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"Mais si on éprouve le besoin de se rassurer c'est qu'une 

angoisse hante constamment la pensée, si on délègue à la 

technique, magique ou positive, le soin de restaurer dans 

la norme souhaitée l'organisme affecté de maladie, c'est 

qu'on attend rien de bon de la nature par elle-même." 

Georges Canguilhem, 1966 

 

 

"Am I a part of the cure? Or am I part of the disease?" 

Coldplay, 'Clocks', 2002 
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Governance of plant health and management of crop diversity - 

the case of bean health management among members of the association Croqueurs 
de Carottes 

Abstract 

All over the globe, networks of seed growers are cultivating crop diversity in fields and gardens. Their 
contribution to the maintenance of this diversity has been studied, but research has widely left aside 
their management of plant health. The governance of bean health practiced by an association of 
artisanal seed companies, Croqueurs de Carottes, is approached as a case study in the objective of 
specifying how management of crop diversity and governance of plant health are articulated. Their 
concern for the governance of bean health is elucidated from an agroecological perspective, taking an 
interdisciplinary and transformative approach. Actor-network theory constitutes the backbone of the 
thesis, situated between agronomy and sociology and drawing upon a threefold research device: on-
farm experiments, semi-directive interviews and participant observation. 
The Croqueurs' approach to bean health is described as in situ approach, in which plant populations 
are considered healthy if they are able to live with potential plant pathogens and adapt to their growing 
environments. Relying on ecological interactions, competences of plant health management are 
distributed throughout the production system. Both for plant health and crop diversity management, a 
seed lot is determined by a complex system of interactions. A clear boundary distinguishing plant 
populations from their growing environment cannot be drawn. This implies (i) that plant health must be 
judged upon in situ in the plants' growing environment and (ii) that the governance of plant health must 
be considered at the collective scale. 

Key words: plant health, small-scale organic seed production, common bean, participatory  
  research, agroecology 

 

Gouvernance de la santé des plantes et gestion de la biodiversité cultivée -  

le cas de la santé du haricot gérée par les membres de l'association Croqueurs de 
Carottes 

Résumé 

De multiples réseaux d'agriculteurs et de jardiniers maintiennent la biodiversité cultivée dans le 
monde. Leurs pratiques de gestion de la santé des plantes demeurent peu étudiées. La thèse a pour 
objectif de caractériser l'articulation entre gestion de la biodiversité cultivée et gouvernance de la 
santé des plantes, se saisissant du cas d'une association d'artisans semenciers, les Croqueurs de 
Carottes. Elle développe une approche interdisciplinaire et transformatrice pour décrire et comprendre 
la gouvernance de la santé du haricot par ces acteurs, dans une perspective agroécologique. La 
théorie de l'acteur-réseau est mobilisée pour situer l'analyse à l’intersection entre approches 
agronomique et sociologique, reposant sur les données produites par un triple dispositif : 
expérimentations à la ferme, entretiens semi-directifs et observation participante. 
Nous qualifions d’in situ  l'approche de la santé des plantes des Croqueurs dont l’objectif est de vivre 
avec les agents pathogènes potentiels. Fondées sur des interactions écologiques entre plantes et 
terroir, les compétences contribuant à la gestion de la santé des plantes sont distribuées à travers le 
système de production. Que ce soit en termes de santé ou de biodiversité, un lot de semence est 
l'expression d'un jeu complexe d'interactions. Il est alors difficile de délimiter des populations de 
plantes de leur terroir de manière précise. Par conséquent, (i) la santé des plantes ne peut être jugée 
qu'in situ, dans l'environnement dans lequel elles évoluent et (ii) la gouvernance de la santé des 
plantes doit être prise en compte à l'échelle du collectif. 

Mots-clés: santé des plantes, artisans semenciers, haricot, recherche participative, agroécologie 
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Chapter 1: General Introduction 

In 1972 Jack Harlan warned of the genetic erosion of humanity's crop plants in his article Genetics of 

Disaster. Based on his worldwide explorations of crop diversity as a plant breeder, he concluded that 

the success of modern breeding was threatening its own base, the world's crop genetic resources. 

There is now consensus about the threat that genetic erosion of crop diversity represents for global 

agriculture (Commission on Genetic Resources for Food and Agriculture, 2010). Considerable effort 

has been made in the second half of the last century to collect, characterize, conserve and store crop 

genetic diversity ex situ in national and international gene banks, but there is increasing evidence that 

ex situ conservation, although complementary, cannot substitute for maintaining crop diversity in situ 

in farmers' fields (Soleri and Smith, 1995; Tin et al., 2001; Fowler and Hodgkin, 2004). Only when 

regularly cultivated under practical conditions may local cultivars evolve in their natural and human 

environments. It has been recognised that, besides their "genetic raw material" conserved ex situ in 

gene banks, "crop genetic resources also comprise related species, agroecological interrelationships, 

and human factors" and that "ecological relationships such as gene flow between different populations 

and species, adaptation and selection to predation and disease, and human selection and 

management of diverse crop resources are components of a common crop evolutionary system that 

generate crop genetic resources" (Brush, 2000). Concerning common bean in particular, studies on 

Italian (Negri and Tiranti, 2010) and Nicaraguan (Gómez et al., 2005) landraces have shown that ex 

situ conservation did not maintain the full genetic diversity maintained by farmers. On one hand, local 

cultivars have been shown to continuously adapt to environmental conditions and crop management 

strategies. For example, local adaptation has been observed at the phenotypic level for wheat 

(Dawson et al., 2013), lentil (Horneburg and Becker, 2008), maize (Serpolay-Besson et al., 2014) and 

spinach (Serpolay et al., 2011) to name both autogamous and allogamous crop species. Genetic 

adaptation to local conditions has also been observed for common bean (Tiranti and Negri, 2007) and 

wheat (Thomas et al., 2012). On the other hand, crop and seed producers maintain the knowledge of 

crop selection and management associated to the development of local cultivars (Brush, 1995, 2000; 

Bretting and Duvick, 1997), as well as the knowledge about their use. One can speak of coevolution 

between crops, environment and Man, which is why the in situ maintenance and use of crop diversity 

on farms is also termed dynamic conservation by scholars of plant genetic resources. In this thesis, I 

will not speak of crop diversity conservation, but rather of management, maintenance and safeguard of 

crop diversity on farms. Thereby, the ambiguity of the term conservation - which appears as something 

static and isolated - is avoided. These terms also rejoin the terminology employed by the actors 

engaged in the maintenance of crop diversity on farms, including farmers and non-governmental 

organisations (NGO) (Demeulenaere, 2014).  
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1 Collaborative Research on crop diversity in France 

In France, collaborations between seed-saving farmers, NGOs concerned with crop biodiversity and 

researchers from the public research institution INRA (Institut National de Recherche Agronomique) 

began at the turn of the millennium (Bocci and Chable, 2009). For example, research with cereal 

growers was driven by a common concern of farmers and researchers for bread wheat diversity 

maintained on farms at the national scale (Thomas, 2011; Enjalbert et al., 2011). In the region of 

Brittany, a lack of cabbage varieties suited for organic production led researchers and market 

gardeners to explore cabbage diversity stored in gene banks and to start participatory plant breeding 

(Conseil and Chable, 2009). Today, such participatory researches cover numerous crop species in 

France. It s conducted in contexts of organic and low-input farming (Chable and Serpolay, 2016). 

Many of the actors - farmers and consumers, but also bakers, cooks and other artisanal food workers - 

form part of the national umbrella organisation Réseau Semences Paysannes (RSP), literally "peasant 

seed network". RSP was founded in 2003 and now includes more than 80 associations "promoting 

and defending crop biodiversity and related know-how" (translated from RSP, 2007).  

Among the member associations of RSP, the Croqueurs de Carottes are a group of small-scale 

organic seed companies. They qualify their seed production practices as artisanal, or handcraft, and 

regard themselves as artisanal seed companies (artisans semenciers in French). They pursue the aim 

of contributing to the safeguard of vegetable diversity in danger of genetic erosion (Semailles, 2016). 

This includes landraces1, as well as old varieties that have undergone formal crop improvement and 

may even have been registered on a European variety catalogue. When plant protection for a formal 

variety expires, the variety "falls" into the public domain. The plant breeder can no longer claim 

royalties for the variety and is no longer legally responsible for its maintenance. The maintenance of 

public varieties is thus open to all. By making seed of vegetable varieties from the public domain 

available to home and market gardeners, the Croqueurs de Carottes - Croqueurs for short - take part 

in the safeguard of crop diversity. The Croqueurs operate both as partner and case study of the PhD 

research presented in this thesis. 

From the start, the rediscovery and reappropriation of crop diversity was at the heart of co-constructed 

research projects, as well as building legitimacy for its cultivation and use on farms (Bocci and Chable, 

2009; Demeulenaere, 2014). This went along with a focus on participatory plant breeding (Desclaux, 

2005; Chable et al., 2008; Dawson et al., 2011; Rivière et al., 2015). In European research projects 

such as "Farm Seed Opportunities" (Chable, 2010), "SOLIBAM" (Chable, 2015) and, currently, 

"Diversifood" (Chable and Dibari, 2016), French collaborative research on crop diversity linked with 

scientific and farmer communities all over Europe. With time, the focus has also widened to the 

practices associated with the cultivation and use of crop diversity (Chable and Serpolay, 2016). For 

example, ongoing projects address the composition of variety mixtures (van Frank and Forst, 2016) 

                                                      
1 Landraces have been defined by Camacho Villa et al. (2005) as 'dynamic populations of a cultivated 

plant that has historical origin, distinct identity and lacks formal crop improvement, as well as often 
being genetically diverse, locally adapted and associated with traditional farming systems'. 
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and sowing densities of diverse wheat populations (Baltazar, 2016), as well as milling and cooking 

with diverse maize populations (Agrobio Périgord, 2016). This thesis forms part of this category of 

researches, as it addresses the governance of plant health practiced by small-scale seed companies 

engaged in the safeguard of crop diversity.  

2 Crop diversity, agroecosystems and plant health 

As for any crop (Anderson et al., 2004), seed-saving farmers engaged in the maintenance of crop 

diversity on their farms have to cope with plant pests and diseases in their fields. Seed-borne diseases 

represent a particular challenge for seed growers, because they are transmitted from one plant 

generation to the next via the seed (Wood and Lené, 1997; Lo Cantore et al., 2010). Farmers who 

maintain crop diversity and save seed need to manage plant health if they want to make a living from 

their work. 

Crop diversity as such has been studied as a means to improve plant health. Crop genetic diversity 

may ensure plant health by enhancing agroecosystems, both directly and indirectly (Hajjar et al., 

2008). Indirect effects may consist of sustaining diverse populations of pest predators or soil life, for 

example. Increased genetic diversity within crops - through intra-varietal genetic diversity, variety 

mixes or intercropping practices - has been shown to reduce pest incidence in various crop species 

including common bean (Fadda et al., 2010; Mulumba et al., 2012). To cite another example, mixtures 

of rice varieties grown in the traditional agro-system of the Yuanyang terraces in China combine 

different components of basal immunity and effector-triggered immunity against the rice blast fungus 

Magnaporthe oryzaeh and may limit the latter's spread in the landscape (Liao et al., 2016). 

The coevolution of local cultivars with crop pests and diseases is cited regularly as one basic element 

of on-farm management of crop diversity (Maxted et al., 1997; Brown, 2000). Genetically uniform 

crops, with uniform disease resistance as it has been introduced by modern breeding, is met by the 

continuing evolution of new races of pests and pathogens able to overcome resistance genes, 

creating the phenomenon of boom and bust cycles (Mulumba et al., 2012). In contrast, more diverse 

crops - be it through intra-varietal genetic diversity, variety mixes or intercropping practices - may slow 

down this "arms race". In the framework of this co-evolution between local crop populations and plant 

pathogens, the potential of on-farm maintenance of crop diversity to give rise to novel resistance 

genes in crop plants has been questioned. It is uncertain whether the selection pressure exerted by 

pathogens in farmers' fields is sufficient for the emergence of resistance genes (Holden et al., 1993). 

The effect of crop distribution in time and space and of dispersal dynamics and survival structures of 

each pathogenic species is also unclear (Qualset et al., 1997). This has led Brown (2000) to the 

conclusion that 'the nature and pace of change of resistance structures in landrace populations 

conserved on farm are key topics about which there is much speculation and some dogma, but very 

little hard evidence'.  
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In addition of crop diversity alone, diversity of whole agroecosystems play a role for plant health by 

providing for ecological interactions, also called ecological services (Matson et al., 1997; Altieri, 1999; 

see also references therein). In cropping systems, this includes the diversity of crops and weeds, pest-

predator interactions (Losey and Denno, 1998; Wilby and Thomas, 2002; Tylianakis and Romo, 2010), 

as well as soil life (Mäder et al., 2002). Ecological interactions within agroecosystems, especially the 

maintenance of biological diversity and soil health, constitute a main pillar of plant health management 

in organic farming systems (van Bruggen et al., 2016). It is within such organic systems that the 

artisanal seed companies forming the Croqueurs operate.  

3 Crop diversity and plant health regulations in the EU 

Beyond plant diseases themselves, it has been argued for Europe that an additional risk for crop 

biodiversity may come from the very plant health regulations intended to protect crops from plant 

diseases. Non-profit organisations, small-scale seed companies and researchers have identified seed 

laws in general as the single most important barrier to the use and maintenance of crop diversity on 

farms (Cherfas et al., 1993; Anonymous, 2013). By reducing their potential market profitability, 

regulations may impede the use and maintenance of crop diversity on farms (Bretting and Duvick, 

1997). Much public debate on EU seed legislation was sparked by the revision of the legislation 

bodies relevant for the European agricultural and food sectors. The revision process led to the 

adoption of a package of measures termed "Smarter Rules for Safer Food" by the European 

Commission in May 2013 (European Commission, 2013). The package consisted of 5 pieces of 

legislation, of which 3 concerned the seed market of the European Union (EU), namely the legislation 

bodies on “plant reproductive material” (including seeds), on plant health and on official controls. 

Critique of the legislation proposals by civil society focused on the first piece of legislation, explicitly 

addressing plant variety legislation and the seed market (Anonymous, 2013). While some actors in 

civil society warned about the potentially negative impacts of control mechanisms and plant health 

regulations for crop diversity, these pieces of legislation were rarely more than mentioned in debates 

and position papers of civil society organizations. As the legislative package entered technical 

negotiations between the European Parliament and the Council, the European Commission withdrew 

the proposal on plant reproductive organisms. Among the remaining pieces of legislation in the 

package, the one on plant health has just been voted 2  on in second reading in the European 

Parliament as I am writing this introduction. The new plant health legislation is to enter into force in 

2017 and become applicable within three years. European plant health legislation is thus currently 

undergoing change. 

The current plant health legislation of the EU consists of Council Directive 2000/29/EC of 8 May 2000 

on protective measures against the introduction into the Community of organisms harmful to plants or 

plant products and against their spread within the Community. It lists organisms harmful to plants or 

plant products which are regulated by protective measures (so called "quarantine pests"). Protective 

                                                      
2 voted on November 25th, 2016 
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measures aim at preventing the introduction and spread of concerned pests in the EU: seeds and 

other plant propagation organs (tubers, plants) are tested for the presence of concerned pests and 

infected lots are banned from the EU market. The risk that such non-tariff measures for plant 

protection may constitute unjustified barriers to international trade is widely recognised and addressed 

by the Agreement on the Application of Sanitary and Phytosanitary measures (SPS) of the World 

Trade Organization (WTO) (MacLeod et al., 2010). However, the risk that such measures may 

represent market barriers for small-scale seed producers, seed savers' associations and crop 

biodiversity is seldom discussed within scientific spheres and among governing bodies. 

4 Common bean diversity and bean diseases in Europe 

This PhD research was triggered by increasing awareness that artisanal seed companies among the 

Croqueurs felt caught in the crossfire between the management of vegetable crop diversity in their 

fields on one hand and the legal requirements of European plant health regulations on the other. In 

particular, tensions became apparent regarding the plant health management of common bean 

(Phaseolus vulgaris L.). 

Common bean is an important item in the seed catalogues of the Croqueurs members in terms of 

turnover and number of varieties. For example, it is the crop species that represented the second 

largest proportion of turnover for the member company Germinance in 2013, after the cabbages 

(Brassica oleracea) (Delmond, personal communication). Up to 31 varieties are proposed in the 2016 

seed catalogues for Croqueurs members. This reflects the large number of common bean types and 

varieties developed on the Old Continent since the crop was introduced from the Americas by 

Columbus. Southern Europe is regarded as secondary centre of diversity for common bean (De Ron 

et al., 2010). The recombination between the Mesoamerican and Andean gene pools upon their arrival 

in Europe is likely to have created novel genetic variation (Gioia et al., 2013) before the crop spread 

across the continent (Gepts et al., 1988; Zewen, 1997; Maras et al., 2013). In general, common bean 

is a highly variable species and uses are diverse. Growth types range from determinate bush beans to 

indeterminate climbing ones. According to consumer preferences and bean varieties, either the pods 

are harvested as green beans or the mature seeds are harvested as dry beans. In Western Europe, 

dry beans were historically considered as "meat for the poor" and their consumption has dropped over 

the last decades (1.3 kg per capita in 2013)3. In this geographic region green beans, i.e. the fresh 

pods, represent the main mode of consumption. To meet the demand for labour-intensive fine beans 

all year around, the EU imported4 196.700 t of fresh green bean in 2015, mainly from Morocco (64% of 

imports), Kenya (16%), Egypt (10%) and Senegal (6%). Nevertheless, green beans remain an 

important crop in the EU. France alone cultivated 26 830 ha in 2014, i.e. 28% of the surface harvested 

in the EU (97 280 ha), mainly for the canning and freezing industry (Unilet, 2015). Given a decreasing 
                                                      
3  Consumption per capita was approximated by the produce available for consumption, calculated from  
FAOSTAT data (http://faostat3.fao.org/home/E) as follows:  (Quantity produced - Quantity exported + Quantity 
imported) / Population 
4  Data on the imports of green beans into the EU retrieved from EuroStat: 
http://ec.europa.eu/eurostat/web/international-trade/data/database 
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demand for European dry beans on one hand and the development of green bean varieties adapted to 

growing conditions in Africa (Observatoire des marchés du Cirad, 2009) and for large-scale 

mechanized agriculture in Europe (Gry, 1995) on the other, traditional European bean diversity is at 

stake. For example, 64% of green bean surfaces in France were sown with varieties owned by three 

seed companies in 2014 (Unilet, 2015). Nevertheless, the proportion of home-grown produce in 

European plates remains considerable for fresh green beans 5 . The demand of organic market 

gardeners engaged in local food systems for crop diversity is also increasing (Kastler, 2006; Bocci and 

Chable, 2009; Brouwer et al., 2015). Home gardens and local organic food systems thus harbour 

potential for the use and maintenance of common bean diversity. 

In the aim of meeting this demand for common bean diversity, artisanal seed companies (along with 

numerous non-profit seed-saver organisations) multiply seed of varieties from the public domain and 

provide it to home and market gardeners. Plant diseases sometimes intervene in their endeavour to 

cultivate and provide healthy bean plants. Several diseases affect bean production worldwide (Hall, 

2005; Singh and Schwartz, 2010). Among the most important are the fungal diseases anthracnose 

(Colletotrichum lindemuthianum) and rust (Uromyces appendiculatus), as well as bean common 

mosaic virus/bean common necrotic mosaic virus (BCMV/BCMNV), a potyvirus. The most important 

bacterial bean diseases cause bacterial blights (Rodiño et al., 2009). Common bacterial blight (CBB) is 

caused by the two species Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. 

fuscans (Xap/Xff). Halo bacterial blight (HBB) caused by Pseudomonas syringae pv. phaseolicola. 

Except for rust, all of these diseases are seed-borne; they are passed on from one plant generation to 

the next via the seed. This implies that that pathogens carried by seeds affect commercial seed 

quality, as they can represent a major source of inoculum in bean fields. This phytosanitary aspect of 

seed quality is also called seed health (ISTA Online, 2016). A common recommendation for the control 

of seed-borne diseases is to maintain disease-free seed stocks (Organic Seed Alliance, 2007). For 

common bean, the EU regulates CBB as a regulated pest in the entire EU zone. Specific protective 

measures ban common bean seed carrying the bacteria causing CBB from the EU seed market. 

These protective measures are contested by artisanal seed companies among the Croqueurs de 

Carottes.  

5 Case study, hypothesis, and research questions 

Croqueurs members argue that the protective measures against CBB are not compatible with their 

management of bean diversity and governance of bean health. The underlying hypothesis of this PhD 

research is that tensions between the protective measures and the Croqueurs' practices reveal the 

Croqueurs' concept of plant health management. Hence, the Croqueurs' governance of bean health is 

approached as a case study with the scientific aim of elucidating how they articulate management of 

                                                      
5  As is noted in the "Methods and Standards" section of the FaoStat homepage 
(http://faostat3.fao.org/mes/methodology_list/E): "...Production from family and other small gardens not included 
in current statistical surveys constitutes quite an important part of the estimated total production in certain 
countries: for example, Austria, France, Germany, Italy and the United States." 
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crop diversity and governance of plant health. By pushing this on the research agenda, the Croqueurs 

pursue the aim of showing the incompatibility between the current EU plant health regulation and their 

practices. These aims point to the dual scope of this research, for science and for society beyond the 

scientific arena. For science, this PhD research implies taking a peek outside the paradigm of plant 

disease eradication and taking into account an approach which consists of "living with" plant diseases. 

Beyond science, the PhD research questions current EU plant health regulations and their role for 

crop diversity.  

In the framework of the case study, common bean is considered an appropriate model crop to study 

the Croqueurs' management of plant health for three reasons: 

(i) Common bean is an emblematic crop among European crop diversity. Thus, it is 

representative of the stakes of maintaining this diversity on farms. 

(ii) Common bean is prone to several seed-borne diseases which can challenge seed production 

and consequently the maintenance of bean diversity on farms. 

(iii) One of its seed-borne diseases, CBB, figures among the EU list of regulated pests. Common 

bean seed is therefore subject to EU plant health regulations, making tensions between official 

plant health regulations and the Croqueurs' plant health management practices tangible.   

In addition, the association Croqueurs de Carottes is considered as a spokesperson for a much wider 

network of actors concerned with crop diversity and farmers’ seed autonomy, as it figures among the 

80 collectives composing RSP. By contesting protective measures on CBB, the Croqueurs de Carottes 

emerge as a spokesperson for the wider network RSP facing plant health regulations.  

The following research questions are addressed through the case study.   

1. Which are the specificities of bean health management practiced by artisanal seed 

companies among the association Croqueurs de Carottes? On which interactions 

between bean plants and their growing environments is this plant health management 

based? 

Founded on these two questions, ecological interactions between bean plants and their growing 

environments are further elucidated.  

2. What do analyses of some plant-environment interactions reveal of the ecological base 

of the Croqueurs' bean health management? 

The questions are approached from an interdisciplinary, agroecological perspective. The research 

combines methods taken from the disciplinary fields of sociology and crop ecology. It takes an 

agroecological stance as described by the Belgian interdisciplinary group of researchers in 

agroecology GIRAF (Stassart et al., 2012). These authors base agroecology as a scientific practice on 

a shift from the techno-economical (productivity) to the socio-technical domain. Agroecological 

research seeks to support the organisation of food systems in order "to face the diverse and multiple 
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stakes and objectives concerning food supply, environment and equity". It is by definition an 

interdisciplinary practice and implies the redefinition of scientific and social boundaries. 

6 Chapter set-up 

A brief introduction to the subject has been given in this first chapter, including hints at relevant 

scientific and legislative references. It is followed by a chapter on the establishment and development 

of the research device during the research process. By specifying the socio-technical framing of the 

research, Chapter II renders the conditions under which knowledge was created explicit. The resulting 

research device combines methods from the disciplinary fields of sociology and agronomy. Chapter III 

then discusses results of the social science approach in the objective of specifying the Croqueurs' 

approach to bean health and how this approach is linked to interactions between bean plants and their 

growing environments. The following chapters report and discuss results of the agronomical approach 

in the objective of revealing some aspects of the ecological base of the Croqueurs' bean health 

management. Chapter IV explicates the general set-up of field experiments. In the four following 

chapters, Chapters V to VIII, the question of ecological interactions between bean plants and their 

growing environment is broken down into sub-questions: Chapter V addresses the plant health of 

bean plants observed in the field trials. Chapter VI focuses on interactions of bean plants with 

beneficial organisms in the soil, mycorrhiza and Rhizobia in particular. Chapter VII regards the 

microbial communities associated with common bean seeds. Chapter VIII addresses the phenotypic 

and genetic adaptation of bean populations to local growing environments. Finally, Chapter IX 

proposes a general discussion of the results presented in the thesis. Figure 1.1 gives an overview of 

the thesis set-up and may serve for orientation as the reader navigates between chapters. 
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Chapter 2: Socio-technical framing of the research device 

The doctoral research project was triggered by a debate on common bean seed health involving an 

association of small organic seed companies, Croqueurs de Carottes. Common bacterial blight (CBB), 

a bacterial disease of common bean, plays an important role in the debate. CBB is a regulated 

"quarantine pest" in the European Union. As a consequence of the debate, this thesis takes an 

interdisciplinary approach to elucidate plant health management in artisanal seed companies. Before 

going into the research results in the following chapters, this chapter questions the device and process 

which produced the data: Starting from the aforesaid debate, how did the research project and its 

research device emerge? I will trace its evolution. Although it takes place in the overall framework of a 

collective experience of participatory research about on-farm breeding and seed production, the 

project starts out with a focus on the ecological interactions between bean plants and their growing 

environments. During the research process, it evolves to question the rationale behind the plant health 

management of the Croqueurs de Carottes.  

Any research directed at humans and animals can be considered "intervention" research in that it 

intervenes in the living conditions of these beings and transforms them. To this idea put forward by 

Thierry and Cerf (2009), I may add that the same is true for research directed at plants, as well as 

plant breeding - as also remarked, in other terms, by a former INRA chairman (Hervieu, 2004). 

Because these living beings are not indifferent to the research device "applied" to them as objects of 

research, the researcher is in the obligation of recognising that the research device is an artifice. The 

link between the research device and the "fact" that is to be accounted for is artificial. The knowledge 

created is not independent of the conditions in which it was created. Creating universal knowledge 

thus becomes impossible. By making the link between the research device and the construed "fact" 

explicit, the researcher's method is defined (Thiery and Cerf, 2009). Recognising the research device 

as an artifice is also the first of four principles of method carved out of an intervention research 

experience by Stassart et al. (2011). In this chapter, I propose a socio-technical framing of the 

research device employed. Thereby, links between the research device, its effects and the object of 

research are made explicit. By the same move, I will discuss how the four principles of method 

(Stassart et al., 2011) underlie the research process. 

To address the evolution of the research device during the research process, I will discuss key 

moments which caused the researcher to hesitate and the research device to shift. These are 

moments where the device was put to the test and translated in the sense of actor-network theory 

(ANT), also called sociology of translation (Callon, 1986a). I will study the research device of the PhD 

research as an actor-network. Rather than taking the research device and its results as a stabilised 

given, ANT proposes to unfold the associations that compose the research device. One particularity of 
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ANT is to account for human and non-human entities alike. I shall trace how human and non-human 

actants associate to constitute the research device as a network. In the network, each actant may 

intervene as a mediator. As opposed to mere intermediaries, mediators "transform, translate, distort, 

and modify the meaning or the elements they are supposed to carry" (Latour, 2005). In other words, 

they translate meanings or elements according to their own understanding of what is relevant or 

problematic. The translations of an object by different actants can concur to form a common 

problematisation. They are then linked by this problematisation. For instance, a collaborative research 

project can be established only if partners with concurrent translations formulate a common 

problematisation (Audoux and Gillet, 2011). In the same way, non-human elements of the network 

must also concord with their translation. When translations of actants of a network do not concur, the 

network is put to the test by competing translations (Latour, 2007). Competing translations have also 

been called "anti-programs" to stress the obstacle they constitute for other translations of an object, 

i.e. for the "program" of other actants. We will see that keeping the research network together requires 

continuous effort from the researcher, not merely to maintain it, but to adjust it again and again. Every 

time the network is put to the test, the researcher hesitates and the research device is transformed. 

When the research project risks to be hampered by competing translations, the network is rearranged, 

either by externalising the competing translation or by integrating it in a renewed problematisation. In 

any case, the network is not left unchanged. When the network is put to the test, the object of research 

and the device established to study the object may shift.  

In the first section, I will retrace how the object of research emerged and how the PhD research project 

was set-up. The actors contributing to the research will be described. In the second section, I will show 

how seed growers, bacteria and bean plants shape the research device by acting in unexpected ways. 

These happenings make space for a complementary social science approach in the research device. 

Recalcitrance as the basis of the second principle of method will be of some importance here. The 

third section will address the socio-technical framing of field experiments. I will show how getting a 

grasp on the object of research in the field experiments happens progressively. This is also where the 

third and fourth principles of method come into play, namely the absence of guarantee on results and 

the confidence that the device will produce meaningful scientific results. Finally, the fourth section, 

coming back on the first principle, acknowledges the artificial nature of the field experiment by 

questioning its link with the concern of the research partners.  

   

  



 

29 

1 A hot debate on the seed health of common bean 

In October 2009, in a conference room in Marseille, in the South of France, a group of French farmers 

are hung to their headsets. They are trying not to miss the French translation of the presentation a 

Dutch scientist is giving in English. The Dutch scientist is a specialist in seed technology. He is 

presenting the final results on one aspect of Farm Seed Opportunities (FSO), a European research 

project in which they have all participated. The overall project focuses on seed regulations in the aim 

of investigating the status of heterogeneous crop varieties and the opportunities of on-farm breeding 

and seed production in Europe. The project encompasses several crop species and includes old 

varieties, landraces6 and new crop populations bred on farm. Within one work package of the project, 

the Dutch seed technologist is in charge of seed quality analyses. He has performed seed tests on 

seed lots produced by participating seed growers over three years. Based on the seed tests, he 

concludes that "quality consciousness of farmers is limited" and "knowledge of processing is almost 

non-existent". The bacterial agent causing Common Bacterial Blight (CBB) on common bean - a 

"quarantine" pest - was among the pathogens detected on bean seeds. Indeed, CBB is a seed-borne 

disease that is carried from one plant generation to the next via the seed. The presence of CBB 

agents on bean seed thus affects what seed technologists call "seed health". It is one aspect of seed 

quality. Concerning common bean in particular, he concludes that "current EU germination standards 

can generally not [be met] for beans" and "seed health [...] is poor" (van der Burg, 2009). The seed 

growers and some of the researchers in the audience don't agree with the Dutch seed technologist's 

conclusions. A hot debate begins here and his not settled before the end of the FSO project.  

The term hot situation is used according to the definition of Michel Callon (1999), who also termed 

such situations hybrid fora. In such hot situations, the disaccord concerns all aspects of a problem. 

Actors are unable to agree upon what constitutes causes or effects of the problem, nor on the 

knowledge necessary to solve it. Even a common definition of the problem cannot be agreed upon. In 

such hot debates, the involved actors propose visions for the future that are incompatible. Facts and 

values intertwine and become indistinguishable. The debate on bean seed quality appears as such a 

hot situation; the participants don't agree with the definition of bean seed health that the seed 

technologist considers a given. The debate extends beyond the conference and even beyond the FSO 

project, as we will see.  

1.1 A seed growers' reply 

One of the seed growers present at the conference forms part of a small-scale organic seed company 

named BiauGerme. It is located in the region of Aquitaine, in the South-West of France. BiauGerme, 

which he directs with ten other seed growers, is specialised in the production of seeds of old and 

                                                      
6 "Old varieties" are crop cultivars that have undergone formal plant breeding and that may have been registered 
on formal variety lists. "Landraces" are cultivars that have never undergone formal plant breeding (Villa et al., 
2005). 
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heirloom vegetable varieties7 (variétés anciennes in French). By doing so, the company pursues the 

stated aim of contributing to the safeguard of crop biodiversity (Biau Germe, 2011). After the 

conference, this seed grower addresses the coordinator of the FSO project with a letter. On behalf of 

his seed company, he describes seed growers' experiences with bean health. According to their 

experience, it is erroneous to try eradicating CBB agents. For some susceptible old bean varieties 

such as 'Rognon de Coq', blight symptoms are even perceived as part of the varieties' "typical traits". 

As a conclusion, he suggests to allow seed growers to live with the bacteria in a "dynamic equilibrium". 

 

The hot debate is not settled before the end of the FSO project. In the end, both opinions are 

represented in the final document of FSO dealing with seed quality. The Dutch seed technologist's 

opinion takes the lead in the "seed quality recommendations" produced by the research project. The 

                                                      
7 I translate "variété ancienne", which would literally mean "ancient varieties" as "old and heirloom varieties". 
Indeed the term "ancient varieties" is not common in English. The two terms "old" and "heirloom" are used to 
reflect their age and traditional aspect. 

“Our organization is followed by the French service of plant protection (“Protection des Végétaux”) and is 
submitted through an agreement, to the examination of parasites inside seed batches and to the visit of the 
fields in which the beans are multiplied. We usually have very few problems with the viruses. Exceptionally, on 
susceptible varieties and under some climatic conditions, we may observe some mosaic type symptoms. 

More generally, we are confronted to an endemic disease, the common bacterial blight caused by one kind of 
Xanthomonas bacteria which has become a quarantine parasite for some years, at the European level. It can 
be noted that some ancient varieties are very susceptible to the bacteria. And in some cases, this susceptibility 
is also part of their “typical” traits. For example, an expert of the GEVES (Groupe d’Etudes des Variétés et 
Semences), in charge in France of the registration test for the varieties, declared that the flageolet ‘Rognon du 
coq’, without the bacterial blight, is not a ‘Rognon du coq’! 

In 2008, our seed company, developed an area to produce beans without bacterial blight. In this area, no beans 
has been cultivated for 10 years and we will follow several kinds of cares and management practices such as 
those realised by other seed companies, according to an official protocol (established by the FNAMS in 
France). 

To be sure not to introduce the bacteria, we have bought new seed from seed companies which provide 
sanitary passport for these seed sample used as “base seed”. To check for the absence of bacteria, we asked 
for a control analysis by an official French laboratory: 3 of 8 samples were positive. From our own samples, the 
results were also inconsistent with regards to our observations. 

Based on our experience, we concluded that it is very difficult to get reliable tests of the disease presence and 
to produce healthy seed without bacteria, even for seed companies that have taken all the specific means to 
protect the crop. Hand-craft and industrial seed producers have to live with the bacteria. 

Nowadays, to my knowledge, we have no classic means to fight against the bacteria. With several organic seed 
producers, we are improving the thermotherapy, which allows a complete treatment and which respects the 
standards of organic agriculture, but may alter the germination rate. Nevertheless, by this way, we are able to 
diminish the presence of the bacteria even to suppress it when the charge is light. 

We wish to underline that, in the past, before the systematic controls, we were used to live with the bacteria. 
During many years, even under a hard bacteria incidence, we used to select the healthiest plants for seed 
yielding. Our customers did never complain about the sanitary quality of our seed. The common blight is 
endemic in France, and except very unfavourable climatic conditions, the presence of the bacteria did not 
prevent from very good yields. To my opinion, the eradication of the bacteria is not the good strategy general, 
the dynamic equilibrium of common parasites which, most often, are only slightly virulent, may be more 
profitable to the whole agro-ecosystem.” 

(Letter addressed to the coordinator of the FSO project in 2009 on behalf of BiauGerme, translated from French 
and published in FSO deliverable 3.1: seed quality recommendations) 
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summary of the document states that bean seed of good quality can only be produced if seed growers 

get trained in disease detection and strengthen agronomic approaches.  

"It can be concluded that farmers in general can produce seed of reasonable to good quality fit for 
sowing, certainly for wheat, maize and spinach. Due to the nature of beans, which are notorious for 
their vulnerability to diseases, good seed can only be produced if farmers specialise on disease 
detection and use agronomic approaches to minimize the impact on quality." (van der Burg et al., 2010) 

However, this conclusion is complemented by the other opinion on bean seed health at the end of the 

document. The letter addressed on behalf of BiauGerme is published in the "seed quality 

recommendations" as evidence of another approach, described as "living with" CBB. 

The coordinator of the FSO project and future supervisor of this PhD thesis, Véronique Chable, had 

found it useful to argue for the inclusion of BiauGerme's point of view in the final document. She is 

senior agronomist at the French National Institute for Agricultural Research (INRA). The FSO project is 

not the first research experience she makes with small-scale organic seed companies such as 

BiauGerme. From past experience, she perceives that the opinion expressed by the seed company is 

not an isolated one. Indeed, the seed grower who wrote the letter is also an active member of an 

association of small-scale organic seed companies, called Croqueurs de Carottes, literally "carrot 

munchers". From now on, they will be mentioned as “Croqueurs” (simply the "munchers"). Thus, the 

FSO coordinator, Véronique Chable, had argued that the point of view on bean seed health expressed 

by the seed grower must be accounted for in the final FSO document.  

In the following, I will show that she pursues the topic beyond the FSO project by setting up a PhD 

research project in the framework of "SOLIBAM", the follow-up project of FSO. However, I shall first 

describe the Croqueurs in some more detail. As mentioned above, this association of seed companies 

counts the BiauGerme among its members and appears to share its view on bean seed health. The 

Croqueurs association will become the case studied in this PhD thesis. I thus propose to have a closer 

look at the Croqueurs association, which qualifies its members as "artisanal" seed companies. 

1.2 The association Croqueurs de Carottes 

The Croqueurs association was founded in 2005 (Semailles, 2016) and today comprises 8 small-scale 

seed companies, of which 6 are located in France and one each in Belgium and Spain. All produce 

and market exclusively organically produced seed of open-pollinated vegetable varieties from the 

public domain. Hence, the varieties they market are reproducible: open-pollination is the biological 

component to reproducible varieties, because they breed true to type, as opposed to F1 hybrid 

varieties. The public domain ensures the legal reproducibility of varieties, because they are not 

protected by any type of intellectual property right. The Croqueurs' stated aims are to contribute to the 

safeguard of old and heirloom varieties by identifying varieties in danger of genetic erosion, assessing 

and maintaining them and registering or re-registering the most promising varieties. A second stated 

aim is to favour the exchange of know-how and training on the maintenance of such varieties 

(Semailles, 2016). These aims also imply defending the right to produce and market non-registered 

varieties, as well as asserting and advocating for the practices of artisanal seed companies. A 
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geographical overview of the seed companies forming the Croqueurs association is given in Figure 

2.1. 

By providing information on the legal framework concerning seeds and federating concerned 

associations, Réseau Semences Paysannes (RSP) supports the Croqueurs in their endeavour to 

position artisanal seed practices facing seed laws and seed inspection. As mentioned in the General 

Introduction (Chapter I) RSP is a national umbrella organisation of more than 80 associations active in 

the promotion and defence of crop biodiversity and related know-how, among which are the 

Croqueurs. RSP coins the term of peasant seed, thereby advocating the collective maintenance of 

crop diversity by farmers and reclaiming farmers' seed autonomy (Demeulenaere, 2014). Within RSP, 

the Croqueurs participate in a thematic group on vegetables ("groupe potagères"). Beyond seed 

production, this group comprises other actors concerned with vegetable seeds, in particular home and 

market gardeners. This collaboration of the Croqueurs with seed users in the RSP thematic group 

illustrates that they regard their customers as active players and partners in the maintenance of crop 

diversity. Beyond organic farming practices, the qualification of their activity as artisanal is of great 

importance, as is the qualification of their seed as peasant seed. Much more than the mere production 

of organic seed, these qualifications point to the Croqueurs' objective of contributing to the 

maintenance of crop diversity and reclaiming seed autonomy with their customers. In addition, the 

qualification of their activity as artisanal points to practices which can also be described as "handcraft". 

The term artisanal implies a particular form of know-how and a control of the entire process from seed 

production to marketing. It may also imply a limitation to company size and amounts of seed produced. 

As one seed artisan puts it: rather than having his company grow, he would prefer seeing other 

artisanal seed companies created. In any case, the seed companies among the Croqueurs are all 

micro-enterprises according to the criteria employed by the European Commission (European Union, 

2016): none of the Croqueurs members has more than 5 employees. 

The individual seed companies among the Croqueurs members differ somewhat in their translations of 

the qualifications "artisanal" and "peasant" into their individual practices and organisation schemes. 

For instance, some - like BiauGerme and Graines del Pais - are entirely led and managed by seed-

growing farmers, whereas others - such as Germinance - are directed and managed by persons not 

directly involved in seed growing. Intermediary organisational schemes also exist - like Semailles- in 

which a few seed growers are in charge of processing and marketing the seed produced by a wider 

network of seed growers. In the following, actors will be named according to the practice of interest. 

The term "seed grower" will designate a person cultivating the seed crop and harvesting the seed. The 

term "seed artisan" will refer to a person in charge of processing and marketing seed, as well as 

managing the seed company. One and the same individual may be designated by both terms 

according to the role or practice of interest. 
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1.3 Establishing the research device 

Above, we have seen how Véronique Chable, coordinator of the FSO project, actively participates in 

the hot debate on bean seed health. She contributes to making a place for the seed growers' point of 

view in the "seed quality recommendations" produced by the project (van der Burg et al., 2010). Little 

later, she links with the Croqueurs to study their understanding of bean seed health in the framework 

of a follow-up project, SOLIBAM8. Véronique considers that the debates on bean seed health at the 

final FSO conference in Marseille arise from opposing concepts of plant health. Based on work of the 

founders of organic agriculture such as Albert Howard (1943), it appears to her that many measures 

set down in plant health regulations are incoherent with founding principles of organic agriculture. She 

considers recruiting a PhD student to work on the topic of bean health in the aim of embedding it in a 

broader reflection on plant health concepts. 

With a little agronomic research experience on common bean9, I enter the stage as potential PhD 

candidate the following year. We decide to set up a PhD project and apply for PhD funding by the 

Luxembourgish National Research Fund (FNR). Figure 2.2 gives an overview of the institutional 

framework of the resulting PhD project. It clearly shows how the stakes of the PhD project are built 

amidst the interplay between different actors: EU regulation - RSP/Croqueurs - EU research funding 

agency - EU research network - National regulation bodies.  

 

  

                                                      
8 Strategies for Organic and Low-Input Breeding And Management; http://www.solibam.eu 
9 and a strong ambition of working in the field of crop diversity and on-farm plant breeding 
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setting the focus on how they define plant health. This is reflected in the following extract from the PhD 

grant application. 

The overall aim of the PhD project is (i) to contribute to the understanding of the functional 
relationships between crop performance, plant health and the environment in crop production 
ecosystems and (ii) to determine the most relevant participatory selection procedure (including 
selection criteria) for on-farm breeding when taking the needs of stakeholders, seed regulations and 
the conservation of landraces into account. (Klaedtke, 2012: PhD grant application) 

In the grant application, a participatory research project is devised, aimed at understanding, facilitating 

and informing on-farm selection for bean health. Several of the Croqueurs' bean varieties are to be 

cultivated in experimental plots on participating farms. Seed and vegetable growers are to be invited to 

observe and possibly select in the bean crop. The underlying hypothesis is that Croqueurs members 

and their bean plants are able to live with bean diseases by implicitly favouring genetic disease control 

and biocontrol mechanisms by their selection practices. This hypothesis focuses on ecological 

interactions in seed growers' fields. The objective is to link farmers' bean selection practices with 

genetic diversity within bean populations, their adaptation to local growing conditions and their health 

status. In this objective, diversity present in bean populations and their evolution in different growing 

environments shall be determined by genetic analyses. In addition, beneficial plant-associated 

microorganisms are to be assessed to demonstrate their ability to co-evolve with bean populations in 

different growing environments and reduce the impact of bean diseases.  

In a given growing environment, the evolution and performance of bean populations are hypothesised 

to relate to seed growers' "decision rules". Seed growers are to participate in the experiment by 

observing and possibly selecting bean plants according to their "needs", while at the same time 

"expressing" and discussing needs and decision rules, as reflected from the following extract of the 

grant application. 

In a participatory and experiential process, the decision rules followed by the producers participating in 
the trials to meet constraints are explored in a qualitative manner. Their rational and breeding methods 
are observed, discussed and put in relation with the evolution and performance of the populations. [...] 
These participatory processes will allow exploring the coherence and dissonance between farmers’ 
evaluations and the experimental approach that we develop. It could also give some indication about 
the coherence of current seed regulations with the needs expressed by producers. (Klaedtke, 2012: 
PhD grant application) 

In the objective of accounting for "the needs of stakeholders", a co-supervision of the PhD research by 

senior social scientist Pierre M. Stassart is been arranged for. He is a rural sociologist at the University 

of Liège in Belgium. With him, I hope to learn how to analyse the seed growers' "decision rules" and 

"needs", which are expected to be directly and solely related to ecological interactions and 

agronomical results. In other words, I consider that the plant health management of the Croqueurs' 

emanates directly from the bean populations they cultivate. I expect the field trials to operate as 

platforms for a " participatory and experiential process", where farmers will join me in the observation 

of the experimental bean populations.  
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can respond to any question posed by a scientist, even the most foolish one, out of politeness, 

submissiveness, curiosity or interest. In addition, social scientists regularly interpret these responses 

in one way or another without giving their object of research the opportunity to object to their 

interpretation (Stengers and Bensaude-Vincent, 2003). To a lesser extent, the same is true for animals 

(Thiery and Cerf, 2009) and any living being, as their behaviour is not independent of living conditions. 

Thus, to create the right artifice the social and the natural sciences must enable their objects of 

research to question and reject the research. Stengers and Bensaude-Vincent (2003) summarise this 

idea: "that those to whom a question is addressed shall have the ability to put the pertinence of that 

question at risk."10 

By challenging the researchers' questions, the subjects make the research question evolve. 

Recalcitrance is not to be confused with defection or resistance. It is rather a form of involvement, or 

participation, in redefining the questions to ask (Stassart et al., 2011). The defection of actants, too, 

can cause translations of the research device. This happens when an actant does not take part in the 

problematisation and defects from a role in the network (Callon and Law, 1989). As a network, the 

research project then has to reorganise, either to realign its problematisation on that of the actant in 

question, or to make do without that actant. In this section, the research project is transformed both by 

events of recalcitrance and defection, as seed growers and bean plants do not act as expected in a 

research project that has been laid out for them.  

2.1 Seed growers and bean plants put the research device to the test 

In 2012, the field trials are sown on four farms and are ready for seed growers to participate in on-farm 

selection. Four bean varieties provided by Croqueurs members are grown in experimental sub-plots in 

threefold replication. However, within two years, two out of four experimental sites are challenged by 

what might be called technical difficulties, but what we will define as defection in the terms of ANT. 

Indeed, on-farm trials in Brittany and Luxembourg are located near the research institutions to which I 

am affiliated (INRA Rennes and ULg campus Arlon). Following up on crop management, field 

observations, seed storage and all activities which constitute a field trial is rendered easily feasible by 

my regular presence on site. However, the other two on-farm trials are located at a greater 

geographical distance further South, in Aquitaine and Umbria (Italy). Given that I wouldn't be present 

on these field sites on a regular basis, reduced protocols have been set up for field observations in 

these locations. This also implies a stronger reliance on the local seed growers hosting the trials to 

manage and observe the experimental plots. However, the plan doesn't work out. The seed grower in 

Aquitaine misplaces experimental seed lots he is storing over winter. They are lost. In Umbria, the trial 

is eaten by a neighbour's geese seeking something green to graze in the hot and dry summer months 

of the first year of the experiment. The second year, they are tasted by another neighbour's goats.  

What happened? Once the autumn work peak of seed harvesting and cleaning had passed, the seed 

grower in Aquitaine couldn't remember what had become of the small experimental seed lots he had 

                                                      
10 "La première règle de la méthode scientifique serait alors : que ceux à qui une question s'adresse aient la 
capacité de mettre en risque la pertinence de cette question." 



 

39 

stored in addition to his regular ones. In Umbria, the craving of geese and goats for fresh greens 

outweighed the arrangements for the experiment. In the words of Latour (2007), competing 

translations overtook the field trials. The seed grower in Aquitaine did not operate as a mere 

intermediary between myself and the field trial. He is a mediator, acting upon the field trials according 

to the translation he makes of it. The field trial is regarded as secondary by the seed grower, 

something to do after his livelihood has been ensured and his regular work accomplished. Not so 

surprising, then, that five small experimental seed lots may get lost in the brisk activity of a work peak. 

In Umbria, even geese and goats imposed their own translation of fresh green bean plants upon the 

experimentation. Whereas strong links had been maintained with the field trials in Brittany and 

Luxembourg by my regular presence, I was not able to equip the Southern field trials with solid enough 

links. Other competing translations thus interfered, causing seed growers and bean plants to defect 

from enrolment in the research device.   

Even on the farms located further North that I am able to visit regularly, the field trials designed by the 

researcher fail to awake the interest of the seed growers. The growers don't show up on the trial plots 

to share their breeding approach and express their needs. When encouraged to select for plant health 

in the experimental bean plots, they each have different reasons to decline the invitation: one grower 

replies that he doesn't care for diseases and prefers to select for maximum diversity in grain colours 

and forms. Another one explains that he never consciously selects common bean for health in the 

fields. He prefers to operate at the seed stage and shows me how he sorts, and thereby selects, bean 

seed after harvest. A third seed grower remarks that one cannot select bean plants on experimental 

subplots of only 5m2. He needs a life-sized bean seed crop to select in. Although the seed growers 

have different reasons for "not participating", they all point to the same issue: "You are not asking the 

right question, the research device is not right!" 

It is the seed grower from Aquitaine, who had acted as a spokesperson for the Croqueurs in the hot 

debate, who explains where the problem lies. Although he has misplaced the experimental seed lots 

from his farm, he is not willing to stop there. The following citation is derived from a later interview.  

"... that's why I reacted very quickly to your experimentations. It's because I had already gone through it 
once and in reality I aspire to doing another form of experimentation with you, as we are now starting 
with 'Roi des Belges'. [...] In fact, we will see it ['Roi des Belges'] in the fields, you see, already, I have 
an entire bed of 'Roi des Belges', I will keep it, I will harvest it, and from the second year on, I will have 
more of it. I will see how it behaves at my farm etcetera. And I will include it in my beans. That's when 
we will be able to start... comparing - and more in my own reality, you see." [CRO-280814c]11 

The seed grower explains that the field experiment comprising replicated subplots of only a few square 

meters does not correspond to his reality. He proposes "another type of experimentation", which would 

integrate better into his reality and into his management of the farm. Instead of observing five bean 

varieties on small experimental subplots, he suggests to introduce one of the varieties on his farm as a 

                                                      
11 "... c'est ça qui a fait que j'ai réagi très vite à tes expérimentations. C'est que je l'avais déjà vécu une fois et 
c'est vrai que j'aspire à faire avec vous une autre forme d'expérimentation, comme on est en train de la démarrer 
avec le 'Roi des Belges'. [...] D'ailleurs, c'est à dire, on le verra dans les champs, tu vois, là, déjà, j'ai toute une 
planche de 'Roi des Belges', je vais la garder, je vais le récolter, et à partir de la deuxième année, j'en aurai plus. 
Je vais voir comment il se comporte chez moi etc. Et je vais l'inclure dans mes haricots. Et c'est là où on va 
commencer à pouvoir le... le comparer - et plus dans ma réalité à moi, tu vois." [MP280814c] 
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variety to reproduce as a regular seed crop. Further, he proposes to multiply the seed until it can be 

cultivated on an entire bed before evaluating the variety on his farm. Not only does the bean variety 

have to adapt to the growing conditions on his farm, but he also needs to become acquainted with the 

new variety. The seed grower chooses the variety 'Roi des Belges' to begin with this other type of 

experimentation.  

The other type of experimentation is pursued on the farm in Aquitaine only. As a consequence of the 

difficulties encountered with neighbouring livestock, the field trials in Umbria are given up. However, 

the requirements of a PhD thesis lead me to maintain the initial experimental set up in Brittany and 

Luxembourg. Indeed, the initial experimental set up is expected to yield sufficient data for a PhD thesis 

within three years, whereas the experimentation proposed by the seed grower in Aquitaine requires 

the development of completely different research methods and more time. In accordance with my PhD 

supervisors, I decide to pursue these field trials in order to ensure results in due time. The field trials 

are no longer considered as a participatory platform on which seed growers will explicate their 

decision rules and needs. They are researcher-led field trials aimed at studying the ecological 

interactions of the Croqueur's bean varieties and their evolution in various environments. 

Nevertheless, the seed grower's proposition for another type of research extends the object of 

research from the mere bean plants to the entire environment the beans grow in, including himself: 

bean health cannot be accounted for by focusing solely on ecological interactions between beans and 

microorganisms. Seed growers' "needs" and "decision rules" are not independent of the bean variety, 

nor are they independent of the bean plot size. Whereas the ecological interactions of the bean plants 

with their growing environment may in part be captured by the experimental sub-plots, the seed 

growers reality of bean crop management and selection cannot. At this point, I realise that the seed 

growers' understanding of bean health is intimately linked with their general crop management. What 

starts out as an intuition based on experiences and exchanges with seed growers is confirmed by the 

encounter with a piece of scientific literature. The paper in question provides me with an example of 

how different approaches to plant health can be treated scientifically. Thereby, it encourages me to 

follow my impression that beyond ecological interactions of bean plants, the Croqueurs' understanding 

of plant health is at stake. Given the importance this scientific paper has had for the reorientation of 

the object of research, I shall briefly present it in the following subsection.  

2.2 Intuition comforted by a bibliographic encounter 

It is the lecture of a review article that comforts my impression that the Croqueurs' governance of bean 

health cannot be explained solely by ecological interactions, but that their approach to plant health 

must be accounted for. The review article is entitled "Concepts of plant health – reviewing and 

challenging the foundations of plant protection" and published in the journal 'Plant Pathology' in 2012. 

Based on philosophical debates in the field of human health, Thomas Döring and co-authors review 

concepts of plant health and position them within several philosophical controversies. By this means, 

contradictory conceptions are highlighted. In addition, the authors discuss how views on plant health 

may relate to mainstream and alternative approaches to plant health management (or plant 

protection). Philosophical controversies on health are combined to construct a framework in which to 
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position any definition of plant health. Table 2.1, drawn from the paper, summarises that framework. 

The authors conclude that a univocal definition of plant health cannot be found among these 

numerous views. They recommend to take plant health as "an instigator of thought and debate rather 

than an objective entity". The construction of situated, procedural definitions of plant health is 

proposed in the form of organised debates on plant health issues. The conceptual framework for such 

a procedural definition consists of a set of questions to debate, as well as the rules for debating. 

Table 2.1: Opposing views on plant health, discussed by Döring et al. (2012) 

Criterion  Thesis  Antithesis 
Values  Naturalist: be objective  Normativist: apply values 
Discipline  Chemical: use molecules Ecological: employ ecological interactions 
Focus  Negative: kill the pathogen  Positive: strengthen the plant 
Method  Reductionist: find rules Holist: integrate 
Interference  Functional: deliver  Resilient: be self-sufficient 
Nature  Materialist: find the mechanism  Vitalist: feel the force 
Ethics  Anthropocentric: fill the basket  Biocentric: support the plant 
Definition  Definitive: be concise  Fuzzy: embrace complexity 
Change  Conventional: maintain the status quo  Alternative: promote change 
Mindset Industrial: maximize production  Traditional: maintain multiple benefits 
Each row can be viewed as an axis or dimension on which the thesis and antithesis positions correspond to the plus and minus side, 
respectively. Any use or definition of plant health can then be mapped in the resulting multidimensional space. Note that although within 
each column positions may have mutual affinity, there is no strict correlation between them. 

In the context of my own research, this review of approaches to plant health operates like a key to 

understand the debate that had taken place in Marseille. The paper does not operate as a frame of 

analysis in the PhD research - the table above is not adopted as a theoretical framework - but rather 

as a precedent, an encouragement to treat approaches to plant health in the scientific arena. The 

lecture of the paper allows me to recognise the debate in Marseille as the confrontation of 

incompatible concepts of plant health, rather than a mere dispute on seed quality norms. The review 

also raises my awareness about preconceptions of the Croqueurs' plant health management that have 

been fostered in the PhD project. Up to now, I considered that understanding the Croqueurs' plant 

health management was about demonstrating how they managed to grow healthy bean plants despite 

pathogen-infected seed. The focus was thus on ecological interactions allowing for suppression of 

diseases: the role of intra-variety genetic diversity as a buffer against plant diseases, bio-control by 

beneficial soil microorganisms, etc. However, the existence of different, controversial approaches to 

plant health implies that plant health may be in the eye of the beholder. The paper thus triggers 

questions, such as: how is the Croqueurs' approach value-laden? What role do the bean plants play in 

the governance of their own health? Can this plant health management be reduced to a set of rules, or 

is a more holistic view necessary? 

Hence, reading Döring et al. encourages me to elucidate the Croqueurs' understanding of bean health 

from a scientific point of view. An additional perspective is integrated into the research project. The 

object of research undergoes a second translation; it comprised only bean populations in field 

environments and now includes the Croqueurs' understanding of bean health. The research device is 
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were conducted with seed growers and managers of two small-scale organic seed companies in 

Germany. However, the institutional situations (e.g. company type, types of customers, legal 

framework of the countries) differ too much from those of the Croqueurs. In other words: the practices 

of the German seed companies do not respond to the same translation as the one of the Croqueurs’. 

Even beyond the geographic differences, the two actor-networks are dissociated networks, although 

there are some limited connections between the two.  

The attempt to make a common analysis of their approaches to plant health leads to nothing more 

than vague generalisations. In order to proceed to an in-depth analysis of one approach to bean 

health, the research project settles on the Croqueurs as singular case study. Nevertheless, we will see 

how data obtained from one of the German seed companies contributes to the thesis. In Chapter III, 

division 1.2.2, it is brought forth as a contrast to the Croqueurs' approach. It thereby allows carving out 

the bean health approach of the Croqueurs more sharply, rather than diluting their approach in other 

approaches which were initially expected to be comparable. The recalcitrance of the German seed 

companies to behave as expected - i.e. as mere variants of the Croqueurs' approach - thus leads to a 

sharper focus on the Croqueurs as case study. 

In summary, this section has traced how seed growers and bean plants forced the research project to 

transform by shifting its focus on a different object of research and redesigning the boundaries of its 

socio-technical object. Having focused on bean plants and their ecological interactions for some time, 

the project realigns on the Croqueurs' governance of plant health. After the initial establishment of the 

PhD project, this constitutes the second translation undergone by the project. This second translation 

is summarised in Figure 2.4. The field experiment comes out altered. The social science approach of 

the project is clarified, as the boundaries of the socio-technical network are redesigned around the 

Croqueurs. The governance of plant health practiced by the Croqueurs emerges as a singular case to 

be studied. However, aligning the field experiments on the renewed object of research - the 

governance of bean health practiced by the Croqueurs - takes some more hesitations. These 

hesitations are described in the next section. 

3 Getting a grasp on bean health in the field experiments 

Although the hot debate at the FSO conference is triggered by the presence of CBB on bean seeds, I 

have indicated in the previous section that the debate may result from opposing approaches to plant 

health in general, beyond CBB.  

In this section, I will discuss the additional steps that are necessary to realign the field experiment on 

this renewed object of research. For the clarity of the analysis, I will come back on the translation 

discussed in the previous section from the perspective of the field trials, because linking with the 

governance of bean health as object of research was made possible by transformations of the field 

experiment. Opening this parenthesis is crucial to understand how the second translation, described in 

the previous section, was materially made possible.   
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The artisanal seed companies among the Croqueurs claim that they aim at "living with" bean diseases. 

However, living with bean diseases is more a matter of "concern" (inquiétude in French) for the 

Croqueurs and the researchers, rather than a clearly pre-defined question (Thiery and Cerf, 2009). At 

the onset of the project, the exact role played by CBB is not clear. There is concern over the 

governance of CBB on both sides in the debate, but the issue at stake is ill defined. This leads us to 

the third and fourth principles of method put forward by Stassart et al. (2011) for partnership-based 

intervention research. The researchers engage with partners without a guarantee of results, that is 

without a guarantee that the co-constructed project will produce the results initially expected - third 

principle. As the researchers and their partners co-evolve, the questions they pose link and the 

research question is carved out, narrowed down. For this to happen, however, "the researchers must 

trust that the research process, over the unpredictable course of its development, will create 

scientifically meaningful resources" (Thiery and Cerf, 2009; Stassart et al., 2011) - fourth principle. To 

enable this trust, the question posed at the start of the project must come in the form of an open 

matter of concern, rather than a predefined demand. Only then can researchers and their partners co-

evolve in a reciprocal relation.  

At the onset of the PhD project, living with bean diseases, with CBB in particular, appeared as such a 

matter of concern. In this section, I will trace how the object of research is progressively carved out in 

the field experiments.  

3.1 CBB, a problematic plant disease 

The field experiments set out to study the ecological base of the Croqueurs' approach of living with 

bean diseases. The co-habitation of seed growers with bean diseases constitutes the object of 

research. To study how seed growers live with plant diseases, the disease agents must be left 

uncontrolled13. Plant diseases are studied as they appear in a given farm environment. Whereas CBB 

is unlikely to occur in the cooler climates of Brittany and Luxembourg, living with bean diseases in the 

warmer climate of Aquitaine may well imply living with CBB.  

However, living with CBB in an on-farm field experiment is not quite the same issue for a researcher 

as living with CBB in his seed crop is for a seed grower. A grower declaring a quarantine pest in one of 

his seed lots can expect to face the consequences for himself (prohibition to market the lot and 

perhaps obligation to start his selection from scratch on another seed lot; uncertainty on the possible 

infection of other bean crops). However, a researcher who detects and declares the disease can 

expect that other people, namely the growers involved in the project, will have to carry the negative 

consequences. Furthermore, the researcher may risk putting the reputation and identity of a group of 

actors at stake. This becomes clear when CBB is detected on bean leaves from Aquitaine in the 

                                                      
13 "Uncontrolled" in an experimental sense. The incidence of disease agents is not controlled to constitute pre-
defined treatment levels. Nevertheless, some disease control takes place in an agronomical sense: the 
experimental plots are managed according to the practices of the hosting seed grower. These crop management 
practices include practices which may reduce disease incidence, e.g. avoiding an oversupply of plant nutrients. 
This is a very different situation from research projects studying specific plant diseases under controlled 
conditions, either in an experimental field or under laboratory conditions. In such research, plants are usually 
inoculated with known strains of the pathogen of interest at a pre-defined moment and under pre-defined 
conditions. 
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framework of the research project. Thanks to the collaboration with an INRA team specialised in 

bacterial plant diseases, I am enabled to test all the experimental seed lots from Brittany, Luxembourg 

and Aquitaine for disease agents of bacterial bean blights. The director of the unit, a senior 

bacteriologist, had accepted to host and train me in the detection and quantification of bacterial blight 

agents. No CBB agents are detected on any of the seed lots over three years of experimentation. 

However, as I test leaves sampled in the field trials, some turn out positive with CBB. Cautioned by the 

senior bacteriologist and with the approval of the local seed grower, I contact the responsible plant 

health inspection body. The official sends me a copy of the Plant Health legislation in which she has 

highlighted all the relevant paragraphs regarding common bean. She comes to the conclusion that 

only commercial bean seeds are concerned by the protective measures against CBB; leaves are not 

of interest for the inspection body. There is nothing to declare. Nevertheless, this experience raises my 

awareness of the risks implied with studying CBB in field experiments. CBB, as a regulated plant 

disease, is a hot potato. I am not ready to bear the responsibility of having to declare a "quarantine" 

pest in a seed grower's field and taking risks for which the seed growers will carry the consequences. 

Nor do I want to be accused for not doing so.  

Doing research on CBB in seed growers' fields is problematic. Confronted with the reality of plant 

health regulations on CBB, I ask myself why the situation hadn’t been anticipated. I realise that it is 

another difficulty that needs to be overcome in order to narrow down the object of research.  

Based on their past experience and collaboration, the Croqueurs and Véronique had formulated an 

open question at the onset of the project. They were driven by a concern over living with plant 

diseases, more than by a pre-defined demand for research. In the aim of addressing this concern, the 

field experiments were set up. These experiments are artifices intended to activate the recalcitrance of 

those who are involved - seed growers, senior bacteriologists and officers of plant health inspection. 

Initiated by such an open question, the research process is unpredictable. By linking up their 

questions and co-evolving, the researchers - my PhD supervisors and I - and the research partners 

progressively flesh out the question, the object of research. Bringing to bear the risks each party feels 

capable of taking, while taking into account institutional positions, forms part of the research process 

(Mougenot, 2011; Stassart et al., 2011). By confronting the risk of detecting CBB in the field 

experiments, a further step was made in defining the question each party is willing to work on. 

Although CBB made the concern of living with plant diseases visible at the onset of the project, it does 

not turn out to be a viable model for the PhD research on this approach to plant health. Confronted 

with the uncertainty of the consequences that studying CBB in farmers’ fields might entail, I turn to 

another model - one that is diplomatic in the sense of Isabelle Stengers (2006). 

As described in subsection 2.1, the field trials located further South (Aquitaine and Umbria), where 

CBB may occur, are either given up or reduced to a single variety. The experimental sites further 

North, in Brittany and Luxembourg, are areas where CBB is not known to occur. However, halo 

bacterial blight (HBB) occurs there, particularly in Luxembourg. HBB is another bacterial blight of 

common bean. During the project's development, different elements concur to take my focus off CBB 
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and on to HBB. In the following two subsections, I will trace how the focus of the field experiments first 

shifted to HBB before realigning on general plant health.  

3.2 HBB, a diplomatic plant disease? 

In the previous subsection, I have discussed that studying CBB in seed growers' fields reveals to be 

problematic. This difficulty is translated in the research device. We will see in this subsection that the 

translation in the field experiment occurs in two steps. First, another bacterial blight, HBB, is taken as 

a diplomatic model for the Croqueurs' management of bean diseases. Once diplomacy has permitted 

settling on a pertinent research device, it is then oriented towards general bean health. 

Halo Bacterial Blight (HBB) is a seed-borne bacterial blight with a similar disease cycle as CBB. It 

causes symptoms which are hardly distinguishable from CBB with the naked eye. In fact, Croqueurs 

members do not distinguish between CBB and HBB in their fields, they generally speak of "blight" 

(graisse in French), as discussed in Chapter III (see Figure 3.1). Common recommendations for 

control of HBB in Europe are the same as for CBB: mainly to use non-contaminated seed, as well as 

resistant varieties if available. A major difference, however, is that HBB occurs in cooler climates. Also, 

unlike CBB, HBB is not concerned by European plant health regulations; it is not a "quarantine pest".  

In the field experiment, HBB agents are detected on seed lots from all three sites, with particularly high 

contamination rates in Luxembourg. Subection 3.1 has shown how it progressively becomes clear that 

studying CBB in the field experiment on seed growers' farms is problematic. As the research project 

develops, three elements concur to suggest HBB as a diplomatic model (Stengers, 2006; Mélard, 

personal communication) to study the Croqueurs' management of bean diseases in the field 

experiment. Firstly, HBB is not a regulated pest, as opposed to CBB. Whereas living with HBB in seed 

crops does not concern Plant Health regulations and seed inspection authorities, living with CBB is not 

tolerated (see also subsection 2.2 of Chapter III). Therefore, studying the interactions of bean plants 

with HBB in on-farm trials does not jeopardise the research project and the seed growers as studying 

CBB would. Secondly, the artisan seed companies among the Croqueurs do not differentiate between 

both bacterial blights - CBB and HBB - in their common bean crops. According to their approach to 

bean health, both blights can be managed the same way. Differentiating between the two diseases is 

made necessary by Plant Health regulations, but not by their own approach to bean health 

management. Thirdly, the field trials located further South, where CBB can occur, are either given up 

(Umbria) or reduced to a single variety (Aquitaine). In the remaining field trials (Aquitaine, Brittany and 

Luxembourg) HBB occurs. HBB does not only occur in the experimental sites, but also concerns more 

seed growers than CBB does. HBB thus appears as a disease which is both more illustrative of living 

with bean diseases and more diplomatic, as it does not put at risk the different parties involved in the 

research project.     

The field experiment is thus reoriented to focus on HBB as a diplomatic model for living with bean 

diseases. Studying the interactions of the Croqueurs' bean varieties with HBB is to reveal the 

biological base of their bean health management. Therefore, the main focus of seed testing is set on 

the detection of HBB on the experimental seed lots. However, we will see in the following subsection 
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that this focus on HBB leads to a misunderstanding within the research project. In this 

misunderstanding, the research project is confronted with a competing translation, namely the 

requalification of plant health management as genetic disease control.   

3.3 It's general plant health you're after! 

After four years of field experimentation, the tested bean varieties appear more or less susceptible to 

HBB. In particular, variety 'Flageolet Chevrier' appears to be resistant to HBB: despite high disease 

pressure, plants never expressed blight symptoms and seeds were never infected with HBB. 

'Flageolet Chevrier' thus attracts my attention, as well as that of the senior bacteriologist hosting me 

for seed testing. To shed light on the seemingly resistant variety, the senior bacteriologist proposes to 

conduct additional tests. These tests aim at (i) determining the races of HBB agents14 we are dealing 

with and (ii) identifying genetic resistances in the bean varieties. In plant pathology, these analyses are 

the basis for setting up a genetic control strategy with resistant plant varieties.  

Despite my curiosity to pursue the question, I have doubts on the relevance of the additional tests for 

the PhD project. Based on the interviews conducted meanwhile, I am no longer convinced that the 

genetic properties of the Croqueurs' bean varieties constitute a main pillar of their bean health 

management. I refer the question to my supervisory committee 15  shortly after. The committee 

acknowledges that the proposed tests constitute a basic procedure for genetic disease control within 

the discipline of plant pathology. However, the committee agrees that creating this knowledge would 

not contribute to the plant health management of the Croqueurs.  

A few weeks after the decision has been taken not to pursue the supplementary tests on races of HBB 

pathogens, I find myself justifying our choice in front of the senior bacteriologist who had suggested 

them. We are into a long debate. For her as a plant pathologist, management of HBB can consist only 

of genetic disease control in the absence of HBB-free seed. Despite all my (clumsy) attempts to 

explain that it is the bean health management of the Croqueurs I am studying, she does not 

understand why we refuse to develop a genetic control strategy. In short of the appropriate words to 

formulate my argument, I use the example of the bean variety 'Flageolet Chevrier' to illustrate my 

opinion. Although this variety had been extraordinarily healthy and exempt from HBB infection over 

three years of field trials, it was decimated by "black root syndrome" in Brittany the final trial year. This 

syndrome is caused by a viral pathogen under certain conditions. "What's the point of knowing exactly 

which race of HBB agents this cultivar is resistant to when another pathogen kills it so easily?", I ask. 

"Then it's general plant health you're after!" the senior bacteriologist exclaims. The root of the 

misunderstanding is found. Because I had discussed only the bacteriological data with her, isolated 

from the rest of project results, she had been misled from the start. In view of studying general plant 

                                                      
14 Pseudomonas syringae pv. phaseolicola is the bacterial species and pathovar causing HBB on common bean. 
Nine variants, or races, are currently known within this species (Taylor et al., 1996a). They are unequally 
geographically distributed and may not thrive under the same conditions. Bean varieties may have genetic 
resistance against one race, but not against another (Taylor et al., 1996b).  
15  The committee is composed of 2 agronomists and 2 sociologists, all of whom have experience in 
interdisciplinary research. One scientist in plant breeding and a seed artisan complete the committee.  
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bean health, within their approach to bean health.   

In summary, this section has shown how a co-evolution of the researchers and their partners is made 

possible by the engagement with an open question, a complex matter of concern. The object of 

research is progressively carved out in a research process that does not guarantee the production of a 

scientific result from the start. The trust I, along with my PhD supervisors, accept to put in an 

unpredictable research process, is a precondition for this. The focus of the field experiments 

meandered from CBB over HBB to the Croqueurs' governance of general plant health. This 

progressive transformation of the research device is summarised in Figure 2.5 as translation 2b. By 

renouncing to pursue tests in view of proposing a genetic control strategy against HBB, translation 2 - 

described in the previous section - is reinforced: instead of focusing on HBB as a model disease, the 

focus of the field experiment is widened to encompass general plant health. Beyond HBB, the 

interactions of bean plants with other plant pathogens and the growing environment are taken into 

account to assess the biological base of the Croqueurs' governance of bean health. Observations in 

the field experiment thereby complement the qualitative data collected in semi-directive interviews and 

participant observation. 

The next section will address the connection between the field experiments and seed growers' seed 

crops. Hence, I will come back to the first principle of method and describe the artificial link between 

the research device and the "fact" that is to be construed.  

4 Linking field trials and growers' seed crops 

The first section has addressed the emergence of living with bean diseases as matter of concern. 

Departing from this matter of concern, the initial research device is set up as an artifice destined to 

activate the recalcitrance of the involved beings - including humans, plants and plant-association 

microorganisms. In sections 2 and 3, I have discussed the research process, in which the research 

partners co-evolve and narrow down the object of research. In this section, I will come back to 

considering the artificial link between the research device and the object of research, i.e. the "fact" that 

is to be construed by the device. This link can be traced in exchanges I have had with two seed 

growers hosting the field trials in Luxembourg in Brittany. 

During the growing season 2013, I visit the Luxembourgish field trial approximately every two weeks. 

As the Luxembourgish seed grower provided the initial seed lots of two varieties for the experiment the 

previous year, these two varieties are grown both in the experiment and in his nearby seed crops. One 

day, the seed grower and I find ourselves alongside the field experiment discussing the link between 

the experiment and his seed crops. Derived from the same seed lot and multiplied under the same 

environmental conditions, the experimental plots and the seed crops of each variety should behave in 

the same way. Driven by a vague impression that they are not exactly the same, we begin to question 

their link. Indeed, the experimental plots had not been managed quite like the seed growers' regular 

seed crops. 
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In summary, the conditions in which this thesis was produced were described in this chapter. The link 

between these conditions and the knowledge created was questioned and discussed. In the 

framework of the PhD research, this is not only a precondition to situating the knowledge produced. It 

is also a learning opportunity for a PhD student trained in "classical" agronomic approaches, which 

aim at producing universal knowledge. In this chapter, the translations undergone by the research 

project are described as successive steps. Although these steps come in a logical order as the project 

develops, they don't necessarily correspond to the precise chronology of events. The translations 

traced are intermingled in the chronological succession of events. Some translations are triggered by a 

very specific event, others are derived from longer processes. Also, the research device consists of 

two parts, the field experiments on one hand and the sociological inquiry on the other. These parts can 

be attributed to the disciplines of agronomy and sociology, respectively. However, events that 

triggered translations in one or the other part of the research device are not so clearly attributed to one 

or the other discipline. Conversations and ideas cross disciplinary boundaries. Disentangling the 

essence of the transformations undergone by the research device has been one of the major learnings 

of this PhD project.     

5 Conclusions 

Taking into account the interplay of numerous actants behind this thesis, this chapter has traced the 

events that put the research device to the test. Accounting for the process of research, as I have done 

in this chapter, is essential to situate and understand its outcome - the thesis. The role played by the 

PhD supervisors and myself - somewhere between participants, facilitators, translators and secretary - 

at first sight appears to be unclear. The four principles of method for intervention research (Stassart et 

al., 2011) have allowed clarifying the role played by the researchers throughout the unpredictable 

course of project development. In the description of the research process given in this chapter, four 

aspects appear as crucial elements to understand the project's development.  

Firstly, the research process was - and remains - full of uncertainty. At the hot debate in Marseille, 

living with bean diseases emerged as a matter of concern. As the research was triggered by this 

complex concern rather than a clearly formulated research question, the further course of the project 

could not be defined in advance. Departing from this uncertainty, research took shape, driven by 

unexpected events and obstacles. The research device was set up to activate a process which 

allowed narrowing down the research question. Returns in the form of scientific knowledge were 

progressively fleshed out from the process. These results are unfinished and incomplete, however. 

They open more doors than they close and formulate perspectives for future developments, rather 

than taking the form of final statements. While the course of the research was unpredictable, the 

researcher was able to design and maintain a space of trust (see 4th point of conclusion).  

Secondly, the research process might be described as a socio-technical one. The research process 

involved a large number of actants beyond humans, including seed growers and artisans, a few of 

their bean varieties, a large number of microorganisms, European plant health regulations, a 
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bacteriologist and many pieces of scientific literature - to name only a few prominent ones. Human and 

non-human actants coevolved around the subject of bean health management. Considering the 

diverse nature of actants, modes of communication were diverse: absence of seed growers in the field 

trials, presence of hungry animals in the trials, semi-directive interviews, telephone calls, written text, 

the amount of bacterial colonies in Petri dishes, symptom scores inscribed on a sheet of paper, 

graphs, tables and observations jotted down in a notebook were among the most common modes of 

communication. This coevolution of human and non-human actants implies that the definition of the 

frontier between the social and the technical is no longer a real stake, because what matters is the 

interplay. Although the methods forming the research device - the sociological inquiry and the field 

experiment - can univocally be attributed to the disciplines of sociology and agronomy, respectively, 

they mutually shaped each other during the research process. It is important to keep this in mind as 

we proceed through the thesis chapters: results are discussed in separate chapters according to the 

disciplinary focal point that produced them, but they form part of one and the same picture. 

Thirdly, the research device progressively emerges from the co-evolution of all elements which 

compose the project. One basic premise as researchers and their partners co-evolve is not to put 

other parties at risk, nor to jeopardise their identity. Hence, the research device must mobilise a 

diplomatic actant, which allows the researchers to approach the research question without putting their 

partners at stake. In our case, the project's temporary focus on HBB may appear as a detour, but 

reflects the search for a way to deal with the Croqueurs' concern with CBB without putting any of the 

partners - artisanal seed companies, researchers and plant health officials alike - in danger . HBB thus 

appears as diplomatic plant disease at one point in the research process, because it does not come 

with the same strings attached in terms of biology (HBB develops under cooler conditions in Northern 

Europe) and plant health legislation (HBB is not a quarantine pest). It allows speaking of a problem in 

another language, thereby casting off the stakes at the root of conflicts and antagonism (Stengers, 

2002). In the later course of the project, discussions with a senior bacteriologist reveal HBB as an 

unsatisfactory, misleading model of the Croqueurs' bean health management and the entire project 

finally turns to general plant health. Nevertheless, HBB operates as a diplomatic plant disease for 

some time, because it entails consequences that are acceptable to the partners of the research 

project. It allows advancing on the Croqueurs' approach of bean health without jeopardising the 

identities of the research partners. 

Fourthly, the development of the research project was enabled by the trust the researchers - my PhD 

supervisors and myself - put in the research process. As discussed in section 3, the researchers are 

confident, from the start, that the dynamics of the project will yield material for the production of 

scientific knowledge, despite uncertainties linked with the project. However, the research process 

presented here - as a PhD research project - has a dual objective: to produce scientific knowledge and 

to train a PhD student. In addition to the trust they place in the research process as such, the PhD 

supervisors must also place trust in the apprentice researcher. For instance, the senior agronomist 

supervising the PhD research (Véronique) had intuitively deducted from her long experience with the 

research partners that the matter of concern addressed by the project emanated from opposing 



 

53 

concepts of plant health (subsection 1.3). Although this was clear to her from the onset of the project, 

she acknowledges that her PhD student does not have the same experience. For want of this 

experience with the research partners, the PhD student builds upon her previous training in plant 

breeding and orientates the PhD project to focus on bean populations and their ecological interactions. 

Nevertheless, the supervisor is confident that the PhD student, with the guidance of her supervisors, 

will produce relevant scientific knowledge as she coevolves with the research partners. 

As the outcome of the research process, this thesis deals with the bean health management of 

artisanal seed companies forming the association Croqueurs de Carottes. Its author has no intention 

of placing their approach in the much wider context of "official" or "mainstream" plant health protection, 

nor to treat opposing plant health approaches symmetrically. Although representatives of official 

institutions concerned with bean seed health were interviewed, these interviews are called upon to 

shed light on the bean health management of the Croqueurs by comparison. Relations between the 

Croqueurs and official institutions are brought in only to contrast the two approaches to plant health. 

The objective is to flesh out the Croqueurs' approach to plant health management.  

In terms of method, ANT serves as a main pillar for this thesis, in an attempt to keep the assemblage 

constituting the Croqueurs' bean health management together. Nevertheless, research results are 

decomposed according to the research device that produced them. Chapter III reports the results of 

the sociological inquiry. The following chapters concern results of the field experiment. Chapter IV 

begins by specifying the methods employed in the field experiment. Chapter V then reports results 

concerning general bean health, departing from the idea of an index of general bean health. Chapter 

VI reports results on the interaction of bean plants with beneficial microorganisms of the soil. Chapter 

VII reports results on the microbial communities associated to experimental seed lots. Finally, Chapter 

VIII reports local adaptation of bean varieties revealed by the experiment. A graphic overview of the 

chapter set-up is given in Figure 1.1 (p. 23). Wherever possible, cross-references between chapters 

point to the interdisciplinary nature of the reported results. 
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Chapter 3: In situ plant health management revealed by 

tensions about protective measures 

In the previous chapter, I have shown how the object of research evolved. The project began by 

focusing on the ecological interactions between bean plants and their growing environment and 

evolved to question the rationale behind the plant health management of the Croqueurs de Carottes. 

The hot debate at the origin of the PhD project concerned the contamination of bean seeds with seed-

borne bean pathogens at the end of a research project, with Common Bacterial Blight (CBB) in 

particular. CBB is regulated as a so-called "quarantine pest" in the EU, implying that protective 

measures are prescribed by plant health regulations to prevent the plant disease from entering and 

spreading. The debate about CBB is considered indicative of a more general discrepancy. The 

underlying hypothesis is that different rationales operate behind the plant health management 

practices of the artisanal seed companies on one hand and behind the protective measures against 

CBB on the other hand. The aim of the present chapter is to characterise the rationale of plant health 

management practiced by the artisanal seed companies by addressing the following questions: Which 

are the specificities of bean health management practiced by artisanal seed companies among the 

association Croqueurs de Carottes? On which interactions between bean plants and their growing 

environments is this plant health management based? 

Data was collected by means of literature review, semi-structured interviews and participant 

observation. Seed and plant health legislation was studied, complemented by gray literature regarding 

the management of "quarantine" pests, especially the responsible EU and national governing bodies. 

To better understand the matter, selected scientific literature on the international regulation of plant 

pests was consulted. Between August 2014 and June 2016, a total of 21 people were interviewed in 

15 interviews, with up to 3 people per interview. Durations ranged between 51 min and 2h 23 min, for 

approximately 300 pages of interview transcription in total. The thematic guide used for the interviews 

is presented in Annex 1. Interviewees were chosen according to the snowball sampling technique 

starting from 5 artisanal seed companies members of the Croqueurs association, of which four are 

based in France and one in Belgium. Two seed companies not forming part of the Croqueurs 

association were interviewed in the objective of specifying the bean health management practices of 

the Croqueurs by contrast. In addition, a representative of the umbrella organisation RSP was 

interviewed in order to put the Croqueurs' practices into the wider context of a network that goes 

beyond vegetable seed growing. In France, the study was extended to persons in charge of 

implementing "quarantine" measures on bean seed. This was done in the Pays de la Loire region, a 

region renown for seed growing and faced with CBB in common bean. To account for the science and 

procedures on which EU protective measures against CBB are based, a phytopathologist was 
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interviewed, who has participated in a working group in charge of revising the regulatory status of CBB 

agents. A detailed overview of the affiliation and role of each interviewee, as well as the groups of 

people interviewed together, is given in Annex 2. The first three letters of the interviewee code 

employed for interview citations indicate the role of the interviewed actor, as follows (Table 3.1).  

Table 3.1: Three letter code (first three letters of interview code) indicating the role or affiliation of the interviewee. 

Three letter code Role or affiliation of interviewee 

CRO Member of the association Croqueurs de Carottes 

NRI National agronomical research institute 

NGO Non-governmental organisation for peasant seed 

PIA Plant inspection authority 

SOS Small organic seed company in Germany 

MSC Multinational seed company based in France 

 

The data collected in the interviews was complemented by data gathered in the form of participant 

observation. The coordination and realisation of the field trials offered numerous opportunities for 

participant observation. For instance, geographically nearer farms were visited every 2-4 weeks for the 

observation of bean disease symptoms. Other experimental sites, located at a greater distance, 

implied that I spend several days on site, hosted by the seed grower hosting the trials. Also, several 

events organised or co-organised by Croqueurs members or by the RSP were attended, as listed in 

Annex 3. Lastly, a feedback meeting was organised in February 2016, where research results were 

reported and discussed with 16 participants. In the aim of extending the discussion beyond the 

Croqueurs to the users of their seed, the meeting was organised with the thematic group concerned 

with vegetable seeds within the RSP. The discussions at this feedback meeting mainly feed into the 

identification of research perspectives. 

The chapter takes form of a narrative following actor-network theory (ANT), also termed 'sociology of 

associations' (Latour, 2005) or 'sociology of translation' (Callon, 1986b). Rather than squeezing cases 

into categories predefined by theoretical frames chosen by the social scientist, he proposes to study 

the assemblages behind (or rather around) the actor which allow the actor to act. The actor is enabled 

to act by the actor-network, but also generates the network. Because the actor-networks behind the 

actors tend to become invisible once they have stabilized, ANT suggests the description of 

controversies from their deployment to their settlement, to study how particular socio-technical 

configurations are assembled. Social assemblages are understood as networks of human and non-

human actants, connecting and interacting17. In order to allow for new social assemblages to emerge, 

ANT encourages social scientists to follow the actors and what they tell in the form of narratives. This 

                                                      
17 Latour argues that sociology as it has been practiced in the past, by applying its social theories to the subjects it 
studies, actually erases the specificities of each situation in order to squeeze the actors into theories and 
concepts (see 'Reassembling the Social', p. 234). Research in sociology may thus have contributed to the 
reproduction of social assemblages that had been stabilized beforehand by social theory. While this may have 
been appropriate as long has sociology had given itself the mission of modernisation and emancipation, the 
challenges humanity faces today require the emergence and formalisation of new assemblages. 
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implies doing away with the distinction between Nature and Society18, a frontier that has been fostered 

by the separation of the natural and social sciences. To deploy ANT as a method, the following three 

instructions, or rather proscriptions, are given (Latour, 2005).  

(i) The social scientist writing the narrative shall never 'jump to the global'. Rather than referring 

to some unexplained global or contextual forces acting in local situations, she shall describe 

the vector, or mediator, by which this action is transported from one site to another.  

(ii) The scientist shall not be lured into believing face-to-face interactions merely consist of two 

people representing their own interest. Instead, these actors are to be regarded as mediators 

made to act by chains of human and non-human mediators around them. By tracing the 

network of connectors that assemble a socio-technical configuration, the illusion of 'the global' 

and 'the local' is done away with. The social scientist collects statements, in written documents 

or in interviews conducted with the actors, in order to trace the connectors by means of the 

actors' own descriptions.  

(iii) It is not the scientist's role to fill in the blanks and uncertainties left by the network, but to stick 

to the actors' statements she has collected.  

ANT is employed as a heuristic frame to analyse the actor networks behind the plant health 

management of the Croqueurs and their interactions with current plant health legislation. Amongst the 

body of literature related to ANT and aiming at integrating non-humans in sociological analyses, the 

analysis of expertise by Callon and Rip (1992) is called upon. The authors propose to regard expertise 

as a process regulating between three domains of requirements. The socio-political domain is 

constituted of human actors, who each have their competencies, interests and expectations. The 

scientific and technical domain is concerned with the construction of knowledge on nature or on 

artefacts. The third domain, that of rules and regulations, is composed of the directives and 

recommendations guiding the experts in their work. Expertise is thus the process of aligning these 

three domains. It results in what Callon and Rip call a socio-technical norm. The alignment of the three 

domains implies questioning the resistances and oppositions of each domain. Implicitly, the following 

questions are addressed concerning the domains of socio-political scope, of scientific knowledge, and 

of rules and regulations, respectively. To what extent are the demands and interests of the concerned 

social actors negotiable? Are the scientific facts robust or disputable? Are existing rules and 

regulations absolutely binding or can they be infringed? Reconfiguring a socio-technical norm implies 

seeking and modulating the domain which presents the least resistance and opposition. European 

plant health regulations, which are based on the reports of expert groups, are an example of such a 

socio-technical norm.  

This chapter is divided into three sections. In the first section, the plant health management of the 

Croqueurs is specified. We follow the actors in their descriptions of the assemblage that enables them 

                                                      
18 Lélé and Norgaard (2005) have described agriculture as situated at the frontier between the social-natural 
divide. In their paper about the practice of interdisciplinarity, they recommend that the disciplinary assumptions 
about the “other” half of the system constitute simplistic models that must be abandoned and replaced by more 
complex ones. ANT seems an interesting take at doing without both the ontological divide between nature and 
society and the disciplinary divide between natural and social sciences. 
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to manage the health of their seed crops, especially their bean crops. The Croqueurs are contrasted 

with two other seed companies to point to specificities in their plant health management. First, the 

Croqueurs' bean health management practices are contrasted with those of a multinational seed 

company, considered by Croqueurs members as positioned at the opposite of their own practices and 

values. Secondly, a contrast is drawn with a small-scale organic seed company in Germany, which is 

considered as a partner by some of the Croqueurs members. The second section focuses on 

protective measures against the bacterial agents of CBB, in order to specify the rationale on which it is 

based. Based on the report of an expert group in charge of giving an opinion on the categorisation of 

plant pathogenic bacteria, protective measures against CBB will be elucidated according to three 

domains of expertise. In the aim of understanding interactions between plant health regulations and 

French Croqueurs members, the implementation of protective measures in France will be described, in 

particular. Having specified the two approaches to plant health management in the preceding sections, 

the third section tackles the tensions between them. It addresses both the questions of how protective 

measures intervene in the plant health management of the Croqueurs and of means employed by the 

Croqueurs to contest the protective measures. I will discuss how the Croqueurs put into question the 

protective measures against CBB by attempting to unlock each of the three domains of expertise.  
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1 Croqueurs de Carottes: Managing plant health in situ 

The Croqueurs de Carottes association and their concern for bean health management, which 

triggered this research, has been described in the previous chapter. In the following subsection (1.1), 

the bean health management practices of the Croqueurs is described. Specificities of the Croqueurs' 

approach are highlighted by contrasting them with the practices of two other seed companies in 

subsection 1.2.  

1.1 Croqueurs de Carottes: Artisanal seed companies 

The members of the Croqueurs qualify themselves as artisans semenciers in French, which can be 

translated to "artisanal seed company". Their association is in turn member of the French Réseau 

Semences Paysannes, which can be translated to "peasant seed network". The individual Croqueurs 

members differ somewhat in their translations of the qualifications "artisanal" and "peasant" into their 

individual practices and organisation schemes (see Chapter II, subsection 1.2). Nevertheless, they 

converge in that they exclusively grow and sell seed of open-pollinated varieties from the public 

domain. They thus sell seed that is biologically and legally reproducible by any home or market 

gardener. The seed marketed by the artisan seed companies interviewed is also multiplied and 

selected exclusively under organic growing conditions.  

"Among us, Croqueurs de Carottes, there is also: No protected variety, no F1 hybrid variety, no 
genetically modified variety. So, we stay with open-pollinated varieties that are not protected [...] And 
another thing that is very important, too, is that it's not just about the legal minimum requirements, 
which is to produce organic seed from conventional seed. Our basic seed is organic, too. That is, our 
varieties have been organic since 5, 10, 15, 20 years. So, with time, one may think that the variety is 
impregnated by its experience in organic farming in those ten or twenty years [...] it hasn't been proven 
scientifically, by the methods of scientific research, but we find that the plants become pretty hardy." 
[CRO-190515d] 19,i 

It is crucial to understand what they consider truly organic seed. It is not enough to grow seed of any 

variety organically for one generation, as required by the EU regulation on organic farming 20 . 

Continuous selection of the variety under organic growing conditions for several plant generations is 

regarded as essential. The understanding of bean "lineages" as determined by the interplay between 

plant population, field environment and seed grower is discussed in division 1.1.1. Division 1.1.2 

describes how plant health management practices of the Croqueurs integrate the triangular system 

behind bean lineages. Division 1.1.3 addresses the consequences for the role of the collective in 

managing plant health.  

1.1.1 Lineages 

The Croqueurs continuously multiply and select vegetable varieties under organic conditions in the 

understanding that the seeds they offer are not only determined by the crop variety, but also by the 

environmental conditions under which the seed is grown and by the farmers growing and selecting the 

                                                      
19 Citations are all translated to English. The original citations are given in endnotes at the end of the document.  

20 Article 12 of Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labeling of 
organic products and repealing Regulation (EEC) No 2092/91 
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seed crop. The "lineage" of a plant variety (souche in French) is an expression of the interplay of three 

actants - plant variety, natural field environment and seed grower. The term natural environment refers 

to the abiotic (physical environment) and biotic factors that form part of a plant's growing environment 

and act upon the crop in the fields. The fields as such are of course thoroughly anthropogenic 

environments. The identification of the seed grower of each seed sachet reflects that the origin of the 

seed is considered relevant. The reasoning in terms of lineages is also well illustrated by the Spicilège 

website (Réseau Semences Paysannes, 2016), which was launched by the RSP. On the website, crop 

lineages are described in terms of name and origin of the plant population, grower and multiplication 

site. This description can be regarded as an alternative to the criteria of distinctiveness, uniformity and 

stability (DUS) used for the determination of varieties in official variety testing. 

The plant is shaped by its environment: the environment acts upon the crop, which reacts to the 

growing conditions it encounters. The Croqueurs describe their crops in terms of "hardiness" (rusticité) 

and adaptability. Hardy crops are "weaned off" the intensive use of inputs and able to thrive and yield 

in more challenging growing environments. They are able to resist stress factors, for example by 

producing phytochemicals. Adaptability refers to the ability of a crop to evolve, to adapt to the 

environmental conditions in which it is multiplied over several years. According to this point of view, 

organic, low-input environments select for plants that are able to thrive in those environments through 

"natural selection", as reflected by the citation below. In conjunction with the selective breeding of the 

seed grower, a "lineage" of a variety develops. Population varieties, which contain several plant 

genotypes rather than being a pure line with a single genotype, evolve and adapt more readily. In the 

following citation, a seed artisan describes that this adaptation sometimes leads to difficulties when 

going through official seed testing for varietal type. 

"Just as if you put a conventional variety, if you thrust it into organic conditions, well, it wouldn't 
respond the same. Especially modern varieties, which have been selected to respond to inputs, to high 
amounts of inputs: you put it into organic conditions, where it will be weaned off a bit from all that, you 
won't really recognize it, you know. So, it's the same problem in conventional trials. Our organic 
varieties react differently and they tend to tell us: your variety... it does not conform with the type we 
expect at all, you know. It doesn't happen all the time, but... [...] under organic conditions they do 
[conform], and above all, they are well adapted, they are hardy for organic conditions. If it has a bit 
longer leaves or a bit more anthocyanines, it may be because... well, it's natural selection that wanted it 
that way. And they don't like that. [...] It's impossible, especially with populations, they evolve. And 
precisely, they are in conditions where it evolves, under organic conditions they are fine, you know. So 
generally, when that happens, they tell us: Your variety is not suitable. In general, we keep it anyway, 
because these are lineages that have gone through 20 years of organic cultivation. They would want 
us to restart from scratch with a conventional lineage, which has been stored in a fridge, which hasn't 
moved in 20 years, and all the work we have done since would be lost. So, that's not possible. And 
that's a topic where we cannot make ourselves understood." [CRO-190515s] ii 

The appearance of a crop is not considered static or fixed in time and space. On the contrary, the 

ability of the plants to adapt to variable environments is perceived as a quality and an element of plant 

health which seed artisans must tend to. The ability to adapt to new environments, but also to 

variations within an environment must be sustained. Adaptability can also be described as the ability of 

a variety to interact with a given environment in ways which meet the expectations of the grower. 

Adaptation to a new environment does not happen instantly: it is common practice among the 

Croqueurs to observe a lineage they are not familiar with for 2 or 3 years. They give the plant 

population time to find its place among the weather conditions, the soil, the plant-associated 
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microorganisms and the management practices of the new environment. The aim is to allow for it to 

adapt to the new growing conditions, but also to take time to get familiar with the unknown plant 

population and learn how to observe it.  

"For me, with the little experience I have, when a variety has never been cultivated here, the first year 
of cultivation, well, they always, I mean the beans always appear as if... you get the impression that 
they have a virus. And later there is no more of that, at all. And for all crops in general. Tomatoes for 
example express it differently, it's the strength of the plant. I mean, when I take a tomato that comes 
from elsewhere, well, the first year, it adapts - what I call adaptation - and the second it starts to... you 
see, it was really symptomatic when we tested the 250 tomato varieties of INRA, it was a joke, you 
know. The first year, they were puny, the second year, they were much better, and the third year, it 
was... they started looking nice, you see? It wasn't the same plant at all. One could almost say: it's 
another variety." [CRO-260814b] iii  

By stressing the plants and applying natural selection pressure to them, the environment compels the 

plant populations to evolve by changing their genetic makeup and modifying the expression of that 

genetic makeup. Isolated from their growing environment, the genetic information conveyed by a crop 

thus doesn't mean much. Recent scientific publications on epigenetics and on transfers of genetic 

information between different species by viruses have attracted the attention of some Croqueurs 

members. They bear scientific explanations for adaptation processes which they observe in their crops 

and which go beyond mere genetics and take into account the communication between crops and 

their environments. The Croqueurs grow their seed and develop their savoir-faire at the intersect 

between the crop's adaptation capacity, environmental conditions and human needs. This is also true 

for their management of plant health. 

"In the crop, well, it's an agronomical approach, that is, the soil, the climate, the plant and I - because I 
form part of it, he! And those four or five of us - I can't remember - must find a compromise that is the 
least poor, or the best, for the three or the five, well... the weather doesn't care at all, the soil cares a bit 
more, the plant is really concerned and I am, too. So, the two major actors are the plant and I. We try to 
make the soil our ally and the weather, we have to live with it..." [CRO-290116d] iv 

The Croqueurs thus reason the plant populations they multiply in terms of lineages determined by the 

triangulation of the plant variety, multiplication environment and seed grower. The next division will 

explicate the integration of this triangular system in their bean health management.  

1.1.2 "Avoiding disease won't ever favour health" - In situ management of bean health 

The health of a bean lineage and its management are embedded in the plants' growing environment. 

Interrupting the communication between crop and environment by eradicating plant pathogens from 

the crop's environment is neither healthy for the crop, nor sustainable for humans depending on the 

crop. Plants have to be left the opportunity to adapt to and cope with the local environment - including 

local pathogens - to be regarded as truly and lastingly healthy. Using the words of warfare and of ANT, 

the observation of bean populations in situ, i.e. in their local growing environment, constitutes an 

'obligatory passage point' (OPP) for the Croqueurs. Based on the work of Callon (1986b), an OPP is 

defined as a key setting - be it geographical, institutional or organisational - which actors have to go 

through to pursue their goals according to their problematisation (for an explanation of the term 

'problematisation', see the introduction of Chapter II, p.28). The general problematisation of the 

Croqueurs is to offer seeds of bean lineages based on the adaptation of crop varieties to particular 

growing environments, directed by the selection of the seed growers. The lineage can't be dissociated 
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from the triangular system. Regarding plant health, seed crops have to go through the threefold 

interaction to obtain hardy, adaptable and durably healthy lineages. In the citation below, the 

expression of a variety in a given growing environment with a given seed grower's management 

practices are termed "local variety", which may here be understood as a synonym of "lineage". 

"It's really the question of our understanding of what is sanitary. All microbial or fungal life around 
plants is a signature of the terroir. And of cultivation practices, not only of the terroir. There are always 
microbes on a local variety. Hence, we are the only ones thinking in terms of local varieties." [NGO-
260915k] v 

Plant-associated microorganisms, including plant pathogens, are considered an integral part of plant 

populations and seeds. They have their role to play in the field ecosystem. For instance, diseases 

causing spots on common bean pods at the end of the bean growing season may be regarded as 

"maturation diseases", beneficial for seed maturation by their defoliating effect. Severe plant diseases 

that develop too early in the season may reveal problems in the crop's environment and its 

management. Bacteria, fungi or viruses are not pathogenic per se, but potentially pathogenic 

according to the state of the environment. Microbial life in the soil plays an important role by 

suppressing plant pathogens, be they seed- or soil-borne. The seed growers care for and rely on the 

soil as their ally to support plant growth. Providing the best growing conditions possible to foster plant 

vitality and prevent plant diseases is the base of plant health management. This includes choosing the 

field plots that correspond to the needs of each crop, careful soil preparation and, for some, applying 

fermented plant juices or biodynamic preparations to soils and crops in the aim of acting upon 

microorganisms and fortifying crops. Seed growers' practices aim at maintaining the environment 

sound, especially the soil. Conversely, the occurrence of plant diseases require that the seed grower 

asks himself if his crop management has been appropriate.  

Bean health management is based on what can be observed in situ in the bean crop (Figure 3.1) and 

on the harvested bean seed. Identifying the causal agents of plant diseases only serves to inform 

whether the pathogen is seed-borne and, as a consequence, affects seed quality. For seed artisans 

faced with both CBB and HBB, identifying which one of the bacterial blights is affecting a given seed 

crop is of little practical importance, as both are seed-borne, have very similar infectious cycles and 

cause almost identical symptoms. Both diseases would entail the same management practices if it 

weren't for the protective measures against CBB set down in the EU plant health directive. 
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Figure 3.1: This seed grower has found a climbing off-type in his bean seed crop and is about to pull it out of the 
soil to prevent it from seeding. He notes that blight symptoms are developing in the bean crop, which pertains to a 
susceptible variety. He will come back in a couple of weeks to select the healthiest plants on which to harvest his 
basic seed. Knowing whether the blight symptoms are caused by regulated CBB agents or by HBB agents does 
not matter. We can already see now that blight symptoms on the leaves (necrotic spots surrounded by a yellow 
halo) also confound with other symptoms which may be attributed to viral diseases or nutrient deficiencies 
(mosaic-like discolorations, cupping). He will select those plants that look the healthiest, while taking into account 
their earliness and the effect it may have had on disease development. What matters for his selection is what he 
sees. 

 

All bean lineages don't undergo positive selection for plant health like the one in Figure 3.1. The 

intensity of selection depends on the seed growers approach, the pressure of plant diseases on her 

farm and on the disease susceptibility of the bean variety. Some bean lineages undergo less 

intensive, negative selection for plant health, which consists of removing plants with disease 

symptoms. In yet other cases, seed growers leave selection in the seed crop entirely up to natural 

selection, relying on the fact that the fittest plants will yield the largest number of seeds. Although 

beans are not always actively selected in the fields, all seed artisans select for variety type and health 

on the bean seeds. As each bean seed lot is sorted manually at least once crosses and other off-types 

recognized visually are removed. In the same manual sorting step, seeds with visible spots or 

blemishes caused by diseases, humid conditions or mechanical damage are removed from the lot. 

The seed sorting step thus implies indirect selection for plant health and partial sanitation of seed lots: 

Removing blemished beans from the seed lots is a way of selecting against susceptible plants, but 

also a way of reducing inoculum of seed-borne diseases. 

Managing plant pathogens as parts of the seed production system is about learning to live with them. 

This requires judgment on behalf of the seed growers on whether the seed crop is healthy enough, 

taking into account the growth stage of the crop and the susceptibility of the variety, among other 

things. In other words, the seed grower knows how much he can expect from a given variety. "Living 
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with" plant pathogens also entails respecting nature's ways and accepting yield losses and even 

failure in years with weather conditions that favour disease development. This means that bean 

varieties susceptible to the bacterial blights may be marketed only in "good years". The limits of plant 

selection and plant health management of an individual seed grower are reached when she judges 

that a crop variety does not fit to the environmental conditions of her farm. She makes the 

environmental conditions of her farm and her own management practices available to the plant variety. 

If the plant variety is able to adapt to the site and thrive, the seed grower can multiply its seed, develop 

her own lineage of the variety and make a living. Practices can be adapted to some extent if the crop 

indicates that something is not right, via disease symptoms for example. However, the plant variety 

with its predispositions and inherent properties also sets limits to the range of environments and 

growers' expectations it can adapt to. Despite selection efforts on behalf of the seed grower, the 

variety can fail to adapt according to her expectations. In that case, the grower gives up and searches 

for another seed grower willing to try to accommodate the variety. This is also what happened for the 

variety 'St Esprit', which was produced by a seed grower in Luxembourg and formed part of the field 

experiment in the framework of this research: This variety was strongly affected by symptoms of viral 

plant diseases (as discussed in Chapter V based on results from the field experiment). After several 

years of unhealthy looking crops and poor harvests, the Luxembourgish seed grower gave up on 

growing 'St Esprit' in his seed garden. However, the variety was not discarded. It was passed on to 

another seed grower producing for the same seed company. This observation corresponds to several 

others concerning other varieties, others crop species and other seed growers: a variety that does not 

work in a given environment is not discarded, but passed on to someone else in the network. The 

network of seed growers takes the relay, making plant health management a collective endeavour.  

In summary, we have seen that understanding bean populations in terms of lineages implies that bean 

health, too, be managed in the threefold interaction between crop variety, growing environment and 

management practices. Observing the evolution of bean lineages and selecting them in situ is vital to 

this approach. Crop pathogens form integral part of a crop's growing environment. The soundness of 

the growing environments is a precondition for in situ management of plant health. However, this 

approach also implies that a given variety may fail to adapt to a given seed grower's fields and 

expectations. This is when the collective beyond the individual seed growers come into play. In the 

next division, I will discuss the role of the collective of actors in the Croqueurs' management of plant 

health. 

1.1.3 Collective Management 

Taking the approach of "living with" plant pathogens, plant and seed health management have to be 

reasoned on the scale of the collective. The collective governance of bean health can be subdivided 

into three levels. The actors at the three levels must be aligned on the in situ approach to plant health 

for it to function. In the following, I will specify how the actors at each level align and which roles they 

play. 
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Individual seed growers form a network of seed growers around each seed company. Individual 

companies with their seed grower networks thus constitute a first level of the collective. Together, the 

seed growers of a network ensure the multiplication of lineages proposed by the seed company. By 

joining and staying with a seed company, they implicitly align with the values of the Croqueurs (open-

pollinated varieties from the public domain, organic farming) and the in situ management of plant 

health. When a seed grower finds that a bean variety won't adapt to his farm, the seed company relies 

on the network of growers to take the relay. As described above in division 1.1.2, a "picky" variety is 

seldom abandoned completely, but rather consigned to another seed grower who might provide 

growing conditions which suit that variety. The seed production, and thus survival, of a given vegetable 

variety is ensured by the network of seed growers. Collective management of plant health within a 

seed company is about matching varieties with appropriate environments. In the aim of ensuring the 

seed production and guarding against occasional yield failures, some companies attribute the seed 

production for a given variety to several seed growers. In that case, several lineages of a variety may 

be maintained on different farms. 

The seed users, or customers, of the artisanal seed companies represent the second level of the 

collective. Their implication in plant health management stems from the understanding the Croqueurs 

members have of their profession as artisanal seed companies: They provide market and home 

gardeners with reproducible and adaptable bean lineages, so that the customers can in turn let the 

plants adapt to their own growing environments.   

"We seed artisans, we exist, because, well, the gardeners cannot multiply the basic seed for all their 
varieties. That's a very different case from that of the farmer-bakers. A farmer-baker can... he is himself 
master of his basic seed. They are really at the opposite, you see, on the one hand the farmer-baker 
that is completely master - and you would never have seed artisans for those species [cereals]. And at 
the opposite, we are there to provide them with lineages; so that the lineages continue to exist. But 
then - and common bean is a typical example for this - there is the adaptation to the terroir, and that's 
not the seed artisans. It's the gardeners who take care of that." [CRO-280814c] vi,21 

Indeed, whereas farmers producing cereal grains can easily multiply their own seed without additional 

work, this is not the case for market gardeners. Diversified market gardeners, who produce a multitude 

of vegetable species, are generally not able to grow the entire range of the vegetable seeds they 

require. In addition, some vegetable crops are bi-annual or allogamous, which makes seed growing 

more complicated. Market gardeners can thus fall back on the artisanal seed companies to purchase 

reproducible seed whenever needed. As an annual, mainly autogamous species, common bean is 

among the species which are frequently reproduced by market gardeners for several years, or even 

indefinitely. The Croqueurs consider that the bean lineage then adapts to the new environment; a new 

lineage may emerge with time. This also implies that the role of the customers goes beyond the mere 

purchasing of seeds. The seed users also play role in the management of bean health and align on 

the seed companies' plant health management in three respects.  

                                                      
21 Farmer-bakers (in French: paysan-boulanger) are cereal farmers who process their cereal harvest into bread 
and market that bread. Farmer-bakers in the RSP also reproduce the cereal varieties they grow. The citation 
refers to the fact that farmer-bakers, as opposed to vegetable gardeners, cultivate a limited number of cereal 
varieties, mostly autogamous bread wheat. They can thus readily master the reproduction and selection of all the 
seed they require on their own farm.  
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(i) Firstly, customers departing from purchased seed to reproduce it in their own farm or garden 

might develop their own lineage of the variety. By letting the lineage evolve in a new growing 

environment, they may thus contribute to maintaining the hardiness and adaptability 22  of 

plants.  

(ii) Secondly, whether they grow their own seed or purchase seed every year, the seed users 

align on the triangular management of plant health which I have termed in situ plant health 

management, as reflected by the following citation.  

"The other thing we have to add to this discussion is that we sell seeds to organic peasant farmers, and 
that also changes everything. If we sold our seeds to conventional farmers, with the dead soils they 
have and all, they would maybe have a lot of diseases. But since we sell to people who work a bit like 
we do - most of our customers are either home gardeners, or diversified market gardeners on small 
surfaces - well, they also learn to work rather as we do. They rather have the same conception of life 
that we have, of plant health and so on. And so, well, they have less problems." [CRO-190515d] vii,23 

Offering vegetable seeds which rely in part on sound growing environments for plant health, 

implies that the users of the seed manage their growing environments accordingly.  

(iii) Thirdly, seed artisans are directly available to customers and rely on customer feedback on 

seed and plant health. Whereas they are frequently contacted in other matters, feedback 

concerning crop diseases is seldom obtained. This lack of customer feedback is generally 

interpreted as an indication that the health of their seed offer is satisfactory. To verify this 

interpretation, one of the artisan seed companies planned to address its customers with a 

short questionnaire on bean health via their seed catalogue and internet site. However, this 

project failed due to technical problems with the internet site. 

Finally, the third level of the collective is formed by the Croqueurs association and its network of 

member seed companies. The association constitutes a wider network of seed growers on which the 

member seed companies can rely on to match vegetable varieties with appropriate environments and 

ensure the survival of the varieties. For instance, the companies retail seed among each other. Some 

companies unable to grow certain varieties themselves thus rely on other Croqueurs members to 

provide seed. Nevertheless, a given variety can also be produced by several companies, such that 

several lineages of that variety are maintained. This constitutes an additional guarantee for the 

survival of vegetable varieties. Moreover, the association plays a role in plant health management not 

only through the exchange of seeds, but also through the exchange of information. 

"We don't decide anything, but we initiate lots of ideas. Ultimately, it's a sort of space for the creation of 
ideas and arguments, I take it that way. And they are really excellent. I take things as I would on a 
marketplace, I bring mine, but I listen to those of the others. I confront them, we rub them against each 
other, compare them. Thereby, I sharpen my argument, my knowledge of the subject - because there's 
also one [seed artisan] who participates with a detailed knowledge of regulations, and others more with 
a detailed knowledge of certain topics concerning certain varieties or crop species, tomato so and so... 

                                                      
22 Adaptability is here understood at the level of the metapopulation, i.e. of the sum of all lineages maintained by 
the Croqueurs and their customers for a given variety. Even if adaptation to local conditions may reduce the 
diversity within a given lineage, the sum of lineages maintained under different local conditions constitutes the 
diversity growers can draw upon to adapt the variety to a new environment.    
23 The French paysan is here translated to "peasant farmer". It is not used to designate poor subsistence farmers 
as often the case in English, but rather to designate a farming style opposed to industrial agriculture.  
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So: I go to the market, I take what interests me, I give mine when I find it interesting, I get run into, I fire 
back... in a pretty friendly way, he! At least, we try... and... it's great. But... it's not a place where we... 
it's not a trade union, we are not able to... we don't have the monolithism of a union, which takes a 
sword and cuts in two, no... that we are not able to do. [...] We are not able to get the effective side of it 
- or without it looking like much. I say that, but it is not completely true, because, it doesn't look like 
much, but the efficacy is there. Because, finally, [some seed artisans] are in panels etcetera [...] I tell 
them: "You say that we are not progressing, but I can tell you that the contacts I have with the FNAMS 
and others are changing"." [CRO-290116d] viii,24 

In matters of plant health as in other matters of concern for the artisanal seed companies, the 

exchange of information among the Croqueurs goes in two directions. The members put forward their 

own practices for discussion, search for alignments among them and forge a common position. 

Although the aim is not to become identical, the identity of artisanal seed companies is involved 

through the search for common denominators. By aligning among each other and "sharpening their 

argument", the identity and representation of the artisanal seed companies towards external actors is 

strengthened. The exchange of viewpoints and practices among the association equips its members to 

defend their common ground (Section 3 will address the forms this takes in matters of bean health). In 

this task, the Croqueurs association is supported by the wider network of the RSP, which feeds 

information on legislative issues into the Croqueurs on one hand and takes the relay with more 

general advocacy for famers' and gardeners' seed autonomy on the other hand. 

In summary of this subsection, the following key points can be reminded of. The understanding of 

lineages as the triangulation between bean variety, growing environment and seed grower leads to the 

PPO of in situ plant health management. The health of bean plants must be observed, managed and 

selected for in their growing environment. This approach also entails that the soundness of growing 

environments be taken into account. The in situ approach relies on the alignment of the seed growers, 

the seed users and the Croqueurs association and thus constitutes a collective approach to plant 

health. In the next subsection, the practices of the Croqueurs members will further be specified by 

contrasting them with the bean health management practices of two other seed companies. 

1.2 Contrasting plant health management approaches 

To specify the Croqueurs' governance of bean health in further detail, contrasts will be drawn with two 

other seed companies. In a first step, a contrast will be drawn with a large multinational seed and 

breeding company frequently cited by Croqueurs members as embodying the opposite of their own 

values and practices. This French-based multinational is criticised by the Croqueurs for putting 

intellectual property rights on vegetable varieties. Much unlike the Croqueurs, the multinational 

produces seed on a global scale. The weight of bean seed lots dealt with give a good indication of the 

difference in company sizes: Whereas Croqueurs members sometimes deal with seed lots of 5-10 kg 

for minor varieties, batches of 3-4 t are considered small by the multinational company. All the bean 

seed lots are multiplied under conventional25 farming conditions and no organic common bean seed is 

produced by the multinational.   

                                                      
24 FNAMS (Fédération Nationale des Agriculteurs Multiplicateurs de Semences) is the French Union of 
seed growers. 
25 "Conventional" designates seeds or farming techniques which are not organic. This implies that synthetic 
chemicals may be used as herbicides, insecticides and fungicides. 
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In a second step, the Croqueurs' governance of bean health will be contrasted with the practices of a 

small-scale organic seed company in Germany, which is closer to the Croqueurs both in terms of 

values and company size. Some Croqueurs members partner with the German seed company through 

commercial relations, as they retail seed supplied by the German company. The German seed 

company aligns with the Croqueurs basic values, as it exclusively supplies organic seed of vegetable 

varieties from the public domain. Based on a network of market gardeners collaborating to produce 

and market biodynamic seed since the 1970's, the seed company was founded as a public limited 

company in 2001. It now employs about 30 people. Although this remains "tiny" as compared to large-

scale breeding companies, it is a lot more than any of the Croqueurs members (none of the Croqueurs 

members has more than 5 employees). 

1.2.1 A multinational seed company - It's up to us to manage our genetics 

The first contrast concerns a seed company frequently cited by Croqueurs members in opposition to 

their own values and practices. Elucidating the bean health management of this multinational also 

sheds light on the specificities of the management approach of the artisanal seed companies forming 

the Croqueurs. Although the production manager of the multinational company is adamant that CBB 

agents are well established in France, he doesn't envision "living with" the bacteria the same way the 

Croqueurs do. For this seed company, "living with CBB" means keeping bean fields CBB-free despite 

endemic CBB agents.  

In its aim of keeping bean fields free of blight symptoms, achieving genetic control of the disease 

through bean breeding efforts is a major objective. Resistance genes prevent disease symptoms from 

appearing on plants and in this regard differ from "hardiness" as it is pursued by the Croqueurs. Field 

tolerances to both CBB and HBB of most of the company's bean varieties are judged satisfactory, but 

the company's bean breeder pursues the aim of introducing resistance genes in the company's bean 

genetics. In the search for genetic resistance, breeding lines are screened under controlled conditions, 

either in-house or in partner laboratories. According to the disease of interest, screening methods 

based on molecular markers or on detached leaf testing are available. Hence, the company invests in 

the genetic control of bean diseases. It relies on intellectual property rights to ensure returns on this 

investment. By protecting its varieties with intellectual property rights, it renders their free multiplication 

illegal. The fact that common bean, by its biological properties as annual and mostly autogamous crop, 

is easily reproducible by customers or competing seed companies is regarded as a challenge: with 

little effort, seed users can surreptitiously multiply the company's varieties and save the royalties they 

owe the company. Two contrasting positions are indeed apparent: On the one hand, the Croqueurs 

consider that their customers contribute to the adaptability and health of bean by reproducing the 

lineages in diverse growing environments. On the other, the multinational company considers that 

intellectual property rights - preventing the free multiplication of bean varieties by seed users - are 

favourable to bean health by helping to finance genetic disease control.     

"Nowadays, concerning phytosanitary aspects we are very confident about property on plant material, 
because we think that it is by really putting means, research, by creating new varieties - and here we're 
not talking about transgenesis or taking some elephant gene, he - achieving something by simply 
multiplying our crosses, you know. What we notice is that the old varieties are by far not as tough as 
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what we obtain. Not systematically, there are exceptions. Beans like the variety 'Talisman', one of the 
oldest beans that exists, generally work well all the time. But breeding for the phytosanitary side of 
things is nevertheless a great, great way for us, for the future, he. Because, we, at [our company], are 
convinced that chemicals will go down. In 10 years we will spray less than we are doing now, and 
already 10 years ago we were spraying more, so we have to rely on those resistances. The problem 
we have is that common beans are autogamous plants, they are "seed to seed", he. You sow a seed, 
you sow it again, and again, and again... from one generation to the next..." [MSC-150216b] ix 

In the absence of any available treatments to control bacterial blights in bean fields, apart from copper, 

the management of bean health is focussed on keeping bean seed free of any blight agents, be they 

CBB or HBB agents. To achieve this, the production managers prefer having common bean seed 

grown in France, where they can visit and monitor the seed crops regularly. To limit the introduction 

and multiplication of CBB and HBB inoculum, registered bean seed production areas named blight-

free zones (zones hors graisse) have been created in collaboration with other seed companies and 

public bodies. In these registered zones, seed growers follow strict rules to ensure the sanitary quality 

of seed produced, namely: absence of blight bacteria in samples of 30,000 seeds for the basic seed, a 

crop rotation of at least 4 years, isolation of seed production fields (any other common bean 

production by amateurs or professionals other than registered seed production is forbidden), 

prescription of cultivation practices (wide spaced hose reel passages and tractor tyre passages, no 

plants sown in the headlands) and prescription of 4 copper treatments. If CBB or HBB appear in the 

registered zones despite these measures, an insurance scheme compensates seed growers for the 

destruction of the seed crop. The company also systematically destroys infected seed crops when 

growing bean seed outside registered zones.  

"The problem we have with bean blights is that they are diseases that appear at the end of the growth 
cycle. These are diseases for which, if really you see them at the stage of young plants, it means you 
have sown a rotten lot. And I've worked for companies where I guarantee you that it has happened. For 
us [...] disease expressions always appear after flowering - always, systematically. So in addition, in my 
profession, it's a bit complicated, because 15 days before harvest, you tell [the company]: "You won't 
have anything"; and you tell the farmer: "Plough it over". Euhhmmm... that's it. So it's always a very 
sensitive issue." [MSC-150216b] x 

Be it in or outside the registered bean seed production zones, bacterial blights have no place on seeds 

or in the production system and are understood in terms of economic loss. Research efforts of the 

multinational company are oriented towards further improving the management in view of bean seeds 

free of CBB and HBB. According to the experience of this company, the official method for CBB 

detection is not powerful enough in detecting seed infections. Therefore, its research and development 

department has developed more reliable sampling and testing methods. It is also testing a range of 

natural extracts for bactericidal and anti-stress effects on bean plants.   

Contrasting the bean health management of this multinational with that of the Croqueurs highlights the 

ways in which in situ plant health management functions. For the Croqueurs, "living with" bean blight 

agents implies judgement on whether a bean crop is sufficiently healthy according to the intensity and 

timing of blight symptoms. By contrast, to the multinational company "living with" the blight agents 

means keeping them away from bean crops, as illustrated by "blight-free zones". Whereas the 

Croqueurs must let their bean crops go through the interactions with natural growing environments to 

consider them healthy, the multinational relies on laboratory methods under controlled conditions to 

identify resistance genes in bean plants and detect blight agents on seeds. For the former, the object 
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of interest for plant health management is the bean crop in its growing environment. For the latter, 

plant health management depends on the knowledge about bean genetics and the contamination 

rates of seed lots.  

In conclusion, this contrast has highlighted that the PPO of in situ plant health management is not 

shared by the multinational seed company. The multinational rather focuses on seed testing methods 

and resistance genes to manage bean health, with two main consequences: Firstly, bean seeds are 

the sole vehicle for plant health, while the soundness of growing environments becomes secondary. 

Secondly, intellectual property rights are a precondition to invest in new, resistant bean varieties. 

Thereby, the seed company alone is responsible for bean genetics, which become disconnected from 

growing environments and management practices. In the next subsection, I further highlight 

singularities of the Croqueurs' approach by contrasting it with the practices of a seed company that 

comes closer to them in terms of basic values. 

1.2.2 A German organic seed company - Tiny among the big 

In the objective of working out the singular practices of the Croqueurs' more finely, their approach is 

contrasted with the bean health management of a German seed company that several Croqueurs 

members consider a partner. Unlike the Croqueurs members, the German organic seed company is 

actively involved in breeding programmes for novel vegetable varieties for the organic sector. This is 

not the case for any of the seed companies among the Croqueurs, although some of them 

occasionally pick out and multiply off-types that have randomly occurred in their seed crops. Unlike the 

multinational seed company, however, genetic resistance to bacterial blights is not a major objective in 

common bean breeding. The tolerance of bean plants to diseases is tested for in field trials. 

Resistance genes are neither tested for, nor advertised. 

For the management of seed-borne diseases in general, efforts of the German organic seed company 

are focussed on obtaining pathogen-free seed. A "seed diagnosis team" of five people is exclusively 

dedicated to the management of seed quality and plant health. With the means it has available as a 

larger company, hot water seed treatment has been developed over the past years and is now applied 

in an in-house facility, nicknamed the "wellness area" (it consists of a cheese vat converted by means 

of a whirlpool element). By soaking seeds in water of a specific temperature for a determined amount 

of time, pathogens are killed without diminishing the germination rate of the seed. Whereas this seed 

treatment is applied routinely on some vegetable species whenever the presence of a pathogen is 

confirmed, no appropriate treatment method has been found for bean seeds infected with CBB agents: 

Whatever the protocol, the bacteria survive the heat for longer than the bean seed. This has 

consequences for two bean varieties on which CBB agents have been detected, in particular. 

Multiplication and marketing of these varieties are put on halt as long as the "seed diagnosis team" 

doesn't find a method to obtain CBB-free seed. Despite low contamination rates and the observation 

that these rates seem haphazardly linked with the occurrence of CBB symptoms, "living with" the 

quarantine pathogen in the sense of the Croqueurs is not considered an option. This is explained by 

two interviewees in the citation below. 
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"We have the problem, as I have said before, that we have already lost two varieties, for which at the 
moment we have seed from the breeder, where it was detected. We are working with it and trying to 
get it free [of CBB]. And then, once we have the method, we can go on and say: We are generally able 
to get basic seed free, because we can do it on limited amounts - pre-basic seed - then we can 
multiply. That may still be fraught with some risk, but the precondition is that the breeders and 
conservation breeders can work cleanly." - "Exactly. That's the alpha and omega, that the basic seed is 
free of these quarantine pests, of Xanthomonas in this case" [SOS-181215g] xi 

The German organic seed company aims at obtaining CBB-free seed and expects "clean" work of the 

seed growers. The actors of this company acknowledge that plant pathogens are the natural 

companions of plant populations and that they have a role to play in wild ecological systems. 

Nevertheless, in agricultural systems, they consider it illusionary to "simply master it all with good 

organic cultivation" [SOS-181215g], at least at their own scale. This may be explained by the risk of 

spreading CBB associated to a larger company, or more generally by a different relation to norms and 

regulations. The German company's approach to plant health and seed quality is also related to the 

market segment it is supplying.  

"In our market segment, we are indeed dealing with the competition from the really big ones in the 
sector, comparable with Clause Tézier in France, for instance. That would be our competitor, in that 
case. Here, we are dealing with Bejo, with Rijk Zwaan, with Enza Zaden, with Nunhems, with 
Syngenta... Those are our competitors on the market. And they dictate an enormous degree of... well, 
how shall I say... of "health", as you might call it... visual quality, germination rates, cleanness... well, 
everything that is needed for today's farmers to obtain optimal results in the field with today's 
technology, I mean quantitatively optimal results. And this movement, our movement, was not really 
able to gain ground in the first twenty years, approximately, maybe the first fifteen years - it has 
changed since we have founded [the public limited company] - not able to gain ground due to a lack of 
methods, a lack of competencies, a lack of possibilities to meet these external quality criteria. 
Considering the question: How reliable is the seed quality? In terms of germination rates or health and 
so on... the farmer said: "I can't afford that" - if suddenly the lamb's lettuce has a load of mildew, 
because the seed already came with a lot of mildew. That was in the past, now we have that under 
control and of course we use all the possibilities... that we have through the modern plant diagnosis 
technologies, which exist." [SOS-181215g] xii 

As comparable with Germinance, a French Croqueurs member, about 50% of the German organic 

seed company's seed sales are accounted for by organic market gardeners. However, while the 

former describe their professional clients as small scale, diversified farms engaged in local food 

systems, the latter see "big" market gardeners among their customers. Facing economical pressures, 

these "big" market gardeners have specialised their vegetable production, thereby shortening and 

simplifying crop rotations and enhancing nutrient levels. Whereas the French artisanal seed 

companies generally position their vegetable seeds in the low-input organic sector and on diversified 

farms, their German partner is also oriented towards the intensive organic sector. 

The hot water treatments reveal some congruence between the Croqueurs and their German partner. 

By offering the Croqueurs the service of treating seed batches and the knowledge acquired about hot 

water treatments, the German company positions itself alongside the artisanal seed companies in the 

context of market competition. Also, the requirements of hot water treatments reveal congruence in the 

approach to seeds as living beings.  

"We wanted to do it on Jean-Michel's parsley which wouldn't germinate, but he tested it again and, 
finally, it germinated really well! (laughter) So that's why it wasn't done... Well, it's seed that is two 
years old, the fungus that was on it must have died or lost its vigour and the seed must have regained 
the upper hand since. There's that, too: a seed is alive, so..." [CRO-190515s] xiii 
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As the optimal treatment protocol has to be determined individually for each seed lot, the seed cannot 

be treated as a standardised product. Nevertheless, the approaches to hot water seed treatment 

chiefly reveal differences in approaches to plant health. While several Croqueurs members consider 

occasional thermal seed treatments for problematic seed lots, the German company routinely tests 

seed lots of some vegetable species and applies hot water treatments whenever the presence of a 

pathogen is confirmed. The German organic seed company has thus begun concentrating its bean 

health management efforts on bean seed, rather than on the triangular interactions between bean 

plants, growing environment and growers.  

Both the German organic seed company and the multinational seed company demonstrate that the 

focus on "clean" seed signifies a rupture at two levels, as compared with the collective in situ 

management of the Croqueurs. Firstly, the soundness of field environments becomes secondary for 

the management of seed-borne blight diseases. When plant health management is oriented at 

obtaining pathogen-free seed through seed treatments or genetically resistant varieties, competences 

focus on the seed as sole vehicle of plant health. Hence, the focus of bean health management is not 

oriented at the triangulation of the crop, the growing environment and the seed grower in situ.  

Secondly, a rupture takes place in the role of seed growers and customers in bean health 

management. For the Croqueurs, customers must be aligned on the management of sound 

environments to ensure bean health. For the German organic seed company, as for the multinational, 

providing "clean" seeds allow for a more lax alignment of field environments.  

The break with collective governance of plant health is most radical for the multinational seed 

company: the division of labour between the seed company and the seed growers it contracts differs 

from the labour division among the Croqueurs. As the properties of a bean lineage are intimately 

linked to the environment in which it was grown and the seed grower's management, a bean lineage's 

genetic make-up can't be neatly distinguished from the environment or the seed grower for the 

Croqueurs. From the perspective of the multinational company, however, it is the seed company's job 

to manage bean genetics and to furnish seed growers with blight-free seed. The seed grower's job is 

to multiply the seed while avoiding the introduction of blight agents into the seed crop - a sound 

environment is one where blight agents are absent. Toward their customers, the Croqueurs consider it 

as their role to provide them with adaptable bean lineages. In contrast, the multinational seed 

company considers the bean varieties it develops as fixed in time and space. Genetic resistances, 

along with other valuable traits bred into bean varieties, are both the service offered to clients and an 

occasion to gain a competitive edge over other companies. The role of the customers is not to 

reproduce bean seed, develop own lineages and maintain adaptable crop diversity. Quite the contrary, 

the company's return on investments in resistance breeding depends on intellectual property rights 

which disallow the uncontrolled multiplication of bean seeds. By concentrating competencies of bean 

health management on bean seed, competencies are thus also redistributed. In this approach of plant 

health management, competences don't concern customers, but are distributed among specialised 

staff in charge of resistance breeding and seed technologies (pathogen detection, seed treatment).  



 

75 

Unlike the multinational, the German organic seed company does not invest in bean resistance 

breeding. Plants are tested for general tolerance to plant diseases in field trials, rather than for genetic 

resistance under controlled laboratory conditions. Like the Croqueurs, the German company rejects 

intellectual property rights on crop varieties and exclusively proposes vegetable varieties from the 

public domain, which are reproducible by their customers. Nevertheless, in terms of seed health 

management, this company has begun to concentrate its competences on bean seeds. By engaging 

in systematic seed testing for plant pathogens and thermal seed treatment, competences are 

concentrated within the 'seed diagnosis team' of the company. 

In summary, this subsection has specified the main attributes of the Croqueurs' bean health 

management approach, both by tracing their practices and by contrasting them with the practices of 

two other seed companies. We have seen that their approach to bean health ensues from reasoning 

crop diversity in terms of lineages determined by growing environments and seed growers' practices. 

Along with its other properties, the health status of a bean lineage is intimately linked to the 

environment in which it is grown and to the seed grower's management. The observation of seed 

crops in their growing environments constitutes an OPP for the management of bean health, thereby 

coining the term in situ management to summarise this approach. Competences of bean health 

management encompass the triangular interactions between plant populations, growing environment 

and grower. The in situ management of bean health requires that the seed growers and seed users be 

aligned on it by accepting blight agents on seeds and in the growing environment. They align by 

fostering the adaptability of bean lineages on one hand and accounting for the growing environment in 

plant health management on the other. Managing plant health is thereby a collective endeavour. 

Competences for bean health management are distributed over a wide range of actors, including seed 

growers, seed artisans and seed users.   

The previous descriptions have not, or only marginally, taken into account legal constraints on bean 

health management. The next subsection will address the protective measures against CBB, which 

are set down in the EU plant health directive. In the aim of better understanding the legal constraint 

encountered by the Croqueurs in their bean health management and the tensions that arise from it, I 

will unfold the protective measures on CBB.  
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2 Protective measures against CBB agents 

In this subsection, I unfold protective measures on CBB agents as they are implemented in the EU, 

and especially in France. Understanding the workings of the protective measures will enable us to 

apprehend legal constraints faced by the Croqueurs members and the origin of tensions between the 

two approaches.  

To shield its Member States from the introduction and establishment of organisms harmful to plants26, 

the European Union (EU) sets down protective measures in the council directive 2000/29/EC27. In this 

legislation, rules for the control of plant pests are established 28 . CBB agents figure among the 

regulated pests and common bean seeds among the controlled "subjects of contamination". CBB 

agents are thus regulated as what is called a "quarantine pest" in phytosanitary lingo. As a 

consequence, common bean seed destined for European market gardeners (not for home gardeners) 

require a European plant passport (EPP) to circulate within the EU29. Be they originated from in- or 

outside the EU, bean seeds must meet one of two specific requirements to obtain the EPP: an official 

statement must confirm either that the seed was produced in an area known to be free from the 

bacteria, or that a representative seed sample was tested and found free from it. This differentiates 

"quarantine pests", regulated by the Plant Health directive, from so-called "quality pests", which are 

controlled in the framework of seed certification with the objective of ensuring seed quality. "Quality 

pests" can be accepted on seeds up to a specific threshold, whereas "quarantine pests" are not 

tolerated. Vegetable seeds like common bean are seldom - not to say never - certified and usually sold 

as "standard" seed, implying that they are not concerned by "quality pests". 

2.1 The scientific opinion on the categorisation of CBB agents 

At regular time intervals, the European Commission commissions the Panel on Plant Health (PLH) of 

the European Food Safety Authority (EFSA) to revise the list of "quarantine" pests. In 2014, the PLH 

formed a working group of scientific experts to emit a "scientific opinion on the pest categorisation" of 

CBB agents, which was published the same year (EFSA Panel on Plant Health, 2014). The working 

group consisted of 6 scientists working in the field of plant pathology in five countries. The "scientific 

opinion" emitted by the working group appears as a good starting point to unfold the rationale behind 

these protective measures by tracing the alliances made to justify and implement them. Based on the 

three domains constituting expertise according to Callon and Rip (1992), the report on the scientific 

opinion shall be dissected with three questions in mind: (i) Which is the socio-political and economic 

                                                      
26 Organisms harmful to plants or plant pests include insects, mites, bacteria, fungi, viruses and parasites. 
27  Council directive 2000/29/EC of 8 May 2000 on protective measures against the introduction into the 
Community of organisms harmful to plants or plant products and against their spread within the Community. To 
date, this directive has been amended 29 times. Phaseolus L., the genus to which common bean (Phaseolus 
vulgaris L.) is affiliated, is mentioned in Annexes II (Section II of Part A), IV (part A) and V. 
28 The directive is adopted by the Member States and transposed into national laws. Each Member State must 
adopt the protective measures set down in the EU directive, but may supplement with additional national control 
measures. 
29 While I myself have only a very vague memory of the days when this was also true for humans, it might remind 
some readers of this thesis times before the Schengen agreement. For bean seeds, this means that the 
requirements of the plant health directive have to be met in addition to the requirements of seed legislation. 
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scope of the protective measures? (ii) Which knowledge on CBB agents is mobilised? (iii) Which rules 

and procedures determine the work of the expert group?  

The working group summarises its conclusions according to a set of criteria prescribed by international 

standards30. The first among the criteria requires that CBB agents be identified and detectable. The 

focus is set on the pathogenic bacteria causing CBB31, and not on the disorder or symptoms it causes 

in bean plants. Protection measures are based on the knowledge bacteriologists have acquired about 

the bacteria, which the working group graphically summarised in the disease cycle (Figure 3.2). 

 

 

Figure 3.2: The disease cycle of common bacterial blight of common bean (source: EFSA Panel on Plant Health, 
2014): In temperate regions like Europe, common bean seeds themselves are considered the only relevant 
source of incolum for primary infection with CBB agents. The bacteria can contaminate the seed from the inside 
via the mother plant or reach the seed surface of previously "clean" seed during the threshing and cleaning 
process. When the seed is sown and the bean plantlet emerges, the bacteria enter its leaves through natural 
openings and wounds. To multiply and induce disease symptoms, the bacteria then require temperatures of 28–
32 °C (Opio et al., 1992) and a relative humidity above 80 %. This is called primary infection. Once this is done, 
the bacteria can proceed to secondary infection. They can move to other bean plants by water splash, wind 
storms, touching leaves, insects, agricultural machinery and farmers' (or other people's) boots. 

                                                      
30 International Standards for Phytosanitary Measures (ISPM) no. 11 issued by the International Plant Protection 
Convention (IPPC). These standards can be understood as criteria  plant pathogens have to meet to be eligible 
for strict and costly protection measures as "quarantine pests". 
31 According to the current taxonomic nomenclature, a single disease - CBB - is caused by two causal agents, 
namely Xanthomonas fuscans subsp. fuscans (Xff) and Xanthomonas axonopodis pv. phaseoli (Xap). The plant 
health directive employs an older nomenclature which designates both these species under the name 
Xanthomonas campestris pv. phaseoli. 
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Research on the persistence of CBB agents on common bean debris, other crops and weeds has led 

to the conclusion that CBB agents have no other means than common bean seeds to survive from one 

year to the next under European climate conditions: Bean seeds are the obligatory passage point 

(OPP) for CBB agents to enter the EU. Detecting the bacteria on bean seeds is thus the PPO for the 

EU to prevent them from entering and spreading. The official method for the detection of CBB agents 

on seeds is set down by the International Seed Testing Association (ISTA) (2014) 32 . The risk 

associated to the seed trade is measured upon industrial common bean seed production schemes on 

a worldwide scale. 

The industrial common bean seed production scheme is currently not done on a local scale but on a 
worldwide scale. Two to three harvests of seeds of a given common bean cultivar adapted to a 
specified market can be produced each year, taking advantage of locations worldwide that are 
favourable for common bean production. Hence the global distribution of pathogens has consequences 
for the movement not only of germplasm but also of commercial seeds. The international trade in 
seeds is an efficient means of pathogen movement [...] (EFSA Panel on Plant Health, 2014) 

The other three criteria examined by the working group comprise two basic ideas, namely that the 

spread of CBB agents represent an unacceptable risk for European common bean production and that 

it is not yet too late33. In assessing the risk that CBB agents represent for European economies, the 

working group refers to the numerous common bean plants grown in the Community. Thereby, they 

also point to all who would be at risk if CBB ravaged European common bean fields: seed growers, 

seed companies, market gardeners, bean farmers, green bean canning and freezing companies and, 

lastly, consumers of common bean, whether they prefer them as Luxembourgish Bouneschlupp (bean 

soup), simmered fagioli cannellini the Italian way, or British baked beans. The bean fields of Southern 

Europe are at stake, in particular, because they present climate conditions which suit CBB agents. The 

working group relies on reports from national plant protection organisations in concluding that CBB 

agents are absent from 11 Member States and present in 17 with a restricted distribution. As one of 

the experts of the working group explains, CBB agents are not considered endemic. 

"... it is not endemic, in any case... phaseoli or fuscans is not endemic in Europe. It may be detected 
occasionally, but a priori it doesn't seem to be endemic, that's why it is still quarantine. Apart from that, 
observations of Xanthomonas, be it phaseoli or fuscans, in Europe, date back over a long time, as the 
first strains of fuscans were observed in Switzerland - certainly on an imported lot, by that matter - it 
was in the years '24 or '26. [...] Anyway, it was detected in Switzerland. Apart from that, in France, the 
last "epidemics" in quotation marks or infected areas with phaseoli which have really been alerting are 
rare, there are a few, well, for instance at the organic farmers' in the South-West. There we were really 
confronted with that, but it is not so frequent. So, it doesn't seem to be an organism that is really settled 
in Europe, in any case." [NRI-281014Jj] xiv 

Based on the report of the working group, the European Commission will decide upon the fate of CBB 

agents as regulated pests, with three possible outcomes: the Commission can directly maintain or 

remove the bacteria from the list of quarantine pests, or request a more thorough Pest Risk 

Assessment (PRA). Although the Commission has not yet decided upon the future categorisation of 

                                                      
32 It was modified recently, in 2014, because the former protocol obtained too many false positive results due to 
invasive pathogenicity tests. 
33  Not only are protection measures costly for the EU, but they are also examined by the World Trade 
Organisation (WTO) as non-tariff barriers to trade under the Agreement on the Application of Sanitary and 
Phytosanitary measures (SPS). 
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CBB agents, the report of the working group sheds light on current protective measures in view of the 

three questions listed above.    

(i) The protective measures against CBB agents aim at protecting common bean production and 

all who depend on it, especially in Southern Europe (socio-political scope).  

(ii) Given that CBB agents are not widespread in the European Community and common bean 

seeds are considered their main vector under European climate conditions, protective 

measures depend on the detection of CBB agents on bean seeds (science). 

(iii) Common bean seeds produced in countries where CBB agents are known to occur and 

destined for professional users must undergo seed testing (rules and regulations). 

Having identified these three conditions for the protective measures on CBB agents, I will draw the 

connection from the European Plant Health directive to the implementation of seed inspection in 

France. In view of understanding tensions between the protective measures and the Croqueurs, it is 

necessary to shed light on seed inspection as the circumstance in which they are faced with 

eachother.  

2.2 Think global (protection), act local (inspection) 

The EU plant health directive requires that common bean seed destined at market gardens in the 

Community come with an official statement proving that it is free of CBB agents. To become effective, 

requirements of the plant health directive are transposed into national law by the Member States and 

implemented by officers on the regional level. Seed produced in Members States known to be free of 

CBB, such as Belgium or Luxembourg, do not require analysis. For bean seed produced in a Member 

State not known to be free of the bacteria, the official statement is based on seed analysis. A 

comparison of how France and Germany interpret and practice this measure reveals that national 

provisions are proportional to the stakes the Member states have in bean seed production. In 

Germany for instance, the responsibility of conforming with the obligation of CBB-free seed is left to 

seed companies. If an unconformity with plant health requirements is found, seed companies risk 

being fined and made liable for the cost of the product recall.  

"But we know, that due to the low number of vegetable seed providers nowadays - most of it comes 
from Holland or elsewhere - this part is as good as not supplied anymore. They still go to building 
centres with amateur sachets and so on, they still have a lot to do there, but even that is poorly 
supplied. [...] We are responsible ourselves and if something was found, we would be in trouble. That is 
different here in Germany from what is done in France. That's why there is no official... no obligation of 
analysing bean seed lots for example. We don't have that. We do a lot of our seed multiplications in 
Germany. We analyse them voluntarily." [SOS-181215g] xv 

By contrast, France implements more restrictive provisions for seed inspection by prescribing the 

means to obtain CBB-free bean seed. Every commercial seed lot produced and issued with an EPP in 

France must be tested according to the official ISTA method. Regional seed inspection officers check 

that bean seeds put on the market for sale to professionals have a negative analysis result. 

"...when I follow up the documents, I pick a random lot - I work with lot numbers - and I check that it has 
its analyses, at least if it's a lot of bean seed and the analysis is obligatory to conform with EPP 
requirements, well... I have to have a negative analysis in order to confirm that... they rightly issued the 
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EPP. And if for another lot I find an EPP despite a positive analysis and the company nevertheless 
marketed and nevertheless issued the EPP, well then, that's a real non-compliance." [PIA-111215c] xvi 

Formerly undertaken by public regional services for food and agriculture (Service régional de 

l'alimentation - SRAL), phytosanitary inspections on vegetable seeds have been delegated to a private 

actor since 2014. The inspections are now carried out by GNIS-SOC, i.e. the official service for 

inspection and certification (Service officiel de contrôle et certification - SOC) of the only French inter-

branch union for seeds and young plants (Groupement national interprofessionnel des semences et 

plants - GNIS). The SOC is both fully integrated into GNIS - as it has no distinct legal form - and 

distinct from GNIS. SOC is accredited as independent and impartial certification body by the French 

accreditation body (Comité français d'accréditation - COFRAC). Impartiality and independence from 

GNIS as inter-branch union are ensured by a separate SOC national director, who is a delegated 

public official. The GNIS-SOC is thus distinct from GNIS in terms of missions and national director. In 

the regional GNIS offices, however, the distinct missions are managed and realised by the same 

teams of people.  

"Anyway the organisational scheme of GNIS and SOC, so the headquarters is in Paris... the 
headquarters is in Paris [for GNIS]... and for SOC, yes, yes. So, one has to review the history of the 
issue a bit, I mean: GNIS existed before inspections became obligatory in regulations. Some sectors 
had at that time organised to set up systems of quality control, for instance for potatoes, for maize, for 
cereals at the beginning. And then, at one point Brussels decided to legislate on that issue. In France 
there was an organisation that pre-existed in the form of GNIS and so, naturally, at that time the 
Ministry thought, well, we are not going to reinvent what is already functioning. And decided to entrust 
GNIS with the inspections, which now became obligatory [on the European level] and thus in all 
Member States at that time, through seed certification. And... so, here we are not talking about the 
sanitary issues for the moment, as these were the directives on seed marketing and the sanitary is not 
part of it, except for some "quality pests". But... so, I don't know if it goes back to that time, but what 
happened is that SOC was placed under the direct responsibility of the Ministry of Agriculture by 
means of an official of the Ministry of Agriculture seconded to GNIS to ensure the management of 
SOC. So actually one might say that GNIS is bicephalous: One part is purely interprofessional, with the 
GNIS director, and one part within GNIS in charge of ensuring regulatory functions, which is under the 
authority of an official seconded by the Ministry of Agriculture. Apart from that, when we are in the 
regional branches, I am in charge of a team of persons who may wear both hats." [PIA-170216p] xvii 

Since 2014, regional GNIS branches are thus in charge of phytosanitary inspection of vegetable seed 

lots and reporting back to the public body in charge of phytosanitary protection, SRAL. It is in the 

framework of these institutional and organisational changes that artisanal seed companies in France 

are questioning protection measures against CBB agents, as I will describe in the next section.  

In summary, the Croqueurs' approach to bean health management has been specified and 

summarised by the term in situ management in the first section. In this section, the conditions under 

which CBB agents are classified as regulated pest have been recapitulated: under the premise that 

CBB agents have not yet spread in Europe and to protect European bean production and consumption 

from their spread, only CBB-free seed is permitted to circulate. Controlling for this special requirement 

depends on official seed testing methods. In France, a stringent implementation of the protective 

measures prescribes an official seed test on any bean lot produced in France and destined at 

professional seed users. The French government has recently delegated seed inspections to the 

official certification service of a private inter-branch union concerned with seeds. Thereby, the 

approach of protective measures, as they are reasoned by French seed inspection based on the Plant 

Health directive, has been elucidated. Two approaches to bean health have been unfolded. The third 
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and last section of this chapter will address incompatibilities between the two approaches by tracing 

the encounter between the Croqueurs members and the Plant Health directive.   

3 Overrunning the frame of the protective measures 

The plant health management rationale of artisanal seed companies as actor-network embedded in 

plant-environment-management interactions has been set out in the first section. Then, the rationale 

behind the protection measures against CBB agents was drawn in the second section. Particular 

emphasis was put on describing the rigorous seed inspection practiced in France. Seed inspection 

constitutes the encounter between the protective measures of the EU plant health directive and the 

plant health management of the Croqueurs members. Tensions between the two thus take shape 

through seed inspection. In this section, I will show how the Croqueurs assert their approach to plant 

health by overrunning the frame of the protective measures. In this aim, I will trace the Croqueurs' 

tentative to unlock the three fields of expertise upon which the plant health directive is built (Callon and 

Rip, 1992): the field of science and technology, the field of laws and regulations and the socio-political 

field. In order to do so, we will begin by following individual Croqueurs members in their encounter with 

the protective measures before tracing how individual situations are translated and relayed by the 

collective of the Croqueurs association. 

3.1 Questioning the scientific presuppositions 

The hot debate upon which this PhD research was established and the process by which the research 

device was progressively transformed has been discussed in Chapter II. The Croqueurs participate in 

the project in the aim of demonstrating that the "quarantine" measures on CBB agents are not 

compatible with their own practices. By accepting to involve in a research project with INRA, they 

attempt to question the science upon which the protective measures draw.  

Their critique is based on the experiences of one of the seed companies among the Croqueurs 

situated in the South-West of France where both CBB and HBB occur. The company's experiences 

and critique have been put down in a letter cited on p.30. It is also this company which, on behalf of 

the Croqueurs, takes initiative in pushing for research on the subject. In speaking on behalf of the 

Croqueurs, the query is given weight and a wider scope. Concurrently, relay for the query is ensured 

by the other members. The Croqueurs endeavour to unsettle two components of the CBB quarantine 

in the scientific domain. Firstly, they challenge one of the conditions of the protective measures, 

namely the absence of CBB agents in Europe. Secondly, they call into question the detection method 

employed to implement the protective measures.  

A first element of the critique of scientific presuppositions behind the protective measures concerns 

the endemicity of CBB agents in Europe. As shown in the previous section, the protective measures 

hold only if CBB agents are not yet widespread within the protected area. In the report of their 

"scientific opinion", the working group in charge of revising the criteria for the categorisation of CBB 

agents acknowledge that the bacteria are present in 17 Members States with a restricted distribution 
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(among them France). Nevertheless, for the working group this distribution is not sufficient to consider 

CBB agents as widespread. It is this conclusion that is indirectly called into question by the Croqueurs 

member from the South-West of France, following an attempt to rid the company's bean lineages of 

CBB. Under pressure from the regional seed inspection authority34 because of CBB agents detected 

on seed lots of susceptible bean varieties, the seed company had put in place informal "blight-free 

zone" according to the rules put in place in the official, registered bean seed production areas. As 

sowing CBB-free seed figured among the rules for the zones, the company had to leave aside their 

own bean lineages and buy commercial seed of the concerned varieties as basic seed. Although the 

acquired seeds had been issued with an EPP guaranteeing CBB-free seed, they were sampled and 

tested for CBB to make sure. Three out of eight samples were tested positive for CBB. In view of these 

results, the seed artisans figure that neither themselves, nor the industrial seed companies they had 

bought the bean seeds from, are able to rid their bean seeds of CBB despite rigorous measures. To 

them, it seems obvious that CBB is widespread and endemic35 in France. This leads them to conclude 

that protective measures against CBB are not justified, even according to the official procedure for 

pest categorisation. This argument only enforces the artisanal seed company's experience of bacterial 

bean blights. They have learned to live with and manage bean blights on their bean lineages, whether 

they are caused by regulated CBB agents or non-regulated HBB agents. Differentiating between the 

bacterial species is of no practical importance to the artisanal seed company. In other words, bean 

blight symptoms have been "endemic" in their production regions ever since they can remember. By 

arguing at the level of CBB agents as bacterial species, the seed company resorts to debating in the 

scientific field traced out by the Plant Health directive. 

The second element of critique put forward by the seed company from the South-West of France 

concerns the official seed testing method put down by the ISTA for the detection of CBB agents. Like 

the first element this one, too, stems from an attempt to rid the company's bean lineages of CBB in 

2009. In parallel to setting up informal blight-free zones, the seed company tested different methods to 

eliminate or reduce infection rates of CBB-infected seeds of their own bean lineages. In the framework 

of these trials, the seed growers wanted to test the efficiency of their selection for plant health on a 

bean seed crop in which they observed heavy blight symptoms. In this aim, they sent one sample of 

seeds derived from positive selection for plant health for analysis, along with one sample from the 

seed harvested in bulk in the same field without applying any selection. Given the severity of 

symptoms observed in the fields, they were astonished to find negative analysis results for both 

samples - so astonished, that they sent in a second sample of the unselected seed lots to double-

check. This time, the result of the analysis was positive - and cast doubt on the validity of official 

methods for CBB detection. On one hand, these doubts put into question the conclusions drawn about 

the CBB detected on commercial seed lots acquired from industrial seed companies and told in the 

preceding paragraph. They ensue the question: Can positive results be trusted? On the other hand, 

the contradictory results of the duplicate seed analyses cast further doubt on the scientific basis of the 

                                                      
34 ... which was still, at that time, a public body. 
35 In epidemiology, an infection is said to be endemic in a (plant) population when that infection is maintained in 
the population without the need for external inputs.  
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"quarantine" measures: Are the official detection methods reliable36? Again, the doubts cast on the 

scientific foundations of the protective measures support more general critique of the official method, 

that is based on the company's practical experience and shared by other Croqueurs members. The 

more general critique concerns the practicability of the minimum subsample size required for the 

official ISTA method - samples of 5000 seeds (Grimault et al., 2014) - for artisanal seed companies 

producing small seed lots. By questioning the validity of official detection methods, the seed company 

again ventures into the scientific field determined by the Plant Health directive.   

It is with these arguments concerning the spread of CBB agents in Europe and the reliability of official 

testing methods that the seed company from the South-West of France, in its letter, underlines its 

recommendation to "live with" the bacteria rather than to try to eradicate it. By doing so, the seed 

company gives up arguments stemming from its own practice and resorts to debating in the scientific 

field traced by the Plant Health directive: Rather than arguing upon its own experience of living with 

blight symptoms on common bean, it directs it arguments at the prevalence of the bacterial agents and 

the methods employed to detect them.  

In conclusion of this subsection, the Plant Health directive does not only force the seed company to 

align upon its OPP of CBB-free seed for bean health management. The procedures and scientific 

presuppositions behind the protective measures also delimit the range of arguments considered 

receivable in the debate about the protective measures. The artisanal seed company thus pushes its 

argument onto this terrain in the aim of unsettling the scientific base of the CBB quarantine. In the 

following subsection, I will tell how the endeavour initiated by this artisanal seed company in the 

South-West of France to defend their practice of in situ plant health management is relayed by other 

Croqueurs members. I will specify how this common intention is translated by individual seed 

companies in their interactions with seed inspection authorities. 

3.2 Negotiating procedures and risking a legal dispute 

In the first section of this chapter, in division 1.1.3, I have discussed the Croqueurs association as a 

space where the member seed companies exchange their viewpoints and practices in view of tracing 

out and defending their common ground. Facing the protective measures against CBB through 

phytosanitary seed inspections, the members attempt to align on a common position on plant health. 

Even if they don't all undergo the same pressure from their regional seed inspection authorities 

concerning CBB infections of bean lineages, the French seed companies in particular are concerned 

about phytosanitary regulations on seeds.  

"And I also sent an e-mail concerning the quantities, telling GNIS: 'You see, I have conducted a study 
on the bean productions of autumn 2013' - it was especially for beans that we had a bit of problems, or 
the risk of having problems - I told them: 'You see, our average lot weighs'... 25 kg, I think. 'Do you 

                                                      
36 Several hypotheses for inconsistent results in duplicate analyses have been proposed by a bacteriologist. For 
instance, the protocol of the official ISTA method was revised five years later (Grimault et al., 2014), because the 
previous method resulted in too many false positive results. Also, CBB agents at low bacterial densities near the 
limit of detection may be detected in one analyses, but not the other. Finally, sample sizes are about statistical 
calculations: If seed infection is not homogenous and only a few seeds in a lot are infected, one sample may 
contain infected seeds, while the other sample may not. However, the artisanal seed company doesn't go into 
questioning the exact reasons for the unreliable testing results. 
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really consider that the regulation is suited for lots of 25 kg? Given that samples of 3 kg, or 4 , are 
needed to make an analysis of the content'... I mean, of presence or absence of bean blight." [CRO-
190515d] xviii 

Regarding the inspections on bean, the seed samples required for official seed tests are considered 

disproportional to their own activity. Given that the artisanal seed companies produce small seed lots, 

seed testing is proportionally more expensive for them than for seed companies producing large bean 

seed lots. The Croqueurs do not feel adequately treated by the requirement of systematic seed 

testing. 

In addition, regarding seed inspections in general, the Croqueurs judge GNIS, the only French inter-

branch union for seeds, illegitimate to constitute an independent and impartial seed inspection body. 

"Wait, there is a big company that produces seed in France. It's Limagrain - Clause Tézier - Vilmorin, 
it's the same company. It represents 80 or 90% of the market, I don't know. But they're making all the 
money at GNIS. The president of GNIS, I don't even remember his name, who cares, even, but he is 
under the thumb of Clause Tézier - Vilmorin. Thus, the partiality of that... And in addition, they have a 
governmental, a ministerial delegation. So, they have a power... It's a corporatist union like they don't 
make them anymore." [CRO-260814b] xix 

The Croqueurs association does not consider the interbranch union GNIS as an adequate 

representative, nor its official control service GNIS-SOC, to which public authorities delegated the 

phytosanitary bean seed inspections. Based on the organisational structure of the GNIS, the 

Croqueurs suspect that multinational, conventional seed companies direct the interests of the inter-

branch union. Some of the Croqueurs members also expect that these companies may profit from 

information gained in seed inspection. Moreover, a system of officially monitored self-controlling, which 

is being set-up by the GNIS-SOC to replace current phytosanitary inspections, is perceived by the 

Croqueurs as a further step towards Plant Health regulations that suit the "big" seed companies, but 

not the small, artisanal ones.  

To begin with, the French Croqueurs members agree not to cooperate with the newly delegated seed 

inspection in the aim of conveying their discontent. However, coordinated disobedience is not 

practicable by the individual seed companies facing their regional seed inspectors. As most of the 

artisanal seed companies have already engaged in negotiations with their regional seed inspectors, 

they can no longer back off. Aware that they cannot keep up with the legal requirements of the CBB 

quarantine, they experience that arrangements can be found with the seed inspectors on the local 

scale. Although the legal OPP of seed testing is not negotiable, it can be adapted to the seed 

companies' needs. For instance, in return for implementing certain phytosanitary procedures, one 

company negotiates that only a proportion of bean seed lots be randomly selected and tested every 

year, instead of all of them. Another obtains the informal permission to test samples of 10% of each 

seed lot at most, even if such samples don't conform with the official ISTA methods. For the individual 

seed companies, bean health management is thus also about finding an interlocutor to negotiate 

practicable compromises in the framework of seed inspection. By negotiating sampling procedures 

and deviating from the official method at the local level, the objective of the Plant Health directive - 

eliminating CBB-infected seed from European ground - is eroded. It is transformed into negotiations 

about acceptable risks of spreading CBB. The question of risk is contained in the negotiations about 
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seed samples, as the sample size is proportional to the "desired tolerance standard" (i.e. to the 

maximum acceptable percentage of infested seeds). Whereas the risk assessment underlying the 

Plant Health directive refers to the "industrial common bean seed production scheme" done "on a 

worldwide scale" (EFSA Panel on Plant Health, 2014), the accepted level of risk is informally adapted 

to artisanal seed production in the framework of local seed inspection.  

In the end, only one member of the Croqueurs persists in its categorical refusal to cooperate with the 

GNIS-SOC.  

"So, we are the only ones who have done strictly nothing... Plus, they have not even contacted us 
again, for the moment. We haven't had any contact in a year. [...] We have registered the plots. That is, 
last year, the only thing we did is to register the plots... as if to say: 'Anyhow, we don't have anything to 
hide. If you want to go and see them, go and see them, but we won't sign any contract, and we don't 
want to pay anything' [...] I told the regional branch: 'Anyway, you are pre-empting the European 
regulation.' Since the European regulation has to be published... it's not been published to date, to my 
knowledge. I say: 'As long as the European regulations haven't been published, I don't see why I 
should abide by your regulation.' " [CRO-190515d] xx 

This company renounces to negotiating seed inspection procedures locally in order to dismiss 

national, if not European, plant health regulations altogether. By refusing to sign the agreement with its 

regional GNIS-SOC branch, the seed company is legally unable to issue EPPs and risks legal 

proceedings. In both cases - whether procedures are negotiated locally or cooperation refused 

categorically - the protective measures are undermined by unsettling their procedures.  

In this subsection, I have described how the Plant Health directive and its French implementation are 

undermined by disputing its underlying procedures. By negotiating seed sample sizes for CBB 

detection, the risk assessment for protective measures is informally adapted to the scale of the 

artisanal seed companies. Only one seed company withstands local negotiations and refuses to 

cooperate with its local seed inspection authority. Although this company is "isolated" in its categorical 

position, this doesn't mean that it is isolated in debating the socio-political scope of the protective 

measures on CBB. In the next subsection, I will trace the nascent attempts - for the moment no more 

than ideas - to open a debate the socio-political scope of the "quarantine" measures. 

3.3 Debating scopes and asserting an identity 

In subsection 2.1, I concluded that the protective measures against CBB agents aim at protecting 

common bean production and all who depend on it, especially in Southern Europe. By protecting 

European bean plants from CBB, the EU legislators intend to protect seed growers, farmers and all 

who depend on common bean in one way or the other. In France, the GNIS-SOC, as private inter-

branch union in charge of official seed inspections, also considers itself a spokesperson for seed 

growers, seed companies and seed users.  

"That's where I understand that the small makers, who already don't make much seed... and that one 
analysis constitutes this many seeds and this much money... It's not possible. So, that's where we 
would need to be unanimous - because there are a lot of small organic makers, and not only in France. 
So, their way of producing also has to be taken into account and maybe we could make things evolve 
as to say: It's an inspection in the crop. That could be an answer and avoid consuming seed for 
nothing, because I understand that it isn't possible to make an analysis on... that's it. It's just... but, the 
regulation exists, and that's where there is an interest in having the SOC to... relay the information and 
that the inter-professional union gets a move on for something." [PIA-111215c] xxi 
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The seed inspection officer cited above suggests that the GNIS serves as spokesperson for small-

scale organic vegetable seed producers. Playing the role of both private union and official inspection 

body, the GNIS is in a position to inform legislators of the problems faced in seed testing and to push 

for crop inspection rather than seed inspection. The prerequisite to do so is collaboration and trust 

between the GNIS and the Croqueurs, trust which the latter refuse to give. I have mentioned in the 

previous section that the Croqueurs members consider that the GNIS-SOC lacks independence and 

impartiality to be legitimate as delegated seed inspection body. Beside their concern about the power 

structures behind the union, their lack of trust also stems from their competing translation of plant 

health. As defined in the Introduction of Chapter II (p.28), the term competing translations reflects that 

the two parties don't attribute the same meaning to plant health. The Croqueurs' translation of bean 

seed production and plant health into practice leads them to in situ bean health management. The 

translation of bean health by the Plant Health directive, and thus by the GNIS-SOC, leads to a ban on 

CBB-infected seeds based on seed testing.  

"Nevertheless, as far as I am concerned, [a seed artisan] who... proceeds to a form of sanitary 
selection, I don't accept it. [...] A seed crop in which one might have one row of bean because one 
has... because for instance one is doing conservation breeding and that one considers keeping the 
plants that resist most, but that through these resistances blight is introduced... That can be true for 
any other disease, no matter, it truly may be an arguable way of selecting. I don't have a position on 
that, I don't work in production, so... if I had to choose, I wouldn't know which [plant] to choose... but it 
is without a doubt very interesting. But when facing a regulated parasite, I think one has to... one has to 
take action and not allow this selection to be done." [PIA-111215c] xxii 

As explained by the seed inspector in the citation above, both translations cannot be put into practice 

at the same time - either you attempt to eradicate CBB agents, or you let their selection pressure act 

upon bean plants in their growing environments. The two translations of in situ management on one 

hand and of quarantine measures on the other are indeed competing. As one seed artisan put it: 

"They want to eradicate CBB? Then they'll eradicate peasant seeds". For in situ bean health 

management, CBB agents have to be accepted among the microbial communities forming part of the 

bean populations. In other words, the Croqueurs do not feel that their bean plants are represented, nor 

protected, by the Plant Health directive and seed inspection. Bean seeds tested in sterile 

environments, isolated from the soil that will host them, are not considered legitimate spokespersons 

for their own understanding of plant health. These tensions involve both the professional identity of the 

Croqueurs members as artisanal seed companies and the scope the Plant Health directive.  

"... among the Croqueurs, we said that what needs doing, is telling them that we have another vision of 
plant disease, what you were saying earlier... and that we should say, well, that vision is not taken into 
account in the regulation, that we demand an appropriate regulation. But we haven't worked on that 
issue, so he haven't moved on. But it was the only way we were seriously considering. [...] That would 
be more in the long term, and that could perhaps be an in-depth reflection within ITAB37, for example, 
to - as we have a commission on seeds [...] - it would be about saying: OK, well, facing the plant health 
regulation for seeds, which lines are we defending in organic agriculture, you know? Demand 
adaptations of the regulation. In fact, we always have two... two pillars for our demands. It's the small 
size, which has nothing to do with organic, he! The fact that we are in very artisanal sizes, hmmm, 
implies that we are not on the same planet as the big companies. We are 100 or 1000 times smaller. 
So, that needs to be taken into account, really. And the second thing is that, in organic agriculture, we 
also have a different point of view. So, that's... we always base on those two pillars, as it were, to justify 
that we don't agree with what is to be imposed on us. [...] it forms a whole, which is, actually, peasant 
seed, diversified agriculture, etcetera. Because we could be big and organic or small and conventional. 

                                                      
37 ITAB is the "technical institute for organic agriculture" in France (Institut technique de l'agriculture biologique) 
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And here, we combine both. The fact is that I always base my argument, when I have to discuss with 
these people, on both these aspects. There is a combination of both." [CRO-190515d] xxiii 

By asserting their identity as both organic and small artisanal seed producers, the Croqueurs question 

the scope of the protective measures on CBB agents. Asserting that the professional identity of the 

Croqueurs is not protected by the "quarantine" measures implies the question: Shall their identity be 

protected? This debate on the socio-political scope of the protective measures are far from the public 

agenda at the present moment. The Croqueurs are only just beginning to debate their needs in terms 

of plant health regulations among themselves. Nevertheless, one reaction to this question may be 

contained in the following citation of an actor within the inter-branch union. 

"... when the concept of peasant seed began to emerge, we wanted to try and find out, ultimately, what 
does it represent? But we were unable to find reliable data to tell us: peasant seeds represent this 
many hectares or that many farmers... [...] [the demands] are legitimate, but what does it really 
represent within organic agriculture? Because, indeed, are we not hearing only those who are 
expressing themselves on this issue? It's true that... it's a bit like for beekeeping, there is a 
fragmentation of organisations, they are often sniping at each other, and ultimately, in all that one does 
not know where the majority trend is and who... towards whom one should go. I am not saying that the 
demands are not legitimate, right! If someone, by their philosophy, wants to have organic seed of a 
certain variety, it's their right, but..." [PIA-170216p] xxiv 

This actor requests that the users demanding peasant organic seed be quantified apart from other 

users of organic seed. He thereby suggests that this demand represents a small minority, even among 

organic seed users. For this GNIS officer, the small size of the artisanal seed companies does not 

exclude them from being represented by the GNIS. The inter-branch union has the mission to 

represent the seed sector in its entirety - from plant breeder to seed user, but also from organic seed 

to genetically modified seed. Representing artisanal seed companies is thus a question of numbers. In 

other words, for how many seed growers, farmers and seeds do the Croqueurs speak? How many 

seed growers, farmers and seeds are concerned by the demands of the Croqueurs? Based on the 

interests and risks the Croqueurs' demands represent in numbers, procedures to implement the 

quarantine on CBB may be developed that are acceptable to artisanal seed companies. The seed 

inspection body is willing to negotiate with the Croqueurs in terms of company sizes and risk 

assessment, but not in terms of diverging conceptions of plant health.  

For the Croqueurs, however, their understanding of plant health forms part of their identity. When the 

Croqueurs members refer to themselves as very small artisanal companies, they don't only point to 

their companies' sizes in terms of numbers, but also to their artisanal practices and their identity. 

Conceiving crop diversity in terms of crop lineages and understanding plant health based on the 

behaviour of crops in situ is at the heart of the Croqueurs' profession as seed artisans. Accepting to 

negotiate representation by the GNIS in terms of numbers would imply abandoning their 

understanding, their competing translation of plant health. By resisting the GNIS, the Croqueurs 

maintain their practices, thereby asserting and constructing their identity of artisanal seed companies. 

The question of managing CBB on bean seed mobilises opposing understandings of plant health. In 

this opposition, identities are constructed, asserted and maintained. As suggested by Callon (1986b), 

actors are inter-defined by how they relate to the problem of CBB management. Identities are revealed 

by their non-alignment on protective measures against CBB.    
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This situation of lacking alignment can be contrasted with the management of a Black Sigatoka 

outbreak in Australia, described by McAllister et al. (2015). Black Sigatoka is a fungal leaf-spot 

disease of banana plants. Following a network analysis of emergency response to Black Sigatoka, 

McAllister et al. conclude on the critical importance of the local implementation of eradication response 

plans. In particular, they stress the importance of implementing plans according to local conditions and 

place-based knowledge. The involvement of actors at different spacial scales - from national to local - 

and with different roles - from public and private sectors - are considered crucial for the successful 

eradication of Black Sigatoka in Australia. Similarly, in our case the negotiations between seed 

companies and seed inspectors on the local level also shape the implementation of protective 

measures against CBB agents in France. At the local level, some of the Croqueurs members negotiate 

and obtain flexibility in seed sampling procedures. Thereby, they indirectly shift the scope of the 

"quarantine" measures from eradicating CBB agents to a negotiation about the risks of CBB spread 

associated to their own, artisanal form of seed production. Procedures are thereby adapted to the 

conditions of these companies. However, unlike the Australian case, the actors followed here do not 

share the same translation of plant health. They pursue different aims, with very different practices. 

Whereas some of the artisanal seed companies accept to negotiate seed sampling procedures, they 

reject the GNIS as spokesperson for their profession.  

This is where we leave the Croqueurs in their endeavours to unlock the protective measures on CBB 

and override the OPP prescribed by protective measures in the aim of asserting their practice of in situ 

bean health management.  

4 Conclusions 

The Croqueurs' attempts to unsettle the quarantine measures on CBB are ongoing and I cannot report 

on the result of these endeavours. In the language of ANT, actor-networks with competing translations 

of bean health are currently rearranging on multiple levels and have not stabilised. At the EU level, the 

Plant Health directive is currently being reconfigured. The categorisation of CBB as quarantine pest is 

also under revision. At the national level in France, the newly delegated seed inspection authority has 

not stabilised its procedures for inspection and for the financial implication of seed companies in 

inspection costs. A system of officially monitored self-controlling by seed companies is currently being 

devised. Facing the transformations at both these levels, the Croqueurs struggle to reconcile their 

practice of in situ plant health management with legal phytosanitary constraints. At the same time, they 

make various attempts to make their own practice, their own translation of plant health management 

heard. Despite the unfinished character of these ongoing processes, lessons can be learnt and 

conclusions drawn from the road travelled up to here.  

In this chapter, I have first traced the bean health management practices of the Croqueurs. To 

understand the specificities of their approach in more depth, contrasts were drawn with a multinational 

seed company and with a small German organic seed company (section 1). Then, the EU plant health 

regulation prescribing protective measures against CBB, as well as its enforcement in France, was 
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elucidated (section 2). Finally, the Croqueurs' attempts to call into question protective measures 

against CBB were analysed according to three domains (scientific knowledge base, rules and 

regulations and socio-political scope). I come to the conclusion that the tensions between the 

Croqueurs' plant health management practices and the EU plant health regulation arise from 

incompatible understandings of plant health (section 3).     

At the beginning of this chapter, the following questions were formulated: Which are the specificities of 

bean health management practiced by artisanal seed companies among the association Croqueurs de 

Carottes? On which interactions between bean plants and their growing environments is this plant 

health management based? Concerning the first question, I have termed the Croqueurs' practices in 

situ plant health management. In situ is to reflect that bean lineages and their health state are 

determined by the triangulation of crop variety, growing environment and seed grower. I have 

highlighted that the artisanal seed companies among the Croqueurs base their collective management 

of bean health on the circulation of seed. As in situ management is about finding appropriate growing 

environments for each crop variety, it can be reasoned at the scale of the network of seed growers. I 

have shown that a seed grower who finds that a given bean variety is not suited for his farm 

environment will pass the variety on to another seed grower. A variety that won't thrive and yield in a 

given environment is not discarded, but transferred to a different environment.   

The Croqueurs' governance of bean health encompasses the care for sound growing environments. 

This has consequences on the distribution of competences.  

(i) Competences are distributed across the bean cropping system. Beyond the bean plants 

themselves, the plants' growing environment has a role to play in the regulation of plant 

health. 

(ii) Competences are distributed across actors, including the artisanal seed companies, the seed 

growers and the seed users (customers). As bean health relies on the soundness of growing 

environments, seed users must align on the in situ approach to plant health.  

This distribution of competences contrasts with that of the multinational company and the German 

organic seed company with which I have compared the Croqueurs' approach. By focusing on bean 

seed as vector of plant health, competences are redistributed and concentrated within the seed 

companies. 

The second question posed at the beginning of the chapter addresses ecological interactions between 

bean plants and their growing environments. As mentioned in the previous paragraph, competences 

are distributed across the bean cropping system. The health of a bean population is judged upon in its 

growing environment, i.e. in the fields. Bean crops interact with beneficial microorganisms able to 

regulate or suppress plant pathogens, soil microorganisms in particular. Microorganisms associated 

with seeds and thriving plants are considered as a signature of the growing environment (or terroir). A 

bean lineage can only be considered in interaction with these microbial communities. It is in interaction 

with local growing environments, the associated microbial communities and the seed grower that bean 

populations evolve and locally adapt. The adaptability of bean plants is regarded as a cornerstone of 
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plant health, reflecting that plant health cannot be considered in isolation from the interactions with the 

plants' growing environment.  

The Croqueurs attempt to unlock the quarantine measures by unsettling its presuppositions in the 

three domains (Callon and Rip, 1992) underlying the expertise on the categorisation of CBB as 

quarantine pest: (i) socio-political scope, (ii) science and (iii) rules and procedures. One might consider 

that the essence of the tensions concerns the socio-political stakes of the quarantine measures. Two 

competing translations, or understandings, of plant health are operating. The translations followed by 

the Croqueurs members on one hand and the Plant Health directive on the other have been described 

in some detail in the sections 1 and 2, respectively. In search of means to publicly assert their 

understanding of plant health and their practices of in situ management, the Croqueurs focus their 

endeavour to unsettle the quarantine measures on two other domains traced out by the Plant Health 

directive. In the scientific domain, they question the absence of CBB agents as endemic pests in the 

European Community and the validity of the official seed testing methods on which the implementation 

of quarantine measures is based. In the field of rules and procedures, some Croqueurs members 

locally negotiate informal adaptations of seed sampling procedures. Thereby, the accepted level of risk 

is adapted to the activity of artisanal seed production. To convey discontent both with the prescription 

of plant health management practices and with the delegation of seed inspections to the inter-branch 

union, one of the Croqueurs members refuses any cooperation with the French delegate seed 

inspection body. It asserts its professional identity as artisanal seed producer while taking the risk of a 

legal dispute. 

The following chapters will address these ecological interactions through observations in field 

experiments, with the overall question: What do analyses of some plant-environment interactions 

reveal the ecological base of the Croqueurs' bean health management? After an overview of the field 

experiment's materials and methods in Chapter IV, the overall question is broken down in the following 

chapters in order to address specific plant-environment interactions.   
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Original extracts of interviews 

                                                      
i "... au sein des Croqueurs de Carottes, il y a aussi: Aucune variété protégée, aucune variété hybride F1, aucune 
variété modifiée génétiquement. Donc on reste sur de variétés à pollinisation ouverte, non-protégées [...] Et une 
autre chose qui est très importante aussi c'est qu'on ne se contente pas du minimum réglementaire, qui est de 
produire une semence bio à partir d'une semence conventionnelle. Nos semences de base sont bio aussi. C'est à 
dire nos variétés sont en bio depuis 5, 10, 15, 20 ans. Donc à la longue on peut penser qu'il y a une imprégnation 
de la variété par son vécu pendant 10 ou 20 ans [...] ça n'a pas été prouvé scientifiquement, avec les méthodes 
de la recherche scientifique, mais on constate que les plantes deviennent assez rustiques." [CRO-190515d] 

ii "Tout comme si tu mettais une variété conventionnelle, tu la jetterais dans des conditions bio, ben elle ne 
répondrait pas pareil. Surtout des variétés modernes qui ont été sélectionnées pour répondre aux intrants, à 
fortes quantités d'intrants: tu la mets en bio ou elle est un peu sevrée de tout ça, tu ne la reconnais pas vraiment, 
quoi. Donc c'est le même problème dans les essais conventionnels. Nos variétés bio réagissent différemment  et 
ils ont tendance à nous dire: Vos variétés... elle est pas du tout conforme au type qu'on attend, quoi. Ca arrive 
pas tout les temps, mais... [...] En bio elles le sont, et puis elle sont surtout bien adaptées, elles sont rustiques 
pour la bio, quoi. Donc si elle a des feuilles un peu plus allongées ou un petit peu plus d'anthocyanes, c'est peut 
être parce qu'elle est... enfin, c'est la sélection naturelle qui a voulu ça, quoi. Et ça, ils n'aiment pas. [...] C'est 
impossible surtout en populations, ça évolue. Et justement, elles sont dans des conditions ou ça évolue, en bio 
elles sont bien quoi. Donc généralement, quand c'est comme ça, si ils nous disent: Votre variété, elle n'est pas 
bonne. En général on la garde quand même, parce que c'est des souches qui ont 20 ans de bio derrière elles. 
Eux ils voudraient qu'on reparte sur une souche conventionnelle, qui était stockée dans un frigo, qui n'a pas 
bougée depuis 20 ans, donc tout le travail derrière qu'on a fait serait perdu. Donc ça c'est pas possible. Et ça 
c'est un point ou on n'arrive pas à se faire comprendre." [CRO-190515s] 

iii "Moi, le peu de recule que j'ai, c'est que quand il y a une variété qui n'a jamais été cultivé ici, la première année 
de culture, et bien, elles ont toujours, enfin les haricots ont une tronche... t'as l'impression qu'ils sont virosés... Et 
après il y en a plus, du tout. Et pour toutes les cultures en général. Pour la tomate par exemple ca s'exprime 
différemment, c'est la puissance de la plante. C'est à dire que, quand je prends une tomate qui vient d'ailleurs, et 
ben, la première année, elle s'adapte - ce que j'appelle adaptation - et la deuxième elle commence a... tu vois, ce 
qui était vraiment symptomatique, c'est quand on essayait les 250 variétés de tomates de l'INRA, c'était un gag, 
quoi. La première année; elles étaient chétives, le deuxième année, ca allait beaucoup mieux, la troisième année, 
c'était... Elle commençaient à être belles, tu vois? C'était pas du tout la même plante. A la limite, on aurait pu dire: 
C'est une autre variété." [CRO-260814b] 

iv "En culture, et ben, c'est une approche agronomique, c'est à dire sol, climat, la plante et moi - parce que j'en 
fais partie, hein! Et il faut qu'on arrive, tous les 4 ou 5 là, je ne sais plus, à trouver un compromis qui fait le moins 
mauvais, ou le meilleur, pour les 3 ou les 5, enfin - le temps il s'en fout, le sol il s'en fout moins, la plante, elle est 
vraiment concernée et moi aussi. Donc les gros acteurs c'est la plante et moi, le sol on essaie d'en faire notre 
allié, et puis le temps on fait avec..." [CRO-290116d] 

v  "C'est vraiment la question de la conception qu'on a du sanitaire. Tout ce qui est vie microbienne ou 
champignons autours des plantes, c'est la signature du terroir. Et des pratiques agricoles, pas que du terroir. Une 
variété locale, il y a nécessairement des microbes. Si tu les enlèves tous, il n'y a plus de variété locale. Alors, il 
n'y a que nous qui raisonnons en terme de variétés locales." [NGO-260915k] 

vi "C'est que artisans semenciers, on existe parce que, en faite, les paysans ne peuvent pas faire l'ensemble des 
multiplications de leurs semences de base. Ce qui n'est pas du tout le cas pour un paysan boulanger. Un paysan-
boulanger, il peut... c'est lui qui est maitre de ces semences de base. Et c'est vraiment les deux opposés, tu vois, 
entre le paysan-boulanger qui est totalement maitre - et tu n'aurais jamais d'artisans-semenciers pour ces 
espèces là. Et nous, on est à l'opposé, on est là pour leur apporter les souches. Pour que ces souches, elles 
vivent. Mais, après... et le haricot en est l'exemple type... il y a une adaptation au terroir. Et ca c'est plus les 
artisans-semenciers. C'est la paysan, ça." [CRO-280814c] 

vii "L'autre chose qu'il faut ajouter dans toute cette discussion, c'est que nous, on vend des semences à des 
paysans bio, et ça, ça change tout aussi. On vendrait nos semences à des conventionnels, avec les sols morts 
qu'ils ont et autres, peut-être qu'ils auraient pleins de maladies. Mais comme on vend a des gens qui travaillent 
un peu comme nous - la plupart de nos clients, ce sont soit des jardiniers, soit des maraichers diversifiés en 
petites surfaces - ben aussi ils apprennent à travailler un peu comme nous. Ils ont un peu la même conception 
que nous de la vie, de la santé des plantes et autre. Et du coup, ben, ils ont moins de problèmes." [CRO-
190515d] 

viii "On décide rien, mais on lance pleins d'idées. Finalement , c'est un espace de création d'idées et d'arguments, 
moi, je l'ai pris comme ça. Et ils sont vraiment excellents. Moi, je me sers comme dans un marché, j'amène les 
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miennes, mais j'écoute celles des autres. Je les confronte, on les frotte, on les compare. Du coup, j'aiguise mon 
argumentaire, ma connaissance du sujet - parce qu'il y a [un artisan semencier] aussi qui intervient avec une 
connaissance fine de la réglementation, il y en a d'autres plus sur une connaissance fine de certains sujets sur 
certaines variétés ou espèces, tomates machin... Donc: Je vais au marché, je prends ce qui m'intéresse, je donne 
les miennes quand ça m'intéresse, je me fais rentrer dedans, je lui renvoie... de façon assez amicale, hein! Enfin, 
on essaie... Et... c'est génial. Mais... ce n'est pas un endroit ou on va... ce n'est pas un syndicat, on arrive pas à... 
on a pas le monolithisme du syndicat, qui prend l'épée et qui coupe en 2 , non... ça on ne sait pas faire. [...] On ne 
sait pas avoir le côté efficace - ou l'air de rien. Je dis ça, mais c'est pas complètement vrai, parce que l'aire de 
rien, l'efficacité elle là. Parce que, au final, [certains artisans semenciers] sont dans les commissions etc. [...] Moi 
je leurs dis: "Vous dites que ça n'avance pas, mais moi je peux vous dire que moi le contact que j'ai avec la 
FNAMS et d'autres, les choses bougent"." [CRO-290116d] 

ix " ... à l'heure d'aujourd'hui sur les aspects sanitaires on est très confiant par rapport à la propriété du végétal, 
parce qu'on pense, nous, que c'est vraiment en mettant les moyens, la recherche, en créant des nouvelles 
variétés - et la on ne parle pas de transgénèse ou de prendre un gène d'éléphants, hein - simplement en 
multipliant nos croisements à arriver à sortir quelque chose, quoi. Ce qu'on remarque nous c'est que les vieilles 
variétés sont quand même beaucoup moins costaudes que ce qu'on sort. Ce n'est pas systématiquement, il y a 
des exceptions. Des haricots comme la variété 'Talisman', qui est un des plus vieux haricots qui existent, passe 
bien globalement tout le temps. Mais l'amélioration génétique sur le côté sanitaire pour nous c'est une grande 
grande voie quand même, pour l'avenir, hein. Parce que... nous, à [notre entreprise], on est persuadés que la 
chimie va baisser. Dans 10 ans on traitera moins qu'on ne fait là, et il y a 10 ans on traitait déjà plus, donc il faut 
jouer sur ces résistances-là. Le problème qu'on a, c'est que les haricots c'est des plantes autogames, donc c'est 
des "seed to seed", hein. Vous semez une graine, vous la resemez, vous la resemez, vous la resemez... de 
génération en génération..." [MSC-150216b] 

x "La problématique qu'on a sur les graisses du haricot, c'est que c'est des maladies de fin de cycle. C'est de 
maladies ou, si vraiment vous en voyez au stade plantules, c'est que vous avez semé un lot pourri. Et ça,  j'ai 
bossé dans des boites ou je peux vous garantir que ça m'est arrivé. Nous [...] c'est des expressions tout le temps 
après floraison - toujours, systématiquement. Donc en plus de ça, dans mon métier, c'est un petit peu compliqué, 
parce qu'à 15 jours de la récolte, vous dites à [l'entreprise]: "Il n'y aura rien." Et vous dites à l'agriculteur: "Tu 
passes la charrue". Euh... voilà. Donc c'est toujours très délicat." [MSC-150216b] 

xi "Wir haben eben das Problem, wie ich es vorhin geschildert habe, dass wir bereits zwei Sorten verloren haben 
und momentan das Saatgut zur Verfügung haben, wo das festgestellt wurde, aus dem Züchterbereich. Mit dem 
Arbeiten wir jetzt und gucken, dass wir das frei kriegen. Und dann, wenn wir die Methode haben, dann  können 
wir hergehen und können sagen: Die Elite ist grundsätzlich möglich freizukriegen, weil man das dann in dem 
begrenzten Umfang machen kann - Superelite - dann kommt die Hochvermehrung. Ist dann vielleicht immer noch 
mit einem gewissen Restrisiko verbunden, aber die Voraussetzung ist, dass die Züchter und Erhaltungszüchter 
sauber arbeiten können." - "Genau. Das ist das A und O ist, dass das Elitesaatgut halt frei ist von diesen 
Quarantäneschaderregern, also von Xanthomonas in dem Fall." [SOS-181215g] 

xii "Wir haben in unserem Marktsegment tatsächlich mit der Konkurrenz der ganz großen in der Branche zu tun, 
also, in Frankreich vergleichbar mit Clause-Tezier. Das wäre dann in dem Fall unser Konkurrent. Hier haben wir 
es mit Bejo zu tun, mit Rijk Zwaan zu tun, mit Enza Zaden zu tun, mit Nunhems zu tun, mit Syngenta zu tun... Das 
sind unsere Konkurrenten am Markt.  Und die geben ein enormes Maß an... ja, wie soll man sagen... an 
"Gesundheit" in Anführungszeichen vor... äußere Qualität des Saatgutes, Keimfähigkeit, Sauberkeit... ja, alles 
was so dazu gehört, damit Bauern von heute mit ihrer heutigen Technik entsprechend optimale Ergebnisse auf 
dem Feld haben, also quantitativ optimale Ergebnisse. Und diese, unsere Bewegung  in den ersten 20 Jahren, 
mehr oder weniger, nicht wirklich Fuß fassen können dadurch, oder in den ersten 15 Jahren - seit es [die 
Aktiensgesellschaft] gibt ist das anders geworden... aber: nicht Fuß fassen können, weil es eben die Methodik 
nicht gab, die Kompetenz nicht gab, die Möglichkeit nicht gab, diese äußeren Qualitätskriterien zu erfüllen. Weil 
eben allein durch die Frage: Wie sicher ist die Qualität des Saatgutes?  Im Keimbereich oder in der Gesundheit 
und so weiter... die Bauern an der Stelle dann gesagt haben: "Das kann ich mir nicht leisten", wenn dann da 
plötzlich der Feldsalatbestand einen Haufen Mehltau kriegt, weil eben schon am Saatgut ganz viel Mehltau dran 
ist. Das war Vergangenheit, das haben wir alles im Griff und nutzen selbstverständlich die Möglichkeiten 
dadurch... die wir halt haben durch die moderne Pflanzendiagnosetechnik, die es gibt." [SOS-181215g] 

xiii "On voulait le faire sur le persil de Jean-Michel qui ne germait pas, mais il l'a retesté et, finalement, il germe 
super-bien! (rire) Donc c'est pour ça que ça n'a pas été fait... Bon, c'est une semence qui a deux ans, le 
champignon qui était autour a dû mourir ou perdre en vigueur et la semence a repris le dessus après. Il y a ça 
aussi, c'est vivant une semence, donc..." [CRO-190515s] 

xiv "... il n'est pas endémique en tout cas... phaseoli ou fuscans n'est pas endémique en Europe. Il peut être 
détecté de manière ponctuelle, mais à priori, il ne serait pas endémique, c'est pour ça qu'il est encore en 
quarantaine. Après, des observations de Xanthomonas, de phaseoli ou de fuscans, en Europe, c'est très ancien, 



 

93 

                                                                                                                                                                      
puisque les premières souches de fuscans ont été observé en Suisse - c'était sûrement sur un lot importé, 
d'ailleurs - c'est dans les années '24 ou '26. [...] Ca a été détecté en Suisse en tout cas. Après, en France, les 
dernières "épidémies" entre guillemets ou foyers infectieux à phaseoli qui ont vraiment fait l'objet d'alertes sont 
rares, il y en a quelques uns, ben, forcément, chez les agriculteurs bio du Sud-Ouest. Là, on avait été confronté à 
ça, mais ce n'est pas si fréquent que ça. Donc ce n'est pas un organisme qui semble vraiment installé en Europe, 
en tout cas." [NRI-281014Jj] 

xv "Aber wir wissen, das eben auf Grund dieser dünnen Belegungsdichte von Saatgutanbietern heutzutage im 
gemüsebaulichen Bereich für den Profianbau - das meiste kommt ja aus Holland und sonst wo her - ist der Teil 
eigentlich so gut wie nicht mehr versorgt. Die gehen noch auch in die Baumärkte und die Hobbytütchen und so, 
da müssen sie noch viel tun, da gibt es auch noch, aber die sind auch doch relativ schwach ausgestattet. [...] Wir 
sind selber verantwortlich und wenn was gefunden würde gäbe es Ärger. Dann würden wir dann natürlich 
aufgefordert: Sofort zurückziehen, Bußgeld, was auch immer. Aber das ist eben anders hier in Deutschland als in 
Frankreich, deswegen gibt es auch keine offizielle... keinen Zwang der Untersuchung zum Beispiel der 
Bohnenpartien. Also das gibt es hier nicht. Wir haben ja ganz viel Vermehrungen auch in Deutschland. Die 
untersuchen wir auf freiwilliger Basis."  [SOS-181215g] 

xvi "... dans mon suivi documentaire, je vais prendre un lot au hasard - donc je fonctionne par numéro de lot - et je 
vais bien vérifier que il a les analyses, en tout cas si c'est un lot de haricot et que l'analyse est obligatoire pour 
répondre à l'exigence PPE, et bien... Il faut que j'aie une analyse négative pour que je puisse confirmer que... 
qu'ils ont bien apposé le PPE. Et si pour un autre lot je trouve un PPE alors que l'analyse était positive et que 
l'entreprise a quand même commercialisé et quand même apposé le PPE, ben là, c'est une vrai non-conformité." 
[PIA-111215c] 

xvii "De toute façon l'organisation du GNIS et du SOC, donc le siège est à Paris... le siège est à Paris [pour le 
GNIS]... et le SOC, oui oui. Bon, il faut revoir un peu l'historique de l'affaire, c'est à dire que: Le GNIS a existé 
avant que les contrôles deviennent obligatoires sur le plan réglementaire. Un certain nombre de filières s'était à 
l'époque organisé pour mettre en place des systèmes de contrôles qualité, c'était le cas en pomme de terre, ça a 
été le cas en maïs, ça a été le cas au démarrage en céréales. Et puis à un moment donné Bruxelles à décidé de 
légiférer là-dessus. Il y avait une organisation qui préexistait en France au travers du GNIS et donc à cette 
époque naturellement le ministère s'est dit, ben, on ne va pas réinventer un système qui fonctionne déjà. Et a 
décidé de confier au GNIS les contrôles, qui cette fois devenaient obligatoires [au niveau européen] et donc dans 
tous les Etats Membres de l'époque, donc au travers de la certification des semences... Et... donc là on ne parle 
pas de sanitaire pour l'instant, puisque c'était les directives de commercialisation et le sanitaire n'est pas dedans, 
sauf pour un certain nombre de "parasites de qualité". Mais... alors, je ne sais pas si c'est de l'époque que ça 
date, mais du coup, ce qui s'est passé, c'est que le SOC a été mis directement sous tutelle de ministère de 
l'agriculture au travers d'un fonctionnaire du ministère de l'agriculture détaché au sein du GNIS pour assurer la 
direction du SOC. Donc en faite on peut dire que le GNIS est bicéphale: Il y a une partie purement 
interprofessionnelle avec un directeur du GNIS, et une partie en charge au sein du GNIS d'assurer la mise en 
œuvre des fonctions réglementaires, qui est sous l'autorité d'un fonctionnaire détaché du ministère de 
l'agriculture. Après quand on se trouve en région, moi je suis en charge d'animer une équipe de personnes qui 
peuvent avoir les casquettes." [PIA-170216p] 

xviii "Et puis, j'ai envoyé un mail aussi sur les quantités, en disant au GNIS: Ben voyez, j'ai fait une étude sur les 
productions de l'automne 2013 en haricot - c'est surtout sur le haricot qu'il y avait un peu des problèmes, ou des 
risques de problèmes - je leur ai dit: Vous voyez, notre lot moyen, il fait... 25 kg, je crois. Est-ce que vous 
considérez vraiment que le réglementation est adaptée  pour des lots de 25 kg? Sachant qu'il faut 3 kg, ou 4, 
d'échantillon pour faire une analyse de teneur... enfin, de présence ou d'absence de la graisse." [CRO-190515d] 

xix "Attend, il y a une grosse boîte qui produit des semences en France. C'est Limagrain-Clause Tézier-Vilmorin, 
c'est la même boîte. Elle représente 80 ou 90% du marché, je ne sais pas. Mais c'est lui qui fait tout le fric au 
GNIS. Le président du GNIS, je ne sais même plus comment il s'appelle, on s'en fout, d'ailleurs, mais il est à la 
botte de  Clause Tézier -Vilmorin. Du coup, la partialité de ça... Et en plus, ils ont une délégation 
gouvernementale, ministérielle. Donc, ils ont un pouvoir... C'est un syndicat corporatiste comme on n'en fait plus." 
[CRO-260814b] 

xx "Donc, nous on est les seuls à n'avoir strictement rien fait... En plus on est même pas relancé, là, pour le 
moment. Ca fait un an qu'on a plus de contact. [...] On a déclaré les parcelles. C'est à dire l'an passé, donc, la 
seule mesure qu'on a prise, c'est de déclarer les parcelles... l'air de dire: 'De toute façon, nous, on a rien à 
cacher. Si vous voulez aller les voir, vous allez les voir, mais nous on ne signera pas de contrat, on ne veut rien 
payer' [...] J'ai dit à la délégation régionale: 'De toute façon, vous anticipez la réglementation européenne.' 
Puisque la réglementation européenne, elle doit être publiée... elle n'est toujours pas publiée à ma connaissance. 
Je dis: 'Tant que le réglementation européenne n'est pas publiée, je ne vois pas pourquoi je me plierai à votre 
réglementation.'" [CRO-190515d] 
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xxixxi "C'est là où je comprends que les petits faiseurs, qui font déjà pas beaucoup de graines... et qu'une analyse, 
c'est tant de graines et c'est tant d'argent... c'est pas possible. Donc c'est là ou il faudrait qu'on puisse être 
unanime - parce que des petits faiseurs bio, il y en a pleins, et pas qu'en France. Donc il faut aussi prendre en 
compte leur façon de produire et qu'on puisse, ben, peut-être faire évoluer en disant: C'est un inspection en 
culture. Et ça peut répondre et éviter de consommer de la graine pour rien, parce que je comprends que c'est pas 
possible de faire une analyse sur...voilà. C'est juste... mais voilà, la réglementation est là, et c'est là ou il  y a un 
intérêt que le SOC puisse faire... relayer l'information et que l'interprofession se bouge pour quelque chose." [PIA-
111215c] 

xxii "Pour moi, [un artisan semencier] qui va... faire une forme de sélection sanitaire, je ne l'admets pas pour 
autant. [...] Une production de semence où on aurait un rang de haricot parce qu'on a... parce qu'en faite on fait 
une sélection conservatrice et qu'on considère qu'on va garder les plants qui résistent le mieux, mais que pour le 
coup dans ces résistances on aurait de la graisse qui se serait introduit... Ca peut être vrai pour n'importe qu'elle 
autre maladie, peu importe, c'est vrai que ça peut être une sélection qui est défendable. Moi je n'ai pas de 
position là dessus, je ne suis pas en production, donc... si je devais choisir, je ne saurais pas laquelle... mais c'est 
certainement très intéressant. Mais si on est face à un parasite qui est réglementé, je pense qu'on doit... on doit 
prendre des mesures face à ça et pas laisser cette sélection se faire." [PIA-111215c] 

xxiii ".. avec les Croqueurs, on avait dit que ce qu'il faudrait, c'est leur dire qu'on a une autre vision de la maladie 
des plantes, ce que tu disais tout à l'heure... et qu'il faudrait dire, ben, que cette vision-là n'est pas prise en 
compte dans la réglementation, qu'on réclame un réglementation adaptée. Mais là-dessus, on a pas travaillé, 
donc on a pas avancé. Mais c'était la seule piste qu'on envisageait sérieusement. [...] Qui serait plus long-terme, 
et puis qui pourrait éventuellement être une réflexion de fond au niveau de l'ITAB, par exemple, de - vu qu'on a 
une commission semences [...]- ce serait de dire: Bon, ben, face à la réglementation pour le phytosanitaire sur les 
semences, quelle ligne on défend en bio, quoi? Réclamer des adaptations à la réglementation. Nous on a en faite 
toujours deux... deux bases de revendication. C'est la petite taille, qui n'a rien à voir avec le bio, hein! Le faite 
qu'on soit en tailles très artisanales, euh, fait qu'on est pas sur la même planète que les grosses entreprises. On 
est 100 ou 1000 fois plus petits. Donc, c'est quand même à prendre en compte. Et la deuxième chose, c'est que, 
étant en bio, on a aussi un point de vue différent. Donc ça, c'est... on s'appuie toujours sur ces deux piliers, en 
quelque sorte, pour justifier qu'on est pas d'accord avec ce qu'on cherche à nous imposer. [...]  ça forme un tout, 
qui est, effectivement, la semence paysanne, l'agriculture diversifiée, etc. Parce qu'on pourrait être gros, et en 
bio, ou petit et en conventionnel. Et là, on cumule deux choses. Le fait est que j'appuie toujours mon 
argumentation, quand j'ai à discuter avec ces gens-là, en prenant en compte ces deux aspects-là. Il y a un cumul 
des deux." [CRO-190515d] 

xxiv "... quand à un moment donné le concept de semence paysanne à émergé, nous on a voulu essayer de 
savoir, finalement, ça représente quoi? Mais incapables de trouver une donnée fiable qui nous dise: les 
semences paysannes, ça représente tant d'ha ou tant d'agriculteurs... [...] [les demandes] sont légitimes, mais 
qu'est-ce que ça représente réellement par rapport à l'agriculture biologique? Parce que, effectivement, est-ce 
qu'on entend pas que ceux qui s'expriment dans l'affaire? C'est vrai que... c'est un peu comme en apiculture, il y 
a une atomisation des structures, souvent ils se bouffent le nez entre eux, et finalement, on ne sait pas là dedans 
ou est la tendance majoritaire et qui, finalement... vers qui il faut aller. Je ne dis pas que les demandes ne sont 
pas légitimes, qu'on soit bien d'accord! Quelqu'un qui veut par philosophie avoir de semences bio de telle variété, 
c'est son droit, mais..." [PIA-170216p] 
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Chapter 4: In-situ plant health explored in a field experiment  

In Chapter II, the evolution of the research device has been described. I have traced how the 

experimental setup of the field trials was modified each time it encountered resistance and how it was 

complemented by a social science approach. In Chapter III, results obtained by the social approach 

have been discussed. The plant health governance practices of artisanal seed companies have been 

unfolded, revealing the ways in which they are embedded in the triangulation of bean populations, 

growing environments and seed grower. The health of a bean population is judged upon in its growing 

environment, i.e. in the fields. Adaptability of plants to their local growing environment and the 

interactions of plants with the microbial communities of that environment are cornerstones of this 

approach to plant health. The "biological base" of the in situ approach to plant health is addressed in 

the following chapters. Building on the two previous chapters, results obtained in a field experiment 

shall be discussed in order to address the question: Can the analyses of some plant-environment 

interactions reveal the biological base of the artisanal seed companies' collective bean health 

management? 

The present chapter presents the design of the field experiment, which was set up to study some 

ecological interactions between bean plants and their growing environments. Then, the overall 

question is broken down into the following sub-questions, each addressed in a separate chapter: 

(i) How does the general health of bean plants evolve when beans are multiplied on organic 

farms from bean seeds provided by the Croqueurs? This question is linked to another, 

methodological one: How can in-situ plant health in farmers' fields be accounted for? (Chapter 

V) 

(ii) Is the health status of bean plants correlated with their ability to interact with mycorrhizal fungi 

and Rhizobia spp., which are both beneficial symbiotic soil microorganisms? Do bean varieties 

differ in their ability to interact with these symbiotic microorganisms? (Chapter VI) 

(iii) Are microbial communities associated with bean seeds determined by the variety or by the 

growing environment? In other words: Do these communities reveal the bean variety, or the 

environment in which the seed was grown? (Chapter VII) 

(iv) After three years of seed multiplication in contrasting growing environments, do phenotypic 

traits and genetic markers indicate local adaptation? In other words, do phenotypic traits and 

genetic markers indicate that varieties have begun to adapt to local growing environments and 

evolve into distinct "lineages"? (Chapter VIII)  
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1.2 Multiplication phase 

The five varieties were multiplied in two experimental sites during three years, from 2012 to 2014. 

Each year, the preceding year's harvest was sown on each site. Farms hosting all five varieties were 

located in Brittany, France (BZH) and in Luxembourg (LUX). The latter contributed two of the varieties 

included in the trial. BZH and LUX constitute the "core trials". In 2012 and 2013, the plants were grown 

in complete randomised blocks in three replications. Plants were spaced 75 cm between rows and 10 

cm within rows. In 2014, they were grown without replications and sown mechanically according to the 

local seed growers' practices (distance of approximately 5 cm within rows). The total plot surface for 

each variety ranged from 8.4 to 12.0 m2, with an average of 11m2. In addition, three varieties (flc, rdb 

and rdc) were also multiplied and observed in AQU to complement the "core trials". A description of 

the three experimental sites is given in Annex 5. All farms hosting the field trials were organic and 

engaged in the small-scale production of bean seed.  

A variety multiplied in a given site over three years has been termed a "version" of this variety 

(Serpolay et al., 2011). Each version is designated by the name of the variety followed by the name of 

the site. In addition, the original seed lots with which the field trials were initiated in 2012 are also 

considered a version of each variety. These versions are identified by the code "ORI" for "original". 

The versions available for each variety and the end of the "multiplication phase" are recapped in Table 

4.1. 

Table 4.1: Versions available at the end of the multiplication phase. The thousand-seed weight (TSW) for each 
version is specified in grams (g). 

Variety Site/Origin Version TSW (g) Comment 
'Calima' Original seed lot cal_ORI 250 Harvested in Africa in 2010; seed treated 

with an unkown organic treatment 
 Brittany cal_BZH 278  
 Luxembourg  cal_LUX 301  
'Flageolet Chevrier' Original seed lot flc_ORI 235 Harvested in AQU in 2011 
 Brittany flc_BZH 244  
 Luxembourg  flc_LUX 256  
 Aquitaine flc_AQU 244  
'Rognon de Coq' Original seed lot rdc_ORI 340 Harvested in AQU in 2011 
 Brittany rdc_BZH 415  
 Luxembourg  rdc_LUX 452  
 Aquitaine rdc_AQU 439  
'Roi des Belges' Original seed lot rdb_ORI 442 Harvested in LUX in 2011 
 Brittany rdb_BZH 320  
 Luxembourg  rdb_LUX 376  
 Aquitaine rdb_AQU 322 Multiplied two years only: 2012, 2014 
'St. Esprit à œil rouge' Original seed lot ses_ORI 884 Harvested in LUX in 2011 
 Brittany ses_BZH 682  
 Luxembourg  ses_LUX 656  

  

                                                                                                                                                                      
breeding company was unable to give me more information than ensuring that it is compatible with organic 
farming.   
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1.3 Gathering phase 

In the aim of observing phenotypic and genetic divergence between versions of a given variety, the 

versions of all varieties were grown side by side in one environment in the "gathering phase" in 2015. 

This approach is inspired from 'common garden experiments' commonly practiced by ecologists 

(Rutter and Fenster, 2007) to study the local adaptation of plants (Bradshaw, 1984; Galloway and 

Fenster, 2000; Joshi et al., 2001). This second phase of the field trials was conducted on the farm in 

BZH (see Figure 4.1 and Annex 6). BZH was selected, because it had most favourable conditions for 

bean cultivation. The beans were grown in a split-plot design with bean variety as whole plot factor 

and version as subplot factor. The trial was sown mid-May 2015. Each subplot consisted of two rows 

of bean plants sown at 0.75 m distance from each other and 2.5 m long (total of 20 plants, 1.9 m2). To 

ease the identification and observation of individual plants, plants were spaced by 0.25 m within rows. 

To compensate for germination rates and ensure that a bean plant grow at each position, two seeds 

were sown per position. Due to low germination rates in preliminary tests, four seeds per position were 

sown for the variety 'flc'. At 20 days after sowing (das), seedlings were thinned by leaving only the 

seedling positioned at the extreme left facing the experimenter. A plan of the plots and subplots is 

shown in Annex 7. The experimental design, including both phases, is illustrated in Figure 4.1. 

2 Observation of plant traits 

In both the multiplication and the gathering phases, morphological, phenological and agronomical 

plant traits were observed for each bean variety. Not all traits were observed in each site and year. 

Sampling procedures and missing data are specified in the following chapters. Observations of plant 

phenotypes were adapted from IPGRI (1982), Schoonhoven et al. (1987) and CIAT (1993). An 

overview of common bean growth stages is given in Annex 10. 

2.1 Morphological traits 

The length of the main stem was measured from the soil to the tip of the last flower or pod between 

flowering (R2) and physiological maturity (R7). Leaflet length was measured on the terminal leaflet of 

the third trifoliate leaf from pulvinus to leaf tip.   

2.2 Phenological traits 

Flowering date was recorded at the first open flower. At the end of the growth cycle, maturity on a 

given date was scored using 1 = 'plant green and most pods green, far from harvest maturity', 2 = 

'plant and most pods yellowing, close to harvest maturity' and 3 = 'most pods dry, harvest maturity'. 

2.3 Plant health 

When assessing plant health in (uncontrolled) field environments, symptoms observed on plants do 

not suffice to establish an univocal disease diagnosis. Different causes may elicit similar symptoms 

which are easily confounded. For example, viral diseases such as Bean Common Mosaic Virus 

(BCMV) and Bean Yellow Mosaic Virus Plant (BYMV) typically lead to leaf mosaic (mosaic) and 

blistering (blist). However, similar leaf discolouration and malformation may be caused by nutrient 
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deficiencies and leaf-sucking pests, respectively. Blight spots (blight.leaf) caused on leaves by CBB 

and HBB are visually hardly distinguishable. Dark lesions on stems and leaf veins (brown.vein) can be 

caused by BCMV under specific environmental conditions - a phloem necrosis called "black root" - but 

systemic necrosis may also be due to bacterial pathogens (Hall, 2005). White-silvery spots left on 

leaves by leaf-sucking and pests (feeding) cannot easily be attributed to a single species. Among the 

most important pests on beans are aphids, which are vectors for several viral diseases, but also 

indicate over-supply of N. As for leaves, the symptoms of CBB and HBB on pods are very difficult to 

distinguish. 

Bean health was assessed on a symptom basis in the field. All of the symptoms named above were 

scored on a scale from 1 to 5, specified in Table 4.2. Examples are given for leaf mosaic and blistering 

in Annex 8. In addition, overall plant vigour was scored from 1 to 5 to reflect the general impression of 

the plant. The vigour score is influenced by the biomass of the plant as well as general health status 

(Table 4.2). 

Table 4.2: Scales from 1 to 5 used for scoring disease symptoms and overall plant vigour 

Score ... for symptom scores ... for plant vigour scores 

1 no symptom very poor vigour 

2 Doubtful to weak symptom expression  poor vigour 

3 Moderate to intermediate symptom expression intermediate vigour 

4 Intense symptom expression vigourous 

5 Severe symptom expression or plant death very vigourous 
 

2.4 Yield components  

The number of pods, empty pods and seeds produced per plant were counted on a minimum of 10 

plants per variety and site. 1000-seed weight was assessed. 
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Chapter 5: Evolution of general plant health 

"In the crop, well, it's an agronomical approach, that is, the soil, the climate, 
the plant and I - because I form part of it, he! And those four or five of us - I 
can't remember - must find a compromise that is the least poor, or the best, 
for the three or the five, well... the weather doesn't care at all, the soil cares a 
bit more, the plant is really concerned and I am, too. So, the two major actors 
are the plant and I. We try to make the soil our ally and the weather, we have 
to live with it..." [CRO-290116d]39 

I have termed plant health management as it is practiced by Croqueurs members in situ management 

(Chapter III). The term in situ reflects the idea that plant health is observed and judged upon in 

farmers' fields. In this approach, crops as they appear to farmers in their growing environment are 

decisive, more so than the results of seed analyses. The effects of pathogenic microorganisms on 

crops are considered in their interaction with the plants' physical and living environment. The living 

environment includes microorganisms associated with the crop, many of them are beneficial, some 

potentially pathogenic. The term 'general health' is used to describe the overall health status of a crop, 

taking into account various stress factors - biotic or abiotic - endured by the crop. In this chapter, an 

attempt is made to describe the general health of the bean seed crops under field conditions.  

  

                                                      
39 "En culture, et ben, c'est une approche agronomique, c'est à dire sol, climat, la plante et moi - parce que j'en 
fais partie, hein! Et il faut qu'on arrive, tous les 4 ou 5 là, je ne sais plus, à trouver un compromis qui fait le moins 
mauvais, ou le meilleur, pour les 3 ou les 5, enfin - le temps il s'en fout, le sol il s'en fout moins, la plante, elle est 
vraiment concernée et moi aussi. Donc les gros acteurs c'est la plante et moi, le sol on essaie d'en faire notre 
allié, et puis le temps on fait avec..." [BR290116d] 
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1 Introduction 

When observing plant health in situ - in farmers' fields or in on-farm field trials - crops can be 

confronted with several plant pathogens during their growth cycle, often at the same time. Interactions 

between different common bean diseases, soil-borne or aerial, have been investigated under 

controlled conditions (Paula Júnior et al., 2015 and references therein). Interactions between plant 

diseases can go different ways and depend on pathogen inoculum levels, inoculation timing and 

general growing conditions. For example, Rhizoctonia root rot (caused by Rhizoctonia solani) has 

been shown to magnify the severity of anthracnose (Colletotrichum lindemuthianum), but decrease 

severity of rust (Uromyces appendiculatus) (Paula Júnior et al., 2015). Under tropical conditions, the 

severity of Rhizoctonia root rot can be increased when plants are stressed by other plant diseases 

(Abawi and Pastor-Corrales, 1990). Antagonistic effects between rust and the nematode Meloidogyne 

incognita lead rust severity to be lower on bean plants attacked by the nematode (Bookbinder and 

Bloom, 1980). On a more general note, it has been shown that root, stem and stalk rots caused by 

less specialised fungi or nematodes are commonly more severe on plants infected by viral pathogens 

(Beute and Lockwood, 1968; Pratt et al., 1982; Chant and Gbaja, 1986, to name only researches on 

legumes). Concerning the interaction of aerial diseases, the interaction between rust and Halo 

Bacterial Blight (HBB) have been found to be dependent on disease levels: While HBB was increased 

in the presence of U. appendiculatus, heavy rust infection suppressed the occurrence of HBB lesions 

(Yarwood, 1969). In short, effects of interactions between root and aerial diseases cannot be 

anticipated. On one hand, the effect of one disease can weaken plants and predispose them for the 

infection with other diseases. On the other hand, antagonism among pathogens infecting plants 

simultaneously can be explained by competition, antibiosis and induced host plant resistance (Paula 

Júnior et al., 2010). Salicylic acid, jasmonates and ethylene figure among plant hormones regulating 

plant defence responses that may be involved in such interactions (Paula Júnior et al., 2015). 

In addition, abiotic stress, such as nutrient deficiencies, can affect plant defences and thereby 

increase susceptibility to diseases. This is also an important mechanism by which beneficial soil 

microorganisms improve plant defences: by improving plant nutrition and promoting plant growth, 

mycorrhiza, rhizobia and some rhizobacteria improve plant health (Alström, 1991; Berendsen et al., 

2012). Beyond nutritional status, soil microorganisms interacting with plant roots can suppress soil-

borne diseases by competition for nutrients, niche exclusion, induced systemic resistance, and the 

production of antifungal metabolites (Bais et al., 2006). Moreover, many beneficial soil-borne 

microorganisms have been found to systemically boost the defensive capacity of the plant, priming the 

plant immune system for accelerated activation of defence (Avis et al., 2008; Van der Ent et al., 2009; 

Berg, 2009). 

Organic farming practices lead to 'microbially driven systems' which affect micronutrient supplies, plant 

resistance and the balance of pathogenic and beneficial microorganisms in the soil (van Bruggen et 

al., 2016). Numerous interactions of crops with their physical and living environment imply that 

measuring only one type of symptom or one plant disease can be insufficient to reflect the general 
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health status of a crop. In view of these interactions and of in-situ plant health management (see 

Chapter III), this chapter addresses the question: how does the general health of bean plants 

evolve when multiplied on organic farms from bean seeds provided by the Croqueurs? This 

question comprises another, methodological question: how to account for in-situ plant health in 

farmers' fields? 

Concerning the second, methodological question, the idea of developing an index of general plant 

health emerged during in the course of the PhD research project (Chapter II, subsection 3.3). An 

attempt was made to construct such an index, but was quickly abandoned. In the 1970s, Torrance 

(1976) summarised attempts to develop indices of general human health in a general mathematical 

formulation, which could have served as model for this general plant health index. In this context, 

health is described as "a continuum running from dead at the one extreme" - which can be 

mathematically expressed as "0" - and "perfect health at the other extreme" - expressed as "1". While 

death is not so difficult to define and determine, defining "perfect health" is another matter. General 

health indices in very different domains express health as "level of functioning of an individual" 

(Torrance, 1976). For example, general health indices have been developed for humans (Grogono 

and Woodgate, 1971), for dairy sires (Boettcher et al., 1998) and oceans (Halpern et al., 2012). 

Focussing on the "level of functioning" of an individual allows translating health indices into economic 

values. However, Döring et al. (2012) have shown that reasoning plant health in terms of functionality 

constitutes only one approach to plant health among many others (see also Table II.1 in Chapter II). 

The following example put forward by these authors illustrates why a general plant health index based 

on functionality would not be appropriate to reflect plant health as it is regarded and managed by the 

Croqueurs.   

"For example, should plants be regarded as healthy when they have been sprayed with fungicides that 
kill the pathogens? Although the spraying would result in freedom from fungal infections and the 
sprayed plants would then be fully functional (e.g. in terms of photosynthesis, growth or reproduction), 
they would otherwise easily be infected by fungal pathogens and would fail in their functionality. A 
functionalist view would regard the sprayed plants as healthy. On the other hand, it could be argued 
that the plants are only healthy ephemerally, and that true health must be longer lasting, independent 
from the application of fungicides. The alternative view therefore demands that health requires a 
degree of resilience, i.e. the ability to maintain functionality in the face of stress." (Döring et al., 2012) 

This example illustrates that reasoning in terms of functionality alone is not compatible with an 

approach in which plant health is understood as the result of a plant's interactions with its growing 

environment, including plant pathogens. In more general terms, expressing general plant health in a 

single, numerical index necessarily assumes that one concept of plant health be adopted at the 

expense of others. The initial idea of a general plant health index was therefore abandoned in the aim 

of reflecting general plant health in a way that leaves more room for different stances on plant health 

when interpreting the data.   
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2 Materials and Methods 

A total of five bean varieties were multiplied on three organic farms from 2012 to 2014 ('multiplication 

phase', described in Chapter IV, subsection 1.2). Organic seed of four bean varieties were initially 

supplied by two artisanal seed companies among the Croqueurs and one variety was obtained as 

conventional seed from a larger scale conventional breeding company (see subsection 1.1 of Chapter 

IV and Annex 4).  

Chapter IV specifies the experimental design and the methods by which field data were collected. For 

observations of plants in the field, 10 consecutive plants were observed in each subplot (in total 30 

plants per variety and site) in 2012. The two following years, 20 random plants were observed per 

subplot, totalling 60 plants per variety and site in 2013 and 20 in 2014. Plant symptoms and vigour 

were scored as described in division 2.3 of Chapter IV. Each year at harvest, 10 plants were sampled 

per subplot to determine yield components. Seeds produced per plant were counted as described in 

division 2.4 of Chapter IV. 

2.1 Statistical analyses of traits concerning plant health 

In the aim of accounting for bean health on organic farms in the 'multiplication phase' over three years, 

several types of data were analysed by different methods. The different data analysed and methods 

employed allow to report on plant health (i) at different geographical and time scales and (ii) in a form 

that leaves room for interpretation according to a range of approaches to plant health. Each 

combination of location and year (i.e. the location*year interaction) was considered an 'environment'. 

An abbreviation comprising the location code (as in Chapter IV, subsection 1.2) and the two last 

numbers of the year designates each environment, e.g. 'Aquitaine 2012' is 'AQU:12'. Statistics were 

computed using the programming language and software environment R version 3.3.0 (R 

Development Core Team, 2016).  

Firstly, multivariate analysis in the form of Multiple Correspondence Analysis (MCA) was conducted on 

scores of symptoms observed on bean leaves and stems. All environments and observation dates 

were included. As the numbers of observations differed strongly between sites and years, the dataset 

is unbalanced and some environments may influence the analysis more than others. Nevertheless, 

MCA may point to trends concerning plant health of the bean varieties in different environments. MCA 

was conducted using the R package 'FactoMineR' (Lê et al., 2008), with five types of symptom scores 

as active variables: (i) leaf mosaic ('mosaic'), (ii) leaf blistering ('blist'), (iii) blight spots on leaves 

('blight.leaf'), (iv) brown lesions on stems and leaf veins ('brown.vein') and (v) spots left by leaf-sucking 

pests ('feeding'). Four factors were included as supplementary qualitative variables: variety ('var') and 

environment ('env'), as well as location ('loc') and year separately. Date of observation in days after 

sowing ('das') was included as supplementary quantitative variable. Before running the MCA, missing 

data were imputed with 'missMDA' package (Husson and Josse, 2016) using 5 dimensions. To 

examine whether the coordinates of individuals were significantly explained by categorical variables, a 

1-way ANOVA was computed for each dimension, followed by F-tests to see whether the variable has 

an influence on the dimension and category by category t-tests (command 'dimdesc'). Blight 
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symptoms on pods ('blight.pod') were not included in the MCA, as they were scored later in the season 

and scores were not paired with scores of earlier symptoms. For this symptom, a non-parametric, 

rank-based model was fitted with 'env', 'var' and their interaction as explanatory variables. Data was 

derived from one observation date per environment. Overall treatment effects were tested by rank-

based ANOVA-type statistic with the R package 'rankFD' and relative treatment effects compared 

between treatment levels (Shah and Madden, 2004; Konietschke et al., 2016). 

Secondly, leaf mosaic and blight symptoms were assessed in further detail for environment LUX:13. 

Local climatic conditions (see Annexes 5 and 6) and experience gained during the experiment indicate 

that the site LUX is favourable to the development of blight and virus-like symptoms. LUX:13 is also 

the environment for which most observations have been realised in terms of observation dates and 

plant numbers. Symptoms were scored at four growth stages (see Annex 10): V2 (2 trifoliate leaves), 

Vn (just before flowering), R2 (flowering) and R7 (seeds are filled, pods begin to yellow). Rank-based 

models were fitted to test for the overall effects of 'rep' and 'var' on leaf mosaic and blight symptom 

scores at each growth stage. Relative treatment effects were compared between varieties at each 

growth stage. 

Thirdly, overall vigour was scored on individual plants around flowering growth stage (see division 2.3 

of Chapter IV) in two locations and in three years. The score reflects the observer's general 

impression of the plant and is influenced by the biomass of the plant as well as general health status. 

As described for the 'pod blight' symptom above, the vigour scores were analysed with a rank-based 

model. 

Lastly, the number of seeds produced per plant was taken as an indicator of Darwinian plant fitness 

(Kulheim et al., 2002). Looking at Darwinian fitness corresponds to a 'functionalist' approach to plant 

health (Döring et al., 2012). Given an over-dispersed count outcome variable, a negative binomial 

model (theta = 2.676) was fitted as follows, using the 'pscl' R package (Jackman, 2015):  

yij = μ + environmenti + varietyj + environmenti × varietyj + İij .  

Overall effects of predictors where tested by sequentially adding predictors to the model and 

comparing models by means of likelihood ratio tests (Zeileis et al., 2015). The model was then used to 

predict mean seed counts and their 95% confidence intervals for each variety in each environment. 

2.2 Bacteriological and virological analyses of seeds and leaves 

Seed lots underwent bacteriological analyses for the detection of blight agents and determination of 

contamination rates. A subsample of 1000 seeds, or less according to availability, was tested for each 

seed lot. If tested negative, a second, equivalent seed subsample was analysed to confirm the 

absence of bacterial blight agents. If the second subsample resulted positive, contamination rates p 

were calculated with the formula proposed by Maury et al. (1985), letting Y be the number of healthy 

subsamples among the N subsamples analysed and n the subsample size (number of seeds per 

subsample): 
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If the first subsample was positive with blight agents, a set of decreasing subsamples was analysed in 

order to estimate contamination rates and 95% confidence intervals according to Swaroop (1951). 

Seed-water extracts were prepared by soaking seed samples overnight in approximately 2 × TSW (g) 

of sterile water. Aliquots (0.1 ml) of the seed extracts were plated in triplicate onto semi-selective 

media. Milk-Tween and TSA 10% media were used for the detection of Xanthomonas axonopodis pv. 

phaseoli and Xanthomons fuscans pv. fuscans (Xap/Xff), the agents of Common Bacterial Blight 

(CBB). Modified Sucrose Peptone was used for detection of Pseudomonas syringae pv. phaseolicola 

(Psp), agent of Halo Bacterial Blight (HBB). Suspensions of typical bacterial colonies at 106 CFU ml-1 

were identified by PCR-amplification assays. Primer X4e (5'-CGCCGGAAGCACGATCCTCGAAG-3') 

was paired with primer X4c (5'-GGCAACACCCGATCCCfAAACAGG3') for the detection of Xap/Xff 

(Audy et al., 1996). PCR reactions were performed in an Applied Biosystems 2720 Thermal Cycler in a 

volume of 20 μl containing 5 μl of bacterial suspension in 4 μl of Go-Tag Buffer 5X (Promega), 160 με 

dNTP, 0.5 με each of upstream and downstream primer and 0.08 units of Go-Taq polymerase 

(Promega), with the following thermal profile: 94°C for 5 min, followed by 35 cycles of 94°C for 1 min 

and 72°C for 2 min and 10 min at 72°C in the final extension. Agarose electrophoresis (1.2%) revealed 

a 730 bp DNA fragment for a Xap/Xff isolate. Primer PHA19 (5'CGTCTGTAACCAGTTGATCC3') was 

paired with primer PHA95 (5'GAATCCTTGAATGCGAAGGC3') for the detection of Psp (Marques et 

al., 2000). The same thermal cycler and reaction mixture composition were used with a thermal profile 

as follows: 94°C for 5 min, followed by 35 cycles of 94°C for 30 sec, 52°C for 45 sec and 72°C for 1 

min and 7 min at 72°C in the final extension. Agarose electrophoresis (1.2%) revealed a 480 bp DNA 

fragment for a Psp isolate. Negative and positive controls of the PCR reaction were systematically run 

on sterile distilled water and a suspension of CFBP4834-R (Xff) or CFBP531 (Psp) at 106 CFU ml-1, 

respectively. 

In addition, leaf samples with blight symptoms were collected in LUX and AQU in 2013 for 

bacteriological analysis, as well as in the gathering phase in 2015 (Chapter IV, subsection 1.3). Leaf 

pieces were lacerated in sterile water to obtain extracts and plated on the same media as the seed 

extracts. Bacterial colonies suspected as Psp were confirmed by testing for fluorescence under UV 

light (Taylor, 1970). Colonies suspected as Xap/Xff were tested by PCR-amplification assays as for 

seeds. No virus analyses were conducted in the 'multiplication phase', but leaves of varieties 'rdb', 'rdc' 

and 'ses' grown from seeds from the three multiplication sites (AQU, BZH, LUX) were sent to the 

phytodiagnostic laboratory of Vegepolys Maison du Végétal in Angers for analyses for potyvirus in 

2015 to confirm that the experimentators were correctly identifying viral diseases. Samples from three 

plants per variety and site were analysed for varieties 'rdc' and 'ses', which were the varieties showing 

symptoms most frequently. For 'rdb', only one sample was taken from the population coming from 

BZH, due to low symptom occurance in this variety. After visual inspection, samples underwent culture 

on selective media and identification of potyvirus by ELISA test (Porcher, 2015). The 'Poty' reagent set 

from the manufacturer Agdia were used for detection in a Antigen Coated Plate - ELISA. Positive and 
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negative controls were run on infected and non-infected samples internal to the laboratory, as well as 

an additional negative control consisting of the extraction buffer alone. Thresholds to separate 

negative from undetermined samples and undetermined from positive samples were determined from 

the average absorbance values of non-infected samples according to the method MOA 008 

(DGAL/SDQPV, 2010). 

3 Results 

3.1 Multivariate analysis of disease symptoms 

Data available for the MCA for each environment and observation date are summarised in Annex 11. 

Between 100 (20 per variety) and 300 (60 per variety) plants were scored per observation date. Plants 

were scored on 1 to 4 observation dates per environment. Between varieties, data was balanced. No 

data was collected in AQU in 2014.  

The first three dimensions of the MCA account for 8.6%, 7.6% and 7.2% of variance, respectively. 

23.5 % of the variation in the score data is thus represented on these three dimensions. The graphs of 

variables for dimensions 1, 2 and 3 are shown in Figure 5.1. Variables 'mosaic' and 'blist', which are 

typical symptoms of viral diseases, are much linked to both the first (correlation ratios η=0.68 and η 

=0.64, respectively) and the second dimension (η =0.57 and η =0.49). Variables 'brown.vein' and 

'blight.leaf' are both symptoms which can be attributed to bacterial blights. They are linked to 

dimensions 1 (η =0.2 and η =0.12) and 2 (η =0.18 and η =0.2) to a lesser extent. They are however 

much linked to the third dimension (η =0.48 and η =0.42, respectively). The variable 'feeding' is at the 

centre of both plots, so this variable is not linked to any of the three dimensions. Among the 

supplementary variables, 'var' appears linked to the first dimension, whereas all the others are located 

at the centre of the plots.  

The respective graphs of categories are shown in Figure 5.2 and allow to further characterise the 

dimensions. Dimension 1 opposes 'mosaic_5' and 'blist_5' on one hand and 'blight.leaf_5' and 'brown. 

vein_5' on the other; individuals with high coordinates on this dimension tend to have virus-like 

symptoms, but no bacterial blight symptoms. Dimension 2 is positively related to all these symptoms, 

individuals with high coordinates on dimension 2 tend to have both kinds of symptoms. Dimension 3, 

like dimension 1, again opposes 'mosaic_5' and 'blist_5' on one hand and 'blight.leaf_5' and 'brown. 

vein_5' on the other. However, in contrary of dimension 1, it is linked positively to blight symptoms and 

negatively to virus-like symptoms; individuals with high scores on dimension 3 tend to have bacterial 

blight symptoms, but no virus-like symptoms. 

Individuals are plotted on the first three dimensions according to variety in Figure 5.3. Given that the 

dimensions are built upon nuances in few variables, interpretation is not easy. Most individuals are 

situated at the graph centre; they cannot be differentiated on the dimensions. However, variety 'ses' 

forms a somewhat distinguishable group with positive coordinates on dimensions 1 and 2 (graph A). 

To a lesser extent, variety 'rdc' forms part of the same group with 'ses'. This indicates that 'ses' and 
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'rdc' expressed leaf mosaic and blustering. Dimension 3 (graph B) seperates 'ses' and 'rdc' to some 

extent, with a tendency of 'rdc' to adopt higher values and 'ses' lower ones. Variety 'rdc' thus more 

strongly expressed blight spots on leaves and brown lesions on stems and leaf veins. 

Variable 'das', i.e. the date of observation in days after sowing, was very weakly, but significantly 

correlated with dimensions 1 (R=0.2, p < 0.0001) and 2 (R=0.14, p < 0.0001), reflecting that symptoms 

were stronger later in the season. The MCA does not allow to distinguish environments, locations or 

years that favoured the appearance of symptoms (data not shown).  
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Scores on blight symptoms on pods 

were only available for 3 

environments: 300 plants were 

scored in BZH and LUX in 2013, 

respectively, and 100 plants in LUX 

in 2014. The number of 

observations was balanced 

between varieties. Rank-based 

ANOVA-type statistic resulted in a 

highly significant effect of variety 

(p<0.0001), environment 

(p<0.0001) and their interaction 

(p<0.0001) on pod symptom scores. Distributions and the results of pairwise comparisons are shown 

in Figure 5.4. Blight symptoms on pods mainly appeared in the environment LUX:13. Although not 

scored for individual plants, but only at the scale of the crop, symptoms also appeared on pods in LUX 

the following year (2014, data not shown). As indicated by the MCA concerning leaf symptoms (Figure 

5.3), 'rdc' also expressed strongest blight symptoms on pods. Variety 'rdc' was also the only variety to 

have blight symptoms on pods in BZH:13 in a significant manner (Figure 5.4). In LUX:13, varieties 'cal' 

and 'rdb' also developed blight symptoms on pods. 

3.2 Bacteriological and virological analyses 

Although symptom scores give some indication of possible causal agents, disease diagnosis upon 

symptoms alone is difficult and uncertain. In particular, distinguishing between CBB and HBB is 

extremely difficult. Bacteriological seed analyses have identified only Psp, the causal agent of HBB, in 

all experimental sites and years (Table 5.1). Analyses of leaves confirmed that symptoms were due to 

Psp in LUX:13 (111 leaves positive with Psp out of 120 tested), but revealed both Psp (25 leaves 

positive out of 54 tested) and Xap/Xff (17 leaves positive out of 54 tested) in AQU:13.  

No analyses for viral disease agents were conducted in the 'multiplication phase', but leaves of 'rdb', 

'rdc' and 'ses' from various multiplication sites (AQU, BZH, LUX) were tested positive with potyvirus in 

the 'gathering phase' in 2015. This indicates the presence of BCMV (Bean Common Mosaic Virus), 

BYMV (Bean Yellow Mosaic Virus) and/or CYVV (Clover Yellow Vein Virus).  

 

 

Figure 5.4: Quartiles of scores of blight symptoms on pods for each 
variety and environment. Within each variety, distributions with the 
same letter are not significantly different from each other at p < 0.05 
according to rank-based pairwise comparisons. 
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Figure 5.5: Symptom scores for leaf mosaic (above) and blight spots on leaves (below) on five bean varieties in 
LUX:13 at 4 growth stages: V2, Vn, R2 and R7. A and C: distributions of absolute scores across varieties for each 
growth stage. B and D: relative effect (pd) of bean varieties and their confidence intervals, according to a rank-based 
model. 

Note on relative treatment effects: 

The so-called relative treatment effect pdi of variety 'i' can be regarded as the probability that a randomly chosen 
observation Xi results in a larger value than a randomly chosen observation from the whole data set. Specifically, if pdi 
is >0.5, observations in the ith treatment tend to be larger in comparison to an independent random variable; likewise, 
if pdi is <0.5, observations in the ith treatment tend to be smaller. Differences in the pd values are used to compare 
treatments with a rather simple interpretation: variety 'i' tends to result in (1) a smaller value than variety 'j', if pdi < pdj; 
(2) a larger value than variety 'j', if pdi > pdj, neither a smaller nor larger value than variety 'j', if pdi = pdj (Brunner and 
Puri, 2001; Shah and Madden, 2004). 

Table 5.1: Contamination rates of seed lots with Psp (number of seeds contaminated in 1000). Confidence intervals 
of the estimated contamination rates are indicated in brackets when available.  
* The initial seed lot of variety 'Calima' (cal) was treated with an unkown seed treatment used by the breeding 
company to control bean diseases. 
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3.3 Leaf mosaic and blight in Luxembourg in 2013 

To confirm the results of the multivariate analysis, namely that variety 'rdc' is particularly affected by 

blight symptoms and variety 'ses' by virus-like symptoms, the expression of 'blight.leaf' and 'mosaic' 

was elucidated in the environment LUX:13 in further detail. The rank-based ANOVA-type statistic 

resulted in a significant effect of 'variety' for every observation date. Figure 5.5 shows the distribution 

of absolute symptom scores for each observed growth stage (graphs A and C), as well as the relative 

effects of varieties (graphs B and D).    

Concerning leaf mosaic (graph B), 'ses' is particularly affected across growth stages. Variety 'rdc' is 

more strongly affected than other varieties at the three first observation dates, but not on the last 

observation. Concerning blight symptoms (graph C), 'rdc' is particularly affected across growth stages. 

Variety 'ses' is more strongly affected than other varieties at the three first observation dates, but not 

on the last observation. Variety 'cal' developed blight symptoms on leaves at the end of the growth 

cycle, at R7. Variety 'flc' developed very few symptoms of blight or mosaic on leaves as compared to 

other varieties.   

3.4 Vigour 

Rank-based ANOVA-type statistic was 

computed for plant vigour scored on 

individual plants at flowering growth stage 

(R6). Data was available for 5 

environments, comprising two locations 

and three years: BZH:12, BZH:13, BZH:14, 

LUX:13 and LUX:14. Between 100 and 

300 plants were observed per 

environment, with a balanced number of 

observations between varieties. Rank-

based ANOVA-type statistic resulted in a 

highly significant effect of variety 

(p<0.0001), environment (p<0.0001) and 

their interaction (p<0.0001) on plant vigour. 

Data distributions and the results of 

pairwise comparisons are shown in Figure 

5.6. Considering the boxes representing 

1st and 3rd quartiles of the samples, i.e. 

the central range in which 50% of the data 

is located, gives an impression of the 

vigour generally expressed by the 

varieties. Variety 'rdb' was rather vigorous 

across environments, whereas 'ses' had 

little vigour. Varieties 'flc' and 'rdc' appear 

 

Figure 5.6: Quartiles of scores of plant vigour for each variety 
and environment. Within each variety, distributions with the 
same letter are not significantly different from each other at 
p<0.05 according to rank-based pairwise-comparisons. 
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more responsive to environmental factors; they were generally less vigorous in LUX (in shades of red) 

and more vigorous in BZH (shades of blue). Variety 'rdc', in particular, expressed a very high vigour 

potential in BZH:13, but was not vigorous in LUX:12 and LUX:13. The commercial control variety 'cal' 

appears as intermediary, both in terms of its level of vigour across environments and of 

responsiveness to growing environments. 

3.5 Seeds per plant 

Seeds produced per plant were 

counted on 30 plants per site and 

year in 2012 and 2013 and on 10 

plants per site and year in 2014. 

Data as not collected in AQU in 

2014 for any variety, nor for 

variety 'flc' in 'LUX' that same 

year. Seeds produced per plant 

ranged from 0 to 520 over all 

varieties and environments. 

Likelihood ratio tests of nested 

negative binomial models 

indicated that the effects of 

environment (p < 0.0001), bean 

variety (p < 0.0001) and their 

interaction (p < 0.0001) on number of seeds produced per plant were all highly statistically significant. 

In Figure 5.7, mean counts and their 95% confidence intervals are shown for each variety grown in 

each environment. Across varieties, the site 'BZH' generally had higher seed counts than 'AQU' and 

'LUX'. Variety 'flc' was most responsive to changes in growing environments, whereas 'ses' was least 

responsive.  

4 Discussion 

Results of several analyses (Figure 5.3, Figure 5.4 and Figure 5.5) concur to show that variety 

'Rognon de Coq (rdc) is particularly affected by blight symptoms. Variety 'rdc' is indeed renowned for 

its susceptibility to both CBB and HBB (see letter on p.30). Apart from the initial seed lot and the seed 

lot harvested in BZH:14, Psp, the agent of halo bacterial blight (HBB) was detected on all 'rdc' seed 

lots tested (Table 5.1). Contamination rates were particularly high in LUX, again indicating strong HBB 

pressure in this site as expected from climatic conditions (Annexes 5 and 6; EFSA Panel on Plant 

Health, 2014). In contrast, no Psp was detected on seed of variety 'rdc' harvested in BZH in 2014, 

which is in accordance with the low prevalence of blight symptoms in this site (data not shown). 

Contrasting growth conditions and health status of 'rdc' are also reflected by overall vigour scores 

 

Figure 5.7: Mean counts of seeds produced per plant by five common 
bean varieties in 8 environments. Error bars represent 95 % confidence 
intervals. Different colours indicate different locations, whereas shades 
of these colours indicate years.  
(*) The mean count of variety 'flc' in the environment 'LUX:14' was 
predicted with the generalised linear model, as data was missing for 
this subgroup.  
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(Figure 5.6) and seeds produced (Figure 5.7), with low values for the trial site in LUX and higher 

values in BZH.   

Results (Figure 5.3 and Figure 5.5) also concur to show that variety 'Saint Esprit' (ses) is particularly 

affected by symptoms of leaf mosaic and blustering. These are typical symptoms of several viral 

diseases (Hall, 2005), but can easily be confounded with symptoms caused by nutrient deficiencies 

and damage caused by aphids, respectively. For variety 'ses' the consistency of symptoms across 

growing environments, as well as the early appearance and rapid spread of symptoms indicate a 

seed-borne viral disease, such as Bean Common Mosaic Virus (BCMV). Positive tests for potyvirus 

(BCMV is a potyvirus) on several populations of variety 'ses' in the 'gathering phase' (data not shown) 

comfort this conclusion. In Figure 5.5, graphs B and D show that the two varieties 'rdc' and 'ses' 

express both symptoms of leaf mosaic and blight up to flowering (growth stage R2). Later (growth 

stage R7), leaf mosaic symptoms drop and leaf blight continues to increase for variety 'rdc'. The 

inverse development of symptoms is true for 'ses' (relative effect of 'ses' on blight spots decreases, 

relative effect on leaf mosaic increases). Two explanations are possible. (i) Antagonistic effects 

between HBB and (presumed) BCMV may lead to one disease taking over, as found between other 

aerial plant diseases (Paula Júnior et al., 2010, 2015). (ii) It also possible that blight and mosaic 

symptoms were confounded at early growth stages. Observations of blight symptoms are indeed 

recommended at later growth stages, between R6 and R8 (Schoonhoven et al., 1987). However, 

bacteriological leaf tests confirmed that blight symptoms were correctly identified by the evaluator, so 

that the first explanation seems more likely. 

Multivariate analysis did not reveal any notable link of varieties 'cal', 'flc' and 'rdb' with any disease 

symptoms (Figure 5.3). Figure 5.4 shows that 'rdb' and the control variety 'cal' expressed some blight 

symptoms on pods in environment LUX:14, which was an environment with high pressure from Psp 

(agent of HBB). Variety 'rdb' expressed little blight on leaves, whereas 'cal' had blight symptoms on 

leaves at the end of the growth cycle (Figure 5.5). Concerning the control variety 'cal', a modern 

variety obtained from a conventional, large-scale plant breeder, it is noteworthy that HBB symptoms 

occurred on leaves and pods despite an HBB-resistance announced in commercial seed catalogues 

(Hild, 2016 p. 9). It may be that 'cal' is resistant only to certain bacterial Psp strains (Taylor et al., 

1996a; b); or its resistance may have been broken since its release in 1989. 

Variety 'flc' stands out due to its absence of symptoms in general and in environment LUX:13 in 

particular. However, in the 'gathering phase', when all versions of the varieties were cultivated in a 

field trial in BZH in 2015, all versions of 'flc' were all but completely destroyed by 'black root syndrome' 

(Jenkins, 1940), a spreading, usually lethal phloem necrosis (data not shown, see Chapter VIII). Under 

certain conditions, particularly high temperatures, this phloem necrosis is caused by the viral pathogen 

BCMV in bean varieties carrying the I allele, which is widely used in bean breeding as source of 

resistance to BCMV (Collmer et al., 2000). This explains the absence of viral disease symptoms on 

'flc' in all environments the previous years. Studying the interaction between BCMV and the resistance 

conferred by the I gene in common bean, Collmer et al. (2000) came to a conclusion that is relevant 

for the difficulties of managing bean health in situ: 
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The observations reported here contribute to a growing appreciation of the complexity of the interaction 
between a potentially resistant plant and a potential viral pathogen. While a predictable plant–pathogen 
response, whether that be extreme resistance or hypersensitive resistance, can be elicited when plant 
cultivar, resistance allele dosage, viral strain, and environmental conditions (including temperature, 
light intensity, and humidity) are carefully controlled, the variability possible when they are not can 
extend from one end of the resistance continuum (extreme resistance) to the other (systemic vascular 
necrosis and plant death).  

As in Chapter III of this thesis (p.64), the authors come to consider disease agents as potentially 

pathogenic.  

A "seed size limit" to yield potential, and thus to the number of seeds produced per plant, has been 

reported for common bean (White and González, 1990). This has also been reported for total biomass 

production (White et al., 1992). In other words, common bean varieties with larger seeds produce less 

biomass and fewer seeds per plant (without compensation between seed size and number). A very 

large range of seed sizes is represented by the varieties in this experiment (1000-seed weights range 

from approximately 250g to more than 800g) and somewhat illustrates this "seed size limit" to the 

number of seeds produced (Figure 5.7): varieties 'cal' and 'flc', with lowest 1000-seed weights, had a 

higher potential for seed production than other varieties, as expressed the trials site in Brittany (BZH, 

in blue in the figure). Variety 'ses' generally produced few seeds in all environments and was the least 

vigorous among the varieties (Figure 5.6). On one hand, this may be explained by the very large seed 

size of 'ses' (Table IV.1, p.99). On the other hand, the very low vigour and numbers of seeds produced 

by variety 'ses' may also be due to seed-borne viral diseases.  

When comparing within a variety, plant health status is to some extent reflected by vigour scores and 

seed counts. Vigour and seed production were generally lower in the trial site in Luxembourg (LUX) 

than in Brittany (BZH). This coincides with strong pressure from plant diseases in LUX. In contrast, 

environmental conditions in BZH were favourable to bean production during the experimentation. The 

effect of disease pressure is particularly visible for variety 'rdc', with low vigour and seed counts in 

LUX. However, vigour and seed production in the experimental sites cannot be explained solely by 

plant health status, as variety 'flc' was highly responsive to environmental conditions despite 

outstanding plant health. High biomass and seed production in BZH may be due to weather conditions 

and more nutrient-rich soil, as opposed to cooler temperatures and more nutrient-deficient soil in LUX 

(Annex 5). Not much data was collected in the on-farm trial in Aquitaine (AQU) as compared to the 

other sites, for reasons elucidated in subsection 2.1 of Chapter II. From the little data available (Table 

5.1, Figure 5.7), AQU appears to have had difficult to intermediary bean growing conditions in 2012 

and 2013, depending on year and bean variety.  

It is noteworthy that no symptoms of fungal bean diseases, such as White Mould (Sclerotinia 

sclerotium (Lib.) de Bary), Fusarium root rot (as Fusarium solani F. sp. phaseoli) or anthracnose 

(Colletotrichum lindemuthianum) were scored in any of the varieties or environments. Indeed, no 

typical symptoms of these bean diseases appeared in the field trials. The possible link of this non-

observation with soil life, mycorrhizal fungi and Rhizobia in particular, is addressed in the next chapter.  
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The objective of this chapter was to represent general health in a way that allows for judgement 

according to actors' different approaches to plant health. Multiple correspondence analysis (MCA) was 

considered a promising approach to visualise the health state of bean varieties in several 

environments with regard to multiple types of symptoms. The aim was to reflect the general plant 

health situation of different varieties in different environments in a way that both allows for the 

comparison between varieties and environments and leaves room for different stances on plant health 

when interpreting the data. In this study, the interpretation of MCA on its own was not satisfactory in 

revealing contrasting environments with regard to disease pressure, nor in pointing to finer differences 

between varieties. Indeed, only very severe disease incidence was distinguishable in the MCA, such 

as HBB on variety 'Rognon de Coq' (rdc) or virus-like symptoms on 'St Esprit' (ses) in Luxembourg 

(LUX). This method of multivariate analysis may be more conclusive when more variability is 

represented by the data, for example when plant health is observed in more locations and more 

different types of symptoms are scored. Such greater variation may allow for a finer seperation of 

environments and varieties according to more distinctive dimensions in the MCA. In our case, 

conclusions were drawn by combining MCA with other analytical methods.  

Further efforts would be necessary in future if the aim of rendering general plant health comparable 

across sites according to different stances on plant health is pursued. However, one may also 

question whether this aim can effectively be reached by using numerical tools alone. An alternative is 

to consider that the comparison of plant health according to different stances must involve actors who 

hold those stances. In the case of the Croqueurs discussed here, this might imply collectively 

discussing results of the analyses performed in view of action, i.e. in view of the collective in situ 

management of bean health. The supplementary information gained by symptom observation, seed 

analyses and statistics would then feed into the comparison and evaluation of plant health in the 

framework of a social learning process, which cannot be disconnected from the involved actors. 

To summarise the observations presented in this chapter, the on-farm trial locations in Brittany (BZH) 

and Luxembourg (LUX) constitute contrasting environments in terms of climatic conditions, soil 

properties and disease pressure. In 2012-14, BZH presented very favourable bean growing 

conditions, whereas LUX was marked by very difficult ones. Variety 'flc' stood out as a variety with an 

excellent health status across environments. Variety 'rdc' suffered heavily from halo bacterial blight 

(HBB) in LUX, whereas variety 'ses' expressed virus-like symptoms across environments. The control 

variety 'cal' and 'rdb' can be described as intermediary in terms of plant health and seed production, 

although 'rdb' was most vigorous.     

Implications for collective management of plant health 

Varieties 'rdc' and 'ses' are particularly susceptible to certain seed-borne bean diseases. They each 

make a case for the collective management of bean health by the Croqueurs and other actors involved 

in bean crop diversity. Indeed, the seed grower in LUX, who had initially provided variety 'ses' for the 

experimentation, stopped producing this variety. He concluded that 'ses' won't adapt to the 

environmental conditions of his seed garden. The variety was consigned to another seed grower of his 
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network. We see collective management (see Chapter III, division 1.1.3) of plant health at work: As 

'ses' won’t adapt to environmental conditions in δUX, the artisanal seed company searches for a seed 

grower who might provide growing conditions which suit the variety. Results presented here indicate 

that the lineage of 'ses' studied has low vigour and seed production potential even in favourable bean- 

growing environments, such as BZH. Based on the notion of collective plant health management, one 

may consider that the properties of the 'ses' lineage might be modified by natural selection in another 

environment, as well as conscious selection by another seed grower. In the following, Chapter VII will 

show how seed-associated microbial communities are impacted by the multiplication site (terroir) after 

2 years of multiplication in BZH and LUX. Chapter VIII addresses phenotypic and genetic changes in 

populations after 3 years of multiplication in these trials sites.  

Variety 'rdc', notoriously susceptible to bacterial blights, makes another case for collective bean health 

management. Table 5.1 shows high contamination rates of this variety with Psp (agent of halo 

bacterial blight) in LUX. In BZH, however, contamination rates passed from rather high ones in 2013 to 

undetected in 2014. This result was obtained without conscious selection in the experimental seed 

crops. Although a longer-term study including more farm sites would be necessary to confirm, these 

first results indicate how different farms may play different roles in the collective management of bean 

health. For instance, LUX may constitute an appropriate site for testing the susceptibility of bean 

varieties to HBB (and to cool, humid conditions) and for selecting for disease tolerance. In contrast, 

sites such as the farm in BZH may perhaps, in good years, be used to sanitise bean lineages carrying 

HBB. Evidence from the inquiry presented in the previous chapter suggests that this collective 

management among seed growers of artisanal seed companies is happening, implicitly. How the 

collective governance of bean health articulates with the management of bean diversity is addressed 

in Chapter VIII. 
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Chapter 6: Symbiotic microorganisms of the soil 

"And of course, since the soil also hosts lots of problems, such as weeds and 
pathogens and all that, hence, it is replaced, so it is replaced by something 
else, like stone wool or so. And here, you nevertheless have an idea of the 
mycorrhiza and that it builds a symbiosis with the plant as if it were a 
prolongation of the roots for the plant to find what is not abundant. It's like a 
plant that makes more roots when it is not irrigated. It's another logic than just 
wanting to add manure or even soluble minerals to obtain higher yield. Here, 
you go more into the logic of nature and it's interesting. And it might even get 
you away from just yield quantities, you know." [CRO-100914a]40 

 

In Chapter III, I have shown that the Croqueurs rely upon sound environments, and beneficial soil 

microorganisms in particular, to ensure bean health in situ. In this chapter, interactions of common 

bean with two important root symbionts - mycorrhizal fungi and rhizobia - are studied under field 

conditions.  

                                                      
40 "Et forcément, comme le sol est aussi hôte de pleins de problèmes, comme les herbes sauvages et les 
pathogènes et tout ça, donc, on le remplace, donc on met quelque chose à la place, comme de la laine de roche 
ou quelque chose comme ça. Et là, t'as quand même une idée de la mycorhize et qu'elle se met en symbiose 
avec la plante comme si elle était un prolongation des racines pour que la plante puisse encore trouver ce qui 
n'est pas là en abondance. C'est comme une plante qui fait davantage de racines quand il n'y a pas d'arrosage. 
Ca c'est une autre logique que seulement vouloir ajouter de la fumure ou même des engrais solubles pour avoir 
plus de rendement. Là, tu rentres plus dans la logique de la nature et c'est intéressant. Et ça permet peut-être 
aussi de t'éloigner de la simple quantité de la récolte, quoi." [AB100914a] 

 



Symbiotic microorganisms of the soil 

126 

1 Introduction 

The Croqueurs consider soil fertility and health as key for ensuring plant health. In what has been 

termed a tripartite symbiosis (Mortimer et al., 2008) or metasymbiosis (Garbaye, 2013) common bean, 

like other legumes, interacts with two important soil microorganisms: Mycorrhizal fungi and nitrogen-

fixing rhizobia. Both mycorrhiza and rhizobia have been shown to enhance plant health under 

controlled conditions (Avis et al., 2008; Berendsen et al., 2012) and to play an important role for soil 

fertility and plant health in organic farming systems (van Bruggen et al., 2016).  

Like about 80 % of terrestrial plants (Gianinazzi-Pearson, 1982; Wang and Qiu, 2006), common bean 

forms a symbiosis with arbuscular mycorrhiza (AM). Arbuscular-mycorrhizal fungi form part of the 

phylum Glomeromycota (Schüβler et al., 2001). AM fungi are biotrophic and cannot survive without 

plant roots. Once hyphae have begun to grow from germinated spores, they must colonise plant roots 

to develop and persist (Sekhara Reddy et al., 2009). In most crop plants, colonisation of plant roots by 

AM fungi comprises three phases (Saif, 1977). In the lag phase, spores of AM fungi germinate in the 

soil, hyphae grow and enter plant roots by forming an appressorium (Garbaye, 2013). Even before 

physical contact between the fungi and the plant is established, both partners already communicate 

(Weidmann et al., 2004; Oláh et al., 2005; Tamasloukht et al., 2007). Hyphae then pass the root cortex 

and grow within the roots. In a phase of rapid development, hyphae grow within plant roots across cell 

walls, forming arbuscules within plant cells. It is through these arbuscules that the plant and the fungi 

exchange nutrients. The increase of the number of colonised common bean rootlets has been 

reported to be linear (Sutton, 1973). In parallel, a dense network of hyphae extends beyond the plant's 

root system. In the final, constant phase, the number of infected rootlet stabilises. Inside the rootlets, 

the fungi produce vesicles containing spores, which will be released into the soil as root tissues decay 

(Saif, 1977). The main known benefits of AM for crops include nutrient mobilisation, especially of 

phosphorous, and improved tolerance against abiotic stresses, especially against drought (Augé et al., 

2003; Parniske, 2008; Garbaye, 2013). AM is also known to improve tolerance against biotic stress 

factors, mainly against soil-borne pathogens (Azcón-Aguilar and Barea, 1997; Whipps, 2004). Among 

soil-borne pathogens of common bean, AM improves tolerance against Fusarium root rot (Dar et al., 

1997; Filion et al., 2003), Rhizoctonia root rot (Abdel-Fattah, 2011) and White Mould (Aysan and 

Demir, 2009; Mora-Romero et al., 2015). More recently, the symbiosis has been shown to induce a 

mild, but effective activation of plant immune responses, not only locally but also systemically (Pozo et 

al., 2010; Jung et al., 2012; Cameron et al., 2013). 

As a legume crop, common bean has the ability to interact with N-fixing rhizobia for symbiotic nitrogen 

fixation (SNF). Rhizobia are gram-negative Proteobacteria with the capacity to fix atmospheric 

nitrogen when they are associated with the legume's roots (Rajwar et al., 2013). Highest rates of SNF 

occur during the reproductive stages of common bean growth. Differences among bean varieties have 

not only been found in their ability to nodulate and efficiently fix N2, but also in their capacity to 

remobilise N within the plant (Peña-Cabriales et al., 1993). The genetic structure of the bacterial 

species able to nodulate common bean is variable in different regions of the world and is probably 
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related to the history of common bean as it spread around the globe (Laguerre et al., 1993; Martínez-

Romero, 2003). It has been suggested that Rhizobium etli bv. phaseoli was introduced into Europe on 

bean seeds brought from the New World from 1492 on. In an extensive interspecific symbiotic gene 

exchange, genetic information was then transferred from American strains to bacteria pre-existing in 

European soils (Herrera-Cervera et al., 1999). Common bean is highly promiscuous in its relationship 

with different rhizobia strains (Rodiño et al., 2012), but is renown as a poor N2 fixing plant (Graham, 

1981). There appears to be large variability in nodulation and in the efficiency of native rhizobia 

strains, adapted to local environmental conditions. This variability may be related to the large genetic 

differences observed in these bacteria and to the coadaptation of cultivar and bacteria (Rodiño et al., 

2012). Genotypic variability for N2 fixing potential was found in European bean germplasm (Rodiño et 

al., 2005) and has led to conclude on the importance of selecting for bean genotypes able to nodulate 

and efficiently fix N2 with native rhizobia (Rodiño et al., 2012). By selecting for plant vigour and plant 

health in situ, the Croqueurs may also be selecting for adaptation to local rhizobia strains. Rhizobia 

improve not only the N nutrition of legumes, but also promote plant growth and induce resistance 

against soil-borne and foliar pathogens (Persello-Cartieaux et al., 2003; Dakora, 2003; Deshwal et al., 

2003; Avis et al., 2008; Berg, 2009; Dardanelli et al., 2010). In common bean, rhizobia have been 

reported to improve tolerance against root pathogens (Özkoç and Deliveli, 2001), such as Fusarium 

solani F. sp. phaseoli (Buonassisi et al., 1986; Dar et al., 1997) and Sclerotinia sclerotiorum (Lib.) de 

Bary (Aysan and Demir, 2009) and to induce resistance against CBB aboveground (Osdaghi et al., 

2011). 

In view of the intensive tripartite symbiosis and its effects reported on bean health, tracing the 

interactions of bean seed crops with both AM fungi and rhizobia constitutes an approach in the 

endeavour to reveal the biological base of the Croqueurs' bean health management. The first sub-

question asked in this chapter is thus: is the health status of bean plants correlated with their 

ability to interact with mycorrhizal fungi and Rhizobia spp. under field conditions? Differences 

among common bean varieties in their ability to interact with both mycorrhizal fungi (Ibijbijen et al., 

1996; Hacisalihoglu, 2005) and Rhizobia (Graham, 1981; Martínez-Romero, 2003) have been 

reported. Based on these past findings under controlled conditions, the second sub-question 

addressed in this chapter is: do the bean varieties differ in their ability to interact with these 

symbiotic microorganisms under field conditions? 

2 Materials and methods 

In 2013, field trials in AQU, BZH and LUX (see Chapter IV, subsection 1.2) were sampled for the 

quantification of the symbioses of bean plants with mycorrhizal fungi and nitrogen-fixing rhizobia in the 

soil. For the quantification of mycorrhiza, stained structures of the mycorrhizal fungi were directly 

observed under a light microscope. In view of quantifying the symbiosis with Rhizobia spp., scoring the 

number of nodules on bean root systems gave a first impression. To take into account the efficiency of 

the latter interaction, the percentage of N derived from the atmosphere, or percentage dependence on 
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non-N2 fixing reference plant. 14N and 15N are the two main stable isotopes of N, with 14N naturally 

more abundant than 15N. The difference between 15N concentrations of atmospheric N2 and plant-

available soil N is used to calculate %ndfa (Unkovich and Australian Centre for International 

Agricultural Research, 2008). 

Each sample of ten plants was dried in a drying oven at 76°C for 72h or until dry and ground using a 

1mm grid. Total N contents of beans and maize were determined for each site by Kjeldahl method. 

According to N content, between 2.7 and 6.3 mg of ground sample were fed into a EA 300 elemental 

analyzer (EuroVector) coupled to an IsoPrime mass spectrometer (Elementar) and analyzed for 

15N/14N ratio. The 15N natural abundance (į15N) of each plant sample was calculated as (Pate et 

al., 1994): 

į                                                          

The proportion of N derived from fixation was estimated as (Unkovich and Australian Centre for 

International Agricultural Research, 2008): 

        į         į      
į                  

Where į15Nref is the 15N natural abundance of maize plants as non-legume, non-N-fixing reference 

plants, į15Nleg is the 15N natural abundance of the common bean sample, and B represents the į15N of 

legume plants relying entirely on symbiotic N2 fixation for their N nutrition. The B value incorporates 

the isotopic fractionation associated with nitrogenase activity during N2 fixation and replaces the value 

of atmospheric N2 (Shearer and Kohl, 1986; Pate et al., 1994). The B value of -1.97 was employed, as 

determined by Mariotti et al. (1980) for common bean in France. Negative calculated %ndfa values 

were set to 0. 

2.4 Statistical analyses 

Statistics were computed using the programming language and software environment R version 3.3.0 

(R Development Core Team, 2016). In tests, null hypotheses with p-values below the significance 

level (α) of 0.05 were rejected.  

To gain an overview of available data and their distributions, beanplots (Kampstra, 2008) were 

constructed using the R package 'beanplot' (Kampstra, 2015). For proportion data, i.e. percentage 

colonisation with mycorrhizal structures and %ndfa, a generalised linear model was fitted with a quasi-

binomial variance model and deviances for each factor tested with an F-test (Hastie and Pregibon, 

1992). Location, variety and their interaction were included in the model as explanatory variables. 

Multiple comparisons were conducted using Tukey's Honestly Significant Difference (HSD) test 

(Tukey, 1949), computed by the R package 'lsmeans' (Lenth, 2016). For the %ndfa data, the effect of 

location was first tested on a subset containing varieties rdc and cal, in order to include AQU in the 

analysis with a balanced dataset. The effects of both location and variety were then tested for the sites 
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BZH and LUX, where all varieties had been sampled. For the mycorrhiza data, the data collected in 

AQU was excluded from statistical inference, because the sampling procedure differed from the other 

two sites (see subsection 2.1). The effects of location and variety were thus tested for BZH and LUX 

only. 

Effects of location, variety and their interaction on nodulation scores were tested with a rank-based 

ANOVA-type statistic (Brunner and Puri, 2001), computed by the 'rankFD' package (Konietschke et al., 

2016). In the rank-based procedure, comparing the 95% confidence intervals of relative treatment 

effects allows for multiple comparisons. Spearman's rank correlation coefficient was computed to test 

the association between percentage colonisation with mycorrhizal structures, nodulation, symptom 

scores and plant dry weights within each site.    

3 Results 

Evidence for interaction with Rhizobia spp. and with mycorrhizal fungi was found in all sites and 

varieties. The mineral nitrogen, phosphorous, potassium, calcium and magnesium contents of the soils 

of the experimental plots are reported in Annex 5. 

3.1 Percentage colonisation with mycorrhizal structures at flowering 

All three types of mycorrhizal structures were observed in the three experimental sites and on all 

varieties. Only variety rdc was assessed in AQU. The percentages colonisation with arbuscules found 

in individual samples in BZH, AQU and LUX ranged from 0 to 37 %, 22 to 50 % and 11 to 53 %, 

respectively. The ranges and distributions of percentage distribution with hyphae, arbuscules and 

vesicles are shown in Figure 6.3. 

 

Figure 6.3: Colonisation of root segments (in % of total number of root segments observed) with hyphae (hyph), 
arbuscules (arbusc) and vesicles (vesic) in Brittany (BZH), Aquitaine (AQU) and Luxembourg (LUX). Lines within 
the plotted "bean" shapes represent individual samples. While all varieties of the field trial were sampled in BZH 
and LUX, only the variety 'Rognon de Coq' was sampled in AQU. Bold lines represent sample medians. 
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Analysis of deviance testing the effect of location, variety and their interaction on percentage 

colonisation with arbuscules in BZH and LUX revealed a significant effect of location only (Table 6.1). 

With a mean of 34.7 %, colonisation of bean roots in Luxembourg was higher than in BZH (18.5%). 

In contrast, highly significant effects on the percentage colonisation with vesicles were found for both 

location and variety (Table 6.2). The differences between locations and varieties are shown in Figure 

6.4. 

 

Figure 6.4: Percentage colonisation with vesicles in bean roots according to site (A) and bean variety (B). Lines 
within the plotted distributions represent individual samples, lines across "bean" shapes represent sample and 
overall means. Samples which are not marked with the same lowercase letter differ significantly at p < 0.05. 

  

Table 6.1: Analysis of deviance table testing the effect 
of location (loc), bean variety (var) and their interaction 
(loc:var) on the percentage colonisation of bean roots 
with arbuscules in BZH and LUX. 

  Df Deviance F value Pr(>F) 

Null 178 1575.3     

loc 1 1548.5 111.914 <0.001 

var 4 952.0 0.928 0.449 

loc:var 4 939.6 0.364 0.834 

Residual 169 937.6     
 

Table 6.2: Analysis of deviance table testing the 
effect of location (loc), bean variety (var) and their 
interaction (loc:var) on the percentage colonisation 
of bean roots with vesicles. 

  Df Deviance F value Pr(>F) 

Null 178 840.8     

loc 1 688.3 8.665 0.004 

var 4 777.5 7.922 <0.001 

loc:var 4 669.5 0.952 0.436 

Residual 169 654.8     
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3.2 Nodule scores at flowering 

Nodule scores ranged from 1 to 9 in 

LUX and from 1 to 7 in AQU. No 

variation for this trait was observed in 

BZH, as all plants were scored 1. 

Rank-based ANOVA-type statistic 

confirmed that nodulation scores in 

LUX were higher than in BZH 

(p<0.0001). As no variation was found 

in BZH and the sampling procedure in 

AQU had not been equivalent, 

differences among varieties were 

tested for LUX only. Differences among 

varieties were not statistically 

significant (p=0.06), but represent a 

trend worth considering (Figure 6.5). 

3.3 Correlations with vigour and disease symptoms at flowering 

In LUX a significant, but weak, positive correlation was detected between the nodulation score and the 

score for blight symptoms on leaves (Figure 6.6, A). At the growth stage of sampling for mycorrhiza 

quantification, blight symptoms on leaves were not strong, with most plants scored 1 or 2. 

 

Figure 6.6: Scatter plots illustrating the correlations (A) between scores for nodulation and blight symptoms on 
leaves in Luxembourg (LUX) and (B) between percentage colonisation with vesicles in bean roots and vigour 
scores in Brittany (BZH). Points are jittered to allow to distinguish between individual points. The strength and of 
the correlations are indicated with Spearman's rank correlation coefficient (r), as well as the level of statistical 
significance (p). 

 

For BZH, significant, but weak, positive correlations of plant vigour scores were detected with 

percentage colonisation with vesicles (Figure 6.6, B), with percentage colonisation with arbuscules 

 

Figure 6.5: Nodule score of bean roots grown in LUX, 
according bean variety. Lines within the plotted distributions 
represent individual samples, lines across "bean" shapes 
represent  sample and overall medians.  
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(r=0.23, p=0.03) with percentage colonisation with hyphae (r=0.3, p=0.005) and with spots left on 

leaves by leaf-sucking pests (r=0.22, p=0.04).  

3.4 Nitrogen derived from air 

The %ndfa found in individual samples in BZH, LUX 

and AQU at harvest ranged from 0 to 8 %, 9 to 53 % 

and 15 to 75 %, respectively. In AQU, only varieties 

'cal' and 'rdc' were assessed. Analysis of deviance on 

the varieties sampled in all three sites showed that 

bean plants harvested in BZH had derived 

significantly less N from the air (Figure 6.7). This 

result was confirmed by an analysis on all varieties in 

the sites BZH and LUX testing for the effects of 

variety, location and their interaction. Only the effect 

of location was found to be statistically significant 

(p<0.0001). Thus, differences in nodulation scores 

found among the varieties grown in LUX did not 

reflect the %ndfa. 

4 Discussion 

The ranges of percentage colonisation with mycorrhizal structures, of nodulation scores and of %ndfa 

in the three experimental sites correspond to the nutrient levels found in soil analyses (Annex 5). 

Lowest levels of interaction with both mycorrhizal fungi (Figure 6.3) and nitrogen-fixing Rhizobia 

(Figure 6.7) were found in BZH, which has the highest levels of P and mineral N in soils. The level of 

interaction with both symbionts were higher in AQU and LUX and corresponded to N and P levels 

found in soils (Pacovsky et al., 1991). For all these traits, statistically significant differences between 

trial sites, between BZH and LUX in particular, were found.  

Differences between varieties were found for percentage colonisation with vesicles only. Variety rdb 

was most strongly colonised with vesicles in both BZH and LUX. Given that vesicles constitute the 

storage and reproduction structures of mycorrhizal fungi (Garbaye, 2013), this may be interpreted as 

an indication that the fungal partner profits more in the symbiosis with rdb than with other varieties. 

The (very) weak positive correlation found between percentage colonisation with vesicles and plant 

vigour in BZH (Figure 6.6 A) indicates that the strong development of vesicles did not imply a loss in 

plant vigour. In other words, the fungal partner of the symbiosis profits from the carbohydrates 

supplied by the bean plant without hindering the plant's development. Concerning the interaction with 

N-fixing Rhizobia, no significant differences were found between varieties grown in LUX, although 

trends are visible (Figure 6.4): variety flc formed the lowest amount of nodules and rdc the highest 

amount. No significant differences in %ndfa were found among varieties either, indicating that potential 

trends in nodulation scores did not translate to different rates of N fixation. This has to do with the 

Figure 6.7: Percentage N derived from air 
(%ndfa) in bean plants of the varieties 'Rognon de 
Coq' and 'Calima' in Bretagne (BZH), Luxembourg 
(LUX) and Aquitaine (AQU). Lines within the 
plotted "bean" shapes represent individual 
samples, lines across "bean" shapes represent  
sample and overall means. Samples which are not 
marked with the same lowercase letter differ 
significantly.  



 

135 

efficiency of N fixation. Also in LUX, a (very) weak positive correlation was detected between nodule 

score and score of blight symptoms on leaves. This implies that bean plants with a higher number of 

nodules on roots developed stronger blight symptoms on leaves. This may indicate that the formation 

of root nodules hosting the N-fixing bacteria weakened plants more than it brought advantages. Or, 

conversely, it may indicate that aboveground bacterial pathogens may have inhibited belowground 

rhizobia, as reported for fungal pathogens in common bean (Ballhorn et al., 2014). However, the very 

weak correlation observed in only one site in one year does not allow for speculation on the threefold 

interaction between Rhizobia spp., bean plants and agents of bacterial blights. In addition, plants were 

sampled too early in the season to observe a large range of blight symptoms. Very few plants were 

given scores above 2. If further research is to study the implications of nodulation on the development 

of bacterial blights, a non-destructive method should be employed for mycorrhiza sampling in order to 

observe the development of the plants' health beyond the sampling date.   

In BZH, a weak, but significant correlation was found between plant vigour on one hand and 

mycorrhizal structures and spots left by leaf-sucking pests on the other. The correlation between plant 

vigour and mycorrhization may be causal; stronger mycorrhization may have led to more vigorous 

plant growth. However, it cannot be excluded that differences in vigour and mycorrhization among 

plants both be due to differences in earliness, for example. In any case, vigorous growth was 

accompanied by a slight increase in visits from leaf-sucking pests, probably aphids.   

Apart from the weak positive correlation between nodule scores and blight symptoms on leaves in 

Luxembourg, no significant correlation between disease symptoms and bean plants' ability to interact 

with soil symbionts was found. This may also be due to the sampling date, as bean diseases may 

have developed after flowering. It is noteworthy, however, that no symptoms of White Mould 

(Sclerotinia sclerotium (Lib.) de Bary) were observed in any of the experimental sites in any of the 

years 2012-2014, despite weather conditions that were favourable for this seed-borne fungal disease 

agent (Hall, 2005) in BZH and LUX (see Annex 6). Several researches under controlled conditions 

have shown the ability of AM and SNF to suppress White Mould on common bean, in particular (Aysan 

and Demir, 2009; Mora-Romero et al., 2015). Mycorrhizal structures were observed in plants sampled 

in the three experimental sites in 2013. Mycorrhization of bean roots may be one possible explanation 

of the absence of White Mould in the field trials, in accordance with the observation that most soil-

borne diseases are naturally suppressed in organic farming systems (van Bruggen et al., 2016). In the 

interviews treated in Chapter III, none of the Croqueurs members mentioned this disease as a 

problem. This contrasts with the prominent place held by White Mould in the bean breeding program of 

the multinational company producing conventional bean seed interviewed (data not shown), which 

regards White Mould as a major challenge, especially for geographical areas in the North of France. 

While the data presented here does not allow for any conclusions on this matter, it does indicate a 

perspective for future research.  

Although a second year of observation would have been necessary to confirm the results presented 

here, data was not collected in 2014 due to methodological uncertainties concerning the observation 

of mycorrhizal structures. Firstly, it was unclear whether the sampling date and the number of samples 
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collected per treatment were well suited for the comparison of percentage colonisation between 

common bean varieties under temperate field conditions. A field experiment was set up in 2014 to 

answer these methodological questions (de la Grandville, 2014) and confirmed that both the sampling 

dates and sample sizes practiced in the 2013 trial were adequate. In addition, this work also revealed 

that mycorrhiza sampling and observation may be rendered more efficient by (i) reducing sample size 

to 12 plants per treatment and (ii) reducing the number of field view passes across microscope slides. 

Secondly, it seems likely that the percentages of colonisation were overestimated in 2013, as the 

entire field of vision of the microscope was inspected for mycorrhizal structures. McGonigle et al. 

(1990) propose to take into account only the intersection of observed roots with a vertical eyepiece 

crosshair to avoid overestimating percentage colonisation.  

In summary of the data available from a single year of observation, differences in indicators of 

symbiosis with mycorrhizal fungi and rhizobia were mainly driven by the experimental sites. Few 

differences were found among varieties, including the commercial control variety 'cal': mycorrhizal 

vesicles were found to colonise variety rdb more strongly in BZH and LUX, whereas variety rdc 

showed a tendency to develop a larger number of nodules than other varieties in LUX. No 

variety*environment interactions were observed. In Chapter III, I have discussed the Croqueurs' 

understanding of plant health management as a practice that is intrinsically linked to the local field 

conditions they are managing, which constitute the plants' growing environment. With reference to this 

in situ plant health management, the interactions of seed crops with mycorrhiza and rhizobia are 

managed as part of the whole system by seed growers. The data obtained here indicates that their 

caring for sound soils and the level of symbiosis with mycorrhizal fungi and rhizobia they can achieve 

in their bean plants is mainly determined by environmental conditions, including their own cultivation 

practices, pointing to the interaction between grower and environment and less to the effect of bean 

variety. Despite numerous researches demonstrating the induction of defence mechanisms of plants 

by the studied root symbionts under controlled conditions (Persello-Cartieaux et al., 2003; Berg, 2009; 

Dardanelli et al., 2010; Pozo et al., 2010; Jung et al., 2012; Cameron et al., 2013, among others), no 

correlation between the intensity of the symbioses and plant health were found here under field 

conditions, except for a very weak positive correlation between mycorrhizal structures and overall 

plant vigour in one site (BZH). 

However, due to methodological difficulties, the data collected does not allow to dig deeper into 

interpretations on the link between plant health and these symbioses. For future research into this 

question, the following methodological recommendations can be drawn from this research experience: 

(i) It is preferable to use a non-destructive method to sample bean roots for the quantification of bean 

roots, in order to continue observing plant health on sampled plant beyond the sampling date. (ii) The 

assessment of percentage colonisation with mycorrhizal structures can be rendered more time 

efficient according to methodological trials reported by de la Grandville (2014). (iii) The use of a 

vertical eyepiece crosshair as proposed by McGonigle et al. (1990) for the quantification of 

colonisation with mycorrhizal structures would avoid overestimating percentage colonisation.  
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Chapter 7: Microbial communities associated to bean seeds 

"It's really the question of our understanding of what is sanitary. All microbial 
or fungal life around plants is a signature of the terroir. And of cultivation 
practices, not only of the terroir. There are always microbes on a local variety. 
Hence, we are the only ones thinking in terms of local varieties." [NGO-
260915k] 42 

 

In the previous chapter, two symbiotic microorganisms associated to bean roots were elucidated. This 

chapter addresses the seed microbiome. Bean seeds carry not only nutrients and the genetic 

information needed for the growth of a plant, but also bacteria and fungi. Seed-associated 

microorganisms are located within seeds, as well as on seed surfaces. The Croqueurs' understanding 

of plant-associated microorganisms as an integral part of plant populations, including seeds (Chapter 

III, p. 64), leads to the question: are microbial communities associated to bean seeds determined 

by the variety or by the growing environment? If microbial communities associated to seeds are 

determined by the bean variety, they may be considered as forming part of that variety's identity. If 

microbial communities associated to seeds depend on the growing environment, they may contribute 

to the development of 'lineages' of that variety (Chapter III, division 1.1.1). In other words, they may 

then represent a form of communication between bean plants and their local environment (Chapter III, 

1.1.2, p. 63). 

 

This chapter is taken from an article published in Environmental Biology: 

Klaedtke, S., Jacques, M.-A., Raggi, L., Préveaux, A., Bonneau, S., Negri, V., Chable, V. and Barret, 

M. (2016), Terroir is a key driver of seed-associated microbial assemblages. Environ Microbiol, 18: 

1792–1804. doi:10.1111/1462-2920.12977 

Additional Supporting Information may be found in the online version of this article at the publisher’s 

web-site: http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.12977/abstract 

 

 

                                                      
42  "C'est vraiment la question de la conception qu'on a du sanitaire. Tout ce qui est vie microbienne ou 
champignons autours des plantes, c'est la signature du terroir. Et des pratiques agricoles, pas que du terroir. Une 
variété locale, il y a nécessairement des microbes. Si tu les enlèves tous, il n'y a plus de variété locale. Alors, il 
n'y a que nous qui raisonnons en termes de variétés locales." [PA260915k] 
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Chapter 8: Phenotypic and genetic adaptation 

"... we ought to really care for the adaptive capacities of plants." [CRO-190515d]43 

 

The Croqueurs' management of crop diversity and governance of plant health is based on crop 

lineages (Chapter III). The term lineage reflects the idea that the plant population evolves in a given 

environment and under certain management practices. The plant population is shaped by its growing 

environment and by the seed grower. This process is termed adaptation. For instance, two bean 

populations of the same variety that have evolved on two different farms for several years are no 

longer quite the same. Taking the variety 'Rognon de Coq' as an example, the seed artisans then 

speak of "Philippe's Rognon de Coq" and of "François' Rognon de Coq", according to the name of the 

respective seed grower. Giving crops the opportunity to evolve in and adapt to their growing 

environment is considered essential for plant health.  

To elucidate whether bean lineages can be made visible in an agronomical field trial, this chapter 

addresses the question: after three years of seed multiplication in contrasting growing 

environments, do phenotypic traits and genetic markers indicate local adaptation? In other 

words, do phenotypic traits and genetic markers indicate that varieties have begun to adapt to 

local growing environments and evolve into distinct "lineages"?   

 

This section is built upon a poster presented at the annual congress of the Italian Society of 

Agricultural Genetics (SIGA) in Catania, Italy (13-16 September 2016): 

Caproni, L., Raggi, L., Klaedtke, S., Chable, V. and Negri, V. (2016): On-farm Evolution of Genetic 

Diversity of Four Old Varieties of Phaseolus vulgaris L. Proceedings of the 60th annual congress of 

the Italian Society of Agricultural Genetics (SIGA) in Catania, Italy (13-16 September 2016). 

http://www.geneticagraria.it/attachment/SIGA_2016/2_07.pdf. 

The poster is shown in Annex 9.  

                                                      
43 "...on a intérêt à vraiment veiller sur les capacités adaptatives des plantes." [BA190515d] 
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1 Introduction 

Lineages are at the base of the Croqueurs' management of crop diversity and governance of plant 

health. Giving common bean varieties the opportunity to adapt to different environmental conditions, 

including management practices, is considered as crucial to maintain bean diversity. Concurrently, in 

this approach to plant health, a bean population is considered truly healthy only if it remains healthy in 

the interaction with its growing environment. Different lineages appear when different seed growers 

among the Croqueurs cultivate the same variety. The members of the Croqueurs exclusively market 

varieties from the public domain, which are reproducible. Thereby, they also offer their customers the 

possibility to develop their own lineage by growing their own seed in their home or market gardens 

over several plant generations. Beyond the artisanal seed companies themselves, the customers thus 

represent a second level at which bean lineages can form. Common bean, as a mainly autogamous 

annual crop, is easily and frequently multiplied by home and market gardeners. This is not done only 

for financial reasons, but also to allow for the adaptation of bean lineages to local growing conditions. 

We are thus considering a seed system - between formal and informal (Almekinders et al., 1994) - in 

which artisanal seed companies provide seed of old varieties from the public domain, meant to be 

multiplied locally by their customers. Regarding plant health, we have seen in Chapter III (division 

1.1.3) that this seed system also involves a collective form of governance of bean health. 

Evidence for the local on-farm adaptation of crops has been brought by former research. In Western 

Europe, three years of on-farm selection by farmers has been shown to affect populations of the old 

common bean variety 'Flageolet Chevrier' (flc) on the phenotypic and genetic levels (Serpolay et al., 

2012). Concerning another mainly autogamous legume, local adaptation of lentil has been asserted in 

Germany after six years of natural and conscious selection, at the phenotypic level (Horneburg and 

Becker, 2008). Regarding an allogamous vegetable crop, local adaptation at the phenotypic level has 

been reported for spinach (Serpolay et al., 2011). The genetic structure of sub-populations of a 

population-variety of bread wheat was found to be consistent with the structure of seed diffusions and 

seed saving within a network of farmers (Thomas et al., 2012). However, population dynamics can be 

expected to differ between vegetable and cereal crops by the sizes of populations, in terms of 

numbers of individuals. The processes certainly differ between autogamous and allogamous crops. 

Even for crop species which are known to be predominantly autogamous, the rate of outcrossing 

which occurs in a species or variety influences the dynamics of population structures. In a study on the 

generation and maintenance of variability in common bean landraces in Malawi, natural outcrossing 

was found to be an important factor (Martins and Adams, 1987). The mean outcrossing rate of 

common bean was reported to be 7 % in a field experiment conducted in California, but was highly 

dependent on environmental factors (Ibarra-Perez et al., 1997). Given these specificities - according to 

crop species, mating system and environmental factors - elucidating the local adaptation of bean 

varieties produced by Croqueurs members appears to be relevant.    

Theoretical considerations of Allard (1975) provide a clear and useful description regarding the genetic 

adaptation of predominantly autogamous species such as common bean. For these species, 
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adaptation does not only occur independently at the level of individual loci, but also through highly 

structured genotypic frequency distributions at the population level. In other words, Allard suggests to 

consider that the entire populational genotype is organized into "a sort of giant supergene". Thereby, 

the frequency of genotypes conferring high fitness in a given environment is increased in the plant 

population. At the same time, free genetic variability and recombinational potential within inbreeding 

populations remain substantial and allow for a response to natural selection in new or changing 

environments. In addition, the recombination of genetic information can be accelerated by increased 

outcrossing in stressful environments (Allard, 1975).  

Lineages are the product of the interaction between a bean variety, a growing environment and 

a seed grower. Apart from genetic adaptation, plant phenotypes also depend on interactions with the 

growing environment. In this domain, ecologists have studied the adaptive properties of 

environmentally induced maternal effects (Roach and Wulff, 1987; Lacey, 1998; Galloway, 2005; 

Sadras, 2007). A maternal effect is "the contribution of the maternal parent to the phenotype of its 

offspring beyond the equal chromosomal contribution from each parent" (Roach and Wulff, 1987). The 

transfer of cytoplasmatic genetic information from "mother" plant to offspring is one type of maternal 

effect, but maternal effect can also be environmentally induced. For example, the temperature of 

parental reproductive environments have been reported to affect seed properties, fitness and cold 

responsiveness of progenies in thale cress (Arabidopsis thaliana) (Blödner et al., 2007). Such 

environmentally induced maternal affects are considered adaptive if they increase the probability of 

reproductive success of an offspring phenotype relative to others in a population (Lacey, 1998). 

Moreover, seed-borne plant diseases are also transmitted from a mother plant to its progeny. Plant 

diseases are generally considered as non-adaptive, as they don't increase progeny fitness. 

Nevertheless, such plant diseases contribute to shaping bean lineages (Chapter III, division 1.1.1), as 

they influence the expression of plant phenotypes. In the much longer term, plant diseases exert 

selective pressure on plant populations, which may lead to genetic adaptation of the plant population 

(Summers et al., 2003). This applies to the co-evolution of bean populations in their centres of 

diversity (Geffroy et al., 1999), but may also apply to on-farm maintenance and breeding of crop 

diversity (Maxted et al., 1997; Brown, 2000). Beyond genetic adaptation, plant diseases have been 

shown to interact with (Stokes, 2002; Lu, 2003; Akimoto et al., 2007) and even drive (Richards, 2006, 

2011; Niehl and Heinlein, 2009; Witzany, 2009) epigenetic mechanisms in plants. 

The objective of this chapter is to elucidate how bean lineages and in situ bean health management 

(Chapter III) emerge from complex interactions between bean varieties and their growing 

environments in terms of phenotypes and their respective genotypes. Do phenotypic traits and genetic 

markers indicate that varieties have begun to adapt to local growing environments and evolve into 

distinct "lineages"? Four old varieties of common bean and one commercial control variety were tested 

for local adaptation after three years of multiplication on two organic farms. Phenotypic traits and 

genetic markers are considered.  
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2 Materials and methods 

The local adaptation of five bush bean varieties were studied. The varieties are described in Chapter 

IV, subsection 1.1 and in further detail in Annex 4. Four of them were old varieties provided by 

artisanal seed companies members of the Croqueurs association: 'Flageolet Chevrier' (flc), 'Rognon 

de Coq' (rdc), 'Roi des Belges' (rdb) and 'Saint Esprit à oeil rouge' (ses). One was a modern variety 

obtained from a large scale plant breeding company: 'Calima' (cal). In 2012, each of the varieties was 

sown on (at least) two organic farms and reproduced within each site for three years, up to 2014 

("multiplication phase" described in Chapter IV, subsection 1.2). Experimental design and phenotypic 

traits were observed as described in Chapter IV. A variety multiplied in a given site over three years 

has been termed a "version" of this variety (Serpolay et al., 2011). Each version is designated by the 

name of the variety followed by the name of the site. In addition, the original seed lots with which the 

field trials were initiated in 2012 are also considered a version of each variety. For this study of local 

adaptation, three 'versions' of each variety were considered: the original (ORI), the multiplication from 

a farm in Brittany (BZH) and the multiplication from a farm in Luxembourg (LUX). In 2015, all versions 

were grown in a split-plot experiment on the farm in BZH ("gathering phase", Chapter IV, subsection 

1.3). Twelve bean plants were identified for phenotypic observation in each subplot, i.e. a total of 36 

plants per population. A subset of the same plants were sampled for molecular analysis (see 

subsection 2.2). 

2.1 Phenotypic traits 

Concerning phenology, flowering date was recorded for each plant at the first open flower. Flowering 

date is an indicator of earliness. It is also considered an indicator of local adaptation (Tiranti and Negri, 

2007). In addition, maturity was scored at 95 das on a scale from 1 (all pods are green) to 3 ('most 

pods dry, harvest maturity). Concerning morphology, the length of the middle leaflet of the fully 

developed third trifoliate leaf was measured at 43 das. The length of stems was measured at flowering 

growth stage. Throughout crop development overall vigour and disease symptoms were scored on a 

scale from 1 to 5, namely at development stages R2, R4, R6 and R7 as appropriate (see growth 

stages in Annex 10). At flowering and mid seed fill growth stages, overall plant vigour was scored on a 

scale from 1 (very little vigour) to 5 (very vigorous). Finally, after harvest, the number of pods, empty 

pods and seeds produced per plant were counted. Observation and scoring methods, especially on 

the scoring of plant disease symptoms, are described in more detail in Chapter IV, section 2. 

2.2 Analysis of SSR markers 

The molecular analysis of 22 SSR markers was conducted in the "Dipartimento di Scienze Agrarie, 

Alimentari e Ambientali" of the University of Perugia (Università degli Studi di Perugia). Genomic DNA 

was extracted from: (i) 30 individuals from each original population (ORI) and (ii) 32 individuals from 

each evolved population multiplied in BZH and LUX, respectively. A total of 470 samples where 

thereby obtained. 35 SSR neutral markers, selected from literature, were initially tested on a subset of 

samples and 22 of them were chosen (Gaitán-Solís et al., 2002; Blair et al., 2009; Córdoba et al., 
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2010). There were two markers per linkage group. Fluorescent PCR amplicons were analysed on an 

ABI3130xl sequencer.  

2.3 Data analysis 

For phenotypic traits, statistics were computed using the programming language and software 

environment R version 3.3.0 (R Development Core Team, 2016). In statistical tests, the null 

hypothesis (the values are not statistically different) is rejected at a significance level (Type 1 Error 

rate) of 5% (i.e. the p-value is below 0.05). 

Interval and ratio type data (days to flowering, leaf length, stem length, 1000-seed weight, number of 

seeds per plant) were analysed with linear mixed effects models. Linear mixed effects models permit 

data analysis with hierarchical structure through the inclusion of random effects in the model. Unlike 

the count data generated in field expreiments designed as complete randomised blocks in the 

"multiplication phase" and discussed in Chapters V to VII, count data generated by the common 

garden experiment with a split-plot design in the "gathering phase" confronts the analyst with two 

challenges: in addition to non-normality, they present random effects. No method of analysis proposed 

to date provides an exact solution to this problem. According to Fang and Loughin (2004), proper 

modelling of random effects is by far more important than exactly matching the parent distribution of 

the data in an analysis. The count data, namely number of seeds per plant, was thus analysed by the 

same linear mixed effect model without adapting for parent distribution. Sub-plots (version) were 

nested in main plots (variety) in a split-plot design. Also, several plants were observed per subplot, 

leading to pseudo-replication. Nesting and pseudo-replication were taken into account in the model by 

setting appropriate random effects. Firstly, the overall effect of variety, version and variety*version 

interaction was tested in a model including the data over all varieties. Secondly, the effect of version 

was specified within each variety by subsetting the data and building the linear mixed effects model 

with only version as fixed effect. Linear mixed effects models were computed using the R package 

'nlme' (Pinheiro et al., 2016). Least square means were computed with the package 'lsmeans' (Lenth, 

2016), as well as Tukey's Honestly Significant Difference (HSD) test (Tukey, 1949) for multiple 

comparisons.  

For ordinal variables (score data), rank-based ANOVA-type statistic (Brunner and Puri, 2001; Shah 

and Madden, 2004) was computed by the 'nparLD' (Noguchi et al., 2012) and 'rankFD' (Konietschke et 

al., 2016) R packages. Relative effects pd were also computed for appropriate two-way comparisons 

(see note on p.115 for more detail on the application of relative effects pd). For traits scored several 

times along the growth cycle (overall vigour, leaf mosaic, leaf blustering, systemic phloem necrosis 

and blight on leaves) 'nparLD' was employed to calculate the overall effect of variety and version over 

all observation dates. This method allows calculating the ANOVA-type statistic for longitudinal data in 

nested factorial designs. Any subject with missing data for the trait of interest was removed from the 

data subset for the respective analysis. For traits scored only once (stunting at R2, maturity at 95 das, 

streaks on pods at R7, symptoms on pods at R7), the overall effects of variety and version were tested 

using 'rankFD'. The nesting of data in the split-plot design was taken into account by calculating 

ANOVA-type statistics in 2 steps. Finally, the effect of version within each variety was tested. To do 
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so, a rank-based model including replication, version and their interaction was applied to the 

respective data subset and the effect of version tested via rank-based ANOVA-type statistic. For 

longitudinal data, this was done for each observation date.  

The main plot containing 'rdb' in field replication 1 was excluded from analysis due to technical 

difficulties. Also, variety 'flc' was damaged by 'systemic phloem necrosis' from flowering onwards and 

all but completely destroyed by the end of the experiment. Linear mixed effects model calculations and 

subsequent least square means can cope with missing data and, more importantly, missing cells. 

However, the rank-based model calculations cannot. Therefore, replication 1 was excluded from the 

tests for overall effects of variety and versions on the score data. For those traits and observation 

dates for which no data was collected concerning variety 'flc', this variety was also excluded from 

analysis.  

Concerning the genetic markers, SSR data analysis was conducted in the department "Dipartimento di 

Scienze Agrarie, Alimentari e Ambientali" of the University of Perugia (Università degli Studi di 

Perugia). The evolution of the studied populations was assessed through the calculation of pairwise 

population fixation indices (Fst) using Arequin 3.5 software (Excoffier and Lischer, 2010). Analysis of 

Molecular Variance (AMOVA) was employed to assess the variance among populations (a population 

being a version of a given variety), among individuals and within individuals. In addition, Principle 

Coordinates Analysis (PCoA) was conducted on standardised data via a co-variance matrix. PCoA 

and AMOVA were carried out using GenAlEx 6.5 (Peakall and Smouse, 2006). Expected 

heterozygosity (He) was also calculated. 

3 Results 

Overviews of phenotypic differences found between varieties, versions across varieties and versions 

within varieties are given in Table 8.1, Table 8.2 and Table 8.3. Table 8.1 covers quantitative traits 

analysed by linear mixed effects models, whereas Table 8.2 covers ordinal score data analysed by 

rank-based models. Table 8.3 summarizes this information further by indicating the sum of phenotypic 

traits for which significant differences were found between versions of each variety.  
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Table 8.1: Effects of variety, version and their interaction found in the complete models for quantitative 
phenotypic data, as well as effects of version found within each variety. 
* indicates that a significant effect was found at p < 0.05; ./. indicates that the trait was not analysed. 

    Overall effect in complete 
model Effect of version within variety… 

Type of trait Trait Variety Version 
Variety* 
Version cal flc rdb rdc ses 

Morpho-
phenological 

Flowering date * *   * *   * * 
Leaf length * * * * *   * * 
Stem length *   *   ./. * *   

Yield 
components 

1000-seed 
weight * *     ./.   *   

Seeds / plant *       ./.       
 

Table 8.2: Effects of variety and version found in the complete models for ordinal phenotypic data, as well as 
effects of version found within each variety. 
* indicates that a significant effect was found at p < 0.05; ./. indicates that the trait was not assessed. 

    
Overall effect in 

complete model over 
growth stages 

at growth 
stage 

Effect of Version for each growth 
stage ǁithin ǀariety… 

Type of trait Variable Variety Version  cal flc rdb rdc ses 

Morpho-
phenological 

Vigour * 
  

R2 *     *   
R6   ./.       

Maturity * *  * ./.   *   

Disease 
symptoms 

Leaf mosaic * * 
R2       * * 
R4   ./.   *   
R6   ./.   *   

Leaf blustering * * 
R2       *   
R4   ./.   *   
R6   ./.   *   

Blight on leaves * * 
R2           
R4 * ./.   *   
R6 * ./.   *   

Phloem necrosis *   
R2           
R4           
R6           

Stunting (R2) * * R2       *   
Blight on pods (R7) * * R7 * ./.       

 

Table 8.3: Numbers of phenotypic traits for which significant differences were found between versions of a given 
bean variety, for different types of traits and in total. 

Type of trait 
Number of 
variables 

assessed per 
trait type 

Number of variables for which a significant effect of version was 
found within variety… 

cal flc* rdb rdc ses 
Morpho-phenological 5 4 2 1 5 2 
Yield components 2 0 ./. 0 1 0 
Disease symptoms 6 2 0 0 4 1 
Total 13 6 2 1 10 3 
*Note: Given that variety 'flc' was almost completely destroyed before harvest, the total number of traits assessed for this 
variety was reduced.  
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An overall effect of variety was found for all phenotypic traits assessed, reflecting that different varietal 

types were represented in terms of morpho-phenological and yield component traits, as well as 

tolerance to diseases. Varietal differences concerning seed size and number of seeds produced per 

plant had already been found in the 'multiplication phase', as reported in Chapter IV (Table IV.1, p.99) 

and Chapter V (Figure 5.7, p.117), respectively. Trends in susceptibility to a range of diseases were 

also reported in Chapter V. These differences were again found in the 'gathering' phase'. In addition, 

variety flc was all but completely destroyed by a systemic phloem necrosis between flowering and 

pod-filling growth stages. This had not been observed in the 'multiplication phase' the previous years.  

 

Concerning morpho-phenological traits, an overall effect of version was found for 'days to flowering', 

'maturity' and 'leaf length'. Overall, populations from LUX flowered 1.2 days earlier than populations 

from BZH (p < 0.0001) and 1.6 days earlier than original populations (p < 0.0001). When looking into 

the effect of version within each variety, effects were found for all varieties but 'rdb' (Figure 8.1). 

Phenological differences between versions were confirmed by an overall effect of 'version' on maturity 

scores at the end of the growth cycle: populations from LUX obtained significantly higher maturity 

scores (95% confidence interval of relative effect pd: 0.54 - 0.60) than populations from BZH (0.44 - 

0.50) and original populations (95% confidence interval of relative effect pd: 0.43 - 0.49). However, 

within individual varieties the effect of 'version' was significant only for 'cal' (p = 0.002) and 'rdc' (p < 

0.0001). 

 

Figure 8.1: Effect of 'version' on days to flowering within 
each variety. Error bars represent standard errors of the 
means. Within each variety, samples which are not marked 
with the same lowercase letter differ significantly.  

 

Figure 8.2: Effect of 'version' on leaf length within each 
variety. Error bars represent standard errors of the 
means. Within each variety, samples which are not 
marked with the same lowercase letter differ significantly.  
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For the morphological trait 'leaf length', a 

significant interaction of variety and version 

was found (p<0.0001). Comparisons 

between versions for each variety resulted 

in different trends within the varieties, 

shown in Figure 8.2. No significant 

differences were found between versions of 

'rdb'.   

ANOVA-type statistic on the overall rank-

based model for vigour scores over 4 

varieties and two growth stages (R2 and 

R6) did not result in a significant effect of 

'version'. However, an effect was found for 

varieties 'cal' (p = 0.0002) and 'rdc' (p = 

0.001) at flowering growth stage (R2) when 

testing within individual varieties for each 

growth stage (Figure 8.3).   

Concerning yield components, a significant 

overall effect of 'version' was found for seed 

weight. Seeds produced by populations from 

LUX were 13.7 g heavier than those of original 

populations (p=0.046). However, seed sizes 

differed strongly between varieties, as already 

discussed in Chapter V. When looking into 

individual varieties, a significant effect of 

version was found for variety 'rdc' only (Figure 

8.4).   

Regarding symptom scores, version had a 

significant effect on all symptoms but 'phloem 

necrosis' (Table 8.2). When looking into the 

effect of version on typical symptoms of viral 

diseases (leaf mosaic and blustering, stunting) 

within each variety, the effect of version was 

found in variety 'rdc' for all symptoms. Apart 

from 'rdc', a significant effect of version was 

found only in variety 'ses' for 'leaf mosaic' symptoms at flowering (R2). Varieties 'rdc' and 'ses' have 

been identified as susceptible to viral diseases in Chapter V. Figure 8.5 shows the distributions of 'leaf 

mosaic' scores at flowering for varieties 'rdc' and 'ses', as well as the result of multiple comparisons 

between versions within these two varieties. The trend observed within each of the varieties is not the 

 

Figure 8.3: Effect of 'version' on vigour scores at flowering 
within each variety. Within each variety, samples which are 
not marked with the same lowercase letter differ 
significantly. Note: For variety 'rdb', only field replications 2 
and 3 were taken into account. 

 

Figure 8.4: Effect of 'version' on 1000-seed weight within 
each variety. Error bars represent standard errors of the 
means. Within each variety, samples which are not 
marked with the same lowercase letter differ significantly. 
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same: whereas the version 'LUX' of variety 'rdc' had lowest scores, version 'LUX' of variety 'ses' had 

highest scores for leaf mosaic symptoms. 

 

When looking into the effect of version on blight symptoms within each variety, an effect of version 

was found in varieties 'cal' and 'rdc' for leaf symptoms. For 'cal', version also had a significant effect on 

pod symptoms. Figure 8.6 shows the distributions of scores for blight on leaves at growth stage R6 for 

varieties 'cal' and 'rdc', along with the results of multiple comparisons between versions within these 

two varieties. For variety 'cal', the version from LUX had highest scores for blight symptoms on leaves. 

For variety 'rdc', the original seed lot (version ORI) had highest scores for this symptom. The 

contamination rates of the seed lots with the bacterial agent of halo bacterial blight (HBB) are indicated 

in Table V.1, p.115. Seeds were also tested for the bacterial agent of common bacterial blight (CBB), 

but none were detected. 

Genotyping resulted in the production of about 20K data points. A total of 83 different alleles were 

identified in 16 polymorphic loci. Number of alleles per locus ranged from two (markers BMb293, 

BM156, BMd-44) to18 (marker BMd-43) with a mean value of 5.2 alleles per polymorphic locus. 

AMOVA showed that 76, 20 and 4% of total diversity is among populations, individuals and within 

individuals, respectively (Figure 4 of Annex 9). The first two axes of the PCoA explained 69,7 % of 

total diversity and clearly distinguished the five varieties (Figure 8.7). On this plane of the PCoA, the 

LUX versions of varieties 'flc' and 'rdc' demarcate from the other two versions (BZH and ORI) of the 

respective variety.  

Pairwise populations Fst analyses confirm that the 'flc' population multiplied in LUX differs significantly, 

but moderately, both from the original (ORI) population (Fst= 0.142, p< 0.001) and from the population 

multiplied in BZH (Fst= 0.093, p< 0.01). Similarly, the 'rdc' population from LUX differs significantly, yet 

 

Figure 8.5: Effect of 'version' on 'leaf mosaic' scores at 
flowering within the varieties 'Rognon de Coq' (rdc) and 
'St Esprit' (ses). Within each variety, samples which are 
not marked with the same lowercase letter differ 
significantly.  

 

Figure 8.6: Effect of 'version' on scores for blight 
symptoms on leaves at flowering within the varieties 
'Calima' (cal) and 'Rognon de Coq' (rdc). Within each 
variety, samples which are not marked with the same 
lowercase letter differ significantly. 
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moderately, from both the original (ORI) population (Fst=0.167, p< 0.001) and from the population 

multiplied in BZH (Fst=0.1931, p< 0.001). 

 

Figure 8.7: Graph of populations on axes 1 and 2 of the Principal Coordinate Analysis (PCoA) 

 

Genetic diversity within the original population (ORI) of each variety was estimated by calculating 

expected heterozygosity (He). Diversity was highest within the initial populations of variety 'rdc' (He= 

0.26). Initial populations of 'rdb' (He = 0.14) and 'flc' (He = 0.1) had intermediary intra-population 

diversity. Initial populations of the commercial control 'cal' (He = 0.04) and 'ses' (He = 0.02) had lowest 

intra-population diversity. 

4 Discussion 

For four out of five varieties, plant vigour of original populations (ORI) at flowering was equal to the 

vigour of one (variety 'rdc') or both populations (varieties 'flc', 'rdb' and 'ses'), which were multiplied in 

BZH and LUX over three years (Figure 8.3). This indicates that storage of the original populations over 

three years did not affect plant growth, at least not in a manner that persisted throughout the growth 

cycle. For the commercial control variety 'cal', the original population ORI was less vigorous than the 

populations BZH and LUX. This may be due to the age of the seed, as the seed provided by the 

breeding company was one year older (2010) than the seed provided by the Croqueurs members for 

the experiment. However, the original seed lot also underwent an unknown seed treatment (Chapter 

IV, subsection 1.1). As a consequence, it is not possible to distinguish between effects of this seed 

treatment and other effects when comparing the initial 'cal' population with the (untreated) populations 

multiplied in BZH and LUX. Comparisons between the original population of 'cal' and the other two 

populations therefore cannot be interpreted. Only the two multiplied populations BZH and LUX can be 

compared with each other.     
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Local adaptation indicated by adaptive phenotypic traits: Flowering date and leaf length 

After three years of seed multiplication on different organic farms in contrasted environments (BZH 

and LUX), flowering date and leaf length differed between versions of all varieties except 'rdb' (Figure 

8.1 and Figure 8.2). Both 'days to flowering' (Tiranti and Negri, 2007; Serpolay et al., 2011; Serpolay-

Besson et al., 2014) and leaf size (Joshi et al., 2001; Leimu and Fischer, 2008) are considered as 

indicators of local adaptation. It may be deducted that selective pressures in the multiplication sites 

caused the bean populations to adapt locally.  

Varieties 'Flageolet Chevrier' (flc) and 'Rognon de Coq' (rdc) were originally provided by a seed grower 

in Aquitaine, in the South West of France. For these varieties, populations multiplied in LUX differed 

significantly from the original population (ORI) both in terms of flowering date and leaf length. 

According to variety and trait, populations of 'flc' and 'rdc' multiplied in BZH had either an intermediary 

expression of flowering date and leaf length, or remained at the level of the original population. This 

indicates that selective pressure in cool and humid Luxembourg was stronger than in BZH, causing 

adaptive changes in the bean populations from warmer Aquitaine within three years. This results in 

populations from LUX flowering earlier and forming longer leaves. As compared to LUX, populations 

from BZH generally followed a similar trend: although differences are not significant, 'flc' and 'rdc' from 

BZH flowered earlier than the original populations. This result may reflect climatic conditions in BZH 

which are cooler than in Aquitaine, but not as harsh as in LUX (see Annex 5). 

Varieties 'Roi des Belges' (rdb) and 'St. Esprit' (ses) were originally provided by the same seed grower 

in Luxembourg who multiplied the LUX versions in the 'multiplication phase' of the experiment. For 

these varieties, populations multiplied in LUX remained in the environment which had provided the 

original population ORI. Therefore, it is not surprising that versions ORI and LUX do not differ in 

phenology and leaf morphology. For 'rdb', no significant differences among versions were found at all 

in terms of flowering date or leaf length. Phenology and leaf morphology of 'rdb' populations thus 

appear to have remained stable in both multiplication sites. However, for variety 'ses', the population 

from BZH flowered later than the population multiplied in LUX. Also, the population from BZH 

developed smaller leaves than the original population ORI. These results indicate that some 

adaptation of the 'ses' population to local conditions in BZH took place on the phenotypic level, despite 

low initial intra-varietal diversity.  

In general, environmental conditions in the Luxembourgish site seem to select for earlier flowering and 

longer leaves. In variety 'rdc', earlier flowering was associated with earlier maturity. These results are 

considered as an example of the emergence of bean lineages at work. They were obtained within 

three years of multiplication in contrasting farm environments and without conscious selection in the 

crop (harvested seed lots were sorted, thus undergoing conscious selection at this stage). Lineages of 

a given variety may thus begin to emerge within three years of cultivation in a new farm environment. 

Despite differences in mating systems (bean is a mainly autogamous species) and cropping systems 

(arable/vegetable crops), this converges with findings on allogamous spinach (Serpolay et al., 2011) 

and maize (Serpolay-Besson et al., 2014), as well as autogamous bread wheat (Dawson et al., 2013).  
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Local adaptation at the genetic level 

Flowering date is considered to be strongly determined by plant genotype in common bean (Raggi et 

al., 2014). Evidence from molecular analysis (Figure 8.7) indeed indicate that the phenotypic 

differentiation of populations multiplied in LUX are due to processes of genetic adaptation. There are 

two possible explanations why genetic changes are significant in varieties 'flc' and 'rdc' only. Firstly, 

both these varieties were originally provided by a seed grower from Aquitaine, a region with a warm 

climate and rather long growing season. The transfer to the cool and humid environment in LUX may 

have led to strong selective pressure. This is especially true for 'rdc', as this variety was heavily 

affected by HBB in LUX during the 'multiplication phase' (Chapter V). Secondly, 'flc' and 'rdc' had 

intermediate to high levels of genetic diversity within initial populations. This initial genetic diversity 

may have facilitated genetic adaptation.  

The level of genetic diversity of the initial populations can also be put into relation with phenotypic 

adaptation. Indeed, differences among versions of 'rdc' were found for 10 phenotypic traits (Table 8.3), 

which concurs with its fairly high level of initial genetic diversity. In contrast, differences among 

versions were found for only 3 traits in variety 'ses', which had the lowest level of initial diversity. This 

link between initial genetic diversity and phenotypic adaptability does not seem to hold for 'rdb': this 

variety had intermediate initial genetic diversity, but showed phenotypic differences between versions 

for only one trait (stem length). Conclusions on the phenotypic stability of 'rdb' must be drawn with 

caution, as tests performed for effects of version within variety 'rdb' were less powerful due to the 

exclusion of one field replication from data analysis. Nevertheless, 'rdb' appeared to be less variable 

than other varieties across traits, such as for example flowering date (Figure 8.1) or plant vigour 

(Figure 8.3). For variety 'flc', only a very low number of traits were assessed, because the subplots 

were lost to a systemic phloem necrosis known as 'black root syndrome' (Jenkins, 1940)44. Therefore, 

we could not verify whether the genetic differentiation of the 'flc' population multiplied in Luxembourg 

results in phenotypic differentiation in a high number of traits. 

Environmentally induced maternal effects potentially shape bean lineages 

In Chapter III, a bean lineage has been defined as the product of the interaction between bean variety, 

local environment and seed grower's practices. Indeed, phenotypic differences between populations 

cannot be explained by genetics alone. Many traits are expected to be strongly dependent on 

interactions between plant genetics and their environment. This is the case for plant vigour, seed 

weight and disease symptoms, in particular. For common bean, small-seeded genotypes have been 

shown to have higher potential for vigour (biomass production) and grain yields (White et al., 1992). 

Nevertheless, seed weight depends not only on the plant genotype, but also on the growing 

environment. For a given variety, seed harvested in LUX in 2014 had generally been larger than seed 

harvested in BZH the same year (Table IV.1, p.99), with the exception of 'ses'. These seeds were 

                                                      
44 'Black root syndrome' is a spreading, usually lethal phloem necrosis. Under certain conditions, particularly high 
temperatures, this phloem necrosis is caused by BCMV in bean varieties carrying the I allele, which is widely 
used in bean breeding as source of resistance to BCMV (Collmer et al., 2000). 
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used to establish the field trial in BZH in the 'gathering phase' (Figure 4.1, p.98). For variety 'rdc', the 

LUX population grew more vigorously (Figure 8.3) and in turn yielded larger seeds (Figure 8.4) than 

the other two populations, ORI and BZH. The data obtained does not enable us to determine whether 

the greater seed weight of the LUX population is due to an environmentally induced maternal effect or 

due to genetic adaptation. An environmentally induced maternal effect is considered adaptive if it 

increases the probability of reproductive success of an offspring phenotype relative to others in a 

population (Lacey, 1998). Seed weight and plant growth have been discussed as examples of 

adaptive maternal effects in plants in former studies (Roach and Wulff, 1987; Lacey, 1998; Galloway, 

2005; Sadras, 2007). In this study, no differences were found among versions of any variety for the 

number of seeds per plant (Table 8.1), which is an indicator of reproductive success and plant fitness 

(Galloway and Fenster, 2000). Nevertheless, these considerations on adaptive environmentally 

induced maternal effects illustrate that a bean population’s genetics are not the only pathway through 

which the growing environment (including seed growers’ management practices) shapes a bean 

lineage and its phenotypic expression.  

Health of bean lineages amidst complex interactions 

Moreover, the interaction of bean populations with plant-associated microorganisms play an important 

role in shaping phenotypes. The previous chapter has shown that the growing environment, or terroir, 

influenced seed-associated microbial communities in BZH and LUX within 2 years of multiplication. 

Among the seed-associated microbial communities, seed-borne plant pathogens can play a particular 

role in shaping plant phenotypes by causing plant diseases. An effect of version was found on leaf 

mosaic symptoms for varieties 'rdc' and 'ses' at flowering growth stage (R2). Both these varieties were 

identified as susceptible to viral diseases in Chapter V. For 'rdc', the population multiplied in LUX 

expressed significantly less leaf mosaic symptoms than the populations ORI and BZH (Figure 8.5). On 

the contrary, the 'ses' population from LUX expressed more leaf mosaic symptoms than the other 

populations, although the difference was significant only with the original population. Unfortunately, 

symptom expression cannot be related to contamination rates of seed with viral disease agents, as no 

such seed analyses were conducted. This result nonetheless shows that the influence of multiplication 

site on seed and plant health is complex and depends on bean variety, the multiplication history of 

previous plant generations and environmental conditions during plant growth, among other factors. 

The same is true when considering blight symptoms expressed on leaves of the 'rdc' populations. All 

seed lots were analysed for bacterial blight agents. No CBB agents were detected on any of the seed 

lots, but HBB agents were detected on some (Table V.1, p.115). Variety 'rdc' from LUX had particularly 

high contamination rates with HBB. Discrepancy between symptom expression (Figure 8.6) and 

detected contamination rates can have many reasons. For instance, the race of HBB agents carried by 

the seed from LUX may have been poorly adapted to the environmental conditions in BZH in 2015. In 

fact, environmental conditions were generally not favourable to the development of HBB (Annex 6). 

Also, 'rdc' populations ORI and BZH may have been contaminated at rates below the detection limit 

with blight agents that were better adapted to the environmental conditions. In addition, inoculum in 

surrounding bean fields may have led to secondary infection with blight agents. In any case, all these 
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putative reasons again point to the complexity of interactions behind plant health under field 

conditions.  

Bean lineages - Articulating governance of plant health and management of crop diversity 

To conclude, the objective of this experiment was to elucidate how bean lineages and in situ bean 

health management (Chapter III) emerge from such complex interactions between bean varieties and 

their growing environments. Although I am not able to disentangle the interactions that lead to the 

development of bean lineages in seed growers fields, results show that differences between versions 

of a given variety can be found after three years of multiplication in contrasting farm environments. 

This finding is congruent with a practice of seed growers which consists of observing a new bean 

variety for one or two growing seasons to see how the variety adapts to their farm environment 

(Chapter II, section 2.1; Chapter III, division 1.1.1). Phenotypic differences are driven in part by genetic 

adaptation, but probably also by environmentally induced maternal effects such as seed properties 

and certainly by interactions with plant disease agents.  

By considering the differences between versions in this field experiment as the emergence of bean 

lineages, we also gain an insight into the interrelations between the management of bean diversity and 

the governance of bean health practiced by the Croqueurs. I have discussed in Chapter III that 

governance of in situ bean health is a collective endeavour (division 1.1.3 therein). Managing bean 

health is in part about finding the right growing environment to multiply a given variety. Therefore, 

bean diseases contribute to structuring the distribution of bean varieties among the seed growers of 

an artisanal seed company. Results presented in this chapter attest that where a bean population is 

multiplied influences its genetic makeup and phenotypic expression. From there, perspectives can be 

derived - for research and maybe also for the management practices of artisanal seed companies. The 

roles played by seed growers in the collective management of bean health may differ according to the 

environmental conditions on their farm. For instance, farms with harsh environmental conditions and 

high pressure from diseases may serve to test and select for disease tolerance. In particular, sites 

such as LUX allow to reveal which varieties cope well with halo bacterial blight (HBB) and which are 

sensible (Chapter V). However, one can also ask whether strong selective pressure in sites such as 

LUX might reduce the genetic diversity within bean populations. The range of diversity found in the 

initial populations (ORI) indeed raises questions about what causes these differences in initial 

diversity: is it dependent on the variety, or does the multiplication environment play a role in 

maintaining a wide diversity within bean lineages (not to mention conscious selection by seed 

growers)? May some farm environments in a seed grower network contribute to collective bean health 

management by maintaining a wide diversity within bean lineages, thereby maintaining the ability to 

adapt to new growing environments? Some first indications concerning these questions may arise 

from further analysis of the data obtained in this experiment. 
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Chapter 9: General discussion 

The questions addressed by this thesis were formulated as follows in the General Introduction 

(Chapter I). Which are the specificities of bean health management practiced by artisanal seed 

companies among the association Croqueurs de Carottes? On which interactions between bean 

plants and their growing environments is this plant health management based? 

Actor-network theory (ANT) has been employed as the basic approach to these questions. One of the 

founding principles of ANT is to do away with the separation between the "social" and the "natural" 

(Latour, 2005). This case study has gained in pertinence and precision by breaking down the artificial 

distinction between the "social" and the "natural" and following the associations of humans and non-

humans. This is not only true for the social science approach. Indeed, ANT was deployed in the 

analysis of the data collected through interviews and participant observations, as I followed the actors 

in the alliances they make with non-humans - bean plants, microorganisms associated with bean 

plants or soils, cultivation media used to test for the presence of bacteria etc. However, the 

deconstruction of the barrier between the "natural" and the "social" was also taken as a basic principle 

in the field experiments. When studying bean seed crops on farms as has been done here, the 

distinction between human and non-human research objects may not be so relevant. The crop we are 

studying consists of bean plants, which are non-human (of course), but bean seed crops are 

nevertheless deeply human systems, not only in the sense that they are created by human activity, but 

in the sense that they are deeply linked to values held by humans. Although the on-farm experiments 

addressed apparently non-human objects - such as bean populations, their genetics and their plant 

diseases - they still relied on humans - seed growers, bacteriologists, seed inspectors - to object to 

questions, or hypotheses, that they did not judge pertinent. In other words: the artisanal seed 

companies would not be quite what they are if it weren't for the bean populations they multiply. And: 

the bean populations would not be quite what they are if they weren't multiplied by the artisanal seed 

companies.  

Studying the Croqueurs’ governance of bean health in this thesis implied navigating in between the 

two disciplines of crop ecology and sociology. Health and disease are indeed interdisciplinary objects 

(Caplan et al., 1981; Cabaret and Nicourt, 2011). Beyond clinicians and psychologists, human health 

is also addressed by social scientists (Laplantine, 1993; Annandale, 1998) and philosophers 

(Canguilhem, 2013; Foucault, 2015). Although plant health has not crossed disciplinary boundaries as 

extensively and has mainly remained in the domain of plant pathology, approaches to plant health, 

beyond technical questions, come into scope (Trutmann et al., 1996; Döring et al., 2012). In this PhD 

research, embracing the governance of bean health as matter of concern from an agroecological 

perspective implied “the redefinition of scientific and social boundaries” (Stassart et al., 2012) and 
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called for interdisciplinarity. Navigating between agronomy and sociology has permitted studying bean 

health and a bean health management approach jointly. I was able to study plant health without losing 

sight of the associated plant health management approach. Concurrently, field experiments provided 

concrete experiences and cases upon which the Croqueurs’ governance of plant health was 

elucidated and specified.  

In the previous chapters, results have been discussed in separate chapters according to the 

disciplinary approach that produced them - semi-directive interviews and participant observation on 

one hand (chapter III) and field experiments on the other (chapters IV to VIII). Nevertheless, they form 

part of one and the same picture: the governance of bean health as practiced by the Croqueurs de 

Carottes.  
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1 In situ governance of bean health based on ecological interactions 

In this thesis, the governance of bean health practiced by the Croqueurs de Carottes has been termed 

in situ plant health management. In the in situ approach, bean health is considered as a product of the 

interactions between a bean variety, the growing environment in which it is grown, and the growers' 

management practices. The bean variety comes with its own requirements and possibilities 

concerning the range of environments to which it can adapt. The growing environment is marked by 

pedo-climatic conditions. It can favour certain microbial communities and disfavour others. The 

growing environment also exerts natural selection pressure and can cause plant populations to adapt. 

The growers growing the seed - be it for the production of seed or for consumption - influence the 

growing environment, especially biological soil properties, by their cultivation practices. Together, the 

pedo-climatic growing environment and the local cultivation practices may also be called terroir. In 

addition, seed growers influence bean health through conscious plant selection. The decision to 

cultivate, multiply and select a bean variety implicitly involves the expectations of a seed grower as to 

what is healthy or healthy enough. This in situ concept of plant health has three important 

consequences. 

Firstly, potentially pathogenic microorganisms are regarded as forming part of the production system 

and of plant populations themselves. A plant population is considered truly healthy only if it is able to 

live with these microorganisms, i.e. if it is able to thrive in its growing environment which includes 

potential plant pathogens. Plant populations must be given the opportunity to evolve in and adapt to 

the environment in which they are multiplied and the adaptability of crop populations is regarded as a 

pillar of plant health. Plant health can thus be described as a dynamic process rather than a steady, 

objective state. This move towards health was initially described as salutogenesis in the context of 

human health (Antonovsky, 1996) and taken up by Döring et al. (2012) in the context of plant health. 

In a salutogenic view, plant health cannot be judged upon as an objective entity based on some 

functional performance traits. In Chapter V, an attempt was made to account for the health of bean 

populations in contrasting production sites over three years in ways that leave space for the 

interpretation of plant health according to different concepts of plant health. A multivariate analysis of 

leaf symptoms scores by Multiple Correspondence Analysis did not result to be satisfactory in 

revealing contrasting environments with regard to disease pressure, nor in pointing to fine differences 

in disease tolerance between varieties. Perhaps multivariate methods which are better suited for 

ordinal score data, such as nonlinear PCA (Leeuw and Mair, 2009) can benefit future research. 

However, the analyses of disease symptoms and other traits in Chapter V do show that bean varieties 

react differently to contrasting environments and disease pressure. This variety*environment 

interaction is not a novelty as such, of course, but thinking about it in terms of in situ plant health 

management imposes a new perspective, which leads us to the two other consequences: 

Understanding bean populations, their growing environment and their grower as a system implies 

considering the role of growing environments in plant health and reasoning plant health management 

on a collective scale.    
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Thus, as a second consequence, a role for plant health management is attributed to the growing 

environment. Within the in situ approach to plant health, ecological interactions between growing 

environment and plant populations are endowed with competences to establish and maintain plant 

health. This implies that plant health management encompasses the care for a sound environment, 

sound soils in particular. Conversely, it also implies that the expression of a plant disease may point to 

a disequilibrium in the field environment or a mistake in crop management. Unlike approaches which 

focus on bean seed as vector of plant health - as disease-free seed or as a means to propagate 

resistant varieties - in this approach competences for plant health management are distributed 

throughout the production system. Chapter VI addressed interactions of common bean populations 

with two important root symbionts of common bean, mycorrhizal fungi and rhizobia. These root 

symbionts have been established as beneficial for plant health in numerous studies under controlled 

conditions. However, in the field experiment, we did not find evidence of improved plant health in 

individual plants more strongly colonised with root symbionts within each site. Results of the field 

experiment indicate that the intensity of these symbiotic interactions are driven by the growing 

environment. The bean varieties did not differ in any of the symbiotic traits, except percentage 

colonisation with mycorrhizal vesicles. Both mycorrhiza and rhizobia can thus be considered as 

elements of a field environment. They form part of the framework in which the seed grower manages 

plant health, although growers can influence these soil microorganisms via crop and soil management. 

The third consequence can be derived from the two former ones. On one hand, the field environment 

is imparted with a role in plant health management. On the other, bean varieties come with their 

requirements in terms of environmental conditions and cannot thrive and adapt everywhere. As a 

consequence, in situ plant health management operates at a collective scale. Within a network of seed 

growers, plant health management is also about attributing each variety to a suitable growing 

environment. As seen in Chapter V, some varieties - such as 'Flageolet Chevrier' - more easily adapt 

to a range of growing environments, whereas others -such as 'Rognon de Coq' - are susceptible to 

certain diseases and more "picky" in terms of growing environments. A variety that won't adapt to a 

given environment is not discarded, but passed on to another seed grower and tried in another 

environment. Moreover, the collective extends to the customers of the artisanal seed companies, as 

they must align on the management of sound growing environments to ensure plant health.  

2 Governance of plant health and crop diversity management  

The collective in situ governance of plant health is radically different from an approach of genetic 

disease control. Referring to seed-borne Halo Bacterial Blight (HBB) in subsistence agricultural 

systems in developing countries, where bean seed is generally grown from farm-saved seeds, Taylor 

(1996a) recommends that disease control be based on genetic resistance of bean varieties. He 

deducts this recommendation from the impossibility of producing disease-free seed and the general 

presence of the plant pathogen in field environments. In the case of the Croqueurs, basing plant 

health management on a genetic disease control strategy does not appear as an option, as one of 

their fundamental purposes is to maintain crop diversity in home and market gardens in the form of old 
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and heirloom varieties. Rather than a priori choosing those varieties that are genetically resistant to a 

given variety or breeding new varieties in an objective of genetic resistance, varieties are taken as 

they are. Bean health management then consists of matching varieties with appropriate environments 

and letting the population adapt to local environmental conditions. This points to the intimate 

entanglement of plant health governance and crop diversity management.   

Like plant health, bean lineages emerge from the triangular interaction in the terroir. A lineage is 

distinguishable from another lineage of the same variety because its appearance - its phenotypic 

expression - is different: Philippe's 'Rognon de Coq' is not quite the same as François' 'Rognon de 

Coq'. Chapter VIII has demonstrated that after only three years of multiplication in contrasting 

environments, phenotypic differences - lineages - begin to emerge. When trying to disentangle the 

possible sources of phenotypic differences, however, making a clear-cut distinction between 

mechanisms that are internal and those that are external to the plant populations is difficult. Some 

phenotypic differences can be attributed to genetic differences between populations. These genetic 

differences are driven by local environmental conditions and growers' practices. The genetic 

differences between lineages observed after only three years of multiplication in contrasting 

environments are probably far from reaching an equilibrium. Genetic adaptation is ongoing. In fact, 

past research on bread wheat indicates that local genetic adaptation may not ever reach an 

equilibrium state in the context of crop diversity management by networks of farmers. It rather appears 

as a perpetual dynamic process in which the genetic makeup of a plant population is shaped by yearly 

changes in the local environment and growers' management practices (Thomas, 2011).  

In addition to the genetic information of a plant population, seed lots also come with physical and 

biological properties. For instance, seed size and infection rate with plant disease agents are induced 

by the environment in which the seed was grown. These seed properties can in turn affect the 

phenotype of the following plant generation, in terms of plant health and in more general terms. 

Chapter VII has addressed microbial communities associated with seed. These communities include 

microbial life associated to seeds beyond seed-borne plant pathogens. Although microbial 

communities associated to plants in the phyllosphere and rhizosphere have been shown to influence 

plant growth and health, little is known about the effect of microbial assemblages associated to seeds. 

Chapter VII of this thesis has shown that on the common bean seed harvested in the field experiment 

after two years, microbial assemblages, fungal communities in particular, were determined by the 

growing environment, or terroir. Microbial communities conveyed by the seed reflect the environment 

in which it was grown; in other words: terroir extends onto the seeds. 

In short, plant phenotypes are the product of a perpetual coevolution between plant populations and 

their growing environment. The growing environment shapes plant genetics, physical seed properties 

and microbial life on the seeds. This renders it difficult to draw a boundary around plant populations: 

Where do the plant populations end, where does the growing environment begin? Facing the 

entanglement of plant populations and growing environments behind lineages and plant health, the 

term seed system takes on a second meaning.  
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The concept of seed system is usually used to describe the social structure by which seed is 

disseminated. It has been defined as “the sum of physical, organisational and institutional 

components, their actions and interactions that determine seed supply and use, in quantitative and 

qualitative terms” (Scoones and Thompson, 2011). For example, formal seed systems can be 

distinguished from informal or local ones, according to the actors and types of relations involved 

(Almekinders et al., 1994; GRAIN, 2008). Considerations on the Croqueurs’ approach to plant health 

and crop diversity management highlight a set of interactions situated upstream to seed dissemination: 

the system of interactions that make a seed lot what it is might also be called a seed system. The 

Croqueurs' approach to plant health and crop diversity then constitutes an in situ seed system, in 

which seed cannot be considered isolated from the environment in which it was grown and the 

environment in which it will be grown. The boundary defining seeds isn't clear-cut. This approach 

differs from approaches where seeds are clearly circumscribed as vector of plant health and stable 

plant varieties. Before discussing seed systems in terms of supply and use, i.e. in terms of seed 

dissemination, considering the upstream seed system, that which produces the seed that is later 

disseminated, appears to be necessary. 

Within the in situ seed system of the Croqueurs, crop diversity is not taken for granted, but sustained 

through continuous care. It implies the management of flows rather than the management of stocks. 

The Croqueurs', and more generally the RSP’s rejection of the term crop diversity conservation and 

preference for the terms maintenance reflects this conception of crop diversity management. It is 

about maintaining crop diversity in fields and gardens, in the sense of cultivating, nurturing, and 

developing this diversity. Therefore, it is about managing dynamic flows - flows of plant populations 

from one growing season to the next, flows of information between growing environments and plant 

populations and flows of plant populations between growing environments. It is a quite different 

conception of crop diversity management than conservation, which rather reflects the idea of crop 

diversity as a given legacy for which one must ensure that stocks don’t run out.   

Looking at this in situ seed system as the management of (ecological) flows rather than of (seed) 

stocks, conclusions can be drawn both in view of future research on such systems and in view of plant 

health regulations. Both these points are addressed in the following sections.   
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3 Ecopathology as a perspective for research in 'in situ seed systems' 

Research on such in situ seed systems, in which seeds, variety lineages and plant health cannot be 

considered isolated from their growing environments, calls for appropriate scientific approaches. In 

Chapter II, I have described the difficulties of linking on-farm field experiments with the situation in 

seed growers' seed crops. The perspectives of comparing several varieties produced by the 

Croqueurs in a few predetermined environments, even if they are farm environments, may be limited. 

Hesitations over the right sowing density and the right subplot size to apply to field trials, described in 

section 4 of Chapter II, illustrate this. Indeed, if no clear boundary allows separating seeds, plant 

phenotypes and plant health from the system in which they are situated, the most pertinent sowing 

density and plot size might well be those which are practiced by a given seed grower for a given 

lineage. As a consequence, the basic unit of plant health management would be the production 

system, determined by plant variety, farm environment and seed grower. Such a framework for plant 

health management is not acknowledged by current plant health regulations in Europe, nor by 

prevalent experimental approaches in agronomy. In this framework, actors don’t have an ontological 

understanding of plant disease, which consists of regarding disease as the direct consequence of a 

pathogen, a “universal thing” (Hahn, 1982; Laplantine, 1993 in Cabaret and Nicourt, 2011; 

Canguilhem, 2013). The focus is placed on the system expressing disease. Disease is regarded as 

the consequence of disequilibrium in the system, a process. The solution of the problem of disease is 

sought by restoring an equilibrium in the system, and not so much in controlling the pathogen as such.  

The ecopathology approach developed for research on animal health in animal husbandry may be 

relevant for research on in situ plant health (Ganière et al., 1991; Landais, 1991). As reflected by the 

term 'ecopathology', the approach acknowledges that factors affecting animal health operate in the 

rearing system. Instead of attempting to isolate animal health from the farming system, ecopathology 

allows for research on the health of animals within the herds of farmers, while involving farmers and 

other actors in the construction of research priorities, questions and protocols. The approach consists 

of replacing the concept of the "cause" of a disease by that of "risk factors". Ecopathological studies 

seek to reveal risk factors statistically associated with the emergence and development of pathological 

processes in production systems (Landais, 1991). According to the initial matter of concern, the 

objective may be to study a given animal health problem in diverse production systems, or to study 

general animal health in a certain type of production system (Ganière et al., 1991). By involving 

working groups of farmers and other actors of animal health in the planning phase, in data collection in 

their respective production system and in data analysis, the concepts of health held by participants 

can be taken into account and debated throughout the research process.  

Adapting the ecopathology approach to the study of plant health in 'in situ seed systems' appears as a 

relevant approach for future research. Based on the experiences and findings of this PhD research - 

described as translations 1, 2a and 2b in Chapter II - embedding research in seed growers' crops may 

be a promising perspective - translation 3, so to say. 
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4 Protective measures impose a boundary around seed 

This research was triggered by tensions concerning the management of CBB on bean seeds in France 

(Chapter II). EU Plant Health regulations prescribe protective measures against CBB, which exclude 

bean seed carrying CBB agents from European seed markets. The aim of these measures is to 

protect common bean production from CBB outbreaks, particularly in Southern Europe. However, this 

thesis shows that the protection granted by the measures is somewhat ambiguous when it comes to 

the 'in situ seed system' of the Croqueurs. Protective measures potentially jeopardise this seed system 

at three levels. 

(i) In the case of "quarantine" measures against CBB, seed lots infected with CBB agents are 

excluded from seed markets. Given that no method has yet been found to rid infected bean 

seed of the pathogen, the measure implies that seed lots infected with CBB agents have to be 

abandoned. The direct effect this may have on bean diversity managed by the Croqueurs is 

obvious: If all the lineages of a given bean variety within the seed grower network were 

detected positive with CBB agents, that variety would be completely lost from the network. 

According to the data collected in the framework of the thesis, such extreme situations have 

not occurred up to now. Indirect effects on the Croqueurs' activities may be more relevant than 

this direct effect on bean diversity. 

(ii) By questioning rules and regulations put in place by Plant Health regulations on CBB in 

France (Chapter III), the Croqueurs point to tensions between their practices and protective 

measures. Seed inspection procedures do not appear to be adapted to the small bean seed 

lots they deal with as artisanal seed companies. By contesting and negotiating seed sampling 

procedures at the local scale, Croqueurs members attempt to protect their artisanal practices 

from inadequate seed inspection procedures. As a result of such negotiations, some 

Croqueurs members have arranged for ad hoc adaptations of the official sampling procedure 

with seed inspectors at the local scale. These adapted sampling protocols maintain a space 

for the Croqueurs' practices of artisanal bean seed production. 

(iii) Nevertheless, such local, informal compromises do not imply an alignment of the Croqueurs 

on the rationale behind official protective measures against CBB. By circumscribing bean seed 

as vehicle of plant health, seed quality and plant health is decoupled from growing 

environments. This approach to plant health is in opposition with the Croqueurs’ in situ 

approach to seed systems. Facing the prescription of protective measures, which impose a 

boundary on plant health and exclude the triangular interaction in terroirs, the Croqueurs' 

identity is at stake. Aligning on that rationale would imply abandoning in situ governance of 

plant health and, by the same move, in situ seed systems. Thus, the Croqueurs' identity is at 

stake in their refusal to endorse the French inter-branch union as legitimate seed inspection 

body and spokesperson. The inter-branch union has the mission to represent the seed sector 

in its entirety - from plant breeder to seed user, but also from organic seed to genetically 

modified seed. By rejecting the inter-branch union as representative, the Croqueurs are able 

to maintain their translation of seeds and plant health as an expression of triangular 
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interactions in the terroir in opposition to a competing translation which decouples seed and 

plant health from growing environments. The Croqueurs are claiming respect of their own 

identity.  

The translations made of plant health by EU protective measures against CBB on one hand and by 

the Croqueurs on the other are incompatible and raise the question of the path dependence of 

quarantine measures and respective inspection bodies in relation to the DUS criteria (distinctiveness, 

uniformity and stability) in official variety testing. Döring et al. (2012) have recommended that in the 

absence of a common definition of plant health, plant health and its management be defined by a 

procedural approach. This procedural definition of plant health involves actors with divergent 

understandings of plant health in an inclusive debate (see Chapter II, section 2.2). We have seen in 

Chapter III (section 3) how the Croqueurs association endeavours to upgrade the debate on crop 

health management to a more general and public scale. In view of the role played by the Croqueurs in 

safeguarding vegetable crop diversity in home and market gardens, taking into account their 

understanding of plant health seems crucial. Whereas the SPS agreement of the WTO (MacLeod et 

al., 2010) addresses the barriers that phytosanitary non-tariff measures represent for international 

trade, the barriers they represent for small-scale seed companies engaged in the maintenance of crop 

diversity at the national or regional level is seldom accounted for. With revisions of the EU Plant Health 

directive currently underway45, the procedural approach proposed by Döring et al. appears as a timely 

recommendation pointing to an inclusive way forward.  

By specifying the Croqueurs' approach to bean health and pointing to diverging conceptions of plant 

health, this PhD thesis may contribute to opening a debate on approaches to plant health. It has 

become clear that such a debate must not merely take into account practices of plant health 

management in terms of methods and techniques, but also the professional identities linked to these 

practices. The Croqueurs’ governance of plant health and management of crop diversity are entwined 

and consist of managing flows rather than stocks. Taking their professional identity seriously involves 

taking into account the flows and ecological interactions they manage. Beyond questioning the norms 

and seed inspection procedures set out in plant health regulations, the debate may thus open 

questions as to the way the politics behind these regulations function. Thereby, a door may be opened 

on the distribution of political competences - among humans (will the Croqueurs have a place in the 

politics of plant health?), but also among non-humans: will bean populations and blight pathogens 

have a place to speak for themselves in the politics of plant health? Giving plants and pathogens a say 

implies taking into account the nuances of their ecological interactions (flows), rather than ensuring 

bean yields through the absence of pathogenic organisms (stocks). This transformation, which 

consists of bringing ecology into politics, has been discussed as cosmopolitics in the fields of 

philosophy (Stengers and Stengers, 1997; Latour, 2004) and social science (Hinchliffe et al., 2005). 

Opposing concepts of plant health become particularly clear in the case of the Croqueurs de Carottes, 

because it is an association of seed companies which are subject to Plant Health regulations in view of 

                                                      
45 New plant health regulations were voted in the European Parliament in second reading on October 25th, 2016.  
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issuing European Plant Passports (EPP) for the seed lots they market. Within RSP, the case of the 

Croqueurs speaks for much broader network of farmers and other actors, who regard the boundary 

between plant population and terroir as a porous one. Like the Croqueurs, the actors federated within 

the RSP are safeguarding not only crop biodiversity in fields and gardens, but also knowledge and 

practices concerning the management of crop diversity and governance of plant health embedded in 

the terroir. Mathieu Thomas (2011) has shown that in the case of bread wheat, genetic diversity is 

maintained on farms at the scale of the farmer network. This thesis has demonstrated that collective 

dynamics of crop diversity management may be linked to a collective, in situ governance of plant 

health. They can thus be affected not only by inadequate seed market regulations, but also by plant 

health regulations that neither take into account the diversity of approaches to crop diversity and plant 

health, nor the diversity of identities these approaches imply. 

Finally, this thesis has raised many more questions than it has brought answers to. Many doors have 

been opened, just to take a peek through them and realise that I have neither the time, nor the 

necessary resources (including competences) to cover the space behind those doors in the framework 

of this thesis (Not to mention the doors I have passed by and chosen to leave closed!). These open 

doors are perspectives. They are attributed to the transformative character of the thesis. Chapter II 

has addressed the research process behind the thesis and the translations it comprised. Research 

was initiated by a complex concern for bean health management, instead of a clearly defined 

question. Such a relatively open matter of concern is a precondition for a research process in which 

researchers and their partners co-evolve and progressively outline the object of research. As the 

research question is narrowed down, the research process concomitantly puts forth questions that are 

left aside. In the process, researchers become aware of these questions and why they are left aside. 

Moreover, the research process is not isolated from other processes, both scientific and societal ones. 

The concern for plant health management did not appear out of the blue and certainly won’t dissipate 

after the PhD research, but the PhD research may contribute to transform it. Opening doors upon the 

perspectives of the research forms part of the research process, be they perspectives for science, for 

plant health management practices or for plant health regulations.    
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Conclusions 

The thesis has shown that indeed, tensions between the bean health management practices of the 

Croqueurs de Carottes and protective measures against Common Bacterial Blight (CBB) are driven by 

different approaches to plant health. From there, the findings of the thesis can be apprehended in 

three steps:  

(i) What do tensions about the management of CBB teach us about the Croqueurs’ governance 

of plant health?   

(ii) What does the Croqueurs’ governance of plant health teach us about their management of 

crop diversity? 

(iii) What does the Croqueurs’ approach to the governance of plant health and management of 

crop diversity teach us about plant health regulations and the politics behind them? 

Firstly, the members of the Croqueurs association consider plant health in situ, i.e. in plants' growing 

environment. Governance of plant health is reasoned at the scale of the collective encompassing the 

network of seed growers, but also seed users. Bean variety, growing environment and seed grower 

interact and form a whole, a system. Within these triangular interactions, the boundary of the plant 

population cannot be drawn clearly: growing environments do not only shape the phenotypes and 

health of crops, but also induce seed properties and genetic adaptation of plant populations. The 

growing environment shapes microbial communities associated with seeds and thereby extends onto 

seeds. The difficulty - impossibility? - of drawing a clear boundary around plant populations, that would 

separate them from their growing environment, also renders it difficult to grasp and study the 

ecological base of this plant health management approach experimentally. For future research, 

methods allowing to study plant health in the environmental context of seed growers' seed crops and 

integrating the seed growers' approach to plant health appear to be more pertinent than on-farm trials 

designed by researchers. The research approach of ecopathology constitutes a promising research 

perspective.   

Secondly: despite the aforesaid difficulties of grasping the ecological base of the Croqueurs' 

governance of bean health experimentally, its link with their management of crop diversity has been 

highlighted both through sociological inquiry and field experiments. The adaptability of plant 

populations is regarded as a pillar of plant health. Like plant health, lineages of a variety emerge as a 

result of the triangular interaction between variety, environments and grower. Lineages are the result 

of phenotypic and genetic adaptation of plant populations to a growing environment, which includes 

seed growers' management practices. Both the governance of plant health and the management of 

crop diversity are about managing dynamic flows - flows of plant populations from one planting season 
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to the next, flows of information between growing environments and plant populations and flows of 

plant populations between growing environments. By maintaining crop diversity and managing plant 

health in situ, actors such as the Croqueurs are not only dynamically safeguarding crop genetic 

diversity, but also perpetuating their practices and asserting their identity as artisanal seed companies. 

Thirdly, it is this identity that is at stake in the Croqueurs' contestation of plant health regulations. 

Beyond the Croqueurs, a wider network of farmers and other actors engaged in maintaining crop 

diversity and associated practices on farms and in gardens constitute the Réseau Semences 

Paysannes. A shared approach of crops and plant health as the expression of triangular interactions in 

situ may explain a shared concern over a constriction of their practices by Plant Health regulations. 

Recognising the range of plant health concepts that are held and practiced by actors in Europe 

appears to be a precondition for the negotiation of plant health regulations, if they are not to jeopardise 

the seed systems associated to these plant health concepts. Debating approaches to plant health 

involves not only plant health management practices in terms of techniques and norms, but also the 

professional identities of the actors involved. 
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Annex 1: Guide thématique d'entretiens (Thematic guide for interviews) 

Question de recherche: 

Comment la santé du haricot est-elle géré par les artisans semenciers au sein de l'association 
Croqueurs de Carottes? 

Consignes initiales possibles : 

Producteurs : Comment gérez-vous les maladies de la semence dans votre système de  
   production ? 

Chercheurs :  Expliquez-moi votre travail concernant la graisse du haricot. 

Autres (institutions…) : Quel est votre rôle dans le secteur semencier par rapport à la qualité de la 
 semence? 

  

Qualité de semences 

Qualité d’une semence [définition, phytosanitaire, variété, critères, alternatives, attentes] 

Assurer la qualité [pratiques, culture, sélection, analyses, tests, contrôles, difficultés, attentes des 
clients] 

Systèmes de production 

Agriculture [paysanne / industrielle ; conventionnelle / biologique ; relation avec société] 

Production de semences [artisanale / industrielle ; adaptation ; variétés ; signification] 

Maladies des plantes [Définition, signification, lutte, problématisation] 

Ecosystème [sol, microorganismes, plantes, producteurs] 

Législation sur la santé des plantes 

Rôle de la législation [en général ; avantages et inconvénients ; nécessité] 

Impacte sur la production [application, contrôles, sanctions, pratiques] 

Acteurs [législateurs, application, institutions FNAMS, PV, contrôleurs, chercheurs, ONG, relations] 

Difficultés [pour la pratique, dépendant du système de production, application, compréhension, 
information]  

Compétences et pratiques 

Rôle [métier, engagement, motivation] 

Compétences [formation, expérience, curriculum] 

Quotidien [relations de travail, lieu, taches] 

Relations 

Producteurs [réseaux, organisation, conseil, clients] 

Institutions [PV, FNAMS, GNIS, RSP, INRA] 

Recherche [entre chercheurs / disciplines, recherche et pratique] 

Politique [action politique, réseau]   
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Annex 2: Affiliation and groups of interviewees 

Inter-
view 
no. 

Interview Person (code) Affiliation Profession/Role Country 

1 260814 CRO-260814b Artisan seed company, 
Croqueurs member 

Seed grower and artisan FR 

2 280814 CRO-280814c Artisan seed company, 
Croqueurs member 

Seed grower and artisan FR 

3 100914 CRO-100914a Artisan seed company, 
Croqueurs member 

Seed grower LU 

4 281014 NRI-281014j National research institute Researcher, bacteriologist FR 

5 190515 CRO-190515s Artisan seed company, 
Croqueurs member 

Coordinator of seed 
production 

FR 

5 190515 CRO-190515d Artisan seed company, 
Croqueurs member 

Seed artisan FR 

6 260915 NGO-260915k NGO for peasant seed Advocacy FR 

7 221015 CRO-221015a Artisan seed company, 
Croqueurs member 

Seed grower and artisan BE 

7 221015 CRO-221015m Artisan seed company, 
Croqueurs member 

Seed grower and artisan BE 

8 111215 PIA-111215c Phytosanitary inspection 
body 

Regional coordinator for seed 
inspection on vegetable crops 
and maize 

FR 

9 181215 SOS-181215g Artisan seed company Director for seed production DE 

9 181215 SOS-181215s Artisan seed company Research and development DE 

9 181215 SOS-181215r Artisan seed company Seed health diagnosis and 
management 

DE 

10 070116 MSC-070116v Multinational seed 
company 

Bean selection FR 

11 290116 CRO-290116d Artisan seed company, 
Croqueurs member 

Seed grower and artisan FR 

11 290116 FSM-290116c Regional agency of the 
national federation of seed 
multipliers 

Research and development FR 

12 150216 MSC-150216b Multinational seed 
company 

Production manager for peas 
and beans 

FR 

13 170216 PIA-170216p Phytosanitary inspection 
body 

Regional director of seed 
inspection 

FR 

14 020616 PIA-020616o Regional body of the 
Ministry for Agriculture 

Regional delegate for plant 
health, resource person for 
phytosanitary management 
plans 

FR 
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Annex 3: Observations participantes (Participant observations) 

 

Evènement/Activité Organisateur Date Lieux 

Rencontres Internationales Maisons des 
Semences Paysannes 2012, des modes 
d'organisations collectives pour gérer la 
biodiversité cultivée;  
avec excursion 

Réseau Semences 
Paysannes 

27-
30/09/2012 

Périgeux (FR) 

Produire ses semences et plants: les droits et la 
réglementation 
avec intervention de Guy Kastler, paysan et 
délégué général du Réseau 
Semences Paysannes 

Kerna ùn Sohma 
(association membre du 
RSP) 

17/04/2013 Bennwhir (FR) 

Let's Liberate Diversity! Annual Forum, 8th edition 
"From planting to plate"  

ProSpecieRara in 
conjunction with the 
European Coordination: 
Let's Liberate Diversity! 

20-
22/09/2013 

Basel (CH) 

Portes ouvertes des jardins de Semailles Semailles (artisan 
semencier) 

16/09/2014 Faulx-les-
Tombes (BE) 

Rencontre internationale « Sème ta résistance : 
les semences paysannes nourrissent les peuples 
» 

Réseau Semences 
Paysannes 

24-
26/09/2015 

Pau (FR) 

Echanges autours des essais aux champs   2012-2015 divers 
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Annex 4: Bean varieties in the field trials 

The cultivar 'Flageolet Chevrier vert' (flc) is used as dry or semi-dry shelling 

bean. In France, it is traditionally harvested before maturity and dried for the 

consumption of light green colored dry grain. It was obtained near Paris in the 

1870's by M. Chevrier from a genetic mutation discovered in one of his fields 

(Doré and Varoquaux, 2006) and introduced for the 1878 International Paris 

Exposition (Weaver, 2013). It has white flowers. It is considered as tolerant to 

a number of biotic and abiotic stresses, although somewhat susceptible to common rust (Uromyces 

appendiculatus ) (Denaiffe, 1906). While this cultivar indeed appeared as very healthy and tolerant in 

most experimental sites and years, it was almost completely destroyed by systemic phloem necrosis 

("black root syndrome") caused by Bean Common Mosaic Virus (BCMV) in BZH in 2015. This 

syndrome is associated to the I gene, conferring incompletely dominant resistance to BCMV under 

certain conditions, but can cause systemic phloem necrosis under others (Collmer et al., 2000). 

'Rognon de Coq' (rdc) is also called 'Flageolet rouge' in French and 'Red 

flageolet ', 'Scarlet flageolet' , ' Crimson flageolet' or 'Crimson Wonder ' in 

English. In 1883, it is praised for its hardiness and productivity in the Vilmorin-

Andrieux catalogue. Plant are described as vigourous (Vilmorin-Andrieux et 

Cie, 1883). In 1906, Denaiffe states that it is a universally known and 

cultivated dry bean. Although the quality of its wine colored dry grain is 

particularly reknown, its semi-dry seeds and young green pods are also recommended for 

consumption. Flowers are of a pale lilac color (Denaiffe, 1906). Although Denaiffe describes it as semi-

early maturing, it is among the later maturing cultivars of the field trials. It is considered as very 

susceptible to common bacterial and halo blights by farmers. This was confirmed by symptom scores 

in the field trials. 

'Roi des Belges' (rdb) is an old Belgian variety selected from an older cultivar, 

'Noir de Belgique'. According to one source, it exists since 1920 

(https://www.vreeken.nl/046065-stamslabonen-koning-der-belgen-roi-des-

belges). It is cited by Vilmorin-Andrieux in 1947, where it is described as very 

early and productive. It is also called 'Métis noir' and 'Triomphe d'Epizy' 

(Vilmorin-Andrieux SA, 1947). The flowers are light purple. Its long, straight 

pods are consumed as French bean, but must be picked before they become too mature and become 

tough and fibrous (Biodimestica, 2016). The Luxembourgish seed producer who provided the seeds 

for the experiment in 2012 had himself multiplied it since 2003 after he was given seeds from a 

Belgian producer. The seed originally came from another gardening and seed-saving association in 

Belgium. 
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'Saint Esprit à œil rouge' (ses) may already have been mentioned in the 

catalogue of Vilmorin-Andrieux in 1885 (Vilmorin-Andrieux et Cie, 1855). The 

long history of this cultivar would explain the large number of names in 

different regions of France: 'Haricot à la Religieuse', 'Haricot à l'aigle', 

'Nombril de Bonne Soeur'. Both Vilmorin-Andrieux(1855) and Denaiffe (1906) 

describe a semi-early maturing cultivar (120 days) with slightly blustered 

leaves and white flowers. However, these authors mention black or brown markings, whereas the 

markings of the cultivar used are wine red. Although it can be consumed as French bean or semi-dry, 

it is particularly recommended as dry bean for its taste (chestnut) and digestibility (Polese, 2006). The 

Luxembourgish seed producer who provided the seeds for the experiment in 2012 had himself 

multiplied it since 2003 after he was given seeds from a Belgian producer. He has since stopped the 

production of this cultivar due to a lack of productivity and plant health problems, probably due to virus 

infection.    

'Calima' (cal) is a stringless snap bean released by the German company 

Hild Saat in 1989 (Hild saat, personal communication). It is considered semi-

early maturing. It was chosen as commercial check because it is sold as 

highly resistant to BCMV, halo blight and anthracnose (Hild, 2016) and has 

been recommended for organic growing conditions (Arbeitsgemeinschaft 

Ökologische Gartenbauberatung, 2012).  
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Annex 5: Pedo-climatic characterisation of the trials sites and crop 

management 

 Aquitaine (AQU) Luxembourg (LUX) Brittany (BZH) 

Soil and climatic conditions 
   

Latitude 44°21'13.32"N 49° 42' 7.42"N 48°2'57.50" 
Longitude 0°31'31.06''E 6° 2' 20.43"E 1°47'10.96" 
Altitude (m above sea level) 88 259 34 
Average annual:    
- minimum temperature (°C) 8.6 5.2 7.7 
- maximum temperature (°C) 19.1 15.0 16.7 
- average temperature (°C) 13.4 9.6 11.9 
- rainfall (mm) 644 788 694 
Soil type Silty clay Sandy clay Clay-loam 
Soil pH 8.5 8.1 6.4 
Organic matter content 1.9 2.7 2.6 
Mineral nitrogen* (kg N / ha) 11.1 29.6 102.9 
Phosphorous (mg P2O5 / kg) 36 15 144 
Potassium (mg K2O / kg) 140 141 385 
Calcium (mg CaO / kg) 12380 8848 1644 
Magnesium (mg MgO /kg) 261 110 188 
Date of soil sampling 12/06/2013 04/06/2013 07/06/2013 
    

Crop management 
   

Soil preparation Subsoiler every 3-4 
years (60 cm) 
Plough (18 cm) 
'Actisol' harrow (10 cm) 
Rotary cultivator 

Rotary tiller  
(maximum 20 cm) 

Rotary cultivator  
(15 cm) 
Shank cultivator  
(30 cm) 
Spring-tooth harrow 
(15 cm) 

Distance between rows 60 cm 75 cm 75 cm 
Distance between plants 2012: 10 cm 

2014: approx. 5 cm 
2012-13: 10 cm 
2014: approx. 5 cm 

2012-13: 10 cm 10 cm 
2014: approx. 5 cm 

Irrigation overhead; to field 
capacity every 10 days 
in absence of rain 

overhead; 
to field capacity 

none 

Fertilization Composted farm yard 
manure every 3-4 
years (75 t/ha), 
followed by green 
manure  

In crop rotation: Green 
manure, compost 
Application of on-farm 
preparation of 
"effective 
microorganisms" 

none 

* Mineral nitrogen including N-NO3 and N-NH4  
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Annex 6: Yearly meteorological conditions at the trial sites 

*Note:  

Weather statistics are taken from the weather stations closest to experimental sites. They are located 

in Estillac (for AQU), in St. Jacques de la Lande (for BZH) and Koerich (for LUX). Given that different 

authorities are in charge of the weather statistics, according to country, comparable data is not 

available for humidity. Monthly humidity minima and maxima are available for France, and monthly 

humidity averages for Luxembourg.  
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Location Year 
 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Aquitaine 2012 Temp. mean (°C) 6.2 0.9 10.3 10.7 16.7 19.9 20.3 22.9 18.7 14.6 9.3 7.4 
 (AQU) 

 
Temp. minimum (°C) 3.3 -3.5 2.9 7.0 11.2 14.4 13.6 16.3 12.6 10.3 6.0 4.1 

  
Temp. maximum (°C)  9.6 6.4 18.5 15.5 22.8 26.0 26.8 30.5 25.9 20.6 13.7 11.5 

  
Precipitation (mm) 40 9 17 137 57 67 26 20 26 43 52 92 

  
Humidity minimum (%) 72 47 37 56 46 47 40 36 36 54 69 69 

 
  Humidity maximum (%) 99 90 93 94 93 92 91 90 91 96 97 96 

 
2013 Temp. mean (°C) 5.2 4.8 9.0 11.8 12.9 17.5 24.1 21.6 18.4 15.6 8.5 4.8 

  
Temp. minimum (°C) 2.4 1.3 4.7 7.0 8.3 12.5 17.6 15.0 13.5 11.6 5.9 1.4 

  
Temp. maximum (°C)  8.5 9.5 14.7 17.3 18.0 22.8 31.1 28.5 24.9 21.5 11.6 9.5 

  
Precipitation (mm) 139 58 84 43 139 78 14 12 58 43 94 49 

  
Humidity minimum (%) 74 58 51 47 50 52 38 37 49 55 69 76 

 
  Humidity maximum (%) 97 93 94 91 94 92 91 90 93 95 95 99 

 
2014 Temp. mean (°C) 8.1 7.9 10.0 13.5 14.8 21.1 20.9 19.7 19.7 16.4 12.1 5.8 

  
Temp. minimum (°C) 5.1 4.0 4.4 8.1 9.6 14.7 16.2 14.5 12.9 11.2 8.7 3.1 

  
Temp. maximum (°C)  12.0 12.6 16.3 19.6 20.5 27.4 26.7 25.5 27.5 24.0 17.1 9.1 

  
Precipitation (mm) 105 87 66 59 58 30 80 82 31 19 96 24 

  
Humidity minimum (%) 74 61 47 49 49 41 51 50 41 48 67 73 

    Humidity maximum (%) 98 97 95 97 96 91 96 96 98 98 97 96 
Brittany  2012 Temp. mean (°C) 7.1 3.7 9.6 8.9 14.0 16.2 17.3 18.9 14.7 12.9 7.9 7.7 
(BZH) 

 
Temp. minimum (°C) 4.3 -0.1 3.6 4.8 8.9 12.3 12.2 13.6 9.6 10.1 4.9 4.9 

  
Temp. maximum (°C)  10.3 7.8 16.1 13.9 19.4 20.9 22.7 25.0 20.6 16.1 11.6 10.9 

  
Precipitation (mm) 31 13 32 115 74 85 53 20 62 117 59 125 

  
Humidity minimum (%) 70 59 51 50 52 56 52 46 52 70 69 71 

 
  Humidity maximum (%) 96 94 98 95 95 95 95 96 97 96 96 96 

 
2013 Temp. mean (°C)   4.5 6.0 9.3 11.6 15.6 20.6 18.7 16.7 14.3 8.5 6.4 

  
Temp. minimum (°C) 2.9 1.4 2.8 4.8 7.4 11.1 14.5 13.0 11.3 11.0 5.5 2.9 

  
Temp. maximum (°C)  8.1 8.2 10.1 14.5 16.2 21.1 27.4 25.1 22.8 18.7 11.5 10.4 

  
Precipitation (mm) 57 47 94 40 72 41 73 10 25 106 94 90 

  
Humidity minimum (%) 

 
63 60 49 54 53 45 42 48 62 71 73 

 
  Humidity maximum (%)   92 93 92 95 95 94 96 96 97 96 98 

 
2014 Temp. mean (°C) 7.6 7.8 8.8 11.3 13.3 17.2 19.3 16.9 17.7 14.1 10.4 6.7 

  
Temp. minimum (°C) 4.7 4.6 4.0 6.7 8.4 11.2 13.8 12.4 11.7 10.4 7.7 4.1 

  
Temp. maximum (°C)  10.9 11.4 14.5 16.7 18.4 23.0 25.4 22.2 24.1 19.1 13.7 9.9 

  
Precipitation (mm) 146 140 34 36 63 63 55 92 3 77 90 75 

  
Humidity minimum (%) 76 62 53 53 52 46 48 52 49 62 75 71 

 
  Humidity maximum (%) 98 95 95 96 96 95 97 96 95 96 97 95 

 
2015 Temp. mean (°C) 6.1 4.7 8.1 12.3 13.4 17.2 18.9 18.5 14.4 12.0 11.8 10.4 

  
Temp. minimum (°C) 2.7 1.0 4.2 6.4 8.8 11.1 13.8 13.1 9.4 8.2 8.7 7.6 

  
Temp. maximum (°C)  9.7 9.1 12.7 18.2 18.4 23.3 25.1 25.0 20.3 16.6 15.4 13.3 

  
Precipitation (mm) 78 65 21 51 53 43 40 79 50 24 61 32 

  
Humidity minimum (%) 71 63 57 46 57 45 45 47 48 62 69 72 

    Humidity maximum (%) 95 94 94 93 95 93 94 96 96 96 96 96 
Luxembourg 2012 Temp. mean (°C) 3.6 -1.3 7.2 8.0 14.3 15.3 16.7 17.8 12.5 9.0 6.2 3.9 
 (LUX) 

 
Temp. minimum (°C) 1.0 -5.2 1.1 2.9 8.2 10.8 11.5 12.0 7.1 4.5 3.4 1.5 

  
Temp. maximum (°C)  6.7 3.3 14.5 13.8 21.1 20.5 22.8 25.0 19.5 14.4 9.2 6.3 

  
Precipitation (mm) 117 13 16 93 65 122 131 39 73 83 52 146 

 
  Humidity mean (%)* 98 84 84 81 82 90 87 86 91 96 97 98 

 
2013 Temp. mean (°C) 1.8 0.4 1.9 8.6 11.1 15.6 19.4 16.8 13.4 11.3 5.5 3.5 

  
Temp. minimum (°C) -0.1 -2.2 -2.1 3.5 6.7 9.9 12.8 10.9 8.7 7.4 2.7 0.5 

  
Temp. maximum (°C)  3.8 3.4 6.9 14.1 16.1 21.5 26.9 24.2 19.4 15.9 8.4 6.3 

  
Precipitation (mm) 61 38 43 65 148 91 32 54 61 131 89 74 

 
  Humidity mean (%)* 98 91 83 76 90 85 83 87 94 97 98 98 

 
2014 Temp. mean (°C) 4.5 4.7 6.3 11.2 12.4 16.3 18.6 15.7 14.7 12.1 7.6 3.8 

  
Temp. minimum (°C) 1.6 0.7 0.2 4.6 6.5 9.4 13.0 10.8 9.0 8.0 4.6 1.5 

  
Temp. maximum (°C)  7.4 8.7 14.5 18.2 18.8 23.5 25.2 21.3 21.5 16.5 10.6 5.9 

  
Precipitation (mm) 84 83 9 7 77 28 124 126 20 99 50 87 

    Humidity mean (%)* 98 96 83 77 85 75 85 89 90 97 99 99 
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Annex 8: Examples for leaf symptoms scores 

Leaf mosaic (scored from 1 to 5) 

1: No symptom         

 

 

 

 

 

 

 

 

 

 

Leaf blustering (scored from 1 to 5) 

1: No symptom         

 

  

2: Doubtful to weak symptom 

expression 

3: Moderate to intermediate 

symptom expression 

4: Intense symptom 

expression 

5: Severe symptom 

expression or plant death 

5: Severe symptom 

expression or plant death 

2: Doubtful to weak symptom 

expression 

3: Moderate to intermediate 

symptom expression 

4: Intense symptom 

expression 
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Annex 9: Poster presented at SIGA conference 2016 
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Annex 10: Growth stages of common bean 

 

 

 

Source: Howard F. Schwartz, Mark A. Brick, Robert M. Harveson, and Gary D. Franc (2004): Dry Bean 

Production & Pest Management, 2nd Ed.; regional publication produced by Colorado State Univ., Univ. of 

Nebraska and Univ. of Wyoming.   
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Annex 11: Summary of leaf symptom score data available for 

multivariate analysis across locations and years 

 

Environment 
Observation 
date (das) 

Plants 
scored 

Plants 
scored per 
variety 

Total plants 
scored in 
environment 

AQU:12 59 150 30 150 

AQU:13 31 300 60 300 

BZH:12 75 150 30 150 

BZH:13 49 300 60 900 

70 300 60 

84 300 60 

BZH:14 62 100 20 200 

  77 100 20   

LUX:12 50 150 30 150 

LUX:13 30 300 60 1200 

47 300 60 

54 300 60 

  85 300 60   

LUX:14 41 100 20 200 

  67 100 20   
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RÉSUMÉ ABSTRACT

Gouvernance de la santé des plantes et gestion de la biodiversité 
cultivée - Le cas de la santé du haricot gérée par les membres de 
l’association « Croqueurs de Carottes »

De multiples réseaux d’agriculteurs et de jardiniers maintiennent 
la biodiversité cultivée dans le monde. Leurs pratiques de gestion 
de la santé des plantes demeurent peu étudiées. La thèse a pour 
objectif de caractériser l’articulation entre gestion de la biodiver-
sité cultivée et gouvernance de la santé des plantes, se saisissant 
du cas d’une association d’artisans semenciers, les Croqueurs de 
Carottes. Elle développe une approche interdisciplinaire et trans-
formatrice pour décrire et comprendre la gouvernance de la santé 
du haricot par ces acteurs, dans une perspective agroécologique. 
La théorie de l’acteur-réseau est mobilisée pour situer l’analyse 
à l’intersection entre approches agronomique et sociologique, 
reposant sur les données produites par un triple dispositif : expé-
rimentations à la ferme, entretiens semi-directifs et observation 
participante.
Nous qualifi ons d’in situ  l’approche de la santé des plantes des 
Croqueurs dont l’objectif est de vivre avec les agents pathogènes 
potentiels. Fondées sur des interactions écologiques entre plantes 
et terroir, les compétences contribuant à la gestion de la santé des 
plantes sont distribuées à travers le système de production. Que 
ce soit en termes de santé ou de biodiversité, un lot de semence 
est l’expression d’un jeu complexe d’interactions. Il est alors dif-
fi cile de délimiter des populations de plantes de leur terroir de 
manière précise. Par conséquent, (i) la santé des plantes ne peut 
être jugée qu’in situ, dans l’environnement dans lequel elles évo-
luent et (ii) la gouvernance de la santé des plantes doit être prise 
en compte à l’échelle du collectif.

Governance of plant health and management of crop diversity - 
The case of bean health management among members of the 
association Croqueurs de Carottes

All over the globe, networks of seed growers are cultivating crop 
diversity in fi elds and gardens. Their contribution to the maintenance 
of this diversity has been studied, but research has widely left aside 
their management of plant health. The governance of bean health 
practiced by an association of artisanal seed companies, Croqueurs 
de Carottes, is approached as a case study in the objective of 
specifying how management of crop diversity and governance of 
plant health are articulated. Their concern for the governance of 
bean health is elucidated from an agroecological perspective, 
taking an interdisciplinary and transformative approach. Actor-
network theory constitutes the backbone of the thesis, situated 
between Agronomy and Sociology and drawing upon a threefold 
research device: on-farm experiments, semi-directive interviews 
and participant observation.
The Croqueurs’ approach to bean health is described as in situ 
approach, in which plant populations are considered healthy if 
they are able to live with potential plant pathogens and adapt to 
their growing environments. Relying on ecological interactions, 
competences of plant health management are distributed 
throughout the production system. Both for plant health and crop 
diversity management, a seed lot is determined by a complex system 
of interactions. A clear boundary distinguishing plant populations 
from their growing environment cannot be drawn. This implies (i) 
that plant health must be judged upon in situ in the plants’ growing 
environment and (ii) that the governance of plant health must be 
considered at the collective scale.
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