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Titre: Nouvelles méthodes pour l’apprentissage non supervisé en grandes dimensions.

Mots-clés: Apprentissage non supervisé, Classification de données en grandes dimensions, Détection de
communautés, Théorie des matrices aléatoires, Inférence bayésienne.

Résumé: De nos jours, une pression indus-
trielle très forte avec l’essor de l’intelligence
artificielle pousse les chercheurs à com-
prendre le fonctionnement des algorithmes
d’apprentissage automatisé (AA), surtout pour
des données à grandes dimensions, dans le
but de les améliorer. La réussite de ces al-
gorithmes d’AA vient principalement du fait
qu’ils s’adaptent à des données réelles et qu’ils
utilisent des transformations non linéaires sur
ces dernières. Cela rend cependant l’étude
théorique de ces méthodes plus di�cile. De
plus, le phénomène de la “malédiction de la di-
mensionalité” ou “curse of dimensionality” en
anglais fait que certaines intuitions au coeur
d’algorithmes d’AA en petites dimensions ne
sont plus vraies lorsque les données sont de
très grandes tailles. Par contre, comme nous
le verrons au cours de ce manuscript de thèse,
ce phénomène de la “malédiction de la dimen-
sionalité” est plutôt un avantage pour l’analyse
théorique des algorithmes en grandes dimen-
sions du fait notamment d’un phénomène im-
portant de “concentration asymptotique” de
certaines quantités-clés. Cette thèse est focal-
isée sur les méthodes d’apprentissage non su-
pervisées notamment de “clustering”. La pre-
mière partie de la thèse est dédiée au clustering
de graphes tandis que la seconde partie est fo-
calisée sur le clustering de données.
Dans le Chaptitre 3, nous proposons pour des
modèles de graphes dits“denses”présentant une
structure de communautés et une structure de
degrés hétérogènes, une famille de méthodes
dites spectrales utilisant des matrices d’a�nités
qui dépendent d’un paramètre de régularisation
pour pallier à l’e↵et néfaste des degrés sur la
lecture des communautés dans les vecteurs pro-
pres de ces matrices. Nous montrons que ces
matrices de similarité sont asymptotiquement
équivalentes à des matrices suivant un modèle
de matrices aléatoires connu dit spike présen-
tant une structure forte de communautés dans
les vecteurs propres associés aux plus grandes
valeurs propres de ces matrices.

Une analyse asymptotique poussée des valeurs
propres et vecteurs propres de ces matrices nous
permet de i) déterminer a priori le paramètre
de régularisation le plus approprié et donc la
méthode spectrale optimale pour un type de
graphe donné; ii) proposer une amélioration de
l’algorithme Expectation Maximization (EM)
utilisé dans la dernière étape du clustering spec-
tral, en initialisant EM avec nos découvertes
théoriques sur les limites asymptotiques des en-
trées des vecteurs propres.
Dans le Chapitre 4, nous proposons une nou-
velle méthode pour la détection de commu-
nautés multi-graphes (c’est-à-dire communes et
non communes) entre les di↵érentes couches du
graphe avec plusieurs types d’interaction. Nous
proposons ici un modèle probabiliste de graphes
à plusieurs couches qui tient compte de la dis-
parité des communautés entre les couches. Sur
la base de ce modèle, une approche bayésienne
variationnelle est utilisée pour approximer la
distribution a posteriori des variables latentes
corrélées représentant les communautés des dif-
férentes couches dont les liens sont observés.
L’algorithme proposé peut être appliqué à tout
réseau multi-couches avec des liens pondérés ou
non.
Enfin, le Chapitre 5 traite de la question du
clustering spectral de données en grandes di-
mensions utilisant des similarités à base de noy-
aux (kernels). Nous proposons une analyse
spectrale des matrices de similarités (en ter-
mes de produit scalaire) à noyau, de données
provenant d’un mélange d’un petit nombre de
vecteurs gaussiens. Nous montrons que ces
matrices sont asymptotiquement équivalentes à
des matrices aléatoires à modèles spikes comme
dans le Chapitre 3. L’analyse précise de ces
modèles spikes nous permet d’identifier de nou-
velles fonctions à noyau paramétrisées de telle
sorte à induire de meilleures performances com-
parées aux noyaux standards, et capables de
discriminer les données à la fois sur la base de
la di↵érence entre leurs moyennes statistiques
et/ou de la di↵érence entre leurs covariances
statistiques.
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Title: New methods for large scale unsupervised learning.

Keywords: Unsupervised learning, High dimensional data clustering, Community detection, Random
matrix theory, Bayesian inference.

Abstract: The industrial pressure of find-
ing e�cient Machine Learning (ML) algorithms
especially for very large datasets pushes re-
searchers to understand the behavior of those
algorithms in order to improve them. The
power of ML algorithms mostly comes from the
fact that they are data-driven and rely on non-
linear transformations. This however makes the
theoretical analysis of their performances more
challenging. Additionally, due to the curse of
dimensionality in ML, some original intuitions
at the basis of algorithms adapted to small di-
mensional data are not valid anymore in high
dimensions. However, as we shall see in the
course of this thesis, this curse of dimensionality
problem is turned into a blessing notably due
to the asymptotic concentration of certain key
quantities allowing to theoretically capture the
behavior of ML algorithms in high dimensions.
This thesis focuses on unsupervised learning
methods and particularly on clustering. The
first part is dedicated to the question of graph
clustering while the second part focuses on data
clustering.
In Chapter 3, for realistic dense random graph
models with communities and heterogeneous
degree distributions, we derive a family of mod-
ified spectral clustering algorithms using simi-
larity matrices depending on a regularization
parameter to handle the deleterious e↵ects of
degree heterogeneity. Those similarity matrices
are shown to be asymptotically equivalent to a
family of spiked random matrices which exhibit
strong structures such that (a small number of)
communities can be extracted from the eigen-
vectors associated to the dominant eigenvalues
of those matrices. For graphs with a large num-
ber of nodes, a thorough study of the eigenval-
ues and eigenvectors of those random matrices
allows to

i) derive an online selection of the most ap-
propriate regularization parameter and thus an
improved clustering method adapted to these
graphs ii) propose an improvement of the Ex-
pectation Maximization (EM) algorithm in the
last step of the spectral method, which uses
the asymptotic limit of the eigenvectors entries’
statistics to initialize EM instead of a random
initialization.
In Chapter 4, we propose a new method for
the detection of overlaping and non-overlapping
communities in multi-layer graphs. Here, a
probabilistic multi-graphical model accounting
for disparing communities between the di↵er-
ent layers is proposed. Based on this model, a
variational Bayes approach is used to approx-
imate the intractable posterior distribution of
the latent communities of the di↵erent layers
given the observed graphs. The proposed al-
gorithm which can be applied to any number
of network layers is applied to a real genome-
wide fibroblast proliferation dataset, revealing
important biological insights on the interplay
between functional and spatial relationships be-
tween the genes.
Finally, Chapter 5 treats the question of high
dimensional data spectral clustering using ker-
nels. We proceed to a spectral analysis of
large dimensional inner product kernel matri-
ces, based on Gaussian mixture inputs, which
are shown to be equivalent to tractable random
matrices in the family of spiked models. A pre-
cise analysis of the spiked random matrix led us
to identify new parametrized kernel functions
outperforming standard kernels in discriminat-
ing data classes through their di↵erences in sta-
tistical means and/or di↵erences in statistical
covariances.
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1.1 Détection de communautés dans les graphes . . . . . . . . . . . . . . . . . 2
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Chapter 1

Introduction (Français)

L’apprentissage automatique (AA) est probablement le domaine le plus populaire de nos
jours en sciences techniques aussi bien dans le milieu industriel qu’académique. La puis-
sance de l’AA réside dans sa capacité à traiter de manière automatique et rapide tous
types de données qui peuvent être du texte, de l’image, du son, de la vidéo, etc., traite-
ments à partir desquels des informations importantes peuvent être tirées. L’idée derrière
l’AA est simple : elle consiste à “apprendre” une fonction bôıte noire y = f(x) associant
des entrées x à des sorties y, en utilisant des exemples dits d’apprentissage pour lesquels
les sorties sont soit connues d’avance (apprentissage supervisé) ou inconnues (apprentis-
sage non supervisé). La tâche d’apprentissage est dite de classification lorsque les sorties
y sont à valeurs discrètes et dite de régression lorsque les sorties sont à valeurs continues.
En apprentissage supervisé, les paramètres de la fonction sont appris par le système et
ensuite utilisés pour prédire la sortie de nouvelles entrées (test) tandis qu’en apprentissage
non supervisé, les exemples d’apprentissage sont directement utilisés pour catégoriser les
entrées. Nous nous intéressons dans cette thèse au clustering, méthode de classification
non-supervisée la plus populaire en AA.

De manière générale, le clustering d’objets consiste à les regrouper de telle sorte que
les objets soient très similaires à l’intérieur de chaque groupe. Les objets susmention-
nés peuvent soit être des données (qui peuvent être représentées sous forme de vecteurs)
ou des graphes (représentant des interactions entre un ensemble de noeuds). Lorsque
l’on regroupe des données de manière non-supervisée, on parle de clustering de don-
nées [Shalev-Shwartz and Ben-David, 2014] où les données sont regroupées en fonction
de leurs similarités où la similarité (entre une paire de données) est calculée en utilisant
une certaine “mesure de proximité”. Le problème du clustering est dit de détection de
communautés ou clustering de graphes [Newman, 2010, Goldenberg et al., 2010, Fortu-
nato, 2010] lorsque l’on a une base de données indiquant la présence ou non d’interactions
entre di↵érents individus et la tâche consiste à regrouper ces derniers de telle sorte que le
nombre d’interactions entre individus appartenant au même groupe soit important. Dans
la majorité des bases de données d’AA, les vecteurs sont généralement non linéairement
séparables. Pour ce faire, la classification de ces vecteurs consiste généralement à tout
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d’abord les projeter dans un espace à plus grande dimension où ils ont tendance à être
linéairement séparables avant de leur appliquer la mesure de proximité qui permettra de
faire la classification. On peut imaginer qu’il sera très coûteux de calculer la mesure de
proximité entre une paire de vecteurs (généralement un produit scalaire) dans ce nouvel
espace à grande dimension. Heureusement, il existe une astuce connue sous le nom du
kernel-trick [Schölkopf, 2001] qui montre que l’application d’une fonction (appelée noyau)
au produit scalaire entre les vecteurs dans leur espace de départ est équivalente au pro-
duit scalaire entre les projetés de ces vecteurs dans le plus grand espace. Le clustering
est connu sous le nom de clustering à noyau lorsqu’une fonction à noyau est utilisée pour
classifier des données non linéairement séparables. Il est facile de voir que le clustering
de données ou le clustering de données à base de noyau sont équivalentes à faire de la
classification de données sur un graphe dont les poids sont donnés par les valeurs des
similarités.

1.1 Détection de communautés dans les graphes

La détection de communautés dans les graphes (réseaux) est l’un des problèmes les plus
fondamentaux de l’analyse de données car elle permet d’explorer et d’analyser les graphes
représentant des interactions du monde réel dans de nombreux domaines incluant la soci-
ologie [Goldenberg et al., 2010], la biologie et la médecine [Chen and Yuan, 2006,Mar-
cotte et al., 1999, Cline et al., 2007], le transport [Guimera et al., 2005], l’Internet des
Objets [Linden et al., 2003, Clauset et al., 2004]. Un graphe G est défini comme une
paire d’ensembles (V , E) avec V l’ensemble des nœuds et E est un sous-ensemble de
toutes les paires d’interactions V ⇥ V . Le graphe est dit dirigé lorsque les éléments de
l’ensemble E sont ordonnés et non dirigé sinon. Dans de nombreuses applications, des
poids réels peuvent être a↵ectés à chaque élément de E indiquant la force de la connex-
ion et résultant en un graphe dit pondéré tandis que des poids binaires correspondent à
un graphe non pondéré. Les noeuds d’un graphe peuvent être impliqués dans di↵érents
types d’interactions (par exemple des acteurs impliqués di↵éremment dans divers réseaux
sociaux), ou les interactions peuvent évoluer au fil du temps (graphes dynamiques) ; dans
ces cas, on parle de graphes multi-couches. La terminologie graphe à simple couche sera
utilisée quand un seul type d’interaction caractérise le graphe.

Pour un graphe donné, la détection de communautés consiste à extraire des groupes
de nœuds cachés ou latents de telle sorte qu’il y ait beaucoup d’arêtes à l’intérieur des
communautés et peu d’arêtes entre elles. La recherche en détection de communautés sur
des graphes à simple couche a été et continue d’être un domaine très actif tant sur le
plan théorique que sur le plan algorithmique. Dans les réseaux actuels du monde réel,
les individus peuvent être impliqués dans di↵érents types d’interactions, conduisant ainsi
à des réseaux/graphes multi-couches/multi-relationnels/multi-dimensionnels. Par exem-
ple, les employés de grandes entreprises peuvent être connectés les uns aux autres en
fonction d’activités similaires d’une part et en fonction de leurs activités sociales d’autre
part [Oselio et al., 2015]. En génomique, les gènes peuvent être liés soit par leurs in-
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teractions transcriptionnelles (relations fonctionnelles), par exemple par la similarité du
profil RNA-seq, soit par les interactions de la chromatine (relations spatiales), mesurées
par capture de conformation de la chromatine (Hi-C) [Dixon et al., 2015, Boulos et al.,
2017, Dekker et al., 2017]. La récente croissance de ces réseaux dynamiques avec in-
teractions hétérogènes a ainsi fait appel à de nouvelles méthodes pour la détection de
communautés sur des graphes multi-couches. Deux grandes classes de méthodes sont
généralement utilisées pour résoudre le problème de détection de communautés (pour les
graphes à simple couche ou multi-couches) : les méthodes d’inférence statistique et des
méthodes basées sur une métrique à optimiser.

Le problème de détection de communautés décrit dans la section 1.1.1 est spécifique
aux graphes à simple couche où les noeuds du graphe sont seulement impliqués dans un
seul type d’interactions.

1.1.1 Détection de communautés sur graphes à simple couche

Telles qu’indiquées ci-dessus, les méthodes d’inférence statistique sont l’une des grandes
catégories d’approches pour la détection de communautés. Elles consistent à associer le
graphe observé à un modèle statistique tenant compte de la structure de communautés
latente et à estimer les paramètres du modèle (parmi lesquels l’attribution des nœuds aux
communautés). Le modèle statistique (incluant une structure de communautés) le plus
fondamental qui est souvent utilisé pour l’inférence de communautés sur graphes est le
modèle à bloc stochastique (MBS) ou Stochastic Block Model (SBM) en anglais. Soit
G, un graphe comportant n sommets (ou noeuds) à k communautés C1, . . . , Ck avec gi

le groupe assigné au noeud i , le MBS définit une matrice d’adjacence A 2 {0, 1}n⇥n

avec Aij variables aléatoires de Bernoulli indépendantes ayant pour paramètre Pgigj où
Pab représente la probabilité qu’un noeud de la classe Ca soit connecté à un noeud de la
classe Cb. La principale limite de ce modèle est qu’il est seulement adapté aux graphes
homogènes où tous les nœuds ont le même degré moyen dans chaque communauté (par
ailleurs, les tailles de classes sont souvent prises égales). Un modèle plus réaliste, le MBS
à degrés corrigés (MBSDC), a été proposé dans [Coja-Oghlan and Lanka, 2009, Karrer
and Newman, 2011] pour tenir compte de l’hétérogénéité des degrés à l’intérieur des
communautés. Pour le même graphe G défini ci-dessus, en définissant qi, 1  i  n

, comme étant des poids intrinsèques qui a↵ectent la probabilité pour le noeud i de se
connecter à tout autre nœud de réseau , la matrice d’adjacence A 2 {0, 1}n⇥n du graphe
généré par le MBSDC est telle que Aij sont des variables aléatoires indépendantes de
Bernoulli avec paramètre qiqjCgigj , où Cgigj est un facteur de correction tenant compte de
la communauté d’appartenance de chaque noeud.

La seconde classe de méthodes pour la détection de communautés, basée sur une
métrique à optimiser, consiste à tout d’abord définir une métrique cohérente avec la défi-
nition formelle des communautés (par exemple, la modularité [Newman, 2006b], le ratio
de coupure (ratio-cut) [Wei and Cheng, 1989]) puis à maximiser la métrique choisie sur
toutes les partitions possibles du graphe. Formulé en tant que tel, le problème de dé-
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tection de communautés s’avère être NP-di�cile [Brandes et al., 2007]. La littérature
dans la détection de communautés sur graphe à simple couche s’est concentrée sur la
recherche de méthodes d’approximation polynomiale du problème original en proposant
des approches heuristiques [Newman, 2004], d’optimisation [Duch and Arenas, 2005] et
des méthodes spectrales [Ng et al., 2002,Newman, 2006b,Newman, 2016]. La relaxation
de l’optimisation de la modularité ou de l’optimisation du ratio de coupure, des valeurs de
labels discrètes à des valeurs continues, conduit à des méthodes dites spectrales (résumées
dans l’Algorithme 1 ci-dessous) qui consistent à extraire les communautés des nœuds
en utilisant les vecteurs propres associés aux valeurs propres dominantes de matrices de
similarité (matrice d’adjacence, matrice de modularité, matrice laplacienne) représen-
tant le graphe. La matrice de similarité utilisée pour les méthodes spectrales dépend de
la métrique considérée; par exemple, l’optimisation de la métrique de modularité con-
duit à une méthode spectrale utilisant la matrice de modularité, la métrique du ratio
de la coupure correspond à la matrice d’adjacence tandis que l’optimisation du ratio de
coupure normalisé induit l’utilisation de la matrice laplacienne normalisée. Il est montré
dans [Nadakuditi and Newman, 2012] que le seuil de détectabilité des communautés par
les méthodes spectrales utilisant la matrice d’adjacence (et ses variantes) correspond au
seuil optimal donné par les approches Bayes optimales lorsque les graphes aléatoires con-
sidérés sont denses (c’est-à-dire que le degré moyen de ces graphes augmente avec la taille
du graphe). Cependant, il existe un écart important entre le seuil de détectabilité de ces
méthodes spectrales [Kawamoto and Kabashima, 2015] et le seuil Bayes optimal [Decelle
et al., 2011b,Decelle et al., 2011a] dans le régime de graphes parcimonieux (c’est-à-dire,
quand le degré maximum des nœuds ne crôıt pas avec le nombre de nœuds); ce qui mon-
tre la sous-optimalité de ces méthodes spectrales dans le régime parcimonieux [Krzakala
et al., 2013]. Dans le simple cas du MBS avec 2 communautés de même taille, la partie
positive du résultat sur la transition de phase [Decelle et al., 2011a] est prouvée dans [Mos-
sel et al., 2013,Massoulié, 2014] tandis que la partie négative est prouvée dans [Mossel
et al., 2015]. Il a été montré plus tard qu’une méthode spectrale utilisant les matrices
Non-Backtracking [Krzakala et al., 2013] et Bethe Hessian [Saade et al., 2014] comble
l’écart avec le seuil du Bayes optimal dans le régime parcimonieux. Une étude poussée
des valeurs propres et vecteurs propres de la matrice Non-Backtracking dans [Bordenave
et al., 2015] a conduit à prouver la conjecture sur l’optimalité des méthodes spectrales
basées sur la Non-Backtracking. Cependant, la convergence de la distribution des valeurs
propres de la matrice Non-Backtracking (une matrice non-symétrique) reste un problème
ouvert. D’un point de vue de la théorie des matrices aléatoires, la raison de l’échec des
méthodes spectrales utilisant des variantes de la matrice d’adjacence dans le régime parci-
monieux réside dans le fait que le spectre (distribution des valeurs propres) de ces matrices
ne se concentre pas ; il peut y avoir des valeurs propres éloignées, dont les vecteurs propres
sont localisés autour de quelques noeuds (appelés hubs) et ainsi la structure de commu-
nauté globale est perdue dans les vecteurs propres qui sont normalement utilisés dans la
classification spectrale. Revenons au régime “dense” où le spectre de la famille des ma-
trices d’adjacence se comporte bien. [Nadakuditi and Newman, 2012] a étudié le spectre
de la matrice de modularité pour un MBS symétrique, ce qui a conduit à une caractéri-
sation explicite du seuil de détectabilité dans ce régime. A travers une caractérisation du
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vecteur propre dominant dans ce régime simple en utilisant notamment une conjecture
sur le caractère gaussien des entrées du vecteur propre, [Nadakuditi and Newman, 2012] a
déterminé le taux d’erreur de classification d’un algorithme spectral utilisant la matrice de
modularité d’un graphe dense. Bien que les travaux de [Nadakuditi and Newman, 2012]
soient seulement basés sur la matrice de modularité, les performances (et aussi le seuil
de détectabilité) des méthodes spectrales utilisant toutes les matrices dans la famille des
matrices d’adjacence sont asymptotiquement les mêmes pour des graphes générés suiv-
ant le MBS. Cependant, comme nous le montrons dans cette thèse, les performances des
di↵érentes méthodes spectrales pourraient être di↵érentes dans le MBSDC dense.

La plupart des travaux théoriques pour la détection de communautés dans les MBSDC
denses s’est focalisée sur la preuve de leur consistance asymptotique 1. Les conditions su↵-
isantes pour lesquelles les approches de détection de communautés basées sur le maximum
de vraisemblance [Karrer and Newman, 2011] et les méthodes basées sur l’optimisation de
la modularité [Newman, 2006b] sont faiblement et fortement consistantes, ont été établies
dans [Zhao et al., 2012]. L’algorithme appelé CMM (Maximisation de la Modularité
Convexifiée) a été proposé dans [Chen et al., 2015b] pour faire face à la complexité de
calcul des méthodes de modularité/maximum de vraisemblance [Karrer and Newman,
2011, Newman, 2006b], en proposant une solution améliorée de la relaxation du prob-
lème d’optimisation de la modularité. En ce qui concerne les méthodes de classification
spectrale, il a été montré [Coja-Oghlan and Lanka, 2009,Qin and Rohe, 2013, Jin et al.,
2015, Gulikers et al., 2015] que lorsque les degrés sont très hétérogènes, les méthodes
spectrales classiques ne parviennent pas à correctement détecter les communautés. Pour
illustrer les limitations des méthodes spectrales sous le MBSDC, les deux graphes de la
figure 1.1 représentent en 2-D le vecteur propre dominant 1 versus le vecteur propre 2
de la matrice de modularité standard et de la matrice de Bethe Hessian2, lorsque trois
quarts des nœuds se connectent avec un poids faible q(1) et un quart des nœuds avec un
poids élevé q(2). Pour les deux méthodes, il est clair qu’un algorithme de classification
de type k-means induirait de manière erronée une détection de communautés supplémen-
taires et même une confusion des communautés dans l’approche de Bethe Hessian. Ces
communautés supplémentaires sont créées suite à des biais dûs aux poids intrinsèques
hétérogènes qi ; intuitivement, les nœuds partageant les mêmes poids de connexion intrin-
sèques tendent à créer leur propre sous-communauté à l’intérieur de chaque communauté,
formant ainsi des sous-communautés supplémentaires à l’intérieur des communautés de
base. Pour surmonter ce problème, un certain nombre de techniques de classification
spectrales régularisées ont été proposées pour normaliser par les degrés, soit la matrice
d’adjacence, soit les vecteurs propres dominants. Dans [Coja-Oghlan and Lanka, 2009,Gu-

1La consistance est définie principalement sous deux formes. De manière informelle, un algorithme de
détection de communautés est faiblement consistant lorsque la fraction de nœuds mal classifiés s’annule
asymptotiquement avec une probabilité élevée tandis qu’un algorithme de détection de communautés est
fortement consistant lorsque que les labels assignés aux noeuds correspondent exactement au vrai labels
avec une très grande probabilité.

2La méthode spectrale basée sur le Bethe Hessian (BH) [Saade et al., 2014] est basée sur l’union des
vecteurs propres associés aux valeurs propres négatives de H(rc) et H(�rc) respectivement où H(r) =

(r2 � 1)In � rA+D pour rc =
P

i d
2
iP

i di
� 1 avec di le degré de nœud i ( D et di sont définis par la suite).
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likers et al., 2015], les auteurs ont proposé de grouper les noeuds en utilisant les vecteurs
propres d’une matrice d’adjacence normalisée D�1AD�1 avec D la matrice diagonale con-
tenant les degrés observés sur la diagonale principale. Nous avons e↵ectué précisément
dans [Tiomoko Ali and Couillet, 2016b] une analyse spectrale de la matrice de modular-

ité normalisée D�1
⇣
A� ddT

dT1n

⌘
D�1 (ce qui n’est pas di↵érent de D�1AD�1 d’un point

de vue classification spectrale) dans un régime dense MBSDC où la classification n’est
pas asymptotiquement triviale (c’est-à-dire ni trop facile, ni impossible). Nous y avons
déterminé la transition de phase où la classification devient asymptotiquement possible et
avons établi, pour de simples jeux de modèles, le taux d’erreur de classification asympto-
tique. Une autre approche pour palier aux biais induits par le MBSDC consiste à plutôt
utiliser les vecteurs propres dominants (pré-normalisés par la matrice de degrés inverse
D�1) de la matrice d’adjacence, qui est proposée sous le nom de l’algorithme SCORE
dans [Jin et al., 2015]. [Qin and Rohe, 2013] a proposé d’utiliser les vecteurs propres
de la matrice Laplacienne D�

1
2AD�

1
2 . Comme nous le montrerons dans ce manuscrit,

certaines des méthodes précitées ont le désavantage d’avoir un spectre (distribution des
valeurs propres) plus étendu et donc une di�culté à atteindre la transition de phase. Nous
proposons dans cette thèse, une méthode générique qui englobe ces méthodes précédentes
dans un régime MBSDC dense et qui identifie la meilleure matrice qui permet d’atteindre
la transition de phase dans des scénarios de classification di�cile. Nous indiquons égale-
ment à travers nos résultats, la bonne normalisation à e↵ectuer sur les vecteurs propres
afin d’éviter les biais .

Comme indiqué précédemment, les travaux précités [Coja-Oghlan and Lanka, 2009,
Gulikers et al., 2015, Jin et al., 2015] ont montré que sous certaines conditions de régu-
larisation, une reconstruction presque parfaite ou totalement parfaite des communautés
auxquelles appartient chaque noeud peut être obtenue asymptotiquement par les méth-
odes de normalisation précitées. Notre motivation dans cette première partie de la thèse
est d’aller au-delà des résultats de consistance pour comprendre les performances des dif-
férents algorithmes de classification spectrale régularisée pour des graphes de très grandes
tailles n fini. Pour cela, nous nous plaçons dans un régime où les communautés sont trop
proches pour induire des reconstructions parfaites, de sorte que les di↵érents algorithmes
spectraux ne conduisent pas tous à une même classification triviale asymptotique. Comme
indiqué ci-dessus, afin d’englober la plupart des méthodes susmentionnées, nous étudions
ici une régularisation généralisée de la matrice d’adjacence 3 donnée, pour tout ↵ 2 R,
par

L↵ = (2m)↵
1
p
n
D�↵


A�

ddT

2m

�
D�↵

3Il est montré dans des simulations que le terme principal ddT

2m (ne fournissant aucune information sur
les communautés) n’a aucun impact asymptotique sur la performance de classification des graphes. Il

est ajouté ici principalement pour faciliter l’exposition des résultats. On note en passant que A � ddT

2m
correspond à la matrice de modularité [Newman, 2006a], donc L↵ peut être vu comme une matrice de
modularité normalisée par “ alpha”.
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1.1. Détection de communautés dans les graphes

où d est le vecteur des degrés (di =
Pn

j=1 Aij), D est la matrice diagonale des degrés

(contenant d sur la diagonale principale) et m = 1
2d

T1n est le nombre d’arêtes dans
le graphe. En particulier, L0 est la matrice de modularité [Newman, 2006b, Jin et al.,
2015], L 1

2
est une modularité équivalente à la matrice laplacienne normalisée [Qin and

Rohe, 2013, Chung, 1997] et L1 est la matrice utilisée dans [Coja-Oghlan and Lanka,
2009,Gulikers et al., 2015,Tiomoko Ali and Couillet, 2016c].

Modularity Bethe Hessian

Figure 1.1: Two dominant eigenvectors (x-y axes) for n = 2000, k = 3 classes C1, C2 and
C3 of sizes |C1| = |C2| =

n
4 , |C3| =

n
2 ,

3
4 of the nodes having qi = 0.1 and 1

4 of the nodes
having qi = 0.5, matrix of weights C = 131T

3 + 100
p
nI3. Colors and shapes correspond to

ground truth classes.

Nous considérons ici un modèle MBSDC dense où qi = O(1) (par rapport à n ) 4.
Dans ce régime, lorsque les facteurs de correction Cgigj di↵èrent de O(1), tous les algo-
rithmes spectraux régularisés sont consistants (c’est-à-dire que le taux d’erreur de clas-
sification s’annule asymptotiquement). Afin de comparer les di↵érents algorithmes, nous
considérons un régime où les communautés sont à peine séparables en regardant la ma-
trice d’a�nité de classes C, mais toujours identifiables. Ce régime est assuré lorsque les
Cgigj = O(1) individuellement mais di↵èrent entre eux par un facteur de l’ordre O(n�

1
2 ).

Sous ce régime, nous avons étudié dans [Tiomoko Ali and Couillet, 2016a, Tiomoko Ali
and Couillet, 2018] les valeurs propres dominantes et les vecteurs propres associés (util-
isés pour la classification) de L↵ pour des graphes denses de grandes dimensions suivant
le MBSDC dans le régime non-trivial susmentionné. L’étude des valeurs propres nous
permet de démontrer qu’il existe un optimal L↵ non trivial que l’on peut estimer à partir
du graphe observé. Dans [Tiomoko Ali and Couillet, 2018], nous caractérisons le contenu
asymptotique des vecteurs propres dominants de L↵ lequel nous a conduit à déterminer les
valeurs limites des moyennes et covariances des centröıdes (correspondant à chaque com-
munauté) qu’un algorithme Expectation Maximization (EM) aurait estimé après conver-

4À la lumière des précédentes méthodes de classification spectrale sur des graphes denses, la même
analyse est valable pour qi d’ordre aussi petit que logn

n .
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1.1. Détection de communautés dans les graphes

Figure 1.2: Heterogeneous multilayer network. Shared communities (in red) and unshared
communities in di↵erent colors for each layer.

gence (en supposant que les entrées des vecteurs suivent une distribution d’un mélange fini
de variables gaussiennes). Ces trouvailles sont alors utilisées en pratique pour initialiser
l’algorithme EM en lieu et place de l’initialisation aléatoire qui est souvent utilisée.

1.1.2 Détection de communautés sur graphe multi-couches

L’extraction de structures de communautés partagées par les di↵érentes couches ainsi que
des structures distinctes entre les di↵érentes couches pourraient être un bon moyen de
comprendre les réseaux réels actuels qui sont souvent représentés sous forme de graphes
multi-couches. Il existe donc un besoin pressant de nouvelles méthodes pour la détec-
tion de communautés dans les graphes multi-couches avec de telles structures de com-
munautés hétérogènes. L’extraction des communautés indépendamment dans chaque
couche (en utilisant des méthodes classiques de détection de communautés pour graphes
à simple couche) est sous-optimale car cette approche n’exploite pas les informations
communes à plusieurs couches. L’e↵ort de recherche actuel vise à développer des méth-
odes d’inférence conjointe par agrégation des di↵érentes couches [De Domenico et al.,
2015a,Nicosia and Latora, 2015,De Bacco et al., 2017]. L’approche d’agrégation la plus
simple consiste à réduire le réseau multi-couches en un réseau à simple couche sur lequel
des méthodes classiques de détection de communautés peuvent être appliquées [Tang
et al., 2009,Tang et al., 2012,Comar et al., 2012,Zhang et al., 2013,Amelio and Pizzuti,
2014,De Domenico et al., 2015b,Taylor et al., 2016,Kim et al., 2017]. Alternativement,
certains chercheurs ont suggéré d’e↵ectuer la détection de communautés séparément sur
chaque couche suivie d’une agrégation par consensus des communautés trouvées à travers
les di↵érentes couches [Mucha et al., 2010,Xiang et al., 2012,Oselio et al., 2014,Amelio
and Pizzuti, 2014,Paul and Chen, 2016]. Une autre approche consiste à étendre les MBS
à une seule couche aux graphes multi-couches [Sweet et al., 2014,Han et al., 2015, Paul
and Chen, 2015,Peixoto, 2015, Stanley et al., 2016,Valles-Catala et al., 2016,Reyes and
Rodriguez, 2016, Barbillon et al., 2017], et utiliser des approches d’inférence statistique
spécifiques à l’architecture multi-couches.
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1.2. Méthodes spectrales à base de fonctions à noyau sur des données à grandes
dimensions

Comme indiqué ci-dessus, en pratique, certaines communautés peuvent être partagées
entre les di↵érentes couches, tandis que d’autres ne le sont peut-être pas (voir Figure 1.2).
Cependant, peu de méthodes dans la littérature considèrent explicitement ce scénario
général. L’algorithme d’extraction multi-couches proposé dans [Wilson et al., 2017] per-
met l’identification de communautés sur graphes multi-couches où les communautés pour-
raient être partagées entre un sous-ensemble de couches. [Wilson et al., 2017] minimise une
fonction de coût et prend en compte les similitudes et les di↵érences entre les communautés
des di↵érentes couches. Bien que le modèle utilisé dans [Wilson et al., 2017] soit réaliste
lorsqu’on considère les connexions de graphes multi-couches, la méthode est seulement
limitée aux graphes non-pondérés. L’approche proposée dans [Boden et al., 2012] étend
[Zeng et al., 2006] à des graphes multi-couches pondérés et permet l’extraction de sous-
graphes denses cohérents (appelés cliques) partagés par des sous-ensembles de couches.
Cependant, ces dernières méthodes sont limitées à l’identification de communautés très
denses et pourraient être ine�caces lorsque les graphes sont parcimonieux.

En collaboration avec l’Université du Michigan, nous avons proposé dans [Tiomoko Ali
et al., 2018c], une méthode qui permet de détecter simultanément des communautés
partagées et non partagées entre les di↵érentes couches d’un graphe pondéré. Nous avons
adopté une approche d’inférence statistique basée sur un modèle à blocs stochastiques
où les arêtes du graphe peuvent être pondérés et qui tient compte du fait qu’une partie
des communautés est partagée entre les di↵érentes couches. En raison de la forme trop
complexe de la distribution a posteriori des labels d’appartenance de chaque noeud à une
communauté, nous avons utilisé une approche Bayes variationnelle pour approximer cette
distribution a posteriori, puis nous utilisons les paramètres de cette distribution varia-
tionnelle pour déduire les communautés partagées et privées (à chaque couche) du modèle
multi-couches utilisé. Cela généralise les travaux [Aicher et al., 2014, Zhang and Zhou,
2017] conçus pour des graphes pondérés à une seule couche.

1.2 Méthodes spectrales à base de fonctions à noyau
sur des données à grandes dimensions

La malédiction de la dimensionnalité en AA augmente de façon exponentielle le besoin
d’avoir une quantité importante de données d’apprentissage lorsque la dimension des don-
nées augmente afin d’éviter les phénomènes de sur-apprentissage. En outre, le processus
d’apprentissage est très lent lorsque les données sont de très grandes dimensions. La solu-
tion la plus naturelle au problème de la malédiction de la dimensionnalité est de réduire la
dimension de manière à conserver les informations les plus importantes dans les données,
opération appelée réduction de la dimensionnalité. Par exemple, les pixels dans les im-
ages ont tendance à être fortement corrélés et ainsi, ne conserver qu’un résumé des pixels
représentatifs réduit énormément la dimensionnalité des données. L’ ACP (Analyse en
Composantes Principales), de loin la technique de réduction de dimensionnalité la plus
répandue, consiste à trouver les hyperplans synthétisant les caractéristiques les plus impor-
tantes des données, puis à projeter les données sur ceux-ci. Les hyperplans sont choisis de
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manière à minimiser la moyenne quadratique de la di↵érence entre les données originales
et leurs projections sur les axes des hyperplans à identifier. Les axes des hyperplans sont
appelés les composantes principales et correspondent aux plus grands vecteurs propres
dans la décomposition en valeurs singulières (SVD) de la matrice d’a�nité des données.
Une fois que la dimensionnalité est réduite avec les informations les plus importantes con-
servées, les algorithmes d’AA classiques peuvent être appliqués avec moins de complexité
et plus d’e�cacité. Les approches de clustering spectral peuvent être considérées comme
des variantes de la ACP et consistent à regrouper les données en utilisant seulement
quelques composantes principales. Nous nous intéressons ici à l’étude du clustering spec-
tral sur des données à très grandes dimensions, dont le comportement sera complètement
di↵érent de l’intuition originale du clustering spectral en petites dimensions.

Algorithm 1: Algorithme spectral
1: Calculer les ` vecteurs propres u1, . . . ,u` 2 Rn correspondant aux valeurs propres les

plus domiantes (plus petites ou plus grandes) de l’une des matrice d’a�nité du
réseau (adjacence, modularité, Laplacienne) de taille n⇥ n.

2: Empiler les vecteurs ui en colonne dans une matrice W = [ui, . . . ,u`] 2 Rn⇥`.
3: Soit r1, . . . , rn 2 R` les lignes de W. Classifier ri 2 R`, 1  i  n dans l’un des k

groupes en utilisant un algorithme de classification en faible dimension (e.g.,
k-means [Hartigan and Wong, 1979] ou Expectation Maximization (EM) [Ng et al.,
2012]). Le label assigné à ri correspond au label du noeud i.

Nous considérons les algorithmes de clustering spectral (Algorithme 1) appliqués à n

vecteurs de données disons x1, · · · ,xn 2 Rp que nous souhaitons assigner à des classes
distinctes. Une approche de base consisterait à trouver des hyperplans (dans l’espace Rp)
séparant les di↵érents vecteurs en classes distinctes. Cette méthode peut être considérée
comme équivalente à l’application d’une analyse en composantes principales (ACP) ou
d’une méthode spectrale sur la matrice d’a�nité contenant les produits scalaires entre les
données. Cependant, cette séparation n’est valide que lorsque les données sont linéaire-
ment séparables, ce qui n’est pas le cas dans la plupart des bases de données utilisées en
AA. Pour faire face à cette di�culté, des méthodes à base de noyau ont été introduites et
consistent à projeter les objets non linéairement séparables dans un espace de dimension
plus élevée où les hyperplans peuvent être trouvés pour séparer linéairement les données.
L’idée est donc de déplacer xi vers �(xi) avec � : Rp

! RP (avec P � p) et utiliser une
méthode spectrale sur la matrice de covariance empirique dans l’espace RP

. L’opération
précédente étant évidemment très coûteuse pour P assez grand, l’astuce du noyau (kernel-
trick) [Schölkopf, 2001] a été introduite pour considérer à la place la similarité f(xi,xj)
entre les vecteurs xi et xj où f est une fonction telle que �(xi)T�(xj) = f(kxi � xjk

2)
ou �(xi)T�(xj) = f(xT

i xj). De telles fonctions f vérifiant certaines propriétés [Schölkopf,
2001] existent. Le clustering spectral peut ensuite être appliqué à la matrice de simi-
larité à noyau, une méthode connue sous le nom de clustering spectral à noyau. Il est
montré dans [Von Luxburg et al., 2008] que la classification spectrale utilisant des matri-
ces d’a�nité bien connues (matrice Laplacienne) entre un nombre de vecteurs aléatoires
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dimensions

xi 2 Rp
, 1  i  n ( n!1 avec p fixe) est consistante dans le sens que les vecteurs pro-

pres dominants de ces matrices d’a�nités convergent asymptotiquement vers des vecteurs
limites comportant l’informant sur les classes. Par contre, comme nous le montrons dans
cette thèse, le clustering de très grandes données (n ! 1, p ! 1 avec p/n constant)
est moins trivial et d’importantes di↵érences existent par rapport au clustering en petites
dimensions .

L’intuition originelle de [Ng et al., 2002] appuyant le clustering spectral n’est plus
valide pour des données à grandes dimensions. Pour voir cela, commençons par décrire
l’intuition de [Ng et al., 2002] sur le clustering spectral en petites dimensions. Considérons
n vecteurs de données x1, . . . ,xn 2 Rp (p fixe) que nous souhaitons classifier en 2 classes
distinctes en utilisant une fonction à noyau f de telle sorte que l’a�nité Kij = f(xT

i xj)
entre vecteurs xi et xj est grande lorsque les vecteurs appartiennent à la même classe et est
faible lorsqu’ils appartiennent à des classes distinctes. En supposant sans perte de général-
ité que les vecteurs xi sont ordonnés par classes c’est-à-dire, x1, · · · ,xn/2 constituent la
première classe tandis que xn/2+1, · · · ,xn forment la deuxième classe, nous notons que les
vecteurs [1n

2
,0n

2
] et [0n

2
,1n

2
] que nous appelons vecteurs canoniques des classes sont les

vecteurs propres de la matrice Laplacienne L = D�K (avec D = diag(
nPn

j=1 Kij

on

i=1
) )

associés à la plus petite valeur propre 0, et donc un algorithme de classification spectrale
utilisant ces deux vecteurs propres attribuera sans erreur la bonne classe à chaque don-
née. Dans des situations presque idéales, f(xT

i xj) sera relativement importante pour les
données de la même classe et donc un algorithme spectral utilisant les vecteurs propres
associés aux plus petites valeurs propres de L sera en mesure de récupérer les classes avec
une performance raisonnable. Ce raisonnement n’est plus valide dans le régime “big data”
où la dimension p peut être très grande et comparable au nombre n de données. Pour
illustrer ce fait, supposons que les vecteurs xi sont des vecteurs Gaussiens indépendants
ayant la même covariance Ip mais avec une moyenne µ1 lorsqu’ils appartiennent à la pre-
mière classe et une moyenne µ2 lorsqu’ils appartiennent à la deuxième classe. Nous avons

donc xT

i xj

p '
µT

1µ2

p quand x1 6= x2 tandis que xT

i xi

p '
kµ1k

2

p + 1 quand x1 = x2. Comme
nous le verrons plus tard, les moyennes de classe doivent satisfaire kµak = O(1) (par
rapport à p) afin d’éviter: i) que les vecteurs soient asymptotiquement très lointains de
telle sorte que leur classification devient triviale ou ii) les vecteurs sont très proches de
telle sorte que la classification est impossible. Donc, d’après kµa � µbk = O(1), l’a�nité
Kij (pour i 6= j) converge asymptotiquement vers la même valeur f(0) peu importe les
classes auxquelles appartiennent xi et xj. Il ne semble donc pas possible de récupérer les
classes en utilisant la procédure de l’algorithme spectral décrite au-dessus car la notion de
“proximité” entre les données de la même classe n’est plus valide en grandes dimensions.
Cependant, il s’avère que l’algorithme spectral fonctionne quand même bien comme on
peut le voir sur la figure 1.3 où le vecteur propre dominant de K est composé de“plateaux”
bruités avec chaque plateau représentant une classe et donc un k-means serait en mesure
de récupérer l’information sur les classes en utilisant le vecteur propre dominant, avec des
erreurs non triviales. Il est alors essentiel de comprendre les raisons pour lesquelles les
méthodes spectrales à base de noyau en grandes dimensions marchent bien malgré le fait
que cette notion de “proximité” des données de même classe (au coeur de la classification
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50 100 150 200 250

Figure 1.3: p = 512, n = 256. Dominant eigenvector (associated with the largest eigen-

value) of Kij = f

⇣
xT

i xj

p

⌘
, f(x) = x

2
, 2 balanced classes C1, C2, xi 2 C1 , xi ⇠

N
�
3/
p
p1p, (1 + 3/

p
p)Ip

�
and xi 2 C2 , xi ⇠ N

�
�3/
p
p1p, (1� 3/

p
p)Ip

�
.

spectrale) n’est plus valide.

Afin de comprendre les di↵érents mécanismes du clustering spectral en grandes di-
mensions, il est important de comprendre la structure des valeurs propres et vecteurs
propres des grandes matrices d’a�nité aléatoire structurées K. Il ressort de la structure
de Kij = f

�
xT

i xj

�
que K a des entrées non linéaires et des colonnes dépendantes, une

structure peu commune en théorie classique des matrices aléatoires. Les premiers travaux
de [El Karoui et al., 2010] ont montré que lorsque des vecteurs de grandes dimensions xi

sont gaussiens avec une moyenne nulle et une covariance C (aucune supposition de classe

ici), la matrice K =
n
f

⇣
xT

i xj

p

⌘on

i,j=1
est asymptotiquement équivalente à une matrice

aléatoire du type “matrice de covariance empirique perturbée”. Plus précisément, il a été
montré dans [El Karoui et al., 2010] que

kK� K̂k ! 0

en probabilité où

K̂ = f
0(0)XXT +

✓
f(0) + f

00(0)
trC2

2p2

◆
1n1

T

n +

✓
f

✓
trC

p

◆
� f(0)� f

0(0)
trC

p

◆
In

avec X = [x1, . . . ,xn]. La matrice K̂ a une structure simple d’un point de vue “ma-
trice aléatoire” : elle est essentiellement composée de la matrice de covariance empirique
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f
0(0)XXT ajoutée à la matrice de rang faible 11T et à la matrice identité. L’étude des

valeurs propres et vecteurs propres de K peut donc être réalisée comme dans la RMT clas-
sique. En s’appuyant sur les travaux de [El Karoui et al., 2010], [Couillet and Benaych-
Georges, 2016] généralise l’étude de K = {f (kxi � xjk

2)}ni,j=1 aux données xi issues d’un
modèle de mélange gaussien (GMM) avec k classes C1, . . . , Ck de telle sorte que xi soit
Gaussien de moyenne µa et de covariance Ca lorsqu’il appartient à la classe Ca. Dans
le régime big data où la dimension p grandit linéairement avec la taille n des données
(n, p ! 1 with n/p = O(1)), [Couillet and Benaych-Georges, 2016] montre que K est
asymptotiquement égale à la somme d’une “matrice de covariance empirique déformée”
avec des matrices de perturbation (de rang fini) contenant les informations sur les classes
(moyennes, covariances) et donc, se comporte asymptotiquement comme un modèle de
matrices aléatoires connu dit “spike”. Ce type de structure matricielle permet d’e↵ectuer
une étude approfondie des valeurs propres et vecteurs propres de K dans ce régime à
grandes dimensions. L’étude de cette matrice aléatoire révèle en particulier que le choix
de la fonction noyau f a un fort impact sur la discrimination des données en fonction des
statistiques (moyennes, covariances) des classes auxquelles elles appartiennent.

Dans cette thèse, nous considérons également des données en grandes dimensions is-
sues d’un mélange de k distributions gaussiennes avec moyennes µa et covariances Ca (
a = 1, · · · , k ). Dans ce régime, en supposant un scénario supervisé où les moyennes et
covariances de classes sont connues et l’objectif est d’estimer les classes de chaque don-
née, les auteurs dans [Couillet et al., 2018] ont déterminé les régimes de croissance des
distances minimales entre les moyennes de classes et entre les covariances de classes, req-
uis pour asymptotiquement arriver à faire une classification non-triviale (c’est-à-dire ni
parfaite ni impossible). Ces régimes minimaux de croissance que nous appellerons par la
suite taux optimaux oracle sont donnés ci-dessous dans le cas k = 2 et constituent donc
une référence de comparaison de di↵érentes méthodes de classification (semi-supervisée
ou non-supervisée).

• kµ1 � µ2k = O(1).

• kC1 �C2k = O

⇣
1
p
p

⌘
.

• tr (C1 �C2) = O(
p
p).

• tr (C1 �C2)
2 = O(1).

L’objectif de cette partie de la thèse est de proposer des méthodes de clustering spectral
(non supervisées) à base de noyaux capables de discriminer les données avec des taux
de distance proches des taux optimaux oracle5. Pour ce faire, nous commençons par

analyser la matrice aléatoire à noyau K = f

⇣
xT

i xj

p

⌘
avec f une fonction noyau générique

supposée être au moins 3 fois dérivable autour de 0 (car xT

i xj

p ! 0 dans le régime que l’on

5Le terme oracle est utilisé pour souligner le fait que ces taux optimaux sont obtenus dans un cas
supervisé où les moyennes et covariances de classe sont parfaitement connues
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considère). Cette étude révèle qu’estimer les labels de classes par le clustering spectral
utilisant K ne fait pas mieux qu’une estimation aléatoire lorsqu’une fonction générique
f est utilisée sur des données à moyennes égales et à covariances de classes telles que
tr (C1 �C2)

2
⌧ O(p), on est donc loin des taux optimaux oracle. En utilisant à la

place une fonction à noyau f telle que f
0(0) = 0, on peut mieux faire qu’une estimation

aléatoire quand tr (C1 �C2)
2 = O(

p
p) induisant ainsi de meilleures performances que

des fonctions f génériques. Cependant, cette dernière fonction à noyau présente le côté
négatif d’annuler l’e↵et des moyennes sur la classification, c’est-à-dire que l’utilisation de
ce noyau ne sera pas capable de di↵érencier des données qui ont les mêmes covariances
mais des moyennes fortement di↵érentes. Ce cas est étudié en détails dans [Kammoun and
Couillet, 2017] pour des noyaux appliqués au produit scalaire entre les données f(xT

i xj/p)
avec la fonction noyau f telle que f

0(0) = 0 ( 0 étant la valeur limite de xT

i xj/p). Dans
cette thèse, nous montrons qu’une analyse minutieuse de la matrice aléatoire à noyau K
révèle que f

0(0) = O(p�
1
2 ) au lieu de f

0(0) = 0 permet un traitement équitable entre
les moyennes de classe et les covariances de classe lors de classification des données et
est capable de les discriminer avec la condition tr (C1 �C2)

2 = O(
p
p) comme pour le

noyau f
0(0) = 0. Cette nouvelle matrice à noyau qui prend en compte l’équilibre entre

les moyennes et les covariances des données est capable de discriminer les données dans
des meilleurs régimes de croissance par rapport aux noyaux précédemment étudiés. De
tels choix de noyau sont importants en pratique puisque des choix spécifiques de f sont
plus adaptés aux ensembles de données contenant soit des di↵érences prononcées entre les
moyennes de classe comme dans le jeu de données populaire MNIST [LeCun, 1998] alors
que d’autres fonctions sont plus e�caces sur des jeux de données avec des classes ayant des
moyennes similaires mais, des covariances fortement di↵érentes [Andrzejak et al., 2001].

1.3 Plan et contributions

Travaux liés au présent manuscrit

Comme indiqué dans les sections précédentes, cette thèse couvre deux applications prin-
cipales de clustering: détection de communautés dans les graphes et clustering (à base
de noyau) de données à grandes dimensions. Comme première contribution principale
concernant la détection de communautés dans les graphes, en partant d’une étude com-
plète des matrices de similarités, nous avons développé un algorithme spectral amélioré
pour des modèles aléatoires de grands graphes à simple couche, denses et hétérogènes
et qui généralise des méthodes spectrales existantes. La deuxième contribution princi-
pale concerne la détection de communautés dans les graphes multi-couches où nous avons
développé un algorithme qui permet de déterminer les communautés de noeuds entre
les di↵érentes couches. En ce qui concerne le clustering à base de noyau, à travers une
étude complète de la matrice d’a�nité (produit scalaire) aléatoire utilisant des fonctions
à noyau, nous avons proposé des choix de noyaux appropriés pour discriminer les données
suivant leurs statistiques les plus dominantes.
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Dans le Chapitre 3, nous présentons les outils mathématiques nécessaires pour suivre
les di↵érents résultats de cette thèse. Le levier principal des Chapitres 4 et 6 est l’analyse
spectrale (valeurs propres et vecteurs propres) de grandes matrices aléatoires tandis que
dans le Chapitre 5, nous utilisons une méthode Bayes variationnelle pour établir un algo-
rithme de détection de communautés pour graphes à plusieurs couches. Ces deux outils
mathématiques complètement di↵érents (théorie des matrices aléatoires et inférence vari-
ationnelle) sont introduits afin de constituer une base pour les chapitres suivants.

Dans le Chapitre 4, nous considérons l’analyse des méthodes spectrales pour la détec-
tion de communautés dans des réseaux denses qui peuvent avoir une distribution de degrés
hétérogène. Nous considérons une forme généralisée L↵ (paramétrée par ↵) des matrices
de similarité les plus utilisées pour la classification spectrale sur les graphes denses, sous
le modèle de graphe statistique réaliste le MBSDC. Les performances de ces méthodes
spectrales dépendant de la position des valeurs propres de L↵ ainsi que du contenu des
vecteurs propres correspondants, nous étudions les valeurs propres et vecteurs propres
de L↵. La matrice L↵ n’étant pas une matrice aléatoire présentant visuellement la struc-
ture de communautés du graphe, une première étape consiste à approximer L↵ (pour un
nombre de nœuds n ! 1) par une matrice aléatoire théoriquement analysable L̃↵ qui
appartient à la famille des modèles matriciels aléatoires “spike” et qui permet une étude
approfondie des valeurs propres et des vecteurs propres de L↵. Les matrices aléatoires
“spike” (qui seront introduites dans le Chapitre 3) présentent généralement une transition
de phase au-delà de laquelle les informations utiles peuvent être extraites des vecteurs
propres associés aux valeurs propres dominantes (et en dessous de laquelle aucune infor-
mation utile ne peut être tirée). Dans notre contexte, cette transition de phase correspond
à un seuil de détectabilité des communautés, commun dans l’analyse des algorithmes de
détection de communautés. Nous caractérisons exactement cette transition de phase pour
chaque valeur de ↵ . Nous prouvons l’existence et obtenons une expression pour une
valeur “optimale” ↵opt de ↵ pour laquelle le seuil de détectabilité des communautés 6 est
facilement atteignable. Cette valeur n’est pas toujours 0 ou 1 et son bon choix est très
important pour la classification de graphes très hétérogènes. Nous établissons un estima-
teur consistant ↵̂opt de ↵opt en fonction des degrés d. Nous montrons que pour obtenir
un clustering consistant dans le modèle MBSDC, les vecteurs propres dominants utilisés
pour le clustering doivent être pré-multipliés par D↵�1 avant la classification, ce qui per-
met ainsi de retrouver l’algorithme SCORE [Jin et al., 2015] pour ↵ = 0 et l’algorithme
dans [Gulikers et al., 2015] pour ↵ = 1 comme cas spéciaux. Une étude approfondie
des vecteurs propres régularisés nous permet d’améliorer l’initialisation de l’algorithme
EM (dans la dernière étape de l’algorithme spectral décrit ci-dessus) en comparaison à
une initialisation aléatoire. Des simulations numériques montrent que notre méthode fait
mieux que des approches de l’état de l’art à la fois sur des données simulées et sur des
données réelles. Ces travaux ont commencé avec l’article ci-après où nous avons procédé

à l’étude spectrale de la matrice L1 / D�1
h
A� ddT

dT1n
D�1

i
dans les modèles MBSDC de

graphes denses à grandes dimensions. Une étude des valeurs propres et vecteurs propres

6Le seuil de détectabilité des communautés est le point au-delà duquel il existe un algorithme
d’estimation des communautés qui peut faire mieux qu’une estimation aléatoire.

15



1.3. Plan et contributions

de L1 nous a permis de déterminer le seuil de transition de phase aussi bien que le taux
asymptotique d’erreur de classification d’un algorithme spectral utilisant L1.

[[Tiomoko Ali and Couillet, 2016b]] Tiomoko Ali, H. and Couillet, R. (2016). Per-
formance analysis of spectral community detection in realistic graph models. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP’16)

L’étude des matrices généralisées L↵ suivie de la caractérisation de la transition de
phase et de l’estimation du ↵ optimal a été e↵ectuée dans

[[Tiomoko Ali and Couillet, 2016a]] Tiomoko Ali, H. and Couillet, R. (2016a). com-
munity detection in heterogeneous networks. In Signals, Systems and Computers, 2016
50th Asilomar Conference on, pages 1385–1389. IEEE.

L’article suivant publié dans “Journal of Machine Learning Research” englobe tous les
travaux susmentionnés avec les preuves des di↵érents résultats. Par ailleurs, l’étude des
vecteurs propres a aussi été faite suivie par l’amélioration de l’algorithme EM utilisé dans
la dernière étape de la procédure de classification spectrale.

[[Tiomoko Ali and Couillet, 2018]] Tiomoko Ali, H. and Couillet, R. (2018). Im-
proved spectral community detection in large heterogeneous networks. Journal of Machine
Learning Research, 18:1–49.

Dans le Chapitre 5, nous considérons le problème de détection de communautés sur
des graphes à plusieurs couches. Nous proposons une nouvelle méthode qui permet de
détecter simultanément des communautés partagées et non partagées entre les di↵érentes
couches du graphe. Nous définissons un MBS étendu à des graphes multi-couches avec
des arêtes pondérées et une structure de communautés hétérogène. En raison de la forme
non explicite de la distribution a posteriori des variables latentes du modèle, nous étab-
lissons un algorithme Bayes variationnel pour approximer cette distribution a posteriori
qui nous permet d’estimer les paramètres de communautés voulues. Nous montrons que
l’algorithme proposé est plus précis et robuste que de précédentes approches pour la
détection de communautés dans les graphes à plusieurs couches. Nous illustrons enfin
notre méthode sur une base de données génomique permettant la découverte de struc-
tures hétérogènes dans les di↵érents types d’interaction entre les gènes. Ce travail, en
collaboration avec l’Université du Michigan, a été soumis à la conférence NIPS 2018

[[Tiomoko Ali et al., 2018c]] Ali, H. T., Liu, S., Yilmaz, Y., Hero, A., Couillet, R.,
and Rajapakse, I. (2018b). Latent heterogeneous multilayer community detection.

Dans le Chapitre 6, nous e↵ectuons une étude des matrices d’a�nité (produit scalaire)
aléatoires à noyau en grandes dimensions sous une hypothèse de données provenant d’un
modèle de mélange gaussien (GMM) avec des taux de croissance des moyennes et covari-
ances de classes fixés de manière à induire une classification non triviale de ces données
(c’est-à-dire ni parfaite, ni impossible). La première étude avec une fonction à noyau
générique f a été e↵ectuée dans

[[Tiomoko Ali et al., 2018a]] Tiomoko Ali, H., Kammoun, A., and Couillet, R.
(2018a). Random matrix asymptotic of inner product kernel spectral clustering. In Inter-
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national Conference on Acoustics, Speech and Signal Processing (ICASSP’18). IEEE.

Dans le travail précédent, on remarque que les fonctions génériques à noyau f sont
sous-optimales par rapport aux taux de discrimination de référence. On observe aussi
que prendre des fonctions à noyau telles que f

0(0) = 0 permet d’améliorer la condition
de tr (C1 �C2)

2 = O(p) à tr (C1 �C2)
2 = O(

p
p) mais présente l’e↵et négatif de com-

plètement ignorer l’e↵et des moyennes de classes. Dans le travail suivant [Tiomoko Ali
et al., 2018b], nous proposons une nouvelle famille de fonctions à noyau qui permettent
de mieux exploiter les statistiques des données.

[[Tiomoko Ali et al., 2018b]] Tiomoko Ali, H., Kammoun, A., and Couillet, R. (2018b).
Random matrix-improved kernels for large dimensional spectral clustering. In Statistical
Signal Processing Workshop (SSP), 2016 IEEE, pages 1–4. IEEE.

Autres publications

Au cours de cette thèse, à travers une série de travaux, nous avons e↵ectué une anal-
yse quantitative des performances de réseaux de neurones dits “echo-state” (ESN). Bien
que les ESN ne soient pas vraiment utilisés en pratique, les outils théoriques que nous
avons développés pour analyser leurs performances permettent d’avoir des intuitions sur
les fonctionnalités de mémoire des réseaux de neurones dits “récurrents” (RNN). Plus
précisément, nous avons établi une première analyse théorique de l’erreur quadratique
moyenne des phases d’apprentissage et de test, dans le régime à grandes dimensions où
le nombre de neurones et la durée de l’apprentissage sont du même ordre de grandeur.
Nous nous sommes appuyés sur des e↵ets de concentrations de matrices aléatoires pour
trouver des équivalents déterministes aux mesures de performances (erreur quadratique
moyenne). Ceux travaux ont été développés dans les publications ci-après

[[Couillet et al., 2016b]] Couillet, R., Wainrib, G., Sevi, H., and Tiomoko Ali, H.
(2016c). Training performance of echo state neural networks. In Statistical Signal Pro-
cessing Workshop (SSP), 2016 IEEE, pages 1–4. IEEE.

[[Couillet et al., 2016c]] Couillet, R., Wainrib, G., Tiomoko Ali, H., and Sevi, H.
(2016d). A random matrix approach to echo-state neural networks. In International
Conference on Machine Learning, pages 517–525.

[[Couillet et al., 2016a]] Couillet, R., Wainrib, G., Sevi, H., and Tiomoko Ali, H.
(2016b). The asymptotic performance of linear echo state neural networks. Journal of
Machine Learning Research, 17(178):1–35.

Vu que ces travaux ne sont pas directement liés au sujet de ce manuscrit, nous ne les
détaillerons pas plus dans la suite.
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Chapter 2

Introduction

Machine learning (ML) is probably the most popular field nowadays in technological
sciences reaching both the industrial and academic sectors. The power of ML lies in its
capability of automatically processing any kind of data which can be texts, numerics,
images, sounds, videos, etc., from which practically relevant data abstractions can be
retrieved. The huge amount of data arising from di↵erent industrial fields calls for the
development of innovative and e�cient automated algorithms for their processing. The
general idea behind ML is to learn a blackbox fonction y = f(x) mapping some inputs
x to some outputs y by using a set of training examples xi’s for which the outputs yi’s
are either known (supervised learning) or unknown (unsupervised learning). The learning
problem is known as classification when the set of outputs y is discrete and as regression
when the outputs are real-valued. In the case of supervised learning, the parameters of
the function are learned and then used to predict the output of new data (test set) while
in the unsupervised learning case, the input features are directly used to categorize the
inputs. Clustering, one of the most popular unsupervised learning approaches, is the main
subject of this thesis.

In general, clustering objects consists in putting them into groups in such a way that
the objects are very similar inside each group. The objects of interest can either be sets
of data (which can be seen as vectors) or graphs (representing interactions between a set
of nodes). Data vectors are the objects of interest in the so-called data clustering [Shalev-
Shwartz and Ben-David, 2014] which consists in a grouping based on the most similar
objects where similarity values (for each pair of data) are computed using a “proximity
measure”. The clustering problem is known as community detection or graph cluster-
ing [Newman, 2010, Goldenberg et al., 2010, Fortunato, 2010] when sets of interactions
(weighted or not) between pairs of nodes are provided and the task consists in finding
groups of nodes with the most compact interactions. In most machine learning datasets,
the vectors are usually not linearly separable and instead of using pair-wise similarities
in the input space, the data are first projected into a feature space (where the data
become linearly separable) before pair-wise similarity computation. Due to the kernel-
trick [Schölkopf, 2001], the computation of the aforementioned pair-wise similarity in the
feature space (usually expensive) can be performed in the input space by applying an
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appropriate kernel function on the data similarity in the input space, and the clustering
task is known as kernel-based clustering. Obviously, data clustering or kernel spectral
clustering can be seen as community detection tasks on weighted graphs.

2.1 Community detection in graphs

Community detection in graphs (networks) is one of the most fundamental problems in
data mining as it enables to explore and analyze graphs representing real-world interac-
tions in many fields including but not limited to sociology [Goldenberg et al., 2010], biology
and medecine [Chen and Yuan, 2006,Marcotte et al., 1999,Cline et al., 2007], transporta-
tion [Guimera et al., 2005], Internet of Things networks [Linden et al., 2003,Clauset et al.,
2004]. A graph G is defined as a pair of sets (V , E) with V denoting the set of nodes and
E is a subset of all pairwise interactions V ⇥V . The graph is said to be directed when the
elements of the set E are ordered and undirected otherwise. In many applications, real
value weights can be assigned to each element of E indicating the strength of the connec-
tion resulting in a weighted graph while binary weights correspond to an unweighted graph.
The nodes of the graph might either be involved in di↵erent types of interactions (e.g.,
actors involved in di↵erent social networks), or the interactions might evolve over time
(dynamic graphs), leading to the so-called multi-layer graph. The terminology single-layer
graph will be employed when only one type of interactions characterizes the graph.

For a given graph, community detection consists in extracting hidden or latent com-
munities of nodes where there are many edges inside the communities and few edges
across them. Research in single-layer community detection has and continues to be a
very active field both from theoretical and algorithmic aspects. In current real-world
networks, individuals might be involved in di↵erent types of interactions thus leading to
multi-layer/multi-relational/multiplex/multi-dimensional networks/graphs. For example,
large company employees may be connected to each other based on their similar activities
on the one hand and based on their social activities on the other hand [Oselio et al.,
2015]. In genomics, the genes might be related either by their transcriptional interactions
(function relations), e.g., measured by RNA-seq profile similarity, or by chromatin inter-
actions (spatial relations), e.g., measured by chromatin conformation capture (Hi-C) of
promter-enhancer ligations [Dixon et al., 2015, Boulos et al., 2017, Dekker et al., 2017].
The recent growth of those dynamic networks with heterogeneous interactions has thus
called for the development of new community detection methods for multi-layer graphs.
Two main classes of methods are generally used to solve the community detection problem
(for single or multi-layer graphs): statistical inference and metric-based optimization. The
community detection problem described in Section 2.1.1 is specific to single-layer graphs
where the graph nodes are only involved in one type of interaction.
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2.1.1 Single-layer graph community detection

As stated above, statistical inference methods are one of the big classes of approaches to
community detection. They consist in fitting the observed graph to a statistical model
taking into account the latent community structure and then inferring the parameters of
the model (among which the assignment of the nodes to the communities). The most basic
statistical model with community structure which is often used for inference is the so-called
Stochastic Block Model (SBM). Denoting G a k-class graph of n vertices with communities
C1, . . . , Ck with gi the group assignment of node i, the SBM assumes an adjacency matrix
A 2 {0, 1}n⇥n with Aij independent Bernoulli random variables with parameter Pgigj

where Pab represents the probability that any node of class Ca is connected to any node of
class Cb. The main limitation of this model is that it is only suited to homogeneous graphs
where all nodes have the same average degree in each community (besides, class sizes are
often taken equal). A more realistic model, the Degree-Corrected SBM (DCSBM), was
proposed in [Coja-Oghlan and Lanka, 2009, Karrer and Newman, 2011] to account for
degree heterogeneity inside communities. For the same graph G defined above, by letting
qi, 1  i  n, be some intrinsic weights which a↵ect the probability for node i to connect
to any other network node, the adjacency matrix A 2 {0, 1}n⇥n of the graph generated by
the DCSBM is such that Aij are independent Bernoulli random variables with parameter
qiqjCgigj , where Cgigj is a class-wise correction factor.

The second class of community detection methods, metric-based, consist in first defin-
ing a metric consistent with the formal definition of communities (e.g., modularity [New-
man, 2006b], ratio-cut[Wei and Cheng, 1989] ) and then maximizing the chosen metric
over all possible partitionings of the network. Formulated as such, the community detec-
tion problem is proven to be NP-hard [Brandes et al., 2007]. The literature in single-layer
community detection has been focused on finding polynomial-time approximation meth-
ods to the original problem by proposing greedy approaches [Newman, 2004], simulated
annealing [Guimera et al., 2004], extremal optimization [Duch and Arenas, 2005] and
spectral methods [Ng et al., 2002, Newman, 2006b, Newman, 2016]. The relaxation of
modularity or ratio-cut optimization from discrete community memberships to continu-
ous values leads to spectral methods (summarized in Algorithm 2 in Section 2.2) which
consist in retrieving the nodes’ communities from the eigenvectors associated with the
dominant eigenvalues of similarity matrices (adjacency matrix, modularity matrix, Lapla-
cian matrix) representing the graph. The similarity matrix in use for spectral methods
depends on the metric under consideration; for example, the optimization of the modu-
larity metric leads to a spectral method using the modularity matrix, the ratio-cut metric
corresponds to the adjacency matrix while optimizing the normalized ratio-cut induces
the use of the normalized Laplacian matrix. The community detectability threshold of
spectral methods using the adjacency matrix (and its variants) is shown [Nadakuditi and
Newman, 2012] to match the Bayes optimal threshold on dense random graphs (such that
the average degree grows with the size of the graph) generated according to the Stochas-
tic Block Model (SBM). However, there is an important gap between the community
detectability threshold of those spectral methods [Kawamoto and Kabashima, 2015] and
the Bayes optimal threshold [Decelle et al., 2011b, Decelle et al., 2011a] in the sparse
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regime (i.e., when the maximum nodes’ degree does not grow with the number of nodes)
and thus showing the sub-optimality of those spectral methods in the sparse regime [Krza-
kala et al., 2013]. In the simple “sparse” SBM case with 2 communities of same sizes, the
positive part of the phase transition conjecture [Decelle et al., 2011a] is proven in [Mossel
et al., 2013,Massoulié, 2014] while the negative part is proven in [Mossel et al., 2015]. It
was conjectured that spectral method using the Non-backtracking [Krzakala et al., 2013]
and Bethe Hessian [Saade et al., 2014] matrices fill the gap with the Bayes optimal in the
sparse regime. A study of the leading eigenvalues and eigenvectors of the Non-backtracking
matrix in [Bordenave et al., 2015] led to prove the conjecture in [Krzakala et al., 2013].
However, the convergence of the eigenvalue distribution of the Non-backtracking matrix
(a non-symmetric matrix) of random SBM graphs is still an open problem. From a ran-
dom matrix theory perspective, the reason behind the failure of spectral methods using
variants of the adjacency matrix in the sparse regime, lies in the fact that the spectrum
(eigenvalue distribution) of those matrices does not concentrate; there might be some out-
lying eigenvalues, the eigenvectors of which are localized around few vertices (called hubs)
and thus the global community structure is lost in those eigenvectors which are normally
used in spectral clustering. Getting back to the “dense” regime (where the spectrum of
the adjacency family of matrices is well behaved), [Nadakuditi and Newman, 2012] study
the spectrum of the modularity matrix in a symmetric SBM, which led to the charac-
terization of the detectability threshold which matches the Bayes optimal one. Through
an explicit characterization of the dominant eigenvector in this simpler regime and by
conjecturing on the Gaussianity of the eigenvector entries, [Nadakuditi and Newman,
2012] derive the asymptotic misclassification rate. Although the analysis of [Nadakuditi
and Newman, 2012] is only based on the modularity matrix, the performances (and also
the detectability threshold) of spectral methods using all matrices in the adjacency family
are asymptotically the same for graphs generated according to the SBM. However, as we
will show in the course of this thesis, the performances of the di↵erent spectral methods
might be di↵erent in the dense DCSBM regime.

Community detection in DCSBMs has recently been studied, providing “consistent”1

algorithms ranging from modularity/likelihood-based approaches to spectral clustering
methods. Su�cient conditions under which likelihood-based approaches [Karrer and
Newman, 2011] and modularity optimization methods [Newman, 2006b] are weakly and
strongly consistent, have been provided in [Zhao et al., 2012]. The so-called CMM (Con-
vexified Modularity Maximization) algorithm was proposed in [Chen et al., 2015b] to cope
with the computational expensiveness of modularity/likelihood methods [Karrer and New-
man, 2011,Newman, 2006b] by solving a convex programming relaxation of the modularity
optimization. Asymptotic minimax risks for misclassification loss under the DCSBM have
been established in [Gao et al., 2016]. There a consistent algorithm achieving the minimax
optimal rates was derived, which is similar to spectral methods but proceeds without the
explicit computation of eigenvectors and is hence computationally less expensive. As far

1Consistency is mainly defined in two forms. Informally, a community detection algorithm is weakly
consistent whenever the fraction of misclassified nodes vanishes asymptotically with high probability and
a community detection algorithm is strongly consistent whenever the labels estimated by the algorithm
match exactly the true labelling asymptotically with high probability.
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as spectral clustering methods are concerned, [Lyzinski et al., 2014] and [Lei et al., 2015]
show the consistency of the classical spectral clustering procedure for community detec-
tion applied to the adjacency matrix of moderately sparse DCSBM (for not too irregular
degree distributions) where the expected degree is as small as log n. Later, it has been
shown [Coja-Oghlan and Lanka, 2009,Qin and Rohe, 2013,Jin et al., 2015,Gulikers et al.,
2015] that when the degrees are highly heterogeneous, the classical spectral methods fail
to detect the genuine communities. To illustrate the limitations of spectral methods under
the DCSBM, the two graphs of Figure 1.1 provide 2D representations of dominant eigen-
vector 1 versus eigenvector 2 for the standard modularity matrix and the Bethe Hessian
matrix2, when three quarters of the nodes connect with low weight q(1) and one quarter
of the nodes with high weight q(2). For both methods, it is clear that k-means or EM
alike would erroneously induce the detection of extra communities and even a confusion
of genuine communities in the Bethe Hessian approach. Those extra communities are
produced by some biases created by the intrinsic weights qi’s; intuitively, nodes sharing
the same intrinsic connection weights tend to create their own sub-cluster inside each
community, thereby forming additional sub-communities inside the genuine communities.
To overcome this issue, a number of regularized spectral clustering techniques have been
proposed to normalize either the adjacency matrix or the leading eigenvectors by the de-
grees. In [Coja-Oghlan and Lanka, 2009,Gulikers et al., 2015], the authors have proposed
to cluster the nodes based on the eigenvectors of a normalized adjacency matrixD�1AD�1

with D the diagonal matrix containing the observed degrees on the main diagonal. We
precisely perform in [Tiomoko Ali and Couillet, 2016b] a spectral analysis of the normal-

ized modularity matrixD�1
⇣
A� ddT

dT1n

⌘
D�1 (which is not di↵erent fromD�1AD�1 as far

as spectral clustering is concerned) in a dense DCSBM regime where classification is not
asymptotically trivial. We derive there the phase transition where classification becomes
asymptotically possible and establish in simple toy random graph models the asymptotic
misclassification rate. Another approach to overcoming the biases induced in the DCSBM
consists instead in using the leading eigenvectors (pre-normalized by the inverse degree
matrix D�1) of the adjacency matrix, which is proposed as the SCORE algorithm in [Jin
et al., 2015]. [Qin and Rohe, 2013] proposed to use the eigenvectors of the Laplacian
matrix D�

1
2AD�

1
2 . As will become clear in the course of this manuscript, some of the

stated methods have the disadvantage of having a more spread out spectrum leading to
di�culty in reaching the phase transition. We propose in this thesis, a generic method
that encompasses the latter in the dense DCSBM regime which identifies the best matrix
(in the class of “adjacency” matrices) allowing to reach the phase transition in di�cult
scenarios. We also retrieve the normalization to perform on the eigenvectors in order to
avoid biases.

As previously stated, the aforementioned works [Coja-Oghlan and Lanka, 2009,Gulik-
ers et al., 2015,Jin et al., 2015] have shown that under some regularity (or regularization)

2The Bethe Hessian (BH) spectral method [Saade et al., 2014] is based on the union of the eigenvectors
associated to the negative eigenvalues of H(rc) and H(�rc) respectively where H(r) = (r2�1)In�rA+D

for rc =
P

i d
2
iP

i di
� 1 with di the degree of node i (D and di are defined subsequently).
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conditions, an almost perfect or perfect reconstruction of the node’s labels can be achieved
asymptotically. Our motivation in this first part of the thesis is to go beyond mere con-
sistency results by understanding the performances of the di↵erent regularized spectral
clustering algorithms for large but finite network sizes n. For this, we place ourselves in
a regime where communities are too close to induce perfect reconstructions, so that the
di↵erent spectral algorithms do not all lead to the same asymptotic trivial classification.
As stated above, in order to encompass most aforementioned methods, we study here a
generalized regularization of the adjacency matrix3 given, for any ↵ 2 R, by

L↵ = (2m)↵
1
p
n
D�↵


A�

ddT

2m

�
D�↵

where d is the vector of degrees (di =
Pn

j=1 Aij), D is the diagonal matrix of degrees

(containing d on the main diagonal) and m = 1
2d

T1n is the number of edges in the
network. In particular, L0 is the modularity matrix [Newman, 2006b, Jin et al., 2015],
L 1

2
is a modularity equivalent to the normalized Laplacian matrix [Qin and Rohe, 2013,

Chung, 1997] and L1 is the form used in [Coja-Oghlan and Lanka, 2009,Gulikers et al.,
2015,Tiomoko Ali and Couillet, 2016c].

We consider here a dense DCSBM model where qi = O(1) (with respect to n)4. In
this regime, when the correction factors Cgigj di↵er by O(1), consistency (i.e., vanishing
error rates are guaranteed asymptotically) is shown for all regularized spectral algorithms.
In order to compare those algorithms, we consider a regime where the communities are
barely separable from the community matrix C, but still identifiable. This regime is
ensured for Cgigj = O(1) individually but for the Cgigj ’s di↵ering by O(n�

1
2 ). Under this

regime, we have studied in [Tiomoko Ali and Couillet, 2016a,Tiomoko Ali and Couillet,
2018] the dominant eigenvalues and associated eigenvectors (used for classification) of L↵

for large dimensional dense graphs following the DCSBM in the aforementioned regime.
The study of the eigenvalues allows us to prove that there exists a non-trivial optimal
L↵ where we can estimate on-line ↵ from the observed graph. In [Tiomoko Ali and
Couillet, 2018], we characterize the asymptotic content of the dominant eigenvectors of
L↵ which led us to provide limiting values of the means and covariances of the centroids
(corresponding to each community) that an Expectation Maximization (EM) algorithm
(assuming Gaussian Mixture Model distribution of the eigenvectors’ entries) would find
after convergence. Those findings are then used in practice to initialize EM instead of the
classically used random initialization.

3The leading term ddT

2m (not providing any information about the communities) is shown in simula-
tions to have asymptotically no impact on the clustering performance. It is discarded here mostly for

mathematical simplicity. Note in passing that A� ddT

2m corresponds to the modularity matrix [Newman,
2006a], therefore L↵ may be seen as a “↵-normalized” modularity matrix.

4In light of the previous spectral clustering methods, the same analysis is valid for qi in order as small
as logn

n .
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2.1.2 Multilayer graph community detection

The extraction of community structures shared by the di↵erent layers as well as the struc-
ture distinct between the layers might be a good way to understand the interplay between
the di↵erent interactions in multilayer graphs. There is thus a need for new community
detection methods to cope with such a heterogeneous structure in the multilayer graphs.
The recovery of the communities independently in each layer (using classical single-layer
community detection methods) is suboptimal as this approach does not exploit the com-
mon information across the layers. The current research e↵ort aims at developing joint
inference methods by multilayer aggregation [De Domenico et al., 2015a,Nicosia and La-
tora, 2015,De Bacco et al., 2017]. The simplest aggregation approach is to collapse the
multilayer network to a single-layer network on which classical community detection meth-
ods can be applied [Tang et al., 2009,Tang et al., 2012,Comar et al., 2012,Zhang et al.,
2013,Amelio and Pizzuti, 2014,De Domenico et al., 2015b,Taylor et al., 2016,Kim et al.,
2017]. Alternatively, some researchers have suggested performing community detection
separately in each layer followed by consensus aggregation of the communities across layers
[Mucha et al., 2010,Xiang et al., 2012,Oselio et al., 2014,Amelio and Pizzuti, 2014,Paul
and Chen, 2016]. Another approach is to extend single-layer SBMs to multilayer net-
works [Sweet et al., 2014, Han et al., 2015, Paul and Chen, 2015, Peixoto, 2015, Stanley
et al., 2016,Valles-Catala et al., 2016,Reyes and Rodriguez, 2016,Barbillon et al., 2017],
and use statistical inference approaches specific to the multi-layer architecture.

As stated above, in practice, some communities might be shared between the di↵er-
ent layers, while others might not be (see Figure 1.2). However, few methods in the
literature explicitly consider this general scenario. The Multilayer Extraction algorithm
proposed in [Wilson et al., 2017] allows identification of heterogeneous multilayer com-
munities where the communities might be shared between a subset of layers. [Wilson
et al., 2017] minimize a cost function and take into account the similarities and dissim-
ilarities between the layers’ communities. While the model used in [Wilson et al., 2017]
is realistic when considering multilayer graph connections, the method is only limited to
unweighted graphs. The approach proposed in [Boden et al., 2012] extend [Zeng et al.,
2006] to weighted multilayer graphs and allows the extraction of coherent dense subgraphs
(cliques) shared by subsets of layers. However, those methods are limited to identification
of dense communities and might fail when the communities are connected but with only
a few edges.

In a joint work with the University of Michigan, we propose in [Tiomoko Ali et al.,
2018c], a method that can simultaneously detect shared and unshared communities be-
tween heterogeneous weighted networks. We take here a model-based approach (statistical
inference) where joint weighted stochastic block models (WSBM) that share “a part” of
their community structures are proposed. Due to the intractable form of the posterior
distribution of the hidden latent community membership variables given the observed
adjacency matrices, we make use of a variational Bayes approach to approximate that
posterior. The approximate mean field variational distribution is then used to infer the
latent shared and private communities from the proposed multilayer WSBM. This extends
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the works in [Aicher et al., 2014,Zhang and Zhou, 2017] devised for WSBM in single-layer
graphs.

2.2 Kernel Spectral clustering

The so-called curse of dimensionality in ML increases exponentially the need for the
important amount of training data when the data dimension increases in order to avoid
overfitting phenomena. Also, a huge number of features (dimensions) makes the training
process very slow. The most natural solution to the curse of dimensionality problem is
to reduce the number of features in such a way to keep the most important information
in the data, an operation called dimensionality reduction. For example, pixels in images
tend to be highly correlated and thus, retaining only a summary of the representative
pixels tremendously reduces the data dimensionality. The most important dimensionality
reduction techniques are Principal Component Analysis (PCA) and manifold learning
approaches. PCA, by far the most popular dimensionality reduction technique, consists
in finding the hyperplane summarizing most of the data and then project the data on
it. The hyperplane is chosen is such a way that it minimizes the mean squared distance
between the original dataset and its projection on the hyperplane axes. The hyperplanes
axes are called the principal components and correspond to the largest eigenvectors in
the Singular Value Decomposition (SVD) of the data matrix. Once the dimensionality is
reduced with the most important information kept, classical ML algorithms can be applied
with less complexity and more e�ciency. Spectral clustering approaches can be seen as
variants of PCA and consist in clustering the data using only a few Principal Components.
We are interested here in the investigation of spectral clustering on high dimensional data,
the behavior of which will be seen to be completely di↵erent from the original intuition
of spectral clustering in small dimensions. We consider spectral clustering algorithms

Algorithm 2: Spectral algorithm
1: Compute the, say, ` eigenvectors u1, . . . ,u` 2 Rn corresponding to the dominant

(largest or smallest) eigenvalues of one of the matrix representations of the network
(adjacency, modularity, Laplacian) of size n⇥ n.

2: Stack the vectors ui’s columnwise in a matrix W = [ui, . . . ,u`] 2 Rn⇥`.
3: Let r1, . . . , rn 2 R` be the rows of W. Cluster ri 2 R`, 1  i  n in one of k groups

using any low-dimensional classification algorithm (e.g., k-means [Hartigan and
Wong, 1979] or Expectation Maximization (EM) [Ng et al., 2012]). The label
assigned to ri then corresponds to the label of node i.

(Algorithm 2) of n data vectors say x1, . . . ,xn 2 Rp that we wish to classify into distinct
classes. A basic approach would consist in finding hyperplanes (in the Rp-space) separating
the di↵erent vectors into distinct classes. This method can be shown to be equivalent to
performing a Principal Component Analysis (PCA) or spectral method on the a�nity
matrix containing the inner-product between the data. However, this separation is only
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2.2. Kernel Spectral clustering

valid when the data are linearly separable which is not the case in most ML datasets. To
cope with this di�culty, kernel methods have been introduced and consist in projecting
the non linear objects into a higher dimensional feature space where hyperplanes can
be found to linearly separate the data. The idea is thus to move xi to �(xi) with � :
Rp
! RP (with P � p) and use a spectral method on the empirical covariance matrix in

the feature space RP
. The former operation being obviously prohibitive for large P, the

kernel-trick [Schölkopf, 2001] was introduced to consider instead the similarity f(xi,xj)
between vectors xi and xj where f is a function such that �(xi)T�(xj) = f(kxi � xjk

2)
or �(xi)T�(xj) = f(xT

i xj). Such functions f verifying certain properties [Schölkopf, 2001]
are shown to exist. Spectral clustering can then be applied on the kernel matrix, a
method known as kernel spectral clustering. It is shown in [Von Luxburg et al., 2008] that
spectral clustering on well known a�nity matrices (Laplacian) between growing number
of random samples xi 2 Rp

, 1  i  n (n!1 with p fixed) is consistent in the sense that
the dominant eigenvectors of those similarity matrices asymptotically converge to some
limiting eigenfunctions exhibiting“reasonable partitioning”of the samples. However, as we
will show in the sequel, clustering high dimensional data (n ! 1, p ! 1 with constant
p/n) is less trivial and important di↵erences exist compared to small dimensional data
clustering.

The original intuition of [Ng et al., 2002] behind spectral clustering is no longer
valid with high dimensional data. To see this, we will start by describing the kernel
spectral clustering mechanism in small dimensions. Let us consider n small dimensional
data vectors x1, . . . ,xn 2 Rp that we wish to classify into two distinct classes using a
kernel fonction f such that the a�nity Kij = f(xT

i xj) between vectors xi and xj is large
when those vectors belong to the same class and vanishes when they belong to distinct
classes. Assuming without loss of generality that the vectors xi are ordered by classes
i.e., x1, · · · ,xn/2 constitute the first class while xn/2+1, · · · ,xn form the second class, we
note that the vectors [1n

2
,0n

2
] and [0n

2
,1n

2
] that we shall call in the sequel the canonical

vectors of the classes, are approximately eigenvectors of the Laplacian matrix L = D�K

(with D = diag(
nPn

j=1 Kij

on

i=1
)) associated with the smallest eigenvalue 0, and thus a

spectral clustering algorithm using those eigenvectors will assign the right class to each
data without error. In close-to-ideal situations, f(xT

i xj) will be relatively large for data
of the same class so that a spectral algorithm using the eigenvectors associated with the
smallest eigenvalues of L will be able to retrieve the classes with a reasonable performance.
This reasoning is no longer valid in the “big data” regime where the dimension p is very
large. To illustrate this fact, let us assume that the vectors xi are independent Gaussian
with the same covariance Ip but with mean µ1 when they belong to the first class and

mean µ2 when they belong to the second class. We thus have xT

i xj

p '
µT

1µ2

p when x1 6= x2

while xT

i xi

p '
kµ1k

2

p + 1 when x1 6= x2. As will be shown later, the class means should
satisfy kµak = O(1) (with respect to p) in order to avoid having i) asymptotically very
distant vectors such that clustering becomes trivial or ii) very closed vectors such that
clustering is impossible. As a consequence of kµa � µbk = O(1), the a�nity Kij (for
i 6= j) asymptotically converges to the same value f(0) no matter the class membership of
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xi and xj. It thus seems not possible to retrieve the classes using the spectral algorithm
procedure described above since the notion of “closeness” between data of the same class
is no longer valid in high dimensions. However, it turns out that the spectral algorithm
still works as can be seen in Figure 1.3 where the dominant eigenvectors of K for large
dimensional vectors are noisy plateaus with each plateau representing a class and thus a
k-means method would be able to retrieve the class information with non-trivial errors. It
is thus essential to understand the reasons why large dimensional kernel spectral clustering
methods still work despite the fact that the notion of “closeness” at the heart of spectral
clustering is no longer valid.

In order to understand the di↵erent mechanisms of large dimensional spectral cluster-
ing, it is important to understand the eigenstructure of large structured random a�nity
matrices K. It is clear from the structure of Kij = f

�
xT

i xj

�
that K has non linear entries

and dependent columns, a structure not common in classical random matrix theory. Early
works by [El Karoui et al., 2010] have shown that when the high dimensional vectors xi

are Gaussian with zero mean and covariance C (thus no class assumption here), the ma-

trix K =
n
f

⇣
xT

i xj

p

⌘on

i,j=1
is asymptotically equivalent to a random matrix of the type

“perturbed empirical covariance matrix”. Specifically, it was shown in [El Karoui et al.,
2010] that

kK� K̂k ! 0

in probability where

K̂ = f
0(0)XXT +

✓
f(0) + f

00(0)
trC2

2p2

◆
1n1

T

n +

✓
f

✓
trC

p

◆
� f(0)� f

0(0)
trC

p

◆
In

with X = [x1, . . . ,xn]. The matrix K̂ has a simple structure from a “random ma-
trix” point of view: it is essentially a scaled version of the empirical covariance matrix
f
0(0)XXT added to the low rank matrix 11T and a scaled identity matrix. The eigen-

structure of K can thus be performed as in classical RMT. Leveraging on [El Karoui
et al., 2010], the work [Couillet and Benaych-Georges, 2016] generalizes the study of
K = {f (kxi � xjk

2)}ni,j=1 to data xi’s arising from a Gaussian Mixture Model (GMM)
with k classes C1, . . . , Ck such that xi is Gaussian with mean µa and covariance Ca when
it belongs to class Ca. In the big data regime where the data dimension p scales linearly
with the number n of data (n, p!1 with n/p = O(1)), [Couillet and Benaych-Georges,
2016] show that K asymptotically behaves as a so-called spiked random matrix, i.e., the
sum of a “deformed sample covariance matrix” with perturbation matrices containing the
information about the classes (means, covariances). This spiked model structure allows
to perform a thorough study of the eigenvalues and eigenvectors of K in this large di-
mensional regime. The random matrix analysis of the dominant eigenvectors reveals in
particular that the choice of the kernel function f has a strong impact on the discrimation
of the data based upon their statistical class means and/or class covariances.

In this thesis, we also consider high dimensional data arising from a mixture of k
Gaussian distribution with means µa and covariance Ca (a = 1, · · · , k). In this high
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dimensional setting, assuming a supervised scenario where the means and covariances are
known and the objective is to retrieve the classes of each data. The authors in [Couillet
et al., 2018] derive the minimal rates of the distances between the class means and class
covariances required to asymptotically achieve a non trivial clustering (i.e., neither perfect
nor impossible). Those minimal rates (that we shall call in the sequel oracle optimal
rates), provided below in the case k = 2 thus constitutes a baseline of comparison between
di↵erent clustering methods (semi-supervised or unsupervised).

• kµ1 � µ2k = O(1).

• kC1 �C2k = O

⇣
1
p
p

⌘
.

• tr (C1 �C2) = O(
p
p).

• tr (C1 �C2)
2 = O(1).

The objective of this part of the thesis is to propose e�cient kernel spectral clustering
methods (unsupervised) capable of discriminating data with distance rates closed to the

oracle optimal rates5. To this end, we start by analyzing the kernel matrix K = f

⇣
xT

i xj

p

⌘

with f a generic kernel function supposed to be at least 3 times di↵erentiable around 0

(since xT

i xj

p ! 0 in the regime under study). This study reveals that estimating the class
labels by spectral clustering on K does not perform better than a random guess for generic
function f when class means are equal and tr (C1 �C2)

2
⌧ O(p) which is far from the

optimal oracle rate. By using instead a kernel function f such that f
0(0) = 0, one can

perform better than a random guess when tr (C1 �C2)
2 = O(

p
p) thus inducing better

performances than generic kernel functions. However, the latter kernel has the negative
side of cancelling the e↵ect of the data means on the clustering i.e., using this kernel
will not be able to di↵erentiate data with same covariances but with strongly di↵ering
means. This case is carefully studied in [Kammoun and Couillet, 2017] for inner product
kernels f(xT

i xj/p) with kernel function f such that f 0(0) = 0 (0 being the limiting value
of xT

i xj/p). In this thesis, we show that a careful random matrix analysis of the inner
product kernel matrix K reveals that setting f

0(0) = O(p�
1
2 ) instead of f 0(0) = 0 allows

for a fair treatment between class means and class covariances in the clustering procedure
and is able to to discriminate the data with rates condition tr (C1 �C2)

2 = O(
p
p) as

for the kernel with f
0(0) = 0. This new kernel matrix which takes into account balance

between statistical means and covariances in the data is able to discriminate the data with
better rates compared to previously studied kernels. Such kernel choices are important
in practice since specific choices of f are more adapted to datasets containing either
pronounced di↵erences between class means as in the popular MNIST dataset [LeCun,
1998] while other functions are more e�cient on datasets with classes having similar means
but strongly di↵ering covariances [Andrzejak et al., 2001].

5The term oracle is employed to stress the fact that those optimal rates are obtained in a supervised
case where the class means and class covariances are perfectly known.
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2.3 Outline and Contributions

Outline and related publications

As stated in the previous sections, this thesis covers two main clustering applications:
community detection in graphs and high dimensional kernel data clustering. As a first
main contribution for community detection in graphs, leveraging a complete study of the
spectrum of graph similarity matrices, we devise an improved spectral algorithm for large
dense and heterogeneous single-layer graph models as a generalization of previous classical
spectral methods. The second main contribution concerns multi-layer graph community
detection where we devise a model-based algorithm to infer heterogeneous communities
from the di↵erent layers. As for data kernel spectral clustering, through a complete study
of the spectrum of large kernel similarity matrices, we provide some important insights
on the appropriate kernel functions to use based on the statistics of the data.

In Chapter 3, we introduce the mathematical tools necessary to follow the di↵erent re-
sults of this thesis. The main lever of Chapters 4 and 6 is the spectral analysis (eigenvalues
and eigenvectors) of large random matrices while in Chapter 5, we use variational Bayes
inference methods to devise a multi-layer community detection algorithm with overlapping
communities between the di↵erent layers. Those two completely di↵erent mathematical
tools (Random Matrix theory and Variational Inference) are introduced to constitute a
basis for the following chapters.

In Chapter 4, we consider the large dimensional spectral clustering dense community
detection problem on realistic networks which can have heterogeneous degree distribu-
tions. We consider a generalized form L↵ (parametrized by ↵) of the most used similarity
matrices (given for di↵erent values of ↵) used for spectral clustering on dense graphs, un-
der the realistic statistical graph model, the DCSBM. The performances of those spectral
methods depending on the position of the eigenvalues of L↵ as well as the content of the
corresponding eigenvectors, we study the eigenstructure of L↵. The matrix L↵ not being a
tractable random matrix clearly exhibiting the community structure of the graph, a first
step is to approximate L↵ as the number of nodes n ! 1 by a theoretically tractable
random matrix L̃↵ which falls in the family of so-called spiked random matrix models
and which allows for a thorough study of eigenvalues and eigenvectors of L↵. Spiked ran-
dom matrices (which will be introduced in Chapter 3) generally exhibit a phase transition
beyond which useful information can be extracted from the eigenvectors associated to
outlying eigenvalues (and below which nothing can be said). In our context, this phase
transition corresponds to a community detectability threshold, common in community de-
tection algorithms analysis. We characterize exactly this phase transition for each value
of ↵. We then prove the existence of and obtain an expression for an optimal value ↵opt of
↵ for which the community detectability threshold6 is maximally achievable. This value
needs not be either 0 or 1 and its proper choice is of utmost importance in highly het-

6The community detectability threshold is the point beyond which there exists a clustering algorithm
which can do better than a random guess.
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erogeneous graphs. We provide a consistent estimator ↵̂opt of ↵opt based on d alone. We
show that to achieve consistent clustering in the DCSBM model, the dominant eigenvec-
tors used for clustering should be pre-multiplied by D↵�1 prior to the low dimensional
classification (step 3 of Algorithm 2), thereby recovering the SCORE algorithm [Jin et al.,
2015] for ↵ = 0 and the algorithm in [Gulikers et al., 2015] for ↵ = 1, as special cases.
A deeper study of the regularized eigenvectors allows us to improve the initial setting of
the EM algorithm (in the step 3 of the spectral algorithm described above) in comparison
with a random setting. Numerical simulations show that our methods outperform state-
of-the-art spectral methods both on synthetic graphs and on real-world networks. This
line of work started with the following paper where we investigate the spectral analysis of

the particular matrix L1 / D�1
h
A� ddT

dT1n
D�1

i
in the large dimensional dense DCSBM

models. A study of the eigenvalues and eigenvectors of L1 allows us to derive the phase
transition threshold as well as the asymptotic misclassification rates of spectral algorithms
using L1.

[[Tiomoko Ali and Couillet, 2016b]] Tiomoko Ali, H. and Couillet, R. (2016). Per-
formance analysis of spectral community detection in realistic graph models. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP’16)

The study of the generalized scaled matrices L↵ along with the characterization of
phase transition and estimation of the optimal ↵ was then performed in

[[Tiomoko Ali and Couillet, 2016a]] Tiomoko Ali, H. and Couillet, R. (2016a). com-
munity detection in heterogeneous networks. In Signals, Systems and Computers, 2016
50th Asilomar Conference on, pages 1385–1389. IEEE.

The following article published in the Journal of Machine Learning Research encom-
passes all the aforementioned works with all proofs and calculation details. Also, the
study of the eigenvectors is performed followed by the improvement of the classical EM
algorithm in the last step of the spectral clustering procedure.

[[Tiomoko Ali and Couillet, 2018]] Tiomoko Ali, H. and Couillet, R. (2018). Im-
proved spectral community detection in large heterogeneous networks. Journal of Machine
Learning Research, 18:1–49.

In Chapter 5, we investigate the problem of multi-layer community detection with het-
erogeneous communities between the layers. We propose a new model-based method to
simultaneously detect shared and unshared communities between heterogeneous weighted
graphs. We define joint weighted stochastic block models (WSBM) that take into account
similarities and dissimilarities between the community structures. Due to the intractable
form of the posterior distribution of the latent community memberships given the observed
similarity matrices of the di↵erent layers, we derive a variational Bayes algorithm for au-
tomatically inferring shared and unshared communities from multilayer weighted graphs.
We establish that the proposed algorithm is more accurate and robust than previous ap-
proaches to community detection in multi-layer networks in extracting both shared and
unshared communities from weighted graph benchmarks. We finally illustrate a real-world
use of our method in multinomic molecular biology enabling the discovery of heteroge-
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neous multilayer communities of gene-gene interactions in human fibroblast proliferation.
The work presented in this chapter was submitted to the NIPS’2018 conference

[[Tiomoko Ali et al., 2018c]] Ali, H. T., Liu, S., Yilmaz, Y., Hero, A., Couillet, R.,
and Rajapakse, I. (2018b). Latent heterogeneous multilayer community detection.

In Chapter 6, we perform a random matrix study of high dimensional data clustering
with inner product kernels under a Gaussian Mixture Model (GMM) assumption with
growth rates on the means and covariances set in such a way to achieve non-trivial clus-
tering (i.e., neither perfect clustering nor impossible clustering). The first study of the
inner product kernels with generic kernel functions f is performed in

[[Tiomoko Ali et al., 2018a]] Tiomoko Ali, H., Kammoun, A., and Couillet, R.
(2018a). Random matrix asymptotic of inner product kernel spectral clustering. In Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP’18). IEEE.

In the previous work, it is seen that generic kernel functions f are rate suboptimal
compared to the oracle setting. It is also observed that taking f 0(0) = 0 leads to improving
the rate from tr (C1 �C2)

2 = O(p) to tr (C1 �C2)
2 = O(

p
p) but completely annihilating

the e↵ect of the class means. In the following work [[Tiomoko Ali et al., 2018b]], we propose
new kernels conciliating the previous works by balancing between the class means and class
covariances in the data while allowing to achieve the same distance rate with the kernel
f such that f 0(0) = 0.

[[Tiomoko Ali et al., 2018b]] Tiomoko Ali, H., Kammoun, A., and Couillet, R. (2018b).
Random matrix-improved kernels for large dimensional spectral clustering. In Statistical
Signal Processing Workshop (SSP), 2016 IEEE, pages 1–4. IEEE.

Other publications

In the course of the PhD, we have also provided through a series of work, a quantita-
tive analysis of the performance of linear echo-state networks (ESNs). While ESNs are
not so used in practice, the theoretical tools that we have developed to analyze their
performances convey a deeper understanding on the core mechanism underplay and pro-
vide some intuition on the memory functionality of Recurrent Neural Networks (RNN).
Specifically, we provide a first theoretical analysis of the mean-square error performance
of linear ESNs for both training and testing phases in the regime where the reservoir
size and the training (or testing) duration are large and commensurable. We leverage on
(random matrices) concentration of measure properties to provide a deterministic limit
of the aforementioned performance (mean-square error). Those works were conducted in
the following publications

[[Couillet et al., 2016b]] Couillet, R., Wainrib, G., Sevi, H., and Tiomoko Ali, H.
(2016c). Training performance of echo state neural networks. In Statistical Signal Pro-
cessing Workshop (SSP), 2016 IEEE, pages 1–4. IEEE.
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[[Couillet et al., 2016c]] Couillet, R., Wainrib, G., Tiomoko Ali, H., and Sevi, H.
(2016d). A random matrix approach to echo-state neural networks. In International
Conference on Machine Learning, pages 517–525.

[[Couillet et al., 2016a]] Couillet, R., Wainrib, G., Sevi, H., and Tiomoko Ali, H.
(2016b). The asymptotic performance of linear echo state neural networks. Journal of
Machine Learning Research, 17(178):1–35.

As these works cover topics not directly within the scope of the present manuscript,
we do not further elaborate on them here.
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Chapter 3

Mathematical background

3.1 Introduction

This chapter introduces theoretical concepts necessary to understand the results in the
subsequent chapters. As stated in Chapter 2, the performance analysis of spectral clus-
tering methods (community detection in graphs, kernel spectral clustering) requires the
understanding of the behavior of the eigenvalues and eigenvectors of large random matri-
ces representing similarities of the data analyzed through their closest probabilistic model.
A large field of Random Matrix Theory has covered throughout the years the analysis of
the eigenvalues and eigenvectors of large covariance matrices or large Hermitian matrices
as well as some transformations of those. Related to clustering are the so-called spiked
random matrices (equivalent to low rank information + high rank noise matrices) which
will be used throughout this thesis, the dominant eigenvectors of which contain the rele-
vant information about the data model. We discuss in particular in this chapter simple
introductory results on spiked random matrix analysis along with sketches of proofs. This
will form a basis to follow the main results of this thesis which involve more general spiked
random matrix models. In the second part of this thesis, we use variational Bayes infer-
ence methods to devise a new method for multi-layer community detection. The end of
this chapter will introduce the overall idea behind variational Bayes inference methods in
order to follow the results in Chapter 5.

3.2 Random matrix theory

Random matrix theory (RMT) dates back to 1928 with the work of the statistician John
Wishart [Wishart, 1928] who was interested in studying the behavior of sample covariance
matrices in the form Ĉp =

1
n

Pn
i=1 xixH

i of i.i.d random processes xi, . . . ,xn 2 Cp
. Wishart

provided the joint distribution of the eigenvalues of Ĉp for independent vectors identically
distributed as standard Gaussian (Ĉp is called Wishart matrix since then). Later then,
EugeneWigner [Wigner, 1993] introduced the eigenspectrum analysis of large random Her-
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mitian matrices by postulating that the spacing between the lines in the spectrum of heavy
atom nucleus resemble the spacing between the eigenvalues of symmetric matrices with in-
dependent entries (matrices known since then as Wigner matrices) uniformly distributed
in {�1, 1}. He then proved the convergence of the eigenvalue distribution of the latter
random matrix towards the semi-circle law for growing matrix dimensions. The works of
Wigner then triggered enormous research on the properties of the joint eigenvalue distri-
bution, the distribution of extreme eigenvalues and eigenvectors of random matrices with
growing size. Those findings have gained more attention in many domains involving large
random matrices models such as in physics [Mehta, 2004], finance [Laloux et al., 2000],
evolutionary biology [Arnold et al., 1994], wireless communications [Telatar, 1999,Couillet
and Debbah, 2011] and recently the growing field of machine learning [El Karoui et al.,
2010,Benaych-Georges and Couillet, 2016,Couillet and Benaych-Georges, 2016]. The goal
of this chapter is not an exhaustive development of the di↵erent concepts in the spectral
analysis of large random matrices but the introduction of the necessary tools to follow
our results in large dimensional data clustering (kernel spectral clustering and spectral
community detection).

3.2.1 Limiting eigenvalue distribution of large dimensional ran-
dom matrices

As stated above, the performance analysis of many real-world applications appeals to the
knowledge of the eigenvalues distribution of large Wishart matrices introduced above. As
introductory example, let us consider a sequence of vectors x1, · · · ,xn 2 Rp randomly
drawn from a p-variate zero mean random process. For the dimension p fixed, as n!1,

the sample covariance matrix Ĉp =
1
n

Pn
i=1 xixT

i converges almost surely to the population

covariance matrix C = E[x1xT

1 ] in the sense that kĈp�Ck ! 0 on a set of probability one
and the convergence is true for any norm. This result follows from Markov inequality on
su�ciently high order moments, the union bound, and the Borel Cantelli lemma leading
to a“uniform” law of large numbers. However, this convergence result is no longer true for
large p-large n with n, p growing at the same rate. To give an illustrative counter example,
let us consider i.i.d vectors x1, · · · ,xn 2 Rp with x1 ⇠ CN (0, Ip) such that p

n ! c > 1.
Denoting X = [x1, · · · ,xn] 2 Rp⇥n

, from the law of large numbers, we have the joint
point-wise convergence

max
1i,jp

����
h
Ĉp � Ip

i

ij

���� = max
1i,jp

�����
1

n

nX

k=1

XikX
?
jk � �ij

�����
a.s.
�! 0. (3.1)

However, the convergence in spectral norm is not true since Ĉp has at least p � n zero
eigenvalues while all the eigenvalues of the population cavariance matrix C = Ip are all
equal to one. More generally, for p/n ! c > 0, the eigenspectrum of Ĉp tends to spread
far from 1 (the eigenvalue of the population covariance matrix), as illustrated in Fig-
ure 3.1 (where we take n = 2000 draws of x1 ⇠ CN (0, Ip) with p = 500). This important
observation has led to an important field of RMT dedicated to the study of limiting eigen-
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Figure 3.1: Histogram of the eigenvalues of Ĉp for p = 500, n = 2000, Cp = Ip.

spectrum distribution of large sample covariance matrices and large Hermitian random
matrices in general. Before stating the prior results on the eigenvalues distributions of
those random matrices, we first define the marginal density of their eigenvalues.

Definition 1 (Empirical Spectral Density)). Let us consider a symmetric matrix Xn 2

Rn⇥n. We define its empirical spectral density (e.s.d.) µ
Xn
n as

µ
Xn
n =

1

n

nX

i=1

��i(Xn).

with �i(Xn) the i-th eigenvalue of Xn.

An important class of large random Hermititian matrices has the property that their
random e.s.d. converges in some sense to a deterministic limiting distribution that we shall
call the limiting spectral distribution (l.s.d.). In the following, we recall the well-known
results which will also be the basis of our results in the subsequent chapters. The first
(historical) result is due to Wigner [Wigner, 1993] and concerns the convergence of the
e.s.d. of the aforementioned Wigner matrices.

Theorem 2 (Theorem 2.5 and Theorem 2.9 of [Bai and Silverstein, 2010]). Consider an
n⇥ n symmetric matrix Xn, with independent entries 1

p
n(Xn)ij such that E[(Xn)ij] = 0,

E[|(Xn)ij|2] = 1 and there exists ✏ such that the (Xn)ij have a moment of order 2 + ✏.

Then µ
Xn
n ) µ almost surely, where µ has a density f defined as

f(x) =
1

2⇡

p
(4� x2)+. (3.2)

Moreover, if the (Xn)ij are identically distributed, the result holds without the need for
existence of a moment of order 2 + ✏.
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Figure 3.2: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for
n = 500.

An example of l.s.d of a symmetric matrix with independent upper-diagonal Xij ⇠

N (0, 1/n) entries, is shown in Figure 3.2. This result is proved in [Bai and Silverstein,
2010] using the method of moments (Section 30 of [Billingsley, 1995]) but also using the
Stieltjes transform method in [Bai and Silverstein, 2010]. A similar result is obtained in our
community detection problem on heterogeneous graph models where we deal with Wigner
matrices with independent but not identically distributed adjacency entries (having a
variance profile). We get in that case a deformed semi-circle law; this will be detailed in
Chapter 4.

A more involved result concerns non-symmetric matrices where the l.s.d. is this time
a full circle law, the eigenvalues of those matrices lying in the complex plane. The first
proof of this result is by Girko but we give here the more general result due to Bai in
1997 [Bai, 2008]

Theorem 3 (Full circle law [Bai, 2008]). Let Xn 2 Rn⇥n have i.i.d entries 1
p
n(Xn)ij,

1  i, j  n, such that (Xn)11 has zero mean, unit variance. Additionally, assume that
the joint distribution of the real and imaginary parts of 1

p
n(Xn)11 has bounded density.

Then, with probability one, the e.s.d. of Xn tends to the uniform distribution on the unit
complex disc. This distribution is referred as the circular law, or full circle law.

This result is given for completeness but does not intervene in the applications of
this thesis. Figure 3.3 illustrates the circular law for a non-symmetric matrix with i.i.d.
Xij ⇠ N (0, 1/n) entries.

Let us get back to the sample covariance matrix. We recall that in the large n - large
p regime, the sample covariance matrix does not converge to the population covariance
matrix. However, the e.s.d. of a large class of sample covariance matrix converges to a
well-known deterministic distribution. This well-known result with important applications
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Figure 3.3: Eigenvalues of Xn with i.i.d. standard Gaussian entries, for n = 500.

in wireless communications and now in machine learning concerns the convergence of the
Gram matrix (empirical covariance matrix) of a random matrix with i.i.d entries of zero
mean and normalized variance to the so-called Marc̆enko-Pastur law (MP) [Marčenko and
Pastur, 1967].

Theorem 4 (Marc̆enko-Pastur law [Marčenko and Pastur, 1967]). Consider a matrix

X 2 Rp⇥n with i.i.d. entries
⇣

1
p
n(Xp)ij

⌘
, independent for all i, j, n such that (Xp)ij has

zero mean, unit variance. As n, p ! 1 with p
n ! c 2 (0,1), the e.s.d. of Ĉp = XXT

converges weakly and almost surely to a non-random distribution function µ with density
fc given by:

fc(x) = (1� c
�1)�(x) +

1

2⇡cx

p
(x� a)+(b� x)+. (3.3)

where a = (1�
p
c)2, b = (1 +

p
c)2 and �(x) = 10(x).

Figure 3.4 exhibits the MP distribution for di↵erent limit ratios c. We can notice that
in particular, as c ! 0 (when the number of samples n is much larger than the fixed
dimension p for example) the distribution shrinks towards 1 since as evidenced previously,
the spectral norm di↵erence between the sample covariance matrix and the population
covariance matrix converges to 0 for large n.

The proofs of those convergence results rely either on the moment method (Section 30
of [Billingsley, 1995]) or on the Sieltjes transform method. We use in this thesis Stieltjes
transform based approaches to prove the convergence of e.s.d. of the random similarity
matrices involved in our clustering problems. Let us thus introduce the Stieltjes transform.
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Figure 3.4: Marc̆enko-Pastur law for di↵erent limit ratios c = limp!1 p/n.

3.2.2 The Stieltjes transform and its properties

Definition 5 (The Stieltjes transform). Let µ be a real-valued bounded measurable func-
tion over R. Then, the Stieltjes transform mµ(z) of µ, for z 2 Supp(µ)c, the complex space
complementary to the support1 of µ, is defined as

mµ(z) ,
Z

1

�1

1

t� z
dµ(t). (3.4)

The inverse mapping is defined for all distributions µ admitting a Stieltjes transform
mµ as follows

Theorem 6 (Inverse transformation). If x is a continuous point of µ, then:

µ(x) =
1

⇡
lim
y!0+

Z x

�1

I[mµ(x+ iy)]dx. (3.5)

Working directly with the e.s.d. of large random matrices to find its limiting distribu-
tion turns out to be a hard task in most cases. As a workaround, the Stieltjes transform
method is employed instead. It first consists in computing the Stieltjes transform mµn of
the e.s.d µn, finding its limit mµ which in most cases is also the Stieltjes transform of a
distribution function µ. Using the following theorem, one can then show that the l.s.d. of
µn is µ.

Theorem 7 (Theorem B.9 of [Bai and Silverstein, 2010]). Let {µn} be a set of bounded
real functions such that limx!�1 µn(x) = 0. Then, for all z 2 R

lim
n!1

mµn(z) = mµ(z) (3.6)

1The support of Supp(µ) of a distribution function µ with density f is defined as the closure of the
set {x 2 R, f(x) > 0}
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3.2. Random matrix theory

if and only if there exists µ such that limx!�1 µ(x) = 0 and |µn(x) � µ(x)| ! 0 for all
x 2 R.

Due to the following property, working with the Stieltjes transform mµn of the sym-
metric matrixX e.s.d ’s µn boils down to working with a tractable functional of the matrix
X itself.

Remark 8. For a symmetric matrix X 2 Rn⇥n
, the e.s.d. µn = 1

n

Pn
i=1 ��i(X) has Stieltjes

transform given by

mµn(z) =
1

n
tr (X� zIn)

�1
.

To see this, we have

mµn(z) =

Z
1

t� z
dµn(t)

=
1

n
tr (⌦� zIn)

�1

=
1

n
tr (X� zIn)

�1

where ⌦ is the diagonal matrix containing the eigenvalues of X and in the last line we
use the spectral decomposition of the matrix X along with the commutative property of the
trace. The matrix (X� zIn)�1 is the so-called resolvent of the random matrix X.

As stated above, finding the limiting distribution (l.s.d.) of the e.s.d. µn consists in
finding a limit to its Stieltjes transform mµn(z) =

1
n tr (X� zIn)

�1
. For simpler models

(e.g., the Marc̆enko-Pastur or the semi-circle distributions), the normalized trace of the
resolvent 1

n tr (X� zIn)
�1 admits a limit but in more involved models, the limit does not

exist and one has to resort on other approximations in the limit of growing size. One such
approximation known as deterministic equivalents is introduced in the following.

3.2.3 Deterministic equivalents and Gaussian methods

Definition 9. Consider a series of matrices A1,A2, · · · with An 2 Rn⇥n (functions of
symmetric random matrices X1,X2, · · · , with Xn 2 Rn⇥n). A deterministic equivalent of
An is a series B1,B2, . . . where Bn 2 Rn⇥n

, of deterministic matrices, such that for a
deterministic matric C of bounded spectral norm and deterministic vectors a,b of bounded
norms, we have

1

n
trCAn �

1

n
trCBn

a.s.
�! 0

a⇤ (An �Bn)b
a.s.
�! 0.

We will call Bn the deterministic equivalent of An and denote An $ Bn.
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3.2. Random matrix theory

There are two main techniques to find deterministic equivalents: the so-called Bai and
Silverstein technique and the Gaussian methods. Our results being derived using Gaus-
sian methods, we will be restricted to that particular approach. Readers interested in
Bai and Siverstein approach are referred to Section 6.2 of [Couillet and Debbah, 2011].
While Gaussian methods are particularly designed for random matrix models with Gaus-
sian entries, we use this technique for deriving deterministic equivalent for the e.s.d. of
the adjacency matrix in the community detection problem. This is motivated by the uni-
versality property (see e.g., [Silverstein and Bai, 1995]) stating that for certain random
matrices (having entries with zero mean, unit variance and bounded first order moments),
the limiting law of their e.s.d. does not change no matter the distribution of the entries
of the matrices.

Gaussian techniques rely on two main ingredients:

• an integration by parts formula given in its simpler form

Lemma 10. Let x be a standard real Gaussian random variable and f : R! R be
a C1 function with first derivative f

0
(x) having at most polynomial growth. Then,

E[xf(x)] = E[f 0
(x)].

• the Nash-Poincaré inequality

Lemma 11. Let x be a standard real Gaussian random variable and f : R! R be
a C1 function with first derivative f

0
(x). Then, we have

Var[f(x)]  E[|f 0
(x)|2].

The proofs of those lemma can be found in [Pastur and Shcherbina, 2011].

The Gaussian technique approach to evaluate let’s say the deterministic equivalent of
the normalized trace of the resolvent 1

n tr (X� zIn)
�1 consists in

• evaluating E
⇥
1
n tr (X� zIn)

�1⇤ using the integration by part formula. Here, the
Nash-Poincaré inequality is also used to bound the small variations.

• Showing that 1
n tr (X� zIn)

�1 converges almost surely to its expectation computed
above, using Nash-Poincaré inequality along with the Borell Cantelli Lemma.

We provide here the main calculation steps for the derivation of deterministic equiva-
lents of the resolvent associated with a Wigner matrix. The more rigorous proofs with full
control of the vanishing terms can be found in [Hachem et al., 2007,Pastur and Shcherbina,
2011]. Specifically, let us consider a symmetric matrix X 2 Rn⇥n having Gaussian i.i.d.
entries of zero mean and variance �2

/n. We want to find a deterministic equivalent Q̄ for

42



3.2. Random matrix theory

the resolvent matrix Q = (X� zIn)�1 such that for any deterministic bounded vectors a,
b, we have that

a⇤Qb� a⇤Q̄b
a.s.
�! 0

1

n
trQ�

1

n
tr Q̄

a.s.
�! 0.

As explained above, the strategy of the proof consists in working directly with the
expectations of the above resolvent functional since it can be shown using the Nash-
Poincaré inequality that those quantities converge towards their expectations. Using the
above integration by part formula, we can compute E(XQ)ij which is related to E[Q] by
the following

E[XQ] = E[X(X� zI)�1]

= E[(X� zI+ zI)(X� zI)�1]

= E[I+ zQ]. (3.7)

Denoting Xil =
�
p
nZil with Zil ⇠ N (0, 1), we can write

E(XQ)ij =
nX

l=1

�
p
n
E(ZilQlj).

Using the integration by part formula, we have

E(ZilQlj) = E
 
@(X� zI)�1

lj

@Zil

!

= E
✓
�(X� zI)�1 @X

@Zil
(X� zI)�1

◆

lj

= E
✓
�(X� zI)�1 �

p
n
(Eil + Eli)(X� zI)�1

◆

lj

where Eil is the matrix with all entries equal to 0 but the entry (i, l) which is equal to 1
and thus

E(XQ)ij =
nX

l=1

�
�
2

n
(E [QliQlj] + E [QllQij]) .

Using Equation (3.7), we then have

E[Qij] = �
1

z
�ij �

�
2

z

1

n
E[(Q2)ij]�

�
2

z

1

n
E[(trQ)Qij]. (3.8)

By applying the Cauchy-Shwartz inequality, we can show that
����E[

trQ

n
Qij]� E[ trQ

n
]E[Qij]

���� = O(n�1). (3.9)
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To see this, we have

E
✓

trQ

n
� EtrQ

n

◆
(Qij � EQij)

�


s

V ar

✓
trQ

n

◆
V ar (Qij).

Nash-Poincaré inequality allows to show that V ar
�
trQ
n

�
= O(n�2) (see [Hachem et al.,

2007] for similar results). The result (3.9) is proved using the previous argument along
with the fact that the entries of the resolvent matrix are uniformly bounded in the positive
complex plane i.e., 8i, j and z 2 R, |Qij| 

1
|=(z)| .

Using (3.9), we can write (3.8) as
✓
�z � �

2EtrQ

n

◆
E[Qij] = �ij +

�
2

n
E[(Q2)ij] + o(1). (3.10)

For z 2 R, we have that =(�z�E tr(Qn )) < �=(z) and thus �z�E tr(Qn ) does not vanish
asymptotically. We can thus write (3.8) as

E(Qij) =
�2

n E
⇥
Q2

⇤
ij
+ �ij

�z � �2E trQ
n

+ o(1). (3.11)

Multiplying Equation (3.11) by �2

n , setting i = j and summing over i, we get

�
2EtrQ

n
=

�4

n2E
⇥
trQ2

⇤
+ �2

n

�z � �2E trQ
n

+ o(1). (3.12)

Using again Nash-Poincaré inequality, one can show that �4

n2E
⇥
trQ2

⇤
= O(n�1) (see [Hachem

et al., 2007]) and thus we have that

EtrQ

n
�m(z)

a.s.
�! 0

where m(z) is the solution, for z 2 R of

m(z) =
1

�z � �2m(z)
. (3.13)

Similarly, for deterministic vectors a and b of bounded norms, we have using Equa-
tion (3.11)

E [a⇤Qb] =
X

ij

aiE [Qij] bj (3.14)

= a⇤(m(z)I)b (3.15)

where again we use the Nash-Poincaré inequality to show that
P

ij aiE
h
(Q2)ij

n

i
bj =

O(n�1). The following result summarizes those calculus to obtain deterministic equiv-
alents of the resolvent matrix Q.
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Theorem 12 (Deterministic equivalents for Wigner matrices). Let Q = (X � zIn)�1.
Then, for all z 2 R,

Q$ Q̄ = m(z)In (3.16)

where m(z) is the unique solution in R for z 2 R, of m(z) = 1
�z��2m(z) .

Theorem 12 can be used to show the convergence of the limiting eigenvalue distribution
of Wigner matrices towards the semi-circle law. From Theorem 12, m(z) is the limiting
value of the Stieltjes transform 1

n trQ of the e.s.d. From Equation (3.13), we can see that
the solution to the quadratic equation satisfying the condition =m(z)=z � 0, =z 6= 0
(property of a Stieltjes transform) is unique and verifies

m(z) =

8
><

>:

1
2�2

�p
z2 � 4�2 � z

�
, R(z) > 0

1
2�2

�
�
p
z2 � 4�2 � z

�
, R(z) < 0

(3.17)

where
p
z2 � 4�2 is the branch that has the asymptotic behavior

p
z2 � 4�2 = z +O(|z|�1)

as z !1.

Applying the inverse formula of the Stieltjes transform (Theorem 6), we get the semi-
circle law

µ(x) =
2

⇡�2

p
(�2 � x2)+.

3.2.4 Spiked random matrices

Generally speaking, spiked random matrices are low-rank perturbations of large random
matrices which can be seen as information+noise models, and are popular in many applica-
tions such as wireless communications, signal processing, statistics and machine learning.
Most commonly used spiked random matrix models include

• The perturbed sample covariance matrix of the type T
1
2
nXnXT

nT
1
2
n , with Xn 2

Rn⇥n having random i.i.d entries of zero mean and variance 1/n and Tn = In +Pr
i=1 !ivivT

i a perturbation of the identity matrix with the finite low-rank matrixPr
i=1 !ivivT

i .

• The additive model of the type (Xn+
Pr

i=1 !ivivT

i ) with Xn 2 Rn⇥n a symmetric
matrix having random i.i.d entries of zero mean and variance 1/n.

As will become clear in the subsequent chapters, the additive model is the variant that
appears to correspond to the asymptotic equivalent of the similarity matrices involved
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in the clustering applications. In what follows, we provide asymptotic results of the
eigenvalues and eigenvectors for elementary additive spiked models.

Let us consider the model Y = X
p
n +V⌦VT where X is a symmetric random matrix

with entries of zero mean and unit variance, V = [v1, · · · ,vk] with vi unit norm eigenvec-
tors, ⌦ = diag (!1, · · · ,!k) with !i the eigenvalue associated with vi. We are interested
in the asymptotic localization of the eigenvalues of Y. We know from Theorem 2 that the
e.s.d. of Y converges weakly to the limiting law of X

p
n (which is the semi-circle law) since

Y and X only di↵er by a low-rank matrix. So, most of the eigenvalues of Y fall within the
support S = [�2, 2] of the semi-circle law. However some eigenvalues of Y might isolate
from the semi-circle support due to the low-rank matrix V⌦VT

. We follow classical ran-
dom matrix approaches for the study of the eigenvalues and eigenvectors of spiked random
matrices ([Benaych-Georges and Nadakuditi, 2012]). Knowing the localization of most of
the eigenvalues of Y (in the support S = [�2, 2]), we will now determine the position of
the possibly remaining eigenvalues. We thus need to solve for large n and ⇢ /2 S

0 = det

✓
X
p
n
+V⌦VT

� ⇢In

◆
. (3.18)

Following ideas from [Bai and Silverstein, 1998], in addition to the convergence of the
eigenvalues of Wigner matrices towards the semi-circle law, one can show a“No eigenvalue
outside the support” result meaning that the random matrix X

p
n does not have asymptot-

ically eigenvalues outside the range S = [�2, 2]. With this in mind, det
⇣

X
p
n � ⇢In

⌘
does

not vanish asymptotically for ⇢ /2 S and thus Equation (3.18) is equivalent to

0 = det
�
In +QV⌦VT

�
= det

�
Ik +VTQV⌦� ⇢In

�
(3.19)

with Q =
⇣

X
p
n � ⇢In

⌘�1

. We can then use here our results on the deterministic equiv-

alents to provide a deterministic limit of the quantity VTQV⌦. The matrix V being
deterministic, we can readily apply Theorem 12 and we get

VTQV⌦
a.s.
�! m(⇢)⌦. (3.20)

Equation (3.18) is thus asymptotically equivalent to

0 =
kY

i=1

(1 + !im(⇢)). (3.21)

There thus exists an isolated eigenvalue of Y outside S when there exists !i such that
the equation 1 + !im(⇢) = 0 admits a solution for ⇢ /2 [�2, 2]. From the plot of the
function m(z) (Figure 3.5) in its defined domain, we see that a solution to the previous
equation exists when 1

!i
< � limz#2 m(z) or 1

!i
> � limz"�2 m(z) and in that case the

limiting isolated eigenvalue ⇢ is equal to m
�1
⇣
�

1
!i

⌘
2. Using the formula for m(z) in

2
m

�1(z) = a, z = m(a)
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Equation (3.17), one has an explicit expression for the limiting isolated eigenvalue ⇢.
The following result provides the asymptotic localization of the eigenvalues of the spiked
random matrix Y.

Theorem 13. Let X 2 Rn⇥n be a symmetric random matrix having i.i.d. entries of
zero mean and unit variance, for which the e.s.d. µX converges almost surely toward the
semi-circle law with compact support S = [�2, 2]. Consider also a rank-k perturbation
matrix V⌦VT with ordered eigenvalues !1 � · · · � !k. Denote Y the matrix defined as
Y = X + V⌦VT with ordered eigenvalues �1 � · · · � �n. Then, as n grows large, for
i = 1, · · · , k

• If !i > 1 or !i < �1,

�i
a.s.
�!

1 + !
2
i

!i
(3.22)

• If !i 2 [�1, 0],

�i
a.s.
�! �2 (3.23)

• If !i 2 [0, 1],

�i
a.s.
�! 2. (3.24)

Theorem 13 asserts that there exists a phase transition phenomenon by which the
appearance of an eigenvalue of Y outside the main support S of the noise matrix X
depends on the value of the eigenvalues of the low-rank matrix V⌦VT compared with a
certain threshold. As stated in the result below, when this phase transition occurs (i.e.,
an eigenvalue of Y appears outside the main support S), the associated eigenvector gets
correlated to some extent to the eigenvector vi associated with the eigenvalue !i of the
low-rank matrix while there is a zero correlation when the phase transition does not occur.

Theorem 14. Let X 2 Rn⇥n be a symmetric random matrix having i.i.d. entries of zero
mean and unit variance, for which the e.s.d. µX converges almost surely towards the semi-
circle law with compact support S = [�2, 2]. Consider also a rank-k perturbation matrixPk

i=1 !ivivT

i with ordered eigenvalues !1 � · · · � !k > 0. Denote Y the matrix defined as
Y = X +

Pk
i=1 !ivivT

i with ordered eigenvalues �1 � · · · � �n. Then, as n grows large,
for a,b 2 Rn deterministic vectors and ui eigenvector of Y associated with eigenvalue �i,

a⇤uiu
⇤

ib�
!
2
i � 1

!2
i

a⇤viv
⇤

ib · 1wi>1
a.s.
�! 0. (3.25)

In particular

|v⇤

iui|
2 a.s.
�!

!
2
i � 1

!2
i

· 1wi>1. (3.26)
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Proof of Theorem 14. The proof of Theorem 14 relies on a Cauchy integration approach.
For ui an eigenvector of Y associated with an isolated eigenvalue �i (i.e., when !i > 1),
we have from the Cauchy integration formula

a⇤uiu
⇤

ib =
1

2⇡i

I

�i

a⇤ (Y � zIn)
�1 bdz (3.27)

for large n almost surely, where �i is a complex (positively oriented) contour circling
around the eigenvalue �i only. In order to work out the previous integral, we need to
find a deterministic equivalent to the integrand. Applying the Woodburry identity 3 to
(Y � zIn)

�1
, for Q = (X� zIn)

�1
, we have

a⇤
�
X+V⌦VT

� zIn
��1

b = a⇤

h
Q�QV⌦

�
Ik +VTQV⌦

��1
VTQ

i
b (3.28)

Using the deterministic equivalent of the resolvent Q (Theorem 12), we have for large n,

a⇤
�
X+V⌦VT

� zIn
��1

b
a.s.
�! m(z)a⇤b� a⇤VD

✓
!jm

2(z)

1 + !jm(z)

◆k

j=1

VTb (3.29)

The first term in Equation (3.29) has asymptotically no residue inside the contour

�i while only the diagonal term !im2(z)
1+!im(z) survives in the residue calculus of the second

right-hand term. We thus obtain

a⇤uiu
⇤

ib
a.s.
�! � lim

z!�i

(z � �i)
!im

2(z)

1 + !im(z)
a⇤viv

T

i b. (3.30)

3For invertible matrices A,B,C and D, the following equality holds: (A + BCD)�1 = A�1
�

A�1B(C+DA�1B)�1DA�1
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Since from Theorem 13, in the limit z ! �i, m(z) = � 1
!i
, the numerator and the denom-

inator of the Equation (3.30) are vanishing in the limit. By applying the l’Hopital rule,
we get

a⇤uiu
⇤

ib
a.s.
�! � lim

z!�i

m
2(z)

m0(z)
a⇤viv

T

i b (3.31)

where m
0(z) is the first derivative of m(z). We know from Theorem 13 that in the limit

z ! �i, m(z)! � 1
!i

and we can easily show from there thatm0(z)! 1
1�!2

i
. This concludes

the proof.

Notice from Theorem 14 that for su�ciently large informative eigenvalue !i (say !i !

1 or equivalently �i ! 1,) the alignment between the eigenvector ui of Y and the
eigenvector vi of the low-rank deterministic matrix, converges asymptotically to 1 meaning
a perfect alignment between those two vectors. In contrast, under the phase transition
i.e. for eigenvalue !i 2 [�1, 1], the alignment between the two eigenvectors vanishes
asymptotically. This has important applications in spectral clustering where the similarity
matrix of the data will be shown to be of the form of the additive spike random matrix
Y where the eigenvectors of the low-rank matrix will be proportional to the canonical
vectors of the classes (i.e., with zero entries except in the support of the class) and thus
the eigenvectors of Y (which are in fact used for spectral clustering) will be correlated to
the class information the more they are far apart from the bulk (the limiting eigenvalue
distribution of the noise matrix X.)

These results on the additive spiked models are the basis for the understanding of
the behavior of spectral clustering algorithms. As stated above, the intuition behind
spectral clustering stems from the fact that the eigenvectors associated with the extreme
eigenvalues of the data similarity matrices are correlated to some extent to the canonical
class vectors that we denote ja = 1i2Ca (vectors of size n the number of nodes with values
equal to 1 in the support of class Ca and zero otherwise ). More precisely, denoting Y a
given random similarity matrix associated with data grouped into k classes, it generally
takes the form

Y / JJT +X (3.32)

where J = [j1, · · · , jk] and X = (Y � E[Y]) a zero-mean random matrix.

Equation (3.32) takes the form of the aforementioned additive spike model and thus
when the phase transition occurs, the eigenvectors associated with the extreme eigenvalues
of Y have some non-zero correlation with the eigenspace of JJT and thus some class
information can be recovered from those eigenvectors. Alternatively, in the absence of
the phase transition occurence, the eigenvectors associated with the extreme eigenvalues
are uncorrelated to the class eigenspace JJT and no class information can be retrieved
from those. However, the aforementioned projection between the eigenspaces of Y and
JJT (Theorem 14) is not enough to characterize the performances of spectral clustering
algorithms. To get a finer analysis, [Couillet and Benaych-Georges, 2016] proposed to
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3.2. Random matrix theory

write the dominant eigenvectors as “noisy” linear combinations of the canonical vectors ja
as

ui =
kX

a=1

↵
a
i

ja
p
na

+ �
a
i w

a
i (3.33)

with ja 2 Rn canonical vector of class Ca, wa
i noise orthogonal to ja, and

↵
a
i =

1
p
na

uT

i ja (3.34)

(�a
i )

2 =

����ui � ↵
a
i

ja
p
na

����
2

= uT

i jaui � (↵a
i )

2
. (3.35)

The approach used in [Couillet and Benaych-Georges, 2016] to estimate ↵a
i consists in first

finding an estimate for 1
na
jTauiuT

i ja which is exactly (↵a
i )

2
. To this end, a contour integral

approach is used as in Theorem 14. Namely by residue calculus, we have that

1

na
jTauiu

T

i ja =
1

2⇡i

I

�i

1

na
jTa (Y � zIn)

�1 jadz (3.36)

for large n almost surely, where �i is a complex (positively oriented) contour circling
arount the limiting isolated eigenvalue (outside the main support) associated with the
eigenvector ui of Y. Using then the Woodburry identity, we have

1

na
jTauiu

T

i ja /
1

2⇡i

I

�a

1

na
jTa
�
X+ JJT

� zIn

��1
jadz (3.37)

=
1

2⇡i

I

�a

1

na
jTaQjadz +

1

2⇡i

I

�a

1

na
jTaQJ

�
I+ JTQJ

��1
JTjadz (3.38)

with Q = (X�zIn)�1 the resolvent of the matrix X. Contour integration on the first term
of (3.38) gives 0 asymptotically since from the No eigenvalues outside the support results,
there is asymptotically no eigenvalues of X outside its main support. The integrand of
second term can be computed using standard calculus along with deterministic approxi-
mations of quantities of the type aTQb for deterministic vectors of bounded norms a and
b (see deterministic equivalents of functionals of the resolvent in Section 3.2.3). A final
residue calculus on the obtained approximation allows to find deterministic approximation
of (↵a

i )
2 in the limit of large n.

The estimation of (�a
i )

2 follows similar arguments as the ones for (↵a
i )

2
. Namely, one

needs an estimate for the quantity uT

i jaui which can be obtained by dividing any entry, say
(a, b) of the more involved object 1

nJ
TuiuT

i DauiuT

i J by ↵a
i and ↵b

i where Da = diag(ja).
The estimation of 1

nJ
TuiuT

i DauiuT

i J is done using the similar contour integration formula
as in (3.36). Namely,

1

n
JTuiu

T

i Dauiu
T

i J =
1

2⇡i

I

�a

1

n
JT (Y � zIn)

�1 Da (Y � z̃In)
�1 Jdzdz̃. (3.39)

Detailed derivations of those estimators on more involved models are provided in the
Appendix for specific application in graphs community detection and kernel spectral clus-
tering.
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3.3. Bayesian inference

3.3 Bayesian inference

We briefly introduce in this section variational Bayes approaches which are used to find
approximation to the intractable posterior distribution in most applications. In general,
the maximization of the posterior distribution of the model in use can be shown to be
equivalent to an optimization problem involving some variational variables, the solutions
of which take closed form expressions in some parameteric family of distributions. Such
distributions are often members of the exponential family which covers most of the prob-
abilistic models used in statistics and machine learning. The first sub-section introduces
the exponential family and the second sub-section provides the mean-field variational
inference methodology to solve the maximum-a-posterior problem involving likelihoods
belonging to the exponential family.

3.3.1 Exponential family of distributions

Consider a set of variables x living in a fixed domain X and a set of parameters ✓ living in
a domain ⇥. An exponential family is defined as a collection of parametric distributions
that can be written in the form

f(x|✓) = h(x) exp(T (x) · ⌘(✓)) (3.40)

for x 2 X and ✓ 2 ⇥ where h, T, ⌘ are some fixed functions. The function T (x) is called
the su�cient statistic and the function ⌘(✓) is called the natural parameter. The di↵erent
distributions are distinct from the form of their functions h, T, ⌘. Most commonly used
distributions belonging to the exponential family are the normal, exponential, gamma,
log-normal, Pareto binomial, multinomial, Poisson, Beta distributions.

An important feature of exponential family is that they have explicit conjugate prior
distributions ⇡ given by

⇡(✓) =
1

Z(✓)
exp(⌧ · ⌘(✓)), (3.41)

where ⌧ are the hyperparameters of the prior.

Under the prior distribution ⇡(·|⌧), it is well known that the expectation of the natural
parameter ⌘(✓) is given by

E⇡⌘(✓) =
@ logZ(⌧)

@⌧
, (3.42)

a property that is useful in mean-field variational inference computations.

3.3.2 Mean field variational Bayes inference

Many statistical models are described by a set of observations x1, · · · , xn, parametrized
by a set ✓ of parameters and the goal is to infer some hidden variables w , {w1, · · · , wn}
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3.3. Bayesian inference

involved in the structure of the observations. For this class of problems, a Bayesian
approach would consist in finding the hidden variables w maximizing the posterior dis-
tribution p(w|x1, · · · , xn, ✓). One such model is used in community detection problems
that we describe as follows. The basic statistical model for generating graphs structured
into communities is the so-called Stochastic Block Model (SBM) that we describe from
a Bayesian perspective. Given some latent community label gi 2 {1, · · · , k} (with k de-
noting the number of communities) of each vertex i (1  i  n) and a community-wise
connectivity matrix C 2 Rk⇥k

, an edge is placed between two vertices i and j with an
adjacency weight Aij such that

P(Aij|gi, gj, Cgi,gj) / exp
�
T (Aij)⌘(Cgigj)

 
.

with T the su�cient statistic function defining the graph likelihood distribution and ⌘

the corresponding natural parameter function. Following a Bayesian approach, prior
distributions are attributed to the labels gi and the community-wise connectivity matrix
C. So here, the observations are the adjacency entries A11, · · · , Ann, the latent variables
are the community labels gi’s and the entries of the connectivity matrix C, while the
parameters are given by the priors assigned to gi and C. With this example in mind,
which will be the focus of Chapter 5 in its multi-graph model form, let us get back to the
general Bayesian statistical models.

In most of those models, the posterior distribution is intractable to compute and is not
available in closed form. As an alternative, approximation techniques are used. Markov
Chain Monte Carlo (MCMC) family of methods [Gamerman and Lopes, 2006] are such ap-
proximations. MCMC generally build samples from a Markov Chain in such a way that its
stationary distribution is close to the posterior of interest. However, MCMCs might su↵er
from large computations and convergence issues especially when used on large datasets.
Variational methods [Opper and Saad, 2001,Wainwright et al., 2008] provide a deter-
ministic approximation to the posterior by solving an optimization problem consisting in
minimizing the distance (with a well-chosen metric) between the true distribution and
the chosen variational distribution. The variational distribution is generally chosen in
such a way that the aforementioned optimization is tractable and fast. Most well known
variational methods include Belief Propagation [Yedidia et al., 2003] based techniques,
expectation propagation [Minka, 2001] and mean field approaches, with the latter being
computationally faster but less precise than the former. In Chapter 5, we adopt a mean
field variational approach for the multi-layer community detection problem with specific
constraints on the communities between the di↵erent layers. We thus describe in what
follows the mean field variational approach to general Bayesian statistical models.

We consider the problem of approximating the posterior distribution p(w|x1, · · · , xn, ✓)
with a variational distribution q(w). We can decompose the marginal of the log of the
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observed data as follows

logP(x1, · · · , xn) =

Z

w

q(w)dw logP(x1, · · · , xn)

=

Z

w

q(w)dw log
P(x1, · · · , xn,w)

P(w|x1, · · · , xn)
dw

=

Z

w

q(w)dw log
P(x1, · · · , xn,w)

q(w)
dw �

Z

w

q(w)dw log
P(w|x1, · · · , xn)

q(w)
dw

= Eq logP(x1, · · · , xn,w)� Eq log q(w) +DKL(q(w)||P(w|x1, · · · , xn))

= Eq logP(x1, · · · , xn|w) + Eq log
P(w)

q(w)| {z }
G(q)

+DKL(q(w)||P(w|x1, · · · , xn))

where DKL(q(w)||P(w|x1, · · · , xn)) is the Kullback-Leibler (KL) divergence between the
variational approximation q(w) and the true posterior P(w|x1, · · · , xn) and P(w) is the
prior assigned to the latent variables (parametrized by ✓). SinceDKL(q(w)||P(w|x1, · · · , xn)) �
0, the above defined function G(q(w)) is a lower-bound of the observed data log-marginal.
The variational approach consists then in choosing q(w) maximizing G(q(w)) such that
the KL divergence between the true posterior and its approximate is minimized. Mean
field variational Bayes technique assumes q(w) to be factorized over the latent variables
i.e., the variables wi are independent over the distribution q(w). With this choice, the
function G(q(w)) is generally easily computable and optimized for most used families of
likelihood distributions and in particular exponential family.
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Chapter 4

Improved Spectral community
detection in heterogeneous
single-layer graphs

4.1 Introduction

We are interested in spectral methods (Algorithm 2) for community detection in dense
realistic graph models. The DCSBM described in Chapter 2 is such a model as it takes
into account the degree heterogeneity of the nodes within classes, this being an impor-
tant feature of real-world networks. Under the DCSBM, the classical spectral method
(Algorithm 2) might fail as the dominant eigenvectors entries of the similarity matrix are
not uniform within the support of each community. To overcome this, previous works
have proposed di↵erent normalization techniques of the similarity matrix or of its dom-
inant eigenvectors. The authors in [Coja-Oghlan and Lanka, 2009,Gulikers et al., 2015]
have considered performing spectral clustering based on the dominant eigenvectors of
D�1AD�1 where D is the diagonal matrix containing the nodes’ degrees on the diagonal
and A is the adjacency matrix. This operation on the adjacency matrix can be seen as
regularizing the nodes’ connections in such a way that the eigenvector associated with
D�1AD�1 will look like homogeneous step vectors (with each step representing a class
support instead of multiple steps within the class support). Alternatively, as proposed
in [Jin et al., 2015], one might regularize instead the eigenvectors of A by performing
spectral clustering on those eigenvectors premultiplied by D�1 to ensure the homogeneity
of the eigenvectors’ entries within class supports. Other methods [Qin and Rohe, 2013]

consider using the eigenvectors of the well-known Laplacian matrix D�
1
2AD�

1
2 . Among

all those methods, it is unclear which one performs better on given graphs. One might
look into a general similarity matrix D�↵AD�↵ and find the best ↵ for a particular graph.

In this work, we propose to study similarity matrices of the form L↵ / D�↵[A �
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ddT

dT1n
]D�↵ where we useA� ddT

dT1n
the so-called modularity matrix 1 instead of the adjacency

matrix, the latter being directly related to the most used cost-function (modularity) in
community detection tasks. It turns out that the leading eigenvector of the adjacency
matrix A (a noisy constant vector) does not provide any information about the classes
and thus spectral clustering based on the adjacency matrix use the dominant eigenvectors
but the largest. On the other hand, the term ddT

dT1n
corresponds to a noisy eigenspace (does

not contain class information) and thus considering spectral clustering with the dominant

eigenvectors of the modularity matrix A � ddT

dT1n
is equivalent to the spectral clustering

using the adjacency matrix A (excluding the largest eigenvector). In graphs where the
communities are well separated, methods based on L↵ for di↵erent values of ↵ all achieve
asymptotically perfect reconstruction. In order to compare the di↵erent methods and find
an optimal one, we place ourselves in a setting where community detection is di�cult. We
will show that, for a DCSBM in the regime under study, the matrices L↵ are equivalent
to an additive spiked random matrix (introduced in Section 3.2.4), and thus there is a
phase transition beyond which the information can be retrieved (here the classes). We
analyze the eigenvalues of this spiked random matrix from which we characterize exactly
the phase transition, and we take the ↵ for which the phase transition is maximally
achieved thus allowing to best recover the classes in di�cult settings. In addition, we
provide a consistent estimate of ↵ only based on the observed degrees. We also provide a
characterization of the dominant eigenvectors of the spiked random matrix (as described
in Section 3.2.4) from which we propose better initialization points to the EM algorithm
in the last step of the spectral method.

4.2 Preliminaries

This section recalls the network model under study, which is based on the DCSBM defined
in Chapter 2, and provides preliminary technical results.

We consider an n-node random graph with k classes C1, . . . , Ck of sizes |Ca| = na. Each
node is characterized by an intrinsic connexion weight qi which a↵ects the probability
that this node gets attached to another node in the graph. A null model would consider
that the existence of an edge between i and j has probability qiqj. In order to take into
account the membership of the nodes to some group, we define C 2 Rk⇥k as a matrix of
class weights Cab, independent of the qi’s, a↵ecting the connection probability between
nodes in Ca and nodes in Cb. Following [Karrer and Newman, 2011], conditioned to the
knowledge of the qi’s and the the Cab’s, the adjacency matrix A of the graph generated
from a DCSBM model has independent entries (up to symmetry) which are Bernoulli
random variables with parameter Pij = qiqjCgigj 2 (0, 1) where gi is the group assignment
of node i. We set Aii = 0 for all i. For convenience of exposition and without loss of
generality, we assume that node indices are sorted by classes, i.e nodes 1 to n1 constitute

1Approximate optimization of the modularity metric leads to a spectral clustering using the modularity
matrix.
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C1, nodes n1 + 1 to n1 + n2 form C2, and so on.

As motivated in Section 4.1, we proceed to the study of the matrix

L↵ = (2m)↵
1
p
n
D�↵


A�

ddT

2m

�
D�↵ (4.1)

where d = A1n , D = diag(d) and m = 1
2d

T1n.

We are mainly interested in a dense graph regime where clustering is not asymptot-
ically trivial so that methods based on di↵erent matrices L↵ do not all lead to perfect
classification. This regime is ensured by the following growth rate conditions.

Assumption 1. As n!1, k remains fixed and, for all i, j 2 {1, . . . , n}

1. Cgigj = 1 +
Mgigj
p
n , where Mgigj = ⌦(1); we shall denote M = {Mab}

k
a,b=1.

2. qi are i.i.d. random variables with measure µ having compact support in (0, 1).

3. ni
n ! ci > 0 and we will denote c = {ca}

k
a=1.

The goal being to understand the di↵erent mechanisms into play when using spectral
methods based on L↵, it is essential to study its eigenstructure. As can be observed,
L↵ has non independent entries as D (and d) depend on A, and it thus does not follow
a standard random matrix model. We thus proceed in approximating L↵ by a more
tractable random matrix L̃↵ which asymptotically preserves the eigenvalue distribution
and isolated eigenvectors of L↵. We obtain the following approximation of L↵.

Theorem 15. Let Assumption 1 holds and let L↵ be given by (4.1). Then, for Dq , D(q),
as n!1, kL↵ � L̃↵k ! 0 in operator norm, almost surely, where

L̃↵ =
1
p
n
D�↵

q XD�↵
q +V⌦VT

,

V =


D1�↵

q J
p
n

D�↵
q X1n

qT1n

�
,

⌦ =

2

64

�
Ik � 1kcT

�
M

�
Ik � c1T

k

�
�1k

�1T
k 0

3

75 ,

with X = {Xij}
n
i,j=1 symmetric with independent entries (up to the symmetry), Xij having

zero-mean and variance qiqj(1� qiqj), and J = [j1, . . . , jk] 2 {0, 1}n⇥k with (ja)i = �{gi=a}.

Sketch of Proof. The proof relies on the fact that we may write Aij = qiqj+qiqj
Mgigj
p
n +Xij

where Xij is a zero-mean random variable with variance qiqj(1 � qiqj) + ⇥(n�
1
2 ), since

Aij is a Bernoulli random variable with parameter qiqj(1+
Mgigj
p
n ). From there, the terms:

d = A1n, dT1n, dd
T and D = D(d) composing L↵ can be evaluated. Notably, D and
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dT1n can be decomposed as the sum of dominant terms (with higher spectral norms with
respect to n) and trailing terms (vanishing spectral norms with respect to n), so that we
can write a Taylor expansion of D�↵ and (dT1n)↵ for ↵ 2 R. By computing L↵ using the
asymptotic approximations of D�↵, (dT1n)↵, A, ddT, we obtain L̃↵. The complete proof
is provided in Appendix A.1.

This result immediately implies the following Corollary.

Corollary 16. Under Assumption 1, let �i(L↵) (resp., �i(L̃↵)) be the eigenvalues of L↵

(resp., L̃↵) with associated eigenvectors ui(L↵) (resp., ui(L̃↵)). We have

max
1in

����i(L↵)� �i(L̃↵)
��� a.s.
�! 0

and, if lim infn minj 6=i |�i(L↵)� �j(L̃↵)| > 0,

���ui(L↵)� ui(L̃↵)
��� a.s.
�! 0.

The eigenstructure (eigenvalues and dominant eigenvectors) analysis of L↵ can thus be
performed through that of L̃↵ for large enough n. The matrix L̃↵ is essentially a classical
random matrix model and the study of its eigenvalues and dominant eigenvectors can be
performed using standard random matrix theory (RMT) approaches [Benaych-Georges
and Nadakuditi, 2012,Hachem et al., 2013].

4.3 Main results

4.3.1 Spiked model and dominant eigenvector regularization

Condition on the knowledge of the intrinsic weights qi’s, the matrix L̃↵ is equivalent to
an additive spiked random matrix ([Baik et al., 2005] or Section 3.2.4) as it is the sum
of the standard full rank symmetric random matrix n

�
1
2D�↵

q XD�↵
q having independent

zero-mean entries and a low-rank matrix V⌦VT. The di↵erence between L̃↵ and classical
additive spike random matrices lies in the fact that the low-rank term V⌦VT is not
totally independent of the noise random matrix, and the matrix V is not composed of
orthonormal columns. However, asymptotically, those two di↵erences turn out not having
an impact on the spike analysis (the details are provided in Appendix A.3). As shown
in Figure 4.1 and explained in Section 3.2.4, the spectrum (eigenvalue distribution) of
spiked random matrices is generally composed of (one or several) bulks of concentrated
eigenvalues and, when a phase transition is met, of additional eigenvalues which isolate
from the aforementioned bulks. The eigenvectors corresponding to the isolated eigenvalues
of the spiked random matrix become more correlated to the eigenvectors of the low-rank
matrix when the corresponding eigenvalues are far away from the rest of the eigenvalues.

58



4.3. Main results
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spikes

�4 �2 0 2 4

One spike

Figure 4.1: Two graphs generated upon the DCSBM with k = 3, n = 2000, c1 = 0.3, c2 =
0.3, c3 = 0.4, µ = 1

2�q(1) +
1
2�q(2) , q(1) = 0.4, q(2) = 0.9 and two di↵erent a�nity matrices

M. (Left) Mii = 12, Mij = �4, i 6= j, (Right): Mii = �3, Mij = �10, i 6= j, (Top):
Eigenvalue distribution of L↵, ↵ = 0. (Bottom): First and second leading eigenvectors
of L↵, ↵ = 0.

The low-rank matrix V⌦VT in Theorem 15, contains the matrix D1�↵
q J; so, when

the phase transition is met, the eigenvectors of L̃↵ will be correlated to some extent to
D1�↵

q J as long as the corresponding informative eigenvalues are isolated from the bulk of
eigenvalues. This is well illustrated in Figure 4.1 where the eigenvectors associated with
non-isolated eigenvalues are noisy, i.e., classes can be barely distinguished from those
eigenvectors. On the other hand, the eigenvectors associated with isolated eigenvalues
consist of noisy plateaus characterizing the classes and thus a consistent classification can
be expected using those eigenvectors. However, for a better clustering, one expects instead
the vectors used for classification to be correlated to the canonical vectors ja, 1  a  k,
instead of D1�↵

q ja, the latter being the class step vector entries weighted by the intrinsic
probabilities qi’s thus creating some biases when the qi’s are not uniform.

As a consequence, we claim that, letting u1, . . . ,ul be the eigenvectors associated with
the ` isolated eigenvalues of L↵, the vectors ni = D↵�1ui for 1  i  ` should be the ones
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used for the classification instead of the ui’s.2

This important observation helps correcting the biases (creation of artificial classes)
introduced by the degree heterogeneity observed earlier in Figure 1.1. As shown in Fig-
ure 4.2, which assumes the same setting as Figure 1.1, when the aforementioned eigen-
vector regularization is performed prior to EM or k-means classification, the genuine
communities are correctly recovered.

(↵ = 1) (↵ = ↵̂opt)

Figure 4.2: Two dominant eigenvectors of L↵ pre-multiplied by D↵�1(x-y axes) for n =
2000, k = 3, µ = 3

4�q(1) +
1
4�q(2) , q(1) = 0.1, q(2) = 0.5, c1 = c2 =

1
4 , c3 =

1
2 , M = 100I3 with

↵̂opt defined in Section 4.3.4. Same setting as Figure 1.1.

As mentionned earlier, the eigenvectors corresponding to eigenvalues in the bulk have
vanishing correlation with the low-rank informative matrix and are thus of no use for
clustering asymptotically. It is thus important to characterize the phase transition point
beyond which eigenvalues isolate from the bulk and determine which ↵ best ensures this
transition. To this end, we will first determine the support S↵ of the limiting spectral dis-
tribution (l.s.d) of L↵. Then, following popular spiked model tools, we will find conditions
for the existence of isolated eigenvalues. This is the objective of the next sections.

4.3.2 Limiting support

In this section, we characterize the l.s.d. of L↵ where most eigenvalues concentrate. This
in turn shall allow to determine the transition point beyond which informative eigenvalues
isolate from the main bulk of eigenvalues and consistent clustering can thus be achieved
by using the corresponding eigenvectors associated with those eigenvalues. The limiting
eigenvalue distribution of L↵ is given in the following result.

2As far as the eigenvectors are concerned, we may freely replace Dq (unknown in practice) by D
(which can be computed from the observed graph) since, from Lemma 24 in the subsequent section 4.3.4,
the vector of degrees d is, up to a scale factor �, a consistent estimator of the vector of intrinsic weights
q and thus k�D�Dqk ! 0 almost surely.
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Theorem 17 (Limiting spectrum). Let ⇡↵
n = 1

n

Pn
i=1 ��i(L↵) be the empirical spectral

distribution (e.s.d.) of L↵. Then, as n ! 1, ⇡↵
n ! ⇡̄

↵ almost surely where ⇡̄↵ is a
probability measure with compact symmetric support S

↵ = [�S↵, S↵] defined, for z 2

C+
\ S

↵, by its Stieltjes transform

m
↵(z) ⌘

Z
(t� z)�1 d⇡̄↵(t) =

Z
1

�z � f↵(z)q1�2↵ + g↵(z)q2�2↵
µ(dq)

where (f↵(z), g↵(z)) 2 (C+)2 (resp., (R�)2) is the unique solution for z 2 C+ (resp., R+),
of

f
↵(z) =

Z
q
1�2↵

µ(dq)

�z � f↵(z)q1�2↵ + g↵(z)q2�2↵

g
↵(z) =

Z
q
2�2↵

µ(dq)

�z � f↵(z)q1�2↵ + g↵(z)q2�2↵
. (4.2)

Theorem 17 gives the l.s.d ⇡̄
↵ of L↵ through its stieltjes transform m

↵(z) which is
only function of the law µ of the intrinsic weights qi’s. As explained in Section 3.2.2, the
stieltjes transform approach is used to overcome the di�culty of working directly with the
e.s.d. Note here that m↵(z) does not have a closed form expression and is instead defined
through a fixed point equation which can be solved numerically in a few iterations; the
l.s.d. ⇡̄↵ is then found by using the inverse transform (see Theorem 6). As we will see
below, in the particular case of homogeneous qi’s, m(z) has an explicit expression which
corresponds to the stieltjes transform of the popular semi-circle law (see Theorem 2).
We give below a proof’s sketch of Theorem 17, the detailed proof being provided in
Appendix A.2.

Sketch of Proof. Since L̃↵ = 1
p
nD

�↵
q XD�↵

q + V⌦VT is a spiked random matrix, the

e.s.d. ⇡↵
n of L↵ converges weakly to the the e.s.d. ⇡̃↵

n of 1
p
nD

�↵
q XD�↵

q (by Weyl interlacing

lemma) since V⌦VT is a low-rank matrix. We thus find an asymptotic limit ⇡̄↵ for ⇡̃↵
n

so that ⇡↵
n ! ⇡̄

↵ almost surely. To do so, we show that the Stieltjes transform of ⇡̃↵
n

converges to m
↵(z) for z 2 C+, which is the Stieltjes transform of the probability measure

⇡̄
↵ so that the convergence also holds for the probability measures (the e.s.d.). The Stieltjes

transform of the e.s.d. ⇡̃↵
n is n�1 tr( 1

p
nD

�↵
q XD�↵

q �zIn)�1 (where ( 1
p
nD

�↵
q XD�↵

q �zIn)�1

is the so-called resolvent of the random matrix 1
p
nD

�↵
q XD�↵

q ), the deterministic limit of

which gives m
↵(z), computed using classical random matrix theory (RMT) tools [Pastur

and Shcherbina, 2011]. The calculus details are provided in Appendix A.2.

Remark 18 (Stochastic Block Model). Particularizing Theorem 17 to the Stochastic
Block Model (SBM) (where qi = q0 for all i), the limiting probability measure ⇡̄↵ is the

popular semi-circle distribution (Theorem 2) with density ⇡̄↵(dt) = 2
⇡�2

q
(�2 � t2)+dt with

�
2 = q

1�2↵
0

p
1� q20. The associated Stieljes transform m

↵(z) is explicit with in particular

q
1�2↵
0 m

↵(zq1�2↵
0 ) = q

1
2�↵
0 f

↵(zq
1
2�↵
0 ) = q

�1
0 g

↵(zq1�2↵
0 ) = �

z

2(1� q20)
�

s✓
z

2(1� q20)

◆2

�
1

1� q20

.
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�1 0 1

L0

�5 0 5

L 1
2

�200 0 200 400

L1

Figure 4.3: Political blogs [Adamic and Glance, 2005] network. Empirical versus Theoreti-
cal law of the eigenvalues of L↵̂opt when fitting this network with the DCSBM (dashed) and
the SBM (solid). Here ↵̂opt = 0. The arrow shows the position of the largest eigenvalue.

The top of Figure 4.1, already discussed above, shows the density of the limiting ⇡̄↵,
for ↵ = 0, superimposed over the histogram of ⇡↵

n . Figure 4.3 similarly displays the
histogram ⇡

↵ of the empirical eigenvalues of L↵ corresponding to the real network of
Political blogs [Adamic and Glance, 2005] versus the theoretical limiting distribution ⇡̄↵

obtained by fitting the network to the DCSBM (from Theorem 17, with µ the actual
degree distribution of the graph) and the theoretical limiting distribution obtained by
fitting the network to the SBM instead (in solid lines).3 We note importantly that the
DCSBM is a good fit for the political blogs network except possibly for L 1

2
while the SBM

does not fit the network in any case. This suggests that the DCSBM is a more appropriate
model when studying real-world networks.

4.3.3 Phase transition

We also observe in Figure 4.3 (and more obviously in the synthetic case of Figure 4.1)
that di↵erent choices of ↵ lead to di↵erent behaviors in the position of the dominant
eigenvalues. We shall determine here when separation of one or several eigenvalues from
the bulk occurs. To this end, we follow popular spiked model techniques [Benaych-Georges
and Nadakuditi, 2012, Hachem et al., 2013] for phase transition characterization. This
entails the following result.

Theorem 19 (Phase transition). Let Assumption 1 hold and let �(M̄) be a non zero

3The SBM assumes here qi = q0 for all i.
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eigenvalue with multiplicity ⌘ of M̄ ⌘
�
D(c)� ccT

�
M. Then, for ↵ 2 R, there exists

corresponding isolated eigenvalues �i(L↵), . . . ,�i+⌘�1(L↵) 2 R\S↵ of L↵ all converging to
⇢ 2 R \ S

↵, as n!1, almost surely, if and only if 4

���(M̄)
�� > ⌧

↵ , � lim
x#S↵

1

g↵(x)
,

with g
↵(x) defined in Theorem 17. In this case, ⇢ is defined by

⇢ = (g↵)�1

✓
�

1

�(M̄)

◆
.

Note that Theorem 19 is similar to Theorem 13 on the eigenvalues characterization
of additive spike models in that an isolated eigenvalue appears with a limit given by ⇢ =

(g↵)�1
⇣
�

1
�(M̄)

⌘
, when the phase transition is met (here

���(M̄)
�� > ⌧

↵ , � limx#S↵
1

g↵(x)).

In practice, the level of separation between the communities is related to the strength of
the eigenvalues of the connectivity matrix M. The farther the communities are, the larger
the dominant eigenvalues of M and thus the phase transition is most likely to occur.

Sketch of Proof. From Theorem 17, the e.s.d. of L↵ converges weakly to the e.s.d. of
1
p
nD

�↵
q XD�↵

q with support S↵ (defined in Theorem 17) but since 1
p
nD

�↵
q XD�↵

q and L↵

only di↵er by a finite rank matrix V⌦VT
, some eigenvalues of L↵ may isolate from

the support S
↵. To find those isolated eigenvalues, we solve for ⇢ /2 S

↵, det(L↵ �

⇢In) = 0. This leads to find the ⇢’s for which 0 = det(Ik+1 + VTQ↵
⇢V⌦) where Q↵

⇢ =
( 1
p
nD

�↵
q XD�↵

q � ⇢In)
�1 is the resolvent of 1

p
nD

�↵
q XD�↵

q . By using standard RMT calcu-

lus [Benaych-Georges and Nadakuditi, 2012], we obtain a deterministic approximation of
Ik+1 +VTQ↵

zV⌦ which leads to the phase transition condition in Theorem 19.

Remark 20 (⌧↵ in SBM setting). From Remark 18, in the SBM setting, ⌧↵ no longer

depends on ↵ and is given by ⌧↵ =
p

1�q20
q0

.

Remark 21 (Number of isolated eigenvalues). From Theorem 19, there is a one-to-one
mapping between the limiting isolated eigenvalues ⇢ of L↵ and non zero eigenvalues of
M̄ =

�
D(c)� ccT

�
M. As 1T

kM̄ = 0, M̄ has a maximum of k � 1 non zero eigenvalues
which means that at most k � 1 eigenvalues of L↵ can be found at macroscopic distance
from S

↵. Thus, at most k�1 eigenvectors of L↵ can be used in the first step of the spectral
algorithm described in the introduction.

Remark 22 (The complete spectrum of L↵). Strictly speaking, the aforementioned state-
ments are somewhat inaccurate. An exhaustive analysis of L↵ indeed reveals that, under
some conditions on µ, and irrespective of the clustering matrix M, extra isolated eigen-
values can be found in the spectrum of L↵, the eigenvectors of which do not contain any

4The limit limx#S↵ g
↵(x) is well defined in (�1, 0] as x 7! g

↵(x) can be shown to be a continuous
growing negative function on the right side of S↵.
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structural information about the classes. This rather unfamiliar scenario has also been
evidenced in the context of spectral kernel clustering in [Couillet and Benaych-Georges,
2016]. Since this hypothetical eigenvalue and eigenvector pair is of no value for the inter-
est of clustering, it shall no longer be discussed in the following. Besides, most settings
of practical interest do not present this singular behavior. A thorough discussion of this
peculiarity is provided in Appendix A.5.

The value ⌧↵ defined in Theorem 19 is a community detectability threshold which
in the dense regime for the SBM case was shown to split the community detectability
into two regions: a region where no algorithm can succed better than a random guess in
classifying the nodes and a region where a non trivial detection is possible [Decelle et al.,
2011b,Nadakuditi and Newman, 2012]. When the separability condition of Theorem 19
is ensured, the alignment between the properly normalized eigenvectors of L↵ and linear
combinations of the class vectors ja’s (defined in Theorem 15) is away from zero, thus
ensuring a non trivial classification performance. The larger �(M̄), the closer are the
vectors used for classification to the class vectors ja’s.

Theorem 23. Under Assumption 1, let �(M̄) and �(L↵) be an eigenvalue pair as defined
in Theorem 19. We further assume �(M̄) of unit multiplicity and denote u the eigenvector

associated with the eigenvalue �(L↵). Then, letting n̄ = D↵�1u
kD↵�1uk and ⇧ =

Pk
a=1

jajTa
na

, for
all ✏ > 0, there exists ��, �+ > 0 such that, for all n large, almost surely,

0 <
���(M̄)

��� ⌧↵ < �� ) n̄T⇧n̄ < ✏
���(M̄)

��� ⌧↵ > �+ ) n̄T⇧n̄ > 1� ✏.

This result, which is an extension of Theorem 14 to our model, is a direct corrolary of
Theorem 28 in Appendix 4.3.5.

Figure 4.4 illustrates Theorem 23, which confirms that, below the phase transition
threshold ⌧↵, there is asymptotically no correlation between the vectors n̄ and the class
canonical vectors ja’s and thus no consistent clustering can be achieved in this regime.
The theoretical curve is obtained by using the deterministic asymptotic approximation of
n̄T⇧n̄ which is explicitly given in Appendix A.4.

4.3.4 Optimal ↵

In this section, we determine the values of ↵ for which the community detectability thresh-
old is maximally achieved. This, in turn, is expected to allow for the optimal extraction
of information about the classes from the extreme eigenvectors although this is not easily
proved.

From Theorem 19, since M̄ does not depend on ↵, the smaller ⌧↵ the more likely the
detectability condition

���(M̄)
�� > ⌧

↵ is met. We then seek ↵ for which ⌧↵ is minimal. For
any compact set A ⇢ R, we may thus define

↵opt , argmin↵2A {⌧
↵
}
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Figure 4.4: Simulated versus empirical n̄T⇧n̄ for k = 3, µ = 3
4�q(1) +

1
4�q(2) , q(1) = 0.1,

q(2) = 0.2, c1 = c2 =
1
4 , c3 =

1
2 , M = �I3 with � ranging from 0 to 100.

which we shall assume is unique (if qi = q0 is constant, ⌧↵ is constant across ↵; this
case is thus excluded). The estimation of ↵opt however requires the knowledge of g↵(x)
for each ↵ 2 A. The estimation of g↵(x) can be done numerically by solving the fixed
point equation defined in Theorem 17 provided µ is known. As a direct consequence of
Assumption 1-(1), µ can in fact be estimated from the empirical graph degrees irrespective
of the class matrix C, according to the following result.

Lemma 24. Let q̂i =
dip
dT1n

. Then, under Assumption 1,

max
1in

|qi � q̂i|! 0 (4.3)

almost surely.

We thus have all the ingredients to estimate ↵opt.5

Proposition 25. Define µ̂ , 1
n

Pn
i=1 �q̂i with q̂i =

dip
dT1n

and Ŝ
↵, f̂↵(z), ĝ↵(z), as in

Theorem 17 but for µ replaced by µ̂. Then, as n!1,

↵̂opt ! ↵opt

almost surely, where ↵̂opt , argmin↵2A{⌧̂
↵
} with

⌧̂↵ ⌘ �
1

limx#Ŝ↵ ĝ
↵(x)

.

5Note here that imposing A to be a compact set ensures the uniform validity of Theorem 17.
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Remark 26 (Numerical evaluation of S↵). Estimating ⌧̂↵ requires to determine Ŝ
↵
. To

this end, we use the fact that ĝ↵(x) is only defined for x /2 Ŝ
↵. We thus evaluate Ŝ

↵ by an
iterative dichotomic search in intervals of the type [l, r] for which ĝ

↵(l) is undefined (and
thus the algorithm in Equation 4.2 does not converge) and ĝ

↵(r) is defined (the algorithm
converges), starting from e.g., l = 0 and r quite large.

Remark 27 (Relevance of the choice of ↵). Following Remarks 18 and 20, note that the
choice of ↵ is only relevant to heterogeneous graphs, as in the SBM case, the phase transi-
tion threshold ⌧↵ is constant irrespective of ↵. This suggests that the more heterogeneous
the graph the more important an appropriate setting of ↵.

The aforementionned importance of choosing ↵ = ↵̂opt along with the need to pre-
multiply the dominant eigenvectors of L↵ by D↵�1 before classification, as discussed after
exposing Theorem 15, naturally bring us to an improved version of Algorithm 2 provided
below. The performances of Algorithm 3 mainly depend on the content of the eigenvectors

Algorithm 3: Improved spectral algorithm

1: Evaluate ↵ = ↵̂opt = argmin↵2A limx#Ŝ↵ ĝ
↵(x) as per Proposition 25.

2: Retrieve the ` eigenvectors corresponding to the ` largest eigenvalues of

L↵ = (2m)↵ 1
p
nD

�↵
h
A� ddT

2m

i
D�↵. Denote u↵

1 , . . . ,u
↵
` those eigenvectors.

3: Letting n↵
i = D↵�1u↵

i and n̄↵
i = n↵

i

kn↵
i k

, stack the vectors n̄↵
i ’s columnwise

in a matrix N = [n̄↵
1 , . . . , n̄

↵
` ] 2 Rn⇥`.

4: Let r1, . . . , rn 2 R` be the rows of N. Cluster ri 2 R`, 1  i  n in one of the k

groups using any low-dimensional classification algorithm (e.g., k-means or EM).
The label assigned to ri then corresponds to the label of node i.

n̄↵
i ’s. These regularized eigenvectors happen to be shapped like noisy “plateaus” (step

functions), each plateau characterizing a class. The objective of the next section is to
provide deterministic limits of the parameters of those noisy plateaus from which the
asymptotic performances of Algorithm 3 unfold.

4.3.5 Eigenvectors and improvement of Expectation Maximiza-
tion (EM) algorithm

In this section, we provide a precise characterization of the asymptotic class means and
class covariances of the dominant eigenvectors entries (used for clustering) which in turn
allows improving the classical EM algorithm used in the last step of spectral clustering
procedures. The eigenvectors of L↵ have the property of remaining “stable” in the large
dimensional limit, thereby allowing for a precise characterization of their content. This
behavior (classical in the spike model analysis of random matrices) however only holds
for eigenvectors associated with strictly isolated eigenvalues (in the sense that the latter
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remain at a macroscopic distance of all other eigenvalues). In the remainder, we thus
assume that the normalized eigenvector n̄↵

i under study is associated with such a strictly
isolated eigenvalue.

As one can see in Figure 4.2, the di↵erent clusters of points (rows of N in Algorithm 3)
have di↵erent dispersions (variances) in the DCSBMmodel under consideration. The most
appropriate algorithm to use in step 4 of Algorithm 3 is the expectation maximization
(EM) method. EM considers each point ri 2 R` arising from [n̄↵

1 , . . . , n̄
↵
` ] as a mixture of

k Gaussian random vectors with means ⌫a
EM and covariances ⌃a

EM 2 R`⇥`, a 2 {1, . . . , k}.
Starting from initial means and covariances, they are sequentially updated until conver-
gence. To identify ⌫a

EM , ⌃a
EM and thus understand the performance of Algorithm 3, we

may write n̄↵
i

6 as the “noisy plateaus” vector

n̄↵
i =

kX

a=1

⌫
a
i

ja
p
na

+
p
�a
iiw

a
i (4.4)

where wa
i 2 Rn is a random vector orthogonal to ja, of norm

p
na and supported on the

indices of Ca and

⌫
a
i =

1
p
na

(n̄↵
i )

T ja =
1
p
na

(u↵
i )

TD↵�1jap
(u↵

i )
TD2(↵�1)u↵

i

(4.5)

�
a
ij =

(u↵
i )

TD↵�1
DaD↵�1u↵

j
p

(u↵
i )

TD2(↵�1)ui

q
(u↵

j )
TD2(↵�1)u↵

j

� ⌫
a
i ⌫

a
j (4.6)

with Da = D(ja). The vector ⌫a = (⌫ai )
`
i=1 2 R` and the matrix ⌃a = (�a

ij)
`
i,j=1 2 R`⇥`

represent respectively the empirical means and empirical covariances of the points ri
(defined in Algorithm 3) belonging to class Ca. Thus, provided that EM converges to the
correct solution, (⌫a

EM)i and (⌃a
EM)ij shall converge asymptotically to the limiting values

of ⌫ai 2 R and �a
ij respectively. Clearly, for small values of ⌃a compared to ⌫a, clustering

the vectors n̄↵
i shall lead to good performances.

We find the asymptotic limits of the class means ⌫ai and the class covariances �a
ij. The

explicit expressions of those limits are provided in the proof section (Theorems 42 and
43) for readability reasons.

Theorem 28. For ⌫ai , �
a
ij defined in (A.20), (A.21) respectively, there exist deterministic

limits ⌫a,1i and �a,1
ij (explicitely defined in Theorems 42 and 43 in Appendix A.4) such

that, as n!1, almost surely
��(⌫ai )2 � (⌫a,1i )2

��! 0
���a

ij � �
a,1
ij

��! 0.

Sketch of Proof. Technically, the standard tools used in spiked random matrix analysis
do not allow for an immediate assessment of the quantities ⌫ai and �a

ij. As a workaround,

6Recall that the graph nodes were assumed labeled by class, and thus the entries of n̄↵
i are similarly

sorted by class.
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Figure 4.5: n = 800, k = 3 classes C1, C2 and C3 of sizes |C1| = |C2| =
n
4 , |C3| =

n
2 ,

3
4 of the

nodes having qi = 0.3 and the others having qi = 0.8, matrix of weights C = 131T

3 +
30
p
nI3.

Two dimensional representation of the dominant eigenvectors 1 and 2 of L↵. In blue,
theoretical means and one- and two- standard deviations.

we follow the approach used in [Couillet and Benaych-Georges, 2016] which relies on the
possibility to estimate bilinear forms of the type aTu↵

i (u
↵
i )

Tb for given vectors a,b 2 Rn

and unit multiplicity eigenvectors u↵
i of L↵ since we have from Cauchy formula, as n!1

almost surely, (since �i(L↵)! ⇢)

aTu↵
i (u

↵
i )

Tb = �
1

2⇡i

I

�⇢

aT (L↵ � zIn)
�1 bdz

and for a given matrix D

(u↵
i )

TDu↵
i = tru↵

i (u
↵
i )

TD = �
1

2⇡i

I

�⇢

tr (L↵ � zIn)
�1 Ddz

where �⇢ is a positively oriented contour circling around the limiting eigenvalue ⇢ of
�i(L↵) associated with the eigenvector u↵

i of L↵. The calculus details are provided in
Appendix A.4.

Using the asymptotic results in Theorem 28, we display in Figures 4.5 and 4.6 the
theoretical means and standard deviations versus ground truths for each class-wise block
of the eigenvectors entries. The good fit between the ground truths and the theoretical
findings of the class means and class covariances calls for the improvement of the random
initialization of the EM procedure in the last step of spectral clustering.

The performances of EM highly depend on the chosen starting parameters; a first
natural choice is to set them randomly, which as we shall see leads to poor performances
especially in cases where the clusters are not easily separable. Since the theoretical lim-
iting means ⌫a,1 and covariances ⌃a,1 are respectively the limiting values of ⌫a

EM and
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Figure 4.6: n = 800, k = 3 classes C1, C2 and C3 of sizes |C1| = |C2| =
n
4 , |C3| =

n
2 , qi’s

uniformly distributed over [0.1, 0.9], matrix of weights C = 131T

3 +
100
p
nI3. Two dimensional

representation of the dominant eigenvectors 1 and 2 of L↵. In blue, theoretical means and
one- and two- standard deviations

covariances ⌃a
EM provided EM converges to the correct solution, we may set as initial pa-

rameters of EM our findings ⌫a,1 (Theorem 42) and ⌃a,1 (Theorem 43) for a 2 {1, . . . , k}
provided those can be estimated. In most scenarios, the many unknowns prevent such an
estimation. Nonetheless, from Corollary 45 (Appendix A.4), provided the class propor-
tions (or the sizes of each class) are (more or less) known, we can consistently estimate
⌫1 and ⌃1 in a 2-class scenario. As we shall see, this new setting of initial parameters
is much better than other initializations approaches.

To show the e↵ect of our setting of initial parameters of EM based on the findings ⌫1

and ⌃1, Figure 4.7 compares the empirical performances of our new spectral algorithm
based on the regularized eigenvector of L0.5 for di↵erent initial settings of the EM param-
eters i) random setting (Random EM) ii) our theoretical setting (by assuming that the
class proportions are known) and iii) the ground truth setting (oracle EM where we set
the initial points to the empirically evaluated means and covariances of each cluster based
on ground truth). Below the transition point, no consistent clustering can be achieved
for large n using the eigenvectors associated with the highest eigenvalues since the classes
are not separable and our theoretical limiting means and covariances are not defined since
there are no isolated eigenvalues in that case. We have thus initialized EM at random in
this non-interesting regime (as for Random EM). The EM algorithm may in that regime
set all the nodes to the same class, which will then result in a classification rate close to
the proportion of the nodes in the cluster of the largest size. In the interesting regime
(after the transition point), we see that the performances (in terms of correct classification
rate) of the algorithm using our theoretical setting of EM closely match the performances
of an ideal setting with ground truth (oracle EM). The performances of the algorithm
using a random initialization (Random EM) are completely degraded especially around
critical cases (small values of �). Random EM becomes reliable only for very large values
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of � where clustering is somewhat trivial.
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Figure 4.7: Probability of correct recovery for ↵ = 0.5, n = 4000, k = 2, c1 = 0.8, c2 = 0.2,
µ = 3

4�q(1) +
1
4�q(2) with q(1) = 0.2 and q(2) = 0.8, M = �I2, for � 2 [0, 20].

4.4 Numerical simulations

We restrict ourselves to ↵ 2 A = [0, 1] for the numerical simulations. To illustrate the
importance of the choice of ↵opt, Figure 4.8 presents the theoretical (asymptotic) ratio be-
tween the limiting largest eigenvalue ⇢ of L↵ and the right edge S↵ of the limiting support
S

↵ with respect to the amplitude of the eigenvalues of M̄. Although ↵opt only ensures
in theory to have the best isolation of the eigenvalues only in “worst cases scenarios”(i.e.,
when �(M̄) is slighty larger than ⌧↵opt), Figure 4.8 shows that taking ↵ = ↵opt provides
the largest gap ⇢

S↵ for all values of �(M̄). This suggests (again, without any theoretical
support) best performances with ↵ = ↵opt in all cases (for any value of M).

In the sequel, to compare the di↵erent algorithms, we will use the performance evalua-
tion measure known as overlap with ground truth communities, defined in [Krzakala et al.,
2013] as

Overlap ⌘
1
n

Pn
i=1 �giĝi �

1
K

1� 1
K

,

where gi and ĝi are the true and estimated labels of node i, respectively. Figure 4.9
subsequently shows the overlap performance under the setting of Figure 4.8 for a simulated
graph of n = 3000 nodes. Note that the empirically observed phase transitions closely
match the theoretical ones (drawn in circles and the same as in Figure 4.8). We then
consider in Figure 4.10 a DCSBM graph where M is fixed and three quarters of the nodes
connect with a fixed intrinsic low weight q(1) = 0.1 and we vary the intrinsic weights q(2)
of the remaining quarter of the nodes from low to high weights. We observe a sudden
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Figure 4.8: Ratio between the limiting largest eigenvalue ⇢ of L↵ and the right edge of
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(indicated on the curves of the graph). Here, ↵opt = 0.07. Circles indicate phase transition.
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Figure 4.9: Overlap performance for n = 3000, k = 3, ci =
1
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4�q(2) with

q(1) = 0.1 and q(2) = 0.5, M = �I3, for � 2 [5, 50]. Here ↵opt = 0.07.

drop of the BH overlap for large q(2) � q(1). This phenomenon is consistent with the fact,
observed earlier in Figure 1.1, that BH creates artificial communities out of nodes with the
same qi parameter. This is a practical demonstration of the need for a proper eigenvector
normalization to avoid degree biases. This observation has recently led [Newman, 2013]
to consider a regularization for the non-backtracking operator on which the BH method
is based, which still awaits for proper analysis.
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1
3 .

In Figure 4.11, we consider a more realistic synthetic graph where the qi’s assume
a power law of support [0.05, 0.3] which simulates a sparse graph characteristic of real-
world networks. Although this is not the regime we study in this article, our method for
↵ = ↵̂opt still competes with the BH method which was developed for sparse homogeneous
graphs. However, it is seen that the theoretical phase transitions do not closely match
the empirical ones especially for the case ↵ = 1. This mismatch is likely due to the fact
that our theoretical results in this article require Pij = ⌦(1) which is not always the case
in this scenario.
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Figure 4.11: Overlap for n = 3000, k = 3, ci =
1
3 , µ a power law with exponent 3 and

support [0.05, 0.3], M = �I3, for � 2 [10, 150]. Here ↵̂opt = 0.28.
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Algo Overlap Modularity

↵̂opt (' 0) 0.897 0.4246

↵ = 0.5 0.035 ' 0

↵ = 1 0.040 ' 0

BH 0.304 0.2723

Table 4.1: Overlap performance and Modularity after applying the di↵erent spectral al-
gorithms on the Political blogs graph [Adamic and Glance, 2005].

We finally confront the performances (in terms of overlap and modularity 7) of the
di↵erent spectral algorithms on the Political blogs graph [Adamic and Glance, 2005] in
Table 4.1. We should note that while ↵opt = 0 in this case, it achieves the best performance
both in terms of the overlap to the ground truth and of the modularity. 8 Likely, the
reason why ↵ = 0 is optimal on the Political blogs data set can be seen in Figure 4.3,
where L0 is the similarity matrix for which the isolated eigenvalue is the farthest from the
bulk of the other eigenvalues and thus the associated eigenvector is more aligned to the
classes compared to the eigenvectors of L 1

2
and L1.

4.5 Conclusion

In this chapter, we have studied a family of normalized modularity matrices L↵ /

1
p
nD

�↵
h
A� ddT

2m

i
D�↵ which generalize the matrices (modularity, Laplacian) used for

spectral community detection in dense networks. The main di�culty for the study of
those random matrices comes from the dependency between their entries. We tackle this
di�culty by establishing the approximation kL↵� L̃↵k ! 0 using similar techniques as in
[Couillet and Benaych-Georges, 2016] where L̃↵ belongs to the class of so called “spiked”
random matrices for which the study of eigenvalues and eigenvectors is classical. The
study of eigenvalues and eigenvectors of L↵ used for the classification is thus performed
using L̃↵.

We go further than the observation of [Gulikers et al., 2015] and [Newman, 2013]
which states that it is important to use the eigenvectors of L1 rather than the classically

7The modularity Q for a given graph partition with class labels gi’s is defined as : Q =
1

2m

Pn
i,j=1

⇣
Aij �

didj

2m

⌘
�gi=gj where d = A1n is the degree vector and m = 1

2d
T1n is the total number

of edges.
8We should note here that the scores for the BH are di↵erent from the ones found in the article [Saade

et al., 2014] since here we are running k-means algorithm in the last step of the spectral algorithm while
the authors of [Saade et al., 2014] have instead used a sign classification of the eigenvector components
for networks with two communities.

73



4.5. Conclusion

used L0 for the classification when the network has heterogeneous degree distributions to
avoid some important misclassifications induced by degree biases. We saw in Figure 4.2
for example that the eigenvectors of L1 correct the degree biases but we show that it is
better to use instead the eigenvectors of L0 premultiplied by D�1 (see Figures 4.8-4.11
for example). Better still, we show that there exists an optimal ↵ called ↵opt for which
taking the eigenvectors of L↵opt pre-multiplied by D↵opt�1 ensures best performance (or
to be more precise best asymptotic cluster detectability).

We generalize the study in [Nadakuditi and Newman, 2012] concerning the evaluation
of per-class means of the entries of the unique eigenvector used for the classification, which
was limited to the symmetric stochastic block model with two classes of the same average
size. Here we consider a more general model (a non necessarily symmetric stochastic block
model with heterogeneous degree distribution (DCSBM), arbitrary number of classes,
arbitrary class sizes) and we introduce new techniques to evaluate theoretically the limiting
per-class means and covariances of the eigenvectors components which are used for the
low-dimensional classification. Those aforementioned limiting per-class means and per-
class covariances are the limiting values of the corresponding per-class means and per-class
covariances that the Expectation Maximization (EM) algorithm shall find empirically (in
the last step of the spectral method) provided it converges. One can then initialize the
EM parameters with our theoretical findings instead of initializing them at random as
classically done. However, those theoretical limiting quantities depend on the model
parameters such as the class proportions, the eigenvectors of the a�nity matrix M̄ which,
except for particular cases (K = 2 classes for example), are not directly accessible from
real world graphs. We may empirically estimate those parameters by applying Algorithm 3
for a fixed ↵, computing the empirical class-wise means ⌫ai ’s/covariances �

a
ij’s and using

their theoretical formula (Theorems 42 and 43) to deduce the unknown parameters v’s
(eigenvectors of M̄) and c (class proportions vector) associated to the graph.

The results and methods in this article are all based on the strong assumption that
the class-wise correction factors Cgigj di↵er by O(n�

1
2 ) e.g., 8i, j 2 {1, . . . , n}, Cgigj =

1+
Mgigj
p
n . Previous works [Lyzinski et al., 2014,Lei et al., 2015,Gulikers et al., 2015] sug-

gest that the present analysis, which only considers “first order spectral statistics”, should
naturally extend to moderately sparse graphs (of as little as O(log n) average degree). Un-
der the sparse DCSBM graph assumption, strikingly di↵erent tools are required, opening
up a challenging area of improved algorithm research. Similarly, if the Cgigj ’s di↵er at a

rate n�
1
2 ⌧ rn ⌧ 1, mere refinements of our analysis ensure asymptotic weak consistency

for all values of ↵ based on the present tools. In passing, this shows that identifiability
considerations are equivalent to those delineated for any ↵, as in [Gulikers et al., 2015] for
↵ = 1. Formally, the case where rn = O(1) breaks Lemma 24 and therefore the validity
of our present analysis but this scenario is also by and far covered by previous works.
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Chapter 5

Multi-layer heterogeneous
community detection

5.1 Introduction

In the previous chapter, the objects of interest were single-layer graphs for which research
on community detection was and continues to be very active. However, the emergence of
multiple types of relationships in current real-world networks leading to multilayer graphs,
has called for the development of new methods for community detection in multilayer
graphs. Current research e↵orts have been developping aggregation methods which con-
sist in collapsing the di↵erent layers altogether to extract a common community structure.
It is however more realistic in practice to have a community structure that is common
to all the layers while a structure that is distinct between the di↵erent layers. In this
chapter, we propose a new method that automatically detects shared and unshared com-
munities between the di↵erent layers of a multilayer weighted graph. We follow a Bayesian
generative model approach to generate multilayer weighted stochastic block models for
which the labels of a subset of nodes are shared between all the layers while the labels of
the complementary set of nodes are independently generated for each layer. Due to the
intractable form of the posterior distribution of the nodes’ labels given the graphs, under
the constraints on the correlations between the nodes’ labels, we derive a variational Bayes
approximation to that posterior. The parameters of the variational approximation are de-
termined to be the ones for which the variational distribution is the closest to the sought
posterior (in terms of Kullback-Leibler divergence). We show through synthetic examples
that the proposed method is more accurate than previous approaches to community de-
tection in multilayer graphs in extracting both shared and unshared communities from
weighted graphs. We also make use of our method on a multinomic molecular biology
dataset where it enables the discovery of heterogeneous communities between gene-gene
functional network and gene-gene spatial network.
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5.2. Joint Weighted Stochastic Block Models

5.2 Joint Weighted Stochastic Block Models

To start with, let us recall the definition of a single-layer Stochastic Block Model generated
by a weighted distribution D with su�cient statistic function T and natural parameter
function ⌘. Given latent community label gi 2 {1, . . . , k} (with k denoting the number of
communities) of each vertex i and a community-wise connectivity matrix C 2 Rk⇥k

, an
edge is placed between two vertices i and j with an adjacency weight Aij such that

P(Aij|gi, gj, Cgi,gj) / exp
�
T (Aij)⌘(Cgigj)

 
.

Following a Bayesian approach, prior distributions are attributed to the labels gi and the
community-wise connectivity matrix C.

We denote a multilayer graph, G, defining L as the number of layers and n as the
number of vertices. The graph in the l-th layer is an undirected (possibly weighted) graph
G
(l) = (V , E (l)) with V denoting the set of common vertices and E

(l) denoting the set
of edges in graph G

(l)
. We denote by A(l) the adjacency matrices containing the edge

weights between each pair of vertices in graph G
(l). We propose the following generative

heterogeneous community structure of the multilayer graph G.

1. We assume that each layer is subdivided into k
(l) non-overlapping communities

among which the first k  minl k
(l) are shared between the layers as described

below.

2. We first generate the label g(1)i of each vertex i in the first layer as g(1)i ⇠Multinomial

(µ(1)
0 ) where µ(1)

0 2 Rk(1) contains prior probabilities that the vertices belong to one
of the k

(1) communities.

3. For each vertex i, if g(1)i 2 {1, . . . , k} then set g(l)i = g
(1)
i for each layer l. Otherwise,

generate for each layer l, g(l)i ⇠ Multinomial (µ(l)
0 ).

4. Given latent community labels g(l)i (generated in steps 2 and 3) of each vertex i and
community-wise connectivity matrices C(l)

2 Rk(l)⇥k(l) (the generation of which will
be defined later), an edge is placed between two vertices i and j and it is assigned

an adjacency weight A(l)
ij drawn according to

P(A(l)
ij |g

(l)
i , g

(l)
j , C

(l)

g
(l)
i g

(l)
j

) / exp

⇢
T

(l)(A(l)
ij )⌘

(l)(C(l)

g
(l)
i g

(l)
j

)

�
(5.1)

where T (l) is the su�cient statistic function and ⌘(l) is the natural parameter function
of the weights distribution.

5. The community-wise connectivity matricesC(l) are generated according to conjugate
priors associated with the distribution characterized by (T (l)

, ⌘
(l)) i.e.,

p
?(C(l)

ab ) =
1

Z(l)(⌧ (l)0 )
exp(⌧ (l)0 ⌘

(l)(C(l)
ab ))
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Figure 5.1: Generative graphical model. Circles and rectangles represent random and
deterministic (parameters) variables respectively. Observed variables are shaded.

(a) Heterogeneous multilayer network.
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(b) Community a�nity probability matrices
C(1) and C(2) decomposed into blocks.

Figure 5.2: a) Shared communities (in red) and unshared communities in di↵erent colors
for each layer. b) Red blocks (common to A(1) and A(2)) used to update shared commu-
nities while blue blocks used to update private communities of A(1) and green blocks for
the update of A(2)’s private communities.

with ⌧ (l)0 denoting the associated hyperparameters and Z
(l)(⌧ (l)0 ) the normalization

constants.

For illustration, we specialize the presentation to two communities, for which each
of the matrices C(l) are decomposed into four blocks corresponding, respectively, to the
shared-shared, shared-private, private-shared, private-private interconnections (see Fig-

ure 5.2b). As in [Aicher et al., 2014], we consider each sub-matrix C(l)
1 ,C(l)

2 ,C(l)
3 ,C(l)

4 as

one-dimensional vectors where the elements are stacked. Let us denote by r
(l)
1 , r

(l)
2 , r

(l)
3 , r

(l)
4

the indexing variables into each of the obtained vectors i.e., r
(l)
1 = 1, . . . , k2; r(l)2 =

1, . . . , k(k(l)
� k); r(l)3 = 1, . . . , k(k(l)

� k); r(l)4 = 1, . . . , (k(l)
� k)2. The overall prior distri-

bution can thus be written as

p
?(g(l)

,C(l)
, l = 1, . . . , L) =

LY

l=1

Y

i

(µ(l)
0 )

i,g
(l)
i

Y

r(l)

1

Z(l)(⌧ (l)0 )
exp(⌧ (l)0 ⌘

(l)(C(l)

r(l)
)) (5.2)
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with r
(l)
⌘ {r

(l)
1 , r

(l)
2 , r

(l)
2 , r

(l)
4 }.

Given G
(l)
, l = 1, . . . , L (equivalently their adjacency matrices A(l)), the goal is to infer

the community labels g
(l)
i for each node i in each layer l i.e., to find the most probable

clustering g(l) of the vertices in each layer in the set of all di↵erent possible partitioning

[(g(1))?, . . . , (g(l))?] = argmaxg(l),l=1,...,L P(g(l)
|A(l)

,C(l)
, l = 1, . . . , L) (5.3)

with the correlations constraints on g(l) defined in Point 3 of Section 5.2. The optimization
problem (5.3) is N-P hard due to two main di�culties: the maximization is over all
possible configurations of g(l)

, the calculation of the posterior distribution P(g(l)
|A(l)

,C(l)),
which is intractable due to its high dimensional integral form. Our approach to the
optimization (5.3) is the mean field variational Bayes approximation [Jordan et al., 1999,
Blei et al., 2006] that uses a factorisable distribution as an approximation to the joint
posterior p(g(l)

,C(l)) ⌘ P(g(l)
,C(l)

|A(l)).

5.3 Variational inference

5.3.1 Mean field variational Bayes inference

Denote by q(g(l)
,C(l)) an approximating (factorisable) distribution that depends on tun-

able shaping parameters µ(l) and ⌧ (l). The variational Bayes algorithm fits the distribution
q to the joint distribution by minimizing the KL-divergence, i.e., q = argminr DKL(r||p).

Here the distribution q is taken to have the same parametric form as the prior p?

q(g(l)
,C(l)

, l = 1, . . . , L) =
LY

l=1

Y

i

µ
(l)

i,g
(l)
i

Y

r(l)

1

Z(l)(⌧ (l)
r(l)

)
exp(⌧ (l)

r(l)
⌘
(l)(C(l)

r(l)
)) (5.4)

where ⌧ (l)
r(l)

and µ(l)
2 Rn⇥k(l) are variational parameters corresponding to the random

variables C(l)

r(l)
, g(l) respectively. We can rewrite the original problem (5.3) as follows

[(g(1))?, · · · , (g(L))?] = argmaxg(l)

Z
P(g(l)

,C(l)
|A(l))dC(l)

⇡ argmaxg(l)

Z
q(g(l)

,C(l))dC(l)

= argmaxg(l)

Z Y

l

Y

i

q(g(l)i )q(C(l))dC(l)

= argmaxg(l)

Y

l

Y

i

q(g(l)i ).

Since q
(l) is a categorical distribution with parameter µ(l)

, the original problem (5.3) is
equivalent to

(g(l)i )? = argmaxk µ
(l)
ik (5.5)
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for each node i and layer l, and thus, the multilayer community detection boils down to a
Maximum A Posteriori (MAP) estimator on each individual nodal variational parameter

µ(l)
i for each layer l.

5.3.2 Learning

As per [Aicher et al., 2014], the constant model likelihood can be written as logP(A(l)) =
G(q) +DKL(q||p) with

G(q) = Eq logP(A(l)
|g(l)

,C(l)
, l = 1, 2) + Eq

p
?

q
(5.6)

where p? is the prior distribution assigned to the parameters g(l)
,C(l)

. Since the likelihood
is constant, minimizing DKL(q||p) (and thus making the approximation q to be the closest
to the sought posterior p) is equivalent to maximizing G(q) over the variational parameters.
In the sequel, we devise a procedure to learn the parameters for which G(q) is maximized.

We next address how to find the variational parameters ⌧ (l), µ(l) for which G(q) is
maximized. To this end, let us first compute G(q) with the forms of the prior p? and the
approximation q defined in the previous section. For illustration, we specialize to L = 2
but the same principle applies to any number of layers. We have

G(q) = Eq logP(A(1)
,A(2)

|g(1)
,g(2)

,C(1)
,C(2)) + Eq

p
?

q

= Eq logP(A(1)
|g(1)

,g(2)
,C(1)) + Eq logP(A(2)

|g(1)
,g(2)

,C(2)) + Eq
p
?

q
(5.7)

where in the last line, we use the chain rule along with condition of conditional indepen-
dence between A(1) and A(2) given g(1)

,g(2)
,C(1)

,C(2)
.The structure of the heterogeneous

Joint Stochastic Block Model (Section 5.2) couples the random variables g(1) and g(2)

in a simple manner that can be decomposed into the following cases, which we call the
dependency cases :

• For a vertex pair (i, j) belonging to a block with C(l)
1 , g

(1)
i = g

(2)
i and g

(1)
j = g

(2)
j .

• For a vertex pair (i, j) belonging to a block with C(l)
2 , g

(1)
i = g

(2)
i and g

(1)
j 6= g

(2)
j .

• For a vertex pair (i, j) belonging to a block with C(l)
3 , g

(1)
i 6= g

(2)
i and g

(1)
j = g

(2)
j .

• For a vertex pair (i, j) belonging to a block with C(l)
4 , g

(1)
i 6= g

(2)
i and g

(1)
j 6= g

(2)
j .

Using these dependency cases with (5.1), we obtain an expression for G(q) as per (5.7).
After di↵erentiation with respect to the sought variational parameters, we obtain updates
for ⌧ (l), µ(l)

, which are stationary points of G(q) and correspond to local maxima. The
precision of the local maxima depends on the initial values for µ(l)

. A single run of a
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single-layer clustering algorithm shall lead to the optimal solution basin of attraction.
Due to the dependency cases, the community memberships variational parameters µ

(l)
ik

depends on g
(l)
i either belonging to the set of shared communities {1, . . . , k}, or to the

set of unshared communities ({k + 1, . . . , k(l)
}). The derivation details are provided in

Appendix C.

Algorithm 4 provides the necessary equations for the updates of the variational pa-
rameters ⌧ (l) and µ(l)

. Due to Equation (5.5), a max decision rule can then be used

on µ(l) to assign labels to each node, namely argmaxk µ
(l)
ik gives the label assigned to

node i in graph G
(l)
. The label of node i is shared between di↵erent graphs {G(l)

} when

argmaxk µ
(l)
ik 2 {1, . . . , k} and the label is unshared otherwise.

Algorithm 4 is an extension of the variational Bayes algorithm for inferring hidden
communities from single-layer graphs [Aicher et al., 2014, Zhang and Zhou, 2017] to the
inference of hidden shared and unshared communities from multilayer graphs. In Al-
gorithm 4, the updates for the parameters ⌧ (l) are done independently for each graph
as in [Aicher et al., 2014]. As for the community membership variational parameters
µ(l)
2 Rn⇥k(l)

, the updates of the first k columns of µ(l) are identical and are computed
by adding the contributions of each graph. The last k(l)

� k columns of µ(l) are updated
independently using only the information about each graph. This is quite intuitive since
the first k columns of µ(l) correspond to the shared community evidences and thus they
should be updated using the contributions of the graphs altogether, while the last columns
correspond to unshared communities and thus the updates should be done independently
for each graph.

5.4 Experiments

5.4.1 Synthetic graphs

We first consider two Bernoulli SBM graphs G(1) and G
(2) with the same intra-community

probabilities and di↵erent inter-community probabilities in such a way that one graph is
noisier than the other. Blindly identifying the community labels from each of the graphs
would yield poor performances since we do not know in advance which graph has a clearer
community structure than the other. G(1) and G

(2) are constructed with n = 500 vertices,
each partitioned into k

(l) = 4 (l = 1, 2) communities respectively among which k = 2

are shared between the two graphs. The community labels g
(l)
i are assigned uniformly

overly the intervals {1, . . . , k(l)
} in such a way that g

(1)
i = g

(2)
i when g

(1)
i 2 {1, . . . , k}.

Given the community labels g
(l)
i , the entries of the adjacency matrices are generated as

A
(l)
ij ⇠ Bernoulli(C(l)) with C(1) = (p � q)I4 + q141T

4 and C(2) = (p � q
0)I4 + q

0141T

4

where we fix p = 0.6, q = 0.2 and we vary q
0 between 0.2 and 0.5. The larger q

0 is,
the noisier the graph G

(2) is in comparison with G
(1) and the more di�cult community

recovery is when applying a community detection algorithm on G
(2) solely. The left figure

in Figure 5.3 shows that our Joint mean field algorithm outperforms the competing method
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Multilayer Extraction[Wilson et al., 2017] (M-E) in extracting both shared and unshared
communities from the two correlated graphs. Both methods are designed to exploit the
graph G

(1) to identify the communities of G(2) (among which some are shared with G
(1)).

Both joint methods significantly outperform a spectral clustering algorithm and a mean
field variational algorithm applied on G

(2) alone.

We next consider the same graph settings as before but with disparate distributions
A

(1)
ij ⇠ Bernoulli(C(1)) and A

(2)
ij ⇠ Poisson(C(2)). Here the M-E algorithm is not ex-

ploitable since the latter is designed only for binary graphs (Bernoulli). Our joint varia-
tional algorithm is thus compared with single-graph clustering algorithms. The results are
reported in the right figure of Figure 5.3 where our joint algorithm outperforms single-layer
clustering algorithms (spectral clustering and mean field variational Bayes).

Although our algorithm is designed for detecting shared and unshared communities
from multilayer graphs, here we compare our method with the state-of-the-art algorithms
designed to find only shared communities between multilayer networks which is a par-
ticular case of our model with k

(1) = k
(2) = k. We use the synthetic dataset mL�128

designed by [Brodka and Grecki, 2012] which is an extension of the LFR benchmark [Lan-
cichinetti et al., 2008] to multilayer networks. The parameter µ characterizes the variation
in the vertex degrees among layers (the higher µ the more variations in the layers ver-
tices’ degrees). In Figure 5.4, by varying the number of layers `, we compare in terms
of Normalized Mutual Information (NMI) for increasing µ, the output of our joint mean
algorithm with some state-of-the-art methods for the identification of shared communities
in multilayer networks. Although our method is designed to seek for shared and unshared
communities at the same time, it competes well with the PMM [Tang et al., 2009] and the
MLMAOP [Pizzuti and Socievole, 2017] methods, only optimized for shared community
detection in multi-layer networks. In addition, as shown above, our method is able to also
recover unshared communities between di↵erent layers of the network.

5.4.2 Real world graphs

In this section, we make use of our novel approach to understand the interplay between
genome structure (form) and transcription (function) based on a human fibroblast prolifer-
ation dataset [Chen et al., 2015a]. This dataset consists of Hi-C contact maps [Lieberman-
Aiden et al., 2009] that capture chromatin architectures and RNA-seq data that provide
gene expression levels over 8 time points. We first build a correlation matrix between
the RNA-seq values, where thresholding is applied to obtain a binary adjacency matrix
A(1) representing functional correspondence between di↵erent genes. The threshold was
determined using the asymptotic expression in [Hero and Rajaratnam, 2011] for the min-
imal RNA-seq correlation necessary to maintain functional interaction between genes for
a given number of samples n (here the number of time points), the number of variables
p (here the number of genes in one chromosome) and a given level of significance. We
then construct an average (over the 8 time points) Hi-C matrix A(2) and round each entry
of the average matrix to the closest integer value. For the application of the variational
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Figure 5.3: Normalized Mutual Information (NMI) between communities (of noisier graph
G
(2)) identified by di↵erent community detection algorithms and ground truths, n = 500,

k = 2 shared communities between the two graphs, k(l) = 4. Averages over 100 randomly
generated graphs.
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Figure 5.4: mLFR-128 networks with increasing µ and number of layers `. Normalized
Mutual Information (NMI) between extracted communities and ground truths.
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(c) Hi-C private cluster

Figure 5.5: Top: Left) A portion of chromosome 4 with bins coordinates at the unit of
100 kilo-base (Kb) pair [Chen et al., 2015a]. TADs are represented by boxes, where the
blue box indicates the TAD of our interest. Right) The deployment of genes (identified
by our algorithm) in the TAD highlighted at the left plots. Bottom: Expression levels
of genes that our algorithm identified belonging to the marked TADs in second columns
of top sub-figures.

Bayes algorithm, the entries of A(1) are considered to be Bernoulli distributed while those
ofA(2) are considered to be Poisson distributed. More sophisticated models for the sample
correlation graph, e.g., Wishart distributions, could also be considered but this is left for
future work.

It is shown in [Dixon et al., 2012,Chen et al., 2015a,Chen et al., 2016] that the genome
structure per chromosome can be divided into di↵erent topologically associating domains
(TADs), each of which may contain di↵erently expressed genes. Although [Chen et al.,
2015a] found that some genes in a single TAD can maintain similar expression levels,
it is unclear how to e↵ectively find such a mapping between TADs and gene expression
considering the fact that there are more than 22000 genes in the human genome. In
Figure 5.5, we focus on chromosome 4 as an example in order to show how our proposed
method provides an elegant way to gain insights on the genomic form-function relation-
ship. Figure 5.5-(a) shows Hi-C contacts and gene expressions corresponding to a subset
of genes in one of the shared clusters that we found. We observe from Figures 5.5-(a)
that the genes in a shared cluster aggregate in one TAD, which indicates their frequent
interactions. In this shared cluster, the same group of genes has very similar expressions.
Our results confirm the biological findings in [Chen et al., 2015a] that co-expressed genes
exist in a single TAD. Moreover, as shown in Figure 5.5-(b), our analysis establishes the
form-function relationship for genes in a RNA-seq private cluster. We observe that, as
compared to Figure 5.5-(a), fewer genes belong to the same TAD even though they are
more strongly co-expressed. Finally, Figure 5.5-(c) shows that for a Hi-C private cluster,
the genes are possibly aggregated in a small region of the chromosome but they have
significantly di↵erent expression profiles. To sum up, in contrast to a single-layer com-

83



5.5. Conclusion

munity detection algorithm, our method allows to di↵erentiate groups of genes i) loosely
co-expressed but highly interconnected, ii)loosely interconnected but highly co-expressed
iii) highly co-expressed and highly interconnected.

5.5 Conclusion

Our proposed joint mean field variational algorithm is capable of extracting shared com-
munities across all graph layers as well as identifying communities unique to each layer.
The method is applicable to any multilayer network (with or without edge weights) and
can provide important insights in the analysis of real-world systems as demonstrated for
the human fibroblast dataset. Mean field variational methods are faster to implement
but less accurate than Belief propagation (BP) variational approaches. It might be in-
teresting to derive a BP algorithm to solve this multilayer community detection problem
and compare the complexity/performance of the two approaches. Algorithm 4 requires as
inputs the number of shared clusters and the total number of clusters of each layer. In
practice, those are also unknown variables which need to be selected by fine-tuning using
some criteria provided by the practitioner. In this work, those numbers of clusters are
assumed to be given to the algorithm. Future work might consider optimizing the number
of clusters based on reasonable criteria. Finally, the present work assumes that the shared
clusters are common to all layers while in practice, only a subset of layers might share
communities [Wilson et al., 2017]. An interesting direction of future investigation would
be to consider extensions to that more general case.
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Algorithm 4: Mean field inference of heterogeneous communities in multilayer
graphs.

Inputs: For l = 1, . . . , L, layers adjacencies A(l)
, layer distributions

D
(l) = [T (l)

, ⌘
(l)
, Z

(l)], number of shared communities k, total number k(l) of
communities.
Output: µ(1)

, . . . ,µ(L)
.

For l = 1, . . . , L, initialize µ(l) and choose hyperparameters ⌧ (l)0 .

repeat
for l = 1 to L do
for r

(l) = 1 to (k(l))2 do

⌧
(l)

r(l)
= ⌧

(l)
0 +

P
ij

P
(g

(l)
i ,g

(l)
j )=r(l)

T
(l)(A(l)

ij )µ
(l)

i,g
(l)
i

µ
(l)

j,g
(l)
j

.

end for
end for
repeat
for i = 1 to n do
for a = 1 to k do

µ
(1)
ik = exp

n 1

L

LX

l=1

h X

r
(l)
1 ,j 6=i

(a,g
(l)
j )=r

(l)
1

T
(l)(A(l)

ij )µ
(l)

j,g
(l)
j

⌘̄
(l)

r
(l)
1

+
X

r
(l)
2 ,j 6=i

(a,g
(l)
j )=r

(l)
2

T
(l)(A(l)

ij )µ
(l)

j,g
(l)
j

⌘̄
(l)

r
(l)
2

io

⌘̄
(l)

r(l)
=
@ logZ(l)

@⌧ (l)

���
⌧ (l)=r(l)

end for
for l = 1 to L do
µ
(l)
i,1:k = µ

(1)
i,1:k.

for a = k + 1 to k
(l) do

µ
(l)
ik = exp

n X

r
(l)
3 ,j 6=i

(a,g
(l)
j )=r

(l)
3

T
(l)(A(l)

ij )µ
(l)

j,g
(l)
j

⌘̄
(l)

r
(l)
3

+
X

r
(l)
4 ,j 6=i

(a,g
(l)
j )=r

(l)
4

T
(l)(A(l)

ij )µ
(l)

j,g
(l)
j

⌘̄
(l)

r
(l)
4

o

end for
For a = 1, . . . , k(l)

, µ
(l)
i,a = µ

(l)
i,a/

Pk(l)

b=1 µ
(l)
i,b.

end for
end for

until convergence
until convergence

85



5.5. Conclusion

86



Chapter 6

Inner product kernel spectral
clustering

6.1 Introduction

The objective of this chapter is to conduct a comprehensive study of kernel spectral clus-
tering of large and numerous data. As the study of the eigenvalues and eigenvectors of
data-driven kernel matrices is not accessible, we shall consider that the data is drawn from
a Gaussian mixture model. It is shown in [Couillet and Benaych-Georges, 2016] that this
is not an undesirable model since extremely close fit in performances are obtained between
real-world datasets (with the MNIST database in particular) and Gaussian mixture data
generated with the same empirical means and covariances as the real data. We focus in

this thesis on kernel a�nities of the type Kij = f

⇣
1
px

T

i xj

⌘
, which are much simpler and

more interpretable than the previously studied kernel Kij = f

⇣
1
pkxi � xjk

2
⌘
in [Couillet

and Benaych-Georges, 2016]. As explained in the introduction, the notion of “closeness”
between data points of the same class is not trivial in the large dimensional regime, since
distances between pairs of data tend to be concentrated into one value. But this concen-
tration phenomenon allows for a Taylor expansion of the kernel matrix K leading then
to a linear tractable random matrix which takes the form of an additive spiked random
matrix. This structure allows for a precise analysis of the eigenvalues and eigenvectors of
the kernel matrix K. Due to the aforementioned concentration e↵ect, the performances of
high dimensional kernel spectral clustering depend only on a local behavior of the kernel
function f and thus proper kernel choices need to be done. This work proposes a new
family of kernel functions enabling to discriminate the data based upon the statistical
di↵erence between the class means and between class covariances to better discriminative
rates.
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6.2 Large dimensional Gausian Mixture Model

We consider x1, · · · ,xn 2 Rp a set of vectors to be classified into k similarity classes
C1, · · · , Ck such that for xi 2 Ca, xi = µa + wi, with some vector µa 2 Rp and wi ⇠

N (0,Ca) where Ca satisfy the following growth rate control

Assumption 2 (Growth rates control). The matrices Ca are nonnegative definite and
invertible and, as p, n!1, for k · k the operator norm,

lim inf
p

max{kCak, kC
�1
a k} <1.

We assume without loss of generality that the vectors are sorted by classes as

xn1+···+na�1+1, · · · ,xn1+···+na 2 Ca, a = 1, · · · , k

where na denotes the number of vectors in Ca. We assume the large dimensional regime
where both p and n grow large at the same rate. As a basis of comparison, we derive
below in an oracle setting (a supervised setting where the statistical means and covari-
ances of each vector xi are known and the task consists in retrieving the classes) , the
minimum distance rates on the class means and class covariances necessary to achieve non
trivial classification error (i.e., with probability of error neither 0 nor 1/k) asymptotically.
Through a complete study of the kernel matrix K (for generic kernel functions f), we
will derive the minimum distance rates for which non trivial classification error can be
achieved when using spectral clustering with the kernel matrix K. We will then show that
there exists a family of kernel functions for which one can achieve non trivial classification
performance with distance rates (on the class means and class covariances) closed to the
aforementioned optimal oracle distances.

6.3 Minimal distance rates in oracle (supervised) set-
ting

As a reference, we derive in this section the minimum data rates necessary to achieve
non trivial classification error in the best scenario where the class means and covariances
are perfectly known. We take the same data setting as in Section 6.2 but in the simpler
case k = 2 with uniform prior probability to belong to each class i.e., 1

2 . For x 2 Rp
, a

Neyman-Pearson test (assuming known means µ1,µ2 and known covariances C1,C2) for
x belonging to class C1 consists in the following comparison

(x� µ2)
TC�1

2 (x� µ2)� (x� µ1)
TC�1

1 (x� µ1) > log
|C1|

|C2|
(6.1)
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When x is a vector genuinely belonging to class C1 i.e., x = µ1+C
1
2
1w with w ⇠ N (0p, Ip),

the test (6.1) boils down to verifying whether S(x) > 0 where for �µ , µ1 � µ2

S(x) =
1

p
wT

⇣
C

1
2
1C

�1
2 C

1
2
1 � Ip

⌘
w +

2

p
�µTC�1

2 C
1
2
1w

+
1

p
�µTC�1

2 �µ�
1

p
log

|C1|

|C2|
. (6.2)

The random variable S(x) can be written as the sum of p independent random variables
and thus by carefully applying Lyapunov’s central limit theorem [Billingsley, 1995] along
with Assumption 2, we have as p!1, the following central limit result on S(x)

V
�

1
2

S (S(x)� ES)! N (0, 1) (6.3)

in distribution where

ES =
1

p
trC1C

�1
2 � 1 +

1

p
�µTC�1

2 �µ�
1

p
log

|C1|

|C2|
(6.4)

VS =
2

p2
tr
⇣
C

1
2
1C

�1
2 C

1
2
1 � Ip

⌘2

+
4

p2
�µTC�1

2 C1C
�1
2 �µ. (6.5)

In order to avoid perfect classification or impossible classification for the vector x into
its genuine class, one should have the mean and standard deviation of S(x) to be of the
same order of magnitude (with respect to p). We will consider some particular cases on
µa and Ca to determine minimal requirements on the distance rates between the µa’s and
between the Ca’s such that the aforementioned non-trivial classification can be achieved.

• We start with the case where class covariances are equal i.e C1 = C2 = C. In that
case

ES =
1

p
�µTC�1�µ = O

✓
kµk2

p

◆
(6.6)

VS =
4

p2
�µTC�1�µ = O

✓
kµk2

p2

◆
(6.7)

which implies that in order to have ES ⇠p

p
VS, k�µk = O(1).

• As a second case, we take µ1, µ2 such that k�µk = O(1) (thus meeting the minimal
requirement on the means distance rate) and C1, C2 such that kC1 �C2k = o(1).
We thus set C1 = C and C2 = C+ E with kEk = o(1). We can then write

ES =
1

p
trC(C+ E)�1

� 1 +
1

p
�µTC�1

2 �µ�
1

p
log

|C|

|(C+ E)|

=
1

p
tr
⇣
Ip +C�

1
2EC�

1
2

⌘�1

� 1 +
1

p
�µTC�

1
2

⇣
Ip +C�

1
2EC�

1
2

⌘�1

C�
1
2�µ

+
1

p
log det

⇣
Ip +C�

1
2EC�

1
2

⌘
.
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By using the Taylor expansion (Ip+E)�1 = Ip�E+E2+O(kEk3) (with kEk = o(1)),
we get

ES =
1

p
�µTC�1�µ+

2

p
tr(C�1E)2 + o(p�1).

so that the choice kEk = O(p�
1
2 ) is necessary to have ES ⇠p

p
VS = O(p�1) with

VS =
2

p2
tr(C�1E)2 +

4

p2
�µTC�1�µ+ o(p�2). (6.8)

To sum up, when the class means µ1,µ2 and class covariances C1,C2 are perfectly known,
one can achieve non-trivial classification when

kµ1 � µ2k = O(1) (6.9)

kC1 �C2k = O

✓
1
p
p

◆
. (6.10)

We note in particular that Condition (6.10) implies

tr (C1 �C2) = O(
p
p) (6.11)

tr (C1 �C2)
2 = O(1) (6.12)

with Condition 6.12 following from Cauchy-Schwarz inequality.

Conditions (6.9)–(6.12) constitute an optimal baseline for Gaussian Mixture Models
classification that no statistical learning method can achieve. Those will be our reference
in the sequel for the performance evaluation of (unsupervised) kernel spectral clustering.

6.4 Random-matrix asymptotics of inner product ker-
nel spectral clustering

We consider x1, · · · ,xn 2 Rp
n independent vectors belonging to k classes C1, . . . , Ck such

that

xn1+···+na�1+1, . . . ,xn1+···+na 2 Ca

with n0 = 0 and
P

i ni = n. We assume that when xi 2 Ca, xi = µa +
p
pwi where

wi ⇠ N (0,Ca/p) with µa 2 Rp and Ca a non negative definite matrix. We will consider
the following growth rate assumptions for n, p ! 1 leading to non-trivial classification
errors

Assumption 3 (Growth rate). As n!1, we assume the following conditions hold.

1. For cn = p
n , 0 < lim infn cn  lim supn cn <1.
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2. For each a 2 {1, . . . , k} and for ca =
na
n , we have 0 < lim infn ca  lim supn ca <1.

We shall denote in the sequel c = {ca}
k
a=1.

3. Let µ� =
Pk

a=1 caµa and for each a 2 {1, . . . , k}, µ�

a = µa � µ�. We have
lim supn max1ak kµ�

ak <1.

4. Let C� =
Pk

a=1 caCa and for each a 2 {1, . . . , k}, C�

a = Ca �C�. We have
lim supn max1ak kCak <1 and lim supn max1ak

1
p
n trC

�

a = O(1).

For subsequent use, we introduce the following notations

M , [µ�

1, · · · ,µ
�

k] 2 Rp⇥k

T ,
⇢

1
p
p
trC�

aC
�

b

�k

a,b=1

W , [w1, . . . ,wn] 2 Rp⇥n

J , [j1, · · · , jk] 2 Rn⇥k

P , In �
1

n
1n1

T
n 2 Rn⇥n

with ja 2 Rn the canonical vector of cluster Ca defined by (ja)i = �xi2Ca .

Items 1�2 of Assumption 3 set the big data regime under consideration usually called
the random matrix regime. Item 3 corresponds to the optimal distance rate for the means
(Equation (6.9)) while Item 4 correspond to the optimal distance rate for the covariances
(Equation (6.11)).

We take the Kernel matrix K to be: K ,
h
f

⇣
(x�

i )
Tx�

j

p

⌘in
i,j=1

where x�

i = xi�
1
n

Pn
j=1 xj

is the recentered data xi and f satisfies the following conditions

Assumption 4 (On the kernel function). The kernel function f is three-times contin-
uously di↵erentiable in a neighborhood of 0 with f(0), f 0(0), f 00(0), f 000(0) constant with
p.

It is common usage in the literature to require that f is such that the kernel matrix
K is non-negative definite. Examples of kernels ensuring this property are:

• Linear kernel:
f(x) = x

• Exponential kernel:
f(x) = exp(�x) � � 0

• Polynomial kernel:
f(x) = (x+ c)d c � 0, d 2 N
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where the conditions � � 0 and c � 0 with d 2 N are here imposed to ensure the
positivity of the resulting kernel matrix K. The rationale behind this choice stems from
the fact that K is thought of as being the Gram matrix of the observations embedded
in a higher dimensional feature space. As will be shown in this work and also through
a series of numerical illustrations, the positivity of the kernel function is not mandatory,
clustering being also possible when the kernel matrix is not non-negative: what matters in
high dimensions is the behavior of f and its first derivatives around 0 (for inner products
kernels).

As p!1, we have

• For i = j,
(x�

i )
Tx�

j

p = 1
p trCa+O(p�

1
2 ) = 1

p trC
�+1

p trC
�

a+O(p�
1
2 ) =

1

p
trC�

| {z }
⌧

+O(p�
1
2 ).

• For i 6= j,
(x�

i )
Tx�

j

p = O(p�
1
2 ).

Since for i 6= j,
(x�

i )
Tx�

j

p ! 0 as p ! 1 and for i = j,
(x�

i )
Tx�

j

p ! ⌧, we shall write a
Taylor expansion of f around 0 to give an estimate of the entries Kij (i 6= j) and a Taylor
expansion around ⌧ to get approximations for entries Kii. We thus have for i 6= j,

Kij = f(0) + f
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We shall now write the matrix K in such a way that its corresponding terms have non-

vanishing operator norm. The matrices corresponding to the terms of
⇣

(x�
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�
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will give rise to matrices with vanishing operator norms. Based on that, we

can write
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By rearranging the terms of K, we get the following approximation

Theorem 29. Under Assumption 3 and 4, let K̂ be given by:

K̂ = f
0(0)PWTWP+V⌦VT (6.13)

with

⌦ =

0

B@
f
0(0)MTM+ f 00(0)

2

n
1
p trC

�

aC
�

b

ok

a,b=1
f
0(0)Ik

f
0(0)Ik 0k

1

CA ,

V =


J
p
p
,PWTM

�

Then,
���[PKP� (f(⌧)� f(0)� ⌧f 0(0))P]� K̂

��� a.s.
�! 0.

Up to recentering and scaling (by the matrix P), the kernel matrix K takes the form
of an additive spiked random matrix K̂ as long as

trC�

aC
�

b = O(p). (6.14)
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Figure 6.1: Eigenvalues of K (left) and K̂ (right) for p = 2048, n = 1024, c1 = 1/2, c2 =
c3 = 1/4, [µi]j = 4�ij, Ci = (1 + 6(i� 1)/

p
(p))Ip, f(x) = exp(x/2)
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Figure 6.2: Eigenvalues of K (left) and K̂ (right) for p = 2048, n = 1024, c1 = 1/2, c2 =
c3 = 1/4, [µi]j = 4�ij, Ci = (1 + 6(i� 1)/

p
(p))Ip, f(x) = exp(�x/2)

The noise matrix PWTWP is a deformed random Wishart matrix (Marc̆enko Pastur)
and the low rank matrix V⌦VT contains linear combinations of the canonical vectors ja
scaled with inner products between the class means (MTM) and class covariances products
(trC�

aC
�

b). There is thus a phase transition beyond which eigenvalues of K isolate from
the bulk. Spectral clustering using the eigenvectors of K associated with the isolated
eigenvalues will induce non trivial classification performance since those eigenvectors ought
to be correlated to the class canonical vectors. Figure 6.1 shows the spectrum of K and
that of K̂ which can be seen to be asymptotically equivalent. Both present a bulk of the
same shape (a deformed Marc̆enko Pastur) followed by two isolated eigenvalues (spikes).

The expression of K̂ reveals that the clustering performance does not depend on the
positivity of the kernel matrix. The only condition that needs to be required is the ap-
pearance of isolated eigenvalues. Figure 6.2 reproduces the same experiment as Figure 6.1
with a kernel function f(x) = exp(�x/2). As can be seen, in such a scenario, isolated
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6.5. Random matrix-improved kernels for large dimensional spectral clustering

eigenvalues arise at the left side of the spectrum, suggesting that the smallest eigenvalues
carry the information about clustering.

Compared to the optimal oracle condition for the covariances rates (condition (6.12)),
the condition (6.14) implies that the kernel functions f satisfying the growth rates studied
so far, are not optimal. For kernel functions such that f 0(0) = 0, Equation (6.13) reads

PKP = (f(⌧)� f(0))P+
f
00(0)

2p
J

⇢
1

p
trC�

aC
�

b

�k

a,b=1

JT +O(p�
1
2 ), (6.15)

then leading to a completely deterministic kernel matrix (absence of noise matrix) and
thus asymptotic classification can be achieved when using such kernels under the distance
rates on the class means (Assumption 3) and class covariances (Condition (6.14)) above.
This means that with such kernels, one can reduce the rate of trC�

aC
�

b from O(p) to
O(p

1
2 ) to achieve non trivial classification error since in that case a new noise order term�

(w�

i )
Tw�

j

�2
(which was negligeable in the previous suboptimal regime) is comparable to

trC�

aC
�

b in order of magnitude. This case was investigated in [Kammoun and Couillet,
2017] where f is chosen such that f

0(0) = 0. It was shown in [Kammoun and Couillet,
2017] that with such kernel functions (f 0(0) = 0), the limiting eigenvalue distribution
of K is a semi-circle distribution instead of a Marc̆enko-Pastur distribution (in the case
f
0(0) 6= 0). However, while this kernel choice f

0(0) = 0 leads to an improvement in the
distance rate between products of covariances trC�

aC
�

b , it has the undesirable e↵ect of
completely annihiling the class means as can be seen in Equation (6.15).

In the next section, we propose a new family of kernel functions designed to discrimi-
nate both statistical means and covariances to theoretically minimal distance rates (with
respect to data size p).

6.5 Random matrix-improved kernels for large di-
mensional spectral clustering

We consider the same data setting as in Section 6.4 but for the following growth rates

Assumption 5 (Growth rate). As n!1, p/n! c0 > 0, na
n ! ca > 0. Furthermore,

1. For µ� =
Pk

a=1 caµa and µ�

a = µa � µ�
, kµ�

ak = O(1).

2. For C� =
Pk

a=1 caCa and C�

a = Ca �C�
, kCak = O(1) and trC�

a = O(
p
p).

3. 1
p
p trC

�

aC
�

b converges in [0,1).

4. 1
p trC

� converges to ⌧ > 0.

Under those conditions, it was shown in [Couillet and Benaych-Georges, 2016, Remark
12] and in [Tiomoko Ali et al., 2018a] that estimating the class labels by spectral clustering
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on K does not perform better than random guess for generic f , unless the condition
1
p
p trC

�

aC
�

b = O(1) is relaxed to 1
p
p trC

�

aC
�

b = O(
p
p). However, when f is chosen so

that f
0(⌧) = 0 for translation-invariant kernels or f

0(0) = 0 for inner-product kernels,
spectral clustering on K induces non trivial classification on datasets with di↵ering class
covariances. But the latter choice comes along with a complete annihilation of the class
means in the spectral clustering inner workings (a setting carefully studied in [Kammoun
and Couillet, 2017]).

As made clear by a careful random matrix analysis, setting instead f
0(0) = O(p�

1
2 )

(or f
0(⌧) = O(p�

1
2 ) for translation-ivariant kernels) allows for a fair treatment of both

class means and covariances in the classification procedure. We focus here on the case of
inner-product kernels with f

0(0) = O(p�
1
2 ). We thus have the following key assumption

on the kernel function design.

Assumption 6 (On the kernel function). The kernel function f is three-times contin-
uously di↵erentiable in a neighborhood of 0 with f(0), f 00(0), f 000(0) constant with p while
f
0(0) = ↵

p
p for some ↵ 2 R. We shall also denote � = 1

2f
00(0).

For instance, the kernels f(x) = �(x + p
�

1
2�

�1
↵)2 or f(x) = e

��(x+p�
1
2 ��1↵)2 satisfy

the conditions of Assumption 6.

The kernel studied in [Kammoun and Couillet, 2017] thus corresponds to the particular
case of Assumption 6 with ↵ = 0. As for [Couillet and Benaych-Georges, 2016,Tiomoko Ali
et al., 2018a], we shall see that it might be considered as a limiting setting where ↵ is
arbitrarily large.

Having specified the conditions on f , let us now define K as the inner-product random
matrix

K
�
=

8
><

>:

f

⇣
1
p(x

�

i )
Tx�

j

⌘
, i 6= j

0 , i = j

with x�

i = xi �
1
n

Pn
i=1 xi and f satisfying Assumption 6. Setting the diagonal elements

of K is done for mathematical convenience and has no impact on the spectral clustering
performance. Under this parametrization, we shall successively show that the matrix
K composed of non-linear and intricately dependent entries asymptotically behaves in
a simpler “almost linear” manner. From this simplified form, the asymptotic spectral
characterization of K will be understood, in particular its dominant eigenvector contents.

As in [El Karoui et al., 2010] and following-up works, the non-linearity in K is treated
by noticing that, as p ! 1, Kij ! 0 for all i 6= j, thereby allowing for an entry-wise
Taylor expansion ofK. The theoretical di�culty next lies in the random matrix analysis of
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6.5. Random matrix-improved kernels for large dimensional spectral clustering

all matrix terms arising from the Taylor expansion. The key particularity that makes the
setting f

0(0) = O(p�
1
2 ) so fundamental is that, in [Couillet and Benaych-Georges, 2016],

the terms a↵ected by the di↵erences trC�

aC
�

b used to vanish (as a result of being absorbed
by background noise) when trC�

aC
�

b = O(
p
p); by letting f

0(0) = O(p�
1
2 ), the dominant

background noise (but also the di↵erences in means) are reduced and now comparable to
the terms involving trC�

aC
�

b (as long as � = 1
2f

00(0) 6= 0). An interesting side e↵ect is that
a second noise term then arises, and leads to a peculiar phenomenon where a mixture
between a Marcenko–Pastur [Marchenko and Pastur, 1967] type and a semi-circle type
[Wigner, 1993] noise eigenvalue distribution is observed in the limiting spectrum of K.
Still, this complication in the “noise spectrum” paradoxically comes along with a much
simplified “signal spectrum”, as shown in the subsequent results.

Theorem 30. Under Assumption 1 and 6, let K̂ be given by:

K̂ = ↵PWTWP+ �P�P+V⌦VT
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64
↵MTM+ �T ↵Ik

↵Ik 0k
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Then,
���
p
p (PKP+ (f(0) + ⌧f

0(0))P)� K̂
��� a.s.
�! 0.

Theorem 30 (proved in Appendix C) states that, up to centering and scaling, K is
asymptotically equivalent to K̂. In particular, an immediate corollary of Theorem 30 is
that both matrices asymptotically share (again, up to centering and scaling) the same
eigenvalues as well as isolated eigenvectors (i.e., eigenvectors associated to eigenvalues
found at non-vanishing distance from any other eigenvalue). We may then study the
asymptotic spectral properties of K (and as a result, the classification performance of
algorithms based on K) through K̂.

As previously hinted at, it is first interesting to note that K̂ is the sum of i) the
random matrices ↵PWTWP (of the Marcenko–Pastur type) and �P�P (of the Wigner
type, as shown in [Couillet et al., 2016c,Kammoun and Couillet, 2017]) having entries of
order O(p�1) and of ii) a maximum rank k � 1 matrix containing linear combinations of
the class-wise step vectors ja intricately scaled through the inner-products between class
means (MTM) and class covariance-products (T). This may be identified as part of the
large family of spiked random matrix models [Benaych-Georges and Nadakuditi, 2012],
with the particularity that the low-rank addition is not independent of the noise part and
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6.5. Random matrix-improved kernels for large dimensional spectral clustering

that the noise part itself is a mixture between random Wishart and random symmetric
matrices.

Random matrix theory today possesses all necessary tools to assess the eigenspectrum
of such spiked random matrix models. As a common denominator, their eigenvalues are
usually composed of a tightly connected “bulk” of eigenvalues along with up to k � 1
isolated eigenvalues, the eigenvectors associated with which align to some extent to the
eigenvectors in V (and thus, importantly here, to linear combinations of the vectors
j1, . . . , jk).

In particular, understanding the asymptotic performance of spectral clustering de-
mands to characterize the isolated eigenvectors of K. For these to be asymptotically
informative, their associated eigenvalues must be found away from the main eigenvalue
“bulk”. In the following results, we evaluate the conditions upon which this transition
phenomenon (i.e., the appearance of spiked eigenvalues) between asymptotically uninfor-
mative and informative eigenvectors occurs. We start by identifying the defining equations
for the eigenvalue distribution of K.

Theorem 31 (Bulk of Eigenvalues). Let Assumptions 5 hold. Then, as p ! 1, the
spectral distribution ⌫n , 1

n

Pn
i=1 ��i(K̂) (with �i(X) the eigenvalues of X) almost surely

converges (in the weak sense of probability measures) to the probability measure ⌫ defined
on a compact support S and having Stieltjes transform m(z) =

R ⌫(dt)
t�z defined for z 2 C+

,

as the unique solution in C+ of

1

m(z)
= �z +

↵

p
trC�

✓
Ip +

↵m(z)

c0
C�

◆�1

�
2�2

c0
!
2
m(z)

where ! = limp!1
1
p tr(C

�)2.

Figure 6.3 shows for di↵erent values of the parameters ↵ and � the histogram of the
eigenvalues of K versus the theoretical bulk ⌫ from Theorem 31.1. Note that ⌫ is indeed
a mixture of the Marcenko–Pastur law (more visible when ↵ � �) and a Wigner semi-
circle law (especially appearant as � � ↵). The regime under study thus exhibits a
tradeo↵ between the regime considered in [Couillet and Benaych-Georges, 2016] (where
↵ is theoretically infinite and only a Marcenko–Pastur law appears in the theoretical
formulas) and the regime considered in [Couillet et al., 2016c] (where ↵ = 0 and a semi-
circle law is obtained).

With Theorem 31 in place, it now remains to determine the conditions under which
isolated eigenvalues can be found in the spectrum of K, i.e., eigenvalues falling outside
the support S of the limiting measure ⌫. This is obtained by means of now standard
random matrix techniques (see e.g., [Benaych-Georges and Nadakuditi, 2012]) dedicated
to spiked models. The main result is provided in Theorem 32 below, explicited here for
simplicity under the following assumption:

1Obtained from the inverse formula ⌫(dt) = 1
⇡ lim✏!0 =[m(t+ i✏)]dt
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Figure 6.3: Eigenvalues of K (up to recentering) versus limiting law, p = 2048, n = 4096,

k = 2, n1 = n2, µi = 3�i, f(x) =
1
2�

⇣
x+ 1

p
p
↵
�

⌘2

. (Top left): ↵ = 8, � = 1, (Top right):

↵ = 4, � = 3, (Bottom left): ↵ = 3, � = 4, (Bottom right): ↵ = 1, � = 8.

Assumption 7 (Symmetrical scenario). k = 2 with n1 = n2 =
n
2 .

Theorem 32. Let Assumption 5–6–7 hold and let ⇢ 2 R \ S be such that

m(⇢)

4c0
(↵g(⇢)� + �✓) + 1 = 0 (6.16)

with g(⇢) = 1
p tr(Ip +

↵m(⇢)
c0

C�)�1, � = kµ�

1 � µ�

2k
2, and ✓ = 1

p
p tr(C1 �C2)2.

Then, there exists �j eigenvalue of K̂ such that

|�j � ⇢|
a.s.
�! 0.

Any real number ⇢ satisfying equation (6.16) therefore corresponds to the (almost
sure) limit of some eigenvalue of K (again, up to a shift and scaling). This equation
in general has a solution for su�ciently large di↵erences in class means, through the
Euclidean norm distance �, or in class covariances, through the Frobenius norm distance
✓. This induces a detectability phase transition depending on the values of the pair (�, ✓).
Thus, for su�ciently large � or ✓ and appropriately set ↵, �, Equation 6.16 has a solution,
which implies the presence of an isolated eigenvalue outside S and to a corresponding
eigenvector “aligned to some extent” to the canonical class vectors ja’s. Specifically, as
hinted in Chapter 3, for every isolated eigenvalue � of K, the associated eigenvector u�
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can be written as a linear combination of the class canonical vectors added to residual
noise. Since the data are statistically interchangeable within the classes, we can write

u� = ⌘1
j1
p
n1

+ ⌘2
j2
p
n2

+ �1!1 + �2!2 (6.17)

where !1 and !2 are unit norm vectors supported respectively on the indices of class
C1 and C2, and orthogonal to respectively j1 and j2. The scalars ⌘1, ⌘2 can be seen as
the empirical averages of the eigenvector entries in class C1 and C2 while the �1 and �2

represent the class standard deviations of the eigenvector fluctuations around ⌘1
j1

p
n1

and

⌘2
j2

p
n2
. Intuitively, the larger |⌘1�⌘2| the more the separation between eigenvector entries

mapped to C1 and those mapped to C2 and thus the better the clustering performance.
A precise analysis of the limiting values of those parameters (similar to the approach
in [Couillet and Benaych-Georges, 2016]) leads to the following result.

Theorem 33 (Isolated eigenvector). Under the assumptions of Theorem 32, let � be
an isolated eigenvalue of K̂ with almost sure limit ⇢, and u� its associated eigenvector
decomposed as (6.17). Then, for both a = 1 and a = 2

(⌘a)
2 =

m(⇢)2

2m0(⇢)

1

1� m(⇢)2

4m0(⇢)
↵g0(⇢)
c0

�
+ o(1)

where m(⇢) and g(⇢) are defined in Theorem 31 and m
0(⇢), g0(⇢) are their respective first

derivatives.

Under this model (i.e., for k = 2 with n1 = n2), the limiting structure of eigenvector
u� is quite symmetric, as seen through the fact that ⌘1 = �⌘2 + o(1). This in particular
immediately implies that �2

1 = �
2
2 + o(1) = 1

2 � ⌘
2
1 + o(1).

Such a symmetric model can be for example obtained by lettingCa = Ip+
q

✓
2p

�5/4WaWT

a

for some  > 0, and with W1,W2 2 Rp⇥p two independent random matrices having i.i.d.
N (0, 1) entries so that 1

p
p tr(C1 �C2)2

a.s.
�! ✓,. In this case, the asymptotic correct clas-

sification Pc(↵, �) obtained by clustering eigenvector u� based on the signs of its entries
satisfies

Pc(↵, �)�Q

 
�

s
⌘2

1
2 � ⌘

2

!
a.s.
�! 0 (6.18)

where 1
⌘2 = 2m0(⇢)

m(⇢)2 (1�
m(⇢)2

4m0(⇢)
↵g0(⇢)
c0

�).

As an illustration, Figure 6.4 depicts the limiting values for Pc(↵, �) as per (6.18) for
di↵erent values of ↵

� and as a function of � and ✓. The figure strongly sets forth the impor-
tance of a proper choice of ↵, � depending on the specifics of the classification task, i.e.,
either means-dominant or covariance-dominant. In particular, as previously anticipated,
a large value for ↵

� yields better performances in means-dominant disciminative tasks
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(bottom of Figure 6.4); conversely, small values of ↵
� are adapted to covariance-dominant

tasks (top of Figure 6.4).

Upon anticipation of the most discriminative attribute of the data at hand, our results
therefore provide an instructive direction to appropriate kernel choice. In supervised or
semi-supervised learning tasks, � and ✓ can be estimated through appropriate (random
matrix-based) estimators, thereby helping in the choice of appropriate values for ↵ and �.
An application of this principle is performed in the subsequent section on real datasets.
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Figure 6.4: p
n = 1

2 , k = 2, c1 = c2, µi = ��i, � 2 [1 : 20], C1,C2 as in the symmetric

setting with ✓ 2 [1 : 20], f(x) = 1
2�

⇣
x+ 1

p
p
↵
�

⌘2

. Probability of correct recovery for

di↵erent settings ↵
� = 1

8 (top), ↵
� = 1 (Middle), ↵

� = 8 (Bottom), a function of � (x-axis)
and ✓ (y-axis).

6.6 Applications

Our study has so far provided theoretical results for Gaussian mixture models, notably
emphasizing the appropriateness of a kernel having first derivative scaling as O(p�

1
2 ) with

the data size p. In this section, we demonstrate that these findings are confirmed when
applied to realistic datasets. The first dataset under consideration is the popular MNIST
database of handwritten digits [LeCun, 1998]. In this dataset, the classes (the di↵erent
digits) are evidently more discriminative in means than in covariances, as confirmed by
Table 6.1. The second dataset is the epileptic EEG database from [Andrzejak et al., 2001]
which consists of five sets (A to E), each containing p = 100 single EEG channel segments
of 23.6s each. Sets A and B report measures on 5 healthy volunteers and sets C�E on 5
epileptic patients; each set is composed of 4097 samples. This dataset demonstrates more
variations in the class covariances as shown again in Table 6.1.

For both examples, kernel spectral clustering is performed on the dominant eigenvec-
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Table 6.1: Class means and class covariances di↵erences for some real datasets.

Datasets kµ�
1 � µ�

2k
2 1

p
p tr(C1 �C2)2

MNIST (digits 1, 7) 613 1990

MNIST (digits 3, 6) 441 1119

MNIST (digits 3, 8) 212 652

EEG (sets A,E) 2.4 109

tor of a subset of two classes (here n = 1024 samples), using k-means (rather than the
eigenvector entry signs) to discriminate the classes. The results are depicted in Figure 6.5
for the MNIST data and Figure 6.6 for the EEG data. A clear observation is that ex-
tremely poor performances (proportion of correctly classified images) are obtained in the
MNIST case for ↵

� ' 0 while conversely extremely good performances are found on EEG
for that setting, as was anticipated. Yet, note that the optimal value of ↵

� for the MNIST
case does not demand that � ! 0; rather, an optimal value for ↵

� is found within the
range [0, 10], thereby suggesting that the di↵erences in covariance are also exploited to
some extent.
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Figure 6.5: Spectral clustering of the MNIST database for varying ↵
� versus Gaussian

kernel (Kij = e
�

1
2kxi�xjk

2
).
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Figure 6.6: Spectral clustering of the EEG database for varying ↵
� versus Gaussian kernel

(Kij = e
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).

6.7 Conclusion

By leveraging on recent advances in random matrix theory, this chapter has proceeded to
a complete study of the eigenspectrum of inner product kernel random matrices of finite
mixture of large dimensional gaussian classes, in a non trivial regime of classification. This
analysis shows the importance of the kernel function choice for a better exploitation of the
discriminative power of kernel spectral methods. A new kernel function model is proposed
and heavily relies on the need to balance statistical means and covariances in the data
classes. The importance of such a kernel choice is confirmed on real datasets although
the analysis is performed on Gaussian mixture models. So far, the proposed method
which relies on fine-tuning the first derivative of the kernel function (through the value
↵) and the second derivative (through �), does not provide a clear recipe for performing
such fine-tuning o✏ine. The best ratio ↵

� might be chosen as the one maximizing the
absolute di↵erence between “the empirical average of the eigenvector entries mapped to
the first class” and the “average of those mapped to the second class” since the larger this
di↵erence is, the better is the clustering performance. As can be seen in Theorem 33, there
are unknown parameters (di↵erence in means � and di↵erence in covariances ✓) which need
to be estimated prior to the optimization. Those can be easily estimated in supervised or
semi-supervised settings but are more challenging in the unsupervised case. One approach
might be to first run a spectral clustering on the data with a simple kernel, and estimate
the class parameters under this partitioning, which can be used later to optimize on ↵

� but
this comes with additional complexity and the estimated parameters might be biased since
the clustering would be suboptimal with the “simple” kernel. Assuming the parameters (�
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and ✓) are well estimated, one needs to find a computational e�cient optimization of ↵
�

better than a grid search in a certain range. Those di↵erent questions are left for future
work.
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Chapter 7

Conclusions and Perspectives

7.1 Data clustering

The larger part of this thesis has been focused on the theoretical understanding of large
dimensional spectral clustering methods on graphs in the one hand and on data on the
other hand. This involves the understanding of the eigenvalues and eigenvectors of large
random matrices “not classical” in RMT as they either present some non linearities be-
tween the entries or dependency between them. We tackle this problem by benefiting from
a concentration phenomena in a high dimensional regime where classification is not trivial
(neither impossible nor perfect) which allows for a linearization around the limiting ob-
jects. The obtained matrices after linearization are shown to be asymptotically equivalent
to spiked random matrices for which the treatment of the eigenvalues and eigenvectors is
classical in RMT. The eigenspectrum analysis of those matrices allows us to provide some
improvements over existing methods in dense heterogeneous community detection and in
kernel spectral clustering. It might be objected that our limiting “non-trivial’ assumption
does not cover for all pratical classification problems; indeed, most competing articles in
the field instead assume asymptotically perfect classification regimes. We believe that
our setting is however most relevant to tackle classification questions were di�culties do
arise, rather than studying problems where classification is deemed “simple”. Besides, our
practical experiments have shown multiple times that supposedly di�cult classification
tasks fall close to the expected outcomes under our “non-trivial” assumptions.

A smaller part of this thesis has been dedicated to the community detection problem in
multilayer networks where some communities might be shared by the di↵erent layers while
others might not be. Here, a spectral clustering algorithm would not work out except if the
objective is to only detect shared communities in which case one can collapse the di↵erent
layers into one graph on which a spectral method or other single-layer community detection
approaches can be applied. We made use instead of a statistical inference method based
on a multilayer weighted SBM with constraints on the heterogeneous structure of the
communities.

105



7.1. Data clustering

In the following, we give possible future research directions in light of our findings, for
each of the applications covered in this thesis.

7.1.1 Heterogenous single-layer community detection

The research has been focused on the challenging community detection problem on sparse
graphs where classical methods based on adjacency-family of matrices are sub-optimal.
In the sparse regime, the state-of-the art spectral methods close to the Bayes-optimal
performances are the methods based on the Non-backtracking and the Bethe Hessian
matrices. It was shown in [Gulikers et al., 2016] through a study of the Non-backtracking
(NB) matrix in sparse DCSBM graph models, that no normalization is required even in
the heterogeneous case as the eigenvectors of the NB matrix are shown to carry relevant
information. However, as discussed in this thesis and in previous works [Gulikers et al.,
2015,Newman, 2013], the eigenvectors of the similarity matrices of dense graphs are biased
and proper normalizations are required. In addition to that, there has always been this
recurring debate on the “best” similarity matrix to use for e�cient spectral clustering in
dense graphs. In this thesis, we try to provide an answer to that question by finding the
similarity matrix for which the informative eigenvalues are well separated from the noise
and we propose the proper normalization to perform on their corresponding eigenvectors
prior to classification. But our study is so far limiting to a restricted range of similarity
matrices, that is the class of L↵ matrices, and it is clear that there must exist more involved
similarity matrix structures that better capture the information within the DCSBMmodel.

The statistical physics literature has provided new matrices (e.g., NB and Bethe Hes-
sian matrices for sparse graphs) to use for spectral clustering in community detection,
which are obtained from the linearization of the Belief Propagation (BP) algorithm and,
as a consequence, likely (but not provably) have performances close to the optimal Bayes
ones. In the dense SBM case, the linearization of BP leads to a spectral method on
the so-called Fisher-score matrix [Lesieur et al., 2015, Lesieur et al., 2017] and is shown
to exhibit a better phase transition than the adjacency family of matrices. As a future
investigation, one might derive the expression for the Fisher score matrix in the dense
DCSBM (by linearizing the BP equations for this specific model) and then conduct a
similar analysis as in this thesis i.e., study the eigenvalues and eigenvectors of this ma-
trix, derive the phase transition and compare with the one for the normalized modularity
matrix (considered in this thesis), and find the processing to perform on the eigenvectors
for better performances.

Pushing further the applicability reach of the present study, note that one of the
remaining issues of spectral clustering methods especially for large graphs is the expensive
computational complexity of the eigenvectors of the large random matrices representing
those graphs. This computation burden is reduced when using power methods and is thus
less expensive for sparse graphs (with many zeros in the corresponding matrix). This
suggests potential computational gains incurred by smartly removing some edges in the
graph to make it sparse prior to eigenvectors computation, which will of course reduce
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the performance to the benefit of the computational cost. Our mathematical framework
may allow us to study the tradeo↵ between complexity/cost and performances of spectral
methods for community detection on such subsampled large dense graphs.

7.1.2 Kernel spectral clustering

Our random matrix framework enables us to analyze the eigenspectrum of inner-products
kernel random matrices to understand the di↵erent mechanisms of kernel spectral clus-
tering. This study reveals that the choice of the kernel functions is important depend-
ing on the specificities of the classification task (means dominant datasets, covariances
dominant). We propose a family of kernel functions which are better tuned for tak-
ing into account the balance between the class means and class covariances. A similar
study can be conducted with translation-invariant kernels (although much more involved)
f(kxi�xjk

2
/p) with f such that f 0(⌧) = O(p�

1
2 ) (with ⌧ the limiting value of kxi�xjk

2
/p),

which might provide further performance improvements.

As stated in Section 6.7, a next step following our analysis would be to optimize o↵-
line the proposed kernels in order to better fit the discriminative power of the datasets in
hand. This can be performed using our obtained expressions for the empirical averages
of the dominant eigenvectors entries by finding consistent estimates of the class statistics
parameters and a good optimization framework. We obtained those expressions for the
eigenvectors in the simpler case of 2 classes with the same proportions for which the
optimization of the kernels is more accessible. A more general setting (more than 2
classes with unequal number of elements) needs to be investigated in the future.

The study of kernel random matrices was performed so far (in this work and in pre-
vious ones) on a Gaussian mixture model assumption. Although extremely close fit are
obtained when considering MNIST and EEG datasets with their empirical means and
covariances, other real-world datasets exhibit other moments than the means and covari-
ances and are mostly treated through a first feature extraction procedure (such as through
the popular HOG or VGG feature extraction in image processing). A study of spectral
clustering on other more involved distributions such as heavy tailed ones, is left for a
future investigation.

Beyond spectral clustering, we believe that this theoretical work might help designing
more interesting kernel functions than classically used ones in many high-dimensional
statistical learning problems such as kernel-based semi-supervised classification [Chapelle
et al., 2003], kernel Support Vector Machine [Scholkopf and Smola, 2001], Generative
Adversarial Networks (GANs) training using Kernel Inception Distance (KID) [Bińkowski
et al., 2018]. For the latter, recent work [Bińkowski et al., 2018] has been considering the
so-called Maximum Mean Discrepancy (MMD) as the loss metric for training GANs.
The MMD is an integral probability metric to measure the distance between P and Q,

two probability distributions by using independent samples drawn from each distribution.
Given samples X = {xi}

m
i=1 and Y = {yj}

n
j=1 drawn from P and Q respectively, it is shown
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in [Gretton et al., 2012] that an unbiased estimator of the squared MMD is given by

MMD
2(X, Y ) =

1

m(m� 1)

mX

i 6=j

k(xi, xj) +
1

n(n� 1)

nX

i 6=j

k(yi, yj)�
2

nm

mX

i=1

nX

j=1

k(xi, yj),

(7.1)

where k is a “well-chosen” kernel function. It is discussed in [Bińkowski et al., 2018]
that di↵erent kernel choices lead to the comparison of di↵erent statistics of the data
distribution. For e.g., the simple linear kernel k(xi, xj) = x

T

i xj only compares the means
of the data distributions while more sophisticated kernels might compare means and/or

covariances and/or skewness. Simple kernels of the type k(xi, xj) = exp(�kxi�xjk
2

2�2 ) and⇣
1 + kxi�xjk

2

↵

⌘�↵

with �,↵ hand tuned, are used in [Bińkowski et al., 2018] to train GANs

using the MMD as the training loss function and are shown to outperform other metrics
for GANs learning with high dimensional features. We believe that similar studies as
the ones conducted in this thesis, might help in designing better kernels for improving
MMD-based GANs learning. A study of kernel matrices with entries drawn from heavy
tailed distributions for instance might give intuitions on the kernel functions to use in
order to compare the distributions based upon their means, covariances, skewness, high
order statistics or mixture of those.

7.1.3 Multilayer community detection

The variational Bayes algorithm devised for the automatic detection of the shared and
unshared communities between the di↵erent layers requires inputting the number of shared
clusters and the number of private clusters for each layer. While the question of the
number of clusters selection is an open problem in community detection in general, there
exists some model selection approaches optimizing some metrics such as the Bayesian
Information Criteria (BIC) to determine the number of clusters. The di�culty in the
multilayer community detection problem is that there are many hyperparameters (number
of clusters) to optimize. One might think of a BIC-like metric taking into account the
joint likelihood of the multilayer graphical model, which will then be optimized on the
di↵erent number of clusters.

The proposed approach assumes that the shared communities are common to all layers
while a more realistic scenario would be that only subset of layers share communities. A
future investigation would be to find a method that can encompass this more general case
on weighted multilayer graphical models.
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7.2 Random matrices as a tool to understand new
and old machine learning methods

Spurred with the recent results of RMT in machine learning (ML), the former is undoubt-
edly a leading candidate as a theoretical tool for the understanding and improvement
of big data machine learning algorithms. As stated throughout this thesis, most of the
current ML algorithms are inconsistent in the large dimensional regime e.g., due to the
“closeness” notion not exactly valid in high dimensions or inconsistency of classical esti-
mators (empirical covariance matrix). Besides spectral clustering, those inconsistencies
have been revealed and improved through a random matrix analysis of large dimensional
semi-supervised classification [Mai and Couillet, 2017], least-square Support Vector Ma-
chine [Liao and Couillet, 2017] and the understanding of methods based on non linear
random features maps [Louart et al., 2018,Liao and Couillet, 2018].

More importantly, one of the biggest challenges in ML nowadays is to provide some
theoretical understanding to the astonishing performances of the popular deep neural
networks which are to date, not well understood. Recent RMT works have tried to
provide some theoretical explanations to the inner-workings behind deep learning by:
computing their asymptotic performances in simple settings and architectures [Pennington
and Worah, 2017, Louart et al., 2018], showing that some classes of activation functions
have favorable properties [Pennington and Worah, 2017,Louart et al., 2018], showing that
(under some approximation) deep neural network parameters shall converge to “good”
local minima [Choromanska et al., 2015,Dauphin et al., 2014,Liao et al., ]. Those initial
works leveraging random matrix theory as a core tool, although relying on simple cases
or on some approximation, provide powerful grounds which might open the doors of the
black box that is deep learning.
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Appendix A

Supplementary material Chapter 4

Preliminaries

The random matrix under study L↵ is not a classically studied matrix in random matrix
theory. We will thus first find in Section A.1 an approximate tractable random matrix L̃↵

which asymptotically preserves the eigenvalue distribution and the extreme eigenvectors
of L↵. In Section A.2, we study the empirical distribution of the eigenvalues of L↵ and in
Section A.3, we characterize the exact localizations of those eigenvalues. Finally, a thor-
ough study of the eigenvectors associated to the aforementioned eigenvalues is investigated
in Sections A.4 and A.5.

We follow here the proof technique of [Couillet and Benaych-Georges, 2016]. In the
sequel, we will make some approximations of random variables in the asymptotic regime
where n ! 1. For the sake of random variables comparisons, we give the following
stochastic definitions. For x ⌘ xn a random variable and un � 0, we write x = O(un) if
for any ⌘ > 0 and D > 0, nDP(x � n

⌘
un) ! 0 as n ! 1. For v a vector or a diagonal

matrix with random entries, v = O(un) means that the maximal entry of v in absolute
value is O(un) in the sense defined previously. When M is a square matrix, M = O(un)
means that the operator norm of M is O(un). For x a vector or a matrix with random
entries, x = o(un) means that there is  > 0 such that x = O(n�

un).

Most of the proofs here are classical in random matrix theory (see e.g., [Baik and
Silverstein, 2006]) but require certain controls inherent to our model. The goal of the
article not being an exhaustive development of the proofs techniques, we will admit a
number of technical results already studied in the literature. However, we will exhaustively
develop the calculus to obtain our final results which are not trivial.
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A.0.1 Stein Lemma and Nash Poincare inequality

Lemma 34. Let x be a standard real Gaussian random variable and f : R ! R be a C1

function with first derivative f
0
(x) having at most polynomial growth. Then,

E[xf(x)] = E[f 0
(x)].

Lemma 35. Let x be a standard real Gaussian random variable and f : R ! R be a C1

function with first derivative f
0
(x). Then, we have

Var[f(x)]  E[|f 0
(x)|2].

The proofs of those lemma can be found in [Pastur and Shcherbina, 2011].

A.1 Proof of Theorem 15

The matrix L↵ = (dT1n)↵
1
p
nD

�↵
h
A� ddT

dT1n

i
D�↵ has non independent entries and is not

a classical random matrix model. The idea is thus to approximate L↵ by a more tractable
random matrix model L̃↵ in such a way that they share asymptotically the same set of
outlying eigenvalues/eigenvectors which are of interest in our clustering scenario. We
recall that condition to the knowledge of the intrinsic weights qi’s and of the connectivity
matrix M, the entries Aij of the adjacency matrix are defined from the DCSBM model as

independent Bernoulli random variables with parameter qiqj

⇣
1 +

Mgigj
p
n

⌘
; one may thus

write

Aij = qiqj + qiqj

Mgigj
p
n

+Xij

where Xij, 1  i, j  n, are independent (up to the symmetry) zero mean random

variables of variance qiqj(1 � qiqj) + O(n�
1
2 ), since Aij has mean qiqj + qiqj

Mgigj
p
n and

variance qiqj(1� qiqj) +O(n�
1
2 ). We can then write the normalized adjacency matrix as

follows

1
p
n
A =

1
p
n
qqT +

1

n

�
q(a)q

T

(b)Mab

 K

a,b=1
+

1
p
n
X (A.1)

=
qqT

p
n|{z}

Ad,
p
n

+
1

n
DqJMJTDq

| {z }
Ad,1

+
X
p
n|{z}

Ar,1

, (A.2)

where1 q(i) = [qn1+...+ni�1+1, . . . , qn1+...+ni ]
T
2 Rni (n0 = 0) , X = {Xij}

n
i,j=1 and Dq =

D(q). The idea of the proof is to write all the terms of L↵ based on Equation (A.2),
since all those terms depend on A. To this end, we will evaluate successively d = A1n,

1We recall that subscript ‘d, nk’ stands for deterministic term whose operator norm is of order nk and
‘r, nk’ for random term with operator norm of order nk.
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D = D(d), ddT and 2m = dT1n. It will appear that D and dT1n are composed of
dominant terms (with higher operator norm) and vanishing terms (with smaller operator
norm); we may then proceed to writing a Taylor expansion of D�↵ and (2m)↵ = (dT1n)↵

for any ↵ around their dominant terms to finally retrieve a Taylor expansion of L↵.

Let us start by developing the degree vector d = A1n. We have

d = qqT1n +
1
p
n
DqJMJTDq1n +X1n = qT1n

⇣
q|{z}

O(n
1
2 )

+
1
p
n

DqJMJTDq1n

qT1n| {z }
O(n� 1

2 )

+
X1n

qT1n| {z }
O(n� 1

2 )

⌘
.

(A.3)
Let us then write the expansions of dT1n, (dT1n)↵, ddT and ddT

(dT1n)
respectively. From (A.3),

we obtain

dT1n = (qT1n)
2
h
1 +

1
p
n

1T

nDqJMJTDq1n

(qT1n)2| {z }
O(n� 1

2 )

+
1T

nX1n

(qT1n)2| {z }
O(n� 1

2 )

i
. (A.4)

Thus for any ↵, proceeding to a 1st order Taylor expansion, we may write

(dT1n)
↵ = (qT1n)

2↵
h
1 +

↵
p
n

1T

nDqJMJTDq1n

(qT1n)2| {z }
O(n� 1

2 )

+↵
1T

nX1n

(qT1n)2| {z }
O(n� 1

2 )

+o(n�
1
2 )
i
. (A.5)

Besides, from (A.3) we have

ddT = (qT1n)
2
h
qqT

|{z}
O(n)

+
1
p
n

q1T

nDqJMJTDq

qT1n| {z }
O(

p
n)

+
1
p
n

DqJMJTDq1nqT

qT1n| {z }
O(

p
n)

+
q1T

nX

qT1n| {z }
O(

p
n)

+
X1nqT

qT1n| {z }
O(

p
n)

+
1

n

DqJMJTDq1n1T

nDqJMJTDq

(qT1n)2| {z }
O(1)

+
1
p
n

DqJMJTDq1n1T

nX

(qT1n)2| {z }
O(1)

+
1
p
n

X1n1T

nDqJMJTDq

(qT1n)2| {z }
O(1)

+
X1n1T

nX

(qT1n)2| {z }
O(1)

+o(1)
i
. (A.6)

Keeping in mind that we shall only need terms with non vanishing operator norms asymp-

totically, we will require 1
p
n

h
A� ddT

dT1n

i
to have terms with spectral norms of order at least

O(1). We get from multiplying (A.6) and (A.5) (with ↵ = �1)

1
p
n

ddT

dT1n
=

qqT

p
n

+
1

n

q1T

nDqJMJTDq

qT1n
+

1

n

DqJMJTDq1nqT
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+

1
p
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+

1
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X1nqT

qT1n

�
1
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nDqJMJTDq1n
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qqT
�

1
p
n

1T

nX1n

(qT1n)2
qqT +O(n�

1
2 ). (A.7)
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By subtracting (A.7) from (A.2), we obtain

1
p
n

✓
A�

ddT

dT1n

◆
=

1

n
DqJMJTDq �

1

n

q1T

nDqJMJTDq
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+
1
p
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qqT +O(n�

1
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It then remains to evaluate D�↵. From (A.3), we may write D = D(d) as

D = qT1n

⇣
Dq|{z}
O(1)

+D

✓
1
p
n

DqJMJTDq1n

qT1n

◆

| {z }
O(n� 1

2 )

+D

✓
X1n

qT1n

◆

| {z }
O(n� 1

2 )

⌘
.

The right hand side of D (in brackets) having a leading term in O(1) and residual terms
in O(n�

1
2 ), the Taylor expansion of the (�↵)-power of D is then retrieved

D�↵ =
�
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��↵
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⌘
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(A.9)

By combining the expressions (A.5), (A.8) and (A.9), we obtain a Taylor approxima-
tion of L↵ as follows

L↵ = D�↵
q

X
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n
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q +
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n
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The three following arguments allow to complete the proof

• 1n = J1K and Dq1n = q.

• We may write ( 1nJ
Tq)i =

ni
n

⇣
1
ni

P
a2Ci

qa

⌘
. For classes of large sizes ni, from the

law of large numbers,
⇣

1
ni

P
a2Ci

qa

⌘
a.s.
�! mµ and so, 1

nJ
Tq

a.s.
�! mµc where we recall

that mµ =
R
tµ(dt).

• As X is a symmetric random matrix having independent entries of zero mean and

finite variance, from the law of large numbers, we have 1
n
1T
nX1n
p
n

a.s.
�! 0.
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Using those three arguments, L↵ may be further rewritten

L↵ = D�↵
q

X
p
n
D�↵

q +
1

n
D1�↵

q JMJTD1�↵
q �

1

n
D1�↵

q J1Kc
TMJTD1�↵

q

�
1

n
D1�↵

q JMc1T

KJ
TD1�↵

q +
1

n
D1�↵

q J1Kc
TMc1T

KJ
TD1�↵

q

�
1

p
nqT1n

D1�↵
q J1K1

T

nXD�↵
q �

1
p
nqT1n

D�↵
q X1n1

T

KJ
TD1�↵

q +O(n�
1
2 ). (A.10)

By rearranging the terms of (A.10), we obtain the expected result

L↵ = D�↵
q

X
p
n
D�↵

q

+


D1�↵

q J
p
n

D�↵
q X1n

qT1n

�
2

64

�
IK � 1KcT

�
M

�
IK � c1T

K

�
�1K

�1T
K 0

3

75

2

64
JTD1�↵

q
p
n

1T
nXD�↵

q

qT1n

3

75+O(n�
1
2 ).

This proves Theorem 15.

A.2 Proof of Theorem 17

It follows from Theorem 15 that L̃↵ = D�↵
q

X
p
nD

�↵
q +V⌦VT is equivalent to an additive

spiked random matrix [Chapon et al., 2012] where

V =


D1�↵

q J
p
n

D�↵
q X1n

qT1n

�
,

⌦ =

2

64

�
IK � 1KcT

�
M

�
IK � c1T

K

�
�1K

�1T
K 0

3

75 ,

with the di↵erence that the deterministic part V⌦VT is not independent of the random
part D�↵

q
X
p
nD

�↵
q (an issue that we solve here) and V is not composed of orthonormal

vectors. Let us then study X̄ = D�↵
q

X
p
nD

�↵
q (having entries X̄ij with zero mean and

variance �2
ij/n with �

2
ij = q

1�2↵
i q

1�2↵
j (1 � qiqj) + O(n�

1
2 )) and show that its empirical

spectral distribution (e.s.d.) ⇡̃↵ converges weakly to ⇡̄↵ with Stieljes transform e
↵
00(z) =R

(t� z)�1 d⇡̄↵(t) for z 2 C+
. This will imply (By Weyl interlacing formula) that the

empirical spectral measure ⇡↵
⌘

1
n

Pn
i=1 ��i(L̃↵)

(with �i(L̃↵) eigenvalues of L̃↵) will also
converge to ⇡̄↵

.

The matrix X̄ is a classical random matrix model in RMT already studied in similar
cases [Pastur and Shcherbina, 2011]. It is well known for those random matrix models
(having entries with given means, variances and bounded first order moments) that the law
of the X̄ij’s does not change the results on the limiting law of the e.s.d. ⇡̃↵: this property is
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kwown as universality (e.g., [Silverstein and Bai, 1995]). For technical reasons, we can thus
assume that the X̄ij’s are Gaussian random variables with the same means and variances
in order to use standard Gaussian calculus, introduced in [Pastur and Shcherbina, 2011].
The objective of the proof is to find the deterministic limit e↵00(z) for the random quantity
1
n tr

�
X̄� zIn

��1
which is the Stieljes transform of the e.s.d. ⇡̃↵. Deterministic equivalents

for the Stieljes transform of empirical spectral measures associated with centered and
symmetric random matrix models with a variance profile have already been studied in for
example [Ajanki et al., 2015,Hachem et al., 2007]. We give in Appendix A.7 an exhaustive
development of the Gaussian calculus to obtain e

↵
00(z). The final result is as follows.

Lemma 36 (A first deterministic equivalent). Let Q = (X̄�zIn)�1. Then, for all z 2 C+,

Q$ Q̄ = (�zIn �D (ei(z))
n
i=1)

�1 (A.11)

where ei(z) the unique solution of ei(z) =
1
n trD

�
�
2
ij

�n
j=1

⇣
�zIn �D (ej(z))

n
j=1

⌘�1

and the

notation A$ B stands for 1
n trCA� 1

n trCB! 0 and dT

1 (A�B)d2 ! 0 almost surely,
for all deterministic Hermitian matrix C and deterministic vectors di of bounded norms
(spectral norm for matrices and Euclidian norm for vectors).

From Lemma 36 (proof provided in Section A.7), we get directly 1
n trQ� e

↵
00(z)

a.s.
�! 0

with e
↵
00(z) =

1
n

Pn
i=1

1
�z�ei(z)

. Observe now that

ei(z) =
1

n

nX

j=1

q
1�2↵
i q

1�2↵
j � q

2�2↵
i q

2�2↵
j

�z � ej(z)

= q
1�2↵
i e

↵
11(z)� q

2�2↵
i e

↵
21(z) (A.12)

where

e
↵
11(z) =

1

n

nX

j=1

q
1�2↵
j

�z � q
1�2↵
j e↵11(z) + q

2�2↵
j e↵21(z)

e
↵
21(z) =

1

n

nX

j=1

q
2�2↵
j

�z � q
1�2↵
j e↵11(z) + q

2�2↵
j e↵21(z)

. (A.13)

Assuming now that the q0is are generated from an i.i.d law µ of compact support in (0, 1),
by using the iterative deterministic equivalent approach devised in [Hoydis et al., 2011],
one can show that Equation (A.13) is equivalent to

e
↵
00(z) =

Z
1

�z � e↵11(z)q
1�2↵ + e↵21(z)q

2�2↵
µ(dq).

where for z 2 C+ and a, b 2 Z we define

e
↵
ab(z) =

Z
q
a�2b↵

µ(dq)

�z � e↵11(z)q
1�2↵ + e↵21(z)q

2�2↵
. (A.14)
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with µ(dq) = limn!1
1
n

Pn
i=1 �qi . From this, we have that e↵00(z) does not depend on n, so

that 1
n trQ

a.s.
�! E

↵
0 (z), ⇡̃

↵
! ⇡̄

↵, and thus ⇡↵
! ⇡̄

↵ since L̃↵ and X̄ only di↵er by a finite
rank matrix. This proves Theorem 17.

In the main core of the article, we have defined e
↵
00(z) , m

↵(z), e↵11(z) , f
↵(z) and

e
↵
21(z) , g

↵(z) for readability reasons. For future use, we define for z, z̃ 2 C \ S
↵

e
↵
ab;2(z, z̃) =

Z
q
a�2b↵

µ(dq)

(�z � E↵
1 (z)q

1�2↵ + E↵
2 (z)q

2�2↵)(�z̃ � E↵
1 (z̃)q

1�2↵ + E↵
2 (z̃)q

2�2↵)
(A.15)

and

e
↵
ab;3(z, z̃) =

Z
q
a�2b↵

µ(dq)

(�z � E↵
1 (z)q

1�2↵ + E↵
2 (z)q

2�2↵)2(�z̃ � E↵
1 (z̃)q

1�2↵ + E↵
2 (z̃)q

2�2↵)
.

(A.16)
We note that the canonical equations defining the stieltjes transform of the l.s.d of random
symmetric matrices having independent entries with non-zero mean and a variance profile
have first been introduced in [Girko, 2001,Girko, 2012] without the need of universality
arguments. Those general results are applied in for e.g., [Avrachenkov et al., 2015] to the
spectral analysis of Stochastic Block Models.

Convergence of the ei’s

Similar results to Lemma 36 have been derived for example in [Hachem et al., 2007] and
the fixed point algorithm (C.7) which consists of iterating the ei’s is shown to converge.
Since the calcultation of the eab’s is an intermediary step of (C.7) from (A.12), the fixed
point algorithm (A.13) also converges. From the analyticity of the Stieljes transform
outside its support, Lemma 36 extends naturally to C \ S

↵. This proves Theorem 17.

Remark 37. Similarly to [Hachem et al., 2007], when none of the (D�↵
q )ii’s is isolated,

the random matrix X̄ does not produce isolated eigenvalues outside the support S↵ of ⇡̄↵.
Here, for large n, this property is verified since from Assumption 1, the qi’s are i.i.d.
arising from a law with compact support (the probability that a (D�↵

q )ii gets isolated tends
to 0 asymptotically). This gives Proposition 38 which we will not prove here; similar
proofs are provided for example in [Bai and Silverstein, 1998].

Proposition 38 (No eigenvalues outside the support). Following the statement of Theo-
rem 17, let S↵

�
and S

↵
+ be respectively the left and right edges of S↵. Then, for any ✏ > 0,

by letting S
↵
✏ = [S↵

�
� ✏;S↵

+ + ✏] , for all large n almost surely,

n
�i

⇣
D�↵

q

X
p
n
D�↵

q

⌘
, 1  i  n

o
\ (R \ S

↵
✏ ) = ;.

Remark 39. The support S↵ is symmetric i.e., ⇡̄↵([a, b]) = ⇡̄
↵([�b,�a]). We have in

particular S
↵
�
= �S↵

+ = �S↵ where we denote S
↵
+ , supS↵ and S

↵
�
, inf S↵

.
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A.3 Proof of Theorem 19.

In the previous section, we have shown that the e.s.d. of L↵ converges weakly to the
limiting law of the eigenvalues of X̄ since they only di↵er by a finite rank matrix. We
shall have in addition isolated eigenvalues of L↵ induced by the aforementionned low rank
matrix. We are interested here in the localization of eigenvalues of L↵ isolated from the
support S↵ of the limiting law of its e.s.d. According to Proposition 38, there is almost
surely no eigenvalue of X̄ at non-vanishing distance from S

↵ asymptotically as n ! 1

and hence the plausible isolated eigenvalues of L↵ are only due to the matrix V⌦VT.
We follow classical random matrix approaches used for the study of the spectrum of
spiked random matrices [Benaych-Georges and Nadakuditi, 2012, Chapon et al., 2012].
From Theorem 15, the eigenvalues ⇢ of L↵ falling at non-vanishing distance from the
limiting support S↵ solve for large n, 0 = det(L↵ � ⇢In) almost surely for ⇢ /2 S

↵. Since
kL↵� L̃↵k

a.s.
�! 0, ⇢i(L↵)�⇢i(L̃↵)

a.s.
�! 0 for all eigenvalues ⇢i(L↵). We may then just solve

0 = det(D�↵
q

X
p
nD

�↵
q +V⌦VT

�⇢In). Now, as from Proposition 38, the random matrix X̄

does not have eigenvalues at non-vanishing distance from S
↵ asymptotically, for ⇢ /2 S

↵,
we can thus factor and cancel out det(X̄� ⇢In) from the previous determinant equation,
so that we are left to solve

0 = det(In +Q↵
⇢V⌦VT) = det(IK+1 +VTQ↵

⇢V⌦)

where Q↵
⇢ = (X̄� ⇢In)�1. As we will show next, the matrix IK+1 +VTQ↵

⇢V⌦ converges
to a deterministic matrix, almost surely for large n. By the argument principle (similar
to e.g., [Chapon et al., 2012]), the roots of IK+1 +VTQ↵

⇢V⌦ are asymptotically those of
the limiting matrix, with same multiplicity and it su�ces to study the latter.

We then proceed to retrieving a limit for IK+1 + VTQ↵
⇢V⌦. From Theorem 15, we

have

VTQ↵
⇢V =

0

B@
1
nJ

TD1�↵
q Q↵

⇢D
1�↵
q J 1

p
n(qT1n)

JTD1�↵
q Q↵

⇢D
�↵
q X1n

1
p
n(qT1n)

1T

nXD�↵
q Q↵

⇢D
1�↵
q J 1

(qT1n)2
1T

nXD�↵
q Q↵

⇢D
�↵
q X1n

1

CA .

The entries (1, 2), (2, 1) and (2, 2) of VTQ↵
⇢V are random as they contain the random

matrix X but tend to be deterministic in the limit. In fact, using the resolvent iden-
tity, we have that Q↵

⇢D
�↵
q

X
p
nD

�↵
q = In + ⇢Q↵

⇢ , the entry (1, 2) becomes 1
(qT1n)

JTDq1n +

⇢
1

p
n(qT1n)

JTD1�↵
q Q↵

⇢D
↵
q 1n and the entry (2, 2) is equal to n

(qT1n)2

⇣
1T

nX1n + ⇢1T

nD
2↵
q 1n +

⇢
21T

nD
↵
qQ

↵
⇢D

↵
q 1n

⌘
. Now, we can freely use Lemma 36 to evaluate the limits of the

entries of VTQ↵
⇢V since all the terms are of the form aTQ↵

⇢b with a and b deter-
ministic vectors. From Lemma 36, the entries (1, 1), (1, 2) and (2, 2) converge almost
surely respectively to 1

nJ
TD1�↵

q Q̄↵
⇢D

1�↵
q J, 1

(qT1n)
JTDq1n + ⇢

1
(qT1n)

JTD1�↵
q Q̄↵

⇢D
↵
q 1n and

n
(qT1n)2

⇣
1T

nX1n + ⇢1T

nD
2↵
q 1n + ⇢

21T

nD
↵
q Q̄

↵
⇢D

↵
q 1n

⌘
for large n.

Now, using the fact that for any bounded continuous function f , from the law of large
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numbers,
1

n

X

j2Ci

f(qj) =
ni

n

1

ni

X

j2Ci

f(qj)
a.s.
�! ci

Z
f(q)µ(dq). (A.17)

After some algebra, we obtain 1
nJ

TD1�↵
q Q̄↵

⇢D
1�↵
q J

a.s.
�! e

↵
21(⇢)D(c) where the eij’s are given

in Theorem 17. Similarly for the terms (1, 2) and (2, 2), we obtain respectively

1

(qT1n)
JTDq1n + ⇢

1

(qT1n)
JTD1�↵

q Q̄↵
⇢D

↵
q 1n

a.s.
�!

✓
1 +

⇢

mµ
e
↵
10(⇢)

◆
c

and

n

(qT1n)2

⇣
1T

nX1n + ⇢1T

nD
2↵
q 1n + ⇢

21T

nD
↵
q Q̄

↵
⇢D

↵
q 1n

⌘
a.s.
�!

1

m2
µ

�
⇢vµ + ⇢

2
e
↵
0;�1(⇢)

�

with vµ =
R
q
2↵
µ(dq) and where we have also used the fact that 1

n1
T

n
X
p
n1n

a.s.
�! 0 again

from the law of large numbers.

The limit of IK+1 +VTQ↵
⇢V⌦ is then obtained as

IK+1 +VTQ↵
⇢V⌦

a.s.
�!
0

B@
IK + e

↵
21(⇢)(D(c)� ccT)M(IK � c1T

K)�
⇣
1 + ⇢

mµ
e
↵
10(⇢)

⌘
c1T

K �e
↵
21(⇢)c

⇢
m2

µ

�
vµ + ⇢e

↵
0;�1(⇢)

�
1T

K �⇢
e↵10(⇢)
mµ

1

CA .

Using the Schur complement formula for the determinant of block matrices, we have
that the determinant of the RHS matrix is zero whenever

�⇢
e
↵
10(⇢)

mµ
det

h
IK + e

↵
21(⇢)(D(c)� ccT)M(IK � c1T

K)

�

✓
1 +

⇢

mµ
e
↵
10(⇢)

◆
c1T

K +

�
vµ + ⇢e

↵
0;�1(⇢)

�
e
↵
21(⇢)

mµe
↵
10(⇢)

c1T

K

i
= 0

or equivalently det(G↵
⇢ ) = 0 where

G↵
⇢ = IK + e

↵
21(⇢)(D(c)� ccT)M(IK � c1T

K) + ✓
↵(⇢)c1T

K

✓
↵(⇢) = �1�

⇢

mµ
e
↵
10(⇢) +

�
vµ + ⇢e

↵
0;�1(⇢)

�
e
↵
21(⇢)

mµe
↵
10(⇢)

.

The isolated eigenvalues ⇢ of L↵, which are the ⇢ for which det(IK+1 +VTQ↵
⇢V⌦) = 0,

are then asymptotically the ⇢ such that det(G↵
⇢ ) = 0.

Remark 40 (Two types of isolated eigenvalues). From the previous paragraph, 1+ ✓
↵(⇢)

is an eigenvalue of G↵
⇢ with associated left eigenvector 1K and right eigenvector c since

1T
KG

↵
⇢ = (1 + ✓

↵(⇢))1T
K and G↵

⇢c = (1 + ✓
↵(⇢)) c.

Letting ⇢ be such that det(G↵
⇢ ) = 0, we can discriminate two cases
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• 1+✓↵(⇢) = 0: isolated eigenvalues are found for those ⇢ 2 R\S↵ such that 1+✓↵(⇢) =
0. We shall denote by ⇢̃ such eigenvalues when they exist.

• 1 + ✓
↵(⇢) 6= 0: the left and right eigenvectors associated to the zero eigenvalues

of G↵
⇢ are respectively orthogonal to the right and left eigenvectors associated to

the non-zero eigenvalues. So, by letting Vl, Vr be matrices containing in columns
the respectively left and right eigenvectors of G↵

⇢ associated with the zero eigen-
values, we have VT

l c = 0 and 1T

KVr = 0 since 1 + ✓
↵(⇢) 6= 0. It is thus im-

mediate that (Vl,Vr) is also a pair of eigenvectors (with multiplicity) of IK +
e
↵
21(⇢)

�
D (c)� ccT

�
M

�
IK � c1T

K

�
associated to the zero eigenvalues.

As we show in Section A.5, for 1 + ✓
↵(⇢̃) = 0, the eigenvectors associated to the

aforementioned isolated eigenvalues ⇢̃ will not contain information about the classes. This
case is thus of no interest for clustering. It is nevertheless important from a practical
viewpoint to note that, even in the absence of communities, spurious isolated eigenvalues
may be found that may deceive the experimenter in suggesting the presence of node
clusters. From now on, we will only consider the isolated eigenvalues ⇢ for which 1 +
✓
↵(⇢) 6= 0.

We now have all the ingredients to determine the conditions under which we may
have eigenvalues of L↵ which isolate from S

↵. Let l be a non zero eigenvalue of G↵
⇢ =

(D (c)�ccT)M(IK�c1T
K). Since det((D(c)�ccT)M(IK�c1T

K)) = det((IK�c1T

K)(D(c)�
ccT)M) = det((D(c)�ccT)M), l is also a non zero eigenvalue of M̄ = (D(c)�ccT)M. For
each isolated eigenvalue ⇢ of L↵ we have a one-to-one mapping with a non zero eigenvalue
l of M̄ such that l = � 1

E↵
2 (⇢) . Hence, to show the existence of isolated eigenvalues of L↵,

we need to solve for ⇢ 2 R\S
↵, l = � 1

E↵
2 (⇢) for each non zero eigenvalue l of M̄. Precisely,

let us write S
↵ =

SM
m=1[S

↵
m,�, S

↵
m,+] with S

↵
1,�  S

↵
1,+ < S

↵
2,�  . . . < S

↵
M,+ and define

S0,+ = �1 and SM+1,� = +1. Then, recalling that the Stieltjes transform of a real
supported measure is necessarily increasing on R, there exist isolated eigenvalues of L↵ in
(S↵

m,+, S
↵
m+1,�), m 2 {0, . . . ,M}, for all large n almost surely, if and only if there exists

eigenvalues ` of M̄ such that

lim
x#S↵

m,+

E
↵
2 (x) < �`

�1
< lim

x"S↵
m+1,�

E
↵
2 (x). (A.18)

In particular, when S
↵ = [S↵

�
, S

↵
+] is composed of a single connected component (as

when S
↵ is the support of the semi-circle law as well as most cases met in practice), then

isolated eigenvalues of L↵ may only be found beyond S
↵
+ if ` > limx#S↵

+
�

1
E↵

2 (x) (l > 0)

or below S
↵
�
if ` < limx"S↵

�
�

1
E↵

2 (x) (l < 0), for some non-zero eigenvalue ` of M̄. From

the asymptotic spectrum of L↵, S↵
�

= �S↵
+ as one can show that for any z 2 R \ S

↵,
E

↵
2 (�z) = �E↵

2 (z) so that both previous conditions reduce to | ` |> limx#S↵
+
�

1
E↵

2 (x) .

This proves Theorem 19.

The next section is advocated to the study of the eigenvectors associated to isolated
eigenvalues of L↵.
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A.4 Informative eigenvectors

In this section, in order to fully characterize the performances of Algorithm 3, we study in
depth the normalized eigenvectors n̄↵

i used for the classification in the algorithm (step 3
of Algorithm 3). We consider here the eigenvectors corresponding to the eigenvalues for
which 1 + ✓

↵(⇢) 6= 0 (when 1 + ✓
↵(⇢) = 0, the corresponding eigenvectors do not contain

any structural information about the classes; this case is treated in Section A.5). For
technical reasons, we restrict ourselves here to those eigenpairs (�i, n̄↵

i )’s for which there
exists no �j 6= �i such that, if �i ! ⇢, �j ! ⇢.

We recall that we may write n̄↵
i

2 as the “noisy plateaus” vector

n̄↵
i =

KX

a=1

⌫
a
i

ja
p
na

+
p
�a
iiw

a
i (A.19)

where wa
i 2 Rn is a random vector orthogonal to ja, of norm

p
na and supported on the

indices of Ca and

⌫
a
i =

1
p
na

(v̄↵
i )

T ja =
1
p
na

(u↵
i )

TD↵�1jap
(u↵

i )
TD2(↵�1)u↵

i

(A.20)

�
a
ij =

(u↵
i )

TD↵�1
DaD↵�1u↵

j
p

(u↵
i )

TD2(↵�1)ui

q
(u↵

j )
TD2(↵�1)u↵

j

� ⌫
a
i ⌫

a
j (A.21)

with Da = D(ja).

• We estimate the ⌫ai ’s by obtaining an estimator of the K ⇥K matrix

1

n

JTD↵�1u↵
i (u

↵
i )

TD↵�1J

(u↵
i )

TD2(↵�1)u↵
i

,

the diagonal entries of which allow to estimate |⌫ai | while the o↵-diagonal entries are
used to decide on the signs of the ⌫ai ’s (up to a convention in the sign of u↵

i ).

• Similarly, we first estimate the more involved object

1

n

JTD↵�1u↵
i (u

↵
i )

TD↵�1
DaD↵�1u↵

j (u
↵
j )

TD↵�1J

((u↵
i )

TD2(↵�1)u↵
i )
�
(u↵

j )
TD2(↵�1)u↵

j

�

from which
(u↵

i )
TD↵�1

DaD↵�1u↵
jp

(u↵
i )

TD2(↵�1)u↵
i

p
(u↵

j )
TD2(↵�1)u↵

j

is retrieved by dividing any entry e, f of

the former quantity by non-vanishing quantities ⌫ei ⌫
f
i . For the eigenvectors u

↵
i used

for clustering, there is always at least one index f such that ⌫fi is non zero (otherwise,
this eigenvector is of no use for clustering).

2Recall that the graph nodes were assumed labeled by class, and thus the entries of n̄↵
i are similarly

sorted by class.
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A.4.1 Evaluation of the class means ⌫a
i
’s

The estimation of the ⌫ai ’s requires the evaluation of 1
n
JTD↵�1u↵

i (u
↵
i )

TD↵�1J

(u↵
i )

TD2(↵�1)u↵
i

for u↵
i eigenvec-

tor associated to a limiting isolated eigenvalue ⇢ with unit multiplicity of L↵. By residue
calculus, we have that

1

n
JTD↵�1u↵

i (u
↵
i )

TD↵�1J = �
1

2⇡i

I

�⇢

1

n
JTD↵�1 (L↵ � zIn)

�1 D↵�1Jdz (A.22)

for large n almost surely, where �⇢ is a complex (positively oriented) contour circling
around the limiting eigenvalue ⇢ only. As from Theorem 15, L↵ = D�↵

q
X
p
nD

�↵
q +V⌦VT+

o(1), we apply the Woodburry identity to the inverse in the previous integrand and we
get

1

n
JTD↵�1 (L↵ � zIn)

�1 D↵�1J =
1

n
JTD↵�1Q↵

zD
↵�1J

+
1

n
JTD↵�1Q↵

zV⌦
�
IK+1 +VTQ↵

zV⌦
��1

VTQ↵
zD

↵�1J+ o(1).

The first right-hand side has asymptotically no residue when we integrate over the contour
�⇢ (as per Proposition 38 there is no eigenvalues of X̄ in �⇢ for all large n almost surely).
We are then left with the second right-most term. Using the block structure used in
Section A.3, we may write

�
IK+1 +VTQ↵

zV⌦
��1 a.s.
�!

0

B@
IK + e

↵
21(z)(D(c)� ccT)M(IK � c1T

K)�
⇣
1 + z

mµ
e
↵
10(z)

⌘
c1T

K �e
↵
21(z)c

z
m2

µ

�
vµ + ze

↵
0;�1(z)

�
1T

K �z
e↵10(z)
mµ

1

CA

�1

.

Let us write �(z) = z
m2

µ

�
vµ + ze

↵
0;�1(z)

�
. We can now use a block inversion formula to

write

�
IK+1 +VTQ↵

zV⌦
��1 a.s.
�!

0

BBBBB@

(G↵
z )

�1
�

e↵10(z)


G↵

z �
�(z)mµe↵21(z)

ze↵10(z)
c1T

K

��1

c

�
ze↵21(z)

mµ
+�(z)e↵10(z)1

T

K


G↵

z �
�(z)mµe↵21(z)

ze↵10(z)
c1T

K

��1

c

�(z)mµ

ze↵21(z)
1T

K(G
↵
z )

�1 1

�
ze↵21(z)

mµ
+�(z)e↵10(z)1

T

K


G↵

z �
�(z)mµe↵21(z)

ze↵10(z)
c1T

K

��1

c

1

CCCCCA

(A.23)

withG↵
z = IK+e

↵
21(z)

�
D (c)� ccT

�
M

�
IK � c1T

K

�
+✓↵(z)c1T

K . The entries of the previous
matrix seem to be cumbersome but as we will see, the residue calculus will greatly simplify.
In fact, we have that 1T

KG
↵
z = (1 + ✓

↵(z))1T
K so that 1T

K(G
↵
z )

�1 = 1
1+✓↵(z)1

T
K which is well

defined since we are considering the case 1 + ✓
↵(z) 6= 0. Similarly, we have that


G↵

z �
�(z)mµe

↵
10(z)

ze↵21(z)
c1T

K

�
c =

✓
�z

e
↵
10(z)

mµ

◆
c
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meaning that
h
G↵

z �
�(z)mµe↵21(z)

ze↵10(z)
c1T

K

i�1

c = � mµ

ze↵10(z)
c. So finally, the terms (1, 2), (2, 1)

and (2, 2) of
�
IK+1 +VTQ↵

zV⌦
��1

do no longer depend on (G↵
z )

�1 and thus do not have
poles in the contour �⇢. We can then write

�
IK+1 +VTQ↵

zV⌦
��1

=

0

B@
(G↵

z )
�1 0

0 0

1

CA+R1(z)

with R1(z) having no residue in the contour �⇢. Thus, to perform the contour integra-
tion of the integrand in (A.22) around �⇢, we just need to evaluate the top-left entries
of JTD↵�1Q↵

zV⌦ and VTQ↵
zD

↵�1J. Those are easily retrieved from the calculus in Sec-
tion A.3.

We have in particular ( 1
p
nJ

TD↵�1Q↵
zV⌦)11

a.s.
�! e

↵
00(z)(D(c) � ccT)M(IK � c1T

K) �

�
↵(z)c1T

K where �↵(z) = 1
mµ

⇥R
t
2↵�1

µ(dt) + e
↵
�1;�1(z)

⇤
and similarly (VTQ↵

zD
↵�1J)11

a.s.
�!

e
↵
00(z)D(c), so that finally

1

n
JTD↵�1u↵

i (u
↵
i )

TD↵�1J
a.s.
�!

�
1

2⇡i

I

�⇢

⇥�
e
↵
00(z)(D(c)� ccT)M(IK � c1T

K)� �
↵(z)c1T

K

�
(G↵

z )
�1
⇥ e

↵
00(z)D(c) +R2(z)dz

⇤

where R2(z) is a matrix having no residue in the considered contour. Now, we are ready
to compute the integral. From the Cauchy integral formula,

1

n
JTD↵�1u↵

i (u
↵
i )

TD↵�1J
a.s.
�!

lim
z!⇢

(z � ⇢)
⇥
e
↵
00(z)(D(c)� ccT)M(IK � c1T

K)� �
↵(z)c1T

K

⇤
(G↵

z )
�1
⇥ e

↵
00(z)D(c).

By writing G↵
z = ⇢zvr,zvT

l,z + Ṽr,z⌃̃zṽT
l,z where vr,z and vl,z are respectively right and

left eigenvectors associated with the vanishing eigenvalue ⇢z of G↵
z when z ! ⇢; Ṽr,z 2

Rn⇥⌘⇢ and Ṽl,zRn⇥⌘⇢ are respectively sets of right and left eigenspaces associated with non
vanishing eigenvalues, we then have

lim
z!⇢

(z � ⇢)(G↵
z )

�1 (1)
= lim

z!⇢
(z � ⇢)

vr,zvT
l,z

⇢
0
z

where we have used the l’Hopital rule and the fact that the non vanishing eigenvalue part
of G↵

z will produce zero in the limit z ! ⇢. Using ⇢z = vT

l,zG
↵
zvr,z, we obtain

1

n
JTD↵�1u↵

i (u
↵
i )

TD↵�1J
a.s.
�!

⇥
e
↵
00(⇢)(D(c)� ccT)M(IK � c1T

K)� �
↵(⇢)c1T

K

⇤ vr,⇢vT

l,⇢�
vT

l,zG
↵
zvr,z

�0

z=⇢

⇥ e
↵
00(⇢)D(c).
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Since (vl,⇢)TG
↵
⇢ = G↵

⇢vr,⇢ = 0,

�
(vl,z)

TG↵
zvr,z

�0

z=⇢
= ((vl,z)

T )
0

z=⇢G
↵
⇢vr,⇢ + (vl,⇢)

T (G↵
z )

0

z=⇢ vr,⇢ + (vl,⇢)
TG↵

⇢ (vr,z)
0

z=⇢

= (vl,⇢)
T (G↵

z )
0

z=⇢ vr,⇢

= (e↵21(⇢))
0
(vl,⇢)

T
�
D (c)� ccT

�
M

�
IK � c1T

K

�
vr,⇢

where the subscript 0 denotes the first derivative with respect to z. Using the fact that vr,⇢

is orthogonal to 1T
K , and (vr,⇢,vl,⇢) is also a pair of eigenvectors of

�
D (c)� ccT

�
M

�
IK � c1T

K

�

associated with eigenvalue � 1
e↵21(⇢)

, we get

1

n
JTD↵�1u↵

i (ui↵)
TD↵�1J

a.s.
�!

(e↵00(⇢))
2

e↵21(⇢)
0

vr,⇢(vl,⇢)T

vT
l,⇢vr,⇢

D (c) . (A.24)

By introducing v⇢ = D(c)
1
2vl,⇢ = D(c)�

1
2vr,⇢ eigenvector of the symmetric matrix

D(c)
1
2

�
IK � 1KcT

�
M

�
IK � c1T

K

�
D(c)

1
2 , we obtain the final result

1

n
JTD↵�1u↵

i (u
↵
i )

TD↵�1J
a.s.
�!

(e↵00(⇢))
2

e↵21(⇢)
0 D (c)1/2 v⇢(v⇢)

T
D (c)1/2 . (A.25)

Next, we need to estimate the denominator term (u↵
i )

TD2(↵�1)u↵
i of 1

n
JTD↵�1u↵

i (u
↵
i )

TD↵�1J

(u↵
i )

TD2(↵�1)u↵
i

of ⌫ai . For u↵
i an eigenvector of L↵ associated to an isolated eigenvalue converging to ⇢

asymptotically, we have

(u↵
i )

TD2(↵�1)u↵
i = tr(u↵

i (u
↵
i )

TD2(↵�1))

= tr

 
�

1

2⇡i

I

�⇢

(L↵ � zIn)D
2(↵�1)dz

!
.

As in the previous section, by applying Woodburry idendity, this is equivalent to evalu-
ating

tr

0

B@�
1

2⇡i

I

�⇢

2

64VTQ↵
zD

2(↵�1)Q↵
zV⌦

0

B@
(G↵

z )
�1 0

0 0

1

CA+R3(z)

3

75 dz

1

CA ,

where R3(z) is a matrix having no residue in the considered contour.

Again here, we just need the top left entry of VTQ↵
zD

2(↵�1)Q↵
zV⌦ which is given from

Theorem 15 by

(VTQ↵
zD

2(↵�1)Q↵
zV⌦)11 =

1

n
JTD1�↵Q↵

zD
2(↵�1)Q↵

zD
1�↵J(IK � 1Kc

T)M(IK � c1T

K)
| {z }

(I)

(A.26)

�
1

p
n(qT1n)

D1�↵Q↵
zD

2(↵�1)Q↵
zD

�↵X1n1
T

K

| {z }
(II)

. (A.27)
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We can get rid of the term (II) since after residue calculus, we will get (similar to Equa-
tion A.24) 1T

Kvr,⇢ = 0 which cancels out the whole term. Let us now concentrate on the
term (I). At this point, we need to introduce the following result which, for any deter-
ministic vectors of bounded Euclidean norm a, b and any deterministic diagonal matrix
⌅, approximates the random quantity aTQ↵

z1⌅Q
↵
z2b by a deterministic equivalent.

Lemma 41 (Second deterministic equivalents). For all z 2 C \S
↵, we have the following

deterministic equivalent

Q↵
z1⌅Q

↵
z2 $ Q̄↵

z1⌅Q̄↵
z2 + Q̄↵

z1D
⇥
(In �⌥z1,z2)

�1 ⌥z1,z2 diag (⌅)
⇤
Q̄↵

z2

where ⌅ is any diagonal matrix, Q̄↵
z is given in Lemma 36 and

⌥z1,z2(i, j) =
1

n

q
1�2↵
i q

1�2↵
j (1� qiqj)�

�z1 � e↵11(z1)q
1�2↵
i + e↵21(z1)q

2�2↵
i

� �
�z2 � e↵11(z2)q

1�2↵
j + e↵21(z2)q

2�2↵
j

� .

The equivalence relation $ is as defined in Lemma 36.

Thanks to Lemma 41 (proof provided in Appendix A.8), a deterministic approximation
of the term (I) in Equation (A.26) can be obtained. We get in particular

1

n
JTD1�↵Q↵

zD
2(↵�1)Q↵

zD
1�↵J =

1

n
JTD1�↵Q̄↵

zD
2(↵�1)Q̄↵

zD
1�↵J (A.28)

+
1

n
JTD1�↵Q̄↵

zD
⇥
(In �⌥z,z)

�1 ⌥z,zd
↵
⇤
Q̄↵

zD
1�↵J

(A.29)

where d↵ = {q
2(↵�1)
i }

n
i=1 and ⌥z1,z2 was defined in Lemma 41. Using similar argument

as in Equation (A.17), we can easily show that the first right hand side term of (A.28)
converges almost surely to e

↵
00;2D(c). It then remains to estimate the second right-most

term of (A.28). ⌥z1,z2 (as defined in Lemma 41) may be written as the sum of two
rank-one matrices

⌥z1,z2 =
1

n

�
az1a

T

z2 � bz1b
T

z2

�

where az =

⇢
q1�2↵
j

�z�q1�2↵
j e↵11(z)+q2�2↵

j e↵21(z)

�n

j=1

and bz =

⇢
q2�2↵
j

�z�q1�2↵
j e↵11(z)+q2�2↵

j e↵21(z)

�n

j=1

.

The matrix ⌥z,z can thus be further written ⌥z,z =
1
n

✓
az bz

◆
I2

0

B@
aT

z /n

�bT

z /n

1

CA . Using

matrix inversion lemmas, we have

(In �⌥z,z)
�1 ⌥z,zd

↵ =

✓
az bz

◆
0

B@
1� aT
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n �
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n
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n

1
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�10

B@
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↵

n

�
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↵

n

1

CA .
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Using again the argument in Equation (A.17) , we can easily show that aT
zaz

n , aT
zbz

n , bT
zbz

n ,
aT
zd

↵

n and bT
zd

↵

n converge for large n almost surely respectively to e
↵
22;2(z), e

↵
32;2(z), e

↵
42;2(z),

e
↵
�1;0(z) and e

↵
00(z) with e

↵
ij;2 defined in Equation (A.15). This given, we can show that

1

n
JTD1�↵Q̄↵

zD
⇥
(In �⌥z,z)

�1 ⌥z,zd
↵
⇤
Q̄↵

zD
1�↵J

a.s.
�! �

↵(z)D(c)

with

�
↵(z) =

⇥�
1 + e

↵
42;2(z)

�
e
↵
�1,0(z)� e

↵
32;2(z)e

↵
00(z)

⇤
e
↵
32;3(z)�

⇥
e
↵
22;2(z)e

↵
�1,0(z) +

�
1� e

↵
22;2(z)

�
e
↵
00(z)

⇤
e
↵
42;3(z)�

1 + e↵42;2(z)
� �

1� e↵22;2(z)
�
+
⇥
e↵32;2(z)

⇤2 .

We thus have

(u↵
i )

TD2(↵�1)u↵
i

a.s.
�! tr

✓
lim
z!⇢

�
e
↵
00;2(z) + �

↵(z)
�
(D(c)� ccT)M(IK � c1T

K)(G
↵
z )

�1

◆
.

By applying l’Hopital rule to evaluate this limit as in the previous section, we obtain

(u↵
i )

TD2(↵�1)u↵
i

a.s.
�!

e00;2(⇢) + �
↵(⇢)

(e↵21(⇢))
0 .

Finally,

1

n

JTD↵�1u↵
i (u

↵
i )

TD↵�1J

(u↵
i )

TD2(↵�1)u↵
i

a.s.
�!

(e↵00(⇢))
2

e00;2(⇢) + �↵(⇢)
D (c)1/2 v⇢(v⇢)

T
D (c)1/2 . (A.30)

We recall that one goal of this section is to estimate ⌫ai = 1
p
na

uT

i D
↵�1jap

uT

i D
2(↵�1)ui

, the square

of which is n
na


1
n
D(c)�

1
2 JTD↵�1u↵

i (u
↵
i )

TD↵�1JD(c)�
1
2

(u↵
i )

TD2(↵�1)u↵
i

�

aa

. From Equation (A.30), the former

quantity is easily retrieved and we have

|⌫
a
i |

2 =
(e↵00(⇢i))

2

e↵00;2(⇢i) + �↵(⇢i)

��via
��2 . (A.31)

This proves the following Theorem giving the limit of the empirical class means ⌫ai ’s.

Theorem 42 (Means). For each eigenpair (�(M̄),v) of D(c)
1
2

�
IK � 1KcT

�
M

�
IK � c1T

K

�
D(c)

1
2

of unit multiplicity, mapped to eigenpair (⇢,u↵
i ) of L↵ as defined in Corollary 19, under

the conditions of Assumption 1 and for ⌫ai defined in (A.20), we have almost surely as
n!1, |(⌫ai )

2
� (⌫a,1i )2|! 0 where

(⌫a,1i )2 ⌘
[e↵00(⇢)]

2

e↵00;2(⇢, ⇢) + �↵(⇢)
(va)

2

with

�
↵(⇢) =

[(1+e↵42;2(⇢))e↵�1,0(⇢)�e↵32;2(⇢)e
↵
00(⇢)]e↵32;3(⇢)�[e↵22;2(⇢)e↵�1,0(⇢)+(1�e↵22;2(⇢))e↵00(⇢)]e↵42;3(⇢)

(1+e↵42;2(⇢))(1�e↵22;2(⇢))+[e↵32;2(⇢)]
2 and va is

the component a of v.

Using the definition of ⌫ia in (A.20) and of v̄, ⇧ in Theorem 23, Theorem 23 unfolds

easily since v̄T⇧v̄ =
PK

a=1(⌫
i
a)

2 =
[e↵00(⇢)]

2

e↵00;2(⇢,⇢)+�↵(⇢)(va)
2
.
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A.4.2 Evaluation of the class covariances �a
ij
’s

We have shown at the beginning of this section that to estimate the �a
ij’s, we need to

evaluate the more involved object

1

n

JTD↵�1u↵
i (u

↵
i )

TD↵�1
DaD↵�1u↵

j (u
↵
j )

TD↵�1J

((u↵
i )

TD2(↵�1)u↵
i )
�
(u↵

j )
TD2(↵�1)u↵

j

� .

Similarly to what was done previously for the estimation of 1
n
JTD↵�1u↵

i (u
↵
i )

TD↵�1J

(u↵
i )

TD2(↵�1)u↵
i

, we need

here to evaluate
✓
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JTD↵�1 (L↵ � z1In)

�1 D↵�1DaD
↵�1 (L↵ � z2In)

�1 D↵�1Jdz1dz2

where �⇢1 and �⇢2 are two positively oriented contours circling around some limiting
isolated eigenvalues ⇢1 and ⇢2 respectively. We will use the same technique as in the proof
of Theorem 42 to evaluate this integrand. Namely, by applying the Woodburry identity
to each of the inverse in the integrand, we get

✓
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��1

VTQ↵
z2D

↵�1Jdz1dz2

where we have used the fact that the cross-terms 1
nJ

TD↵�1Q↵
ziD

↵�1J, i = 1, 2 will vanish
asymptotically as the latter do not have poles in the considered contours.
By using the identity ⌦

�
IK+1 +VTQ↵

z1V⌦
��1

VT =
�
IK+1 +⌦VTQ↵

z1V
��1

⌦VT , the
previous integral writes
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Most of those quantities have been evaluated in the evaluation of the ⌫ai ’s. We thus obtain
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where R4(z1, z2) has no poles in the considered contours. It is then su�cient to evaluate
the top left entry of each of the matrices JTD↵�1Q↵

z1V⌦, VTQ↵
z1D

↵�1DaD↵�1Q↵
z2V and
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⌦VTQ↵
z2D

↵�1J to compute the whole integrand. The first and the third of the latter
matrices have been evaluated in the proof of Theorem 42. We are then left with the
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from Theorem 15. The former quantity has already been evaluated in the previous section
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We can then perform a residue calculus similar to what was done in the proof of Theo-
rem 42. Additionnaly, we use the fact that the eigenvectors v⇢1 and v⇢2 corresponding to
distinct eigenvalues ⇢1 and ⇢2 of the symmetric matrixD(c)
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are orthogonals. All calculus done, we get
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We are thus now ready to evaluate the �a
ij’s. By definition,
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The first right hand side term is estimated by dividing
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indexes (e, f) such that the aforementioned quantities are non zeros. Indeed from the
definition of ⌫ai and Equation (A.31), we get
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The covariances �a
ij’s are then found by combining the previous estimates (A.32) and

(A.34) as per the Definition (A.33) of the �a
ij’s. This proves the following theorem giving

the limit of the empirical class covariances �a
ij’s.

Theorem 43 (Covariances). For two unit multiplicity eigenpairs (�1(M̄),v1) and (�2(M̄),v2)
of
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where �↵(⇢) is defined in Theorem 42.

From Theorems 42 and 43, ⌫a,1i and �a,1
ij depend on the eij’s (defined in Theorem 17),

the normalized eigenvectors v of D(c)
1
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�
IK � 1KcT

�
M

�
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�
D(c)

1
2 and the pro-

portions ca’s of classes. Thanks to Lemma 24, the eij’s can consistently be estimated
similarly to what was described in Proposition 25. Namely, the qi’s can be estimated
using q̂i =

dip
dT1n

and replaced in Equations (A.14), (A.15), (A.16) to obtain consistent

estimates for the eij’s. However, the eigenvectors v and the class proportions are not
directly accessible in practice. Nevertheless, in the particular case of K = 2 classes, we
know exactly v.

Remark 44 (K = 2 classes). Here, only one isolated eigenvector is used for the classifi-
cation. Since vr (right eigenvector of M̄) is orthogonal to 12, vr is necessarily the vector
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We thus obtain from Theorems 42 and 43 along with Remark 44,

Corollary 45 (Means and covariances for K = 2 classes). For a = 1, 2
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for ⇢ the unique isolated eigenvalue of L↵ (if it exists).

A.5 Non informative eigenvectors

The objective of this section is to show that the eigenvectors ũ↵ of L↵ associated to
the limiting eigenvalue ⇢̃ for which 1 + ✓

↵(⇢̃) = 0 (Remark 40) are not useful for the
classification.
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Let us write as in Section A.4

ũ↵ =
KX
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a ja
p
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+
p
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iiw

a (A.35)

where wa
2 Rn is a random vector orthogonal to ja of norm

p
na, supported on the indices

of Ca with identically distributed entries. We shall show that ⌫̃a is independent of class Ca
and thus, any correct classification cannot be done using ũ↵. From (A.35), ⌫̃a = (ũ↵)Tja

p
na

which can be retrieved from the diagonal elements of 1
nJ

Tũ↵(ũ↵)TJ. We will evaluate this
object by using the same technique as in Section A.4. By the residue formula, we have
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for large n almost surely, where �⇢̃ is a complex (positively oriented) contour circling
around the limiting eigenvalue ⇢̃ only. The first integral � 1
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H
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1
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zJdz is asymptot-

ically zero since, from Proposition 38, the integrand has no poles in the contour �⇢̃. We
thus obtain similarly as in Section A.4
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From (A.23), the entries (1, 2) and (2, 2) of (IK+1 +VTQ↵
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We recall that in the case under study (1 + ✓
↵(⇢̃) = 0), 1K and c are respectively left

and right eigenvectors of G↵
z associated to the vanishing eigenvalue. We can thus write
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where in (1) we have used the l’Hopital rule, in (2) we used the fact that ⇢z can be written
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JTũ↵(ũ↵)TJ =

1

n
(JTQ↵

⇢̃V⌦)11
c1T

K

(✓↵(⇢̃))0
(VTQ↵

⇢̃J)11 (A.41)

+
1

n
(JTQ↵

⇢̃V⌦)12
�(⇢̃)mµ1T

K

⇢̃e↵21(⇢̃)(✓
↵(⇢̃))0

(VTQ↵
⇢̃J)11. (A.42)

All calculus done similarly as in Section A.4, we get
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By recalling that ⌫̃a = (ũ↵)Tja
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which is independent of the class information (class proportions or inter-class a�nities).
This concludes the proof.

A.6 Proof of Lemma 24

Lemma 46. Under Assumption 1,

max
1in

|qi � q̂i|! 0 (A.44)

almost surely, where q̂i =
dip
dT1n

.
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We need to prove that
P
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n=1 P (max1in |qi � q̂i| > ⌘) <1 for any ⌘ > 0 so that we
can conclude from the first Borel Cantelli lemma (Theorem 4.3 in [Billingsley, 1995]) that
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Let us treat for instance the term P(q̂i � qi > ⌘) in the following. Since Aij = qiqj +
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n +Xij with Xij a zero mean random variable, we have
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Since A, B and C tend to zero in the limit n ! 1, we will next use the fact that
P(q̂i � qi > ⌘)  P(A > ⌘/3) + P(B > ⌘/3) + P(C > ⌘/3) and show that all those
individual probabilities vanish asymptotically. Since the term C is deterministic and
tends to zero in the limit n ! 1, we have P(C > ⌘/3) = 0 for all large n. Let us then
control P(A > ⌘/3) and P(B > ⌘/3). We have
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with �2 = lim supn max1in qi(
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j qj)�q
2
i (
P

j q
2
j ) and where in the last inequality of (A.46),

we have used Bernstein’s inequality (Theorem 3 in [Boucheron et al., 2013]) since the Aij’s
are independent Bernoulli random variables with variance �2

ij = qiqj(1� qiqj) +O(n�
1
2 ).

132



A.6. Proof of Lemma 24

For the term B we have
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where in the inequality (1) we have used the fact that n�1
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j=1 Aij  1; in the inequal-
ity (2)  > 0 is any constant smaller than m
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µ and in the inequality (3) we have usedq
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 and the fact that the probability of the intersection between two

events is always smaller than the probability of one of those events. It then remains to
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where the inequality follows from Bernstein’s inequality with the similar arguments as
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previously. Finally for the term B1 we have
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(A.49)

where in the inequality (1) of Equation (A.49) we have used the same arguments as in the
inequalities (2)�(3) of Equation (A.46) and in the inequality (2) we have used Bernstein’s
inequality along with Equation (A.48). From Equations (A.46)(A.48)(A.49), we conclude
that

P
1

n=1

Pn
i=1 P(q̂i � qi > ⌘) <1 since m

2
µ �  > 0. It follows the same lines to show

that
P

1

n=1

Pn
i=1 P(qi � q̂i > ⌘) <1 which concludes the proof.

A.7 Proof of Lemma 36 (First deterministic equiva-
lents)

Let Q↵
z =

�
X̄� zIn

��1
with X̄ a symmetric random matrix having independent entries

X̄ij which are Gaussian random variables with zero mean and variance
�2
ij

n . For short, we
shall denote Q↵

z by Q. We want to find a deterministic equivalent Q̄ of Q in the sense
that 1

n trCQ � 1
n trCQ̄ ! 0 and dT

1 (Q � Q̄)d2 ! 0 almost surely, for all deterministic
Hermitian matrix C and deterministic vectors di of bounded norms (spectral norm for
matrices and Euclidian norm for vectors). To this end, we will evaluate E(Q) since using
Lemma 35, one can show that n

�1 tr(CQ) and aTQb concentrate respectively around
n
�1 tr(AEQ) and dT

1EQd2 for all bounded norm matrix C and vectors d1,d2. For the
computations, we use standard Gaussian calculus introduced in [Pastur and Shcherbina,
2011]. Using the resolvent identity (for two invertible matrices A and B, A�1

� B�1 =
�A�1(A�B)B�1), one has

Q =
1

z
X̄Q�

1

z
In. (A.50)

We then first compute E(X̄Q). By writing X̄il =
�ilp
nZil where Zil is a random variable

with zero mean and unit variance, we thus have

E(X̄Q)ij =
nX

l=1

�il
p
n
E(ZilQlj).
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By applying Stein’s Lemma (Lemma 34 in Section A.0.1), we have

E(ZilQlj) = E
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= E
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p
n
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◆
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where Eil is the matrix with all entries equal to 0 but the entry (i, l) which is equal to 1.
Using simple algebra, we have

�
(X̄� zI)�1Eil(X̄� zI)�1

�
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ij .

We thus get

E(X̄Q)ij =
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l=1

�
�
2
il

n
(E [QliQlj] + E [QllQij]) .

Going back to (A.50), we thus have
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where ⌃i = D
�
�
2
ij

�n
j=1

. Since the goal is to retrieve E(Qij), the following lemma allows

to split E
⇥
Qij tr

�
⌃iQ
n

�⇤
into E [Qij] and E

⇥
tr
�
⌃iQ
n

�⇤
.

Lemma 47. For Q = (X̄� zIn)�1 and ⌃i = D(�2
ij)

n
j=1, where X̄ is a symmetric random

matrix having independent entries (up to the symmetry) of zero mean and variance
�2
ij

n ,
we have

E

Qij tr

✓
⌃iQ

n

◆�
= E [Qij]E


tr

✓
⌃iQ

n

◆�
+ o(1).

Proof. For two real random variables x and y, by Cauchy-Shwarz’s inequality,

|E [(x� E(x))(y � E(y))]| 
p
Var(x)

p
Var(y)

which, for x = tr
�
⌃iQ
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�
and y = Qij � E(Qij) gives

����E
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p
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p
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since E(y) is equal to 0 in that case. Using Nash Poincaré inequality (Lemma 35 in
Section A.0.1), one can show that Var(x) = O

�
1
n2

�
[Hachem et al., 2007]. Addition-

ally, 8i, j and z 2 C+, |Qij| 
1

|=(z)| . This finally implies that E
⇥
Qij tr

�
⌃iQ
n

�⇤
�

E [Qij]E
⇥
tr
�
⌃iQ
n

�⇤
= O(n�1).

Since =(�z�E tr(⌃iQ
n )) < �=(z) for z 2 C+, �z�E tr(⌃iQ

n ) does not vanish asymp-
totically. Going back to E(Qij) in Equation (A.51), we may then write

E(Qij) =
E
⇥
Q⌃i

n Q
⇤
ij
+ �ij

�z � E
⇥
tr
�
⌃iQ
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�⇤ +O(n�1). (A.52)

Multiplying Equation (A.52) by
�2
ki
n , taking j = i, summing over i and scaling by n, we

get
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Using a similar approach to the proof of Lemma 47, we can show that
Pn

i=1 E
⇥
⌃k
n Q⌃i

n Q
⇤
ii
=

O(n�1). We thus have
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n
trE (⌃kQ) =
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�z �
1
nE [tr (⌃iQ)]

+ o(1).

By using standard techniques [Hachem et al., 2007], one can show that the unique solution

ei(z) to ei(z) = 1
n

Pn
j=1

�2
ij

�z�ej(z)
is such that 1

n trE (⌃iQ) � ei(z)
a.s.
�! 0. Going back to

Equation (A.52), we can thus write for large n

E [(�zI�D(ei(z)))Q]ij = E

Q
⌃i

n
Q

�

ij

+ �ij + o(1). (A.53)

Let us denote ⌅ = �zI�D(ei(z)). Since �z�E tr
�
⌃iQ
n

�
is away from zero for z 2 C+ so

is �z � ei(z) and thus ⌅ is invertible and bounded. For large n, we can write for a given
deterministic matrix C of bounded norm

E

1
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trCQ

�
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1

n
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where (1) follows from Equation (A.53). We can then prove that 1
n trE

�
C⌅�1Q⌃i

n Q
�
=

O(n�1) using a similar approach to the proof of Lemma 47. Hence for large n

E

1

n
trCQ

�
=

1

n
tr(C⌅�1) + o(1). (A.54)
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Similarly, for any vectors a, b of bounded norms, we may write

E [a⇤Qb] =
X

i,j

(a⇤⌅�1)iE (⌅Q)ij bj

=
X

i,j

(a⇤⌅�1)iE
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We also have that
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⇤
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bj = O(n�1). This can be proved similarly to

the proof of Lemma 47. Hence,

E [a⇤Qb] = a⇤⌅�1b+ o(1). (A.55)

A.8 Proof of Lemma 41 (Second deterministic equiv-
alents)

Our goal is to find a deterministic equivalent to the random quantity Q↵
z1⌅Q

↵
z2 for any

diagonal deterministic matrix ⌅ where we recall thatQ↵
z1 =

⇣
X̄
p
n � z1In

⌘�1

with X̄ defined

previously in Appendix A.7. The proof follows the same techniques as the proof of the
first deterministic equivalent Q↵

z in Appendix A.7 but here, the resolvent identity is either
applied on Q↵

z1 or Q↵
z2 . The technical details will be omitted as the key techniques have

already been developped in Appendix A.7. For the sake of readability, we will denote
Q↵

z1 ⌘ Q1 and Q↵
z2 ⌘ Q2. As in Appendix A.7, we will evaluate E(Q1⌅Q2). By the

resolvent identity, we have

E(Q1⌅Q2)ij = �
1

z1
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1
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E
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We have from Lemma 34, E
P
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P
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�ikp
n⌅llE@[(Q1)kl(Q2)lj ]

@Zik
. By ex-

panding all terms and all calculus done, we obtain
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Asymptotically, the non vanishing terms are (2) and (4) so that

E(Q1⌅Q2)ij = �
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n
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+ o(1). (A.56)

Similarly to what was done in the proof of of Lemma 47, we can show that
E 1

n tr(⌃iQ1)E(Q1⌅Q2)ij = E
�
1
n tr(⌃iQ1)

�
E ((Q1⌅Q2)ij)+o(1).We can then write from (A.56)
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Q2 + o(1). (A.57)

From (A.57) and the result of Lemma 36, this entails

E (Q1⌅Q2) ! Q̄1⌅Q̄2 + Q̄1D

✓
E 1

n
tr(⌃iQ2⌅Q1)

◆n

i=1

Q̄2. (A.58)

Every object in (A.58) is known but E 1
n tr(⌃iQ2⌅Q1) which we need to evaluate now.

By left-multiplying (A.58) by ⌃i and taking the normalized trace, we get

E 1

n
tr(⌃iQ2⌅Q1) =

1

n
tr
�
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(A.59)
By denoting fi =

1
nE (tr(⌃iQ2⌅Q1)), Equation (A.59) leads to

f =

⇢
1

n
tr
�
⌃iQ̄1⌅Q̄2

��n

i=1

+
1

n

n�
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i,j=1
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which finally entails
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�
jj
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◆�1 1

n

�
Q̄2⌃iQ̄1
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i,j=1
diag(⌅).

To complete the proof of Lemma 41, we need to show that Var
�
1
n tr(Q1⌅Q2)

�

and Var
�
1
n tr(⌃iQ2⌅Q1)

�
are asymptotically summable so that by the Borell Cantelli

Lemma, 1
n tr(Q1⌅Q2) and 1

n tr(⌃iQ2⌅Q1) converge respectively almost surely to their
expectations. Those follow directly by using Nash Poincare inequality (Lemma 35) simi-
larly to what was done in the proof of Lemma 47.
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Appendix B

Supplementary material Chapter 5

B.1 Intermediary result

We show that

logP(A(l)) = G(q) +DKL(q||p).

We can write successively

logP(A(l)) =

Z

✓(l)
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G(q)
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B.2 Updates of variational parameters

We give the detailed steps to derive updates for the variational parameters ⌧ (l) and µ(l)
.
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B.2. Updates of variational parameters

Using the likelihood
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Using the dependency cases stated in Chapter 5, Equation (B.2) (for l = 1) can be
written
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By similarly using the the dependency cases arguments, Equation (B.2) writes for
l = 2
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B.2. Updates of variational parameters

The derivation steps to evaluate G(q) are similar to the ones in [Aicher et al., 2014]. We
get
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⌘̄
(2)

r(2)
=
@ logZ(2)

@⌧ (2)

���
⌧ (2)=r(2)

(B.21)

Now, in order to find the stationary points of G(q), we need to di↵erentiate the latter with
respect to ⌧ (1) and ⌧ (2) respectively. We obtain

@G(q)

@⌧ (l)
=
X

r(l)

(T̄ (l)

r(l)
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(B.22)

Setting the Equation (B.22) to zero, we get the update equations for ⌧ (l) as follows

⌧
(l)

r(l)
= ⌧

(l)
0 + T̄

(l)

r(l)
, r

(l) = 1, · · · , (K(l))2 (B.23)

To obtain the update equations for the group labels parameters µ(l)
i,k, we need to compute

@G(q)

@µ
(l)
i,k

and include Lagrange multipliers to enforce the conditions
P

k µ
(l)
i,k = 1 for each node

i and each layer l such that µ(l)
i,k is a valid probability measure.

We need to be careful here as can be seen in Equations (B.6)-(B.14), T̄ (2) depends on

µ
(1)

i,g
(1)
i

when g
(1)
i 2 {1, . . . , K} i.e., g(1)i is an element in the indexings r
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2 . Similarly,
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i,g
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i

when g
(2)
i 2 {1, . . . , K} i.e., g(2)i is an element in the indexings

r
(2)
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(2)
2 . To this end we shall thus di↵erentiate the cases g(1)i , g

(2)
i 2 [1, K] and g

(1)
i , g

(2)
i /2

[1, K].

142



B.2. Updates of variational parameters

Using this fact and after di↵erentiation, we get the following updates
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For k /2 {1, . . . , K}
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Appendix C

Supplementary material Chapter 6

C.1 Proof of Theorem 30

Under Assumptions 1, as p!1, for i 6= j,

(x�

i )
Tx�

j

p
= O(p�

1
2 ).

Since for i 6= j,
(x�

i )
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j

p ! 0 as p ! 1 , we shall write a Taylor expansion of f around 0
for the entries Kij (i 6= j).
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1

p
(x�

i )
T x�

j = (w�

i )
T w�

j +
1
p
p
(µ�

a)
T w�

j +
1
p
p
(w�

i )
T µ�

b +
1

p
(µ�

a)
T µ�

b
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Hence,
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We can see that the spectral norm of the three last matrices in the right-hand side of the
above equation are O1n(n�1). We thus obtain:
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Since f 0(0) = ↵
p
p , we should multiply K by

p
p to get a bulk of order O(1). We shall also

consider a recentering of the data in the high dimensional feature space i.e., assuming that
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PXTXP
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, we get the expected result
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C.2 Proof of Theorem 31

Let us denote by X̄ , ↵PWTWP+ f 00(0)
2 P(

p
p�)P the random noise matrix.

We know from Theorem 30 that K̂ = X̄ +V⌦VT is equivalent to an additive spiked
random matrix (see [Chapon et al., 2012] and Section 3.2.4). By using Weyl interlacing
formula, the e.s.d. of K̂ converges weakly to the e.s.d of the noise zero mean matrix X̄
since K̂ di↵ers from the former by a low rank matrix. We will thus study the e.s.d. of X̄, a
matrix with zero mean and finite variance. We show that its empirical spectral distribution
(e.s.d.) ⇡̃ converges weakly to ⇡̄↵ with Stieljes transform m(z) =

R
(t� z)�1 d⇡̄↵(t) for

z 2 C+
.

As stated in Chapter 3, the strategy consists in finding the deterministic limit m(z) for

the random quantity 1
n tr

�
X̄� zIn

��1
which is the Stieljes transform of the e.s.d. ⇡̃↵. We

use Gaussian calculus to find the aforemetioned deterministic limit. We do not provide
details of the Gaussian calculus here, similar calculations being provided in [Kammoun
and Couillet, 2017]. The result is as follows

Lemma 48. Let Qz = (X̄ � zIn)�1. Then, for all z 2 C+, we have the following
deterministic equivalents

Qz $ m(z)In (C.2)

almost surely where m(z) the unique solution of

m(z) =
1

�z + ↵
n tr

⇣
I+ ↵

c0
m(z)C�

⌘�1

C� �
2�2

c0
!2m(z)

with ! = limp!1
1
p tr(C

�)2

From Lemma 48, we get directly 1
n trQz �m(z)

a.s.
�! 0. This proves Theorem 31.

C.3 Proof of Theorem 32

The proof of Theorem 32 follows similar arguments as the isolated eigenvalues treatment
in Section A.3. From Theorem 31, the e.s.d. of K converges weakly to the limiting
law of the noise matrix ↵PWTWP + f 00(0)

2 P(
p
p�)P, the two matrices only di↵ering

by the low rank matrix V⌦VT
. The latter matrix shall then induce isolated eigenvalues

which are of interest for clustering since their associated eigenvectors contain the relevant
information. According to Non eigenvalue outside the support result that we do not prove
here (similar proof being conducted in for e.g., [Kammoun and Couillet, 2017]), the matrix
↵PWTWP + f 00(0)

2 P(
p
p�)P has asymptotically no eigenvalue outside its main support

S. To determine the position of the isolated eigenvalues, we use as in Section A.3, the
standard techniques [Benaych-Georges and Nadakuditi, 2012,Baik and Silverstein, 2006].
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The eigenvalues ⇢ of K falling at a macroscoping distance from the main support S solve
almost surely for large n

0 = det (K� ⇢In) (C.3)

with ⇢ /2 S. Solving Equation (C.3) is asymptotically equivalent to solving for large n,

0 = det

✓
↵PWTWP+

f
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2
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� ⇢In

◆
(C.4)

from the approximation of Theorem 30. Let us denote by X̄ , ↵PWTWP+f 00(0)
2 P(

p
p�)P

the random noise matrix and by Q⇢ = (X̄�⇢In)�1 (for ⇢ /2 S) its resolvent. Since there is
asymptotically no eigenvalue of X̄ outside S, for ⇢ /2 S, Equation (C.4) is asymptotically
equivalent to

0 = det
�
I+Q⇢V⌦VT

�
= det

�
I+VTQ⇢V⌦

�
. (C.5)

From the argument principle ( [Chapon et al., 2012]), the roots of I + VTQ⇢V⌦ are
asymptotically the same as for its deterministic limit; we will thus next provide this
deterministic limit.

Using Theorem 30, we have
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Lemma 49 (Deterministic equivalents). Let Qz = (X̄ � zIn)�1. Then, for all z 2 C+,
we have the following deterministic equivalents
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p
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almost surely where m(z) the unique solution of
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.

Lemma 49 provides the necessary ingredients for computing deterministic limits for
the entries of VTQ⇢V in Equation (C.6).

We get
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Right multiplying by ⌦, we obtain

I+VTQ⇢V⌦ =
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with g(⇢) = 1
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C�)�1
. The isolated eigenvalues are thus the values ⇢ /2 S for

which G⇢ has zero eigenvalues.

C.4 Proof of Theorem 33

Let � be an eigenvalue of K̂ converging to ⇢ with multiplicity `⇢ � 1. Define ⇧⇢ a
projector on the eigenspace associated with all eigenvalues of K̂ converging to ⇢. We wish
to investigate the limit of the matrix 1

pJ
T⇧⇢J, the entries of which are up to scaling the

desired quantities ⌘ai ⌘
b
i when `⇢ = 1. By residue calculus, we have
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for all large n almost surely where C⇢ is a complex (positively oriented and with winding
number one) contour circling around ⇢ only. By Woodbury’s matrix inverse identity, we
have:
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where
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The first term gives zero residue asymptotically. Hence,
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Appendix A.4,
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Let � = k
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and we get the expected result
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largest eigenvalue for nonnull complex sample covariance matrices. Annals of Probabil-
ity, pages 1643–1697.

[Baik and Silverstein, 2006] Baik, J. and Silverstein, J. W. (2006). Eigenvalues of large
sample covariance matrices of spiked population models. Journal of Multivariate Anal-
ysis, 97(6):1382–1408.

[Barbillon et al., 2017] Barbillon, P., Donnet, S., Lazega, E., and Bar-Hen, A. (2017).
Stochastic block models for multiplex networks: an application to a multilevel network
of researchers. Journal of the Royal Statistical Society: Series A (Statistics in Society),
180(1):295–314.

[Benaych-Georges and Couillet, 2016] Benaych-Georges, F. and Couillet, R. (2016). Spec-
tral analysis of the gram matrix of mixture models. ESAIM: Probability and Statistics,
20:217–237.

[Benaych-Georges and Nadakuditi, 2012] Benaych-Georges, F. and Nadakuditi, R. R.
(2012). The singular values and vectors of low rank perturbations of large rectangular
random matrices. Journal of Multivariate Analysis, 111:120–135.

[Billingsley, 1995] Billingsley, P. (1995). Probability and measure. wiley series in proba-
bility and mathematical statistics.
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[Massoulié, 2014] Massoulié, L. (2014). Community detection thresholds and the weak ra-
manujan property. In Proceedings of the forty-sixth annual ACM symposium on Theory
of computing, pages 694–703. ACM.

[Mehta, 2004] Mehta, M. L. (2004). Random matrices, volume 142. Elsevier.

[Minka, 2001] Minka, T. P. (2001). Expectation propagation for approximate bayesian
inference. In Proceedings of the Seventeenth conference on Uncertainty in artificial
intelligence, pages 362–369. Morgan Kaufmann Publishers Inc.

[Mossel et al., 2013] Mossel, E., Neeman, J., and Sly, A. (2013). A proof of the block
model threshold conjecture. Combinatorica, pages 1–44.

[Mossel et al., 2015] Mossel, E., Neeman, J., and Sly, A. (2015). Reconstruction and
estimation in the planted partition model. Probability Theory and Related Fields, 162(3-
4):431–461.

[Mucha et al., 2010] Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., and On-
nela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex
networks. science, 328(5980):876–878.

160



Bibliography

[Nadakuditi and Newman, 2012] Nadakuditi, R. R. and Newman, M. E. (2012). Graph
spectra and the detectability of community structure in networks. Physical review
letters, 108(18):188701.

[Newman, 2010] Newman, M. (2010). Networks: an introduction. Oxford university press.

[Newman, 2013] Newman, M. (2013). Spectral community detection in sparse networks.
arXiv preprint arXiv:1308.6494.

[Newman, 2016] Newman, M. (2016). Community detection in networks: Modularity
optimization and maximum likelihood are equivalent. arXiv preprint arXiv:1606.02319.

[Newman, 2004] Newman, M. E. (2004). Fast algorithm for detecting community struc-
ture in networks. Physical review E, 69(6):066133.

[Newman, 2006a] Newman, M. E. (2006a). Finding community structure in networks
using the eigenvectors of matrices. Physical review E, 74(3):036104.

[Newman, 2006b] Newman, M. E. (2006b). Modularity and community structure in net-
works. Proceedings of the National Academy of Sciences, 103(23):8577–8582.

[Ng et al., 2002] Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral clustering:
Analysis and an algorithm. Advances in neural information processing systems, 2:849–
856.

[Ng et al., 2012] Ng, S. K., Krishnan, T., and McLachlan, G. J. (2012). The em algorithm.
In Handbook of computational statistics, pages 139–172. Springer.

[Nicosia and Latora, 2015] Nicosia, V. and Latora, V. (2015). Measuring and modeling
correlations in multiplex networks. Physical Review E, 92(3):032805.

[Opper and Saad, 2001] Opper, M. and Saad, D. (2001). Advanced mean field methods:
Theory and practice. MIT press.

[Oselio et al., 2015] Oselio, B., Kulesza, A., and Hero, A. (2015). Information extraction
from large multi-layer social networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on, pages 5451–5455. IEEE.

[Oselio et al., 2014] Oselio, B., Kulesza, A., and Hero, A. O. (2014). Multi-layer graph
analysis for dynamic social networks. IEEE Journal of Selected Topics in Signal Pro-
cessing, 8(4):514–523.

[Pastur and Shcherbina, 2011] Pastur, L. A. and Shcherbina, M. (2011). Eigenvalue dis-
tribution of large random matrices, volume 171. American Mathematical Society Prov-
idence, RI.

[Paul and Chen, 2015] Paul, S. and Chen, Y. (2015). Community detection in multi-
relational data with restricted multi-layer stochastic blockmodel. arXiv preprint
arXiv:1506.02699.

161



Bibliography

[Paul and Chen, 2016] Paul, S. and Chen, Y. (2016). Null models and modularity based
community detection in multi-layer networks. arXiv preprint arXiv:1608.00623.

[Peixoto, 2015] Peixoto, T. P. (2015). Inferring the mesoscale structure of layered, edge-
valued, and time-varying networks. Physical Review E, 92(4):042807.

[Pennington and Worah, 2017] Pennington, J. and Worah, P. (2017). Nonlinear random
matrix theory for deep learning. In Advances in Neural Information Processing Systems,
pages 2637–2646.

[Pizzuti and Socievole, 2017] Pizzuti, C. and Socievole, A. (2017). Many-objective opti-
mization for community detection in multi-layer networks. In Evolutionary Computa-
tion (CEC), 2017 IEEE Congress on, pages 411–418. IEEE.

[Qin and Rohe, 2013] Qin, T. and Rohe, K. (2013). Regularized spectral clustering un-
der the degree-corrected stochastic blockmodel. In Advances in Neural Information
Processing Systems, pages 3120–3128.

[Reyes and Rodriguez, 2016] Reyes, P. and Rodriguez, A. (2016). Stochastic blockmodels
for exchangeable collections of networks. arXiv preprint arXiv:1606.05277.

[Saade et al., 2014] Saade, A., Krzakala, F., and Zdeborová, L. (2014). Spectral cluster-
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Titre : Nouvelles méthodes pour l’apprentissage non-supervisé en grandes dimensions. 

Mots clés : Apprentissage non supervisé, Classification de données en grandes dimensions, Détection 
de communautés, Théorie des matrices aléatoires, Inférence Bayésienne. 

Résumé : Motivée par les récentes avancées 
dans l'analyse théorique des performances des 
algorithmes d'apprentissage automatisé, cette 
thèse s'intéresse à l'analyse de performances 
et à l'amélioration de la classification non-
supervisée de données et graphes en grande 
dimension. Spécifiquement, dans la première 
grande partie de cette thèse, en s'appuyant sur 
des outils avancés de la théorie des grandes 
matrices aléatoires, nous analysons les 
performances de méthodes spectrales sur des 
modèles de graphes réalistes et denses ainsi 
que sur des données en grandes dimensions en 
étudiant notamment les valeurs propres et 
vecteurs propres des matrices d'affinités de ces 
données. De nouvelles méthodes améliorées 
sont proposées sur la base de cette analyse  

théorique et démontrent à travers de 
nombreuses simulations que leurs 
performances sont meilleures comparées aux 
méthodes de l'état de l'art. Dans la seconde 
partie de la thèse, nous proposons un nouvel 
algorithme pour la détection de communautés 
hétérogènes entre plusieurs couches d'un 
graphe à plusieurs types d'interaction. Une 
approche bayésienne variationnelle  est utilisée 
pour approximer la distribution apostériori des 
variables latentes du modèle. Toutes les 
méthodes proposées dans cette thèse sont 
utilisées sur des bases de données synthétiques 
et sur des données réelles et présentent de 
meilleures performances en comparaison aux 
approches standard de classification dans les 
contextes susmentionnés. 
 

 

 

Title: New methods for large-scale unsupervised learning. 

Keywords: Unsupervised learning, High dimensional data clustering, Community detection, Random 
matrix theory, Bayesian inference. 

Abstract: Spurred by recent advances on the 
theoretical analysis of the performances of the 
data-driven machine learning algorithms, this 
thesis tackles the performance analysis and 
improvement of high dimensional data and 
graph clustering. Specifically, in the first bigger 
part of the thesis, using advanced tools from 
random matrix theory, the performance 
analysis of spectral methods on dense realistic 
graph models and on high dimensional kernel 
random matrices is performed through the 
study of the eigenvalues and eigenvectors of 
the similarity matrices characterizing those 
data. 

New improved methods are proposed and are 
shown to outperform state-of-the-art 
approaches. In a second part, a new algorithm 
is proposed for the detection of 
heterogeneous communities from multi-layer 
graphs using variational Bayes approaches to 
approximate the posterior distribution of the 
sought variables. The proposed methods are 
successfully applied to synthetic benchmarks 
as well as real-world datasets and are shown 
to outperform standard approaches to 
clustering in those specific contexts. 
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