
THÈSE DE DOCTORAT CONJOINT TELECOM SUDPARIS et DE
l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique et réseaux

Présentée par

Jaafar BENDRISS

Pour obtenir le grade de

DOCTEUR de TELECOM SUDPARIS

Sujet de la thèse :

Gestion Cognitive de SLA dans un contexte NFV

soutenue le 14 juin 2018

devant le jury composé de :

Prof. Djamal Zeghlache Directeur de thèse Telecom SudParis
Dr. Imen Grida Ben Yahia Encadrante de thèse Orange Labs
Prof. Panagiotis Demestichas Rapporteur University of Piraeus
Prof. Filip de Turck Rapporteur Ghent University
Prof. Marcelo Dias de Amorim Examinateur LIP6
Mdme Marie-Paul Odini Examinatrice HP

Thèse N : 2018TELE0003

2

CONTENTS

1 Introduction 1
I Introduction . 1
II Problem Statement . 3

A Research Questions 4
B Contributions . 5

III Thesis Structure . 6

2 Machine Learning : Basics, Challenges, and Network Applica-
tions 9
I Introduction to Machine Learning (ML) 10

A Definition . 10
B Machine Learning Types 13
C A Brief History of Machine Learning 14

II Supervised Machine Learning 16
A How machines learn. 24
B Evaluation . 33

III Unsupervised Machine Learning 41
A Clustering . 41
B Anomaly Detection 42
C Dimetionality Reduction 42

IV Deep Learning . 44
A How Deep Learning is different ? 45
B Exploding/Vanishing gradients problem 45
C Regularization . 47
D RNN . 47

V Machine Learning Latest Challenges 49
A Machine vs Human Learning 49
B Scalable Machine Learning 50

3

4 CONTENTS

VI Machine Learning for Network Management 53
A Machine Learning for Network Management a Brief

History . 55
B FCAPS Management 57
C Cognitive Network Management Initiatives 60

VII Conclusion . 66

3 SLA management 67
I Context : Software Networks 68

A Network Function Virtualization 68
B Software-Defined Networking 70

II Early SLA management . 73
III SLA in the Cloud . 74
IV SLA in Software Networks 77
V Literature Gaps and Future Research Directions 80

4 Proposal : Cognitive SLA Management Framework 83
I Introduction . 84
II Problem Statement . 87

A Service Level Agreement 89
B SLA and SDN/NFV 90
C Formal Description 92
D SLA Example . 93

III Cognitive SLA Architecture 95
A Cognet Smart Engine : 98
B Policy Engine . 101
C NFV Architectural Framework 102
D Proposed workflow 103
E Policy Engine . 107
F Cognet Sequence Diagram 108
G Operational Application & Use Cases 109

IV Data Analysis . 124
A Data Gathering . 124
B Data preparation 126
C Dimensionality reduction 129
D Visualization . 138
E SLA Assurance Services 141

V Conclusion . 143

5 Proposal : Cognitive Smart Engine 145
I Introduction . 146
II CSE Algorithms . 149

A Anticipation and forecasting 150
B Classification . 157

III Model selection . 171
A Problem Formulation and Choices 171
B Search Methods . 173
C The hyperparameter Search Space 177
D Research Methodology 182
E Data . 183
F Meta-Learning . 188
G feature relevance 193

IV Conclusion . 195

A Thesis Publications 197
I List of Contributions . 197

A Accepted papers . 197
B Public Cognet Deliverables 198
C Exhibition . 199

B Installation setup 201

6 CONTENTS

LIST OF FIGURES

1.1 The cost of hardware and software and their management
[1]. 4

1.2 Research question mindmap. 6
1.3 Thesis structure . 8

2.1 Machine Learning approach 11
2.2 Machine Learning vs programming 12
2.3 Machine Learning can provide deeper understanding of

old problems . 12
2.4 Machine Learning types and different tasks type 13
2.5 Randomy generated data. the x-axis represent the input

and y-axis represents the target values. 18
2.6 Machine Learning types and different tasks type 18
2.7 a Biological neuron [2] . 19
2.8 Artificial perceptron and its decision boundary 19
2.9 Non-linear decision boundary XOR 21
2.10 MLP solving XOR problem 21
2.11 MLP solving XOR problem 21
2.12 simple MLP example . 22
2.13 Gradient Descent . 25
2.14 Gradient Descent with a learning rate too small and too

large . 27
2.15 Optimizer comparison . 28
2.16 Activation functions and their respective derivatives . . . 31
2.17 bias vs variance . 34
2.18 Classification metrics. Precision and recall 36
2.19 Confusion matrix . 37
2.20 bias vs variance . 40

7

8 LIST OF FIGURES

2.21 Machine Learning Diagnostic process 40
2.22 Clustering example . 42
2.23 Shemetic structure of an autoencoder with one fully connec-

ted hidden layer. 43
2.24 Saturation . 46
2.25 RELU activation function 46
2.26 LSTM Cell : The element wise multiplication is key for

LSTM cell, helping the preservation of constant error when
backpropagating the error. The forget gate is an identity
function, when it is open the input is multiplied by 1. . . 48

2.27 The process of ML research 52
2.28 The evolution of machine learning and Network Manage-

ment . 56
2.29 IBM’s MAPE-K (Monitor, Analyze, Plan, Execute, Know-

ledge) reference model for autonomic control loops 61

3.1 NFV reference architecture 69
3.2 SDN Architecture . 72
3.3 Overall feedback on the importance of the ”Proactive SLA

violation detection” research area [3]. 77

4.1 PhD Blueprint. 87
4.2 Simplified UML diagram of SLA. 90
4.3 SLA NFV description In ETSI framework 91
4.4 SLO step function of response time. 94
4.5 Cognet architecture . 97
4.6 Cognet Smart Engine . 99
4.7 Data Pre-processing . 103
4.8 Processing Engines. 105
4.9 Processing Engines. 107
4.10 Cognet global architecture sequence diagram. 109
4.11 Simplified Cognitive SLA Architecture. 110
4.12 UML and data model for CogSLA. 111
4.13 Overview of Prometheus data set. 115
4.14 Overview of Prometheus data set. 116
4.15 Network diagram for the streaming use case. 118
4.16 Data distibution of the streaming use case. 118

LIST OF FIGURES 9

4.17 Our Testbed. Clearwater virtual IMS functional architec-
ture in the box lower right. Upper left the Cognitive Smart
Engine (CSE). The experimental process is : (1) Stress tes-
ting for SLA violation generation. (2) System-level super-
vision. (3) Reporting SLO violations. (4) Data labeling,
merging observations on the SLO state and the system-
level metrics. 120

4.18 A subset of the data set distribution. The small boxes re-
present the quartiles of the distribution. The red line in
the middle represents the median, i.e. the point separa-
ting the data into half. The outliers are drawn as black
crosses outside the box. 121

4.19 Cognitive SLA Architecture. 122
4.20 CSE implementation choices. 123
4.21 Raw data in JSON into a Table 127
4.22 Example of the autocorrelation function applied on the

load of the SIP proxy. 133
4.23 Lagged autocorrelation. 134
4.24 Transforming raw timeseries into stationary ones 134
4.25 Inta VM correlations . 135
4.26 Correlation bewteen all the 156 metrics of the testbed. . . 136
4.27 Example of correlation versus causation. 138
4.28 time series visualization. 139
4.29 T-SNE plot of SLA and SLA Violation. 140
4.30 SLO visualized as a radar map. 141
4.31 Service Quality Monitor. 142

5.1 Zoom on the Main building blocks of the CSE. 146
5.2 Picture of a boxplot. 148
5.3 Media SLA sequence diagram, focusing on the ML process. 150
5.4 FFNN architecture used for forecasting on 4 features fol-

lowing equation 5.1. 154
5.5 Normal inputs vector vs recurrent neural network inputs. 155
5.6 Stacked Stateful LSTMs Trained for prediction 156
5.7 Stacked FFNN for predicting 156
5.8 Difference between FFNN and LSTM for signal prediction. 156
5.9 SLO1 targeting the Sprout VNFC. 159

10 LIST OF FIGURES

5.10 Layout of the dataset used in Use case II. 159
5.11 The activation function g(x) - if non-linear - applied to

the output of the neuron allows the ANN to behave as a
universal approximator by introducing non-linearity. . . 161

5.12 Combined FFNN with Decision Tree (MLP-DT) 162
5.13 A miniature representation of our experiments, where in-

puts are limited to 4 (we use 156) and output to one (we
used 3). a) is the features represented as time series data.
b) is the point of contact, the inputs fed to the ANN mo-
del. c) The ANN model which can be LSTM or FFNN. d)
is the binary result that categories the inputs into 0 or 1
for non SLA violation and SLA violation respectivelly. . . 163

5.14 Accuracy over all the training steps 165
5.15 Precision over all the training steps 165
5.16 Recall over all the training steps 165
5.17 Precision, recall and accuracy over all the training steps . 165
5.18 Confusion matrix of the Best algorithm (LSTM2) 166
5.19 Results of offline evaluation mode of the FFNN with three

different SLO breach threshold (Based on the streaming
use case) . 167

5.20 Example of a subgraph in a Decision Tree over 10.000
sample. 169

5.21 Results comparing FFNN and LSTM based on the valida-
tion and test set. 170

5.22 The Training time of the FFNN for 10,000 samples. 170
5.23 Overall performance of FFNNs vs LSTMs (The model code

are in the index section B) 170
5.24 Methodology. 173
5.25 Random search is computationally less expensive and scans

a wider area in the configuration space shown as intercon-
nection of gray lines. On the other hand, Random Search
is very effective especially when the intuition of the ope-
rator fails to approximate the range of the search as shown
in the intersection of red rectangles. 177

5.27 Overview of the dynamic ANNs architectures. LSTM on
the left and FFNN on the right. 178

5.28 Accuracy versus dropout. We can infer from this figure
that dropout regularisation slightly improves the accu-
racy with no compromise in time (as represented by fi-
gure 5.29) . 188

5.29 Time versus dropout . 188
5.30 Accuracy with respect to Activation functions in the out-

put layer. This figure shows that the choice of the activa-
tion layer is amogst the most important ones. 188

5.31 Optimizer type with their respective learning rate α ver-
sus accuracy. The best optimizer is Adadelta, the worst is
RMSprop. 188

5.32 comparison between LSTM and FFNN by accuracy over
the validation set. 189

5.33 ANN initialization method versus accuracy. GN : Glorot
Normal, GU : Glorot Uniform, HN : He Normal, HU : He
Uniform, LU : Lecun Uniform, N : Normal, O : Orthogo-
nal, U : Uniform, Z : zero. 189

5.34 Top 5 best ANNs based on the mean over Globalmetric . . 189
5.35 Top 5 ANNs based on the mean over validation score ac-

curacy. All the best ANNs appear to converge on 94% ave-
rage accuracy. 189

5.36 Results for medium ANNs structure (under 30 hidden
layers and 20 average neuron per layer). Point A1 is the
global maximum. Point A2 is a local maximum. Point A3
is a local minimum. In the text below, we provide an in-
terpretaion of these results. 192

5.37 Feature importance of the table 5.12. 195
5.38 Feature importance of the ANNs’ hyperparameters 195

To my family who supported me during my studies

LIST OF FIGURES 13

Acknowledgements

By completing this PhD thesis, I achieved my greatest and long aspi-
red goal in my career. It has been with no doubt the happiest and richest
experience of my life. The PhD experience enlightened me both perso-
nally and professionally. I have lived this experience with passion.

A special thanks to my PhD supervisor Imen Grida Ben Yahia who
trusted me to carry out this project and made hereself always available
for guidance and support. It has been a pleasure and a honor to me to
work with her. I’ve learned so much I am aware of her print on my work
and fr this I am grateful.

I would like also to thank my academic supervisor Djamal Zeghlache
who contributed to the elaboration of this thesis and provided me with
his precious advice and guidance.

A special thanks to Professor Panagiotis Demestichas and Professor
Philip De Turck who evaluated and reviewed my manuscript. I am gra-
teful to all my co-workers at Orange Labs who helped me to integrate the
team and made this experience memorable. This project would not have
been possible without a three year scholarship support from Orange
Labs.

Last but not least, I would like to thank my family members who sup-
ported me throughout this endeavor. I would like to thank my mother
Jamila Touati my Father Aziz Bendriss my aunts Saida and Joudia Touati
and my sisters Yasmine and Yousra to whom I feel deeply indebted.

Chatillon, 2018
Jaafar Bendriss

List of abbreviations

LIST OF FIGURES 15

Table 1 – Abbreviation table of common used acronyms.
SLA Concepts
SLA Service Level Agreement.
SLO Service Level Objective.
SLOV Service Level Objective Violation.
SLAV Service Level Agreement Violation.
Networking Concepts
SDN Software Defined Infrastructure.
NFV Network Function Virtualization.
NFVI Network Function Virtualization Infrastructure.
VIM Virtual Infrastructure Manager.
VNF Virtual Network Function.
VNFC Virtual Network Function Component.
VNFM Virtual Network Function Management.
VNG-FG Virtual Network Function Forwarding Graph.
ETSI European Telecommunications Standards Institute .
Machine Learning Concepts
DT Decision Tree.
MCDT Multi-Class Decision Tree.
PCA Principal Component Analysis.
RMSE Root Mean Squared Error.
KPI Key Performance Indicator.
ML Machine Learning.
RL Reinforcement Learning.
VM Virtual Machine.
ANN Artificial Neural Network.
FFNN FeedForwad Neural Network.
SVM Support Vector Machine.
RNN Recurrent Neural Network.
LSTM Long Short Term Memory.
RBM Restricted Boltzmann Machine.
ETL Extract Transfer Load.
GPU Graphical Processing Unit.
Other Concepts
CAPEX CAPital EXpenditure .
OPEX OPerational EXpenditure .

Abstract
This thesis addresses cognitive management aspects of Service Level

Agreement (SLA) in software-based networks.
Telecommunications operators pushed towards virtualization of their

networking function by introducing in 2012 the concept of Network
Function Virtualization (NFV). NFV aims at reducing vendor lock-in
and bringing agility in the services and resources life cycle operation
and management. The IT and networking industries foresee a combined
use of SDN and NFV to make cloud and network services agile. Major
service and network providers predict that, by 2020, 70% of deployed
networks will rely on cloud infrastructures, virtual network functions
and multi-domain SDN controllers. This evolution and new require-
ments call for efficient SLA enforcement and management. This thesis
tackles the following concerns : (1) a formal definition of SLA, (2) proac-
tive SLA violation detection methodology and (3) the definition of an ex-
tended framework for cognitive management in softwarized networks.

This doctoral work led to an end-to-end data-driven framework, na-
mely, CogSLA, which stands for Cognitive SLA. The framework is based
on the use of multiple Machine Learning (ML) algorithms in conjunc-
tion for improving prediction and anticipation of SLA violations. The
proposed framework is based on two types of Artificial Neural Net-
works (ANNs), The FeedForward Neural Networks (FFNNs) which sho-
wed state-of-the-art results in image classification. And a special type
of Recurrent Neural Networks with best performance for Natural Lan-
guage Processing, the LSTM. Both algorithms have specific advantages
and drawbacks, the work was nevertheless able to leverage these algo-
rithms for anticipating SLA violations.

The thesis proposes also a meta-algorithm to optimize the tunings
of the Artificial Neural Networks (ANN) algorithms in an acceptable
time and performance. The proposed approach relies on biased random
selection and the use of meta-knowledge obtained from training the first
round of ML algorithms on our data set.

A new metric based on information theory and on entropy is also used
to classify and assess the relevance of each Machine Learning parameter
with respect to performance and accuracy.

LIST OF FIGURES 17

Résumé

Cette thèse traite les aspects de la gestion cognitive du niveau de ser-
vice (SLA) dans les réseaux virtuels. Les opérateurs de télécommunications
ont poussé vers la virtualisation de leurs fonctions réseaux en introdui-
sant en 2012 le concept de virtualisation de fonction de réseau (NFV).
NFV vise à réduire le couplage des opérateurs au profit des construc-
teurs réseaux et à apporter plus l’agilité dans l’exploitation et la gestion
du cycle de vie des services et des ressources. Les secteurs de l’infor-
matique et des réseaux prévoient une utilisation combinée du SDN et
du NFV pour rendre les services de Cloud et de réseau plus agiles. Les
principaux fournisseurs de services et de réseaux prévoient que d’ici
2020, 70% des réseaux déployés dépendront des infrastructures Cloud,
des fonctions virtualisées et des contrôleurs SDN multi-domaine. Cette
évolution exige une application et une gestion efficaces des SLA. Cette
thèse vise à répondre à trois points essentiels : (1) une définition for-
melle du SLA dans les réseaux virtualisés, (2) une méthodologie proac-
tive de détection des violations de SLA et (3) la définition d’un Frame-
work pour la gestion cognitive dans les réseaux logiciels.

Premièrement, nous avons proposé un Framework axé sur les données
de bout en bout, à savoir CogSLA. Le cadre est basé sur l’utilisation de
plusieurs algorithmes de Machine Learning (ML) en conjonction pour
améliorer la prédiction et l’anticipation des violations de SLA. Le Fra-
mework proposé est basé sur deux types de réseaux neuronaux (ANN),
les réseaux neuronaux de type FeedForward (FFNN) qui ont montré des
résultats satisfaisant dans la classification des images. Et un type parti-
culier de réseaux neuronaux récurrents (RNN) disposant des meilleures
performances pour le traitement du langage naturel, le LSTM. Les résultats
montrent que les deux algorithmes ont des avantages et des inconvénients
spécifiques, mais nous démontrons qu’ils peuvent être utilisés de manière
différente pour anticiper les violations de SLA.

Deuxièmement, nous avons proposé un méta-algorithme pour opti-
miser les ajustements des réseaux de neurones artificiels (ANN) avec un
temps d’apprentissage et une performance acceptable. L’approche pro-
posée repose sur la sélection aléatoire biaisée et l’utilisation de méta-
connaissances obtenues à partir de la formation du premier tour de Al-

gorithmes ML sur notre ensemble de données.
Enfin, nous proposons une nouvelle métrique basée sur la théorie de

l’information et sur l’entropie pour classifier et évaluer la pertinence de
chaque paramètre de Machine Learning en termes de performance et de
précision.

Chapitre 1

Introduction

The greatest enemy of knowledge is
not ignorance, it is the illusion of
knowledge.

Stephen Hawking.

I Introduction

The softwarization of networks is a reality today. The emergence of
Network Function Virtualization (NFV) and Software Defined Networ-
king (SDN) are expected to bridge the gap between the Telco and IT
industries. NFV allows the virtualization of network function by de-
coupling the software and hardware. A network function can be intru-
sion detection system, firewall and signaling systems. This allows more
flexibility, reduces Time-To-Market TTM and free the Telco from vendor
lock-in. The network function can run on commodity hardware such as
x86 servers. Consequently, the Telco are expecting to reduce their CA-
PEX and OPEX. SDN builds programmable networks through abstrac-
tions, open APIs (northbound and southbound) and the separation of
control and data planes. NFV targets the virtualization of network func-
tions and aims at reducing vendor lock-in and bringing agility in the
services and resources lifecycle operation and management. The IT and
networking industries foresee a combined use of SDN and NFV to make
cloud and network services agile. Major service and network providers

1

2 CHAPITRE 1. INTRODUCTION

predict that, by 2020, 70% of deployed networks will rely on cloud infra-
structures, virtual network functions and multi-domain SDN control-
lers[1]. This vision can only materialize if automation of dynamic cloud
and network services production and deployment are introduced and
fully integrated in cloud architectures. This includes 1) faster deploy-
ment (from months down to minutes) ; 2) continuous provisioning in
line with the dynamic nature of VNFs subject to up and down scaling ;
3) end-to-end orchestration to ensure coherent deployment of IT and
network infrastructures and service chains for example and 4) service
assurance for fault and performance management including new moni-
toring and resiliency approaches. Networks are expanding not just in
size, but also in complexity. Nowadays network management cost, in-
cluding SLA penalties, constitutes up to 80% of the global operators’
OPEX. With the advent of 5G mobile networks, Operators dread an in-
crease of the network management expenditures. In this context, there
is a heavy need to rethink the network management. The new network
management approach should handle : SDN and NFV enable the net-
work softwarization which enables the control of the network via soft-
ware. Resource allocation, flow control, service function chaining will
for most part be controlled by programs. One foreseeable consequence
of softwarization is the low entry barrier of new vendors, because the
network will shift from CAPEX-based models to OPEX-based models
[4]. However, SDN and NFV will only be part of a more global soft-
ware transformation impacting network services, end user devices, IoTs.
The reach of network transformation will have social consequence with
a new skill set more. Network programmability driven by open SDN
APIs together with the shift from vendor lock-in to open source-based
ecosystem, will transform the TSP role towards more software develop-
ment (i.e. softwarization). This entails incorporating DevOps agility and
practices (e.g. Continuous Integration/Continuous Delivery) in the ser-
vice deployments. And foster new business models : IoT, autonomous
vehicles, etc.

II. PROBLEM STATEMENT 3

II Problem Statement

The user’s expectations also evolved from expecting simple connecti-
vity to high-throughput networks to more rich services such as augmen-
ted reality, online gaming and other latency-sensitive services. From the
Telco perspective, networks are getting more and more complex, diffi-
cult to manage while the ferorce competition drains their profites low.
Network operators see the cost of the software and hardware manage-
ment gaining in proportion as represented in figure 1.1. The increase
of the Network OPerational EXpenditure (OPEX) is largely due to the
heterogeneity of devices and software, and to the growing size and the
resulting exponential interactions (see Figure 1.1) [1]. Moreover, it is ex-
pected that the 5th generation networks will bring about new use cases,
high volume of heterogeneous data resulting in an even more complex
underlying network. Yet, nowadays network management remains pri-
mitive, relying on overprovisioning and reactive strategies. Network ad-
ministrators still rely on scripts and threshold-based alarms. To over-
come the limitation of current approach, namely overprovisioning, re-
search efforts have been applying Machine Learning techniques combi-
ned with autonomic computing principles developed by IBM[] to ma-
nage network systems. Autonomic computing aims at reducing the in-
volvement of human operators in network management by following
high level directives. These high-level directives are represented in the
context of this PhD as Service Level Agreement (SLA). The SLA is a for-
mal contract between a service provider and a service consumer that for-
mally describes the expected quality of service. The SLA contains one or
multiple Service Level Objectives (SLO) that represents a network mea-
surable metric for a given service level with an expected threshold. The
SLA should take into account the dynamic service logic introduced by
NFV architecture as Service Function Chaining (SFC). The SLA mana-
gement should also be expressed in high level using SLOs. The first re-
search problem in the work is to associate effectively High-level SLA to
an SLO based on low-level KPIs for the NFV Infrastructure. The second
challenge is, based on low level network metrics monitoring how to pre-
dict SLOs violation and ensure SLA compliancy?

4 CHAPITRE 1. INTRODUCTION

Figure 1.1 – The cost of hardware and software and their management [1].

A Research Questions

The recent success of ML techniques especially deep learning and the
proliferation of new, heterogeneous data, analytical platforms, distribu-
ted monitoring solution across layers and big data solutions along with
the rise of SDN/NFV technologies.

The problem statement of this Ph.D. is how to exploit monitoring
data in programmable networks (e.g. KPIs, system-level metrics), to de-
termine and execute management operations, adjustment mechanisms,
that will maintain and ensure the conformity of PN to a set of SLOs.
Therefore, it appears the following Research Questions (RQ) should be
investigated :

RQ 1 • Proactive violation detection mechanism : in the ETSI NFV re-
ference framework [5] and the SDN-based networks, what are the
measurement points (e.g. NV-VI, NF-VE, SDN controller), the KPIs
and measurement directives, that provides exploitable data for an
efficient SLA enforcement ?

RQ 2 • How to compute and process in real-time the KPIs and SLOs to
augment the probability of accurate prediction of a possible SLO
breach ?

RQ 3 • After the prediction of an SLA violation, which counteractive
measures (e.g. migrate a VNF) and management constraints and

II. PROBLEM STATEMENT 5

management actors (e.g. VIM, VNFM) that should be selected and
solicited?

RQ 4 • What are the effective algorithms or combination of algorithms
to extract information from networking data?

B Contributions

Research orientation

The goals of this PhD work are the following : 1) produce a state of
the art covering the best practices and research initiatives applicable to
SLA enforcement in SDN and NFV (a concise view is within section3) ;
2) identify and define the necessary metrics that are needed to evaluate
and monitor SLOs based on inputs from Standards and researches ; 3)
and define the corresponding SLA language to ensure machine reada-
ble format of these metrics. These previous steps are to 4) define an ex-
tendable and cognitive framework for SLA enforcement. It is important
to state that this PhD work is a use case within the 5GPPP COGNET
(Cognitive networks) project (http ://www.cognet.5g-ppp.eu/cognet-in-
5gpp/). Our framework is extendable, as it is intended to cover a diverse
group of services beside PNs, such as IoT, and unknown 5G services i.e.
we seek extendable languages and templates that, once tuned, enable
the establishment of the required agreement levels of different and he-
terogeneous services.

Contributions

The focus of this thesis is primparly on the application of Machine
Learning to SLA management in Programmable Networks. The contri-
butions can be regrouped into three parts, one targeting the literature
and pointing gaps and future research directions, another on the design
and use of Machine Learning for SLA in dynamic environment and fi-
nally a wrapper library to determine the most efficient ML algorithm
with respect to performance and precision.

The Scientific Contributions (SC) of this thesis is the following :

SC1 • Cognitive architecture for NFV-based environments.

SC2 • Data analysis methodology and algorithms.

6 CHAPITRE 1. INTRODUCTION

SC3 • Machine Learning model selection and optimization.

SC4 • Cognitive Smart Engine.

Figure 1.2 – Research question mindmap.

All the SCs are grouped in chapter 4. The SC1 is introduced in sec-

tion III, where we introduce the Cognet global architecture and discuss

all its buillding blocks. The SC2 is discussed in details in section IV,

named data services in which we present the different preprocessing

techniques required for a data-driven approach to SLA management.

The SC3 is presented in section III, this contribution contains a meta-

learning approach for selecting the best Machine Leanring models. Fi-

nally, SC4 present how we combined multiple machine leanring algo-

rithms for different management tasks and is in section II.

Our work and SCs were guided by the different RQs presented earlier.

The figure 1.2 presents the mapping between the Research Questions

(RQs) and Scientific Contributions (SCs). All the RQs have a common

problem statement which is how to use recent advances in the fields of

AI and Machine Learning to manage the SLA of Programmable Net-

works such as NFV/SDN. The RQ1 that deals with mechanism with

proactive violation detection is tackled three SCs : SC1, SC3 and SC4.

SC2 and SC3 answer the RQ2. Finally, RQ3 and RQ4 are addressed by

SC4 and SC2 respectivelly.

III Thesis Structure

Te chapters are grouped into three parts : backgroundmaterial is pre-

sented in Chapters ??, Chapters 4 presents the general architecture and

III. THESIS STRUCTURE 7

Chapter 5 zooms on the algorithms and results. The organization of the
thesis is shown in the figure below 1.3 :

— Chapter 2 introduces Machine Learning. We present the basic concepts
and the different types of ML. We focus on the connectionist ap-
proach consisting of Artificial Neural Networks. We then present
the deep learning algorithm and discuss in details its strengths and
weaknesses. Finally, we frame the ML approach by presenting its li-
mitations and current scientific challenges. The main contribution
of this chapter is the identification of the ML advantages and theo-
ratical limitations for an end-to-end proactive and cognitive SLA
Management. Then, we present in this chapter the state of the art of
the Artificial Intelligence used for network management. The main
contribution of this chapter is to assess and classify the cognitive
approaches, how each techniques and algorithms match to each use
case. Additionnally, we identify the current gaps in the literature
and position our work in the landscape of the cognitive manage-
ment literature.

— Chapter 3 presents the state of the art of the SLA. We present the
history of the SLA before the Cloud, mainly in IT departements
and in early telecommunication protocols. Then, we track the evo-
lution of the SLA after the Cloud era. The main contribution of this
chapter is to understand the new requirements of the SLA in pro-
grammable networks, how it differentiate from the Cloud Compu-
ting requirements as a new research direction, in which direction
SLA management should follow, hence the Chapter 3 introducing
Machine Learning.

— Chapter 4 presents the first two contributions of this thesis work.
Firstly, we start by introducing the Cognitive SLA Framework (Cog-
SLA). Then, we develop the data analysis part for sofware-based
networks

— Chapter 5 In this chapter, we zoom on the Smart Cognitive En-
gine (CSE) and present the results for forecasting and classification
problems. Next, we introduce the problem of model selection and
present our solution based on skewed random selection. Finally, we
extend this solution to metalearning capabilities to find a compro-
mise between precision and performance.

8 CHAPITRE 1. INTRODUCTION

Figure 1.3 – Thesis structure

Chapitre 2

Machine Learning : Basics, Challenges,
and Network Applications

How is it possible for a slow, tiny brain
[...] to perceive, understand, predict
and manipulate a world far larger and
more complicated than itself ?

Peter Norvig.

Contents
I Introduction to Machine Learning (ML) 10

A Definition . 10
B Machine Learning Types . 13
C A Brief History of Machine Learning 14

II Supervised Machine Learning . 16
A How machines learn. 24
B Evaluation . 33

III Unsupervised Machine Learning . 41
A Clustering . 41
B Anomaly Detection . 42
C Dimetionality Reduction . 42

IV Deep Learning . 44
A How Deep Learning is different ? 45
B Exploding/Vanishing gradients problem 45
C Regularization . 47
D RNN . 47

V Machine Learning Latest Challenges 49
A Machine vs Human Learning 49
B Scalable Machine Learning . 50

9

10CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

VI Machine Learning for Network Management 53

A Machine Learning for Network Management a Brief History . 55

B FCAPS Management . 57

C Cognitive Network Management Initiatives 60

VII Conclusion . 66

I Introduction to Machine Learning (ML)

Artificial Intelligence (AI) has tremendously grown in popularity due
to its recent successes in a host of different domains. Machine Learning
(ML) is considered as a subset of this field. It explores the development
of algorithms that can learn from data [6]. One of the first successful ap-
plication of ML back in 1990s was the spam filter based on Bayesian lo-
gic. We dedicate this chapter to familiarize the reader with ML. Cutting
through the recent hype, to understand how ML can provide cognitive
capabilities for the network management. We will provide the reader an
overview of ML history and recent successes. We will also emphasize its
lasted State-Of-The-Art (SOTA) challenges and limitations and how to
mitigate them.

A Definition

ML is a broad term that encompasses very different areas from re-
gression to anomaly detection. In 1959, Arthur Samuel coined the term
“Machine Learning“ and defined it as follows :“Machine learning is an
application of artificial intelligence (AI) that provides systems the abi-
lity to automatically learn and improve from experience without being
explicitly programmed.“ [7]. Tom Mitchell 1997 defines ML as “A com-
puter program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks
in T, as measured by P, improves with experience E.“ [8].

I. INTRODUCTION TO MACHINE LEARNING (ML) 11

Figure 2.1 – Machine Learning approach

However, as we will see in this chapter ML spans to much larger of

a definition. Incapable of defining all what ML touches on, we provide

a non-exhaustive list of common ML algorithms concerns [9] (to iterate

and check) : The inputted data structure has a strict requirement. It must

have a tabular shape. Forming lines as samples and columns as features.

The used data are considered as samples of real-world data. The input-

ted data are seen as being drawn from some unobservable distribution.

Performing by computers huge calculations unfeasible by hand.

The most common attributes among all ML algorithms is their ability

to process only tabular data, where the lines represent the samples and

columns the features. These observations are thought as being drawn

from a latent data distribution pertaining to a real world application.

WhyMachine Learning?
Assume we want to program a program a spam detector. In traditio-

nal programming, we would have to know and code every single condi-

tion and rule that makes an email a spam. For example, the use of certain

words (e.g. ”free”, ”discount”, etc) should be hardcoded with other pat-

terns such as the senders, email subject, etc. The program is most likely

to be long and difficult to manage since it codes every pattern than we

recognize as a spam. In contrast, a spam detector based onML automati-

cally learns by itself which pattern are relevant and which are not. Thus

easier to manage and to write. Moreover, the update of such as system

is equivalent to retraining it on a new dataset, whereas in traditionnal

approach it means adding new rules.

12CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATION

ML vs programming. Figure 2.2 shows the difference between tra-

ditional programming and ML approach. Another perspective on the

difference between ML and traditional programming is that traditional

programming is based upon a rule-based approach, i.e. ‘if - else - ‘ sta-

tements whereas ML adopts a probabilistic approach. Traditional Pro-

gramming relies on hard written code for every rule, Long list of rules.

The code is complex to maintain and need constant rule update. On the

other hand, ML approach learns automatically from the data, the ap-

proach is dynamic update and requiere shorter program. Moreover, it

is effective for very complex problems and dynamic environments. Fi-

nally, Machine Learning can also help us understand old problems by

using another perspective based on the data (Figure ??).

Figure 2.2 – Machine Learning vs programming

Figure 2.3 – Machine Learning can provide deeper understanding of old problems

I. INTRODUCTION TO MACHINE LEARNING (ML) 13

B Machine Learning Types

ML can be classified broadly in three types : supervised, unsupervi-

sed and reinforcement learning. A fourth type is commonly accepted by

some researcher as evolutionary learning 1. In this thesis, we will focus

on two most mature and commonly used ones, namely, supervised and

unsupervised learning.

Figure 2.4 summarizes the most common ML types along with the

most common tasks. Other supervised tasks are possible, though not

represented in Figure 2.4, such as ranking and structural prediction for

language translation.

Figure 2.4 – Machine Learning types and different tasks type

Supervised learning. The key concept in supervised learning is la-

beling. Let’s say we want to build an image cat detector system. First

we collect as many images as possible and label manually each one as

corresponding or not to a cat. We then train the machine by showing it

the image and its corresponding label. We then create an objective func-

tion that computes the error (or distance) between what the machine

outputted and the expected value, i.e. the label. The machine then re-

configures its internal ’knobs’ (known as ’weights’) to reduce the error

accordingly. The typical tasks of supervised algorithms are classification

and regression : predicting categories and numerical values respectively.

1. based on the evolutionary biology

14CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

One limitation of this approach is the long and tedious work needed for
labeling that data. We will delve into more details in the next section.

Unsupervised learning. Unsupervised learning maim goal is to des-
cribe hidden structures from a given data input. Contrary to the super-
vised learning, unsupervised learning doesn’t require labeled data. be-
cause it does not have a clear target. Fundamentally, unsupervised lear-
ning algorithms learn the data structure and characteristics. A common
characteristic of unsupervised learning is the non-existence of accuracy
metric. Unsupervised learning includes a broad range of algorithms that
aim at reducing, transforming and describing the data such as K-means,
Principal Component Analysis.

Other perspectives on ML algorithm can be : online and batch lear-
ning. All these types are not mutually exclusive, for example an algo-
rithm can be supervised and learns online.

Before exploring the depth of the ML approaches, we present a quick
overview of the ML history in the next section.

C A Brief History of Machine Learning

Before the age of computer, philosophers have wondered whether it
is possible for machines (or automatons at the epoch) to mimic human
thoughts. Rene Descartes and Gottfried Wilhelm Leibniz in the 17th
century, believed that human perceptions can be replicated using com-
plex machines []. In the early 20th century Alan Turing demonstrated
that any mathematical logic can be translated into a computer program
[]. He later in 1950 addressed the idea of a learning machine in [10]
which predates genetic algorithms.

In the 50s, after the invention of the transistor and the first program-
mable computers, these ideas could be tested which led to the inception
of AI. Pioneering Machine Learning (ML) studies were conducted ba-
sed on statistical methods (e.g. Least squares, Bayes theorem, Markov
chains) and simple algorithms. The first generation of AI researchers
thought that AI problems are simple and that they could be resolved in
few decades (Herbert Simon). However, they quickly realized the great
complexity of such a task. In 1951, Marvin Minsky and Dean Edmonds
created the first neural network capable of learning called the SNARC
[11](page 105) but quickly realized its limitation (more on this point

I. INTRODUCTION TO MACHINE LEARNING (ML) 15

in the ANN section in ??). In 1952, Arthur Samuel wrote the first pro-
gram that learned from experience. A game of checkers that later beat
its creator. The game learned to play against itself, as A. Samuel was
very limited in term of resources he used a technique called Alpha-beta
pruning 2[12].

A few years later, in 1957, an influential paper on ML was introdu-
ced by the mathematician Raymond Solomonoff [13]. He proposed a
program that solves simple arithmetic problems by observing a sample
of correct sequences. The machine learned to solve simple problems
such as inferring the meaning of equality sign ‘=‘ from observing many
sequences. R. Solomonoff used elementary “n-grams“ technique that
consists of calculating the frequency of appearance of a given n letters
and selecting the most frequent one.

In the subsequent years, many algorithms were created such as Nea-
rest Neighbors, Turing’s Learning Machine and the introduction of back-
propagation algorithm, i.e. the learning algorithm for neural networks.
However the integration of ML solutions was hindered by the lack of
data. Researchers didn’t access huge amount of data to perform training
on.

In the 90s, when enormous amount of data was becoming available,
the ML approach shifted from knowledge-driven to a data-driven ap-
proach. In this period, Support Vector Machines and RNNs (and LSTMs
in the late 90s) became popular. In this period of time, one limitation on
ML was the training time necessary to train complex models. This led to
using simpler models [14].

Another major limitation of ML algorithms was their ability to learn
data in their raw format without feature engineering or domain exper-
tise/knowledge. The solution was the representation learning approach
which [15] consists of set of methods that allow the machine to automa-
tically discover relevant features needed for detection. The most popu-
lar one is deep learning [16]. In 2010s, the advances in GPUs manufac-
turing and power, deep learning technique significantly improved ML
tasks performance in many different domains. Deep Convolutional net-
work revolutionized image processing [17], whereas recurrent networks
advanced progress in sequential data such as language translation[18].

2. small description

16CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

The development of deep learning was reinforced by the development
of many open-source ML frameworks. For instance, in 2015, Google re-
leased the first version of TensorFlow.

Today, Deep learning is resolving major problems such as image, speech
recognition thought to be insurmountable by AI. Deep learning success
has expanded to particle accelerator analysis, drug discovery and DNA
analysis [16]. Yet its performance is unquestionable in many tasks, we
notice that its application for network and SLA management has not
been sufficiently examined. We examined more thoroughly its applica-
tion on some constrained application of network management in section
??. In the following section we will provide a more detailed view of ML
supervised and unsupervised techniques. After that, we will discuss the
current SOTA limitations.

II Supervised Machine Learning

In supervised learning, the learning algorithm takes as input a vec-
tor denoted x. This vector consists of multiple training instances (or
examples) denoted x(i), with i as the i(th) example. Each example has
different attributes (or features) values denoted xj , with j as the j(th) fea-
ture. The feature values can be either discrete (e.g. classes) or continuous
(e.g. real numbers).

Thus we express xj as xj = (x(j)
1 ,x

(j)
2 , · · · ,x

(j)
i , · · · ,x

(j)
n). Similarly we de-

note the jth corresponding labeled element as y(j) (also termed target or
expected value). An observed example is the tuple (x(j), y(j)), meaning that
when we observe x(j) we expect to get y(j). In table 2.1, the first observerd
example is ((3,50,10),200.000).

of rooms (x1) Surface (m2) (x2) house age (x3) price (y = label)

3 50 10 200,000

5 200 5 500,000

6 500 25 1,100,000

Table 2.1 – Labeled data example for a regression task.

If the output y is a set of single discrete values, we call the task clas-

II. SUPERVISED MACHINE LEARNING 17

sification. We refer to each possible set of discrete value as a class. For
example given an animal characteristics find which species it belongs to.
The animal characteristics are the features and the species is the class.

If on the other hand, the output value is continuous, we call the task
regression. For example, given the house characteristics find its price
as presented in table 2.1. Based on the house features we would like to
predict its price.

The training data correspond to the set of examples upon which the
learning algorithm will learn and is denoted as Dtrain. The ML algorithm
can be represented as a function fθ (also termed hypothesis Hθ) that
maps the inputs to the outputs based on internal ’knobs’ (or model
parameters θ). The model parameters θ can be thought of as the degree
of contribution of a feature to the output. In the context of classification
tasks f is commonly refered to as a classifier.

Common supervised algorithms are Linear Regression, Logistic Re-
gression, Support Vector Machines (SVMs), Decision Trees and Artificial
Neural Networks (ANNs). Note that the ANN can be used for regression,
classification, unsupervised and reinforcement learning.

In order to illustrate all these points and definitions, we will use
two examples, a very simple learning algorithm, namely linear regres-
sion and a slightly more complex algorithm, Artificial Neural Networks
(ANN).

Linear regression is simply an algorithm that fits the data using a
linear function of form :

fθ(x) = θ1.x+θ2 (2.1)

Given a set of training data Dtrain depicted in figure 2.5, we would
like to predict the y values of a given input x.

ML hyperparameter.In Machine Learning (ML) we distinguish bet-
ween two configuration variables : the variables that can be inferred
from the data, this is termed the model parameter and the configuration
variables that cannot be estimated from the data distribution, termed
the hyperparameters. The hyperparameters are considered as an inter-
nal part of the ML models. They are generally set manually by the ML
designer or require an intuition, using heuristics techniques.

18CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

Figure 2.5 – Randomy generated data. the x-axis represent the input and y-axis repre-
sents the target values.

Figure 2.6 – Machine Learning types and different tasks type

The Case of ANN.
Artificial Neural Network (ANN) is a machine learning technique

loosely inspired by the biological neural cells in the brain. A biological
neuron figure ?? is composed of a cell body (nucleus In the figure) where
most complex operations are performed. The branching extensions are
called the dendrites. At the tip of the branches is a structure termed sy-
napses. Biological neurons interact via electrical impulses called signals
via the synapses. A neuron fires a signal when its total received signals
exceed a certain threshold.

II. SUPERVISED MACHINE LEARNING 19

Figure 2.7 – a Biological neuron [2]

The artificial counterpart of the biological neuron is what is termed
a perceptron firstly developed by Frank Rosenblatt on an IBM 704 com-
puter [19] inspired from early works in neuroscience

(a) fig 1 (b) fig 2

Figure 2.8 – Artificial perceptron and its decision boundary

The perceptron takes inputs x (instead of binary values), perform
some operations and outputs a signal y. As depicted in figure 2.8 each
input is associated with a weight w that represents the importance of
the input in the total calculation. The perceptron sums the weighted
inputs plus a bias term z = wx+ b is less than or greater than some thre-
shold value (similar to Biological neuron). Similarity between biological
and artificial neuron stops here. Biological neurons are far more com-
plex than perceptron, and we continue to learn more and more of the

20CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

biological functions of neurons.

output =
{

0 for
∑
i xi .wi ≥ threshold

x for
∑
i xi .wi > threshold

(2.2)

The decision boudaty drawn by a neuron is represented in figure 2.8-
b.

For the perceptron the decision boundary is :

Wp + b = 0 The decision boundary of the perceptron is orthogonal
to the weight vector. The perceptron can only draw lineraly separable
decision boundaries.

Perceptrons are linear transformers, they can only split the data li-
nearly. This limitation was pointed out by Marvin Minsky and Seymour
Papert in [20].This caused the researches to drop and lose interest in
the ‘connectionist‘ approach. More specifically, they pointed out that
perceptron cannot learn XOR function (later termed the XOR problem).
This problem is illustrated in figure 2.9 one cannot draw a straight line
to separate + from -. As a result, the research community lost interest in
ANN for several years.

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

Table 2.2 – Exclusive OR : XOR Truth table

II. SUPERVISED MACHINE LEARNING 21

Figure 2.9 – Non-linear decision boundary XOR

Figure 2.10 – MLP solving XOR problem

Figure 2.11 – MLP solving XOR problem

The XOR problem was solved using and OR and an not AND in the

hidden layer and an AND gate in the output layer.

22CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATION

A B (A OR B) AND (A!AND B)

0 0 = 0

0 1 1

1 0 1

1 1 0

Table 2.3 – Exclusive OR : XOR Truth table

Later, this limitation was eliminated by stacking multiple Percep-

trons together. This configuration is what we call Multi-Layered Percep-

tron (MLP). The layers between the input layer and the output layer is

what we call the hidden layers. in the human brain there exits 1011 neu-

rons of 20 types

Figure 2.12 – simple MLP example

Example MLP.
We will use an MLP example as represented in Figure 2.12 throu-

ghout this section in order to illustrate the basic principles behind MLP.

The MLP is a 3-layered ANN, with two input units and one output.

The hidden layer is composed of three units. The link between each neu-

ron is refered to as a synapse.

More formally, the synapses parameters are termed weights W . W (1)

and W (2) refer to the weights of the MLP’s synapses of the first and se-

II. SUPERVISED MACHINE LEARNING 23

cond layer respectively.

X =

X

(1)
1 X

(1)
2

X
(2)
1 X

(2)
2

· · · · · ·
X

(n)
1 X

(n)
2

 (2.3)

, where n is the number of examples.

W (1) =

W (1)
11 W

(1)
12 W

(1)
13

W
(1)
21 W

(1)
22 W

(1)
23

 (2.4)

W (2) =

W

(2)
11

W
(2)
21

W
(2)
31

 (2.5)

Instead of the step function defined previously we used the sigmoid
function as the activation function. We will explain in the learning phase
the reason behind this choice.

The sigmoid function is a function that maps inputs from [− inf, inf]
to values from 0 to 1, [0,1]. it is defined as follows 3 :

f (x) =
1

1 + e−x
(2.6)

Prediction.
The nominal behavior of the ANN is taking the inputs from the input

layers, through hidden layers to the output. This is called the forward
pass. In this section, we will follow/describe this process using matrix
notation along with the resulting matrix shape. The matrix notation are
very helpful in that it summarizes in one line the operations for each
neuron. We used Z and A to refer to the weighted sum and the applied
activation function over the result respectively (if confused see figure
2.12).

From the input layer to the hidden layer :
Multiplying the inputs by the hidden layer weights :

Z(2) = X.W (1) (2.7)

3. see the representation of the sigmoid and its derivative in figure 2.16

24CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

, where X size is (n ∗ 2) and W (1) is (2 ∗ 3), resulting in Z(2) of size (n ∗ 3).
Then applying the activation function :

A(2) = f (X.W (1)) = Z(2) (2.8)

, A(2) is the output of the activation function and the input of the output
and final layer.

Again, the same operation from the hidden layer to the output layer :

Z(3) = A(2).W (2) (2.9)

, where A(2) size is (n ∗3) and W (3) is (3 ∗1), resulting in Z(3) of size (n ∗1).
This means that for each input (i.e. each X row) we get one output.

Applying the activation function :

A(3) = f (X.W (1)) = f (Z(3)) = ŷ (2.10)

, A(3) is the outputed result. We will refer to it as ŷ(i) with i as ith output
corresponding to the ith input (X(i)). In matrix notation ŷ = A(3).

A How machines learn.

The fundamental objective of learning is to generalize. This means
that the algorithm should obtain good performance not only with res-
pect to the training examples but also over new samples never seen be-
fore.

Conceptually, we splitted the two concerns into two sections. (1) Ob-
taining good performance over the training set and (2) generalizing to
new examples. For sake of completeness and simplicity, we dedicate this
section “How machine learn“ to the first point. We will then tackle the
second point in section ??. Notice that the (1) and (2) are fundamentally
opposed. improving (1) hinders (2) and vice-verca. More details on this
point later in this chapter.

Machines learn by finding a function f that maps the outputs y to
the input x with the minimun error possible. In other words, learning is
akin to optimizing a cost function. To this end, we define for each pair of
output, label, i.e. (y(i), ŷ(i) = fθ(Xi)) a loss function. The loss function mea-
sures the distance between the label (expected value or ground-truth)

II. SUPERVISED MACHINE LEARNING 25

and the outputted value. Typically, a loss function is defined as the squa-
red difference between the two values as follows :

Loss
(i)
θ = Loss((ŷ(i), y(i))) = (fθ(Xi)− y(i))2 (2.11)

From the loss function, we determine the cost function which is a more
general term than the loss function. Learning from data means minimi-
zing the cost function. Often, the cost function is computed by avera-
ging over the losses of all the training examples. This is called the Mean
Squared Error (MSE).

MSE(θ) =
1
N

n∑
i=1

Loss
(i)
θ = J(θ) (2.12)

, the cost function is usually refered to as J(θ)
Back to our linear regression example, in order to compute J(θ) we

should start with an initial θ set (or coefficients). We can initialize these
coefficients randomly, then proceed in tuning them to reduce J(θ) to its
minimum.

Gradient Descent (GD).

Figure 2.13 – Gradient Descent

We have described in equation 2.13 a method to compute the cost
function. Now, we would like to try different θ parameters to find the
optimal J(θ). Trying all the possible model parameters might seem sen-
sible, however, the curse of dimensionality prevent us from doing so,

26CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

because of the large explosion of all the possible combinations. A more
practical strategy is to compute the cost function derivative to find the
direction that decreases the cost. This optimization method is called
Crandient Descent (GD) A key parameter in this phase is the leanring
rate or the step size (α in figure 2.14). if the step size is too small, the
algorithm may take a long time to converge (figure 2.14 left). Conversly,
if the step size is too large the algorithm might bounce from one end to
another without converging (figure 2.14 right).

”It simply starts at an initial point and then repeatedly takes a step
opposite to the gradient direction of the function at the current point.
The gradient descent algorithm to minimize a function f (x) is as fol-
lows :”

Algorithm 1: Gradient Descent algorithm

Data: Get the training data, DT rain
Result: Return optimal model parameters θj

1 initialization;
2 θj = 0;
3 repeat
4 read current;
5 Update. θj := θj − η.∇θJ(θ0,θ1) (f or j = 0 and j = 1)
6 until Convergence;

, with η asthe step size and ∇wJ(θ) as the gradient
GD is an iterative optimization technique that starts at some initial

points (i.e. θ), it changes w so that the cost function value decreases,
guranteeing the lowest error. The gradient of the cost function comes in
handy, because it allows us to determine the slope of the function, it is
very practical when working in higher dimensions in order of hundred
of thoudands. The GD has two hyperparameters ; namely the step size η
and the number of iteration T .
η determines how the aggressive is the algorithms moves if it is set

too low or too high see figure 2.14.
T is the number of iterations. each iteration requires going over all

training examples - expensive when have lots of data ! Another problem
is that it is slow.

GD is slow. There exists many optimization algorithm such as Sto-
chastic Gradient Descent that instead of taking the gradient of the cost

II. SUPERVISED MACHINE LEARNING 27

function it uses the gradient of the loss function. SGD updates the weight
based on each single example (x,y) instead of all examples. Empirically,
SGD performs as well as GD in on epass over all the example as GD in
10 epochs[].

Other optimization method exists, we refer the reader to xxx [] for
more details.

MSE(θ) =
1
N

n∑
i=1

Loss
(i)
θ = J(θ) (2.13)

Figure 2.14 – Gradient Descent with a learning rate too small and too large

28CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

Figure 2.15 – Optimizer comparison

”In addition to local minima and the (rare) possibility of getting stuck
at a saddle point, there are other issues that should be taken into consi-
deration.

For example, if the step size tk remains large, it may lead to an oscil-
latory behavior that does not converge.

Another issue is that, depending on the function and starting point,
gradient descent could continue indefinitely because there is no mini-
mum. Consider for example minimizing ex : there is no finite x for which
d
dxe

x = 0. Other functions could have such asymptotic minima but also
a global minimum of lower value ; gradient descent, depending on its
starting point, might forever chase the asymptote, unaware of the true
answer elsewhere in the search space.”

The case of the ANN.
The perceptron training algorithm was inspired by Donald Hebb in

[21]. Hebb proposed a theory that explains the learning process in the
brain. The idea was later summarized as “Cells that fire together, wire
together“, this means that in the learning process, the neurons that are
stimulated together reinforce their mutual connection. ANNs are trai-

II. SUPERVISED MACHINE LEARNING 29

ned using a similar approach, more specifically, for each wrong pre-
diction, the training algorithm reinforce the weights that would have
contributed to the correct answer. More formally we write :

perceptron learning rule
w(new) = w(old) + ep
ep = t - a
In the literature, researchers have struggled for many years to train

the MLP. In 1986, D. Rumelhart et al. [22] introduced backpropagation
algorithm. Rumelhart et al. tackled the XOR problem upfront and de-
monstrated that with their procedure the network can learn to solve the
XOR. Backpropagation caused the second resurgency of connectionism

For each training instance, the ANN computes the output this is cal-
led the forward pass. Then the algorithm computes the distance between
the expected output and the output. Then, calculate the contribution of
hidden layer to the overall error. By propagating the error from the out-
put layer to the hidden layers and to each neuron in the hidden layer.
Then it modifies the weight in the opposite direction of the gradient for
each neuron. More specifically, it propagates the error gradient back-
wards, thus the name backpropagation. Rumelhart et al. remplaced the
standard step function with the logistic activation function s(z) in order
for the backpropagation to work. The standard step functions contains
only constant values, the derivative is then always null and cannot be
used to compute the gradients as in Figure 2.16 in red. Whereas the Lo-
git function has nonzero derivatives see figure 2.16 green

In order to simplify the backpropagation algorithm we will continue
with our small MLP of one hidden layer :

Training of the ANN.
It means to optimize the network weights θ1

ij ,θ
2
ij) in order to mini-

mize the cost function J(θ). In this paper, the Backpropagation algo-
rithm is used to train the ANN. For each training vector x((i)) and label
vector y(i) :

J(θ) =
N∑
i=1

1
2
.(ŷ − y)2 (2.14)

, the 1
2 term is added to simplify calculations later on.

30CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

In order to apply Gradient Descent algorithm we should compute the
cost function gradients with respect to W (1) and W (2) :

dJθ
dW (1)

=

dJθ

dW
(1)
11

dJθ

dW
(1)
12

dJθ

W
(1)
13

dJθ

dW
(1)
21

dJθ

dW
(1)
22

dJθ

dW
(1)
23

 (2.15)

dJθ
dW (2)

=

dJθ

dW
(2)
11

dJθ

dW
(2)
21

dJθ

dW
(2)
31

(2.16)

Let’s start with dJθ
dW (2) ,

dJθ
dW (2)

=
d
∑N
i=1

1
2 .(ŷ − y)2

dW (2)
(2.17)

Recall rule 1. The sum of the differentiation :

d(U +V)
dx

=
dU
dx

+
dV
dx

(2.18)

For one training example we have :

dJθ
dW (2)

=
d 1

2 .(ŷ − y)2

dW (2)
(2.19)

Recall rule 2. The power rule :

d(Un)
dx

= n.Un−1 (2.20)

Recall rule 3. The chain rule :

dy

dx
=
dy

dz
.
dz
dy

(2.21)

II. SUPERVISED MACHINE LEARNING 31

Figure 2.16 – Activation functions and their respective derivatives

Using rule 2 and rule 3 in equation 2.19, we get :

dJθ
dW (2)

=
d 1

2 .(ŷ − y)2

d(y − ŷ)
.
d(y − ŷ)
dW (2)

= (y − ŷ).
d(y − ŷ)
dW (2)

y = cte⇒
dy

dW (2)
= 0

= (y − ŷ).
−dŷ
dW (2)

(2.22)

From equation 2.10, we have f (Z(3)) = ŷ and using rule 3 :

dJθ
dW (2)

= −(y − ŷ).
dŷ

dZ(3)
.
dZ(3)

dW (2)
(2.23)

we have f (z) = 1
1+e−z and f ′(z) = e−z

(1+e−z)2 see figure 2.16. we replace dŷ

dZ(3)

by f ′(Z(3)) since f (Z(3)) = ŷ.

dJθ
dW (2)

= −(y − ŷ).f ′(Z(3)).
dZ(3)

dW (2)
(2.24)

Notice that in equation 2.24 the term −(y − ŷ).f ′(Z(3)) represents the
gradient error propagated to the synapses in the hidden layers. The mul-
tiplication is interpreted as the weights with highest values get the hi-
ghest blame for the error. This term is usually referd to as the gradient
error δ(3). The step function previously used as the activation function
in the first ANNs does not work in this case since its derivative remains

32CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

null. It is for this reason that the researchers switched from threshold
activation function to the sigmoid see figure 2.16.

For the term dZ(3)

dW (2) , we have from equation 2.9 Z(3) = A(2).W (2). Thus
we have :

dZ(3)

dW (2)
=
dA(2).W (2)

dW (2)

= A(2)
(2.25)

We replace the terms in equation 2.24 while transposing the A(2) ma-
trix to respect the dimensions :

dJθ
dW (2)

= (A(2))T .δ(3) (2.26)

The matrix transposed and multiplication takes account for all the
training examples. We have (3∗nexamples) for (A(2))T and (nexamples ∗1)
which equals to a (3 ∗ 1) matrix size with 3 as the number of hidden
layers.

The equation 2.26 is propagating the error from the output layer to
the hidden layer. Each synapse gets its share of the error. Next step, we
will show how the error is propagated back from the hidden layer to the
synapses in the input layer. To do so, we will compute dJθ

dW (1) .

dJθ
dW (1)

=
d
∑N
i=1

1
2 .(ŷ − y)2

dW (1)
(2.27)

similarly to dJθ
dW (2) in equation 2.24 we get :

dJθ
dW (1)

= −(y − ŷ).f ′(Z(3)).
dZ(3)

dW (1)
(2.28)

dJθ
dW (1)

= δ(3).
dZ(3)

dW (1)
(2.29)

For the term dZ(3)

dW (1) in equation 2.28, we now from equation 2.9 that
Z(3) = A(2).W (2). Thus, we write :

dJθ
dW (1)

= δ(3).
dZ(3)

dA(2)
.
dA(2)

dW (1)
(2.30)

II. SUPERVISED MACHINE LEARNING 33

We replace dZ(3)

dA(2) = dA(2).W (2)

dA(2) =W (2)

dJθ
dW (1)

= δ(3).(W (2))T .
dA(2)

dW (1)
(2.31)

And we have for the term dA(2)

dW (1) , from equation 2.8, A(2) = f (Z(2)).
we write using rule 3 and insering Z(2) :

dJθ
dW (1)

= δ(3).(W (2))T .
dA(2)

dZ(2)
.
dZ2

W (1)
(2.32)

We have this term dA(2)

dZ(2) = f ′(Z(2)) and dZ2

W (1) = dX.W (1)

W (1) = X
Finally we write :

dJθ
dW (1)

= (X)T .δ(3).(W (2))T .f ′(Z(2) (2.33)

We refer to the term δ(3).(W (2))T .f ′(Z(2) as δ(2) the gradient error pro-
pagated to the synapses in the input layer.

Using equation 2.33 and 2.26, we can compute the Gradient Descent
as follows :

θ1

θ2

 =

θ1

θ2

− η

dJθ
dW (1)

dJθ
dW (2)

 (2.34)

, with η as the gradient step size and Jθ as a differentiable cost function.

B Evaluation

Machine Learning diagnosis : Bias and Variance

Failing to generalize can have two forms. First, not being capable of
learning the complexity of the objective function, termed underfitting
or bias, figure 2.20. Second, learning too much the data characteris-
tics,figure 2.20. A common misconception about overfitting is that the
ML algorithm learns the noise in the data. But serious overfitting can
be caused without noisy data (e.g. maybe give an example, 40th order
polynomial) [14].

34CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

In this section, we will take the example of a classifier that tries to
detect sick patients from a population. we refer to the population size as
N . We refer to the sick patients as P ositive or P and the Healthy patients
as Negative or TN . We set N = 100, and the ground-truth is P = 5,
N = 95. When an algorithm classifies a patient into positive or negative,
we denote Palgo, Nalgo respectivelly.

Figure 2.17 – bias vs variance

The evaluation of ML algorithm aims to assess how good or bad the
evaluation generalizes to new results never seen before. To this end, a
basic methodology in ML is to split the data into two sets, a training set
on which to train the algorithm and a test set that represents new data
on which to test the generalization capabilities.

There exist other techniques to detect and combat generalization pro-
blems, we will discuss them in the following sections. In the case of bias
the algorithm scores poorly on the training data. In the second case, the
algorithm gets a high score on the training set but scores poorly on the
test or valisation data set.

Before delving into how to avoid bias and variance, we will define
common evaluation metrics with examples for each one to demonstrate
the importance of each one.

II. SUPERVISED MACHINE LEARNING 35

Machine Learning diagnosis : Confusion Matrix and others

The first evaluation metric used in ML is the accuracy. The accuracy
is defined as the ratio of the correctly classified classes (i.e. sick and
healthy patients)[23].

accuracy =
Palgo +Nalgo
P +N

(2.35)

One common error for evaluating a learning algorithm is to evaluate
the algorithm solely on accuracy. Accuracy fails to capture the algorithms
performance in skewed classes (i.e. when detecting rare events).

To illusrate this point and introduce the confusion matrix, we will
follow two algorithms.
algobias : This is a biased algorithm that classifies all the examples

as negatives. algotree : This is a decsion tree algorithm that : 2 correctly
detected with cancer, 3 missed, 5 falsely detected with cancer 92%

N=100 algobias algotree
Accuracy 95% 92%

Table 2.4 – Accuracy of the two algorithms

We notice in table 2.4 that the biased algorithm manages to get more
accuracy than the engineered one. This is because accuracy does not pro-
vide the complete view of the classfication performance. The solution to
tackle this issue is the confusion matrix. This method aim to evaluate
the performance of the classfier in term of classification correctness and
error of detection. the confusion matrix relies on some basic key indica-
tors defined in table 2.5.

Basic metrics of confusion matrix Definition

True Positive (T P) Number of samples correctly classified as positive

True Negative (TN) Number of samples correctly classified as negative

False Positive (FP) Number of samples incorrectly classified as positive

False Negative (FN) Number of samples incorrectly classified as negative

Table 2.5 – Basic metrics of the confusion matix

36CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATION

Using metrics introduced in table 2.5 we introduce new metrics : pre-

cision and recall. Precision answers the following question : For all the

patients that we have detected as positive, how many of them are posi-

tive? Recall answers the following question : For all the patients that we

have detected as positive, how many did we miss ?

Figure 2.18 – Classification metrics. Precision and recall

P recison =
T Palgo
Palgo

Recall =
T Palgo
P

(2.36)

Precision and recall are much more precise than accuracy. However,

we would like to have one performance metric in order to compare bet-

ween many algorithms and to sense the overall performance. For this

reason we present F-scorewhich is a combination between precision and

recall as follows :

F − score = 2.
precision.recall

precision.recall
(2.37)

II. SUPERVISED MACHINE LEARNING 37

In light of these newmetrics, we compare between the two algorithms

in table ??.

Accuracy Precision Fecall F-score

algotree 92 0.28 0.40 0.33

algobias 95 0 0 N/A

Table 2.6 – Comparison between the algobias and algotree

We notice that algorithm algobias has better precision than algotree,
however, algobias has a null precision. Based on these new terms we can

draw the following matrix in figure 2.19

Figure 2.19 – Confusion matrix

The confusion matrix is an excellent way to diagnose the ML classi-

fiers. Typically the confusion matrix should be performed over the trai-

ning and test set. It is an efficient way to detect bias or variance pro-

blems. But once this diagnosis step completed, the next step is to resolve

the problem. This is what we will do in the next section.

other technique exists such as cross validation ...

Solutions for Bias and Variance

As mentioned previously, the main obstacle on generalization are

overfitting or underfitting the data (see figure 2.20). A crucial step be-

fore improving an ML algorithm is to detect which type of problem it

exhibits.

38CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

The bias and variance have symptoms that can be detected when im-
plementing the right methdology. in this section we will go through
common solutions for these problems. As depicted in figure 2.20 we
classified the solutions into two type : data-oriented and model-oriented
solutions.

bias. The main sysmptom of a model that underfits the data is the
classification performance over the training set. When the model fails to
capture the underlying structure of the data.

Data-oriented diagnosis and solution
Bias can appear because the algorithm didn’t find the input feature

meaningful enough to discriminate the output. For example given a
house size determine the house price. In this example, even the most
complex algorithm can’t discriminate the prices over just the size of
the house. The algorithm can minimize the error, however the optimal
error will still be large. This problem is very simple to detect in low-
dimensions. However, in very large dimensions this might be tricky.
Another varient of this problem is when the algorithm can’t retrieve
meaningful information from the input. Suppose you entered in the
output the house price and a new feature neighbourhood, a string with
four options [′upper ′,′medium′,′ lower ′]. Retrieving sensible information
from this feature is very hard, although possible with sophisticate algo-
rithms such as deep networks.

The solution in this case, is represente the feature differenty, in a way
that is statistically relevant. This can be done by creating dummies va-
riables, creating three new features, namely, upper, medium and lower.
When an input corresponds to a neighbourhood class, set all the fea-
tures to 0 except the corresponding feature, it should be set to 1.

Also talk about combining multiple features together as inputs. for
timeseries one can translate a timestamp to boolean values representing
working days, holidays, working hours etc. The creativity is imporant.

Here put table a example
Another data-oriented error might stem from the number of training

sample. The more features you have the more samples you need. This
grows exponentially following totalpossibilities = 2nf eatures, if the inputs
can take only binary values.

Model-oriented diagnosis and solution

II. SUPERVISED MACHINE LEARNING 39

For bias problem, a possible root cause can be that the model is too
simple, thus cannot capture all the complexity of the data. Suppose
using a linear regression for a non-linear problem. The XOR problem
discussed previously stemmed from the fact that a single perceptron
couldn’t separate non linear data, the solution was to improve the mo-
del using the MLP.

In the case of Logistic regression, one could increase the degree of the
polynomial etc.

overfitting. The main sysmptom of a model that overfits the data is
the classification performance over the test or validation set.

Data-oriented diagnosis and solution
The algorithm overfits the data when it scores very well on the trai-

ning set and poorly on the test or validation set. Possible cause of over-
fitting can be the drawing few relevent features with many non relevant
features. This is a limitation of many ML algorithms, they cannot auto-
matically determine which are the most useful piece of information 4.
Also overfiting can arise when feeding the algorithm with very correlate
attributes such as patient high and patient footsize. This type of corre-
lated feature should be avoided.

ANother cause can be that the data are not representative of the pro-
blem. In other words, the training data distribution is different from the
typical event distribution. (here maybe add a figure or an example to
explain)

Model-oriented diagnosis and solution
The common model-oriented issue for variance is that the model is

too complex.
There exists many model-oriented techniques that can help combat

overfitting. In this overview of ML we will explore three ones. Regulari-
zation and dropout.

Regularization aims at penalizing complex configurations ...
Dropout is used in the case of ANN, it consists of removing a number

of ANN units...
stochastic gradient descent is preventing overfitting is you stop early.

use validation set to now where to stop.

4. Again deep learning appears as an exception to this rule in the literature.

40CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATION

Figure 2.20 – bias vs variance

Discussion.

Notice that bias and variance have conflicting goals. Solving bias aims

to maximize training score, solving variance problems aims to reduce

the training score.

Figure 2.21 – Machine Learning Diagnostic process

III. UNSUPERVISED MACHINE LEARNING 41

III Unsupervised Machine Learning

In unsupervised learning the training data set DT rain is not labeled.
The most common tasks in unsupervised learning is clustering, anomaly
detection and dimensionality reduction. As such, the learning algorithm
learns to identify and capture the data structure.

A Clustering

Clustering consists in regroup the training data into a small subset
of similar charateristics 2.22. The number of clusters k is defined by the
ML pratitioner. Common application of clustering is for regrouping the
behavior of an oberved system into classes so that we can later reason
about these classes. For example, clustering buying behavior in a super-
market, website visitors so that the advertisment can ...

There exist many algorithms for clustering, among the most common
are k-means, t-SNE, HCA for Hierarchical Cluster Analysis.

Clustering can also be used in conjenction with supervised leartning,
what we call semi-supervised learning. when we have only few labeled
data clustering can come in handy to propagate the similar labeled data
to all the unlabeled data in the same cluster.

Finally, clustering algorithms can also be used for visualisation pur-
poses. for example in figure 2.22. In this example the original data have
been transformed from 156 to 3 dimensions.

42CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

Figure 2.22 – Clustering example

B Anomaly Detection

The main idea of anomaly detection is to learn the system base line.
Then, Any new data observed that is not bound in this base line is consi-
dered as an anomaly. Thus it is critical to careful when defining the base
line. The observed ‘normal‘ data should be representaive of the system
behavior. The distance or deviation (usually standard deviation σ) from
the base line (usually mean µ) can be used to express the probability that
this new observation is an anomaly.

C Dimetionality Reduction

In statistics and machine learning dimensionality reduction is the
process of reducing the number of random variables under considera-
tion for the study problem [24]. The objective of the process is to reduce
the set of principal variables. This process is considered as either feature
selection technique or feature extraction method [25].

The most used algorithm is Principal Component Analysis PCA [26]
based on eighen decomposition. PCA executes a linear mapping of the

III. UNSUPERVISED MACHINE LEARNING 43

data from the initial dimension to a lower-dimensional space, while

maintaining the data variance the low-dimensional representationmaxi-

mal. Dimentionality reduction can be critical to visualize and unders-

tand data originaly represented in high dimension space, by represen-

ting it into 3 or 2 dimension space.

Other algorithms based on neural networks can be used to capture

data charcteristics such as autoencoders and Boltzmann Restricted Ma-

chines. Autoencoders for example (represented in Figure 2.23), are used

to learn the encoding (i.e. the representation) of a set of inputs X for the

goal of reducing its dimesion.

Figure 2.23 – Shemetic structure of an autoencoder with one fully connected hidden

layer.

Similar to the MLP depicted in figure ??, the autoencoder 2.23 has an

input layer, an output layer and one or more hidden layers connecting

them. The output layer having the same number of nodes as the input

layer, and with the purpose of regenerate its own inputs X, instead of

predicting the target variable Y .
An autoencoder always consists of two parts, the encoder and the

decoder, which can be defined as transitions φ and ψ such that :

φ : X→ F (2.38)

44CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

ψ : F→ X (2.39)

φ,ψ (2.40)

The dimensionality reduction reduces significantly the time and space
capacity necessary to store the data. Moreover, it can remove the multi-
colinearity in the data set (i.e. different features describe the same phe-
nomena, e.g. height and hand size) this improves the performance of the
manchine learning algortirhms.

IV Deep Learning

For long in the ML researchers taught that training a deep neural
network is hopeless since the 1990s 5 [28, 6]. But in 2006, Geoffrey E.
Hinton et al. demonstrated that it is possible and proposed a Deep ANN
called Deep Belief Networks (DBN) [29]. They demonstrated that DBN
could achieve more than 98% precision on handwriting digits. Since
then, the research community became more aware of the potential of
Deep Learning (DL). The key drivers for such techniques is : (1) The de-
velopment of programmable parallel processors, i.e. GPU 6 [30] and (2)
the availability of huge amount of data.

The success of DL extended to new domains with state-of-art perfor-
mance. From molecular biology, speech and image recognition to self-
driving cars [16]. There is no consensus in the literature with respect
to the definition of DL. Common definitions state that deep ANNs have
more than 2 hidden layers others talk about more than 10 hidden layers.
The most successful types of DL algorithms are Deep Neural Networks
(DNN), Convolutional Neural Network (CNN) for image classification,
Deep Belief Networks (DBN) and Stacked Auto-Encoder (SAE). These al-
gorithms surpassed most existing ML algorithms in image recognition,
Natural Language Processing and Voice recognition among others.

5. Y. Lecun used deep convolution networks with success at this time, although it was specific to
image recognition and didn’t generalize to other domains [27]

6. GPUs use hundreds of parallel processor cores executing tens of thousands of parallel threads

IV. DEEP LEARNING 45

A How Deep Learning is different?

The accuracy and performance of ML algorithm depends on the choice
of their feature representation. It is for this reason that efforts are focu-
sed on finding the optimal preprocessing and transformation techniques
to feed the ML algorithms. Usually, humans intervene at this stage to
engineer manually the best representation of a given feature. This hu-
man intervention compensate for the weakness of ML algorithm into
finding for theselves the best possible data representation. As such, DL
is considered among the most promising techniques for making the ML
algorithms less dependent on human ingeniuety. DL can court-circuit
human intervation due to its ability to construct high-level abstraction
of the inputs in the deeper layers [15].

The more neurons we add the number of the connexions grow expo-
nentially, the amount of compuatation grow exponentially. The advan-
tage of ANNs and deep ANN over other ML algorithms is the distributed
representation, with multiple levels : having exponential gain for ma-
chine to represent well. very large networks can generalize pretty well !
But it needs a lot of labeled data. The DL is a strong algorithm to match
complex data pattern. However, it suffers from some problems such as
vanishing gradient and overfitting. We will discuss these concerns brie-
fly below.

B Exploding/Vanishing gradients problem

As discussed previously, the backpropagation algorithm works from
the output layer to the input layers. It propagates the error gradient
on each neuron. The algorithm then computes the gradient of the cost
function with respect to each parameter in the network.

The vanishing gradient problem occurs when the gradients became
smaller and smaller for each iteration. This can block the algorithm from
converging to a good solution. Often, the opposite problem occurs, cal-
led exploding gradient. In Figure 2.24, the sigmoid function is depicted.
We can notice at the edge, when the inputs became larger and larger,
negative or positive, the sigmoid function saturates at y = 0 or y = 1
with du

dt ≈ 0. Hence, the backpropagation algorithm at these points has
no gradient to propagate back to the lower layers.

46CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATION

Figure 2.24 – Saturation

ReLU (equation 5.9 and Figure 2.25) : ReLU is consider as ”new” non-

saturating activation function, its gradient is either 0 for inputs < 0 or

1 for inputs ≥ 0. This means that when using many layers it just multi-

plies the gradients by 1. This reduces the likelihood of vanishing or ex-

ploding gradient problems. For this reason, ReLU outperfoms the other

activation functions is Deep NN. [31] when it is trained in a single global

training, i. e. not using the ”freezing training process”.

RELU (x) =

{
0 for x < 0

x for x ≥ 0
(2.41)

Figure 2.25 – RELU activation function

IV. DEEP LEARNING 47

C Regularization

As discussed in section B, overfitting is a common problem in ML.
However, in DL overfitting is the main issue, due to the large numbers
of neurons (hundreds of thousands). With all these parameters the net-
work can fit a multitude of complex data sets. This flexibility is what
makes the DL prone to overfitting.

Fortunately, there exist techniques to prevent the DL algorithms from
overfitting. In the following sections we will discuss the Early stopping
and dropout methods because they were used in our proposal. Other
techniques exists such as data augmentation, l1, l2 regularization and
max-norm regularization [6].

Early Stopping : Early Stopping consists of saving the multiple co-
pies of the network for each performance. Then select the copy of the
network with the best performance on the training and test set.

Dropout : Dropout was introduced by G. Hinton in 2012 [32]. and ex-
plored more by N. Srivastava [33]. Dropout consists to give each neuron
a probability p to be temporarily droped. This means that it can be deac-
tivated during this training step but active in the next step. Dropout are
considered a very powerful regularization technique with increase in
performance going from 5 to 3 % [33].

In DL algorithms regularization is an important step to reduce over-
fitting. The key to succeed in this phase is to combine multiple regula-
rization technique in an iterative manner.

D RNN

Recurrent Neural Networks (Figure 2.26) are a special type of ANNs,
where the output of the node is redirected to the input. The next input
is added or multiplied by the previous output, this means that the next
steps depends on the previous step. However, RNNs suffer from long-
term dependencies caused by fading error signals during the training
phase, hence the invention of the LSTM [34]. LSTMs are designed to
avoid the long-term dependency problem. Their default behavior is to
remember information for long periods of time.

The main building block of LSTM is the LSTM cell as shown in fi-
gure 2.26 has the property of controlling the amount of information it

48CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATION

can remember. This property is materialized by three gates inside the

LSTM cell :

— it : The input gate.

— ft : The forget gate.

— ot : The output gate.

𝑔 𝑐𝑡

𝑜𝑖

⊙ ⊙

⊙

𝑓 Forget gate

Output gateInput gate

Input
modulation

gate

Cell

𝑙
𝑡

𝑙
𝑡-1

𝑙
𝑡-1

𝑙
𝑡-1

𝑙
𝑡-1

𝑙-1
𝑡

𝑙-1
𝑡

𝑙-1
𝑡

𝑙-1
𝑡

Figure 2.26 – LSTM Cell : The element wise multiplication is key for LSTM cell, hel-

ping the preservation of constant error when backpropagating the error. The forget

gate is an identity function, when it is open the input is multiplied by 1.

These gates are responsible of the flow volume of data that passes

through the LSTM cell. More formally, for time step t, and xt as input,
the flow that passes through the LSTM cell can be written as follows :

(1) gt = ψ(Wg · [ht−1,xt] + bg)

(2) it = σ (Wi · [ht−1,xt] + bi)

(3) ft = σ (Wf · [ht−1,xt] + bf)

(4) ot = σ (Wo · [ht−1,xt] + bo)

(5) Ct = ft 	Ct−1 + it 	 gt
(6) ht = ot 	ψ(Ct)

(2.42)

, where ψ is the tanh function, 	 is the element wise multiplication, σ
is the sigmoid function, W is the weight of the gate, [] represents the

concatenation operation.

LSTMs improve significantly what we can accomplish with RNNs.

The next step in the LSTM research will focus on attention. Researchers

V. MACHINE LEARNING LATEST CHALLENGES 49

suggest that RNNs can successfully describe images providing automa-
tic captions. For example, Xu, et al. [35] explored how LSTM can be used
to describe images. Other very promising RNN research are focused on
the improvement of existing algotirhms such as Grid LSTM [36], Image
generation [37] and stochastic RNNs [38].

V Machine Learning Latest Challenges

Many scientists consider that ML was born as engineers fail to repro-
duce human scale intelligence on machines[9, 39]. Researchers discove-
red that complex human tasks are simpler to program on machines than
simple human tasks. With hindsight, we should remember that the ulti-
mate goal for AI research is to reproduce a general-purpose intelligence.
However, we are still far from achieving this goal. In this section, we will
discuss current ML challenges and research direction for a more holistic
and qualitative intelligence.

A Machine vs Human Learning

The first challenge we see in ML is the gap between the current ML
techniques and human cognitive abilities. Humans learn with few la-
beled example and can generalize easily. Moreover, we can reuse one
learned knowledge across domain, this is called transfer learning.

Labeled data

Recent success of deep leanring in image recognition is based on huge
amount of labeled data. The labeled data are costly and usually requires
manual labeling. it is difficult to get many labeled data for many real
world problem. In fact, humans learn by observing the world categori-
zing objects learning their name then generalizing to other similar ob-
jects. Human babies learn to regonize object with only limit labeled data.
Based on few examples, they can generalize well. In the ML research a
promising field for solving this challenge is semi-supervised learning. It
is the combination of unsupervised leanring and supervised learning.
the unsupervised learning algorithm captures the data characteristics
and then generalizes using few labeled data to similar data structure. A

50CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

successful application of this technique was the Deep Belief Network
(DBN), where reseachers stacked multiple Restricted Boltzmann Ma-
chines (RBM) to capture the data structure then used a softmax layer
to train the network on fewer labeled data [40].

The second gap between human and machine learning is the ability
of humans to ignore irrelevant features and data. Humans are bomba-
red by data. Every seconds, through different perceptual channels, ho-
wever we managed to utilise only the necessary information. ML algo-
rithms fall short in identifying relevant information, this causes (as we
have seen before) overfitting. The most promising ML research in this
direction is deep learning, however the training time is very expensive
even on GPUs. Ultimatly, unsupervised learning will constitute the ma-
jor progress or even the next breakthrough, since the majority of data on
the internet is unlabeled. The research in new techniques of unsupervi-
sed learning with complex reasoning might yield the greatest benefit
[16].

Transfer learning

The general-AI optimism was revived with the recent success of deep
learning. However, machines are still too narrow, specializing on a single
task, failing to generalizing across domain. This is one of the biggest
challenges in ML. Neural networks can learn using a huge amount of
labeled data to discriminate dogs’ pictures but they need another huge
amount of labeled data to classify cats. Each time the learning should
start from scratch. Generally, ML do not have the ability to generalize
inter-domains. In recent years, transfer learning has emerged as a new
learning approach to address this problem [41]. Most existing transfer
learning algorithms so far tackles the generalization across different do-
mains. Some promising work have been done using higher level ANN
learned features to retrain more rapidely on other tasks [42, 43].

B Scalable Machine Learning

Distributed Learning

Most ML algorithms learn in a centralized fashion. The best ANNs are
trained on one computer using one or multiple GPUs. However, many

V. MACHINE LEARNING LATEST CHALLENGES 51

real world problems are distributed by nature. Thus the need for (1) new
distributed ML algorithms that can run on different machine distribu-
ted across the network and (2) more sophisticated way to process huge
amount of data efficiently. ML algorithm should manage distributed re-
sources and utilize many computers working together to solve a given
problem. Some early works have proposed a way to train multiple small
ANNs across devices that rivals the performance of deep networks in
[44]. Also design system such as HADOOP or Spark MLib can constitue
a first basis for such a system.

Acting in the world & Training time

The next challenge and recent trend in deep learning is in applying
it for reinforcment learning. Reinforcement learning consists of a lear-
ning agent that interacts with world and learns from experience. Once
it undersands the world, it should be able to perform new things. How
a learning agent can discover good representation about the world, how
the agent can learn to control its world. like babies do. The second chal-
lenges is the existence of high range of possibilities.

Working in high dimensions

The curse of dimensionality is a termed coined by R. Bellman in 1961.
Bellman noticed that for many ML algorithms that work well in low di-
mension became intractable in higher dimensions [45]. This issue mate-
rializes in ML by the fact that generalization becomes exponentially dif-
ficult to obtain when with increasing the number of features[14]. Let’s
say we have 20 features as integers between 0 and 9, and a training set
of 1million. The total size of all the possible combinations is 1020 =
1014Million. The training data corresponds to 106

1020 ∗ 100 % The pro-
blem gets worse if we add additional features that additional irrele-
vant features. The classifier gets confused and become equivalent to a
random guessing algorithm. Moreover, adding more features that are
correlated with each other (say height and arm length) decreases the
overall performance of the ML algorithm. In our work as we will see
in next section, the most difficult problem we face in high dimensions
is that the human intuition fails to follow. Thus, impeding us to adopt

52CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATION

and propose relevant solutions and improve the algorithm performance.

Fortunately, there is techniques to reduce dimensionality. And also for

many problems the data are not spread uniformly across all the possible

space range. For example for digit recognition, the relevant patterns are

concentrated in a lower-dimension space.

in Learning, the curse of dimensionality materialized by the fact that

moving downhill using gradient descent entails that in all the dimen-

tion space all the slopes should go donwhill which is exponentially less

probable. The probability of the dimensions curve down becomes expo-

nentially smaller Moreover it is impossible for hummans to visualize the

landscape beyond 3 dimensions. For example optimizing an ANN over

10.000 or a million dimension is conceptually challenging

Machine Learning System Design

Research in Machine Learning applied to the real world scenario is

empirically based and is an iterativaly based 2.27. The first step is to

conceptualize an idea and the design of the Machine Learning system.

Once the idea and brainstorming done, the implementation and deve-

lopment is performed. Then, the experimentation phase to assess the

global performance and accuracy. Once this cycle completed the first

iteration

Figure 2.27 – The process of ML research

VI. MACHINE LEARNING FOR NETWORK MANAGEMENT 53

VI Machine Learning for Network Management

In the literature, there is a large consensus on the necessity to inte-
grate ML and Artificial Inteligence (AI) onto the network management
process. Surprisingly, this is not a new trend. The first implementation
of AI for network management dates back to the late 1980s. Since then,
the AI integration in network management went through different stage
of evolution that we will describe in this chapter. Usually in the lite-
rature, works targeting ML for SLA management targets specific as-
pect of network management, for example network performance [46,
47, 48, 49], configuration management [50, 51, 52, 53, 54] or traffic
classification[55, 56, 57]. In this chapter, we regrouped all these puzzle
pieces together forming a holistic view on ML for network and SLA ma-
nagement.

In the last decade, the network users’ expectations and network com-
plexity grew immensely while operators seek to decrease their mainte-
nance cost. ML emerges as a natural solution, especially with its recent
successes. Additionally, we zoomed on what we consider a very promi-
sing ML algorithm for SLA management, namely deep learning [16]. We
present the specificity of deep learnings for network management, it po-
tential and its main challenges and research directions.

One of the biggest challenges when applying ML for network ope-
ration and control is that networks are inherently distributed systems,
where each node (i.e., switch, router) has only a partial view and control
over the complete system. Learning from nodes that can only view and
act over a small portion of the system is very complex, particularly if
the end goal is to exercise control beyond the local domain. The emer-
ging trend towards logical centralization of control, brought by SDN,
will ease the complexity of learning in an inherently distributed envi-
ronment.

Moreover “softwarization“ of the network and current network data
plane elements, such as routers and switches, are equipped with impro-
ved computing and storage capabilities. This has enabled a new moni-
toring solution, commonly referred to as network telemetry [3]. Such
techniques provide real-time packet and flow granularity information,
as well as configuration and network state monitoring data, to a centra-

54CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

lized Network Analytics (NA) platform. In this context, telemetry and
analytics technologies provide a richer view of the network compared to
what was possible with conventional network management approaches.

The self-driving network is defined as one where (1) network measu-
rement tightly integrated with the control of the network ; and (2) net-
work control relies on learning from large-scale data analytics of the en-
tire networked system, as opposed to individual protocols. Many recent
initiatives have stated this high-level goal [58, 1, 59, 60].

Recent initiatives for using recent advance in Machine Learning for
network managemend. : inspired by self-driving cars, Self-Driving Net-
works [58] by Juniper Networks. Other initiatives such as cognitive net-
work management inspired from IBM’s autonomic systems [1]. We no-
tice that the general literature is aware of the necessity to enable the
network to run it self [59]. Another noticable project COgnition-BAsed
NETworkS (COBANETS) [60], inspired by the nervous system the based
on advanced machine learning techniques, in particular unsupervised
deep learning and probabilistic generative models, along with network
optimization in combination with SDN technology. Knowledge Defined
Networking (KDN) [61] is another initiative for cognitive-based mana-
gement based on the pioneering work of D. Clark [62] that relies on Ma-
chine Learning (ML) and cognitive techniques to operate the network. In
all of these projects, authors advocate the use of the centralized control
offered by SDN, combined with a rich centralized view of the network
provided by network analytics solutions. The KDN also focuses on the
challenges posed by the NFV resource-allocation problem.

In this chapter, we will discuss the application of ML to for an au-
tomated network management. In the literature, multiple facets of the
network management (i.e. FCAPS [63]) were tackled, we summarize the
applied techniques in table B.

These constitutes the complementary pieces to a fully automated au-
tonomic network. The principal contributions in the subsequent sec-
tions are :

1. We peresent a brief history of the application of AI and ML for net-
work management.

2. We show how ML techniques have been used to realize cognitive
management foreach of the FCAPS (Fault, Configuration, Accoun-

VI. MACHINE LEARNING FOR NETWORK MANAGEMENT 55

ting, Performance and Security) management domains.

3. We review the latest initiatives to realize self-managed networks,
namely autonomic management, self-driving networks and COBA-
NETS.

4. We examin the opportunities and challenges related to using ML
for the management management.

For many years, the researchers have been working on multiple pieces
of this puzzle, from predictive analysis of network performance [64, 65]
to intrusion and anomaly detection algorithms [66, 67]. We notice that
the state of the art contains different answers that lays the foundation
for this ambitious goal. In this section we will start by a brief history of
Machine Learning and Network management combined. Then we will
review the literature of cognitive network management.

A Machine Learning for Network Management a Brief History

In the literature, we found that AI for network management is not a
new thing[68, 69, 70, 71]. In the late 80’s, when networks started gro-
wing in complexity [72], researchers proposed AI-based techniques to
handle this growth. Up to our knowledge, the first project that tack-
led AI for network management is the IRMA-LAN 7 project, which ai-
med at assessing the impact of AI for network management in 1988[69].
The AI system managed a simulated LAN network using causal mo-
dels and deep reasoning on the network configuration. Already, resear-
chers pointed network management fields that can benefit from AI, na-
mely, fault detection, fault diagnosis, fault recovery, fault prevention
and fault prediction. In the late 80’s, AI was seen as having practical
value for managing the expected network growth for the next decade.
Techniques that have been used are knowledge-based systems, heuris-
tic search techniques and in some cases neural networks [73] K. D. Ce-
bulka et al explored more in detail the potential of AI for network ma-
nagement. They classified the use of AI into three broad categories :
Knowledge-based (expert) system techniques for provisioning manage-
ment, heuristic search techniques(genetic algorithm) for network design
and neural networks for performance and reliability management and

7. Intelligent Resource Management for Local Area Networks

56CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATION

fault detection (they pointed out that ANN can help anticipate problems

in the network). The SLAmanagement in this work was clearly exploded

into the FCAPS. They pointed out the lack of general guidance for choo-

sing ANN parameters Generally, we notice that early ML for network

management focused on the use of Expert Systems (ESs) [68, 69, 70, 71]

After that, a multitude of studies addressed network management using

ML. We classified them into use cases that are considered as the buil-

ding blocks for SLA Management. After this pioneering work, a multi-

tude of research activities started to tackle network management issues

using ML. Predominantly, the studies were on traffic/flow classification

and security management. And most of the researches were based on

k-means, decision trees and SVM.

Machine Learning

Network Management

Years A.D. (70)

1947 2017

Post transistor eraPre transistor era

'83'64 20001750

First ML program
& ANN

Voltaire
Animal-Machine

Leibnitz

'51

Pionieer
Neuroscience
Work

'43 '59

Development of
transistor at Bell labs

ML term coined
by Arthur Samuel

'73'66

ARPA launches
ARPANET

This major invention led to
the development of
electronic computers

ARPANET is considered
as the ancestor of global
Internet

Licklider, first ideas
of inter-computers
communication

TCP/IP standard
in ARPANET

'70 '90

Emergence of
first ISPs in
the US

The birth of the
WWW

'09

Emergence of
Cloud Computing

'12

Connecting serveral
US universities

'88

Pioneering AI-based projects
for network management

'06

Autonomic Network
Management

Based on IBM's
Autonomic computing
model introduced in 2001

IRMA project and AI-based
network management [x]
anticipating the next decade 1990s
of complex network management

VOIP

'95

First NFV
white paper

FCAPS model
by the ITU-T

SNMP for TCP/IP
by the IETF

ONF for SDN

WSLA [x]

Knowledge
plan [x]

'03 '14

5G

Backpropagation
algorithm for ANNs

Deep
learning

Bayesian
Networks (BN)

Q-Learning (RL)

Deep Reinforcement
Learning (AlphaGo)

First GPU
(Nvidia)

'99

Bayes theorem

Nearest neighbor
algorithm created

Limitation of
perceptons

Minsky and Papert pointed
that perceptrons cannot
solve non linear problems
creating the first AI
pessimism era (winter)

RNNs

SVM

LSTM

'97

Google opensources
Tensorflow

'15

Decision tree
(ID3)

'86

FCAPS is a functional reference model
for network management introduced by
the ITU-T.

Figure 2.28 – The evolution of machine learning and Network Management

VI. MACHINE LEARNING FOR NETWORK MANAGEMENT 57

B FCAPS Management

Managing SLA targeting network performance involves reacting on
short timescales to network changes. In order to provide acceptable per-
formance for some services the management system should understand
the relationship between the service level metrics and the system level
metrics such as in [74]. SLA management in this context is particularly
useful to determine the exact network state providing acceptable per-
formance for some users and applications. The common objective for
using ML in performance management is prediction of data traffic and
throughput for proactive management [75, 76, 77]. In [76] authors used
multiple algorithms for throughput prediction such as ANNs, SVMs
and linear regression. Researchers tackling performance management
also focuse on Quality-of-Experience (QoE). The authors in [78] esti-
mated the evolution of QoE parameters for applications by monitoring
network parameters. Similar concerns have been raised for Software-
Defined Networking for Application Performance [79]. In NFV context,
Chen Sun et al. [80] proposed and SLA-aware solution for NFV frame-
work focused on the performance e.g. latency and throughput. Their
solution comprises an accelerated data plane, SDPA (Software and hard-
ware packet acceleration technologies), coupled with a performance-
aware service chaining algorithm in the NFV orchestrator to fulfill both
functionality and performance requirements with respect to SLAs. A
common recurring theme in performance management is network traf-
fic classification [81, 82]. Current ML method for traffic classification
are based on supervized learning and unsupervized learning. K-means,
ANNs, SVMs and other ML algorithms are used to cluster the network
traffic application based on similarity between them. Moore et al. [83]
use Bayesian algorithms with 248 features per-flow features for classi-
fication. They reached accuracy of 95%. In the literature, the majority
of methods are based on supervised learning methods. Other works rely
on unsupervised clustering instead, for classifying data flows without
labels. For example, Hochst et al. [84] used autoencoders to cope with
the varying delay and bandwidth mobile applications. They detected 7
different classes of mobile traffic flows. The traffic classification is im-
porant because the classified traffic can be then redirected for specific
processing, e.g. browsing, download, livestream, etc. Recent work targe-

58CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

ting traffic classification in NFV discussed in [85]. The authors propose
a NFV framework called vTC to dynamically instantiate and chain the
constituting modules to realize adaptive learning approach in response
to the dynamics in network flows.

In the literature, configuration management is usually approached
using Reinforcement Learning (RL) approaches. Reinforcement Lear-
ning is a ML technique that is based on a Learning agent that acts on its
environments and tries to optimize its decision based on a utility func-
tion. A pioneering work in 1994 tackling the problem of routing oprimi-
zation [86] using RL techniques. Manually changing the netwrok state
is a cumbersome task, prone to error and implausible in large virtuali-
zed networks. Other researchs [50, 87] successfully used Q-learning a
RL algorithm to autonomously reconfigured network systems for adap-
tative routing. Xu et al. [54] proposed a unified reinforcement learning
approach to automate the configuration processes of VMs in the Cloud.
RL have also been used for resource allocation management [51, 53] and
for adaptive routing in SDN [52].

As the network became more complex, researchers turned their back
from Expert Systems (ESs) towards statistical and ML methods. Pon-
ting out that ESs can’t handle new situations and changing data, can not
learn from experience, and require extensive updates. From early 1990s,
researchers argued that ANNs and Bayesian Networks (BN) are essential
for network fault management []. ANNs are appropriate for pattern ana-
lysis and matching, their ability to approximate any continuous, nonli-
near function and their ability to handle missing data, while BN can
handle uncertainty and represent causality relationships. For this rea-
son BN can be effective for automated fault diagnosis which is essential
for Root Cause Analysis (RCA). Contrary to ANNs, BNs require expert
knowledge and domain knowledge about the network topology and ele-
ments and faults and meta-knowledge, which is the description how
to diagnose a network error[88]. We notice than ANNs for fault ma-
nagement in computer networks stemmed from previous researchs on
fault detection in aerospace and chemical process [89]. Pioneering works
using ANN for network fault management in early 1990s [90, 91, 92]. R.
Patton et al. [90] used ANNs for alarm correlation. They used ANN to
predict future system behavior. The ANN learned the normal system

VI. MACHINE LEARNING FOR NETWORK MANAGEMENT 59

behavior, when the system diverge from the ANN prediction a second
ANN is triggered to analyse the residual signal and identify the ano-
maly category. Deng et al. [93] used BN to tackle fault diagnosis. SVM
are used for fault diagnosis in distributed environment [94]. In the li-
terature, we notice that BN are also used for Fault Diagnosis in SDN
environments [95].

Security management approach based on ML techniques consists mainly
of pattern detection of well-known observed threats. Thus, the main di-
sadvantages of this approach is that it can not detect unseen patterns. To
Answer this challenge, researchers turn to anomaly detection detection
technique were algorithms focus on the nominal behavior of the system
flagging as red any datapoint that deviates from the baseline. Recent
years, there have been a significant advance in the application of ML to
intrusion detection and anomaly detection. Many researchers have de-
veloped specific learning algorithms to anticipate and detect network
attacks based on analysis of monitoring data. Examples are, DoS attacks
detection using decision trees [96]. C. Sinclair et al. [66] were concer-
ned by managing security, more specifically detecting network intru-
sion. They used decision trees and genetic algorithms to create “if - then
-“ rules for an intrusion detection system based on application name
and port number. Deep learning technique also showed promising re-
sults for intrusion detection [67]. Authors justified the use Deep Learing
algorithm because it can detect high level abstract features in encrypted
traffic. A common obstacle in this aspect of network management is the
difficulty for obtaining labeled data. Attacks are rare and dynamically
changing, and often organization detaining these data are reluctent to
sharable it. Existing network protocols and technologies were not design
to provide labels with their monitoring data. Improving ML algorithms
for network security necessitate improving the data quality fed to the
ML algorithms. This is a relatively new concern in the literature and is
considered as a major research question in the field of cognitive network
management.

60CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

Management domain Machine Learning algorithm
Fault ANN, k-NN, k-Means, Decision Tree, SVM,

Bayesian Networks, Rule-based reasoning
Configuration RL, Q-learning, Deep RL
Accounting -
Performance ANN, SVM, Decision Trees
Security DL, ANN, SVM, Decision Trees, Bayesian Net-

works

Table 2.7 – Machine Learning Algorithms applied to FCAPS management

C Cognitive Network Management Initiatives

State-of-the-Art Initiatives

The call for a self-managed network is not new. Researchers have
proposed these approaches for decades. Perhaps the most noticeable
are the Knowledge-Defined Networking [62] and Autonomic Manage-
ment [1]. These early endeavors motivate the need for autonomy and
self-management due to the increase in network complexity that will
surpass human cognitive capacities. Moreover, the main cause of net-
working outages stem for human involvement[97]. Yet, today we notice
that network management is still relying on scripts and manual tools for
planification and orchestration.

However in the last years, we notice in the literature a revival of cog-
nitive approach for Network Management in recent years [98, 60, 99,
58, 59]. All these initiatives revolve around the following motivations :

— recent advances in ML, for example the development of deep unsu-
pervised learning networks to solve challenging classification pro-
blems.

— Improvement of Graphical Processing Units (GPUs), that are parti-
cularly useful for running very deep learning algorithms.

— the adoption and emergence of SDN and NFV paradigms,towards
a more dynamic and flexible management of the network, making
possible to execute network-wide optimization strategies.

In this section we will discussion the foundational work of Autono-
mic network management and present three of the recent initiatives,
CogNet, self-driving networks and COBANETS.

VI. MACHINE LEARNING FOR NETWORK MANAGEMENT 61

Autonomic Network Management
In 2001, IBM introduced the concept of autonomic computing [100].

They proposed a Framework based on Self-X 8 functions inspired by
previous work of Wooldridge and Jennings [101]. The reference model
for achieving self-autonomy is the MAPE-K (Monitoring, Analyse, Plan,
Execute, Knowledge) autonomic loop (see Figure 2.29).

Figure 2.29 – IBM’s MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge) reference
model for autonomic control loops

The IBM’s model have inspired and laid the foundation in the net-
working fields, such as cognitive networks [1] and knowledge-driven
networking [62]. fundamentally, these initiatives advocate for embed-
ding intelligence and autonomy in network management.

The objective of autonomic networking is to automated the manage-
ment decision. The decisions are based on a Policy-Based Management
(PBM) module with a set of pre-defined self-X policies derived from hu-
man knowledge or from OSS/BSS policies. Here are for example the de-
finition of self-configuration and self-optimization.

— self-configuration : ”An autonomic computing system configures
itself according to high-level goals, i.e. by specifying what is desi-
red, not necessarily how to accomplish it [1]. This can mean being
able to install and set itself up based on the needs of the platform
and the user”.

— Self-optimization : ”An autonomic computing system optimizes its
use of resources. It may decide to initiate a change to the system

8. self-configuration, self-optimization, self-healing and self-protecting

62CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

Proactively (as opposed to reactive behavior) in an attempt to im-
prove performance or quality of service [1]”.

The role of ML in the autonomic network management is considered
as a feature or set of techniques for constructing the Knowledge among
other technics such as ontologies, semantic web, templates, policies, rea-
soning systems, etc.

We notice that at the time researchers pointed out the importance of
evaluating the autonomous system not in performance but rather on its
ability to meet a given SLA [102]. They stressed the challenge of how we
can evaluate it with respect to a given SLA. Interestingly, IBMs reference
model described Degrees of autonomicity from (support, core, autono-
mous to autonomic). In this last level of autonomicity the entity should
take into account human goals described as SLA. Up to our knowledge,
this is the first conceptual framework that introduces the concept of SLA
with Cognitive behavior.

CogNet : CogNet is EU project in the context of 5G and softwarized
networks. The goal of the CogNet project is to make a major contribu-
tion towards autonomic management of telecoms network infrastruc-
ture through using the available network data and applying Machine
Learning algorithms to yield insights, recognise events and conditions
and respond correctly to them. A fundamental aspect of the Project is to
develop solutions that will provide a higher and more intelligent level of
automated monitoring and management of networks and applications,
improve operational efficiencies and facilitate the requirements of 5G.
The project presents a high level architecture as a complement to the
NFV reference architectural framework of European Telecommunica-
tions Standards Institute (ETSI).

The project defines six use cases in the 5G from the network mana-
gement perspective, nameley, Just-in-Time services, Optimized Service
in Dynamic Environments, User-Centric Services, SLA enforcement, Si-
tuational COntext, Collaborative resource management. The project de-
fines the use of ML algorithms and processes for each of the use cases
and challenges. In this PhD work, we contributed to the elaboration and
implementation of the CogNet architecture and algorithms.

Self-Driving Networks
Inspired from the self-driving cars, the self-driving network initia-

VI. MACHINE LEARNING FOR NETWORK MANAGEMENT 63

tive [58] is an ambitious project that is set to regroup all previous ML ,
big data and telemetry work on network management to create a fully
adaptive and predictive network. The initiative was launched by Juniper
in early 2018, and aims clearly to ”eliminate the manual work required
to keep networks running [103]”. The self-driving networks is based on
five main technologies :

1. Telemetry : a system-wide real time monitoring technology

2. Multidimentional views : Heterogeneous data sources

3. Automation : language-based scripts (e.g. python, ruby) and confi-
guration manager (e.g. ansible, puppet) orchestration and deploy-
ment

4. Declarative Intent : can be mapped to SLA or high-level policies

5. Machine learning for decision making and knowledge extraction

Among the technical challenges of the self-driving networks, for example,
is to run a datacenter with 0-touch and no human intervention without
any compromise in functionality. The vision of the self-driving netwroks
on SLA management, is that it should be defined and automatically res-
pected by the network using adaptation, reaction and anticipation prin-
ciples.

At first glance, this vision of the future of networking viewed by juni-
per and shared by some researchers [59] has many common points with
the other initiatives. If this vision is materialized, it will have disruptive
consequences on the way networks are managed and on the evolution of
human administrators and their skills. We notice that there is a consen-
sus and an awareness to regroup ML for network management to a com-
mon vision with a map and a framework to achieve a fully automated
network. The conclusion of ends with a recent call for papers [104] for a
workshop at SIGCOMM conference.

Knowledge-Defined Networking
Based on the notorious paper of D. Clark et al. [62], The Knowledge-

Defined Networking [99] is an effort to resurrect the former vision. The
Knowledge-Defined Networking (KDN) is refered to as ”the paradigm
resulting from combining SDN, telemetry, Network Analytics, and the
Knowledge Plane” [99]. The KDN defines four planes in an SDN context.
The data plane as a forwarding plane, the control plane that maintains

64CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

the network operational state, the management plane that handles pro-
visioning and configuration of network equipments and the knowledge
plane responsible for its ability to integrate behavioral models and reaso-
ning processes oriented to decision making into an SDN network. .

KDN borrows ideas from the autonomic self-X functions, and thus
relies on a theoratical framework based on control loop with the possi-
bility of interaction with humans.

The KDN defines a set of specific use-cases : (1) Routing in an Over-
lay Network : traffic recommending policies, (2) Resource Management
in an NFV scenario for optimal Virtual Machine (VM) placement, (3)
Knowledge extraction from network logs and (4) Short and long-term
network planning (based on the historical data stored in the analytics
platform.).

COBANETS : COgnition-BAsed NETworkS
COBANETS ambition of realizing fully cognitive management [105].

COBANETS is a recent example that focuses on Deep Learning for Cog-
nitive Network Management. The approach is inspired from the nervous
system, it aims at creating a network-wide cognitive infrastructure com-
posed with multiple cognitive nodes.

The main algorithms used in this solution are the unsupervised deep
learning and probabilistic generative models that are suitable for mas-
sive unlabeled data. COBANETS relies massively on SDN to build a
network-wide view and optimization. More specifically, the project aims
at integrating of different generative models. Generative models represent
how the data are being generated and can be used for imputing missing
data and compression (dimensionality reduction). They give insights on
how the data are generated/consist of ML models that generates all pos-
sible values for a given event. Generative models are used as an inter-
mediate step to create rich and abstract network representations.

Current scientific and technical challenges for a fully cognitive Network

Despite the few presented research activities, the domain of deep
learning for SLA and network management is still not formed yet. We
believe that this is due to some technical and scientific challenges spe-
cific to network management. Firstly, system-wide cross layer data col-
lection from different, heterogeneous, distributed sources and format.

VI. MACHINE LEARNING FOR NETWORK MANAGEMENT 65

Secondly, representing heterogenous data into a unified format that pre-
serves the information. Thirdly, the large training time necessary for
training a complex ML on Big Data. We have identified a research di-
rection based on distributing ML computation in the network based on
recent advances in large-scale deep learning models. In [44] researchers
demonstrated that it is possible to devise better learning algorithms to
train more accurate shallow feed-forward nets.

in dynamic networks. ML algorithms trains on a representative da-
taset, this means that the data represents the actual states of the network
and the network errors or violations. However, in a dynamic, software-
based network the network state is constantly changing affecting the
data distribution. This in turn can mislead the training process and give
rise to more and more errors in the classification and predictions. A ty-
pical solution in this case scenario is to monitor the ML performance
and accuracy and to retrain it constantly.

training speed : As the netwotk state and condition is changing ra-
pidly, the ML algorithm should keep up with the changing variables and
network dynamics. This is typically done by implementing multiple ML
algorithms and re-training them frequently. However, the one of the li-
mitation of the stateofthe art networks is that they can take hours to
days to complete training []. Fir this reason it is important to find an
equilibrium between acceptable accuracy and rapid performance.

labeled data. In image and voice recognition, data labeling is a straight-
forward although a tedious task. These kind of tasks can be outsourced
to human manual labeling, some services exists such as Amazon me-
chanical turk[106]. However, for network monitoring data the task is
much more complex and requires often expensive high-skilled experts.
Moreover, in dynamic networks many network states are unseen. These
specific requirements stress the need for developing more sophisticated
unsupervised ML algorithms. ML researchers also consider unsupervi-
sed learnind to be the next frontier in ML research with a potentially
breakthrough [16].

Current ML models are often not designed to manipulate networking
data, which is high-volume, distributed, and constantly changing. ML
algorithms suffers from their inability to refine the input features used
in a supervised learning to perform complex large-scale timeseries ana-

66CHAPITRE 2. MACHINE LEARNING : BASICS, CHALLENGES, ANDNETWORKAPPLICATIONS

lysis. There is a necessity of identifying domain-specific deep models
configuration for the telecommunication domain. Meanwhile, we notice
that some existing ML algorithms fit well for some requirements such as
RNN/LSTMs, Decision Trees and Bayesian Networks.

Interpretation, the ease to understand the model by experts. Among
the most powerful ML algorithms are the ANN and more specifically
the Deep ANN. These models are very powerful but they suffer from
the lack of expressiveness and the ability for an ML practitioner to un-
derstand their output. These kinds of algorithms cannot be used for
Root Cause Analysis. Bayesian Networks and Decision Trees on the other
hand, are considered as white boxes and their decision can be unders-
tood for further analysis.

VII Conclusion

The increasing adoption of SDN/NFV in the networking commu-
nity has transformed the infrastructure into more flexibility, agility and
brought greater degrees of freedom. Driven by the potential of these
evolutions and the recent success of ML, research initiatives have set as
ambition to bring full autonomicity to network management.

We present in this chapter the major role that ML played in rea-
lizing cognitive network management in various management aspects
and highlighted existing initiatives. We notice that even though there
exists many challenges for ML for network management, the major tech-
nical building blocks are ready and should be regrouped under the MAPE-
K control loop.

Chapitre 3

SLA management

The limits of my language are the limits of my
world.

Ludwig Wittgenstein

Contents
I Context : Software Networks . 68

A Network Function Virtualization 68
B Software-Defined Networking 70

II Early SLA management . 73
III SLA in the Cloud . 74
IV SLA in Software Networks . 77
V Literature Gaps and Future Research Directions 80

In this section we provide an overview of the SLA management in
the literature. We decompose the SLA State-Of-The-Art into 3 subsec-
tions. First, (1) the Early SLA management. This comprises in the early
IP networks, 3G, 4G Telecommunication networks, Service-Oriented Ar-
chitecture, and the Grid. Secondly, (2) we present the literature work for
the SLA in the Cloud and lastly (3) the SLA in software networks and
5G context. In table 3.2, we summarized the SLA evolution and require-
ments throughout this period.

The ITU-T defines SLA as a formal agreement between two or more
entities that is reached after negotiation with the scope to assess ser-
vice characteristics, responsibilities and priorities of every part [107].
SLA agreement generally comprises of parameters describing the ser-
vice functional behavior and non-functional properties such as : the mi-

67

68 CHAPITRE 3. SLA MANAGEMENT

nimum acceptable QoS values (referred to as SLOs (Service Level Objec-
tives) e.g. Maximum VNF instantiation time. The SLA incorporates the
Business Level Policies i.e. monetary compensation, regulatory require-
ments, contractual conditions, billing conditions [107], the conditions
for SLA renegotiation, and the procedures guarantees in case of SLA
violations. In most instances, the SLA comes in machine-readable for-
mat (e.g. XML [108], OWL [109], JSON [110], YAML [111]) to facilitate
the automation of the SLA negotiation process. Service Providers (SPs)
are legally obliged to detect, and notify the Service Consumers (SCs) of
any SLA violation, which can have considerable monetary impact.

I Context : Software Networks

This section reviews two major networking concepts : programmabi-
lity and softwarization. The programmability is driven by the Software-
Defined Networking (SDN), while softwarization is introduced by Net-
work Functions Virtualization (NFV). These new technologies are dis-
ructing the networking indusrty and the way networks will be managed.
SDN achieves programmability by decoupling the control plane from
the data plane. On the other hand, NFV brings agility and and flexible
placement of virtualized network functions across the network and the
Cloud. SDN & NFV are considered to be complementary technologies
for achieving full network programmability and flexibility [112, 113].

A Network Function Virtualization

Telecom and Network Operators traditionally rely on proprietary hard-
ware equipments to deliver their services. To create a new network ser-
vice they often rely on yet another variety of appliances and finding the
right personal and space to setup these boxes. These type of operations
are increasingly difficult to accomplished ; coumpounded by the rarety
of skills necessary to integrate and operate these hardware. Moreover,
the operators are locked-in to the devices’ vendors for upgrades and
maintenance. Whatsmore, hardware lifecycles are shortening with the
advances in technology and innovation in services ; setting the opera-
tors back of new revenue streams [112].

I. CONTEXT : SOFTWARE NETWORKS 69

Definition
Network Functions Virtualisation (NFV) aims to transform the way

that network operators architect networks. NFV brings the evolution

of IT virtualization technology to consolidate telecommunication ap-

pliances into the high industru standards. NFV addresses the imple-

mentation of network functions using software agnostic to the under-

lying hardware. In this work, we refer to this endeavor as “‘Network

Softwarization“.

The NFV concept was introduced by the European Telecommunica-

tions Standards Institute (ETSI) Industry Specification Group (ISG). The

ISG was started as a consortium of multiple vendors and network opera-

tors including Orange, AT&T, Deutsche Telekom and many others. The

ISG work resulted in a white paper [112] introducing the concept of

NFV. They described the core principle, the requirement and pose the

conceptual framework for representing andmanaging the core elements

called Virtual Network Function (VNF). Typically, a VNF can be a net-

work address translation (NAT),

firewall, intrusion detection (IDS), domain name service (DNS), etc [112].

Figure 3.1 – NFV reference architecture

As presented in Figure 3.1 above, the NFV framework describes three

main components :

— Network FunctionVirtualization Infrastructure (NFVI) : provides

70 CHAPITRE 3. SLA MANAGEMENT

the virtual resources to support the execution of VNFs. It includes
hardware commodities such as x86, accelerator units and hypervi-
sors.

— Virtualized Network Function (VNF) : A Software-based imple-
mentation of a network function deployable of the NFVI.

— NFV MANagement and Orchestration (MANO) : Cope with ma-
nagement tasks and on the orchestration and VNFs life-cycle ma-
nagement. The MANO also interacts with the Telco OSS/BSS solu-
tions, which allows NFV integration with already existing network
management system.

Recently many projects were combined under the umbrella of the Li-
nux Foundation Networking (LFN). This entity aims at increasing the
compliancy between the various networking projects hosted by the Li-
nux Foundation.

An example targeting the NFVI is OPNFV. OPNFV [114] is a project
started in 2012 with the goal of accelerating NFV adoption through sys-
tem level integration, deployment and testing. Recently, they launched
the OPNFV Verified Program (OVP) [115], a testing program for ven-
dors and suppliers who are creating systems for the OPNFV reference
platform.

Other projects target the orchestration layer. For instance, Open Net-
work Automation Platform (ONAP) 1 aims to develop a policy-based or-
chestration of virtual network functions. It is also ETSI MANO com-
pliant and includes further software subsystems, as well as integration
for SDN controllers.

Other notable initiatives are, PDNA [116], which aims at developing
an open source data analytics platform for network device and service
telemetry in NFV. And DPDK [117], a software acceleration technology
for improved packet handling.

B Software-Defined Networking

The second major pradigm shift in networking is network program-
mability achieved by SDN. The SDN decouples the network control from
the forwarding layer. Figure 3.2. The Open Networking Foundation (ONF),

1. Open Source Mano project, https ://www.onap.org/

I. CONTEXT : SOFTWARE NETWORKS 71

a leader in SDN standardization, describes the goal of SDN from the re-
ference white paper [118] as follows :

Software-Defined Networking (SDN) is an emerging architecture that is
dynamic, manageable, cost-effective, and adaptable, making it ideal for the
high-bandwidth, dynamic nature of today’s applications. This architecture
decouples the network control and forwarding functions enabling the net-
work control to become directly programmable and the underlying infra-
structure to be abstracted for applications and network services

Consequently, this decoupling enables the control plane and the data
plane to evolve independently from each other allowing high flexibility,
programmability and fast service deployment [119]. Among the core
problems SDN aims to tackle is “mananing the complexity of compu-
ter networks“ [118, 120] by providing a centralized view and hides the
low-level configuration details over a Network Operating System (NOS)
which creates a network abstraction for the applications on top.

Figure 3.2 introduces the basic SDN components, with terminology
similar to that from the original ONF white paper, “Software-Defined
Networking : The New Norm for Networks“ [118]. The initial architec-
ture comprised of three main layers, namely, infrastructure, control and
application layers (Main boxes), which are refered to as data, controller,
and application planes. The infrastructure layer (data plane) comprises
of network elements, which expose their capabilities to the control layer
(SDN controller) via interfaces SouthBound from the controller. The
SDN applications reside in the application layer, and exchage their net-
work requirements toward the controller plane via northbound inter-
faces. In the middle, the SDN controller mapes the applications’ requi-
rements and dictates low-level control over the network elements, while
providing relevant information up to the SDN applications.

The most common SounthBound API is the OpenFlow protocol. Open-
Flow is considered as a standard communications interface between the
control and forwarding layers of an SDN architecture. OpenFlow allows
direct access to and manipulation of the forwarding plane of network
devices, such as switches and routers. The ONF opted for OpenFlow to
be a foundational element to the SDN solution.

72 CHAPITRE 3. SLA MANAGEMENT

Figure 3.2 – SDN Architecture

SDN is considered as a complementary technology to NFV. They are

expected to work together for achieving more flexibility. the SDN layer

abstracts the network, creating a virtualized environment for NFV ap-

plications.

SDN has been widely appropriated in the industry, especially in data-

centers e.g. [121, 122, 123] and stimulates the curiosity of the scientific

community and paved the way to a series of innovations and open source

projects (e.g. ODL [124], ONOS [125], FloodLight [126], RYU [127], etc.).

Finally, in table B we summarized the main differences between SDN

and NFV.

II. EARLY SLA MANAGEMENT 73

Software Defined Networking (SDN) Network Functions Virtualization
(NFV)

Virtualization of the network infrastruc-
ture. Centralizes command and control
of the network. Allows rapid provisio-
ning of new networks without the com-
plexity of physical upgrades.

Network functions that are fully vir-
tualized, and free from dependencies
on proprietary appliances and devices.
Software-only in nature, and can be de-
ployed on generic servers and SDN plat-
forms.

Standards guided by the Open Networ-
king Foundation (ONF). Initial standard
is OpenFlow.

Standards guided by the ETSI NFV Wor-
king Group. Basic NFV architecture/use
case has been specified by ETSI.

Located in the Cloud data center, and ex-
tends to secondary server farms in sup-
port of network operations.

Located in the service provider’s SDN
network.

Initial uses are orchestration, Cloud in-
frastructure & networking.

Initial uses are virtualized routers, fire-
walls, gateways, vEPC, etc.

Table 3.1 – Summary and comparison between NFV and SDN

II Early SLA management

Epoch : 1999 - 2008
SLA management in the literature used to be fragmented over FCAPS 2

management. Afterward, in late 90s with the creation of Information
Technology (IT) departments, much effort was to regroup all these di-
mensions into one overarching domain : SLA management. SLA ma-
nagement captured more the attention of researchers due to the use
of best-efforts networks to support new services with expected perfor-
mance quality requirements such as multimedia and e-commerce.

SLA for telecommunication services gained in momentum in early
2008 due to the progress of Quality of Service (QoS) at the time and
the emergence of dynamic monitoring and control systems of telecom-
munication resources [128]. As a result, SLA management concepts and
system were introduced to deal with these issues. SLA attracted Telco
providers as a mean to provide attractive offers while maintaining com-
plex SLA promises. In the mobile context, 3GPP has defined four service
classes based on delay requirements. This was the basis for SLA enfor-
cement solutions. For example, in 2005 Y.Cheng et al. [129] have pre-

2. Fault, Configuration, Accountability, Performance and Security

74 CHAPITRE 3. SLA MANAGEMENT

sented SLA-Based Management approaches based on call level service
differentiation.

SLA management was a great concern in Service Oriented Architec-
ture (SOA) [130, 131, 132]. This was mainly due to the fact that web-
service-based applications were designed to be used across companies ;
commercial applications demanded service and quality assurance (e.g.
availability, security) [131]. This resulted in several initiatives, among
the most influential was IBM’s WSLA [133] that was specially deve-
loped for SOA. There was many other attempts to represent the SLA
using representation languages such XML, UML, internal SLA templates
or using semantic web such as SLAng [9], and WS-Agreement [134]
From Open Grid Forum (OGF), WS-Policy [135] from World Wide Web
Consortium (W3C). The proposed SLA management solutions in this era
focused mainly on static scheduling for SLA enforcement. WSLA forma-
lization language had considerable success among the research commu-
nity. It was the basis for the following SLA management in the Grid
(2004) [133] and the Cloud [136].

III SLA in the Cloud

Epoch : 2009 - Today
In 2009, as more and more households gained access to the inter-

net, Cloud computing gained enormous momentum in the computing
field. Naturally, expectation concerns over QoS emerged between Cloud
Service Providers (CSPs) and service consumers (SCs). Moreover, as the
cloud was new to the public with many privacy concerns, CSPs nee-
ded to build trust to attract more SCs. SLA management offered the op-
portunity to formalize the expected service level delivered by the CSPs.
Consequently, a plethora of initiatives, projects and studies emerged for
addressing the new SLA requirements in the Cloud.

In the literature, active and advanced work has been conducted on
SLA management for Cloud infrastructure. Emeakaroha et al. [137] clas-
sify the related work of SLA management into three categories, 1) re-
source monitoring [138], 2) SLA management including SLA violation
prediction [139] and 3) mapping approaches from low level monitored
metrics to SLA [74].

III. SLA IN THE CLOUD 75

The first study tackling SLA in the CLoud was conducted by P. Pa-
tel et al. [136]. They proposed and adaptation of WSLA solution to the
Cloud requirements. Authors noted that the main challenge in the Cloud
is to maintain the service quality and reliability in a highly fluctuating
demand/load environment. Aside from deliverying high performance,
CSPs should be able to deliver their promises. Thus, the need to SLA ma-
nagement to define expectations/agreements end enforce them. Along
these lines, most of the first SLA management in the Cloud conside-
red the Cloud as an extension of SOA [136], hence applying the same
SLA management concepts with some minor extensions. Moving for-
ward, studies of SLA management in the Cloud detached from SOA and
WSLA starting to see the short comings of the old approach in terms of
static approach to negotiation and scheduling. Novel projects and ini-
tiatives started to develop novel dynamic conceptual frameworks more
adapted to the Cloud elasticity [140]. Some examples are CSLA [141],
Cloud4SOA(SLA*) [142] and SLALOM projects [143, 144] that we will
describe more in detail. Common characteristics of these new SLA ma-
nagement approaches are their use of probabilistic models, dynamic
models and biding strategies using game theory. Other phases of SLA
lifecycle were also considered such as SLA specification ; SLA enforce-
ment.

In [141], authors designed an SLA specification adapted for the cloud,
named Cloud Service Level Agreement (CSLA), which introduces concepts
of fuzziness and confidence to deal with the Cloud QoS uncertainty.
Emeakaroha et al. [137] point out that in the cloud ecosystem, a key
challenge is the adaptation of SLA monitoring strategies and timely de-
tection of SLA violations. They present an architecture for detecting SLA
violations in the cloud, named DeSVi. The motivation behind the de-
velopment of DeSVi is the provisioning of services based on SLA. The
DeSVi architecture leverages the LoM2HiS framework to identify SLA
violations at run-time. DESVi runs at the actuator level in managing
VMs configurations and deploying system components. A reverse pro-
cess is suggested in [74] where the authors use a Neural Network to map
Application level requirement to resource attributes and characteristics.
The authors identify a specific challenge for SLA in the cloud, which
is translating Consumer-PaaS SLA to PaaS-IaaS level SLA. They imple-

76 CHAPITRE 3. SLA MANAGEMENT

ment their solution using an ANN with one hidden layer of 13 nodes.
The evaluation of their system demonstrates great accuracy while res-
pecting their pre-defined thresholds with respect to each time frame in
service oriented infrastructure. Hani et al. [145] raise the issue of pre-
dicting violations of SLA. They define SLA violation as deviations from
the conditions agreed on in the SLA. They use a Support Vector Machine
(SVM) adapted for regression, termed SVR, to forecast future values of
time series. They identify two SLOs, namely, throughput and response
time in cloud database. The final evaluation shows a minimum accuracy
of more than 80% for 10 days look ahead. Authors of [146] state that the
cloud service providers tend to maximize their profit by overbooking
their resources with user applications. The authors note that an arbitrary
overbooking ratio may degenerate into SLA violation and cost penalties
for CSP especially with real-time application such as online video strea-
ming. To optimize the resource utilization and reduce the risk of SLA
violations the authors introduced iOverbook framework which uses an
Artificial Neural Network to find correlation in the historical data and
predict future resource usage. They used two Feed-Forward Neuronal
Networks (FFNN) with one hidden layer of 23 and 22 neurons. The first
ANN predicts the resource usage whereas the second predicts the per-
formance. In their approach they use a trivial SLA definition which is
an SLO on performance in IPC (Instruction per Seconds). Moreover, the
system of SLA checking is not completely automated. The evaluation
shows that iOverbook can allow optimization in Overbooking and al-
low a power saving up to 32%. Among the major SLA-centric european
project is SLALOM [144]. The SLALOM (Service Level Agreement Legal
and Open Model) EU H2020 research program aims to define practical
approach of Cloud SLA management based on ISO standards. SLALOM
provides two SLA reference models for cloud computing consisting of
legal clauses and technical SLA specification. The SLALOM contributors
performed a questionnaire [147] on the importance of the ”Proactive SLA
Violation detection”. They define proactiveness as any mechanism that
protects the cloud application from failure or service degradation. The
questionnaire was performed on Cloud Service Providers (CSP), Cloud
Adopter. The questionnaire was based on the SLALOM Handout [148].
We find that these early poll results shapes the new awarness concer-

IV. SLA IN SOFTWARE NETWORKS 77

ning the new ways SLA should be managed. The results are depicted in

Figure 3.3.

Figure 3.3 – Overall feedback on the importance of the ”Proactive SLA violation de-

tection” research area [3].

IV SLA in Software Networks

Epoch 2012 - Today
Research activity on SLA management for softwarized and program-

mable networks is still in its infancy. Up to our knowledge there is no

effort to manage SLA in NFV-based environments per se. Research ac-

tivities are more concerned by improving VNFs performance than SLA.

However, we notice many studies working on different aspect of SLA
from QoS, FCAPS [63] management to anomaly detection. In this sec-

tion, we will give a quick overview of these “silo“ studies and classi-

fying them into : NFV monitoring, QoS Management, FCAPS Manage-

ment and Anomaly Detection. We then elaborate on how we see them

merging and gaining in maturing to form a proper SLAManagement for

SDN/NFV. In this regard, we consider SLA management as an umbrella

term that encompasses multiple network management facets. Success-

fully managing SLA entails to succeed in network and service super-

vision, QoS management, FCAPS management as well as anomaly de-

78 CHAPITRE 3. SLA MANAGEMENT

tection. For this reason, we focus this PhD towards SLA management.
NFV/SDN monitoring :

Proper NFV monitoring is the starting point for a complete SLA Ma-
nagement solution. G. Gardis et al. in the context of the FP7 T-NOVA
European project (2013) 3 [149, 150] presents a VIM monitoring frame-
work for NFV supervision. They focused on the process of collecting
metrics from the NFVI and process them at the VIM level. They poin-
ted out that current Monitoring tools can only partially fulfill NFV re-
quirements. When the VNFO is managing hundreds of NFVIs, the VIM
should integrate an intelligent agent that filters unnecessary monito-
ring data to avoid flooding the Orchestrator. And that the monitoring
solutions should enable proactive and intelligent and self-learning ap-
proaches. The T-NOVA solution aims at monitoring, configuring and au-
tomate the provisioning of VNF-as-a-Service (VNFaaS). Their solution
allows SC to associate SLA to a VNF. Their VIM monitoring solution is
set to interact with OpenDaylight Statistic API and Openstack Ceilome-
ter for low-level metrics, while monitoring the VNFs via a VNF-based
agent using collectd-core module (Linux module for statistics).

QoS Management. The challenge in QoS management for NFV net-
works is that it should consider - beside the resource level- the QoS
through the chaining of the VNFs. T. Kim [151] formalized this problem
as multi-constraint path selection and proposed a genetic algorithm to
ensure QoS while creating a service chain. R. Mijumbi et al. [152], au-
thors adopted a novel approach for dynamic resource management in a
NFV context. The authors proposed an extended recurrent neural net-
work based on graphs called Graph Neural Network (GNN) that relies
on VNF-FG (Forwarding Graph) to predict the evolution of resource re-
quirements. They yield an average accuracy of 90%. The authors also
based their experimentations on the open source Clearwater framework.
O. Chaignon et al. [153] discussed the disruptive monitoring capabili-
ties brought by SDN stateless control plane. They emphasized the sca-
lability challenges brought by central management point of control. So-
lutions to this problem have been proposed in the literature in several
forms and approaches. We cite here, local resource optimization, state-

3. T-NOVA will design and implement a management/orchestration platform for the automated
provision, configuration, monitoring and optimization of Network Functions-as-a-Service (NFaaS).

IV. SLA IN SOFTWARE NETWORKS 79

less network-wide resource optimization based on greedy algorithms. V.
Riccobene et al. [154] raised the concern of SLA compliancy with respect
to efficient resource allocation in NFV. They presented an automated de-
ployment framework for VNF deployment in two folds : (1) the charac-
terization of VNF workload using and (2) the mapping between VNF
performance and resources. For (1) they used Openstack Heat template
as VNFD (VNF Descriptor) and for (2) used Decision Tree algorithm to
select an Openstack VM flavor according to the network requirements
and SLA. R. Mijumbi et al. [152], authors adopted a novel approach for
dynamic resource management in a NFV context. The authors proposed
an extended recurrent neural network based on graphs called Graph
Neural Network (GNN) that relies on VNF-FG (Forwarding Graph) to
predict the evolution of resource requirements. They yield an average
accuracy of 90%.

FCAPS Management. Perhaps the most challenging FCAPS aspect
in NFV is the Performance one. Migrating network functions that used
to run on dedicated hardware to cloud servers ultimately impacts their
performance. The research community and industry are very concerned
by the VNFs performance [155]. In a recent study [80], Chen Sun et
al. proposed and SLA-aware solution for NFV framework focused on
the performance e.g. latency and throughput. Their solution comprises
an accelerated data plane, SDPA (Software and hardware packet acce-
leration technologies), coupled with a performance-aware service chai-
ning algorithm in the NFV orchestrator to fulfill both functionality and
performance requirements with respect to SLAs. In the literature, solu-
tions targeting security in programmable networks usually leverage the
centralized role of SDN controller [156, 157]. A notable work has been
done by M. Miyazawa et al [158] to detect faults in NFV networks. They
proposed a distributed VNF to manage the NFV network, called vNMF.
They pointed out the challenge for fault detection in NFV due the se-
paration of roles between the VIM that manages the physical resources
and the VNFM that manages the VNFs. Additionnaly they stressed the
need for Machine learning algorithms to learn rapidly to adapt to this
dynamic environment. They construct a VNF fault detection model ba-
sed on the assumption that VNF failures are linked to the underlying
structure, i.e. NFVI. We think that this assumption might not hold for

80 CHAPITRE 3. SLA MANAGEMENT

all the VNFs and all the cases.

Domain/Era Main issue Research direction(s)
IP networks how best effort could insure QoS? Adoption of the SLA

Concept, regrouping
FCAPS under SLA. Ma-
nual

Telecommunication How to differentiate ? Diffserv networks
SOA integration. was to ensure perfor-

mance, and integrating the SLA
contract to the SLA management sys-
tem : bridging the gap between Sla
spec and enforcement (performed by
personel).

WSLA, XML, semantic
web

Grid handling complexity (geographically
distributed domains) and heteroge-
neity (of services).

WSLA

Cloud maintain trust and managing fluctua-
tion (load, elasticity)

WSLA, CSLA, biding stra-
tegies, probabilistic mo-
dels

NFV main issue : Performance, reliability
management. secondary issues : ma-
naging fluctuation

AI, ML, automation, Co-
gnet, Abstractions (model,
templates)

SDN Reliability management (coherence in
the control plane), and skill set

Abstractions (model, tem-
plates) , central view

5G Very high performance expectation
(Throughput, Latency) Heterogeneity
management Better QoE

Cognitive & autonomic
Management

Table 3.2 – summary of SLA evolution in the literature

V Literature Gaps and Future Research Directions

The main limitation in the presented related work is that SLA and
SLO are not specifically targeted toward novel use case of NFV and
SDN. Furthermore, in general the discussed studies defined SLOs in
very simple term which is not realistic in operational settings. Although,
many related works [159, 160] proposed ANN for forecasting in an SLA
context, there is clearly a lack of a well-defined Framework for SDN and
NFV, for complete automation of SLA management that combines all

V. LITERATURE GAPS AND FUTURE RESEARCH DIRECTIONS 81

the necessary blocks of cognitive management and proactive provisio-
ning. Moreover, to the best of our knowledge, LSTM-based approaches
have never been used for SLA Management for Programmable Networks
(i.e., Cloud computing, NFV/SDN). A foreseeable opportunity of LSTM
in Programmable Network context is that, contrary to FFNN, it can pro-
cess data with different input size, allowing a versatility of usage for
processing data with different sampling rate across different channels.

82 CHAPITRE 3. SLA MANAGEMENT

Chapitre 4

Proposal : Cognitive SLA Management
Framework

The wise is one only. It is unwilling
and willing to be called by the name of
Zeus.

Heraclides Ponticus

Contents
I Introduction . 84
II Problem Statement . 87

A Service Level Agreement . 89
B SLA and SDN/NFV . 90
C Formal Description . 92
D SLA Example . 93

III Cognitive SLA Architecture . 95
A Cognet Smart Engine : . 98
B Policy Engine . 101
C NFV Architectural Framework 102
D Proposed workflow . 103
E Policy Engine . 107
F Cognet Sequence Diagram . 108
G Operational Application & Use Cases 109

IV Data Analysis . 124
A Data Gathering . 124
B Data preparation . 126
C Dimensionality reduction . 129
D Visualization . 138
E SLA Assurance Services . 141

V Conclusion . 143

83

84 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

In this chapter presents the cognitive framework for SLA violation
anticipaton in Programmable Networks. In this approach, we aim to
combine multiple Machine Learning and data preprocessing methods
for optimal violation prediction. We present the our two use cases and
the end-to-end methodology to manage them.

I Introduction

SLA (Service Level Agreement) Enforcement will have a predominent
position in the value proposition of 5G. Service providers can offer hi-
gher SLA gurantee as a way to different themselfves from competitors.
Certain services may be required by law to use higher SLA such as emer-
gency communication and military communications.

In the telecoms realm, administrators refer to garrier grade offerings
as a highly reliable and available service (i.e. 99.999%). However, in the
Cloud and modern IT communication the services have less gurantee
and requirement than the carrier grade, their were designed to provide
besteffort communications. The SLA in the context of softwarization and
virtualization is paramount, for it allows to track service providers’ pro-
mises in a highly fluctuating environments.

For example, real time voice communication traffic is sensitive to lan-
tency and jitter, a momentary drop of these metrics heavily impacts
the perceived Quality of Experience (QoE) by the users. Other service,
such as web-based applications are less. SLA allows to resolve ressource
contention between applications and services such as emergency ser-
vices. SLA can also target security and authentication requiering specific
encryption techniques.

In this chapter, the first focus is on the problem definition, SLA des-
cription and the generation of the data. We generate the dataset by im-
plementing two use cases. A streaming use case and a multimedia NFV-
based use case. We designed an end-to-end framework, namely CogSLA
where we focused on problematics such as data collection, preproces-
sing and cognitive processing.

We discuss then the results of the preprocessing and the cognitive
processing in two broad categories, prediction and classification.

I. INTRODUCTION 85

In the last section, we focus on improving the process of ML selection
and fine tuning their hyperparameters. We introduce then the concept
of MetaLeanring as a technique to recursively use ML algotithms to ex-
trapolate and guide the selection of the optimal algorithm with respect
to precision and training time.

Analytical ap-
proaches

Descriptive Predictive Prescriptive

NFV mgmt Clear restitution of
the service current
state

Anticipating SLA
violation

Automatically mana-
ging NFV for optimal
performance

Challenges Subject to penalties Subject to service de-
gradation

Subject to misconfi-
guration

Opportunitues Defining clear op-
portunities and
challenges

Inputs for decison
systems/ policies
systems

Optimization of costs
and QoE states

Table 4.1 – Three approaches of Analytical approaches. [Inspired by Dursun Dellan,
Decision Support Systems, Elsevier 2012]

Although, the research community pushes towards a predictive and
prescriptive analytics-based network management (see Table 4.1). Cur-
rent management approaches and tools are mainly decriptive in their
approaches, i.e. reactive, threshold-based. In this case, the most used
strategy to avoid SLA violation is overprovisioning. Overprovisioning is
allocating more resources to a service than needed. This strategy is effec-
tive for avoiding SLA penalties, but severly limits the Service Provider
(SP) in its growth for acquiring new customers and markets. Moreover,
this results in a under-utilized resources that can be allocated elsewhere
where most needed.

What is more, Cloud environments are composed of a huge amount of
managed elements that produces large amounts of monitoring data and
alarms from disparate sources. A human operator can hardly process
and correlate between all the alarms, the visible data and infere a root
cause or a suitable management action. In this context, there is a need
of a straight-to-the-point analysis of network and service behavior.

In this chapter, we will go through all the cognitive process imple-
mented as the cognitive framework.

We will see the preprocessing steps

86 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

1. the preprocessing steps : Initial steps to clean and normalize data.

2. Feature engineering (PCA and expert-based) : From the system-
level metrics to the service/application level metrics.

3. Forecasting : How ML algorithms can be designed to help to anti-
cipate SLO violations.

4. Classification : How different ML algorithms can be trained to iden-
tify SLO violations when they occur.

5. Actuation using REST API : How to interpret ML outputs into an
actionable network manahement task.

6. Hyperparameter problem and selection : How to tune the ML al-
gorithms to have the best performance and accuracy.

7. Meta-learning : How ML can help on the previous point.

8. How Visualization can help : Data visualization to grasp and use
the human intuition to understand the studied problems in higher
dimensions.

Machine Learning Motivation

The design and itegration of a cognitive framework for managing
NFV-based deployments is able to provide the following benefits to
network management :

— Instantaneous service deployment : One of the biggest oppor-
tunities of Virtualization is that it allows to spawn and remove
ressource remotely and rapidely

— Demand/offer Optimization : A machine learning based ma-
nagement can forecast and anticipate the demand to optimally
allocate ressources.

— Reduce CAPEX : ML based system will reduce the need to pur-
chase new hardware ressource. the only costs incurred is rela-
ted to the allocation of virtualized infrastructure.

— Rapid time to market with acceptable risks : the NFVI can grow
in and shrink size as soon as the system detects the change is
ressource need resources.

II. PROBLEM STATEMENT 87

The NFVI introduce a context of uncertainty and high resource load

variation , rapidly changing network patterns, thus hampering the

ability of a network administrator to manage them in real time. It is

therefore necessary to introduce automated and intelligent systems

with the ability to make anticipate and identify the most accurate

action on the fly.

PhD Blueprint :
This work has gain in maturity by going through different stages. The

first stage is the design of the global cognitive architecture were all the

main components are defined to enable autonomic management prin-

ciples for NFV/SDN-based networks. Afterwards, we zoom on multiple

components of the architecture that tackle data analysis tasks such as

dimentionality reduction and data filtering. Next, we zoom on the Cog-

nitive Smart Engine were we combine multiple ML algorithms to antici-

pate SLA violations. Finally, we focus on mechanisms to select the most

suitable ML algorithm and optimize its parameters.

Figure 4.1 – PhD Blueprint.

II Problem Statement

A key challenge in the 5th generation networks is to improve even

more the users’ Quality of Experience (QoE). Continually growing users’

expectations in highly dynamic and heterogenous networks necessitate

88 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

the definition and commitment of clear and precise Service Level Agree-
ment (SLA)s. SLA enforcement should be able to map high SLA di-
rectives into low-level configuration in the network while monitoring
continiously the state of the SLA. We believe that network program-
mability and centralization brought by Software Defined Networking
(SDN) are key concepts to tackle this point.

SLA management in programmable network is necessary to deliver
on the expectation of the 5G high quality of experience. Whatsmore, the
radical network transformation with the rise of IoT and massive connec-
tivity. This exposes SLA even more to new vulnerabilites

The emergence of network softwarization driven by Network Func-
tion Virtualization (NFV), makes it more challenging to represent and
enfore SLA. Although, the ETSI NFV specifies SLA descriptor as a Vir-
tual Network Function (VNF) Descriptor (VNFD) for a single VNF[].
Requirements on SLA management are similar to SLA for the Cloud
with a stress on performance and reliability for NFV. The main chal-
lenge brought up by softwarization of networks is that the placement
and configuration of VNFs impacts the network performance itself. This
adds an additional layer of complexity to classical SLA management in
the cloud, were previous work on VMs migration didn’t consider the
overall performance. This also raises monitoring capabilities in NFV
networks were the NFVI and the VNF are conceptually decoupled but
physicaly highly interdependent.

These new requirements for SLA management in programmable net-
works calls for a more intelligent and data-driven approach. Data-driven
approach by extracting meaningful information from heterogenous data
source. Intelligent by forecasting and anticipation SLA violations.

Machine Learning (ML) comes as a natural alternative to classical so-
lution because of :

• Recent success and revival of ML, specially deep learning (i.e. re-
presentation learning)

• Proliferation of multiple data sources and heterogenous, massive
amout of data (i.e. IoT, 5G use cases)

• Analytical platforms and Big Data solutions

• Programmability and centralized network-wide view technology (SDN)

II. PROBLEM STATEMENT 89

• Many distributed monitoring solution across layers

• Less constraints and more degrees of freedom with respect to ma-
nagement action brought by the virtualization, i.e. Dynamicity of
execution with NFV

The recent success of ML techniques especially deep learning and the
proliferation of new, heterogeneous data, analytical platforms, distribu-
ted monitoring solution across layers and big data solutions along with
the rise of SDN/NFV technologies.

A Service Level Agreement

The network operators deliver networking services to their users. In
return, the consumers pay for the product with the expectation of good
quality and networking services performing to their specifications.

The networking product are highly flexible and customized to meet
individual consumers need. Beside its functional part, the networking
servic is expected to have technical properties such as performance,
reliability, availability, etc. Those properties are refered to as the non-
functional properties or the Service Level Objectives (SLO). The SLO tar-
gets Key Performance Indicators (KPI) or Key Quality Indicators (KQI)
as shown in figure 4.2. The specification of a given service is written
as multiple SLOs targeting different non-functional service properties.
This specification is what we call Service Level Agreement (SLA). SLA
describes other specification between the service consumer and service
provider such as penalties for not respecting SLOs. Hence SLA is at the
core of the relationship between the operators and the consumers.

The SLA management topic is of fundamental importance for ope-
rators that want to increase the consumers overall satisfactions. In our
study, SLA is intresting because it touches different network manage-
ment areas and is transverse to the FCAPS -Fault, Configuration, Ac-
counting, Performance, Security. Working on SLA management will au-
toatically propagate to all these network management subfields.

90 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

Figure 4.2 – Simplified UML diagram of SLA.

The SLA is described in machine readable format. In this study, we

propose an SLA descriptor in JSON and YAML (Yet Another Markup

Language) as follows : The main directories : metrics, SLOs and service

descriptor. Only the necessary metrics to define SLOs are stored in the

metrics directory. We show an example of SLO description in listing 4.1

as JSON.

B SLA and SDN/NFV

In the NFV context and accordying to the ETSI standards, the SLA

definition are stated in Descriptor files in YAML.

The NFV-MANO Description files are an ongoing work at the ETSI-

working group. The file descriptors are organized as service catalog and

element catalog. The service catalog contains file descriptors that targets

parameters at the service level whereas, The element catalog is concer-

ned by the low level description of the Framework such as VMs and link

descriptors. We see the SLA as playing a role at each level of these desc-

tiption files as depicted in figure 4.5 in the MANO block. At each stage,

different SLOs targets different specification in the NFV framework. All

of these are important and should be managed as a global SLA, trans-

lating and mapping high level SLA into multiple sub SLOs of different
aspects of the framework.

II. PROBLEM STATEMENT 91

Figure 4.3 – SLA NFV description In ETSI framework

In the service catalog :
NSD - Network Service descriptor : This aims to describe the end-to-

end service description including SLOs, covered VNF-FG, VNF as well
as list of supported service monitoring parameters.

VNF Forwarding Graph descriptor - VNFFGD : This describes the
VNFFG, VNFs and VNFDs and their needed for orchestration, reference
to link information and description of physical/logical interfaces.

In the element catalog, the most important file descriptors fors SLA
are the VNF/PNF Descriptor. They describe the functional behavior of
elements and their non-functional behaviors, namely the SLOs :

VNF Descriptor - VNFD : The VNFD provide Links to scripts for ini-
tiation and termination, description of internal and external connecti-
vity, dependencies between VNFCs. Moreover, it targets SLOs as VM
specification, i.e. required storage and computation resources, initia-
tion and termination scripts, high avaliability redundancy model, scale
out/in limits.

PNF Descriptor - PNFD : The PNFD references to link information,
exposed external interfaces, PNF addresses, PNF status, systems sub-
scribed for notifications as well as SLOs on throughput and internal la-
tency.

Discussion.

92 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

The SLA management in the NFV context requires special attention
to the mapping between different levels, from the service to the appli-
cation and element specification. In the ETSI specification the way to
perform the mapping is not explicitly specified and seems to be desi-
gned for a manual allocation. This procedure is highly unlikely for that
virtualized services should be highly flexibly and automatically adapt
new elements to the global SLA. For this reason a hierarchical defini-
tion of SLA is necessary in this context. Machine Learning algorithms
are particularly useful for these kind of tasks.

In the case of NFV the most important SLOs are those targeting per-
formance and reliability. For this reason, we focused the SLOs on the
response time, throughput and transactions.

C Formal Description

In the following, we proceed to the mathematical formalization of
SLA and its SLOs.

Let Mi be the observable variables for VNFCi :
Mi =mi1,mi2,mi3, ...,min, wheremij is the metric j of the VNFC i. Moreo-
ver, we have the VNF as be the machines ~VNF = VNFC1,VNFC2,VNFC3, ...,VNFCn.

The SLO space can take two values : Si = {S+,S−} for n SLOs,

Γ (Vstate) =
n∏
i

γ(Si), Si =< ~VNF,SLOi > (4.1)

,where ∃ ~M∗ ∈M, such as :
The equation 4.1 defines the SLA violation as the violation of at least

one SLO.
MAX(k, ~M∗)[corr(~M

∗,SLOVi)−α]
k as M∗ elements and k ≤ n and α is the correlation threshold.
Working on the relationship between the metrics ~M and the SLO state

S. in order to compute the relationship between the observed metrics
and the SLO state, we can write the conditional distribution P (S+ | ~M) :
The probability of observing an SLO violation given the observable set
of metrics. The bayes Theorem below gives us an insight into the proba-
bility as follows :

II. PROBLEM STATEMENT 93

P (S+ | ~M) =
P (~M | S+)P (S+)

P (~M)

P (S+ | ~M) =
P (~M | S+)P (S+)

P (~M | S+)P (S+) + P (~M | S−)P (S−)

, where P (~M | S+) is is the probability of an SLO violation given a set
of metrics M and P (~M) represents xxxx and P (S+) is the probability of
the violation occurring.

D SLA Example

In this work, we refer to an SLO as a range of values (i.e. lower or
upper thresholds) that guarantee a certain level of quality with respect
to a specific service and to a specific set of variables (or aggregates, i.e.
mean value or percentiles).

SLA Violation (SLAV) occurs when at least one SLO related to the
SLA is broken or breached. The SLA violation prediction is when our
system correctly identifies that an SLO or a set of SLOs will no longer be
compliant.

To have a realistic SLOs definition, each SLO is defined as a combi-
nation of at least two metrics and thresholds. The metrics are defined
as average over a certain period of time. For example, SLO1 is the com-
bination of response time with respect to the workload. As shown in
figure 4.4, SLO1 is defined as a multi-step function. For each workload
interval, a specific threshold is set on the response time : If the work-
load is between 0 and 20% the minimum response time is 20 ms. If the
workload is between 20% and 70% then the threshold is set at 50 ms.

94 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

Figure 4.4 – SLO step function of response time.

Based on the elaborated SLOs definition, we used a machine readable
SLA description using YAML. YAML (Yet Another Markup Language) is
a data-oriented markup language in plain text. YAML is human friendly,
easy to read and edit. We opted for YAML to easily represent SLOs for
network services and use it as an input to our system in a dictionary
format, i.e. key, value tuple. YAML has also the advantage of being in-
teroperable with other serialization languages such as XML and JSON.
Figure 2 illustrates an example of YAML description of SLOs contained
in the SLO description file. Alongside that, we used other directories
and files including, metrics, profiles and service descriptor.

The 3 SLOs targets respectively, the response time of the service, The
availability of the proxy and the database transaction. The role of the
ANN is to identify from these observations the relevant metrics to watch
for each SLO and to identify effectively when an SLO breach is occur-
ring.

As aforementioned, SLA agreement comprises of a set of measurable,
low-level objectives, i.e. SLOs that are contracted with the service consu-
mer. In this section we formalize the three SLOs that will be used for the
Clearwater use case.

— SLO1 response time : This service objective targets the response
time of the SIP proxy VNFC (i.e. Bono). The overload tests generate
a large amount of connections forcing the proxy to drop multiple
connection requests. This in turn, reduces the mean time necessary
to answer a connection request.

— SLO2 database transaction : This SLO targets mainly Ralf and Ho-
mestead node. The SLO in this context is defined as the Cassandra

III. COGNITIVE SLA ARCHITECTURE 95

database performance. We observed the behavior of the database
and labeled the data accordingly.

— SLO3 service availabiltiy : This SLO monitors the behavior of the
service as a whole. When the communication service is down we
label the corresponding dummy variable with 1, 0 otherwise.

{
”nameSLO ” : ”$SLO 1$ ” ,
”QoE” : ”Premium” ,
” i s A l i v e ” : true ,
”SLAid ” : 25 ,
”dhcp ” : on ,
” v a r i a b l e s ” : {

”cpu ” : ” 0 . 6 ” ,
”memory ” : ” 0 . 5 ” ,
” disk ” : ” 0 . 2 ” ,
”networkIN ” : ”10021−3100”

} ,
” callMethod ” : [
{

” type ” : ”AVG” ,
”number ” : ”0 .5”

} ,
{

”timeSTART ” : ”1518431604” ,
”timeEND ” : ”1518451604”

}
]

}
Listing 4.1 – SLO Description in JSON

III Cognitive SLA Architecture

In this section, we present in detail the SLA management framework,
namely CogSLA. CogSLA is a framework that describes the process by

96 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

which operators comply with SLA agreements contracted with consu-
mers and other parties using knowledge computed via ML techniques
supported by a monitoring systems. CogSLA has been design to be sys-
tem and architecture agnostic. Building on this frameworks we contrib-
ted to create a global cognitive management architecture (figure 4.5)
in the Cognet project [98]. We define Cognitive SLA enforcement as to
the process by which operators comply with SLA agreements contracted
with consumers and other parties using knowledge computed via ma-
chine learning techniques supported by monitoring systems. CogSLA is
extendable, as it is intended to cover a diverse group of services beside
PNs, such as IoT, and unknown 5G services i.e. we seek extendable lan-
guages and templates that, once tuned, enable the establishment of the
required agreement levels of different and heterogeneous services.

In figure 4.5, we show how the generic framework is supporting cog-
nition. We first consider as a reference the ETSI NFV architecture which
positions the SDN controller within the NFV framework.

Two main challenges were tackled with this framework :

1. The sheer amount of data pushed by the monitoring system.

2. The heterogeneity of data and data sources, i.e. timeseries, SLA des-
criptions

The Cognet architecture presented in figure 4.5 is designed for an
NFV/SDN based environment for Autonomic 5G Network Management
using Machine Learning. The architecture design is based on the ETSI
NFV framework. The objective of this architecture is to develop a sca-
lable, high performing real-time network management platform that ac-
cesses multiple data sources, enabling autonomic infrastructure manag-
ment.

III. COGNITIVE SLA ARCHITECTURE 97

Figure 4.5 – Cognet architecture

We will procede in the description of all the three key components of
the architecture from an SLA-centric perspective :

1. CogNet Smart Engine (CSE) : responsible for receiving the state and
resource consumption records, pre-processing the records, selec-
ting suitable algorithms, and then applying selected models to fur-
ther process the received data. The CSE is enhanced by a Batch En-
gine (BE) that processes data in batches, and by a (Near) Real-time
Engine (NRE) that processes data in lower latency manner. The CSE
supports various machine learning modules that in turn help deli-
ver different data analysis. These include SLA violation anticipa-
tion, SLA violation and simple action recommendation service for
the policy engine.

2. Policy Engine : mainly responsible for mapping insights from the
CSE into appropriate policy actions that can be directly understood
by related components in the Management and Orchestration func-
tions. In our implementation the policy engine actions are statically

98 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

defined.

3. NFV Architectural Framework : leverages the ETSI NFV architecture.
One key architectural innovation of CogNet is the adoption of net-
work intelligence to NFV MANO. Specifically, the MANO stack is
enhanced by the CSE, a processing component that offers similar
functionality as CSE but is only equipped with the (Near) Real-time
Processing Engine (NRE). Such a component is designed to be em-
bedded into MANO, located as close to data as possible to reduce
access and processing time.

A Cognet Smart Engine :

The CSE, depicted in Figure 4.6, is responsible for receiving the state
and resource consumption records, pre-processing the records, selecting
suitable algorithms, and then applying selected models to further pro-
cess the received data. The objective of the CSE is to support the various
Machine Learning modules that in turn contribute to the delivery of va-
rious data service solutions, such as data gathering service, forecasting
and prediction services, anomalies and fault recognition service and ac-
tion recommendation service for the policy engine . These services in
turn have associated policies in the Policy Repository of the Policy En-
gine. The input of the CSE will be a data stream on the relevant events
whilst its output will be scored on the states of given components in
the architecture. The CSE collects data from both resource provider-side
and consumer-side. This is intended to increase the openness and trans-
parency of services delivered by 5G networks, and subsequently provide
better user experience. Moreover, the output of the CSE are prediction
scores, which can be divided into :

1. Thresholds for specific policies, such as the maximum CPU utilisa-
tion before reaching performance degradations and

2. Metric data at timestamp t, such as predicting the : (i) %CPU (nu-
merical), or (ii) presence of an anomaly or fault (categorical).

III. COGNITIVE SLA ARCHITECTURE 99

Figure 4.6 – Cognet Smart Engine

The CSE consists of following sub-components :

— Data Collection &Adaptors – it collects data frommultiple resources,

namely, from SLA repository (from user inputs Figure 4.6) and from

system-level monitoring metrics (i.e. cpu, network, disk and me-

mory). Then, maps collected data into those that can be processed

directly by the following components.

— Data Storage – it stores historical data and SLA data as key-values

pairs, and makes them available for multiple components constitu-

ting the CSE.

— Data Cleaning & Filtering – it cleans and combines the heteroge-

neous data (i.e. SLA and metrics), and then stores it into the Data

Storage or forwards it to the CSE.

— Data Pre-processing – it can work in either automatic or manual

mode to pre-process collected data stored in the Data Storage and

make them ready for the Processing Engine. Feature extraction can

be achieved by Deep Neural Networks, which will allow to gene-

rate highly abstract features automatically. Such functionality is es-

sential to support the overall flexibility of the architecture and to

keep it adjustable to constantly changing environment. It controls

100 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

the noise and reduces the processing time of analytic works for the
CSE.

— Algorithm Selection – similar to the Data Pre-processing, this com-
ponent is able to identify the best Artificial Neural Network models
based on multiple customized metrics(more on that in section III).
The model selected will be deployed into the CSE.

— Batch Processing Engine – The main componenet of the CSE. it re-
trieves consumption and state data from the data Storage, and ap-
plies these data to train a model or generate scores. In the former
case, the Batch Processing Engine will evaluate the distortion of cur-
rent model. If the model has become stale or no model is available,
it will generate a new model from scratch to facilitate the work
of the Real-time Processing Engine. In the latter case, this engine
works independently to analyse collected records in a more accu-
rate but higher latency manner. Note that the scoring in both the
Batch Processing Engine and Real-time Processing Engine is not to
simply apply one machine learning model but may involve a se-
quence of models associated with post-processing. For example, to
detect network anomaly, we may need to score a number of records
and then make a conclusion based on a linear combination of gene-
rated scores.

— Distributed File System – it stores models generated by the Batch
Processing Engine that will be deployed on the (Near) Real-time
Processing Engine. Note that this component is optional since the
Batch Process Engine may forward generated models directly, such
as through message queues/RESTful Web Services or the two pro-
cessing engines may not shared data between each other without
writing it to an external storage system if they are implemented
and deployed in some cluster computing systems, such as Apache
Spark.

The detailed discussion of the CSE is in section II. Note that the two
last building blocks, the distributed File System and Real-time Proces-
sing Engine are out of the scope of this work and thus will not be cove-
red.

III. COGNITIVE SLA ARCHITECTURE 101

B Policy Engine

This component is mainly responsible for mapping the output from
the CSE into the policy actions that can be directly understood by the re-
lated components in the MANO stack, Tenant Controller and OSS/BSS.
It consists of the following sub-components :

— Policy Recommender – The Recommender matches events that re-
present system state of interests in the context of business objec-
tives and their operational realization with the policies in the re-
pository, to determine which policy is relevant. The events are re-
ceived from the CSE and can be in the form of (i) predictions such
as resource utilization (e.g., expected CPU/RAM consumption) or
anomalies detected (e.g., network intruder alert, or performance
degradation detection), or (ii) thresholds optimized for specific mo-
nitoring values, such as considering the dynamic environment a
CPU consumption exceeding 80% might cause degradations at a
point in time t, however with the changes in the dynamic environ-
ment this amount might vary at a t+ 1. The Policy Recommender is
a decision point that takes into account the state of individual net-
work elements, but also helps to achieve business objectives by sug-
gesting how to manage the overall resources required for network
services. By integrating the predicted results from CSE, the Policy
Recommender can make policy decision dynamically to respond to
situational context, as well as changes to network environment due
to ongoing operations. In addition to the above, optionally the re-
commender can feed the repository with adapted/new policies. The
Recommender can be extended to adapt/recommend new policies
based on the experience gathered from applying previously exis-
ting policies. Hence, it will be analyzing historical data of the ef-
fect of existing policies, by looking at performance indicators, such
as delay, throughput, degradations caused, resource consumption
patterns.

— Policy Repository – it stores policies related to all components of
5G networks. These policies normally are bindings of policy events
with policy actions. They contain parameters and data structure
that the Policy Recommender needs to evaluate for policy recom-

102 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

mendations. The policies should be consistent with the predefined
SLA.

— Optimizer – The Optimizer consumes what is in the repository, and
is responsible for dealing with the fine tuning of the parameters/-
condition. The Policy Optimizer receives policy decision from the
Policy Recommender, and then transforms the abstract actions spe-
cified in selected polices into concrete ones based on the state and
configuration information from the MANO stack. This information
can be static, such as source or destination addresses or dynamic
such as current available network resources.

— Policy Distribution – The Policy Distribution invokes APIs offered by
the components that are hosted in the MANO stack, Tenant Control-
ler and OSS/BSS/VTN based on specified actions. It recommends
actions according to the decision of Policy Recommender and cur-
rent network conditions.

The detail implementation of the policy engine by ML algorithms is
out of scope and is consideration for future work.

C NFV Architectural Framework

The NFV Architectural Framework of CogNet leverages the ETSI NFV
architecture. One key architectural innovation of CogNet is the adoption
of network intelligence to NFV MANO. Specifically, the MANO stack is
enhanced by :

— Light CSE (LCSE) – it is a processing component that offers the simi-
lar functionality as CSE but is only equipped the (Near) Real-time
Processing Engine. Such a component is designed to be embedded
into the MANO that is located as close to data as possible so that the
data can remain local. In such a way, access and processing latency
can be minimized.

— Proxy – it forwards the concrete actions from the Policy Engine to
related components constituting the MANO stack, but also converts
the actions into a format that can be consumed by these components
directly. The components connected to Proxy including NFVO, VMF
and VIM are equipped with built-in policy enforcement mecha-

III. COGNITIVE SLA ARCHITECTURE 103

nisms, which are able to adjust or re-configure those network ele-

ments managed by them. The CogNet NFV architectural frame-

work supports two types of connectivity services, both of which re-

quire control capabilities and the orchestration and management of

different types of resources for building and accomplishing a pro-

per delivery as NFV uses the network at two layers. The first is the

SDN controller that deals with the network services provided at the

service tenant layer, in particular with the operation and manage-

ment of the network service’s constituent VNFs by instructing the

various VNFs that are deployed on the NFVi to take different ac-
tions on the traffic. Moreover, the second SDN controller supported

by the CogNet architecture is the one in the infrastructure domain,

which supports the setup of the required connectivity (including

the WAN) for the communication of the deployed VNFs.

D Proposed workflow

Gathered data from the Data collector is pre-processed in Data Clea-

ning and Data Pre-Processing. This aims to clean them and extract re-

levant features that forms the basis of a low generalization error model.

Afterwards, the Automated Model Selection component searches and

then finds out the machine learning models that can offer the best per-

formances based on processed feature sets. The workflow of the data

pre-processing is depicted in Figure 4.7, details will be introduced as

follows.

Pre-processing

Figure 4.7 – Data Pre-processing

104 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

The Data Pre-processing flow is illustrated in Figure 4.7. Initially, col-
lected records are cleaned by some light-weight approaches that aims to
reduce the size of data for storage. The feature extraction may also be
performed on the cleaned records based on the request from the Data
Pre-processing if the records will be forwarded to the Real-time Pro-
cessing Engine. Afterwards, processed records are stored in the Data
storage or consumed directly by the (Near) Real-time Processing En-
gine. The Data Pre-processing will further process the stored data by
normalisation and extraction. The former operation refers to adjust va-
lues measured on different scales to a notionally common scale, which is
essential for certain machine learning algorithms, such as classifiers that
calculate the distance between two points by the Euclidean, and can po-
tentially facilitate convergence of given machine learning approaches,
such as gradient descent. The latter one covers methods that transform
raw data into informative features for machine learning algorithms. In
the 5G era, hundreds or, in some cases, tens of thousands of input fea-
tures are available in network management services, such as network
traffic classifications and network-wide monitoring. Data extraction is
intended to increase the accuracy of machine learning models by ex-
tracting salient features from the raw input data but also potentially
remove noise and redundancy from monitoring records. It also simpli-
fies and facilitates model selections since if relevant features can be ex-
tracted, even a simple model can offer remarkable results. Additional
aims include lowering the dimension of data to facilitate training speed
and visualization. Following the work on pre-processing, the Automa-
ted Model Selection component checks hardware resources available to
processing engine(s), and then evaluates the performance of machine
learning models based on the configuration on a specific job requested
by a user . Instead of comparing all available models recursively, the
work can be processed based on certain selection criterion, such as ??.
The model offering the desired performance will be deployed on selec-
ted processing engine(s).

III. COGNITIVE SLA ARCHITECTURE 105

Data Processing

Figure 4.8 – Processing Engines.

As introduced in Section A and C, LCSE and CSE are two processing

units, which will train machine learning models and then apply them

to analyse gathered records . They will be evaluated and selected based

on certain criteria. As depicted in Figure 4.8(c), if LCSE is assigned as

the processing component in a given task, which is only equipped with

a (Near) Real-time Processing Engine, then it collects monitoring infor-

mation directly from a Data collector component hosted in the MANO

stack since the MANO has the knowledge on all components constitu-

ting the NFV architecture. This forms the basis for low latency analysis.

106 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

The output of the LCSE will be consumed by the Policy Engine. If the
CSE is assigned the processing task, both the Batch and (Near) Real-time
Engine may be requested to cooperate with each other or work indivi-
dually. Figure 4.8 (a)(b)(d) depict how these engines work in different
modes. In the case, only the (Near) Real-time Processing Engine is ac-
tivated, data are pre-processed and models are selected and deployed
on this engine. The (Near) Real-time Processing Engine then operates
based on its configuration, and its analysis results are forwarded to the
Policy Engine. In the case, the Batch Processing Engine works indepen-
dently, it consumes models from Automated Model Selection and data
from Data Storage instead of Data collector directly. Its outputs will also
support the operation of Policy Engine. In the case, both engines are se-
lected, the Batch Processing Engine trains selected models and then for-
wards these models directly or indirectly to the (Near) Real-time Pro-
cessing Engine. The models will be applied to generate analysis results
by the (Near) Real-time Processing Engine. In practice, the historical
telco network and environment data may contain sufficient knowledge
for network management. However, the scale of these data, in the order
of petabytes, can prohibit the learning of predictive models in a timely
manner. The hybrid mode unifies both batch and real-time processing.
It enables the CogNet architecture to process massive amounts of data in
order to build predictive models based on previous network behaviour.
It also brings the ability to process fresh network data for predicting
customer or network behaviours based on the historical models within
a short period of time.

III. COGNITIVE SLA ARCHITECTURE 107

E Policy Engine

Figure 4.9 – Processing Engines.

The CSE or LCSE sends its outputs, which can be predicted values on

specific events, such as the CPU usage of a given server, to the Policy

Engine. As illustrated in Figure 4.9, upon the inputs, the Policy Recom-

mender evaluates conditions of all policies given in the Policy Reposi-

tory and then identifies the policies that will be triggered. Afterwards,

the selected policies are sent to the Optimizer that maps the high-level

action specifications of the polices into concrete ones based on the state

information from the NFV architecture. The concrete actions will be for-

warded to the Policy Distribution and then the Proxy to recommend fur-

ther to the MANO/SDN controller how to adjust resource provisioning

in order to avoid the violation of network management rules.

The policy engine includes the engine itself, which selects from the

policy repository the most appropriate set of actions based on the event

and on the system conditions. Additionally, the policy engine is able to

distribute actions to the different components. The policy engine may

be extended to have other responsibilities (conflict resolution, suppres-

sing of policies, optimization of the policy parameters, etc.) ; however,

108 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

currently these (including policy generation/adaption) are an extension
of the current scope of the work. The policy engine includes a policy re-
pository where the policies are stored. The policy engine uses the stored
policies to determine the appropriate actions. The policy recommender
has currently the role to retrieve the violated policies and will aim to
adapt the existing policies in the policy repository with new ones speci-
fic or customized for the specific deployment. This could be the addition
of new policies or the adaptation of the parameters in the policies (e.g.
threshold levels). The policy recommendation could be based on the di-
rect monitoring of the events, on the history/status of the system and
especially on the machine learning insight (which provides dynamic sta-
tistic results on specific events). The cognitive processing flow includes
monitoring, CSE, policy engine, distribution of actions. When the sce-
nario is not enabled by machine learning, the processing flow skips the
CSE component. The experience accumulation processing flow includes
monitoring, CSE, Policy Recommender, Policy Repository (with new or
adapted policies).

F Cognet Sequence Diagram

In Figure 4.10 below, the NFV monitored system is pushing repea-
tedly metrics to the Data Collector through the Inbound API. On the
meantime, the [L]CSE is continuously getting these metrics to find a tar-
get situation. Once it detects an event it is transferred to the Policy En-
gine which gets a list of potential policies to be applied from the Policy
Recommender and check their conditions. In the case a policy condition
is satisfied, the Policy Optimizer find the appropriate empty fields, if
any, and delegates to the Policy Distributor to send to the specific end-
point (VIM or SDN controller) the action through the Outbound API.

III. COGNITIVE SLA ARCHITECTURE 109

Figure 4.10 – Cognet global architecture sequence diagram.

G Operational Application & Use Cases

We introduce in section III the theoretical framework that allows an
autonomic and a generic cognitive approach to managing NFV-based
networks. Based on these global principles, we generate a simplified/-
derived framework targeting specifically SLA management, presented
in Figure 4.11.

110 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

Figure 4.11 – Simplified Cognitive SLA Architecture.

We reused some of the main building blocks depicted in Figure [?]. In
this section, we descibe the specifity of each block with respect to SLA
management and give pratical and more detailed application of each
block.

Data Collector : The data collector gets data from two sources, (1)
the system-level supervision tools and (2) the SLA repository (descri-
bed in section D). It collects raw unprocessed metrics (e.g. cpu, disk,
network) from the monitored service of the running VMs, VNFs and
virtual switches. The data collector stores the monitoring metrics in a
time series database and SLA metrics in SQL database. The aim of this
module is to provide ready-to-use data to the Data Preparation and Pre-
processing module.

Data Preparation and Pre-processing : One of the most crucial steps
in the CogSLA framework. It performs two types of transformation on
the data. First, cleaning/filtering, reducing the data dimentions. Secondly,
transforming the inputs into a comprehensible format for the ML al-
gorithms. In this second phase we also incorporate feature engineering
process.

Cognitive Smart Engine (CSE) : The CSE is responsible for the data
processing and the application of ML algorithms to anticipate SLA vio-
lations. It has direct interfaces with the data preparation block. It in-

III. COGNITIVE SLA ARCHITECTURE 111

cludes three main modules, namely, CSE/Forecasting, CSE/Violation
prediction, CSE/SLA enforcer.

The cse/Forecasting (see sequence diagram in Figure ??) module takes
as inputs the preprocessed features from the data preparation module.
These features are numerical values at a given time t. The CSE/Forecas-
ting module computes the next values of these features at time t+n, e.g.
n = 1 for one-step-ahead forecasting. More details on this operation in
section A. The CSE/Forecasting module sends the forecasted values (Fig.
4) to the CSE violation prediction module. The objective of this module
is to determine based on the forecasted values whether an SLO might be
impacted or not. The CSE violation prediction has also access to the SLO
repositories. SLO repositories contain the low-level/metric-level defini-
tion of SLOs targeted by the administrator i.e. clear objectives to meet.

Figure 4.12 – UML and data model for CogSLA.

Use cases
Among the first challenges in this PhD was to acquire monitoring

112 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

dataset from NFV-based networks. At Orangte Labs, the legislation and
concerns about users privacy was the main hurdle to acquire the data.
Although some open sites and initiatives provide networking data such
as DARPA 1 with both SLA violation and nominal behavior, we didn’t
find data that answers our requirements. We have the following requi-
rement on the data :

1. Data should be representative of the typical SLA problems in soft-
warized networks, with both SLA violation and SLA compliant states.
Moreover, the dataset should exhibit multiple SLO violations.

2. The ground truth should be known in advance, i.e. what is the root
cause of the problem and the period of start and end.

3. Ability to test our own architecture and algorithms.

In order to overcome these obstacles, we setup our own infrastructure
on the Cloud. We started with a first virtual platform for data streaming
services ; then later on we installed an opensource VNF for multimedia
services. The advantage of this approach is that it allows us to have more
degree of freedom with respect to SLO violations and also enables us to
test counteractive management actions and ML algorithms.

Use case I : Streaming service

The objective of the streaming use case test bed is to detect video
degradation and ensure recovery. Streaming application relying on SDN
controller, identify the metrics that we can monitor or obtain. For this
use case we rely on Prometheus monitoring tool [161]. Prometheus is the
next generation of monitoring system as well as a time series database,
it is a pull-based monitoring system, i.e. it scraps(listens to) monitoring
objects over time such as latency or mean throughput. An initial SWOT
analysis of Prometheus was performed (see Table G) :

1. DARPAhttps ://www.ll.mit.edu/ideval/data/

DARPA

III. COGNITIVE SLA ARCHITECTURE 113

Strenght Weaknesses
Performance by design
Reliability by design (Prometheus server
is a standalone, not connected to zooke-
per for ex)
Monitoring as a service (not as a ma-
chine)
a flexible query language to leverage di-
mensionality
multiple modes of graphing and dash-
boarding support

Only Pull-based : prometheus is about
metrics collection not events collection
recording only purely numeric time se-
ries (no complex structural data such as
topologies)
if you need 100% accuracy, such as for
per-request billing, Prometheus is not a
good choice.
Suited for dockers and web-services !

Opportunities Threats
pushing time series is supported via an
intermediary gateway
a multi-dimensional data model (time se-
ries identified by metric name and key/-
value pairs)

time series collection happens via a pull
model over HTTP

Table 4.2 – SWOT Matrix analysis of Prometheus

In order to evaluate the work to be done in the SLA enforcement for
a given video steaming application, Orange will set up a testbed envi-
ronment on top of opensource platforms including (OPNFV/ OpenPlat-
form for NFV ; Cloudify and Openstack /orchestrator ; OpenDaylight/
the SDN controller ; Clearwater/ the open platform for vIMS (virtual IP
Multimedia Subsystem) as the VNF). The role of this testbed is to de-
ploy, run and supervise fault and performance of services. By services
we mean streaming applications and voice calls using a softphone ap-
plication.

In our testbed we will operate the SLA enforcement use case to target
video degradation in a unicast streaming application. We plan to first
detect and then predict any streaming quality degradation that can af-
fect a particular SLO. The minimum setup is composed of a group of
interconnected VMs :

— a VM where OpenDaylight controller is run

— a VM where a server streams video in a predefined rate and enco-
ding

— a VM where the client is receiving the streaming

— a stitching VM that connects the VM client to the VM server and

114 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

where an emulated network of different topologies and switches
with different capacity links and random traffic generation that may
cause sever quality degradation such as sever delay.

The data acquisition in our testbed will be based on real time monito-
ring in different data point using Prometheus monitoring tool. The ad-
vantage brought by Prometheus in this context is the data model based
on time series database. For the SDN controller however, the monitoring
is performed in two phases : offline using Cbench tool, a benchmarking
tool for SDN controllers. The online monitoring will be based on infe-
rence from the VM that hosts the controller using Prometheus. [source :
https ://github.com/dfarrell07/wcbench]. In the SLA enforcement use
case, it is necessary to have an SLA repository where all SLAs are stored.
An SLA is legally binding contract between a service consumer and a
service provider that define all the term of services from QoS to billing
and penalties as well. In our Testbed we are more interested in the QoS
guarantee. These QoS threshold are refered to as SLO - Service Level
Objectives. . Typically, an SLO for streaming video offering should take
into account the following parameters :

— The encoding format and rate of the video stream

— The minimum video resolution, i.e. quality in term of pixel, e.g.
minimum 480p with no latency

— Minimum FPS, Frame per seconds Translated into Low level SLO :

— Loss Rate (e.g. should be less than 5 percent)

— Latency (e.g. should be less than 5 seconds)

— Guarantee Bandwidth

III. COGNITIVE SLA ARCHITECTURE 115

Figure 4.13 – Overview of Prometheus data set.

After preparing the data we receive 10 native metrics per VNF. New
features are then created from this data. The total outcome reaches 20
features. In order to emphasize variation and reduce the dimensionality
of the inputs, we used two different techniques. Firstly, High Correlation
Filter to remove all the metrics that have more than 80% Pearson corre-
lation. Then, Principle Component Analysis (PCA) technique that uses
orthogonal transformation to reduce the features dimensionality while
preserving their main characteristics. We used PCA to reduce the num-
ber of initial features to a smaller set of features, termed PC - Principal
Component. We used this technique to preserve at least 80% variance of
the initial dataset. This operation transformed features such as CPU

RAM

2
or

log(CPU) to abstract component denoted P C1 = F1, P C2 = F2, P C3 = F3
. The result of this phase is the reduction from 20 to 3 dimensions. The
raw data is received at a frequency of 30 seconds. In order to predict
next values at a lower frequency, we perform an autocorrelation test on
the data and reduce their frequency using rolling mean up to 30 minutes
frames. Lastly, we normalize (equation 1) and de-trend the data by com-
puting percentages and subtracting the mean to capture exclusively the
data fluctuations. This last operation is crucial to improve the learning
of time series i.e. reducing the cost function. The fluctuation of the (1)
xxxx

116 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

Figure 4.14 – Overview of Prometheus data set.

In the literature, recent work have used streaming services to improve

the network management. Hasan et al. [162, 79] have used streaming

service based on VLC media player in a load balancing setting to detect

SLO violations.

The streaming services are easy to install, modify the traffic and it is

important because you can see the SLO violation directly as the video

stops or changes in quality.

The figure ?? repsents the architecture of the streaming testbed. This

testbed is composed of five VMs running on Ubuntu server with 16 GB
of RAM and 4 vCPU for each VM. We instantiated a Monasca server

III. COGNITIVE SLA ARCHITECTURE 117

in the first VM and Openstack in the second one. The latter is playing
the role of the authenticator using Openstack Keystone. The third and
fourth VMs host a virtual network, composed of Virtual switches (Open
vSwitch) and multiple VM guests. Guests correspond to three clients,
three servers and five vSwitches, and one OpenDaylight controller. Fi-
gure 5 depicts how we design our virtual network. The goal of this ar-
chitecture is to allow the creation of multiple paths between the sources
(i.e. streaming servers) and the destinations (i.e. the clients) using RTP
streaming protocol. In the fifth VM, we construct our CSE.

In each guest VM, we instantiate a monitoring agent. The agent re-
trieves the local information and sends it to the Monasca server. The
Monasca server in turn, receives all the data generated in the form of
time series from several data point and data source (e.g. VMs hosting
VNFs, PMs, virtual switches) that are monitored by Monasca agents.
The Monasca server then stores all the incoming data in InfluxDB, an
open source database for storing and managing time series. The raw
monitoring data received by Monasca are 180 system-level metrics per
VM, each metric has 86.400 entries corresponding to 30 days monito-
ring with 30 seconds push frequency. Using the Monasca REST API,
we can retrieve at real-time all the stored metrics. This should in turn
be selected and filtered before feeding the CSE. Each streaming VNF
runs locally in an infinite loop a high video quality (720p) of one hour
and a half-broadcasted over Real-time Transport Protocol (RTP) video
streaming protocol. Each client accesses and reads the video in its origi-
nal format, which generates a network stream over the two end-points.
Once the streaming service is up and running, the three VM clients are
connected and receive the video streaming, we start by injecting 4 types
of faults. (1) Node failure, (2) link failure, (3) node overload, and (4) link
overload.

The aim of fault injection is to generate training example for the Ar-
tificial Neural Network (ANN) as in Figure 6 to learn on and then to
generalize to other similar types of faults patterns.

The testbed generates several traces that are reshaped as stream of
matrices with 20 rows (5 inputs per feature * 4 features) which corres-
ponds to the size of the sliding window and the size of the input layer
in the ANN (see Figure ??). In the literature, we found no clear metho-

118 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

dology or consensus on the appropriate size of the input layer. However,

we stress that this parameter is the most important one in the cognitive

engine, since it can capture the hidden correlation in the stream.

Figure 4.15 – Network diagram for the streaming use case.

Table 4.3 – Data summary of the use case I
The observation window 1 week

Number of entry lines per metric 20.000

The sampling frequency 30 seconds

Number of raw metric per VM 10 metrics

Number of feature per VM 5 metrics

Number of total features 5 metrics * 6 VNFC = 30 features

Number of SLO violations 1

Figure 4.16 – Data distibution of the streaming use case.

III. COGNITIVE SLA ARCHITECTURE 119

Use case II : virtual IP Multimedia Subsystem (vIMS)

Clearwater is an open source VNF that uses SIP as a call control for
voice and video communications [163]. Clearwater respects the basic
IMS architectural principles and interfaces well-known in the telecom-
munication world. In the literature Clearwater has been use as the main
testbed for anomaly detection in nfv [164], S. Makhsous et al. used it to
study high-availability [165] for NFV deployments.

Clearwater has interesting properties with respect to our study. It is
first designed to support horizontal scalability (i.e. adding more VMs)
which can be considered as a management counteraction. Second, it sup-
ports test generation tools such as SIPp [166], stress-ng [167] to generate
traffic and create different SLO violations to test our prediction accuracy.
Third, it can be deployed on Openstack VIM (Virtual Infrastructure
Manager), which allows us to fully integrate it to our existing frame-
work. Clearwater is built around the interworking of 6 VNFCs (see Fi-
gure 4.17). The VNFCs are : Ellis, Bono, Sprout, Homer and Homestead,
each having a specific function. Ellis is a provisioning portal providing
sign-up, password management, and sip identities management. The
IMS I-CSCF (Interrogating-Call Session Control Function) and S-CSCF
(Serving-Call Session Control Function) functionality are implemented
in Sprout. Bono is the Clearwater edge Proxy, it uses Sprout (SIP Rou-
ter). It implements the P-CSCF functions (Proxy-Call/Session Control
Functions). It is the entry point of SIP clients, which is in turn routed
SIP requests to Sprout. Homer is a XDMS, a standard XML Document
Management Server, it stores multimedia telephony service (MMTel). It
runs Cassandra database. Homestead (HSS Mirror) relies on HTTP RES-
Tful interfaces and Cassandra as data store. It is used by Sprout to re-
trieve authentication credentials and user profile. It also delivers some
I-CSCF and S-CSCF functionalities. Ralf (CTF) is responsible for char-
ging and billing. For more details on Clearwater VNFs, readers can refer
to the project documentation [168]. Our Clearwater setup consists of 10
VMs (6 Clearwater VMs, 1 Monasca VM, 1 SDN VM, 1 VM where we
run the framework, 1 DNS VM) and over of 2 Gbits of collected Moni-
toring traces. In addition, 30.000 different SIP profiles were created and
stored using Homestead in the local Cassandra Database. These profiles
are used to generate traffic and anomalies when they are launched si-

120 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

multaneously. The monitoring tool for our framework is Monasca [169].

Monasca is a MaaS, Monitoring-as-a-Service solution from HP, built as a

highly scalable Openstack service.

Edge Proxy
P-CSCF +
WebRTC

Bono

Homer

Homestead

Sprou

XCAP

SIP

t

SIP Router
I/S-CSCF,
BGCF, TAS

Registration
state store

memcached

Subscriber
Profile Store

Cassandra

SIPP

XCAP

HTTP

Cassandra

XML Doc
Server

X

C
lie
nt
in
te
rf
ac
es

HSS
Virtual IMS

Virtual
Infrastructure
Manager

SIP

Monitoring:
Monasca

REST API

SIPp
Bot Users

Stress testing the vIMS
to break the SLA1

Supervising how the low-level
vIMS metrics Reacts to the
stress tests

2

Human Userr

SIP

Supervising the vIMS
service e.g. availability3

SLO compliance indicator

Data Labeling

Labeling low-level metrics
to the corresponding SLO states4

ANN
Training

ClassificationModel Selectioono

Figure 4.17 – Our Testbed. Clearwater virtual IMS functional architecture in the box

lower right. Upper left the Cognitive Smart Engine (CSE). The experimental process

is : (1) Stress testing for SLA violation generation. (2) System-level supervision. (3)

Reporting SLO violations. (4) Data labeling, merging observations on the SLO state

and the system-level metrics.

Table 4.4 – Data summary of the use case II
The observation window 2 months

Number of entry lines per metric 200.000

The sampling frequency 30 seconds

Number of raw metric per VNFC 30 metrics

Number of feature per VNFC 26 metrics

Number of total features 26 metrics * 6 VNFC = 156 features

Number of SLO violations 3

III. COGNITIVE SLA ARCHITECTURE 121

Figure 4.18 shows twelve whisker plots representing different low-

level metrics of the core IMS nodes. The figure shows difference in the

distribution of the samemetric in different VNFCs (for example ralf-cpu

and homer-cpu). This means that the stress test impacts different VNFCs

with different degrees.
The dataset describes both normal SLA state and the violation state.

The scale of the time series varies widely from one metric to another.

Therefore we decided to rescale the metrics to [0-1] range (in figure 4.18

the range is from [0-10]), so that the classifier considers all the metrics

with no scale bias. The raw data is processed into a machine compliant

format (i.e. tensor matrix). In the cleaning phase, we reduce the en-

try lines from more than 400.000 lines to 200.000 lines. In this phase,

the majority of the discarded lines are either redundant entries or non-

exploitable errors or missing values. The dimension reduction in our

case refers to reducing the number of entries while keeping the pro-

perties of the time series. This technique consists of eliminating few

samples in the data that do not entail a change in the form of the curves.

It is formally described as follows : Given a time seriesT1, with n data-

point, generate a new time series T2 with p data points such as p < n and

T1 approximates T2 . In this phase we reduce the data size from 200.000

steps to 177.000 entries.

Figure 4.18 – A subset of the data set distribution. The small boxes represent the quar-

tiles of the distribution. The red line in the middle represents the median, i.e. the point

separating the data into half. The outliers are drawn as black crosses outside the box.

122 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

We used as inputs to the ANN a 3D Tensor, which is a mathemati-

cal representation of the inputs. The tensor has the following shape :

< #of lines, timesteps, #of f eatures >. The first dimension corresponds

to the number of entries per time serie, it corresponds also to the number

of lines. The second dimension is the timesteps used, we keep the default

value of 1 corresponding to 1 timestep per entry. The third dimension

corresponds to the number of features that is 156 metrics. Equation 5.3

represents the inputs in 2 dimensions, xi,j where i is the line number

and j is the feature number :

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 x1,3 ... x1,156
x2,1 x2,2 x2,3 ... x2,156
x3,1 x3,2 x3,3 ... x3,156
x4,1 x4,2 x4,3 ... x4,156

· · ·
xm,1 xm,2 xm,3 ... xm,156

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.2)

Figure 4.19 – Cognitive SLA Architecture.

Data Acquisition and Monitoring

Monasca Introduction

III. COGNITIVE SLA ARCHITECTURE 123

The select monitoring tool for both testbeds is Monasca [169]. Mo-

nasca is a MaaS, Monitoring-as-a-service solution from HP, built as a

highly-scalable Openstack service. It uses Apache Kafka queue techno-

logy [170] to prioritize incoming flows and InfluxDB as a time series

database. The advantages of Monasca over current monitoring solutions

(e.g. Zabbix, ceilometer) are than it is highly scalable, integrated as an

Openstack project and it allows us to define new sets of metric for our

research problem.

In our example, the monitoring interval (data pushed by Monasca

forwarder by Monasca agent) is the default 30 seconds.

Monasca by default collects 30 metrics per VM, four of which are of

no use in our case (e.g. idle values or Null values). We keep 26 metrics

per VM, which correspond to 156metrics with all the 6 VMs (Bono, Ralf,

Sprout, Homer, Homestead, Ellis).

We have been faced with two implementation choices of the CSE, the

first choice is to integrate the CSE as kafka subscriber. The second im-

plementation is to connect the CSE as an external service using REST

API.

Figure 4.20 – CSE implementation choices.

Implementation choice 1 : seamless integration
The implemntation number 1 (Figure 4.20) allows a rapid, low-latency

processing. This approach is suited for real time analytics. It allows a

124 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

seamless integration with the monitoriung system. However, this im-
plementation is too system oriented thus can not easily generalize to
other implementation. Furthermore, it necessitates an in-depth unders-
tanding of Monasca and Kafka technology.

Implementation choice 2 : service-based integration
The REST API implementation is the most compelling in our context

because it is system agnostic, loosly integrated with Monitoring system.
This approach is more suited for a data science analysis. Offline ana-

lysis, is an important step to understand the data structure and distri-
bution, the nature of the problem before starting to implement the CSE.

This approach will be the basis of the next chapter were we discuss
the preprocessing phase.

IV Data Analysis

In the 5th generation networks, we expect tens of thousands of in-
put features across layers that are available for the network manage-
ment system. Data extraction is intended to increase the accuracy of ma-
chine learning models by extracting salient features from the raw input
data but also potentially remove noise and redundancy from monito-
ring records. It also simplifies and facilitates model selection since, if
relevant features can be extracted, even a simple model can offer remar-
kable results. Additional aims include lowering the dimension of data to
facilitate training speed and visualization. All of these techniques and
examples are discussed in this section.

A Data Gathering

Data gathering service extracts data from internal data sources such
(network KPI monitors) and external sources that are applicable for a
given machine learning service. The service can be configured based on
which machine learning services that are actively used and caches the
data it gathers in a database for later usage. Data gathering service can
import raw data in batch mode or streaming mode depending on the
service requirements and scheduled for periodical data imports.

IV. DATA ANALYSIS 125

Data extraction and collection
The extraction of the monitoring data is performed by installing mo-

nitoring agents on every VM. The agents collect metrics from different
sources as follows :

— System metric such as network i/o and memory

— Host live checks. The agent can check periodically the state of the
host to determine if it is alive using ICMP ping.

— Process checks, checking active service endpoints by sending HTTP
requests to an API

A metric is identified by a name and dimensions. Each metric is as a
metric are name, timestamp, and value.

The chartflow
The flow of the agent application goes like this : (you should change it

please because It was copied from here monascahttps ://github.com/openstack/monasca-
agent/blob/master/docs/Agent.md)

1. The collector runs based on a configurable interval and collects sys-
tem metrics such as cpu or disk utilization as well as any metrics
from additional configured plugins such as mySQL or Kafka.

2. The statsd daemon allows users to send statsd type messages to the
agent at any time. These messages are flushed periodically to the
forwarder.

3. The forwarder takes the metrics from the collector and statsd dae-
mon and forwards them on to the Monasca-API.

4. Once sent to the Monasca-API, the metrics continue through the
Monasca pipeline and end up in the Metrics Database.

5. The collector then waits for the configured interval and restarts the
collection process.

In this phase, we collect SLA information as key, values pairs that
describes specific SLOs. The data input was in the form of a YAML file
as depicted in figure ?? below.

One important aspect of the data preparation phase is the ability to
filter out the data that cannot be used by the machine learning algo-
rithms. For example, white noise, or other data with no correlation. The
technique used is the autocorrelation ; it allows us to study if the time

monasca

126 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

series data are (1) forecastable and (2) to identify for how many time
steps we can see in the future. In the figure 1, the autocorrelation iden-
tified the correlation between the previous step and the next step, the
results are that there is a correlation between x(t) and x(t-1) up to 80%,
but between x(t) and x(t − 2) the correlation drops to 60%

In our work, the time series are stored in three different formats :

1. CSV - Comma Separator Value : Simplest way to store data, it is
effective for small data and data preparation phase. It can be easily
analysed by a human operator.

2. SQL : It is used as the back end of our system, can store high di-
mensionality data. However this solution might be a hurdle when
scaling out to millions of read/write operations per second.

3. InfluxDB : a hight availability throughput database specialized for
time series storage, it is used by the monitoring system Monasca.

B Data preparation

Data preparation service processes raw data stored by the data gathe-
ring service based on the requirements of each machine learning service.
Data preparation service provides the following functionality :

— Aggregation of data.

— Clean data by detecting noise.

— Split data for machine learning experiments.

The output of the data preparation service is processed datasets that
can be used by the machine learning services directly or after dimen-
sionality reduction. The output can be sent in batch mode or streaming
mode based on the machine learning service requirements.

Data preprocessing : From naive to feature engineering

Data cleansing and transformation. Initially, we remove corrupted
values, redundant entries and null or undefined metrics in order to re-
duce the size of the data storage. This dramatically improves the data
quality and is a necessary step that takes multiple iterations and ana-
lysis before complete automation. Afterwards, the time series are trans-
formed into a stationary state with a mean of 0 and a standard variation

IV. DATA ANALYSIS 127

of 1, this step is important because it allows ML algorithms to com-

pute Euclidian distance and can theoretically facilitate the convergence

of the training process such as backpropagation algorithm. The extrac-

tion of the features covers methods that transform the raw data into

features that contains discriminative information for machine learning

algorithms. We present in table 4.6 an example of informative features.

Figure 4.21 – Raw data in JSON into a Table

Feature Engineering

Feature engineering is one of the most important phase of the data

services. In this work, we distinguish between three types of data engi-

neering :

1. Human-based/ Manual (iterative, intuition)

2. PCA

3. Minimal process without feature engineering

Engineered KPI :
The engineered KPI selection is a method of selecting a subset of the

total inputs based on intuition. The role of the human expert is key in

this phase. The expert role is two folds : (1) selects the most meaningful

metrics with respect to the use case, (2) create a - usually creative - com-

bination of metrics. Generally, when the human experts are involved in

the machine learning loop, the process is more iterative and selecting

from the first shot the right metric is unlikely. However, in this study

128 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

we limit the iteration to the first iteration in order to compare the hu-
man intuition to other more advanced techniques. Moreover, for sake of
simplicity we limit the number of features to four.

The selected metrics using the Engineered KPI are of four broad cate-
gories : performance, memory, network and disk. The metrics are at the
level of the Virtual Machines and are defined as follows :
Performance-related feature :

X(1) =
(Cpuload)2

RAM load

Memory-related feature

X(2) = RAMload

Network-related feature

X(3) : =
P acket rate
RAMload

Disk-related feature

X(4) =
NetworkInputP ackets

DiskAccess

And we refer to X as a matrix that contains all the features represented
as a vector, namely, X(1), X(2), X(3) and X(4) .
Formally, for each last N values of X we want :

X̂t = f (Xt−1,Xt−2,Xt−3, . . . ,Xt−N)

X̂t : is the forecasted matrix that contains the forecasted values of all
the four features. It comes with an error ε :

X̂t= Xt + ε

Xt−i : is the previously observed matrix X at time t − i
Based on the forecasted matrix X̂t , we want to determine which SLOs
can be violated. We write it as a probability for an SLO, s :

P (s is breached / X̂t) ≥ α

α : is the threshold above which we consider the SLOs s as the future
violated SLO.

IV. DATA ANALYSIS 129

C Dimensionality reduction

The goal of machine learning algorithms, which are the driving force
of the cognitive capabilities of CogNet, is to find functions that aid in
performing tasks automatically. For instance, given a set of cloud in-
frastructure monitoring metrics, we might want to have a function that
estimates the probability that a virtual machine will fail during the fol-
lowing 30 seconds ; or given a set of TCP flow characteristics, such as
average round-trip time and packet payload size, we could benefit from
a function that tells us whether the flow contains video data or not. To
find those functions, we need to provide machine learning algorithms
with input variables - such as the cloud monitoring metrics or the flow
features. As the number of variables are increases in a dataset, the in-
formation content of the data will increase. However, if there are too
many variables, learning the patterns in the data might become harder
exponentially due to the increased sparsity of the data. It is therefore
often necessary to reduce the number of input variables to a sufficiently
small number while retaining as much relevant information as possible.
The process of decreasing the number of variables is known as dimen-
sionality reduction. There exist many algorithms to perform this task.
Perhaps the best known is Principal Components Analysis (PCA) [171],
which finds a set of independent latent variables whose cardinality is
smaller than the dimensionality of the data which retain as much va-
riance of the original data as possible. A similar approach, although non-
linear and thus more powerful, is that of auto-encoders [172]. Despite
being more powerful in its representational expressiveness, it is more
difficult to use, and should be employed only if the results of simpler
methods such as PCA are unsatisfactory. Other popular approaches are
especially helpful for visualization, such as t-SNE [173]. These methods
have one drawback : they transform the data into a new variable space,
making the resulting models difficult to interpret in practice. This can
be overcome resorting to feature selection techniques, which instead of
transforming the original variables, choose a subset of them. There exist
many feature selection methods designed for the supervised setting, that
is, when we have a labelled data set (a set of input observations, each of
which is accompanied by a target value that the machine learning al-
gorithm should learn to guess). Notable examples are wrapper methods

130 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

[174], which greedily select variables that maximize the ability of the
machine learning algorithm to guess the target values, or information
theoretic approaches [175]. The output of the dimensionality reduction
service can be used by all the machine learning services of the CogNet
service portfolio.

PCA-based KPI :

The PCA-based KPI is a method of selecting the most significant me-
trics based on the abstraction of the inputed features into Principal Com-
ponents (PCs). As inputs, the PCA algorithms receives 30 metrics per
VM and outputs a set of PCs with their relative variance. We select the
PCs with the highest cumulative variance.

Table 4.5 – PCA-based metrics results
sdev varprop cumprop
Standard Deviation Proportion of Variance Cumulative Proportion

PC1 1.725645 0.425407 0.425407
PC2 1.306952 0.244017 0.669425
PC3 1.049037 0.157211 0.826636
PC4 0.773208 0.085407 0.912043
PC5 0.606810 0.052603 0.964646
PC6 0.433620 0.026861 0.991507
PC7 0.243830 0.008493 1.000000

In the table 4.5, the PCA algorithm outputed 7 Principal Compo-
nents. Each of which with a standard deviation and the proportion of
the variance. In the table, the results are printed in the descending or-
der with respect to the PC relevance. We select the first four PC. Note
that their cumulative variance is more than 91%. This means that using
these four PCs we will miss only 9% of the system behavior.

For our first implementation, we used the threshold on the cumula-
tive variance to 80%, which means that we can limit the features into :
PC1, PC2 and PC3. The objective of the machine learning is to lean
the patterns within the time series in order to forecast their evolution
through time. The Machine Learning approach is based on an a special
type of Recurrent Artificial Neural Networks termed LSTM for Long
Short Term Memory. The LSTM approaches were introduced in 1997
[18], their main advantages are to retain information over many time

IV. DATA ANALYSIS 131

intervals. They have been used successfully in image recognition, trans-
lation, language representation, driverless cars, image description [19].
The RNNs have distributed hidden states that allow them to store infor-
mation about the past and update the information in a non-linear way.
They leverage the concept of associative memory and can identify a pre-
viously seen pattern from a new distorted version. This is particularly
useful to model stochastic dependencies in Time series [20]. We built
our LSTMs using the Keras library based on Google’s TensorFlow [176].

Feature-Engineered KPI :

Before using time series as inputs to the CSE module, we performed a
series of techniques to clean and organize the data. Then, we used other
techniques to select only the time series that can be exploitable by the
CSE. Firstly, the data received through REST API from our monitoring
service was in a raw JSON form (see Figure 1). The first operation is to
filter the data and reorganize it as a data frame table as in Figure 1. The
output of this phase is data structured as time series with multiple va-
riables (columns). The variables represent all the metrics that are collect
by the monitoring agent. They are the information that we have on the
system. The manipulation of these variables can extend/augment the
information we perceived on the system being monitored. The process
to do so is called : feature engineering. From these variables we generate
another set of variables (or features) using two techniques :

1. The combination of two or more variables into one, e.g. (CPURAM)2

2. Applying a function to only one variable to stress its behaviour e.g.
stressing the evolution of a variable CPU3

The feature engineering is an empirical and iterative process. The fea-
tures that yields the best output in terms of cost function are kept. Then
the data are normalized and rescaled to [0-1] interval.

The second step complementary to the feature engineering is the di-
mensionality reduction. The aim of this phase is to reduce the dimen-
sionality of the data by keeping only the most relevant components that
capture the system behaviour. In the literature multiple techniques are
used such as high correlation filtering, Low variance filter, backward
feature elimination, etc. For this work we settled on PCA - Principal

132 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

Components Analysis, a technique that uses an orthogonal transforma-
tion on the data to create new vectors uncorrelated that capture the most
variance in the data set. We applied this technique to 24 variables and
the results as shown in Figure 2 was 7 Principal Components (PC). These
PCs are abstractions of the input variables.

In order to forecast metrics behaviour in the MMCC scenario, we ba-
sed our approach on the following axioms at time t :

— Each metric exhibit a non-null correlation, i.e. a pattern exists in
the TS

— Correlation between different metrics and other more abstract fea-
tures exists in the network (e.g. CPU, network utilization)

— Network centric metrics can affect the service quality and/or the
whole end-to-end service

Features Rule
Feature 1 cpu.userperc2 / mem.usableperc

Feature 2 mem.usableperc

Feature 3 net.outpacketssec / mem.usableperc

Feature 4 net.outpacketssec / disk.spusedperc

Table 4.6 – Feature Engineering Rules

Autocorrelation and lagged function

The autocorrelation represents the correlation of a Series with respect
to itself delayed in time. The autocorrelation allows us to draw lagged
function, which serves as an indicator to the predictability of the me-
tric. For stochastic random noise (i.e. White noise) the autocorrelation is
small and constant which means that it is not predictable. However, for
cosine function, the autocorrelation is very high (near 1) and constant in
multiple time steps, which means that knowing previous values one can
predict theoretically to signal evolution to infinity. In our Example in
Figure 4.22, the autocorrelation shows that for most metrics we can pre-
dict one step-a-head values with more than 80% and then drops to 60%
for the two steps-a-head values, this is due to the accumulated effect of
uncertainty. The insights revealed by the autocorrelation is answering
the question whether the data is forecastable or not and to which extent.
For our case, the answer is a clear yes for the step-a-head value.

IV. DATA ANALYSIS 133

Figure 4.22 – Example of the autocorrelation function applied on the load of the SIP
proxy.

Stationary data and decomposition

–A time series can be decomposed into 4 sub-time series, one that cap-
ture the general trend, the white noise, the absolute signal itself and the
seasonality effect that is the repeating cycle as shown in Figure 4.22. De-
composing the metrics is essential to understanding the problem before
the prediction phase. Each component of the time Series can be approa-
ched as a unique problem with different algorithms. In this phase, we
discarded the general trend of the time series and focus on the remain-
der of the signals in order to capture the evolution of the metrics. Moreo-
ver, all the metrics that we collect have very different scales which make
them difficult to compare and can ultimately yield a poor performance
in the training and forecasting phase. One solution to this problem is to
make all the metrics stationary, that is rescale them with common mean
of 0 and standard variation of 1 (shown in Figure 4.24). Another solu-
tion to compare multiple different time series is to divide all the data by
their first value to obtain a common starting position from one

134 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

Figure 4.23 – Lagged autocorrelation.

Figure 4.24 – Transforming raw timeseries into stationary ones

IV. DATA ANALYSIS 135

Correlation analysis

The correlation results over normal data set allow us to capture the

relationship between

Also, the correlation matrix is specific to a given service, in Figure C

the correlation matrix is tightly coupled to the IMS service. An intuitive

example is the correlation betweenNetwork.Packets.In andNetwork.Packets.Out

in the Proxy VNFC. Tracking this correlation for example can give us

an insight or an early alarm wherever a decorrelation happened. For

example, if in the proxy the Network.in becomes decorellated with the

Network.Out that might be a first symptom of an anomaly and worth

more investigation. This method have been used by A. Antonescu et

al. [177] to define new SLOs i.e. pair of correlated metrics. One should

keep in mind that correlation does not imply causation, the check the

causation more controlled experiments should be performed.

Additional information is provided by the probability distribution

of all these metrics. This can be leverage to (1) dimensionality reduc-

tion whereby tracking one metric of two highly correlated ones. Ano-

ther approach (2) might be in tracking the decorrelation of previously

known highly correlated metrics to trigger further investigation if the

decorrelation occurs. For example in our case study, the VNFC proxy

has net.input and net.out highly correlated, this rule doesn’t hold for

every service or VNFC.

Figure 4.25 – Inta VM correlations

136 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

Figure 4.26 – Correlation bewteen all the 156 metrics of the testbed.

In this study we have used the Pearson correlation technique as a ba-
seline for future analysis. The correlation captures the similarity degree
of the evolution of a pair of metrics. We distinguish two types of corre-
lations :

1. Inter-VM correlation : represents the correlation between features
of all the VNF Components (VNFCs) that compose the network ser-
vice (VNF). These calculations are service specific. An example is
the correlation of networkpacketsin of the proxy and the cpuperc of
the database.

2. Intra-VM correlation : deals with the correlation of the metrics
within a a specific VNFC. Note that the correlation is computed
based on an observation window without anomalies or SLO viola-
tions, to exhibit all the normal correlation of the variables.. An in-
tuitive example is the correlation between Network.P ackets.In and
Network.P ackets.Out in the Proxy VNFC. Tracking this correlation
for example can give us an insight or an early alarm wherever a de-
correlation happened. For example, if in the proxy the Network.in
becomes uncorrelated with the Network.Out that might be a first
symptom of an anomaly and worth more investigation. Note that
correlation does not imply causation ; to verify the causal link more
controlled experiments should be performed.

IV. DATA ANALYSIS 137

Correlation coefficient between two random variables X and Y is defi-
ned as

ρ(X,Y) =
Cov(X,Y)√

Var(X)Var(Y)
.

In figure 4.26 we ploted pair-wise correlations for the entire test bed
as a heat map figure. The correlation factor 1 means that the metrics are
perfectly correlated, a near −1.0 means that the variables are negativaly
correlated. The diagonal line in both figures 4.26 and C. whereas the
factor 0.0 means that there are no correlation between variables.

— here we can add a discussion about some highly correlated variable
and why is that : In the figures depicted above we observe many
high correlations. Here we will discuss some of them and explain
the meaning of this correlation. The VNF’s proxy, the “network.in“
and “network.out“ in figure C are correlated with a factor of 0.86,
this can be explained by the nature of the service. In the nominal
IMS behavior the data plane is expected to have data flowing in and
out in order to make and receive calls. The CPU and memory are
also highly correlate with a factor 0.67, the more data is processed
by the memory the more CPU resources are needed to efficiently
finish the task. The “network.in“ and “memory.free“ in figure C are
also inversly highly correlated, the more the VM receives traffics
the less memory remains to treat local processes.

— It is important to note that correlation does not imply causation.
When observing Two higly correlated variables we can not conclude
definetly that one is causing the other, an example is presented in
figure 4.27. In fact, the there can be up to 19 different causal re-
lationships between these variables. However, one can infer causa-
lity from additional information such as the time during which the
events happened or using experimental studies.

— how can correlation be leveraged for SLA violation detection? By
tracking known correlations we could generate a first alarm when
a decoleration happen. However, for this methodology to work, we
should track the correlation for only the normal states. the tracked
correlations depend highly on the use case. This approach is more
suitable for anomaly detection. Antonescu et al. used this technique
to report SLA violation [177].

138 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

Figure 4.27 – Example of correlation versus causation.

D Visualization

In our data driven approach, the huge amount of data makes it diffi-

cult for human intuition to grasp or apprehend the degree to which

The operations performed on the data remains abstract and non in-

tuitive. In this section, we ask the question of how can we remove the

abstraction barrier by visualizing the evolution of the data.

The human mind can grasp up to 3 dimensions. 156 dimensions can

not be represented to humans. So we opted for transforming the time

series into a 2D plot representing in each column a feature and in each

line a timestamp. After scaling the data per column to values ranging

from 0 to 1, we correspond a range of visible color from red to blue as

shown in figure 4.28.

IV. DATA ANALYSIS 139

Figure 4.28 – time series visualization.

Similarly, we wanted to represent visually the SLA violation states

and the nominal states. We based the visualization of the SLA based on

a visualization algorithm called t-SNE, firstly introduced by Maaten et

a. [173]. t-SNE is particularly useful in this context because it can mea-

sure their pairwise differences, t-SNE visualization can help also iden-

tify clusters in our data.

t-SNE is capable of retaining the local structure of the data while also

revealing some important global structure.

140 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

Figure 4.29 – T-SNE plot of SLA and SLA Violation.

Finally, SLA also can be visually represented. In this case, we use a

radar map to note the degree of sensitivity of each SLO with respect

to some KPIs (or PCs), an example is provided in the Figure below (Fi-

gure 4.30)

IV. DATA ANALYSIS 141

Figure 4.30 – SLO visualized as a radar map.

E SLA Assurance Services

Efficient Service Level Agreements (SLA) management and anticipa-

tion of Service Level Objectives (SLO) breaches become mandatory to

guarantee the fulfilled services in the context of softwarized networks.

SLA agreement [107] generally comprises parameters describing the ser-

vice functional behavior and non-functional properties such as : the mi-

nimum acceptable QoS values (referred to as SLOs), e.g. Maximum VNF

instantiation time. In this service, we consider a streaming service run-

ning on SDN and NFV infrastructure. This service is used for ”SLA ma-

nagement” which is one of the key services in expected 5G networks.

For this given service, we define the following three SLOs :

— SLO1 : Response time ratio

— SLO2 : Service Availability ratio

— SLO3 : Downlink throughput ratio and downlink latency ratio.

142 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

Figure 4.31 – Service Quality Monitor.

Cognitive SLA enforcement is the process by which operators main-

tain the compliance of services and their predefined SLA while using a

computed knowledge with machine learning techniques [178]. Predefi-

ned SLA and service description, as well as monitored data are manda-

tory inputs to ensure cognitive processing. The service quality monitor

has interfaces with CogNet data services. The CSE relies on two main

modules :

— CSE/Forecasting

— CSE/Violation prediction

The CSE/Forecasting module takes as input the preprocessed and fil-

tered data and computes the forecasted values i.e. the next-step ahead

values of the given inputs [104]. The forecasted values are feeding the

second CSE/Violation prediction module to identify (if any) the most

probable affected/violated SLO based on the one-step-ahead prediction.

To do so, CSE/Violation prediction module has direct access to reposito-

ries where Service, SLA and SLOs descriptors are predefined and stored.

From the outputted table in the data acquisitionmodule, we construct

a second table based on combination of features as shown in Table 4.6.

The data preprocessing phase aims at improving the data quality in

terms of structure, noise and consistency. Moreover, this phase acts as a

requirement check-list between the data sources and the analytical fra-

mework.

V. CONCLUSION 143

V Conclusion

It is expected that the fifth generation mobile networks (5G) will sup-
port both human-to-human and machine-to-machine communications,
connecting up to trillions of devices and reaching formidable levels of
complexity and traffic volume. This brings a new set of challenges for
managing the network due to the diversity and the sheer size of the
network, mainly related to resource allocation, security and resilience,
performance degradation, energy efficiency, big data and traffic mana-
gement. It will be necessary for the network to largely manage itself
and deal with organisation, configuration, security, and optimisation is-
sues. The CogNet project proposes to tackle these challenges based on
the identified use cases and scenarios presented in Deliverables 2.1 and
2.2 through an architecture of an autonomic self-managing network ba-
sed on NFV/SDN, MAPE loop and Lambda architecture model and ca-
pable of achieving or balancing objectives such as high QoS, low energy
usage and operational efficiency. The main novelty of the architecture
is the CogNet Smart Engine introduced to enable Machine Learning,
particularly (near) real- time learning, in order to dynamically adapt re-
sources to the immediate requirements of the virtual network functions,
while minimizing performance degradations to fulfil SLA requirements.
Moreover, this deliverable introduced the associated information model
which focuses on illustrating the essential information captured within
the building blocks of the CogNet architecture. To support the use cases
of CogNet, facilitate the identification of specific research questions and
illustrate a significant impact in a real-life context, a set of scenarios
were identified and presented in D2.1. The selection of the final CogNet
scenarios depended on the available data and specific interest and on-
going work within the project. Each scenario was illustrated further by
the sequence diagrams which show how the scenarios will be implemen-
ted based on the architectural blocks and their communication, together
with their technical and business requirements. The technical require-
ments were identified and described in detail and the value proposition
model was applied for each of the scenarios. Furthermore, to achieve
the overall goal of CogNet, this deliverable presented the portfolio of
CogNet services relevant to network management. The techniques de-

144 CHAPITRE 4. PROPOSAL : COGNITIVE SLA MANAGEMENT FRAMEWORK

veloped within the other core work packages aim to deliver these ser-
vices where ML techniques will be applied in some cases to address the
identified 5G network challenges. It is intended that the deliverable will
not only provide the groundwork and requirements for the integration
and validation work package but also motivate the core contribution
of other work packages in CogNet. Based on the final scenarios, archi-
tecture and portfolio of services, CogNet will propose candidate solu-
tions to address the challenges identified in the project. These solutions
will be then evaluated and validated on the basis of the given technical
and business requirements. Finally, the presented CogNet architecture
serves as a supporting piece for the common view on 5G architecture in
[118] of the EU 5G PPP to guide the design of architecture in the 5G era.
The CogNet architecture and information model aim to cover broad sce-
narios and ongoing implementation research activities around heteroge-
neous CogNet services portfolio. The architecture is being implemented
and applied in scenarios of the project, such as the Noisy Neighbour and
Media SLA. Their outputs will be investigated to validate the solution in
the near future.

Chapitre 5

Proposal : Cognitive Smart Engine

The wise is one only. It is unwilling
and willing to be called by the name of
Zeus.

Heraclides Ponticus

Contents
I Introduction . 146
II CSE Algorithms . 149

A Anticipation and forecasting . 150
B Classification . 157

III Model selection . 171
A Problem Formulation and Choices 171
B Search Methods . 173
C The hyperparameter Search Space 177
D Research Methodology . 182
E Data . 183
F Meta-Learning . 188
G feature relevance . 193

IV Conclusion . 195

In this chapter presents the cognitive framework for SLA violation
anticipaton in Programmable Networks. In this approach, we aim to
combine multiple Machine Learning and data preprocessing methods
for optimal violation prediction. We present the our two use cases and
the end-to-end methodology to manage them. we then recollect the re-
sults of all the different SLA management tasks. We present the me-
thodologies that we adopt for getting the results. We then provide the
interpretation of the results and stress our key findings.

145

146 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

We structure this chapter in two main sections. Section I discusses

classification and prediction, section II presents the model selection mo-

dule and summarizes all the results.

I Introduction

The previous chapter introduced the global architecture for SLA ma-

nagement in software-based networks and the data analysis processes

SLA anticipation and SLA violation identification. The previous chap-

ter presents all the components of the architecture. The most impor-

tant building block of the architecture is the CSE. In this chapter we

will zoom on the CSE, the different algorithms used and how we trained

them for effective SLA management.

The CSE performs three main tasks (Figure 5.1), (1) Anticipation of

SLO violation (2) Identification when an SLO breach occurs and (3) mo-

del selection, i.e. selecting the most suitable ML algorithm for a given

task. The SLA enforcement module is implemented but statically using

”if - then” rules.

Figure 5.1 – Zoom on the Main building blocks of the CSE.

I. INTRODUCTION 147

Early Methodology

In the early phase of our work, we collected data from the streaming
use case. We trained our Machine Learning algorithms on the collected
data. The model selection experimentations were done iterativaly and
empiraclly until we obtain good results. In the testing phase, we split
the original data into a training set (usualy 80% of the dataset) and tes-
ting set 20% of the dataset. We trained on the training set and note the
results on our test set. Initially, we started with a single trial in our expe-
rimentations. Each algorithm was test one time. We train our algorithms
on CPUs in the local machine.

Advanced Methodology

Through out this study, we have been using the first methodology
to collect results and assess the performance and accuracy of our algo-
rithlms. However this approach suffered from two drawbacks. First, the
results and performance were not stable with many outliers, depending
on the system usage. Second, even when the results showed that there
is not overfitting, later results showed that some algorithms overfits the
data. Hence, the need for a new methodology for our study.

In the advanced method, testing an algorithm is called an experiment.
Each experiment has a number of trials between 3 and 20. A trial refers
to a given algorithm tested on the same dataset. The output of the expe-
riment is represented as a boxplot. a boxplot is a visual representation
to summaries the output results. The boxplot as presented in figure 5.2
represents the distribution and range of the data. The data are ordered
from the smallest (left or down) to the highest (up or right). The median
(the data point that splits the data into two equal groups : lower half and
upper half) is represented as the vertical line As shown in figure 5.2. The
box represents the data by quartiles. A quartile is a quantile that divides
the data into three parts. The first quartile (Q1) is defined as the me-
dian of the lower half. The second quartile (Q2) is the median. The third
quartile (Q3) is the median of the upper half.

The outliers are defined as the data point that are beyond the lower
and upper fence.
Lowerf ence =Q1− 1.5(IQR)

148 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

Upperf ence =Q3+1.5(IQR)
,with IQR =Q3−Q1

The outliers may need additional analysis and do not represent the

nominal behavior of the system. In this methodology we rely on the me-

dian as a summary and overview of the algorithm performance and ac-

curacy. We also use the boxplot to compare the record high and record

low of each experiment. Finally the length of the boxplot is also taken

into account for the stability of the algorithms. algorithms with short

boxplot are prefered for there result consistency

Figure 5.2 – Picture of a boxplot.

In the second phase of our work ; we collected data from the vIMS

use case, an open source VNF. The data contain both normal and abnor-

mal SLA. The abnormal SLA is divided into 3 types of SLOs. The Ma-

chine Learning algorithms trained on all the observed SLO violations.

The model selection module is performed automatically using a random

process. In the testing phase, we split the data into a training set, test set

and validation set. with respectively 70, 20, 10 percent. The comparison

between the validation and test set allow us to judge and compare more

efficiently the performance of our algorithms. The training was perfor-

med on the cloud on both GPU and CPU machines. Because the testing

in this phase is dynamic and automatic we collected a huge amount of

data. The analysis in this phase was done using scripts and Machine

Learning algorithms.

II. CSE ALGORITHMS 149

II CSE Algorithms

In this PhD work we have targeted real-time and live applications
with highly heterogeneous SLA requirements in terms of QoS, restric-
tive network conditions, changeable bandwidth, latency, jitter and thre-
sholds for error resilience. In terms of data streams, estimating the net-
work capacity even for the near future is challenging. Inaccurate esti-
mates can lead to degraded QoS. If network capacity is underestima-
ted, the end point will receive the data in a worse condition basis, even
though the current network condition allows a higher quality to be deli-
vered. On the contrary, if it is overestimated the end point requests a bit
rate greater than network capacity blocking the client processing with
waits. The CSE focusing on the SLA management is illustrated by the
sequence diagram presented and Figure 5.3 from the ML process pers-
pective.

Firstly, the monitoring phase takes place where the Data Collector re-
trieves metrics from the NFV components of the architecture (MANO,
NFVi, etc.). The CSE queries the metrics data from the Data Collector
and further processes the received data. The CSE applies forecasting
techniques in order to detect potential SLO violations on the forecas-
ted values. If one is detected, the CSE SLA enforcer is notified and it
will compute proactive management actions in order to avoid the SLO
breach. In this regards, the CSE reports an event to the Policy Engine
which checks the rules and actions associated with the SLA enforcement
demo. In order to apply the actions, the Policy Engine requests the to-
pology from the NFVO and it forwards the request of (de)allocation of
resources to the VIM and to setup the NFV Infrastructure topology to
the NFVO and SDN controller. The latter further initiates the setup of
the NFV. Next, the dashboard receives the performance report.

150 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

Figure 5.3 – Media SLA sequence diagram, focusing on the ML process.

The Cognitive Smart Engine (CSE) contains two stages. Anticipation
and identification. The anticipation stage refers to prediction process
that based on historical and contextual data to predict the evolution of
a set of metrics, thus anticipating and preparing for the impact of the
SLA. In the next section, we will explore the anticipation task and how
to train ML algorithm for anticipating SLO violations.

A Anticipation and forecasting

One of the most challenging tasks in Machine Learning is predicting
the evolution of a sets of metrics. In this section, we focused on this task
by using two types of ANNs, nameley, the FeedForward Neural Network
(FFNN) and the Long Short Term Memory (LSTM). We invistigate the
use of shallow ANN and ANNs with multiple layers. Moreover, we will
explore in details :

— The methodology and a step-by-step process to training an ANN
and allowing for convergence.

— Illustrate how one can leverage FFNN and LSTM to predict SLO
violations.

— Show the impact of tuning ANN parameters on the prediction ac-
curacy and on the performance (i.e. training time).

II. CSE ALGORITHMS 151

— Discuss the difference between FFNN and LSTM for the anticipa-
tion.

— How to include ANNs trained for forecasting in an end-to-end fra-
mework.

In this work we define a time series as a sequence of observations orde-
red in time at regular intervals st ∈R e.g. meteorology weather variables,
electric loads, a VNFs memory usage over time. A model as is a mathema-
tical function that describes the process by which time series are genera-
ted. Forecasting is the process by which we apply a model to time series
to compute a predicted output. The error between the predicted output
and the real output is : ˆst+1 = g(st, st−1, ..., st−n) + εf ort = 1, ...,T . Where
function g is the model, st+1 is the predicted value and T is the number
of observations and ε the error terms governed by a probability law. The
prediction problem is to find the model g so that ˆst+1 is the closest to
st+1. Moreover, the following assumptions at time t are considered :

— Recurrent patterns exist within each metric.

— There exists correlation between different metrics and other more
abstract features in the network (e.g. CPU, network utilization).

— Network centric metrics can affect the VNFs service quality and/or
the whole end-to-end service.

— The service quality metrics can be defined from one or many avai-
lable metrics (e.g. maximum, percentile, average, etc.) or from service-
centric KPI such as SIP connections, SIP client, etc.

preprocessing. The main technique forecasting preprocess is the au-
tocorrelation. Autocorrelation is key for two reasons. First, it allows us to
detect recurrent pattern in a given metric. Second, when provided an ac-
curacy threshold, it computes exactly the maximal number of steps that
we can use to predict the evolution of the signal. For example, in figure
4.22, the autocorrelation function shows that we can use the previous
step to predict the next step with a precision exceeding 90%, and that
we can use the second previous step with a precision of approxiamatly
80%. Unfortunately, in this example the maximal precision after the se-
cond step is 60%. Hence in this case we will limit the forecasting at the
second step. The autocorrelation is important to apply before launching

152 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

the training, if the signal there is no correlation the learning algorithm
may not converge or take an exponential convergence time.

Learning for forecasting. The next step is windowing. Windowing is
a preprocessing step that is specific for time series. windowing is a tech-
nique that turns time series into machine leanring problems. In time
series we have just a list of measurements by timestamp. if the window
length is W and the observed data size is N then we have N −W + 1 po-
tential windows. Windowing is important in the context of service mo-
nitoring. Often, the decision based on time series forecasting depends
on the current input at time t plus some additional observations.

We can not use all the windows possible because of the high potential
data points and the risk of overfitting due to the overlaping pheneme-
non. The window selection will impact the validity and the reusability
of the results. Once we detect using the autocorrelation technique the
recurrent pattern in the target metrics and the necessary steps to pre-
dict the evolution of the signal, we prepare the observed data into a
training data. The idea during this phase is to ‘label‘ each point in time
t with its subsequent observed time t + n, with n as the ‘look back‘ gi-
ven by the autocorrelation function. This results in two series lagged by
n − step, namely X, Y .The main difference between the prediction task
and the classical supervized machine learning tasks is that time series
adds the complexity of the sequence dependence among the variables.
For this reason, We trained two ANNs types, an Feedforward Neural
Network (FFNN) and a Recurrent Neural Network (RNN) of type Long
Short Term Memory (LSTM). We variate manually the ANNs hyperpa-
rameters and training epochs. An epoch corresponds to the FFNN runs
through all the training data set. We used Google’s TensorFlow library
for the ANN design and training. Another approach to the forecasting
is that instead of labeling x(t) with x(t + 1), we label x(t) with the next
event, 0 for the nominal behavior and 1 if we observe that in the next
step an anomaly or SLO violation.

Learning to predict. The objective is to infer the future behaviour
of the service and of the underlying network at time t + 1 1 (i.e. in the
next step) of multiple metric. For example, we consider at time t + 1 a

II. CSE ALGORITHMS 153

forecasted Matrix Y defined as :

Y =

X1(t + 1) + ε1

X2(t + 1) + ε2

X3(t + 1) + ε3

X4(t + 1) + ε4

(5.1)

Prediction requires a supervised learning approach. The supervised
learning means the labelisation of input data, each entry has a corres-
ponding label. For timeseries, in order to learn the relation between the
past and the future, we set as inputs and the target the same graph but
shifted by one step. The ML algorithm then computes the optimal cost
function between the past and the future. The resulting model, i.e. nodes
coefficients represents how we can derive X(t + 1) from X(t). Then we
feed the four metric to a FFNN as shown in Figure 5.4. In this example,
the four metrics can be derived from PCA analysis, Feature Engineering
approach or using all the available metrics. The idea in this case is to
predict the evolution of the system state using multiple low-level me-
trics.

154 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

Figure 5.4 – FFNN architecture used for forecasting on 4 features following equa-
tion 5.1.

RNN/LSTM. Among the strengths of the RNN is that it manages dy-
namic input vectors. One vector for each time-step, each vector with
many columns. For the SLA violation anticipation case, we used LSTM
as ”Many-to-one” (i.e. Input organized as sequence with one output) ar-
chitecture. With multiple inputs given rise to one prediction. The inpu-
ted data for both the LSTM and the FFNN are represented according to
three parameters : the mini-batch size - i.e. the chunks size of the inputs
-, the number of metrics per time-step and the number of time-steps.
The Figure 5.5 shows the difference in how RNNs manage their inputs.
RNNs can accept timeseries with different sequenece legnths.

II. CSE ALGORITHMS 155

Figure 5.5 – Normal inputs vector vs recurrent neural network inputs.

We divide the data into testing and training data with a proportion

of 70%, 30% respectively. The ANN training uses backpropagation al-

gorithm to optimize the neural weights finding the coefficients that cap-

tures the best relationship between the past and the future. The learned

model is stored as a 2D-matrix for the online phase. We initialized the

standard LSTM parameters with 60 cycles (i.e. the data passed through

all the nodes) and 10 epochs per cycle (i.e. one epoch is when the LSTM

sees all the training data). The standard LSTM uses a batch size (i.e. in-

put size) of one.

Results

We summarized our results in two tables. Table 5.1 represents our

tests on the LSTM architecture in training 2 months, 20.000 data points,

using Ubuntu 64bit VM, with 8GB, 16GHzCPU for the video streaming

scenario. Table 5.1 shows that the LSTM can take an extremely long time

for training with only small improvement on the RMSE metric. One im-

portant parameter in our test is the batch size. In the literature, we found

no clear methodology or consensus to determine the appropriate size of

the input layer. However, we insist here that this parameter is the most

important in the cognitive engine, since it can capture the hidden corre-

lation in the stream.In Table 5.1, a batch size of one yields the best re-

sults over batches of 50 and 10 respectively. Overall, the ANN training

156 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

Figure 5.6 – Stacked Stateful LSTMs Trai-
ned for prediction

Figure 5.7 – Stacked FFNN for predicting

Figure 5.8 – Difference between FFNN and LSTM for signal prediction.

time is time consuming and is highly correlated with its architecture es-
pecially the number of cells in the hidden layer. Moreover, we noticed
that after a certain RMSE value adding LSTM cells does not significantly
improve the forecasting accuracy capabilities and can backfire into over-
fitting i.e. difficulty to generalize to unseen data.

Table 5.1 – Comparison of results yielded from different LSTM & FFNN architectures.
Batch
size

Epochs Layers Training time RMSE

1 5 1 2min12sec 3.95
1 60 4 22min54sec 3.82
1 500 4 3h19min12sec 3.58
10 5 1 2min26sec 10.62
10 60 4 2min12sec 11.51
10 500 4 16min43sec 17.38
50 5 1 37sec 12.01
50 60 4 1min03sec 11.50
50 500 4 4min10sec 11.48

The Figure A shows how forecasting values (green curve in Figure A)
follow the real-time values (green curve in Figure A) for both LSTM and
FFNN. Note that the general forecasting model follows the pattern and
the evolution of the graph but not the exact values. This is the result
of the pre-processing stage where inputs were prepared as the variation
between values. This prevents the model from overfitting by waiting for
the first value and computing its evolution. Moreover, we notice a clear

II. CSE ALGORITHMS 157

distinction between the LSTM and FFNN forecasting power. LSTM is
much stronger but with a higher risk of overfitting.

Finally, the table 5.2 summarizes the RMSE comparison between the
LSTM and FFNN over both use case and using different preprocessing
methods. As noticed in Figure A, the best LSTM model outperforms the
best FFNN.

method Use case I Use case II
FFNN LSTM DT FFNN LSTM DT

PCA 5.69 3.95 - 6.60 4.42 -
FE 7.08 5.32 - 7.04 4.05 -
ALL 13.85 11.54 - 15.96 10.11 -

Table 5.2 – RMSE comparison

We have based our work on substantial related work done in the area
of ANN for regression and forecasting, SLA enforcement in the cloud
environment. In this paper, we defined and evaluated modules that al-
low the forecasting and prediction of SLOs breaches for a VOIP service
running on an NFV and SDN infrastructure. Our next step is to close
the control loop with a sophisticated policy engine (CSE SLA enforcer)
that pushes proactive management actions according to different poli-
cies, reducing the number of SLO breaches as they occur.

B Classification

Classification is one of the most common task in Supervized Machine
Learning. In this section, we present an experimental comparison bet-
ween various neural network architectures on a SLA violation classi

cation task. This classification task tests an algorithm’s ability to seg-
ment and recognise the constituent parts of a signal, and requires the
use of contextual information. Context is of particular importance in
SLA violation detection due to phenomena such as co-sub-service de-
pendencies, where the application system depends on the services pro-
vided by other subsystems. In many cases it is difficult to identify a
particular SLA violation frame without knowing what occur before and
after it. The main result of this chapter is that network architectures
capable of accessing more context give better performance in SLA vio-
lation classi

158 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

cation, and are therefore more suitable for identification and repor-
ting. In the section before, we used LSTM and FFNN algorithms. In this
section we re-used these algorithms for classification and we introduce
a Decision Tree (DT) algorithm. We focus on this section solely on the
second use case, namely the vIMS Clearwater

Because classification is a supervized ML technique, labeling is a cri-
tical phase. For this reason, we will detail it in the next section.

Data Labeling

As mentioned before, the labels in our case are the SLOs. Our three
SLOs target respectively, the response time of the service, The availabi-
lity of the SIP proxy and the database transaction. The role of the ML
algorithm is to identify from inputed observations the relevant metrics
to track for each SLO and to identify effectively when an SLO breach is
occurring.

As introduced in previous sections, SLA comprises of a set of measu-
rable, low-level objectives that are contracted with the service consumer.
We define the three SLOs that will be used for the Clearwater use case
as follows :

— SLO1 response time : This service objective targets the response
time of the SIP proxy VNFC (i.e. Bono). The overload tests generate
a large amount of connections forcing the proxy to drop multiple
connection requests. This in turn, reduces the mean time necessary
to answer a connection request.

— SLO2 database transaction : This SLO targets mainly Ralf and Ho-
mestead node. The SLO in this context is defined as the Cassandra
database performance. We observed the behavior of the database
and labeled the data accordingly.

— SLO3 service availabiltiy : This SLO monitors the behavior of the
service as a whole. When the communication service is down we
label the corresponding dummy variable with 1, 0 otherwise.

We depict the representation of the SLO1 as an example as a black
line in Figures 5.9. The SLO violation state is represented by the non-
null value in black color, while the compliant state is set to 0.

II. CSE ALGORITHMS 159

Figure 5.9 – SLO1 targeting the Sprout VNFC.

SLA violation generation. We proceed in our performance degrada-

tion by incrementing linearly and abruptly the number of SIP connexions

until the service fails. Each time, we targeted different service compo-

nents of the vIMS service. Then, we noted the specific timestamps cor-

responding to each SLO violation. Finally, we connect the SLO violations

with the observed monitored data as a global labeled matrix (see Fi-

gure 5.10), where each line correspond to the observed monitoring data

and its SLOs labels. The SLO violation is set to 1, whereas the compliant

state line is set to 0.

Figure 5.10 – Layout of the dataset used in Use case II.

We formalized our approach as a supervised machine learning tech-

nique, which is for each entry line composed of all the metrics we as-

sociate a binary value that labeled the line (i.e. the set of metrics va-

160 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

lues). We used the mathematical formalization of the SLA and SLO in
Section C, that describe the SLA violation as at least one SLOV and
the functions and that maps low-level metrics to the SLO as shown in
Table 5.10. The definition of the functions can be defined empirically or
found using machine learning techniques that map the observed SLOs
to the variation of the metrics. Labelling each row with a binary variable
will result is a vector Y (see Eq. 5.2) with value {0,1} that maps all the in-
put matrix M of 156 features (see Eq. 5.3). This method allow the ANN
to learn how to classify the data into two SLA violation states.

[ht]Y =
[
Y1 Y2 Y3 ... Ym

]T
(5.2)

[ht]X =

x1,1 x1,2 x1,3 ... x1,156

x2,1 x2,2 x2,3 ... x2,156

x3,1 x3,2 x3,3 ... x3,156

x4,1 x4,2 x4,3 ... x4,156

· · ·
xm,1 xm,2 xm,3 ... xm,156

(5.3)

It is worth noting that it is necessary to use one Neural Network per
Violation, in other terms the weights that we find for this problem is
specific to the SLO violation that is learned. Keeping the labels at their
default position will result in an ANN that can identify the SLOV but
not anticipate them. In order to learn to predict the SLOV the labels
should be shifted back from their position, using this technique we can
at the same time predict and classify SLO Violations.

We used the following
algorithms in our experiments :

— FFNN 1 (see Figure 5.11 and 5.13) : Classical FFNN with 10 hidden
layer, sigmoid as the last activation layer and a learning rate α =
0.01, training epochs : 200

— FFNN 2 : Classical FFNN with 10 hidden layer, sigmoid as the last
activation layer and a learning rate α = 0.01, training epochs : 300

— LSTM 1 : , with one hidden LSTM layer, containing 140 one-cell
memory blocks, training epochs : 300

II. CSE ALGORITHMS 161

— LSTM 2 : Unidirectional RNN with one hidden layer containing

275 sigmoid units, trained with target delays from 0 to 10 frames

(RNN), training epochs : 500

— MLP + DT : Classical FFNN with 10 hidden layer, sigmoid as the

last activation layer and a learning rate α = 0.01, training epochs :

120, see Figure 5.12, for this algorithm we combined an FFNN with

a DT algorithm, the FFNN finds the next step ahead values and

transfer them to a DT that classifies them.

...

g(x)
Output

metric1 (t)
metric2 (t)
metric3 (t)
metric4 (t)

metric155 (t)
metric156 (t)

1
2
3
4

26

b (Bias)

w1
w2
w3
w4

w155
w156

VNFC 1: Bono

VNFC 3: Ralf

VNFC 4: Homer

VNFC 5: HS

VNFC 6: Sprout

VNFC 2: Ellis 1

1

1

1

1

26

26

26

26

26

metric1 (t)
metric2 (t)
metric3 (t)
metric4 (t)

metric155 (t)
metric156 (t)

Figure 5.11 – The activation function g(x) - if non-linear - applied to the output of the

neuron allows the ANN to behave as a universal approximator by introducing non-

linearity.

Note however that for the MLPs the network grew with the time-

window size, andW ranged from 22,061 to 152,061. All networks contai-

ned an input layer of size 26 (one for each MFCC coecient), and an out-

put layer of size 61 (one for each phoneme). The input layers were fully

connected to the hidden layers and the hidden layers were fully connec-

ted to the output layers. For the recurrent networks, the hidden layers

were also fully connected to themselves. The LSTM blocks had the fol-

lowing activation functions : logistic sigmoids in the range [-3 ; 1] for

the input and output activation functions of the cell (g and h in Figure

4.2), and in the range [0 ; 1] for the gates. The non-LSTM networks had

logistic sigmoid activations in the range [0 ; 1] in the hidden layers. All

units were biased.

For all networks, the computational complexity was dominated by

the O(W) feedforward and feedback operations. This means that the bi-

162 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

directional networks and the LSTM networks did not take signi

cantly more time per training epoch than the unidirectional or RNN

or (equivalently sized) MLP networks.

For the output layers, we used the cross entropy error function and

the softmax activation function, as discussed in Sections 3.1.2 and 3.1.3.

The softmax function ensures that the network outputs are all between

zero and one, and that they sum to one on every timestep. This means

they can be interpreted as the posterior probabilities of the phonemes at

a given frame, given all the inputs up to the current one (with unidirec-

tional networks) or all the inputs in the whole sequence (with bidirec-

tional networks).

We formulate this problem as a Multiclass Classification Decision

Tree (MCDT). DT (Decision Tree) –see Fig. 5- is a representation of a

problem in the form of a tree. Each leaf represents a dependent variable,

i.e. SLOV. The non-leaf edges form subgroups with vertices that express

conditions on independent variables, i.e. features.

We define K as the number of classes that is the number of SLOV plus

one, represented in (5.4). Each SLOV is associated with a class as well as

normal state (no SLOV) as specified in (5.5). For K classes

V = {SLO1 ,SLO2 , . . . , SLOK } (5.4)

Our objective is to learn to classify correctly the matrix Y into all the K

classes.

f : Y → {SLO1 ,SLO2, . . . ,SLOK } (5.5)

Figure 5.12 – Combined FFNN with Decision Tree (MLP-DT)

Network Training. For the LSTM architectures, we calculated the full

error gradient using BPTT (Back Propagation Through Time) for each

II. CSE ALGORITHMS 163

utterance, and trained the weights using online steepest descent with

momentum. We kept the same training parameters for all experiments :

initial weights chosen from a at random distribution with range [−1;1],
a learning rate of 0.01 and a momentum of 0.9. As usual, weight updates

were carried out at the end of each sequence, and the order of the trai-

ning set was randomised at the start of each training epoch. Keeping the

training algorithm and parameters constant allowed us to concentrate

on the effect of varying the architecture. However it is possible that dif-

ferent training methods would be better suited to different networks.

Figure 5.13 – Aminiature representation of our experiments, where inputs are limited

to 4 (we use 156) and output to one (we used 3). a) is the features represented as time

series data. b) is the point of contact, the inputs fed to the ANN model. c) The ANN

model which can be LSTM or FFNN. d) is the binary result that categories the inputs

into 0 or 1 for non SLA violation and SLA violation respectivelly.

Results

We split the data set into three part, the training set at 70%, the test

set at 20% and the validation set at 10%. We labeled the data based on

the experiments that we run beforehand and the three SLO definition in

section B. The results is a N ∗ 3 matrix as the DTY in the equation 5.6.

164 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

We evaluate the ML algortihms over the test set. Figure 5.13 provides a
simplified version of this process with only four inputs.

Table 5.3 – Classification results of the algorithms
Network Accuracy Recall Precision
LSTM 1 0.95 0.93 0.95
LSTM 2 0.99 0.99 0.99
FFNN 1 0.87 0 .92 0.63
FFNN 2 0.77 0.80 0.69
MLP+DT 0.49 0.93 0.46

Table 5.3 and Figure 5.16 summarises the performance of the dif-
ferent network architectures. For the DT, FFNN and LSTM networks we
give both the best results, and those achieved with least contextual in-
formation (i.e. with no target delay or time-window). The most obvious
dierence between LSTM and the RNN and MLP networks was the num-
ber of epochs required for training, as shown in Figure 5.16. In parti-
cular, LSTM took more than 2 times as long to converge as the FFNN,
despite having more or less equal computational complexity per times-
tep. There was a similar time increase between the unidirectional LSTM
and RNN networks, and the MLPs were slower still (300 epochs for the
best MLP result). A possible explanation for this is that the MLPs and
RNNs require more

ne-tuning of their weights to access long range contextual informa-
tion.

Confusion matrix. The confusion matrix depicted in Figure 5.18 re-
present an example of the best LSTM model (LSTM 2). The LSTM show
particularly powerful for complex classification tasks, it even gets a 100%
accuracy over SLO1 (depicted as SLO0). The confusion matrix clearly
shows the details and missclassifcation errors the algorithm makes. The
diagonal columns represent the correct classifcation and are hopefully
the most dense area. This means that the algorithm successfully classi-
fies most of the examples. Moreover, the Confusion matrix can provide
insight into where one should direct more resources to improve classi-
fication accuracy. In this example, clearly the SLO1 classfication can be
enhanced. This can be done via a new feature engineered metrics or by
changing the algorithm configuration e.g. hidden layer, width, etc.

We used Decision Tree algorithm IR3, that takes as inputs the 4 ANN

II. CSE ALGORITHMS 165

Figure 5.14 – Accuracy over all the training steps

Figure 5.15 – Precision over all the training steps

Figure 5.16 – Recall over all the training steps

Figure 5.17 – Precision, recall and accuracy over all the training steps

outputs (forecasts) and to classify them it into SLA classes (i.e. SLA
violation, non-SLA violation). Table 5.4 shows the performance of our
MCDT (MultiClass Decision Tree) implementation for the streaming vi-
deo use case. The Table 5.4 shows the promising performance of the
ID3 algorithm when applied to our prediction problem. The minimum
accuracy (F-score) found is 0.843 that corresponds to binary classes (ei-
ther SLOV or not). We progressively added SLOs to measure how the
MCDT would handle different classes. The results show that the accu-
racy improves with additional SLO classes. This can be explained by the
variation of the precision and recall metrics with respect to each new
SLO class. Overall, the MCDT performs well on the testing set ; however

166 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

Figure 5.18 – Confusion matrix of the Best algorithm (LSTM2)

a more thorough testing is necessary over longer period of time and with

more SLOs.

SLO Classes # SLO lines Precision Recall F-score

1 60 0.822 0.879 0.849

2 180 0.890 0.917 0.903

3 260 0.909 0.913 0.910

Table 5.4 – MCDT evaluation on the video streaming test set.

We initialized the LSTM parameters with 60 cycles (i.e. the data pas-

sed through all the nodes) and 10 epochs per cycle (i.e. one epoch is

when the LSTM sees all the training data). Overall the training time of

the ANN is considerable and it is highly correlated with the architecture

especially, the number of nodes in the hidden layer. Moreover, we notice

that after a certain RMSE value adding ANN node does not significantly

improve the forecasting accuracy.

In Table 5.19, we classified our results according to the threshold used

by the SLO violation module α. Recall that α is the threshold that de-

termines whether a set of forecasted values are considered as violation

SLOs or not. We present here for each α the three SLOs with their res-

pective precision, recall and F-score evaluationmetric.We then compute

the mean for each metric to summarize the impact of α on all the SLOs.

From Table 5.19 we draw two conclusions :

1. Our Framework has a high accuracy with respect to both precision

II. CSE ALGORITHMS 167

Figure 5.19 – Results of offline evaluation mode of the FFNN with three different SLO
breach threshold (Based on the streaming use case)

and recall metrics. This is due to the large dataset used for the trai-

ning with an important diversity in fault injection.

2. The probability threshold α is a key tuning parameter in our frame-

work. The value associated with it determines if the operator gives

more weight to the precision (i.e. maximize the confidence of pre-

dicted SLO breaches) or the recall metric (i.e. minimizing the risk

of missing SLO breaches).

In other words, a small α means that the system will detect most SLO

breaches but with a higher risk of false positive, whereas a higher α
yields a higher precision with a larger false negative. Additionally, we

classified our results in Table 5.19 according to the threshold used by the

SLO violation module α to determine if a forecasted value is considered

or not as impacting an SLO.

Precision/Recall tradeoff. With a high classification threshold (α =

0.9) the precision is up to 95%.

the main functional behavior of the SLA violation approach is the

ability to forecast the evolution of a given network device/service/ele-

ment.

168 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

Regularization : Becasue we have 100.000 lines overfitting becomes
increasigngly an issue. For this reason we deploy dropout technique and
l2 weight. In our results we find that dropout can reduce considerably
overfitting allowing us to add more hidden layers to our model.

From a machine learning perspective, our evaluations show that LSTM
is very robust when it comes to predicting a one step ahead in a se-
quence. In this work we considered only the data for streaming service
and the underlying networks, one can consider a multi-tiered approach.
This means the combination of data from different sources e.g. social
media, TV, etc. to improve accuracy of prediction.

method Use case I Use case II
FFNN LSTM DT FFNN LSTM DT

PCA 0.84 0.88 0.72 0.72 0.77 0.33
FE 0.75 0.85 0.62 0.45 0.73 0.21
ALL 0.90 0.90 0.86 0.63 0.99 0.46

Table 5.5 – Precision

method Use case I Use case II
FFNN LSTM DT FFNN LSTM DT

PCA 0.84 0.82 0.82 0.66 0.56 0.45
FE 0.65 0.49 0.55 0.23 0.65 0.46
ALL 0.92 0.0 0.0 0.92 0.99 0.93

Table 5.6 – Recall

We trained multiple LSTMs architecture on the training set. Then we
performed our evaluation on the testing set. The test set is considered as
unseen/new data. The results are summarized in Table1. We summari-
zed and discuss our results in section V-C.

GPU vs CPU performance. GPUs are essential for ANN training be-
cause these neural networks training computations can be efficiently pa-
rallelizable and computationaly independent. The FFNN model propo-
sed in this study is not considered too deep compared to the state of the
art Convolution Neural Networks, still the time necessary for training
up to 500 hidden layer is long (i.e. up to 8 hours on standard server).
The use of the GPU technology allowed us to perfrom such experiment
is a much more acceptable time (i.e. from 8 hours to 1 hour for deep
FFNNs). We notice however that GPUs are not very efficient when it

II. CSE ALGORITHMS 169

come to LSTM architectures. This can be explained by the sequential
nature of these networks.

Figure 5.20 – Example of a subgraph in a Decision Tree over 10.000 sample.

We used ID3 (Iterative Dichotomiser) algorithm to build our DT. The
ID3 algorithm separates reclusively the dataset into binary classes ac-
cording to the feature with highest entropy until it converges. The ad-
vantage of DT compared to other classification technique is that they
are considered as a white box (i.e. The internal mechanics is not too
complex and can be understandable) and are less prone to the curse
of dimensionality. The Figure 5.20 for example shows a subgraph that
classifies 9500 samples into four leafs. The samples were classified by
answering multiples predicates e.g. loadavg1min < x. The result is a
two-dimension array, where each line represents an SLO and each row
an SLO state : ¬ SLOV or SLOV, see Fig. 5 top left. The first leaf from the
bottom left classified 8631 samples as ¬ SLOV. The second leaf classified
385 samples as SLO1V. The third one classified 431 samples as SLO2V.
Finally, the last leaf represents 53 samples as SLO1V and SLO2V. This
result can be reduced into only two classes : SLOV (i.e. every leaf with
at least one SLOV) and non-SLOV (i.e. the remaining leaf). The gini va-
riable in the Figure 5.20 is entropy. It decreases from the first level until
reaching null value in all the leafs, which means that all samples are
homogenous, i.e. classified.

Decision making : Execution In this example, we set the network
management action as a corrective Openstack action that shuts down

170 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

Figure 5.21 – Results comparing FFNN
and LSTM based on the validation and test
set.

Figure 5.22 – The Training time of the
FFNN for 10,000 samples.

Figure 5.23 – Overall performance of FFNNs vs LSTMs (The model code are in the
index section B)

the VM responsible for the overload. The corrective action uses Opens-
tack Nova API. Nova API service allows the programmability of the
Cloud compute service. As an example, we demonstrate during the demo
how our system reacts to drop on the service quality by predicting the
evolution of network input metric net.inpacketssec.

Figure B summarizes our findings. The difference between the FFNN
and the LSTM is that the LSTM requires 433 times less epochs to converge
to the optimal solution (between 660-1300 for the FFNN and only 3 for
the LSTM). A possible explanation of these results is that the FFNN re-
quires more epochs to optimize the weights in order to incorporate the
contextual nature of the Time series. Moreover, the LSTM took approxi-
matively the same mean time to train than the mean FFNN (Figure 5.22),
however yields far better results for only few hidden layers with a hi-
ghest score of 86.67%, whereas the FFNN only manages to 53%. The
poor performance of the FFNN is due to its structure, even though we
used Deep FFNN, the ANN couldn’t update the weight is such a way
to capture the sequential nature of the features. A. Graves et al. [179]
found similar results with the exception that their LSTM configuration

III. MODEL SELECTION 171

needed significantly less training time that the FFNN. We can conclude
that a wisely selected LSTMs hyper-parameters and structure is the best
approach to the SLOV problems.

Another remark is that The LSTM shows particularly prone to over-
fitting (Figure 16). Contrarily to the FFNN, the dropout in the LSTM
cells and the difference between the test set and validation set is sub-
stantial. For after only 10 epochs, the LSTM results show a significant
difference between the validation and test set (Figure 16, L7, L8, L9). A
recent study on handwriting classification by V. Pham et al. [180], sho-
wed in details the importance of LSTM Dropouts to improve results and
reduce overfitting.

For the FFNN, the ReLu function does not allow the ANN to converge
for classification problems contrarily to the forecasting [181], sigmoid,
linear and tanh showed all similar performance and results. This is ex-
plained by the mathematical characteristics of the ReLu function which
do not squash the outputs to a limited range (see Figure activation func-
tions). Also, using Deep FFNN only increases training time without im-
proving significantly the overall accuracy. It appears that even deep neu-
ral net couldn’t successfully captures the contextual information. The
deep neural net is limited in term of the input dimension, this is a si-
gnificant limitation, since that our problem requires no a-priory know-
ledge. A study in [14] raised this problematic for deep neural net for
sequenced data and showed that the LSTM is a sensible alternative.

III Model selection

In this section we zoom on the model selection module of the CSE
module.

A Problem Formulation and Choices

In supervised ML, models are built based on a given data set denoted
further as D. More specifically, the Learning Algorithm LA aims at lear-
ning the relationship between the training set DXT , where DXT ⊂ D and
the labels also referred to as target DYT . This operation is performed by
minimizing the Loss function Loss. Each Learning Algorithm LA has a

172 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

set of all hyperparameters denoted by λ = {λ(0) ,λ(1) ,λ(2) ... λ(n) }. These
parameters configure the Learning Algorithm LA in n different ways.
We denote λ∗ be the optimal hyperparameter space for the training al-
gorithm that reduces the error Err on the validation set. We write :

λ∗ ≡ argminλ Errx,x⊂ D[(Lossx,y;LAλ(DXT ,DYT)))] (5.6)

There are no straightforward processes that guarantee to find λ∗. Ho-
wever, there exist search methods to approximate the optimal solution.
Up to our knowledge, λ∗ can only be approximated empirically, using
trial and errors in an iterative way.

We consider the distribution ofD as known empirically from our data
set (see Figure 4.18). In order to find the λ set that verifies the equation
5.6 we approached the problem as a search problem, were each point
in the search space is a combination of all possible ANN parameters.
We can simplify the function in equation 5.6 by replacing the term Errx
with γ and we write :

λ∗ ≡ argminλγx(λ) (5.7)

In equation 5.7, γ is known in the literature as the hyperparameter response f unction.
The optimization of the hyperparameter over λ is equivalent to minimi-
zing the function γx(λ). The space defined by λ and the function γ is
highly dependent of the machine learning algorithm understudy and to
the data set used. For example, in this paper we are focusing on the ANN
which sets a different λ space than would an SVM or a regression model.

The traditional search method that consists in trying all the possible
options is unfeasible since the high number of hyperparameters will
generate an explosion of trial number. For example, with n = 10 pa-
rameters and if each parameter can have 5 different values, we would
require to search 510 ≈ 10million different configurations. If the algo-
rithm spends 5 seconds per configuration, this would take more than a
year and a half of computation to complete.

SLA =
n∏
0

γ(Si), Si =< ~VNF,SLOi > (5.8)

The equation 5.8 is an interpreted as an SLA violation is ocurying if
at leat one SLO is violated.

III. MODEL SELECTION 173

Figure 5.24 depicts the overall methodology. The problem is a multi-
variate time series classification. The aim of this methodology is to find
the most suited ANN classifier by generating and training multiple ones.
We compare the ANN performance on the validation set and select the
one with best performance.

The overall methodology we are proposing, is presented in Figure 5.24.
The details of the techniques and the developed algorithms are presen-
ted in the next section.

Figure 5.24 – Methodology.

B Search Methods

In ML we distinguish between two configuration variables : the va-
riables that can be inferred from the data, this is termed the model pa-
rameter and the configuration variables that cannot be estimated from
the data distribution, termed the hyperparameters. The hyperparame-
ters are considered as an internal part of the ML models. They are ge-
nerally set manually by the ML designer or require an intuition, using
heuristics techniques. Since one cannot know the best hyperparameters
a priori, many techniques have been developed to find the best parame-
ters. Amongst all the techniques developed we focused in this study on

174 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

empirical approaches. In the literature, there exist four main search me-
thods. Manual search, Grid search as proposed by Larochelle et al. [182],
random search first used by Begstra et al. [183] and Bayesian search. Ma-
nual Search consists in relying on the intuition, the experience and some
heuristics. It does not guarantee the optimal configuration space. It suf-
fers from the fact that one should manually test models and thus limit
the number of trials. Both grid and manual search are the most used
search methods.

The second most used search strategy is the grid search. Grid search
consists of two steps : Firstly, manually selecting a subset of hyperpara-
meters values to reduce the size of the configuration space, and secondly,
performing an exhaustive search over all the combination of these pa-
rameters. The Grid search combines in this way the operator intuition
and the machine performance. The Grid search algorithm is typically
directed by an accuracy metric using K-fold cross validation technique
or accuracy over a validation set. The grid search was wildly adopted in
the ML community due to the insight it provides for finding the optimal
hyperparameters, it simplicity in operational settings as well as its per-
formance in low-dimension spaces (i.e. when combining between two or
three factor of variation (hyperparameter)). However, Grid Search suf-
fers from the curse of dimensionality ; it does not scale well.

Random Search is a search strategy that draws randomly and uni-
formly from the hyperparameter configuration space. Bergstra et al. [183]
showed that a simple random search performs much better in high-
dimensional space than grid search. Moreover they demonstrated that
the operator initial intuition in the grid search is not reliable since for
each different problem and different data set different subspaces are im-
portant to different degrees.

Bernoulli Categorical Distribution.
The Bernoulli categorical distribution is a discrete probability distri-

bution over multiple classes (in this case number of hidden layers) with
specified probability for each class. In our case, the probability is biased
towards ANNs with less than 10 layers. The categorical Bernoulli distri-
bution allows us to bias the selection towards smaller ANNs. The idea is
to generate diverse ANN structure but not too many Deep ANNs due to
the high computing, memory and time cost.

III. MODEL SELECTION 175

Search methods definition + + - -

Manual Search Manually testing
multiple configu-
ration based on
intuition

No technical ove-
rhead. Simple and
Quick when intuition
is right

Tedious. Doesn’t gu-
rantee optimal λ

Grid Search Exhaustive search
through a manually
specified subset of
the hyperparameter
space.

finds the optimal
space when the in-
tuition is right. Grid
search is reliable
in low-dimensions
[183]. Better than
manual search (used
in compute cluster).
Simple and can leve-
rage parallelization.

computationally
expensive. Imprati-
cal for large search
spaces.

Random Search sampling hyperpara-
meter settings and
testing them

scalability - simpli-
city - distribution -
fault tolerence - can
perform indep. expe-
riments.

Do not guarantee to
find optimal hyper-
parameters

Bayesian Search Finding a statistical
model (or function)
that maps parame-
ters to the target

obtain better results
in fewer experiments
than grid search

complex - assumes
the existence of a
smooth function

Table 5.7 – Search methods summary

176 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

ANN layer size probability p
2 0.16

3 0.16

4 0.16

7 0.11

11 0.11

17 0.08

27 0.06

41 0.04

64 0.04

100 0.03

Table 5.8 – The Categorical Bernoulli distribution used in our experiments. To the left,
the ANN layer size in the log domain (log10). the p values sum to one and define the
probability of appearance of the layer size variable. Note that the size of the variable
was arbitrary set to 10 and can be changed.

The Figure 5.25 depicts the worst case scenario for a grid search al-
gorithm. The space in red represents the exhaustive search space of the
grid algorithm, while the jointures of the gray lines represent the lo-
cal random points of random search. If the machine learning operator
fails to estimate the range of the hyperparameter subspace, grid search
will perform a long and exhaustive search for finally coming up with a
non-optimal set of hyperparameters. Random search on the other hand
doesn’t require this intuition and is computationally more efficient than
grid search and has a high probability of approaching the optimal hyper-
parameters combination even in higher dimensions where grid search
cannot finish in a reasonable time.

However, if properly configured, grid search can outperform random
search. In our study, we have set budget constraints in terms of compu-
tation and search time. For this reason, we opt for random search as an
efficient method that respects our constraints.

III. MODEL SELECTION 177

3 2 1 0 1 2 3

1

3

2

1

0

1

2

3

0

*

Figure 5.25 – Random search is computationally less expensive and scans a wider area

in the configuration space shown as interconnection of gray lines. On the other hand,

Random Search is very effective especially when the intuition of the operator fails to

approximate the range of the search as shown in the intersection of red rectangles.

Bayesian search or Bayesian Optimization derives a statistical mo-

del M from the hyperparameters to their corresponding accuracy me-

tric computed from the validation dataset. The assumption behind this

technique is the existence of a smooth function between the hyperpara-

meters and the objective. The idea is to try to guess a functional mapping

between some few hyperparameters and the results. Ultimately, It tries

to guess empirically the density function in equation 5.7 from multiple

points. The Bayesian search shows relatively better results than Grid

search and Random Search in fewer experiments. However Begstra et

al. showed that Random search is sufficient for learning neural networks

[184].

In Table 5.7, we summarized the four search method with their ad-

vantages and drawbacks.

C The hyperparameter Search Space

In this section we present a non-exhaustive list of the hyperparame-

ters search space that we used in our empirical machine learning ap-

proach to the SLA management.

178 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

The hyperparameter space we describe in this section refers to two

ANN architectures shown in Figure 5.27. In right hand part of the Fi-

gure 5.27, a FFNN that takes 156 features at a time and classifies them

into 23 classesi is presented. Similarly, in left hand part of the Figure

Figure 5.27 a the LSTM is presented which classifies the inputs while

tracking the sequential pattern in the inputs. In the study presented in

this paper, we will vary the hyperparameters of both ANN and observe

how they behave in terms of accuracy and training time.

Inputs

Deep dynamic FFNN architecture

time/step

g

Output

......

...

gg

g g

..
.

N
la
ye
rs

Nneurons

ellis Bono Sprout HShomer Ralf

SLO1

LSTM dynamic many to many architecture

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cell

Dense Dense Dense

...

...

...

Output

...
...

...

...

Xt,1 Xt+1,1 Xt+m,1

Xt,2 Xt+1,2
Xt+m,2

Xt,156 Xt+1,156 Xt+m,156

LSTM
cell

Inputs

...

time/step

...t t+1 t+m

...

VNFC1

VNFC6

Fe
at
ur
es

N
la
ye
rs

SLO2 SLO3

Xt,1 Xt,2 Xt,3 Xt,26 Xt,52 Xt,78 Xt,104 Xt,130 Xt,156ste
p t

ste
p t

VNFC1 VNFC6VNFC4VNFC3VNFC2 VNFC5

Xt+i,1 Xt+i,2 Xt+i,26 Xt+i,52 Xt+i,78 Xt+i,104 Xt+i,130 Xt+i,156ste
p t
+i

Xt+i,3

t

t+i

ste
p t
+1

ste
p t
+m

SLO3SLOLLOLLO
LO
SS
2SLLOLLLLOSLLSLOL

SLSLOSLSL 1111

SLO3SLOLLOLLO
LO
SS
2SLLOLLLOOLSLOSLOLS

SLSLOSLSL 1111

SLO3SLOLLOLLO
LO
SS
2SLLOLLLOOSLLOSLOL

SLSLOSLSL 1111

Figure 5.27 – Overview of the dynamic ANNs architectures. LSTM on the left and

FFNN on the right.

Hyperparameters could be classified into two categories : the structu-

ral and non-structural parameters. The structural parameters deal with

ANN architecture, such as the number of neurons per layer. The non-

structural parameters deal with specific hyperparameter values related

to the training algorithm such as the learning rate α, the momentum,

etc.

The meaning of the hyperparameters used in this paper are presented

below in the list 1. The Table 5.9 gives their distribution and their range

of values.

1. Structural hyperparameters :

III. MODEL SELECTION 179

(a) Number of hidden layers : Selected following a Categorical Ber-
noulli Distribution 1. For more details, see index in the annexe
B.

(b) Number of hidden nodes per layer : Sampled randomly, log-uniformly 2

between 2 to 100.

(c) Layer types : For the LSTM we draw from LSTM layer and Dense
Layer. For the FFNN, we draw uniformly from perceptron layer.

(d) Activation function :
The activation function or transfer function is a function that is
applied to the output of each neuron as depicted in Figure 5.11
as g(x). For example, the linear function is used when we need
a real number as output whereas sigmoid squashes the output
into a range of 0 to 1. Moreover, the activation functions bring
the non-linear property to the ANN which can be used to break
from the constraint of linearity and allow ANN to approximate
nonlinear function. Intuitively, using the linear function in the
output layer seems more adapted to regression problems and
sigmoid to the classification ones. However, there is no theore-
tical basis for this claim that we are aware of, thus one aspect
of the need for this empirical study.

ReLU (equation 5.9) : ReLU is consider as “new“ non-saturating
activation function, its gradient is either 0 for inputs < 0 or
1 for inputs ≥ 0. This means that when using many layers it
just multiplies the gradients by 1. This reduces the likelihood
of vanishing or exploding gradient problems. For this reason,
ReLU outperfoms the other activation functions is Deep NN.
[31] when it is trained in a single global training, i. e. not using
the “freezing training process“.

RELU (x) =
{

0 for x < 0
x for x ≥ 0

(5.9)

1. Categorical Bernoulli is a discrete probability distribution over multiple classes (in this case num-
ber of hidden layers) with specified probability for each class. In our case, for implementaton purposes,
the probability is biased towards ANNs with less than 20 layers.

2. log-uniformly between x and y means sampling from the log10 domain between log10(x) and
log10(y).

180 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

SIGMOID : The sigmoid (equation 5.10) has an output that
ranges between 0 and 1. In the literature, it is recommended
to use for classification problems. The function is defined in
equation 5.10 :

f (x) =
1

1 + e−x
(5.10)

Hard Sigmoid : The hard sigmoid function is similar to the sig-
moid function to the exception that it approximate the value of
e−x for faster implementation speed. The resulting error can be
then alleviated by adding more training steps.
SOFTMAX (equation 5.11) is similar to SIGMOID and TANH
it can be used as the activation function of the last layer for
classification, however its main advantage is that it sums to one.

SOFTMAX =
exj∑
i e
xi

(5.11)

TANH : The tanh function (equation 5.12) is similar to the sig-
moid function but it has an output that ranges between -1 and
1.

tanh(x) =
2

1 + e−x
− 1 (5.12)

LINEAR (equation 5.13) : The simplest activation function is
the LINEAR where the output is a direct mapping to the inputs.

f (x) = x (5.13)

We randomly assigned for each ANN layer an activation layer drawn
uniformly from the list described above.

2. Non structural hyperparameters
(a) Dropout :

the Dropout is an ANN hyperparameter which is a recent regu-
larization technique for deep architectures. Dropout aims at re-
ducing the probability of overfitting 3 for ANNs with many hid-
den units. It was firstly proposed in [32]. It randomly removes

3. Overfitting is when the model learns too well the characteristics of the training data and fails to
generalize to new data

III. MODEL SELECTION 181

few hidden neurons in the ANN during the training phase but
keep them all in the testing phase. In our approach, the Dro-
pout is selected randomly between 0 and 1 with a step of 0.1
which means that we select randomly from 0 to 100 % of the
ANN units to 0 at each update while training to help prevent
overfitting [33].

(b) Weight Initialization :

Weight initialization refers to the technique used to initialize
the ANN weight values. They affect heavily the overall perfor-
mance of the ANN. The Neural Network training is based on
the optimization of a non-convex function. The gradient des-
cent can converge to different local minimums depending on
how the initial conditions (weight initialization among others)
were set. The weight initialization of the ANN is as important
as the ANN architecture. The basic pitfall in this section is to
maintain a symmetrical initialization thus blocking the ANN
from converging to the optimal weights. Many techniques can
be used to break the weight symmetry using random processes.
We explore these techniques in addition to some symmetric ini-
tialization. Below is the complete list of the explored weight ini-
tialization : Random Uniform, Random Normal, identity, zero,
one, glorot normal, lecun uniform.

(c) Optimizer type :
add description from the Deep Leanring book

The optimization algorithms aim at minimizing the loss func-
tion of the ANN. The loss function can be expressed as an error
function between the result Y and the inputs X as presented
in equation 5.6. The optimizers that we experimented with are
the following : Adaptive Moment Estimation (Adam), Stochas-
tic Gradient Descent (SGD), Adamax, NAdam and adadelta.
Their Learning rate α is chosen uniformly in a list starting from
0.001 to 0.1 with a step of 0.01. For the algorithms that support
mini-batch, we used a random batch size varying from 10 to
1000.

(d) Number of epochs : After many offline trials based on conver-

182 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

hyperparameter Min Max Distribution

classifier learn rate α 0.001 0.1 Log2 Normal
N. layers 2 100 Generalized Bernoulli
N. hidden units 2 20 Generalized Bernoulli
Weight init. 9 choices - Uniform Random
Algorithm 6 choices - Uniform Random
Activ. function 6 choices - Distribution
Dropout 0% 90% Uniform (step=0.1)
Layer Type FFNN LSTM Uniform Random
Epochs 10 10,000 Log10 Normal
Batch size 20 1000 Log10 Normal
Sampling 10.000 177,000 Stepwise

Table 5.9 – Distribution over ANN hyperparameters and their range. Symbol Unif.
means uniform, N means Gaussian-distributed, and log means uniformly distributed
in the log-domain of base 10. Categorical Bernoulli For the choices see section C

gence time and performance, we came to bound the ANN trai-
ning epochs to a range varying from 10 to 10,000.

D Research Methodology

We implemented the FFNN using Google’s TensorFlow [185]. The
neural network learned weights depends strictly on a specific SLO. The
result is an FFNN architecture per SLO. The FFNN selected for an SLO is
the best FFNN that converges during the training, that is the FFNN with
the lowest cost function. For two FFNNs that converges on the same lo-
west cost, we select the one with the fastest training time. In order to do
so, we introduce Algorithm 2 that randomly generates FFNNs within a
predefined range of hyper-parameters (i.e., iterations, learning rate, ac-
tivation functions) and a predefined range of global structure (i.e. num-
ber of hidden layers, number of neurons per layer). The initialization
parameters are presented in Table 5.9.

In this paper, we limit our approach to resource-level metrics collec-
ted by Monasca. Certainly, the ANNs can be more effective using more
high-level feature (i.e service-based metrics such as SIP connexions).
However, our approach is easily generalizable to any new service. Table
5.10 exposes a subset of metrics used in this paper.

III. MODEL SELECTION 183

Algorithm 2: Random FFNN Generation

1 Input : Number of iterations and range of parameters;
2 Output : Selecting the FFNN with the lowest error;
// Initialization:

3 Initialize nbr ; // number of neurons range

4 nbl ; // FFNN number of layers range

5 epr ; // epochs range [300-2000]

6 alpha ; // learning rate range [0.01-0.0001]

7 actr ; // activation functions range

8 for iteration in Iterations do
9 Model← generaterandomFFNNarch();

10 Hyperparam← generaterandomHyperp();
11 Trainthemodel();
12 Watcher[]← trainingtime, minerrors;

13 Select min(Watcher);
14 Parse and Return the FFNN Model;

Algorithm 3: generaterandomFFNNarch

1 Input : Range of neurons per layer and range of hidden layers;
2 Output : FFNN architecture;
3 numlayers =
4 random(1,max(rangeneuronsperlayer));
5 for layer in numlayers do
6 layer[] = random(1, max(rangelayers));

7 return [layer, numlayers];

E Data

The Dataset used in our experiments were generated from the obser-
vations of our experimental environment. The monitoring data are col-
lected by Monasca 4. Table 5.10 shows a subset of the collected metrics.
Monasca collects mainly low-level system metrics. The SIP load gene-
rator is SIPp [166]. We generate up to 30.000 bot SIP user to simulate
service degradation and violate the SLA.

Results and Discussion

We run our experiments in local machines as well as in the Cloud
with CPU and GPU configurations. The bulk of the tests were run at

4. MONitoring As a Service - http ://monasca.io/

184 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

Metric Name Semantics

cpu.idle − perc Percentage of time the CPU is idle when no I/O re-
quests are in progress

cpu.wait − perc Percentage of time the CPU is idle AND there is at
least one I/O request in progress

cpu.stolen− perc Percentage of stolen CPU time, i.e. the time spent in
other OS contexts when running in a virtualized envi-
ronment

disk.total − spacemb The total amount of disk space aggregated across all
the disks on a particular node.

io.read − kbytessec Kbytes/sec read by an io device
io.read − req − sec Number of read requests/sec to an io device
load.avg − 1−min The average system load over a 1 minute period
mem.swap − f ree − perc Percentage of free swap memory that is free
net.inbytes − sec Number of network bytes received per second
net.outbytes − sec Number of network bytes sent per second
net.inpackets − sec Number of network packets received per second
net.outpackets − sec Number of network packets sent per second
net.in− errors − sec Number of network errors on incoming network traf-

fic per second

Table 5.10 – Subset of Monasca monitoring metrics.

night, we collected the results after many hours (average of 4 hours on
GPU and 10 hours on CPU) as dataframes (i.e. similar to excel data sheet,
see annexe ??). Here also, a pre-processing phase was necessary before
ploting and representing all the data.

We observe that ANN successfully managed to learn the underlying
complex patterns of the dynamic environment expected in future net-
works. Through our methodology, to combat the obstacle of expert know-
ledge required for tuning such complex deep neural networks, we show
that the best architecture was selected. We had some expectations in
mind on what the results would look like. We expect that Deep layered
ANNs will perform better than the classical ones. Eventhough this in-
tuition was right, we get a broader and more complete perspective on
what ANN can perform and how it is possible to utilize their hyperpa-
rameters for better results with reasonable resources and tight budget
constrained.

Using the outputed dataframe, we notice that we can consider all the
hyperparameters as features and accuracy over the validation score as

III. MODEL SELECTION 185

the target value. Reframing the problem in this way was helpful to de-
termine the hyperparameters relevance for setting the most appropriate
ANN. We have used entropy-based algorithm to determine the degree
of purity of each hyperparameters. Finally, We found that Maybe for the
Journal.

Since we run different random experiments on different platforms,
we ended up with different dataframes. We regroup and represente all
the intresting results as boxplots over all the 20 trials.

We gained much insight on the LSTM and FFNN learning dynamics.
We find that random search coupled with Bernoulli distribution allowed
us to explore entrenched area of the hyperparameter space that would
take months to compute on standard grid search algorithm. We obtain
insight into deep and wide architecture at a glance as we are constrained
by the training time. We leverage Machine Learning again to extrapolate
and estimate the response f unction 5 (as described in section A in equa-
tion 5.6)

Strong Hyperparameters

The collected results indicate that the most strongest hyperparame-
ters are the width of the ANN as previously discussed (figure 5.36), the
ANN initialization method (figure 5.33), and the optimization algorithm
(figure 5.31).

In all these cases, the results show that the difference between a pro-
per setting and an ill setting is up to 50% on the accuracy score. For
example, in figure 5.31, the best optimizer, Adadelta, gives an accuracy
of 94% for almost all the trials (except two considered as outliers), while
the worst, RMSprop, yields an accuracy of 0 over all the trials. Other
optimizers show unsettled results. we presume that for the other opti-
mizers, their accuracy depend on other factors (i.e. hyperparameters).

Similarly, the results over the initialization method ((figure 5.33) show
that glorot unif orm is the best method. orthogonal and unif rom ini-
tialization give the highest probability of converging to an acceptable
accuracy. While, glorot normal, normal and zero should be avoided.

We consider the activation function (in the output layer) as a strong
hyperparameter. In our use case (figure 5.30) the best one is the linear

5. One caveat on the extrapolation is that the response function should be smooth and continuous

186 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

followed by the hard sigmoid and softmax.

Weak Hyperparameters

In the weak hyperparameters, we include the dropout (figure 5.28),
the number of hidden layers (5.36), training epochs and the layer type
(figure 5.32)

Although the layer type is technically a strong parameter, we classify
it as a weak one due to its representation using the global metric as de-
picted in figure 5.32 left. The high LSTM accuracy averages out with its
long training time 6. Similarly, the number of epochs are strong indica-
tors of the ANN accuracy (figure ??) but the training time explode after
only few hundreds iterations.

The ANNs with 50, 60 and 70 % dropout demonstrate in figure 5.28
slightly better results than ANN without dropout eventhough the trai-
ning time of all the dropout are overall similar (figure 5.29)

Best ANNs

The figure 5.35 and 5.34 show the best ANNs accordying to the vali-
dation score and theGlobalmetric. Intrestingly, the intersection between
these two groups is null. This means that there is no easy compromise
between accuracy and training time.

Another remark is that the best ANN “71“ over validation score (fi-
gure 5.35) distributions are focused in one point, the 94% accuracy point.
We suspect that given the initial settings, the best results was guranteed
even after 20 different trials. Moreover, it seems that the ANNs couldn’t
go further that 94% due to the hyperparameters range restrictions (see
Table 5.9). In other words, if we have allowed the ANNs to explore hi-
gher depth, width and epochs, we could have surpassed the barrier of
0.94. However, this claim should be backed with more evidence.

We summarized the structural hyperparameters of the 10 best ANNs
in table B.3. The common thread in all these architecture is the need for
if not Deep, Wide ANN structure.

LSTM Architecture seems to need fewer layers and training epochs.
LSTM is much robust than FFNN but it outperforms LSTM in rapidity.

6. We found that the LSTM benefits less from the GPU configuration than the FFNN. The training

III. MODEL SELECTION 187

Model ID Structure type, epochs

ACC
1 [15, 13, 15] LSTM 57
42 [20, 3, 12, 7, 1, 15, 20] FFNN 52
44 [18, 3, 1, 9, 17, 18, 17, 14, 11, 19] FFNN 766
46 [16, 13, 17, 3, 4, 7] FFNN 330
71 [8, 1, 17, 15, 15] FFNN 64

GM
66 [8, 6, 11, 9, 15, 20, 4] FFNN, 674
84 [19, 7, 9, 17, 7, 7, 15, 17, 16, 19] FFNN 335
49 [16, 20, 14, 20] FFNN 763
16 [7, 12, 15, 8] LSTM 930
15 [8, 20, 15, 19, 9, 14, 10, 16, 19, 10] LSTM 334

Table 5.11 – Different FFNN and LSTM architectures and their name.

Poor-performance ANNs

We defined ”the loosers” as ANN with accuracy less then 30% . In this
category, we find mainly shallow ANNs, i.e. less than 3 hidden layers or
less then 6 average neurons per layer. The worst ANNs are found also
in the hyperparameters previously discussed in weak and strong hyper-
parameters. Surprisingly, in other experiments we found that a large
proportion of the poor-performance ANNs are a combination of RELU
and GLorot uniform or he uniform. This requires further investigations.

Overall, LSTM is more performant than FFNN but is more prone to
overfitting when incrementing the number of epochs. One solution is
to use early stopping. FFNN can yield comparable results but requires
more hyperparameter tuning. The power of Random Search method lays
in it simplicity. Although, it cannot guarantee the optimal performance,
it scales very well and is a good alternative when human intuition fails.

In this section, we demonstrated that the ANNs constitute a great
opportunity to manage dynamic and highly evolving networks. They
are flexible and can adapt to any new contextual situation. We pointed
out the pitfalls that could face future ANN-based systems and provided
directives and a methodology to select the most suitable one in terms of

time decreases by about 2/3 for the LSTM while the FFNN’s training time decreases up to 5 times more

188 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

performance and budget.

0.0 0.1 0.4 0.5 0.6 0.7 0.9
[dropout]

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

acc

Boxplot grouped by dropout

0.0 0.1 0.4 0.5 0.6 0.7 0.9
[dropout]

Dropout

0% 10% 40% 50% 60% 70% 90%

0.2

0.4

0.6

0.8

Accuracy
acc

Boxplot grouped by dropout

Figure 5.28 – Accuracy versus dropout.

We can infer from this figure that dropout

regularisation slightly improves the accu-

racy with no compromise in time (as re-

presented by figure 5.29)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
[dropout]

0

5

10

15

20

25

30

35

time

Boxplot grouped by dropout

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
[dropout]0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dropout

time in seconds

0

5

10

15

20

25

30

35

time

Boxplot grouped by dropoutBoxplot grouped by dropout

Figure 5.29 – Time versus dropout

0.2

0.4

0.6

0.8

acc

Boxplot grouped by activation

Hard_sigmoid Linear Sigmoid

Activation function of the output layer

Softmax Tanh

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Accuracy
acc

Boxplot grouped by activation

Figure 5.30 – Accuracy with respect to Ac-

tivation functions in the output layer. This

figure shows that the choice of the acti-

vation layer is amogst the most important

ones.

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy on the validation set

Adadelta Adagradien Adam Nadam RMSprop SGD

0.031
0.21Alpha 0.051

0.031

0.041 0.051

0.031

0.061

0.081 0.051

0.041

0.0210.061
0.010
0.041
0.071

Figure 5.31 – Optimizer type with their

respective learning rate α versus accuracy.

The best optimizer is Adadelta, the worst

is RMSprop.

F Meta-Learning

In networking context, many learning problems require an ability to

learn rapidly from a limited size of data and to adjust to new infor-

mation. These problems are particularly difficult using Artificial Neu-

ral Networks, because they rely on high volume of labeled data, and

requires considerable time to train. In this section, we investigate the

meta-learning approach to this problem.

Meta-learning is about the process of acquiring knwoledge about know-

ledge, i.e. meta-knowledge. Meta-knowledge can be defined as the type

of knowledge that can be derived from using and observing a given lear-

III. MODEL SELECTION 189

Figure 5.32 – comparison between LSTM

and FFNN by accuracy over the validation

set.

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy (on the validation set)

Weight initialization method

GN GU HN HU LU N O U Z

Figure 5.33 – ANN initialization method

versus accuracy. GN : Glorot Normal, GU :

Glorot Uniform, HN : He Normal, HU : He

Uniform, LU : Lecun Uniform, N : Normal,

O : Orthogonal, U : Uniform, Z : zero.

Figure 5.34 – Top 5 best ANNs based on

the mean over Globalmetric

Figure 5.35 – Top 5 ANNs based on the

mean over validation score accuracy. All

the best ANNs appear to converge on 94%

average accuracy.

190 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

ning algorithm [186]. In the field of meta-knowledge, the key question
is how can we acquire and exploit knowledge about systems to unders-
tand them and improve their performance ? In this section, our aim is to
examine how we can turn back the machine learning problems on itself.

The main idea of this section is to allow machine learning algorithm
to profit from their repetitive use over similar dataset. The Meta-analysis
approach is based on the observation of two parameters : the algorithm
configurations (or hyperparameters) and its corresponding accuracy
result. The Meta-analysis aim is to collect as many information as pos-
sible from the cimulative experience of training multiple and different
Learning algorithms. In turn, meta-learning can be used to control the
learning strategy and hyperparameters towards a more optimized algo-
rithm.

As an example, the work of B. Zoph & Q. Le [187] exploits meta-
learning by introducing two Recurrent Neural Networks, one that controls
the other using a reinforcement process. Meta-learning can be used to
perform a variety of sub tasks ... here give examples ...

Hence, learning to learn is as important as the learning itself. Expl-
toiting the meta-knowledge and extrapolating to new unseen configura-
tions. In this section we will refer to these information as meta-features.
A meta-feature can refer to the activation functions used, the learning
rate, etc.

A second question that can be asked in the meta-learning analysis,
is which algorithm is the most suited for a given task, or the ordering
of a given algorithms ? In ou previous section, we showed that one way
to answer these question is by gathering performance and multiple ac-
curacy metrics of the learning algorithms and to compare them side by
side.

Our contribution is to demonstrate how we can train few randomly
selected ANNs to find the theoretical optimal ANN configurations. Se-
condly, we resused the information gain metric that is used in decision
tree models to classify the importance and relevance of each hyperpara-
meter.

We have noticed that after the experimentation phase, we can collect
the outputed results as new inputs to a machine learning algorithm to
guide the selection of the best possible combination of ANN configura-

III. MODEL SELECTION 191

tion.
The objective of this section is to lay the theoretical foundation of this

approach, develop the methodology and interpret the early results.
Some consideration should be taken into account with respect to this

approach

Overview

s
We run our experiments in local machines as well as in the Cloud

with CPU and GPU configurations. The bulk of the tests were run at
night, we collected the results after many hours (average of 4 hours on
GPU and 10 hours on CPU) as dataframes (i.e. similar to excel data sheet,
see annexe B). Here also, a pre-processing phase was necessary before
ploting and representing all the data.

We observe that ANN successfully managed to learn the underlying
complex patterns of the dynamic environment expected in future net-
works. Through our methodology, to combat the obstacle of expert know-
ledge required for tuning such complex deep neural networks, we show
that the best architecture was selected. We had some expectations in
mind on what the results would look like. We expect that Deep layered
ANNs will perform better than the classical ones. Eventhough this in-
tuition was right, we get a broader and more complete perspective on
what ANN can perform and how it is possible to utilize their hyperpa-
rameters for better results with reasonable resources and tight budget
constrained.

Using the outputed dataframe, we notice that we can consider all the
hyperparameters as features and accuracy over the validation score as
the target value. Reframing the problem in this way was helpful to de-
termine the hyperparameters relevance for setting the most appropriate
ANN. We have used entropy-based algorithm to determine the degree
of purity of each hyperparameters. Finally, We found that Maybe for the
Journal.

Since we run different random experiments on different platforms,
we ended up with different dataframes. We regroup and represente all
the intresting results as boxplots over all the 20 trials.

We gained much insight on the LSTM and FFNN learning dynamics.

192 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

We find that random search coupled with Bernoulli distribution allowed

us to explore entrenched area of the hyperparameter space that would

take months to compute on standard grid search algorithm. We obtain

insight into deep and wide architecture at a glance as we are constrained

by the training time. We leverage Machine Learning again to extrapolate

and estimate the response f unction 7 (as described in section A in equa-

tion 5.6)

N_hidden_layers

0

5

10

15

20

25

av
g_
ne
uro
n_
pe
r_l
ay
er

0

5

10

15

20
G
lo
ba
l_
m
et
ri
c

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Number of hidden layers
Av
era
ge
Ne
ur
on
pe
r l
ay
er

0

5

10

15
20
0

0.6

1.2

1.6

0
5

10
15

20
25

G
lo
ba
l m
et
ri
c

Point A1

Point A2

Point A3

0.2

0.4

0.8

1.0

1.4

Figure 5.36 – Results for medium ANNs structure (under 30 hidden layers and 20 ave-

rage neuron per layer). Point A1 is the global maximum. Point A2 is a local maximum.

Point A3 is a local minimum. In the text below, we provide an interpretaion of these

results.

The results obtained in Figure 5.36 were extrapolated from 200 expe-

rimentations as points scattered around the curve. The Globalmetric is
the z-axis. It is ploted with respect to the x-axis as the number of hidden

layers and y-axis as the average neuron per layer (see annexe B). We will

describe the figure in what we consider 3 critical points refered to as A1,

A2, A3 respectively.

The point A1 : This point is the global maximum (in the observable

interval of (20,20)). The key observation is that the line crossing the glo-

bal maximum is decreasing with the increase of the number of hidden

layers. We explain this finding by the definition of Globalmetric that

7. One caveat on the extrapolation is that the response function should be smooth and continuous

III. MODEL SELECTION 193

constrains ANNs with respect to the training time. In other words, the
point A1 is the best compromise between accuracy and training time.
Notice that in this setting, the average neuron per layer has more weight
than the number of hidden layers. Through out our experiments, we no-
tice that wide and shallow ANNs perform better that thin and deep. We
suspect that this is due to the large number of features provided at the
input layer(156).

The point A2 : This point is a local maximum. It shows that the depth
of the ANN is important but not as much as the width of the ANN. we
can observe this mismatch of importance by drawing a straing line from
A2 parallel to the y-axis. the intersection with the curve gives a higher
point, which means a higher accuracy.

The point A3 : This point represent a local minimum. It is in a black-
listed zone by the Globalmetric. Meaning that in this region of the hy-
perparameter space with many neurons, we obtain similar accuracy than
regions with much lower neurons and shorter training time. The metric
is telling us, do not waste your time here, if you have budget constraints
use a smaller ANN, it will give you similar results.

Among all the hyperparameters presented in this paper, we found
that only a few have strong correlation with the ANN overall perfor-
mace. We can classify our findings into two classes, hyperparameters
with strong influence on the result, we call them strong hyperparameters
and hyperparameters with loose correlation to the performance, we call
them weak hyperparameters. Note that the definition of these classes de-
pends highly on the dataset and on the use case.

G feature relevance

The second question that we asked in the meta-learning study is how
each meta-feature variabtions influence the accuracy output. In order to
represent the problem in a simple way we present here a trivial example
based on three features, sex, and years of study with a target value cor-
respanding to the salary in table 5.12. Concretely we want to assess how
the variation of a feature such as ”sex” can impact the salary for this
given dataset.

194 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

Table 5.12 – Example of a data set
Bac+5 Sex Salary
1 H 50
1 H 42
1 H 45
0 H 30
1 F 42
0 F 29
0 F 28
0 F 29

We used the entropy and the information gain to calculate how much
information is gained from both features. The information gain of a
variable X is obtained from an observation that a variable B=b is the
Kullback-Leibler divergence DKL(p(x|b)||p(x|I)) of the prior distribution
p(x|I) for x from the posterior distribution p(x|b) for x given b.

In the context of decision tree, information gain is also refered to as
mutual information and is equal to the total entropy for an attribute.

The information gain IG for an attribute b is defined using the en-
tropy H() as follows :

IG(T ,b) =H(T)−Σx∈vals(b)
|x ∈ T |xb = v|

|T |
.H(x ∈ T |xb = v)

WithH(T) = − log2(X) and T is the set of the training instances (x,y) = (x1,x2, ...,xn, y),
where xb ∈ vals(b)

Figure 5.37 show that the most relevant feature for the salary is the
”Bac+5” with a value of 87.5%. The feature ”Sex” is much less relevent
with a value of 12.5%. Similarly, we used the same logic to rank the
ANN hyperparameters impact on the accuracy. The results are shown in
Figure 5.38. We notice that among the hyper-parameters the most im-
pactful parameter is the Layer type, i.e. FFNN and LSTM. Empirically,
we found that type of the ANN has the biggest importance up to 0.18
(Figure 5.38). Then the second most important parameter is the LEar-
ning rate α up to 0.13. Then the third most relevant hyper-parameter
are both the number of hidden layers and the width of the ANN i.e. ave-
rage neurons per layer, with both 0.10. And among the least impactful
hyperparameters we find the some optimization algorithms (RMSprop,
Adadelta) and some activation functions (e.g. linear, softmax).

IV. CONCLUSION 195

Figure 5.37 – Feature importance of the table 5.12.

0.00 0.05 0.10 0.15 0.20

BS

E

D

HL

A

L

R

Si

LT

So

Tn

GN

NL

Z

U

O

N

LU

Ad

Ag

A

Na

Rm

SD

NU

HN

Batch Size

Epoch

Dropout

Hidden Layers

Learnig rate

Linear

ReLU

Sigmoid

Layer Type

Softmax

Tanh

Glorot Normal

Normal Uniform

He_Normal

Lecun_Uniform

Normal

Orthogonal

Uniform

Zero

Adadelta

Adagrad

Adam

Nadam

Rmsprop

SGD

Neurons per Layer

Weak Strong

Figure 5.38 – Feature importance of the ANNs’ hyperparameters

IV Conclusion

We have investigated an empirical approach to machine learning that

consists of generating multiple random ANNs with different factor of

196 CHAPITRE 5. PROPOSAL : COGNITIVE SMART ENGINE

variations for the SLA use case in the context of Network Function vir-
tualization. We provided an end-to-end data-driven methodology for
network management. We used a real test case using a virtual IMS to ins-
tantiate the NFV framework. Generate data from experiment and stress
the management opportunities and challenges brought by NFV and how
a data-driven approach based on ANN can be leverage to tackle the ma-
nagement aspects. Our results support the following conclusions :

— FFNN and LSTM if properly configured can yield high accuracy (up
to 94%) .

— ANNs are very sensitive to the hyperparameters. FFNN yields bet-
ter results in Wide architectures, while LSTM requires Deep archi-
tecture.

— Overall, LSTM is more performant than FFNN but is more prone to
overfitting when incrementing the number of epochs.

— The power of Random Search method lays in it simplicity. Although,
it cannot guarantee the optimal performance, it scales very well and
is a good alternative when human intuition fails.

To confirm our findings, we are currently running multiple experi-
ments on the cloud with more resources and a wider range of hyperpa-
rameters. Moreover, we are considering adding additional ANN types
from the ANN zoo to get a broader perspective on the power of ANNs
for SLA manegement in a virtualized context.

We argue in this paper that the management of the programmable
networks should necessarly incorporate intelligent and cognitive solu-
tions. We demonstrate how Machine Leanring (ANN) can be leverage to
this end.

Annexe A

Thesis Publications

I List of Contributions

A Accepted papers

— J. Bendriss, I. G. B. Yahia, and D. Zeglache, ”Sla enforcement in
programmable networks,” in 9th International Conference on Au-
tonomous Infrastructure, Management and Security (AIMS), 2015.

— J. Bendriss, I. G. B. Yahia, and D. Zeghlache, ”Forecasting and an-
ticipating slo breaches in programmable networks,” in Innovations
in Clouds, Internet and Networks (ICIN), 2017 20th Conference on,
pp. 127-134, IEEE, 2017.

— J. Bendriss, I. G. B. Yahia, P. Chemouil, D. Zeghlache. AI for SLA
Management in Programmable Networks. In Proc. of 13th Interna-
tional Conference on Design of Reliable Communication Networks
(DRCN) ; 8-10 March 2017 ; Munich. Berlin : VDE ; 2017. p. 1-8 -
DRCN 2017

— B. Caglayan, I. G. B. Yahia, J. Bendriss, Cognitive Services Portfolio
for 5G Network Management - 2nd Workshop on Network Manage-
ment, Quality of Service and Security for 5G Networks @EuCNC17,
June 12th 2017

— J. Bendriss, I. G. B. Yahia, and D. Zeghlache, ”A Deep learning ba-
sed SLA management for NFV-based services,” in Innovations in
Clouds, Internet and Networks (ICIN), 2018 21th Conference, IEEE,
2018.

— J.Bendriss et al. a journal, titled ”Cognitive SLA Management Using

197

198 ANNEXE A. THESIS PUBLICATIONS

Random ANNs”, submitted to IEEE Transactions on Network and
Service Management IEEE Transactions on Network and Service
Management (IEEE TNSM) 2018.

— Imen Grida Ben Yahia, Jaafar Bendriss, Alassane Samba, Philippe
Dooze : CogNitive 5G networks : Comprehensive operator use cases
with machine learning for management operations. ICIN 2017 :
252-259

— J. Bendriss et al., Chapter Book accepted at EAI : Emerging Automa-
tion Techniques for Future Internet, book : Cognitive management
for 5G : Going beyond Automation, Mars 2018

— Ongoing contribution on Machine Learning for Fault Management
- IEEE JSAC Special Issue on Artificial Intelligence and Machine
Learning for Networking and Communications to be submitted,
July 2018

B Public Cognet Deliverables

Contributions to many CogNet deliverables to integrate my work in
the context of 5G :

— D2.1 - Initial use cases, scenarios and requirements

— D2.2 - CogNet final requirements, scenarios and architecture

— D3.2 - Feature and Structure modeling, Structured Input/Output,
Unsupervised Learning and Domain Adaptation

— D3.4 - Training, Validation and Deployment

— D4.1 - Initial Design - Raw Data Preprocessing, Prediction in NFV,
Self-Managed NFV Ecosystem, Network Traffic Classification and
Prediction

— D4.2 - Raw Data Preprocessing, Prediction in NFV, Self-Managed
NFV Ecosystem, Network Traffic Classification and Prediction.

— D4.3 - Raw Data Preprocessing, Prediction in NFV, Self-Managed
NFV Ecosystem, Network Traffic Classification and Prediction

— D4.4 - Standardized Analytics Module for NFV-MANO : A-MANO.

— D6.1 - Initial integration and validation plan.

I. LIST OF CONTRIBUTIONS 199

— D6.2 - First release of the integrated platform and performance re-
ports.

— D6.3 - Final release of the integrated platform and performance re-
ports.

C Exhibition

— The Orange exhibition days in Orange Gardens in 2016

— 5G Global Event in Rome in November 2016

— Mobile World Congress in Mars 2018

200 ANNEXE A. THESIS PUBLICATIONS

201

202 ANNEXE B. INSTALLATION SETUP

Annexe B

Installation setup

.

Architecture name Structure and hyper-Parameters

A1 Learning rate : 0.00261, Activation function : logistic
Training iterations : 1760,
Architecture : [156, 6, 1]

A2 Learning rate : 0.00681, Activation function : relu
Training iterations : 660,
Architecture : [156, 6, 9, 7, 8, 1]

A3 Learning rate : 0.00981, Activation function : tanh
Training iterations : 820,
Architecture : [156, 6, 4, 4, 1]

A4 Learning rate : 0.00201, Activation function : linear
Training iterations : 640,
Architecture : [156, 4, 1, 3, 5, 7, 2, 1, 8, 8, 1]

A5 Learning rate : 0.00301, Activation function : logistic
Training iterations : 1800,
Architecture : [156, 2, 2, 1, 1, 1, 3, 2, 1, 1]

A6 Learning rate : 0.00861, Activation function : relu
Training iterations : 1320,
Architecture : [156, 11, 1, 10, 9, 1, 8, 1, 8, 3, 4, 1]

A7 Learning rate : 0.00201, Activation function : tanh
Training iterations : 640,
Architecture : [156, 4, 2, 2, 1, 7, 7, 7, 6, 6, 1]

A8 Learning rate : 0.00981, Activation function : linear
Training iterations : 820,
Architecture : [156, 1, 3, 2, 1]

A9 Learning rate : 0.00681, Activation function : logistic
Training iterations : 660,
Architecture : [156, 1, 4, 9, 8, 1]

A10 Learning rate : 0.00461, Activation function : relu
Training iterations : 400,
Architecture : [156, 2, 1, 2, 2, 1, 3, 2, 3, 1, 2, 1, 1]

A11 Learning rate : 0.00301, Activation function : tanh
Training iterations : 180,
Architecture : [156, 1, 1, 3, 3, 2, 3, 2, 2, 1]

A12 Learning rate : 0.00081, Activation function : linear
Training iterations : 780,
Architecture : [156, 9, 8, 1, 3, 5, 2, 1]

A13 Learning rate : 0.00481, Activation function : logistic
Training iterations : 1000,
Architecture : [156, 1, 1, 1]

A14 Learning rate : 0.00881, Activation function : relu
Training iterations : 1240,
Architecture : [156, 2, 1, 2, 2, 1, 1]

A15 Learning rate : 0.00281, Activation function : tanh
Training iterations : 920,
Architecture : [156, 4, 1, 4, 2, 4, 5, 1, 1]

A16 Learning rate : 0.00981, Activation function : linear
Training iterations : 820,
Architecture : [156, 3, 6, 2, 1]

A17 Learning rate : 0.00861, Activation function : logistic
Training iterations : 1320,
Architecture : [156, 11, 3, 1, 3, 3, 4, 2, 7, 3, 1, 1]

L1 2 hidden layers, epoch 3, batch=64
L2 5 hidden layers
L3 10 hidden layers
L4 2 hidden layers + dropout=0.2
L5 5 hidden layers + dropout=0.2
L6 10 hidden layers + dropout=0.2
L7 2 hidden layers, epoch=10
L8 5 hidden layers, epoch = 10
L9 10 hidden layers, epoch=10

203

SLO1 SLO2 SLO3 SLA

0 0 0 Compliant

0 0 1 Violated

0 1 0 Violated

1 0 0 Violated

0 1 1 Violated

1 1 0 Violated

1 0 1 Violated

1 1 1 Violated

Table B.1 – The SLA state is violated if at least one SLO is breached.

The ANN structures reports : for ANN with the following structure :
[156(input) - 20 - 12 - 5 - 22 -60 - 6 - 3(output)], we report : (Number
of hidden layers, Mean Neurons per layer rounded to the least integer)
= (6, 20)

Feature importance : The Feature importance is defined as XXX
Maybe a Figure?
We computed feature importance based on node purity and entropy.

In the literature, there are many methods for implementing the algo-
rithm, we used Decision Tree Model to compute the features impor-
tance.

Bernoulli Categorical Distribution.
The Bernoulli categorical distributionis a discrete probability distri-

bution over multiple classes (in this case number of hidden layers) with
specified probability for each class. In our case, the probability is biased
towards ANNs with less than 10 layers.

The categorical Bernoulli distribution allows us to bias the selection
towards smaller ANNs. The idea is to generate diverse ANN structure
but not too many Deep ANNs due to the high computing, memory and
time cost.

204 ANNEXE B. INSTALLATION SETUP

ANN layer size probability p
2 0.16

3 0.16

4 0.16

7 0.11

11 0.11

17 0.08

27 0.06

41 0.04

64 0.04

100 0.03

Table B.2 – The Categorical Bernoulli distribution used in our experiments. To the left,
the ANN layer size in the log domain (log10). the p values sum to one and define the
probability of appearance of the layer size variable. Note that the size of the variable
was arbitrary set to 10 and can be changed.

Architecture name Structure and hyperparameters

4 2 hidden layers, epoch=10
5 5 hidden layers, epoch = 10
6 10 hidden layers, epoch=10

Table B.3 – Different FFNN and LSTM architectures and their name.

205

Table B.4 – a Sample of Results generated for benchmarking different hyperparame-
ters configurations. The best performance is marked in bold. The confidence interval
is set at 95 % and epochs = 10

Model Type Architecture Drop Loss cal Weight init Optimization activ last layer Error Train mse Val mse
m1 LSTM 8 - 6.25 1 mse zero adadelta relu 0.06 ±0.00 5.31 ±0.11 5.28 ±0.11
m2 LSTM 7 - 4.25 0 mse normal sgd sigmoid 0.06 ±0.00 6.11 ±0.12 6.12 ±0.12
m3 LSTM 6 - 4.5 0 mse zero nadam relu 0.06 ±0.00 6.12 ±0.12 6.12 ±0.12
m4 LSTM 7 - 7.28 0 mse lecununiform nadam relu 0.95 ±0.00 4.23 ±0.08 4.23 ±0.08
m5 LSTM 9 - 7.2 0 binary heuniform adamax softmax 1.00 ±0.00 7.65 ±0.15 1.65 ±0.03
m6 LSTM 10 - 6.7 0 mse uniform adamax linear 0.04 ±0.00 1.31 ±0.02 1.34 ±0.02
m7 LSTM 7 - 3.14 0 mse lecununiform sgd hardsigmoid 0.06 ±0.00 6.08 ±0.12 6.10 ±0.12
m8 LSTM 2 - 1.5 0 binary glorotnormal adamax linear 1.00 ±0.00 8.82 ±0.18 30.17 ±0.62
m9 LSTM 3 - 2.0 0 mse orthogonal adam tanh 0.06 ±0.00 6.08 ±0.12 6.10 ±0.12
m10 FFNN 3 - 1.00 1 mse henormal adamax relu 0.06 ±0.00 5.27 ±0.12 5.28 ±0.11
m11 FFNN 19 - 12.31 1 binary lecununiform sgd softmax 1.00 ±0.00 7.65 ±0.15 1.65 ±0.03
m12 FFNN 20 - 7.04 0 mse uniform adam hardsigmoid 0.06 ±0.00 6.08 ±0.14 6.10 ±0.12
m13 FFNN 13 - 7.61 0 mse one adadelta softmax 0.06 ±0.00 7.63 ±0.15 7.64 ±0.15
m14 FFNN 2- 12.5 1 mse henormal nadam linear 0.28 ±0.00 1.06 ±0.02 2.26 ±0.04
m15 FFNN 4 - 10.0 1 binary orthogonal sgd linear 0.99 ±0.00 16.55 ±0.34 13.90 ±0.28
m16 FFNN 6 - 12.16 1 mse zero adadelta sigmoid 0.26 ±0.00 6.08 ±0.12 6.10 ±0.12
m17 FFNN 20 - 10.1 0 binary glorotuniform adam linear 1.00 ±0.00 9.26 ±0.19 30.17 ±0.62
m18 FFNN 15 - 12.93 1 mse one adadelta hardsigmoid 0.06 ±0.00 6.08 ±0.12 6.10 ±0.12

206 ANNEXE B. INSTALLATION SETUP

Bibliography

[1] N. Agoulmine, Autonomic network management principles : from
concepts to applications. Academic Press, 2010.

[2] Wikipedia, the free encyclopedia, Bruce Blaus, “Biological neu-
ron,” 2013. [Online ; accessed April 27, 2018].

[3] P. D. Aimilia Bantouna, Dimos Kyriazis, “Initial position paper
d3.1,” 2015.

[4] H. Freeman and A. Gelman, “Ieee technology initiatives and rela-
ted comsoc standards activities [the president’s page],” IEEE Com-
munications Magazine, vol. 54, no. 7, pp. 4–6, 2016.

[5] “Gs nfv 003 - v1.2.1 - network functions virtualisation (nfv) ; ter-
minology for main concepts in nfv,” 2014.

[6] A. Géron, “Hands-on machine learning with scikit-learn and ten-
sorflow : concepts, tools, and techniques to build intelligent sys-
tems,” 2017.

[7] J. McCarthy and E. A. Feigenbaum, “In memoriam : Arthur sa-
muel : Pioneer in machine learning,” AI Magazine, vol. 11, no. 3,
p. 10, 1990.

[8] T. M. Mitchell et al., “Machine learning. wcb,” 1997.

[9] F. Cady, The Data Science Handbook. John Wiley & Sons, 2017.

[10] A. M. Turing, “Computing machinery and intelligence,” Mind,
vol. 59, no. 236, pp. 433–460, 1950.

[11] D. Hillis, J. McCarthy, T. M. Mitchell, E. T. Mueller, D. Riecken,
A. Sloman, and P. H. Winston, “In honor of marvin minsky’s
contributions on his 80th birthday,” AI Magazine, vol. 28, no. 4,
p. 103, 2007.

207

208 BIBLIOGRAPHY

[12] A. L. Samuel, “Some studies in machine learning using the game
of checkers,” IBM Journal of Research and Development, vol. 44,
pp. 206–226, Jan 2000.

[13] R. J. Solomonoff, “An inductive inference machine,” in IRE
Convention Record, Section on Information Theory, vol. 2, pp. 56–
62, 1957.

[14] P. Domingos, “A few useful things to know about machine lear-
ning,” Communications of the ACM, vol. 55, no. 10, pp. 78–87,
2012.

[15] Y. Bengio, A. Courville, and P. Vincent, “Representation learning :
A review and new perspectives,” IEEE transactions on pattern ana-
lysis and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[16] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
neural information processing systems, pp. 1097–1105, 2012.

[18] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Černockỳ, “Stra-
tegies for training large scale neural network language models,”
in Automatic Speech Recognition and Understanding (ASRU), 2011
IEEE Workshop on, pp. 196–201, IEEE, 2011.

[19] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the
theory of brain mechanisms,” tech. rep., CORNELL AERONAU-
TICAL LAB INC BUFFALO NY, 1961.

[20] M. Minsky and S. Papert, “Perceptrons.,” 1969.

[21] D. O. Hebb, The organization of behavior : A neuropsychological ap-
proach. John Wiley & Sons, 1949.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning in-
ternal representations by error propagation,” tech. rep., California
Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[23] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accu-
racy, f-score and roc : a family of discriminant measures for per-
formance evaluation,” in Australian conference on artificial intelli-
gence, vol. 4304, pp. 1015–1021, 2006.

BIBLIOGRAPHY 209

[24] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction
by locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–
2326, 2000.

[25] P. Pudil and J. Hovovicova, “Novel methods for subset selection
with respect to problem knowledge,” IEEE Intelligent Systems and
their Applications, vol. 13, no. 2, pp. 66–74, 1998.

[26] S. M. Holland, “Principal components analysis (pca),” Department
of Geology, University of Georgia, Athens, GA, pp. 30602–2501,
2008.

[27] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and neural
networks, vol. 3361, no. 10, p. 1995, 1995.

[28] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statis-
tics, pp. 249–256, 2010.

[29] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algo-
rithm for deep belief nets,” Neural computation, vol. 18, no. 7,
pp. 1527–1554, 2006.

[30] J. Nickolls and W. J. Dally, “The gpu computing era,” IEEE micro,
vol. 30, no. 2, 2010.

[31] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding
deep neural networks with rectified linear units, 2016,” U RL :
https ://arxiv. org/abs/1611.01491.

[32] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv preprint arXiv :1207.0580,
2012.

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Sa-
lakhutdinov, “Dropout : A simple way to prevent neural net-
works from overfitting,” The Journal of Machine Learning Research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

210 BIBLIOGRAPHY

[35] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Ze-
mel, and Y. Bengio, “Show, attend and tell : Neural image caption
generation with visual attention,” in International Conference on
Machine Learning, pp. 2048–2057, 2015.

[36] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Ben-
gio, “A recurrent latent variable model for sequential data,” in
Advances in neural information processing systems, pp. 2980–2988,
2015.

[37] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra,
“Draw : A recurrent neural network for image generation,” arXiv
preprint arXiv :1502.04623, 2015.

[38] J. Bayer and C. Osendorfer, “Learning stochastic recurrent net-
works,” arXiv preprint arXiv :1411.7610, 2014.

[39] N. Bostrom, Superintelligence : Paths, dangers, strategies. OUP Ox-
ford, 2014.

[40] G. E. Hinton, “Deep belief networks,” Scholarpedia, vol. 4, no. 5,
p. 5947, 2009.

[41] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10,
pp. 1345–1359, 2010.

[42] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and trans-
ferring mid-level image representations using convolutional neu-
ral networks,” in Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on, pp. 1717–1724, IEEE, 2014.

[43] R. Collobert and J. Weston, “A unified architecture for natural
language processing : Deep neural networks with multitask lear-
ning,” in Proceedings of the 25th international conference on Machine
learning, pp. 160–167, ACM, 2008.

[44] J. Ba and R. Caruana, “Do deep nets really need to be deep ?,” in
Advances in neural information processing systems, pp. 2654–2662,
2014.

[45] R. Bellman, “Curse of dimensionality,” Adaptive control processes :
a guided tour. Princeton, NJ, 1961.

BIBLIOGRAPHY 211

[46] K. Burn-Thornton, J. Garibaldi, and A. Mahdi, “Pro-active net-
work management using data mining,” in Global Telecommunica-
tions Conference, 1998. GLOBECOM 1998. The Bridge to Global In-
tegration. IEEE, vol. 2, pp. 1208–1211, IEEE, 1998.

[47] R. Beverly, K. Sollins, and A. Berger, “Svm learning of ip ad-
dress structure for latency prediction,” in Proceedings of the 2006
SIGCOMM workshop on Mining network data, pp. 299–304, ACM,
2006.

[48] T. W. Rondeau, B. Le, C. J. Rieser, and C. W. Bostian, “Cognitive
radios with genetic algorithms : Intelligent control of software de-
fined radios,” in Software defined radio forum technical conference,
pp. C3–C8, Citeseer, 2004.

[49] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning
approach to tcp throughput prediction,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 35, pp. 97–108, ACM, 2007.

[50] M. Lee, D. Marconett, X. Ye, and S. B. Yoo, “Cognitive network
management with reinforcement learning for wireless mesh net-
works,” in International Workshop on IP Operations and Manage-
ment, pp. 168–179, Springer, 2007.

[51] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement
learning towards automating resource allocation and application
scalability in the cloud,” Concurrency and Computation : Practice
and Experience, vol. 25, no. 12, pp. 1656–1674, 2013.

[52] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “Qos-aware adaptive
routing in multi-layer hierarchical software defined networks : a
reinforcement learning approach,” in Services Computing (SCC),
2016 IEEE International Conference on, pp. 25–33, IEEE, 2016.

[53] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre,
and I. Truck, “Using reinforcement learning for autonomic re-
source allocation in clouds : towards a fully automated workflow,”
in ICAS 2011, The Seventh International Conference on Autonomic
and Autonomous Systems, pp. 67–74, 2011.

[54] C.-Z. Xu, J. Rao, and X. Bu, “Url : A unified reinforcement learning
approach for autonomic cloud management,” Journal of Parallel
and Distributed Computing, vol. 72, no. 2, pp. 95–105, 2012.

212 BIBLIOGRAPHY

[55] N. Williams, S. Zander, and G. Armitage, “A preliminary perfor-
mance comparison of five machine learning algorithms for practi-
cal ip traffic flow classification,” ACM SIGCOMM Computer Com-
munication Review, vol. 36, no. 5, pp. 5–16, 2006.

[56] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classi-
fication and application identification using machine learning,” in
Local Computer Networks, 2005. 30th Anniversary. The IEEE Confe-
rence on, pp. 250–257, IEEE, 2005.

[57] S. Zander, T. Nguyen, and G. Armitage, “Self-learning ip traf-
fic classification based on statistical flow characteristics,” in In-
ternational Workshop on Passive and Active Network Measurement,
pp. 325–328, Springer, 2005.

[58] “Designing self-driving networks workshop.” https:

//datatracker.ietf.org/meeting/98/materials/

slides-98-nmrg-self-driving-networks. Accessed : 2018-03-
30.

[59] N. Feamster and J. Rexford, “Why (and how) networks should run
themselves,” arXiv preprint arXiv :1710.11583, 2017.

[60] M. Zorzi, A. Zanella, A. Testolin, M. D. F. De Grazia, and M. Zorzi,
“Cobanets : A new paradigm for cognitive communications sys-
tems,” in Computing, Networking and Communications (ICNC),
2016 International Conference on, pp. 1–7, IEEE, 2016.

[61] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros,
E. Alarcón, M. Solé, V. Muntés-Mulero, D. Meyer, S. Barkai, M. J.
Hibbett, et al., “Knowledge-defined networking,” ACM SIGCOMM
Computer Communication Review, vol. 47, no. 3, pp. 2–10, 2017.

[62] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski,
“A knowledge plane for the internet,” in Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols
for computer communications, pp. 3–10, ACM, 2003.

[63] A. Clemm, Network management fundamentals. Cisco Press, 2006.

[64] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. G. Greenberg, and Y.-M.
Wang, “Webprophet : Automating performance prediction for
web services.,” in NSDI, vol. 10, pp. 143–158, 2010.

https://datatracker.ietf.org/meeting/98/materials/slides-98-nmrg-self-driving-networks
https://datatracker.ietf.org/meeting/98/materials/slides-98-nmrg-self-driving-networks
https://datatracker.ietf.org/meeting/98/materials/slides-98-nmrg-self-driving-networks

BIBLIOGRAPHY 213

[65] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Am-
mar, “Answering what-if deployment and configuration questions
with wise,” in ACM SIGCOMM Computer Communication Review,
vol. 38, pp. 99–110, ACM, 2008.

[66] C. Sinclair, L. Pierce, and S. Matzner, “An application of machine
learning to network intrusion detection,” in Computer Security Ap-
plications Conference, 1999.(ACSAC’99) Proceedings. 15th Annual,
pp. 371–377, IEEE, 1999.

[67] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning ap-
proach for network intrusion detection system,” in Proceedings
of the 9th EAI International Conference on Bio-inspired Information
and Communications Technologies (formerly BIONETICS), pp. 21–
26, ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2016.

[68] M. Ross, A. Covo, and C. Hart, “An ai-based network manage-
ment system,” in Computers and Communications, 1988. Conference
Proceedings., Seventh Annual International Phoenix Conference on,
pp. 458–461, IEEE, 1988.

[69] R. Meike, “Intelligent resource management for local area net-
works : Approach and evolution,” 1988.

[70] L. Bernstein and C. M. Yuhas, “Expert systems in network
management-the second revolution,” IEEE Journal on Selected
Areas in Communications, vol. 6, no. 5, pp. 784–787, 1988.

[71] T. Liao and D. Seret, “Toward the intelligent integrated network
management,” in Global Telecommunications Conference, 1990,
and Exhibition.’Communications : Connecting the Future’, GLOBE-
COM’90., IEEE, pp. 1498–1502, IEEE, 1990.

[72] D. L. Cohrs and B. P. Miller, Specification and verification of network
managers for large internets, vol. 19. ACM, 1989.

[73] K. D. Cebulka, M. J. Muller, and C. A. Riley, “Applications
of artificial intelligence for meeting network management chal-
lenges in the 1990s,” in Global Telecommunications Conference
and Exhibition’Communications Technology for the 1990s and
Beyond’(GLOBECOM), 1989. IEEE, pp. 501–506, IEEE, 1989.

214 BIBLIOGRAPHY

[74] G. Kousiouris, D. Kyriazis, S. Gogouvitis, A. Menychtas, K. Kons-
tanteli, and T. Varvarigou, “Translation of application-level terms
to resource-level attributes across the cloud stack layers,” in IEEE
Symposium on Computers and Communications (ISCC), pp. 153–
160, IEEE, 2011.

[75] N. Bui, M. Cesana, S. A. Hosseini, Q. Liao, I. Malanchini, and
J. Widmer, “A survey of anticipatory mobile networking : Context-
based classification, prediction methodologies, and optimization
techniques,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 3, pp. 1790–1821, 2017.

[76] Y. Liu and J. Y. Lee, “An empirical study of throughput predic-
tion in mobile data networks,” in Global Communications Confe-
rence (GLOBECOM), 2015 IEEE, pp. 1–6, IEEE, 2015.

[77] T. T. Nguyen and G. Armitage, “A survey of techniques for inter-
net traffic classification using machine learning,” IEEE Communi-
cations Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[78] S. Baraković and L. Skorin-Kapov, “Survey and challenges of qoe
management issues in wireless networks,” Journal of Computer
Networks and Communications, vol. 2013, 2013.

[79] S. Zhao, Application-Aware Network Design Using Software-Defined
Networking for Application Performance Optimization for Big Data
and Video Streaming. PhD thesis, University of Missouri-Kansas
City, 2017.

[80] C. Sun, J. Bi, Z. Zheng, and H. Hu, “Sla-nfv : an sla-aware high
performance framework for network function virtualization,” in
Proceedings of the 2016 ACM SIGCOMM Conference, pp. 581–582,
ACM, 2016.

[81] H. Singh, “Performance analysis of unsupervised machine lear-
ning techniques for network traffic classification,” in Advanced
Computing & Communication Technologies (ACCT), 2015 Fifth In-
ternational Conference on, pp. 401–404, IEEE, 2015.

[82] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering
using machine learning techniques,” Passive and Active Network
Measurement, pp. 205–214, 2004.

BIBLIOGRAPHY 215

[83] A. W. Moore and D. Zuev, “Internet traffic classification using
bayesian analysis techniques,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 33, pp. 50–60, ACM, 2005.

[84] J. Hochst, L. Baumgartner, M. Hollick, and B. Freisleben, “Unsu-
pervised traffic flow classification using a neural autoencoder,”
in 2017 IEEE 42nd Conference on Local Computer Networks (LCN),
pp. 523–526, IEEE, 2017.

[85] L. He, C. Xu, and Y. Luo, “vtc : Machine learning based traffic clas-
sification as a virtual network function,” in Proceedings of the 2016
ACM International Workshop on Security in Software Defined Net-
works & Network Function Virtualization, pp. 53–56, ACM, 2016.

[86] J. A. Boyan and M. L. Littman, “Packet routing in dynamically
changing networks : A reinforcement learning approach,” in Ad-
vances in neural information processing systems, pp. 671–678, 1994.

[87] L. Peshkin and V. Savova, “Reinforcement learning for adaptive
routing,” in Neural Networks, 2002. IJCNN’02. Proceedings of the
2002 International Joint Conference on, vol. 2, pp. 1825–1830, IEEE,
2002.

[88] D. W. Gurer, I. Khan, R. Ogier, and R. Keffer, “An artificial intelli-
gence approach to network fault management,” Sri international,
vol. 86, 1996.

[89] R. Patton, “Fault detection and diagnosis in aerospace systems
using analytical redundancy,” Computing & Control Engineering
Journal, vol. 2, no. 3, pp. 127–136, 1991.

[90] R. Patton, J. Chen, and T. Siew, “Fault diagnosis in nonlinear dy-
namic systems via neural networks,” in IEE Conference Publication,
pp. 1346–1346, IET, 1994.

[91] D. Himmelblau, R. Barker, and W. Suewatanakul, “Fault classifi-
cation with the aid of artificial neural networks,” IFAC Proceedings
Volumes, vol. 24, no. 6, pp. 541–545, 1991.

[92] T. Sorsa, H. N. Koivo, and H. Koivisto, “Neural networks in pro-
cess fault diagnosis,” IEEE Transactions on systems, man, and cyber-
netics, vol. 21, no. 4, pp. 815–825, 1991.

216 BIBLIOGRAPHY

[93] R. H. Deng, A. A. Lazar, and W. Wang, “A probabilistic approach
to fault diagnosis in linear lightwave networks,” IEEE Journal on
selected areas in communications, vol. 11, no. 9, pp. 1438–1448,
1993.

[94] J. Wu, J.-G. Zhou, P.-L. Yan, and M. Wu, “A study on network fault
knowledge acquisition based on support vector machine,” in Ma-
chine Learning and Cybernetics, 2005. Proceedings of 2005 Interna-
tional Conference on, vol. 6, pp. 3893–3898, IEEE, 2005.

[95] J. M. Sánchez, I. G. B. Yahia, and N. Crespi, “Self-modeling based
diagnosis of software-defined networks,” in Network Softwariza-
tion (NetSoft), 2015 1st IEEE Conference on, pp. 1–6, IEEE, 2015.

[96] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo,
“Practical real-time intrusion detection using machine learning
approaches,” Computer Communications, vol. 34, no. 18, pp. 2227–
2235, 2011.

[97] Q. Mahmoud, Cognitive networks : towards self-aware networks.
John Wiley & Sons, 2007.

[98] L. Xu, H. Assem, I. G. B. Yahia, T. S. Buda, A. Martin, D. Gallico,
M. Biancani, A. Pastor, P. A. Aranda, M. Smirnov, et al., “Cognet :
A network management architecture featuring cognitive capabi-
lities,” in Networks and Communications (EuCNC), 2016 European
Conference on, pp. 325–329, IEEE, 2016.

[99] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros,
E. Alarcón, M. Solé, V. Muntés-Mulero, D. Meyer, S. Barkai, M. J.
Hibbett, G. Estrada, K. Ma’ruf, F. Coras, V. Ermagan, H. Lata-
pie, C. Cassar, J. Evans, F. Maino, J. Walrand, and A. Cabellos,
“Knowledge-defined networking,” SIGCOMM Comput. Commun.
Rev., vol. 47, pp. 2–10, Sept. 2017.

[100] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and J. O. Ke-
phart, “An architectural approach to autonomic computing,” in
Autonomic Computing, 2004. Proceedings. International Conference
on, pp. 2–9, IEEE, 2004.

[101] M. Wooldridge and N. R. Jennings, “Intelligent agents : Theory
and practice,” The knowledge engineering review, vol. 10, no. 2,
pp. 115–152, 1995.

BIBLIOGRAPHY 217

[102] M. C. Huebscher and J. A. McCann, “A survey of autonomic com-
puting - degrees, models, and applications,” ACM Computing Sur-
veys (CSUR), vol. 40, no. 3, p. 7, 2008.

[103] “Juniper - self-driving networks,” 2018.

[104] “Acm sigcomm 2018 afternoon workshop on self-driving net-
works (selfdn 2018) - acm sigcomm 2018,” 2018.

[105] M. Zorzi, A. Zanella, A. Testolin, M. D. F. De Grazia, and M. Zorzi,
“Cognition-based networks : A new perspective on network opti-
mization using learning and distributed intelligence,” IEEE Ac-
cess, vol. 3, pp. 1512–1530, 2015.

[106] “Amazon mechanical turk,” 2018.

[107] “E.860 : Framework of a service level agreement.,” 2002.

[108] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yer-
geau, “Extensible markup language (xml).,” World Wide Web Jour-
nal, vol. 2, no. 4, pp. 27–66, 1997.

[109] S. Bechhofer, “Owl : Web ontology language,” in Encyclopedia of
database systems, pp. 2008–2009, Springer, 2009.

[110] D. Crockford, “The application/json media type for javascript ob-
ject notation (json),” 2006.

[111] O. Ben-Kiki, C. Evans, and B. Ingerson, “Yaml ain’t markup lan-
guage (yaml) version 1.1,” yaml. org, Tech. Rep, p. 23, 2005.

[112] C. Cui, H. Deng, D. Telekom, U. Michel, and H. Damker, “Network
functions virtualisation,”

[113] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization : State-of-the-art
and research challenges,” IEEE Communications Surveys & Tuto-
rials, vol. 18, no. 1, pp. 236–262, 2016.

[114] C. Price, S. Rivera, et al., “Opnfv : An open platform to accelerate
nfv,” White Paper. A Linux Foundation Collaborative Project, 2012.

[115] “Opnfv - ovp,” 2018.

[116] “Pdna - devnet.” https://developer.cisco.com/site/pnda/.
Accessed : 2018-03-30.

https://developer.cisco.com/site/pnda/

218 BIBLIOGRAPHY

[117] “The data plane development kit.” https://dpdk.org/. Acces-
sed : 2018-03-30.

[118] O. N. Fundation, “Software-defined networking : The new norm
for networks,” ONF White Paper, vol. 2, pp. 2–6, 2012.

[119] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric :
a retrospective on evolving sdn,” in Proceedings of the first work-
shop on Hot topics in software defined networks, pp. 85–90, ACM,
2012.

[120] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready for
sdn? implementation challenges for software-defined networks,”
IEEE Communications Magazine, vol. 51, no. 7, pp. 36–43, 2013.

[121] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al., “B4 : Experience
with a globally-deployed software defined wan,” in ACM SIG-
COMM Computer Communication Review, vol. 43, pp. 3–14, ACM,
2013.

[122] E. Escalona, J. I. A. Baranda, L. M. C. Murillo, O. G. de Dios,
G. Cossu, F. M. Facca, and E. Salvadori, “Using sdn for cloud ser-
vices provisioning : the xifi use-case,” in Future Networks and Ser-
vices (SDN4FNS), 2013 IEEE SDN for, pp. 1–7, IEEE, 2013.

[123] C. Chen, C. Liu, P. Liu, B. T. Loo, and L. Ding, “A scalable multi-
datacenter layer-2 network architecture,” in Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Re-
search, p. 8, ACM, 2015.

[124] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight : To-
wards a model-driven sdn controller architecture,” in World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2014 IEEE
15th International Symposium on a, pp. 1–6, IEEE, 2014.

[125] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, et al., “Onos :
towards an open, distributed sdn os,” in Proceedings of the third
workshop on Hot topics in software defined networking, pp. 1–6,
ACM, 2014.

https://dpdk.org/

BIBLIOGRAPHY 219

[126] “Floodlight project..”

[127] “Ryu controllers..”

[128] J. Kosinski, P. Nawrocki, D. Radziszowski, K. Zielinski, S. Zie-
linski, G. Przybylski, and P. Wnek, “Sla monitoring and manage-
ment framework for telecommunication services,” in Networking
and Services, 2008. ICNS 2008. Fourth International Conference on,
pp. 170–175, IEEE, 2008.

[129] Y. Cheng, W. Zhuang, and A. Leon-Garcia, “Call level service dif-
ferentiation for efficient sla management,” in Global Telecommuni-
cations Conference, 2005. GLOBECOM’05. IEEE, vol. 2, pp. 6–pp,
IEEE, 2005.

[130] C. Ward, M. J. Buco, R. N. Chang, L. Z. Luan, E. So, and C. Tang,
“Fresco : a web services based framework for configuring exten-
sible sla management systems,” in Web Services, 2005. ICWS 2005.
Proceedings. 2005 IEEE International Conference on, pp. 237–245,
IEEE, 2005.

[131] A. Schmietendorf, R. Dumke, and D. Reitz, “Sla management-
challenges in the context of web-service-based infrastructures,”
in Web Services, 2004. Proceedings. IEEE International Conference
on, pp. 606–613, IEEE, 2004.

[132] A. Paschke and M. Bichler, “Sla representation, management and
enforcement,” in e-Technology, e-Commerce and e-Service, 2005.
EEE’05. Proceedings. The 2005 IEEE International Conference on,
pp. 158–163, IEEE, 2005.

[133] C. He, L. Gu, B. Du, and Z. H. S. Li, “A wsla-based moni-
toring system for grid service-gsmon,” in Services Computing,
2004.(SCC 2004). Proceedings. 2004 IEEE International Conference
on, pp. 596–599, IEEE, 2004.

[134] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Na-
kata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web ser-
vices agreement specification (ws-agreement),” in Open grid fo-
rum, vol. 128, p. 216, 2007.

[135] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-
Baker, M. Hondo, C. Kaler, D. Langworthy, A. Malhotra, et al.,

220 BIBLIOGRAPHY

“Web services policy framework (ws-policy),” Specification, IBM,
BEA, Microsoft, SAP AG, Sonic Software, VeriSign, 2004.

[136] P. Patel, A. H. Ranabahu, and A. P. Sheth, “Service level agreement
in cloud computing,” 2009.

[137] V. C. Emeakaroha, M. A. Netto, R. N. Calheiros, I. Brandic,
R. Buyya, and C. A. De Rose, “Towards autonomic detection of
sla violations in cloud infrastructures,” Future Generation Compu-
ter Systems, vol. 28, no. 7, pp. 1017–1029, 2012.

[138] A. Biswas, S. Majumdar, B. Nandy, and A. El-Haraki, “Predictive
auto-scaling techniques for clouds subjected to requests with ser-
vice level agreements,” in IEEE World Congress on Services (SER-
VICES), pp. 311–318, IEEE, 2015.

[139] R. Yanggratoke, J. Ahmed, J. Ardelius, C. Flinta, A. Johnsson,
D. Gillblad, and R. Stadler, “Predicting service metrics for cluster-
based services using real-time analytics,” in 11th International
Conference on Network and Service Management (CNSM), pp. 135–
143, IEEE, 2015.

[140] M. Alhamad, T. Dillon, and E. Chang, “Conceptual sla frame-
work for cloud computing,” in Digital Ecosystems and Technologies
(DEST), 2010 4th IEEE International Conference on, pp. 606–610,
IEEE, 2010.

[141] Y. Kouki and T. Ledoux, “Csla : a language for improving cloud
sla management,” in International Conference on Cloud Computing
and Services Science, CLOSER 2012, pp. 586–591, 2012.

[142] E. Kamateri, N. Loutas, D. Zeginis, J. Ahtes, F. D’Andria, S. Boc-
coni, P. Gouvas, G. Ledakis, F. Ravagli, O. Lobunets, et al.,
“Cloud4soa : A semantic-interoperability paas solution for multi-
cloud platform management and portability,” in European Confe-
rence on Service-Oriented and Cloud Computing, pp. 64–78, Sprin-
ger, 2013.

[143] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for cloud
computing under sla constraints,” in Modeling, Analysis & Simula-
tion of Computer and Telecommunication Systems (MASCOTS), 2010
IEEE International Symposium on, pp. 257–266, IEEE, 2010.

BIBLIOGRAPHY 221

[144] E. Commission, “SLALOM european project,” 2016.
[145] A. F. M. Hani, I. V. Paputungan, and M. F. Hassan, “Support vec-

tor regression for service level agreement violation prediction,” in
Computer, Control, Informatics and Its Applications (IC3INA), 2013
International Conference on, pp. 307–311, IEEE, 2013.

[146] F. Caglar and A. Gokhale, “ioverbook : intelligent resource-
overbooking to support soft real-time applications in the cloud,”
in IEEE 7th international conference on Cloud computing (CLOUD),
pp. 538–545, IEEE, 2014.

[147] “Cloud providers adoption assessment d4.2,” 2016.
[148] D. F. B. Beyer, D. Bicket, “Cloud providers adoption assessment

d4.2,” 2016.
[149] “T-NOVA project website | t-NOVA, FP7, ICT, network functions

VIrtualisation.”
[150] G. Gardikis, I. Koutras, G. Mavroudis, S. Costicoglou, G. Xilouris,

C. Sakkas, and A. Kourtis, “An integrating framework for efficient
nfv monitoring,” in NetSoft Conference and Workshops (NetSoft),
2016 IEEE, pp. 1–5, IEEE, 2016.

[151] T. Kim, S. Kim, K. Lee, and S. Park, “A qos assured network ser-
vice chaining algorithm in network function virtualization archi-
tecture,” in Cluster, Cloud and Grid Computing (CCGrid), 2015
15th IEEE/ACM International Symposium on, pp. 1221–1224, IEEE,
2015.

[152] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Bou-
taba, “Topology-aware prediction of virtual network function re-
source requirements,” IEEE Transactions on Network and Service
Management, 2017.

[153] P. Chaignon, K. Lazri, J. Francois, and O. Festor, “Understan-
ding disruptive monitoring capabilities of programmable net-
works,” in Network Softwarization (NetSoft), 2017 IEEE Conference
on, pp. 1–6, IEEE, 2017.

[154] V. Riccobene, M. J. McGrath, M.-A. Kourtis, G. Xilouris, and
H. Koumaras, “Automated generation of vnf deployment rules
using infrastructure affinity characterization,” in IEEE NetSoft
Conference and Workshops (NetSoft), pp. 226–233, IEEE, 2016.

222 BIBLIOGRAPHY

[155] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization : Challenges and opportunities for innovations,”
IEEE Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[156] P. Rengaraju, V. R. Ramanan, and C.-H. Lung, “Detection and pre-
vention of dos attacks in software-defined cloud networks,” in De-
pendable and Secure Computing, 2017 IEEE Conference on, pp. 217–
223, IEEE, 2017.

[157] M. E. Ahmed, H. Kim, and M. Park, “Mitigating dns query-based
ddos attacks with machine learning on software-defined networ-
king,”

[158] M. Miyazawa, M. Hayashi, and R. Stadler, “vnmf : Distribu-
ted fault detection using clustering approach for network func-
tion virtualization,” in Integrated Network Management (IM), 2015
IFIP/IEEE International Symposium on, pp. 640–645, IEEE, 2015.

[159] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial
neural networks : : The state of the art,” International journal of
forecasting, vol. 14, no. 1, pp. 35–62, 1998.

[160] L. Zhu and X. Liu, “Technical target setting in qfd for web service
systems using an artificial neural network,” IEEE Transactions on
Services Computing, vol. 3, no. 4, pp. 338–352, 2010.

[161] “Prometheus - monitoring system and time series database.”
https://prometheus.io/. Accessed : 2018-03-30.

[162] P. Racz, B. Stiller, et al., “Monitoring of sla compliances for hos-
ted streaming services,” in Integrated Network Management, 2009.
IM’09. IFIP/IEEE International Symposium on, pp. 251–258, IEEE,
2009.

[163] “Welcome to clearwater,” 2016.
[164] C. Sauvanaud, K. Lazri, M. Kaâniche, and K. Kanoun, “Towards

black-box anomaly detection in virtual network functions,” in
46th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks Workshop, pp. 254–257, IEEE, 2016.

[165] S. H. Makhsous, A. Gulenko, O. Kao, and F. Liu, “High available
deployment of cloud-based virtualized network functions,” in In-
ternational Conference on High Performance Computing & Simula-
tion (HPCS), pp. 468–475, IEEE, 2016.

https://prometheus.io/

BIBLIOGRAPHY 223

[166] “Welcome to sipp,” 2016.

[167] “Stress-ng,” 2016.

[168] “Welcome to clearwater - project clearwater 1.0 documentation.”
http://clearwater.readthedocs.io/en/stable/. Accessed :
2018-03-30.

[169] “Monasca - monitoring at scale.,”

[170] J. Kreps, N. Narkhede, J. Rao, et al., “Kafka : A distributed messa-
ging system for log processing,” in Proceedings of the NetDB, pp. 1–
7, 2011.

[171] R. A. Johnson and D. Wichern, Multivariate analysis. Wiley Online
Library, 2002.

[172] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensio-
nality of data with neural networks,” science, vol. 313, no. 5786,
pp. 504–507, 2006.

[173] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Jour-
nal of machine learning research, vol. 9, no. Nov, pp. 2579–2605,
2008.

[174] I. Guyon and A. Elisseeff, “An introduction to variable and fea-
ture selection,” Journal of machine learning research, vol. 3, no. Mar,
pp. 1157–1182, 2003.

[175] H. Peng, F. Long, and C. Ding, “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and
min-redundancy,” IEEE Transactions on pattern analysis and ma-
chine intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[176] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. De-
vin, S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow : A sys-
tem for large-scale machine learning.,” in OSDI, vol. 16, pp. 265–
283, 2016.

[177] A.-F. Antonescu and T. Braun, “Improving management of dis-
tributed services using correlations and predictions in sla-driven
cloud computing systems,” in IEEE Network Operations and Mana-
gement Symposium (NOMS), pp. 1–8, IEEE, 2014.

http://clearwater.readthedocs.io/en/stable/

224 BIBLIOGRAPHY

[178] J. Bendriss, I. G. B. Yahia, and D. Zeglache, “Sla enforcement in
programmable networks,” in 9th International Conference on Auto-
nomous Infrastructure, Management and Security (AIMS), 2015.

[179] A. Graves and J. Schmidhuber, “Framewise phoneme classifica-
tion with bidirectional lstm and other neural network architec-
tures,” Neural Networks, vol. 18, no. 5, pp. 602–610, 2005.

[180] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, “Dro-
pout improves recurrent neural networks for handwriting recog-
nition,” in 14th International Conference on Frontiers in Handwri-
ting Recognition (ICFHR), pp. 285–290, IEEE, 2014.

[181] J. Bendriss, I. G. B. Yahia, and D. Zeghlache, “Forecasting and an-
ticipating slo breaches in programmable networks,” in Innovations
in Clouds, Internet and Networks (ICIN), 2017 20th Conference on,
pp. 127–134, IEEE, 2017.

[182] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,
“An empirical evaluation of deep architectures on problems with
many factors of variation,” in Proceedings of the 24th international
conference on Machine learning, pp. 473–480, ACM, 2007.

[183] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13,
no. Feb, pp. 281–305, 2012.

[184] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Advances in Neural Information
Processing Systems, pp. 2546–2554, 2011.

[185] “Tensorflow - an open source software library for machine intelli-
gence.,” 2016.

[186] C. Giraud-Carrier, R. Vilalta, and P. Brazdil, “Introduction to the
special issue on meta-learning,” Machine learning, vol. 54, no. 3,
pp. 187–193, 2004.

[187] B. Zoph and Q. V. Le, “Neural architecture search with reinforce-
ment learning,” arXiv preprint arXiv :1611.01578, 2016.

	Introduction
	Introduction
	Problem Statement
	Research Questions
	Contributions

	Thesis Structure

	Machine Learning: Basics, Challenges, and Network Applications
	Introduction to Machine Learning (ML)
	Definition
	Machine Learning Types
	A Brief History of Machine Learning

	Supervised Machine Learning
	How machines learn.
	Evaluation

	Unsupervised Machine Learning
	Clustering
	Anomaly Detection
	Dimetionality Reduction

	Deep Learning
	How Deep Learning is different?
	Exploding/Vanishing gradients problem
	Regularization
	RNN

	Machine Learning Latest Challenges
	Machine vs Human Learning
	Scalable Machine Learning

	Machine Learning for Network Management
	Machine Learning for Network Management a Brief History
	FCAPS Management
	Cognitive Network Management Initiatives

	Conclusion

	SLA management
	Context: Software Networks
	Network Function Virtualization
	Software-Defined Networking

	Early SLA management
	SLA in the Cloud
	SLA in Software Networks
	Literature Gaps and Future Research Directions

	Proposal: Cognitive SLA Management Framework
	Introduction
	Problem Statement
	Service Level Agreement
	SLA and SDN/NFV
	Formal Description
	SLA Example

	Cognitive SLA Architecture
	Cognet Smart Engine:
	Policy Engine
	NFV Architectural Framework
	Proposed workflow
	Policy Engine
	Cognet Sequence Diagram
	Operational Application & Use Cases

	Data Analysis
	Data Gathering
	Data preparation
	Dimensionality reduction
	Visualization
	SLA Assurance Services

	Conclusion

	Proposal: Cognitive Smart Engine
	Introduction
	CSE Algorithms
	Anticipation and forecasting
	Classification

	Model selection
	Problem Formulation and Choices
	Search Methods
	The hyperparameter Search Space
	Research Methodology
	Data
	Meta-Learning
	feature relevance

	Conclusion

	Thesis Publications
	List of Contributions
	Accepted papers
	Public Cognet Deliverables
	Exhibition

	Installation setup

