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Éric RÉMILA
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Abstract

In this thesis we study two types of tilings: tilings by a pair of squares and tilings on the

tri-hexagonal (Kagome) lattice. We consider different combinatorial and probabilistic

problems. First, we study the case of 1 × 1 and 2 × 2 squares on infinite stripes of

height k and get combinatorial results on proportions of 1 × 1 squares for k ≤ 10 in

plain and cylindrical cases. We generalize the problem for bigger squares. We consider

questions about sampling and approximate counting. In order to get a random sample,

we define Markov chains for square and Kagome tilings. We show ergodicity and find

polynomial bounds on the mixing time for n× log n regions in the case of tilings by 1×1

and s × s squares and for lozenge regions in the case of restrained Kagome tilings. We

also consider weighted Markov chains where weights λ are put on the tiles. We show

rapid mixing with conditions on λ for square tilings by 1× 1 and s× s squares and for

Kagome tilings. We provide simulations that suggest different conjectures, one of which

existence of frozen regions in random tilings by squares and on the Kagome lattice of

regions with non flat boundaries.

Résumé

Dans cette thèse nous étudions deux types de pavages: des pavages par une paire de

carrés et des pavages sur le réseau tri-hexagonal (Kagome). Nous considérons différents

problèmes combinatoires et probabilistes. Nous commencons par le cas des carrés 1× 1

et 2× 2 sur des bandes infinies de hauteur k et obtenons des resultats sur la proportion

moyenne des carrés 1 × 1 pour les cas planaire et cylindrique pour k ≤ 10. Nous

considerons également des questions d’échantillonnage et comptage approximatif. Pour

obtenir un échantillon aléatoire nous définissons des châınes de Markov pour les pavages

par des carrés et sur le réseau Kagome. Nous montrons des bornes polynomiales pour

le temps de mélange pour les pavages par des carrés 1× 1 et s× s des régions n× log n

et les pavages Kagome des régions en forme de losange. Nous considérons aussi des

chaines de Markov avec des poids λ sur les tuiles. Nous montrons le mélange rapide

avec des conditions spécifiques sur λ pour les pavages par des carrés 1 × 1 et s × s et

pavages Kagome. Nous présentons des simulations qui suggèrent plusieurs conjectures,

notamment l’existence des région gelées pour les pavages aléatoires par des carrés et sur

le réseau Kagome des régions avec des bords non plats.
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Introduction

A tiling (or tessellation) is a covering of a region by given geometric figures (called

tiles) with no holes or overlapping. Mathematical foundation and technical terms used

when discussing tilings can be found in [35]. Here we consider tilings on regular lattices

where corners of tiles coincide with the vertices of the lattice (See Figure 1). A random

tiling is a tiling that is chosen uniformly at random from a set of tilings of a given region.

Tilings have attracted interest and attention not only from a scientific point of view

but esthetic as well. From the ancient times when the question of tileability was first

asked to the late 20th century when tilings started being used to represent the structure

of quasicrystals. With the invention of the Turing machine, tilings were found to be

an excellent way to represent a Turing machine using Wang tiles. And so the question

about running time of the Turing machine could be seen as the tileability problem using

Wang tiles.

Tilings have been a helpful tool in crystallography. They are used to model crystals and

answer questions about the growth of crystals from the theoretical point of view. Since

the discovery of quasicrystals in the 1980s 1 researchers have been trying to understand

the way quasicrystals form and grow, what happens with their molecular structure when

they cool down or heat up. One of the tiling model associated with quasicrystals are

tilings by rhombis that have 5-fold rotational symmetry.

1Quasicrystals are crystals that have symmetries that are forbidden by usual crystallographic rules
(such as 5-fold or 8-fold for example). See more in [28, 42, 88]

Figure 1: Not allowed (left) and allowed (right) placements of a square tile on the Z2

lattice.

1
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Since tilings can be seen as a model for quasicrystals, one of the questions is to find a

theory for the growth process.Tilings with minimal energy are characterized by matching

rules that allow some local patterns in a tiling. Then a question that one can ask is:

when one start from a tiling with a lot of mismatches, and at each step corrects it by

performing local transformation, how long before one arrives to a tiling with minimal

energy? This process is often referred to as the relaxation process and was studied in the

one-dimensional case for two-letter words and in the two-dimensional case for rhombus

tilings by [7, 8, 29].

There are different questions that can be asked in the field of tilings. In statistical

mechanics the research is focused on getting some counting results which are usually

based on the assumption about the physical system that is under study. There are

few known counting results for systems such as dimers on Z2, triangular lattices, hard

hexagons. Various parameters can be added to the tiling system, such as the energy

and temperature, to extract some properties about the system such as phase transitions

or long range order. Some well-studied models are the Ising model and the Hardcore

model.

From a mathematician’s point of view, it is interesting to induce some structure on

tilings and get rigorous proofs about the number of ways in which a set of tiles can

tile a region, properties that a typical tiling has. One of the fundamental works on the

structure of tilings is Conway’s tiling groups by Thurston [94] which allows to use finite

groups as a tool to induce order on the set of tilings. It allows to represent each tile

as a relator in a group and to get a necessary condition on the tileability of a region

by checking whether the group element representing the boundary of the region is the

trivial element of the group.

A computer scientist poses questions related to the complexity of designed algorithms

that could check tileability of a region by a given set of tiles or would produce random

tilings and approximate schemas for counting problems. The questions of tileability

generally belongs to the class of NP-problems. For example, tileability of a finite region

by a pair of rectangles is NP-complete [83], while it can be done in quadratic time for a

simply connected region [82].

Let us point out that the only tilings that are well studied from all points of view are

domino and lozenge tilings. They are also known as dimers on square and triangu-

lar lattices or perfect matchings on the square and honeycomb lattices. There are exact

counting formulas for the number of domino and lozenge tilings for some specific regions.

In general counting problems are hard. For example, the counting problem for perfect

matching was proven to be #P [97]. So it is considered that we cannot efficiently count
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the number of perfect matchings exactly. But there is a possibility to get an approxi-

mation on the counting problem in polynomial time within a constant [approximation]

factor.

Sometimes an approximate counting problem can be reduced to a problem of sampling

from the given set of configurations. It is generally done by defining a Markov chain on

the state space that includes all configurations from which we wish to sample and that

has the desired stationary distribution. Then if we simulate the chain long enough, we

can can get a sample from a distribution arbitrary close to the stationary distribution.

The stationary distribution is often taken to be uniform, in which case the sample is

almost uniform.

The main motivation behind this work is to consider tiling models that are a bit more

difficult than dimers. We study two tiling families: square tilings which are tilings by

two type of squares of sizes m and s and Kagome tilings – tilings on the Kagome lattice

where a tile is an hexagon with two adjacent triangles (see Figure 2). The Kagome

lattice2 itself appears in the atomic crystal structure of some minerals (namely jarosites

and herbertsmithite). Tilings on the Kagome lattice were studied by Bodini in [6].

Square tilings were studied as a case of rectangular tilings By R. Kenyon, C. Kenyon

and Rémila in [54, 55, 82].

The choice of these particular tiling families is due to the fact that there is an integer-

valued function that can be defined on vertices (and edges) of a tiling which allows to

define an order on the set of tilings (height function). And more importantly, the tiling

space of a simply connected region is connected by local transformations. There might

be not one but two or more height functions: this is the case for quadri-tilings3 which

were studied in [96].

Other models for which the configurational space is proven to be connected via local

transformations are: T-tetramino tilings by Korn-Pak in [60] and ribbon tilings which

appear in [75, 87]. Let us point out that we consider models with a small set of tiles.

When the set of tiles is big, different models of dissections come to mind: equitable

2It is one of 11 uniform tilings of the Euclidean plane by regular polygons
3A quadri-tiling is an edge-to-edge tiling by quadri-tiles. Consider a set of right triangles whose

hypotenuses have length 2; moreover for each triangle the endpoints of the hypotenuse are colored in
white while the third vertex is colored in black. A quadri-tile is obtained by gluing together two right
triangles along the hypotenuse or along an edge if possible respecting the colors.
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rectangular dissections 4, dyadic tilings 5 and triangulations 6. These models were

proved to have flip-accessibility and were studied in the sense of random generation.

Bounds on the mixing time of the considered weighted Markov chains were obtained for

triangulations [13] and for dyadic tilings and rectangular dissections in [11].

Figure 2: Part of the Kagome lattice (left) and a tiling on it (right).

We start with Chapter 1 where we present the main results about dimer tilings which

have been a subject of extensive research (some references are: [14, 16, 19, 26, 27, 52, 56,

57, 66, 78]). We mention formulas for counting dimers. We recall how a height function

is defined so that dimer tilings can be seen as discrete surfaces in R3 and and how it is

used to calculate the entropy of a random tiling using a variational principle. Then we

focus on random generation. We introduce a natural Markov chain and show why the

path coupling method does not apply directly. Then we summarize different ways to

bound the mixing time of the Markov chain (see [14], [66], [99]). At the end we mention

the Artic circle phenomenon (see [16, 26]) which occurs for random domino tilings of

the Aztec diamond and for lozenge tilings for hexagonal regions.

Chapter 2 is dedicated to square tilings. First, we consider tilings by 1× 1 (small) and

2 × 2 (big) squares of an infinite strip of height k. We have published these results in

[85]. We use combinatorial tools to find average proportion of space occupied by small

squares in plain and cylindrical cases for k up tol 10. We conjecture the sequence of

average proportions to be converging when k → ∞. Then we generalize the construc-

tion for tilings by 1× 1 and s× s squares and present the computational comparison of

average proportions of small squares for infinite stripes of height up to 10 and square

regions of size up to 30. We show that in the 1−dimensional case the average proportion

of small tiles grows with s. We conjecture that it is the same in the 2−dimensional case

4An equitable rectangular dissection of an n × n lattice region is a partition into rectangles all of
which have area n, where n = 2k for an even integer k.

5A dyadic tiling is a rectangular dissection where each rectangle is dyadic which means that is has
the form

R = [a2s, (a+ 1)2s]×
[

b2t, (b+ 1)2t
]

,

where s, t, a, b are non-negative integers. A dyadic tiling of a 2k × 2k square is then a set 2k dyadic
rectangles each of area 2k whose union covers the square.

6A triangulation of a rectangle on Z2 is a maximal set of non-crossing edges (which are straight lines)
each of which connect to lattice points of the rectangle and does not pass through any other point.
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for sufficiently large regions. The major part of the chapter is dedicated to random

generation. We lay down all the settings such as the height function, flips and con-

nectivity of the configuration space as they appear in [82]. We define a Markov chain

MCsquare for square tilings that is ergodic due to flip-accessibility of the tiling space.

Our main interest is to bound its mixing time or, in other words, the time it takes for

the chain to reach stationarity. We show fast mixing for long thin regions in Theorem

2.22. We also consider a weighted version of MCsquare in which a weight λ is put on

big squares. We show a relation with independent sets and in Theorems 2.25 and 2.26

present polynomial upper bounds on the mixing time for MCsquare with a condition on

λ. Finally, we present simulations and conjecture that the mixing time is polynomial

for tilings by 1 × 1 (small) and 2 × 2 squares but is sub-exponential when s > 1. We

also show simulations for tilings of a diamond-shaped region that seem to have a frozen

part.

In Chapter 3 we study tilings on the Kagome lattice using results from [6]. In the

mentioned work the height function was introduced, a fast algorithm for tileability of a

given region was shown which also prove the connectivity of the configurational space

via local changes (in the same way as for dimer and square tilings). We follow a similar

logical path as in Chapter 2. We show how to do approximate counting on a torus

using the Kagome tilings’ connection to the set of perfect matchings of a corresponding

6-regular graph. We briefly go into the questions of counting perfect matchings. We

introduce a Markov chain on the set of Kagome tilings. The connectivity of the tiling

space gives us ergodicity of the studied chain. As it was already pointed out, the

connectivity of the tiling space is a prerequisite for a Markov chain study. As always we

are interested in analyzing its convergence rate. We show why it is not as easy as might

seem and propose two alternatives. The first one is to consider a weighted version of

the chain and put more weight on one particular tile than on the others. As for square

tilings, under a certain condition on the weight λ the weighted chain becomes fast mixing

and we draw a polynomial bound in Theorem 3.4. The second alternative is to consider

Kagome tilings using only two types of tiles (lozenges and trapezes). We refer to these

tilings as restrained Kagome tilings. We show that for a lozenge-shaped region the tiling

space stays connected under local transformations that include only the two types of

tiles. In Thereom 3.7 we show that the Markov chain on the restrained Kagome tilings

takes no more than O(N4) steps to mix (N being the area of the region). We present

some simulations that show coupling in O(N2.5) steps suggesting that our bound is not

optimal. At the end of the chapter we provide simulations of a lozenge-shaped region

with a linear boundary that seems to have a phenomenon similar to the Arctic circle for

domino and lozenge tilings.





Chapter 1

Dimer tilings

1.1 Introduction

The dimer model is the study of the set of perfect matchings of a graph. A perfect

matching of a graph is an independent edge set in which every vertex of the graph

belongs to exactly one edge of the graph. The most well-known examples are dimer

models on square and triangular grids of Z2. Dimers on the square grid are equivalent

via duality to domino tilings that are tilings by 1× 2 and 2× 1 rectangles. Figure 1.1

shows a domino tiling on a chessboard-coloured region and the corresponding perfect

matching of a bipartite graph. Figure 1.2 shows an example of a domino tilings, where

four colors correspond to four different tiles: there are two horizontal and two vertical

tiles on the chessboard depending on the placement of the white and black units. On

the triangular grid dimers correspond to lozenge tilings, which are tilings by regular

lozenges with a 60 degree rotation (see Figure 1.4)

In Section 1.2 we consider the main results about the counting problem for dimers. In

1961 Kasteleyn [52] calculated the number of domino tilings of a square region using

adjacency matrices. Kenyon in [56] showed how to use the inverse Kastelyen matrix to

Figure 1.1: Domino tiling of a 4× 4 square and the associated perfect matching.

7
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Figure 1.2: Domino tiling of an 8× 8 square.

calculate the probabilities of particular edges appearing in a uniformly chosen matching.

Some 30 year later after Kasteleyn, Elkies et al. [26] considered tilings by dominoes of a

so calledAztec diamond (see Subsection 1.2.3) and calculated the limit of the entropy

which is a natural logarithm of the number of tilings divided by the size of the region.

They have noticed that random tilings of the Aztec diamond have a peculiar shape with

the increase of the size. The Artic circle phenomenon appeared. In 2001 Cohn, Kenyon

and Propp [16] formulated a variational principle, that among other things, helped the

understanding of why random tilings of a square region look homogeneous while those

of the Aztec diamond do not at all. They showed that for any simply-connected region

the entropy has a limiting value as a function of the shape of the boundary of the region

when its size goes to infinity which is unique and corresponds to an asymptotic height

function of the region.

One of the problems in the study of dimer tilings is to generate them uniformly at

random. Even though approximate counting – which is one of the main reasons that

sampling is used for – is not of great interest since there exist formulas for exact count-

ing, the random generation is an interesting problem on its own and is discussed in

Section 3.3. The problem of random sampling from uniform distribution was success-

fully studied by Luby, Randall, Sinclair in [66]. By introducing an appropriate Markov

chain and using coupling arguments they proved that the dynamics on dimers is rapidly

mixing (in polynomial time over the number of tiles) and gave bounds on the mixing

time, which were later improved by Wilson[99], Caputo, Martinelli, Toninelli [14] and

Laslier, Toninelli [62]. Wilson and Propp also developed the Coupling From The

Past algorithm for sampling from stationary distribution (see Appendix B).

Since the studies of domino and lozenge tilings are very related, we are going to cover

known results and properties about them at the same time. According remarks will be

made about similarities and differences concerning the study of the two models.
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1.2 Counting dimers

The problem of counting dimers attracted a lot of attention and there are different ways

to calculate the number of dimers of a finite tileable region of Z2.

The counting problem also depends on the region one considers. The first and classical

result on counting dimers [52] was for the domino tilings of a rectangular region of Z2.

A more sophisticated region (the Aztec diamond) was considered by [26] that led to

different methods and bijections. Tilings of this region turned out to have interesting

long range properties. Analogous region for the lozenge tilings is a regular hexagon,

that itself is the most natural region to look when dealing with lozenge tilings. And it

turned out that lozenge tilings of a hexagon also possess long range properties similar

to the domino tilings.

1.2.1 Adjacency matrices

In 1961 Kasteleyn [52] and Temperley and Fisher [93] calculated independently the

number of domino tilings of a rectangular region of Z2.

Theorem 1.1 (Kasteleyn). For a closed region R of Z2 the number of domino tilings

equals
√

|det K| where K is the adjacency matrix of the dual graph G with horizontal

edges weighted by 1 and vertical edges weighted by i =
√
−1.

For example, for a 2× 3 region the adjacency matrix K is of size 6× 6 and |det K| = 9.

For a rectangular region of size m × n and the associated m × n bipartite graph G

with vertices {1, 2, . . .m} × {1, 2, . . . n} the determinant of its adjacency matrix can be

calculated using their eigenvalues [57].

It was be shown that for j, k ∈ [1, . . . ,m]× [1, . . . , n]

f(x, y) = sin
πjx

m+ 1
sin

πky

n+ 1

is an eigenvector of K corresponding to the eigenvalue

2 cos
πj

m+ 1
+ 2i cos

πk

n+ 1
.

The functions f form an ortogonal basis of eigenvectors and the determinant of K can

be written as a product of eigenvalues:

det K =
m∏

j=1

n∏

k=1

2 cos
πj

m+ 1
+ 2i cos

πk

n+ 1
.
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Figure 1.3: Domino tiling of the Aztec diamond of order 5.

1.2.2 Plane partitions

Counting the number of the lozenge tilings of a center-symmetric hexagon turned out

to be related to the plane partitions if one imagines a lozenge tiling as piles of cubes in

a box. This allows to count the number of lozenge tilings using [68]:

r∏

i=1

m∏

j=1

c+ i+ j − 1

i+ j − 2
,

where r, c,m are the sides of the hexagon. For n = 20 this number is approximately

1.6× 10136.

1.2.3 Aztec diamond

The Aztec diamond of order n is the union of lattice squares of size 1 that lie inside

the area {(x, y) : |x|+ |y| ≤ n+ 1}. It is therefore composed of 2n(n+ 1) unit squares.

For the Aztec diamond of order 1 there are two possible tilings: placed vertically or

horizontally. See Figure 1.3 for an example of a tiling of the Aztec diamond of order 5.

The Aztec diamonds were introduced and studied in [26]. The main result is that the

number of domino tilings of the Aztec diamond of order n equals 2n(n+1)/2. The result is

actually broader and proves a general formula for domino tilings of the Aztec diamond.

Namely, let T be a tiling of the Aztec diamond of order n, v(T )− the half of the number

of vertical tiles in T , r(T )− the minimal number of local moves (flips) required to get

from the tiling with all horizontal tiles to T . A flip is a change of two vertical dominoes

to two horizontal in a square of size 2 and vice versa (it is defined again in section 3.3; for
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illustration see the lower part of Figure 1.5). Define the generating function AD(n;x, q)

on the set of tilings of the Aztec diamond of order n as follows:

AD(n;x, q) =
∑

T

xv(T )qr(T ),

where T varies over all tilings of the order-n Aztec diamond. Then the main result of

[26] states that

AD(n;x, q) =
n−1∏

k=0

(1 + xq2k+1)n−k. (1.1)

When x and q are set to be equal to 1 in (1.1), one gets the number of domino tilings:

AD(n) = 2n(n+1)/2.

This formula is proven in four different ways: by establishing a bijection between domino

tilings and pairs of sign-alternating matrices, finding connection with monotone trian-

gles related to sign-alternating matrices, using the representation theory of general linear

groups and finally using the Domino Shuffling algorithm [78] which is a more com-

binatorial approach that allows to get a recurrent formula for the generating function

AD(n;x, q). Domino shuffling can also be used to sample domino tilings of the Aztec

diamond (see Subsection 1.3.5 for more details).

1.2.4 Inverse Kasteleyn matrix

Using Theorem 1.1, Kenyon [56, 57] obtained a result on the way to calculate the prob-

ability of having a certain dimer or a group of dimer appear in a randomly chosen

matching of a coloured graph that is dual to a chessboard.

Theorem 1.2. Let T = {t1, . . . tk} be a subset of dimers, where ti = (wi, bi) is a dimer

covering a white vertex wi and a black vertex bi, K is the Kasteleyn matrix of the graph.

Then the probability that all dimers in T appear in a u.a.r. matching is

P (T ) = |det(K−1(wi, bj))1≤i,j≤k|.

According to this theorem, in order to find a probability of a single edge appearing in a

random matching, one needs to look at a single element of K−1. Being able to examine

the asymptotics of K−1 allows to obtain information about the model’s limit behaviour

that is discussed further.
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1.2.5 Entropy

Topological entropy of the system measures the exponential growth of the number of

configurations. Classically, one defines the configurational entropy per dimer ξ for the

region tiled with N dimers as follows: let A(N) be the number of dimer tilings, then

ξ = lim
N→∞

logA(N)

N
.

One can pose a question of calculating the entropy. For dimer tilings it can be done

explicitly since there are closed counting formulas for certain forms of regions. For

domino tilings the calculations in [52, 93] allowed to computed entropy for an m × n

rectangular region and for an m × n torus. ξ was shown to converge to 2G/π ≈ 0.58,

(where N = mn
2 ) and G = 1 − 1

32
+ 1

52
− 1

72
+ . . . is the Catalan’s constant. For the

Aztec diamond, on the other hand, it was shown in [26] that the entropy converges to

log 2/2 ≈ 0.338.

For dimers on the hexagonal lattice for regions the leading term in the entropy depends

on the boundary. It was done in [27] using plane partitions. For rhombus tilings of

an hexagonal region (that can be seen as a box filled with little cubes, see Figure 1.4)

it equals 3
2 log 3 − 2 log 2 ≈ 0.261. The structure of rhombus tilings depends on the

boundary and this inhomogeneity is the reason of a difference of entropy between tiling of

regions with fixed boundary conditions and free boundary conditions. Free boundary

conditions mean that the tiles of the tiling are allowed to push out of the boundary

of the region. There is a formal relation between the two entropies shown in [19] and

in the case of rhombus tilings of a region with free boundary conditions the entropy is

larger and is about 0.323.

It is intuitively clear that the entropy value depends on the shape of the tiled region.

So another question that attracted interest was to understand which regions maximize

the entropy and whether the tilings of such domains have a ”typical” look – a property

that is almost surely statistically right. It turned out that a typical tiling of an arbitrary

finite region can be described by a function that maximizes an entropy integral. Cohn,

Kenyon and Propp [16] found an exact formula for the limiting value of the topological

entropy ξ for domino tilings as an elliptic integral of a specific function of the shape of

the boundary of the region. The integral is called the entropy integral and the function

is called the height function of a tiling and it will be defined in 3.3.1. In two words, it

is an integer valued function defined on the vertices of the grid of the tiled region, and

there is a one-to-one correspondence between height functions and tilings. Let us point

out that there are cases when the formula is much simpler. It is so for the isoradial

dimer models – dimer models whose underlying graph is isoradial (for example, Z2, the
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Figure 1.4: Lozenge tiling of an hexagon of size 3.

honeycomb and triangular lattices) 1. For the toroidal partition function it is possible

to get an explicit formula for its growth rate that depends only on the geometry of the

underlying graphs [95].

1.3 Random generation

Random generation of dimer tilings has attracted attention of a fair number of re-

searchers (for example, [14, 62, 66, 99]). Not only it allows to answer questions from

statistical physics about properties of positioning of particles in a dimer model (see,

e.g., [38]), it also permits to analyze the limit behaviour of the system. For domino

tilings of the Aztec diamond regions [15, 86] and for lozenge tilings of hexagonal regions

[17] the long-range order occurs – what happens in the center of the region depends on

the boundary. This phenomenon is often referred to as the Arctic circle and will be

discussed in 3.3.7.

Being able to randomly generate a dimer tiling is useful for studying properties of dimer

systems. Note that a fast algorithm for random sampling permits to do approximate

counting, but it is of less interest since there are explicit ways of counting that were

described in Section 1.2. Let us point out that this will not be the case in Chapters 2

and 3 where square and Kagome tilings will be considered.

Markov chains are useful tools for random generation when there is a finite set of config-

urations from which one wishes to sample. The idea is to have a connected state space

1A graph is called isoradial if is can be embedded in the plane such that every face is inscribed in a
circle of radius 1 and all circumcenters of the faces are in the closure of the faces.
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Ω; then the Markov chains starts from an initial configuration from Ω and performs a

random walk on the graph moving from one configuration to another. After a sufficiently

large amount of steps, the Markov chain will converge to a chosen distribution over the

entire set of configuration. One can think of it as taking a brand-new decks of cards

that is ordered and starting to do random shuffles until the deck is well mixed.

The initial state can be any preferable tiling of the considered region – for example, a

tiling made of only horizontal dominoes for a domino tiling; for a lozenge tiling of a

right hexagon it can be a tiling that looks like an empty box if one looks at it as a three-

dimensional picture. At each step the algorithm chooses a site of the region and performs

a local move called a flip. For domino tilings a flip is transformation of a 2 × 2 block:

from two horizontal tiles to two vertical tiles and the other way around. For lozenge

tilings a flip is a 180 degree rotation of an hexagon of side 1 tiled with three lozenges

(see Figure 1.5). In terms of a three dimensional visualization, for lozenge tilings a flip

is simply placing or taking away a little cube of size 1 in the big box. For domino tilings

there is a similar interpretation where a flip can be seen as moving a hexagonal figure

that corresponds to two dominoes (see [94]). When talking about tilings, we often use

the term tiling graph – it is a graph associated with the set of tilings of a given region

in which each vertex corresponds to a tiling and two vertices share an edge if one can

get from one tiling to the other by performing a flip.

If one performs these local transformations a sufficiently large number of steps, it is

intuitively clear that one should get a random tiling if the configuration space is con-

nected and probabilities of flips are symmetric. The fact that the configuration space

is connected follows from a result by Thurston [94]. The question is, for how long one

should go on making flips (or performing shuffles in the example with a deck of cards)?

How can one know when to stop? This is where the general Markov chain mixing theory

comes to help (see, e.g., [63, 74, 80]).

1.3.1 Height function

Dimer tilings can be seen as discrete surfaces in dimension 2 + 1 with the help of the

height function introduced by Thurston [94] using Conway’s tiling groups [18]. It is a

integer-valued function defined on the vertices of a region. Let R denote the region. Let

us define it for domino tilings (it is defined in a similar way for lozenge tilings). Choose

an origin and set its height as 0 (or any other integer). Consider an edge e = (x, y). If

e is not crossed by a domino, set the height difference h(y) − h(x) to be equal to 1 if

the square on the left from e is black and −1 if it is white. If e is crossed by a domino,

h(y)− h(x) = 3 if the square on the left from e is black and −3 if the square to the left



Dimer tilings 15

Figure 1.5: Single flips for lozenge (top) and domino (bottom) tilings.
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Figure 1.6: Single flip for domino tilings with heights.

is white (see Figure 1.6). If one follows a closed oriented cycle and defines the heights in

all lattice points of the path and writes down the differences of heights in neighbouring

vertices (each of which equals + or −1 depending on the orientation), the total sum of

differences will be 0. This construction defines h(x) for all vertices of a given domino

tiling that are lattice points of the region up to an additive constant. Note that the

height function on the boundary of R does not depend on the tiling. A tiling can be

reconstructed in a unique way just be looking at the height function just by starting at

a point on the boundary and putting a tile depending on the height of the neighbouring

vertices. Each tiling defines a set of heights in each vertex. Two different tilings define

two different set of heights. There is a bijection between the set of domino (lozenge)

tilings and a class of height functions and random tilings can be seen as random discrete

three-dimensional surfaces [58].

A flip around a vertex in a domino tiling changes its height by 4. A vertex x is a local

minimum(maximum) if h(x) < h(y) (h(x) > h(y)) for all neighbours y of x. A flip

then changes a local minimum into a local maximum. By performing flips in a tiling

that only decrease the height of its vertices, one gets to a minimal tiling – tiling in

which all local maxima are on the boundary of R. [94] shows a polynomial algorithm
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that checks tileability of a simply connected region in O(n log n), where n is the area of

the region. Moreover, it gives an actual tiling as an output and shows that there exists

a unique minimal tiling and every tiling can be reduced to the minimal tiling by a finite

number of flips which is at most n. This proves connectivity of the set of tilings Ω of R.

The height function provides a partial order for the set of tilings: for two tilings A,B

of R let hA, hB be their height functions, then A ≤ B if hA(x) ≤ hB(x) for all vertices

x of R. Then minimal tiling is small than every tiling of the region. The tileability of a

simply connected region can actually be checked (much) faster – in O(p log p), where p

is the perimeter, – as states the recent result by Pak,Sheffer,Tassy [76].

1.3.2 Classical Markov chain MCsimple

In order to generate dimer tilings uniformly at random using the simple algorithm de-

scribed above, on can introduce a Markov chain describing the changes in the tiling

and bound the time it takes for the chain to reach stationarity. First of all, this means

that the chain has to be ergodic. Moreover, it is useful to have a symmetric probability

matrix of the chain, because then one obtains a uniformly distributed tiling.

The most natural Markov chain for dimers is the following one. Let R be the tileable

region by dimers, N be the number of inner vertices of R, ΩR be the set of all tilings

of R. We say that a flip in x has two directions: up if it increases h(x), down if it

decreases h(x).

MCsimple:

in Let T0 ∈ ΩR be an initial configuration. At each time t:

• choose an inner vertex of R with probability 1
N ,

• choose a direction with probability 1
2 ,

• perform a flip in the chosen direction in the tiling Tt if possible thus defining the

tiling Tt+1, otherwise stay still.

Proposition 1.3. MCsimple has uniform stationary distribution.

Proof. This MC is irreducible because the probability to reach every tiling T ∈ ΩR is

positive. The chain is aperiodic since P (T, T ) > 0 for every T ∈ ΩR. It follows that

the MC is ergodic and there exists a unique stationary distribution. Moreover, the

probability matrix of this chain is symmetric: indeed, P (T, S) = P (S, T ) for all pairs
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Figure 1.7: Two local configurations that are different by one flip and get further
from one another in expectation.

(T, S) from ΩR that are different by one flip. Therefore, the stationary distribution is

uniform.

Since the single-flip Markov chain is monotone (because of the partial order defined

by the height function), one can run the Coupling from the Past algorithm (see

Appendix B) to get a sample from the uniform distribution.

In general, it is a challenging question to bound the mixing time. Usually, to prove

that a chain is fast mixing, one uses such methods as the path coupling (see Appendix

A) or canonical paths [89]. These methods do not seem to work for MCsimple. To give

an idea why the problem is not as easy as it might seem, let us show why the path

coupling lemma ([10] and Appendix A), which is a handy method to prove that a chain

fast mixing, fails.

Why classic path coupling does not seem to work for MCsimple:

In order to use path coupling, one has to consider a coupling of a chain and two con-

figurations that are different by one flip and show that the distance between them

(generally taken as the Hamming distance on the corresponding tiling graph) does

not increase in average at the next step of evolution. More formally, one need to

show that if (T,Q)t is the coupling and ϕ(Tt, Qt) = 1, then E(∆ϕt) ≤ 0, where

∆ϕt = ϕ(Tt+1, Qt+1) − ϕ(Tt, Qt). Figure 1.7 shows two configurations for which the

condition above is not satisfied. If the vertex chosen to flip is 1, then flips in both direc-

tions decrease the distance: − 1
2N + (− 1

2N ) = − 1
N . In each of vertices 2,4,7 a flip can be

performed only in one direction and it increases the distance: + 1
2N . All other vertices

don’t affect the distance change, so E(∆ϕt) = 0. This gives in total: E(∆ϕt) = + 1
2N > 0.
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Figure 1.8: Tower of flips of height 3 for a lozenge tiling.

There has been a lot of research [14, 66, 99] going on in this direction and researchers

working on this problem have used various techniques to get polynomial bounds on the

mixing time and then tighten them that are briefly mentioned below.

1.3.3 Modified Markov chain MCtower

In [66] Luby, Randall and Sinclair considered a more complicated dynamics for domino

and lozenge tilings which turned out to be easier to analyze. This dynamics is based on

the tower of flips. In the case of lozenge tilings, a tower is a vertical pile of cubes stuck

together. A flip of a tower then is a simultaneous flip up or down of the whole starting

from the chosen vertex (see Figure 1.8).

MCtower:

Let T0 ∈ Ω be an initial configuration. At each time t:

• choose an inner vertex of R with probability 1
N ,

• choose a direction with probability 1
2 ,

• if the vertex defines a tower of height h, perform a flip in the tiling Tt in the chosen

direction with probability 1
h thus defining the tiling Tt+1, otherwise stay still.

Proposition 1.4. MCtower has uniform stationary distribution.
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Proof. Note that in the case when h = 1, the chain just performs a simple flip. So

MCtower is irreducible and aperiodic. And the probability matrix is always symmetric.

The path coupling lemma now work perfectly fine and gives a polynomial bound on the

coupling time.

Theorem 1.5 ([66]). Let R be a tileable simply connected region of area N . Then

MCtower is rapidly mixing and τmix satisfies

τmix(ε) ≤ 8eN4⌈ln ε−1⌉

Idea of the proof: The path coupling argument is applied to non-intersecting lattice

paths (routings) which are in bijection with with dimer tilings.

Combining Fourier analysis with path coupling method, Wilson [99] improved the bounds

on the mixing time for the lozenge tilings.

Theorem 1.6 ([99]). Let R be a regular hexagon of area N . Then MCtower is rapidly

mixing and τmix satisfies

τmix(ε) = Θ(N2 logN⌈ln ε−1⌉)

Idea of the proof: The path coupling argument is applied to non-intersecting lat-

tice paths, using a non-integer displacement function to measure the distance between

configurations instead of the usual flip distance.

Note: The theorem works for any region, not only for simply connected ones. Below is

the mixing time upper bound in general case.

Theorem 1.7 (Theorem 7 [99]). For the tower-flip Markov chain on lozenges on a region

which has width w, has m (local) moves separating the top and bottom configurations,

and contains p places where a lattice path 2 may be moved, after

2 + o(1)

π2
pw2 logmε−1

steps, coalescence occurs except with probability ε. For regions which are not simply

connected, the coalescence is meant within a given connected component of the state

space.

2In the previous theorem p ≤ n is just the length of each lattice path associated with tilings
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1.3.4 Back to single flips

Since the Markov chain with the tower of flips is rapidly mixing, it is natural to wonder

whether it could help to analyze the initial chain. It turns out that since MCtower is

decomposable into simple flips, one can use the Markov chain decomposition theorem

[81] which compares the spectral gaps of the two chains using methods by Diaconis and

Saloff-Coste [21] and derives a bound on τmix for MCsimple.

Theorem 1.8 (Theorem 5 [81]). Let R be a tileable simply connected region of area N .

Then MCsimple is rapidly mixing and τmix satisfies

τmix(ε) = O(N4 logN +N3 logN log ε−1)

Idea of the proof: By bounding the length of paths defined between pairs of configu-

ration and plugging it into the decomposition formula from Theorem 3 [81].

Another way of bounding the mixing time of MCsimple is to decompose the evolution

of the chain into several stages and draw bounds for every stage. Then by linearity

of expectation, the mixing time will be bounded by the sum of expected times that

the chain spends in every stage and the mixing time for the last stage. This approach

was successfully applied by Caputo, Martinelli and Toninelli in [14] and yields a better

bound on MCsimple in the case of regions with a good planar boundary condition.

It means that the distance between the boundary and the discrete surface is bounded

by a logarithmic factor (see section 2.3 in [14] for full definitions).

Theorem 1.9 (Theorem 2 [14]). For a region with a good planar boundary condition

with slope n with a diameter N , for N sufficiently large, MCsimple is rapidly mixing and

τmix(ε) ≤ N2(logN)12 log ε−1

Remark 1: Under such initial boundary condition, the boundary at equilibrium is

essentially flat which is the main ingredient used in the proof of Theorem 1.9.

Remark 2: It was later improved by Laslier and Toninelli in [62].

1.3.5 Domino shuffling

As it was already mentioned, the domino shuffling process can be used to count the

number of domino tilings of the n-order Aztec diamond [26]. It can also be used to

generate them uniformly at random. For detailed description and proofs see [78]. The
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general idea is to go from the n-order diamond to the n+ 1-order diamond by deleting

some ”bad” blocks of size 2 × 2, moving the rest a bit which moves the boundary to

the size n + 1, and complete the obtained partial tiling with blocks of size 2 randomly

choosing out of two possibilities of tilings for each block. This gives a recurrent formula

for the number of tilings and allows to generate them uniformly at random. A variation

of the domino shuffling on Aztec half-diamonds was proposed in [73].

1.3.6 Limit shape

One of the best-known results on domino tilings is the Arctic circle theorem in [49]. It

describes the asymptotic behaviour of uniformly random domino tilings of the Aztec

diamond. It states that for a sufficiently large n, all but a little fraction of the domino

tilings of the Aztec diamond of size n will have 4 frozen regions in the four corners of

the diamond with dominoes of the same type (there are 4 types of dominoes) piled in a

brickwork pattern. Moreover, there will be the inscribed circle – the circle of radius

n/
√
2 centered in the middle of the Aztec diamond of order n – inside of which the tiling

corresponds in an absolutely random way. The case of lozenge tilings was considered

in [17] where they were studied as boxed plan partitions. Figure 1.9 3 shows a random

tiling of an hexagon of size 80. One can easily notice the Arctic circle.

3Courtesy of Th. Fernique.
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Figure 1.9: Random lozenge tilings of hexagon of size 80.



Chapter 2

Square tilings

2.1 Introduction

In this chapter we consider tilings by a pair of squares of different sizes. Denote a tiling

bym×m and s×s squares wherem, s are different positive integers as an (m, s)−square
tiling (or simply a (m, s)− tiling). We are essentially interested in the same range of

questions which were discussed in Chapter 1 for the dimer tilings. Rectangular tilings

seem to be a natural model to consider after dominoes. Here we restrain ourselves to

square tilings. As we shall see in throughout this chapter, the study of the square model

seems to be already challenging.

First we consider tilings by 1 × 1 and 2 × 2 squares. These tilings were studied in

[39, 40, 69] from the combinatorial point of view using generating functions and transfer

matrices. Considered on a rectangular region, they are in bijection with the King’s

problem: the problem of placing kings on a chessboard in such a way that no king can

attack another king. It was studied in [12] using the transfer matrix approach to obtain

bounds on the configurational entropy. This problem is also known in statistical physics

as a variant of the Hard square model and there has been a lot of attempt to find an

exact formula for the number of configurations, but with no success.

We use combinatorial tools to understand how the average proportion of small squares in

all possible tilings of a k×n rectangle by small and big squares changes when k, n→ +∞.

Another question is to find the number of small squares in tilings of a k×n rectangle that

maximizes the number of tilings of a k × n rectangle. A simpler problem that we study

here is to consider that k is fixed and n→ +∞, which is basically the one-dimensional

case. In section 2.3 we propose a generalization of section 2.2.

23
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We pose as well the problem of computing the topological entropy of the square tiling

system in Section 2.4. We present a way of approximating the topological entropy using

results about subshifts of finite type. Let us point out that the exact solution is only

known for a few more tiling models [3, 4, 34, 50, 64] apart from the domino and lozenge

tilings that were discussed in the previous section.

In section 3.3, we define height functions for the square tiles as it was done in [54, 55,

82]. We use it to obtain some properties about the structure of the tiling system. In

subsection 2.5.3 we introduce a natural Markov chain MCsquare and show in Theorem

2.23 that for long and thin regions (such as rectangles of size n×log n) it is rapidly mixing.

In subsection 2.5.5 we consider a weighted version of the MCsquare, where weights λ are

put on big squares. We show rapid mixing with certain conditions λ in Theorems 2.26

and 2.27. At the end we provide simulations that raise (a lot of) conjectures for the

mixing time for our chains, for the counting problem and for the limit shape of square

tilings.

2.2 Combinatorics of (1, 2)−square tilings

We will use combinatorial tools to understand how the average proportion of small

squares in all possible tilings of a k×n rectangle by small and big squares changes when

k, n → +∞. A simpler problem that we study here is to consider that k is fixed and

n→ +∞.

There has been some work done on the subject. When k = 2, tilings of a 2×n rectangle

by 1 × 1 and 2 × 2 squares correspond to the Fibonacci sequence. For k = 3, one can

easily show that the number of ways to cover a 3 × n rectangle with 1 × 1 and 2 × 2

squares is equal to 1
3(−1)n + 1

32
n+1.

Some results were obtained by Heubach [39, 40]. Namely, explicit formulas for the

number of tilings for k up to 5 by using introduced basic blocks and methods of analytic

combinatorics for finding poles of generating functions and asymptotics. Bigger cases,

however, seem to pose problems, mainly because it becomes difficult due to the number

of basic blocks.

We use bivariate generating functions (BGFs) to obtain formulas for small cases and

calculate distribution of small squares in tilings for k ≤ 10. We also introduce an

automaton construction that represents BGFs and their relations. We extract some

properties on its structure, present a simplification algorithm that allows to compute

BGFs more easily. We also consider the problem for the cylindrical case. These results

were published in [85].
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Figure 2.1: 4× n
4
board with cut off corners.

2.2.1 Bivariate generating function

In order to study the general case, we introduce BGFs. For the sake of simplicity we

shall define them for the case k = 4 and then generalize the definition. Let

Q0000(z, u) =
∑

n,p

A4
n,pz

nup

be a BGF where the coefficient A4
n,p of znup is the number of tilings of a 4× n

4 rectangle

with exactly p small squares, supposing that n is a multiple of 4. We want to underline

that the rectangle is of area n. This choice is due to the simpler way of defining equations

on BGFs.

Let Q1000(z, u) be a BGF with the coefficient of znup being the number of tilings of the

initial rectangle with a 1 × 1 square cut off from the upper left corner and Q2200(z, u)

a BGF with the coefficient of znup corresponding to the number of tilings of the initial

rectangle with a 2× 2 square cut off from the upper left corner (illustrations are shown

in Figure 2.1).

From this point on, we will write BGFs without arguments, always meaning that they

are z, u. A relation on Q0000, Q1000 and Q2200 can be expressed in the following way:

Q0000 = zuQ1000 + z4Q2200.

Indeed, in order to obtain Q0000, we can either cut off a small square or a big one from

the upper left corner of the initial 4× n
4 rectangle. The remaining areas will correspond

either to Q1000 or to Q2200. And because we cut off squares we need to multiply Q1000 by

zu (z corresponds to the area occupied by a small square, u – to the one small square)

and Q2200 by z4 respectively.

In the same way we can introduce Q1100 and Q1220 and we have the relation

Q1000 = zuQ1100 + z4Q1220.



Square tilings Chapter 2 Square tilings

At each step we change indexes of Qi1i2i3i4 by going from left to right in the following

way: we permit changing either one 0 to 1 or 00 to 22, which means changing the left

one or two columns of the board that was obtained at the previous step by cutting off

either a 1 × 1 or a 2 × 2 square from the upper left corner of the board. By this rule

one can never obtain Q1010 or Q1022, for example.

As soon as we get to Qi1i2i3i4 with all indexes being different from zero, we can use a

tetris rule to reduce the indexes of Qi1i2i3i4 by one layer with ”no charge”. With ”no

charge” here means that, given that our strip is infinite, Q1122 = Q0011, Q1111 = Q0000

and so on.

Using this technique one obtains a finite set of BGFs Qi1i2i3i4 and a system of functional

equations on them. For k ≥ 5, the principle of constructing a set of Qi1...ik and a system

of functional equations is the same.

2.2.2 Counting bounds

In this subsection, for an easier representation, let us denote as Al(k) the number of

configurations of a k× l rectangle that can be easily obtained from the previous subsec-

tion. We are going to show relations and bounds on Al(k), which are then used to get

a way to bound on the entropy (see definition 2.4). Finally we show how using these

bounds and dominant singularities of the generating function Q0...0(z, u) to get bounds

on the entropy that for an infinite stripe of height n = kp, which gets tighter with the

increase of k. Table 2.1 contains bounds for k = 2, . . . 9.

Proposition 2.1. For n, k, l ∈ N

Al(n+ k − 1) ≤ Al(n)Al(k) ≤ Al(n+ k). (2.1)

Proof. The right inequality follows from the fact that when we stick two rectangles of

heights k and n together we have a perfect boundary, so the number of configurations is

less than in the rectangle of size k+ n where there can be big squares on the boundary.

To prove the left inequality let us take a paving of a rectangle of height k + n − 1,

and look at what happens at height k. On this level we have two types of big squares,

those that come from the (k − 1)th level and those that come from the (k + 1)th level.

This means that we can cut the rectangle in two parts, with each part keeping their big

squares from the border (kth level), and filling the missing spaces with small squares.

The result consists of 2 valid tilings of sizes k and n respectively which can be used to

rebuild the initial rectangle of height k + n− 1. ⊓⊔
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Corollary 2.2.

Al(n) ≤ Al(n− 1)
φl − ψl

√
5

, (2.2)

and

Al(n) ≤
(
φl − ψl

√
5

)n−1

, (2.3)

where φ =
√
5+1
2 and ψ =

√
5−1
2

Proof. Take k = 2 and n − 1 instead of n in the left inequality in Proposition 2.1 and

remember that Al(2) is the l− th Fibonacci number to get (2.2). Then apply (2.2) n−2

times to get (2.3).

Corollary 2.3.

Al(n) ≥
(
φl − ψl

√
5

)⌊n

2
⌋
.

Proof. It suffices to take k = 2 in the right inequality in (2.1), apply it n times and use

the fact that Al(2) is the l − th Fibonacci number.

Let us define the entropy ξ of our system as follows:

Definition 2.4.

ξ = lim
l,n→∞

Al(n)
1

nl .

By submultiplicativity that follows from Proposition 2.1, the limit ξ exists. We finally

get another corollary from Proposition 2.1.

Corollary 2.5. Let

A(n) = lim
l→∞

(Al(n))
1

l , (2.4)

then for n = kp

A(k)
1

k ≤ ξ ≤ A(k + 1)
1

k . (2.5)

Proof. If n = kp, then for every l > 0 the right inequality of (2.1) gives the following:

Al(k)
p ≤ Al(n).

Since Al((k+1)p) is a product of Al(k+1)×. . .×Al(k+1), one can use the left inequality

of (2.1) to get

Al(kp) ≤ Al(k + 1)p.
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k lower bound upper bound

2 1.27201964951407 1.41421356237309
3 1.25992104989487 1.41173913173686
4 1.29513738500437 1.38600758809294
5 1.29841189759956 1.38069947358241
6 1.30842640339979 1.37278796765850
7 1.31203622589229 1.36911693620351
8 1.31639272931298 1.36547044764523
9 1.31901865559441 1.34550944361483

Table 2.1: Lower and upper bounds on entropy ξ for n = kp, where k = 2 . . . 9.

Putting it all together we get

Al(k)
p ≤ Al(n) ≤ Al(k + 1)p.

Then

A(k)p ≤ A(n) ≤ A(k + 1)p.

Let us take all parts of the inequalities in the 1
n th power:

A(k)
1

k ≤ A(n)
1

n ≤ A(k + 1)
1

k . (2.6)

If we let p tend to ∞ with k being fixed we get (2.5).

For k ≤ 9 bounds on A(kp) can be obtained using dominant singularities z0,k of corre-

sponding GF s using the fact that the coefficients Al(k) grow like z−lk
0,k (the coefficients

of the GF have the area parameter). Using Corollary 2.5 one gets the following bound

on the entropy:

z−1
0,k ≤ ξ ≤ z

−(k+1)/k
0,k+1 .

Bounds on the entropy for n = kp, where k = 2, . . . 9 are represented in Table 2.1.

One can notice that these bounds become tighter with the increase of k. The further

one could go with calculation, the tighter bounds could be obtained. There is more

discussion about topological entropy and mostly about its efficient approximation in

Section 2.4.
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2.2.3 Combinatorial results

Let us go back to generating functions that were defined in subsection 2.2.1. As it was

defined

Q0000(z, u) =
∑

n,p

A4
n,pz

nup,

where A4
n,p is the number of tilings of 4 × n

4 rectangle with p small squares. For the

general case:

Q0 . . . 0
︸ ︷︷ ︸

k

(z, u) =
∑

n,p

Ak
n,pz

nup,

where Ak
n,p is the number of tilings of k × n

k rectangle with p small squares.

For each k one gets a system of equations on BGFs where coefficients of Q encode the

vertical border of the stripe. Traditional combinatorial tools (see, e.g., [31]) allow us

to find formulas for the BGFs and extract some properties. We can solve a system of

equations and find Q0...0(z, u) for small k. It starts getting complex for k ≥ 10 given

that the size of the associated matrix grows exponentially.

For example, for k = 4, one gets the following solution for Q0000(z, u):

Q0000(z, u) =
1− z4

1− z4 − z4u4 − 2z8u4 − z8 + z12u4 + z12

Q0000(z, 1) =
1− z4

1− 2z4 − 3z8 + 2z12

Since u was in charge of the number of small squares, when we set u = 1, the coefficients

Ak
n of Q0000(z, 1) correspond to the number of all tilings of an 4× n

4 rectangles without

the count of small squares. These coefficients satisfy the recurrence equation: an =

2an−1 + 3an−2 − 2an−3 with a0 = a1 = 1, a2 = 5 [A054854] [91].

For k = 5:

Q00000 =
u2z10 + uz5 − 1

1− u5z5 − uz5 − 3u6z10 − 4u2z10 − u7z15 + 3u3z15 − 3u4z20
.

We are interested in calculating the average proportion of space occupied by small

squares. The standard technique is to differentiate generating functions and then use

the singularity analysis [31]. Let us show step by step how we do this.

For each k the average proportion is represented by the following expression:

∑

p
n
pA

k
n,p

∑

pA
k
n,p

. (2.7)
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k z0 %

2 0.786151377757423 44.7213595499958
3 0.793700525984100 55.5555555555555
4 0.772118859032568 46.9544274320176
5 0.770171624157749 49.5070291158392
6 0.764276842321142 47.2416138330296
7 0.762174077411561 47.7590234411527
8 0.759651719226601 47.0291235954429
9 0.758139390795314 47.0553488489594

10 0.76569872370847 46.7648743206487

Table 2.2: (1, 2)−case: k is the height of the region, z0 – dominant singularity of the
corresponding BGF , % – average percentage of space occupied by small squares.

It can be obtained using the derivatives ∂uQ0...0(z, u) and ∂zQ0...0(z, u):

∂uQ0...0(z, 1) =
∑

pAk
n,pz

n,

z∂zQ0...0(z, 1) =
∑

nAk
n,pz

n.

So (2.7) is exactly
[zn] ∂uQ0...0(z, 1)

[zn] z∂zQ0...0(z, 1)
(2.8)

We can use the singularity analysis to estimate the coefficients in front of zn in (2.8) and

get the average proportions of space occupied by small squares. Therefore we calculate

the singularities of Q0...0(z, u) that are the closest to zero. The list of singularities for

k = 2, . . . , 10 is shown in Table 2.2. Denoting the dominant singularity (closest to zero)

by z0, we get
∂uQ0...0(z, u)

z∂zQ0...0(z, u)

∣
∣
∣
∣
(1,z0)

.

Average proportions of space occupied by small squares for k ≤ 10 are shown in Table

2.2.

2.2.4 Automaton representation

For each k let us introduce an automaton. Each Qi1...ik with ij ∈ {0, 1, 2} for j = 1, . . . k

is associated with a state q = i1...ik and each functional equation involving BGFs can

be translated into an automaton transition. For example, the relation

Q0000 = zuQ1000 + z4Q2200.
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Figure 2.2: Automaton for k = 4.

is represented in the following way: an arrow marked by zu goes from the state 1000

to the state 0000, an arrow marked by z4 goes from the state 2200 to the state 0000.

When the tetris rule is applied, we will mark the corresponding arrows by a star.

Commentary: The unusual way, one might say, of directing arrows can be explained by

the fact that adding 1 or 22 to the indexes of BGFs corresponds to cutting off corners

of the initial rectangle.

For k = 4 the set of states consists of the states: 0000, 1000, 2200, 1100, 1220, 2210,

2222, 1110, 1122, 1221, 1111, 0011, 0110, 1011, 2211 and an illustration of the automaton

is shown in Figure 2.2.

We shall refer to the state that consists of all 0s as initial. Calculation of the paths

in the automaton that start and end at the initial state will allow us to find formulas

for Q0...0. Our objective is to decrease the computational complexity by reducing the

number of states, which basically means reducing the number of functional equations in

the system.

2.2.4.1 Essential, non-essential and additional states

Definition 2.6. A state q of an automaton is called essential if there are at least two

arrows coming in and out of q and at least one of the arrows coming out is marked by
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a star. It is called non-essential otherwise.

Let Ek be the set of all essential states for each k ≥ 4. One can see from Figure 2 that

E4 = {1100} and |E4| = 1. Let us describe the structure of Ek and find |Ek|.

Proposition 2.7. A state q = i1...ik of an automaton is essential if and only if q has

the following properties:

1. q consists only of 0s and 1s;

2. All 1s come in consecutive pairs in q;

3. i1 = i2 = 1;

4. There are at least two 0s and the leftmost 0 in q comes in a pair with another 0.

Proof. ⇒ Let us prove that if q does not have at least one of the four properties,

then q is non-essential. If there exists j ∈ {1, ..., k} such that ij = 2 or a block

of consecutive 1s whose length is odd in q, then no state can be reduced to q by

the use of the tetris rule, so no arrow marked by a star comes out of it. If q starts

with a zero, then at most one arrow comes out of q (to the state that is reduced

to q by the tetris rule). If the leftmost zero in q is isolated, then only one arrow

comes in q (from the state with the leftmost 0 being replaced by 1).

⇐ Consider that q has these four properties. Given that the leftmost 0 is not isolated,

there are two arrows coming in q. And it is clear that there are two arrows that

come out of q – one to the state q′ = i1 + 1 . . . ik + 1 that is reduced to q by the

tetris rule and one to a state with a 1 on the left from the leftmost 0 being replaced

by a 0.

Proposition 2.8. For k ≥ 4 the number of essential states |Ek| in the automaton is

represented by the following formula:

|Ek| = {
F(k-3) - 1 if k = 2l+1

F(k-3) if k = 2l

where F (k − 3) is the (k − 3)rd Fibonacci number.

Proof. Looking at essential states of length k is the same as looking at states of length

k − 3 that are obtained from essential states by deleting the first two 1s and gluing
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together the first two consecutive 0s in each essential state. The obtained states are in

bijection with tilings of a strip 1× k − 3 by blocks of size 1× 1 and 1× 2 with at least

one 1× 1 block.

Corollary 2.9. With k →∞
|Ek| ∼

φk−3

√
5

Definition 2.10. A state is called additional if it belongs to a cycle that does not

contain any essential or initial states.

Note that only non-essential states can be additional. The interest of looking at addi-

tional states is, merely, because in order to properly reduce an automaton and get the

explicit formulas for our generating functions, we need to pay attention to all the cycles

in the automaton including the cycles that do not pass through the initial state. If not,

we might lose some terms in the resulting formulas.

Our objective is to choose additional states in such a way, so that each cycle in the

automaton includes either the initial state, essential states or the chosen additional

states. The idea is to minimize the number of additional states that have to be added

to the initial and essential states in order to properly reduce the automaton. We are

not going to calculate the number of all additional states. Nor will we minimize this

number. Rather, we will define a subset of the set of additional states and try to justify

this choice by proving that it provides us with the wanted structure.

Let us take a set that consists of states that have the same structure as the essential

states but with an odd block of 1s of size at least 3 on the left from the leftmost 0. We

denote this set by Ak. Clearly,

|Ak| = |Ek−1| .

Proposition 2.11. Each state from Ak is additional.

Proof. We need to show that every q ∈ Ak belongs to at least one cycle that does not

contain an essential state or the initial state. For i = 1 q1 = 1110 . . . 0 and the cycle

is schematically shown in Figure 3 with f(z, u) and g(z, u) being transition functions

between states. There are as many cycles as there are possible ways to get from the

state 00011 . . . . . . to the state 111220 . . . 0. It is not difficult to see that there are no

essential states between those two states. For other i the structure of cycles that contain

qi is analogous. ⊓⊔

Corollary 2.12. There are states in Ak for k ≥ 6 that belong to more than cycle with

no essential or initial states contained in it.
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Figure 2.3: Cycle with the state 1110 . . . 0 for k ≥ 5.

Now the question is, if we mark the initial state and all the states from Ek and Ak in the

automaton, does it ensure that there are no cycles left that do not contain the marked

states? Proving that will justify our choice for keeping these particular states.

Proposition 2.13. Let q = i1 . . . ik be a state that does not belong to Ak∪Ek∪{0 . . . 0}.
Then a cycle (or cycles) that q belongs to, contain(s) states from Ak ∪ Ek ∪ {0 . . . 0}.

Proof. Let us point out that every state that contains 2s belongs to a cycle with a state

that contains only 0s and 1s (the state to which it gets reduced to at some point via

the tetris rule). So it is sufficient to prove the statement only for states that consist of

0s and 1s.

Let q = i1 . . . ik with ij ∈ {0, 1}, j = 1, . . . k (Figure 2.3 might help to visualize the

cycles.) If the leftmost zero in q is isolated, then there is only one arrow coming in this

state from a state from Ak ∪ Ek. If the leftmost zero is not isolated, let i1 = . . . = il =

1, il+1 = il+2 = 0, 0 ≤ l ≤ k−2. If l = 0, then q = 00...011in+3...ik where i1, . . . , in = 0,

n ≥ 2. In this case q belongs to a cycle with the state 11...100...0 belonging to Ak ∪Ek.

The situation is similar if l = 1 apart from the case when ij = 0 for all k + 3 ≤ j ≤ k.

Then q = 10 . . . 0 and belongs to a cycle that contains the initial state. For l ≥ 2 since

all 1s after the l + 2 coordinate in q come in pair, q belongs to a cycle (cycles) with a

state from Ak ∪ Ek where the block with leftmost 0s is filled with 1s. ⊓⊔

Remark: We shall further refer to the states from Ak as additional⋆.

2.2.4.2 Simplified automata

We can simplify an automaton by keeping only the initial, essential and additional⋆

states and reducing all other states. The rules of reduction are shown in Figure 2.4. We
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Figure 2.4: Rules of reduction for an automaton.
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Figure 2.6: Reduced automaton for k = 5.

denote by fij a transition between states qi and qj which is represented by an arrow

going from qi to qj .

In the case k = 4, there is one essential state 1100 and no additional states. A reduced

automaton for the case k = 4 is shown in Figure 2.5.

For a 5× n rectangle there is one essential state 11000 and one additional⋆ state 11100.

A reduced automaton is shown in Figure 2.6. For k = 6, 7 reduced automata are

schematically shown in Figure 2.7.
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Figure 2.7: Reduced automata: for k = 6 (left), for k = 7 (right).

2.2.5 Matrix representation

Another point of view on this problem comes from the problem of non-attacking kings

where one looks at the number of ways kings could be put on a rectangular board

without having two king attacking each other. For the sake of completeness we mention

this approach and results that were obtained previously.

There is a natural bijection between tilings of a k× k region by 1× 1 and 2× 2 squares

and configurations of non-attacking kings on a (k − 1)× (k − 1) board. One simply has

to consider that every big square has a king in his left bottom corner, and having no

kings attacking each other is equivalent to having no big squares intersecting.

This problem has been studied using the matrix approach [12]. Namely, the use of the

adjacency matrix of the graph where nodes are lines of the rectangle, two nodes are

connected if the two lines can be put on top of each other (for the use of this approach

see also [69]). These adjacency matrices verify the following recursion:

A0 = (1), A1 =

(

1 1

1 0

)

, . . . , An =

(

An−1 An−2

An−2 0

)

.

Note that the dominant eigenvalue of Ai is equal to the inverse of the singularity of

Qi(z, 1). In [12] it was used to compute good approximation of the entropy but it can

be also used to compute the average proportions of space occupied by small squares

for a given k. Indeed, for a fixed k × n region one can compute the number of big

squares by taking a matrix M which is a diagonal with the number of big squares in the
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corresponding node, and calculate

b = 1




∑

p≤n

Ap
kMAn−p

k



1T ,

where 1 = (1, . . . , 1).Then the proportion of big squares equals

4b

kc
, where c = 1




∑

p≤n

Ap
kIA

n−p
k



1T ,

where c is the number of lines in all the configurations. We can then obtain result when

n→∞ by putting Ak in Jordan form and dividing both b and c by λn1 where λ1 is the

dominant eigenvalue of Ak.

The latest improvement was done by J. Nillson that allowed to compute the exact number

of tilings by 1× 1 and 2× 2 squares of squares of size up to 40 [72], which permitted to

extend the sequence [A063443] with 15 new entries.

2.2.6 Cylindrical case

Let us now consider a k × n
k rectangle with sewn horizontal borders. We obtain a

cylindrical region that we want to tile with 1 × 1 and 2 × 2 squares. The way of

constructing BGF s stays the same with the only difference that now we allow having

separated 2s in the first and last positions of the indexes of Generating Functions. The

functional equations, therefore, change. For example,

Qc
0000 = zuQc

1000 + z4Qc
2200 + z4Qc

2002,

where the index c is used to distinguish between cylindrical and plain cases.

Let us construct an automaton in the same way as before (see Figure 2.8).

The notions of essential and additional states stay the same. The set Ec
k of essential

states in the cylindrical case equals Ek. But the set Ac
k consists not only of states from

Ak, but also of Ek−2 and the initial state of size k − 2 where 1s are added in the first

and last positions which might of course create a rightmost block of an odd length but

that is due to the fact that there are states with a 2 in the first and the last positions.

So |Ac
k| = |Ak|+ |Ek−2|+ 1.

In the case k = 4 there is one essential state 1100 as in plain case and one additional∗

state 1001. The rules of reduction stay the same and a reduced automaton is shown in

Figure 2.9.
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Figure 2.8: Automaton for k = 4, cylindrical case.
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Figure 2.9: Reduced automaton for k = 4, cylindrical case.

In this case we have

Qc
0000 =

1− z4
1− 3u4z8 + 2z12− u4z4 − 2z8 − z4 ,

and small squares occupy, in average, 0.466 of the space which is smaller than in the

plain case. It is rather understandable – because of the sewn boarders there are less

constraints on the way big squares can be placed.

Reduced automata for k = 5, 6 are schematically shown in Figure 2.10.
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Figure 2.10: Reduced automata in cylindrical case: k = 5 (left), k = 6 (right).

2.2.7 Open problems

The main question that we would like to answer is whether the limit of average propor-

tions for the plain/cylindrical case discussed in this section exists and how to compute

it. Calculations that were done by M. Rao using the adjacency matrix approach, give a

decreasing sequence from 0.466 to 0.458 from k = 10 up to 25. Another question would

be to find the number of small squares in tilings of a k×n rectangle that maximizes the

number of tilings of a k × n rectangle.

2.3 Combinatorics of (1, s)−square tilings

The same method using BGFs can be applied to the general case.

Consider, for example, the case of (1, 3)−square tilings. Define the BGFs in the same

way as for the (1, 2)−square tilings. For the case k = 4, the equations on the BGFs

become the following:

Q0000 = Q3330z
9 +Q1000uz,

and so on. In the same way, on gets the system of the equations.

For example, for k = 4:

Q0000(z, u) =
−1

2u3z12 + u4z4 − 1
,
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k z0 %

3 0.8803 41.723
4 0.8763 49.296
5 0.8829 56.707
6 0.8701 46.084
7 0.8653 45.883
8 0.8659 48.856
9 0.8633 46.784
10 0.8609 45.641

Table 2.3: (1, 3) case: k is the height of the region, z0 – dominant singularity of the
corresponding BGF , % – average percentage of space occupied by small squares.

k %− 2 %− 3 %− 4 %− 5

3 55.555 41.723 100 100
4 46.954 49.296 39.665 100
5 49.507 56.707 45.198 38.115
6 47.241 46.084 51.686 42.264
7 47.759 45.883 54.670 41.626
8 47.029 48.856 44.573 43.412
9 47.055 46.784 43.325 44.890
10 46.764 45.641 49.365 39.430

Table 2.4: Percentage of average space occupied by small squares for (1, 2), . . . , (1, 5)−
square tilings of stripes of height k ≤ 10.

Q0000(z, 1) =
−1

2z12 + z4 − 1
.

For k = 5:

Q00000(z, u) =
−1

3u6z15 + u5z5 − 1
,

Q00000(z, 1) =
−1

3z15 + z5 − 1
.

Average proportions of space occupied by small squares for (1, 3)−tilings of stripes of

height k ≤ 10 are shown in Table 2.3 and for (1, 2), . . . , (1, 5)− square tilings of stripes

of height k ≤ 10 in Table 2.4.

2.3.1 Comparison

Up until now we were calculating average proportions of space occupied by squares

1 × 1. Let us denote it by C(s, k) for (1, s) tilings of a k × k square region. Table

2.5 shows a comparative of proportions C(s, k) of space occupied by small squares for

(1, 2) and (1, 3) cases for squares regions of sizes 10 to 25 plotted in Figure 2.11. Table
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k 2: [min] avg [max] 3: [min] avg [max]

10 [0.280] 0.492 [0.639] [0.280] 0.499 [0.730]
11 [0.372] 0.487 [0.669] [0.331] 0.515 [0.702]
12 [0.308] 0.486 [0.638] [0.315] 0.503 [0.682]
13 [0.360] 0.483 [0.621] [0.360] 0.486 [0.680]
14 [0.387] 0.480 [0.571] [0.357] 0.481 [0.678]
15 [0.342] 0.479 [0.573] [0.360] 0.481 [0.639]
16 [0.390] 0.476 [0.593] [0.367] 0.480 [0.613]
17 [0.348] 0.475 [0.571] [0.377] 0.472 [0.567]
18 [0.395] 0.471 [0.580] [0.388] 0.481 [0.593]
19 [0.357] 0.468 [0.560] [0.351] 0.467 [0.576]
20 [0.370] 0.471 [0.557] [0.370] 0.468 [0.577]
21 [0.392] 0.469 [0.537] [0.367] 0.477 [0.550]
22 [0.396] 0.469 [0.537] [0.386] 0.469 [0.553]
23 [0.379] 0.464 [0.523] [0.373] 0.478 [0.542]
24 [0.395] 0.467 [0.528] [0.375] 0.451 [0.531]
25 [0.398] 0.467 [0.532] [0.366] 0.461 [0.524]

Table 2.5: Average space occupied by small squares for (1, 2) and (1, 3)− square
tilings of squares of sizes 10 to 25 over 100 to 1000 trials (C(s, k) with s = 2, 3 and

k = 10, . . . 25.)
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Figure 2.11: Plot for average space occupied by small squares from Table 2.5,
x− axis represents the size of the tiled square, y − axis marks average proportions.
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2.6 shows C(s, k) for s = 2, . . . , 10 and k = 20, 25, 30. Let Bspace(s, k) be the average

ratio of space occupied by small squares to space occupied by big squares in tilings

of k × k square. And finally, let Bnumber(s, k) be the average ratio of the number of

small squares to the number of big squares. Clearly, Bnumber(s, k) = s2Bspace(s, k) and

Bspace(s, k) = C(s,k)
1−C(s,k) . See Table 2.7 for computational results on Bnumber(s, k) for

s = 2, . . . 10 and k = 20, 25, 30.

Let

C(s) := lim
k→∞

C(s, k)

Bnumber(s) := lim
k→∞

B(s, k)

Conjecture. For (1, s1) and (1, s2) square tilings with s2 > s1:

C(s2) ≥ C(s1)− ε(s1, s2). (2.9)

Proposition 2.14. For (1, s1) and (1, s2) square tilings with s2 > s1, if

C(s2) ≥ 1− C(s1)− 1

C(s1)α− 1
,

where α =
s2
2
−s2

1

s2
2

, then

Bnumber(s2) ≥ Bnumber(s1).

Proof. Consider Bnumber(s2)
Bnumber(s1)

:

Bnumber(s2)

Bnumber(s1)
=
C(s2)

C(s1)

(
1− C(s1)
1− C(s2)

)
s22
s21
. (2.10)

We are interested in knowing when (2.10) ≥ 1. So we get:

(1− C(s1))C(s2) ≥ (1− C(s2))C(s1)
s21
s22
.

Denote α =
s2
2
−s2

1

s2
2

, then
s2
1

s2
2

= 1− α. Then

C(s2) ≥ C(s1)− C(s1)α+ C(s1)C(s2)α,

C(s2)(1− αC(s1)) ≥ C(s1)(1− α),
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k 2 3 4 5 6 7 8 9 10

20 0.471 0.468 0.432 0.503 0.45 0.578 0.491 0.582 0.586
25 0.467 0.461 0.436 0.491 0.473 0.444 0.483 0.56 0.481
30 0.462 0.469 0.51 0.472 0.481 0.512 0.521 0.42 0.546

Table 2.6: Average space occupied by small squares for (1, 2), . . . , (1, 10)− square
tilings of squares of sizes 20, 25, 30 (C(s, k) with s = 2, . . . , 10 and k = 20, 25, 30.)

k 2 3 4 5 6 7 8 9 10

20 3.5 7.9 12.1 25.3 29.4 64.9 61.4 112.7 138.1
25 3.5 7.7 12.3 24.1 32.3 39.1 52.3 103.1 92.3
30 3.4 7.9 16.6 22.3 33.3 49.1 69.3 58.6 117.3

Table 2.7: Average ratio of the number of small squares to the number of biq squares
for (1, 2), . . . (1, 10)− square tilings of squares of sizes 20, 25, 30 (Bnumber(s, k) with

s = 2, . . . , 10 and k = 20, 25, 30.)

C(s2) ≥ 1− C(s1)− 1

C(s1)α− 1
.

2.3.2 1-dimensional case

Consider one-dimensional tilings of a block of size n by two type of tiles: of length 1 and

of length l+1. Let pn(l) be the average ratio between the number of small blocks to the

number of big blocks in tilings of stripes of length n. Let a(n), b(n) be the total number

small/big blocks in tilings of a stripe of length n for a given l, then pn(l) = a(n)
b(n) . We

have that a(n) + a(k) ≤ a(n+ k) and b(n) + b(k) ≤ b(n+ k), so the limit of a(n)
b(n) exists.

Let

p(l) = lim
n→∞

pn(l). (2.11)

Proposition 2.15. The bigger the size of a block is, the less often blocks of this size

occur. Formally: if l1 > l2 , then p(l1) > p(l2).

Proof. Let N(n, bl) denote the number of tilings of the stripe of size n by a tiles of size

1 and bl−1 tiles of size l. Further we omit the index of b for simplification. We have that

N(n, b) =
(
n−lb
b

)
. Let us see for which b the ratio N(n,b+1)

N(n,b) is equal to 1. The solution
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b(n) will then give us the number of big tiles that maximises N(n, b).

(n−l(b+1)
b+1

)

(
n−lb
b

) =
(n− bl − b)(n− bl − b− 1) . . . (n− bl − b− l)
(n− bl)(n− bl − 1) . . . (n− bl − l + 1)(b+ 1)

=

∏l
i=0(n− bl − b− i)

(b+ 1)
∏l−1

i=0(n− bl − i)
(2.12)

Multiply the denominator and the nominator in (2.12) by 1
nl+1 and set them equal:

l∏

i=0

(

1− bl + b

n
− i

n

)

=
b+ 1

n

l−1∏

i=0

(

1− bl

n
− i

n

)

. (2.13)

If one solves (2.13) for b, then solution b(n) is the number of big tiles that maximizes

N(n, b).

Define λn(l) = n
bl(n)

and let n go to ∞. Denote λ(l) as the limiting value of λn(l).

Then (l+ 1)× 1
λ(l) is the average proportion of space occupied by tiles of size l+ 1 and

p(l) = λ(l)− l − 1. Then (2.13) becomes

(

1− l + 1

λ(l)

)l+1

=
1

λ(l)

(

1− l

λ(l)

)l

⇔ (2.14)

(λ(l)− (l + 1))l+1 = (λ(l)− l)l, (2.15)

p(l)l+1 = (p(l) + 1)l. (2.16)

For l > 1, on gets

p(l) ≈ l

log l − (1 + o(1)) log log l
. (2.17)

This proves that if l1 > l2, then p(l1) > p(l2).

For example, one can explicitly solve (2.13) for l = 1 (which corresponds to tilings by

bricks of size 1 and 2) and get

lim
n→∞

b1(n)

n
=

5−
√
5

10
≈ 0.27,
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p(1) = lim
n→∞

n− 2b1(n)

b1(n)
=

1 +
√
5

2
≈ 1.61.

For l = 2 (tiles of size 1 and 3), one gets

lim
n→∞

b2(n)

n
≈ 0.19,

p(2) = lim
n→∞

n− 3b2(n)

b2(n)
≈ 2.14.

2.4 Topological entropy and approximate counting

We have already mentioned the interest behind the counting problem. Since there is not

much hope of finding a closed formula for the number of configurations and finding any

sort of formula has proved to be extremely challenging, the approximate counting starts

to be of interest.

We consider the topological entropy of the square tilings. It measures exponential growth

of the number of configurations of an n× n region. More formally, let An(m, s) be the

number of (m, s)−square tilings of an n× n region.

Definition 2.16. Topological entropy of an (m, s)−square tiling system of a square

region of size n is

ξtop(m, s) = lim
n→∞

logAn(m, s)

n2
.

An efficient approximation of the (1, s)−square tiling system to within 1
n can be done

due to the fact that the square tiling system is a block gluing Z2 shift of finite type

(SFT) (see, e.g., [65] for basic definitions of subshifts).

Definition 2.17 ([77]). A Zd subshift X is called block gluing with gap size g ∈ N

if for any pair of solid blocks B1, B2 ( Zd with separation δ(B1, B2) > g and any pair

of points y, z ∈ X there exists a point x ∈ X such that x|B1
= y|B1

and x|B2
= z|B2

. X

is block gluing if it is block gluing with gap size g for some g ∈ N.

Proposition 2.18. Any (1, s)−square tiling system is block gluing.

Proof. For an (1, s)−square tiling system to be block gluing means to be able to glue

two rectangular regions together along the side of size n for some gap g. It can be done

by taking g = 1, and thus the gap region is a stripe of size 1× n.
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Definition 2.19. Let (tn ∈ N)n∈N be a non-decreasing sequence. r ∈ R is computable

with rate (tn ∈ N)n∈N if there exists a deterministic Turing machine which, for any

n ∈ N, calculates a rational approximation rn ∈ Q of r such that |r− rn| ≤ 1
n in at most

tn steps.

As states the theorem for a block gluing SFT Z2 by Pavlov-Schraudner [77]:

Theorem 2.20 (Theorem 1.4 [77]). For any block gluing Z2 SFT there exists a constant

C ∈ R such that the topological entropy of the SFT is computable with rate (2Cn2

)n∈N.

Let us apply Pavlov’s theorem to square tilings. This gives directly the following result:

Corollary 2.21. For a (1, s)−square tiling system there exists a constant C ∈ R such

that ξtop(1, s) is computable with rate (2Cn2

)n∈N.

Remark. In the next section we show that there are cases when the dynamics of square

tilings in terms of Markov chains is fast mixing, then the entropy approximation can be

done in polynomial number of steps.

2.5 Random generation

In this section we are going to address a similar range of questions in the topic of random

generation as the ones considered for dimers. In subsection 2.5.1 we define a height

function for the square tilings and local transformations (flips) following definitions and

results by [18, 54, 55, 82].

We introduce a Markov chain and study its properties in subsection 2.5.3. Ideally,

we want to be able to rigorously bound the time that it takes for the chain to reach

stationarity (its mixing time). If it is polynomial (over the size of the tileable region

that is denoted by R throughout this chapter), then for (1, s) tilings one gets an efficient

way to approximately count them (as was mentioned at the end of section 2.4). The

analyze of the initial chain is challenging and we explain why it is so. We consider

a weighted version (where weights λ are assigned to one type of squares in a tiling)

in subsection 2.5.5. Adding weights helps to notice phase transitions in the system.

Usually the weights λ are assigned in such a way that the case λ = 1 corresponds to the

unweighted version of the chain. This case is generally hard to analyze but it becomes

easier to analyze the dynamics for λ below and above some critical point. We draw

polynomial bounds on the mixing time of the Markov chain in the case of (1, s)−tiling
with a condition on λ.
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For very thin and long regions (for example, rectangles of size n × log n) the initial

chain turns out to be fast mixing in the (1, s) case (see subsection 2.5.4). We conjecture

that it is fast mixing for any m and s when considered for these long regions. We also

present simulations and conjectures (subsection 2.5.6) that show that the mixing time

of the unweighted version might not be polynomial but sub-exponential, and might be

as difficult to analyze as the critical cases of Markov chains for the independent sets and

perfect matchings. A relation to the independent sets is discussed in subsection 2.5.5.

At the end, in subsection 3.3.7, we conjecture an analog of the Aztec diamond for

dominoes (hexagon for lozenges) and present simulations that show an ”Arctic circle”–

type phenomenon.

2.5.1 Height function

Height functions for tilings by rectangular tiles appear in numerous works (e.g., [18,

54, 55, 82]) that use Conway tiling groups [94]. Having a well defined height function

permits to get a structure on the set of configurations and then use it to construct an

algorithm that verifies the tileability of a given region.

Let a be a symbol corresponding to a horizontal step of length one to the right on the

rectangular grid, a−1− to a step to the left, b− to a vertical step up and b−1− to a

step down. Then any path on the skeleton of any tiling of R is a word in the alphabet

{a, a−1, b, b−1}, as well as the perimeter of R.

Consider a group G generated by a and b and restrictions that ensure that a path

around each tile is elementary. A path around an m × m square is ambma−mb−m =:

[am, bm]. Similar for the other tile. Then the tiling group G is defined as follows:

G = 〈a, b | [am, bm], [as, bs]〉, where [am, bm] = [as, bs] = e. Any path g on a skeleton of

a tiling of R can be expressed using elements of G. For example, consider a tiling of a

2m× 2m rectangle by m×m squares. Let l be the left lower corner of the region, r be

its rights upper corner. Then g(l, r) = ambmambm is a path (one of many) from l to r.

Another path is, e.g., g′(l, r) = amambmbm = a2mb2m.

2.5.1.1 Quotient group H

In order to define a height function, we introduce a quotient group H of G. Let H =

G/ 〈am, bs〉. Since am = bs = e, then ambm = bmam and asbs = bsas. So H =

〈a, b | am, bs〉 = Zm × Zs Let ΓH be the Cayley graph of H. It is a tree made of cycles

of size m with cycles of size s attached to every vertex. Example for m = 2, s = 3 and

for m = 3, s = 4 are shown in Figures 2.12, 2.13.



Square tilings Chapter 2 Square tilings

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

Figure 2.12: Cayley graph for m = 2, s = 3.
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Figure 2.13: Cayley graph for m = 3, s = 4.

Every path g has a unique (canonical) expression using elements of Zm × Zs:

g = k1l1k2l2 . . . krlr,

where ki ∈ Zm, li ∈ Zs for all 1 ≤ i ≤ r and some non-negative r. It can easily be

constructed following the edges of the Cayley graph.

2.5.1.2 Weighted Cayley graph

Consider the Cayley graph ΓH . Choose a vertex v1, let it be the starting point and

set its weight w(v1) = 0. v1 belongs to two cycles Cm
v1 of size m and Cs

v1 of size s.

Cm
v1 = {v1, v2, . . . vm}. Set

• w(vi) = w(v1) for i = 2, . . . ,m− 1,
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Figure 2.14: Weighted Cayley graph for m = 3, s = 4.

• w(vm) = w(v1)− 1.

Let Cs
v1 , C

s
v2 , . . . , C

s
vm be cycles of size s that v1, . . . vm belong to accordingly. Set for all

i = 1, . . . ,m− 1

• w(y) = w(vi) + 1 for all y ∈ Cm
vi , y 6= vi

Set for i = m

• w(zj) = w(vm) for zj ∈ Ck
vm \ {vm} where j = 1, . . .m− 2,

• w(zm−1) = w(vm)− 1.

Continue assigning weights to the vertices of the Cayley graph in the way described

above. The graph is infinite, a small part of the Cayley graph for m = 3, s = 4 is shown

in Figure 2.14.

Another way to think about it is the following:

• In each cycle all vertices are of weight w, except for one that has weight w− 1, let

us call it descending.

• Two cycles are connected via a vertex that is descending in one cycle and is not

descending in the other.
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Figure 2.15: Heights for t2 and t3 tiles.

2.5.1.3 Height function for (m, s)−square tilings

For each (m, s)− tiling T of a finite region R of Z2 denote the set of vertices of its

skeleton by VT . The height h is defined on VT as follows. Choose an initial point x on

the boundary of R (if R is a rectangle x can be chosen as the left lower corner of R

for example). Without loss of generality, set h(x) := w(v1). To calculate the height of

any given y, construct a path g(x, y) connecting x and y in the following way: start the

path in x and make moves that do not cross any tile. Every time a horizontal or vertical

move is made, do the corresponding move in the weighted Cayley graph. The weight of

the final node gives h(y) and does not depend on the choice of the path. Let us point

out that the height function on the boundary is completely defined by the region itself

and does not depend on the tiling.

For m, s ≥ 2 the height function h defined on vertices of (m, s)− square tilings of a

rectangular region R is flat on the boundary (it goes around the same two cycles on the

Cayley graph) and O(size of R) on the interior points. For the degenerate case when m

or s equals one, h is simply a constant.

There are two tiles: ts is the square tile of size s, tm− of size m. Consider tm. Since

elements of Zm encode the horizontal steps, the heights of vertices on one of the vertical

sides are exactly the same as the heights on the other vertical side. let h be the maximum

over heights of vertices on the vertical side, then the maximum over heights of vertices

on each of the horizontal sides belongs to {h− 1, h+1}. Define the height of the tile tm

h(tm) := h. Change vertical sides to horizontal sides to get the similar property for ts.

Figure 2.15 shows how the heights are defined each node for t2 and t3 using the weighted

Cayley graph where weights are used to write heights in each vertex.
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Figure 2.16: Flips for the (1, 2)− tiling.

Let h(T ) be the height of a tiling T . Define it as follows:

h(T ) =
∑

t∈T
a(t)h(t),

where a(t) is the area of a tile t.

For the degenerate case thus defined h(T ) is not very interesting since h(T ) ≡ const ∗
area(R) for every tiling T .

2.5.1.4 Flips

Let us define flips for (m, s)−square tilings. Call a horizontal block a rectangle of

size sl × (m+ s) where l is the least positive integer such that m divides sl. There are

exactly two ways to tile this block. A horizontal flip is a flip in a horizontal block

is a change from one tiling to another. In the same way, define a vertical block as a

rectangle of size (m + s) × sl and let vertical flip be a flip in a vertical block. Call a

central block a square of size p × p, where where l is the least positive integer that

divides m and s. For (m, s)−tilings, m, s > 1 there exists exactly two kinds of tilings of

the block: by (p/m)2 squares of size m and by (p/s)2 squares of size s. A central flip

is a flip in a central block. If (m, s) = 1, then p = ms. For (1, s)−tilings there are three

tilings of the horizontal/vertical blocks. See Figures 2.16, 2.17 for an example of flips

for the (1, 2) and (2, 3) tilings. The little black crosses in the figures mark the site that

has to be chosen in order to perform a flip.

One can see from Figure 2.16 that there is no ambiguity about what kind of flip has to

be performed for (1, s)−tilings in a horizontal/vertical block: if one wishes to perform a

central flip, then the upper right corner of the big square has to be chosen, if one wishes

to perform a horizontal flip, then one has to choose the site that will correspond to the

upper right corner of the big square after it is moved.
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Figure 2.17: Flips for the (2, 3)− tiling.

It was shown in [82] that the tiling space is connected by flips. Moreover, there exists

a minimal tiling to which one get by performing height non-increasing flips for every

simply connected region. There is also an algorithm that runs in quadratic time over

the size of the region that checks tileability by trying to construct a minimal tiling Tmin.

This minimal tiling might not be unique. There might be a subset of height equivalent

minimal tilings M = Tmin. In this case, one can consider a function on the subset of

height equivalent tilings that (called potential in [82]). For Tmin ∈ M the potential

adds up vertical coordinates of horizontal sides of the first type of tiles and horizontal

coordinates of vertical sides of the second type of tiles. Tmin that has the minimal

potential is then the unique ”global” minimal tiling on the set of tilings ΩR.

Since there are exactly two tilings for every type of block, we say that each flip has two

directions. One way to think about is the following: if a flip changes the height of the

tiling, then the direction of the flip is ”up” if it increases the height and ”down” if it

decreases the height. If the flip does not change the height, then it changes the potential.

Let us then say that the direction of the flip is ”up” if it increases the potential and

”down” if it decreases the potential.

2.5.2 Examples

(1, s)−square tilings

Consider tilings by 1 × 1 and s × s squares of a finite region R of Z2 of area NR. The

height function defined above is not much of a use in this case, it is simply a constant.
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Figure 2.18: (1, 2), (1, 3), (1, 4), (1, 10) tiling of a 60× 60 square.

Consider central flips on the set of tilings of a region R. One can define a different order

on the set of tilings. For example, for a given tiling T let its height h(T ) be equal to the

minimal number of flips needed to get to from the tiling with only small squares T0 to

T , set h(T0) = 0. The height function becomes simply a hamming distance function on

the tiling graph G1,s(R). In this setting, T0 is the unique minimal tiling. If the region

R can be tiled by big squares only, then the maximal tiling is the tiling by big squares

only. If speaking about rectangular regions, both of its sides need to have a multiple of

s as a length.

If we consider central flips on the set of tilings of a region R, then the diameter of the

tiling graph is d(G1,s) = O(NR). Let αs be the number of squares of size 1 in a tiling of
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Figure 2.19: All (2, 3)−square tilings of an 8× 8 square.

R, then αs = const(R) mod s2. It does not depend on a tiling and holds for any finite

region R of Z2.

Figure 2.18 shows examples of (1, 2), (1, 3), (1, 4), (1, 10) tilings of a 60×60 region. Tiling

by 1× 1 and 2× 2 squares is a random tiling obtained via coupling (see subsection 2.5.6

for details on simulations). The other three tilings are outputs after 100, 000, 000 flips

(starting from configurations with only 1× 1 squares).

(2, 3)−square tilings

(2, 3)−square tilings (and (m, s) in general) are completely different from the (1, s) case.

It is no longer possible to glue two parts of a tiling together that easily. It depends a

lot on the boundary of the region. The height function is linear over the size of the

region. Figure 2.19 shows all possible (2, 3)−square tilings of an 8 region where two

configurations are connected if a flip can be made to go from one to the other. There

are two ways of defining a height function and assigning weights. In one of the ways,

the minimal tiling is in the upper left corner, the maximal is in the lower right corner.

2.5.3 Markov chains

Let R be a tiled simply connection region of area N , denote the set of all possible tilings

by ΩR. Let us define a Markov chain MCsquare for square tilings. The idea of the chain

is to pick a site of the region uniformly at random at each step and do a flip if possible.
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First of all, for an (m, s)−tilings, m, s > 1, the site that has to be chosen to perform

a flip is always in the upper right corner of the block. One can see from Figure 2.17

that once a site of a tiling is chosen, there is no ambiguity in what type of flips can

be performed: in order to perform a flip, one has to consider the three blocks in which

this site is in the upper right corner, and there is at most one type of flips that can be

performed. If m = 1, one has to consider all blocks around the site in which it is the

upper right 2× 2 box, then there is at most one type of flips that can be made as well

(which can be seen from Figure 2.16).

Second of all, in order to choose which of two configurations of the block we want (or

in the case m = 1, in which direction we want to push the big square), let us recall

that each flip has two directions, so before performing a flip we first choose one of two

possible directions.

Let us now formally present the Markov chain:

MCsquare:

Let T0 ∈ ΩR be an initial configuration. At each time t:

• choose an inner vertex of R with probability 1
N ,

• choose a direction with probability 1
2 ,

• perform either a vertical/horizontal or central flip in the tiling Tt in the chosen

direction if possible thus defining the tiling Tt+1, otherwise stay still.

Lemma 2.22. MCsquare has uniform stationary distribution.

Proof. The probability to reach every tiling T ∈ ΩR is positive since the space state

is connected, so MCsquare is irreducible. The probability to stay in the same state

is positive, therefore it is aperiodic. This implies that the chain is ergodic and thus

has unique stationary distribution. Moreover, the probability matrix of MCsquare is

symmetric: indeed, P(T, S) = P(S, T ) for all pairs (T, S) from ΩR (that are different

by one flip). The symmetry of the probability matrix ensures the uniformity of the

stationary distribution.

2.5.4 Mixing time for (1, s)−square tilings

The question of proving fast mixing turns out to be difficult and there are only few

tiling systems for which the dynamics was proven to be fast mixing, by fast mixing we
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mean in polynomial number of steps in the size of the tiled region. We show that in

some particular cases, the dynamics is rather easy to understand and is related to known

structures such as independent sets.

Theorem 2.23. MCsquare is rapidly mixing for (1, s) tilings of a rectangular region of

size n× log n.

Proof. We are going to use the canonical paths argument developed by Sinclair [89].

The idea of canonical paths is the following: fast mixing occurs when a tiling graph does

not have a bottleneck. If there is a bottleneck, then it divides the set of configurations

into two subsets. This slows down the mixing because it becomes hard to get from

one subset to the other. Canonical paths allow to formalize absence (or presence) of a

bottleneck. For each pair of configurations a canonical path (or a set of paths) is (are)

defined that allow(s) to get from one to the other via flips. Consider an edge in the tiling

graph (it connects two configurations different by one flip). If for any edge the number

of paths that pass through this edge is relatively small (linear over the cardinality of the

set of configurations), the graph does not have a bottleneck.

Let us present the construction for the (1, 2) case. It is exactly the same for the general

case. Place the rectangle on the grid with the lower left corner in (0, 0). Define an order

on the set of inner vertices of the (n+ 1)× (log n+ 1) rectangle as follows:

{(1, 1), (1, 2), . . . , (1, log n), (2, 1), (2, 2), . . . , (n, log n− 1), (n, log n)}

and denote them as {1, 2, . . . ñ}, where ñ = n× log n.

Consider two tilings X and Y from Ω. In order to get from X to Y , it is sufficient

to make a flip in every vertex of the region, in other words, the diameter of the tiling

graph is not greater than the area of the region. With the use of canonical paths, we

can structure the order in which we perform flips. Define a canonical path p(X,Y ) from

X to Y as follows: start from X, follow the vertices in the defined order in windows of

size 2 × 2 and in each window perform at most one flip in each vertex if it decreases

the flip-distance (Hamming distance in the tiling graph) to Y . Such ordering of flips

at each step either corrects a 2 × 2 box in X by performing a central flip or decreases

distance by one by performing a vertical/horizontal flip in a vertical/horizontal block.

After all vertices are met once, the path reaches Y . Due to the construction, for any

pair of tilings such path exists and is unique. The ordered path is now a permutation σ

of vertices 1 . . . ñ, where for each i : i− log n− 1 ≤ σ(i) ≤ i+ log n+ 1.

Denote by π the chain’s stationary distribution. Send π(X)π(Y ) units of flow through

p(X,Y ) for any pair (X,Y ) The flow through an edge is just the sum of all the flow
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Figure 2.20: Canonical path for the (1, 2)− tiling in a 4× 2 region.

that travels through the edge. The idea of the canonical paths method is to prove that

any edge in the tiling graph has a small number of canonical paths going through it

and therefore little flow. Consider an edge ei = (Zσ(i), Zσ(i+1)), where tilings Zσ(i) and

Zσ(i+1) only differ in the σ(i)−th position.

Lemma 2.24. There are no more than |Ω|n paths passing through each ei.

Proof. Consider the canonical path p going from X to Y :

p(X,Y ) = {X = Zσ(1), . . . , Zσ(i), Zσ(i+1), . . . Zσ(ñ) = Y }.

Tiling X agrees with Zσ(i) at least on the vertices σ(i + 1), . . . , σ(ñ). Y agrees with

Zi at least on the vertices σ(1), . . . , σ(i). One could think of reconstructing X and Y

using ei and the first i vertices 1, . . . , σ(i) of X at the last ñ − i vertices σ(i), . . . σ(ñ)

of Y , but that would mean that it was possible to glue two pieces of a tiling with holes

together. Consider instead a strip of width 4 around the windows that contain the vertex

i between the two part of tilings which can be filled in at most exp(log n) ways.

We have therefore just constructed a map from the set of paths that pass through ei

{pei} to the state space Ω. This construction maps each path pei to n tilings that are

different only in the 4 × log n strip around the vertex i. Each path is mapped to a

different ”family” of (1, s)− tilings, where each family corresponds to tilings of the strip

around a given vertex. There are not more |Ω| possible families and therefore not more

than |Ω|n paths through ei.

Let us continue with the proof of the theorem. Applying Lemma 2.24, the flow along

each ei is at most |Ω|n.

The cost of the flow f is

cost(f) := max
ei

|Ω|nπ(X)π(Y )

c(ei)
,
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where X and Y are the endpoints of the paths that go through e, c(ei) is the edge

capacity:

c(ei) := π(Zi)P(Zi, Zi+1).

Since

π(X) = π(Y ) =
1

|Ω| , (2.18)

one gets the following bound on the cost:

cost(f) ≤ 2nñ = 2n2 log n. (2.19)

There is the following relation between the cost function and the mixing time (see [89],

Proposition 1 and Corollary 6’):

τmix(ε) ≤ 8cost2(lnπ(X)−1 + ln ε−1). (2.20)

Plugging (2.18) and (2.19) into (2.20), the following bound is obtained on the mixing

time of MCsquare:

τmix(ε) ≤ 32n4 log2 n(c2n log n+ ln ε−1). (2.21)

The same reasoning works for any (1, s)− square tiling – the vertical strip has to be

taken of length s. And τmix stays polynomial.

Remark 1. Theorem 2.23 works not only for rectangular regions but for any regions,

such that in any site the region can be divided in two parts via a strip of width const(s)

and height log n.

Remark 2. Simulations via coupling (see subsection 2.5.6 for the description of the

algorithm) suggest the O(n2) bound for the (1, 2) case, which shows that the bound

obtained in (2.21) is not optimal. Let us remind that the evident lower bound is of the

size of the diameter of the tiling graph which is simply the area of the region.

2.5.5 Weighted Glauber dynamics

It is not clear how to prove fast mixing in the general case, so in this part let us consider

a weighted version of the dynamics for the square tilings. It simply means that we

favorise some configurations more than the others. In the case of (1, s)−tilings it seems
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Figure 2.21: 8-regular graph on the square grid.

that the big squares significantly slow down the mixing time, so a way to go around is

to put less probability weight on the biq squares. A Markov chain associated with the

system that does local transformation, e.g. flips, (whose stationary distribution is the

desired distribution) is generally referred to as the Glauber dynamics. It is popular in

statistical physics and used to describe different behaviour of the system (Ising model,

Hardcore model, independent sets, perfect matchings, etc.). Weights λ assigned to the

particles usually correspond to the energy. Weights can help to detect presence of phase

transitions in these systems – there exists a critical point λc such that the dynamics is

fast mixing (in polynomial time over the size of the problem) below this critical point for

all λ < λc and is slow mixing (in exponential time) for all λ > λc. It is usually difficult

to understand what is happening in the critical point. Let us just point out that that for

a variety of studied models it has not been possible to analyze the behaviour of Markov

chains in critical points and sometimes in their neighbourhoods.

We consider the (1, s)−case and prove fast mixing for certain λ ≤ 1
(2s−1)2−2

. In the case

s = 2 the conditional bound on λ is better because of the relation to the independent

sets.

2.5.5.1 (1, 2)−square tilings with weights

Consider (1, 2)− square tilings as the King’s problem on a toroidal region. If a king

is placed in the site, none of 8 neighbouring sites can be occupied. Thus the King’s

problem can be seen as an independent set problem on the 8−adjacency graph on the

square grid graph G = (V,E) of degree 8 (see Figure 2.21).

Consider the Glauber dynamics of this system. Let I(G) be the set of all independent

sets of G. An independent set of G is a subset of vertices such that no two of them

are adjacent (for more information about independent sets see, e.g., [23, 25]). The
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Figure 2.22: A diagonal drag flip for (1, 2)− tiling. x marks a site that has to be
chosen to perform a flip (this site shows to where the big square is dragged).

probability of a configuration X is given by

π(X) :=
λ|X|

Z(λ)
,

where λ is a positive parameter called a weight of a configuration and Z(λ)− the

partition function of the system:

Z(λ) :=
∑

X∈I(G)

λ|X|.

Define the weighted version of MC(1,2)−square as follows. We add a diagonal dragging

flip which is shown in Figure 2.22.

MC(1,2)−square with λ

Start from X0. Let Xt be the configuration at time t. At time t:

• Choose a site of the region with probability 1
N ,

• If a central flip can be made, put four 1 × 1 squares with probability 1
λ+1 , put a

2×2 square with probability λ
λ+1 . Else if a horizontal/vertical/diagonal (dragging)

flip can be made, perform it with probability λ
4(λ+1) .

• Otherwise, do nothing and set Xt+1 = Xt.

This versionMC(1,2)−square corresponds exactly to the delete/insert/drag chainMCdrag

for the independent sets [25], which is a slightly different version of the Luby-Vigoda

chain [67].

MCdrag for independent sets

Start from X0. Let Xt be the configuration at time t. At time t:
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• Choose v from the set of vertices,

• If v ∈ Xt, then delete v : Xt+1 = Xt \ {v} with probability 1
λ+1 ,

• If v /∈ Xt, then add v : Xt+1 = Xt ∪ {v} with probability λ
λ+1 ,

• If v /∈ Xt and v has a unique neighbour u in Xt, then drag v : Xt+1 = (Xt∪{v})\
{u} with probability λ

4(λ+1) ,

• Otherwise, do nothing and set Xt+1 = Xt.

The two main tasks are to approximately evaluate the partition function Z(λ) and to

approximately sample from I(G) according to the stationary distribution. When ∆ ≥ 3,

approximate evaluation of Z(λ) and approximate sampling from I(G) can be done using

a rapidly mixing chain (see, for example, [46]). Using the path coupling argument ([10]

and Appendix A), Dyer and Greenhill proved fast mixing for MCdrag with sufficiently

small λ. Rapid mixing for MC(1,2)−square then follows directly when λ ≤ 1
3 .

Theorem 2.25 (Dyer-Greenhill [25]). Let G = (V,E) be a graph with maximal degree

∆ and |V | = n. MCdrag is rapidly mixing for λ ≤ 2/(∆− 2).

1. When λ < 2/(∆− 2),

τmixing(ε) ≤
2(1 + λ)

2− (∆− 2)λ
n log(nε−1).

2. When λ = 2/(∆− 2),

τmixing(ε) ≤ ⌈2n2(1 + λ)(log n+ 1)⌉⌈log ε−1⌉.

Using Dyer-Greenhill’s theorem, we get the following bound on the mixing time for

MC(1,2)−square:

Theorem 2.26. Consider (1, 2)−square tilings of an n×n toroidal region. MC(1,2)−square

is rapidly mixing for λ ≤ 1
3 . The following bounds stand for τmix(ε) and some positive

constant c1, c2.

1. When λ < 1/3,

τmixing(ε) ≤ c1n
2 log(nε−1).

2. When λ = 1/3,

τmix(ε) ≤ c2n
4⌈(log n+ 1) log ε−1⌉.
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2.5.5.2 (1, s)−square tilings with weights

Consider now the weighted dynamics for the (1, s) case. Weights are put on the squares

of size s (big squares). Consider the natural Markov chain with only central flips.

MC(1,s)−square with λ

Start from X0. Let Xt be the configuration at time t. At time t:

• Choose a site of the region with probability 1
N ,

• If a central flip can be made – put s2 1 × 1 squares with probability 1
λ+1 or an

s× s square with probability λ
λ+1 , thus defining Xt+1

• Otherwise do nothing and set Xt+1 = Xt.

For two tilings A and B of the region R by 1× 1 and s× s flips let ϕ(A,B) denote the

minimal number of flips one has to perform to get from A to B. It follows directly from

the definition of a flip that ϕ(A,B) = ϕ(B,A) for any A,B.

It turns out that with λ sufficiently small, the coupling time for MC(1,s)−square is be

polynomial. Namely, we get the following result.

Theorem 2.27. Consider (1, s)−square tilings of an n × n region. MC(1,s)−square is

rapidly mixing for λ ≤ 1
(2s−1)2−2

and there exists a positive constant c such that

τmix(ε) ≤ cn4 log(nε−1).

Proof. Consider a coupling (At, Bt)t and two configurations At and Bt at time t that

are different by one flip, thus ϕ(At, Bt) = 1. We want to apply the coupling theorem dy

Dyer and Greenhill and prove that E∆ϕ ≤ 0.

Consider s = 2. In the worst case scenario there are 8 bad sites that increase the distance

between the two configurations and only one that decreases. A bad flip always implies

putting a big square in the configuration with small squares. It is done with probability
λ

N(λ+1) , where N = n2 is the area of the region. The one good site decreases the distance

for both direction of a flip: this is done with probability λ
N(λ+1) +

1
N(λ+1) . So

E(∆ϕ) ≤ − 1

N
+

8λ

N(λ+ 1)
(2.22)
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This means that when the right part of (2.22) is not greater than 0, the chain is rapidly

mixing. By solving the inequality one gets the condition on λ: λ ≤ 1
7 .

In the general case the number of bad sites does not exceed (2(s− 1) + 1)2 − 1, so

E(∆ϕ) ≤ − 1

N
+

((2s− 1)2)− 1)λ

N(λ+ 1)
. (2.23)

E(∆ϕ) ≤ 0 whenever ((2s−1)2−1)λ
(λ+1) ≤ 1. This is true when

λ ≤ 1

(2s− 1)2)− 2
.

In order to apply the coupling theorem, we also need there to exist an α > 0 such that

P(ϕ(At+1, Bt+1) 6= ϕ(At, Bt)) ≥ α. The inequality holds for α = 1
N .

Now we can freely apply the theorem and get the following bound on the mixing time

of an n× n region:

τmix ≤ cD2n2,

where c is some positive constant, D is the diameter of the tiling graph. Since it is

O(n2), one gets the desired bound on τmix.

Remark. Simulations with weight parameter λ from Theorem 2.27 suggest coupling in

O(n2) steps.

2.5.6 Simulations

Let us describe the algorithm used for simulations. We use cython to run the simulations

and sage.graphics for the pictures

The algorithm 1 describes a basic coupling approach for getting a sample of a (m, s)−square
tiling of a given regions. The main problem though is which configurations choose as

initial configurations of the coupling. In the sense of the height functions, there is a

maximal and minimal tiling and the distance between them equals the diameter of the

tiling graph, so one can use them as the two starting points. The number of steps after

which they meet gives an estimate on the coupling time and an idea on the general look

of the tiling. Table 2.8 shows estimates on the average coupling time over 100 trials for
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Figure 2.23: (4, 7) and (3, 10)−square tilings of a 60× 60 square via coupling.

(1, s)−tilings of a n× n region for s = 2, . . . , 10 and n = 10, . . . , 30. See Figure 2.23 for

examples of (4, 7) and (3, 10)−tilings obtained by coupling.

Algorithm 1 Coupling for (m, s)−square tilings of an n× n square

INPUT: n−area of the square, m and s− sizes of squares
A← Max tiling
B ← Min tiling
time t← 0
while A 6= B do

direction← random choice (0, 1)
position← random choice of vertex
A← flip(A, direction, position)
B ← flip(B, direction, position)
t← t+ 1

end while

Conjecture. Let R be an n× n square region of area n, tiled by squares of size m and

s, m < s. Then MC(1,2)−square is rapidly mixing and

τ
(1,2)
mix = O(n3.5)

Moreover, for s > 2 MC(m,s)−square is not rapidly mixing its mixing time τ
(m,s)
mix is

sub-exponential and has the following bound:

τ
(m,s)
mix = O(exp([n/s] + 1)).
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n \ s 2 3 4 5 6 7 8 9 10

10 1.2× 103 2.7× 103 1.01× 103 4× 102 2× 102 1.6× 102 3× 101 1× 101 1
11 2.9× 113 5.02× 113 2.× 113 1.01× 113 1.3× 113 1.3× 112 2× 102 1.3× 101.5 0.8× 101

12 2.2× 123.5 0.8× 124 3.1× 123 2.1× 123 1.3× 123 0.9× 123 3× 102 2.5× 102 2.1× 101.5

13 2.3× 133.5 1.1× 134 2.6× 133.5 3.1× 133 1.1× 133 1.24× 133 1.169× 132.5 1.7× 132.5 1.01× 132

14 1.5× 143.5 1.2× 144 0.9× 144 5.1× 143 2.3× 143 1.01× 142 0.9× 143 0.83× 143 1.73× 142

15 1.1× 153.5 1.9× 154 1.2× 154 8.2× 153 4.1× 153 1.1× 153 1.7× 153 1.3× 153 1.9× 152.5

16 1.1× 163.5 2.5× 164 1.9× 164 0.9× 164 1.01× 163.5 0.8× 163 1.95× 163 2.2× 163 3.9× 162.5

17 2.5× 173.5 3.01× 174 2.9× 174 0.9× 174 2.5× 173.5 3.1× 173 2.6× 173 2.82× 173 0.95× 173

18 2.4× 183.5 4.9× 184 1.01× 184.5 1.3× 184 0.8× 184 1.9× 183 3.5× 183 3.3× 183 1.7× 183

19 2.9× 193.5 5.1× 194 1.4× 194.5 2.01× 194 0.85× 194 2.5× 193 1.1× 193.5 0.89× 193.5 2.2× 193

20 2.9× 203.5 1.01× 204 2.9× 204.5 3.7× 204 1.1× 204 1.2× 203 1.18× 203.5 1.32× 203.5 2.5× 203

21 2.9× 213.5 1.4× 214 1.8× 214.5 2.6× 214.5 1.6× 214 1.01× 213.5 1.8× 213.5 1.7× 213.5 0.7× 213.5

22 2.3× 223.5 1.8× 224 1.2× 224.5 2.2× 224.5 3.01× 224 3.2× 224 3.2× 223.5 2.1× 223.5 0.8× 223.5

23 2.9× 233.5 1.2× 235 0.7× 235 0.8× 235 1.01× 234.5 1.02× 233 1.23× 234 2.9× 233.5 1.7× 233.5

24 2.2× 243.5 0.7× 245 1.8× 244.5 0.6× 245 0.7× 245 1.7× 243.5 1.4× 244 1.05× 244 2.2× 243.5

25 2.9× 253.5 1.4× 254 2.5× 254.5 0.7× 255 1.01× 255 2.5× 254 1.8× 254 1.79× 254 0.77× 254

26 2.3× 263.5 2.7× 265 1.1× 265 0.7× 265 1.1× 265 1.8× 264 2.6× 264 3.2× 264 1.28× 264

27 2.9× 273.5 2.5× 275 1.5× 275 3.1× 275 1.2× 274.5 1.5× 274.5 1.02× 274.5 2.8× 274 1.2× 274

28 2.9× 283.5 3.1× 285 2.7× 285 2.3× 285 0.7× 285 1.8× 284.5 1.3× 284.5 1.2× 284.5 1.7× 284

Table 2.8: Average coupling time for (1, s) tilings of n × n squares over 10 to 100
trials.

2.5.7 Limit shape

Let us consider a region such that the height function is not a constant on its boundary

but rather grows linearly. One can think of an ”Aztec diamond-type” region. It seems

that in this case, tiling by squares of sizesm and s, if bothm, s > 1 have a typical limiting

look, similar to the Arctic circle for dimer tilings. An example is shown in Figure 2.24.

We consider an hexagonal region with with a staircase border in the bottom and top

part and flat in the middle. Each stair is of horizontal size s and vertical m, such that

the height function becomes linear over the length of the side.

Whenm = 1, s > 1 there is no long-range property, since 1×1 squares can fit everywhere,

so the shape of the region does not force any specific placement of tiles, see Figure 2.25.
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Figure 2.24: (2, 3)−tiling of the 50-diamond after 10 million flips (left) and 50 million
flips (right).

Figure 2.25: (1, 2)−tiling of a diamond-shaped region.



Chapter 3

Kagome tilings

3.1 Introduction

In this chapter we consider tilings on the Kagome lattice (also known as the Butter-

fly/tri-hexagonal lattice) which is a partition of the plane into hexagons and triangles

of the same side length such that each edge is shared by one triangle and one hexagon

(see Figure 3.1). The dimer model on the tri-hexagonal lattice was studied along with

other dimer models on regular lattices [98].

A prototile on the Kagome lattice is an hexagon with two adjacent triangles. there are

three type of prototiles that we call trapeze, fish and lozenge (Figure 3.4). A closed

region R of the Kagome lattice is tileable if there is at least one partition of the cells of

this region into prototiles. An example of a Kagome tiling is shown in Figure 3.2.

Figure 3.1: Kagome lattice

67
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Figure 3.2: General Kagome tiling

We follow almost the same logic in this chapter as in Chapters 1 and 2 and try to

answer questions related to counting and sampling. In section 3.2 we show a relation

between Kagome tilings on a toroidal region and perfect matchings of a 6-regular bi-

partite graph, which allows to do approximate counting as soon as the graph satisfies

a certain condition. In section 3.3 we focus on random generation, we introduce the

height function as it was done in [6]; the connectivity of the configurational space under

flips (that was proven in [6] as well) allows us to introduce a Markov chain and analyze

its convergence time to stationarity. Even though simulations using Coupling from the

Past (see Appendix B) suggest mixing time to be O(N2.5), where N is the number of

tiles, a rigorous proof seems to be rather challenging. In subsection 3.3.4 we explain

why it is so. In subsection 3.3.5 we introduce a weighted version of the chain, as we

did in Chapter 2 for square tilings. This allows to bound mixing time of the chain for

a specific condition on weights λ (Theorem 3.4). In subsection 3.3.6 we also consider

restrained Kagome tilings with only two prototiles (lozenge and trapeze). It turns out

that for a lozenge-shaped region the restrained set of flips give the connectivity of the

configurational space. We prove that the Markov chain on the restrained Kagome tilings

is fast mixing for lozenge-shaped regions (Theorem 3.7)

3.2 Approximate counting

3.2.1 Kagome tilings as perfect matching

Consider a region R of the Kagome lattice with free boundary conditions. Let us asso-

ciate a graph GR to it in the following way. Put a node in the center of each triangle,



Kagome tilings 69

two nodes in the center of each hexagon. Connect each node of a triangle adjacent to an

hexagon to two nodes of the hexagon as shown in Figure 3.3. GR is a 6−regular graph.

There are exactly two matchings associated with each tile as shown on Figure 3.4. Each

tiling with m tiles corresponds to 2m possible perfect matchings, since for every tile

there are two possible matchings and the choice of the matching is independent for each

tile. Let ΩR be the set of Kagome tilings of R, MGR
be the set of perfect matchings of

GR. Then

|ΩR| = 2m|MGR
|.

Figure 3.3: Bipartite graph associated to the Kagome lattice drawn on it.

Figure 3.4: Two possible matchings for Kagome tiles (from top to bottom: trapeze,
lozenge, fish).
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Figure 3.5: A tiling and one of possible perfect matchings associated with it.

One can approximately count |ΩR| by approximately counting the number of perfect

matchings |MGR
|. We give a brief overview on approximate counting of perfect match-

ings in bipartite graphs in the following subsection.

3.2.2 Perfect matchings in bipartite graphs

The general question of counting (perfect) matchings belongs to the class of the

#P−complete problems [97]. Technically, in [97] Valiant proved the #P−completeness

for the computation of the permanent of a matrix with non-negative entries. When A

has only entries 0 and 1, it can be seen as the adjacency matrix of a bipartite graph

GA, so its permanent then equals the number of perfect matchings in GA. We have

already seen that for planar graphs exact counting of perfect matchings can be done

efficiently [52]. Note that exact counting of all matchings in planar graphs is however

#P−complete [43].

Consider a graph G = (V,E) with |V | = 2m. Let MG be the set of perfect matchings,

NG be the set of near-perfect matchings – matchings with exactly m− 1 edges. Let

α(G) := NG

MG
be the ratio of near-perfect matchings to perfect matchings. Note that

α(G) ≥ m, since erasing one of m edges in each perfect matching gives a near-perfect

matching.

Jerrum and Sinclair [45] proved that there exists an fpras (fully polynomial random

approximation scheme, see Appendix B) for the number of perfect matchings in any

2m−vertex graph G that satisfies α(G) ≤ q(m) for a fixed polynomial q. The running

time of fpras depends a lot on α(G), so for it to run fast, one would want α(G) to be

not much bigger than m. In general, for bipartite graphs, the computation of α(G) is

#P−complete as proved in [5]. Kenyon, Randall and Sinclair proved in [59] that α(G) is

essentially small for families of graphs with sufficiently strong symmetry properties More

precisely, they proved that for any bipartite vertex-transitive graph G with 2m vertices

α(G) ≤ m2. This gives an efficient way to approximately count perfect matchings.
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Jerrum, Sinclair and Vigoda later [47] showed how to approximately count perfect match-

ings in any bipartite graph using a Markov chain (that they refer to as the switch chain)

with weights on the set near-perfect and perfect matchings in O(m10(logm3)) steps.

The counting problem of matchings is extensively discussed in [70].

3.2.3 Back to Kagome

Let R be a tileable region of the Kagome lattice with periodic boundaries by n tiles,

GR be the 6−regular bipartite graph associated with it with 2m vertices, set m := 2n.

Then the following statement holds for GR. Let M be the set of perfect matchings, for

vertices u, v ∈ N let N(u, v) the set of near-perfect matchings with holes in u and v.

Finally, let N be the union of N(u, v) over all pairs of u, v: N = ∪N(u, v).

Proposition 3.1.

α(GR) ≤ m2.

Proof. Let us prove that |M | ≥ |N(u, v)| for any u, v ∈ V . If it is true, then

|M |m2 ≥ |Nu,v|m2 ≥ |N |

The proof basically repeats the proof of Theorem 2, [59]. Let v′ be a neighbour of v,

such that the graph distance d(u, v′) > d(u, v), let u′ be a neighbour of u. N(u, v) is the

set of near-perfect matching with holes in u and v, N(u′, v′) – in u′ and v′ respectively.

Let eu = (u, u′) and ev = (v, v′). Colour edges of each matching in N(u, v) in black,

edges of N(u′, v′) and eu, ev in white. Consider C = N(u, v) ∪ N(u′, v′) ∪ {ev, eu }.
Each N ∈ C has a full cycle (u, v, u′, v′) of edges coloured in white and black such that

each vertex belongs to one white and one black edge, except for u′, v′ that belong to two

white edges.

Let us prove that |N(u, v)||N(u′, v′)| ≤ |M |2 by constructing an injective map ψ :

N(u, v) × N(u′, v′) −→ M ×M . The map works as follows: take (N1 ∈ N(u, v), N2 ∈
(N(u′, v′)) such that their overlapping cover all edges in the cycle u, v, v′, u′ except for

the edges ev and eu. Together with eu, ev they cover the cycle completely. Start from u′

towards v′, color the first edge in white, then black, etc, the edge ev will be then coloured

in black since the path from u′ to v′ has an odd length. Continuing like this from v to

u, one gets eu covered in black as well. This gives two different perfect matchings of the

cycle. This defines the map ψ. ψ is injective simply because if one considers two perfect

matchings from the image and does all the operations backwards, one gets two unique

near-perfect matchings N1 ∈ N(u, v) and N2 ∈ N(u′, v′).
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3.3 Random generation

Once again, after dimers and square tilings, we are interested in questions related to

random generation. First we define a height function for the Kagome tilings and local

transformations as it was done in [6, 94] see subsection 3.3.1. We introduce a Markov

chain and study its properties in subsection 3.3.3. We are as always interested in finding

bounds on the mixing time. Note that good bounds on the mixing time would allow

not only to sample from the stationary distribution but also to do approximate counting

which was discussed in section 3.2. For the Kagome tilings simulations show fast mixing,

namely in O(n5) for a tileable region of size 2n (n2 tiles)(see Table 3.1). It proves to be

challenging to analyze the initial chain and we shortly explain why it is so in subsection

3.3.4. As we did for square tilings in the previous chapter, we consider a weighted version

of the chain in subsection 3.3.5 and are able to draw polynomial bounds with a condition

on λ. In subsection 3.3.6 we consider tilings by only two specific types of tiles instead

of three and consider a version of the initial chain. Fast mixing then can be proved

when the state space (the set of all possible configuration) is connected. We show that

in case of lozenge-type regions, the state space is connected and the chain is rapidly

mixing. In the end of the section (in subsection 3.3.7), we show some simulations done

for a lozenge-type region that suggest a specific limit shape similar to the Arctic circle

for dimer tilings.

3.3.1 Height function

Following Thurston [94], the orientation on the edges of the lattice is clockwise on

triangles and anti-clockwise on hexagons. We assign +1 to an edge if it belongs to a

tile and −2 otherwise (flow in [6]). If we follow the edges around a tile and sum the

flows – with + if we follow the orientation of arrows, with − if not, – then the flow

gives 0 around each tile. Let us now introduce the notion of height. We denote the

set of lattice vertices in R by VR and N := |VR|. Fix a vertex v ∈ VR and let its height

h(v) := 0. For any w ∈ VR its height h(w) is defined by the flow from v to w. See Figure

3.6. A vertex v ∈ VR is called a local minimum (maximum) if h(v) is less(greater)

than h(w) for all w that share an edge of the lattice with v. For a tiling TR (or simply

T ) let its height be

h(T ) :=
∑

v∈VR

h(v).
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n t

10 2.91× 55

12 2.53× 65

14 1.92× 75

16 1.91× 85

18 1.76× 95

20 1.43× 105

22 1.44× 115

24 1.35× 125

26 1.31× 135

28 1.15× 145

30 1.07× 155

32 1.13× 165

34 1.05× 175

36 1.05× 185

38 1.04× 195

40 1.02× 205

Table 3.1: Coupling time for the Kagome tilings of a square region of size 2n, n =
5, . . . 20.
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Figure 3.6: Flow, orientation and heights of a Kagome tiling.

3.3.2 Flips

Let us have two tiles a and b. Let a consist of an hexagon ha and two triangles ta

and t1, b of hb, tb and t2, where ta is adjacent to hb, tb is adjacent to ha. Then the

transformation of a and b into a′, b′ such that ta ∈ b′, tb ∈ a′ is called a (simple) flip

(as defined in [6]). Flips can be performed only around local minima and maxima. A

flip turns a local minimum into a local maximum and the other way around. We say

that it has two directions: minimal if it decreases the height in the vertex and and

maximal if it increases. All possible flips (up to rotations) are shown in Figure 3.7. An

example of flips is shown in Figure 3.8.
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Figure 3.7: All possible flips for the general Kagome tiling.
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Figure 3.8: Example of flips performed in a Kagome tiling.

Proposition 3.2. Let nh(v) be the number of different heights h in a vertex v ∈ VR.

Then for all v ∈ VR
nh(v) ≤

√
N.

Proof. In order to prove this, let us introduce the following subsets of vertices of our

system: we denote V∂R by V0 which contains all vertices that belong to the border ∂R.

We consider that R has perimeter
√
N . The border does not change, so nh(v) = 1 for

v ∈ V0. Now take vertices in V \ V0 that have vertices from V0 as their neighbours, and

denote this subset by V1. Now nh(v) ≤ 2 for v ∈ V1. Take the subset of vertices from

V \ (V0 ∪ V1) that have neighbouring vertices from V1 and denote it by V2, etc. R has a

finite number of vertices, so in the end we will obtain the subset Vl. Since R has area

N , l ≤
√
N . For all (v, w) ∈ (Vi, Vi+1), i = 0, ..., l − 1 : |nh(v) − nh(w)| ≤ 1, then

nh(v) ≤
√
N.

⊓⊔

Let GR be the graph in which each vertex corresponds to a tiling of R, and two vertices

are connected by an edge i.f.f. the corresponding tilings differ by one flip. If the graph

has one connected component, there is a unique minimal tiling Tmin (having the minimal

height) and a unique maximal tiling Tmax (having the maximal height) [6]. It follows

from Proposition 3.2 that the diameter of the tiling graph is D ≤ N
3

2 , where N = |VR|.
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3.3.3 Markov chain

Let us define a Markov chain MCkagome on a set of Kagome tilings of the region R with

N inner vertices.

MCkagome:

Let T0 be an initial configuration. At each time t:

• choose an inner vertex of R with probability 1
N ,

• choose a direction of a flip with probability 1
2 ,

• perform a flip in the chosen direction in the tiling Tt if possible thus defining the

tiling Tt+1, otherwise stay still.

Lemma 3.3. MCkagome has uniform stationary distribution.

Proof. MCkagome is irreducible since any tiling from Ω can be obtained from any other

tiling via a finite number of consecutive flips, it is aperiodic since the self-loop probability

is greater than zero. Therefore, the chain is ergodic and it converges to its unique

stationary distribution. Moreover, the transition probabilities are symmetric, so the

stationary distribution is uniform.

3.3.4 Coupling of general Markov chain

We construct a coupling for MCkagome. Let A0 and B0 be two starting configurations.

At time t we pick a vertex from V and a direction (same for both tilings). We make

a flip in At and Bt if possible; this defines At+1 and Bt+1. This randomizing process

respects the order: that is if h(Bt) < h(At), then h(Bt+1) ≤ h(At+1). Simulations using

Coupling from the Past method (see Appendix B) for the MCkagome suggest that its

mixing time τmix = O(N2).

We wish to apply the path coupling method (see Appendix A) to bound τmix. For tilings

A,B ∈ Ω define the distance function ϕ on Ω× Ω→ Z as

ϕ∗(A,B) := h(A)− h(B), ϕ :=
ϕ∗

3
.

Let U be a subset of Ω×Ω that consists of pairs of configurations that differ by one flip.

We wish to prove that for all At, Bt ∈ U

E[∆ϕ(At, Bt)] ≤ 0,
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Figure 3.9: Bad configuration for path coupling.

where ∆ϕ(At, Bt) = ϕ(At+1, Bt+1)− ϕ(At, Bt).

Unfortunately, with such definition of the distance, the inequality does not stand. The

following example illustrates that. Consider two tilings A and B that differ by one flip

around the vertice 1 (see Figure 3.9).

E[∆ϕ] = − 1

N
+

1

2N
+

1

2N
+

1

2N
+

1

2N
> 0. (3.1)

This means that either a better metric should be found (for example, what Wilson did

with the lozenge tilings [99]) or the Markov chain should be modified in such a way that

would make it possible to analyse it (one can think of the tower of flips for domino and

lozenge tilings by Luby, Randall, Sinclair [66]). In the next two subsections we consider

a weighted version of the Markov chain such that the coupling method works, and we

consider as well restrained Kagome tilings and prove that the corresponding Markov

chain is fast mixing for specific regions.

3.3.5 Weighted Glauber dynamics

We have already seen in Section 3 how putting weights on certain configurations can

make the analysis of Markov chains significantly easier. Let us do use the same approach

for the Kagome tilings. We change the probabilities of flips in the following way. Con-

sider Figure 3.7. Notice that there are 3 flips that make the fish tile appear/disappear,

call them the fish changer flips, call others fish free flips. Modify the general MC in

the following way by putting weights on the fish changer flips.
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MCkagome with weight λ:

Let T0 be an initial configuration. At each time t:

• choose an inner vertex of R with probability 1
N ,

• 1. If a fish changer flip can be made in the tiling Tt, make it with probability 1
1+λ

if it makes a fish tile disappear and with probability λ
1+λ if it makes a fish tile

appear. This defines the tiling Tt+1;

2. If a normal flip can be made in Tt, perform it in either direction with probability
1
2 , thus defining Tt+1;

3. Otherwise stay still.

Remark. If λ = 1, one gets the initial MCkagome.
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Figure 3.10: All possible cases for a pair of configurations at distance 1 are shown
schematically.

Theorem 3.4. Consider Kagome tilings of a region R of area N . MCkagome with weight

λ is rapidly mixing for λ ≤ 1
3 . The following bounds stand for τmix and some positive

constant c:

τmix ≤ cN4 (3.2)
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Proof. Consider a pair of tilings (A,B) different by one flip. One can think of Figure 3.9

from the previous subsection. All possible configurations are shown in Figure 3.10. One

observation is that if the vertex 1 is chosen, flips around it will decrease the distance by

1 in any of the case: in terms of expectation one will have either −1
2 − 1

2 if a fish free

flip is made or − 1
λ+1 − λ

λ+1 if a fish changer flip is made.

Another observation is that there are at most 4 bad vertices – vertices that increase

the distance between A and B. The only layout possible to have 2 bad vertices on each

side (vertices 2,3 and 4,5) is to have a trapeze tile sharing its longest side with the two

tiles in question as is shown in Figure 3.9. In this case a flip around any of the vertices

2,3,4 and 5 that can increase the distance is the fish changer flip that makes a fish tile

appear. So it is performed with probability λ
λ+1 . The equation (3.1) that failed mixing

now turns into:

E[∆ϕ] = − 1

N
+

1

N

λ

λ+ 1
+

1

N

λ

λ+ 1
+

1

N

λ

λ+ 1
+

1

N

λ

λ+ 1
. (3.3)

We want (3.3) to be ≤ 0, so one gets :

4λ

λ+ 1
≤ 1,

which yeilds the bound on λ

λ ≤ 1

3
.

We are pretty much done with the proof, since the case with one bad vertex on each side

gives, in terms of expectation, at most: − 1
N + 1

2N + 1
2N = 0. And the mixed situation

with one bad vertex on one side and two bad vertices on the other side gives, in terms

of expectation, at most: − 1
N + 1

2N + 1
N

λ
λ+1 + 1

N
λ

λ+1 . This is surely less than 0 when

λ ≤ 1/3.

Since P(ϕ(At+1, Bt+1) 6= ϕ(At, Bt)|At, Bt) ≥ 1
N , the coupling theorem gives

τmix ≤ c
D2

1/N
,

where D is the diameter of the tiling graph. So one gets (3.2).

3.3.6 Restrained Kagome tilings

Consider Kagome tilings where the set of prototiles is restrained to a trapeze and a

lozenge and flips using them – Figure 3.11. Note that partial order is still respected: for
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a pair of tilings T1, T2 of the same region, if h(T1) ≥ h(T2), then after performing a flip

in vertex v in both tilings (if possible) h(T ′
1) ≥ h(T ′

2).

Figure 3.11: Possible flips for the restrained Kagome tiling.

Define a Markov chain MCR
kagome in the same way as MCkagome where a flip is performed

only if it is one of the two allowed flips shown in Figure 3.11.

Throughout this part we consider that the region R is a lozenge of size 2n. Denote the

set of all such possible restrained Kagome tilings of R by Ωloz. Now, consider a tiling

To ∈ Ωloz. Start performing flips that decrease the height of the chosen vertex. Note

that the order of flips does not matter since a flip in a vertex cannot block a flip in

the same direction in neighbouring vertices (vertices that belong to the same triangle as

the chosen vertex). Perform only decreasing flips while it is possible. In the tiling Tmin

obtained in the end all vertices are local minima apart from some that are local maxima

(but not global) in which a restrained flip cannot be performed. This implies that

hTmin
(v) ≤ hTo

(v) and hTmin
(v) ≤ hTo

(v) for all v ∈ R where To ∈ {Tilings achievable

from To by flips }. Call such a tiling Tmin minimal. Let Ωmin be the set of all minimal

tilings for R, Ωmin ⊂ Ωloz. Note that for each tiling To there exists a unique tiling

Tmin ∈ Ωmin obtained by the sequence of height decreasing flips as described above.

Let us prove that |Ωmin| = 1, so that there is exactly one minimal tiling Tmin which

depends only on the height of the boundary of R. Below is the algorithm that constructs

a unique minimal tiling using only the height of the boundary. The construction produces

a unique minimal tiling, so that for any T ∈ Ωloz : hTmin
(v) ≤ hT (v) for all v ∈ R.

Algorithm for constructing the minimal tiling

Fix a lozenge region R with the height function h defined on ∂R.

1. Choose a starting vertex on the boundary. Start following the boundary anti-

clockwise. Let v1 be the first global maximum of the boundary (In the lozenge

they are all on the horizontal sides). Place the tile that includes the hexagon on
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Figure 3.12: First step of constructing a minimal tiling starting from v1 on the
boundary.

the left from v1 (See Figure 3.12) such that the global maximum is still achieved

only on the boundary, if possible. If not, break.

2. Delete the tile and adjust the heights;

3. Go to the first step if the region is not empty after step 3. Otherwise, quit.

Remark 1. At step 1 there is at most one way of putting a tile because of the geometric

properties of the tiles and the way in which the heights are defined for the points of the

lattice. The placed tile that has the minimal height among all other possible tiles that

include the hexagon on the left from it.

Remark 2. The algorithm will either break because a tile cannot be put, or will end

when all the region is tiled and the tiling it produces is the minimal tiling (e.g., see

Figures 3.13 and 3.14).

Remark 3. The way global maxima are chosen at step 1 can be changed in any other

way. The tiling one obtains in the end does not depend on the order in which global

maxima are chosen at each step due to the geometric properties of the tiles and the

region. Moreover, it has the following properties: its global maxima occur only on the

boundary of R, it does not have any flippable local maxima and its height is minimal

among all possible tilings of R.
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Figure 3.13: Minimal restrained Kagome tiling.

Figure 3.14: Minimal restrained Kagome tiling of a lozenge of size 24.

Proposition 3.5. Let R be a tileable lozenge region and Ωloz be the set of all possible

Kagome tilings of R. Then Ωloz is connected.

Proof. We are going to prove that any two T1, T2 ∈ Ωloz are connected by a sequence of

flips. Let us put together a couple of facts that we have observed:

1. For each T ∈ Ωloz, due to the definition of the height function, the height h on ∂R

depends only on R and not on the tiling.

2. For each T ∈ Ωloz there exists a unique tiling Tmin ∈ Ωmin achievable from T by

height-decreasing flips.
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3. h on ∂R defines a minimal tiling in a unique way.

It follows from 1 − 3 that for any pair of T1, T2 ∈ Ωloz, both of T1, T2 are connected to

the same minimal tiling Tmin, and so they are flip-connected.

Remark. The choice of a lozenge region is due to the fact that there are simply

connected regions for which Ωloz is not connected. An example is shown in Figure...

Lemma 3.6. MCR
kagome has uniform stationary distribution.

Proof. MCR
kagome is irreducible since any tiling from Ω can be obtained from any other

tiling via a finite number of consecutive flips, it is aperiodic since the self-loop probability

is greater than zero. Therefore, the chain is ergodic and it converges to its unique

stationary distribution. Moreover, the transition probabilities are symmetric, so the

stationary distribution is uniform.

Theorem 3.7. Let R be a tileable region by the restrained family of Kagome prototiles

of area N . Then MCR
kagome is rapidly mixing. More precisely, there exists c > 0 such

that the mixing time τRmix of MCR
kagome satisfies

τRmix(ε) ≤ cN4⌈ln ε−1⌉.

Proof. Consider restrained Kagome tilings and MCR
kagome. We prove that MCR

kagome is

rapidly mixing by the use of the path coupling theorem that did not seem to work for

the general case (see subsection 3.3.4).

Remember that the reason why it did not work for the general case, was that there were

4 vertices that increased ∆ϕ as show (3.1) and Figure 3.9). Now in this case of Figure

3.9, for a pair of tilings A and B that differ by one flip around the vertice 1, no flips can

be made around vertices 2, 3, 4, 5 which gives

E[∆ϕ] = − 1

N
. (3.4)

The other cases give at most one bad vertex on each side as shown in Figure 3.15. This

gives + 1
2N in vertices 2 and 4, thus in total

E[∆ϕ] ≤ − 1

N
+

1

2N
+

1

2N
= 0. (3.5)
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Figure 3.15: The worst case for the path coupling for MCR
kagome.

If At 6= Bt for all t, then

P[ϕ(At+1, Bt+1) 6= ϕ(At, Bt)|At, Bt] ≥
1

N
,

because in any case choosing the vertex 1 will decrease the distance. The coupling lemma

gives the following bound:

τRmix(ε) ≤
D2

1
N

⌈ln ε−1⌉. (3.6)

Since for the restrained tilings, the diameter D is also O(N
3

2 ) (in the same way as for

the general Kagome tiling using Proposition 3.2 ) and plugging it in (3.6) yields the

desired bound:

τRmix(ε) ≤ cN4⌈ln ε−1⌉,

where c is a positive constant.

3.3.7 Limit shape

Consider a lozenge region with a non flat boundary in such a way that the height

function of the boundary is Ω(n), where n is the size of the region (See Figure 3.16).

Then there appears to be a phenomenon similar to the Arctic circle in case of dominoes

and lozenges that was discussed in Chapter 1. Figures 3.17, 3.18 1 show simulations

done using Coupling from the Past algorithm. It would be interesting to characterize

the limiting shape rigorously.

1Figures 3.17, 3.18: courtesy of Th. Fernique



Kagome tilings Chapter 3 Kagome tilings

Figure 3.16: Kagome lozenge-shaped region with a non flat boundary.

Figure 3.17: Kagome tiling of a lozenge of size 50.
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Figure 3.18: Kagome tiling of a lozenge of size 100 with a hand-drawn frozen bound-
ary.





Conclusion

We have considered several mixing problems for tilings by a pair squares and the Kagome

tilings. In restrained cases we get polynomial bounds on the mixing time of the consid-

ered Markov chains. We also provide simulations that suggest the Artic circle kind of

behaviour on regions with non-flat boundaries. Simulations that were done by M. Tassy

suggest such behaviour for tilings by bars as well as for the ribbon tilings of diamond-

type regions (see Figure 3.19 2). We are hoping that this will arise more interest for

studying dynamics on tiling systems. To begin with, ribbon tilings and T-tetraminos

come to mind. They were studied from the structural and combinatorial point of view

in [60, 87]. There is also a height function and flip-connectivity of the configurational

space. This lays out a great foundation for studying Glauber dynamics on the set of

tilings. The analysis seems to be challenging as well, but one could hope to get some

restrained results as the ones presented above. That would be the first step to having

some formal explanations about the dynamics of different tiling systems.

2Courtesy of M. Tassy.
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Figure 3.19: A tiling by 3× 1 bars of a diamond-shaped region.
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Appendix A

Markov chains and mixing time

The following sections recalls classic definitions and theorems about Markov chains (see

[1, 2, 37, 53, 63, 74]).

A.1 Markov chain

We will be dealing a lot with discrete random stochastic processes (Xn)n∈N on a finite

state space Ω that have the memoryless or Markov property which implies that the

conditional distribution of Xn given (Xn−1, . . . , X0) only depends on Xn−1. Normally

we will be considering that the process is homogeneous in time: this means that the

conditional distribution of Xn given that Xn−1 equals some x ∈ Ω, stays the same for

all n. More formally, the definition is the following:

Definition A.1. A stochastic process (Xn)n∈N on a finite state space Ω = {x1, . . . , xk}
is a homogeneous Markov chain if for all n ∈ N and

i, j, i0, . . . , in−2 ∈ {1, . . . , k} :

P(Xn = xj | Xn−1 = xi, . . . , X1 = xi1 , X0 = xi0) = P(Xn = xj | Xn−1 = xi). (A.1)

The k× k matrix P with elements Pi,j = P(Xn = xj | Xn−1 = xi), i, j ∈ {1, . . . , k} is its
transition matrix.

Each element Pi,j of the transition matrix P is the conditional probability to get from

the state xi to xj . We shall sometimes write P (xi, xj) for Pi,j . Every transition matrix

satisfies

Pi,j ≥ 0 ∀i, j ∈ {1, . . . , k} (A.2)
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and
k∑

j=1

Pi,j = 1 ∀i ∈ {1, . . . , k}. (A.3)

It is not the case for any transition matrix that Pi,j = Pj,i for any i, j ∈ {1, . . . , k}. When

it is the case, the Markov chain M with this transition matrix is called reversible. A

period p of a state x ∈ Ω is

p = gcdt > 0 : P t(x, x) > 0 (A.4)

If p = 1, the state x is called aperiodic. If every state x ∈ Ω is aperidoc (this means

that there is a positive probability to stay in each state), the chain is called aperiodic.

M is irreducible if P (xi, xj) > 0 for any two different states xi, xj ∈ Ω.

Definition A.2. A Markov chain is said to be ergodic if it is aperiodic and irreducible.

An initial distribution for the Markov chain (X0, X1, . . .) is the following row vector

µ(0)(k) of size length k:

µ(0)(k) = (µ
(0)
1 , . . . , µ

(0)
k ) = (P(X0 = x1),P(X0 = x2), . . . ,P(X0 = xk)). (A.5)

To get µ(1)(k) one has to multiply µ(0)(k) by the transition matrix P :

µ(1)(k) = µ(0)(k)P. (A.6)

µ(n)(k) can be obtained as follows:

µ(n)(k) = µ(0)(k)Pn. (A.7)

A distribution µ is called stationary for the Markov chain with transition matrix P if

µP = µ.

Definition A.3. For two probability distributions ν and µ on Ω = {x1, . . . , xk} the

total variation distance between them is

dTV (ν, µ) :=
1

2

k∑

i=1

|νi − µi|. (A.8)

If there is a sequence {µ(n)}n ∈ N of probability distributions on Ω, then it converges

to ν in total variation (TV) as n −→∞ if

lim
n→∞

dTV (ν
(n), ν) = 0. (A.9)
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The following theorems are essential in the theory of Markov chains.

Theorem A.4 (Convergence theorem). Let (X0, X1, . . .) be an ergodic Markov chain

on a finite state space Ω with transition matrix P and a random initial distribution µ(0).

Let µ be its stationary distribution. Then µ(n) converges to µ in TV.

Theorem A.5. Any ergodic Markov chain has a unique stationary distribution.

If a Markov chain is not only ergodic but also has a symmetric transition matrix, then

its stationary distribution is uniform.

It is rather standard to denote the stationary distribution for an ergodic Markov chain

by π (even though it might create confusion with the notation for the ratio of a circle’s

circumference to its diameter).

A.2 Mixing and Coupling times

We consider reversible ergodic Markov chains with a finite state space Ω. We denote its

stationary distribution by π, its probability law by P . For any initial state x ∈ Ω let

the total variation distance between P (x, )̇ and π is

dTV (P (x, ·), π) =
1

2

∑

y∈Ω
|P t(x, y)− π(y)|. (A.10)

Let us write it as dx(t). The mixing time of the MC is the time it takes the chain to

get close to its stationary distribution. Formally, it is defined as follows:

τmix(ε) = max
x∈Ω

min{t : dx(t′) ≤ ε ∀ t′ ≥ t}, (A.11)

τmix := τmix

(
1

4

)

. (A.12)

A classical way to bound the rate of convergence of a chain is to bound its mixing time.

There are lot of different ways of bounding the mixing time: via the second largest

eigenvalue (which can be analyzed using the corresponding tiling graph’s properties),

coupling methods (see, e.g., [9, 10, 22, 24, 25, 30, 51, 63, 71, 80, 89]).

Here we concentrate on the coupling method. A coupling for two probability distribu-

tions µ and ν is a pair of random variables (X,Y ) defined on the same probability space
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such that P(X = x) = µ(x) and P(Y = y) = ν(y). Here we will be using couplings for

Markov chains where constructing copies of the chain proves to be a useful tool to ana-

lyze the distance to stationarity. A coupling of a MC is a stochastic process (Xt, Yt)t

on Ω× Ω such that:

1. Xt and Yt are copies of the MC with initial states X0 = x and Y0 = y;

2. If Xt = Yt, then Xt+1 = Yt+1.

Let T x,y = min{t : Xt = Yt|X0 = x, Y0 = y}. Then define the coupling time of the

MC to be

τcp = max
x,y

ET x,y. (A.13)

The following result [1] relates the coupling and mixing times:

Theorem A.6 (Aldous).

τmix(ε) ≤ τcp⌈ln ε−1⌉. (A.14)

One of the most used methods to bound mixing time is the following path coupling

theorem [24]. The authors show that in order to bound the coupling time, one only has

to consider pairs of configurations of the coupled chain that are close to each other in the

defined metric. It is sufficient to prove that they [each pair of configurations] have more

tendency to remain close to each other under the evaluation of the chain. The mixing

time then is polynomial and depends on the diameter of the corresponding graph.

Theorem A.7 (Dyer-Greenhill). Let ϕ : Ω × Ω → {0, . . . , D} be an integer-valued

metric, U – a subset of Ω × Ω such that for all (Xt, Yt) ∈ Ω × Ω there exists a path

between them: Xt = Z0, Z1, . . . , Zn = Yt with (Zi, Zi+1) ∈ U for 0 ≤ i ≤ r − 1 and

r−1∑

i=0

ϕ(Zi, Zi+1) = ϕ(Xt, Yt).

Let MC be a Markov chain on Ω with transition matrix P . Consider a random function

f : Ω → Ω such that P(f(X) = Y ) = P (X,Y ) for all X,Y ∈ Ω, and let a coupling be

defined by (Xt, Yt)→ (Xt+1, Yt+1) = (f(Xt), f(Yt)).

1. If there exists β < 1 such that E[ϕ(Xt+1, Yt+1)] ≤ βϕ(Xt, Yt) for all (Xt, Yt) ∈ U ,

then the mixing time satisfies

τmix(ε) ≤
ln(Dε−1)

1− β .
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2. If β = 1, let α > 0 satisfy P(ϕ(Xt+1, Yt+1) 6= ϕ(Xt, Yt)) ≥ α for all t such that

Xt 6= Yt. Then the mixing time satisfies

τmix(ε) ≤
⌈
eD2

α

⌉

⌈ln ε−1⌉.
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Random generation

This section recalls algorithms for random generation using Markov chains (some refer-

ence are: [20, 41, 44, 79, 90]). Given a finite state space Ω, a uniform random sample

is a random selection from Ω, meaning that each element has the probability 1
|Ω| to

be selected. One can consider different systems, such as matchings, independent sets,

tilings, etc (see, e.g,[23, 48, 59, 67]) Having a sample from uniform distribution allows

to get an idea about the general look of the considered system, study its characteristics

via simulations and approximate the size of the state space.

There is a general way to sample using a Markov chain (X)t that has a uniform dis-

tribution on Ω. When t is sufficiently large, Xt is approximately uniformly distributed

(close enough with respect to some ε). The method of sampling from a given probability

distribution is known as Markov chain Monte Carlo. So the general question is to

estimate how large t must be so that Xt is sufficiently close from the desired distribution.

If one has polynomial bounds on the mixing time of the chain, one can run an fully

polynomial almost uniform sampler (fpaus), which generates solutions from some

distribution µ that is close to the uniform distribution π of our chain in total variance:

dTV (µ, π) ≤ δ (B.1)

in polynomial time of the input size and log δ−1 for some positive error δ.

B.1 Approximate counting

A general counting problem (e.g., counting the number of perfect matchings in a graph,

the number of tilings of a region or computing the permanent of a matrix) can be seen as
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computing a function f : A∗ −→ N, where A is a finite alphabet used to encode problem

instances (e.g., the input matrix whose we would like to compute the permanent, or

the number of tiles that are used for tiling the region). In general, counting problems

are hard (belong to the #P class 1). The goal becomes to get an approximation on

the output of the counting problem. The algorithm used for this task is called a fully

polynomial randomized approximation scheme (fpras). Given an input ax ∈ A∗,

parameter ε, δ > 0 it computes an output Y such that

P[(1− ε)f(x) ≤ Y ≤ (1 + ε)f(x)] ≥ 1− δ (B.2)

in time t = poly(|x|, ε−1, log(1/δ)). Usually δ is taken to be 1/4, so the algorithm outputs

a good approximation (within ε from f(x)) with probability at least 3/4.

If a problem is self-reducible, meaning that the solution set S can be expressed in

terms of a polynomially bounded number of solution sets Si such that Si belongs to a

smaller problem instance, the fpras is equivalent to fpaus [48]. This means that one has

to run the almost uniform sampler for each Si an enough number of times. And put it

all together to get the approximation for the total S. The problem is always that when

one wants to get a sample of Si, it usually means that one has to run the corresponding

Markov chain long enough for it to be close enough to its stationary distribution. It

means that one has to have a good polynomial upper bound on its relaxation time or

mixing time, otherwise sampling will be computationally untrackable. Generally that is

a challenging question (as we have seen throughout Chapter 1–3).

B.2 Grand coupling or sanwiching

Consider a grand coupling of a given MC, which constructs |Ω| marginal copies

(X1
t , . . . X

|Ω|
t )t of the initial chain (Xt)t and runs them simultaneously according to the

same rules at each step. Once the algorithm reaches the step te such that all Xi
te are

equal, they behave like a single chain (Xt)t. If the chain is monotone then for a coupling

(Xt, Yt)t on Ω × Ω and A,B ∈ Ω and some t > 0 if Xt = A ≤ϕ Yt = B according to

some metric ϕ defined on Ω, then Xt+1(A) ≤ϕ Yt+1(B). Let Amax, Amin ∈ Ω be the

maximal and minimal configurations according to ϕ (suppose they are unique, otherwise

there will just be a set of maximal and minimal tilings). Start the coupling (Xt, Yt)t at

X0 = Amax, Y0 = Amin. Monotonicity implies that once Xt and Yt meet, all states are

coupled. So there is no need of doing the grand coupling in all states simultaneously.

1 #P class contains the set of counting problems associated with decision problems that belong to
the class NP .
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B.3 Coupling from the Past

Standard methods of getting a sample allow to get a sample not from the stationary

distribution π, but from the distribution µ that is close π. It can be as close as we

want to, but the sample we get will still not be completely uniform. There is a coupling

technique called Coupling from the Past (see [36, 63, 79]), using which one can get

an exact sample from π. As the name suggests, the coupling is being done backwards,

by starting at some time −t, t > 0. If by the time 0 the chains (which are copies of the

initial chain (Xt)t) have not coalesced, go to the time −2t and proceed using the same

transformations on the stage from −t to 0. Let us denote the evolution of the chain

from time t1 to t2 as follows:

F t2
t1

= (ft2−1 ◦ ft2−2 ◦ . . . ◦ ft1)(x), (B.3)

where Xt+1 = f(Xt, Zt), f defines the coupling and Zt is drawn u.a.r from [0, 1] at each

time t.

An advantage if this algorithm is that it allows to sample from π by only going a finite

number of steps backwards (as opposed to coupling in the futur). Suppose we found T

s.t. F 0
−T (x) = F 0

−T (y) for all states x, y from the state space. Take t > T , then

F 0
−t(x) = F 0

−T ◦ f−T−1 ◦ . . . ◦ f−t(x) = F 0
−T (z) (B.4)

for some state z. But F 0
−T (z) just equals F 0

−T (x), so instead of going to −∞ to get a

sample from π it is sufficient to only go to −T .

If the chain is monotone, coupling from the past becomes very efficient to implement,

because one can consider a coupling that starts the minimal and maximal states instead

of the grand coupling.
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