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Chapter 1

Introduction

1.1 Environmental framework

From 1972, when the United Nation Conference on Human Environment took place in Stockholm[1],
to the signature of the Paris Agreement within the United Nations Framework Convention on
Climate Change[2] where 195 countries agreed to reduce their emissions of greenhouse gases,
many things have changed in our perception of environmental issues. Concerns about the impact
of human activities on climate changes have grown exponentially together with the findings of
scientific evidence in this direction (figure 1.1). Once the threat is identified, measures need to
be taken to reduce emissions of greenhouse gases.
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Figure 1.1: Evolution of carbon emissions worldwide from 1860 to 2010. Source. U.S. Department
of Energy[3]

In figure 1.2, emissions are broken down by economic sector. This classification of the most
pollutant economic activities elaborated by the International Panel On Climate Change (IPCC),
provides also information about the sector with higher potential for reductions.

In this context, the development of clean technologies with the ability to substitute to some
extent the processes with a high impact on carbon emissions becomes a priority for all the act-
ors engaged in environmental issues. Thus, both the industrial budget and public resources
to fund research related to green technologies have increased over the last years. One of the
projects financed by the Spanish government is Development of New Working Fluids, Components
and Configurations for High Performance Absorption Heat Pumps-AHP2 in which this PhD thesis is
included.
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Figure 1.2: Evolution of carbon emissions. Source. IPCC[4]

1.2 Cooling/Heating technologies

Given that heat generation is responsible for an important part of the energy consumption and
the cooling demands also largely contributes to energy consumption in industrial and domestic
sectors[5], companies and public administrations[6] efforts are focused on the development of
technologies leading to a reduction of their carbon print.

A scheme with the Best Available Technologies (BATs) for heat and cold production is shown in
figure 1.3. Technologies are classified regarding their thermal output (heat or cold).

BATs
for thermall energy supply

Heating

Boilers (fuels
and electric)

Solar

Cooling
Free cooling

Cooling tower

Heating/cooling

Mechanically 
driven HP

Thermally driven 
HP

Figure 1.3: Scheme of technologies to produce thermal energy in industry and domestic sectors.

Among the systems to produce heat, we can distinguish between those using boilers and
those using solar collectors where heat is transferred to a fluid which distributes it to the de-
manding point.

• Boilers. In electric boilers hot water is produced directly from electricity. Current passing
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through an electrical resistance according to Joule’s effect. Main advantage of electric boil-
ers is that they allow producing heat when there is an excess on energy production, mainly
due to production peaks due to favorable atmospheric conditions, such as windy days
which give rise to large production in wind turbines. However, the use of electric boilers
is not recommended when energy sources are fossil fuels since the efficiency of the global
process would decay strongly. On the other hand, boilers using fuel vary depending on
the source used, from the most pollutant such as coal to the most environmentally friendly
such as biomass. However, all of them operate according to the same principle, conversion
of the combustion enthalpy of the fuel to produce either hot water steam. Boilers are a
mature technology largely use either in domestic or industrial sectors.

• Solar heating. Solar heating systems use solar collectors and a liquid handling unit to
transfer heat to the load generally by using storage[5]. Depending on the energy final use,
additional heat generation capacity may be needed. This additional heat can be obtained by
boilers or by combined heat and power plants. Solar heating represents an environmentally
attractive technology, however, systems should be properly dimensioned together with a
suitable storage system to ensure heating demands are reached, no matter what the climate
conditions are.

As indicated in scheme 1.3, cooling systems are mainly based on the use of natural sources
of water and therefore, they are subjected to the availability of water close to the point of cooling
demand.

• Ground water cooling. Ground water (or seawater) can be a source to supply cooling de-
mands when the required temperature is above ambient temperatures. The capacity of this
technology will depend on the ground water conditions. Energy inputs will be only the
consume of the circulation pumps, so it can be considered CO2-free.

• Cooling tower. Cooling towers uses the wet bulb principle to reduce the temperature of
water letting air pass trough the water volume. The partial evaporation of the water volume
leads to the reduction of the temperature of the liquid volume.

In a third group, we have heat pumps (HPs). Regardless of their energy source, HPs have the
capability of providing heat and cold. HPs are more sophisticated than the technologies already
described, and nowadays we can find them in an enormous number of applications.

• Mechanically driven HP. Heat pumps are thermodynamic devices with the capability of
providing alternatively heat or cold. Their massive implementation for industrial or do-
mestic uses is related to their versatility. HPs draw heat from a point and take it to a
different one using a closed thermodynamic cycle. When they are mechanically driven, a
key stage takes place in the compressor, where an electrically driven compressor rises the
pressure of the heat transfer fluid. The main drawback of this technology is related with its
intensive consumption of electric energy. Since its production demands a large amount of
fossil fuels the net emissions of these devices are still important, mainly when we compare
it with an alternative technology, such as absorption heat pumps (AHPs).

• Thermally driven HP. Heat pumps are, in general, less pollutant than systems based on the
combustion of fuels. However, since mechanical heat pumps are driven by electric power,
the resources and the emissions in production of the electric power should be included in
the environmental impact of this technology.
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1.3 Application: Absorption heat pumps

AHPs are today a mature technology[7, 8, 9] that may reduce the environmental impact of stand-
ard systems since they allow using thermal energy coming from residual heat currents or renew-
able sources to produce useful heat/cold. Main difference with traditional heat pumps is that
AHPs are driven by thermal energy instead of using electric power, as it is shown in figure 1.4.

In AHP, the mechanical compression of the refrigerant, responsible of the large consumption
of electric energy, is substituted by an absorption/desorption process, where the pressure of the
absorbent is risen by chemical compression, since the large reduction in the specific volume makes
the compression in liquid phase more affordable from the energetic point of view. However, this
makes absorption systems more complex from the physico chemical point of view. Some of these
issues will be addressed in the next section.
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Figure 1.4: Scheme of a standard heat pump (a) and an absorption heat pump (b)

We can observe in figure 1.4 how both mechanical and absorption systems share three stages
of the thermodynamic cycle. In the condenser, the refrigerant at high pressure is liquified re-
leasing heat (Q1) to the environment. Then the pressure decreases in the expansion valve, in
the next stage the useful cold is produced by the evaporation of the refrigerant at low pressure
where heat is withdrawn from the chilled room (Q2). Until this step, both systems (see 1.4a and
1.4b) undergo the same stages. Then, in an standard HP the pressure of the refrigerant is risen
by a mechanical compressor driven by electric power. On the other side, in an AHP, the refri-
gerant at low pressure and temperature changes to the liquid phase undergoing an absorption
process (absorber). Then the mixture refrigerant/absorbent is pumped to increase its pressure.
Normally a heat exchanger is used to pre-heat the rich mixture with the poor mixture coming
from the generator, thus reducing the thermal energy demanded by the generator to separate
the refrigerant from the absorbent and starting back the described cycle. Even though different
configurations are possible[9], we refer to a simple cycle to introduce the main parameters to
measure the performance of the heat pump.

First, the coefficient of performance (COP) provides the ratio between the useful heat (Q2)
exchanged in the evaporator and the heat used in the generator (Q0) to separate absorbent and
refrigerant. It is a measurement of the efficiency of the process, the higher COP is, the better will
be its performance.

COP =
Q2

Q0
(1.1)

Besides the COP, another key parameter to analyze the performance of the system is the
circulation ratio, f . The circulation ratio is defined by the ratio between the mass of vapor
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refrigerant produced in the generator and the mass of solution coming from the absorber [10], as
indicated in equation 1.2.

f =
mw

mr
=

wr

wr � wp
=

wr

Dw
[10] (1.2)

where mr and mp are the mass flows of rich (generator current out) and poor solutions (generator
current in) and wr and wp are the respective mass fractions of those currents. High circulation
ratios lead in general to low COP and so, they lead absorption systems towards poorer perform-
ances.

1.4 Target properties for the absorption process

To reach the requirements of the absorption-desorption potential working pairs (absorbent/refrigerant)
should accomplish some properties to ensure that absorption and regeneration of the absorbent
take place in such an extent that the whole process is reliable from the scientific and the economic
points of view. These properties are listed below.

Absorption capacity. The absorption capacity of a given working pair is not a straightfor-
ward quantity. Since several factors influence that capacity, we will address here some of them.
Absorption is an exothermic process, a heat sink (environment) is used to remove heat from the
absorber, so large mixing enthalpies are not desirable. Besides that, liquefying the refrigerant
requires that the absorbent is provided an at suitable vapor pressure depression[11]. A measure-
ment of the suitability of the absorbent is given by the deviation from Raoult’s law. A negative
deviation indicate a decrease in the vapor pressure of the mixture and therefore an affinity of the
refrigerant to be absorbed.

Transport properties. Heat and mass transfer of the refrigerant/absorbent mixtures are cru-
cial for a good performance of the AHP. The absorption of the refrigerant requires a good mo-
lecular mobility of the components of the mixtures, thus low viscosities are required to ensure
that. In an analogous way, diffusion coefficients provide very useful information about the mo-
bility of each molecule in solution allowing to analyse the factors determining the dynamics
of the whole system, also given by viscosity. Since viscosity undergoes an exponential decay
with temperature and also decrease as the concentration of molecular solvents becomes higher,
a critical issue is finding mixtures with low viscosity for high concentrations of the absorbent at
low temperatures, the most unfavourable conditions for a suitable fluidity of the mixtures. In
addition, low viscosities are also important to reduce the pumping costs.

Relative volatility. Once the absorption of the refrigerant has taken place and the solution
has been pumped to a high pressure, both components need to be regenerated. This step is done
in the generator by supplying thermal energy. So, a high relative volatility is needed in order to
distillate the absorbant with minimal energetic and operational cost. When this is not achieved
the installation of a rectification step may be necessary, as in the case of ammonia/water systems.
This leads to an increase of the operational complexity and cost of the whole process.

Liquid range. The liquid range will determine the upper and lower limits of the operating
temperatures. While in the absorber the problems are mainly related with the solidification of the
mixtures, the maximum temperature that may be reached in the generator will be determined by
the degradation temperature. To avoid crystallization or degradation, working pairs are expected
to have a wide liquid range. This will also increase the versatility of the AHP, allowing the use
of several steps[12] with the subsequent rise in the COP.
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1.5 Commercially available working pairs

Given the requirements of the absorption process, the selection of refrigerant/absorbent working
pairs becomes a problematic task. The current working pairs used in commercial equipment
provide useful information on the properties sought for working pairs who may lead to more
efficient systems.

Ammonia/water, NH3/H2O, is one of the working pairs implemented in commercial sys-
tems. One of its pros is the chemical stability of the mixture in a wide range of temperature
and pressure conditions. Besides that, NH3/H2O is a cost efficient alternative[13]. On the other
hand, due to the low relative volatility of the mixture a rectification stage is often required. It
leads to an increase in thermal energy demands and thus, it reduces the efficiency of the pro-
cess. Furthermore, the high operation pressure represent a drawback from the operational and
economic points of view. Finally, the toxicity and the corrosive action on copper alloys is also
a barrier for systems based on this working pair[13]. Physical and chemical properties of NH3
and H2O mixtures have been thoroughly studied and the reader is referred to those sources for
further details[14, 15]

Water/lithium bromide, H2O/LiBr, is also used in commercial absorption heat pumps. Among
the advantages of this system are its chemical stability, low toxicity and environmental impact
and economic feasibility. However, the low vapour pressure of water requires vacuum vessels[11]
leading to an increase in the operating cost. Also, H2O/LiBr mixtures present a significant cor-
rosion capacity, specially at high LiBr concentrations and high temperatures. Since several char-
acteristics of H2O/LiBr are similar to potential H2O/IL, a comparison between systems becomes
pertinent. The lower temperature limit of application will be determined by the freezing tem-
perature of water. However, crystalization problems in the absorber may take place if conditions
of refrigerant/absorbent go below the freezing temperature. Vapour pressure of the absorbent
is negligible and so, no rectification stage is needed. Viscosity should be kept as low as possible
in order to reduce pumping costs and allow a suitable mass and heat transfer. This has been
achieved by H2O/LiBr systems but remains an open question for IL based working pairs. Re-
garding the absorption capacity, a measurement of its extent is the reduction in vapour pressure
of the refrigerant during the absorption process. As it happens for H2O/LiBr, large negative de-
viations from Raoult’s law are sought for potential absorbents. Among the current commercial
systems, the working pair water/LiBr is the one that gives rise to the highest energetic and eco-
nomic efficiency using simple, well-engineered, and relatively compact systems[11]. Properties
of H2O/LiBr mixtures have been broadly studied[16, 17, 11].

A summary of the pros and cons of the commercial working pairs previously described is
presented in table 1.1.

1.6 Role of ionic liquids in absorption heat pumps

Given the limitations of the current commercial systems, alternative working pairs with the
capability of improving the performance of the available systems are searched. Among these
alternatives, ionic liquids (ILs) are one of the most promising, namely using water as refrigerant.

ILs are often defined as salts melting under 100 �C [18, 19]. Over the last years they
have atracted great interest from the scientific community due to their numerous potential
applications[20, 21]. Their chemical structures, large and asymmetric ions, lead to very particular
properties[18, 19]. Since there is a huge number of anions and cations, the massive number of
possible combinations make the tuning of properties a remarkable characteristic of those fluids,
as much as the complexity of the interactions governing their thermodynamic behaviour.
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+ �
Wide range of T and P Rectification stage (low relative volatility)

NH3/H2O Economic feasibility High working pressures required

Toxicity and flammability

Negative deviation from Raoult’s law Crystallization in the absorber

H2O/LiBr Good dynamics Vacuum vessels required.

Chemical stability of the mixture Corrosion (mainly at high T)

Table 1.1: Pros and cons of commercially available working pairs for absorption heat pumps

Regarding their role as potential absorbents, there are mainly three issues to go through[22].
First, to ensure no crystalization[23, 24] in the absorber or degradation in the generator[25], a
suitable potential absorbent must be selected. Second, ILs often present slow dynamics[26]. A
detailed analysis of the factors influencing heat, mass and momentum transfer is required to
reduce the effect of slow dynamics on the absorption process. Third, the absorption capacity will
depend strongly on the chemical structure of the IL, so energetic quantities[27] of the refrigerant
solvation into the absorbent and its solvation environment will play a key role in order to choose
the chemical structures that better accomplish the process requirements.

Since a low vapor pressure [18] is a property shared by all ILs, the separation of refriger-
ant/absorbent in the generator will not represent a problem to overcome when using this sort of
fluids.

1.7 State of the art

The role of ILs as absorbents in heat pumps has been addressed by different research groups
over the last years from different points of view. Given that physical chemistry of ILs and their
binary mixtures with water presents a significant complexity, experimental determination of key
properties for water absorption needs to be complemented with theoretical studies. On one hand,
the determination of physico chemical properties is required in order to investigate the systems
that fit best with the process requirements, but on the other hand, studies at atomistic scale allow
to understand the features in the chemical structure of ILs that lead to the target properties and
also to understand and quantify how these features affect the systems behavior. Furthermore,
on the side of the process simulation, important effort have been done to test the efficiency of
different H2O/IL working pairs. These simulations are based on the measured properties and
also in correlation equations, so the results are strongly influenced by the quality of these data.

Wasserscheid and coworkers have published an extensive screening of ILs to be used as water
absorbents[22]. According to this work, the suitability of the absorbent is based on its thermal
stability, the vapor pressure of water in H2O + IL solutions and their viscosities. Experimental
procedures and target values are given for each one of three properties.
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The thermal stability of ILs is addressed in a comprehensive way by Maton and coworkers[25].
Since there is no univocal definition for the thermal degradation temperature, a particular cri-
terion should be established for each given process. Given that absorbents remain into the
cycle for long periods of time, restrictive criterion is advised. Therefore, isothermal analysis
are strongly recommended [28, 25, 29, 22] in order to provide a reasonable value for the up-
per limit of the liquid range. In any case, results should be taken with care since timescales
and conditions of the actual absorption cycles are not fully represented during the experimental
determination of the degradation temperature.

Dynamics of ILs and their mixtures with water have been studied during the last years. Ex-
perimental determination of viscosity[30, 26, 31] and diffusion coefficients[32, 33, 34, 35] have
been used to generate a large amount of useful information. At the same time, knowledge about
the role of impurities, the effect of temperature and water concentration has been improved.
In addition, empirical[36, 37] and semi-empirical[38, 39, 40] models have been used to widen
the temperature and pressure ranges and also to extrapolate out of the measurement condi-
tions. Besides, atomistic models have provided interesting insights on the relationship between
the chemical structure of the ILs and their slow dynamics, including the effect of the water
concentration[41]. To achieve an accurate description of the dynamic behavior of ILs in molecu-
lar simulations two approaches have been followed, either ion charges are scaled[42, 43] by a
factor between 0.7 and 0.9 or polarizable models are used[44, 45, 46]. Calculation of dynamic
properties requires that trajectories have reached the diffusive regime[47].

The equilibrium properties of H2O + IL solutions has also been studied. Some of these
properties are critical to estimate the absorption capacity of ILs. Namely, activity coefficients[48]
or vapor pressure of water in H2O + IL mixtures[22] have been experimentally determined.
Also, theoretical models provide very interesting information about the water affinity of the
ILs. Kurnia et coworkers[49] have published an screening of the absorption capacity of a large
number of ILs using COSMO-RS. Atomistic models also provide interesting results, often using
free energy perturbation (FEP) as in Maginn et coworkers[27].

Data obtained from experimental measurements and correlation equations have been used
to simulate the performance of the whole process. Commercial software and tools developed
for this particular application have shown promising results[50, 51, 52, 53, 10]. However, further
effort needs to be done to achieve better performances in H2O/IL that of commercial H2O/LiBr.

Very scarce publications regarding the performance of absorption heat pumps at industrial
scale have been found. To the best of our knowledge only Wasserscheid and Seiler[54] have
published an article describing the performance of a commercial system.



Chapter 2

Aims and scope

2.1 Framework of this PhD thesis

This PhD project was carried out within the project entitled Development of New Working Fluids,
Components and Configurations for High Performance Absorption Heat Pumps. Its title provides a
short description of the general objective. However, a better understanding is given by the fol-
lowing paragraph, part of the project summary, development of new working fluids and components
for absorption heat pumps and refrigeration systems to enlarge the operation range, improve the perform-
ance and increase the energy efficiency in new configurations. The new working fluids to be developed are
mixtures of ionic liquids with natural refrigerants, like ammonia, CO2 and water.

The development of the project required the joint action of three research groups with differ-
ent scientific backgrounds. The fields of expertise of these teams cover the areas of knowledge
required for the design of working pairs for absorption heat pumps. In figure 2.1, an the know-
ledge areas of the groups are shown.

Synthesis!

Physicochemical 
properties!Engineering!

Figure 2.1: Research groups involved in the project

• The Organic Chemistry Group of the University of Vigo (Pontevedra, Spain) synthetized
the ionic liquids and proposed new structures based on the physical properties and on
engineering criteria for absorption systems. When the amount of ionic liquid required
exceeded the synthesis capacity of the laboratory, the ionic liquids were supplied by a
well-reputated company.

11
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• The Mechanical engineering group, of University Rovira i Virgili (Tarragona, Spain) studied
with the absorption of natural refrigerants into the ILs and carried out the engineering
tests of the working pairs providing feedback based on these results to the other groups.
Moreover, they were responsible of the project coordination.

• The Applied Physics group (FA2), in University of Vigo (Pontevedra, Spain), where I
worked for my PhD thesis, was responsible for the identification and analysis of the key
properties for the absorption of the refrigerants. Experimental and theoretical studies were
performed in collaboration with other groups to find ILs meeting the application require-
ments.

In the sequence of successful collaborations between FA2 group and Thermodynamique
et Interactions Moléculaires (TIM) group at Université Clermont-Auvergne (Clermont-Ferrand,
France) that led to the joint supervision of a previous thesis, this PhD was also carried out under
the cosupervision of Dr. Josefa García and Professor Agilio Pádua. Besides the funds from the
aforementioned project, this work has also obtained financial support from the Ministère des
Affaires Étrangères Française through a Bourse d’Excellence du Programme Eiffel. Regarding
technical aspects, experimental tasks of the PhD were mainly carried out in the laboratories of
the FA2 group while molecular simulation studies were performed in collaboration with the TIM
group under the supervision of Prof. Pádua.

Other collaborations, which led to articles that are part of this PhD, took place with the Ther-
mophysical Properties of the Fluids and Biomaterials Group in University of Santiago de Com-
postela (Santiago de Compostela, Spain) Group and with the Analitycal Chemistry Department
of University of Vigo (Pontevedra, Spain).

This thesis is a co-supervision between Spanish and French Universities/Doctoral Schools,
leading to the award of a doctoral degree from both institutions, under the auspices of a joint
protocol.

2.2 Objectives

This PhD Thesis is focused on the thermophysical characterization of ILs and ILs/H2O mixtures.
With this aim, different structures have been studied and the results published in the articles
that are part of this work. In table 2.1, we show the general information about the analysed ILs.
Further information and the properties studied for each IL can be found in the articles.

The design of suitable absorbents is a critical step to develop efficient absorption heat pumps
and it should be done based on the requirements of the application. The feasibility of the work-
ing pair H2O/IL will be determined by the properties of the mixtures. Therefore, the general
objectives of this work are:

1. Definition of the key properties for the absorption process and selection of the experimental
and modelling methods to determine and study this properties.

2. Implementation of experimental and theoretical techniques to study potential candidates
for absorbents in systems using water as refrigerant.

3. Analysis of the relationship between the structure of the ILs and the previously selected
thermophysical properties.

4. Definition of the molecular structures of the absorbent anions leading to suitable properties
for absorption heat pumps using water as refrigerant.
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Ionic liquid Abbreviature CAS number
1-Ethylpyridinium bis (trifluoromethylsulfonyl) imide [C2Py][NTf2] 712354-97-7
Choline bis (trifluoromethylsulfonyl) imide [Chol][NTf2] 827027-25-8
1-Ethyl-3-methylimidazolium triflate [C1C1Im][OTf] 145022-44-2
1-Ethyl-3-methylimidazolium
bis (perfluoromethylsulfonyl) imide [C1C1Im][BETI] 216299-76-2
1-Ethylpyridinium methanesulfonate [C2Py][MeSO3] 681481-41-4
1-Ethylpyridinium triflate [C2Py][OTf] 3878-80-6
Choline dihydrogen phosphate [Chol][H2PO4] 83846-92-8
1-Ethylpyridinium dicyanamide [C2Py][DCA] -
1-Ethylpyridinium acetate [C2Py][Ac] -
Choline methanesulfonate [Chol][MeSO3] -
Choline dicyanamide [Chol][DCA] -
Choline acetate [Chol][Ac] 14586-35-7

Table 2.1: Ionic liquids studied in this PhD thesis

To achieve the general objectives, specific goals have been described in the research plan we
have developed during the course of the PhD based on the initial research plan and the results
obtained. These specific goals can be sumarized as follows:

(i) Application of different experimental techniques for a suitable characterisation of the samples.
The main parameters to determine are water content and concentration of non-volatile com-
pounds.

(ii) Experimental determination through different techniques of density, viscosity and electrical
conductivity of pure ILs and binary systems IL/water.

(iii) Application of equations with empirical and theoretical basis to correlate and predict the
measured experimental properties for the absorption process.

(iv) Exploring the potential of atomistic molecular dynamics to predict dynamic properties
of binary systems IL/water systems minimizing the amount of experimental information
required.

(v) Determination of the energetic quantities related to water solvation into the IL using atom-
istic molecular dynamics.

(vi) Exploring the influence of cations, anions and different alkyl chains and functional groups
in the behaviour of the IL/H2O mixtures through molecular dynamics, the role of hydrogen
bonds being studied in detail.

2.3 Common background of the publications

This PhD thesis is written as a compilation of five articles already published in scientific journals
indexed in the Journal Citation Report (JCR).

All the articles deal with the study of physical properties of ILs with the aim of selecting po-
tential absorbents using water as refrigerant. This is the common background of the five articles.
However, they address this topic from different points of view that cover the general objectives
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and the specific goals of this PhD. A short summary describing the aim of each publication is
given in the following paragraphs.

• Liquid range temperature of ionic liquids as potential working fluids for absorption heat pumps. To
determine the liquid range of six ionic liquids, DSC and TGA techniques have been used.
Lower limits, given by liquid-solid state transitions, show a large dispersion depending
on the ions involved and it is difficult to establish a pattern depending on ILs structure.
For the upper limit, dynamic and isothermal modes were used, a conservative criterion
was assumed to define the temperature of thermal degradation. Results do not consider
chemical or mechanical effects. It was found that the choice of anion is the dominant effect
compared to choice of cation in defining the liquid range.

• Density and viscosity study of pyridinium based ionic liquids as potential absorbents for natural
refrigerants: Experimental and modelling. Two ionic liquids, [C2Py][NTf2] and [C2Py][OTf],
are studied. Density and viscosity are experimentally determined for pure systems, and
also for [C2Py][OTf] + H2O mixtures in the full range of concentrations. The data obtained
were successfully correlated as a function of temperature. Furthermore, semitheoretical
models were applied to predict density and viscosity outside of the measurement range.
The models PC-SAFT and Hard-Sphere (HS) theory were used for density and viscosity
respectively.

• Studies of Volumetric and Transport Properties of Ionic Liquid-Water Mixtures and Its Viability To
Be Used in Absorption Systems. Density, viscosity and electrical conductivity of two ionic
liquids, [C2Py][MeSO3] and [Chol][H2PO4], were measured. Given their melting points
(both of them are solid at room temperature) only mixtures with water were studied. The
effect of water concentration and temperature were investigated and correlation equations
were applied. The non-volatile impurities were determined by HPLC.

• Molecular Understanding of Pyridinium Ionic Liquids as Absorbents with Water as Refrigerant for
Use in Heat Pumps. The potential of atomistic molecular dynamics to describe dynamics
and energetics quantities of two ILs, [C2Py][NTf2] and [C2Py][OTf] and their mixtures
with water was explored. Atomistic models were validated against experimental density
data. Then, diffusion and viscosity were simulated, and these results qualitatively agree
with experimental measurements. The Gibbs free energy of water solvation in the ILs was
also simulated using free energy perturbation methods. Spatial distribution in solvation
shells at molecular scale was studied and its relationship with the calculated properties
was analysed.

• Structural effects on dynamic and energetic properties of mixtures of ionic liquids and water. Dy-
namic and energetic quantities of six ionic liquids and their mixtures with water were
studied using molecular dynamics. Two cations, [C2Py]+ and [Chol]+, and three anions
[MeSO3]�, [DCA]� and [Ac]� were combined. Hydrogen bonding was quantified for all
systems and its effect over the solvation of water into the ILs was shown. Also the inter-
action energies between ions and water were computed and the structural effects on the
simulated properties were studied.



Chapter 3

Methodology

3.1 Experimental

3.1.1 Sample preparation

In every experimental procedure, a suitable sample preparation is a basic requirement to ensure
that the sample are fully characterised and therefore, the indetermination related errors in the
sample composition are minimised. All the chemicals studied in this thesis are commercially
available and suppliers provide data information. This information is thoroughly provided in the
experimental section of the chapters of this PhD thesis. However, we have considered neccessary
giving a more detailed description of the sample preparation since the effect of impurities has
shown to have a large impact on the determination of the properties of ionic liquids and it has
also been a topic of discussion in the scientific community[55].

ILs are well known as fluids with a extremely low but measurable[56] vapor pressure. So far,
distillation appears as a suitable technique to eliminate any volatile component contaminating
the samples. Prior to each measurement series, ILs were place in vacuum conditions during at
least 24 hours. An scheme of the vacuum system is shown in Figure 3.1.

Sample vessels

Vacuum distributorTramp condenser

Vacuum pump

Valve to atmosphere

Figure 3.1: Scheme of a vacuum system used to remove volatile compounds from ILs.

During handling of the samples into the vacuum line an inert atmosphere of argon was set to
ensure that the ILs did not absorb water from the atmosphere. To capture any volatile impurity
and prevent the vacuum pump from damage, a trap condenser vessel with either liquid nitrogen

15
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or solid carbon dioxide was used.
With the objective of determining the content of impurities two techniques were essayed.

First, to determine the amount of water in the sample after the distillation in the vacuum line,
Karl Fischer tritation (KF) was used. Its operation principle is based on the chemical reaction
(equation 3.1) between water and the KF reagent (hydranal). The extent of this reaction produces
an electric current between electrodes and its quantification provides the water content of the
sample.

In this work, a KF titration DL32 METTLER TOLEDO was used. The determination of the wa-
ter content was performed before and after the measurement to ensure that no water absorption
took place during the measurement process.

H2O + I2 + SO2 + CH3OH + 3 RN [RNH]SO4CH3 + 2 [RNH]I (3.1)

No volatile impurities coming from the synthesis path are not removable with distillation
techniques, however, its determination can be done through ionic chromatography (IC). IC, based
on ion change separation, provides a detailed analysis of the ionic substances contained in a
solution. An scheme of an ionic chromatographer is shown in figure 3.2. As indicated in figure
3.2, the solution (sample + eluent) is pumped through a column were ionic species have different
retention times. An ionic detector placed after the separation column allows to compare the
ionic conductivity with a blank reference, then the numerical treatment of these data provides
an accurate quantification of the ionic impurities in the samples.

Sample in

Data analysis

Eluent vessels

Loop distributorInjection

Ionic detector

Eluent pump

Ion exchange 
column

Figure 3.2: Scheme of an ionic chromatographer used to quantify ionic impurities.

IC was used in the article Studies of Volumetric and Transport Properties of Ionic Liquid-Water
Mixtures and Its Viability To Be Used in Absorption Systems [57], part of this PhD thesis. The
chromatographic system used (Metrohm) consists of a 792 Basic IC chromatograph equipped
with a 20 µL loop Rheodyne injection valve, the column system, a 250 ⇥ 4 mm Metrosep A
supp 4 (column packing of poly(vinyl alcohol) with quaternary ammonium groups and particle
size of 9 µm), guard columns and filters. The program used to record the chromatographic data
and Data Acquisition System was the 792 PC Software. System can be operated with chemical
suppression mode with auto step when the loop sample is filled. As eluents, solutions of Na2CO3
and NaHCO3 (standard flow 1 mL min�1 and pH 10), were used prepared, prior to its use,
solutions were microfiltered and degassed.
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3.1.2 Thermogravimetric analysis

Thermogravimetric analysis (TGA) is a technique allowing to study the effect of the temperature
on the mass of a given substance. By measuring simultaneously mass and temperature, TGA
provides information about the degradation temperature and also the time scale of the degrad-
ation process under the defined experimental conditions. Figure 3.3 shows an scheme of an
standard thermogravimetric analyser. Its operation principle is well described by the simultan-
eous measuring systems, mass and temperature. Then collected data are analysed to obtain the
degradation parameters of the sample.

Air, N2
in

Furnace

Thermometer

Air, N2
out

Electronic balance

Data analyzerSample pan

Figure 3.3: Scheme of an thermogravimetric analyser

A thermogravimetric analyser, TGA 7-Perkin Elmer[58] was used to determine the degrada-
tion temperatures of different ILs. It consists of an electrically driven ultramicrobalance whose
precision is 0.1 µg. Since it undertakes high temperatures, building materials should be thermally
stable. Mass measuring system is placed into an hermetically closed oven, reaching temperatures
up to 900 °C. The highly resistive ceramic materials are coated with highly conductive metal in
order to achieve an homogeneous temperature in short periods of time. Finally a thermocouple
is also placed into the oven and, alike the mass detection system, connected to a data analyser
provided with a software to collect the data. The thermogravimetric analyser allows to control
the atmosphere during the measuring time. As purge gas, we used either N2 or air, it is described
in detail together with the flow rate and other experimental conditions in the article Liquid range
temperature of ionic liquids as potential working fluids for absorption heat pumps[59].

TGA techniques have been widely applied to determine degradation temperature for different
materials[60, 25]. In this PhD thesis, TGA techniques have used with the objective of establishing
an upper limit for the liquid range, and thus for the operation temperature in the generator.

3.1.3 Differential Scanning Calorimeter

Differential scanning calorimetry (DSC) allows to study the response of a sample to a heat flow by
comparing it with a well know pattern. Thus, thermal properties related to heat exchanges, such
as heat capacity or state transition temperatures can be determined. Namely, DSC measures
the differential effect that a certain amount of heat produces into the sample and a reference
material[61]. Both systems, sample and reference are kept at the same temperature, thus, a
control system (servo system) immediately increases the energy supplied to the sample or the
reference material, depending on the process undertaken by the sample, either endothermic or



18 3.1. EXPERIMENTAL

exothermic, scheme of a DSC device is given in figure 3.4. The record of the DSC curve is
expressed in terms of heat flow versus temperature or time.

Sample Reference

(Qref)-- Heat flow --(Q)

Termometers

Figure 3.4: Scheme of a differential scanning calorimeter

Experiments were performed in a differential scanning calorimeter DSC Q100 TA-Instruments[62],
with hermetically sealed aluminium pans and liquid nitrogen as coolant fluid. Temperature and
heat calibration of this DSC was performed before to start the experiments. Indium was used
to calibrate the DSC apparatus for all the subsequent parameters under the same experimental
conditions than measurements.

So far, the main interest to use of DSC in this PhD in the determination of the low limit of
the liquid range in IL that will be defined by the melting temperature (if the IL presents crystal
structure) or glass transition (if only amorphous phase is presented).

3.1.4 Density

The ratio between mass and volume is a key property for process design and also for modelling
other crucial properties for the water absorption, such as viscosity or free energy of solvation.
Hereby, density determination of pure ionic liquids and their mixtures with water has been done
using a vibrating tube densimeter. Its operation principle is based on the measurement of the
resonant frequency of an oscillator filled with the testing fluid[63]. Oscillation is induced in the
tube by two magnetic dynamic converters in connection with an electronic control and amplifier
circuit which guarantees constant amplitude[64]. The relation between vibration period, t, and
density, r, is shown by equation 3.2.

t = 2p

✓
m0 + rV0

k

◆0.5
(3.2)

where m0 is the mass of the oscillator, V0 is the volume of sample contained by the tube and
k is the elastic constant. Considering m0 and V0 are constant values for a given temperature, r
would only be function of t.

Figure 3.5 shows the main parts of an U-tube vibrating tube densimeter. According to the
scheme, sample is introduced into the vibrating tube, assuring that no bubble air remains inside
the tube. Thermostatic bath keeps the temperature in the setpoint, high conductivity materials
should surround vibrating tube to quickly achieve an homogeneous temperature.

From equation 3.2, and isolating r we obtain equation 3.3 where the linear relationship
between r and t2 allows to obtain the density once the calibration is done and constants A
and B (equation 3.4) are calculated for the operation range.
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Sample in

Sample out

Thermostatic liquid in

Thermostatic liquid out

Signal out

Excitation system

Vibrating tube

Thermometer

Figure 3.5: Scheme of a vibrating tube densimeter

r =
k

4p2V0
t2 � m0

V0
(3.3)

A (T) =
k

4p2V0
, B (T) =

m0

V0
(3.4)

In all cases calibration process was repeated before and after the measurement series to ensure
that A and B remained constant.

Densities at atmospheric pressure were obtained with the DMA 4500 by Anton Paar and SVM
3000 Stabinger also by Anton Paar densimeters. Further details about experimental conditions
can be found in the articles Density and viscosity study of pyridinium based ionic liquids as poten-
tial absorbents for natural refrigerants: Experimental and modelling[65] and Studies of Volumetric and
Transport Properties of Ionic Liquid-Water Mixtures and Its Viability To Be Used in Absorption Systems
[57].

3.1.5 Viscosity

Viscosity is a measurement of the internal friction of a fluid. As defined by Newton’s law (equa-
tion 3.5) , the ratio between shear stress (txy) and the shear rate (∂vy / ∂x) allows to quantify this
property. A caution must be taken, since this ratio only remains independent of the shear stress
for the so-called Newtonian fluids. In this PhD thesis, two different techniques will be used to
determine the viscosity of the studied systems: a rolling ball viscosimeter and a Stabinger.

txy = h
∂vy

∂x
(3.5)

Rolling ball viscosimeter is a sort of falling body device. In these apparatus viscosity is ob-
tained from the free-fall time, in presence of gravity, of a solid body through the studied viscous
fluid[64]. The working principle of these viscometers is based on Stoke’s law. Thus, the motion of
the solid body should be slow enough to ensure a laminar regime, and therefore neglect inertia
effects. An analysis of the forces acting over the falling body, a ball in this particular case, allows
to obtain the relation between the viscosity and the falling time in an straightforward way as
indicated in eq. 3.6, where h is the viscosity, rball and rliq the density of coating steal ball and the
fluid respectively, t is the falling time and a and b are the calibrations constants.
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h = a (a, T) +
b (a, T)

rball � rliq
t (3.6)

An scheme of an standard rolling bar viscosimeter is shown in figure 3.6. The glass capillary
must be filled with the working fluid, for a suitable operation, we need to remove all bubbles
air into the glass capillary. Once, this step is undertaken, the rolling ball is also placed into
the capilar before socking it to the system. Then, we must let systems reach an homogeneous
temperature, with that purpose a thermostatic bath is used. Once the set point is reached, the
viscosimeter is ready to calculate the falling time between the light barriers that will be function
of the inclination angle that has been previously selected.

Thermostatic liquid out

Glass capillary 

Thermometer

Thermostatic liquid in

Rolling 
ball

Light barriers

�
Inclination angle

Figure 3.6: Scheme of a rolling ball viscosimeter

In work, an AMV 200 rolling ball viscosimeter (Anton Paar) was used. The calibration process
is described in the experimental section of the article Density and viscosity study of pyridinium based
ionic liquids as potential absorbents for natural refrigerants: Experimental and modelling[65]
Stabinger viscosimeter is based on a modification of the classic Couette type rotational viscosi-
meter. The idea behind its operation principle is the relation between the shear stress we need to
apply to a body to make it rotate when it is sank into a fluid and its viscosity. As indicated by
Newton’s law, viscosity is the ratio between shear stress and shear rate. An scheme of the meas-
urement cell can be found in figure 3.7. It consists of a rapidly rotating outer tube which contains
the sample and an inner measuring bob rotating more slowly. The concentricity between outer
tube and inner measurement rotor is ensured by the low density of the bob and the centrifugal
forces created during rotation. Two different torques influence the speed of the measurement
rotor: the driving torque, Td, and the retarding torque, Tr. A more detailed description can be
found in the European Patent (EP 0 926 481 A2).

In work, a SVM 3000 Stabinger viscosimeter by Anton Paar was used. System also integrates
a density measuring cell and a thermostatic bath working in a wide temperature range (268.15
to 378.15 K). Calibration need to be done using a well known fluid whose viscosity should be in
the same order than the working fluid.

Viscosity measurements in the article Studies of Volumetric and Transport Properties of Ionic
Liquid-Water Mixtures and Its Viability To Be Used in Absorption Systems[57] were done using a
Stabinger.
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Figure 3.7: Scheme of a Stabinger cell

3.1.6 Diffusion coefficients

Self-diffusion (also referred as diffusion) of a given liquid is the random translation movement of
the molecules in thermodynamic equilibria. The measurement of diffusion coefficients provides
a comprehensive view of the factors influencing the dynamics of the systems studied in this
PhD. The technique used to determine diffusion of ions and molecules was pulsed-field gradi-
ent spin-echo (PFGSE). Magnetic dipoles are oriented by magnetic pulses in time intervals of
Dt. Displacement between pulses are correlated with the translational movement of each chem-
ical entity. However, PFGSE technique registers molecular displacement without considering its
causes, therefore it is very important to minimize the effect of the convection using directional
gradients along each axis. Other undesirable factors such as heating by Joule’s effect or the gen-
eration of Foucault’s currents[66] during the measurement process should be kept under control.
Further information about the experimental detail can be found somewhere else[67].

In this PhD diffusion some coefficients were determined using a Bruker Avance III HD 500
spectrometer operating at 500.13 MHz for 1H and 125.77 MHz for 13C, with a 5 mm pulsed-field
z-gradient TXI probe. Experimental details can be found in Molecular Understanding of Pyridinium
Ionic Liquids as Absorbents with Water as Refrigerant for Use in Heat Pumps[68].

3.1.7 Electrical conductivity

Electrical conductivity provides a measurement of the ability of a given material to let electric
current pass through it. Conductivity of liquid solutions is mainly related with the concentration
of ions and its mobility. In figure 3.8 a scheme of a conductivimeter is shown. According to the
scheme, an external source produces a electrical potential between two electrodes, by measuring
simultaneously this potential and the electric current induced the resistance of the solution can
be easily obtained through Ohm’s law. Since resistance is the reciprocal of conductance, it is only
the geometry of the cell that allows to obtain the constant (G), obtained in the calibration process
what will give the conductivity of the solution.3.7

k = G ⇥ K (3.7)
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Figure 3.8: Scheme of a two electrodes conductivimeter

In this PhD thesis, the electrical conductivity was measured using a Crison CM35 conductivi-
meter. System is equipped with a thermometer, providing the two measurements simultaneously.
Two platinum electrodes are placed into the samples. Crison Standard solutions were used for
calibration proposes. Results and further details about the calibration process can be found in the
article Studies of Volumetric and Transport Properties of Ionic Liquid-Water Mixtures and Its Viability
To Be Used in Absorption Systems[57]

3.2 Modeling

3.2.1 PC-SAFT

Taking Wertheim’s perturbation theory as starting point, Chapman and coworkers developed
the Statistical Associated-Fluid Theory (SAFT). This equation of state (EoS) is the basis of dif-
ferent EoS which have been proven to be very successful describing the behavior of molecular
fluids. Among SAFT based EoS, one of the most broadly used is the Perturbed Chain Stat-
istical Associated-Fluid Theory (PC-SAFT). The main modification introduced by Gross and
Sadowski[69] is the methodology used to calculate dispersive forces, since Helmholtz free en-
ergy is calculated using only the first and second terms of perturbation theory of Barker and
Henderson.

According PC-SAFT model, molecules consist of a number of spheres joint together forming
a chain. Potencial interaction function between spheres is described in equation 3.8[70].

u (r) =

8
>>>>>>>><

>>>>>>>>:

• r < (s � s1)

3e (s � s1)  r < s

�e s  r < ls

0 r � ls

(3.8)
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Figure 3.9: a) Scheme of a molecule modeled in PC-SAFT b) Spheres and interacting parameters
od PC-SAFT c) Potential function between two spheres in PC-SAFT.

where r is the distance between two segments, s is the temperature independent diameter,
e is depth of the potencial, l is the reduced well width. A ratio of S1/s = 0.12 is asumed[70].
In figure 3.9, we can observe how the potencial function can be split into a repulsive and an
attractive part.

According to Barker and Henderson perturbation theory soft repulsion terms can be mod-
elled. Repulsive interactions are calculated using a reference fluid where no attractions are
defined. The soft repulsion of molecules is described with a hard repulsion and a temperat-
ure dependent diameter defined in equation 3.9.

d (T) =
Z s

0


1 � exp

✓
�u (r)

kT

◆�
dr (3.9)

Integration of potencial function (eq. 3.8) leads to the hard segment diameter given by equa-
tion 3.10

di (T) = si


1 � 0.12exp

✓
� 3e

kT

◆�
(3.10)

The complete EoS (eq. 3.12) is given by the ideal gas contribution, hard-chain contribution
and the attractive interactions, given by the perturbation analysis.

Z = Zhc + Zdisp + Zassoc (3.11)

Based on Wertheim’s thermodynamic perturbation theory[71, 72, 73, 74], Chapman et cowork-
ers [75, 76] developed an EoS (eq. 3.12 and 3.13) in which Zhc can be obtained as a function of
hard sphere properties and the number of segments comprised by each molecule.

Zhc = m̄Zhs � Â
i

xi (mi � 1) r
∂ln ghs

ii
∂r

(3.12)
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m̄ = Â
i

ximi (3.13)

where xi is the mole fraction of chains of component i, mi is the number of segments in a
chain of component i, r is the density of the system and ghs

ii is the radial pair distribution function
for segments in the hard sphere system. Expressions used to calculate Zhs and ghs can be found
in literature.[77, 78]

The attractive part of the chain interactions is calculated by the addittion of first and second
term of the perturbation theory introduced into the reference state.Hereby, Helmholtz free energy
is given by eq. 3.14

Adisp

kTN
=

A1

kTN
+

A2

kTN
(3.14)

Equations and procedure to calculate the terms A1 and A2 is presented by Gross and Sadowski[69].

3.2.2 Hard-Sphere Theory

Hard sphere (HS) theory attempts to model self-diffusion, viscosity and thermal conductivity.
The method described by Assael[38, 79] has shown a very good capacity to correlate transport
properties for different conditions of temperature and pressure and also to predict these proper-
ties out of the measuring range. For calculation convenience, HS theory uses reduced (adimen-
sional) coefficients (eq. 3.15). The model accuracy is strongly dependent on the reduced volume,
V/V0, where V is the molar volume and V0 the closed-packed molar volume, this extreme sens-
itivity is a key question for its application.
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�2/3
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� 
V
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�2/3
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lSHS

l0

� 
V
V0

�2/3
(3.15)

The subscript SHS correspond to smooth hard-sphere coefficient (eq. 3.16), product of the
value given by Enskog theory and the computed corrections calculated using molecular dynamics
(MD).

DSHS = DE (D/DE)MD , hSHS = hE (h/hE)MD , lSHS = lE (l/lE)MD (3.16)

Reduced coefficients for each transport property depend on the reduced volumes (see equa-
tion 3.15), that can be calculated by computational methods, however the uncertainty of this
calculation suggests to use an alternative approach. According to equations 3.17-3.19 where M is
the molar mass of the fluid, R is the universal constant of ideal gas, T is the absolute temperature
and V the molar volume. Note also, that in each equation introduces a roughness factor (Ri) that
accounts for the deviation from the sphericity and the translational coupling. Ri was set to 1,
since ions were modelled as perfect spheres, avoiding to increase the complexity of the model.
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exp
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= 1.936 ⇥ 107


M
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(3.19)
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By plotting reduced transport properties versus Vr (equals to V/V0) universal curves were
obtained by using a large set of experimental data. Expressions 3.20-3.22 provide accurate over-
laps when using coefficients given by Assael et coworkers[79]. However, a more recent work by
Ciotta et coworkers [80] have widen the operation range of this theory with a new set of values,
very convenient when dealing with the viscosity of dense fluids.

log10
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exp

RD

�
= Â

i=0
5aDi (1/Vr)

i (3.20)
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�
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Â
i=0

ali (1/Vr)
i (3.22)

In table 3.1, values proposed by Ciotta et coworkers are presented, since it is the set of coeffi-
cients we have used hereby.

i 1 2 3 4 5 6 7
ai 6.26871 �48.4793 243.447 �653.257 974.312 �763.616 251.193

Table 3.1: Coefficients of the universal curve proposed by Ciotta et coworkers[80].

The application of HS theory requires the fitting of the universal curves based on experi-
mental data to the equations 3.17-3.19. Results will provide the reduced volume as a function of
the temperature and thus, transport properties can be estimated out of the measuring range.

3.3 Atomistic theory

Different approaches can be chosen to study the physical chemistry of ionic liquids + water mix-
tures through molecular dynamics (MD). First, ab initio MD do not require the parametrization
of chemical since it is based on the solution of Schrodinger equations, however the length of
the trajectories and the dimension of the systems constrain its application to the analysis of dy-
namic and energetic quantities. Besides, the computational resources required are quite large
even when for short trajectories and small systems. On the other side, coarse grained MD al-
lows to study more complex chemicals such as polymers or proteins, larger systems and longer
timescales are accesible. Nevertheless, instead of the representing the chemical structures as indi-
vidual atoms joint by bonds, coarse grained models are based on the definition of atomic clusters
giving a less realistic picture of the studied substances. Thus, atomistic MD was found to be
the suitable technique since using a detailed representation of the chemical structures it provides
accurate description of the target properties addressed in this PhD.

Atomistic MD solves Newton’s equations of motion for a number of atoms taking part in the
experiment. In MD experiments, samples will be the N number of particles place in the simulation
box[81]. From their positions and momentum along the simulation time a large amount of
physico-chemical properties can be calculated.

3.3.1 Atomistic model

In this PhD thesis, ionic liquids and water, were represented by a classical atomistic force field
for organic compounds[82] containing intramolecular terms for covalent bond stretching, valence



26 3.3. ATOMISTIC THEORY

angle bending and torsions, and intermolecular parameters for repulsion-dispersion Lennard-
Jones (LJ) sites and for partial electrostatic charges on atomic sites. The functional form of the
potential energy is given in eq. 3.23.
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The force field for ionic liquids was parameterized by Canongia Lopes and Padua[83, 84, 85,
86]. Water was represented by the SPC/E model[87].

To achieve a better description of ionic species, atomic partial charges are often reduced by
a coefficient going from 0.7 to 0.9[45]. In this PhD thesis atomic charges given by the aforemen-
tioned references were scaled to 0.8 for all the ionic species after comparing the results of some
macroscopic properties with full-charged model with more accurate results.

3.3.2 Simulation settings

A cutoff of 12 Å was applied to LJ interactions. Long-range electrostatic interactions were
handled using the particle-particle particle-mesh[88] method, for a precision of 10˘4 in electro-
static energy. Trajectories were generated at constant NpT using Nosé-Hoover thermostat and
barostat. In all cases, a timestep of 1 fs was used.

Initial equilibrations of 1 ns were carried out starting from the configurations generated by
Packmol. Then, production runs to calculate structural, thermodynamic and transport properties
were performed over longer time scales, chosen according to the time needed for the systems to
attain a diffusive regime[47].

All simulations were carried out in periodic cubic boxes. When pure ILs are simulated, the
number of ions pairs was chosen to be 300. When ILs + water mixtures are studied, the number
of water molecules to reach the desired concentration was added to 300 ion pairs.

3.3.3 Software tools

Different software tools were used in order to set the simulation environment and obtain in-
formation about the samples. As shown in figure 3.10, in a first step we need to build the files
containing the topologies of the chemical we want to simulate and the parameters of the force
field describing their interactions. Those files are the input for fftool[89] utility. Then, fftool
creates auxiliar files used by Packmol[90] to build the initial configurations that are sent back
to fftool to build the files used by LAMMPS[91, 92], the open source package developed in the
Sandia National Laboratories.

3.3.4 Dynamics

The dynamic properties were studied attending to the self-diffusivity coefficients and the vis-
cosity of the systems. However, to ensure these properties can be properly calculated we need
to verify that the diffusive regime was reached. The criterion used all along the articles using



CHAPTER 3. METHODOLOGY 27
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Figure 3.10: Flow diagram of the software used for the simulation experiments.

MD techniques was the calculation of b values (equation 3.24), explained in detail by Cadena
et coworkers[47]. According to this criterion three different dynamic regimes are observed in
liquids: ballistic (b ⇡ 2), subdiffusive (b < 1) and diffusive regimes (b ⇡ 1). The dynamics
properties are calculated once the diffusive regime is reached and so b value is close to 1.

b (t) =
d log

D
Dr (t)2

E

d log t
(3.24)

The microscopic dynamics is studied through calculations of diffusion coefficients. The self-
diffusivity is obtained from the mean square displacement (eq. 3.25) calculated averaging over
trajectories sufficiently long for the system to be in a diffusive regime.

D =
1
6

lim
t!•

d
dt

D
Dr (t)2

E
(3.25)

Viscosity is a challenging quantity to calculate from MD simulations[93, 94, 95], especially
for viscous fluids. In this work viscosity was calculated through the Green-Kubo relations using
equilibrium trajectories[96]. The Green-Kubo method requires integration of the autocorrelations
of the pressure tensor.

h =
V
kT

Z •

0

⌦
pxy(t)pxy(0)

↵
dt (3.26)

The autocorrelation were recorded using the multiple step correlator method of Ramirez et
al.[97] implemented in LAMMPS. The result was averaged over three independent shear direc-
tions and the uncertainty was estimated from the standard deviation of these values.
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3.3.5 Energetics of the water solvation

Energy exchanges during the phase-change of the refrigerant (water) in the absorbent (IL) are
critical for the application of ionic liquids in refrigeration cycles. To accomplish these calculations,
the algorithm so-called Free Energy Perturbation (FEP) was used.

The chemical potential of the solvation of water into different ILs was calculated. The idea
behind this calculation is going from an initial state where a water molecule does not interact
with the media (IL) to a final state where this water molecule is fully solvated. This transition is
done through the modification of a coupling parameter, l. For a correct sampling 20 intermediate
states were set. Thus, the free energy of the solvation process is calculated according to eq. 3.27.
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To avoid singularities due to overlap of sites at the moment when they are created or annihil-
ated, soft-core LJ and electrostatic potentials were used[98]. For the systems we studied, a step
of Dl = 0.05 proved adequate, as was verified by the very low hysteresis when performing the
FEP calculation both ways[99].
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a b s t r a c t

The liquid range temperature of six ionic liquids (ILs) was determined in this work with the aim to
propose suitable absorbents for heat pump systems. The selected ILs have three different cations, imida-
zolium, pyridinium and choline and each was combined with four different anions [NTf2]!, [OTf]!,
[MeSO3]! and [BETI]!. The lower limit, given by solid ! liquid transitions, was determined using differ-
ential scanning calorimetry (DSC). The upper limit is given by the degradation temperature. This temper-
ature is determined using thermogravimetric technique (TGA). Dynamic and isothermal methods have
been combined to estimate the maximum operation temperature. ILs ageing effect was also analysed
in this work.

! 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ionic liquids (ILs) are usually defined as salts melting under
100 "C. This definition is broadly accepted even though there is
no chemical or physical significance in this temperature which
has been chosen for historical reasons [1]. From the enormous
number of ILs, the most common chemical structure is based on
an organic cation together with an inorganic polyatomic anion
[2]. The unique properties of the ILs [3] have brought great interest
over the last years from industry and academia due to a large num-
ber of potential applications [4]. Since climate change stands out as
one of the main challenges for the next decades, technologies lead-
ing to efficient energy production will play a crucial role. In this
framework, absorption heat pumps are a great opportunity to
reduce energy consumption of heating and refrigeration systems,
since this technology allows either recovering residual heat or
using renewable energies (as solar, bio-hydrogen. . .) to produce
profitable thermal energy. Subsequently, the use of additional
electric power is almost negligible. Therefore it is a technology of
high added value in regions where the electrical network is not

developed in addition to its high ecological benefits. Nevertheless
conventional working pairs present several drawbacks which have
limited the potential of absorption heat pumps [5]. Some of these
problems are corrosion and crystallisation in the case of
H2O/LiBr, high working pressures, low relative volatility and NH3

toxicity for NH3/H2O. Thus, improvements of absorption heat
pumps by developing new working pairs (refrigerant/absorbent)
have drawn the attention of companies and researchers. Seeking
new working pairs involving ILs as absorbents occupy a principal
role in these investigations [6,7]. This work is framed into the anal-
ysis of different ILs as candidates for absorption processes together
with natural refrigerants such as water [8], ammonia or carbon
dioxide.

To meet the requirements of absorption heat pumps, a first
screening was performed paying special attention to the liquid
range temperature. As it has been pointed out, crystallisation at
low temperatures is one of the drawbacks for commercial
LiBr/H2O working pairs, therefore solid ! liquid transitions should
be analysed to prevent solid phase formations in the absorber [7],
an important factor of any absorption refrigeration system [9]. On
the other hand, since absorbents will remain within the system for
long periods of time, thermal stability should be studied carefully
not only as a function of temperature but also as a function of time.

http://dx.doi.org/10.1016/j.jct.2015.07.034
0021-9614/! 2015 Elsevier Ltd. All rights reserved.
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Differential scanning calorimetry (DSC) was used to determine
melting point (Tm) as much as the glass transition (Tg). These val-
ues may constrain the lower temperature operation range
[10,11]. However it should be taken into account that real working
fluids will be solutions of refrigerant/IL, where these temperatures
are expected to be lower than those of pure IL, thereby partially
easing the constraint [12].

In addition, the absorbents should be highly stable over a wide
range of operating temperature in absorption devices [9].
Although, no unique criterion has been defined to determine ther-
mal stability for a particular fluid, two operation modes are broadly
known when thermogravimetric analysis is used. The so-called
dynamic methods consist of performing a ramp of temperature
with time by measuring simultaneously how mass sample
changes. Results obtained are usually expressed in terms of degra-
dation temperature or onset temperature [13]. This value provides
qualitative information, as it has been broadly pointed out in the
literature [13–15], but never a maximum operation temperature
since it is observed that degradation starts below the onset tem-
perature. In other words, the onset temperature overestimates
the maximum operation temperature. For a deeper knowledge of
this parameter, this analysis must be refined with isothermal
scans. Additionally isothermal scans allow kinetic analysis of the
degradation process by using the Arrhenius equation and an esti-
mation of the degradation time for a given temperature.

Besides dynamic and isothermal scans, temperature conditions
of the absorption process have been reproduced. Since during
absorption cycles, the ILs undergo temperature changes (from
absorber to generator and backwards) for extended periods of

time. ILs thermal stability after several heating and cooling cycles
has been studied. To our knowledge, this is the first time this sort
of test has been reported for ILs.

At this point, and due to potential capabilities of ILs as absor-
bents, knowledge of physical and chemical properties becomes
critical in order to select suitable candidates among a huge number
of available ILs. The influence of the cation and anion, the length of
the alkyl chain or different functional groups over ILs properties
will allow ‘‘absorbent tunning’’ based on process requirements.
Apart from the temperature operation range, other thermophysical
properties such as solubility with the refrigerant, density, heat
capacity, viscosity, surface tension or thermal conductivity; and
also, factors as toxicity and environmental impact must be taken
into account.

With the aim to acquire a deeper knowledge of cation and anion
influence over the temperature operation range, six ionic liquids
have been chosen for evaluation as potential absorbents for natural
refrigerants (ammonia, water and carbon dioxide). The selected ILs
are based on four different anions together with imidazolium,
pyridinium and choline cations.

Four of the six ILs involve [NTf2]! and [OTf]! anions and they
were chosen because of their high thermal stability [16]. Other
anions, [BETI]! and [MeSO3]! [17] are not so extensively studied
and they were chosen due to their structural similarity with
[NTf2]! and [OTf]!. The influence of the cation over this property
is minor compared to the anion, however it cannot be considered
as a negligible factor. Thus, imidazolium, pyridinium and choline
cation families have been selected to explore the cation effect over
the decomposition temperature of the ILs.

TABLE 1
Structure and identification of selected ILs (all of them supplied by IoLiTec).

Name Abbreviation Chemical structure Mass fraction
purity

CAS number

1-Ethylpyridinium bis (trifluoromethylsulfonyl) imide [C2Py][NTf2] 712354-
97-7

N

N
S S F

F
FF

F

F

O

O

O

O
+

-
>0.99

Choline bis (trifluoromethylsulfonyl) imide [Chol][NTf2] 827027-
25-8 N

S S F
F

FF
F

F

O

O

O

O

-

N
+

OH

>0.99

1-Ethyl-3-methylimidazolium triflate [C2C1Im][OTf] 145022-
44-2

N N
+

F

F

F

S

O

O

O
-

>0.99

1-Ethyl-3-methylimidazolium bis
(perfluoroethylsulfonyl) imide

[C2C1Im][BETI] 216299-
76-2

N N
+

S
N

S

O

O

O

O
F F

F

F

F

F

F

F

F F

- >0.98

1-Ethylpyridinium methanesulfonate [C2Py][MeSO3] 681481-
41-4

N S
O

OO

+ -

>0.95

1-Ethylpyridinium triflate [C2Py][OTf] 3878-80-6

N
+

S O

F

F

F

O

O

-

>0.99
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2. Materials and methods

2.1. Chemicals

Six ionic liquids, provided by IoLiTec, were considered for this
work, three contain the common cation, viz. 1-ethylpyridinium
[C2Py]+, and the anions bis (trifluoromethylsulfonyl) imide [NTf2]!,
triflate [OTf]!, and methanesulfonate [MeSO3]! The other two ILs
have the common cation 1-ethyl-3-methylimidazolium [C2C1Im]+,
with the anions triflate and bis (perfluoroethylsulfonyl) imide
[BETI]!, and the sixth IL is choline bis (trifluoromethylsulfonyl)
Imide [Chol] [NTf2]. Identification names and numbers, purities
and cations and anions chemical structures are presented in table 1.

2.2. Experimental

A differential scanning calorimeter DSC Q100 TA-Instruments
with aluminium pans hermetically sealed was used to determine
the different state transitions experienced by the IL during the
heating and cooling cycles. Liquid nitrogen was used as the coolant
fluid. Each sample (3 to 5 mg) was subjected to four ramps, two in
cooling and two in the heating mode, with an isothermal step
between them: (a) heating from (25 to 120) "C at 10 "C "min!1,
(b) isothermal step at 120 "C during 30 min to remove impurities
[18] and to erase the thermal history of the sample, (c) cooling
from (120 to !85) "C at 5 "C "min!1, (d) isothermal step at
!85 "C during 5 min and (d) heating from (!85 to 100) "C at
10 "C "min!1 and (e) cooling from 100 "C at !85 "C at
5 "C "min!1. Temperatures transitions were determined from the
DSC curves during the re-heating and re-cooling steps [19].

A thermogravimetric analyser (TGA 7-Perkin Elmer) operating
in dynamic and isothermal modes under dry air atmosphere was
used to perform thermogravimetric analysis [20]. Although the
effect of the atmosphere becomes lower for long-term thermal sta-
bility studies [21], it was considered more appropriate to use air
instead of an inert atmosphere in order to estimate the maximum
operation temperature for different applications, where ILs can be
in air contact.

Samples of (3 to 5) mg were placed in an open platinum pan.
Dynamic experiments were performed at temperatures from
(100 to 800) "C, with a heating rate of 10 "C "min!1 and a purge
gas flow of 20 cm3 "min!1. Each analysis was repeated three times.
Determination procedures of onset and ending temperatures were
described in previous papers [20,21]. Furthermore, isothermal TG
analysis at temperatures lower than tonset, was used to determine
the long-term thermal stability of ILs.

Besides the effects on the thermal stability owing to dynamic
and isothermal regimes during absorption cycles, the ILs undergo
temperature changes (from absorber to generator and backwards)
for extended periods of time. For this reason, the thermal stability
of the ILs after several heating and cooling cycles has been studied
in order to reproduce roughly the effects of these temperature
changes on this property. Each sample was subjected to two ramps,
one in cooling and one in the heating mode, with an isothermal
step between them: (a) heating from (50 to 175) "C at
5 "C "min!1, (b) isothermal step at 175 "C during 15 min, (c) cool-
ing from (175 to 50) "C at 5 "C "min!1, (d) isothermal step at 50 "C
during 15 min. The whole sequence was repeated eight times.

3. Results and discussion

3.1. DSC

Figure 1 shows the last ramp of heating and cooling of DSC
analysis of the six ILs [C2Py][NTf2], [Chol][NTf2], [C2Py][OTf],
[C2C1Im][OTf], [C2Py][MeSO3] and [C2C1Im][BETI].

All the ILs show melting and freezing peaks, presenting these ILs
as very good crystal-formers, although the DSC curve profiles show
important differences associated with different thermal behaviour.
Table 2 summarises state transition temperatures, such as melting,
freezing, cold crystallisation and glass temperatures determined
from these curves. As far as we are aware, information on the ther-
mal behaviour of these ILs in heating and/or cooling ramps is
scarce in the literature. Those values of transition temperatures
found in the literature for these ILs are also presented in table 2.

Important agreement between our results and those of and other
authors is, thus for [C2C1Im][BETI], Ngo et al. [22] obtained freezing
temperature (!12 "C) similar to our result, but values for the melt-
ing point (!1 "C) differ considerably from ours, probably due to dif-
ferent experimental conditions and different thermal history.
However on the contrary, our results are in good concord with those
of Shirota et al. [23] for the melting point. The [C2C1Im][BETI] shows
a glass transition (!52 "C) with enthalpic recovery. To distinguish it
from a solid ! solid transition, we have zoomed in the DSC scan and
checked that it corresponds to a ‘‘stair step’’ which is the common
appearance for a glass transition [24]. Afterwards, [C2C1Im][BETI]
shows a sub-cooling phenomenon, characterised by an incomplete
crystallisation on the cooling ramp. Then a part of this IL passes from
a glassy to a subcooled state, suffering a cold crystallisation followed
by the melting transition. This cold crystallisation phenomenon is
usually observed in the thermal behaviour of many ionic liquids.
Agreeing with these results, Calvar et al. [18] and Fredlake et al.
[10] found that some imidazolium based ILs show similar beha-
viour. Nevertheless this cannot be observed in pyridinium based ILs.

The [Chol][NTf2] shows a very different profile on the heating
ramp compared to the rest of the ILs. This profile is characterised
by three endothermic peaks at (2, 27 and 33) "C. The first is attrib-
uted to a solid ! solid transition and the last to the melting process.
The origin of the peak at 27 "C, which is not completely resolved
with the last peak, could be associated either to a solid ! solid or
to a melting transition. Taking into account that the temperatures
of the second and third peaks (27 and 33 "C) do not change when
the heating rate increases at 10 "C "min!1 (results are not shown),
we think that the melting process of this IL takes place in two
different phases at (27 and 33) "C. Similar behaviour and tempera-
tures were also found by Yoshizawa-Fujita et al. [25] for this IL,
with the usual shape found in the DSC of polymers with high molar
mass [26,27]. Additionally, Nockeman et al. [28], indicated that the
melting temperature for [Chol][NTf2] is 30 "C although these
authors do not show the DSC curves of this IL, this value is in rela-
tive good concordance with our results.

The [C2Py][OTf] shows two exothermic peaks in the cooling
ramp and two endothermic peaks in the heating ramp. Other
authors as Calvar et al. [18] have observed similar behaviour in
some pyridinium and imidazolium based ILs with the same anion,
[OTf]!, which suggests a polymorphic-like behaviour that leads to
the formation of crystals with different structures. Nevertheless, a
deeper study is necessary to complement and confirm this result.

On the other hand, [C2Py][NTf2] crystallises, at !21 "C, on cool-
ing, but does not form a glass within the temperature range stud-
ied. A solid ! solid transition at 21 "C and the melting point at
32 "C are detected during the heating ramp, agreeing in both cases
with the results of Liu et al. [29]. This behaviour, not unusual in ILs,
is also observed by Machanova et al. [30] and Stefan et al. [31] for
ammonium and pyrrolidinium based IL, with the [NTf2]! anion,
observing in the last case, even two solid ! solid transitions before
the melting.

All melt at temperatures higher than 0 "C with the exception of
[C2C1Im][OTf] that melts at!14 "C. Wachter et al. [32] indicate that
the solid ! liquid transition of this IL is !10 "C, which is the max-
imum temperature of the melting peak, agreeing with the result of
this work.
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The sequence obtained for lowest limit for the liquid range of
selected ILs is:

½C2Py$½MeSO3$ > ½C2Py$½OTf$ % ½C2Py$½NTf2$ % ½Chol$½NTf2$
> ½C2C1Im$½BETI$ > ½C2C1Im$½OTf$:

Imidazolium based ILs show the lowest melting temperatures,
whereas the highest corresponds to ILs containing pyridinium
cations. Nevertheless a trend with the anion cannot be established
in the same way.

With regard to freezing temperatures the sequence is a little bit
different:

½C2Py$½OTf $ > ½C2Py$½MeSO3$ > ½Chol$½NTf2$ > ½C2C1Im$½BETI$
> ½C2Py$½NTf2$ > ½C2C1Im$½OTf $:

A trend with anion or cation cannot be established for freezing
temperatures. Although it is important to remark that, in both
sequences, the two first ILs remain the same.

Substantial super cooling is observed for all the ILs, with the
freezing point significantly lower than the melting point, with dif-
ferences (Tm–Tf) occurring around (20 to 30) "C, except for
[C2Py][NTf2] and [C2Py][MeSO3] which are higher than 50 "C, indi-
cating a very slow crystallisation rate. This fact is very important
and a positive observation for the application of ionic liquids as
absorbents in absorption heat pumps to avoid the problem of crys-
tallisation commonly observed in the current working pair, as pre-
viously pointed out.

3.2. Thermogravimetric analysis

3.2.1. Dynamic study
Figure 2 shows TG (a) and DTG (b) curves for the selected ILs.

Reported curves have similar shapes for all ILs, characterised by a
unique step with an intense loss weight, corresponding to a narrow
DTG peak (50 "C approximately).

Table 3 shows onset and ending temperatures (tonset and tendset),
weight at tonset (Wonset), temperature corresponding to a 1% weight
loss (t1%) and the temperature for DTG minimum (tpeak). These val-
ues were determined directly from TG and DTG curves using

[C2Py][NTf2] [Chol][NTf2]

[C2Py][OTf] [C2C1Im][OTf]

[C2Py][MeSO3] [C2C1Im][BETI]

FIGURE 1. DSC curves (Exo down) on cooling (dashed line) and heating (solid line) scanning for the selected ILs.

TABLE 2
Freezing (tf), melting (tm), glass transition (tg), cold crystallisation (tcc) and
solid ! solid transition (tss) temperatures obtained from DSC curves under pressure
of (990 ± 3) hPa and comparison with bibliographic results.

IL Cooling step Heating step

tf/"C tm/"C tg/"C Other/"C

[C2Py][OTf] 16/!10
[C2Py][MeSO3] !1 62
[Chol][NTf2] !9 27/33 2 (tss)

27 [25] !1 (tss) [25]
30 [28]

[C2C1Im][BETI] !11 16 !52 !37 (tcc)
!12 [22] !1 [22]

15 [23]
[C2Py][NTf2] !21 32 21 (tss)

31 [29] !38 [29] 20 (tss) [29]
[C2C1Im][OTf] !41 !14

!10 [32]

Expanded uncertainties are U(t) = ±2 "C (0.95 level of confidence).
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methods widely described in previous papers published by our
group [15,20,21]. Analysed ILs present a remarkable thermal sta-
bility, with onset temperatures higher than 350 "C, except for
[C2Py][MeSO3] with tonset of 315 "C. Although the onset tempera-
ture cannot be considered the upper limit of the liquid range as
already noted, this parameter allows establishment of a sequence
for the thermal stability of the ILs. Thus, the trend obtained is as
follows:

½Chol$½NTf2$ % ½C2Py$½NTf2$ > ½C2C1Im$½OTf$ > ½C2Py$½OTf$
> ½C2C1Im$½BETI$ > ½C2Py$½MeSO3$:

This sequence indicates that the anion has the strongest influ-
ence over the ILs thermal stability, with the [NTf2]! conferring
the highest resistance to thermal degradation, following closely
by [OTf]!. Thus, it is clear that the cation influence should also
be taken into account with the imidazolium based ILs that provide
the greatest thermal stability. These observations are in good
agreement with previous works where ILs with similar cations or
anions were studied [16,33–36].

Literature information regarding the degradation of these ILs is
scarce and in most cases comparisons are difficult due to the influ-
ence of experimental conditions on results. Thus, Bittner et al. [36]
use temperature of maximal decomposition rate (i.e. tpeak for us)
and they found results similar to ours for [C2Py][NTf2].

Additionally, Heym et al. [17], with the scope of studying ther-
mal stability, used temperature to reach a mass loss of 1% during
TG experiments at different heating rates obtaining 348 "C for
[C2C1Im][OTf]. This value is consistent with result obtained in this
work (338 "C).

On the other hand, decomposition temperature (Td) of
[C2C1Im][BETI] was previously calculated by Ngo et al. [22],
obtaining different values using either aluminium (423 "C) or
alumina (462 "C) sample pan, both of them higher than the
value obtained in this work. These authors used a nitrogen atmo-
sphere and a heating rate of 20 "C "min!1, whereas in this work

FIGURE 2. TG (a) and DTG (b) of ILs: (⁄) [Chol][NTf2], (j) [C2C1Im][OTf], (s) [C2py][NTf2], ( ) [C2py][OTf], (d) [C2C1Im][BETI], (h) [C2py][MeSO3].

TABLE 3
Thermal results from dynamic scans in air atmosphere under pressure of
(990 ± 10) hPa. Onset and ending temperatures (tonset and tendset), weight at tonset

(Wonset), the temperature for DTG minimum (tpeak) and temperature corresponding to
1% loss weight (t1%).

IL tonset/"C tendset/"C Wonset/% tpeak/"C t1%/"C

[Chol][NTf2] 410 460 85 442 355
[C2Py][NTf2] 409 471 83 450 346
[C2C1Im][OTf] 404 458 87 436 338
[C2Py][OTf] 371 416 86 399 328
[C2C1Im][BETI] 368 425 85 407 305
[C2Py][MeSO3] 315 353 85 339 265

Expanded uncertainties are U(t) = ±4 "C and U(W) = 1% (0.95 level of confidence).
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air atmosphere and 10 "C "min!1 were chosen. As previous studies
[21] have shown, the onset temperature can be up to 30 "C higher
when the atmosphere changes from air to nitrogen. A similar

effect takes place when the heating rate changes from (10 to
20) "C "min!1.

Leaving aside the dynamic nature of the experiments, the loss of
weight at tonset is around 15% in all the ILs, too high to claim that
this temperature is the upper limit of the operation range, as men-
tioned above. So, to establish this upper limit, isothermal studies
are necessary [21].

3.2.2. Isothermal study
With the aim to determine the maximum operating tempera-

ture of these ILs, isothermal scans at different temperatures lower

[C2Py][OTf] [C2C1Im][OTf] 

[C2C1Im][BETI]

[C2Py][NTf2] [Chol][NTf2]

[C2Py][MeSO3]

FIGURE 3. Isothermal scans at different temperatures of selected ILs.

FIGURE 4. Comparison of isothermal scans of selected ILs at 260 "C.

TABLE 4
Activation energy, Ea, and pre-exponential factor of Arrhenius equation, A, of
degradation process for the selected ILs.

IL Ea/(kJ "mol!1) A0 = lnA

[C2Py][OTf] 185 ± 10 37.57 ± 1.69
[Chol][NTf2] 170 ± 20 33.12 ± 5.33
[C2C1Im][OTf] 160 ± 5 30.39 ± 0.98
[C2Py][NTf2] 140 ± 20 27.57 ± 4.39
[C2Py][MeSO3] 140 ± 10 31.52 ± 1.57
[C2C1Im][BETI] 110 ± 5 21.61 ± 1.17
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than the corresponding tonset were performed. Figure 3 shows these
scans. As expected, weight loss corresponding to the highest
selected temperature was very rapid, even for [C2Py][NTf2] at
360 "C (42 "C lower than the onset temperature), with one hour
time enough to lose approximately the 60% of initial weight.
Nevertheless scans at 260 "C for ILs with [OTf]! and [NTf2]! anions
and at 200 "C for other ILs during more than five hours do not
imply detectable changes in mass samples.

Figure 4 shows a comparison between the isothermal scans at
260 "C. A similar trend than the one found with dynamic scans
was obtained. The [OTf]! and [NTf2]! based ILs are again the most
stable, whereas [C2Py][MeSO3] weight loss at 260 "C is around 50%
after 100 min.

The kinetics of decomposition was analysed from isothermal
TGA results following the methodology reported in previous
papers [18,19].

The temperature dependence on weight loss rate, k, is repre-
sented by the Arrhenius equation:

k ¼ A exp
!Ea

RT

! "
; ð1Þ

where Ea is the activation energy, R the gas constant and T the abso-
lute temperature. The activation energy of the degradation process
was obtained by fitting ln k and T!1. The results are presented in
table 4.

As far we are aware, activation energy values have not been
published for these ILs, although these values are in agreement
with those reported in the literature for other ILs with a similar
cation and anion. From the results obtained and previous publica-
tions [14,18,19], it can be concluded that the activation energy

follows the trend for a common anion ([NTf2]! or [OTf]!)
choline > pyrrolidinium > pyridinium > imidazolium, whereas the
anion sequence is:

½OTf$! > ½FAP$! > ½NTf2$! % ½MeSO3$! > ½BETI$!:

3.3. Maximum operation temperature

As it was pointed out tonset cannot be considered a maximum
operating temperature. Thus, a long-term stability parameter,
t0.01/10h, that is the temperature necessary to reach a 1% weight loss
after 10 h, is often used [16,27,29,37]. This parameter can be calcu-
lated from the Arrhenius equation, whose parameters are shown in
table 4. A comparison between the values of tonset and calculated
t0.01/10h are presented in figure 5. Differences of 200 "C, approxi-
mately, between both temperatures are observed for all the
selected ILs.

Depending on the application, the maximum operating temper-
ature can vary, taking into account that the degradation level can
be different. Thus, as expressed in previous papers [20], the crite-
rion of t0.01/10h could be over strict, in which case the maximum
operating temperature corresponding to three thermal degrada-
tion levels (1%, 5% and 10% in 10 h) is calculated using the above
Arrhenius parameters that are shown in table 5.

In general, absorption systems will have operating tempera-
tures lower than data shown in table 5. However, this issue must
be analysed taking into account once the heat pump configuration
is chosen. According to systems evaluated by Ayou et al. [38], these
six ILs may accomplish the maximum operating temperature
requirements with [C2C1Im][BETI] and [C2Py][MeSO3] which are
close to this limit.

3.4. (Heating + cooling) cycles. ILs ageing

Regarding the application of absorption heat pumps, ILs
behaviour after long periods of time remains as an open question,
specifically the effects of ageing of the ILs after numerous
absorption/desorption cycles. To the best of our knowledge,
very few experiments have been done to study ageing effect on
ILs [39].

His question is outlined using thermal techniques.
(Heating + cooling) cycles were chosen to adapt the experimental
procedure to absorption heat pump applications. The experimental
procedure consists of 8 successive heating applications up to
175 "C and cooling up to 50 "C under air atmosphere.

Figure 6 shows the second (the first one was not considered
because a low percentage of impurities, specially water, released
to rise 100 "C) and the last heating TG curve for [C2C1Im][OTf]
and [C2Py][MeSO3], which are the most and least thermally stable.
No significant degradation related to successive (heating + cooling)
cycles was found.

After the successive (heating + cooling) cycles, the same sample
of these ILs was subjected to a heating from (50 to 800) "C at
10 "C "min!1 (figures not shown), i.e. the experimental conditions
corresponded to dynamic studies, with the aim to determine the
changes in characteristic temperatures after the cycles. Table 6
reports onset temperatures obtained from this dynamic study after
the cycles (t0onset). Results show there are no significant changes in
dynamic curves as a consequence of the ageing.

Even though during this process ILs do not undergo other
effects related with physical absorption, chemical interactions or
mechanical factors, results seem to indicate that ageing does not
affect to thermal stability.

FIGURE 5. Comparison between tonset (grey bar) and t0.01/10h (black bar).

TABLE 5
Maximum operating temperature (t, in "C) corresponding to three thermal degrada-
tion levels (1%, 5% and 10% in 10 h) calculated from Arrhenius parameter equation.

LI tonset/"C t0.01/10h/"C t0.05/10h/"C t0.1/10h/"C

[Chol][NTf2] 410 190 205 215
[C2Py][NTf2] 409 170 190 200
[C2C1Im][OTf] 404 200 215 225
[C2Py][OTf] 371 185 200 205
[C2C1Im][BETI] 368 130 150 160
[C2Py][MeSO3] 315 130 145 150

Uncertainties are U(tonset) = ±4 "C (0.95 level of confidence) and U(t0.01/10h) =
U(t0.05/10h) = U(t0.1/10h) = ±10 "C (0.68 level of confidence).
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4. Conclusions

The liquid range of six different ILs has been determined in this
work, using thermal analysis techniques. The main results are the
following:

– All ILs show DSC curves peaks attributed to melting and freez-
ing processes in heating and cooling scanning, respectively.
The [C2Py][MeSO3] and [C2Py][OTf] show the highest melting
and freezing temperatures and [C2C1Im][OTf] the lowest.
Different ILs trends were obtained for melting and freezing
processes.

– The six ILs studied show remarkable thermal stability with
onset temperatures higher than 300 "C. The influence of the
anion over this property is very strong with [NTf2]! and
[OTf]! anions the most resistant to thermal degradation.
Nevertheless, temperatures provided by dynamic thermogravi-
metric studies cannot be considered to be the maximum
operating temperature. Isothermal scans are necessary to deter-
mine this value.

– [MeSO3]! and [BETI]! based ILs do not undergo significant ther-
mal degradation up to 200 "C whereas for [NTf2]! and [OTf]!

based ILs significant degradation is not detected up to 250 "C
under the same conditions.

– Activation energy of the degradation process has been deter-
mined using the Arrhenius equation and is compared with pre-
vious results for other ILs. Cation and anion influence on
activation energy is defined by the following trends; for cation:
choline > pyrrolidinium > pyridinium > imidazolium, and for
anion: [OTf]! > [FAP]! > [NTf2]! % [MeSO3]! > [BETI]!.

– The effect of successive heating to 175 "C and cooling to 50 "C
cycles on the mass sample was analysed to estimate the effects
on ageing of the ILs. Results indicate that this effect is negligible,
since no detectable mass loss is associated with these cycles.
Before and after the ageing, the TG curves show similar shapes
and the same onset temperatures.

FIGURE 6. Comparison between the second and last curves of (heating + cooling) cycles of (a) [C2C1Im][OTf] and (b) [C2Py][MeSO3] ILs.

TABLE 6
Onset temperatures (t0onset) of selected ILs obtained from dynamic studies after aging
cycles.

IL t0onset/"C

[Chol][NTf2] 410
[C2py][NTf2] 401
[C2C1Im][OTf] 405
[C2py][OTf] 370
[C2C1Im][BETI] 362
[C2py][MeSO3] 321

Expanded uncertainties are U(t) = ±4 "C (0.95 level of confidence).
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– According to the findings, the most adequate IL to operate in
absorption devices is [C2C1Im][OTf] due to its lowest melting
point and greatest thermal stability. Nevertheless, regarding
their liquid range, none of the others should be discarded since
they accomplish requirements for many heat pump configura-
tion systems. To determine suitable ILs, other experimental
and theoretical experimental studies will be made in the near
future.
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a b s t r a c t

In this work, density and viscosity of two pyridinium based ionic liquids; 1-ethylpyridinium
bis(trifluoromethylsulfonyl)imide, [C2py][NTf2], and 1-ethylpyridinium triflate, [C2py][OTf] as well as
[C2py][OTf] + H2O mixtures have been studied from experimental and theoretical point of view. Density
and viscosity were measured, at several temperatures and atmospheric pressure. A linear equation and
Vogel–Fulcher–Tammann equation correlated successfully density and viscosity behaviour. Coefficient
of thermal expansion of pure ILs and their mixtures with water together with the excess molar volume
and viscosity deviation of mixtures were also calculated. Excess molar volumes and viscosity deviations
were described using a Redlich–Kister equation. Regarding to theoretical approach, PC-SAFT was used
to model volumetric behaviour whereas Hard Sphere theory was used to study viscosity. The obtained
results for pure ILs are satisfactory for both models, but for [C2py][OTf] + H2O mixtures the deviations are
higher.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Compression refrigeration systems have covered the predom-
inant part of heating and cooling needs over the last decades.
However these systems require an intensive use of electrical
energy. Thus, energy saving solutions should be considered for
the future. In this context, absorption technology could repre-
sent a suitable alternative to compression devices since absorption
machines are mainly powered by external heat (waste heat, renew-
able energies as solar, etc.). So, electrical energy consumption is
reduced drastically. Besides this advantage, absorption technology
suffers from several problems as low efficiencies and also con-
ventional working pairs present several drawbacks. For instance,
NH3/H2O presents low system performance, necessity of using rec-
tification towers or high driving heat source temperature as main

Abbreviations: IL, ionic liquid; [C2py][NTf2], 1-ethylpyridinium bis(trifluoro-
methylsulfonyl)imide; [C2py][OTf], 1-ethylpyridinium triflate; DEHP, di(2-
ethylhexyl) phthalate; DIDP, diisodecyl phthalate; C100, commercial standard;
PC-SAFT, perturbed-chain statistical fluid theory; HS, hard-sphere; VFT,
Vogel–Fulcher–Tammann; ARDs, average relative deviations; DMAX, maximum
deviations; COP, coefficient of performance.

∗ Corresponding authors. Tel.: +34 986818753.
E-mail address: fafina@uvigo.es (J. García).

problems. In case of H2O/LiBr, the low operating pressure, crystal-
lization and corrosion are the main difficulties. Thus, ionic liquids
(ILs) have gained attention in both experimental and theoretical
research as potential absorbents for heat pumps due to their pos-
sibilities of improving the performance of conventional working
pairs.

Knowledge about thermophysical properties of refriger-
ant/absorbent systems is essential to design new absorption cycles,
to scale up process equipment and to determine the heat pumps
performance. In this work, two important properties, density and
viscosity were studied to characterize new potential absorbents
based on ILs. High densities would help to minimize the overall
size of absorption equipment [1], and thus, the manufacture and
the cost will be lower. In addition, density is also important to cal-
culate other properties as dynamic viscosity or the performance of
the absorption cycles. Regarding to viscosity, that influences heat
and mass transfer, it should be as low as possible in order to reduce
pumping power consumption and allow a high heat transfer.

After studying a bunch of ILs, most of them based on imid-
azolium cation, Khamooshi et al. [2] concluded that H2O/ionic
liquid working pairs have several advantages against the con-
ventional working fluids (NH3/H2O and H2O/LiBr). For example,
these compounds could resolve the problems of crystallization,
corrosion, toxicity, flammability, etc. Nevertheless, coefficient of

http://dx.doi.org/10.1016/j.fluid.2015.06.043
0378-3812/© 2015 Elsevier B.V. All rights reserved.
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List of symbols

M molecular mass
m number of segments of PC-SAFT
N Avogadro constant
R constant of ideal gas
R! roughness factor
s standard error of estimate
T absolute temperature
V specific volume
Vr reduced specific volume
V0 close-packed volume
VE excess molar volumes
V̄ E,∞

i partial molar volumes at infinite dilution of compo-
nent i

x mole fraction
Z compressibility factor
˛p isobaric coefficient of thermal expansion
"! viscosity deviation
ε dispersive interaction energy of PC-SAFT
εAiBi association energy of PC-SAFT
! viscosity
!*

exp reduced viscosity
$AiBi effective association volume of PC-SAFT
% density
& diameter of segment of PC-SAFT

performance (COP) is lower and the circulation ratio is higher
than those obtained for conventional working pairs, due to the
ILs high viscosity. Therefore, the cycle must operate with high cir-
culation ratio, provoking the growth of energy requirements. In
addition, ILs containing halides or tetrafluoroborate anions may
give rise to corrosion problems or to generate HF in presence of
water [3]. Thus, new ILs should be explored in order to find those
with optimal thermophysical properties. Recently, Królikowska
et al. [4,5] have proposed several ILs such as N-octylisoquinolinium
thiocyanate, 1-butyl-1-methylpiperidinium dicyanamide or 1-
butyl-1-methylpyrrolidinium dicyanamide for H2O as alternative
working pairs for the absorption heat pump cycle.

In this work, two pyridinium-based ionic liquids were
considered, 1-ethylpyridinium bis(trifluoromethylsulfonyl)imide,
[C2py][NTf2], and 1-ethylpyridinium triflate, [C2py][OTf]. Up to
our knowledge, density and viscosity of these pyridinium-based
ionic liquids cannot be found in literature. Density and viscosity of
[C2py][OTf] and [C2py][NTf2] (dry and hydrated) were measured
at several temperatures and correlated with a linear and exponen-
tial equation respectively. Only H2O + [C2py][OTf] mixtures were
experimentally determined since [C2py][NTf2] is not miscible in
water. It is well known that, ILs containing [NTf2]− anion provoke
immiscibility in water mixtures [6].

From experimental density data, the isobaric coefficient
of thermal expansion, ˛p, of [C2py][NTf2], [C2py][OTf] and
H2O + [C2py][OTf] system was obtained, since it is necessary to
dimension the absorption system. Furthermore, excess molar
volume and viscosity deviation were also calculated from den-
sity and viscosity experimental data and were correlated with
Redlich–Kister type equation. From this data, mixture behaviour
was studied, providing useful information for the application.

Previously, phase transitions and thermal stability of these ionic
liquids had been analysed [7], concluding that no detectable change
was observed at temperatures lower than 260 ◦C. Thus, from point
of view of the application, both ILs present a suitable thermal sta-
bility.

Furthermore, models with strong physical background have
used to study deeply ILs behaviour. Perturbed-chain statistical fluid
theory, PC-SAFT, and hard-sphere, HS, were tested to analysed vol-
umetric and viscometric behaviour, respectively, for [C2py][NTf2]
and [C2py][OTf] together with H2O + [C2py][OTf] mixtures. Up to
now, and up to our knowledge, PC-SAFT model was used to corre-
late and to predict thermophysical properties in H2O + IL systems
by Chen et al. [8], Passos et al. [9], Shahriari et al. [10], Domańska
et al. [11] and Paduszynı́ski et al. [12].

Hard Sphere (HS) theory, developed by Dymond and Assael
[13,14] with the aim of modelling transport properties, was used
to model viscosity. HS theoretical background should be placed on
original Enskog hard sphere theory that had been able to predict
transport properties of gases with high accuracy. However, even
though many attempts were made to apply Enskog theory to dense
fluids, it presented important limitations and results were not fully
satisfactory. Hereby, Dymond and Assael introduced some mod-
ifications to original HS theory in order to extend its application
to dense fluids. Recently Gaciño et al. [15] applied HS theory to 19
ionic liquids. However, as far as we are concerned, HS have not been
used to model viscosity of H2O + IL mixtures.

2. Experimental

ILs studied are commercially available and supplied by Iolitec,
being their purity higher than 99% (Table 1). ILs were dried under
vacuum of 0.1 Pa during at least 24 h prior to each measure-
ment series. Water content was measured using a coulometric
Karl-Fisher titration (Mettler Toledo DL32) before and after each
measurements series, and it was found that there was no sig-
nificant variation of the water quantity in the samples. Water
content for dry [C2py][NTf2] and [C2py][OTf] were 232 ppm and
90 ppm, respectively. The hydrophobic [C2py][NTf2] was hydrated
under atmospheric conditions until mass remained constant. Water
content reached 4399 ppm. [C2py][OTf] was found to be mis-
cible in the temperature range (283.15–353.15 K). To prepare
[C2py][OTf] + H2O mixtures, water was purified using a Milli-Q Plus
system.

Solutions were prepared gravimetrically using a digital balance
Sartorius CPA225D with an uncertainty of 0.00001 g. The error on
the mole fraction composition of the mixtures induced due to bal-
ance uncertainty was estimated to be 5.10−5.

Densities, %, of the pure compounds and the corresponding
binary systems were measured using a vibrating tube densimeter
Anton Paar DMA-4500, with automatic viscosity correction. Cell
temperature was controlled by a thermostatic bath PolyScience
with an uncertainty of ± 0.01 K. The densimeter was calibrated
using Milli-Q quality water and vacuum, according to the method of
Lagourette et al. [16]. The uncertainty estimated in density through
selected temperature range was of ± 0.0001 g cm−3.

Viscosity, !, of the pure substances and the corresponding binary
mixtures were measured using an Anton Paar AMV 200 rolling ball
viscometer according with the following equation:

! = a (˛, T) + b (˛, T)
%ball −%liq

t (1)

where a and b are calibration parameters, t, is the measured time
using two magnetic sensors that a gold-coated steel ball needs
to roll down in a glass capillary inclined an angle, ˛, filled with
sample, a fixed distance, and %ball and %liq are the density of the
ball and the sample, respectively. Temperature was controlled by a
thermostatic bath Polyscience with an uncertainty of ± 0.01 K.

To verify reproducibility of these measurements, calibration was
performed for four inclination angles. Viscometer range goes from
15◦ to 90◦, nevertheless due to the IL high viscosity selected angles
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Table 1
Name, Abbreviation, CAS number and purity of the compounds studied in this work.

Name Abbreviation CAS number Puritya

1-Ethylpyridinium bis(trifluoromethylsulfonyl)imide [C2py][NTf2] 712354-97-7 >99%
1-Ethylpyridinium triflate [C2py][OTf] 3878-80-6 >99%

a Information supplied by Iolitec.

Table 2
Experimental density (%/g cm−3) values for [C2py][NTf2] and [C2py][OTf] + H2O mixtures under pressure of (990 ± 10) hPa.

[C2py][NTf2] water ppm x [C2py][OTf] + (1 −x) H2O molar fraction

239 4399 0 0.067 0.183 0.498 0.689 0.893 1

T (K) % (g cm−3)

283.15 1.5516 1.5468 0.9997 1.1764 1.2881 – – – –
293.15 1.5414 1.5366 0.9982 1.1702 1.2802 1.3661 1.3872 1.4019 1.4090
298.15 1.5364 1.5316 0.9970 1.1670 1.2762 1.3619 1.3830 1.3977 1.4048
303.15 1.5314 1.5266 0.9956 1.1637 1.2721 1.3578 1.3788 1.3935 1.4006
313.15 1.5215 1.5166 0.9922 1.1569 1.2640 1.3494 1.3705 1.3852 1.3923
323.15 1.5116 1.5068 0.9880 1.1497 1.2557 1.3411 1.3623 1.3770 1.3841
333.15 1.5019 1.497 0.9832 1.1422 1.2473 1.3328 1.354 1.3688 1.3760
343.15 1.4922 1.4872 0.9778 1.1344 1.2387 1.3244 1.3459 1.3607 1.3678
353.15 1.4826 1.4775 0.9718 1.1263 1.2301 1.3161 1.3377 1.3527 1.3598

Standard uncertainty of % is u = ± 0.0001 g cm−3.

were 40◦, 50◦, 60◦, 70◦. Liquids used to carry out the calibration
were Squalane, Di(2-ethylhexyl)phthalate (DEHP) [17], Diisodecyl
phthalate (DIDP) [18] and commercial standard, C100, provided
by Sigma Aldrich. DEHP and DIDP density and viscosity data were
taken from literature. In case of C100, data were provided by Sigma
Aldrich. Squalane and DEHP calibration process was made using
a 1.8 mm capillary diameter (1.5 mm ball diameter) while DIDP
and C100 calibration process required a 3 mm capillary diame-
ter (2.5 mm ball diameter) due to their high viscosity. Calibration
parameters (a, b) were fitting to a straight line. Five temperatures
(25 ◦C, 37.5 ◦C, 40 ◦C, 50 ◦C, 60 ◦C) were used in order to build a
calibration line for each inclination angle. At the end of calibra-
tion process, four calibration lines were obtained for each standard
liquid, covering a viscosity range of 1–200 mPa s. Even though
uncertainty provided by Anton Paar is 1%, after measurements it
was considered that 3% would be a more realistic value.

3. Results and discussion

3.1. Experimental

Density data of dry and hydrated [C2py][NTf2] as well as those
of [C2py][OTf] + H2O mixtures, in the interval 283.15–353.15 K, are
reported in Table 2. Over this range, changes in the composition
of the mixtures due to the vaporization of water are negligible
[19]. Dry [C2py][NTf2] density data vary from 1.55 to 1.48 g cm−3,
whereas dry [C2py][OTf] presents lower values ranged from 1.41 to
1.36 g cm−3.

As expected, density grows as molar mass does. [NTf2]− based
IL presents higher densities than [OTf]− based IL. Although no
references about density of these IL can be found, Yunus et al.
[20] observed that this property decreases as the cation alkyl
chain increases in [Cnpy][NTf2] (n = 4, 8, 10, 12). Density data of
[C2py][NTf2], here presented, agree with this tendency. Addition-
ally, a comparison between data of [C2py][OTf] (in this paper) and
[C4py][OTf] [21] shows similar behaviour.

Fig. 1 shows densities for dry and hydrated [C2py][NTf2]. It can
be observed that density decreases linearly with temperature. Den-
sities of water saturated [C2py][NTf2] are slightly lower than the
densities of this dry IL (about 0.3%). Thus, from an industrial appli-
cation point of view, water concentration effect over density is
negligible, as it can be the case of the absorption cycles.

In Fig. 2, density trend with temperature for pure [C2py][OTf]
and their mixtures with H2O can be observed. In the mixtures, as it
is expected from the pure compounds data, density decreases with
increasing H2O concentration.

Experimental densities were correlated with temperature using
a linear equation:

%
�

g cm−3
�

= a + bT (2)

The characteristic parameters a and b are given in Table 3
together with the standard error of estimate, s.

s =

rP
(Y −Yi)

2

N
(3)

being Y the measured value and Yi the estimation of the adjustment
and N the number of experimental data.

In all cases, adjustment lines described very accurately tem-
perature dependence on density; nevertheless, linear fittings are
slightly less precise as water concentration grows. Brennecke et al.
have already pointed out this pattern [3] caused by the nonlin-
ear behaviour of water density with temperature. Thus, pure water
density was fitted to a polynomial equation of grade two.

Fig. 1. Experimental density values for [C2py][NTf2] dry (!) and hydrated ("). Linear
correlations (—).
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Table 3
Parameters of linear adjustment (% = a + bT) for density data.

[C2py][NTf2] water ppm x [C2py][OTf] + (1 −x) H2O molar fraction

239 4399 0 0.067 0.183 0.498 0.689 0.893 1

Linear fitting parameters of Eq. (2)

a (g cm−3) 1.8301 1.8264 – 1.3805 1.5233 1.6104 1.6288 1.6423 1.6493
b (104/g cm−3 K−1) −9.8471 −9.8867 – −7.1676 −8.2920 −8.3330 −8.2460 −8.2056 −8.2020
s (104) 2.3 1.9 – 8.0 3.1 0.4 0.9 1.4 1.3

Fig. 2. Experimental density values for x [C2py][OTf] + (1 −x) H2O mixtures. x = 0
(!), x = 0.067 ("), x = 0.183 (#), x = 0.498 (⃝), x = 0.689 (!), x = 0.893 (△), x = 1 (").
Linear correlations (—) except x = 0 fitted to grade 2 polynomial equation.

Volumetric properties trends with temperature can be
expressed by calculating the coefficient of thermal expansion, ˛p,
given by:

˛p = −1
%

✓
∂%

∂T

◆

p

(4)

Tendency of ˛p with temperature for dry ILs and water are
shown in Fig. 3. Given that density decreases linearly with temper-
ature, ˛p is positive and increases as temperature does for the ILs.
Nevertheless, as it is usual, opposite tendency with temperature is
found for molecular compounds, such as water. By comparing the
ILs coefficient of thermal expansion data, it was found that IL based
[NTf2]−anion presents a slightly higher expansion than the IL with
[OTf]−anion, 6.39 10−4 and 5.86 10−4 K−1, respectively at 293.15 K.

Fig. 3. Isobaric coefficient of thermal expansion for pure [C2py][NTf2] (!),
[C2py][OTf] (#) and H2O (!). Linear correlations (—).

The difference between ˛p, for [C2py][NTf2] and [C2py][OTf] is
about 8%. Similar values of ˛p were reported by Jacquemin et al. [22]
for ammonium and imidazolium with [NTf2]−anion. In the case of
x [C2py][OTf] + (1 −x) H2O mixtures ˛p increases with temperature
in overall range of mole fraction, as it can be seen in Fig. 4. On the
other hand, water presence leads to lower densities, and therefore
to higher ˛p values. This pattern is valid for the whole range of IL
mole fractions (x) except for x = 0.067. It can be explained due to�
∂%/∂T

�
p

value, it remains nearly constant until water concentra-

tion reaches the highest value. At this point (x = 0.067),
�
∂%/∂T

�
p

decreases significantly, and consequently ˛p does so. Figs. 3 and 4
illustrate that behaviour.

The excess molar volumes, VE, were calculated from the density
values using the equation:

VE =
nX

i=1

xiMi

h⇣ 1
%

⌘
−
⇣ 1

%i

⌘i
(5)

where n is the number of components, xi is the mole fraction of
component i in the mixture, Mi its molecular mass, % and %i are
the experimental density of the mixture and of the pure compo-
nent, i, respectively. The uncertainty of excess molar volume was
estimated to be less than ± 0.03 cm3 mol−1.

A Redlich–Kister-type equation was employed to correlate the
VE data:

VE = x (1 −x)
nX

i=0

Ai(2x −1)i (6)

where x is the mole fraction of [C2py][OTf] and Ai, are adjustable
coefficients given in Table 4 together with the standard error of
estimate, s, previously defined (Eq. (3)).

In Fig. 5, the plot of VE against mole fraction of [C2py][OTf]
from 293.15 to 353.15 K is presented. As it is usual, for mixtures

Fig. 4. Isobaric expansion coefficient for x [C2py][OTf] + (1 −x) H2O mixtures.
x = 0.067 (!), x = 0.183 ("), x = 0.498 (#), x = 0.689 (⃝), x = 0.893 (!). Linear corre-
lations (—).



P.B. Sánchez et al. / Fluid Phase Equilibria 405 (2015) 37–45 41

Table 4
Redlich–Kister adjustment coefficient of the excess molar volumes for x [C2py][OTf] + (1 −x) H2O mixtures.

T (K) A0 A1 A2 A3 s

293.15 1.636 0.473 −0.131 1.744 0.006
298.15 1.741 0.395 0.002 1.619 0.009
303.15 1.815 0.346 0.197 1.446 0.007
313.15 2.012 0.163 0.384 1.316 0.013
323.15 2.186 −0.033 0.603 1.194 0.018
333.15 2.372 −0.092 0.892 0.988 0.019
343.15 2.534 −0.405 0.954 0.959 0.025
353.15 2.714 −0.450 1.112 0.601 0.025

Fig. 5. Excess molar volume, VE , for x [C2py][OTf] + (1 −x) H2O mixtures at different
temperatures. 293.15 K (!), 298.15 ("), 303.15 (#), 313.15 (⃝), 323.15 (!), 333.15
(△), 343.15 (") 353.15 (♦). Redlich–Kister correlations (—).

composed by an IL and a molecular component, the excess molar
volumes are small. Positive excess molar volumes are found in
overall range of mole fractions. This is in agreement with VE data
for other pyridinium-based ionic liquids with water, reported by
Mokhtarani et al. [23] and by García-Miaja et al. [24] At mole frac-
tions of 0.5 the values vary from 0.4 to 0.7 cm3 mol−1 at 293.15 K
and 353.15 K, respectively. Positive excess molar volume means
that mixtures are less compact than the corresponding pure fluids.
This fact is caused by the weakness of unlike-molecules (water-
IL) interactions and the water accommodation into the IL network.
Moreover, in Fig. 5 we can observe a positive increment of this mag-
nitude with temperature, in special in the dilute region of IL. Thus,
calculating the partial molar volumes at infinite dilution, Eqs. (7)
and (8), it can be observed that the VE growth with temperature
is more pronounced in the dilute region of IL. Lehman et al. [25]
explained this behaviour as a consequence of the hydrogen bond
strength. This fact is in agreement with the high concentration of
hydroxyl groups of water in this region.

V̄E,∞
1 =

3X

i=0

Ai(−1)i (7)

V̄ E,∞
2 =

3X

i=0

Ai (8)

Eqs. (7) and (8) are associated to infinite dilution of H2O in
[C2py][OTf] IL, that is, xIL = 0 and IL in H2O (xIL = 1), respectively. The
partial molar volumes at infinite dilution are reported in Table 5.

Viscosity of dry and saturated [C2py][NTf2] as well as those of
[C2py][OTf] + H2O mixtures at several temperatures are summa-
rized in Table 6. As in case of density, influence of alkyl chain
length over viscosity was studied by comparing our results with

Table 5
Partial molar volumes at infinite dilution for x [C2py][OTf] + (1 −x) H2O mixtures.

T (K) [C2py][OTf] + H2O

V̄ E,∞
1 V̄ E,∞

2

293.15 −0.2713 3.7567
303.15 0.2198 3.8038
313.15 0.9172 3.8752
323.15 1.6278 3.9498
333.15 2.3675 4.1595
343.15 2.9343 4.0423
353.15 3.6749 3.9769

literature values. Viscosity of [C2py][NTf2] agrees with tendency
found by Yunus et al. [20] for [Cnpy][NTf2] (n = 4,8,10,12). Longer
cation alkyl chain leads to higher viscosity, which is the opposite
trend than it was observed for density.

The three-parameter Vogel–Fulcher–Tammann (VFT) equation
was used to correlate experimental viscosities of pure ILs as tem-
perature function:

! = A exp
⇣

B
T −T0

⌘
(9)

being ! the dynamic viscosity, and A, B and T0 the fitting parameters
reported in Table 7 together with the standard error of estimate, s.

Fig. 6 illustrates that viscosity decreases drastically with tem-
perature for dry and water saturated [C2py][NTf2]. Viscosity
diminishes about 18% at 283.15 K and about 9% at 353.15 K when
ILs are saturated. It shows that the influence of water concen-
tration over viscosity is smaller at higher temperature (Table 6
and Fig. 6, Fig. 7). A similar behaviour was found previously by
Machanová et al. [26] for other ILs.

The viscosity data of dry [C2py][OTf] IL are 34% and 22% higher
than those of dry [C2py][NTf2] at 293.15 K and 353.15 K, respec-
tively. Thus, the nature of anion tends to have less significance when

Fig. 6. Experimental viscosity values of [C2py][NTf2] dry (!) and hydrated ("). VFT
correlations (—).



42 P.B. Sánchez et al. / Fluid Phase Equilibria 405 (2015) 37–45

Table 6
Experimental viscosity (!, mPa s) values of [C2py][NTf2] and x[C2py][OTf] + (1 −x) [H2O] mixtures under pressure of (990 ± 10) hPa.

[C2py][NTf2] water ppm x [C2py][OTf] + (1 −x) H2O molar fraction

239 4399 0 0.067 0.183 0.498 0.689 0.893 1

T (K) ! (mPa s)

283.15 78.56 64.31 – – – – – – –
293.15 49.88 41.67 1.00 2.47 5.30 17.69 33.37 65.73 75.20
298.15 40.12 34.11 0.89 2.16 4.60 15.04 27.81 53.20 60.58
303.15 33.32 28.41 0.80 1.90 4.03 13.00 23.54 43.69 48.77
313.15 24.04 20.61 0.65 1.50 3.16 9.96 17.36 30.78 33.78
323.15 17.81 15.47 0.55 1.22 2.55 7.86 13.26 22.52 24.47
333.15 13.70 12.15 0.47 1.02 2.10 6.34 10.46 17.13 18.24
343.15 10.88 9.70 0.40 – 1.76 5.24 8.42 13.40 14.05
353.15 8.68 7.92 0.35 – – 4.41 6.92 10.74 11.13

Relative uncertainty of ! is estimated to be 3%.

Table 7
Parameters of exponential adjustment (VFT equation) for viscosity data.

[C2py][NTf2] water ppm x [C2py][OTf] + (1 −x) H2O molar fraction

239 4399 0 0.067 0.183 0.498 0.689 0.893 1

Parameters of Vogel–Fulcher–Tammann Eq. (9)

T0 (K) 161.8 163.0 170.2 175.1 165.6 149.1 151.5 157.4 162.5
A (mPa s) 0.1973 0.2181 0.0437 0.0747 0.1082 0.1571 0.1707 0.1790 0.1754
B (K) 726.7 683.0 385.6 413.9 497.0 680.5 747.2 801.6 792.0
s 0.224 0.089 0.003 0.007 0.016 0.023 0.021 0.049 0.184

temperature increases. In addition, the trend of viscosity with the
anion is, also, opposite to that found for density. In other words, dry
[C2py][OTf] is more viscous and less dense than dry [C2py][NTf2] for
the whole temperature range. This behaviour, for pyridinium based
ionic liquids, could be explained considering ILs as microstructured
fluids, in the same way that Jacquemin et al. [22] have done for
imidazolium based ionic liquids.

The viscosity deviations, (!, were calculated from the vis-
cosity of the pure components, !i, and viscosity of the mixture
!m:

(! = !m −
i=NX

i=1

xi!i (10)

Fig. 7. Experimental viscosity values of x [C2py][OTf] + (1 −x) H2O mixtures. x = 0
(!), x = 0.067 ("), x = 0.183 (#), x = 0.498 (⃝), x = 0.689 (!), x = 0.893 (△), x = 1 (").
VFT correlations (—).

To correlate viscosity deviation with the mole fraction, the fol-
lowing Redlich–Kister equation was used:

(! = x (1 −x)
nX

i=0

Ai(2x −1)i (11)

where x is mole fraction of [C2py][OTf] and Ai, are adjustable
coefficients given in Table 8 together with the standard error of
estimate, s, at temperatures from 293.15 K to 353.15 K.

Negative viscosity deviations were found for nearly all data
points presented in Fig. 8. Positive values can be attributed to
experimental uncertainties, even though temperature might also
have some influence on it. These results are consistent with
excess molar volumes (Fig. 5). Weakening of interactions between

Fig. 8. Viscosity deviation, △!, for x [C2py][OTf] + (1 −x) H2O mixtures at different
temperatures. 293.15 K (!), 298.15 ("), 303.15 (#), 313.15 (⃝), 323.15 (!), 333.15
(△). Redlich–Kister correlations (—).
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Table 8
Coefficients of the Redlich–Kister adjustment of the viscosity deviations for x [C2py][OTf] + (1 −x) H2O mixtures.

T (K) A0 A1 A2 A3 s

293.15 −83.47 −47.17 68.54 122.18 1.48
298.15 −64.11 −34.21 53.82 93.22 1.11
303.15 −48.24 −23.83 46.19 76.65 0.91
313.15 −29.76 −13.30 31.75 51.67 0.62
323.15 −19.07 −7.36 21.83 34.84 0.42
333.15 −12.37 −3.72 16.85 25.79 0.31

unlike-molecules and packing effects leading less compact mix-
tures implies negative viscosity deviations. "! becomes less
negative as temperature rises, it can be explained regarding to
exponential decay of viscosity with temperature that becomes
more pronounced for pure IL.

3.2. Modelling

To model volumetric behaviour PC-SAFT equation of state (EoS)
developed by Gross and Sadowski [27,28] was used. In terms of the
compressibility factor, Z, PC-SAFT EoS is given as:

Z = Z id + Zhc + Zdisp + Zassoc (12)

where (id) is the ideal gas contribution, (hc) is the hard-chain
term, (disp) is the dispersive part and (assoc) is the contribu-
tion due to association. The first three terms depend on three
pure molecular parameters (m, & i and εi) that represent the chain
length, the segment diameter and the dispersive energy per seg-
ment, respectively. Regarding to the association contribution, two
pure-component parameters determine the associating: the asso-
ciation energy (εAiBi) and the effective association volume ($AiBi).
Ai and Bi are the association sites of pure components i. So, five
parameters are necessary when association is taken into account.
In general, to obtain cross-association parameters between two dif-
ferent associating substances i and j, simple combining rules for
cross-association were suggested by Wolbach and Sandler [29],
which were used in this work.

The parameters for water were taken from literature [28],
whereas for [C2py][NTf2] and [C2py][OTf], were optimized using
densities measured in this work at atmospheric pressure and sev-
eral temperatures using the software developed by Pfohl et al. [30].
A 2B scheme was used (one associating site) because quite good
results were obtained to represent the volumetric behaviour. This
scheme was used by authors such as Passos et al. [9], Rahmati-
Rostami et al. [31]. Other authors [8,12,32] have used more than
one associating site. Table 9 shows fitted parameters together with
the average relative deviations (ARDs %) for the correlations:

ARD% = 100 ·
✓

Yexp −Ycal

Yexp

◆
(13)

where Y is the corresponding property.
Fig. 9 shows density correlations at atmospheric pressure of

selected ILs using PC-SAFT with the parameters from Table 9. The
ARDs% obtained are lower than 0.5% in the temperature range
283.15–353.15 K. With the same parameters densities of mixtures
were predicted. In Fig. 10, it can be seen that the model predicts
fairly well the volumetric behaviour at high mole fractions of IL
(the relative deviations are lower than 2%) in the temperature
range 283.15–353.15 K, whereas at low IL mole fractions devia-
tions increase up to 7%. To explain this pattern, it is necessary
to clarify that ILs parameters have been optimised using density
data shown in Table 2 whereas water parameters have been opti-
mised using saturated densities and vapour pressures, that are out
of pressure and temperature ranges where predictions have been

Fig. 9. Experimental density values for [C2py][NTf2] (!) and [C2py][OTf] ("). PC-
SAFT correlations (—).

Fig. 10. Deviations between experimental and predicted densities using PC-SAFT for
x [C2Py][OTf] + (1 −x) H2O system. x = 0.067 (!), x = 0.183 ("), x = 0.498 (#), x = 0.689
(⃝), x = 0.893 (!).

made (Fig. 10). Thus, for the higher water concentration, the higher
deviations are found.

HS formulated by Dymond and Assael (DA) uses reduced
coefficients instead of calculating transport properties directly.
Similar scheme can be used to model thermal conductivity or diffu-
sivity. Regarding to viscosity, Eq. (14) is used to obtain the relation
between this transport property and its adimensional equivalent
as a function of the specific volume, where !*

exp is reduced viscos-
ity, N is Avogadro constant, M is the molecular mass, R constant of
ideal gas, T is the absolute temperature, ! is calculated viscosity,
V is the specific volume and R! is the roughness factor; parameter
that shows the sphericity deviation of the molecule.

!∗
exp = 16)1/2

5
(2N)1/3

h 1
MRT

i1/2 !V2/3

R!
(14)
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Table 9
PC-SAFT characteristic parameters and average relative deviation for IL and H2O.

PC-SAFT parameters Average relative devition (%)

& (Å) m ε/kB (K) εAB/kB (K) $AB psat %liqsat %patm

[C2py][NTf2] 3.2876 9.5723 272.52 130.67 0.02793 0.4
[C2py][OTf] 3.0877 9.0344 292.89 126.54 0.02989 0.5
H2O [8] 3.0007 1.0656 366.51 2500.7 0.03487 1.9 6.8

Fig. 11. Universal curves obtained using Ciotta (—) and Assael parameters (- -).
Datapoints for [C2py][NTf2] (!), [C2py][OTf] (#) and H2O (!).

On the other hand, universal curves were extrapolated for V0/V
values higher than 0.66, upper limit for original Enskog theory.
These universal curves relate reduced coefficients with reduced
specific volume (Vr), coefficient between specific volume (V) and
close-packed volume (V0) by using some experimentally deter-
mined parameters. Recently, Ciotta et al. have published an extent
to Assael works with new parameters [33] improving the model
capacity for high dense fluids (Eq. (15)),

log10
�

!∗
exp

�
=

i=NX

i=0

ai

⇣ 1
Vr

⌘i

(15)

Universal curves are shown in Fig. 11 to illustrate differences
between DA and Ciotta paremeters. Both parameters lead to same
curves if Vr is higher than 1.2, otherwise Ciotta parameters will
provide better results than initial DA values. Therefore, Ciotta
parameters have been used in this work.

Over the last decades HS has been applied to model different
families of molecular compounds [13–15,34,35]. Recently Gaciño
et al. applied successfully HS theory to 19 ionic liquids obtaining
an ARD of 2,3% [15]. In this work, H2O, [C2py][OTf], [C2py][NTf2]
viscosity have been modelled with HS. Results (Fig. 12) confirm
HS as a powerful tool to model ionic liquids transport proper-
ties. Average deviations were 0.89%, 1.96%, 1.80% while maximum
deviations (DMAX) were 2.33%, 4.17%, 4.59% for H2O, [C2py][OTf],
[C2py][NTf2], respectively.

By assuming that mixtures behave in the same way than pure
compounds, Assael proposed mixing rules (Eqs. (16) and (17)). This
procedure has been tested for alkane mixtures [34] and alkane
alkylbenzene mixtures [35].

V0,m =
X

i

xiV0,i (16)

R!,m =
X

i

xiR!,i (17)

Fig. 12. Deviations between experimental viscosity values and HS calculated values
for [C2py][NTf2] (!), [C2py][OTf] (") and H2O (#).

While it has worked well for alkane mixtures, it was unable
to model mixtures of alkylbenzenes and alkanes. Hereby, HS have
been applied to x [C2py][OTf] + (1 −x) H2O mixtures, using input
data from pure components. Deviations obtained were out of the
expected range with DMAX values up to 100%. Therefore an inter-
action parameter (d) was introduced to calculated V0,m. According
with this modification, Eq. (16) becomes:

V0,m = x1V0,1 + x2V0,2 + x1x2d (18)

However, deviations are still considerably high, DMAX values
up to 21% and ARD values up to 6%. Due to lack of physical signifi-
cance of the introduced parameter and deviations obtained, to our
concern, this modification does not increase the versatility of HS
theory as a modelling tool for IL-water mixtures.

4. Summary and conclusions

Density and viscosity of [C2py][NTf2] and x [C2py][OTf] + (1−x)
H2O mixtures have been studied from an experimental and theo-
retical point of view. Main results can be summarized as follows:

• Measurements have been taken in a temperature range of
283.15–353.15 K and atmospheric pressure. Density decreases
linearly with temperature whereas viscosity decreases exponen-
tially. Linear and VFT equations were used to correlate density
and viscosity data, respectively.

• Experimental results have shown different trends for density and
viscosity: %[C2py][NTf2] > %[C2py][OTf] and ![C2py][OTf] > ![C2py][NTf2].

• Density and viscosity of [C2py][NTf2] (dry and hydrated) together
with those of x [C2py][OTf] + (1 −x) H2O mixtures were measured
at different IL mole fractions. The effect of water concentration
over density and viscosity has been clarified. Viscosity decreases
sharply as water concentration grows up while density depend-
ence on water concentration is much smoother.

• Mixture properties, such as excess molar volume and viscosity
deviation have been calculated. Positive excess molar volumes
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and negative viscosity deviations were found all over IL concen-
tration range. These results are consistent, and they are caused
by weaker interactions of IL-IL and H2O–H2O and packing effects
of water into IL network.

• PC-SAFT was used to model pVT behaviour. ILs characteris-
tic parameters were optimised using measured density data.
Density of pure ILs was modelled satisfactorily, however x
[C2py][OTf] + (1 −x) H2O densities are well predicted for high IL
concentration (2% deviation) while deviation increases until 7%
for high water concentrations.

• HS theory was used to model viscosity. Reasonably good results
were obtained for pure IL (deviations under 2%), nevertheless
when applying this model to x [C2py][OTf] + (1 −x) H2O mixtures,
it was not possible to predict viscosities with acceptable devia-
tions. Same scheme could be reproduced using diffusivity and
thermal conductivity to validate obtained results.

• From the application point of view, ILs should present high den-
sity and mainly, low viscosity. Since viscosity represents one the
main barriers for ILs applications, factors such as dependency on
temperature and water presence should be considered in order
to reduce viscosity. Other properties should be analysed to find a
suitable IL for absorption heat pumps: liquid range, heat capacity,
mixing enthalpy or factors such as toxicity. These studies will be
treated in a near future.
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ABSTRACT: Binary systems of two ionic liquids (ILs), 1-
ethylpyridinium methanesulfonate [C2Py][MeSO3] and choline
dihydrogen phosphate [Chol][H2PO4], and water have been
experimentally studied. Density, viscosity, electrical conductivity
and proton activity have been measured at several temperatures
covering all the miscibility range. From density data, isobaric
coefficient of thermal expansion was calculated to study the
volumetric behavior of the mixtures. All volumetric data were fit
using polynomial equations. The Vogel−Fulcher−Tamman
(VFT) equation accurately describes the temperature depend-
ence of viscosity for all systems. Systems based on [C2Py]-
[MeSO3] are less dense and viscous than those involving
[Chol][H2PO4], making [C2Py][MeSO3] more suitable for absorption systems where pumping cost has a significant importance.
Electrical conductivity data were adjusted using the Casteel−Amis equation. Similar trends were found for both systems,
although ionic conductivity is higher for [C2Py][MeSO3] + H2O mixtures. The relation between viscosity and electrical
conductivity was also explored. According to Walden plots, ILs present low ionicity; however, internal friction and ionic
concentration does not seem to be enough to explain the behavior of ionic conductivity and IL concentration. Proton activity
measurements show different tendencies with molar fraction of each IL, [C2Py][MeSO3] leads to lower paH+ values than
[Chol][H2PO4] in the binary mixtures. Results of ionic conductivity and proton activity suggest a higher corrosive potential of
[C2Py][MeSO3] + H2O; however, a further analysis needs to be done to evaluate this risk in absorption systems. Finally, a
composition analysis based on ionic chromatography (IC) was carried out to obtain insight about its effect on their
physicochemical properties.
KEYWORDS: Ionic liquid, Density, Viscosity, Electrical conductivity, Proton activity, Absorbent

■ INTRODUCTION

Reducing the footprint of energy production systems is one of
the main challenges for scientific and industrial communities.
As a consequence, environmentally friendly technologies that
may help reduce the use of natural resources are gaining
presence and visibility over recent years. Among the
consumption sectors, the heating and cooling industry occupies
a considerable part of the overall numbers. In this field, one
alternative to traditional heat pumps based on compression
devices is absorption heat pumps.1 In absorption systems,
thermal energy works as a driving force instead of electric
power used for mechanical compressors, thus it brings the
opportunity of recovering heat disposal or using solar energy to
satisfy heating and cooling demands. Nevertheless, commercial
absorption systems based mainly on two working pairs
(refrigerant/absorbent), H2O/LiBr and NH3/H2O, present
several drawbacks;2 corrosion and crystallization problems in
the case of water and lithium bromide and low relative volatility
and toxicity in the case of ammonia and water. Therefore, the

use of working pairs based on water and ionic liquid (H2O/IL)
appears as a suitable option3−5 because their properties are
expected to allow an efficient absorption/desorption process
and to overcome the disadvantages of the commercial systems.
It is important to define the target properties for a fluid to fit
the requirements of the absorption process. (i) Wide liquid
range renders flexibility for temperatures in the absorber and
the generator, liquid−solid transitions and decomposition
temperature provide the lower and upper limit of the liquid
range.2 (ii) Heat and mass transfer are crucial for absorption
systems to work efficiently, thus low viscosities and high
thermal conductivities will improve the performance of the
absorption system.6 (iii) Thermodynamics of the absorption
process is also a critical issue for refrigeration systems, negative
enthalpies of the mixture (H2O/IL), negative deviation of
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Raoult’s law and low water vapor pressure are target properties
for absorption working pairs.7 In addition, a low corrosive
potential is also important to avoid the problem caused by
H2O/LiBr.
Ionic liquids (ILs) are salts melting under 100 °C.8 Despite

there being no physical significance at that temperature,9 it has
become a commonly used definition. It is also very frequent to
talk about room temperature ionic liquids (RTILs), when IL
melting temperature is about 20−30 °C. It is again a diffuse
definition as there is no unique room temperature and melting
points cannot be predicted with accuracy.10 Because the ILs
studied in this work, [C2Py][MeSO3] (1-ethylpyridinium
methanesulfonate) and [Chol][H2PO4] (choline dihydrogen
phosphate), are solid at room temperature, a definition based
on the chemical structure and the physical and chemical
properties was found to be more appropriate.
ILs are usually based on an organic cation and an inorganic

polyatomic anion.11 It leads to unique properties, among them,
their very low (but measurable) vapor pressure,12 wide liquid
range (caused by low melting points),13,14 high thermal
stabilities15 and wide electrochemical windows,16 make ILs
environmental friendly candidates for different applica-
tions.17−19

Ionic liquids melting above room temperature present some
drawbacks when physical characterization needs to be done.
Difficulties during the drying process or possible damages in
the experimental equipment caused by solidification are issues
to deal with. Nevertheless, because industrial applications very
often involve mixtures of ILs with different solvents instead of
pure components, we have chosen to study the behavior of
water + IL mixtures. By doing so, we avoid the problem of
manipulating solid ILs and we obtain useful information to
evaluate whether studied systems may work satisfactorily as
working pairs for absorption heat pumps.
Although the properties of water + IL mixtures have been

broadly studied,20−24 there is still a lack of data of water
mixtures for many ILs. Hereby, mixtures of water with two ILs
with a relatively high melting point have been studied in the
concentration range that solubility allows. Thus, protic and
aprotic ILs and water mixtures will be assessed, analyzing their
volumetric and dynamic properties, as well as the proton
activity of these solutions.
In this work, density and viscosity of two water + IL

mixtures, [C2Py][MeSO3] and [Chol][H2PO4], were meas-
ured. These properties provide very useful information for the
development of industrial applications. While high densities are
usually an advantage that ILs accomplish very often, viscosity
values are one the main barriers for the implementation of ILs
at industrial scale, mainly for low temperature applications.
Nevertheless, it does not seem reliable to reach organic solvent
viscosities due to ILs structures and interactions, alternatives
such as high temperature applications or mixtures base on ILs
together with different solvents may help to reduce the viscosity
problem. For that reason, effects of temperature and water
concentrations over the aforementioned properties will be

discussed. Electrical conductivity, somehow related with other
transport properties, is also a remarkable property for ILs, since
electrochemical applications usually demand a good ionic
mobility. A quantitative analysis of the electrical conductivity
and pH (proton activity, aH+) have been carried out to explore
the corrosive potential of the studied systems in absorption
heat pumps. Moreover, the relationship between all transport
properties has been analyzed. Finally, a detailed study of the ILs
impurities by ion chromatography has been also included.

■ EXPERIMENTAL SECTION
Materials and Solutions. Reagents of maximum purity available

were purchased from IoLiTec Ionic Liquids Technologies GmbH
(Heilbronn, Germany). Some details of the compounds selected for
this study are given in Table 1 and its structures in Scheme S1.
Solutions were prepared gravimetrically using a digital balance
Sartorius CPA225D with an uncertainty of 0.00001 g. The error on
the mole fraction composition of the mixtures induced due to balance
uncertainty was estimated to be 5.10−5. All reagents used in the
chromatographic assays (H2SO4 as regenerating agent, NaHCO3 and
Na2CO3 as mobile phase) and electrolytes as KH2PO4 were provided
by Sigma-Aldrich. The reagents used as standard solution for the anion
quantification by ionic chromatography (analytical grade sodium salts
of F−, Cl−, Br−, NO3

−, PO4
3− with 12 H2O and SO4

2−) were obtained
from Panreac and used as received. All diluted solutions were prepared
by using Milli-Q grade water. The molar fraction range studied for
each ILs and the correlation to other concentration units (molar, M,
and mass percentage, %) are given in Table 2. Notice that the wide
concentration range under study is for [C2Py][MeSO3] due to both
higher solubility and hydroscopic properties observed in comparison
with [Chol][H2PO4].

■ APPARATUS AND PROCEDURES
Density and Viscosity Measurements. Density and

dynamic viscosity measurements of the pure liquids and
mixtures were performed with a rotational viscometer Anton
Paar Stabinger SVM3000. The basic operating principles and
schematic set up of the Stabinger Viscometer are described and

Table 1. Name, Abbreviation, CAS Number, Purity, Molecular Weight and Melting Temperature of the Compounds Studied in
This Work

name abbreviation CAS Number puritya MW (g mol−1) Tm (°C)

1-ethylpyridinium methanesulfonate [C2Py][MeSO3] 681481-41-4 >95% 203.26 6225

choline dihydrogen phosphate [Chol][H2PO4] 83846-92-8 >99% 201.16 12626

aMass fraction. Information supplied by Iolitec.

Table 2. Equivalence of the Molar Fraction, Mass Percentage
and Molar Concentration for the Systems Studied

xIL %mass M/mol L−1

[C2Py][MeSO3]
0.0039 4.25 0.21
0.0168 16.15 0.77
0.0317 26.96 1.26
0.0650 43.96 1.97
0.1842 71.81 3.00
0.3830 87.40 3.52

[Chol][H2PO4]
0.0400 4.27 0.21
0.0163 15.58 0.74
0.0316 26.71 1.22
0.0620 42.48 1.85
0.1651 68.82 2.73
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laid down in a European Patent (EP 0 926 481 A2). The
density cell is a glass u-tube, which is excited to produce
mechanical resonant vibrations according to DIN 51757. The
viscosity cell is based on a tube filled with the sample in which a
hollow measuring rotor floats. The SVM 3000 uses Peltier
elements for fast and efficient thermostatting. The temperature
uncertainty (k = 2) is 0.02 K from T = (288.15 to 378.15) K.
Over the temperature range studied, the expanded viscosity
uncertainty (k = 2, 95% confidence level) is estimated to be
2%.27 Following the methodology exposed in previous
works,28,29 these uncertainties were checked by means of the
viscosity standard oil Cannon N350, with maximum deviations
of 0.05% and 1.1%, for density and viscosity, respectively. This
apparatus automatically corrects the influence of viscosity on
the measured density.
Electrical Conductivity Measurements. The electrical

conductivity was measured with a Crison CM35 conductivim-
eter at different temperatures. The electrodes (two platinum)
were placed into the samples at a prefixed temperature. Crison
Standard solutions of 0.147, 1.413 and 12.88 mS·cm−1 were
used for calibration proposes. Further details of the calibration
procedure can be found somewhere else.30 Electrical
conductivity uncertainties are estimated to be 1.10−2 mS·cm−1.
Proton Activity Measurements. The pH-meter 744

Metrohm was used to obtain the pH measurements. A
thermopar is included into the electrode body. When it is
not in use, the electrode is kept in KCl 3.5 M. The calibration
with standard buffer solutions of pH 4 and 7 (Metrohm) was
done prior to measurements, using the Nernst equation:31

= �E E 0.059 pH0
(1)

The 59.0 mV slope change in the electrode potential results
from a 10-fold change in the proton concentration of the
monovalent ion, H+ (n = 1), and 2.303RT/nF where R is the
universal gas constant, 8.134 JK−1 mol−1; F is the Faraday
constant, 9.648 × 104 C mol−1; T is the absolute temperature in
Kelvin and n is the ionic charge of the proton ion.
Notice that the Nernst ions of opposite charge tend to

associate into loosely bound ion pairs in more concentrated
solutions, thus reducing the number of ions that are free to
donate or accept electrons at an electrode. This is because ions
in solution interact with each other and with H2O molecules. In
this way, ions behave chemically like they are less concentrated
than they really are (or measured). For this reason, the Nernst
equation cannot accurately predict half-cell potentials for
solutions in which the total ionic concentration exceeds about
10−3 M, such as is the case here (Table 2). Then, if the Nernst
equation is applied to more concentrated solutions, the term in
the equation pH must be expressed in “effective concen-
trations” or activities of the electroactive ionic species as proton
activity, being the Nernst equation31 expressed as follows:

= + +E E n a0.059/ log H
0

(2)

where n is the ionic charge. The activity coefficient γ (gamma)
relates the concentration of a proton ion to its activity in a a
given solution through the relation aH+ = γ CH+
In these experiments, the “effective” proton concentration

(proton activity, aH+) is given by the IL and its interactions with
water.
Measurements by Ion Chromatography (IC). The ion

chromatographic (IC) method is based on ion-exchange
separation mechanisms and provides detailed anionic profiles

including anionic counterions and impurities. This approach
can be used for quality assurance, impurity analysis, and trace-
level residue analysis. Therefore, IC system with conducto-
metric detection was used to analyze both ionic liquid (IL)
anions, [MeSO3]

− and [H2PO4]
−, which better suited the

purpose of low-level quantification of anionic profiles and gave
us a better knowledge of the impurities content. The
chromatographic system (Metrohm, Germany) can be operated
with chemical suppression mode (regenerating agents are 50
mM of H2SO4 and ultrapure water) with auto step when the
loop sample is filled. The following components are included:
792 Basic IC chromatograph equipped with a 20 μL loop
Rheodyne injection valve. The column system was a 250 × 4
mm Metrosep A supp 4 (column packing of poly(vinyl alcohol)
with quaternary ammonium groups and particle size of 9 μm),
guard columns and filters. The program used to record the
chromatographic data and Data Acquisition System was the 792
PC Software Version 1.0 (Metrohm Ltd., Switzerland). The
eluent was 1.8 mM Na2CO3 and 1.7 mM NaHCO3 (standard
flow 1 mL. min−1 and pH ≈ 10), freshly prepared, which was
microfiltered (0.45 μm filter) and degassed (30 min in
ultrasonic bath) before use. This mobile phase determined
that the system peak appeared at a retention time of 9.97 min
under the experimental conditions and column used. The ionic
liquids were analyzed at a concentration of around 10 ppm and
its solubility in the mobile phase was previously checked to the
injection of 20 μL of sample into the chromatographic system.

■ RESULTS AND DISCUSSION
Volumetric Properties: Density. Density Measurements.

Densities of [C2Py][MeSO3] + H2O and [Chol][H2PO4] +
H2O mixtures at different temperatures are shown in Table S1.
Range of concentrations is determined by the miscibility range
of the solution, for [C2Py][MeSO3] it goes up to 0.3830
whereas for [Chol][H2PO4] it increases 0.1651, both referred
to the molar fraction of IL. Vaporization of water has limited
the upper limit of the temperature range. In all cases, density
decreases as temperature goes up, as expected (Figure 1). Data
were fit to either linear or to polynomial equations. Linear
fittings describe the relation between density and temperature
very accurately when the mixture is concentrated in IL,
nevertheless, the accuracy of linear fittings decreases as water
concentration grows, and thus, polynomial equations of second
order were used. Brennecke et al. have already pointed out this
pattern20 caused by the nonlinear behavior of water density
with temperature. Fitting parameters together with the R2 of
the fitting are listed in Table S2 (Supporting Information).
Despite the concentrations of IL not being identical for both

systems, from Figure 1 it is possible to state that [Chol]-
[H2PO4] mixtures are denser than mixtures based on
[C2Py][MeSO3]. Although, higher densities are desirable for
working pairs,32 refrigerant/absorbent, it is not, in general, the
key criteria to select working fluids for absorption heat pumps.
Volumetric behavior can also be analyzed by calculating the

isobaric coefficient of thermal expansion, αp, given by

�
�

�= � �
�⎜ ⎟⎛

⎝
⎞
⎠T

1
p

p (3)

Trends of αp with temperature are shown in Figure 2. It can
be observed that αp increases with temperature for all IL
concentrations. Note also that the effect of temperature over αp
becomes smaller as IL concentration grows. It leads to a
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crossover at about 310 K, the explanation yields on the density
dependence on temperature for different IL concentrations.
Mixtures with higher concentrations in IL show linear
dependence with temperature while those with higher water
concentrations show a quadratic dependence. According to eq
3, the slope of trendlines shown in Figure 2 is expected to be
higher as water concentration of the mixture rises. Even though
this analysis is qualitatively consistent, to our view, further work
needs to be done in order to establish a relationship between
the crossover temperature and the components of the mixture.
Thermal expansion coefficient (αp) shows values lower than

1.6 × 10−3 K−1 for both ILs. In the temperature range studied
(from 293.15 to 343.15 K), these ILs aqueous systems lead to
nearly identical coefficients of thermal expansion. Thus, αp
should not be a criterion to choose one IL over the other for
some particular application, in this case, as absorbent for water
refrigerant in an absorption cycle.
Transport Properties: Viscosity, Electrical Conductiv-

ity and Proton Activity. Viscosity Measurements. Viscosities
of [C2Py][MeSO3] + H2O and [Chol][H2PO4] + H2O
mixtures at different temperatures are shown in Table S1
(Supporting Information). The three-parameter Vogel−Fulch-

er−Tammann (VFT) eq 4 was used to correlate experimental
viscosities as a function of temperature:

� = · �
⎛
⎝⎜

⎞
⎠⎟A B

T T
exp

0 (4)

being η the dynamic viscosity, and A, B and T0 the fitting
parameters reported in Table S3 (Supporting Information)
together with the R2 of the fitting. Figure 3 illustrates that
viscosity decreases drastically as temperature rises. Most ionic
liquids have undesirable high viscosity; to deal with this
problem one possible approach is lowering the viscosity by
adding a molecular solvent. Thus, experimental measurements
of both IL + H2O systems show how viscosity decreases as the
content of water increases for all temperatures.
However, the effect of water over viscosity is more important

at lower temperatures (Figure 3). This pattern was already
found for [C2Py][OTf] + H2O systems.29 Dynamic studies at
molecular scales have pointed out the lubricating action of
molecular solvents over the dynamics of ionic liquids33,34 for
different concentrations of water. A reliable explanation yield
on the weakening of the Coulombic interactions between ions

Figure 1. Experimental density values: (a) x [C2Py][MeSO3] + (1 −
x) H2O mixtures. x = 0.0039 (■), x = 0.0168 (□), x = 0.0317 (●), x =
0.0650 (○), x = 0.1842 (▲ ), x = 0.3830 (△ ). (b) x [Chol][H2PO4] +
(1 − x) H2O mixtures. x = 0.0040 (■), x = 0.0163 (□), x = 0.0316
(●), x = 0.0620 (○), x = 0.1651 (▲ ), fitting lines ().

Figure 2. Isobaric expansion coefficients: (a) x [C2Py][MeSO3] + (1
− x) H2O mixtures at several temperatures. x = 0.0039 (■), x =
0.0168 (□), x = 0.0317 (●), x = 0.0650 (○), x = 0.1842 (▲ ), x =
0.3830 (△ ). (b) x [Chol][H2PO4] + (1− x) H2O mixtures. x = 0.0040
(■), x = 0.0163 (□), x = 0.0316 (●), x = 0.0620 (○), x = 0.1651 (▲ ).
Fitting lines ().
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would lead to a higher ionic mobility, and therefore to decrease
the viscosity of systems.
Both systems, IL + H2O, present very different solubility.

Whereas the most concentrated [C2Py][MeSO3] + H2O
solution has a molar fraction x[C2Py][MeSO3] = 0.3830, for
[Chol][H2PO4] the highest molar fraction is x[Chol][H2PO4] =
0.1651 (see Table 2 for concentration equivalences). However,
by comparing all experimental data, it is possible to establish
the viscosity sequence as follows, η[C2py][MeSO3] < η[Chol][H2PO4].
Thus, attending to viscosity, systems [C2Py][MeSO3] + H2O
are found to be more suitable than [Chol][H2PO4] + H2O for
absorption systems using water as refrigerant.
Previously, the system [C2Py][OTf] was studied by us as a

potential absorbent for absorption heat pumps using water as
refrigerant.29 Given that, [C2Py][OTf] and [C2Py][MeSO3]
share the same cationic structure, [C2Py]

+, a detailed
comparison of both systems could provide interesting
information about the effect of the anionic structure apart
from their suitability to work as absorbents for absorption heat
pumps. Trends of density and viscosity for IL + H2O systems
are ρ[C2py][OTf ] > ρ[C2Py][MeSO3] and η[C2py][OTf ] < η[C2py][MeSO3].
Inverse trends are found for both properties, in terms of atomic
interactions, the larger charge delocalization caused by the
trifluoromethyl group (CF3) group compared to methyl group
(CH3) could explain this effect, since it would smooth the
electrostatic interactions and therefore improve ionic mobility,
giving place to lower viscosities. It would also lead to the
formation of more compacted ionic networks and therefore
higher densities. This statement also agrees with their solid−
liquid transition temperatures, 16 and 62 °C for [C2Py][OTf]
and [C2Py][MeSO3], respectively.

25

Viscosity measurements show how different ionic structures
lead to drastic differences in this property when the mixtures
are highly concentrated in IL, especially at low temperatures.
These differences become much smaller for diluted solutions
where water concentration prevailed over the IL or when
temperature rises. Therefore, the addition of an organic solvent
or the rising of the working temperature represent two
interesting strategies to overcome problems related to the
high viscosity of ILs.

Electrical Conductivity Measurements. Figure 4 shows
dependence on electrical conductivity (κ) with IL molar
fraction (xIL) at several temperatures. Casteel−Amis35 eq 5 was
used to fit experimental data. Fitting parameters are given in
Table S4 (Supporting Information).

Figure 3. Experimental viscosity values: (a) x [C2Py][MeSO3] + (1 − x) H2O mixtures. x = 0.0168 (■), x = 0.0317 (□), x = 0.0650 (●), x = 0.1842
(○), x = 0.3830 (▲ ). (b) x [Chol][H2PO4] + (1 − x) H2O mixtures. x = 0.0040 (■), x = 0.0163 (□), x = 0.0316 (●), x = 0.0620 (○), x = 0.1651
(▲ ). Fitting lines ().

Figure 4. Electrical conductivity versus xLI at several temperatures. T =
298.15 K (■), T = 313.15 K (□), T = 333.15 K (●), fitting lines ().
(a) [C2Py][MeSO3] + H2O. (b) [Chol][H2PO4] + H2O.
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being κ the electrical conductivity, and κmax, m and n the fitting
parameters reported in Table S4 (Supporting Information)
together with the R2 of the fitting.
A qualitative analysis of Figure 4a,b indicates that ionic

mobility is higher for [C2Py][MeSO3] than for [Chol][H2PO4]
mixtures. Therefore, it is in agreement with the viscosity values,
η[C2Py][MeSO3] < η[Chol][H2PO4], because a lower internal friction is
expected to improve IL dynamics and therefore it would favor
charge transport. The comparison of the electrical conductivity
between the ILs with same cation, [C2Py]

+, and different anion,
[MeSO3]

− and [OTf]−, indicates that the trend in conductivity
is κ[C2py][OTf ] < κ[C2py][MeSO3], being around 5% lower for the
[OTf]− counterion.
By comparing Figure 4a,b again, we observe similar

tendencies of ionic conductivity with IL molar fraction. For
dilute solutions, κ grows drastically with xIL. Then, all curves
reach a maximum at molar fraction about 0.05 and 0.04 for
[C2Py][MeSO3] and [Chol][H2PO4] respectively, values for
each temperature are provided in Table S1 (Supporting
Information). After that point, ionic conductivity decreases as
concentration of IL grows. This pattern was already found for
other binary systems involving IL + H2O systems.36−40 Two
mechanisms are often mentioned as responsible for this
behavior. On one hand the increase in the ionic concentration
should lead to higher ionic conductivities since more charge is
available to be transported. On the other, the descent in ionic
mobility, since interactions (electrostatic and dispersive)
between cation−anion and cation−cation become stronger,
will have the opposite effect. Therefore, a balance between
mechanisms will bring maximum conductivity. To assess this
hypothesis, measurements were taken at three different
temperatures, from 298 to 333 K. Linear tendencies with
positive slope were found in all cases. The effect of temperature
over conductivity is more important as IL concentration grows,
for [C2Py][MeSO3] goes from 0.013 to 0.16 mS cm−1 K−1 and
for [Chol][H2PO4] from 0.018 to 0.17 mS cm−1 K−1, which is
roughly an increase of 10 times in the slope when xIL moves
from the most diluted solution to the most concentrated
(Figure S1 in the Supporting Information).
Because temperature has critical impact over ionic mobility,

we will expect that κmax happens at higher IL concentrations.
Although this trend was found, its extent, smaller than
expected, suggests that other factors may also contribute to κ
dependence with xIL.

33,41

Viscosity and Electrical Conductivity Relationship. The
relation between these two properties is often enlightened by
Walden’s rule. From eq 6, where Λ is the molar conductivity, η
the viscosity, and C is a constant; we have obtained the so-
called Walden’s plot. Further details can be found elsewhere.42

�
� = C

(6)

In Figure 5, IL + H2O mixtures with similar IL
concentrations are represented. Deviation from the ideal
line21 (slope equals to 1) would provide, according to Ueno
et al.,43 a measurement of the ionicity of the IL. Both systems

fall into the area of poor ILs, in terms of ionicity, no significant
differences between these systems were found since they show
similar ratios between Λ and 1/η. Temperature effect is also
shown in Figure 5. As temperature rises, points are displaced to
the right. It is consistent with the fact that temperature effect
over viscosity is stronger that its effect over electric
conductivity. Previously, several authors have analyzed the
behavior of several IL + H2O systems,44,45 results indicate that
aqueous solutions of ILs do not follow Walden ́s rule
qualitatively, even though trends found suggest a physical
background for the value of C.45

Proton Activity Measurements. Because the solvent is pure
water, the experimental proton activity, aH+ or “effective”
proton concentration (see the Experimental Section) of these
mixtures was also determined, these measurements are
representative rather than exhaustive, and its effect is shown
in Figure 6, together with the electrical conductivity data. The
proton activity (expressed as paH+) depends strongly on xII.
Systems show different trends, depending mainly on the anion
structure, since the pKa values of both conjugated acid of
aliphatic amines or unsatured pyridines increase with the
increasing alkylsubtitution and render the corresponding
cations a basic character (see structures in Scheme S1),
although the charge and structure of these cations will influence
the polarity and the solvent properties of the ionic liquids.
For the [C2Py][MeSO3] (Figure 6a), paH+ is 3.42 at

x[C2Py][MeSO3] = 0.0039, this value decreases drastically with the
increase of x[C2Py][MeSO3] up to 0.0371, thus [C2Py][MeSO3]
plays the role of an acidic species, where the minimum paH+ is
close to the xIL where the conductivity presents its highest value
(46.72 mS cm−1 at xIL = 0.047). Afterward, the paH+ values
increase slightly with xIL, reaching the value of 2.74 at xIL =
0.3830. Keeping in mind the structure for [C2Py][MeSO3],
which is a six-membered unsaturated ring that is more basic
than the pyridinium and imidazolium cations with a
methanesulfonate (conjugated-base of a very strong meth-
anesulfonic acid, MeSO3H, with a pKa = −1.8) as counter-
anion,46,47 it should be expected to yield a “neutral” (in the
acidic/base sense) ionic liquid product.48 This is the case of
[C2Py][OTf] (note structures are similar), with proton
activities of paH+ 6.42 and 5.91 at xIL = 0.067 and xIL =

Figure 5. Walden plot of the [C2Py][MeSO3] (x[C2Py][MeSO3] = 0.065)
+ H2O (■) and [Chol][H2PO4] (x[Chol][H2PO4] = 0.062) + H2O
mixtures (●) at 298.15, 313.15, 333.15 K. The straight solid line
through the origin with a slope of 1 represents the so-called ideal KCl
line.42
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0.689, respectively, where the weak acidity at high xIL can be
attributed to the presence of free fluoride ion (conjugated-base
of a weak fluorhydric, HF, with a pKa = 3.2). However, these
[C2Py][MeSO3] mixtures exhibit a stronger acidity than
expected, and this behavior, although we cannot yet offer an
conclusive explanation, seems to be caused by some impurities
from the acid used as precursor in the synthesis. This
hypothesis will be discussed later (next section and Figure 7a).
For [Chol][H2PO4] (Figure 6b), the most diluted solution,

xIL = 0.0040, has a proton activity of 3.22, increasing with xIL
during the whole concentration range, at xIL = 0.1651 the paH+
is 4.99 (see Table 2 for concentration equivalences).
Furthermore, the paH+ trend shows two straight lines with
the increasing of xIL, whose equations are as follows: paH+ =
(3.168 ± 0.004) + (13.4 ± 0.2) x[Chol][H2PO4] for the first linear
trend (x[Chol][H2PO4] ≤ 0.0316) and paH+ = (3.29 ± 0.05) +
(10.4 ± 0.5) x[Chol][H2PO4] for the second linear trend
(x[Chol][H2PO4] ≥ 0.0316), both with a good linear correlation
(R2 = 0.9999 and R2 = 0.999, respectively), Figure 6b(□)), and
the crossing point roughly coincides with the maximum of the
conductivity value (28.34 mS cm−1 at xIL = 0.0386). According
to its structure (Scheme S1), formed by an acyclic and
saturated with a hydroxylfuntionalized side chain also on the
cation-dependent degree of hydrogen bonding and an
“amphoteric” counteranion, with the potential to both accept
and donate protons depending on the other substances present
in the media,47 these experimental results show that the

dihydrogen phosphate acts as Brønsted acid counteranion at
diluted binary mixtures, being amphoteric at high IL
concentration, where the paH+ tends to reach the theoretical
value of 4.7 (semisum of pKa1 = 2.2 and pKa2 = 7.2 of
phosphoric acid system) or experimental value of 4.36 for 1.845
M potassium dihydrogen phosphate solution at the same
concentration (Table 2) and it acts as a second order buffered
solution.
Moreover, it should be noted that [Chol][H2PO4] gives a

lower Brønsted acidity (higher paH+ values) than the observed
for the [C2Py][MeSO3] at high molar fraction and probably,
this is due to the strong Brønsted acidity of the hydrogen
sulfate counteranion or methanesulfonic acid that can be
present as impurities, in good agreement with what is found in
the literature.49

Trends of electrical conductivity and proton activity for ILs +
H2O systems are κ[Chol][H2PO4] < κ[C2Py][OTf ] < κ[C2Py][MeSO3] and
aH+[C2Py][OTf ] < aH+[Chol][H2PO4] < aH+[C2Py][MeSO3]. The above
discussion means that commercial [C2Py][MeSO3], such as
that which is supplied (without further purification), provides a
major acidity to its binary mixtures, giving very high proton
activities (down to paH+ 2.8). Thus, besides being more
hygroscopic and with a high electrical conductivity value
(Figure 6 and Table S1) to act as an electrolyte makes
[C2Py][MeSO3] more corrosive than [Chol][H2PO4] or
[C2Py][OTf], therefore being more available to participate in
the redox process onto the metallic or alloy materials junctions
of absorption systems.

ILs Quantification by Ionic Chromatography. As
previously mentioned, the IC method is focused on the
quantitative determination of anionic impurity profiles in ionic
liquids, including not only halogen anions such as fluoride (F−)
or chloride (Cl−) or bromide (Br−), but also additional
commonly encountered anions: hydrogen sulfate and sulfate
system (both detected as SO4

2−), acetate (CH3COO
−), nitrate

(NO3
−), triflate (CF3SO3

−), methanesulfonate (MeSO3
−),

dihydrogen- and hydrogen- and phosphate system (all detected
as HPO4

2−) and tetrafluorborate (BF4
−). Therefore, IC with

conductometric detection (details described in the Exper-
imental Section) was applied to chromatographically separate
all these potential ions that can also be present as impurities or
counterions, useful to study the possible interferences between
each other. The chromatographic parameters of all anions
essayed are shown in Table S5 (Supporting Information).
Representative IC chromatograms are shown in Figure 7 for

both counterions [MeSO3]
− and [H2PO4]

−. The tables inset in
the same figure summarize the elution and quantification results
for the detected anions. As is illustrated in Figure 7, the
presence of small amounts of some ionic impurities in the ILs
was found. For [MeSO3]

−, halides ions as fluoride and chloride,
together with sulfate ions were detected at 0.040, 0.129, and
0.210 ppm, respectively, giving a purity of IL up to 97.1%. The
presence of fluoride and hydrogen sulfate ions (detected as
sulfate but used as precursor in the form of sulfuric acid in the
synthesis) or the methanesulfonic acid may explain the low
paH+ for this IL. This behavior is very far from expected for a
neutral anion, as discussed before (Figure 6a). A comparative
ion chromatographic study for [C2Py][OTf] that presents the
same cation but different anion, where the hydrogens of the
methyl group of methanesulfonate ions are substituted by
fluorides, was done (chromatogram not shown). In this case,
only fluoride ion at 0.058 ppm was found as impurity and its
hydrolysis can justify the light acidity at higher xIL as described

Figure 6. Electrical conductivity (■) and paH+ (□) versus xIL at
298.15 K. (a) [C2Py][MeSO3] + H2O; (b) [Chol][H2PO4] + H2O.
Notice that the points are joined for better following the trends in
electrical conductivity (Casteel−Amis fitting in Figure 4) and paH+.
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in the previous section (Proton Activity). For [H2PO4]
−, only

chloride ion was found as impurity at the concentration level of
0.224 ppm, giving a purity of IL up to 97.9%.
The chromatographic peaks at 9.97 min in Figure 7 were

ascribed to carbonate (system peak, SP) after checking that this
peak did not increase with the injection of higher ILs
concentrations. However, if bromide ion were present as
impurity, the chromatographic elution conditions should be
changed to avoid the interference of the SP in the
quantification of bromide ion (tR at 9.79 min) (Figure S1
and Table S5 in the Supporting Information).
It is well-known that ILs containing halide contaminants are

problematic because it can produce the modification of some
physicochemical properties such as viscosity (increase) or
density (decrease) that can seriously affect the usefulness of the
IL as a solvent for a given application.50 Moreover, the
combination of halide presence with high acidity and
conductivity makes them more corrosive, making an evaluation
of the materials compatibility necessary to prevent any damages
that may affect the durability of the equipment. Because this is

not conclusive, additional studies need to be done (some
experiments are in course).

■ CONCLUSIONS
In this work binary mixtures of [C2Py][MeSO3] + H2O and
[Chol][H2PO4] + H2O covering all the miscibility range have
been prepared. Several physical and chemical properties have
been determined at temperatures from 293 to 343 K and at
atmospheric pressure. Density measurements have been taken
for all systems and isobaric coefficients of thermal expansion
were calculated. Viscosity was determined, and all data were fit
satisfactorily using Vogel−Fulcher−Tammann equation. Elec-
trical conductivity was also measured, and data were adjusted to
the Casteel−Amis equation. Besides that, proton activity of all
systems was analyzed taking the impurities quantified through
ionic chromatography into account. Trends found are
summarized in the following bullet points:

• ρ ([C2Py][MeSO3] + H2O) < ρ ([Chol][H2PO4] +
H2O)

Figure 7. Ion chromatograms of (a) [C2Py][MeSO3] and (b) [Chol][H2PO4] using an eluent containing 1.8 mM Na2CO3 + 1.7 mM NaHCO3 (pH
≈ 10) and a flow rate of 1 mL min−1 during 50 min of elution time. The peaks highlighted by the arrow are due to the counterions of ILs. The inset
shows the quantification table of the trace highlighted ions found in the chromatogram for each ILs. *Notice that the mobile phase is pH around 10,
and then all detected species will be at the predominant form according to its pKa values.
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• η ([C2Py][MeSO3] + H2O) < η ([Chol][H2PO4] +
H2O)

• κ ([C2Py][MeSO3] + H2O) > κ ([Chol][H2PO4] +
H2O)

• paH+([C2Py][MeSO3] + H2O) < paH+ ([Chol][H2PO4]
+ H2O)

According to these statements, [C2Py][MeSO3] appears as a
more appropriate candidate for absorption systems. Miscibility
range and viscosity are key factors enforcing this option.
However, high proton activities together with high electrical
conductivities may lead to corrosion problems. Further
measurements need to be done to study this possibility in
detail.
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Aiming at developing new absorbent/refrigerant working pairs for heat pumps, thermodynamic and transport properties
of two pyridinium ionic liquids (ILs), N-ethylpyridinium bis(trifluoromethanesulfonyl)amide and N-ethylpyridinium tri-
fluoromethanesulfonate were studied using molecular simulation and nuclear magnetic resonance techniques. The micro-
scopic structure of the ILs and the solvation environment of water, including hydrogen bonding, were studied. Free-
energies of solvation of water were obtained using perturbation methods, and the values agree with experimental obser-
vations. Self-diffusion coefficients and viscosity were computed and compared with nuclear magnetic resonance meas-
urements and literature. Simulations predict slower dynamics when compared with experiment: diffusion coefficients are
underpredicted, whereas viscosity is overpredicted. As such, simulation is consistent in a Stokes-Einstein sense. The
trends in transport properties due to changing anion, to the presence of water and the effect of temperature are well
predicted. VC 2017 American Institute of Chemical Engineers AIChE J, 00: 000–000, 2017
Keywords: absorption, ionic liquids, thermodynamics/classical, simulation, molecular

Introduction

Cooling and heating demands cover a considerable part of
the energy consumption worldwide, with a significant percent-
age of this energy being supplied by mechanical heat pumps
based on compression systems. Even though the implementa-
tion of these systems has been massive over the last decades,
their intensive use of electric energy has stimulated growing
interest in the development of alternative technologies to cov-
er heating and cooling demands. In that context, absorption
heat pumps appear to be a suitable technology to supply heat-
ing and cooling for either industrial or domestic uses. Instead
of using electric energy as main input, absorption systems use
mostly thermal energy.1,2 This allows recovering residual heat
currents from industrial process to generate useful thermal
energy; in domestic applications renewable sources, such as
solar energy, could reduce the consumption of fossil resources.
Absorption systems based on traditional working pairs, such
as H2O/LiBr and NH3/H2O, are a mature technology nowa-
days and detailed information can be found in the literature.3

However, the aforementioned absorption systems present sever-
al drawbacks4 related to the properties of the working pairs.
While the implementation of systems based on the H2O/LiBr
pair is limited by crystallization and corrosion problems, with
NH3/H2O the drawbacks are the high working pressures, low
relative volatility and the toxicity of ammonia. In that context,
working pairs based in ionic liquids (ILs) as absorbents together
with natural refrigerants such as water or carbon dioxide (and
other molecules such as methanol, propane, etc.) have attracted
the attention of the scientific and industrial communities.5

ILs are usually defined as salts melting under 1008C.6,7

Their chemical structures contain large, asymmetric organic
ions, leading to unique properties that have been intensively
studied7–9 over the last decade. The enormous amount of pos-
sible combinations of cations and anions makes it possible to
tune ILs properties. In spite of being an advantage for their
application in many industrial processes, this variety also
brings the need for efforts to understand how different chemi-
cal structures affect the physical and chemical properties.

Regarding their role as potential absorbents, the chemical
and physical properties that an IL should accomplish can be
divided in three groups. First, a large absorption capacity.
Interactions between absorbent (IL) and refrigerant (H2O)
determine the absorption capacity, even if other factors such
as transport properties are also very important to achieve a
suitable absorption rate. A large negative deviation from
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Raoult’s law is often stated as a thermodynamic quantity that
illustrates the suitability of an IL to be used in absorption heat
pumps.4 Another assessment of non-ideality is the refrigerant
activity coefficient, often determined at infinite dilution. Sec-
ond, a wide liquid range is also a desirable property of the IL
as absorbent. To avoid crystallization problems in the absorber
a low temperature of liquid–solid transition is desirable. The
upper limit of the liquid range, given by the IL decomposition
temperature, will allow to operate at higher temperatures, thus
increasing the efficiency of the system.10 Thirdly, a low vapor
pressure,6 property shared by all ILs, will allow an easy sepa-
ration refrigerant/absorbent in the generator.

The complexity of the interactions governing the behaviour
of ILs renders the task of reaching a detailed knowledge very
challenging. Progress can be made by combining experimental
and theoretical work to improve out fundamental understand-
ing of the interactions, structure and dynamics of ILs and their
mixtures at a molecular level. Among the methods to describe
ILs at the atomistic level, molecular dynamics (MD) is the
tool of choice since it allows description of the length and
time scales necessary to represent these heterogeneous and
complex liquid phases.11–13 ILs are characterized by a balance
between electrostatic and van der Waals interactions, as well
as an asymmetric shape, conformational flexibility and charge
delocalization, all of which have to be described in detail, oth-
erwise the results from molecular modeling may not accurate-
ly reproduce the properties of real systems or phenomena.

Therefore, with the aim of improving our knowledge on
physical chemistry of pure ILs and IL 1 water mixtures, we
have carried out an analysis of the microscopic structure,
dynamic and thermodynamic quantities of N-ethylpyridinium
bis(trifluoromethanesulfonyl)imide, [C2Py][NTf2], and N-eth-
ylpyridinium trifulorosulfonate (or triflate), [C2Py][OTf], and
their mixtures with water. We intend to explore ILs that may
comply to the requirements for use in absorption systems,
namely, in combination with water as refrigerant. In particular,
the two ILs selected allow analysis of the effect of the anion.
Furthermore, a pyridinium cation with a short alkyl chain
[C2Py]1 was chosen based on the smaller amount of informa-
tion available compared to imidazolium-based ILs. Even
though pyridinum cations lead in general to higher viscosities
than imidazolium cations,14 they are also expected to present a
larger water absorption capacities. From the point of view of
simulation methods, the first question we want to address here
is the pertinence of scaling the charges of the ions to improve
representation of dynamics at different temperatures. Second,
as was already pointed out, several questions regarding the
microscopic structure will be addressed, such as comparison
of the local ordering of ions in pure ILs and in mixtures with
water, or statistics of hydrogen bonds. Third, free energy
quantities related to the solvation of water in the two ILs will
be reported. And finally, dynamic quantities such as diffusion
coefficients and viscosity will be calculated to provide a
microscopic view, namely, on the role of cations and anions
on the transport properties of the mixture. The hydrophobicity
of [C2Py][NTf2] gives rise to a limited miscibility with water,
therefore our analysis of microscopic structure and transport
properties is performed only for mixtures of water with
[C2Py][OTf]. The mole fraction of water was chosen to be
xH2O50:104, representative of the lower concentration of
refrigerant at the generator level in refrigeration cycles.15 The
present work will complement experimental studies available
in the literature for the ILs and mixtures described here. While

density and viscosity of [C2Py][NTf2] and [C2Py][OTf] have
been previously measured,16–18 no data about energetics of
water solvation were found.

Methods

Force field molecular simulation

All chemical components studied in this work, ILs and
water, were represented by a classical atomistic force field for
organic compounds19 containing intramolecular terms for
covalent bond stretching, valence angle bending and torsions,
and intermolecular parameters for repulsion-dispersion Len-
nard-Jones (LJ) sites and for partial electrostatic charges on
atomic sites. Atoms of the same molecule or ion separated by
more than four bonds interact also through the non-bonded
terms, while those separated by exactly three bonds interact
through Lennard-Jones and Coulomb terms scaled by 0.5. The
functional form of the potential energy is given in Eq. 1.
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The force field for ILs was parameterized by Canongia Lopes
and Padua.20–22 Water was represented by the SPC/E model.23

MD simulations were performed using the LAMMPS24,25

open source package. Initial configurations were created using
the Packmol26 and fftool27 utilities. All simulations were car-
ried out in periodic cubic boxes containing 300 ion pairs. In
mixtures the number of water molecules to reach the desired
concentration was added to 300 ion pairs. A cutoff of 12 Å
was applied to LJ interactions. Long-range electrostatic inter-
actions were handled using the particle-particle particle-
mesh28 method, for a precision of 1024 in electrostatic energy.
A timestep of 1 fs was used in all simulations. Trajectories
were generated at constant NpT using Nos!e-Hoover thermo-
stat and barostat. Initial equilibrations of 1 ns were carried out
starting from the configurations generated by Packmol. Most
simulations were performed at 343 K, which is a realistic tem-
perature considering the application in absorption heat pumps,
namely, it is an upper bound to the operation temperature.
Running MD simulations of IL systems at high temperatures
has advantages in sampling configurations of these viscous flu-
ids. At temperatures different from 343 K additional 0.2 ns
runs were performed to equilibrate at the target temperature.
Production runs to calculate structural, thermodynamic, and
transport properties were performed over longer time scales,
chosen according to the time needed for the systems to attain a
diffusive regime.12 Atomistic force fields with fixed electro-
static partial charges may not reproduce dynamic properties
well29,30 leading in general to fluids that are too viscous and to
diffusion coefficients that are too low, even if density and
structure may be predicted correctly. There are several meth-
ods to improve the molecular force fields in order to attain bet-
ter agreement with experimental transport properties. The
simplest option is to reduce the weight of columbic interac-
tions by scaling down the charges of ions. Typically, atomic
partial charges are reduced by a coefficient going from 0.7 to
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0.9.30 A more complex and realistic method is to include
polarization explicitly.30,31 However, due to the higher compu-
tational cost of polarizable models, charge-scaling is frequent-
ly used as a reliable shortcut. In this work, the full charge
model and a 0.8 charge-scaled version are tested and the influ-
ence on some key macroscopic properties is evaluated.

Quantities related to the phase-change of the refrigerant are
very important for application in absorption-refrigeration.
Structural and energetic quantities related to the solvation pro-
cess of water in the two ILs were studied. Free energy pertur-
bation (FEP) was used to determine the chemical potential of
water from simulation. A parameter k was introduced to cou-
ple the water-IL interactions such that with k 5 0 water does
not interact with the IL solvents, and with k 5 1 the interac-
tions are fully coupled. By sampling this free energy route
along 20 steps, the residual chemical potential of water is cal-
culated. To avoid singularities due to overlap of sites at the
moment when they are created or annihilated, soft-core LJ and
electrostatic potentials were used.32 For the systems we stud-
ied, a step of Dk50:05 proved adequate, as was verified by the
very low hysteresis when performing the FEP calculation both
ways33 (see Figure S3). Thus, the free energy of the solvation
process is calculated according to Eq. 2.
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At each value of the coupling parameter, the system was equil-
ibrated during 0.05 ns and FEP data accumulated for 0.15 ns
(4 ns overall simulation time).

The microscopic dynamics of the ILs is studied through cal-
culations of diffusion coefficients and viscosity. The self-
diffusivity is obtained from the mean square displacement
(Eq. 3) calculated averaging over trajectories sufficiently long
for the system to be in a diffusive regime. Among the ways of
ensuring the diffusive regime is reached, we chose to evaluate
the parameter b (Eq. 4)

D5
1

6
lim
t!1

d

dt
hDr tð Þ2i (3)

b tð Þ5 dlog hDr tð Þ2i
dlog t

(4)

Three different dynamic regimes are observed in liquids: bal-
listic (b% 2), subdiffusive (b< 1), and diffusive regimes
(b% 1). Cadena et al.12 explained in detail the physical basis
and application for ILs. The b values for our simulations are
shown in supplementary information (Figure S4).

Viscosity is a challenging quantity to calculate from MD
simulations,34–37 especially for viscous fluids. Two different
approaches may be chosen to calculate viscosity: the Green-
Kubo relations using equilibrium trajectories,38 or non-
equilibrium techniques.38,39 Non-equilibrium methods impose
very large velocity gradients and this may lead to non-linear
behaviour or large temperature gradients in the simulation
box. The Green-Kubo method requires integration of the auto-
correlations of the pressure tensor.
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The autocorrelation were recorded using the multiple step cor-
relator method of Ramirez et al.40 with m 5 2 and p 5 16
implemented in LAMMPS. The result was averaged over three

independent shear directions. The uncertainty was estimated
from the standard deviation of these values.

Diffusion coefficients by NMR

The pulsed-field gradient spin-echo NMR technique
(PFGSE, also named DOSY) was used to measure the self-
diffusion coefficients of both cation and anion species by
observing the 13C nucleus. The IL samples were inserted into
5 mm NMR tubes and coaxial capillary tubes loaded with
DMSO-d6 (lock and shim solvent) were put inside, thus avoid-
ing any contact between DMSO-d6 with the samples. The car-
bon chemical shift of DMSO-d6 was used as external
reference at 39.5 ppm.

A Bruker Avance III HD 500 spectrometer operating at
500.13 MHz for 1H and 125.77 MHz for 13C, with a 5 mm
pulsed-field z-gradient TXI probe, was used. The sample tem-
perature was fixed at 303, 323, and 343 K and controlled with-
in 60.01 K by a variable-temperature control unit using air
gas flow and calibrated with a glycol sample. We used a modi-
fied Bruker PGSE sequence for measuring the 13C decay under
gradient pulsing and 1H decoupling. For each sample, the
probe was carefully tuned and 90 pulses evaluated. For each
DOSY experiment we optimized the pulse gradients and diffu-
sion time to get an attenuation of about 20 for the signal with
the two contradictory constrains: set minimum diffusion time
(D20 5 0.2–0.6 s) to minimize convection and minimum gra-
dient pulses length (P30 51.6–5 ms) to obtain sufficient atten-
uation but to avoid heating effect of the gradients coil and
keep below maximum rating. The signals (AQ 5 0.8 s) were
accumulated 512 times for a linear set of 16 different values of
gradients distributed from 1 to 45 G/cm. The relaxation delay
was set to 5 s and 8 dummy scans where programmed prior to
acquisition. The determination of self-diffusion coefficients
used the Bruker T1/T2 module of TopSpin v3.5 for each peak.
For the cation, we took the average of the different available
peaks.

Results

Analysis of charge scaling: density

Electrostatic interactions play a crucial role in ILs. As sev-
eral authors pointed out29,30,41 full charge models lead to slow
dynamics, causing difficulties to perform simulations at low
temperatures. We opted to scale charges of ions (full partial
charge values shown in Figure 1) by a factor of 0.8 and use the
density to test if the force field model reproduces experiment.
Results of density calculations with full and scaled charges are
shown in Figures 2 and 3, indicating that scaled charges pro-
vide density values closer to experiment, both for pure ILs and
also for [C2py][OTf] 1 H2O mixtures. Reduction of charges
lowers the density slightly, and in this case the full charge
model overestimated the experimental densities by about 3%.
Namely, scaled charges model reduces the average density
deviation of pure [C2Py][OTf] from 3.1 to 0.42% and from 3.9
to 1.1% for [C2Py][NTf2]. A similar pattern was found for
[C2Py][OTf]1H2O mixtures, with average deviation going
from 3.9 to 0.38% when partial charges are scaled. Given
these results, all subsequent simulations in this work were
done with ion partial charges scaled by 0.8.

Microscopic structure

The spatial arrangement at the molecular scale constitutes
structural information that can be linked to the dynamic and
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the thermodynamic properties. Thus, radial and spatial distri-
bution functions were computed to examine the ordering of
the ions in the pure ILs and in the mixtures with water, which
is important to characterize local solvation environments.

Three representative atoms in pyridinium cation were cho-
sen: nitrogen (NPy), carbon in para position (CP) and the termi-
nal carbon in the ethyl group (CE). These atoms were chosen
to elucidate structural features on different parts of the cation.
The radial distribution functions of these cation atoms and the
O and F atoms of the anions were calculated and are plotted in
Figure 4. The main feature is that the first peaks due to the O
atoms of the anions are more intense than the peaks of the F
atoms (comparing panels a and c). This was expected for the
NPy because of electrostatic arguments, given that the negative
partial charge of O is nearly four times that of F. Similar
behaviour is found in the radial distributions of O and F with
respect to CP and CE, which are nearly non-charged atoms.
Another difference appears between the CP–H & & & O and CP–
H & & & F, the first being significantly more intense because of
the polarity of the C–H bond. These structural features com-
paring the O and F atoms of the anions are similar for NTf2

2

(panels b and d).
The differences between radial distributions of OTf– and

NTf2
2 are small, although the structure of the first and second-

neighbour shells in the former IL appears more marked, as

seen by the drop of the RDF curves below 1.0 at distances
between 6 and 8 Å, which is more pronounced for OTf–, a
smaller, more rigid ion than NTf2

2 .
The differences between the structure of both ILs become

more apparent when no orientational averaging is done and
3D spatial distribution functions are plotted (Figure 5). The O
atoms are found with high probability in regions close to the
CP, specially so in the OTf– based IL. The F atoms are found
predominantly above and below the plane of the pyridinium
ring, also more intensely in the OTf– based IL. Therefore, a
highly ordered ionic network appears more tangible in
[C2Py][OTf] and as a consequence [C2Py][NTf2] is expected
to remain liquid at lower temperatures, as was experimentally
found by differential scanning calorimetry.42

Despite their similar structures, [C2Py][NTf2] and
[C2Py][OTf] present very different solvation features, with the
NTf2

2 based IL being strongly hydrophobic, while the OTf– IL
is miscible with water over the entire composition range. This
difference is expected to be linked to structural differences in
the solvation shells around water. Therefore, exploring the rel-
ative positions between different sites will allow us to identify
the groups governing the interactions between water and the
IL,43 and this knowledge will contribute to choose or tailor the
IL for efficient water absorption. A simulation box with 35
water molecules and 300 [C2Py][OTf] ion pairs (0.104 mole
fraction of water) was setup to study the structure of the mix-
ture. Radial distributions of water atoms around the SO2

3 and

Figure 2. Density of [C2Py][OTf] (blue) and [C2Py][NTf2]
(red).

Experimental data18 (line) and simulation results with-
full charges (open symbols) and ion charges scaled by
0.8 (filled symbols). [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 3. Density of [C2Py][OTf] 1 water mixtures.

Experimental data18 (line) and simulation results with
full charges (open symbols) and ion charges scaled by
0.8 (filled symbols). [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 1. Partial charges of atoms in the [C2Py]1 cation and the OTf– and NTf2
2 anions (full charges of the original

force field, not scaled).

[Color figure can be viewed at wileyonlinelibrary.com]
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CF3 groups of the anions suggest that hydrogen bonds between
H2O and SO2

3 play an important role in the solvation. The CF3

group appears as a hydrophobic group, without increased local
density of water molecules in its surroundings. The presence
of the second trifluoromethyl group in NTf2

2 will increase the
hydrophobicity of this anion, as will be shown below by the
free energy quantities of solvation. Apart from this visual
approach, we quantified the number of hydrogen bonds, by
defining length and the angle criteria44 so that an hydrogen
bond is considered when the donor H atom and the acceptor
electronegative atom are separated by less than 2.5 Å, and the
angle at the H atom is 180

'
6 30

'
. According to these criteria,

65% of Hw establish H-bonds with the sulfonate groups.
When water arrangement around the pyridinium cation is plot-
ted less directional interactions are found, as can be consulted
in Supplementary Information, Figure S1. This analysis shows
the strong role of the anion in the absorption of water. Among
the functional groups in OTf–, the SO2

3 group favors water

absorption although hydrogen bonds, while the CF3 group
appears hydrophobic (see Figure 6 and 7). The analysis of
hydrogen bonding is useful to determine the suitability of ILs
as absorbent.45

Free energy of solvation

The suitability of an absorbent is related to deviation from
the ideal behavior in Raoult’s law,2,4 with more negative devi-
ations resulting from a higher affinity between absorbent and
refrigerant. Some authors have characterized this affinity by
measuring or simulating the partial pressure of refrigerant.46,47

In this work, we calculate the infinity dilution activity coeffi-
cient of water in the ILs, in order to establish a criterion inde-
pendent of concentration.2,15 The chemical potential of water
allows calculation of Henry’s law constant.48

Free energy quantities were calculated to complement the
structural view of the ILs and the solvation of water presented
above. The FEP algorithm was used to calculate the residual

Figure 4. Radial distribution functions (RDFs) of several key sites for [C2Py][OTf] and [C2Py][NTf2] at 343 K.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 5. Spatial distribution functions (SDFs) of O and F atoms of the anions around the pyridinium cation in
[C2Py][OTf] (a) and [C2Py][NTf2] (b).

The blue isosurface is drawn at 2.5 times the average density of F atoms; the red isosurface is drawn at four times the average
density of O atoms. [Color figure can be viewed at wileyonlinelibrary.com]
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chemical potential lres of water in the ILs, from which the free
energy of solvation and Henry’s law constant can be obtained.
The FEP procedure was applied on the two thermodynamic
routes corresponding to activation and deactivation of a solute
molecule, in order to check for hysteresis issues. As can be
seen in Figure S3 the two routes coincide closely, meaning
that sampling was sufficient for a reliable evaluation of the
free energy difference between the initial and final states.

The residual chemical potential calculated from the present
free energy methods corresponds to transfer of the solute from
an ideal gas state to the solution (with infinite dilution behav-
iour) at constant density. It is related to the free energy of sol-
vation DsolvG

'
through an ideal gas contribution (the free

energy of solvation is the difference between the solute in an
ideal gas state at 1 bar and the solute at infinite dilution):

DsolvG
'
5lres

i 1RT ln
q1RT

p'

! "
(6)

and the Henry’s law constant follows:

Hi5q1RT exp
lres

i

RT

! "
(7)

The results are collected in Table 1, where it can be seen that
the Henry’s law constant is much smaller in [C2Py][OTf] than
in [C2Py][NTf2], and the free energy of solvation negative in
the former IL, compatible with the hydrophilic nature of
[C2Py][OTf] and hydrophobic nature of [C2Py][NTf2] known
from experiment. Calculations using molecular simulation of
Henry’s constants of water in phosphonium ILs are available
in the literature49 and are of similar order as those obtained
here.

An estimation of the solubility of water in the two ILs leads
to xH2O50:1 in [C2Py][NTf2] and to a value higher than 1
(total miscibility) in [C2Py][OTf], which agree well with
experiment, although quantitative estimations of water solubil-
ity from our simulations are not simple because it is not possi-
ble to ignore the activity coefficient of water in the IL
solutions above a certain point in concentration (and our cal-
culations refer to solutions behaving as in the state of infinite
dilution, with no solute-solute interactions).

The agreement with experiment allows to consider the FEP
method as able to predict the suitability of potential absorb-
ents. It also demonstrates the hydrophobicity of the anion
NTf2

2 , which must be discarded as an absorbent for water-
based refrigerated systems. According to the same results,
[C2Py][OTf] appears as a potential candidate regarding its
thermodynamic quantities, since its liquid range42 and relative
volatility fit within the application requirements. However, the
calculated thermodynamic quantities and the comparison with

Figure 6. RDF for [C2Py][OTf] 1 H2O water solution (xH2O50:104).

Assessment of hydrogen bonding between water and both ions. (a) OTf– and (b) C2Py1. [Color figure can be viewed at wileyonline-
library.com]

Figure 7. Water solvation environment for [C2Py][OTf]1 H2O
water solution (xH2O50:104).

The isosurfaces are drawn at 10 times the average density for O
(OTf–) (red) and and 3.5 times the average density for other
atoms, F (OTf–) (pink), N (C2Py1) (blue), and para-C (green)
(C2Py1). [Color figure can be viewed at wileyonlinelibrary.com]

Table 1. Residual Chemical Potential and Henry’s Constant
of Water in the ILs at 343 K

[C2Py][NTf2] [C2Py][OTf]

lres=kJ mol21 211:260:3 218:560:9
DsolvG

'
=kJ mol21 5.8 6 0.3 20:960:8

H=bar 2:3560:22 0:2360:07

The uncertainties are evaluated from the discrepancy between the coupling
and decoupling routes.
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some literature values49 suggest that other ILs may present a
higher water affinity. We will study other ILs in the future, in
order to assess their suitability as water absorbents.

Dynamic properties

The need of pumping solutions with high concentrations
of IL, which are viscous, may represent a barrier for the imple-
mentation of ILs in absorption heat pumps. Besides that, the
microscopic dynamics influence heat and mass transfer, both
of them critical either during the absorption or desorption pro-
cess.4 Therefore, the influence of different ions, of temperature
and water content are explored here to better understand their
impact on transport properties.

In Figure 8 simulation results for the self-diffusion coeffi-
cient of the two ILs and of the mixture with water are plotted.
Even though a relatively narrow temperature range is covered,
the diffusion coefficient increases by a factor of 4 when tem-
perature rises from 303 to 343 K, in agreement with the known
large effect of temperature on the dynamics of ILs. The differ-
ent series show that the NTf2

2 anion leads to higher diffusiv-
ities than OTf–, an issue that will be analysed in more detail
below. It is also shown that water (xH2O50:104) has a signifi-
cant effect increasing the diffusivity of [C2Py][OTf].

Diffusivity of [C2Py][NTf2] is higher than that of
[C2Py][OTf], consistent with experimental viscosities,18

experimental diffusivity (Table 2). NTf2
2 is a less coordinating

anion, as seen by the less marked microscopic structure shown
in Figures 4 and 5, leading in general to low viscosity ILs, in
spite of the large anion volume when compared to OTf2.

Calculation of the individual ion diffusion coefficients pro-
vides a more detailed view of the dynamics of ILs, giving a
measurement of the relative contribution of each component
to the dynamics of the whole system. According to Figure 9
cations diffuse faster than anions in all cases. The lower cation
and anion mobilities in [C2Py][OTf] compared to
[C2Py][NTf2] are registered in cations and anions alike, and
the same is observed in the presence of water, indicating the
strongly correlated motion of cations and anions in molten
salts and electrolytes. The mobility of water molecules is con-
siderably higher than that of ions, and water also fluidifies the
system leading to increased diffusion of all species.50

Results of viscosity calculations are presented in Table 3,
and compared with experimental values published previously.
As expected from the analysis of the diffusion coefficients,
viscosity values from simulation using the present force field
are almost exactly twice as large as experimental values.
Therefore, in spite of a systematic deviation, the relative vis-
cosities of the two ILs and of the mixture with water are very
well predicted from simulation. Furthermore, the diffusion
coefficients from simulation are predicted to be half of the
experimentally observed values, where viscosity is predicted
to be twice the experimental values, meaning that MD gives a
coherent view of the two transport coefficients, in the sense of
Stokes-Einstein equation. As such, we would expect that, if
interactions models were adjusted to one of the transport prop-
erties, the other would be predicted quantitatively.

As mentioned before, high viscosities may represent a draw-
back for the implementation of ILs in absorption heat pumps,
for this reason it is pertinent to establish a comparison between
the viscosity of traditional systems based on lithium salts51,52

and different IL 1 water mixtures18,53,54 where ILs are poten-
tial absorbers for heat pumps. Although a detailed comparison
is difficult due to the different experimental conditions, for
most of the potential working pairs based on ILs (H2O/IL) vis-
cosities are in the same order than that of traditional (H2O/
LiBr) systems. For instance, while a mixture of
[C2Py][OTf] 1 H2O with 0.758 mass fraction of IL has a vis-
cosity of 4.6 mPa s,18 the viscosity of a mixture LiBr 1 H2O
with 0.585 mass fraction of salt has a viscosity of 6.8 mPa s,51

both at 298 K. It is also important to take into consideration
the strong dependence of viscosity on temperature and water
concentration. Regarding temperature, viscosity follows an
Arrhenius-type behavior with exponential decay,55 experimen-
tal data are very often fitted to Vogel-Fulcher-Tammann equa-
tion.56 The increase of water concentration reduces largely the
viscosity of the mixtures. Besides that, the viscosity of mix-
tures with a high water content becomes less dependent on
temperature and even on the nature of the IL solution.57 The
critical step in the absorption process will be the absorber.1,4

However, the viscosity of working pairs based on ILs can lie
within the required limits for use in absorption heat pumps.

Figure 8. Average self-diffusivity of [C2Py][NTf2],
[C2Py][OTf], and [C2Py][OTf] 1 H2O water
solution (xH2O50:104) at different tempera-
tures.

[Color figure can be viewed at wileyonlinelibrary.com]

Table 2. Experimental and Simulated (exp/sim)
Self-Diffusion Coefficients of the Individual Ions Forming [C2Py][NTf2], [C2Py][OTf], and [C2Py][OTf] 1 H2O (xH2O50:104)

Dðexp=simÞ=10211 m2s21

[C2Py][NTf2] [C2Py][OTf] [C2Py][OTf] 1 H2O

T/K [C2Py] [NTf2] [C2Py] [OTf] [C2Py] [OTf]

303 6:2=2:5 4:2=1:9 3:5=1:6 2:5=0:94 4:4=2:0 3:3=1:2
323 10:8=5:5 7:2=3:4 7:1=3:5 5:1=2:0 7:8=4:1 6:0=2:7
343 19:9=8:6 13:5=6:1 12:3=7:5 9:2=4:7 13:4=7:7 10:1=5:3
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Conclusions

In the present work we aimed to use MD simulation to
explore the microscopic structural, energetic, and transport
properties of two ILs and a mixture with water, in the scope of
absorption/refrigeration pairs of working fluids. Pulsed-field
gradient spin-echo NMR experiments provided diffusion coef-
ficients for comparison with the calculations from simulation.
The interaction models used have not been adjusted to any
properties of ionic-liquid/water mixtures, therefore the simula-
tion results are true (attempted) predictions.

One IL, [C2Py][NTf2], is more hydrophobic whereas the
other, [C2Py][OTf], is more hydrophilic, actually miscible
with water across the entire composition range at ambient tem-
perature. The first set of simulation results concerns micro-
scopic structure. The radial distribution functions of both ILs
are very similar, although those for the smaller OTf– reveal a
more marked ordering in the bulk liquid phase when compared
to the larger an more flexible NTf2

2 . Hydrogen bonding pat-
terns of water with the [C2Py][OTf] were analyzed and they
show that the dominant H-bond occurs between water and the
negatively charged O atoms of the anion.

Next, the free energy of solvation of water in the two ILs
was calculated from free-energy perturbation. From these free
energies we estimated the solubility of water and the simula-
tions agree extremely well with experiment: we estimate a sol-
ubility of xH2O50:1 in [C2Py][NTf2] and total miscibility with
[C2Py][OTf], which matches experiment.

Finally, diffusion coefficients and viscosities were calculat-
ed from equilibrium MD trajectories, using the Einstein and
Green-Kube expressions, respectively. The results for the two
ILs and for the mixture containing water are all consistent: dif-
fusion coefficients are in all cases underestimated by a factor

2, and viscosities are overestimated by a factor 2 as well.
Therefore, our results for the transport coefficients are mutual-
ly consistent in a Stokes-Einstein sense, although they show
systematic deviations.

Overall we conclude that molecular simulation provides
valuable insights at the microscopic level concerning the
structural, thermodynamic, and transport properties of ILs and
mixtures with interest for applications, namely, in refrigeration
systems. The ability of simulation to restore trends correctly,
either in terms of molecular structure as in thermodynamic
conditions (such as temperature or composition), is valuable
for the design of technological fluids. In particular, here we
studied the effects of the choice of anion of the IL and of mix-
ing with water on solvation and transport properties, which are
key for the choice of working pairs. One perspective for future
work concerns the influence of different functional groups in
the ILs.
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A B S T R A C T

The aim of this study is to improve our understanding of the microscopic and macroscopic properties of
mixtures of ionic liquids with water, in the context of working pairs for absorption heat cycles. We report a
molecular dynamics study of dynamic properties (viscosity and diffusion coefficients), water solvation (free
energy and local solvation environments) and hydrogen bonding in mixtures of six ionic liquids with water,
at two concentrations xH2O = 0.104 and xH2O = 0.900. Three anions, methanesulfonate, dicyanamide and
acetate; and two cations, N-ethylpyridinium and cholinium, were chosen due to their potential for water
absorption and halogen-free structures. Simulation results capture the trends of experimental data, and
were interpreted in terms of the molecular structures and interactions. The strength of hydrogen bonding
is a major criterion determining the affinity of an ionic liquid towards water. In particular, the cholinium
cations compete with water establishing hydrogen bonds with the acetate anions and this is not favourable
in terms of water affinity. Dicyanamide anions lead to the systems with lower viscosity.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Ionic liquids (ILs) are among the most promising classes of
solvents, reaction or separation media or technological fluids of
the XXI century [1,2]. Due to their tuneable physical and chemical
properties, and recyclability, ionic liquids appear as alternatives for
many applications [3–5], within the trend of sustainable chemistry,
reduce the environmental footprint of chemical and processes.
Concerns of sustainability are central when choosing alternatives to
traditional industrial processes.

Among the potential uses of ionic liquids, absorption heat pumps
present an opportunity to reduce the emissions of greenhouse
gases in heating/cooling systems. The advantages and challenges of
this technology were already treated in detail [6,7]. The scientific
community is seeking alternatives to improve the performance of
traditional working pairs of refrigerant/absorbent and amidst the
most promising working pairs are those based on ILs together with
water as refrigerant [8,9].

Most research in this field is focused on identifying which ILs
fit with the requirements of the application. Due to their particu-
lar chemical structure, large and asymmetrical ions with a highly

* Corresponding author.
E-mail address: agilio.padua@uca.fr (A.A. Pádua).

delocalized charge, all ILs share certain properties such as extremely
low vapor pressures and flammability; many have low melting
points and wide electrochemical windows [10,11]. However, many
chemical structures are possible through choice of ions or chemi-
cal functional groups, leading to an enormous amount of possible
combinations with a large variety in some of the key properties for
water absorption. As such, it is essential to improve our present
fundamental understanding of the physical chemistry of mixtures
of ionic liquids with molecular compounds. Thus, a study of the
cation and anion effects on the relevant properties for absorption
processes is necessary, in order to tailor the structure of the ILs,
attaining the technical requirements. Two of those key properties are
the absorption capacity and the transport properties of IL + water
mixtures.

An adequate water absorption capacity is a limiting factor, since
the change in pressure of the refrigerant is done by an absorp-
tion/desorption process. In other words, the suitable IL should have
a significant ratio between the water absorbed and the volume
of IL [12] meaning that absorbents with large water affinity are
required. This is often quantified by measuring the deviation from
Raoult’s law [13] or the refrigerant’s activity coefficient at infinite
dilution [14]. Besides the thermodynamic quantities related to water
absorption, the transport properties of the IL + water systems have
an enormous importance, because high viscosities are frequently a
barrier for their industrial implementation. Besides increasing the

http://dx.doi.org/10.1016/j.molliq.2017.06.109
0167-7322/© 2017 Elsevier B.V. All rights reserved.
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pumping cost of the process, slow dynamics have a negative impact
in the heat and mass transfer, and therefore in the water absorption
mechanism [9].

The complexity of the interactions that govern the behaviour of
ionic liquids makes it very difficult to achieve a detailed understand-
ing of all the factors determining their properties. Together with
experimental work, done mainly over the last decade, the use of
theoretical tools proved very powerful in explaining the structure-
property relations in IL systems. Some of main advances concern the
nanostructural segregation [15] of the IL phases, the main factors
influencing their dynamics [16] or the nature of charge transport [17]
in IL media, in all of these cases using molecular dynamics simulation
(MD) techniques.

In this work, MD was used to study the thermodynamics of water
solvation in ILs and the dynamics of six IL + water mixtures. In all
cases, two water concentrations, xH2O = 0.104 and xH2O = 0.900,
have been investigated. These concentrations were chosen because
we intend to study the effect of water on the properties of IL +
H2O mixtures, being interesting to have two very different concen-
trations. Also, these concentrations reproduce the conditions in the
generator and the absorber of an absorption refrigeration cycle . The
chemical structures of the ILs consist of two cations and three anions,
allowing to see how each ion affects the final properties of the mix-
tures. Factors related to the microscopic structure and local ordering,
or to the interaction energies between different functional groups,
including a quantification of hydrogen bonding, were also analysed.
Some of the methods used in the present study were used in a recent
work on a related topic [18].

2. Methods

The compounds studied here were represented by a molecular
force field compatible with the Optimised Potential for Liquid Sim-
ulations All Atom (OPLS-AA) [19], with specific parameter sets for
ionic liquids (CL&P) [20–22]. This is a model with harmonic bonds
and angles, torsion energy terms given by cosine series, and non-
bonded interactions described by fixed electrostatic partial charges
and Lennard-Jones atomic sites.

Integer, fixed-charge models lead to slower dynamics in ionic liq-
uids, with diffusion coefficients that are too low and viscosities that
are too high [18]. Therefore, we scaled atomic charges of all ions have
by factor of 0.8, following previous studies [23,24] that pointed out
that the transport properties of ILs are better described by charge-
scaled than full-charged models. Water was represented by the SPC/E
model [25].

Molecular dynamics (MD) simulations were performed using the
LAMMPS [26,27] open source package. Initial configurations were
created using the Packmol [28] and fftool [29] utilities. All simula-
tions were carried out in periodic cubic boxes containing 300 ion
pairs and 35 water molecules, for systems with high IL content and
water mole fraction xH2O = 0.104, whereas systems with a low IL
concentration xH2O = 0.900 contained 100 ion pairs and 900 water
molecules. A cutoff of 12 Å was applied to LJ interactions and electro-
statics were handled using the particle-particle particle-mesh [30]
method with a precision of 10�4 in electrostatic energy. The timestep
was set to 1 fs. All simulations were run at constant NpT by means of
Nosé-Hoover thermostat and barostat at 343 K and 1 bar. These con-
ditions above room temperature were chosen to ensure the systems
reach the diffusive regime within a reasonable time, thus shortening
the length of the simulations. Furthermore, this temperature cor-
responds to the conditions of in the generator [9] of an absorption
refrigeration process.

Initial equilibrations of 1 ns were carried out starting from
the configurations generated by Packmol. Longer trajectories were
needed to calculate thermodynamic and dynamic properties, so we

ensured that systems had effectively reached the diffusive regime by
computing the b parameter [16] (Eq. (1)) and checking that its value
was close to unity.

b(t) =
d log�Dr(t)2�

d log t
(1)

Viscosity is a key property for any technological application. Here
we calculate viscosity of six different ILs and their aqueous mixtures,
at low and high water concentrations. Viscosity was calculated from
the equilibrium trajectories using the Green-Kubo method, i.e. inte-
gration of the autocorrelations of components of the pressure tensor
(Eq. (2)).

g =
V
kT

� �

0
�pxy(t)pxy(0)�dt (2)

The autocorrelations were recorded using the multiple step correla-
tor method [31] with m = 2 and p = 16 implemented in LAMMPS.
The result was averaged over three independent shear components
and the uncertainty was estimated from the standard deviation of
these values.

Diffusion coefficients of the different species were calculated
from the mean square displacement (Eq. (3)) once the systems
reached the diffusive regime [16].

D =
1
6

lim
t��

d
dt

�Dr(t)2� (3)

Thermodynamic quantities related to the absorption process are
crucial in the intended application of the IL mixtures in absorp-
tion cycles, so we calculated the solvation free energies of water,
the refrigerant. The free energy perturbation [32] (FEP) method
was used to calculate chemical potentials. We used 20 intermediate
states to attain an accurate sampling of the free energy difference
corresponding to the creation (or annihilation) of one solute (water)
molecule. The total trajectory time for the full free energy routes
was 4 ns, and at each activation stage an equilibration period was
allowed before acquisition. Details on the creation and annihilation
transformations can be found in supplementary formation (Figure
S1). A good superposition of creation and annihilation routes was
the criterion to choose the conditions of the free-energy calculation.
Since SPC/E water has no intramolecular energy terms, no correc-
tions are required in order to calculate the solvation free energy.

Fig. 1. Chemical structures contained of chemical species of this work and selected
interaction sites for radial and spatial distribution functions.
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Table 1
Simulated viscosity of IL + H2O binary systems at two water compositions and 343 K.

g/ mPa s

xH2O = 0.104 xH2O = 0.900

[C2Py][MeSO3] 20.4 ± 2.7 1.53 ± 0.02
[C2Py][DCA] 9.1 ± 1.1 1.34 ± 0.03
[C2Py][Ac] 15.2 ± 1.4 2.40 ± 0.02
[Chol][MeSO3] 106.9 ± 31.4 1.69 ± 0.08
[Chol][DCA] 12.7 ± 1.6 1.28 ± 0.03
[Chol][Ac] 114.1 ± 26.6 2.60 ± 0.29

3. Results

The chemical structures of the ions studied here are shown in
Fig. 1. Simulated densities at 343 K are also shown in Table S1.

3.1. Dynamic properties

Dynamic properties were calculated for mixtures of ILs with
water at two compositions, xH2O = 0.104 and xH2O = 0.900. In
Table 1 viscosities at 343 K are shown. These results give a picture
of the dynamics of each system where the first thing we note is how
an increase in water content reduces drastically the magnitudes and
differences in viscosities, and thus a high water content diminishes
the influence of the IL on the transport properties.

Experimental values are not available in the literature for all
our mixtures, therefore direct comparison is not always possible.
Regardless of water content, systems containing the DCA� anion are
the least viscous, especially at xH2O = 0.104. This is in agreement
with experimental information from the literature, with DCA� based
ILs remarked as being low-viscosity salts [33,34]. The viscosity of
IL + water mixtures containing Ac� and DCA� with a common
cation was determined [35] showing that DCA� ILs have a much
lower viscosity. Further explanations of the dynamic behaviour of ILs
containing cyano anions can be found in Weber and Kirchner [36].

Experimental viscosities of [C2Py][MeSO3] + H2O were reported at
different temperatures and concentrations [37] and the present simu-
lations are in qualitative agreement with the data. In order to uncover

the trends between MeSO3
� and Ac� ILs, experimental data of systems

containing those anions together with 1-ethyl-3-methylimidazolium
cation, (C2C1Im+), were analysed. At 353 K, the experimental viscos-
ity of [C2C1Im][MeSO3] + H2O is 1.3 and 12.3 mPa s, for water mole
fraction of 0.12 and 0.90, respectively [38]. For [C2C1Im][Ac] + H2O at
xH2O = 0.10 the viscosity is 13.0 mPa s [39], thus following the same
trend we observed in the simulations with the pyridinium cation.
Imidazolium ILs normally have lower viscosities than the pyridinium
counterparts (with comparable side chains [40].

Another pattern we notice from Table 1 is how the presence of
Chol+ leads to an increase in viscosity. This trend is also observed
experimentally [41,42].

Individual diffusion coefficients of ions and water were obtained
from Eq. (3) after ensuring that the diffusive regime had been
reached according to the b criterion [16]. Results are plotted in Fig. 2
and values given in the Supplementary Information Table S2. As
expected, water diffuses faster than the ions in all of the mixtures,
with D values that are dependent strongly on the ions, mainly at low
water concentrations (xH2O = 0.104): the ratio of diffusion coeffi-
cient of water with respect to the ions goes from 1.5 for [C2Py][Ac])
to 15 for [Chol][MeSO3]. In water-rich mixtures, xH2O = 0.900, water
diffuses between 2.5 and 3.5 times faster than the ions. An explana-
tion for this behaviour may be the strength of the H2O-anion binding,
which we will address in detail in the following sections. Concern-
ing ion mobility, the results indicate that dynamics are a result of an
interplay of both ions, without a unique trend. Nonetheless, DCA�

leads in all cases to faster dynamics, whereas Chol+ cation slows
down sharply the dynamic of the mixtures. Again, scarce experimen-
tal data on these properties were found. But diffusivities of MeSO3

�

and Ac� with a common cation [38,43] show that simulations predict
the relations between structure and transport properties reliably.

3.2. Energetics of water solvation

The Gibbs energy of solvation of water in the six ILs, and also
the Henry’s law constant (defined as pH2O = HxH2O) of water, were
calculated from the residual chemical potential of water in the ILs
obtained using the free energy perturbation (FEP) method, and are

Fig. 2. Individual diffusion coefficients for ILs + H2O mixtures at 343 K, each bar chart representing the water mole fraction indicated.
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Table 2
Henry’s constant of water in the ILs at 343 K.

IL DsolvG�/ kJmol�1 H/ bar

[C2Py][MeSO3] �1.48 0.19
[C2Py][DCA] �3.8 0.082
[C2Py][Ac] �16.6 0.0011
[Chol][MeSO3] 0.71 0.40
[Chol][DCA] �3.0 0.11
[Chol][Ac] �12.5 0.0040

listed in Table 2. Details of the calculation procedure are given in our
previous publication [18] and residual chemical potentials are listed
in Table S3 of the supplementary information.

The ordering of IL regarding their affinity for water is as follows:
[C2Py][Ac] > [Chol][Ac] > [C2Py][DCA] > [Chol][DCA] >

[C2Py][MeSO3] > [Chol][MeSO3]
This trend is in agreement with the anion playing the key role

during the solvation process [44,45]. Among the three different
anions, acetate is by far the one presenting a larger water affinity,
followed by dicyanamide and methanesulfonate. Studies of these
systems are scarce in literature, but nonetheless they allow to infer
that simulation results are correct, at least qualitatively. Vapor pres-
sure measurements [46] showed that carboxylate anion leads to
larger water affinity than methanesulfonate, with cholinium cation.
Another study [47] indicates that among carboxylate anions, addi-
tion of either an alkyl chain or an HO� group reduces the interactions
with water, which will increase Henry’s law constants. The vapor

pressure of water in dicyanamide ILs has been determined for two
different cations [48] and, even tough experimental conditions are
not the same, the results allow to infer that DCA� ILs present larger
water affinity than those based on MeSO3

�.
When analysing the influence of the cation on water affinity, we

realise that despite this being a minor effect compared to the role
of the anion, it cannot be considered negligible. Namely, C2Py+ ILs
show a stronger water affinity than those based on Chol+, with a
lower Gibbs energy of solvation by about 10%. Considering the chem-
ical structures of pyridinium and cholinium this could be surprising
since Chol+ with its asymmetry and OH� group could seem to be
“friendlier” towards polar solutes than the aromatic ring in C2Py+. In
the next sections we will address this issue by analysing the liquid-
phase structure at the atomistic scale, the structure of solvation
shells and the interaction energies between components.

3.3. Insights from microscopic structure

The ordering of ions around water provides relevant information
and insights that can be related to the thermodynamic and transport
properties of the systems.

In Fig. 3 the radial distribution functions (RDFs) of six mix-
tures with a low water concentration, xH2O = 0.104, are plotted.
As indicated by the thermodynamic quantities of solvation in the
ILs (Table 2), differences in the ILs-water interactions are mainly
determined by the anion. The height of the peak corresponding to
water-anion distributions in the RDFs (red line) backs the idea that
stronger binding between water and anion groups will lead to larger

Fig. 3. Radial distribution functions of ILs + H2O mixtures with xH2O = 0.104 (300 ions pairs and 35 water molecules). Nomenclature of sites is indicated in Fig. 1. HOH represents
the oxygen of the water molecules.
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Fig. 4. Radial distribution functions of ILs + H2O systems with xH2O = 0.900 (100 ion pairs and 900 water molecules). Nomenclature of sites is indicated in Fig. 1. HOH represents
the oxygen of the water molecules.

absorption capacities of the ionic liquid. RDFs suggest bonding of
water with H-bond acceptor groups of the anion. In the SI we include
water-water RDFs, which have very intense first peaks, typically of
some water self-association in systems where this species is diluted
(therefore the local density of pairs found becomes much larger than
the average). The intensity of water-water first peaks is strongly
dependent on the anion, being lower in acetate ILs because water
binds strongly to the anion and less to other water molecules.

The increase in water concentration leads to important changes in
the microscopic ordering of the mixtures. In Fig. 4, for xH2O = 0.900,
we observe that the water-water peak is higher than the water-anion
peak suggesting formation of water clusters, which is normal at this
composition corresponding to ca. 50% in volume fraction. Water-
anion interactions in Fig. 4 keep the same trend observed in Fig. 3
and in the simulated Henry’s law constant.

Another pattern in water affinity was found analysing the cation
effect (see Table 2). The presence of Chol+ leads to a decrease in
solubility (increase in Henry’s law constant). When we observe the
effect of the cation on the atomistic ordering, we notice that for
cholinium ILs a peak appears between the OH group of the cation
and negatively-charged O or N atoms of the anions (see Figs. 3
and 4). This peak, corresponding to a cholinium-anion H-bond is at
the same distance as the water-anion H-bonds. Although the inten-
sity of the cation-anion peak is lesser, it suggests a competition
between cholinium and water for the H-bond acceptor positions of
the anion, explaining the reduction in water affinity when C2Py+ is
replaced by Chol+. Spatial distribution functions (SDFs) of [C2Py][Ac]

and [Chol][Ac] in Fig. 5 support that idea, showing how the cholin-
ium OH group and H2O compete in the anion solvation shell for
the H-bond positions. This competition will hinder water solvation:
steric impediments for water to form hydrogen bonding with the
anion and an energetic barrier related to the anion-cation bind-
ing. This effect has been observed for different acetate ionic liquids
where the presence of additional OH groups led to decrease in water
affinity [47]. An extended analysis of hydrogen bonding will be
performed in the next section in order to quantify this effect.

As happens with water affinity, structural insights help us under-
stand certain patterns in the dynamics of IL + water mixtures.
Regarding the cation effect, all cholinium systems have a well-
defined peak at approximately 5 Å between NCh and the anion.
This suggests a more marked ordering that cat lead to slower
dynamics and also higher melting points of cholinium ILs [37,42].
Fig. 4 indicates how first peaks denoting interaction between water
molecules (blue lines) are quantitatively the most important. Thus,
water clustering clearly facilitates the fluidicy of the systems [49,50].

3.4. Hydrogen bonding

In Table 3 the likelihood of different hydrogen bonds in the stud-
ied mixtures is reported. A distance of 2.5 Å and an angle of 30� were
used as criteria [51] for counting a hydrogen bond. Note that the
presence of Chol+ increases largely the number of potential hydro-
gen donors and acceptors because of the OH of this cation. However,
this group is a very weak acceptor and essentially only acts as H-bond
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Fig. 5. Solvation environment of [cat][Ac], in (a) cat = C2Py+ and (b) Chol+. Blue isosurfaces represent water hydrogen and red isosurfaces the hydrogen of either C2Py+ ring or
the Chol+ hidroxi group in a and b, respectively.

donor, mainly towards the nucleophilic groups of the anions and, to
a minor extent, towards water.

Among the anions studied, acetate is the stronger H-bond accep-
tor. The carboxilate group forms in all cases more H-bonds than
either the sulfonate or the cyano groups, roughly 1.5 times more. This
supports that water absorption in the IL is favoured by H-bonding
with the anion, thus anions with strong nucleophilic centres should
be selected when large water affinity is sought.

On the side of H-bond donors, results in Table 3 demonstrate that
water is a better H-bond donor than cholinium, since the relative

Table 3
Frequency of different hydrogen bonds for all the studied systems. Values shown in
the table are the number of hydrogen bonds per interaction site, either donors or
acceptors, taking the minimum value among both of them.

xH2O = 0.104 xH2O = 0.900

[C2Py][MeSO3] + H2O
SO...HO 0.66 0.83
HO...HO 0.14 1.13

[C2Py][DCA] + H2O
CN...HO 0.69 1.18
HO...HO 0.11 1.14

[C2Py][Ac] + H2O
CO...HO 0.90 1.81
HO...HO 0.14 1.12

[C2Py][Ac] + H2O
CO...HO 0.90 1.81
HO...HO 0.14 1.12

[Chol][MeSO3] + H2O
SO...HOCh 0.52 0.18
SO...HO 0.63 0.78
HO...HO 0.14 1.12

[Chol][DCA] + H2O
CN...HOCh 0.46 0.12
CN...HO 0.64 1.13
HO...HO 0.11 1.11

[Chol][Ac] + H2O
CO...HOCh 0.96 0.15
CO...HO 0.89 1.77
HO...HO 0.03 1.10

frequency of hydrogen bonds (number of occurrences divided by
the number of interaction sites, donor or acceptor) is larger for the
solvent than for the cation.

In systems with a high water concentration, the presence of H-
bonds between water molecules suggests the presence of clustering,
since the frequency of bonds is slightly above one per molecule. No
significant differences were found between systems, this clustering
formation being of similar extent irrespective of the IL. This could
be linked to the reduction of viscosity in mixtures when water
concentration reaches a certain value, independently of the IL.

An analysis of the intensities of H-bonds is illustrated in Fig. 6.
In Fig. 6a, the distribution of H-bonds as a function of the length

Fig. 6. Hydrogen bond distribution as a function of the length and angle depending
on a) the anion b) all posibilities in a [Chol][Ac] + H2O system with xH2O = 0.900.
Nomenclature of sites of anions are indicated in Fig. 1. OH represent water atoms
unless prefix Ch is set, in these cases it represents Chol+ hidroxi group.
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and the angle between water and the anion is shown. No signifi-
cance difference between MeSO3

� and DCA� is observed (the areas of
higher H-bond frequency overlap). However, acetate appears to be
a stronger nucleophilic group, with binding between water and the
carboxilate group not only more likely to happen but also stronger.
A detailed study of hydrogen bonding in aqueous mixtures using ab
initio molecular dynamics (AIMD) by Kirchner and coworkers [52]
confirms the strength of this H-bond. According to this work, in
some configurations proton transfer would occur from water form-
ing acetic acid. In Fig. 6b, the [Chol][Ac] + H2O mixture was chosen
as a representative system because it contains several kinds of H-
bond. Cholinium is shown to be a weaker H-bond donor than water,
no matter the H-bond acceptor to which it is associating. In spite of
the lower frequency and relative weakness of H-bonds, cholinium
influences the dynamic and energetic properties of the mixtures.

3.5. Interaction energies

To asses the interaction energies between the constituent species
of the mixtures we defined a neighbouring criterion: two molecules
or ions are considered neighbours when the distance between two
atoms, one from each, is shorter than 2sLJ. Only those entities were
considered in the calculation of interaction energies shown in Fig. 7.

Cation-anion interaction energies are shown in Fig. 7. Although
systems based on DCA� have smaller interaction energies (in abso-
lute terms), which is consistent with faster dynamics, these dif-
ferences seem too small by themselves to explain the disparity in
viscosity values. The same can be said for the effect of larger interac-
tion energies Chol+ that do not appear sufficiently larger to explain
the drastic increase in viscosity of cholinium systems.

Regarding the interactions of the ions with water, the energies in
Fig. 7 capture well the affinity trend of the anions and also the higher
affinity of Chol+ when compared to C2Py+, discussed before in terms
of solvation free energies.

The effect of a higher water concentration can be observed in
Fig. 8. Here the interaction energies between neighbouring water
molecules were also calculated and their values are larger than inter-
actions with the ions. Again, there is a consistency between the
interaction energies and the frequency of association between water
and the different ions given by H-bond statistics in Table 3.

Fig. 7. Interaction energies (Coulomb + van der Waals) between the components of
mixtures IL + H2O with xH2O = 0.104.

Fig. 8. Interaction energies (Coulomb + van der Waals) between the components of
mixtures IL + H2O with xH2O = 0.900.

4. Conclusions

The molecular dynamics results presented in this work capture
the experimental trends of dynamic properties for the mixtures of
ionic liquids with water, in terms of the nature of the ions composing
the ionic liquids (pyridynium and cholinium cations, and methane-
sulfonate, dicyanamide and acetate anions). Two compositions were
studied, one rich in IL (xH2) = 0.104) and one rich in water (xH2) =
0.900). Cholinium ionic liquids have the slower dynamics among
those studied, whereas dicyanamide is the anion giving rise to lower
viscosities.

We calculated thermodynamic properties of solvation, namely
chemical potentials at infinite dilution, and also examined the micro-
scopic structure of solvation layers through radial and spatial dis-
tribution functions. Results are compared with literature in terms
of water affinity of the ILs. Contrary to expectations, cholinium ILs
present lesser water affinity than those based on pyridinium, because
cholinium competes with water for hydrogen-bonding with the
anions. Regarding the anions, acetate leads to higher water affinity
than the other anions studied.

The microscopic structure explains in a large extent the proper-
ties of the mixtures studied. Namely, Chol+ leads to more organised
systems and thus to slower dynamics. This is also supported by slight
increase in the interaction energies between ions. The frequency of
H-bonds (consistent with RDFs) and the energetics of interactions in
the liquid phases back the higher water affinity of acetate ILs.

According to the results obtained, water affinity is mainly related
with the ability of the anion to establish hydrogen bonds with water,
thus the carboxylate anion shows a larger absorption capacity than
the other anions. The presence of cholinium cation, which carries a
H-bond donor site, reduces the absorption capacity and also leads to
higher viscosities. This suggests that cations with no H-bond donor
sites and giving rise to weaker anion-cation interactions are more
suitable for use in ionic liquid absorbents in heat pumps.
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Chapter 5

Conclusions

The aim of this project was the development of new working pairs for absorption heat pumps
based on natural refrigerants. The main conclusions of this work can be summarized as follows:

• Key properties of potential candidates to be used as absorbents in absorption heat pumps
were studied in this work. The following ILs were considered: [C2Py][NTf2], [Chol][NTf2],
[C1C1Im][OTf], [C1C1Im][BETI], [C2Py][MeSO3], [C2Py][OTf], [Chol][H2PO4], [C2Py][DCA],
[C2Py][Ac], [Chol][MeSO3], [Chol][DCA] and [Chol][Ac].

• The liquid range of potential working pairs was determined by the phase transitions of
ILs (lower limit) and their thermal degradation (upper limit). Solidification temperature,
measured using DSC techniques, is mainly determined by the internal organisation of the
ionic structure, with well-structured ILs leading to higher melting points. The effect of the
refrigerant (water) is expected to rise the melting point and reduce this operational prob-
lem. The degradation temperature, measured by TGA techniques, requires an isothermal
analysis that complements dynamic studies. Results show that the upper limit of the liquid
range is mainly determined by the anion while cations play a minor role.

• Experimental measurements of density and viscosity provide useful information to choose
potential for heat pumps. These properties are also required for the design of the ab-
sorption cycle. Both temperature and water concentration have a large effect on viscosity,
whose temperature dependence is well-described by the Vogel-Fulcher-Tamman equation.
Besides, PC-SAFT and HS models show a good predictive capacity outside of the measuring
range although both of them require the use of experimental data to obtain the parameters
of the theoretical models.

• In an absorption cycle the working pair water/IL will always be a binary system, therefore,
the applicability of ILs with melting points above room temperature can be explored. The
analysis of the effect of water and temperature on ionic conductivity, combined with the
viscosity measurements, show that ionic concentration and ionic mobility will cause oppos-
ite effects on the electrical conductivity of the solutions. Even tough electrical conductivity
is not among the key properties for the absorption process, low values will avoid corrosion
problems, such as those present in the commercial working pair H2O/LiBr.

• Atomistic molecular dynamics is a powerful tool to study IL properties at molecular level.
Scaling the charges of the ionic species to 0.8e provides a better description of the ILs/H2O
mixtures, specially of their dynamic properties. Qualitative agreement with experimental
data has been obtained and factors influencing the dynamic properties of the systems and
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water affinity have been identified. According to our results, a better ionic organisation
leads to more viscous fluids, so large charge delocalization will favour faster dynamics.
The water affinity is governed by the capacity of the anion to form hydrogen bonds with
water. Results of Henry’s constant at infinite solution calculated by free energy perturbation
back this statement.

• The role of the anion and the cation in the dynamic properties of ILs/H2O mixtures as
well as thermodynamics of water solvation in the ILs were interpreted by MD simulations.
Radial and spatial distribution functions showing the solvation environment of water in the
ILs explain how interactions between ions and water affect to the dynamic properties of the
system. The interaction energies between ions also support this analysis. Regarding to the
thermodynamics of the solvation process, the insights provided by simulation point out the
relationship between the ability of the anion to establish hydrogen bonds with water as the
main issue favouring water absorption. On the other hand, competition between water and
cation for the acceptor positions of the anion reduces significantly the absorption capacity
of the IL.

• After combining the experimental and theoretical techniques implemented and used through-
out the articles that are part of this work, we have concluded that [C2Py][Ac] is the can-
didate showing a higher potential as absorbant for heat pumps using water as refrigerant.
Even though a deeper analysis should be done in order to determine all the aspects of the
absorption/desorption process, [C2Py][Ac] accomplishes three of the main requirements
for an efficient water absorption.

(i) Good absorption capacity. Among the studied ILs [C2Py][Ac] has the largest (negative)
Gibbs free energy of solution of water, the reason rest on the affinity between the
carboxilate group and water, as indicated by hydrogen bond quantification. A weak
interaction between anion and cation also favours this behaviour.

(ii) The dynamic properties studied by atomistic MD and supported by experimental data
from different literature sources present reasonable values compared with other po-
tential candidates. Even tough [C2Py][DCA]/H2O mixtures have lower viscosities, the
difference in their water affinity is enough to justify the selection of carboxilate based
ILs.

(iii) Thermal stability is a weaker point of acetate based ILs. Since this property is mainly
related with the anion, it will be a limitation of working pairs containing acetate ILs.
However, according to several studies generators in single stage configurations reach
temperatures of 80 �C. Up to this temperature, the thermal stability of [C2Py][Ac]
seems to be assured. However, special care should be taken in more complex config-
urations where higher temperatures might be reached in the generator.

As previously described, the design of water/IL working pairs for heat pumps was accom-
plished from different perspectives, from experimental determination of key properties for
the absorption process to molecular simulations to improve the knowledge at atomistic
level of different levels. This strategy has proven to be positive since results enhance the
comprehension of the relation between chemical structures and the target properties for
this application.

Further works should lead to the establishment a systematic procedure to quantify the
acceptable ranges for the properties of the water + ILs mixtures. As a starting point,
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[C2Py][Ac]/H2O could be chosen to simulate the absorption/desorption process and even-
tually, try this system at pilot scale to measure the performance of the system through the
calculation of the COP and circulation ratio.
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Appendix A

Resumen de la tesis doctoral

A.1 Contexto de la tesis doctoral

La tesis doctoral “Caracterización termofísica de nuevos absorbentes basados en líquidos iónicos para el
refrigerante natural, agua” dirigida por la Dra. Josefa García Sánchez y el Dr. Agílio A. H. Pádua se
enmarca dentro del proyecto “Desarrollo de Nuevos Fluidos de Trabajo, Componentes y Configuraciones
para Bombas de Calor de Absorción de Altas Prestaciones-AHP2” financiado por el Ministerio de
Economía y Competitividad y versa sobre el estudio de propiedades físico químicas de líquidos
iónicos.

Para la consecución del objetivo global del proyecto, el desarrollo de nuevos pares de trabajo
agua + líquido iónico (LI) para su aplicación en sistemas de bomba de calor por absorción, es
necesario definir las propiedades clave que debe tener un absorbente para asegurar un rendimi-
ento adecuado en la producción de frío/calor. A partir de estas propiedades deberá realizarse el
diseño de LIs como potenciales absorbentes para bombas de calor por absorción utilizando agua
como refrigerante.

Antes de definir las propiedades que consideraremos críticas para el desarrollo del proceso,
se hace necesario describir brevemente el funcionamiento de una bomba de calor por absorción
(ver figura B.1).
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Figure A.1: Esquema del funcionamiento de una bomba de calor por absorción
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Una bomba de calor por absorción es un dispositivo termodinámico capaz de proporcionar
frío y calor consumiendo, en su mayor parte, energía térmica en contraste con los sistemas de
bomba de calor tradicionales también llamados bombas de compresión mecánica, que requieren
un consumo extensivo de energía eléctrica. En los sistemas de absorción o sistemas de com-
presión química, un proceso de absorción/desabsorción se utiliza para incrementar la presión
del refrigerante, aprovechando la reducción drástica en el volumen específico que se produce
en el cambio de fase vapor-líquido. Una vez absorbido el refrigerante (en estado líquido), el
aumento en la presión se hace mediante el bombeo de la mezcla refrigerante/absorbente, siendo
su consumo energético muy inferior al del compresor utilizado en los sistemas tradicionales.
Una vez elevada la presión, el absorbente se regenera mediante la aplicación de energía térmica
antes de su entrada al condensador. Con el objetivo de llevar a cabo el proceso de absorción de
una manera eficiente se hace necesario garantizar que el par de trabajo cumpla los siguientes
requisitos:

1. Capacidad de absorción. El cambio de fase del refrigerante se realiza mediante un proceso
de absorción. Es difícil determinar una única propiedad que proporcione una medida de
la capacidad de absorción puesto que son varios los factores que influyen en la marcha de
este proceso. Con frecuencia se identifican las desviaciones negativas de la ley de Raoult
como el factor determinante para una adecuada absorción de refrigerante, sin embargo,
las propiedades de transporte o las entalpías de mezcla son factores que en menor medida
afectarán también al proceso de absorción que, en general, está asociado a disoluciones
exotérmicas, en consecuencia, es necesario utilizar un sumidero de calor para mantener
para evitar el aumento de temperatura durante la absorción de refrigerante.

2. Elevada volatilidad relativa. La regeneración del refrigerante se realiza mediante destila-
ción. En el generador, una fuente térmica se aplica a la mezcla refrigerante/absorbente,
una elevada volatilidad relativa favorece la separación de ambos fluidos en una sola etapa
mejorando la eficiencia del proceso. En el caso de pares de trabajo H2O/LI este aspecto
no representa un problema puesto que una de las características fundamentales de los LIs
es su baja presión de vapor, facilitando así su separación de otros solventes con mayores
volatilidades como es el caso del agua.

3. Rango líquido. Aunque dependerá de la configuración elegida para el ciclo termodinámico,
la diferencia entre las temperaturas de absorción (temperatura inferior) y la regeneración
(temperatura superior) del refrigerante puede ser elevada. En cualquier caso, es necesario
que la mezcla refrigerante/absorbente se encuentren en estado líquido en este rango de
temperatura y sean estables tanto térmica como químicamente en todo el rango de temper-
aturas durante largos periodos de tiempo.

4. Viscosidad. En este apartado se ha seleccionado la viscosidad como la más relevante de
las propiedades de transporte para esta aplicación, si bien tanto la transferencia de calor
como la de materia también juegan un papel importante en este proceso. Absorbentes con
baja viscosidad facilitarán la absorción del refrigerante, además, dado que el incremento
de la presión del refrigerante se hace en estado líquido mediante el bombeo de la mezcla
refrigerante/absorbente, una menor viscosidad disminuirá el coste del proceso de bombeo.

Otros aspectos, como la capacidad de corrosión, relacionada con la conductividad eléctrica
y el pH de la disolución, o la toxicidad de los compuestos utilizados, así como la viabilidad
económica del proceso deben ser tenidos en cuenta a la hora de diseñar nuevos pares de trabajo
para bombas de calor por absorción.
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El conjunto de estos factores determinará la eficiencia del proceso, que se define de una man-
era global a partir de dos parámetros fundamentales, el COP (ec. B.1) y el ratio de recirculación
(ec. B.2).

COP =
calor útil (evap.)

calor consumido (gen.)
(A.1)

Ratio recirculación =
f lujo vapor

f lujo disolución
(A.2)

El COP es un indicador de la eficiencia global de la bomba de calor, definido como la energía
útil que el sistema es capaz de proporcionar entre la energía térmica consumida en el generador
(ec. B.1, por tanto, un COP más alto implicará una mayor eficiencia energética. Por otra parte,
el ratio de recirculación es un indicador del desempeño del ciclo de absorción, dado que cuanto
menor sea la cantidad de absorbente para producir una cantidad determinada de vapor, menor
será la demanda térmica del generador, un ratio de recirculación más alto (ec. ) será también
ventajoso para la eficiencia del sistema además de permitir un dimensionamiento adecuado de
los equipos.

A.2 Enfoque de la tesis doctoral y técnicas utilizadas

El estudio de las citadas propiedades se ha abordado tanto desde el punto de vista experimental
como teórico. A lo largo de esta tesis doctoral, se han utilizado diversas técnicas experimentales,
modelos semiteóricos para la predicción y correlación de las propiedades medidas y análisis
atomísticos utilizando simulación molecular para una comprensión más profunda de los difer-
entes factores que influyen en las propiedades estudiadas.

1. Pretratamiento de las muestras. Con el objetivo de eliminar las impurezas y caracterizar las
muestras, los líquidos iónicos se han depositado durante al menos 24 horas en una línea
de vacío. En el caso de líquidos iónicos puros el contenido en agua se ha determinado
con un Karl Fischer (KF) antes de cada medida. Asimismo, en uno de los artículos de esta
tesis, el contenido en sales procedentes de la síntesis del líquido iónico, se ha determinado
mediante técnicas cromatográficas.

2. Determinación del rango líquido. En la determinación del rango líquido se han utilizado
el análisis termogravimétrico (TGA) para la estimación del límite superior y el análisis
calorimétrico diferencial (DSC) para el límite inferior. En el primer caso, se han llevado
a cabo estudios dinámicos e isotermos, utilizando un criterio conservador a la hora de
establecer la temperatura máxima de operación, debido a largo periodo de tiempo que
el absorbente permanecerá en el circuito. En el caso del DSC, las transiciones de fase de
estado se han estudiado con el objetivo de determinar la temperatura de solidificación que
definirá el límite inferior del rango líquido.

3. Determinación experimental y modelización propiedades físcas. La determinación de la
densidad de los líquidos iónicos y sus mezclas con agua se ha realizado utilizando un
densímetro de tubo vibrante. Los datos obtenidos se han modelizado en función de la
temperatura mediante modelos lineales y a utilizando la ecuación de estado PC-SAFT. La
viscosidad se ha medido utilizando un viscosímetro tipo “rolling ball” y un viscosímetro
rotacional (Stabinger) mientras que los modelos utilizados para su correlación y predicción
han sido la ecuación Vogel-Fulcher-Tamman (VFT) y el modelo Hard-Sphere (HS). Además,
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la conductividad eléctrica de mezclas de agua + líquido iónico se ha medido para dos
sistemas concretos, analizando el efecto de la concentración de agua sobre esta propiedad,
los datos obtenidos se han ajustado a la ecuación Casteel-Amis.

4. Estudio atomístico de sistemas agua/LI. Junto con el trabajo experimental y la model-
ización de los resultados, el estudio a nivel atomístico de mezclas agua + líquido iónico
aporta información sobre la dinámica y la energía de solvatación del agua en líquido iónico.
Los estudios de dinámica molecular incluyen varios líquidos iónicos puros y mezclas con
agua. El software LAMMPS y los parámetros publicados por Pádua y Canongia Lopes
para líquidos iónicos han sido utilizados para este análisis. Las propiedades calculadas
mediante simulación molecular son la densidad, utilizada para la validación del modelo,
propiedades dinámicas como la viscosidad y los coeficientes de difusión de las sustancias
presentes en cada mezcla. Los efectos de la temperatura y la concentración de agua se han
analizado. Además, la energía libre de Gibbs a dilución infinita para la absorción de agua
en el líquido iónico se ha calculado utilizando el algoritmo FEP implementado en LAM-
MPS. La dependencia de las propiedades citadas se ha analizado en base a las funciones
de distribución espacial de los iones y la formación de enlaces de hidrógeno entre estos y
el agua.

A.3 Resumen de los resultados

Dado que esta tesis doctoral se presenta como un compendio de artículos, el resumen de los
resultados obtenidos se presenta siguiendo este mismo esquema.

En el artículo Liquid range temperature of ionic liquids as potential working fluids for absorption heat
pumps, el análisis termogravimétrico (TGA, siglas en inglés) y el barrido calorimétrico diferencial
(DSC, siglas en inglés) se han empleado para determinar el rango líquido de seis líquidos iónicos.
Mientras que el DSC permite obtener las transiciones de fase, y de este modo, la temperatura de
solidificación y posibles transiciones vítreas, los resultados proporcionados durante el análisis
TGA permite establecer un límite máximo, a partir del cual es LI se degrada por acción de la
temperatura, si bien, ha de tenerse en cuenta que factores como la estabilidad química o mecánica
del líquido iónico no son consideradas durante estas medidas.

Los ILs estudiados no muestran un patrón claro en sus transiciones de fase en función de
los iones que lo conforman. La complejidad de sus interacciones provoca que se produzcan
diferentes cambios de fase tanto exotérmicos como endotérmicos, si bien, como es frecuente en
fluidos complejos, las transiciones de fase se producen a distintas temperaturas en función de la
pendiente de la rampa de temperatura. En algunos casos, se ha encontrado que energía no se
corresponde como una transición sólido-líquido, lo que sugiere un intercambio energético debido
a una reorganización en la estructura interna de los LIs. Los seis LIs líquidos estudiados tienen
temperaturas de solidificación que van desde los -14 ºC del [C2C1 Im][OT f ] hasta los 62 ºC del
[C2Py][MeSO3].

En cuanto a la determinación del límite superior del rango líquido, es fundamental difer-
enciar entre dos tipos de análisis complementarios, el dinámico y el isotermo. En el primero,
la temperatura se incrementa a velocidad constante hasta provocar la degradación térmica de
la muestra, a partir de la curva de masa frente a tiempo se calculará la temperatura onset. En
el análisis isotermo, las muestras son mantenidas a temperatura constante durante un tiempo
determinado, en función de la velocidad de degradación de la muestra. En este segundo análisis,
se partirá de la temperatura onset, reduciéndola hasta que la pérdida de masa se considere de-
spreciable. Este criterio implica una dosis de arbitrariedad, en nuestro caso se ha optado por
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Figure A.2: Temperaturas onset (gris) y temperatura de acuerdo con el criterio t0.01/10h (negro)
para los seis LIs estudiados

un criterio restrictivo, al tratarse de una aplicación en la que el líquido iónico pasará un periodo
de tiempo largo sometido a altas temperaturas. En la figura B.2 puede observarse la diferencia
entre la temperatura onset y la temperatura de degradación, siendo habiéndose seleccionado una
pérdida de masa del 1% después de 10 horas.

En el artículo Density and viscosity study of pyridinium based ionic liquids as potential absorbents
for natural refrigerants: Experimental and modelling se ha estudiado la densidad y la viscosidad
de dos líquidos iónicos: 1-ethylpyridinium bis(trifluoromethylsulfonyl)imide, [C2Py][NT f2] y 1-
ethylpyridinium triflate, [C2Py][OT f ]. Junto con la determinación experimental de estas propiedades,
la versión Perturbed Chain de la ecuación de estado Statistical Fluid Theory (PC-SAFT) y el
modelo Hard Sphere (HS) se han aplicado para la predicción de la densidad y la viscosidad,
respectivamente. Es importante salientar que para el modelo HS, los parámetros actualizados
por Ciotta y colaboradores mejoran la capacidad predictiva del modelo para fluidos densos tal y
como se indica en la figura B.3b. En ambos casos, los modelos, PC-SAFT y HS, han producido
resultados satisfactorios cuando al aplicarse a líquidos iónicos puros.

También se ha comprobado experimentalmente la diferencia de solubilidad del agua en am-
bos líquidos iónicos. De este resultado puede concluirse la hidrofobicidad del grupo trifluoro-
metil, puesto que mientras el LI formado por el anión [OT f ]� y el agua son miscibles en todo
el rango de concentraciones, el anión [NT f2]� da lugar a compuestos de mayor hidrofobicidad.
En consecuencia, su utilización como absorbente en bombas de calor debe descartarse. Por el
contrario, en este mismo artículo, densidad y viscosidad para las mezclas [C2Py][OT f ] + H2O se
ha determinado y los modelos utilizados para los componentes puros se han aplicado, en este
caso, su capacidad predictiva disminuye notablemente con respecto a los líquidos iónicos puros.

En el artículo Studies of Volumetric and Transport Properties of Ionic Liquid-Water Mixtures and
Its Viability To Be Used in Absorption Systems, también desde el punto de vista experimental, se
han explorado distintas propiedades en sistemas agua / líquido iónico. Una de las particular-
idades de los sistemas estudiados es que, ambos LIs son sólidos a temperatura ambiente. En
consecuencia, se ha descartado el estudio de los LIs puros y se han analizado los sistemas bin-
arios (LI + H2O), dado que en un sistema de bomba de calor por absorción el fluido de trabajo
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Figure A.3: (a). Predicciones de PC-SAFT para la densidad de los líquidos iónicos puros
[C2Py][NT f2] (cuadrados negros) y [C2Py][OT f ] (cuadrados blancos) (b) Ajuste de los sistemas
estudiados a la curva curva universal (viscosidad reducida frente a volumen reducido) prop-
uesta por Ciotta y colaboradores (línea continua) frente a los valores propuestos por Assael y
colaboradores (línea discontinua)

siempre será un sistema binario, el punto de fusión del absorbente puro no supone un problema
para su aplicación en ciclos de absorción.

Las mezclas estudiadas son etilpiridinio metanosulfonato [C2Py][MeSO3] y colina dihidró-
genofosfato [Chol][H2PO4], en ambos casos con agua. Además de la densidad y la viscosidad,
con sus respectivos ajustes polinómicos en el caso de la densidad y exponencial decreciente (VFT)
para la viscosidad; en el mencionado artículo se han publicado datos del pH y la conductividad
eléctrica en función de la temperatura y la concentración de agua. Tal y como se indica en la
figura B.3, el efecto de la concentración de LI provoca un incremento de la conductividad eléc-
trica en la disolución. Sin embargo, a partir de un determinado valor (en torno a XLI = 0.06) la
conductividad desciende de manera acusada, debido en parte al descenso en la movilidad de los
iones provocada por el aumento en la viscosidad de la mezcla.
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Figure A.4: Conductividad eléctrica en función de la temperatura, 298.15 K (cuadrado negro),
315.15 (cuadrado blanco), 333.15 (círculo negro) y la fracción molar de LI para los sistemas (a)
[C2Py][MeSO3] + H2O y (b) [Chol][H2PO4] + H2O.
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En el artículo Molecular Understanding of Pyridinium Ionic Liquids as Absorbents with Water as
Refrigerant for Use in Heat Pumps el comportamiento de los LIs [C2Py][NT f2] y [C2Py][OT f ] se
ha estudiado a partir técnicas de dinámica molecular. Este enfoque permite un análisis a es-
cala atómica de los factores que influyen en las propiedades físico químicas de cada fluido. Se
ha aplicado un campo de fuerzas tipo OPLS, utilizando valores parametrizados de manera es-
pecífica para estos compuestos. Basándose en los datos experimentales de densidad publicados
previamente, el modelo ha sido validado. De este modo y de acuerdo con otras referencias bib-
liográficas se ha optado por escalar las cargar parciales de las sustancias iónicas en un factor de
0,8.

A partir del modelo descrito, se han explorado las posibilidades que la dinámica molecular
ofrece para la selección de líquidos iónicos como potenciales absorbentes. Por una parte, los
factores que inciden en la dinámica del sistema se han estudiado a partir de los coeficientes de
difusión de los diferentes iones y del agua. También se ha explorado el efecto de la temperatura
en la difusión de cada ión y del sistema global. Junto con los coeficientes de difusión, se ha
calculado la viscosidad de cada uno de los sistemas, obteniéndose resultados consistentes con
los datos experimentales.

Otra de las propiedades críticas para esta aplicación, la capacidad de absorción del agua en
el líquido iónico se ha abordado calculando la energía libre de Gibbs de la solvatación del agua
en el líquido iónico. Con este objetivo, se ha aplicado el algoritmo free energy perturbation (FEP),
cuyos resultados se avanzan en la figura B.5, y cuya descripción detallada puede encontrarse en
los trabajos de Chipot y colaboradores. Al igual que en el caso de las propiedades dinámicas, los
resultados son consistentes con los datos experimentales. Asimismo, en la organización a escala
atómica de los iones y el agua se observan las causas que provocan una mayor o menor afinidad
entre el líquido iónico y el agua. El factor determinante es la afinidad entre las posiciones
aceptoras de protones del anión y el agua.
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Figure A.5: Rutas de formación y aniquilación de una molécula de agua en dos líquidos iónicos
puros, [C2Py][NT f2] y [C2Py][OT f ]. La diferencia entre l = 0 (el agua no interacciona con el
medio) l = 1 (la interacción entre agua y medio es completa) determina el potencial químico
puesto en juego durante la solvatación del agua.

En el artículo Structural effects on dynamic and energetic properties of mixtures of ionic liquids and
water se desarrollan con más extensión y se amplían a un mayor número de sistemas las técnicas
empleadas en el artículo anterior. Concretamente, se han seleccionado dos cationes [C2Py]+ y
[Chol]+ y tres aniones [MeSO3]�, [DCA]� y [Ac]� y se han estudiado las seis combinaciones
posibles. En todos los casos, se han seleccionado dos mezclas con agua, con fracciones molares
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de xH2O = 0.104 y xH2O = 0.900, con el objetivo de simular las condiciones que pueden darse en
la aplicación objeto de estudio.

Las propiedades dinámicas de las mezclas se han analizado siguiendo un procedimiento
análogo al del artículo anterior. A mayores, se ha incluido el análisis del efecto que sobre las
mezclas tiene incrementar la concentración de agua. Una vez más, los resultados son consistentes
con los datos experimentales y proporcionan información relevante sobre los principales factores
que influyen en la dinámica de las mezclas agua + líquido iónico. De la misma forma, la afinidad
entre el agua y los diferentes LIs se ha simulado mediante FEP. Los resultados permiten hacer
una selección previa en función de su capacidad de absorción.

a b

Figure A.6: Competencia por las posiciones aceptoras de protones en sistemas con un ión común,
el acetato [Ac]� y dos cationes, el [C2Py]+ (a) y [Chol]+ (b). En azul, se muestra el hidrógeno del
agua mientras que en rojo están el hidrógeno más ácido de cada catión.

Junto con la simulación de las propiedades críticas para las bombas de calor por absorción,
se han estudiado con detalle los factores a escala atómica que afectan a estas propiedades. En
concreto, se han cuantificado los enlaces de hidrógeno entre los diferentes grupos funcionales de
este sistema, tanto su frecuencia como su intensidad han sido tenidas en cuenta y en ambos casos,
los resultados muestran la gran influencia que los puentes de hidrógeno tienen en la solvatación
del agua en el líquido iónico. Asimismo, cuando los enlaces de hidrógeno tienen lugar entre el
anión y el catión se observa una ralentización en la dinámica de los sistemas En la figura B.6
puede observarse una muestra de este comportamiento, la presencia del catión colina (Fig. B.6b)
compite con el agua por las posiciones aceptoras del anión acetato, dificultando la absorción del
agua en el LI e incrementando la viscosidad del sistema. También se han medido las energías de
interacción entre los diferentes iones y el solvente. Los valores obtenidos explican parcialmente
la dinámica de los diferentes sistemas, si bien, es difícil establecer una relación cuantitativa entre
la viscosidad y las interacciones ión-ión e ión-solvente.

A.4 Conclusiones

El primer criterio que ha de tenerse en cuenta es la capacidad de absorción que el absorbente
tiene sobre el refrigerante. Si bien no existe una única propiedad que determine la capacidad
de absorción, la afinidad entre ambos compuestos puede determinarse midiendo la presión de
vapor de refrigerante en una disolución para unas condiciones dadas o bien a partir de la energía
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libre del proceso de solvatación. En esta tesis, este aspecto se ha abordado utilizando dinámica
molecular, concretamente, el algoritmo free energy perturbation (FEP), los resultados indican
que la clave para una elevada capacidad de absorción se encuentra en el anión, que deberá ser
un aceptor fuerte de protones para formar enlaces de hidrógeno con el agua. Por otra parte,
los cationes no deberán competir por las posiciones aceptoras con el agua, por lo que deberán
evitarse aquellas estructuras químicas que contengan hidrógenos ácidos.

En segundo lugar, y relacionado con la capacidad de absorción, es necesario considerar las
propiedades dinámicas de los sistemas absorbente-refrigerante. En esta tesis, se ha abordado la
capacidad de los sistemas agua + líquido iónico para transportar cantidad de movimiento, es
decir, su viscosidad y difusividad. En menor medida, se ha estudiado también la conductividad
eléctrica de algunos sistemas y el efecto que la temperatura y la concentración de agua tienen
sobre ellas. Los resultados obtenidos muestran como una mayor organización interna en los
líquidos iónicos aumenta drásticamente la viscosidad y por tanto dificulta la aplicación de estos
sistemas en sistemas de bomba de calor. Además, los efectos del agua y la temperatura son muy
importantes, provocando un descenso acusado de la viscosidad. Es difícil establecer un límite
cuantitativo de viscosidad para esta aplicación puesto que dependería de otros muchos factores.
En la bibliografía pueden encontrarse algunas referencias, si bien, en ellas existe un componente
de arbitrariedad.

Por último, es fundamental que las mezclas agua + LI se encuentren en estado líquido entre
las temperaturas mínima (absorbedor) y máxima (regenerador) del ciclo de absorción. Al igual
que sucede con las propiedades dinámicas, es importante tener en cuenta que el LI no se en-
contrará nunca puro en el interior del sistema. En principio esto es una ventaja, puesto que la
temperatura de solidificación de la mezcla será inferior en la mayor parte de los casos a la del
líquido iónico puro. En cualquier caso, y utilizando un criterio restrictivo, se han determinado
las transiciones de fase de los líquidos iónicos puros encontrándose una gran dispersión entre los
resultados obtenidos. En cuanto al límite superior, si bien es cierto que la temperatura de degra-
dación que se ha encontrado supera los requisitos del ciclo de absorción, es importante señalar
que los periodos de tiempo empleados para su determinación son sensiblemente inferiores al
tiempo que el absorbente debe permanecer en el ciclo. Asimismo, el análisis termogravimétrico
no tiene en cuenta la degradación química o los efectos mecánicos derivados de los cambios de
presión en el sistema.
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Appendix B

Résumé de la thèse de doctorat

B.1 Contexte de la thèse de doctorat

La thèse de doctorat Caractérisation thermophysique de nouveaux absorbants basés sur des liquides
ioniques pour le réfrigérant naturel, l’eau dirigée par la Dr Josefa García Sánchez et le Dr Agílio A.
H. Pádua s’inscrit dans le cadre du projet Développement de nouveaux fluides de travail, composants
et configurations pour les bombes à chaleur d’absorption de grandes prestations - AHP2 financé par le
Ministère d’Économie et de Compétitivité et porte sur l’étude de propriétés physico-chimiques
de liquides ioniques.

Pour la réalisation de l’objectif global du projet, le développent de nouvelles paires de travail
eau+liquide ionique (LI) pour son application dans des systèmes de bombes à chaleur par ab-
sorption, il est nécessaire de définir les propriétés essentielles que doit posséder un absorbant
afin d’assurer un rendement adéquat dans la production de froid/chaleur. À partir de ces pro-
priétés l’élaboration de LIs devra être réalisée comme de potentiels absorbants pour des bombes
à chaleur par absorption en utilisant l’eau comme réfrigérant.

Avant de définir les propriétés que nous considérerons critiques pour le développement du
processus, il est nécessaire de décrire brièvement une bombe à chaleur par absorption (voirB.1).
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Figure B.1: Schéma du fonctionnent d’une bombe à chaleur par absorption.

Une bombe à chaleur par absorption est un dispositif thermodynamique capable de propor-
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tionner du froid et de la chaleur en consommant, principalement, de l’énergie thermique en
contraste avec les systèmes de bombes à chaleur traditionnels aussi appelés bombes à compres-
sion mécaniques, qui nécessitent une importante consommation d’énergie électrique. Dans les
systèmes d’absorption ou systèmes de compression chimique, un processus absorption /des-
absorption est utilisé afin d’augmenter la pression du réfrigérant, en profitant de la réduction
drastique dans le volume spécifique qui se produit dans le changement de phase vapeur-liquide.
Une fois absorbé le réfrigérant (en état liquide), l’augmentation de la pression se fait au tra-
vers du pompage du mélange réfrigérant/absorbant, étant sa consommation énergétique très
inférieure à celle du compresseur utilisé dans les systèmes traditionnels. Une fois la pression
élevée, l’absorbant se régénère à travers l’application de l’énergie thermique avant d’entrer dans
le condensateur. Dans le but de mener à bout le processus d’absorption d’une manière efficiente
il faut garantir que le pair de travail respecte les conditions:

1. Capacité d’absorption. Le changement de phase du réfrigérant se réalise au travers d’un
processus d’absorption. Il est difficile de déterminer une unique propriété proportionnant
une mesure de la capacité d’absorption étant donné que les facteurs qui influent sur la mise
en marche de ce processus sont nombreux. On identifie souvent les déviations négatives de
la loi de Raoult comme le principal facteur pour une absorption adéquate du réfrigérant,
néanmoins, les propriétés de transport ou les enthalpies de mélange sont des facteurs qui en
moindre mesure affectent aussi le processus d’absorption qui, en général, est associé à des
dissolutions exothermiques, par conséquent, il est nécessaire d’utiliser une canalisation de
chaleur afin de maintenir et d’éviter l’augmentation de la température durant l’absorption
du réfrigérant

2. Grande volatilité relative. La régénération du réfrigérant se réalise à travers la distillation.
Dans le générateur, une source thermique s’applique dans le mélange réfrigérant/absorbant,
une grande volatilité relative favorise la séparation des deux fluides en une seule étape, en
améliorant l’efficience du processus. Dans le cas de paires de travail H2O/LI cet aspect ne
représente pas un problème puisque l’une des caractéristiques fondamentales des LIs est
leur basse pression de vapeur, facilitant ainsi leur séparation d’autres dissolvants ayant de
plus grande volatilité.

3. Intervalle liquide. Bien qu’il dépendra de la configuration choisie pour le cycle thermo-
dynamique, la différence entre les températures d’absorption (température inférieure) et la
régénération (température supérieure) du réfrigérant peut être élevée. Dans tous les cas, il
est nécessaire que le mélange réfrigérant/ absorbant se trouve dans un état liquide dans
cet intervalle de températures et soit stable aussi bien thermiques que chimiquement dans
toute l’intervalle de températures durant de longues périodes de temps.

4. Viscosité. Dans ce paragraphe la viscosité a été sélectionnée comme la propriété de trans-
port la plus pertinente pour cette application, bien que le transfert de chaleur comme
celui de matière jouent aussi un rôle important dans ce processus. Des absorbants ay-
ant une faible viscosité facilitent l’absorption du réfrigérant, de plus, étant donné que
l’augmentation de la pression du réfrigérant se fait dans un état liquide au travers d’un
pompage du mélange réfrigérant/absorbant, une viscosité moindre diminuera le coût du
processus de pompage.

D’autres aspects, tels que la capacité de corrosion, liée à la conductivité électrique et le pH
de la dissolution, ou la toxicité des composants utilisés, ainsi que la viabilité économique du
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processus doivent être pris en compte au moment d’élaborer de nouvelles paires de travail pour
des bombes à chaleur par absorption.

L’ensemble de ces facteurs déterminera l’efficacité du processus, qui se définit d’une manière
générale à partir de deux paramètres fondamentaux, le COP (eq. B.1) et le ratio de recirculation
(eq. B.2).

COP =
calor útil (evap.)

calor consumido (gen.)
(B.1)

Ratio recirculación =
f lujo vapor

f lujo disolución
(B.2)

Le COP est un indicateur de l’efficacité générale de la bombe à chaleur, défini comme l’énergie
utile que le système est capable de proportionner entre l’énergie thermique consommée dans le
générateur (eq. B.1), de ce fait, un COP plus élevé impliquera une plus grande efficacité én-
ergétique. D’un autre côté, le ratio de recirculation est un indicateur de l’efficacité du cycle
d’absorption, puisque plus la quantité d’absorbant est moindre afin de produire une quantité
déterminée de vapeur et plus faible sera la demande thermique du générateur, un ratio de re-
circulation plus élevé (ec. B.2) sera aussi avantageux pour l’efficacité du système, en plus de
permettre un design adéquat des équipements.

B.2 Approche de la thèse de doctorat et techniques utilisées

L’étude des propriétés citées antérieurement a été abordée aussi bien d’un point de vue ex-
périmental que d’un point de vue théorique. Tout au long de cette thèse de doctorat diverses
techniques expérimentales, modèles semi-théoriques pour la prédiction et la corrélation des pro-
priétés prises et l’analyses atomistiques ont été utilisés au travers de simulations moléculaires
afin de comprendre plus en profondeur les différents facteurs qui influent sur les propriétés
étudiées.

1. Prétraitement des échantillons. Dans le but d’éliminer les impuretés et de caractériser les
échantillons, les liquides ioniques ont été déposés durant au moins 24 heures au vide. Dans
le cas de liquides ioniques purs le contenu en eau a été déterminé avec un Karl Fischer (KF)
avant chaque mesure. De cette manière, dans un des articles de cette thèse, le contenu
en sels provenant de la synthèse du liquide ionique, a été déterminé avec des techniques
chromatographiques.

2. Détermination de l’échelle liquide. Afin de déterminer l’échelle liquide, on a utilisé l’analyse
thermogravimétrique (TGA) pour la stimulation du liquide supérieur et l’analyse calor-
imétrique différentielle (DSC) pour la limite inférieure. Dans le premier cas, des études
dynamiques et isothermiques ont été réalisées, en utilisant un critère conservateur à l’heure
d’établir la température maximum d’opération, du fait de la longue période de temps où
l’absorbant restera dans le circuit. Dans le cas du DSC, las transitions de phase d’état ont
été étudiées dans le but de déterminer la température de solidification qui définira la limite
inférieure de l’échelle liquide.

3. Détermination expérimentale et modélisation de propriétés physiques. La détermination
de la densité des liquides ioniques et leurs mélanges avec de l’eau a été réalisée au moyen
d’un densimètre de tube vibrant. Les données obtenues ont été modélisées en fonction de
la température au travers de modèles linéaires et en utilisant l’équation d’état PC-SAFT.
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La viscosité a été mesurée avec un viscosimètre du type “rolling ball” et un viscosimètre
rotationnel (Stabinger) alors que les modèles utilisés pour leur corrélation et prédiction
ont été l’équation Vogel-Fulcher-Tamman (VFT) ainsi que le modèle Hard-Sphere (HS). De
plus, la conductivité électrique du mélange eau + liquide ionique a été mesuré pour deux
systèmes concrets, en analysant l’effet de la concentration de l’eau sur cette propriété, les
données obtenues se sont ajustées à l’équation Casteel-Amis.

4. Étude atomistique de systèmes eau /LI. En plus du travail expérimental et de la mod-
élisation des résultats, l’étude d’un point de vue atomistique du mélange eau+ liquide
ionique informe sur la dynamique et l’énergie de solvatation de l’eau en liquide ionique.
Les études de dynamique moléculaire incluent plusieurs liquides ioniques purs ainsi que
des mélanges avec de l’eau. Le logiciel LAMMPS et les paramètres publiés par Pádua et
Canongia Lopes en ce qui concerne des liquides ioniques ont été utilisés pour cette ana-
lyse. Les propriétés calculées par simulations moléculaires sont la densité, utilisée pour la
validation du modèle, des propriétés dynamiques comme la viscosité et les coefficients de
diffusion des substances présentes dans chaque mélange. Les effets de la température et
de la concentration d’eau ont été analysés. De plus, l’énergie libre de Gibbs à dilution in-
finie pour l’absorption d’eau dans le liquide ionique s’est calculée en utilisant l’algorithme
FEP appliqué dans LAMMPS. La dépendance des propriétés citées a été analysée en se
basant sur les fonctions de distribution spatiale des ions et sur la formation de liaisons
d’hydrogène entre ceux-ci et l’eau.

B.3 Résumé des résultats

Étant donné que cette thèse de doctorat se présente comme une recompilation d’articles, le
résumé des résultats obtenus se présente suivant le même schéma.

Dans l’article Liquid range temperature of ionic liquids as potential working fluids for absorption heat
pumps l’analyse thermogravimétrique (TGA, sigles en anglais) et le scan calorimétrique différen-
tiel (DSC, sigles en anglais) ont été utilisés afin de déterminer l’échelle liquide de six liquides
ioniques. Alors que le DSC permet d’obtenir les transitions de phase, et de cette manière, la tem-
pérature de solidification ou de transition vitreuse, les résultats proportionnés durant l’analyse
TGA permet d’établir une limite maximum, à partir de laquelle c’est LI qui se dégrade par action
de la température, néanmoins il est nécessaire d’avoir présent que des facteurs comme la stabilité
chimique ou mécanique du liquide ionique n’ont pas été pris en compte durant ces mesures.

Les ILs étudiés ne montrent pas de patron clair dans leurs transitions de phase en fonction
des ions qui le conforment. La complexité des leurs interactions provoque que se produisent
différents changements de phase, aussi bien exothermique qu’endothermiques, ainsi comme il
est fréquent dans des fluides complexes, les transactions de phase se produisent à différentes
températures en fonction du secteur de température. Dans certains cas, on a trouvé que l’énergie
ne correspond pas à une transition solide-liquide, ce qui suggère un échange énergétique dû
à une réorganisation dans la structure interne des LIs. Les six LIs liquides étudiés ont des
températures de solidification qui vont de -14 �C du [C2C1 Im][OT f ] à 62 �C du [C2Py][MeSO3].

En ce qui concerne la détermination de la limite supérieure de l’échelle liquide, il est fonda-
mental de différencier entre deux types d’analyses complémentaires, la dynamique et l’isotherme.
Dans la première, la température augmente à une vitesse constante jusqu’à provoquer la dé-
gradation thermique de l’échantillon, à partir de la courbe masse face à temps on calculera la
température onset. Dans l’analyse isotherme, les échantillons sont maintenus à une température
constante durant un temps déterminé, en fonction de la vitesse de dégradation de l’échantillon.
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Figure B.2: Températures onset (gris) et température en accord avec le critère t0.01/10h (noir) pour
les six LIs étudiés.

Dans cette deuxième analyse, on commencera à partir de la température onset, en la réduis-
ant jusqu’à ce que la perte de masse soit considérée négligeable. Avec ce critère, il existe une
dose arbitraire dans notre cas on a opté pour un critère restrictif, s’agissant d’une application
où le liquide ionique passera une longue période de temps soumis à des températures élevées.
Dans la figure B.2, on peut observer la différence entre la température onset et la température de
dégradation, une perte de masse de 1% étant devenue un critère après 10 heures.

Dans l’article Density and viscosity study of pyridinium based ionic liquids as potential absorbents
for natural refrigerants: Experimental and modelling la densité et la viscosité de deux liquides io-
niques ont été étudiées: 1-ethylpyridinium bis(trifluoromethylsulfonyl)imide, [C2Py][NT f2] et
1-ethylpyridinium triflate, [C2Py][OT f ]. De plus, avec la détermination expérimentale de ces
propriétés, la version Perturbed Chain de l’équation d’état Statistical Fluid Theory (PC-SAFT) et
le modèle Hard Sphere (HS) ont été appliqués pour la prédiction de la densité et la viscosité,
respectivement. Il est important de souligner que pour le modèle HS, les paramètres actualisés
par Ciotta et collaborateurs supposent une nette majorité dans la capacité du modèle à décrire
de manière adéquate la viscosité de fluides denses comme l’indique la figure B.3b. Dans tous
les cas, les modèles, PC-SAFT et HS, ont produit des résultats satisfaisants en l’appliquant à des
liquides purs.

Il a également été vérifié de manière expérimentale la différence de solubilité de l’eau dans les
deux liquides ioniques. De ces résultats, l’hydrophobie du groupe trifluorometil peut se conclure.
En effet, alors que le LI formé par l’anion [OT f ]� et l’eau sont miscibles dans toutes les échelles
de concentrations, l’anion [NT f2]� donne lieu à des composés d’une plus grande hydrophobie.
Par conséquent, son utilisation comme absorbant dans des bombes à chaleur doit être exclue. Au
contraire, dans le même article, la densité et la viscosité pour les mélanges [C2Py][OT f ] + H2O a
été déterminé et les modèles utilisés pour les composants purs ont été appliqués, dans ce cas, sa
capacité prédictive diminue notablement par rapport aux liquides ioniques purs.

Dans l’article Studies of Volumetric and Transport Properties of Ionic Liquid-Water Mixtures and Its
Viability To Be Used in Absorption Systems, également d’un point de vue expérimental, différentes
propriétés dans des systèmes d’eau/liquide ionique ont été explorés. Une des particularités des
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Figure B.3: (a). Prédictions de PC-SAFT pour la densité des liquides ioniques purs [C2Py][NT f2]
(carrés noirs) et [C2Py][OT f ] (carrés blancs) (b) Ajustement des systèmes étudiés à la courbe
universelle (viscosité réduite face au volume réduit) proposition faite par Ciotta et collaborateurs
(ligne continue) face aux valeurs proposées par Assael et collaborateurs (lignes discontinue)

systèmes étudiés est que les deux LIs sont solides à température ambiante. Par conséquent, nous
avons exclu l’étude des LIs purs et nous avons analysé les systèmes binaires (LI + H2O), puisque
dans un système de bombe à chaleur par absorption le fluide de travail sera toujours un système
binaire, le point de fusion de l’absorbant pur ne suppose pas un problème pour son application
dans des cycles d’absorption.

Les mélanges étudiés sont ethylpyridinium methanesulfonate [C2Py][MeSO3] et choline di-
hydrogen phosphate [Chol][H2PO4], dans les deux cas avec de l’eau. En plus de la densité et
de la viscosité, avec leur ajustement respectifs en accord avec des équations polynomiales, dans
le cas de la densité et de la décroissante exponentielle (VFT) pour la viscosité ; dans cet article,
des données du pH ont été publiées et la conductivité électrique en fonction de la températ-
ure et de la concentration de l’eau. Comme il est indiqué dans la figure ??, l’effet de la con-
centration de LI provoque une augmentation de la conductivité électrique dans la dissolution.
Néanmoins, à partir d’une valeur déterminée (approximativement XLI = 0.06) la conductivité
descend de manière significative, du fait en partie de la baisse de la mobilité des ions provoquée
par l’augmentation dans la viscosité du mélange.

Dans l’article Molecular Understanding of Pyridinium Ionic Liquids as Absorbents with Water as
Refrigerant for Use in Heat Pumps le comportement des LIs [C2Py][NT f2] et [C2Py][OT f ] a été
étudié à partir de techniques de dynamique moléculaire. Cette approche permet une analyse
à échelle atomique des facteurs qui influent sur les propriétés physico-chimiques de chaque
fluide. En utilisant des valeurs paramétrées de manière spécifique pour ces composants, nous
avons appliqué un champ de force de type OPLS. En se basant sur les données expérimentales
de densité publiées antérieurement 1, le modèle a été validé. De cette manière et en accord
avec d’autres références bibliographiques nous avons opté pour réduire les charges partielles des
substances ioniques en un facteur de 0.8.

À partir du modèle décrit, nous avons exploré les possibilités que la dynamique moléculaire
offre pour la sélection de liquides ioniques comme absorbants potentiels. D’une part, les facteurs
qui influent sur la dynamique du système ont été étudiés à partir des coefficients de diffusion
des différents ions et de l’eau. Nous avons aussi exploré l’effet de la température sur la diffusion
de chaque ion et du système dans son ensemble. Avec les coefficients de diffusion, nous avons
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Figure B.4: Conductivité électrique en fonction de la température, 298.15 K (carré noir), 315.15
(carré blanc), 333.15 (cercle noir) et la fraction molaire de LI pour les systèmes [C2Py][MeSO3] +
H2O (a) et [Chol][H2PO4] + H2O (b).

calculé la viscosité de chaque système, et nous avons obtenu des résultats consistants grâce aux
données expérimentales

Une autre des propriétés critiques pour cette application est la capacité absorption de l’eau
dans le liquide ionique, elle a été absorbée en calculant l’énergie libre de Gibbs de la solvatation
de l’eau dans le liquide ionique. Dans ce but, nous avons appliqué l’algorytme free energy perturb-
ation (FEP), dont nous avançons les résultats dans la figure B.5 et dont la description détaillée se
trouve dans les travaux de Chipot et collaborateurs. De la même manière que pour les propriétés
dynamiques, les résultats sont cohérents avec ceux des données expérimentales. De ce fait, dans
l’organisation à échelle atomique des ions et de l’eau, on observe les causes provoquant une plus
ou moins grande affinité entre le liquide ionique et l’eau. Le facteur déterminant est l’affinité
entre les positions accepteuses de protons de l’anion et l’eau.
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Figure B.5: Routes de formation et anéantissement d’une molécule d’eau dans deux liquides
ioniques purs, [C2Py][NT f2] et [C2Py][OT f ]. La différence entre l = 0 (l’eau n’interagit pas avec
le milieu) et l = 1 (l’interaction entre l’eau et le milieu est complète) détermine le potentiel
chimique mis en jeu durant la solvatation de l’eau.

Dans l’article Structural effects on dynamic and energetic properties of mixtures of ionic liquids and
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water on développe plus longuement et avec un plus grand nombre de systèmes les techniques
employées dans l’article antérieur. Concrètement, nous avons sélectionné deux cations [C2Py]+
et [Chol]+ ainsi que trois anions [MeSO3]�, [DCA]� y [Ac]� et nous avons étudié les six com-
binaisons possibles. Dans tous les cas, nous avons sélectionné deux mélanges avec de l’eau, avec
des fractions molaires de xH2O = 0.104 et xH2O = 0.900, dans le but de simuler les conditions qui
peuvent apparaître dans l’application étudiée.

Les propriétés dynamiques du mélange ont été analysées en suivant une procédure analogue
à celle de l’article antérieur. En plus, nous avons inclus l’analyse de l’effet qui sur les mélanges
doit augmenter la concentration d’eau. Une fois de plus, les résultats sont cohérents avec les
données expérimentales et proportionnent une information pertinente sur les principaux facteurs
qui influent sur la dynamique des mélanges eau + liquide ionique. De la même manière, l’affinité
entre l’eau et les différents LIs a été simulée à travers FEP. Les résultats permettent de faire une
sélection préalable en fonction de la capacité d’absorption.

a b

Figure B.6: Compétences pour les positions accepteuses de protons dans des systèmes avec un
ion commun, l’acétate [Ac]� et deux cations, le [C2Py]+ (a) et [Chol]+ (b). En bleu, on peut voir
l’hydrogène de l’eau alors qu’en rouge se trouve l’hydrogène plus acide de chaque cation.

En plus de la simulation des propriétés critiques pour les bombes à chaleur par absorption,
nous avons également étudié minutieusement les facteurs à échelle atomique qui affectent ces
propriétés. Concrètement, nous avons quantifié les liaisons d’hydrogène entre les différents
groupes fonctionnels de ce système, aussi bien leur fréquence comme leur intensité ont été
prises en compte et dans les deux cas, les résultats montrent la grande influence que les ponts
d’hydrogène ont sur la solvatation de l’eau dans le liquide ionique. Ainsi, lorsque ces liais-
ons d’hydrogène ont lieu entre l’anion et le cation on a observé un ralentissement dans la dy-
namique des systèmes. Dans la figure B.6, on peut observer un échantillon de ce comportement,
la présence du cation colina (Fig. B.6b) rivalise avec l’eau par les positions accepteuses de l’anion
acétate, rendant difficile l’absorption de l’eau dans le LI et augmente la viscosité du système.
Ainsi, les énergies d’interaction entre les différents ions et le solvant ont été mesurées. Valeurs
obtenues expliquent partiellement la dynamique des différents systèmes, de cette manière, il est
difficile d’établir une relation quantitative entre la viscosité et l’interaction ion-ion et ion-solvant.
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B.4 Conclusions

Après avoir étudié de manière théorique et expérimentale les propriétés fondamentales des li-
quides ioniques pour leur application dans des systèmes de bombes à chaleur nous en sommes
arrivés à ces conclusions.

Le premier critère qui doit être pris en compte est la capacité d’absorption que l’absorbant
possède sur le réfrigérant. Malgré le fait qu’il n’existe pas de propriété unique qui détermine
la capacité absorption, l’affinité entre les deux composés peut se déterminer au travers de la
pression à vapeur de réfrigérant en une dissolution pour des conditions données ou bien à partir
de l’énergie libre du processus de solvatation. Dans cette thèse, cet aspect a été abordé en
utilisant une dynamique moléculaire, concrètement, l’algorithme free energy perturbation (FEP),
les résultats indiquent que la clé pour une capacité élevée d’absorption se trouve dans l’anion,
qui devra être un accepteur fort de protons afin de former des liaisons d’hydrogène avec l’eau.
D’un autre coté, les cations ne devront pas rivaliser du fait des positions accepteuse avec l’eau, il
faudra donc éviter les structures chimiques contenant des hydrogènes acides.

Deuxièmement, pour ce qui est de la capacité d’absorption, il est nécessaire de considérer les
propriétés dynamiques des systèmes absorbant-réfrigérant. Dans cette thèse, nous avons abordé
la capacité des systèmes eau + liquide ionique afin de transporter une quantité de mouvement,
c’est à dire, sa viscosité et diffusivité. Dans une moindre mesure, nous avons aussi étudié la con-
ductivité électrique de certains systèmes et l’effet que les températures et la concentration d’eau
ont sur elles. Les résultats obtenus montrent comment une plus grande organisation interne
dans des liquides ioniques augmente de manière drastique la viscosité et rend donc difficile
l’application de ces systèmes en systèmes de bombe à chaleur. De plus, les effets de l’eau et
la température sont très importants, provoquant une forte baisse de la viscosité. Il est difficile
d’établir une limite quantitative de viscosité pour cette application étant donné que cela dépen-
dra d’autres facteurs. Dans la bibliographie nous trouverons certaines références bien qu’il y ait
un composant arbitraire.

Finalement, Il est fondamental que les mélanges eau + LI se trouve dans un état liquide entre
les températures minimales (absorbeur) et maximales (régénérateur) du cycle absorption. De la
même manière qu’avec les propriétés dynamiques, il est important de prendre en compte que le
LI ne se trouvera jamais pur à l’intérieur du système. En principe, cela est un avantage puisque
la température de solidification du mélange sera inférieure dans la plupart des cas à celle du
liquide ionique pur. Dans tout les cas, et en utilisant un critère restrictif, nous avons déterminé
les transitions de phase des liquides ioniques purs, en constatant une grande dispersion entre les
résultats obtenus. Pour ce qui est de la limite supérieure, bien qu’il soit vrai que la température
de dégradation trouvée dépasse les conditions du cycle d’absorption, il est important de signaler
que les périodes de temps employées afin de déterminer sont légèrement inférieures au temps
où l’absorbant doit rester dans le cycle. De ce fait, l’analyse thermogravimétrique ne prend
pas compte de la dégradation chimique ou des effets mécaniques dérivés des changements de
pression dans le système.




