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Electrolocation is the name given to the sensor ability for certain electric fish robots, which are able to detect electrostatic perturbations caused to the presence of some objects in their neighborhood. This ability to interpret an electrical signal to locate itself in space opens important perspectives, including in the field of biologically inspired robotics. Mathematically, electrolocation is linked to the electric impedance tomography: so it's about a non-linear inverse problem, particularly ill-posed problem. We will, in this Phd, study some methods of reconstruction, which could be obtain robustly some characteristic of the obstacle's shape, rather all of their geometry details. So, it's about to study the stability between the observable part of the obstacles and the errors of measurements.

Introduction

Electroreception or electrolocalization is the name given to the sensor ability for certain electric fish. There exist many species of electric fish, which belong principally to the two orders, Gymnotiforms in South America and Mormyriforms in Africa [START_REF] Moller | Electric fishes: history and behavior[END_REF]. They are able to detect electrostatic perturbations caused by the presence of some objects in their neighborhood. This ability to interpret an electrical signal to locate itself in space opens important perspectives for applications, in particular in the field of biologically inspired robotics. From the point view of mathematics, electroreception leads to an inverse conductivity problem.

Inverse conductivity problems, also called Calderón problems, are the prototypical models of mathematical inverse problems. They have been studied with the purpose of deriving some nondestructive imaging methods such as Electrical Impedance Tomography(EIT). This technique has a main application in medical imaging, but variants are used in geophysics and other domains. The principal purpose of Calderón problems is to determine the conductivity at each point in a conductive medium from some total or partial measurements of the voltage and the current on its boundary.

The mathematical model of Calderón problems is described as follows. Let Ω be a bounded smooth domain in R n for n ≥ 2, γ ∈ L ∞ loc (Ω) be the unknown positive conductivity, and u be the solution to the Dirichlet problem,

       div(γ(x)∇u(x)) = 0 x ∈ Ω, u(x) = f x ∈ ∂Ω. ( 1 
)
Since γ is positive, existence and uniqueness of the solution u ∈ H 1 (Ω) for any Dirichlet data f ∈ H 1/2 (Ω) can be derived from standard arguments.The inverse problem is formulated as follows: Given the Dirichlet to Neumann map Λ :

H 1/2 (∂Ω) → H -1/2 (∂Ω) f → γ ∂u ∂ν | ∂Ω
(or given partial information on λ), can we reconstruct the conductivity γ? In general, the inverse problem is non-linear and ill-posed. Calderón published his seminal paper [START_REF] Calderón | On an inverse boundary value problem[END_REF] in 1980. Since then, developments on this problem have been focused on three perspectives: uniqueness, stability and reconstruction algorithms.

The general theories on Calderón problems assume that an infinite number of measurements are available. The essential tool is the Dirichlet to Neumann operator (DtN operator), which is defined for any fonction f ∈ H 1/2 (Ω) maps to the normal derivative γ ∂u ∂ν where u is the solution to [START_REF] Robert | Compact Sobolev imbeddings for unbounded domains with discrete boundaries[END_REF]. The uniqueness of γ for smooth conductivity coefficients was proven by Sylvester and Uhlmann [START_REF] Uhlmann | A Global Uniqueness Theorem for an Inverse Boundary Value Problem[END_REF], which showed that if two Dirichlet to Neumann operators, associated to conductivity coefficients γ 1 and γ 2 , are equal, then γ 1 = γ 2 in Ω. Moreover, the uniqueness results in two dimensions were generalized by Astala and Päivärinta [START_REF] Astala | Calderón's inverse conductivity problem in the plane[END_REF], which states that all conductivity coefficients in L ∞ (Ω) can be determined by Dirichlet to Neumann map. A general stability estimate is given by Alessandrini [3]. This is a logarithmic stability estimate, which is valid for the C ∞ conductivity coefficients in three dimensions. Precisely speaking, there exists constants C and σ such that

γ 1 -γ 2 L ∞ (Ω) ≤ C(| log( Λ γ 1 -Λ γ 2 1/2,-1/2 )| -σ + Λ γ 1 -Λ γ 2 1/2,-1/2 ),
where • 1/2,-1/2 refers the operator norm from H 1/2 (∂Ω) to H -1/2 (∂Ω). Nachman [START_REF] Nachman | Reconstructions From Boundary Measurements[END_REF] proved firstly the uniqueness result in dimension two and convergence for an algorithm to reconstruct γ from the associated Dirichlet to Neumann operator in dimensions two.

We call inverse inclusion problems the particular case when the conductivity has the form γ = k 0 + (kk 0 )χ D , where k 0 is the conductivity in the neighboring environment, k > 0, k k 0 and D ⊂⊂ Ω a bounded, smooth inclusion in Ω.

As it is not possible in any concrete experiment to have the access to infinitely many measurements, we are also interested in the inverse conductivity problem under a finite number of measurements. The question whether one measurement uniquely determines D has already been addressed in several papers, when D is a ball or a convex polyhedron in 3d (see [START_REF] Barceló | The inverse conductivity problem with one measurement: uniqueness for convex polyhedra[END_REF], [START_REF] Friedman | On the uniqueness in the inverse conductivity problem with one measurement[END_REF], [START_REF] Isakov | Inverse problems for partial differential equations[END_REF], [START_REF] Kang | Inverse Conductivity Problem with One Measurement: Uniqueness of Balls in R 3[END_REF]). The question of stability has been investigated in the case of disks in [START_REF] Fabes | Inverse conductivity problem with one measurement: Error estimates and approximate identification for perturbed disks[END_REF] and [START_REF] Kang | The inverse conductivity problem with one measurement: stability and estimation of size[END_REF]. Kwon [START_REF] Kwon | A real time algorithm for the location search of discontinuous conductivities with one measurement[END_REF] has established a real-time scheme to locate the unknown inclusion with the hypothesis that its size is small compared with that of Ω. Other works concern the case of inclusions of small sizes, while knowledge about their number, location and conductivity may be derived from the knowledge of a certain number of generalized polarization tensors (Ammari and Kang [START_REF] Ammari | Reconstruction of small inhomogeneities from boundary measurements[END_REF]).

In this Phd thesis, we present three main achievements and an auxiliary result on the inverse inclusion problems, which we briefly introduce below.

Identification of disks in a two dimensional plane

Let D = B R (X 0 ) ⊂ Ω 0 be the disk of radius R centered at X 0 , where Ω 0 := {x ∈ Ω|dist(x, ∂Ω) > δ 0 } with the constant δ 0 > 0. We assume that the electrical conductivity γ ≡ 1 in Ω \ D and γ ≡ k in D. We inject a current with density g and measure the voltage f on ∂Ω. The inverse inclusion problem consists in determining the unknown domain D from the data g and f . As we assume D is a disk, we only need to determine its center X 0 and its radius R. Let u be the electrostatic potential in Ω, solution to the following conductivity problem

         div((1 + (k -1)χ D )∇u) = 0 in Ω, ∂u ∂ν = g on ∂Ω, ( 2 
)
where u is normalized by ∂Ω u = 0.

The first result in this work is that the solution to (2) admits the following representation

           u(x) = H(x) + 1 -k 1 + k (H(x) -H(X 0 )) x ∈ D, u(x) = H(x) + 1 -k 1 + k (H(X 0 + R 2 (x -X 0 ) ||x -X 0 || 2 ) -H(X 0 )) x ∈ Ω \ D, ( 3 
)
where H is a harmonic function, which can be directly calculated from the Cauchy data.

Concerning the uniqueness and stability to the inverse problem, Kang and Seo [START_REF] Fabes | Inverse conductivity problem with one measurement: Error estimates and approximate identification for perturbed disks[END_REF], have established a Hölder-type stability estimate under a well-chosen current density for the same problem. In this work, we drop the last assumption i.e. we derive a new, more precise, Hölder type stability estimate for all non zero Neumann data g ∈ H -1/2 0 (Ω). These theoretical results are given in chapter 1.

In chapter 2, we give a numerical scheme, which is based on the gradient method to reconstruct the disk. We compare the symmetric differences between the target disk and its numerical approximation during the iterations to illustrate the stability estimates.

Determination of inclusions using multifrequency measurements

In the next chapter, we again consider the inverse inclusion problem with a Neumann boundary condition on ∂Ω. We adopt a new mathematical model of EIT [START_REF] Habib | Spectroscopic imaging of a dilute cell suspension[END_REF] by injecting an electric current at different frequencies. In this model, the conductivity γ and solution u depend on the frequency ω. We consider the conductivity in this form,

γ(x, ω) = k 0 + (k(ω) -k 0 )χ D (x)
and the electrical voltages on ∂Ω are measured for the frequencies in certain interval, ω ∈ [ω, ω]. In this work, we assume that the conductivity profile ω → k(ω) inside the inclusion is given by a empirical law, which we present later.

Using the eigenfunctions of the Neumann-Poincaré operator on D, we prove the solution u admits the following spectral decomposition

u(x, ω) = k -1 0 u 0 (x) + u f (x, ω),
where u 0 is independent of the frequency. On the other hand, u 0 is also the solution to an inverse boundary problem, which can be considered as an asymptotic case of the Calderón problem, and for which optimal stability estimates on inverse boundary problems have already been derived, see for example [4].

We then introduce our numerical methods to reconstruct the inclusion. This method is divided into two main steps. The first consists in reconstructing the frequency profile k(ω) and the frequency independent part u 0 . Once the reconstructed u 0 has been determined, we reconstruct the inclusion D from the Cauchy data of u 0 using an optimization scheme in the next step. To derive the optimization scheme, we need to calculate the shape derivative, and we use the asymptotic expansions of layer potentials to derive the shape derivatives. Those results are presented in chapter 3.

Determination of inclusions in the model of electric fish

Instead of working in a bounded domain Ω, the mathematical model of electrical fish concerns the domain Ω e = R d \ Ω exterior of the fish. Precisely speaking, we consider the following equation [6],

                       u = J s in Ω, div[γ(x, ω)∇u] = 0
in Ω e , ∂u ∂ν | -= 0 on ∂Ω, u| + -u| -= ξ ∂u ∂ν | + on ∂Ω, |u| = O(|x| 1-d ) as |x| → ∞.

Here, the constant ξ > 0 is the effective thickness of the fish skin. The function J s represents the electric current source generated by the fish's organs. We assume that J s can be written as the sum of Dirac functions,

J s = M j=1 α j δ x (j) s . ( 5 
)
In chapter 4, we introduce the weighted Sobolev space W 1,-1 (Ω e ) to define the weak solution to (4.1) in an unbounded domain. Then we prove the uniqueness and the existence of a solution to the forward problem. We also prove that the solution of (4.1) admits a spectral decomposition of the same form as the solution of the conductive equation in the case Ω is bounded (cf chapter 3). In chapter 5, we present numerical simulations of electroreception. Using similar ideas as those of chapter 3, we give our method to reconstruct the frequency independent function u 0 and the inclusion D, using multifrequency measurements. In order to simulate the solution in an unbounded domain, we will consider the equation posed in a truncated domain, and we will show that the solution in the truncated domain admits a similar spectral decomposition.

Eigenvalues of Neumann-Poincaré operator for two close-to-touching inclusions

In our analysis on inverse inclusion problems, the representation formula in layer potentials plays an essential rule, especially the Neumann-Poincaré operator or the variational Poincaré operator. We have observed in the case of two close-totouching inclusions, the pointwise values of the gradient of the voltage potential ∇u may blow up as the distance δ between some inclusions tends to 0 and as the conductivity contrast degenerates. In [START_REF] Bonnetier | Pointwise bounds on the gradient and the spectrum of the Neumann-Poincaré operator: the case of 2 discs[END_REF], we showed that the blow-up rate of the gradient is related to how the eigenvalues of the associated Neumann-Poincaré operator converge to ±1/2 as δ → 0, and on the regularity of the contact.

In chapter 6, we consider two connected 2-D inclusions, at a distance δ > 0 from each other. When δ = 0, the contact between the inclusions is of order m ≥ 2. We propose an original numerical method to determine the eigenvalues of the Neumann-Poincaré operator. We at first prove the equivalence relation between the problem in unbounded domain and the problem in a truncated domain. Our original numerical method consists in projecting functions in W 1,-1 (R 2 ) on a vector space formed by the polynomial harmonics. We then numerically determine the asymptotic behavior of the first eigenvalue of the Neumann-Poincaré operator, in terms of δ and m, and we check that we recover the estimates obtained in [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF].

Chapter1

Determination of a disk in a two dimensional plane

Introduction

Let D = B R (X 0 ) ⊂ Ω 0 be the disk of radius R centered at X 0 , where Ω 0 := {x ∈ Ω|dist(x, ∂Ω) > δ 0 } with the constant δ 0 > 0. We assume that the electrical conductivity σ ≡ 1 in Ω \ D and σ ≡ k in D. We inject a current with density g ∈ H -1/2 0 (Ω) and measure the voltage f on ∂Ω. The inverse conductivity problem consists in determining the unknown domain D from the data g and f . As we assume D is a disk, we only need to determine its center X 0 and its radius R.

Let u be the electrostatic potential in Ω, solution to the inverse conductivity problem (2).

Denoting respectively the solution in the interior of the disk D by u i , and the solution in the exterior by u e , the equation ( 2) can also be formulated as follows:

                           u e = 0 in Ω \ D u i = 0 in D u e = u i on ∂D ∂u e ∂ν = k ∂u i ∂ν on ∂D ∂u ∂ν = g on ∂Ω.
(1.1)

In fact, Fabes, Kang and Seo [START_REF] Fabes | Inverse conductivity problem with one measurement: Error estimates and approximate identification for perturbed disks[END_REF], have established a Hölder-type stability estimate under a well-chosen current density for the same problem. In this work, we drop the last assumption i.e. we derive a new, more precise, also Hölder type stability estimate for all non zero Neumann data g ∈ H -1/2 0 (Ω). Moreover, we give in this work a reconstruction method from two linearly independent measurement and a minimizing scheme for recovery from a single measurement.

Main Results

Generalities

We introduce the fundamental solution of the Laplace operator in all R 2

Γ (x) = 1 2π ln |x|,
and the single and double layer potentials defined for φ ∈ L 2 (∂D) by

S D φ(x) = ∂D Γ (x -y)φ(y)dσ y x ∈ R 2 , D D φ(x) = ∂D ∂ ∂ν y Γ (x -y)φ(y)dσ y x ∈ R 2 \ ∂D.
Using integration by parts, for x ∈ Ω \ D, the solution to (1.1) can be represented in the form:

u e (x) = ∂Ω u(y) ∂ ∂ν y Γ (x -y) - ∂u ∂ν (y)Γ (x -y)dσ y - ∂D u(y) ∂ ∂ν y Γ (x -y) - ∂u ∂ν (y)Γ (x -y)dσ y =H(x) + S D ∂u e ∂ν (x) -D D u e (x), (1.2) 
and, for x ∈ D

u i (x) = ∂D u(y) ∂ ∂ν y Γ (x -y) - ∂u ∂ν (y)Γ (x -y)dσ y = -S D ∂u i ∂ν (x) + D D u i (x), (1.3) 
where the harmonic function H is entirely determined by the Cauchy data (f , g)

H(x) = ∂Ω u(y) ∂ ∂ν y Γ (x -y) - ∂u ∂ν (y)Γ (x -y)dσ y = D Ω f -S Ω g. (1.4)
Theorem 1.2.1. The solution to (1.1) admits the following representation

           u i (x) = H(x) + 1 -k 1 + k (H(x) -H(X 0 )) x ∈ D u e (x) = H(x) + 1 -k 1 + k (H(X 0 + R 2 (x -X 0 ) ||x -X 0 || 2 ) -H(X 0 )), x ∈ Ω \ D (1.5)
Proof. With the jump condition on ∂D, we have [START_REF] Ammari | Reconstruction of small inhomogeneities from boundary measurements[END_REF], [START_REF] Colton | Inverse acoustic and electromagnetic scattering theory[END_REF] 

D D φ(x)| ± = (∓ 1 2 I + K D )φ(x) x ∈ ∂D,
where K is the Neumann-Poincaré operator defined on L 2 (∂Ω) by

K D φ(x) = 1 2π ∂D y -x, ν y |x -y| 2 φ(y)dσ y .
When D is a disk in R 2 of radius R, the operator K has a very simple form [START_REF] Ammari | Reconstruction of small inhomogeneities from boundary measurements[END_REF] 

K D φ(x) = 1 4πR ∂D φ(y)dσ y ∀x ∈ ∂D.
Using the jump conditions, it follows from (1.2) and (1.3) that

u e (x) = H(x) + S D ∂u e ∂ν (x) + ( 1 2 I -K D )u e (x), (1.6) 
and

u i (x) = -S D ∂u i ∂ν (x) + ( 1 2 I + K D )u i (x). (1.7)
Adding (1.6) to k times (1.7), and using the mean value propriety for harmonic functions, we obtain for x ∈ ∂D,

u(x) = 2 k + 1 H(x) + 2(k -1) k + 1 K D u(x) = 2 k + 1 H(x) + k -1 k + 1 u i (X 0 ).
As H is harmonic in D, it follows that u i coincides with the above right-hand side in D:

u i (x) = 2 k + 1 H(x) + k -1 k + 1 u i (X 0 ).
And, at X 0 ,

u i (X 0 ) = 2 k + 1 H(X 0 ) + k -1 k + 1 u i (X 0 ),
which implies u i (X 0 ) = H(X 0 ). Then we have the representation of u i ,

u i (x) = H(x) + 1 -k 1 + k (H(x) -H(X 0 )) x ∈ D (1.8) We represent each point x ∈ Ω as x = X 0 + r       cos θ sin θ       , with θ ∈ [0, 2π) and r > 0,
and we write the function H as a sum of harmonic functions r n cos(nθ) and r n sin(nθ):

H(x) = H(X 0 ) + ∞ n=1
r n (a n cos(nθ) + b n sin(nθ)).

(1.9)

By (1.8) and the transmission conditions, we immediately have:

u i (x) = H(X 0 ) + 2 k + 1 ∞ n=1 r n (a n cos(nθ) + b n sin(nθ)), x ∈ D, (1.10) u e (x) = H(X 0 ) + ∞ n=1 (r n + 1 -k 1 + k ( R 2 r ) n )(a n cos(nθ) + b n sin(nθ)), x ∈ Ω \ D.
(1.11)

Let Ψ D (x) denote the point obtained by reflecting x over ∂D

Ψ D (x) = X 0 + R 2 (x -X 0 ) ||x -X 0 || 2 x ∈ R 2 \ {X 0 }.
We can thus write

u e (x) = H(x) + 1 -k 1 + k (H(Ψ D (x)) -H(X 0 )) x ∈ Ω \ D, (1.12) 
which concludes the proof.

Analysis in complex variables

Using the representation (1.5) of u e and u i , we study our problem in the complex plane C. We introduce a harmonic conjugate G of the harmonic function H, so that the function

F := H + iG (1.13)
is holomorphic in Ω. Also, the reflection has an explicit expression in terms of complex variables:

Ψ D (z) = Z 0 + R 2 z -Z0 z ∈ C \ {Z 0 }.
By (1.12) and (1.1), the function H •Ψ D is harmonic in Ω\ D. We can also express its harmonic conjugate G for x ∈ Ω \ D as

∇ G(x) = A∇H • Ψ D (x) = ADΨ D (x)∇H(Ψ D (x)), (1.14) 
where

A =       0 -1 1 0     
 , and where

DΨ D (x) = R 2 ||x -X 0 || 2       (x -X 0 ) 2 2 -(x -X 0 ) 1 2 -2(x -X 0 ) 1 (x -X 0 ) 2 -2(x -X 0 ) 1 (x -X 0 ) 2 (x -X 0 ) 1 2 -(x -X 0 ) 2 2       .
Notice that DΨ D = -DΨ D A, combined with (1.14), which yield:

∇ G(x) = A∇H • Ψ D (x) = ADΨ D (x)∇H(Ψ D (x)) = -DΨ D (x)A∇H(Ψ D (x)) = -DΨ D (x)∇G(Ψ D (x)) = -∇G • Ψ D (x).
Thus, the function -G • Ψ D is a harmonic conjugate of the function H • Ψ D , and therefore the function

z → H • Ψ D (z) -iG • Ψ D (z) = F • Ψ D (z) is holomorphic and its real part is equal to H • Ψ D .
Assuming that F is analytic in Ω, we can write F as a sum

F(z) = ∞ n=0 c n (z -Z 0 ) n , z ∈ Ω.
Also, the holomorphic function F • Ψ D admits the following development:

F • Ψ D (z) = ∞ n=0 cn R 2n (z -Z 0 ) n , z ∈ Ω \ D. (1.15)
Therefore, denoting by v e a harmonic conjugate of u e , and given any C ∈ R, the function:

h(z) := u e (z) + iv e (z) = F(z) + 1 -k 1 + k ( F • Ψ D (z) -H(Z 0 ) + iC), z ∈ Ω \ D, is holomorphic. Remark 1.2.1.
We can calculate directly from the measurements (f , g) the values of the function h on ∂Ω.

Stability estimate

We next establish a Hölder-type stability estimate for the center and radius of the disk. Let D 1 , D 2 denote 2 disks centered at the points z 1 , z 2 and with radii R 1 , R 2 . For i = 1, 2, let u i be the solutions of the problem (1.1). We assume that the two solutions satisfy the same non-zero Neumann data g on ∂Ω, and that the L ∞ -norm of the difference between their traces on ∂Ω (the Dirichlet data) is a small quantity ε. We denote by Ω 1 , Ω 2 the images of C \ Ω by the reflections

Ψ D 1 , Ψ D 2 . Theorem 1.2.2 (Uniqueness of the inverse problem). If u 1 = u 2 on ∂Ω then D 1 = D 2 .
Proof. From (1.4), the function H linked to each solution of (1.1) depends uniquely on the Cauchy data. As u 1 and u 2 have the same Cauchy data, their functions H are the same, and we will note this function by H in this proof.

Using the unique continuation propriety, we have:

u 1 = u 2 in Ω \ (D 1 ∪ D 2 ). Case 1: D 1 ∩ D 2 = ∅.
In this case, u e 1 has a harmonic continuation in D 1 , which coincides with u e 2 i.e. u e 2 = u i 1 in D 1 . Then, on ∂D 1 , we have:

∂u i 1 ∂ν = ∂u e 2 ∂ν = ∂u e 1 ∂ν = k ∂u i 1 ∂ν , ( 1.16) 
which implies ∂u i 1 ∂ν = 0 on ∂D 1 , so that u i 1 = 0, and thus u 1 = 0 and g = 0. Hence the contradiction.

Let z and Z be defined as (1.25). Case 2: ∂D 1 ∩ ∂D 2 ∅. In this case, from (1.25), ∂D 1 ∩ ∂D 2 = {z , Z }. Then, from the continuity of the solutions, we have:

u i 1 (z ) = u e 1 (z ) = u e 2 (z ) = u i 2 (z ) (1.17) Using (Theorem 1.2.1), we have H(z 1 ) = H(z 2 ) and u i 1 = u i 2 in D 1 ∩ D 2 . So, on ∂(D 1 -D 2 ), u 1 -u 2 = 0, which implies u i 1 = u e 2 in D 1 -D 2 .
Then, on the arc D 1 ∩ ∂D 2 , we have:

∂u i 2 ∂ν = ∂u i 1 ∂ν = ∂u e 2 ∂ν = k ∂u i 2 ∂ν , ( 1.18) 
which implies

∂u i 1 ∂ν = ∂u i 2 ∂ν = 0.
For the same reason, we also have:

∂u i 1 ∂ν = ∂u i 2 ∂ν = 0 on the arc D 2 ∩ ∂D 1 . It follows that, ∂u i 1 ∂ν = ∂u i 2 ∂ν = 0 in ∂(D 1 ∩ D 2 )
. This also implies u i 1 = 0 and then g = 0. Hence the contradiction.

Case 3: D 1 ⊂ D 2 .
In this case, we have: z ∈ D 1 and Z ∈ C \ D 2 . The functions u e j -H, j = 1, 2 have a harmonic extension in C \ D 2 , and they are equal in Ω \ D 1 , so from (1.2.1), we have:

H(Ψ 1 (z)) -H(z 1 ) = H(Ψ 2 (z)) -H(z 2 ) (1.19) in C \ D 2 .
Applying (1.19) on z , we have H(z 1 ) = H(z 2 ) and then

u 1 = u 2 in D 1 ∩ D 2 = D 1 .
The rest of the proof follows the same argument as in the previous cases. That completes the proof Lemma 1.2.1. Let f be a non-zero holomorphic function in Ω, and assuming that D 1 D 2 , then there exist 0 < β < 1, which only depends on f , such that

∂Ω |Ψ 1 (z) -Ψ 2 (z)| |f (Ψ 1 (z)) -f (Ψ 2 (z))| β ds < ∞.
(1.20)

Proof. We first show that the set

Z := {z ∈ ∂Ω|f (Ψ 1 (z)) -f (Ψ 2 (z)) = 0} is finite.
Indeed, assume that Z has infinitely many elements. Then by an argument of compactness, Z has a limit point. As the functions f

• Ψ i , i = 1, 2 are anti- holomorphic, it follows that f (Ψ 1 (z)) = f (Ψ 2 (z)) on C \ (D 1 ∪ D 2 )
. Thus, from the explicit formula of solutions, we can construct two solutions to (1.1) related to D 1 and D 2 , which have the same Cauchy data on ∂Ω. This contradicts the uniqueness of the inverse problem (Theorem 1.2.2).

As the function

F (z) := f (Ψ 1 (z)) -f (Ψ 2 (z)) is holomorphic in C \ (D 1 ∪ D 2 ), if z ∈ Z, there is m(z) ∈ N such that, in a neighborhood of z, F (z) = n≥m(z) q n (z -z) n , with q m(z) 0. Let γ ∈ C 1 ([a, b]
) be a parametrization of ∂Ω, and set z = γ( t). Then, in a neighborhood of t, we have

F (γ(t)) = n≥m(z) q n (t -t) n ,
with q m(z) 0. We choose 0 < β < 1 m where m := max z∈Z m(z). Then, for tδ < t < t + δ we have,

1 |F (γ(t))| β ≤ C|t -t| -βm(z) , with 0 < βm(z) < 1. Therefore, t+δ t-δ 1 |F (γ(t))| β dt < ∞. Thus, ∂Ω |Ψ 1 (z) -Ψ 2 (z)| |f (Ψ 1 (z)) -f (Ψ 2 (z))| β ds = b a |Ψ 1 (γ(t)) -Ψ 2 (γ(t))| |F (γ(t))| β |γ (t)|dt < ∞.
and (1.20) follows.

Theorem 1.2.3. Assume that

||u 1 | ∂Ω -u 2 | ∂Ω || L ∞ (∂Ω) = ε. (1.21)
Then there exists constants 0 < α, β < 1 and C > 0, such that

|z 1 -z 2 | ≤ Cε αβ , (1.22) and |R 1 -R 2 | ≤ Cε αβ , (1.23)
where α := ω(z ) > 0, and where ω and z are given by the following equations

           ω = 0 in Ω \ Ω 1 ∪ Ω 2 ω = 1 on ∂Ω ω = 0 on ∂(Ω 1 ∪ Ω 2 ), (1.24 
)

z 1 + R 2 1 z -z1 = z 2 + R 2 2 z -z2 = Z ∈ C, (1.25) 
where β only depend on the Cauchy data.

Remark 1.2.2. We remark that z and Z are uniquely determined by (1.25), and we observe that

• Z is the image of z by the reflection with respect to ∂D 1 and with respect to

∂D 2 .
• in the case where ∂D 1 ∩ ∂D 2 ∅, z = Z is one of the intersection points.

• in the case where

D 1 ∩ D 2 = ∅, then either z ∈ D 1 and Z ∈ D 2 or z ∈ D 2 and Z ∈ D 1 .
• in the case where

D 1 ⊂ D 2 (resp. D 2 ⊂ D 1 ), then z ∈ D 1 (resp. z ∈ D 2 ) and Z ∈ C \ D 2 (resp. Z ∈ C \ D 1 ).
• at least one of the points z and Z is in Ω. We can always assume that z ∈ Ω.

Proof. According to the position of the point Z , we distinguish two cases: Case 1: both z and Z are in Ω.

Because Z is the image of z by Ψ D 1 and vice-versa, one of z or Z is in D1 , the other lies in Ω \ D 1 . We may assume that z ∈ Ω \ D 1 . We define

hi (z) = h i (z) -h i (z ) = F i (z) -F i (z ) + 1 -k 1 + k        F i (z i + R 2 i z -zi ) -F i (Z )        .
(1.26)

By construction, the function h 1h 2 can be holomorphically extended in Ω \ Ω 1 ∪ Ω 2 and from the standard elliptic estimation, this function satisfies

M := sup{|h 1 -h 2 | : z ∈ Ω \ Ω 1 ∪ Ω 2 } ≤ C||g|| L 2 (∂Ω) , (1.27) |h 1 -h 2 | ≤ ε on ∂Ω. (1.28)
Consequently, for z ∈ ∂Ω,

h1 (z) -h2 (z) = h 1 (z) -h 2 (z) -[h 1 (z ) -h 2 (z )] = F 1 (z) -F 2 (z) + F 1 (z ) -F 2 (z ) + 1 -k 1 + k        F 1 (z 1 + R 2 1 z -z1 ) -F 2 (z 2 + R 2 2 z -z2 ) + F 2 (Z ) -F 1 (Z )        .
(

Let ω be the solution to the Dirichlet problem (1.24), the function

ω log ε + (1 - ω) log M is therefore harmonic in Ω \ Ω 1 ∪ Ω 2 . On the other hand, log |h 1 -h 2 | = (log(h 1 -h 2 )
) is also a harmonic function in Ω \ Ω 1 ∪ Ω 2 . From (1.27) and (1.28), we have

log |h 1 (z) -h 2 (z)| ≤ ω(z) log ε + (1 -ω(z)) log M, z ∈ ∂(Ω \ Ω 1 ∪ Ω 2 ) (1.30)
Then, by the maximum principle,

log |h 1 (z ) -h 2 (z )| ≤ ω(z ) log ε + (1 -ω(z )) log M (1.31) Hence, |h 1 (z ) -h 2 (z )| ≤ Cε α , ( 1.32) 
with α := ω(z ).

Using the assumption (1.21) and the definition (1.4) of H, we have

∀z ∈ Ω, |F 1 (z) -F 2 (z)| ≤ Cε. (1.33)
Further, from (1.29) we have that for all z ∈ ∂Ω,

F 1 (z 1 + R 2 1 z -z1 ) -F 1 (z 2 + R 2 2 z -z2 ) = F 1 (Z ) -F 2 (Z ) + 1 + k 1 -k [F 2 (z) -F 1 (z) + F 2 (z ) -F 1 (z ) + h 1 (z) -h 2 (z) + h 2 (z ) -h 1 (z )]. (1.34)
Applying (1.28), (1.32) and (1.33), we obtain:

|F 1 (z 1 + R 2 1 z -z1 ) -F 1 (z 2 + R 2 2 z -z2 )| ≤ Cε α , ∀z ∈ ∂Ω. (1.35)
Then, using (1.35) and (1.20), we have the following estimate:

∂Ω |Ψ 1 (z) -Ψ 2 (z)|ds = ∂Ω |Ψ 1 (z) -Ψ 2 (z)| |F 1 (Ψ 1 (z)) -F 1 (Ψ 2 (z))| β |F 1 (Ψ 1 (z)) -F 1 (Ψ 2 (z))| β ds ≤ ∂Ω |Ψ 1 (z) -Ψ 2 (z)| |F 1 (Ψ 1 (z)) -F 1 (Ψ 2 (z))| β ds × Cε αβ ≤ C ε αβ .
(1.36)

On the other hand, we have:

∂Ω |Ψ 1 (z) -Ψ 2 (z)|ds = ∂Ω |Ψ 1 (z) -Ψ 2 (z)|ds ≥ | ∂Ω Ψ 1 (z) -Ψ 2 (z)dz| = | ∂Ω z1 -z2 + R 2 1 z -z 1 - R 2 2 z -z 2 dz| = |R 2 1 -R 2 2 |.
So, we have:

|R 1 -R 2 | ≤ Cε αβ .
(1.37)

Using (1.37), we have: for all z ∈ ∂Ω,

|Ψ 1 (z) -Ψ 2 (z)| = |z 1 -z2 + R 2 1 z 1 -z 2 (z -z 1 )(z -z 2 ) | + O(ε αβ ).
So, from (1.36),

Cε αβ ≥ ∂Ω |z 1 -z2 + R 2 1 z 1 -z 2 (z -z 1 )(z -z 2 ) |ds = |z 1 -z 2 | ∂Ω |e -2i arg(z 1 -z 2 ) + R 2 1 (z -z 1 )(z -z 2 ) |ds with ∂Ω |e -2i arg(z 1 -z 2 ) + R 2 1 (z -z 1 )(z -z 2 ) |ds > 0.
Thus,

|z 1 -z 2 | ≤ Cε αβ . (1.38) Case 2: z ∈ Ω, Z ∈ C \ Ω. We define hi (z) = h i (z) -(h i (Z ) -f i (Z )) = f i (z) + 1 -k 1 + k        F i (z i + R 2 i z -zi ) -F i (z )        . (1.39)
By (1.15), the holomorphic functions h i -F i , i = 1, 2 can be extended to C \ Di and they vanish as |z| → ∞. Let Ω be an open set containing Ω and the point Z * , and consider a harmonic function ω solution to the following equation

           ω = 0 in Ω \ Ω ω = 1 on ∂Ω ω = 0 on ∂ Ω. (1.40) Define α = ω(Z ).
Thus, from (1.28) and (1.33) we have

|(h 1 -F 1 ) -(h 2 -F 2 )| ≤ Cε on ∂Ω. (1.41)
We apply the maximum principle on Ω \ Ω to the harmonic function

ω log ε + (1 -ω) log M -log |(h 1 -F 1 ) -(h 2 -F 2 )| to obtain: log |(h 1 -F 1 )(Z ) -(h 2 -F 2 )(Z )| ≤ ω(Z ) log ε + (1 -ω(Z )) log M, (1.42) so that |(h 1 -F 1 )(Z ) -(h 2 -F 2 )(Z )| ≤ Cε α . (1.43)
In fact, we can choose, Ω = B ρ (z 1 ) with ρ as large as we want. We denote ω ρ the solution to the associated equation (1.40) and we also consider the harmonic function ωρ solution to

           ωρ = 0 in B(z 1 , ρ) \ B(z 1 , R 1 ) ωρ = 1
on ∂B(z 1 , R 1 ) ωρ = 0 on ∂B(z 1 , ρ).

(1.44)

The function ωρ has the explicit expression ωρ (r) = ln(r)ln(ρ) ln(R)ln(ρ) , (

with r := |zz 1 |. By the maximum principle, ωρ ≤ ω ρ in B(z 1 , ρ) \ Ω. So, we have

1 > ω ρ (Z ) ≥ ωρ (Z ) = ln(r) -ln(ρ) ln(R) -ln(ρ) -→ ρ→∞ 1. (1.46)
From (1.43), we have

|(h 1 (Z ) -F 1 (Z )) -(h 2 (Z ) -F 2 (Z ))| ≤ Cε β , 0 < β < 1. (1.47) Thus, |(h 1 (Z ) -F 1 (Z )) -(h 2 (Z ) -F 2 (Z ))| ≤ Cε. (1.48)
The rest of the proof follows the same argument as that of case 1.

Reconstruction from two measurements

It follows from the analysis of section 1.2.2, we can obtain some geometric elements of the disk from a simple contour integration. Thus, we can reconstruct the center, the radius and the conductivity k if we have two distinct measurements under the assumption that ∇u 0 in Ω. The method of reconstruction is described as follows.

We calculate the following integral:

I := 1 2πi ∂Ω h(z)dz. (1.49)
Using the representation (1.15) and the Residue Theorem on Ω, we have

I : = 1 2πi ∂Ω h(z)dz = 1 2πi ∂Ω F(z) + 1 -k 1 + k ( F • Ψ D (z) -H(Z 0 ) + iC)dz = 1 2πi [ ∂Ω F(z)dz + 1 -k 1 + k ( ∂Ω ∞ n=0 cn R 2n (z -Z 0 ) n dz + ∂Ω -H(Z 0 ) + iCdz)] = 1 2πi 1 -k 1 + k ∞ n=1 cn R 2n ∂Ω 1 (z -Z 0 ) n dz = 1 -k 1 + k c1 R 2 = 1 -k 1 + k F (Z 0 )R 2 . (1.50)
Using the same arguments, we can also calculate the following integral

1 2πi ∂Ω zh(z)dz = 1 2πi ∂Ω zF(z) + 1 -k 1 + k z( F • Ψ D (z) -H(Z 0 ) + iC)dz = 1 2πi [ ∂Ω zF(z)dz + 1 -k 1 + k ( ∂Ω ∞ n=0 cn zR 2n (z -Z 0 ) n dz + ∂Ω z(-H(Z 0 ) + iC)dz)] = 1 2πi 1 -k 1 + k ∞ n=1 cn R 2n ∂Ω z (z -Z 0 ) n dz = 1 2πi 1 -k 1 + k ∞ n=1 cn R 2n ∂Ω 1 (z -Z 0 ) n-1 + Z 0 (z -Z 0 ) n dz = 1 -k 1 + k (Z 0 c1 R 2 + c2 R 4 ). (1.51)
Denoting by f 1 , f 2 two functions f corresponding to two distinct measurements, from (1.50) we have

Ī1 Ī2 = F 1 (Z 0 ) F 2 (Z 0 ) . ( 1.52) 
We remind that the holomophic functions F j above are defined by (1.13), F j = H j + iG j , where G j are the harmonic conjugate of H j , and

H j = D Ω f j -S Ω g. So, Z 0 is a zero of the holomophic function z → F 1 (z) F 2 (z)
-Ī1 Ī2 (F 2 (z) 0 ∀z ∈ Ω as we supposed that ∇u 0). Once Z 0 is determined, R and k can be easily found from (1.50) and (1.51).

Chapter 2

Numerical determination of disks

Optimization algorithm

In this section, we consider a numerical scheme to reconstruct a disk contained in a subset Ω 0 ⊂ Ω with dist(∂Ω 0 , ∂Ω) ≥ δ 0 > 0, using a single measurement. The scheme is based on minimizing the functional

J(u) = 1 2 ∂Ω |u -u meas | 2 dσ ,
where u meas is the measured Dirichlet data and where u is the solution to (2) associated to a disk D = B(X 0 , R) ⊂ Ω 0 .

Given (c 1 , c 2 , R) ∈ R 3 , where we suppose X 0 = (c 1 , c 2 ), the gradient of the functional J at this point can be calculated as follows.

Theorem 2.1.1. Let u be the solution to the problem (2) associated to a disk and let w be the solution to the following problem

         div((1 + (k -1)χ D )∇w) = 0 in Ω, ∂w ∂ν = u -u meas on ∂Ω. (2.1) 23 
Then ∂J ∂c 1 = (k -1) D ∂ ∂x 1 (∇u∇w)dX (2.2) ∂J ∂c 2 = (k -1) D ∂ ∂x 2 (∇u∇w)dX (2.3) ∂J ∂R = k -1 R D 2∇u∇w + i=1,2 (x i -c i ) ∂ ∂x i (∇u∇w)dX.
(2.4)

Proof. Let (c 1 , c 2 , R) ∈ R 3 , such that the disk D centered at (c 1 , c 2 ), with radius R is included in Ω 0 . Denote u (receptively ũ) the solutions to (2) associated to the disk B R (c 1 , c 2 ) (respectively B R (c 1 + dx 1 , c 2 )
). Then we have

J(c 1 + dc 1 , c 2 , R) -J(c 1 , c 2 , R) = 1 2 ∂Ω | ũ -u meas | 2 dσ - 1 2 ∂Ω |u -u meas | 2 dσ = 1 2 ∂Ω ( ũ -u)( ũ + u -2u meas )dσ = 1 2 ∂Ω ( ũ -u)( ũ -u + 2(u -u meas ))dσ = ∂Ω (u -u meas )vdc 1 dσ + O(|dc 1 | 2 ). Therefore, ∂J ∂c 1 = ∂Ω (u -u meas )vdσ , ( 2.5) 
where v := lim

dc 1 →0 ũ -u dc 1 .
Combining the variational forms of (2) for u and for ũ, we have that for all

φ ∈ H 1 (Ω), Ω (1 + (k -1)χ D )∇ ũ∇φdX - ∂Ω gφdσ = 0, (2.6) 
and

Ω (1 + (k -1)χ D )∇u∇φdX - ∂Ω gφdσ = 0. (2.7)
By applying a result of shape derivative (see [5]), (2.6)-(2.7) give us:

0 = 1 dc 1 [ Ω (1 + (k -1)χ D )∇ ũ∇φdX - Ω (1 + (k -1)χ D )∇u∇φdX] = Ω ∇v∇φdX + k -1 dc 1 ( D ∇ ũ∇φdX - D ∇u∇φdX) = Ω (1 + (k -1)χ D )∇v∇φdX + k -1 dc 1 ( D ∇u∇φdX - D ∇u∇φdX) + O(|dc 1 |) = Ω (1 + (k -1)χ D )∇v∇φdX + (k -1) ∂D e 1 • ν∇u∇φdσ + O(|dc 1 |).
It follows that v satisfies, for all φ ∈ H 1 (Ω),

Ω (1 + (k -1)χ D )∇v∇φdX + (k -1) ∂D e 1 • ν∇u∇φdσ . (2.8)
Introducing the function w defined by (2.1), and taking w as φ in (2.8) we get

0 = Ω (1 + (k -1)χ D )∇v∇wdX + (k -1) ∂D e 1 • ν∇u∇wdσ . ( 2.9) 
On the other hand,

0 = Ω div[(1 + (k -1)χ D )∇w]vdX = ∂Ω v(u -u meas )dσ + Ω (1 + (k -1)χ D )∇v∇wdX.
Consequently,

∂J ∂c 1 = ∂Ω (u -u meas )vdσ (2.10) = (k -1) ∂D e 1 • ν∇u∇wdσ (2.11) = (k -1) ∂D ∂x 1 ∂ν ∇u∇wdσ (2.12) = (k -1) D ∂ ∂x 1 (∇u∇w)dX, (2.13) 
and (2.2) follows. By the same argument, we can obtain (2.3) and

∂J ∂R = (k -1) ∂D ∇u∇wdσ .
As D is a disk, we have ν = x-X 0 R so that the previous integral becomes

∂D ∇u∇wdσ = ∂D ν • ν∇u∇wdσ = ∂D x -X 0 R • ν∇u∇wdσ = 1 2R ∂D ∂|x -X 0 | 2 ∂ν ∇u∇wdσ = 1 2R ( D ∇|x -X 0 | 2 ∇(∇u∇w)dX + D (|x -X 0 | 2 )∇u∇wdX) = 1 R D 2∇u∇w + i=1,2 (x i -c i ) ∂ ∂x i (∇u∇w)dX, and (2.4) follows. 
The expression of the shape derivative is the basis of the following iterative algorithm:

1. Chose an initial disk D = B(X 0 , R 0 ).

For each iteration, i > 0:

(a) Calculate the solution to (2) 

u i , associated to the disk D i = B(X i , R i ). (b) Calculate the shape derivatives ∂J ∂c 1 , ∂J ∂c 2 , ∂J ∂R (c) Update the parameters of the disk (X i+1 , R i+1 ) = (X i , R i ) -δ∇J(X i , R i )
with δ > 0.

(d) If the updated disk is not entirely in Ω or if R becomes negative, reduce the size δ.

3. When J(X i , R i ) becomes smaller than a fixed threshold, we stop.

Numerical examples

The setting of all numerical tests is as follows:

• We use FreeFem++ for our numerical experiments.

• Ω is a centered ellipse defined by the equation:

x 2 1 4 2 + x 2 2 3 2 ≤ 1.
• the conductivity k is a fixed constant, here we set k = 5.

• the Neumann data g := ∂u ∂ν is defined by: g = e, ν on ∂Ω where e =

      2 3       .
• We use P1 finite elements for the numerical resolution of the PDEs.

• At each iteration, we remesh the domain to adapt to the new predicted position of the disk.

In this subsection, we show three examples according to the disk's size, and its distance to the boundary ∂Ω,

1. The target is close to the boundary ∂Ω. Figure 2.1a shows the solution to

(2) when the target disk is centered at

X 0 =       2 0.8       and has radius R = 1.
2. The target is apart from the boundary ∂Ω. Figure 2.1b shows the solution to (2) when the target disk is centered at

X 0 =       0.5 0.5     
 and has radius R = 0.7.

3. The target has a small size. Figure 2.1c shows the solution to (2) when the target disk is centered at

X 0 =       2.4 -1.2       and has radius R = 0.3.
In these three cases, we exercise our algorithm with the same initial guess:

the disk centered at

      0 0     
 with radius 2.5. Figure 2.2 shows the decay of log(J) during the iterations in the first case. We can observe that J decays exponentially to 0. To illustrate the dependence between the geometric characteristics of the disk and J, we draw log(|X i -X 0 | 2 ) and 

(|R i -R 0 | 2 ) in terms of log(J) (Figures 2.3, 2.4, 2.5)
, where X i and R i denote the center and radius of the disk at the i-th iteration. In order to show the Hölder-type stability, it is also interesting to draw linear regression lines to each of these curves. Thus, the inclination of the linear regression lines present a numerical estimation of the Hölder exponent.

Finally, we conclude the numerical results of these three cases by the following remark.

Remark 2.2.1. 

• Figures 2.3, 2.4, 2.5 show the asymptotic behaviors of |X

i -X 0 | and |R i -R 0 | when J becomes small. We can observe from the left side of those -12 -10 -8 -6 -4 -2 0 2 4 6 -20 -15 -10 -5 0 5 log(∫ ∂Ω |u i -u 0 | 2 dσ) log(|R i -R 0 | 2 ) y=0.9522x-7.4352 log(|X i -X 0 | 2 ) y=1.0144x-1.2370 Figure 2.3 -Case X 0 = (2, 0.8), R = 1 -12 -10 -8 -6 -4 -2 0 2 -20 -15 -10 -5 0 5 log(∫ ∂Ω |u i -u 0 | 2 dσ) log(|R i -R 0 | 2 ) y=1.0602x-6.6459 log(|X i -X 0 | 2 ) y=0.9979x+0.7036
(∫ ∂ Ω |u i -u meas | 2 dσ) log(|R i -R 0 | 2 ) y=0.9069x-4.5595 log(|X i -X 0 | 2 ) y=1.0316x+2.4516 Figure 2.5 -Case X 0 = (2.4, -1.2), R = 0.3
• There is no clear evidence of a relation between the Hölder exponents α and the distance between the target disk and ∂Ω.

• We always choose δ near 0.1. Roughly speaking, when δ exceed 0.5, J does not decay during the iterations.

• For the same target, different initial guesses do not change the number of iterations to reach convergence.

• Exceptionally, if the center of the initial guess coincide with the target's center, only about 10 iterations are needed to reach the target.

• When the target disk is too small, more iterations are needed. Determination of inclusions using multifrequency measurements

• inclination log |X i -X 0 |/ log J inclination log |R i -R 0 |/ log J

Introduction

In this work, we introduce a new approach to analyze the inverse inclusion problem, the multifrequency measurements, we consider the following equation,

           div(γ(x, ω)∇u(x, ω)) = 0 in Ω, γ(x, ω)∂ ν u(x, ω) = f (x) on ∂Ω, ∂Ω u(x, ω) = 0, (3.1) 
where ω denotes the frequency, ν Ω (x) is the outward normal vector to ∂Ω, γ(x, ω) is the conductivity coefficient, and

f ∈ H -1/2 (∂Ω) := {g ∈ H -1/2 (∂Ω) : ∂Ω gdσ = 0} is the input current.
In this work we are interested in the case where the frequency dependent conductivity distribution takes the form

γ(x, ω) = k 0 + (k(ω) -k 0 )χ D (x) (3.2) with χ D (x) being the characteristic function of a C 2 domain D in Ω (D ⊂⊂ Ω),
k 0 being a fixed strictly positive constant, and k(ω) : R + → C \ R -, being a continuous complex-valued function. Here k 0 representing the conductivity of the background medium, is known, and k(ω) is the conductivity of the biological tissue, given by the empirical model

k(ω) := κ 1 - κ 2 ω 2 + iωκ 3 , ( 3.3) 
where κ p > 0, p = 1, 2, 3, are constants that only depend on the biological tissue properties (see for instance [START_REF] Habib | Spectroscopic imaging of a dilute cell suspension[END_REF] ). The frequency profile k(ω) is somehow a meromorphic approximation with a single pole of the graph of experimental measurements for a given biological tissue [START_REF] Habib | Spectroscopic imaging of a dilute cell suspension[END_REF]. It also appears as a homogenized model for periodically distributed biological cells in the dilute limit [START_REF] Habib | Spectroscopic imaging of a dilute cell suspension[END_REF], and is similar to Drude models that describes the frequency dependence of the electric permittivity of a real metal within the visible frequency range [START_REF] Mayergoyz | Electrostatic (plasmon) resonances in nanoparticles[END_REF].

Spectral decomposition

We first introduce an operator whose spectral decomposition will be later the cornerstone of the identification of the anomaly D. Let H 1 (Ω) be the space of functions v in H 1 (Ω) satisfying ∂Ω vdσ = 0.

For u ∈ H 1 (Ω), we infer from the Riesz theorem that there exists a unique function T u ∈ H 1 (Ω) such that for all v ∈ H 1 (Ω),

Ω ∇T u∇vdx = D ∇u∇vdx. (3.4) 
The variational Poincaré operator T : H 1 (Ω) → H 1 (Ω) is easily seen to be selfadjoint and bounded with norm T ≤ 1.

The spectral problem for T reads as:

Find (λ, w) ∈ R × H 1 (Ω), w 0 such that ∀v ∈ H 1 (Ω), λ Ω ∇w∇vdx = D ∇w∇vdx.
Integrating by parts, one immediately obtains that any eigenfunction w is harmonic in D and in D = Ω \ D, and satisfies the transmission and boundary conditions

w| + ∂D = w| - ∂D , ∂ ν w| + ∂D = (1 - 1 λ )∂ ν w| - ∂D , ∂ ν Ω w = 0,
where w| ± ∂D (x) = lim t→0 w(x ± tν D (x)) for x ∈ ∂D. In other words, w is a solution to (3.1) for k = k 0 (1 -1 λ ) and f = 0. Let H be the space of harmonic functions in D and D , with zero mean ∂Ω udσ = 0, and zero normal derivative ∂ ν Ω u = 0 on ∂Ω, and with finite energy semi-norm

u H = Ω |∇u| 2 dx.
Since the functions in H are harmonic in D , the space H is a closed subspace of H 1 (Ω). Later on, we will give a new characterization of the space H in terms of the single layer potential on ∂D associated with the Neumann function of Ω.

We remark that T u = 0 for all u in H 1 0 (D ), and T u = u for all u in H 1 0 (D) (the set of functions H 1 (D) with trace zero).

We also remark that T H ⊂ H and hence the restriction of T to H defines a linear bounded operator. Since we are interested in harmonic functions in D and D , we only consider the action of T on the closed space H . We further keep the notation T for the restriction of T to H . We will prove later that T has only isolated eigenvalues with an accumulation point 1/2. We denote by (λ - n ) n≥1 the eigenvalues of T repeated according to their multiplicity, and ordered as follows

0 < λ - 1 ≤ λ - 2 ≤ • • • < 1 2 ,
in (0, 1/2] and, similarly,

0 > λ + 1 ≥ λ + 2 ≥ • • • > 1 2 .
the eigenvalues in [1/2, 1). The eigenvalue λ ∞ = 1/2 is the unique accumulation point of the spectrum. To ease the notation we further denote the orthogonal spectral projector on the eigenspace associated to 1/2, by ∂Ω w ± ∞ dσ w ± ∞ (x). Next, we will characterize the spectrum of T via the mini-max principle. Proposition 3.2.1. [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF] The variational Poincaré operator has the following decom-position

T = 1 2 I + K, (3.5)
where K is a compact self-adjoint operator. Let w ± n , n ≥ 1 be the eigenfunctions associated to the eigenvalues (λ ± n ) n≥1 . Then

λ - 1 = min 0 w∈H D |∇w(x)| 2 dx Ω e |∇w(x)| 2 dx λ - n = min 0 w∈H ,w⊥w - 1 ,••• ,w - n-1 D |∇w(x)| 2 dx Ω e |∇w(x)| 2 dx = min F n ⊂H ,dim(F n )=n max w∈F n D |∇w(x)| 2 dx Ω e |∇w(x)| 2 dx , ( 3.6) 
and similarly

λ + 1 = max 0 w∈H D |∇w(x)| 2 dx Ω e |∇w(x)| 2 dx λ + n = min 0 w∈H ,w⊥w + 1 ,••• ,w + n-1 D |∇w(x)| 2 dx Ω e |∇w(x)| 2 dx = max F n ⊂H ,dim(F n )=n min w∈F n D |∇w(x)| 2 dx Ω e |∇w(x)| 2 dx . (3.7)
We have the following decomposition of u(x, ω) in the basis of the eigenfunctions of the variational Poincaré operator T . Theorem 3.2.1. [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF] Let u(x, ω) be the unique solution to the system (3.1). Then, the following decomposition holds:

u(x, ω) = k -1 0 u 0 (x) + ∞ n=1 ∂Ω f (z)w ± n (z)ds(z) k 0 + λ ± n (k(ω) -k 0 ) w ± n (x), x ∈ Ω, (3.8) 
where u 0 ∈ H 1 (Ω) depends only on f and D, and is the unique solution to

                 v = 0 in D , ∇v = 0 in D, ∂ ν Ω v = f on ∂Ω, ∂Ω vdσ = 0. (3.9)
Proof. We first observe that frequency dependent part

u f = u -k -1 0 u 0 ,
lies in H . Since the eigenfunctions w ± (x) form an orthonormal basis of H , the frequency part u f posses the following spectral decomposition:

u f (x) = ∞ n=1 Ω ∇u f (z)∇w ± n (z)dzw ± n (x) x ∈ Ω.
A straightforward computation leads to

Ω ∇u f (z)∇w ± n (z)dz = Ω ∇u(z)∇w ± n (z)dz.
On the other hand, since u ∈ H 1 (Ω), we obtain

Ω ∇u(z)∇w ± n (z)dz = λ ± n D ∇u(z)∇w ± n (z)dz = k 0 k(ω) λ ± n ∂D ∂ ν D u(z)| + w ± n (z)dσ (z) = k 0 k(ω) λ ± n D ∇u(z)∇w ± n (z)dz - k 0 k(ω) λ ± n ∂Ω f (z)w ± n (z)dσ (z).
Using the simple fact that

Ω ∇u(z)∇w ± n (z)dz = D ∇u(z)∇w ± n (z)dz + D ∇u(z)∇w ± n (z)dz,
we obtain the desired decomposition.
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Retrieval the frequency part

In this section, we will try to reconstruct the constants κ 1 , κ 2 and κ 3 in the model (3.3) and the function u 0 in the spectral decomposition (3.8) of the solution u(x, ω) from the multifrequency measurements by using an optimization algorithm.

We consider the M frequencies of measurements

ω 1 , ω 2 , • • • , ω M correspond- ing to the values of conductivity k(ω 1 ), k(ω 2 ), • • • , k(ω M )
, and the associated solutions u(x, ω 1 ), u(x, ω 2 ), • • • , u(x, ω M ). As 1 2 is the unique accumulation point of the eigenvalues (λ ± n ) n∈N , we only consider the N f first eigenvalues as unknown variables, and we approximate the others eigenvalues by 1 2 . That means, we make the following approximation, for

x ∈ Ω, 1 ≤ p ≤ M, u(x, ω p ) ≈ k -1 0 u 0 (x) + N f n=1 1 k 0 + λ ± n (k(ω p ) -k 0 ) v ± n (x) + 2 k(ω p ) + k 0 v N f +1 (x), (3.10) 
where

v ± n (x) = ∂Ω f (z)w ± n (z)ds(z)w ± n (x),
and

v N f +1 (x) = n>N f ∂Ω f (z)w ± n (z)ds(z)w ± n (x).
Using a simple integration by parts, we have, for all n ∈ N,

∂Ω f (z)w ± n (z)ds(z) = Ω ∇f(x)∇w ± n (x)dx, (3.11) 
where f is the unique solution in H 1 (Ω) to

       f = 0 in Ω, ∂ ν f = f on ∂Ω. (3.12)
So, the function ∞ n=1 v ± n is the orthogonal projection of the function f on the space H . Moreover, u 0 satisfies, for all n ∈ N,

Ω ∇u 0 (x)∇w ± n (x)dx = Ω\D ∇u 0 (x)∇w ± n (x)dx = ∂Ω u 0 (x) ∂ ∂ν w ± n (x)ds(x) - ∂D u 0 (x) ∂ ∂ν w ± n (x)ds(x) = 0 -C ∂D ∂ ∂ν w ± n (x)ds(x) = 0 (3.13) As f -u 0 ∈ H , the orthogonal projection of f on the space H is f -u 0 .
The formula (3.10) becomes,

u(x, ω p ) ≈ k(ω p ) -k 0 k 0 (k(ω p ) + k 0 ) u 0 (x) + 2 k(ω p ) + k 0 f(x) + N f n=1 ( 1 k 0 + λ ± n (k(ω p ) -k 0 ) - 2 k(ω p ) + k 0 )v ± n (x). (3.14) 
Now we want to reconstruct κ 1 , κ 2 , κ 3 and u 0 (x) by an optimization algorithm. In order to do so, we need an a priori estimation of the eigenvalues λ ± n ∈ [0, 1] for 1 ≤ n ≤ N f . We will not recover the eigenvalues λ ± n for the reason that they all vary in a relatively narrow interval such that the reconstruction of u 0 is not very sensitive to the variations of those eigenvalues. Let (x j ) 1≤j≤N d ∈ ∂Ω be a discretization of the boundary ∂Ω, and define, for

1 ≤ j ≤ N d , F j (U (j) 0 , V ±(j) 1 , • • • , V ±(j) N f , ω, κ 1 , κ 2 , κ 3 ) := k(ω, κ 1 , κ 2 , κ 3 ) -k 0 k 0 (k(ω, κ 1 , κ 2 , κ 3 ) + k 0 ) U (j) 0 + 2 k(ω, κ 1 , κ 2 , κ 3 ) + k 0 f(x j ) + N f n=1 ( 1 
k 0 + λ ± n (k(ω, κ 1 , κ 2 , κ 3 ) -k 0 ) - 2 k(ω, κ 1 , κ 2 , κ 3 ) + k 0 )V ±(j) n . (3.15)
where (U

(j) 0 ) 1≤j≤N d , (V ±(j) n ) 1≤j≤N d are vectors in R N d .
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The scheme consists in minimizing the functional,

J m (U 0 , V ± 1 , • • • , V ± N f , κ 1 , κ 2 , κ 3 ) := 1 2 M p=1 N d j=1 |u(x j , ω p ) -F j (U (j) 0 , V ±(j) 1 , • • • , V ±(j) N f , ω p , κ 1 , κ 2 , κ 3 )| 2 . (3.16)
We can easily calculate its gradient from (3.15) and

(3.3), for i = 1, 2, 3, 1 ≤ l ≤ N d and 1 ≤ n ≤ N f , ∂J m ∂κ i = M p=1 N d j=1 (u(x j , ω p ) -F j (•, ω p )) ∂F j ∂κ i (•, ω p ), (3.17 
)

∂J m ∂U (l) 0 = M p=1 (u(x j , ω p ) -F l (•, ω p )) ∂F l ∂U (l) 0 (•, ω p ), (3.18 
)

∂J m ∂V ±(l) n = M p=1 (u(x j , ω p ) -F l (•, ω p )) ∂F l ∂V ±(l) n (•, ω p ), (3.19) 
where we denote here F j (U

(j) 0 , V ±(j) 1 , • • • , V ±(j) N f , ω p , κ 1 , κ 2 , κ 3 ) by F j (•, ω p
) in order to simplify the notations. The algorithm then follows the standard gradient method for 3 + N d (1 + 2N f ) variables. Once we have reconstructed the conductivity profile, i.e. the approximate values of κ 1 , κ 2 , κ 3 , we can use (3.14) again to calculate the approximate conductivity k(ω) by (3.3) and the approximate u 0 . Letting x ∈ ∂Ω, we define,

Ũ (x, ω 1 , . . . , ω M ) =                   ũ(x, ω 1 ) ũ(x, ω 2 ) . . . ũ(x, ω M )                   , L( λ ± 1 , . . . , λ ± N f , ω 1 , . . . ω M ) =                     q 0 (ω 1 ) q( λ + 1 , ω 1 ) q( λ - 1 , ω 1 ) • • • q( λ - N f , ω 1 ) q 0 (ω 2 ) q( λ + 1 , ω 2 ) q( λ - 1 , ω 2 ) • • • q( λ - N f , ω 2 ) . . . . . . . . . . . . . . . q 0 (ω M ) q( λ + 1 , ω M ) q( λ - 1 , ω M ) • • • q( λ - N f , ω M )                     , V (x) =                         u 0 (x) v + 1 (x) v - 1 (x) . . . v - N f (x)                         , where ũ(x, ω) = u(x, ω)-2 k(ω)+k 0 f(x), q 0 (ω) = k(ω)-k 0 k 0 ( k(ω)+k 0 )
, and q( λ, ω)

= 1 k 0 + λ( k(ω)-k 0 ) - 2 k(ω)+k 0 . Then, the approximate relation (3.14) becomes Ũ (x, ω 1 , ω 2 , • • • , ω M ) ≈ L( λ ± 1 , . . . , λ ± N f , ω 1 , . . . ω M )V (x). (3.20) 
We can therefore calculate the vector V from the following formula,

V (x) ≈ (L T L) -1 L T Ũ (x, ω 1 , • • • ω M ). (3.21)
The approximate u 0 (x) is the first coefficient of the vector V (x).

We sum up our method to reconstruct u 0 by the following algorithm:

1. Give an a priori estimation of eigenvalues (λ ± n ) 1≤n≤N f .

2. Chose a step length α m . 

Initialize the vectors

U 0 | 0 , V 1 | 0 , • • • , V n | 0 and the coefficients κ 1 | 0 , κ 2 | 0 , κ 3 | 0 .
κ i | k+1 = κ i | k -α ∂J m ∂κ i , U (l) 0 | k+1 = U (l) 0 | k -α ∂J m ∂U (l) 0 , and V ±(l) n | k+1 = V ±(l) n | k -α ∂J m ∂V ±(l) n . 5.
When |∇J m | is smaller then the threshold, we stop the iterations.

6. Use (3.21) with the approximate coefficients κ i obtained in the previous step to calculate the approximate value of u 0 (x) for every x ∈ ∂Ω.

Asymptotic expansion

Let Ω ⊂ R 2 be a bounded domain with a C 2 boundary ∂Ω. The inclusion to determine D ⊂ Ω is also a C 2 domain. We assume that the inclusion D has a positive distance from ∂Ω:

dist(D, ∂Ω) ≥ δ > 0. Assuming f ∈ H -1/2 0
(Ω), we consider the following equation,

                 u = 0 in Ω \ D, ∇u = 0 in D, ∂u ∂ν = f on ∂Ω, ∂Ω udσ = 0. (3.22) 
Let D ε be the perturbed domain, which is given by

∂D ε = { x : x = x + εh(x)ν(x), x ∈ ∂D}, ( 3.23) 
where h ∈ C 1 (∂D) and ν denotes the unit outward normal vector. And we consider the perturbed equation,

                 u ε = 0 in Ω \ D ε , ∇u ε = 0 in D ε , ∂u ε ∂ν = f on ∂Ω, ∂Ω u ε dσ = 0 (3.24)
From the representation formula, the solution u can be written as

u(x) = S D φ(x) + S Ω ψ(x) x ∈ Ω, (3.25) 
where φ = ∂u ∂ν | + ∈ L 2 0 (∂D) and ψ ∈ L 2 0 (∂Ω). From the same reason, we have,

u ε (x) = S D ε φ ε (x) + S Ω ψ ε (x) x ∈ Ω. (3.26)
Using the jump relation and the facts that ∂u ∂ν | -= 0 on ∂D and ∂u ∂ν | -= f on ∂Ω, the densities φ and ψ satisfy the following system,

       (-1 2 I + K * D )φ(x) + ∂ ∂ν S Ω ψ(x) = 0 on ∂D, ∂ ∂ν S D φ(x) + (-1 2 I + K * Ω )ψ(x) = f on ∂Ω. (3.27)
This system can be also represented in a matrix form:

M       φ ψ       :=       (-1 2 I + K * D ) ∂ ∂ν S Ω ∂ ∂ν S D (-1 2 I + K * Ω )             φ ψ       =       0 f       . (3.28)
From the same reason, we have the following equation for the perturbed domain, 

M ε       φ ε ψ ε       :=        (-1 2 I + K ε * D ε ) ∂ ∂ν ε S Ω ∂ ∂ν S D ε (-1 2 I + K * Ω )              φ ε ψ ε       =       0 f       . ( 3 
∂D = {x = X(t), t ∈ [a, b]}. (3.30)
Then the outward unit normal vector ν(x) is given by ν

(x) = R -π 2 T (x), where R -π 2
is the rotation with the angle -π 2 and T (x) = X (t) denotes the tangential normal vector. Also the curvature γ(x) satisfies

X (t) = γ(x)ν(x). (3.31)
Then, the perturbed boundary ∂D ε can be parametrized by

∂D ε = { x = X(t) = X(t) + εh(x)ν(x), t ∈ [a, b]}. (3.32) 42CHAPTER 3.
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We denote the outward unit normal vector to ∂D ε at x by ν( x). Then we have,

ν( x) = ν(x) -εh (t)T (x) + O(ε 2 ), (3.33) 
where h (t) = d dt h(X(t)) -we use also sometimes h (x) to denote this quantity. We can also obtain the length element dσ ε ( ỹ),

dσ ε ( ỹ) = dσ (y)(1 -εγ(y)h(y) + O(ε 2 )) (3.34)
Let Ψ ε be the diffeomorphism from ∂D onto ∂D ε given by Ψ ε (x) = x + εh(x)ν(x).

From [START_REF] Habib | Conductivity interface problems. Part I: small perturbations of an interface[END_REF], we have the asymptotic expansion of K * D ,

(K * D ε φ) • Ψ ε = K * D φ + εK (1) D φ + O(ε 2 ), (3.35) 
where φ = φ • Ψ -1 ε . The operator K

D is defined as:

K (1) D φ(x) = ∂D [( 1 |x -y| 2 - 2 x -y, ν(x) 2 |x -y| 4 )h(x) - x -y, T (x) |x -y| 2 h (x) - ν(x), ν(y) |x -y| 2 h(y) + 2 x -y, ν(x) x -y, ν(y) |x -y| 4 h(y) - x -y, ν(x) |x -y| 2 γ(y)h(y)]φ(y)dσ (y) (3.36)
Now we calculate the asymptotic expansion of the operators ∂ ∂ν S Ω on ∂D and ∂ ∂ν S D on ∂Ω. Let ψ ∈ L 2 0 (∂Ω) and x ∈ ∂D, then x = x + εh(x)ν(x) ∈ ∂D ε , and we have:

∂ ∂ν ε S Ω ψ( x) = ∂Ω x -y, ν( x) | x -y| 2 ψ(y)dσ (y), = ∂Ω x + εh(x)ν(x) -y, ν(x) -εh (x)T (x) |x + εh(x)ν(x) -y| 2 ψ(y)dσ (y) + O(ε 2 ), = ∂ ∂ν S Ω ψ(x) + ε(-h (x) ∂ ∂T S Ω ψ(x) + h(x)S (1) Ω ψ(x)) + O(ε 2 ),
where ∂ ∂T denotes the tangential derivative and S

Ω is defined by: for x ∈ ∂D, S

Ω ψ(x) = ∂Ω [ 1 |x -y| 2 - 2 x -y, ν(x) 2 |x -y| 4 (1) 
]ψ(y)dσ (y).

(3.37)

By the similar method, we obtain the asymptotic expansion of ∂ ∂ν S D . Let φ ∈ L 2 0 (∂D) and x ∈ Ω,

∂ ∂ν S D ε φ(x) = D ε x -ỹ, ν(x) |x -ỹ| 2 φ( ỹ)dσ ε ( ỹ), = D x -y -εh(y)ν(y), ν(x) |x -y -εh(y)ν(y)| 2 φ(y))(1 -εγ(y)h(y))dσ + O(ε 2 ), = ∂ ∂ν S D φ(x) + ε{ ∂D [- ν(x), ν(y) |x -y| 2 + 2 x -y, ν(x) x -y, ν(y) |x -y| 4 ]h(y)φ(y)dσ (y) - ∂D x -y, ν(x) |x -y| 2 γ(y)h(y)φ(y)dσ (y)} + O(ε 2 ) = ∂ ∂ν S D φ(x) + ε ∂ ∂ν [D D (hφ) -S D (γhφ)](x) + O(ε 2 ). (3.38) 
Then we have

M ε = M + εM h + O(ε 2 )
, where the operator M 1 on L 2 0 (∂D) × L 2 0 (∂Ω) is defined by:

M h :=        K (1) D -h ∂ ∂T S Ω + hS (1) Ω ∂ ∂ν Ω [D D (h•) -S D (γh•)] 0        . (3.39)
So, the systems (3.28) and (3.29) imply that

      φ ε ψ ε       =       φ ψ       + ε       φ h ψ h       + O(ε 2 ), (3.40) 
where

      φ h ψ h       is given by       φ h ψ h       = -M -1 M h       φ ψ       . (3.41)
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u ε (x) = u(x) + ε(S D φ 1 (x) + S Ω ψ 1 (x) + D D (hφ)(x) -S D (γhφ)(x)) + O(ε 2 ). (3.42)
We denote by ũh the function S D φ 1 + S Ω ψ 1 in Ω and denote by u h the function ũ + D D (hφ) -S D (γhφ). From (3.41), we have on ∂D,

∂ ũh ∂ν | -+ K (1) D φ -h ∂ ∂T S Ω ψ + hS ( 1 
) 

Ω ψ = 0, ( 3 
0 = ∂ ∂T h ∂u ∂T (x), = ∂ ∂T h ∂ ∂T S D φ(x) + h (x) ∂ ∂T S Ω ψ(x) + h(x) ∂ 2 ∂T 2 S Ω ψ(x), = ∂ ∂T h ∂ ∂T S D φ(x) + h (x) ∂ ∂T S Ω ψ(x) + h(x) ∂Ω [ -1 |x -y| 2 + 2 x -y, ν(x) 2 |x -y| 4 + 2γ(x) x -y, ν(x) |x -y| 2 ]ψ(y)dσ (y), = ∂ ∂T h ∂ ∂T S D φ(x) + h (x) ∂ ∂T S Ω ψ(x) -h(x)S (1) Ω ψ(x) + 2γ(x)h(x) ∂ ∂ν S Ω ψ(x), which implies -h ∂ ∂T S Ω ψ + hS (1) Ω ψ = ∂ ∂T h ∂ ∂T S D φ + 2γh( 1 2 I -K * D )φ (3.46)
A similar calculus give us: It means u h is the solution to the following equation:

for x ∈ ∂D ∂ ∂T h ∂ ∂T S D φ(x) = ∂D [h (x) x -y, T (x) |x -y| 2 + h(x)( -1 |x -y| 2 + 2 x -y, ν(x) 2 |x -y| 4 + 2γ(x) x -y, ν(x) |x -y| 2 )]φ(y)dσ (y). (3.47) Thus, K (1) 
D φ(x) -h ∂ ∂T S Ω ψ(x) + hS (1) Ω ψ(x) = ∂D [- ν(x), ν(y) |x -y| 2 + 2 x -y, ν(x) x -y, ν(y) |x -y| 4 ]h(y)φ(y)dσ (y) - ∂D x -y, ν(x) |x -y| 2 γ(y)h(y)φ(y)dσ (y) + γ(x)h(x)φ(x) ( 3 
                       u h = 0 in D ∪ (Ω \ D), ∂u h ∂ν | -= 0 on ∂D, u h | + -u h | -= -hφ on ∂D, ∂u h ∂ν = 0 on ∂Ω, ∂Ω u h dσ = 0.
(3.51)

Inclusion reconstruction 3.5.1 Optimization algorithm

In this section, we consider a numerical scheme to reconstruct the domain contained in a subset Ω 0 ⊂ Ω with dist(∂Ω 0 , ∂Ω) ≥ δ 0 > 0, using finitely many measurements. The scheme is based on minimizing the functional

J(u) = 1 2 ∂Ω P i=1 |u -u (i) meas | 2 dσ ,
where u We assume that our domain D is star shaped and its boundary ∂D can be described by the Fourier series:

∂D = {X 0 + r(θ)       cos θ sin θ       |θ ∈ [0; 2π)}, r = N n=-N c n f n , ( 3.52) 
where

C =                   c -N c -N +1 . . . c N                   ∈ R 2N +1 , f n (θ) = cos(nθ) for 0 ≤ n ≤ N and f n (θ) = sin(nθ) for -N ≤ n < 0.
Using (3.51) and integration by parts, we have the expressions of the shape derivative corresponding to each Fourier coefficient, for -N ≤ n ≤ N ,

∂J ∂c n = Ω\D ∇w∇u h dX, ( 3.53) 
where

h(θ) = f n (θ)       cos θ sin θ      
, ν and w is the solution of the following equation,

                 w = 0 in Ω \ D, ∂w ∂ν = 0 on ∂D ∂w ∂ν = u -u meas on ∂Ω.
(3.54)

The formula (3.53) is also valid for the shape derivative corresponding to the displacement of X 0 , in these cases, h = e i , ν , i = 1, 2.

Those expressions are the basis of the following iterative algorithm:

1. Chose an initial domain D 0 .

2. For each iteration, i > 0: (c) Update the parameters of the domain X i+1 = X i -α∇ X 0 J(X i , C i ) and

C i+1 = C i -α∇ C J(X i , C i ) with α > 0.
(d) If the updated domain is not entirely in Ω or if R becomes negative, reduce the size of α.

3. When J(X i , C i ) becomes smaller than a fixed threshold, we stop.

Numerical examples

The setting of all numerical tests is as follows:

• We use FreeFem++ for our numerical experiments.

• Ω is a centered ellipse defined by the equation:

x 2 1 4 2 + x 2 2 3 2 ≤ 1.
We also tried another case with ∂Ω 2 = {[4 + 0.8(cos θ + sin θ) -(cos 2θ + sin 2θ)](cos θ, sin θ), θ ∈ [0, 2π)}.

• We use two linearly independent Neumann data:

f 1 = e 1 , ν and f 2 = e 2 , ν ,
where (e 1 , e 2 ) is the canonical basis of R 2 .

• The multifrequence conductivity follows the model (3.3) with κ 1 = 3, κ 2 = 2, κ 3 = 1 and ω are integers from 1 to 8.

• Only the first eigenvalues are taken into consideration, and their apriori estimations are settled as λ + 1 = 3 4 , λ - 1 = 1 4 respectively in all cases.

• In the algorithm to reconstruct u 0 and the conductivity profile, the initial guess of u 0 is the function f, solution to the equation (3.12).

• The initial estimation of domain D is a centered disk with a radius 1 2 .

• We consider the first 15 Fourier coefficients: N = 15.

• We use P1 finite elements for the numerical resolution of the PDEs.

• At each iteration, we remesh the domain to adapt to the new predicted position and shape of the domain.

• The algorithms stop if J < 10 -5 or the number of iterations exceed 500. All of the cases here have executed 500 iterations.

We present here several numerical simulations of the algorithm. We first present ,in the following Table (3.1), the precision of our reconstruction method of u 0 and the reconstructed coefficients κ 1 , κ 2 , κ 3 in Table (3.2). Here, errors are the L 2 -norm of the difference u 0reconstructu 0 : error(u 0reconstruct ) :

= ∂Ω |u 0reconstruct -u 0 | 2 dx.
We show in the following figures the targets and the reconstruction result. We calculate also the relative symmetric difference |D i D target |/|D target | during the iterations, and we draw the curves of the symmetric difference to log(u i ). We finally give the relative symmetric difference of Mathematical model of electroreception

Introduction

Some species of fish have the ability to recognize the environment around them by generating a weak electrical field at different frequencies. They possess an electric organs, which can generate an electric field, and their skins are sensitive to nearby electric fields. Their central nervous systems can identify objects by analyzing the input electrical impulsion generated by themselves and the received electrical signals from their skin. From the mathematical point of view the electric waves can be described by Maxwell equations in the quasi-static regime, and the behavior of the electrical field in the neighborhood of the fish leads to an inverse conductivity problem with a finite number of excitations at different frequencies, and a finite number of boundary measurements.

To identify its targets the weakly electric fish solves an inverse problem that has many similarities with the studied multifrequency electric impedance tomography problem in the previous chapter. Recall this latter method is a recent imaging technique of biological tissues where one tries to take advantage of the dependence of the conductivity on the frequency [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF][START_REF] Habib | Spectroscopic imaging of a dilute cell suspension[END_REF]. Indeed, most biological tissues exhibit frequency dependent conductivities, when excited by electric waves with frequencies ranging roughly around 10kHz [START_REF] Moller | Electric fishes: history and behavior[END_REF]. Experiments 53 indicate that the electric fish sends out electric waves at different frequencies, to gather information around its environment. Assuming that the target is a different fish, our objective here is to explain how a weakly electric fish might identify it. The proposed inverse problem has many potential bio-inspired applications in underwater robotics [START_REF] Lebastard | Underwater robot navigation around a sphere using electrolocation sense and kalman filter[END_REF][START_REF] Oscar | Aquatic manoeuvering with counter-propagating waves: a novel locomotive strategy[END_REF].

In this chapter we are interested in the case where the fish and the target fish occupy respectively the bounded domains Ω ⊂ R d , d = 2, 3, and D ⊂ R d \ Ω. We assume that the conductivity distribution around the fish, is given by

γ(x, ω) = 1 + (k(ω) -1)χ D (x),
with χ D denotes the characteristic function of D, 1 is the conductivity of the background, k(ω) : R + → C \ R -, is the conductivity of the target fish target, and ω the frequency of the electric wave u produced by the fish. Recently shape recognition and classification methods have been applied on small volume targets [START_REF] Habib | Target Identification Using Dictionary Matching of Generalized Polarization Tensors[END_REF][START_REF] Habib | Shape recognition and classification in electrosensing[END_REF]. In the present work we adapt the method developed in [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF] to the weakly electric fish inverse problem. We take advantage of multifrequency measurements and combine unique continuation techniques for meromorphic complex functions with a clever spectral representation of u involving eigenfunctions of the variational Poincaré operator, to reconstruct the conductivity map γ. The spectral decomposition can be written in the form

u(x, ω) = u 0 (x) + u f (x, k(ω)),
where the function u 0 is independent of the frequency ω, and represents the limiting solution when the contrast k(ω) tends to ∞. In fact u 0 is exactly the electric potential when we substitute the target fish by a perfect conductor with the same shape and position! Then, it is not surprising that one can uniquely identify D from only one boundary measurement u 0 | ∂Ω . The problem of determining D from u 0 | ∂Ω has been studied in many works, and optimal stability estimates have been already derived (see e.g. [4]).

In this chapter, we are concerned with the multifrequency inverse inclusion problem in unbounded domain. We first describe the mathematical model of electroreception. After introducing the weighted Sobolev space W 1,-1 (R d ), which is the natural space where we solve the Laplace equation using variational techniques in unbounded domains, we prove the existence and uniqueness of solutions to the dierct problem. We then set up a spectral decomposition using a modified variational Poincaré operator on W 1,-1 (R d ). Using the same techniques of reconstruction as in [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF], we derive the uniqueness of solutions to the inverse problem, and obtain stability estimates. The numerical validation of our theoretical approach is realized by reconstructing different targets using synthetic data in the next chapter.

This chapter is organized as follows. In the next section, we present the mathematical model of the weakly electric fish. In section 3, we study the wellposedness of the partial differential equation system associated to the forward problem. In section 4, we introduce the Poincaré variational operator, and we study its spectrum. Then, we derive the spectral decomposition of the unique solution to the forward problem in section 5. We derive uniqueness and stability estimates to the inverse problem in section 6. The next chapter is devoted to some numerical illustrations of the obtained theoretical results here. Similar spectral decomposition is used to derive the frequency independent part u 0 in a bounded truncated numerical domain. Then, we introduce an optimization scheme to reconstruct the position and shape of the target fish. Numerical experiments are presented at the end.

The Mathematical Model

In this section we adapt the mathematical model of the weakly electric fish introduced by Ammari et. al. in [6]. Let Ω ⊂ R d , d = 2, 3, be an open connected and bounded region, which represents the electric fish. We suppose that ∂Ω is of class C 1,α for some α ∈ (0, 1]. We denote by Ω e the exterior of Ω, that is

Ω e := R d \ Ω.
The target fish D is also assumed to be an open connected region in Ω e . We assume that there exists δ > 0 such that dist(∂Ω, ∂D) > δ. We define a class of inclusions on which we study the uniqueness and stability of the inverse problem. We assume that the inclusion D contains the origin. Let b 1 = dist(0, ∂Ω) and let b 0 < b 1 . For m > 2 and ς ∈ (0, 1], we define the class of inclusions

D := D := {x ∈ R d : |x| < Υ ( x), x = x |x| }; b 0 < Υ ( x) < b 1 -δ; Υ C 2,ς ≤ m .
We assume that the conductivity is equal to 1 everywhere except in the target D where the conductivity is equal to k(ω). We denote by γ(x, ω) := 1 + (k(ω) -1)χ D , the conductivity distribution in Ω e . Let u be the electric voltage produced by the electric fish, satisfying the following system

                       u = J s in Ω, div[γ(x, ω)∇u] = 0 in Ω e , ∂ ν u| -= 0 on ∂Ω, u| + -u| -= ξ∂ ν u| + on ∂Ω, |u| = O( 1 |x| d-1 ) as |x| → ∞, (4.1) 
where the constant ξ > 0 is the effective fish skin thickness, J s represents the electric current source generated by the fish organs, and ∂ ν designates the derivative with respect to the the outward normal vector ν. We assume that J s can be written as the sum of Dirac functions

J s = M j=1 α j δ x (j) s , ( 4.2) 
where M ∈ N \ {0}, x Note that the equation (4.1) can also be rewritten as

                                 u = J s in Ω, u = 0 in Ω e \ ∂D, ∂ ν u| -= 0 on ∂Ω, u| + -u| -= ξ∂ ν u| + on ∂Ω, u| + = u| - on ∂D, ∂ ν u| + = k(ω)∂ ν u| - on ∂D, |u| = O( 1 |x| d-1 ) as |x| → ∞. (4.4) 
Assuming that k(ω) is a given continuous function, the weakly electric fish inverse problem is to recover the shape and the position of the inclusion D from measurements of the voltages u(x, ω) on the boundary ∂Ω for ω ∈ (ω, ω), where ω, ω are fixed constants.

Well-posedness of the direct problem

In this section, we study the well-posedness of the direct problem (4.1). Firstly, we introduce the Sobolev space W 1,-1 (Ω e ). Secondly, we establish the existence and uniqueness to (4.1) in W 1,-1 (Ω e ).

Sobolev space

W 1,-1 (Ω e )
In this subsection, we establish using variational techniques the existence and uniqueness for the Laplace equations with a Robin boundary condition in Ω e . To overcome the difficulties of integrating by parts in the unbounded exterior domain Ω e , we introduce the following weighted Sobolev space [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF].

Definition 4.3.1. • If d = 2, W 1,-1 (Ω e ) := {u; u(x) (1 + |x| 2 ) 1/2 log(2 + |x| 2 ) ∈ L 2 (Ω e ), ∇u ∈ L 2 (Ω e )}. (4.5) • If d = 3, W 1,-1 (Ω e ) := {u; u(x) (1 + |x| 2 ) 1/2 ∈ L 2 (Ω e ), ∇u ∈ L 2 (Ω e )}.
(4.6)

Remark 4.3.1. We make the following observations.

-From the boundedness of the weight functions, W 1,-1 (U ) is identically equal to the usual Sobolev space H 1 (U ) on any open bounded domain U .

-The space of infinitely differentiable functions with compact support D(Ω e ) is dense in the subspace W 1,-1 0

(Ω e ) := {u ∈ W 1,-1 (Ω e ); u| ∂Ω = 0}.

-The functions v ∈ W 1,-1 (Ω e ) satisfy the following decay behavior far from

Ω v(x) = O( 1 |x| d-2 ), |x| → +∞. (4.7)
In particular, the constant functions belong to W 1,-1 (Ω e ) when d = 2.

If d = 2, we introduce the space

L 2 -1 (Ω e ) := u : u(x) (1 + |x| 2 ) 1/2 log(2 + |x| 2 ) } ∈ L 2 (Ω e ) .
We state now a useful compact embedding result involving these weighted Sobolev spaces.

Lemma 4.3.1. The embedding W 1,-1 (Ω e ) → L 2 -1 (Ω e ) is compact.
The proof follows the same approach used in [START_REF] Robert | Compact Sobolev imbeddings for unbounded domains with discrete boundaries[END_REF].

Proof. If the embedding W 1,-1 (R 2 ) → L 2 -1 (R 2
) is compact, then it is also compact for any connected domain O ⊂ R 2 . So, without loss of generality, we only consider the case O = R 2 .

Letting u ∈ D(R 2 ), we have

u(ρ, θ) = - ∞ ρ ∂u ∂r (r, θ)dr, (4.8)
where (r, θ) are the polar coordinates.

Then,

|u(ρ, θ)| 2 (1 + ρ 2 )(log(2 + ρ 2 ) 2 ) ≤ C 1 ρ 2 (log(ρ)) 2 ∞ ρ | ∂u ∂r u(r, θ)| 2 dr, ( 4.9) 
for ρ ≥ ρ 0 > 0.

Denoting by B c R the exterior of the ball B R = B(0, R), we have,

B c R |u(x)| 2 (1 + |x| 2 ) log(2 + |x| 2 ) 2 dx ≤ C 2π 0 dθ ∞ R 1 ρ(log(ρ)) 2 ∞ ρ | ∂u ∂r u(r, θ)| 2 drdρ ≤ C 1 log(R) u W 1,-1 (R 2 ) (4.10)
By density, this inequality holds for any u ∈ W 1,-1 (R 2 ). Let (u i ) i∈N be a bounded sequence in W 1,-1 (R 2 ). To prove that this sequence is a precompact in

L 2 -1 (R 2 ), it is sufficient to show i) for ε > 0, there exists R such that u i L 2 -1 (B c R ) < ε for all i. ii) for any bounded part O ⊂ R 2 , (u i | O ) i∈N is a precompact.
The first point is a direct consequence of the previous inequality. The second point can be obtained by applying the Rellich-Kondrachov Theorem. Thus, the result of the lemma follows.

Well-posedness

In this subsection we establish the existence and uniqueness to (4.1) in W 1,-1 (Ω e ). Proof. We suppose by a contradiction argument that (4.11) is not true. The opposite of the statement of the lemma implies that there exists a sequence (u m ) m∈N with u m ∈ W 1,-1 (Ω e ), u m W 1,-1 (Ω e ) = 1, such that

Ω e |∇u m | 2 dx + α ∂Ω u 2 m dσ < 1 m u m 2 L 2 -1 (Ω e ) .
(4.12)

From the previous compact imbedding result, there is a subsequence, which we always denote by (u m ) m∈N , convergent in L 2 -1 (Ω e ). Moreover, (4.12) implies that (∇u m ) m∈N converges to 0 in L 2 (Ω e ). So, the sequence (u m ) m∈N converges to a constant in W 1,-1 (Ω e ). We deduce again from relation (4.12) that the trace of u m converge to 0, thus the sequence (u m ) m∈N converges to 0, which is in contradiction with the normalization assumption.

Theorem 4.3.1. Let α > 0, f be in the dual space (W 1,-1 (Ω e )) * , and g ∈ H -1/2 (∂Ω).

Then, the following Laplace equation with Robin boundary condition

       -u = f in Ω e , u -α∂ ν u = g on ∂Ω. (4.13)
admits a unique weak solution in W 1,-1 (Ω e ).

Proof. A variational formulation to (4.13) is given by

∀v ∈ W 1,-1 (Ω e )
,

Ω e ∇u∇vdx + 1 α ∂Ω uvdσ = Ω e f vdx + 1 α ∂Ω gvdσ (4.14)
It follows from the trace theorem that the left-hand side is a bounded bilinear form and the right -hand side is a bounded linear form. We study separately the dimension two and dimension three cases for the coercivity of the bilinear form. i) If d = 2, the coercivity is a direct consequence of lemma 4.3.2.

ii) If d = 3, we deduce from Theorem 2.5.13 in [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF], that there exists a constant

c > 0 such that ∀u ∈ W 1,-1 (Ω e ), u W 1,-1 (Ω e ) ≤ c ∇u L 2 (Ω e ) (4.15)
Then, the left-hand side bilinear form in (4.14) is coercive.Thus, the result follows from the Lax-Milgram Theorem.

From the previous theorem, and without considering the asymptotic behavior

u(x) = O( 1 |x| d-1
) as |x| → ∞, we have the existence of solutions to (4.1) up to a constant. In order to establish the uniqueness of the solution, we will give necessary conditions on the trace of the interior and exterior solutions u| ∂Ω-and u| ∂Ω+ respectively, such that the exterior solution satisfies the desired asymptotic behavior. We split the equation (4.1) into two parts, the interior part

           u i = J s in Ω, ∂u i ∂ν = 0 on ∂Ω, ∂Ω u i dσ = 0, (4.16) 
and the exterior part

             div[(1 + (k(ω) -1)χ D )∇u] = 0 in Ω e , u = ξ∂ ν u + u i + c u on ∂Ω, |u| = O( 1 |x| d-1 ) as |x| → ∞ (4.17)
where c u is a constant depending on u that has to be fixed. It is clear that there exists a unique solution u i to (4.16). For a given constant c u theorem (4.3.1) guarantee the existence and uniqueness of solution to (4.17) in W 1,-1 (Ω e ). Next, we show that the decay O( Proof. Recall the variational formulation for (4.14) with f = 0 and g = u i + c u .

∀v ∈ W 1,-1 (Ω e ),

Ω e γ(x)∇u∇vdx + 1 ξ ∂Ω (u -c u )vdσ = 1 ξ ∂Ω u i vdσ .
We further distinguish two different cases:

i) d = 2.
Since the constants belong to W 1,-1 (Ω e ), by taking v = 1 in the previous variational formulation we obtain the desired result.

ii) d = 3.

Let B R be a ball centered at 0 with radius R > 0, and assume that R is large enough such that Ω ⊂ B R . Multiplying (4.17) by 1 and integrating by parts lead to

1 ξ ∂Ω (u -c u )dσ = R 2 S 2 ∂ ν u(Rt)dt,
where S 2 is the unit sphere in R 3 . Since u is harmonic in Ω e and decays as O( 1 |x| 2 ) when |x| → +∞, by expanding it in the spherical harmonic basis [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF], we can easily obtain that ∂ ν u(Rt) = O( 1 R 3 ) as R → +∞ uniformly in t ∈ S 2 . Consequently, the right hand term in the previous inequality tends to zero as R → +∞, which achieves the proof of the lemma.

Taking into account the results of lemma 4.3.3, we can rewrite the represent part of the system (4.1) as follows

             div[(1 + (k(ω) -1)χ D )∇u] = 0 in Ω e , u -1 |∂Ω| ∂Ω udσ -ξ∂ ν u = u i on ∂Ω, |u| = O( 1 |x| d-1 ) as |x| → +∞, (4.19)
where u i is the unique solution to the system (4.16).

Let

W 1,-1 (Ω e ) = u ∈ W 1,-1 (Ω e ); |u| = O( 1 |x| d-1 ) as |x| → +∞ . (4.20)
Then, the following is the main result of this subsection. Proof. Multiplying the equation (4.19) by v in W 1,-1 (Ω e ) and integrating by parts we obtain the following variational formulation

∀v ∈ W 1,-1 (Ω e )
,

Ω e γ(x)∇u∇vdx + 1 ξ ∂Ω (u - ∂Ω u)(v - ∂Ω v)dσ = 1 ξ ∂Ω u i vdσ ,
where ∂Ω udσ = 1 |∂Ω| ∂Ω udσ .

We claim that the left-hand bilinear form is coercive. In fact, when d = 3 we deduce from [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF], that the term Ω e ∇u∇vdx is coercive on W 1,-1 (Ω e ). When d = 2 it is proved in [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF] that the term Ω e ∇u∇vdx is also coercive on W 1,-1 (Ω e ).

Then, by Lax-Milgram Theorem we obtain the desired result.

We introduce the fundamental solution Γ to the Laplace operator in R d .

Definition 4.3.2. Denoting by ω d the area of the unit sphere in R d , the fundamental solution to the Laplace operator is given by

Γ (x, y) =        1 2π ln(|x -y|) d = 2, -1 ω d |x -y| 2-d d ≥ 3. (4.21)
A direct consequence of theorem 4.3.1 is the following corollary.

Corollary 4.3.1. Let y ∈ Ω e be fixed. Then, there exists a unique solution to the system

           G(x, y) = δ y in Ω e , G -ξ ∂G ∂ν = 0 on ∂Ω, G -Γ ∈ W 1,-1 (Ω e ). ( 4 

.22)

The singular function G(x, y) is the Green function of the Laplace operator in Ω e with the Robin boundary condition.

The Poincaré Variational Problem

In this section, we introduce the Poincaré variational problem by following the approach in [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF], [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF]. We denote by W 1,-1 (Ω e ), the subspace of functions

v ∈ W 1,-1 (Ω e ) satisfying |v(x)| = O( 1 |x| d-1
) as |x| → ∞. It follows from [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF], [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF] that the space W 1,-1 (Ω e ) endowed with the scalar product u, v W 1,-1 (Ω e ) := Ω e ∇u∇vdx is a Hilbert space. Thus, the following bilinear form defines also an equivalent scalar product on W 1,-1 (Ω e ), a(u, v) :=

Ω e ∇u∇vdx + 1 ξ ∂Ω ū vdσ ,
where ū := u -1 |∂Ω| ∂Ω udσ . For u ∈ W 1,-1 (Ω e ), we infer from the Riesz Theorem that there exist a unique

T u ∈ W 1,-1 (Ω e ) such that for all v ∈ W 1,-1 (Ω e ), Ω e ∇T u∇vdx + 1 ξ ∂Ω T u vdσ = D ∇u∇vdx. (4.23)
It is easy to obtain that the operator T : W 1,-1 (Ω e ) → W 1,-1 (Ω e ) is self-adjoint and bounded. The spectral problem for T reads as: Find (w, λ) ∈ W 1,-1 (Ω e ) × R, w 0, such that ∀v ∈ W 1,-1 (Ω e ),

λ

Ω e ∇w∇vdx + λ ξ ∂Ω w vdσ = D ∇w∇vdx. (4.24)
We remark that all functions w ∈ H 1 0 (D) are eigenfunctions of T corresponding to the eigenvalue λ = 1. As those eignenfunctions equal to 0 on ∂Ω, they have not any contribution in the spectral decomposition which will be introduced later, we consider from now on the eigenvalues λ 1.

Integrating by parts, we can obtain that an eigenfunction w is harmonic in D and in D := Ω e \ D, and on ∂D, we have the transmission and boundary conditions We remark that T H ⊂ H , thus T defines a bounded operator from H into H . We note always by T the restriction of T on H .

w| + ∂D = w| - ∂D , ∂ ν w| + ∂D = (1 - 1 λ )∂ ν w| - ∂D , w| ∂Ω -ξ∂ ν w| ∂Ω = 1 |∂Ω| ∂Ω wdσ , ( 4 
We define now, with this kernel G, the single layer potential S D :

H -1/2 (∂D) → H and the Poincaré operator K * D : H -1/2 (∂D) → H -1/2 (∂D). Definition 4.4.1. Let φ ∈ H -1/2 (∂D), we define, for x ∈ Ω e S D [φ](x) = ∂D G(x, y)φ(y)dσ (y), (4.27) 
and, for x ∈ ∂D,

K * D [φ](x) = ∂D ∂ ∂ν x G(x, y)φ(y)dσ (y). (4.28)
K * D is a compact operator on L 2 (∂D) (see lemma 2.13 in [START_REF] Ammari | Polarization and moment tensors: with applications to inverse problems and effective medium theory[END_REF]). Since the function G and the Laplace Green's function in the whole space have equivalent weak singularities as x → y (see Lemma 2.14 in [START_REF] Ammari | Reconstruction of small inhomogeneities from boundary measurements[END_REF] for the proof's sketch and section 2.5.5 in [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF] for the regularity), we have the same jump relations through the boundary ∂D, that is,

∂ ν S D [φ] ± (x) = (± 1 2 I + K * D )[φ](x). (4.29) 
Now, we state the characterization of the spectrum of T .

Theorem 4.4.1. The variational Poincaré operator T has the following decomposition,

T = 1 2 I + K, (4.30)
where K is a compact, self-adjoint operator. Let w ± n , n ≥ 1 be the eigenfunctions associated to the eigenvalues (λ ± n ) n≥1 , we have the following formula via the min-max principle.

λ - 1 = min 0 w∈H D |∇w(x)| 2 dx Ω e |∇w(x)| 2 dx + 1 ξ ∂Ω | w| 2 dx λ - n = min 0 w∈H ,w⊥w - 1 ,••• ,w - n-1 D |∇w(x)| 2 dx Ω e |∇w(x)| 2 dx + 1 ξ ∂Ω | w| 2 dx = min F n ⊂H ,dim(F n )=n max w∈F n D |∇w(x)| 2 dx Ω e |∇w(x)| 2 dx + 1 ξ ∂Ω | w| 2 dx , ( 4.31) 
and similarly

λ + 1 = max 0 w∈H D |∇w(x)| 2 dx Ω e |∇w(x)| 2 dx + 1 ξ ∂Ω | w| 2 dσ λ + n = max 0 w∈H ,w⊥w + 1 ,••• ,w + n-1 D |∇w(x)| 2 dx Ω e |∇w(x)| 2 dx + 1 ξ ∂Ω | w| 2 dx = max F n ⊂H ,dim(F n )=n min w∈F n D |∇w(x)| 2 dx Ω e |∇w(x)| 2 dx + 1 ξ ∂Ω | w| 2 dx . (4.32)
Proof. We define the operator K :

H → H , for all v ∈ H , 2 
(

Ω e ∇Ku∇vdx + 1 ξ ∂Ω Ku vdσ ) = D ∇u∇vdx - D ∇u∇vdx - 1 ξ ∂Ω ū vdσ .
(4.33) We observe that K is bounded and self-adjoint. A direct calculation shows that

T = 1 2 I + K. ( 4.34) 
It is shown in [START_REF] Ammari | Polarization and moment tensors: with applications to inverse problems and effective medium theory[END_REF] that the single layer potential S D : H -1/2 (∂D) → H 1/2 (∂D) is invertible in dimension three, and we can modify S D slightly to show the invertibility in dimension two.

Integrating by parts in the right-hand side (4.33), and using the jump relation (4.29), we find

Ω e ∇Ku∇vdx + 1 ξ ∂Ω Ku vdσ = ∂D K * D [S -1 D [u| ∂D ]]vdσ . (4.35) Since K * D is compact the operator K is compact.
From Fredholm's alternative, T is a Fredholm operator of index 0, and the spectral decomposition (4.31), (4.32) follows from the min-max principle. 

u(x) = ∞ n=1 u ± n w ± n (x), (4.36) 
where

u ± n = Ω e ∇u∇w ± n dx + 1 ξ ∂Ω ū w± n dx. (4.37)
4.5 Spectral decomposition of the solution u(x, ω) Theorem 4.5.1. Let u(x, ω) be the unique solution to the system (4.1). Then, the following decomposition holds:

u(x, ω) = u 0 (x) + u f (x, k(ω)) = u 0 (x) + 1 ξ ∞ n=1 ∂Ω u i w ± n dσ 1 + λ ± n (k(ω) -1) w ± n (x), x ∈ Ω e , (4.38) 
where u 0 ∈ W 1,-1 (Ω e ) is the unique solution to the system:

                 v = 0 in Ω e \ D, ∇v = 0 in D, v -∂Ω vdσ = ξ∂ ν v + u i on ∂Ω, |v| = O( 1 |x| d-1 ) as |x| → ∞, (4.39) 
and u i ∈ L 2 (Ω) is the unique solution to the equation:

           v = J s in Ω, ∂ ν v = 0 on ∂Ω, ∂Ω vdσ = 0. (4.40)
Proof. Let u ∅ be the unique solution to

                             v = J s in Ω, ∂ ν v| -= 0 on ∂Ω, ∂Ω v| -dσ = 0, v = 0 in Ω e , v| + -∂Ω v| + dσ -v| -= ξ∂ ν v| + on ∂Ω, |v| = O( 1 |x| d-1 ) as |x| → ∞. (4.41) 
Denote u := uu ∅ , u is therefore harmonic in D and in Ω e \ D. Moreover, it satisfies

u| + - ∂Ω u| + dσ = ξ∂ ν u| + on ∂Ω.
Then u ∈ H , and admits the following spectral decomposition:

u(x) = ∞ n=1 u ± n w ± n (x), (4.42) 
where

u ± n = Ω e ∇u∇w ± n dx + 1 ξ ∂Ω u w± n dσ . ( 4.43) 
Otherwise, u is the unique solution to

             -div(γ(x, ω)∇u) = div(γ(x, ω)∇u ∅ ) in Ω e , u -ξ∂ ν u = 1 |∂Ω| ∂Ω udσ on ∂Ω, |u| = O( 1 |x| d-1 ) as |x| → ∞. (4.44) 
Multiplying the first equation in (4.44) by w ± n , and integrating by parts over Ω e , we have

u ± n = Ω e div(γ(x, ω)∇u ∅ )w ± n dx 1 + λ ± n (k(ω) -1) . ( 4.45) 
The term Ω e div(γ(x, ω)∇u ∅ )w ± n dx can be understood as a dual product between div(γ(x, ω)∇u ∅ ) ∈ (W 1,-1 (Ω e )) * and w ± n ∈ W 1,-1 (Ω e ). It can be simplified by means of integration by parts:

Ω e div(γ(x, ω)∇u ∅ )w ± n dx = - Ω e γ(x, ω)∇u ∅ ∇w ± n dx - ∂Ω ∂ ν u ∅ w ± n dσ = - Ω e ∇u ∅ ∇w ± n dx -(k(ω) -1) D ∇u ∅ ∇w ± n dx - 1 ξ ∂Ω (u ∅ | + -u ∅ | -)w ± n dσ = - Ω e ∇u ∅ ∇w ± n dx -(k(ω) -1) D ∇u ∅ ∇w ± n dx - 1 ξ ∂Ω (u ∅ | + -u ∅ | -) w± n dσ = -[ 1 λ ± n + (k(ω) -1)] D ∇u ∅ ∇w ± n dx + 1 ξ ∂Ω u ∅ | -w ± n dσ , ( 4.46) 
where u ∅ | -is exactly the unique solution to (4.40), it means, u ∅ | -= u i . Thus, it follows that

u ± n = -D ∇u ∅ ∇w ± n dx λ ± n + ∂Ω u i w ± n dσ ξ[1 + λ ± n (k(ω) -1)] . (4.47) 
Let ũ0 ∈ H be the unique solution to the system

                 ũ0 = 0 in Ω e \ D, ∇ ũ0 = ∇u ∅ in D, ũ0 -ξ ∂ ũ0 ∂ν = 1 |∂Ω| ∂Ω ũ0 dσ on ∂Ω, | ũ0 | = O( 1 |x| d-1 ) as |x| → ∞. (4.48) 
Since w ± n is an eigenfunction of T and ũ0 ∈ H , we have

D ∇u ∅ ∇w ± n dx = λ ± n [ Ω e ∇ ũ0 ∇w ± n dx + 1 ξ ∂Ω ũ0 w± n dσ ], (4.49) 
which gives 

u ± n = -[ Ω e ∇ ũ0 ∇w ± n dx + 1 ξ ∂Ω ũ0 w± n dσ ] + ∂Ω u i w ± n dσ ξ[1 + λ ± n (k(ω) -1)] . ( 4 
→ u f (x, k) is meromorphic in C.
The poles of u f (x, k) are the real values solutions to the equations

1 + λ ± n (k -1) = 0, n ≥ 1 (4.52)
where λ ± n are the eigenvalues of the variational Poincaré operator T .

The poles of u f (x, k) in the previous corollary are given by k

± n = (1 -1 λ ± n
) ∈ R -, and they can be ordered as follows:

k - 1 ≤ k - 2 ≤ • • • < -1 < • • • ≤ k + 2 ≤ k + 1 < 0 (4.53) 
We remark that -1 is the only accumulation point of the sequence of poles, it means k ± n tends to -1 as n → ∞.

Uniqueness and stability estimates

We establish our uniqueness and stability estimates by modifying slightly the proofs in sections 3 and 4 of [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF], we invite readers to consult [START_REF] Ammari | Identification of an inclusion in multifrequency electric impedance tomography[END_REF] for detail proofs.

The weakly electric fish inverse problem has a unique solution within the class D, and we have the following stability estimates. |u -ũ|.

Then, there exist constants C and τ ∈ (0, 1), such that the following estimate holds:

|D D| ≤ C 1 ln(ε -1 ) τ .
(4.54)

Here, denotes the symmetric difference and the constants C and τ depend only on

J s , Ω, D and Σ = {k(ω); ω ∈ (ω, ω)}.
Moreover, if the boundaries are analytic, we have a Hölder-type stability estimate. |u -ũ|.

Then, there exist constants C and τ ∈ (0, 1), such that the following estimate holds:

|D D| ≤ Cε τ . ( 4.55) 
Here, denotes the symmetric difference and the constants C and τ depend only on J s , Ω, D and Σ.

Chapter 5

Numerical identification of the target fish

In this chapter, we develop a numerical scheme to determine the position and shape of the target fish. Regarding the decay of the solution of (4.1) as |x| → +∞, we first reduce the computational domain by taking a Dirichlet boundary condition on a large disk B containing the fish Ω and the inclusion D. In fact we will show that a similar spectral decomposition holds in the truncated problem. Using this spectral decomposition, our numerical algorithm splits into two main steps. The first step is to retrieve the frequency dependent part in the spectral decomposition, and the second step is to reconstruct the inclusion from the Cauchy data of u 0 on ∂Ω obtained in the first step. Precisely, we recover the fish target by using an optimization scheme that minimizes a given energy functional on the boundary ∂Ω with respect to to the inclusion shape.

The mathematical model in a truncated domain

In order to implement the numerical identification method, we need to reduce the system (4.1) to a bounded domain. Let B be a centered disk large enough such that it contains the electric fish Ω and the target fish D. We substitute (4.1) by the system

                           ũ = J s in Ω, div[γ(x, ω)∇ ũ] = 0 in B \ Ω, ∂ ν ũ| -= 0 on ∂Ω, ũ| + -ũ| -= ξ∂ ν ũ| + on ∂Ω, ũ = 0 on ∂B, ∂B ∂ ν ũdσ = 0.
(

Here, we always suppose that J s is taken in the form (4.2) and the electric charges always satisfy (4.3). Then it follows from the standard theory to elliptic partial differential equations that (5.1) admits a unique solution in

W 0 := u ∈ H 1 (B \ Ω) ∪ H 1 (Ω), u = 0 on ∂B, ∂B ∂ ν ũdσ = 0 .
We introduce the equivalent scalar product on W 0 and the associated variational Poincaré operator T .

ã(u, v) := B\Ω ∇u∇vdx + 1 ξ ∂Ω ū vdσ .
For u ∈ W 0 , by the Riesz theorem, there exists a unique T u ∈ W 0 such that for all

v ∈ W 0 , B\Ω ∇ T u∇vdx + 1 ξ ∂Ω T uvdσ = D ∇u∇vdx. (5.2) 
We introduce also the space H the functions in W 0 , which are harmonic in D and in B \ (Ω ∪ D), and which satisfy the zero Robin boundary condition u -ξ∂ ν u = 0 on ∂Ω.

Then, T has similar spectral elements denoted (w ± n , λ± n ) than T .

We follow the analysis in the unbounded case to derive a similar spectral decomposition for ũ. Theorem 5.1.1. Let ũ(x, ω) be the unique solution to the system (5.1).

Then the following decomposition holds, for

x ∈ B \ Ω, ũ(x, ω) = ũ0 (x) + u f (x, k(ω)) = ũ0 (x) + 1 ξ ∞ n=1 ∂Ω ũi w± n dσ 1 + λ± n (k(ω) -1) w± n (x), (5.3) 
where u 0 ∈ W 0 is the unique solution to the system:

                       v = 0 in B \ (Ω ∪ D), ∇v = 0 in D, v -∂Ω vdσ = ξ∂ ν v + u i on ∂Ω, v = 0 on ∂B, ∂B ∂ ν vdσ = 0, (5.4) 
and u i ∈ L 2 (Ω) is the unique solution to the equation:

           v = J s in Ω, ∂ ν v = 0 on ∂Ω, ∂Ω vdσ = 0.
(5.5)

Retrieval of the frequency independent part

We consider M frequencies of measurements ω 1 , ω 2 , • • • , ω M . Since 1/2 is the unique accumulation point of the eigenvalues ( λ± n ) n∈N , we only consider the N f first eigenvalues as unknowns, and we approximate the others eigenvalues by 1/2. In fact it has been shown in [START_REF] Miyanishi | Eigenvalues and eigenfunctions of double layer potentials[END_REF] that if D is C β with β ≥ 2 then for any α > -2β + 3, we have

| λ± n -1/2| = o(n α ), n → +∞.
If the boundary of D is C ∞ smooth, then the eigenvalues will decay faster than any power order. Recently H. Kang and his collaborators have showed the exponential convergence of the eigenvalues in the case of analytic inclusions [START_REF] Ando | Exponential decay estimates of the eigenvalues for the Neumann-Poincaré operator on analytic boundaries in two dimensions[END_REF]. Therefore, we make the following approximation, for

x ∈ Ω, 1 ≤ p ≤ M, ũ(x, ω p ) ≈ ũ0 (x) + N f n=1 v ± n (x) 1 + λ± n (k(ω p ) -1) + 2 k(ω p ) + 1 v N f +1 (x), (5.6) 
where

v ± n (x) = 1 ξ ∂Ω ũi w± n dσ w± n (x),
and

v N f +1 (x) = 1 ξ n>N f ∂Ω ũi w± n dσ w± n (x).
By a simple integration by parts, we have, for all n ∈ N,

1 ξ ∂Ω ũi w± n dσ = B\Ω ∇ ũ∅ ∇ w± n dx + 1 ξ ∂Ω ũ∅ w± n dσ , ( 5.7) 
where ũ∅ is the unique solution in W 0 to (5.9)

                 ũ∅ = 0 in B \ Ω,
As ũ∅ -ũ0 ∈ H , the orthogonal projection of ũ∅ on the space H is ũ∅ -ũ0 .

Then, the formula (5.6) becomes

ũ(x, ω p ) ≈ k(ω p ) -1 k(ω p ) + 1 ũ0 (x) + 2 k(ω p ) + 1 ũ∅ (x) + N f n=1 ( 1 1 + λ± n (k(ω p ) -1) - 2 k(ω p ) + 1 )v ± n (x). (5.10) 
The previous equation can be formulated using the following matrix.

For x ∈ ∂Ω, we define the vectors

Ũ (x, ω 1 , . . . , ω M ) = ũ(x, ω j ) , V (x) = ũ0 (x), v + 1 (x), v - 1 (x), . . . , v + N f (x), v - N f (x) ,
and

L( λ ± 1 , . . . , λ ± N f , ω 1 , . . . ω M ) = (L i ) 1≤i≤M
, where obtained in the previous step by retrieving the frequency dependent part from the multifrequency measurements. The term ε T ∂D dσ represents the Tikhonov regularization.

Shape derivative

Let D ε be the perturbed domain, given by

∂D ε = { x : x = x + εh(x)ν(x), x ∈ ∂D}, ( 5.13) 
where h ∈ C 1 (∂D) and ν denote the unit outward normal vector.

Theorem 5.3.1. We denote by ũ0 and by ũ0,ε respectively the solutions to the equation (5.4) with the inclusion D (resp. D ε ). Then, the following relation holds, for x ∈ ∂Ω, ũ0,ε (x) = ũ0 (x) + ε ũh (x) + o(ε), (5.14) where ũh is the solution to the following equation

                           v = 0 in B \ (Ω ∪ D), ∇v = 0 in D, v = -h∂ ν ũ0 | + on ∂D, v -vdσ -ξ∂ ν v = 0 on ∂Ω, v = 0 on ∂B, ∂B ∂ ν vdσ = 0, (5.15) 
Proof. The result can be proved using layer potential techniques by following the proof of Theorem 3.1 in [START_REF] Habib Ammari | Numerical determination of anomalies in multifrequency electrical impedance tomography[END_REF].

Using (5.15) and integration by parts, we deduce the expressions of the shape derivatives corresponding to each Fourier coefficient, for

-N ≤ n ≤ N , ∂J ∂c n = B\Ω∪D ∇w∇ ũh dx + ε T ∂D κhdσ , (5.17) 
where h(θ) = f n (θ)

      cos θ sin θ       , ν
, κ represents the curvature of ∂D and w is the solution of the following equation

                 w = 0 in B \ Ω ∪ D, ∂ ν w = 0 on ∂D, ∂ ν w = ũ -ũmeas on ∂Ω, w = 0 on ∂B.
(5.18)

Now, we are ready to introduce our iterative algorithm:

1. Calculate the interior solution ũi .

2. Using (5.12), retrieval of the frequency independent part ũ0 from the multifrequency measurements. We get the Dirichlet data ( û(i) meas ) 1≤i≤P .

3. Chose an initial domain D 0 .

4. For each iteration, j > 0:

(a) Using (5.4) associated to the domain D j for which the boundary ∂D j is obtained from (5.16).

(b) Calculate the shape derivatives ∂J ∂c n for all -N ≤ n ≤ N by (5.17).

(c) Update the parameters of the domain C j+1 = C j -α∇ C J(C j ) with α > 0.

(d) If the updated domain boundary touches ∂Ω or if J(C j+1 ) > J(C j ), reduce the size of α.

5. When |∇J(C j )| becomes smaller than a fixed threshold, we stop. The setting of all numerical tests is as follows:

Numerical experiments

• We use FreeFem++ for our numerical experiments [START_REF] Hecht | New development in FreeFem++[END_REF].

• B is a centered ball with the radius R B = 30. • Ω is an ellipse defined by the equation:

x 2 3 2 + y 2 4 2 ≤ 1.
• We assume that source function is given by a dipole type source, that means, in the formula (4.2), M = 2, α 1 = 100, α 2 = -100, x

s = (-3, 1), and x (2) s = (-3, -1). The interior solution is illustrated in Figure 5.1.

• We profit the fact that the electric fish can swim around the target. We chose P = 10 different locations to measure the multifrequency electric potentials, those 10 positions are equi-distributed on the circle with a radius 15. Figure 5.3 shows the 4 locations of them.

• The multifrequency conductivity follows the model k(ω) = k r + inω 0 with k r = 5, ω 0 = 0.5 and n are integers from 0 to 7 [6].

• Only the first eigenvalues are taken into consideration, and their apriori estimations are settled as λ + 1 = 3 4 , λ - 1 = 1 4 respectively in all cases.

• The initial estimation of domain D is a centered disk with a radius 1 2 .

• We consider the first 9 Fourier coefficients: N = 9. • We use P1 finite elements for the numerical resolution of the PDEs.

• At each iteration, we remesh the domain to adapt to the new predicted shape of the domain.

• The algorithms stop if |∇J| < 10 -6 or the number of iterations exceed 100.

We present here several numerical simulations of the algorithm. We first present in Table ( 

error( ũ0reconstruct ) := ∂Ω | ũ0reconstruct -ũ0 | 2 dσ .
We show in the following figures the targets and the reconstruction result. We calculate also the relative symmetric difference |D i D target |/|D target | during the iterations, and we draw the curves of the symmetric difference to the numbers of iterations. We finally give the relative symmetric difference of each case in Table 5.2. In a composite medium that contains close-to-touching inclusions, the pointwise values of the gradient of the voltage potential may blow up as the distance δ between some inclusions tends to 0 and as the conductivity contrast degenerates.

In [START_REF] Bonnetier | Pointwise bounds on the gradient and the spectrum of the Neumann-Poincaré operator: the case of 2 discs[END_REF], the authors showed that the blow-up rate of the gradient is related to how the eigenvalues of the associated Neumann-Poincaré operator converge to ±1/2 as δ → 0, and on the regularity of the contact. Here, we consider two connected 2-D inclusions, at a distance δ > 0 from each other. When δ = 0, the contact between the inclusions is of order m ≥ 2. We numerically determine the asymptotic behavior of the first eigenvalue of the Neumann-Poincaré operator, in terms of δ and m, and we check that we recover the estimates obtained in [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF].

Eigenvalues of the Neumann-Poincaré operator for two inclusions

Let D 1 , D 2 ⊂ R 2 be two bounded, smooth inclusions separated by a distance δ > 0.

We assume that D 1 and D 2 are translates of two reference touching inclusions

D 1 = D 0 1 + (0, δ/2) D 2 = D 0 2 + (0, -δ/2).
We assume that D 0 1 lies in the lower half-plane x 1 < 0, D 0 2 in the upper halfplane, and that they meet at the point 0 tangentially to the x 1 -axis (see Figure 6.1). We make the following additional assumptions on the geometry: A1. The inclusions D 0 1 and D 0 2 are strictly convex and only meet at the point 0.

A2. Around the point 0, ∂D 0 1 and ∂D 0 2 are parametrized by 2 curves (x, ψ 1 (x)) and (x, -ψ 2 (x)) respectively. The graph of ψ 1 (resp. ψ 2 ) lies below (resp. above) the x-axis.

A3. The boundary ∂D 0

i of each inclusion is globally C 1,α for some 0 < α ≤ 1.

A4. The function ψ 1 (x) + ψ 2 (x) is equivalent to C|x| m as x → 0, where m ≥ 2 is a fixed integer and C is a positive constant. Let a(X) be a piecewise constant function that takes the value 0 < k 1 in each inclusion and 1 in R

O D 1 Γ 2 D 2 Γ 1 O D 1 D 2 δ e 2 δ δ
2 \ D 1 ∪ D 2 , that is a(X) = 1 + (k -1)χ D 1 ∪D 2 (X), where χ D 1 ∪D 2 is the characteristic function of D 1 ∪ D 2 . Given a harmonic function H, we denote u the solution to the PDE        div(a(X)∇u(X)) = 0 in R 2 u(X) -H(X) → 0 as |X| → ∞. (6.1)
Since H is harmonic in the whole space the regularity of u at a fixed value k, only depends on the smoothness of the inclusions and of their distribution [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF].

One can express u in terms of layer potentials [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF][START_REF] Habib | Elliptic estimates in composite media with smooth inclusions: an integral equation approach[END_REF] 

u(X) = S 1 ϕ 1 (X) + S 2 ϕ 2 (X) + H(X), ( 6.2) 
where S i denotes the single layer potential on ∂D i , defined for ϕ ∈ H -1/2 (∂D i ) by

S i ϕ(X) = 1 2π ∂D i ln |X -Y | ϕ(Y ) dσ (Y ).
Denoting the conductivity contrast by λ

= k + 1 2(k -1) ∈] -∞, -1/2[∪]1/2, +∞[, and
expressing the transmission conditions satisfied by u, one sees that the layer potential ϕ = (ϕ 1 , ϕ 2 ) ∈ H -1/2 (∂D 1 ) × H -1/2 (∂D 2 ) satisfies the system of integral equations

(λI -K * δ )       ϕ 1 ϕ 2       =       ∂ ν 1 H |∂D 1 ∂ ν 2 H |∂D 2       , ( 6.3) 
where ν i (X) denotes the outer normal at a point X ∈ ∂D i . The operator K * δ is the Neumann-Poincaré operator for the system of two inclusions

K * δ       ϕ 1 ϕ 2       =       K * 1 ∂ ν 1 S 2|∂D 1 ∂ ν 2 S 1|∂D 2 K * 2             ϕ 1 ϕ 2       , ( 6.4) 
where the integral operators K * i are defined on H -1/2 (∂D i ) by

K * i ϕ(X) = 1 2π ∂D i (X -Y ) • ν i (X) |X -Y | 2 ϕ(Y ) dσ (Y ).
In such a system of inclusions, for a fixed contrast |λ| > 1/2, the gradient of the potential is bounded pointwise [START_REF] Bonnetier | An elliptic regularity result for a composite medium with" touching" fibers of circular cross-section[END_REF][START_REF] Yan | Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients[END_REF][START_REF] Habib | Elliptic estimates in composite media with smooth inclusions: an integral equation approach[END_REF] independently of δ. This is an important fact from the point of view of material sciences, where one would like to control the 'hot spots' where gradients may become large [START_REF] Budiansky | High shear stresses in stiff-fiber composites[END_REF]. The pointwise control of the gradients is also particularly pertinent in the context of solid mechanics. For instance, the constitutive laws of classical models of plasticity or fracture involve pointwise values of the stress tensor. Similar qualitative results hold in this case [START_REF] Li | Estimates for elliptic systems from composite material[END_REF].

However, the gradients may blow up when both δ → 0 and the material coefficients inside the inclusions degenerate [START_REF] Bonnetier | An elliptic regularity result for a composite medium with" touching" fibers of circular cross-section[END_REF]. How the bounds depend on the inter-inclusion distance in the case of perfectly conducting inclusions was studied in [START_REF] Yun | Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections[END_REF][START_REF] Shiting | Gradient estimates for the perfect conductivity problem[END_REF]. Several works study the blow-up rate of the gradient in terms of both parameter δ → 0, and |λ| → 1/2 when the inclusions are discs. In this case, the voltage potential u can be represented by a series, that lends itself to a precise asymptotic analysis [START_REF] Habib Ammari | Gradient estimates for solutions to the conductivity problem[END_REF][START_REF] Habib | Optimal estimates for the electric field in two dimensions[END_REF][START_REF] Habib | Estimates for the electric field in the presence of adjacent perfectly conducting spheres[END_REF][START_REF] Mf | Asymptotic formulas for the voltage potential in a composite medium containing close or touching disks of small diameter[END_REF][START_REF] Budiansky | High shear stresses in stiff-fiber composites[END_REF][START_REF] Markenscoff | Stress amplification in vanishingly small geometries[END_REF]. In particular, optimal upper and lower bounds on ∇u were obtained in [START_REF] Habib Ammari | Gradient estimates for solutions to the conductivity problem[END_REF][START_REF] Habib | Optimal estimates for the electric field in two dimensions[END_REF][START_REF] Habib | Decomposition theorems and fine estimates for electrical fields in the presence of closely located circular inclusions[END_REF].

In a recent work [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF], we have used the above integral representation to derive bounds on ∇u, as we had observed that in (6.3) the parameters λ and δ are decoupled since K * δ does not depend on λ. Following [START_REF] Khavinson | Poincaré's variational problem in potential theory[END_REF][START_REF] Mg Krein | Compact linear operators on functional spaces with two norms[END_REF], we showed that K * δ has a spectral decomposition in the space of single layer potentials. We showed that its spectrum splits into two families of ordered eigenvalues λ δ,± n which satisfy

λ δ,+ n = -λ δ,- n and 0 < λ δ,+ n < 1/2.
Consequently, denoting by ϕ δ,± n the associated eigenvectors, the solution to (6.3) can be expressed as

ϕ =       ϕ 1 ϕ 2       = n≥1 ϕ δ,± n ,       ∂ ν 1 H |∂D 1 ∂ ν 2 H |∂D 2       λ -λ δ,± n ϕ δ,± n . (6.5)
This formula indicates that the singularities of u are triggered by the fact that λλ δ,± n may become small. Indeed, λ → ±1/2 as k tends to 0 or to +∞, whereas we have shown that λ δ,± n → ±1/2 as δ → 0 [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF].

We do not know if the expansion (6.5) holds in a pointwise sense, except in the case of discs [START_REF] Bonnetier | Pointwise bounds on the gradient and the spectrum of the Neumann-Poincaré operator: the case of 2 discs[END_REF], where we can then directly relate the bounds on ∇u to the asymptotic behavior of the eigenvalues. One of the difficulties is that K * δ is not self-adjoint. One can nevertheless symmetrize the operator [START_REF] Khavinson | Poincaré's variational problem in potential theory[END_REF]: The expansion (6.5) holds in the sense of the following inner-product on the space

H -1/2 (∂D 1 ) × H -1/2 (∂D 2 ) < ϕ, ψ > S = < -S[ϕ], ψ > L 2 := - ∂D 1 S 1 [ϕ 1 ]ψ 1 - ∂D 2 S 2 [ϕ 2 ]ψ 2 , ( 6.6) 
for which K * δ becomes a compact self-adjoint operator, which therefore has a spectral decomposition. Moreover, this implies that the eigenvalues of K * δ can be obtained via a min-max principle known as the Poincaré variational problem (in the terminology of [START_REF] Khavinson | Poincaré's variational problem in potential theory[END_REF]). It consists in optimizing the ratio

J(u) = D 1 ∪D 2 |∇u| 2 R 2 \D 1 ∪D 2 |∇u| 2 , among all functions u ∈ W 1,2 (R 2 ) whose restriction to D = D 1 ∪ D 2 and to D = R 2 \ D 1 ∪ D 2 is harmonic. Consider the weighted Sobolev space W 1,-1 0 (R 2 ) :=                u(X) (1 + |X| 2 ) 1/2 log(2 + |X| 2 ) ∈ L 2 (R 2 ) ∇u ∈ L 2 (R 2 ), u(X) = o(1) as |X| → ∞               
, equipped with the scalar product R 2 ∇u • ∇v [START_REF] Nédélec | Acoustic and electromagnetic equations: integral representations for harmonic problems[END_REF]. We have shown in [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF] that the spectrum of K * δ is related to the sprectrum of the operator T δ defined for 94CHAPTER 6. Spectrum of Neumann-Poincaré operator for two close-to-touching inclusions

u ∈ W 1,-1 0 (R 2 ) by ∀ v ∈ W 1,-1 0 (R 2 ), R 2 ∇T δ u(X) • ∇v(X) = D 1 ∪D 2 ∇u(X) • ∇v(X).
This operator is self adjoint, satisfies ||T δ || ≤ 1. Proposition 4 and Lemmas 1 and 2 in [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF] show that its eigenvalues can be grouped in two families β δ,+ n ⊂ [0, 1/2], and β δ,- n ⊂ [1/2, 1], which are symmetric with respect to 1/2. The values β δ,- 0 = 1 is an eigenvalue of T δ , with associated eigenspace

Ker (I -T δ ) = {v| D ≡ 0, v| D ∈ H 1 0 (D)}.
Due to the symmetry, β δ,+ 0 = 0 is also an eigenvalue, and its eigenspace is

Ker (T δ ) = {v| D ∈ W 1,-1 0 (D ), v| D ≡ 0} ∪ R w 0 ,
where w 0 is defined by

               ∆w 0 (X) = 0 in D , w 0 (X) = C j on ∂D j j = 1, 2, ∂D j ∂w 0 ∂ν = (-1) j j = 1, 2. (6.7) 
The constants C 1 , C 2 ∈ R are chosen so that w 0 ∈ W 1,-1 0 (R 2 ).

All the other eigenvalues β δ,+ n are given by the following min-max principle

β δ,+ n = min u∈W 1,-1 0 (R 2 ), ⊥w 0 ,w δ,+ 1 ,••• ,w δ,+ n D |∇u(X)| 2 dX R 2 |∇u(X)| 2 dX = max F n ⊂ W 1,-1 0 (R 2 ) dim(F n ) = n + 1 min u∈F n D |∇u(X)| 2 dX R 2 |∇u(X)| 2 dX
The eigenvalues of T δ are related to the λ δ,± n 's by

β δ,± n = 1/2 -λ δ,± n .
The min-max characterization of T δ allows to derive an asymptotic expansion of the eigenvalues of the Neumann-Poincaré operator (see [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF], Theorem 1) as δ → 0. Theorem 6.1.1. For two close to touching inclusions with contact of order m, the eigenvalues of the Neumann-Poincaré operator

K * δ split in two families (λ ± n ) n≥1 , with        λ + n ∼ 1/2 -c + n δ m-1 m + o(δ m-1 m ) λ - n ∼ -1/2 + c - n δ m-1 m + o(δ m-1 m ) (6.8)
where (c ± n ) n≥1 are increasing sequences of positive numbers, that only depend on the shapes of the inclusions, and that satisfy c ± n ∼ n as n → ∞.

In this work, we consider a numerical approximation of the spectral problem for T δ so as to give a numerical validation of the rates of convergence of λ δ,+ 1 as δ → 0. The first eigenvalue λ δ,+ 1 is of importance in applications since it is related to the spectral radius of the operator K * δ , and gives the rate of convergence of Neumann series that appears in solving the integral equation (6.3) [START_REF] Wendland | On the double layer potential. Analysis, Partial Differential Equations and Applications: The Vladimir Maz'ya Anniversary[END_REF].

In Section 2, we show that the asymptotic behavior of the eigenvalues of T δ can be estimated by the eigenvalues of an operator of similar type, but defined on a ball B R that contains the inclusions. In fact, by considering the auxiliary spectral problem in a large ball B R , we reduce the computation to a bounded domain.

In Section 3, we explain how we discretized the latter spectral problem, by choosing a basis of functions which are harmonic polynomials on each inclusion, extended as harmonic functions in B R \ D 1 ∪ D 2 . Finally, numerical results for

β δ,+
1 with different contact orders m are presented in Section 4.

Comparison of T δ with an operator defined on a bounded domain

Let R > 2 be large enough, so that D 1 ∪ D 2 ⊂ B R/2 when δ < δ 0 . It follows from the Riesz Theorem that for any u ∈ H 1 0 (B R ), there exists a unique

B δ u ∈ H 1 0 (B R ) such that ∀ v ∈ H 1 0 (B R ), B R ∇B δ u(X) • ∇v(X) = D 1 ∪D 2 ∇u(X) • ∇v(X).
The operator B δ maps H 1 0 (B R ) into itself, and it is easily seen to satisfy ||B δ || ≤ 1. The argument in [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF] concerning T δ shows that B δ is self adjoint and of Fredholm type, thus has a spectral decomposition. Let b δ,± n denote its eigenvalues.

Theorem 6.2.1. Let n ≥ 1. There exists a constant C independent of δ and n such that

1 C b δ,+ n ≤ β δ,+ n ≤ Cb δ,+ n . (6.9) Proof: Let f ∈ H 1/2 (∂D) and let u f ∈ W 1,-1 0 (R 2 ) and v f ∈ H 1 0 (B R
) denote the functions which are harmonic in R 2 \ D and in B R \ D respectively, which are also harmonic in D, and which satisfy u f = v f = f on ∂D. We will show that there exists a constant C > 0 independent of δ and n such that for all f ∈ H 1/2 (∂D) \{0},

1 C D |∇v f | 2 B R |∇v f | 2 ≤ D |∇u f | 2 R 2 |∇u f | 2 ≤ C D |∇v f | 2 B R |∇v f | 2 . ( 6.10) 
The statement of the theorem follows then from the min-max principle for the operators T δ and B δ .

To prove (6.10), we first note that since u f and v f are harmonic in D and coincide on ∂D, u f ≡ v f on ∂D, so that

D |∇u f | 2 = D |∇v f | 2 . (6.11) Since the extension of v f by 0 outside of B R is a function of W 1,-1 0 (R 2 ), we see that R 2 |∇u| 2 ≤ min w∈W 1,-1 0 (R 2 ) R 2 |∇w| 2 ≤ B R |∇v| 2 ,
which together with (6.11) proves the right-hand inequality in (6.10).

To prove the other inequality, let χ denote a smooth cut-off function, such that χ ≡ 1 in B R/2 and χ ≡ 0 outside B R . We may also assume that ||χ|| W 1,∞ ≤ 1. The function ũf = χu f lies in H 1 0 (B R ), and there is a constant C that only depends on R such that

B R \D |∇ ũf | 2 ≤ C R 2 \D |∇u f | 2 .
Since ũf = u f = v f on ∂D, it follows from the Dirichlet principle that

B R \D |∇v f | 2 ≤ B R \D |∇ ũf | 2 ,
which combined with (6.11) yields the desired inequality.

Discretization

In the sequel, we estimate numerically the rate of convergence to 0 of the first non-degenerate eigenvalue b δ,+ 1 , from which, using Theorem 6.1.1, we will infer the behavior of β δ,+ 1 . To this end, we use the min-max principle to approximate b δ,+ 1 by b δ,+ 1,N = min where V N is a finite dimensional subspace of H 1 0 (B R ). We construct approximation spaces V N in the following fashion Let We consider a conformal triangulation T of B R , which is refined in the neck between the 2 inclusions. The width of the refined zone is chosen so that its thickness is equal to 5δ at its extremities (see for instance Figures (6.2),(6.3) and (6.4)) for the case of two discs. Let ŵm , m ≥ 1 denote the H 1 projection of w m on the space of functions which are piecewise linear on T . We define V N as the vector space generated by the functions ŵm , m ≤ 4N .

We note that the functions w m , m ≥ 1 are linearly independent. Together with the functions w 0,1 , w 0,2 in H 1 0 (B R ) defined by ∆w 0,i = 0 in B R \ D, and

       w 0,1 = 1 in D 1 w 0,1 = 0 in D 2 ,        w 0,2 = 0 in D 1 w 0,2 = 1 in D 2 ,
they from a basis of H 1 0 (B R ). We also note that the functions w 0,i are the eigenfunctions of B δ associated to the degenerate mode b 0 = 0. To compute the eigenvalues b δ,+ 1,N , we form the matrices A and B with entries

A i,j = D 1 ∪D 2 ∇ ŵi • ∇ ŵj , B i,j = B R ∇ ŵi • ∇ ŵj ,
and then compute the generalized eigenvalues of the system AU = λBU . We have used the software Freefem++ [START_REF] Hecht | New development in FreeFem++[END_REF] to compute the vectors ŵm , and Scilab [START_REF]Scilab: Free and Open Source software for numerical computation[END_REF] to solve the above matrix eigenvalue problem. 

Numerical results

We deduce from Theorems 6.1.1 and 6.2.1 that log b δ,+ 1,N ∼ log c + 1 + m-1 m log δ as δ tends to 0. In this section, we draw the graph of log b δ,+ 1,N as a function of log δ, and determine numerically its slope m-1 m . We first study the case where the inclusions are two discs, and then we perturb the inclusions to have a contact point with higher order.

The case of 2 discs

We start with the case of two discs D Since the contact of order two, i.e. ψ 1 (x) + ψ 2 (x) ∼ C|x| 2 as x → 0, the theoretical slope is 1/2. Taking N = 39, the graph of log b δ,+ 1,N tends to the line with equation t = -0.7934156 + 0.4307516s (see for instance Figure (6.5) ). The equa-tion of the line is computed using the least squares method.

The dimension of the space V N is 4N +2. Hence, we expect that the numerical slope will tend to the theoretical one when N becomes larger. The following table and graph give how does the numerical slope behave as a function of N , and shows a good agreement with the theoretical predictions. The points X 1 and X 2 in the construction of the space V N , are the centers of the perturbed discs. The following table provide the numerical results for δ between 1/2 and 1/2 7 We remark that the computed slopes are in a good agreement with the expected theoretical values.

Conclusion

We have studied the behavior of the eigenvalues of the Neumann-Poincaré operator for two close-to-touching inclusions in dimension two. We have validated numerically the rates of convergence derived in [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF]. We continue to study the asymptotic behavior of the spectrum of the Neumann-Poincaré integral operator for two close-to-touching inclusions in dimension three. We also plan to extend the results of [START_REF] Bonnetier | Pointwise bounds on the gradient and the spectrum of the Neumann-Poincaré operator: the case of 2 discs[END_REF] to general geometries in dimension two. In dimension three the sizes of the matrices A and B become too large and this may complicate the computation of the generalized eigenvalues. In another line of research, we propose to use an integral equation approach combined with an asymptotic approximation of the kernels of the off-diagonal operators in the system (6.4) around the contact point. We think that this approach is more appropriate to dimension three and larger. We will report related results in future works.

Conclusion

In this Phd thesis, we studied mathematical models of the inverse problem of recovering an inclusion from boundary measurements : the model of electrical impedance tomography (2) and the model of electroreception (4.1). We propose two different approaches to analyze the inverse problem, using either a single measurement or using multifrequency measurements when the conductivity inside the inclusion is frequency dependent. In the latter case, we use a representation of the voltage potential based on the spectral decomposition of the Neumann-Poincaré operator. This led us to also study the asymptotic behavior of the eigenvalues of Neumann-Poincaré operator in the case of two close-to-touching inclusion.

Firstly, we have established the uniqueness of the inclusion recovery problem using a single measurement, under the assumption that the inclusion has a circular shape and we improved the stability estimate result in [START_REF] Fabes | Inverse conductivity problem with one measurement: Error estimates and approximate identification for perturbed disks[END_REF]. Our stability estimate is valid even for non-zero input electrical current. Our numerical simulations show that the Hölder stability coefficientin the stability estimateis close to 1, which indicates that the dependence might actually be Lipschitz.

Secondly, we addressed similar questions in the case of multifrequency measurements. We have shown that the unique solution to equation (3.1) has a spectral decomposition (3.8) on the basis of eigenfunctions of the Neumann-Poincaré operator associated to the inclusion D. Based on this spectral decomposition, we have designed a numerical scheme to reconstruct the frequency profile k(ω) and the geometry of the inclusion. From our numerical experiments, we remark that the reconstructions of the conductivity inside the inclusion, as a function of the frequency ω, are good in general, except when the inclusion is far from the boundary where the measurements are taken. Our algorithm to reconstruct the inclusion is however quite costly, and it may take several hours to numerically reconstruct a given shape. In particular, it proved extremely difficult to reconstruct a non-convex shape with this algorithm.

Thirdly, concerning electroreception, we addressed the question of existence and uniqueness of the solution to the forward problem (4.1). We derived a spectral decomposition (4.38) of the voltage potential, using the same analysis as for the EIT model. We derived a numerical algorithm to determine the volume and the shape of the target, assuming that the position of its center and its conductivity profile are known. This algorithm is however also very costly, and to speed up the computations, we reduced the number of Fourier coefficients, that parametrize the shape of the inclusion D.

Finally, we studied the asymptotic behavior of Neumann-Poincaré operator for two close-to-touching inclusions. We designed an original numerical scheme that projects functions on the space of harmonic polynomials. Our numerical simulations show that the convergence rates agree with the theoretical prediction [START_REF] Bonnetier | On the Spectrum of the Poincaré Variational Problem for Two Close-to-Touching Inclusions in 2D[END_REF], as the interinclusion distance δ tends to 0.

We conclude with a few perspectives that our work opens. Concerning the EIT model under a single measurement (in 2D), it would be quite interesting to generalize our results for the circle to the case of an ellipse or of an analytic shape. This would have an important practical impact in the context of medical imaging for instance. Generalizing the stability estimates in 3D is also challenging, even when the inclusion is simply a ball.

As for the EIT model using multifrequency measurements, it would be worthwhile to obtain more precise estimates on the eigenvalues of Neumann-Poincaré operator and their rate of decay. The case of multiple inclusions also addresses interesting questions. In particular, we would like to find out whether such spectral decompositions could lead to a fast algorithm, that would allow identification of one or several inclusions within a given set of shapes in real time.

Finally, several questions concerning the spectrum of the Neumann-Poincaré operator, in the context of close-to-touching inclusions remain open. In particular, it would be very interesting to study how the blow up of the gradient of the voltage potential depends on the geometry of the contact points in dimension 3.
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 341 Expansions of layer potentialsLet a, b ∈ R, a < b and X(t) : [a, b] → R 2 be a parametrization of ∂D, which satisfies X ∈ C 2 ([a, b]) and |X (t)| = 1 for all t ∈ [a, b], then

  [START_REF] Mf | Asymptotic formulas for the voltage potential in a composite medium containing close or touching disks of small diameter[END_REF] and the fact that ∂ ∂T u = 0 on ∂D, we have,
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 4823 By the continuity of the normal derivative of double layer potentials and the jump relation, we have, for x ∈ ∂D, ∂ ∂ν | -[D D (hφ) -S D (γhφ)](x) = ∂D [-ν(x), ν(y) |x -y| 2 +y, ν(x) xy, ν(y) |x -y| 4 ]h(y)φ(y)dσ (y) )h(x)φ(x) -∂D xy, ν(x) |x -y| 2 γ(y)h(y)φ(y)dσ (yD D (hφ) -S D (γhφ)] = 0. (3.50) Determination of inclusions using multifrequency measurements

  meas are the measured Dirichlet data corresponding to the i-th Neumann data and where u is the solution to (3.1) associated to the current domain D ⊂ Ω 0 . In our numerical simulations, P = 2, we use two linearly independent Neumann data: f 1 = e 1 , ν and f 2 = e 2 , ν , where (e 1 , e 2 ) is the canonical basis of R 2 .

( a ) 1 ,

 a1 Calculate the solution to (3.1) u i , associated to the domain D i for which the boundary ∂D i is calculated by(3.52).(b) Calculate the shape derivatives ∂J ∂x all -N ≤ n ≤ N .
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  .[START_REF] Mf | Asymptotic formulas for the voltage potential in a composite medium containing close or touching disks of small diameter[END_REF] where w| ± ∂D (x) = lim t→0 w(x ± tν(x)) for x ∈ ∂D. In other words, w is a solution to (4.1) for k = 1 -1 λ < 0, and J s = 0. We define the space H as the spaces of the harmonic functions in D and in D which are continuous across ∂D, with a Robin boundary condition ū = ξ∂ ν u on ∂Ω and the asymptotic behavior |u| = O( 1 |x| d-1 ) as |x| → ∞, and with a finite energy semi-norm
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  1 = B r (0, r + δ 2) andD 2 = B r (0, r -δ 2 ) with r = 2.Here, X 1 and X 2 in the construction of V N , are chosen to be the centers of the discs D 1 and D 2 .
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	example 1	1.0144	0.9522
	example 2	0.9979	1.0602
	example 3	1.0316	0.9069
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  1 |x| d-1 ) of the exterior solution as |x| → +∞ will determine uniquely the constant c u .

	Lemma 4.3.3. Assume that c u is given. Then, the decay O( 1 |x| d-1 ) at infinity implies
	1 |∂Ω| ∂Ω	udσ = c u .	(4.18)

  On the other hand ũ0 satisfies, for all n ∈ N, n ≥ 1

	B\Ω	∇ ũ0 ∇ w± n dx +	1 ξ ∂Ω	ũ0	w± n dσ
	=	B\(Ω∪D)	∇ ũ0 ∇ w± n dx +	1 ξ ∂Ω	ũ0	w± n dσ
	= -		∂Ω	ũ0 ∂ ν	w± n dσ +	1 ξ ∂Ω	û0	w± n dσ -	∂D	ũ0 ∂ ν	w± n dσ
	= -ũ0	∂D	∂ ν	w± n dσ = 0.
								ũ∅ -ũ∅ dσ -ξ∂ ν ũ∅ = ũi ũ∅ = 0	on ∂Ω, on ∂B	(5.8)
								∂B ∂ ν ũ∅ dσ = 0.
	So, the function ∞ n=1 v ± n is the orthogonal projection of the function ũ∅ on the
	space H .									
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L i (x) = q 0 (ω i ), q( λ + 1 , ω i ), q( λ - 1 , ω i ), • • • , q( λ + N f , ω i ), q( λ - N f , ω i ) .

Here ũ(x, ω) = ũ(x, ω) -2 k(ω) + 1 ũ∅ (x), q 0 (ω) = k(ω) -1 (k(ω) + 1) , and q( λ, ω) = 1

The matrix formulation of (5.10) becomes then

(5.11)

So, the vector V can be obtained by the formula,

(5.12)

where (L T L) † is the pseudo-inverse of the matrix L T L. The conditioning of the matrix (L T L) † depends on the distance between the frequency sampling values ω 0 . The approximate ũ0 (x) is then given by the first coefficient of the vector V (x).

Identification of the target fish

In this section, we consider a numerical scheme to identify the inclusion D ∈ D from the knowledge of ũ0 | ∂Ω recovered in the previous section. The scheme is based on minimizing the functional

where ũ is the solution to (5.4). P designs the total number of measurements, we take here P = 10. For 1 ≤ i ≤ 10, we use the fact that the electric fish can swim around the target, ũ(i) meas is the measured Dirichlet data corresponding to the case while the electric fish locate in the i-th position. These quantities are 
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Target identification using electroreception Abstract

Electrolocation is the name given to the sensor ability for certain electric fish robots, which are able to detect electrostatic perturbations caused to the presence of some objects in their neighborhood. This ability to interpret an electrical signal to locate itself in space opens important perspectives, including in the field of biologically inspired robotics. Mathematically, electrolocation is linked to the electric impedance tomography: so it's about a non-linear inverse problem, particularly ill-posed problem. We will, in this Phd, study some methods of reconstruction, which could be obtain robustly some characteristic of the obstacle's shape, rather all of their geometry details. So, it's about to study the stability between the observable part of the obstacles and the errors of measurements.

Keywords: inverse problem, conduction equation, electroreception