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Résumé

Cette thèse étudie le comportement des investisseurs des fonds mutuels ouverts et ses im-

plications au risque de liquidité. Ces travaux de recherche ont pour objectif d’aider les

gérants de fonds à éviter le scénario de "fund run" où ils perdent leurs clients de manière

soudaine. La première étape de cette étude est de collecter une nouvelle base de données

qui enregistre les "micro-transactions" des investisseurs. Cela nous permet d’analyser leurs

comportements au niveau individuel et d’effectuer trois articles de recherche autours de ce

sujet. Dans le premier article, nous développons un modèle de comptage auto-excitant qui

capture des faits stylisés des séries des flux du fonds. De là, nous montrons un risque lié

au passif du fonds qui est différent de celui lié à l’actif déjà documenté par la littérature

précédente. Nous identifions également une contagion des chocs de liquidité entre les dif-

férents clients dans un même fonds. Dans le chapitre suivant, nous étudions les horizons

d’investissement des clients individuels. Ces horizons sont fortement liés aux caractéris-

tiques des investisseurs et aux conditions économiques. Nous montrons également que les

gérants de fonds subissent un risque de sortie pré-maturée relatif au raccourcissement des

horizons d’investissement de ses clients. Nous observons ensuite une hétérogénéité entre les

investisseurs: ceux de long-terme comportent différemment que ceux de court-terme. Enfin,

dans le dernier chapitre, nous nous intéressons aux activités de rééquilibre. Nous trouvons

que de nombreux investisseurs détiennent un portefeuille contenant plusieurs fonds et le

rééquilibrent afin de garder la même allocation d’actifs.

Mots clés: liquidité de financement, fonds ouverts, panique financière, micro-

transactions
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Abstract

This thesis studies the behaviour of investors in open-end mutual funds and its implications

to the liquidity risk. We seek to help the fund managers to avoid the "fund run" scenarios

where they loss their clients in a sudden way. We begin our research by collecting a unique

data set which records the micro-transactions of fund investors. It allows us to monitor

investors’ behaviour at the individual level and to accomplish three research articles around

this topic. In the first article, we develop a self-exciting counting process to model the

stylized facts of fund flows. Therefrom, we highlight a novel risk linked to the fund liability

which is different than the asset-related risk documented by the previous literature. We also

identify a liquidity contagion among different investors in a same fund. In the next chapter,

we study the dispersion in the investing horizons of individual fund clients. These horizons

are strongly determined by investors’ characteristics and economic conditions. We show that

the fund managers suffer a pre-mature redemption risk, i.e. clients shorten their investing

horizons and redeem pre-maturely. Especially, we observe a heterogeneity among investors:

long-term ones bring a higher pre-mature redemption risk. In the last chapter, we are

interested in the rebalance behaviour. We find that numerous investors hold a multi-funds

portfolio and rebalance it to keep the target asset allocation.

Key words: funding liquidity, open-end funds, fund run, micro-transactions
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Introduction Générale

Cette thèse s’intéresse à la gestion de la liquidité au passif des fonds ouverts, à partir de

la modélisation du comportement des investisseurs. Avant de présenter les aspects tech-

niques à travers des articles de recherche, il nous semble nécessaire dans un premier temps

d’introduire certaines notions préliminaires. Dans cette introduction, nous allons d’abord

expliquer comment un fonds ouvert est exposé au risque de "run". Dans le secteur ban-

caire, la littérature utilise le terme "run", panique bancaire en français, pour représenter le

scénario où les clients d’une banque craignent qu’elle devienne insolvable et retirent leurs

dépôts de manière massive et brutale (voir, e.g., Zhiguo and Manela 2016). Nous présen-

tons ensuite quelques scénarios de "runs" les plus connus comme celui du fonds "Long-Term

Capital Management". Puis, nous comparons les structures opérationnelles des différents

types des fonds comme les fonds ouverts, les fonds fermés, les fonds d’arbitrage et les fonds

cotés en bourse. Cela nous permet d’identifier les caractéristiques des fonds susceptibles de

favoriser ce risque. Les nouvelles régulations européennes, mises en place au 21 janvier 2019,

demandent à chaque gestionnaire de fonds de mettre en place des démarches permettant

de gérer ce risque, qui passent par une meilleure compréhension du comportement des in-

vestisseurs. Nous revenons sur deux modèles théoriques qui expliquent ces comportements.

Puis, afin de fournir les outils opérationnels, nous présenterons les articles de recherche qui

constituent le corps de cette thèse.

Contexte économique

Les fonds mutuels sont des outils d’investissement très populaires parmi les investisseurs.

Selon le rapport de l’Investment Company Institute (ICI) sur le marché de gestion d’actifs,

les fonds mutuels gèrent environ 40,4 trilliards de dollars d’actifs financiers dans le monde

entier (voir, ICI 2017 ). Pour les marchés les plus importants, les encours totaux des

fonds mutuels sont de : 18,9 trilliards de dollars aux États-Unis, 1,5 trilliard de dollars au

Royaume-Unis, 1,9 trilliard de dollars en France, 1,9 trilliard de dollars en Allemagne, 1,3

1
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trilliard de dollars en Chine et 1,1 trilliard de dollars au Brésil. Une raison expliquant cette

popularité est que ces fonds adoptent la structure ouverte, i.e. les investisseurs peuvent

souscrire et racheter librement leurs parts du fonds, leur permettent de fournir la liquidité

à leurs clients. Les clients qui ont des contraintes de liquidité peuvent ainsi s’exposer indi-

rectement à des actifs moins liquides via un investissement dans un fonds mutuel liquide.

La tendance de la dernière décennie confirme ce point. De janvier 2007 à décembre 2016,

les fonds obligataires1 aux États-Unis ont connu une croissance remarquable. Au début de

cette décennie, les souscriptions cumulées dans cette catégorie de fonds ne représentaient

que quelques milliards. Ce montant augmente ensuite rapidement à 500 milliards à la mi-

2009, dépasse 1000 milliards en 2010 par atteindre 2000 milliards à la fin 2016 (Voir Annexe

A). Comparé aux actions et aux actifs monétaires, les titres obligataires sont des actifs rel-

ativement illiquides. Ainsi, nous pouvons conjecturer qu’après la crise de 2008, de plus en

plus de clients choisissent de souscrire des fonds mutuels afin d’investir dans les actifs moins

liquides.

La structure ouverte, ou "open-end" en anglais, est un avantage pour les investisseurs.

Elle leur laisse la possibilité de sortir quand ils ont besoin. Cependant, elle engendre le

risque que les clients sortent de manière massive et que le fonds perd alors brutalement ses

encours. Inspiré par le "bank run", la littérature nomme ce scénario analogue le "fund run"

dans le cadre des fonds (voir, Schmidt et al. 2016). Un des épisodes les plus connus de "fund

run" est la faillite du fonds "Long-Term Capital Management L.P" (LTCM).

LTCM2 est un fonds d’arbitrage créé en 1991 par John Meriwether, ancien directeur

des transactions "fixed income" de la banque "Salomon Brothers". Il réunit de nombreux

experts du marché "fixed income", tels que Eric Rosenfeld, Dick Leahy, James McEntee,

Robert Shustak. Deux célèbres professeurs de finance, Myron Scholes et Robert Merton,

participaient également à ce projet. Le fonds LTCM était spécialisé dans les activités

d’arbitrage sur les marchés de taux ("fixed income"), grâce à des stratégies diversifiées

telles que: (1) l’arbitrage des obligations souveraines de long-terme, à 30 ans par exemple;

(2) l’arbitrage de la prime de liquidité, i.e. acheter les dettes illiquides et vendre les dettes

similaires mais plus liquides; (3) les stratégies spéculant sur la volatilité des taux d’intérêt;

(4) les transactions de produits dérivés de taux, etc. Au cours de l’année de sa création,

LTCM a atteint une rentabilité supérieure à 40%.

Toutefois, dès le début de la crise asiatique en 1997, le fonds LTCM a commencé à

1Nous utilisons le terme anglais "fixed income" dans la suite de cette introduction.
2L’histoire, les chiffres et les évènements rapportés dans ces paragraphes proviennent de Lowenstein

(2000).
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accumuler des pertes. En mai et juin 1998, le fonds a perdu 6,42% puis 10,14%, ce qui

correspond à une moins-value de 461 millions dollars pour ses investisseurs. En août de

cette même année, le défaut de la Russie génère une panique sur le marché de la dette.

Les investisseurs vendent massivement les dettes européennes et se tournent vers la dette

américaine. LTCM a perdu 1,85 milliards de dollars suite à ce choc macroéconomique.

Présentant un ratio de levier important, le fonds s’est retrouvé sous la pression d’appels

de marge. De plus, l’échec de l’arbitrage de Royal Dutch Shell a généré une perte de 286

millions dollars. Ces mauvaises nouvelles ont poussé les clients à procéder à des rachats

massifs. Pendant les trois premières semaines de septembre 2008, les actifs sous gestion sont

passés de 2.3 milliards à 400 millions dollars et le levier a atteint à 250:1. Nous présentons

l’évolution de l’encours de LTCM dans l’annexe B.

La difficulté de LTCM a suscité la crainte des régulateurs, qui ont eu peur que la faillite de

ce fonds impacte les marchés et cause une crise systémique. Le 23 septembre 1998, plusieurs

grandes institutions financières ont injecté 3,77 milliards dollars à LTCM en échange de

90% de capitaux propres. En plus, la Fed a également renfloué LTCM à hauteur de 3,62

milliards dollars. Grâce à ces soutiens, LTCM a pu continuer ses activités encore un an

et a pu généré une performance de 10%. Cela a permis à la plupart des investisseurs de

récupérer au moins leurs investissements initiaux.

Nous pouvons résumer les principales raisons de cet échec. Premièrement, LTCM a sur-

investi dans des dettes de long-terme. Ces actifs sont peu échangés sur le marché, donc

ils sont relativement illiquides par rapport aux autres actifs comme les actions ou les titres

monétaires. De plus, le fonds a souffert de mauvaises performances pendant plusieurs mois et

les investisseurs ont commencé à douter de la capacité des gérants à générer une performance

satisfaisante. Troisièmement, les chocs macroéconomiques, comme la crise asiatique et russe,

ont été défavorables à LTCM. Puis, ce fonds s’est engagé dans des stratégies nécessitant un

effet de levier important et la détention de nombreux titres volatiles. Enfin, confortés sans

doute par leur réputation, les gérants ont souffert d’une confiance trop importante dans

leurs capacités.

Ces explications sont-elles suffisantes pour comprendre les raisons de ce "fund run"?

Brunnermeier et Pedersen considèrent à cette question dans leur recherche et proposent

d’analyser le niveau de liquidité à deux côtés du bilan d’une banque, ou d’autres intermé-

diaires financiers (voir, Brunnermeier and Pedersen 2009). Le premier côté, mesuré par

la liquidité des titres détenus par le fonds, est lié à la liquidité du marché. Les raisons

mentionnées au paragraphe précédent se trouvent de ce côté du bilan. Autrement dit, c’est

la liquidité du côté actif du fonds. Le deuxième élément est la liquidité de financement
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que l’on peut également appeler liquidité du côté passif du fonds. Dans l’histoire racontée

par Lowenstein (2000), on trouve rarement d’information sur ce dernier et le côté passif de

la liquidité est ignoré. Cependant, nous pouvont imaginer comment la structure du passif

peut influencer le niveau de risque de liquidité du fonds. En premier lieu, la composition

des clients est-elle diversifiée? Si le fonds LTCM n’est détenu que par quelques investisseurs,

une sortie de l’un entre eux peut impacter le fonds entier. Deuxièmement, les clients sont-ils

sensibles à la performance du fonds ou aux conditions macroéconomiques? Ensuite, les dé-

cisions de sorties de fonds sont-elles rationnelles? En moyenne, combien de temps les clients

restent-ils dans le fonds? Leur investissement doit-il considéré comme court ou long terme?

Enfin, existe-t-il des mécanismes de protection de liquidité, comme le seuil de rachats ou

la période d’incessibilité, qui empêchent les sorties massives3? L’ensemble de ces éléments

ont des impacts cruciaux sur les risques de "bank run". Le mini-bilan ci-dessous résume les

facteurs qui influencent les deux types de liquidité:
Actif → liquidité de marché

• Liquidité des titres détenus

• Performance du fonds

• Conditions économiques

• Levier & volatilité

• Gérant du fonds

Passif → liquidité de financement

• Composition de la clientèle

• Réaction à la performance

• Rationalité des investisseurs

• Horizons d’investissement

• Mécanismes de protection de liquidité

Selon Brunnermeier and Pedersen (2009), ces deux côtés de liquidité sont aussi impor-

tants l’un que l’autre. Cependant, comme mentionné précédemment, le côté passif est plus

ou moins oublié. La première motivation de nos travaux est d’étudier la liquidité du côté

passif afin de combler ce vide. Par ailleurs, les "fund runs" sont des évènements qui sont

loin d’être isolés et les conséquences sont possiblement systémiques, leur étude semble au-

jourd’hui de première importance. En 2006, l’Allemagne a subit un scénario de "fund run"

au niveau du marché. Le secteur des fonds immobiliers a souffert d’une fuite importante

des investisseurs. Par conséquent, ces fonds ont perdu 40% de leurs encours pendant cette

période. Ainsi, les gérants ont été obligé de liquider une partie de leurs actifs. Cela a

causé ultérieurement une chute considérable des prix immobiliers en Allemagne. Le risque

de "fund run" existe non seulement parmi les fonds illiquides, mais aussi dans les fonds qui

investissent dans des actifs supposés liquides. En 2008, les fonds monétaires aux États-Unis

ont subi 200 milliards de rachats cumulés pendant une seule semaine, du 15 au 22 septem-

bre (voir, Schmidt et al. (2016)). Surtout, Chernenko and Sunderam (2014) indiquent que

3Voir les mécanismes qui protègent la liquidité des fonds d’arbitrage dans Blackrock (2016)
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cette crise des fonds monétaires a eut des impacts sévères sur le marché des prêts aux en-

treprises. Les entreprises ont en effet subi un problème de financement de court-terme.

Ainsi, comprendre le risque de "run" est devenu un besoin fondamental du secteur de la

gestion d’actifs.

Les autorités réglementaires ont réagi face à cette préoccupation. Plusieurs règlementa-

tions, qui tentent d’atténuer et prévenir les rachats massifs, ont été progressivement mises

en place. Un nouveau règlement du parlement européen et du conseil de l’Union Européenne

du 17 juillet 2017 propose plusieurs mesures qui visent à mieux connaître le passif d’un fonds

OPVCM et de renforcer sa liquidité de financement. Nous résumons et expliquons certains

articles de cette nouvelle règlementation à ci-dessous4

L’article 21 exige de chaque société de gestion à mettre en place des politiques permet-

tant de se familiariser avec sa base d’investisseurs. Cette exigence possède trois composants.

Premièrement, une société de gestion doit connaître ses clients au niveau individuel. Elle

a besoin de bien déterminer l’identité de chaque investisseur et d’enregistrer également son

profil. Deuxièmement, la société de gestion doit mesurer l’importance de chaque investis-

seur dans son fonds. Par exemple, un gérant pourrait calculer le ratio d’emprise de chaque

investisseur en divisant le montant de sa part par la taille du fonds. Une attention par-

ticulière doit être accordée aux grands investisseurs représentant un ratio d’emprise élevé.

Troisièmement, la société de gestion doit anticiper les éventuels rachats importants dans le

futur.

L’article 28 demande chaque société de gestion d’adopter des processus des simula-

tions des rachats futurs. La méthode de simulation doit prendre en compte les différentes

hypothèses économiques. Surtout, le gestionnaire d’un fonds doit avoir la capacité de simuler

les conséquences de chocs de liquidité extrêmes.

L’article 37 demande chaque société de gestion de mettre en ?uvre et d’appliquer des

procédures afin de prévoir les rachats collectifs. Cette collectivité a deux dimensions: (1) les

rachats peuvent être simultanés: de nombreux investisseurs réagissent à un même facteur

économique et sortent du fonds simultanément. L’identification des facteurs explicatifs des

rachats est essentiel pour comprendre cette situation. (2) Les rachats peuvent être corrélés.

Une sortie d’un grand client peut susciter des sorties d’autres clients. Pour cette situation,

nous devons étudier les réactions des investisseurs aux rachats des autres. Par ailleurs,

4Voir: Journal officiel de l’Union Européenne
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cet article exige que les sociétés de gestion prennent en considération les facteurs "clients":

le type de client, le nombre de parts détenues par un client dans le fonds, l’historique de

souscriptions et rachats d’un client.

Ces articles ne concernent que les OPVCMs monétaires. Pourtant, le risque de "runs"

existe dans tous les types de fonds ouverts. Les gérants doivent ainsi réagir contre ce risque

provenant du passif. Ce règlement impose aux sociétés de gestion la connaissance de leurs

clients et de leurs comportements. Comparé à la directive européenne UCITS IV datée de

2009, qui s’intéresse plutôt au risque de liquidité du côté actif, cette nouvelle règlementation

montre l’importance du côté passif. Avant de commencer à étudier ces questions concernant

le risque de liquidité, il est nécessaire de comprendre les différentes structures du passif des

fonds d’investissement et c’est l’objet de la prochaine section.

Différentes structures des fonds d’investissement

Un gérant de fonds d’investissement doit choisir les conditions de liquidité qui précisent la

façon dont les investisseurs peuvent souscrire et racheter leurs parts du fonds. Les struc-

tures les plus utilisées sont les fonds mutuels ouverts, les fonds mutuel fermés, les fonds

d’arbitrage et les fonds négociés en bourse. On utilise plutôt le nom anglais "Exchange

Traded Fund", ETF, pour faire référer le dernier type de fonds mentionné. Chaque struc-

ture correspond à des classes d’actifs particulières et les différentes conditions de liquidité

du fonds correspondent aux différents niveaux de risques de liquidité.

Fonds mutuels ouverts (open-end mutual funds)

La structure la plus utilisée est celle du fonds mutuel ouvert. Son nom "mutuel" désigne

le fait qu’il reçoit des capitaux de ses investisseurs de manière collective. Sa propriété

"ouverte" permet aux clients de souscrire et/ou de racheter librement sans aucune contrainte

autre que celle de la date de valorisation. Cette ouverture exige donc un système particulier

d’évaluation de portefeuille qui doit servir de base aux transactions des clients. Chaque jour

boursier5, le gérant de fonds demande à un auditeur, souvent extérieur, d’estimer le prix

de chaque titre détenu et de sommer tous les titres pour obtenir la valeur du portefeuille

global. Ensuite, cette valeur sous gestion, "Asset Under Management" (AUM) en anglais,

est divisée par le nombre de parts dans le fonds afin d’obtenir le prix unitaire de chaque part.

5On donne un exemple d’un fonds journalier ici. Mais la fréquence d’ouverture peut être également
hebdomadaire, mensuel, etc.
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On utilise plutôt le terme anglais de la valeur d’actif net, "Net Asset Value" (NAV) , pour

indiquer ce prix. Tous les ordres de souscription et de rachat reçus pendant cette journée

vont être exécutés au prix NAV6. L’auditeur fait généralement ce calcul à la clôture des

marchés. Par contre, les ordres sont reçus pendant la journée et donc avant ce calcul. Cela

crée donc un décalage temporel car les investisseurs ne sont informés du prix de transaction

qu’à la fin de journée, après le passage de leur ordre.

Les gestionnaires d’actifs utilisent cette structure pour leurs investissements dans de

nombreuses classes d’actifs diversifiés. Selon Morningstar, un fournisseur de données connu

dans l’industrie de la gestion d’actifs, les fonds mutuels ouverts investissent principalement

dans les actifs suivants: actifs diversifiés, actifs alternatifs, matières premières, actions,

dettes/obligations, actifs divers et actifs monétaires7. Nous présentons les poids de chaque

catégorie de fonds en France dans l’annexe C.

Bien évidemment, le risque de liquidité dépend fortement du côté actif du fonds. Un

fonds monétaire détient des titres beaucoup plus liquides que ceux détenus par un fonds

"fixed income". Par ailleurs, les fonds de la même catégorie peuvent aussi s’exposer à

différents niveaux de risque de liquidité. Par exemple, les fonds actions qui investissent dans

les sociétés de la grande capitalisation, "large-caps" en anglais, sont bien plus liquides que

les fonds actions spécialisés en petite capitalisation, les "small-caps". Surtout, les fonds qui

méritent notre attention sont ceux qui gèrent des actifs très illiquides et de très long-terme,

comme les fonds immobiliers et les fonds obligataires. Ces fonds ont un risque de "run" plus

élevé puisque les gérants auraient plus de difficultés pour vendre les actifs illiquides afin de

répondre aux rachats de leurs investisseurs. En effet, les fonds investissant dans les actifs

illiquides sont ceux qui ont souffert de plus de "runs" (voir, Goldstein et al. 2017 et Fecht

and Wedow 2014).

Cependant, en dehors de la liquidité des actifs détenus, le passif d’un fonds contient aussi

des facteurs déterminants du risque de liquidité. Un scénario de "fund run" est directement

lié au comportement des clients. Un fonds illiquide, comme un fonds immobilier, peut ne

rencontrer aucun problème même en période de crise si ses clients ne réagissent pas aux

chocs externes et ainsi, si des sorties massives ne se produisent pas. En revanche, si les

investisseurs sortent de manière trop brutale, même un fond monétaire, qui est en général

liquide, peut rencontrer des difficultés pour revendre certains de ces actifs. Afin de gérer ce

6Pour certains fonds qui investissent en dehors de leur marché domestique, nous ajustons le timing
d’évaluation pour éviter un arbitrage (e.g. Chalmers et al. 2001).

7Voir, "The Morningstar Category Classifications" dans http://im.mstar.com/im/newhomepage/

Morningstar_Category_Definitions_US_June_2016.pdf. La classification de fonds n’est pas unique.
Dans d’autres chapitres de cette thèse, nous utilisons également les méthodes alternatives.
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risque, l’approche traditionnelle des gérants de fonds consiste à estimer une sortie moyenne

des clients dans le futur proche et construire une allocation de disponibilités correspondant

(voir, Chernenko and Sunderam 2016; Darolles and Roussellet 2018). Cependant, cette

estimation est imprécise et souvent erronée car les données manquent, et les méthodes de

prévision des rachats des investisseurs sont peu efficaces.

Fonds fermés (closed-end funds)

Au lieu d’ouvrir le passif, la deuxième structure correspond aux fonds qui le ferment.

Cette structure est ainsi fermée et appelée "closed-end". Ce type des fonds ne permet

pas des souscriptions ou/et des rachats libres. Afin d’accueillir les investisseurs, le gérant

définit une période initiale appelée la période de capitalisation. Les clients d’un fonds fermé

peuvent y souscrire uniquement durant cette période8. Après avoir collecté les capitaux, le

fonds ferme et investi dans les actifs cibles. Puis, il distribue les profits selon la décision du

gérant pendant la vie du fonds et les capitaux seront remboursés à la fin lorsque le gérant

liquide le fonds. Aucun rachat ne peut être exécuté avant la date de liquidation.

Le principal usage d’un fonds fermé est d’investir dans les sociétés non-côtées. Si le

fonds intervient directement dans la gestion de ces sociétés, on parle de fonds de capital

investissement, ou "private equity" en anglais. On parle de fonds "dette privée" si le fonds

investi dans les dettes des sociétés non-côtées. En outre, on utilise aussi cette structure

afin de gérer des investissements immobiliers ou des projets d’infrastructure. Comparé aux

fonds ouverts, les fonds fermés s’engagent dans moins de classes d’actifs. Les capitaux ainsi

que les dettes privées sont des actifs illiquides et ils demandent une détention de long-terme.

La structure fermée peut être considérée comme une protection de liquidité pour ce type de

fonds.

Les fonds fermés ont une distribution de risque de liquidité différente des fonds ouverts.

Puisque les fonds ouverts laissent aux clients la liberté de sortir, le gérant subit le risque

de liquidité. Cependant, dans le cas d’un fonds fermé, le gérant détient des actifs de long-

terme sans que les investisseurs puissent sortir. Cela implique que le risque de liquidité

est supporté à 100% par les investisseurs et c’est pourquoi le risque de passif n’est pas une

préoccupation des fonds fermés.

Fonds d’arbitrage (hedge funds)

Les fonds d’arbitrage sont des véhicules d’investissement très utilisés. Ils ont une struc-

ture ouverte qui permet aux clients d’entrer et de sortir pendant toute la vie du fonds. Par cet

8Il est possible qu’un fonds fermé ouvre de nouveau s’il est trop demandé par les investisseurs.
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aspect, les fonds d’arbitrage ressemblent aux fonds mutuels ouverts. Pourtant, des modifica-

tions sur la structure ouverte permettent de tenir compte de stratégies uniques des gérants.

En effet, un fonds d’arbitrage offre la liberté de souscription/rachat sous certaines con-

traintes: (1) la période d’incessibilité, "lock-up period" en anglais: un fonds d’arbitrage peut

définir une mauvaise "coupure" pendant laquelle les investisseurs ne peuvent pas souscrire

ou racheter. Pendant cette période, la liquidité du fonds est ainsi protégée et le fonds devient

temporairement fermé. (2) le seuil de rachat, "redemption gate" en anglais: les investisseurs

peuvent sortir du fonds librement mais le montant du rachat ne peut pas dépasser à un cer-

tain seuil, disant "gate". Ce mécanisme permet aux fonds d’éviter de perdre leurs clients de

manière trop brutale. (3) la réserve de disponibilités, "cash reserve": le gérant peut garder

une proportion de "cash" dans son portefeuille. Si un investisseur veut racheter sa part, une

proportion de cash doit être laissée dans le fonds. Cette provision permet au gérant d’avoir

suffisamment de disponibilités afin de rembourser les sorties à venir, de répondre aux appels

de marge ou de saisir des opportunités d’investissement/arbitrage. (4) le sous-portefeuille

isolé, dit "side pocket": cela est plus une disposition qu’un mécanisme souvent constitué

d’actifs très illiquides. Les titres dans ce "side pocket" sont exonérés de l’évaluation du

fonds. Les études précédentes montrent que tous ces mécanismes renforcent la liquidité du

fonds et améliorent sa performance (voir, Teo 2011; Aiken et al. 2015).

Pour mieux comprendre l’intérêt de ces disponibilités, nous comparons les fonds d’arbitrage

avec les fonds mutuels. Les fonds d’arbitrage ont deux sources additionnelles de risque de

liquidité. D’un côté, les fonds d’arbitrage ont un effet de levier important; ils s’endettent

beaucoup afin d’atteindre une meilleure performance. D’un autre côté, les fonds d’arbitrage

utilisent beaucoup les produits dérivés. Les caractéristiques de ces actifs impactent la per-

formance du fonds. Par exemple, les produits dérivés ont un profit de valeur asymétrique

et la chambre de compensation demande un dépôt de garanti et des appels de marge sur

ces produits. En conséquence, les fonds d’arbitrage ont besoin d’une protection de liquidité

accrue, en comparaison aux fonds mutuels.

Côté passif, fonds d’arbitrage et fonds mutuel se ressemblent. Cependant, les clients qui

investissent dans ces deux fonds sont différents. Dans beaucoup de règlementations finan-

cières, comme le code AMF en France, seuls les investisseurs "éligibles" peuvent souscrire

aux fonds d’arbitrage. Les régulateurs demandent aux investisseurs d’avoir un bon niveau

de connaissance du marché et des produits financiers. En plus, les investisseurs doivent être

conscient des risques auxquels un fonds d’arbitrage s’expose. En outre, certaines grandes in-

stitutions financières, comme certains fonds de pension ou certaines compagnies d’assurance

n’ont pas le droit d’investir dans les fonds d’arbitrage du fait de règles internes. Au con-
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traire, presque tous les investisseurs peuvent souscrire à des fonds mutuels sans aucune

contrainte règlementaire. En analysant les différences entre ces deux structures, on pourrait

poser naturellement deux questions: (a) est-il utile pour un fonds mutuel d’introduire des

mécanismes de liquidité comme pour les fonds d’arbitrage? (b) Est-ce que la composition

de base d’investisseurs impacte le risque de liquidité, et surtout, le risque de "fund runs"?

ETF

Un ETF est un fonds d’investissement dont les parts sont côtées en bourse. Le principal

objectif d’un ETF est de suivre un indice boursier. Normalement, un ETF cherche à garder

la même composition de l’indice qu’il suit et son objectif est de délivrer la même performance

que ce dernier. Il permet aux investisseurs d’avoir une position diversifiée avec des titres

très liquides. Par ailleurs, un ETF est souvent divisé en plusieurs parts de petits montants.

Cela permet d’attirer plus de clients, surtout les particuliers ("retails") qui n’ont pas de

grandes capacités d’investissement contrairement aux clients institutionnels. Les ETFs sont

considérés comme les outils de l’investissement passif.

Les ETFs ont un mécanisme de souscription/rachat particulier. Les teneurs de marché,

aussi appelés participants autorisés ("Authorized Participants", APs), sont responsables de

l’acquisition des titres pour l’ETF. Ils achètent tous les composants de l’indice suivi par

l’ETF et ils les livrent à cet ETF. En échange, ils reçoivent des parts de l’ETF de valeur

équivalente, qui s’appellent les unités créations. Par cette procédure, un ETF est créé.

Désormais, les APs représentent les intermédiaires entre l’ETF et ses investisseurs. Ces

derniers achètent ou vendent les parts de l’ETF aux APs. A chaque fin de journée, s’il y a

plus d’achats que de ventes, les APs créent de nouvelles parts de l’ETF. Cela est équivalent à

des nouvelles souscriptions dans les fonds ouverts. En revanche, si les investisseurs vendent

plus que ce qu’ils achètent, les APs suppriment les parts. Cela pourrait être considéré comme

les rachats dans les fonds ouverts. Les activités des APs garantissent une convergence de

prix dans la mesure où la NAV de l’ETF s’aligne sur le prix des titres sous-jacents.

Il est intéressant de comparer les ETFs aux fonds mutuels. Une différence remarquable

est le timing de l’évaluation. Un ETF suit un indice et son prix est publié dès que la bourse

est ouverte. Dans une même journée, il y a une continuité des prix boursiers pour un ETF.

En revanche, un fonds mutuel a un seul prix par jour qui est publié en fin de journée, comme

expliqué au début de cette section. Par conséquent, il est possible d’observer les prix et les

volumes d’un ETF avec une fréquence intra-journalière. Au contraire, cela n’est pas possible

pour un fonds mutuels qu’à une fréquence journalière.

Une deuxième comparaison est d’opposer un ETF à un fonds mutuel indiciel. Ces deux
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fonds suivent tous les deux une stratégie passive et sont considérés comme des produits

concurrents. Généralement, les investisseurs préfèrent un ETF à un fonds mutuel indiciel

pour les trois raisons principales suivantes: premièrement, un fonds mutuel a des frais de

gestion plus élevés qu’un ETF. Ces "fees" couteux s’expliquent par le fait qu’un fonds

mutuels a besoin d’une infrastructure lourde pour mener ses activités. La société de gestion

doit sauvegarder tous les profils des clients, garder du personnel au service clientèle et

construire une équipe "conformité" afin de répondre aux demandes règlementaires. Un

ETF ne supporte aucun de ces coûts, ainsi ses frais de gestion sont bien moins élevés.

Deuxièmement, un ETF offre des prix inter-journaliers et est ainsi plus liquide qu’un fonds

mutuel. Troisièmement, puisque l’ETF investit dans un indice et ses clients échangent

leurs parts sur un marché secondaire, les ventes des investisseurs impactent moins la valeur

du fonds. Ainsi, il y a moins de risque de "runs" comme dans un fonds mutuel ou dans

une banque. au regard de l’ensemble des désavantages de fonds mutuel par rapport à un

fonds ETF, on peut se demander pourquoi les investisseurs ont-ils besoin de fonds mutuel

indiciel/passif et quels types de service attendent-ils d’une telle société de gestion?

Parmi les quatre types de fonds que l’on vient de présenter, le fonds mutuel est l’objet

d’étude idéal pour mieux comprendre le risque de liquidité au passif. Tout d’abord, nous

avons vu que les fonds mutuels sont très sujets aux "fund runs". Ensuite, le fonds mutuels

couvrent une plus grande diversité d’actifs et d’investisseurs. Enfin, les fonds mutuels

n’utilisent aucun mécanisme de protection de liquidité comme les fonds d’arbitrage. Com-

prendre les souscriptions/rachats des clients et renforcer la liquidité du fonds est devenu un

besoin essentiel dans l’industrie de la gestion d’actifs.

Risque de passif des fonds mutuels

Avant d’analyser le risque de "runs" en détail, il est nécessaire de présenter dans un premier

temps les différentes notions opérationnelles d’un fonds mutuel. Un fonds est créé par

une société de gestion. On l’appelle aussi gestionnaire d’actifs ou asset manager. Cette

société peut être indépendante, comme Blackrock, Statestreet ou Vanguard. Mais, il est

également possible pour un gestionnaire d’actifs de s’affilier à un conglomérat financier.

Les exemples les plus connus des sociétés affiliées en France sont AXA Investor Managers,

BNP Investment Partners ou encore Alliance Global Investors. Une particularité de cette

affiliation est qu’une partie de capitaux souscrits provient de la maison mère. Par exemple,

la moitié des souscriptions d’AXA IM sont faites par le groupe AXA lui-même et l’autre

moitié vient des investisseurs externes. Grâce à la continuité de ces ressources internes, les
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gestionnaires affiliés sont considérés comme moins vulnérables au risque de liquidité que les

gestionnaires indépendants. Pourtant, malgré cette contribution importante en terme de

capitaux, la maison mère n’intervient pas dans la gestion des fonds. En général, les gérants

ont la liberté dans les décisions de leurs propres investissements.

Un fonds collecte les capitaux de nombreux investisseurs et ces capitaux sont gérés par le

gérant du fonds. Dans certains cas, il y a d’autres personnes qui assistent le gérant principal.

On appellent ces personnes les co-gérants. Les investisseurs du fonds sont souvent appelés

les porteurs. Un gérant peut gérer plusieurs fonds et un porteur peut également investir

dans plusieurs fonds. Dans de nombreuses situations, la société de gestion utilise un service

intermédiaire afin de vendre ses parts de capital. Ce service intermédiaire s’appelle un

distributeur. Il correspond au service de courtage dans la littérature (voir, Bailey et al.

2011). Une grande société de gestion a souvent des équipes séparées pour la gestion et la

vente. Le gérant ne connaît donc pas la plupart de ses porteurs. Les clients sont issues

de différents secteurs économiques, et souvent, la littérature les classifie en deux grandes

catégories, les particuliers et les institutions (voir, Ben-Rephael et al. 2017; Cao and Petrasek

2014; Edelen et al. 2016; Foster and Warren 2016).

L’AUM global d’un fonds est divisé en plusieurs petites unités et le prix "NAV" corre-

spond à la valeur d’une unité. Les clients paient trois types de frais à la société de gestion.

Les premiers sont les frais de gestion, dits "AUM fees". Ses frais égalent à la valeur totale

des parts détenues par un client multiplié par un taux de frais. La société va encore définir

un seuil de performance. Si le rendement dépasse ce seuil, les investisseurs vont payer une

partie de cette sur-performance. Par exemple, en définissant un seuil à 20%, si le gérant

réalise un rendement de 25%, les investisseurs paient une partie de ce 5% (25% − 20%) de

sur-performance au gérant, disons un pourcentage égal à 30%. Ces frais supplémentaires in-

citent les gérants à sur-performer, c’est pourquoi nous les appelons bonus d’encouragement,

ou "incentive fees". Le seuil de 20% est le taux de "hurdle" et le taux de 30% de proportion

correspond aux intérêts de "carry". Le dernier frais de gestion est le droit de souscrip-

tion/rachat. Les investisseurs paient un montant à chaque transaction. Aux États-Unis,

nous appelons cela le "load" (voir, Johnson 2007). En France, ces droits sont souvent

exonérés, afin d’attirer plus de clients. Ces frais ne sont pas les mêmes pour tous les in-

vestisseurs. La société de gestion affecte les clients dans plusieurs catégories d’un fonds,

disons les "parts" du fonds. Chaque part correspond à des frais de gestion spécifiques.

Les investisseurs ont la liberté d’entrer et de sortir s’ils le souhaitent. Ainsi, le gérant

observe des flux entrants/sortants de son fonds. Les études précédentes appellent les flux

entrants les "inflows" et les flux sortants les "outflows" (e.g., Akbas et al. 2015; Bergstresser
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and Poterba 2002; James and Karceski 2006; Kumar et al. 2015; Spiegel and Zhang 2013).

Souvent, le gérant n’observe qu’un montant net, qui est l’écart entre les "inflows" et les "out-

flows". On les appelle flux nets. Chaque souscription/rachat peut être considéré(e) comme

un flux individuel. La littérature de "household finance" le nomme "micro-transaction".

Les fonds mutuels ont un côté passif de court-terme puisqu’un client peut sortir au lende-

main de sa souscription. Toutefois, ils ont un actif de plus long-terme. Dans une perspective

macroéconomique, ces fonds accomplissent une fonction de transfert de liquidité, i.e. ils col-

lectent les ressources de court-terme et financent les actifs de long-terme. Alternativement,

nous disons aussi qu’il y a un écart de liquidité dans les fonds mutuels. De ce point de

vue, un fonds se rassemble beaucoup à une banque. La liquidité de ses porteurs peut être

garantie puisque les investissements de tous les clients sont mélangés et ils atteignent un

équilibre dans le contexte du modèle de Diamond-Dybivig: la consommation marginale de

liquidité égale l’offre de liquidité (voir, Diamond and Dybvig 1983). Cet équilibre peut être

atteint car un fonds mélange les investisseurs qui ont différents besoins de liquidité. Ainsi,

la littérature indique que cette mixité crée une assurance de liquidité (voir, Johnson 2004,

Section V, "insurance-by-pooling").

Grâce aux notions vues précédemment, nous définissons le risque de passif d’un fonds

mutuels de la manière suivante:

Le risque de passif d’un fonds ouvert correspond au risque de perte de per-

formance due aux comportements de ses clients.

Il faut souligner que les "inflows" ont des impacts aussi néfastes sur la performance que

les "outflows". Si le gérant n’a pas suffisamment de "cash" pour répondre aux rachats, il

doit vendre des actifs moins liquides à un prix désavantageux. De manière opposée, trop

d’ "inflows" peut aussi créer des problèmes. La recherche précédente indique que chaque

gérant possède une taille de fonds par laquelle il est expert et a une parfaite maîtrise. Si

l’AUM devient trop grand, une contrainte s’impose au gérant. Il ne sait plus quoi investir

et place une part significative en "cash". Cela a pour effet de diminuer le rendement du

fonds9.

La clé pour évaluer ce risque de passif est de comprendre le comportement des clients. Le

gérant a besoin de réponses aux questions suivantes: pourquoi les investisseurs souscrivent/rachètent

aux parts de fonds mutuels? Quels types de fonds préfèrent-ils? Quels sont les facteurs qui

9Voir l’article de CBS news, du juillet 11 2011: "The Bigger Active Funds Get, the Worse Their

Alpha". https://www.cbsnews.com/news/the-bigger-active-funds-get-the-worse-their-alpha/
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impactent le volume de souscription/rachat? En période économique défavorable, quels

types de clients sont les plus à même de racheter? Est-ce que la classe d’actifs du fonds

et/ou les caractéristiques du client joue un rôle déterminant dans la dynamique des flux?

Dans un premier temps, nous nous basons sur des modèles théoriques pour trouver des

réponses à ces questions.

Modèles théoriques sur le comportement des clients

La première étape dans la compréhension du comportement des investisseurs revient à répon-

dre à deux questions essentielles: (1) comment les investisseurs réagissent au rendement du

fonds et (2) quelle est leur attitude face au risque? Deux études théoriques précédentes

concernent respectivement ces deux aspects. Le premier modèle, celui de Berk and Green

(2004), décrit dans un contexte rationnel, comment les investisseurs choisissent les fonds à

souscrire/racheter. Ce modèle explique certaines anomalies observées dans les comporte-

ments des clients. Par exemple, les investisseurs choisissent souvent les fonds qui ont le

meilleur rendement passé malgré que cette sur-performance ne persiste pas dans le futur.

Ils montrent que cette manque de persistance n’implique pas forcément la mauvaise capac-

ité du gérant. Le modèle prévoit une relation entre la performance et le rendement qui est

cohérent avec des évidences empiriques (e.g., Chevalier and Ellison 1999; Sirri and Tufano

1998). Le deuxième modèle, celui de Chen et al. (2010) indique que la "run incentive" des

investisseurs rend les fonds plus fragiles. Leur modèle prédit que les fonds qui détiennent

plus de titres illiquides ont une plus forte relation entre les sorties et la performance. De

plus, cette propriété est plus prononcée pour les fonds dont la composition des clients est

plus dispersée. Dans cette section, nous présentons ces deux modèles de manière concise

et discutons leurs implications pour la gestion de risque de passif. Les démonstrations des

modèles sont présentées dans les annexes D et E.

Modèle Berk-Green

Le modèle Berk-Green s’intéresse à la façon par lesquelles les investisseurs évaluent la qualité

du gérant de fonds. Le comportement d’un investisseur, i.e. ses souscriptions et ses rachats,

est une réaction à cette évaluation. Si un investisseur pense qu’un gérant maîtrise son sujet,

il va souscrire davantage à son fonds, sinon il en sortira. Un fonds mutuel est ainsi un actif

financier dont l’attractivité dépend de qualités humaines. Cela le différencie de la majeure

partie des actifs financiers pour lesquels les investisseurs n’évaluent que la qualité des actifs
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en eux-mêmes. Dans cet esprit, le modèle Berk-Green fournit un cadre théorique adapté

pour analyser ces produits particuliers.

Dans ce modèle, un investisseur ne connaît pas la capacité du gérant à offrir une sur-

performance par rapport au rendement de référence. Il doit ainsi estimer cette capacité à

partir des rendements historiques observés. Dans leur modèle, le rendement brut observé

se décompose deux parties: (1) la capacité du gérant et (2) un terme d’erreur. Plus la

deuxième partie est grande, plus il est difficile d’estimer la qualité du gérant. Ainsi, ce terme

d’erreur représente la précision des rendements. L’investisseur ne reçoit que la partie nette

du rendement moins le coût de transaction et les frais de gestion. Le coût de transaction

augmente avec l’AUM du fonds. Cela correspond à une contrainte de capacité du gérant.

Ainsi, on observe que plus l’AUM d’un fonds est élevé, plus il est difficile d’offrir une sur-

performance.

Les investisseurs sont rationnels dans ce modèle: ils utilisent l’approche bayésienne pour

mettre à jour leurs estimations sur la capacité du gérant. Les fonds recevant une bonne

estimation vont continuer à accueillir des flux entrants jusqu’aux limites des capacités de

maîtrise du gérant du fonds. A ce moment là, la sur-performance disparaît et les investisseurs

ne souscrivent plus. Cela permet le marché des fonds d’atteindre l’équilibre pour lequel

il existe une relation positive entre le rendement du fonds et ses flux, même si la sur-

performance ne persistera pas dans le futur.

Ce modèle utilise les rendements passés du fonds comme la seule information que les

investisseurs observent. Dans le même cadre d’analyse, Berk and Binsbergen (2016) inclue

traditionnellement les différents facteurs de risque dans le modèle. Brown and Wu (2016)

considère qu’un gérant peut gérer plusieurs fonds et que les investisseurs souscrivent ainsi

à tous les fonds appartient à ce gérant s’ils perçoivent le bon signal. Pourtant, nous pou-

vons nous poser plusieurs questions quant au modèle Berk-Green. Premièrement, si les

investisseurs ne sont pas rationnels, comment la relation entre les flux et les rendements ob-

servés est-elle modifiée? Deuxièmement, si un investisseur détient plusieurs fonds, le signal

provenant d’un fonds va-t-il impacter d’autres fonds détenus par ce même investisseur? En-

fin, est-il possible que les investisseurs n’aient pas les mêmes motivations d’investissement?

Répondre à ces questions peut aider le gérant à anticiper les comportements des investisseurs

et ainsi renforcer la liquidité de son fonds.
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Modèle Chen-Goldstein-Jiang

Le modèle Chen-Goldstein-Jiang explique comment le "fund run" peut se produire. Puisque

les flux sortants auront un impact négatif sur la performance future (voir, Edelen 1999),

chaque investisseur surveille les comportement des autres investisseurs présents sont dans le

même fonds. Ainsi, le comportement d’un client dépend en partie des transactions des autres

clients. Si les investisseurs estiment que la liquidité d’un fonds est faible, ils peuvent décider

de sortir même si les rendements sont bons. Ce comportement est différent de celui prédit

par le modèle Berk-Green selon lequel un bon rendement attire les souscriptions et diminue

les sorties. Dans ce modèle, la décision de chaque investissement dépend du comportement

des autres investisseurs. Si de nombreux clients sortent du fonds, cela va inciter les autres

investisseurs à sortir également.

Le modèle a deux périodes, appelés 1 et 2. Les investisseurs choisissent entre (1) rester

dans le fonds jusqu’à la fin de la période 2 et (2) sortir de manière pré-maturée à la période

1. Le rendement d’un investisseur restant jusqu’en période 2 dépend du nombre de sorties

pré-maturées car le gérant doit payer une prime d’illiquidité quand il vend ses actifs afin de

répondre à ces sorties. Ainsi, le rendement des clients restants suit une fonction dépendent

de trois paramètres: la prime d’illiquidité, le nombre de sorties pré-maturées et la qualité

du fonds. La prime d’illiquidité correspond au fait que le gérant paie un coût pour vendre

les actifs à la période 1. La probabilité de rester dans le fonds est positivement corrélée avec

la qualité du fonds et négativement corrélée avec le nombre de clients sortant à la période

1. Ces relations déterminent l’équilibre de ce modèle: lorsque la performance est mauvaise,

les fonds illiquides, i.e. pour lesquels les gérants paient une plus grande prime d’illiquidité,

souffrent d’un plus grand nombre de sorties.

Cette théorie souligne une endogénéité de sortie: la sortie d’un investisseur a un impact

négatif sur la performance du fonds et cet impact incite d’autres clients à sortir. Ainsi,

le risque de "run" est plus important si le fonds est illiquide. Cependant, cette étude ne

porte son analyse qu’au niveau du fonds. Nous voudrions poursuivre l’analyse de "fund

run" à un niveau moins agrégé, i.e. étudier la décision de sortie des clients individuels.

Dans cette perspective, nous cherchons à comprendre: (1) si certains investisseurs ont des

comportements moutonniers et sortent parce que d’autres sont sortis. (2) Si les investisseurs

répondent aux différents stimuli ou différemment à un même stimulus. (3) Comment ces

comportements individuels vont déboucher sur un "fund run" et quels sont les facteurs

déclenchants? C’est à l’ensemble de ces questions que nous cherchons à répondre via les

travaux de cette thèse.
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Plan de la thèse

Ces deux modèles théoriques nous font découvrir les comportements des investisseurs dans

un cadre rationnel. Dans la continuité de ce sujet, nos travaux de recherche couvrent le

côté empirique. Afin de répondre aux besoins industriels et règlementaires de la gestion du

passif, nous examinons l’historique des micro-transactions des investisseurs et développons

des modèles statistiques permettant de prévoir les flux entrants/sortants. En comparaison

aux travaux précédents portant sur le côté actif du fonds, la difficulté du côté passif est le

manque des données. Ainsi, la première étape de nos travaux est de construire une base de

données sur le passif du fonds en collectant, en temps réel, les transactions effectuées par

des investisseurs dans trois sociétés de gestion françaises.

Le premier chapitre de cette thèse présente le contexte académique propre à notre su-

jet. Nous effectuons d’abord, une revue de la littérature portant sur les comportements

des clients des fonds mutuels. Ensuite, nous comparons les différentes sources de données

utilisées par les études antérieures. Puis, nous présentons notre nouvelle base de données,

qui procure des informations plus riches que celles trouvées dans la littérature. Cette base

offre des opportunités uniques pour analyser les comportements des investisseurs. Elle nous

permet de développer des originalités dans notre recherche à trois niveaux. D’abord, nous

étudions les propriétés des séries temporelles des flux d’un fonds, là où la littérature an-

térieure s’intéresse surtout à l’étude de la coupe tranversale de fonds différents. Deuxième-

ment, nos travaux suivent les transactions individuelles des investisseurs. Ils complètent les

anciennes études qui n’observent que les flux agrégés au niveau du fonds. Enfin, notre base

de données rend possible l’étude des liens et de l’hétérogénéité entre les investisseurs. Cela

apporte une contribution à la littérature existant qui considère que les investisseurs sont

homogènes et indépendants. Cette base de données nous permet de réaliser trois articles

de recherche qui s’intéressent au lien entre les comportements des investisseurs et le risque

de liquidité des fonds ouverts. Nous les présentons dans les chapitres 2, 3 et 4 de cette

thèse. Chaque article examine cette base de données d’un point de vue unique, bien que les

trois études ont toutes le même objectif d’aider le gérant du fonds à surveiller ses clients et

renforcer la liquidité du fonds.

Le chapitre 2 vise à améliorer la prévision des flux futurs du fonds. Les propriétés

statistiques des données conduisent à l’utilisation d’un modèle de comptage10. Inspirés par

les études sur la modélisation de la volatilité, nous commençons par un modèle basique,

10Un modèle de comptage décrit les arrivées d’un évènement, dans notre cas, l’évènement est une/un
souscription/rachat. Une particularité de ce modèle est qu’il couvre des séries "integer" qui ont des valeurs
discrètes et positives
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i.e. un modèle Poisson indépendant et homogène. Nous ajoutons ensuite graduellement des

différentes composantes à ce modèle. De cette manière, notre modèle capture tous les faits

stylisés des flux observés. Nous trouvons que les investisseurs sont impactés par les flux

précédents des autres clients. Ainsi, les arrivées de flux présentent une auto-corrélation. La

littérature nomme cette propriété "auto-existant". Puis, nous trouvons que les flux ont une

variance beaucoup plus grande que celle dans un modèle basique. Cela est expliqué par le

fait que les investisseurs dans un même fonds sont hétérogènes. Ainsi, les séries des flux

présentent une sur-dispersion. Ces deux faits stylisés sont générés par les caractéristiques et

les comportements des clients, qui sont des éléments provenant du passif d’un fonds mutuel.

Cela différencie notre travail de la littérature qui n’étudie que le côté actif du fonds. Nous

introduisons alors la notion du risque de liquidité au passif.

Dans un deuxième temps, nous examinons les dynamiques des flux dans les différentes

catégories d’investisseurs. Puis, nous analysons l’impact de certains facteurs explicatifs

utilisés par les études antérieures. Nous observons que, même si les caractéristiques des

actifs et les facteurs économiques ont des impacts non négligeables sur les dynamiques des

flux, le comportement des clients reste un facteur significatif. Cette étude aide un gérant

de fonds à obtenir des statistiques fiables sur les flux et réserver ainsi suffisamment de

titres liquides pour satisfaire les rachats futurs des clients. Ensuite, la propriété "auto-

existant" suggère que le gérant doit ajuster sa prévision des flux selon les derniers flux

observés, de manière analogue à un modèle GARCH pour la prédiction de la volatilité.

Cette étude répond directement aux besoins industriels et réglementaires de gérer la base

d’investisseurs du fonds et de contrôler la liquidité au passif. Elle fait partie du projet

"Modélisation et Gestion du Passif des Fonds", entreprise en collaboration avec plusieurs

partenaires industriels. A l’issue de ce projet, un outil informatique de gestion de liquidité

qui inclut notre modèle est développé et sera prêt à être commercialisé 11.

Nous pouvons que les caractéristiques des clients ont des effets significatifs sur leurs

flux. Cela nous incite à étudier les comportements des investisseurs au niveau individuel.

Le chapitre 3 analyse les horizons d’investissement des clients individuels. Ces horizons

sont modélisés par le modèle de survie qui explique la probabilité de rachat individuel à

chaque période sur la base d’une grande variété de facteurs économiques. Nous observons

que les horizons d’investissement sont fortement liés aux caractéristiques du fonds et de

l’investisseur. De plus, les investisseurs sont moins rationnels en fin d’année car à ce moment

ils sont plus susceptibles de commettre un biais comportemental, l’aversion à la perte.

11Voir, https://www.agefi.fr/asset-management/actualites/hebdo/20171012/

gerants-en-passe-mieux-connaitre-leur-passif-228922
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Enfin, nous trouvons que les investisseurs de long-terme sont plus sensibles aux conditions

économiques que ceux de court-terme. Ces résultats introduisent la notion du risque de

sortie pré-maturée, i.e. un investisseur sort d’un fonds plus tôt que l’horizon prévu au

regard de ses caractéristiques. Notre recherche montre encore que ce risque est plus grand

pour des investisseurs de long-terme.

Cette analyse de survie a plusieurs implications pour les praticiens. D’abord, à partir

des horizons d’investissement prévus, nous pouvons calculer la duration moyenne du passif

du fonds, pour la quelle la littérature a eut des difficultés à mesurer. Cela nous permet de

mieux comprendre l’écart de liquidité entre l’actif et le passif. Afin de gérer ce problème, la

société de gestion peut s’inspirer des techniques de l’ALM ("Asset Liability Management"),

qui est beaucoup utilisée par d’autres institutions financières, comme les banques ou les

assurances par exemple. Cela va également aider le gérant à choisir une meilleure allocation

des actifs qui s’adapte aux comportements des clients. Par exemple, si la plupart des

investisseurs restent dans le fonds pour des horizons courts, le gérant doit investir de façon

plus marquée dans les actifs liquides. Deuxièmement, selon les résultats de cette étude, nous

fournissent certains conseils commerciaux à la société de gestion. La prédiction des horizons

d’investissement des investisseurs va aider le gérant à mieux cibler les clients "profitables".

Par exemple, il faut présenter un fonds liquide à un client de court-terme et un fonds illiquide

à un client de long-terme. En outre, la société de gestion pourra introduire des mécanismes

de protection de liquidité comme la période d’incessibilité, si elle sait dans combien de

temps chaque investisseur va sortir du fonds. Enfin, notre étude incite le gérant à surveiller

le risque de "run" de manière individuelle. En période de crise, le gérant doit surveiller plus

particulièrement les investisseurs de long-terme.

Notre base de données couvre une grande gamme d’investisseurs comme les banques, les

compagnies d’assurance, les FoFs (fonds de fonds) et aussi les fonds de pension. Cela diffère

de la littérature qui ne contient que la catégorie des investisseurs particuliers ("retails").

Nous posons ainsi une question associée: les investisseurs institutionnels sont-ils différents

des investisseurs particuliers? Nous supposons que ces investisseurs adoptent une approche

d’investissement plus sophistiquée: ils ciblent une allocation d’actifs et rééquilibrent leurs

portefeuilles ("rebalance") vers l’allocation ciblée. Le dernier chapitre de cette thèse a

contribué à ce sujet. Nous débutons cette étude par l’analyse des transactions d’investisseurs

individuels. Nous trouvons que plus de 65% des investisseurs de notre échantillon détient

plusieurs fonds qui opèrent dans des classes d’actifs différentes. De plus, les investisseurs

exécutent beaucoup de transactions: 20 souscriptions/rachats par an. Ces deux observations

sont des évidences de "rebalance". Puis, nous continuons en modélisant les transactions
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des clients par un modèle probit à trois dimensions: souscrire, racheter et tenir. Nous

identifions une relation négative entre l’intensité de l’achat et la performance du fonds. Cela

suggère que les investisseurs adoptent l’approche de "constant-mix rebalance": ils vendent

les titres appréciés et achètent les titres dépréciés, afin de maintenir l’allocation initiale

des actifs. Enfin, nous étudions comment les investisseurs rééquilibrent leurs placements

entre des fonds qui ont différents niveaux de liquidité et de risque. Cette étude fournit

aux gérants de fonds un outil pour gérer les sorties individuellement. De plus, elle nous

laisse réfléchir sur une question: quels types de services une société de gestion doit proposer

aux investisseurs? D’après nos résultats, certains investisseurs savent déjà diversifier et

rééquilibrer leurs portefeuilles. De ce fait, ils n’ont pas besoin d’un service de gestion

passive et diversifiée. Une société de gestion doit donc leur proposer des styles de gestion

plus sophistiqués.
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Liquidity Risk in the Universe of Open-End Funds

1.0.1 Introduction

Our study focuses on fund investor’s behaviour and its implication on the fund liability risk.

We aim at providing new statistic tools to enhance the mutual fund liquidity and prevent

the "fund run" scenario. This objective answers the regulatory requirements and industrial

needs. This study relates to several strands of literature. In the first part of this chapter,

we briefly present the main results of the previous studies. Then we make suggestions about

how to extend these investigations. We find that, the data used by the literature contain

only the inadequate information on investor’s behaviour. It motivates us to collect a novel

data-set which records more information on mutual fund investors and their behaviour. We

present this data set in the second part of this chapter.

1.1 Literature review

Mutual funds play an important role in the modern financial system, which partially explains

why it is receiving more and more attention in the academic literature. Among a diversity

of previous studies, our work is most tightly linked to four strands of literature: (1) mutual

funds performance and their risk exposure; (2) mutual funds’ liquidity risk, (3) the fund run

scenario and (4) fund flows. These studies highlight the essential institutional background

on open-end mutual funds and the preliminary evidence on investor behaviours. Hence it is

necessary to present several representative studies in these topics. We start by explaining the

link between mutual funds performance and their risk exposures. Next, we describe mutual

funds’ liquidity risk and how fund managers mitigate that risk. Then we charactering the

famous fund runs that occurred in the financial history. An important step to avoid these

crisis scenario in the future is to understand the properties of fund flows. Hence, finally we

present the different characteristics of fund flows found in the literature.

Performance and risk exposure

Investors are sensitive to fund performance, by which they learn the quality of the fund and

its manager. Therefore, a large strand of literature investigates the fund performance and

its risk exposures. According to the common belief, the fund return persistence is a signal

of fund managers’ ability. However, Carhart (1997); Bollen and Busse (2004) among others,

showed that the persistence in fund return is due to the fact that the fund holds momentum

stocks and not necessary a proof of this ability. As a consequence, the momentum risk

factor should be considered when assessing funds’ performance. The Carhart’s 4-factor
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model, which adds the momentum factor to the traditional Fama-French 3-factor model,

has become a standard tool to evaluate mutual fund return. Besides, the recent literature

has also found other factors which affect funds’ performance. Banegas et al. (2013) identify

several macroeconomic variables enhancing the predictive power of fund return. Jordan

and Riley (2015) develop a volatility-related factor which explains a large part of abnormal

fund returns. Christoffersen and Simutin (2017) show that holdings of high beta stocks

affect fund returns. Cremers and Pareek (2016) indicate that "patient" funds outperform

others. Therefore they suggest that mutual fund should hold securities in a longer horizon

then what in the usual case. Interestingly, Chaudhuri et al. (2016) document that the fund

managers who hold a PhD degree could achieve a 20% out-performance.

In short, previous studies seek to explain the cross-sectional differences in mutual fund

returns. This traditional approach could be extended in several directions. Firstly, fund

returns might have time series properties which are not covered by cross-sectional factors.

In this spirit, Pastor et al. (2017) focus on the time series proprieties of fund return and

develop a turnover factor to account manager’s capacity to seize the time-varying profit

opportunities. They show that their method outperforms the traditional cross-sectional

model when: (1) the fund holds many illiquid securities (2) the manager processes great

investing skills. Hence their study provides a practical tool to assess the fund manager.

Second, the fund manager might have the "timing" capacities, which highlight the fact that

the he modifies his portfolio in response of different economic conditions. For example, when

a fund manager expects the market to go up, he increases fund’s market risk exposure to

earn a high risk premium. On the contrary, when the manager expects the market to go

down, he decreases fund’s market risk exposure. The literature refers to this behaviour as

the market timing capacity (e.g., Liao et al. 2017; Tchamyou and Asongu 2017). Previous

research also identifies the timing capacities of other risk factors, such as the liquidity (see,

Cao et al. 2013) and the volatility (see, Busse 1999). These studies suggest that funds’ risk

exposures evolve over time and we need to take this evolution into account when we assess

a fund’s performance. Third, whilst a large amount of research has been carried out on

the fund’s asset side , i.e. the performance of securities in a fund’s portfolio, fewer studies

have attempted to investigate the link between the liability side, i.e. the characteristics and

behaviours of investors, and the fund’s performance. Berk and Tonks (2007) demonstrate

that investors’ redemptions make bad return persist. Edelen (1999); Fang et al. (2015) show

that investors’ purchases and redemptions disturb the fund manager and hence they decrease

the fund return. As a consequence, understanding and predicting the behaviour of investors

become a must for fund managers. Cuthbertson et al. (2016) provide a comprehensive
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review of all relevant studies on the impact of behavioural issues on fund’s performance.

Rohleder et al. (2017) document that funds using different instruments, such as derivatives

products, to manage this redemption risk outperform funds without these measures. A

further understanding of clients’ behaviour would help fund managers to better predict the

future flows and allows us to develop reliable tools to manage the redemption risk.

Liquidity risk and its management

Traditionally, mutual funds are believed to invest in relatively more liquid securities than

hedge funds, with the latter taking the large liquidity risk in chase of superior return (See:

Sadka 2010). As a result, a liquidity gap might occur between asset and liability in hedge

funds. Aragon et al. (2017) find evidence that hedge fund managers adjust their portfolio

to control for this gap and thus mitigate the funding risk. Investors and regulators pay

less attentions to the liquidity problem in mutual funds since they consider their portfolios

to be relatively liquid. However, previous studies highlight that mutual funds also take a

significant liquidity risk. Dong et al. (2017) reveal that the liquidity risk exposure explains

cross-sectional differences in mutual fund returns. This study implies that if mutual funds

hold less liquid securities than what investors imagine, and they do not adopt liquidity pro-

tection provisions such as "gate" and "lock-up period" as hedge funds do, a more serious

liquidity gap might exist in some mutual funds. Yet, there is hardly an empirical investiga-

tion for this problem, since there is no public data of mutual funds’ liability. Therefore, an

important part of our work concerns to the collection of fund clients’ transaction records in

order to prepare a unique liability dataset.

Previous studies find evidence that some fund managers make efforts to manage the

liquidity risk. Nanda et al. (2000)’s theory predicts that the randomness of a fund’s flow

has an impact on its fee structure. They demonstrate that, in equilibrium, funds should

charge investors who redeem less frequently a lower management fee. Chernenko and Sun-

deram (2016) find empirical evidence that mutual funds use cash account to meet future

redemptions. First the fund manager estimates the future outflows, then she/he sets her/his

cash reserve accordingly. However, the estimation in practice is often inaccurate, leaving

the manager with an inadequate cash level. Hill (2010) document that fund flows exhibit

often the heavy tails in their distribution and this property generates the large estimation

errors. In fact, Desmettre and Deege (2016) show that the flow prediction becomes far more

reliable when these heavy tails are considered. In line with their research: we seek to explain

the flow’s extreme risk analysing investors’ behaviours and we intend to develop an reliable
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model to give a more accurate prediction of future flows.

Fund run crisis

The scenario a fund manager wishes to avoid the most is the "fund run". In such a case,

clients redeem massively and rapidly, making the fund lose a significant part of its capital in

a short time. For example, on 16th September 2008, American institutional money market

funds have lost 20% of their AUM on average in a single day (see, Figure 1, Panel A in

Schmidt et al. (2016)) 1. The funds that hold many illiquid assets are the most exposed

to the run risk. For example, the famous LTCM is a fund which has invested mainly in

illiquid fixed income securities (see, Edwards 1999). Another example of the run on illiquid

funds are the massive redemptions in Germany estate funds in 2006. During this year, the

whole German real estate fund market lost 40% capital (see, Fecht and Wedow 2014). Chen

et al. (2010)’s model explains that unexpected redemptions from an illiquid fund generate

negative externalities to the investors who stay. Therefore, its investors are more likely to

exhibit the run-like behaviour. However, the run risk is not only present in illiquid funds, it

can concern to liquid funds too, such as in the aforementioned money market funds. While

the bulk of this research focuses on detecting the funds most vulnerable to the risk of run,

very few of them are trying to spot the clients most likely to exit. In practice, however, fund

managers are more concerned by the latter as they must monitor the run-like behaviours of

each individual client.

The acute consequences of a fund run is not limited to the fund company and its clients

as in the LTCM’s problem, it has an insidious influence on the well-functioning of the whole

financial system. On the one hand, a fund run could transfer the liquidity problem from risky

securities to other "safe" securities. Kacperczyk and Schnabl (2013) show that during the

2008 fund run, the money market securities which are risk-less in the normal circumstances

became riskier. As a consequence, even the purportedly safe portfolios are actually risky.

Hau and Lai (2016) describe a crisis propagation between "good" and "bad" equity assets

held in the same funds during a fund run. Initially, the worse-performing equities trigger

the massive redemptions. In turn, however, the fund managers are forced to liquidate the

well-performing equities to satisfy all these withdrawals, introducing a pressure on the price

of these assets and the risk is transferred from the "bad" securities to the "good" ones. On

1The money market fund run of 2008 is a market-wide event, however, the fund run could also happen
to an individual fund. For example, the Janus Global Unconstrained Bond Fund (JUCAX) has
suffered 18.5 million dollars withdraws on February 2015. See: https://www.barrons.com/articles/

bill-gross-janus-mutual-fund-saw-first-monthly-outflow-in-february-1425921142.
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the other hand, the fund runs have also macro-level impacts across markets. Chernenko

and Sunderam (2014) document that during the 2011 fund run on the European money

market, funds were forced to invest much less in the short-term lending market than before.

Consequently, European corporate firms found a shortage in the short-term financing. Shek

et al. (2017) display how the brutal outflows in the developed countries’ fund market has

affected the emerging countries’ bond market. After experiencing the fund run in 2008, the

fund managers have modified their target portfolio and decreased the allocation of illiquid

assets. Many of them have even stopped investing in emerging markets, which has led to a

significant decline in the overall supply of capital in the emerging debt market.

An efficient approach to study fund runs is to examine the micro-level data, i.e. the data

containing the information about managers’ and clients’ behaviour. Aragon and Strahan

(2012), as well as Khandania and Lo (2011), investigate fund managers’ transactions during

2008 crisis. They display the evolution of fund risk exposure during a run and their work

helps people to understand how liquidity problems could happen to funds. An investigation

of investors’ transaction would provide a more direct insight into the run scenario. For

example, ? show how individual bank clients behave during two Indian banking crisis.

They highlight the mechanism of the bank run. They present strong evidence on the lead-

lag relationship: some clients follow other to withdraw. Moreover, they show clients in the

same geographical zone are often affected by the same liquidity shock. Their findings are

precious for fund managers to prevent a run crisis. However, there are still very few papers

analysing individual fund clients behaviour because this type of data is not easily accessible.

Fund flow

We see from the previous two subsections that there are difficulties to mitigate the liquidity

risk and prevent the fund run scenario. The primary reason lies in the lack of data on

the mutual fund’s liability hence there is no reliable measurement of investor’s behaviour.

Without individual information on fund clients and their behaviour, the only possibility

is to analyse the aggregated fund flows at the fund level (See, e.g., Agarwal et al. 2015;

Akbas et al. 2015; Bollen and Busse 2004). The fund level flows approximate the net

purchase/redemption of each fund, usually at a monthly frequency. The primary objective

of these studies is to identify the determinants of fund flows. Several explanatory factors are

found. Firstly, fund flows are affected by the economic conditions. For instance, Cao et al.

(2008) find that the volatility at the market level has significant predictive power of fund

flows. Besides, fund flows are strongly related to the characteristics of fund company and
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fund managers. Aydogdu and Wellman (2011); Lou (2014) document that spending more

marketing expenses can increase the fund flows. Kumar et al. (2015) find that manager’s

reputation is an important determinant of fund flows. Copper et al. (2006) show that the

manager’s name is another important factor to attract flows. Previous research also finds

that the Morningstar rating (Guercio and Tkac 2008) and fund’s ranking (Kempf and Ruenzi

2008) have both non-negligible influences on fund flows.

Along various explanatory factors, the most significant one is obviously the fund return.

Berk and Binsbergen (2016) test the predictive power of different return models, such as

the CAPM, the Fama-French 3-factor model, the Carhatt 4-factor model, etc. They find

that the CAPM has the largest predictive power on funds’ netflows. It suggests that most

investors are considering the market risk as the only important factors when they purchase

the fund. Instead of focusing on the netflows, some literature studies the inflows and outflows

separately, since they might react differently to performances. They find that inflows reacts

quickly to good performances while outflows are far less sensitive to bad performances,

hence there is a convex return-flow relationship (see, Agarwal et al. 2004, Chevalier and

Ellison 1999). However, sometimes this relationship turns to concave, i.e. outflows are more

reactive to performances than inflows (see, Goetzmann et al. 2003, Sherman 2012, Ding

et al. 2007), or even becomes linear (Baquero and Verbeek 2005). Getmansky et al. (2015)’s

theory documents that, for hedge funds, the form of the return-flow relationship has a link

to the share restrictions and asset liquidity.

In the mutual fund market, most of funds exhibit a convex relationship between the flow

and the performance2. However, in two cases this relationship is highly likely to changes.

First, previous research only tests the aggregated flow’s sensitivity to returns and it is

not clear whether this relationship holds at the individual level. Second, many of them

investigate only equity funds (See, e.g., Ivkovich and Weisbenner 2008) which are generally

liquid. In contrast, in less liquid bond funds, the convex relationship becomes concave (see,

e.g., Goldstein et al. 2017 and Chen and Nan 2017). Moreover, Leung and Kwong (2018)

demonstrate that the convex relationship does not hold for funds investing in the emerging

market. It motivates us to examine and compare the flow-return relationship in different

asset categories.

The previous literature on mutual fund flows and liquidity risk can be extended in four

dimensions. Firstly, the literature pays inadequate attentions to fund flows’ statistic proper-

ties. However, the time series stylized facts of fund flows have strong implications on fund’s

liquidity risk. The manager should set the cash level according to flows’ time series dynam-

2See the survey of Ma (2013) and references therein.
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ics. Secondly, the literature analyses the fund flows at a low frequency, such as monthly.

However, the analysis at daily frequency is recommended since the fund manager makes

his investing decisions on daily basis. Thirdly, most of the previous literature examines the

flows at the aggregated level for each fund while a study at the disaggregated level might

present different results. On the one hand, inflows and outflows might exhibit different

properties, thus we should not pool them together. On the other hand, investors in the

same fund might behave differently justifying the need to investigate fund clients individu-

ally. Finally, the literature uses a unique horizon to calculate fund returns. Many authors

only test how fund flows react to the return in the previous period. However, investors’

flows might be affected by returns at different horizons. For instance, long-term investors

are likely to be more sensitive to long-term returns than short-term investors. To address

these extended research questions, we collect a new fund client’s micro-transaction data set

containing richer information than ones in the literature.

1.2 Transaction-based fund flow database

1.2.1 Data-base collection

In this thesis, we work with three French asset managers to built a new "Mutual Fund

Liability" data set by hand-collecting individual fund client’s transaction record. We refer

to these three companies as A, B and C. Since the regulator does not require fund companies

to disclose the information on the liability side of mutual funds, there is no industry standard

to record these transactions. Each fund family records the investor data in its own way.

Consequently, the quality of liability information is heterogeneous across fund companies.

For instance, the fund family might "omit" to record the investor’s identity, either the name

or the number, for several transactions. To built a comprehensive raw data file, we first

define a standard format containing all essential information which we need for the further

analysis. Then we require three fund companies to collect the data in this way. We present

this format in the table below 3:

"Date" is the day where the investor gives his trade order. The transaction is executed at

the price of that day but is cash-settled in 2 days later. "Investor" represents the investor’s

identity, generally a code number. "Category" indicates the investor’s type, such as the bank

or the insurance company. ISIN (International Security Identification Number) refers to the

security identification number of the fund share class. "Class" is the asset class that the fund

3The data in this table are fictitious and are given as an illustrative example
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Table 1.1: Raw Data Example

Date Investor Category ISIN Class Amount Direction Inventory
2005-11-02 0091 Retail FR5600290728 Equity 12.00 Purchase 92 011.00
2005-11-02 0093 Bank FR5400330783 Fixed Income 3213.56 Purchase 1 118.32
2005-11-03 0091 Retail FR0000330700 Money Market 2017.11 Purchase 2 456.13
2005-11-05 0085 Insurance FR5600290728 Equity 200.50 Redemption 0.00
2005-11-07 0093 Bank FR0000330700 Money Market 3000.00 Redemption 85 001.15

invests in. "Amount" corresponds to the amount of the transaction. "Direction" indicates

the direction of a transaction. It can be either a purchase or a redemption. "Inventory"

gives the investor’s position in the fund.

Table 1.2 presents the elementary information for our three data providers in Panel A,

the quality of the data in Panel B, as well as the summary statistics for our fund sample

in Panel C. We see first from Panel A that all three asset managers are affiliated to one or

multiple parent company(s). This affiliation is popular among French fund companies. The

parent company is an important source of fund inflows but it does not get involved in the

investment decision. However, the weight of the internal client, i.e. the parent company,

differs from one company to another. Company A has approximately 80% fund purchase

from its parent company and 20% from external investors. This proportion is inverted in

Company B: 20% internal and 80% external. Company C has a balanced investor source:

half internal and half external. All three companies provide a full and general fund service,

i.e. their funds cover a diversified range of asset classes: equity funds, fixed income funds,

real estate funds, money market funds, etc. This allows us to have a more general insight

than the previous literature which covers only one or two fund class(es). For instance,

Chevalier and Ellison (1999) study only equity funds, Keswani and Stolin (2008) focus only

on money market funds. All these funds are no-load thus investors are freely to purchase and

redeem. The three companies all charge a standard management fee: a basic fee proportional

to the fund share position (AUM fee) plus an incentive bonus for superior performance.

Concerning the quality of our data, we see in Panel B that all three companies successfully

identify the investor category. However, non of them record the clients’ personal profile. The

data quality of company B seems superior as it is the only one to provide information on

investor’s individual trade identity, history and category, for each trade.

Panel C presents the summary statistics on data’s size. Company B records its client

data since its creation in 1988. Company A’s history starts in 2004. Company C only

provides two years of data. The three companies in a whole provide a sample which covers
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Table 1.2: Full fund sample description

Fund Companies A B C

Panel A: company
Affiliated Yes Yes Yes
Fund type Diversified Diversified Diversified
Investor source 20% + 80% 80% + 20% 50% + 50%
Load No No No
Fee Standard Standard Standard
Panel B: data quality
Investor Identity No Yes No
Investor Profile No No No
Investor History Yes Yes No
Investor Category Yes Yes Yes
Panel C: summary statistics
Period 2004-2014 1988-2016 2013-2014
Fund (ShareClass) Number 26 128 16
Investor (Account) Number 626 601 Unknow
Transaction Number 183 408 368 218 740 307

This table presents the three fund companies in our panel and the quality of their data. The general
information of fund companies is given in Panel A. "Affiliated" indicates whether the company is affiliated
to a parent company. "Fund Type" explains which classes of funds the company manages. "Investor source"
shows the weight of the internal and external investors. "Load" indicates whether investors should pay a
load to purchase or redeem. "Fee" explains how the company charges the management fee. The data
quality is presented in Panel B. "Investor identity" shows whether the company records the investor’s name
or code number for each transaction. "Investor profile" refers to the personal profile of each investor, such
as age, salary, marriage situation etc. "Investor history" indicates whether the company records the history
of transactions of each client. "Investor category" reveals whether the company records the sector of the
investor for each transaction. The summary statistics are shown in Panel C. We give the number of fund
share classes, investors, and transaction observed over the sample period.

more than 150 fund share-classes4 and more than 1200 client accounts. In sum, our sample

represents around 1.2 million micro-transactions of fund clients.

1.2.2 Comparison to previous Fund flow datasets

Our dataset differs from the previously used ones in the literature. Since the fund flow is not

publicly available, previous studies often extract this information from the size and return

evolution using the equation below:

Ft = St − St−1Rt (1.1)

Where Ft stands for the "fund flow" between t − 1 and t. St is the fund size at t and

Rt is the fund return between t − 1 and t. Without any flow, the fund size at t should

4In average, each mutual fund has 2-4 share-classes which charge different fees to clients.
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be the fund size at t − 1 multiplied by the return between t − 1 and t. Therefore, the

subtraction in Equation (1.1) approximates the flow between t−1 and t. A large amount of

studies adopt this approximation, such as Ippolito (1992) and Chevalier and Ellison (1999).

However, it suffers from several shortcomings. First, the flow in Equation (1.1) is a net

value and inflows and outflows are not separated, even through they might exhibit different

characteristics (see, e.g., Jank and Wedow 2010). Second, fund size are often reported at

a monthly frequency. Hence this method does not provide the short-term dynamic of fund

flows. However, the daily flow information is crucial for a fund manager to set his liquidity

reserve. Thirdly, this method assumes fund clients are homogeneous and does not provide

the individual flow pattern.

In the last decade, few new dataset providing more disaggregated information on fund

flows have been created. In the US, some fund companies are required to disclose their

monthly "sell" and "redemption" in the N-SAR file. This database supports the study on

the aforementioned convex return-flow relationship (see, e.g., Ma (2013)). However, there

are still several limitations: (1) the flows are still reported in a monthly manner; (2) there

is no information on clients’ heterogeneity; (3) This dataset covers only a small number of

funds (less than 1 000) belonging all to the equity class.

Some private data providers, such as ICI ("Investment Company Institute") and iMoneyNet,

provide money market fund flows on a weekly basis for the US. This database allows people

to study the short-term dynamic of funding risks. Schmidt et al. (2016) describe the mech-

anism by which 2008 money market fund run has occurred. Using the weekly data, they

show the dynamic channel of a fund run: institutional investors react strategically to retail

investors’ to exit the fund. Kacperczyk and Schnabl (2013) find an increase of risk taking

incentives for fund managers, immediately after the beginning of the financial crisis, i.e.

bankruptcy of the Lehmann Brothers. Nevertheless, these studies cover only money market

funds and we still do not have assess to the individual trade information of fund investors.

Our dataset offers new opportunities to understand mutual fund’s liability risks. Com-

paring to the datasets used by the literature, the ours has the following characteristics and

advantages:

• We have daily observations enabling us to examine the short-term flow dynamic and

its time series properties.

• Inflows and outflows are recorded separately, allowing to distinct investor’s purchase

and redemption behaviour.
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• Our sample covers a large range of assets categories: equity, fixed income, money

market, diversified, etc.

• Each fund flow is recorded individually. It allows us to study the heterogeneity of

investors’ behaviours.

• We know investor’s sector/category, such as bank, insurance companies, retail in-

vestors, pension funds, etc. As reported by Grinbatt and Keloharju (2001), investor’s

category might have great predictable power on his behaviour.

• We have the possibilities to examine, for each investor, his investment horizon and his

holding period return.

1.2.3 Non-normality of fund flow arrivals

Our first concern is to improve the prediction of future fund flows. Edelen (1999) doc-

ument that unexpected flows continuously disturb the fund management and decrease its

performance. It implies that most of the fund managers under-estimate future outflows, and

consequently, their cash reserves are inadequate to satisfy clients’ redemption. Therefore,

they sell relative illiquid assets at a disadvantageous price, aiming at recover this "cash

gap". To set an accurate cash reserve, the fund manager should examine different statistic

properties of fund flows, such as the tails of the flow distribution and the auto-correlation of

the flow series. The former indicates the extreme outflows a fund manager might suffer and

the latter would help the fund manager to predict the consequences of a liquidity shock.

For ease of presentation, we choose one fund to show flow’s statistical properties in this

chapter5. We present the times series patterns and the distribution of transaction numbers in

Figure 1.1. Three main stylized facts are observed. Firstly, fund flows are discrete and always

positive. When the transaction number is large (> 20 per day), a continuous distribution

would give an acceptable approximation for this integer-value distribution. However, when

the transaction number is low (< 20), the performance of a continuous model would worsen

(see, Liesenfeld et al. 2006). This is exactly the case in our example where less than 20 daily

redemptions arrive on average. This property motivates the use of the Poisson-type model.

Besides, the two distributions in Figure 1.1 are both asymmetric. It implies that fund flows

do not follow a Gaussian distribution.

5In the next chapter, "A Self-Exciting Model for Mutual Fund Flows", we choose also one fund for the
illustration. However, two funds chosen by two chapters are not the same one.
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Secondly, we observe from Figure 1.1 that both the inflow and the outflow series exhibit

clustering effects. They can be confirmed buy the significant auto-correlations of fund flows

in Figure 1.2. This property should be integrated into the Poisson model.

Figure 1.1: Times series statistics of fund flows

In this figure, the two top graphs give the daily evolution of flows over a 2-year period, from the 2nd
February 2013 to the 30 the December 2014. The two bottom ones give the distribution of the flow series
during the same period.

Lastly, we can observe numerous extremely large "peaks" in fund flows (Figure 1.1).

The frequency of the extreme flows seems to be higher than what a homogeneous Poisson

distribution generates. The comparison in Figure 1.3 highlights this divergence in variance.

We use the empirical intensity, set to the daily average of flows, to simulate two flow series

according to the homogeneous Poisson distribution. We then compare the simulate series to

our data. There is a clear evidence that the simulated series’ distribution is much narrower

than that of the historical data. Therefore, the simulated series do not reproduce the extreme

scenarios in the data and the traditional Poisson model need to be adapted to capture this

characteristic.

Overall, fund flows exhibit three key stylized facts: the discreteness, the clustering effect

and the large dispersion. These properties make the flows’ distribution deviating from a

traditional continuous Gaussian model and motivate us to understand the source of these

statistic patterns.
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Figure 1.2: Auto-correlation of fund flows

This figure shows the auto-correlations of inflows and outflows of the fund example. We show inflows’
auto-correlation in the left and outflows’ at the right. The calculation of the auto-correlations follows
the traditional approach which we use for continuous variables. However, coefficients’ values are only
approximative since the flow series are discrete. "ACF" stands for auto-correlation function.

Figure 1.3: Simulation of the "Toy" Poisson model

This figure shows the comparison between the flows data and simulation series of a homogeneous Poisson
model. In this toy model, we simulate flow series with an intensity equalling to the sample average. We
show the historical data on the top and the simulation on the bottom.
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1.2.4 Heterogeneity among Fund Investors

Our second interest is to study the heterogeneity among fund investors and to explain the

differences in their behaviours. Although a considerable amount of literature studies how

investors trade, only few research investigates the differences among them. Previous studies

such as Iyer and Puri (2012), Johnson (2004), and Ivkovich and Weisbenner (2008) cover

only one category of investors: the "retail" client. In contrast, our dataset contains a large

range of investor categories, retail clients as well as different institutional investors such as

banks, insurance companies, FoFs and pension funds.

This diversity of the investor base has several implications to the fund liquidity man-

agement. Firstly, investors have different motivations in fund investing. For instance, those

who invest in funds to earn superior returns, the "value" investors, might behave differently

than those who use funds as cash management tools, the "liquidity" investors. The evolu-

tion of fund performance should affect more "value" investors and the liquidity condition

should affect more "liquidity" investors. Secondly, Investors do not have the same investing

horizon. Theses horizons are crucial for the liquidity management since they determine the

average duration of fund’s liability. The liability duration is a constraint for the fund man-

ager and he should make his asset allocation accordingly, otherwise a liquidity mismatch

between fund’s asset and liability would appear and it is detrimental to fund’s performance.

Lastly, investors’ purchase and redemption decisions might be time-varying. For example,

they may redeem more at beginning or at the end of the year. It implies that the intensity

of fund flows evolve over time and the liquidity risk changes accordingly.

We present the information of different investor categories In Table 1.3. There are 14

different sectors in total and almost each fund contains these 14 sectors. Firstly we need

to explain several abbreviations in the table: "CGP" and "CI BTP" are French pension

funds, "IRP" is a type of French insurance companies and "IFA" sands for independent

financial advisor. Investor’s transaction frequency seems to be linked to his sector. For

instance, "Bank (private client)" and "Mutual insurance" are examples of active clients.

They make more than 1 transaction per week. In contrast, family offices (IFA) have lower

trade intensity: they execute only 1 trade over several months. Some investors are trading

large amounts. For example, a single transaction of pension funds (CI BTP) might represent

5% to 10% to the fund AUM. On the contrary, insurance companies’ trade sizes are often

smaller 0.01% to the fund AUM.

Furthermore, we calculate two types of correlations for these sectors. We first compute

the auto-correlation of each sector’s flows, the"Inter-correlation", then we estimate the cor-
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Table 1.3: Presentation of activity sectors

Sector Type Frequency Trade size Inter-correlation Intra-correlation

Association & Foundation Institution Low Large Yes No
Bank (own) Institution Low Large Yes Yes
Bank (private client) Institution High Small Yes Yes
CGP Institution Medium Large No No
CI BTP Institution Medium Small Yes No
Insurance Institution Medium Large No No
Consultant Institution Medium Medium No No
Corporate Firms Institution Medium Large No No
IFA Institution Low Large No Yes
IRP Institution High Small Yes Yes
Mutual Insurance Institution High Small Yes Yes
Group Institution Low Large No Yes
Retail Retail High Small Yes Yes
Asset management company Retail Medium Large No Yes

The column "Type" indicates whether the investor is institutional investor or retail investor. "Frequency"
indicates the trade frequency: "High" (more than 1 trade per week), "Medium" (1 trade per week to 1 trade
per month) or "Low" (less than 1 trade per month). "Trade size" indicates average trade size: "large" (more
than 1% of fund AUM per trade) or "small" (less than 1% of fund AUM per trade). We further calculate the
auto-correlation of flows in each sector ("Inter-correlation") and the correlation between between each sector
and the rest of the fund ("Intra-correlation"). "Yes" reveals there is a significant correlation coefficient and
"No" indicates that the correlation is not significant.

relation between each sector and the rest of the fund, the "Intra-correlation". Insurance

companies have the high inter-correlation, which might be explained by the insurance sub-

scription cycle. In some periods, insurance companies receive continuously high subscription

volumes, therefore, they continue to purchase the mutual funds. On the contrary, insurance

companies often face sequent policy claims, hence they redeem their fund shares accordingly.

Family offices (IFA) and pension funds exhibits some intra-correlations. A plausible inter-

pretation is that these investors are highly skilled, hence they often react to other investors’

fund flows (see, Schmidt et al. 2016).

In Table 1.4, we present the weight of each sector with respect to their number of trades.

Over the sampling period, investors have been executing 1 291 935 purchases and redemp-

tions pooled together.6 The investor base is diversified since no sector represents more than

15% of the overall transactions. Insurance companies are largest investors. Their trades

represent 10.44% of the total number. It might be explained by the nature of their activ-

ity: they continuously receive the subscriptions and pay policy claims. "Group" represents

parent companies of the fund family. Their trades represent 8.72% of total transactions.

"Retail" contains all individual clients who invest in mutual funds through a brokerage ser-

vice. They execute 6.49% of overall transactions observed. Other sectors are less important.

In summary, the diversity of the investor base implies a high heterogeneity among in-

vestors. Investors’ category, motivation and liquidity needs all influence their trade be-

6The trade numbers in Table 1.4 are the "raw" numbers before any data cleaning process. In the rest of
this thesis, the trade numbers are slightly modified for multiple reasons, such as deleting the outliers.
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Table 1.4: Weight of each investor sector in the full sample

Sector Trade Weight

1 Association / Fondation 1, 923 0.45%
2 Bank (own) 3, 155 0.73%
3 Bank (private client) 24, 105 5.60%
4 CGP 105 0.02%
5 CI BTP 1, 712 0.40%
6 Insurance 5, 200 1.20%
7 Consultant 103 0.01%
8 Corporate Firms 10, 985 2.55%
9 IFA 660 0.15%
10 IRP 10, 134 2.35%
11 Mutual Insurance 134, 277 31.18%
12 Group 111, 951 25.99%
13 Retail 82, 329 19.11%
14 Asset management company 44, 108 10.24%
15 Total 430, 645 100%

This table presents the weight of each sector in the sample, with respect to their trade number. The column
"Trade" indicates the number of trade, either purchases or redemptions, executed by all clients in the sector.
In the last row, we present total trades observed. The column "Weight" is the trade number divided by the
total trade number.

haviours. Hence each investor has his own liquidity risk contribution to the fund. Therefore,

a study at the individual level is preferred so that the fund manager might better forecast

the timing and magnitude of future redemptions.

1.2.5 Conclusion

Although there is a growing attention of the financial literature on the mutual fund industry,

the traditional fund flow data-set limits the ability of previous investigations. Most of

the previous research focus only on the asset side of the fund liquidity risk, whereas the

liability risk is often ignored. Then, the literature studies the fund flow and fund run

risk at an aggregated level, however, the individual analysis at client level merits more

attentions. Our dataset contain rich information about individual fund investors’ profile and

their behaviour. It enables us to understand more about the "liability risk" and therefore

to build quantitative tools to manage it. In the each of three following chapters, we use our

data-base in a particular way. Nevertheless, all three studies intend to understand the fund

investors’ behaviour and their implications to fund liquidity risk.
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White Page
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Chapter 2

A Self-Exciting Model for Mutual Fund

Flows:

Investor Behaviour and Liability Risk

This chapter is linked to the research paper "A Self-Exciting Model for Mutual Fund Flows:

Investor Behaviour and Liability Risk", co-written with Serge DAROLLES, Gaëlle LE FOL

and Yang LU.
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This paper analyses the purchase and redemption behaviour of mutual fund investors

and its implications on fund liquidity risk. We collect a novel set of proprietary data

which contains a large number of French investors holding funds with various degrees of

asset liquidity. We build a Self-Exciting Poisson model which captures fund flows’ statistic

properties such as clustering effects and over-dispersed variance. The model improves the

forecast accuracy of future flows and provides reliable risk indicators like Flow Value at Risk.

Accordingly, we introduce the notion of liability risk where investor’s behaviour increases

mutual fund liquidity risk. We further decompose fund flows into investor categories. We

find that investors exhibit high heterogeneous behaviour, and a lead-lag relation exists

between them. Finally, we control flow dynamics for various economic conditions. We

show that although flows evolve under different economic conditions, investor’s behaviour

stays the main significant determinant of flows’ randomness. Our findings encourages fund

manager to adopt an ALM (Asset-Liability-Management) approach: considering this client

risk while making the capital allocation decision.

Key words: open-end funds, redemptions, fund run, self-exciting procerss,

Asset-Liability Management
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Introduction

Daily open-end mutual funds collect investors’ capital to invest in a diversified range of

securities, while allowing investors to freely purchase/redeem whenever they wish. As a

consequence, mutual funds are exposed to a liquidity transformation risk. They receive

short-term liabilities (clients’ capital) and invest in longer-term assets. The capital pooling

process may ensure part of clients’ liquidity needs but the management of this liquidity

insurance requires an accurate estimation of the timing and the amount of redemptions.

However, fund managers sometimes incorrectly estimate this risk, suffering a liquidity mis-

match because they do not have enough cash to satisfy investor’s redemption needs. This

problem has triggered numerous failures for mutual funds1 and deserves in-depth studies

on fund liquidity risks. A large amount of research investigates the fund asset side, i.e.

analysing the liquidity of financial instruments funds are holding. Yet few study focuses on

the liability side due to the limitation of fund client data.

We propose in this paper a new approach to estimate the funding liquidity risk sup-

ported by the fund manager using individual data. We build a new fund liability database

by collecting individual investor’s purchases and redemptions from existing open-end mutual

funds. Our sample covers diversified fund classes and investor categories. At first glance,

this database allows us to monitor the daily fund size variation and allows us to examine

the disaggregated components of fund liability. We compute investor purchase (inflow) and

redemption (outflow) separately to compare their distinct dynamics, whereas previous stud-

ies often aggregate them. Furthermore, we observe the behaviour of investors from each

category, and assess its individual liquidity risk contribution to a fund. This database mo-

tivates us to develop a new client-management tool for fund companies in order to enhance

the liquidity level of mutual funds.

Our model captures various stylized facts of fund flows time series on the one hand and

provides an improved forecast to future fund flows on the other hand. We give the economic

interpretation for each stylized fact observed and introduce accordingly the notion of liability

risk. Furthermore, we analyse the linkage and the heterogeneity among fund investors. We

study fund flows at the fund level and develop a self-exciting Poisson model to count fund

flow arrivals on a daily basis. This model includes two major statistical properties of fund

flows: the self-exciting captures the clustering effect and the over-dispersion aims to adjust

for the accurate level of variance. This study helps us identify the source of a liquidity crisis,

and how liquidity shocks transfer through investors. Lastly, we study the liability risk under

1C.f. "Biggest Mutual Fund Failure Since 2008" in ETF.COM
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various economic conditions. We compare the trading activities of investors in funds with

different returns and asset classes.

We obtain several important findings. First we find that these stylized facts are direct

consequences of investor behaviour. Self excitement is coming from correlation in transations

between investors, and over-dispersion is generated by the heterogeneity of fund client-base.

The model succeeds in decreasing back-testing errors by 65% compared to the inaccurate

static model. It provides a reliable calculation on extreme risk ratio such as flow Value at

Risk. Second, we disaggregate global flows across investor’s categories. On the one hand, we

identify the lead-lag effect among fund clients. During the period of massive redemptions,

some investors are leaders - redeeming first -, while some others are followers - exiting the

fund in a second wave. We also find that the lead-lag relationship is not symmetrical,

meaning that leaders do not react to followers. On the other hand, investors of the same

fund belonging to different categories cannot be considered as identical since their flows

are highly heterogeneous. Finally, we control for the economic factors, such as fund return

and asset classes. We find that even though various economic factors have non-negligible

influences on fund flows, impacts of fund liability (and client’s behaviour) is always strongly

significant.

Our paper contributes to the literature in three ways. First, our result is related to

the literature on mutual fund liquidity risk. Dong et al. (2017) find that the liquidity risk

exposure can explain the cross-section of mutual funds returns. It advises people to monitor

fund managers’ behaviour since they have a strong incentive to take additional risk to earn

higher management fees (see, Chevalier and Ellison (1999)). This problem is even more

acute in illiquid fund classes. Goldstein et al. (2017) highlight the fragility of corporate bond

funds with low liquidity reserve. Fecht and Wedow (2014) describe how real estate funds are

vulnerable to the liquidity risk. Illiquid funds are not the only ones, however, to be dealing

with liquidity risk; liquid funds are exposed too. Kacperczyk and Schnabl (2013) show that

money market funds, which are considered as extremely liquid investments, suffered a high

liquidity risk during the 2008 financial crisis. These studies evaluate the fund’s liquidity

by studying the securities they are invested in (asset-side liquidity). We show that there is

another component to the fund liquidity risk, namely the liability risk. The new liability

risk differs from asset-related risk exposures and is present in all fund categories.

Second, our results contribute to the growing literature on mutual fund flows. Previous

research seeks to identify the economic factors which determine the volume of fund flows.

Commonly used factors include fund return (Berk and Green 2004; Berk and Binsbergen

2016), fund risk level (Spiegel and Zhang 2013), market volatility level (Cao et al. 2008),
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fund companies’ marketing expense (Lou 2014), etc. Furthermore, psychological factors

might also affect fund flows. Kumar et al. (2015) document the significant influence of fund

manager’s name and reputation on fund flows. Kamstra et al. (2017) show that sentiment

index has a predictive power on fund flows. Although previous authors pay a great attention

to this topic, their studies remain in the static framework2 and ignore the dynamic patterns

of fund flows. Barber et al. (2016) document that fund investors exhibit a time varying

behaviour, and fund flows evolve accordingly. Furthermore, Cashman et al. (2008) show

that previous findings might be biased as they ignore flows’ non-linearities. We naturally

wonder whether there are other statistical issues. We aim at filling this gap by analysing

the time series of fund flow data. We build a dynamic model which includes flows’ stylized

facts such as clustering effect and stochastic volatility. This model improves the prediction

of future fund flows, and can be used as a reliable tool to manage fund liability risk.

Our findings also shed light on the fund investors’ behaviour by showing that they

adjust their holding for fund risk exposure. Our approach puts emphasis on fund clients’

linkage which is frequently ignored in the literature. Keswani and Stolin (2008) find that

institutional investors behave differently from retail investors and exhibit a smart money

effect. Chalmers et al. (2001) show that some investors can detect the mis-pricing of mutual

funds and profit from this arbitrage opportunity. Puy (2016) document that mutual funds

investors from the same geographical zone might suffer from the correlated liquidity shocks,

which generate correlated redemptions. Friesen and Sapp (2007) examine the timing ability

of fund investors. Brown and Wu (2016) identify that fund investors exhibit cross-fund

learning ability within the same fund family. Focusing on stressed scenarios and Fund Run

crisis, we show clear evidence that liquidity shocks are contagious: during a run scenario,

some investors would run out the fund, mimicking other investors. Fund managers can use

our results to monitor their investors to prevent a flurry of redemptions.

The remainder of this paper is organized as follows: we present our database in Section

1. Section 2 describes the modelling process. For ease of presentation, we choose one fund

as a demonstrative example to build the model but present the analysis of the full sample

at the end of the section. Section 3 compares different investors belonging to the same fund

and Section 4 investigates funds with various asset classes. Finally, we discuss our results,

and conclude.

2These previous studies explain the cross-section of fund flows by fund characteristics. Therefore we
consider that these studies are more static than ours
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2.1 The Data

Most asset management companies collect and store only a fraction of the data that could on

the behaviour of their clients. However, the digital transformation of the asset management

industry and the evolution of the asset management regulation force them to process more

data. While these data can be very useful for the commercial development of funds, it

should also be considered for optimal liquidity risk management purposes. In this section,

we describe the different stages that led to the development of the database on the historical

clients’ behaviour.

2.1.1 Analysing investors’ behaviour

Accurately identifying who the final investor, i.e. who makes subscription or redemption

decisions, is always useful to any management company. Indeed, a good knowledge of liabil-

ities, including its composition and the investors’ profiles, allows more targeted commercial

pushes and a more effective communication during crisis. However, getting this detailed

information is not straightforward as the classical fund distribution model involves many

intermediaries between management companies and final investors.

Despite the difficulty of tracking orders within a complex distribution network, the

clients’ data issue is becoming very popular in the asset management industry mainly for

two reasons. The first reason comes from the regulatory constraints imposed to asset man-

agers. The Autorité des Marchés Financiers (AMF) recalled in February 2017 that "the

knowledge and analysis of liabilities is an essential component of the identification of risks

by management companies". Future European regulations (MIFID II, Priips) also affect

the distribution network as well as the producer-distributor relationship, and thus push

for a better knowledge of funds liabilities. The MIFID II directive in particular could be

an opportunity to set up a reporting of distributors to producers broken down by investor

characteristics. The second reason of this increasing interest is related to the evolution of

the asset management industry business model. The emergence of FinTechs and their di-

rect distribution model upset traditional distribution channels and strongly compete with

established asset managers. The direct access to end-clients allows them to gather more

detailed information on their clients and to adapt their investment offer to their character-

istics. Therefore, the aggregation of individual investments gives them a better view of the

fund liabilities structure and allow them to better anticipate the fund flows during stressed

periods. Any fund manager whose distribution channel complexifies the link between asset

managers and clients have or will have a clear disadvantage.
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Several avenues for effective monitoring of liabilities are already mentioned in the AMF

guide3 published in June 2017. They are essentially qualitative, through a better under-

standing of the relationship between managers and investors. Nevertheless, a statistical

analysis of subscriptions/redemptions conditional on clients’ characteristics can improve

this analysis. Moreover a quantitative approach can serve as a prerequisite for a more

qualitative, targeted and ad hoc approaches. Developing a quantitative approach, how-

ever, requires access to resources, data and know-how not available to every management

company. A quantitative approach can also be very useful at the industry level, but the re-

demptions/subscriptions time series must be large enough - both in the cross-section and in

the time dimension, to be statistically representative. This can only be assessed by pooling

a large dataset, involving considerable collection, anonymisation and standardisation data

work we propose to do in the section.

2.1.2 Merging fund managers’ database

The creation of a historical database for subscriptions/redemptions from information di-

rectly provided by management companies is a preliminary step to our research. To the

best of our knowledge, there exists no database of individual investment decisions available

to academic researchers. Indeed, as this information is highly strategic for management

companies, they can be reluctant to share it and public information only concerns the past

evolution of total flows at the fund level. While such aggregated information can be very

useful for studying the relation between performance and fund size for example, any liquid-

ity analysis requires a more precise view on funds liabilities. The related structure can vary

over time according to the clients’ inflows/outflows and only disaggregated data can give

useful information on these potential trends.

Any statistical modelling of subscriptions/redemptions requires to work on a large and

heterogeneous dataset. Asset management companies entrusted their clients full trading

activity to us to this end. More precisely, data are provided by three medium size French

asset management firms, referred to as Companies A, B and C in the following, and all

affiliated to large bank or insurance groups. These firms sell funds mainly in France and

Luxembourg. Fund shares are all denominated in Euro and the client-base covers both retail

and institutional investors. They have indeed diversified investors and invest in all asset

classes. Among all the fund categories they manage, we choose a representative sample

of funds following two requirements. First, the final dataset must include funds which

3See, "Journal officiel de l’Union europénne: Règlement (UE) 2017/1131 DU PARLEMENT EUROPEEN
ET DU CONSEIL, du 14 juin 2017 sur les fonds monétaires"
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invest on different asset classes with different market liquidity level. Second, the sample

must cover the principal funds’ styles considered in the existing literature, such as Equity

and Fixed Income funds. According to these two requirements, we decide to target four

different categories4 which are: money market, large-cap equity, small and mid-cap equity

and fixed income. These categories represents the most important part of the total asset

under management, both at the industry level for the three funds companies considered in

this study.

The raw database of investors’ flows over the period from January 2010 to December

2014 was transferred from the asset management firms to us. For each fund, we hand-collect

information on all investors purchases/sales trades, the associated customer identifier, the

number of shares involved, the corresponding price and the date of the transaction. Since

disaggregated fund flows are not mandatorily disclosed to regulators, there is no incentive

to disclose such information making our database quite unique. Indeed, previous studies

of fund flows use less precise data such as aggregate monthly net flows (see, e.g., Chevalier

and Ellison (1999), Ippolito (1992))5, disaggregated monthly inflows/outflows (e.g., Jank

and Wedow (2010), Keswani and Stolin (2008)), and recently daily or even ultra-frequency

flows6 (e.g., Johnson (2007), Schmidt et al. (2016)). All mutual funds in our sample are

open-end funds. Although there could be small deviations between funds, the basic rule is

the same. Investors have the possibility to purchase or redeem fund shares whenever they

want and the fund provides periodic - in most of case, daily - price or Net Asset Value

(NAV) per share. All investors’ transactions - purchases or redemptions - would then be

executed at the NAV price. This contrasts to other investment vehicles such as Exchange

Traded Funds (ETFs) which provide to investors an intra-day bid/offer price, or closed-end

funds which do not provide redemption possibility before the final liquidation date.

The next step in building this database is to collect information on clients’ characteris-

tics. It is common knowledge that retail investors do not behave as institutional investors.

The differences dictate their trade size and frequency, but also the type of funds they invest

in as well as the triggers for inflows and outflows. Besides the willingness to share clients’

data, a significant effort was made by asset management firms to create homogeneous groups

of investors and to define a common nomenclature. Indeed, none of the asset management

4We use the Morningstar’s "Global Board Category Group" classification as fund category. This clas-
sification is based on asset types and geographical zones, as "Europe Large Cap Equity" or "US Money
Market". However, it is not based on managers’ style, as "Growth", "Value" or "Market".

5The fund flow was not available in the public database. Thus one can extract from the AUM and fund
return.

6Engle (2000) refer the ultra-frequency the datas which record information of every transaction, in an
order book or in other fields.
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companies is using the same client typology so we had to create a new unique classification

and apply it to all investors. We end up with 8 types of investors7, ranging from insti-

tutional investors through private banks or independent wealth management advisors to

retail investors. The granularity level of our database has several advantages. First, this

classification allowed us to draw conclusions about the average behaviour of each category

of investors by observing the behaviour of a large number of investors in each category. For

example, we are able to compare the investment horizon of institutional in small and large

cap stocks to that of public clients by calculating average holding times for each type of

investors. Second, the disaggregated approach allows us to calculate separately the amount

of subscriptions and redemptions by type of clients, enabling management companies to

identify trends in their liability structure. Let us consider the case in which a significant

proportion of institutional clients are replaced by retail clients leaving the total asset un-

der management identical. The modification in the fund’s liability structure is silent on

aggregated data and only detectable with individual flows (see, Christoffersen and Xu 2017

for a study of the impacts of the liability structure on fund flows.). Third, the statistical

treatment of disaggregated data also makes it possible to follow the history of a given in-

vestor within the same management company. We are thus able to detect the arbitrages

between asset classes or types of funds made by a given investor or a group of investors.

For example, we can analyse if some investors reduce their exposure to a given asset class

to invest in money markets. This would not be possible with aggregated data. Finally, our

disaggregated data can also help addressing issues related to contagion. Let us consider two

clients - an institutional and a retail investors, within a given fund. The most sophisticated

investor can quickly react to a deterioration of the financial environment and thus, reduces

its risk exposure. We can measure the delay for each category of investors as well as the

contagion to other investors, if any, and see if it can help predicting future outflows. These

analyses can be performed for any fund or at the industry level.

In a nutshell, our dataset reaches the most disaggregated level of flow data recorded on

a daily basis. All transactions are recorded with all necessary basic information: 1: Date; 2:

Fund liquidation price (NAV); 3: Anonymous client number; 4: Client’s sector; 5: Amount

of trades. This dataset reaches our main objective, that is to work on a panel of funds

with various exposure to liquidity risk. Money market funds, for example, are invested in

liquid assets, with little exposure to liquidity risk. Moreover, if large-cap equity funds have

also little exposure to market liquidity risk, it increases for small and mid-cap equity funds.

7The number of sectors in this chapter is different from the Chapter 1 (15 sectors). Because some sectors
possess only a small number of flows, we merge them into 8 for the simplicity of the model estimation.
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At the less liquid end of the spectrum, fixed income funds are much more vulnerable to

deteriorating liquidity because they invest in illiquid assets. On the liability side however,

all the selected funds offer daily liquidity to investors. It is the liquidity mismatch - the

market liquidity of assets relative to the structure of the liabilities - that matters. As a

consequence, it is important to better understand and measure the real consumption of

liquidity on the liability side. It is then possible to assess the risks related to the open

nature of investment funds, and the risks related to the presence of the same investors in

different funds. This can create contagion channels on the fund liability side, and only the

disaggregated approach addresses these issues.

2.1.3 Final database characteristics

We choose 12 funds within four management styles from the very large universe of funds

provided by the three management companies A, B and C. Our sample contains almost one

million trades - 930 000 transactions (578 000 purchases and 357 000 sales). An extension

to all funds in the full sample would increase the size of the sample to several billion trans-

actions. We present basic information in Table 2.1. Each fund is assigned to a Morningstar

global category. Selected funds have several fund share classes to ensure a minimum level of

investors’ heterogeneity. Moreover, all these funds have been launched more than 10 years

ago implying that the structure of the funds is already quite stable. The total asset under

management on all 12 selected funds exceed 10 billion euros, with the presence of some large

- money market - funds.

The largest fund in this category manages more than 3.4 billion USD, while the smallest

fund is in the mid and small cap Equity category with 34 million USD under management.

We present the summary of these flow data in Table 2.2. The trading activity is hetero-

geneous across funds, with a number of transactions ranging from 522 (Funds 9) to 197 037

(Funds 1). There are also large discrepancies across funds’ types as well as across manage-

ment companies. Most of the funds have more than one trade per day on average, which

differs from previous studies using similar type of data (e.g., Ivkovich and Weisbenner 2008;

Johnson 2004). Indeed, they have in general less than 1 trade per day and in and outflows

happen rarely together. The difference of investors’ behavior between the United States

and Europe can explain this empirical fact. In the United States, most individual investors

tend to make their own investment decision while preparing their retirement portfolio (401k

plan) (see, e.g., Paula and Croce (2016)). On the contrary, the vast majority of European

individual investors delegate the decision making process to some financial intermediaries
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such as insurance company, fund of funds managers or pension funds. Consequently, funds’

investors are financial intermediaries investing for their clients and fund flows are more

aggregated in Europe.

Table 2.1: The fund sample (12 selected funds)

Fund Company Category N shares Inception Date Fund Size
Fund 1 A Equity Large Cap 3 1998/10/02 329 723 439
Fund 2 A Equity Mid/Small Cap 2 1991/9/6 376 326 122
Fund 3 A Money Market 2 1985/12/31 450 074 000
Fund 4 A Fixed Income 3 1990/02/05 935 044 376
Fund 5 B Equity Large Cap 5 2006/4/25 280 424 002
Fund 6 B Equity Mid/Small Cap 4 1994/5/11 333 368 999
Fund 7 B Money Market 4 2006/4/25 3 415 839 000
Fund 8 B Fixed Income 5 2006/3/8 354 900 000
Fund 9 C Equity Large Cap 3 2001/01/09 295 271 161
Fund 10 C Equity Mid/Small Cap 2 1997/2/14 34 287 000
Fund 11 C Money Market 2 2013/1/4 1 319 876 994
Fund 12 C Fixed Income 1 2001/11/30 388 074 000
Total 3 4 43 10 714 336 092

This table shows the elementary information about our fund sample. It contains 12 open-end mutual funds
from three fund families. We classify funds according to the Morningstar’s "Global-Board Category". "N
Shares" is the number of the share-classes that each fund have. Clients in the different share-classes (within
the same fund) pay different management fees. "Inception Date" is the creation date of the oldest share
class. "Fund Size" is dated at 16/12/2015.

For the simplicity of presentation, we first take Fund 7 as an illustrative example before

presenting the results for all other Funds later on. Fund 7 is a money market fund man-

aged by Company B. As other funds in the same category, investors are very active and a

significant number of flows occurs every day. First, as the fund manager only observes the

net flow time series, we focus on the relative netflows taking the difference in value between

in and outflows and dividing by the fund’ size (see Figure 2.1). The next step is to see if we

can gain from separating in and outflows as in Figure 2.2.

Chapter 2 Ran SUN 49



Liquidity Risk in the Universe of Open-End Funds

Table 2.2: Summary statistics for fund flows

Fund Category Period N Days Number Freq

Inflows Outflows All Inflows Outflows All

Company A 41 358 59 536 100 894

Funds 1 EquityLargeCap 2013-14 497 521 1 097 1 618 1.04 2.21 3.25
Funds 2 EquityMidSmallCap 2013-14 497 761 863 1624 1.53 1.74 3.27
Funds 3 MoneyMarket 2013-14 497 36 779 54 044 90 823 74.00 108.74 182.74
Funds 4 FixedIncome 2013-14 497 3 297 3 532 6 811 6.60 7.11 13.70

Company B 37 186 41 872 79 058

Funds 5 EquityLargeCap 2010-14 1252 2 581 2 192 4 773 2.06 1.75 3.81
Funds 6 EquityMidSmallCap 2010-14 1252 2 481 1 610 4 091 4.94 3.20 8.15
Funds 7 MoneyMarket 2010-14 1252 31 465 36 720 68 185 25.13 29.33 54.46
Funds 8 FixedIncome 2010-14 1252 659 691 1 350 0.53 0.55 1.07

Company C 3 392 4 732 8 124

Funds 9 EquityLargeCap 2010-14 1 249 1 468 1 400 2 868 1.18 1.12 2.3
Funds 10 EquityMidSmallCap 2010-14 1 233 1 151 2 459 3 970 1.35 2.20 3.56
Funds 11 MoneyMarket 2010-14 1 115 210 312 522 0.43 0.63 1.06
Funds 12 FixedIncome 2013-14 493 563 561 1 124 0.46 0.45 0.91

Total 81 936 106 140 188 076

Table 2.2 gives the summary statistics on fund flow data. We follow Morningstar’s "Global-Board Cate-
gory" to classify funds into four groups. The column "Days" is number of days when the fund is open to
trade. "Number" counts the number of flows. We present inflows and outflows separately and then we give
their sum ("All"). "Freq" is the flow frequency which equals to flow count divided by the number of days.
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Figure 2.1: Inaccurate fits of traditional iid model

(a) Historical percentage netflow time
series

(b) Distribution of historical percentage
netflow time series

(c) Simulation: iid gaussian time series
(d) Distribution of iid gaussian simu-
lated series

Figure 2.1 shows the comparison between the historical data series and a Toy model. We first convert the net-flow series (inflows minus outflows)
into percentage value by dividing them by fund’s size. We present net-flows’ time series for a 5 year-period, from 2010 to 2014, in Sub-Figure (a).
Then we give their distribution in Sub-Figure (b). We use their average and variance to generate a Gaussian distribution. We use this distribution
to simulate time series with a same length (in Sub-Figure (c)). Lastly, we give the distribution of simulated series in Sub-Figure (d).
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Figure 2.2: Fund flow times series

This figure presents flow time series of a money market mutual fund. We present inflow (left) and outflow (right) separately.
The data covers a 5 year-period, from 2010 to 2014.

Figure 2.3: Distribution of fund flow numbers

In this figure we present the distribution of fund flow number counts. We present inflow (left) and outflow (right) separately.
The data covers a 5 year-period, from 2010 to 2014. The X-axis shows the flow number and the Y-axis shows the frequency
(number) of observation.
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There are several evidences that the series in Figure 2.1 do not follow a gaussian dis-

tribution: the distribution is not symmetric and has fat tails. Moreover, the percentage of

netflows appears to be clustered. These features are even more pronounced on the disag-

gregated series. Besides, the evolutions as well as the distributions are clearly not the same

for the two series.

Table 2.3: Summary statistics on a demonstrative example:

Fund Category Type N Mean Variance Q1 Q2 Q3 Q4 Q5
Fund 6 Money Market Inflow 1252 25.13 59.80 4 19 25 30 53

Outflow 1252 29.33 67.65 8 23 29 35 62

Table 2.3 presents the summary statistics on Fund 6’s flows. We present inflows and outflows separately.
The sample covers a 5 year-period (1 252 days), from 2010 to 2014. We calculate sample’s average, variance
and quantiles. "Q1" to "Q5" represent the first to the 5th quantile.

The distribution summary statistics given in Table 3 confirm that is the distributions of

inflows and outflows are different from one another, they both are asymmetric with fat-tails.

Moreover, with the average being more than twice as big as the variance, by no mean these

two distributions can be considered as Poisson distributions.

Our objective is to propose an accurate model for in and outflows counts that reflects

the empirical properties of the data. For that reason, we look for bi-variate discrete model

of counts that can account for fat-tails and clustering.

Chapter 2 Ran SUN 53



Liquidity Risk in the Universe of Open-End Funds

2.2 Modelling investors’ behaviour

We present the model specification in this section. Our goal is to propose a simple speci-

fication compatible with the different stylized facts observed in practice. The objective is

to develop a standard method, and to keep the possibility to fund managers of using more

sophisticated internal models. The analogy can be made with the calculation of the value at

risk (VaR) of a portfolio. We can see the different stages of modelling such as the calculation

of a Gaussian VaR, then a GARCH VaR, etc. This gradual approach allows to evaluate at

each step the contribution of the new parameters to be included in the model. We apply

this approach to the estimation of the number of subscriptions and redemptions observed

for a given fund, regardless of the type of client.

2.2.1 Subscription/redemption counts estimation

This section applies an over-dispersed, autocorrelated, bi-variate Poisson model to describe

the number of subscriptions and redemptions observed per day. The simplest statistical

counting model is the Poisson model. It assumes that the number of subscriptions or

redemptions observed each day, denoted by Nt, is the realization of an independent random

variable identically distributed according to a Poisson law of parameter. The Poisson model

captures the fact that the variance increases with the mean and in fact they are both equal.

Moreover, the average number of event per period of time is constant. In our specific case of

subscriptions and redemptions, these two conditions seem unreasonable. In fact, empirically

we observe that the variance of the number of subscriptions and redemptions are much

greater than their averages. We will stress this point in the first subsection analysing this

problem of over-dispersion. Moreover, during turmoil periods, the longer the time without

redemption the greater the chance that a fund will experience a redemption. Also, whether

a fund is experiencing outflows on any given day is independent of what happens in other

funds, contradicting a common belief that outflows tend to cluster. Finally, we can not

only past redemptions (subscriptions) matter to explain future redemptions (subscriptions),

but also past subscriptions (redemptions). We will tackle the problem of autocorrelation in

subsection 2.2.3 and the cross effects in subsection 2.2.4.

2.2.2 Capturing over-dispersion

One of the stylized facts observed on the transaction data goes against the theoretical

properties of the Poisson’s law - in particular, the variance is equal to the mean. Indeed, it
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is observed empirically that the variance of the number of subscriptions or redemptions are

greater than its average. Using a simple Poisson law would therefore have the disadvantage

of misaligning the variability of the series of interest and underestimating for example the

probability of liquidity stress scenarios. It is therefore essential to take this into account

by working with models to reproduce the empirical characteristics of the series. For this,

we use a "generalized" Poisson model including the over-dispersion property: the sample

variance is larger than its mean.

We adapt the over-dispersion by adding an additional parameter s into a traditional

Poisson distribution to generate different levels of variance. The flow number Nt is then

generated by a "Double Poisson" distribution with two parameters: the intensity coefficient

λ represents the average number of flow arrivals; s is the parameter which generates different

variance levels. Under this distribution, the flow variance is V (Nt) =
λ
s
. If s is smaller than 1,

V (Nt) will be larger than λ, hence the over-dispersion appears. On the contrary, if s is larger

than 1, the flow variance is smaller than the flow average, thus an under-dispersion presents.

When s equals to 1, the distribution reduces to a homogeneous Poisson distribution8.

The estimation of the two parameters λ and s for the different bottoms of the sample

shows that the over-dispersion is effective, with parameters s different than 1. The esti-

mated values of this parameter, and therefore the levels of over-dispersion, are higher for

redemptions than for subscriptions.

This representation has the advantage of being very simple to estimate, but it also has the

disadvantage of being purely static, i.e. the law of observation at a date t does not depend

on the observations on the previous dates. This has a troublesome direct implication. The

best estimate of the number of subscriptions or redemptions on the following date is equal

to the average subscription or redemptions, which is constant over time. A study of the

corresponding time series shows that there are phenomena of concentration of subscriptions

and/or redemptions over given periods. Similarly, to volatility, a period of high redemptions

appears to increase the likelihood of future large redemptions. The persistence phenomena

we observe in subscriptions and redemptions cannot be captured using a static representation

and we have to include a dynamic component.

2.2.3 Capturing autocorrelation

In line with the ARCH representation, where the volatility at a given date depends on the

square of the returns observed on the previous dates, we propose to replace the constant

8See, Efron 1986 for details of the Double Poisson distribution. There are other choices to generate the
over-dispersion property. See, Zhu 2012 for other alternative choices.
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parameter of the Poisson law λ by a parameter λt which varies in time as a function of the

previous observation of the time series. The specification chosen is the following:

λt = λ0 + ρNt−1, (2.1)

where λ0 is a constant intensity and the additional ρ parameter captures the temporal

persistence in subscriptions or redemptions. When ρ > 0 , we observe that an increase in the

number of transactions on the past date will have a positive impact on the intensity λt, and

therefore increase the average number of transactions on the following date. This channel

creates both persistence and clusters in the time series of transactions, just like volatility in

the ARCH representation. The inclusion of additional delays in the specification above is

straightforward. In this study, we limit ourselves to the inclusion of a single delay in order

to keep the model as simple and as parsimonious as possible. In the case where ρ = 0,

we are back to the simple Poisson case where the past has no influence on the number of

transactions at the current date. Therefore, the test for persistence in the series observed

corresponds to the statistical significance of ρ. Our estimation results show that for the

vast majority of funds, the persistence parameters ρ are significantly different from zero,

and that the most important persistence levels are observed for redemptions. The risk of

observing order concentrations over short periods of time is therefore more important for

redemptions than for subscriptions.

From a practical point of view, the interest in dynamic models is to provide non-constant

subscription or redemption forecasts. As soon as the parameter ρ is significant, the forecast

of future redemptions depends on current redemptions, and that of future subscriptions for

current subscriptions. This forecast can of course be used by the manager of a fund which

has the possibility to anticipate what will be the amount of the repayments on the following

date. It is therefore possible for him to start adjusting the size of his portfolio so that he

can easily cope with his clients’ repayment orders.

2.2.4 General bivariate specification

As mentioned above, redemptions and subscriptions are not behaving exactly the same way

and as a consequence, should be modelled separately. Moreover, here we want to see if

there are any cross effects between the two characteristics. With this in mind, we propose

a bivariate approach including additional parameters. We consider N in
t the number of

subscriptions in a fund at the date t, and N out
t the number of redemptions for the same fund

at the date t. We assume that the intensity of the Poisson laws describing the subscriptions
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at the date t, λin
t and the one describing the redemptions λout

t satisfy the following two

equations:

λin
t = λin

0 + ρin−inN in
t−1 + ρin−outN out

t−1, (2.2)

λout
t = λout

0 + ρout−inN in
t−1 + ρout−outN out

t−1, (2.3)

where the two parameters ρin−out and ρout−in capture the dependencies between subscrip-

tions (or redemptions) on the date t and redemptions (or subscriptions) on the previous date.

All other parameters interpretations remain the same as in the previous representation.

It is now possible to discuss the financial interpretation of the four parameters ρ..−..

included in the most general version of the model. ρin−in can be interpreted in terms of

reputation. Past subscriptions increase the average number of subscriptions on average.

ρout−out captures the panic effects. Investors, seeing a number of significant outflows coming

true interpret this as a negative signal and also tend to exit the fund. ρin−out measures

the manager’s ability to stabilize the size of his fund, for example by triggering commercial

actions to offset past outflows by a larger number of subscriptions. Finally, ρout−in captures

the behaviour of investors who leave the fund following the massive influx of other investors.

This can be seen as a contrarian behaviour of some investors who leave the fund when "too

good" performances attract too many new investors. They anticipate capacity issues and a

deterioration of future performance as the size of the fund increases.

In terms of liquidity risk management, the presence of positive cross-effects is rather

beneficial since it tends to stabilize the fund’s assets under management. The most critical

case is a value ρin−out < 0, which means fewer subscriptions on average when redemptions

increase. Thanks to this representation, the negative effects of past exits can be split in two.

It can indeed increase future outflows or decrease future inflows. The empirical analysis will

show which of the two effects is the strongest.

Again, if all the ρ parameters are zero and λin
0 = λout

0 , we get back to the simple

(univariate) Poisson distribution. When ρin−out and ρout−in are null, we have the over-

dispersed persistent Poisson representation with no cross effect.

In a matrix format,we have :





λin
t

λout
t



 =





λin
0

λout
0



+





ρin−in ρin−out

ρout−in ρout−out



×





N in
t−1

N out
t−1



 (2.4)
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2.3 Empirical results

We first apply the bivariate model described in the previous section to aggregated in-

flows/outflows and four different fund categories. The objective of Subsection 2.3.1 is to

check if the fund category or if the management company can have an impact on investors

behaviour. Next we concentrate on money market funds in Subsection 2.3.2 and then on

disaggregated flows in Subsection 2.3.3. The objective there is to exploit information from

disaggregated data to check whether different investors types result into different investors

behaviours.

2.3.1 Are all liquid funds equally risky?

There is a clear possibility that fund flows’ characteristics are related to the asset classes

invested by the fund manager. We intend to test for this effect by comparing the value

taken by the parameters of the model described in Equations (2.2)-(2.3) when applied to

funds belonging to different categories. We then estimate and compare estimation results

for funds within and between categories. Table 2.4 presents the estimation results on aggre-

gated inflows/outflows for 12 funds spread out among 4 categories and 3 asset management

companies. The objective of the exercise is to compare the differences in the clients trad-

ing behaviour - inflows and outflows separately - depending on the associated management

company, while all funds offer the same daily liquidity.
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Table 2.4: Count model estimation for 12 selected funds

Fund & category Company λin
0 λout

0 ρin−in ρin−out ρout−in ρout−out Sin Sout

n1 EquityLargeCap A 0.52*** 1.87*** 0.47*** 0.00 0.00 0.15* 0.76*** 0.84***

n2 EquityMidSmallCap A 0.99*** 1.59*** 0.34*** 0.00 0.00 0.08* 0.87*** 0.86***

n3 MoneyMarket A 17.25*** 23.06*** 0.26*** 0.34*** 0.20*** 0.65*** 0.15*** 0.14***

n4 FixedIncome A 4.62*** 5.40*** 0.30* 0.00 0.00 0.25*** 0.77*** 0.65***

n5 EquityLargeCap B 1.94*** 1.55*** 0.00 0.06* 0.01 0.10*** 0.67*** 0.73***

n6 EquityMidSmallCap B 2.31*** 1.59*** 0.53*** 0.00 0.03 0.45*** 0.75*** 0.75***

n7 MoneyMarket B 9.20*** 10.49*** 0.30*** 0.28*** 0.20*** 0.47*** 0.56*** 0.65***

n8 FixedIncome B 0.20*** 0.29*** 0.18*** 0.00 0.00 0.08* 0.42*** 0.44***

n9 EquityLargeCap C 1.04*** 0.97*** 0.01 0.00 0.00 0.15*** 3.05*** 2.82***

n10 EquityMidSmallCap C 0.37*** 1.56*** 0.56*** 0.05** 0.17*** 0.18*** 0.56*** 0.70***

n11 MoneyMarket C 0.29*** 0.37*** 0.15** 0.08* 0.09 0.35*** 0.39*** 0.31***

n12 FixedIncome C 0.40*** 0.43*** 0.10* 0.00 0.00 0.02 0.12*** 0.25***

This table presents the estimation the Self-Exciting Fund Flow model for a diversified fund sample, which contains 12 open-end, non-load mutual funds from
three different fund families. These funds cover 4 categories: Equity Large Cap, Equity Mid/Small Cap, Fixed Income and Money Market. This classification is
created by Morningstar Data Service. It indicates the asset that the fund manages. The model is a time series Poisson count model, which contains 3 elements:
the baseline intensity, the clustering effect and the dispersion. We present each estimated coefficient with its statistical significance.
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We present in Table 2.4 the estimation results. We display the fund’s category and the

company name in the first two columns followed by the eight parameters estimators in the

following columns. We observe a huge variety on flow characteristics. Indeed, the average

level of flows are very different from one category to another, but also within each category.

The less actively traded funds (Funds 11) has a baseline intensity of inflows of only 0.29

(resp. 0.37 for outflows). On the contrary, the most actively traded fund (Funds 3) has a

baseline intensity of inflows of 17.25 (resp. 23.06 for outflows). Moreover, we observe that

the fund company has a substantial impact on the average flow level. Company A has the

largest flows and Company C the smallest ones. This strong "company effect" is linked

to the fact that the company scale determines the fund size and its client-base. A large

and famous fund company receives more flows than any unknown small one. Furthermore,

the fund category also influences the flow level. Liquid categories such as Money Market

and Equity Large Cap funds receive on average more flows than illiquid funds belonging to

Equity Small Cap and Fixed Income categories, for example. The result tends to prove that

clients use liquid funds to manage their liquidity needs. As a consequence, they are more

active on "liquid" funds when cash is needed.

We now focus on the dispersion component captured via parameter S, estimated on

both inflow and outflow series. The estimation of our model confirms that, as we observe in

Section 2.1.3, the majority of funds suffers from over-dispersion with a parameter S being

lower than 1. Indeed, S is larger than 1 for Funds 9 only meaning that this funds is the

only one to exhibit under-dispersed flows. This supports our choice of a model which can

cover both over- and under- dispersion of count series. Moreover, there is no clear monotone

relation between the management company and the dispersion level, or between the asset

class invested by the funds and the dispersion level. We can conclude at this stage that over-

dispersion is not company nor style-dependant. Each funds seems to exhibit an idiosyncratic

dispersion behaviour that depends on the clientele only. Indeed, funds in the same class

might have diverse dispersion levels. For instance, Funds 9 and 5 are both large-cap equity

funds with similar baseline intensities but while Funds 9 exhibits under-dispersion, Funds 5

flows are over-dispersed.

Turning now to dynamic effects, we can see that the autocorrelation of flows vary also

quite a lot. On the one hand, the highest ρin−in reaches 0.56 (Funds 10) and the highest

ρout−out coefficient is 0.65 (Funds 3). These results are directly related to the clustering

behaviour in funds trading observed in Section 2.1.3. On the other hand, some funds exhibit

no significant autocorrelation at level 5% in their flows, such as Funds 12 for example. Let

us now focus on the ρout−out estimators for the 12 funds. We observe that this parameter
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is significant for the three money market funds in our sub-sample, while it becomes not

significant at 5% for two of the three Fixed Income funds. Therefore, it appears that

clients take into account the difficulty that the manager may encounter in managing the

offered liquidity and adapt their behaviour accordingly. Fixed Income fund clients are

usually less sensitive to outflows of other investors than money market fund clients. The

large value obtained from money market funds can also be interpreted as seasonality and

show that clients are releasing funds at some regular time periods. The first conclusions of

this empirical study are that not only the clients of the funds integrate well the liquidity

dimension in their investment policy but also that the daily liquidity offered by the fund

is not used in the same way according to the type of the considered funds. Although fund

company and fund category influence strongly the fund flows, we find that this influence is

not so clear concerning the autocorrelation of the flow level and dispersion. We find clear

evidence that funds in the same category have different correlation parameters. Funds 2

and 6 are both mid/small- cap equity funds with similar baseline intensities. However, their

ρin−in parameters are very different and if Funds 6 ρout−out is 0.45, this parameter is not

significant for Funds 2. We find a similar situation for Funds 8 and 12. They are both

fixed income funds with the similar λ0. However, Funds 12’s ρout−out is zero while Funds 8

has a significant clustering effect in outflows. If we now look at the cross effects between

subscriptions and redemptions, we observe that these effects are significantly different from

zero and positive for two of the three money market funds and not significant for all the

other funds except for Funds 10. They therefore play a stabilizing role and in particular

offset past outflows by a larger number of new entries. This stabilizing mechanism does not

hold for funds highly exposed to liquidity risk.

To further confirm these results on "liability risk", we estimate the parameters in a

larger sample. We consider all large-cap equity and fixed incomes funds data of Company

B in 2014, ending up with 51 equity funds and 23 fixed income funds in total. We estimate

Equations (2.2)-(2.3) and present the distribution of ρout−out and Sout in Figure 2.4. We

clearly observe that funds in the same asset class, and so with the same style, present a

wide variety of liability risks. In particular, if the correlation risk in outflows is on average

quite low for Equity Funds, it still can be large for some particular funds. The same apply

for Sout and we see Sub-Figure (a) that Sout is mostly low but can even reach 0.9. On the

contrary, Fixed income funds present low to high clustering effects as we see in Sub-Figure

(c), where the outflow autocorrelation is zero for some funds.

In summary, we have analysed several economic factors which might impact the flow

risk. Especially, the fund company and fund category have strong determinant power on

Chapter 2 Ran SUN 61



Liquidity Risk in the Universe of Open-End Funds

fund flows on average. However, we find that this influence is limited on flows dispersion and

autocorrelation where the parameters differ for funds within the same category or managed

by the same company. Accordingly, we argue that these two risks are more generated by

the liability-side, i.e. by investors’ behaviour so that the fund managers should make efforts

to monitor this liquidity risk component.

Figure 2.4: Distribution of Model’s Parameters: Equity and Fixed Income Funds (an ex-
tended sample)

(a) Equity Out Out (b) Equity Out Dispersion

(c) Fixed Income Out Out (d) Fixed Income Out Dispersion

Figure 2.4 presents the distribution of model’s parameters in a multiple fund’s sample. It contains 51
equity funds and 23 fixed income funds. All of them are of the fund company B. We present the distribution
of two risk parameters: Out−Out (red at left) and Out−Dispersion (green at right). We show the equity
funds on the top and the fixed income funds on the bottom.
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2.3.2 Are money market fund predictable?

We present in this Subsection some results relative to a given money market fund considering

different characteristics reflected in different model specifications. Our benchmark model

is the full model of the previous section and the competing models are some constraint

specifications of that model. The idea is to measure the importance of each individual

feature encompassed in the full model. This model corresponds to Eq. (2.4) page 57 that

we rename (2D3) for the rest of the paper.

The first competing specification considers over-dispersion and autocorrelation (dynamic

direct effect) but no cross effects (dynamic cross effects) and we have ρin−out and ρout−in that

are both zero in our general bivariate model Eq. (2.2)-(2.3). In that case which corresponds

to Eq. (2D2) below, we can estimate each equation separately, i.e. Eq. (2.2) on inflows

and Eq. (3) on outflows. The second competitor assumes over-dispersion but no dynamic

effects, direct or indirect. As a consequence, in this model all the ρ-parameters are zero.

Here again, we do have two equations: one for the inflows and one for the outflows. The

last competitor assumes that in- and outflows should not be modelled separately and we

merge the two series into a single netflows series. This final specification resumes to a unique

Poisson model with overdispersion as in Eq. (1D). Finally, we get the following equations

for the λ function.
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λt = λ0 (1D)

In order to measure the quality of the model, we compute the mean square error (MSE)

between the predicted flows and the observed ones using the three above specifications for

the intensity function. The higher this criteria, the poorer the quality of the prediction.

Table 2.5 [Resp. Table 2.6] reports the parameters’ estimators corresponding to the

specifications described above for the Money Market Fund 7. We choose this particular
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fund because it shows a complex structure with both a high level of autocorrelation and a

large dispersion of flows. In this case, we can expect to measure more easily the impact of

misspecification.

Table 2.5: Models’ estimation (for the selected money market fund)

Specification λin
0 λout

0 ρin−in ρin−out ρout−in ρout−out Sin Sout

Step 1: (1D) 54.46*** same 0.44*** same
Step 2: (2D.1) 25.13*** 29.32*** 0.46*** 0.51***

Step 3: (2D.2) 13.42*** 12.75*** 0.46*** 0.56*** 0.55*** 0.65***

Step 4: (2D.3) 9.20*** 10.49*** 0.30*** 0.28*** 0.20*** 0.47*** 0.56*** 0.65***

Table 2.5 presents the estimated coefficients of all models in Section 2. Each step represents an adaptation
that we add to the aggregated homogeneous Poisson model. We note the significance level at the right-top
of each coefficient (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).

Table 2.6: Improvements in model’s quality (for the selected money market fund)

Specification N Adaptation MSE-In MSE-Out MSE-All % AIC
Step 1: (1D) 2 "Over-Dispersion" 239903.1
Step 2: (2D.1) 4 Separate Dynamic 74821.25 84638.42 159459.7 34% -315870.4
Step 3: (2D.2) 6 "Self-Exciting" 60588.69 59129.57 119718.3 25% -316328.2
Step 4: (2D.3) 8 "Crossed-Effects" 55940.79 57183.28 113124.1 6% -316478.2

This table shows the summary of models’ quality. We count the number of parameters (N) in each model
(Specification) and calculate the Mean Square Errors for inflows, outflows. Then we sum two MSE up to
obtain a quality ratio for the full model (MSE-All = MSE-in + MSE-out). Lastly we compute the AIC
ratio for the model. We do not present AIC ratio for the uni-variant model since it is not comparable to
other bi-variant models. "N" is the number of parameters in each step model. "Adaptation" is the stylized
fact that we include in each step. "%" is the errors that each step decreases in percentage of the previous
step’s MSE-ALL.

When we first constrain the cross-effect parameters to be null, the MSE increases by 6%,

moving from 113 124 to 119 718. Even if this increase is rather small, this misspecification is

not neutral on the other dynamic parameters which increase too. This loss of quality in the

prediction is even more important if we constraint the two remaining dynamic parameters

to be zero. Indeed, the MSE increases too, but this time it goes up to 159 489, meaning

that the increase is 33% compared to the model with no cross-effects and goes up to 41% if

we compare to the general model. These results show the importance of including all these

effects in the specification and particularly, the autocorrelation effects. Finally, we compare

these results to that of the Poisson model with overdispersion applied to the aggregated

flows. The MSE is moving up once again but to reach 239 903 the increase is of 34% compare

to the model with autocorrelation effects and of even 112% compare with the full model.

These results clearly show that not only in and outflows should be modelled separately, but
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also that some dynamics features should be incorporated into the specification, and more

particularly the direct ones.

To continue the comparison of the statistical properties of the constrained and uncon-

strained models, we use the specifications given in Eq. ((1D)) - the Poisson process on

netflows - and in Eq. (2.4) - the full model, to generate two simulated count data. We use

the two smoothed empirical distributions that we get out of the two simulated samples to

observe and compare the marginal distribution generated by the two dynamic specifications.

The results are displayed in Figure 2.5. We observe on the right of the plot that the implied

marginal distribution has a fatter right hand tail for the dynamic model, meaning that the

probability to observe extreme flows is higher. In this example, the worst situation with the

static Poisson model model is 47 outflows while it jumps to 60 when we take into account

the autocorrelation of outflows. We conclude from that observation that the static model is

underestimating by 6.5% the potential outflows.

Figure 2.5: The Liability Risk

This figure compares the distribution of two simulated outflow series: one is generated by a homogeneous
Poisson model, the other is generated by Model (2D.3) which captures all stylized fact of fund flows. Two
model’s parameters are estimated from the same fund.

2.3.3 Consequences of clients heterogeneity?

Our second investigation focus on the consequences of the "heterogeneity" in the behaviour

of fund investors. In this section, we model fund flows for each of the 8 investor categories

described in section 2.3. The objective is to examine the finer components of client’s risk.

Clients’ heterogeneity may imply that the composition of fund client-base can have a great

impact on its liquidity risk. If this is true, then two funds - a fund composed by one type

Chapter 2 Ran SUN 65



Liquidity Risk in the Universe of Open-End Funds

only of investors and another fund with heterogeneous investors - should exhibit different

dynamics in their flows. Therefore, in this section, we test whether investors are identical

and independent. We first identify the lead-lag relation between two investors in the same

fund. Then, we disaggregate one fund’s flows into sectors to study whether clients have

similar or different behaviour.

Measuring lead-lag effects between investors

We want to prove that fund flows’ property are related to client linkage: one investor

might react to other investors’ massive redemptions to exit the fund. However, there are

at least two alternative explanations for the Self-Exciting property observed on funds flows.

The first possibility is spurious correlation coming from too many heterogeneous investors

aggregated in a single fund. This aggregation may generate the auto-correlation in the

time series whereas there is no causality among investors’ activities (see, White 1980). The

second possible explanation comes from the existence of common factors which make fund

flows correlated (e.g., Duffie et al. 2009). In this situation, the Self-Exciting property is not

necessarily generated by client’s behaviour. To confirm that our behavioural explanation

is the most credible one, we study fund flows at individual level. We choose two investors

(sectors) in Fund 6 and examine the lead-lag effect between them. Any significant lead-lag

effect will support our argument in favour of the existence of a "correlation risk". Fund

flows’ Self-Exciting property is more likely to be due to the investors’ linkage than the two

alternative explanations.

We stick to the analysis of Fund 7 as in the previous Subsection. Two sectors are

then chosen since they exhibit largest flow numbers. Sector 1 gathers insurance companies

and Sector 2 collects pension funds. Due to their activities, these two sectors frequently

receive/pay cash from/to their clients. They both have a short-term and volatile liquidity

needs. Consequently, they invest in the money market fund to manage their cash account.

They are suitable target to study since they are active investors who generate high flow

numbers. We include the liquidity contagion component to the full model to highlight the

lead-lag effect. The modified model becomes:
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where in and out indicate inflows and outflows, 1 and 2 indicate Sector 1 and Sector

2. In this formula, each sector flow series not only react to investors in the same sector

(Self-Exciting and Crossed-effect components), but also to the other sectors (Liquidity Con-

tagion). For example, Sector 1’s inflow λin1
t is composed by the baseline intensity λin1

0 , the

Self-Exciting ρin1−in1, the Crossed-Effect ρin1−out1 and two contagion components driven by

ρin1−in2 and ρin1−out2. Each flow series react to itself and other three flow series. Overall,

there are 4 × 4 = 16 correlation parameters. In the following, we use a covariance ma-

trix representation to plot model’s estimation in Figure 2.6. We find that all Self-Exciting

coefficients are significant as the diagonal coefficients are different from 0. However, all

Crossed-Effects are insignificant in these two sectors. We identify a contagion effect from

Sector 1 to Sector 2. Since the coefficient ρout2−out1 has a non-zero value. It highlights

the scenario that the massive redemptions from Sector 1 lead the following redemptions of

Sector 2. However, the reciprocal effect does not hold. The coefficient ρout1−out2 is zero.

Sector 1 does not react to Sector 2.

This lead-lag effect between the insurance sector and pension sector confirms the corre-

lation risk in mutual fund. Under a stressed scenario, some investors follow other to redeem.

This correlated exits make the fund more exposed to the liquidity risk. Furthermore, we find

that the liquidity contagion between investors is asymmetric meaning that some investors

are leaders while some others are followers and leaders do not react to followers. Therefore,

it is important for the fund manager to know the role of each client. If a leader makes

a big redemption, the manager should prepare for sequent redemptions of "followers". In

contrast, a redemption of followers has less impacts on other clients.
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Figure 2.6: Flow Contagion between Investors

In this figure, we present the correlation coefficients of Model (4D.1), estimated in two representative investor
categories in one money market fund, over a 5-year period. Each line of the matrix shows the coefficients of
one flow series: In1 is the inflows of the first investor, Out1 is the outflows of the first investor, In2 is the
inflows of the second investor and Out1 is the outflows of the second investor. Each column presents flows’
reaction to one (other) flow series (ρ). The color indicates the value of the parameter: darker the green is,
larger the coefficient is.

68 Chapter 2 Ran SUN



Liquidity Risk in the Universe of Open-End Funds

Heterogeneity among fund investors

We continue our investigation by examining whether all individual investors (sectors) in the

same fund are identical. This study of investors’ heterogeneity helps to manage the liquidity

risk in two aspects. On the one hand, it helps the fund manager to identify each component

of liability and to obtain each investor’s risk contribution. On the other hand, since the

heterogeneity is a large source of modelling errors, studying fund flows in disaggregated

approach might improve the model’s performance.

We first break down Fund 7 by sectors. There are eight investor sectors in this fund

and each sector gathers investors who exercise the same activity, such as banking, insurance,

brokerage, etc. We apply the full model to each sector in the following manner. We consider

each sector taken individually as Investor 1, while the others form all together Investor

2. The model then highlights four risk components: (1) the flow average (λ0) indicates

the activism level of the sector; (2) the Self-Exciting (ρIn−In and ρOut−Out) components

present investors’ reaction to other clients within the same sector; (3) the liquidity contagion

shows whether investors follow other sector’s flows, we re-note the parameters as ρIn−All and

ρOut−All; (4) the Dispersion (Ss) components highlight the heterogeneity level within the

sector. Since Crossed Effects are often negligible, we do not present them in this empirical

exercise.

Table 2.7 shows the estimated coefficients of the disaggregated test. We find that in-

vestors in this same fund are not identical. Fund flows’ dynamics in different sectors are

highly heterogeneous. Some sectors possess the high flow volume in average, such as Sector

1, 3 and 5. We observe high baseline intensities in these investors. In contrast, Sector 7 and

8’s flows are negligible. λ0s in these two sectors are almost 0. Majority of sectors exhibits

the self-exciting property. Yet, the correlation risk is higher in some sectors. ρIn−In and

ρOut−Out in Sector 4 and 8 exceed 0.5. In other sectors, investors are less correlated. We

find the "liquidity contagion" in Sector 4, 5, 6 and 8. These investors are likely to be the

followers when other redeem massively. Lastly, we find that all sectors in this fund present

over-dispersion property, however, the dispersion level decreases strongly comparing to the

fund level dispersion. In Table 2.5 we observe that dispersion coefficients are 0.56 (in) and

0.65 (out) at fund level. However, most of dispersion parameters increase to around 0.8

(except for Sector 2)9 at sector level. It suggests that classifying investors in categories

helps us to better monitor the liability risk since flows’ variance decreases.

9Remind: a higher value of coefficient parameter S indicates a lower level of dispersion.
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Table 2.7: Disaggregated sector model

Sector λin
0 λout

0 ρin−in ρin−all ρout−out ρout−all S-In S-Out

1 4.13*** 4.59*** 0.12*** 0 0.25*** 0 0.75*** 0.89***

2 0.89*** 1.56*** 0.41*** 0 0.29*** 0 0.55*** 0.67***

3 3.11*** 2.78*** 0.33*** 0 0.33*** 0 0.77*** 0.78***

4 0.55*** 0.40*** 0.55*** 0.01* 0.54*** 0.02** 0.89*** 0.91***

5 3.04*** 1.76*** 0.24*** 0.03* 0.36*** 0.06*** 0.81*** 0.91***

6 0.18*** 0.01*** 0.01 0.08 *** 0.01*** 0.01 *** 0.98*** 0.98***

7 0.03 0.08* 0.03 0.03 * 0.02 0.01 0.91*** 0.85***

8 0.42*** 0.04 0.66*** 0 0.56*** 0.03 *** 0.71*** 0.71***

This table gives the estimation results of the disaggregated study of all sectors in one money market fund.
The study covers a period of 5 years. We number these sectors from 1 to 8 and apply the same model (4.1)
to them. We note the significance level at the right-top of each coefficient (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01).
The parameter ρout−out indicates the reaction of each sector to other’s flows. During the "Fund Run", it
parameters indicates the risk of contagion between investors (sectors). The dispersion parameter S has a
threshold 1: when S is larger than 1, the flow series exhibit the "under-dispersion"; when S is smaller than
1, the "over-dispersion" presents. When correlation coefficients (ρ) equal to 0 and dispersion parameters
(S) equal to 1, the model reduces to the traditional iid Poisson distribution.
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In the previous section, we show that the heterogeneity among investors is a large source

of modelling errors. Therefore, we expect that a disaggregated study would mitigate the

errors and improve model’s performance. We do a comparison study for model’s quality

and present it in Table 2.8. We first calculate MSE for both inflows and outflows for each

sector and then we sum them up to obtain the total MSE. We compare three models’

performance. In the first column, we give the MSE for the aggregated model (2D.3) in

the previous section. This model does not provide individual sector’s information. In the

second column, we apply the same model to each sector. We label it as "Separated Model".

The last column ("Contagion Model") gives the MSE of the disaggregated model in this

section. We find that, from the aggregated model to separated model, the total MSE in

inflows decreases by 60588 − 42209 = 18379. The reduction is 59129 − 41780 = 17349 for

outflows. This decrease of MSE represents an improvement around 30%. It implies that

the fund manager has a great interest to monitor investors at individual level. Finally, we

find that the model achieves another slight improvement from separated model to contagion

model.
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Table 2.8: Model’s improvements in disaggregation

Sector/ Model Aggregated Model Separated Model Contagion Model
Sector 1 In - 9 316.84 9 204.86
Sector 1 Out - 7291.20 7028.33
Sector 2 In - 2 006.78 1 909.60
Sector 2 Out - 2 060.34 1 960.51
Sector 3 In - 11 077.48 10 922.76
Sector 3 Out - 11 722.92 11 520.27
Sector 4 In - 4 488.72 3 792.61
Sector 4 Out - 4 491.56 3 816.45
Sector 5 In - 10 970.30 9 822.00
Sector 5 Out - 11 364.64 10 194.96
Sector 6 In - 505.07 496.70
Sector 6 Out - 588.38 557.73
Sector 7 In - 121.98 122.58
Sector 7 Out - 140.01 140.92
Sector 8 In - 3 722.24 3 229.24
Sector 8 Out - 4 121.50 3 512.10

Total MSE In 60 588.69 42 209.45 39 500.38
Total MSE Out 59 129.57 41780.6 38 731.31
Total MSE 119 718.3 83 990.04 78 231.69

This table presents MSE ratio of three different models estimated for the same fund. We compare the
aggregated model (2D.3), separate model and the contagion model (4.1). The aggregated model and separate
model use the same specification. Their difference is that we estimate the aggregated model in the full fund
sample but we apply the separate model for each sector in the fund. Therefore, the aggregated model give
a result at the global level and the separate model presents coefficients for every individual sector. The
contagion model includes the "lead-lag" effect in addition. We calculate the MSE for each sector and sum
them up for the whole fund, except for the aggregated model does not provide information for individual
sectors. We list errors of inflow and outflow separately, "In" indicates inflow’s error and "Out" indicates
outflow’s error.
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In summary, investors in the same fund are not identical, nor independent. During

the disaggregated study, we identify the "liquidity contagion" in some investors. These

investors are leaded by others to redeem their fund share. When massive redemptions

happen, the fund manager should make efforts to persuade these followers to stay. Hence

the liquidity risk would not worsen. Furthermore, we find that individual investor sectors

present heterogeneous flow dynamics. Each of them bring the different liability risk to the

fund. It suggests an individual investigation of fund client behaviour for the future research.

2.4 Controlling for other risk factors

Fund flows have strong links to the fund’s asset side. Factors such as manager’s performance,

fund’s risk level and fund’s asset class affect investor’s trade decision. These links challenge

our notion of "liability risk" since the randomness of fund flows can be solely generated

by the asset-related factors and there is no influence from the liability. In this section, we

implement two robustness checks to confirm the flow risk has liability-side components. We

first control for several economic factors by adding them to the Poisson model. Second, we

estimate the model in a larger sample to show that funds in the same asset class can have

strongly distinct flow risks.

We begin the robustness check by controlling for several "asset-related" risk factors. Our

test contains four elementary variables which might affect investors’ decision. "Dec" is a

dummy variable which equals to 1 if the observation date is in December. The literature

documents that investors have tax concerns in this month and they change possibly their

behaviour (see, e.g., Ivkovich and Weisbenner 2008). "Rate" is the short-term interest

rate. It is a proxy for the funding cost of institutional investors. We use the french 3-

month director rate downloaded from Datastream. "MKT" is the performance of the MCSI

European market index’ performance. "R" is the fund return at the previous day. We

calculate the return by taking the log-difference of two day’s NAV value. We add factors’

impacts to obtain a modified flow intensity "λFactor
t " according to the following formula:

λInFactor
t = λIn

t × eβ
′
InX

λOutFactor
t = λOut

t × eβ
′
OutX

(5.1)

Where λ
In/Out
t is the previous reduced-form intensity in Equation (2D.3). λ

In/OutFactor
t is

the new intensity with factors. β is the vector of factor sensitivities and X is the vector

of explanatory factors. In this specification, we include factors by a multiplicative effect:
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the new intensity equals to the old intensity multiplies by the eβ
′
In/Out

X . It differs to the

"Self-Exciting" component of the model, where the previous flow numbers (N In/Out
t−1 ) have

an additional effect: we add the ρ × N
In/Out
t−1 to the baseline intensity λ0. We choose this

"multiple function" to avoid the intensity becomes to negative when the factor impact is

strongly negative. The estimation follows the same procedure as Equation (2D.3) where we

replace the old intensity by the λ
In/OutFactor
t .

We estimate the factor model (5.1) and we present the result in Table 2.9. We list at the

first column (Non-Factor) coefficients of previous reduced-form model for a comparison

purpose and we give the new model’s estimation at the second column (Factor). We

present the liability-related coefficients in Panel A and explanatory factors in Panel B.

We observe clearly that previous parameters keep almost the same values (there are only

acceptable slightly deviations). After controlling these asset-related factors, the liability-

related elements have still significant impacts. The correlation and dispersion risk remain in

the fund. We need to emphasis that we can not directly compare the economic significances

of reduced parameters and explanatory factors since we include them into the model in

different manners (additional effect and multiplied effect).

The interpretation of factor sensitivities is out of the scope of this paper. We would not

give a full discussion about these parameters. We merely wish to highlight one surprising

coefficient, "R − Out". Being contrary to the common knowledge, an increase of fund

return creates more redemptions! We speculate that this relation is due to the fact that

we calculate flow and return in short-horizon. It differs to the literature which tests the

flow-return relation in longer horizon, like the monthly frequency. We leave this question to

the future research.
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Table 2.9: Factor Flow Model

λFactor
t = λt × eβ

′X

Estimated coefficients

(Non-Factor) (Factor)

Panel A: reduced parameters
Basein 8.15∗∗∗ 9.75∗∗∗

Baseout 10.84∗∗∗ 10.49∗∗∗

In− In 0.32∗∗∗ 0.28∗∗∗

In−Out 0.30∗∗∗ 0.25∗∗∗

Out− In 0.19∗∗∗ 0.17∗∗∗

Out−Out 0.46∗∗∗ 0.40∗∗∗

S − In 0.56∗∗∗ 0.57∗∗∗

S −Out 0.65∗∗∗ 0.66∗∗∗

Panel B: explanatory factors
Dec− In 0.07
Dec−Out 0.06
Rate− In 0.02∗∗∗

Rate−Out 0.01∗∗∗

MKT − In 0.00
MKT −Out 0.00
R− In 0.18∗∗∗

R−Out 0.20∗∗∗

Observations 1252 1252
-2LogL 1654042 16493.71

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2.9 presents our robustness test which controls for several economic factors. We multiply the previous
reduced form intensity by the impact of economic factors (eβ

′X). If fund flows are not sensible to these
factors, the factor part of the model equals to 1 (e0) and the model reduces to previous model (2D.3). We
list this previous model in the first column for comparison propose and we give the coefficients of non-factor
model in the second column. We present the time series coefficients in Panel A and the economic factors in
panel B.
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2.5 Conclusion and Discussion

Focusing on the liability of mutual funds and its components allows us to answer several

new research questions. Firstly we learn that fund investor’s behaviour affects strongly

fund liquidity risk exposure. A highly correlated and heterogeneous client-base generates

a large extreme redemption risk. Second, mutual fund investors are neither identical nor

independent. Therefore the fund manager should better monitor his client risk at more deep

level. Lastly, the liability risk presents in all types of mutual funds, from the most illiquid

fixed income funds to the high liquid money market funds. Hence the asset side should

no longer be the only concern of portfolio managers, their clients bring also an important

component of the liquidity risk. An asset-liability management approach is preferred than

an asset-only approach.

We propose several suggestions based on our study. The first one is related to the

fund selling. The fund manager should monitor two components of liability risk, clients’

linkage and heterogeneity, when he builds his client-base. A fund with homogeneous and

independent investors would receive more regular flows. A possible solution is to offer the

fund to a "target" client group. For example, we can sell funds to only one investor category

but in a diversified geographical zone. Therefore both two risk components are minimized.

Then, our analyse proves that fund’s liquidity risk exposure is time-varying. Based on

investors’ activity level, the fund manager should adjust his cash reserve to prevent the

change on future redemptions. Finally, since both asset and liability of a fund contains the

liquidity risk, we advise the fund manager to invest in assets whose risk is less correlated

to liabilities’. We should avoid the scenario where both asset and liability sides of a fund

suffer the liquidity shocks simultaneously.

For the statistical analysis of fund investor behaviour, it is clearly that we are still in

the early stage. There are two potential directions to continue this research. One way is to

"go up": collecting a larger data-base which contains a larger number of funds. It would

allow us to study more about the cross-sectional dispersion on the liability risk. Moreover,

numbers of hi-dimensional statistic tools might be useful to analyse the more enormous

flow data. The other way is to "go down": examining the individual investor account. An

investigation on investors’ personal account might bring clearer evidence on their preference

and habit on fund investing.
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This paper studies clients’ investing horizons in mutual funds. A unique data set enables

us to monitor all individual redemptions in one non-load French fund company and we

adopt the Cox proportional hazard rate model to explain the redemption behaviour. We

first find evidence that investors behave rationally under normal circumstances but exhibit

the loss aversion bias under extreme returns or at the end of the year. Secondly, we identify

that investors’ categories have strong impacts on their investing horizons. We explain this

finding by the fact that investors in different categories have different levels of liquidity

needs. Finally, we make a comparison between long-term and short-term investors and find

that long-term investors are more value-oriented since they are more sensitive to economic

conditions. Overall, we highlight that investors bring a "pre-mature" redemption risk:

exiting the fund earlier than expected. Furthermore, this risk is higher in long-term investor

sub-sample. Combining all results, we suggest fund managers to monitor fund investors

individually. We also advise mutual funds to introduce some liquidity provisions, such as

the "withdrawal gate" or the "lock-up period" in hedge funds, to mitigate the redemption

risk and enhance mutual fund’s liquidity.

Key words: survival analysis, fund run, redemption risk, investing horizons
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Introduction

Open-end mutual funds allow investors to freely redeem their fund shares so as to attract

clients who have liquidity constraints to invest in long-term assets. However, this facility

introduces a new liquidity risk that the fund manager has to deal with. Not only are

frequent and active redemptions harmful for the fund performance, but also it can become

critical when many investors are redeeming at the same time. In these situations, analysing

investors’ behaviour becomes key. Why are investors redeeming? Are these redemptions

rational? What are their trigger factors? Are some investors redeem earlier than others and

why? Addressing these questions would improve mutual fund’s liquidity management.

We investigate fund investors’ behaviour and its impacts on the fund liquidity risk in

this paper. A particular focus is given to the investing horizon, i.e., the time between the

entry and exit of one investor. The lengths of these horizons influence the fund liquidity risk

exposure. If most clients exit the fund early, the average duration of fund’s liability would be

short. Consequently, the fund manager is forced to invest less in long-term assets, otherwise

he would face a liquidity mismatch problem. All fund managers, even some world-wide

famous ones, are worried about this early redemption problem. For instance, one of world’s

best fixed income fund managers, Bill Gross, experienced massive redemptions in August

2014. This problem forced him to close his fund and to leave the PIMCO company1. Fund

managers need to figure out which investors are most likely to redeem early and how many

are they in a fund. This problem has become a central issue for the fund industry.

In this paper, we use a unique proprietary dataset to study the dispersion in individual

fund investing horizons. We name these horizons as the "surviving times". We choose the

Cox proportional hazard rate model to explain investor’s redemption intensity and we adopt

a semi-parametric approach to estimate it. This approach contains a parametric part which

identifies explanatory factors and a non-parametric part which leaves baseline intensities

free to capture the heterogeneity of the investor sample. Our empirical test proceeds in two

stages. First, we estimate redemption rates in the full investor sample. We use both static

variables, such as fund class and client category, and dynamic factors, such as fund return

and economic conditions. We introduce the notion of the "pre-mature" closure risk, which

describes the scenario where investors choose to shorten their surviving times. In the second

stage, we classify fund clients into long-term and short-term sub-samples and estimate their

hazard rates separately. We analyse their divergence by comparing their sensitivities to the

1cf. "Pimco Total Return Fund suffers 15th month of outflows"
in https://www.reuters.com/article/us-investing-pimcototalreturn-flows/

pimco-total-return-fund-suffers-15th-month-of-outflows-morningstar-idUSKBN0G41GN20140804
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aforementioned explanatory factors.

We establish three key empirical findings. Firstly, We find evidence that investors have

a time-varying behaviour: redemptions are rational under normal circumstances but fund

clients exhibit the loss aversion bias at the end of the year or under the extreme returns.

We identify a negative relationship between the redemption rate and the fund performance

during the first three quarters of the year. It supports the theories which predict that rational

investors keep funds with good returns (see, Berk and Green 2004; Brown and Wu 2016).

However, in two situations, this negative relation is not held. We observe that, in the fourth

quarter of the year, the return-redemption relationship switches to positive. Furthermore,

extreme gains also make investors more possible to exit the fund. This evidence suggests that

investors exhibit the "loss aversion": a behaviour bias where investors sell better-performed

funds immediately but keep the "loser" funds for the longer time.

Secondly, we identify significant sector effects on investor decisions. The sector refers

to the activity sector where each fund investor belongs to. We find that banks, private

banking clients and insurance companies stay in funds for the longer periods than the

average level. On the contrary, the FoFs (fund of funds), mutual insurances, and corporate

firms have shorter surviving times. We explain this observation by the fact that investors

form different sectors have different levels of liquidity needs. For instance, corporate firms

need to pay salaries, dividends and short-term debts. It leads the short investing horizon

of this sector. Another example is the FoFs, which need to answer their own redemptions.

Therefore their surviving times are also shorten. On the other side, banks and private

banking clients have less short-term liquidity needs. Accordingly, we find that they stay in

funds for longer horizons. The sector effects are robust after we control for the effects of the

asset side liquidity.

Finally, we find notable divergences between the long-term and short-term investors. We

test the model separately in the long-term and short-term sub-samples and we identify three

major distinctions between them. First, long-term investors’ behaviour is more explainable

and short-term investors’ trades are more noisy. We obtain this conclusion by comparing

the R-square of two sub-sample tests. Second, we find that long-term investors are more

sensitive to economic variables such as fund performance and macroeconomic conditions.

It confirms our hypothesis which predicts that long-term clients are value-oriented so they

make more efforts to monitor their investments. Third, we observe that long-term investors

exhibit the higher loss aversion. This behavioural bias does not present in the short-term

sub-sample. Overall, these findings imply that the long-term investors bring the larger "pre-

mature" closure risk to the fund. Hence in stressed scenarios, the fund manager would loss
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more long-term clients.

Our paper contributes to several different strands of literature. First, there is a growing

literature on the rationality of mutual fund investors. Berk and Green (2004) develop

a fund investor theory where investors chase funds with good returns under the rational

context. Furthermore, Berk and Binsbergen (2016) find empirical evidence that investors

do not only follow good returns but also consider the market risk’s exposure. Franzoni

and Schmalz (2017) extend Berk-Green model by adding investors’ learning on the market

risk. In contrast, some other studies indicate that fund clients exhibit several behavioural

bias such as the disposition effect, the over-confidence, the narrow framing and the local

bias (See, e.g., Bailey et al. 2011; Chang et al. 2016; Ivkovich and Weisbenner 2008 for the

description of these behavioural bias.). However, Previous research rarely investigates the

individual transactions and authors focus more on fund purchases rather than redemptions,

whereas the redemption behaviour has more direct consequences on the liquidity risk. We

examine the investor rationality in individual fund redemptions. We first identify during

which periods and under which circumstances investors exhibit the loss aversion, then we

compare which group of investors exhibit more behavioural bias.

Furthermore, we contribute to the literature which attempts to identify the determinants

of fund flows. Previous studies find that the fund performance is the most significant factor

for fund flows (see, Berk and Binsbergen 2016). Besides, the market volatility (e.g., Cao et al.

2008), the Morningstar rating (Guercio and Tkac 2008), fund’s ranking (Kempf and Ruenzi

2008), the media coverage (Solomon et al. 2014), and even the geographical information

(Leung and Kwong 2018) have all significant influences on fund flows. Whilst much interest

is taken in fund flow determinants, few literature examines how investors’ characteristics

impact fund flows. We provide in-depth analysis showing that the investors’ sector is one

relevant factor to individual fund flows. Contrast to the literature which uses more variables

related to fund assets, such as fund return performance and volatility, the investors’ sector

is a variable which relates to the fund liability, i.e. investor’s characteristics and behaviour.

Moreover, we explain how investors in the same fund generate different fund flows while

previous research does not distinguish them.

Our last research question focuses on the heterogeneity among fund investors. On the

one hand, people are interested in the comparison between investors in different investing

vehicles. Akbas et al. (2015) contrast mutual fund investors to hedge fund investors. They

indicate mutual fund investors are "dump" and hedge fund investors are "smart". Guercio

and Tkac (2002) compare mutual fund investors to pension fund investors. Levy and Liber-

man (2015) compare return-flow relation of active funds to passive funds. On the other
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hand, for mutual funds, a large number of studies investigate the differences between retail

and institutional investors. Schmidt et al. (2016) document that institutional investors be-

have more strategically than retail investors during the 2008 financial crisis. Edelen et al.

(2016) highlight that institutional ownership generates more market anomalies. Foster and

Warren (2016) report that institutional investors use different fund selection criteria than

retail investors. In the literature, although considerable attentions are paid to fund clients’

heterogeneity, researchers compare rarely different motivations in fund investing. We con-

trast value investors to liquidity investors and link this difference to the investing horizons.

In a recent investigation, Christoffersen and Xu (2017) argues that the loss of "sensitive" in-

vestors would modify one fund’s return-flow relation. We show that the long-term investors

are these "sensitive" ones.

Our paper is closely related to Johnson (2004). We continue his study on how fund

clients’ investing horizons influence the liquidity risk and we extend it in three major di-

rections. Firstly, we collect a more diversified sample containing various investor types and

fund classes, whereas Johnson investigates only equity funds and retail investors. However,

previous studies highlight that investor’s category and fund asset class have the significant

predictive power on investor’s behaviour. For instance, Ben-Rephael et al. (2017) show

that institutional investors carry more attentions on performance monitoring than retail

investors. Chen et al. (2010)’s theory predicts that investors behave differently in illiquid

funds than in the liquid funds. Therefore, it is necessary to examine a more diversified

sample than Johnson’s. Secondly, our tests examine the dynamic aspect of redemption be-

haviour, while Johnson focus more on the static prediction of investing horizons at client

account’s opening. Finally, Johnson analyses the difference in liquidity consumptions of

long-term and short-term investors and we complete his study by comparing factors sensi-

tivities of these two groups. Our study provides a more useful practical guidance for fund

liquidity management. A fund manager with a diversified client-base should understand the

heterogeneity among investors and monitor the liquidity risk continuously when economic

conditions evolve.

We organize the remainder of this paper as follows. Section I describes the database

in which we compute the surviving times and give their preliminary statistics. In Section

II we introduce the survival model and its estimation approaches. Then we develop our

hypothesis about how and why investors redeem in Section III. Section IV presents the

economic determinants of the investing horizon. Section V compares the long-term investors

to short-term investors. Then we check the robustness of our tests and we conclude at the

last section.
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3.1 Data

3.1.1 Summary statistics

Our investigation employs a comprehensive data source: the client record of a non-load

French fund company. In 2017, the company manages six billion euros in around 50 funds

with 128 share classes. It is affiliated to two insurance companies. However, the fund

company has an independent management team and its funds are open freely to all investors,

either the ones belong to the two parent families or ones from the outside. The fee structure

follows industry standards. The company offers a large range of fund classes, such as equity,

fixed-income, diversified or money market, and its investors come from different activity

sectors, such as banks, insurance companies, retail investors, FoFs, family offices and pension

funds. This diversity of the sample makes our results enough generalized, even our sample

contains only one fund company.

The fund company transferred to us the electronic copy of its client transaction’s record

from January 1997 to July 2017. The micro-transaction data records each individual trade

where a client purchases or redeems his fund share and contains elementary information of

each trade: (1) the date; (2) the fund liquidation price NAV, representing Net Asset Value;

(3) the client identity; (4) the client’s activity sector; (5) the amount of trade; (6) the fund

(share-class) ISIN code. For example, we can identify that: on December 15th 2011, client

number 888 from the insurance sector, purchased 5 000 euros of a fund whose share class

ISIN is 77896521 2.

Table 3.1 displays the summary statistics for our fund sample. Since the sample covers a

long period of more than 20 years, we present statistics year by year to see data’s evolution.

Over the sample period, 6172 days are opened for transactions, out of 8776 calender days.

Within this time, the company has been through three financial crisis respectively in 2001,

2008 and 2011. The company manages less funds in the early days and the fund number

starts to increase strongly since 2010. The number of clients increased significantly from

121 in 2004 to 290 in 2006 and stays stable around 300 after. The number here is only

the number of client accounts, however, the total number of clients is larger than it for

two reasons: (1) some investors come back after the account closure; (2) the company uses

sometimes an old account identity for new investors. Clients’ transaction volume follows

the same trend: after an increase started in 2004, it remains stable after 2006. We observe

that the trade number also follows this dynamic. Concerning to clients’ category, before

2See the institutional background of mutual fund investing in Chapiter 1.
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2001, the companies’ client-base contains only five to six sectors. Thereafter, the client-base

become more diversified and now it contains more than 10 sectors.
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Table 3.1: Summary statistics for the fund sample (one company)

Fund before 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 After Total

Fund number 6 8 10 13 18 18 21 26 23 30 35 35 44 63 64 70 72 79 86 82 128
Client number 23 25 30 34 86 98 121 230 290 306 306 300 290 360 331 326 324 339 342 311 4491
Trade number 3032 4791 7726 9258 11561 16079 16407 21146 27024 25163 27768 21939 20753 25699 30626 30860 29924 30057 28195 23099 413422
Purchase 1548 2546 4171 4992 6221 8790 8550 10787 14457 13151 12285 9554 10122 13377 15738 14913 14706 14424 13463 10805 205900
Redemption 1484 2245 3555 4266 5340 7289 7857 10359 12567 12012 15483 12385 10631 12322 14888 15947 15218 15633 14732 12294 207522
Date 251 251 273 302 306 304 305 309 278 253 253 256 298 310 308 310 308 305 306 306 6043
Sector 5 5 5 5 10 10 11 12 12 12 13 13 12 13 13 13 13 12 14 13 220
Share 6 8 10 13 18 18 21 26 24 31 36 36 46 67 71 77 82 90 102 99 886

This table presents summary statistics for the fund sample. The data are provided by one French non-load fund company and the sample covers all its clients’ micro-transactions over a 20-year period, from 1997
to 2017. We present statistics year by year. In this table, "Fund number" is the number of fund share classes appearing in the sample during each year. "Clients number" presents the number of clients who have
executed transactions, "Sector" shows number of investor categories, "Share" indicates the number of share classes. "Trade number" refers to the number of transactions executed. We present thereafter "Purchase" and
"Redemption" separately. "Sector" is the number of client sectors.
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Being compared to the traditional mutual fund databases, such as Morningstar Direct

and LIPPER, which record only fund level information, our data provide an additional

possibility to examine transactions at the individual level. We present descriptive statistics

for the micro-transactions in Table 3.2. Most investors invest in a small number of funds

over the sample period, except for some clients invest in much more funds: the last quartile

value of "Number of funds" is 56. Inflows and outflows are symmetric, according to the

trade sizes. The average size of individual trade is larger than 2 million euros. However,

this statistic is not representative since the calculation is strongly affected by some extreme

observations. Then we calculate the inter-trade durations. The average duration between

two trades is 100 days. The inflows’ durations are shorter, 93 days on average, than outflows’

average, 113 days. Both in- and out- durations are highly dispersed. The most frequent

investor trades on a daily basis and the most patient one has stayed in the fund for years (1

726 days). We calculate the individual holding period returns as the average NAV return

of each holding period. On average, investors realize a 0.0049% daily return. This average

measure is taken after we drop the extreme situations, i.e. the returns below 3th percentile

and above 98th percentile. However, when the extreme returns are included, investors might

earn 1.45% or lose 1.64% in a single day. The extreme situations are unreported. The large

dispersion in statistics above suggests that investors are highly heterogeneous, and hence

we need to consider their different characteristics in our study.
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Table 3.2: Summary statistics for micro-transactions

Variables Mean Variance Q1 Q2 Q3 Q4 Q5
Number of funds 5.20 35.13 1.00 1.00 3.00 7.00 56.00
Trade size 2.67 M 74.68 B 588.69 133 303.95 489 697.40 1.55 M 100.06 B
–In size 2.86 M 81.48 B 504.90 140 027.20 520 636 1.71 M 100.08 B
–Out size 2.93 M 1 102 012 B 464.00 0.11 M 0.49 M 1.50 M 149.97 B
Trade duration 100.74 63 396.18 0 2.60 47.90 130.26 1 726.06
–In duration 93.82 69 173.47 0 1.25 35.41 148.77 2 409.50
–Out duration 114. 90 9 802.28 0 3.05 51.25 157.92 2 147.00
Average holding period return 0.0049% 0.0012% -0.0035% 0.00% 0.00015% 0.00073% 0.0062%

This table presents summary statistics for individual investors’ trades. "Number of funds" indicates how many funds each investor holds during the sample period.
"Trade size" is the average amount of transactions. We then present the size of purchases ("In") and redemptions ("Out") separately in the following lines. M
stands for million and B stands for billion. "Trade duration" refers to the average duration between two trades for each investor. The purchase and redemption
sub-samples are given after. Durations are measured in calender days. "Holding period return" is the individual holding return of each fund investment average
holding return. This average return measure is taken after we drop the extreme situations, i.e. the returns below 3th percentile and above 98th percentile.
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3.1.2 Preliminary survival analysis

Among the various patterns of individual transactions, our main focus the individual in-

vesting duration in mutual funds. To differ it from the aforementioned inter-trade duration,

we label the investing duration as the "surviving time". The term "surviving" comes from

the econometric method "survival model" which we use. We calculate the surviving time

as the difference between the initial purchase and the final redemption of each investor. We

could identify the initial purchase because before this trade the account inventory was 0.

Similarly, we identify the final closure as the redemption which clears the account inventory

back to 0.

Table 3.3 gives the statistics for our preliminary study on the surviving times. We first

show the full sample and then we split our data into sub-samples for investor sectors in

Panel A and asset classes in Panel B3. The average surviving time of the full sample is 330

days. However, the surviving time can be extreme long, such as 7 287 days, or extremely

short, such 1 day, in some situations. The average fund share of an individual investor

is only 0.02% of the fund’s AUM. It implies that funds in our sample have the diversified

investor bases: an individual investor does not represent the significant portion in the fund.

During the whole investment horizon, investors make 30.32 intermediary trades on average.

It indicates that investors adjust their fund shares over their surviving periods. However,

we do not study these intermediary transactions in this chapter.

In Panel A we present 5 representative sectors: the private banking clients, the insurance

company, the corporate firm, the mutual insurance and the fund of funds (FoFs). Private

banking clients are "patient" investors: they stay in mutual funds 2 times longer than the

average, however, they execute the same number of intermediary transactions. On the

contrary, FoFs are less patient clients. They stay in mutual funds for only 97 days, which is

lower than a third of the full sample average. Surviving times of the rest three sectors are

more closed to the average level: insurance companies stay for slightly longer than one year,

corporate firms and mutual insurances stay for slightly shorter than one year. The divergence

exists not only in their surviving times but also their average holding returns. Among these

five sectors, private banks and corporate firms make the largest profit in mutual funds.

They achieve respectively 0.04% and 0.05% daily average returns, which are about as twice

higher as other sectors’ return (0.02%). Furthermore, corporate firm’s investment represent

the largest portion in a fund’s client base. On average, their investments represent 1.06%

of fund’s AUM, whereas this number in other sectors is only negligible. All sectors make

3There are 16 sectors and 6 asset classes, as presented in Table 3.1. However, we choose only 6 repre-
sentative sectors and 3 asset classes here. Other sub-samples are too small to provide reliable statistics.
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around 30 intermediary transactions during their surviving time, except for the insurance

sector which trades a half less.

In Panel B we show the sub-sample statistics for three fund class sub-samples. Investors

in money market funds have the shortest investment horizons, 91 days on average. It

might be explained by the fact that investors consider these funds as short-term liquidity

management tools, hence they do not take the long-term perspective in these funds. The

class "absolute performance" contains the funds managed 100% by the active strategies

and thus they do not follow any benchmark. Most of investors stay in these funds longer

than 1 year. The average surviving time in fixed income funds is only 393 days which is

a potential risk for the fund management as many fixed income securities are relatively

illiquid. Investors earn a 0.04% average daily return in fixed income funds. In other two

fund classes, the average daily return is much lower. Respect to the investing size at account

opening, fixed income funds receive the largest client. The average size reaches to 0.04%.

Individual transaction sizes in other two classes are smaller. It implies that fixed income

funds have the least diversified investor base. In average, investors make 34.44 intermediary

trades during their survival times in money market funds. This number is much higher than

ones in other two fund classes.

Through this preliminary analysis, we find that surviving time varies in different sub-

samples. It seems to be linked to different characteristics such as the investor sector and

the asset class. Moreover, fund return might also have impacts on investors’ decisions. This

gives us the motivation to identify the factors explaining the difference in surviving times.
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Table 3.3: Preliminary analysis of surviving times

surviving time Quantiles

Mean Variance 1 2 3 4 5 Holding return Opening size Trade number

Full sample 330 451 393 1 2 28 354 7 287 0.01% 0.02% 30.32
Panel A Sectors:

Private bank 707 1 027 713 1 24 254 1 024 5 578 0.04% 0.02% 30.42
Insurance 575 597 630 1 53 251 828 4 712 0.0014% 0.02% 16.50
Corporate firm 253 2 424 464 1 3 87 328 3 746 0.05% 1.06% 33.43
Mutual insurance 271 297 571 1 2 36 321 6 544 0.02% 2.04% 29.91
FoF 97 139 312 1 2 4 24 7 287 0.01% 0.01% 29.61
Panel B Asset Classes:

Fixed income 393 344 788 1 5 186 509 5 908 0.001% 0.04% 7.03
Money market 91 87 331 1 2 6 44 7 287 0.0005% 0.01% 34.44
Absolute performance 450 473 923 1 24 237 627 6 606 -0.005% 0.0001% 5.13

This table presents the descriptive statistics for the surviving times. The surviving time stands for individual investing horizon which counts the the number of
calender days between the initial purchase and the account closure for each individual investor. We list their mean, variance and five quartile values. Then we
calculate the holding return which is the log-difference between the NAV value at the purchase and at the closure. We convert all returns to the daily basis for
comparison purpose. "Opening size" is the investor’s initial inventory divided by fund’s AUM. "Trade number" is the number of intermediary trades during each
survival period. We use it as an indicator of trade frequency. We start by showing the full sample statistics on the top, then we give information for representative
client sectors in Panel A and asset classes in Panel B.
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3.2 Empirical method

3.2.1 Cox proportional hazard rate model

We adopt the "Survival Model" which is a standard choice to study the duration-type data in

the literature. This approach is widely used in the financial modelling for various topics such

as the default risk assessment (see, Duffie et al. 2009), hedged fund failures analysis (e.g.,

Darolles et al. 2013, Liang and Park 2010), bank distress prediction (Cox et al. 2017), and

also mutual fund redemption examination (see, Johnson 2004 and Ivkovich and Weisbenner

2008).

We first introduce several key notations. We use i to index the individual investor and

hence the random variable Ti represents the surviving time of investor i. Accordingly, the

survival function Si(t) = P(Ti > t) gives the probability that this investor survives (stays

in the fund) still after time t. It is more convenient to study the survival probability by

identifying its complement, the hazard rate hi(t), which specifies the instantaneous rate of

redemption of investor i at time t, conditional on the fact that investor survives till the time

t. More formally, it is defined as:

hi(t) = lim
∆t→0

[(t ≤ Ti < t+∆t)|Ti ≥ t]

∆t
(2-1)

This hazard rate is equivalent to the exit rate, the account closure probability or the

redemption intensity. In the rest of paper, we use all these equivalent terms to indicate this

conditional probability.

We follow Cox (1972) to introduce the vector of economic factors Xi,t = {x1
i,t, x

2
i,t, x

3
i,t...x

j
i,t}

with length j to explain the redemption intensity as:

hi(t) = h0(t)e
X′

i,t
β (2-2)

Where the i represents the individual investor, t represents the observation date and j

indicates the explanatory factor. Each factor takes value for i and t fixed. For instance,

x2
i=1,t=6 stands for the value of x2 for investor 1 at the date 6. h0(t) is the baseline hazard

rate. It is the redemption rate when all factors are 0. We give its formal definition in the

end of this sub-section where we explain the estimation method. X ′
i,t denotes the transpose

of the variable vector and β is the vector of the factor loadings with the same length. We

can write X ′
i,tβ in a linear form:
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X ′
i,tβ = β1x1

i,t + β2x2
i,t + β3x3

i,t + β4x4
i,t...+ βjxj

i,t (2-3)

We need to clarify that the model we choose explains only the cross-sectional dispersion

among surviving times. Although there is a time index, the estimation approach makes

restraint assumptions about the relation between h0(t) and t. The time series statistical are

not studied in this paper 4.

Equation (2.2) shows that the redemption rate of investor i at time t as the product

of: (a) a baseline intensity h0(t); (b) the factor impact eX
′
i,t

β. We follow the literature to

call these factors as covariates. They add multiplicative effects to the baseline hazard rate.

Hence people call this model as "Cox Proportional Hazard Rate Model". Conventionally,

people rescale all covariates to ensure they are centred at 0. By doing so, h0(t) becomes the

average redemption rate at the time t (see, e.g., Liang and Park 2010).

Under this approach, we do not interpret factor sensitivity β directly. Instead, we study

how explanatory factors drive the risk probability hi(t) away from the baseline rate h0(t).

We define the hazard ratio for the factor xj as:

HR =
h0(t)e

βj

h0(t)e0
= eβ

j

(2-4)

If a hazard ratio is greater than one, the factor increases the closure risk since it is associated

to a higher redemption intensity than that of the baseline level. Similarly, if a hazard ratio

is less than one, the fund account becomes less risky because it is associated with lower

redemption intensity, relative to the average account. In fact, only the sign of β, rather than

its value, is directly informational: the positive sign for risk increasing and the negative sign

for risk decreasing. For example, if the redemption intensity has a sensitivity β = 0.784

to one factor, the closure risk becomes larger since investor’s exit probability increases by

e0.784 − 1 = 119.02%. Or, on the contrary, if another factor has a β of -0.656, it reduces the

liquidity risk since the closure rate is decreased by 1− e−0.656 = 48.107%.

We keep the semi-parametric approach used by Johnson (2004) to estimate the model.

Under this approach, a mild assumption about the baseline hazard rate is made. We first

4There are several alternative methods to study the time series properties of survival rate. (1) when
we suppose log{h(t)} is a constant c, the surviving time follows an exponential distribution with density
p(t) = ve−ct. In this case, the redemption rate is constant. Obviously, it is not consistent with our data.
(2) We might let log{h(t)} increasing linearly with time, log{h(t) = c + ρt. In this case, the hazard rate
follows a Gompertz distribution. (3) When log{h(t)} = c + ρlog(t), it leads a Weibull distribution of the
hazard rate. These three approaches focus more on the time series properties of redemption intensities.
They might serve as the reduced form forecasting tool. However, there is an inconvenience is that these
methods do not identify the factors which affect the hazard rate.
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subdivide time into reasonably small intervals and then we assume that h0(t) is constant in

each interval but it increases over time. This assumption leads the hazard rate to follow a

piece-wise constant exponential distribution and the survival rate decreases naturally with

time. It is consistent with the fact that the longer an investor stays in the fund, the more

possible she/he would exit.

The semi-parametric approach is chosen since it fits better our data than two alternatives,

parametric approach and non-parametric approach. In parametric approach, people assume

an explicit form for h0(t), such as a constant. This assumption ignores the high heterogeneity

in the data. In non-parametric approach, people focus only on factor sensitivities (X ′
i,tβ)

and leaves the h0(t) completely unspecified. It would be complicate for us to compare the

behaviours of different investors 5.

In this paper, we keep this semi-parametric approach consistently for all regression tests

and robustness checks. The model first assumes the benchmark redemption rate for each

time interval, then it highlights how factors drive the hazard rate away. If a factor indicates

a characteristic of the fund investing, such as the asset class, it shows how this type of

investment differ from others. Or, if a factor is an economic variable, such as the market

return, its coefficient shows how investors interpret this economic condition. We give the

description of all variables in the next sub-section.

3.2.2 Presentation of covariates

In Table 3.4, we present all variables being used in our tests. We follow the econometric

literature to call these variables as "covariates". Some of them are static factors which are

collected when the investors open their accounts. They indicate characteristics of investors

or funds and their values stay constant thereafter. On the contrary, other covariates are

dynamic variables which might evolve over time and we could not forecast them at account

opening. We use the term "Pre-Mature Closure Risk" to represent the situation where

some dynamic variables lead investors to exit the fund early than predicted. We put similar

covariates into a panel for a better presentation.

Panel A displays the return-related variables. We use various different return metrics,

which provide richer information on the investor behaviour than the previous literature

which often uses only one single return measure. We first contrast the individual holding

return to the fund return. The individual holding return Rholding is computed as the log-

difference between the fund NAV at each account opening and the actual NAV, rescaled

5See the discussion in Section 3 of Ivkovich and Weisbenner (2008) for the comparison of three estimation
methods.
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to the annual basis . Investors in a same fund might achieve different holding returns.

Then, we compute the fund return, which is identical for all investors in the same fund,

in different horizons: RDaily is the return of fund in the day before the observation date;

Rweekly is the average return during the week before each account closure; RMonthly is the

average return during the previous month; Lastly RQuanterly is the average return during the

previous quarter. We have checked the correlation of these four returns, which is weak and

would not generate the co-linearity problem. The previous mutual fund research does not

investigate returns in different horizons. However, studies on the household finance indicate

that returns in different horizons might have different impacts on investors’ decisions (see,

Grinbatt and Keloharju (2001) for the equity market). We further highlight whether a daily

return is higher than 10% or lower than -10%. We label these returns as "Extreme-Gain"

and "Extreme-Loss". The behavioural finance theory documents that investors may be

irrational facing extreme returns.

Table 3.4: Covariates’ presentation (for the survival analysis)

Variable Type Description/calculation
Panel A: return covariates:
Rholding Dynamic The individual holding period (Nav-)return
Rdaily Dynamic Daily fund (Nav-)return
Rweekly Dynamic Weekly average fund (Nav-)return
Rmonthly Dynamic Monthly average fund (Nav-)return
Rquarterly Dynamic Quarterly average fund (Nav-)return
Extreme-Gain Dynamic Dummy: if the daily return is higher than 10%
Extreme-Loss Dynamic Dummy: if the daily return is worse than -10%
Panel B: time controls:
Dec Static Dummy: the month December
Q4 Static Dummy: the fourth quarter
Period 1 Static Dummy: the period before the 2000.12.31
Period 2 Static Dummy: the period between the 2002.01.01 and the 2008.06.30
Period 3 Static Dummy: the period from the 2009.01.01 to the 2011.04.30
Period 4 Static Dummy: the period from the 2011.12.31 to the 2014.12.31
Crisis 2001 Static Dummy: the period from the 2001.01.01 to the 2001.12.31
Crisis 2008 Static Dummy: the period from the 2008.06.30 to the 2008.12.31
Crisis 2001 Static Dummy: the period from the 2011.05.03 to the 2011.12.30
Panel C: other controls:
Size Static The initial purchase amount of the investor
Trade frequency Dynamic Number of trades divided by the surviving time
Variance Dynamic Monthly variance of fund returns
Net previous flow Dynamic The net fund flow in the previous day
Panel D: macro controls:
Global activity Dynamic The total number of trades in the fund company
Short term rate Dynamic 3-month french benchmark rate (Euribor)
Rate spread Dynamic The bid-ask spread of the short-term rate
Market return Dynamic The return of MSCI equity index

(continued)

The table above is the 1st part of Table 4. The second part is in the next page.
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continued-Table 3.4

Variable Type Description/calculation
Panel E: fund asset class:
Money Market Static Dummy: money market funds
Fixed Income Static Dummy: fixed income funds
Absolute Performance Static Dummy: funds adopted the pure alpha strategy
Panel F: investor category:
Bankown Static Dummy: bank investors
Bankprivate Static Dummy: banks’ "private wealth management" client
Insurance Static Dummy: insurance companies
Corporate Static Dummy: corporate firms
Mutual Static Dummy: mutual insurance
FoF Static Dummy: fund of funds

This table lists all covariates used in this paper. Most variables are provides by the fund company, except
for the macroeconomic variables which we collect from the Datastream. We list the name of each covariate
in the first column and we indicate either the variable is static or dynamic in the second column. "Static"
shows that the variable is constant during the surviving time. The "Dynamic" type indicates that the
variables evolve over time. We give a brief description in the last column.

We present the variables to control for the time effect in Panel B. We split the whole

sample period into multiple parts since our data cover a long period over 20 years. "Period

1" represents periods before the 31th December 2000, "Period 2" is the period from the

1st January 2002 to the 30th June 2008, "Period 3" is from the 1st January 2009 to the

30th April 2011, and "Period 4" lays from the 31th December 2011 to the 31th December

2014. Under this specification, we consider the period after the the 31th December 2014

as our benchmark. The coefficients of these 4 period dummies would show how investors

behave before, being compared to the benchmark period. In this approach, four periods are

approximately separated by three recent financial crisis. We consider after each crisis, the

global activity level of investors would change.

Next, we indicate weather an account was closed during the crisis. Dummy variables

Crisis2001, Crisis2008 and Crisis2011 represent the periods during the three recent past

financial crisis. The literature argues that the method to choose the crisis period have an

impact on research results (e.g. Dungey et al. 2015) and it is difficult to define the days

where the crisis were happening. In our paper, we use only a simple approximation. We

consider: the full year of 2001 is the period of the first crisis; from the 1st July 2008 to the

31st December 2008, the second crisis was happening; the third crisis covers the period from

the 1st June 2011 to the 31 December 2011. After, we also control the end-of-year effects.

"Dec" shows if a trade takes place in December. This specific month’s observations might

be biased by tax issues. "Q4" is the fourth quarter of the year. Previous literature indicates

that at end of year, investors’ risk aversion strongly increase (see, Ben-Rephael et al. 2012)

and hence they might change their behaviour.
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Panel C gives other control variables. "Size" is the trade amount. We rescale the money

value into the percentage of the fund AUM. The common knowledge suggests that investors

with large amount have more "skin in the game". Therefore they should make more efforts

to monitor the fund performance. "Trade frequency" is the number of trades each investor

executes divided by his total surviving time. "Variance" is the monthly variance of the

fund daily returns. "Net previous flow" is the net fund flow at the day before the account

closure. We use this variable to control for the situation where investors follow other to exit

the fund.

Panel D lists the variables which we use to control for the macroeconomic conditions.

The variable "Global activity" is the total daily number of clients’ transactions that the fund

company receives. It controls for the overall activity level of fund investors. The covariate

"Short term rate" is the the French three month reference interest rate, the Euribor. We

use this rate as a proxy for the funding cost which could impact investors’ redemptions.

Then, "Rate spread" is the bid-ask spread for the previous interest rate. We use it as an

approximation for the market liquidity level. "Market return" is the return of the MSCI

equity index and it shows the market evolution. We download these three variables from

Datastream.

In Panel E, we present dummy variables to identify weather a fund is a money market

fund, fixed income fund or "absolute performance" funds. Investors in the rest of funds,

such as equity funds or diversified funds, have similar surviving times, thus we consider that

them have the "benchmark" surviving times. The model shows whether investors in other

funds lengthen or shorten their surviving times, being compared to the benchmark level.

Similarly, we show some investor sectors in Panel F: "Bankown" indicates if the investor

is a bank; "Bankprivate" indicates if the investor is a private banking client; "Insurance" is

the normal insurance company; "Mutual" represents the mutual insurance company. The

normal insurance company issues more life insurance products and the mutual insurance

company issues more short term products, as healthcare insurance. "Corporate" stands for

corporate firms and "FoF" indicates investor is a fund of funds.

3.3 Hypotheses on investor’s behaviour

We are interested in three research questions regarding the fund investor’s behaviour. Our

first concern is to investigate how a fund with diversified client-base differs from a fund

with single client category. In the previous studies on mutual funds, Johnson (2004) and

Ivkovich and Weisbenner (2008) study only retail investors, Dahlquist et al. (2017) examine
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only pension participants. However, the modern delegated asset management requires the

fund manager to receive different types of investors. We wonder whether investor’s type has

the impacts on their behaviours, hence our first hypothesis is:

Hypothesis 1: The surviving time is linked to investor’s activity sector. (H1).

We include six aforementioned sector dummies in our test. These sectors are chosen

since they represent an important source of fund companies’ client base and the preliminary

analysis in Section 1 shows these sectors deviate their surviving times from the average level

(c.f. Table 3.3). The others sectors in our sample are considered to have the benchmark

surviving time. If we obtain a significant positive sector coefficient, this sector has a shorter

surviving time than average, whereas a positive coefficient indicates a longer surviving time.

If the coefficient is not significant, there is no sector effect.

We are expected to observe significant coefficients at least in some sectors. It implies that

a diversified client-base needs to be managed differently than a simple client-base and the

fund manager is required to monitor investors at the individual level. Otherwise, investors

behave homogeneously and there is no need to distinguish them.

The (H1) focus on the static side of investor behaviour, then in the second step, we turn

to the dynamic side. An investor’s surviving time should not only be determined by his

type, the evolved economic conditions would also have an impact. Among various economic

variables, we choose to test the effect of the return on fund investing since the return is

the most direct information that investors receive. Thus our second question is how fund

investors interpret previous returns.

According to the studies of Ben-Rephael et al. (2012) and Kamstra et al. (2017), fund

investors might exhibit a time-varying behaviour. Especially, in the fourth quarter of the

year, they are more likely to exhibit the loss aversion. This might be explained by several

facts: (1) securities held by the mutual funds could show a seasonality in their returns,

hence investors react accordingly to modify their behaviours. (2) fund clients wish to show

a good realized return in the annual reporting. To this end, they might adjust their portfolio

at the end of the year. (3) sentiment factors might affect investors’ decisions and they lead

a high loss aversion in the fourth quarter of the year. In line with these facts, we hold the

opinion that the return-redemption relationship might also be time-varying. Therefore, we

propose our second hypothesis as:

Hypothesis 2: Investors do not react to the previous return in the uniformly

way (H2).

The relationship between the return and the redemption propensity reveals investor’s

rationality. According to the traditional fund investor theories such as Berk and Green
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(2004) and Brown and Wu (2016), rational investors should interpret positively the previous

return since the good return is a sign of the superior ability of the fund manager. Hence,

they should exit the worse-performed fund and keep the better-performed funds. On the

contrary, the behavioural finance theory indicates a different return-redemption relationship.

The previous research documents that fund investors might exhibit the loss aversion, a

commonly committed emotional error (see, Bailey et al. 2011 and Odean 1999)6. With this

bias, investors exhibit an extremely high level of risk aversion and they feel bad to realize

the loss by selling a bad-performed security. Therefore, if a security has delivered a bad

performance, investors prefer to hold it than sell it. In contrast, when a security performs

well, they sell it quickly to avoid that the performance worsens in the future. Therefore, the

return-redemption relationship would exhibit a positive sign in this situation.

Combining with the evidence on investors’ seasonal behaviour in Ben-Rephael et al.

(2012); Kamstra et al. (2017), we assume that their loss aversion is most likely to appear

in the last quarter of the year. Therefore, we are expected to obtain the positive return-

redemption relation in the fourth quarter when investors are most likely to exhibit this

behavioural bias. However, during other three quarters, we assume that investors behave

rationally and the return-redemption relationship switches to negative.

Investors’ reactions to dynamic factors introduce the "pre-mature redemption risk", i.e.

fund clients shorten their surviving times under certain economic contexts and exit the fund

earlier then the asset manager has expected. It implies that the fund’s liquidity risk exposure

evolves with different economic conditions. Over a period of bad economic circumstance,

the fund manager needs to be prepared to clients’ reactions. Accordingly, we finish our

analysis by testing which group of fund investors brings the higher pre-mature redemption

risk.

Our last test concerns to the distinction between the long-term investors and short-term

investors. Johnson (2004) shows how to identify whether an investor is a long-term or short-

term one, by observing his/her characteristics. In the line of his study, we take a further step

to examine the differences between these two investor groups. We intend to identify which

investors are more sensitive to economic conditions, because the more sensitive investors

bring the higher liquidity risk. Therefore, the fund manager should make more efforts to

monitor "sensitive" investors.

The differences between LT and ST investors are generated by their distinguished in-

vesting motivations. We argue that investors invest in mutual funds for two principal mo-

6In mutual fund literature, some authors also denote this behaviour bias as the "disposition effect" (see,
e.g., Chang et al. (2016)).
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tivations: 1, the fund manager has an ability to achieve a superior return; 2, mutual funds’

open-end structure satisfies random liquidity needs of investors. Investors who focus on the

value appreciation (motivation 1) should stay longer than others, since the long horizons

allow them to accumulate profits. In contrast, short-term investors use mutual funds as

cash management tool (motivation 2). These "liquidity traders" redeem in response of their

individual liquidity needs, which are difficult to predict at the aggregated level. Therefore,

we propose our third hypothesis:

Hypothesis 3: Long-term investors’ behaviours are more sensitive to eco-

nomic conditions and more understandable. (H3).

We proceed our examination by dividing the data into long- and short-term sub-samples.

We then estimate the hazard rates of these two sub-samples and compare investors’ sensi-

tivities to different economic factors. If (H3) holds, we suppose to identify greater or more

significant sensitivities to covariates in the long-term sub-sample. Moreover, we expect to

find a higher R2 in the long-term sub-sample 7.

We start with examining the full sample to answer (H1) and (H2) in Section 4. Then, we

analyse long-term and short-term sub-samples separately in Section 5, since we are interested

in the distinction between them. This sub-samples study address our third research question.

3.4 Why investors redeem their fund shares?

In this section, we estimate Model (2-2) with all covariates presented in Section 3. This test

examines our hypotheses (H1) and (H2), and we present estimated coefficients in Table

3.5. We study all individual account closures of the fund company between the January 1st

1997 and the June 30th 2017. Each observation of surviving time is computed as the period

between a fund account’s opening and closure. We compute the percentile of surviving times

and we drop observations which exceed the 98th percentile, 3 722 days, and ones which are

shorter than the second percentile, 20 days. These observations are considered as outliers.
8 We end up with 7 912 observations. Among them, we observe 5 584 account closures.

Accounts which stay open at the end of observation period are censored. We present each

coefficient together with its significance level and its standard error. According to Equation

(2-4), coefficient’s value is not directly interpretable. Instead, we need to transform them

into the Hazard Ratio (HR) by taking their exponential values. In the bottom of the table,

7In the rest of the paper, we use LT to indicate long-term investors and ST for short-term investors.
8 However, even when we keep these observations in the sample, the major findings hold. We do not

present this additional test.
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we present some standard criteria for model’s quality such as R-square and Wald statistic.

Table 3.5: Cox proportional hazard rate model: full sample estimation

Conditional account closure probability:

hi(t) = lim∆t→0
[(t≤Ti<t+∆t)|Ti≥t]

∆t

(1) (2) (3)

A: Performance variables:
Rholding −0.927∗∗∗ −0.729∗∗∗ −0.690∗∗∗

(0.116) (0.123) (0.124)
Rdaily 0.605 0.840 −0.271

(0.928) (1.097) (1.054)
Rweekly −0.125 −0.321 0.747

(0.940) (1.105) (1.061)
Rmonthly 0.282 −0.008 0.390∗

(0.192) (0.202) (0.217)
Rquarterly −0.703∗∗∗ −0.591∗∗∗ −0.768∗∗∗

(0.100) (0.118) (0.123)
B: Return controls:
Q4×Rholding 0.933∗∗∗ 0.730∗∗∗ 0.694∗∗∗

(0.115) (0.123) (0.123)
Q4×Rquarterly 1.241∗∗∗ 1.236∗∗∗ 1.774∗∗∗

(0.171) (0.198) (0.286)
Q4 0.004 −0.018 −0.098∗∗∗

(0.035) (0.035) (0.035)
Dec×Rholding −1.005∗∗∗ −1.112∗∗∗ −1.441∗∗∗

(0.222) (0.248) (0.258)
Dec×Rmonthly −0.859∗∗∗ −0.673∗∗ −1.444∗∗∗

(0.247) (0.269) (0.345)
Dec −0.111∗∗∗ −0.159∗∗∗ −0.131∗∗∗

(0.042) (0.042) (0.043)
Exteme-gain −0.991∗∗∗ −0.607∗∗∗ −0.566∗∗∗

(0.082) (0.086) (0.086)
Exteme-loss −1.220∗∗∗ −0.904∗∗∗ −0.945∗∗∗

(0.137) (0.148) (0.159)
Extreme-gain × Q4 0.536∗∗∗ 0.753∗∗∗ 0.982∗∗∗

(0.189) (0.198) (0.199)
Extreme-loss × Q4 0.158 0.272 0.112

(0.253) (0.270) (0.285)

(continued)

The table above is the 1st part of Table 3.5. Other parts are in following pages.
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continued-Table 3.5

Conditional account closure probability:

hi(t) = lim∆t→0
[(t≤Ti<t+∆t)|Ti≥t]

∆t

(1) (2) (3)

C: Time controls:
Period 1 0.517∗∗∗ 0.065 −1.461∗∗∗

(0.064) (0.065) (0.093)
Period 2 −0.500∗∗∗ −0.211∗∗∗ −0.997∗∗∗

(0.046) (0.047) (0.056)
Period 3 −0.660∗∗∗ −0.457∗∗∗ −0.755∗∗∗

(0.051) (0.051) (0.053)
Period 4 −0.424∗∗∗ −0.292∗∗∗ −0.382∗∗∗

(0.048) (0.049) (0.049)
Crisis 2001 −0.218∗∗∗ −0.211∗∗∗ −1.100∗∗∗

(0.062) (0.062) (0.071)
Crisis 2008 −0.422∗∗∗ −0.147 −0.615∗∗∗

(0.092) (0.093) (0.095)
Crisis 2011 −0.559∗∗∗ −0.386∗∗∗ −0.647∗∗∗

(0.084) (0.084) (0.085)
D: Other controls:
Size −0.0002 0.001 0.001

(0.004) (0.005) (0.005)
Trade freuency −0.0004∗∗∗ −0.002∗∗∗ −0.001∗∗∗

(0.0001) (0.0001) (0.0001)
Variance 0.454∗∗∗ 0.387∗∗∗ 0.630∗∗∗

(0.101) (0.115) (0.124)
Net previous flow −0.548

(0.501)
E: Macroeconomic controls:
Global activity 0.00002∗∗∗

(0.00000)
Short term rate 0.278∗∗∗

(0.010)
Short term spread −0.849∗∗∗

(0.156)
Market return −0.0003∗∗∗

(0.00003)

(continued)

The table above is the 2nd part of Table 3.5. The final part is in the next page.

Chapter 3 Ran SUN 101



Liquidity Risk in the Universe of Open-End Funds

continued-Table 3.5

Conditional account closure probability:

hi(t) = lim∆t→0
[(t≤Ti<t+∆t)|Ti≥t]

∆t

(1) (2) (3)

G: Investor sector
Bankown −0.217∗∗∗ −0.271∗∗∗

(0.068) (0.068)
Bankprivate −0.121∗∗ −0.135∗∗

(0.059) (0.059)
Insurance −0.226∗∗∗ −0.234∗∗∗

(0.084) (0.084)
Corporate 0.284∗∗∗ 0.246∗∗∗

(0.080) (0.080)
Mutual 0.235∗∗∗ 0.213∗∗∗

(0.035) (0.035)
FoF 0.480∗∗∗ 0.507∗∗∗

(0.043) (0.043)
F: Asset class
Money Market 1.294∗∗∗ 1.111∗∗∗

(0.035) (0.037)
Fixed Income 0.265∗∗∗ 0.205∗∗∗

(0.048) (0.048)
Absolute performance 0.019 −0.108

(0.067) (0.067)

Observations 7,912 7,912 7,912
R2 0.153 0.361 0.420
Max. Possible R2 1.000 1.000 1.000
Log Likelihood -47,287.920 -46,172.880 -45,791.950
Wald Test 1,112.990∗∗∗ (df = 25) 3,330.450∗∗∗ (df = 34) 4,335.430∗∗∗ (df = 39)
LR Test 1,313.454∗∗∗ (df = 25) 3,543.534∗∗∗ (df = 34) 4,305.386∗∗∗ (df = 39)
Score (Logrank) Test 1,182.234∗∗∗ (df = 25) 3,843.898∗∗∗ (df = 34) 4,803.571∗∗∗ (df = 39)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In this table we present the survival analysis of the full investor sample. We adopt a semi-parametric approach to estimate
conditional probability of individual fund account closures. The sample covers all daily mutual funds of one French fund
company, from the 1st January 1997 to the 30 June 2017. Each "surviving time", the individual investor’s staying horizon in
fund, is computed as the duration between the initial purchasing and the final exit. The final exit is the redemption which
clears the fund account inventory. The accounts which are still open at the 30 June 2017 are censored. The baseline hazard
h0(t) is piece-wise constant and it represents the redemption intensity when all covariates take their average value. We use
standard approach to calculate modelling errors and coefficients’ significance level. We put related covariates in the same group
and present these groups in different panels. Panel A presents performance related covariates. Panel B shows control variables
for return metrics. Panel C shows control variables for the time effects. Panel D has other control variables. Panel E highlights
macro-economic factors. Panel F and G contribute to the fund and investor types.
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For ease of presentation, we use different panels to classify covariates as in the previous

section: Panel A presents performance related covariates, Panel B shows return control

variables, Panel C exhibits time control variables, Panel D lists other control variables,

Panel E highlights macroeconomic factors, Panel F and G display fund and investor types.

We test 3 different specifications of the hazard rate. Each column in Table 5 lists the result of

one specification. Specification (1) contains only the return measures and elementary control

variables (Panel A, B, C and D). Specification (2) includes additionally investor sectors and

fund asset classes (Panel F and G). Finally the last column is the full specification (3),

where we add the macro-economic shocks (Panel E).

We observe improvements of model fitting from Specification (1) to (3). Specification

(1)’s adjusted R-square is only 15%. Specification (3) improves this ratio by more than

twice (R2 =42%). Other statistical criteria, such as score test or Wald test, confirm the

improvements. We achieve the best improvement when we include the investor and fund

types. It implies that investor and fund characteristics explain a significant part of investor

behaviours. In the rest of this section, we discuss only the third specification of the model.

3.4.1 Sector effects on surviving times

We begin our investigation by testing how investor’s activity sector affect his/her redemption

decision. We estimate the effects of six sectors dummies and we report their coefficients in

Panel G of Table 3.5. We observe that coefficients of six sector dummies are all strongly

significant. This result is consistent with our hypothesis (H1). A major difference among

those sectors is that they have different levels of liquidity needs, i.e. their business activities

require cash outflows such as paying salaries, distributing dividends, or paying insurance

claims. Furthermore, we find that sectors with more short-term liquidity needs have shorter

surviving times and sectors without frequent liquidity needs have longer surviving times. It

suggests that the liquidity need is a plausible explanation for these strong sector effects.

Banks, private banking clients and insurance companies are found to have long surviv-

ing times. The Bankown dummy has a strongly significant and negative beta of -0.271.

According to Equation (2-4), being a bank investor decreases the redemption rate by

1− e−0.271 = 23.74%. This result is consistent with preliminary data description in Section

4.2.1: bankers’ surviving times are longer than average. Private banking clients have similar

behaviours, they stay in mutual funds in relative long horizons: BankPrivate dummy has a

beta value of -0.135. The last long-term sector is the insurance company. The beta asso-

ciated with the Insurance covariate is -0.23. These negative coefficients reveal that these
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three sectors have a lower redemption risk than the average level.

The other three sectors, corporate firms, FoFs and mutual insurances, stay for shorter

investing horizons. The beta of Corporate dummy is 0.246, which indicates that corporate

firms’ exit rate is e0.246 − 1 = 0.27 higher than the average level. The Mutual insurance

companies have the similar surviving time, "Mutual" dummy’s hazard ratio is e0.213 = 1.23.

The last sector, FoF has shortest surviving time. "FoF" investors increase their closure rates

by e0.507 − 1 = 66.03%. As the full sample average surviving time is 330 days, our model

predicts that a FoF’s survival time is around 330×(1−0.66) = 112 days, which is consistent

with our preliminary survival analysis in Table 3.3 in Section 4.1.2. These three sectors all

bring higher account closure risk than the benchmark level.

A highly possible interpretation of these significant sector effects is that different sectors

have the different levels of liquidity needs. Banks and private banking clients do not have

frequent short-term cash needs. Therefore, their capital in mutual funds could stay longer

than others. In contrast, corporate firms consume many short-term liquidities in order to

pay the salary, distribute dividends and repay short-term debts to their suppliers. These

cash needs increase corporate firm’s redemption rate. FoFs have the shortest surviving

times. a plausible explanation is that FoFs receive daily redemptions of their own clients,

which constraint their ability to invest in long horizons.

Moreover, we observe a notable distinction between two types of insurance companies.

The normal insurance companies stay in funds longer than other investors, however, mutual

insurance companies have shorter surviving times. We explain this difference by the fact

that these two insurance companies issue different insurance products and hence have dif-

ferent levels of liquidity needs. Traditionally, a normal insurance company offers long-term

products such as the life insurance. Hence it only needs to pay policy owners’ claims in

the long-term. On the contrary, the mutual insurance companies issue more shorter-term

products, such as the healthcare insurance. Their liquidity needs are more "urgent", thus

their surviving times in the mutual funds are shorten.

This test extends the study of Johnson (2004), where his data contain only retail investors

and equity funds. However, our data possess a higher diversity. It is worthy to generalize

Johnson’s findings in our diversified sample for several reasons. First, Johnson’s approach to

forecast surviving times is difficult to implement for institutional funds since he use various

retail-related co-variates, such as age, employment situation, and personal revenue (c.f.

Table 1 and Table 4 in Johnson (2004)). We could not find these variables for institutional

investors. Second, the literature suggests that institutional investors and retail investors

have different behaviours in mutual funds (see, Ben-Rephael et al. 2017), especially during
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the periods of massive redemptions (see, Schmidt et al. 2016). We highlight that the liquidity

need is an important factor for investors’ behaviour. This factor is related more to the

institutional investors, which all have different liability constraints. That’s why institutional

investors often use ALM ("Asset Liability Management") approach to manage this liquidity

constraint. Moreover, our analysis is more practical in use. Johnson’s approach requires the

manager to monitor his clients one by one and it would be time-consuming if a fund receives

a large number of clients. In contrast, we only require that fund manager to classify his

clients into different groups. This approach is more suitable than Johnson’s for funds with

the large client-base.

3.4.2 Time-varying rationality of fund clients

We continue our investigation by examining investors’ rationality through the return-redemption

relationship. A negative reaction to returns indicates that investors exhibit the loss aver-

sion behavioural bias, whereas a positive relationship reveals that investors are rational.

Previous studies (see, e.g., Kamstra et al. (2017)) document that fund investors have the

time-varying behaviour. Accordingly, we assume that investors are more likely to exhibit

the loss aversion in the last quarter of the year. Therefore, we isolate the fourth quarter of

year from other periods in our test. We present our regression results in Panel A and Panel

B of Table 3.5. We obtain a time-varying behaviour as we have expected in (H2): investors

are rational in first three quarters and the loss aversion presents in the fourth quarter.

In Panel A of Table 3.5, we first study the relationship between return variables and the

closure risk during normal periods: from quarter 1 to quarter 3. The relationship is strongly

significant and negative for the "individual holding returns". The covariate Rholding has a

hazard ratio of e−0.69 = 0.501. If there is a 1% increase in the holding return, the account

closure rate would be decreased by 1%×0.501 = 0.501%. It reveals that investors choose to

stay longer when their individual holding return is better.

We then study impacts of "fund returns" on redemption rates. Unlike the individual

holding return which are different among investors, the fund return is unique to all clients

in the same fund. We test fund returns in different horizons, from daily to quarterly. We

find that the effect of quarterly fund return, a coefficient of -0.768, is similar to what we

find for Rholding. On the contrary, other shorter horizons’ returns only have negligible effects

on redemption rates: Rdaily and Rweekly have insignificant betas and Rmonthly’s beta is only

weakly significant.

In the first three quarters of the year, there is a negative relationship between the
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performance and the redemption probability. It suggests that investor behave rationally

over these periods. They keep "winner" funds and sell "loser" funds. The relationship is

identical either we use the holding return or the quarterly fund return. But short-term

returns’ coefficients are less significant. This evidence differs form Grinbatt and Keloharju

(2001) where short-term returns have greater impacts on trade intensity than long-term

returns in the equity market. A plausible explanation for this difference is that investors

have different investing motivations in these two markets. In the equity market, investors

focus more on the short-term price appreciation. Hence the short-term returns have larger

impacts on trade decisions. However, in the mutual fund market, investors evaluate their

investments in longer horizons. Therefore, only long-term return affect investors’ decisions.

Panel B presents the return-redemption relation when we add control variables Q4,

Extreme − gain, Extreme − loss, and Dec. The first three covariates aim to identify the

loss aversion and we add the December month dummy to control for the tax effect. We find

the strong evidence on the loss aversion bias during the last quarter. Both Q4×Rholding and

Q4×Rquarterly have positive influences on the closure risk9. In the last quarter of the year,

a 1 % better individual holding return increases client’s exit rate by 1− e0.694×0.01 = 0.69%.

For the fund return, the Q4 × Rquarterly has a hazard ratio of e1.774 = 5.89 which is also

positive. These positive coefficients show that the rational investors begin to exhibit the loss

aversion bias at the end of the year. Combing with the results in the previous paragraph,

we confirm the (H2) which predicts a time-varying behaviour of investors.

Meanwhile, we do not observe the loss aversion in the December. During this month, the

return-redemption relationship switch back to negative. Dec×Rholding and Dec×Rquarterly

both have negative betas: -1.444 and -1.441. This result may be explained by the tax

issues. In December people calculate the annual tax amount based on realized gains or loss.

Investors avoid to realize profits because it triggers a large tax liability. Further, they might

also sell funds at loss to decrease taxes10.

We find that an extreme fund return triggers also the loss aversion. When the fund per-

formance is extremely good or bad, investors hesitate to sell. Hazard ratios for "Extreme-

gain" and "Extreme-loss" are both negative (-0.566 and -0.945). It indicates that the re-

demption intensity decreases under extreme scenarios. However, investors behave differently

in the last quarter of the year. "Extreme-gain ×Q4" has a strongly significant and positive

beta of 0.982. A possible explanation about this coefficient is that once investors achieve the

9The covariate Q4 has a significant negative impact on the hazard rate. It reveals that investors redeem
less during the fourth quarter.

10Selling a security at loss would offset the realized gains from other assets. This strategy is called "Tax
harvest".
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extremely good return they redeem immediately to take profit : they fear the return turns

to bad. However, we obtain an insignificant beta of "Extreme-loss ×Q4". We interpret this

"non-result" by the fact that investors do not know how to deal with extremely bad returns:

neither redeem nor hold seems to be a good choice.

This investigation adds to Johnson (2004) by highlighting the dynamic side of the re-

demption risk. In Johnson’s regression, he mainly uses the static covariates and he ignores

the fact that investors sometimes shorten their surviving times when economic conditions

evolve. Johnson includes only the daily return in his test and find a limited influence (cf.

Table 5 in Johnson (2004)). We show that Rdaily indeed has merely the negligible impact

on the hazard rate, however, the impact increases strongly for returns measured in longer

horizons, especially Rquarterly and Rholding. Furthermore, it is highly possible that there are

other dynamic factors which affect a investor’s decision. Hence this introduces the notion

of "pre-mature" redemption risk: investors exit the fund earlier than what we forecast, in

response of various economic conditions.

3.4.3 Other control variables

We complete the test by adding several control variables. We find that previous findings

about the liquidity needs and investor’s rationality hold after controlling for economic fac-

tors such as: the time effect (Panel C), the asset class (Panel F), macroeconomic conditions

(Panel E) and other transaction patterns (Panel D). Impacts of these covariates are straight-

forward hence we do not present all of them in the paper. We only explain details of two

important groups of control variables: the asset class and the time effect. Panel F shows

that the fund’s asset class has strong predictive power on investor’s surviving times. Besides,

the test on time effects (Panel C) shows us the evolution of investor’s behaviour during 20

years.

Panel F presents the coefficients of asset class. The effect of asset classes is consistent

with their liquidity level. Investors in money market funds have much shorter surviving times

than those in equity funds which have the benchmark surviving rate. The interpretation

is straightforward: they use these funds to manage their cash needs. Hence their investing

horizons are short. Fixed income investors stay in funds a little longer than the benchmark

funds. We explain this observation by the fact that fixed income funds invest in relatively

illiquid assets. Therefore, investors hold these funds in relatively longer horizons. At last, we

see no significant impact of funds following an "absolute performance" strategy: investors

stay in these funds as long as in the benchmark funds. This result might be explained by the
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fact that the "absolute performance" is a fund class which contains diversified management

strategies, in average, clients’ surviving times in this category are as long as the benchmark

level.

Panel C lists the coefficients for time effects. We separate the full sample into 4 periods:

Period 1 is before 2001 crisis, Period 2 is between 2001 crisis and 2008 crisis, Period 3 is

between 2008 crisis and 2011 crisis and Period 4 is after 2011 crisis but before the year 2015.

We consider the period after 2015 as the benchmark and the model shows how investors

traded differently before. We find negative sensitivities of the hazard rate to all 4 time

dummies, which indicate that the hazard rate decreases and the surviving time lengthens.

For example, the variable "Period 4" shows that, form 2008 to 2011, the redemption intensity

is lower than the benchmark level, all else being equal. The exit risk decreases by 1−e−0.382 =

31.75%. Furthermore, we find that, from period 4 to period 1, redemption rates become

more smaller11. These covariates show us a major tendency of investor’s transaction during

these 20 years: investors trade more frequently and their investing horizons have shorten.

This evidence conform to the statistics in Table 1: we observe that investors are more and

more active. They shorten their investing horizon since they are less "patient".

All three dummies for the crisis periods have significant negative impacts on the exit risk.

Covariates Crisis2001, Crisis2008 and Crisis2011 have hazard ratios of 0.332 (e−1.100),

0.540 (e−0.615) and 0.523 (e−0.647) respectively. Hazard ratios smaller than 1 indicate that

investors redeem less during crisis. There are several plausible explanations for this result.

First, many assets are undervalued during the crisis, thus investors consider it is not an

optimal moment to redeem. An alternative explanation is that three crisis happen before

our benchmark period (2015 to 2017), the investors were less active during those times.

In summary, this section examines how investors choose to redeem and exit the fund.

Their redemption probabilities are sensitive to both static and dynamic covariates. In-

vestors’ reaction to dynamic covariates indicates that the surviving times might evolve after

account opening. Those who shorten their surviving times bring an additional liquidity risk

to the fund. We refer this risk as the "pre-mature closure risk": investors exit fund

earlier than expected. The pre-mature closure forces the fund manager to sell illiquid assets

with a liquidity cost. To better monitor this liquidity problem, we ask the question which

investors bring the higher "pre-mature" closure risk and we address this question in the

next section.

11Beta values decrease: -0.382, -0.755, -0.997 and -1.461. → Hazard ratios decrease accordingly: 0.682,
0.470, 0.368 and 0.232. Smaller hazard ratios stand for lower redemption rates.
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3.5 Which investors bring the higher "pre-mature" re-

demption risk

In this section, we intend to identify which group of investors bring the higher "pre-mature"

closure risk. To this end, we split the full investors sample into two sub-samples with long-

term (LT) investors on one hand and short-term (ST) investors on the other one. We

then apply the same survival model (Model (1), Specification (3) of Table 3.5) to two sub-

samples and we compare the sub-samples’ sensitivities to dynamic covariates. According to

our hypothesis (H3), we are expected to observe that LT clients have higher sensitivities

to "value" factors such as investing returns and economic conditions. Moreover, (H3) also

suggests that LT sub-sample test would reach a higher R-square.

We choose one year, which equals to 250 trading days, or 360 calender days, as a natural

threshold to classify LT and ST investors. We further consider this threshold is suitable only

for moderately liquid fund class such as "equity", "diversified" and "absolute performance".

For fund classes which manage relatively illiquid assets, such as fixed income, convertible

debts and real asset, we increase this threshold by 100 days. On the contrary, for money

market funds, since they invest in highly liquid securities, we reduce this threshold to 60

days. Investors who stay in funds longer than the threshold horizon are seen as LT investors,

others are thought as ST investors12.

Table 3.6 presents the hazard rate estimations for two sub-samples. We report only

the covariates which show the divergences between LT and ST investors. The first column

repeats the results of the full sample in Section 3.4 for comparison purpose. The middle

column lists the covariate coefficients of the LT sub-sample and the last column shows

the ST sensitivities. There are 4 282 observations in the LT sub-sample and 3 630 in ST

observations. Accounts which still stay open after Mars 2017 are censored.

The R-square is 0.431 in LT sub-sample test. This ratio is twice large as the ST sub-

sample one ,0.223. The difference in R-square confirms one implication of (H3): ST in-

vestors are more "noisy", the model fits badly the ST sub-sample. We explain this finding

by the fact that shortly stayed clients redeem the fund share to satisfy their urgent cash

needs, which are random and difficult to forecast at the fund level. So the model has less

predictive power for the ST sub-sample.

Panel A shows the micro-economic13 covariates’ sensitivities. We observe that LT in-

12There are alternative methods to classify investors. We check the robustness of our test by using two
other criteria in Section 3.6.

13In Table 3.6, "micro-covariates" stand for the variables which relate to the fund. "Macro-covariates"
are factors which link to the macroeconomic conditions.
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vestors are more sensitive to these variables. LT sub-sample has a significant sensitivity of

-0.580 (hazard ratio equals to = e−0.580 = 0.559) to the holding returns, whereas the ST

investors have a weak and insignificant sensitivity. Two sub-samples have both negative

significant sensitivities to the quarterly fund return. However, this return-redemption rela-

tionship is stronger in LT sub-sample. Rquarterly has a hazard ratio of e−1.48 = 0.227, which

is nearly one third of ST’s hazard ratio (e−0.362 = 0.692)14. It suggests that LT investors

are more reactive to the fund performance than ST investors. This evidence confirms our

argument that LT investors are value-motivated and they make more efforts to monitor the

fund performance.

14When the hazard ratio is lower than one, a lower hazard ratio represents a stronger multiplicative effect
to the hazard rate.
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Table 3.6: Cox proportional hazard rate model: sub-sample tests comparison

Conditional account closure probability:

hi(t) = lim∆t→0
[(t≤Ti<t+∆t)|Ti≥t]

∆t

(Full) (LT) (ST)

A: Micro covariates:
Rholding −0.690∗∗∗ −0.580∗∗∗ −0.009

(0.124) (0.073) (0.009)
Rdaily −0.271 −1.17 0.766

(1.054) (1.239) (1.817)
Rquarterly −0.768∗∗∗ −1.480∗∗∗ −0.362∗∗

(0.123) (0.341) (0.130)
Dec −0.131∗∗∗ 0.347∗∗∗ −0.175

(0.043) (0.048) (0.005)
Variance 0.630∗∗∗ −4.818∗∗∗ 0.228∗

(0.124) (1.219) (0.126)
B: Macro covariates:
Short term rate 0.278∗∗∗ 0.478∗∗∗ 0.036∗

(0.010) (0.017) (0.019)
Market return −0.0003∗∗∗ −0.00005∗∗∗ −0.0001∗∗

(0.00003) (0.00004) (0.00004)
C: behavioural bias:
Rholding ×Q4 0.694∗∗∗ 0.498∗∗∗ −0.279

(0.123) (0.132) (0.543)
Extreme-gain × Q4 0.982∗∗∗ 0.808∗∗∗ 0.171

(0.199) (0.224) (0.493)

Observations 7,912 4,282 3,630
R2 0.420 0.431 0.223

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the comparison between LT and ST sub-sample tests. We estimate the semi-parametric
hazard rates in two sub-samples by the same model as the previous section. We present only the coefficients
which have significant divergences between 2 sub-samples and other covariates are not presented. As the
previous section, there are 39 covariates in the test. The first column "Full" repeats the estimation of the full
sample estimation for comparison purpose. The column "LT" shows the results of LT sub-sample, and the
column "ST" presents ST group. Panel A shows microeconomic covariates. Pane B presents macroeconomic
variables and Panel C reports the results for investors’ behavioural bias.
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We further find that LT investors redeem more in December. The covariate "Dec" has

a sensitivity of 0.347 in LT sub-sample. In contrast, December has no significant effect on

ST investors. This positive December sensitivities indicates that LT investors have more

tax-motivated redemptions than ST ones.

Surprisingly, we observe that LT sub-sample has a negative reaction to the fund variance

(-4.818). It implies that the increase in return variance decrease the redemption intensity.

On the contrary, this sensitivity is positive in ST sub-sample. A plausible explanation is that

LT investors exhibit a larger behavioural bias. When the fund return is less understandable,

LT investors hesitate to sell their fund share. On the other side, short-term investors react

more quickly to the increase of variance (positive coefficient 0.228). This reaction is more

rational than LT’s.

Panel C confirms our assumption on the behavioural bias. Covariates Rholding × Q4 and

Extreme− gain × Q4 both show how LT and ST investors diverge in the fourth quarter.

During this period, LT investors react positively to the holding return and the extreme-

gain. 1% better holding return in Q4 makes LT investors to increase the rate of selling by

e0.498×0.01−1 = 0.49%. A similar effect exists on the extreme-gain in Q4. The multiplicative

effect of extreme good return is even larger: e0.808 − 1 = 1.24. However, we do not observe

the loss aversion in the ST sub-sample. Lastly, Panel B shows that LT investors are also

more sensitive to the macro-economic variables.

Together these results support our hypothesis ((H3)). The LT investors are value-

focused. They monitor more the fund performance. Their behaviour is more explainable.

In contrast, ST investors behave more randomly. The survival model loses the ability to

understand their trades. Furthermore, we find that LT investors exhibit higher loss aversion

bias. These results suggest that LT investors bring the higher "pre-mature" closure risk

to the fund. When the return or economic conditions are bad, the fund manager loses LT

investors at first.

This sub-sample test is in line with Johnson (2004). In his previous study, Johnson

examined the consequence of investor behaviour. He calculate and compares the liquidity

cost of LT and ST investors’ redemption to identify who generate a higher liquidity cost to

the fund manager. We make a further step to test which investors are more likely to redeem.

Our finding joins in Johnson’s discussion on mutual fund’s liquidity insurance function. As

banks, mutual funds provide the liquidity insurance by pooling investors together. This

insurance requires a Diamond-Dybvig equilibrium: investors’ liquidity demand should be

equal to their liquidity offer (see, Diamond and Dybvig 1983). Johnson highlights that the

equilibrium would fail since there is an asymmetric liquidity consumption. LT investors
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provide more than what they consume and ST investors consume more than what they

offer. Our findings imply that the Diamond-Dybvig equilibrium could still be reached for

two reasons: (1) there is a pre-mature redemption risk. Investors’ liquidity consumption

(surviving time) could not be perfectly predicted; (2) LT investors bring a higher pre-mature

redemption risk. Therefore, LT investors cost more liquidity than what Johnson indicates.

3.6 Robustness checks

The methods to measure the covariates might have impacts on the model estimation. In this

section, we modify the measures to check the robustness of our results. We focus more on

tests of (H1) and (H3). Concerning ((H2)), since there is already a large number of studies

which have tested different return measures (see: Barber et al. 2016; Berk and Binsbergen

2016; Ivkovich and Weisbenner 2008). We do not retest them in our investigation.

Previous tests for (H1) use the full sample which includes all fund types. The result

might be biased since client sectors are not equally distributed in different funds. Here is

a simplified example: suppose there are only 2 funds A and B and two investors sectors m

and n. Fund A is liquid and Fund B is illiquid. Sector m has short-term cash needs and

Sector n has not. Fund A contains only Sector m and Fund B contains only Sector n. If we

test the full sample, we may find evidences to confirm (H1): there a positive coefficient on

sector m dummy which indicates a higher redemption risk. However, this evidence might

be generated only by the fund asset class: fund A is more liquid than fund B. This bias

motivates our test for asset class sub-samples.

We choose 5 most representative asset classes and we estimate Specification (3) of Model

(1) in each sub-sample (c.f. Table 3.5, column 3). We ignore other fund types because they

have less than 500 observations, hence the estimation is less reliable. Since we examine

already in asset class sub-samples, we drop the asset class dummies from Specification (3).

We present only investor sector dummies and other variables are hidden. We report each

asset class in one column: equity, money market, fixed income, convertible debt ("coco")

and absolute performance. If our findings regard to (H1) are robust, we are expected to

observe the similar covariate sensitivities as the previous full sample test in Section 4.2.

Table 3.7 presents our robustness check for the first hypothesis. Signs of most coefficients

are as same as the full sample test in Section 4.1: sectors with short-term liquidity needs

shorten their surviving times and hence have larger redemption rate. The first column

shows the coefficients of the equity sub-sample. We observe that first three sectors have

negative impacts on the hazard rate and they are sectors without short-term liquidity needs.
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"Firm" and "Mutual" shorten their surviving times and these 2 sectors have more short-

term liquidity needs. "FoF" dummy has an insignificant sensitivity. Money market sub-

sample provide similar results. "Bankown" has a strong negative sensitivities -0.909. On

the contrary, "Mutual" and "FoF" have both positive sensitivities. These coefficients are

broadly consistent with what we find in Section 3.3. In the other 3 sub-samples, estimation

coefficients are less significant. This insensitivity might be explained by the fact that the

number of observations in these sub-samples is small. Overall, all significant sensitivities

confirm our hypothesis (H1): fund clients with urgent cash needs have a higher rate of

redemption 15.

Table 3.7: Survival analysis for asset class sub-samples

Conditional account closure probability:

hi(t) = lim∆t→0
[(t≤Ti<t+∆t)|Ti≥t]

∆t

Equity Money market Fixed income Coco Absolute

Investor sector

Bankown −0.170∗∗ −0.909∗∗∗ −0.209 −0.188 −0.155
(0.080) (0.339) (0.189) (0.201) (0.186)

Bankprivate −0.315∗∗∗ 0.374∗∗∗ −0.669∗∗∗ −0.292 −0.690∗

(0.076) (0.137) (0.211) (0.190) (0.369)
Insurance −0.454∗∗∗ −0.014 0.268 −0.167 −0.484

(0.144) (0.143) (0.231) (0.250) (0.393)
Firm 0.729∗∗∗ 0.148 0.620∗∗∗ 0.531∗ 0.387

(0.179) (0.132) (0.158) (0.318) (0.278)
Mutual 0.302∗∗∗ 0.347∗∗∗ 0.390∗∗∗ 0.654∗∗∗ 0.242∗

(0.059) (0.070) (0.086) (0.103) (0.133)
FoF 0.027 0.464∗∗∗ 0.053 0.655∗∗∗ 0.346

(0.111) (0.076) (0.138) (0.167) (0.245)

Observations 3,052 2,149 1,271 918 600
R2 0.362 0.188 0.313 0.444 0.404

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In this table we present the semi-parametric hazard rate estimation for asset class sub-samples. We apply
Specification (3) of Model (1) to the 5 asset class sub-samples. In this test, we drop the asset class dummies
and the rest covariates of Specification (3) are kept. They are: performance variables, return controls, time
controls, other controls, macroeconomic controls and investor sector dummies. We report only the investor
sector dummies and other covariates are hidden. Each column lists the coefficients of one asset class: equity,
money market, fixed income, convertible debt (coco) and absolute performance.

In Section 5.1 we divide LT and ST investors by a threshold value which adapts to

fund classes. This choice of threshold might have an effect on the estimation results. To

check the robustness of our findings of (H3), we use 2 alternative thresholds to separate

LT and ST sub-samples. At first, we use the median surviving time as the threshold. With

this threshold, the numbers of observations in each sub-sample are almost equal. Then

we use another exogenous threshold: for equity funds, investors stay longer than 250 days

are considered as LT and less than 200 days are ST. In this approach, we drop investors

15There is only one exception: the "Bankprivate" has a positive impact on the money market sub-sample.
We accept this deviation.
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who have surviving times between 200 to 250 days. We adapt these values to other asset

classes (60-30 for money market, 300-250 for fixed income). If the results in Section 5.1 are

robust, the divergence between 2 sub-samples should be hold when we change the separation

threshold.

Table 3.8 presents robustness tests for our third hypothesis. We confirm our findings

about investors’ heterogeneities. When we use 2 alternative thresholds to classify sub-

samples, the divergences hold. Panel A shows, the results when we use the median threshold

and Panel B reports the second criteria. We keep the same the hazard specification as in

Section 4. However, we report only some key variables which exhibit difference between 2

sub-samples. Other covariates are hidden. Both 2 robustness tests confirm the (H3) by

following evidences: (1) LT sub-sample has a higher R-square; (2) LT investors are more

sensitive to dynamic covariates, especially the holding performance; (3) LT investors have a

larger positive sensitivity to "Dec", which shows a larger number of tax-related transactions;

(4) LT investors are more sensitive to the return variance. (5) LT investors are more sensitive

to macro-economic variables; (6) LT investors exhibit the loss aversion bias at the end of

the year, whereas ST ones do not;

In summary, liquidity need stays to be an important determinant for the survival rate

when we test the model in asset class sub-samples. These tests control the impact of the

asset liquidity. We confirm the significant effects of client sector dummies. Concerning to

the LT-ST heterogeneities, we use different thresholds to divide the sample. The differences

between LT ans ST investors are held. This evidence confirms our third hypothesis.
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Table 3.8: Long- and short-term investors’ comparison with alternative criteria

Panel A

LT

Rholding Dec Variance Short term rate Rate spread Market return Extreme-gain× Q4 Rholding × Q4
−0.405∗∗ 0.337∗∗∗ −3.338∗∗∗ 0.476∗∗∗ −0.943∗∗ 0.00005∗∗∗ 0.451∗∗∗ −0.004

Observations 3 950 R2 0.348

ST

Rholding Dec Variance Short term rate Rate spread Market return Extreme-gain× Q4 Rholding × Q4
-0.013 −0.101∗ 0.122 0.004∗∗ 0.016 −0.0001∗ -1.212 0.09∗

Observations 3 962 R2 0.14

Panel B

LT

Rholding Dec Variance Short term rate Rate spread Market return Extreme-gain× Q4 Rholding × Q4
−0.586∗∗∗ 0.333∗∗∗ −2.879∗∗ 0.456∗∗∗ −0.895∗∗ 0.00005∗∗∗ 0.611∗∗∗ 0.451∗∗∗

Observations 4 298 R2 -1.212

ST

Rholding Dec Variance Short term rate Rate spread Market return Extreme-gain× Q4 Rholding × Q4
−0.268∗ −0.145∗ −0.211 0.030∗ 0.060 0.00004 0.767 0.611

Observations 3 280 R2 0.697

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In this table we use the semi-parametric approach to estimate account closure hazard rates in LT and
ST sub-sample. We use different thresholds to divide the LT and ST investors to check the robustness of
previous findings in Section 4.5. Each panel presents one threshold. Panel A presents results when we use
median surviving time as separation criteria. In this test, the numbers of observation in each sub-sample
are almost equal. In Panel B we use another exogenous threshold. Investors stay longer than 250 days are
considered as LT and less than 200 days are ST. We keep the full specification (3) of Model (1). The tables
only show some key covariates, other variables are hidden.
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Conclusion

Our study shows why investors stay in different horizons in mutual funds. On one hand,

we find evidence that fund client’s in the same category have similar investing horizons. On

the other hand, our tests highlight that investors might shorten these investing horizons

when economic conditions deteriorate: they exit funds pre-maturely. Further, we find that

long-term investors are more likely to exit in this pre-mature way. To obtain the results

above, our investigation relies strongly on the individual transaction information of fund

investors. This paper indicates that fund investors are not homogeneous and we suggest

that the fund manager should monitor the redemption risk at the individual level.

According to our findings, the fund company faces an asymmetric liquidity cost. All

investors pay similar management fee and receive the same right to redeem freely their fund

shares. However, they consume fund’s liquidity differently since they stay in funds for differ-

ent horizons. Shortly-stayed investors cost relatively more liquidity than long-time-stayed

investors. Furthermore, the fund company pays notable costs to maintain a large client-

base: recording clients’ profile, recruiting additional personnel for "client services". Fund

companies also provide "new client bonus" to attract new investors. Therefore, receiving

too much shortly-stayed investors are not profitable.

We propose several solutions for the problem above. The simplest solution is to charge

different management fees or to offer distinct "new client bonus". Clients as a life insurance

company would stay in fund for a long horizon. We should charge a lower AUM fee and offer

the higher bonus to new entries. In contrast, a FoF investor might have a surviving time less

than 2 quarters. The fund company could pay him a low "bonus". However, this solution

is difficult to implement in practice, since investors require the equal rights in general.

Alternatively, we might consider the model’s estimation as a benchmark and evaluate

client’s "quality". For example, the model forecasts an investing horizon of 110 days for a

corporate firm. If corporate client A stays in fund for longer than 110 days, he is a "good"

client. Hence we could award him by decreasing his AUM fee. Another corporate client B,

if he exits the fund before 110 days, he is a costly client. We might charge him a higher

subscription fee for the next time. This solution is more piratical than the previous one.

Indeed, the government uses a similar policy to encourage long-term investments: decreasing

the tax if the investment is held for a long period.

Besides, our examination of investors’ heterogeneity helps to understand the fund run

scenario, where the manager loses his clients in a sudden and massive way. We show that

LT investors are more reactive to economic conditions and they bring the higher pre-mature
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risk. This finding implies that during a crisis period, the fund manager loses more LT

investors. Therefore, fund’s average liability duration should be shortened during a run

scenario. Accordingly, we suggest that the fund manager should sell long-term and illiquid

securities to decrease the asset’s duration too.

Finally, this survival analysis suggests regulators to introduce some liquidity-protection

policies for mutual funds. We can "borrow" some liquidity provisions from hedge funds to

enhance mutual fund’s liquidity. For instance, the "lock-up" period prevents pre-mature

redemption. The fund company could propose two types of AUM fee for investors: (1) a

lower management fee for investors who can respect a "lock-up" period: do not redeem before

a certain time; (2) a higher management fee for normal investors who can redeem freely.

Alternatively, mutual funds could also adopt the "Gate Provision": setting a threshold for

free redemption. If the investor wishes withdraw more than the threshold value, the fund

company would charge a higher redemption load.
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This article studies how individual mutual fund investors rebalance their portfolio on a

daily basis. We collect a unique data set recording the purchases and redemptions of all

investors in a no-load French mutual fund company over a two-year period. We employ an

"Ordered Response Model" to identify the determinants of investors’ trade intensity. This

method explains how investors choose among purchase, hold or redeem their fund shares.

We consider not only the fund being traded but also other funds that the same investor

holds in parallel. We find that investors adopt a "constant-mix" rebalance strategy to add

positions to funds which have under-performed in the short-term horizon. Furthermore,

investors have a tendency to switch to funds with higher liquidity and lower risk. Our

findings stay robust after controlling for investors’ behavioural bias and the majority of

results are stable during different quarters of the year.

Key words: rebalance, mutual funds, institutional investors, liquidity, micro-

transaction, constant-mix
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Introduction

Until the end of 2016, mutual funds’ total Asset Under Management (AUM) on a global

scale has reached 40.4 trillion dollars, including 22% of total household’s financial assets in

the US1. It makes the mutual fund one of the most popular investing vehicles. A primary

reason for this popularity is the fact that the delegate fund manager can achieve a superior

performance with his expertise. Since fund investors rely much on the fund manager, it

raises a natural question: "do mutual fund investors need to be active in their fund invest-

ing?" Some literature suggests that investors should better follow a passive "buy-and-hold"

strategy since frequent purchases/redemptions disturb the fund manager (e.g., Akbas et al.

2015; Bailey et al. 2011; Darolles and Roussellet 2018). On the contrary, others argue that

the active reallocation of fund portfolio improves investors’ overall return (Dahlquist et al.

2017). Further study of this activism is difficult since it requires the micro-transaction data

of fund investors, which are not publicly available.

We record manually purchases and redemptions of all investors in one fund company

over a two-year period. It allows us to monitor each individual trade decision on a daily

basis, whereas traditional mutual fund databases, such as Morning-star Direct, LIPPER,

CRSP Mutual Fund, provide only aggregated flow information at the fund level at a monthly

frequency. We observe that fund clients in our sample purchase and redeem frequently. It

seems that they do not follow the simple "buy-and-hold" strategy in fund investing. Instead,

they continuously adjust their fund shares. Furthermore, more than 70% investors in our

sample hold more than one fund. These multiple holdings often contain different asset

classes. It implies that fund investors possess the multiple-assets "portfolio". Since a large

part of investors in this sample are institutional ones who possess often the experiences and

skills in investing, it is highly possible that they follow an asset allocation. Therefore, we

ask the question whether investors treat their fund holdings as a whole portfolio or they only

monitor funds in an isolating manner? Whether their asset allocation static or dynamic?

And what factors drive their frequent transactions?

In this paper, we study the individual fund investor’s rebalance activity via our hand-

collected micro-transaction data set. We use the "Ordered Response Model" to analyse trade

decisions among "Purchase", "Hold" and "Redemption". We first investigate investors’

reaction to the fund performance. This test gains insights for which rebalance method they

use. Then, we examine the mechanism of the rebalance activity by identifying how investors

switch from one fund to the other. We compare each fund’s return, risk and liquidity to

1C.f. ICI 2017
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other funds held by the same investor. Finally, we investigate whether investors’ behaviour

is stable over different periods of the year.

We establish several findings in this paper.We first calculate fund returns in different

horizons and we demonstrate that investors have different reactions to short-term and to

long-term fund returns. We consider a return measured by a horizon longer than 50 days

as the long-term return, otherwise as the short-term one. We find that a better long-term

return makes clients more possible to purchase. However, when we use short-term returns,

this relationship is inverted: investors begin to purchase under-performed funds and redeem

over-performed ones. We explain this behaviour by the fact that investors select "winner"

funds to invest in a long-term perceptive but they repurchase short-term’s under-performed

funds to keep a constant asset allocation. This finding is robust after we control for investors’

behavioural bias. Secondly, we observe that investors have a global "portfolio" view to treat

all their fund holdings together. An investor compares a fund return, risk and liquidity

level to other funds that he holds in parallel, and these relative qualities impact his trade

decision. Investors have a tendency to add positions to the funds with lower return, higher

liquidity and lower risk. Finally, we confirm that the majority of investors’ behaviours are

stable during four quarters of the year.

Our article relates to three strands of literature. First, we continue the ongoing study

on the micro-transaction data. Previous research seeks to identify the determinants of trade

decision in different markets. Grinbatt and Keloharju (2001) focus on the equity market.

They find that the historical price pattern has strong influence over investor’s propensity

to trade. Ashcraft and Duffie (2007) bring our attention to the "repo" market. They show

how the over-night repurchase loans of US’ federal funds are affected by various macro-

economic conditions. Iyer and Puri (2012) investigate what factors trigger bank clients’

withdrawals during a "bank run". Lastly, fewer works examine the mutual fund investor’s

trade behaviour (see, e.g., Bailey et al. 2011; Chang et al. 2016). Fund investors are being

found to exhibit the loss aversion behavioural bias. Although continuous efforts have been

made to understand the micro-transactions, previous authors study in an isolate approach:

they analyse security one by one. Our contribution is that we consider the full portfolio

that investors possess and we analyse how securities (mutual funds in our case) hold by one

investor affect each other.

Second, our research brings new evidence to mutual fund’s flow-return relationship. Pre-

vious literature intends to recognize how mutual fund flows react to the fund performance.

Theoretically, there should be a positive reaction (see, Berk and Green 2004): a good return

increases the inflow and a bad return increases the outflow. However, empirical studies

122 Chapter 4 Ran SUN



Liquidity Risk in the Universe of Open-End Funds

highlight that this relationship is more complicate in reality. People find that mutual funds

in different asset classes, such as equity funds (Frazzini and Lamont 2008), corporate debt

funds (Goldstein et al. 2017) and real estate funds (Fecht and Wedow 2014) have different

shapes of flow-return relationship. Furthermore, Johnson (2010) indicates that this relation

is not uniform over time and Johnson (2004) show it depends also on investors’ characteris-

tics. To our knowledge, we are the first to distinct fund flow’s sensitivities to the long-term

and short-term returns. We point out these two return measures relate to two different

investing decisions: fund selection and portfolio rebalance. We show that the flow-return

relationship is modified according to the horizon of the return measure.

Finally, we add to the continuous debate on how to evaluate open-end fund’s perfor-

mance. The simplest approach is using the factor model, such as the Fama-French 3-factor

model, to adjust fund risk exposures (e.g., Barber et al. 2016; Brown and Wu 2016). How-

ever, for funds following special strategies or investing in exotic assets, we should consider

additional risk factors such as: skewness risk, fat-tail risk or option risk (Agarwal et al.

2015). Berk and Binsbergen (2016) compare the performances of different factor-models

and indicate that the market risk-adjusted model has the highest predictability on fund

flows. It implies that fund investors are most likely to use this method to evaluate fund re-

turns. We propose another alternative to assess a fund’s quality by benchmarking its return

on a unique peer group: all funds being held by the same client. This method would not be

ease to implement since it requires insensitive data and calculations, however, it suggests

that we should consider effects of clients on a fund. The same fund might be good for some

investors but bad for others, depending on what portfolio investors hold and what is their

allocation strategy.

The rest of this paper is structured as follows. Section 1 describes the data-base and

presents the summary statistics for the fund investor trade intensity. Section 2 introduces

our empirical method, the "Ordered Response Model". Section 3 and 4 studies how investors

rebalance their portfolio. Then we discuss and conclude in the end.

4.1 Data description & summary statistics

4.1.1 Data-base description

We collect a novel dataset which records investors’ micro-transactions from one French non-

load fund company. The company charges a standard management fee which is proportional

to one’s fund share. We call it as "AUM fee". Additionally, the fund manager earns an
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incentive bonus if his performance exceeds the benchmark. However, there is no load to pay

when investors purchase or redeem, the transactions are entirely free. The fund company

was created in 1988 and it has managed more than 100 funds ever since. In the current

year, its total AUM reaches 60 billion EUR. It is affiliated to 2 insurance companies. These

two parent companies are important sources of its capital inflows: 20 % of the global AUM.

However, two parent companies leave the fund managers totally independent to make their

own investing decisions.

Our study focuses a two-year period, from 2015 to 2016. No new fund is created during

this period and the market environment is stable. In our raw data file, transactions are

recorded on a daily basis with elementary information such as: (1) Date of transaction;

(2) Transaction price; (3) Client identity; (4) Client category; (5) fund ISIN number; (6)

fund’s asset class; (7) Amount of transaction. This companies’ client base is diversified

since investors belong to a large range of different activity sectors such as corporate firms,

family offices, banks, insurance companies or pension funds. Most of investors are based in

France and all transactions are executed in euro. There are 558 investor accounts in total.

Investors hold a large range of fund classes, including equity, real estate, diversified, money

market, fixed income, convertible debts and absolute performance. The sample contains 82

fund-ISINs with each of them represents one fund share class. In general, one mutual fund

contains two to four share classes which charge different fees to different investors. We use

"Datastream" as a secondary data source to download macroeconomic variables such as the

MSCI index.

4.1.2 Summary statistics

We count the numbers of total trades, either purchase or redemption, executed by each

investor during the sample period and present their distribution in Figure 4.1. From the

left tail of this distribution, we find that a large part of investors trade more than twice.

Executing two trades implies that the investor follows the "buy-and-hold" approach: under

this strategy, investors buy a fund and do not execute any intermediary trade until the

final redemption. When the trade number increases, the observation frequency decreases

dramatically. On the right side of the distribution, only a few investors make more than

500 trades. It suggests that most investors do not trade at each day. Combining these

observations, we deduce that majority of investors neither trade funds at a extremely high

frequency, such as trading on a daily basis, nor just follow the simple buy-and-hold strategy

to trade only twice. This behaviour differs from previous studies, which assume that the

124 Chapter 4 Ran SUN



Liquidity Risk in the Universe of Open-End Funds

"buy-and-hold" strategy is adopted (see, Ivkovich and Weisbenner 2008; Johnson 2004).

Figure 4.1: Distribution of trade number of individual fund investors

This figure shows the trade number distribution of all individual investors in our sample. We count the
number of trades executed by each investor over a two-year period, from 2015 to 2016. The X-axis is the
number of the trades executed and Y-axis is the observation frequency. We present only the aggregated
number, where purchases and redemptions are mixed. The graphic on the top presents distribution of the
full sample. The bottom graphic is the zoom of the left tail of the distribution.

There are several possible explanations for the relatively high trade intensities observed

at above. One is that investors use mutual funds as the cash management tools and trade

in the response of their liquidity needs. This explanation is suitable only for the money

market funds since these funds invest in highly liquid short-term securities. However, in

our sample, money market funds represent only for less than 10 % of the full sample: 8

funds out of 82 in total. For fixed income funds or real estate funds, this explanation is less

convincing since these funds invest in relatively illiquid assets so investors would not use
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them to manage cash. The second possibility is that fund investors have the target asset

allocation and they rebalance their fund shares dynamically toward it. This hypothesis is

consistent with the fact that many investors in our sample are institutional investors, who

are more "intelligent" than retail ones and are likely to follow some sophistic investment

strategies (see, Schmidt et al. 2016). Indeed, previously used data-sets contain only retail

investors which are less skilful in general (see, Bailey et al. 2011). That is a plausible reason

why their investors follow the sample "buy-and-hold" method. Therefore, our data offer

an opportunity to investigate the more "complicate" trade behaviours. The institutional

investors in our sample are highly possible to adopt sophistic investing and trading strategies

than retail investors in the previous literature. Before moving to next step, we first need to

examine investors’ holding situations and their trade intensities.

Table 4.1 presents the holding situation of individual investors. Our sample contains 558

investor from a diversity of activity sectors, including both retail and institutional categories.

In Panel A we show the number of funds held by each investor. There are 185 clients invest

only in 1 fund. We drop them out of our test since they have no possibility to rebalance. It

leaves 558− 185 = 373 investors who hold the multiple funds portfolio. Then, we examine

whether investors’ fund holding covers different asset classes. The fund company follows the

French financial regulator AMF’s classification to categorize funds into eight classes: real

estate, equity, diversified, money market, convertible assets, absolute return, fixed income

and others. Panel B shows the number of asset classes each client invests. There are 231

investors who hold only one asset class and the rest of clients invest all in multiple asset

classes. It is possible that many investors constructs their fund portfolio with a target asset

allocation. A limit of AMF fund classification is that it does not consider the liquidity of

the fund portfolio. For instance, a large-cap equity fund is more liquid than a small-cap

equity fund, but they are all labelled as equity funds. Therefore, we create a liquidity level

to attribute to each fund. We decide a fund’s liquidity level according to its recommended

investing horizon. This information is given by the fund manager based on the portfolio’s

liquidity level and turnover. The fund manager discloses this information in fund’s annual

report to all investors. In our sample, the recommended investing horizons vary from 6

months to 72 months. We consider: (1) the funds with a recommended investing horizon

longer than 36 months as level 1, which is the least liquid level; (2) funds with horizons

between 12 months and 36 months are classified as level 2; (3) funds with a recommended

horizon shorter than 12 months have the liquidity level 3, which is the most liquid category.

Panel C indicates that 253 investors hold funds with the same liquidity level. 264 clients

invest in funds with 2 different liquidity levels and 141 investors trade funds in all 3 liquidity
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levels.

Table 4.1: Investor holding situation

Panel A: fund holding
Number of Funds Hold 1 2 3 4 5 6 7 8 More Total
Number of Clients 185 86 58 50 30 20 25 12 93 558
Panel B: asset class holding
Number of Asset classes 1 2 3 4 5 6 7 8
Number of Clients 231 104 75 69 49 22 7 1
Panel C: liquidity holding
Number of Liquidity Levels 1 2 3
Number of Clients 253 164 141

This table shows the holding situation of individual investors. In Panel A, we present how many funds
that each investor holds. "Number of Funds Hold" is the number of funds an investor hold and "Number
of Clients" indicates how many investors hold this number. Panel B presents how many fund classes that
investors hold and Panel C shows that investors’ fund holdings across how many liquidity levels. We class
funds’ liquidity levels from 1 to 3 according to a fund’s recommended investing horizon.

For the 373 investors who possess multiple fund holdings, we study the statistics for their

trade intensity. We consider each observation as a trade decision that an individual investor

makes for one fund of his holdings at a single day. Each observation has four possible

outcomes: (1) "Hold", investors do nothing; (2) "Purchase", investors add fund’s position;

(3) "Redemption", investors cut fund’s position; (4) "Closure", investors exit the fund.

Finally, We obtain 1 163 519 observations at this "investor-fund-date" level. We present

their summary statistics in Table 4.2. The first raw provides statistics for the full sample.

The purchase and redemption probabilities are 1.16% and 1.28%, respectively. In 0.12%

of situations, investors exit the fund. We then show the sub-sample statistics for different

investor categories in Panel A and different fund classes in Panel B. "Platform" represents

the investors who purchase funds through a brokerage platform service. With a purchase

intensity of 1.76% and a redemption intensity of 2.76%, they are the most active investors

among all. In other activity sectors, investors behave more similarly. In contrast, trade

intensities in different fund classes are more heterogeneous. Money market funds receive

the most frequent transactions. Both purchase and redemption intensities have a high level

around 4%. It suggests that each investors make (4%+4%)×250 = 20 trades on a annually

basis. Equity and diversified funds have also active investors with trade rates around 1%.

Clients in other fund classes are less active. Since the probability of "closure" is lower than

1% in most of the time, we merge "Closure" and "Redemption" for the our test in the rest

of our study. It helps us to avoid several numerical errors during the model estimation2.

2Since the intensity of the "Closure" is too small, our trade model cannot identify the impacts of certain
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Table 4.2: Summary statistics for individual trade intensities

Full sample
Hold Closure Purchase Redemption Total
97.48% 0.12% 1.16% 1.28% 1 163 519

Panel A: client category
Bank 99.68% 0.07% 0.11% 0.12% 86 355
Private banking 98.86% 0.05% 0.36% 0.71% 128 341
Insurance 98.15% 0.08% 0.83% 0.92% 48 946
Firm 97.94% 0.15% 0.75% 1.14% 28 433
Mutual 97.23% 0.15% 1.16% 0.99% 304 626
Platform 95.41% 0.05% 1.76% 2.76% 220 873
Panel B: fund class
Real estate 99.06% 0.02% 0.58% 0.32% 32 010
Equity 97.79% 0.07% 0.86% 1.12% 466 311
Diversified 96.28% 0.07% 1.55% 2.08% 58 076
Money market 91.91% 0.43% 3.96% 3.69% 170 054
Fixed income 99.27% 0.10% 0.28% 0.32% 162 295
Absolute return 99.66% 0.06% 0.17% 0.08% 121 532

This table provides the summary statistics for trade intensities. Each observation represents one choice
that one investor makes for one fund at one day. The investor make transaction choices among: hold,
closure, purchase and redemption. The closure represents the investor clears his inventory and exit from
the fund. We show the intensity for each choice and the total observation , which is day number times
investors number times fund number, is presented at the last column. The first row presents the full sample
statistics. Then we give the Panel A for investor categories and Panel B for fund classes.

dummy variables on the "Closure" choice and hence proceed the numerical error in model estimation.
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4.2 Empirical approach

4.2.1 Individual trade model

The "Discrete Response Model" is an appropriate tool to analyse the micro-transaction

data, since we are interested in a non-continuous outcome, the trade decision. For example,

Odean (1999) uses the Logistic regression to investigate the binary decision of investors:

"Trade" vs "Hold". In our paper, we make a natural extension to the binary Logit model:

in the "trade" category, we make the distinction between the "buy" and the "sell". There-

fore, the trade decision becomes multiple-dimensional, investors choose among "Purchase",

"Redemption" and "Hold". We further consider that, for the fund company, we prefer "Pur-

chase" than "Hold" and we prefer "Hold" than "Redemption". The underlying intuition is

straightforward, the asset manager earns a fee proportional to the fund size. Therefore, a

boost of purchase trades increases fund companies’ earning. Therefore, three trade choices

are ordered in the model. Accordingly, the literature labels this model as the "Order Re-

sponse Model" (see, e.g., Becker and Kennedy 1992). This approach has been used in various

fields, such as the education choice (Peng et al. 2002), food consumption (Myrland et al.

2000), forensic anthropology (Konigsberg et al. 2008). In finance, people have experience of

using this approach in the credit rating evaluations (e.g., Carroll and Niehaus 1998; Cheung

1996; Landon and Smith 2000).

Under this approach, there are three observed outcomes: y = Redemption,Hold, Purcahse.

Investors decide their trade choice by a latent utility function:

Ui = C + β1x1
i + β2x2

i + ...+ βkxk
i + ǫi (2.1)

In the equation above, i represents a "investor-fund-date" level trade decision. Ui is the

utility value that determines the trade choice. C is the vector of constants. If there are

n choices, there would be n − 1 constants in the model. Thus in our case, there are two

constants. Xi = {x1
i , x

2
i ...x

k
i } is the vector of explanatory variables of length K and βs

are factor sensitivities. ǫi is the error term. Equation (2.1) describes that a mutual fund

provides to the investor a "dynamic" utility value which is determined by several economic

variables (Xi).

We suppose there are two thresholds α1 and α2 with α1 < α2. They separate investors’

utility into three areas. We neither observe the utility function, nor these thresholds. We

observe only the trade choices according to the following rule:
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yi =























Redemption if Ui < α1

Hold if Ui > α1 & Ui < α2

Purchase if Ui > α2

(2.2)

Each observation of yi3 represents a trade choice of an individual investor, for a single fund

at one day. For instance, if investor 1 holds two funds in his portfolio: fund A and fund

B. On 21st October 2015, he purchased more fund A but did not do anything for fund B.

Accordingly, we have two observations: a Purchase and a Hold. Each trade is decided by the

latent function U. If the investor achieves a utility higher than α2, he would purchase the

fund. On the contrary, if the fund brings to him a utility lower than α1, he would redeem

the fund. In other situations, he holds the fund and does nothing. We present this choice

rule graphically in Figure 4.2. The green area at right indicates when the utility value is

large enough, the investor would purchase the fund. On the contrary, the red area in the

left is where investors redeem in response of the low utility.

The interpretations of factor sensitivities are more complicated than a traditional con-

tinuous regression (e.g. OLS). In a traditional linear regression, the marginal effect equals to

the beta of the independent variable. However, in this multiple choice model, each indepen-

dent variable has multiple marginal effects. We compute marginal effects on the predicted

probabilities of each trade choice. For an explanatory variable is xk, we have:

∂P(y = Redemption | X)

∂xk
= −φ(X ′β − α1)β

k

∂P(y = Hold | X)

∂xk
= [φ(X ′β − α1)− φ(X ′β − α2)]βk

∂P(y = Purchase | X)

∂xk
= φ(X ′β − α2)β

k

(2.3)

Therefore, the partial marginal effect of independent variable xk on the predicted prob-

ability of:

• the "Purchase" decision has the same sign to βk

• the "Redemption" decision has the opposite sign to βk

• the "Hold" decision is not directly inferred from the sign of βk

Luckily, we care less the Hold decision which is difficult since the marginal effect on this

choice is ambiguous: it depends on the sign of φ(X ′β−α1)−φ(X ′β−α2). Only Purchase and

3In the following of the paper, we drop sometimes the index i for the ease of the presentation.
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Figure 4.2: Trade choice rule of ordered response model

In this figure, we show graphically the choice rule of the ordered response model. X-axis represents the
utility value and y-axis is the trade intensity. Two dashed lines are thresholds to separate trade choices.
The green area is where the investor choose to purchase and red area is where the investor redeem. The
middle non-color area is where the investor holds their fund shares.

Redemption are our only concerns. In our investigation, a positive β indicates an increase

of purchase intensity and a decrease of redemption intensity, and vice versa.

We estimate this non-linear model by maximizing its likelihood function. we set zim =

1(yi = m), where m indicates three trade choices, i stands for an observation. Observation

i’s likelihood contribution is:

li =
∏

m

P(yi = m | x)zim

=
∏

m

[Φ(αm − x′
iβ)− Φ(αm−1 − x′

iβ)]
zim

(2.4)

We multiply all individual likelihood contributions and then we take the log-value of this
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product to obtain the global log-likelihood function:

logL(α, β) =
n

∑

i=1

∑

m

zimln[Φ(αm − x′
iβ)− Φ(αm−1 − x′

iβ)] (2.5)

Then this optimization can be solved numerically.

4.2.2 Different rebalance methods

The standard portfolio management process requires a target asset allocation, which decides

how a investor distributes his capital among different asset classes and it controls portfolio’s

risk exposures. In practise, the asset allocation is a dynamic process since the value of

each security evolves. For example, if an investor wishes have 40% equity securities in his

portfolio, when equities’ value appreciates, he would have higher equity weight than that

the target requires. Thereafter, his portfolio would have higher equity risk exposure than

what he desires. Accordingly, investors need to "rebalance" their portfolio, according to the

performance of each asset. There are three traditional rebalance methods: "Buy-and-Hold",

"Constant-Mix" and "CPPI".

The simplest method is the "Buy-and-Hold". Under this approach, after allocating the

initial capital, investors do not make any further trade. It is consistent with trade patterns

documented in the previous literature (see, e.g., Johnson 2004). It is a passive strategy,

investors do not need to monitor his portfolio. Hence it is a suitable method for unskilled

investors, such as retail ones (see, e.g., Bailey et al. 2011). However, investors lose the control

of portfolio’s risk exposure. If investors adopt this method, they should be insensitive to

fund’s return. Considering the high portion of institutional investors in our sample and

high trade intensities observed (cf. Table 4.2, Section 4.1.2). This approach is unlikely to

be used.

The second approach is referred as "Constant-Mix". This approach intends to maintain

a constant asset allocation. To this end, investors need to cut position of securities which

have appreciated and add positions of securities which have underperformed. For example,

if investors have a target equity allocation of 40%, when the equity securities rises 5% in

value, they would sell 5% equities to keep the target weight. This method ensures the

constant weight of each asset and hence the portfolio’s risk exposure is ensured. It performs

the best in an oscillating market but it would under-perform in a trending market. If

mutual fund investors use the "Constant-Mix" strategy, we are expected to observe the

negative sensibilities of return variables: positive return increases the redemption intensity
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and decreases the purchase intensity.

The last rebalance strategy is the "CPPI": Constant Proportion Portfolio Insurance (see,

Perold 1986). This strategy determines one asset’s exposure Ej in the portfolio by formula

Ej = Mj × (At−Ft), where Mj is a multiplier determined by the investor for each asset, At

is the total portfolio value and Ft is a "floor" to ensure the minimum portfolio value. This

strategy requires that investors purchase more the appreciated assets. It performs well in a

trending market but it is not suitable for an oscillating market. If fund investors follow this

strategy, they should buy "winner" funds and sell "loser" funds. It implies that a better

return would increase the purchase intensity and decreases the redemption intensity.

In summary, we would identify investor’s rebalance strategy by examining their reactions

to fund returns. If they purchase more when the return is better, they have adopted the

"CPPI" method; If they invert this relationship, the "Constant-Mix" approach is used; If

fund returns do not affect the trade decision, investors have followed the "Buy-and-Hold"

approach.

4.3 First evidence on rebalance activity

A. Description of the regression

We start our investigation in a "single fund" context, where investor’s other fund holdings

in parallel are not included in our test yet. In this section, we identify determinants of

trade decisions for each transaction. We distinguish investors’ sensitivity to short-term

fund returns to their sensitivity to long-term fund returns. In our study, we consider the

return calculated in a horizon longer than 100 days as the long-term return, a horizon

between 5 days and 100 days as the mid-term return and returns within one week (5 days)

as the short-term returns. We make this distinction since two types of returns relate to two

different decisions: (1) Long-term returns affect investors’ fund selection. When investors

evaluate fund’s quality, they would require a long track record, such as a quarter or a year,

to assess the fund manager’s ability and then they decide whether invest in this fund. (2)

On the contrary, short-term returns relate more to the rebalance activity. When investors

make daily portfolio adjustments, they "balance" the allocation among their holdings based

on the actual performance in short horizons, such as a day or a week.

We identify the rebalance strategy by coefficients of short-term returns. Among three

commonly used rebalance approaches (c.f. Section 4.2.2), "buy-and-hold" requires no re-

action to returns. However, if investors adopt a "constant-mix" strategy, they would re-
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purchase/resell under/better-performed funds. On the contrary, if "CPPI" method is used,

investors should buy "high" and sell "low". In our test, we find evidence that fund investors

follow the "constant-mix" strategy to add positions to under-performed funds and to cut

positions to better-performed funds. However, in the long-term perspective, the purchase-

return relationship is inverted: investors select more funds which have out-performed in the

horizon longer than 100 days. The result stays robust either after we control for investors’

behavioural bias or when we use different return measures.

We apply the ordered response model (Equation 2.1 and 2.2) to regress individual trade

choices on three groups of explanatory variables and we present the estimated coefficients

in Table 4.3. The first group (Panel A) contains short-term fund returns. We calculate

fund returns for 5 previous days before each observation: R[0-1] is the return of the day

before the observation, R[1-2] is of two days before and so on. Besides, in order to control

for the tax effect, we isolate the trades executed during the December ("× Dec") . In Panel

B we present the mid/long-term return measures. We calculate the average return from

6 to 20 previous days ("R[6-21]") before each observation, from 21 to 50 previous days

("R[21-50]"), from 51 to 100 previous days ("R[51-100]") and from 101 to 200 previous

days ("R[101-200]"). We then control for the tax effect in December in the same way. The

last group includes various of control variables (Panel C). The first six variables in Panel

C are all dummies variables. They relate the actual daily return (R[0-1]) to the historical

performance patterns: whether actual return exceeds the 30 previous days’ average return?

whether it is positive? whether it is the maximum return during 30 past days? whether it is

the minimum return during 30 past days? whether it is an extreme gain/loss? We define the

extreme gain as the return which exceeds 10% and the extreme loss as returns lower than

-10%. The "10%" and "-10%" extreme return criteria conform approximately to the 5th

and 95th percentile value of daily returns’ distribution in our sample. "ST variance" is the

fund return variance during 50 previous days and the "LT variance" is calculated over 100

past days. "Dec" indicates if the trade happens in December. We control additionally for

the previous aggregated net fund flows of the whole fund company ("Flowcompany") and of

the fund ("Flowfund"). We use MSCI index’ daily return to proxy the market performance

("Market"). Finally, we include effects of the vintage year4, fund class and investor type.

We label this regression as the "Basic Trade Model".

4The vintage year is the year when the fund is created. The previous literature finds strong impacts of
vintage year on the fund performance
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Table 4.3: Basic Trade Model (for rebalance analysis)

Ordered Response Model: Redemption < Hold < Purchase

Estimated coefficients:

(1) Raw Model (2) Average Model (3) Market Model

Panel A: Short-Term Returns

R[0-1] −2.746∗∗∗ −2.494∗∗∗

(0.015) (0.0076)

R[1-2] −2.843∗∗∗ −2.655∗∗∗

(0.024) (0.0073)

R[2-3] −1.236∗∗∗ −1.029∗∗∗

(0.035) (0.0076)

R[3-4] −1.244∗∗∗ −1.032∗∗∗

(0.040) (0.0077)

R[4-5] −1.797∗∗∗ −1.584∗∗∗

(0.048) (0.0076)

Rweekly −1.919∗∗∗

(0.018)

R[0-1]× Dec −1.091∗∗∗ −5.241∗∗∗

(0.012) (0.023)

R[1-2]× Dec 8.151∗∗∗ 4.013∗∗∗

(0.052) (0.024)

R[2-3]× Dec 4.957∗∗∗ 0.736∗∗∗

(0.067) (0.023)

R[3-4]× Dec 4.693∗∗∗ 0.982∗∗∗

(0.039) (0.024)

R[4-5]× Dec 3.254∗∗∗ −0.490∗∗∗

(0.049) (0.0237)

Rweekly × Dec 4.250∗∗∗

(0.018)

Panel B: Mid/Long-Term Returns

R[6-20] −1.197∗∗∗ −1.163∗∗∗ −1.153∗∗∗

(0.039) (0.039) (0.0082)

R[21-50] −0.100∗∗∗ −0.096∗∗∗ −0.072∗∗∗

(0.41) (0.041) (0.0165)

R[51-100] 0.227∗∗∗ 0.239∗∗∗ 0.247∗∗∗

(0.069) (0.068) (0.0213)

R[101-200] 0.163∗∗∗ 0.164∗∗∗ 0.177∗∗∗

(0.063) (0.063) (0.0243)

× Dec Y es Y es Y es

Panel C: Control Variables

Above 30 days’ average −0.171∗∗∗ −0.169∗∗∗ −0.169∗∗∗

(0.014) (0.013) (0.0061)

Max during 30 days −0.114∗∗∗ −0.114∗∗∗ −0.110∗∗∗

(0.002) (0.002) (0.0006)

Min during 30 days 0.847∗∗∗ 0.838∗∗∗ 0.861∗∗∗

(0.0003) (0.0003) (0.0008)

Positive 0.104∗∗∗ 0.094∗∗∗ 0.103∗∗∗

(0.014) (0.013) (0.0057)

Continued on next page
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Table 4.3 – Continued from previous page

Estimated coefficients:

(1) Raw Model (2) Average Model (3) Market Model

Extreme gain 1.351∗∗∗ 1.327∗∗∗ 1.316∗∗∗

(0.00005) (0.00006) (0.00001)

Extreme loss −0.531∗∗∗ −0.419∗∗∗ −0.541∗∗∗

(0.0003) (0.0004) (0.00001)

ST variance −100.309∗∗∗ −142.703∗∗∗ −114.977∗∗∗

(0.0028) (0.0028) (0.0009)

LT variance −249.485∗∗∗ −244.542∗∗∗ −244.043∗∗∗

(0.0022) (0.0022) (0.0002)

Dec −0.067∗∗∗ −0.069∗∗∗ −1.067∗∗∗

(0.024) (0.024) (0.0072)

F lowCompany −0.105∗∗∗ −0.104∗∗∗ −0.107∗∗∗

(0.012) (0.011) (0.009)

F lowFund 0.737∗∗∗ 0.734∗∗∗ 0.767∗∗∗

(0.001) (0.001) (0.0001)

Market −0.0004∗∗∗ −0.0004∗∗∗ −8.794∗∗∗

(0.00001) (0.00001) (0.000007)

Vintage year Y es Y es Y es

Fund class Y es Y es Y es

Investor type Y es Y es Y es

Observations 1,163,519 1,163,519 1,163,519

AIC 252000.59 251997.97 251952.62

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.3 reports coefficients of the Ordered Response Model, estimated by maximizing its likelihood function. The model

explains individual daily trade choices among "Redemption", "Hold" and "Purchase" of all investors in one fund company over

two years. We suppose there is a latent utility function with two threshold values, the left-threshold and the right-threshold.

When an investor obtains an utility higher than the right-threshold, he makes the purchase decision. On the contrary, when

the utility is lower than the left-threshold, the investor redeems his fund share. In other cases investor choose to hold. The

sample contains 587 investors and 98 funds share-classes (ISIN number). In sum, there are 1 163 519 observations, from 1/1

2015 to the 30/12 2016. Each observation represents a trade decision made by one investor for one fund at one day. Empirical

frequencies of three trade choices are 1.16% for "purchase", 97.48% for "hold" and 1.40% for "redemption". We put related

variables together in one panel. Panel A shows the short-term return variables. Panel B presents mid/long-term returns. Panel

C lists diverse control variables. We also include variables control for: the vintage year, the asset class and the investor type.

In this regression, we adopt three specifications which use different alternatives to calculate returns. In "Raw Model", we

use the simplest raw returns. In "Average Model", we use the weekly average return to replace 5 separate daily returns.

In "Market Model", we calculate returns in excess of market performance. We label this regression as the "Basic Trade

Model".

We use three alternatives to measure the fund returns (in all nine horizons). The first is

the simple raw return. It is calculated as the log-difference of fund NAVs between two dates.

We present it in the first column (Raw Model). Then in the second column (Average

Return) we use the weekly average return ("Rweekly") to replace first 5 days return ("R[0-

1]" to "R[4-5]"). We intend to control for short-term returns’ "cyclicity": some asset classes

are susceptible to exhibit "cyclical" patterns in the short-term returns. For instance, money
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market securities have this property since their performance is influenced by short-term

interest rates which are often "cyclical". In the last column (Market Model) we calculate

the fund excess return related to the market return.

B. "Constant-mix" approach of rebalance

In Panel A, we observe that short-term returns decrease the intensity of the purchase. This

relationship stays the same in all three specifications. In "Raw Model", all five previous

daily return have negative coefficients. They indicate a decrease of the latent utility value

(c.f. 2.3). For example, a 1% increase in the previous daily raw return ("R[0-1]", first

column) decreases investor’s utility by 2.746% . It makes the trade density curve in Figure

2 shifting to the left. Therefore, investors reluctant to purchase. When we use "Market

Model" and "Average Model", the negative relationship holds.

We interpret this result by the fact that investors adopt the "constant-mix" strategy to

rebalance their portfolio of funds. Under this strategy, investors intend to keep the same

weights different assets (funds) when their value evolves. Consequently, they would buy

funds whose value has depreciated. On the contrary, they cut positions of funds whose

value has appreciated. Since the rebalance decision is a short-term trading behaviour, we

hold the opinion that investors rebalance according to the short-term fund returns.

However, the negative return-trade relationship is modified in December. In this month,

with few exceptions, the best part of short-term return variables have strong positive influ-

ences on the purchase decision. Thus a better return decrease the propensity of redemptions.

For example, "Rweekly × Dec" has a beta of 4.250, which has an opposite sign to "Rweekly"’s

coefficient. It tells us that investors sell less better-performed funds in December. The most

possible explanation for this positive return-trade relationship observed in December is the

tax issue. In the last month of the year, investors avoid to trigger a large tax bill. One way

to decrease the tax payment is to hold the out-performed funds which would realize the high

profit if they are sold. An alternative approach is to sell securities at loss to offset realized

earnings on other securities. Both these two methods require a "hold-high-and-sell-low"

behaviour which we observe.

Panel B presents how investors react to mid- and long-term returns. Until the horizon

of 50th previous day, the negative return-trade relationship still holds. In all three specifi-

cations, R[6− 20] and R[21− 50] both have negative coefficients as the short-term returns.

However, long-term returns’ coefficients become to positive. "R[101-200]" calculated un-

der "Market Model" has a coefficient of 0.177. It suggests that investors purchase more
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better-performed funds in a long-term perspective. A very plausible explanation of this

relationship is that long-term fund performance, especially quarterly (around 50-100 days)

and annually (around 100-200 days) returns, are indicators for the fund manager’s quality.

Accordingly, investors select funds which have out-performed in long-term horizons.

An alternative explanation for the short-term negative return-trade relationship is the

well documented "disposition effect" (Chang et al. 2016). It is a behaviour generated by

the loss aversion bias: investors feel extremely bad to realized loss, hence they keep under-

performed funds for the long time. Moreover, since they fear that a good return would not

persist in the future, they would sell "winner funds" immediately. This effect creates also

negative coefficients estimated above. Technically, it is difficult to separate the impacts of

the "disposition effect" and the impacts of the rebalance activity. However, in our exam-

ination, there are two proofs which support more our argument about "rebalance". The

first one is that long-term returns have positive impacts on fund purchase. It is odd that

investors only exhibit "short-term" loss aversion, while they behave differently for long-term

returns. Secondly, we add several variables to examine investors’ reaction to previous price

patterns. It gives us the evidence whether investors trade in a rational way or they exhibit

the behavioural bias such as the loss aversion.

We present our control variables in Panel C. We first investigate investors’ reactions

to various historical return patterns, it reveals whether investors are rational. Then, we

control different impacts of economic conditions such as the market performance ("Market"),

the previous fund flows ("FlowFund" and "FlowCompany") and the fund return variance

(LT/ST "Variance"). Two flow variable represent aggregated net flows at two different

levels. "FlowFund" is the aggregated net flows of the observation fund in the previous day

and "FlowCompany" is the aggregated net flows of all funds in the company in the previous

day. Since these control variables are same in all three specifications, we interpret only

the result in the first column. We first observe from a sensitivity of -1.171 that investors

purchase less a fund when its return is above its 30 days’ average. Moreover, if the fund

return raises to the 30-days maximum, it makes investors more possible to sell; in contrast,

if the return is at 30-days’ low, investors have a tendency to purchase the fund. These

three coefficients are consistent with the "constant-mix" rebalance strategy: investors buy

"low" and sell "high". Then we find investors are rational with following evidence: (a) the

"Positive" dummy has a coefficient of 0.104, it indicates that investors purchase more funds

with positive returns. It contradicts to the "disposition effect" which predicts that investors

would sell "winner funds (/positive funds)" immediately; (b) we further study how investors

trade under extreme returns. When a return is extremely good, we detect that investors
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are more likely to purchase (a positive coefficient of 1.351); (c) in contrast, an extreme loss

decreases investor’s utility by 0.531. These two coefficients have exactly inverted signs to

what the "disposition effect" requires. With this behavioural bias, investors fear that the

extremely good return becoming bad, hence the coefficient of "Extreme gain" would be

negative. On the contrary, irrational investors are reluctant to realize the loss, so "Extreme

loss" would has a negative coefficient. Combining all findings above, investors’ behaviour

in our sample is rather rational. Therefore, we confirm that the negative return-purchase

relationship in short-term is more possibly due to the rebalance strategy.

Together, we find that short-term and mid-term fund returns have negative impacts on

investors’ trade decisions. This result supports the "constant-mix" rebalance strategy but

also the "disposition effect". After analysing (1) what are investors’ interpretations to fund’s

long-term returns and (2) how investors react to the extreme returns; we are more convinced

by the explanation of the rebalance activity than the explanation of the disposition effect.

To continue our investigation, we ask a further question: what is the exact mechanism of

the rebalance activity? We need to study how investor switch from one fund to another.

We answer this question in the next section.

4.4 How investors switch among funds

A. Description of regression

In this section, we move from the previous "single fund" context to a "multiple funds"

context: for each trade decision, we not only consider the fund which the investor trades,

but also other funds the investor holds in parallel. For instance, an investor holds three

mutual funds A, B and C. When we analyse his trade decisions on A, we take also the

performance of B and C into account. We call the fund A as the "observation fund", other

two funds as "parallel funds". In this test, we intend to identify the exact mechanism of

rebalance: how investors switch from one fund to another. We search for three types of the

"fund switch". First, we study the "return switch". It highlights how investors rebalance

their fund holdings with different returns. Naturally, we expect a consistent result with the

previous section, the "single fund" context. Secondly, we examine the "liquidity switch".

We intend to identify the order of transactions when an investor holds funds with different

liquidity levels. For example, either the investor redeems the liquid fund or the illiquid fund

at first. Finally, we check the "risk switch". In this test, we evaluate the risk of "observation

fund" relatively to investor’s "parallel holding", then we monitor how fund’s relative risk
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impacts the trade decision. We present the estimation in Table 4.4.

We keep a similar model specification as in the last section, however, we include several

additional variables concerning the "parallel holding". As the "Basic Trade Model", we

start to test how investors react to fund returns. We keep the nine return measures: five

short-term returns, 4 mid-/long- term returns. However, we modified the calculation to

take the parallel holdings into account. For each observation date, we first compute the

average return of the "parallel funds", then we calculate the excess return of the "observation

fund" to this average. We note these returns as "parallel returns (R*)". Then, we use the

same control variables as the previous section. Finally, we add variables to check the three

"fund switch" behaviours. The first two dummies test the "return switch": "Sell better

R" is a dummy to highlight whether the investor has redeemed a better-performed fund

in the previous week before the observation date. Inversely, "Sell worse R" show whether

the investor has redeemed an under-performed fund. After, we construct several dummy

variables for the "liquidity switch". "Most/Least liquid" indicates if the observation fund is

the most/least liquid fund among investor’s holding. "Sell other liquid" shows whether the

investor has sold a more liquid fund. "Sell other illiquid" highlights whether the investor

has redeemed less liquid funds. Finally, we use two variables to test the "risk switch". The

variable "Most risky" equals to one when the observation fund’s (LT) return variance is

the highest among investor’s holding. "Excess variance" is the variance of observation fund

minus the average variance of parallel funds.

Table 4.4: Fund Switch Model (for rebalance analysis)

Ordered Response Model: Redemption < Hold < Purchase

Estimated coefficients:

Panel A: short-term returns

R∗[0-1] -2.074∗∗∗

(0.015)

R∗[1-2] -1.615∗∗∗

(0.0035)

R∗[2-3] -1.007∗∗∗

(0.0040)

R∗[3-4] -0.994∗∗∗

(0.0036)

R∗[4-5] -1.204∗∗∗

(0.0044)

× Dec Yes

Panel B: mid/long-term returns

R∗[6-20] -1.146∗∗∗

(0.039)

R∗[21-50] -0.089∗∗∗
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(0.041)

R∗ [51-100] 0.240∗∗∗

(0.066)

R∗ [101-200] 0.164∗∗∗

(0.063)

× Dec Yes

Other control variables Yes

Panel C: funds switches

Return switch:

Sell better R 0.011∗∗∗

(0.031)

Sell worse R −0.021∗∗∗

(0.0032)

Liquidity switch :

Most liquid 0.010∗∗∗

(0.027)

Least liquid −0.005∗∗∗

(0.093)

Sell other liquid −0.102∗∗∗

(0.037)

Sell other illiquid 0.031∗∗∗

(0.010)

Risk switch :

Most risky 0.012

(0.018)

Excess variance -507.153∗∗∗

(0.0015)

Observations 1,163,519

AIC 251709.29

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.4 reports coefficients of the Ordered Response Model, estimated by maximizing its likelihood function. The model

explains individual daily trade choices among "Redemption", "Hold" and "Purchase" of all investors in one fund company over

two years. We suppose there is a latent utility function with two threshold values: the left-threshold and the right-threshold.

When an investor obtains an utility higher than the right-threshold, he makes the purchase decision. On the contrary, when

the utility is lower than the left-threshold, the investor redeems his fund share. In other cases investor choose to hold. The

sample contains 587 investor accounts and 98 funds share-classes (ISIN). In sum, there are 1 163 519 observations, from the 1st

January 2015 to the 30th December 2016. Each observation represents a trade decision made by one investor for one fund at

one day. Empirical frequencies of three trade choices are 1.16% for "purchase", 97.48% for "hold" and 1.40% for "redemption".

Comparing to previous "Basic Trade Model", this regression includes the "parallel holdings" in addition. In this model,

we calculate the average holding returns of each investors and we calculate fund excess returns to these individual averages.

The model further studies how investors switch among different funds. We put related variables together in one panel. Panel

A shows the coefficients of the short-term return variables. Panel B presents the coefficients of the mid/long-term returns. In

Panel C, we include variables to test the "fund switch" behaviour. We keep all the control variables in the "Basic Trade

Model". We label this regression as "Fund Switch Model".

B. Evidence on fund switches

Panel A and B show the coefficients of the return variables. We obtain the consistent

results as the "Basic Trade Model": investors sell funds with higher short-term and mid-
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term returns but this return-transaction relationship is inverted for the long-term returns.

From R*[0-1] to R*[21-50], all coefficients are negative. In contrast, investors have positive

sensitivities 0.240 and 0.164 for R*[51-100] and R*[101-200] respectively. All returns in this

section are calculated as the observation fund’s return in in excess of the "parallel holding".

The same fund may have different "parallel returns" for different investors which depends

on each investor’s holding situation. The short-term negative purchase-return relationship

reveals that investors compare performances of all holdings and reallocate capital from

depreciated funds to appreciated funds. Therefore, our analysis in the "single fund context"

and the "multiple fund context" both give the evidence on the "constant-mix" rebalance.

Meanwhile, we use the same control variables as the previous section and their coefficients

are similar as the previous test. Hence we leave these control variables unreported.

Panel C displays our test for the "fund switch" behaviour. We begin with the "return

switch". We find that, in the week before the observation date, if an investor has sold

a better-performed fund, his utility of purchasing the observation fund would increase by

0.011. Thus he switches from a better-performed fund to another under-performed fund.

This behaviour is consistent with the "Constant-Mix" rebalance strategy. However, if he has

already sold a "worse" fund, the utility value would decrease by 0.021, his purchase intensity

falls down. The possible underlying intuition is as follows: when an investor is forced to sell

an under-performed fund, it is highly possible that he has a liquidity "shock". Since his cash

need is urgent, he sells all his holdings, even the worse-performed securities. Consequently,

he reduces his purchase intensity. We could also speculate that when investors need to sell

his assets for the liquidity reason, he first sell better-performed funds.

We further investigate the "liquidity switch". The "Most liquid" Dummy has a positive

coefficient of 0.010 and "Least Liquid" has a negative coefficient of -0.005. These two

variables indicate that, when investors face two funds, a liquid one and an illiquid one,

to choose, they prefer to purchase the more liquid fund at first. Then, we examine the

impacts of investors’ previous trades in a similar way as the "return switch" in the last

paragraph. We observe that when an investor has sold an illiquid fund in the week before

the observation date, he is less likely to purchase after. The plausible explanation is that

investors tend to sell the more liquid fund at first when liquidity problem arrives. When he is

forced to redeem his holdings to satisfy his cash needs, he starts to sell the most liquid fund.

Thereafter, the possibility to purchase a new fund is reduced in presence of the liquidity

shocks. Alternatively, we can interpret the coefficient in the point of view of the redemption:

when an investor has the liquidity need and he has already redeemed one fund, it is highly

possible that he would redeem another fund. Moreover, we find that when the investor has
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sold a more illiquid fund previously, he is more likely to buy the observation fund since the

utility increases by 0.031. It shows a "Jump-to-Liquidity" behaviour. Investors switch from

illiquid funds to liquid funds in order to prepare future cash needs.

Lastly, we study how relative variance impacts investor’s trade decisions. "Most Risky"

dummy has no significant impact on the purchase possibility. The fact that a fund has the

highest variance among one’s holdings does not affect investor’s trade choice. However, we

find that "Excess variance" has a negative coefficient. It suggests that if a fund’s performance

variance increases relatively to investor’s parallel holdings, investor’s intention to purchase

would decrease. This finding suggests that investors switch from high-risk funds to low-risk

funds.

C. Is investor’s behaviour time-varying?

The previous research (e.g, Ben-Rephael et al. 2012) documents that fund clients may exhibit

the time-varying behaviour. Their trade pattern might be modified over the different periods

of the year for several reasons. First, investors’ risk aversion might evolve. Kamstra et al.

(2017) show that investors have tendency to avoid the high level of the risk in the end

of the year. Second, investors have different liquidity needs in the beginning and in the

end of the year. For instance, an institutional investor needs to pay the dividends to its

investors in the end of the year. Hence it would redeem more over this period. A second

example is a bank whose clients withdraw more deposits in the end of the year , perhaps for

preparing for the holiday consumption. Hence the bank investor in mutual funds redeem

more accordingly. Lastly, some investors may "window-dress" their portfolio for reporting

purpose in some periods of a year. All these scenarios make investors modify their trade

behaviour. Accordingly, we separate the data into four sub-samples, one for each quarter.

We seek to verify the robustness of our previous findings by examining whether the rebalance

behaviour stays stable during the year.

We present four quarters’ sub-sample tests in Table 4.5. We apply the same specification,

the "Fund Switch Model", to four quarter sub-samples. Each column of the table lists the

estimation for one quarters, from Q1 to Q4. Most of coefficients stay stable during the year,

therefore we do not present these variables. We list only the coefficients that have significant

divergences in four quarters.

First, we find that investors’ reactions to the long-term returns change significantly in

the fourth quarter. In the first three quarters, R*[101-200] has positive coefficients. The

positivity indicates that investors select well-performed funds in the long run. However,

Chapter 4 Ran SUN 143



Liquidity Risk in the Universe of Open-End Funds

Table 4.5: Fund Switch Model in quarterly sub-samples (for rebalance analysis)

Ordered Response Model: Redemption < Hold < Purchase

Estimated coefficients (time varying):

Q1 Q2 Q3 Q4

R∗ [101-200] 0.729∗∗∗ 1.395∗∗∗ 0.653∗∗∗ −0.032∗∗∗

(0.030) (0.013) (0.024) (0.0051)

Max during 30 days 0.328∗∗∗ −0.491∗∗∗ −0.093∗∗∗ −0.064∗∗∗

(0.001) (0.001) (0.001) (0.001)

FlowFund 0.144∗∗∗ −0.429∗∗∗ −0.339∗∗∗ 1.307∗∗∗

(0.001) (0.001) (0.002) (0.0001)

Most liquid 0.064∗∗∗ 0.045∗∗∗ −0.013∗∗∗ −0.036∗∗∗

(0.015) (0.011) (0.0084) (0.028)

Least liquid 0.010 −0.017∗∗∗ −0.051∗∗∗ 0.026∗∗∗

(0.016) (0.012) (0.012) (0.010)

Sell other illiquid 0.030∗∗∗ 0.152∗∗∗ −0.119∗∗∗ −0.010∗∗∗

(0.005) (0.002) (0.006) (0.003)

Best R∗ [0-1] 2.557∗∗∗ −1.329∗∗∗ −1.279∗∗∗ −3.456∗∗∗

(0.012) (0.0097) (0.0027) (0.0037)

Observations 289,433 282,251 299,162 292,673
AIC 63118.05 63290.05 61259.63 63871.09

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.5 presents our robustness checks for four quarterly sub-samples. For each sub-sample, we apply
the "Fund Switch Model" and we intend to examine previous whether estimated coefficients stay constant
during four quarters. We list the coefficients which have the significant divergence over the different periods.
Other stable coefficients are not presented.

this relation switches to negative in the end of the year. A possible interpretation is that

investors sell more better-performed funds to realize profits. Then we find investors’ reaction

to "Max during 30 days" is positive in the first quarter, whereas this coefficient is negative

in other periods. It seems that, in the beginning of the year, investors prefer the fund which

has "peaked" the monthly high. The variable "Best R*[0-1]" exhibits a similar pattern. We

observe that investors react negatively to "Best R*[0-1]" from Q2 to Q4. However, their

sensitivity to this variable becomes positive in the first quarter. These two factors show that

"Constant-Mix" rebalance deviates slightly in the first quarter. "FlowFund" has a positive
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coefficient in the Q1 and Q4 but it turns to negative in Q2 and Q3. It highlights that

investors react more to others’ trade at the beginning and the end of the year.

Investors’ attitude towards to the most liquid fund changes over time too. In the first

half of the year (Q1 and Q2), "Most liquid" has a positive coefficient as in the "Fund Switch

Model" (cf. Table 4.4). However, in the second half of the year (Q3 and Q4), this coefficient

becomes negative. A possible explanation to this change is that in the second half of the

year, investors need to set a larger cash reserve to prepare the liquidity needs. They sell the

most liquid funds at first. For the "Least liquid" dummy, we observe a different effect in the

last quarter: investors’ sensitivity is negative in Q2 (-0.017) and Q3 (-0.051) but becomes

positive in Q4 (0.026). A positive coefficient indicates either investors purchase more or

redeem less. In this case, we hold the opinion that investors redeem less the funds which are

the least liquid ones among parallel holdings in the Q4 because they sell more liquid funds

to prepare the cash needs. Furthermore, "Sell other illiquid" has the positive coefficient in

Q1 and Q2 but it switches to negative in Q3 and Q4. The positive coefficient reveals the

"jump to liquidity" behaviour. However, this behaviour vanishes in the second half of the

year. This result might also be explained by the fact that, during the second half of the year,

investors sell liquid funds at first to prevent cash consumption. If they have already sold

illiquid assets, it shows that they have already "liquidity shocks", therefore they purchase

less.

In summary, when we include the "parallel holding" information in our study, we find

clear evidence that investors hold a global view of the full portfolio to make trade decisions,

and funds held by the same investor are analysed together. We first confirm our hypothesis

on the "Constant-Mix" rebalance strategy: investors buy low and sell high. Further, we

examine how investors switch their fund portfolio. We observe that investors tend to "jump"

to under-performed, more liquid and lower-risk funds. Most of their behaviours stay stable

during the four quarters. However, some of their behaviours are modified during some

periods, especially in the first and last quarter of the year.

4.5 Discussion and conclusion

Our paper presents a comprehensive analysis on the rebalance activities of mutual fund

clients. We document that investors do not follow the simple "buy-and-hold" strategy in

the fund investing, but rebalance their portfolio on a daily basis. They purchase short-

term under-performed funds to maintain a constant capital allocation. However, we need

to distinguish the short-term rebalance trades to the long-term fund selection. Moreover,
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investors do not monitor funds’ performances in the isolated manner. Funds owned by the

same client have influences on each other. Finally, we find that the majority of the rebalance

activities are stable during different quarters of the year.

Our investor sample contains a diversified range of investors, including several institu-

tional categories such as banks, corporate firms and FoFs. It differs from previous studies

on micro-transaction data which cover mostly only retail investors. It is a possible reason

why we observe relative sophistic behaviours such as the capital allocation and rebalance

activities. The "intelligence" of fund investors makes us asking a fundamental question of

the delegated asset management: whether investors need only passive diversified manage-

ment style or fund companies should provide the more active and technical strategies? It

is an old debate and we see successful examples in both approaches. Triumphant passive

managers such as John Bogle offer only index fund services. They contest the claim that

the active management could not deliver the superior return and all asset managers should

offer fully diversified portfolio. However, there are also uncountable examples of successful

active fund managers, such as James Simons. Investors often confuse which type of asset

managers is most suitable for them. Our research helps investors to answer this question.

Our study documents that fund investors adopt relative complicate rebalance strategies.

It implies that these investors decide already their asset allocation. Therefore, the diver-

sification is done at the investor level. It seems that these investors do not need the asset

manager provides a diversified service. Besides, mutual funds often charge a non-negligible

fees which are too expensive for passive strategies. Investors have cheaper substitutions in

the passive investing market, such as ETF or index futures. Based on the fact that investors

have already a target allocation, mutual funds should offer more "technical" management

strategy: (1) Offer manager’s expertise in some asset classes. Mutual funds need deliver

a better return than what investors can achieve themselves. (2) Provide the unique risk

exposure. Funds with a unique style often have different risk exposures. For instance,

quantitative and/or ISR (Investments in Social Responsibility) funds provide isolate risk

exposure to investors, they help their clients to better diversify their investment and reach

a higher efficient frontier. Overall, in this highly competitive market, mutual fund man-

agers should offer their strong ability to investors. A simple passive investing service is not

suitable for the professional institutional investors.
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Conclusion générale

Mes travaux de thèse contribuent à la modélisation du passif des fonds ouverts. Ce côté

passif est une source non-négligeable du risque de liquidité, mais reste souvent ignoré par

les études académiques et les praticiens du marché. De nombreux fonds bien gérés ont

échoué à cause de sorties massives des clients. Ces scénarios de "fund run" impactent non

seulement les sociétés de gestion et leurs investisseurs, mais aussi génèrent des conséquences

néfastes au niveau macroéconomique. Nous avons vu que, pendant les "fund run" de 2006

et 2008, le prix d’une classe d’actifs entière avait été impacté. En 2011, nous avons observé

que les "fund runs" ont influencé les activités de financement des entreprises. En outre,

un "run" peut aussi transférer le problème de liquidité entre des actifs différents. Un actif

initialement de bonne qualité peut être contaminé pendant un "run". A l’égard de ce

problème, les régulateurs européens ont introduit de nouvelles règlementations sur la gestion

de la liquidité du passif du fonds. Mes études répondent aux trois dimensions de cette

préoccupation: collecter la base de données du passif des fonds, connaitre le comportement

des investisseurs et prévoir le risque de sorties massives.

Dans le premier chapitre, nous révisons d’abord la littérature sur le sujet de risque de

liquidité des fonds ouverts. Cette étude nous a découvert les différentes bases de données

utilisées par des études précédentes. Nous observons que les bases de données traditionnelles

ne fournissent pas d’information sur les investisseurs individuels. Ainsi, leurs comportements

sont rarement analysés. Afin de compléter la littérature, nous avons collecté une nouvelle

base de données au passif des fonds mutuels. Cette base nous permet d’observer les trans-

actions individuelles des investisseurs et de calculer différentes mesures des flux. Au cours

de ce travail, nous reconnaissons certaines difficultés par rapport à la qualité de données.

Beaucoup de sociétés de gestion ne tient pas à jour un rapport complet des transactions

individuelles. En conséquence, il est impossible d’utiliser les outils statistiques que nous

avons développé pour ces sociétés pour gérer le risque client. Les sociétés qui ont commencé

à archiver les données "clients" de bonne qualité sont en avance sur le marché.

Le deuxième chapitre de cette thèse propose une nouvelle modélisation des flux des
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fonds. Nous nous interrogeons sur l’aspect "time series" des flux, alors que, la littérature

étudie plutôt l’aspect "cross-section". Au lieu d’identifier les fonds qui vont recevoir plus

de flux comme la littérature a étudié, nous nous focalisons sur les propriétés statistiques

de chaque série de flux. Nous développons un modèle couvrant deux faits stylisés des flux:

la "self-exciting" et la "over-dispersion". Notre étude montre que ces deux propriétés de

flux génèrent des scénarios de sorties extrêmes. Nous observons également la contagion des

chocs de liquidité entre des investisseurs dans un même fonds. Cela suggère qu’une partie

de risque de liquidité provient du côté passif du fonds. De ce perspective, cet article de

recherche diffère des études précédentes qui ne considèrent que l’actif du fonds. Ce nouveau

modèle aide les gérants de fonds à obtenir une prévision fiable des flux futurs. Ce travail

fait partie du projet "Modélisation et Gestion du Passif du Fonds (MGPF)" coopéré par

l’Université Paris-Dauphine et plusieurs partenaires industriels comme Groupama AM, OFI

AM et Scaled Risk. Ce projet a pour objectif de répondre aux besoins règlementaires et

développer les outils informatiques permettant de gérer le risque de passif.

Nous continuons d’étudier l’horizon d’investissement des investisseurs dans les fonds

mutuels dans le chapitre suivant. Cette étude cherche à expliquer les différences parmi

des investisseurs diverses. Nous identifions un effet significatif des caractéristiques des in-

vestisseurs, comme leur secteur d’activité par exemple. Ensuite, nous documentons que les

horizons d’investissement évoluent suite aux différentes conditions économiques. Par exem-

ple, les investisseurs peuvent raccourcir leurs horizons d’investissement et sortir du fonds

suite à une mauvaise performance. Nous introduisons ainsi le risque de sortie pré-maturée:

ses clients sortent avant "l’échéance" à cause de la mauvaise circonstance économique. En-

fin, nous trouvons que ce risque est plus élevé chez les investisseurs de long-terme. Cette

étude indique que l’hétérogénéité des investisseurs a des impacts sur le risque de liquidité.

Ainsi, nous conseillons aux gérants de fonds de surveiller le risque de sortie au niveau in-

dividuel. Cela confirme l’utilité de notre base de données qui enregistre les comportements

individuels. D’ailleurs, cette analyse couvre des fonds investi dans les différentes classes

d’actifs et elle montre que ce risque de sortie existe dans tous types de fonds ouverts.

La dernière partie de cette thèse met en évidence des activité de rééquilibre des investis-

seurs. Nous trouvons que les investisseurs détiennent souvent un portefeuille contenant

plusieurs fonds et le rééquilibrent par une approche "constant-mix". Les investisseurs ajus-

tent leurs portefeuilles selon le rendement, le niveau de liquidité et le niveau de risque de

chaque fonds. Cette étude explique le degré extraordinaire d’activités de transactions dans

les fonds par l’activité de rééquilibre. En outre, nous mettons en exergue deux nouveaux

aspects du comportement des investisseurs. Premièrement, les investisseurs institutionnels

148 Chapter 4 Ran SUN



Liquidity Risk in the Universe of Open-End Funds

évaluent leurs investissements de façon globale. Deuxièmement, notre étude suggère que les

investisseurs de fonds ont une allocation d’actifs et ont probablement déjà diversifié leurs

portefeuilles. Pour ces clients, un service de gestion passive est ainsi insuffisant. La société

de gestion doit absolument proposer des services plus actifs et sophistiqués à ces clients

institutionnels.

La nouvelle base de données joue un rôle crucial dans nos travaux. Afin de gérer le

risque de passif, il est nécessaire de collecter les données "clients". Au cours de ces travaux,

nous avons observé que le gérant et les vendeurs se situent dans deux équipes différentes

et ne communiquent pas. Ainsi, le côté actif et le côté passif du fonds sont séparés par a

une frontière: le gérant ne connaît pas le passif du fonds. Nous conseillons fortement de

lever cette frontière et créer une coordination entre le gérant, qui connaît l’actif du fonds,

et les vendeurs, qui connaissent le passif du fonds. Le timing de l’achèvement de cette thèse

coïncide avec la nouvelle règlementation sur le risque de passif qui a été mise à place en

janvier 2018. Suite à cette règlementation, toutes les sociétés de gestion européennes vont

commencer à construire une base de données ressemble à la nôtre. Avec trois sociétés de

gestion de taille moyenne, notre échantillon contient déjà plusieurs millions de transactions.

La future base de données future sera beaucoup plus volumineuse. Nous pourrions ainsi

commencer à préparer des techniques de "big data" d’étudier les nouvelles données.

White Page
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Annexe générale

Annexe A: l’évolution des flux cumulés des fonds "fixed income" de

la dernière décennie

Figure 4.3: Les souscriptions cumulées dans les fonds "fixed income" ( 2007-2016)

Ce graphique présente les souscriptions cumulées dans les fonds "fixed income" aux États-Unis, de janvier
2007 à décembre 2016, en fréquence mensuelle. L’unité de chiffre dans l’axe des ordonnées est de milliard
dollars. Source: "ICI 2017 INVESTMENT COMPANY FACT BOOK, chapter 2."

Dans la Figure 4.3, on présente les flux cumulés investis dans les fonds "fixed income"

de janvier 2007 à Décembre 2016 à une fréquence mensuelle aux États-Unis. Ce graphique

montre une remarquable tendance croissante d’investir dans les fonds "fixed income". Cette

étude est effectuée par l’ICI.
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Annexe B: l’évolution de l’encours de LTCM et sa chute au septem-

bre 1998

Figure 4.4: Évolution de l’encours du fonds LTCM (1994.3- 1998.9)

Ce graphique présente l’évolution de l’encours du fonds LTCM de mars 1994 à septembre 1998. L’unité de
chiffre est de milliard euros. Source: "zerohedge.com"
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Annexe C: différentes classes d’actifs gérées par les fonds mutuels

ouverts

Cette figure nous montre la distribution du nombre de fonds dans chaque catégorie en France

à la fin 2016. On observe que, les fonds actions représentent la plus grande part du marché.

Ensuite, les fonds "fixed income" et "allocation" représentent un nombre important du

total. Les fonds monétaires semblent peu nombreux mais représentent une grande part des

AUMs. Un autre point remarquable est que les fonds alternatives ont également une part

non-négligeable, soit 10% du marché. Cela implique que les sociétés de gestion commencent

à utiliser la structure ouverte pour gérer des actifs non-traditionnels.

Figure 4.5: Différentes classes d’actifs gérées par des fonds mutuels ouverts

Figure 4.5 montre la distribution de nombre des fonds français dans chaque catégorie à la fin 2015. Cette
classification est créée par Morningstar.
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Annexe D: démonstration du modèle Berk-Green5

Le modèle Berk-Green a pour objective de lier deux comportements principaux que la lit-

térature précédente avait eu de difficultés de se réconcilier: les flux du fonds sont sensibles

à la performance et il n’y a pas de persistance dans la performance.

Le modèle suppose que la capacité d’un gérant est représentée par sa sur-performance

par rapport au rendement de référence ("benchmark"). Le modèle suit un équilibre partiel:

les gérants n’influencent pas la performance du "benchmark" et on n’observe pas la source

de cette capacité. Cette dernière est inconnue à gérant lui-même et à ses clients. Ses derniers

apprennent cette capacité avec l’histoire des rendements observés. Le rendement brut de la

période t est Rt = α + ǫt. Cependant, les investisseurs ne reçoivent que le rendement net

qui égale à Rt moins les coûts et les frais. Le paramètre α est la source de capacité et le

terme d’erreur ǫt suit une distribution gaussienne avec la moyenne 0 et la variance σ2 et il

est distribué indépendamment du temps. Nous introduisons un nouveau paramètre ω = 1
σ2

qui indique la précision de cette incertitude. L’apprentissage des investisseurs est la source

de la relation entre la performance et le rendement.

L’AUM du fonds à la période t est qt et il y a un coût C de gérer ce portefeuille qui est

une fonction de qt: C = C(qt). Pour tous q > 0, on a C(q) ≥ 0, C ′(q) > 0 et C ′′(q) > 0.

Cette hypothèse est expliquée par le fait que un plus grand AUM est associé à un coût

de gestion (e.g., frais de transaction, impact de prix, contrainte de capacité) plus élevé.

Ainsi, la taille du fonds diminue sa performance. En outre, nous supposons qu’il y a un

frais de gestion , f , qui est exprimé en proportion de qt. Après avoir enlevé ces deux coûts,

l’investisseur reçois un rendement net:

TPt+1 = qtRt+1 − C(qt)− qtf

Nous utilisons rt pour représenter le taux de sur-performance à la période t. Nous avons:

rt+1 =
TPt+1

qt

= Rt+1 −
C(qt)

qt
− f

= Rt+1 − c(qt) (1-A)

5Dans cette annexe, on présente la partie principale du modèle Berk-Green. Cette partie du modèle se
trouve dans la section 1 et 2 du Berk and Green (2004). On utilise les mêmes représentations des paramètres
et les numéros des équations (avec "-A" en plus) comme dans leur article, afin de garder la cohérence.
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où

c(qt) ≡
C(qt)

qt
+ f (2-A)

Ainsi, rt est le rendement empiriquement observé et c(qt) est le coût unitaire associé à

la gestion active du fonds.

Le modèle suppose que les investisseurs sont rationnels, ainsi, ils mettent à jour leurs

estimation sous une approche bayésienne. Quand un fonds est créé, le prior de l’investisseur

sur la capacité du gérant est de moyenne Φ0 et de variance η2. La précision de cette

distribution est de γ = 1
η2

. La moyenne de α a posteriori est:

Φt ≡ E(Rt+1|R1...Rt)

.

Nous supposons que les souscriptions sont infiniment élastiques à la sur-performance

positive. Ainsi, dans chaque équilibre sous la compétition parfaite, le rendement marginal

sur le dernier dollar investi doit être 0:

Et(rt+1) = 0 (3-A)

La condition (3-A) implique qu’il n’y a pas de persistance dans les rendements et la

moyenne inconditionnelle des sur-performances est de 0. Nous prenons l’espérance sur les

deux côtés de (1-A) et fixe l’espérance de rendement reçu à 0 comme dans l’équation (3-A),

cela donne:

Φt = c(qt)

=
C(qt)

qt
+ f (4-A)

Si Φt change, qt change en conséquence afin de garantir l’égalité à l’équation (4-A). Cette

relation indique comment les flux (∆qt) évoluent en fonction de "l’estimation" de la capacité

du gérant (Φt). En appliquant le théorème 1 dans DeGroot (1970), nous obtenons que, pour

chaque fonds pendant t− 1 et t, l’évolution de Φt et les flux entrants/sortants, en fonction

de la performance passée, sont donnés par la solution de:

Φt = Φt−1 +
ω

γ + tω
rt (5-A)
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et

c(qt) = c(qt−1) +
ω

γ + tω
rt (6-A)

Notons:

c′(qt) = [C ′(qt)−
C(q)

q
] > 0

Nous savons par le théorème des accroissements finis, pour chaque q, il y a un point q̄,

0 ≤ q̄ ≤ q, tel que [C(q) − C(0)]/q = C ′(q̄). La convexité stricte de C(.) et l’hypothèse

C(0) = 0 implique C ′(q) > C ′(q̄) = C(q)/q. Ainsi, une bonne performance (positive rt) sera

suivi par les "inflows" (qt > qt−1), et vice versa. Le principal résultat ainsi est obtenu, le

modèle montre que même si sans la persistance de la performance, les investisseurs suivent

toujours les fonds avec les meilleures performances passées.

Annexe E: démonstration du modèle Chen-Goldstein-Jiang6

Le modèle Chen-Goldstein-Jiang explique dans un contexte où un fonds illiquide a réalisé

une mauvaise performance, les "payoff complementarities" génèrent une motivation aux

investisseurs de sortir du fonds. Cela entraînerait le scénario de "fund run".

Le modèle est discrète avec deux périodes 1 et 2. Chaque investisseur provenant d’un

continuum (0, 1) détient une part dans un fonds mutuel. Le montant d’investissement global

est normalisé à 1. A la date 1, le rendement du fonds est R1 et il est observable au tout le

monde. Dans cette date, une fraction des investisseurs, N̄ , choisissent à rester ou sortir du

fonds et une fraction N des investisseurs choisissent à sortir. On suppose que les investisseurs

vont obtenir un rendement normalisé, 1, à la date 2 après être sorti du fonds à la date 1.

Donc les investisseurs sortants réalisent un rendement total sur deux périodes R1.

Nous imposons une externalité négative aux investisseurs restants: le gérant paie une

prime d’illiquidité λ quand il vend ses actifs afin de répondre les rachats à la date 1. Le

paramètre λ > 0 indique le niveau d’illiquidité du fonds. Sans prenant compte des "inflows",

les investisseurs restants réalisent un rendement pendant deux périodes:

1− (1 + λ)N

1−N
R1R2(θ) (5-B)

6Dans cette annexe, on présente la partie principale du modèle Chen-Goldstein-Jiang. Cette partie du
modèle se trouve dans l’annexe A.1. du Chen et al. (2010). On utilise les mêmes représentations des
paramètres et les numéros des équations (avec "-B" en plus) comme dans leur article, afin de garder la
cohérence.
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où R2(θ) est la performance du fonds pendant la deuxième période, qui est une fonction

croissante de paramètre θ. Ce dernier représente les fondamentaux du fonds, qui couvrent

la capacité du gérant à délivrer une bonne performance.

Ensuite, on intègre le fait que la bonne performance peut attitrer les flux entrants à la

date 1. On dénote I(R1) est les "inflows" qui est une fonction croissante de R1. Grâce à

ces flux entrants, le gérant vend moins d’actifs à la date 1. Par conséquent, on remplace N

de l’équation (5-B) par max{0, (N − I(R1))}. Cela signifie que, si les "inflows" sont plus

grands que les "outflows", le gérant n’a plus besoin de liquider ses actifs à la data 1. Le

rendement des investisseurs restants dévient:

1− (1 + λ)max{0, (N − I(R1))}

1−max{0, (N − I(R1))}
R1R2(θ) (6-B)

Ainsi, les investisseurs choisissent entre sortir à la date 1 et obtenir R1 et attendre jusqu’à

la date 2 et obtenir le rendement dans (6-B). Clairement, le rendement des investisseurs

restants a une relation positive avec le paramètre θ → les fondamentaux du fonds. En

revanche, il décroit avec le nombre des investisseurs qui sortent, N . Ce dernier détermine

l’équilibre du modèle.

Puisque le rendement de chaque investisseur dépend aussi des décisions des autres à

cause de la externalité négative du rachat, le modèle pourrait posséder plusieurs équilibres.

Afin de les identifier, on définit deux seuils des fondamentaux: θ et θ̄(R1). θ est le niveau de

fondamentaux tel que les investisseurs vont racheter à la date 1, n’importe quelles décisions

que les autres ont fait. Ainsi,

R2(θ) = 1 (7-B)

Symétriquement, θ̄(R1) est le niveau de fondamentaux tel que les investisseurs vont

rester, n’importe quelles décisions que les autres ont fait. De manière pareil, on obtient:

R2(θ̄) =
1−max{0, (N̄ − I(R1))}

1− (1 + λ)max{0, (N̄ − I(R1))}
(8-B)

Nous définissons ensuite R̄1 tel que I(R̄1) = N̄ , on a:

θ̄(R1) > θ si R1 < R̄1

θ̄(R1) = θ si R1 ≥ R̄1
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(9-B)

Sous l’équilibre, tous les investisseurs rachètent à la date 1 quand θ < θ, par contre, tout

le monde reste jusqu’à la date 2 quand θ > θ̄(R1). Quand θ se situe entre ces deux seuils, il

existe deux équilibres: dans un équilibre tout le monde reste et dans un autre tout le monde

sort.

En appliquant les techniques de jeux globaux, on peut trouver un seuil θ∗. Si les investis-

seurs observent un niveau des fondamentaux à l’inférieur de cette valeur, ils vont tous sortir

à la date 1; Si le niveau des fondamentaux est supérieur à cette valeur, tout le monde reste.

Ainsi, θ∗ est le niveau des fondamentaux tel qu’un investisseur est indifférent de rester ou

de sortir. θ∗ satisfait l’équation suivante:

R2(θ
∗) =

1
∫ 1

−0
1−(1+λ)max{0,(αN̄−I(R1))}

1−max{0,(αN̄−I(R1))}
dα

(12-B)

Cette équation donne le résultat principal du modèle: quand la performance est mau-

vaise, i.e. R1 < R̄1, le seuil des fondamentaux θ∗ augmente avec λ et décroit avec R1. Cela

signifie que les fonds illiquides (qui ont un plus grand λ) souffrent plus de sorties.
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