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RÉSUMÉ

Le multiplication des appareils connectés a conduit à la production et au partage via
Internet d’une quantité considérable de données. Il y a plus de 1,8 milliard de sites
Web1 accessibles par Internet, contenant des données sous forme de texte, d’images, de
fichiers audio ou encore de vidéos. Cette grande quantité de données crée d’immenses
opportunités, mais également d’important défis, en particulier relativement à leur
compréhension, à leur analyse et à leur bonne organisation. Trouver des documents ou
des informations intéressants dans cette quantité considérable de données, nécessite un
système de recherche puissant et efficace. Pour concevoir un tel système, il est essentiel
d’avoir un certain degré de compréhension du contenu et un moyen efficace de com-
paraison basé sur cette compréhension. Ces problèmes deviennent encore plus difficiles
lorsque les données sont visuelles, parce que définir le sens ou le contenu de ce type
de données ne se fait pas sans une certaine dose de subjectivité. Et donc, trouver une
représentation capable de gérer les différentes significations sémantiques possibles des
données est difficile. Dans notre travail, nous nous attachons à résoudre ce problème
difficile à travers différentes contributions qui s’inscrivent dans la volonté de créer un
système de recherche d’images efficace.

Un système de recherche d’images est censé indexer et encoder une large base de
données de sorte que, lors d’une requête utilisateur, le système soit capable de récupérer
les images pertinentes en temps réel. Comme nous le verrons dans les sections suivantes,
un tel système repose sur une représentation précise et compacte des données.

Ce travail de thèse se concentre sur l’apprentissage de représentations d’images com-
pactes et leur utilisation dans le cadre d’une recherche d’images efficace et précise. En
particulier, il aborde la question de la recherche d’images à grande échelle.

Recherche d’images à grande échelle Les images sont présentes partout

sur Internet et se multiplient à un rythme effréné. Par exemple, 147 000 images sont
téléchargées chaque minute sur Facebook2. Cet accroissement exponentiel de la quan-
1http://www.internetlivestats.com/total-number-of-websites/
2https://sproutsocial.com/insights/facebook-stats-for-marketers/
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tité de données visuelles, largement entraı̂né par la mise à disposition du grand public
de caméras à bas prix, nécessite que nous développions des systèmes de recherche et
de classification des images, afin d’augmenter la pertinence des contenus échangés. En
outre, la recherche devrait être basée sur le contenu visuel des images, qui peuvent ou
non bénéficier de métadonnées. Pour une comparaison précise des images, nous avons
besoin d’une représentation d’image qui soit adaptée au type de comparaison désirée.
D’importants efforts de recherche existent sur l’apprentissage de telles représentations,
qu’elles reposent sur des descripteurs empiriques ou sur des réseaux de neurones con-
volutifs (convolution neural network, CNN). Les représentations d’images actuellement
à la pointe de la recherche sont basées sur des CNN et offrent une excellente précision
pour identifier le contenu visuel d’image (classification) ou pour comparer des images
(recherche et fouilles basées sur la similarité). Ces représentations sont de grande di-
mension, typiquement 128 à 4096.

Lorsque la recherche se fait à grande échelle, il est nécessaire qu’elle soit efficace.
L’efficacité repose sur la rapidité de comparaison des images, en limitant les accès disque
qui sont coûteux, et en stockant les représentations vectorielles des images sur des
mémoires rapides de type RAM.

Ainsi, pour une recherche à grande échelle, il est important d’avoir une représentation
compressée des images, car cela permet au système d’avoir l’ensemble de la base de
données dans la mémoire principale, évitant ainsi les va-et-vient suboptimaux entre
le système et le disque dur. Pour nous rendre compte des avantages de la compres-
sion, considérons l’exemple suivant, qui porte sur la recherche d’images via un ordina-
teur portable. Supposons que nous ayons 8 Go de RAM disponible, notre mémoire ne
peut contenir qu’un demi-million de vecteurs de dimension 4096, qui ont chacun be-
soin de 16Ko (en supposant des représentations en virgule flottante de 4 octets). Une
représentation comprimée de 8 octets nous permet au contraire d’en stocker un milliard,
soit 2000 fois plus. A noter qu’il est possible de stocker sur un serveur dans le cloud
les images : tout ce dont nous avons besoin pour la recherche est la représentation com-
pressée de ces images sur notre ordinateur portable. Une fois les images intéressantes
trouvées, il ne nous restera plus qu’à récupérer ces images dans le serveur en linge.

Une autre exigence, essentielle, est que le calcul de la similarité/dissimilarité en-
tre la requête et les points de la base de données soit efficace. De gros efforts
de recherche ont été réalisés dans l’apprentissage des représentations d’images qui
nous permettent de comparer deux images. Certaines de ces approches nécessitent
également que ces représentations soient compactes; d’autres méthodes, au contraire
– en particulier destinées à la recherche à grande échelle – comprennent une phase de
réduction/compression dimensionnelle.

Dans la suite de ce résumé, nous discuterons brièvement de solutions qui pourraient être
appliquées à la recherche à grande échelle, et présenterons nos contributions sur ce sujet.
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Recherche des plus proches voisins

Supposons que nous ayons un excellent extracteur de caractéristiques pour les im-
ages, disons f (.), et que, pour une image Ii , il donne un vecteur de dimension D ,
xi = f (Ii ) ∈ RD . Supposons également que la similitude de contenu entre deux images
est captée sous la forme d’une distance entre leurs caractéristiques respectives. Formelle-
ment, supposons que d(xi , xj) < d(xi , xk) implique que Ii et Ij sont plus similaires que Ii

et Ik , où d(., .) correspond à une mesure de distance, par exemple la distance euclidienne.
Alors notre problème qui consiste à trouver des images similaires devient un problème
de recherche des plus proches voisins dans l’espace des caractéristiques. Conséquence
de la malédiction de la dimension, toute recherche du plus proche voisin ne peut être en
pratique d’une complexité inférieure à l’ordre de grandeur de la base de données multi-
plié par D . Par conséquent, à grande échelle, la recherche exacte du voisin le plus proche
prend énormément de temps et nécessite un important espace de stockage. Comme cela
a été mentionné précédemment, il est important d’avoir une représentation compressée
avec un moyen efficace de calculer la distance ou la similarité entre les caractéristiques.
Donc, étant données les contraintes pratiques, faire un calcul de distance exact n’est pas
réalisable ; il existe cependant des approches qui satisfont ces contraintes pratiques avec
un calcul de distance approximatif. On parle alors de recherche approchée plus proches
voisins (approximate nearest neighbor search, ANNs), i.e., la recherche d’éléments de la base
qui ont une probabilité élevée d’être les plus proches voisins.

Les deux approches les plus populaires pour effectuer une recherche des ANNs sont la
quantification vectorielle (vector quantization, VQ) et le hachage.

Dans les méthodes de hachage pour la recherche des ANNs, les éléments de la base sont
d’abord associés à un code binaire en utilisant plusieurs fonctions de hachage. Ces fonc-
tions sont censées préserver approximativement la relation de distance existant entre les
éléments. La comparaison est réalisée à l’aide de la distance de Hamming entre les codes
binaires, et est donc rapide à opérer.

L’autre approche pour la recherche des ANNs est la quantification vectorielle (VQ). C’est
un moyen populaire de compresser les vecteurs. Dans le cadre de cette approche, les
vecteurs sont approximativement représentés par un ou plusieurs vecteurs prédéfinis
(codeword). Cette représentation approximative conduit à une forme compressée, étant
donnée que chaque élément de la base est représenté par un ou quelques identifiants
qui renvoient aux codeword(s) de code. Pour trouver les plus proches voisins d’une
cible objet d’une requête, celle-ci est simplement comparée aux représentations approx-
imatives des images de la base, ce qui fait que cette méthode est très efficace. Cette
comparaison peut même être réalisée sans quantification de la requête; on appelle alors
cette comparaison calcul de distance asymétrique (ADC). Comparée à une recherche avec
requête quantifiée, ADC conduit à une meilleure approximation de la distance avec la
même complexité, grâce à l’utilisation d’une table de correspondance (lookup table, LUT)
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spécifique à la requête, comme nous le verrons dans la section 2.2. La recherche par
ADC est appelée recherche asymétrique, par opposition à la recherche dite symétrique, i.e.,
lorsque la requête est compressée ou quantifiée comme c’est le cas pour les vecteurs de la
base de données. Par rapport au hachage, les approches par VQ offrent une plus grande
précision, ce qui en fait une alternative largement utilisée (bien que le hachage soit plus
rapide que la VQ).

Dans notre travail présenté dans le chapitre 3, nous étendons l’idée de la VQ en ap-
prochant les vecteurs de la base de données avec un codage parcimonieux contraint. Pour
être plus précis, nous utilisons une somme pondérée de codewords pour représenter
un vecteur de caractéristiques. Les poids de ces combinaison appartienent à un sous-
ensemble fini de possibilités. En particulier, nous montrons comment nous pouvons
reformuler deux quantificateurs vectoriels populaires, la quantification produit (Product
Quantization, PQ) et la quantification vectorielle résiduelle (RVQ), à l’aide de notre ap-
proche de codage parcimonieux contraint, afin d’obtenir une meilleure reconstruction et
une meilleure précision de recherche.

Apprentissage supervisé d’une représentation compacte

L’apprentissage supervisé a bénéficié à diverses tâches visuelles. L’apprentissage supervisé
peut être défini comme l’apprentissage d’une fonction qui relie une entrée à une sortie,
cohérente avec les paires entrée-sortie de l’ensemble d’apprentissage. L’apprentissage
supervisé des réseaux profonds a permis d’atteindre des gains de performances remar-
quables pour de nombreuses tâches d’analyse visuelle telles que la classification, la lo-
calisation ou la recherche par le contenu, pour n’en citer que quelques-unes.

L’apprentissage supervisé par de CNN pour la classification d’images est large-
ment utilisé pour l’extraction de représentations d’images à des fins variées. Ces
représentations sont ensuite utilisées telles quelles ou après raffinement (généralement
supervisé) pour résoudre différents problèmes tels que l’appariement d’images, la
recherche par le contenu, la classification, le suivi, la localisation, etc. Ces représentations
profondes se présentent sous la forme de vecteur de grande,voire très grande dimension.
Bien que puissantes, elles ne sont donc pas adaptées à la recherche à grande échelle.
Ceci est dû au fait que le calcul de distance ou de similarité entre des vecteurs de grande
dimension est coûteux en temps calcul et nécessite également un stockage important.
Aussi, il est important d’obtenir une représentation compressée. Certaines approches
utilisent la VQ ou le hachage pour compresser la représentation, comme mentionné
précédemment, tandis que d’autres approches sont fondées sur l’apprentissage super-
visé de représentations compactes.

D’intéressants progrès ont récemment eu lieu dans le domaine de l’apprentissage de
représentations compactes à l’aide CNN. La plupart des approches imposent à la
représentation d’être binaire. Par analogie aux approches de hachage, celles-ci sont ap-
pelées méthodes de �hachage profond�. La plupart de ces approches s’appuient sur un
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entraı̂nement supervisé pour améliorer les performances de recherche.

Sachant que les méthodes basées sur la VQ sont souvent plus performante que celles
basées hashage, nous proposons une nouvelle méthode à base des réseaux de neu-
rones convolutifs profonds produisant des codes binaires supervisés, compacts, struc-
turés, pour la recherche visuelle. Cette nouvelle méthode peut être vue comme une vari-
ante de la VQ à base d’apprentissage profond, comme encodeur pour la recherche par
le contenu. Notre méthode s’appuie sur une nouvelle nonlinéarité softmax par blocs et des
nouvelles fonctions de perte entropiques par batch qui concourrent à une nouvelle structure
dans les codes appris. Nous montrons que notre méthode surpasse celles de l’état de
l’art basées sur le hachage profond ou la VQ pour la recherche de catégorie, la recherche
d’instance et la classification. Ce travail est présenté en détail dans le chapitre 4.

Indexation inversée pour une recherche efficace

Jusqu’à présent, nous avons examiné plusieurs idées sur la façon d’obtenir une
représentation compressée fonctionnelle et de chercher efficacement ces représentations
à grande échelle. Il existe une autre approche complémentaire, qui est essentielle pour
la recherche à très grande échelle, reposant sur une recherche non exhaustive.

La base de données de grande taille est divisée en plusieurs listes disjointes. Chacune de
ces listes a un vecteur ou centroı̈de représentatif. Au moment de la recherche, la requête
est comparée à tous ces centroı̈des et seulement quelques listes sont sélectionnées. Seules
les images de la base de données figurant dans ces listes sont ensuite comparées à la
requête. Ainsi, la recherche est-elle limitée à un ensemble restreint de représentations, ce
qui permet de limiter grandement le temps de recherche. Ces méthodes reposant sur la
consultation uniquement d’un petit nombres de listes font appel à un ”index inversé”.

Dans le travail qui sera présenté dans cette thèse, nous étendons les idées présentées
dans le chapitre 4 à l’apprentissage supervisé d’index inversés. En outre, nous proposons
un apprentissage unifié des composants, de l’index inversé et de l’encodeur. Ce travail
sur l’apprentissage supervisé de bout en bout d’un système complet d’indexation est
présenté dans le chapitre 5.

Contenu et contributions de la thèse

Cette thèse porte sur la construction de systèmes de recherche par le contenu à grande
échelle. La figure 1 montre le processus par lequel s’effectue la recherche, qui consiste en
l’indexation de la base de données et la recherche des images les plus pertinentes étant
donnée l’image requête. Il existe différents systèmes de recherche. La figure 2, met en
exergue les particularités des différents systèmes de recherche existant, et des systèmes
que nous avons conçus. Dans le chapitre 2, nous nous intéressons à plusieurs systèmes
de recherche appliqués à la recherche à grande échelle, et au contexte dans lequel ils ont
été conçus. Dans les trois chapitres qui suivent, nous présentons nos contributions.

7
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• Dans le chapitre 3, nous traitons le problème de la recherche approximative du plus
proche voisin. Nous proposons d’approcher les vecteurs de la base de données
par un codage parcimonieux contraint, avec les poids atomiques (ou codeword nor-
malisés) limités à un sous-ensemble fini. Contrairement aux méthodes de codage
parcimonieux traditionnelles, le codage structuré quantifié proposé inclut l’utilisation
de la mémoire comme contrainte de conception, ce qui nous permet d’indexer une
collection importante telle que le benchmark BIGANN. Nos expériences, réalisées sur
des benchmarks standards, montrent que notre formulation conduit à des solutions
compétitives.

• Dans le chapitre 4, nous introduisons SUBIC, un code binaire structuré supervisé pour
encoder des images pour une recherche efficace d’images à grande échelle. Le code
binaire structuré est produit par un réseau neuronal convolutif profond supervisé en
utilisant une non-linéarité bloc-softmax et des fonctions de perte entropique par batch.
Nous montrons que notre méthode surpasse les représentations compactes de l’état de
l’art basées sur le hachage profond ou la quantification structurée dans la recherche
de catégorie intra et interdomaine, la recherche d’instance et la classification.

• Dans le chapitre 5, nous étendons le travail présenté au chapitre 4 pour l’apprentissage
de l’index complet. Dans ce travail, nous proposons un premier système qui apprend
les deux composants, un index inversé et un encodeur, dans un cadre neuronal uni-
ficateur de codage binaire structuré. Nous montrons que notre méthode atteint des
résultats de pointe dans la recherche d’image à grande échelle.

Enfin, dans le chapitre 6, nous résumons nos contributions et discutons de quelques
directions possibles.
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Figure 1: Pipeline de recherche d’images à grande échelle. Les images de la base de données
sont indexées avec un index inversé et compressées avec des codes compacts. Pour la requête,
soit elle est compressée (recherche symétrique), soit elle est projetée pour définir une table de
correspondance (recherche asymétrique).
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Figure 2: Parties du système de recherche. Le tableau présente divers systèmes de recherche et
nos contributions.
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ABSTRACT

This thesis addresses the problem of large-scale image search. To tackle image search
at large scale, it is required to encode images with compact representations which can be
efficiently employed to compare images meaningfully. Obtaining such compact repre-
sentation can be done either by compressing effective high dimensional representations
or by learning compact representations in an end-to-end manner. The work in this thesis
explores and advances in both of these directions.

In our first contribution, we extend structured vector quantization approaches such as
Product Quantization by proposing a weighted codeword sum representation. We test
and verify the benefits of our approach for approximate nearest neighbor search on lo-
cal and global image features which is an important way to approach large scale image
search.

Learning compact representation for image search recently got a lot of attention with
various deep hashing based approaches being proposed. In such approaches, deep con-
volutional neural networks are learned to encode images into compact binary codes. In
this thesis we propose a deep supervised learning approach for structured binary rep-
resentation which is a reminiscent of structured vector quantization approaches such as
PQ. Our approach benefits from asymmetric search over deep hashing approaches and
gives a clear improvement for search accuracy at the same bit-rate.

Inverted index is another important part of large scale search system apart from the
compact representation. To this end, we extend our ideas for supervised compact rep-
resentation learning for building inverted indexes. In this work we approach inverted
indexing with supervised deep learning and make an attempt to unify the learning of
inverted index and compact representation.

We thoroughly evaluate all the proposed methods on various publicly available datasets.
Our methods either outperform, or are competitive with the state-of-the-art.
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation and Problem

With the increased accessibility to Internet through connected devices, large amount of
data is being generated and made available online. There are over 1.8 billion websites1

on the world wide web each containing data in the form of text, images, audio files, and
videos. This large amount of data brings opportunities and challenges to understand
and analyze it or to search in it. To find documents or information of interest in this
tremendous amount of data requires a powerful and efficient retrieval system. For such
a retrieval system, it is essential to have some sense of understanding of the content
and an efficient way to compare based on that understanding. These problems become
even more challenging when the data is visual, as defining the semantics or content of
the visual data is often subjective. And thus, finding a representation which can handle
the possible different semantic meanings of the data is difficult. In our work, we try to
address this challenging problem with various contributions towards an efficient image
retrieval system.

An image retrieval system is supposed to index and encode the large database of images
in such a way that, when a user query, the system should be able to retrieve the relevant
images in real time. As we will see in the following sections, such a system relies on
accurate and compact representation of the data.

This thesis work focuses on learning compact image representations and employing
them for efficient and accurate image retrieval. In particular, it addresses the problem of
large scale image search.

Large scale image search

The images are ubiquitous over the Internet and growing at a tremendous rate. For ex-
ample, 147 thousand images are uploaded every minute just on Facebook2. So with this

1http://www.internetlivestats.com/total-number-of-websites/
2https://sproutsocial.com/insights/facebook-stats-for-marketers/
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ever increasing visual data, thanks to the presence of camera in almost everyone’s hand
all the time, we need systems which allow us to search or rank images of interest. Fur-
ther the search should be based on the visual content of the images which may or may
not benefit from meta-data. For an accurate comparison of images, we need an image
representation which is well suited for the kind of comparison we want. There are large
research efforts on learning such representations from hand-crafted [114, 87, 102, 67]
to convolutional neural network (CNN) [74, 116, 52, 47] based. The current state-of-
the-art image representations are CNN-based and give excellent accuracy for identi-
fying the visual content in the image (classification) or comparing images (similarity
search/retrieval). These representations are high-dimensional typically ranging from
128 to 4096.

When the search is on a large scale, it has to be efficient. Efficiency comes from faster
comparison of images and avoiding expensive disk operations by having all the image
representative vectors on a faster memory like RAM.

Thus for large scale search, it is important to have compressed representation of the
images as this allows the system to have all of the database in the main memory and
avoids time consuming disk accesses. To see how compression helps let’s consider an
example of image search on a laptop. Suppose that we have 8GB of RAM available, it
can fit only half a million feature vectors of 4096 dimension each of which needs 16KB
(assuming 4-byte floating points) to store. While with compressed representation of 8B
we can store a billion, i.e. 2000 times more. The billion images might be stored on a
cloud server, all we need to do the search is the compressed representation of those
images on our laptop. Once we find out the images of interest using the search system
on compressed representation, we can retrieve them from the cloud storage.

Another essential requirement is of efficient and accurate computation of similarity or
distance between the query and the database points. There has been a large research
effort in learning image representations or image features which enable us to compare
two images. Some of these approaches also constraint the features to be compact while
there are other methods which compress high dimensional features to target large scale
search.

In the following three sections, we will briefly discuss various ideas applicable for large
scale search along with our contribution in those directions.

1.2 Finding the nearest neighbors

Suppose that we have an excellent feature extractor for images, say f (.), and for an im-
age Ii it gives a D dimensional vector xi = f (Ii ) ∈ RD . Further assume that, the similarity
of images holds in the feature space in the form of distance between their features. Ex-
plicitly, if d(xi , xj) < d(xi , xk) implies Ii and Ij are more similar than Ii and Ik , where d(., .)
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is some distance metric like the Euclidean distance. Now the problem of finding similar
images becomes a problem of nearest neighbors search in the feature space. As a particu-
lar consequence of curse of dimensionality, for high dimensional features (which is mostly
the case with images), any exact nearest neighbor search cannot have a search complexity
better than the order of database size times D . Therefore on the large scale, exact near-
est neighbor search needs prohibitively long time and also, requires large storage. As
mentioned before it is important to have a compressed representation with an efficient
way to compute the distance or similarity between the features. So with the practical
constraints, it is not feasible to do exact distance computation but there are approaches
which satisfy this practical constraints with an approximate distance computation. With
this approximation we get approximate nearest neighbors (ANNs) which are the nearest
neighbors with high probability, but not one.

The two most popular approaches to do ANN search are vector quantization (VQ) [50,
66] and hashing [57, 42].

In hashing methods for ANN search, the features are first mapped to a binary code using
multiple hash functions. These mapping are supposed to approximately preserve the
distance relationship between the features. And, the comparison is done with Hamming
distance between the binary codes which is fast to do. In [19], it is shown that under
some assumption, the Hamming distance is related to cosine similarity between original
features.

The other approach is vector quantization for ANN search. It is a popular way to com-
press vectors. In VQ, the feature vectors are approximately represented by one or a com-
bination of some other vectors called the codewords. This approximate representation
leads to the compressed form, as each feature is represented by one or a few ids identi-
fying the codeword(s). Now to find the nearest neighbors of a query, it is only compared
to the approximate representations of the feature vectors which makes it very efficient.
This comparison can be done even without quantizing the query, it is called asymmetric
distance computation (ADC) [66]. Compared to when a quantized query is used, ADC
leads to better distance approximation with the same complexity, thanks to the use of
query specific look-up table, as we will see in Section 2.2. The search with ADC is referred
to as asymmetric search while when the query is compressed or quantized as done for the
database vectors, it is called symmetric search. In comparison to hashing, VQ approaches
give much higher accuracy [66] making it a widely used alternative though hashing is
faster than VQ.

In our work presented in Chapter 3 we extend the idea of VQ by approximating the
database vectors with constrained sparse coding. To be more precise we use weighted sum
of codewords to represent a feature vector. These codeword weights are restricted to be-
long to a finite subset. In particular we show how we can reformulate two popular vector
quantizers like product quantization (PQ) [66] and residual vector quantization (RVQ)

1.2. Finding the nearest neighbors 15
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[24], with our constrained sparse coding approach, to achieve better reconstruction and
search accuracy.

1.3 Supervised learning of compact representation

Supervised learning has benefited various visual tasks. Supervised learning can be defined
as the task of learning a function that maps an input to an output which is consistent
with the input-output pairs of the training set. Supervised learning of deep networks has
given remarkable accuracy on many visual tasks like classification, localization, retrieval
to name a few.

Supervised learning with convolutional neural networks for image classification is
widely used for image representation learning. These image features are then used as it
is or with some tuning to address various problems like image matching, retrieval, clas-
sification, tracking, localization etc. These CNN based representations are usually high
dimensional vectors, though highly accurate but is not efficient for large-scale search.
This is due to the fact that the distance or similarity computation between high dimen-
sional features has large time complexity and, they also require larger storage. Thus, it
is important to get compressed representation. Some approaches employ VQ or hashing
to compress the representation as mentioned before, while another idea is supervised
learning of the compact representation.

Learning compact CNN based representation has recently made interesting progress.
Most of the approaches are based on constraining the representation to be binary, thus,
similar to the hashing approaches and hence these are called ”Deep hashing” methods.
Most of these approaches benefit from supervised training to give improved retrieval
performance. Deep hashing is a deep learning variant of hashing approaches.

As we know that VQ based methods can give better accuracy, we propose a novel
method to make deep convolutional neural networks produce supervised, compact,
structured binary codes for visual search. This is like a deep learning variant of VQ like
encoder for search. Our method makes use of a novel block-softmax nonlinearity and batch-
based entropy losses that together induce structure in the learned encodings. We show that
our method outperforms state-of-the-art compact representations based on deep hashing
or VQ for category retrieval, instance retrieval and classification. This work is presented
in detail in Chapter 4.

1.4 Inverted indexing for efficient search

Till now we have looked into the ideas about how to get a functional compressed repre-
sentation and search efficiently using them to respect the practical constraints associated

16 Chapter 1. Introduction



Learning compact representations for large scale image search

with the large-scale search. There is another complementary approach which is essential
for very large-scale search, that is to do non-exhaustive search.

The large collection or database of image representations is divided into multiple non-
overlapping lists. Each of these lists has a representative vector or centroid. Now at
search time, the query is compared to all these centroids and then only a few lists are
selected. The database images which are in those lists are compared to the query and
the rest of database is not considered. So basically, we limit our search to only a selected
small subset of the database to highly reduce the search time. This non-exhaustive search
system is first proposed in [66], where division and indexing of database points are done
with K-means clustering, it is called inverted file indexing (IVF). While the comparison
between the query and subset of database points is done with the help of product quan-
tization.

In our work, we extend the ideas of our work [62] (presented in Chapter 4) for super-
vised learning of inverted index. Further we propose unified learning of both the parts,
inverted index and encoder. This work on learning the complete indexing pipeline is pre-
sented in Chapter 5.

1.5 Thesis outline and contributions

This thesis focuses on building large scale search system. Figure 1.1 shows the search
pipeline, which constitutes indexing the database and image retrieval based on the query
image. There are various search systems as outlined in Figure 1.2, which highlights
the peculiarities of different search systems along with ours. In Chapter 2 we discuss
the background and some of these search systems for large scale search. Then, in the
following three chapters we describe our contributions.

• In Chapter 3, we propose an extension of VQ approaches using constrained sparse
coding. In this chapter we address the problem of approximate nearest neighbor
search. Our formulation leads to competitive results on standard benchmarks for
ANN search.

• In Chapter 4, we present our proposed supervised and end-to-end compact represen-
tation learning approach. In this work we introduce SUBIC, a supervised structured
binary codes for efficient visual search.

• In Chapter 5, we extend the work presented in Chapter 4 for learning a complete image
indexing pipeline. In this work, we propose a first system that learns both components,
an inverted index and an encoder, within a unifying neural framework of structured
binary encoding.

Finally, in Chapter 6, we summarize our contributions and discuss some possible future
directions.

1.5. Thesis outline and contributions 17
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Figure 1.1: Large scale image search pipeline. The database images are indexed with inverted in-
dex and compressed with compact codes. For the query, either it is compressed (symmetric search)
or it is projected to make a look-up table (asymmetric search).
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Figure 1.2: Parts of the search system. The table outlines various search systems and our contri-
butions.
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CHAPTER

TWO

BACKGROUND AND RELATED WORK

In this chapter, we build the background needed for the later chapters and review some
of the relevant works. Large scale search and vector quantization methods are well stud-
ied and have very large literature. Thus it cannot be completely reviewed here. There-
fore, we focus on the approaches which are more recent and relevant to our work. We
will start with vector quantization approaches and their application in approximate near-
est neighbor (ANN) search, which is central to our work. Then, we will briefly review
hashing methods for ANN search and supervised deep learning methods for compact
representation learning. Then in the last part of the chapter we give a short review of
non-exhaustive search approaches.

2.1 Vector Quantization

Vector quantization (VQ) is very well studied in information theory [81, 72, 50, 51]. VQ is
used for data compression to achieve speedy transmission or low storage requirement.
The objective is to get a compressed representation with minimal loss of information or
reconstruction error. It is usually formulated as an optimization problem to minimize the
mean squared error (MSE) between the training data Z and its reconstruction,∑

x∈Z
‖x− Q(x, C)‖22. (2.1)

The quantizer, Q(x, C) maps a data vector x to another vector from the set of vectors C
called codebook. Sometimes we drop the explicit specification of the codebook C in that
case we write the quantizer function as Q(x).

Let the vectors in the codebook be ck , where k ∈ {1, ... , |C|}. The vectors cj are called
the codewords or the reproduction vectors. Also let the quantizer function for a given
codebook C be defined as

Q(x , C) = ck(x) (2.2)

21



Learning compact representations for large scale image search

where k(x) is the assignment index or codeword id given by,

k(x) = argmin
k

d(x, ck) (2.3)

and the distance function d(x, y) is usually the Euclidean distance i.e. d(x, y) = ‖x− y‖2
(which is apt for MSE minimization, but in some case such as normalized codewords,
other distance functions can also be useful). Sometimes similarity is used instead of
distance, in that case, k(x) is found by argmax of the similarity between the data point
and the codewords.

The codebook is learned to minimize the MSE over the training data Z ,

min
C

∑
x∈Z
‖x− Q(x, C)‖22 (2.4)

Assuming that the training data is a good representative of the data to be encoded, the
quantization should have low reconstruction error with the learned codebook.

In very popular and simple K -means quantization the codebook is learned with K -means
algorithm for clustering. In the learning stage, the codebook is learned by alternating
between the data point assignment as in Eq. (2.3) and codebook update with the mean
of the new clusters, which is the closed form solution of Eq. (2.4). Now in the encod-
ing stage, the database vectors are encoded by the codeword id based on the nearest
codeword again as in the assignment equation Eq. (2.3). This gives the compressed rep-
resentation of the data points as they are now stored by a codeword id or an integer
rather than a high dimensional floating point vector. As the codeword id can range from
1 to K , where K is the codebook size |C| i.e. the number of codewords, it only needs
log2(K ) bits to store per data point. The data point is reconstructed by the codeword
corresponding to the id.

To achieve a better reconstruction or lower reconstruction error, a large codebook is re-
quired. But larger K needs even larger training data, large storage for the training data
and the codewords, and increased time complexity for learning the codebook. The time
and storage complexity for the learning and encoding stage increases linearly with K

though the memory requirement for compressed representation increases only logarith-
mically.

To this end, there are many vector quantization approaches which use multiple code-
books to achieve sub-linear storage and time complexity for learning and encoding.
These approaches are distinct in the way they learn the codebooks or the constraints
on the codebooks. In the following Sections, we describe some of such popular vector
quantization approaches which use multiple codebooks.
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Figure 2.1: Product quantization. In PQ the vector is split, and a separate codebook is learned for
each split (learning stage, in blue arrows). While encoding, each sub-vector from split is quantized
using the corresponding codebook (encoding stage, in red arrows).

2.1.1 Product Quantization

Product quantization (PQ) is another simple vector quantization approach [66]. The data
space is divided into M orthogonal subspaces simply by splitting each data vector into
M sub-vectors as shown in Figure 2.1. More specifically, the data vector x ∈ RD is split
into x(i) for i = {1, ... ,M} such that x is a concatenation of these sub-vectors i.e. x =

[x(1), ... , x(M)]. For simplicity, consider D is divisible by M and each sub-vector x(i) ∈
RD/M . A codebook is learned for each sub-space on the sub-vectors from the training
data. Let C i be the codebook for i th sub-space. As the sub-spaces are orthogonal, these
codebooks are orthogonal to each other.

A data point is represented by concatenation of M codewords one from each codebook.
Thus the effective set of representations or codewords is the Cartesian product of the
codebooks i.e. C = C1× ...×CM . The i th codebook C i is learned using K -means clustering
on the i th sub-vectors. Given that the codebooks are orthogonal

ci>ki c
j
kj

= 0, i 6= j & i , j ∈ {1, ... ,M}, (2.5)

we can rewrite the MSE minimization expression in Eq. (2.4) as,

M∑
i=1

min
Ci

∑
x∈Z
‖x(i) − Q(x, C i )‖22. (2.6)

Note that the minimization over each codebook is independent of other codebooks as
the codebooks are orthogonal.

With product codebooks, PQ achieves much higher representation capacity using very
few codewords. For example, consider PQ with M = 8 codebooks and let each codebook
have K = 256 codewords. There are only M×K codewords to learn and store while, due
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to Cartesian product of the codebooks, there is a representation capacity of KM = 264

codewords. It requires M × log2(K ) bits to encode a data vector, in our example it is 64
bits.

By giving access to such a high representation capacity, PQ provides a very practical
approach for better compression (low reconstruction error) and search which we will
discuss in Section 2.2. There are various approaches which extend the idea of PQ, which
we see next.

2.1.2 Optimized Product Quantization

In two concurrent works Cartesian K -means (CKM) [99] and optimized product quantization
(OPQ) [39], it is pointed that the natural split of coordinates in PQ is not optimal. They
formulate PQ as an optimization problem that minimizes reconstruction error by not
just finding optimal codewords (as in PQ) but also optimal space decomposition. Their
objective is to minimize,

min
R,C

∑
x∈Z
‖Rx− Q(Rx, C)‖22 (2.7)

where R ∈ RD×D is a rotation matrix and RTR = I.

To learn R and C, they alternatively optimize for one with the other fixed. When C is kept
fixed, the optimization over R is an orthogonal Procrustes problem which has a closed-
form solution [110]. When R is fixed it is similar to PQ, i.e. to find the optimal codebook
with natural split given the rotated data.

2.1.3 Generalization with Additive Quantization and its variants

Additive quantization (AQ) [5] generalizes PQ by using unconstrained multiple full di-
mensional codebooks. In AQ, a data vector is represented by sum of codewords one
from each of M codebooks. AQ attempts to minimize MSE in Eq. (2.4) with no con-
straint on the codebook such as orthogonality or spanning only a sub-space. This makes
the encoding i.e., finding the best set of codewords to represent a vector, very challeng-
ing. The encoding in AQ is a combinatorial problem which is NP-hard. In [5], they
propose an approximate solution to this combinatorial problem, which achieves excel-
lent reconstruction but at a very high time complexity making it less scalable.

Composite Quantization (CQ) [135] is similar to AQ. It uses multiple full dimensional non-
orthogonal codebooks but with a constraint that the sum of the inner-products of all
pairs of codewords (from different codebooks) that are used to represent any vector is
constant i.e.,

M∑
m=1

M∑
m′=1

cTkm(x)ck ′m(x) = ε. (2.8)
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(a) Learning stage

(b) Encoding stage

Figure 2.2: Residual vector quantization. RVQ sequentially quantizes the residuals using the
codebook learned on the corresponding level of residuals.

This aides in faster search as we will see in the next Section 2.2.

Sparse Composite Quantization (SCQ) [136] further extends CQ by constraining the code-
words to be sparse through minimizing `1-norm of the codewords, again this is also to
make the search faster.

Another recent approach, Local search quantization (LSQ) [94] attempts to improve the
encoding complexity of AQ based on stochastic local search. These methods partially
improve the encoding complexity of AQ but overall still have a very demanding encod-
ing stage compared to PQ or OPQ. See [96] for a good overview of PQ based approaches.

2.1.4 Residual Vector Quantization (RVQ)

RVQ is an old multi-codebook VQ approach [72][11]. The idea is to quantize a vec-
tor using multiple K -means quantizations, RVQ sequentially quantizes a vector and its
residuals (reconstruction error). As shown in Fig. 2.2, a vector x(1) = x is first quantized
using K -means quantization then, its residual x(2) = x(1)−Q(x(1), C1) is quantized and so
on. The codebooks Cm is also learned sequentially using K -means clustering algorithm
on the residuals x(m) in sequence m = 1 to M , where

x(m) = x(1) −
m−1∑
i=1

Q(x(i), C i ) (2.9)

and x(1) = x.

A vector is represented as,

x ≈
M∑

m=1

Q(x(m), Cm). (2.10)
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There is an extension of RVQ called Enhanced RVQ (ERVQ)[1]. It builds on RVQ by first
learning the codebooks sequentially as in RVQ and then, iteratively optimizing each
codebook keeping the others fixed for lower reconstruction error.

2.2 Vector quantization for ANN search

Finding the nearest neighbor of a vector in a collection of vectors has many important
applications including image search. For a given query vector y ∈ RD and a database of
vectors X , the nearest neighbor (NN) search problem is to find a vector x∗ ∈ X such that

d(x∗, y) ≤ d(x, y),∀x ∈ X

for some distance metric d(., .).

When the search is on a large scale with high dimensional vectors, finding the exact near-
est neighbor is not practical. Therefore, we must rely on approximate nearest neighbor
(ANN) search. The ANN search methods find the neighbors by efficiently computing
approximate distance between vectors.

Vector quantization has been used for efficient and accurate ANN search. It was first
proposed in [65, 66] which used PQ and then in [24] RVQ is used for ANN search. These
works were followed by many other PQ-based [99, 39, 5, 40, 1, 136] and RVQ-based[1]
methods.

In the previous section we have discussed VQ’s use for compression with approximate
representation. Now for an efficient search, the database is quantized, which compresses
it. This is done offline. When searching for NN of a query y, it is compared to the approx-
imate representations of the database vectors to get approximation of the distances be-
tween them. There are two ways to compute the approximate distance based on whether
the query is quantized or not.

Symmetric distance computation (SDC). The query is also quantized, and the quan-
tized representations are compared for approximating the distance,

d(y, x) ≈ d(Q(y),Q(x)). (2.11)

As Q(.) is a codeword from a finite codebook, we can pre-compute all the pairwise dis-
tances between the codewords and store them in a look-up table. Thus we have approx-
imate value of d(Q(y),Q(x)) for any y and x. So at search time, y is quantized and the
value of d(Q(y),Q(x)) for all x ∈ X is fetched from the look-up table, leading to fast
distance computation. In case of multiple codebooks, there will be a look-up table per
codebook. We fetch and combine the values from each of them to get the approximate
distance.
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Asymmetric distance computation (ADC). The unquantized query is compared with
the quantized database vectors

d(y, x) ≈ d(y,Q(x)). (2.12)

When d(, ) is the squared Euclidean distance we can write Eq. (2.12) as,

d(y, x) ≈ ‖y − Q(x)‖22. (2.13)

If the quantizer has multiple orthogonal codebooks like PQ, we can rewrite Eq. (2.13) as

d(y, x) ≈
M∑

m=1

‖y(m) − Q(x, Cm)‖22 =
M∑

m=1

‖y(m) − ckm(x)‖
2
2. (2.14)

For a query y we can compute ‖y(m)−ckm(x)‖22 for all the codewords for m = {1, 2, ... ,M},
and store these KM values in the look-up tables. Thus at search time, d(y, x) is approxi-
mated by a sum of M scalars which we get from the look-up table.

If the quantizer has multiple non-orthogonal codebooks like RVQ or AQ, Eq. (2.13) is not
equivalent to Eq. (2.14), but can be rewritten as

d(y, x) ≈ ‖y‖22 + ‖Q(x)‖22 − 2
M∑

m=1

yTckm(x). (2.15)

To rank the database vectors given the query y, we do not need ‖y‖22 as it doesn’t affect
the ranking. The computation of

∑M
m=1 y

Tckm(x) benefits from the look-up table as before.
To handle the squared norm of the database vector, ‖Q(x)‖22, there are two ways which
can be used. First, as

‖Q(x)‖22 = ‖
M∑

m=1

ckm(x)‖
2
2 =

M∑
m=1

M∑
m′=1

cTkm(x)ck ′m(x), (2.16)

we can use a look-up table to store the dot-products between each pair of codewords
and fetch them to compute the squared norm. This will require O(M2) time complexity.
Another way is that we compute the squared norm ‖Q(x)‖22 at the time of encoding, and
store it with a single byte using a non-uniform scalar quantizer.

In composite quantization (CQ) [135], as mentioned in Section 2.1.3, the codebooks are
non-orthogonal but are constrained to have nearly constant sum of product of inter-
codebook codewords as in Eq. (2.8). Thus there is no need to compute the norm for
the ANN search. The sparse composite quantization (SCQ) [136] imposes additional
constraint on the CQ codebooks to be sparse, leading to efficient computation of the
look-up table.

Comparison of ADC and SDC. As in ADC the query is not quantized, it usually gives
better distance approximation compared to SDC. The search time complexity is same for
both, as in ADC we build a look-up table by computing the distance (or similarity) be-
tween query and the codewords, and in SDC we do the same computation for quantizing
the query. Thus ADC is mostly used for VQ based ANN search.
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2.3 Binary Hashing for ANN search

Binary hashing is another very popular way to compress a database and search in it. In
the binary hashing methods the data is mapped to a binary code. Consider a collection
of data vectors, the objective of hashing methods is to encode them with binary codes
such that the vectors which are close in the vector space have similar codes. To encode
with a B-bit binary code, B binary hash function are used. Let H = {h1, h2, ... , hB} be
the collection of hash functions, the hashing method encodes a vector x as

h(x) = {h1(x), h2(x), ... , hB(x)} (2.17)

where hj : RD 7→ {0, 1} or hj : RD 7→ {−1, 1}. The function h(.) maps the vector to a
Hamming space.

To compare two data points or vectors say y and x, the Hamming distance is used i.e.,

dH(y, x) =
B∑
j=1

|hj(y)− hj(x)| =
B∑
j=1

hj(y)⊕ hj(x) (2.18)

where ⊕ is logical XOR operation. This equation considers h(x) ∈ {0, 1}B , in case of
{−1, 1}B it can be easily converted with shifting by one and dividing by two.

For ANN search, the database is encoded by the hash functions into binary hash codes
thus compressing the database. At search time, the query is also encoded by the same
hash functions and compared to the database vectors using Eq. (2.18) which is very
efficient.

A commonly used hash function is defined as

hj(x) = sgn(f (wT
j x + bj)) (2.19)

where sgn is a sign function which is 1 if sgn(.) > 0 and 0 or −1 otherwise. f (.) is a
prespecified function it could be a non-linear function or an identity mapping. wj is a
projection vector with intercept bj .

Many hashing approaches are based on Locality Sensitive Hashing (LSH) [57, 42, 19, 29,
89, 49]. It is widely used for many applications [15, 16, 48, 93, 105]. The hash functions
in LSH are supposed to assign the same bit to close vectors with high probability. Sev-
eral LSH approaches use Random Projection based Hashing (RPH) i.e., in the hash function,
the vector w is a random projection vector and b is a random shift. Though these meth-
ods provide theoretical guarantees, they need large binary codes to get search precision
which reduces the recall. Multiple hash tables can be used to overcome this problem
[29] but then, it increases the storage and search time. Various strategies are proposed
to overcome these issues, including LSH Forest [12], MultiProbe LSH [89][32] and others
[109][28]. However, these random projection based hash functions are independent of
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the data they are applied on, thus they miss the possibility to benefit from the specific
properties or structure present in the data.

There are other approaches which use data-dependent hash functions. Many of these
methods leverage machine learning to learn the hash functions. LSH has been com-
bined with various machine learning techniques including kernel learning [75][97], met-
ric learning [76] and others [70][98]. A recent work [33] proposed Polysemous codes
which index the vectors using PQ with the codeword ids acting as the hash codes. At
search time, the Hamming distance of the hash codes is used to filter out most of the
vectors and then PQ is used to rank the remaining.

Among data-dependent hashing approaches there are several unsupervised and super-
vised approaches. The unsupervised hashing methods attempt to benefit from the dis-
tribution or structure of the data to learn effective hash codes, these methods include
spectral hashing [127], graph hashing [85], manifold hashing [112], iterative quantiza-
tion hashing [101], spherical hashing [53]. While supervised or semi-supervised hashing
benefit from labeled data, some recent approaches include [100, 118, 111, 63]. See [124]
for an overview of these binary hashing methods. Further, there are several recent su-
pervised hashing based on deep learning, which we review next.

2.4 Deep Hashing

Deep learning has shown a great success in visual representation learning [46]. The learned
deep representations have given breakthrough performance in various computer vision
tasks [74, 126, 43, 117, 44, 116, 107, 86, 52, 35, 34]. These deep representations or deep
features have also lead to improvements in image retrieval tasks [9, 2, 47]. Deep features
along with ANN search approaches based on VQ or hashing can be and have been used
successfully for large scale image search [23, 20, 8]. Still, in the recent years, there has
been a lot of interest in constraining deep features to be binary and thus learning the
deep network to do hashing. These deep hashing methods have demonstrated that the
learned compact deep features improve retrieval performance compared to just applying
ANN search approaches on top of the high dimensional deep features.

The deep hashing approaches employ a pre-trained or randomly initialized base CNN
which produces high-dimensional feature vector for a given input image. This vector is
then fed to another fully connected layer which is, at test time, followed by element-wise
thresholding to give compact binary code, h ∈ {0, 1}B or h ∈ {−1, 1}B . While at training
time, usually sigmoid or tanh non-linearities replace thresholding to keep it differentiable
and to allow gradient based training.

In case of supervised training on deep hashing networks, they can be grouped into point-
wise, pair-wise and triplet-wise methods, based on the way they use the supervision. In
point-wise training, the network is trained for image classification with cross-entropy loss.
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In pair-wise, the network is trained with pairs of similar or dissimilar images with con-
trastive loss which makes the learned code (dis)similar for images which are (dis)similar.
While in triplet-wise, the network trains on an image triplet (Ia, Ip, In) consisting an an-
chor image Ia, a similar image to the anchor Ip and a dissimilar image In. It uses ranking
loss, the objective here is to have the similarity between the codes of similar images Ia

and Ip , more than Ia and In. Below we look into a few recent supervised deep hashing
approaches.

Deep semantic ranking based hashing (DSRH) [137] uses triplet-wise training with ranking
loss and additionally, it penalizes the average of each bit over the training set such that
code distribution is approximately zero-centered (the code is in {−1, 1}B ).

Deep regularized similarity comparison hashing (DRSCH) [134] also uses the triplet-wise
supervised training and minimizes the ranking loss in Hamming space. It learns bit-
wise weights along with the binary encoder, which results in richer codes but more costly
distances to compute at search time.

In Hashing with Deep Neural Network (DNNH) [78] a piece-wise thresholding function
which is sigmoid in the middle and, 0 and 1 on the edges to enforce the binarization and
the network is trained for ranking loss.

Deep learning of binary hash codes (DLBHC) [80] is a simple approach with sigmoid ac-
tivation for encoding and trained for image classification on the codes produced after
sigmoid activations.

CNN hashing (CNNH) [129] proposes a two stage method, in the first stage it learns target
binary codes using low rank factorization of a full pairwise similarity matrix. Then, in
the second stage the target codes provide the supervision to train the CNN.

In deep supervised hashing (DSH) [82], a W-shaped loss with minima at the desired code
values, to impose binarization in the code, is used along with contrastive loss for pair-wise
training.

See the Table 4.1 for an overview of these approaches and its comparison to our proposed
approach of structured binary code.

2.5 Non-exhaustive search

With compact codes and efficient ways to compare the query and database points, we can
achieve a great speed up in the search and highly reduced memory requirements. But
still it is an exhaustive search that is, we have to compare the query to all the database
points. When the search scale is very large with tens of million to billion sized database,
exhaustive search would be slow. Jégou et al. in [66] addressed this problem by building
an inverted file system [114] to partition the database into mutually exclusive subsets
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and at search time only a few of these subsets are searched for a given query.

To build the inverted index, a coarse-quantizer is used to partition the feature space into
Voronoi cells. Corresponding to each cell, there is a list which contains the ids of all
the database vectors that fall into it. Let the coarse codebook be D = {dn ∈ RD}Nn=1, a
database vector x will be assigned to a list Ln(x), where n(x) is found by solving,

n(x) = argmin
k
‖x− dk‖2. (2.20)

This partitions the database into N list {Lk}Nk=1.

In [66], the inverted file (IVF) is used along with PQ for asymmetric distance computa-
tion (ADC) for ANN search. First the IVF is build using K -means as the coarse-quantizer
and then, PQ is used to encode the residual

rn(x) = x− dn(x), (2.21)

that is the difference between the database vector and the coarse quantizer’s codeword.

At search time, the query vector is compared to all the codewords in D and based on the
closest codewords, a few lists are selected to be searched. For each list, first the query’s
residual is computed as in Eq. (2.21) which is then used for building the look-up table
for PQ codewords followed by ADC for all the points in the list. Note that, a look-up
table has to be built for each list.

Babenko et al. in [4] proposed Inverted Multi-Index (IMI) which extend IVF by using prod-
uct quantization as the coarse-quantizer. They used PQ with two codebooks, which
produces N = K 2 inverted lists if each codebook has K codewords. As it partitions
the database very densely, only a small number of candidates are good enough to give
high recall. For a given query, to select the best lists of the candidates, [4] propose a
multi-sequence algorithm that outputs the pairs of codewords (from different codebooks)
ordered by the distance from the query. Then, the selected candidates are ranked using
ADC based on the PQ encoder. In [59] a branch and bound algorithm is proposed to
improve the original multi-sequence algorithm.

Some improvements on these inverted indexing approaches have been proposed re-
cently. In [73], a separate OPQ is learned for each inverted list. In [6] improvements
are done to IMI by using OPQ for the indexing and the encoding instead of PQ and also,
learning a separate OPQ as in [73].

2.6 Conclusion

In this Chapter, we presented the approaches used for large scale search. We discussed
about vector quantization and binary hashing for ANN search where the database vec-
tors are compressed with codeword ids (VQ) or binary codes (hashing) and an effi-
cient search mechanism is utilized for faster search. We also reviewed Deep hashing
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approaches where CNNs are trained to produce compact binary codes. And, the last
Section covered, non-exhaustive search with inverted indexing.

In the following Chapters, we propose various approaches, including constrained sparse
coding based extension of VQ, supervised structured binary codes for encoding, and
supervised learning of inverted indexing followed by joint learning of complete image
indexing pipeline.
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CHAPTER

THREE

APPROXIMATE SEARCH WITH QUANTIZED
SPARSE REPRESENTATIONS

This chapter concerns approximate nearest neighbor search. We propose to approx-
imate database vectors by constrained sparse coding, with the atom (or normalized
codeword) weights restricted to a finite subset. This chapter is based on the follow-
ing publication:

Approximate search with quantized sparse representations. H. Jain, P. Pérez, R. Gri-
bonval, J. Zepeda, and H. Jégou. In proceedings of European Conference on Computer
Vision (ECCV), 2016.

Retrieving, from a very large database of high-dimensional vectors, the ones that “resem-
ble” most a query vector is at the heart of most modern information retrieval systems.
Online exploration of very large media repositories, for tasks ranging from copy detec-
tion to example-based search and recognition, routinely faces this challenging problem.
Vectors of interest are abstract representations of the database documents that permit
meaningful comparisons in terms of distance and similarity. Their dimension typically
ranges from a few hundreds to tens of thousands. In visual search, these vectors are
ad-hoc or learned descriptors that represent image fragments or whole images.

Searching efficiently among millions or billions of such high-dimensional vectors re-
quires specific techniques. The classical approach is to re-encode all vectors in a way
that allows the design of a compact index and the use of this index to perform fast
approximate search for each new query. Among the different encoding approaches that
have been developed for this purpose, state-of-the-art systems rely on various forms of
vector quantization: database vectors are approximated using compact representations
that can be stored and searched efficiently, while the query need not be approximated
(asymmetric approximate search). In order to get high quality approximation with prac-
tical complexities, the encoding is structured, typically expressed as a sum of codewords
stemming from suitable codebooks. There are two main classes of such structured quan-
tization techniques: those based on vector partitioning and independent quantization of
sub-vectors [39, 66, 99]; those based on sequential residual encoding [1, 24, 68, 135, 136].
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In this chapter, we show how these approaches can be taken one step further by drawing
inspiration from the sparse coding interpretation of these techniques [119]. The key idea
is to represent input vectors as linear combinations of atoms, instead of sums of code-
words. The introduction of scalar weights allows us to extend both residual-based and
partitioned-based quantizations such that approximation quality is further improved
with modest overhead. For this extension to be compatible with large scale approximate
search, the newly introduced scalar weights must be themselves encoded in a compact
way. We propose to do so by quantizing the vector they form. The resulting scheme
will thus trade part of the original encoding budget for encoding coefficients. As we
shall demonstrate on various datasets, the proposed quantized sparse representation (i)
competes with partitioned quantization for equal memory footprint and lower learn-
ing/coding complexity and (ii) outperforms residual quantization with equal or smaller
memory footprint and learning/coding complexity.

In the next section, we discuss in more details the problem of approximate vector search
with structured quantizers and recall useful concepts from sparse coding. With these
tools in hand, we introduce in Section 3.2 the proposed structured encoding by quan-
tized sparse representations. The different bricks –learning, encoding and approximate
search– are presented in Sections 3.3 and 3.4, both for the most general form of the frame-
work (residual encoding with non-orthogonal dictionaries) and for its partitioned vari-
ant. Experiments are described and discussed in Section 3.5.

3.1 Related work

Approximate vector search is a long-standing research topic across a wide range of
domains, from communication and data mining to computer graphics and signal pro-
cessing, analysis and compression. As mentioned in Section 2.3, important tools
have been developed around hashing techniques [57], which turn the original search
problem into the one of comparing compact codes, i.e., binary codes [19], see [124]
for a recent overview on binary hashing techniques. Among other applications, vi-
sual search has been addressed by a number of such binary encoding schemes (e.g.,
[88, 101, 118, 123, 130]).

An important aspect of hashing and related methods is that their efficiency comes at the
price of comparing only codes and not vectors in the original input space. In this chapter
we focus on another type of approaches that are currently state-of-art in large scale visual
search. Sometimes referred to as vector compression techniques, they provide for each
database vector x an approximation Q(x) ≈ x such that (i) the Euclidean distance (or
other related similarity measure such as inner product or cosine) to any query vector y is
well estimated using Q(x) instead of x and (ii) these approximate (di)similarity measures
can be efficiently computed using the code that defines Q(x).
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A simple way to do that is to rely on vector quantization [41], which maps x to the closest
vector in a codebook learned through k-means clustering. In high dimensions though,
the complexity of this approach grows to maintain fine grain quantization. As discussed
in Section 2.1, a simple and powerful way to circumvent this problem is to partition
vectors into smaller dimensional sub-vectors that are then vector quantized (see Figure
2.1). At the heart of product quantization (PQ) [66], this idea has proved very effective for
approximate search within large collections of visual descriptors. Different extensions,
such as “optimized product quantization” (OPQ) [39] and “Cartesian k-means” (CKM)
[99] optimize the chosen partition, possibly after rotation, such that the distortion ‖x −
Q(x)‖ is further reduced on average. Additionally, part of the encoding budget can be
used to encode this distortion and improve the search among product-quantized vectors
[54].

It turns out that this type of partitioned quantization is a special case of structured or
layered quantization:

Q(x) =
M∑

m=1

Q(x, Cm), (3.1)

where Cm is a codebook. In PQ and its variants, these codebooks are orthogonal, which
makes learning, encoding and search especially efficient. Sacrificing part of this effi-
ciency by relaxing the orthogonality constraint can nonetheless provide better approxi-
mations. As discussed in Section 2.1, a number of recent works explore this path.

“Additive quantization” (AQ) [5] is probably the most general of those, hence the most
complex to learn and use. It indeed addresses the combinatorial problem of jointly find-
ing the best set of M codewords in (3.1). While excellent approximation and search per-
formance is obtained, its high computational cost makes it less scalable [7]. In particular,
it is not adapted to the very large scale experiments we report in this work.

In “composite quantization” (CQ) [135], the overhead caused at search time by the non-
orthogonality of codebooks is alleviated by learning codebooks that ensure ‖Q(x)‖ = cst.
This approach can be sped up by enforcing in addition the sparsity of codewords [136].
As AQ –though to a lesser extent– CQ and its sparse variant have high learning and
encoding complexities.

A less complex way to handle sums of codewords from non-orthogonal codebooks
is offered by the greedy approach of “residual vector quantization” (RVQ) [11, 72].
The encoding proceeds sequentially such that the m-th quantizer encodes the residual
x−
∑m−1

n=1 Q(x, Cn). Accordingly, codebooks are also learned sequentially, each one based
on the previous layer’s residuals from the training set. This classic vector quantization
approach was recently used for approximate search [1, 24, 95]. “Enhanced residual vec-
tor quantization” (ERVQ) [1] improves the performance by jointly refining the codebooks
in a final training step, while keeping purely sequential the encoding process.

Important to the present work, sparse coding is another powerful way to approximate
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and compress vectors [36]. In this framework, a vector is also approximated as in (3.1),
but with each Q(x, Cm) being of the form αmckm , where αm is a scalar weight and ckm is
a unit norm atom from a learned dictionary. The number of selected atoms can be pre-
defined or not, and these atoms can stem from one or multiple dictionaries. A wealth
of techniques exist to learn dictionaries and encode vectors [36, 91, 128], including ones
that use the Cartesian product of sub-vector dictionaries [40] similarly to PQ or residual
encodings [133, 132] similarly to RQ to reduce encoding complexity. Sparse coding thus
offers representations that are related to structured quantization, and somewhat richer.
Note however that these representations are not discrete in general, which makes them
a priori ill-suited to indexing very large vector collections. Scalar quantization of the
weights has nonetheless been proposed in the context of audio and image compression
[133, 38, 131].

Our proposal is to import some of the ideas of sparse coding into the realm of approxi-
mate search. In particular, we propose to use sparse representations over possibly non-
orthogonal dictionaries and with vector-quantized coefficients, which offer interesting
extensions of both partitioned and residual quantizations.

3.2 Quantized sparse representations

A sparse coding view of structured quantization Given M codebooks, structured
quantization represents each database vector x as a sum (3.1) of M codewords, one from
each codebook. Using this decomposition, search can be expedited by working at the
codeword level (see Section 3.4). Taking a sparse coding viewpoint, we propose a more
general approach whereby M dictionaries1, Cm = [cm1 · · · cmK ]D×K , m = 1 · · ·M , each with
K normalized atoms, are learned and a database vector x ∈ RD is represented as a linear
combination:

Q(x) =
M∑

m=1

αm(x)cmkm(x), (3.2)

where αm(x) ∈ R and km(x) ∈ J1,KK. Next, we shall drop the explicit dependence in x for
notational convenience. As we shall see in Section 3.5 (Fig. 3.1), the additional degrees
of freedom provided by the weights in (3.2) allow more accurate vector approximation.
However, with no constraints on the weights, this representation is not discrete, span-
ning a union of M-dimensional sub-spaces in RD . To produce compact codes, it must
be restricted. Before addressing this point, we show first how it is obtained and how it
relates to existing coding schemes.

If dictionaries are given, trying to compute Q(x) as the best `2-norm approximation of
x is a special case of sparse coding, with the constraint of using exactly one atom from

1Throughout we use the terminology codebook for a collection of vectors, the codewords, that can be added,
and dictionary for a collection of normalized vectors, the atoms, which can be linearly combined.
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each dictionary. Unless dictionaries are mutually orthogonal, it is a combinatorial prob-
lem that can only be solved approximately. Greedy techniques such as projection pursuit
[37] and matching pursuit [92] provide particularly simple ways to compute sparse rep-
resentations. We propose the following pursuit for our problem: for m = 1 · · ·M ,

km = argmax
k∈J1,KK

r>mc
m
k , αm = r>mc

m
km , (3.3)

with r1 = x and rm+1 = rm − αmcmkm . Encoding proceeds recursively, selecting in the cur-
rent dictionary the atom with maximum inner-product with the current residual. Note
that we use maximum and not absolute maximum inner-product as in matching pursuit.
This permits to get a tighter distribution of weights, which will make easier their subse-
quent quantization. Once atoms have all been sequentially selected, i.e., the support of
the M-sparse representation is fixed, the approximation (3.2) is refined by jointly recom-
puting the weights as

α̂ = argmin
α∈RM

‖x− C (k)α‖22 = C (k)†x, (3.4)

with k = [km]Mm=1 ∈ J1,KKM the vector formed by the selected atom indices,
C (k) = [c1k1 · · · c

M
kM

]D×M the corresponding atom matrix and (·)† the Moore-Penrose
pseudo-inverse. Vector α̂ contains the M weights, out of KM , associated to the selected
support. Note that the proposed method is related to [133, 132].

Learning dictionaries In structured vector quantization, the M codebooks are learned
on a limited training set, usually through k-means. In a similar fashion, k-SVD on a
training set of vectors is a classic way to learn dictionaries for sparse coding [36]. In both
cases, encoding of training vectors and optimal update of atoms/codewords alternate
until a criterion is met, starting from a sensible initialization (e.g., based on a random
selection of training vectors). Staying closer to the spirit of vector quantization, we also
rely on k-means in its spherical variant which fits well our needs: spherical k-means
iteratively clusters vector directions, thus delivering meaningful unit atoms.

Given a set Z = {z1 · · · zR} of R training vectors, the learning of one dictionary of K
atoms proceeds iteratively according to:

Assignment : kr = argmax
k∈J1,KK

z>r ck , ∀r ∈ J1,RK, (3.5)

Update : ck ∝
∑

r :kr=k

zr , ‖ck‖ = 1, ∀k ∈ J1,KK. (3.6)

This procedure is used to learn the M dictionaries. The first dictionary is learned on
the training vector themselves, the following ones on corresponding residual vectors.
However, in the particular case where dictionaries are chosen within prescribed mu-
tually orthogonal sub-spaces, they can be learned independently after projection in
each-subspace, as discussed in Section 3.3.
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Quantizing coefficients To use the proposed representation for large-scale search, we
need to limit the possible values of coefficients while maintaining good approximation
quality. Sparse representations with discrete weights have been proposed in image and
audio compression [38, 131], however with scalar coefficients that are quantized inde-
pendently and not in the prospect of approximate search. We propose a novel approach
that serves our aim better, namely employing vector quantization of coefficient vectors
α̂. These vectors are of modest size, i.e., M is between 4 and 16 in our experiments. Clas-
sical k-means clustering is thus well adapted to produce a codebook A = [a1 · · · aP ]M×P

for their quantization. This is done after the main dictionaries have been learned.2

Denoting p(α) = argminp∈J1,PK ‖α − ap‖ the index of the vector-quantization of α with
this codebook, the final approximation of vector x reads:

Q(x) = C (k)ap(α̂), (3.7)

with k function of x (Eq. 3.3) and α̂ = C (k)†x (Eq. 3.4) function of k and x.

Code size A key feature of structured quantization is that it provides the approxima-
tion accuracy of extremely large codebooks while limiting learning, coding and search
complexities: The M codebooks of size K are as expensive to learn and use as a sin-
gle codebook of size MK but give effectively access to KM codewords. In the typical
setting where M = 8 and K = 256, the effective number of possible encodings is 264,
that is more than 1019. This 64-bit encoding capability is obtained by learning and using
only 8-bit quantizers. Similarly, quantized sparse coding offers up to KM × P encoding
vectors, which amounts to M log2 K + log2 P bits. Structured quantization with M + 1

codebooks, all of size K except one of size P has the same code-size, but leads to a dif-
ferent discretization of the ambient vector space RD . The aim of the experiments will be
to understand how trading part of the vector encoding budget for encoding jointly the
scalar weights can benefit approximate search.

3.3 Sparse coding extension of PQ and RVQ

In the absence of specific constraints on the M dictionaries, the proposed quantized
sparse coding can be seen as a generalization of residual vector quantization (RVQ),
with linear combinations rather than only sums of centroids. Hierarchical code structure
and search methods (see Section 3.4 below) are analog. To highlight this relationship, we
will denote “Qα-RVQ” the proposed encoder.

In case dictionaries are constrained to stem from predefined orthogonal sub-spaces Vms
such that RD =

⊕M
m=1 Vm, the proposed approach simplifies notably. Encoding vectors

2Alternate refinement of the vector dictionaries Cms and of the coefficient codebook A led to no improve-
ment. A possible reason is that dictionaries update does not take into account that the coefficients are
vector quantized, and we do not see a principled way to do so.
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and learning dictionaries can be done independently in each subspace, instead of in
sequence. In particular, when each subspace is spanned by D/M (assuming M divides
D) successive canonical vectors, e.g., V1 = span(e1 · · · eD/M), our proposed approach is
similar to product quantization (PQ), which it extends through the use of quantized
coefficients. We will denote “Qα-PQ” our approach in this specific set-up: all vectors are
partitioned into M sub-vectors of dimension D/M and each sub-vector is approximated
independently, with one codeword in PQ, with the multiple of one atom in Qα-PQ.

Algorithm 1 Learning Qα-RVQ
1: Input: z1:R
2: Ouput: C 1:M ,A

3: r1:R ← z1:R

4: for m = 1 · · ·M do
5: Cm ← SPHER K-MEANS(r1:R )
6: for r = 1 · · ·R do
7: km,r ← argmaxk∈J1,KK r

>
r c

m
k

8: rr ← rr − (r>r c
m
km,r

)cmkm,r

9: for r = 1 · · ·R do
10: αr ← [c1k1,r · · · c

M
kM,r

]†zr

11: A← K-MEANS(α1:R )

Algorithm 2 Vector encoding with Qα-RVQ

1: Input: x, [c1:M1:K ], [a1:P ]

2: Output: k = [k1:M ], p

3: r← x

4: for m = 1 · · ·M do
5: km ← argmaxk∈J1,KK r

>cmk
6: r← r − (r>cmkm)cmkm

7: α← [c1k1 · · · c
M
kM

]†x

8: p ← argminp∈J1,PK ‖α− ap‖

Learning the dictionaries Cms and the codebook A for Qα-RVQ is summarized in Alg.
1, and the encoding of a vector with them is in Alg. 2. Learning and encoding in the
product case (Qα-PQ) are respectively summarized in Algs. 3 and 4, where all training
and test vectors are partitioned in M sub-vectors of dimension D/M , denoted with tilde.

3.4 Approximate search

Three related types of nearest neighbor (NN) search are used in practice, depending on
how the (dis)similarity between vectors is measured in RD : minimum Euclidean dis-
tance, maximum cosine-similarity or maximum inner-product. The three are equivalent
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Algorithm 3 Learning Qα-PQ
1: Input: z1:R
2: Output: C̃ 1:M ,A

3: for r = 1 · · ·R do
4: [z̃>1,r · · · z̃>M,r ]← z>r

5: for m = 1 · · ·M do
6: C̃m ← SPHER K-MEANS(z̃m,1:R )
7: for r = 1 · · ·R do
8: k ← argmaxk∈J1,KK z̃

>
m,r c̃

m
k

9: αm,r ← z̃>m,r c̃
m
k

10: A← K-MEANS(α1:R )

Algorithm 4 Vector encoding with Qα-PQ

1: Input: x, [c̃1:M1:K ], [a1:P ]

2: Output: k = [k1:M ], p

3: [x̃>1 · · · x̃>M ]← x>

4: for m = 1 · · ·M do
5: km ← argmaxk∈J1,KK x̃

>
m c̃

m
k

6: αm ← x̃>m c̃
m
km

7: p ← argminp∈J1,PK ‖α− ap‖

when all vectors are `2-normalized. In visual search, classical descriptors (either at local
level or image level) can be normalized in a variety of ways, e.g., `2, `1 or blockwise `2,
exactly or approximately.

With cosine-similarity (CS) for instance, the vector closest the query y in the database
X is argmaxx∈X

y>x
‖x‖ , where the norm of the query is ignored for it has no influence on

the answer. Considering approximations of database vectors with existing or proposed
methods, approximate NN (aNN) search can be conducted without approximating the
query (asymmetric aNN [66]):

CS− aNN : argmax
x∈X

y>Q(x)

‖Q(x)‖
. (3.8)

As with structured encoding schemes, the form of the approximation in (3.7) permits to
expedite the search. Indeed, for x encoded by (k, p) ∈ J1,KKM × J1,PK, the approximate
cosine-similarity reads

y>C (k)ap
‖C (k)ap‖

, (3.9)

where the M inner products in y>C (k) are among the MK ones in y>C , which can be
computed once and stored for a given query. For each database vector x, computing the
numerator then requires M look-ups, M multiplications and M − 1 sums. We discuss the
denominator below.
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In the Qα-PQ setup, as the M unit atoms involved in C (k) are mutually orthogonal,
the denominator is equal to ‖ap‖, that is one among P values that are independent of
the queries and simply pre-computed once for all. In Qα-RVQ however, as in other
quantizers with non-orthogonal codebooks, the computation of

‖C (k)ap‖ =
( M∑

m,n=1

ampanpc
m>
km cnkn

)1/2
(3.10)

constitutes an overhead, with ap = [amp]Mm=1. Two methods are suggested in [5] to handle
this problem. The first one consists in precomputing and storing for look-up all inter-
dictionary inner products of atoms, i.e., C>C . For a given query, the denominator can
then be computed with O(M2) operations. The second method is to compute the norms
for all approximated database vectors and to encode them with a non-uniform scalar
quantizer (typically with 256 values) learned on the training set. This adds an extra byte
to the database vector encoding but avoids the search time overhead incurred by the first
method. This computational saving is worth the memory expense for very large scale
systems (See experiments on 1 billion vectors in the next section).

Using the Euclidean distance instead of the cosine similarity, i.e., solving
argminx∈X

{
‖Q(x)‖2 − 2 y>Q(x)

}
leads to very similar derivations. The performance of

the proposed framework is equivalent for these two popular metrics.

3.5 Experiments

We compare on various datasets the proposed methods, Qα-RVQ and Qα-PQ, to the
structured quantization techniques they extend, RVQ and PQ respectively. We use three
main datasets: SIFT1M [65], GIST1M [66] and VLAD500K [3].3 For PQ and Qα-PQ on
GIST and VLAD vectors, PCA rotation and random coordinate permutation are applied,
as they have been shown to improve performance in previous works. Each dataset in-
cludes a main set to be searched (X of size U), a training set (Z of size R) and S query
vectors. These sizes and input dimension D are given in Table 3.1.

As classically done, we report performance in terms of recall@R, i.e., the proportion of
query vectors for which the true nearest neighbor is present among the R nearest neigh-
bors returned by the approximate search.

Introducing coefficients Before moving to the main experiments, we first investigate
how the key idea of including scalar coefficients into structured quantization allows
more accurate vector encoding. To this end, we compare average reconstruction er-
rors, 1

U

∑
x∈X ‖x − Q(x)‖22, obtained on the different datasets by RVQ (resp. PQ) and

3VLAD vectors, as kindly provided by Relja Arandjelović, are PCA-compressed to 128 dimensions and unit
`2-normalized; SIFT vectors are 128-dimensional and have almost constant `2-norm of 512, yielding almost
identical nearest-neighbors for cosine similarity and `2 distance.
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Dataset D R U S

SIFT1M 128 100K 1M 10K
GIST1M 960 500K 1M 1K

VLAD500K 128 400K 0.5M 1K

Table 3.1: Datasets. Data dimension and training/database/query set size of the datasets we
use.

the proposed approach before vector quantization of coefficient vector, which we denote
α-RVQ (resp. α-PQ), see Fig. 3.1. Three structure granularities are considered, M = 4, 8

and 16. Note that in RVQ and α-RVQ, increasing the number of layers from M to M ′ > M

simply amounts to resuming recursive encoding of residuals. For PQ and α-PQ how-
ever, it means considering two different partitions of the input vectors: the underlying
codebooks/dictionaries and the resulting encodings have nothing in common.

Reconstruction errors (distortions) are also reported for K = 28 and 212 respectively.
For a given method, reconstruction error decreases when M or K increases. Also, as
expected, α-RVQ (resp. α-PQ) is more accurate than RVQ (resp. PQ) for the same
(M,K ). As we shall see next, most of this accuracy gain is retained after quantizing,
even quite coarsely, the coefficient vectors.

Quantizing coefficients Figure 3.2 shows the effect of this quantization on the per-
formance, in comparison to no quantization (sparse encoding) and to classic structured
quantization without coefficients. For these plots, we have used one byte encoding for
α, i.e., P = 256, along with M ∈ {4, 8, 16} and K = 256. With this setting, Qα-RVQ (resp.
Qα-PQ) is compared to both α-RVQ and RVQ (resp. α-PQ and PQ) with the same values
of M and K . This means in particular that Qα-RVQ (resp. Qα-PQ) benefits from one
extra byte compared to RVQ (resp. PQ). Note that allowing one more byte for RVQ/PQ
encoding would significantly increase its learning, encoding and search practical com-
plexities.

Since α has M dimensions, its quantization with a single byte gets cruder as M increases,
leading to a larger relative loss of performance as compared to no quantization. For
M = 4, one byte quantization suffices in both structures to almost match the good per-
formance of unquantized sparse representation. For M = 16, the increased degradation
remains small within Qα-RVQ. However it is important with Qα-PQ: for a small bud-
get allocated to the quantization of α, it is even outperformed by the PQ baseline. This
observation is counter-intuitive (with additional information, there is a loss). The rea-
son is that the assignment is greedy: while the weights are better approximated w.r.t. a
square loss, the vector reconstruction is inferior with Eq. (3.2). A non-greedy exploration
strategy as in AQ would address this problem but would also dramatically increase the
assignment cost. This suggests that the size P of the codebook associated with α should
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Figure 3.1: Accuracy of structured encoding, with and without coefficients. Squared recon-
struction errors produced by structured encoding (PQ and RVQ) and proposed sparse encod-
ing extensions (α-PQ and α-RVQ). For each method, M = 4, 8, 16 and log2 K = 8, 12 are re-
ported. In absence of coefficient quantization here, each code has M log2 K bits, i.e., 64 bits for
(M,K ) = (8, 256).
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Figure 3.2: Impact of 1-byte α quantization on performance. Recall@R curves for Qα-RVQ,
α-RVQ and RVQ (resp. Qα-PQ, α-PQ and PQ) on the three datasets, with M ∈ {4, 8, 16}, K = 256

and P = 256.
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Qα-RVQ vs. RVQ Qα-PQ vs. PQ
SIFT/GIST/VLAD SIFT/GIST/VLAD

M = 4 1/1/1 3/3/2

M = 8 1/1/1 6/5/5

M = 16 1/1/1 15/11/12

Table 3.2: Minimum bits for coefficient encoding. Number of bits required to encode the co-
efficients i.e., log2 P to lower the reconstruction error compared to the corresponding structured
quantization on the three datasets, with M ∈ {4, 8, 16} and K = 256.

be adapted to the number M of layers.

Hereafter, in Table 3.2, we measure for each dataset the minimum number of bits that
must be dedicated to coefficients quantization (log2 P) to ensure that the reconstruction
error with structured sparse coding remains below the one of the corresponding struc-
tured quantization method. Interestingly, the first bit allocated to α improves upon RVQ
for all the settings and datasets. In contrast and as discussed before, for Qα-PQ, more
bits must be allocated to the weights for larger M to guarantee a better representation.
For instance, an overhead of 6 bits is required for M = 8.

Comparing at fixed code size For large scale search, considering (almost) equal encod-
ing sizes is a good footing for comparisons. This can be achieved in different ways. In
the case of RVQ and Qα-RVQ, the recursive nature of encoding provides a natural way to
allocate the same encoding budget for the two approaches: we compare Qα-RVQ with
(M,K ,P) to RVQ with M codebooks of size K and a last one of size P . For PQ and
Qα-PQ, things are less simple: adding one codebook to PQ to match the code size of
Qα-PQ leads to a completely different partition of vectors, creating new possible sources
of behavior discrepancies between the two compared methods. Instead, we compare PQ
with M codebooks of size K to Qα-PQ with M dictionaries of size K/2 and P = 2M code-
words for coefficient vectors. This way, vector partitions are the same for both, as well
as the corresponding code sizes (M log2 K bits for PQ and M log2

K
2 + log2 2M = M log2 K

bits for Qα-PQ).

Sticking to these rules, we shall compare next structured quantization and quantized
sparse representation for equal encoding sizes.

CS-aNN We compare RVQ to Qα-RVQ and PQ to Qα-PQ for different code sizes, from
8 to 24 bytes per vector, on the task of maximum cosine similarity over `2-normalized
vectors. Corresponding Recall@1 curves are in Fig. 3.3. Qα-RVQ clearly outperforms
RVQ on all datasets, even with a substantial margin on GIST1M and VLAD500K, i.e.,
around 30% relative gain at 24 bytes. The comparison between PQ and Qα-PQ leads to
mixed conclusions: while Qα-PQ is below PQ on SIFT1M, it is slightly above for GIST1M
and almost similar for VLAD500K. Note however that, for the same number M log2 K of
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Figure 3.3: Comparative CS-aNN performance for different encoding sizes. Recall@1 on the
three datasets for increasing number of encoding bits, comparing PQ and RVQ with Qα-PQ and
Qα-RVQ respectively.
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SIFT GIST
encoding bits 64 72 64 72

PQ 23515 20054 0.7121 0.6733
Qα-PQ 25859 22007 0.7224 0.6868

RVQ 22170 20606 0.6986 0.6734
Qα-RVQ 22053 19976 0.6537 0.6174

Table 3.3: Comparative distortions in Euclidean aNN setting. Average squared reconstruction
errors on un-normalized SIFT1M and GIST1M.

encoding bits, Qα-PQ uses M K
2 + 2M centroids, which is nearly half the number MK of

centroids used by PQ in low M regimes (e.g., when K = 256, 528 vs. 1024 centroids for
M = 4 and 1280 vs. 2048 centroids for M = 8). Much fewer centroids for equal code size
and similar performance yield computational savings in learning and encoding phases.

Euclidean aNN In order to conduct comparison with other state-of-art methods such
as extensions of PQ and of RVQ, we also considered the Euclidean aNN search problem,
with no prior normalization of vectors. For this problem, the proposed approach applies
similarly since the minimization problem argminx∈X ‖y − Q(x)‖2 = argmaxx∈X y>Q(x)−
‖Q(x)‖2

2 involves the same quantities as the one in (3.8).

Recall@R curves are provided in Fig. 3.4 on two of the three datasets, relying on results
reported in [99] for CKM, RVQ and ERVQ, and [5], [135] for AQ and CQ respectively.
We observe again that Qα-PQ is below PQ on SIFT but on par with it on GIST. On SIFT,
Qα-RVQ, ERVQ and CQ perform similarly, while on GIST Qα-RVQ outperforms all,
including CQ and ERVQ. As discussed in Section 3.1, AQ is the most accurate but has
very high encoding complexity. CQ also has higher encoding complexity compared to
our simple and greedy approach.

Table 3.3 shows reconstruction errors for the same setting as in Fig. 3.4. This is consistent
with the results in Fig. 3.4, and shows again that Qα-RVQ is the best performer and that
Qα-PQ does not improve on PQ with the same number of encoding bits.

Note that the lower performance of Qα-PQ compared to PQ is because it uses half the
number of codewords to have equal or smaller memory footprint. Relative timings in
Tab. 3.4 indicate Qα-PQ is substantially faster for learning and encoding in this setting.
Our methods are slower in search but this overhead has minimal effect in the applica-
tions with very large scale data as we shall see in our billion-scale experiments.

Table 3.5 provides recall rates for various PQ based methods on SIFT1M with 64 bits
encoding. CKM and OPQ are very similar extensions on PQ and thus perform similarly.
The improvement provided by CKM/OPQ on PQ is complimentary to Qα-PQ. By using
OPQ instead of PQ within Qα-PQ, calling it Qα-OPQ, we get similar gains as OPQ gives
over PQ. This can be seen by comparing the gains of Qα-OPQ over Qα-PQ and OPQ
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Figure 3.4: Performance comparison for Euclidean-aNN. Recall@R curves on SIFT1M and
GIST1M, comparing proposed methods to PQ, RVQ and to some of their extensions, CKM [99],
ERVQ [1], AQ [5] and CQ [135].

PQ Qα-PQ RVQ Qα-RVQ

learn 1 0.212 1.250 0.719
encode 1 0.206 1.347 0.613
search 1 1.867 1.220 1.909

Table 3.4: Relative timings. Learning, encoding and search timings w.r.t. PQ on SIFT1M with
64 bits encoding. Qα-PQ and Qα-RVQ have faster learning/encoding as they use inner product
instead of `2 distance and have fewer codewords.
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Recall PQ CKM OPQ Qα-PQ Qα-OPQ

R@1 0.228 0.240 0.243 0.204 0.227
R@10 0.604 0.640 0.638 0.562 0.603
R@100 0.919 0.945 0.942 0.900 0.927

Table 3.5: CKM/OPQ comparison with PQ. Performance of PQ based methods on SIFT1M with
64 bits encoding. (M,K ) = (8, 256) for PQ, CKM and OPQ and (M,K ,P) = (8, 128, 256) for our
methods.

over PQ. These results of OPQ and Qα-OPQ are not plotted in 3.4 to maintain clarity.

Very large scale experiments on BIGANN We validate our approach on large scale ex-
periments carried out on the BIGANN dataset [68], which contains 1 billion SIFT vectors
(U = 1B , R = 1M out of the original 100M training set and S = 10K queries). At that
scale, an inverted file (IVF) system based on a preliminary coarse quantization of vectors
is required (as explained in Section 2.5). In our experiments, each vector is quantized
over N = 8192 centroids, and it is its residual relative to assigned centroid that is fed to
the chosen encoder. At search time, the query is multiply assigned to its Wc = 64 closest
centroids and Wc searches are conducted over the corresponding vector lists (each of
average size U/N). Performance is reported in Fig. 3.5 for PQ, RVQ and their proposed
extensions. For all of them the setting is M = 8 and K = 256, except for PQ-72 bits
(K = 512). All of them use the exact same IVF structure, which occupies approximately
4GB in memory (4B per vector). For RVQ and Qα-RVQ, norms of approximated database
vectors are quantized over 256 scalar values.

The best performance is obtained with the proposed Qα-RVQ approach, which requires
10 bytes per vector, thus a total of 14GB for the whole index. The second best aNN search
method is PQ-72 bits, which requires 9 bytes per vector, hence 13GB of index. While both
indexes have similar sizes and fit easily in main memory, PQ-72 relies on twice as many
vector centroids which makes learning and encoding more expensive.

The superior performance of Qα-RVQ comes at the price of a 70% increase of search time
per query compared to PQ. This can nonetheless be completely compensated for since
the hierarchical structure of Qα-RVQ lends itself to additional pruning after the one
with IVF. The W ′

c atoms most correlated with the query residual in C 1 are determined,
and dataset vectors whose first layer encoding uses none of them are ignored. For W ′

c =

128, search time is reduced substantially, making Qα-RVQ 10% faster than PQ, with no
performance loss (hence superior to PQ-72). A more drastic pruning (W ′

c = 8) makes
performance drop below that of PQ-72, leaving it on par with PQ-64 while being almost
6 times faster.

A variant of IVF, called “inverted multi-index” (IMI) [4] is reported to outperform IVF
in speed and accuracy, by using two-fold product quantization instead of vector quanti-
zation to produce the first coarse encoding. Using two codebooks of size N , one for each
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Figure 3.5: Large scale performance with IVF. Recall@R on the BIGANN 1B-SIFT dataset and
10K queries. For all methods, M = 8 and K = 256, except for “PQ-72” (K = 512). For quantized
sparse coding methods, P = 256 and norms in residual variant are quantized over 256 scalar
values, resulting encoding sizes (b) being given in bytes per vector. All methods share the same
IVF index with N = 213 and Wc = 64. Subscripted Qα-RVQ denotes variants with additional
pruning (W ′c = 128 and 8 resp.). Search timings are expressed relative to PQ-64.
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half of the vectors, IMI produces N2 inverted lists. We have run experiments with this
alternative inverted file system, using N = 214 and scanning a list of T = 100K , 30K or
10K vectors, as proposed in [4]. The comparisons with PQ-64 based on the same IMI are
summarized in Tab. 3.6 in terms of recall rates and timings. For all values of T , the pro-
posed Qα-RVQ and Qα-PQ perform the best and with similar search time as RVQ and
PQ-64. Also, Qα-RVQ with T = 30K has the same recall@100 as PQ-64 with T = 100K

while being twice as fast (14ms vs. 29ms per query). For a fixed T , PQ-64 and Qα-PQ
(resp. RVQ and Qα-RVQ) have the same search speed, as the overhead of finding the T

candidates and computing look-up tables dominates for such relatively short lists. The
T candidates for distance computation are very finely and scarcely chosen. Therefore,
increasing the size K of dictionaries/codebooks in the encoding method directly affects
search time. This advocates for our methods, as for equal (M,K ) and an extra byte for
encoding coefficients, Qα-RVQ and Qα-PQ always give better performance. Compared
to PQ-72, Qα-PQ is faster (only half the number of codewords is required in the quanti-
zation) with slightly lower accuracy. Qα-RVQ is more accurate with extra execution time
compared to PQ-72.
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3.6 Discussion and conclusion

In this chapter we present a novel quantized sparse representation that is specially de-
signed for large scale approximate nearest neighbour search. The residual form of this
representation, Qα-RVQ, clearly outperforms RVQ in all datasets and settings, for equal
code size. Within the recursive structure of residual quantization, the introduction of ad-
ditional coefficients in the representation thus offers accuracy improvements that trans-
late into aNN performance gains, even after drastic vector quantization of these coef-
ficients. One possible reason for the proposed approach to be especially successful in
its residual form lies in the rapid decay of the coefficients that the hierarchical structure
induces. This facilitates quantization of coefficient vectors, even with 1 byte only. In its
partitioned variant, this property is not true anymore, and the other proposed approach,
Qα-PQ, brings less gain. It does however improve over PQ for image-level descriptors
(GIST and VLAD), especially in small M regimes, while using fewer centroids.

As demonstrated on the billion-size BIGANN dataset, the proposed framework can be
combined with existing inverted file systems like IVF or IMI to provide highly competi-
tive performance on large scale search problems. In this context, we show in particular
that both Qα-PQ and Qα-RVQ offer higher levels of search quality compared to PQ and
RVQ for similar speed and that they allow faster search with similar quality. Regard-
ing Qα-RVQ, it is also worth noting that its hierarchical structure allows one to prune
out most distant vectors based only on truncated descriptors, as demonstrated on BI-
GANN within IVF system. Conversely, this nested structure permits to refine encoding
if desired, with no need to retrain and recompute the encoding up to the current layer.

On a different note, the successful deployment of the proposed quantized sparse en-
coding over million to billion-sized vector collections suggests it could help scaling up
sparse coding massively in other applications.
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CHAPTER

FOUR

SUBIC: A SUPERVISED, STRUCTURED BINARY
CODE FOR IMAGE SEARCH

In this chapter, we propose a supervised structured binary code to encode images for
efficient large scale image search. The structured binary code is produced by a su-
pervised deep convolutional neural network by employing a novel block-softmax
nonlinearity and batch-based entropy losses. This chapter is based on the following
publication:

SUBIC: A supervised, structured binary code for image search. H. Jain, J. Zepeda,
P. Pérez, and R. Gribonval. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2017.

Deep convolutional neural networks (CNNs) have proven to be versatile image repre-
sentation tools with great generalization power, a quality that has rendered them indis-
pensable in image search. A given network trained on the ImageNet dataset [30], for ex-
ample, can achieve excellent performance when transferred to a variety of other datasets
[45, 77], or even to other visual search tasks [106]. This quality of transferability is impor-
tant in large-scale image search, where the time or resources to compile annotations in
order to train a new network for every new dataset or task are not available.

A second desirable property of image representations for large-scale visual search is that
of being compact yet functional. A paramount example of such a representation is pro-
vided by image indexing schemes, such as Product Quantization (PQ) [66] and others,
that rely on vector quantization with structured, unsupervised codebooks [5, 24, 135].
PQ can be seen as mapping a feature vector into a binary vector consisting of a concate-
nation of one-hot (a binary vector with all entries but one being zero) encoded codeword
indices. One can directly compare an uncompressed query feature with these binary vec-
tors by means of an inner product between the binary vectors and a real-valued mapping
of the query feature vector.

It is not surprising that, with the dawn of the deep learning revolution, many recent
research efforts have been directed towards supervised learning of deep networks that
produce compact and functional binary features [27, 31, 78, 80, 82, 129, 134, 137]. One
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commonality between these approaches – which we refer to collectively as deep hash-
ing methods – is their reliance on element-wise binarization mechanisms consisting of
either sigmoid/tanh non-linearities [27, 78, 80, 82, 129, 134, 137] or element-wise bina-
rizing penalties such as [27, 31]. Indeed, to our knowledge, ours is the first approach
to impose a structure on the learned binary representation: We employ two entropy-
based losses to induce a one-hot block structure in the produced binary feature vectors,
while favoring statistical uniformity in the support of the active bits of each block. The
resulting structured binary code has the same structure as a PQ-encoded feature vector.

Imposing structure on the support of the binary representation has two main motiva-
tions: First, structuring allows a better exploitation of the binary representation’s sup-
port to encode semantic information, as exemplified by approaches that learn to encode
face parts [10], visual attributes [90] and text topics [69] in the support of the represen-
tation under weak supervision. We promote this desirable property by means of an
entropy-based loss that encourages uniformity in the position of the active bits – a prop-
erty that would not be achievable using a simple softmax non-linearity. Note that, as a
related added benefit, the structuring makes it possible to use a binary representation
of larger size without incurring extra storage. Second, the structuring helps in regular-
izing the architecture, further contributing to increased performance relative to other,
non-structured approaches.

While all previously existing deep hashing methods indeed produce very compact, func-
tional representations, they have not been tested for transferability. The main task ad-
dressed in all these works is that of category retrieval wherein a given test example is
used to rank all the test images in all classes. Yet all deep hashing approaches employ
a single-domain approach wherein the test classes and training classes are the same. It
has been established experimentally [108] that excellent performance can be achieved
in this test by simply assigning to each stored database image, the class label produced
by a classifier trained on the corresponding training set. Hence, it is also important to
test for cross-domain category retrieval, wherein the architecture learned on a given set
of training classes is tested on a new, disjoint set of test classes. We present experiments
of both types in this work, outperforming several baselines in the cross-domain test and
recent deep hashing methods in the single-domain test.

The contributions of the present work can be summarized as follows:

• We introduce a simple, trainable, CNN layer that encodes images into structured
binary codes that we coin SUBIC. While all other approaches to supervised binary
encoding use element-wise binarizing operations and losses, ours are block-based.

• We define two block-wise losses based on code entropy that can be combined with
a standard classification loss to train CNNs with a SUBIC layer.

• We demonstrate that the proposed binary features outperform the state-of-the art

56 Chapter 4. SUBIC: A supervised, structured binary code for image search



Learning compact representations for large scale image search

in single-domain category retrieval, two competitive baselines in cross-domain cat-
egory retrieval and image classification, and state-of-the art unsupervised quantiz-
ers in image retrieval.

• Our approach enables asymmetric search with a search complexity comparable to
that of deep hashing.

4.1 Related work

Method supervision binarization (train – test) code-based loss on base CNN training cross-domain
CNNH+ [129] pair-wise sigmoid–threshold dist. to target code yes no
DRSCH [134] triplet-wise sigmoid–threshold none yes no

DSRH [137] triplet-wise sigmoid–threshold training average yes no
DNNH [78] triplet-wise sigmoid–threshold none yes no

DLBHC [80] point-wise sigmoid–threshold none fine-tuning no
DSH [82] pair-wise sigmoid–threshold distance to binary yes no

BDNN [31] pair-wise built-in feature reconst. error no no
SUBIC (ours) point-wise block softmax–argmax block-based entropies yes yes

Table 4.1: Comparison of proposed approach to recent supervised binary hashing techniques.

We discuss here the forms of vector quantization and binary hashing that are the most
important for efficient visual search with compact codes, and we explain how our ap-
proach relates to them.

Unsupervised structured quantization. Vector quantization (VQ), e.g. with unsuper-
vised k-means, is a classic technique to index multi-dimensional data collections in a
compact way while allowing efficient (approximate) search. Structured versions of VQ,
e.g. product, additive or composite [5, 39, 40, 60, 66, 73, 99, 135], have established impres-
sive indexing systems for large scale image collections, as discussed in Chapter 2. Cou-
pled with single or multiple index inverted file systems [4, 68], these VQ techniques cur-
rently offer state-of-the-art performance for very large-scale high-dimensional nearest-
neighbor search (relative to the Euclidean distance in input feature space) and instance
image search based on visual similarity. All these unsupervised quantization techniques
operate on engineered or pre-trained image features. Owing to the success of CNNs for
image analysis at large, most recent variants use off-the-shelf or specific CNN features as
input representation, e.g., [8, 71, 83, 122]. However, contrary to binary hashing methods
discussed below, VQ-based indexing has not yet been approached from a supervised
angle where available semantic knowledge would help optimize the indexed codes and
possibly the input features. In the present work, we take a supervised encoding ap-
proach that bears a strong connection to supervised binary hashing, while exploiting an
important aspect of these powerful unsupervised VQ techniques, namely the structure
of the code. The binary codes produced by our approach are in a discrete product space
of size KM while allowing O(M logK ) storage and O(M) search complexity.
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Deep, supervised hashing. Binary hashing is a long-standing alternative to the above-
mentioned VQ methods, and the deep learning revolution has pushed the state-of-the-
art of these approaches. Deep supervised hashing methods – CNNH+ [129], DRSCH
[134], DSRH [137], DNNH [78], DLBHC [80], DSH [82] and BDNN [31] – share the fol-
lowing high-level principles. An off-the-shelf or home-brewed convolutional network f1

is used to extract a high-dimensional distributed representation x ∈ Rd from an input
image I. A subsequent fully connected encoding layer f2 turns this feature vector into a
compact binary code h ∈ {0, 1}B of B bits through final entry-wise thresholding (or sign
function for centered codes), B typically ranging from 12 to 64 bits. At training time,
this binarization is usually relaxed using a sigmoid (or tanh for centered codes) – with
the exception of BDNN [31] –, which results in an encoding layer that outputs vectors
in ∈ [0, 1]B . Using semantic supervision, f2 is trained while f1 is fixed to pre-trained
values, fine-tuned or trained from scratch. Supervision coming from class labels is used
either directly (classification training) [80] or using tuples (pairs [31, 82, 129] or triplets
[78, 134, 137]) as in metric learning. Table 4.1 summarizes the specifics of each of these
methods.

DLBHC [80] is a simple instance employing a sigmoid-activated encoding layer grafted
to the pre-trained AlexNet architecture [74] and trained using a standard classification
objective. Other methods employ additional training loss(es) at the code level to induce
desirable properties. BDNN [31] uses the code-to-feature reconstruction error, making
the approach applicable in an unsupervised regime. DSH [82] employs a W-shaped loss
with minima at the desired code values, while DSRH [137] penalizes the average of each
bit over the training set such that its distribution is approximately centred (final code is
in {−1, +1}B ). CNN+ [129] proposes the direct supervision of hash functions with target
binary codes learned in a preliminary phase via low-rank factorization of a full pairwise
similarity matrix. Note also that DRSCH [134] learns bit-wise weights along with the
binary encoder, which results in richer codes but more costly distances to compute at
search time.

As described in detail next, our approach follows the same high-level principles dis-
cussed above, but with important differences. The first, key difference lies in the struc-
ture of the codes. We define them as the concatenation of M one-hot vectors (binary vec-
tors with all entries but one being zero) of size K . This gives access to KM distinct codes,
hence corresponding to an effective bit-size of M log2 K bits, as in VQ methods that com-
bine M codewords, each taken from a codebook of size K . Binarization and its relaxed
training version thus operate at the block level. This specific code structure is combined
with novel loss terms that enforce respectively the one-sparsity of each block and the ef-
fective use of the entire block support. Also, contrary to most supervised binary hashing
approaches, with the exception of [80], we resort only to point-wise supervision.

To our knowledge, only one other approach has incorporated product-wise structuring
within a deep learning pipeline [18]. Yet that method does not learn the structuring
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Figure 4.1: Proposed architecture and notations. A feature is extracted from image I by a base
CNN f1 and binarized using a block-structured encoding layer f2 consisting of a fully-connected
layer followed by a block softmax during training, or a block 1-hot encoder during testing.

as part of a deep architecture, relying rather on a standard product quantizer that is
updated once per epoch in an unsupervised manner.

4.2 Approach

We describe in this section the design of our SUBIC architecture, its supervised training
and its use for visual search.

4.2.1 Architecture

Following the approach discussed above, we consider the following classification feed-
forward network (Fig. 4.1):

s , FC1 ◦ f2 ◦ f1(I), (4.1)

where I is an input image, f1 a deep CNN with L convolutional layers (inc. pooling and
normalization, if any) and Q fully-connected layers, f2 a binary encoding layer, FC1 a C -
class classification layer, and s the C -dimensional vector of class-probability estimates.

We aim for the binary encoding layer f2 to produce structured binary vectors b consisting
of the concatenation of M one-hot encoded vectors bm,m = 1, ... ,M, of dimension K , i.e.,
b = [b1; ... ;bM ].1 Formally, the blocks bm should satisfy

bm ∈ KK , {d ∈ {0, 1}K s.t. ‖d‖1 = 1}. (4.2)

Accordingly, our codes b should come from the discrete product set KM
K .

In practice, f2 employs a fully-connected layer FC0 with ReLU non-linearity producing
real-valued vectors z ∈ RKM

+ likewise consisting of M K -dimensional blocks zm. A sec-
ond non-linearity operates on each zm to produce the corresponding binarized block. We
use a different binarization strategy at training time (top branch in Fig. 4.1) and at test
time (bottom branch), as discussed next.
1Using vector stacking notation [a; b] = [a>, b>]>, where a and b are column-vectors.
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Training architecture. Similarly to supervised binary hashing approaches discussed
in Section 4.1, we enable back-propagation during our learning process by relaxing the
structured binarization constraint (4.2), producing instead structured real-valued codes
∼
b ∈ ∆M

K , where
∆K , {d ∈ [0, 1]K s.t. ‖d‖1 = 1} (4.3)

is the convex hull of KK (see Fig. 4.1 bottom-left, for the examples ∆2
3 and K2

3). We
achieve this by introducing the block-softmax non-linearity

∼
b= bSoftMaxM(z) (cf . Fig. 4.1)

which computes the blocks
∼
bm from the corresponding blocks zm as follows (exp(·) de-

notes element-wise exponentiation):

∼
bm =

1

‖ exp(zm)‖1
exp(zm). (4.4)

Test time architecture. At test time, the block softmax is replaced (cf. Fig. 4.1, bottom
branch) by a block one-hot encoder b = bBinEncM(z), which uses z to efficiently compute
the projection of each block

∼
bm ∈ ∆K onto KK using

bm[k] =

1 if k = argmaxr zm[r ],

0 otherwise,
(4.5)

where d[k] denotes the k-th entry of a vector d. Note, particularly, that bBinEncM(z) =

bBinEncM(
∼
b).

4.2.2 Supervised loss and training

In order to bring real-valued code vectors
∼
b as close as possible to block-wise one-hot

vectors, while making the best use of coding budget, we introduce two entropy-based
losses that will be part of our learning objective. Our approach assumes a standard
learning method wherein training examples (I(i), y (i)) consisting of an image I(i) and its
class label y (i) ∈ {1, ... ,C} are divided into mini-batches {(I(i), y (i))}i∈T of size |T | = T .

Our losses will be based on entropy, which is computed for a vector p ∈ ∆K as follows:2

E(p) , −
K∑

k=1

p[k] log2 p[k]. (4.6)

Entropy is smooth and convex and further has the interesting property that it is the
theoretical minimum average number of bits per symbol required to encode an infinite
sequence of symbols with distribution p [26]. Accordingly, it is exactly zero, its mini-
mum, if p specifies a deterministic distribution (i.e., p ∈ KK ) and log2 K , its maximum, if
it specifies a uniform distribution (i.e., p = 1

K 1).

2With the usual convention 0 log2(0) = 0.
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Toward block-wise one-hot encoding. Given the merits of structured binary codes
discussed previously, we aim to produce feature vectors

∼
b = [

∼
b1; ... ;

∼
bM ] consisting of

blocks
∼
bm that approximate one-hot encoded vectors, thus that have a small projection

error
min
d∈KK

‖d−
∼
bm‖2. (4.7)

In the ideal case where
∼
bm ∈ KK , it has minimum entropy of 0. The convex-

ity/smoothness of E(·) means that blocks with low entropy will have small projection
error (4.7), thus suggesting penalizing our learning objective for a given training image
using

∑
m E(

∼
bm). We overload our definition of E(·) in (4.6) and let E(

∼
b) ,

∑
m E(

∼
bm) ∈

[0,M log2 K ]. Accordingly, we refer to the average of these losses over a training batch T
as the mean entropy, given by

1

TM

∑
i∈T

M∑
m=1

E(
∼
b
(i)

m ) =
1

TM

∑
i∈T

E(
∼
b
(i)

). (4.8)

In practice, introducing this loss will result in vectors
∼
b that are only approximately

binary, and hence, at test time, we project each block
∼
bm onto KK using (4.5).

Uniform block support. Besides having blocks
∼
bm that resemble one-hot vectors, we

would like for the supports of the binarized version bm of
∼
bm to be as close to uniformly

distributed as possible. This property allows the system to better exploit the support of
our

∼
b in encoding semantic information. It further contributes to the regularization of

the model and encourages a better use of the available bit-rate.

We note first that one can estimate the distribution of the support of the bm from a batch
T using 1

T

∑
i∈T b

(i)
m . Relaxing bm to

∼
bm for training purposes, we want the entropy of

this quantity to be high. This leads us to the definition of the negative batch entropy loss:

− 1

M

M∑
m=1

E
( 1

T

∑
i∈T

∼
b
(i)

m

)
= − 1

M
E
(
b
)

, (4.9)

where we let b , 1
T

∑
i∈T

∼
b
(i)

.

Our learning objective (computed over a mini-batch) will hence be a standard classifica-
tion objective further penalized by the mean and batch entropies in (4.8) and (4.9):

Loss
(
{(I(i),y (i))}i∈T

)
,

1

T

∑
i∈T

[
`(s(i), y (i))+

γ

M log2 K
E(
∼
b
(i)

)− µ

M log2 K
E(b)

]
,

(4.10)

with network output s defined as in (4.1), C the number of classes, and γ > 0 and µ > 0

two hyper-parameters.
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In our work, we use the following scaled version of the commonly used cross-entropy
loss for classification:

`(s, y) , − 1

log2 C
log2 s[y ]. (4.11)

The scaling by log2 C reduces the dependence of the hyper-parameters µ and γ on the
number of classes C .

The training loss (4.10) is minimized with mini-batch stochastic gradient descent. The
whole architecture can be learned this way, including the CNN feature extractor, the
encoding layer and the classification layer (Fig. 4.1). Alternatively, (some of) the weights
of the base CNN f1 can be fixed to pre-trained values. In Section 4.3, we will consider the
following variants, depending on set-ups: Training of FC0/FC1 only (“2-layer” training),
the base CNN staying fixed; Training of FC−1/FC0/FC1 (“3-layer training”); Training of
all layers, C1 · · ·CL and FC−Q · · ·FC1 (“full training”).

4.2.3 Image search

As we will establish in Section 4.3, SUBIC yields important advantages in three image
search applications, which we now describe along with a search complexity analysis.

Category and instance retrieval. These two tasks consist of ranking database images
according to their similarity to a given query image, where similarity is defined by mem-
bership in a given semantic category (category retrieval) or by the presence of a specific
object or scene (instance retrieval). For these two tasks, we wish to use our structured
binary representations to efficiently compute similarity scores for all database of images
{I(j)}j given a query image I∗. We propose using an asymmetric approach [66] that lim-
its query-side coding approximation: The database images are represented using their
structured binary representation b(j) = [b

(j)
1 ; · · · ;b

(j)
M ] ∈ KM

K , whereas the query image
I∗ is represented using the real-valued vector z∗ = [z∗1; · · · ; z∗M ] ∈ RKM

+ . Accordingly,
the database images are ranked using the similarity score (z∗)>b(j). This expression also
reads

M∑
m=1

z∗m
[

argmax
r

b
(j)
m [r ]

]
, (4.12)

which shows that M additions are needed to compute SUBIC similarities.

Image classification. A second important application is that of image classification
in the case where the classes of interest are not known beforehand or change across
time, as is the case of on-the-fly image classification from text queries [23, 22]. Having
feature representations that are compact yet discriminative is important in this scenario,
and a common approach to achieve this is to compress the feature vectors using PQ
[20, 22]. The approach we propose is to instead use our supervised features to compactly
represent the database images directly. New classes are assumed to be provided in the
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form of annotated sets {(I(q), y (q))}q containing examples of the C ′ previously-unknown
query classes,3 and we learn classifiers from the structured codes

∼
b of these examples.

At test time, classifying a test feature b(j) ∈ KM
K from the original dataset will require

computing products (W∗)>b(j) (with W∗ ∈ RKM×C ′ for a softmax classifier or W∗ ∈ RKM

for a one-vs-rest classifier). Similarly to (4.12), this operation will likewise require only
M additions per column of W∗.

Search complexity relative to deep hashing. The expression (4.12) is reminiscent of
the efficient distance computation mechanisms based on look-up-tables commonly used
in product quantization search methods [66]. In particular, the expression in (4.12) es-
tablishes that computing the similarity between z∗m and bm incurs a complexity of M

additions. This can be compared to the complexity incurred when computing the Ham-
ming distance between two deep hash codes (cf. §4.1) h1 and h2 of length B = M log2 K

(i.e., of storage footprint B equal to that of SUBIC): 1 XOR operation followed by as many
additions as there are different bits in h1 and h2, a value that can be estimated from the
expectation (J·K is the Iverson bracket)

Eh1,h2

(
B∑

k=1

q
h1[k] 6= h2[k]

y
)

=
B

2
=

M

2
log2 K , (4.13)

if assuming i.i.d. and uniform hj [k].

We note thatO(1) look-up-table (LUT) based implementations of the Hamming distance
are indeed possible, but only for small B (the required LUT size is 2B ). Alternatively,
a smaller LUT of size 2B/M

′
can be used by splitting the code into M ′ blocks (with M ′

comparable to M), resulting in a complexity O(M ′) comparable to the O(M) complexity
of SUBIC.

4.3 Experiments

We assess the merits of the proposed supervised structured binary encoding for instance
and semantic image retrieval by example and for database image classification, the three
tasks described in Section 4.2.3.

Single-domain category retrieval. Single-domain category retrieval is the main exper-
imental benchmark in the supervised binary hashing literature. Following the experi-
mental protocol of [82], we report mean average precision (mAP) performance on the
Cifar-10 database [25] which has 10 categories and 60k images of size 32 × 32 for each.
The training is done on the 50k image training set. The test set is split into 9k database
images and 1k query images, 100 per class. For fairness of comparison, we also use as

3Obtained from an external image search engine in on-the-fly scenarios.
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Method 12-bit 24-bit 36-bit 48-bit
CNNH+ [129] 0.5425 0.5604 0.5640 0.5574

DLBHC [80] 0.5503 0.5803 0.5778 0.5885
DNNH [78] 0.5708 0.5875 0.5899 0.5904

DSH [82] 0.6157 0.6512 0.6607 0.6755
KSH-CNN [84] - 0.4298 - 0.4577

DSRH [137] - 0.6108 - 0.6177
DRSCH [134] - 0.6219 - 0.6305

BDNN [31] - 0.6521 - 0.6653
SUBIC (ours) 0.6349 0.6719 0.6823 0.6863

Table 4.2: Single-domain category retrieval. Comparison against published mAP values on
Cifar-10 for various supervised deep hashing methods. See the ImageNet column of Table 4.3 for
single-domain results on ImageNet.

Method Pascal VOC Caltech-101 ImageNet
PQ [66] 0.4965 0.3089 0.1650

CKM [99] 0.4995 0.3179 0.1737
LSQ [94] 0.4993 0.3372 0.1882

DSH-64 [82] 0.4914 0.2852 0.1665
SUBIC 2-layer 0.5600 0.3923 0.2543
SUBIC 3-layer 0.5588 0.4033 0.2810

Table 4.3: Cross-domain category retrieval. Performance (mAP) using 64-bit encoders across
three different datasets using VGG-128 as base feature extractor. For completeness, results on
ImageNet validation set (i.e. single-domain retrieval) are provided in the third column.

base CNN the same as introduced in [82]. It is composed of L = 3 convolutional lay-
ers with 32, 32 and 64 filters of size 5 × 5 respectively, followed by a fully connected
layer FC−1 with d = 500 nodes. As proposed, we append to it a randomly initialized
encoder layer FC0 along with the classification layer FC1. We fixed K = 64 and varied
M = {2, 4, 6, 8} so that B = M log2(K ) is equal to the desired bit-rate. Full training of the
network is conducted, and hyper-parameters γ and µ are cross-validated as discussed
later. We compare in Table 4.2 with various methods based on the same base CNN (top
four rows, DSH [82], DNNH [78], DLBHC [80] and CNNH+ [129]), as well as other pub-
lished values. For reference, we include a method (KSH-CNN [84]) not based on neural
hash functions but using activations of a deep CNN as input features. Note that, at all
bit-rates, from 12 to 48 bits, SUBIC outperforms these state-of-the-art supervised hashing
techniques.

Cross-domain category retrieval. Using VGG-D with 128-D bottleneck (VGG-128) [21]
as base CNN (L = 5, Q = 3 and d = 128), setting µ and γ to 1.0, we performed 2-layer
and 3-layer learning of our network (see Section 4.2.2) on ILSVRC-ImageNet [56] training
set. Two-layer training is conducted on 5k batches of T = 200 images. Three-layer
training is initialized by previous one and run for another 5k batches. To evaluate cross-
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Method Oxford5K Paris6K
PQ [66] 0.2374 0.3597

LSQ [94] 0.2512 0.3764
DSH-64 [82] 0.2108 0.3287

SUBIC 0.2626 0.4116

Table 4.4: Instance retrieval. Performance (mAP) comparison using 64-bit codes for all methods.

domain performance, we used our trained network to do category retrieval on Pascal
Pascal VOC[120], Caltech-101 [17] and ImageNet validation sets. For each experiment,
we used 1000 (2000 for ImageNet) random query images, the rest serving as database.
The performance of the two trained SUBIC networks is reported in Table 4.3 at 64-bit
rate (M = 8, K = 256). They are compared to three unsupervised quantization baselines,
PQ [66], Cartesian k-means (CKM) [99] and LSQ [94], operating at 64-bit rate on VGG-
128 image features. Further, to compare with supervised deep hashing approaches we
implemented DSH [82] with VGG-128 as the base CNN, using their proposed loss and
pair-wise training.

The impact of the proposed semantic supervision across domain is clearly demonstrated.
Comparing unsupervised methods with our “2-layer” trained variant (no tuning of FC1

is particularly enlightening since they all share exactly the same 128-dimensional input
features). Training this representation as well in the “3-layer” version did not prove
useful except on the ImageNet validation set. Note that the performance on this set
could have been further improved through longer training, but at the expense on re-
duced transferability.

Instance retrieval. Unsupervised structured quantizers produce compact codes that
enjoy state-of-the-art performance in instance retrieval at low memory footprint. Hence,
in Table 4.4 we compare SUBIC to various such quantizers as well as DSH, using 64-bit
representations for all methods. We used the clean train subset [47] of the Landmarks
dataset [9] to train both DSH and a 2-layer SUBIC (the same as in Table 4.3, but with
60K batches). We report mAP on the Oxford5K[103] and Paris6K[104] datasets using
their provided query/database split. SUBIC outperforms all methods while DSH per-
formance is weaker to even unsupervised quantizers.

Image classification. In Table 4.5, we show how the 64-bit SUBIC encoding of VGG-
128 features from Table 4.3 (2-layer variant) outperforms two baseline encoders with the
same bit-rate for classification of compressed representations. As done in [22] for on-the-
fly classification, the first baseline employs PQ [66] to represent the features compactly,
and the second substitutes PQ by the better-performing CKM encoder [99]. Both unsu-
pervised encoders are learned on VGG-128 features from the ImageNet training set. For
the test on ImageNet, the two baselines employ the off-the-shelf VGG-128 classification
layer as a classifier, reconstructing the PQ and CKM encoded versions beforehand (for
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ImageNet Pascal VOC
Top-1 acc. Top-5 acc. mAP

VGG-128∗ 53.80 77.32 73.79
PQ 64-bit 39.88 67.22 65.94

CKM 64-bit 41.15 69.66 67.25
SUBIC soft∗ 50.07 74.11 70.20

SUBIC 64-bit 47.77 72.16 67.86

Table 4.5: Classification performance with different compact codes. The rows marked (*) are
non-binary codes. See the text for details.
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Figure 4.2: Effect of the entropy-based losses on the behavior of structured encoding. (left)
One-hot encoding closeness of

∼
b1. (right) Distribution of block support of b1. The black dashed

curves correspond to the ideal, desired behavior. (top) ImageNet validation. (bottom) Pascal VOC.

reference, first row is for this classifier using original, un-coded features). Our results
(bottom two rows) employ trained FC1 layer applied to either

∼
b code (“SUBIC soft”)

or b binary code (“SUBIC 64-bit”). In case of Pascal VOC we trained one-vs-rest SVM
classifiers on the off-the-shelf VGG-128 features (top three rows) or on the

∼
b features for

SUBIC (bottom two rows).

Note that our compact SUBIC 64-bit features outperform both PQ and CKM features for
the same bit-rate. Also notice that, although the classifiers for Pascal VOC are trained on
block-softmax encoded features, when we use SUBIC 64-bit features the accuracy drops
only marginally.

Structuring effectiveness of entropy-based losses. In Fig. 4.2 we evaluate our pro-
posed entropy losses using the same SUBIC setup as in Table 4.5. We report statistics
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Figure 4.3: Effect of γ and µ on category retrieval performance.

on the ImageNet validation set (top graphs) and on all of Pascal VOC (bottom graphs),
using the γ/µ ratio in the legends for ease of comparison.

To explore how well our γ-weighted mean-entropy loss favors codes resembling one-
hot vectors, we extract the first 256-dimensional block

∼
b1 from each image of the set

(the seven other blocks exhibit similar behavior), re-order the entries of each such
∼
b1

in decreasing order and average the resulting collection of vectors. The entries of this
average vector are visualized for various values of γ/µ in the plots on the left. Ideal one-
hot behavior corresponds to [1; 0 · · · ; 0]>. On both datasets, increasing the mean entropy
penalization weight γ relative to µ (i.e., increasing γ/µ) results in code blocks that more
closely resemble one-hot vectors.

To evaluate how well our µ-weighted negative batch-entropy term promotes uniformity
of the support of the binarized blocks in b, we plot, in the right side of Fig. 4.2, the sorted
histograms of the support of the first block b1 over the considered image set. Note that
increasing the weight µ of the batch entropy term relative to γ (decreasing γ/µ) results
in distributions that are closer to uniform. As expected, the effect is more pronounced
on the ImageNet dataset (top row) used as a training set, but extrapolates well to an
independent dataset (bottom row).

We note further that it is possible (green curves, γ/µ = 5) to have blocks that closely
resemble one-hot vectors (left plot) but make poor use of the available support (0-valued
histogram after the 47-th bin, on the right). It is likewise possible (blue curve, γ/µ = 0.1)
to enjoy good support usage with blocks that do not resemble one-hot vectors, establish-
ing that our two losses work together to achieve the desired design goals.

Cross-validation of hyper parameters. Using the same setup and γ/µ values as in Fig.
4.2, in Fig. 4.3 we plot mAP as a function of γ/µ on three datasets. Note that the optimal
performance (at γ/µ = 1) for this architecture is obtained for an operating point that
makes better use (closer to uniform) of the support of the blocks, as exemplified by the
corresponding curves (pink) on the right in Fig. 4.2. This supports one of our original
motivations that fostering uniformity of the support would encourage the system to use
the support to encode semantic information.
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Figure 4.4: Category retrieval examples. Top ten ranked images retrieved from Cifar-10 for the
query on the left when using 12-bit (top) and 48-bit (bottom) SUBIC. Note that higher bit-rates
make the representation more sensitive to the query’s orientation.

Category retrieval search examples. In Fig. 4.4 we present a search example when
using the 12-bit and 48-bit SUBIC from Table 4.2. Note that increasing the bit rate results
in retrieved images that are of the same pose as the query, suggesting that our method
has potential for weakly-supervised (automatic) category refinement.

4.4 Conclusion

In this chapter we introduced SUBIC, a supervised, structured binary code produced by
a simple encoding layer compatible with recent deep pipelines. Unlike previous deep
binary hash codes, SUBIC features are block-structured, with each block containing a
single active bit. We learn our proposed features in a supervised manner by means
of a block-wise softmax non-linearity along with two entropy-based penalties. These
penalties promote the one-hot quality of the blocks, while encouraging the active bits to
employ the available support uniformly. While enjoying comparable complexity at fixed
bit-rate, SUBIC outperforms the state-of-the art deep hashing methods in the single-
domain category retrieval task, as well as state-of-the art structured vector quantizers in
the instance retrieval task. SUBIC also outperforms structured vector quantizers in cross-
domain category retrieval. Our method further showed promise for weakly-supervised
semantic learning, a possible future direction.
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CHAPTER

FIVE

LEARNING A COMPLETE IMAGE INDEXING
PIPELINE

This chapter extends the work of Chapter 4 by learning a complete indexing pipeline
which includes supervised learning of an inverted index and of an encoder. This
chapter is based on the following publication:

Learning a complete image indexing pipeline. H. Jain, J. Zepeda, P. Pérez, and R.
Gribonval. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Decades of research have produced powerful means to extract features from images, ef-
fectively casting the visual comparison problem into one of distance computations in
abstract spaces. Whether engineered, such as the bag of visual words representation
[114] and its numerous variants [103, 104, 67, 138], or trained using convolutional deep
networks, [83, 23, 22, 2, 47, 9], such vector representations are at the core of all content-
based visual search engines. This applies particularly to example-based image retrieval
systems where a query image is used to scan a database for images that are similar to the
query in some way: in that they are the same image but one has been edited (near dupli-
cate detection), or because they are images of the same object or scene (instance retrieval),
or because they depict objects or scenes from the same semantic class (category retrieval).

Deploying such a visual search system requires conducting nearest neighbour search in
a high-dimensional feature space. Both the dimension of this space and the size of the
database can be very large, which imposes severe constraints if the system is to be practi-
cal in terms of storage (memory footprint of database items) and of computation (search
complexity). Exhaustive exact search must be replaced by approximate, non-exhaustive
search. To this end, two main complementary methods have emerged, both relying on
variants of unsupervised vector quantization (VQ). The first such method, introduced by
Sivic and Zisserman [114] is the inverted file system. Inverted files rely on a partitioning
of the feature space into a set of mutually exclusive bins. Searching in a database thus
amounts to first assigning the query image to one or several such bins, and then ranking
the resulting shortlist of images associated to these bins using the Euclidean distance (or
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some other distance or similarity measure) in feature space.

The second method, introduced by Jegou et al. [66] and as described in Chapter 3 and
4, consists of using efficient approximate distance computations as part of the rank-
ing process. This is enabled by feature encoders producing compact representations
of the feature vectors that further do not need to be decompressed when computing
the approximate distances. This type of approaches, which can be seen as employing
block-structured binary representations, superseded the (unstructured) binary hashing
schemes that dominated approximate search.

Despite its impressive impact on the design of image representations [47, 2, 45, 106],
supervised deep learning is still limited in what concerns the approximate search system
itself. Most recent efforts focus on supervised deep binary hashing schemes, as discussed
in the next section. As an exception, our work presented in Chapter 4 employs a block-
structured approach inspired by the successful compact encoders referenced above. Yet
the binning mechanisms that enable the usage of inverted files, and hence large-scale
search, have not been addressed so far.

In this work we introduce a novel supervised inverted file system along with a su-
pervised, block-structured encoder that together specify a complete, supervised, image
indexing pipeline. Our design is inspired by the two methods of successful indexing
pipelines described above, while extending ideas from our work in Chapter 4 to imple-
ment this philosophy.

Our main contributions are as follows:

(1) We propose the first, to our knowledge, image indexing system to reap the benefits
of deep learning for both data partitioning and feature encoding.

(2) Our data partitioning scheme, in particular, is the first to replace unsupervised VQ
by a supervised approach.

(3) We take steps towards learning the feature encoder and inverted file binning mech-
anism simultaneously as part of the same learning objective.

(4) We establish a wide margin of improvement over the existing baselines employing
state-of-the-art deep features, feature encoders and binning mechanism.

5.1 Background

Approximating distances through compact encoding Concerning approximate dis-
tance computations, two main approaches exist. Hashing methods [125], on the
one hand, employ Hamming distances between binary hash codes. Originally un-
supervised, these methods have recently benefited from progress in deep learning
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[129, 134, 137, 78, 80, 82, 31], leading to better systems for category retrieval in par-
ticular. Structured variants of VQ, on the other hand, produce fine-grain approx-
imations of the high-dimensional features themselves through very compact codes
[5, 39, 40, 60, 66, 73, 99, 135] that enable look-up table-based efficient distance com-
putations. Contrary to recent hashing methods, VQ-based approaches have not ben-
efited from supervision except in our proposed supervised deep learning approach
SUBIC (Chapter 4), which leverages the advantages of structured compact encoding and
yields state-of-the-art results on several retrieval tasks. In this chapter, we extend this
supervised approach towards a complete indexing pipeline, that is, a system that also
includes an inverted file index.

Scanning shorter lists with inverted indexes For further efficiency, approximate search
is further restricted to a well chosen fraction of the database. This pruning is carried out
by means of an Inverted File (IVF), which relies on a partitioning of the feature space
into Voronoi cells defined using K -means clustering [64, 4]. Two things should be noted:
The method to build the inverted index is unsupervised and it is independent from the
way subsequent distance approximations are conducted (e.g., while VQ is used to build
the index, short lists can be scanned using binary embeddings [64]). In this work, we
propose a unifying supervised framework. Both the inverted index and the encoding
of features are designed and trained together for improved performance. In the next
section, we expose in more detail the existing tools to design IVF/approximate search
pipelines, before moving to our proposal in Section 5.3.

5.2 Review of image indexing

Image indexing systems are based on two main components: (i) an inverted file and (ii) a
feature encoder. In this section we describe how these two main components are used in
image indexing systems, thus laying out the motivation for the method we introduce in
Section 5.3.

Inverted File (IVF) An inverted file relies on a partition of the database into mutu-
ally exclusive bins, a subset of which is searched at query time. The partitioning is
implemented by means of VQ [114, 66, 4]: Given a vector x ∈ Rd and a codebook
D = [dk ∈ Rd ]Nk=1, the VQ representation of x in D is obtained by solving

n = argmink ‖x− dk‖22, (5.1)

where n is the codeword index for x and dn its reconstruction. Given a database {xi}i of
image features, and letting ni represent the codeword index of xi , the database is parti-
tioned into N index bins Bn. These bins, stored along with metadata that may include the
features xi or a compact representation thereof, is known as an inverted file. At query
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time, the bins are ranked by decreasing pertinence n1, ... , nN relative to the query feature
x∗ so that

‖x∗ − dn1‖ ≤ ... ≤ ‖x∗ − dnN‖, (5.2)

i.e., by increasing order of reconstruction error. Using this sorting, one can specify a
target number of images T to retrieve from the database and search only the first B bins
so that

∑B−1
k=1 |Bnk | ≤ T ≤

∑B
k=1 |Bnk |.

It is important to note that all existing state-of-the-art indexing methods employ a variant
of the above described mechanism that relies on K -means-learned codebooks D. To the
best of our knowledge, ours is the first method to reap the benefits of deep learning to
build an inverted file.

Feature encoder The inverted file outputs a shortlist of images with indices in
⋃B

k=1 Bnk ,
which needs to be efficiently ranked in terms of distance to the query This is enabled by
compact feature encoders that allow rapid distance computations without decompress-
ing features. It is important to note that the storage bitrate of the encoding affects –
besides storage cost – search speed, as higher bitrates means that bins need to be stored
in secondary storage, where look-up speeds are a significant burden.

State-of-the art image indexing systems use feature encoders that employ a residual ap-
proach: A residual is computed from each database feature x and its reconstruction dn

obtained as part of the inverted file bin selection in (5.1):

rn = x− dn. (5.3)

This residual is then encoded using a very high resolution quantizer. Several schemes
exist [24, 66] that exploit structured quantizers to enable low-complexity, high-resolution
quantization, and herein we describe product quantizers and related variants [66, 99, 39].
Such vector quantizers employ a codebook C ∈ Rd×KM

with codewords that are them-
selves additions of codewords from M smaller constituent codebooks Cm = [cm,k ]k ∈
Rd×K ,m = 1, ... ,M , that are orthogonal (∀m 6= l ,CT

mCl = 0):

C =
[∑M

m=1
cm,km

]
(k1,...,kM)∈(1,...,K)M

. (5.4)

Accordingly, an encoding of r in this structured codebook is specified by the indices
(k1, ... , kM) which uniquely define the codeword c from C, i.e., the reconstruction of r in
C. Note that the bitrate of this encoding is M log2(K ).

Asymmetric distance computation Armed with such a representation for all database
vectors, one can very efficiently compute an approximate distance between a query x∗

and all database features x ∈ {xi , i ∈ ∪Bk=1Bnk} in top-ranked bins. The residual of x∗ for
bin Bn is

r∗n = x∗ − dn (5.5)
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and the approach is asymmetrical in that this uncompressed residual is compared to the
compressed, reconstructed residual representation c of the database vectors x in bin Bn
using the distance

‖r∗n − c‖22 =
M∑

m=1

‖r∗n − cm,km‖22. (5.6)

We define the look-up tables (LUT)

zn,m ,
[
‖r∗n − cm,k‖22

]
k
∈ RK (5.7)

containing the distances between r∗n and all codewords of Cm. Building these LUTs en-
ables us to compute (5.6) using

∑M
m=1 zm[km], an operation that requires only M table

look-ups and additions, establishing the functional benefit of the encoding (k1, ... , kM).

To gain some insight into the above encoding, consider the one-hot representation bm of
the indices km given by

bm =
[
Jl = kmK

]
l
∈ KK , (5.8)

where J·K denotes the Iverson brackets and we remind that:

KK , {a ∈ {0, 1}K , ‖a‖1 = 1}. (5.9)

Using stacked column vectors

b = [b1; ... ;bM ] ∈ KM
K and (5.10)

zn = [zn,1; ... ; zn,M ] ∈ RMK
+ , (5.11)

distance (5.6) can be expressed as follows:

‖r∗n − c‖22 = zT
nb. (5.12)

Namely, computing approximate distances between a query x∗ and the database fea-
tures x ∈ {xi , i ∈ Bn} amounts to computing an inner-product between a bin-dependent
mapping zn ∈ RMK of the query feature x∗ and a block-structured binary code b ∈ KK

M

derived from x. A search then consists of computing all such approximate distances for
the B most pertinent bins and then sorting the corresponding images in increasing order
of these distances.

It is worth noting that most of the recent supervised binary encoding methods [129, 134,
137, 78, 80, 82, 31] do not use structured binary codes of the form b in (5.12). The main
exception being SUBIC (Ch. 4), which further uses a sorting score that is an inner product
of the same form as (5.12).

5.3 A complete indexing pipeline

The previous section established how state-of-the-art large-scale image search systems
rely on two main components: an inverted file and a functional residual encoder that
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Figure 5.1: The SUBIC encoder from Chapter 4 operates on the feature vector x produced by a
CNN to enable learning of (relaxed) block-structured codes (b̃) b. Blue, yellow, and green blocks
are active, respectively, only at training time, only at testing time and at training/testing times.

Figure 5.2: The discrete set K3 of one-hot encoded vectors, its convex-hull ∆3, and the distri-
bution of relaxed blocks b̃m enforced by the SUBIC entropy losses. Omitting the negative batch
entropy loss (5.19) would result in situations where p(b̃m) is concentrated near only k < 3 of the
elements in K3.

produces block-structured binary codes. While compact binary encoders based on deep
learning have been explored in the literature, inverted file systems continue to rely on
unsupervised K -means codebooks.

In this section we first revisit our SUBIC encoder, and then show how it can be used to
implement a complete image indexing system that employs deep learning methodology
both at the IVF stage and compact encoder stage.

5.3.1 Block-structured codes

The SUBIC encoder, which we recall in Fig. 5.1 for easy reference, is the first to leverage
supervised deep learning to produce a block-structured code of the form b ∈ KM

K in
(5.10). At learning time, the method relaxes the block-structured constraint. Letting

∆K =
{
a ∈ RK

+ s.t.
∑

k
a[k] = 1

}
(5.13)

denote the convex hull of KK , said relaxation

b̃ ∈ ∆M
K (5.14)
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Figure 5.3: Proposed indexing architecture. The proposed indexing architecture consists of a bin
selection component, a residual computation component, and a feature encoder. We use blocks
with square corners (labeled with a weights matrix) to denote fully-connected linear operations,
potentially followed by a ReLU or softmax (SM) nonlinearity. Blue, yellow, and green blocks are
active, respectively, only at training time, only at testing (i.e. database indexing / querying) time
and at training/testing times. The residual block can be disabled to define a new architecture, as
illustrated by the switch at the bottom of the diagram.

is enforced by means of a fully-connected layer of output size KM and ReLU activation
with output z that is fed to a block softmax non-linearity that operates as follows: Let
zm denote the m-th block of z ∈ RKM such that z = [z1; ... ; zM ]. Likewise, let b̃m ∈
∆K denote the m-th block of the relaxed code b̃ ∈ ∆M

K . The block softmax non-linearity
operates by applying a standard softmax non-linearity to each block zm of z to produce
the corresponding block b̃m of b̃:

b̃m =

[
exp (zm[k])∑
l exp (zm[l ])

]
k

. (5.15)

At test time, the block-softmax non-linearity is replaced by a block one-hot encoder that
projects b̃ unto ∆M

K . In practice, this can be accomplished by means of one-hot encoding
of the index of the maximum entry of zm:

bm =
[

Jk = argmax(zm)K
]
k

. (5.16)

Our approach of SUBIC introduced two losses based on entropy that enforce the prox-
imity of b̃ to KM

K . The entropy of a vector p ∈ ∆K , defined as

E(p) =
∑K

k=1
p[k] log2 (p[k]) , (5.17)
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has a minimum equal to zero for deterministic distributions p ∈ KK , motivating the use
of the entropy loss

`E(b̃) ,
∑M

m=1
E(b̃m) (5.18)

to enforce the proximity of the relaxed blocks b̃m to KK . This loss on its own, however,
could lead to situations where only some elements ofKK are favored (cf . Fig. 5.2), mean-
ing that only a subset of the support of the bm is used.

Yet entropy likewise has a maximum of log2(K ) for uniform distributions p = 1
K 1. This

property can be used to encourage uniformity in the selection of elements of KK by
means of the negative batch entropy loss, computed for a batch A = {b̃(i)}i of size |A|
using

`B (A) , −
∑M

m=1
E
( 1

|A|
∑
i

b̃
(i)
m

)
. (5.19)

For convenience, we define the SUBIC loss computed on a batch A as the weighted
combination of the two entropy losses, parametrized by the hyper-parameters γ,µ ∈ R+:

`γ,µS

(
A
)
,

γ

|A|
∑

b̃∈A
`E(b̃) + µ`B (A) . (5.20)

It is important to point out that, unlike the residual encoder described in Section 5.2, the
SUBIC approach operates on the feature vector x directly. Indeed, the SUBIC method is
only a feature encoder, and does not implement an entire indexing framework.

5.3.2 A novel indexing pipeline

We now introduce our proposed network architecture that uses the method of SUBIC de-
scribed above to build an entire image indexing system. The system we design imple-
ments the main ideas of the state-of-the-art pipeline described in Section 5.2.

Our proposed network architecture is illustrated in Fig. 5.3. The input to the network
is the feature vector x consisting of activation coefficients obtained by running a given
image I through a CNN feature extractor. We refer to this feature extractor as the base
CNN of our system.

Similarly to the design philosophy described in Section 5.2, our indexing system employs
an IVF and a residual feature encoder. Accordingly, the architecture in Fig. 5.3 consists
of two main blocks, Bin selection and Encoder, along with a Residual block that links these
two main components.

Bin selection The first block, labeled Bin selection in Fig. 5.1 can be seen as a SUBIC
encoder employing a single block (i.e. M = 1) of size N , with the block one-hot encoder
substituted by an argmax operation. The block consists of a single fully-connected layer
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with weight matrix W1 and ReLU activation followed by a second activation using soft-
max. When indexing a database image I, this block is responsible for choosing the bin
Bn that I is assigned to, using the argmax of the coefficients z′.

Given a query image I∗, the same binning block is responsible for sorting the bins in
decreasing order of pertinence Bn1 · · · BnN using the coefficients z′∗ ∈ RN

+ so that

z′∗[n1] ≥ ... ≥ z′∗[nN ], (5.21)

in a manner analogous to (5.2).

(Residual) feature encoding Inspired by the residual encoding approach described in
Section 5.2, we consider a block analogous to the residual computation of (5.3) and (5.5).
The approach consists of building a vector (denoting ReLU as σ)

R2σ(R1b̃
′), (5.22)

that is analogous to the reconstruction dn of x obtained from the encoding n following
the IVF stage (cf . (5.1) and discussion thereof), and subtracts it from a linear mapping of
x:

r = Qx− R2σ(R1b̃
′) (5.23)

where R1, R2 and Q are learnable weight matrices. Besides the analogy to indexing
pipelines, one other motivation for the above approach is to provide information to the
subsequent feature encoding from the IVF bin selection stage (i.e. b̃′) as well as the origi-
nal feature x. For completeness, as illustrated in Fig. 5.3, we also consider architectures
that override this residual encoding block, setting r = x directly.

The final stage consists of an M-block SUBIC encoder operating on r and producing test-
time encodings b ∈ KM

K , and training-time relaxed encoding b̃ ∈ ∆M
K . Note that, unlike

the residual approach described in Section 5.2, our approach does not incurr the extra
overhead required to compute LUTs using (5.7).

Searching Given a query image I∗, it is first fed to the pipeline in Fig. 5.3 to obtain (i) the
activation coefficients z′∗ at the output of the W1 layer and (ii) the activation coefficients
z∗ at the output of the W2 layer. The IVF bins are then ranked as per (5.21) and all
database images

{
Ii , i ∈

⋃B
k=1 Bnk

}
in the B most pertinent bins are sorted, based on

their encoding bi , according to their score

z′∗Tb′i + z∗Tbi . (5.24)

Training We assume we are given a training set {(I(i), y (i))}i organized into C classes,
where label y (i) ∈ {1, ... ,C} specifies the class of the i-th image. Various works on learn-
ing for retrieval have explored the benefit of using ranking losses like the triplet loss
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and the pair-wise loss as opposed to the cross-entropy loss succesfully used in classifi-
cation tasks [47, 129, 134, 137, 78, 80, 82, 31, 13]. Empirically, we have found that the
cross-entropy loss yields good results in the retrieval task, and we adopt it in this work.

Given an image belonging to class c and a vector p ∈ ∆C that is an estimate of class mem-
bership probabilities, the cross-entropy loss is given by (the scaling is for convenience of
hyper-parameter cross-validation)

` (p, c) = − 1

log2 C
log2 p[c]. (5.25)

Accordingly, we train our network by enforcing that the relaxed block-structured codes
b̃′ and b̃ are good feature vectors that can be used to predict class membership. We
do so by feeding each vector to a soft-max classification layer (layers C1 and C2 in Fig.
5.3, respectively), thus producing estimates of class membership s′ and s in ∆C (cf . Fig.
5.3) from which we derive two possible task-related losses. Letting T denote a batch
specified as a set of training-pair indices, these two losses are

L1,α =
1

|T |
∑
i∈T

[
α`
(
s′(i), y (i)

)
+ `
(
s(i), y (i)

)]
(5.26)

and L2 =
1

|T |
∑
i∈T

`
(
s′(i) + s(i), y (i)

)
, (5.27)

where the scalar α ∈ {0, 1} is a selector variable. In order to enforce the proximity of the
b̃′ and b̃ to KN and KM

K , respectively, we further employ the loss

ΩH = `γ1,µ1S

(
{b̃′(i)}i∈T

)
+ `γ2,µ2S

(
{b̃(i)}i∈T

)
, (5.28)

which depends on the four hyper-parameters H = {γ1,µ1, γ2,µ2} (we disuss heuristics
for their selection if §5.4).

Accordingly, the general learning objective for our system is

F∗ = L∗ + ΩH, (5.29)

and we consider three variants thereof:

(SUBIC-I) a non-residual variant with objective F1,1 corresponding to independently
training the bin selection block and the feature encoder;

(SUBIC-R) a residual variant with objective F1,0 where the bin selection block is pre-
trained and held fixed during learning; and

(SUBIC-J) a non-residual variant with objective F2.
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Method Oxford5K Oxford5K* Paris6K Holidays Oxford105K Paris106K
DIR [47] 84.94 84.09 93.58 90.32 83.52 89.10
PQ [66] 46.57 39.45 57.57 48.23 38.73 42.23

SUBIC [62] 53.25 46.06 71.28 60.52 46.88 58.27

Table 5.1: Instance retrieval with encoded features. Performance (mAP) comparison using 64-
bit codes, first row shows reference results with original uncompressed features (8 Kbyte). When
bounding box information is used for Oxford5K dataset, the performance degrades for both PQ
and SUBIC, shown in column Oxford5K*, as both are trained on full images.

5.4 Experiments

Datasets For large-scale image retrieval, we use three publicly available datasets to
evaluate our approach: Oxford5K [103]1, Paris6K [104]2 and Holidays [64]3. For large-
scale experiments, we add 100K and 1M images from Flickr (Flickr100K and Flickr1M
respectively) as a noise set. For Oxford5K, bounding box information is not used. For
Holidays, images are used without correcting orientation.

For training, we use the Landmarks-full subset of the Landmarks dataset [9]4, as in [47].
We could only get 125,610 images for the full set due to broken URLs. In all our experi-
ments and for all approaches we use Landmarks-full as the training set.

For completeness, we also carry out category retrieval [62] test using the Pascal VOC5 and
Caltech-1016 datasets. For this test, our method is trained on ImageNet.

Base features The base features x are obtained from the ResNet version of the network
proposed in [47]. This network extends the ResNet-101 architecture with region of in-
terest pooling, fully connected layers, and `2-normalizations to mimic the pipeline used
for instance retrieval. Their method enjoys state-of-the-art performance for instance re-
trieval, motivating its usage as base CNN for this task.

Hyper-parameter selection For all three variants of our approach (SUBIC-I, SUBIC-J,
and SUBIC-R), we use N = 4096 bins, and a SUBIC-(8, 256) encoder having M = 8 blocks
of K = 256 block size (corresponding to 8 bytes per encoded feature). These parameters
correspond to commonly used values for indexing systems. To select the four hyper-
parameters H = {γ1,µ1, γ2,µ2} in (5.29) we first cross-validate just the bin selection
block to choose γ1 = 5.0 and µ1 = 6.0. With these values fixed, we then cross-validate
1www.robots.ox.ac.uk/˜vgg/data/oxbuildings/
2www.robots.ox.ac.uk/˜vgg/data/parisbuildings/
3lear.inrialpes.fr/˜jegou/data.php
4sites.skoltech.ru/compvision/projects/neuralcodes/
5http://host.robots.ox.ac.uk/pascal/VOC/
6http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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the encoder block to obtain γ2 = 0.6 and µ2 = 0.9. We use the same values for all three
variants of our system.

Evaluation of feature encoder First of all, we evaluate how SUBIC encoding performs
on all the test datasets compared to the PQ unsupervised vector quantizer. We use M = 8

and K = 256 setups for both codes. SUBIC is trained for 500K batches of 200 training im-
ages, with γ = 0.6 and µ = 0.9. The results reported in Table 5.1 show that, as expected,
SUBIC outperforms PQ, justifying its selection as a feature encoder in our system. For
reference, the first row in the table gives the performance with uncompressed features.
While high, each base feature vector has a storage footprint of 8 Kilo bytes (assuming
4-byte floating points). SUBIC and PQ, on the other hand, require only 8 bytes of storage
per feature (1000× less).

Baseline indexing systems We compare all three variants of our proposed indexing
system against two existing baselines, as well as a straightforward attempt to use deep
hashing as an IVF system:

(IVF-PQ) This approach uses an inverted file with N = 4096 bins followed by a resid-
ual PQ encoder with M = 8 blocks and constituent codebooks of size K = 256

(cf . (5.4)), resulting in an 8-byte feature size. The search employs asymmetric dis-
tance computation. During retrieval, the top B = 2n, lists are retrieved, and, for
each n = 1, 2, ... the average mAP and average aggregate bin size T are plotted.

(IMI-PQ) The Inverted Multi-Index (IMI) [4] extends the standard IVF by substituting a
product quantizer with M = 2 and K = 4096 in place of the vector quantizer. The
resulting IVF has more than 16 million bins, meaning that, for practical testing sets
(containing close to 1 million images), most of the bins are empty. Hence, when
employing IMI, we select shortlist sizes T for which to compute average mAP to
create our plots. Note that, given the small size of the IMI bins, the computation of
the look-up tables zn (cf . (5.7)) represents a higher cost per-image for IMI than for
IVF. Furthermore, the fragmented memory reads required can have a large impact
on speed relative to the contiguous reads implicit in the larger IVF bins.

(DSH-SUBIC) In order to explore possible approaches to include supervision in the IVF
stage of an indexing system, we further considered using the DSH deep hash code
[82] as a bin selector, carefully selecting the regularization parameter to be 0.03 by
means of cross-validation. We train this network to produce 12-bit image represen-
tations corresponding to N = 4096 IVF bins, where each bin has an associated hash
code. Images are indexed using their DSH hash, and at query time, the Hamming
distance between the query’s 12-bit code and each bin’s code is used to rank the
lists. For the encoder part, we used SUBIC with M = 8 and K = 256, the same
used in Tab. 5.1.

Large-scale indexing Fig 5.4 shows the mAP performance versus average number of
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retrieved images T for all three variants as well as the baselines described above. Note
that the number of retrieved images is a measure of complexity, as for IVF, the time com-
plexity of the system is dominated by the approximate distance computations in (5.12).
For IMI, on the other hand, there is a non-negligible overhead on top of the approximate
distance computation related to the large number of bins, as discussed above.

We present results for three datastets (Oxford5K, Paris6K, Holidays), on three different
database scales (the original dataset, and when also including noise datasets of 100K and
1M images). Note that on Oxford5K and Paris6K, both SUBIC-I and SUBIC-J enjoy large
advantages relative to all three baselines – at T = 300, the relative advantage of SUBIC-I
over the IMI-PQ is 19% at least. SUBIC-R likewise enjoys an advangate on the Paris6K
dataset, and performs comparably to the baselines on Oxford5K.

On Holidays SUBIC-I outperforms IVF-PQ by a large margin (18% relative), but does not
outperform IMI-PQ. As discussed above, this comparison does not reflect the overhead
implicit in an IMI index. To illustrate this overhead, we note that, when 1M images are
indexed, the average (non-empty) bin size for IMI is 18.3, meaning that approximately
54.64 memory accesses and look-up table constructions need to be carried out for each
IMI query per 1K images. This compares to an average bin size of 244.14 for IVF, and
accordingly 4.1 contiguous memory reads and look-up table constructions. Note, on the
other hand, that SUBIC-I readily outperforms IVF-PQ in all Holidays experiments.

Concerning the poor performance of SUBIC-R on Holidays, we believe this is due to poor
generalization ability of the system because of the three extra fully-connected layers.

IMI extension Given the high performance of IMI for the Holidays experiments in Fig.
5.4, we further consider an IMI variant of our SUBIC-I architecture. To implement this
approach, we learn a SUBIC-(2, 4096) encoder (with γ = 4 and µ = 5). Letting z′m denote
the m-th block of z′, the (k, l) ∈ {1, ... , 4096}2 bins of SUBIC-IMI are sorted based on the
score z′1[k] + z′2[l ]. For fairness of comparison, we use the same SUBIC−(8, 256) feature
encoder for all methods including the baselines, which are IVF and IMI with unsuper-
vised codebooks (all methods are non-residual). The results, plotted in Fig. 5.5, establish
that, for the same number of bins, our method can readily outperform the baseline IMI
(and IVF) methods. Furthermore, given that we use the best performing feature encoder
(SUBIC) for all methods, this experiment also establishes that the SUBIC based binning
system that we propose outperforms the unsupervised IVF and IMI baselines.

Category retrieval For completeness, we also carry out experiments in the cate-
gory retrieval task which has been the main focus of recent deep hashing methods
[129, 134, 137, 78, 80, 82, 31]. In this task, a given query image is used to rank all database
images, with a correct match occuring for database images of the same class as the query
image. For category retrieval experiments, we use VGG-M-128 base features [113], which
have established good performance for classification tasks, and a SUBIC-(1, 8192) for bin
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Figure 5.6: Category retrieval. Comparing SUBIC-I and SUBIC-R to IVF-PQ on the category
retrieval task. joint-residual to non-joint SUBIC and IVFPQ for category retrieval on Pascal and
Caltech101. All methods are trained on VGG-M-128 features of ImageNet images.

selection. We use the ImageNet training set (1M+ images) to train, and the test (train-
ing) subsets of Pascal VOC and Caltech-101 as a query (respectively, database) set. We
present results for this task in Fig. 5.6. Note that, unlike the Holidays experiments in Fig.
5.4, SUBIC-R performs best on Caltech-101 and equally well to SUBIC-I on Pascal VOC,
a consequence of the greater size and diversity of the ImageNet datasets relative to the
Landmarks dataset.

5.5 Conclusion

We present a full image indexing pipeline that exploits supervised deep learning meth-
ods to build an inverted file as well as a compact feature encoder. Previous methods
have either employed unsupervised inverted file mechanisms, or employed supervision
only to derive feature encoders. We establish experimentally that our method achieves
state of the art results in large scale image retrieval.

84 Chapter 5. Learning a Complete Image Indexing Pipeline



CHAPTER

SIX

CONCLUSION AND PERSPECTIVES

6.1 Contributions

In this thesis, we address the problem of large scale image search. The large scale search
is typically dealt by binary hashing or quantization based ANN search approaches. In
this thesis, encouraged by the higher accuracy compared to hashing, we focus on quan-
tization based approaches and propose various advances and enhancements to it. Typ-
ically, structured vector quantization methods for ANN search are based on unsupervised
clustering by minimizing the reconstruction error and represent the data by sum of code-
words. In one of our contributions, we propose an extension with weighted sums of the
codewords for structured VQ. In two other major contributions, we explore supervised
learning beyond reconstruction error minimization which leads to strong performance
boost.

Next, we summarize our contributions and conclusion presented in the previous Chap-
ters.

Weighted sum representation for VQ. Structured vector quantization uses a repre-
sentation as a sum of codewords to encode the database points as discussed in Section
3.1, the objective is to compress the database points. In Chapter 3, we extend the VQ
approaches by taking inspiration from sparse coding and propose a representation as
weighted sum of codewords. The proposed representation is richer and lowers the re-
construction error. However, for this extension to be practical for large scale search, the
newly introduced weights must be compressed. We propose to encode these weights by
quantizing the vectors they form.

We apply our proposed representation to extend product quantization (PQ) and resid-
ual vector quantization (RVQ). Particularly in the case of RVQ, our proposed extension
Qα-RVQ leads to strong improvements. This is due to the fact that we utilize the least in-
formative bits in RVQ for encoding the scalar weights which encompasses significantly
more information. While in case of PQ, our extension Qα-PQ provides a trade-off be-
tween accuracy and learning/encoding complexity. Our extension is complementary to
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other extensions like optimized PQ (OPQ) as shown in experiments with Qα-OPQ. Fur-
ther, our experiments on the billion-size BIGANN dataset showed that, combined with
inverted indexing systems like IVF or IMI, our extension improves accuracy with similar
search times.

Supervised structured binary representation. Structured VQ approaches for large
scale search benefit from asymmetric distance computation (ADC) and, high representation
capacity due its structure of multiple codebooks. But VQ could be limited by reconstruc-
tion error minimization and not taking advantage of labeled data. With the motivation
to benefit from ADC with structured code as in VQ and supervised training as in deep
hashing approaches, we propose SUBIC in Chapter 4. In this work, we introduce a train-
able layer on top of a CNN, that encodes images into structured binary codes which are
block wise one-hot (i.e., concatenation of binary vectors having all entries but one being
zero). To enforce the structure we propose two entropy-based losses, mean entropy loss to
induce a one-hot block structure, and negative batch entropy loss to encourage uniformity
in the code. These entropy-based losses are combined with a cross-entropy loss to train
the CNN in a supervised manner for image classification.

Our proposed approach of SUBIC outperformed the state-of-the-art methods in single-
domain and cross-domain image search with compressed representation. The compact
codes produced by our approach are also useful for large scale classification with trans-
ferability to new datasets or classes, as shown in Section 4.3.

Supervised inverted indexing. As shown in Chapter 3 on the BIGANN dataset, in-
verted indexing is an essential part of large scale search. It is built by clustering the
database points with VQ. In Chapter 5 we propose to apply our work of SUBIC to build
inverted indexes in a supervised manner. Our approach led to strong improvements
compared to the unsupervised baselines. It is the first approach to replace unsupervised
VQ based inverted indexing with supervised inverted indexing.

Unifying the supervised indexing pipeline. In Chapter 5, we also propose a unified
learning of the inverted index and the encoder. We explore three ways of unified learning
including SUBIC-I which combines separately trained inverted index and encoder. All
three provide large improvements on unsupervised VQ based indexing on most of our
experiments.

Within our approaches, as observed in Chapter 5, in case of instance retrieval with lim-
ited training data (125K images), SUBIC-I outperformed the residual based SUBIC-R.
While for category retrieval with large training on ImageNet (1.28M images), SUBIC-
R surpasses SUBIC-I. This suggests that larger training data could further improve the
performance of our jointly learned methods.
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6.2 Perspectives

In this section, we discuss possible directions to advance this work and other research
problems which might benefit from the work presented in this thesis.

6.2.1 Setting the hyper-parameters in SUBIC

In Chapter 4, we introduced two entropy-based losses which act together to induce a
one-hot block structure with statistical uniformity in the position of the active bit. Figure
4.2 shows the importance of the balance between the hyper-parameters γ and µ which
weight these losses in the cost function as in the Eq. (4.10). We find this balance by
monitoring the entropies at the training time. If the values of these hyper-parameters
are good, then the mean entropy (should be low) and batch entropy (should be high) will
be as desired. Otherwise, both the entropies would be either low or high which shows
the loss of uniformity or structure respectively as in Figure 4.2. Thus, ideally, we should
be able to set or compute the values for γ and µ based on the entropies while training.
That is, if the batch entropy is low then we must increase µ or if mean entropy is high
then γ should be increased. Such a way to set γ and µ would make the SUBIC approach
free from the need of heuristically finding the hyper-parameters. Also, it might possibly
improve the performance as γ and µ can be updated throughout the training.

6.2.2 Training with limited annotated data and high bit-rate encoding

As we have seen in Chapters 4 and 5, supervised deep learning of compact codes has
high potential and can achieve large improvements over VQ or binary hashing based
methods. But these supervised approaches need large amount of labeled data for train-
ing, which might be expensive to get or may not be available. When training data is
limited, learning a model with a large number of parameters over-fits and does not gen-
eralize well. This is a common problem with many supervised approaches. There are
various ways to regularize the model to improve generalization [46, 121, 115, 58, 14] such
as data augmentation, `2 parameter regularization, Dropout, Batch normalization, DropCon-
nect. These approaches are certainly applicable to SUBIC also when trained end-to-end.
In many of our experiments presented in Chapters 4 and 5 we have used a pre-trained
base CNN (which benefits from the various regularizations to better generalize) on top
of which we train our encoder layer. Now if the base CNN gives high-dimensional fea-
tures, for example the features from DIR [47] are 2048 dimensional, and suppose that
we use an encoding layer which produces MK dimensional structured binary code then,
the encoding layer would have 2048 ×MK parameters. Now if we use high bit-rate i.e.
large M and K , we have more parameters in the encoding layer which might cause over-
fitting. In our experiments we have seen performance saturation when increasing the
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bit-rate. We list some possible ways to handle it:

• PCA compression of the base CNN features or adding a layer before the encoding
layer to project the features to lower dimensions.

• Using a partially connected encoding layer instead of the fully connected one.

• Training with a decoder to reconstruct the input vector for the structured binary
code, which would allow the use of unlabeled data.

Even with the limited availability of annotated data, the ability to encode with higher
bit-rate would improve performance significantly and would thus expand further the
applicability of the proposed approach.

6.2.3 Attribute discovery

By recognizing the characteristic ”attributes” of an object or of a class of objects, we can
define this object or this class. Such a definition with attributes is useful for identifying
new objects or classes. With our approach presented in Chapter 4, we learn an MK

dimensional structured binary code which has exactly M active bits and the rest being
zero. We think that many of these MK positions are representing some attributes and
few of these attributes could be identifiable visual concepts such as eyes, legs, round or
rectangular shapes, etc. It would be interesting to find those in some (semi-)automatic
way as MK is too large to proceed manually. This could be useful for classifying unseen
images with no training data, as in zero-shot classification [79], based on the attributes
marked by the active bits.

6.2.4 Video retrieval

Retrieving videos from a large collection based on a query video requires addressing
the same problems as with still images, namely indexing and encoding with compact
codes. But video search bring new challenges as image sequences provide more diverse
and complex visual information [55], while increasing dramatically the amount of re-
dundancy, hence of ambiguity. The methodological contributions of this thesis being
not restricted to still images, (or, in fact, to visual information), they might be useful to
address the specific challenges of video search. This would require however new de-
velopments to handle at best the specifics of video search and constitutes as such an
interesting research direction of its own.
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