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Abstract xiii

Target identification using electroreception

Abstract

Electrolocation is the name given to the sensor ability for certain electric fish robots,
which are able to detect electrostatic perturbations caused to the presence of some
objects in their neighborhood. This ability to interpret an electrical signal to locate itself
in space opens important perspectives, including in the field of biologically inspired
robotics. Mathematically, electrolocation is linked to the electric impedance tomography:
so it’s about a non-linear inverse problem, particularly ill-posed problem. We will, in
this Phd, study some methods of reconstruction, which could be obtain robustly some
characteristic of the obstacle’s shape, rather all of their geometry details. So, it’s about
to study the stability between the observable part of the obstacles and the errors of
measurements.

Keywords: inverse problem, conduction equation, electroreception

Identification d’une cible par l’électro-localisation

Résumé

L’électro-localisation est le nom donné aux capacités sensorielles de certains poissons
électriques, vivant en eaux troubles, capables de détecter les perturbations électrosta-
tiques dues à la présence d’objets dans leurs voisinages. Cette aptitude à interpréter
un signal électrique pour se repérer dans l’espace ouvre l’importance perspectives,
notamment dans le domaine de la robotique brio-inspiré. Mathématiquement, l’électro-
localisation est proche de la tomographie d’impédance électrique : il s’agit donc d’un
problème inverse non linéaire, notoirement mal posé. Nous proposons dans cette thèse
d’étudier des méthodes de reconstruction qui permettraient d’obtenir de manière ro-
buste certaines caractéristiques de la forme des obstacles, plutôt que l’ensemble des
détails de leurs géométries. Il s’agit donc d’étudier la stabilité de la partie observable
des obstacles par rapport à des erreurs dans les mesures.

Mots clés : problème inverse, équation de conduction, électro-localisation

Laboratoire Jean Kuntzmann
Bâtiment IMAG – Université Grenoble Alpes – 700 Avenue Centrale – 38401
Domaine Universitaire de Saint-Martin-d’Hères – France
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Introduction

Electroreception or electrolocalization is the name given to the sensor ability

for certain electric fish. There exist many species of electric fish, which belong

principally to the two orders, Gymnotiforms in South America and Mormyri-

forms in Africa [57]. They are able to detect electrostatic perturbations caused

by the presence of some objects in their neighborhood. This ability to interpret

an electrical signal to locate itself in space opens important perspectives for

applications, in particular in the field of biologically inspired robotics. From

the point view of mathematics, electroreception leads to an inverse conductivity

problem.

Inverse conductivity problems, also called Calderón problems, are the proto-

typical models of mathematical inverse problems. They have been studied with

the purpose of deriving some nondestructive imaging methods such as Electrical

Impedance Tomography(EIT). This technique has a main application in medical

imaging, but variants are used in geophysics and other domains. The principal

purpose of Calderón problems is to determine the conductivity at each point in

a conductive medium from some total or partial measurements of the voltage

and the current on its boundary.

The mathematical model of Calderón problems is described as follows. Let

Ω be a bounded smooth domain in Rn for n ≥ 2, γ ∈ L∞loc(Ω) be the unknown

positive conductivity, and u be the solution to the Dirichlet problem, div(γ(x)∇u(x)) = 0 x ∈Ω,
u(x) = f x ∈ ∂Ω.

(1)

Since γ is positive, existence and uniqueness of the solution u ∈H1(Ω) for any

1



2 Introduction

Dirichlet data f ∈H1/2(Ω) can be derived from standard arguments.The inverse

problem is formulated as follows: Given the Dirichlet to Neumann map Λ :
H1/2(∂Ω)→H−1/2(∂Ω)

f 7→ γ ∂u∂ν |∂Ω
(or given partial information on λ), can we reconstruct

the conductivity γ? In general, the inverse problem is non-linear and ill-posed.

Calderón published his seminal paper [31] in 1980. Since then, developments

on this problem have been focused on three perspectives: uniqueness, stability

and reconstruction algorithms.

The general theories on Calderón problems assume that an infinite number

of measurements are available. The essential tool is the Dirichlet to Neumann

operator (DtN operator), which is defined for any fonction f ∈ H1/2(Ω) maps

to the normal derivative γ ∂u∂ν where u is the solution to (1). The uniqueness of

γ for smooth conductivity coefficients was proven by Sylvester and Uhlmann

[44], which showed that if two Dirichlet to Neumann operators, associated to

conductivity coefficients γ1 and γ2, are equal, then γ1 = γ2 in Ω. Moreover, the

uniqueness results in two dimensions were generalized by Astala and Päivärinta

[22], which states that all conductivity coefficients in L∞(Ω) can be determined by

Dirichlet to Neumann map. A general stability estimate is given by Alessandrini

[3]. This is a logarithmic stability estimate, which is valid for the C∞ conductivity

coefficients in three dimensions. Precisely speaking, there exists constants C and

σ such that

‖γ1 −γ2‖L∞(Ω) ≤ C(| log(‖Λγ1
−Λγ2

‖1/2,−1/2)|−σ + ‖Λγ1
−Λγ2

‖1/2,−1/2),

where ‖·‖1/2,−1/2 refers the operator norm fromH1/2(∂Ω) toH−1/2(∂Ω). Nachman

[58] proved firstly the uniqueness result in dimension two and convergence for

an algorithm to reconstruct γ from the associated Dirichlet to Neumann operator

in dimensions two.

We call inverse inclusion problems the particular case when the conductivity

has the form γ = k0 + (k − k0)χD , where k0 is the conductivity in the neighboring

environment, k > 0, k , k0 and D ⊂⊂Ω a bounded, smooth inclusion in Ω.

As it is not possible in any concrete experiment to have the access to infinitely

many measurements, we are also interested in the inverse conductivity problem
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under a finite number of measurements. The question whether one measurement

uniquely determines D has already been addressed in several papers, when D is

a ball or a convex polyhedron in 3d (see [24], [38], [43], [46]). The question of

stability has been investigated in the case of disks in [37] and [47]. Kwon [50]

has established a real-time scheme to locate the unknown inclusion with the

hypothesis that its size is small compared with that of Ω. Other works concern

the case of inclusions of small sizes, while knowledge about their number,

location and conductivity may be derived from the knowledge of a certain

number of generalized polarization tensors (Ammari and Kang [8]).

In this Phd thesis, we present three main achievements and an auxiliary

result on the inverse inclusion problems, which we briefly introduce below.

Identification of disks in a two dimensional plane

Let D = BR(X0) ⊂ Ω0 be the disk of radius R centered at X0, where Ω0 := {x ∈
Ω|dist(x,∂Ω) > δ0} with the constant δ0 > 0. We assume that the electrical con-

ductivity γ ≡ 1 in Ω \ D̄ and γ ≡ k in D. We inject a current with density g

and measure the voltage f on ∂Ω. The inverse inclusion problem consists in

determining the unknown domain D from the data g and f . As we assume D

is a disk, we only need to determine its center X0 and its radius R. Let u be the

electrostatic potential in Ω, solution to the following conductivity problem
div((1 + (k − 1)χD)∇u) = 0 inΩ,
∂u
∂ν

= g on∂Ω,
(2)

where u is normalized by
∫
∂Ω
u = 0.

The first result in this work is that the solution to (2) admits the following

representation
u(x) =H(x) +

1− k
1 + k

(H(x)−H(X0)) x ∈D,

u(x) =H(x) +
1− k
1 + k

(H(X0 +
R2(x −X0)
||x −X0||2

)−H(X0)) x ∈Ω \D,
(3)
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where H is a harmonic function, which can be directly calculated from the

Cauchy data.

Concerning the uniqueness and stability to the inverse problem, Kang and

Seo [37], have established a Hölder-type stability estimate under a well-chosen

current density for the same problem. In this work, we drop the last assumption

i.e. we derive a new, more precise, Hölder type stability estimate for all non zero

Neumann data g ∈H−1/2
0 (Ω). These theoretical results are given in chapter 1.

In chapter 2, we give a numerical scheme, which is based on the gradient

method to reconstruct the disk. We compare the symmetric differences between

the target disk and its numerical approximation during the iterations to illustrate

the stability estimates.

Determination of inclusions using multifrequency mea-

surements

In the next chapter, we again consider the inverse inclusion problem with a

Neumann boundary condition on ∂Ω. We adopt a new mathematical model of

EIT [19] by injecting an electric current at different frequencies. In this model,

the conductivity γ and solution u depend on the frequency ω. We consider the

conductivity in this form,

γ(x,ω) = k0 + (k(ω)− k0)χD(x)

and the electrical voltages on ∂Ω are measured for the frequencies in certain

interval, ω ∈ [ω,ω]. In this work, we assume that the conductivity profile

ω 7→ k(ω) inside the inclusion is given by a empirical law, which we present

later.

Using the eigenfunctions of the Neumann-Poincaré operator on D, we prove

the solution u admits the following spectral decomposition

u(x,ω) = k−1
0 u0(x) +uf (x,ω),

where u0 is independent of the frequency. On the other hand, u0 is also the
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solution to an inverse boundary problem, which can be considered as an asymp-

totic case of the Calderón problem, and for which optimal stability estimates on

inverse boundary problems have already been derived, see for example [4].

We then introduce our numerical methods to reconstruct the inclusion. This

method is divided into two main steps. The first consists in reconstructing

the frequency profile k(ω) and the frequency independent part u0. Once the

reconstructed u0 has been determined, we reconstruct the inclusion D from the

Cauchy data of u0 using an optimization scheme in the next step. To derive the

optimization scheme, we need to calculate the shape derivative, and we use the

asymptotic expansions of layer potentials to derive the shape derivatives. Those

results are presented in chapter 3.

Determination of inclusions in the model of electric

fish

Instead of working in a bounded domainΩ, the mathematical model of electrical

fish concerns the domain Ωe = Rd \Ω exterior of the fish. Precisely speaking, we

consider the following equation [6],

4u = Js in Ω,

div[γ(x,ω)∇u] = 0 in Ωe,
∂u
∂ν |− = 0 on ∂Ω,

u|+ −u|− = ξ ∂u∂ν |+ on ∂Ω,

|u| =O(|x|1−d) as |x| →∞.

(4)

Here, the constant ξ > 0 is the effective thickness of the fish skin. The function Js
represents the electric current source generated by the fish’s organs. We assume

that Js can be written as the sum of Dirac functions,

Js =
M∑
j=1

αjδx(j)
s
. (5)

In chapter 4, we introduce the weighted Sobolev spaceW1,−1(Ωe) to define the
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weak solution to (4.1) in an unbounded domain. Then we prove the uniqueness

and the existence of a solution to the forward problem. We also prove that the

solution of (4.1) admits a spectral decomposition of the same form as the solution

of the conductive equation in the case Ω is bounded (cf chapter 3). In chapter

5, we present numerical simulations of electroreception. Using similar ideas as

those of chapter 3, we give our method to reconstruct the frequency independent

function u0 and the inclusion D, using multifrequency measurements. In order

to simulate the solution in an unbounded domain, we will consider the equation

posed in a truncated domain, and we will show that the solution in the truncated

domain admits a similar spectral decomposition.

Eigenvalues of Neumann-Poincaré operator for two

close-to-touching inclusions

In our analysis on inverse inclusion problems, the representation formula in layer

potentials plays an essential rule, especially the Neumann-Poincaré operator or

the variational Poincaré operator. We have observed in the case of two close-to-

touching inclusions, the pointwise values of the gradient of the voltage potential

∇u may blow up as the distance δ between some inclusions tends to 0 and as

the conductivity contrast degenerates. In [27], we showed that the blow-up rate

of the gradient is related to how the eigenvalues of the associated Neumann-

Poincaré operator converge to ±1/2 as δ→ 0, and on the regularity of the contact.

In chapter 6, we consider two connected 2-D inclusions, at a distance δ > 0

from each other. When δ = 0, the contact between the inclusions is of order

m ≥ 2. We propose an original numerical method to determine the eigenvalues

of the Neumann-Poincaré operator. We at first prove the equivalence relation

between the problem in unbounded domain and the problem in a truncated

domain. Our original numerical method consists in projecting functions in

W1,−1(R2) on a vector space formed by the polynomial harmonics. We then

numerically determine the asymptotic behavior of the first eigenvalue of the

Neumann-Poincaré operator, in terms of δ and m, and we check that we recover

the estimates obtained in [26].



Chapter1
Determination of a disk in a two

dimensional plane

1.1 Introduction

Let D = BR(X0) ⊂ Ω0 be the disk of radius R centered at X0, where Ω0 := {x ∈
Ω|dist(x,∂Ω) > δ0} with the constant δ0 > 0. We assume that the electrical

conductivity σ ≡ 1 in Ω \ D̄ and σ ≡ k in D. We inject a current with density g ∈
H−1/2

0 (Ω) and measure the voltage f on ∂Ω. The inverse conductivity problem

consists in determining the unknown domain D from the data g and f . As we

assume D is a disk, we only need to determine its center X0 and its radius R.

Let u be the electrostatic potential in Ω, solution to the inverse conductivity

problem (2).

Denoting respectively the solution in the interior of the disk D by ui , and the

solution in the exterior by ue, the equation (2) can also be formulated as follows:

4ue = 0 inΩ \ D̄
4ui = 0 inD

ue = ui on∂D
∂ue

∂ν
= k

∂ui

∂ν
on∂D

∂u
∂ν

= g on∂Ω.

(1.1)

7



8 CHAPTER 1. Determination of a disk in a two dimensional plane

In fact, Fabes, Kang and Seo [37], have established a Hölder-type stability

estimate under a well-chosen current density for the same problem. In this work,

we drop the last assumption i.e. we derive a new, more precise, also Hölder

type stability estimate for all non zero Neumann data g ∈H−1/2
0 (Ω). Moreover,

we give in this work a reconstruction method from two linearly independent

measurement and a minimizing scheme for recovery from a single measurement.

1.2 Main Results

1.2.1 Generalities

We introduce the fundamental solution of the Laplace operator in all R2

Γ (x) =
1

2π
ln |x|,

and the single and double layer potentials defined for φ ∈ L2(∂D) by

SDφ(x) =
∫
∂D
Γ (x − y)φ(y)dσy x ∈ R2,

DDφ(x) =
∫
∂D

∂
∂νy

Γ (x − y)φ(y)dσy x ∈ R2 \∂D.

Using integration by parts, for x ∈Ω \ D̄, the solution to (1.1) can be repre-

sented in the form:

ue(x) =
∫
∂Ω
u(y)

∂
∂νy

Γ (x − y)− ∂u
∂ν

(y)Γ (x − y)dσy

−
∫
∂D
u(y)

∂
∂νy

Γ (x − y)− ∂u
∂ν

(y)Γ (x − y)dσy

=H(x) +SD
∂ue

∂ν
(x)−DDue(x), (1.2)
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and, for x ∈D

ui(x) =
∫
∂D
u(y)

∂
∂νy

Γ (x − y)− ∂u
∂ν

(y)Γ (x − y)dσy

=−SD
∂ui

∂ν
(x) +DDui(x), (1.3)

where the harmonic function H is entirely determined by the Cauchy data (f ,g)

H(x) =
∫
∂Ω
u(y)

∂
∂νy

Γ (x − y)− ∂u
∂ν

(y)Γ (x − y)dσy =DΩf −SΩg. (1.4)

Theorem 1.2.1. The solution to (1.1) admits the following representation
ui(x) =H(x) +

1− k
1 + k

(H(x)−H(X0)) x ∈D

ue(x) =H(x) +
1− k
1 + k

(H(X0 +
R2(x −X0)
||x −X0||2

)−H(X0)), x ∈Ω \D
(1.5)

Proof. With the jump condition on ∂D, we have [8],[33]

DDφ(x)|± = (∓1
2
I +KD)φ(x) x ∈ ∂D,

where K is the Neumann-Poincaré operator defined on L2(∂Ω) by

KDφ(x) =
1

2π

∫
∂D

〈y − x,νy〉
|x − y|2

φ(y)dσy .

When D is a disk in R2 of radius R, the operator K has a very simple form [8]

KDφ(x) =
1

4πR

∫
∂D
φ(y)dσy ∀x ∈ ∂D.

Using the jump conditions, it follows from (1.2) and (1.3) that

ue(x) =H(x) +SD
∂ue

∂ν
(x) + (

1
2
I −KD)ue(x), (1.6)
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and

ui(x) = −SD
∂ui

∂ν
(x) + (

1
2
I +KD)ui(x). (1.7)

Adding (1.6) to k times (1.7), and using the mean value propriety for harmonic

functions, we obtain for x ∈ ∂D,

u(x) =
2

k + 1
H(x) +

2(k − 1)
k + 1

KDu(x) =
2

k + 1
H(x) +

k − 1
k + 1

ui(X0).

As H is harmonic in D, it follows that ui coincides with the above right-hand

side in D:

ui(x) =
2

k + 1
H(x) +

k − 1
k + 1

ui(X0).

And, at X0,

ui(X0) =
2

k + 1
H(X0) +

k − 1
k + 1

ui(X0),

which implies ui(X0) =H(X0). Then we have the representation of ui ,

ui(x) =H(x) +
1− k
1 + k

(H(x)−H(X0)) x ∈D (1.8)

We represent each point x ∈ Ω as x = X0 + r

cosθ

sinθ

, with θ ∈ [0,2π) and r > 0,

and we write the function H as a sum of harmonic functions rn cos(nθ) and

rn sin(nθ):

H(x) =H(X0) +
∞∑
n=1

rn(an cos(nθ) + bn sin(nθ)). (1.9)

By (1.8) and the transmission conditions, we immediately have:

ui(x) =H(X0) +
2

k + 1

∞∑
n=1

rn(an cos(nθ) + bn sin(nθ)), x ∈D, (1.10)

ue(x) =H(X0) +
∞∑
n=1

(rn +
1− k
1 + k

(
R2

r
)n)(an cos(nθ) + bn sin(nθ)), x ∈Ω \ D̄.

(1.11)
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Let ΨD(x) denote the point obtained by reflecting x over ∂D

ΨD(x) = X0 +
R2(x −X0)
||x −X0||2

x ∈ R2 \ {X0}.

We can thus write

ue(x) =H(x) +
1− k
1 + k

(H(ΨD(x))−H(X0)) x ∈Ω \ D̄, (1.12)

which concludes the proof.

1.2.2 Analysis in complex variables

Using the representation (1.5) of ue and ui , we study our problem in the complex

plane C. We introduce a harmonic conjugate G of the harmonic function H , so

that the function

F :=H + iG (1.13)

is holomorphic in Ω. Also, the reflection has an explicit expression in terms of

complex variables:

ΨD(z) = Z0 +
R2

z̄ − Z̄0
z ∈ C \ {Z0}.

By (1.12) and (1.1), the functionH ◦ΨD is harmonic inΩ\D̄. We can also express

its harmonic conjugate G̃ for x ∈Ω \ D̄ as

∇G̃(x) = A∇H ◦ΨD(x)

= ADΨD(x)∇H(ΨD(x)), (1.14)

where A =

0 −1

1 0

,

and where

DΨD(x) =
R2

||x −X0||2

(x −X0)2
2 − (x −X0)1

2 −2(x −X0)1(x −X0)2

−2(x −X0)1(x −X0)2 (x −X0)1
2 − (x −X0)2

2

 .
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Notice that

DΨD = −DΨDA,

combined with (1.14), which yield:

∇G̃(x) = A∇H ◦ΨD(x)

= ADΨD(x)∇H(ΨD(x))

= −DΨD(x)A∇H(ΨD(x))

= −DΨD(x)∇G(ΨD(x))

= −∇G ◦ΨD(x).

Thus, the function −G ◦ΨD is a harmonic conjugate of the function H ◦ΨD , and

therefore the function z 7→H ◦ΨD(z)− iG ◦ΨD(z) = F̄ ◦ΨD(z) is holomorphic and

its real part is equal to H ◦ΨD .

Assuming that F is analytic in Ω, we can write F as a sum

F(z) =
∞∑
n=0

cn(z −Z0)n, z ∈Ω.

Also, the holomorphic function F̄ ◦ΨD admits the following development:

F̄ ◦ΨD(z) =
∞∑
n=0

c̄n
R2n

(z −Z0)n
, z ∈Ω \ D̄. (1.15)

Therefore, denoting by ve a harmonic conjugate of ue, and given any C ∈ R, the

function:

h(z) := ue(z) + ive(z) = F(z) +
1− k
1 + k

(F̄ ◦ΨD(z)−H(Z0) + iC), z ∈Ω \ D̄,

is holomorphic.

Remark 1.2.1. We can calculate directly from the measurements (f ,g) the values of
the function h on ∂Ω.
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1.2.3 Stability estimate

We next establish a Hölder-type stability estimate for the center and radius of

the disk. Let D1, D2 denote 2 disks centered at the points z1, z2 and with radii

R1, R2. For i = 1,2, let ui be the solutions of the problem (1.1). We assume that

the two solutions satisfy the same non-zero Neumann data g on ∂Ω, and that

the L∞ - norm of the difference between their traces on ∂Ω (the Dirichlet data)

is a small quantity ε. We denote by Ω1, Ω2 the images of C \ Ω̄ by the reflections

ΨD1
, ΨD2

.

Theorem 1.2.2 (Uniqueness of the inverse problem). If u1 = u2 on ∂Ω then
D1 =D2.

Proof. From (1.4), the function H linked to each solution of (1.1) depends

uniquely on the Cauchy data. As u1 and u2 have the same Cauchy data, their

functions H are the same, and we will note this function by H in this proof.

Using the unique continuation propriety, we have: u1 = u2 in Ω \ (D1 ∪D2).

Case 1: D1∩D2 = ∅. In this case, ue1 has a harmonic continuation in D1, which

coincides with ue2 i.e. ue2 = ui1 in D1. Then, on ∂D1, we have:

∂ui1
∂ν

=
∂ue2
∂ν

=
∂ue1
∂ν

= k
∂ui1
∂ν

, (1.16)

which implies ∂ui1
∂ν = 0 on ∂D1, so that ui1 = 0, and thus u1 = 0 and g = 0.

Hence the contradiction.

Let z? and Z? be defined as (1.25).

Case 2: ∂D1∩∂D2 , ∅. In this case, from (1.25), ∂D1∩∂D2 = {z? ,Z?}. Then, from

the continuity of the solutions, we have:

ui1(z?) = ue1(z?) = ue2(z?) = ui2(z?) (1.17)

Using (Theorem 1.2.1), we have H(z1) =H(z2) and ui1 = ui2 in D1 ∩D2.

So, on ∂(D1 −D2), u1 −u2 = 0, which implies ui1 = ue2 in D1 −D2. Then, on the arc

D1 ∩∂D2, we have:
∂ui2
∂ν

=
∂ui1
∂ν

=
∂ue2
∂ν

= k
∂ui2
∂ν

, (1.18)



14 CHAPTER 1. Determination of a disk in a two dimensional plane

which implies ∂ui1
∂ν = ∂ui2

∂ν = 0. For the same reason, we also have: ∂u
i
1

∂ν = ∂ui2
∂ν = 0 on

the arc D2 ∩∂D1. It follows that, ∂u
i
1

∂ν = ∂ui2
∂ν = 0 in ∂(D1 ∩D2). This also implies

ui1 = 0 and then g = 0.

Hence the contradiction.

Case 3: D1 ⊂D2. In this case, we have: z? ∈D1 and Z? ∈ C\D2. The functions

uej −H , j = 1,2 have a harmonic extension in C \D2, and they are equal in Ω \D1,

so from (1.2.1), we have:

H(Ψ1(z))−H(z1) =H(Ψ2(z))−H(z2) (1.19)

in C \D2.

Applying (1.19) on z? , we have H(z1) =H(z2) and then u1 = u2 in D1 ∩D2 =D1.

The rest of the proof follows the same argument as in the previous cases.

That completes the proof

Lemma 1.2.1. Let f be a non-zero holomorphic function in Ω, and assuming that
D1 ,D2, then there exist 0 < β < 1, which only depends on f , such that∫

∂Ω

|Ψ1(z)−Ψ2(z)|
|f (Ψ1(z))− f (Ψ2(z))|β

ds <∞. (1.20)

Proof. We first show that the set Z := {z ∈ ∂Ω|f (Ψ1(z)) − f (Ψ2(z)) = 0} is finite.

Indeed, assume that Z has infinitely many elements. Then by an argument

of compactness, Z has a limit point. As the functions f ◦Ψi , i = 1,2 are anti-

holomorphic, it follows that f (Ψ1(z)) = f (Ψ2(z)) on C \ (D1 ∪D2). Thus, from

the explicit formula of solutions, we can construct two solutions to (1.1) related

to D1 and D2, which have the same Cauchy data on ∂Ω. This contradicts the

uniqueness of the inverse problem (Theorem 1.2.2).

As the function F (z) := f (Ψ1(z))− f (Ψ2(z)) is holomorphic in C \ (D1 ∪D2), if

z̃ ∈ Z, there is m(z̃) ∈ N such that, in a neighborhood of z̃,

F (z) =
∑
n≥m(z̃)

qn(z − z̃)n,

with qm(z̃) , 0.
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Let γ ∈ C1([a,b]) be a parametrization of ∂Ω, and set z̃ = γ(t̃). Then, in a

neighborhood of t̃, we have

F (γ(t)) =
∑
n≥m(z̃)

q′n(t − t̃)n,

with q′m(z̃) , 0.

We choose 0 < β < 1
m where m := max

z̃∈Z
m(z̃). Then, for t̃ − δ < t < t̃ + δ we have,

1
|F (γ(t))|β

≤ C̃|t − t̃|−βm(z̃),

with 0 < βm(z̃) < 1.

Therefore, ∫ t̃+δ

t̃−δ

1
|F (γ(t))|β

dt <∞.

Thus, ∫
∂Ω

|Ψ1(z)−Ψ2(z)|
|f (Ψ1(z))− f (Ψ2(z))|β

ds

=
∫ b

a

|Ψ1(γ(t))−Ψ2(γ(t))|
|F (γ(t))|β

|γ ′(t)|dt <∞.

and (1.20) follows.

Theorem 1.2.3. Assume that

||u1|∂Ω −u2|∂Ω||L∞(∂Ω) = ε. (1.21)

Then there exists constants 0 < α,β < 1 and C > 0, such that

|z1 − z2| ≤ Cεαβ , (1.22)

and
|R1 −R2| ≤ Cεαβ , (1.23)
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where α :=ω(z?) > 0, and where ω and z? are given by the following equations
4ω = 0 inΩ \Ω1 ∪Ω2

ω = 1 on∂Ω
ω = 0 on∂(Ω1 ∪Ω2),

(1.24)

z1 +
R2

1

z̄? − z̄1
= z2 +

R2
2

z̄? − z̄2
= Z? ∈ C, (1.25)

where β only depend on the Cauchy data.

Remark 1.2.2. We remark that z? and Z? are uniquely determined by (1.25), and
we observe that

• Z? is the image of z? by the reflection with respect to ∂D1 and with respect to
∂D2.

• in the case where ∂D1 ∩∂D2 , ∅, z? = Z? is one of the intersection points.

• in the case where D1 ∩D2 = ∅, then either z? ∈D1 and Z? ∈D2 or z? ∈D2 and
Z? ∈D1.

• in the case where D1 ⊂ D2 (resp. D2 ⊂ D1), then z? ∈ D1 (resp. z? ∈ D2) and
Z? ∈ C \D2 (resp. Z? ∈ C \D1).

• at least one of the points z? and Z? is in Ω. We can always assume that z? ∈Ω.

Proof. According to the position of the point Z? , we distinguish two cases:

Case 1: both z? and Z? are in Ω.

Because Z? is the image of z? by ΨD1
and vice-versa, one of z? or Z? is in D̄1, the

other lies in Ω \D1. We may assume that z? ∈Ω \D1.

We define

h̃i(z) = hi(z)− hi(z?) = Fi(z)−Fi(z?) +
1− k
1 + k

Fi(zi +
R2
i

z̄ − z̄i
)−Fi(Z?)

 . (1.26)

By construction, the function h1 − h2 can be holomorphically extended in
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Ω \Ω1 ∪Ω2 and from the standard elliptic estimation, this function satisfies

M := sup{|h1 − h2| : z ∈Ω \Ω1 ∪Ω2} ≤ C||g ||L2(∂Ω), (1.27)

|h1 − h2| ≤ ε on∂Ω. (1.28)

Consequently, for z ∈ ∂Ω,

h̃1(z)− h̃2(z)

= h1(z)− h2(z)− [h1(z?)− h2(z?)]

= F1(z)−F2(z) +F1(z?)−F2(z?)

+
1− k
1 + k

F1(z1 +
R2

1

z̄ − z̄1
)−F2(z2 +

R2
2

z̄ − z̄2
) +F2(Z?)−F1(Z?)

 . (1.29)

Let ω be the solution to the Dirichlet problem (1.24), the function ω logε+ (1−
ω) logM is therefore harmonic in Ω \Ω1 ∪Ω2. On the other hand, log |h1 − h2| =
<(log(h1 − h2)) is also a harmonic function in Ω \Ω1 ∪Ω2. From (1.27) and

(1.28), we have

log |h1(z)− h2(z)| ≤ ω(z) logε+ (1−ω(z)) logM, z ∈ ∂(Ω \Ω1 ∪Ω2) (1.30)

Then, by the maximum principle,

log |h1(z?)− h2(z?)| ≤ ω(z?) logε+ (1−ω(z?)) logM (1.31)

Hence,

|h1(z?)− h2(z?)| ≤ Cεα, (1.32)

with α :=ω(z?).

Using the assumption (1.21) and the definition (1.4) of H , we have

∀z ∈ Ω̄, |F1(z)−F2(z)| ≤ Cε. (1.33)
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Further, from (1.29) we have that for all z ∈ ∂Ω,

F1(z1 +
R2

1

z̄ − z̄1
)−F1(z2 +

R2
2

z̄ − z̄2
)

= F1(Z?)−F2(Z?) +
1 + k
1− k

[F2(z)−F1(z) +F2(z?)−F1(z?)

+ h1(z)− h2(z) + h2(z?)− h1(z?)]. (1.34)

Applying (1.28), (1.32) and (1.33), we obtain:

|F1(z1 +
R2

1

z̄ − z̄1
)−F1(z2 +

R2
2

z̄ − z̄2
)| ≤ Cεα, ∀z ∈ ∂Ω. (1.35)

Then, using (1.35) and (1.20), we have the following estimate:∫
∂Ω
|Ψ1(z)−Ψ2(z)|ds

=
∫
∂Ω

|Ψ1(z)−Ψ2(z)|
|F1(Ψ1(z))−F1(Ψ2(z))|β

|F1(Ψ1(z))−F1(Ψ2(z))|βds

≤
∫
∂Ω

|Ψ1(z)−Ψ2(z)|
|F1(Ψ1(z))−F1(Ψ2(z))|β

ds ×Cεαβ

≤ C′εαβ . (1.36)

On the other hand, we have:∫
∂Ω
|Ψ1(z)−Ψ2(z)|ds

=
∫
∂Ω
|Ψ1(z)−Ψ2(z)|ds

≥ |
∫
∂Ω
Ψ1(z)−Ψ2(z)dz|

= |
∫
∂Ω
z̄1 − z̄2 +

R2
1

z − z1
−

R2
2

z − z2
dz|

= |R2
1 −R

2
2|.
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So, we have:

|R1 −R2| ≤ Cεαβ . (1.37)

Using (1.37), we have: for all z ∈ ∂Ω,

|Ψ1(z)−Ψ2(z)| = |z̄1 − z̄2 +R2
1

z1 − z2

(z − z1)(z − z2)
|+O(εαβ).

So, from (1.36),

Cεαβ

≥
∫
∂Ω
|z̄1 − z̄2 +R2

1
z1 − z2

(z − z1)(z − z2)
|ds

= |z1 − z2|
∫
∂Ω
|e−2i arg(z1−z2) +

R2
1

(z − z1)(z − z2)
|ds

with
∫
∂Ω
|e−2i arg(z1−z2) +

R2
1

(z − z1)(z − z2)
|ds > 0.

Thus,

|z1 − z2| ≤ Cεαβ . (1.38)

Case 2: z? ∈Ω, Z? ∈ C \ Ω̄. We define

h̃i(z) = hi(z)− (hi(Z
?)− fi(Z?)) = fi(z) +

1− k
1 + k

Fi(zi +
R2
i

z̄ − z̄i
)−Fi(z?)

 . (1.39)

By (1.15), the holomorphic functions hi − Fi , i = 1,2 can be extended to C \ D̄i
and they vanish as |z| →∞. Let Ω̃ be an open set containing Ω and the point Z∗,

and consider a harmonic function ω solution to the following equation
4ω = 0 in Ω̃ \ Ω̄
ω = 1 on∂Ω

ω = 0 on∂Ω̃.

(1.40)

Define α =ω(Z?).
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Thus, from (1.28) and (1.33) we have

|(h1 −F1)− (h2 −F2)| ≤ Cε on∂Ω. (1.41)

We apply the maximum principle on Ω̃\Ω to the harmonic function ω logε+

(1−ω) logM − log |(h1 −F1)− (h2 −F2)| to obtain:

log |(h1 −F1)(Z?)− (h2 −F2)(Z?)| ≤ ω(Z?) logε+ (1−ω(Z?)) logM, (1.42)

so that

|(h1 −F1)(Z?)− (h2 −F2)(Z?)| ≤ Cεα. (1.43)

In fact, we can choose, Ω̃ = Bρ(z1) with ρ as large as we want. We denote ωρ
the solution to the associated equation (1.40) and we also consider the harmonic

function ω̃ρ solution to


4ω̃ρ = 0 inB(z1,ρ) \B(z1,R1)

ω̃ρ = 1 on∂B(z1,R1)

ω̃ρ = 0 on∂B(z1,ρ).

(1.44)

The function ω̃ρ has the explicit expression

ω̃ρ(r) =
ln(r)− ln(ρ)
ln(R)− ln(ρ)

, (1.45)

with r := |z − z1|.
By the maximum principle, ω̃ρ ≤ωρ in B(z1,ρ) \Ω. So, we have

1 > ωρ(Z?) ≥ ω̃ρ(Z?) =
ln(r)− ln(ρ)
ln(R)− ln(ρ)

−→
ρ→∞

1. (1.46)

From (1.43), we have

|(h1(Z?)−F1(Z?))− (h2(Z?)−F2(Z?))| ≤ Cεβ , 0 < β < 1. (1.47)
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Thus,

|(h1(Z?)−F1(Z?))− (h2(Z?)−F2(Z?))| ≤ Cε. (1.48)

The rest of the proof follows the same argument as that of case 1.

1.2.4 Reconstruction from two measurements

It follows from the analysis of section 1.2.2, we can obtain some geometric ele-

ments of the disk from a simple contour integration. Thus, we can reconstruct

the center, the radius and the conductivity k if we have two distinct measure-

ments under the assumption that ∇u , 0 in Ω. The method of reconstruction is

described as follows.

We calculate the following integral:

I :=
1

2πi

∫
∂Ω
h(z)dz. (1.49)

Using the representation (1.15) and the Residue Theorem on Ω, we have

I : =
1

2πi

∫
∂Ω
h(z)dz

=
1

2πi

∫
∂Ω
F(z) +

1− k
1 + k

(F̄ ◦ΨD(z)−H(Z0) + iC)dz

=
1

2πi
[
∫
∂Ω
F(z)dz+

1− k
1 + k

(
∫
∂Ω

∞∑
n=0

c̄n
R2n

(z −Z0)n
dz+

∫
∂Ω
−H(Z0) + iCdz)]

=
1

2πi
1− k
1 + k

∞∑
n=1

c̄nR
2n

∫
∂Ω

1
(z −Z0)n

dz

=
1− k
1 + k

c̄1R
2 =

1− k
1 + k

F′(Z0)R2. (1.50)
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Using the same arguments, we can also calculate the following integral

1
2πi

∫
∂Ω
zh(z)dz =

1
2πi

∫
∂Ω
zF(z) +

1− k
1 + k

z(F̄ ◦ΨD(z)−H(Z0) + iC)dz

=
1

2πi
[
∫
∂Ω
zF(z)dz+

1− k
1 + k

(
∫
∂Ω

∞∑
n=0

c̄n
zR2n

(z −Z0)n
dz+

∫
∂Ω
z(−H(Z0) + iC)dz)]

=
1

2πi
1− k
1 + k

∞∑
n=1

c̄nR
2n

∫
∂Ω

z
(z −Z0)n

dz

=
1

2πi
1− k
1 + k

∞∑
n=1

c̄nR
2n

∫
∂Ω

1
(z −Z0)n−1 +

Z0

(z −Z0)n
dz

=
1− k
1 + k

(Z0c̄1R
2 + c̄2R

4). (1.51)

Denoting by f1, f2 two functions f corresponding to two distinct measure-

ments, from (1.50) we have
Ī1
Ī2

=
F′1(Z0)
F′2(Z0)

. (1.52)

We remind that the holomophic functions Fj above are defined by (1.13), Fj =

Hj + iGj , where Gj are the harmonic conjugate of Hj , and Hj =DΩfj −SΩg.

So, Z0 is a zero of the holomophic function z 7→
F′1(z)
F′2(z)

− Ī1
Ī2

(F′2(z) , 0∀z ∈Ω as

we supposed that ∇u , 0). Once Z0 is determined, R and k can be easily found

from (1.50) and (1.51).
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Numerical determination of disks

2.1 Optimization algorithm

In this section, we consider a numerical scheme to reconstruct a disk contained

in a subset Ω0 ⊂ Ω with dist(∂Ω0,∂Ω) ≥ δ0 > 0, using a single measurement.

The scheme is based on minimizing the functional

J(u) =
1
2

∫
∂Ω
|u −umeas|2dσ,

where umeas is the measured Dirichlet data and where u is the solution to (2)

associated to a disk D = B(X0,R) ⊂Ω0.

Given (c1, c2,R) ∈ R3, where we suppose X0 = (c1, c2), the gradient of the

functional J at this point can be calculated as follows.

Theorem 2.1.1. Let u be the solution to the problem (2) associated to a disk and let
w be the solution to the following problem

div((1 + (k − 1)χD)∇w) = 0 inΩ,
∂w
∂ν

= u −umeas on∂Ω.
(2.1)

23



24 CHAPTER 2. Numerical determination of disks

Then

∂J
∂c1

= (k − 1)
∫
D

∂
∂x1

(∇u∇w)dX (2.2)

∂J
∂c2

= (k − 1)
∫
D

∂
∂x2

(∇u∇w)dX (2.3)

∂J
∂R

=
k − 1
R

∫
D

2∇u∇w+
∑
i=1,2

(xi − ci)
∂
∂xi

(∇u∇w)dX. (2.4)

Proof. Let (c1, c2,R) ∈ R3, such that the disk D centered at (c1, c2), with radius R

is included in Ω0. Denote u (receptively ũ) the solutions to (2) associated to the

disk BR(c1, c2) (respectively BR(c1 + dx1, c2)). Then we have

J(c1 + dc1, c2,R)− J(c1, c2,R) =
1
2

∫
∂Ω
|ũ −umeas|2dσ −

1
2

∫
∂Ω
|u −umeas|2dσ

=
1
2

∫
∂Ω

(ũ −u)(ũ +u − 2umeas)dσ

=
1
2

∫
∂Ω

(ũ −u)(ũ −u + 2(u −umeas))dσ

=
∫
∂Ω

(u −umeas)vdc1dσ +O(|dc1|2).

Therefore,
∂J
∂c1

=
∫
∂Ω

(u −umeas)vdσ, (2.5)

where v := lim
dc1→0

ũ −u
dc1

.

Combining the variational forms of (2) for u and for ũ, we have that for all

φ ∈H1(Ω), ∫
Ω

(1 + (k − 1)χD̃)∇ũ∇φdX −
∫
∂Ω
gφdσ = 0, (2.6)

and ∫
Ω

(1 + (k − 1)χD)∇u∇φdX −
∫
∂Ω
gφdσ = 0. (2.7)
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By applying a result of shape derivative (see [5]), (2.6)-(2.7) give us:

0 =
1
dc1

[
∫
Ω

(1 + (k − 1)χD̃)∇ũ∇φdX −
∫
Ω

(1 + (k − 1)χD)∇u∇φdX]

=
∫
Ω

∇v∇φdX +
k − 1
dc1

(
∫
D̃
∇ũ∇φdX −

∫
D
∇u∇φdX)

=
∫
Ω

(1 + (k − 1)χD)∇v∇φdX +
k − 1
dc1

(
∫
D̃
∇u∇φdX −

∫
D
∇u∇φdX) +O(|dc1|)

=
∫
Ω

(1 + (k − 1)χD)∇v∇φdX + (k − 1)
∫
∂D
e1 · ν∇u∇φdσ +O(|dc1|).

It follows that v satisfies, for all φ ∈H1(Ω),∫
Ω

(1 + (k − 1)χD)∇v∇φdX + (k − 1)
∫
∂D
e1 · ν∇u∇φdσ. (2.8)

Introducing the function w defined by (2.1), and taking w as φ in (2.8) we get

0 =
∫
Ω

(1 + (k − 1)χD)∇v∇wdX + (k − 1)
∫
∂D
e1 · ν∇u∇wdσ. (2.9)

On the other hand,

0 =
∫
Ω

div[(1 + (k − 1)χD)∇w]vdX

=
∫
∂Ω
v(u −umeas)dσ +

∫
Ω

(1 + (k − 1)χD)∇v∇wdX.

Consequently,

∂J
∂c1

=
∫
∂Ω

(u −umeas)vdσ (2.10)

= (k − 1)
∫
∂D
e1 · ν∇u∇wdσ (2.11)

= (k − 1)
∫
∂D

∂x1

∂ν
∇u∇wdσ (2.12)

= (k − 1)
∫
D

∂
∂x1

(∇u∇w)dX, (2.13)
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and (2.2) follows. By the same argument, we can obtain (2.3) and

∂J
∂R

= (k − 1)
∫
∂D
∇u∇wdσ.

As D is a disk, we have ν = x−X0
R so that the previous integral becomes∫

∂D
∇u∇wdσ =

∫
∂D
ν · ν∇u∇wdσ

=
∫
∂D

x −X0

R
· ν∇u∇wdσ

=
1

2R

∫
∂D

∂|x −X0|2

∂ν
∇u∇wdσ

=
1

2R
(
∫
D
∇|x −X0|2∇(∇u∇w)dX +

∫
D
4(|x −X0|2)∇u∇wdX)

=
1
R

∫
D

2∇u∇w+
∑
i=1,2

(xi − ci)
∂
∂xi

(∇u∇w)dX,

and (2.4) follows.

The expression of the shape derivative is the basis of the following iterative

algorithm:

1. Chose an initial disk D = B(X0,R0).

2. For each iteration, i > 0:

(a) Calculate the solution to (2) ui , associated to the disk Di = B(Xi ,Ri).

(b) Calculate the shape derivatives ∂J
∂c1

, ∂J
∂c2

, ∂J∂R

(c) Update the parameters of the disk (Xi+1,Ri+1) = (Xi ,Ri)− δ∇J(Xi ,Ri)
with δ > 0.

(d) If the updated disk is not entirely in Ω or if R becomes negative,

reduce the size δ.

3. When J(Xi ,Ri) becomes smaller than a fixed threshold, we stop.
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2.2 Numerical examples

The setting of all numerical tests is as follows:

• We use FreeFem++ for our numerical experiments.

• Ω is a centered ellipse defined by the equation: x
2
1

42 + x2
2

32 ≤ 1.

• the conductivity k is a fixed constant, here we set k = 5.

• the Neumann data g := ∂u
∂ν is defined by: g = 〈e,ν〉 on ∂Ω where e =

2

3

.

• We use P1 finite elements for the numerical resolution of the PDEs.

• At each iteration, we remesh the domain to adapt to the new predicted

position of the disk.

In this subsection, we show three examples according to the disk’s size, and its

distance to the boundary ∂Ω,

1. The target is close to the boundary ∂Ω. Figure 2.1a shows the solution to

(2) when the target disk is centered at X0 =

 2

0.8

 and has radius R = 1.

2. The target is apart from the boundary ∂Ω. Figure 2.1b shows the solution

to (2) when the target disk is centered at X0 =

0.5

0.5

 and has radius R = 0.7.

3. The target has a small size. Figure 2.1c shows the solution to (2) when the

target disk is centered at X0 =

 2.4

−1.2

 and has radius R = 0.3.

In these three cases, we exercise our algorithm with the same initial guess:

the disk centered at

0

0

 with radius 2.5.

Figure 2.2 shows the decay of log(J) during the iterations in the first case. We can

observe that J decays exponentially to 0. To illustrate the dependence between

the geometric characteristics of the disk and J , we draw log(|Xi − X0|2) and
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(a) X0 = (2,0.8),R = 1 (b) X0 = (−0.3,0.5),R = 0.7 (c) X0 = (2.4,−1.2),R = 0.3

Figure 2.1 – Numerical solutions of (2)
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Figure 2.2 – Decay of log(J) during iterations

log(|Ri −R0|2) in terms of log(J) (Figures 2.3, 2.4, 2.5), where Xi and Ri denote

the center and radius of the disk at the i-th iteration. In order to show the

Hölder-type stability, it is also interesting to draw linear regression lines to each

of these curves. Thus, the inclination of the linear regression lines present a

numerical estimation of the Hölder exponent.

Finally, we conclude the numerical results of these three cases by the follow-

ing remark.

Remark 2.2.1. • Figures 2.3, 2.4, 2.5 show the asymptotic behaviors of |Xi −X0|
and |Ri −R0| when J becomes small. We can observe from the left side of those
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Figure 2.3 – Case X0 = (2,0.8), R = 1
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Figure 2.4 – Case X0 = (−0.3,0.5), R = 0.7

figures that the data points are very close to a line. That numerically justify the
theoretical prediction Theorem 1.2.3.

• The inclination of the linear regression lines present a numerical estimation of
the Hölder exponent. The values in those three examples are presented in the
table 2.1. These results show, the Hölder exponents are all close to 1.
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Figure 2.5 – Case X0 = (2.4,−1.2), R = 0.3

• There is no clear evidence of a relation between the Hölder exponents α and the
distance between the target disk and ∂Ω.

• We always choose δ near 0.1. Roughly speaking, when δ exceed 0.5, J does not
decay during the iterations.

• For the same target, different initial guesses do not change the number of
iterations to reach convergence.

• Exceptionally, if the center of the initial guess coincide with the target’s center,
only about 10 iterations are needed to reach the target.

• When the target disk is too small, more iterations are needed.

• inclination log |Xi −X0|/ log J inclination log |Ri −R0|/ log J
example 1 1.0144 0.9522
example 2 0.9979 1.0602
example 3 1.0316 0.9069

Table 2.1 – Hölder exponents in different cases



Chapter3
Determination of inclusions using

multifrequency measurements

3.1 Introduction

In this work, we introduce a new approach to analyze the inverse inclusion

problem, the multifrequency measurements, we consider the following equation,
div(γ(x,ω)∇u(x,ω)) = 0 in Ω,

γ(x,ω)∂νu(x,ω) = f (x) on ∂Ω,∫
∂Ω
u(x,ω) = 0,

(3.1)

whereω denotes the frequency, νΩ(x) is the outward normal vector to ∂Ω, γ(x,ω)

is the conductivity coefficient, and f ∈H−1/2
� (∂Ω) := {g ∈H−1/2(∂Ω) :

∫
∂Ω
gdσ =

0} is the input current.

In this work we are interested in the case where the frequency dependent

conductivity distribution takes the form

γ(x,ω) = k0 + (k(ω)− k0)χD(x) (3.2)

with χD(x) being the characteristic function of a C2 domain D in Ω (D ⊂⊂Ω),

k0 being a fixed strictly positive constant, and k(ω) : R+ → C \ R− , being a

continuous complex-valued function. Here k0 representing the conductivity of

31
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the background medium, is known, and k(ω) is the conductivity of the biological

tissue, given by the empirical model

k(ω) := κ1 −
κ2

ω2 + iωκ3
, (3.3)

where κp > 0,p = 1,2,3, are constants that only depend on the biological tissue

properties (see for instance [19] ). The frequency profile k(ω) is somehow a

meromorphic approximation with a single pole of the graph of experimental

measurements for a given biological tissue [19]. It also appears as a homogenized

model for periodically distributed biological cells in the dilute limit [19], and is

similar to Drude models that describes the frequency dependence of the electric

permittivity of a real metal within the visible frequency range [55].

3.2 Spectral decomposition

We first introduce an operator whose spectral decomposition will be later the

cornerstone of the identification of the anomaly D. Let H1
� (Ω) be the space of

functions v in H1(Ω) satisfying
∫
∂Ω
vdσ = 0.

For u ∈ H1
� (Ω), we infer from the Riesz theorem that there exists a unique

function T u ∈H1
� (Ω) such that for all v ∈H1

� (Ω),∫
Ω

∇T u∇vdx =
∫
D
∇u∇vdx. (3.4)

The variational Poincaré operator T : H1
� (Ω)→ H1

� (Ω) is easily seen to be self-

adjoint and bounded with norm ‖T ‖ ≤ 1.

The spectral problem for T reads as: Find (λ,w) ∈ R×H1
� (Ω), w , 0 such that

∀v ∈H1
� (Ω),

λ

∫
Ω

∇w∇vdx =
∫
D
∇w∇vdx.

Integrating by parts, one immediately obtains that any eigenfunction w is har-

monic in D and in D ′ = Ω \D, and satisfies the transmission and boundary
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conditions

w|+∂D = w|−∂D , ∂νw|+∂D = (1− 1
λ

)∂νw|−∂D , ∂νΩw = 0,

where w|±∂D(x) = limt→0w(x ± tνD(x)) for x ∈ ∂D. In other words, w is a solution

to (3.1) for k = k0(1− 1
λ ) and f = 0.

Let H� be the space of harmonic functions in D and D ′, with zero mean∫
∂Ω
udσ = 0, and zero normal derivative ∂νΩu = 0 on ∂Ω, and with finite energy

semi-norm

‖u‖H� =
∫
Ω

|∇u|2dx.

Since the functions in H� are harmonic in D ′, the space H� is a closed subspace

of H1(Ω). Later on, we will give a new characterization of the space H� in terms

of the single layer potential on ∂D associated with the Neumann function of Ω.

We remark that T u = 0 for all u in H1
0 (D ′), and T u = u for all u in H1

0 (D) (the

set of functions H1(D) with trace zero).

We also remark that TH� ⊂ H� and hence the restriction of T to H� defines

a linear bounded operator. Since we are interested in harmonic functions in D

and D ′, we only consider the action of T on the closed space H�. We further keep

the notation T for the restriction of T to H�. We will prove later that T has only

isolated eigenvalues with an accumulation point 1/2. We denote by (λ−n)n≥1 the

eigenvalues of T repeated according to their multiplicity, and ordered as follows

0 < λ−1 ≤ λ
−
2 ≤ · · · <

1
2
,

in (0,1/2] and, similarly,

0 > λ+
1 ≥ λ

+
2 ≥ · · · >

1
2
.

the eigenvalues in [1/2,1). The eigenvalue λ∞ = 1/2 is the unique accumulation

point of the spectrum. To ease the notation we further denote the orthogonal

spectral projector on the eigenspace associated to 1/2, by
∫
∂Ω
w±∞dσw

±
∞(x). Next,

we will characterize the spectrum of T via the mini-max principle.

Proposition 3.2.1. [10] The variational Poincaré operator has the following decom-
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position

T =
1
2
I +K, (3.5)

where K is a compact self-adjoint operator. Let w±n , n ≥ 1 be the eigenfunctions
associated to the eigenvalues (λ±n)n≥1. Then

λ−1 = min
0,w∈H�

∫
D
|∇w(x)|2dx∫

Ωe
|∇w(x)|2dx

λ−n = min
0,w∈H�,w⊥w−1 ,··· ,w

−
n−1

∫
D
|∇w(x)|2dx∫

Ωe
|∇w(x)|2dx

= min
Fn⊂H�,dim(Fn)=n

max
w∈Fn

∫
D
|∇w(x)|2dx∫

Ωe
|∇w(x)|2dx

, (3.6)

and similarly

λ+
1 = max

0,w∈H�

∫
D
|∇w(x)|2dx∫

Ωe
|∇w(x)|2dx

λ+
n = min

0,w∈H�,w⊥w+
1 ,··· ,w

+
n−1

∫
D
|∇w(x)|2dx∫

Ωe
|∇w(x)|2dx

= max
Fn⊂H�,dim(Fn)=n

min
w∈Fn

∫
D
|∇w(x)|2dx∫

Ωe
|∇w(x)|2dx

. (3.7)

We have the following decomposition of u(x,ω) in the basis of the eigenfunc-

tions of the variational Poincaré operator T .

Theorem 3.2.1. [10] Let u(x,ω) be the unique solution to the system (3.1). Then,
the following decomposition holds:

u(x,ω) = k−1
0 u0(x) +

∞∑
n=1

∫
∂Ω
f (z)w±n(z)ds(z)

k0 +λ±n(k(ω)− k0)
w±n(x), x ∈Ω, (3.8)
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where u0 ∈H1
� (Ω) depends only on f and D, and is the unique solution to

4v = 0 in D ′,
∇v = 0 in D,

∂νΩv = f on ∂Ω,∫
∂Ω
vdσ = 0.

(3.9)

Proof. We first observe that frequency dependent part

uf = u − k−1
0 u0,

lies in H�. Since the eigenfunctions w±(x) form an orthonormal basis of H�, the

frequency part uf posses the following spectral decomposition:

uf (x) =
∞∑
n=1

∫
Ω

∇uf (z)∇w±n(z)dzw±n(x) x ∈Ω.

A straightforward computation leads to∫
Ω

∇uf (z)∇w±n(z)dz =
∫
Ω

∇u(z)∇w±n(z)dz.

On the other hand, since u ∈H1
� (Ω), we obtain∫

Ω

∇u(z)∇w±n(z)dz = λ±n

∫
D
∇u(z)∇w±n(z)dz

=
k0

k(ω)
λ±n

∫
∂D
∂νDu(z)|+w±n(z)dσ (z)

=
k0

k(ω)
λ±n

∫
D ′
∇u(z)∇w±n(z)dz − k0

k(ω)
λ±n

∫
∂Ω
f (z)w±n(z)dσ (z).

Using the simple fact that∫
Ω

∇u(z)∇w±n(z)dz =
∫
D
∇u(z)∇w±n(z)dz+

∫
D ′
∇u(z)∇w±n(z)dz,

we obtain the desired decomposition.
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3.3 Retrieval the frequency part

In this section, we will try to reconstruct the constants κ1, κ2 and κ3 in the

model (3.3) and the function u0 in the spectral decomposition (3.8) of the solu-

tion u(x,ω) from the multifrequency measurements by using an optimization

algorithm.

We consider the M frequencies of measurements ω1,ω2, · · · ,ωM correspond-

ing to the values of conductivity k(ω1), k(ω2), · · · , k(ωM), and the associated so-

lutions u(x,ω1),u(x,ω2), · · · ,u(x,ωM). As 1
2 is the unique accumulation point of

the eigenvalues (λ±n)n∈N, we only consider the Nf first eigenvalues as unknown

variables, and we approximate the others eigenvalues by 1
2 . That means, we

make the following approximation, for x ∈Ω, 1 ≤ p ≤M,

u(x,ωp) ≈ k−1
0 u0(x) +

Nf∑
n=1

1
k0 +λ±n(k(ωp)− k0)

v±n (x) +
2

k(ωp) + k0
vNf +1(x), (3.10)

where

v±n (x) =
∫
∂Ω
f (z)w±n(z)ds(z)w±n(x),

and

vNf +1(x) =
∑
n>Nf

∫
∂Ω
f (z)w±n(z)ds(z)w±n(x).

Using a simple integration by parts, we have, for all n ∈ N,∫
∂Ω
f (z)w±n(z)ds(z) =

∫
Ω

∇f(x)∇w±n(x)dx, (3.11)

where f is the unique solution in H1
� (Ω) to 4f = 0 in Ω,

∂νf = f on ∂Ω.
(3.12)

So, the function
∑∞
n=1 v

±
n is the orthogonal projection of the function f on the
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space H�. Moreover, u0 satisfies, for all n ∈ N,∫
Ω

∇u0(x)∇w±n(x)dx =
∫
Ω\D
∇u0(x)∇w±n(x)dx

=
∫
∂Ω
u0(x)

∂
∂ν
w±n(x)ds(x)−

∫
∂D
u0(x)

∂
∂ν
w±n(x)ds(x)

= 0−C
∫
∂D

∂
∂ν
w±n(x)ds(x)

= 0 (3.13)

As f−u0 ∈ H�, the orthogonal projection of f on the space H� is f−u0.

The formula (3.10) becomes,

u(x,ωp) ≈
k(ωp)− k0

k0(k(ωp) + k0)
u0(x) +

2
k(ωp) + k0

f(x)

+
Nf∑
n=1

(
1

k0 +λ±n(k(ωp)− k0)
− 2
k(ωp) + k0

)v±n (x). (3.14)

Now we want to reconstruct κ1, κ2, κ3 and u0(x) by an optimization algorithm.

In order to do so, we need an a priori estimation of the eigenvalues λ̃±n ∈ [0,1] for

1 ≤ n ≤ Nf . We will not recover the eigenvalues λ±n for the reason that they all

vary in a relatively narrow interval such that the reconstruction of u0 is not very

sensitive to the variations of those eigenvalues.

Let (xj)1≤j≤Nd ∈ ∂Ω be a discretization of the boundary ∂Ω, and define, for

1 ≤ j ≤Nd ,

Fj(U
(j)
0 ,V

±(j)
1 , · · · ,V ±(j)

Nf
,ω,κ1,κ2,κ3) :=

k(ω,κ1,κ2,κ3)− k0

k0(k(ω,κ1,κ2,κ3) + k0)
U

(j)
0 +

2
k(ω,κ1,κ2,κ3) + k0

f(xj)

+
Nf∑
n=1

(
1

k0 + λ̃±n(k(ω,κ1,κ2,κ3)− k0)
− 2
k(ω,κ1,κ2,κ3) + k0

)V ±(j)
n . (3.15)

where (U (j)
0 )1≤j≤Nd , (V ±(j)

n )1≤j≤Nd are vectors in RNd .
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The scheme consists in minimizing the functional,

Jm(U0,V
±
1 , · · · ,V

±
Nf
,κ1,κ2,κ3) :=

1
2

M∑
p=1

Nd∑
j=1

|u(xj ,ωp)−Fj(U
(j)
0 ,V

±(j)
1 , · · · ,V ±(j)

Nf
,ωp,κ1,κ2,κ3)|2. (3.16)

We can easily calculate its gradient from (3.15) and (3.3), for i = 1,2,3, 1 ≤ l ≤Nd
and 1 ≤ n ≤Nf ,

∂Jm
∂κi

=
M∑
p=1

Nd∑
j=1

(u(xj ,ωp)−Fj(·,ωp))
∂Fj
∂κi

(·,ωp), (3.17)

∂Jm

∂U
(l)
0

=
M∑
p=1

(u(xj ,ωp)−Fl(·,ωp))
∂Fl

∂U
(l)
0

(·,ωp), (3.18)

∂Jm

∂V
±(l)
n

=
M∑
p=1

(u(xj ,ωp)−Fl(·,ωp))
∂Fl

∂V
±(l)
n

(·,ωp), (3.19)

where we denote here Fj(U
(j)
0 ,V

±(j)
1 , · · · ,V ±(j)

Nf
,ωp,κ1,κ2,κ3) by Fj(·,ωp) in order

to simplify the notations.

The algorithm then follows the standard gradient method for 3 +Nd(1 + 2Nf )

variables. Once we have reconstructed the conductivity profile, i.e. the approxi-

mate values of κ1, κ2, κ3, we can use (3.14) again to calculate the approximate

conductivity k̃(ω) by (3.3) and the approximate u0. Letting x ∈ ∂Ω, we define,

Ũ (x,ω1, . . . ,ωM) =


ũ(x,ω1)

ũ(x,ω2)
...

ũ(x,ωM)


,
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L(λ̃±1 , . . . , λ̃
±
Nf
,ω1, . . .ωM) =


q0(ω1) q(λ̃+

1 ,ω1) q(λ̃−1 ,ω1) · · · q(λ̃−Nf ,ω1)

q0(ω2) q(λ̃+
1 ,ω2) q(λ̃−1 ,ω2) · · · q(λ̃−Nf ,ω2)

...
...

...
. . .

...

q0(ωM) q(λ̃+
1 ,ωM) q(λ̃−1 ,ωM) · · · q(λ̃−Nf ,ωM)


,

V (x) =



u0(x)

v+
1 (x)

v−1 (x)
...

v−Nf (x)


,

where ũ(x,ω) = u(x,ω)− 2
k̃(ω)+k0

f(x), q0(ω) = k̃(ω)−k0
k0(k̃(ω)+k0)

, and q(λ̃,ω) = 1
k0+λ̃(k̃(ω)−k0)

−
2

k̃(ω)+k0
. Then, the approximate relation (3.14) becomes

Ũ (x,ω1,ω2, · · · ,ωM) ≈ L(λ̃±1 , . . . , λ̃
±
Nf
,ω1, . . .ωM)V (x). (3.20)

We can therefore calculate the vector V from the following formula,

V (x) ≈ (LT L)−1LT Ũ (x,ω1, · · ·ωM). (3.21)

The approximate u0(x) is the first coefficient of the vector V (x).

We sum up our method to reconstruct u0 by the following algorithm:

1. Give an a priori estimation of eigenvalues (λ±n)1≤n≤Nf .

2. Chose a step length αm.

3. Initialize the vectors U0|0, V1|0, · · · ,Vn|0 and the coefficients κ1|0, κ2|0, κ3|0.

4. While |∇Jm| is larger then a threshold, we do

(a) Calculate the values of the functions Fj by (3.15), and ∇Jm by (3.17),

(3.18), (3.19).

(b) Update the parameters κi |k+1 = κi |k − α
∂Jm
∂κi

, U (l)
0 |k+1 = U

(l)
0 |k − α

∂Jm
∂U

(l)
0

,

and V ±(l)
n |k+1 = V ±(l)

n |k −α
∂Jm
∂V
±(l)
n

.
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5. When |∇Jm| is smaller then the threshold, we stop the iterations.

6. Use (3.21) with the approximate coefficients κi obtained in the previous

step to calculate the approximate value of u0(x) for every x ∈ ∂Ω.

3.4 Asymptotic expansion

Let Ω ⊂ R2 be a bounded domain with a C2 boundary ∂Ω. The inclusion to

determine D ⊂ Ω is also a C2 domain. We assume that the inclusion D has a

positive distance from ∂Ω: dist(D,∂Ω) ≥ δ > 0. Assuming f ∈ H−1/2
0 (Ω), we

consider the following equation,
4u = 0 in Ω \D,
∇u = 0 in D,
∂u
∂ν = f on ∂Ω,∫
∂Ω
udσ = 0.

(3.22)

Let Dε be the perturbed domain, which is given by

∂Dε = {x̃ : x̃ = x+ εh(x)ν(x),x ∈ ∂D}, (3.23)

where h ∈ C1(∂D) and ν denotes the unit outward normal vector. And we

consider the perturbed equation,
4uε = 0 in Ω \Dε,
∇uε = 0 in Dε,
∂uε
∂ν = f on ∂Ω,∫
∂Ω
uεdσ = 0

(3.24)

From the representation formula, the solution u can be written as

u(x) = SDφ(x) +SΩψ(x) x ∈Ω, (3.25)
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where φ = ∂u
∂ν |+ ∈ L

2
0(∂D) and ψ ∈ L2

0(∂Ω). From the same reason, we have,

uε(x) = SDεφε(x) +SΩψε(x) x ∈Ω. (3.26)

Using the jump relation and the facts that ∂u
∂ν |− = 0 on ∂D and ∂u

∂ν |− = f on ∂Ω,

the densities φ and ψ satisfy the following system, (−1
2I +K∗D)φ(x) + ∂

∂νSΩψ(x) = 0 on ∂D,
∂
∂νSDφ(x) + (−1

2I +K∗
Ω

)ψ(x) = f on ∂Ω.
(3.27)

This system can be also represented in a matrix form:

M

φψ
 :=

(−1
2I +K∗D) ∂

∂νSΩ
∂
∂νSD (−1

2I +K∗
Ω

)

φψ
 =

0

f

 . (3.28)

From the same reason, we have the following equation for the perturbed domain,

Mε

φεψε
 :=

(−1
2I +Kε∗Dε)

∂
∂νε
SΩ

∂
∂νSDε (−1

2I +K∗
Ω

)


φεψε

 =

0

f

 . (3.29)

3.4.1 Expansions of layer potentials

Let a,b ∈ R, a < b and X(t) : [a,b] → R2 be a parametrization of ∂D, which

satisfies X ∈ C2([a,b]) and |X ′(t)| = 1 for all t ∈ [a,b], then

∂D = {x = X(t), t ∈ [a,b]}. (3.30)

Then the outward unit normal vector ν(x) is given by ν(x) = R−π2 T (x), where R−π2
is the rotation with the angle −π2 and T (x) = X ′(t) denotes the tangential normal

vector. Also the curvature γ(x) satisfies

X ′′(t) = γ(x)ν(x). (3.31)

Then, the perturbed boundary ∂Dε can be parametrized by

∂Dε = {x̃ = X̃(t) = X(t) + εh(x)ν(x), t ∈ [a,b]}. (3.32)
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We denote the outward unit normal vector to ∂Dε at x̃ by ν̃(x̃). Then we have,

ν̃(x̃) = ν(x)− εh′(t)T (x) +O(ε2), (3.33)

where h′(t) = d
dth(X(t)) - we use also sometimes h′(x) to denote this quantity. We

can also obtain the length element dσε(ỹ),

dσε(ỹ) = dσ (y)(1− εγ(y)h(y) +O(ε2)) (3.34)

Let Ψε be the diffeomorphism from ∂D onto ∂Dε given by Ψε(x) = x+ εh(x)ν(x).

From [12], we have the asymptotic expansion of K∗D ,

(K∗Dεφ̃) ◦Ψε =K∗Dφ+ εK(1)
D φ+O(ε2), (3.35)

where φ̃ = φ ◦Ψ −1
ε . The operator K(1)

D is defined as:

K(1)
D φ(x) =

∫
∂D

[(
1

|x − y|2
−

2〈x − y,ν(x)〉2

|x − y|4
)h(x)−

〈x − y,T (x)〉
|x − y|2

h′(x)

−
ν(x),ν(y)
|x − y|2

h(y) +
2〈x − y,ν(x)〉〈x − y,ν(y)〉

|x − y|4
h(y)

−
〈x − y,ν(x)〉
|x − y|2

γ(y)h(y)]φ(y)dσ (y) (3.36)

Now we calculate the asymptotic expansion of the operators ∂
∂νSΩ on ∂D and

∂
∂νSD on ∂Ω. Let ψ ∈ L2

0(∂Ω) and x ∈ ∂D, then x̃ = x + εh(x)ν(x) ∈ ∂Dε, and we

have:

∂
∂νε
SΩψ(x̃) =

∫
∂Ω

〈x̃ − y, ν̃(x̃)〉
|x̃ − y|2

ψ(y)dσ (y),

=
∫
∂Ω

〈x+ εh(x)ν(x)− y,ν(x)− εh′(x)T (x)〉
|x+ εh(x)ν(x)− y|2

ψ(y)dσ (y) +O(ε2),

=
∂
∂ν
SΩψ(x) + ε(−h′(x)

∂
∂T
SΩψ(x) + h(x)S (1)

Ω
ψ(x)) +O(ε2),
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where ∂
∂T denotes the tangential derivative and S (1)

Ω
is defined by: for x ∈ ∂D,

S (1)
Ω
ψ(x) =

∫
∂Ω

[
1

|x − y|2
−

2〈x − y,ν(x)〉2

|x − y|4
]ψ(y)dσ (y). (3.37)

By the similar method, we obtain the asymptotic expansion of ∂
∂νSD . Let φ ∈

L2
0(∂D) and x ∈Ω,

∂
∂ν
SDεφ̃(x) =

∫
Dε

〈x − ỹ,ν(x)〉
|x − ỹ|2

φ̃(ỹ)dσε(ỹ),

=
∫
D

〈x − y − εh(y)ν(y),ν(x)〉
|x − y − εh(y)ν(y)|2

φ(y))(1− εγ(y)h(y))dσ +O(ε2),

=
∂
∂ν
SDφ(x) + ε{

∫
∂D

[−
〈ν(x),ν(y)〉
|x − y|2

+ 2
〈x − y,ν(x)〉〈x − y,ν(y)〉

|x − y|4
]h(y)φ(y)dσ (y)

−
∫
∂D

〈x − y,ν(x)〉
|x − y|2

γ(y)h(y)φ(y)dσ (y)}+O(ε2)

=
∂
∂ν
SDφ(x) + ε

∂
∂ν

[DD(hφ)−SD(γhφ)](x) +O(ε2). (3.38)

Then we have Mε =M + εMh +O(ε2), where the operator M1 on L2
0(∂D)×L2

0(∂Ω)

is defined by:

Mh :=

 K(1)
D −h′ ∂∂T SΩ + hS (1)

Ω
∂
∂νΩ

[DD(h·)−SD(γh·)] 0

 . (3.39)

So, the systems (3.28) and (3.29) imply thatφεψε
 =

φψ
+ ε

φhψh
+O(ε2), (3.40)

where

φhψh
 is given by φhψh

 = −M−1Mh

φψ
 . (3.41)

Thus, using the representation formula and the same calculus, we have also the
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asymptotic expansion of the solution u: for x ∈ ∂Ω:

uε(x) = u(x) + ε(SDφ1(x) +SΩψ1(x) +DD(hφ)(x)−SD(γhφ)(x)) +O(ε2). (3.42)

We denote by ũh the function SDφ1 +SΩψ1 in Ω and denote by uh the function

ũ +DD(hφ)−SD(γhφ). From (3.41), we have on ∂D,

∂ũh
∂ν
|− +K(1)

D φ− h
′ ∂
∂T
SΩψ + hS (1)

Ω
ψ = 0, (3.43)

and on ∂Ω,
∂ũh
∂ν
|− +

∂
∂ν

[DD(hφ)−SD(γhφ)] = 0. (3.44)

(3.44) implies that
∂uh
∂ν

= 0 on ∂Ω. (3.45)

By (3.25) and the fact that ∂
∂T u = 0 on ∂D, we have,

0 =
∂
∂T

h
∂u
∂T

(x),

=
∂
∂T

h
∂
∂T
SDφ(x) + h′(x)

∂
∂T
SΩψ(x) + h(x)

∂2

∂T 2SΩψ(x),

=
∂
∂T

h
∂
∂T
SDφ(x) + h′(x)

∂
∂T
SΩψ(x)

+ h(x)
∫
∂Ω

[
−1
|x − y|2

+ 2
〈x − y,ν(x)〉2

|x − y|4
+ 2γ(x)

〈x − y,ν(x)〉
|x − y|2

]ψ(y)dσ (y),

=
∂
∂T

h
∂
∂T
SDφ(x) + h′(x)

∂
∂T
SΩψ(x)− h(x)S (1)

Ω
ψ(x) + 2γ(x)h(x)

∂
∂ν
SΩψ(x),

which implies

− h′ ∂
∂T
SΩψ + hS (1)

Ω
ψ =

∂
∂T

h
∂
∂T
SDφ+ 2γh(

1
2
I −K∗D)φ (3.46)
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A similar calculus give us: for x ∈ ∂D

∂
∂T

h
∂
∂T
SDφ(x)

=
∫
∂D

[h′(x)
〈x − y,T (x)〉
|x − y|2

+ h(x)(
−1
|x − y|2

+
2〈x − y,ν(x)〉2

|x − y|4
+ 2γ(x)

〈x − y,ν(x)〉
|x − y|2

)]φ(y)dσ (y).

(3.47)

Thus,

K(1)
D φ(x)− h′ ∂

∂T
SΩψ(x) + hS (1)

Ω
ψ(x)

=
∫
∂D

[−
〈ν(x),ν(y)〉
|x − y|2

+ 2
〈x − y,ν(x)〉〈x − y,ν(y)〉

|x − y|4
]h(y)φ(y)dσ (y)

−
∫
∂D

〈x − y,ν(x)〉
|x − y|2

γ(y)h(y)φ(y)dσ (y) +γ(x)h(x)φ(x) (3.48)

By the continuity of the normal derivative of double layer potentials and the

jump relation, we have, for x ∈ ∂D,

∂
∂ν
|−[DD(hφ)−SD(γhφ)](x)

=
∫
∂D

[−
〈ν(x),ν(y)〉
|x − y|2

+ 2
〈x − y,ν(x)〉〈x − y,ν(y)〉

|x − y|4
]h(y)φ(y)dσ (y)

+
1
2
γ(x)h(x)φ(x)−

∫
∂D

〈x − y,ν(x)〉
|x − y|2

γ(y)h(y)φ(y)dσ (y). (3.49)

Using (3.43), (3.48) and (3.49), we have,

∂uh
∂ν
|− =

∂ũh
∂ν
|− +

∂
∂ν
|−[DD(hφ)−SD(γhφ)] = 0. (3.50)
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It means uh is the solution to the following equation:

4uh = 0 in D ∪ (Ω \D),
∂uh
∂ν |− = 0 on ∂D,

uh|+ −uh|− = −hφ on ∂D,
∂uh
∂ν = 0 on ∂Ω,∫
∂Ω
uhdσ = 0.

(3.51)

3.5 Inclusion reconstruction

3.5.1 Optimization algorithm

In this section, we consider a numerical scheme to reconstruct the domain

contained in a subset Ω0 ⊂Ω with dist(∂Ω0,∂Ω) ≥ δ0 > 0, using finitely many

measurements. The scheme is based on minimizing the functional

J(u) =
1
2

∫
∂Ω

P∑
i=1

|u −u(i)
meas|2dσ,

where u(i)
meas are the measured Dirichlet data corresponding to the i-th Neumann

data and where u is the solution to (3.1) associated to the current domainD ⊂Ω0.

In our numerical simulations, P = 2, we use two linearly independent Neumann

data: f1 = 〈e1,ν〉 and f2 = 〈e2,ν〉, where (e1, e2) is the canonical basis of R2.

We assume that our domain D is star shaped and its boundary ∂D can be

described by the Fourier series:

∂D = {X0 + r(θ)

cosθ

sinθ

 |θ ∈ [0;2π)}, r =
N∑

n=−N
cnfn, (3.52)

where C =


c−N
c−N+1
...

cN


∈ R2N+1, fn(θ) = cos(nθ) for 0 ≤ n ≤N and fn(θ) = sin(nθ) for

−N ≤ n < 0.
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Using (3.51) and integration by parts, we have the expressions of the shape

derivative corresponding to each Fourier coefficient, for −N ≤ n ≤N ,

∂J
∂cn

=
∫
Ω\D
∇w∇uhdX, (3.53)

where h(θ) = fn(θ)〈
cosθ

sinθ

 ,ν〉 and w is the solution of the following equation,


4w = 0 inΩ \D,
∂w
∂ν

= 0 on∂D
∂w
∂ν

= u −umeas on∂Ω.

(3.54)

The formula (3.53) is also valid for the shape derivative corresponding to the

displacement of X0, in these cases, h = 〈ei ,ν〉, i = 1,2.

Those expressions are the basis of the following iterative algorithm:

1. Chose an initial domain D0.

2. For each iteration, i > 0:

(a) Calculate the solution to (3.1) ui , associated to the domain Di for

which the boundary ∂Di is calculated by (3.52).

(b) Calculate the shape derivatives ∂J
∂x1

, ∂J
∂x2

and ∂J
∂cn

for all −N ≤ n ≤N .

(c) Update the parameters of the domain Xi+1 = Xi −α∇X0
J(Xi ,Ci) and

Ci+1 = Ci −α∇CJ(Xi ,Ci) with α > 0.

(d) If the updated domain is not entirely in Ω or if R becomes negative,

reduce the size of α.

3. When J(Xi ,Ci) becomes smaller than a fixed threshold, we stop.

3.6 Numerical examples

The setting of all numerical tests is as follows:
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• We use FreeFem++ for our numerical experiments.

• Ω is a centered ellipse defined by the equation: x
2
1

42 + x2
2

32 ≤ 1.

We also tried another case with ∂Ω2 = {[4 + 0.8(cosθ + sinθ) − (cos2θ +

sin2θ)](cosθ,sinθ),θ ∈ [0,2π)}.

• We use two linearly independent Neumann data: f1 = 〈e1,ν〉 and f2 = 〈e2,ν〉,
where (e1, e2) is the canonical basis of R2.

• The multifrequence conductivity follows the model (3.3) with κ1 = 3,

κ2 = 2, κ3 = 1 and ω are integers from 1 to 8.

• Only the first eigenvalues are taken into consideration, and their apriori

estimations are settled as λ̃+
1 = 3

4 , λ̃−1 = 1
4 respectively in all cases.

• In the algorithm to reconstruct u0 and the conductivity profile, the initial

guess of u0 is the function f, solution to the equation (3.12).

• The initial estimation of domain D is a centered disk with a radius 1
2 .

• We consider the first 15 Fourier coefficients: N = 15.

• We use P1 finite elements for the numerical resolution of the PDEs.

• At each iteration, we remesh the domain to adapt to the new predicted

position and shape of the domain.

• The algorithms stop if J < 10−5 or the number of iterations exceed 500. All

of the cases here have executed 500 iterations.

We present here several numerical simulations of the algorithm. We first

present ,in the following Table (3.1), the precision of our reconstruction method

of u0 and the reconstructed coefficients κ1, κ2, κ3 in Table (3.2). Here, er-

rors are the L2-norm of the difference u0reconstruct − u0: error(u0reconstruct) :=√∫
∂Ω
|u0reconstruct −u0|2dx. We show in the following figures the targets and

the reconstruction result. We calculate also the relative symmetric difference

|Di4Dtarget |/ |Dtarget | during the iterations, and we draw the curves of the sym-

metric difference to log(ui). We finally give the relative symmetric difference of
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• ellipse square near-boundary small-central in Ω2
f = f1 0.04707 0.11973 0.00956 0.00502 0.04208
f = f2 0.01583 0.09905 0.02436 0.00893 0.08556

Table 3.1 – Errors between u0reconstruct and u0

• real value ellipse square near-boundary small-central in Ω2
κ1 3 2.80971 3.36482 3.00287 6.65418 2.89787
κ2 2 1.79063 2.34197 1.96926 5.14671 1.86579
κ3 1 1.00212 0.987247 0.999658 1.13223 1.00446

Table 3.2 – Reconstructs conductivity coefficients

each case in Table 3.3.

• ellipse square near-boundary small-central in Ω2
|Di4Dtarget |/ |Dtarget | 0.07055 0.12187 0.24299 0.19471 0.120597

Table 3.3 – Relative symmetric difference
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Figure 3.1 – Example: ellipse
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Figure 3.2 – Example: square
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Figure 3.3 – Example: a near boundary concave domain
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Figure 3.5 – Example: The case in Ω2



Chapter4
Mathematical model of

electroreception

4.1 Introduction

Some species of fish have the ability to recognize the environment around them

by generating a weak electrical field at different frequencies. They possess an

electric organs, which can generate an electric field, and their skins are sensitive

to nearby electric fields. Their central nervous systems can identify objects

by analyzing the input electrical impulsion generated by themselves and the

received electrical signals from their skin. From the mathematical point of view

the electric waves can be described by Maxwell equations in the quasi-static

regime, and the behavior of the electrical field in the neighborhood of the fish

leads to an inverse conductivity problem with a finite number of excitations at

different frequencies, and a finite number of boundary measurements.

To identify its targets the weakly electric fish solves an inverse problem

that has many similarities with the studied multifrequency electric impedance

tomography problem in the previous chapter. Recall this latter method is a

recent imaging technique of biological tissues where one tries to take advantage

of the dependence of the conductivity on the frequency [10, 19]. Indeed, most

biological tissues exhibit frequency dependent conductivities, when excited by

electric waves with frequencies ranging roughly around 10kHz [57]. Experiments

53
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indicate that the electric fish sends out electric waves at different frequencies,

to gather information around its environment. Assuming that the target is a

different fish, our objective here is to explain how a weakly electric fish might

identify it. The proposed inverse problem has many potential bio-inspired

applications in underwater robotics [51, 34].

In this chapter we are interested in the case where the fish and the target fish

occupy respectively the bounded domains Ω ⊂ Rd , d = 2,3, and D ⊂ Rd \Ω. We

assume that the conductivity distribution around the fish, is given by

γ(x,ω) = 1 + (k(ω)− 1)χD(x),

with χD denotes the characteristic function of D, 1 is the conductivity of the

background, k(ω) : R+→ C \R−, is the conductivity of the target fish target, and

ω the frequency of the electric wave u produced by the fish. Recently shape

recognition and classification methods have been applied on small volume tar-

gets [20, 17]. In the present work we adapt the method developed in [10] to

the weakly electric fish inverse problem. We take advantage of multifrequency

measurements and combine unique continuation techniques for meromorphic

complex functions with a clever spectral representation of u involving eigen-

functions of the variational Poincaré operator, to reconstruct the conductivity

map γ . The spectral decomposition can be written in the form

u(x,ω) = u0(x) +uf (x,k(ω)),

where the function u0 is independent of the frequency ω, and represents the

limiting solution when the contrast k(ω) tends to ∞. In fact u0 is exactly the

electric potential when we substitute the target fish by a perfect conductor

with the same shape and position! Then, it is not surprising that one can

uniquely identify D from only one boundary measurement u0|∂Ω. The problem

of determining D from u0|∂Ω has been studied in many works, and optimal

stability estimates have been already derived (see e.g.[4]).

In this chapter, we are concerned with the multifrequency inverse inclusion

problem in unbounded domain. We first describe the mathematical model
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of electroreception. After introducing the weighted Sobolev space W1,−1(Rd),

which is the natural space where we solve the Laplace equation using variational

techniques in unbounded domains, we prove the existence and uniqueness

of solutions to the dierct problem. We then set up a spectral decomposition

using a modified variational Poincaré operator onW1,−1(Rd). Using the same

techniques of reconstruction as in [10], we derive the uniqueness of solutions to

the inverse problem, and obtain stability estimates. The numerical validation

of our theoretical approach is realized by reconstructing different targets using

synthetic data in the next chapter.

This chapter is organized as follows. In the next section, we present the

mathematical model of the weakly electric fish. In section 3, we study the well-

posedness of the partial differential equation system associated to the forward

problem. In section 4, we introduce the Poincaré variational operator, and we

study its spectrum. Then, we derive the spectral decomposition of the unique

solution to the forward problem in section 5. We derive uniqueness and stability

estimates to the inverse problem in section 6. The next chapter is devoted to

some numerical illustrations of the obtained theoretical results here. Similar

spectral decomposition is used to derive the frequency independent part u0 in

a bounded truncated numerical domain. Then, we introduce an optimization

scheme to reconstruct the position and shape of the target fish. Numerical

experiments are presented at the end.

4.2 The Mathematical Model

In this section we adapt the mathematical model of the weakly electric fish

introduced by Ammari et. al. in [6]. Let Ω ⊂ Rd , d = 2,3, be an open connected

and bounded region, which represents the electric fish. We suppose that ∂Ω

is of class C1,α for some α ∈ (0,1]. We denote by Ωe the exterior of Ω, that is

Ωe := Rd \Ω.

The target fish D is also assumed to be an open connected region in Ωe. We

assume that there exists δ > 0 such that dist(∂Ω,∂D) > δ. We define a class of

inclusions on which we study the uniqueness and stability of the inverse problem.

We assume that the inclusion D contains the origin. Let b1 = dist(0,∂Ω) and let
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b0 < b1. For m > 2 and ς ∈ (0,1], we define the class of inclusions

D :=
{
D := {x ∈ Rd : |x| < Υ (x̂), x̂ =

x
|x|
};b0 < Υ (x̂) < b1 − δ;‖Υ ‖C2,ς ≤m

}
.

We assume that the conductivity is equal to 1 everywhere except in the target D

where the conductivity is equal to k(ω). We denote by γ(x,ω) := 1 + (k(ω)−1)χD ,

the conductivity distribution in Ωe. Let u be the electric voltage produced by

the electric fish, satisfying the following system

4u = Js in Ω,

div[γ(x,ω)∇u] = 0 in Ωe,

∂νu|− = 0 on ∂Ω,

u|+ −u|− = ξ∂νu|+ on ∂Ω,

|u| =O( 1
|x|d−1 ) as |x| →∞,

(4.1)

where the constant ξ > 0 is the effective fish skin thickness, Js represents the

electric current source generated by the fish organs, and ∂ν designates the

derivative with respect to the the outward normal vector ν. We assume that Js
can be written as the sum of Dirac functions

Js =
M∑
j=1

αjδx(j)
s
, (4.2)

where M ∈ N \ {0}, x(j)
s ∈Ω and the electric charges αj ∈ R satisfy the neutrality

condition,
M∑
j=1

αj = 0. (4.3)
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Note that the equation (4.1) can also be rewritten as

4u = Js in Ω,

4u = 0 in Ωe \∂D,
∂νu|− = 0 on ∂Ω,

u|+ −u|− = ξ∂νu|+ on ∂Ω,

u|+ = u|− on ∂D,

∂νu|+ = k(ω)∂νu|− on ∂D,

|u| =O( 1
|x|d−1 ) as |x| →∞.

(4.4)

Assuming that k(ω) is a given continuous function, the weakly electric fish

inverse problem is to recover the shape and the position of the inclusion D from

measurements of the voltages u(x,ω) on the boundary ∂Ω for ω ∈ (ω,ω), where

ω,ω are fixed constants.

4.3 Well-posedness of the direct problem

In this section, we study the well-posedness of the direct problem (4.1). Firstly,

we introduce the Sobolev spaceW1,−1(Ωe). Secondly, we establish the existence

and uniqueness to (4.1) inW1,−1(Ωe).

4.3.1 Sobolev spaceW1,−1(Ωe)

In this subsection, we establish using variational techniques the existence and

uniqueness for the Laplace equations with a Robin boundary condition in Ωe.

To overcome the difficulties of integrating by parts in the unbounded exterior

domain Ωe, we introduce the following weighted Sobolev space [59].

Definition 4.3.1. • If d = 2,

W1,−1(Ωe) := {u;
u(x)

(1 + |x|2)1/2 log(2 + |x|2)
∈ L2(Ωe),∇u ∈ L2(Ωe)}. (4.5)
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• If d = 3,

W1,−1(Ωe) := {u;
u(x)

(1 + |x|2)1/2
∈ L2(Ωe),∇u ∈ L2(Ωe)}. (4.6)

Remark 4.3.1. We make the following observations.

- From the boundedness of the weight functions,W1,−1(U ) is identically equal to
the usual Sobolev space H1(U ) on any open bounded domain U .

- The space of infinitely differentiable functions with compact support D(Ωe) is
dense in the subspaceW1,−1

0 (Ωe) := {u ∈W1,−1(Ωe); u|∂Ω = 0}.

- The functions v ∈W1,−1(Ωe) satisfy the following decay behavior far from Ω

v(x) =O(
1
|x|d−2

), |x| → +∞. (4.7)

In particular, the constant functions belong toW1,−1(Ωe) when d = 2.

If d = 2, we introduce the space

L2
−1(Ωe) :=

{
u :

u(x)
(1 + |x|2)1/2 log(2 + |x|2)

} ∈ L2(Ωe)
}
.

We state now a useful compact embedding result involving these weighted

Sobolev spaces.

Lemma 4.3.1. The embeddingW1,−1(Ωe)→L2
−1(Ωe) is compact.

The proof follows the same approach used in [1].

Proof. If the embeddingW1,−1(R2)→L2
−1(R2) is compact, then it is also compact

for any connected domain O ⊂ R2. So, without loss of generality, we only

consider the case O = R2.

Letting u ∈ D(R2), we have

u(ρ,θ) = −
∫ ∞
ρ

∂u
∂r

(r,θ)dr, (4.8)
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where (r,θ) are the polar coordinates.

Then,

|u(ρ,θ)|2

(1 + ρ2)(log(2 + ρ2)2)
≤ C 1

ρ2(log(ρ))2

∫ ∞
ρ
|∂u
∂r
u(r,θ)|2dr, (4.9)

for ρ ≥ ρ0 > 0.

Denoting by BcR the exterior of the ball BR = B(0,R), we have,∫
BcR

|u(x)|2

(1 + |x|2) log(2 + |x|2)2dx

≤ C
∫ 2π

0
dθ

∫ ∞
R

1
ρ(log(ρ))2

∫ ∞
ρ
|∂u
∂r
u(r,θ)|2drdρ

≤ C 1
log(R)

‖u‖W1,−1(R2) (4.10)

By density, this inequality holds for any u ∈W1,−1(R2). Let (ui)i∈N be a bounded

sequence inW1,−1(R2). To prove that this sequence is a precompact in L2
−1(R2),

it is sufficient to show

i) for ε > 0, there exists R such that ‖ui‖L2
−1(BcR) < ε for all i.

ii) for any bounded part O ⊂ R2, (ui |O)i∈N is a precompact.

The first point is a direct consequence of the previous inequality. The second

point can be obtained by applying the Rellich-Kondrachov Theorem. Thus, the

result of the lemma follows.

4.3.2 Well-posedness

In this subsection we establish the existence and uniqueness to (4.1) inW1,−1(Ωe).

Lemma 4.3.2. If d = 2, let α > 0. Then there exist β > 0 such that ∀u ∈W1,−1(Ωe),∫
Ωe

|∇u|2dx+α
∫
∂Ω
u2dσ ≥ β‖u‖2L2

−1(Ωe)
. (4.11)
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Proof. We suppose by a contradiction argument that (4.11) is not true. The

opposite of the statement of the lemma implies that there exists a sequence

(um)m∈N with um ∈W1,−1(Ωe), ‖um‖W1,−1(Ωe) = 1, such that∫
Ωe

|∇um|2dx+α
∫
∂Ω
u2
mdσ <

1
m
‖um‖2L2

−1(Ωe)
. (4.12)

From the previous compact imbedding result, there is a subsequence, which

we always denote by (um)m∈N, convergent in L2
−1(Ωe). Moreover, (4.12) implies

that (∇um)m∈N converges to 0 in L2(Ωe). So, the sequence (um)m∈N converges to

a constant in W1,−1(Ωe). We deduce again from relation (4.12) that the trace

of um converge to 0, thus the sequence (um)m∈N converges to 0, which is in

contradiction with the normalization assumption.

Theorem 4.3.1. Let α > 0, f be in the dual space (W1,−1(Ωe))∗, and g ∈H−1/2(∂Ω).
Then, the following Laplace equation with Robin boundary condition −4u = f in Ωe,

u −α∂νu = g on ∂Ω.
(4.13)

admits a unique weak solution inW1,−1(Ωe).

Proof. A variational formulation to (4.13) is given by

∀v ∈W1,−1(Ωe),∫
Ωe

∇u∇vdx+
1
α

∫
∂Ω
uvdσ =

∫
Ωe

f vdx+
1
α

∫
∂Ω
gvdσ (4.14)

It follows from the trace theorem that the left-hand side is a bounded bilinear

form and the right -hand side is a bounded linear form. We study separately the

dimension two and dimension three cases for the coercivity of the bilinear form.

i) If d = 2, the coercivity is a direct consequence of lemma 4.3.2.

ii) If d = 3, we deduce from Theorem 2.5.13 in [59], that there exists a constant

c > 0 such that ∀u ∈W1,−1(Ωe),

‖u‖W1,−1(Ωe) ≤ c‖∇u‖L2(Ωe) (4.15)
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Then, the left-hand side bilinear form in (4.14) is coercive.Thus, the result

follows from the Lax-Milgram Theorem.

From the previous theorem, and without considering the asymptotic behavior

u(x) = O( 1
|x|d−1 ) as |x| → ∞, we have the existence of solutions to (4.1) up to a

constant. In order to establish the uniqueness of the solution, we will give

necessary conditions on the trace of the interior and exterior solutions u|∂Ω− and

u|∂Ω+ respectively, such that the exterior solution satisfies the desired asymptotic

behavior.

We split the equation (4.1) into two parts, the interior part
4ui = Js in Ω,
∂ui
∂ν = 0 on ∂Ω,∫
∂Ω
uidσ = 0,

(4.16)

and the exterior part
div[(1 + (k(ω)− 1)χD)∇u] = 0 in Ωe,

u = ξ∂νu +ui + cu on ∂Ω,

|u| =O( 1
|x|d−1 ) as |x| →∞

(4.17)

where cu is a constant depending on u that has to be fixed. It is clear that there

exists a unique solution ui to (4.16). For a given constant cu theorem (4.3.1) guar-

antee the existence and uniqueness of solution to (4.17) inW1,−1(Ωe). Next, we

show that the decay O( 1
|x|d−1 ) of the exterior solution as |x| → +∞ will determine

uniquely the constant cu .

Lemma 4.3.3. Assume that cu is given. Then, the decay O( 1
|x|d−1 ) at infinity implies

1
|∂Ω|

∫
∂Ω
udσ = cu . (4.18)
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Proof. Recall the variational formulation for (4.14) with f = 0 and g = ui + cu .

∀v ∈W1,−1(Ωe),∫
Ωe

γ(x)∇u∇vdx+
1
ξ

∫
∂Ω

(u − cu)vdσ =
1
ξ

∫
∂Ω
uivdσ.

We further distinguish two different cases:

i) d = 2.

Since the constants belong toW1,−1(Ωe), by taking v = 1 in the previous

variational formulation we obtain the desired result.

ii) d = 3.

Let BR be a ball centered at 0 with radius R > 0, and assume that R is large

enough such that Ω ⊂ BR. Multiplying (4.17) by 1 and integrating by parts

lead to

1
ξ

∫
∂Ω

(u − cu)dσ = R2
∫
S2
∂νu(Rt)dt,

where S2 is the unit sphere in R3. Since u is harmonic in Ωe and decays

as O( 1
|x|2 ) when |x| → +∞, by expanding it in the spherical harmonic basis

[59], we can easily obtain that ∂νu(Rt) = O( 1
R3 ) as R→ +∞ uniformly in

t ∈ S2. Consequently, the right hand term in the previous inequality tends

to zero as R→ +∞, which achieves the proof of the lemma.

Taking into account the results of lemma 4.3.3, we can rewrite the represent

part of the system (4.1) as follows
div[(1 + (k(ω)− 1)χD)∇u] = 0 in Ωe,

u − 1
|∂Ω|

∫
∂Ω
udσ − ξ∂νu = ui on ∂Ω,

|u| =O( 1
|x|d−1 ) as |x| → +∞,

(4.19)
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where ui is the unique solution to the system (4.16).

Let

W1,−1
� (Ωe) =

{
u ∈W1,−1(Ωe); |u| =O(

1
|x|d−1

) as |x| → +∞
}
. (4.20)

Then, the following is the main result of this subsection.

Theorem 4.3.2. The forward problem (4.1) has a unique solution inW1,−1
� (Ωe).

Proof. Multiplying the equation (4.19) by v in W1,−1
� (Ωe) and integrating by

parts we obtain the following variational formulation

∀v ∈W1,−1(Ωe),∫
Ωe

γ(x)∇u∇vdx+
1
ξ

∫
∂Ω

(u −
?
∂Ω
u)(v −

?
∂Ω
v)dσ =

1
ξ

∫
∂Ω
uivdσ,

where
>
∂Ω
udσ = 1

|∂Ω|

∫
∂Ω
udσ .

We claim that the left-hand bilinear form is coercive. In fact, when d = 3

we deduce from [59], that the term
∫
Ωe
∇u∇vdx is coercive onW1,−1(Ωe). When

d = 2 it is proved in [26] that the term
∫
Ωe
∇u∇vdx is also coercive onW1,−1

� (Ωe).

Then, by Lax-Milgram Theorem we obtain the desired result.

We introduce the fundamental solution Γ to the Laplace operator in Rd .

Definition 4.3.2. Denoting by ωd the area of the unit sphere in Rd , the fundamental
solution to the Laplace operator is given by

Γ (x,y) =

 1
2π ln(|x − y|) d = 2,

− 1
ωd
|x − y|2−d d ≥ 3.

(4.21)

A direct consequence of theorem 4.3.1 is the following corollary.
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Corollary 4.3.1. Let y ∈ Ωe be fixed. Then, there exists a unique solution to the
system 

4G(x,y) = δy in Ωe,

G − ξ ∂G∂ν = 0 on ∂Ω,
G − Γ ∈W1,−1(Ωe).

(4.22)

The singular function G(x,y) is the Green function of the Laplace operator in Ωe with
the Robin boundary condition.

4.4 The Poincaré Variational Problem

In this section, we introduce the Poincaré variational problem by following

the approach in [10],[26]. We denote byW1,−1
� (Ωe), the subspace of functions

v ∈ W1,−1(Ωe) satisfying |v(x)| = O( 1
|x|d−1 ) as |x| → ∞. It follows from [59], [26]

that the spaceW1,−1
� (Ωe) endowed with the scalar product

〈u,v〉W1,−1
� (Ωe)

:=
∫
Ωe

∇u∇vdx

is a Hilbert space. Thus, the following bilinear form defines also an equivalent

scalar product onW1,−1
� (Ωe),

a(u,v) :=
∫
Ωe

∇u∇vdx+
1
ξ

∫
∂Ω
ūv̄dσ ,

where ū := u − 1
|∂Ω|

∫
∂Ω
udσ .

For u ∈W1,−1
� (Ωe), we infer from the Riesz Theorem that there exist a unique

T u ∈W1,−1
� (Ωe) such that for all v ∈W1,−1

� (Ωe),∫
Ωe

∇T u∇vdx+
1
ξ

∫
∂Ω
T uv̄dσ =

∫
D
∇u∇vdx. (4.23)

It is easy to obtain that the operator T :W1,−1
� (Ωe)→W

1,−1
� (Ωe) is self-adjoint

and bounded. The spectral problem for T reads as: Find (w,λ) ∈W1,−1
� (Ωe)×R,
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w , 0, such that ∀v ∈W1,−1
� (Ωe),

λ

∫
Ωe

∇w∇vdx+
λ
ξ

∫
∂Ω
w̄v̄dσ =

∫
D
∇w∇vdx. (4.24)

We remark that all functions w ∈H1
0 (D) are eigenfunctions of T corresponding

to the eigenvalue λ = 1. As those eignenfunctions equal to 0 on ∂Ω, they have

not any contribution in the spectral decomposition which will be introduced

later, we consider from now on the eigenvalues λ , 1.

Integrating by parts, we can obtain that an eigenfunction w is harmonic in

D and in D ′ := Ωe \D, and on ∂D, we have the transmission and boundary

conditions

w|+∂D = w|−∂D , ∂νw|+∂D = (1− 1
λ

)∂νw|−∂D , w|∂Ω − ξ∂νw|∂Ω =
1
|∂Ω|

∫
∂Ω
wdσ,

(4.25)

where w|±∂D(x) = limt→0w(x± tν(x)) for x ∈ ∂D. In other words, w is a solution to

(4.1) for k = 1− 1
λ < 0, and Js = 0.

We define the space H� as the spaces of the harmonic functions in D and in

D ′ which are continuous across ∂D, with a Robin boundary condition ū = ξ∂νu

on ∂Ω and the asymptotic behavior |u| = O( 1
|x|d−1 ) as |x| → ∞, and with a finite

energy semi-norm

‖u‖2
H�

:=
∫
Ωe

|∇u|2dx+
1
ξ

∫
∂Ω
|ū|2dx. (4.26)

We remark that TH� ⊂ H�, thus T defines a bounded operator from H� into H�.

We note always by T the restriction of T on H�.

We define now, with this kernelG, the single layer potential SD :H−1/2(∂D)→
H� and the Poincaré operator K∗D :H−1/2(∂D)→H−1/2(∂D).

Definition 4.4.1. Let φ ∈H−1/2(∂D), we define, for x ∈Ωe

SD[φ](x) =
∫
∂D
G(x,y)φ(y)dσ (y), (4.27)
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and, for x ∈ ∂D,

K∗D[φ](x) =
∫
∂D

∂
∂νx

G(x,y)φ(y)dσ (y). (4.28)

K∗D is a compact operator on L2(∂D) (see lemma 2.13 in [7]). Since the

function G and the Laplace Green’s function in the whole space have equivalent

weak singularities as x→ y (see Lemma 2.14 in [8] for the proof’s sketch and

section 2.5.5 in [59] for the regularity), we have the same jump relations through

the boundary ∂D, that is,

∂νSD[φ]±(x) = (±1
2
I +K∗D)[φ](x). (4.29)

Now, we state the characterization of the spectrum of T .

Theorem 4.4.1. The variational Poincaré operator T has the following decomposition,

T =
1
2
I +K, (4.30)

where K is a compact, self-adjoint operator. Let w±n , n ≥ 1 be the eigenfunctions
associated to the eigenvalues (λ±n)n≥1, we have the following formula via the min-max
principle.

λ−1 = min
0,w∈H�

∫
D
|∇w(x)|2dx∫

Ωe
|∇w(x)|2dx+ 1

ξ

∫
∂Ω
|w̄|2dx

λ−n = min
0,w∈H�,w⊥w−1 ,··· ,w

−
n−1

∫
D
|∇w(x)|2dx∫

Ωe
|∇w(x)|2dx+ 1

ξ

∫
∂Ω
|w̄|2dx

= min
Fn⊂H�,dim(Fn)=n

max
w∈Fn

∫
D
|∇w(x)|2dx∫

Ωe
|∇w(x)|2dx+ 1

ξ

∫
∂Ω
|w̄|2dx

, (4.31)
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and similarly

λ+
1 = max

0,w∈H�

∫
D
|∇w(x)|2dx∫

Ωe
|∇w(x)|2dx+ 1

ξ

∫
∂Ω
|w̄|2dσ

λ+
n = max

0,w∈H�,w⊥w+
1 ,··· ,w

+
n−1

∫
D
|∇w(x)|2dx∫

Ωe
|∇w(x)|2dx+ 1

ξ

∫
∂Ω
|w̄|2dx

= max
Fn⊂H�,dim(Fn)=n

min
w∈Fn

∫
D
|∇w(x)|2dx∫

Ωe
|∇w(x)|2dx+ 1

ξ

∫
∂Ω
|w̄|2dx

. (4.32)

Proof. We define the operator K : H�→ H�, for all v ∈ H�,

2(
∫
Ωe

∇Ku∇vdx+
1
ξ

∫
∂Ω
Kuv̄dσ ) =

∫
D
∇u∇vdx −

∫
D ′
∇u∇vdx − 1

ξ

∫
∂Ω
ūv̄dσ .

(4.33)

We observe that K is bounded and self-adjoint. A direct calculation shows that

T =
1
2
I +K. (4.34)

It is shown in [7] that the single layer potential SD : H−1/2(∂D) → H1/2(∂D)

is invertible in dimension three, and we can modify SD slightly to show the

invertibility in dimension two.

Integrating by parts in the right-hand side (4.33), and using the jump relation

(4.29), we find∫
Ωe

∇Ku∇vdx+
1
ξ

∫
∂Ω
Kuv̄dσ =

∫
∂D
K∗D[S−1

D [u|∂D]]vdσ. (4.35)

Since K∗D is compact the operator K is compact.

From Fredholm’s alternative, T is a Fredholm operator of index 0, and the

spectral decomposition (4.31), (4.32) follows from the min-max principle.
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Corollary 4.4.1. If u ∈ H�, then u has the spectral decomposition.

u(x) =
∞∑
n=1

u±nw
±
n(x), (4.36)

where
u±n =

∫
Ωe

∇u∇w±ndx+
1
ξ

∫
∂Ω
ūw̄±ndx. (4.37)

4.5 Spectral decomposition of the solution u(x,ω)

Theorem 4.5.1. Let u(x,ω) be the unique solution to the system (4.1). Then, the
following decomposition holds:

u(x,ω) = u0(x) +uf (x,k(ω))

= u0(x) +
1
ξ

∞∑
n=1

∫
∂Ω
uiw

±
ndσ

1 +λ±n(k(ω)− 1)
w±n(x), x ∈Ωe, (4.38)

where u0 ∈W
1,−1
� (Ωe) is the unique solution to the system:

4v = 0 in Ωe \ D̄,
∇v = 0 in D,
v −

>
∂Ω
vdσ = ξ∂νv +ui on ∂Ω,

|v| =O( 1
|x|d−1 ) as |x| →∞,

(4.39)

and ui ∈ L2(Ω) is the unique solution to the equation:
4v = Js in Ω,
∂νv = 0 on ∂Ω,∫
∂Ω
vdσ = 0.

(4.40)
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Proof. Let u∅ be the unique solution to

4v = Js in Ω,

∂νv|− = 0 on ∂Ω,∫
∂Ω
v|−dσ = 0,

4v = 0 in Ωe,

v|+ −
>
∂Ω
v|+dσ − v|− = ξ∂νv|+ on ∂Ω,

|v| =O( 1
|x|d−1 ) as |x| →∞.

(4.41)

Denote u := u − u∅, u is therefore harmonic in D and in Ωe \ D̄. Moreover, it

satisfies

u|+ −
?
∂Ω
u|+dσ = ξ∂νu|+ on ∂Ω.

Then u ∈ H�, and admits the following spectral decomposition:

u(x) =
∞∑
n=1

u±nw
±
n(x), (4.42)

where

u±n =
∫
Ωe

∇u∇w±ndx+
1
ξ

∫
∂Ω
uw̄±ndσ. (4.43)

Otherwise, u is the unique solution to
−div(γ(x,ω)∇u) = div(γ(x,ω)∇u∅) in Ωe,

u− ξ∂νu = 1
|∂Ω|

∫
∂Ω
udσ on ∂Ω,

|u| =O( 1
|x|d−1 ) as |x| →∞.

(4.44)

Multiplying the first equation in (4.44) by w±n , and integrating by parts over Ωe,

we have

u±n =

∫
Ωe

div(γ(x,ω)∇u∅)w±ndx

1 +λ±n(k(ω)− 1)
. (4.45)

The term
∫
Ωe

div(γ(x,ω)∇u∅)w±ndx can be understood as a dual product be-

tween div(γ(x,ω)∇u∅) ∈ (W1,−1(Ωe))∗ and w±n ∈ W1,−1(Ωe). It can be simplified
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by means of integration by parts:∫
Ωe

div(γ(x,ω)∇u∅)w±ndx

= −
∫
Ωe

γ(x,ω)∇u∅∇w±ndx −
∫
∂Ω
∂νu∅w

±
ndσ

= −
∫
Ωe

∇u∅∇w±ndx − (k(ω)− 1)
∫
D
∇u∅∇w±ndx −

1
ξ

∫
∂Ω

(u∅|+ −u∅|−)w±ndσ

= −
∫
Ωe

∇u∅∇w±ndx − (k(ω)− 1)
∫
D
∇u∅∇w±ndx −

1
ξ

∫
∂Ω

(u∅|+ −u∅|−)w̄±ndσ

= −[
1
λ±n

+ (k(ω)− 1)]
∫
D
∇u∅∇w±ndx+

1
ξ

∫
∂Ω
u∅|−w±ndσ, (4.46)

where u∅|− is exactly the unique solution to (4.40), it means, u∅|− = ui .

Thus, it follows that

u±n = −

∫
D
∇u∅∇w±ndx
λ±n

+

∫
∂Ω
uiw

±
ndσ

ξ[1 +λ±n(k(ω)− 1)]
. (4.47)

Let ũ0 ∈ H� be the unique solution to the system
4ũ0 = 0 in Ωe \ D̄,
∇ũ0 = ∇u∅ in D,

ũ0 − ξ
∂ũ0
∂ν = 1

|∂Ω|

∫
∂Ω
ũ0dσ on ∂Ω,

|ũ0| =O( 1
|x|d−1 ) as |x| →∞.

(4.48)

Since w±n is an eigenfunction of T and ũ0 ∈ H�, we have∫
D
∇u∅∇w±ndx = λ±n[

∫
Ωe

∇ũ0∇w±ndx+
1
ξ

∫
∂Ω
ũ0w̄

±
ndσ ], (4.49)

which gives

u±n = −[
∫
Ωe

∇ũ0∇w±ndx+
1
ξ

∫
∂Ω
ũ0w̄

±
ndσ ] +

∫
∂Ω
uiw

±
ndσ

ξ[1 +λ±n(k(ω)− 1)]
. (4.50)



4.6. Uniqueness and stability estimates 71

On the other hand a simple calculations yields

u∅ − ũ0 = u0. (4.51)

Combining (4.50) amd (4.51), the decomposition (4.38) follows.

Corollary 4.5.1. Let x ∈ ∂Ω. Then the function k 7→ uf (x,k) is meromorphic in C.
The poles of uf (x,k) are the real values solutions to the equations

1 +λ±n(k − 1) = 0, n ≥ 1 (4.52)

where λ±n are the eigenvalues of the variational Poincaré operator T .

The poles of uf (x,k) in the previous corollary are given by k±n = (1− 1
λ±n

) ∈ R−,
and they can be ordered as follows:

k−1 ≤ k
−
2 ≤ · · · < −1 < · · · ≤ k+

2 ≤ k
+
1 < 0 (4.53)

We remark that −1 is the only accumulation point of the sequence of poles, it

means k±n tends to −1 as n→∞.

4.6 Uniqueness and stability estimates

We establish our uniqueness and stability estimates by modifying slightly the

proofs in sections 3 and 4 of [10], we invite readers to consult [10] for detail

proofs.

The weakly electric fish inverse problem has a unique solution within the

class D, and we have the following stability estimates.

Theorem 4.6.1. Let D and D̃ be two inclusions in D. Denote by u and ũ respectively
the solution of (4.1) with the inclusion D (resp. D̃). Let

ε = sup
x∈∂Ω,ω∈[ω,ω]

|u − ũ|.
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Then, there exist constants C and τ ∈ (0,1), such that the following estimate holds:

|D4D̃ | ≤ C
(

1
ln(ε−1)

)τ
. (4.54)

Here, 4 denotes the symmetric difference and the constants C and τ depend only on
Js,Ω,D and Σ = {k(ω);ω ∈ (ω,ω)}.

Moreover, if the boundaries are analytic, we have a Hölder-type stability

estimate.

Theorem 4.6.2. Assume that d = 2, and let D and D̃ be two analytic inclusions in
D. Denote by u and ũ respectively the solution of (4.1) with the inclusion D (resp.
D̃). Let

ε = sup
x∈∂Ω,ω∈[ω,ω]

|u − ũ|.

Then, there exist constants C and τ ′ ∈ (0,1), such that the following estimate holds:

|D4D̃ | ≤ Cετ
′
. (4.55)

Here, 4 denotes the symmetric difference and the constants C and τ depend only on
Js,Ω,D and Σ.



Chapter5
Numerical identification of the target

fish

In this chapter, we develop a numerical scheme to determine the position and

shape of the target fish. Regarding the decay of the solution of (4.1) as |x| →
+∞, we first reduce the computational domain by taking a Dirichlet boundary

condition on a large disk B containing the fish Ω and the inclusion D. In fact we

will show that a similar spectral decomposition holds in the truncated problem.

Using this spectral decomposition, our numerical algorithm splits into two main

steps. The first step is to retrieve the frequency dependent part in the spectral

decomposition, and the second step is to reconstruct the inclusion from the

Cauchy data of u0 on ∂Ω obtained in the first step. Precisely, we recover the fish

target by using an optimization scheme that minimizes a given energy functional

on the boundary ∂Ω with respect to to the inclusion shape.

5.1 The mathematical model in a truncated domain

In order to implement the numerical identification method, we need to reduce

the system (4.1) to a bounded domain. Let B be a centered disk large enough

such that it contains the electric fish Ω and the target fish D. We substitute (4.1)

by the system

73
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

4ũ = Js in Ω,

div[γ(x,ω)∇ũ] = 0 in B \Ω,
∂ν ũ|− = 0 on ∂Ω,

ũ|+ − ũ|− = ξ∂ν ũ|+ on ∂Ω,

ũ = 0 on ∂B,∫
∂B
∂ν ũdσ = 0.

(5.1)

Here, we always suppose that Js is taken in the form (4.2) and the electric charges

always satisfy (4.3). Then it follows from the standard theory to elliptic partial

differential equations that (5.1) admits a unique solution in

W0 :=
{
u ∈H1(B \Ω)∪H1(Ω), u = 0 on ∂B,

∫
∂B
∂ν ũdσ = 0

}
.

We introduce the equivalent scalar product on W0 and the associated varia-

tional Poincaré operator T̃ .

ã(u,v) :=
∫
B\Ω
∇u∇vdx+

1
ξ

∫
∂Ω
ūv̄dσ .

For u ∈W0, by the Riesz theorem, there exists a unique T̃ u ∈W0 such that for all

v ∈W0, ∫
B\Ω
∇T̃ u∇vdx+

1
ξ

∫
∂Ω
T̃ uvdσ =

∫
D
∇u∇vdx. (5.2)

We introduce also the space H� the functions inW0, which are harmonic inD and

in B\ (Ω∪D), and which satisfy the zero Robin boundary condition u−ξ∂νu = 0

on ∂Ω.

Then, T̃ has similar spectral elements denoted (w±n , λ̃
±
n) than T .

We follow the analysis in the unbounded case to derive a similar spectral

decomposition for ũ.

Theorem 5.1.1. Let ũ(x,ω) be the unique solution to the system (5.1).
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Then the following decomposition holds, for x ∈ B \Ω,

ũ(x,ω) = ũ0(x) +uf (x,k(ω))

= ũ0(x) +
1
ξ

∞∑
n=1

∫
∂Ω
ũiw̃

±
ndσ

1 + λ̃±n(k(ω)− 1)
w̃±n(x), (5.3)

where u0 ∈W0 is the unique solution to the system:

4v = 0 in B \ (Ω∪D),

∇v = 0 in D,
v −

>
∂Ω
vdσ = ξ∂νv +ui on ∂Ω,

v = 0 on ∂B,∫
∂B
∂νvdσ = 0,

(5.4)

and ui ∈ L2(Ω) is the unique solution to the equation:
4v = Js in Ω,
∂νv = 0 on ∂Ω,∫
∂Ω
vdσ = 0.

(5.5)

5.2 Retrieval of the frequency independent part

We consider M frequencies of measurements ω1,ω2, · · · ,ωM . Since 1/2 is the

unique accumulation point of the eigenvalues (λ̃±n)n∈N, we only consider the Nf
first eigenvalues as unknowns, and we approximate the others eigenvalues by

1/2. In fact it has been shown in [56] that if D is Cβ with β ≥ 2 then for any

α > −2β + 3, we have

|λ̃±n − 1/2| = o(nα), n→ +∞.

If the boundary of D is C∞ smooth, then the eigenvalues will decay faster than

any power order. Recently H. Kang and his collaborators have showed the

exponential convergence of the eigenvalues in the case of analytic inclusions
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[21]. Therefore, we make the following approximation, for x ∈Ω, 1 ≤ p ≤M,

ũ(x,ωp) ≈ ũ0(x) +
Nf∑
n=1

v±n (x)
1 + λ̃±n(k(ωp)− 1)

+
2

k(ωp) + 1
vNf +1(x), (5.6)

where

v±n (x) =
1
ξ

∫
∂Ω
ũiw̃

±
ndσw̃

±
n(x),

and

vNf +1(x) =
1
ξ

∑
n>Nf

∫
∂Ω
ũiw̃

±
ndσw̃

±
n(x).

By a simple integration by parts, we have, for all n ∈ N,

1
ξ

∫
∂Ω
ũiw̃

±
ndσ =

∫
B\Ω
∇ũ∅∇w̃±ndx+

1
ξ

∫
∂Ω
ũ∅w̃

±
ndσ, (5.7)

where ũ∅ is the unique solution in W0 to
4ũ∅ = 0 in B \Ω,
ũ∅ −

>
ũ∅dσ − ξ∂ν ũ∅ = ũi on ∂Ω,

ũ∅ = 0 on ∂B∫
∂B
∂ν ũ∅dσ = 0.

(5.8)

So, the function
∑∞
n=1 v

±
n is the orthogonal projection of the function ũ∅ on the

space H�.
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On the other hand ũ0 satisfies, for all n ∈ N, n ≥ 1∫
B\Ω
∇ũ0∇w̃±ndx+

1
ξ

∫
∂Ω
ũ0w̃

±
ndσ

=
∫
B\(Ω∪D)

∇ũ0∇w̃±ndx+
1
ξ

∫
∂Ω
ũ0w̃

±
ndσ

= −
∫
∂Ω
ũ0∂νw̃

±
ndσ +

1
ξ

∫
∂Ω
û0w̃

±
ndσ −

∫
∂D
ũ0∂νw̃

±
ndσ

= −ũ0

∫
∂D
∂νw̃

±
ndσ = 0. (5.9)

As ũ∅ − ũ0 ∈ H�, the orthogonal projection of ũ∅ on the space H� is ũ∅ − ũ0.

Then, the formula (5.6) becomes

ũ(x,ωp) ≈
k(ωp)− 1

k(ωp) + 1
ũ0(x) +

2
k(ωp) + 1

ũ∅(x)

+
Nf∑
n=1

(
1

1 + λ̃±n(k(ωp)− 1)
− 2
k(ωp) + 1

)v±n (x). (5.10)

The previous equation can be formulated using the following matrix.

For x ∈ ∂Ω, we define the vectors

Ũ (x,ω1, . . . ,ωM) =
(
ũ(x,ωj)

)
,

V (x) =
(
ũ0(x),v+

1 (x),v−1 (x), . . . , v+
Nf

(x),v−Nf (x)
)
,

and

L(λ̃±1 , . . . , λ̃
±
Nf
,ω1, . . .ωM) = (Li)1≤i≤M ,where
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Li(x) =
(
q0(ωi),q(λ̃+

1 ,ωi),q(λ̃−1 ,ωi), · · · ,q(λ̃+
Nf
,ωi),q(λ̃−Nf ,ωi)

)
.

Here

ũ(x,ω) = ũ(x,ω)− 2
k(ω) + 1

ũ∅(x),

q0(ω) =
k(ω)− 1

(k(ω) + 1)
, and q(λ̃,ω) =

1

1 + λ̃(k(ω)− 1)
− 2
k(ω) + 1

.

The matrix formulation of (5.10) becomes then

ŨT (x,ω1,ω2, · · · ,ωM) ≈ L(λ̃±1 , . . . , λ̃
±
Nf
,ω1, . . .ωM)V T (x). (5.11)

So, the vector V can be obtained by the formula,

V T (x) ≈ (LT L)†LT ŨT (x,ω1, · · ·ωM). (5.12)

where (LT L)† is the pseudo-inverse of the matrix LT L. The conditioning of the

matrix (LT L)† depends on the distance between the frequency sampling values

ω0. The approximate ũ0(x) is then given by the first coefficient of the vector

V (x).

5.3 Identification of the target fish

In this section, we consider a numerical scheme to identify the inclusion D ∈D
from the knowledge of ũ0|∂Ω recovered in the previous section. The scheme is

based on minimizing the functional

J(D) =
1
2

∫
∂Ω

P∑
i=1

|ũ0 − ũ
(i)
meas|2dσ + εT

∫
∂D
dσ,

where ũ is the solution to (5.4). P designs the total number of measurements,

we take here P = 10. For 1 ≤ i ≤ 10, we use the fact that the electric fish can

swim around the target, ũ(i)
meas is the measured Dirichlet data corresponding to

the case while the electric fish locate in the i-th position. These quantities are
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obtained in the previous step by retrieving the frequency dependent part from

the multifrequency measurements. The term εT
∫
∂D
dσ represents the Tikhonov

regularization.

5.3.1 Shape derivative

Let Dε be the perturbed domain, given by

∂Dε = {x̃ : x̃ = x+ εh(x)ν(x),x ∈ ∂D}, (5.13)

where h ∈ C1(∂D) and ν denote the unit outward normal vector.

Theorem 5.3.1. We denote by ũ0 and by ũ0,ε respectively the solutions to the equation
(5.4) with the inclusion D (resp. Dε). Then, the following relation holds, for x ∈ ∂Ω,

ũ0,ε(x) = ũ0(x) + εũh(x) + o(ε), (5.14)

where ũh is the solution to the following equation

4v = 0 in B \ (Ω∪D),

∇v = 0 in D,
v = −h∂ν ũ0|+ on ∂D,
v −

>
vdσ − ξ∂νv = 0 on ∂Ω,

v = 0 on ∂B,∫
∂B
∂νvdσ = 0,

(5.15)

Proof. The result can be proved using layer potential techniques by following

the proof of Theorem 3.1 in [11].
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5.4 Gradient descent algorithms

We assume that our domain D is star shaped and centered at the origin. So its

boundary ∂D can be described by the Fourier series:

∂D = {r(θ)

cosθ

sinθ

 |θ ∈ [0;2π)}, r =
N∑

n=−N
cnfn, (5.16)

where C =


c−N
c−N+1
...

cN


∈ R2N+1, fn(θ) = cos(nθ) for 0 ≤ n ≤N and fn(θ) = sin(nθ) for

−N ≤ n < 0.

Using (5.15) and integration by parts, we deduce the expressions of the shape

derivatives corresponding to each Fourier coefficient, for −N ≤ n ≤N ,

∂J
∂cn

=
∫
B\Ω∪D

∇w∇ũhdx+ εT

∫
∂D
κhdσ, (5.17)

where h(θ) = fn(θ)〈
cosθ

sinθ

 ,ν〉, κ represents the curvature of ∂D and w is the

solution of the following equation
4w = 0 in B \Ω∪D,
∂νw = 0 on ∂D,

∂νw = ũ − ũmeas on ∂Ω,

w = 0 on ∂B.

(5.18)

Now, we are ready to introduce our iterative algorithm:

1. Calculate the interior solution ũi .

2. Using (5.12), retrieval of the frequency independent part ũ0 from the

multifrequency measurements. We get the Dirichlet data (û(i)
meas)1≤i≤P .

3. Chose an initial domain D0.
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4. For each iteration, j > 0:

(a) Using (5.4) associated to the domain Dj for which the boundary ∂Dj
is obtained from (5.16).

(b) Calculate the shape derivatives ∂J
∂cn

for all −N ≤ n ≤N by (5.17).

(c) Update the parameters of the domain Cj+1 = Cj −α∇CJ(Cj) with α > 0.

(d) If the updated domain boundary touches ∂Ω or if J(Cj+1) > J(Cj),

reduce the size of α.

5. When |∇J(Cj)| becomes smaller than a fixed threshold, we stop.

5.5 Numerical experiments

Figure 5.1 – Interior solution to the equation (5.1)

The setting of all numerical tests is as follows:

• We use FreeFem++ for our numerical experiments [42].

• B is a centered ball with the radius RB = 30.
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(a) without inclusion (b) inclusion presents

Figure 5.2 – Solutions to (5.1) in the presence/absence of inclusion

• Ω is an ellipse defined by the equation: x
2

32 + y2

42 ≤ 1.

• We assume that source function is given by a dipole type source, that

means, in the formula (4.2), M = 2, α1 = 100, α2 = −100, x(1)
s = (−3,1), and

x
(2)
s = (−3,−1).

The interior solution is illustrated in Figure 5.1.

• We profit the fact that the electric fish can swim around the target. We

chose P = 10 different locations to measure the multifrequency electric

potentials, those 10 positions are equi-distributed on the circle with a

radius 15. Figure 5.3 shows the 4 locations of them.

• The multifrequency conductivity follows the model k(ω) = kr + inω0 with

kr = 5, ω0 = 0.5 and n are integers from 0 to 7 [6].

• Only the first eigenvalues are taken into consideration, and their apriori

estimations are settled as λ̃+
1 = 3

4 , λ̃−1 = 1
4 respectively in all cases.

• The initial estimation of domain D is a centered disk with a radius 1
2 .

• We consider the first 9 Fourier coefficients: N = 9.
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Figure 5.3 – Different positions of the electric fish

• We set the Tikhonov regularization coefficient εT = 0.01.

• We use P1 finite elements for the numerical resolution of the PDEs.

• At each iteration, we remesh the domain to adapt to the new predicted

shape of the domain.

• The algorithms stop if |∇J | < 10−6 or the number of iterations exceed 100.

We present here several numerical simulations of the algorithm. We first present

in Table (5.1), errors in the reconstruction method of ũ0. Here, errors are the
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• ellipse triangle star displaced disk
measure 1 0.10132 0.06892 0.01411 0.05330
measure 2 0.07466 0.07384 0.03364 0.05010
measure 3 0.01637 0.05302 0.07036 0.04712
measure 4 0.00910 0.04580 0.05242 0.04388
measure 5 0.03460 0.06548 0.02822 0.03792
measure 6 0.06959 0.08078 0.03558 0.03408
measure 7 0.05795 0.06175 0.02743 0.03585
measure 8 0.02060 0.03240 0.03819 0.03891
measure 9 0.00675 0.02760 0.07660 0.04054

measure 10 0.03074 0.03623 0.05292 0.04663

Table 5.1 – Errors between ũ0reconstruct and ũ0

• ellipse triangle star displaced disk
|Di 4Dtarget |/ |Dtarget | 0.07128 0,1988 0.4232 0.16805

Table 5.2 – Relative symmetric difference

L2-norm of the difference ũ0reconstruct − ũ0:

error(ũ0reconstruct) :=

√∫
∂Ω
|ũ0reconstruct − ũ0|2dσ.

We show in the following figures the targets and the reconstruction result. We

calculate also the relative symmetric difference |Di 4Dtarget |/ |Dtarget | during the

iterations, and we draw the curves of the symmetric difference to the numbers

of iterations. We finally give the relative symmetric difference of each case in

Table 5.2.
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Figure 5.4 – Reconstruction of an ellipse
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Chapter6

Spectrum of Neumann-Poincaré

operator for two close-to-touching

inclusions

In a composite medium that contains close-to-touching inclusions, the pointwise

values of the gradient of the voltage potential may blow up as the distance δ

between some inclusions tends to 0 and as the conductivity contrast degenerates.

In [27], the authors showed that the blow-up rate of the gradient is related to

how the eigenvalues of the associated Neumann-Poincaré operator converge

to ±1/2 as δ→ 0, and on the regularity of the contact. Here, we consider two

connected 2-D inclusions, at a distance δ > 0 from each other. When δ = 0, the

contact between the inclusions is of order m ≥ 2. We numerically determine the

asymptotic behavior of the first eigenvalue of the Neumann-Poincaré operator,

in terms of δ and m, and we check that we recover the estimates obtained in [26].

89
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6.1 Eigenvalues of the Neumann-Poincaré operator

for two inclusions

Let D1,D2 ⊂ R2 be two bounded, smooth inclusions separated by a distance δ > 0.

We assume that D1 and D2 are translates of two reference touching inclusions

D1 = D0
1 + (0,δ/2) D2 = D0

2 + (0,−δ/2).

We assume that D0
1 lies in the lower half–plane x1 < 0, D0

2 in the upper half–

plane, and that they meet at the point 0 tangentially to the x1–axis (see Figure

6.1). We make the following additional assumptions on the geometry:

A1. The inclusions D0
1 and D0

2 are strictly convex and only meet at the point 0.

A2. Around the point 0, ∂D0
1 and ∂D0

2 are parametrized by 2 curves (x,ψ1(x))

and (x,−ψ2(x)) respectively. The graph of ψ1 (resp. ψ2) lies below (resp.

above) the x–axis.

A3. The boundary ∂D0
i of each inclusion is globally C1,α for some 0 < α ≤ 1.

A4. The function ψ1(x) +ψ2(x) is equivalent to C|x|m as x→ 0, where m ≥ 2 is a

fixed integer and C is a positive constant.

O

D
1

Γ2

D
2

Γ
1

O

D
1

D
2

δ e
2

δ

δ

Figure 6.1 – The touching and non–touching configurations.

Let a(X) be a piecewise constant function that takes the value 0 < k , 1 in

each inclusion and 1 in R2 \D1 ∪D2, that is a(X) = 1 + (k − 1)χD1∪D2
(X), where

χD1∪D2
is the characteristic function of D1 ∪D2. Given a harmonic function H ,

we denote u the solution to the PDE
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 div(a(X)∇u(X)) = 0 in R2

u(X)−H(X) → 0 as |X | →∞.
(6.1)

Since H is harmonic in the whole space the regularity of u at a fixed value

k, only depends on the smoothness of the inclusions and of their distribution [41].

One can express u in terms of layer potentials [59, 14]

u(X) = S1ϕ1(X) + S2ϕ2(X) +H(X), (6.2)

where Si denotes the single layer potential on ∂Di , defined for ϕ ∈H−1/2(∂Di) by

Siϕ(X) =
1

2π

∫
∂Di

ln |X −Y |ϕ(Y )dσ (Y ).

Denoting the conductivity contrast by λ =
k + 1

2(k − 1)
∈]−∞,−1/2[∪]1/2,+∞[, and

expressing the transmission conditions satisfied by u, one sees that the layer

potential ϕ = (ϕ1,ϕ2) ∈H−1/2(∂D1)×H−1/2(∂D2) satisfies the system of integral

equations

(λI −K∗δ)
 ϕ1

ϕ2

 =

 ∂ν1
H|∂D1

∂ν2
H|∂D2

 , (6.3)

where νi(X) denotes the outer normal at a point X ∈ ∂Di . The operator K∗δ is the

Neumann-Poincaré operator for the system of two inclusions

K∗δ

 ϕ1

ϕ2

 =

 K∗1 ∂ν1
S2|∂D1

∂ν2
S1|∂D2

K∗2

 ϕ1

ϕ2

 , (6.4)

where the integral operators K∗i are defined on H−1/2(∂Di) by

K∗iϕ(X) =
1

2π

∫
∂Di

(X −Y ) · νi(X)
|X −Y |2

ϕ(Y )dσ (Y ).
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In such a system of inclusions, for a fixed contrast |λ| > 1/2, the gradient of

the potential is bounded pointwise [28, 52, 14] independently of δ. This is an

important fact from the point of view of material sciences, where one would like

to control the ‘hot spots’ where gradients may become large [30]. The pointwise

control of the gradients is also particularly pertinent in the context of solid

mechanics. For instance, the constitutive laws of classical models of plasticity or

fracture involve pointwise values of the stress tensor. Similar qualitative results

hold in this case [53].

However, the gradients may blow up when both δ → 0 and the material

coefficients inside the inclusions degenerate [28]. How the bounds depend on

the inter-inclusion distance in the case of perfectly conducting inclusions was

studied in [62, 23]. Several works study the blow-up rate of the gradient in terms

of both parameter δ→ 0, and |λ| → 1/2 when the inclusions are discs. In this

case, the voltage potential u can be represented by a series, that lends itself to a

precise asymptotic analysis [9, 16, 15, 25, 30, 54]. In particular, optimal upper

and lower bounds on ∇u were obtained in [9, 16, 13].

In a recent work [26], we have used the above integral representation to

derive bounds on ∇u, as we had observed that in (6.3) the parameters λ and δ

are decoupled since K∗δ does not depend on λ. Following [48, 49], we showed

that K∗δ has a spectral decomposition in the space of single layer potentials. We

showed that its spectrum splits into two families of ordered eigenvalues λδ,±n
which satisfy

λδ,+n = −λδ,−n and 0 < λδ,+n < 1/2.

Consequently, denoting by ϕδ,±n the associated eigenvectors, the solution to (6.3)

can be expressed as

ϕ =

 ϕ1

ϕ2

 =
∑
n≥1

〈
ϕδ,±n ,

 ∂ν1
H|∂D1

∂ν2
H|∂D2

〉
λ−λδ,±n

ϕδ,±n . (6.5)

This formula indicates that the singularities of u are triggered by the fact that
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λ−λδ,±n may become small. Indeed, λ→±1/2 as k tends to 0 or to +∞, whereas

we have shown that λδ,±n →±1/2 as δ→ 0 [26].

We do not know if the expansion (6.5) holds in a pointwise sense, except

in the case of discs [27], where we can then directly relate the bounds on ∇u
to the asymptotic behavior of the eigenvalues. One of the difficulties is that

K∗δ is not self-adjoint. One can nevertheless symmetrize the operator [48]: The

expansion (6.5) holds in the sense of the following inner-product on the space

H−1/2(∂D1)×H−1/2(∂D2)

< ϕ,ψ >S = < −S[ϕ],ψ >L2

:= −
∫
∂D1

S1[ϕ1]ψ1 −
∫
∂D2

S2[ϕ2]ψ2, (6.6)

for which K∗δ becomes a compact self-adjoint operator, which therefore has a

spectral decomposition. Moreover, this implies that the eigenvalues of K∗δ can be

obtained via a min-max principle known as the Poincaré variational problem (in

the terminology of [48]). It consists in optimizing the ratio

J(u) =

∫
D1∪D2

|∇u|2∫
R2\D1∪D2

|∇u|2
,

among all functions u ∈ W 1,2(R2) whose restriction to D = D1 ∪ D2 and to

D ′ = R2 \D1 ∪D2 is harmonic.

Consider the weighted Sobolev space

W1,−1
0 (R2) :=


u(X)

(1 + |X |2)1/2 log(2 + |X |2)
∈ L2(R2)

∇u ∈ L2(R2), u(X) = o(1) as |X | →∞

 ,

equipped with the scalar product
∫
R2
∇u · ∇v [59]. We have shown in [26] that

the spectrum of K∗δ is related to the sprectrum of the operator Tδ defined for
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u ∈W 1,−1
0 (R2) by

∀ v ∈W 1,−1
0 (R2),

∫
R2
∇Tδu(X) · ∇v(X) =

∫
D1∪D2

∇u(X) · ∇v(X).

This operator is self adjoint, satisfies ||Tδ|| ≤ 1. Proposition 4 and Lemmas 1 and 2

in [26] show that its eigenvalues can be grouped in two families βδ,+n ⊂ [0,1/2],

and βδ,−n ⊂ [1/2,1], which are symmetric with respect to 1/2. The values βδ,−0 = 1

is an eigenvalue of Tδ, with associated eigenspace

Ker(I − Tδ) = {v|D ′ ≡ 0, v|D ∈H1
0 (D)}.

Due to the symmetry, βδ,+0 = 0 is also an eigenvalue, and its eigenspace is

Ker(Tδ) = {v|D ′ ∈W
1,−1
0 (D ′), v|D ≡ 0} ∪ Rw0,

where w0 is defined by
∆w0(X) = 0 inD ′,

w0(X) = Cj on ∂Dj j = 1,2,∫
∂Dj

∂w0

∂ν
= (−1)j j = 1,2.

(6.7)

The constants C1,C2 ∈ R are chosen so that w0 ∈W
1,−1
0 (R2).

All the other eigenvalues βδ,+n are given by the following min-max principle

βδ,+n = min
u∈W 1,−1

0 (R2),⊥w0,w
δ,+
1 ,··· ,wδ,+n

∫
D
|∇u(X)|2dX∫

R2 |∇u(X)|2dX

= max
Fn ⊂W

1,−1
0 (R2)

dim(Fn) = n+ 1

min
u∈Fn

∫
D
|∇u(X)|2dX∫

R2 |∇u(X)|2dX

The eigenvalues of Tδ are related to the λδ,±n ’s by

βδ,±n = 1/2−λδ,±n .
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The min-max characterization of Tδ allows to derive an asymptotic expansion

of the eigenvalues of the Neumann-Poincaré operator (see [26], Theorem 1) as

δ→ 0.

Theorem 6.1.1. For two close to touching inclusions with contact of order m, the
eigenvalues of the Neumann-Poincaré operator K∗δ split in two families (λ±n)n≥1, with λ+

n ∼ 1/2− c+
nδ

m−1
m + o(δ

m−1
m )

λ−n ∼ −1/2 + c−nδ
m−1
m + o(δ

m−1
m )

(6.8)

where (c±n)n≥1 are increasing sequences of positive numbers, that only depend on the
shapes of the inclusions, and that satisfy c±n ∼ n as n→∞.

In this work, we consider a numerical approximation of the spectral problem

for Tδ so as to give a numerical validation of the rates of convergence of λδ,+1 as

δ→ 0. The first eigenvalue λδ,+1 is of importance in applications since it is related

to the spectral radius of the operator K∗δ, and gives the rate of convergence of

Neumann series that appears in solving the integral equation (6.3) [61].

In Section 2, we show that the asymptotic behavior of the eigenvalues of Tδ
can be estimated by the eigenvalues of an operator of similar type, but defined

on a ball BR that contains the inclusions. In fact, by considering the auxiliary

spectral problem in a large ball BR, we reduce the computation to a bounded

domain.

In Section 3, we explain how we discretized the latter spectral problem, by

choosing a basis of functions which are harmonic polynomials on each inclusion,

extended as harmonic functions in BR \D1 ∪D2. Finally, numerical results for

βδ,+1 with different contact orders m are presented in Section 4.
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6.2 Comparison of Tδ with an operator defined on a

bounded domain

Let R > 2 be large enough, so that D1 ∪D2 ⊂ BR/2 when δ < δ0. It follows from

the Riesz Theorem that for any u ∈H1
0 (BR), there exists a unique Bδu ∈H1

0 (BR)

such that

∀ v ∈H1
0 (BR),

∫
BR

∇Bδu(X) · ∇v(X) =
∫
D1∪D2

∇u(X) · ∇v(X).

The operator Bδ maps H1
0 (BR) into itself, and it is easily seen to satisfy ||Bδ|| ≤ 1.

The argument in [26] concerning Tδ shows that Bδ is self adjoint and of Fredholm

type, thus has a spectral decomposition. Let bδ,±n denote its eigenvalues.

Theorem 6.2.1. Let n ≥ 1. There exists a constant C independent of δ and n such
that

1
C
bδ,+n ≤ βδ,+n ≤ Cbδ,+n . (6.9)

Proof: Let f ∈ H1/2(∂D) and let uf ∈W
1,−1
0 (R2) and vf ∈ H1

0 (BR) denote the

functions which are harmonic in R2 \D and in BR \D respectively, which are also

harmonic in D, and which satisfy uf = vf = f on ∂D. We will show that there

exists a constant C > 0 independent of δ and n such that for all f ∈H1/2(∂D)\{0},

1
C

∫
D
|∇vf |2∫

BR

|∇vf |2
≤

∫
D
|∇uf |2∫

R2
|∇uf |2

≤ C

∫
D
|∇vf |2∫

BR

|∇vf |2
. (6.10)

The statement of the theorem follows then from the min-max principle for the

operators Tδ and Bδ.

To prove (6.10), we first note that since uf and vf are harmonic in D and

coincide on ∂D, uf ≡ vf on ∂D, so that∫
D
|∇uf |2 =

∫
D
|∇vf |2. (6.11)
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Since the extension of vf by 0 outside of BR is a function of W 1,−1
0 (R2), we see

that ∫
R2
|∇u|2 ≤ min

w∈W 1,−1
0 (R2)

∫
R2
|∇w|2 ≤

∫
BR

|∇v|2,

which together with (6.11) proves the right-hand inequality in (6.10).

To prove the other inequality, let χ denote a smooth cut-off function, such

that χ ≡ 1 in BR/2 and χ ≡ 0 outside BR. We may also assume that ||χ||W 1,∞ ≤ 1.

The function ũf = χuf lies inH1
0 (BR), and there is a constant C that only depends

on R such that ∫
BR\D
|∇ũf |2 ≤ C

∫
R2\D
|∇uf |2.

Since ũf = uf = vf on ∂D, it follows from the Dirichlet principle that∫
BR\D
|∇vf |2 ≤

∫
BR\D
|∇ũf |2,

which combined with (6.11) yields the desired inequality.

6.3 Discretization

In the sequel, we estimate numerically the rate of convergence to 0 of the first

non-degenerate eigenvalue bδ,+1 , from which, using Theorem 6.1.1, we will infer

the behavior of βδ,+1 . To this end, we use the min-max principle to approximate

bδ,+1 by

bδ,+1,N = min
u∈VN

∫
D
|∇u(X)|2dX∫

BR
|∇u(X)|2dX

(6.12)

where VN is a finite dimensional subspace of H1
0 (BR). We construct approxima-

tion spaces VN in the following fashion LetX1 = (x1+iy1) ∈D1,X2 = (x2+iy2) ∈D2

and n ∈ N. Define φ±n,1,φ
±
n,2 : R2 −→ C by φn,1(z) = (z −X1)n,φn,2(z) = (z −X2)n,
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where z = x + iy. Let wm,m ≥ 1 be the H1
0 (D) functions which are harmonic in

BR \D and such that w4n−3 = Re(φn,1) inD1

w4n−3 = 0 inD2,

 w4n−2 = Im(φn,1) inD1

w4n−2 = 0 inD2, w4n−1 = 0 inD1

w4n−1 = Re(φn,2) inD2,

 w4n = 0 inD1

w4n = Im(φn,2) inD2.

We consider a conformal triangulation T of BR, which is refined in the neck

between the 2 inclusions. The width of the refined zone is chosen so that its

thickness is equal to 5δ at its extremities (see for instance Figures (6.2),(6.3) and

(6.4)) for the case of two discs. Let ŵm,m ≥ 1 denote the H1 projection of wm
on the space of functions which are piecewise linear on T . We define VN as the

vector space generated by the functions ŵm,m ≤ 4N .

We note that the functions wm,m ≥ 1 are linearly independent. Together with

the functions w0,1,w0,2 in H1
0 (BR) defined by ∆w0,i = 0 in BR \D, and w0,1 = 1 inD1

w0,1 = 0 inD2,

 w0,2 = 0 inD1

w0,2 = 1 inD2,

they from a basis of H1
0 (BR). We also note that the functions w0,i are the eigen-

functions of Bδ associated to the degenerate mode b0 = 0. To compute the

eigenvalues bδ,+1,N , we form the matrices A and B with entries

Ai,j =
∫
D1∪D2

∇ŵi · ∇ŵj , Bi,j =
∫
BR

∇ŵi · ∇ŵj ,

and then compute the generalized eigenvalues of the systemAU = λBU . We have

used the software Freefem++ [42] to compute the vectors ŵm, and Scilab [60] to

solve the above matrix eigenvalue problem.
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Figure 6.2 – Mesh refinement zone.

Figure 6.3 – Mesh for δ = 1/16.

Figure 6.4 – Mesh refinement near the contact point.
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6.4 Numerical results

We deduce from Theorems 6.1.1 and 6.2.1 that logbδ,+1,N ∼ logc+
1 + m−1

m logδ as δ

tends to 0. In this section, we draw the graph of logbδ,+1,N as a function of logδ,

and determine numerically its slope m−1
m . We first study the case where the

inclusions are two discs, and then we perturb the inclusions to have a contact

point with higher order.

6.4.1 The case of 2 discs

We start with the case of two discs D1 = Br(0, r +
δ
2

) and D2 = Br(0, r −
δ
2

) with

r = 2. Here, X1 and X2 in the construction of VN , are chosen to be the centers of

the discs D1 and D2.

Figure 6.5 – logbδ,+1,N as function of logδ.

Since the contact of order two, i.e. ψ1(x) +ψ2(x) ∼ C|x|2 as x→ 0, the theo-

retical slope is 1/2. Taking N = 39, the graph of logbδ,+1,N tends to the line with

equation t = −0.7934156 + 0.4307516s (see for instance Figure (6.5) ). The equa-
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tion of the line is computed using the least squares method.

The dimension of the space VN is 4N +2. Hence, we expect that the numerical

slope will tend to the theoretical one when N becomes larger. The following

table and graph give how does the numerical slope behave as a function of N ,

and shows a good agreement with the theoretical predictions.

Values of N equation of the line approximation

N = 9 t = −1.09526 + 0.2486835s

N = 19 t = −0.9099896 + 0.3700286s

N = 29 t = −0.8575362 + 0.4045268s

N = 39 t = −0.7934156 + 0.4307516s

Figure 6.6 – The effect of the dimension of VN on the values of bδ,+1,N .



102CHAPTER 6. Spectrum of Neumann-Poincaré operator for two close-to-touching inclusions

6.4.2 Contact of order m

Now, we consider shapes with different contact orders i.e. ψ1(x) +ψ2(x) ∼ C|x|m.

Let D1 and D2 be the perturbed half discs defined by (see Figure (6.7))

D1 = {−1 ≤ x ≤ 1, |x|m + δ ≤ y ≤ 1 + δ} ∪ {x2 + (y − 1− δ)2 ≤ 1, y ≥ 1 + δ},

D2 = {−1 ≤ x ≤ 1,−|x|m − δ ≥ y ≥ −1− δ} ∪ {x2 + (y + 1 + δ)2 ≤ 1, y ≤ −1− δ}.

Figure 6.7 – Domains D1 and D2

The points X1 and X2 in the construction of the space VN , are the centers

of the perturbed discs. The following table provide the numerical results for δ

between 1/2 and 1/27, and N = 39.
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m Equation of the line Theoretical slope Error

m = 2 t = −0.7934156 + 0.4307516s 1
2 = 0.5 0.0692484

m = 6 t = −0.1401772 + 0.8003479s 5
6 ' 0.83 0.03298543

m = 9 t = −0.2357561 + 0.8508496s 8
9 ' 0.89 0.03803929

We remark that the computed slopes are in a good agreement with the ex-

pected theoretical values.

6.5 Conclusion

We have studied the behavior of the eigenvalues of the Neumann-Poincaré oper-

ator for two close-to-touching inclusions in dimension two. We have validated

numerically the rates of convergence derived in [26]. We continue to study the

asymptotic behavior of the spectrum of the Neumann-Poincaré integral operator

for two close-to-touching inclusions in dimension three. We also plan to extend

the results of [27] to general geometries in dimension two. In dimension three

the sizes of the matrices A and B become too large and this may complicate

the computation of the generalized eigenvalues. In another line of research,

we propose to use an integral equation approach combined with an asymptotic

approximation of the kernels of the off-diagonal operators in the system (6.4)

around the contact point. We think that this approach is more appropriate to

dimension three and larger. We will report related results in future works.
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Conclusion

In this Phd thesis, we studied mathematical models of the inverse problem of

recovering an inclusion from boundary measurements : the model of electrical

impedance tomography (2) and the model of electroreception (4.1). We pro-

pose two different approaches to analyze the inverse problem, using either a

single measurement or using multifrequency measurements when the conduc-

tivity inside the inclusion is frequency dependent. In the latter case, we use

a representation of the voltage potential based on the spectral decomposition

of the Neumann-Poincaré operator. This led us to also study the asymptotic

behavior of the eigenvalues of Neumann-Poincaré operator in the case of two

close-to-touching inclusion.

Firstly, we have established the uniqueness of the inclusion recovery problem

using a single measurement, under the assumption that the inclusion has a

circular shape and we improved the stability estimate result in [37]. Our stability

estimate is valid even for non-zero input electrical current. Our numerical

simulations show that the Hölder stability coefficientin the stability estimateis

close to 1, which indicates that the dependence might actually be Lipschitz.

Secondly, we addressed similar questions in the case of multifrequency mea-

surements. We have shown that the unique solution to equation (3.1) has a spec-

tral decomposition (3.8) on the basis of eigenfunctions of the Neumann-Poincaré

operator associated to the inclusion D. Based on this spectral decomposition,

we have designed a numerical scheme to reconstruct the frequency profile k(ω)

and the geometry of the inclusion. From our numerical experiments, we remark

that the reconstructions of the conductivity inside the inclusion, as a function

of the frequency ω, are good in general, except when the inclusion is far from

the boundary where the measurements are taken. Our algorithm to reconstruct

105
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the inclusion is however quite costly, and it may take several hours to numer-

ically reconstruct a given shape. In particular, it proved extremely difficult to

reconstruct a non-convex shape with this algorithm.

Thirdly, concerning electroreception, we addressed the question of existence

and uniqueness of the solution to the forward problem (4.1). We derived a

spectral decomposition (4.38) of the voltage potential, using the same analysis as

for the EIT model. We derived a numerical algorithm to determine the volume

and the shape of the target, assuming that the position of its center and its

conductivity profile are known. This algorithm is however also very costly, and

to speed up the computations, we reduced the number of Fourier coefficients,

that parametrize the shape of the inclusion D.

Finally, we studied the asymptotic behavior of Neumann-Poincaré operator

for two close-to-touching inclusions. We designed an original numerical scheme

that projects functions on the space of harmonic polynomials. Our numerical

simulations show that the convergence rates agree with the theoretical prediction

[26], as the interinclusion distance δ tends to 0.

We conclude with a few perspectives that our work opens. Concerning the

EIT model under a single measurement (in 2D), it would be quite interesting to

generalize our results for the circle to the case of an ellipse or of an analytic shape.

This would have an important practical impact in the context of medical imaging

for instance. Generalizing the stability estimates in 3D is also challenging, even

when the inclusion is simply a ball.

As for the EIT model using multifrequency measurements, it would be

worthwhile to obtain more precise estimates on the eigenvalues of Neumann-

Poincaré operator and their rate of decay. The case of multiple inclusions also

addresses interesting questions. In particular, we would like to find out whether

such spectral decompositions could lead to a fast algorithm, that would allow

identification of one or several inclusions within a given set of shapes in real

time.

Finally, several questions concerning the spectrum of the Neumann-Poincaré

operator, in the context of close-to-touching inclusions remain open. In particu-

lar, it would be very interesting to study how the blow up of the gradient of the

voltage potential depends on the geometry of the contact points in dimension 3.
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Target identification using electroreception

Abstract

Electrolocation is the name given to the sensor ability for certain electric fish robots,
which are able to detect electrostatic perturbations caused to the presence of some
objects in their neighborhood. This ability to interpret an electrical signal to locate itself
in space opens important perspectives, including in the field of biologically inspired
robotics. Mathematically, electrolocation is linked to the electric impedance tomography:
so it’s about a non-linear inverse problem, particularly ill-posed problem. We will, in
this Phd, study some methods of reconstruction, which could be obtain robustly some
characteristic of the obstacle’s shape, rather all of their geometry details. So, it’s about
to study the stability between the observable part of the obstacles and the errors of
measurements.

Keywords: inverse problem, conduction equation, electroreception

Identification d’une cible par l’électro-localisation

Résumé

L’électro-localisation est le nom donné aux capacités sensorielles de certains poissons
électriques, vivant en eaux troubles, capables de détecter les perturbations électrosta-
tiques dues à la présence d’objets dans leurs voisinages. Cette aptitude à interpréter
un signal électrique pour se repérer dans l’espace ouvre l’importance perspectives,
notamment dans le domaine de la robotique brio-inspiré. Mathématiquement, l’électro-
localisation est proche de la tomographie d’impédance électrique : il s’agit donc d’un
problème inverse non linéaire, notoirement mal posé. Nous proposons dans cette thèse
d’étudier des méthodes de reconstruction qui permettraient d’obtenir de manière ro-
buste certaines caractéristiques de la forme des obstacles, plutôt que l’ensemble des
détails de leurs géométries. Il s’agit donc d’étudier la stabilité de la partie observable
des obstacles par rapport à des erreurs dans les mesures.

Mots clés : problème inverse, équation de conduction, électro-localisation

Laboratoire Jean Kuntzmann
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