblems. They can be decomposed into two problems whose solutions are the
projection of a point on the polytope X or on the compact convex set Y . As an
application, we solve the second-best toll pricing problem with fixed demands. For
this problem, Y is a box and consequently the projection of a point on this set can
be explicitly computed. The numerical results on some data show that our algorithms
are quite promising.

The rest of the chapter is organized as follows. Section 3.2 presents the solution
methods for the considered MPEC problem. Section 3.3 considers a special case where
the objective function has Lipschitz continuous gradient. Section 3.4 shows how to
apply the proposed methods to solve the second-best toll pricing problem with fixed
demands. The numerical results are reported in Section 3.5 and the conclusions are
given in the last section.

3.2 Solution methods

3.2.1 Reformulation of the MPEC (3.1)

Consider the function:
θγ(x, y) = max

v∈X
{ψγ(x, y, v)} ,

where
ψγ(x, y, v) = F (x, y)>(x− v)− γ

2
‖x− v‖2 and γ > 0.

By Theorem 10.2.3 in [16], this function has the following properties.
1) ∀(x, y) ∈ Rn+m,

Mγ(x, y) := {v ∈ X|θγ(x, y) = ψγ(x, y, v)}

=

{
ΠX

(
x− 1

γ
F (x, y)

)}
,

where ΠX(v) is the projection of v on the set X.
2) θγ(x, y) ≥ 0,∀(x, y) ∈ X × Rm.
3) [θγ(x, y) = 0, x ∈ X]⇔ x ∈ X and (x, y) satisfies the constraint (3.2).
4) θγ(x, y) is continuously differentiable on Rn+m and

∇θγ(x, y) = ∇(x,y)ψγ

(
x, y,ΠX

(
x− 1

γ
F (x, y)

))
.

70 DC Programs with variational inequality constraints

More specifically, the partial gradients of θγ with respect to x and y are computed as
follows:

∇xθγ(x, y) = [JxF (x, y)]>(x− v(x, y)) + F (x, y)− γ(x− v(x, y)), (3.3)

∇yθγ(x, y) = [JyF (x, y)]>(x− v(x, y)). (3.4)

with v(x, y) = ΠX

(
x− 1

γ
F (x, y)

)
.

Furthermore, the Lipschitz continuity of ∇θγ(x, y) is shown in the following proposi-
tion.

Proposition 3.1. Suppose that F is continuously differentiable on Rn+m and the par-
tial Jacobian matrices JxF, JyF of F are Lipschitz continuous on Ω with the Lipschitz
constants being L1, L2, respectively. Then the gradient of θγ(x, y) is Lipschitz contin-
uous on Ω.

Proof. For all (x, y), (x′, y′) ∈ Ω we have

‖∇θγ(x, y)−∇θγ(x′, y′)‖ ≤ ‖∇xθγ(x, y)−∇xθγ(x
′, y′)‖+ ‖∇yθγ(x, y)−∇yθγ(x

′, y′)‖
≤ D1 +D2 + ‖∇yθγ(x, y)−∇yθγ(x

′, y′)‖, (3.5)

with

D1 = ‖[JxF (x, y)]>(x− v(x, y))− [JxF (x′, y′)]>(x′ − v(x′, y′))‖, (3.6)

D2 = ‖F (x, y)− F (x′, y′)‖+ γ[‖x− x′‖+ ‖v(x, y)− v(x′, y′)‖]. (3.7)

Because of the nonexpansiveness of ΠX , one gets

‖v(x, y)− v(x′, y′)‖ = ‖ΠX

(
x− 1

γ
F (x, y)

)
− ΠX

(
x′ − 1

γ
F (x′, y′)

)
‖

≤ ‖x− x′‖+
1

γ
‖F (x, y)− F (x′, y′)‖, (3.8)

and therefore

D2 ≤ 2γ‖x− x′‖+ 2‖F (x, y)− F (x′, y′)‖. (3.9)

Moreover, we have

D1 ≤‖[JxF (x, y)]>(x− v(x, y))− [JxF (x′, y′)]>(x− v(x, y))‖+
‖[JxF (x′, y′)]>(x− v(x, y))− [JxF (x′, y′)]>(x′ − v(x′, y′))‖
≤‖JxF (x, y)− JxF (x′, y′)‖‖x− v(x, y)‖+
‖JxF (x′, y′)‖[‖x− x′‖+ ‖v(x, y)− v(x′, y′)‖]

≤‖JxF (x, y)− JxF (x′, y′)‖‖1

γ
F (x, y)‖+

‖JxF (x′, y′)‖
[
2‖x− x′‖+

1

γ
‖F (x, y)− F (x′, y′)‖

]
. (3.10)

DC Programs with variational inequality constraints 71

Similarly,

‖∇yθγ(x, y)−∇yθγ(x
′, y′)‖

=‖[JyF (x, y)]>(x− v(x, y))− [JyF (x′, y′)]>(x′ − v(x′, y′))‖

≤‖JyF (x, y)− JyF (x′, y′)‖‖1

γ
F (x, y)‖+

‖JyF (x′, y′)‖
[
2‖x− x′‖+

1

γ
‖F (x, y)− F (x′, y′)‖

]
. (3.11)

It follows from (3.5) and (3.9)-(3.11) that

‖∇θγ(x, y)−∇θγ(x′, y′)‖

≤1

γ
‖F (x, y)‖ (‖JxF (x, y)− JxF (x′, y′)‖+ ‖JyF (x, y)− JyF (x′, y′)‖) +

2‖x− x′‖ (‖JxF (x′, y′)‖+ ‖JyF (x′, y′)‖+ γ) +

‖F (x, y)− F (x′, y′)‖
(
‖JxF (x′, y′)‖

γ
+
‖JyF (x′, y′)‖

γ
+ 2

)
. (3.12)

Since F is continuously differentiable, F is locally Lipschitz continuous on Rn+m.
Because of the compactness of Ω, F is Lipschitz continuous on Ω. Assume that the
Lipschitz constant of F is L3. The continuous differentiability of F also results in
the boundedness of the functions F, JxF, JyF on Ω. Thus, there exist the constants
M,M1,M2 such that

‖F (x, y)‖ ≤M, ‖JxF (x, y)‖ ≤M1, ‖JyF (x, y)‖ ≤M2 ∀(x, y) ∈ Ω,

and consequently for all (x, y), (x′, y′) ∈ Ω, we have

‖∇θγ(x, y)−∇θγ(x′, y′)‖

≤1

γ
M (L1 + L2) ‖(x, y)− (x′, y′)‖+ 2‖x− x′‖ (M1 +M2 + γ) +

L3

(
M1 +M2

γ
+ 2

)
‖(x, y)− (x′, y′)‖. (3.13)

It follows that
‖∇θγ(x, y)−∇θγ(x′, y′)‖ ≤ L‖(x, y)− (x′, y′)‖

with L = 1
γ
M (L1 + L2) + 2 (M1 +M2 + γ) + L3

(
M1 +M2

γ
+ 2

)
.

This implies that ∇θγ(x, y) is Lipschitz continuous on Ω.

Because of the third property of the function θγ, the problem (3.1) is equivalent to the
problem:

min f(x, y) (3.14)

s.t. x ∈ X, y ∈ Y
θγ(x, y) = 0.

72 DC Programs with variational inequality constraints

We approximate the problem (3.14) by the following penalized problem (Pt)

min{Ft(x, y) = f(x, y) + tθγ(x, y) : x ∈ X, y ∈ Y }, (3.15)

where t > 0 is a penalty parameter.
This technique was used in [68]. However, the authors only proved the theoretical
results and did not give a solution method for the penalized problem. It follows from
the results in the above paper that for a large number t, the optimal solutions of the
problem (3.15) will be in a region where θγ(x, y) are relatively small. Therefore, we
consider the penalized problem (Pt) with sufficiently large value of t.
For simplicity, we denote z = (x, y).

Definition 3.1. A point z∗ is called a critical point of the problem (3.15) if

(∂g(z∗) + t∇θγ(z∗) +NΩ(z∗)) ∩ ∂h(z∗) 6= ∅.

For each positive number ρ, the function Ft(z) can be written in the form:

Ft(z) = Gρ(z)−Hρ(z),

where

Gρ(z) = g(z) +
ρ

2
‖z‖2, Hρ(z) = h(z) +

ρ

2
‖z‖2 − tθγ(z).

Obviously, Gρ(z) is strongly convex. It is easy to see that if ρ ≥ tL with L being the
Lipschitz constant of ∇θγ(z), then Hρ(z) is convex on Ω. Thus, if we choose ρ ≥ tL,
then the problem (3.15) can be reformulated as the DC program below:

min{Ft(z) = Gρ(z)−Hρ(z) : z ∈ Ω}. (3.16)

3.2.2 DCA based algorithms

Based on the generic scheme of standard DCA presented in Chapter 1, each iteration
of DCA applied to the problem (3.16) consists of first computing a subgradient zk ∈
∂Hρ(z

k) and then solving the following convex subproblem:

min
{
g(z) +

ρ

2
‖z‖2 − 〈zk, z〉 : z ∈ Ω

}
. (3.17)

Note that

∂Hρ(z) = ∂h(z) + ρz − t∇θγ(z), (3.18)

where the partial gradients of θγ(z) is computed by (3.3), (3.4).
DCA applied to (3.16) is described as follows.

Algorithm 3.1 DCA MPEC

Initialization: Choose an initial point z0 ∈ Ω, a number ρ ≥ tL and a sufficiently
small positive number ε. Set k := 0.
repeat

DC Programs with variational inequality constraints 73

1. Compute zk ∈ ∂Hρ(z
k) using (3.18).

2. Solve the convex subproblem (3.17) to obtain zk+1.
3. k := k + 1.

until ‖zk − zk−1‖ ≤ εmax(‖zk−1‖, 1).

The convergence properties of Algorithm 3.1 is shown in the following theorem.

Theorem 3.1. Suppose that {zk} is the sequence generated by Algorithm 3.1. Then
the following statements hold:

i) The sequence {Ft(zk)} is decreasing.
ii) Every limit point of the sequence {zk} is a critical point of the problem (3.15).

It is noticeable that the statements in this theorem can not be directly deduced from
Theorem 3 in [81], which requires the convexity of Hρ on Rn, because in our problem,
Hρ is only convex on Ω. However, thanks to the strong convexity of Gρ, we can prove
Theorem 3.1 as follows.

Proof. i) Clearly, {zk} ⊂ Ω. For each k, zk+1 is the solution to (3.17), therefore

zk ∈ ∂Gρ(z
k+1) +NΩ(zk+1). (3.19)

Since Gρ + χΩ is ρ−convex, we have:

Gρ(z
k) ≥ Gρ(z

k+1) + 〈zk, zk − zk+1〉+
ρ

2
‖zk − zk+1‖2, (3.20)

On the other hand, zk ∈ ∂Hρ(z
k), therefore zk = uk + ρzk − t∇θγ(zk), where uk ∈

∂h(zk). Because of the convexity of h, one has

h(zk+1) ≥ h(zk) + 〈uk, zk+1 − zk〉. (3.21)

Moreover,
ρ

2
‖z‖2 − tθγ(z) is differentiable on Rn+m and convex on Ω, hence

ρ

2
‖zk+1‖2 − tθγ(zk+1) ≥ ρ

2
‖zk‖2 − tθγ(zk) + 〈ρzk − t∇θγ(zk), zk+1 − zk〉. (3.22)

From (3.21) and (3.22) we get

Hρ(z
k+1) ≥ Hρ(z

k) + 〈zk, zk+1 − zk〉. (3.23)

This combined with (3.20) leads to the following inequality:

Ft(z
k)− Ft(zk+1) ≥ ρ

2
‖zk − zk+1‖2. (3.24)

which implies that the sequence {Ft(zk)} is decreasing.
ii) Since {Ft(zk)} is decreasing and is bounded below by the optimal value of the
problem (3.16), it converges. It follows that

lim
k→∞

(zk − zk+1) = 0.

74 DC Programs with variational inequality constraints

Assume that z∗ is a limit point of {zk}, then there exists a subsequence {zkj} of {zk}
such that

lim
j→∞

zkj = z∗.

We will prove that the sequence {uk} is bounded. Indeed, for each k, let λk = uk/‖uk‖,
then {λk} is bounded. As uk ∈ ∂h(zk), the following inequality holds

h(zk + λk) ≥ h(zk) + 〈uk, λk〉 ∀k.

This implies that
‖uk‖ ≤ h(zk + λk)− h(zk) ∀k.

Since h : Rn → R is convex, it is continuous on Rn. Owing to the boundedness of
the sequences {zk + λk}, {zk} and the continuity of h, the sequence {uk} is bounded.
Without loss of generality, assume that lim

j→∞
ukj = u∗. Then u∗ ∈ ∂h(z∗).

By (3.19), we have

ukj + ρzkj − t∇θγ(zkj) ∈ ∂g(zkj+1) + ρzkj+1 +NΩ(zkj+1),

which is equivalent to

ukj + ρ(zkj − zkj+1)− t∇θγ(zkj) ∈ ∂g(zkj+1) +NΩ(zkj+1).

Let j approach infinity we get

u∗ − t∇θγ(z∗) ∈ ∂g(z∗) +NΩ(z∗),

which implies that z∗ is a critical point of the problem (3.15).

Nevertheless, in practice, the Lipschitz constant of the function ∇θγ(z) may be
not computable and is usually estimated by a quite large value that could make
DCA MPEC inefficient. Therefore, we update the parameter ρ at each iteration. In
DCA MPEC, since ρ ≥ tL, we have

Hρ(z) ≥ Hρ(z
k) + 〈zk, z − zk〉 ∀z ∈ Ω, ∀k. (3.25)

When updating ρ, at each iteration k, we only need to find a number ρk+1 such that
for ρ = ρk+1, the inequality (3.25) holds at z = zk+1. The strategy for updating the
parameter ρ is described in the following algorithm.

Algorithm 3.2 DCA ρ

Initialization: Choose an initial point z0 ∈ Ω, an initial parameter ρ0 > 0, parameters
η1, η2 > 1, and a sufficiently small positive number ε. Set k := 0.
repeat

1. Let ρ = max(ρ0, ρk/η1).
2. Compute zk ∈ ∂Hρ(z

k) using (3.18).
3. Compute zk+1 as follows

3.1 Compute z̃ as the solution to the convex subproblem (3.17).

DC Programs with variational inequality constraints 75

3.2 While Hρ(z̃) < Hρ(z
k) + 〈zk, z̃ − zk〉 do

3.2.1. Update ρ := η2ρ.
3.2.2. Compute zk as in the step 2.
3.2.3. Compute z̃ as in the step 3.1.
End While

3.3 Update zk+1 = z̃, ρk+1 = ρ.
4. k := k + 1.

until ‖zk − zk−1‖ ≤ εmax(‖zk−1‖, 1).

Remark 3.1.

• Updating the parameter ρ in step 3 terminates after a finite number of iterations
because for all ρ ≥ tL we have

Hρ(z̃) ≥ Hρ(z
k) + 〈zk, z̃ − zk〉,∀z̃ ∈ Ω.

• The sequence {ρk} is bounded, more specifically, ρ0 ≤ ρk ≤ η2tL, ∀k.

• It is worth noting that updating ρ does not guarantee that Hρ is convex, however, the
convergence properties of DCA MPEC is still valid for DCA ρ. This is shown in the
following theorem.

Theorem 3.2. Suppose that {zk} is the sequence generated by the DCA ρ algorithm.
Then the following statements hold:

i) Ft(z
k)−Ft(zk+1) ≥ ρk+1

2
‖zk− zk+1‖2, ∀k. This results in the sequence {Ft(zk)}

being decreasing.
ii) Every limit point of the sequence {zk} is a critical point of the problem (3.15).

Proof. i) Use the same reasoning as in the proof of Theorem 3.1 i) but ρ is replaced
by ρk+1 and the inequality (3.23) is deduced from the update rule.
ii) Use the same reasoning as in the proof of Theorem 3.1 ii) but ρ is replaced with
ρkj+1.

The accelerated version of DCA ρ is described in the algorithm below.

Algorithm 3.3 ADCA ρ

Initialization: Choose an initial point z0 ∈ Ω, parameters t0 = 1, ρ0 > 0; η1, η2 > 1,
and a sufficiently small positive number ε. Set k = 0, z−1 = z0.
repeat

1. Compute tk+1 =
1 +

√
1 + 4t2k
2

.

2. Compute ẑk = zk + τ k(zk − zk−1), with τ k =
tk − 1

tk+1

.

3. Let Γk = max{Ft(zl) : l = max(0, k − q), ..., k}.
If ẑk ∈ Ω and Ft(ẑ

k) ≤ Γk then set wk = ẑk, else set wk = zk.

76 DC Programs with variational inequality constraints

4. Let ρ = max(ρ0, ρk/η1).
5. Compute zk ∈ ∂Hρ(w

k) using (3.18).
6. Compute zk+1 as follows

6.1 Compute z̃ as the solution to the convex subproblem (3.17).
6.2 While Hρ(z̃) < Hρ(w

k) + 〈zk, z̃ − wk〉 do
6.2.1. Update ρ := η2ρ.
6.2.2. Compute zk as in the step 5.
6.2.3. Compute z̃ as in the step 6.1.
End While

6.3 Update zk+1 = z̃, ρk+1 = ρ.
7. k := k + 1.

until ‖zk − zk−1‖ ≤ εmax(‖zk−1‖, 1).

Remark 3.2. The acceleration technique in this algorithm is same as that in the
ADCA [84] and the niAPG algorithm [104]. However, in the ADCA (resp. the niAPG
algorithm) this acceleration technique is incorporated into the DCA (resp. the prox-
imal gradient algorithm) while our algorithm incorporates this acceleration technique
into DCA ρ, which is not a DCA since updating ρ does not guarantee the successive
decompositions of Ft(z) are DC decomposition.

The next theorem indicates the convergence of ADCA ρ.

Theorem 3.3. Suppose that {zk} and {wk} are the sequences generated by ADCA ρ.
The following statements hold.

i) Γk − Γk+q+1 ≥ ρ0

2
‖zφ(k) − wφ(k)−1‖2, where

φ(k) = argmin
{
‖zl − wl−1‖2 : l = k + 1, ..., k + q + 1

}
.

ii) Every limit point of the sequence {zφ(k)} is a critical point of the problem (3.15).

Proof. i) According to the way of constructing the sequence {wk}, wk ∈ Ω for all k.
Using the same reasoning as in the proof of Theorem 3.1 i) in which zk, ρ are replaced
by wk, ρk+1 respectively, we obtain

zk ∈ ∂Gρk+1(zk+1) +NΩ(zk+1), (3.26)

Ft(w
k)− Ft(zk+1) ≥ ρk+1

2
‖zk+1 − wk‖2, ∀k = 0, 1, ... (3.27)

The inequality (3.27) combined with Ft(w
k) ≤ Γk and ρk+1 ≥ ρ0 implies that

Ft(z
k+1) ≤ Γk − ρ0

2
‖zk+1 − wk‖2, ∀k = 0, 1, ... (3.28)

We will prove by induction that

Ft(z
k+1+l) ≤ Γk − ρ0

2
‖zk+1+l − wk+l‖2, (3.29)

DC Programs with variational inequality constraints 77

for all l = 0, 1, ..., q. Indeed, (3.29) holds for l = 0 because of (3.28). Assume that
(3.29) holds for l = 0, 1, ..., p− 1 with 1 ≤ p ≤ q, we have

Ft(z
k+1+l) ≤ Γk,∀l = 0, 1, ..., p− 1.

Moreover, substitute k by k + p in (3.28) we get

Ft(z
k+p+1) ≤ Γk+p − ρ0

2
‖zk+p+1 − wk+p‖2

≤ max
{

Γk, Ft(z
k+1), ..., Ft(z

k+p)
}
− ρ0

2
‖zk+p+1 − wk+p‖2,

therefore

Ft(z
k+p+1) ≤ Γk − ρ0

2
‖zk+p+l − wk+p‖2,

that means (3.29) holds for l = p, and consequently for all l = 0, 1, ..., q. It follows that

Γk+q+1 = max
{
Ft(z

l) : l = k + 1, ..., k + q + 1
}

≤ Γk − ρ0

2
min

{
‖zk+1+l − wk+l‖2 : l = 0, ..., q

}
which is equivalent to

Γk − Γk+q+1 ≥ ρ0

2
‖zφ(k) − wφ(k)−1‖2. (3.30)

ii) Let α be the optimal value of the problem (3.15) then α > −∞. Summing (3.30)
over k = 0, ..., N(N > q), we get

ρ0

2

N∑
k=0

‖zφ(k) − wφ(k)−1‖2 ≤
q∑
l=0

(Γl − ΓN+l+1) ≤
q∑
l=0

Γl − (q + 1)α

≤ (q + 1)
[
max{Ft(zl) : l = 0, ..., q} − α

]
.

This leads to the following inequality

∞∑
k=0

‖zφ(k) − wφ(k)−1‖2 <∞,

and hence

lim
k→∞
‖zφ(k) − wφ(k)−1‖ = 0. (3.31)

Assume that z∗ is a limit point of {zφ(k)}, then there exists a sequence {kj} such that

lim
j→∞

zφ(kj) = z∗.

By (3.31), limj→∞w
φ(kj)−1 = z∗.

Substitute k by φ(kj)− 1 in (3.26) we obtain

zφ(kj)−1 ∈ ∂G
ρφ(kj)

(zφ(kj)) +NΩ(zφ(kj)). (3.32)

78 DC Programs with variational inequality constraints

Since zφ(kj)−1 ∈ ∂H
ρφ(kj)

(wφ(kj)−1), one has

zφ(kj)−1 = uφ(kj)−1 + ρφ(kj)wφ(kj)−1 − t∇θγ(wφ(kj)−1),

where uφ(kj)−1 ∈ ∂h(wφ(kj)−1). Using the similar argument as in the proof of Theorem
3.1, we have {uφ(kj)−1} is bounded. Without loss of generality, assume that

lim
j→∞

uφ(kj)−1 = u∗.

Then u∗ ∈ ∂h(z∗). It follows from (3.32) that

uφ(kj)−1 + ρφ(kj)(wφ(kj)−1 − zφ(kj))− t∇θγ(wφ(kj)−1) ∈ ∂g(zφ(kj)) +NΩ(zφ(kj)).

Let j approach infinity we get

u∗ − t∇θγ(z∗) ∈ ∂g(z∗) +NΩ(z∗),

which implies that z∗ is a critical point of the problem (3.15).

When q = 0 then Γk = Ft(z
k) and φ(k) = k+ 1. Therefore, owing to Theorem 3.3, we

have the following corollary.

Corollary 3.1. Suppose that {zk} is the sequences generated by ADCA ρ with q = 0.
The following statements hold.

i) The sequence {Ft(zk)} is decreasing.
ii) Every limit point of the sequence {zk} is a critical point of the problem (3.15).

3.3 A particular case: the objective function has

Lipschitz continuous gradient

Let us consider the problem (3.1) when f(x, y) is a continuously differentiable function
with Lipschitz continuous gradient on Ω. In this case, the functions Gρ(z), Hρ(z) can
be chosen as follows

Gρ(z) =
ρ

2
‖z‖2, Hρ(z) =

ρ

2
‖z‖2 − [f(z) + tθγ(z)].

Note that if ρ ≥ L+tL with L is the Lipschitz constant of ∇f(z), then Hρ(z) is convex
on Ω.
Since Hρ(z) is differentiable, we have

∂Hρ(z) = {∇Hρ(z)},

and consequently the subgradient z = (x, y) ∈ ∂Hρ(z) is computed by

z = ρz −∇f(z)− t∇θγ(z). (3.33)

DC Programs with variational inequality constraints 79

The subproblem (3.17) becomes

min
{ρ

2
‖z‖2 − 〈zk, z〉 : z ∈ Ω

}
. (3.34)

As the objective function and the constraints of this problem are separable in the
variables x, y, it can be decomposed into the two following problems.

min

{
1

2
‖x‖2 − 1

ρ
〈xk, x〉 : x ∈ X

}
, (3.35)

and

min

{
1

2
‖y‖2 − 1

ρ
〈yk, y〉 : y ∈ Y

}
(3.36)

Therefore, the solution to the subproblem (3.34) is z̃ = (x̃, ỹ), where x̃ (resp. ỹ) is the

projection of
xk

ρ
(resp.

yk

ρ
) on X (resp. Y).

The DCA ρ version in this case replaces the steps 2 and 3.1 in Algorithm 3.2 by

2a. Compute zk = ρzk −∇f(zk)− t∇θγ(zk).
3.1a. Set z̃ = (x̃, ỹ), where

x̃ = ΠX

(
xk

ρ

)
, ỹ = ΠY

(
yk

ρ

)
.

The ADCA ρ version in this case replaces the steps 5 and 6.1 in Algorithm 3.3 by

5a. Compute zk = ρwk −∇f(wk)− t∇θγ(wk).
6.1a. Set z̃ = (x̃, ỹ), where

x̃ = ΠX

(
xk

ρ

)
, ỹ = ΠY

(
yk

ρ

)
.

3.4 Application to the second-best toll pricing

problem with fixed demands

The toll pricing problem consists of determining tolls to reduce congestion. The
authors in [40] mentioned that this problem can be classified as the first-best and the
second-best toll pricing problem. The former assumes that every link in the network
can be tolled, whereas the latter assumes that some links are not tollable. In this
application, we are interested in the Second-Best Toll Pricing (SBTP) problem with
fixed demands as in [40] but we consider the case where there are upper bounds for
the aggregate flows and tolls. This problem aims to determine tolls to minimize the
total travel time when the link flows must satisfy the tolled user equilibrium condition.
The following notation is used to state the problem:

80 DC Programs with variational inequality constraints

A the set of arcs or links in the network.
a an index for links in the network.
k an index for origin-destination (OD) pairs.
K the set containing indices of all OD pairs.
uk the vector of link flows for the kth OD pair.
dk the fixed travel demand for the kth OD pair.
x the aggregate flow vector, i.e. x =

∑
k∈K u

k.
xU the upper bound vector of x.
s(x) the travel time vector whose element sa(x) denotes the travel time for the link

a, sa(x) = Ta + Cax
4
a.

A the node-arc incidence matrix of the network, i.e. the elements aij of A are
defined by

aij =


1 if link j starts at node i
−1 if link j ends at node i
0 otherwise

(3.37)

bk a vector defined as follows: If p and q denote the origin and destination nodes of
the kth OD pair then bk = (ep − eq)dk, where ep, eq are the pth and qth columns
of the identity matrix of order l, respectively (l is the number of nodes in the
network)

y a toll vector.

At the set of tollable arcs.
yUa the upper bound of ya, a ∈ At.
Using the above notation, the set of all feasible flow vectors can be stated as:

X̂ = {x : there exist uk such that x =
∑
k∈K

uk, Auk = bk, u
k ≥ 0 ∀k ∈ K}.

Let X = {x ∈ X̂ : x ≤ xU}. Clearly, X is a polytope.

The considered problem can be formulated as the MPEC below:

min
(x,y)

s(x)Tx (3.38)

s.t. x ∈ X,
0 ≤ ya ≤ yUa , a ∈ At,
ya = 0, a /∈ At,
[s(x) + y]T (v − x) ≥ 0 ∀v ∈ X.

Let

f(x, y) = s(x)Tx =
∑
a∈A

(Ta + Cax
4
a)xa, F (x, y) = s(x) + y,

Y = [0, yU] with convention yUa = 0 if a /∈ At,
q1 = max

a∈A
{Ca}, q2 = max

a∈A
{xUa }.

Two following propositions show that the functions f(x, y), F (x, y) are continuously
differentiable and that the gradient of f as well as the partial Jacobian matrices

DC Programs with variational inequality constraints 81

JxF, JyF of F are Lipschitz continuous on Ω. Therefore the problem (3.38) has the
form of the MPEC problem (3.1) in the special case.

Proposition 3.2. The function f(x, y) is continuously differentiable on R2n (n is the
number of links in the network) and its gradient is Lipschitz continuous on Ω.

Proof. Clearly, f(x, y) =
∑
a∈A

(Ta+Cax
4
a)xa is continuously differentiable and its partial

gradients are

∇xf(x, y) =

 T1 + 5C1x
4
1

...
Tn + 5Cnx

4
n

 ,∇yf(x, y) = 0. (3.39)

For all (x, y), (x̃, ỹ) ∈ Ω we have

‖∇f(x, y)−∇f(x̃, ỹ)‖ =

√∑
a

(5Ca)2(x4
a − x̃4

a)
2

=

√∑
a

(5Ca)2(xa − x̃a)2(xa + x̃a)2(x2
a + x̃2

a)
2

≤ 20q1q
3
2‖x− x̃‖ ≤ 20q1q

3
2‖(x, y)− (x̃, ỹ)‖.

It follows that ∇f(x, y) is Lipschitz continuous on Ω.

Proposition 3.3. The function F (x, y) is continuously differentiable on R2n and its
partial Jacobian matrices are Lipschitz continuous on Ω.

Proof. It is straightforward to see that F (x, y) is continuously differentiable and its
partial Jacobian matrices are

JxF (x, y) =


4C1x

3
1 0 . . . 0

0 4C2x
3
2 . . . 0

.
0 0 . . . 4Cnx

3
n

 , JyF (x, y) = I. (3.40)

For all (x, y), (x̃, ỹ) ∈ Ω we have

‖JxF (x, y)− JxF (x̃, ỹ)‖ = max
a∈A
{4Ca|x3

a − x̃3
a|}

= max
a∈A
{4Ca|xa − x̃a|(x2

a + xax̃a + x̃2
a)}

≤ 12q1q
2
2‖x− x̃‖ ≤ 12q1q

2
2‖(x, y)− (x̃, ỹ)‖.

It follows that JxF is Lipschitz continuous on Ω.
Obviously, JyF is Lipschitz continuous on Ω with Lipschitz constant being 0.

82 DC Programs with variational inequality constraints

Since (3.38) takes the form of (3.1) in the case where the objective function has Lips-
chitz continuous gradient, it can be solved by the versions of DCA ρ and ADCA ρ in
Section 3.3. For the problem (3.38), the functions Gρ and Hρ are given by

Gρ(z) =
ρ

2
‖z‖2, Hρ(z) =

ρ

2
‖z‖2 − [f(z) + tθγ(z)].

The partial gradients of Hρ are computed by the following formulas:

∇xHρ(x, y) = ρx−∇xf(x, y)− t
{

[JxF (x, y)]>(x− v(x, y)) + F (x, y)− γ(x− v(x, y))
}
,

∇yHρ(x, y) = ρy − t(x− v(x, y)),

where ∇xf(x, y) and JxF (x, y) are defined as in (3.39) and (3.40) respectively,

v(x, y) = ΠX

(
x− 1

γ
F (x, y)

)
.

The solution to the subproblem (3.34) in this application is z̃ = (x̃, ỹ), where x̃ (resp. ỹ)

is the projection of
xk

ρ
(resp.

yk

ρ
) on X (resp. Y) and xk = ∇xHρ(z

k), yk = ∇yHρ(z
k).

As Y is a box, ỹ can be explicitly computed by

ỹa =


yka/ρ if 0 ≤ yka ≤ ρyUa ,
0 if yka < 0,
yUa if yka > ρyUa .

(3.41)

Thus, the DCA ρ version for solving the problem (3.38) replaces the steps 2 and 3.1
in Algorithm 3.2 by

2a. Set zk = (xk, yk), where xk = ∇xHρ(z
k), yk = ∇yHρ(z

k).

3.1a. Set z̃ = (x̃, ỹ), where x̃ = ΠX

(
xk

ρ

)
, ỹ is given by (3.41).

The ADCA ρ version for solving the problem (3.38) replaces the steps 5 and 6.1 in
Algorithm 3.3 by

5a. Set zk = (xk, yk), where xk = ∇xHρ(w
k), yk = ∇yHρ(w

k).

6.1a. Set z̃ = (x̃, ỹ), where x̃ = ΠX

(
xk

ρ

)
, ỹ is given by (3.41).

3.5 Numerical experiments

We tested the DCA ρ and ADCA ρ algorithms for the SBTP problem on three net-
works: tap-09, tap-15 and siouxfls. The first one consists of 9 nodes, 18 links and 4
Origin-Destination (OD) pairs; the second one comprises 15 nodes, 33 links and 9 OD
pairs; the third one is comprised of 24 nodes, 76 links and 552 OD pairs. The detailed
data including the parameters of travel time functions and the travel demands is avail-
able in MacMPEC [52], a collection of MPEC test problems. The tollable links are

DC Programs with variational inequality constraints 83

selected as in [40]. We first solve the following system problem (SP) and user problem
(UP) to obtain the optimal flows xSP and xUP , respectively.

(SP) : min{s(x)Tx : x ∈ X̂}
(UP) : Find x such that s(x)T (v − x) ≥ 0,∀v ∈ X̂.

Then the link a is chosen as a tollable link if xUPa is greater than xSPa by a given
percentage, say α%. For tap-09 and tap-15, we take α = 5, 10, 20, 25; and for the
siouxfls, we take α = 5, 10, 15.

In order to evaluate the performance of the algorithms DCA ρ and ADCA ρ, we com-
pare them with DCA MPEC and KNITRO solver 2, an advanced solver for nonlinear
optimization including MPECs. To use this solver, we reformulate problem (3.38) as
the MPCC below

min
(x,uk,y,µk,γk,λ,ω)

s(x)Tx (3.42)

s.t. x ∈ X, 0 ≤ y ≤ yU ,

s(x) + y + λ+ A>µk − γk = 0, k ∈ K,
x+ ω = xU ,

γk ≥ 0, uk ≥ 0, (γk)>uk = 0, k ∈ K,
λ ≥ 0, ω ≥ 0, λ>ω = 0.

For the above networks, the number of variables and complementarity constraints in
the problem (3.42) are shown in the Table 3.1.

Table 3.1 – The number of variables and Complementarity Constraints (CCs)

Network No. of variables No. of CCs
tap-09 252 90
tap-15 861 330
siouxfls 97456 42028

Our algorithms are implemented in Matlab R2016b and run on an HP computer In-
tel(R) Core(TM) i5-3470 CPU, 3.2GHz, 8 Go of RAM. For tap-09, we solve the prob-
lem (3.42) by calling KNITRO (student version) in the MATLAB environment. Since
the student version limits the size of problem (300 variables and 300 constraints), for
tap-15 and siouxfls, KNITRO is called via NEOS server 3. For KNITRO, the default
parameters and the default initial point are used.

In DCA ρ, ADCA ρ and DCA MPEC, we set ε = 10−5. We also add the condition
|θγ(xk, yk)| < δ to the stopping criteria of all these algorithms. This condition assures
that the feasibility error for the variational inequality constraint that is computed by

2. https://www.artelys.com/en/optimization-tools/knitro

3. https://neos-server.org/neos/solvers

84 DC Programs with variational inequality constraints

|θγ(x, y)| is always less than δ. The parameters are taken as follows: ρ0 = 1, δ = 10−5

for tap-09 and tap-15; ρ0 = 1000, δ = 3 × 10−4 for siouxfls; η1 = 2, η2 = 1.25, q = 5.
The initial point is z0 = (x0, y0) with x0 being the solution to the following linear
program

min{T>x : x ∈ X̂}

and y0 = 0.

In the experiments, we compare the value of objective function obtained by DCA ρ,
ADCA ρ, DCA MPEC and KNITRO as well as the running time (in seconds) of
DCA ρ, ADCA ρ and DCA MPEC. For tap-09, we also make a comparison between
the computing time of the algorithms and that of KNITRO. For remaining networks,
we do not report the computing time of KNITRO because the proposed algorithms and
KNITRO run on the different environment. The computational results are reported
in Table 3.2. From these results, we observe that:
• Overall, DCA ρ and ADCA ρ are better than KNITRO while DCA MPEC is

comparable with KNITRO. More precisely, ADCA ρ outperforms KNITRO in
7/11 cases (tap-15 and siouxfls for all α). In the remaining cases, ADCA ρ is
comparable with KNITRO in terms of the objective value, however it is 7.24 to
11.96 times faster than KNITRO. DCA ρ is also superior to KNITRO in 7/11
cases but it furnishes a worse solution than KNITRO on the data tap-09 with
α = 5 and α = 15. DCA MPEC is better than KNITRO in 3/11 cases (tap-15
except for α = 5) and worse than KNITRO in 3/11 cases. It is noted that
for siouxfls, DCA MPEC does not find a feasible solution after 7200 seconds
and KNITRO provides an infeasible solution in all cases. For tap-09, DCA ρ
(resp. DCA) is more efficient than KNITRO in 3/4 (resp. 2/4) cases in terms
of computing time.
• Among the DCA based algorithms, ADCA ρ is the best and DCA MPEC is

the worst in terms of both the objective value and computing time. In terms of
objective value, ADCA ρ gives the best result in 6/11 cases. For the remaining
cases, it is comparable with or better than DCA ρ and DCA MPEC. In com-
parison with DCA MPEC, ADCA ρ (resp. DCA ρ) provides a better solution
in 8/11 (resp. 6/11) cases. DCA MPEC finds a better solution than DCA ρ on
the data tap-09 (α = 5), however in this case, DCA ρ is 3.63 times faster than
DCA MPEC. In terms of running time, except for the data tap-09 (α = 15),
ADCA ρ is 1.36 to 11.67 times faster than DCA ρ. Both ADCA ρ and DCA ρ
are faster than DCA MPEC in all cases, the ratio of the runtime of ADCA ρ
(resp. DCA ρ) to that of DCA MPEC varies between 1.79 to 20.46 (resp. 1.31
and 5.96).

3.6 Conclusions

In this chapter, we studied two DCA based approaches for solving a class of math-
ematical programs with variational inequality constraints. We first transformed the
considered problem into a DC program via a penalty technique, and then proposed

DC Programs with variational inequality constraints 85

a variant of DCA (DCA ρ) and its accelerated version (ADCA ρ) to handle this DC
program. As an application, we solved the SBTP problem with fixed demands. Nu-
merical experiments on three networks with data taken from MacMPEC show that
in general, ADCA ρ is better than DCA ρ and both two algorithms are superior to
DCA MPEC and KNITRO.

86
D

C
P

rogram
s

w
ith

variation
al

in
eq

u
ality

con
strain

ts
Table 3.2 – Comparative results of the algorithms

Best results are written in bold. # denotes the number of tollable links.

Objective value Computing time (seconds)
network α # DCA ρ ADCA ρ DCA MPEC KNITRO DCA ρ ADCA ρ DCA MPEC KNITRO
tap-09 5 6 2348.59 2281.74 2322.34 2281.72 9.75 1.73 35.40 17.30

10 4 2314.77 2310.99 2314.96 2310.19 30.23 2.59 109.94 18.76
15 3 2361.23 2344.33 2361.27 2341.38 1.99 1.99 3.56 16.54
20 2 2361.18 2361.17 2361.18 2361.16 1.49 0.78 1.95 9.33

tap-15 5 12 2850.11 2850.11 2850.11 2957.99 3.35 1.45 6.1 -
10 9 2868.07 2867.76 2906.41 2956.10 13.19 5.31 51.21 -
20 6 2873.45 2872.72 3074.00 3013.54 21.96 9.26 63.51 -
25 4 2915.55 2885.53 2920.79 3267.66 11.16 8.18 66.49 -

siouxfls 5 14 10052.39 9989.41 - - 484.45 201.14 - -
10 6 10055.84 10028.92 - - 440.64 220.70 - -
15 4 10055.35 10032.88 - - 454.76 179.44 - -

Chapter 4

A class of bilevel optimization
problems with binary upper level
variables

Abstract: In this chapter, we consider a class of bilevel optimization problems in which the
objective function is the sum of a convex function and the value function of a linear program,
and the upper level variables are binary. By using an exact penalty function, we reformulate
the bilevel problem as a standard DC program. An appropriate DCA is proposed to solve
this DC program. Numerical experiments on a maximum flow network interdiction problem
illustrate the efficiency of our algorithm.

4.1 Introduction

A bilevel programming problem is an optimization problem in which one of its con-
straints is determined by another optimization problem. This problem can be stated
as

min
x∈X,y∈Y

{F (x, y) : G(x, y) ≤ 0, y ∈ Ψ(x)}, (4.1)

where

Ψ(x) = argmin{f(x, y) : y ∈ Y, g(x, y) ≤ 0}, (4.2)

F, f : Rm × Rn → R, G : Rm × Rn → Rs, g : Rm × Rn → Rl are given functions, and
X, Y impose additional limitations on the variables, such as upper and lower bounds
or integrality requirements.
The problem (4.1) is called the upper level problem and the problem

min{f(x, y) : y ∈ Y, g(x, y) ≤ 0}

1. The material of this chapter is developed from the following work:
Thi Minh Tam Nguyen, Hoai An Le Thi. A DCA Approach for a Maximum Flow Network Interdiction
Problem Submitted.

87

88 Bilevel optimization problems with binary upper level variables

is called the lower level problem. The variables x and y are said to be the upper and
lower level variables, respectively.

Related works

The bilevel problems have drawn significant attention of the optimization community
because they are hard to solve and have many applications in various fields. A survey
of solution methods for these problems and their applications can be found in [93].
However, there has been little research on discrete bilevel problems, where some of
the variables are integer. We are interested in approaches for solving Bilevel Problems
(BP) in which the upper level variables are binary and the lower level variables are
continuous. A usual approach is to replace the lower level problem with its KKT
conditions and solve the resulting problem by a branch-and-bound algorithm (see, e.g.,
[14, 24]). When all functions in (4.1) and (4.2) are affine, the BP was reformulated as a
bilevel problem with all continuous variables for which algorithms based on branch-and-
bound was applied (see, e.g., [3, 69, 99]). If, in addition, G(x, y) = 0 and Y = Rn

+, the
BP was directly solved by a branch-and-bound algorithm [101] or a heuristic algorithm
based on Tabu search [97], it was also converted into a Mixed-Integer Linear Program
(MILP) and solved by a Benders decomposition algorithm [17].

Our contributions

In this chapter, we consider a special case of the problem (4.1) where F (x, y) = θ(x) +
c>y and f(x, y) = −c>y. More specifically, we investigate the bilevel problem of the
form:

min{F (x) = θ(x) + φ(x) : x ∈ {0, 1}m} (4.3)

where θ : Rm → R is a convex function, φ is the value function of the following linear
program

φ(x) = max
y∈Rn

c>y (4.4)

s.t. Ay = ξ,

Bx+Dy ≤ d,

y ≥ 0,

with c ∈ Rn, ξ ∈ Rp, d ∈ Rm and A,B,D being matrices of sizes p× n,m×m,m× n,
respectively. We assume throughout this chapter that for all x in [0, 1]m, the feasible
set of the lower level optimization problem is nonempty and the optimal value of this
problem is finite.

The difficulty of the problem (4.3) resides not only in the nonconvex objective function
but also in the binary variables. The special structure of this problem permits us to
show that its objective function is a DC function and this bilevel problem becomes a
DC program with binary variables. Furthermore, we prove that the objective function
of this problem is Lipschitz, therefore using the new results concerning exact penalty in
DC programming [48], we penalize the binary constraints and express the DC program
with binary variables as a standard DC program for which we propose an appropri-
ate DCA scheme, named DCA BP (DCA for Bilevel Problem). This algorithm leads

Bilevel optimization problems with binary upper level variables 89

to simple subproblems which minimize a convex function on a box. Especially, we
point out that when the function θ is linear, we can choose the penalty parameter
as an arbitrary positive number and the sequence generated by DCA BP is always
binary. Moreover, DCA BP in this case is very inexpensive, it consists of succes-
sively solving box constrained linear programs whose optimal solutions are explicitly
computed. We apply the proposed algorithm to solve the Maximum Flow Network
Interdiction (MFNI) problem studied in [89]. In this problem, an interdictor attempts
to completely destroy some arcs in a capacitated directed network with the aim of
minimizing both post-interdiction maximum flow and the total interdiction cost. The
authors in [89] formulated the MFNI problem as a bi-objective problem and found its
Pareto-optimal solutions by solving a sequence of single-objective problems using La-
grangian relaxation and a branch-and-bound algorithm. We formulate this problem in
the form of (4.3) in which θ is linear. In order to evaluate the quality of solution found
by DCA BP, we use the techniques in [17] to reformulate the application problem as
an MILP that can be globally solved by CPLEX software. This formulation requires
choosing a sufficiently large parameter. We prove that this parameter can be chosen
to equal 1.

The rest of the chapter is organized as follows. Section 4.2 discusses a solution method
based on DCA for the considered problem. Section 4.3 presents how to apply the
proposed method to deal with an MFNI problem and describes an MILP formulation
of this problem. The numerical results are reported in Section 4.4 and Section 4.5
concludes the chapter.

4.2 Solution method

4.2.1 Exact penalty formulation for the problem (4.3)

We first prove the following proposition.

Proposition 4.1. The objective function F (x) of the problem (4.3) is DC and Lips-
chitz continuous on [0, 1]m.

Proof. Consider the function ψ(x) = −φ(x), x ∈ [0, 1]m we have F (x) = θ(x) − ψ(x)
and

ψ(x) = min
y

−c>y (4.5)

s.t. Ay = ξ,

Bx+Dy ≤ d,

y ≥ 0.

Clearly, (4.5) is a linear program and its optimal value is finite for all x ∈ [0, 1]m.
According to duality theorem, ψ(x) is equal to the optimal value of its Lagrange dual

90 Bilevel optimization problems with binary upper level variables

problem, that is, for all x ∈ [0, 1]m,

ψ(x) = max
(λ,µ)

−ξ>λ+ (Bx− d)>µ (4.6)

s.t. A>λ+D>µ− c ≥ 0,

µ ≥ 0.

Let P be the polyhedron defined by

P =
{

(λ, µ) : A>λ+D>µ− c ≥ 0, µ ≥ 0
}
,

and

f(x, λ, µ) = −ξ>λ+ (Bx− d)>µ, (4.7)

we have
ψ(x) = max{f(x, λ, µ) : (λ, µ) ∈ P}.

Since f(x, λ, µ) is convex in x, ψ(x) is convex, and consequently F (x) is a DC function
on [0, 1]m.

Let V be the set of vertices of the polyhedron P and let

V = {µ ∈ Rm : ∃λ ∈ Rp, (λ, µ) ∈ V }. (4.8)

It is easy to see that V, V are nonempty finite sets and

ψ(x) = max{f(x, λ, µ) : (λ, µ) ∈ V }. (4.9)

Take arbitrary x1, x2 ∈ [0, 1]m, then there exist (λ1, µ1), (λ2, µ2) ∈ V such that

ψ(x1) = f(x1, λ1, µ1), ψ(x2) = f(x2, λ2, µ2).

We have

ψ(x1)− ψ(x2) = f(x1, λ1, µ1)−max{f(x2, λ, µ) : (λ, µ) ∈ V }
≤ f(x1, λ1, µ1)− f(x2, λ1, µ1) = (Bx1 − d)>µ1 − (Bx2 − d)>µ1

= (µ1)>(B(x1 − x2)) ≤ ‖B>µ1‖‖x1 − x2‖.

It follows that

ψ(x1)− ψ(x2) ≤ K‖x1 − x2‖,where K = max{‖B>µ‖ : µ ∈ V } <∞.

By changing the role of x1 and x2, we get

ψ(x2)− ψ(x1) ≤ K‖x2 − x1‖.

Therefore
|ψ(x1)− ψ(x2)| ≤ K‖x1 − x2‖, ∀x1, x2 ∈ [0, 1]m,

which is equivalent to

|φ(x1)− φ(x2)| ≤ K‖x1 − x2‖, ∀x1, x2 ∈ [0, 1]m.

This means that φ(x) is Lipschitz continuous on [0, 1]m.
Since θ : Rm → R is convex, it is Lipschitz continuous on [0, 1]m, and so is the function
F (x).

Bilevel optimization problems with binary upper level variables 91

Let p(x) be the penalty function given by

p(x) =
1

2

m∑
i=1

xi(1− xi).

Obviously, p is concave and nonnegative on [0, 1]m. Thus, the problem (4.3) can be
rewritten as follows

min{θ(x)− ψ(x) : x ∈ [0, 1]m, p(x) ≤ 0}. (4.10)

We consider the penalized problem:

min{Ft(x) = θ(x)− ψ(x) + tp(x) : x ∈ [0, 1]m} (4.11)

By the results concerning exact penalty in DC programming presented in [48], we have
the following proposition.

Proposition 4.2. There exists a nonnegative number t0 such that for all t > t0, the
problems (4.10) and (4.11) are equivalent in the sense that they have the same optimal
value and the same optimal solution set. Moreover, when θ(x) is linear, we can take
t0 = 0.

The second assertion of this proposition follows from the fact that the objective func-
tion is concave and continuous on [0, 1]m, and the set of vertice of [0, 1]m is equal to
the set {x ∈ [0, 1]m : p(x) ≤ 0}.

4.2.2 Solving the penalized problem by DCA

In what follows, we use the notation ψ(x), V, V , f(x, λ, µ) as in the proof of Proposition
4.1. Let

I(x) = {(λ, µ) ∈ V : ψ(x) = f(x, λ, µ)},
I(x) = {µ ∈ Rm : ∃λ ∈ Rp, (λ, µ) ∈ I(x)}.

By (4.7) and (4.9), one has:

∂ψ(x) = conv {∇xf(x, λ, µ) : (λ, µ) ∈ I(x)} = conv
{
B>µ : µ ∈ I(x)

}
,∀x ∈ [0, 1]m,

where the second equality follows from ∇xf(x, λ, µ) = B>µ.

The problem (4.11) can be reformulated as the standard DC program below:

min{G(x)−H(x) : x ∈ [0, 1]m}, (4.12)

where

G(x) = θ(x), H(x) = ψ(x)− tp(x).

92 Bilevel optimization problems with binary upper level variables

The DCA applied to (4.12) consists of first computing a subgradient

xk ∈ ∂H(xk),

and then solving the following convex problem at each iteration

min{θ(x)− (xk)>x : x ∈ [0, 1]m}. (4.13)

Noting that ∂H(x) = ∂ψ(x) + t∂(−p)(x), therefore a subgradient x ∈ ∂H(x) can be
computed as follows

x = B>µ+ t

(
x− 1

2

)
, where µ ∈ I(x). (4.14)

The algorithm is summarized as follows.

Algorithm 4.1 DCA BP

Initialization: Choose a point x0 ∈ [0, 1]m and a sufficiently small positive number ε.
Set k := 0.

1. Compute xk ∈ ∂H(xk) using (4.14).
2. Compute xk+1 as a solution to the convex problem (4.13).
3. If ‖xk+1−xk‖ < ε(‖xk‖+1) then stop, the computed solution is xk+1. Otherwise,

set k := k + 1 and go to Step 1.

The convergence properties of DCA BP is shown in following theorem.

Theorem 4.1. Suppose that {xk} is the sequence generated by DCA BP. Then the
following statements hold:

(i) The sequence {Ft(xk)} is decreasing.
(ii) Every limit point of the sequence {xk} is a critical point of the problem (4.12).
(iii) In the case where θ(x) is linear, xk ∈ {0, 1}m ∀k ≥ 1.

Proof. Since Ft(x) is continuous on [0, 1]m and [0, 1]m is compact, the optimal value
of the problem (4.12) is finite and the sequences {xk}, {xk} are bounded. As a conse-
quence of Theorem 1.2 presented in Chapter 1, (i) and (ii) hold.
Suppose that θ(x) = q>x, the subproblem (4.13) becomes

min{(q − xk)>x : x ∈ [0, 1]m}.

whose solution is computed by

xk+1
i =

{
0 if qi − xki ≥ 0,
1 if qi − xki < 0.

This means (iii) holds.

Bilevel optimization problems with binary upper level variables 93

4.3 Application to a maximum flow network inter-

diction problem

4.3.1 Related works

The Maximum Flow Network Interdiction (MFNI) problems have been studied since
1960s with important applications in the military and security fields. In these prob-
lems, a network user attempts to maximize the amount of flow through a capacitated
network while an interdictor tries to minimize this maximum flow by breaking some
arcs in the network using available resources [103]. The MFNI problems can be consid-
ered in different contexts in which the interdictor partially or fully destroys arcs, the
network has a source node and a sink node or has multiple sources and sinks. Some
works related to MFNI problems can be found in [23, 70, 102, 103]. There are two
approaches proposed in these works. The first one uses the dual network that is only
defined when the primal network is planar. The second one uses a branch-and-bound
algorithm that can be computationally expensive. Continuing these studies, Burch et
al. [9] suggested an algorithm based on decomposition to approximate the optimal
solution of an MFNI problem. More recently, Altner et al. [13] presented two classes
of valid inequalities for the MFNI problem using integer linear programming formu-
lation of Wood [103]. In all the problems mentioned above, the interdictor was only
interested in minimizing the post-interdiction maximum flow. However, in practice,
he/she can want to minimize both this maximum flow and the total interdiction cost.
Such a MFNI problem was investigated in [89]. They formulated this problem as a
bi-objective problem and found its Pareto-optimal solutions by solving a sequence of
single-objective problems using Lagrangian relaxation and a branch-and-bound algo-
rithm. Besides, some extensions of MFNI problems have been also studied such as
considering a MFNI on a multicommodity flow network [2, 57] or considering the dis-
tance between an arc and an attack location [95] (in this case, the attack location may
be a some point near the network).

In this work, we consider the MFNI problem studied in [89] in which an interdictor
attempts to completely destroy some arcs in a capacitated directed network with the
aim of minimizing both post-interdiction maximum flow and the total cost for inter-
diction. However, we formulate it in the form of the problem (4.3). This formulation
allows us to balance the maximum flow and interdiction cost according to the choice
of a parameter α.

4.3.2 Problem formulation

Consider a capacitated directed network with the set of nodes N , the set of arcs A
and two special nodes: the source node s and the sink node t. The following notation
is used to formulate the problem.
• Ai- is the set of arcs in A with i as the start node.

94 Bilevel optimization problems with binary upper level variables

• A-i is the set of arcs in A with i as the end node.
• u = (ua)a∈A, ua is the capacity of the arc a.
• x = (xa)a∈A, xa = 1 if the arc a is interdicted and xa = 0 otherwise.
• r = (ra)a∈A, ra is the interdiction cost for the arc a.
• y = (ya)a∈A, ya is the amount of flow on the arc a.
• f is the total amount of flow from the node s to the node t.

After being interdicted, the capacity of the arc a is (1−xa)ua, therefore the maximum
flow problem [18] becomes

φ(x) = max
y,f

f (4.15)

s.t.
∑
a∈Ai−

ya −
∑
a∈A−i

ya =


0 if i ∈ N \ {s, t}
f if i = s
−f if i = t

0 ≤ ya ≤ (1− xa)ua, a ∈ A.

Since the total interdiction cost is
∑

a∈A raxa, the considered MFNI problem can be
formulated as follows

min
x∈{0,1}n

α
∑
a∈A

raxa + φ(x), (4.16)

where n is the number of arcs in the network, α is a positive parameter that controls
the balance between the total cost of interdiction and the maximum flow.
The problem (4.16) can be reformulated as

min
x∈{0,1}n

αr>x+ φ(x), (4.17)

with

φ(x) = max
y∈Rn

 ∑
a∈As−

ya −
∑
a∈A−s

ya


s.t.

∑
a∈Ai−

ya −
∑
a∈A−i

ya = 0, i ∈ N \ {s, t},

∑
a∈As−

ya −
∑
a∈A−s

ya +
∑
a∈At−

ya −
∑
a∈A−t

ya = 0,

0 ≤ ya ≤ ua(1− xa), a ∈ A.

Clearly, the problem (4.17) takes the form of (4.3) in which θ(x) = αr>x, c is the
transpose of the sth row of the node-arc incidence matrix M , p = p−1(p is the number
of nodes in the network), ξ = 0, d = u,A is the matrix obtained from M by deleting
the sth and tth rows and adding a new row that is the sum of two deleted rows to the
bottom of the resulting matrix, B is the diagonal matrix whose main diagonal consists
of the elements of vector u, and D is the identity matrix of order n. Therefore, the
problem (4.17) can be solved by DCA BP. Note that since the function θ(x) in (4.17)
is linear, the solution found by DCA BP is always binary. For the problem (4.17), the
DC components of the objective function are

G(x) = αr>x,H(x) = −φ(x)− tp(x)

Bilevel optimization problems with binary upper level variables 95

A subgradient xk ∈ ∂H(xk) is computed by using (4.14). The subproblem at iteration
k is

min{(αr − xk)>x : x ∈ [0, 1]n}.

whose solution can be computed by

xk+1
i =

{
0 if αri − xki ≥ 0,
1 if αri − xki < 0.

In the next subsection, we present an MILP formulation of the problem (4.17) based
on the techniques in [17].

4.3.3 MILP formulation of (4.17)

As mentioned above, the problem (4.17) takes the form

min{αr>x+ φ(x) : x ∈ {0, 1}n} (4.18)

where

φ(x) = max
y∈Rn
{c>y : Ay = ξ, Bx+Dy ≤ d, y ≥ 0}

It is straightforward to see that the problem (4.18) is equivalent to the problem (4.19)
below in the sense that x∗ is a solution to (4.18) if and only if there exists y∗ such that
(x∗, y∗) is a solution to (4.19).

min
x,y

αr>x+ c>y (4.19)

s.t. x ∈ {0, 1}n,
y ∈ argmin{−c>y : Ay = ξ, Bx+Dy ≤ d, y ≥ 0}.

Using the KKT optimality conditions for the lower level optimization problem, the
problem (4.19) can be reformulated as the MPCC problem below

min
x,y,λ,µ

αr>x+ c>y (4.20)

s.t. x ∈ {0, 1}n, (4.21)

Ay = ξ, (4.22)

Bx+Dy ≤ d, (4.23)

A>λ+D>µ− c ≥ 0, (4.24)

y ≥ 0, µ ≥ 0, (4.25)

µ>(d−Bx−Dy) = 0, (4.26)

y>(−c+ A>λ+D>µ) = 0. (4.27)

The constraints (4.26), (4.27) can be replaced with the constraint

−c>y ≤ −λ>ξ + µ>(Bx− d) (4.28)

96 Bilevel optimization problems with binary upper level variables

Indeed, suppose that (4.26) and (4.27) hold, we have

−c>y + λ>Ay + µ>Dy = 0.

This implies that
−c>y = −λ>ξ + µ>(Bx− d),

and consequently (4.28) holds.

Conversely, assume that (4.28) holds. It follows from (4.24) and (4.25) that

−c>y ≥ −(λ>Ay + µ>Dy). (4.29)

This inequality combined with (4.28) leads to the inequality:

−(λ>Ay + µ>Dy) ≤ −λ>ξ + µ>(Bx− d),

which is equivalent to

µ>(d−Bx−Dy) ≤ 0. (4.30)

Moreover, by (4.23) and (4.25), the left side of (4.30) is greater than or equal to 0.
Therefore, equality in (4.30) holds and hence equality in (4.29) also holds. That means
(4.26) and (4.27) hold.

Clearly, (4.28) can be rewritten as follows

−c>y ≤ −ξ>λ+
n∑
i=1

µiui(xi − 1). (4.31)

The inequality (4.31) can be replaced by the following linear constraints with U being
a sufficiently large constant.

− c>y ≤ −ξ>λ+
n∑
i=1

uizi, (4.32)

zi ≤ −µi + Uxi, i = 1, ..., n, (4.33)

zi ≥ −µi, i = 1, ..., n, (4.34)

zi ≥ −U(1− xi), i = 1, ..., n, (4.35)

zi ≤ 0, i = 1, ..., n (4.36)

Thus, the problem (4.17) can be reformulated as the next mixed-integer linear program

min
x,y,λ,µ,z

αr>x+ c>y (4.37)

s.t. (4.21)− (4.25), (4.32)− (4.36).

Remark 4.1. It is worth noting that (λ, µ) is a solution to the problem (4.6),
which is the dual of the lower level problem. Therefore, if (x∗, y∗, λ∗, µ∗) is a so-

lution to the problem (4.20) then there exist a vertex (λ̂, µ̂) of the polyhedron P ={
(λ, µ) : A>λ+D>µ− c ≥ 0, µ ≥ 0

}
such that (x∗, y∗, λ̂, µ̂) is also a solution to (4.20).

Bilevel optimization problems with binary upper level variables 97

The following proposition shows that if (λ̂, µ̂) is a vertex of P then µ̂i ≤ 1 ∀i, and
consequently we can choose U = 1.

Proposition 4.3. if (λ̂, µ̂) is a vertex of P then µ̂i ≤ 1 ∀i.

Proof. Consider the equation system Eγ = b, where

E =

[
A> In
0 In

]
, γ =

[
λ
µ

]
, b =

[
c
0

]
,

and In is the identity matrix of order n.
Since each vertex of P is determined by p + n linearly independent equations from
the above equation system, there exist E is a nonsingular submatrix of E and b is a
subvector of b such that (λ̂, µ̂) is a solution to the system Eγ = b.
By the Cramer’s rule, we have

µ̂i =
det(Ep+i)

det(E)
, i = 1, ..., n,

here Ep+i is the matrix formed by replacing the (p+ i)th column of E by b.
We will prove that [E b] is a totally unimodular matrix, i.e. the determinant of each
square submatrix of [E b] is equal to 0, 1, or -1.
As the matrix A (resp. M) has exactly two nonzero elements 1 and -1 in each column,
according to Proposition 2.6 in [74], it is a totally unimodular matrix.
Let A be the matrix of size (p+ 1)× n defined by

A =

[
A
c>

]
Then the pth row of A is the sum of the sth and tth rows of M and the (p + 1)th row
of A is the sth row of M . We will show that A is also a totally unimodular matrix.
Indeed, suppose that B is a square submatrix of A.
• If the pth row of A does not appear in B then B is a submatrix of M , that is

det(B) ∈ {0, 1,−1}.
• If the (p+ 1)th row of A does not appear in B then B is a submatrix of A, and

hence det(B) ∈ {0, 1,−1}.
• If the last two rows of A appear in B then

det(B) = det(B1) + det(B2),

where B1 (resp. B2) is the matrix obtained from B by replacing the row corre-
sponding to the pth row of A with the row corresponding to the sth row (resp.
the tth row) of M . Moreover, det(B1) = 0 because the last two rows of B1

are identical, det(B2) ∈ {0, 1,−1} as B2 is a submatrix of M . It follows that
det(B) ∈ {0, 1,−1}.

Therefore A is a totally unimodular matrix. This implies that A
>

and consequently
[E b] is also a totally unimodular matrix. Since Ep+i and E are square submatrix of
[E b] and E is nonsingular, we have det(E) ∈ {1,−1}, det(Ep+i) ∈ {0, 1,−1}. As a
result, µ̂i ≤ 1 ∀i.

98 Bilevel optimization problems with binary upper level variables

Figure 4.1 – Rectangular grid network with n1 = 3, n2 = 4 [89]

4.4 Numerical results

The proposed algorithm was tested on some rectangular grid networks as in [89]. Figure
4.1 illustrates a network of this kind. Each network consists of m = n1n2 + 2 nodes
and n = 2n2(2n1 − 1) arcs where n1, n2 are the number of rows and columns of nodes
respectively. Arcs connecting the source node or sink node to other nodes have infinite
capacities and are impossible to be interdicted. The capacities of the other arcs are
randomly drawn from the discrete uniform distribution on [1, 49]. We also consider
three variants of these networks as in [89]. In the first one (A1), the interdiction cost
for each arc is 1, in the second one (A2), the interdiction cost for each arc is 1 or 2 and
in the third one (A3), the interdiction cost for each arc is 1, 2 or 3. For each variant,
we generate 10 networks with different sizes. We take α = 1.

To evaluate the performance of the DCA BP, we compare it with CPLEX software.
Our algorithm is implemented in Matlab R2016b and run on an HP computer Intel(R)
Core(TM) i5-3470 CPU, 3.2GHz, 8 Go of RAM. The problem (4.37) is solved by calling
CPLEX 12.6 in the MATLAB environment. In DCA BP, we take ε = 10−6, the penalty
parameter t = 1 and start DCA BP from the point x0 where x0

a = 1, ∀a ∈ A. For
CPLEX, the default parameters and the default initial point are used.

In the experiments, we compare the value of objective function obtained by DCA BP
and CPLEX as well as their computing time (in seconds). The computational results
are reported in the tables 4.1, 4.2 and 4.3. From these results, we observe that:
• In terms of the quality of solutions, DCA BP provides a global solution in all

cases except for data 10 in the networks A3. In that case, the relative difference
between the objective function value obtained by DCA BP and the optimal
value is small (3.3%).
• In terms of computing time, DCA BP is faster than CPLEX in all cases. For the

medium and large networks (data 6-10), the ratio of the runtime of DCA BP
to that of CPLEX ranges from 4.45 to 13.48. This ratio varies between 1.3 and
8.86 for the remaining networks.

Bilevel optimization problems with binary upper level variables 99

Table 4.1 – Comparative results of DCA BP and CPLEX on the networks A1

Objective value Computing time
data n1 n2 m n DCA BP CPLEX DCA BP CPLEX
1 3 4 14 40 3 3 0.0154 0.0200
2 4 8 34 112 4 4 0.0080 0.0262
3 5 5 27 90 5 5 0.0118 0.0243
4 6 10 62 220 6 6 0.0076 0.0375
5 8 12 98 360 8 8 0.0150 0.0437
6 10 20 202 760 10 10 0.0123 0.1187
7 15 25 377 1450 15 15 0.0282 0.3802
8 20 40 802 3120 20 20 0.1343 1.0173
9 30 60 1820 7080 30 30 0.5037 4.5644
10 40 80 3202 12640 40 40 1.3753 9.0624

Table 4.2 – Comparative results of DCA BP and CPLEX on the networks A2

Objective value Computing time
data n1 n2 m n DCA BP CPLEX DCA BP CPLEX
1 3 4 14 40 6 6 0.0114 0.0215
2 4 8 34 112 8 8 0.0083 0.0203
3 5 5 27 90 10 10 0.0086 0.0190
4 6 10 62 220 11 11 0.0067 0.0591
5 8 12 98 360 15 15 0.0081 0.0513
6 10 20 202 760 19 19 0.0145 0.1455
7 15 25 377 1450 29 29 0.0357 0.4634
8 20 40 802 3120 38 38 0.1429 1.2800
9 30 60 1820 7080 58 58 0.5700 3.6733
10 40 80 3202 12640 77 77 1.6043 10.3670

4.5 Conclusions

We investigated a class of bilevel problems in which the objective function is the sum
of a convex function and the value function of a linear program and the upper level
variables are binary. We first converted the bilevel problem into a standard DC pro-
gram via an exact penalty function and then designed a suitable DCA scheme to solve
the resulting problem. As an application, we considered an MFNI problem. Numerical
experiments on several randomly generated networks indicate that our method solves
this problem quite efficiently, it usually provides a global solution in a short time.

100 Bilevel optimization problems with binary upper level variables

Table 4.3 – Comparative results of DCA BP and CPLEX on the networks A3

Objective value Computing time
data n1 n2 m n DCA BP CPLEX DCA BP CPLEX
1 3 4 14 40 7 7 0.0094 0.0213
2 4 8 34 112 9 9 0.0073 0.0231
3 5 5 27 90 10 10 0.0094 0.0209
4 6 10 62 220 13 13 0.0075 0.0344
5 8 12 98 360 18 18 0.0080 0.0461
6 10 20 202 760 21 21 0.0155 0.1437
7 15 25 377 1450 33 33 0.0385 0.3905
8 20 40 802 3120 45 45 0.1518 1.3510
9 30 60 1820 7080 66 66 0.5961 3.5409
10 40 80 3202 12640 91 88 1.7269 7.6849

Chapter 5

Continuous equilibrium network
design problem

Abstract: In this chapter, we consider one of the most challenging problems in transportation,
namely the Continuous Equilibrium Network Design Problem (CENDP). This problem is to
determine capacity expansions of existing links in order to minimize the total travel cost plus
the investment cost for link capacity improvements, when the link flows are constrained to be
in equilibrium. We use the MPCC model for the CENDP and recast it as a general DC via
the use of a penalty technique. A DCA scheme is developed to solve the resulting problem.
Numerical results indicate the efficiency of our method vis-à-vis some existing algorithms.

5.1 Introduction

The network design problem is one of the critical problems in transportation due
to increasing demand for travel on roads. The purpose of this problem is to select
location to build new links or to determine capacity improvements of existing links
so as to optimize transportation network in some sense. A network design problem
is said to be continuous if it deals with divisible capacity expansions (expressed by
continuous variables). The CENDP consists of determining capacity enhancement of
existing links to minimize the sum of the total travel cost and the expenditure for
link capacity improvement, when the link flows are restricted to be in equilibrium.
The term “equilibrium” in this problem refers to the deterministic user equilibrium
which is defined that for each origin-destination pair, at equilibrium, the travel costs
on all utilized paths equal and do not exceed the travel cost on any unused path. The
CENDP is generally formulated as a bi-level program or mathematical program with
equilibrium constraints. In general, solving these problems is intractable because of
the nonconvexity of both the objective function and feasible region.

1. This chapter is published under the title:
Thi Minh Tam Nguyen, Hoai An Le Thi: A DC Programming Approach to the Continuous Equilib-
rium Network Design Problem. In “Advanced Computational Methods for Knowledge Engineering”,
Advances in Intelligent Systems and Computing, Volume 453, pp.3-16, Springer 2016.

101

102 Continuous equilibrium network design problem

Related works

Abdulaal and LeBlanc [1] are presumed to be pioneers studying the CENDP. They
stated this problem as a bi-level program and transformed it into an unconstrained
problem which was solved by the Hooke-Jeeves’ algorithm. To date, a number of
approaches have been proposed to address this CENDP, for example the equilibrium
decomposed optimization heuristics [96], sensitivity analysis based heuristic methods
[20], simulated annealing approach [19], augmented Lagrangian method [71], gradient-
based approaches [11]. More recently, David Z.W. Wang et al. [100] suggested a
method for finding the global solution to the linearized CENDP. These authors formu-
lated the CENDP as an MPCC and converted complementarity constraints into the
mixed-integer linear constraints. In addition, the travel cost functions were linearized
by introducing binary variables. As a result, the MPCC became a mixed-integer linear
program that was solved by using optimization software package CPLEX. However,
their method for solving the MPCC produces many new variables including a consid-
erable number of the binary variables and the mixed-integer linear program itself is a
hard problem.

Our contributions

This chapter aims to give a new approach based on DC programming and DCA to solve
the MPCC formulation for the CENDP. The difficulty of this MPCC problem resides
in the complementarity constraints and the non-convex travel cost functions. By intro-
ducing new variables and using a penalty technique, we reformulate the MPCC prob-
lem as a general DC program for which an appropriate DCA, named DCA CENDP,
is developed.

The rest of the chapter is organized as follows. In section 5.2, we present the MPCC
formulation of the CENDP. Section 5.3 discusses a solution method for the CENDP.
The numerical results are reported in section 5.4 and some conclusions are given in
section 5.5.

Continuous equilibrium network design problem 103

5.2 Problem formulation

The following notation is used throughout this paper.
A the set of links in the network.
W the set of origin-destination (OD) pairs.
Rw the set of paths connecting the OD pair w ∈ W.
qw the fixed travel demand for OD pair w.
δwap the indicator variables, δwap = 1 if link a is on path p between OD pair w, δwap = 0

otherwise.
fwp the flow on path p connecting OD pair w, f = [fwp].
xa the flow on link a, x = [xa],

xa =
∑
w∈W

∑
p∈Rw

δwapf
w
p .

ya the capacity of link a after expansion, y = [ya].
ya the capacity of link a before expansion, y = [ya].
ya the upper bound of ya.
πw the minimum travel cost between OD pair w.
ga(ya) the improvement cost for link a.
θ the relative weight of improvement costs and travel costs.
ta(xa,ya) the travel cost on link a,

ta(xa, ya) = Aa +Ba

(
xa
ya

)4

.

cwp the travel cost on path p between OD pair w, c = [cwp],

cwp =
∑
a∈A

δwapta(xa,ya).

In this chapter, we assume that ga is convex.

As mentioned in [100], the CENDP can be formulated as the following MPCC:

min
x,y,f,c,π

∑
a∈A

ta(xa,ya)xa + θ
∑
a∈A

ga(ya) (5.1)

subject to:
(i) Demand conservation and capacity expansion constraints:∑

p∈Rw

fwp = qw, w ∈ W, (5.2)

ya ≤ ya ≤ ya, a ∈ A. (5.3)

(ii) Deterministic user equilibrium constraints:

fwp (cwp − πw) = 0, p ∈ Rw, w ∈ W, (5.4)

cwp − πw ≥ 0, p ∈ Rw, w ∈ W. (5.5)

104 Continuous equilibrium network design problem

(iii) Definitional constraints:

xa =
∑
w∈W

∑
p∈Rw

δwapf
w
p , xa ≥ 0, a ∈ A, (5.6)

cwp =
∑
a∈A

δwap

[
Aa +Ba

(
xa
ya

)4
]
, p ∈ Rw, w ∈ W, (5.7)

fwp ≥ 0, p ∈ Rw, w ∈ W. (5.8)

5.3 Solution method by DC programming and

DCA

It is worth noting that [100]∑
a∈A

ta(xa,ya)xa =
∑
a∈A

ta(xa,ya)
∑
w∈W

∑
p∈Rw

δwapf
w
p =

∑
w∈W

∑
p∈Rw

∑
a∈A

ta(xa,ya)δ
w
apf

w
p

=
∑
w∈W

∑
p∈Rw

cwp f
w
p =

∑
w∈W

∑
p∈Rw

fwp πw =
∑
w∈W

qwπw.

Therefore, the objective function of the problem (5.1) is equal to∑
w∈W

qwπw + θ
∑
a∈A

ga(ya)

which is convex. However, the problem (5.1) is still a difficult problem due to the
nonconvexity of the feasible region which stems from complementarity constraints and
the non-convex travel cost functions. To handle this problem, the complementarity
constraints {

fwp (cwp − πw) = 0, fwp ≥ 0, cwp − πw ≥ 0
}

are replaced by {
min(fwp , c

w
p − πw) ≤ 0, fwp ≥ 0, cwp − πw ≥ 0

}
.

Besides, for a ∈ A, the new variables ua = x2a
y2a

are introduced to lessen the level of

complexity of the constraints (5.7).

The problem (5.1) can be rewritten as follows:

min
x,y,f,c,π,u

∑
w∈W

qwπw + θ
∑
a∈A

ga(ya)

s.t. (5.2), (5.3), (5.5), (5.6), (5.8),

min(fwp , c
w
p − πw) ≤ 0, p ∈ Rw, w ∈ W,

cwp −
∑
a∈A

δwap(Aa +Bau
2
a) = 0, p ∈ Rw, w ∈ W,

x2
a

ya
− uaya = 0, a ∈ A.

Continuous equilibrium network design problem 105

This problem is equivalent to the following problem:

min
x,y,f,c,π,u,v

∑
w∈W

qwπw + θ
∑
a∈A

ga(ya) (5.9)

s.t. (5.2), (5.3), (5.5), (5.6), (5.8),

min(fwp , c
w
p − πw) ≤ 0, p ∈ Rw, w ∈ W, (5.10)

cwp −
∑
a∈A

δwap(Aa +Bau
2
a) ≤ 0, p ∈ Rw, w ∈ W, (5.11)∑

a∈A

δwap(Aa +Bau
2
a)− cwp ≤ 0, p ∈ Rw, w ∈ W, (5.12)

x2
a

ya
− va ≤ 0, a ∈ A, (5.13)

va − uaya ≤ 0, a ∈ A, (5.14)

uaya −
x2
a

ya
≤ 0, a ∈ A. (5.15)

The problem (5.9) can be solved by transforming the constraints (5.10), (5.11) and
(5.13)-(5.15) into DC constraints and developing a DCA for the resulting problem.
However, when the total number of paths is large this method produces many DC
constraints. To diminish the number of these DC constraints, the constraints (5.10),
(5.11) of the problem (5.9) are penalized and we obtain the problem:

min F (X) =
∑
w∈W

qwπw + θ
∑
a∈A

ga(ya) + t1F1(X) + t2F2(X) (5.16)

s.t. X ∈ P,∑
a∈A

δwap(Aa +Bau
2
a)− cwp ≤ 0, p ∈ Rw, w ∈ W,

x2
a − vaya ≤ 0, a ∈ A,
va − uaya ≤ 0, a ∈ A,

uaya −
x2
a

ya
≤ 0, a ∈ A,

where

F1(X) =
∑
p,w

min(fwp , c
w
p − πw), F2(X) =

∑
p,w

(
cwp −

∑
a∈A

δwap(Aa +Bau
2
a)

)
,

P = {X = (x, y, f, c, π, u, v) | X satisfies (5.2), (5.3), (5.5), (5.6), (5.8) and ua ≥ 0, ∀a} .

Obviously, P is a polyhedral convex set in Rn with n = 4nL+ 2nP + nOD (nL is the
number of links, nP is the total number of paths, nOD is the number of OD pairs).

It is easy to prove that if an optimal solution X∗ to (5.16) satisfies F1(X∗) = 0 and
F2(X∗) = 0 then it is an optimal solution to the original problem. Furthermore,
according to Theorem 1.5 in Chapter 1, for large numbers t1, t2, the optimal solution

106 Continuous equilibrium network design problem

to the problem (5.16) will be in a region where F1, F2 are relatively small. For this
reason, we consider the penalized problem (5.16) with sufficiently large values of t1, t2.
Using the equalities

MN =
1

2
(M +N)2 − 1

2

(
M2 +N2

)
=

1

2

(
M2 +N2

)
− 1

2
(M −N)2,

the problem (5.16) can be reformulated as the general DC program below:

min G(X)−H(X) (5.17)

s.t. X ∈ P,∑
a∈A

δwap(Aa +Bau
2
a)− cwp ≤ 0, p ∈ Rw, w ∈ W,

Gia(X)−Hia(X) ≤ 0, i = 1, 2, 3; a ∈ A,

where G(X) =
∑
w∈W

qwπw + θ
∑
a∈A

ga(ya) + t2
∑
p,w

(
cwp −

∑
a∈A

δwapAa

)
,

H(X) = t1
∑
p,w

max(−fwp ,−cwp + πw) + t2
∑
p,w

(∑
a∈A

δwapBau
2
a

)
,

G1a(X) = x2
a +

1

2

(
v2
a + y2

a

)
, H1a(X) =

1

2
(va + ya)

2,

G2a(X) = va +
1

2

(
u2
a + y2

a

)
, H2a(X) =

1

2
(ua + ya)

2,

G3a(X) =
1

2
(u2

a + y2
a), H3a(X) =

x2
a

ya
+

1

2
(ua − ya)2.

Adapting Algorithm 1.3 for general DC programs presented in Chapter 1, we propose
a DCA for solving the problem (5.17). At each iteration k, we compute

Y k ∈ ∂H(Xk), Y k
ia ∈ ∂Hia(X

k), i = 1, 2, 3; a ∈ A

and then solve the following convex problem:

min G(X)− 〈Y k, X〉+ ts (5.18)

s.t. X ∈ P,∑
a∈A

δwap(Aa +Bau
2
a)− cwp ≤ 0, p ∈ Rw, w ∈ W,

Gia(X)−Hia(X
k)− 〈Y k

ia, X −Xk〉 ≤ s, i = 1, 2, 3; a ∈ A,
s ≥ 0.

A subgradient Y = (x̂, ŷ, f̂ , ĉ, π̂, û, v̂) ∈ ∂H(X) can be selected as follows:

x̂ = ŷ = 0, f̂wp =

{
−t1 if fwp < cwp − πw
0 otherwise

, ĉwp =

{
0 if fwp < cwp − πw
−t1 otherwise

(5.19)

π̂w =

{
0 if fwp < cwp − πw
t1 otherwise

, ûa = 2t2
∑
p,w

δwapBaua, v̂ = 0. (5.20)

Continuous equilibrium network design problem 107

Since Hia is differentiable, ∂Hia(X) = {∇Hia(X)} , i = 1, 2, 3; a ∈ A. Consider

Y = (x̂, ŷ, f̂ , ĉ, π̂, û, v̂), we have

Y = ∇H1a(X)⇔ x̂ = û = 0, f̂ = ĉ = 0, π̂ = 0, ŷa = v̂a = va + ya, (5.21)

Y = ∇H2a(X)⇔ x̂ = v̂ = 0, f̂ = ĉ = 0, π̂ = 0, ŷa = ûa = ua + ya, (5.22)

Y = ∇H3a(X)

⇔ x̂a =
2xa
ya

, ŷa = −x
2
a

y2
a

+ ya − ua, f̂ = ĉ = 0, π̂ = 0, v̂ = 0, ûa = ua − ya. (5.23)

The general DCA for solving (5.17) is summarized in the following algorithm.

Algorithm 5.1 DCA CENDP for solving the problem (5.17).

Initialization. Choose an initial point X0 ∈ Rn and a penalty parameter t = t0. Set
k = 0 and let ε1, ε2 be sufficiently small positive numbers.
Repeat

1. Compute Y k ∈ ∂H(Xk), Y k
ia ∈ ∂Hia(X

k), i = 1, 2, 3; a ∈ A via (5.19)-(5.23).
2. Compute (Xk+1, sk+1) as a solution to (5.18).
3. k ← k + 1.

Until

(
‖Xk −Xk−1‖
‖Xk−1‖+ 1

< ε1 or
|F (Xk) + tsk − (F (Xk−1) + tsk−1)|

|F (Xk−1) + tsk−1|+ 1
< ε1

)
and s ≤ ε2.

5.4 Numerical results

In order to illustrate the efficiency of the proposed algorithm, numerical experiments
were performed on a network consisting of 6 nodes and 16 links (Figure 5.1). This
network has been used to test the different algorithms for solving the CENDP (see,
e.g., [11, 19, 71, 96, 100]). The travel demand for this network was considered in two
cases (given in Table 5.1). The detailed data including the parameters of travel cost
functions and enhancement cost functions, the capacity of links before expansion, the
upper bound of the capacity improvements can be found in [19]. Our algorithm was
compared with eight other methods. The abbreviations for these methods and their
sources are listed in Table 5.2. We also made a comparison with a good lower bound
of the CENDP (mentioned in [11] and labeled as “SO”).

Table 5.1 – Level of travel demand

Case I Case II
Demand from node 1 to node 6 5 10
Demand from node 6 to node 1 10 20

Total travel demand 15 30

In the DCA CENDP, we took ε1 = ε2 = 10−6, the initial point was chosen as follows:

X0 = (x0, y0, f 0, c0, π0, u0, v0)

108 Continuous equilibrium network design problem

Figure 5.1 – 16-link network [11]

Table 5.2 – Abbreviation of method names

Abbreviation Name Source
EDO Equilibrium Decomposed Optimization [96]
SA Simulated Annealing algorithm [19]
AL Augmented Lagrangian algorithm [71]
GP Gradient Projection method [11]
CG Conjugate Gradient projection method [11]
QNEW Quasi-NEWton projection method [11]
PT PARATAN version of gradient projection method [11]
MILP Mixed-Integer Linear Program transformation [100]
DCA CENDP DC Algorithm for the CENDP this chapter

with

x0 = y0 = u0 = v0 = 0, f 0 = 0, cw,0p =
∑
a∈A

δwapAa, π
0
w = min

{
cw,0p : p ∈ Rw

}

The penalty parameters were taken to be t1 = 350, t2 = 100, t = 500 and t1 = 400, t2 =
100, t = 450 for the cases I and II respectively.

The computational results for the cases I and II are summarized in Table 5.3 and Table
5.4 respectively. These results are taken from the previous works (see [11, 100]) except
for the results of DCA CENDP. In Tables 5.3 and 5.4, we use the following notations:

• 4ya : the capacity enhancement on link a.

• Obj: the value of the objective function.

• Gap: the relative difference with respect to SO defined by

Gap(%) =
100(Obj− LB)

LB

where LB is the lower bound of the CENDP.

From Table 5.3 and Table 5.4, we observe that the value of the objective function
provided by DCA CENDP is quite close to the lower bound of the CENDP (the relative

Continuous equilibrium network design problem 109

Table 5.3 – Numerical results of DCA CENDP and the existing algorithms in case
I

EDO SA AL GP CQ QNEW PT MILP DCA CENDP SO
4y1 0 0 0 0 0 0 0 0 0 0
4y2 0 0 0 0 0 0 0 0 0 0
4y3 0.13 0 0.0062 0 0 0 0 0 0 0
4y4 0 0 0 0 0 0 0 0 0 0
4y5 0 0 0 0 0 0 0 0 0 0
4y6 6.26 3.1639 5.2631 5.8302 6.1989 6.0021 5.9502 4.41 4.8487 5.9979
4y7 0 0 0.0032 0 0 0 0 0 0 0
4y8 0 0 0 0 0 0 0 0 0 0
4y9 0 0 0 0 0 0 0 0 0 0
4y10 0 0 0 0 0 0 0 0 0 0
4y11 0 0 0.0064 0 0 0 0 0 0 0
4y12 0 0 0 0 0 0 0 0 0 0
4y13 0 0 0 0 0 0 0 0 0 0
4y14 0 0 0 0 0 0 0 0 0 0
4y15 0.13 0 0.7171 0.87 0.0849 0.1846 0.5798 0 0 0.1449
4y16 6.26 6.7240 6.7561 6.1090 7.5888 7.5438 7.1064 7.7 7.5621 7.5443
Obj 201.84 198.104 202.991 202.24 199.27 198.68 200.60 199.781 199.656 193.39
Gap 4.37 2.44 4.96 4.58 3.04 2.74 3.73 3.30 3.24 0

Table 5.4 – Numerical results of DCA CENDP and the existing algorithms in case
II

EDO SA AL GP CQ QNEW PT MILP DCA CENDP SO
4y1 0 0 0 0.1013 0.1022 0.0916 0.101 0 0 0.1165
4y2 4.88 0 4.6153 2.1818 2.1796 2.1521 2.1801 4.41 4.6144 2.1467
4y3 8.59 10.1740 9.8804 9.3423 9.3425 9.1408 9.3339 10.00 9.9166 9.3447
4y4 0 0 0 0 0 0 0 0 0 0
4y5 0 0 0 0 0 0 0 0 0 0
4y6 7.48 5.7769 7.5995 9.0443 9.0441 8.8503 9.0361 7.42 7.3442 9.0424
4y7 0.26 0 0.0016 0 0 0 0 0 0 0
4y8 0.85 0 0.6001 0.008 0.0074 0.0114 0.0079 0.54 0.5922 0
4y9 0 0 0.001 0 0 0 0 0 0 0
4y10 0 0 0 0 0 0 0 0 0 0
4y11 0 0 0 0 0 0 0 0 0 0
4y12 0 0 0.1130 0.0375 0.0358 0.0377 0 0 0 0
4y13 0 0 0 0 0 0 0 0 0 0
4y14 1.54 0 1.3184 0.0089 0.0083 0.0129 0.0089 1.18 1.3153 0
4y15 0.26 0 2.7265 1.9433 1.9483 1.9706 1.9429 0 0 1.7995
4y16 12.52 17.2786 17.5774 18.9859 18.986 18.575 18.9687 19.50 20 18.9875
Obj 540.74 528.497 532.71 534.017 534.109 534.08 534.02 523.627 522.644 512.013
Gap 5.61 3.22 4.04 4.30 4.32 4.31 4.30 2.27 2.08 0

difference is 3.24% and 2.08 % in the cases I and II respectively). In the case I with
the lower travel demand, DCA CENDP outperforms 5 out of 8 algorithms. Although
the value of the objective function given by DCA CENDP is not better than those
given by SA, CQ and QNEW, the relative difference between this value and the best
one (found by SA, a global optimization technique) is fairly small (0.78%). In the case
II, when the travel demand increases, DCA CENDP yields the value of the objective
function that is superior to those computed by all the other methods.

110 Continuous equilibrium network design problem

5.5 Conclusions

We proposed an algorithm based on DC programming and DCA CENDP for handling
the CENDP. We considered the MPCC formulation for this problem and employed a
penalty technique to reformulate it as a general DC program. Numerical experiments
on a small network indicate that DCA CENDP solves the CENDP more effectively
than the existing methods. Besides, the value of the objective function provided by
DCA CENDP is quite close to the lower bound of the CENDP. This shows that the
solution found by DCA CENDP may be global, even though DCA CENDP is a local
optimization approach.

Conclusions

In this dissertation, we studied three subclasses of mathematical programs with equi-
librium constraints (MPEC) and some important applications in networks, resource
allocations and transportation. Our approaches are based on DC (Difference of Con-
vex functions) programming and DCA (DC Algorithm), which are powerful solvers for
several difficult nonconvex optimization problems. The key idea of our work is the
penalty techniques which constitute the bridge between MPEC and DC programs. In
this spirit, the choice of penalty functions was carefully studied and validated by theo-
retical tools in order to get appropriate DC programs which are equivalent to original
problems (the DCLCC and the bilevel program, Chapters 2 and 4 respectively) and
are favorable for using DCA (the MPEC with DC objective function, Chapter 3). And
throughout the thesis, how to design efficient DCA based algorithms for the resulting
DC programs is our constant concern.

For DCLCC, the largest class of mathematical programs with linear complementar-
ity constraints (Chapter 2), using four penalty functions based on the min/Fischer-
Burmeister function to penalize the complementarity constraints, we reformulated the
DCLCC as standard DC programs. Generally speaking, standard DC programs (convex
constraints) are easier than general DC programs (including DC constrains). However,
it is not the same in our work: for two of four DC programs, reformulating them as
general DC programs are more suitable for investigating DCA. Interestingly, numeri-
cal results to the quadratic programs with linear complementarity constraints and the
asymmetric eigenvalue complementarity problems showed that the two corresponding
general DCAs are more efficient to tackle the complementarity constraints than the
two standard DCAs. Moreover, for these two problems, all DCA schemes consist of
solving iteratively convex quadratic problems with linear constraints. The numerical
experiments on several benchmark data indicated the efficiency of our approaches and
their superiority comparing with the KNITRO solver and a previous DCA scheme for
the asymmetric eigenvalue complementarity problems. Our approaches can be applied
to DCLCC problems with a large number of complementarity constraints.

For DC programs with variational inequality constraints (which is also a large class
of problems of MPEC, Chapter 3), we have voluntarily chosen the penalty function
having special properties (it is a continuously differentiable function with Lipschitz
continuous gradient) so that the penalized problem is a DC program with an efficient
DC decomposition. Furthermore, we proposed a variant of DCA, DCA ρ, for improv-
ing DCA. Moreover, we improve further DCA ρ, by its accelerated version, ADCA ρ,

111

112 Conclusions

that incorporates an extrapolation step at each iteration. We proved that the conver-
gence properties of DCA still valid for these advanced versions. These DCAs become
quite simple for the special case where the objective function is continuously differ-
entiable with Lipschitz continuous gradient. Numerical experiments on an important
application - the second-best toll pricing problem with fixed demands, through three
networks with data taken from MacMPEC show that in general, ADCA ρ is better
than DCA ρ and both two algorithms are superior to DCA and KNITRO. These DCA
versions could be useful for other applications of MPEC.

As for the bilevel problem studied in Chapter 4, exploiting its special structure, we
can formulate it as a DC program with binary variables. Thanks to exact penalty
techniques for DC programs recently developed, we reformulated this combinatorial
problem as a standard DC program and then proposed a suitable DCA scheme for the
resulting problem. The proposed DCA enjoys interesting properties when the convex
part in the objective function is linear: the sequence generated by DCA is always
binary. Furthermore, the DCA scheme in this case is very inexpensive, it successively
solves box constrained linear programs whose solutions are explicitly computed. In our
experiments, we considered an maximum flow network interdiction problem and also
proposed a mixed integer linear program formulation, which can be globally solved
by the CPLEX software. Numerical results on several randomly generated networks
indicated that our method is efficient, it usually provides a global solution in a short
time.

Finally, for handling the continuous equilibrium network design problem (CENDP,
Chapter 5), a very hard application of MPCC, the min function was used in our penalty
technique and the MPCC was reformulated as a general DC program. Even when the
complementarity constraints are penalized, this general DC program is still very hard.
To date, the existing approach for the MPCC formulation of the CENDP can deal
only with small networks. Preliminary numerical results showed the superiority of
DCA with respect to eight existing methods.

In summary, we have offered several DCA based schemes for MPECs, a classical and
challenging topic of nonconvex optimization. As we addressed large classes of prob-
lems, these DCAs can be exploited to solve numerous models of MPECs and their
applications in various domains. The promising numerical results suggested us to de-
velop DC programming and DCA for other classes and other applications of MPECs.

We can improve further the proposed approaches to get a better performance by study-
ing the remaining issues which have not yet been considered in this dissertation.

The first is the value of penalty parameters. In one hand, the penalty techniques
require a sufficiently large penalty parameter, but such a value can not be computed
exactly in general. In another hand, a quite large penalty parameter may make DCA
inefficient. While a good theoretical choice for this parameter is still an open question,
we believe that advanced DCA version such as DCA ρ, could be good to overcome this
issue from computational point of views.

The second concerns the methods for convex subproblems in DCA based algorithms.

Conclusions 113

To deal with large-scale setting, scalable and efficient algorithms for convex subprob-
lems should be investigated. For instance, we have used CPLEX solvers for convex
quadratic programs. Fast and scalable algorithms such as the combined DCA-interior
point methods [83] should be used for large-scale problems.

The third issue is the development of advanced DCA based algorithms such as DCA ρ,
ADCA ρ to DCLCC and other problems considered in this thesis.

Finally, our work has been only concerned with deterministic models while uncertainty
is often presented in practice. Thus, it could be interesting to study stochastic models
and methods to deal with problems involving uncertain data. In future works, we will
investigate DC programming and DCA for stochastic variational inequality problems
and stochastic complementarity problems.

114 Conclusions

Bibliography

[1] Abdulaal, M. and LeBlanc, L. J. (1979). Continuous equilibrium network design
models. Transportation Research Part B, 13:19–32.

[2] Akgün, I., Barbaros, C. T., and Wood, R. K. (2011). The multi-terminal maximum-
flow network-interdiction problem. European Journal of Operational Research,
211:241–251.

[3] Audet, C., Hansen, P., Jaumard, B., and Savard, G. (1997). Links between linear
bilevel and mixed 0-1 programming problems. J. Optim. Theory Appl., 93(2):273–
300.

[4] Audet, C., Savard, G., and Zghal, W. (2007). New Branch-and-Cut Algorithm for
Bilevel Linear Programming. J. Optim. Theory. Appl., 134:353–370.

[5] Bard, J. F. (1991). Some properties of the bilevel programming problem. J. Optim.
Theory Appl., 68:371–378.

[6] Bard, J. F. and Mooreise, J. T. (1990). A branch and bound algorithm for the
bilevel programming problem. SIAM J. Sci. Stat. Comput., 11(2):281–292.

[7] Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (2006). Nonlinear programming
Theory and Algorithms. John Wiley and Sons, Inc., third edition.

[8] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM J. Imaging Sci., 2(1):183–202.

[9] Burch, C., Carr, R., Krumke, S., Marathe, M., Phillips, C., and E., S. (2003). Net-
work Interdiction and Stochastic Integer Programming, volume 22 of Operations Re-
search/Computer Science Interfaces Series, chapter A Decomposition-Based Pseu-
doapproximation Algorithm for Network Flow Inhibition, pages 51–68. Springer,
Boston, MA.

[10] Burdakov, O. P., Kanzow, C., and Schwartz, A. (2016). Mathematical programs
with cardinality constraints: Reformulation by complementarity-type constraints
and a regularization method. SIAM J. Optim., 26(1):397–425.

[11] Chiou, S.-W. (2005). Bilevel programming for the continuous transport network
design problem. Transportation research part B, 39:361–383.

115

116 Bibliography

[12] Demiguel, V., Friedlander, M. P., Nogales, F. J., and Scholtes, S. (2005). A two-
sided relaxation scheme for mathematical programs with equilibrium constraints.
SIAM J. Optim., 16(2):587–609.

[13] Douglas S. Altner, D. S., Ergun, O., and Uhan, N. A. (2010). The maximum flow
network interdiction problem: Valid inequalities, integrality gaps, and approxima-
bility. Operations Research Letters, 38:33–38.

[14] Edmunds, T. A. and Bard, J. F. (1992). An algorithm for the mixed-integer
nonlinear bilevel programming problem. Annals of Operations Research, 34:149–
162.

[15] Facchinei, F., Jiang, H., and Qi, L. (1999). A smoothing method for mathematical
programs with equilibrium constraints. Math. Program., 85:107–134.

[16] Facchinei, F. and Pang, J. S. (2003). Finite-Dimensional Variational Inequalities
and Complementarity Problems, volume II. Springer.

[17] Fontaine, P. and Minner, S. (2014). Benders decomposition for discrete-continuous
linear bilevel problems with application to traffic network design. Transportation
Research Part B, 70:163–172.

[18] Ford, L. and Fulkerson, D. (1962). Flows in Networks. Princeton University Press,
Princeton, New Jersey.

[19] Friesz, T. L., Cho, H. J., Mehta, N. J., Tobin, R. L., and Anandalingam, G. (1992).
A simulated annealing approach to the network design problem with variational
inequality constraints. Transportation Science, 26(1):18–26.

[20] Friesz, T. L., Tobin, R. L., Cho, H. J., and Mehta, N. J. (1990). Sensitivity analysis
based heuristic algorithms for mathematical programs with variational inequality
constraints. Math. Program., 48:265–284.

[21] Fukushima, M., Luo, Z. Q., and Pang, J. S. (1998). A globally convergent se-
quential quadratic programming algorithm for mathematical programs with linear
complementarity constraints. Comput. Optim. Appl., 10:5–34.

[22] Fukushima, M. and Pang, J. S. (1999). Convergence of a smoothing continuation
method for mathematical problems with complementarity constraints. In Théra,
M. and Tichatschke, R., editors, Ill-posed Variational Problems and Regularization
Techniques, volume 477 of Lecture Notes in Economics and Mathematical Systems,
pages 99–101. Springer, Berlin, Heidelberg.

[23] Ghare, P., Montgomery, D., and Turner, W. (1971). Optimal interdiction policy
for a flow network. Naval Research Logistics Quarterly, 18(1):37–45.

[24] Gümüs, Z. and Floudas, C. (2005). Global optimization of mixed-integer bilevel
programming problems. Comput. Manag. Sci., 2:181–212.

[25] Haddou, M. (2009). A new class of smoothing methods for mathematical programs
with equilibrium constraints. Pacific Journal of Optimization, 5(1):86–96.

Bibliography 117

[26] Harker, P. T. and Choi, S. (1991). A penalty function appoach for mathematical
programs with variational inequality constraints. Information and Decision Tech-
nologies, 17:41–50.

[27] Hobbs, B. F., Metzler, C. B., and Pang, J. S. (2000). Strategic gaming analysis for
electric power systems: an MPEC approach. IEEE Trans. Power Syst., 15(2):638–
645.

[28] Hu, J., Mitchell, J. E., Pang, J. S., and Yu, B. (2012). On linear programs with
linear complementarity constraints. J. Global Optim., 53:29–51.

[29] Hu, X. and Ralph, D. (2004). Convergence of a penalty method for mathematical
programming with equilibrium constraints. J. Optim. Theory Appl., 123:365–390.

[30] Huang, X. X., Yang, X. Q., and Zhu, D. L. (2006). A sequential smooth penaliza-
tion approach to mathematical programs with complementarity constraints. Numer.
Func. Anal. Opt., 27(1):71–98.

[31] Jara-Moroni, F., Pang, J. S., and Wächter, A. (2018). A study of the difference-
of-convex approach for solving linear programs with complementarity constraints.
Math. Program., Special Issue: DC Programming - Theory, Algorithms and Appli-
cations, 169(1):221–254.

[32] Jiang, H. and Ralph, D. (2003). Extension of quasi-newton methods to mathemat-
ical programs with complementarity constraints. Comput. Optim. Appl., 25:123–150.

[33] Jiang, S., Zhang, J., Chen, C., and Lin, G. (2018). Smoothing partial exact
penalty splitting method for mathematical programs with equilibrium constraints.
J. Glob. Optim., 70(1):223–236.

[34] Júdice, J. J. (2014). Optimization with linear complementarity constraints.
Pesquisa Operacional, 34:559–584.

[35] Júdice, J. J., Sherali, H. D., and Ribeiro, I. M. (2007). The eigenvalue comple-
mentarity problem. Comput. Optim. Appl., 37:139–156.

[36] Júdice, J. J., Sherali, H. D., Ribeiro, I. M., and Faustino, A. M. (2006). A
complementarity-based partitioning and disjunctive cut algorithm for mathematical
programming problems with equilibrium constraints. J. Global Optim., 36:89–114.

[37] Kadrani, A., Dussault, J. P., and Benchakroun, A. (2009). A new regularization
scheme for mathematical programs with complementarity constraints. SIAM J.
Optim., 20(1):78–103.

[38] Kanzow, C. and Schwartz, A. (2013). A new regularization method for mathemat-
ical programs with complementarity constraints with strong convergence properties.
SIAM J. Optim. , 23(2):770–798.

[39] Kunapuli, G., Bennett, K. P., Hu, J., and Pang, J. S. (2008). Classification model
selection via bilevel programming. Optim. Methods Softw., 23:475–489.

118 Bibliography

[40] Lawphongpanich, S. and Hearn, D. W. (2004). An MPEC approach to second-best
toll pricing. Math. Program. Ser.B, 101:33–55.

[41] Le Thi, H. A. (1997). Contribution à l’optimisation non convexe et l’optimisation
globale: Théorie, algorithmes et applications. Habilitation à Diriger des Recherches,
Université de Rouen, France.

[42] Le Thi, H. A. (2005). DC Programming and DCA: http:

//www.lita.univ-lorraine.fr/~lethi/index.php/en/research/

dc-programming-and-dca.html(homepage).

[43] Le Thi, H. A., Huynh, V. N., and Pham Dinh, T. (2014). DC Programming and
DCA for general DC Programs. In Do van, T., Le Thi, H. A., and Nguyen, N. T.,
editors, Advanced Computational Methods for Knowledge Engineering, Advances in
Intelligent Systems and Computing, pages 15–35. Springer, Cham.

[44] Le Thi, H. A., Moeini, M., Pham Dinh, T., and Júdice, J. J. (2012a). A DC pro-
gramming approach for solving the symmetric Eigenvalue Complementarity Prob-
lem. Comput. Optim. Appl., 51(3):1097–1117.

[45] Le Thi, H. A. and Pham Dinh, T. (2005). The DC (difference of convex func-
tions) programming and DCA revisited with DC models of real world nonconvex
optimization problems. Ann. Oper. Res., 133:23–46.

[46] Le Thi, H. A. and Pham Dinh, T. (2011). On solving linear complementarity
problems by DC programming and DCA. Comput. Optim. Appl., 50:507–524.

[47] Le Thi, H. A. and Pham Dinh, T. (2018). DC programming and DCA: thirty
years of developments. Math. Program., Special Issue: DC Programming - Theory,
Algorithms and Applications, 169(1):5–68.

[48] Le Thi, H. A., Pham Dinh, T., and Huynh, V. N. (2012b). Exact penalty and
error bounds in DC programming. J. Global Optim., 52:509–535.

[49] Le Thi, H. A., Pham Dinh, T., Nguyen Canh, N., and Nguyen, V. T. (2009). DC
programming techniques for solving a class of nonlinear bilevel programs. J. Global
Optim., 44:313–337.

[50] Le Thi, H. A., Phan, D. N., and Pham Dinh, T. (2018). Advanced DCA based
algorithms for nonconvex programming. Technical Report, University of Lorraine,
37 pages.

[51] Le Thi, H. A., Tran, D. Q., and Pham Dinh, T. (2012c). A DC programming
approach for a class of bilevel programming problems and its application in portfolio
selection. Numer. Algebra Control Optim., 2(1):167–185.

[52] Leyffer, S. (2000). MacMPEC http://wiki.mcs.anl.gov/leyffer/index.php/

MacMPEC (webpage).

[53] Leyffer, S., Lopez-Calva, G., and Nocedal, J. (2006). Interior methods for mathe-
matical programs with complementarity constraints. SIAM J. Optim., 17(1):52–77.

Bibliography 119

[54] Li, C., Yang, H., Zhu, D., and Meng, Q. (2012a). A global optimization method for
continuous network design problems. Transportation research Part B, 46:1144–1158.

[55] Li, H. and Lin, Z. (2015). Accelerated proximal gradient methods for nonconvex
programming. In Advances in Neural Information Processing Systems 28.

[56] Li, Y., Tan, T., and Li, X. (2012b). A log-exponential smoothing method for
mathematical programs with complementarity constraints. Appl. Math. Comput.,
218:5900–5909.

[57] Lim, C. and Smith, J. C. (2007). Algorithms for discrete and continuous multi-
commodity flow network interdiction problems. IIE Transactions, 39(1):15–26.

[58] Lin, G. H. and Fukushima, M. (2003). Some exact penalty results for nonlin-
ear programs and mathematical programs with equilibrium constraints. J. Optim.
Theory Appl., 118(1):67–80.

[59] Lin, G. H. and Fukushima, M. (2005). Modified relaxation scheme for mathemat-
ical programs with complementarity constraints. Ann. Oper. Res., 133:63–84.

[60] Lipp, T. and Boys, S. (2016). Variations and extension of the convex-concave
procedure. Optim. Eng., 17:263–287.

[61] Liu, G., Ye, J., and Zhu, J. (2008). Partial exact penalty for mathematical pro-
grams with equilibrium constraints. Set-Valued Anal., 16:785–804.

[62] Liu, G. S. and Ye, J. J. (2007). Merit-function piecewise SQP algorithm for math-
ematical programs with equilibrium constraints. J. Optim. Theory Appl., 135:623–
641.

[63] Liu, G. S. and Zhang, J. Z. (2002). A new branch and bound algorithm for
solving quadratic programs with linear complementarity constraints. J. Comput.
Appl. Math., 146:77–87.

[64] Liu, X. and Sun, J. (2004). Generalized stationary points and an interior-point
method for mathematical programs with equilibrium constraints. Math. Program.,
101:231–261.

[65] Luo, Z. Q., Pang, J. S., Ralph, D., and Wu, S. Q. (1996a). Exact penalization
and stationarity conditions of mathematical programs with equilibrium constraints.
Mathematical Programming, 75:19–76.

[66] Luo, Z. Q., Pang, J. S., and Raplp, D. (1996b). Mathematical Programs with
Equilibrium Constraints. Cambridge University Press.

[67] Mangasarian, O. L. and Pang, J. S. (1997). Exact penalty for mathematical
programs with linear complementarity constraints. Optimization, 42:1–8.

[68] Marcotte, P. and Zhu, D. (1996). Exact and inexact penalty methods for the
generalized bilevel programming problem. Math. Program., 74:141–157.

120 Bibliography

[69] Mari, R. (2014). Integer Bilevel Linear Programming Problems: New Results and
Applications. PhD thesis, University of Rome.

[70] McMasters, A. and Mustin, T. (1970). Optimal interdiction of a supply network.
Naval Research Logistics Quarterly, 17:261–268.

[71] Meng, Q., Yang, H., and Bell, M. G. H. (2001). An equivalent continuously
differentiable model and a locally convergent algorithm for the continuous network
design problem. Transportation Research Part B, 35:83–105.

[72] Muu, L. and Nguyen, V. Q. (2007). On branch-and-bound algorithms for global
optimal solutions to mathematical programs with affine equilibrium constraints.
Vietnam Journal of Mathematics, 35(4):523–539.

[73] Muu, L. D., Tran Dinh, Q., Le Thi, H. A., and Pham Dinh, T. (2012). A new
decomposition algorithm for globally solving mathematical programs with affine
equilibrium constraints. Acta Math. Vietnam., 37(2):201–218.

[74] Nemhauser, G. and Wolsey, L. (1988). Integer and Combinatorial Optimization.
John Wiley and Sons, Inc.

[75] Niu, Y. S., Júdice, J., Le Thi, H. A., and Pham Dinh, T. (2015). Solving the
quadratic eigenvalue complementarity problem by DC programming. In Le Thi,
H. A., Pham Dinh, T., and Nguyen, N. T., editors, Modelling, Computation and
Optimization in Information Systems and Management Sciences, volume 359 of Ad-
vances in Intelligent Systems and Computing, pages 203–214.

[76] Niu, Y. S., Pham Dinh, T., Le Thi, H. A., and Júdice, J. J. (2013). Efficient DC
programming approaches for the asymmetric eigenvalue complementarity problem.
Optim. Methods Softw., 28(4):812–829.

[77] Outrata, J. (1994). On optimization problems with variational inequality con-
straints. SIAM J. Optim., 4(2):340–357.

[78] Outrata, J. and Zowe, J. (1995). A numerical approach to optimization problems
with variational inequality constraints. Math. Program., 68:105–130.

[79] Pang, J. S. and Leyffer, S. (2004). On the global minimization of the Value-at-
Risk. Optim. Methods Softw., 19:611–631.

[80] Pham, N. A. and Le, D. M. (2006). Lagrangian duality algorithms for finding
a global optimal solution to mathematical programs with affine equilibrium con-
straints. Nonlinear Dynamics and Systems Theory, 6(3):225–244.

[81] Pham Dinh, T. and Le Thi, H. A. (1997). Convex analysis approach to D.C. pro-
gramming: theory, algorithms and applications. Acta Math. Vietnam., 22(1):289–
355.

Bibliography 121

[82] Pham Dinh, T. and Le Thi, H. A. (2014). Recent advances in DC programming
and DCA. In Nguyen, N. T. and Le Thi, H. A., editors, Transactions on Com-
putational Collective Intelligence XIII, volume 8342 of Lecture Notes in Computer
Science, pages 1–37. Springer, Berlin, Heidelberg.

[83] Pham Dinh, T., Le Thi, H. A., and Akoa, F. (2008). Combining DCA (DC
Algorithms) and interior point techniques for large-scale nonconvex quadratic pro-
gramming. Optim. Methods Softw., 23(4):609–629.

[84] Phan, D. N., Le, H. M., and Le Thi, H. A. (2018). Accelerated difference of
convex functions algorithm and its application to sparse binary logistic regression.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence,
IJCAI-18, Stockholm, Sweden, July 13-19, 2018.

[85] Pieper, H. (2001). Algorithms for Mathematical Programs with Equilibrium Con-
straints with applications to deregulated electricity market. PhD thesis, Standford
University.

[86] R. T.Hiriart-Urruty, J.-B. and Lemaréchal, C. (2001). Fundamentals of Convex
Analysis. Springer-Verlag Berlin Heidelberg.

[87] Raghunathan, A. U. and Biegler, L. T. (2002). Barrier methods for mathematical
programs with complementarity constraints (MPCCs). Technical report, Carnegie
Mellon University, Department of Chemical Engineering, Pittsburgh, PA.

[88] Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.

[89] Royset, J. O. and Wood, R. K. (2007). Solving the bi-objective maximum-flow
network-interdiction problem. INFORMS Journal on Computing, 19(2):175–184.

[90] Scheel, H. and Scholtes, S. (2000). Mathematical programs with complementarity
constraints: stationary, optimality, and sensitivity. Math. Oper. Res., 25(1):1–22.

[91] Scholtes, S. (2001). Convergence properties of a regularization scheme for math-
ematical programs with complementarity constraints. SIAM J. Optim., 11(4):918–
936.

[92] Scholtes, S. and Stöhr, M. (1999). Exact penalization of mathematical programs
with equilibrium constraints. SIAM J. control Optim., 37(2):617–652.

[93] Sinha, A., Malo, P., and Deb, K. (2018). A review on bilevel optimization: From
classical to evolutionary approaches and applications. IEEE transactions on evolu-
tionary computation, 22(2):276–295.

[94] Steffensen, S. and Ulbrich, M. (2010). A new relaxation scheme for mathematical
programs with equilibrium constraints. SIAM J. Optim., 20(5):2504–2539.

[95] Sullivan, K. M. and Smith, J. C. (2014). Exact algorithms for solving a euclidean
maximum flow network interdiction problem. Networks, 64(2):109–124.

122 Bibliography

[96] Suwansirikul, C., Friesz, T. L., and Tobin, R. L. (1987). Equilibrium decom-
posed optimization: a heuristic for continuous equilibrium network design problem.
Transportation Science, 21(4):254–263.

[97] U.P., W. and A.D., H. (1996). A simple tabu search method to solve the mixed-
integer linear bilevel programming problem. European Journal of Operational Re-
search, 88:563–571.

[98] Veelken, S. (2008). A new relaxation scheme for mathematical programs with
equilibrium constraints. PhD thesis, Technische Universität München.

[99] Vicente, L. N., Savard, G., and Judice, J. J. (1996). Discrete linear bilevel pro-
gramming problem. J. Optim. Theory Appl., 89(3):597–614.

[100] Wang, D. Z. W. and Lo, H. K. (2010). Global optimum of the linearized network
design problem with equilibrium flows. Transportation Research Part B, 44(4):482–
492.

[101] Wen, U. P. and Yang, Y. H. (1990). Algorithms for solving the mixed integer two-
level linear programming problem. Computers and Operations Research, 17(2):133–
142.

[102] Wollmer, R. (1964). Removing arcs from a network. Operations Research,
12(6):934–940.

[103] Wood, R. (1993). Deterministic network interdiction. Mathematical and Com-
puter Modelling, 17(2):1–18.

[104] Yao, Q., Kwok, J. T., Gao, F., Chen, W., and Liu, T.-Y. (2017). Efficient
inexact proximal gradient algorithm for nonconvex problems. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17),
pages 3308–3314.

[105] Ye, J. J., Zhu, D. L., and Zhu, Q. J. (1997). Exact penalization and neces-
sary optimality conditions for generalized bilevel programming problems. SIAM J.
Optim., 7(2):481–507.

[106] Yu, B. (2011). A Branch and cut approach to linear programs with linear com-
plementarity constraints. PhD thesis, Rensselaer Polytechnic Institute.

	Titre
	Remerciements
	Contents
	Résumé
	Abstract
	Introduction générale
	Chapter 1 Preliminary
	1.1 DC programming and DCA
	1.1.1 Fundamental convex analysis
	1.1.2 Standard DC optimization
	1.1.3 General DC optimization

	1.2 Penalty Techniques

	Chapter 2 DC Programs with Linear Complementarity Constraints
	2.1 Introduction
	2.2 Stationarity concepts
	2.3 Solution methods based on DC programming and DCA
	2.3.1 Reformulations of the DCLCC via penalty functions
	2.3.2 Standard DCA schemes for solving the penalized prob-lem when p ∈ {p1; p2}
	2.3.3 General DCA schemes for solving the penalized prob-lem when p∈{p3; p4}
	2.3.4 Performance analysis on DCA based algorithms

	2.4 Applications
	2.4.1 Quadratic problems with linear complementarity con-straints
	2.4.2 Asymmetric eigenvalue complementarity problems

	2.5 Numerical experiments
	2.5.1 Numerical results on QPLCCs
	2.5.2 Numerical results on EiCPs
	2.5.2.1 DCA based algorithms and KNITRO solver
	2.5.2.2 Ei-DCA3 and DCA-NLP

	2.6 Conclusions

	Chapter 3 DC Programs with variational inequality constraints
	3.1 Introduction
	3.2 Solution methods
	3.2.1 Reformulation of the MPEC (3.1)
	3.2.2 DCA based algorithms

	3.3 A particular case: the objective function has Lipschitz continuous gradient
	3.4 Application to the second-best toll pricing problem with fixed demands
	3.5 Numerical experiments
	3.6 Conclusions

	Chapter 4 A class of bilevel optimization problems with binary upper level variables
	4.1 Introduction
	4.2 Solution method
	4.2.1 Exact penalty formulation for the problem (4.3)
	4.2.2 Solving the penalized problem by DCA

	4.3 Application to a maximum ow network inter-diction problem
	4.3.1 Related works
	4.3.2 Problem formulation
	4.3.3 MILP formulation of (4.17)

	4.4 Numerical results
	4.5 Conclusions

	Chapter 5 Continuous equilibrium network design problem
	5.1 Introduction
	5.2 Problem formulation
	5.3 Solution method by DC programming and DCA
	5.4 Numerical results
	5.5 Conclusions

	Conclusions
	Bibliography

