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Résumé en français

Contribution à la statistique spatiale et l’analyse de
données fonctionnelles

Ce mémoire de thèse porte sur la statistique inférentielle des données spatiales et/ou
fonctionnelles. En effet, nous nous sommes intéressés à l’estimation de paramètres incon-
nus de certains modèles à partir d’échantillons obtenus par un processus d’échantillonnage
aléatoire ou non (stratifié), composés de variables indépendantes ou spatialement dépen-
dantes. La spécificité des méthodes proposées réside dans le fait qu’elles tiennent compte
de la nature de l’échantillon étudié (échantillon stratifié ou composé de données spatiales
dépendantes).

Tout d’abord, nous étudions des données à valeurs dans un espace de dimension in-
finie ou dites ”données fonctionnelles”. Dans un premier temps, nous étudions les mod-
èles de choix binaires fonctionnels dans un contexte d’échantillonnage par stratification
endogène (échantillonnage Cas-Témoin ou échantillonnage basé sur le choix). La spéci-
ficité de cette étude réside sur le fait que la méthode proposée prend en considération
le schéma d’échantillonnage. Nous décrivons une fonction de vraisemblance condition-
nelle sous l’échantillonnage considérée et une stratégie de réduction de dimension afin
d’introduire une estimation du modèle par vraisemblance conditionnelle. Nous étudions
les propriétés asymptotiques des estimateurs proposées ainsi que leurs applications à des
données simulées et réelles. Nous nous sommes ensuite intéressés à un modèle linéaire
fonctionnel spatial auto-régressif. La particularité du modèle réside dans la nature fonc-
tionnelle de la variable explicative et la structure de la dépendance spatiale des vari-
ables de l’échantillon considéré. La procédure d’estimation que nous proposons consiste
à réduire la dimension infinie de la variable explicative fonctionnelle et à maximiser une
quasi-vraisemblance associée au modèle. Nous établissons la consistance, la normalité
asymptotique et les performances numériques des estimateurs proposés.
Dans la deuxième partie du mémoire, nous abordons des problèmes de régression et pré-
diction de variables dépendantes à valeurs réelles. Nous commençons par généraliser la
méthode de k-plus proches voisins (k-nearest neighbors; k-NN) afin de prédire un processus
spatial en des sites non-observés, en présence de co-variables spatiaux. La spécificité du
prédicteur proposé est qu’il tient compte d’une hétérogénéité au niveau de la co-variable
utilisée. Nous établissons la convergence presque complète avec vitesse du prédicteur
et donnons des résultats numériques à l’aide de données simulées et environnementales.
Nous généralisons ensuite le modèle probit partiellement linéaire pour données indépen-
dantes à des données spatiales. Nous utilisons un processus spatial linéaire pour modéliser
les perturbations du processus considéré, permettant ainsi plus de flexibilité et d’englober
plusieurs types de dépendances spatiales. Nous proposons une approche d’estimation semi-
paramétrique basée sur une vraisemblance pondérée et la méthode des moments général-
isées et en étudions les propriétés asymptotiques et performances numériques. Une étude
sur la détection des facteurs de risque de cancer VADS (voies aéro-digestives supérieures)
dans la région Nord de France à l’aide de modèles spatiaux à choix binaire termine notre
contribution.

Mots-Clefs

Modèle à choix binaire, Analyses de données fonctionnelles, Échantillonnage basé sur le
choix, Échantillonnage Cas-Témoin, Modèle linéaire fonctionnel, Processus auto-régressif
spatial, Quasi-maximum de vraisemblance, Statistique Non-paramétrique, Régression,
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Prédiction, k-plus proches voisins, Estimateur à Noyau, Processus spatial, Econométrie
spatiale, Estimation Semi-paramétrique, Méthodes des moments généralisées.

Abstract

Contribution to spatial statistics and functional data
analysis

This thesis is about statistical inference for spatial and/or functional data. Indeed, we
are interested in estimation of unknown parameters of some models from random or non-
random (stratified) samples composed of independent or spatially dependent variables.
The specificity of the proposed methods lies in the fact that they take into consideration
the considered sample nature (stratified or spatial sample).

We begin by studying data valued in a space of infinite dimension or so-called ”func-
tional data”. First, we study a functional binary choice model explored in a case-control
or choice-based sample design context. The specificity of this study is that the proposed
method takes into account the sampling scheme. We describe a conditional likelihood
function under the sampling distribution and a reduction of dimension strategy to define
a feasible conditional maximum likelihood estimator of the model. Asymptotic properties
of the proposed estimates as well as their application to simulated and real data are given.
Secondly, we explore a functional linear autoregressive spatial model whose particularity
is on the functional nature of the explanatory variable and the structure of the spatial
dependence. The estimation procedure consists of reducing the infinite dimension of the
functional variable and maximizing a quasi-likelihood function. We establish the consis-
tency and asymptotic normality of the estimator. The usefulness of the methodology is
illustrated via simulations and an application to some real data.

In the second part of the thesis, we address some estimation and prediction problems
of real random spatial variables. We start by generalizing the k-nearest neighbors method,
namely k-NN, to predict a spatial process at non-observed locations using some covariates.
The specificity of the proposed k-NN predictor lies in the fact that it is flexible and allows
a number of heterogeneity in the covariate. We establish the almost complete convergence
with rates of the spatial predictor whose performance is ensured by an application over
simulated and environmental data. In addition, we generalize the partially linear probit
model of independent data to the spatial case. We use a linear process for disturbances
allowing various spatial dependencies and propose a semiparametric estimation approach
based on weighted likelihood and generalized method of moments methods. We establish
the consistency and asymptotic distribution of the proposed estimators and investigate the
finite sample performance of the estimators on simulated data. We end by an application
of spatial binary choice models to identify UADT (Upper aerodigestive tract) cancer risk
factors in the north region of France which displays the highest rates of such cancer
incidence and mortality of the country.

Keywords

Binary choice model, Functional data analysis, Choice-based sampling, Case-control, Func-
tional Linear Model, Spatial Autoregressive Process, Quasi-maximum likelihood estimator,
Nonparametric statistics, Regression, Prediction, k-nearest neighbors, Kernel estimate,
Spatial process, Spatial econometrics, Semi-parametric estimation, Generalized method of
moments.
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Notations

N set of natural numbers: 0, 1, 2 . . .
N∗ set of non-zero natural numbers: 1, 2 . . .
Z set of integers: . . . ,−1, 0, 1, . . .
R set of real numbers: ]−∞,+∞[
R+ set of real positives numbers: [0,+∞[
Rd euclidian space of dimension d
b·c integer part
| · | absolute value if the argument is number

or determinant if the argument is matrix
‖·‖ norm such that:

if the argument is a vector x ∈ Rd: ‖x‖ =
√
x2

1 + x2
2 + · · ·+ x2

p

if the argument is a matrix A: ‖A‖ =
√∑∑

a2
ij

if the argument is a function f : ‖f‖ = sup |f(x)|
x
′ or xT transpose of vector or matrix x

tr(·) trace of matrix
⊗ Kronecker product
Ā (or Ac) complement of set A
A ∪B union of A and B
A ⊂ B A is included in B
A ∩B intersection of A and B
A \B set of elements of A that are not included in B
Card(A) cardinality of A
∅ empty set
dist(A,B) euclidian distance between A and B
I(·) ( or IA(·)) indicator function ( of set A)
L2(T ) space of square-integrable functions in interval T
σ(. . .) σ-algebra generated by (. . .)
(Ω,A, P ) probability space

Ω : nonempty set
A :σ-algebra of subset of Ω
P : probability measure on A

i.i.d independent and identically distributed
N (0, 1) normal distribution
un = O(vn) a constant c exists such that un ≤ cvn
un = o(vn) un

vn
→ 0 as n→∞

� end of a proof





Chapter 1
General introduction

This thesis was supported by a PhD scholarship of ministry of higher education and sci-
entific research of Mauritania and a scholarship from the French government (Campus-
France).

This thesis is about statistical inference for spatial and/or functional data. Indeed, we
are interested in modelization of unknown parameters of some population from random or
non-random (stratified) samples composed of independent or spatially dependent variables.

In one hand, the samples used in statistical inference are basically of random nature.
Non-random samples are useful in a number of situations. In fact, in choice models,
the dependent variable is discrete and the partitioner prefer to have a sample with all
possible values of the dependent variable, especially when one or more outcomes occur
infrequently in the population but are important to determine some key parameters of the
model. This can be ensured by the concept of case-control or choice-based sampling that
consists to stratify the population with respect to the values of the categorical response.
By stratifying the population with respect to the responses, one can gather information
on those infrequent outcomes at a much lower cost than would be incurred by simply
increasing the size of a random sample.

On the other hand, in a number of disciplines, such as environmental sciences, eco-
nomics, hydrology, medical studies, neuroimaging and genomics, mining industry,..., data
are available at several spatial locations (geographical, voxels,...). Spatial statistics em-
body a suite of methods for analyzing spatial data and for instance estimating the values
of a property of interest at non-sampled locations, from available sample data points using
spatial correlation tools. Among the practical considerations that influence the available
techniques used in the spatial data modeling, is the data dependency. In fact, spatial data
are often dependent and a spatial model must be able to handle this aspect.

Nowadays, modern technology has facilitated the monitoring of very large time and/or
spatial datasets, particularly functional data. The last two decades have seen an emergence
of new area in statistics as functional data analysis (FDA). FDA is concerned with data
objects, such as curves, shapes, images or a more complex mathematical object, thought
as smooth realizations of a stochastic process. Since this last is an infinite dimensional
object, functional data are part of Big Data. In these contexts, developing models and
methods able to account features of datasets of interest as non-random nature, high or
infinite dimension and spatial correlation of sample, seems to be essential.
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To this aim, the thesis is composed of 7 chapters. The first concerns fundamental
concepts and a state of art on the models and methods used. The following two chapters
give our contributions on functional data analysis. Namely, we propose a functional choice
model in a context of stratified sampling and a functional autoregressive spatial model,
respectively. The fifth and sixth chapters concern two spatial regression models (a kernel
nearest neighbor method and a partially linear model, respectively) involving real-valued
processes. The last chapter is an applied one on upper aerodigestive cancer risk factors in
the north of France. Some conclusions and perspectives end the document.

Written and oral communications

Works and publications

• Binary Functional Linear Models Under Choice-Based Sampling (In collaboration
with M.K.Attouch and S. Dabo-Niang), Econometrics and Statistics, 2017. In press,
available on-line https://doi.org/10.1016/j.ecosta.2017.07.001.

• Nonparametric Prediction By k-Nearest Neighbour Method For Spatial Data (In
collaboration with M.K. Attouch, S. Dabo-Niang and M. N’diaye). Journal de la
Société Française de Statistique, 2017. In revision.

• Functional Linear Spatial Autoregressive Models (In collaboration with L. Broze, S.
Dabo-Niang and Z. Gharbi), 2017. Submitted.

• Partially Linear Spatial Probit Models (In collaboration with S. Dabo-Niang). To
submit

• Outlier Detection in Functional Framwork, Application To Temperature Data (In
collaboration with F. Chebana, S. Dabo-Niang, and T.B.M.J. Ouarda). In progress.

• Identification of the determinants of UADT cancers incidence in French Northern Re-
gion (In collaboration with S. Dabo-Niang, E. Darwich and J. Foncel ). In progress.

• Sur l’estimation de la fonction de régression par la méthode des k plus proches voisins
dans le cas de données spatiales (In French) [On estimation of regression function
by k nearest neighbors method in case of spatial data]. Master thesis, 2013.

Seminars and Conferences

• 61st World Statistics Congress, Marrakech, Morocco, ”Partially Linear Spatial Pro-
bit Models”. July 2017.

• 7ièmes Rencontres des Jeunes Statisticiens, Porquorelles, France, ”Partially Linear
Spatial Probit Models”. Avril 2017.

• CIMPA school at Gasten Berger university , Saint–Louis, Senegal, ”Functional Bi-
nary Choice Models Under Choice-Based Sampling”. Avril 2016.

• 15ièmesForum de jeunes mathématicien-n-e-s, Lille, France, ”Functional Binary Choice
Models Under Choice-Based Sampling”. Novembre 2015.

• 47ièmes Journées de Statistique de la Société française de Statistique, Lille, France,
”Nonparametric Prediction By k-Nearest Neighbor Method For Spatial Data”. Juin
2015.

https://doi.org/10.1016/j.ecosta.2017.07.001
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Participation in conferences, seminars and workshops

• ”Thursday’s” Econometrics and Statistical seminars, LEM UMR 9221 CNRS (before
laboratory EQUIPPE ), Lille (France), 2014-2017

• Lille research workshop on Statistics and econometrics, Lille (France), May 2016.

• Symposium ”Statistical Methods for Recurrent Data workshop”, Lille (France). De-
cember 2016.

• Rencontre des jeunes chercheurs africains en France organized by the SFdS, Paris
(France). November 2014.





Chapter 2
State of art and general concepts

Contents
2.1 Functional data analysis . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Generalized functional linear models . . . . . . . . . . . . . . . . 14
2.2 Choice-based sampling . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Functional data with choice-based sampling . . . . . . . . . . . . 18
2.2.2 Contribution in choice-based sampling . . . . . . . . . . . . . . 19

2.3 Spatial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Spatial parametric estimation . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Spatial nonparametric estimation . . . . . . . . . . . . . . . . . . 24

This chapter gives a general introduction and state of art on the main contributions of
this thesis on the three fundamental concepts; Functional Data Analysis (FDA), Choice-
based sampling and Spatial models.

2.1 Functional data analysis

The last two decades saw the emergence of a new branch of statistics named Functional
Data Analysis (FDA), popularized by the monographs of Ramsay & Silverman (2005),
Bosq (2000), Ferraty & Vieu (2006), Horváth & Kokoszka (2012) and Hsing & Eubank
(2015). This fields deals with curves, shapes or more complex mathematical objects of
infinite dimension (see Cardot et al., 2003, for image processing). In fact, functional
data (FD) are considered as observations of stochastic processes of infinite dimension, this
makes FD as part of Big Data. Such data occur in many areas such as medicine (growth
curves), hydrology (flows), genetics (genetic sequence), among others. The collection of
such massive data is facilitated by technological advances (recordings capacity,...).
To treat such data, it is necessary to develop statistical methods (visualization, model-
ing,...) able to handle large or infinite dimension of data, since statistical methods for
multivariate data have difficulties to deal with with large dimension. This may be due to
strong collinearity between variables or infinity of solutions of a system of equations with
a number of unknowns more than the number of equations. This is usually the case when
the dimension of the covariates is larger than the number of observations.

As for multivariate statistics, various exploration and modeling techniques adapted
to the nature of considered data have been proposed for functional variables during the
last two decades. When considering regression models, one can basically distinguish two
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popular approaches, parametric (Ramsay & Silverman, 2005) and nonparametric models
Ferraty & Vieu (2006).
In the context of this thesis, we will focus on parametric models with a functional co-
variate, particularly functional linear models with scalar response and functional binary
choice models.

In the following, we briefly introduce generalized functional linear models as they
regroup our two functional models of interest.

2.1.1 Generalized functional linear models

Functional linear models for scalar response were originally introduced by Hastie & Mal-
lows (1993), while binary functional models were considered in James & Hastie (2001).
More recently, Müller & Stadtmüller (2005) and Cardot & Sarda (2005) introduced the
famous generalized functional linear models, which can be viewed as a generalization of
the previous two models.
Consider that we have a sample of n i.i.d observations (Yi, {Xi(t), t ∈ T }) , i = 1, . . . , n,
where Y is a real response variable (it may take values in {0, 1}) and {X(t), t ∈ T } is a
random function that corresponds to a stochastic process on the interval T ⊂ R, taking
values in the space X ⊂ L2(T ) of square integrable functions in T . We are interested
in describing the relation between the response variable Y and the explanatory random
function X(·). We assume that this relation is given by a regression problem

E (Y | {X(t), t ∈ T }) = Φ (η∗) and Var (Y | {X(t), t ∈ T }) = σ̃2(η∗), (2.1)

where the linear predictor η∗ is defined by:

η∗ = α∗ +
∫
T
X(t)θ∗(t)dt.

The link function Φ(·) is some strictly increasing cumulative distribution function and
σ̃2(·) = σ2(Φ(·)) with σ2(·) is some positive function. In case of linear models, Φ(·) is
defined by the identity function and σ2(·) is defined by a constant function. For binary
models, σ2(t) = t(1− t).
The parameters of interest to be estimated are the intercept α∗ and the parameter function
θ∗(·), assumed to belong to the space of functions L2(T ).
Assume that these n observations satisfy the quasi-likelihood functional model:

Yi = Φ(η∗i ) + Uiσ̃
2(η∗), i = 1, . . . , n, (2.2)

where the error term satisfies E (Ui| {Xi(t), t ∈ T }) = 0 and E
(
U2
i

)
= 1, i = 1, . . . , n.

The infinite dimension of the functional variable X(·) is always the first problem of the
estimation procedures. Two very popular approaches of dimension reduction are used
in generalized linear models with explanatory random functions. On the one hand, we
have the Penalized Likelihood Method (Cardot & Sarda, 2005). It consists of projecting
the parameter function θ∗(.) into a finite-dimensional space, spanned by a spline basis
and maximizing the pseudo conditional log-likelihood function obtained by replacing the
parameter function with its projector, adding a penalty that controls the degree of smooth-
ness θ∗(.).
On the other hand, we have the approach used by Müller & Stadtmüller (2005). It is
based on a truncation strategy that consists of projecting the functional explanatory vari-
able and parameter function into a space of functions generated by a basis of functions
with a dimension that increases asymptotically as the sample size tends towards infinity.
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In this dissertation, we use the second approach, recalled in the following.

In fact, the approach of Müller & Stadtmüller (2005), is based on some truncation
strategy which is motivated by the following considerations. Let {ϕj , j = 1, 2, . . .} be
an orthonormal basis of the functional space L2(T ), usually a Fourier or spline basis or
a basis constructed from the eigenfunctions of the covariance operator of covariate X(·).
One can rewrite X(t) and θ∗(t) as follows:

X(t) =
∑
j≥1

εjϕj(t) and θ∗(t) =
∑
j≥1

θ∗jϕj(t),

where the real random variables εj and the coefficients θ∗j are given by

εj =
∫
T
X(t)ϕj(t)dt and θ∗j =

∫
T
θ∗(t)ϕj(t)dt.

By the orthonormality of the basis {ϕj , j = 1, 2, . . .}, we have∫
T
X(t)θ∗(t)dt =

∑
j≥1

θ∗j εj .

Let pn be a positive sequence of integers that increases asymptotically as n→∞, and let
us consider the following decomposition:

η∗ = α∗ +
∞∑
j=1

θ∗j εj , η̃∗ = α∗ +
pn∑
j=1

θ∗j εj , η∗ − η̃∗ =
∞∑

j=pn+1
θ∗j εj .

The truncation strategy introduced by Müller & Stadtmüller (2005) is based on the fol-
lowing approximation, under the assumption that ‖Φ′‖ < C:

E
(
(Φ(η∗)− Φ(η̃∗))2

)
≤ CE

(
(η∗ − η̃∗)2

)
. (2.3)

Similar to the expectation approximation function, the error of approximation in term
of variance E

((
σ̃2(η∗)− σ̃2(η̃∗)

)2) is also majored by the same term if ‖σ2′(·)‖ < C.
Assuming that the right-hand side of (2.3) vanishes asymptotically as n → ∞, one may
instead of (2.2), work with the approximated sequence of models:

Y
(pn)
i = Φ(η̃∗i ) + Uiσ̃

2(η̃∗i ), i = 1, . . . , n, (2.4)

where η̃∗i = α∗ +∑pn
j=1 θ

∗
j ε

(i)
j , with ε

(i)
j =

∫
T Xi(t)ϕj(t)dt.

The parameters of interest in the truncated model are then the intercept, α∗, and the first
pn coefficients of the parameter function, θ∗1, . . . , θ∗pn . For simplicity, let θ† = (α∗, θ∗1, . . . , θ∗pn)T .
Therefore an estimator of the 1× pn vector θ† can be defined by solving the gradient as-
sociated to the quasi-likelihood function of truncated models (2.4), defined by:

∆(θ) =
n∑
i=1

Φ′(η̃i)
σ̃2(η̃i)

(Yi − Φ(η̃i))ε(i) = 0, (2.5)

with respect to θ ∈ Rpn+1, where η̃i = θT ε(i) and ε(i) = (ε(i)
1 , . . . , ε

(i)
pn)T with ε

(i)
j =∫

Xi(t)ϕj(t)dt and ε
(i)
0 = 1.
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Consequently, let the solution of (2.5) be θ̂† = (α̂, θ̂1, . . . , θ̂pn)T . Therefore, an estimator
of the intercept α∗ is α̂, and that of the truncated parameter function is given by

θ̂(t) =
pn∑
j=1

θ̂jϕj(t).

Müller & Stadtmüller (2005) established the asymptotic normality of θ̂† under some
assumptions, as well as that of the distance between θ̂(·) and θ∗(·) with respect to some
L2(T ) metric defined via a generalized covariance operator.

2.2 Choice-based sampling

Choice-based sampling (CBS) or case-control sampling design is of particular interest in
the context of choice models. It consists of stratifying a population of interest with respect
to the values of the categorical response. By this stratification, one can gather information
on infrequent outcomes at a much lower cost than would be incurred by simply increasing
the size of using a random sample. Equivalently, for any given sampling budget, one can
increase the efficiency of predictions and parameter estimates using a suitably designed
response-based sample. Such sampling designs have been independently investigated by
econometricians (using the term choice-based sampling) who study choice behaviour and
biostatisticians (with the term case-control) who are interested in rare diseases.

In biostatistics, case-control designs are useful for identifying the impact of several
factors on the occurrence of a particular disease. The response is often binary (having
the disease or not), but there may be more than two categorical responses. In such de-
sign, separate samples of cases (diseased individuals) and controls (individuals without
the disease) are selected, unlike in a prospective study design, in which a sample of in-
dividuals is chosen and followed through time until their responses are recorded, figure
2.1 illustrates the difference between these two studies compared to the timeline. In the
case of rare diseases, even large studies may produce only a few diseased individuals and
little information about the hazard. In that case, the researcher might wish to oversample
the rare disease of interest to increase the accuracy of his analysis. Therefore, compared
with case-control studies, prospective studies are disadvantageous in terms of time and
cost. For a general overview of medical case-control studies, see Keogh & Cox (2014), for
instance. Case-control studies are also used in political science (King & Zeng, 2001) and
sociology (Xie & Manski, 1989).
Originally, choice-based sampling was used by econometricians. They were interested in
exploring the relationships between the choices made by an individual and several ex-
planatory variables. The choice of transportation mode is the most popular example; see,
for instance, Manski & McFadden (1981). In this case, it may be advantageous (simpler
and less expensive) to apply choice-based sampling by selecting, for instance, separate
samples of individuals from bus terminals, train stations and car parks rather than to take
a single sample from the entire population. The reasons for using such stratified samples
have been discussed extensively in several econometric papers such as Manski & Lerman
(1977), Manski & McFadden (1981), Cosslett (1981), Imbens (1992), and Cosslett (2013).

Let us describe the choice-based sampling process. Let us follow the notations of
Imbens (1992). Consider that in a given population we observe a discrete random variable
Y with values in C = {1, 2, . . . ,M} and a continuous or discrete random vector X valued
in X ⊂ Rp, and assume that the joint density of these two variables is

f(i, x) = P (i|x, θ) · r(x), x ∈ X , i ∈ C (2.6)
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Figure 2.1: A graphical comparison between prospective and retrospective studies

for i ∈ C = {1, 2, . . . ,M}, x ∈ X ⊂ Rp, and θ ∈ Θ ⊂ Rk. P (·|·, ·) is a known function
and θ is an unknown parameter vector. The distribution function of X will be denoted
by R(.) while the density is r(.). The partitioner is interested in the parameter θ of the
conditional probabilities but one might also be interested in Q(i), the marginal probability
or population share of choice Y = i. Even if one is not interested in Q(i) itself, it is useful
to define it explicitly. This will make easier to incorporate prior information about the
marginal probability and such prior information (in particular for rare choices) is often a
motivation for sampling according to some choice-based manner. Let the true value of θ
be θ∗ and the corresponding Q(i) be Q∗(i):

Q∗(i) =
∫
X
P (i|x, θ∗)dR(x), x ∈ X , i ∈ C.

More generally, assume that the population of interest is divided, according to the values
of the discrete variable Y , into S stratas, J (s) = {(i, x), i ∈ C, x ∈ X} for s = 1, 2, . . . , S
and we let Hs be the probability with which one will draw from stratum J (s). The
probabilities Hs satisfy ∑S

s=1Hs = 1, Hs > 0. We assume the sample is chosen as follows:
select an observation by first drawing a stratum s ∈ {1, 2, . . . , S} with probability Hs and
then draw randomly an observation from J (s). If S = M and J (s) = {(s, x), x ∈ X}, the
sampling is known as pure choice-based sampling. Note that Hs is not always known to
the investigator, let H∗s denote the true values corresponding to above model.
To look at the effect of the sampling process on the marginals probabilities Hs and Q(i),
let H(i) and Qs be:

Qs =
∑

i∈J (s)
Q(i), H(i) = Q(i)

∑
s|i∈J (s)

Hs

Qs
.
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If there is no s such that i ∈ J (s), then H(i) = 0. H(i) is the marginal probability of
choice i induced by the choice-based sampling. In the population, the marginal probability
of choice i is Q(i), but with the sampling scheme, one has to multiply it by the sum of the
bias factors Hs/Qs. Qs is the marginal probability with which an observation randomly
drawn from the population is in J (s). Note that we have in the case of pure choice-based
sampling, H(i) = Hi and Qi = Q(i) for i ∈ C.

Under the sampling process, the joint probability of stratum, the covariate and the
response, is the product of the marginal probability of Hs, and the conditional density of
Y and X given the stratum s. The latter is

g(i, x|s) = f(i, x)∑
j∈J (s)

∫
X f(j, y)dy = P (i|x, θ) · r(x)∑

j∈J (s)
∫
X P (j|y, θ)dR(y)dy , x ∈ X , i ∈ C (2.7)

and the joint density can be written as

g(s, i, x) = Hs
P (i|x, θ) · r(x)∑

j∈J (s)
∫
X P (j|y, θ)dR(y)dy = Hs

P (i|x, θ) · r(x)∑
j∈J (s)Q(j) , (2.8)

for i ∈ C, s ∈ {1, 2, . . . , S}, and x ∈ X . Consequently, the conditional probability of Y
given X in the sample is

g(i|x) = P (i|x, θ)H(i)/Q(i)∑M
j=1 P (j|x, θ)H(j)/Q(j)

. (2.9)

Several procedures have been proposed to estimate the parameter of interest θ∗ by using a
sample of N i.i.d observations {(sn, in, xn), n = 1, . . . , N} drawn through the above CBS
process. For instance, Manski & McFadden (1981) proposed maximizing a conditional
likelihood function as a function of (2.9) given knowledge on Q∗(i) and H∗s . They proved
the consistency and asymptotic normality of their estimator. Cosslett (1981) proposed
a pseudo maximum likelihood estimator. He considers the likelihood function based on
the density (2.7). He investigated asymptotic properties of the estimator as well as its
asymptotic normality. The estimator proposed by Cosslett (1981) is efficient in the class
of asymptotically unbiased estimator but it is very hard to compute. Imbens (1992) pro-
posed a generalized method of moments estimate. He defined a criterion function based
on the gradient’s equations associated to the logarithm of a likelihood function based on
(2.8). He showed the efficiency of its estimator and its flexible computation.

2.2.1 Functional data with choice-based sampling

In functional data analysis, to the best of our knowledge, only two works deal with sur-
vey sampling techniques. In fact, Cardot et al. (2010) generalized the functional princi-
pal components analysis (FPCA) to functional objects collected through survey sampling
techniques. They proposed estimators of the eigen-elements (of the variance-covariance
operator) as well as their variance and proved under some assumptions that these esti-
mators are asymptotically unbiased and consistent. Cardot & Josserand (2011) propose
estimators of the mean and variance functions of FDA objects based on Horvitz-Thompson
estimator under stratified sampling. They investigated under some assumptions on the
sampling design, the uniform consistency of the proposed estimators and stated a func-
tional central limit theorem and deduced asymptotic confidence bands.
Despite many potential applications, no work has been done on functional choice models in
the context of case-control or choice-based sampling. Note that, one work (Fan et al., 2014)
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addresses a functional logit model applied to case-control data. These authors propose a
functional logit model to test the associations between a dichotomous trait and multiple
genetic variants in a region using several covariates. However, they do not take into ac-
count in the estimation procedure the case-control nature of the data. Consequently, their
model is similar to a classical generalized functional linear model for random sampling.

2.2.2 Contribution in choice-based sampling

In the first part of this thesis, we are interested in a functional binary choice model when
the data are from a choice-based sampling design. In fact, we present in Chapter 3, a
model in which the response is binary, the explanatory variable is functional, and the
sample is obtained by a pure choice-based sampling process. We propose a conditional
likelihood function under the sampling distribution and a dimensional reduction of the
space of the explanatory random function based on a Karhunen–Loève expansion (Müller
& Stadtmüller, 2005) to define a feasible estimator (Manski & McFadden, 1981) of the
proposed model. Several asymptotic properties are given. A simulation study and an
application to kneading data are used to compare the proposed method with the ordinary
maximum likelihood method, which ignores the nature of the sampling.

2.3 Spatial data

Agriculture, economics, environmental sciences, urban systems and epidemiology activ-
ities are often located in space. Therefore, modeling such activities requires to find a
correlation structure between data observed at a given location and that available at
neighboring locations. This is a significant feature of spatial data analysis. Three main
ways of incorporating a spatial dependence structure (see for instance Cressie, 1993) can
be distinguished, basically for geostatistics data, lattice data and point patterns. In the
domain of geostatistics, the spatial location is valued in a continuous set of RN , N ≥ 2.
For spatial lattice data, the locations form a lattice set. Compare to geostatistical and
lattice data, spatial point patterns occurs when the locations where the data are avail-
able are random. It is not always easy to distinguish these three types of data. Several
methods for analyzing spatial data and estimating the values of a property of interest at
non-sampled locations, from available sample data points have been proposed during the
last fifty years. Among the practical considerations that influence the available techniques
used in the spatial data modeling, is the data dependency. In fact, spatial data are often
dependent and a spatial model must be able to handle this aspect.

Originally developed for the mining industry, spatial statistics were first developed for
spatial prediction of geological resources over two or three dimensional areas. Indeed, a
crucial need in many scientific disciplines where spatial data are available is the prediction
of a variable at an unobserved location, using observations available at other locations.
Hence, as for time-dependent data, there is a need to measure the dependence between
neighboring locations. The main difference between spatial and time series data is the
absence of an order relation like the notions of past, present and future: the axis of time is
unidirectional. Indeed, past events may have an influence on the future while the reverse
is not true. Thus time series models cannot be directly applied to spatial data. Differences
and similarities between spatial and time series data are highlighted in Tjøstheim (1987).

In this dissertation, we are interest to regression models for geostatistical and lattice
data in a fixed-design context, where the latter means that locations at which the spatial
phenomenon is recorded, are selected non-randomly. For the estimators we propose, the
asymptotic results are given according to Increasing domain asymptotic (for more detail
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see Gaetan & Guyon, 2008, Chapter 5). It consists of a sampling structure where new
observations are added at the edges (boundary points) compare to infill asymptotic, that
consists of a sampling structure where new observations are added in between existing
ones. Infill asymptotic is appropriate when the spatial locations are in a bounded domain.

In the following, we introduce briefly some spatial models related to the contributions
of this thesis, with the corresponding estimation methods.

2.3.1 Spatial parametric estimation

We consider that at n spatial locations {s1, s2, . . . , sn} satisfying ‖si− sj‖ > ρ with ρ > 0,
observations of a random vector (Y,X) are available. Let X be an explanatory random
variable taking values in Rp and Y is an univariate response variable of interest. When
the latter takes binary values in {0, 1} (we will be concern with binary choice-models,
in particular, Probit models will be considered in this dissertation), we assume that it is
associated to a latent dependent variable Y ∗, then the observations will be:

Ysi = I
(
Y ∗si ≥ 0

)
, i = 1, . . . , n. (2.10)

To facilitate the notation, we will denote in this section i for individual in location si
and adopt the notations: Yn = (Y1, . . . , Yn)T , and Xn the n × p matrix of explanatory
variables with elements Xij , i = 1, . . . , n, j = 1, . . . , p.

In spatial econometrics’s literature, the spatial dependency is usually modeled by using
a spatial linear process defined through a spatial weight matrix. Basically, the latter is
a n× n non-stochastic weight matrix Wn, that allows to describe the spatial interactions
between the n spatial units. The elements wij = wij,n of this matrix are usually considered
as inversely proportional to the distance between spatial units i and j with respect to some
metric (physical distance, social network or economic distance, see for instance Pinkse &
Slade, 1998). More precisely, the matrices Wn can be classified into two groups: Weights
Based on Distance and Weights Based on Boundaries. For Weights Based on Distance,
one way to construct spatial weight matrices is to use the distance dij between each pair
of spatial units (regions, cities, centroids,...) i and j.

• k-Nearest Neighbor weights

wij =
{

1 if j ∈ Nk(i),
0 Otherwise

where Nk(i) is the set of the k closest units or regions to

i for k ∈ {1, ..., n− 1}

• Radial Distance weights

wij =
{

1 if 0 ≤ dij ≤ δ
0 if dij > δ

, where dij is the euclidian distance between units i and

j, and δ is a critical distance (threshold distance or bandwidth) cut-off after which
spatial effects are considered to be negligible, it should be able to guarantee that
each region has at least one neighbor.

• Power Distance Decay weights

wij =
{
d−αij if 0 ≤ dij ≤ δ

0 if dij > δ
, where α is any positive exponent, typically α = 1 or

α = 2.

• Exponential Distance Decay weights

wij =
{

exp(−αdij) if 0 ≤ dij ≤ δ
0 if dij > δ
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• Double-Power Distance weights

wij =
{

[1− (dij/δ)]k if 0 ≤ dij ≤ δ
0 if dij > δ

, with k is a positive integer, typically k = 2,

k = 3 or k = 4.

• Cliff-Ord weights
Cliff & Ord (1973) suggested to use the length of the common border between
contiguous regions, weighted by a distance function:

wij = d−aij D
b
ij

where Dij is the share of common boundary between i and j, a and b are parameters
estimated from data or chosen a priori.

• Block structure
In this case wij = 1 for all i and j in the same block. And the blocks are defined
according to some specific criterion.

For Weights Based on Boundaries, spatial contiguity is often used to specify neighbor-
ing location in the sense of sharing a common border. There are different type of spatial
contiguity but the classical cases are those referred to Rook contiguity (with only common
boundaries), Bishop contiguity (with only common vertices) and Queen contiguity (with
both Rook and Bishop contiguity).

wij =
{

1 if i and j are contiguity
0 Otherwise

In general, we can rewrite the last equation as:

wij =
{

1 `ij > 0
0 `ij = 0 ,

with `ij denotes the length of shared boundary.

By using one of these spatial weight matrices, one can mainly distinguish three different
types of interaction effects that may explain why an observation associated with a specific
location may be dependent on observations at other locations:

• Endogenous interaction effects, where the variable Y (or Y ∗ for the latent model)
at some spatial unit depends on values of Y taken by other spatial units. This
means that the interaction is among the dependent variable, it is the so-called spatial
autoregressive (SAR) model (Cliff & Ord, 1973).

• Exogenous interaction effects, where the variable Y (or Y ∗) at some spatial unit
depends on independent explanatory variables at other spatial units. This means
the the interaction is among the explanatory variable.

• Correlated effects, where similar unobserved characteristics result in similar behav-
ior. This means that the interaction is among the error terms, this model is called
spatial autoregressive error (SAE) model (or spatial error model; SEM). One moti-
vation might be some spatial heterogeneity.

Note that in practice, it is rare or maybe impossible to find a population that contains
these three types of interaction together. In fact, researchers have always been focused on
models that contain one interaction, whether SAR model, SAE model, or a model with
two kind of interaction. The latter model may be used when the spatial autocorrelation
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can affect both response and error terms. According to the terminology developed by
LeSage (2008), we refer to this model by spatial autocorrelation (SAC) model:

Yn = λ0WnYn + Xnβ0 + Un; Un = γ0WnUn + εn, εn ∼ N(0, σ2
0In),

where Un = (U1, . . . , Un)T and εn = (ε1, . . . , εn)T . The coefficients λ0 and γ0 are scalar
autoregressive parameters indicating the degree of spatial dependence, β0 is a p×1 vector
of parameters. WnYn is the spatial lag, it denotes the endogenous interaction effects
among the dependent variables, i.e. for each observation Yi, the corresponding element
in WnYn gives weighted sum of Yj , j 6= i, with weights given by the relative connectivity
from j to i. WnUn is the interaction effects among the disturbance terms of the different
spatial units. However, SAR model is a SAC model with γ0 = 0 and SAE model is a SAC
model with λ0 = 0.

2.3.1.1 Estimation in SAR models with continuous response variable

SAR models for real-valued data and their identification and estimation methods have been
developed by two stage least squares (2SLS) (Kelejian & Prucha, 1998; Lee, 2007), maxi-
mum likelihood (ML) (Ord, 1975) and generalized method of moments (GMM) (Smirnov
& Anselin, 2001), among others. The identification and estimation of SAR models by
quasi-maximum likelihood (QML) are limited. Lee (2004) and more recently Yang & Lee
(2017), proposed quasi-maximum likelihood estimators for a SAR model with a spatial
dependency structure based on a spatial weights matrix. The quasi-maximum likelihood
estimator (QMLE) is appropriate when the disturbances in the considered model are not
normally distributed. In the literature on SAR models for real-valued data, the QMLE
and maximum likelihood estimator (MLE) are proved to be computationally challenging,
consistent with rates of convergence depending on the spatial weights matrix of the con-
sidered model (Lee, 2004; Yang & Lee, 2017). We recall the principle of this method as it
will be explored in Chapter 4.
Let us first recall the definition of SAR models:

Yn = λ0WnYn + Xnβ0 + Un; Un ∼ N(0, σ2
0In). (2.11)

Let Sn(λ) = In − λWn, θ = (β′ , λ, σ2)′ ,δ = (β′ , λ)′ , and Un(δ) = Yn −Xnβ − λWnYn.
Thus Un = Un(δ0). Therefore the logarithm of the quasi-likelihood function of (2.11) is

Ln(θ) = −n2 lnσ2 − n

2 ln(2π) + ln|Sn(λ)| − 1
2σ2 U′n(δ)Un(δ). (2.12)

For a fixed λ, (2.12) is maximized at

β̂n,λ = (X′nXn)−1X′nSn(λ)Yn,

and

σ̂2
n,λ = 1

n

(
Sn(λ)Yn − ξpn β̂n,λ

)′ (
Sn(λ)Yn −Xnβ̂n,λ

)
= 1

n
Y′nS

′
n(λ)

(
In −Xn(X′nXn)−1X′n

)
Sn(λ)Yn.

Then the concentrated log-quasi-likelihood function of λ is:

Ln(λ) = −n2 (ln(2π) + 1)− n

2 lnσ̂2
n,λ + ln|Sn(λ)|.
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The estimator of λ0 is λ̂n, which maximizes Ln(λ), and those of the vector β0 and variance
σ2

0 are respectively β̂n,λ̂n , σ̂2
n,λ̂n

.
Lee (2004) investigated the identifications of the parameters β0, λ0, and σ2

0 and the
asymptotic properties of the estimators, under some assumptions. He discussed the rates
of asymptotic normality, and show that the latter depends on the structure of the spatial
weight matrix Wn, particularly when it is constructed such that each units is influenced by
few neighboring units. He proved the asymptotic normality of the estimators with optimal
rates

√
n.

2.3.1.2 Estimation in SAE models with binary response variable

Extending SAR or SAE models to binary response variable has attracted less attention,
only a few number of papers were concerned with this topic over the recent years. This
may be, as pointed out by Fleming (2004), due to the ”added complexity that spatial
dependence introduces into discrete choice models”. We recall here some estimation ap-
proaches of SAE probit models. Let us recall the definition this type of models, that
is:

Y∗n = Xnβ0 + Un; Un = γ0WnUn + εn, εn ∼ N(0, σ2
0In),

Yi = I (Y ∗i ≥ 0) , i = 1, . . . , n. (2.13)

Assume that the n×n matrix (In−λ0Wn) is nonsingular for all n, therefore the variance-
covariance matrix of Un is

Vn(λ0) = Var(Un) = (In − λ0Wn)−1
{

(In − λ0Wn)
′}−1

.

The structure of Vn(λ0) provides the major difficulty of estimating the parameters by a full
ML since it requires solving a very computationally demanding problem of n-dimensional
integration. Some authors have proposed a feasible maximum likelihood approach which
consists of replacing the true likelihood function by a pseudo likelihood function con-
structed via marginal likelihood functions. Smirnov (2010) proposes a pseudo likelihood
function obtained by replacing Vn(λ0) by some diagonal matrix obtained with the diagonal
elements of Vn(λ0). Alternatively, Wang et al. (2013) proposed to divide the observations
by pairwise groups where the latter are assumed to be independent with bivariate normal
distribution in each group and estimated β0 and λ0 by maximizing the likelihood of these
groups. Other approach is the GMM method used by Pinkse & Slade (1998) which will
be recalled in the following as it will be explored in Chapter 6.
By equation (2.13), we have

E0 (Yi|Xi) = Φ
(
(vi(λ0))−1X

′
iβ0
)
, i = 1, . . . , n, (2.14)

where E0 denotes the expectation under the true parameters (i.e β0, γ0 ), Φ(·) is the cumu-
lative distribution function of a standard normal distribution and (vi(γ0))2 = Vii(γ0), i =
1, · · · , n are the diagonal elements of Vn(γ0).
Pinkse & Slade (1998) defined the generalized residuals as:

Ũi(θ) = E (Ui|Yi, θ) = φ (Gi(θ)) (Yi − Φ (Gi(θ)))
Φ (Gi(θ)) (1− Φ (Gi(θ)))

, θ = (β′ , γ)′ , (2.15)

where φ(·) is the density of the standard normal distribution and Gi(θ) = (vi(γ))−1X
′
iβ.

Note that in (2.15), the generalized residual Ũi(·) is calculated by conditioning only on
Yi not on the entire sample {Yi, i = 1, 2, . . . , n} or a subset of it. This of course will
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influence the efficiency of the estimators of θ obtained by these generalized residuals, but
it allows to avoid a complex computation, see Poirier & Ruud (1988) for more details. To
address this loss of efficiency, Pinkse & Slade (1998)’s procedure consists of employing some
instrumental variables in order to create some moments conditions and using some random
matrix to define a criterion function. Both the instrumental variables and the random
matrix permit to take into account more informations about the spatial dependence and
heteroscedasticity in the dataset of interest.

Let us now detail the GMM estimation procedure. Let

Sn(θ) = n−1ξ
′
nŨn(θ), (2.16)

where Ũn(θ) is the n×1 vector, composed of Ũi(θ), i = 1, . . . , n and ξn is a n×q matrix of
instrumental variables. The GMM approach consists of minimizing the following sample
criterion function,

Qn(θ) = S
′
n(θ)MnSn(θ),

where Mn is some positive-definite q× q weight matrix that may depend on sample infor-
mation. Therefore, the GMM estimator θ̂ of θ0 verifies

θ̂ = argminθQn(θ).

Under some assumptions, Pinkse & Slade (1998) proved the identification of the param-
eters β0 and γ0, and the asymptotic normality of θ̂. They proposed also a consistence
estimator of the variance-covariance matrix of θ̂.

Extending these spatial lattice models to functional data is far from being trivial.
Ruiz-Medina (2011) and Ruiz-Medina (2012) considered a spatial unilateral autoregressive
Hilbertian (SARH(1)) processes where the autoregressive part is given in terms of three
functional random components located in three points defining the boundary between
some notions of past and future.

2.3.2 Spatial nonparametric estimation

In this thesis, we are also interest to semi and non parametric regression estimation and
prediction. To state an art on these type of modeling, let {Zi = (Xi, Yi) ∈ Rd × R , i =
(i1, . . . , iN ) ∈ NN} (d ≥ 1) be a spatial process defined over some probability space
(Ω,A,P), N ∈ N∗. We assume that the process is observable in In = {i ∈ NN : 1 ≤
ir ≤ nr r = 1, . . . , N}, n = (n1, . . . , nN ) ∈ NN , and n̂ = n1 × . . . × nN , we write n → ∞
if min{nr} → +∞, nk/ni ≤ C, ∀ 1 ≤ k, i ≤ N . We assume that the relation between
the two process (Xi, i ∈ NN ) and (Yi, i ∈ NN ) is described by the regression function
r(·) = E (Yi|Xi = ·) where the latter is assumed to be independent of i. We recall in the
following different approaches of estimation which allow to estimate the function r(·) in
case of geostatistical or lattice data.

2.3.2.1 Kernel estimator of the regression function for spatial data

Compare to parametric modeling, the literature on nonparametric spatial regression is not
extensive. Since the seminal work of Tran (1990) on spatial kernel density estimation, a
number of papers has been devoted to spatial nonparametric regression and prediction,
using particularly kernel methods.

The kernel method was introduced independently by Nadaraya (1964) and Watson
(1964) to estimate a regression function from i.i.d observations by a weighted average
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of the response variable values. One of the first results on the kernel spatial regression
estimation was developed by Lu & Chen (2004). They extended the Nadaraya-Watson
estimator or r(.) to spatial data:

r̂NW(x) =


gn(x)
fn(x) if fn(x) 6= 0,

1
n̂
∑
i∈In

Yi otherwise.

where

gn(x) = 1
n̂hdn

∑
i∈In

K

(
x−Xi
hn

)
Yi and fn(x) = 1

n̂hdn

∑
i∈In

K

(
x−Xi
hn

)
.

with K : Rd −→ R+ is a kernel and hn is a bandwidth such that hn → 0 as n→ +∞.
Lu & Chen (2004) established the weak consistency with rate of this estimator under

mixing conditions on the considered spatial process in an isotropic framework. Non-
parametric prediction of spatial process was first considered in Biau & Cadre (2004).
They started by studying the previous regression estimator and proposed a spatial pre-
dictor. They gave the uniform almost sure convergence and an asymptotic normality
result of the proposed predictor. Carbon et al. (2007) considered a nonparametric au-
toregressive models for a prediction purpose. These authors proposed a regression model
g(x) = E (ψ(Xi)|(Xi1 , . . . , Xil) = x ) for x ∈ Rl×d and ψ(·) is a real values continuous
function, Xi1 , . . . , Xil denote observations at neighbor locations of i. A kernel estimator
of g(x) is investigated and the uniform convergence over compacts subsets under spatial
mixing condition in addition to some general assumptions, is established. Optimal rates of
L∞ convergence are also given. A kernel robust estimate of a spatial regression model has
been investigated by Gheriballah et al. (2010). They gave an almost complete convergence
and an asymptotic normality result of the proposed estimator under some general mixing
conditions, as well as a robust procedure to select the smoothing parameter adapted to the
spatial structure of the data. All these mentioned papers consider stationary processes.
Robinson (2011) employed a basic triangular arrays setting in order to estimate non-
parametrically a regression function. This allows to account various kind of spatial vari-
ables, in particular non stationary processes. Instead of mixing conditions, a (possibly non-
stationary) linear process is assumed for disturbances, and a conditional heteroscedasticity
is allowed, as well as non-identically distributed observations. Under sufficient conditions,
consistency and asymptotic normality results are obtained.

Recently, Dabo-Niang et al. (2016) proposed a new spatial predictor of a locally identi-
cally distributed spatial process. The proposed predictor depends on two kernels in order
to control both the distance between observations and that between spatial locations.
These authors investigated the uniform almost complete consistency and the asymptotic
normality of the kernel predictor under some spatial mixing condition.

2.3.2.2 k-Nearest neighbor method in nonparametric regression

k-Nearest Neighbor method is an alternative to kernel method. The first contribution on
k-Nearest Neighbor regression comes back to Stone (1977) who proposed to estimate a
regression function from i.i.d observations as the average of the k values of the response
variable associate to explanatory variable whose values are the k-Nearest Neighbor to
the estimation point. After that, Collomb (1980) proposed to weighting Stone (1977)’e
estimate like as the kernel estimator by using a kernel function and call it by k-nearest
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neighbor kernel estimator. He investigated the convergence in probability and almost
complete for i.i.d observations.

Compare to kernel method, k-Nearest Neighbor (k-NN) method is not very popular
in the context of spatial processes. To the best of our knowledge, Li & Tran (2009) is
the unique contribution that generalizes the k-NN method to spatial regression. They
proposed to estimate the spatial regression function r(x) by:

r̂n(x) =
∑

i∈In IV1 ((Xi − x) /Hn)Yi∑
i∈In IV1 ((Xi − x) /Hn)

where V1 is the unit sphere in Rd and Hn is the distance between x and its knth nearest
neighbors among Xi’s, kn is a fixed integer sequence satisfying kn → ∞ as n → ∞. The
asymptotic normality of this estimator is obtained under general mixing assumptions.

2.3.2.3 Contribution to spatial nonparametric regression and prediction for
real-valued processes

In Chapters 5 and 6 we are interested in nonparametric regression estimation or/and pre-
dict spatial process. Firstly, in Chapter 5, we generalize the k-NN method to predict a
spatial process at non-observed locations. In this contribution, we consider spatial pro-
cesses (with a kind of local stationarity) composed by a scalar spatial response variable to
predict at some locations and a multivariate spatial covariate. The k-NN kernel predictor
proposed is a combination of the k-NN method which consists to introduce a random
bandwidth as the kth lower distance between the covariate at the prediction point and co-
variate’s observations and the idea on the predictor proposed by Dabo-Niang et al. (2016)
which integrates two kernels one to control distance between observation and the other
to control distance between locations. We establish under spatial mixing condition and
some general assumptions, the almost complete convergence with rates of the k-NN kernel
predictor. Numerical results are given with simulated and environmental data to compare
the performance of the spatial k-NN predictor with that of the spatial kernel proposed by
Dabo-Niang et al. (2016).

In Chapter 6, we consider a semiparametric model and use the spatial kernel method
in a context similar to that considered by Robinson (2011) to estimate a nonparametric
component of a partially linear spatial probit model. In this work, the kernel method
is integrated in a spatial semiparametric estimation procedure of the proposed model.
Precisely, we combine a weighted likelihood method (Staniswalis, 1989) and a generalized
method of moments (Pinkse & Slade, 1998) to estimate the model. We first fixe the
parametric components of the model and estimate the nonparametric part using a spatial
weighted likelihood based on a kernel, the obtained estimate is then used to construct a
GMM estimate of the parametric component. Consistency and asymptotic distribution
of the estimators are established under sufficient conditions. Some simulated experiments
are provided to investigate the finite sample performance of the estimators.

In Chapter 7, we consider an application of spatial binary choice models to identify
UADT (Upper aerodigestive) cancer risk factors in the northen region of France which dis-
plays the highest rates of such cancer incidence and mortality of the country. This region
is characterized by a high proportion of unemployment, social aids and limited resources.
Most of the UADT cancers can be considered as preventable, as they are linked to behav-
ior (tobacco, alcohol), environmental factors (industries), and socio-economic conditions
or more rarely to genetic familial factors. Local, regional and systemic recurrences are
common and often associated with secondary and/or new primaries due to the same risk
factors. Those factors are well identified in the literature and we aim to highlight some
potential spatial heterogeneity of their distributions.
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2.3.2.4 Contribution to spatial functional linear models

Chapter 4 is an contribution to functional linear autoregressive spatial model where the
explanatory variable takes values in a function space while the response process is real-
valued and spatially autocorrelated. The specificity of the model is due to the functional
nature of the explanatory variable and the structure of a spatial weight matrix that de-
fines the spatial dependency between neighbors. The estimation procedure consists of
reducing the infinite dimension of the functional explanatory variable and maximizing the
quasi-likelihood function. We establish the consistency and asymptotic normality of the
estimator. The performance of the methodology is illustrated by simulated data and an
application to real data.
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Résumé en français

Les modèles de choix binaire fonctionnels ont été développés pour prédire une variable
réponse binaire en fonction d’une variable explicative fonctionnelle ou pour faire la discrim-
ination et la classification des processus stochastiques ou des données fonctionnelles. Dans
ce chapitre, on s’intéresse à généraliser ce type de modèles dans un cadre d’échantillonnage
non aléatoire, en particulier lorsque les données sont collectées par un processus de strati-
fication endogène. L’intérêt de cette dernière est qu’elle permet de s’adapter à la structure
de la population lorsque certains choix (valeurs de la variable réponse) sont rarement choi-
sis, contrairement à l’échantillonnage aléatoire où tous les items de la population ont la
même probabilité d’être choisi. La stratification endogène est connue sous le nom échan-
tillonnage basé sur le choix ou Choice based sampling (CBS) en économétrie quand on
s’intéresse par exemple aux choix de certains consommateurs/utilisateurs ou échantillon-
nage Cas-Témoin en épidémiologie quand on étudie les maladies rares.

Supposons que dans une population donnée, nous observons une variable réponse bi-
naire Y à valeurs dans {0, 1} et une fonction aléatoire {X(t), t ∈ T } à valeurs dans
X ⊂ L2(T ), correspondant à un processus stochastique carré intégrable dans un intervalle
T ⊂ R. Nous nous intéressons à décrire la relation entre la variable réponse Y et la
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fonction explicative X(·). On suppose que cette relation est donnée par le problème de
régression à choix binaire suivant

E (Y |X) = P (Y = 1|X,α∗, θ∗(·)) = Φ
(
α∗ +

∫
T
X(t)θ∗(t)dt

)
, (3.1)

où Φ(·) est la fonction de lien supposée connue, α∗ le terme constant, et θ∗(·) le paramètre
fonctionnel sont inconnus. Notre objectif est d’estimer ces paramètres dans un contexte
d’échantillonnage endogène.
Soit Q∗ = P (Y = 1), la proportion des individus associés à Y = 1 dans la population
étudiée. On suppose que la population est divisée selon les valeurs de la variable réponse
Y en deux strates J (0) = {(0, X), X ∈ X} et J (1) = {(1, X), X ∈ X} . Soit 0 < H∗ < 1,
la probabilité avec laquelle on tire dans la strate J (1). Le CBS consiste à échantillonner
de la manière suivante :on choisit d’abord une strate i ∈ {0, 1} avec une probabilité H(i)
(H(1) = H∗), ensuite on tire une observation (Y = i,X) d’une manière aléatoire dans la
strate J (i) choisie.
Sous cet échantillonnage, la densité conditionnelle de Y sachant X = x est définie par

g(i|x) = P (Y = i|x, α∗, θ∗(·))H(i)/Q(i)∑1
j=0 P (Y = j|x, α∗, θ∗(·))H(j)/Q(j)

, x ∈ X , i ∈ {0, 1}, (3.2)

où Q(i) = P (Y = i). Ainsi, l’espérance induite par la distribution de cet échantillonnage,
est définie par (voir, e.g., Cosslett, 2013)

Es(·) = H(0)E(·|Y = 0) +H(1)E(·|Y = 1).

Par conséquence, l’espérance conditionnelle de Y sachant X sous le CBS est donnée par

Es (Y |X) = g(1|X) = µ

(
α∗ +

∫
T
θ∗(t)X(t)dt

)
,

où
µ(·) = Φ(·)H∗/Q∗

Λ(·) with Λ(·) = H∗

Q∗
Φ(·) + 1−H∗

1−Q∗ (1− Φ(·)) .

Supposons que nous disposons de N observations indépendantes
(Yn = in, {Xn(t), t ∈ T }) , n = 1, . . . , N , tirées par le processus d’échantillonnage précé-
dant. En se basant sur (3.2), le logarithme de la fonction de la vraisemblance conditionnelle
est défini par

L(α, θ(·)) =
N∑
n=1

log
(

P (Yn|Xn, α, θ(·))H(in)/Q(in)∑1
j=0 P (Yn = j|Xn, α, θ(·))H(j)/Q(j)

)
. (3.3)

Dans le cas où la variable explicative X est à valeurs réelles, Manski & McFadden (1981)
ont défini des estimateurs du maximum de vraisemblance pour α∗ et le vecteur de paramètres
θ∗, en maximisant l’équivalent de (3.3). En revanche, dans un cadre fonctionnel, on de-
vrait adresser le problème de la dimension infinie de l’espace de la fonction explicative
X(·). Pour pallier à ce problème, nous suivons la stratégie de troncature proposée par
Müller & Stadtmüller (2005). Cette approche consiste à projeter la fonction explicative et
le paramètre fonctionnel dans un espace de fonctions engendré par une base de fonctions
dont la dimension croit asymptotiquement avec la taille de l’échantillon N . En effet, soit
{ϕj , j = 1, 2, . . .} une base orthonormale de L2(T ). On peut récrire X(t) et θ∗(t) comme
suit :

X(t) =
∑
j≥1

εjϕj(t), et θ∗(t) =
∑
j≥1

θ∗jϕj(t),
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où les variables aléatoire réelles εj et les coefficients θ∗j sont définis par

εj =
∫
T
X(t)ϕj(t)dt et θ∗j =

∫
T
θ∗(t)ϕj(t)dt.

Nous avons alors : ∫
T
X(t)θ∗(t)dt =

∑
j≥1

θ∗j εj .

Soit pN une suite positive et d’entiers naturels, qui croît asymptotiquement avec N →∞.
On considère la décomposition

η∗ = α∗ +
∞∑
j=1

θ∗j εj , η̃∗ = α∗ +
pN∑
j=1

θ∗j εj , η∗ − η̃∗ =
∞∑

j=pN+1
θ∗j εj .

L’idée de l’approche de troncature utilisée consiste à remplacer E(Y |X) par Φ(η̃∗). Ceci
implique que nous allons nous intéresser à estimer pN +1 paramètres plutôt qu’un nombre
infini de paramètres. Les paramètres à estimer dans le modèle tronqué sont donc α∗,
et les pN -premiers coefficients de la fonction θ∗1, . . . , θ

∗
pN

. Par simplicité, nous notons
θ† = (α∗, θ∗1, . . . , θ∗pN )T . Donc, le logarithme de la vraisemblance conditionnelle tronquée
est obtenu en remplaçant Φ (ηn) par Φ (η̃n) dans (3.3), soit

L̃pN (θ) =
N∑
n=1

Yn log H
∗Φ(η̃n)

Q∗Λ(η̃n) + (1− Yn) log (1−H∗) (1− Φ(η̃n))
(1−Q∗) Λ(η̃n) , θ ∈ Θ ⊂ RpN+1, (3.4)

où η̃n = ∑pN
j=0 θjε

(n)
j , avec ε(n)

j =
∫
Xn(t)ϕj(t)dt et ε(n)

0 = 1.
Le vecteur de paramètre θ† est ainsi estimé par

θ̂† = (α̂, θ̂1, . . . , θ̂pN )T = argmax
{
L̃pN (θ), θ ∈ Θ

}
.

Par conséquent, l’estimateur du terme constant α∗ est α̂, et celui du paramètre fonctionnel
est

θ̂(t) =
pN∑
j=1

θ̂jϕj(t).

Dans la suite, nous étudions le comportement asymptotique de l’estimateur proposé, no-
tamment la normalité asymptotique. Sous des conditions similaires à celles utilisées par
Müller & Stadtmüller (2005) mais adaptées au contexte d’échantillonnage utilisé. Plus
précisément, nous montrons que

N(θ̂† − θ†)T∆pN (θ̂† − θ†)− (pN + 1)√
2(pN + 1)

→ N (0, 1),

où ∆pN est une (pN + 1)× (pN + 1) matrice définie par

∆pN = Es

(
µ′2(η̃∗)

σ2 (µ(η̃∗))εε
T

)
,

ε et η̃∗ sont des copies génériques ε(n) = (ε(n)
0 , ε

(n)
1 , . . . , ε

(n)
pN )T et η̃∗n = θ†T ε(n), respective-

ment, et σ2(t) = t(1− t).
Si le modèle (3.1) ne contient pas de terme constant (α∗ = 0), nous concluons que

Nd2
G

(
θ̂(·), θ∗(·)

)
− pN

√
2pN

→ N (0, 1),



34 Chapter 3. Binary functional linear models under CBS

où dG(·, ·) est une métrique dans L2(T ), définie par

d2
G (f, g) =

∫ ∫
(f(t)− g(t))G(t, v) (f(v)− g(v)) dtdv, f, g ∈ L2(T ),

où
G(t, v) = H∗(1−H∗)

Q∗(1−Q∗) E
(

Φ′2(η∗)
σ2(Φ(η∗))Λ(η∗)X(t)X(v)

)
, t, v ∈ T ,

et η∗ =
∫
T X(t)θ∗(t)dt.

Des résultats numériques montrant la performance de l’estimateur proposé par rapport
à l’estimateur classique qui ignore la nature de l’échantillonnage sont présentés. Il s’agit
de résultats issus de données simulées et réelles sur la résistance de farines utilisées pour
la fabrication de biscuits.

The results of this chapter are in collaboration with Mohamed Kadi Attouch (Univer-
sity Djilalli Liabes, Algeria), Sophie Dabo-Niang (University of Lille) and are published
in Journal of Econometrics and Statistics.

3.1 Introduction

Choice models are characterized by the feature that the dependent variable is discrete
instead of continuous. Examples include having a given disease or not, participation de-
cisions, and transport choices made by individuals. In the context of choice models, the
main idea in case-control or choice-based sampling design is to stratify the population
with respect to the values of the categorical response. It often occurs that one or more
outcomes occur infrequently in the population but are important for determining some
key parameters of the model. By stratifying the population with respect to the responses,
one can gather information on those infrequent outcomes at a much lower cost than would
be incurred by simply increasing the size of a random sample. Equivalently, for any given
sampling budget, one can increase the efficiency of predictions and parameter estimates
using a suitably designed response-based sample. Such sampling designs have been inde-
pendently investigated by econometricians who study choice behaviour and biostatisticians
who are interested in rare diseases.
In biostatistics, case-control designs are useful for identifying the impact of several fac-
tors on the occurrence of a particular disease. The response is often binary (having the
disease or not), but there may be more than two categorical responses. In a case-control
study, separate samples of cases (diseased individuals) and controls (individuals without
the disease) are selected, unlike in a prospective study design, in which a sample of in-
dividuals is chosen and followed through time until their responses are recorded. In the
case of rare diseases, even large studies may produce only a few diseased individuals and
little information about the hazard. In that case, the researcher might wish to oversample
the rare disease of interest to increase the accuracy of his analysis. Therefore, compared
with case-control studies, prospective studies are disadvantageous in terms of time and
cost. For a general overview of medical case-control studies, see Keogh & Cox (2014), for
instance. Case-control studies are also used in political science (King & Zeng, 2001) and
sociology (Xie & Manski, 1989).

Originally, choice-based sampling was used by econometricians. They were interested
in exploring the relationships between the choices made by an individual and several
explanatory variables. The choice of transportation mode is the most popular example;
see, for instance, Manski & McFadden (1981). In this case, it may be advantageous
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(simpler and less expensive) to apply choice-based sampling by selecting, for instance,
separate samples of individuals from bus terminals, train stations and car parks rather
than to take a single sample from the entire population. The reasons for using such
stratified samples have been discussed extensively in several econometric papers such as
Manski & McFadden (1981) and Cosslett (1981). In this work, we consider a binary choice
model with a functional covariate in the context of case-control or choice-based sampling.

Functional data analysis (FDA) was widely popularized by Ramsay & Silverman
(2005). Since its introduction, considerable work has been done on the representation,
exploration and modelling of functional data. Nonparametric methods have also been
developed for functional data, and an overview is available in Ferraty & Vieu (2006).
Moreover, a number of reference textbooks addressing functional data analysis, such as
Bosq (2000), Ramsay & Silverman (2005), and Horváth & Kokoszka (2012), already exist.
FDA is thus an active research topic with potential applications in a large number of fields.

The objective of the present paper is to propose a binary functional linear model
adapted for case-control sampled data. All available information concerning the sampling
design is used to obtain a finer estimation and understanding of the phenomenon of inter-
est. Several types of functional linear models have been developed over the years, therein
serving different purposes. Among all functional linear models that have been introduced,
the most studied is perhaps the functional linear model for scalar responses, originally
introduced by Hastie & Mallows (1993). Functional linear models have also been general-
ized by Müller & Stadtmüller (2005), Cardot & Sarda (2005), and Escabias et al. (2007),
and more recently, functional generalized additive models (see McLean et al., 2014) have
also been developed. Furthermore, related models, such as functional linear discriminant
analysis, are considered in James & Hastie (2001) and are applied in many fields, e.g.,
image processing Cardot et al. (2003), medicine Ratcliffe et al. (2002), genetics Müller
et al. (2008), ecology Bel et al. (2011), and marketing Sood et al. (2009). All of these
applications show that there is increasing interest in the application of functional linear
models and their generalization for practical purposes.

To the best of our knowledge, despite many potential applications, no work has been
done on binary choice functional linear models for case-control or choice-based sampling
studies that consider the method of sampling the data. However, some work does exist (see
Cardot et al., 2010) on functional principal component analysis adapted to certain types
of sampling data. Cardot & Josserand (2011) also propose consistent estimators of mean
and variance functions based on the Horvitz-Thompson estimator. Note that one work
(Fan et al., 2014) exists that addresses a functional logit model applied to case-control
data. These authors propose a functional logit model to test the associations between
a dichotomous trait and multiple genetic variants in a region using several covariates.
However, they do not consider the case-control nature of their data. Consequently, their
model is similar to a classical generalized functional linear model in the case of random
sampling. Several authors have proposed consistent methods for estimating the parameters
of interest in a choice-based sampling model when the explanatory variables take real
values; see, for instance, Manski & Lerman (1977), Manski & McFadden (1981), Cosslett
(1981), Imbens (1992), and Cosslett (2013).

Our goal is to generalize, in a functional framework, the conditional maximum likeli-
hood method suggested by Manski & McFadden (1981) to estimate a binary functional
linear model in the context of choice-based sampling. We adapt the approach of Müller &
Stadtmüller (2005) to reduce the infinite dimension of the space of the explanatory ran-
dom function using a Karhunen–Loève expansion. Notably, as for real-valued covariates,
the improvements that can be expected to be achieved using the functional design frame-
work are mostly related to the performance of the constant parameter estimation rather
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than the functional parameter estimation performance. We present a way to improve the
accuracy of a traditional binary functional regression model applied to such sample data.

The remainder of the chapter is organized as follows. In Section 3.2, we introduce the
design and the model under choice-based sampling, and we discuss the usual approach
to estimating a binary functional model in such a case. We then present our proposed
method of integrating the sampling design into the estimation process. In Section 3.3,
we present asymptotic results, whereas Section 3.4 reports a simulation case study and
an application to kneading data to illustrate the performance of the proposed estimators.
Finally, the last section presents the proofs of our main results.

3.2 Conditional maximum likelihood estimator with a func-
tional covariate

We assume that in a given population, we observe a binary random variable Y that
takes values in {0, 1} and a random function {X(t), t ∈ T } that corresponds to a square-
integrable stochastic process on the interval T ⊂ R. Suppose that the process {X(t), t ∈
T } takes values in some space X ⊂ L2(T ), where L2(T ) is the space of square-integrable
functions in T . We are interested in describing the relation between the response variable
Y and the explanatory random function X(·). We assume that this relation is given by a
binary choice regression problem and that the expectation of Y given X(·) is defined as

E (Y |X) = P (Y = 1|X,α∗, θ∗(·)) = Φ
(
α∗ +

∫
T
X(t)θ∗(t)dt

)
, (3.5)

where the link function Φ(·) is some strictly increasing cumulative distribution function.
The parameters of interest are the constant intercept α∗ in a compact subset of R and the
parameter function θ∗(·), which is assumed to belong to the space of functions L2(T ).
Let Q∗ = P (Y = 1) be the share of individuals such that Y = 1 in the considered popu-
lation. We assume that the population is divided, according to the values of the response
variable Y , into two strata J (0) = {(0, X), X ∈ X} and J (1) = {(1, X), X ∈ X}, and
we let 0 < H∗ < 1 be the probability with which we will draw from stratum J (1). We as-
sume that we sample this population as follows: We select an observation by first drawing
a stratum i ∈ {0, 1} with probability H(i) (H(1) = H∗) and then drawing an observation
(Y = i,X) at random from J (i).
This type of sampling is known in the econometric or biostatistics literature as pure choice-
based sampling or case-control sampling. This sampling process allows the structure of
the population to be considered when one of the values of the response variable Y has a
small probability of being observed compared with the random sampling case, in which
all values have the same probability of being chosen. Under this sampling process, the
conditional density of Y given X = x is

g(i|x) = P (Y = i|x, α∗, θ∗(·))H(i)/Q(i)∑1
j=0 P (Y = j|x, α∗, θ∗(·))H(j)/Q(j)

, x ∈ X , i ∈ {0, 1}, (3.6)

where Q(i) = P (Y = i). The expectation value with respect to the distribution under
Choice-Based Sampling (CBS) is defined by (see, e.g., Cosslett, 2013)

Es(·) = H(0)E(·|Y = 0) +H(1)E(·|Y = 1).

Note that Es(·) is different from the expectation value E(·) under the population distri-
bution. Consequently, the expectation of Y given X under CBS is given by

Es (Y |X) = g(1|X) = µ

(
α∗ +

∫
T
θ∗(t)X(t)dt

)
,



3.2. Conditional maximum likelihood estimator with a functional
covariate 37

where
µ(·) = Φ(·)H∗/Q∗

Λ(·) with Λ(·) = H∗

Q∗
Φ(·) + 1−H∗

1−Q∗ (1− Φ(·)) .

Our objective is to perform estimation using observations following the same law as (Y,X),
the intercept parameter α∗ and the parameter function θ∗(·) when the sampling process
is the CBS process defined above and when we assume that we have prior information
providing knowledge on Q∗ and H∗.
Let us assume that E (X(t)) = 0, ∀t ∈ T , which will be needed to ensure identification of
the intercept.
Let Γ denote the covariance operator of the X -valued random function:

Γx(t) =
∫
T
E(X(t)X(v))x(v)dv, x ∈ X , t ∈ T .

The operator Γ is a linear integral operator whose integral kernel is

K(t, v) = E (X(t)X(v)) , for all t, v ∈ T . (3.7)

It is a compact self-adjoint Hilbert-Schmidt operator because∫
|K(t, v)|2 dtdv ≤

(
E

(∫
X2(t)dt

))2
<∞;

thus, it can be diagonalized (see, e.g., Conway, 2013, p.47).
In addition to the previous assumption regarding the expectation value of the random
function, the following assumptions are necessary to ensure the identification of our model.

(H1) The eigenvalues of Γ are nonzero.

(H2) The link function Φ(·) is monotonic and invertible and has two continuous bounded
derivatives with ‖Φ′‖ = supt |Φ

′(t)| < C and ‖Φ′′‖ < C for some constant C > 0,
and there exists a δ > 0 such that for all x ∈ X , θ(·) ∈ L2(T ) and α ∈ R,(

1− Φ
(
α+

∫
T
x(t)θ(t)dt

))
Φ
(
α+

∫
T
x(t)θ(t)dt

)
> δ.

Assumptions (H1) and (H2) allow us to ensure the identification of our model (see, e.g.,
Cardot & Sarda, 2005, p.27). Assumption (H2) is similar to assumption (M1) in Müller &
Stadtmüller (2005), where it is assumed that the link function is monotonic and invertible
and has first and second bounded derivatives and that the conditional variance of the
response variable is bounded away from 0.

3.2.1 Infeasible maximum likelihood estimate

We assume that we have a sample of N independent observations
(Yn = in, {Xn(t), t ∈ T }) , n = 1, . . . , N , following the same law as (Y,X) and drawn
through the CBS process. Then, based on the conditional density (3.6), the conditional
log-likelihood function is defined as

L(α, θ(·)) =
N∑
n=1

log
(

P (Yn|Xn, α, θ(·))H(in)/Q(in)∑1
j=0 P (Yn = j|Xn, α, θ(·))H(j)/Q(j)

)
. (3.8)

For the case in which the explanatory variable X takes real values, Manski & McFadden
(1981) have maximized (3.8) to find the maximum likelihood estimate of the intercept α∗
and the vector of estimates of the parameter θ∗ in (3.6).
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This method is usually referred to as the conditional maximum likelihood estimator.
In our functional context, our aim is to estimate α∗ and the parameter function θ∗(·) by
maximizing (3.8) on α and θ(·). However, this cannot be done before we address the
difficulty posed by the infinite dimensionality of the explanatory random function. This
can be achieved using one of two very popular approaches used in generalized linear models
with explanatory random functions. On the one hand, we have the Penalized Likelihood
Method (Cardot & Sarda, 2005), which consists of projecting the parameter function into
a finite-dimensional space spanned by a spline basis and then maximizing the pseudo
conditional log-likelihood function obtained by replacing the parameter function θ(·) in
(3.8) with its projector, adding a penalty that controls the degree of smoothness of the
parameter function. On the other hand, we have the second approach, used by Müller &
Stadtmüller (2005). It is based on a truncation strategy that consists of projecting the
functional explanatory variable and parameter function into a space of functions generated
by a basis of functions with a dimension that increases asymptotically as the sample size
tends towards infinity. We shall adapt the strategy of this second approach to resolve
the infinite dimensionality problem of the functional space in the context of CBS. This
method will be called the truncated conditional likelihood method.

3.2.2 Truncated conditional likelihood method

Analogously to Müller & Stadtmüller (2005), the truncation strategy is motivated by the
following considerations. Let {ϕj , j = 1, 2, . . .} be an orthonormal basis of the functional
space L2(T ), usually a Fourier or spline basis or a basis constructed from the eigenfunctions
of the covariance operator Γ. In our numerical experiments, this last basis will be used.
We can rewrite X(t) and θ∗(t) as follows:

X(t) =
∑
j≥1

εjϕj(t), θ∗(t) =
∑
j≥1

θ∗jϕj(t),

where the real random variables εj and the coefficients θ∗j are given by

εj =
∫
T
X(t)ϕj(t)dt and θ∗j =

∫
T
θ∗(t)ϕj(t)dt.

By the orthonormality of the basis {ϕj , j = 1, 2, . . .}, we have∫
T
X(t)θ∗(t)dt =

∑
j≥1

θ∗j εj .

Let pN be a positive sequence of integers that increases asymptotically as N → ∞, and
let us consider the following decomposition:

η∗ = α∗ +
∞∑
j=1

θ∗j εj , η̃∗ = α∗ +
pN∑
j=1

θ∗j εj , η∗ − η̃∗ =
∞∑

j=pN+1
θ∗j εj .

The truncation strategy introduced by Müller & Stadtmüller (2005) is based on the fol-
lowing approximation, under the assumption that ‖Φ′‖ < C (see assumption (H2)):

E
(
(Φ(η∗)− Φ(η̃∗))2

)
≤ CE

(
(η∗ − η̃∗)2

)
. (3.9)

If the right-hand side of (3.9) is asymptotically negligible, then, with the help of (H2), we
can truncate E(Y |X) and replace it with Φ(η̃∗). This is usually the case when we consider
the eigenbasis of the variance-covariance operator:

E
(
(η∗ − η̃∗)2

)
=
∑
j>pN

θ∗
2
j E

(
ε2
j

)
=
∑
j>pN

θ∗
2
j λj ,
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where the λj are the eigenvalues. We then need to estimate only pN +1 parameters rather
than an infinite number of parameters, under the assumption that the right-hand side of
(3.9) vanishes asymptotically as N →∞.
Now, the parameters of interest in this truncated model are the intercept, α∗, and the
first pN coefficients of the parameter function, θ∗1, . . . , θ∗pN . For simplicity, let θ† =
(α∗, θ∗1, . . . , θ∗pN )T . The parameter θ† takes values in a compact subset Θ ⊂ RpN+1, as
α∗ takes values in a compact subset of R and θ∗(·) ∈ L2(T ) by assumption. Then, the
truncated conditional log-likelihood function is obtained by replacing Φ (ηn) with Φ (η̃n)
in (3.8). The corresponding feasible conditional likelihood is

L̃pN (θ) =
N∑
n=1

Yn log H
∗Φ(η̃n)

Q∗Λ(η̃n) + (1− Yn) log (1−H∗) (1− Φ(η̃n))
(1−Q∗) Λ(η̃n) , θ ∈ Θ, (3.10)

where η̃n = ∑pN
j=0 θjε

(n)
j , with ε

(n)
j =

∫
Xn(t)ϕj(t)dt and ε

(n)
0 = 1.

Then, θ† is estimated as

θ̂† = (α̂, θ̂1, . . . , θ̂pN )T = argmax
{
L̃pN (θ), θ ∈ Θ

}
.

Therefore, the estimator of the intercept α∗ is α̂, and that of the truncated parameter
function is given by

θ̂(t) =
pN∑
j=1

θ̂jϕj(t).

We define the (pN + 1)× (pN + 1) matrix

∆pN = Es

(
µ′2(η̃∗)

σ2 (µ(η̃∗))εε
T

)
,

where ε and η̃∗ are generic copies of ε(n) = (ε(n)
0 , ε

(n)
1 , . . . , ε

(n)
pN )T and η̃∗n = θ†T ε(n), respec-

tively, and σ2(t) = t(1 − t). This matrix is seen as an asymptotic Hessian matrix of the
pseudo likelihood function (3.10) and will be used to establish an asymptotic normality re-
sult for the proposed estimator. In practice, this matrix can be replaced with an adequate
empirical version.

Remark 3.1. Let us investigate the effect of considering the sampling scheme on the
asymptotic Hessian matrix ∆pN . Using the definitions of Es, µ(·), and Λ(·) together with
the truncation strategy, one can show through simple computations that

∆pN ≈
H∗(1−H∗)
Q∗(1−Q∗) E

(
Φ′2(η̃∗)

σ2(Φ(η̃∗))Λ(η̃∗)εε
T

)
, (3.11)

where “≈” indicates that the term Φ(η∗) has been replaced with Φ(η̃∗). If the sampling
process is ignored (H∗ = Q∗), then the right-hand side of (3.11) will be E

(
Φ′2(η̃∗)
σ2(Φ(η̃∗))εε

T
)

.
This is exactly the asymptotic Hessian matrix given in Müller & Stadtmüller (2005), p.8.

In the following section, we present the assumptions and the consistency results re-
garding α̂ and θ̂(·).

3.3 Assumptions and results

In addition to the previous hypotheses, we need to consider the following assumptions.
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(H3) The integer pN satisfies pN →∞ and N−1/4pN → 0 as N →∞.

(H4) We have

pN∑
r1,r2,r3,r4=0

Es

(
µ′4(η̃∗)

σ4 (µ(η̃∗))εr1εr2εr3εr4

)
κr1r2κr3r4 = o(N/p2

N ),

where the κkl, k, l = 0, . . . , pN + 1, are the elements of ΞpN = ∆−1
pN

.

(H5) We assume that

pN∑
r1,...,r8=0

Es

(
µ′4(η̃∗)

σ4 (µ(η̃∗))εr1εr3εr5εr7

)

× Es

(
µ′4(η̃∗)

σ4 (µ(η̃∗))εr2εr4εr6εr8

)
κr1r2κr3r4κr5r6κr7r8 = o(N2p2

N ).

Assumptions (H4) and (H5) are technical assumptions required to establish the following
proof of asymptotic normality; they are similar to assumptions (M.3) and (M.4) in Müller
& Stadtmüller (2005). Assumption (H4) will then be used in the proof of (3.24), and (H5)
is needed to prove (3.23) in the Appendix. Hypothesis (H3) concerns the convergence of
pN ; for more details on the utility of these assumptions, see Müller & Stadtmüller (2005).
Under these assumptions, we prove the asymptotic normality of θ̂† as follows.

Theorem 3.1. Under assumptions (H1)-(H5), the estimator θ̂† converges in probability
to θ† and satisfies

N(θ̂† − θ†)T∆pN (θ̂† − θ†)− (pN + 1)√
2(pN + 1)

→ N (0, 1). (3.12)

The previous result confirms only the consistency of the pN + 1 parameter vector
estimator θ̂†. In the case in which one is interested in investigating the convergence of the
parameter function θ̂(·) (such as in a model without an intercept), the following procedure
can be used (Müller & Stadtmüller, 2005). Let G(·, ·) denote the integral kernel, defined
as

G(t, v) = H∗(1−H∗)
Q∗(1−Q∗) E

(
Φ′2(η∗)

σ2(Φ(η∗))Λ(η∗)X(t)X(v)
)
, t, v ∈ T ,

with η∗ =
∫
T X(t)θ∗(t)dt and let AG be the Hilbert-Schmidt operator associated with

G. Consider ϕGj , j = 1, 2, . . ., the eigenbasis of the operator AG, and the eigenvalues λGj
associated with this eigenbasis. The estimated parameter function θ̂(·) and the parameter
function θ∗(·) can be expressed in this eigenbasis as

θ∗(t) =
∑
j≥1

θ∗ϕGj
ϕGj (t) and θ̂(t) =

pN∑
j=1

θ̂ϕGj
ϕGj (t),

where the θ̂ϕGj are obtained as above using the eigenbasis of AG.
Let dG(·, ·) denote the metric defined in the L2(T ) space through the operator AG, and
let it be defined by

d2
G (f, g) =

∫ ∫
(f(t)− g(t))G(t, v) (f(v)− g(v)) dtdv, f, g ∈ L2(T ).
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Then, the distance between θ̂(·) and θ∗(·) under this metric is given by

d2
G

(
θ̂(·), θ∗(·)

)
=

pN∑
j=1

λGj

(
θ̂ϕGj
− θ∗ϕGj

)2
+
∑
j>pN

λGj

(
θ∗ϕGj

)2

=
(
θ̂ϕG − θ∗ϕG

)T
∆G
pN

(
θ̂ϕG − θ∗ϕG

)
+
∑
j>pN

λGj

(
θ∗ϕGj

)2
,

where
θ̂ϕG =

(
θ̂ϕG1

, . . . , θ̂ϕGpN

)T
, θ∗ϕG =

(
θ∗ϕG1

, . . . , θ∗ϕGpN

)T
,

and the diagonal matrix ∆G
pN

is equal to ∆pN if one replaces {ϕj , j = 1, 2, . . .} with
{ϕGj , j = 1, 2, . . .}. Let the following condition hold, which is related to the contribution
of the oscillation of the functional covariate to the L2 norm of the parameter function
θ∗(·): ∑

j>pN

E
(
(εGj )2

)(∫
θ∗(t)ϕGj (t)dt

)2
= o(√pN/N), (3.13)

where εGj =
∫
T
X(t)ϕGj (t)dt. The following corollary provides an asymptotic normality

result for the parameter function estimate θ̂(·) obtained using the distance dG(., .) in the
case without an intercept.
Corollary 3.1. Under the conditions of Theorem 3.1 and if θ∗(·) satisfies (3.13), then as
N →∞, we have

Nd2
G

(
θ̂(·), θ∗(·)

)
− pN

√
2pN

→ N (0, 1).

The following result is derived from Theorem 3.1 and provides a confidence band for
θ∗(·).

Corollary 3.2. Let the eigenelements of the matrix ∆(−1)
pN be denoted by

(v(1), λ1), . . . , (v(pN ), λpN ), where ∆(−1)
pN denotes the pN × pN sub-matrix of ∆pN obtained

by removing the first row/column. Let

v(k) = (v(k)
1 , . . . , v(k)

pN
)T , ωk(t) =

pN∑
j=1

v
(k)
j ϕj(t), k = 1, . . . , pN ;

then, for large N and pN , an approximate (1− ρ) simultaneous confidence band is deter-
mined, under the conditions of Theorem 3.1, as follows:

θ̂(t)±

√√√√c(ρ)
pN∑
k=1

ω2
k(t)
λk

,

where c(ρ) = (pN + z1−ρ
√

2pN ) /N and z1−ρ is the (1 − ρ)% quantile of the standard
normal distribution, with 0 < ρ < 1.

Under assumptions similar to those used in Müller & Stadtmüller (2005) but adapted
to our context of CBS, we show above that the proposed conditional maximum likelihood
(CML) estimator of the binary functional choice model has the same asymptotic proper-
ties as those of the ordinary maximum likelihood (OML) estimator used in the random
sampling context. However, the two estimators are distinct. The following theorem proves
that in the considered choice-based or case-control sampling process, the OML method
(Müller & Stadtmüller, 2005) does not yield consistent estimates of θ† = (α∗, θ∗1, . . . , θ∗pN )T

under (H1), (H2) and E
(
εΦ′(η̃∗)

)
6= 0.
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Theorem 3.2. Under choice-based sampling (Q∗ 6= H∗), if assumptions (H1), (H2) and
E
(
εΦ′(η̃∗)

)
6= 0 are satisfied, then the OML estimator of the parameter vector θ†, which

is given by
θ̂†RS = argmax

{
LRS
pN

(θ), θ ∈ Θ
}
,

where

LRS
pN

(θ) =
N∑
n=1

Yn log(Φ(η̃n)) + (1− Yn) log(1− Φ(η̃n)),

is inconsistent. LRS
pN

(·) is the truncated ordinary conditional likelihood function of Y given
X adapted for random sampling; it does not account for the sampling scheme.

Remark 3.2.

1. Note that the condition E
(
εΦ′(η̃∗)

)
6= 0 is related to the parameter vector θ†, the link

function Φ(·), and the joint distribution of the first pN components of the functional
covariate. It is always satisfied in a model with an intercept (equation (3.5) with
α∗ 6= 0) because in this case, ε0 = 1 and the link function is monotonic and invertible
by assumption (H2).

2. Although we can offer no general analysis of this inconsistency question of the OML
estimator, let us characterize it for the logit model. Let us prove that as for binary
logit models for CBS with real-valued covariates, the inconsistency of the OML esti-
mator is related to the intercept estimator, which has a bias depending on H∗ and
Q∗ (see, e.g., Manski & Lerman, 1977, p.1986).
For x ∈ X , Y ∈ {0, 1}, α ∈ R, θ(·) ∈ L2(T ) and η = α +

∫
θ(t)x(t)dt, let L(η;Y )

denote the conditional log-likelihood function of Y given X = x when the sampling
scheme is ignored:

L(η;Y ) = Y log(Φ(η)) + (1− Y ) log(1− Φ(η)).

Let F(η) denote the expectation value of L(η;Y ) under the true parameters α∗ and
θ∗(·) (η∗ = α∗ +

∫
θ∗(t)x(t)dt):

F(η) = Es (L(η;Y )|η∗) .

Let δ = log(H∗/Q∗) and δ̄ = log((1 − H∗)/(1 − Q∗)); now, using the definition of
Es(·), we obtain

F(η) =
1∑
j=0

{
j log

(
eη

1 + eη

)
+ (1− j) log

( 1
1 + eη

)}

×
{
j eδ

eη
∗

1 + eη∗
+ (1− j)eδ̄ 1

1 + eη∗

}

= eδ̄ + eη
∗+δ

1 + eη∗

1∑
j=0

{
j log

(
eη

1 + eη

)
+ (1− j) log

( 1
1 + eη

)}

×
{
j

eη
∗+δ−δ̄

1 + eη∗+δ−δ̄
+ 1− j

1 + eη∗+δ−δ̄

}

= eδ̄ + eη
∗+δ

1 + eη∗
E
(
L(η;Y )|η∗ + (δ − δ̄)

)
.

For every x ∈ X , F(η) has the same maximum with respect to η as does
E
(
L(η;Y )|η∗ + (δ − δ̄)

)
. The latter is maximized at η = η∗ + (δ − δ̄), which is
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equivalent to α = α∗ + (δ − δ̄) and θ(·) = θ∗(·), under assumption (H1). Thus, for
logit models, as in the case of real-valued covariates, an estimation procedure based
on the log-likelihood L(·;Y ) yields a consistent estimator of the parameter function
and a biased estimate of the intercept, with a bias equal to δ−δ̄ = log((1−Q∗)H∗/(1−
H∗)Q∗).

3. In addition, note that, even if θ̂†RS is consistent (this may be the case if E(εΦ′(η̃∗)) =
0),

N(θ̂†RS − θ†)T ∆̃pN (θ̂†RS − θ†)− (pN + 1)√
2(pN + 1)

,

where ∆̃pN = E
(

Φ′2(η̃∗)
σ2(Φ(η̃∗))εε

T
)

(the Hessian matrix of Müller & Stadtmüller, 2005,
Theorem 4.1) does not have an asymptotic standard normal distribution. Let URS(θ)
denote the gradient of LRS

pN
(θ), defined as

URS(θ) = ∂

∂θ
LRS
pN

(θ) =
N∑
n=1

Φ′(η̃n)
σ2((Φ(η̃n))(Yn − Φ(η̃n))ε(n).

Let JRS
θ† denote the Hessian matrix of LRS

pN
(θ) at θ = θ†, that is,

JRS
θ† = ∂

∂θT
URS(θ)

∣∣∣∣
θ†

= RRS −DT
RSDRS,

where

DT
RSDRS =

N∑
n=1

Φ′2(η̃∗n)
σ2 (Φ(η̃∗n))ε

(n)ε(n)T

and

RRS =
N∑
n=1

(Yn − Φ(η̃∗n))
{

Φ′′(η̃∗n)
σ2 (Φ(η̃∗n)) −

Φ′2(η̃∗n)σ2′ (Φ(η̃∗n))
σ4 (Φ(η̃∗n))

}
ε(n)ε(n)T .

The proof of the asymptotic normality of θ̂†RS (see, Müller & Stadtmüller, 2005,
Theorem 4.1) is based on the fact that RRS will eventually be negligible; however,
this does not occur under CBS. Indeed, using the matrix norm ‖M‖2 = (∑k,lm

2
kl)1/2,

one can easily show that

Es

(∥∥∥∥RRS
N

∥∥∥∥2

2

)
= O

(
p2
N

N

)
+
∣∣∣∣H∗Q∗ − 1−H∗

1−Q∗
∣∣∣∣O (p2

N

)
; (3.14)

therefore, the asymptotic normality of θ̂†RS remains valid in the CBS context if the
second term on the right-hand side of (3.14) is null. However, this cannot hold since
Q∗ 6= H∗ in our context.

The following section investigates the numerical performance of the proposed method-
ology.

3.4 Numerical experiments

In this section, we study the performance of the proposed model based on some numerical
results, which highlight the importance of considering the method of sampling the data.
We first describe the estimation procedure for the investigated model. We conduct some
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simulations and compare the proposed CML method with the OML method. An applica-
tion to real data is also considered.
We consider the model defined in (3.5), and using the first twenty functions of the Fourier
basis {ϕj(t) ≡

√
2 sin(jπt), t ∈ [0, 1]}, we generate the explanatory pseudo-random func-

tion

X(t) =
20∑
j=1

εjϕj(t), (3.15)

where εj ∼ N (0, 1/j) for j ≥ 1. We define the parameter function as θ(t) = ∑20
j=1 θjϕj(t),

with θj = 0 for j > 4. The intercept α and the first three coefficients θ1, θ2, and θ3 will
be chosen for each of the three following models for different proportions of Yn = 1 in the
population: Q∗ = 0.10, 0.70, and 0.85.

• Logit model: Φ(t) = exp(t)/(1 + exp(t)).

• Probit model: Φ(·) is the standard normal distribution function.

• C-loglog model: Φ(t) = exp(− exp(−t)).

For each model, we generate a population (Yn, Xn)n=1,...m of size m = 3, 000, where Xn is
generated as described in (3.15) and the response variable Yn = 0, 1 is a pseudo-Bernoulli
random variable with probability Φ (α+

∫
Xn(t)θ(t)dt); we also calculate the associated

proportion of Yn = 1, that is, Q∗. Then, we draw three stratified samples of sizes N = 100,
200, and 400 using same-share sampling for the two strata, H∗ = 0.5. This means that
in the obtained stratified sample, the number of individuals with response Yn = 1 (called
cases) is N/2, equal to the number of individuals with response Yn = 0 (controls). Note
that fixing H∗ and varying Q∗ allows us to observe the influence of the ratio H∗/Q∗ on
the proposed CML method.
Recall that the truncation strategy used in this paper requires an appropriate choice of
orthonormal basis. This basis can be chosen to be a fixed orthonormal basis, such as the
Fourier basis; alternatively, it can be constructed by estimating the eigenfunctions of the
covariance kernel (3.7) and applying functional principal component analysis (FPCA) to
the explanatory random functions Xn. This FPCA should consider the approach used in
selecting the stratified sample.
The stratified FPCA method used here is similar to that of Cardot et al. (2010) in a
non-random sampling context; this FPCA method helps to construct a more efficient
eigenbasis compared with classical FPCA (Cardot et al., 2010, p.84). More precisely, the
FPCA applied in our CBS framework can be regarded as an FPCA applied to a stratified
sample, where the latter is built by independently drawing two samples of size N/2 each
through random sampling (without replacement) from the two strata defined by the re-
sponse variable. We apply the CML method using the eigenfunctions obtained from this
stratified FPCA. These eigenfunctions are those of the integral operator associated with
the integral kernel defined by the variance-covariance function of X, which is estimated
for each t, v ∈ [0, 1] as follows:

K̂(t, v) = 1
N − 1

N∑
n=1

Xn(t)Xn(v)
(
Q∗

H∗
I(Yn = 1) + 1−Q∗

1−H∗ I(Yn = 0)
)
. (3.16)

Note that when the OML method is applied, the eigenfunctions will be chosen through a
classic FPCA, which is equivalent to using (3.16) with H∗ = Q∗.
Another key step is the choice of the number p of eigenfunctions used in the truncation
strategy. We will consider the Akaike Information Criterion (AIC) based on (3.10). Müller
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& Stadtmüller (2005) discussed the consistency of the choice of p using AIC in the case
of random sampling. We think that this criterion remains consistent in the CBS context;
this could be theoretically investigated in the future. Note that we use a pre-selected p
based on the cumulative inertia. Indeed, we focus on the selection of p (using AIC) from
among those associated with cumulative inertia values lower than some threshold (here,
95%).
As a measure of accuracy of the parameter function, (see, e.g., Escabias et al., 2007) the
usual Integrated Mean Square Error

IMSE =
∫ 1

0

(
θ(t)− θ̂(t)

)2
dt, (3.17)

is considered to compare the two estimation strategies: CML and OML. Other alternative
approaches to choosing p (e.g., correct classification rate and variance of the estimated
parameter function) have been tested. They give similar results for the two estimation
methods but are less stable than AIC.
The studied models are replicated 200 times, and the results are presented in Tables 3.1,
3.2 and 3.3. In each table, the columns titled PCs, α and IMSE give the averages over these
200 replications (with the standard deviation in brackets) of the number of eigenfunctions
p, the intercept estimate α̂, and the associated IMSE defined in (3.17), respectively. The
p-val column represents the p-value associated with a Wilcoxon-Mann-Whitney test with
the following alternative hypothesis: The mean IMSE associated with the estimate obtained
using the OML method is greater than that associated with the CML method. Note that
for the logit model (Table 3.1 and Figure 3.1), the CML and OML methods yield very
similar results in terms of the IMSE for both small and large proportions Q∗ of events
(Yn = 1) in the sample. The OML method yields a biased intercept estimate compared
with the CML method, whereas the slope estimates are similar. These findings illustrate
the comments given in Section 3.3 regarding the bias of the intercept and the consistency
of the slope in the logit case when the OML approach is used. As stated before, this is a
well-known phenomenon for the case in which the explanatory variables take real values,
and it is still valid in our functional context (see Table 3.1 and Figure 3.1). For the probit
model (Table 3.2 and Figure 3.2), the OML method also yields a biased intercept estimate
compared with the CML method. However, the performance of the CML estimator of
θ∗(·) is superior to that of the OML estimator, particularly for a low or high number of
cases in the sample (Q∗ = 0.10 or 0.85) and a large sample size. High performance of
the CML estimator of θ∗(·) is observed when the C-loglog model is used (Table 3.3 and
Figure 3.3), particularly when Q∗ = 0.10 or 0.85. This can be explained by the fact that
the C-loglog distribution is better adapted to extreme values than the logit and probit
distributions, which are symmetric around 0.
For the different models, the strategy used to choose p yields (on average) values close to
the true parameter p = 3 (see the columns titled PCs in Tables 3.1-3.3).

3.4.1 Empirical power simulations

This section is dedicated to testing for no regression effect using the asymptotic results of
Section 3.3. We consider the null hypothesis H0 : α∗ = 0 and θ∗i = 0, i = 1, 2, . . ., for the
case of a logit model with Q∗ ≈ 0.70. The rejection region, derived from Theorem 3.1,
is |Z| > z0.95, where Z is the test statistic defined by the left-hand side of (3.12) (under
H0) and z0.95 is the 95% quantile of a standard normal distribution. The empirical power
is calculated as the proportion of cases in which H0 is rejected over 500 replications of
two stratified samples of sizes N = 100 and 400. The power is a function of δ ∈ [0, 2],
where this parameter serves in each replication to generate the logit model with parameter
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Table 3.1: Logit Model

Parameters N OML CML p-val
α IMSE PCs α IMSE PCs

Q∗ = 0.10 100 -0.17 0.85 2.30 -1.97 0.92 2.27 0.88
α = −2 (0.12) (0.41) (0.46) (0.10) (0.45) (0.45)
θ1 = −0.5 200 -0.17 0.50 2.56 -1.99 0.50 2.56 0.62
θ2 = −0.7 (0.07) (0.38) (0.50) (0.08) (0.38) (0.50)
θ3 = −0.9 400 -0.16 0.13 2.97 -2.00 0.14 2.97 0.76(0.05) (0.16) (0.16) (0.06) (0.13) (0.16)
Q∗ = 0.70 100 0.32 0.47 2.03 1.21 0.47 2.02 0.30
α = 1.2 (0.15) (0.29) (0.18) ( 0.14) (0.35) (0.15)
θ1 = 1.3 200 0.31 0.34 2.10 1.19 0.33 2.12 0.41
θ2 = 0.7 (0.10) (0.25) (0.30) (0.11) (0.11) (0.32)
θ3 = 0.4 400 1.00 0.28 2.25 1.21 0.27 2.26 0.49(0.10) (0.17) (0.44) (0.10) (0.15) (0.44)
Q∗ = 0.85 100 0.49 0.94 2.21 2.28 0.92 2.18 0.50
α = 2.3 (0.17) (0.43) (0.41) (0.17) (0.41) (0.38)
θ1 = 1 200 0.48 0.63 2.46 2.27 0.65 2.42 0.59
θ2 = −0.7 (0.11) (0.39) (0.50) (0.12) (0.37) (0.50)
θ3 = 0.9 400 0.51 0.29 2.81 2.30 0.29 2.83 0.65(0.39) (0.28) (0.39) (0.10) (0.27) (0.41)

Table 3.2: Probit Model

Parameters N OML CML p-val
α IMSE PCs α IMSE PCs

Q∗ = 0.10 100 -0.36 0.50 2.85 -1.49 0.41 2.93 0.06
α = −1.5 (0.13) (0.39) (0.48) (0.09) (0.32) (0.54)
θ1 = −0.5 200 -0.36 0.24 3.08 -1.51 0.17 3.13 10−3
θ2 = −0.7 (0.08) (0.20) (0.28) (0.07) (0.12) (0.34)
θ3 = −0.9 400 -0.36 0.15 3.11 -1.51 0.08 3.19 10−7

(0.06) (0.11) ( 0.32) (0.05) (0.06) (0.39)
Q∗ = 0.70 100 0.52 0.50 2.12 1.01 0.46 2.11 0.36
α = 1 (0.12) (0.43) (0.33) (0.18) (0.33) (0.31)
θ1 = 1.5 200 0.52 0.26 2.24 1.00 0.27 2.22 0.59
θ2 = 0.8 (0.12) (0.17) (0.43) (0.11) (0.17) (0.42)
θ3 = 0.4 400 0.53 0.17 2.43 1.01 0.16 2.44 0.13(0.08) (0.10) ( 0.50) (0.08) (0.10) (0.50)
Q∗ = 0.85 100 1.13 0.86 2.48 2.05 0.80 2.50 0.16
α = 2 (0.24) (0.52) (0.50) (0.23) (0.49) (0.51)
θ1 = 1.6 200 1.14 0.44 2.76 2.02 0.37 2.72 0.04
θ2 = −0.7 (0.20) (0.34) (0.43) (0.15) (0.30) (0.45)
θ3 = 0.9 400 1.14 0.18 3.01 2.01 0.15 3.04 0.13(0.13) (0.16) (0.09) (0.12) (0.11) (0.20)
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Figure 3.1: Graphs of the simulated parameter function θ(·) (black curve) and the means
(using 200 replications) of its estimates obtained using the OML method (blue curve) and
the CML method (red curve) for the logit model.
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Figure 3.2: Graphs of the simulated parameter function θ(·) (black curve) and the means
(using 200 replications) of its estimates obtained using the OML method (blue curve) and
the CML method (red curve) for the probit model.
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Figure 3.3: Graphs of the simulated parameter function θ(·) (black curve) and the means
(using 200 replications) of its estimates obtained using the OML method (blue curve) and
the CML method (red curve) for the C-loglog model.
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Table 3.3: C-loglog Model

Parameters N OML CML p-val
α IMSE PCs α IMSE PCs

Q∗ = 0.10 100 -0.07 1.64 2.95 -1.00 0.37 2.97 10−27
α = −1 ( 0.12) (1.22) (0.48) (0.08) (0.31) ( 0.55)
θ1 = −0.5 200 -0.07 1.01 3.05 -1.00 0.12 3.14 10−42
θ2 = −0.7 ( 0.12) (0.62) (0.22) (0.06) (0.09) ( 0.35)
θ3 = −0.9 400 -0.08 0.85 3.07 -1.00 0.07 3.16 10−45

(0.06) (0.41) ( 0.27) (0.05) (0.07) (0.38)
Q∗ = 0.70 100 0.84 0.26 2.02 1.50 0.31 2.05 0.77
α = 1.5 (0.14) (0.16) (0.15) (0.16) (0.27) (0.21)
θ1 = 1.6 200 0.85 0.17 2.25 1.49 0.16 2.16 0.02
θ2 = 0.5 (0.10) (0.10) (0.60) (0.13) (0.11) (0.52)
θ3 = 0.2 400 0.85 0.13 2.12 1.51 0.11 2.15 10−5

(0.08) (0.06) (0.36) (0.09) (0.07) (0.40)
Q∗ = 0.85 100 0.76 0.74 2.30 2.29 0.85 2.31 0.86
α = 2.3 (0.09) (0.37) (0.46) (0.15) (0.50) (0.47)
θ1 = 1 200 0.76 0.42 2.65 2.29 0.41 2.66 0.35
θ2 = −0.7 (0.09) (0.33) (0.49) (0.15) (0.31) (0.47)
θ3 = 0.9 400 0.76 0.27 2.93 2.30 0.16 2.96 10−9

(0.06) (0.16) (0.25) (0.09) (0.14) (0.18)

α∗ = 1.2δ and the first three coefficients of θ∗(·) are given by θ∗1 = 1.3δ, θ∗2 = 0.7δ, and
θ∗3 = 0.4δ. The two estimation procedures, CML and OML, are used. The results are
presented in Figure 3.4. Figure 3.5 shows the histograms of the 500 values of Z obtained
in replications with θ† = (1, 1.3, 0.7, 0.4)T for the two estimates of θ̂† obtained via the CML
and OML methods (see Remark 3.2). This figure shows that the asymptotic distribution
of Z in the OML case is not a standard normal distribution, unlike in the CML case. One
can conclude that the test based on the CML method is more powerful than that based
on the OML method. In addition, for both methods, the power of the test is influenced
by the sample size.

3.4.2 Application to kneading data

Here, we compare our methodology with the OML method on kneading data. Let us con-
sider the quality of cookies from curves representing the resistance (density) of the dough
for 90 flours. For a given flour, the resistance of the dough is recorded at 241 equi-spaced
time points during the first 480 seconds of a kneading process. The cookie quality asso-
ciated with each flour is observed; 50 flours are assessed as being of good quality, and 40
are assessed as being of poor quality. This dataset comes from a French agro-industry
company. A good interpretation of cookie quality based on flour resistance may allow
agro-industry companies to avoid the use of certain flours that could threaten their cookie
quality.
The resistance curves can be regarded as sample paths of a square-integrable stochastic
process {X(t), t ∈ [0, 480]} (left panel in Figure 3.6) and are smoothed using cubic B-spline
functions with 16 knots:
{10, 42, 84, 88, 108, 134, 148, 200, 216, 284, 286, 328, 334, 380, 388, 478} (right panel in Fig-
ure 3.6); see Preda et al. (2007) for more details on this smoothing. The poor-quality



3.4. Numerical experiments 51

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ

Em
pi

ric
al

 P
ow

er

Figure 3.4: Graphs of the empirical power of the significance test for a logit model. The
curves represent the results for the CML (red) and OML (blue) methods with sample sizes
of 100 (dashed) and 400 (solid). A total of 500 replications, the Fourier basis and a fixed
p = 3 are used.

cookies are regarded as cases, Y = 1, whereas the good-quality cookies are the controls,
Y = 0. Let S = {(yi, xi), i = 1, ..., 90} denote this kneading dataset composed of the 90
resistance curves and corresponding quality of cookies. The aim of this case study is to
illustrate our methodology on this dataset rather than selecting a specific cookie quality
prediction method. For that, we adopt the following strategy. The sample S is considered
as the flour population of the considered French agro-industry company, with the propor-
tion of cases Q∗ = 40/90 = 44%. In this population, we draw a CBS sample Scbs of size
N = 60 with a proportion of cases equal to H∗ = 25%. With this sample, three models
(Logit, Probit, and C-loglog) with an intercept are estimated using the OML and CML
methods, each with the corresponding FPCA approach detailed above. The AIC is used
to choose the number of eigenfunctions p. With the obtained estimates α̂ and θ̂(·), we
compute the average squared error (ASE) on the remainder of the population (a set Sr of
30 observations):

ASE = 1
30

∑
(yi,xi)∈Sr

(
yi − Φ

(
α̂+

∫ 480

0
xi(t)θ̂(t)dt

))2
.

We replicate this methodology 100 times and report the results in Table 3.4 and Fig-
ure 3.7. The rows of Table 3.4 titled Intercept, PCs, and ASE give the averages over the
100 replications (with the standard deviation in brackets) of the intercept estimate α̂, the
number of eigenfunctions p, and the ASE.
For the three models, the results show differences between the OML and CML methods,
particularly in terms of the intercept estimate. The ASE associated with the CML esti-
mate is lower than that associated with the OML method. The C-loglog model seems to
better fit the data; it gives a smoother estimated parameter function (lower number of
eigenfunctions, approximately 3) and lower average squared error by the CML method.
These findings illustrate the differences mentioned above regarding the OML and CML
methods.
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Figure 3.5: Graphs of the histograms associated with a logit model for 500 values of
Z (defined on the right-hand side of (3.12)) obtained with 500 replications with θ† =
(1, 1.3, 0.7, 0.4)T for the two estimates of θ̂† obtained using the CML and OML methods.
The red curve represents the density of a standard normal distribution.

Table 3.4: Results over 100 replications with a CBS sample of size N = 60 drawn in S,
Q∗ = 44%, H∗ = 25%.

Logit Model Probit Model C-loglog Model
OML CML OML CML OML CML

Intercept -9.13 -8.08 -1.68 -1.14 -0.35 0.20
(9.52) (9.4) (1.57) (1.32) (0.26) (0.26)

PCs 5.74 5.53 3.96 4.08 3.44 3.17
(4.03) (3.75) (3.27) (3.00) (2.27) (1.86)

ASE 0.18 0.15 0.13 0.10 0.10 0.07
(0.07) (0.07) (0.06) (0.05) (0.04) (0.03)

3.5 Conclusion

In this work, we propose a functional binary choice model for use in analyzing a sample
obtained via a choice-based sampling process. A conditional maximum likelihood method
(Manski & McFadden, 1981) and a truncation strategy (Müller & Stadtmüller, 2005) are
combined to obtain estimators of the intercept and the parameter function. The novel as-
pect of the proposed method is that it considers both the functional nature of the covariate
and the particular sampling design. It is shown that our estimator is asymptotically nor-
mal. After studying the theoretical behaviour of the proposed methodology, we consider
its practical use. The presented numerical study shows that our method performs better
than the ordinary maximum likelihood method under choice-based sampling. According
to the numerical results, the proposed estimation method yields significantly more accu-
rate estimates for the intercept and the parameter function, particularly for a probit or
C-loglog model. Consequently, one can see the proposed methodology as a good alterna-
tive to the classical maximum likelihood method for estimating a binary functional choice
model under choice-based or case-control sampling.
In future work, we would like to apply the proposed method to investigate the association
between genetic variants (genotypes) and phenotypes (see Fan et al., 2014); these authors
find that generalized functional linear models are a good tool for addressing this type of
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Figure 3.6: Kneading data for 90 flours observed over 480 s. Left: observed data. Right:
smoothed data.

problem. We could address a model where one does not have knowledge of the size of
the cases in the population. Moreover, the consideration of spatio-functional random co-
variates or functional space-time series, which are not currently included in our approach,
could be investigated in the future.

3.6 Appendix

Let us present some preliminary lemmas.

Lemma 3.1. (Rao, 1973, p.59)
Let g(s, β) be a real-valued function over a space S×Θ such that g is integrable with respect
to a measure ν over S and g(s, β) ≥ 0 for all s ∈ S and β ∈ Θ. Let β∗ be an element of
Θ such that g(s, β∗) > 0 for almost every s ∈ S and

∫
S(g(s, β∗)− g(s, β))dν(s) ≥ 0 for all

β ∈ Θ. Then, the expression ∫
S
g(s, β∗) log g(s, β)dν(s),

attains its maximum at β = β∗.

Lemma 3.2. (Amemiya, 1973, Lemma 3, p.1002)
Let fN (s, β), N = 1, 2, . . ., be a sequence of measurable functions on a measurable space
S, where for each s ∈ S, fN (s, β) is a continuous function of β ∈ Θ, where Θ is compact.
Then, there exists a sequence of measurable functions β̂N (s), N = 1, 2, . . ., such that
β̂N (s) = supβ∈Θ fN (s, β) for all s ∈ S and N = 1, 2, . . .. Furthermore, if, for almost
every s ∈ S, fN (s, β) uniformly converges to f(β) for all β ∈ Θ and if f(β) has a unique
maximum at β∗ ∈ Θ, then β̂N (s) converges to β∗ for almost every s ∈ S.

Let us adopt the following notation (see Section 3.2.2):

η = α+
∫
T
X(t)θ(t)dt = α+

∞∑
i=1

θiεi, η∗ = α∗ +
∞∑
i=1

θ∗i εi,
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Figure 3.7: Graphs of the average (over 100 replications of a CBS sample of size N = 60
with Q∗ = 44% and H∗ = 25%) parameter function estimates obtained using the OML
method (black curve) and CML method (red curve).

for all θ(·) ∈ L2(T ), X ∈ X .

η̃ =
pN∑
i=0

θiεi, η̃∗ = α∗ +
pN∑
i=1

θ∗i εi for all θ ∈ Θ.

The convergence in probability of θ̂† to θ† can be deduced from the following Lemma.

Lemma 3.3. Under assumptions (H1) and (H2), we have

θ̂† − θ† = op(1).

Proof of Lemma 3.3

Let
F (θ(·), X) = Es ({Y log (µ(η̃)) + (1− Y ) log (1− µ(η̃))} |X) .

We utilize the definition of Es,

F (θ(·), X) = µ(η∗) log (µ(η̃) + (1− µ(η∗)) log (1− µ(η̃))

= F̃ (θ, ε) + (µ(η∗)− µ(η̃∗)) log
(

µ(η̃)
1− µ(η̃)

)
,

with
F̃ (θ, ε) = µ(η̃∗) log (µ(η̃) + (1− µ(η̃∗)) log (1− µ(η̃)) .

Using assumption (H2) and the approximation of the truncation strategy, we deduce that

Es
(
(µ(η∗)− µ(η̃∗))2

)
= o(1), (3.18)

and that log
(

µ(η̃)
1−µ(η̃)

)
is bounded uniformly on X and Θ. Therefore,

Es(F (θ(·), X)) = Es(F̃ (θ, ε)) + o(1). (3.19)
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Under CBS, the observations (Yn, {Xn(t), t ∈ T }), n = 1, . . . , N , are i.i.d with a dis-
tribution characterized by Es. However, by the law of large numbers, we have, for all
θ ∈ RpN+1,

1
N
L̃pN (θ)− Es (F (θ(·), X)) = op(1), (3.20)

where L̃pN is the truncated log-likelihood defined in (3.10).
Therefore,

1
N
L̃pN (θ)− Es(F̃ (θ, ε)) = op(1). (3.21)

The function F̃ (θ, ε) can be regarded as the conditional expectation of some binary random
variable Ỹ given ε such that Es(Ỹ |ε) = µ(η̃∗). By Lemma 3.1 and under assumption
(H2), Es(F (θ, ε)) attains its unique maximum over θ ∈ Θ at θ = θ†. Hence, by (3.21) and
Lemma 3.2, θ̂† converges in probability to θ†.

�

Proof of Theorem 3.1. This proof is an adaptation of the proof of Theorem 4.1 of
Müller & Stadtmüller (2005). Our notation is also similar to that of these authors. For
completeness, we present the main steps of the proofs. Let ‖M‖22 = (∑k,lm

2
kl) denote the

matrix norm considered here. Using µ(·) and η, we rewrite the pseudo-likelihood (3.10) as

L̃PN (θ) =
N∑
n=1

Yn log(µ(η̃n)) + (1− Yn) log(1− µ(η̃n)).

We will denote by U(θ) the gradient of this function, defined as

U(θ) = ∂

∂θ
L̃pN (θ) =

N∑
n=1

µ
′(η̃n)

σ̃2(η̃n)(Yn − µ(η̃n))ε(n), (3.22)

with σ̃(·) = σ(µ(·)); by definition, U(θ̂†) = 0. Let Jθ† denote the Hessian matrix at θ†,
that is,

Jθ† = ∂

∂θT
U(θ)

∣∣∣∣
θ†

=
N∑
n=1

∂

∂η̃

{
µ
′(η̃n)

σ̃2(η̃n)(Yn − µ(η̃n))ε(n)
}∣∣∣∣∣

η̃∗n

∂

∂θ
η̃n

∣∣∣∣
θ†

= −
N∑
n=1

µ
′2(η̃∗n)
σ̃2(η̃∗n) ε

(n)ε(n)T

+
N∑
n=1

(Yn − µ(η̃∗n))
{
µ
′′(η̃∗n)
σ̃2(η̃∗n) −

µ
′(η̃∗n)σ̃2′(η̃∗n)
σ̃4(η̃∗n)

}
ε(n)ε(n)T

= −DTD +R,

where D =
(
µ
′(η̃∗n)ε(n)

k /σ̃(η̃∗n)
)

1≤n≤N, 0≤k≤pN
. As in Müller & Stadtmüller (2005), we

would like to show that the term R can be neglected. Now, we apply a Taylor expansion
to U(·) for θ̃† between θ† and θ̂†, obtaining

U(θ†) =
{
DTD + (Jθ† − Jθ̃†)− (Jθ† +DTD)

}
(θ̂† − θ†).

Then, we have

√
N(θ̂† − θ†) =

IpN+1 +
(
DTD

N

)−1(Jθ† − Jθ̃†
N

)

−
(
DTD

N

)−1(
Jθ† +DTD

N

)
−1(

DTD

N

)−1
U(θ†)√
N

.
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By assumption (H2), we have ‖µ(r)‖ < C, r = 1, 2, σ̃2(·) < C and σ̃(·) > δ, and thus,

Es

∥∥∥∥∥Jθ† +DTD

N

∥∥∥∥∥
2

2

 = O

(
p2
N

N

)
.

Therefore, (H3) implies that∥∥∥∥∥∥
(
DTD

N

)−1
Jθ† +DTD

N

(
DTD

N

)−1
U(θ†)√
N

∥∥∥∥∥∥
2

= op(1).

Since θ̃† converges in probability to θ† by Lemma 3.3, we have∥∥∥∥∥∥
(
DTD

N

)−1 Jθ† − Jθ̃†
N

(
DTD

N

)−1
U(θ†)√
N

∥∥∥∥∥∥
2

= op(1).

Then, it follows that as N →∞,∥∥∥∥∥∥
√
N(θ̂† − θ†)−

(
DTD

N

)−1
U(θ†)√
N

∥∥∥∥∥∥
2

= op(1).

Now, the asymptotic distribution of
√
N(θ̂† − θ†) is seen as that of(
DTD

N

)−1
U(θ†)√
N

.

Let us define the (pN + 1) vector ZN and the (pN + 1)× (pN + 1) matrix ΨN as follows:

ZN = Ξ1/2
pN

DT e√
N

; ΨN = ∆1/2
pN

(
DTD

N

)−1

∆1/2
pN
,

where en = (Yn − µ(η̃∗n)) /σ̃(η̃∗n), n = 1, . . . , N are the components of the vector e.
We consider the following decomposition:

(
DTD

N

)−1
U(θ†)√
N


T

∆pN


(
DTD

N

)−1
U(θ†)√
N


= ZTNΨ2

NZN
= ZTNZN + 2ZTN (ΨN − IpN+1)ZN

+ ZTN (ΨN − IpN+1)(ΨN − IpN+1)ZN
≡ FN +GN +HN .

We have, by (H4)-(H5) and Proposition 7.1 in Müller & Stadtmüller (2005),(
ZTNZN − (pN + 1)

)
/
√

2pN → N (0, 1). (3.23)

Thus, we deduce that
∣∣∣ZTNZN ∣∣∣ = Op(pN ), and by (H3) and (H4),

‖ΨN − IpN+1‖2 = op(1/
√
pN ). (3.24)

Then, by (H3)-(H4) and using similar arguments as in Lemma 7.2 of Müller & Stadtmüller
(2005), we have

|GN | ≤
∣∣∣ZTNZN ∣∣∣ ‖ΨN − IpN+1‖2 = op(

√
pN ), |HN | ≤

∣∣∣ZTNZN ∣∣∣ ‖ΨN − IpN+1‖22 = op(1).

This completes the proof of Theorem 3.1.
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�

Proof of Corollary 3.2. This proof is similar to that of Corollary 4.3 of Müller &
Stadtmüller (2005) and is thus omitted.

�

Proof of Theorem 3.2 : By the law of large numbers, we have, for each θ ∈ Θ,

1
N
LRSpN (θ)− Es

(
Y log

( Φ(η̃)
1− Φ(η̃)

)
+ log (1− Φ(η̃))

)
= op(1).

Through simple computations, one can prove that

Es

(
Y log

( Φ(η̃)
1− Φ(η̃)

)
+ log (1− Φ(η̃))

)
= E

(
H∗

Q∗
Φ(η̃∗) log(Φ(η̃)) + 1−H∗

1−Q∗ (1− Φ(η̃∗)) log(1− Φ(η̃))
)

+ E

(
(Φ(η∗)− Φ(η̃∗)) log

(
(Φ(η̃))H∗/Q∗

(1− Φ(η̃))(1−H∗)/(1−Q∗)

))
(3.25)

= FRS(θ) + o(1), (3.26)

where

FRS(θ) ≡ E
(
H∗

Q∗
Φ(η̃∗) log(Φ(η̃)) + 1−H∗

1−Q∗ (1− Φ(η̃∗)) log(1− Φ(η̃))
)
,

and where the second term on the right-hand side of (3.25) is of order o(1) by applying a
truncation strategy (similar to (3.9)) and assumption (H2). Now, as in Lemma 3.3, the
consistency of θ̂†RS when estimating θ† requires that

∂FRS
∂θ

(θ†) = E

((
H∗

Q∗
− 1−H∗

1−Q∗
)

Φ′(η̃∗)ε
)

= 0. (3.27)

This is not possible since H∗ 6= Q∗ and E(εΦ′(η̃∗)) 6= 0 by assumption. Consequently,
(3.27) (first-order condition) will not be satisfied. Therefore, by Lemma 3.2, θ̂†RS converges
in probability to some θ̃ 6= θ† that effectively maximizes FRS(·). This concludes the proof
of the theorem.

�
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Résumé en français

Précédemment, nous nous sommes intéressés à un modèle à choix binaire fonctionnel
dans un cadre d’échantillonnage non aléatoire, dans ce chapitre nous allons considérer un
modèle linéaire fonctionnel dans un carde spatial. Nous supposons que nous observons
une variable réponse Y à valeurs dans R et une fonction aléatoire {X(t), t ∈ T } à valeurs
dans X ⊂ L2(T ) en n unités spatiales situées dans une région In de cardinal n, incluse
dans une région de type lattice, dénombrable I ⊂ RN . Contrairement au Chapitre 3,
nous supposons que ces observations ont été collectées via un processus d’échantillonnage
aléatoire et sont spatialement dépendantes. Nous considérons que la structure de cette
dépendance spatiale entre les n sites est décrite par une matrice de poids déterministe Wn

(matrice d’interactions) n× n, dont l’élément wijn est généralement défini en fonction de
la distance entre les sites i et j par rapport à une certaine métrique (distance physique,
lien sociale ou distance économique, voir par exemple Pinkse & Slade (1998)). Dans la
suite, nous supposons que les n observations (Xi, Yi), i = 1, ..., n, suivent le modèle linéaire
fonctionnel autorégressif spatial suivant :

Yi = λ0

n∑
j=1

wijnYj +
∫
T
Xi(t)θ∗(t)dt+ Ui, i = 1, . . . , n, n = 1, 2, . . . , (4.1)
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où le paramètre λ0 d’autocorrélation spatiale au niveau de la variable réponse, θ∗(·) le
paramètre fonctionnel, sont inconnus. Les termes d’erreurs {Ui, i = 1, . . . , n, n = 1, 2, . . .}
sont supposées centrées indépendantes et identiquement distribuées avec E(U2

i ) = σ2
0.

Comme dans le chapitre précédent, nous nous intéressons à l’estimation des paramètres
λ0, θ∗(.) et σ2

0. Nous supposons que les éléments de la matrice de poids spatial Wn vérifient
wij = O(h−1

n ) uniformément á i, j, oú hn = o(n).
Soit Xn(θ∗(.)) le vecteur (n×1) dont le i-éme élément est

∫
T Xi(t)θ∗(t)dt, nous pouvons

alors ré-écrire (4.1) sous la forme matricielle suivante :

SnYn = Xn(θ∗(.)) + Un , n = 1, 2, . . .

où Sn = (In − λ0Wn), Yn et Un sont deux vecteurs dont les éléments sont Yi et Ui , i =
1, . . . , n respectivement. Par conséquence, le logarithme de la fonction de quasi vraisem-
blance conditionnelle est défini par

Ln(λ, θ(.), σ2) = −n2 lnσ2 − n

2 ln(2π) + ln|Sn(λ)|

− 1
2σ2 [Sn(λ)Yn −Xn(θ(.))]

′
[Sn(λ)Yn −Xn(θ(.))] , (4.2)

avec Sn(λ) = In − λWn.
Contrairement au cadre fonctionnel, des travaux d’estimation de ce type de modèles ex-
istent dans le cas où la variable explicative X est à valeurs réelles (voir par exemple Lee
(2004), qui ont défini des estimateurs du quasi maximum de vraisemblance pour λ0, le
vecteur de paramètres θ∗ et σ2

0, en maximisant l’équivalent de (4.2)).
Dans le cadre du modèle fonctionnel (4.1) considéré, nous proposons une méthode d’estimation
qui étend les travaux existants dans le cadre réel à l’aide d’une réduction de la dimension
infinie de l’espace de la variable explicative fonctionnelle X(·). Nous utilisons la tech-
nique de troncature utilisée dans le chapitre précédent. Soit {ϕj , j = 1, 2, . . .} une base
orthonormale de L2(T ). On peut récrire X(t) et θ∗(t) comme suit :

X(t) =
∑
j≥1

εjϕj(t) et θ∗(t) =
∑
j≥1

θ∗jϕj(t),

où les variables aléatoires réelles εj et les coefficients θ∗j sont définis par

εj =
∫
T
X(t)ϕj(t)dt et θ∗j =

∫
T
θ∗(t)ϕj(t)dt.

Nous avons alors : ∫
T
X(t)θ∗(t)dt =

∑
j≥1

θ∗j εj =
pn∑
j=1

θ∗j εj +
∞∑

j=pn+1
θ∗j εj , (4.3)

où pn est une suite d’entiers naturels, qui croît asymptotiquement avec n. Nous reprenons
l’idée d’approximation utilisée dans le chapitre 3 avec une fonction de lien identité (Φ(t) =
t). Le logarithme de la quasi vraisemblance conditionnelle tronquée est obtenu en ap-
prochant la partie à gauche de (4.3) par le premier terme de la partie à droite de la
décomposition précédente. Par conséquent, nous avons

L̃n(λ, θ, σ2) = −n2 lnσ2 − n

2 ln(2π) + ln|Sn(λ)|

− 1
2σ2 [Sn(λ)Yn − ξpnθ]

′
[Sn(λ)Yn − ξpnθ] . (4.4)
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où ξpn est une n× pn matrice dont les éléments

ξpnij =
∫
T
Xi(t)ϕj(t)dt , j = 1, . . . , pn, i = 1, . . . , n.

Pour un λ fixé, (4.4) est maximisée par

θ̂n,λ = (ξ′pnξpn)−1ξ
′
pnSn(λ)Yn = (θ̂nj,λ)j=1,...,pn

et

σ̂2
n,λ = 1

n

(
Sn(λ)Yn − ξpn θ̂n,λ

)′ (
Sn(λ)Yn − ξpn θ̂n,λ

)
= 1

n
Y′nS

′
n(λ)MnSn(λ)Yn,

où Mn = In − ξpn(ξ′pnξpn)−1ξ
′
pn .

Par conséquent, le logarithme de la quasi vraisemblance conditionnelle tronquée corre-
spondant à λ est défini par

L̃n(λ) = −n2 (ln(2π) + 1)− n

2 lnσ̂2
n,λ + ln|Sn(λ)|.

Ainsi, l’estimateur de λ0 est le paramètre λ̂n qui maximise L̃n(λ), et ceux du vecteur θ∗ est
la variance σ2

0 sont θ̂n,λ̂n et σ̂2
n,λ̂n

respectivement. On déduit de ces derniers l’estimateur
du paramètre fonctionnel

θ̂n(t) =
pn∑
j=1

θ̂nj,λ̂nϕj(t).

Dans la suite, nous étudions l’identification des paramètres étudiés et les comportements
asymptotiques des estimateurs proposés, notamment la normalité asymptotique. Sous
des conditions non restrictives, nous montrons que les paramètres λ0, σ2

0 et le paramètre
fonctionnel θ∗(·), sont identifiables et que√

n

hn
(λ̂n − λ0)→ N (0, s2

λ) et
√
n(σ̂2

n,λ̂n
− σ2

0)→ N (0, s2
σ),

avec

s2
λ = lim

n→∞
s2
nhn
n

{
hn
n

[
∆n + σ2

0tr(Gn(G′n +Gn))
]}−2

; s2
σ = µ4−σ4

0+4s2
λ lim
n→∞

hn

[tr(Gn)
n

]2
,

où

s2
n = σ2

0

[
θ∗
′Γpnθ∗ + σ2

0

]
tr
(
Gn(G′n +Gn)

)
+
[
3σ2

0θ
∗′Γpnθ∗ + σ4

0 − µ4
] 1
n

tr2(Gn)

+
[
µ4 − 3σ4

0 − σ2
0θ
∗′Γpnθ∗

] n∑
i=1

G2
ii,

tel que Gn = S−1
n Wn, Γpn = E

(
1
nξ
′
pnξpn

)
, µ4 = E(U4), et θ∗ = (θ∗1, . . . , θ∗pn)′ .

Nous déduisons de ces résultats que

n
(
θ̂n,λ̂n − θ

∗
)′

Γpn
(
θ̂n,λ̂n − θ

∗
)
− pn

√
2pn

→ N (0, σ4
0),

et
nd2

(
θ̂n(·), θ∗(·)

)
− pn

√
2pn

→ N (0, σ4
0),



62 Chapter 4. Functional linear SAR models

où d(·, ·) est une métrique dans L2(T ), définie par

d2 (f, g) =
∫ ∫

(f(t)− g(t))E(X(t)X(v)) (f(v)− g(v)) dtdv, f, g ∈ L2(T ).

Des résultats numériques basés sur des données simulées et de concentration d’ozone
au Sud-Est des États-Unis montrent la performance du modèle proposé ainsi que l’utilité
de prendre en consideration la dependence spatiale.

The results of this chapter are in collaboration with Laurence Broze (University of
Lille), Sophie Dabo-Niang (University of Lille) and Zied Gharbi (University of Lille). A
related paper is submitted as a book chapter.

4.1 Introduction

This work addresses two research areas: spatial statistics and functional data analysis.
Spatial functional random variables are becoming more common in statistical analyses
due to the availability of high-frequency spatial data and new mathematical strategies to
address such statistical objects.

Many fields, such as urban systems, agriculture, environmental science and economics,
often consider spatially dependent data. Therefore, modeling spatial dependency in sta-
tistical inferences (estimation of the spatial distribution, regression, prediction, . . . ) is a
significant feature of spatial data analysis. Spatial statistics provide tools to solve such
modelling. Various spatial models and methods have been proposed, particularly within
the scope of geostatistics or lattice data. Most of the spatial modeling methods are para-
metric and concern non-functional data. Several types of functional linear models for
independent data have been developed for different purposes. The most studied model is
perhaps the functional linear model for scalar response, originally introduced by Hastie
& Mallows (1993). Estimation and prediction problems for this model and some of its
generalizations have been reported mainly for independent data (see, e.g., Crambes et al.
(2009), Comte & Johannes (2012), Cai & Yuan (2012), Cuevas (2014)). Some research
exists on functional spatial linear prediction using kriging methods (see, e.g., Nerini et al.
(2010), Giraldo et al. (2010), Giraldo et al. (2011), Horváth & Kokoszka (2012), Giraldo
(2014), Bohorquez et al. (2016), Bohorquez et al. (2017),...), highlighting the interest in
considering spatial linear functional models.

Complex issues arise in spatial econometrics (statistical techniques to address economic
modeling), many of which are neither clearly defined nor completely resolved but form the
basis for current research. Among the practical considerations that influence the available
techniques used in spatial data modeling, particularly in econometrics, is data dependency.
In fact, spatial data are often dependent, and a spatial model must be able to account for
this characteristic. Linear spatial models, which are common in geostatistical modeling,
generally impose a dependency structure model based on linear covariance relationships
between spatial locations. However, under many circumstances, the spatial index does not
vary continuously over a subset of RN , N ≥ 2 and may be of the lattice type, the baseline
of this current work. This is, for instance, the case in a number of problems. In images
analysis, remote sensing form satellites, agriculture and so one, data are often received as
regular lattice and identified as the centroids of square pixels, whereas a mapping forms
often an irregular lattice. Basically, statistical models for lattice data are linked to nearest
neighbors to express the fact that data are nearby.

We are concerned here about spatial functional models for lattice data. One of the
well-known spatial lattice models is the spatial autoregressive model (SAR) of Cliff &
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Ord (1973), which extends regression in time series to spatial data. This model has been
extensively studied and extended in several ways in the case of real-valued data, compare
to the functional framework. Ruiz-Medina (2011) and Ruiz-Medina (2012) considered a
spatial unilateral autoregressive Hilbertian (SARH(1)) processes where the autoregressive
part is given in terms of three functional random components located in three points
defining the boundary between some notions of past and future.

The structure of SAR model for real-valued data and its identification and estimation
by the two stage least squares (2SLS), the three stage least squares (3SLS), the maximum
likelihood (ML) and the generalized method of moments (GMM) estimation methods have
been developed and summarized by many authors, such as Anselin (1988), Case (1993),
Kelejian & Prucha (1998), Kelejian & Prucha (1999), Lee (2007), Lin & Lee (2010), Zheng
& Zhu (2012), Malikov & Sun (2017), Garthoff & Otto (2017),... The identification and
estimation of such SAR models by the quasi-maximum likelihood (QML) are limited. Lee
(2004) and more recently Yang & Lee (2017), proposed the quasi-maximum likelihood
estimator for the SAR model with a spatial dependency structure based on a spatial
weights matrix. The quasi-maximum likelihood estimator (QMLE) is appropriate when
the disturbances in the considered model are not normally distributed. In the literature on
SAR models for real-valued data, the QMLE and maximum likelihood estimator (MLE) are
proved to be computationally challenging, consistent with rates of convergence depending
on the spatial weights matrix of the considered model (Lee, 2004; Yang & Lee, 2017).
These last works considered real-valued random responses and deterministic or random
real-valued covariates and investigated the asymptotic properties of the QMLE estimator
under some disturbance specifications.

The present work considers an estimation of a spatial functional linear model with a
random functional covariate and a real-valued response using spatial autoregression on the
response based on a weight matrix. We investigate parameter identification and asymptotic
properties of the QMLE estimator using the so-called increasing domain asymptotics.
We provide identification conditions combining identification in the classical SAR model
and identification in the functional linear model. Monte Carlo experiments illustrate the
performance of the QML estimation.

The rest of this chapter is organized as follows. In Section 4.2, we provide the func-
tional SAR (FSAR) and its quasi-likelihood estimator (QML). In Section 4.3, we state the
consistency and asymptotic normality of the estimator. To check the performance of the
estimator, numerical results are reported in Section 4.4 using different spatial scenarios,
where each unit is influenced by neighboring units. Proofs and technical lemmas are given
in the Appendix.

4.2 Model

We consider that at n spatial units located on In, a finite subset of cardinal n of a regular
or irregularly spaced, countable lattice I ⊂ RN , we observe a real-valued random variable
Y considered as the response variable and a functional covariate {X(t), t ∈ T }, a square-
integrable stochastic process on the interval T ⊂ R. Assume that the process {X(t), t ∈ T }
takes values in space X ⊂ L2(T ), where L2(T ) is the space of square-integrable functions
in T . The spatial dependency structure between these n spatial units is described by
an n × n non-stochastic spatial weights matrix Wn that depends on n. The elements
wij = wijn of this matrix are usually considered as inversely proportional to the distance
between spatial units i and j with respect to some metric, see Chapter 2. Since the weight
matrix changes with n, we consider these observations as triangular array observations.
This is required to conduct an asymptotic study of the following model that describes the
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relationship between the response variable Y and the covariate function X(.) (Robinson,
2011).
Here, we assume that the relationship between Y and X is modelled by the following
functional spatial autoregressive model (FSAR) with endogenous interactions:

Yi = λ0

n∑
j=1

wijYj +
∫
T
Xi(t)θ∗(t)dt+ Ui, i = 1, . . . , n, n = 1, 2, . . . (4.5)

where the autoregressive parameter λ0 is in compact space Λ, θ∗(·) is a parameter function
assumed to belong to the space of functions L2(T ), and (wij)j=1,...,n is the i-th row of Wn.
Assume that wij = O(h−1

n ) uniformly in all i, j, where the rate sequence hn can be bounded
or divergent, such as hn = o(n). This kind of matrix can be obtained by Nearest Neighbor
weights.
In practice, it is common, but not necessary, to row normalize the spatial weight matrix.
The row-standardization helps the interpretation and the comparison of weight matrices
and parameters λ, it allows 0 ≤ wij ≤ 1 and −1 ≤ λ ≤ 1. In this way, the spatially-lagged
variables are equal to a weighted average of the neighboring values.

The disturbances {Ui, i = 1, . . . , n, n = 1, 2, . . .} are assumed to be independent ran-
dom variables such that E(Ui) = 0, E(U2

i ) = σ2
0. They are also independent of {Xi(t), t ∈

T , i = 1, . . . , n, n = 1, 2 . . .}.
We are interested in estimating the unknown true parameters λ0, θ∗(.) and σ2

0. Let
Xn(θ∗(.)) be the n × 1 vector of i-th element

∫
T Xi(t)θ∗(t)dt; then, one can rewrite (4.5)

as
SnYn = Xn(θ∗(.)) + Un , n = 1, 2, . . .

where Sn = (In − λ0Wn), Yn and Un are two n × 1 vectors of elements Yi and Ui , i =
1, . . . , n respectively, and In denotes the n× n identity matrix.
Let Sn(λ) = In − λWn, so the conditional log-likelihood function of the vector Yn given
{Xi(t), t ∈ T , i = 1, . . . , n, n = 1, 2 . . .} is given by:

Ln(λ, θ(.), σ2) = −n2 lnσ2 − n

2 ln(2π) + ln|Sn(λ)|

− 1
2σ2 [Sn(λ)Yn −Xn(θ(.))]

′
[Sn(λ)Yn −Xn(θ(.))] , (4.6)

where A′ denotes the transpose of matrix A.
The quasi-maximum likelihood estimates of λ0, θ

∗(·) and σ2
0 are the parameters λ, θ(·),

and σ2 that maximize (4.6). But this likelihood cannot be maximized without addressing
the difficulty produced by the infinite dimensionality of the explanatory random function.
To solve this problem, we use the dimension reduction technique described in Chapter 3.

4.2.1 Truncated conditional likelihood method

Let {ϕj , j = 1, 2, . . .} be an orthonormal basis of the functional space L2(T ), usually a
Fourier or a Spline basis or a basis constructed by the eigenfunctions of the covariance
operator Γ, where the operator is defined by:

Γx(t) =
∫
T
E(X(t)X(s))x(s)ds , x ∈ X , t ∈ T . (4.7)

Using an expansion on this orthonormal basis, we can write X(.) and θ∗(.) in as follows:

X(t) =
∑
j≥1

εjϕj(t) and θ∗(t) =
∑
j≥1

θ∗jϕj(t) for all t ∈ T ,
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where the real random variables εj and the coefficients θ∗j are given by

εj =
∫
T
X(t)ϕj(t)dt and θ∗j =

∫
T
θ∗(t)ϕj(t)dt.

Let pn be a positive sequence of integers that increase asymptotically as n → ∞; by the
orthonormality of the basis {ϕj , j = 1, 2, . . .}, we can consider the following decomposition∫

T
X(t)θ∗(t)dt =

∞∑
j=1

θ∗j εj =
pn∑
j=1

θ∗j εj +
∞∑

j=pn+1
θ∗j εj . (4.8)

The truncation strategy introduced by Müller & Stadtmüller (2005) consists of approxi-
mating the left-hand side in (4.8) using only the first term of the right-hand side. This
is possible when the approximation error vanishes asymptotically, where this error is con-
trolled by a square expectation of the second term on the right-hand side of (4.8). In
particular, the approximation error vanishes asymptotically when one considers the eigen-
basis of the variance-covariance operator Γ by remarking that

E

 ∞∑
j=pn+1

θ∗j εj

2

=
∞∑

j=pn+1
θ∗

2
j E

(
ε2
j

)
=

∞∑
j=pn+1

θ∗
2
j δj

where δj , j = 1, 2 . . . are the eigenvalues. Under this truncation strategy, Xn(θ∗(.)) may
be approximated by ξpnθ

∗, where θ∗ = (θ∗1, . . . , θ∗pn)′ and ξpn is an n × pn matrix of the
(i, j)-th element given by

ε
(i)
j =

∫
T
Xi(t)ϕj(t)dt , i = 1, . . . , n j = 1, . . . , pn.

Now, the truncated conditional log-likelihood function can be obtained by replacing (4.6)
Xn(θ(.)) with ξpnθ for all θ(.) ∈ L2(T ) and θ ∈ Rpn . The corresponding and feasible log
conditional likelihood is

L̃n(λ, θ, σ2) = −n2 lnσ2 − n

2 ln(2π) + ln|Sn(λ)|

− 1
2σ2 [Sn(λ)Yn − ξpnθ]

′
[Sn(λ)Yn − ξpnθ] . (4.9)

For a fixed λ, (4.9) is maximized at

θ̂n,λ = (ξ′pnξpn)−1ξ
′
pnSn(λ)Yn = (θ̂nj,λ)j=1,...,pn

and

σ̂2
n,λ = 1

n

(
Sn(λ)Yn − ξpn θ̂n,λ

)′ (
Sn(λ)Yn − ξpn θ̂n,λ

)
= 1

n
Y′nS

′
n(λ)MnSn(λ)Yn,

where Mn = In − ξpn(ξ′pnξpn)−1ξ
′
pn .

The concentrated truncated conditional log-likelihood function of λ is:

L̃n(λ) = −n2 (ln(2π) + 1)− n

2 lnσ̂2
n,λ + ln|Sn(λ)|.

Then the estimator of λ0 is λ̂n, which maximizes L̃n(λ), and those of the vector θ∗ and
variance σ2

0 are, respectively, θ̂n,λ̂n , σ̂2
n,λ̂n

. The corresponding estimator of the function
parameter θ∗(.) is:

θ̂n(t) =
pn∑
j=1

θ̂nj,λ̂nϕj(t).
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The estimation of the model is given, we focus on the asymptotics results in the next
section.
For that purpose, we need to define some asymptotic method. As mentioned in Chapter
2, there are two main asymptotic methods in the spatial literature: increasing domain
and infill asymptotics (see Cressie, 1993, p. 480). In the following, we consider increasing
domain asymptotics.

4.3 Assumptions and results

Let us first state some combining condition assumptions related to the spatial dependency
structure and assumptions on the functional nature of the data.
Let In + λ0Gn = S−1

n where Gn = WnS
−1
n , Bn(λ) = Sn(λ)S−1

n = In + (λ0 − λ)Gn for all
λ ∈ Λ and An(λ) = B

′
n(λ)Bn(λ).

We assume that

Assumption 1

i. The matrix Sn, is nonsingular.
ii. The sequences of matrices {Wn} and {S−1

n } are uniformly bounded in both row
and column sums.

iii. The matrices {S−1
n (λ)} are uniformly bounded in either row or column sums

and uniformly bounded in λ in compact parameter space Λ. The true λ0 is in
the interior of Λ.

Assumption 2 The sequence pn satisfies pn →∞ and pnn
−1/4 → 0 as n→∞, and

i. pn
∑

r1,r2>pn

E (εr1εr2) = o(1)

ii.
∑

r1,...,r4>pn

E (εr1 . . . εr4) = o(1)

iii.
√
n
pn∑
s=1

∑
r1,r2>pn

E (εsεr1)E (εsεr2) = o(1).

Remark 4.1. Assumption 1-i ensures that Yn has mean S−1
n Xn(θ∗(·)) and variance

σ2
0S
−1
n S

′−1
n . The uniform boundedness of Wn and S−1

n in Assumption 1-ii enables the
control of the degree of spatial correlation and plays an important role in the asymptotic
properties of the estimators. By easy computation, one can show under this assumption
that the matrix Gn = WnS

−1
n is uniformly bounded in both row and column sums together

with elements of order h−1
n . Consequently, the matrix An(λ) = B

′
n(λ)Bn(λ) has a trace

of order n uniformly in λ ∈ Λ by the compactness condition of Λ in Assumption 1-iii.
Assumption 1-iii makes it possible to address the nonlinearity of ln|Sn(λ)| as a function
of λ in (4.9). For more detail and a discussion of Assumption 1, see Lee (2004).
Assumption 2 considers the rate of convergence of pn with respect to n. Condition iii of
Assumption 2 is satisfied when one consider the eigenbasis, since in this case E(εrεs) = 0,
for s 6= r.

To obtain the identifiability of λ0, θ∗ = (θ∗1, . . . , θ∗pn)′ , and σ2
0 in the truncated model,

remark that

E
(
L̃n(λ, θ, σ2)

)
= −n2 lnσ2 − n

2 ln(2π) + ln|Sn(λ)|

− 1
2σ2E

(
[Sn(λ)Yn − ξpnθ]

′
[Sn(λ)Yn − ξpnθ]

)
.
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We have

E
(
[Sn(λ)Yn − ξpnθ]

′
[Sn(λ)Yn − ξpnθ]

)
= E

(
[Bn(λ)Xn(θ∗(.))− ξpnθ]

′
[Bn(λ)Xn(θ∗(.))− ξpnθ]

)
+ σ2

0tr (An(λ))

= E
(
[Bn(λ)ξpnθ∗ − ξpnθ]

′
[Bn(λ)ξpnθ∗ − ξpnθ]

)
+ E

(
R
′
nAn(λ)Rn

)
+ σ2

0tr (An(λ)) + 2E
(
[Bn(λ)ξpnθ∗ − ξpnθ]

′
Bn(λ)Rn

)
,

where Rn = (R1, . . . , Rn)′ with Ri = ∑
j>pn θ

∗
j ε

(i)
j . Let R denote the generic copy of

Ri, i = 1, . . . , n, where E(R) = 0.
We then have

E
(
θ∗
′
ξ
′
pnBn(λ)Rn

)
= tr (Bn(λ)) εn1, where εn1 =

pn∑
r=1

∑
s>pn

θrθ
∗
sE(εrεs),

E
(
θ
′
ξ
′
pnAn(λ)Rn

)
= tr (An(λ)) εn2, where εn2 =

pn∑
r=1

∑
s>pn

θ∗rθ
∗
sE(εrεs),

E
(
R′nAn(λ)Rn

)
= tr(An(λ))εn3, where εn3 = E(R2).

Note that εn1, εn2 and εn3 are of order o(1) by Assumption 2, and they are independent
of λ. In addition, εn1 and εn2 are null if one uses the eigenbasis.
Consequently,

E
(
L̃n(λ, θ, σ2)

)
= − 1

2σ2 E
(
(Bn(λ)ξpnθ∗ − ξpnθ)

′
(Bn(λ)ξpnθ∗ − ξpnθ)

)
+ln|Sn(λ)| − n

2
(
lnσ2 + ln2π

)
− σ2

0
2σ2 tr (An(λ))

+εn1tr (Bn(λ)) + εn4tr (An(λ)) , (4.10)

with εn4 := εn2 + εn3. Note that the terms that contain εn1 and εn4 are negligible with
respect to the others by Assumption 2.
For fixed λ, the expectation E

(
L̃n(λ, θ, σ2)

)
is maximum with respect to θ and σ2 at

θ∗n,λ = 1
n

Γ−1
pn E

(
ξ
′
pnBn(λ)ξpn

)
θ∗

= θ∗ + (λ0 − λ)Γ−1
pn

1
n
E
(
ξ
′
pnGnξpn

)
θ∗ = θ∗ + (λ0 − λ)θ∗ 1

n
tr (Gn)

and

σ∗2n,λ = 1
n
E

([
Bn(λ)ξpnθ∗ − ξpnθ∗n,λ

]′ [
Bn(λ)ξpnθ∗ − ξpnθ∗n,λ

])
+ σ2

0
n

tr (An(λ))

= (λ0 − λ)2 1
n

∆n + σ2
0
n

tr (An(λ)) , (4.11)

with ∆n = n

(
tr
(
G
′
nGn
n

)
− tr2

(
Gn
n

))
θ∗
′Γpnθ∗ since

E
(
ξ
′
pnG

′
nGnξpn

)
= tr(G′nGn)Γpn and E

(
ξ
′
pnGnξpn

)
= tr(Gn)Γpn ,

where Γpn = E
(

1
nξ
′
pnξpn

)
is assumed to be positive definite. This is the case when the

eigenbasis is considered in the truncation strategy.
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Based on these results, it is clear that θ∗n,λ0
= θ∗ and σ∗2n,λ0

= σ2
0. Hence, the identifiability

of θ∗ and σ2
0 depends on that of λ0. Note that

Qn(λ) = E
(
L̃n
(
λ, θ∗λ, σ

∗2
n,λ

))
= ln|Sn(λ)| − n

2 lnσ∗2n,λ −
n

2 (1 + ln(2π)) + εn1tr (Bn(λ)) + εn4tr (An(λ)) .

Therefore, proving the identifiability of λ0 is equivalent to showing that λ0 maximizes
Qn(λ). This will be proved before addressing the consistency of the estimators.

We will need to compose some additional assumptions

Assumption 3 Let limn→∞
1
n∆n = c, where (a) c > 0; (b) c = 0. Under the latter

condition,

lim
n→∞

hn
n

{
ln
∣∣∣σ2

0S
−1
n S

′−1
n

∣∣∣− ln
∣∣∣σ2
n,λS

−1
n (λ)S′−1

n (λ)
∣∣∣} 6= 0,

whenever λ 6= λ0, with σ2
n,λ = σ2

0
n tr(An(λ)).

Assumption 4 Ui, i = 1, . . . , n in Un = (U1, . . . , Un)′ are i.i.d. with mean zero and
variance σ2

0. The moment E
(
|Ui|4+δ

)
exists for some δ > 0. Let µ4 = E(U4

i ).

Remark 4.2. Assumption 3 enables the identification of λ0 according to the boundless
of hn. It is similar to that used in Lee (2004) in the case of multivariate deterministic
covariates. This assumption ensures that tr2(Gn/n) is dominated by tr(G′nGn/n), which
is the case when hn → ∞, as under Assumption 1, tr(G′nGn) and tr(Gn) are of order
O(n/hn). Situation (b) is related to the existence of a unique variance of Yn. Assump-
tion 4 characterizes the properties of the disturbance term.

Under assumptions similar to those used in Lee (2004) but adapted to the functional
context, we show that the proposed QMLE estimator has the same asymptotic properties
as those in the context of independent data(see e.g. Müller & Stadtmüller, 2005) and the
spatial model with real-valued covariates (see e.g. Lee, 2004). The following theorems
give the identification, consistency and asymptotic normality results of the autoregressive,
functional and variance parameters estimates.

Theorem 4.1. Under Assumptions 1-4 and h4
n = O(n) for divergent hn, the QMLE

λ̂n derived from the maximization of L̃n(λ) is consistent and satisfies√
n

hn
(λ̂n − λ0)→ N (0, s2

λ),

with s2
λ = lim

n→∞
s2
nhn
n

{
hn
n

[
∆n + σ2

0tr(Gn(G′n +Gn))
]}−2

, where

s2
n = σ2

0

[
θ∗
′Γpnθ∗ + σ2

0

]
tr
(
Gn(G′n +Gn)

)
+
[
3σ2

0θ
∗′Γpnθ∗ + σ4

0 − µ4
] 1
n

tr2(Gn)

+
[
µ4 − 3σ4

0 − σ2
0θ
∗′Γpnθ∗

] n∑
i=1

G2
ii. (4.12)

Note that, when hn is divergent, the last two terms in (4.12) are negligible.
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Theorem 4.2. Under assumptions of Theorem 4.1, σ̂2
n is a consistent estimator of σ2

0
and satisfies √

n(σ̂2
n,λ̂n
− σ2

0)→ N (0, s2
σ),

with

s2
σ = µ4 − σ4

0 + 4s2
λ lim
n→∞

hn

[ tr(Gn)
n

]2
.

When hn is divergent, s2
σ will be reduced to µ4 − σ4

0.

The following assumptions are needed to ensure the asymptotic property of the param-
eter function estimator. They are similar to ones used in Müller & Stadtmüller (2005).

Assumption 5 We have
pn∑

r1,r2,r3,r4=0
E (εr1εr2εr3εr4) νr1r2νr3r4 = o(n/p2

n),

where the νkl, k, l = 1, . . . , pn, are the elements of Γ−1
pn .

Assumption 6 We assume that
pn∑

r1,...,r8=0
E (εr1εr3εr5εr7)E (εr2εr4εr6εr8) νr1r2νr3r4νr5r6νr7r8 = o(n2p2

n).

The asymptotic normality of the parameter function estimator is given in the following
theorem

Theorem 4.3. Under Assumptions 1-6, we have

n
(
θ̂n,λ̂n − θ

∗
)′

Γpn
(
θ̂n,λ̂n − θ

∗
)
− pn

√
2pn

→ N (0, σ4
0).

Moreover, if ∑
j>pn

E
(
ε2
j

)(∫
T
θ∗(t)ϕj(t)dt

)2
= o(√pn/n), (4.13)

where here {ϕj , j = 1, 2, . . .} is the eigenbasis associated to the variance-covariance oper-
ator Γ, we have

nd2
(
θ̂n(·), θ∗(·)

)
− pn

√
2pn

→ N (0, σ4
0), (4.14)

where d2(·, ·) denotes the metric defined in L2(T ) through operator Γ, and defined by

d2(f, g) =
∫
T

∫
T

(f(t)− g(t))E(X(t)X(s)) (f(s)− g(s)) dtds,

for all f, g ∈ L2(T ).

Now that we have checked the theoretical behavior of the estimator, we study its
practical features through numerical results. We investigate the numerical performance
of the proposed methodology based on some simulations and an application to ozone
concentrations.
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4.4 Numerical experiments

In this section, we study the performance of the proposed model based on numerical
results that highlight the importance of truncation of the functional covariate and the
spatial nature of the data. We first describe the estimation procedure for the investigated
model.

Recall that the truncation strategy requires an appropriate selection of orthonormal
basis. This basis can be chosen to be a fixed orthonormal basis, such as the Fourier
basis, or it can be constructed by estimating the eigenfunctions of the covariance kernel
(4.7) and applying functional principal component analysis (FPCA) to the explanatory
random functions Xi. We use the eigenfunctions obtained from the FPCA to construct
the expansion basis in this numerical section. The eigenfunctions are those of the integral
operator associated with the integral kernel defined by the variance-covariance function of
X, which is estimated for each t, v ∈ [0, 1] as follows:

K̂(t, v) = 1
n− 1

n∑
i=1

Xi(t)Xi(v). (4.15)

A key step is the choice of the number p of functions used in the truncation strategy;
we consider the average squared error (ASE),

ASE = 1
n

n∑
i=1

(Yi − Ŷi)2, (4.16)

the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). The
choice of p using AIC is consistent in the setting of functional linear models, see Müller
& Stadtmüller (2005) for more details. Notice that we use a pre-selected p based on the
cumulative inertia. We focus on the selection of p from among those associated with
cumulative inertia values lower than some threshold (here 95%).
As measure of accuracy of the parameter function, (see Escabias et al., 2007) the usual
integrated mean square error,

IMSE =
∫ 1

0

(
θ∗(t)− θ̂n(t)

)2
dt, (4.17)

is considered to compare the three choice strategies for p, namely, ASE, AIC and BIC.

4.4.1 Monte Carlo simulations

The main objective of the Monte Carlo Simulation is to investigate the finite sample
behavior of the QMLEs of θ̂n(.), λ̂n and σ̂2

n. We consider two spatial scenarios (see Su,
2004) in a data grid with 60× 60 locations, where we randomly allocate n spatial units.

• Scenario 1: The spatial weight matrix Wn is constructed by taking the k neighbors
of each unit using kNN method (k nearest neighbors algorithm). Let us take k =
{4, 8}.

• Scenario 2: We consider a number of districts r (block or group) with m members
in each district, where the units of the same district have the same weight. As in
Case (1993), we can define the spatial weight matrix as block diagonal Wn = Ir⊗Bm,
where ⊗ is the Kronecker product, Bm = (lml

′
m−Im)/(m−1), and lm is an m vector

of 1 .
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The simulations are performed based on the following data:

Yi = λ0

n∑
j=1

wijYj +
∫
T
Xi(t)θ∗(t)dt+ Ui (4.18)

where Ui ∼ N (0, σ2
0).

We generate the functional covariate as in Müller & Stadtmüller (2005) using the
Fourier orthonormal basis {ϕj(t) =

√
2 sin(jπt), t ∈ [0, 1], j = 1, 2, ...}. Let us use the first

twenty functions of this basis to generate the explanatory random function

X(t) =
20∑
j=1

εjϕj(t), (4.19)

where εj ∼ N (0, 1/j) for j ≥ 1. We define the parameter function as θ∗(t) = ∑20
j=1 θ

∗
jϕj(t),

with θ∗j = 0 for j > 3, θ∗ = (θ∗1, θ∗2, θ∗3)′ = (1, 1/2, 1/3)′. With this parameter function
and σ2

0 = 1, different samples are generated using different values of the autoregressive
parameter λ0 = 0.2; 0.4; 0.6; and 0.8.

We apply the truncation strategy to reduce the infinite dimensionality of our model
Yi = λ0

∑n
j=1wijYj + ∑pn

j=1 θ
∗
j ε

(i)
j + ∑∞

j=pn+1 θ
∗
j ε

(i)
j + Ui, i = 1, . . . , n, n = 1, 2, . . . to a

pn−finite linear approximation and compute the quasi-likelihood estimator. The parame-
ters λ0, σ2

0 and θ∗1, ..., θ
∗
pn are estimated by solving the score equations defined in Section

4.3. Different sample sizes, n = {100, 200, 400}, are tested for the first scenario; for the
second, we take r = {10, 20, 30} and m = {5, 10, 15}, with sample size n = m× r.
The studied models are replicated 200 times, and the results of Scenario 1 are presented
in Tables 4.1 and 4.2, respectively, for k = 4 and k = 8. For Scenario 2, the results are
reported in Tables 4.3 to 4.6. Each table represents a specific model. In each table, the
rows λ, σ2, IMSE and PCs give the averages over these replications (with the standard
deviation in brackets) of the autoregressive parameter estimate λ̂n, the standard deviation
parameter σ̂2

n, the associated IMSE defined in (4.17) and the number p of eigenfunctions
(used in the truncation), respectively. For the different models, the strategies used to
select p yield (on average) values close to the true parameter of p = 3, especially for ASE
and AIC and large sample sizes (see the columns titled PCs in Tables 4.1-4.6). The pa-
rameter function estimates are in given in Figures 4.2-4.3.
For all the models, the three methods used to select p and two spatial scenarios, the
performance of the parameter function and the variance estimates varies with the sample
size.

A larger IMSE (the smallest is in bold) of order 0.2 is noted for sample size n = 100
and k = 8.
The methods using the ASE and AIC criteria outperform the other methods. The spatial
structure, namely, the number of neighbors k (Scenario 1) and the number of observations
m in each district (Scenario 2), has a slight impact on the performance of the spatial
parameter estimator λ̂n. Better results are obtained for lower values, namely, k = 4 and
m = 5, since the weights are more important in these cases. For a fixed value of k or m,
the performance varies with sample size.
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Table 4.1: Estimation of parameters with n = {100, 200, 400}, k = 4
n = 100 n = 200 n = 400
ASE AIC BIC ASE AIC BIC ASE AIC BIC

λ0 = 0.2 λ .1783 .1786 .1800 .2045 .2046 .2043 .1955 .1955 .1956
(.1150) (.1160) (.1144) (.0727) (.0727) (.0731) (.0493) (.0494) (.0495)

σ2 .9669 .9732 .9878 .9835 .9858 .9913 .9829 .9834 .9870
(.1438) (.1465) (.1511) (.1036) (.1040) (.1055) .0710 (.0711) (.0710)

IMSE .1584 .1996 .2595 .0796 .1141 .1489 .0337 .0478 .0860
(.1499) (.1332) (.1339) (.0654) (.0709) (.0747) (.0325) (.0476) (.0564)

PCs 2.920 2.170 1.715 2.965 2.445 2.115 2.990 2.785 2.415
(.2720) (.6349) (.3637) (.1842) (.5463) (.5226) (.0997) (.4119) (.5139)

λ0 = 0.4 λ .3952 .3969 .3979 .3992 .3996 .3997 .3945 .3947 .3947
(.0987) (.1428) (.0997) (.0581) (.0984) (.0580) (.0449) (.0447) (.0448)

σ2 .9573 .9609 .9786 .9786 .9798 .9865 .9885 .9888 .9929
(.1432) (.1428) (.1503) (.0983) (.0984) (.1002) (.0723) (.0725) (.0448)

IMSE .1778 .2063 .2786 .0880 .1067 .1536 .0399 .0507 .0977
(.1680) (.1574) (.1528) (.0830) (.0794) (.0908) (.0365) (.0464) (.0629)

PCs 2.850 2.285 1.720 2.865 2.520 2.125 2.950 2.790 2.360
(.3850 (.6753) (.6662) (.3426) (.5108) (.5926) (.2185) (.4083) (.5309)

λ0 = 0.6 λ .5859 .5877 .5884 .5975 .5990 .5988 .5979 .5984 .5985
(.0725) (.0722) (.0731) (.0452) (.0458) (.0455) (.0365) (.0366) (.0368)

σ2 .9623 .9605 .9773 .9872 .9835 .9916 .9981 .9970 1.0009
(.1357) (.1335) (.1387) (.0965) (.0947) (.0964) (.0743) (.0741) (.0744)

IMSE .1568 .1770 .2428 .1080 .1092 .1642 .0508 .0506 .0912
(.1248) (.1191) (.1272) (.0844) (.0747) (.0942) (.0497) (.0462) (.0527)

PCs 2.680 2.275 1.710 2.680 2.525 2.070 2.845 2.800 2.410
(.6160) (.6175) (.6387) (.5560) (.5393) (.5889) (.3764) (.4010) (.5032)

λ0 = 0.8 λ .7863 .7889 .7884 .7929 .7940 .7938 .7990 .7997 .7998
(.0468) (.0461) (.0470) (.0312) (.0312) (.0313) (.0192) (.0190) (.0191)

σ2 .9814 .9632 .9788 .9978 .9875 .9953 .9986 .9892 .9927
(.1519) (.1482) (.1536) (.0971) (.0952) (.0966) (.0741) (.0689) (.0696)

IMSE .2303 .1976 .2422 .1326 .1085 .1624 .0932 .0520 .0898
(.1469) (.1329) (.1281) (.1177) (.0809) (.0937) (.1007) (.0468) (.0520)

PCs 2.295 2.330 1.845 2.465 2.470 2.035 2.535 2.765 2.390
(.8007) (.6428) (.6581) (.7151) (.539) (.5525) (.6488) (.4251) (.4991)

4.4.2 Real data application

The goal is to forecast ground-level ozone concentrations using observations from stations
within the Southeastern and Southwestern of United States over a span of 48 hours in the
summer of 2015. The data are collected from monitoring stations (agencies) across the
United States and are available at https://www.epa.gov/outdoor-air-quality-data.
We are given the ozone concentration for 106 stations for every hour from 12am July 19
to 11pm July 20, 2015 (that is, 48 hours). We use linear interpolation to estimate the
missing values.
We organize the original space-time series into a set of daily functional data to apply the
functional methodology.
Let us consider at each station a response variable Y as the ozone concentration at 12pm
on July 20 and a covariate function {X(t), t ∈ [0, 23]} corresponding to the 24 records
of ozone concentrations from 12pm on July 19 to 11am July 20. Figure 4.4 presents
the geographical positions of the 106 stations (red points) and the curves of the ozone
concentration from 12pm July 19 to 11am July 20.
To highlight the performance of the spatial FSARM model, we compare with the usual
functional linear model (FLM), that does not take into account any spatial structure in
the estimation procedure.

https://www.epa.gov/outdoor-air-quality-data
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Figure 4.1: Estimated parameter function θ̂n(·) with the different criteria and k = 4.
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Table 4.2: Estimation of parameters with n = {100, 200, 400}, k = 8
n=100 n=200 n=400
ASE AIC BIC ASE AIC BIC ASE AIC BIC

λ0 = 0.2 λ .1711 .1709 .1690 .1876 .1875 .1886 .1912 .1912 .1916
(.1604) (.1614) (.1439) (.1031) (.1037) (.1036) (.0800) (.0799) (.0801)

σ2 .9656 .9706 .9892 .9781 .9797 .9860 .9833 .9839 .9871
(.1364) (.1385) (.1439) (.0995) (.1000) (.1010) (.0687) (.0688) (.0690)

IMSE .1612 .1920 .2480 .0866 .1116 .1517 .0394 .0548 .0881
(.1731) (.1693) (.1560) (.0795) (.0840) (.0955) (.0409) (.0484) (.0476)

PCs 2.925 2.275 1.705 2.950 2.540 2.190 2.980 2.725 2.395
(.2641) (.6256) (.1496) (.2185) (.5290) (.5964) (.1404) (.4476) (.4901)

λ0 = 0.4 λ .3803 .3809 .3811 .3859 .3861 .3859 .3881 .3880 .3877
(.1416) (.1416) (.1413) (.0822) (.0822) (.0834) (.0705) (.0727) (.0710)

σ2 .9593 .9638 .9782 .9787 .9800 .9871 .9945 .0727 .9985
(.1438) (.1456) (.1501) (.1019) (.1024) (.1048) (.0725) (.0518) (.0724)

IMSE .1541 .1821 .2359 .0828 .1066 .1490 .0426 .0518 .0895
(.1111) (.1114) (.1274) (.0718) (.0801) (.0863) (.0389) (.0457) (.0556)

PCs 2.855 2.180 1.730 2.925 2.555 2.165 2.940 2.800 2.445
(.3669) (.6632) (.6237) (.2641) (.5554) (.1240) (.2381) (.4010) (.5180)

λ0 = 0.6 λ .5758 .5791 .5794 .5924 .5933 .5935 .5940 .5947 .5944
(.1061) (.1060) (.1072) (.0671) (.0672) (.0675) (.0496) (.0495) (.0494)

σ2 .9719 .9680 .9844 .9792 .9790 .9868 .9932 .9921 .9950
(.1419) (.1398) (.1072) (.0982) (.0994) (.1020) (.0757) (.0749) (.0494)

IMSE .2024 .2024 .2628 .0939 .1026 .1540 .0477 .0485 .9950
(.1581) (.1421) (.1414) (.0868) (.0739) (.0864) (.0476) (.0463) (.0755)

PCs 2.600 2.290 1.760 2.780 2.530 2.110 2.855 2.795 2.465
(.6497) (.6542) (.6743) (.4612) (.5201) (.0864) (.3669) (.4047) (.5000)

λ0 = 0.8 λ .7741 .7777 .7771 .7890 .7909 .7905 .7941 .7950 .7950
(.0630) (.0630) (.0633) (.0410) (.0411) (.0412) (.0321) (.0318) (.0321)

σ2 .9852 .9686 .9840 1.0069 .9984 1.0071 .9957 .9889 .9925
(.1439) (.1374) (.1403) (.1037) (.1022) (.1044) (.0745) (.0720) (.0536)

IMSE .2076 .1989 .2516 .1199 .1027 .1609 .0811 .0492 .0880
(.1378) (.1277) (.1403) (.1040) (.0695) (.0886) (.0970) (.0476) (.0536)

PCs 2.245 2.200 1.720 2.545 2.505 2.035 2.615 2.775 2.405
(.7798) (.6725) (.6509) (.6858) (.5398) (.5616) (.6315) (.4186) (.5022)

The observations ({Xi(t), t ∈ [0, 23]}, Yi), i = 1, . . . , 106, are then used to estimate, on
one hand, the parameter function and hypothetical intercept using the FLM methodology
and, on the other hand, the parameter function and the autoregressive parameter using the
FSARM methodology developed here. Even though the variance is estimated by the two
methods, we do present it here but focus on the covariate and autoregressive parameters.
We describe the spatial dependence between the stations using a 106× 106 spatial weight
matrix Wn. We follow the idea of Pinkse & Slade (1998) to define the elements of Wn by:

wij =


1

1 + dij
if dij < ρ

0 otherwise,

where dij is the euclidian distance between station i and station j, and ρ is some cut-off
distance chosen such that each station has at least four neighbors. Other weight matrices
have been tested, but we choose to present the results corresponding to this matrix.
Note that FPCA is used to smooth the curves before we reduce the spatial dimensions
of the functional covariate using the eigenbasis, as explained above (see Figure 4.5). The
AIC is used to select the number of eigenfunctions. For the two models, we have the same
optimal number of eigenfunctions p = 3. Table 4.7 and Figure 4.6 give the estimation
results of the FLM and FSARM. Note that the curves obtained by the two estimation
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Figure 4.2: Estimated parameter function θ̂n(·) with the different criteria and k = 8.
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Table 4.3: Estimation of parameters associated to scenario 2 with λ0 = 0.2.
m=5 m=10 m=15
ASE AIC BIC ASE AIC BIC ASE AIC BIC

r = 10 λ .1457 .1474 .1483 .1828 .1842 .1838 .1734 .1734 .1746
(.1687) (.1700) (.1685) (.1466) (.1476) (.1468) (.1476) (.1479) (1483)

σ2 .9090 .9209 .9463 .9583 .9627 .9759 .9810 .9836 .9947
(.1897) (.1941) (.2047) (.1340) (.1353) (.1382) (.1076) (.1086) (.1108)

IMSE .3347 .3603 .3778 .1655 .1925 .2412 .1109 .1430 .1973
(.2848) (.2541) (.2267) (.1515) (.1328) (.1251) (.1076) (.1103) (.1115)

PCs 2.900 1.94 1.505 2.930 2.275 1.860 2.945 2.425 1.940
(.3170) (.7611) (.6497) (.2747) (.6010) (.6577) (.2286) (.5883) (.6232)

r = 20 λ .1794 .1796 .1788 .1850 .1851 .1853 .1917 .1919 .1914
(.0934) (.0938) (.0940) (.1079) (.1079) (.1073) (.1027) (.1023) (.1026)

σ2 .9413 .9450 .9602 .9748 .9768 .9841 .9832 .9840 .9892
(.1429) (.1436) (.1498) (.1014) (.1018) (.1045) (.0809) (.1023) (.0823)

IMSE .1767 .2133 .2686 .0725 .1032 .1507 .0528 .0709 .1164
(.1676) (.1620) (.1614) (.0666) (.0693) (.0874) (.0456) (.0561) (.0612)

PCs 2.920 2.285 1.805 2.970 2.545 2.140 2.9850 2.690 2.280
(.2720) (.6900) (.7138) (.1710) (.5092) (.5585) (.1219) (4637) (.5225)

r = 30 λ .1990 .1985 .1988 .1942 .1941 .1943 .1890 .1890 .1832
(.0853) (.0860) (.0869) (.0762) (.0816) (.0762) (.0867) (.0866) (.0867)

σ2 .9668 .9692 .9797 .9927 .9938 .9986 .9900 .9904 .9930
(.1152) (.1156) (.0869) (.0816) (.0816) (.0829) (.0639) (.0638) (.0643)

IMSE .1112 .1446 .1991 .0555 .0755 .1143 .0330 .0452 .0755
(.1047) (.1088) (.1130) (.0615) (.0651) (.0680) (.0298) (.0452) (.0643)

PCs 2.920 2.455 1.990 2.980 2.6500 2.2750 2.9900 2.8100 2.5150
(.2720) (.5653) (.6340) (.1404) (.4782) (.5299) (.0997) (.3933) (.5010)

Table 4.4: Estimation of parameters associated to scenario 2 with λ0 = 0.4.
m = 5 m = 10 m = 15
ASE AIC BIC ASE AIC BIC ASE AIC BIC

r = 10 λ .3590 .3613 .3619 .3746 .3756 .3751 .3739 .3751 .3748
(.1106) (.1134) (.1130) (.1184) (.1190) (.1186) (.1107) (.1110) (.1117)

σ2 .9175 .9271 .9487 .9642 .9682 .9845 .9862 .9890 .9999
(.1891) (.1906) (.1943) (.1375) (.1399) (.1412) (.1245) (.1252) (.1276)

IMSE .3812 .4078 .4122 .1702 .2024 .2702 .1057 .1387 .1976
(.3904) (.3665) (.3247) (.1452) (.1443) (.1459) (.0883) (.0856) (.1102)

PCs 2.7300 1.9150 1.5150 2.8100 2.2200 1.7000 2.8950 2.3950 1.9300
(.5464) (.7816) (.3263) (.4414) (.6811) (.6650) (.3073) (.5750) (.6140)

r = 20 λ .3873 3.883 .3887 .3733 .3737 .3736 .3829 .3830 .3829
(.0749) (.0751) (.0749) (.0857) (.0861) (.0864) (.0777) (.0777 (.0775)

σ2 .9587 .9618 .9769 .9875 .9890 .9966 .9914 .9921 .9967
(.1353) (.1341) (.1402) (.1043) (.1047) (.1070) (.0868) (.0870) (.0881)

IMSE .1700 .1980 .2573 .0853 .1070 .1563 .0570 .0734 .1157
(.1368) (.1240) (.1271) (.0681) (.0696) (.0838) (.0455) (.0539) (.0699)

PCs 2.780 2.275 1.795 2.905 2.530 2.115 2.90 2.670 2.300
(.4825) (.6414) (.1271) (.1277) (.5296) (.5861) (.3008) (.4714) (.5582)

r = 30 λ .3943 3952 .3950 .3867 .3867 .3871 .3910 .3911 .3912
(.0670) (.0671) (.0676) (.0675) (.0675) (.0677) (.0647) (.0649) (.0654)

σ2 .9706 .9718 .9832 .9857 .9863 .9913 .9870 .9873 .9906
(.1178) (.1176) (.1228) (.0840) (.0843) (.0854) (.0674) (.0676) (.0680)

IMSE .1150 .1343 .1951 .0577 .0722 .1122 .0374 .0461 .0830
(.0903) (.0861) (.1100) (.0604) (.0687) (.0652) (.0343) (.0470) (.0512)

PCs 2.810 2.395 0.915 2.895 2.690 2.290 2.960 2.830 2.465
(.4181) (.5750) (.6162) (.3073) (.4848) (.5169) (.1965) (.3897) (.5100)
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Table 4.5: Estimation of parameters associated to scenario 2 with λ0 = 0.6.
m = 5 m = 10 m = 15
ASE AIC BIC ASE AIC BIC ASE AIC BIC

r = 10 λ .5867 .5895 .5903 .5815 .5843 .5849 .5736 .5746 .5747
(.0746) (.0752) (.0744) (.0838) (.0840) (.0835) (.0998) (.1002) (.1009)

σ2 .9536 .9524 .9746 .9617 .9573 .9718 .9752 .9736 .9823
(.2158) (.2105) (.2150) (.1464) (.1463) (.1522) (.1121) (.1100) (.1115)

IMSE .3911 .4201 .4261 .1919 .2053 .2598 .1354 .1441 .1922
(.3470) (.3498) (.3227) (.1480) (.1489) (.1418) (.1075) (.0988) (.1142)

PCs 2.454 2.025 1.640 2.5750 2.2750 1.8150 2.6700 2.3700 1.9900
(.6558) (.7598) (.6948) (.6375) (.6256) (.6656) (.5501) (.5698) (.6179)

r = 20 λ .5875 .5899 .5899 .5865 .5884 .5887 .5851 .5860 .5860
(.0491) (.0493) (.0493) (.0571) (.0575) (.0574) (.0574) (.0580) (.0582)

σ2 .9666 .9580 .9732 .9838 .9784 .9866 .9810 .9785 .9829
(.1403) (.1323) (.1385) (.1053) (.1005) (.1019) (.0791) (.0772) (.0582)

IMSE .2148 .2138 .2629 .1129 .1074 .1615 .0723 .0685 .1062
(.1745) (.1755) (.1652) (.0932) (.0790) (.0893) (.0677) (.0517) (.0605)

PCs 2.495 2.300 1.800 2.640 2.5500 2.0950 2.7450 2.6800 2.3300
(.6873) (.6650) (.6725) (.5934) (.5375) (.5724) (.4911) (.4676) (.5220)

r = 30 λ .5948 .5964 .5958 .5879 .5885 .5883 .5886 .5888 .5888
(.0425) (.0421) (.0428) (.0443) (.0445) (.0444) (.0479) (.0479) (.0481)

σ2 .9846 .9798 .9899 .9965 .9953 1.0009 .9964 .9956 .9994
(.1100) (.1077) (.1102) (.0803) (.0806) (.0822) (.0682) (.0683) (.0481)

IMSE .1293 .1404 .1920 .0684 .0689 .1184 .0439 .0402 .0814
(.0988 (.0910) (.1035) (.0592) (.0555) (.0798) (.0538) (.0418) (.0527)

PCs 2.630 2.420 1.995 2.8050 2.7150 2.2900 2.8900 2.8850 2.4800
(.5698) (.5790) (.5802) (.3972) (.4525) (.5723) (.3442) (.3198) (.5009)

Table 4.6: Estimation of parameters associated to scenario 2 with λ0 = 0.8.
m = 5 m = 10 m = 15
ASE AIC BIC ASE AIC BIC ASE AIC BIC

r = 10 λ .7883 .7905 .7900 .7921 .7941 .7941 .7834 .7857 .7856
(.0474) (.0468) (.0474) (.0407) (.0404) (.0405) (.0432) (.0430) (.0430)

σ2 .9461 .9349 .9596 .9682 .9549 .9703 .9917 .9782 .9883
(.2330) (.2326) (.2436) (.1353) (.1324) (.1379) (.1132) (.1073) (.1098)

IMSE .3333 .3607 .3814 .1946 .1890 .2367 .1635 .1405 .1928
(.2556) (.2545) (.2152) (.1303) (.1239) (.1224) (.1248) (.1028) (.1132)

PCs 2.265 1.950 1.515 2.340 2.275 1.785 2.415 2.420 1.975
(.7860) (.7749) (.6723) (.7464) (.6335) (.6088) (.7454) (.5703) (.6215)

r = 20 λ .7955 .7968 .7968 .7943 .7959 .7960 .7945 .7956 .7957
(.0297) (.0292) (.0296) (.0307) (.0302) (.0302) (.0285) (.0281) (.0280)

σ2 .9782 .9713 .9871 .9957 .9821 .9887 .9951 .9823 .9872
(.1512) (.1527) (.1575) (.1096) (.1025) (.1055) (.0890) (.0835) (.0848)

IMSE .1890 .1883 .2532 .1340 .1006 .1449 .1120 .0737 .1164
(.1541) (.1390) (.1445) (.1104) (.0645) (.0802) (.1114) (.0628) (.0676)

PCs 2.470 2.250 1.735 2.430 2.570 0 2.200 2.515 2.715 2.300
(.7153) (.6706) (.6534) (.7265) (.5162) (.5931) (.7158) (.4525) (.5399)

r = 30 λ .7938 .7947 .7946 .7948 .7957 .7957 .7951 .7959 .7959
(.0240) (.0238) (.0240) (.0214) (.0211) (.0212) (.0223) (.0224) (.0224)

σ2 .9946 .9838 .9949 1.0017 .9905 .9954 1.0027 .9932 .9965
(.1199) (.1149) (.1201) (.0873) (.0854) (.0866) (.0731) (.0700) (.0707)

IMSE .1572 .1310 .1909 .0962 .0638 .1074 .0871 .0489 .0869
(.1366) (.1056) (.1207) (.0982) (.0532) (.0630) (.0923) (.0442) (.0481)

PCs 24450 2.4400 1.9550 2.5500 2.7600 2.3450 2.5650 2.8100 2.4450
(.7414) (.5815) (.5956) (.6555) (.4397) (.5454) (.6307) (.3933) (.4982)
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Figure 4.3: Estimated parameter function θ̂n(·) with the different criteria in Scenario 2
for different values of r and m.
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methods are similar, with small differences around 12pm and 7pm. The FLM gives an
intercept estimate close to zero, while with FSARM, we have a spatial structure with an
estimated autoregressive parameter close to 0.2.
Now, let us consider the following problem of prediction. At a given station s0, we aim
to predict the ozone concentration every hour, from 12am to 11pm, on July 20, 2015. For
this aim, assume that at s0, we observe only the 24 records of ozone concentration from
12am to 11pm on July 19, 2015 and we would like to predict the ozone concentration of the
following day, that is, from 12am to 11pm on July 20, 2015. To obtain these predictions,
we proceed as follows.

1. For the prediction at 12am July 20, 2015, we estimate the parameters of FLM or
FSARM where the 105 observations (Xi, Yi) are: {Xi(t), t ∈ {0, . . . , 23}}, the ozone
concentrations from 12am to 11pm on July 19, and Yi is the ozone concentration at
12am, July 20, at station i. The obtained estimated model is used to predict the
ozone concentration at 12am July 20 at station s0 (not contained in the sample),
using the covariate {Xs0(t), t ∈ {0, . . . , 23}} composed of the ozone concentrations
from 12am to 11pm on July 20. Let Ŷ (1)

s0 denote this prediction.

2. For the prediction at 1am July 20, 2015, let Xi(t), t ∈ {0, . . . , 23} be the ozone concen-
trations from 1am July 19 to 12pm July 20 and Yi be the ozone concentration at 1am
July 20, 2015 at station i. Use these observations to estimate the parameters of FLM
or FSARM, and use them to predict the ozone concentration of station s0 at 1am
July 20 using Xs0(t), t ∈ {0, . . . , 23}, where the first 23 records are the real ozone
concentrations from 1am to 11pm July 20 and Xs0(23) = Ŷ

(1)
s0 . Let Ŷ (2)

s0 denote the
obtained prediction.

. . . Repeat the above steps to obtain predictions from 2am to 11pm, July 20, 2015.

We randomly select 4 stations among the 106 and apply the prediction procedure. Fig-
ure 4.7 presents the prediction results; the true values are in black, while the predictions
are in red for the FSARM model and in blue for the FLM (with no spatial structure)
model. FSARM achieves some improvements, particularly around 12pm, when the ozone
concentration is higher.

Table 4.7: Estimated parameters for FLM and FSARLM.
PCs Autoregressive parameter Intercept

FSARLM 3 0.19
FLM 3 0.006

4.5 Conclusion

This work proposes a spatial functional linear regression function for functional random
field covariates. Our main theoretical contribution was to study the consistency and
asymptotic normality of the estimator. One can see the proposed methodology as an
extension of the real-valued SAR model to functional data. More precisely, it is apparent
that the proposed estimation approach based on a truncation technique is particularly
well adapted to spatial regression estimation for functional data in the presence of spatial
dependence. This good behavior is observed both from an asymptotic point of view and
from a numerical study. This work offers interesting perspectives for investigation. Future
work will be tied to generalized functional linear spatial models (see, for instance Kelejian
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Figure 4.4: Locations and areas of the 106 stations (left panel) and corresponding ozone
concentration curves from 12pm, July 19 to 11am, July 20 (right panel).
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Figure 4.5: The three first eigenfunctions (left panel) and the proportion of explained
variance (right panel).

& Prucha, 1998; Müller & Stadtmüller, 2005). Also, an adaptation of this method to
issues using different covariates (functional and non-functional) with or without a spatial
weight matrix with correlated errors could be developed. The application of the proposed
regression estimator to additional real data, will be investigated.

4.6 Appendix

We start by showing the identifiability of the parameter λ0 and the consistency of the
estimator λ̂n when the sequence hn is bounded or not bounded. This is given in the
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Figure 4.6: Estimated parameter functions.

following proposition

Proposition 4.1. Assume Assumptions 1-3.

(i) If the sequence {hn} is bounded, λ0 is identifiable and λ̂n is consistent.

(ii) If the sequence {hn} is divergent, λ0 is identifiable and λ̂n is consistent.

Proof of Proposition 4.1

Proof of (i). Let us first establish the identifiability. Proving identification of λ0 is
equivalent to showing that the concentrated likelihood function Qn(λ) is maximum at λ0.
This can be done by checking the following uniqueness condition:

for any ε > 0 lim sup
n→∞

max
λ∈N̄ε(λ0)

1
n
{Qn(λ)−Qn(λ0)} < 0

where N̄ε(λ0) is the complement of an open neighbourhood of λ0 in Λ with diameter ε.

Let us prove that Qn,0(λ)−Qn,0(λ0) ≤ 0, for all λ ∈ Λ,

where Qn,0(λ) = −n2 (ln(2π) + 1)− n

2 lnσ2
n,λ + ln|Sn(λ)|,

with

σ2
n,λ = σ2

0
n

tr (An(λ)) = σ2
0

{
1 + 2(λ0 − λ) 1

n
tr(Gn) + (λ0 − λ)2 1

n
tr(GnG

′
n)
}
.

Recall that the log-likelihood function of an SAR process without covariate (θ∗(t) = 0,∀t ∈
T ), Yn = λ0WnYn + Un, Vn ∼ N (0, σ2

0In) is

Ln,0(λ, σ2) = n

2 (ln(2π) + 1)− n

2 lnσ2 + ln|Sn(λ)| − 1
2σ2 Y′nS

′
n(λ)Sn(λ)Yn.
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Figure 4.7: Ozone concentration (black curves) at four stations selected randomly from
the 106 stations and their predictions obtained using the FSAR model (red curves) and
FLM (blue curves).

It is easy to see that Qn,0(λ) = maxσ2 E0(Ln,0(λ, σ2)), where E0 is the expectation under
this SAR process. By Jensen’s inequality, Qn,0(λ) ≤ E0(Ln,0(λ0, σ

2
0)) = Qn,0(λ0) for all

λ. This implies that

Qn,0(λ)−Qn,0(λ0) ≤ 0, for all λ ∈ Λ.

Let us prove that 1
n(ln|Sn(λ2)| − ln|Sn(λ1)|) = O(1), for λ1 and λ2 in Λ.

By the mean value theorem, 1
n(ln|Sn(λ2)| − ln|Sn(λ1)|) = 1

ntr(WnS
−1
n (λ̄n))(λ2 − λ1),

where λ̄n lies between λ1 and λ2. By the uniform boundedness of Assumption 1-iii,
tr(WnS

−1
n (λ̄n)) = O(n/hn) . Thus, 1

n ln|Sn(λ)| is uniformly equicontinuous in λ in Λ. As
Λ is a bounded set, 1

n(ln|Sn(λ2)| − ln|Sn(λ1)|) = O(1) uniformly on λ1 and λ2.

Let us prove that σ2
n,λ is uniformly bounded away from zero on Λ.
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Suppose that σ2
n,λ is not uniformly bounded away from zero on Λ. Then there would exist

a sequence {λn} in Λ such that limn→∞ σ
2
n,λn

= 0. Since we have Qn,0(λ)−Qn,0(λ0) ≤ 0
for all λ and 1

n(ln|Sn(λ0)|− ln|Sn(λ)|) = O(1) uniformly on Λ, then −1
2 lnσ2

n,λ ≤ −
1
2 lnσ2

0−
1
n(ln|Sn(λ0)|−ln|Sn(λ)|) = O(1). That is, −1

2 lnσ2
n,λ is bounded, and this is a contradiction

with the previous statement. Therefore, σ2
n,λ must be bounded away from zero uniformly

on Λ.

Let us prove the uniform equicontinuity of Qn(λ).

We have to show that 1
nQn(λ) is uniformly equicontinuous on Λ. The parameter σ∗2n,λ (see

(4.11)) is uniformly bounded on Λ because it is a quadratic form of λ, and its compo-
nents 1

n∆n, 1
ntr(Gn) and 1

ntr(GnG
′
n) are bounded by Assumption 1 (i-ii). The uniform

continuity of lnσ∗2n,λ on Λ then follows because 1/σ∗2n,λ is uniformly bounded on Λ since
σ∗2n,λ ≥ σ2

n,λ for all λ ∈ Λ by Assumption 3. Hence, 1
nQn(λ) is uniformly equicontinuous.

Let us prove uniqueness of the maximum λ0.
Remark that

1
n

(Qn(λ)−Qn(λ0))

= 1
n

(Qn,0(λ)−Qn,0(λ0))− 1
2
(
lnσ∗2n,λ − lnσ2

n,λ

)
+ o(1).

Now, assume that the uniqueness does not hold. Then, there would exist ε > 0 and a
sequence {λn} in N̄ε(λ0) such that

lim
n→∞

1
n
{Qn(λn)−Qn(λ0)} = 0.

Because N̄ε(λ0) is a compact set, there exists a convergent subsequence λnm of λn. Let
λ+ be the limit of this subsequence in Λ.
Now, as 1

nQn(λ) is uniformly equicontinuous in λ,

lim
nm→∞

1
nm
{Qnm(λ+)−Qnm(λ0)} = 0.

This is possible only if

lim
nm→∞

1
nm
{Qnm,0(λ+)−Qnm,0(λ0)} = 0 and lim

nm→∞
σ∗2nm,λ+ − σ

2
nm,λ+ = 0.

Since Qn,0(λ) − Qn,0(λ0) ≤ 0 and −(lnσ∗2n,λ − lnσ2
n,λ) ≤ 0 for all λ ∈ Λ, the fact that

limnm→∞ σ
∗2
nm,λ+

− σ2
nm,λ+

= 0 is in contradiction with the above statement under As-
sumption 3(a). Under Assumption 3(b), the contradiction comes from
limn→∞

1
n {Qn,0(λ)−Qn,0(λ0)} = 0. Indeed, under Assumption 3(b), we have

lim
n→∞

{ 1
n

(ln |Sn(λ)| − ln |Sn|) + 1
2
(
lnσ2

n,λ − lnσ2
0

)}
= lim

n→∞
1
n
{Qn,0(λ)−Qn,0(λ0)} 6= 0 for all λ 6= λ0.

Now to finish the proof of (i), it remains to show the convergence in probability of L̃n(λ)
to Qn(λ) uniformly on λ in Λ.
Let us prove that

sup
λ∈Λ

1
n

∣∣∣L̃n(λ)−Qn(λ)
∣∣∣ = op(1). (4.20)
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By definition, for each λ ∈ Λ

1
n

(
L̃n(λ)−Qn(λ)

)
= −1

2
(
lnσ̂2

n,λ − lnσ∗2n,λ
)

+ o(1).

We will show that, for all λ ∈ Λ

σ̂2
n,λ − σ∗2n,λ = op(1). (4.21)

Equation (4.21) combined with the fact that σ∗2n,λ is bounded away from zero uniformly
on Λ implies that σ̂2

n,λ is bounded away from zero uniformly on Λ in probability. Hence,

lnσ̂2
n,λ − lnσ∗2n,λ = op(1), uniformly on Λ.

Let us prove in the following that σ̂2
n,λ − σ∗2n,λ = op(1).

Let

MnSn(λ)Yn = MnSn(λ)S−1
n (Xn(θ∗(·)) + Un))

= MnRn(θ∗(·)) + (λ0 − λ)MnGnξpnθ
∗ +MnSn(λ)S−1

n Un,

where Rn(θ∗(·)) = Bn(λ)Rn.
Note that

σ̂2
n,λ − σ∗2n,λ = 1

n
Y′nS

′
n(λ)MnSn(λ)Yn − σ∗2n,λ

= (λ0 − λ)2Hn0 + 2(λ0 − λ)H1n(λ) +Hn2(λ)− σ2
n,λ

+Hn3(λ) +Hn4(λ), (4.22)

where

Hn0 = θ∗
′
{
ξ
′
pnG

′
nGnξpn
n

− tr
(
G
′
nGn
n

)
Γpn

}
θ∗

−θ∗′
ξ

′
pnG

′
nξpn
n

(
ξ
′
pnξpn
n

)−1
ξ
′
pnGnξpn
n

− tr2
(
Gn
n

)
Γpn

 θ∗,
and

Hn1(λ) = 1
n

(Gnξpnθ∗)
′
MnBn(λ)Un,

Hn2(λ) = 1
n

U′nB
′
n(λ)MnBn(λ)Un,

Hn3(λ) = 2
n

R′nB
′
n(λ)Mn (2(λ0 − λ)Gnξpnθ∗ +Bn(λ)Un) ,

Hn4(λ) = 1
n

R′nB
′
n(λ)MnBn(λ)Rn.

Note that the parameter function θ∗(·) is square integrable; therefore, ‖θ∗‖2 <∞. Then,
by Lemma 4.1 and 4.2,

Hn0 = Op

(
pn

hn
√
n

)
. (4.23)

Also, Lemma 4.3 implies that Hn3(λ) and Hn4(λ) are of order op(1) uniformly on λ in Λ.
In the following, we show that Hn1(λ) and Hn2(λ)−σ2

n,λ are all of order op(1) for all λ ∈ Λ.
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Proof of Hn1(λ):
Note that

E

(∥∥∥U′nGnξpn∥∥∥2
)

=
pn∑
r=1

E

 n∑
i=1

n∑
j=1

UiGijε
(j)
r

2

= σ2
0

n∑
i=1

n∑
j=1

G2
ij

pn∑
r=1

E
(
ε2
r

)
= O

(
‖Gn‖2

)
,

since ∑pn
r=1E

(
ε2
r

)
< E

(∫
X2(t)dt

)
<∞. Therefore,

ξ
′
pnUn = Op(

√
n) and U′nGnξpn = Op

(√
n

hn

)
, (4.24)

by Assumption 1-ii. In addition, by Lemma 4.1, we have∣∣∣∣ξ′pnG′nξpn (ξ′pnξpn)−1
ξ
′
pnUn

∣∣∣∣ = Op

(
pn
√
n

hn

)
,

and ∣∣∣∣ξ′pnG′nξpn (ξ′pnξpn)−1
ξ
′
pnGnUn

∣∣∣∣ = Op

(
pn

√
n

h3
n

)
.

Then, for each λ ∈ Λ, we may conclude that

Hn1(λ) = 1
n

(Gnξpnθ∗)
′
MnUn + (λ0 − λ) 1

n
(Gnξpnθ∗)

′
MnGnUn

= Op

(
pn +

√
hn

hn
√
n

)
,

hence the results follows by Assumption 2.

�

Proof of Hn2(λ):
For each λ ∈ Λ, we have

Hn2(λ)− σ2
n,λ = 1

n
U′nAn(λ)Un −

σ2
0
n

tr (An(λ))− Tn(λ),

with
Tn(λ) = 1

n
U′nB

′
n(λ)ξpn

(
ξ
′
pnξpn

)−1
ξ
′
pnBn(λ)Un.

Similar to (4.24), we have

Tn(λ) = Op

(
pn‖Bn(λ)‖2

n2

)
= Op

(
pn
n

)
,

since ‖Bn(λ)‖2 = O(n) uniformly on λ. We have also,

E

( 1
n

U′nAn(λ)Un

)
= σ2

n,λ

and

Var
(
U′nAn(λ)Un

)
= (µ4 − 3σ2

0)
n∑
i=1

A2
ii(λ) + σ4

0

[
‖An(λ)‖2 + tr(A2

n(λ))
]

= O
(
‖An(λ)‖2

)
,
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with the symmetry of An(λ) = B
′
n(λ)Bn(λ). Consequently,

1
n

U′nAn(λ)Un −
σ2

0
n

tr (An(λ)) = Op

(‖An(λ)‖
n

)
= Op(n−1/2),

since ‖An(λ)‖ = O(n1/2) uniformly on λ. This yields the proof of Hn2(λ) and therefore
that of (i).

�

Proof of (ii):
We start to show the following convergence

hn
n

{(
L̃n(λ)− L̃n(λ0)

)
− (Qn(λ)−Qn(λ0))

}
= op(1).

Recall that,
L̃n(λ) = −n2 (ln(2π) + 1)− n

2 lnσ̂2
n,λ + ln|Sn(λ)|,

σ̂2
n,λ = 1

n
Y′nS

′
n(λ)MnSn(λ)Yn,

and
σ∗2n,λ = 1

n
(λ0 − λ)2∆n + σ2

0
n

tr (An(λ)) .

Then, we have

hn
n

{(
L̃n(λ)− L̃n(λ0)

)
− (Qn(λ)−Qn(λ0))

}
= −hn2

{(
lnσ̂2

n,λ − lnσ∗2n,λ
)
−
(
lnσ̂2

n,λ0 − lnσ∗2n,λ0

)}
+ o(1),

= −hn2
∂
(
lnσ̂2

n,λn
− lnσ∗2n,λn

)
∂λ

(λ− λ0) + o(1),

since tr(Bn(λ)−Bn(λ0)) and tr(An(λ)−An(λ0)) are of order O( n
hn

), εn1, εn4 are of order
o(1), and λn lies between λ and λ0.
Note that

∂σ̂2
n,λ

∂λ
= − 2

n
Y′nW

′
nMnSn(λ)Yn,

and
∂σ∗2n,λ
∂λ

= 2
n

[
(λ− λ0)∆n − σ2

0tr
(
G
′
nBn(λ)

)]
.

This implies that

hn
n

{(
L̃n(λ)− L̃n(λ0)

)
− (Qn(λ)−Qn(λ0))

}
= hn

n

1
σ̂2
n,λn

{
Y′nW

′
nMnSn(λn)Yn

−
σ̂2
n,λn

σ∗2n,λn

[
(λ0 − λn)∆n + σ2

0tr
(
G
′
nBn(λn)

)]}

= hn
n

1
σ̂2
n,λn

{
Y′nW

′
nMnSn(λ)Yn −

[
(λ0 − λn)∆n + σ2

0tr
(
G
′
nBn(λn)

)]
−
σ̂2
n,λn
− σ∗2n,λn

σ∗2n,λn

[
(λ0 − λn)∆n + σ2

0tr
(
G
′
nBn(λn)

)]}
(λ− λ0).
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By noting that Bn(λ) = In + (λ0 − λ)Gn and let Vn = ξpnθ
∗, we have

Y′nW
′
nMnSn(λ)Yn = (λ0 − λ) [Vn + Rn + Un]

′
G
′
nMnGn [Vn + Rn + Un]

+ [Vn + Rn + Un]
′
G
′
nMn [Rn + Un]

= (λ0 − λ)
[
V′nG

′
nMnGn [Vn + 2Un] + U′nG

′
nMnGnUn

]
+U′nMnGn [Vn + Un] + R′nMnGn [Vn + Rn + Un]

+2(λ0 − λ)R′nG
′
nMnGn [Vn + Rn + Un] .

We have
hn
n

(
V′nG

′
nMnGnVn −∆n

)
= hnHn0 = Op

(
pn√
n

)
. (4.25)

By the proof of Hn1(λ), we have√
hn
n

V′nG
′
nMn [In + (λ0 − λ)Gn] Un = Op

(
1 + pn√

hn

)
. (4.26)

By the proof of Hn2(λ), we have√
hn
n

[
U′nG

′
nMnUn − σ2

0tr(Gn)
]

= Op

(
1 + pn√

hn

)
and

√
hn
n

[
U′nG

′
nMnGnUn − σ2

0tr(G′nGn)
]

= Op

(
1 + pn√

hn

)
. (4.27)

Therefore, by Lemma 4.3, we may write√
hn
n

{
Y′nW

′
nMnSn(λn)Yn − (λ0 − λn)∆n − σ2

0tr
(
G
′
nBn(λn)

)}
= Op

(
1 + pn√

hn

)
. (4.28)

Note that when hn is unbounded, we have

σ2
n,λ = σ2

0 + o(1),

since tr(Gn) and tr(G′nGn) are of order O(n/hn). Thus, 1/σ∗2n,λ = O(1) uniformly in λ,
because σ∗2n,λ ≥ σ2

n,λ and σ2
0 > 0. However, we have also 1/σ̂2

n,λ = Op(1) by (4.21).

Now, note that under Assumption 1 (ii-iii), ∆n and tr(G′nBn(λ)) are of order O(n/hn)
and using (4.21) and (4.28), we conclude

hn
n

{(
L̃n(λ)− L̃n(λ0)

)
− (Qn(λ)−Qn(λ0))

}
= op(1), (4.29)

uniformly in λ ∈ Λ, since p2
n = o(n) by Assumption 2.

Let us proof the uniform equicontinuity of hn
n

[Qn(λ)−Qn(λ0)].

Recall that
hn
n

[Qn(λ)−Qn(λ0)] = −hn2
(
lnσ∗2n,λ − lnσ2

0

)
+ hn

2 (ln|Sn(λ)| − ln|Sn|) + o(1).
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Since tr(An(λ))− n = 2(λ0 − λ)tr(Gn) + (λ0 − λ)2tr(G′nGn), we have

hn(σ∗2n,λ − σ2
0) = (λ0 − λ)2hn

n
∆n + σ2

2
hn
n

(tr(An(λ))− n)

= (λ0 − λ)2hn
n

∆n + 2σ2
2
hn
n

(λ0 − λ)tr(Gn)

+σ2
2
hn
n

(λ0 − λ)2tr(G′nGn),

is uniformly equicontinuous in λ ∈ Λ by Assumption 1. By the mean value theorem,

hn
(
lnσ∗2n,λ − lnσ2

0

)
= hn
σ̃2
n,λ

(σ∗2n,λ − σ2
0),

where σ̃2
n,λ lies between σ2

0 and σ∗2n,λ. Consequently, it is uniformly bounded from above.
Hence, hn

(
lnσ∗2n,λ − lnσ2

0

)
is uniformly equicontinuous on Λ.

Then, the function
hn
n

(ln|Sn(λ)− ln|Sn|) = hn
n

tr(WnS
−1
n (λ̃n))(λ− λ0),

is uniformly equicontinuous on Λ because tr(WnS
−1
n (λ)) = O(n/hn) uniformly on λ by

Assumption 1.
In conclusion, hn

n
(Qn(λ)−Qn(λ0)) is uniformly equicontinuous on Λ.

Let us prove uniqueness of the maximum λ0.

Let
Dn(λ) = −hn2

(
lnσ2

n,λ − lnσ2
0

)
+ hn

n
(ln|Sn(λ)| − ln|Sn|) .

Then,
hn
n

(Qn(λ)−Qn(λ0)) = Dn(λ)− hn
2
(
lnσ∗2n,λ − lnσ2

n,λ

)
.

We have by the Taylor expansion,

hn
(
lnσ∗2n,λ − lnσ2

n,λ

)
=
σ∗2n,λ − σ2

n,λ

σ̃2
n,λ

= (λ− λ0)2

σ̃2
n,λ

hn
n

∆n,

where σ̃2
n,λ lies between σ∗2n,λ and σ2

n,λ. Since σ∗2n,λ ≥ σ2
n,λ for all λ ∈ Λ, it follows

hn
(
lnσ∗2n,λ − lnσ2

n,λ

)
≥ (λ− λ0)2

σ∗2n,λ

hn
n

∆n.

As hn is unbounded and under Assumption 1, σ∗2n,λ−σ2
n,λ = o(1) uniformly on Λ. Thus,

limn→∞ σ
∗2
n,λ = σ2

0.
Therefore, under Assumption 3 (a),

− lim
n→∞

hn
(
lnσ∗2n,λ − lnσ2

n,λ

)
≤ − lim

n→∞
(λ− λ0)2

σ∗2n,λ

hn
n

∆n

= −(λ− λ0)2

σ2
0

lim
n→∞

hn
n

∆n < 0,

for any λ 6= λ0. Furthermore, under Assumption 3 (b), Dn(λ) < 0, if λ 6= λ0.
In conclusion, for a certain rank, we have hn

n (Qn(λ)−Qn(λ0)) < 0, when λ 6= λ0.
The proof of (ii) follows from the uniform convergence (4.29) and the identification unique-
ness condition.
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Proof of Theorem 4.1

Identification and consistency of λ̂n are given by Proposition 4.1. Let us now focus on the
asymptotic normality of λ̂n.
Consider the first and second order derivatives of the concentrated log likelihood L̃n(λ):

∂L̃n(λ)
∂λ

= 1
σ̂2
n,λ

Y′nW
′
nMnSn(λ)Yn − tr

(
WnS

−1
n (λ)

)
,

and

∂2L̃n(λ)
∂λ2 = 2

nσ̂4
n,λ

[
Y′nW

′
nMnSn(λ)Yn

]2
− 1
σ̂2
n,λ

Y′nW
′
nMnWnYn − tr

([
WnS

−1
n (λ)

]2)
.

By (4.26) and Lemma 4.3, we have

hn
n

Y′nW
′
nMnWnYn = hn

n
V′nG

′
nMnGnVn + hn

n
U′nG

′
nMnGnUn + op(1), (4.30)

and

hn
n

Y′nW
′
nMnSn(λ)Yn = hn

n
U′nG

′
nMnUn + (λ0 − λ)hn

n
V′nG

′
nMnGnVn

+(λ0 − λ)hn
n

U′nG
′
nMnGnUn + op(1)

= Op(1),

by (4.28) and since under Assumption 1, ∆n and tr(GnBn(λ)) are of order Op(n/hn),
uniformly in λ.
From (4.21), we proved that σ̂2

n,λ = σ∗2n,λ + op(1). Thus, we have

hn
n

∂2L̃n(λ)
∂λ2 = − 1

σ∗2n,λ

[
hn
n

V′nG
′
nMnGnVn + hn

n
U′nG

′
nMnGnUn

]
−hn
n

tr
([
WnS

−1
n (λ)

]2)
+ op(1),

uniformly on Λ. For any λ̃n that converges in probability to λ0, one can easily show that

σ∗2
n,λ̃n
− σ∗2n,λ0 = op(1),

and as σ∗2n,λ ≥ σ2
0 > 0 uniformly on Λ, we can conclude by the Taylor expansion

hn
n

[
∂2L̃n(λ̃n)
∂λ2 − ∂2L̃n(λ0)

∂λ2

]
= hn

n

[
tr
(
WnS

−1
n (λ̃n)

)2
− tr

(
G2
n

)]
+ op(1)

= −2(λ̃n − λ0)hn
n

tr
(
G3
n(λ̄n)

)
+ op(1)

= op(1),

as under Assumption 1, tr
(
G3
n(λ)

)
is of order O(n/hn) uniformly on Λ.
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Finally, using (4.25), (4.27), and the fact that σ∗2n,λ0
= σ2

0, we have

hn
n

∂2L̃n(λ0)
∂λ2 = − 1

σ2
0

hn
n

∆n −
hn
n

[
tr(G′nGn) + tr

(
G2
n

)]
+ op(1). (4.31)

Let us now prove the asymptotic normality of
√

hn
n
∂L̃n(λ0)
∂λ .

Using the results of Lemma 4.3, we have√
hn
n

Y′nW
′
nMnSnYn =

√
hn
n

[
V′n + U′n

]
G
′
nMnUn + op(1), (4.32)

and
σ̂2
n,λ0 = 1

n
Y′nS

′
nMnSnYn = 1

n
U′nMnUn + op(1).

It follows that√
hn
n

∂L̃n(λ0)
∂λ

= 1
σ̂2
n,λ0

√
hn
n

[
V′nG

′
nMnUn + U′nC

′
nMnUn

]
+ op(1),

where Cn = Gn − tr(Gnn )In. Using (4.24), we have√
hn
n

U′nC
′
nξpn(ξ′pnξpn)−1ξ

′
pnUn = Op

(
pn√
n

)
, (4.33)

since under Assumption 1, the matrix Cn is uniformly bounded in both row and column
sums, and Cij = O(1/hn) uniformly in i and j.
Consider the following decomposition

ξ
′
pnG

′
nξpn(ξ′pnξpn)−1ξ

′
pnUn =

[
ξ
′
pnG

′
nξpn
n

− tr
(
Gn
n

)
Γpn

] [
ξ
′
pnξpn
n

]−1

ξ
′
pnUn

−tr
(
Gn
n

)[
ξ
′
pnξpn
n
− Γpn

] [
ξ
′
pnξpn
n

]−1

ξ
′
pnUn + tr

(
Gn
n

)
ξ
′
pnUn

= tr
(
Gn
n

)
ξ
′
pnUn +Op

(
p2
n

hn

)
,

by (4.24) and Lemma 4.1. Thus√
hn
n

V′nG
′
nξpn(ξ′pnξpn)−1ξ

′
pnUn =

√
hn
n

tr (Gn) V′nUn√
n

+Op

(
p2
n√
nhn

)
. (4.34)

Consequently, (4.33) and (4.34) imply√
hn
n

∂L̃n(λ0)
∂λ

= 1
σ̂2
n,λ0

√
hn
n

[
V′nD

′
nUn + U′nC

′
nUn

]
+ op(1),

with Dn = Gn + tr(Gnn )In.
Let Gsn = (Gn+G

′
n)/2, Csn = (Cn+C

′
n)/2, and Ds

n = (Dn+D
′
n)/2. These matrices satisfy

Csij = Ds
ij = Gsij for all i 6= j.
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Now, because tr(Cn) = 0, one can consider the decomposition

V′nD
′
nUn + U′nC

′
nUn =

n∑
i=1

Zni, (4.35)

with

Zni = DiiUiVi + Cii(U2
i − σ2

0) + 2Ui
i−1∑
j=1

GsijTj ,

where Ti = Vi + Ui, i = 1, . . . , n. It is easy to show that
n∑
i=1

E
(
Z2
ni

)
= σ2

0

[
E(V 2) + σ2

0

]
tr
(
Gn(G′n +Gn)

)
+
[
3σ2

0E(V 2) + σ4
0 − µ4

] 1
n

tr2(Gn)

+
[
µ4 − 3σ4

0 − σ2
0E(V 2)

] n∑
i=1

G2
ii.

Finally, let

s2
Z = lim

n→∞
hn
n

n∑
i=1

E
(
Z2
ni

)
and Z̃ni =

√
hn
n

Zni
sZ

.

Note that condition C.1 in Lemma 4.5 implies that
{
Z̃ni, i = 1, . . . , n n = 1, 2, . . .

}
form

a triangular array of martingale differences sequences. According to Kelejian & Prucha
(Theorem A.1, 2001, p.240) and under conditions C.2 and C.3 in Lemma 4.5, we have√

hn
n

∂L̃n(λ0)
∂λ

= sZ
σ̂2
n,λ0

n∑
i=1

Z̃ni + op(1)→ N
(

0, s
2
Z

σ4
0

)
. (4.36)

Finally, using (4.31) and (4.36) we can conclude by the Taylor expansion, that√
n

hn
(λ̂n − λ0)→ N (0, s2

λ), (4.37)

where
s2
λ = lim

n→∞
s2
Z

{
hn
n

[
∆n + σ2

0tr(Gn(G′n +Gn))
]}−2

.

This concludes the proof of Theorem 4.1.

�

Proof of Theorem 4.2

Let us consider the decomposition Sn(λ̂n) = Sn + (λ0 − λ̂n)Wn and note that

σ̂2
n,λ̂n

= 1
n

Y′nS
′
n(λ̂n)MnSn(λ̂n)Yn

= 1
n

Y′nS
′
nMnSnYn + 2(λ0 − λ̂n) 1

n
Y′nW

′
nMnSnYn

+(λ0 − λ̂n)2 1
n

Y′nW
′
nMnWnYn.

Lemma 4.3 and (4.33) imply that

1
n

Y′nS
′
nMnSnYn = 1

n
U′nUn + op(1).
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Thus
√
n(σ̂2

n,λ̂n
− σ2

0) =
√
n

hn
(λ0 − λ̂n)2

√
hn
n

Y′nW
′
nMnWnYn

−2
√
n

hn
(λ̂n − λ0)

√
hn
n

Y′nW
′
nMnSnYn + 1√

n
(U′nUn − nσ2

0).

Note that (4.26), (4.32) and (4.33) imply
√
hn
n

Y′nW
′
nMnSnYn =

√
hn
n

tr(Gn) + op(1) = Op

( 1√
hn

)
. (4.38)

By (4.25), (4.27) and (4.30), we have
√
hn
n

Y′nW
′
nMnWnYn =

√
hn
n

∆n + σ2
0

√
hn
n

tr
(
GnG

′
n

)
+ op(1) = Op

( 1√
hn

)
.

Consequently, the asymptotic normality of λ̂n implies√
n

hn
(λ0 − λ̂n)2

√
hn
n

Y′nW
′
nMnWnYn = op(1).

If limn→∞ hn =∞, (4.38) will be of order op(1). Hence

√
n(σ̂2

n,λ̂n
− σ2

0) = 1√
n

(U′nUn − nσ2
0) + op(1)→ N (0, µ4 − σ4

0).

Otherwise, we have
√
n(σ̂2

n,λ̂n
− σ2

0) = 1√
n

(U′nUn − nσ2
0)

−2
√
hn
n

tr(Gn)
√
n

hn
(λ̂n − λ0) + op(1). (4.39)

By the asymptotic normality proof of λ̂n (see (4.31) and (4.35)), one can conclude
√
n

hn
(λ̂n − λ0) = −δn

√
hn
n

n∑
i=1

Zni + op(1),

where
δn = n

hn

[
∆n + σ2

0tr
(
Gn(G′n +Gn)

)]−1
.

Therefore, on can rewrite (4.39) as

√
n(σ̂2

n,λ̂n
− σ2

0) = 2δn
√
hn
n

tr(Gn)
√
n

hn

n∑
i=1

Z†ni + op(1), (4.40)

where

Z†ni = DiiUiVi + C̃ii(U2
i − σ2

0) + 2Ui
i−1∑
j=1

GsijTj ,

where C̃ii = Cii + n
2δntr(Gn) , C̃ii is bounded uniformly in i, when hn is bounded.

It is easy to show that
n∑
i=1

E
(
Z†2ni

)
=

n∑
i=1

E
(
Z2
ni

)
+ n(µ4 − σ4

0)
[

n

2δntr(Gn)

]2
.
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Let

s2
Z† = lim

n→∞
hn
n

n∑
i=1

E
(
Z†2ni

)
and Z̃†ni =

√
hn
n

Z†ni
sZ†

.

Note that conditions C.1-C.3 in Lemma 4.5 hold when Zni and Z̃ni are replaced by Z†ni
and Z̃†ni respectively. Therefore, Kelejian & Prucha (Theorem A.1, 2001, p.240) implies
that

n∑
i=1

Z̃†ni → N (0, 1). (4.41)

Finally, by (4.40) and (4.41), we have
√
n(σ̂2

n,λ̂n
− σ2

0)→ N (0, s2
σ),

where
s2
σ = lim

n→∞
hns

2
Z†

[2δntr(Gn)
n

]2
= µ4 − σ4

0 + 4s2
λ lim
n→∞

hn

[tr(Gn)
n

]2
.

This finishes the proof.

�

Proof of Theorem 4.3

Recall that Sn(λ)S−1
n = In + (λ0 − λ)G, for all λ ∈ Λ, and

θ̂n,λ̂n = (ξ′pnξpn)−1ξ
′
pnSn(λ̂n)Yn. (4.42)

By Lemma 4.3, we have

√
n
(
θ̂n,λ̂n − θ

∗
)

=
√
n(λ0 − λ̂n)

(
ξ
′
pnξpn
n

)−1 [
ξ
′
pnGnξpn
n

θ∗ +
ξ
′
pnGnUn

n

]

+
(
ξ
′
pnξpn
n

)−1 [
ξ
′
pnUn√
n

]
+ op(1).

By Lemma 4.1, we have(
ξ
′
pnξpn
n

)−1
ξ
′
pnGnξpn
n

=
(
ξ
′
pnξpn
n

)−1 [
ξ
′
pnGnξpn
n

− tr
(
Gn
n

)
Γpn

]

−tr
(
Gn
n

)(
ξ
′
pnξpn
n

)−1 [
ξ
′
pnξpn
n
− Γpn

]
+ tr

(
Gn
n

)
Ipn

= tr
(
Gn
n

)
Ipn +Op

(
p2
n

hn
√
n

)
.

The asymptotic normality result of λ̂n and (4.24), imply that

√
n(λ0 − λ̂n)

(
ξ
′
pnξpn
n

)−1
ξ
′
pnGnUn

n
= Op

(
pn√
nhn

)
.

Hence,

√
n
(
θ̂n,λ̂n − θ

∗
)

=
(
ξ
′
pnξpn
n

)−1 [
ξ
′
pnUn√
n

]
+
√
n(λ0 − λ̂n)tr

(
Gn
n

)
θ∗ + op(1).
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Therefore,

n
(
θ̂n,λ̂n − θ

∗
)′

Γpn
(
θ̂n,λ̂n − θ

∗
)

=


(
ξ
′
pnξpn
n

)−1 [
ξ
′
pnUn√
n

]
′

Γpn


(
ξ
′
pnξpn
n

)−1 [
ξ
′
pnUn√
n

]
+ 2
√
n(λ0 − λ̂n)tr

(
Gn
n

)
θ∗
′Γpn

(
ξ
′
pnξpn
n

)−1 [
ξ
′
pnUn√
n

]

+ n(λ0 − λ̂n)2tr2
(
Gn
n

)
θ∗
′Γpnθ∗ + op(1). (4.43)

Consider the last two terms in (4.43), we have by the asymptotic normality of λ̂n

n(λ0 − λ̂n)2tr2
(
Gn
n

)
θ∗
′Γpnθ∗ = Op

( 1
hn

)
. (4.44)

In addition, by (4.24) and Lemma 4.1, we have

√
n(λ0 − λ̂n)tr

(
Gn
n

)
θ∗
′Γpn

(
ξ
′
pnξpn
n

)−1 [
ξ
′
pnUn√
n

]
= Op

( 1√
hn

)
. (4.45)

Let us now give the asymptotic distribution of the first term in (4.43). Let

Ψn = Γ
1
2

(
ξ
′
pnξpn
n

)−1

Γ
1
2 , Xn = Γ−

1
2

pn

ξ
′
pnŨn√
n

, with Ũn = σ−1
0 Un,

and consider the following decomposition
(
ξ
′
pnξpn
n

)−1 [
ξ
′
pnŨn√
n

]
′

Γpn


(
ξ
′
pnξpn
n

)−1 [
ξ
′
pnŨn√
n

] = X ′nΨ2
nXn

= X ′nXn − 2X ′n(Ipn −Ψn)Xn
+X ′n(Ipn −Ψn)2Xn. (4.46)

We have, by Assumptions 2, 5, 6 and Proposition 7.1 of Müller & Stadtmüller (2005),

X ′nXn − pn√
2pn

→ N (0, 1).

Thus, we deduce by (4.24) and Lemma 4.4, that

X ′n(Ipn −Ψn)Xn = op(
√
pn) and X ′n(Ipn −Ψn)2Xn = op(

√
pn).

Therefore,

n
(
θ̂n,λ̂n − θ

∗
)′

Γpn
(
θ̂n,λ̂n − θ

∗
)
− pn

√
2pn

= σ2
0
X ′nXn − pn√

2pn
+Op

( 1√
hnpn

)
→ N (0, σ4

0),

by (4.43), (4.44) and (4.45). This yields (4.14) and completes the proof of Theorem 4.3.

�
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Lemma 4.1. Assume that E
(
ε4
i

)
is finite, where εi =

∫
X(t)ϕi(t)dt. Under Assumption

1, we have

ξ
′
pnGnξpn
n

− tr
(
Gn
n

)
Γpn = Op

(
pn +

√
hn

hn
√
n

)
,

and ∥∥∥∥∥ξ
′
pnGnξpn
n

∥∥∥∥∥ = Op

(
1
hn

[
1 + pn +

√
hn√

n

])
.

Proof of Lemma 4.1

Note that E (εrεs)2 ≤ E
(
ε2
r

)
E
(
ε2
s

)
, and E

(
ε2
s

)
is finite since X(·) is square integrable.

Since E
(
ε4
s

)
is finite, E

(
ε2
rε

2
s

)
is also finite.

Note that

E

(∥∥∥ξ′pnGnξpn − E (ξ′pnGnξpn)∥∥∥2
)

=
n∑

i1=1
j1=1

n∑
i2=1
j2=1

pn∑
r=1

pn∑
s=1

Gi1j1Gi2j2

[
E
(
ε(i1)
s ε(j1)

r ε(i2)
s ε(j2)

r

)

−E
(
ε(i1)
s ε(j1)

r

)
E
(
ε(i2)
s ε(j2)

r

)]
=

n∑
i=1

G2
ii

pn∑
r=1

pn∑
s=1

Cov
(
ε2
r , ε

2
s

)
+

n∑
i=1

n∑
j=1
j 6=i

G2
ij

pn∑
r=1

pn∑
s=1

E
(
ε2
s

)
E
(
ε2
r

)

+
n∑
i=1

n∑
j=1
j 6=i

GijGji

pn∑
r=1

pn∑
s=1

E (εsεr)E (εsεr)

= O

p2
n

n∑
i=1

G2
ii +

n∑
i=1

n∑
j=1
j 6=i

G2
ij +

n∑
i=1

n∑
j=1
j 6=i

GijGji


= O

(
p2
n

n

h2
n

+ ‖Gn‖2 +
∣∣∣tr (G2

n

)∣∣∣) = O

(
n

h2
n

(p2
n + hn)

)
,

since ‖Gn‖2 and
∣∣tr (G2

n

)∣∣ are of order O(n/hn) by Assumption 1-ii. This concludes the
proof.

�

Lemma 4.2. Assume that E
(
ε4
i

)
is finite, where εi =

∫
X(t)ϕi(t)dt. Under Assumption

1, we have

ξ
′
pnG

′
nξpn
n

[
ξ
′
pnξpn
n

]−1
ξ
′
pnGnξpn
n

− tr2
(
Gn
n

)
Γpn = Op

(
pn

h2
n

√
n

[
1 + p2

n√
n

])
.
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Proof of Lemma 4.2

Note that

ξ
′
pnG

′
nξpn
n

[
ξ
′
pnξpn
n

]−1
ξ
′
pnGnξpn
n

− tr2
(
Gn
n

)
Γpn

=
[
ξ
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′
nξpn
n

− tr
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n

)
Γpn

] [
ξ
′
pnξpn
n

]−1 [
ξ
′
pnGnξpn
n

− tr
(
Gn
n

)
Γpn

]

+ 2tr
(
Gn
n

)
Γpn

[
ξ
′
pnξpn
n

]−1 [
ξ
′
pnGnξpn
n

− tr
(
Gn
n

)
Γpn

]

+ tr2
(
Gn
n

)
Γpn

[
ξ
′
pnξpn
n

]−1 [
Γpn −

ξ
′
pnξpn
n

]

= Op

(
pn

h2
n

√
n

[
1 + p2

n√
n

])
,

by Lemma 4.1.
�

Lemma 4.3. Under Assumptions 1-2, we have√
hn
n

U′nG
′
nMnGnRn = op(1), (4.47)√

hn
n

R′nMnGnξpn = op(1), (4.48)√
hn
n

R′nG
′
nMnGnRn = op(1). (4.49)

Proof of Lemma 4.3

Let
πn1 =

pn∑
r=1

E
(
R2ε2

r

)
and πn2 =

pn∑
r=1

E (Rεr)2 .

Consider (4.47), and note that by Assumption 1,

E

(∥∥∥R′nGnξpn∥∥∥2
)

= O

(
n

h2
n

[
hnE(R2) + πn1 + nπn2

])
, (4.50)

E

(∥∥∥R′nξpn∥∥∥2
)

= O (nπn1) , and E

([
R′nUn

]2)
= O

(
nE(R2)

)
. (4.51)

Thus

U′nG
′
nMnGnRn = U′nG

′
nGnRn −U′nG

′
nξpn

(
ξ
′
pnξpn

)
ξ
′
pnGnRn

= op

(√
n

hn

)
+Op

(
pn
hn

√
hnE(R2) + πn1 + nπn2

)
,

by (4.24), (4.50), and (4.51).
Let us treat (4.48),

R′nG
′
nMnGnξpn = R′nG

′
nGnξpn −R′nG

′
nξpn

(
ξ
′
pnξpn

)
ξ
′
pnGnξpn

= Op

(√
n

hn

[
1 + pn

hn

]√
hnE(R2) + πn1 + nπn2

)
.
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Finally, considering (4.49), we have

R′nG
′
nMnGnRn = R′nG

′
nGnRn −R′nG

′
nξpn

(
ξ
′
pnξpn

)
ξ
′
pnGnRn

= Op

(
pn
h2
n

[
hnE(R2) + πn1 + nπn2

])
.

Therefore the proof follows from Assumption 2.

�

Lemma 4.4. Under Assumptions 2 and 5, we have

‖Ψn − Ipn‖2 = Op(p−1
n ).

For the proof of this lemma, see Müller & Stadtmüller ( Lemma 7.2, 2005, p.28).

�

The following lemma gives conditions under which a martingale central limit theorem
can be applicable to the triangular array of martingale difference sequences {Zni, 1 ≤ i ≤
n, n ∈ N}, for more of details see Kelejian & Prucha (Theorem A.1, 2001, p.240).

Lemma 4.5. Under assumptions of Theorem 4.1, we have

C.1. The random variables {Zni, 1 ≤ i ≤ n, n ∈ N} form a triangular array of martingale
difference sequence w.r.t the filtrations
(Fn,i) = σ

{
ε

(j)
r , Uj , 1 ≤ j ≤ i, 1 ≤ r ≤ pn

}
(1 ≤ i ≤ n, n ∈ N).

C.2. Conditional normalization condition:
n∑
i=1

E
(
Z̃2
ni

∣∣∣Fn,i−1
)
→ 1, in probability as n→∞.

C.3. There exists a constant δ > 0:
n∑
i=1

E

(∣∣∣Z̃ni∣∣∣2+δ
)
→ 0, n→∞.

(Lyapunov condition if δ = 2).

Proof of Lemma 4.5

Proof of C.1 This is immediate, because E (Zni|Fn,i−1) = 0.

�

Proof of C.2
For each i = 1, . . . , n, let

Qni =
i−1∑
j=1

GsijTj .

We have
E
(
Z2
ni

∣∣∣Fn,i−1
)

= σ2
0E(V 2)D2

ii + (µ4 − σ4
0)C2

ii + 4σ2
0Q

2
ni,
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hence

E

(
n∑
i=1

E
(
Z2
ni

∣∣∣Fn,i−1
))

= σ2
0E(V 2)

n∑
i=1

D2
ii + (µ4 − σ4

0)
n∑
i=1

C2
ii

+2σ2
0E(T 2)

n∑
i=1

i−1∑
j=1

Gs2ij .

By definition of Z̃ni,

E

(
n∑
i=1

E
(
Z̃2
ni

∣∣∣Fn,i−1
))

= 1 + o(1).

Remark that

Var
(

n∑
i=1

E
(
Z2
ni

∣∣∣Fn,i−1
))

= 16σ4
0Var

(
n∑
i=1

Q2
ni

)
, (4.52)

when Ui is normally distributed. Otherwise, result (4.55) remains valid.

Let us consider Var
(∑n

i=1Q
2
ni

)
. First, we have

n∑
i=1

E
(
Q2
ni

)
= E(T 2)

n∑
i=1

i−1∑
j=1

Gs2ij . (4.53)

Let for all 1 ≤ i ≤ j ≤ n,

E
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2
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Then, we have
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We can rewrite (4.53) as[
2E(T 2)2

]−1
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E

(
n∑
i=1

Q2
ni

)]2

=
n∑
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k=1

j−1∑
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Therefore, we have
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n∑
i=1

Q2
ni

)
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T 4
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. (4.54)

Then, by (4.52) and (4.54), we have

Var
(

n∑
i=1

E
(
Z̃2
ni

∣∣∣Fn,i−1
))

= O

(
E
(
T 4) ,+hnE(T 2)2

n

)
= o(1) (4.55)

since E(T 4) = O(E(V 4)) = O(p2
n) and E(T 2) = O(E(V 2)) = O(1). Hence the result

follows.
�

Proof of C.3
For any positive constants p and q such that 1

p + 1
q = 1,

|Zni| ≤ |Dii||ViUi|+ |Cii||U2
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Holder’s inequality for inner products applied to the last term, implies that
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since under Assumption 1, Dii and Cii are of order O(1/hn) and Gn is uniformly bounded
in row sums.
Let q = 2 + δ, and note that

n∑
i=1

E

(∣∣∣Z̃ni∣∣∣2+δ
)

= O

h δ2n
n
δ
2

[
E
(
U4+2δ

)
+ hnE

(
|T |2+δ

)] . (4.56)

Let δ = 2, then (4.56) is of order O
(
h2
np

2
n

n

)
, since E(T 4) = O

(
p2
n

)
and E(U8) is finite.

This yields the proof as by assumption h4
n = O(n) (when hn is divergent) and p4

n = o(n).
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Résumé en français

Dans ce chapitre, nous proposons un prédicteur spatial non-paramétrique à partir de la
fonction de régression d’un processus spatial par la méthode des k-plus proches voisins. La
spécificité du prédicteur proposé est qu’elle utilise une fenêtre de lissage aléatoire adaptée
à une éventuelle hétérogénéité au niveau des réalisations de la variable explicative spatiale
utilisée. L’approche proposée dans ce chapitre généralise celle classique de k-plus proches
voisins (Collomb, 1980) aux données spatiales et est une alternative à l’approche par noyau
étudiée dans Dabo-Niang et al. (2016).

Nous considérons le processus spatial {Zi = (Xi, Yi) ∈ Rd × R , i ∈ NN} (d ≥ 1)
définit sur l’espace de probabilité (Ω,A, P ), N ∈ N∗. On suppose que ce processus est
observable sur l’ensemble spatial discret In = {i ∈ NN : 1 ≤ ir ≤ nr r = 1, . . . , N}
avec n = (n1, . . . , nN ) ∈ NN et n̂ = n1 × . . . × nN . On suppose que n → ∞ équivaut à
min{nr} → +∞ et nk/ni ≤ C, pour 1 ≤ k, i ≤ N où C est une constante positive. Nous
admettrons que la relation entre les processus (Xi, i ∈ NN ) et (Yi, i ∈ NN ), soit définie
par le modèle de régression suivant

Yi = r(Xi) + εi, i ∈ NN , (5.1)

où la fonction de régression r(·) = E (Yi|Xi = ·) est supposée indépendante de i, le bruit
(εi, i ∈ NN ) est centré, α−mélangeant et indépendant de (Xi, i ∈ NN ).
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Nous nous intéressons à prédire le processus (Yi, i ∈ NN ) en des sites non observés, par-
ticulièrement en un site s0 ∈ In en exploitant l’information sur Xs0 et les observations
(Xi, Yi)i∈On , où On ⊂ In est l’ensemble spatial dans lequel le processus (Zi, i ∈ NN ) est
observé, avec s0 /∈ On et Card(On) tend vers l’infini quand n → ∞. Pour atteindre cet
objectif, la littérature suppose généralement que le processus considéré est strictement sta-
tionnaire. Dans ce travail, nous supposons que les variables (Xi, Yi)i∈On sont localement
identiquement distribuées (voir Klemelä, 2008). Avec cette hypothèse, nous pouvons imag-
iner que s’il existe assez de sites dans On proches de s0 où des données sont disponibles,
alors les observations (Xi, Yi)i∈On pourront être utilisées pour prédire Ys0 . Nous supposons
que (Yi, i ∈ NN ) est intégrable et que (Xs0 , Ys0) a la même distribution que (X,Y ) et que
(X,Y ) et (Xi, Yi) admettent des densités inconnues par rapport à la mesure de Lebesgue.
Soient f et fX,Y , les densités respectives de X et (X,Y ).

Nous définissons le prédicteur de Ys0 en combinant le principe de la méthode des k-plus
proches voisins et le prédicteur spatiale proposé par Dabo-Niang et al. (2016) :

Ŷs0 =

∑
i∈On YiK1

(
Xs0−Xi
Hn,Xs0

)
K2

(
h−1

n,s0

∥∥∥ s0−i
n

∥∥∥)
∑

i∈On K1

(
Xs0−Xi
Hn,Xs0

)
K2

(
h−1

n,s0

∥∥∥ s0−i
n

∥∥∥) , (5.2)

si le dénominateur est non nul, sinon Ŷs0 est la moyenne empirique. Notons que, K1 et
K2 sont deux noyaux de Rd à R+ et de R à R+ respectivement, i

n =
(
i1
n1
, . . . ,

iN
nN

)
,

Hn,Xs0
= min

h ∈ R∗+ |
∑

i∈On

I (‖Xi −Xs0‖ < h) = k(n)

 et

hn,s0 = min

h ∈ R∗+ |
∑

i∈On

I
(∥∥∥∥ i− s0

n

∥∥∥∥ < h

)
= k1

n

 où k1
n, k(n) sont deux suites d’entiers

positives. Notons que la fenêtre aléatoire de lissage Hn,Xs0
est une variable aléatoire

positive qui dépend de Xs0 et des observations {Xi, i ∈ On}.
Le principal avantage de ce prédicteur comparé à celui par noyau

Ŷ NW
s0 =

∑
i∈On YiK1

(
ρ−1

n

∥∥∥ s0−i
n

∥∥∥)K2
(
Xs0−Xi
hn

)
∑

i∈On K1
(
ρ−1

n
∥∥∥ s0−i

n

∥∥∥)K2
(
Xs0−Xi
hn

) , (5.3)

où la fenêtre de lissage hn (voir Dabo-Niang et al., 2016) est déterministe, réside sur le
fait que Hn,Xs0

permet au prédicteur de s’adapter à la structure locale des observations,
particulièrement s’il existe une certaine hétérogénéité des données. De plus le prédicteur
proposé Ŷs0 est plus facile à mettre en ?uvre que celui par noyau Ŷ NW

s0 . En effet, il est
plus facile de choisir le paramètre du nombre de voisins k(n) qui prend ses valeurs dans
un sous-ensemble discret que la fenêtre hn qui est dans R+.

Sous certaines hypothèses, nous obtenons des résultats de la consistance du prédicteur
proposé. Plus particulièrement, la convergence presque complète est obtenue avec vitesse.
Nous montrons que ∣∣∣Ŷs0 − Ys0

∣∣∣ −→
n→∞

0 a.co.

Une étude numérique où nous comparons les performances du prédicteur proposé Ŷs0 et
celui par noyau; Ŷ NW

s0 de Dabo-Niang et al. (2016) est menée sur des données simulées et
réelles.
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The results of this chapter are in collaboration with Mohamed Kadi Attouch (Univer-
sity of Djilalli Liabes, Algeria), Sophie Dabo-Niang (University of Lille) and Mamadou
N’diaye (University of Dakar, Senegal). A related paper is in revision.

5.1 Introduction

Spatio-temporal data naturally arise in many fields such as environmental sciences, geo-
physics, soil science, oceanography, econometrics, epidemiology, forestry, image processing
and many others in which the data of interest are collected across space. The literature on
spatio-temporal models is relatively abundant, see for example the monograph of Cressie
& Wikle (2015).

Complex issues arise in spatial analysis, many of which are neither clearly defined
nor completely resolved, but form the basis for current researches. Among the practical
considerations that influence the available techniques used in the spatial data modeling, is
the data dependency. In fact, spatial data are often dependent and a spatial model must
be able to handle this aspect. Notice that the linear models for spatial data only capture
global linear relationships between spatial locations. However, in many circumstances the
spatial dependency is not linear. It is for example, the classical case where one deals with
the spatial pattern of extreme events such as in the economic analysis of poverty.

Then in such situations, it is more appropriate to use a nonlinear spatial dependence
measure by using for instance the strong mixing coefficients concept (see Tran, 1990). The
literature on nonparametric estimation techniques, which incorporate nonlinear spatial de-
pendency is not extensive compare to that of linear dependence. For an overview on results
and applications considering spatial dependent data for density, regression estimation or
prediction, we highlight the following works: Lu & Chen (2004), Hallin et al. (2004), Biau
& Cadre (2004), Carbon et al. (2007), Dabo-Niang & Yao (2007), Menezes et al. (2010),
El Machkouri & Stoica (2010), Wang & Wang (2009), Ternynck (2014). Other authors
deal with the spatial quantile regression estimation Hallin et al. (2009), Abdi et al. (2010)
and Dabo-Niang et al. (2012).

The k-Nearest Neighbor (k-NN) kernel estimator is a weighted average of response
variables in the neighborhood of the value of covariate. The k-NN kernel estimate has
a significant advantage over the classical kernel estimate. The specificity of the k-NN
estimator liens in the fact that it is flexible to all sort of presence of heterogeneity in used
covariate which allows to account the local structure of the data. This consists in the
choice of an appropriate number of neighbors, using a random bandwidth adapted to the
local structure of the data and permitting to learn more on the local data dependency.
Another advantage of the k-NN method is in the nature of the smoothing parameter.
Indeed, in the classical kernel method, the smoothing parameter is the bandwidth hn,
which is a real positive number and in k-NN method, the smoothing parameter takes kn
its values in discrete set. The use of this method is very recent in the case of spatial data.
Li & Tran (2009) proposed a regression estimator of spatial data based on the k nearest
neighbors method. They proved an asymptotic normality result of their estimator in the
case of multivariate data.

The lack of spatio-nonparametric techniques motivates this work. Namely, we are
interested in asymptotic properties of nonparametric prediction for spatial processes using
k-nearest neighbors method. The originality of the suggested present predictor lies in the
fact that it depends on two kernels, one of which controls the distance between observations
using random bandwidth and the other controls the spatial dependence structure. This
idea has been presented in Menezes et al. (2010), Dabo-Niang et al. (2016), Ternynck
(2014) in the context of kernel prediction problem for multivariate or functional spatial
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data.
The present work extends the previous results in the case of k-nearest neighbors non-

parametric prediction in the context of multivariate spatial data. We derive a double
nearest neighbors selection method of the classical k-nearest neighbors one (see Li & Tran,
2009) and we study some asymptotic results of such predictor and give some numerical
results.

The outline of the rest of this chapter is as follows. In Section 5.2, we introduce
the model and define the predictor. Section 5.3 is dedicated to the almost complete
convergence1 whereas Section 5.4 gives some simulations and application to real data,
to illustrate the performance of the proposed predictor. Section 5.5 is devoted to some
conclusions. Finally, the proofs of some lemmas and the main results are postponed to
the last Section.

5.2 Model and construction of predictor

Let {Zi = (Xi, Yi) ∈ Rd × R , i ∈ NN} (d ≥ 1) be a spatial process defined over some
probability space (Ω,A, P ), N ∈ N∗. We assume that the process is observable in In =
{i ∈ NN : 1 ≤ ir ≤ nr r = 1, . . . , N}, n = (n1, . . . , nN ) ∈ NN , and n̂ = n1 × . . . × nN ,
we write n → ∞ if min{nr} → +∞, nk/ni ≤ C, ∀ 1 ≤ k, i ≤ N . Let ‖·‖ denote the
Euclidian norm in RN or in Rd. We assume that the relation between these two process
(Xi, i ∈ NN ) and (Yi, i ∈ NN ) is described by this following model:

Yi = r(Xi) + εi, i ∈ NN (5.4)

where
r(·) = E (Yi|Xi = ·) (5.5)

is assumed to be independent of i, the noise (εi, i ∈ NN ) is centered, α-mixing (see
Section 5.3 for a description of this condition) and independent of (Xi, i ∈ NN ). We are
interested in predicting the spatial process (Yi, i ∈ NN ) in some unobserved locations and
particularly at an unobserved site s0 ∈ In under the information that can be drawn on
Xs0 and observations (Xi, Yi)i∈On , where On is the observed spatial set of finite cardinality
tending to ∞ as n → ∞ and contained in In, with s0 /∈ On. In the following proposed
predictor, we integrate information that might be drawn from the structure of the spatial
dependence between the considered site s0 and all sites in On. To achieve this objective, we
do not suppose as usual a strict stationarity assumption. We assume that the observations
(Xi, Yi)i∈On are locally identically distributed (given in assumption (H7), see Dabo-Niang
et al., 2016; Klemelä, 2008, for more detail). Indeed, we say that a substantial number
of observations (Xi, Yi) has a distribution close to that of (Xs0 , Ys0). In such case, one
may imagine that if there is enough sites i closed to s0, then sequence (Xi, Yi)i∈On may
be used to predict Ys0 . Assume that (Yi, i ∈ NN ) is integrable and that (Xs0 , Ys0) has the
same distribution as that of some pair (X,Y ). We assume that (X,Y ) and (Xi, Yi) have
unknown continuous densities with respect to Lebesgue measure and let fX,Y and f be
the densities of (X,Y ) and X respectively.
A predictor of Ys0 could be defined by combining the principle of k-NN method using a

1Let (zn)n∈N be a sequence of real random variables. We say that zn converges almost completely
(a.co.) toward zero if, and only if, ∀ε > 0,

∑∞
n=1 P (|zn| > ε) < ∞. Moreover, we say that the rate of the

almost complete convergence of zn to zero is of order un (with un → 0) and we write zn = Oa.co.(un) if,
and only if, ∃ε > 0 such that

∑∞
n=1 P (|zn| > εun) < ∞. This kind of convergence implies both almost

sure convergence and convergence in probability.
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random bandwidth depending on the observations and the kernel weight (see Dabo-Niang
et al., 2016), as follows:

Ŷs0 =

∑
i∈On YiK1

(
Xs0−Xi
Hn,Xs0

)
K2

(
h−1

n,s0

∥∥∥ s0−i
n

∥∥∥)
∑

i∈On K1

(
Xs0−Xi
Hn,Xs0

)
K2

(
h−1

n,s0

∥∥∥ s0−i
n

∥∥∥) , (5.6)

if the denominator is not null otherwise the predictor is equal to the empirical mean. Here,
K1 and K2 are two kernels from Rd and R to R+ respectively, i

n =
(
i1
n1
, · · · , iN

nN

)
, and

Hn,Xs0
= min

h ∈ R∗+ |
∑

i∈On

I(‖Xi −Xs0‖ < h) = k(n)

 and

hn,s0 = min

h ∈ R∗+ |
∑

i∈On

I
(∥∥∥∥ i− s0

n

∥∥∥∥ < h

)
= k1

n

 where k1
n, k(n) are positive integers

sequences. The random bandwidth Hn,Xs0
is a positive random variable which depends

on Xs0 and the observations {Xi, i ∈ On}.

The main advantage of using this predictor compare to the fully kernel method may be
the fact that Hn,Xs0

depends on Xs0 allows the predictor to be adapted to a local struc-
ture of the observations, particularly if these are heterogeneous (see Burba et al., 2009).
In addition, the k-NN method is easy to be computed, in fact it is easier to choose the
smoothing parameters k1

n and k(n) which take their values in a discrete subset than the
bandwidths used in the following kernel counterpart of (5.6) (see Dabo-Niang et al., 2016).

Ŷ NW
s0 =

∑
i∈On YiK1

(
Xs0−Xi
hn

)
K2

(
ρ−1

n

∥∥∥ s0−i
n

∥∥∥)∑
i∈On K1

(
Xs0−Xi
hn

)
K2

(
ρ−1

n
∥∥∥ s0−i

n

∥∥∥) , (5.7)

the bandwidths hn, ρn are non random.

5.3 Assumptions and results

To account for spatial dependency, we assume that the process {Zi = (Xi, Yi) ∈ Rd×R , i ∈
NN} satisfies a mixing condition defined as follows: there exists a function ϕ(x) ↘ 0 as
x→∞, such that

α
(
σ (S) , σ

(
S′
))

= sup
{
|P (A ∩B)− P (A)P (B)| , A ∈ σ (S) , B ∈ σ

(
S′
)}

≤ ψ
(
Card(S),Card(S′)

)
ϕ
(
dist(S, S′)

)
(5.8)

where S and S′ are two finite sets of sites, σ (S) = {Zi, i ∈ S} and σ (S′) = {Zi, i ∈ S′}
are σ-fields generated by the Zi’s, and ψ(·) is a positive symmetric function nondecreasing
in each variable. We recall that the process is said to be strongly mixing if ψ(·) = 1 (see
Doukhan, 1994). As usual, we will assume that ϕ(i) verifies :

ϕ(t) ≤ Ct−θ , θ > 0 , t ∈ R∗+. (5.9)

for some C > 0 (i.e. ϕ (t) tends to zero at a polynomial rate).
Before stating the main results, the following set of assumptions are listed and all along
the chapter, we fix a compact subset D in Rd and when no confusion is possible, we will
denote by C, a strictly positive generic constant.
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(H1) f and r(·) are continuous Lipschitz functions in D. In addition, infx∈D f(x) > 0.

(H2) The density fXiXj of
(
Xi, Xj

)
is bounded in D and

∣∣∣fXiXj(u, v)− fXi(u)fXj(v)
∣∣∣ ≤ C

for all i 6= j and (u, v) ∈ D ×D .

(H3) k(n) ∼ n̂γ and k1
n ∼ n̂γ̃ , where γ, γ̃ ∈]1

2 , 1[, γ < γ̃ and γ + γ̃ > 3/2 .

(H4) (i) The kernel K1 is bounded, of compact support and

∀u ∈ Rd, K1(u) ≤ K1(tu) ∀ t ∈]0, 1[. (5.10)

(ii) K2 is a bounded nonnegative function, and there exist constants C1, C2 and ρ
such that

C1I (t ≤ ρ) ≤ K2(t) ≤ C2I (t ≤ ρ) ∀ t ∈ R+, (5.11)

with 0 < C1 ≤ C2 <∞, ρ > 0.

(H5) ∀n,m ∈ N ψ(n,m) ≤ C min(n,m) and
θ > N(sd(3−γ− γ̃) +2s(3−γ) +2d)/(1−s(2−γ− γ̃)) where 2 < s < 1/(2−γ− γ̃).

(H6) ∀n,m ∈ N ψ(n,m) ≤ C(n+m+ 1)β̃, β̃ ≥ 1 and
θ > N

(
s(d(3− γ − γ̃) + (7 + 2β̃ − 3γ − γ̃)) + 2(d+ 1)

)
/(1 − s(2 − γ − γ̃)) where

2 < s < 1/(2− γ − γ̃),

(H7) The densities fi and fXi,Yi of Xi and (Xi, Yi) are such that

sup
x∈D,‖ i−s0

n ‖<hn,s0

|fi(x)−f(x)| = o(1) and sup
x∈D,‖ i−s0

n ‖<hn,s0

|gi(x)−g(x)| = o(1),

as n→∞ with gi(x) =
∫
yfXi,Yi(x, y)dy.

The conditional density fYi,Yj|Xi,Xj of (Yi, Yj) given (Xi, Xj) and the conditional
density fYi|Xj of Yi given Xj exists and

fYi,Yj|Xi,Xj(y, t|u, v) < C and fYi|Xj(y|u) < C,

for all y, t, u, v, i, j.

Remark 5.1.

1. More generally one can extend Ŷs0 using K2
(
h−1

n,s

(
s0−i

n

))
(instead of

K2
(
h−1

n,s0

∥∥∥ s0−i
n

∥∥∥)) where sites i and s0 are not normalized and K2(·) is a kernel on
RN , that is

Ŷs0 =
∑

i∈On YiK1
(
Xs0−Xi
Hn,s0

)
K2

(
h−1

n,s

(
s0−i

n

))
∑

i∈On K1
(
Xs0−Xi
Hn,s0

)
K2

(
h−1

n,s
(

s0−i
n

)) . (5.12)

2. In assumption (H1), we assume that f is lipschitzian, this is necessary particularly
in the bias term (see the proof of condition (L1) in Lemmas 5.3 and 5.4) and it
allows with assumption (H7) to specify the rate of convergence in Corollary 5.1.

3. Assumption (H2) is very basic in nonparametric estimation of spatial dependent data,
it allows to control the local dependence between the observations (see, e.g Carbon
et al., 2007).
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4. The condition on k(n) in assumption (H3) is similar of the condition of number of
the nearest neighbors assumed by Muller & Dippon (2011) in the case of dependent
functional data. The condition on k1

n is same as the condition assumed by Dabo-
Niang et al. (2016) on the number of the neighbors of the predict site.

5. Condition (5.10) on the kernel K1 is required in the proofs of Lemma 5.3 and Lemma
5.4, for more details on this kernel, see Collomb (1980). Condition (5.11) on the
kernel K2 allows the simplicity and brevity of our proofs (see Dabo-Niang et al.,
2016). It is satisfied, for instance, by several kernels with compact support such as
triangular (Bartlett), biweight, triweight, Epanechnikov, Parzen kernels.

6. Assumptions (H5) and (H6) are very standard to handle the strong mixing de-
pendence (seee Neaderhouser, 1980; Rosenblatt, 1985; Takahata, 1983; Dabo-Niang
et al., 2016). They appear (in the calculations when studying the asymptotic behav-
ior of the estimator) in the particular case where the mixing coefficient is such that
θ tends to zero at a polynomial rate (see Neaderhouser, 1980; Rosenblatt, 1985, for
some examples). Each of these conditions is related to a specific case of mixing in
the spatial context and are used respectively in Neaderhouser (1980) and Takahata
(1983).

The following theorem gives an almost complete convergence of the predictor.

Theorem 5.1. Under assumptions (H1)-(H4), (H7) and (H5) or (H6), as n → ∞, we
have

Ŷs0 − Ys0 = o(1) a.co. (5.13)

If r(·) is lipschitzian we can obtain the rate of almost complete convergence stated in
the following Corollary.

Corollary 5.1. Under assumptions (H1)-(H4), (H7) and (H5) or (H6), as n → ∞, we
have

Ŷs0 − Ys0 = O

((
k(n)

n̂

)1/d
+
( n̂ log(n̂)
k1

nk(n)

)1/2)
a.co. (5.14)

The results of Theorem 5.1 and Corollary 5.1 can be proved easily from the asymptotic
results (stated respectively in Lemmas 5.1 and 5.2) of the following function

rkNN(x) =


gn(x)
fn(x) if fn(x) 6= 0;

Y , the empirical mean, otherwise,

with

gn(x) = 1
n̂hNn,s0H

d
n,x

∑
i∈In,s0 6=i

K1

(
x−Xi
Hn,x

)
K2

(
h−1

n,s0

∥∥∥∥s0 − i
n

∥∥∥∥)Yi,

and

fn(x) = 1
n̂hNn,sHd

n,x

∑
i∈In,s0 6=i

K1

(
x−Xi
Hn,x

)
K2

(
h−1

n,s0

∥∥∥∥s0 − i
n

∥∥∥∥) .
Lemma 5.1. Under assumptions (H1)-(H4), (H7) and (H5) or (H6), we have

sup
x∈D
|rkNN(x)− r(x)| −→

n→∞
0 a.co. (5.15)
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Lemma 5.2. Under assumptions (H1)-(H4), (H7) and (H5) or (H6), as n→∞, we have

sup
x∈D
|rkNN(x)− r(x)| = O

((
k(n)

n̂

)1/d
+
( n̂ log(n̂)
k1

nk(n)

)1/2)
a.co. (5.16)

The proofs will be postponed in the last section. Since the proofs of Theorem 5.1 and
Corollary 5.1 come directly from that of Lemmas 5.1 and 5.2, they will be omitted. The
main difficulty in the proofs of Lemmas 5.1 and 5.2, comes from randomness of the window
Hn,x. Then, we do not have in the numerator and denominator of rkNN(x) sums of
identically distributed variables. The idea is to frame sensibly Hn,x by two non-random
bandwidths.

Now, that we have checked the theoretical behavior of our predictor, we study the
practical features through some simulations as well as an application to a multivariate soil
data set related to heavy metal contamination in the Swiss Jura.

5.4 Numerical experiments

5.4.1 Simulation dataset

In order to evaluate the efficiency of the k-NN prediction for a set of spatial data, we use
the average of mean absolute errors (MAE) to compare the prediction by k-NN method
and that by kernel of Dabo-Niang et al. (2016) using simulated data based on observations
(Xi,j , Yi,j), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 such that ∀i, j:

Xi,j = Ai,j × Ui,j × Ti,j + (1−Ai,j)× (6 + Ui,j × Zi,j)

and
Yi,j = r(Xi,j) + εi,j ,

where
r(x) = x2.

Let the Ai,j be independent Bernoulli random variables with parameter 0.5,
T = (Ti,j)1≤i≤n1,1≤j≤n2 = GRF(0, 5, 3), Z = (Zi,j)1≤i≤n1,1≤j≤n2 = GRF(0, σ, 3) and
ε = (εi,j)1≤i≤n1,1≤j≤n2 = GRF(0, 0.1, 3), where we denote by GRF(µ, σ2, s) a station-
ary Gaussian random field with mean µ and covariance function defined by C(h) =
σ2 exp

(
−(‖h‖/s)2) , h ∈ R2, s > 0, σ > 0. The process U = (Ui,j)1≤i≤n1,1≤j≤n2 allows

to control the local dependence between the sites and is:

Ui,j = 1
n1 × n2

∑
t,m

exp (−‖(i, j)− (m, t)‖/a) , a > 0,

the greater a is, weaker is the spatial dependency. Accordingly, we provide simulation
results obtained with different values of a; a = 5, 10, 20, different grid sizes n1 = 25, n2 =
25 and n1 = 35, n2 = 30 and two variance parameters σ2 (σ = 5 and 0.1). The model is
replicated 50 times. We take kernels

K1(x) = 0.75(1− x2)I(|x| < 1),

and

K2(x) =


1− 6x2 + 6|x|3 if |x| < 0.5;

2(1− |x|)3 if 0.5 ≤ |x| ≤ 1;
0 otherwise,
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satisfying assumption (H4). The smoothing parameters are computed using the cross-
validation procedure as used in Dabo-Niang et al. (2016) using the mean absolute error

MAE = 1
n1 × n2

∑
i∈In

∣∣∣Yi − Ŷi

∣∣∣ with Ŷi = Ỹi or Ỹ NW
i ,

where

Ỹi =

∑
j6=iK1

(
Xi−Xj
Hn,Xi

)
K2

(
h−1

n,i

∥∥∥ i−j
n

∥∥∥)Yj∑
j6=iK1

(
Xi−Xj
Hn,Xi

)
K2

(
h−1

n,i

∥∥∥ i−j
n

∥∥∥)
and

Ỹ NW
i =

∑
j6=iK1

(
Xi−Xj
hn

)
K2

(
ρ−1

n

∥∥∥ i−j
n

∥∥∥)Yj∑
j6=iK1

(
Xi−Xj
hn

)
K2

(
ρ−1

n
∥∥∥ i−j

n

∥∥∥) .
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Figure 5.1: Two realizations of the random field with a = 10, σ = 5 (left) and σ = .1
(right) over a grid 50× 50.

Table 5.1: Results of simulations
n1 × n2 σ a AMAEKE AMAEkNN p-value

25× 25

5
5 0.258 (0.0484) 0.230 (0.0156) 1.48×10−4

10 0.375 (0.1081) 0.317 (0.0498) 4.74×10−4

20 0.435 (0.1043) 0.415 (0.0865) 1.49×10−1

0.1
5 0.175 (0.0097) 0.159 (0.0066) 3.27×10−16

10 0.313 (0.0280) 0.212 (0.0105) 2.00×10−33

20 0.478 (0.0895) 0.278 (0.0277) 3.99×10−22

35× 30

5
5 0.239 (0.00062) 0.229 (0.00013) 5.40×10−3

10 0.316 (0.00284) 0.269 (0.00021) 4.96×10−8

20 0.360 (0.00318) 0.315 (0.00097) 2.93×10−6

0.1
5 0.176 (0.00003) 0.167 (0.00002) 4.26×10−16

10 0.287 (0.00034) 0.214 (0.00009) 2.20×10−16

20 0.372 (0.00644) 0.264 (0.00021) 4.86×10−13

The table 5.1 gives the average of the mean absolute errors of the both methods, in
brackets we have the corresponding standard deviations over the 50 replications. The
column entitled p-value, gives for each considered case, the p-value of a paired t-test
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Table 5.2: Three considered cases
Case Primary variable Secondary variables

1 Cd Ni, Zn
2 Cu Pb, Ni, Zn
3 Pb Cu, Ni, Zn

performing in order to determine if the mean of MAEKP (mean absolute error of the
kernel Prediction) is significantly greater than that of MAEkNN (mean absolute error of
our prediction). We notice that the k-NN method performs better than the kernel method
in all cases of the spatial dependency parameter a and standard deviation parameter σ.
In particular, k-NN method is more efficient than kernel method with very small p-value
(less than 4.86 × 10−13) when the deviation is small, which highlight that k-NN method
is more adapted to a local data structure.

5.4.2 A real dataset

In this part, we focus on how the prediction by k-NN method will behave through the fa-
mous Jura data set https://sites.google.com/site/goovaertspierre/pierregoovaertswebsite/
download/jura-data. This data were collected by Swiss Federal Institute of Technology at Lau-
sanne and studied by several authors (see Atteia et al., 1994; Goovaerts, 1998). It concerns seven
potentially toxic metals (Cadmium Cd, Cobalt Co, Chromium Cr, Copper Cu, Nickel Ni, lead
Pb and zinc Zn) of a 14.5 Km2 region in the Swiss Jura. All metal concentrations were measured
at 359 locations, these locations are divided in two subsets. The first (prediction data set) presents
the training sample, composed of 259 locations whereas the second (validation data set) presents
the testing sample, composed of 100 locations, will be used to check results provided by predic-
tors. The two subset are represented in Figure 5.2. In order to compare the prediction by k-NN
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Figure 5.2: Locations considered in the studied region of Swiss Jura, training sample
(black points), testing sample (red question mark points).

method and that by kernel introduced by Dabo-Niang et al. (2016). We keep the results on the
Jura dataset obtained by Dabo-Niang et al. (2016), and we apply k-NN method to the three cases
considered by these authors where the covariates Xi’s and the responses Yi’s are respectively the
secondary variables and the primary variables presented in Table 5.2. Table 5.3 gives the mean
absolute error of prediction and shows that k-NN method performs compare to the parametric
methods (Ordinary Cokriging, Revisited Cokriging (cov), Revisited Cokriging (corr)) and kernel
method of Dabo-Niang et al. (2016) in cases 1 and 3. In case 2, k-NN and kernel methods give
similar results with a slight better performance of the kernel method.

https://sites.google.com/site/goovaertspierre/pierregoovaertswebsite/download/jura-data
https://sites.google.com/site/goovaertspierre/pierregoovaertswebsite/download/jura-data
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Table 5.3: The mean absolute error of prediction for different parametric and non-
parametric methods on the three considered cases.

Method Case 1 Case 2 Case 3
Ordinary Cokriging 0.51 7.90 10.80
Revisited Cokriging (cov) 0.52 7.80 10.70
Revisited Cokriging (corr) 0.52 7.40 10.60
Kernel Method 0.42 7.02 11.02
k-NN Method 0.40 7.12 10.51
K1 Silverman Gaussian Silverman
K2 Biweight Parzen Parzen

5.5 Conclusion
In this work, we used a k-NN method to define a nonparametric spatial predictor for real-valued
spatial processes. In one hand, we generalize the classical k-NN kernel method to predict a spatial
process at non-observed locations. The proposed predictor combines two kernels to controls dis-
tances between observation and locations and uses a bandwidth as the kth lower distance between
covariate’s point of prediction and covariate’s observations. This idea allowed more flexibility to
account some heterogeneity in the covariate. We established almost complete convergence with
rates of the predictor. The proposed predictor is applied to a prediction problem through an en-
vironmental data set. The numerical results show that k-NN kernel method outperforms kernel
methods, particularly in presence of a local spatial heterogeneity data structure. This is well known
in the case of non-spatial data. One can then see the proposed methodology as a good alternative
to the classical k-NN approach for spatial data of Li & Tran (2009) that does not take into account
the proximity between locations.

5.6 Appendix
We start to introduce these followings technical lemmas that will permit us to handle the diffi-
culties induced by the random bandwidth Hn,x in the expression of the function rkNN(x). These
technical lemmas represent adaptation of the results given in Collomb (1980) (for independent
multivariate data) and their generalized version by Burba et al. (2009), Kudraszow & Vieu (2013)
( for independent functional data).

Technical Lemmas
For x ∈ D, we define

cn(Hn,x) =

∑
i∈In,s0 6=i YiK1

(
x−Xi
Hn,x

)
K2
(
h−1

n,s0

∥∥ s0−i
n

∥∥)∑
i∈In,s0 6=i K1

(
x−Xi
Hn,x

)
K2
(
h−1

n,s0

∥∥ s0−i
n

∥∥)
and

∀n ∈ (N∗)N vn =
(
k(n)

n̂

)1/d
+
(

n̂ log(n̂)
k1

nk(n)

)1/2
.

For all β ∈]0, 1[ and x ∈ D, let

D−n (βn, x) =
(

k(n)
cf(x)n̂

)1/d
β1/2d, D+

n (βn, x) =
(

k(n)
cf(x)n̂

)1/d
β−1/2d (5.17)

where c is the bulk of the unit sphere of Rd. It is clair that

∀n ∈ (N∗)N ,∀x ∈ D D−n (β, x) ≤ D+
n (β, x).
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Lemma 5.3. If the following conditions are verified:

(L1) I
(
D−n (β, x) ≤ Hn,x ≤ D+

n (β, x), ∀x ∈ D
)
−→ 1 a.co.

(L2) sup
x∈D

∣∣∣∣∣∣
∑

i∈In,s0 6=i K1

(
x−Xi

D−n (β,x)

)
K2
(
h−1

n,s0

∥∥ s0−i
n

∥∥)∑
i∈In,s0 6=i K1

(
x−Xi
D+

n (β,x)

)
K2
(
h−1

n,s0

∥∥ s0−i
n

∥∥) − β
∣∣∣∣∣∣ −→ 0 a.co.

(L3) sup
x∈D

∣∣cn
(
D−n (β, x)

)
− r(x)

∣∣ −→ 0 a.co., sup
x∈D

∣∣cn
(
D+

n (β, x)
)
− r(x)

∣∣ −→ 0 a.co.,

then we have sup
x∈D
|cn (Hn,x)− r(x)| −→ 0 a.co.

Lemma 5.4. Under the following conditions:

(L1) I
(
D−n (β, x) ≤ Hn,x ≤ D+

n (β, x), ∀x ∈ D
)
−→ 1 a.co.

(L′2) sup
x∈D

∣∣∣∣∣∣
∑

i∈In,s0 6=i K1

(
x−Xi

D−n (β,x)

)
K2
(
h−1

n,s0

∥∥ s0−i
n

∥∥)∑
i∈In,s0 6=i K1

(
x−Xi
D+

n (β,x)

)
K2
(
h−1

n,s0

∥∥ s0−i
n

∥∥) − β
∣∣∣∣∣∣ = O(vn) a.co.

(L′3) sup
x∈D

∣∣cn
(
D−n (β, x)

)
− r(x)

∣∣ = O(vn) a.co,

sup
x∈D

∣∣cn
(
D+

n (β, x)
)
− r(x)

∣∣ = O(vn) a.co,

we have, sup
x∈D
|cn (Hn,x)− r(x)| = O(vn) a.co.

Proof of Lemma 5.3
The proof of this lemma is a particular case of that of Lemma 5.4 when taking vn = 1 and C = 1,
it is then omitted.

�

Proof of Lemma 5.4
We give the proof when the random variables(r.v.) Yi is positive. For any real valued random
variable Yi, same arguments as bellow can be used by considering Yi = Y +

i − Y
−

i where Y −i =
−min(Yi, 0) and Y +

i = max(Yi, 0). For all n ∈ (N∗)N , β ∈]0, 1[ and x ∈ D, let

C−n (β, x) =

∑
i∈In,s0 6=i YiK1

(
x−Xi

D−n (β,x)

)
K2
(
h−1

n,s0

∥∥ s0−i
n

∥∥)∑
i∈In,s0 6=i K1

(
x−Xi
D+

n (β,x)

)
K2
(
h−1

n,s0

∥∥ s0−i
n

∥∥) ,

C+
n (β, x) =

∑
i∈In,s0 6=i YiK1

(
x−Xi
D+

n (β,x)

)
K2
(
h−1

n,s0

∥∥ s0−i
n

∥∥)∑
i∈In,s0 6=i K1

(
x−Xi

D−n (β,x)

)
K2
(
h−1

n,s0

∥∥ s0−i
n

∥∥) .
From (L′2) and (L′3), it follows that

sup
x∈D

∣∣C−n (β, x)− r(x)β
∣∣ = O(vn) a.co. (5.18)

sup
x∈D

∣∣∣∣C+
n (β, x)− r(x)

β

∣∣∣∣ = O(vn) a.co. (5.19)

For all ε > 0, let
Tn(ε) =

{
sup
x∈D
|cn(Hn,x)− r(x)| ≤ εvn

}

S−n (ε, β) =
{

sup
x∈D

∣∣C−n (β, x)− r(x)
∣∣ ≤ εvn

}
,
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S+
n (ε, β) = {sup

x∈D

∣∣C+
n (β, x)− r(x)

∣∣ ≤ εvn},

and
Sn(β) = {C−n (β, x) ≤ cn(Hn,x) ≤ C+

n (β, x), ∀x ∈ D}.
It is clear that

∀ ε > 0, ∀ β ∈]0, 1[, S−n (ε, β) ∩ Sn(β) ∩ S+
n (ε, β) ⊂ Tn(ε). (5.20)

As vn −→ 0, there exists C > 0 such that ∀n ∈ (N∗)N , vn < C.
For all ε > 0 and x ∈ D, such that

0 < ε < ε0 = 3 infx∈D r(x)
2C , β = βn,ε,x = 1− εvn

3r(x) (5.21)

let
G−n (ε) =

{
sup
x∈D

∣∣C−n (βn,ε,x, x)− βn,ε,xr(x)
∣∣ ≤ εvn

3

}
G+

n (ε) =
{

sup
x∈D

∣∣∣∣C+
n (βn,ε,x, x)− r(x)

βn,ε,x

∣∣∣∣ ≤ εvn

3

}
and

Gn(ε) = {D−n (βn,ε,x, x) ≤ Hn,x ≤ D+
n (βn,ε,x, x), ∀x ∈ D}.

Under (5.21), we have by a simple calculation

G−n (ε) ⊂ S−n (ε, βn,ε,x) and G+
n (ε) ⊂ S+

n (ε, βn,ε,x).

So, under condition (ii) in (H4) and D−n (βn,ε,x, x) ≤ Hn,x ≤ D+
n (βn,ε,x, x), for all x ∈ D, we have

K2

(
x−Xi

Hn,x

)
= K2

(
D−n (βn,ε,x, x)

Hn,x

x−Xi

D−n (βn,ε,x, x)

)
≥ K2

(
x−Xi

D−n (βn,ε,x, x)

)
and

K2

(
x−Xi

D+
n (βn,ε,x, x)

)
= K2

(
Hn,x

D+
n (βn,ε,x, x)

x−Xi

Hn,x

)
≥ K2

(
x−Xi

Hn,x

)
.

It is clear that for all x ∈ D, C−n (βn,ε,x, x) ≤ cn(Hn,x) ≤ C+
n (βn,ε,x, x), thus Gn(ε) ⊂ Sn(βn,ε,x).

Then, ∀ε ∈]0, ε0[, we have
Tn(ε) ⊂ S−n (ε) ∪Gn(ε) ∪ S+

n (ε).
Then, we can write

P

(
sup
x∈D
| cn(Hn,x)− r(x) |> εvn

)
≤

P

(
sup
x∈D
| C−n (βn,ε,x)− r(x)βn,ε,x |>

εvn

3

)
+ P

(
sup
x∈D
| C+

n (βn,ε,x)− r(x)
βn,ε,x

|> εvn

3

)
+ P

(
I
(
D−n (βn,ε,x, x) ≤ Hn,x ≤ D+

n (βn,ε,x, x), ∀x ∈ D
)

= 0
)
.

From (5.18), there exist ε1 ∈]0, ε0[, such that∑
n∈(N∗)N

P

(
sup
x∈D
| C−n (βn,ε,x)− r(x)βn,ε,x |>

ε1vn

3

)
<∞.

If (5.19) holds, then ∃ε1 ∈]0, ε0[, such that∑
n∈(N∗)N

P

(
sup
x∈D
| C+

n (βn,ε,x)− r(x)
βn,ε,x

|> ε1vn

3

)
<∞
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and by (L1) ∑
n∈(N∗)N

P
(
I
(
D−n (βn,ε,x, x) ≤ Hn,x ≤ D+

n (βn,ε,x, x), ∀x ∈ D
)

= 0
)
<∞.

Then, there exists ε1 ∈]0, ε0[, such that

∑
n∈(N∗)N

P

(
sup
x∈D
| cn(Hn,x)− r(x) |> ε1vn

)
<∞,

this completes the proof.

�

Proofs of Lemma 5.1 and Lemma 5.2
Since the proof of Lemma 5.1 is based on the result of Lemma 5.3, it is sufficient to check conditions
(L1), (L2) and (L3). For the proof of Lemma 5.2, it suffices to check conditions (L′2) and (L′3). To
check the condition (L1) we will need to use the following two lemmas.

�

Lemma 5.5. (Ibragimov & Linnik (1971) or Deo (1973))

i) We assume that the condition (5.8) of the dependence is satisfied. We denote by Lr (F)
the class F−mesurable of random variables X satisfying ‖X‖r := (E (|X|r))1/r

< ∞. Let
X ∈ Lr (B(E)) and Y ∈ Ls (B(E′)). Let 1 ≤ r, s, t ≤ ∞ such that 1

r + 1
s + 1

t = 1. Then

|E (XY )− E (X)E (Y )| ≤

‖X‖r‖Y ‖s
{
ψ
(

Card(E),Card(E
′
)
)
ϕ
(

dist(E,E
′
)
)}1/t

. (5.22)

ii) For random variables bounded with probability 1, we have

|E (XY )− E (X)E (Y )| ≤

Cψ
(

Card(E),Card(E
′
)
)
ϕ
(

dist(E,E
′
)
)
. (5.23)

Lemma 5.6. Under assumptions of Theorem 5.1, we have

Sn +Rn = O (n̂δn)

where

Λi = IB(x,Dn), i ∈ In, δn = P (‖X − x‖ < Dn) , Dd
n = O

(
k(n)

n̂

)

Sn =
∑
i∈In

Var (Λi) and Rn =
∑
i∈In

∑
j∈In

j6=i

|Cov (Λi,Λj)|

where B(x, ε) denote the closed ball of Rd with center x and radius ε.

Proof of Lemma 5.6
Let δn,i = P (‖Xi − x‖ < Dn), we can easily deduced that

Sn =
∑
i∈In

V ar (Λi) =
∑
i∈In

δn,i(1− δn,i) = O (n̂δn)
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by the following results. Under assumption (H7), we have

|δn,i − δn| = o

(
k(n)

n̂

)
, (5.24)

in addition, under (H1), it is easy to sees that

δn = cf(x)Dd
n +O

(
Dd+1

n
)
. (5.25)

For Rn, note that by (H2) and for each j 6= i

|Cov (Λi,Λj)| = |P (‖Xi − x‖ < Dn, ‖Xj − x‖ < Dn)
− P (‖Xi − x‖ < Dn)P (‖Xj − x‖ < Dn)|

≤
∫
B(x,Dn)×B(x,Dn)

∣∣fXiXj(u, v)− fi(u)fj(v)
∣∣ dudv

≤ CD2d
n ≤ Cδ2

n

since by (5.25)
Dd

n
δn
→ 1

cf(x) , as n→∞.

Using Lemma 5.5, we can write for r = s = 2/λ with λ = 1/2

|Cov (Λi,Λj)| ≤ C
(
E
(

Λ(2/λ)
i

))λ/2 (
E
(

Λ(2/λ)
j

))λ/2
(ψ(1, 1)ϕ (‖i− j‖))1−λ

≤ Cδλnϕ (‖i− j‖)1−λ
.

Let qn be a sequence of real numbers defined as qNn = O

(
n̂

k(n)

)
, S = {i, j ∈ In, 0 < ‖i− j‖ ≤ qn}

and Sc its complementary in In and write

Rn =
∑

i,j∈S

|Cov (Λi,Λj)|+
∑

i,j∈Sc
|Cov (Λi,Λj)| ≤ R(1)

n +R(2)
n

where R(1)
n =

∑
i,j∈S

Cδ2
n and R(2)

n =
∑

i,j∈Sc
Cδλnϕ (‖i− j‖)1−λ

.

Clearly, according to the definitions of qn and S, and the equation (4.44)

R(1)
n = Cδ2

n

∑
i,j∈S

1 ≤ Cδ2
nn̂qNn ≤ Cn̂δn

δnn̂
k(n) ≤ Cn̂δn

since by (5.25), δnn̂
k(n) → C as n→∞. Then, we have R(1)

n = O (n̂δn) .

In addition, by (5.9), we get

R(2)
n = Cδλn

∑
i,j∈Sc

ϕ (‖i− j‖)1−λ = Cδλnn̂
∑
‖i‖≥qn

ϕ (‖i‖)1−λ

= Cδnn̂δλ−1
n

∑
‖i‖≥qn

ϕ (‖i‖)1−λ ≤ Cδnn̂
(
k(n)

n̂

)λ−1 ∑
‖i‖≥qn

ϕ (‖i‖)1−λ

≤ Cδnn̂
∑
‖i‖≥qn

‖i‖(N−θ)(1−λ) ≤ Cδnn̂.

This last implies that R(2)
n = O (n̂δn) . Finally, the result follows:

Rn = O (n̂δn) and Sn +Rn = O (n̂δn) .

�
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Verification of (L1)
Let εn = 0.5ε0 (k(n)/n̂)1/d with ε0 > 0 and let Nεn = O(ε−dn ) be a positive integer. Since D is
compact, one can cover it by Nεn closed balls in Rd of centers xi ∈ D, i = 1, . . . , Nεn and reduis
εn. Let us show that

I
(
D−n (β, x) ≤ Hn,x ≤ D+

n (β, x), ∀x ∈ D
)
−→ 1 a.co.

which can be written as, ∀ η > 0,∑
n∈N∗N

P
(∣∣I (D−n (β, x) ≤ Hn,x ≤ D+

n (β, x), ∀x ∈ D
)
− 1
∣∣ > η

)
<∞.

We have
P
(∣∣I (D−n (β, x) ≤ Hn,x ≤ D+

n (β, x), ∀x ∈ D
)
− 1
∣∣ > η

)
≤ P

(
inf
x∈D

Hn,x −D−n (β, x) < 0
)

+ P

(
sup
x∈D

Hn,x −D+
n (β, x) > 0

)
≤ P

(
min

1≤i≤Nεn
Hn,xi −D−n (β, xi) < 2εn

)
+ P

(
max

1≤i≤Nεn
Hn,xi −D+

n (β, xi) > −2εn

)
≤ Nεn max

1≤i≤Nεn
P
(
Hn,xi < D−n (β, xi) + 2εn

)
+Nεn max

1≤i≤Nεn
P
(
Hn,xi > D+

n (β, xi)− 2εn
)
, (5.26)

Let us evaluate the first term of right-hand side of (5.26), without ambiguity we ignore the i index
in xi. Remark that

P
(
Hn,x < D−n (β, x) + 2εn

)
≤ P

(∑
i∈In

IB(x,D−n (β,x)+2εn)(Xi) > k(n)
)

(5.27)

≤ P

(∑
i∈In

ξi > k(n)− n̂δn

)
(5.28)

≤ P

(∑
i∈In

ξi > Ck(n)(1− β1/2)
)

= P1,n (5.29)

where ξi = Λi − δn,i is centered, Λi is defined in Lemma 5.8 when we replace Dn by D−n + 2εn.
From (5.27), we get (5.28) by (5.25) while result (5.28) permits to get (5.29) by the help of the
following. In fact, according to the definition of D−n in (5.17), when we replace Dn by D−n + 2εn
in (5.25), we get

n̂δn − k(n)
(
ε0(cf(x))d + β1/2d

)d
= o(k(n)) (5.30)

then we have for all ε1 > 0,

k(n)− n̂δn > k(n)
(

1−
(
ε0(cf(x))d + β1/2d

)d
− ε1

)
.

Then, for ε1 and ε0 very small such that 1 −
(
ε0(cf(x))d + β1/2d)d − ε1 > 0, we can find some

constant C > 0 such that
k(n)− n̂δn > Ck(n)(1− β1/2). (5.31)

For the second term in the right-hand side of (5.26),

P
(
Hn,x > D+

n (β, x)− 2εn
)
≤ P

(∑
i∈In

(1− IB(x,D+
n (β,x)−2εn)(Xi)) > n̂− k(n)

)
(5.32)

≤ P

(∑
i∈In

∆i > n̂δn − k(n)
)

(5.33)

≤ P

(∑
i∈In

∆i > Ck(n)
(
β−1/2 − 1

))
= P2,n (5.34)
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with ∆i = δn,i − Λi is centered, Λi is defined in Lemma 5.8 replacing Dn by D+
n − 2εn. Result

(5.33) is obtained by (5.25). To prove (5.34) remark that by D+
n in (5.17), when replacing Dn by

D+
n − 2εn in (5.25), we get

n̂δn − k(n)
(
β−1/2d − ε0(cf(x))d

)d
= o(k(n)). (5.35)

Thus for all ε2 > 0, it is easy to see that

n̂δn − k(n) > k(n)
((

β−1/2d − ε0(cf(x))d
)d
− 1− ε2

)
,

so for ε2 and ε0 small enough such that
((
β−1/2d − ε0(cf(x))d

)d − 1− ε2

)
> 0, there is C > 0

such that
n̂σn − k(n) > Ck(n)

(
β−1/2 − 1

)
(5.36)

Now, it suffices to prove that∑
n∈N∗N

NεnP1,n <∞ and
∑

n∈N∗N
NεnP2,n <∞.

Let us consider P1,n

This proof is based on the classical spatial block decomposition of the sum
∑
i∈In

ξi similarly to

Tran (1990). Without loss of generality, we assume that nl = 2bql , l = 1, . . . , N , then this
decomposition can be presented as follows

U(1,n, j) =
(2jl+1)b∑
il=2jlb+1,
k=1,...,N.

ξi

U(2,n, j) =
(2jl+1)b∑
il=2jlb+1,
l=1,...,N−1.

2(jN+1)b∑
iN=(2jN+1)b+1,

ξi

U(3,n, j) =
(2jl+1)b∑
il=2jlb+1,
l=1,...,N−2.

2(jN−1+1)b∑
iN−1=(2jN−1+1)b+1,

(2jN+1)b∑
iN=2jNb+1,

ξi

U(4,n, j) =
(2jl+1)b∑
il=2jlb+1,
l=1,...,N−2.

2(jN−1+1)b∑
iN−1=(2jN−1+1)b+1,

2(jN+1)b∑
iN=(2jN+1)b+1,

ξi

...

Note that

U(2N−1,n, j) =
2(jl+1)b∑

il=(2jl+1)b+1,
l=1,...,N−1.

(2jN+1)b∑
iN=2jNb+1,

ξi

and that

U(2N ,n, j) =
2(jl+1)b∑

il=(2jl+1)b+1,
l=1,...,N.

ξi.

For each integer 1 ≤ l ≤ 2N , let

T (n, l) =
ql−1∑
jl=0

l=1,...,N

U(l,n, j).
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Therefore, we have

∑
i∈In

ξi =
2N∑
l=1

T (n, l). (5.37)

Replacing (5.37) on the expression of P1,n, it follows that

P1,n = P

 2N∑
l=1

T (n, l) > Ck(n)(1−
√
β)


≤ 2NP

(
| T (n, 1) |> Ck(n)(1−

√
β)

2N

)
.

We enumerate in an arbitrary manner the q̂ = q1× . . .×qN terms U(1,n, j) of the sum T (n, 1) and
denote them W1, . . . ,Wq̂. Notice that, U(1,n, j) is measurable with respect to the field generated
by the Zi with i ∈ I(n, j) = {i ∈ In | 2jlb + 1 ≤ il ≤ (2jl + 1)b, l = 1, . . . , N}, the set I(n, j)
contains bN sites and dist(I(n, j), I(n, j′)) > b. In addition, we have |Wl |≤ bN .
According to Lemma 4.5 of Carbon et al. (1997), we can find a sequence of independent random
variables W ∗1 , . . . ,W ∗q̂ where Wl has same distribution as W ∗l and:

q̂∑
l=1

E(|Wl −W ∗l |) ≤ 4q̂bNψ((q̂ − 1)bN , bN )ϕ(b).

Then, we can write

P1,n ≤ 2NP
(
| T (n, 1) |> Ck(n)(1−

√
β)

2N

)
≤ 2NP

(
|

q̂∑
l=1

Wl |>
Ck(n)(1−

√
β)

2N

)

≤ 2NP
(

q̂∑
l=1
|Wl −W ∗l |>

Ck(n)(1−
√
β)

2N+1

)

+2NP
(

q̂∑
l=1
|W ∗l |>

Ck(n)(1−
√
β)

2N+1

)
.

Noting that P11,n = P

(∑q̂
l=1 |Wl −W ∗l |>

Ck(n)(1−
√
β)

2N+1

)
and P12,n = P

(∑q̂
l=1 |W ∗l |>

Ck(n)(1−
√
β)

2N+1

)
.

It suffices to show that
∑

n∈N∗N
P11,n <∞ and

∑
n∈N∗N

P12,n <∞.

Consider first P11,n

Using Markov’s inequality, we get

P11,n = P

(
q̂∑
l=1
|Wl −W ∗l |>

Ck(n)(1−
√
β)

2N+1

)

≤ 2N+3

Ck(n)(1−
√
β)
q̂bNψ((q̂ − 1)bN , bN )ϕ(b)

≤ C

k(n)(1−
√
β)

n̂ψ((q̂ − 1)bN , bN )ϕ(b).

Let

bN = O

( n̂1+β̃

k(n)

)2(1−s(2−γ−γ̃))/a
 (5.38)
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with a = s(d+ 1)(3− γ − γ̃) + s(5− 2γ) + 2d− 1. Under the assumption on the function ψ(n,m),
we distinguish the following two cases:

Case 1
ψ(n,m) ≤ C min(n,m)

and θ > N(sd(3− γ − γ̃) + 2s(3− γ) + 2d)/(1− s(2− γ − γ̃)) where 2 < s < 1/(2− γ − γ̃). In this
case, we have

P11,n ≤ C

k(n̂) n̂bNϕ(b). ≤ C n̂
k(n̂)b

N−θ

Then by using (5.38) and the definition of Nεn , we find that

NεnP11,n ≤ Cn̂−2β .

This shows that
∑

n∈N∗N
NεnP11,n <∞.

�

Case 2
ψ(n,m) ≤ C(n+m+ 1)β̃

and θ > N
(
s(d(3− γ − γ̃) + (7 + 2β̃ − 3γ − γ̃)) + 2(d+ 1)

)
/(1 − s(2 − γ − γ̃)). In this case, we

have

P11,n ≤ C

k(n) n̂(q̂bN )β̃ϕ(b) ≤ C

k(n) n̂(β̃+1)b−θ.

As in Case 1, we have
NεnP11,n ≤ Cn̂−β .

Then, it follows that
∑

n∈NN
NεnP12,n <∞.

Consider P12,n

Applying Markov’s ineguality, we have for each t > 0:

P12,n = P

(
q̂∑
l=1
|W ∗l |>

Ck(n)(1−
√
β)

2N+1

)

≤ exp
(
−tCk(n)(1−

√
β)

2N+1

)
E

(
exp

(
t

q̂∑
l=1

W ∗l

))

≤ exp
(
−tCk(n)(1−

√
β)

2N+1

) q̂∏
l=1

E (exp (tW ∗l ))

since the variables W ∗1 , . . . ,W ∗q̂ are independent.

Let r > 0, for t = r log(n̂)
k(n) , l = 1, . . . , q̂ and using (5.38), we can easily get

t |W ∗l | ≤
r log(n̂)
k(n) bN ≤ C log(n̂)

k(n)

(
n̂β̃+1

k(n)

)2(1−s(2−γ−γ̃))/a

≤ C
log(n̂)
n̂β/a

,
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where β = aγ − 2(1 + β̃ − γ)(1− s(2− γ − γ̃)) > 0, we then have t | W ∗l |< 1 for n large enough.
So, exp (tW ∗l ) ≤ 1 + tW ∗l + t2(W ∗l )2 then

E (exp (tW ∗l )) ≤ 1 + E
(
t2(W ∗l )2) ≤ exp

(
E
(
t2(W ∗l )2)) .

Therefore,
q̂∏
l=1

E (exp (tW ∗l )) ≤ exp
(
t2

q̂∑
l=1

E
(
(W ∗l )2)) .

As W ∗l and Wl have the same distribution, we have
q̂∑
l=1

E
(
(W ∗l )2) = V ar

(
q̂∑
l=1

W ∗l

)
= V ar

(
q̂∑
l=1

Wl

)
≤ Sn +Rn.

From Lemma 5.6, we obtain
q̂∏
l=1

E (exp (tW ∗l )) ≤ exp
(
Ct2k(n)

(√
β + o (1)

))
≤ exp

(
Cr2

(√
β + o (1)

) log(n̂)2

k(n)

)
−→ 1 , n→∞,

because log(n̂)2/k(n)→ 0 as n→∞. Then, we deduce that

P12,n ≤ C exp
(
−tCk(n)(1−

√
β)

2N+1

)
≤ C exp

(
−rC(1−

√
β)

2N+1 log(n̂)
)
≤ Cn̂−

rC(1−
√
β)

2N+1 .

Then, we deduce that
NεnP12,n < Cn̂1−γ− rC(1−

√
β)

2N+1

Therefore, for some r > 0 such that γ + rC(1−
√
β)

2N+1 > 2, we get∑
n∈NN

NεnP12,n <∞.

Combining the two results, we get
∑

n∈NN
NεnP1,n <∞.

Using same calculations as for P1,n, we have
∑

n∈NN NεnP2,n <∞.

�

Now the check of conditions (L2), (L3), (L′2) and (L′3) is based on Theorem 3.1 in Dabo-Niang
et al. (2016), we need to show that D−n (β, x), D+

n (β, x) satisfy assumptions (H6) and (H7) used
by these authors for all (β, x) ∈]0, 1[×D. This is proved in the following lemmas where without
ambiguity Dn will denote D−n (β, x) or D+

n (β, x).

Lemma 5.7. Under assumption (H5) on function ψ(.), we have

n̂Ddθ0
n hNθ1

n,s log(n̂)−θ2u−θ3
n →∞

with
θ0 = s(θ +N(d+ 2))

θ −N(s(d+ 4) + 2d) ; θ1 = s(θ +Nd)
θ −N(s(d+ 4) + 2d) ,

θ2 = s(θ −N(d+ 2))
θ −N(s(d+ 4) + 2d) ; θ3 = 2(θ +N(d+ s))

θ −N(s(d+ 4) + 2d) ,

and un =
N∏
i=1

(log(log(ni)))1+ε log(ni) for all ε > 0.
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Proof of Lemma 5.7
We have

n̂Ddθ0
n hNθ1

n,s log(n̂)−θ2u−θ3
n ≥ Cn̂

(
k1

n
n̂

)θ0 (k(n)
n̂

)θ1

log(n̂)−θ2u−θ3
n

≥ C
n̂1+(γ−1)θ0+(γ̃−1)θ1

log(n̂)θ2uθ3
n

.

Note that un ≤ log(nj)N(2+ε) ⇒ 1
u
θ3
n
≥ 1

log(nj)(2+ε)Nθ3 , where nj = max
k=1,...,N

nk, and

log(n̂) ≤ C log(nj)⇒
1

log(n̂)θ2
≥ C 1

log(nj)θ2
.

Since nk
ni
≤ C, ∀ 1 ≤ k, i ≤ N , we deduce that n̂ ≥ CnNj . Indeed, a simple calculation gives

n̂Ddθ0
n hNθ1

n,s log(n̂)−θ2u−θ3
n

≥ C
[

n̂θ(1−s(2−γ−γ̃))−N(s(d(3−γ−γ̃)+2(3−γ))+2d)

log(nj)s(θ−N(d+2))+2N(2+ε)(θ+N(d+s))

]1/(θ−N(s(d+4)+2d))

≥ C

[
n
N(θ(1−s(2−γ−γ̃))−N(s(d(3−γ−γ̃)+2(3−γ))+2d))
j

log(nj)s(θ−N(d+2))+2N(2+ε)(θ+N(d+s))

]1/(θ−N(s(d+4)+2d))

→ +∞.

�

Lemma 5.8. Under assumption (H6) on ψ(.), we have

n̂Ddθ
′
0

n h
Nθ
′
1

n,s log(n̂)−θ
′
2u
−θ
′
3

n →∞

with

θ
′

0 = s(θ +N(d+ 3))
θ −N(s(d+ 3 + +2β̃) + 2(d+ 1))

; θ
′

1 = s(θ +N(d+ 1))
θ −N(s(d+ 3 + +2β̃) + 2(d+ 1))

θ
′

2 = s(θ −N(d+ 1))
θ −N(s(d+ 3 + +2β̃) + 2(d+ 1))

; θ
′

3 = 2(θ +N(s+ d+ 1))
θ −N(s(d+ 3 + 2β̃) + 2(d+ 1))

.

Proof of Lemma 5.8
The proof is very similar to the one of Lemma 5.7 and is omitted.

�

Verification of (L2)
Let

fn
(
x,D−n (β, x)

)
= 1

n̂hNn,s0

(
D−n (β, x)

)d ∑
i∈In,s0 6=i

K1

(
x−Xi

D−n (β, x)

)
K2

(
h−1

n,s0

∥∥∥∥s− i
n

∥∥∥∥) ,
and

fn
(
x,D+

n (β, x)
)

= 1
n̂hNn,s0

(
D+

n (β, x)
)d ∑

i∈In,s0 6=i

K1

(
x−Xi

D+
n (β, x)

)
K2

(
h−1

n,s0

∥∥∥∥s0 − i
n

∥∥∥∥) .
Under the hypotheses of Lemma 5.1 and the results of Lemma 5.7 and Lemma 5.8, (see Dabo-Niang
et al., 2016), we have

sup
x∈D

∣∣fn
(
x,D−n (β, x)

)
− f(x)

∣∣ −→ 0 a.co.
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sup
x∈D

∣∣fn
(
x,D+

n (β, x)
)
− f(x)

∣∣ −→ 0 a.co,

then,

sup
x∈D

∣∣∣∣∣∣
∑

i∈In,s6=i K1

(
x−Xi

D−n (β,x)

)
K2
(
h−1

n,s0

∥∥ s0−i
n

∥∥)∑
i∈In,s0 6=i K1

(
x−Xi
D+

n (β,x)

)
K2
(
h−1

n,s0

∥∥ s0−i
n

∥∥) − β
∣∣∣∣∣∣ = β sup

x∈D

∣∣∣∣∣ fn (x,D−n (β, x))
fn
(
x,D+

n (β, x)
) − 1

∣∣∣∣∣→ 0 a.co.

�

Verification of (L3)
Under assumptions of Lemma 5.1, Lemmas 5.7 and 5.8, it follows that (see Dabo-Niang et al., 2016)

sup
x∈D
|cn
(
D−n (β, x)

)
− r(x)| → 0 a.co and sup

x∈D
|cn
(
D+

n (β, x)
)
− r(x)| → 0 a.co.

�

Proof of Lemma 5.2
The proof of this lemma is based on the results of Lemma 5.4. It suffices to check the conditions
(L′2) and (L′3). Clearly, similar arguments as those involved to to prove (L2) and (L3) can be used
to obtain the requested conditions.

Verification of (L′2)
Under assumptions of corollary 5.1 and Lemmas 5.7, 5.8, we have

sup
x∈D

∣∣fn
(
x,D−n (β, x)

)
− f(x)

∣∣ = O
(
D−n (β, x)

)
+O

( log(n̂)
n̂(D−n (β, x))dhNn,s0

)1/2
 a.co.

= O

((
k(n)

n̂

)1/d
+
(

n̂ log(n̂)
k1

nk(n)

)1/2
)
a.co.,

sup
x∈D

∣∣fn
(
x,D+

n (β, x)
)
− f(x)

∣∣ = O
(
D+

n (β, x)
)

+O

( log(n̂)
n̂(D+

n (β, x))dhNn,s0

)1/2
 a.co.

= O

((
k(n)

n̂

)1/d
+
(

n̂ log(n̂)
k1

nk(n)

)1/2
)
. a.co.

Then, we deduce that

sup
x∈D

∣∣∣∣∣∣
∑

i∈In,s0 6=i K1
(
h−1

n,s0

∥∥ s0−i
n

∥∥)K2

(
x−Xi

D−n (β,x)

)
∑

i∈In,s0 6=i K1
(
h−1

n,s0

∥∥ s0−i
n

∥∥)K2

(
x−Xi
D+

n (β,x)

) − β
∣∣∣∣∣∣

= β sup
x∈D

∣∣∣∣∣ fn (x,D−n (β, x))
fn
(
x,D+

n (β, x)
) − 1

∣∣∣∣∣ = O

((
k(n)

n̂

)1/d
+
(

n̂ log(n̂)
k1

nk(n)

)1/2
)
a.co.

�

Verification of (L′3)
It is relatively easy to deduce from Lemmas 5.7 and 5.8 (Dabo-Niang et al., 2016), that

sup
x∈D

∣∣cn
(
D−n (β, x)

)
− r(x)

∣∣ = O

((
k(n)

n̂

)1/d
+
(

n̂ log(n̂)
k1

nk(n)

)1/2
)
a.co.
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sup
x∈D

∣∣cn
(
D+

n (β, x)
)
− r(x)

∣∣ = O

((
k(n)

n̂

)1/d
+
(

n̂ log(n̂)
k1

nk(n)

)1/2
)
a.co.

�
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Resumé français
Dans ce chapitre, nous étendons l’étude du modèle à choix binaire considéré dans la première
contribution au cas où les données sont de nature spatiale mais de dimension finie. Nous consid-
érons un modèle probit spatial partialement linéaire. Ce modèle semi-paramétrique est estimé en
combinant une technique non-paramétrique et la méthode des moments généralisés.
Nous supposons que nous disposons d’un vecteur aléatoire (Y,X,Z) observé en n sites spatiaux
notés {s1, s2, . . . , sn} tels que ‖si− sj‖ > ρ avec ρ > 0, où X et Z sont des variables explicatives à
valeurs dans les sous compacts X ⊂ Rp(p ≥ 1) et Z ⊂ Rd(d ≥ 1) respectivement, Y ∈ {0, 1}. On
considère les observations (Ysi , Xsi , Zsi)i=1,...,n comme des triangular arrays (Yin, Xin, Zin)i=1,...,n
(Robinson, 2011) et écrivons le modèle à l’aide d’une variable latente Y ∗in :

Y ∗in = XT
inβ0 + g0(Zin) + Uin, 1 ≤ i ≤ n, n = 1, 2, . . . (6.1)

avec
Yin = I (Y ∗in ≥ 0) , 1 ≤ i ≤ n, n = 1, 2, . . . (6.2)

Le paramètre β0 est un vecteur (p × 1) inconnu, dans un sous ensemble compact Θβ ⊂ Rp, g0(·)
est une fonction inconnue dans l’espace de fonctions
G =

{
g ∈ C2(Z) : ‖g‖ = supz∈Z |g(z)| < C

}
où C2(Z) est l’espace des fonctions deux fois différen-

tiables de Z à R. Nous supposons que β0 et g0(·) sont indépendants de i (et n) et que le terme
d’erreur Uin dans (6.2) suit un processus autoregressive spatial :

Uin = λ0

n∑
j=1

wijnUjn + εin, 1 ≤ i ≤ n, n = 1, 2, . . . , (6.3)
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où λ0 est un paramètre autoregressif, à valeurs dans un sous ensemble compact Θλ ⊂ R, wijn, j =
1, ..., n, sont les éléments de la i-ème ligne d’une matrice (n × n) de poids spatial Wn. La
matrice (In − λ0Wn) est supposée inversible pour tout n, les variables {εin, 1 ≤ i ≤ n} sont
des gaussiennes standards, indépendantes et identiquement distribuées. Nous supposons que,
pour tout n = 1, 2, . . ., la suite {εin, 1 ≤ i ≤ n} est indépendante des suites {Xin, 1 ≤ i ≤ n}
et {Zin, 1 ≤ i ≤ n}, et que {Xin, 1 ≤ i ≤ n} est indépendante de {Zin, 1 ≤ i ≤ n}.
Nous pouvons alors ré-écrire l’equation (6.3) sous la forme matricielle suivante :

Un = (In − λ0Wn)−1
εn, n = 1, 2, . . .

où Un = (Un1, . . . , Unn)T et εn = (εn1, . . . , εnn)T .
Par conséquent, la matrice de variance-covariance de Un est

Vn(λ0) = Var(Un) = (In − λ0Wn)−1
{

(In − λ0Wn)T
}−1

, n = 1, 2, . . .

Cette matrice permet de décrire les dépendances spatiales croisées entre les observations. La
méthode d’estimation que nous proposons dans la suite reste valable pour toute sorte de dépendance
spatiale au niveau des erreurs, avec une matrice de variance-covariance dépendante d’un certain
paramètre λ0.

Notre objectif est d’estimer le modèle (6.1) à savoir les paramètres β0 et λ0 et la fonction g0(·)
à l’aide les n observations (Xin, Yin, Zin), i = 1, ..., n et d’une approche semi paramétrique. Dans
ce but, remarquons que d’après (6.2)

E0 (Yin|Xin, Zin) = Φ
(

(vin(λ0))−1 (
XT
inβ0 + g0(Zin)

))
, 1 =, . . . n, (6.4)

où E0 indique l’espérance sous les vrais paramètres (c-à-d β0, λ0 et g0(·)), Φ(·) est la fonction de
répartition d’une loi normale standard et (vin(λ0))2 = Viin(λ0), 1 ≤ i ≤ n, n = 1, 2, · · · , sont les
éléments de la diagonale de la matrice de variance-covariance Vn(λ0).
Pour chaque β ∈ Θβ , λ ∈ Θλ, z ∈ Z et η ∈ R, définissons l’espérance conditionnelle par rapport à
Zin du logarithme de la fonction de vraisemblance de Yin pour 1 ≤ i ≤ n, n = 1, 2, . . . :

H(η;β, λ, z) = E0

(
L
(

Φ
(

(vin(λ))−1 (
η +XT

inβ
))

;Yin
)∣∣∣Zin = z

)
,

avec L(u; v) = log
(
uv(1− u)1−v). Nous considérons que H(η;β, λ, z) est indépendante de i (et n).

Pour tout β ∈ Θβ , λ ∈ Θλ et z ∈ Z fixés, nous noterons par gβ,λ(z) la solution par rapport à η de

∂

∂η
H(η;β, λ, z) = 0. (6.5)

Cette solution vérifie gβ0,λ0(z) = g0(z) pour tout z ∈ Z.
Pour obtenir des estimateurs par méthode des moments généralisés (GMM) (Pinkse & Slade,
1998) de β0 et λ0, nous exploitons la fonction gβ,λ(·). Nous définissons les résidus généralisés, en
remplaçant g0(Zin) dans (6.1) par gβ,λ(Zin) :

Ũin(β, λ, gβ,λ) = E (Uin|Yin, β, λ) (6.6)

= φ (Gin(β, λ, gβ,λ)) (Yin − Φ (Gin(β, λ, gβ,λ)))
Φ (Gin(β, λ, gβ,λ)) (1− Φ (Gin(β, λ, gβ,λ))) ,

où φ(·) est la densité d’une normale standard et Gin(β, λ, gβ,λ) = (vin(λ))−1 (
XT
inβ + gβ,λ(Zin)

)
.

Pour simplifier les notations, nous écrirons quand c’est possible θ = (βT , λ)T ∈ Θ = Θβ ×Θλ.
Le résidu généralisé Ũin(· , ·) est calculé en conditionnant uniquement par rapport à Yin et non
l’échantillon entier du variable binaire {Yin, i = 1, 2, . . . , n, n = 1, . . .} ou un sous-ensemble de
celui-ci. Cela influencera l’efficacité des estimateurs de θ obtenu par ces résidus généralisés, mais
permet d’éviter un calcul complexe, voir Poirier & Ruud (1988) pour plus de détails. Pour remédier
à cette perte d’efficacité, nous utilisons des variables instrumentales (Pinkse & Slade, 1998), et une
matrice aléatoire pour définir une fonction critère. Les variables instrumentales et la matrice
de poids aléatoire permettent de prendre en compte plus d’informations sur la dépendance et
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l’hétéroscédasticité spatiales présentes dans les données.
Soit

Sn(θ, gθ) = n−1ξTn Ũn(θ, gθ), (6.7)
où Ũn(θ, gθ) est le vecteur (n × 1) composé des éléments Ũin(θ, gθ), 1 ≤ i ≤ n et ξn est une
matrice n × q des variables instrumentales dont la ième ligne est notée ξin. Nous permettons à
cette dernière de dépendre de gθ(·) et θ dans l’éventualité que ceci permette d’aider à intégrer plus
d’informations sur θ. Nous supposons que ξin est σ(Xin, Zin) mesurable, i = 1, . . . , n, n = 1, 2, . . ..

Par conséquent, la fonction Sn(θ, gθ) qui peut être vue comme équations de moment, est
combinée à une matrice stochastique de poids Mn, q×q, semi-définie positive et qui peut dépendre
de l’échantillon, pour définir la fonction suivante,

Qn(θ, gθ) = STn (θ, gθ)MnSn(θ, gθ). (6.8)

L’estimateur GMM de θ proposé doit minimiser Qn(θ, gθ) par rapport á θ. Cependant la fonction
gθ(·) n’est pas connue et doit être remplacée par un estimateur asymptotiquement efficient. D’après
(6.5), pour θT = (βT , λ) ∈ Θ fixé, un estimateur de gθ(z), z ∈ Z est donné par ĝθ(z), solution par
rapport η de

n∑
i=1

∂

∂η
L (Φ (Gin(θ, η)) ;Yin)K

(
z − Zin
bn

)
= 0, (6.9)

où K(·) est un noyau de Rd à R+ et bn est une fenêtre de lissage.
En remplaçant gθ(·) dans (6.8) par l’estimateur ĝθ(·), nous obtenons l’estimateur de θ suivant

θ̂ = argminθ∈ΘQn(θ, ĝθ). (6.10)

On en déduit l’estimateur ĝθ̂(·) de g0(·).
Dans la suite, nous donnons le comportement asymptotique des estimateurs proposés, notam-
ment la consistance et la normalité asymptotique de θ̂, ainsi que la consistance de ĝθ̂(·). Ces
résultats asymptotiques sont présentés dans un cadre Increasing domain. Sous des conditions sur
l’identification, la dépendance spatiale, le noyau K(·) et la fenêtre de lissage bn, nous montrons
que

θ̂ − θ0 = op(1),
∥∥ĝθ̂ − g0

∥∥ = op(1),
et √

n
(
θ̂ − θ0

)
→ N (0,Ω(θ0)) ,

où

Ω(θ0) = {B2(θ0)}−1

{
d

dθ
ST (θ, gθ)

∣∣∣∣
θ=θ0

}
MB1(θ0)M

{
d

dθ
S (θ, gθ)

∣∣∣∣
θ=θ0

}
{B2(θ0)}−1

,

avec
B1(θ0) = lim

n→∞
E0
(
nSn (θ0, g0)STn (θ0, g0)

)
,

B2(θ0) =
{
d

dθ
ST (θ, gθ)

∣∣∣∣
θ=θ0

}
M

{
d

dθ
S (θ, gθ)

∣∣∣∣
θ=θ0

}
,

tel que
d

dθ
S (θ, gθ) = ∂S

∂θ
(θ, gθ) + ∂S

∂g
(θ, gθ)

∂

∂θ
gθ, (6.11)

et
S(θ, gθ) = lim

n→∞
E0 (Sn(θ, gθ)) , (6.12)

où M est une matrice déterministe semi-définie positive, et est la limite de la matrice Mn.

Pour une application du résultat de la normalité asymptotique, un estimateur de la matrice de
variance covariance Ω(θ0) est nécessaire. Nous proposons l’estimateur suivant

Ωn(θ̂) =
{
B2n(θ̂)

}−1
{
d

dθ
STn (θ, ĝθ)

∣∣∣∣
θ=θ̂

}
MnB1n(θ̂)Mn

{
d

dθ
Sn (θ, ĝθ)

∣∣∣∣
θ=θ̂

}{
B2n(θ̂)

}−1
,
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où

B1n(θ) = nSn(θ, ĝθ)STn (θ, ĝθ) and B2n(θ) =
{
d

dθ
STn (θ, ĝθ)

}
Mn

{
d

dθ
Sn (θ, ĝθ)

}
.

Dans la suite de ce chapitre, nous introduisons plus en détail le modèle proposé, son estimation,
les résultats asymptotiques, une procédure permettant de mettre en oeuvre l’approche proposée.
Nous donnons également des résultats numériques sur données simulées pour étudier la perfor-
mance des estimateurs proposés.

The results of this chapter are obtained in collaboration with Sophie Dabo-Niang (University
of Lille).

6.1 Introduction
Agriculture, economics, environmental sciences, urban systems, epidemiology activities are often
located in space. Therefore, modeling such activities requires to find a kind of correlation be-
tween some random variables in one location with others at neighboring locations, see for instance
Pinkse & Slade (1998). This is a significant feature of spatial data analysis. Spatial/Econometrics
statistics provides tools to solve such modelling. A lot of studies on spatial effects in statistics and
econometrics in many divers models have been published; see Cressie (1993), Anselin (1988) and
Arbia (2006) for a review.

Two main ways of incorporating the spatial dependence structure (see for instance Cressie,
1993) can be distinguished basically for geostatistics and lattice data. In the domain of geostatistics,
the spatial location is valued in a continuous set of RN , N ≥ 2. However, for many activities, the
spatial index or location does not vary continuously and may be of the lattice type, the baseline
of this current work. This is, for instance, the case in a number of problems. In images analysis,
remote sensing form satellites, agriculture and so one, data are often received as regular lattice
and identified as the centroids of square pixels, whereas a mapping forms often an irregular lattice.
Basically, statistical models for lattice data are linked to nearest neighbors to express the fact that
data are nearby. Two popular spatial dependence models have received a lot of attention in lattice
data: the spatial autoregressive (SAR) dependent variable model and the spatial autoregressive
error model (SAE, where the model error is a SAR), which extend regression in time series to
spatial data.

In a in theoretical point of view, various linear spatial regression SAR and SAE models, their
identification and estimation methods by the two stage least squares (2SLS), the three stage least
squares (3SLS), the maximum likelihood (ML) or quasi-maximum likelihood (QML) and the gen-
eralized method of moments (GMM) methods have been developed and summarized by many
authors, such as Anselin (1988), Cressie (1993), Kelejian & Prucha (1998), Kelejian & Prucha
(1999), Conley (1999), Lee (2004), Lee (2007), Lin & Lee (2010), Zheng & Zhu (2012), Malikov
& Sun (2017), Garthoff & Otto (2017), Yang & Lee (2017). Nonlinearity into the field of spatial
linear lattice models have less attention, see for instance Robinson (2011) who generalized the
kernel regression estimation to spatial lattice data. Su (2012) proposed a semiparametric GMM
estimation for some semiparametric SAR models. Extending these models and methods to discrete
choice spatial models have less attention, only a few number of papers were concerned in recent
years. This may be, as pointed out by Fleming (2004) (see also Smirnov (2010) and Billé (2014)),
due to the ”added complexity that spatial dependence introduces into discrete choice models”.
Estimating the model parameters with a full ML approach in spatial discrete choice models, often
requires solving a very computationally demanding problem of n-dimensional integration, where n
is the sample size.

As for linear models many discrete choice models are fully linear and make use of a continuous
latent variable, see for instance Smirnov (2010) and Wang et al. (2013) that proposed pseudo ML
methods and Pinkse & Slade (1998) who studied a method based on GMM approach.
When the relationship between the discrete choice variable and some explanatory variables is not
linear, then a semiparametric model may be an alternative to fully parametric models. This kind
of models is known in literature as partially linear choice spatial models and is the baseline of this
current work. When the data are independent, these choice models can be viewed as particular
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cases of the famous generalized additive models (Hastie & Tibshirani, 1990) and have received a lot
of attention in the literature, various methods of estimation have been explored (see for instance
Hunsberger, 1994; Severini & Staniswalis, 1994; Carroll et al., 1997).

To the best of our knowledge, semiparametric spatial choice models, have not yet been inves-
tigated in a theoretical point of view. To fill in this gap, this work addresses a SAE spatial probit
model when the spatial dependence structure is integrated in a disturbance term of the studied
model.

We propose a semiparametric estimation method combining the GMM approach and the
weighted likelihood method. It consists to first fix the parametric components of the model and
estimate nonparametrically the nonlinear component by weighted likelihood (Staniswalis, 1989).
The obtained estimator depending on the values at which the parametric components were fixed
is used to construct a GMM estimator (Pinkse & Slade, 1998) of these components.

The remainder of the paper is organized as follows. In Section 6.2, we introduce the studied
spatial model and the estimation procedure. Section 6.3 is devoted to hypotheses and asymptotic
results, whereas Section 6.4 reports some discussions and computation of the estimates. Section 6.5
gives some numerical results based on simulated data to illustrate the performance of the proposed
estimators. The last section presents the proofs of the main results.

6.2 Model
We consider that at n spatial locations {s1, s2, . . . , sn} satisfying ‖si − sj‖ > ρ with ρ > 0, obser-
vations of a random vector (Y,X,Z) are available. Assume that these observations are considered
as triangular arrays (Robinson, 2011) and follow the partially linear model of a latent dependent
variable Y ∗:

Y ∗in = XT
inβ0 + g0(Zin) + Uin, 1 ≤ i ≤ n, n = 1, 2, . . . (6.13)

with
Yin = I (Y ∗in ≥ 0) , 1 ≤ i ≤ n, n = 1, 2, . . . (6.14)

where X and Z are explanatory random variables taking values in two compacts subsets X ⊂
Rp (p ≥ 1) and Z ⊂ Rd (d ≥ 1) respectively. The parameter β0 is an unknown p × 1 vector that
belongs to a compact subset Θβ ⊂ Rp, g0(·) is an unknown smooth function valued in the space of
functions G =

{
g ∈ C2(Z) : ‖g‖ = supz∈Z |g(z)| < C

}
with C2(Z) the space of twice differentiable

functions from Z to R, C a positive constant. In model (6.13), β0 and g0(·) are constant over i
(and n). Assume that the term of disturbance Uin in (6.13) is modeled by the following spatial
autoregressive process (SAR) :

Uin = λ0

n∑
j=1

wijnUjn + εin, 1 ≤ i ≤ n, n = 1, 2, . . . (6.15)

where λ0 is the autoregressive parameter, valued in the compact subset Θλ ⊂ R, wijn, j = 1, ..., n
are the elements in the i–th row of a non stochastic n×n spatial weights matrix Wn, that contains
the information on the spatial relationship between observations. This spatial weight matrix is
usually constructed as a function of the distances (with respect to some metric) between locations,
see Pinkse & Slade (1998) for more of details. The n × n matrix (In − λ0Wn) is assumed to be
nonsingular for all n where In denotes the n×n identity matrix, and {εin, 1 ≤ i ≤ n} are assumed to
be independent random Gaussian variables; E(εin) = 0 and E(ε2

in) = 1 for i = 1, . . . , n n = 1, 2, . . ..
Note that one can rewrite (6.15) as:

Un = (In − λ0Wn)−1
εn, n = 1, 2, . . .

where Un = (Un1, . . . , Unn)T and εn = (εn1, . . . , εnn)T . Therefore the variance-covariance matrix
of Un is

Vn(λ0) = Var(Un) = (In − λ0Wn)−1
{

(In − λ0Wn)T
}−1

, n = 1, 2, . . .

This matrix allows to describe the cross sectional spatial dependencies between the n observations.
Furthermore, the fact that the diagonal elements of Vn(λ0) depend on λ0 and particularly on i and
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n allows some spatial heteroscedasticity. These spatial dependence and heretoscedasticity depend
on the neighborhood structure established by the spatial weights matrix Wn.

Before going further, let us give some particular cases of the model.
If one consider i.i.d observations, that is Vn(λ0) = σ2In, with σ depending on λ0, the obtained
model may be seen as a particularly case of the classical generalized partially linear models (e.g
Severini & Staniswalis, 1994) or the classical generalized additive model (Hastie & Tibshirani,
1990). Several approaches of estimating this particular model have been developed, among others,
we cite that of Severini & Staniswalis (1994), based on the concept of generalized profile likelihood
(e.g Severini & Wong, 1992). This approach consists to first fix the parametric parameter β and
estimate nonparametrically g0(·) by using the weighted likelihood method. This last estimate is
then used to construct a profile likelihood to estimate β0.
When g0(·) = 0 (or is an affine function), that is without a nonparametric component, several
approaches have been developed to estimate the parameters β0 and λ0. The basic difficulty en-
countered is that the likelihood function of this model involve a n dimensional normal integral,
thus when n is high, the computation or asymptotic properties of the estimates may be difficult
(e.g Poirier & Ruud, 1988). Various approaches have been proposed to addressed this difficulty,
among these we cite:

• Feasible Maximum Likelihood approach: it consists of replacing the true likelihood function
by a pseudo likelihood function constructed via marginal likelihood functions. Smirnov
(2010) proposes a pseudo likelihood function obtained by replacing Vn(λ0) by some diagonal
matrix by the diagonal elements of Vn(λ0). Alternatively, Wang et al. (2013) proposed to
divide the observations by pairwise groups where the latter are assumed to be independent
with bivariate normal distribution in each group and estimate β0 and λ0 by maximizing the
likelihood of these groups.

• GMM approach used by Pinkse & Slade (1998). These authors used the generalized residuals
defined by Ũin(β, λ) = E (Uin|Yin, β, λ) , i = 1, . . . , n, n = 1, 2, . . . with some instrumentals
variables to construct moments equations to define GMM estimators of β0 and λ0.

In what follows, using the n observations (Xin, Yin, Zin), i = 1, ..., n, we propose parametric esti-
mators of β0, λ0 and a nonparametric estimator of the smooth function g0(·).
To this aim, assume that, for all n = 1, 2, . . ., {εin, i = 1 . . . , n} is independent of
{Xin, i = 1, . . . , n} and {Zin, i = 1, . . . , n}, and {Xin, i =, 1 . . . , n} is independent of
{Zin, i = 1, . . . , n}. We give asymptotic results according to Increasing domain asymptotic.

6.2.1 Estimation procedure
We propose an estimation procedure based on a combination of a weighted likelihood method and a
generalized method of moments. We first fix the parametric components β and λ of the model and
estimate the nonparametric component using a weighted likelihood. The obtained estimate is then
used to construct generalized residuals where the latter are combined to instrumentals variables
to propose GMM parametric estimates. This approach will be described as follow.

By equation (6.14) we have

E0 (Yin|Xin, Zin) = Φ
(

(vin(λ0))−1 (
XT
inβ0 + g0(Zin)

))
, i = 1, . . . , n, n = 1, 2, . . . (6.16)

where E0 denotes the expectation under the true parameters (i.e β0, λ0 and g0(·)), Φ(·) is the
cumulative distribution function of a standard normal distribution, and (vin(λ0))2 = Viin(λ0), 1 ≤
i ≤ n, n = 1, 2, . . . are the diagonal elements of Vn(λ0).
For each β ∈ Θβ , λ ∈ Θλ, z ∈ Z and η ∈ R, we define the conditional expectation on Zin of the
log-Likelihood of Yin given (Xin, Zin) for 1 ≤ i ≤ n, n = 1, 2, . . ., as

H(η;β, λ, z) = E0

(
L
(

Φ
(

(vin(λ))−1 (
η +XT

inβ
))

;Yin
)∣∣∣Zin = z

)
,

with L(u; v) = log
(
uv(1− u)1−v). Note that H(η;β, λ, z) is assumed to be constant over i (and

n). For each fixed β ∈ Θβ , λ ∈ Θλ and z ∈ Z, gβ,λ(z) denotes the solution in η of
∂

∂η
H(η;β, λ, z) = 0. (6.17)
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Then, we have gβ0,λ0(z) = g0(z) for all z ∈ Z.

Now using gβ,λ(·), we construct GMM estimates of β0 and λ0 as Pinkse & Slade (1998). For
that, we define the generalized residuals, replacing g0(Zin) in (6.13) by gβ,λ(Zin):

Ũin(β, λ, gβ,λ) = E (Uin|Yin, β, λ) (6.18)

= φ (Gin(β, λ, gβ,λ)) (Yin − Φ (Gin(β, λ, gβ,λ)))
Φ (Gin(β, λ, gβ,λ)) (1− Φ (Gin(β, λ, gβ,λ))) ,

where φ(·) is the density of the standard normal distribution and
Gin(β, λ, gβ,λ) = (vni(λ))−1 (

XT
inβ + gβ,λ(Zin)

)
.

For simplicity of notation, we write when it is possible θ = (βT , λ)T ∈ Θ = Θβ ×Θλ.
Note that in (6.18), the generalized residual Ũin(· , ·) is calculated by conditioning only on Yin
not on the entire sample {Yin, i = 1, 2, . . . , n, n = 1, . . .} or a subset of it. This of course will
influence the efficiency of the estimators of θ obtained by these generalized residuals, but it allows
to avoid a complex computation, see Poirier & Ruud (1988) for more details. To address this
loss of efficiency, let us follow Pinkse & Slade (1998)’s procedure that consists of employing some
instrumentals variables in order to create some moments conditions, and use some random matrix
to define a criterion function. Both the instrumentals variables and the random matrix permit to
take into account more informations about the spatial dependence and heteroscedasticity in the
dataset. Let us now detail the estimation procedure.
Let

Sn(θ, gθ) = n−1ξTn Ũn(θ, gθ), (6.19)

where Ũn(θ, gθ) is the n× 1 vector, composed of Ũin(θ, gθ), 1 ≤ i ≤ n and ξn is a n× q matrix of
instrumentals variables whose ith row is denoted by the 1× q random vector ξin. The latter may
depend on gθ(·) and θ. We assume that ξin is σ(Xin, Zin) measurable for each i = 1, . . . , n, n =
1, 2, . . .. We suppress the possible dependence of the instrumentals variables on the parameters
for notational simplicity. The GMM approach consists to minimize the following sample criterion
function,

Qn(θ, gθ) = STn (θ, gθ)MnSn(θ, gθ), (6.20)

where Mn is some positive-definite q × q weight matrix that may depend on sample information.
The choice of the instrumentals variables and weight matrix characterizes the difference between
GMM estimator and all pseudo maximum likelihood estimators. For instance, if one takes

ξin(θ, gθ) = ∂Gin(θ, ηi)
∂θ

+ ∂Gin(θ, ηi)
∂η

∂gθ
∂θ

(Zin), (6.21)

with ηi = gθ(Zin), Gin(θ, ηi) = (vin(λ))−1 (
XT
inβ + ηi

)
, Mn = Iq with q = p + 1, then the GMM

estimator of θ is equal to a pseudo maximum profile likelihood estimator of θ, accounting only the
spatial heretoscedasticity.
Now, let

S(θ, gθ) = lim
n→∞

E0 (Sn(θ, gθ)) , (6.22)

and
Q(θ, gθ) = ST (θ, gθ)MS(θ, gθ),

where M , the limit of the sequence Mn, is a nonrandom positive definite matrix. The functions
Sn(·, ·) and Qn(·, ·) are viewed as empirical counterparts of S(·, ·) and Q(·, ·) respectively.
It is clear that gθ(·) is not available in practice. However, we need to estimate it, particularly by
an asymptotically efficient estimate. By (6.17) and for fixed θT = (βT , λ) ∈ Θ an estimator of
gθ(z), for z ∈ Z can be given by ĝθ(z) which denotes the solution in η of

n∑
i=1

∂

∂η
L (Φ (Gin(θ, η)) ;Yin)K

(
z − Zin
bn

)
= 0 (6.23)

where K(·) is a kernel from Rd to R+ and bn is a bandwidth depending on n.
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Now, replacing gθ(·) in (6.20) by the estimator ĝθ(·) permits to obtain the GMM estimator θ̂
of θ as

θ̂ = argminθ∈ΘQn(θ, ĝθ). (6.24)

A classical inconvenience of the estimator ĝθ(z) proposed in (6.23) is that the bias of ĝθ(z)
is high for z near the boundary of Z. Of course this bias will effect the estimator of θ given
in (6.24) when some of observations Zin are near the boundary of Z. Local linear method, or
more generally, the local polynomial method (Fan & Gijbels, 1996) can be used to reduce this
bias. Another alternative is to use trimming (Severini & Staniswalis, 1994) in which the function
Sn(θ, gθ) is computed by using only observations associated to Zin that are away from the boundary.
The advantage of this approach is that the theoretical results can be presented in a clear form but
it is less tractable from a practical point of view in particular for low sample sizes.

6.3 Large sample properties
We now turn to the asymptotic properties of the estimators derived in previous section; θ̂T =
(β̂T , λ̂) and ĝθ̂(·). Let us use the following notations: d

dθS(θ, gθ) means that we differentiate S(., .)
with respect to θ and ∂

∂θS(θ, gθ) is the partial derivative of S(·, ·) with respect to the first variable.
The partial derivative of Sn(θ, g) with respect to g, for any function v ∈ G is

∂Sn
∂g

(θ, g)(v) = n−1
n∑
i=1

ξin
∂Ũin
∂η

(θ, ηi)v(Zin).

Let the following matrices needed in the asymptotic variance-covariance matrix of θ̂:

B1(θ0) = lim
n→∞

E0
(
nSn (θ0, g0)STn (θ0, g0)

)
,

B2(θ0) =
{
d

dθ
ST (θ, gθ)

∣∣∣∣
θ=θ0

}
M

{
d

dθ
S (θ, gθ)

∣∣∣∣
θ=θ0

}
,

with
d

dθ
S (θ, gθ) = ∂S

∂θ
(θ, gθ) + ∂S

∂g
(θ, gθ)

∂

∂θ
gθ, (6.25)

and

Ω(θ0) = {B2(θ0)}−1

{
d

dθ
ST (θ, gθ)

∣∣∣∣
θ=θ0

}
MB1(θ0)M

{
d

dθ
S (θ, gθ)

∣∣∣∣
θ=θ0

}
{B2(θ0)}−1

.

The following assumptions are required to establish the asymptotic results.

Assumption A1. (Smoothing condition). For each fixed θ ∈ Θ and z ∈ Z, let gθ(z)
denote the unique solution with respect to η of

∂

∂η
H(η; θ, z) = 0.

For any ε > 0 and g ∈ G, there exists γ > 0 such that

sup
θ∈Θ,z∈Z

∣∣∣∣ ∂∂ηH(g(z); θ, z)
∣∣∣∣ ≤ γ =⇒ sup

θ∈Θ,z∈Z
|g(z)− gθ(z)| ≤ ε. (6.26)

Assumption A2. (Local dependence). The density fin(·) of Zin exists, is continuous on Z
uniformly on i and n and satisfies

lim inf
n→∞

inf
z∈Z

1
n

n∑
i=1

fin(z) > 0. (6.27)
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The joint probability density fijn(., .) of (Zin, Zjn) exists and is bounded on Z ×Z, uniformly on
i 6= j and n.
Assumption A3. (Spatial dependence). Let hθ, ηiin (·|·, ·) denote the conditional log likelihood
function of Yin given (Xin, Zin), where ηi = g(Zin). Let Tin be the vector (Yin, Xin, Zin), i =
1, . . . , n , n = 1, 2 . . ., p̃ = p+ 1, and assume that for all i, l = 1, . . . , n,

|Cov0 (ψ(Tin), ψ(Tln))| ≤ {Var0 (ψ(Tin)) Var0 (ψ(Tln))}1/2 αiln, (6.28)

with

ψ(Tin) = K

(
z − Zin
bn

)
or ψ(Tin) = K

(
z − Zin
bn

)
∂j1+···+jp̃+r

∂θj1
1 · · · ∂θ

jp̃
p̃ ∂η

r
hθ, ηin (Yin|Xin, Zin = z),

for all z ∈ Z, θ ∈ Θ, η = g(z) with g ∈ G, and for all nonnegative integers j1, . . . , jp̃ = 0, 1, 2 and
r = 0, . . . , 4, such that j1 + · · ·+ jp̃ + r ≤ 6.
We assume that ∣∣Cov0

(
ξitnŨin(θ, gθ), ξjsnŨjn(θ, gθ)

)∣∣
≤
{

Var0
(
ξitnŨin(θ, gθ)

)
Var0

(
ξjsnŨjn(θ, gθ)

)}1/2
αijn, (6.29)

for all θ ∈ Θ, i, j = 1, . . . , n, n = 1, 2, . . . and for any s, t = 1, . . . , q,
and ∣∣∣Cov0

(
ξ

(2)
in (θ0, η

0
i ), ξ(2)

jn (θ0, η
0
j )
)∣∣∣

≤
{

Var0

(
ξ

(2)
in (θ0, η

0
i )
)

Var0

(
ξ

(2)
jn (θ0, η

0
j )
)}1/2

αijn, (6.30)

with
ξ

(2)
in (θ0, η

0
i ) = wT ξiΛ

(
Gin(θ0, η

0
i )
)
φ
(
Gin(θ0, η

0
i )
) ∂Gin

∂θ
(θ0, η

0
i ),

where η0
i = g0(Zi) for each w ∈ Rq such that ‖w‖ = 1, and Var0(·) denotes the variance under the

trues parameters.
In addition, assume that there is a decreasing (to 0) positive function ϕ(·) such that αijn =
O (ϕ (‖si − sj‖)), r2ϕ(rr∗)/ϕ(r∗) = o(1), as r → 0, for all fixed r∗ > 0, where si and sj are spatial
coordinates associated to observations i and j respectively.
Assumption A4. The kernel K satisfies

∫
K(u)du = 1. It is Lipshitzian, i.e there is a positive

constant C such that

|K(u)−K(v)| ≤ C‖u− v‖ for all u, v ∈ Rd.

Assumption A5. The bandwidth bn satisfies bn → 0 and nb3d+1
n →∞ as n→∞.

Assumption A6. The instrumentals variables satisfy supi, n ‖ξin‖ = Op(1) where ξin is the i-th
column of the n× q matrix of instrumentals variables ξn.
Assumption A7. θT = (βT , λ) takes values in a compact and convex set Θ = Θβ×Θλ ⊂ Rp×R

and θT0 = (βT0 , λ0) is in the interior of Θ.
Assumption A8. S(·, ·) is continuous on both arguments θ and g, and Q(·, g.) attains a unique

minimum over Θ at θ0.
Assumption A9. The square root of diagonal’s elements of Vn(λ) are twice continuous differen-

tiable functions with respect to λ and sup
λ∈Θλ

∣∣∣∣v−1
in (λ) + d

dλ
vin(λ) + d2

dλ2 vin(λ)
∣∣∣∣ <∞, uniformly on i

and n.
Assumption A10. B1(θ0) and B2(θ0) are positive definite matrices, and Mn −M = op(1) .
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Remark 6.1. Assumption A1 ensures smoothness of H(.; ., .) around its extrema point gθ(.), see
Severini & Staniswalis (1994). Assumption A2 is a decay of local independence condition of the
covariates Zin, meaning that these variables are not identically distributed, a similar condition can
be find in Robinson (2011). Condition (6.27) generalizes the classical assumption infz f(z) > 0
used in the case of estimating the density function f(·) with identically distributed or stationary
random variables. This assumption has been used in Robinson (2011) (Assumption A7(x), p. 8).
Assumption A3 describes the spatial dependence structure. The processes we use are not assumed
stationary, this allows more generally and the dependence structure to change with the sample size
n (see Pinkse & Slade (1998) for more discussion). Conditions (6.28),(6.29) and (6.30) are not
restrictives. When the regressors and instrumentals variables are deterministic then conditions
(6.28) and (6.29) are equivalent to |Cov0(Yin, Yln)| ≤ αiln. The condition on ϕ(·) is satisfied when
this last tends to zero at a polynomial rate, i.e ϕ(t) = O(t−τ ), for all τ > 2 as in case of mixing
random variables.
Assumption A6 requires that the instruments to be bounded uniformly on i and n. In addition, when
the instruments depend on θ and g(·), they are also uniformly bounded with respect to these param-
eters. The compactness condition in Assumption A7 is standard and the convexity is somewhat
unusual, but is reasonable in most applications. Condition A8 is necessary to ensure identification
of the true parameters θ0. Assumption A9 requires the standard deviations of the errors to be
uniformly bounded away from zero with bounded derivatives. it has been considered by Pinkse &
Slade (1998). Assumption A10 is classic (Pinkse & Slade, 1998) required in the proof of Theo-
rem 6.2. These last authors noted that in their model (without a nonparametric component) when
the autoregressive parameter λ0 = 0, then B2(θ0) is not invertible, regardless to the choice of Mn.
This is also the case in our context, since for each gθ(z) solution of (6.17), θ ∈ Θ and z ∈ Z, we
have

∂gθ
∂β

(z) = −E (Γjn(θ, gθ(z))Xjn|Zjn = z)
E (Γjn(θ, gθ(z))|Zjn = z) ,

and

∂gθ
∂λ

(z) =
v
′

jn(λ)
vjn(λ)

E
(

Γjn(θ, gθ(z))
(
XT
jnβ + gθ(z)

)∣∣Zjn = z
)

E (Γjn(θ, gθ(z))|Zjn = z)

=
v
′

jn(λ)
vjn(λ)

(
gθ(z)− βT

∂gθ
∂β

(z)
)
,

where v′jn(λ) = d
dλvjn(λ) = vjn(λ)

[
WnS

−1
n (λ)Vn(λ)

]
jj

,

Γjn(·) = Λ
′
(Gjn(·)) [Yjn − Φ(Gjn(·))]− Λ (Gjn(·))φ (Gjn(·))

and Λ(·) = φ(·)/(1− Φ(·))Φ(·). However, v′jn(λ0) = 0 if λ0 = 0, then B2(θ0) will be singular.
With these assumptions in place, we are able to give some asymptotic results. The weak

consistencies of the proposed estimators are given in the following two results. The first theorem
and corollary below establish the consistency of our estimators, whereas the second theorem deals
with the question of convergence to normal distribution of the parametric component when it is
properly standardized.
Theorem 6.1. Under assumptions A1-A10, we have

θ̂ − θ0 = op(1).

Corollary 6.1. If the assumptions of Theorem 6.1 are satisfied, then we have∥∥ĝθ̂ − g0
∥∥ = op(1).

Proof of Corollary 6.1 Note that∥∥ĝθ̂ − g0
∥∥ ≤ ‖ĝθ̂ − gθ̂‖+ ‖gθ̂ − g0‖

≤ sup
θ
‖ĝθ − gθ‖+ sup

θ

∥∥∥∥∂gθ∂θ
∥∥∥∥ ‖θ̂ − θ0‖ = op(1),

since, by the assumptions of Theorem 6.1, supθ ‖ĝθ − gθ‖ = op(1) and supθ
∥∥∥∂gθ∂θ ∥∥∥ <∞.

The following gives an asymptotic normality result of θ̂.
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Theorem 6.2. Under assumptions A1-A10, we have
√
n
(
θ̂ − θ0

)
→ N (0,Ω(θ0))

Remark 6.2. In practice, the previous results can be used to construct asymptotic confidence
intervals and make hypotheses tests when a consistent estimation of the asymptotic covariance
matrix Ω(θ0) is founded. We follow the idea of Pinkse & Slade (1998) to define some estimator of
this matrix without establishing its consistence. Let Ω(θ0) be estimated by

Ωn(θ̂) =
{
B2n(θ̂)

}−1
{
d

dθ
STn (θ, ĝθ)

∣∣∣∣
θ=θ̂

}
MnB1n(θ̂)Mn

{
d

dθ
Sn (θ, ĝθ)

∣∣∣∣
θ=θ̂

}{
B2n(θ̂)

}−1
,

with

B1n(θ) = nSn(θ, ĝθ)STn (θ, ĝθ) and B2n(θ) =
{
d

dθ
STn (θ, ĝθ)

}
Mn

{
d

dθ
Sn (θ, ĝθ)

}
.

The consistency of Ωn(θ̂) is based on theirs of B1n(θ̂) and B2n(θ̂) as estimators of B1(θ0) and
B2(θ0) respectively. Note that the consistence of B2n(θ̂) is relative easily to be established while
that of B1n(θ̂) asked some adaption of the proof of Theorem 3 of (Pinkse & Slade, 1998, p.134) in
our case.

6.4 Computation of the estimates
The aim of this section is to outline in details how the regression parameters β, the spatial auto-
correlation parameter λ and the non-linear function gθ can be estimated. We begin with the
computation of ĝθ(z) that will play a crucial role in what follows.

6.4.1 Computation of the estimate the nonparametric component
An iterative method is needed to compute ĝθ(z) solution of (6.23) for each fixed θ ∈ Θ and z ∈ Z.
For fixed θT = (β, λ) ∈ Θ and z ∈ Z, let ηθ = gθ(z) and ψ(η; θ, z) denote the left hide side in
(6.23), that can be rewritten as

ψ(η; θ, z) =
n∑
i=1

[vin(λ)]−1 Λ (Gin(θ, η)) [Yin − Φ(Gin(θ, η))]K
(
z − Zin
bn

)
.

Consider the fisher information:

Ψ(ηθ; θ, z) = E0

(
∂

∂η
ψ(η; θ, z)

∣∣∣∣
η=ηθ

∣∣∣∣∣ {(Xin, Zin), 1 ≤ i ≤ n, n = 1, . . .}
)

= −
n∑
i=1

[vin(λ)]−2 Λ (Gin(θ, ηθ))φ (Gin(θ, ηθ))K
(
z − Zin
bn

)

+
n∑
i=1

[vin(λ)]−2 Λ
′
(Gin(θ, ηθ))

× [Φ (Gin(θ0, η0))− Φ (Gin(θ, ηθ))]K
(
z − Zin
bn

)
. (6.31)

Note that the second term in the right hand-side in (6.31) is negligible when θ is near to the true
parameter θ0.
Since ψ(η; θ, z) = 0 for η = ĝθ(z), an initial estimate η̃ can be updated to η† using Fisher’s scoring
method:

η† = η̃ − ψ(η̃; θ, z)
Ψ(η̃; θ, z) . (6.32)

The iterated procedure (6.32) requests some starting value η̃ = η̃0 in order to ensure convergence of
the algorithm. For that, let us adapt the approach of Severini & Staniswalis (1994), that consists
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to suppose that for fixed θ ∈ Θ, there exists a η̃0 satisfying Gin(θ, η̃0) = Φ−1(Yin) for i = 1, . . . , n.
Knowing that Gin(θ, η̃0) = (vin(λ))−1 (

XT
niβ + η̃0

)
, we have η̃0 = vin(λ)Φ−1(Yin) − XT

inβ, then
(6.32) can be updated using the following first value:

η†0 = η̃0 −
ψ(η̃0; θ, z)
Ψ(η̃0; θ, z) =

∑n
i=1 [vin(λ)]−1 Λ(Cin)φ(Cin)

[
Cin − [vin(λ)]−1

XT
inβ
]
K
(
z−Zin
bn

)
∑n
i=1 [vin(λ)]−2 Λ(Cin)φ(Cin)K

(
z−Zin
bn

) ,

where Cin = Φ−1(Yin), i = 1, . . . , n is computed using a slight adjustment since Yin ∈ {0, 1}.
With this first value, the algorithm is iterates until convergence.

6.4.1.1 Selection of the bandwidth
A critical step (in non or semi parametric models) is the choice of the bandwidth parameter bn
which is usually selected by applying some cross validation approach. The latter was adapted
by Su (2012) in the case of a spatial semiparametric model. Since cross-validation may be very
time consuming, it is particularly the case of our model, we adapt the following approach used in
Severini & Staniswalis (1994) for more flexibility:

1. Consider the linear regression of Cin on Xin, i = 1, . . . , n without an intercept term, and
let R1n, . . . , Rnn denote the corresponding residuals.

2. Since we expect E(Rin|Zin = z) to have similar smoothness properties as g0(.), the optimal
bandwidth bn is that of the nonparametric regression of the {Rin}i=1,··· ,n on {Zin}i=1,··· ,n,
chosen by applying any nonparametric regression bandwidth selection method. For that, we
use the cross-validation method by np R Package.

6.4.2 Computation of θ̂
The parametric component β and the spatial autoregressive parameter λ are computed as men-
tioned above, by a GMM approach based on some instrumentals variables ξn and the weight matrix
Mn. The choice of these instrumentals variables and weight matrix Mn are as follow.
Since ψ(ĝθ(z); θ, z) = 0, if we differentiate the latter with respect to β and λ, we have

∂

∂β
ĝθ(z) = −

∑n
i=1 [vin(λ)]−2 ∆in(θ, z)XinK

(
z−Zin
bn

)
∑n
i=1 [vin(λ)]−2 ∆in(θ, z)K

(
z−Zin
bn

) ,

and

∂

∂λ
ĝθ(z) =

∑n
i=1 [vin(λ)]−1

v
′

in(λ)∆in(θ, z)
[
XT
inβ + ĝθ(z)

]
K
(
z−Zin
bn

)
∑n
i=1 [vin(λ)]−2 ∆in(θ, z)K

(
z−Zin
bn

)
+

∑n
i=1 [vin(λ)]−2

v
′

in(λ)Λ (Gin(θ, ĝθ(z))) [Yin − Φ (Gin(θ, ĝθ(z)))]K
(
z−Zin
bn

)
∑n
i=1 [vin(λ)]−2 ∆in(θ, z)K

(
z−Zin
bn

) ,

with

∆in(θ, z) = Λ
′
(Gin(θ, ĝθ(z))) [Yin − Φ (Gin(θ, ĝθ(z)))]− Λ (Gni(θ, ĝθ(z)))φ (Gin(θ, ĝθ(z))) .

Then, the previous result is used to define the following instrumentals variables

ξin(θ, ĝθ) = ∂Gin(θ, η̂i)
∂θ

+ ∂Gin(θ, η̂i)
∂η

∂

∂θ
ĝθ(Zin),

with η̂i = ĝθ(Zin).
For the weight matrix, we use (as in Pinkse & Slade, 1998) Mn = Iq with q = p + 1. Then the
obtained GMM estimator of θ with this choice of Mn is equal to the pseudo profile maximum
likelihood estimator of θ, accounting only the spatial heretoscedasticity.
The final step is to plug the GMM estimator θ̂ to have ĝθ̂.
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6.5 Simulation study

In this section, we study the performance of the proposed model based on some numerical results,
which highlight the importance of considering the spatial dependence and the partial linearity. We
simulated some semiparametric models and estimate them by our proposed method, the one that
does not account the spatial dependence (using the same estimation procedure above, based on
Partially linear probit model (PLPM)) and by a full linear SAE probit (LSAEP) method. The
latter method can account the spatial dependence but ignores the partial linearity. ProbitSpatial
R package (Martinetti & Geniaux, 2016) was be used to provide estimates for the LSAEP model.
We generate observations from the following spatial latent partial linear model:

Y ∗in = β1X
(1)
in + β2X

(2)
in + g(Zin) + Uin; Yin = I(Y ∗in ≥ 0), i = 1, . . . , n (6.33)

Un = (In − λWn)−1εn (6.34)

where Un ∼ N (0, In) and Wn is the spatial weight matrix associated to n locations chosen randomly
in a 60× 60 regular grid, based on 6 nearest neighbors of each unit. In order to observe the effect
of partial linearity when we compare our estimation procedure to that based on LSAEP models,
we will consider the two following cases:

Case 1: The explanatory variables X(1) and X(2) are generated as pseudo B(0.7) and U [−2, 2]
respectively, and the other explanatory variable Z is equal to the sum of 48 independent
random variables, each uniformly distributed over [−0.25, 0.25]. We use here the non-linear
function g(t) = t+ 2 cos(0.5πt).

Case 2: The explanatory variables X(1), X(2) and Z are generated as pseudo N (0, 1) and we
considerer the linear function g(t) = 1 + 0.5t.

We take β1 = −1, β2 = 1 and different values of the spatial parameter λ; that is λ ∈ {0.2, 0.5, 0.8}.
The bandwidth bn is selected by using Severini & Staniswalis (1994)’s approach detailed previously
with Cni = Φ−1 (0.9Yni + 0.1(1− Yni)) , i = 1, . . . , n. A Gaussian kernel will be considered; K(t) =
(2π−1/2) exp(−t2/2). As mentioned above, the instrumentals variables are the trivial choice and
the weight matrix Mn = I3 is the identity one.

The two studied cases are replicated 200 times for a sample size n = 200, the results are
presented in Tables 6.1, 6.2. In each table, the columns titled Mean, Median and SD give the
average, the median and the standard deviation over these 200 replications associated to each
method of estimation, respectively.

Firstly, when we compare the estimators based on our approach (PLSPM) with those based
on LSAEP model, we notice that the latter yields a more biased estimators of the coefficients
β1 and β2 particularly in Case 1. It makes sense that ignoring the partial linearity (see also
Figure 6.1) weakens the quality of estimation of the coefficients β1 and β2. While in Case 2, these
two approaches yield similar results in term of consistency but our approach seems to be less
efficient.

Secondly, note that for the two cases (Table 6.1 and Table 6.2) LSAEP and PLPM estimates
are similar in case of low spatial dependence (λ = 0.2). However, this is not the case for large
spatial dependence (λ = 0.8) framework where in this case the estimation procedure based on
PLPM models yields inconsistent estimates of the parameters β1 and β2 and the smooth function
g(·) (see the right panel in Figure 6.1). It makes sense that considering the spatial dependence
allows to find consistent estimates of the coefficients β1, β2 and the smooth function g(·).
Note that our approach is less efficient, this can be observed when observing the differences between
the mean and the median (or the high values of the standard deviation) associated to our estimators
in tables 6.1-6.2. However this is eventually due to the use of GMM approach with the trivial choice
of weight matrix Mn = In. In addition, when estimating the spatial parameter λ, our procedure
yields biased estimators, this may be related to the considered choice of instrumentals variables.
Better choices of the weight matrix and the instrumentals variables have to be investigated in
future research. [ht!]
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Table 6.1: Case 1 with n = 200 and 200 replications.

λ Methods β1 = −1 β2 = 1 λ
Mean Median SD Mean Median SD Mean Median SD

0.20
PLSPM -1.08 -1.00 0.53 1.07 0.99 0.33 0.09 0.00 0.29
LSAEP -0.67 -0.69 0.25 0.67 0.66 0.11 -0.04 0.02 0.36
PLPM -0.98 -0.99 0.32 0.98 0.96 0.15

0.50
PLSPM -1.13 -0.96 0.67 1.08 0.98 0.40 0.27 0.10 0.37
LSAEP -0.65 -0.64 0.24 0.66 0.65 0.12 0.20 0.26 0.29
PLPM -0.90 -0.88 0.30 0.90 0.89 0.15

0.80
PLSPM -1.12 -0.86 0.86 1.08 0.89 0.55 0.53 0.71 0.39
LSAEP -0.57 -0.56 0.25 0.61 0.60 0.12 0.60 0.61 0.10
PLPM -0.65 -0.66 0.25 0.65 0.63 0.13

λ = 0.2 λ = 0.5 λ = 0.8
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Figure 6.1: Case 1 with n = 200 and 200 replications.

Table 6.2: Case 2 with n = 200 and 200 replications.

λ Methods β1 = −1 β2 = 1 λ
Mean Median SD Mean Median SD Mean Median SD

0.20
PLSPM -1.12 -1.05 0.32 1.13 1.06 0.30 0.26 0.05 0.31
LSAEP -1.08 -1.06 0.19 1.09 1.07 0.20 0.02 0.17 0.47
PLPM -1.00 -0.99 0.20 0.99 0.98 0.14

0.50
PLSPM -1.08 -1.03 0.37 1.06 0.99 0.31 0.30 0.18 0.31
LSAEP -1.06 -1.06 0.21 1.05 1.01 0.19 0.40 0.48 0.29
PLPM -0.95 -0.94 0.21 0.93 0.91 0.18

0.80
PLSPM -1.02 -0.91 0.44 1.01 0.86 0.43 0.56 0.68 0.35
LSAEP -0.88 -0.87 0.19 0.87 0.86 0.20 0.72 0.73 0.09
PLPM -0.66 -0.65 0.15 0.66 0.65 0.16

Discussion
In this manuscript, we have proposed a spatial semiparametric probit models for identifying risk
factors at onset and spatial heterogeneity. Parameters involved in the models are estimated using
weighted likelihood and generalized method of moments methods. The technique based on de-
pendent random arrays facilitates the estimation and derivation of asymptotic properties which,
otherwise would have been difficult due to the complexity added by the spatial dependence in-
troduces into the model and high dimensional integration required by a full maximum likelihood
approach. Moreover, it yields consistent estimates through proper choices of bandwidth, weight
matrix, instrumentals variables. The proposed models provide a general framework and tools for
researchers and practitioners when dealing with binary semiparametric choice models in the pres-
ence of spatial correlation. Though they provide significant contribution to the body of knowledge,
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more need to be done to the best of our knowledge.
As indicated, the weights are used to improve efficiency and convergence. It would be interesting
to develop criteria for choices of optimal weights leading to better performance. For instance, it
may be improved by choosing for instance a weight matrix Mn as a consistent estimator B1n(θ̂)
of the matrix B1(θ0). Another empirical choice could be the idea of continuous updating GMM
estimator (One step GMM) used in Pinkse et al. (2006):

Mn(θ) = n−1
n∑

i,j=1
δijξniξ

T
jnŨin(θ, ĝθ)Ũjn(θ, ĝθ)

with weights

δij =
∑n
r=1 τriτrj[∑n

r=1 τ
2
ri

∑n
r=1 τ

2
rj

]1/2 for i, j = 1, . . . , n,

where τij is a number depending on wijn. The nearer location i is to j, the larger is τij .
Another topic of future research is allowing some spatial dependency on the covariates (SAR
models) and the response (endogenous models) for more generality. These topics will be of interest
in future research.

6.6 Appendix
Proposition 6.1. Under assumptions A1-A6, for θ ∈ Θ and z ∈ Z, the functions gθ(z) and ĝθ(z),
solutions of (6.17) and (6.23) respectively, satisfy

1. for all i, j = 0, 1, 2, i+ j ≤ 2,

∂i+j

∂θil∂θ
j
r

gθ(z) and ∂i+j

∂θil∂θ
j
r

ĝθ(z) exist and are finite for all 1 ≤ l, r ≤ p+ 1.

2. sup
θ∈Θ
‖ĝθ − gθ‖, sup

θ∈Θ
max

j=1,...,p+1

∥∥∥∥ ∂

∂θj
(ĝθ − gθ)

∥∥∥∥ and sup
θ∈Θ

max
1≤i,j≤p+1

∥∥∥∥ ∂2

∂θi∂θj
(ĝθ − gθ)

∥∥∥∥,

are all of order op(1) as n→∞.

Without loss of generality, the proof of this proposition is ensured by Lemma 6.2 in the uni-
variate case i.e Θ, Z ⊂ R.

The following lemma is useful in the proof of Lemma 6.2. It is an extension of Lemma 8 in
Severini & Wong (1992) to spatial dependent data.

Lemma 6.1. Let ζθ(Yin) denote a scalar function of Yin, i = 1, . . . , n, n = 1, 2, . . . depending on
a scalar parameter θ ∈ Θ and let for j = 0, 1, 2

ζ
(j)
θ (Yin) = ∂j

∂θj
ζθ(Yin), i = 1, . . . , n, n = 1, 2, . . .

Let fi(·) denote the density of Zin (given in assumption A2) and let f̄(z) = 1
n

∑n
i=1 fi(z).

Assume that:

H.1 sup
θ

sup
1≤i≤n,n

∣∣∣ζ(j)
θ (Yin)

∣∣∣ <∞ for j = 0, . . . , 3.

H.2 For all θ ∈ Θ, j = 0, 1, 2, and 1 ≤ i, l ≤ n:

|Cov (Kin(z),Kln(z))| ≤ {Var(Kin(z))Var(Kin(z))}1/2 ϕ (‖si − sl‖) , (6.35)

∣∣∣Cov
(
ζ

(j)
θ (Yin)Kin(z), ζ(j)

θ (Yln)Kln(z)
)∣∣∣ ≤{

Var
(
ζ

(j)
θ (Yin)Kin(z)

)
Var

(
ζ

(j)
θ (Yln)Kln(z)

)}1/2
ϕ (‖si − sl‖) , (6.36)

with Kin(z) = K ((z − Zin)/b).
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Let mθ(z) = E (ζθ(Yin)|Zin = z), for z ∈ Z, and assume that ∂j

∂θj
mθ(·) is continuous on Z,

j = 0, 1, 2.

For each fixed θ ∈ Θ and z ∈ Z, let the kernel estimator m̂θ(z) of mθ(z) be defined by

m̂θ(z) =
∑n
i=1 ζθ(Yin)Kin(z)∑n

i=1Kin(z) .

If assumptions A2, A4, and A5 are satisfied, then

sup
θ∈Θ

sup
z∈Z

∣∣∣∣ ∂j∂θj m̂θ(z)−
∂j

∂θj
mθ(z)

∣∣∣∣ = op(1),

for j = 0, 1, 2.

Proof of Lemma 6.1
We give the proof in the case where j = 0, corresponding to the study of the uniform consistency
of the kernel estimator of the regression function of ζθ(Yin) on Zin. The other cases are similarly
to this last and then are omitted.
Let

v̂θ(z) = 1
nbd

n∑
i=1

ζθ(Yin)Kin(z); f̂(z) = 1
nbd

n∑
i=1

Kin(z),

vθ(z) = mθ(z)f̄(z).

We have to show that

sup
θ

sup
z
|v̂θ(z)− vθ(z)| = op(1) (6.37)

and

sup
z

∣∣∣f̂(z)− f̄(z)
∣∣∣ = op(1) (6.38)

We give the proof of (6.37), that of (6.38) is similar.

Asymptotic behavior of |v̂θ(z)− vθ(z)|

Let us first consider the bias |E(v̂θ(z))− vθ(z)|. We have

E(v̂θ(z)) = (nbd)−1
n∑
i=1

∫
K

(
z − u
b

)
mθ(u)fi(u)du

= b−d
∫
vθ(u)K

(
z − u
b

)
du,

=
∫
vθ(z − bu)K(u)du

thus
E(v̂θ(z))− vθ(z) =

∫
(vθ(z − bu)− vθ(z))K(u)du = o(1)

by assumption A4, the continuity of fi(·) (see A2) and mθ(·), and the compactness of Z. It is clear
that the bias term does not depend on θ and z.
Let us now treat |v̂θ(z)− E(v̂θ(z))|. Consider the sum of variances

Sn = (nbd)−2
n∑
i=1

Var (ζθ(Yin)Kin(z)) .
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We have

Var (ζθ(Yin)Kin(z)) ≤ E
(
ζ2
θ (Yin)K2

in(z)
)

≤ CE
(
K2
in(z)

)
= Cbd

∫
K2(u)fi(z − ub)du

= Cbd sup
u
|K(u)|2

∫
fi(z − ub)du = Cbd sup

u
|K(u)|2 , (6.39)

since ζθ(Yin) is bounded uniformly on i and θ by assumption H.1,
∫
fi(z − ub)du ≤ C (see

assumption A2) and supu |K(u)|2 <∞ (see assumption A4 and compactness of Z). Then, we have

Sn = O
(
(nbd)−1) . (6.40)

Now consider the covariance term

Rn = (nbd)−2
n∑
i=1

n∑
j=1
j 6=i

Cov (ζθ(Yin)Kin(z), ζθ(Yjn)Kjn(z)) .

Let us partition the spatial locations of the observations using

Dn = {1 ≤ i, j ≤ n : ρ < ‖si − sj‖ ≤ cn}

with cn is sequence of integers going to ∞ and let D̄n denote the complement of Dn in the set of
locations {si, i = 1, ..., n}.
In one hand, let

R(1)
n = (n bd)−2

∑
i,j∈Dn

|Cov (ζθ(Yin)Kin(z), ζθ(Yjn)Kjn(z))| = (n bd)−2
∑

i,j∈Dn

|A−B|,

with

|A| = |E (ζθ(Yin)Kin(z)ζθ(Yjn)Kjn(z))|

≤ C

∣∣∣∣∫ K

(
z − u
b

)
K

(
z − v
b

)
fi,j(u, v)dudv

∣∣∣∣
≤ C b2d

∣∣∣∣∫ K(u)K(v)fi,j(z − bu, z − bv)dudv
∣∣∣∣

≤ Cb2d
(

sup
u
|K(u)|

)2 ∣∣∣∣∫ fi,j(z − bu, z − bv)dudv
∣∣∣∣ = Cb2d,

by assumption H.1, supu |K(u)| <∞ (assumption A4 and compactness of Z), with fi,j the joint
density (assumption A2 and compactness of Z).
Note that the second term B is

B = E (ζθ(Yin)Kin(z))E (ζθ(Yjn)Kjn(z))

Using similar arguments as above, we have |B| ≤ Cb2d by assumptions A2, A4, compactness of Z
and continuity of mθ(·). Thus, we have

R(1)
n ≤

∑
i,j∈Dn

Cn−2 ≤ C c
2
n − ρ2

n
= O

(
c2n
n

)
. (6.41)

On the other hand, let

R(2)
n = (n bd)−2

∑
i,j∈D̄n

|Cov (ζθ(Yin)Kin(z), ζθ(Yjn)Kjn(z))| .

By assumption H.2 combined with (6.39), we have for all θ ∈ Θ and i, j = 1, . . . , n,

|Cov (ζθ(Yin)Kin(z), ζθ(Yjn)Kjn(z))| ≤ C bdϕ(‖si − sj‖).
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Then, we have
R(2)
n ≤ C(n bd)−1

∑
i>cn/ρ

iϕ(iρ).

Thus, we derive the following result

Rn = R(1)
n + R(2)

n = O

n−1

c2n + b−d
∑

i>cn/ρ

iϕ(iρ)


 .

The following steps of the proof are inspired by the proof of Lemma 8 in (Severini & Wong,
1992, p. 1800–1801) . Let

ṽθ(z) = 1
n
b−d

n∑
i=1
{ζθ(Yin)Kin(z)− E (ζθ(Yin)Kin(z))} .

For some ε > 0, Markov’s inequality yields

P (|ṽθ(z)| > ε) ≤ Rn + Sn
ε2

. (6.42)

Now, let θ1 and θ2 two elements in Θ, since E
(

sup
θ,1≤i≤n,n

|ζ(1)
θ (Yin)|

)
< ∞ (by H.1), there

exist random triangular array (see Severini & Wong, 1992, p.1801){
W

(1)
in , 1 ≤ i ≤ n, n = 1, 2 . . .

}
not depending on θ1 and θ2 such that sup1≤i≤n, nE

(
|W (1)

in |
)
<∞

and

sup
z
|ṽθ1(z)− ṽθ2(z)| ≤ sup

z
|K(z)| |θ2 − θ1|

bd
1
n

n∑
i=1

W
(1)
in .

Similarly, for all z(1) and z(2) in Z, there exist random triangular array{
W

(2)
in , 1 ≤ i ≤ n, n = 1, 2 . . .

}
not depending on z(1) and z(2), such that

sup1≤i≤n, nE
(
|W (2)

i |
)
<∞ and

sup
θ

∣∣∣ṽθ(z(2))− ṽθ(z(1))
∣∣∣ ≤ C ‖z(2) − z(1)‖

bd+1
1
n

n∑
i=1

W
(2)
in ,

since K(·) is Lipschitzian (see assumption H.2).
Hence, there exist random triangular array {Win, 1 ≤ i ≤ n, n = 1, 2 . . .} such that
sup1≤i≤n, nE (|Win|) <∞ and

sup
‖z(2)−z(1)‖<δ1

sup
|θ2−θ1|<δ2

∣∣∣ṽθ2(z(2))− ṽθ1(z(1))
∣∣∣ ≤ C

(
b−dδ2 + b−(d+1)δ1

) 1
n

n∑
i=1

Win,

for some δ1 > 0, δ2 > 0 and large n.

As Z is compact, one can define a real number δ1 > 0, an integer ln such that lnδ1 < C with
ln = bγnb−(d+1)c and

Z ⊂
ln⋃
j=1

B(z(j), δ1),

where B(z, δ) is the closed ball in Rd with center z and radius δ > 0.
Also as Θ is compact, one can cover it by rn = bγnb−dc finite intervals of centers θi with same half
length δ2 = O(1/rn).
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With these covering, we have

P

(
sup
θ,z
|ṽθ(z)| > ε

)
≤ P

(
max
j≤rn

max
k≤ln

∣∣∣ṽθj (z(k))
∣∣∣ > ε/2

)

+ P

(
sup

‖z(2)−z(1)‖<δ1

sup
|θ2−θ1|<δ2

∣∣∣ṽθ2(z(2))− ṽθ1(z(1))
∣∣∣ > ε/2

)
≤ rn ln P (|ṽθ(z)| > ε/2) + Cb−d

(
δ2 + δ1b

−1)
= C rn ln(Sn + Rn) + Cb−d

(
δ2 + δ1b

−1)
= I(1) + I(2) + I(3),

where

I(1) = O

 γ2
n

nb2d+1

c2n + b−d
∑

i>cn/ρ

iϕ(iρ)

 ; I(2) = O
(
γ−1
n

)
; I(3) = O

(
γ2
n

nb3d+1

)
.

If we take cn = o(b−d/2) and γ2
n = o(nb3d+1), then I(1), I(2) and I(3) are all of order o(1) by

assumption A5 and the fact that ϕ(t)→ 0 as t→∞ by assumption A3. This yields the proof.

�

Lemma 6.2. Let for each θ ∈ Θ and z ∈ Z

H(η; θ, z) = E0

(
hθ, ηin (Yin|Xin, Zin)|Zin = z

)
, 1 ≤ i ≤ n, n = 1, 2, . . .

where η = g(z), g ∈ G and hθ, ηin (·|·, ·) is defined in assumption A3.

Condition I: For fixed but arbitrary θ1 ∈ Θ and η1 ∈ Π with Π = g0(Z), let

ϑ(θ, η) =
∫
hθ,ηin (y|x , z) exp(hθ1,η1

in (y|x , z))dy, θ ∈ Θ, η ∈ Π, (x, z) ∈ Z × Z

where {exp(hθ,ηin (y|x , z)), θ ∈ Θ, η ∈ Π} denotes the family of conditional density functions (in-
dexed by parameters θ and η) of Yin given (Xin, Zin) = (x, z) ∈ X × Z. For each θ 6= θ1, assume
that

ϑ(θ, η) < ϑ(θ1, η1).

Condition S: Let p̃ = p+ 1 and for all nonnegative integers j1, . . . , jp̃ = 0, 1, 2 and r = 0, . . . , 4,
such that j1 + · · ·+ jp̃ + r ≤ 6, assume that the derivative

∂j1+···+jp̃+rhθ,ηin

∂θj1
1 · · · ∂θ

jp̃
p̃ ∂η

r
(y|x , z),

exists for almost y and that

E0

sup
i, n

sup
θ∈Θ

sup
g∈G

∣∣∣∣∣∂j1+···+jp̃+rhθ,ηiin

∂θj1
1 · · · ∂θ

jp̃
p̃ ∂η

r
(Yin|Xin , Zin)

∣∣∣∣∣
2
 <∞, with ηi = g(Zin).

Assume that
sup
z

sup
θ

sup
η

∣∣∣∣ ∂j∂θjH(k)(η; θ, z)
∣∣∣∣ <∞, (6.43)

for j = 0, 1, 2 and k = 2, 3, 4 such that j + k ≤ 4; with

H(k)(η; θ, z) = ∂k

∂ηk
H(η; θ, z).



144 Chapter 6. Partially linear spatial probit models

Let

Ĥ(η; θ, z) =
∑n
i=1 h

θ,η
in (Yin|Xin, z)Kin(z)∑n

i=1Kin(z) ,

then ĝθ(z) is a solution of Ĥ(1)(η; θ, z) = 0 with respect to η for each fixed θ ∈ Θ and z ∈ Z.
If we assume that assumptions A1-A6 are satisfied, then we have for all j = 0, 1, 2,

sup
θ

sup
z

∣∣∣∣ ∂j∂θj (ĝθ(z)− gθ(z))
∣∣∣∣ = op(1). (6.44)

The assumptions used in the previous lemma are satisfied under the conditions used in the main
results. In fact, Condition I is need to ensure identifiability of the arbitrary parameter θ1 (it plays
the role of the true parameter θ0). This condition is verified when θ1 = θ0, by the identifiability
of our model (6.13). Condition S allows interchanging integrals with differentiation, it will be
combined to the implicit function theorem (see Saaty & Bram, 2012) to ensure differentiability of
ĝθ(z) with respect to θ.
Knowing that Φ(·) is a smooth function on R and hθ,ηin (·|· , ·) is

hθ,ηiin (Yin|Xin , Zin) = Yin log
(

Φ(Gin(θ, ηi))
1− Φ(Gin(θ, ηi))

)
− log (1− Φ(Gin(θ, ηi))) ,

Condition S and assumption (6.43) are satisfied under the continuity condition of Φ(·) and φ(·),
assumption A9 and the compactness of X and Z.

Proof of Lemma 6.2
The proof of this lemma is similar to that of Lemma 5 in Severini & Wong (1992). Let us follow
similar lines as in the proof of Lemma 6.1 above, replacing ζ(j)

θ (Yin) by

ζ
(j,k)
θ,η (Yin, Xin) = ∂j

∂θj
∂k

∂ηk
hθ,ηin (Yin|Xin , z).

and assumptions H.1 and H.2 in Lemma 6.1 by the following

H.1’ sup
θ

sup
η

sup i, n
∣∣∣ζ(j,k)
θ,η (Yin, Xin)

∣∣∣ <∞, for j = 0, . . . , 3, k = 0, . . . , 5

H.2’ For all k = 0, . . . , 4, j = 0, 1, 2 and θ ∈ Θ, z ∈ Z, (6.35) is satisfied and (6.36) holds with
ζ

(j)
θ (Yin) replaced by ζ(j,k)

θ,η (Yin, Xin).
Under the conditions used in the lemma, it is easy to see that H.1’ is verified, H.2’ is also satisfied
by assumption A3 (in particular, conditions (6.28)).
Using the results of Lemma 6.1, we have for all j = 0, 1, 2.

sup
θ, η, z

∣∣∣∣ ∂j∂θj (Ĥ(1)
n (η; θ, z)−H(1)(η; θ, z)

)∣∣∣∣ = op(1), (6.45)

sup
θ, η, z

∣∣∣∣ ∂j∂θj (Ĥ(2)
n (η; θ, z)−H(2)(η; θ, z)

)∣∣∣∣ = op(1), (6.46)

sup
θ, η, z

∣∣∣∣ ∂j∂θj (Ĥ(3)
n (η; θ, z)−H(3)(η; θ, z)

)∣∣∣∣ = op(1), (6.47)

sup
θ, η, z

∣∣∣∣ ∂j∂θj (Ĥ(4)
n (η; θ, z)−H(4)(η; θ, z)

)∣∣∣∣ = op(1). (6.48)

Under assumption A1, we have for any ε > 0, there exists γ > 0 such that

P

(
sup
θ,z
|ĝθ(z)− gθ(z)| > ε

)
≤ P

(
sup
θ,z
|H(1)(ĝθ(z); θ, z)| > γ

)

= P

(
sup
θ,z
|Ĥ(1)(ĝθ(z); θ, z)−H(1)(ĝθ(z); θ, z)| > γ

)

≤ P

(
sup
θ,z,η
|Ĥ(1)(η; θ, z)−H(1)(η; θ, z)| > γ

)
.
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Hence
sup
θ,z
|ĝθ(z)− gθ(z)| = op(1) (6.49)

The rest of the proof is very similar to that of Lemma 5 in (Severini & Wong, 1992, p. 1798–1799)
, for seek of completeness, we present the details.
We have by Condition I,

inf
θ

inf
z
−H(2)(gθ(z); θ, z) > 0.

In addition, by Condition S, for every δ > 0, there exists ε > 0, such that

sup
θ

sup
z

sup
η1,η2:|η1−η2|≤ε

∣∣∣H(2)(η2; θ, z)−H(2)(η1; θ, z)
∣∣∣ < δ.

Hence, there exists ε > 0, such that

inf
θ

inf
z

inf
|η−gθ(z)|≤ε

∣∣∣H(2)(η; θ, z)
∣∣∣ > 0. (6.50)

Since gθ(z) and ĝθ(z) satisfy

H(1)(gθ(z); θ, z) = 0 and Ĥ(1)(ĝθ(z); θ, z) = 0,

respectively for each θ and z, it follows that

0 = Ĥ(1)(ĝθ(z); θ, z)−H(1)(gθ(z); θ, z)
= Ĥ(1)(ĝθ(z); θ, z)−H(1)(ĝθ(z); θ, z) +H(1)(ĝθ(z); θ, z)−H(1)(gθ(z); θ, z)
= rn(θ, z) + dn(θ, z) (ĝθ(z)− gθ(z)) , (6.51)

for each θ, z, where
rn(θ, z) = Ĥ(1)(ĝθ(z); θ, z)−H(1)(ĝθ(z); θ, z),

and
dn(θ, z) =

∫ 1

0
H(2)(tgθ(z) + (1− t)ĝθ(z); θ, z)dt.

Note that, by (6.50) and supθ ‖ĝθ − gθ‖ = op(1), we have

lim inf inf
z

inf
θ

∣∣∣Ĥ(2)(ĝθ(z); θ, z)
∣∣∣ > 0 and lim inf inf

z
inf
θ
|dn(θ, z)| > 0 as n→∞. (6.52)

Since,
Ĥ(1)(ĝθ(z); θ, z) = 0,

for all θ, z, we have

Ĥ(2)(ĝθ(z); θ, z)
∂ĝθ
∂θ

(z) + ∂Ĥ(1)

∂θ
(ĝθ(z); θ, z) = 0.

Then, we can deduce from (6.52), (6.45), and (6.46),

sup
θ

sup
z

∣∣∣∣∂ĝθ∂θ (z)
∣∣∣∣ = Op(1).

Similarly, we have

sup
θ

sup
z

∣∣∣∣∂j ĝθ∂θj
(z)
∣∣∣∣ = Op(1), j = 0, 1, 2. (6.53)

Then, (6.53), (6.45)–(6.48) yield

sup
θ

sup
z

∣∣∣∣ ∂j∂θj rn(θ, z)
∣∣∣∣ = op(1), and sup

θ
sup
z

∣∣∣∣ ∂j∂θj dn(θ, z)
∣∣∣∣ = Op(1), j = 0, 1, 2. (6.54)

Now differentiating (6.51) with respect to θ yields

∂rn
∂θ

(θ, z) + (ĝθ(z)− gθ(z))
∂dn
∂θ

(θ, z) + dn(θ, z)
(
∂ĝθ
∂θ

(z)− ∂gθ
∂θ

(z)
)

= 0,
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then, by (6.45)–(6.54),

sup
θ

sup
z

∣∣∣∣∂ĝθ∂θ (z)− ∂gθ
∂θ

(z)
∣∣∣∣ = op(1).

On can obtain similarly,

sup
θ

sup
z

∣∣∣∣∂2ĝθ
∂θ2 (z)− ∂2gθ

∂θ2 (z)
∣∣∣∣ = op(1).

This finishes the proof.

�

Proof of Theorem 6.1
By Lemmas 6.3 and 6.4, Qn converges to Q in probability, uniformly, i.e

sup
θ∈Θ
|Qn(θ, gθ)−Q(θ, gθ)| = op(1). (6.55)

This result allows to have ∣∣∣Q(θ̂, gθ̂)−Q(θ0, g0)
∣∣∣ = op(1). (6.56)

Indeed, with the help of | sup a− sup b| ≤ sup |a− b|, we have∣∣∣Q(θ̂, gθ̂)−Q(θ0, g0)
∣∣∣ ≤ ∣∣∣Qn(θ̂, ĝθ̂)−Q(θ̂, gθ̂)

∣∣∣+
∣∣∣Qn(θ̂, ĝθ̂)−Q(θ0, g0)

∣∣∣
≤ sup

θ
|Qn(θ, ĝθ)−Q(θ, gθ)|+

∣∣∣∣sup
θ
Qn(θ, ĝθ)− sup

θ
Q(θ, gθ)

∣∣∣∣
≤ 2 sup

θ
|Qn(θ, ĝθ)−Q(θ, gθ)|

≤ 2 sup
θ
|Qn(θ, ĝθ)−Qn(θ, gθ)|+ 2 sup

θ
|Qn(θ, gθ)−Q(θ, gθ)|

= op(1),

by Lemma 6.5, (6.55) and supθ Q(θ, gθ) = Q(θ0, g0) (see assumption A8).

By assumption A8, we have for a given θ ∈ Θ, there exists ε > 0 and an open neighborhood
Nθ such that

inf
θ1∈Nθ

|Q(θ1, gθ1)−Q(θ0, g0)| > ε. (6.57)

This and (6.56) imply that

P0

(
θ̂ ∈ Nθ

)
≤ P0

(∣∣∣Q(θ̂, gθ̂)−Q(θ0, g0)
∣∣∣ > ε

)
→ 0, as n→∞. (6.58)

Let N0 be an open neighborhood of θ0 and consider the compact set Θ0 = Θ \N0. Let {Nθ :
θ ∈ Θ, θ 6= θ0} denote the open covering of Θ0 by the procedure given above (each neighborhood
Nθ satisfies (6.57)). By the compactness of Θ0, let {Nθ1 , . . . , Nθr} be a finite sub-covering, then

P0

(
θ̂ /∈ N0

)
= P0

(
θ̂ ∈ Θ0

)
≤

r∑
j=1

P0

(
θ̂ ∈ Nθj

)
→ 0, as n→∞,

by (6.58). Therefore, we can conclude that

θ̂ − θ0 = op(1), as n→∞.

This yields proof of Theorem 6.1.

�
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Proof of Corollary 6.1
Note that ∥∥ĝθ̂ − g0

∥∥ ≤ ‖ĝθ̂ − gθ̂‖+ ‖gθ̂ − g0‖

≤ sup
θ
‖ĝθ − gθ‖+ sup

θ

∥∥∥∥∂gθ∂θ
∥∥∥∥ ‖θ̂ − θ0‖ = op(1),

since, by Proposition 6.1, supθ ‖ĝθ − gθ‖ = op(1) and supθ
∥∥∥∂gθ∂θ ∥∥∥ <∞.

�

Lemmas 6.3-6.5
Let the following notations:

ηi = g(Zin); Ũin = Ũin(θ, ηi); Φin = Φ(Gin(θ, gθ)); Λin = Λ(Gin(θ, gθ)),

for all θ ∈ Θ, 1 ≤ i ≤ n, n = 1, 2, . . ., with Λ(·) = φ(·)/Φ(·)(1− Φ(·)).
The partial derivatives of Sn(θ, g) with respect to g of order s = 1, 2, . . ., for any functions v1, . . . , vs
in G, are given by

∂sSn
∂gs

(θ, g)(v1, · · · , vs) = n−1
n∑
i=1

ξin
∂sŨin
∂ηs

(θ, ηi)v1(Zin) · · · vs(Zin).

Lemma 6.3. Under assumptions A3, A6 and A9, we have for all θ ∈ Θ,

Sn (θ, gθ)− S (θ, gθ) = op(1). (6.59)

In addition we have
Qn (θ, gθ)−Q (θ, gθ) = op(1), (6.60)

if Mn −M = op(1).

Note that if assumption A10 is satisfied, then Mn −M = op(1).

Proof of Lemma 6.3
Let us start with the proof of (6.59). Remark that

Sn(θ, gθ) = n−1ξTn Ũn(θ, gθ) = n−1
n∑
i=1

ξinŨin(θ, gθ),

where ξin is the q× 1 vector representing the ith row in the matrix of instrumentals variables. By
definition (see (6.22)), we have E0 (Sn(θ, gθ))− S(θ, gθ) = o(1). Then, it suffices to show that

Sn(θ, gθ)− E0 (Sn(θ, gθ)) = op(1). (6.61)

Indeed (omitting the (θ, gθ)−arguments to simplify the notation), we have

E0

(
‖Sn − E0 (Sn)‖2

)
= n−2

n∑
i,j=1

E0

((
ξinŨin − E0(ξinŨin)

)T (
ξjnŨjn − E0(ξjnŨjn)

))
(6.29)
≤ n−2

n∑
i,j=1

αijn

q∑
t=1

{
Var0

(
ξitnŨin

)
Var0

(
ξjtnŨjn

)}1/2

≤ Cn−2
n∑

i,j=1
αijn = O

n−1

√
n∑

s=1
sϕ(s)

 = o(1),

since Var0(ξitnŨin) is bounded uniformly on θ, i, and t = 1, . . . , q (by assumption A6) and because
ϕ(s)→ 0 as s→ +∞ (by assumption A3). This finishes the proof of (6.61) and then that of (6.59).
The proof of (6.60) is straightforward by combining (6.59) with assumption A10.
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�

Lemma 6.4. Under assumptions A6-A9, we have Sn (·, g·)− S (·, g·) is stochastically equicontin-
uous on Θ.
In addition, if Mn−M = op(1), then we have Qn (·, g·)−Q (·, g·) is also stochastically equicontin-
uous on Θ.

Proof of Lemma 6.4
Stochastic equicontinuity in Θ can be obtained by proving that Sn(θ, gθ) satisfies a stochastic
Lipschitz-type condition on θ (see Mátyás, 1999, p. 17).
Let us show that Sn(·, g·) is stochastically equicontinuous on θ since S(·, g·) is continuous by
assumption A8. It suffices to show that (Andrews, 1992) for each θ1, θ2 ∈ Θ,

‖Sn(θ1, gθ1)− Sn(θ2, gθ2)‖ = Op (‖θ1 − θ2‖) . (6.62)

Indeed, for θ1, θ2 ∈ Θ,

‖Sn(θ1, gθ1)− Sn(θ2, gθ2)‖ ≤ n−1 sup
i, n
‖ξin‖

n∑
i=1

∣∣Ũin(θ1, gθ1)− Ũin(θ2, gθ2)
∣∣

≤ n−1 sup
i, n
‖ξin‖

n∑
i=1

{
sup
θ, η

∥∥∥∥∂Ũin∂θ
(θ, η)

∥∥∥∥ ‖θ1 − θ2‖

+ sup
θ, η

∣∣∣∣∂Ũin∂η
(θ, η)

∣∣∣∣ ‖gθ1 − gθ2‖

}

≤ n−1 sup
i, n
‖ξin‖

n∑
i=1

{
sup
θ, η

∥∥∥∥∂Ũin∂θ
(θ, η)

∥∥∥∥
+ sup

θ

∥∥∥∥∂gθ∂θ
∥∥∥∥ sup
θ, η

∣∣∣∣∂Ũin∂η
(θ, η)

∣∣∣∣
}
‖θ1 − θ2‖.

By assumption A6 and Proposition 6.1, we have respectively, supi, n ‖ξin‖ is bounded and supθ
∥∥∥∂gθ∂θ ∥∥∥

is finite. Then, we have to show that

n−1
n∑
i=1

sup
θ,η

∥∥∥∥∂Ũin∂θ
(θ, η)

∥∥∥∥+ sup
θ,η

∣∣∣∣∂Ũin∂η
(θ, η)

∣∣∣∣ = Op(1);

This last is equivalent to

sup
θ,η

∥∥∥∥∂Ũin∂θ
(θ, η)

∥∥∥∥ = Op(1), 1 ≤ i ≤ n, n = 1, 2, . . . (6.63)

and
sup
θ,η

∣∣∣∣∂Ũin∂η
(θ, η)

∣∣∣∣ = Op(1), 1 ≤ i ≤ n, n = 1, 2, . . . (6.64)

Let us prove (6.63) in the following. The proof of (6.64) follows the same lines and is then omitted.

Proof of (6.63):
Recall that

Λ(t) = φ(t)
Φ(t)(1− Φ(t)) .

By definition, we have

Ũin(θ, η) = Λ(Gin(θ, η)) (Yin − Φ(Gin(θ, η))) ,

with Gin(θ, η) = ain(θ)bin(θ, η) where ain(·) and bin(·) are defined by

ain(θ) = (vin(λ))−1 and bin(θ, η) = XT
inβ + η, 1 ≤ i ≤ n,
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with θT = (βT , λ). We have

∂Ũin
∂θ

(θ, η) =
{

Λ
′
(Gin(θ, η))(Yin − Φ(Gin(θ, η)))

− Λ(Gin(θ, η))φ(Gin(θ, η))} ∂Gin
∂θ

(θ, η) (6.65)

where Λ′(·) denotes the derivative of Λ(·).
Let us first establish that

sup
t∈M,y∈{0,1}

∣∣∣Λ′(t)(y − Φ(t))− φ(t)Λ(t)
∣∣∣ <∞, (6.66)

which is equivalent to show that Λ′(t) and φ(t)Λ(t) are bounded uniformly in t ∈ M where the
latter denotes the compact subset of R such that (vni(λ))−1 (xTβ + g(z)

)
∈ M, for all i =

1, . . . , n, n ∈ N∗, λ ∈ Θλ, β ∈ Θβ , x ∈ X , z ∈ Z, g ∈ G. Since φ′(t) = −tφ(t), we can rewrite Λ′(t)
as

Λ
′
(t) = 1

Φ(t)

{
φ(t)

1− Φ(t)

(
φ(t)

1− Φ(t) − t
)}
− φ2(t)

Φ2(t)(1− Φ(t)) . (6.67)

Notice that Λ(·) and Λ′(·) may be unbounded only at ±∞ and since M is a compact subset of R,
these functions are bounded on R. This establishes (6.66).
Remark that, ∥∥∥∥∂Gin(θ, η)

∂θ

∥∥∥∥ ≤ ∥∥∥∥∂ain(θ)
∂θ

∥∥∥∥ |bin(θ, η)|+
∥∥∥∥∂bin(θ, η)

∂θ

∥∥∥∥ |ain(θ)| , (6.68)

then
∥∥∥∂Gin(θ,η)

∂θ

∥∥∥ is bounded uniformly in i, n, θ, η by A6, A9 and the compactness of Θ (see
assumption A7). This finishes the proof of (6.63), hence (6.62) is proved.

�

Lemma 6.5. Under assumptions of Proposition 6.1, A6 and A9, we have

sup
θ∈Θ
‖Sn(θ, ĝθ)− Sn(θ, gθ)‖ = op(1). (6.69)

If in addition Mn −M = op(1), then we have

sup
θ∈Θ
|Qn(θ, ĝθ)−Qn(θ, gθ)| = op(1). (6.70)

Proof of Lemma 6.5
Let us prove (6.69). For each θ ∈ Θ

‖Sn(θ, ĝθ)− Sn(θ, gθ)‖ = n−1

∥∥∥∥∥
n∑
i=1

ξin
(
Ũin(θ, ĝθ)− Ũin(θ, gθ)

)∥∥∥∥∥
≤ n−1

n∑
i=1

sup
i,n
‖ξin‖

∣∣Ũin(θ, ĝθ)− Ũi(θ, gθ)
∣∣

≤ n−1
n∑
i=1

sup
i,n
‖ξin‖ sup

θ,η

∣∣∣∣∂Ũin∂η
(θ, η)

∣∣∣∣ sup
θ
‖ĝθ − gθ‖

= op(1),

since supi,n ‖ξin‖ = Op(1) (by assumption A6), supθ ‖ĝθ − gθ‖ = op(1) (see Proposition 6.1) and
supθ,η

∣∣∣∂Ũin∂η (θ, η)
∣∣∣ = Op(1) uniformly on i and n (see the proof of Lemma 6.4).

The proof of (6.70) is trivial by combining (6.69) with assumption A10.

�
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Proof of Theorem 6.2
Recall that d

dθQn(θ, gθ) denotes differentiation with respect to θ while ∂
∂θQn(θ, gθ) denotes the

partial derivative with respect to θ.
Using a Taylor’s series expansion and the fact that

d

dθ
Qn(θ, ĝθ)

∣∣∣∣
θ=θ̂

= 0,

we have

θ̂ − θ0 = −
{

d2

dθdθT
Qn(θ, ĝθ)

∣∣∣∣
θ=θ∗

}−1{
d

dθ
Qn(θ, ĝθ)

∣∣∣∣
θ=θ0

}
, (6.71)

for some θ∗ between θ0 and θ̂.
First, we would like to replace ĝθ(.) in (6.71) with gθ(.). For this, let us show that d

dθQn(θ, ĝθ)

(resp. d2

dθdθT
Qn(θ, ĝθ)) and d

dθQn(θ, gθ) (resp. d2

dθdθT
Qn(θ, gθ)) have same behavior, as function

of θ in a neighbor of θ0. In other words, that is

sup
θ

∥∥∥∥ d2

dθdθT
Qn(θ, ĝθ)−

d2

dθdθT
Qn(θ, gθ)

∥∥∥∥ = op(1) (6.72)

and
d

dθ
Qn(θ, ĝθ)

∣∣∣∣
θ=θ0

− d

dθ
Qn(θ, gθ)

∣∣∣∣
θ=θ0

= op(1). (6.73)

Remark that (6.72) is equivalent to

sup
θ

∥∥∥∥ ddθSn(θ, ĝθ)−
d

dθ
Sn(θ, gθ)

∥∥∥∥ = op(1) (6.74)

and
sup
θ

∥∥∥∥ d2

dθdθT
Sn(θ, ĝθ)−

d2

dθdθT
Sn(θ, gθ)

∥∥∥∥ = op(1), (6.75)

by (6.20) (since Mn −M = op(1), thanks to assumption A10) and

sup
θ
‖Sn(θ, ĝθ)− Sn(θ, gθ)‖ = op(1)

(see Lemma 6.5). Then, (6.74) and (6.75) follow immediately from Lemma 6.8.
To prove (6.73), let the following Taylor’s expansion

d

dθ
(Qn(θ, ĝθ)−Qn(θ, gθ)) = d

dθ

(
∂Qn
∂g

(θ, gθ)(ĝθ − gθ) + r̃n(θ)
)
,

where
r̃n(θ) =

∫ 1

0

∂2Qn
∂g2 (θ, gθ + t(ĝθ − gθ))(ĝθ − gθ)2 dt.

We have
d

dθ
r̃n(θ)

∣∣∣∣
θ=θ0

= op(1),

using similar arguments as for the terms dj

dθj
r(1)
n (θ) for j = 0, 1 and d2

dθdθT
r(1)
n (θ) in Lemma 6.8

below (see (6.91)). Therefore, we get

d

dθ
Qn(θ, ĝθ)

∣∣∣∣
θ=θ0

− d

dθ
Qn(θ, gθ)

∣∣∣∣
θ=θ0

= d

dθ

∂Qn
∂g

(θ, gθ)
∣∣∣∣
θ=θ0

(ĝ0 − g0)

+∂Qn
∂g

(θ0, g0)(ĝ
′

0 − g
′

0) + d

dθ
rn(θ)

∣∣∣∣
θ=θ0

,

= op(1)
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by Lemma 6.7, where g
′

0(.) = gθ
∂θT

(.)
∣∣∣
θ=θ0

.
Consequently, we get

θ̂ − θ0 = −
{

d2

dθdθT
Qn(θ, gθ)

∣∣∣∣
θ=θ∗

}−1{
d

dθ
Qn(θ, gθ)

∣∣∣∣
θ=θ0

}
+ op(1) (6.76)

where θ∗ is between θ̂ and θ0.
Let us show that for each θ∗ lying between θ0 and θ̂:

d2

dθdθT
Qn(θ, gθ)

∣∣∣∣
θ=θ∗

= 2B2(θ0) + op(1),

to replace the Hessian matrix in the right-hand side of (6.76) by its limit B2(θ0).
Let us consider the first and second order differential of Qn(θ, gθ) with respect to θ:

d

dθ
Qn(θ, gθ) = 2STn (θ, gθ)Mn

{
∂Sn
∂θ

(θ, gθ) + ∂Sn
∂g

(θ, gθ)g
′

θ

}

with g
′

θ a 1× p̃ (p̃ = p+ 1) matrix given by ∂gθ
∂θT

and

d2

dθdθT
Qn(θ, gθ) = 2

{
∂Sn
∂θ

(θ, gθ) + ∂Sn
∂g

(θ, gθ)g
′

θ

}T
Mn

{
∂Sn
∂θ

(θ, gθ) + ∂Sn
∂g

(θ, gθ)g
′

θ

}
+2STn (θ, gθ)Mn

d

dθT

{
∂Sn
∂θ

(θ, gθ) + ∂Sn
∂g

(θ, gθ)g
′

θ

}
(6.77)

with
d

dθT
∂Sn
∂θ

(θ, gθ) = ∂2Sn
∂θ∂θT

(θ, gθ) + ∂2Sn
∂θ∂g

(θ, gθ)g
′

θ,

d

dθT
∂Sn
∂g

(θ, gθ) = ∂2Sn
∂θ∂g

(θ, gθ) + ∂2Sn
∂g2 (θ, gθ)

∂gθ
∂θ

.

Note that

Sn(θ∗, gθ∗) = Sn(θ∗, gθ∗)− Sn(θ0, g0) + Sn(θ0, g0)− S(θ0, g0) = op(1),

since S(θ0, g0) = 0 and by Lemmas 6.3-6.4,

Sn(θ0, g0)− S(θ0, g0) = op(1),

and as θ∗ lies between θ̂ and θ0, by Lemma 6.4

Sn(θ∗, gθ∗)− Sn(θ0, g0) = op(1).

Using similar arguments as in the proof of (6.63) in Lemma 6.4 by using A9 in order to ensure the
boundedness when differentiating twice with respect to θ, we have∥∥∥∥ d

dθT
∂Sn
∂θ

(θ, gθ)
∥∥∥∥ = Op(1) and

∥∥∥∥ d

dθT
∂Sn
∂g

(θ, gθ)g
′

θ

∥∥∥∥ = Op(1).

Then we can ignore the second term in the right hand in (6.77) at θ = θ∗. Hence, by Lemma 6.6
and θ∗ − θ0 = op(1) (thanks to Theorem 6.1), we have

∂Sn
∂θ

(θ∗, gθ∗)−
∂S

∂θ
(θ0, g0) = op(1)

and
∂Sn
∂g

(θ∗, gθ∗)g
′

θ∗ −
∂S

∂g
(θ0, g0)g

′

0 = op(1),
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with g
′

θ∗ = gθ
∂θT

∣∣∣
θ=θ∗

.
In addition, if Mn −M = op(1), we deduce that

d2

dθdθT
Qn(θ, gθ)

∣∣∣∣
θ=θ∗

= 2
{
∂S

∂θ
(θ0, g0) + ∂S

∂g
(θ0, g0)g

′

0

}T
M

{
∂S

∂θ
(θ0, g0) + ∂S

∂g
(θ0, g0)g

′

0

}
+ op(1)

= 2B2(θ0) + op(1).

Remark that

d

dθ
Qn(θ, gθ)

∣∣∣∣
θ=θ0

= 2STn (θ0, g0)Mn

{
∂Sn
∂θ

(θ0, g0) + ∂Sn
∂g

(θ0, g0)g
′

0

}
.

Then by (6.81) (see the proof of Lemma 6.6), we have

∂Sn
∂θ

(θ0, g0)− ∂S

∂θ
(θ0, g0) = op(1) and ∂Sn

∂g
(θ0, g0)g

′

0 −
∂S

∂g
(θ0, g0)g

′

0 = op(1).

Consequently, we get

d

dθ
Qn(θ, gθ)

∣∣∣∣
θ=θ0

= 2STn (θ0, g0)M
{
∂S

∂θ
(θ0, g0) + ∂S

∂g
(θ0, g0)g

′

0

}
+ op(1).

Then we have

θ̂ − θ0 = −{B2(θ0)}−1
{
∂S

∂θ
(θ0, g0) + ∂S

∂g
(θ0, g0)g

′

0

}T
M Sn(θ0, g0) + op(1).

To end the proof, it remains to show that
√
nB1(θ0)−1/2Sn(θ0, g0) −→ N (0, Iq).

Consider, for all w ∈ Rq such that ‖w‖ = 1,

An = wT
{
E0
(
nSn(θ0, g0)STn (θ0, g0)

)}−1/2√
nSn(θ0, g0)

= n−1/2
n∑
i=1

Bin,

with
Bin = wT

{
E0
(
nSn(θ0, g0)STn (θ0, g0)

)}−1/2
ξinŨin(θ0, g0).

By Cramer-Wold device, it suffices to show that An converges asymptotically to a standard normal
distribution, for all w ∈ Rq such that ‖w‖ = 1.
To prove this, we will use the central theorem limit (CTL) proposed by Pinkse et al. (2007). These
authors used an idea of Bernstein (1927), based on partitioning the observations into J groups
Gn1, . . . ,GnJ , 1 ≤ J <∞, which are divided up into mutually exclusive subgroups Gj1n, . . . ,Gjmjnn,
j = 1, . . . , J . Each observation belongs to one subgroup and its membership can vary with the
sample size n and so can the number of subgroups mjn in group j. We assume that the partition
is constructed such that

mjn/m1n = o(1) j = 2, . . . , J

and

Card(Girn) = O (Card(Gjtn)) , ∀ i, j = 1, . . . , J, r = 1, . . . ,min , t = 1, . . . ,mjn.

Partial sums over elements in groups and subgroups are denoted by Anj and Ajtn ,j = 1, . . . , J
and t = 1, . . . ,mjn, respectively. Thus, we have

An =
J∑
j=1

Ajn =
J∑
j=1

mjn∑
t=1

Ajtn, Ajtn = n−1/2
∑
i∈Gjtn

Bin.
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Let us recall in the following, the assumptions under which the CTL of Pinkse et al. (2007) holds.
Assumption A. For any j = 1, . . . , J , let G∗, G∗∗ ⊂ Gjn be any sets for which

∀t = 1, . . . ,mjn : G∗ ∩ Gjtn 6= ∅ ⇒ G∗∗ ∩ Gjtn = ∅.

Then for any function f in F = {f : ∀t ∈ Rf(t) = t or ∃υ ∈ R : ∀t ∈ Rf(t) = eιυt}, where ι is the
imaginary number∣∣∣∣∣Cov

(
f

(∑
i∈G∗

Bin

)
, f

( ∑
i∈G∗∗

Bin

))∣∣∣∣∣ ≤{
Var

(
f

(∑
i∈G∗

Bin

))
Var

(
f

( ∑
i∈G∗∗

Bin

))}1/2

αjn,

for some mixing numbers αjn with

lim
n→∞

J∑
j=1

m2
jnαjn = 0.

Assumption B.

lim
n→∞

max
t≤mjn

σjtn
γjn

= 0, j = 1, . . . , J, lim
n→∞

γjn
γ1n

= 0, j = 2, . . . , J,

where

σ2
jtn = E0(A2

jtn), and γ2
nj =

mjn∑
t=1

σ2
jtn.

Assumption C. For some τ > 1

E0
(
|Ajtn|2τ

)
= o

(
σ2
jtnγ

2τ−2
jn

)
, j = 1, . . . , J, t = 1, . . . ,mjn.

If assumptions A − C hold, then by Theorem 1 in Pinkse et al. (2007), we have An −→ N (0, 1).
So to finish the proof, we have to check these assumptions in our context.

Assumption A: It holds under (6.29) (assumption A3).
Let us choose for instance J = 2 groups, each with m1n,m2n subgroups such that m2n = o(m1n).
Each subgroup is viewed as an area of size O(√cn×

√
cn) such that (m1n +m2n)cn = O(n). Since

ϕ(·) is a decreasing function (assumption A3), then αjn = O(ϕ(√cn)) for j = 1, 2. The sequence
cn must be such that cn = O(n−ν+1/2) for some 0 < ν < 1/2 and nν+1/2ϕ(√cn)→ 0 as n→∞
If for instance ϕ(t) = O(t−ι), then nν+1/2ϕ(√cn) = O(nι(ν−1/4)+(1+ν)/2), this tends to 0 for each
ι > 2(1 + ν)/(1− 4ν).
Assumption B : By assumption A10, B1(θ0) is positive definite and by definition it is the limit
of E0

(
nSn(θ0, g0)STn (θ0, g0)

)
, then for sufficiently large n the last matrix is positive definite and

its inverse is O(1). Therefore Bin is bounded uniformly on i and n, since ξin is bounded uniformly
on i and n by assumption A6 and so is Ũin(θ0, g0). Then, for all j = 1, . . . , J and t = 1, . . . ,mnj

σjtn =

n−1E0

 ∑
i∈Gjtn

Bin


1/2

= O
(
n−1/2Card(Gjtn)

)
and

γjn = O

(
mjn√
n

max
t≤mjn

Card(Gjtn)
)
.

Therefore,
σjtn
γjn

= O(1/mjn)→ 0 as n→∞,
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for all j = 1, . . . , J and t = 1, . . . ,mjn.
Now consider the second limit in assumption B, we have for all j = 2, . . . , J

γjn
γ1n

= O

(
mjn maxt≤mjn Card(Gjtn)
m1n maxt≤m1n Card(G1tn)

)
= O

(
mjn

m1n

)
→ 0 as n→∞,

since mjn/m1n = o(1) for all j = 2, . . . , J as n→∞.
Assumption C : By easy calculation, we can show that

E0
(
|Ajtn|2τ

)
σ2
jtnγ

2τ−2
jn

= O(m2−2τ
jn )→ 0 as n→∞.

�

Lemma 6.6. Under assumptions of Theorem 6.2 and for any θ̃ such that θ̃− θ0 = op(1), we have

∂Sn
∂θ

(θ̃, gθ̃)−
∂S

∂θ
(θ0, g0) = op(1) (6.78)

and
∂Sn
∂g

(θ̃, gθ̃)g
′

θ̃
− ∂S

∂g
(θ0, g0)g

′

0 = op(1), (6.79)

with g
′

θ̃
(.) = gθ

∂θT
(.)
∣∣∣
θ=θ̃

.

Proof of Lemma 6.6
To prove (6.78), we need to show that for all w ∈ Rq with ‖w‖ = 1,

wT
{
∂Sn
∂θ

(θ̃, gθ̃)−
∂S

∂θ
(θ0, g0)

}
= op(1)

which is equivalent to
wT
{
∂Sn
∂θ

(θ̃, gθ̃)−
∂Sn
∂θ

(θ0, g0)
}

= op(1) (6.80)

and
wT
{
∂Sn
∂θ

(θ0, g0)− ∂S

∂θ
(θ0, g0)

}
= op(1). (6.81)

The proof of (6.80) is similar to that of (6.62), using the fact that

sup
θ, η

∥∥∥∥ ∂2Ũin
∂θ∂θT

(θ, η)
∥∥∥∥ and sup

θ, η

∥∥∥∥∂2Ũin
∂θ∂η

(θ, η)
∥∥∥∥

are bounded uniformly on i and n, and θ̃ − θ0 = op(1)..
Now, let us prove (6.81). By definition of S(· , ·) (see 6.22)

lim
n→∞

E0

(
∂Sn
∂θ

(θ0, g0)
)

= ∂S

∂θ
(θ0, g0).

Thus it suffices to prove that

wT
∂Sn
∂θ

(θ0, g0)− wTE0

(
∂Sn
∂θ

(θ0, g0)
)

= op(1). (6.82)

Let
wT

∂Sn
∂θ

(θ0, g0) = n−1wT ξin
∂Ũin
∂θ

(θ0, η
0
i ),= ∆n1 −∆n2, (6.83)

where

∆n1 = n−1
n∑
i=1

ξ
(1)
in (θ0, η

0
i )
(
Yin − Φ

(
Gin(θ0, η

0
i )
))

and ∆n2 = n−1
n∑
i=1

ξ
(2)
in (θ0, η

0
i ),
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with
ξ

(1)
in (θ0, η

0
i ) = wT ξiΛ′

(
Gin(θ0, η

0
i )
) ∂Gi
∂θ

(θ0, η
0
i ),

ξ
(2)
in (θ0, η

0
i ) = wT ξinΛ

(
Gin(θ0, η

0
i )
)
φ
(
Gin(θ0, η

0
i )
) ∂Gin

∂θ
(θ0, η

0
i ),

and η0
i = g0(Zin).

The proof of (6.82) is then reduced to prove

E0
(
‖∆n1‖2

)
= o(1) and E0

(
‖∆n2 − E0(∆n2)‖2

)
= o(1). (6.84)

This last is trivial since ξ(1)
in and ξ

(2)
in are bounded uniformly on i and n (see assumption A6 and

compactness of Θ, X , and Z), and by use of the mixing condition (6.29) and (6.30) in Assumption
A3). This finishes the proof of (6.78).

To prove (6.79), remark that

∂Sn
∂g

(θ̃, gθ̃)g
′

θ̃
− ∂S

∂g
(θ0, g0)g

′

0 ={
∂Sn
∂g

(θ̃, gθ̃)−
∂S

∂g
(θ0, g0)

}
g
′

θ̃
+ ∂S

∂g
(θ0, g0)

(
g
′

θ̃
− g

′

0

)
. (6.85)

Consider the second term in the right hand in (6.85) and remark that since
∥∥∥∥∂S∂g (θ0, g0)

∥∥∥∥ and

sup
θ

sup
z

∥∥∥∥∂gθ(z)∂θ∂θT

∥∥∥∥ are finite and θ̃ − θ0 = op(1),

∂S

∂g
(θ0, g0)

(
g
′

θ̃
− g

′

0

)
= (θ̃ − θ0)O

(∥∥∥∥∂S∂g (θ0, g0)
∥∥∥∥ sup

θ
sup
z

∥∥∥∥∂gθ(z)∂θ∂θT

∥∥∥∥) = op(1).

For the first term in the right hand in (6.85), since g′
θ̃

= Op(1) by Proposition 6.1, using similar
arguments as to prove (6.78), permits to obtain

∂Sn
∂g

(θ̃, gθ̃)−
∂S

∂g
(θ0, g0) = op(1).

This yields the proof of (6.79).

�

Lemma 6.7. Under assumptions of Theorem 6.2, we have

(i) d

dθ

∂Qn
∂g

(θ, gθ)
∣∣∣∣
θ=θ0

(ĝ0 − g0) = op(1)

(ii) ∂Qn
∂g

(θ, gθ)
∣∣∣∣
θ=θ0

(ĝ
′

0 − g
′

0) = op(1),

where
ĝ
′

0(.) = ∂ĝθ
∂θ

(.)
∣∣∣∣
θ=θ0

and g
′

0(.) = ∂gθ
∂θ

(.)
∣∣∣∣
θ=θ0

.

Proof of Lemma 6.7
To prove (i), note that

d

dθ

∂Qn
∂g

(θ, gθ) = 2 d
dθ

{
STn (θ, gθ)Mn

∂Sn
∂g

(θ, gθ)
}

= 2 d
dθ
STn (θ, gθ)Mn

∂Sn
∂g

(θ, gθ) + 2STn (θ, gθ)Mn
d

dθ

∂Sn
∂g

(θ, gθ).
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One can easily see that
d

dθ
Sn(θ, gθ) = ∂Sn

∂θ
(θ, gθ) + ∂Sn

∂g
(θ, gθ)g

′

θ

and
d

dθ

∂Sn
∂g

(θ, gθ) = ∂2Sn
∂θ∂g

(θ, gθ) + ∂2Sn
∂g2 (θ, gθ)g

′

θ.

Therefore, we have

d

dθ

∂Qn
∂g

(θ, gθ)
∣∣∣∣
θ=θ0

(ĝ0 − g0) =

2STn (θ0, g0)Mn

{
∂2Sn
∂θ∂g

(θ0, g0) + ∂2Sn
∂g2 (θ0, g0)g

′

0

}
(ĝ0 − g0)

+ 2∂Sn
∂g

(θ0, g0)Mn

{
∂Sn
∂θ

(θ0, g0) + ∂Sn
∂g

(θ0, g0)g
′

θ

}
(ĝ0 − g0).

By Lemma (6.3) and S(θ0, g0) = 0, we get

Sn(θ0, g0) = Sn(θ0, g0)− S(θ0, g0) = op(1). (6.86)

In addition, we have∥∥∥∥∂2Sn
∂θ∂g

(θ0, g0)(ĝ0 − g0)
∥∥∥∥ = n−1

∥∥∥∥∑ ξin
∂2Ũin
∂θ∂η

(θ0, ηi)(ĝ0(Zin)− g0(Zin))
∥∥∥∥

≤ n−1
∑

sup
i,n
‖ξin‖ sup

η

∥∥∥∥∂2Ũin
∂θ∂η

(θ0, η)
∥∥∥∥ ‖ĝ0 − g0‖

= op(1), (6.87)

since ξi is bounded uniformly on i, n and θ (assumption A6), ‖ĝ0−g0‖ = op(1) by Proposition 6.1,
and

sup
i, n

sup
η

∥∥∥∥∂2Uin
∂θ∂η

(θ0, η)
∥∥∥∥ <∞.

Using similar arguments as in the proof of (6.87), we obtain∥∥∥∥∂2Sn
∂g2 (θ0, g0)(ĝ0 − g0)g

′

0

∥∥∥∥ = n−1
∥∥∥∥∑ ξi

∂2Uin
∂η2 (θ0, ηi)(ĝ0(Zin)− g0(Zin))g

′

0(Zin)
∥∥∥∥

= op(1), (6.88)

∥∥∥∥∂Sn∂g (θ0, g0)(ĝ0 − g0)g
′

0

∥∥∥∥ = n−1
∥∥∥∥∑ ξin

∂Uin
∂η

(θ0, ηi)(ĝ0(Zin)− g0(Zin))g
′

0(Zin)
∥∥∥∥

= op(1), (6.89)

and ∥∥∥∥∂Sn∂θ (θ0, g0)(ĝ0 − g0)
∥∥∥∥ = n−1

∥∥∥∥∑ ξin
∂Uin
∂θ

(θ0, ηi)(ĝ0(Zin)− g0(Zin))
∥∥∥∥

= op(1). (6.90)

Combining (6.86)-(6.90) with assumption A10, permits to have

d

dθ

∂Qn
∂g

(θ, gθ)
∣∣∣∣
θ=θ0

(ĝ0 − g0) = op(1).

This yields the proof of (i).
The proof of (ii) follows along similar lines as (i) and hence is omitted.

�
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Lemma 6.8. Under assumptions of Theorem 6.2, we have

Sn(θ, ĝθ)− Sn(θ, gθ) = r(1)
n (θ),

where
sup
θ

∥∥∥∥ ∂∂θ r(1)
n (θ)

∥∥∥∥ = op(1), and sup
θ

∥∥∥∥ ∂2

∂θ∂θT
r(1)
n (θ)

∥∥∥∥ = op(1)

Proof of Lemma 6.8
By applying Taylor’s Theorem to Ũi(θ, ·) for each θ ∈ Θ, we get

Sn(θ, ĝθ)− Sn(θ, gθ) = n−1
n∑
i=1

ξin
(
Ũin(θ, ĝθ)− Ũin(θ, gθ)

)
= n−1

n∑
i=1

ξin (ĝθ(Zin)− gθ(Zin))

×
∫ 1

0

∂Ũin
∂η

(θ, gθ(Zin) + t (ĝθ(Zin)− gθ(Zin))) dt

= r(1)
n (θ).

Since the instrumentals variables are bounded uniformly on i, n, and θ (assumption A6), sup
θ∈Θ
‖ĝθ − gθ‖,

sup
θ∈Θ

max
j=1,...,p+1

∥∥∥∥ ∂

∂θj
(ĝθ − gθ)

∥∥∥∥ and sup
θ∈Θ

max
1≤i,j≤p+1

∥∥∥∥ ∂2

∂θi∂θj
(ĝθ − gθ)

∥∥∥∥ are all of order op(1) by Propo-

sition 6.1, it suffices to show

sup
θ,η

sup
i

∥∥∥∥∂Ũin∂η
(θ, η)

∥∥∥∥ = Op(1) (6.91)

sup
θ,η

sup
i

∥∥∥∥ ∂∂θ ∂Ũin∂η
(θ, η)

∥∥∥∥ = Op(1) and sup
θ,η

sup
i

∥∥∥∥ d2

∂θ∂θT
∂Ũin
∂η

(θ, η)
∥∥∥∥ = Op(1). (6.92)

Equation (6.91) is already proved in the proof of Lemma 6.4 (see (6.64)). The proof of (6.92) can
be established in a similar manner and is omitted.
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Résumé en français
Ce chapitre concerne un travail de nature appliquée, sur l’analyse des facteurs de risque des can-
cers VADS (voies aéro-digestives supérieures) dans le nord de la France. Selon les statistiques
officielles, l’incidence pour ce type de cancer est plus élevée dans le nord que le reste de la France.
L’identification des facteurs de risque des cancers VADS devient alors nécessaire dans la région
Nord-Pas-De-Calais.

The results of this chapter are obtained in collaboration S. Dabo-Niang (University of Lille),
E. Darwich (University of Lille), and J. Foncel (University of Lille).

7.1 Introduction
This chapter is integrated in a project developed in Nord-Pas-de-Calais region where incidence and
mortality rates are highest in France and Europe for upper aerodigestive tract (UADT) cancers.
Some facts underpin this dramatic regional situation. According to official statistics, the frequency
of UADT cancers in the Nord Pas-de-Calais region is one of the highest in France, Europe and
perhaps even in the world. The data of the National Federation of Regional Health Observato-
ries shows that the Nord Pas-de-Calais region has the highest excess mortality (in both men and
women) by UADT cancers. Another source of information is the ”UADT Cancer Registry” which
ran from January 1984 to December 1996. This was, in fact, a record of all new cases of UADT
cancers reported by otorhinolaryngology, stomatologists, surgeons and radiotherapists specialists
in the two departments Nord and Pas-de-Calais. On this 13-year period, 19 024 new cancers were
reported, approximately 1,500 new cases per year. In terms of incidence, this represented 70.7
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per 100,000 men and 5.2 per 100,000 women. By standardizing the population to the European
population, these became respectively 89,5 and 5,5 ; standardizing on the world population; the
figures became 67.3 and 4.0. This excess is still relevant in 2005, since the Cancer Registry of
Lille and its region has recorded an incidence of lip-mouth-pharynx cancers locally twice higher
than the value recorded in national territory. These elements are described in the SIRIC ON-
COLille project which has been labeled by INCa under the Cancer 2 plan. SIRIC ONCOLille
has developed 5 integrated programs. Two of these programs focus on the regional incidence of
these ”avoidable” cancers and access to Clinical Research. They relate to UADT, esophageal and
hepatic tumors. Program 1 develops an econometric database around the ”Cancer Registry of
Lille and its Region”, integrating humanities and social sciences, clinical and biological data. This
database is transversal to all programs, and Program 1 uses it to study the incidence aspects of
UADT cancers in the region. Program 2 focuses on the access to care for these patients through
the study of socio-economic reluctance to care and through the adaptation of clinical research
models to this population. This program has a very strong interaction with Program 1. Three
other programs are based on understanding the mechanisms of tumor recurrence associating other
tumor models (prostate and melanoma). Program 3 develops modeling of patient follow-up based
on the database (Program 1) and socio-professional reintegration projects. Program 4 is totally
devoted to the integration of the model of tumor dormancy in the field of solid tumors and finally,
Program 5 develops the concepts of image-based treatments to improve the treatment of the initial
tumor and its possible recurrences. Through these 5 programs, SIRIC ONCOLille will lead to the
implementation of a unique database in its fields, the adaptation of clinical Research program and
socio-professional reintegration, understanding or explaining biological phenomena of recurrence
(dormancy) and finally, improvement of loco-regional and systemic support strategies . Based on
the last 8 years of very strong interactions between all actors of research and care, strongly sup-
ported by regional policies, SIRIC ONCOLille is an opportunity to implement a real integrated
research site in Oncology in France. This work is part of the SIRIC Program 1 and aims to identify
the determinants of the incidence of upper aero-digestive tract (UADT) cancers in the population
of Nord Pas de Calais (NPDC). Since UADT cancers are preventable cancers, primary prevention
must play a predominant role. Given the marked over-incidences in the region, it is important
to undertake new public health actions to improve prevention practices in the population. Our
objective is to provide tangible elements to clarify future prevention and public health actions.
In epidemiological studies, there is an abundant literature on the causes of oral cancers (which are
part of the UADT cancers). Many international publications have been particularly interested in
the relationship between socioeconomic inequalities and oral cancer risk. They revealed the key
role of tobacco, alcohol and unfavorable living conditions. The meta-analysis of Conway et al.
(2008) based on case-control studies provides an overall synthesis of the results of the literature
and provides interesting insights for future research. Overall, this work has found that the oral
cancer risk is significantly linked to an unfavorable socio-economic status resulting from the strong
social inequalities. The different dimensions of socio-economic status (income, education level,
employment level) are all important indirect factors for cancer risk. These relationships are rather
stable in the various analyzes, even when the direct risk factors (tobacco, alcohol, food, sexual
history, etc.) were taken into account. However, these direct risk factors are related to the in-
equalities themselves and may explain part of the impact of socio-economic status (there are more
smokers in deprived populations, for example). In general, the interactions between socio-economic
status and these risk behaviors themselves are complex. For example, consumption of alcohol and
cigarettes has been reported as a mechanism for coping with stress associated with poverty. For
example, strong tendency for cigarette smoking and alcohol has been reported as a mechanism for
coping with stress associated with poverty. Thus, socio-economic circumstances can play a role
in the etiology of the disease by being not only potentially a cause itself, but also a ”cause of
causes”. In France, a new research line on social inequalities and cancers has been developing for
several years. Its main interests are the UADT and lung cancers, which are frequent in the French
population with a highly unequal social distribution (Faggiano et al., 1997). However, few studies
on social inequalities have been carried out on these cancers in France. A notable exception is
the ICARE project, whose data collection was completed in 2005. Highlighting the role played by
occupational exposure as a risk factor for these cancers reinforces the hypothesis of the multiple
determinants of cancers linked to social inequality. All these analyzes show (this is particularly
true in the NPDC region) that the usual determinants are far from explaining the total cancer risk
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for the populations and that it is necessary to better identify the relationships between the factors
and their impact on cancer risk. In particular, levels of tobacco and alcohol consumption in the
NPDC region alone cannot explain the excess of UADT cancers. It is, therefore, necessary to seek
new associations between socioeconomic status and new risk factors.
Among the suggested approaches, there are various associations that might exist between socio-
economic statuses and stress (due to particular working conditions or social pressure), the access
to the healthcare system and health information, cognitive abilities and risk behaviors, exposure
to adverse environmental factors, etc.
In view of the situation described above, it is urgent to understand the causes of the high incidence
of UADT cancers in NPDC region. As mentioned above, ”classical” risk factors such as alcohol and
tobacco consumption are not sufficient to explain the important social disparities in these cancers.
Experts agree that even with comparable levels of social status and tobacco/alcohol consumption
profiles, the impact is still much higher in NPDC than in other French regions. There are, there-
fore, other relevant factors to explain the risk of UADT cancers and a study of individual data can
address this problem.
The main objective of the present work is to determine the risk factors in NPDC for UADT cancers
(which are little or not identified in the literature) and to assess their share of attributable risk,
taking into account the direct and indirect factors already known of the risk (tobacco, alcohol,
social status, etc.). Our approach is global and innovative since existed studies generally focus on
specific factors and assess the risks associated with each factor independently. Here, the aim is to
identify a fairly large set of relevant factors, whether already known or not, by integrating some
potential spatial heterogeneity, the interactions between multiple exposures to risk, aspects that
are rarely addressed in the literature (Blair et al., 1999). Among the risk factors that are little
or not identified in the NPDC region, but with a potentially significant impact, are environmental
factor (geographical) Personal hygiene

7.2 Database
To collect data, a case-control study was conducted in the NPDC region. The principle of the
case-control study is to compare the frequency of exposure to various risk factors between two
populations, one consisting of patients with the disease of interest, the other subjects without
that disease. For this purpose, two samples were made in the NPDC region, one composed of
healthy individuals with no apparent signs or symptoms of UADT cancers, the other composed
of patients medically treated for UADT cancers. The same questionnaire, consisting of several
question modules, was proposed for patients and healthy individuals. Two are specifically derived
from the DEREDIA protocol and applied to patients and healthy individuals:

1. Module 1 (hetero questionnaire of DEREDIA protocol): sociodemographic, socioprofes-
sional, and socioeconomic indicators such as sex, age, position, lifestyle, occupational ac-
tivity, annual income, last diploma obtained, family history of chronic diseases, etc.

2. Module 2 (DEREDIA self-reported questionnaire): socio-cognitive and emotional factors re-
lated to health (subjective perceptions of health, feeling of control, emotional state, difficul-
ties and strategies of emotional regulation, social incentives, sources of medical information).

3. Module 3: part of the information in the DEREDIA protocol (primary localization of the
pathology, TNM stage at initial diagnosis, primary medical and surgical history, current
symptoms and treatments, dates and methods of entering the care path, exposure to certain
risk factors including tobacco and alcohol) will be partially applied to healthy individuals
(exposure to certain risk factors, medical and surgical history).

4. Module 4: The focus here is on some primary risk factors (oral hygiene, exposure to pollution
and occupational hazards, sexual practices, nutrition, etc.).

The data gathered in these four modules are used to provide information about some of the
different risk dimensions we want to test in the whole project: environmental pollution and oc-
cupational exposure, sexual practices, hygiene of life, physical and hereditary characteristics of
subjects, cognitive perception of risks. In addition, we have a wide range of information on the
factors already identified (alcohol, tobacco consumptions,...).
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These questionnaires were applied to individuals (in the six medical centers of the region (Center
Oscar Lambret, Center Hospitalier Régional Universitaire de Lille-Hôpital Claude Huriez, Center
Médical Specialité du Littoral, Boulogne-sur-Mer Hospital Center, Lens Hospital, La Louvière-
Lille)) whose sampling protocol had to be defined.
Of the 600 patients scheduled for inclusion (it lasted about 3 years in the protocol DEREDIA),
only 90 patients were eventually retained. For healthy individuals, we have chosen a survey com-
pany (IPSOS ) to constitute a sample of approximately 348 individuals and to collect the desired
information. The chosen strategy consists of sampling by relatively fine strata to allow, on the one
hand, grouping between cases and controls in the epidemiological approach and on the other hand,
to be able to estimate, without bias, the distribution of risk (conditionally to risk factors) in the
econometric approach. In this last case, it is also necessary to make an exhaustive census of the
information available in the Nord-Pas-de-Calais population on the distribution of risk on the one
hand (aggregate measure of incidence), and on the distribution of individual characteristics on the
other hand (INSEE census).
The obtained case-control dataset, composed of 348 controls and 90 cases are used in the following
to identify risk factors by econometric spatial binary choice models. In this contribution, we de-
cided to not take into account in the estimation procedure the non-random feature of the sample
because of computation complexity of spatial variance-covariance matrix involved in basic binary
spatial models incorporating the case-control feature of the sample.

7.3 Applying spatial binary choice models to identify UADT
risk factors

Suppose we have a sample of n observations collected from points of the region of interest, located
on an irregularly spaced, countable lattice I ⊂ RN , N ≥ 2. Let (Ysi , Xsi)i=1,...,n be a sequence of
spatially dependent observations at these spatial n points denoted si ∈ RN drawn from lattice I.
Assume that all sites in I are located at distances of at least ρ > 0 for each other; i.e ∀ si, sj ∈ I:
‖si − sj‖ ≥ ρ. To facilitate the notation, we will denote in this section i for individual in location
si. The variables Yi are binary responses (Yi = 1 correspond to cases while 0 is for controls),
let Xn be a n × p matrix of p exogenous discrete or continuous random variables with elements
Xij , i = 1, . . . , n, j = 1, . . . , p. Suppose also that the two alternatives for each observation is based
on a latent dependent variable Y ∗i via the following spatial autoregressive regression:

Y∗n = λ0WnY∗n + Xnβ0 + εn, εn ∼ N(0, In),
Yi = I (Y ∗i ≥ 0) , i = 1, . . . , n. (7.1)

where the coefficient λ0 is a scalar autoregressive parameter indicating the degree of spatial de-
pendence, β0 is a p × 1 vector of parameters. Wn is a spatial weight matrix described by one of
previous methods given in Chapter 2. Assume that the n× n matrix (In − λ0Wn) is nonsingular
for all n, therefore the variance-covariance matrix of the latent dependent vector of variables Y∗n
is

Vn(λ0) = Var (Y∗n|Xn) = (In − λ0Wn)−1
{

(In − λ0Wn)
′}−1

.

The structure of Vn(λ0) provides the major difficulty of estimating the parameters by a full ML
since it requires solving a very computationally demanding problem of n-dimensional integration.
As cited in Chapter 2, the GMM (Pinkse & Slade, 1998) or a pseudo maximum likelihood method
(Smirnov, 2010) can be used to address this difficulty of estimation. Also, others methodologies
of estimation are emerged like, EM algorithm (McMillen, 1992) and Gibbs sampling approach
(LeSage, 2000). Recently, Calabrese & Elkink (2014) compare the almost popular methodologies
of estimation used in binary choice spatial models. Several R packages permit to estimate binary
choice models. Note that in the following, ProbitSpatial R package will be used to provide the
estimates of parameters β0 and λ0.

After applying several models as the SAR, SAE or SAC probit or logit model, we opte to
present the previous SAR probit model since the obtained results on the UADT database seem
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more realistic and convincing. Indeed, in the following, the SAR probit model will be compared
with a basic binary probit model that does not take into account the spatial dependence. Indeed,
we will present the numerical results of the spatial probit SAR model (7.1) and the following basic
non-spatial binary probit model:

Y∗n = Xnβ0 + εn, εn ∼ N(0, In),
Yi = I (Y ∗i ≥ 0) , i = 1, . . . , n.

The following results are based on spatial weight matrix Wn is such that

wij =


1

1 + dij
if dij < ρ

0 otherwise,

with dij the Euclidean distance between station i and station j, and ρ is some cut-off distance
chosen such that each station has at least three neighbors. Other weight matrices have been tested.

7.3.1 Description of exogenous variables and results
We present here the factors already identified in the literature (alcohol, tobacco consumptions,
gender, BMI; body mass index) and others; hygiene of life and income characteristics that we want
to test with the following non-spatial general model are various variantes (including the spatial
contrepart with matrix Wn defined above):

Y ∗ = β0 + NGADPD× (α1 + β1 × I(SA = 1)× TSD) + NCSPD× (α2 + β2 × I(ST = 1)× TSS)
+β3 × Sex + β4 × BMI + β5 × FruitVeg + β6 ×VistDent + β7 × Income,

where,
NGADPD: corresponds to alcohol consumption, ”NGADPD” is the number of glasses
of alcohol drank per day, ”TSD” presents how long the individual has stopped drinking
alcohol in months, and ”SA” equals one if the individual has stopped to drink. The term
NGADPD × (α1 + β1 × I(SA = 1) × TSD) in the previous model permits to introduce the
effect of alcohol consumption by the two exogenous variables Alcohol1 = NGADPD and
Alcohol2 = NGADPD × I(SA = 1) × TSD. Note that there are some missing values. That
of TSD are replaced by 0 while nine missing values of NGADPD are replaced by medians
of two groups of individuals that have the same gender (Male or Female) and same disease
status (Case or Control).
NCSPD: represents tobacco consumption. Similarly to alcohol, the tobacco consumption
is presented by NCSPD × (α2 + β2 × I(ST = 1) × TSS) where ”NCSPD” is the number of
cigarettes smoked per day, ”TSS” presents how long the individual has stopped to smoke in
months, and ”ST” equals one if the individual has stopped to smoke. This allows to introduce
the effect of consumption of tobacco by the two exogenous variables Tobacco1 = NCSPD
and Tobacco2 = NCSPD× I(ST = 1)× TSS. Missing values in TSS are replaced by 0.
Sex: represents the gender of each individual, ”1” for Male and ”0” for Female.
BMI: makes reference to the logarithm of body mass index (BMI).
FruitVeg: corresponds to fruit and vegetable consumption. It is a binary variable taking
”1” if the individual eats often fruit or vegetables and ”0” otherwise.
VistDent: corresponds to dentist visits. The binary variable VistDent equals ”1” if the
individual stayed two years (or more) without consulting a dentist and ”0” otherwise.
Income: represents the net monthly income. It is a discrete variable with three modalities,
”0” if the individual earns less that 1099, ”1” if he/she earns between 1100 and 2199, and
”3” if he/she earns more that 2200. Thirty-nine missing values are replaced by medians of
two groups of individuals that have the same sex (Male or Female) and same disease status
(Case or Control).
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Figure 7.1: Gender, consumption of fruit and vegetables, income and dentist visits for
case and control samples

Some descriptive statistics on the cases and controls samples are given in Table 7.1 and Figure 7.1.

Table 7.1: Tobacco gives the quantity in (gramme) taken per day while Alcohol represents
the number of cigarettes smoked per day

Response variable
Cases Controls Total

Variables Mean Std Mean Std Mean Std
NCSPD (Tobacco) 20.31 12.71 7.44 11.65 10.06 12.95
BMI 23.68 5.02 26.30 4.91 25.77 5.04
NGADPD (Alcohol) 38.88 36.66 8.85 17.05 14.97 25.48

Using these covariates, we obtain the results in Tables 7.3-7.10 for eight different models
described in Table 7.2. Among these eight models, there are various associations between socio-
economic, gender, life style variables. In terms of AIC, the best model is Model 7 with the
covariates gender, body mass index, tobacco and alcohol consumptions, dentist visit, and income.
It has similar AIC as Model 8, Model 3 and Model 5. Comparing Table 7.3 and Table 7.5, we
observe that the gender is correlated to dental hygiene. In fact adding dental visits into Model1
(containing the gender) changes the behavior (it becomes less significant) of this last covariate.
In view of the results, we may say that ”classical” factors such as the gender (men have higher risk),
IBM, alcohol and tobacco consumption are significant risk factors but not sufficient to explain the
high incidence in these cancers in the Nord-Pas-De-Calais. The results show other relevant factors
to explain the risk of UADT cancers. Indeed, we find also that economic characteristic (income),
life style; dental hygiene are risk factors. In addition, there is some spatial dependency (the spatial
parameter is significant for all models) explaining spatial disparities in these cancers.
In this sense our spatial approach is innovative since existed studies generally focus on specific
factors and assess the risks associated with each factor independently and do not highlight some
spatial dependency.
These results gives first more exhaustive ideas on risk factors for UADT cancer in Nord-Pas-de-
Calais. However, they are to be taken with caution. The nature of sample (case-control) is not
taken into account in the estimation procedure. In addition, the sample size of cases and the
quality of the data has to be improved. Indeed, after various statistical analyses, we suspect some
data (particularly, the alcohol, tobacco, fruit and vegetable consumptions) to be observed with
errors. In a future work, these aspects have to be taken into account to improve the results before
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being able to give a final conclusion on specific UADT risk factors in the Northern of France.

Table 7.2: Covariables in the different models
Models Explanotary variables
Model 1 Sex, IBM, Tobacco and Alcohol
Model 2 Sex, IBM, Tobacco, Alcohol and consumption of fruit and vegetable
Model 3 Sex, IBM, Tobacco, Alcohol and dentist visit
Model 4 Sex, IBM, Tobacco, Alcohol and income
Model 5 Sex, IBM, Tobacco, Alcohol, consumption of fruit and vegetable, and dentist visit
Model 6 Sex, IBM, Tobacco, Alcohol, consumption of fruit and vegetable, and income
Model 7 Sex, IBM, Tobacco, Alcohol, dentist visit, and income
Model 8 Sex, IBM, Tobacco, Alcohol, consumption of fruit and vegetable, dentist visit, and income

Table 7.3: Model 1
Non-Spatial Spatial

marginal direct indirect total
Variables estimates p-values effects estimates p-values impacts impacts impacts
Intercept 3.0115 0.0519 3.5363 0.0245
Sex 0.4677 0.0163 0.0909 0.4437 0.0247 0.0719 0.0520 0.1239
BMI -1.5350 0.0018 -0.2577 -1.5509 0.0017 -0.2514 -0.1816 -0.4330
Tobacco1 0.0530 0.0000 0.0089 0.0544 0.0000 0.0088 0.0064 0.0152
Tobacco2 -0.0002 0.0000 0.0000 -0.0002 0.0000 0.0000 0.0000 -0.0001
Alcohol1 0.1721 0.0000 0.0289 0.1718 0.0000 0.0278 0.0201 0.0480
Alcohol2 -0.0008 0.2345 -0.0001 -0.0009 0.2453 -0.0001 -0.0001 -0.0002
λ 0.4261 0.0182
AIC 277.52 273.94

Table 7.4: Model 2
Non-Spatial Spatial

marginal direct indirect total
Variables estimates p-values effects estimates p-values impacts impacts impacts
Intercept 2.9751 0.0548 3.4807 0.0270
Sex 0.4380 0.0262 0.0841 0.4084 0.0419 0.0659 0.0480 0.1140
BMI -1.4813 0.0027 -0.2480 -1.4884 0.0029 -0.2403 -0.1751 -0.4154
Tobacco1 0.0520 0.0000 0.0087 0.0535 0.0000 0.0086 0.0063 0.0149
Tobacco2 -0.0002 0.0000 0.0000 -0.0002 0.0000 0.0000 0.0000 -0.0001
Alcohol1 0.1685 0.0000 0.0282 0.1683 0.0000 0.0272 0.0198 0.0470
Alcohol2 -0.0007 0.2674 -0.0001 -0.0008 0.2827 -0.0001 -0.0001 -0.0002
FruitVeg -0.1633 0.3781 -0.0259 -0.1708 0.3605 -0.0276 -0.0201 -0.0477
λ 0.4283 0.0176
AIC 278.77 275.14
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Table 7.5: Model 3
Non-Spatial Spatial

marginal direct indirect total
Variables estimates p-values effects estimates p-values impacts impacts impacts
Intercept 2.4240 0.1465 3.2337 0.0575
Sex 0.3478 0.1024 0.0540 0.3481 0.1062 0.0462 0.0306 0.0769
BMI -1.4068 0.0076 -0.1945 -1.5111 0.0048 -0.2008 -0.1330 -0.3337
Tobacco1 0.0458 0.0000 0.0063 0.0463 0.0000 0.0062 0.0041 0.0102
Tobacco2 -0.0001 0.0006 0.0000 -0.0001 0.0006 0.0000 0.0000 0.0000
Alcohol1 0.1402 0.0006 0.0194 0.1343 0.0011 0.0178 0.0118 0.0297
Alcohol2 -0.0009 0.2384 -0.0001 -0.0008 0.2822 -0.0001 -0.0001 -0.0002
VistDent 1.3854 0.0000 0.2933 1.4024 0.0000 0.1863 0.1234 0.3097
λ 0.4039 0.0316
AIC 236.76 234.13

Table 7.6: Model 4
Non-Spatial Spatial

marginal direct indirect total
Variables estimates p-values effects estimates p-values impacts impacts impacts
Intercept 3.3667 0.0297 3.9574 0.0121
Sex 0.7268 0.0007 0.1431 0.7147 0.0011 0.1103 0.0625 0.1728
BMI -1.5217 0.0018 -0.2417 -1.5761 0.0014 -0.2432 -0.1379 -0.3811
Tobacco1 0.0475 0.0000 0.0075 0.0481 0.0000 0.0074 0.0042 0.0116
Tobacco2 -0.0002 0.0000 0.0000 -0.0002 0.0000 0.0000 0.0000 0.0000
Alcohol1 0.1499 0.0001 0.0238 0.1481 0.0002 0.0229 0.0130 0.0358
Alcohol2 -0.0008 0.2904 -0.0001 -0.0008 0.2882 -0.0001 -0.0001 -0.0002
Income0vs1 -0.7281 0.0003 -0.0920 -0.7168 0.0004 -0.1106 -0.0627 -0.1733
Income0vs1 -0.9075 0.0044 -0.1085 -0.8629 0.0067 -0.1332 -0.0755 -0.2087
lambda 0.3659 0.0485
AIC 265.40 263.51

Table 7.7: Model 5
Non-Spatial Spatial

marginal direct indirect total
Variables estimates p-values effects estimates p-values impacts impacts impacts
Intercept 2.3937 0.1518 3.1985 0.0607
Sex 0.3272 0.1301 0.0504 0.3198 0.1455 0.0424 0.0288 0.0712
BMI -1.3680 0.0101 -0.1889 -1.4617 0.0070 -0.1937 -0.1317 -0.3254
Tobacco1 0.0452 0.0000 0.0062 0.0456 0.0000 0.0060 0.0041 0.0102
Tobacco2 -0.0001 0.0008 0.0000 -0.0001 0.0008 0.0000 0.0000 0.0000
Alcohol1 0.1383 0.0007 0.0191 0.1320 0.0013 0.0175 0.0119 0.0294
Alcohol2 -0.0008 0.2582 -0.0001 -0.0008 0.3129 -0.0001 -0.0001 -0.0002
FruitVeg -0.1131 0.5766 -0.0151 -0.1391 0.4986 -0.0184 -0.0125 -0.0310
VistDent 1.3809 0.0000 0.2920 1.3994 0.0000 0.1854 0.1261 0.3115
λ 0.4106 0.0294
AIC 238.45 235.71
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Table 7.8: Model 6
Non-Spatial Spatial

marginal direct indirect total
Variables estimates p-values effects estimates p-values impacts impacts impacts
Intercept 3.3537 0.0305 3.9363 0.0127
Sex 0.7168 0.0011 0.1408 0.6995 0.0018 0.1079 0.0616 0.1695
BMI -1.5066 0.0022 -0.2393 -1.5538 0.0019 -0.2396 -0.1369 -0.3766
Tobacco1 0.0473 0.0000 0.0075 0.0479 0.0000 0.0074 0.0042 0.0116
Tobacco2 -0.0002 0.0000 0.0000 -0.0002 0.0000 0.0000 0.0000 0.0000
Alcohol1 0.1490 0.0001 0.0237 0.1470 0.0002 0.0227 0.0130 0.0356
Alcohol2 -0.0007 0.3026 -0.0001 -0.0008 0.3050 -0.0001 -0.0001 -0.0002
FruitVeg -0.0469 0.8086 -0.0073 -0.0641 0.7427 -0.0099 -0.0056 -0.0155
Income0vs1 -0.7236 0.0003 -0.0915 -0.7109 0.0004 -0.1096 -0.0626 -0.1723
Income0vs2 -0.8939 0.0059 -0.1073 -0.8440 0.0093 -0.1302 -0.0744 -0.2046
λ 0.3677 0.0474
AIC 267.35 265.41

Table 7.9: Model 7
Non-Spatial Spatial

marginal direct indirect total
Variables estimates p-values effects estimates p-values impacts impacts impacts
Intercept 2.7163 0.1020 3.5215 0.0373
Sex 0.5978 0.0105 0.0965 0.6060 0.0109 0.0779 0.0417 0.1196
BMI -1.3815 0.0080 -0.1834 -1.5024 0.0044 -0.1931 -0.1034 -0.2965
Tobacco1 0.0409 0.0000 0.0054 0.0409 0.0000 0.0053 0.0028 0.0081
Tobacco2 -0.0001 0.0025 0.0000 -0.0001 0.0025 0.0000 0.0000 0.0000
Alcohol1 0.1215 0.0033 0.0161 0.1164 0.0057 0.0150 0.0080 0.0230
Alcohol2 -0.0008 0.2699 -0.0001 -0.0009 0.2926 -0.0001 -0.0001 -0.0002
VistDent 1.3516 0.0000 0.2714 1.3711 0.0000 0.1762 0.0944 0.2706
Income0vs1 -0.6798 0.0017 -0.0737 -0.6714 0.0023 -0.0863 -0.0462 -0.1325
Income0vs2 -0.8054 0.0197 -0.0844 -0.7590 0.0282 -0.0976 -0.0522 -0.1498
λ 0.3522 0.0655
AIC 229.36 227.97

Table 7.10: Model 8
Non-Spatial Spatial

marginal direct indirect total
Variables estimates p-values effects estimates p-values impact impact impact
Intercept 2.7162 0.1025 3.5105 0.0383
Sex 0.5977 0.0121 0.0964 0.5981 0.0141 0.0769 0.0413 0.1182
BMI -1.3813 0.0087 -0.1834 -1.4911 0.0053 -0.1916 -0.1030 -0.2946
Tobacco1 0.0409 0.0000 0.0054 0.0408 0.0000 0.0052 0.0028 0.0081
Tobacco2 -0.0001 0.0026 0.0000 -0.0001 0.0027 0.0000 0.0000 0.0000
Alcohol1 0.1215 0.0034 0.0161 0.1160 0.0059 0.0149 0.0080 0.0229
Alcohol2 -0.0008 0.2717 -0.0001 -0.0008 0.3018 -0.0001 -0.0001 -0.0002
FruitVeg -0.0005 0.9982 -0.0001 -0.0322 0.8802 -0.0041 -0.0022 -0.0064
VistDent 1.3516 0.0000 0.2714 1.3703 0.0000 0.1761 0.0946 0.2708
Income0vs1 -0.6797 0.0017 -0.0737 -0.6679 0.0024 -0.0858 -0.0461 -0.1320
Income0vs2 -0.8052 0.0223 -0.0844 -0.7490 0.0339 -0.0963 -0.0517 -0.1480
λ 0.3531 0.0650
AIC 231.36 229.96





Chapter 8
General conclusion and perspectives

Conclusion

In thesis we are interested in modelization of unknown parameters of some population from random
or non-random (stratified) samples composed of independent or spatially dependent, multivariate
or functional data.

We started by studying a functional binary choice model explored in a case-control or choice-
based sample design context. We use a conditional likelihood function under the sampling distri-
bution and some dimension reduction strategy to define a feasible conditional maximum likelihood
estimator of the model. Large and small sample properties of the proposed estimators, able to
account the sample scheme, were studied.

In continuity with the functional framework, we propose in a second contribution a functional
linear autoregressive spatial model but with random sampling context. The dimension reduction
method explored in the first chapter is combined to a quasi-maximum likelihood method to estimate
the model. We establish the consistency and asymptotic normality of the proposed estimators and
highlighted the influence of the spatial weight matrix structure of the estimation. The performance
of the methodology is illustrated via simulations and an application to ozone concentration data.

The last two contributions concern regression models involving real-valued spatial processes. In
one hand, we generalize the classical nearest neighbor method (k-NN) to predict a spatial process at
non-observed locations. The proposed predictor combines two kernels to controls distances between
observation and locations and uses a bandwidth as the kth lower distance between covariate’s
point of prediction and covariate’s observations. This idea allowed more flexibility to account
some heterogeneity in the covariate. We established almost complete convergence with rates of
the predictor. The usefulness of the proposed spatial predictor compare with the spatial kernel
predictor proposed in the literature is illustrated towards some numerical experiments.

On the other hand, we generalize the partially linear probit model for i.i.d data to spatial
dependent data. In this contribution a linear process for disturbances is used which for more
spatial dependences flexibility. Parameters involved in the models are estimated by introducing
a semi-parametric estimation approach based on weighted likelihood and generalized method of
moments methods. Consistency and asymptotic distribution of the estimators are established under
sufficient conditions on the choices of bandwidth, the spatial dependence and some instrumentals
variables. Some simulated experiments are provided to investigate the finite sample performance of
the estimators. An applied chapter on detecting UADT cancer risk factors in the North of France
ends the contributions.

In conclusion, this thesis contributes to several statistical issues for both theoretical and ap-
plied point of views.
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Figure 8.1: Genotypes are presented by the blue points while the red curve presented their
smoothed associated function.

Perspectives
In our contributions, some issues and remarks appear, leading to some future research, some of
them are developed hereafter.

• Firstly, we would like to apply the proposed method in Chapter 3 to investigate the asso-
ciation between genetic variants (genotypes) and phenotypes (see Fan et al., 2014). These
authors found that generalized functional linear models are a good tool for addressing this
type of problem. For that, we propose to use the stringing technique (Chen et al., 2011) to
address the smoothing problem as the genotypes are defined by a random discrete function
g(ti)(= 0; 1; 2), that is the number of minor alleles of a some individual at the ith-variant
located at location ti for i = 1, . . . ,m, when one considers m variants randomly selected. Fig-
ure 8.1 illustrates a genotype given by 843 Single Nucleotide Polymorphisms (SNP) smoothed
with stringing (left panel) and without (right panel).

• Other improvement of the first contribution could be to address a more practical model
where one does not have knowledge on the size of the cases in the population (the parameter
Q).

• Our contribution in Chapter 6 is based a semiparametric GMM approach of estimation.
However it is important to provide an optimal choice of the weight matrix Mn in order
to have efficient GMM estimators. This consists to choose the weight matrix Mn as a
consistent estimator B1n(θ̂) of the matrix B1(θ0). Another empirical choice could be the
idea of continuous updating GMM estimator (One step GMM) used in Pinkse et al. (2006):

Mn(θ) = n−1
n∑

i,j=1
δijξniξ

T
jnŨin(θ, ĝθ)Ũjn(θ, ĝθ)

with weights

δij =
∑n
r=1 τriτrj[∑n

r=1 τ
2
ri

∑n
r=1 τ

2
rj

]1/2 for i, j = 1, . . . , n,

where τij is a number depending on wijn. The nearest the location i is to j, the larger is τij .

• Another topic of future research could be to allow (in Chapters 6 and 4) some spatial
dependency like the following latent SAR models:

Y ∗in = λ0

n∑
j=1

wijnY
∗
in +XT

inβ0 + g0(Zin) + εin, 1 ≤ i ≤ n, n = 1, 2, . . .
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with
Yin = I (Y ∗in ≥ 0) , 1 ≤ i ≤ n, n = 1, 2, . . .

• In hydrology or climatology, partitioner is always interested to identify the unexpected events
(flow) in some interval of times rather than the ordinary events, then he has to measure the
extremality rather than the centrality. In the other hand, in FDA, statisticians are always
interested to identify phenomenons more general than the extreme events such that the
outliers observations. Febrero et al. (2008) identified two mains reasons why outliers may
arise in functional data. First, outliers may be curves with gross errors such as measurement,
recording, and typing mistakes. Secondly, outliers can be real data curves that are somehow
suspicious or surprising in the sense that they do not follow the same pattern as that of
the majority of the curves. When an outlier curve is detected through the first reason, the
error associated should be identified and corrected if possible. However, when it is detected
by the second reason and it is a shift outlier (see Hubert et al., 2015, for more details
on the taxonomy of functional outliers) this curve can be viewed as realization of extreme
events. However, it is very hard to identify extremes curves by using outliers detection
procedure. The latter are based on the notion of depth function which consists to provide a
center-outward ordering of curves without considering their position from the deepest curve.
Thus, one need to define tools that allow to rank a collection of curves with respect to
their extremality. Recently, Franco-Pereira & Romo (2014) defined some measures called
heperextremality and hypoextremality that allow to reflect the extremality of a curve with
respect to a collection of curves observations. These measures can provide natural ordering
for sample curves (see also López-Pintado & Romo, 2011), but it is very hard to identify
curves that are extreme in a short interval by using these tools. Therefore, in hydrology, we
need to define new measures of extremality that allow to emphasize curves that are extreme
in a short interval. This may be done by adapting the idea of extremality measures with the
relation order proposed by Narisetty & Nair (2015). The latter defined an extremal depth
and observed that it can penalize curves that are extreme in a short interval even if they are
representative in the rest of their domain.
We would like to propose new extremality measures. First steps are in the following.
Consider a stochastic process X of a distribution P observed in the space of continuous
functions in a compact interval T (C(T )). Without loss of generality, take the interval T to
be [0 , 1]. Let S = {x1(t), x2(t), . . . , xn(t)} be a collection of n observations from X and x a
function in C([0 , 1]).
López-Pintado & Romo (2011) defined the extremality of a curve x with respect a collection
of functions x1(t), x2(t), . . . , xn(t), as follows.
The hyperextremality:

HEMn(x) = 1− 1
n

n∑
i=1

I (x(t) ≤ xi(t) , t ∈ T ) (8.1)

The hypoextremality:

hEMn(x) = 1− 1
n

n∑
i=1

I (x(t) ≥ xi(t) , t ∈ T ) . (8.2)

The hyperextremality (resp. hypoextremality ) of x is one minus the proportion of functions
in the sample below (above) x. When the curves (the collection S) are very irregular, the
hyperextremality and hypoextremality will not be good measures of extremality, since for a
given curve we may not have many curves lying ”totally” below or above it. Then Franco-
Pereira & Romo (2014) replaced the indicator function by some Lebesgue measure that
seems to be more appropriate when the curves are irregular.
In a work in progress, we propose the following extremal measures.
For each fixed t ∈ [0 , 1], we define the pointwise hyperextremality of x(t) with respect to S
as

Hx(t, S) = 1− 1
n

n∑
i=1

I(xi(t) < x(t)), (8.3)
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and similar we define the pointwise hypoextremality of x(t) with respect to S as

hx(t, S) = 1− 1
n

n∑
i=1

I(xi(t) > x(t)). (8.4)

One can note that the hyperextremality defined by (8.3) (resp. hypoextremality (8.4)) is
evaluated at a fixed point t ∈ [0 , 1] while the hyperextremality defined by (8.1) (resp(8.2))
is evaluated over the whole interval. Indeed, the indice of hyperextremality (8.3) reflects
local heperextremality while (8.1) reflects global hyperextremality.
To extend the local heperextremality (resp. hypoextremality) to global heperextremality
(resp. hypoextremality), we proceed similary as Narisetty & Nair (2015). We define the
cumulative distribution function (CDF) of EMx(t , S) (where EMx denotes Hx or hx without
ambiguity) as

Φn,x(r) =
∫ 1

0
I(EMx(t, S) ≤ r)dt , r ∈ [0 , 1] (8.5)

This CDF will be called the H–CDF if EMx = Hx or h–CDF if EMx = hx. When T is not
[0 ; 1], the right hand in (8.5) will be divided by the measure of Lebesgue of T . Also, one can
replace the indicator function in (8.5) by certain weight function that allows to emphasize
or downweight certain time intervals.
The relation order proposed by Narisetty & Nair (2015) consists to say that a function x is
considered as hyperextreme (resp. hypoextreme) with respect to the collection of functions
S, if its associated H–CDF (resp. h–CDF), Φn,x(·) has most of its mass close to zero. This
explains that there are a lot of points in [0 , 1] for which the second term on the right hand
side in (8.3) (resp. (8.4)) is close to one.
This relation order is explained in the following.
For two functions x and y with corresponding H–CDFs (resp. h–CDFs) Φn,x(·) and Φn,y(·),
let 0 ≤ r1 < r2 < · · · < rM ≤ 1 be the ordered elements of their combined heperextremality
(hypoextremality) levels. If Φn,x(r1) < Φn,y(r1), we say that y is hyperextreme (or hypoex-
treme) than x and we denote that by x ≺ y. Similarly, if Φn,x(r1) > Φn,y(r1) , then x � y.
If Φn,x(r1) = Φn,y(r1), we move to r2 and make a similar comparison based on their values
at r2. The comparison is repeated until the tie is broken. If Φn,x(rj) = Φn,y(rj) for all
j = 1, . . . ,M , we say that x and y are equivalent on hyperextremality (or hypoextremality)
and denote that by x ∼ y.
Finally the Extremal measure of hyperextremality of a function x w.r.t S is defined as

EH(x, S) = Card{i : xi 4 x}
n

, (8.6)

where this relation order (4) corresponds to H–CDFs.
Simillary, the Extremal measure of hypoextremality of a function x w.r.t S is defined as

Eh(x, S) = Card{i : xi 4 x}
n

, (8.7)

where (4) corresponds to h–CDFs. Figure 8.2 (respectively Figure 8.3) gives the third hyper-
extreme (respectively hypoextreme) curves of hourly measurements of July air temperature
over period of 29 years, from 1982 to 2010 in region of Abu Dhabi, United arab emirate.
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