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The topic of my PhD is the compilation of web data query languages. More particularly, the analysis and the distributed evaluation of a such language: sparql. My main contributions concern the evaluation of web data queries especially for recursive queries or for distributed settings.

In this thesis, I introduce µ-algebra: it is a kind of relational algebra equipped with a fixpoint operator. I present its syntax, semantics, and a translation from sparql with Property Paths (a new feature of sparql allowing some form of recursion) to this µ-algebra.

I then present a type system and show how µ-algebra terms can be rewritten to terms with equivalent semantics using either classical rewrite rules of the relational world or new rules that are specific to this µ-algebra. We demonstrate the correctness of these new rules that are introduced to handle the rewriting of fixpoints: they allow to push filters, joins and projections inside fixpoints or to combine several fixpoints (when some condition holds).

I demonstrate how these terms could be evaluated both from a general perspective and in the specific case of a distributed evaluation. I devise a cost model for µ-algebra terms inspired by this evaluation. With this cost model and this evaluator, several terms that are semantically equivalent can be seen as various Query Execution Plans (QEP) for a given query. I show that the µ-algebra and its rewrite rules allow the reach of QEP that are more efficient than all QEP considered in other existing approaches and confirm this by an experimental comparison of several query evaluators on sparql queries with recursion. I investigate the use of an efficient distributed framework (Spark) to build a fast sparql distributed query evaluator. It is based on a fragment of µ-algebra, limited to operators that have a translation into fast Spark code. The result of this has been used to implement SparqlGX, a state of the art distributed sparql query evaluator.

Finally, my last contribution concerns the estimation of the cardinality of solutions to a µ-algebra term. Such estimators are key in the optimization. Indeed, most cost models for QEP rely on such estimators and are therefore necessary to determine the most efficient QEP. I specifically consider the conjunctive query fragment of µ-algebra (which corresponds to the well-known Basic Graph Pattern fragment of sparql). I propose a new cardinality estimation based on statistics about the data and implemented the method into SparqlGX. Experiments show that this method improves the performance of SparqlGX.
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Résumé

Ma thèse porte sur la compilation des langages de requêtes orientés web des données. Plus particulièrement, ma thèse s'intéresse à l'analyse, l'optimisation et l'évaluation distribuée d'un tel langage : SPARQL. Ma contribution principale est l'élaboration d'une méthode nouvelle particulièrement intéressante pour des requêtes contenant de la récursion ou dans le cadre d'une évaluation distribuée. Cette nouvelle méthode s'appuie sur un nouvel outil que nous introduisons : la µ-algèbre. C'est une variation de l'algèbre relationnelle équipée d'un opérateur de point fixe. Nous présentons sa syntaxe et sémantique ainsi qu'une traduction vers la µ-algèbre depuis SPARQL avec Property Paths (une fonctionnalité introduite dans le dernier standard SPARQL qui autorise une forme de récursion).

Nous présentons ensuite un système de types et nous montrons comment les termes de la µ-algèbre peuvent être réécrits en d'autres termes (de sémantique équivalente) en utilisant soit des règles de réécriture provenant de l'algèbre relationnelle soit des règles nouvelles, spécifiques à la µ-algèbre. Nous démontrons la correction des nouvelles règles qui sont introduites pour réécrire les points fixes : elles permettent de pousser les filtres, les jointures ou les projections à l'intérieur des points fixes (dépendant des certaines conditions sur le terme).

Nous présentons ensuite comment ces termes peuvent être évalués, d'abord de manière générale, puis en considérant le cas particulier d'une évaluation sur une plateforme distribuée. Nous présentons aussi un modèle de coût pour l'évaluation des termes. À l'aide du modèle de coût et de l'évaluateur, plusieurs termes qui sont équivalents d'un point de vue sémantiques peuvent maintenant être vus comme différentes manières d'évaluer les termes avec différents coûts estimés.

Nous montrons alors que les termes qui sont considérés grâce aux nouvelles règles de réécritures que nous avons introduites, permettent une exécution plus efficace que ce qui était possible dans les autres approches existantes. Nous confirmons ce résultat théorique par une expérimentation comparant plusieurs exécuteurs sur des requêtes SPARQL contenant de la récursion. Nous avons investigué comment utiliser une plateforme de calcul distribuée (Apache Spark) pour produire un évaluateur efficace de requêtes SPARQL. Cet évaluateur s'appuie sur un fragment de la µ-algèbre, limité aux opérateurs qui ont une traduction en code Spark efficace. Le résultat de ces investigations à résultat en l'implémentation de SPAR-QLGX, un évaluateur SPARQL distribué en pointe par rapport à l'état de l'art.

Pour finir, ma dernière contribution concerne l'estimation de la cardinalité des solutions à un terme de la µ-algèbre. Ces estimateurs sont particulièrement utiles pour l'optimisation. En effet, les modèles de coût reposent généralement sur de telles estimations pour choisir quel sera le terme le plus efficace parmi plusieurs termes équivalents. Pour cette estimation nous nous intéressons tout particulièrement au fragment conjonctif de la µ-algèbre (ce qui correspond au fragment bien connu Basic Graph Pattern de SPARQL). Notre nouvelle estimation de cardinalité s'appuie sur des statistiques sur les données et a été implémenté dans SPARQLGX. Nos expériences montrent que cette méthode permet de grandement accélérer l'évaluation de SPARQL sur SPARQLGX.

General introduction

The semantic web is an extension to the World Wide Web whose goal is to make the Web carry more semantic information in a machine-readable format. Towards this goal, the W3C developed several standards such as rdf which models knowledge using graphs and sparql which is a query language for rdf graphs.

The field of research in databases is more than fifty years old but since its introduction by Codd at the beginning of the 70s, the relational model has received most of the attention from both the academia and the databases vendors. In particular, the optimization and the fast evaluation of relational queries has been extensively studied.

As new data models and query languages raise new challenges and as the rdf+sparql model diverges from the relational model, an interrogation naturally appears: can we develop a new model based on the relational model and its thorough body of research to tackle languages such as sparql?

In order to answer this question, we will present models of data and queries in the first part of this thesis. We will start in chapter 1 with the semantic web world and describe the rdf data model and its companion query language sparql. sparql will be presented via the sparql-algebra which is a formal modeling of sparql queries provided by the w3c and used by several query evaluators to represent and manipulate queries internally. We will also briefly look into existing query evaluators and assess their performance. This performance review will, in particular, investigate two salient points where we observe counter performances: on complex queries (e.g. with recursion) and on very large datasets.

As the relational model was at the center of a huge body of research, and as it will serve as the basis for our proposed approach, we will present, in chapter 2, the relational model and algebra along with the Datalog query language. We will also compare the relational model with the rdf+sparql model which will justify that our approach does not use the plain relational model.

As we will have demonstrated by going through both models, there are remaining challenges for the optimization of sparql queries and particularly for complex queries with recursion. For this type of queries, even traditional relational query evaluators cannot handle well very simple queries. Also, at the opposite side, distributed query evaluators for very large datasets could also benefit from performance improvements. That is why, in the second part of this thesis, we will introduce our general approach to sparql evaluation using our new model: the µ-algebra.

An overall depiction of our approach is presented in figure 1. It mimics the optimization strategy of SQL, which can summed up as this process: first the query is translated into a logical representation; then, using rewrite rules, we produce many equivalent terms (in the sense that they have the same answers) to the term obtained through the translation. Each of those terms can be seen as a Query Execution Plans for the original query and, thus, for each term, we estimate the time this term will take to be evaluated. Finally we select the term that takes an estimated minimal time to be evaluated and evaluate it. In this thesis our perspective is the optimization of sparql query evaluation but since our optimization efforts will concentrate on this µ-algebra any language that could be converted into µ-algebra would benefit from our work.

The question of adapting the relational algebra that models relational queries to model the evaluation of languages à la sparql will be dealt with in chapter 3. In this chapter, we will present the syntax and semantics of our µ-algebra. We will also present a translation from a large fragment of sparql to this query language. This chapter corresponds to the first arrow of figure 1.

We will then dedicate chapter 4 to present our rewriting strategy for µ-algebra terms. This strategy, as shown in figure 1, distinguishes between rewrite rules that produce new terms and rewrite rules that serve a normalizing purpose. The idea behind producing rules is to create new query execution plans while the idea behind the normalizing rules is to reduce the numbers of µ-algebra terms considered. In order to describe when those rules can be applied, this chapter introduces a typing mechanism for µ-algebra terms. This chapter also includes definitions, lemmas and theorems in order to prove the validity of the new rewrite rules we introduced.

Given all the terms produced by our rewriting strategy, the natural next step is to devise a cost model for our terms, allowing us to select the term that is the most efficient. However, in order to devise a cost model, we need a precise idea of how our terms will be evaluated. Chapter 5 explores this problematic and proposes a general way to evaluate µ-algebra terms and describes two prototypes we implemented: a µ-algebra evaluator called musparql and a distributed evaluator called SparqlGX based on Apache Spark. SparqlGX is limited to a fragment of the µ-algebra (and thus a fragment of sparql). Using these evaluators we can devise a cost model that can, for instance, predict accurately the time to compute the join of two sets A and B knowing the size of A and B. However, to decide the best term, this cost model will, in turn, depend on a cardinality estimation.

This quest for a cardinality estimation scheme for the µ-algebra is tackled in the chapter 6 with a new technique that provides a worst-case cardinality estimation based on a new tool: collection summaries. Collection summaries capture the implicit schema often found in rdf datasets. Our new tool captures this schema even in the presence of a few violations.

To validate our approach, chapter 7 compares it with the state of the art from both theoretical and empirical standpoints. The theoretical part compares query execution plans possible with the µ-algebra with query execution plans of various other approaches. We demonstrate that, even on very simple queries there are graphs where our new plans have a better complexity: in the scenario we present they have a linear complexity (in the size of the graph) while all other approaches are, at least, quadratic. We then rediscover experimentally this result by comparing our implementation based on the µ-algebra with sparql, SQL and Datalog engines. Finally we show that our distributed evaluator of sparql queries has state of the art performance and that our cardinality estimation allow us to improve further the performance of SparqlGX.

Part I Preliminaries

CHAPTER 1

The sparql language

The semantic web corresponds to an extension of today's World Wide Web. While the World Wide Web was designed to enable humans to share information with each others, the goal of the semantic web is to share information in a machine-readable format carrying semantic information.

Sharing information via the semantic web allows machines to reason and process information created from multiple outside sources in a federated manner. In the "old" syntactic web, one can create one parser per source of data and then gather them into a large silo in order to query them. In the semantic web, one would simply write a query that would in turn query each source for its data and gather the needed data at run time. There would be no need for a parser per source as the data would be served in a common unifying language. One could, for instance, imagine a trip planning system combining flight and train information extracted from several companies and then coupling that with landmarks information (using e.g. dbPedia) and even with some meteorological forecast data. And all of that without the need to centralize the data.

In this chapter we present the rdf data model and the sparql query language which are both specifications from the World Wide Web Consortium ( w3c) to express semantic information on the web and to query it. We will skip over many aspects of these specifications as they are large and we will focus on the essential parts needed for the evaluation of sparql queries on rdf data. We will then look at query evaluators and their optimization techniques.

The rdf data model

The Resource Description Framework (rdf) is a language standardized by the w3c [START_REF] Wood | RDF 1.1 concepts and abstract syntax[END_REF]. rdf models knowledge about resources. An rdf dataset is a set of statements where each statement gives either a relationship between resources or describes a resource. Before diving into the details of rdf we first need to introduce some terminology.

Serialization and rdf Serialization consists in producing a string representation of typed data. One of the goal of rdf is the ability for rdf-compatible software to understand data coming out of other tools therefore a large part of the rdf standard focuses on the serialization.

This chapter will give some hindsight about this serialization but the details are left to the official standard and, for the sake of simplicity, after this chapter, we will refer to arbitrary strings to escape the details of the encoding and focus on the essential challenges.

Terminology

Ressources

The resources described in a rdf dataset can be any object or class that we want to describe. For instance in a dataset stating that Socrate is human and that human is mortal, All of Socrate, human and mortal would be resources but the verb is would also be a resource as it is an entity that could be described. For instance, the dataset could declare that is has a transitive meaning which here would imply that given Socrate is human and human is mortal we also have Socrate is mortal.

In an rdf dataset, resources are either represented directly as an iri or as anonymous resources and represented as Blank nodes.

Internationalized Resource Identifier (iri)

An Internationalized Resource Identifier (iri) is a string of characters that identifies a resource. The iri scheme extends the uri scheme by allowing any unicode character (and not just ascii as in the uri scheme).

We refer the reader to the rfc 3987 for a precise description of iri but as a simplification, an iri can be seen as a string of the form scheme:path (e.g. https://www.inria.fr uses the scheme https and the path is //www.inria.fr).

The reader probably has an intuitive notion of iri as this format is very similar to the url scheme which is used to encode internet addresses but note that an iri does not necessarily correspond to an actually internet-accessible address nor that the scheme used has to be known (even though the schemes http and https are very widely used, in which case the path often corresponds to a web accessible resource).

Remember that the goal of rdf is to represent knowledge for the semantic web. In order to do that, we need to be able to identify resources across datasets. Therefore, when the same iri i is present in two different datasets D 1 , D 2 then the i in D 1 and the i in D 2 are considered to identify the same object.

CHAPTER 1. THE SPARQL LANGUAGE

Prefixes

For space and readability reasons, rdf datasets and sparql queries often use a set of prefix mappings. A prefix mapping is a pair (prefix p, iri <i>) and indicates that the strings of the form p:v is equivalent to its expanded form <iv> (where iv is the concatenation of the string i with the string v).

In rdf and in sparql queries, an iri should either appear enclosed in angle brackets (of the form <scheme:path>) or be prefixed (of the form prefix:subpath). In this latter case, there should be a unique matching prefix (prefix,iri) and thus the prefix:subpath can be replaced by the concatenation of iri and subpath enclosed in angle brackets (thus <iri subpath>).

Notice that prefixes are only here for concision and readability purposes as iri tend to be long. In fact, prefixes are not even part of the formal rdf data model. A prefixed iri should always be treated as its expanded version (and thus a simple way to do just that is to replace them by their expanded version).

The prefixes we will use in this thesis are described in the following 

Blank Nodes

An rdf dataset might include anonymous resources represented as blank nodes. A blank node is of the form _:subpath where _: designates exactly the string _: while subpath can be any valid iri path. The idea behind blank nodes is to describe resources that exist and have some relations with other (named or anonymous) resources. For instance if someone wishes to represent an ordered list of three authors (represented as ex:authorA,ex:authorB,ex:authorC) of an article (represented by ex:paper1) this person could create a node representing this ordered set with a blank node (e.g. _:abc) and state that paper has been authored by _:abc. The use of a blank node ensures that there will be no conflict with iri existing outside of this datasets.

In contrast with iri, if a blank node b is present in D 1 and in D 2 , there is no reason to suppose b in D 1 and b in D 2 are describing the same object and they should be treated as different.

As explained in the rdf 1.1 recommandation, it is possible to replace blank nodes with iri using a skolemnization process. But in order to respect the rdf semantics, we need to replace blank nodes with iri that are 1) cannot be used in other datasets , 2) can be identified unambiguously as blank nodes (as e.g. sparql allows to test whether a resource is a blank node).

Literals

A literal is a string of characters (enclose in a pair of ") eventually adjoined with a tag language information (concatenated at the end of the string and starting with a @) or tag data type (also concatenated at the end of the string but starting with a ˆˆ). The rdf standard only supports a tag language in a literal when its data type is http://www.w3.org/1999/02/22-rdf-syntax-ns#langString, therefore the data type is thus often omitted for literals with language information. When there is no datatype nor language information, the data type is considered to be http://www.w3.org/2001/XMLSchema#string.

For instance the literal "42"ˆˆxsd:integer represents the string "42" and indicates that it should be treated as an "xsd:integer" (which are the integers as defined by the xml standard). The literal "Londres"@fr represents the string "Londres" with the indication that it is in french and "London"@en represents the string "London" with the indication that it is written in english.

The values encoded via literals could also be encoded as resources and thus via an iri. But some types of things (such as string, integers, dates, boolean) are more easily manipulated with some type information than with iri. For instance in sparql, the comparison on typed data will not use the same algorithm to compare value depending on the type of the values compared (e.g. xsd:boolean, xsd:dateTime, etc.).

Note that it is possible to create custom data types however this is not supported by all evaluators and thus the types actually used correspond to the types defined by the rdf standard and whose semantics is imported from the xml standard (and thus their iri starts with http://www.w3.org/2001/XMLSchema#).

rdf Triples

rdf datasets represent knowledge through sets of statements. Each of these statements is an rdf triple. As its name suggests, a triple is composed of three elements (s p o):

• the subject s which designates a resource and thus is either a blank node or an iri;

• the predicate p which always is an iri;

• the object o which can by either a resource (blank node or iri) or a literal.

Predicates can be thought as of predicate in the predicate calculus or in theories of grammars. The idea is that each predicate p carries a semantic relationship between the subject s and the object o.

Following the w3c notation, we note I the set of valid iri, rdf-B the set of valid blank nodes names and rdf-L the set of valid literals then these three sets I, rdf-B and rdf-L are disjoint and an rdf triple can be seen as an element of (I ∪ rdf -B) × I × (I ∪ rdf -B ∪ rdf -L).

Finally, the standard denotes as the set of rdf-terms the set T = I ∪ rdf -B ∪ rdf -L (which is also the set of valid objects in an rdf triple). In this view, an rdf triple is an element of T 3 (however, not all elements of T 3 qualify as triples).

rdf graphs

A triple can also be seen as a part of labeled directed graph. The triple (s, p, o) links the node s to the node o via a directed arc labeled with p as depicted below. s o p A set of triples {(s 1 , p 1 , o 1 ), . . . , (s n , p n , o n )} is thus seen by the rdf standard as a directed labeled multigraph G = (V, E) whose nodes are the subjects and objects (i.e. V = {s 1 , . . . , s n } ∪ {o 1 , . . . , o n }) and there is an edge per triple (s i , p i , o i ), starting from s i going to o i labeled with p i (i.e. the edges are E = {s 1

p 1 -→ o 1 , . . . , s n pn -→ o n }).
Nodes in rdf graphs are therefore rdf-terms but labels can only be iri. Note that an iri appearing as the label of a transitions (and thus as a predicate) can also be a node of the graph.

An rdf dataset is a set {G, (< u 1 >, G 1 ), . . . , (< u n >, G n )} where each of the G, G 1 , . . . , G n corresponds to an rdf graph and each of the u i is a valid iri. The graph G i is named < u i > while the graph G is the default graph.

An example

Let us consider the following example describing the phylogeny of penguins and tyrannosaurus and showing that they are not so distant cousin. ex:tyrex ex:subTaxon ex:saurichien . ex:tyrex rdfs:type ex:taxon ex:tyrex rdfs:label "Tyrannosaur"@en . ex:tyrex rdfs:label "Tyrannosaure"@fr . ex:birds rdfs:type ex:taxon . ex:birds rdfs:label "Aves" . ex:birds ex:subTaxon _:missingLink . _:missingLink ex:subTaxon ex:saurichien . _:missingLink rdfs:type ex:taxon . ex:penguins rdfs:type ex:taxon . ex:penguins rdfs:label "Sphenisciformes"@en . ex:penguins ex:subTaxon ex:birds . ex:saurichien rdfs:label "Saurichia"@en .

Note that we used a blank node (_:missingLink) to represent the existence of a missing link between birds and saurichias. The same dataset in a graph representation : "Sphenisciformes"@en ex:birds "Aves"@en _:missingLink ex:penguins ex:taxon ex:saurichias "Tyrannosaure"@fr ex:tyrex "Tyrannosaur"@en "Saurichia"@en rdfs:label 

Entailment

The rdf technology stack also comes with an ontology mechanism to access data. An ontology is a set of rules (eventually also encoded in rdf) to deduce new statements implied by the set of statements. It allows, for instance, to write a set of rules such that an rdfequivalent of the statement socrate is mortal can be automatically deduced from the rdf-equivalents of the statements socrate is human and human is mortal.

The entailment regimes in rdf are very rich and interesting but they are not in the set of topics that we will cover in this thesis. It does not mean, however, that our method can not be applied to data with entailment. One of the ways to treat entailment is to have a pre-processing phase enriching the data with the knowledge discovered by an entailment regime. If our method does not treat the enrichment part, our query evaluator is obviously capable of treating enriched data. Another method consists in rewriting the query q that we want to evaluate on a database using an ontology o into a query q o where the semantics of q o (without ontology) is the semantics of q with the ontology o. Depending on q and o, the resulting query q o might be much more complex than q (and may not be expressible in sparql).

The sparql query language and the sparql-algebra

The sparql acronym stands for sparql Protocol and rdf Query Language. sparql is, as its name suggests, a query language for rdf data. sparql has been widely adopted since its standardization by the w3c [START_REF] Harris | SPARQL 1.1 query language[END_REF] to query and update rdf data and it is now in its 1.1 recommendation (which is the second major version). In this section we will not present the whole sparql but rather we will present the multiset fragment of the sparql-algebra which is an algebraic representation of sparql queries that helps to formally define the semantics of sparql queries.

Definitions

Definition 1. The sparql language contains variables (that we will call sparql-variables). The set of valid sparql-variable names is noted V and is disjoint with the set T of rdfterms. In this manuscript sparql-variables will be spaceless strings of characters starting by '?' or '$'.

The sparql standard formalizes query answers as solution mappings whose domain contains only sparql-variables (i.e. elements of V) and whose range are rdf terms (i.e. T ). Solution mappings thus have the type V → T , however, during the computation of a solution mapping, we also have to compute an instance mapping which is a partial mapping whose domain is the set of blank nodes (i.e. a mapping of type B → T ). In sparql-algebra the combination of such an instance mapping with a solution mapping is called a Pattern Instance Mapping (therefore a mapping of type V ∪ B → T . As the difference between the several parts of Pattern Instance Mapping will only appear during the translation, we will call mappings for all the three types of mappings and remember which part is from the instance mapping and which part is solution mapping (which is easy since the set of sparql-variables is disjoint with the set of rdf terms). Definition 2. A binding is a pair ( sparql-variable, rdf-terms) or (blank node, rdfterm). Definition 3. A mapping is a partial function m : V ∪ B → T and the domain of m (noted dom(m)) is the subset of V ∪ B where m is defined. Mappings have a finite domain.

Alternatively, a mapping can be seen as a finite set of bindings where the sparqlvariables and blank nodes in the bindings are all distinct.

Definition 4. Two mappings m 1 and m 2 are said compatible when for all c ∈ dom(m 1 ) ∩ dom(m 2 ) we have m 1 (c) = m 2 (c).

Given two compatible mappings m 1 and m 2 we can define m 1 + m 2 as the union of their bindings or alternatively as the mapping whose domain is dom(m 1 ) + dom(m 2 ) and such that (m 1 + m 2 )(c) = m 1 (c) when c ∈ dom(m 1 ) m 2 (c) otherwise

A first sparql Example

This example is based on the rdf dataset presented earlier. We consider the sparql query asking for the name of all taxons and, when available, the name of the parent taxon. This could be written in sparql as:

SELECT ?name, ?parentName WHERE { ?taxon rdfs:type ex:taxon . ?taxon rdfs:label ?name . OPTIONAL { ?taxon ex:subTaxon _:parent . _:parent rdfs:label ?parentName . } } In this query, there is one blank node _:parent; three variables ?taxon, ?name and ?parentName and 4 constants : ex:taxon, rdfs:type, rdfs:label, and ex:subTaxon. The solutions of such a query will necessarily be mappings whose domain always contains ?name and might also comprise a ?parentName.

Against the example dataset of figure 1.1 we have:

A name parentName "Spheniscif ormes" "Aves" "T yrannosaure" "Saurichia" "T yrannosaur" "Saurichia" "Aves" "Saurichia"

Here "Aves" has a parent taxon (_:missingLink) but it has no name and "Saurichia" does not have a parent taxon.

Operations

sparql queries are evaluated against rdf datasets. As we explained in the rdf presentation, rdf datasets are composed of several graphs: one default graph and several named graphs. During the evaluation of sparql queries we will maintain a current or active graph that corresponds to the graph queried in the rdf dataset. At first, the active graph will be the default graph of the rdf dataset but the sparql standard also allows to change this active graph to one of the named graphs.

We now present the multiset fragment of the sparql-algebra along with its semantics. The fragment corresponds to the sparql-algebra where we removed the operators: Exists, ToList, OrderBy, Slice. We choose this fragment because it allows us to present only the multiset semantics of sparql: the last three removed operators (ToList, OrderBy, Slice) operate on a list semantic (a multiset where the elements are ordered) while the Exists operator has a complex semantics (it triggers the evaluation of subqueries) but it has been shown that sparql queries can be rewritten without this Exists (as shown in [START_REF] Kaminski | Query Nesting, Assignment, and Aggregation in SPARQL 1.1[END_REF]) even though this rewriting is non-trivial.

Triple Patterns

The building blocks of the sparql queries are Triple Patterns (TP). Similarly to an rdf triple, a TP is composed of three parts :

• a subject s that is either an rdf-term or a sparql-variable (i.e. s ∈ V ∪ T ) ;

• a predicate p that is either an iri or a sparql-variable (i.e. p ∈ V ∪ I) ;

• an object o that is either a sparql-variable or an rdf-term (i.e. o ∈ V ∪ T ).

Note that there is a discrepancy between sparql TP and rdf triples, the former allowing subjects to be literals while the latter does not. A TP (s, p, o) is an element of (T ∪ V) × (I ∪ V) × (T ∪ V), but, as for rdf triples, it can also be seen as an element of (T ∪ V) 3 (but not all elements of (T ∪ V) 3 are valid sparql TP).

let G be the current graph, a solution mapping m is solution of T P (s, p, o) when dom(m) = {s, p, o} ∩ (B ∪ V) and m(s) m(p) m(o) is a triple of G (for m(x) = x when x ∈ dom(m) and m(x) = x otherwise). Note that blank nodes that appear in queries acts just like sparql-variables (except that they are not included in the output and cannot be used in expressions).

Property Paths

Property Paths (PP) are a novelty of the 1.1 version of the sparql standard. A TP can be seen as a mean of expressing the connection between two nodes in a graph (where both nodes and the label of the edge can also be variables). PP extend TP by allowing the predicates to be Regular Path Expressions.

The syntax for these Regular Path Expressions is the following: u an iri r 1 /r 2 the concatenation of two paths r 1 |r 2 the alternative choice between two paths r -1 a reversed path

!{: i 1 • • • : i n } a negated property set {: i 1 • • • : i n } a property set
(any path of length one labeled by something else than one of the i j ) r? optional path r + the transitive closure of the path r r * the transitive reflexive closure of the path r Let G be the active graph, a solution mapping m is a solution of PP (s r o) when dom(m) = {s, o} ∩ (V ∪ B) and there is a path m(s

) = p 1 l 1 -→ p 2 . . . p k l k -→ p k+1 = m(o) in G such
that the sequence of labels l 1 . . . l k matches the regular path expression r. Note that as there might be several paths from m(s) to m(o) the mapping m might be present more than once as explained in the paragraph multiset semantics of Property Paths.

For sparql, blank nodes appearing in the query play a special role but without an entailment regime, they act as a form of local variable that is not included in the output (see BGP below).

Technically, PP are not an extension of TP since variables cannot occur in the predicate of a PP. However we can allow the predicate to be either a variable or a regular path query (constant are a special case of regular path queries) and a PP that strictly extend the TP.

A TP has a multiset semantics (as all others sparql operators) but each assignment of variables and blank nodes either appear zero or once. That is why, TP can be evaluated under a set semantics.

Example For instance on the graph of section 1.1.4, we can ask for the pairs of ?childTaxon, ?ancestorTaxon using PP (?childTaxon ex:subTaxon + ?ancestorTaxon) or we can even ask for the label of ancestor taxons : PP (?taxon ex:subTaxon * /rdfs:label ?label) which gives us:

?taxon ?label ex:saurichien "Saurichia"@fr ex:penguins "Sphenisciformes"@en ex:penguins "Aves"@en ex:penguins "Saurichia"@en ex:birds "Aves"@en ex:birds "Saurichia"@en ex:tyrex "Tyrannosaure"@fr ex:tyrex "Tyrannosaur"@en ex:tyrex "Saurichia"@en _:b0 "Saurichia"@en Note that the blank node _:missingLink has been renamed to _:1. This is perfectly legal and normal as blank node names are always relative to a dataset.

The multiset semantics of Property Paths During the elaboration of the standard, Property Paths had a multiset semantics. However, such semantics create problems on property paths such as: ?from (:a) + ?to. Indeed, how many times a given assignment of (?from, ?to) such be included in the result? Loops create an obvious problem but even without loops counting the number of paths is very hard. To solve this problem the standard imposes that all the operators except | and / have a set semantics (when | and / are nested inside another operator they also fall back to set semantics).

To simplify the set vs multiset problem of PP, we can transform patterns (r 1 |r 2 ) and (r 1 /r 2 ) appearing on top using Union and Join (described below). After this transformation all PP can be evaluated under the set semantics without changing the semantics.

A pattern A (r 1 |r 2 ) B is translated into Union(A r 1 B, A r 2 B) and a pattern A (r 1 /r 2 ) B into Join(A r 1 _:tmp, _:tmp r 2 B) with _:tmp a new blank node name not appearing in the query.

For instance to look for the pairs of taxons that are related we can use the property path ?A ex:subTaxon * /(ex:subTaxon -1 ) * ?B which is equivalent to ?A ex:subTaxon * _:commonAncestor and _:commonAncestor (ex:subTaxon -1 ) * ?B. Here, a mapping for (?A, ?B) will appear as many times as there are common ancestors.

Join

Given two sparql-algebra terms t 1 and t 2 we can combine them through a Join operator with Join(t 1 , t 2 ). For any pair of elements e 1 , e 2 solutions of t 1 and t 2 such that e 1 is compatible with e 2 then e 1 + e 2 is a solution of Join(t 1 , t 2 ).
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Note that this definition is on multisets. A mapping is thus solution as many times as there are pairs producing it in the solutions of t 1 and t 2 .

Union

The operator Union(t 1 , t 2 ) simply refers to the multiset union. A mapping m occurs in the solutions of Union(t 1 , t 2 ) when it occurs as a solution of t 1 or t 2 and the number of occurrences of m in the solutions of Union(t 1 , t 2 ) is the sum of the number of occurrences in the solutions of t 1 and the solutions of t 2 .

Note that the mappings solution of a PP all share the same domain which is the set of variables appearing in the PP. And the mappings solutions of join of two (or more) PP also share the same domain (which is the set of variables appearing in at least one of the PP). However this is not the case for union.

Project

Given a mapping m, its projection on the set s ⊆ B ∪ V is the mapping m whose domain is dom(m ) = dom(m) ∩ s and where the remaining values are unchanged, i.e. ∀x ∈ dom(m ) :

m (x) = m(x).
The project operator Project(C, t) changes the mappings solutions of t by projecting them onto the set C.

Basic Graph Patterns

A Basic Graph Pattern (BGP) is a set of PP. A BGP ((s 1 p 1 o 1 ) . . . (s n p n o n )) can be seen as syntactic sugar for the join of individual PP where we keep in the domain of solution mappings only the variables (and not the blank nodes). In algebraic terms, it gives us BGP (s

1 p 1 o 1 ) . . . (s n p n o n )) = (Project(V, Join(PP (s 1 p 1 o 1 ), . . . , PP (s n p n o n )))) where V = {s 1 , p 1 , o 1 , . . . , s n , p n , o n } ∩ V.
Example We can use blank nodes and PP to capture the pairs of animals coming from the same taxon (possibly all animals if our dataset is complete): BGP ({ PP (?a subTaxon * _:commonAncestor), PP (?b subTaxon * _:commonAncestor), PP (_:commonAncestor rdfs:type ex:taxon)})

Without the last PP all nodes (including the literals) would be included as solutions since ex:subTaxon * is a star operation that matches all pairs of twice the same node appearing in the rdf graph. Also with this query, the solution ?a = _:penguins and ?b = _:penguins would appear thrice as they have three common ancestors (_:penguins, _:birds and ex:saurichias) and one might want to ask to remove pairs of the same animals using filters.

Expressions

sparql includes a language of expressions. Expressions are used in filter condition, in Extend and in aggregates (see below). We present the main types of expressions and refer the reader to the sparql standard for a complete description.

The expressions are inspired by the syntax and semantics of expressions in the XQuery standard and thus operate on the built-in types of the namespace xsd such as xsd:integer, xsd:double, xsd:boolean, xsd:datetime, etc.. The expressions contain the standard operations on the above types (e.g. addition and multiplication for the numeric types and time manipulation for the xsd:datetime). The expressions can also be comparison (equality and inequality tests) comparing either two columns of the mappings or a column of the mappings with a constant. The inegality comparisons in sparql depend on the type for the literals. For the literal datatype xsd:integer or xsd:numeric, sparql-algebra will rely on the usual number comparison, for the literals typed xsd:DateTime it will rely on a datetime comparison, etc.

Expressions can also be one of the built-in tests. The most important ones being: bnd(?c) to test whether the mappings contain a binding for the sparql-variable ?c, isIRI (?c), (respectively isBlank (?c) and isLiteral (?c)) testing whether the value bound by ?c is an iri (respectively a blank node or a literal). But we can also extract the language tag of a literal or get its datatype.

Expressions are themselves typed and can be in turn composed. For instance. instead of comparing directly the values associated to sparql-variables in the mappings, it also possible to perform computations on those. For instance, ?a + ?b = ?c is a valid expression returning true for mappings m such that {?a, ?b, ?c} ⊆ dom(m) and m(?c) = m(?a)+m(?b) (when treated as numbers).

As shown earlier, the solutions of a given sparql-algebra term might not all share the same domain. Expressions are thus built to handle such situations and return an error value when we try to access a value that is not defined. Therefore tests such as ?a = "42"ˆˆxsd:integer and xsd:not(?a = "42"ˆˆxsd:integer) would respectively return true and false when ?a is defined and is equal to "42"ˆˆxsd:integer. They would respectively return false and true for a ?a defined as any other value and finally they would both return an error when ?a is not defined.

An expression accessing an undefined value generally returns an error and errors from subexpressions are generally propagated. The exceptions are bnd (which tests whether a value is defined) and the special case of logical connectives && (for the logical AND), || (for the logical OR) and xsd:not (for the logical negation). The truth table of three-valued logic is given below using the notation , ⊥ and Error for true, false and error (we only present the cases containing errors as the others follow the normal logical rules). The idea is that when the value does not change when replacing errors with true or false then the value of connective is equal to that and otherwise the value is error. This special treatment of boolean expression allows a concise way of treating filter conditions.

Filter

A filter operator Filter (f, t) returns the mappings solutions of the sparql-algebra t passing the filter f . A filter is passed when its value cast to the boolean is true (i.e. not false and not an error).

Diff and LeftJoins

The diff operator is needed to define the semantic of the LeftJoin. The diff operator computes the conditional difference and takes three parameters, two sparql-algebra terms t 1 , t 2 and a filter condition f . The Diff (t 1 , t 2 , f ) will return mappings m that are the solutions of t 1 such that all the mappings m that are solution of t 2 and compatible with m are such that m + m passes the filter condition not(f ) (remember that since filters are three-valued it is not exactly the same as not passing f , the filter could also evaluate to error in which case not(f ) will also evaluate to error).

When the condition f is always true (which means that not(f ) is always false), the Diff (t 1 , t 2 , f ) corresponds to the set of mappings of t 1 such that there are no compatible mappings in t 2 .

Similarly to Diff , the LeftJoin in the sparql-algebra is conditional. LeftJoin takes three parameters: two sparql-algebra terms t 1 and t 2 and a filter condition f . The solution to LeftJoin(t 1 , t 2 , f ) is equal to the union of two sets. The first set corresponds to the join of t 1 with t 2 filtered by the condition f . The second set corresponds to the mappings of t 1 that were not used the first set (i.e. the mappings m solutions of t 1 such that all mappings m of t 2 are such that m + m do not pass the filter f ). The first set corresponds to the term Filter (f, Join(t 1 , t 2 )) and the second set corresponds to Diff (t 1 , t 2 , f ) and thus we have

LeftJoin(t 1 , t 2 , f ) = Union(Filter (f, LeftJoin(t 1 , t 2 )), Diff (t 1 , t 2 , f )).

Minus

The M inus operation takes two sparql-algebra terms t 1 and t 2 and returns the mappings from t 1 such that all mappings t 2 are incompatible or have a disjoint domain.

The idea behind the M inus operator is to remove all mappings from t 1 such that there is a compatible mapping in t 2 but we want to avoid the special case where mappings from t 1 and t 2 have disjoint domains and are vacuously compatible.

Extend

The Extend operation takes three parameters a sparql-algebra term t, a variable name v and an expression e. The Extend modifies each solution m of t by computing the value of e(m) and binding v to this value.

Graph

As we explained in section 1.2.3, the evaluation of sparql queries is performed w.r.t. an active graph which is the graph against which TP and PP will be evaluated. The operator Graph takes two arguments: a graph name and a sparql-algebra term. The graph name can be:

• An iri i in which case the solutions of Graph(i, t) are the solutions of t when evaluated with G k if there exists a binding < u k >, G k with u k = i in the rdf dataset. The solutions of Graph(i, t) are the empty multiset when there are no such u k .

• A sparql-variable v in which case the multiset of solutions of Graph(v, t) is the union for all named graphs (< u k >, G k ) of Extend(Graph(u k , t), v, u k ), i.e. the sparqlvariable v ranges over the named graphs and for each graph, the term t is evaluated against this graph.

Distinct and reduced

As we have seen, sparql queries are evaluated in a multiset semantics: each mapping can be present several times in a query answer. The Distinct(t) operator returns the multiset of the distinct values that are solutions of t. The Reduced operator is more relaxed: the multiset of solution to Reduced(t) can be anything comprised between the multiset of solutions of Distinct(t) and the multiset of solutions of t.

Group / Aggregation / AggregateJoin

The aggregation mechanism in sparql uses three auxiliary functions: Group, Aggregation and AggregateJoin. Group groups the mappings along a set of keys, Aggregation performs the computation of the aggregate and AgregateJoin merge together several aggregations.

Group

The Group operator takes n expressions e 1 , . . . , e n and a term t. The Group operator is always used with an Aggregate and thus does not return a multiset of mappings but a function from n-uplet of rdf-terms to multisets of mappings. Given a Group operator, we define for each solution of t its key as the n-uplets of values where the i-th value is obtained by computing e i with the mapping m. The solution of a Group is a function from keys to the the multiset of mappings having that key (the function is only defined for keys corresponding to at least one mapping).

Aggregation The Aggregation operator takes k expressions e 1 , . . . , e k , a function f unc with some initial arguments scalarvals and a term t (which has to be a Group operation) and returns a set of pairs of keys and values (where the key is the one produced by the Group operator).

The idea is that since t is a Group operation, its output will be of the form {k 1 → M 1 , . . . , k n → M n } and the Aggregation will replace the M i (which is a multiset of mappings) with f unc((e 1 , . . . , e k )(M i ), scalarvals) where (e 1 , . . . , e k )(M i ) designates the multiset of kuplets which is the image of M i by the function m → (e 1 (m), . . . , e k (m)). The function f unc is expected to take the k-uplets and the scalarvals and return a single rdf-term.

Therefore, if the solution of t is {k 1 → M 1 , . . . , k n → M n } then the solution of Aggregation((e 1 , . . . , e k ), f unc, scalarvals, t) is {k 1 → f unc((e 1 , . . . , e k )(M 1 ), scalarvals), . . . , f unc((e 1 , . . . , e k )(M n ), scalarvals)} AggregateJoin The idea of AggregateJoin is to patch together several Aggregation operators. Given k terms t 1 , . . . , t k that are all Aggregation over the same Group then the t i will be evaluated to a set of the form {k 1 → v i 1 , . . . , k n → v i n } where the (k j ) j are shared among all the the (t j ) j since they correspond to the same Group operator while the (v i j ) j might be different for two different values of i (they all correspond to different aggregations).

The evaluation of AggregateJoin(t 1 , . . . , t k ) will be be the multiset containing one mapping per key of the Group operator: the mapping agg 1 → v 1 j , . . . , agg k → v k j . Note that the (agg i ) i refer to constants defined by the standard, the solutions of AggregateJoin are thus generally renamed afterward to the actual aggregate names (but it is not mandatory, one can ask for an aggregate without naming it, in which case the aggregate will be named agg i for some i).

An example

Building on our example (see section 1.1.4), we can ask to concatenate all the labels corresponding to taxons descending from saurichias. First, we get the nodes corresponding to sub taxons of saurichias with the PP ?species ex:subTaxon * ex:saurichias and enforce that they actually correspond to taxons with ?species rdfs:type ex:taxon then we get their label with the PP ?species rdfs:label ?label. This gives us the following Group operator that we name G: G = Group( ?species, BGP ({ ?species ex:subTaxon * ex:saurichias, ?species rdfs:type ex:taxon ?species rdfs:label ?label }))

Then we compute two aggregates: one that gets the concatenation of labels and one that get species node (the ?species is computed using an aggregation even if it is one of the columns that is in the Group). The term t 1 = Aggregation(?label, Concat, separator = | , G) computes the concatenation of labels: ?label extracts the label from the multiset of G, Concat corresponds to the concatenation function with an initial argument separator = | (the scalarvals) to indicate that between two concatenated terms there should be a | . The term t 2 = Aggregation(?species, Sample, ∅, G) computes the ?species for each ?species by just taking any element (since they are grouped per ?species). Finally we get the result with A = AggregateJoin(t 1 , t 2 ). Solutions of A will have two columns, agg 1 for the concatenation of labels and agg 2 for the species name.

The solutions of the BGP and G are:

BGP mapping

?species ?label m 1 ex : tyrex "T yrannosaure"@f r m 2 ex : tyrex "T yrannosaur"@en m 3 ex : birds "Aves"@en m 4 ex : penguins "Spheniscif ormes"@en G key val ex : tyrex {m 1 , m 2 } ex : birds {m 3 } ex : penguins {m 4 }

The solutions of t 1 , t 2 are: t 1 key val ex : tyrex "T yrannosaure|T yrannosaur" ex : birds "Aves" ex : penguins "Spheniscif ormes" t 2 key val ex : tyrex ex : tyrex ex : birds ex : birds ex : penguins ex : penguins Finally the solutions of A are: A agg 2 agg 1 ex : tyrex "T yrannosaure|T yrannosaur" ex : birds "Aves" ex : penguins "Spheniscif ormes"

Analysis of sparql-algebra

One advantage of the sparql-algebra is to pave the way for the formal study of sparql queries and in particular their transformation, optimization and evaluation. In particular, given a sparql-algebra term, we will concentrate on how to rewrite this term or what are the sparql variables that might appear in the solutions of a given term. These questions are actually linked since the rewriting of terms usually depends on the variables bound by sparql-algebra terms.

Early works (such as [START_REF] Schmidt | Foundations of SPARQL Query Optimization[END_REF]) on sparql already tackled these two questions together. They introduced a set of rewriting rules for a fragment of sparql-algebra (designed for a fragment of sparql1.0 under the set semantics). This set of rewriting rules depended on cV ars(t) and pV ars(t) that are syntactical functions returning a set of sparql variables that are certain (for cV ars) to appear in a mapping solution of t and can possibly (for pV ars) appear in a mapping solution of t.

sparql query evaluators and their optimization

There exists a wide variety of sparql query evaluation techniques and sparql query evaluators. In this section, we will overview a few existing sparql query evaluation techniques implemented in various sparql engines.

Storage of rdf graphs

The sparql query engines can be split into two main families: the direct engines and the data stores. A direct engine is not responsible for storing data and therefore for each query, we also need to pass the data that needs to be queried. A data store is a query engine that is capable of storing data and at each query the data store will answer with the query it has stored.

Both techniques have their advantages and drawbacks, a data store is generally more efficient as it has been able to store the data in its own format and therefore a data store can retrieve data very fast (for instance the data is generally indexed). On the opposite side, a direct engine needs to read the whole dataset before being sure that something does not exist. While a direct engine is generally slower at the querying phase, a direct engine does not have a loading phase; therefore if we are only interested in a few queries over a dataset or if the dataset is very volatile, then the total time for a direct engine to read and answer might be less then the time needed by a data store to load the data and then process all theses queries.

Vertical partitioning

The Vertical Partitioning [START_REF] Daniel J Abadi | Scalable semantic web data management using vertical partitioning[END_REF] is a technique introduced by Abadi et al. to store an rdf graph. The idea is to notice that in most rdf datasets there is only a limited number of distinct predicates. And by splitting the dataset among the various predicates, we obtain a gain in space usage and more importantly and a significant improvement in query response time for queries where all predicates are constants (which that is the case of most queries as pointed out in [START_REF] Arias | An Empirical Study of Real-World SPARQL Queries[END_REF]). This partitioning can be seen as a lightweight indexing method that is useful due to the shape of sparql queries and performs well in practice because is well compatible with distributed storage techniques.

Extended Vertical Partitioning

S2RDF [START_REF] Schätzle | S2rdf: Rdf querying with sparql on spark[END_REF] relies on an Extended Vertical Partitioning (ExtVP), that mixes the ideas of Vertical Partitioning with the idea to partially precompute joins.

We will consider the sets of pairs (s, o) of subjetcs,objects for each predicate. For each pair A and B of such sets, we might compute A B, the extVP will thus compute the set 

A |B ⊆ A that can be used in A B. The idea is that A B is always equals to A |B B |A but A |B

Multiple indexes

RDF-3X

[NW08] is a sparql query engine that put the focus on speed. Given a set of triples, RDF-3X build indexes for all of the 6 permutations of "subject", "predicate" and "object" which allows to retrieve the solutions in an ordered fashion for any triple pattern. RDF-3X then creates the solutions to a BGP with a set of merge joins. The join ordering is decided using a cardinality estimation that mixes statistics on the six permutations plus statistics over a set of frequent paths.

RYA [START_REF] Punnoose | Rya: A scalable rdf triple store for the clouds[END_REF] is a sparql query engine based on Apache Accumulo for the data storage and on the OpenRDF Sesame framework to process rdf reasoning and sparql querying. RYA improves on the RDF-3X storage. The authors notice that storing three of the six permutations is enough for an efficient retrieval of solutions to individual TP.

Graph partitioning

Some distributed sparql query evaluators adopt a partitioning technique. In this partitioning scheme, the graph is split among the several workers with respect to the graph connec-tivity. The goal of the partitioning phase is to split the data among the several workers so that the two sets of nodes stored in two different workers don't have much connections.

This technique is particularly useful for sparql stores that adopt a "partial evaluation and assembly" method of evaluation. At the query evaluation time, the query to be sent to all workers, each solving the query on its local graph. Then, the local solutions are merged, when needed. This technique is at the heart of several sparql query evaluators (e.g. [PZO + 16]). Note that in the partitioning scheme, each worker has to store its local graph which generally requires an indexing technique for this local data.

Query Execution Plan optimization techniques

Most of the sparql query engines have a Query Execution Plan, that is an internal representation of sparql queries. This QEP is initially just a translation of the sparql query but then the query engine optimizes it in several passes. Some query engines (such as Apache Jena ARQ or Pig Latin [START_REF] Schätzle | Pigsparql: Mapping sparql to pig latin[END_REF]) can rely on heuristic optimizations. Heuristic optimization consists in detecting changes in the QEP that will almost always lead to a more efficient QEP. For instance, when possible, pushing filters into joins always reduces the size of the join which generally improves the query time (and never increases it by a large factor).

Heuristic optimization is used by query engines that to not have a preprocessing phase where they load the data but other stores sometimes also rely on heuristics as successfully exploiting statistics is often a challenge. CliqueSquare [GKM + 15] is a sparql query engine relying on Hadoop Map-Reduce and focusing on the fast evaluation of complex BGP. The query optimization performed by CliqueSquare consists in finding "flat" plans in two steps: first they decompose the queries into cliques (hence the name), these cliques will correspond to the first map-Reduce step. Then they combine partial results using n-ary joins while trying achieve "flat plans" (i.e. DAG of joins with a minimal depth). The data is stored into the Hadoop file system so that the first pass of join can be performed locally (without a shuffle phase).

The query engines that do load the data into memory usually take advantage of this phase to collect some statistics over the data they are loading. This allows them to consider more QEP and decide which one they will be using by relying on the statistics they collected.

Conclusion

In this chapter we have presented rdf and sparql. rdf is a data model describing graphs. sparql is a rich language to query rdf graphs. sparql query evaluation raises challenges: how to evaluate such a rich query language on graphs that are, by nature, very large. More precisely: how can we find efficient query plans to handle even simple queries but on very large datasets? How can we find efficient plans for complex queries on which today's evaluators tends to fail even on relatively small datasets? Since the relational model was at the center of most of the research in database, before addressing those questions, we need to examine into the relational model and what it can offer to evaluate sparql queries.

While the computers take their name from their ability to perform long and tedious computations, storing and handling large quantities of data has been one of the main task for computers since their inception. In fact, machines capable of handling data predate the computers by half a century. For instance, the tabulating machine was invented for the 1890 US census.

The relational model and its tuple calculus were introduced by Codd in 1970. Compared with models existing in 1970, the great novelty of relational model was not directly its storage model but the fact that it had a high-level query language and allowed to move the burden of optimizing data access from the programmer to the query evaluator. The users would store their data as relational tables and eventually specify indexes on them. The users would not specify how the data is stored nor how it is accessed but they would rather only specify what data they wanted (in the form of a query) and the database engine would automatically translate this query into efficient code.

These ideas quickly gained traction, as they enabled users to write data-crunching programs more easily, and were the basis for the Structured Query Language (SQL) which soon became the de facto standard for databases. Furthermore it fostered the adoption of rich, high-level query languages such as sparql.

A lot a research was poured into the relational model and as sparql bears some resemblance with it, it is natural to try to adapt this research for the optimization of sparql. That is why, in this chapter, we give the fundamentals of the relational model and algebra, we then present some extensions to this model designed to handle more powerful features (such as the recursion that appears in sparql), we continue with the presentation of another powerful data-handling formalism: Datalog and we finish by exploring the relation between relational query languages and sparql.

The relational model

The relational model was introduced by Codd at the beginning of the 70s [START_REF] Edgar F Codd | A relational model of data for large shared data banks[END_REF]. The novelty of the approach does not lie so much much within its data model but, as we will see, in the query languages and the optimization on these query languages allowed by the relational model.

Definitions

A relational database describes objects with relations. These objects are values with a type (such as integers, strings, custom types, etc.). A relational database is simply a set of relations between these objects. We now define the properties needed to introduce relational database but as we will see, relations can be seen as tables and that is why we sometimes use "column" and "row".

Definition 5. The relational model supposes a set of column names C (we can think of it as the set of strings). • R is a finite set of relations names,

• h is a function from R to tuple schemas. Definition 9. A relation is a pair of a tuple schema and a set of tuples compatible with this schema. The tuple schema is also called the heading while the tuples are called the body of the relation. As we explained, relations can be seen as tables where the columns are typed and named by attributes (or column names and column types) and the entries are the tuples (or rows). Note however that the relational model does not define any order between the tuples. In this view, a relational database is a set of named tables.

An example

Let us consider the following example. We have a first relation describing theaters, with their name, their address and the number of rooms and a second relation describing shows with their name, the date of the representation and the name of theater they take place in. In 

The relational algebra

The relational algebra is a query language introduced by Codd for the relational model. There exists other formalisms such as the tuple relational calculus and the domain relational calculus which are very "logical" query language (you specify the data you want with a formula and the model of this formula is your answer). In contrast, the relational algebra is actually much closer to a classical programming language. In a sense, a relational algebra term not only expresses what data we are interested in but it also has a compositional bottom-up semantics that describes a way to retrieve and compute the data (even though the compositional semantics provided by the query language might actually not be the most efficient way to actually compute the solutions of a query).

Relational algebra terms

The relational algebra terms are recursively made up of:

• Relations (any r ∈ R e.g. M ovies for our running example);

• Selections noted σ f (ϕ) where f is a filter condition and ϕ is a relational algebra term. The filter condition is a boolean formula comparing the columns of F C(f ) (with F C(f ) ⊆ type(ϕ), see next section for the notion of type);

• Projections noted π P (ϕ) where ϕ is a relational algebra term and P is a subset of the type of ϕ;

• Renaming noted ρ a/b (ϕ) where ϕ is a relational algebra term and a ∈ C \ type(ϕ) and b ∈ type(ϕ);

• Natural joins noted ϕ 1 ϕ 2 where ϕ 1 and ϕ 2 are two algebra terms;

• Antijoins noted ϕ 1 ϕ 2 where ϕ 1 and ϕ 2 are two algebra terms.

• Unions noted ϕ 1 ∪ ϕ 2 but where the union is restricted to pairs of terms that have the same "type".

Interpretation of the relational algebra terms

Relational algebra terms have, by design, a compositional semantics which means that the evaluation of a term can be performed bottom-up as the evaluation of a subterm depends only one the subterm and not on its context. More precisely, the interpretation of a term ϕ depends on the database (and on ϕ). When the term is executed, it returns a set of tuples that are all compatible with a schema s which is the type of ϕ.

The interpretation of a relational algebra term against a database (D, R, h) is recursively defined as follows:

• For a relation r ∈ R, its interpretation is simply the set of tuples the database associates with this relation and its type is h(r).

• For a selection σ f (ϕ) its interpretation is the set of tuples that are solution of ϕ and passing the filter condition f . The type of σ f (ϕ) is the type of ϕ.

• For a projection π P (ϕ), its interpretation returns the set of tuples that can be obtained by restricting a tuple solution of ϕ to the attributes listed by P . The projection supposes that the type of ϕ contains the columns P and the resulting type (after projection) is the restriction of this type to P and thus P .

• The interpretation of a renaming ρ a/b (ϕ) corresponds to the interpretation of ϕ but where we change the name of the column b to a.

• The set of tuples that are solutions to ϕ 1 ϕ 2 corresponds to the set of tuples such that the restriction to type(ϕ 1 ) corresponds to a solution of ϕ 1 and the restriction to type(ϕ 2 ) corresponds to a solution of ϕ 2 .

• The set of solutions of the antijoin ϕ 1 ϕ 2 is the subset of solutions of ϕ 1 that cannot be joined with mappings of ϕ 2 , hence the name antijoin. Equivalently, it is the set of t that are solutions of ϕ 1 such that for all t such that the restriction of t to type(ϕ 1 ) is t then the restriction of t to type(ϕ 2 ) is not solution of ϕ 2 .

• The set of tuples that are solutions of ϕ 1 ∪ ϕ 2 is the union of solutions to ϕ 1 and ϕ 2 . The union is only defined for terms that have the same type and the type of the union is their common type.

Example We can ask for the dates and addresses of the projections of "Toy Story 3" with:

π Address,Date σ (T itle="Toy Story 3") T heathers ρ N ame/T heater (M ovies)

And to retrieve the set of names of theaters appearing in M ovies that do not have an entry in theaters: π N ame ρN ame/T heater(M ovies) T heaters

Rewriting relational algebra terms

As we have seen, the semantics of relational algebra terms directly provides a way to evaluate them. This "naive" evaluation might not be the most efficient way of evaluating terms. For instance A ∪ A would imply to compute A twice and in σ (T itle="Toy Story 3") T heathers ρ N ame/T heater M ovies it would be more efficient to compute the equivalent T heathers ρ N ame/T heater σ (T itle="Toy Story 3") (M ovies)

One of the nice properties of the relational algebra is that terms can be rewritten into equivalent terms, i.e., terms computing the same set of solutions. This allows for a first optimization strategy: we rewrite the term into several others computing the same set of tuples as the initial term; we select heuristically the most efficient and then we evaluate this new term.

The rewriting rules are depicted in figure 2.1

Codd theorem

As we briefly mentioned, there exists several query languages:

• the tuple relational calculus, originally introduced by Codd

• the domain relational calculus, a simplification of the tuple relational calculus,

• and the relational algebra (here considered without extensions).

A natural question is the relation between these languages and one of the main theorems for the relational model is the Codd theorem. The Codd theorem proves that these three languages actually have the same expressive power. This theorem allows us to define the notion of relational completeness which is the property for a query language to have the same expressive power as the query language we presented above.

Common extensions

New operators in the relational algebra as syntactic sugar It is also possible to include other operators in the relational algebra such as the division, the equijoin, or the set difference. However from a logical point of view they do not increase the expressiveness of the language (i.e. they do not allow to express new queries, they only simplify some queries).

For instance the set difference is just a particular case of the antijoin. The set difference, noted ϕ 1 -ϕ 2 , corresponds to the set of mappings ϕ 1 that are not solution of ϕ 2 . The

σ f 1 (σ f 2 (ϕ)) ↔ σ f 1 (σ f 2 (ϕ)) commutativity of selections ϕ 1 ϕ 2 ↔ ϕ 2 ϕ 1 commutativity of joins ϕ 1 ∪ ϕ 2 ↔ ϕ 2 ∪ ϕ 1 commutativity of unions ϕ 1 (ϕ 2 ϕ 3 ) ↔ (ϕ 1 ϕ 2 ) ϕ 3 associativity of joins ϕ 1 ∪ (ϕ 2 ∪ ϕ 3 ) ↔ (ϕ 1 ∪ ϕ 2 ) ∪ ϕ 3 associativity of unions (ϕ 1 ϕ 2 ) ϕ 3 ↔ (ϕ 1 ϕ 3 ) ϕ 2 "associativity" of antijoins π P 1 (π P 2 (ϕ)) ↔ π P 1 (ϕ) when P 1 ⊆ P 2 ⊆ type(ϕ) involutivity of projections σ f (ϕ 1 ϕ 2 ) ↔ σ f (ϕ 1 ) ϕ 2 when F C(f ) ⊆ type(ϕ 1 ) distributivity of selection σ f (ϕ 1 ϕ 2 ) ↔ σ f (ϕ 1 ) ϕ 2 when f concerns columns of ϕ 1 distributivity of selection π P (ϕ 1 ϕ 2 ) ↔ π P ∩type(ϕ 1 ) (ϕ 1 ) π P ∩type(ϕ 2 ) (ϕ 2 ) when type(ϕ 1 ) ∩ type(ϕ 2 ) ⊆ P distributivity of projection π P (ϕ 1 ∪ ϕ 2 ) ↔ π P (ϕ 1 ) ∪ π P (ϕ 2 ) when type(ϕ 1 ) = type(ϕ 2 ) distributivity of projection σ f (ϕ 1 ϕ 2 ) ↔ σ f (ϕ 1 ) ϕ 2 distributitivty of selection σ f (ϕ 1 ϕ 2 ) ↔ σ f (ϕ 1 ) σ f (ϕ 2 ) when F C(f ) ⊆ ϕ 2 distributitivty of selection
Figure 2.1: Rewrite rules of the relational algebra set difference is only defined for pairs of relational terms sharing the same type and thus it corresponds to a special case of the antijoin.

Another example is the equijoin. In the natural join ϕ 1 ϕ 2 , we combine solutions of ϕ 1 with solutions of ϕ 2 that agree on their common domain (for all c ∈ type(ϕ 1 ) ∩ type(ϕ 2 ) we need that the pair of tuples have the same value for c). An equijoin extends this set of constraints with a set of ordered pairs (a 1 = b 1 ) . . . (a k = b k ) and ask for all solution t and for all 1 ≤ i ≤ k that the a i value of t is equal to its b i value. Note that equijoin do not add expressiveness as they can be encoded with a filter or a set of renaming operations but they sometimes simplify terms.

For instance, in the query retrieving the set of pair (date,address) of projections of "Toy Story 3" we had to join T heater and M ovies so that the the N ame of T heaters is the same as the T heater of M ovies which we can note T heater (N ame=T heater) M ovie

Outer joins

The left outer join ϕ 1 ϕ 2 corresponds to the natural join ϕ 1 ϕ 2 augmented with the antijoin ϕ 1 ϕ 2 . However in the relational algebra, all tuples that are solutions to a given term should have the same type, that we why the mappings solutions of ϕ 1 ϕ 2 are "augmented" with a constant designing a missing value (a null in the SQL semantics) to be placed in the columns type(ϕ 2 ) \ type(ϕ 1 ).

This missing value constant is usually not considered as a standard value. For instance, in SQL, the boolean formulas are evaluated under a three-valued logic that is similar to the three-valued logic of sparql. And, still in SQL, a null value is not equal to anything, not even to itself. It makes sense as null represents missing values and therefore there is no reason to suppose that two null represent the same value but it has a profound effect on the semantics of SQL. For instance, a join of two expressions ϕ 1 ϕ 2 never returns tuples t such that the restriction of t onto type(t 1 ) ∩ type(t 2 ) contains a null.

We presented here the left outer join but by symmetry it is possible to define the right outer join (the right outer join between ϕ 1 and ϕ 2 being the left outer join between ϕ 2 and ϕ 1 ) and the full outer join (which is the union of left and right outer joins).

Note that since the null value is not equal to anything (including itself) it changes the intuitive definition of join that we presented here to include such values and it also changes the set of valid rewrite rules. For instance, in the relational algebra we have A A = A but this is not true anymore if we include null values and that A contains null.

Computing over values

In the "traditional" relational model it is not possible to compute over values. For instance one cannot ask about the tuple such that the a column times the b column is equal to the c column (where a, b and c are e.g. integers). In general values of the domain can only be tested for equality.

We can add to the relational calculi formulas computing over some data types. For instance, we can ask that the integers are equipped with a comparison symbol ≤ or with a + operator.

Similarly to the sparql algebra Extend operator, we can also enrich the syntax of relational algebra with expressions and an extended projection that compute new columns using these expressions.

Aggregates

One other common extension of the relational algebra consists in adding aggregates. An aggregate groups tuples based on a set of columns G (two tuples belong to the same group if they have the same value on the columns of G) and then for each group, the aggregate performs a set of computation. It is once again very similar to sparql aggregation as sparql aggregation was inspired by the sql syntax.

Bag semantics

The relational model queries have a set semantic which means the solutions to a query are defined as a set. However similarly to what has been presented for sparql we can define a semantic for the relational algebra terms that has a multiset (or bag) semantics. In fact, one the main differences between SQL and the relational algebra is the use by SQL of such a bag semantics.

It is possible [START_REF] Garcia-Molina | Database Systems: The Complete Book[END_REF] to adapt the work and theorems for the relational algebra with a bag semantics but many theorems become invalid or we need to add some additional conditions.

Transitive closures

The extensions we have presented up to now are either syntactic, or they extend the relational model with new values (the default value for outer joins) or they suppose that we can perform computations on the values of D. However they are natural and interesting queries that we cannot express in the relational calculi nor in the relational algebra.

Suppose for instance that the database contains a binary relation R (e.g. representing a directed graph). The transitive closure (noted R + ) of R is the pair of nodes (a, b) such that b is reachable from a through the relation R. The transitive closure of relations belong to these queries that cannot be expressed in the relational algebra or the relational calculi (see the theorem 1 of Aho and Ullman [START_REF] Aho | Universality of data retrieval languages[END_REF]).

One other way to introduce transitive closures to the relational algebra is to add an atomic formula R + where R is a relation of the database. This is essentially what has been done in e.g. the XPath language where we can only use the transitives closure on the atomic relations. However when ϕ is a relational algebra term representing a binary relation R we might want to include in the language a way to represent R + .

A proposal by Agrawal [START_REF]Alpha: an extension of relational algebra to express a class of recursive queries[END_REF] follows up this direction. Its α-extended relational algebra comprised the same rules of formation for formula than the relational algebra but it also adds a new one: if ϕ is a term computing a binary relation between two columns of the same type then α(ϕ) also is a term, with the same type, and it computes the transitive closure. Agrawal [START_REF]Alpha: an extension of relational algebra to express a class of recursive queries[END_REF] notes that pushing selections into transitive closure is sometimes possible but does not provide an effective criterion when it is possible.

Recursive queries

Transitive closures are a special kind of recursive queries for binary queries. There exists multiple ways of introducing recursion into the relational model from both syntactical and semantical perspectives. One key difference from a semantical perspective consists in distinguishing between inflationary fixpoints and noninflationary ones.

For the relational calculi the standard notation is an operator µX.ϕ with X a free variable of ϕ in reference to the µ-calculus. We note CALC+µ for this calculus and CALC+µ + for the inflationary version. The semantics of µ in CALC+µ + corresponds to the limit of U n in n → ∞ with U 0 = ∅ and U n+1 = U n ∪ ϕ(X = U n ) (with X a free variable of the relational calculus term ϕ) while in the second case it corresponds to the limit with U n+1 = ϕ(X = U n ). This second case is more general (as the union is possible) but does not necessarily converge.

Aho et al proposed to introduce a least fixpoint operator in the relational algebra and even showed in their theorem 2 that it is possible to push some selections inside of fixpoint. A similar proposal [START_REF] Maurice | Algebraic optimization of recursive queries[END_REF] (inspired by the µ-calculus and thus diverging only marginally from the notations of Aho and Ullman [START_REF] Aho | Universality of data retrieval languages[END_REF]) provides a notation for recursive queries with mutually recursive fixpoints. However their work on optimization only provides criteria for pushing the selection inside the transitive closure of regular binary relations which is therefore quite similar to the Theorem 2 of Aho and Ullman.

Recursive queries and transitive closures in particular have now their equivalent in the sql standard since its 1999 version of the standard that allows for recursive Common Table Expression (and multiple vendors have their own dialect for recursive queries even before that). But as we will see, it is not well supported nor well optimized by sql engines.

Optimization of relational algebra and sql

One of the great success of the relational algebra was the ability for a user to write its query only specifying the data she expects and not how to retrieve it.

sql is very close with the relational algebra by design. However the reach of static analysis methods in the realm of sql is much more limited due to the bag semantic and that prevents some type of optimization (such as [START_REF] Ashok | Optimal implementation of conjunctive queries in relational data bases[END_REF]). Once the sql query has been translated into an algebraic form, the main optimization process consists in finding equivalent forms through the use of rewrite rules.

For each rewritten term, the sql optimizer chose the one that has an estimated running time, or cost, that is the lower. This cost estimation thus mainly rely on a cost model describing the cost of each individual operation (in terms of time spent processing it per solution) plus a cardinality estimation scheme (to estimate the number of solution to all the subterms).

Cardinality estimation schemes

Estimating the number of solutions for a query has long been viewed as a key element in the optimization of queries and it is a well-studied problem in the relational world [START_REF] Piatetsky | Accurate estimation of the number of tuples satisfying a condition[END_REF]. There exists a wide variety of techniques that have been very successful in the relational world such as histograms [START_REF] Ioannidis | The history of histograms (abridged)[END_REF][START_REF] Oommen | An Empirical Comparison of Histogram-Like Techniques for Query Optimization[END_REF].

These techniques have been, however, less successful for the semantic web [START_REF] Erling | RDF Support in the Virtuoso DBMS[END_REF][START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins[END_REF]. The main reasons for that is the heterogeneous nature of rdf [START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins[END_REF] and the fact that sparql queries usually contain a lot of self-joins that are notoriously hard to optimize [START_REF] Pitoura | Self-join size estimation in large-scale distributed data systems[END_REF].

Various works have tackled the specific issue of cardinality estimation for sparql. A line of work [SSB + 08] introduced the "selectivity estimation" now in use in several sparql evaluators [ZYW + 13]. The "selectivity estimation" assumes the statistical independence of the various parts of a tp. Variants of this method have been implemented in popular sparql query evaluators (e.g. in RDF-3X see below).

A second line of work [START_REF] Kim | Type-based semantic optimization for scalable RDF graph pattern matching[END_REF] takes as input an actual schema and produces an optimized query plan based based on information extracted from the schema. A third line of work [START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins[END_REF][START_REF] Gubichev | Exploiting the query structure for efficient join ordering in sparql queries[END_REF] tries to derive the implicit schema of an rdf graph by fitting nodes into characteristic sets, or by summarizing [START_REF] Gurajada | TriAD: A distributed shared-nothing RDF engine based on asynchronous message passing[END_REF] the graph into large entities.

Datalog

Prolog is a general purpose programming language. Datalog is a fragment of Prolog focused on data. The specificity of Prolog (and thus Datalog) is that it is a declarative logic programming language. The programmers describe the data they expect and the interpreter computes the data in a supposedly efficient manner.

Datalog programs

There exists many variations of Datalog in the literature. We will present here a Datalog with recursion and negation but where the interaction between recursion and negation is limit to only allow so-called stratified Datalog programs. A stratified Datalog program consists in a sequence of strata. Each stratum defines a certain number of relations through a set of rules per relation. There are three types of rules and each definition of a rule is of one of these three forms:

• it can be given as a n-uplet for which the relation holds. This kind of rules can be seen as an "input". This rule is written as "R(x 1 , . . . , x n )." (where the (x i ) are constants);

• it can be a difference between two n-ary relations. This rule is written "R(X 1 , . . . , X n ) :

-R a (X 1 , . . . , X n ), not R b (X 1 , . . . , X n )" where the upper case X 1 , . . . , X n refer to variables. In this type of rules, the negated relation (i.e. R b ) has to be defined by a stratum that is strictly below the current stratum while R a can be defined in a stratum below or at the current stratum;

• it can be defined as a rule corresponding to the conjunction of several other relations that are defined as the same stratum or below; it is written as "R(X 1 , . . . , X n ) : -R 1 (X 1 1 , . . . , X k 1 1 ), . . . , R (X 1 , . . . , X k )" where the set of X 1 . . . X n plus a set of existential variables Y 1 , . . . , Y K is equal to the set of variables appearing in the R j (i.e. the set of X j i ).

We can have multiple rules defining the same R but all the rules defining R must belong to the same stratum and be of the same form. A relation defined by the set of n-uplets for which the relation holds is called an extensional rule in opposition to the two others kinds of rules that define intentional relations.

Interpretation of Datalog programs

The interpretation of a Datalog program is done stratum by stratum and returns for each relation the set of n-uplet satisfying the relation. For each stratum we compute the smallest fixpoint such that:

• in an extensional relation, its interpretation contains the n-uplets of its definition;

• for each rule R(X 1 , . . . , X n ) : -R a (X 1 , . . . , X n ), notR b (X 1 , . . . , X n ) it is the set of n- uplets solution of R a that are not solution of R b ; • for each rule R(X 1 , . . . , X n ) : -R 1 (X 1 1 , . . . , X k 1 1 ), . . . , R (X 1 , . . . , X k ) if it exists values for X 1 = x 1 , . . . , X n = x n , Y 1 = y 1 , . . . , Y k = y k such that R 1 (X 1
1 , . . . , X k 1 1 ), . . . , R (X 1 , . . . , X k ) then x 1 , . . . , x n has to be included in R.

Note that the restriction we imposed on negation (that the negated part has to come from a stratum that is below) is mandatory to have a fixpoint that always terminate. We can only make sure that an n-uplet is not solution of a relation after the fixpoint has been reached, therefore we can only negate relations that are below the stratum on which we are computing the fixpoint. Furthermore it avoids the problem of "counter-intuitive" relations such as R(x) : -not R(x).

Example

Suppose that we have the relations of example 2.1.2 encoded as the extensional relations M ovies(X, Y, Z) (where X represents the T itle, Y the Date and Z the T heater) and T heaters(X, Y, Z) (representing respectively the N ame for X, the Address for Y and the Rooms for Z).

To query the dates and addresses for projections of "Toy Story 3" we have the following Datalog program:

date_address(X,Y) :-Movies(''Toy Story 3'', X, Z), Theaters(Z,Y,W)
And to query the theaters referenced by the relation M ovies but not by T heaters:

TheathersT(X) :-Theaters(X,Y,Z) MoviesT(X) :-Movies(X,Y,Z) missingTheaters(X) :-MoviesT(X), not TheatersT(X)

Variants of Datalog

There are several extensions of Datalog. Some include aggregates, some include user-defined functions or the handling of NULL values à la sql. We present here two variants of Datalog that will correspond to fragment of the algebra we propose (the constant and the linear fragments).

Non recursive Datalog

A Datalog program is said non recursive when there exists a stratification such that all rule bodies refer to rules defined in strata that are below the stratum of the rule definition. It has been proven that non recursive Datalog actually is relational complete, it has exactly the same expressive power as the relational algebra.

Linear Datalog

A stratified Datalog program is said to be linear when at each stratum and in each conjunctive rule R(X 1 , . . . , X ) :

-R 1 (X 1 1 , . . . , X 1 k 1 ) ∧ • • • ∧ R n (X n 1 , .
. . , X n kn ) of the stratum contains at most one the conjunctive part (i.e. at most one of the R i ) that is defined at the current stratum.

Encoding sparql queries into relational query languages

Using the relational model to encode rdf graphs is relatively easy. The rdf graphs can, for instance, be stored as quadruplets of strings (s, p, o, g) where s, p, o represents an edge from s to o labeled with p and this edge belongs to the graph g.

As we have seen in the first chapter, sparql queries can be translated into a sparqlalgebra that has a compositional semantics much like the relational algebra. However there are fundamental differences in the semantics of sparql and relational query languages which makes the encoding of sparql into a relational query language hard.

There has been, however, a variety of papers on the subject. For instance, [START_REF] Cyganiak | A relational algebra for SPARQL[END_REF] tackled this subject even before the official release of sparql 1.0, [START_REF] Chebotko | Semantics Preserving SPARQL-to-SQL Translation[END_REF] studied the translation from the complete sparql 1.0, the translation of Property Paths (which were introduced in sparql 1.1) was examined in [START_REF] Yakovets | Evaluation of sparql property paths via recursive sql[END_REF]. To the best of our knowledge, there has no publication on the direct translation from sparql 1.1 to sql but as we have explained in chapter 1, there have been attempts to translate the more advanced features directly into a simpler fragment of sparql which can then be translated into sql.

Furthermore, there are implementations of such translations. For instance, we can cite OnTop which is a software designed to query relational databases using the sparql language. We now review the main difficulties of such translations and whether our approach will suffer from such difficulties or not.

Missing values

sparql terms do not describe relations as all the solutions to a given sparql-algebra term do not necessarily share a common domain. For instance, in a term such as {?a ?b ?c} UNION { ?a ?b ?d }, only one of the variables ?c and ?d is defined in each solution.

As we have seen, there are relational query languages supporting missing values; for instance SQL has a special value NULL. If we can detect which variables might be undefined in solution, we can translate the join in the relational algebra using a special condition. For instance if R 1 and R 2 are translations of two sparql-algebra terms sharing a variable ?a that might not be defined then the join condition would be (R1.a=R2.a OR R1.a IS NULL OR R2.a IS NULL). And the same problem arises for filter conditions.

In order to use these NULL, we need to be able to detect which variables are possibly bound by a sparql-algebra term. Furthermore, to produce more efficient terms (that do not contain a lot of IS NULL), we also want to be able to determine which variables are certainly bound. This analysis of cVars (certainly bound variables) and pVars (possibly bound variables) has been proposed in [START_REF] Schmidt | Foundations of SPARQL Query Optimization[END_REF].

This analysis is only a syntactic approximation but there is a good reason why the analysis is sometime imprecise. It can be shown that a precise analysis of whether a column will be bound or not is, at least, as hard as detecting whether a term is included into another which is an undecidable task. Note that for the translation to be valid, the approximation needs to overapproximate pVar and underapproximate cVarq.

Filtered Optional

Another mismatch between relational query languages and sparql is for Optional. Optional are translated into the sparql-algebra operator Lef tJoin which is a conditional left join. Translating such conditional fixpoint into unconditional left join introduce a lot of redundancies. Our algebra will be equipped with only an unconditional left join and therefore we will present how to handle conditional left joins in section 3.5.6.

Recursive queries

The property paths introduced in sparql 1.1 can contain recursive part. It is possible since its 99 version to express recursion in sql. For instance, [START_REF] Yakovets | Evaluation of sparql property paths via recursive sql[END_REF] proposes to translates property paths such as p * can be expressed with the sql query:

WITH closure(s,o) AS ( SELECT P1.s, P1.o FROM P1 UNION ALL SELECT C.s, P1.o FROM closure C, P1 WHERE C.o = P1.s ) CYCLE s SET cyclemark TO 'Y' DEFAULT 'N' USING cyclepath, P(s,o) AS ( SELECT DISTINCT s, o FROM closure UNION SELECT T.

s as s, T.s as o FROM triples T )

Such a translation raises two problems for sql databases vendors. First, not all sql databases support the recursivity (for instance, the popular mysql does not support it) such a query is hard for database vendors to optimize. In fact, most database optimizers do not try to optimize recursive queries.

Conclusion

In this chapter, we briefly presented the relational model and its query languages. The research on the relational algebra and sql in particular are a great basis on which we can build query evaluators and optimizers. However, in their current form, relational-based sparql query evaluator suffer from inefficiencies and there are multiple reasons at the root of these inefficiencies:

• relational query evaluators do not optimize well some type of queries such as recursive queries;

• relational query languages and sparql do not match well semantically;

• and finally some features of sparql are hard to evaluate efficiently.

To address these two first points, we will now present our µ-algebra inspired by the relational algebra but adapted to handle both the recursivity part and the non-relational (missing values) part.

Part II

The µ-algebra for the execution of sparql queries 

Notation for this part of the thesis

We use the following notations:

• an uppercase Γ corresponds to a abstract environment;

• µ-algebra terms are designated by greek letters ϕ, ψ, ξ, κ;

• the letter f usually stands for a f ilter condition;

• the letter g usually stands for a user defined function;

• a lowercase letter c designates a column;

• uppercase letters A, B, C, D and E correspond to sets of columns;

• uppercase letters U , S and W correspond to sets of mappings;

• uppercase letters such as X and Y correspond to µ-algebra variables;

• the uppercase letter V corresponds to an environment (a mapping from µ-algebra variables to sets of mappings);

• lowercase letters such as m, w correspond to mappings;

• the notation ϕ[X/ψ] indicates that the µ-algebra term ϕ where we replace syntactical occurrences of X with ψ 

• the notation A[B → C] indicates the set A where B is replaced by C if B ⊆ A, i.
B = B when C ⊆ A ∅ otherwise .
As shown in the previous chapters and as we will demonstrate in chapter 5, the optimization of recursive queries is still in is infancy. In order to tackle the optimization of sparql queries and in particular of sparql queries containing recursion, we introduce a new algebra µ-algebra that we present in this chapter.

The µ-algebra is heavily inspired by the sparql algebra and the relational algebra and borrows features from both. It can be seen as a variant of the relational algebra extended with let-binders and a new fixpoint operators (which we denote with the letter µ, hence the name µ-algebra) using several traits specific to the sparql Algebra: the filters, the user-defined functions and the fact that our terms do not describe relations but rather sets of mappings where all mappings do not necessarily share the same domain.

As we will see along the next few chapters, our µalgebra can be seen as a Query Execution Plan (QEP) and allows us to rewrite queries and consider plans that 61 the existing methods did not and could not represent. We will demonstrate in the next chapters that this increased plan space is useful and that will validate our approach but we first need to describe the µ-algebra and how it captures sparql. This chapter starts by presenting the general syntax and semantics of our µ-algebra. We then present restrictions on terms we will actually consider. Using these restrictions we then present a few properties that restricted µ-algebra terms enjoyed that will lay the foundations for the proof of our rewriting scheme.

We will investigate the relationship between our language and various relational languages such as Linear Datalog and inflationary Datalog¬.

The µ-algebra was conceived with the ambition to capture a large fragment of sparql. In the last section of this chapter, we will therefore explore this relationship. We will however present the µ-algebra in a generic way as it can capture large fragments of various other query languages on which the new optimizations that we provide for sparql could apply.

Syntax & Semantics

In this section, we present the formalism of our language. As we will see, the syntax and semantics draw from the relational algebra, however our language is equipped with "missing values" à la sparql, and the semantics therefore uses mappings instead of relations.

Mappings

The mappings we manipulate here are very close to the Pattern Instance Mappings of the sparql standard. In fact, one can see these mappings as sparql mappings where we changed the domains; sparql mapping are from sparql variables or blank nodes to rdf terms, our mappings are functions with a finite domain and a signature S → S where S stands for a countable set. For the sake of simplicity we will suppose it is the set of strings (since other countable types can easily be serialized into strings we don't really need any other types except for further optimization).

Mappings are the building blocks of our µ-algebra. The µ-algebra terms that we define return sets of mappings and their semantics operate on mappings. As we will see in the sparql to µ-algebra translation, mappings are solutions (or partial solutions) of queries: the set of solutions is composed of mappings from the variables appearing in the query towards nodes in the graphs. But as sparql solutions can also comprise more than nodes from the queried graph (such as aggregates) our mappings can contain arbitrary values that we suppose encoded into strings.

Definition 11. Mappings are functions with a finite domain. We often represent a mapping m as a set of the form {c 1 → v 1 , . . . , c n → v n } for an element c, m(c) is defined only if there exists i such that c i = c and m(c) = v i . Such a i is necessarily unique (m is a function).

Definition 12. The domain of a mapping m is noted dom(m) and corresponds to the set of c such that m(c) is defined.

Definition 13. An element c of the domain dom(m) of a mapping m is called a column.

Syntax

The syntax of the language is heavily inspired by the syntax of the relational algebra. As we will see in the semantics section, there are key differences, notably to ensure the precise translation of sparql. The general syntax is presented in Figure 3.1 but we add another constraint: fixpoints need to be increasing. This requirement is a semantical property (see below in semantics) but we enforce it syntactically by forbidding recursive variables to appear in the "negative" operators: left-joins and minuses (normal, strict and set minuses).

Semantics

The µ-algebra language operates on mappings. When evaluated, a µ-algebra term returns a set (possibly empty) of mappings. The evaluation of a µ-algebra term also depends on the variables used in this term that is why we evaluate terms under an environment. Given an environment V , V [X/S] corresponds to the environment V where the image of X is S. Environment are complete functions: they associate to each variable a set set of mappings. But the number of variables not pointing to the empty set of mappings (noted ∅) is always finite.

ϕ ::= formula | ϕ 1 ∪ ϕ 2 union | ϕ 1 \\ ϕ 2 normal minus | ϕ 1 -ϕ 2 set minus | ϕ 1 \ ϕ 2 strict minus | ϕ 1 ϕ 2 left-join | ϕ 1 ϕ 2 join | ρ b a (ϕ) column exchange (or rename) | π a (ϕ) column dropping | β b a (ϕ) column multiplying | θ(ϕ, g : C → D) apply a function to mappings | Θ (ϕ, g, C, D) reduce | σ f ilter (ϕ) row filtering | µ(X = ϕ) fixpoint | let (X = ϕ) in ψ let-binder | X variable | ∅ no mapping | |c 1 → v 1 , . . . , c n → v n | a mapping f ilter ::= filter expression | f ilter ∧ f ilter conjunction | f ilter ∨ f ilter disjunction | ¬f ilter negation | bnd(c) presence | test(c 1 , . . . , c n ) test on values
The semantics of a µ-algebra term ϕ under the environment V is noted ϕ V . The definition of ϕ V is recursive and given in figure 3.2. We give here the intuition behind the µ-algebra. Basic µ-algebra terms are variables and terms can be combined or modified via the following operators:

ϕ 1 ∪ ϕ 2
Union on the sets of mappings from ϕ 1 and ϕ 2 ; ϕ 1 ϕ 2 Join operator: the combinations of pairs of mappings from ϕ 1 and ϕ 2 that are compatible;

ϕ 1 ϕ 2 Left-join: the combinations of pairs of compatible mappings from ϕ 1 and ϕ 2 plus the mappings of ϕ 1 that are not compatible with any mapping from ϕ 2 ; ϕ 1 \ ϕ 2 Strict Minus: the mappings from ϕ 1 for which there is no compatible mapping in ϕ 2 ;

ϕ 1 \\ ϕ 2 Minus: the mappings from ϕ 1 for which all compatible mappings in ϕ 2 have a disjoint domain (note that two mappings with two disjoint domains are always compatible); ϕ 1 -ϕ 2 Set Minus: the set difference on the set of mappings from ϕ 1 with the set of mappings of ϕ 2 (this is different from previous minuses: two compatible mappings are equal if and only if they have the same domain). The set of solutions of ϕ 1 \ ϕ 2 is always contained in the set of solutions of ϕ 1 \\ ϕ 2 which is itself always contained in the set of solutions of ϕ 1 -ϕ 2 (except for the special case of the empty mapping {}, if it is solution of both ϕ 1 and ϕ 2 then it is solution of let X = ϕ in ψ Binds the variable X with the set of mappings of ϕ then returns the set of mappings of ψ. This operator does not add expressiveness (up to a renaming of variables we can expand let X = ϕ in ψ into ψ[X/ϕ]) but it allows us to sometimes limit the combinatory explosion that might arise by expanding let-binding;

ϕ 1 \\ ϕ 2 but not of ϕ 1 -ϕ 2 ); ρ b a (ϕ)
σ f (ϕ) Keeps only the mappings m such that f (m) evaluates to true (i.e. eval(f, m) = );

µ(X = ϕ) Corresponds to the fixpoint of the function S → S ∪ ψ V [X/S] (where ψ V [X/S]
is the semantic of ψ where the variable X is mapped to the set of mappings S). We suppose in µ(X = ϕ) that ϕ is increasing in

X (i.e. A ⊆ B ⇒ ϕ V [X→A] ⊆ ϕ V [X→B]
); that can be forced as a syntatic criterion (see section 3.3).

|c 1 → v 1 , . . . , c n → v n | Corresponds to a single constant mapping.
∅ Corresponds to the empty set of mappings.

X Corresponds to a variable, the solution is given by the environment V (X).

ϕ 1 ϕ 2 V = {a + b | a ∈ ϕ 1 V ∧ b ∈ ϕ 2 V ∧ a ∼ b} ϕ 1 \\ ϕ 2 V = {m ∈ ϕ 1 V | n ∈ ϕ 2 V n ∼ m ∧ dom(n) ∩ dom(m) = ∅} ϕ 1 \ ϕ 2 V = {m ∈ ϕ 1 V | n ∈ ϕ 2 V n ∼ m} ϕ 1 -ϕ 2 V = {m ∈ ϕ 1 V |m ∈ ϕ 2 V } ϕ 1 ϕ 2 V = ϕ 1 ϕ 2 V ∪ ϕ 1 \ ϕ 2 V π a (ϕ) V = {{c → v | (c → v) ∈ m ∧ c = a} | m ∈ ϕ V } β b a (ϕ) V = {{c → v | (c = b ∧ c → v ∈ m) ∨ (c = b ∧ a → v ∈ m)} | m ∈ ϕ V } ρ b a (ϕ) V = {{c → v | (c = a ∧ b → v ∈ m) ∨ (c = b ∧ a → v ∈ m) ∨ (c = a ∧ c = b ∧ c → v ∈ m)} | m ∈ ϕ V } σ f (ϕ) V = {m | m ∈ ϕ V ∧ eval(f, m) = } Θ (ϕ, g, C, D) V = {m + g(M ) | C ∩ dom(m) = ∅ and M = {m | m + m ∈ ϕ V and dom(m ) = C} and M = ∅} θ(ϕ, g : C → D) V = {{c → v ∈ m | c ∈ D} + f ({c → v ∈ m | c ∈ C}) | C ⊆ dom(m)} ∪ {m | C ⊆ dom(m)} |c 1 → v 1 , . . . , c n → v n | V = {{c 1 → v 1 , . . . , c n → v n }} ∅ V = ∅ let (X = ϕ) in ψ V = ψ V [X→ ϕ V ] X V = V (X) µ(X = ϕ) V = X V [X→U ] ϕ 1 ∪ ϕ 2 V = ϕ 1 V ∪ ϕ 2 V Where U 0 = ∅, U i+1 = U i ∪ ϕ V [X→U i ] and U = lim n→∞ U i .
Figure 3.2: Semantics of µ-algebra

Semantics of filters

Our µ-algebra language is equipped with a filter operator σ f (ϕ) where ϕ is a µ-algebra term and f a filter expression. This σ f (ϕ) only keeps the mappings m of ϕ such that f (m) evaluates to true (true is noted ).

Our filter expressions correspond to the sparql filter expressions, which have a rich syntax. The syntax of filter expressions in µ-algebra is presented in figure 3.1, but we omit the detailled presentation of test functions. In the filter syntax, a test function is just any boolean function operating on values but if any of the values considered by the test function is missing, the function will evaluate to a special error symbol. Filter functions are thus three-valued boolean functions ( for true, ⊥ for false and Error for error).

The exact set of test functions is not relevant to this manuscript as we treat all test functions alike. We simply suppose that we have all test functions needed to translate sparql filters and that they include sparql filters which means we have the typed comparisons such as ?price < 42 or ?price 1 =?price 2 to keep the mappings m such that m(?price) < 42 when treated as integer or m(?price 1 ) = m(?price 2 )), the regular expressions (such as regex(?title, "W eb") to keep mappings m such that m(?title) contains the string W eb).

As important kinds of filters, we also have: the test of column presence (written bnd(c)), which evaluates to true on mappings whose domain contains c; the various classical logical composition of filters: conjunction (with ∧), disjunction (with ∨), and negation (with ¬). And we suppose that other tests are encoded as n-ary functions that we will treat as black boxes. For instance our filters include comparisons between values and columns (less(?a, b) to compare the value b and the value bounded by ?a and lessthant42(?a) to compare the column ?a with 42), etc. The formal semantics of filters is given in figure 3.3.

eval(f 1 ∧ f 2 , m) =      when (eval(f 1 , m) = ) ∧ (eval(f 2 , m) = ) ⊥ when (eval(f 1 , m) = ⊥) ∨ (eval(f 2 , m) = ⊥) Error otherwise eval(f 1 ∨ f 2 , m) =      when (eval(f 1 , m) = ) ∨ (eval(f 2 , m) = ) ⊥ when (eval(f 1 , m) = ⊥) ∧ (eval(f 2 , m) = ⊥) Error otherwise eval(¬f, m) =      when eval(f, m) = ⊥ ⊥ when eval(f, m) = Error otherwise eval(bnd(c), m) = when c ∈ dom(m) ⊥ when c ∈ dom(m) eval(test(c 1 , . . . , c n ), m) =      Error when {c 1 , . . . , c n } ⊆ dom(m) when test(m(c 1 ), . . . , m(c n )) = ⊥ otherwise Figure 3.3: Semantics of filters in µ-algebra

Free columns of a filter

Definition 15. The set F C(f ) of free columns of a filter f is the set of columns that the filter depends on. Given a column c ∈ F C(f ) then for all mappings m with c ∈ dom(m) and all values v we have eval(f )(m) = eval(f )(m + {c → v}). We define F C(f ) as the following syntactic criterion:

F C(f 1 ∧ f 2 ) = F C(f 1 ) ∪ F C(f 2 ) F C(f 1 ∨ f 2 ) = F C(f 1 ) ∪ F C(f 2 ) F C(¬f ) = F C(f ) F C(bnd(c)) = {c} F C(test(c 1 , . . . , c n )) = {c 1 , . . . , c n } Proposition 1. For all pairs of mappings (m 1 , m 2 ) and all filters f such that dom(m 1 ) ∩ F C(f ) = dom(m 2 ) ∩ F C(f ) and ∀c ∈ dom(m 1 ) ∩ F C(f ) m 1 (c) = m 2 (c) then eval(f )(m 1 ) = eval(f )(m 2 )
and thus the definition of F C works as expected.

Proof Sketch. See full proof in appendix A.1.

It follows the definition of both F C and eval by induction.

Examples of µ-algebra terms

As the formal definition of the language has been presented in the last section, let us present in this section some examples of terms and interpretation of these terms on actual datasets to build some intuition about our new language.

Example datasets

Let us present a few examples of how these operators work and build some intuition. We consider the two following sets of mappings (represented in tabular view, where an empty case represents a column not bound by the mapping):

Set These datasets can also be represented as µ-algebra terms using the constants and union. For instance the two first items of B can be represented as |name → John, phone → 1| ∪ |name → Bob|.

Unary operators

Here are examples of unary operators operating on the sets described above. And now let us present an example of an aggregation. We have a listing where each mapping corresponds to a player with an indication of its name and its team. The query corresponds to counting the number of different names per team. Notice that the mapping {team → D} is ignored because it does not have a name. If we wanted to actually count the number of players per team we should have used C defined as C {name → undef } to make sure that all fields used in the aggregation were defined. Finally let us present an example of a fixpoint. Let us suppose that E corresponds to a directed graph with mapping binding f rom and to and let us look to the transitive closure of E.

Results of σ

Set C name team Alice

A Bob A Charlie B Daisy C Eve D Results of Θ (C, cnt = count(name), {name}, {cnt}) team cnt A 2 B 1 C 1 1
Graph E in table form from to A B B C A D D E F G Results of µ X = E ∪ π m ρ m to (E) ρ m f rom (X) from to A B A C A D A E B C D E F G Figure 3.7: Example of a fixpoint.

Binary operators: joins and minuses

The results of Joins and Minuses for A and B are shown in figure 3.8. The difference between and is the inclusion of the mapping {name → Camille, phone → 7} of A which does not match with any mapping of B. In this example A\\ B and A \ B have the same semantics because all pairs of mappings from A and B share a column thus we also considered the set π phone (A) instead of A. 

Results of

Restriction on µ-algebra: constant and linear recursions

In this section we define what constant in the variable X means and similarly to linear datalog (in a sense that will explained further in section 3.4), we introduce a distinction between linear and non linear recursions. A non linear recursion corresponds to a recursion where several mappings are simultaneously used to produce a new one while in linear recursions mapping depends on only one mapping. The distinction is then used to prove that our fixpoint operator is well-founded in the case of linear recursions.

Definitions

A recursive variable is a variable introduced by a fixpoint operator.

Definition 16. The function sim(ϕ, X) computes the degree of linearity of a term ϕ in the variable X. ϕ is said constant in X when sim(ϕ, X) = 0, linear in X when sim(ϕ, X) ≤ 1. With this function we will limit the possible µ-algebra terms to a set of terms that behave well.

sim(ϕ 1 \\ ϕ 2 , X) = sim(ϕ 1 , X) + 2 * sim(ϕ 2 , X) sim(ϕ 1 \ ϕ 2 , X) = sim(ϕ 1 , X) + 2 * sim(ϕ 2 , X) sim(ϕ 1 -ϕ 2 , X) = sim(ϕ 1 , X) + 2 * sim(ϕ 2 , X) sim(ϕ 1 ϕ 2 , X) = sim(ϕ 1 , X) + 2 * sim(ϕ 2 , X) sim(ϕ 1 ∪ ϕ 2 , X) = max(sim(ϕ 1 , X), sim(ϕ 2 , X)) sim(ϕ 1 ϕ 2 , X) = sim(ϕ 1 , X) + sim(ϕ 2 , X) sim(ρ b a (ϕ) , X) = sim(ϕ, X) sim(π a (ϕ) , X) = sim(ϕ, X) sim(β b a (ϕ) , X) = sim(ϕ, X) sim(σ f (ϕ), X) = sim(ϕ, X) sim(θ(ϕ, g : C → D), X) = sim(ϕ, X) sim(Θ (ϕ, g, C, D) , X) = sim(ϕ, X) × 2 sim(µ(Y = ϕ), X) = 0 when sim(ϕ, X) = 0 ∨ X = Y sim(µ(Y = ϕ), X) = 2 when sim(ϕ, X) > 0 ∧ X = Y sim(let (Y = ϕ) in ψ, X) = sim(ψ, Y ) × sim(ϕ, X) + sim(ψ, X) when X = Y sim(let (Y = ϕ) in ψ, Y ) = 0 sim(X, X) = 1 sim(Y, X) = 0 when X = Y sim(∅, X) = 0 sim(|c 1 → v 1 , . . . , c n → v n |, X) = 0
Definition 17. Let R be the set of recursive variables appearing in ϕ, ϕ is valid if there are no non-linear subterm, i.e. for all subterms ϕ we have ∀r ∈ R sim(ϕ, r) ≤ 1; Remark 1. Unless explicitly stated otherwise, all the terms we consider in this thesis are valid in the sense of definition 17.

Properties of the linear µ-algebra

Lemma 1 shows that constant terms are truly constant. This lemma we will very useful in the proofs of upcoming lemmas and theorem.

Lemma 1. Given a term ϕ valid in the sense of definition 17 and such that sim(ϕ, X) = 0

then ϕ V does not depend on V (X), i.e. ∀S ϕ V [X/S] = ϕ V [X/∅] .
Proof Sketch. See full proof in appendix A.1.1.

The idea is simple: when sim(ϕ, X) = 0, we generally have that sim(ψ, X) = 0 for all subformulas ψ of ϕ. In particular it is true for base terms, which means X does not belong to the set of subformulas.

The only case where sim(ψ, X) = 0 is when ψ appears as a subformula of κ in let (Y = κ) in ξ and that Y does not appear in ξ. In which case, the let (Y = κ) in ξ could actually be simplified in ξ.

We will now present a lemma and theorem that show that linear µ-algebra (or simply µ-algebra in the rest of this thesis) enjoy useful properties for fixpoints.

Lemma 2. Given a valid term ϕ we have that

A ⊆ B ⇒ ϕ V [X/A] ⊆ ϕ V [X/B] . Proof Sketch. See full proof in appendix A.1.2.
The idea is simple. sim is designed to prevent X from appearing negatively -i.e. as the subformula in the right side of a minus -by using the value 2. Therefore all subterms are monotone in X and in minuses the left side are constant in X.

Theorem 1. Given a fixpoint expression µ(X = ϕ) that is valid in the sense of definition 17 and an environment V , the function f (S) = ϕ V [X→S] has the following properties:

1. ∀W = ∅ f (W ) = w∈W f ({w}) 2. ∀A, B, C A = B ∪ C ⇒ f (A) = f (B) ∪ f (C) 3. f has a least fixpoint P with P = µ(X = ϕ) V Proof Sketch. See full proof in appendix A.1.3.
Point 2 and 3 follow easily from point 1. The idea of the proof of point 1. is that sim is designed such that when we combine two terms (e.g. ϕ 1 ϕ 2 ) then X can only appear in one of them.

Notice that while lemma 2 was resting only on the fact the X does not appear negatively in ϕ, this theorem needs simultaneously this positive appearance of X AND that the combination of mappings cannot appear from mapping coming out of X.

Lemma 2 and Theorem 1 show that fixpoints are least fixpoints and can be computed in various ways. If we have a µ-algebra term with a negative appearance of X such as µ(X = ϕ -X) then our semantics is defined (here it will be µ(X = ϕ -X) V = ϕ V ) but it does not correspond to a fixpoint semantics (e.g. ϕ -X V [X/ ϕ V ] = ∅).

If we have a non-linear µ-algebra term but where X appear positively such as µ(X = ϕ ∪ π c (ρ c a (X) ρ c b (X))) then it is increasing, our semantics of this fixpoint is a fixpoint semantics but we do not have µ(X = ϕ) V = x∈ µ(X=ϕ) V ϕ V [X/{x}] in general.

Relationship between µ-algebra and existing relational variants

Our language µ-algebra is very powerful in terms of expressive power. It is easy to see that if we do not put limit on user-defined functions and that we want to compute a function f then we can concatenate all the mappings into one with an aggregation then apply the function f . However, we can also show that, if we allow the map operator and only one simple function (x → x + 1), then our µ-algebra has, at least, the expressive power of a Turing machine (see appendix A.2.1). Since we have the negation, we can even show that our language is capable of solving the halting problem, which means that our µ-algebra has more expressive power than a Turing Machine. Obviously such programs are not very interesting for a practical application as a computer would never be able to answer.

If we look carefully at the proof, this more-than-Turing-complete happens because the map operator is combined with a fixpoint and that can create an infinite amount of distinct values. If we remove the map and aggregation operators from our language, we can easily see that values in mappings are restricted to values that appear either in the term or in the input and since all fixpoints are monotonic our programs are in PTIME.

More precisely, in appendix A.2.4 we show that without the linearity, map and aggregation, we have the expressive power of inflationary Datalog¬ but with the addition of the linearity, we have the expressive power of linear Datalog, which strictly less than the expressive power of Datalog. For instance, with linearity but without map and aggregation, we cannot find pair of nodes in a graph that are linked by a path labeled by two constants :A and :B with as many of each.

Translation from sparql

One of the main reason for the inception of the µ-algebra was to study to optimization of sparql. In this section, we present a translation from sparql towards our µ-algebra. This translation will allow us to put the focus in the next chapters on the evaluation and optimization of µ-algebra terms as we will know how to translate sparql queries into µalgebra terms.

sparql variables

We recall that the sparql standard that defines queries has a notion of variable and each solution of a sparql query is a mapping from a subset of these sparql variables appearing in the query towards strings that represent iri, blank nodes or literals. In our encoding, the solutions will be mappings whose domains are sparql variables and whose images are iri, blank nodes or literals.

It is therefore important to not get confused in the terminology between µ-algebra variables that are evaluated to sets of mappings and are introduced by a let (X = . . . ) in . . . or a µ(X = . . . ) and sparql variables that will be translated to column names and will be part of the domains of mappings.

Since they do not represent the same kind object, for the sake of clarity, sparql variables will be called sparql variables whereas µ-algebra variables will be simply be called variables.

Encoding of the graph structure

We recall that an rdf graph G is given by a set of triples, G ⊂ U ×U ×U . When (s, p, o) ∈ G we say that the node s is linked to the node o via an edge labeled by p. An rdf dataset is a set of rdf graphs G i 1 dotsG in each identified by an iri. As such an rdf dataset can be seen as a set of quadruples: one (s, p, o, g) for each (s, p, o) ∈ G g .

The encoding of all graphs is done using a unique µ-algebra variable Q that contains one mapping per quadruple, each of these mappings has for domain: 's' for subject, 'p' for predicate, 'o' for object and 'g' for graph.

We then introduce a term T n for each graph named n and a variable T referring to the default graph. All of them bind three columns: 's', 'p', 'o' (for subject, predicate and object).

Finally we have a variable N n for the set of all nodes of each graph named n plus a variable N referring to the default graph. Each node is represented by a mapping whose domain is {s} (even though N also contains nodes that only appear as objects).

Note that we can derive all of these variables from Q: for each graph name name, we use let T name = π g (σ g=name (Q)) in . . . and as SPARQL allows us to change the graph queried, during the course of the translation we maintain T to be the set of triples (s, p, o) corresponding to the current graph using let binders and finally,

N n = ρ o s (π p (π s (T n ))) ∪ π p (π o (T n )).

Regular Path Expressions

rpe(Constant(u)) = π p (σ p= u (T )) rpe(s -V ariable(v)) = ρ v p (T ) rpe((r 1 /r 2 )) = π m (ρ m o (rpe(r 1 )) ρ m m (rpe(r 2 ))) rpe((r 1 |r 2 )) = rpe(r 1 ) ∪ rpe(r 2 ) rpe((r -1 )) = ρ o s (rpe(r)) rpe((!{: i 1 • • • : i n })) = π p σ p ∈{:i 1 •••:in} (T ) rpe((r?)) = rpe(r) ∪ β o s (N ) rpe((r * )) = µ(X = β o s (N ) ∪ π m (ρ m o (X) ρ m s (rpe(r))))
Figure 3.9: Translation of a PP.

The hard part of translating a PP to a µ-algebra term is the translation of the regular path expression. The basic idea is to recursively translate the regular path expression r to a µ-algebra term such that each mapping solution of this term maps s (resp. o) to s (resp. o ) with s linked to o via a path accepted by r. However, we included here sparql variables in regular path expressions and the translation might bind more column names than just s and o.

The translation of a regular path expression r is rpe(r) as presented in figure 3.9. Our sparql expression differ from the usual sparql algebra because we provide a syntactic differentiation between constants and variables for the reader by introducing Constant(u) instead of u when u is an iri and s-V ariable(v) for a sparql variable. We also suppose that there are no blank nodes in the query as we have shown how to remove them in section 1.2.

Note that rpe(r * ) introduces a fixpoint with always the same variable X, but in practice we can use a fresh variable there. Furthermore note that the terms produced by our translation are indeed valid in the sense of definition 17.

Property Paths

We note gp(a) our translation of the sparql algebra term a into µ-algebra. The translation of the sparql algebra term P P (s, r p , o) (where r p is a regular path expression) into gp(P P (s, r p , o)) is done in two steps: first, we obtain a µ-algebra term rpe(r p ) representing the set of mappings solution of r p ; then, there are four cases depending on whether s is a value or a sparql variable and whether t is a value (w) or a sparql variable (?w). With p = pp(r p ), gp(P P (s, r p , o)) is equal to:

o = Constant(w) o = s -V ariable(?w) s = Constant(v) π s (π o (σ s=v (σ o=w (p)))) π s σ s=v ρ ?w o (p) s = s -V ariable(?v) π o σ o=w ρ ?v s (p) ρ ?w o ρ ?v s (p)
In this translation, we implicitly supposed that if s or o are sparql variables then they are different from each other and they do not appear in r p . In case o = s -V ariable(?v) and ?v appears somewhere else in the PP (in s or in r p ), we replace it with ?v : we translate the PP (s, r p , s-V ariable(?v )) to a µ-algebra term ϕ and finally the translation is π v (σ v=v (ϕ)). Similarly, if s = s -V ariable(?w), and ?w appears in r p , we replace it with ?w .

Translation of sparql algebra terms

sparql algebra terms are defined recursively and are very similar by design to our µ-algebra terms. A sparql algebra term can therefore be easily translated into our µ-algebra:

• we have seen the translation for property paths;

• join can be translated to our join;

• unconditional optionals can be translated to our left join and conditional optionals are translated using their definition as the union of a filtered join and a conditional difference;

• filters translate to our filter operator;

• unions translate to our union;

• graph selections translate to let bindings;

• the semantics of F ilterExists and F ilterN otExist are ill-defined but considering a reasonable semantics, it is possible [START_REF] Kaminski | Query Nesting, Assignment, and Aggregation in SPARQL 1.1[END_REF] to translate them to simpler sparql operators;

• M inus to a minus (\);

• the aggregations can be translated to an aggregation;

• the conditional difference is non-trivial to translate.

Conditional difference

Conditional difference (Dif f (Ω 1 , Ω 2 , cond) in the W3C literature) is defined as the set of mappings m 1 from Ω 1 such that all compatible mappings m 2 from Ω 2 are such that cond(m 1 + m 2 ) is not true (false or error). Therefore Dif f (Ω 1 , Ω 2 , cond) = Ω 1 -Ω where Ω captures the mappings n from Ω 1 such that there is a mapping m from Ω 2 with cond(n + m). In order to compute Ω , we need to keep the Ω 1 part of solutions of σ cond (Ω 1 Ω 2 ). In many cases, this would only mean to remove the columns specific to Ω 2 but since, in some cases, the presence of some columns might be contingent in the mappings of Ω 1 and Ω 2 then we need to "backup" the columns specific to Ω 1 before joining. Let c 1 , . . . , c n be the set of columns that can appear in in some mapping solution of Ω 1 and in some mappings solution of Ω 2 but not sure to be present in Ω 1 . Let t 1 , . . . , t n a set of "fresh" column names, we "backup" the columns (c 1 , . . . , c n ) of Ω 1 onto (t 1 , . . . , t n ) with β t 1 c 1 . . . β tn cn (Ω 1 ) then we join with Ω 2 , we filter, and finally we restore the backup. To restore SELECT * { { ?b f i r s t n a m e john . } UNION { ?b f i r s t n a m e john . } } Figure 3.10: Example sparql query with a set semantics different from the bag semantics the backup we need to remove all columns j 1 , . . . , j m that might appear in Ω 1 or Ω 2 except those used to backup then exchange the (t i ) i with the (c i ) i . This gives us:

Dif f (Ω 1 , Ω 2 , cond) = let (O = Ω 1 ) in O-ρ t 1 c 1 . . . ρ tn cn π j 1 . . . π jn σ cond (β t 1 c 1 . . . β tn cn (O) Ω 2 )

Set semantics and bag semantics

The set semantics consists in producing an answer with the set of bindings that are solutions while the bag semantics consists in producing the same answers but with multiplicity. For instance, if ?a = bob is twice a solution, then it should appear twice as an answer in the bag semantics, and once in the set semantics. sparql is evaluated, by default, with a bag semantics. For a query such as the one in figure 3.10 a sparql query evaluator should give a binding for ?b repeated twice for each ?b solution. If sparql uses the bag semantics by default, most sparql queries, or, at least, most part of most sparql queries can be evaluated under a set semantics for the following reasons:

• the set semantics and the bag semantics often agree, for instance on the semantics of Triple Patterns and Basic Graph Pattern;

• in sparql most Property Paths need to be evaluated under the set semantics as counting the number of paths matching a Regular Path Query would often be intractable;

• finally, the user can specify that a query that it has to be evaluated under the set semantics using the keyword DISTINCT. The semantics of REDUCED is that the evaluator can answer anything comprised between the set semantics and the bag semantics. Therefore it can be evaluated using the set semantics when using the keyword REDUCED.

On the opposite, the main causes of differences between the bag semantics and the set semantics are the following:

• the unions (as portrayed in figure 3.10)

• the joins or left-joins between terms comprising unions or left-joins

• the projection (i.e. when select explicitly lists only a subset of the sparql variables appearing in the query).

Our µ-algebra is equipped with a set semantics that follow the set semantics of sparql. Our µ-algebra can be adapted to deal with the bag semantics of sparql. The idea is to first translate as if we were evaluating terms under the set semantics but tag terms that need to be evaluated under the bag semantics. Then we change terms that need to evaluated under the bag semantics by adding either a Cardinality (Card) field or an Identifier (ID) field to solutions.

We will not detail here the general method but present a few examples. Let us suppose that A and B can be evaluated under the set semantics but that A ∪ B needs to be evaluated under the bag semantics. We first modify the solutions of A and B to add a cardinality information. Since both A and B can be evaluated under the set semantics, it means that each solution has to be counted once. Therefore we compute If a term A has been computed with the method presented above then we can replace the term π c (A) with the following term Θ (A, Card = Card, {c, Card}, {Card})

A = A |Card → 1, ID → ID A | and B = B |Card → 1, ID → ID B |
This method works well but induce a cost since we need to perform a reduce operation after each computation. Another method consists in adding a Unique ID (UID). For instance if we have a term A and a term B and we want to evaluate A B under the bag semantic we add a column U ID A to the mappings solutions of A (all mappings in A receive a different U ID A ) and a column U ID B to the mappings of B then we perform the join normally, and, finally, we can replace the pair of columns

(U ID A , U ID B ) with a column U ID A B .
This second method is lightweight per solution as mapping a set of solution through a function to tag them with an ID is very cheap (at least compared with the actual computation of a join) but in practice, it might sometimes be actually more expensive than the first method as in the first method, a mapping that is present n times is actually represented once while in this second method a mapping is present as many times as it is a solution. That is why, in practice, we rely on a mixed method, preferring the first method for joins and unions and the second for projections.

Final translation

The translation for a sparql-algebra is given in figure 3.12 for the translation in set semantics and in figure 3.11 for the bag semantics. For the sake of simplicity, we encoded expression of the form Graph(v, t) as an union ranging v over the possible graph names which supposes a knowledge of the queried dataset at compile time. However this constraint can be overcame by maintaining the graph name in the case of variable graph names, the only difference being for minuses where we need to ensure that the a removed column share the same graph name. The M inus can thus be expressed as a conditional Dif f . The function multi(t) presented in figure 3.11 produces terms that are evaluated in bag semantics.

Example of translation

In the case of the simple recursive query presented in figure 3.13. This query asks for the pairs ?a and ?b such that there is a path where the edges of the path are labeled by knows from ?a to ?b and there is a path between ?b and the node :John labeled by :Firstname.

multi(Join(a, b)) = multi(a) multi(b) multi(U nion(a, b)) = multi(a) ∪ multi(b) multi(P roject(V, t)) = π a 1 ,...,an (multi(t)) {a 1 , . . . , a n } variables to remove multi(BGP (p 1 , . . . , p n )) = π a 1 ,...,an (θ(distinct(p 1 ) . . . distinct(p n ), m → |id h → f resh()| : ∅ → {id h })) {b 1 , . . . , b n } blank nodes to remove multi(F ilter(f, t)) = σ f (multi(t)) multi(Dif f (f, t 1 , t 2 )) = Dif f (f, multi(t 1 ), distinct(t 2 )) multi(M inus(t 1 , t 2 )) = multi(t 1 ) \ distinct(t 2 ) multi(Extend(t, a, v)) = β a v (multi(t)) when v is a column multi(Extend(t, a, v)) = multi(t) |a → v| when v is a constant multi(Extend(t, a, v)) = θ(multi(t), (m → |a → v(m)| : F C(v) → {a}) multi(Graph(i, t)) = let (T = T v ) in multi(t) for v iri multi(Graph(v, t)) = let (T = T u 1 ) in multi(t) |v → u 1 | . . . let (T = T u k ) in multi(t) |v → u k | for v variable with G = Group(e 1 , . . . , e j , t) multi(AggregationJoin(Aggregation(e 1 1 , . . . , e 1 i 1 , f 1 , scalarvals, G), . . . , Aggregation(e l 1 , . . . , e l i l , f l , scalarvals, G))) = Θ (computeKeys, computeAgg, {k 1 , . . . , k j }, {agg 1 , . . . , agg l , id h }) where computeAgg = M → agg 1 = f 1 ((e 1 1 , . . . , e 1 i 1 )(M )), . . . , agg l = f l ((e l 1 , . . . , e l i l )(M )), id h = f resh() and computeKeys = θ(multi(t), m → (k 1 = e 1 (m), . . . , k j = e j (m)) : * → {k 1 , . . . , k j })
In the translation of terms id h has to be different for each different term so that id never conflicts. The function f resh() is executed at the evaluation time to provide a unique id for mappings for the bag semantics. where

distinct(Join(a, b)) = distinct(a) distinct(b) distinct(U nion(a, b)) = distinct(a) ∪ distinct(b) distinct(P roject(V, t)) = π a 1 ,...,an (distinct(t)) {a 1 , . . . , a n } variables to remove distinct(P P (a)) = P P (a) distinct(F ilter(f, t)) = σ f (distinct(t)) distinct(Dif f (f, t 1 , t 2 )) = Dif f (f, distinct(t 1 ), distinct(t 2 )) distinct(M inus(t 1 , t 2 )) = distinct(t 1 ) \ distinct(t 2 ) distinct(Extend(t, a, v)) = β a v (distinct(t)) when v is a column distinct(Extend(t, a, v)) = distinct(t) |a → v| when v is a constant distinct(Extend(t, a, v)) = θ(distinct(t), (m → |a → v(m)| : F C(v) → {a}) distinct(Graph(i, t)) = let (T = T v ) in distinct(t) for v iri distinct(Graph(v, t)) = let (T = T u 1 ) in distinct(t) |v → u 1 | . . . let (T = T u k ) in distinct(t) |v → u k | for v variable with G = Group(
computeAgg = M → agg 1 = f 1 ((e 1 1 , . . . , e 1 i 1 )(M )), . . . , agg l = f l ((e l 1 , . . . , e l i l )(M ))
and computeKeys = θ(multi(t), m → (k 

1 = e 1 (m), . . . , k j = e j (m)) : * → {k 1 , . . . , k j })
* ) = µ(X = β o s (N ) ∪ π m (ρ m o (X) ρ m s (π p (σ p=:knows (T )))))
Finally, the total term is: rpe(?a :knows * ?b) rpe(?b :firstname :John) =

ρ ?b s (π o (σ o=:John (π p (σ p=:firstname (T ))))) ρ ?a s (π o (σ o=:Doe (π p (σ p=:lastname (T ))))) ρ ?a s ρ b o (µ(X = β o s (N ) ∪ π m (ρ m o (X) ρ m s (π p (σ p=:knows (T ))))))

Conclusion

In this chapter we presented a new algebra: the µ-algebra. This algebra takes its inspiration from the relational algebra but diverges on some essential points: as it name suggests the relational algebra describes relations while solutions to our algebra are set of mappings that do not necessarily share the same domain. Furthermore our algebra is equipped with a novel fixpoint operator µ. For this fixpoint to be well-defined we restrict ourselves to "linear" terms and introduce a translation from a large fragment of the sparql-algebra to our µ-algebra.

Since our algebra is a variation of the relational algebra and since the relational algebra optimization is based on rewrite rules, the direction we will now follow is to investigate the rewrite rules and strategy that can be applied for our µ-algebra.

CHAPTER 4

Analysis & transformation of µ-algebra terms As we have now presented the µ-algebra and a translation from sparql, we can now dive into the process of optimization. This optimization process is divided into several steps the first of which being the production of several terms equivalent to the initial term. While all these terms are semantically equivalent they correspond to diverse ways of actually computing the solutions. Therefore by producing several terms we are considering several ways of computing the solutions among which some might be better than directly using the initial term. More precisely, in this chapter we present the mechanisms to produce many terms equivalent to given a µ-algebra term using rewriting rules. These rewriting rules are local patterns that could be replaced with other patterns.

While some of the rewrite rules are relatively straightforward to prove, others will require some theoretical framework to even enunciate. The first part of this chapter presents definitions, lemmas and theorems that are the core machinery that will later translate into proven rewrite rules. In particular, several theorems we introduce translate into powerful new rewrite rules for queries with recursion.

The validity of our rewrite rules will also depend on some contextual information. For instance, the rule π c (ϕ 1 ∪ X) → π c (ϕ 1 ) ∪ X is only true in environment V such that the domain of the mappings of V [X] do not contain c. That is why our chapter starts with the presentation of a type system for µ-algebra terms that will provide us with this contextual information.

The chapter continues by presenting our various rules and when to apply them. Our set of rules is split between normalizing rules and producing rules. Normalizing rules are used to produce canonical versions of our terms while producing rules produce terms that are really new. The presentation of these sets of rules is the subject of the two sections preceding the one on our algorithm.

This chapter ends by the presentation of our efficient algorithm to produce the rewritten forms of µ-algebra terms and an example of term rewritten.

Preliminaries: several examples of terms to be rewritten

In order to motivate the heavy framework of notations that we will present after, we start this chapter with a few examples of queries and what kind of rewriting we would like to apply on those queries.

Filters

Let us imagine we have a graph database containing edges labeled with the predicate :locatedIn we might want to use this predicate in a transitive way. For instance, if we have :Grenoble :locatedIn :Isère and :Isère :locatedIn :France then the query below would retrieve (?a →:Grenoble, ?b →:France) as expected.

SELECT * WHERE { ?a :locatedIn+ ?b . FILTER(?b = :France) }

From an evaluation point of view, we do not want the query optimizer to choose a plan where it computes the whole transitive closure :locatedIn as it is reasonable to think that only a portion of all objects are located in :France. In terms of rewrite rules we want the filter condition to pushed inside the computation of the fixpoint. Note that it is possible for the query evaluator to push some kind of filters inside fixpoints but not all fixpoints can be pushed without changing the semantics. For instance if the µ-algebra term corresponding to ?a :locatedIn+ ?b starts with a solution (?a, ?b) then transform at each iteration a solution (?a, ?b) into a solution (?a , ?b) then it is possible to push a filter condition that filters ?b (as ?b do not change). In the same term it would not be possible to push the filter if the filter was considering the column ?a. Indeed if we have (?a 1 , ?b) at iteration 1, (?a 2 , ?b) at iteration 2, then ?a 2 might have passed the filter while ?a 1 might have not. In which case pushing the filter would remove the solution (?a 2 , ?b).

Joins

In a query such as the following:

SELECT * WHERE { ?a :locatedIn+ ?b . ?b label "France" . }

The join act as a filter. Therefore depending on the fixpoint and the column bound by the join, it might or might not be pushed into the fixpoint. The condition in general to push filters into fixpoint is actually more complicated than the condition to push filters as pushing a join can introduce new columns that can interact with the fixpoint.

For instance in a µ-algebra term such as µ X = π m ρ b m (X) ϕ ∪ ψ if neither ϕ nor ψ binds m then the recursive solutions of X will not bind m. If we push a join that bind m then this m will be renamed into b and might create new condition for the join with ϕ.

N-ary fixpoints

Let us suppose we have the following query: SELECT * WHERE { ?a :locatedIn+/:sameAs+ ?b . } One way to compute the solution the solutions to this query is to use the equivalent following query: SELECT ?a ?b WHERE { ?a :locatedIn+ ?c . ?c :sameAs+ ?b . } Then the computation performs two fixpoints and joins the results. It seems however inefficient because :sameAs might concern a lot of objects that are not places and thus do not have a :locatedIn predicate. Conversely, many places might not have a :sameAs information. In practice, what we would like the evaluator to do in this setting is to start by computing the pairs (?a, ?b) of solutions to ?a :locatedIn/:sameAs ?b and then recursively build on that, i.e. at each iteration we create either (?a , ?b) (or (?a, ?b )) from (?a, ?b) such that ?a :locatedIn ?a (or ?b :sameAs ?b). This way, our query execution plan is optimal in the sense that the only partial solutions that we manipulate are actual solutions.

Effects of µ-algebra terms

In this section, we will develop a logical framework (with definitions, lemmas and theorem) that will help us analyze the behavior of µ-algebra terms. More precisely we will have tools describing which variables are defined along with a substitution method, how a fixpoint uses recursively its columns and how we can modify its type without changing its semantics. This logical framework will then be put into practice to demonstrate rewrite rules concerning fixpoints.

Expansion of let binders

Given a term let (X = ϕ) in ψ we might be tempted to rewrite that into ψ[X/ϕ], i.e. the term ψ where the occurrences of X are replaced by ϕ. However that is not always semantically equivalent: we need to take into account the fact that variables might be unbound in ϕ and bound ψ or change scope (if the same variable is bound twice). For instance with ϕ = Y and ψ = let

(Y = |c 1 → v 1 , . . . , c n → v n |) in (X Y ) we have let (X = ϕ) in ψ V = let (X = Y ) in ψ V = ψ V [X/V (Y )] = let (Y = |c 1 → v 1 , . . . , c n → v n |) in (X Y ) V [X/V (Y )] = X Y V [X/V (Y ),Y /{{c 1 →v 1 ,...,cn→vn}}] = |c 1 → v 1 , . . . , c n → v n | Y V which is generally dif- ferent from ψ[X/Y ] V = let (Y = |c 1 → v 1 , . . . , c n → v n |) in Y Y V = Y Y V [Y /{c 1 →v 1 ,...,cn→vn}] = {{c 1 → v 1 , . . . , c n → v n }}.
The definition 18 defines the intuitive notion of the set of variables defined in a term and definition 19 defines a context-aware replacement scheme while the lemmas 4 and 3 show we can replace variables with their definition when ϕ is constant in the variables defined in ψ.

Definition 18. The set def (ϕ) of variables defined in ϕ in defined recursively as:

def (ϕ 1 ∪ ϕ 2 ) = def (ϕ 1 ) ∪ def (ϕ 2 ) def (ϕ 1 \\ ϕ 2 ) = def (ϕ 1 ) ∪ def (ϕ 2 ) def (ϕ 1 \ ϕ 2 ) = def (ϕ 1 ) ∪ def (ϕ 2 ) def (ϕ 1 -ϕ 2 ) = def (ϕ 1 ) ∪ def (ϕ 2 ) def (ϕ 1 ϕ 2 ) = def (ϕ 1 ) ∪ def (ϕ 2 ) def (ϕ 1 ϕ 2 ) = def (ϕ 1 ) ∪ def (ϕ 2 ) def (ρ b a (ϕ)) = def (ϕ) def (π a (ϕ)) = def (ϕ) def (β b a (ϕ)) = def (ϕ) def (θ(ϕ, g : C → D)) = def (ϕ) def (Θ (ϕ, g, C, D)) = def (ϕ) def (σ f (ϕ)) = def (ϕ) def (X) = ∅ def (∅) = ∅ def (|c 1 → v 1 , . . . , c n → v n |) = ∅ def (µ(Y = ϕ)) = {Y } ∪ def (ϕ) def (let (Y = ϕ) in ψ) = {Y } ∪ def (ϕ) ∪ def (ψ)
Definition 19. The replace operator replace(ϕ, X, ψ), replaces free occurrences of X in ϕ with ψ.

replace(ϕ 1 ∪ ϕ 2 , X, ψ) = replace(ϕ 1 , X, ψ) ∪ replace(ϕ 2 , X, ψ) replace(ϕ 1 \\ ϕ 2 , X, ψ) = replace(ϕ 1 , X, ψ)\\ replace(ϕ 2 , X, ψ) replace(ϕ 1 \ ϕ 2 , X, ψ) = replace(ϕ 1 , X, ψ) \ replace(ϕ 2 , X, ψ) replace(ϕ 1 -ϕ 2 , X, ψ) = replace(ϕ 1 , X, ψ) -replace(ϕ 2 , X, ψ) replace(ϕ 1 ϕ 2 , X, ψ) = replace(ϕ 1 , X, ψ) replace(ϕ 2 , X, ψ) replace(ϕ 1 ϕ 2 , X, ψ) = replace(ϕ 1 , X, ψ) replace(ϕ 2 , X, ψ) replace(ρ b a (ϕ) , X, ψ) = ρ b a (replace(ϕ, X, ψ)) replace(π a (ϕ) , X, ψ) = π a (replace(ϕ, X, ψ)) replace(β b a (ϕ) , X, ψ) = β b a (replace(ϕ, X, ψ)) replace(θ(ϕ, g : C → D), X, ψ) = θ(replace(ϕ, X, ψ), g : C → D) replace(Θ (ϕ, g, C, D) , X, ψ) = Θ (replace(ϕ, X, ψ), g, C, D) replace(σ f (ϕ), X, ψ) = σ f (replace(ϕ, X, ψ)) replace(µ(Y = ϕ), X, ψ) = µ(Y = replace(ϕ, X, ψ)) X = Y replace(µ(X = ϕ), X, ψ) = µ(X = ϕ) replace(X, X, ψ) = ψ replace(∅, X, ψ) = ∅ replace(|c 1 → v 1 , . . . , c n → v n |, X, ψ) = |c 1 → v 1 , . . . , c n → v n | replace(let (X = ϕ) in ξ, X, ψ) = let (X = ϕ) in ξ replace(let (Y = ϕ) in ξ, X, ψ) = let (Y = replace(ϕ, X, ψ)) in replace(ξ, X, ψ)
Lemma 3. Let ϕ and ψ be terms such that for all variables Y ∈ def (ψ), sim(ϕ, Y ) = 0, then replace(ψ, X, ϕ

) V = ψ V [X/ ϕ V ] .
Lemma 4. Let ϕ and ψ be terms such that for all variables Y ∈ def (ψ), sim(ϕ, Y ) = 0 and

X ∈ def (ψ); then ψ[X/ϕ] V = ψ V [X/ ϕ V ] .
Proof. Lemma 4 is a consequence of lemma 3 as ψ[X/ϕ] = replace(ψ, X, ϕ) when X ∈ def (ψ).

The idea of the proof relies on the fact that capturing the set S = ϕ V of solutions for X before evaluating ψ V [X/S] is equivalent to computing ϕ V for each free occurrence of X in ψ. In general ϕ V and ϕ V might differ but since V and V only differ for variables in def (ψ); for all Y ∈ def (ψ), sim(ϕ, Y ) = 0 and thanks to lemma 1 thus ϕ V = ϕ V .

Image of a variable

In this section we use the notation p(c) = ⊥ to indicate that the image of c through the function (or mapping) p is not defined. We introduce the perm operator. The operator perm(ϕ, X, C) computes the different ways an element of m ∈ ϕ X[V /{w}] that is not in ϕ X[V /∅] can be obtained (more specifically, how m and w are related see lemma 6).

This perm operator will later be used as a criterion for rewriting rules over fixpoints.

Definition 20. We note perm(ϕ, X, C) the set of permutations on the set C of columns of the variable X in the term ϕ. It is defined recursively as:

perm(ϕ 1 ∪ ϕ 2 , X, C) = perm(ϕ 1 , X, C) ∪ perm(ϕ 2 , X, C) perm(ϕ 1 \\ ϕ 2 , X, C) = perm(ϕ 1 , X, C) perm(ϕ 1 \ ϕ 2 , X, C) = perm(ϕ 1 , X, C) perm(ϕ 1 -ϕ 2 , X, C) = perm(ϕ 1 , X, C) perm(ϕ 1 ϕ 2 , X, C) = perm(ϕ 1 , X, C) perm(ϕ 1 ϕ 2 , X, C) = perm(ϕ 1 , X, C) ∪ perm(ϕ 2 , X, C) perm(ρ b a (ϕ) , X, C) = {p | p ∈ perm(ϕ, X, C) p = p except p (a) = p(b) / p (b) = p(a)} perm(π a (ϕ) , X, C) = {p | p ∈ perm(ϕ, X, C) p = p except p (a) = ⊥} perm(β b a (ϕ) , X, C) = {p | p ∈ perm(ϕ, X, C) p = p except p (b) = p(a)} perm(σ f (ϕ), X, C) = perm(ϕ, X, C) perm(µ(Y = ϕ), X, C) = ∅ perm(X, X, C) = {x → x | x ∈ C} (the identity function) perm(∅, X, C) = ∅ perm(θ(ϕ, g : C → D), X, C) = {p | p ∈ perm(ϕ, X, C) p = p except c ∈ D ⇒ p (c) = ⊥} perm(Θ (ϕ, g, C, D) , X, C) = ∅ perm(|c 1 → v 1 , . . . , c n → v n |, X, C) = ∅ perm(let (X = ϕ) in ψ, X, C) = ∅ perm(let (Y = ϕ) in ψ, X, C) = perm(ψ, X, C) ∪ {p 2 • p 1 | p 1 ∈ perm(ϕ, X, C) p 2 ∈ perm(ψ, Y, im(p 1 ))}
Lemma 5. Given a term ϕ, a variable X, if sim(ϕ, X) = 0 then for all set of columns C we have perm(ϕ, X, C) = ∅ Proof. Follows easily from the definition of sim and perm: if X does not appear as subterm of ϕ then perm(ϕ, X, C) = ∅.

Lemma 6. Let C be such that C ⊆ dom(w), for all w ∈ ϕ V [X/{w}] \ ϕ V [X/∅] there exists p ∈ perm(ϕ, X, C) such that ∀c p(c) = ⊥ ∨ (m(c) = ⊥ ∧ m(c) = w(p(c))).
Proof Sketch. See full proof in appendix A.3.1.

The proof relies on the fact that the linearity syntactically forbid the combination of mappings coming out from a given variable. The perm operator tracks the possible provenance of a mapping of a variable and annotates which operations are applied on the mapping for each provenance.

Adding columns to variables

With our rewriting rules we sometimes change the domains of mappings that are solutions of a fixpoint. In this section we introduce a function canAdd allowing us to derive some sufficient conditions for when the impact on the fixpoint semantics of extending the domain of a mapping is only on the extended part of the domain.

Definition 21. Given a term ϕ and a column c, the function canAdd(ϕ, X, c) determines whether modifying the column c of variable X has an impact on the solutions of ϕ, it is defined as: andcanAdd(ϕ, X, c) then we have for all v (with w(v) = w + {c → v}):

canAdd(ϕ 1 ∪ ϕ 2 , X, c) = canAdd(ϕ 1 , X, c) ∧ canAdd(ϕ 2 , X, c) canAdd(ϕ 1 ϕ 2 , X, c) = canAdd(ϕ 1 , X, c) ∧ canAdd(ϕ 2 , X, c) canAdd(ϕ 1 \\ ϕ 2 , X, c) = canAdd(ϕ 1 , X, c) ∧ canAdd(ϕ 2 , X, c) canAdd(ϕ 1 \ ϕ 2 , X, c) = canAdd(ϕ 1 , X, c) ∧ canAdd(ϕ 2 , X, c) canAdd(ϕ 1 -ϕ 2 , X, c) = canAdd(ϕ 1 , X, c) ∧ (sim(ϕ 1 , X) = 0) canAdd(ϕ 1 ϕ 2 , X, c) = canAdd(ϕ 1 , X, c) ∧ canAdd(ϕ 2 , X, c) canAdd(ρ b a (ϕ) , X, c) = canAdd(ϕ, X, c) ∧ c ∈ {a, b} canAdd(π a (ϕ) , X, c) = canAdd(ϕ, X, c) when c = a canAdd(π c (ϕ) , X, c) = sim(ϕ, X) = 0 canAdd(β b a (ϕ) , X, c) = canAdd(ϕ, X, c) ∧ c ∈ {a, b} canAdd(θ(ϕ, g : C → D), X, c) = can(ϕ, X, c) ∧ c ∈ C ∪ D canAdd(Θ (ϕ, g, C, D) , X, c) = (since sim(Θ (ϕ, g, C, D)) = 0) canAdd(σ f (ϕ), X, c) = canAdd(ϕ, X, c) ∧ c ∈ F C(f ) canAdd(µ(Y = ϕ), X, c) = canAdd(ϕ, X, c) canAdd(Y, X, c) = canAdd(|c 1 → v 1 , . . . , c n → v n |, X, c) = c ∈ {c 1 , . . . , c n } canAdd(let (Y = ϕ) in ψ, X, c) = canAdd(ψ, X, c) ∧ canAdd(ϕ, X, c) ∧ canAdd(ψ, Y, c) Lemma 7. Given a term ϕ, an environment V , a variable X and a mapping w, If c ∈ dom(w), ∀Y, sim(ϕ, Y ) = 0 ∨ (∀m ∈ V (Y )c ∈ dom(m)),
1. ∀m ∈ ϕ V [X/{w}] c ∈ dom(m); 2. ϕ V [X/{w}] = π c (ϕ) V [X/{w(v)}] ; 3. ∀m ∈ ϕ V [X/{w(v)}] c ∈ dom(m) ∨ m(c) = v.
Proof Sketch. See full proof in appendix A.3.2.

The proof of point 1 and 3 relies on the fact that canAdd enforces that c syntactically appears in a subformula that is also a subformula of π c (ϕ). Therefore the c part of the domain cannot be altered since the term cannot reference it.

The proof of point 2 relies on the fact that there is only one possible value (v) for the c image a mapping solution.

As we have seen canAdd provides information on whether a given column can be added to a variable without essentially changing the semantics of a formula (except on this column). We now present lemma 8 which reinforce this by extending perm for free for the added column and thus complete the result of lemma 7 with the conclusions of lemma 6.

Lemma 8. Let ϕ be a µ-algebra term, X a variable, c a column and C a set of columns with c ∈ C and canAdd(ϕ, X, c) then perm(ϕ, X,

C ∪ {c}) = {p ∪ {c → c} | p ∈ perm(ϕ, X, C)}. Proof Sketch. See full proof in appendix A.3.3.
The definition of canAdd essentially enforces that c does not appear syntactically while perm(ϕ, X, C) returns the elements of subformulas and changes only the elements that appear syntactically.

Application 1: A theorem on filtered fixpoints

We now present the applications of our lemmas. Theorem 2 present a sufficient condition for pushing filters inside fixpoints. Pushing filter down the evaluation tree is usually a good heuristic as it limit the size of intermediary results. However in the case of filter, it is not always possible.

For instance, consider the term that computes whether there exists a chain john = p 1 ...p n = bob of people with {s = p i , o = p i+1 } ∈ K. A term computing that is σ s="john"∧o="bob" (µ(X = π tmp (ρ tmp o (K) ρ tmp s (X)) ∪ K)) in which intermediate results do not pass the filter but might be essential to provide a solution. Indeed, the term where the filter is pushed µ(X = σ s="john"∧o="bob" (π tmp (ρ tmp o (K) ρ tmp s (X)) ∪ K)) does not really compute a fixpoint, it computes K. This term does not meet the criterion 2 of the theorem because perm(π tmp (ρ tmp o (K) ρ tmp s (X)) ∪ K, X, {s, o}) = {{o → o}} and thus we do not have {o → o}(s) = s.

Theorem 2. Let µ(X = ϕ) be a fixpoint, V an environment, C and a filter f with:

1. ∀m ∈ µ(X = ϕ) V C ⊆ dom(m) 2. ∀p ∈ perm(ϕ, X, C) ∀d ∈ F C(f ) p(d) = d we have: σ f (µ(X = ϕ)) V = µ(X = σ f (ϕ)) V . Proof Sketch. See full proof in appendix A.3.4.
The idea is that, in a linear fixpoint, a mapping m solution of µ(X = ϕ) V is either the solution of the initial term m ∈ ϕ V [X/∅] or the image of another mapping solution (m ∈ ϕ V [X/{w}] for some w). By condition 2 of the theorem and lemma 6 we have that the image m of a mapping w passes the filter if and only w passes the filter. Therefore we can remove the element not passing the filter.

Application 2: A theorem on fixpoints joined with other µalgebra terms

The objective of this section is to present criteria allowing a fixpoint of the form µ(X = ϕ) ψ to be rewritten into µ(X = ϕ ψ). In order to better explain the chosen criteria, here are various ways of why µ(X = ϕ) ψ V might differ from µ(X = ϕ ψ) V :

1. As for filters, performing the join of ϕ and ψ might remove some mappings that are not solution of µ(X = ϕ) ψ but necessary to produce other solutions. For instance, the toy example of section 4.2.4 can also be expressed with a join: σ s="john"∧o="bob" (ϕ) = ϕ |o → "bob", s → "john"|. In this case the conditions for allowing the join should be similar to the condition allowing a filter.

2. Joins can also add some columns that might change the semantics of a fixpoint. For instance on the fixpoint µ(X = π tmp (ρ The problem raised by point 1 is treated by lemma 9. The problem raised by point 2 is treated by lemma 10 and finally Theorem 3 wraps everything to provide a sufficient criterion for pushing joins into fixpoints.

tmp o (K) ρ tmp s (X)) ∪ K) if
Lemma 9. Let ϕ and ψ be µ-algebra terms, V an environment and D and C be sets of columns such that:

1. ∀m ∈ ψ V dom(m) ⊆ D ⊆ C 2. ∀m ∈ µ(X = ϕ) V D ⊆ C ⊆ dom(m) 3. ∀p ∈ perm(ϕ, X, C), c ∈ D p(c) = c Then we have ψ µ(X = ϕ) V = µ(X = ϕ ψ) V .
Proof Sketch. See full proof in appendix A.3.5.

The proof of this lemma is pretty similar to the proof of Theorem 2, we show that the join cannot add or change mapping (it thus acts as a filter) and that the removed mappings cannot be used to produce solutions passing the join.

Lemma 10. Let ϕ and ψ be µ-algebra terms, V an environment, c a column and D and C be sets of columns such that:

1. ∀m ∈ ψ V dom(m) ⊆ D ∪ {c} ⊆ C ∪ {c} 2. ∀m ∈ µ(X = ϕ) V D ⊆ C ⊆ dom(m) ∧ c ∈ dom(m) 3. ∀p ∈ perm(ϕ, X, C), c ∈ D p(c) = c 4. canAdd(ϕ, X, c) = Then we have ψ µ(X = ϕ) V = µ(X = ϕ ψ) V .
Proof Sketch. See full proof in appendix A.3.6.

The idea is to take leverage of lemma 7 to ensure the result holds on one iteration of the fixpoint and then proceed on induction (to follow the fixpoint semantics).

Theorem 3. Let µ(X = ϕ) be a fixpoint and ψ be a µ-algebra term, V an environment, and C, D, E sets with:

1. ∀m ∈ ψ V dom(m) = E ∪ D 2. ∀m ∈ µ(X = ϕ) V (D ⊆ C ⊆ dom(m)) ∧ (dom(m) ∩ E = ∅) 3. ∀p ∈ perm(ϕ, X, C), d ∈ D p(d) = d 4. ∀c ∈ E canAdd(ϕ, X, c) = 5. sim(ψ, X) = 0 we have: ψ µ(X = ϕ) V = µ(X = ϕ ψ) V .
Proof Sketch. See full proof in appendix A.3.7.

The idea is to proceed by induction on the number of columns defined by ψ and at each column c depending on whether c ∈ E or c ∈ D we use either lemma 10 or lemma 9.

Remark 2. We could extend this theorem to allow one of the column from D ∪ E to appear only in some of the mappings (and not all). But we could not allow two of them: for instance if

ψ V contains the mappings {c → 3, a → 1} and {c → 3, b → 2} then ψ ψ V also contains {a → 1, b → 2, c → 3}.

Decomposed fixpoints

In this section we present the decomposition of fixpoints into constant and recursive parts and show some specialized version of the theorems proved above for decomposed fixpoints.

2. ∀m ∈ µ(X = ϕ ∪ ψ) V (D ⊆ C ⊆ dom(m)) ∧ (dom(m) ∩ E = ∅) 3. ∀p ∈ perm(ψ, X, C), d ∈ D p(d) = d 4. ∀c ∈ E canAdd(ψ, X, c) = 5. sim(κ, X) = 0 we have: κ µ(X = ϕ ∪ ψ) V = µ(X = ϕ κ ∪ ψ) V .
Proof Sketch. See full proof in appendix A.3.9.

The idea is simply to adapt the general proof in the case of a decomposed filter.

Theorem 5. Let µ(X = ϕ ∪ ψ) be a decomposed fixpoint with ϕ its constant part and ψ its recursive part, V an environment, C and a filter f with:

1. ∀m ∈ µ(X = ϕ ∪ ψ) V C ⊆ dom(m) 2. ∀p ∈ perm(ψ, X, C) ∀d ∈ F C(f ) p(d) = d we have: σ f (µ(X = ϕ ∪ ψ)) V = µ(X = σ f (ϕ) ∪ ψ) V .
Proof Sketch. See full proof in appendix A.3.10.

The idea is simply to adapt the general proof in the case of a decomposed filter.

Theorem: Combination of decomposed fixpoints

We now present a theorem that allows us to merge two fixpoints (and by repetitive use, several fixpoints) into to just one fixpoint.

Theorem 6. Given two decomposed fixpoints µ(X = ϕ ∪ ψ) and µ(Y = ξ ∪ κ) and

C X , E X , D X , C Y , E Y , D Y with: 1. ∀m ∈ µ(X = ϕ ∪ ψ) V dom(m) = D X ∪ E X = C X 2. ∀m ∈ µ(Y = κ ∪ ξ) V dom(m) = D Y ∪ E Y = C Y 3. D Y ⊆ C X , D X ⊆ C Y , E X ∩ C Y = ∅, E Y ∩ C X = ∅ 4. ∀p ∈ perm(ψ, X, C X ), ∀c ∈ D Y p(c) = c 5. ∀p ∈ perm(ξ, Y, C Y ), ∀c ∈ D X p(c) = c 6. ∀c ∈ E X canAdd(ξ, Y, c) 7. ∀c ∈ E Y canAdd(ψ, X, c)
Then we have:

µ(X = ϕ ∪ ψ) µ(Y = κ ∪ ξ) V = µ(X = let (Y = X) in ϕ κ ∪ ψ ∪ ξ) V and µ(X = ϕ ∪ ψ) µ(Y = κ ∪ ξ) V = µ(X = ϕ replace(κ, Y, X) ∪ ψ ∪ replace(ξ, Y, X)) V Proof Sketch. See full proof in appendix A.3.10.
This proof is an extension of the proof of Theorem 4 but that has to deal with the fact that both fixpoints are interacting with each other. In fact one can see Theorem 4 as a special case of this theorem where ξ = ∅.

As explained earlier, fixpoint computations are costly and this theorem allows for a rewriting that reduces this cost in several different ways:

• first, all solutions of the produced fixpoint correspond to the join of two solutions of each fixpoints, therefore the number of intermediate solutions never increases;

• second, the number of intermediate solutions can be drastically reduced when joining two fixpoints since the base solutions (i.e. the non recursive part) are the join of the base solution of the two initial fixpoints;

• finally, a fixpoint has a an important fixed cost as we have to have some bookkeeping to test whether its computation has finished.

Application : decomposed fixpoints and other µ-algebra constructs

Theorem 7. Given a decomposed fixpoint µ(X = ϕ ∪ ψ) and a, b and C with a ∈ C such that: The theorem holds because:

1. ∀m ∈ µ(X = ϕ ∪ ψ) V C ⊆ dom(m) 2. ∀m ∈ µ(X = ϕ ∪ ψ) V b ∈ dom(m) 3. ∀p ∈ perm(ψ, X, C) p(a) = a then 1. β b a (µ(X = ϕ ∪ ψ)) V = µ X = β b a (ϕ) ∪ ψ V when canAdd(ψ, X, b) 2. π a (µ(X = ϕ ∪ ψ)) V = µ(X = π a (ϕ) ∪ ψ) V when canAdd(ψ, X, a) 3. ρ b a (µ(X = ϕ ∪ ψ)) V = µ X = ρ b a (ϕ) ∪ ψ V
1. values for b will propagate as constant but values for a also thanks to condition 3.

2. canAdd(ψ, X, a) ensures that values for a are not relevant to the computation of ψ 3. canAdd(ψ, X, a) ∧ canAdd(ψ, X, b) ensures that values for a and b are not relevant to the computation of ψ

Typing µ-algebra terms

We now present our type system for µ-algebra. This type system will be used in the next section in the definition of our rewriting rules. For instance, in a µ-algebra term like σ f (ϕ ψ) we can sometimes push the filter into ϕ (i.e. it is equivalent to the term σ f (ϕ) ψ) but this rewritings depend on ϕ, on ψ but also on the environment they are evaluated under.. Our type system will allow us to detect situations where rewritings are sure to be correct. This analysis is similar to other analyses in the context of the SPARQL Algebra, see e.g. the definition of cV ars and pV ars [SML10a] that resembles our C and P , but we have variables and fixpoints which imply major changes.

Types

Our types are pairs (c, p) of sets of columns. Intuitively, a type (c, p) describes a set c of columns that are certain to be present in all mappings and a set p of columns that appear possibly. Formally, the pair (c, p) is a valid type for a set of mappings M when for each mapping m ∈ M we have c ⊆ dom(m) ⊆ p.

Note that when (c, p) is the valid type for a set of mappings M then all (c , p ) such that c ⊆ c and p ⊆ p are also valid types for M .

Types of µ-algebra terms

Given an environment V and a µ-algebra term ϕ, the type of ϕ V depends, obviously, on ϕ but also on V . During the compilation (where our typing occurs) we don't want to use the exact environment V , otherwise in a term like let (X = ϕ) in ψ we would need to actually compute ϕ V in order to get the type of X in V [X/ ϕ V ]. Our typing judgments rely on abstract environments. Definition 25. An abstract environment Γ is a function that associates each variable X with a pair (c, p) of sets. An abstract environment is an abstraction of the environment V when for all variable X, V

[X] = ∅ ⇒ Γ[Y ] is a valid type for V [X].
Given a µ-algebra term ϕ and an abstract environment Γ associating each free variable X of ϕ with a type Γ(X), the computed type for ϕ is (C(ϕ, Γ), P (ϕ, Γ)) with P and C as defined in figure 4.1.

In the context of SPARQL, the free variables of µ-algebra are Q, N , T and the T n . The type of Q is ({s, p, o, g}, {s, p, o, g}), the type of N is ({s}, {s}) and the type of T (or T n for any n) is ({s, p, o}, {s, p, o}) (all these types can be deduced from the type of Q).

For instance, with T typed as in SPARQL then the term T ∪ρ a s ρ b p (T ) is typed ({o}, {a, b, s, p, o}).

Definition 26. The set C(ϕ, Γ) of certain columns and the set P (ϕ, Γ) of possible columns of the term ϕ under the abstract environment Γ is as defined as in figure 4.1.

Note that, during the typing of a µ-algebra term ϕ, once the fixpoints are reached, each of the subterms of ϕ actually gets a unique type. The type of a subterm ϕ is (C(ϕ, Γ), P (ϕ, Γ)) but in the next sections we will abuse the notation and simply refer to C(ϕ) and P (ϕ) for subterms when the context makes it clear.

Validity of types

Lemma 12. Given a term ϕ and a environment V and its abstraction Γ then ∀m ∈ ϕ V C(ϕ, Γ) ⊆ dom(m) ⊆ P (ϕ, Γ).

Proof Sketch. See full proof in appendix A.3.11.

The proof relies on an induction on the size of considered formulas. The only special case is for fixpoints. Our proof does not rely on the actual value of W C,ϕ 0 : any value would have provided a correct type. The larger W C,ϕ 0 we use, the more precise the type will get because a careful examination of C(ϕ, Γ) shows that it is increasing in Γ(Y ) for all Y .

Therefore, for any pair Z 1 0 , Z 2 0 of starting sets, with j ∈ {1, 2},

Z j i+1 = C(ϕ, Γ[X/(Z j i , ∅)]), Z j ∞ = lim i→∞ Z j i we have Z 1 ∞ ⊆ Z 2 0 implies Z 1 ∞ ⊆ Z 2 ∞ . Since P (µ(X = ϕ), Γ) corresponds P (ϕ 1 ∪ ϕ 2 , Γ) = P (ϕ 1 , Γ) ∪ P (ϕ 2 , Γ) P (ϕ 1 \\ ϕ 2 , Γ) = P (ϕ 1 , Γ) P (ϕ 1 \ ϕ 2 , Γ) = P (ϕ 1 , Γ) P (ϕ 1 -ϕ 2 , Γ) = P (ϕ 1 , Γ) P (ϕ 1 ϕ 2 , Γ) = P (ϕ 1 , Γ) P (ϕ 1 ϕ 2 , Γ) = P (ϕ 1 , Γ) ∪ P (ϕ 2 , Γ) P (ρ b a (ϕ) , Γ) = P (ϕ, Γ)[{a} ↔ {b}] P (π a (ϕ) , Γ) = P (ϕ, Γ) \ {a} P (β b a (ϕ) , Γ) = P (ϕ, Γ)[{a} → {a, b}] P (θ(ϕ, g : C → D), Γ) = P (ϕ, Γ)[C → D] ∪ P (ϕ, Γ) when C ⊆ C(ϕ, Γ) P (θ(ϕ, g : C → D), Γ) = P (ϕ, Γ)[C → D] when C ⊆ C(ϕ, Γ) P (Θ (ϕ, g, C, D) , Γ) = (P (ϕ, Γ) \ C) ∪ D P (σ ¬bnd(c) (ϕ), Γ) = P (ϕ, Γ) \ {c} P (σ f (ϕ), Γ) = P (ϕ, Γ) P (X, Γ) = Γ(X) P (∅, Γ) = ∅ P (|c 1 → v 1 , . . . , c n → v n |, Γ) = {c 1 , . . . , c n } P (let (Y = ϕ) in ψ, Γ) = P (ψ, Γ[Y /(P (ϕ, Γ), ∅)]) P (µ(Y = ϕ), Γ) = lim i→∞ W P,ϕ i C(ϕ 1 ∪ ϕ 2 , Γ) = C(ϕ 1 , Γ) ∩ C(ϕ 2 , Γ) C(ϕ 1 \\ ϕ 2 , Γ) = C(ϕ 1 , Γ) C(ϕ 1 \ ϕ 2 , Γ) = C(ϕ 1 , Γ) C(ϕ 1 -ϕ 2 , Γ) = C(ϕ 1 , Γ) C(ϕ 1 ϕ 2 , Γ) = C(ϕ 1 , Γ) C(ϕ 1 ϕ 2 , Γ) = C(ϕ 1 , Γ) ∪ C(ϕ 2 , Γ) C(ρ b a (ϕ) , Γ) = C(ϕ, Γ)[{a} ↔ {b}] C(π a (ϕ) , Γ) = C(ϕ, Γ) \ {a} C(β b a (ϕ) , Γ) = C(ϕ, Γ)[{a} → {a, b}] C(θ(ϕ, g : C → D), Γ) = C(ϕ, Γ)[C → C ∪ D] C(σ bnd(c) (ϕ), Γ) = C(ϕ, Γ) ∪ {c} C(σ f (ϕ), Γ) = C(ϕ, Γ) C(X, Γ) = Γ(X) C(∅, Γ) = ∅ C(|c 1 → v 1 , . . . , c n → v n |, Γ) = {c 1 , . . . , c n } C(let (X = ϕ) in ψ, Γ) = C(ψ, Γ[X/(C(ϕ, Γ), ∅)]) C(µ(X = ϕ), Γ) = lim i→∞ W C,ϕ i where W P,ϕ 0 = ∅ W P,ϕ i+1 = P (ϕ, Γ[X/(∅, W P,ϕ i )]) and W C,ϕ 0 = P (µ(Y = ϕ), Γ) W C,ϕ i+1 = W C,ϕ i ∩ C(ϕ, Γ[X/(W C,ϕ i , ∅)]
) . to a valid type, therefore if ϕ V is not empty for V abstracted by Γ we have Z 1 ∞ ⊆ P (µ(X = ϕ), Γ) and thus using W C,ϕ 0 = P (µ(X = ϕ), Γ) gives the largest set possible for C(µ(X = ϕ), Γ) and thus the most precise (the most precise four our methods; other methods could find a tightest type).

Precision of types

Deciding the most precise type (i.e. decide whether a given column is sure to be present or will never be present) is a hard problem. The more precise the analysis, the more rewriting we can do and therefore the more optimization we get. However a perfectly precise analysis is often impossible: if it were feasible we would be able to detect µ-algebra terms corresponding to ∅ and thus, by translation, the SPARQL terms that always answer nothing. We therefore stick to a syntactical analysis that might sometimes be imprecise.

This syntactical analysis provides approximations that are conservative: if Γ is an abstract environment of V then the domain of a mapping of ϕ V will be a subset of P (ϕ, Γ) and it will always contain C(ϕ, Γ).

Note that the main source of imprecision comes from subterms whose semantics is actually empty, our analysis is therefore relatively precise for most useful terms.

Computation of types

The figure 4.1 gives us a definition of P and C but since it is based on a fixpoint semantics, we need to show that these fixpoint do actually terminate. The termination of the computation is implied by the finiteness of P (ϕ, Γ) and C(ϕ, Γ) for all ϕ. Indeed, since µ-algebra terms are finite, a computation of P or C that would not terminate would correspond to a fixpoint with an infinite number of columns. However C(µ(X = ϕ), Γ) terminates if P (µ(X = ϕ), Γ) is finite and P (ϕ, Γ) contains, at most: p for (c, p) ∈ Γ(Y ) and Y appearing in ϕ, {a, b} for any subformula of the form ρ b a (ξ), π a (ξ) or β b a (ξ) and D for any subformula of the form θ(ξ, g : C → D). Since ϕ and all of the Γ(Y ) are finite, P (ϕ, Γ) is also finite.

Normalizing rules for µ-algebra terms

The general idea used to produce those equivalent forms is similar to the optimization of the relational algebra: we have a set of "rewriting rules" that detect patterns in a µ-algebra that could be replaced by some other pattern. We maintain a set of equivalent µ-algebra terms. At the beginning, the set is composed of our initial term (i.e. the µ-algebra term obtained via the SPARQL translation). Then we recursively apply the rules, wherever they are applicable, to each µ-algebra term we obtain until we reach a fixpoint.

With a very general set of rewriting rules, the termination of the above algorithm is not certain. For instance, with only the valid rule ϕ → ϕ ∪ ∅, our algorithm will never terminate. So we have to make sure that such behaviour does not arise.

Furthermore, even with a terminating set of rules, the running time of our algorithm might prevent effective use on real queries. That is why we split our rules into normalizing rules that reduce the number of µ-algebra terms considered and generating rules producing new µ-algebra terms. Each time a new µ-algebra term t is produced by a generating rule we use the normalizing rules on t until no more can be applied.

Simplification of constant terms

An expression is said constant when it does not contain variables (i.e. ∀X sim(ϕ, X) = 0)). Constant terms can always be computed at compile-time to a set of l mappings and thus be replaced by an expression of the form |c 1

1 → v 1 1 , . . . , c 1 n → v 1 n | ∪ • • • ∪ |c l 1 → v l 1 , . . . , c l n → v l n | when l > 0 or ∅ when l = 0.

Removing ∅

Formulas containing ∅ can always be rewritten to simpler formulas that are either ∅ or formulas with no ∅ as subformulas.

∅ ϕ → ∅ ϕ ∅ → ∅ ∅ \ ϕ → ∅ ∅\\ ϕ → ∅ ∅ -ϕ → ∅ ϕ \ ∅ → ϕ ϕ\\ ∅ → ϕ ϕ -∅ → ϕ ∅ ϕ → ∅ ϕ ∅ → ϕ ∅ ∪ ϕ → ϕ ϕ ∪ ∅ → ϕ σ f (∅) → ∅ θ(∅, g : C → D) → ∅ Θ (∅, g, C, D) → ∅ ρ b a (∅) → ∅ π b (∅) → ∅ β b a (∅) → ∅ let (X = ∅) in ψ → replace(ψ, X, ∅) let (X = ϕ) in ∅ → ∅ µ(X = ∅) → ∅
The proof of the equivalence behind these rewritings is straightforward.

Pushing renamings

There are a few operators that we included in our grammar that don't change the way the computation is done: renamings and projections. Renaming has zero effect on the way mappings are computed, and projection only limits the amount of data which needs to be computed. Therefore, we push renaming down the tree and we push projection up the tree (renamings are done as soon as possible and projections at the last moment). Projections are pushed upwards to the innermost µ (or the root of the tree if there is no upward µ), while renamings always appear in front of variables.

In this part, a, b and c are necessarily different. f resh corresponds to a new unique variable name. The notation ϕ[u/w] indicates that every occurrence of u in ϕ is replaced by w.

ρ a a (ϕ) → ϕ ρ b a (ϕ 1 ∪ ϕ 2 ) → ρ b a (ϕ 1 ) ∪ ρ b a (ϕ 2 ) ρ b a (ϕ 1 ϕ 2 ) → ρ b a (ϕ 1 ) ρ b a (ϕ 2 ) ρ b a (ϕ 1 ϕ 2 ) → ρ b a (ϕ 1 ) ρ b a (ϕ 2 ) ρ b a (ϕ 1 \ ϕ 2 ) → ρ b a (ϕ 1 ) \ ρ b a (ϕ 2 ) ρ b a (ϕ 1 \\ ϕ 2 ) → ρ b a (ϕ 1 ) \\ ρ b a (ϕ 2 ) ρ b a (ϕ 1 -ϕ 2 ) → ρ b a (ϕ 1 ) -ρ b a (ϕ 2 ) ρ b a (σ f (ϕ)) → σ f [a↔b] (ρ b a (ϕ)) ρ b a (θ(ϕ, g : C → D)) → θ(ρ b a (ϕ) , g[a ↔ b] : C[a ↔ b] → D[a ↔ b]) ρ b a (Θ (ϕ, g, C, D)) → Θ ρ b a (ϕ) , g[a ↔ b], C[a ↔ b], D[a ↔ b] ρ b a (π b (ϕ)) → π f resh ρ b a ρ f resh b (ϕ) ρ b a (π a (ϕ)) → π a (ϕ) ρ b a (π c (ϕ)) → π c ρ b a (ϕ) ρ b a (let (X = ϕ) in ψ) → let (X = ϕ) in ρ b a (ψ) ρ b a (µ(X = ϕ)) → µ X = ρ b a (ϕ[X/ρ a b (X)])
The only unchanged formula ρ b a (ϕ) are when ϕ is a variable or a renaming. Therefore, in a normalized formula, where it is not possible to apply normalizing rules anymore, renamings can only appear in front of a variable, either directly or through a chain of renaming (i.e. ρ b 1 a 1 . . . (ρ bn an (X)) ).

Pushing column projections

In the same manner we push toward the top the removal of columns:

π a (ϕ 1 ) ∪ ϕ 2 → π f resh ρ f resh a (ϕ 1 ) ∪ ϕ 2 π a (ϕ 1 ) ϕ 2 → π f resh ρ f resh a (ϕ 1 ) ϕ 2 π a (ϕ 1 ) ϕ 2 → π f resh ρ f resh a (ϕ 1 ) ϕ 2 π a (ϕ 1 ) \ ϕ 2 → π f resh ρ f resh a (ϕ 1 ) \ ϕ 2 π a (ϕ 1 ) \\ ϕ 2 → π f resh ρ f resh a (ϕ 1 ) -ϕ 2 ϕ 1 ∪ π a (ϕ 2 ) → π f resh ϕ 1 ∪ ρ f resh a (ϕ 2 ) ϕ 1 π a (ϕ 2 ) → π f resh ϕ 1 ρ f resh a (ϕ 2 ) ϕ 1 \ π a (ϕ 2 ) → π f resh ϕ 1 \ ρ f resh a (ϕ 2 ) ϕ 1 π a (ϕ 2 ) → π f resh ϕ 1 ρ f resh a (ϕ 2 ) σ f (π a (ϕ)) → π a σ f [a/f resh (])ϕ θ(π a (ϕ) , g : C → D) → π f resh θ(ρ f resh a (ϕ) , g : C → D) let (X = π a (ϕ)) in ψ → let (X = ϕ) in ψ[X/π a (X)] let (X = ϕ) in π a (ψ) → π a (let (X = ϕ) in ψ)
The only subtle rule is θ(π a (ϕ) , g : C → D) → π f resh θ(ρ f resh a (ϕ) , g : C → D) . When the column a does not appear as input or output of f then we can rewrite this rule to θ(π a (ϕ) , g : C → D) → π a (θ(ϕ, g : C → D)) but in the general case we have to be careful and rename a first.

After applying all those rules, the formula can only have column removal operations at the topmost part or in front of fixpoints (i.e. µ(X = π a 1 (. . . π an (ϕ)))).

Commutative operators

We suppose there exists an arbitrary order < on µ-algebra terms and for each commutative operator + ∈ { , ∪} we replace A + B with B + A when A > B. This considerably reduces the number of equivalent plans but it increases the number of rewriting rules.

For instance, for a n-join ϕ 1 . . . ϕ n ϕ n+1 there are 2 n × C n equivalent plans using commutativity and associativity (2 n × C n is the number of binary trees over n internal nodes or n + 1 different leaves where C n is the n-th number of Catalan). If we leave out the commutativity using the order introduced to consider only plans where each join respects the order there are only C n different plans.

However, this simplification implies to extend the set of rewriting rules, for instance, if we have the rule σ f ilter (A B) → σ f ilter (A) B (if B and f have no common columns) then we also need the symmetrical rule σ f ilter (B A) → σ f ilter (A) B.

In the same manner, each time we have a sequence of filters σ f 1 (. . . σ fn (ϕ)) we reorder the f 1 , . . . , f n such that σ f i (∅) < σ f j (∅) ⇔ i < j.

Expansion of let binders

Given a let-binder let (X = ϕ) in ψ satisfying the conditions of lemma 4 (i.e. ∀Y ∈ def (ψ) sim(ϕ, Y )), the rule let

(X = ϕ) in ψ → ψ[X/ϕ] is valid.
To normalize let-binders we can use the rule to remove the let-binder, but that sometimes results in an exponential increase in the size of the formula. In our normalization process we apply the rule only when X is syntactically present once (or not present) in ϕ. In other cases, we push the formula at the top using the rules (supposing X ∈ def (ξ)):

(let (X = ϕ) in ψ) ξ → let (X = ϕ) in (ψ ξ) (let (X = ϕ) in ψ) ξ → let (X = ϕ) in (ψ ξ) ξ (let (X = ϕ) in ψ) → let (X = ϕ) in (ξ ψ) ξ \ (let (X = ϕ) in ψ) → let (X = ϕ) in (ξ \ ψ) (let (X = ϕ) in ψ) \ ξ → let (X = ϕ) in (ψ \ ξ) ξ\\ (let (X = ϕ) in ψ) → let (X = ϕ) in (ξ\\ ψ) (let (X = ϕ) in ψ)\\ ξ → let (X = ϕ) in (ψ\\ ξ) ξ -(let (X = ϕ) in ψ) → let (X = ϕ) in (ξ -ψ) (let (X = ϕ) in ψ) -ξ → let (X = ϕ) in (ψ -ξ) (let (X = ϕ) in ψ) ∪ ξ → let (X = ϕ) in (ψ ∪ ξ) σ f ilter (let (X = ϕ) in ψ) → let (X = ϕ) in σ f ilter (ψ) β b a (let (X = ϕ) in ψ) → let (X = ϕ) in β b a (ψ) µ(Y = let (X = ϕ) in ψ)) → let (X = ϕ) in µ(Y = ψ) when sim(ϕ, Y ) = 0

Filter

Our normalizing rules to simplify filters:

σ a&&b (ϕ) → σ a (σ b (ϕ)) σ ¬(a||b) (ϕ) → σ ¬a (σ ¬b (ϕ)) σ ¬¬a (ϕ) → σ a (ϕ)
The following rules also exist (note that we reversed the direction of the arrows to avoid combinatory explosion):

σ ¬a (ϕ) ∪ (σ ¬b (ϕ)) → σ ¬(a&&b) (ϕ) σ a (ϕ) ∪ σ b (ϕ) → σ a b (ϕ)

Removing filters

Filters can sometimes be removed. For instance, in t = let (X = N ) in σ bnd(o) (X) ρ n s (T ∅ ) , the σ bnd(o) (X) can be reduced to ∅ and then the whole t can also be reduced to ∅, but in

t = let (X = N ∪ ρ i n (N )) in σ bnd(i) (X) ρ n s (T ∅ )
, σ bnd(i) (X) cannot be directly reduced. Then, depending on ψ, , and whether c belongs or not to C(ϕ) and P (ϕ), we have the rules:

c ∈ P (ϕ) c ∈ C(ϕ) σ bnd(c) (ϕ) → ∅ σ bnd(c) (ϕ) → ϕ σ ¬bnd(c) (ϕ) → ϕ σ ¬bnd(c) (ϕ) → ∅
Furthermore, in the expression σ f (ϕ) we can compute f which is f where we replaced the occurrences of the elements of F C(f ) \ P (ϕ) by Error. If f necessarily evaluates to then we have the rule σ f (ϕ) → ϕ and if f necessarily evaluates to ⊥ or E then we have the rule σ f (ϕ) → ∅.

Simplification rules

Finally we also have the following rules to simplify redundant terms (proof of their validity is rather straightforward and thus omitted):

ϕ ∪ ϕ → ϕ ϕ ϕ → ϕ when |P (ϕ, Γ) \ C(ϕ, Γ)| ≤ 1 ϕ ϕ → ϕ when |P (ϕ, Γ) \ C(ϕ, Γ)| ≤ 1 ϕ \ ϕ → ∅ ϕ\\ ϕ → ∅ when C(ϕ, Γ) = ∅ ϕ -ϕ → ∅ ϕ -ψ → ϕ when C(ϕ) \ P (ψ, Γ) = ∅ ϕ -ψ → ϕ \ ψ when P (ϕ, Γ) \ C(ϕ, Γ) = P (ψ, Γ) \ C(ψ, Γ) = ∅ ϕ\\ ψ → ϕ \ ψ when C(ϕ) ∩ C(ψ) = ∅ ϕ π c 1 (π c 2 (. . . π cn (ϕ))) → ϕ when P (ϕ, Γ) \ {c 1 , . . . , c n } ⊆ C(ϕ, Γ) µ(X = ϕ) → ϕ when sim(ϕ, X) = 0 Θ (varphi, g, C, D) → ∅ when C ⊆ P (ϕ, Γ)

Producing rules

The rewriting rules we present here are used to produce new terms from a given term. The rule set we introduce needs to create a finite number of terms (in order for the algorithm to stop).

Associativity

Of the several binary operators we have, two of them are associative. These rules combine with the commutative rules which means that for a rule (ϕ ψ) ξ we have also a rule for (ψ ϕ) ξ, ξ (ψ ϕ) and ξ (ϕ ψ). The associativity of the operator is of particular importance as it will lead to the several join orders of conjunctive queries.

ϕ (ψ ξ) ↔ (ϕ ψ) ξ ϕ ∪ (ψ ∪ ξ) ↔ (ϕ ∪ ψ) ∪ ξ

Distributivity

Following the same idea as for associativity we can introduce the rule of distributivity from all operators to each other when applicable:

σ a b (ϕ) ↔ σ a (ϕ) ∪ σ b (ϕ) ϕ (ψ ∪ ξ) ↔ (ϕ ψ) ∪ (ϕ ξ) (ψ ∪ ξ) ϕ ↔ (ψ ϕ) ∪ (ξ ϕ) (ψ ∪ ξ) \ ϕ ↔ (ψ \ ϕ) ∪ (ξ \ ϕ) (ψ ∪ ξ)\\ ϕ ↔ (ψ\\ ϕ) ∪ (ξ\\ ϕ) (ψ ∪ ξ) -ϕ ↔ (ψ -ϕ) ∪ (ξ -ϕ) σ f (ϕ ∪ ψ) ↔ σ f (ϕ) ∪ σ f (ψ) σ f (ϕ ψ) ↔ σ f (ϕ) ψ F C(f ) ⊆ C(ϕ) σ f (ϕ ψ) ↔ σ f (ϕ) σ f (ψ) F C(f ) ⊆ C(ϕ) ∩ C(ψ) ϕ β b a (ψ) ↔ β b a (ϕ ψ) a ∈ C(ψ, Γ) ∩ C(ϕ, Γ) ∧ b ∈ P (ψ, Γ) ∪ P (ϕ, Γ) ϕ β b a (ψ) ↔ σ a=b (ϕ ψ) a ∈ C(ψ, Γ) ∩ C(ϕ, Γ) ∧ b ∈ P (ψ, Γ) ∧ b ∈ C(ϕ, Γ)
Since fixpoints are the new feature of our algebra, we will now present rules associated with fixpoints with more details.

Combining fixpoints and joins or filters

In our translation of SPARQL, given the term P P (John knows * ?a) our algorithm will translate knows * into a fixpoint computation and then filter to keep elements of the relation that have a John. Clearly, computing the whole binary relation knows * before filtering is wasteful compared with computing directly the unary relation knows * John. (Note that in some cases ?a might be more constrained than John and in this case our computation should start from ?a; starting from the fixed part of a PP is not always the best plan.)

In order to generate the various plans, we need rules to move joins and filters inside fixpoints (i.e. σ f (µ(X = A)) → µ(X = σ f (A))). Clearly, such a rule is not always true: given the µ-algebra term A = β o s (N )∪π m (ρ m s (X) ρ m o (T )), we have σ s=John (µ(X = A)) → µ(X = σ s=John (A)) but we don't have σ o=John (µ(X = A)) → µ(X = σ o=John (A)). This is caused by our fixpoint computation that uses the column o to produce new elements and replace it with the o from T .

We now present four rules on fixpoints to combine them with filters or join, supposing they are evaluated under an environment abstracted by Γ:

• Using the Theorem 2 the rule to combine filters with fixpoints is when ∀c ∈

F C(f ) ∀p ∈ perm(ϕ, X, C(µ(X = ϕ), Γ)) p(c) = c ∧ F C(f ) ⊆ C(ϕ, Γ) we have that σ f (µ(X = ϕ)) → µ(X = σ f (ϕ))
• Using the Theorem 3 the rule to combine a join with fixpoints is when sim(ψ, X) = 0 and ∀c ∈ P (ψ) ∀p ∈ perm(ϕ, X, C(µ(X = ϕ), Γ)) p(c) = c and ∀c ∈ P (µ(X = ϕ), Γ) \ C(µ(X = ϕ), Γ) canAdd(ϕ, X, c) we have:

ψ µ(X = ϕ) → µ(X = ψ ϕ))
• Furthermore, when fixpoints can be decomposed into an initial part and a recursive part, we have a specialized version of the rules. If the fixpoint is µ(X = ϕ ∪ ψ), where ϕ is constant in X and ψ is recursive, then (by Theorem 5) when ∀p ∈ perm(ψ, X, C(µ

(X = ϕ ∪ ψ), Γ))∀ F C(f ) p(c) = c we have that: σ f (µ(X = ϕ ∪ ψ)) → µ(X = σ f (ϕ) ∪ ψ)
• In the same manner, if the fixpoint is ξ = µ(X = ϕ ∪ ψ) where ϕ is constant in X and ψ is recursive, then (by Theorem 4) when sim(κ, X) = 0 and C(κ, Γ) = P (κ, Γ) and for each c ∈ P (κ, Γ)

either c ∈ C(ξ, Γ) ∧ ∀p ∈ perm(ψ, X, C(ξ, Γ)) p(c) = c or c ∈ P (ξ, Γ) ∧ canAdd(ψ, X, c) = then we have: κ µ(X = ϕ ∪ ψ) → µ(X = (κ ϕ) ∪ ψ)

Reversing fixpoints

Motivation

As we have seen, pushing filters, selections and joins into a fixpoint µ(X = ϕ) depends on ϕ.

The translation of the regular path expression knows * is rep

(knows * ) = µ(X = β o s (N ) ∪ π m (ρ m o (X) ρ m s (σ p=knows (T )))).
In this fixpoint, we cannot push the filter σ o=John since o is used by X. This fixpoint starts with a set of couples β o s (N ) binding s and o, and at each iteration of the fixpoint, it will build new (s, o) by appending a mapping (m, o) validating knows to a mapping (s, m) already built. However, to compute the same set of mappings, the fixpoint could have started from the same set and recursively appended a mapping (s, m) validating knows to an already-built mapping (m, o) without using o, i.e. the fixpoint µ(

X = β o s (N ) ∪ π m (ρ m s (X) ρ m o (σ p=knows (T ))
)) in which we can push the filter

σ o=john which gives µ(X = β o s (σ s=john (N )) ∪ π m (ρ m s (X) ρ m o (σ p=knows (T )))).

Simple case

Let us consider a fixpoint of the form µ(X = ϕ ∪ π c (ρ c a (ϕ) ρ c b (X))) and let us suppose that P (ϕ, Γ) = C(ϕ, Γ) = {a, b} and a, b and c are all distinct. ϕ represents a binary relation from a to b and the fixpoint computes its transitive closure. Therefore the role of a and b are symmetrical and this fixpoint computes the same relation as µ(X = ϕ ∪ π c (ρ c b (ϕ) ρ c a (X))).

Simple case extended to n columns

Let us now consider a fixpoint of the form

µ X = ϕ ∪ π c 1 . . . π cn ρ c 1 a 1 . . . ρ cn an (ϕ) ρ c 1 b 1 . . . ρ cn bn (X)
and let us suppose that P (ϕ, Γ) = C(ϕ, Γ) = {a 1 , . . . , a n , b 1 , . . . , b n } with the (a i ), (b i ) and (c 1 ) all distinct. ϕ represents a binary relation from the n-uplet a 1 , . . . , a n to the n-uplet b 1 , . . . , b n and the fixpoint computes its transitive closure. Similarly as in the simple case the role of (a i ) and (b i ) are symmetrical and this fixpoint computes the same set as µ X = ϕ ∪ π c 1 . . . π cn ρ c 1 b 1 . . . ρ cn bn (ϕ) ρ c 1 a 1 . . . ρ cn an (X) .

Via an unfolding of a fixpoint over one column

Given a fixpoint expression of the form From a relation point of view, we can replace the reflexive transitive closure with the union of the transitive closure plus the identity relation. With a fresh c (i.e. c ∈ {a, b, d}) we have:

µ X = ψ ∪ π b ρ b a (X) ϕ with P (ϕ, Γ) = C(ϕ, Γ) = {a, b}, P (ψ, Γ) = C(ψ, Γ) = {a,
µ X = ψ ∪ π b ρ b a (X) ϕ = ψ ∪ π b ρ b a (ψ) µ(X = ϕ ∪ π c (ρ c a (X) ρ c b (ϕ)
)) or using the reversion presented earlier:

µ X = ψ ∪ π b ρ b a (X) ϕ = ψ ∪ π b ρ b a (ψ) µ(X = ϕ ∪ π c (ρ c b (X) ρ c a (ϕ)))
Via the unfolding of a fixpoint over several columns Just as before but a is a 1 , . . We have

µ X = ψ ∪ π b 1 . . . π bn ρ b 1 a 1 . . . ρ bn an (X) ϕ = ψ∪π b 1 . . . π bn ρ b 1 a 1 . . . ρ bn an (ψ) µ X = ϕ ∪ π c 1 . . . π cn ρ c 1 a 1 . . . ρ cn an (X) ρ c 1 b 1 . . . ρ cn bn (ϕ)
or using the reversion presented earlier:

µ X = ψ ∪ π b 1 . . . π bn ρ b 1 a 1 . . . ρ bn an (X) ϕ = ψ∪π b 1 . . . π bn ρ b 1 a 1 . . . ρ bn an (ψ) µ X = ϕ ∪ π c 1 . . . π cn ρ c 1 b 1 . . . ρ cn bn (X) ρ c 1 a 1 . . . ρ cn an (ϕ)

Combine fixpoints

Given the Regular Path Expression locatedIn * /sameAs * its translation will imply two fixpoints: one to compute locatedIn * and one to compute sameAs * . Each of these fixpoints might have a very large number of solutions and joining them will be costly, it might have been more efficient to compute both in a single fixpoint: (T )) and sam = ρ m s (σ p=sameAs (T )).

µ(X = β o s (N ) ∪ π m (ρ m s (X) loc ∪ ρ m o (X) sam)) where loc = ρ m o (σ p=locatedIn
In general, if we have the join of two decomposed fixpoints operating on two separate domains then they can be joined using Theorem 6. Given φ 1 = µ(X = ϕ ∪ ψ) and φ 2 = µ(Y = κ ∪ ξ) such that • κ, ξ and ϕ are constant in X and ψ recursive in X • κ, ϕ and ψ are constant in Y and ξ recursive in Y

• C(φ 1 , Γ) = P (φ 1 , Γ) • C(φ 2 , Γ) = P (φ 2 , Γ) • for each c ∈ P (φ 1 , Γ) either c ∈ P (φ 2 , Γ) ∧ ∀p ∈ perm(ψ, X, C(φ 1 , Γ)) p(c) = c or c ∈ P (φ 2 , Γ) ∧ canAdd(ξ, X, c) • for each c ∈ P (φ 2 , Γ) either c ∈ P (φ 1 , Γ) ∧ ∀p ∈ perm(ξ, X, C(φ 2 , Γ)) p(c) = c or c ∈ P (φ 1 , Γ) ∧ canAdd(ψ, X, c)
Then we have

µ(X = ϕ ∪ ψ) µ(Y = ξ ∪ κ) → µ(X = ϕ κ ∪ ψ ∪ let (Y = X) in ξ) Or µ(X = ϕ ∪ ψ) µ(Y = ξ ∪ κ) → µ(X = ϕ κ ∪ ψ ∪ ξ )
where ξ is ξ where replaced the free occurrences of Y with X.

Ad-hoc rules

When relying on a specific model like graphs for sparql we can add some normalizing ad-hoc rules for rewritings that could be found by our algorithm but would speed up the process or simply would not be found by our rewriting process.

For SPARQL : remove N

Computing N , the whole set of nodes, is often very costly in practice and can often be avoided. As a heuristic it is generally a good idea to remove a N when possible. If we have a term σ s=v (N ) then it returns |s → v| or ∅. If we are able at compile time to decide in which case we are, we can simplify this. When we have a term N ϕ and s ∈ C(ϕ), if we are sure that, given a mapping m solution of ϕ, m(s) is a node, then we can rewrite this term to ϕ. This rule is equivalent to an application of several of our rules:

ρ p p ρ o o (T ) N → ρ p p ρ o o (T ) (ρ o s (π p (π s (T ))) ∪ π p (π o (T ))) → ρ p p ρ o o (T ) ρ o s (π p (π s (T ))) ∪ ρ p p ρ o o (T ) π p (π o (T )) → ρ p p ρ o o (T ) ρ o s π p π s ρ p p ρ o o (T ) ∪ ρ p p ρ o o (T ) π p π o ρ p p ρ o o (T ) → ρ p p ρ o o (T ) ∪ ρ p p ρ o o (T ) → ρ p p ρ o o (T )

Rewriting algorithm

In this section we present our full algorithm to generate equivalent terms to a given µ-algebra term.

Computing properties of µ-algebra terms

As we have seen, rewriting rules depend on several properties: the type environment (P (•, Γ) and C(•, Γ)) but also which variables appear (def ), whether the term is constant, linear or recursive (sim and rec) in the various variables, the set of permutations (perm). Except for P and C, by using a hash function, all of these operators can be computed very quickly. It is not strictly linear since for terms of the form let (Y = ϕ) in ψ we will need three recursive calls to sim but for all the different X, sim(let (Y = ϕ) in ψ, X) will depend on the result of the same sim(ψ, Y ). Our algorithm will produce a lot of terms on which we will compute those functions but these terms are obtained through rewriting rules which means that many subformulae will be shared between terms.

Main algorithm

The main algorithm consists in steps and each step producing new terms from the terms of the preceding step. For each term created at the last step we first produce all term accessible through a rewriting rule applied on a subformula, then we normalize those terms and finally we check whether this normalized term was already created. This algorithm is depicted in algorithms 3 & 2.

From a high level point of view algorithm 2 produces the set of terms accessible with one rewriting rule applied on the term (either at the top or on a subformula). Therefore if we consider the graph whose nodes are µ-algebra terms and vertices are the rewritings, then algorithm 3 is simply a BFS. Any other algorithm to discover nodes could be used. In particular if the number of explored nodes is too big we could use an A * (the distance would be the estimated computational cost of a term) to reduce the search space (but there is no reason for this A * to give the best cost) or limit the BFS to a fixed number of steps. 

Example of rewriting

The SPARQL query below that select the pair of ?a and ?b such that ?a's firstname is John, ?b's lastname is Doe and ?a, ?b is linked with a path composed only of edges labeled :knows : SELECT * WHERE { ? a ( knows ) * ?b . ? a f i r s t n a m e John . ?b lastname Doe . } Using our rewrite rules we obtain multiples terms that are presented in the table below:

• Term 1 is obtained by the the translation of the sparql query to µ-algebra term.

• Term 2 is obtained through the normalization of 1. by pushing the renamings so that they appear only in front of variables.

• Term 3 is obtained from term 2 by combining the fixpoint and the translation of P P (?a :lastname :Doe) and then normalizing to simplify N rpe(?a :Doe ?b) into rpe(?a :Doe ?b).

• In term 2, we cannot combine the fixpoint and the translation of P P (?b :firstname :John) since ?b is not stable by all the elements of perm(ϕ, X, {?a, ?b}) (where ϕ is the fixpoint). We can however reverse the fixpoint in term 2, which gives us the term 4.

• In term 2 we can combine the fixpoint with the constraint on ?a but not with the constraint on ?b. In its reversed, term 4, we can combine the fixpoint with the constraint on ?b but not with the constraint on ?a. After a normalization, the combination between the fixpoint and the constraint on ?b gives us term 5.

• In all the terms we have presented, we use the associativity and commutativity of to reduce the number of terms presented. In most query evaluators the commutativity is not used (A B is executed just like B A) which is why we use the commutativity to normalize our terms but the associativity is often taken into consideration when choosing a query plan. Indeed (A B) C corresponds to execute first A B then joining with C which might be much more efficient then performing (A C) B. Each of the terms 2 and 4 actually corresponds to three different terms when taking the associativity into account. We note them 2 a , 2 b , 2 ab , 4 a , 4 b and 4 ab depending on which PP is joined last with the others (a is the constraint on ?a, b is the constraint on ?b and ab the path constraint on both).

We have not yet defined exactly how µ-algebra terms will be executed. However, if we suppose a bottom-up approach, the different but equivalent terms above correspond to the following ways of computing the solutions:

(2 a ) corresponds to evaluate each PP individually and then merge the partial results by starting with joining the recursive PP with the constraint on ?b.

(2 b ) corresponds to evaluate each PP individually and then merge the partial results by starting with joining the recursive PP with the constraint on ?a.

(2 ab ) corresponds to evaluate each PP individually and then merge the partial results by starting with performing the cartesian product of the two non recursive PP and then join with the recursive PP.

(3) starts by evaluating ?a :lastname :Doe, then, using a fixpoint, it builds the set of mappings verifying the two P P and, finally, joins with the mappings verifying the third PP.

(4 * ) corresponds to (2 * ) but where, to build the solution of the PP (?a :knows * ?b), instead of starting from ?a and add new ?b, we start from ?b and add new ?a.

(5) starts from the solution of P P (?b :firstname :John) and then builds recursively the solution of this PP and the PP ?a :knows * ?b. Finally it joins this result with the solution of P P (?a :lastname :Doe).

It seems clear that, among the possible µ-algebra terms, some seems to correspond to better plans than other. For instance building the solutions of the PP ?a:knows * ?b without using the fact that ?a and ?b are constrained by the other PP implies that we might build a set of solutions quadratic in the number of :knows relations to keep only a few (we can have that most ?a do not have John as firstname and Doe as lastname). And yet deciding which µ-algebra terms is the most efficient (e.g. in terms of time to compute the solution) depends on the query executor which is the topic of the next chapter.

Furthermore without knowledge about the queried data it is impossible decide whereas to start from the ?a validating the first PP and use the fixpoint to build the solution for ?b (such as in (3)) or to start from ?b. This question will be treated in chapter 6. 

Conclusion

In this chapter, after some motivating examples, we have introduced definitions, lemmas and theorems laying the ground for new rewrite rules. We then equipped our µ-algebra with a typing system capturing the shape of the domain of the solutions for a µ-algebra term. The chapter continued with the presentation of our rewrite rules that we decomposed into "normalizing" and "producing" rules. The "normalizing" rules allow us to reduce the search space for terms will the later allow us to discover new terms. Finally, we presented our rewrite algorithm and an example of a term rewritten. Now that our method can produce numerous equivalent terms, there are two natural questions: how can one evaluate those terms? how to select the most efficient term to be evaluated? These two questions are inherently linked as the efficiency is relative to the evaluation method. We will therefore tackle both questions in the next chapter.

CHAPTER 5

Evaluation of µ-algebra terms

In the last two chapters, we have seen how to transform a sparql query into a µ-algebra term and then how to rewrite a µ-algebra term to obtain multiple terms who are semantically equivalent. The next natural question therefore is: "how to select one of those terms to be evaluated?" which in turn raises the question: "how to evaluate terms?". This chapter treats the problem of the evaluation and of the efficient evaluation of a given µ-algebra terms. First we will present a general scheme to evaluate µalgebra terms using "streams" and "typed streams".

Once we have studied the evaluation of µ-algebra terms, we will be able to extract a cost model for the evaluation time of a given term. In this view, the multiple equivalent terms can be considered as possible query execution plans. As there can be several execution backends, that have different evaluation time, we will refine our cost model using cost rules.

Equipped with an evaluator and a cost model, we can select the best query execution plan (i.e. the best 111 term as estimated by our cost model) and execute it. This gives us an optimizing query evaluator that we will compare to state of the art sparql query evaluators on queries containing Property Paths in chapter 7.

We can now assemble the various pieces presented in the last chapters and build sparql evaluator: we translate sparql queries into the µ-algebra, then we generate several plans, we heuristically select one and evaluate it. We implemented two evaluators based on this method. One is a distributed sparql query evaluator restricted to a relatively small fragment of sparql while the second is a single-core evaluator that supports a large fragment of sparql.

General bottom-up evaluation for µ-algebra terms

In this section we present our general method for a bottom-up evaluation of µ-algebra terms. By bottom-up evaluation, we indicate any "naive" evaluation recursively following the µalgebra semantics. It thus designates any evaluation where each subterm is evaluated and thus where all intermediate results are computed. For instance if we have a term ϕ (ψ ∪ κ), a bottom up evaluation will compute the solution to the whole term but also to each of the ϕ, ψ, κ and to ψ ∪ κ.

As demonstrated in the previous chapter, given a µ-algebra there often are multiple equivalent terms (in the sense of computing the same solutions). There are, therefore, often many different ways to actually compute a given term each subterm has a different bottomup evaluation and there might even be ways to evaluate terms that do not correspond to the bottom up evaluation of any of its rewritten form.

Stream

Streams are one-way communication channels between a sender and a receiver. The sender can send a message (here messages are mappings) or it can end the communication (in which case no more messages can come out of the sender).

In our centralized evaluation prototype, a stream takes the form of a pair of functions (send, end). The function send takes a mapping and sends it to the receiver while the function end takes no argument and indicates that the communication is now finished, both functions have no return value.

In a distributed evaluation, a stream can take the form of one-to-one queues of messages with a special message to indicate that the queue is closed (but the message in the queue still needs to be treated).

The order of messages is not important for our compilation. Messages can be reordered in a stream as long as the end message is processed after all other messages in the same stream. Furthermore we will need for the termination of fixpoints an operation that wait for all queues to be empty.

The stream mechanism that we presented corresponds to a Dataflow architecture. The main differences with other existing frameworks is that our streams control their own termination with the "end" message. All we will see, to trigger an end message we sometimes need the computing blocks to be aware of the state of this flow in the program. This is generally not permitted by Dataflow frameworks as it is costly. However our programs do not actually need the exact state but simply an over-approximation determining whether a block is active or not and this information can be maintained easily even in a distributed setup.

General compilation

In our compiler, µ-algebra terms are recursively compiled using streams. Each term is compiled to a block that has exactly one output stream (that will carry the set of solutions for this term) and it has one input stream for each variable appearing as subformulas plus one special input start to bootstrap the evaluation (start only carry the bootstrap information).

We compile the terms recursively via the function compile(ϕ, out) that takes a stream and an output stream and returns a pair, the start stream and a list of pair of variable and • the compilation of ∅ is simple: it ends as it starts, does not use any variable or sends mappings;

• the compilation of |c 1 → v 1 , . . . , c n → v n | is also simple: as it starts, it sends the mapping {c 1 → v 1 , . . . , c n → v n } and ends;

• for a variable X, the compilation is to plug the out stream to the variable X;

• a filter σ f (ϕ) ends when ϕ ends and otherwise it sends mappings solution of ϕ passing the filter test;

• drops (π a (ϕ)), renames (ρ b a (ϕ)), column multiply (β b a (ϕ)) and user-defined functions (θ(ϕ, g : C → D)) are compiled in a pretty similar way: the evaluation ends when ϕ ends, it has the same variables as ϕ and modifies the mappings it receives before sending them;

• the evaluation of a reduce operation Θ (ϕ, g, C, D) works in the following way: it starts the evaluation of ϕ when it starts and sends mappings only when ϕ ends. When a mapping m is received from ϕ, the evaluator decomposes m into m C and m C such that m = m C + m C and dom(m C ) ⊆ C, dom(m C ) ∩ C = ∅. When dom(m C ) = C, the mapping m C is then stored in the hash table using the key m C . Once the execution of ϕ has finished we iterate through the hash table, for each key k associated with the mappings c 1 , . . . , c l we send k + g(c 1 , . . . , c l ). Once this iteration is finished, the evaluation of Θ (ϕ, g, C, D) ends. Note that the evaluation of Θ (ϕ, g, C, D) is blocking, i.e. a mappings solution of Θ (ϕ, g, C, D) will be sent only when ϕ ends. That is why we need ϕ to be constant in all recursive variables.

If we possess additional information about g we can produce an even more efficient code. For instance if g simply performs an addition then we can replace the part where we store m C by incrementing the value associated with the key m C . As we explained in the introduction of µ-algebra, the Θ (ϕ, g, C, D) corresponds to a reduce operation on the solution of ϕ. With this transformation, the operation we are performing is actually a combine-Reduce operation.

• the union ϕ 1 ∪ ϕ 2 ends when both of them have ended and it sends mappings from either of them;

• the compilation of the various minuses ϕ 1 λ ϕ 2 (for λ ∈ {\, \\ , -}) are similar to each others: ϕ 1 will compute a set of mappings and some of them will be discarded by mappings in s 2 .

When the evaluation of ϕ 1 λ ϕ 2 starts, we create two sets s 1 and s 2 , each s i will contains some of the mappings solutions of ϕ i . When a mapping from ϕ 1 arrives we check whether it is discarded by a mapping in s 2 , if it is not them either we store it in s 1 when ϕ 2 has not finished its computation and otherwise we send it. When a mapping from ϕ 2 arrives, we remove the mappings from s 1 that are discarded by this mapping and then if ϕ 1 has not finished its computation we store it in s 2 . When ϕ 2 finishes we empty s 1 by sending the mappings it contains. When ϕ 1 finishes, we just empty s 2 . When both ϕ 1 and ϕ 2 are finished we end the computation of ϕ. As for Θ (ϕ, g, C, D), the minuses are blocking in ϕ 2 , thus the need for ϕ 2 to be constant in all recursive variables.

• the evaluation of a join ϕ = ϕ 1 ϕ 2 is done in the following way: when the evaluation starts, we create two sets s 1 and s 2 . When a mapping m arrives from ϕ i then for each compatible mappings m ∈ sī (with 2 = 1 and 1 = 2) we send m + m and if ϕī is not finished we store m in s i .

When the evaluation of ϕ i finishes we empty sī and when both are finished we end the evaluation of ϕ.

• the evaluation of a left join is somewhat similar but we keep markers to indicate which mappings of s 1 (i.e. sent by ϕ 1 ) have been matched: we create s 1 and s 2 as the evaluation starts, when a mapping m arrives from ϕ i we add m + m for all compatible mappings m ; m or m (depending on which comes from ϕ 1 ) is also marked as matched.

Then we proceed to store m into s i unless ϕī has finished. If ϕī has finished, i = 1 and m has not been matched with element of s 2 then we either send m.

When ϕ 2 finishes we empty s 1 and send element of s 1 that are marked as unmatched.

When ϕ 1 finishes, we empty s 2 . When both are finished we end the evaluation of ϕ;

• for the evaluation of a let binder let (X = ϕ) in ψ we need to start ϕ and ψ as let (X = ϕ) in ψ starts. For each mapping m sent by ϕ we need to send m to every use of X in ψ and when ϕ ends, we end each use of X in ψ. The output of ψ is plugged in the output of let (X = ϕ) in ψ;

• finally for the evaluation of µ(X = ϕ) we start the evaluation of ϕ as µ(X = ϕ) starts and we also create a set s of mapping already seen. For each mapping m sent by ϕ we check that m ∈ s and if it is the case, we add m to s, we send m to the output and then we send m back into the uses of X inside ϕ.

µ(X = ϕ) ends when ϕ ends but the end of ϕ usually depends on the end of the recursive uses of X. We end X when ending the recursive uses of X would activate the end signal on ϕ. This can be computed efficiently by keeping track of which nodes are active, when all the nodes upon which ϕ depend have ended or are waiting on the recursive use of X then µ(X = ϕ) can send the signal that X has ended and ends itself.

An example Let us consider the term µ(X = R ∪ π m (ρ m o (X) )) that computes the transitive closure of a relation R binding s and o. The graph corresponding to the compilation of that term is depicted below. Note that R is depicted here but as R is a free variable it is just an incoming stream. 

Typed streams

The mappings we manipulate in streams are solutions of terms. Since we are able to type terms we are also able to compute for each stream s the sets C(s), P (s) such that all the mapping circulating into the stream s will have their domain included in P (s) and that C(s) is included in this domain.

We use this information to get a tighter representation of mappings and a faster execution:

• We associate to a each element in P (s) a unique integer in 0 . . . |P (s)|-1 and mappings are thus represented by n-uplets (with a special value to indicate a missing part).

• Each time we need to get given a compatible mapping m 1 coming from a stream s 1 the set of compatible mappings sent by a stream s 2 , we store the mappings of s 2 based on the hash value of C(s 1 ) ∩ C(s 2 ) and we only need to compare the (P (s 1 ) ∩ P (s 2 )) \ (C(s 1 )∩C(s 2 )) part of the domain. In the case where (P (s 1 )∩P (s 2 )) = (C(s 1 )∩C(s 2 )) the running time of the join is linear in the size of both inputs.

When D = (P (s 1 ) ∩ P (s 2 )) \ (C(s 1 ) ∩ C(s 2 )) is very small we can actually get a fast join by enumerating the subsets of D (it is exponential in the size of D thus limited to small D).

For instance, if P (s 1 ) = C(s 1 ) = {x, y} = P (s 2 ) but C(s 2 ) = {x} then we use two hash tables xy i and x i for each stream. When a mapping m comes from s 1 we store m in xy 1 , look for it in xy 2 store m = {x → m(x)} in x 1 with a pointer to m and look for m in x 2 . And for a mapping coming from s 2 , either it binds x and y and we store it into xy 2 and look for it in xy 1 . Or m binds only x and we store m into x 2 and look for a match in x 1 .

Special case of distributed systems

In the case of the compilation for a distributed system, the parallelism will not work by affecting to each worker a node of the dataflow program but rather we will instantiate a copy of the dataflow program for each worker. We suppose that our hash function returns elements of the space H and that this space H is partitioned among the workers. Each worker will thus be responsible for a part of the total hash space. For a stream that links a sender S and a receiver R, by default S will send its mappings to local instance of R with the exception when R needs to perform a hash h(m C ) on m in which case S sends the data directly to the instance of R on the worker responsible for h(m C ).

For a stream from S to R where R receives only data from the local instance of S, the instance of R ends when the instance of sender ends. If R performs hashes and thus receive data from multiple workers, we need all the instances of S on all the workers to be finished before terminating R.

Bottom-Up cost model for µ-algebra terms

Now that we have defined the process of the general bottom-up computation we can define a cost-model for the evaluation of µ-algebra terms. This cost model will rely on an auxiliary function.

• the function estimateSize(ϕ, V ) will estimate the number of solutions to ϕ when evaluated in a specific context.

• the function estimateCostJoin(ϕ 1 , ϕ 2 , V ) will estimate the time needed to perform the join of the two sets of mappings ϕ 1 V and ϕ 2 V . This function is important as the estimation of the running time of a join computation depends on the actual terms being joined (see section 5.1.3).

A perfect estimation for the number of solutions of ϕ evaluated in the environment V would be to actually compute | ϕ V | but this is very often too expensive. In practice we rely on an abstracted version of the environment V . The whole chapter 6 is dedicated to the question of how to build a function estimateSize that is relatively efficient and precise.

In the same manner we will not actually compute the exact time needed to perform ϕ 1 V ϕ 2 V as it implies to actually compute both sets. The costJoin function will actually depends on the estimation provided by estimateSize for ϕ 1 V , ϕ 2 V plus the type information of ϕ 1 and ϕ 2 to detect cases where the join can be performed using a hash-based system that is linear or a double for-loops which is proportional on both sizes. Now we can define the cost model. This cost model correspond to a big O number of operations a naive bottum-up evaluator has to perform.

cost(ϕ 1 ∪ ϕ 2 ) = cost(ϕ 1 ) + cost(ϕ 2 ) + size(ϕ 1 ∪ ϕ 2 ) cost(ϕ 1 \\ ϕ 2 ) = cost(ϕ 1 ) + cost(ϕ 2 ) + costJoin(ϕ 1 , ϕ 2 ) + size(ϕ 1 \\ ϕ 2 ) cost(ϕ 1 -ϕ 2 ) = cost(ϕ 1 ) + cost(ϕ 2 ) + costJoin(ϕ 1 , ϕ 2 ) + size(ϕ 1 -ϕ 2 ) cost(ϕ 1 \ ϕ 2 ) = cost(ϕ 1 ) + cost(ϕ 2 ) + costJoin(ϕ 1 , ϕ 2 ) + size(ϕ 1 \ ϕ 2 ) cost(ϕ 1 ϕ 2 ) = cost(ϕ 1 ) + cost(ϕ 2 ) + costJoin(ϕ 1 , ϕ 2 ) + size(ϕ 1 ϕ 2 ) cost(ϕ 1 ϕ 2 ) = cost(ϕ 1 ) + cost(ϕ 2 ) + costJoin(ϕ 1 , ϕ 2 ) + size(ϕ 1 ϕ 2 ) cost(ρ b a (ϕ)) = cost(ϕ) + size(ϕ) cost(π a (ϕ)) = cost(ϕ) + size(ϕ) cost(β b a (ϕ)) = cost(ϕ) + size(ϕ) cost(θ(ϕ, g : C → D)) = cost(ϕ) + size(ϕ) cost(σ f ilter (ϕ)) = cost(ϕ) + size(ϕ) cost(µ(X = ϕ)) = cost(ϕ) + size(ϕ) cost(X) = size(X) cost(∅) = 1 cost(|c 1 → v 1 , . . . , c n → v n |) = 1

Refining the cost model

The constant hidden in the big O notation in this cost model is very different from operator to operator. Furthermore, in some settings even with a perfect estimation, the time to perform one of the above operator does not really follow a linear model. This is caused by caching effects, swapping, networking phase, etc.

In practical experiments the cost is mainly dominated by joins, IO to the disk and fixpoints (sometimes the three) but the constants vary greatly between single core evaluation where our experiment are dominated by IO (unless there is a very large intermediate result) and distributed computation where joins are expensive (fixpoints would also be expensive but we did not experiment on this as explained below).

Cost rules

In practice, the evaluators we will present are almost bottom-up evaluators but they come with an optimized version of some the operators. For instance when the graph is encoded in µ-algebra as T then our evaluator might have indexed T and perform σ p=:knows (T ) using this index and thus be much faster than actually scanning the whole T and returning elements to which the predicate is knows and clearly sub linear in T .

In practice, we could design a cost model for each implementation of µ-algebra but we prefer to handle all cases by keeping the general model of computation and tweaking it using cost rules that are passed to the query optimizer. A cost rule is a rule of the form (pattern, cost(pattern)). Such a rule recognize a pattern that we can evaluate either in the naive way or using a specialized version whose cost estimation is cost(pattern).

Developing on the example of earlier, one such pattern could be σ p=:knows (T ) → size(σ p=:knows (T )). This pattern is used by a cost model when instead of computing the whole T and then filtering the triples such that p = :knows we can more directly access the result of σ p=:knows (T ) because we have some index on T .

Note that we do not necessarily have that the cost of a cost rule is less than the cost of the naive evaluation in which case our evaluator will fall back to the naive evaluator. In this sense our evaluators are bottom-up evaluators extended with efficient evaluation of some patterns.

These cost rules might also take into account the fact that some operations can be performed much more efficiently if we look at the underlying model. For instance the variable N representing the set of valid nodes can sometimes not be removed from a formula but N can be implemented much more efficiently than a double pass on the set of all triples whenever the evaluator maintains a set of nodes.

Examples

Let us reuse the terms of section 4.9 and let us suppose that we are querying a graph that has the following properties: there are 10 8 nodes, 10 6 different lastnames, 100 firstnames and the relation :knows is symmetric and its transitive closure forms 10 4 connected components. For the sake of simplicity, in our model, all first and last names are equiprobable and the connected components are roughly of the same size (10 4 elements).

All our terms will compute the solutions to the two non recursive PP so let us compare only the difference in cost between various terms:

1. All the terms 2 * and 4 * compute the whole P P (?a :knows * ?b) which contains 10 8 ×10 4 terms which means the cost is at least 10 12 ;

2. The term 3 initializes the fixpoint computation with the ?a last named :Doe (and there are 10 8 /10 6 = 10 2 such persons). The whole fixpoint computation is dominated by the join between the :knows relation and X. The fixpoint returns a set of size 10 2 × 10 4 that is joined with the set of ?b first named :John. In total the order of magnitude is 10 6 plus the join between :knows and the recursive variable.

3. The term 5 does the same thing with ?b first named :John. The fixpoint therefore manipulates 10 6 × 10 4 elements and the final join is between this result and a set containing 10 2 elements (the :Does). In total the order of magnitude is 10 10 plus the join of :knows with the recursive variable which is much more than the cost of term 3.

In this made up scenario we see that the different terms can have very different cost models. Furthermore we see that, using our cost model, the most efficient term is one that has been obtained through a rule pushing a join inside a fixpoint.

Single core bottom-up evaluation of µ-algebra

Building on the sparql to µ-algebra translation presented in section 3.5, on the rewriting rules presented in the chapter 4 and the bottom-up evaluation presented just above we implemented a prototype capable of executing a sparql query on a dataset.

While the tools is only based on the techniques presented, it supports only a restricted fragment of sparql : triple pattern, property paths, conjunction, union and optional; the aggregation, for instance, are not yet supported. This tool serve as a basis for our experimentation and should be seen as a research prototype rather than a finished sparql evaluator.

Our prototype tool is implemented using the Ocaml programming language and is available online at the address https://gitlab.inria.fr/jachiet/musparql/.

Towards a distributed µ-algebra evaluator

Considering the ever increasing amount of data produced, we have the goal of developing a distributed µ-algebra evaluator. The general bottom-up evaluation presented in section 5.1 produces query execution plans that are almost entirely parallel: each operator is translated with streams and individual elements in streams can be treated in parallel with either the help of distributed hash tables or with streams equipped with a hashing mechanism.

However writing programs that are features rich, stable, resilient and scalable distributed programs is known to be a major challenge. And the single-machine counterpart of distributed databases often perform an order of magnitude faster (in terms of total CPU consumption). Instead of implementing the approach presented above, we tried available frameworks such as Map Reduce, Spark or Flink for handling the distribution.

Framework for distributed computations

Parallel computation generally refers to the act of using multiple units of computing power (potentially on several machines) to perform a computation. By using the term distributed computation, we put the emphasis on the fact that the computation happen in several machines that can only share information by sending messages. Furthermore, as we are using several machines, some of them might crash during the computation, or might get disconnected from the network therefore the fault-tolerance might be important (for long jobs running on many machines). The distributed frameworks take care of running the multiple units of computation, of the resiliency of the system (they detect and sometimes even correct the failures) and handle the communication between individual workers.

Map-Reduce

Map-Reduce is a very simple model of computation. The data is thought of as bags of individual values on which the programmer can use two primitives map and reduce. This programming model is very simple but arbitrary user-defined functions can be passed as arguments to map and reduce and this simplicity translates into a resilient and scalable distributed framework.

They are competitive sparql query executors that are based on the Map-Reduce framework (such as CliqueSquare [GKM + 15]) but we only use Map-Reduce for data storage as other frameworks emerged that have a richer set of instructions, more optimization and, as a consequence perform generally better.

Apache Spark

Map-Reduce has several limitations. One such limitation is obviously the simplicity of the programming model but one has to also consider the performance of map-Reduce jobs. In Map-Reduce computations, the resiliency is obtained by storing the results of individual map-Reduce jobs into a resilient storage. In, e.g., Apache Hadoop, this means to store each result thrice to ensure resiliency.

Spark is a distributed computation framework introduced in 2012 [ZCD + 12] to overcome these limitations. Spark has several primitives that revolve around the concept of RDDs.

Resilient Distributed Datasets

A Resilient Distributed Datasets (RDD) represents a typed bag of values. The novelty of the RDD is not only to store the values but also to keep track the lineage, i.e. the computation that was performed to obtain those values. Contrarily to Map-Reduce that stores intermediate results into a fault-tolerant disk-based storage, Spark tries to store them into RAM. When a machine is not responsive (either slow, crashed or disconnected from the network), Spark will start from the last checkup point and reconstruct the missing part using this lineage. Obviously when a lot of computation has been performed on the data, reconstructing the missing data might trigger heavy computation but Spark checkpoint by default partitions (until RAM is exhausted) and the programmer can also trigger a disk-based resilient checkup.

Operators with Spark

Spark provides some operations on top of these RDD. The set of such operation extend which each new version of Spark but it contains:

• flatMap which corresponds to the map in the map-Reduce programming model;

• Union which merges the content of two RDDs of the same type;

• coGroup which reduces several RDD r 1 , . . . , r n along a set of keys and thus returns a RDD that is n + 1-tuple, for each key k appearing in one the RDD, it contains k followed by n list, the i-th list containing the list of values in the RDD i associated with the key k;

• Spark also allows the programmer to sort the data, control the partitioning, checkpoint, and output of RDD in several ways.

And, as syntactic sugar, Spark also has the following operators:

• map and filter which are specialized versions of flatMap restricting the output size of the function to exactly one and zero or one;

• join and leftJoin which are specialized version of coGroup;

• ReduceByKey which corresponds to the reduce of the map-Reduce and can be expressed as a coGroup.

Broadcast Variables

When a Spark program performs a computation (e.g., a map) it needs to capture the lineage and then send the data the computation will use (in the case of map, the function of the map). This is similar to what happens in Map-Reduce frameworks where the functions applied also need to be sent to all workers. However, while Map-Reduce jobs can be performed in batch and where the function can be a complete program that is sent (depending on the framework), Spark performs interactively which means the function is only known at running time. Capturing and sending the data thus corresponds to taking the closure of the function and serializing it. When there are a lot of data stored in the function, taking the closure and serializing the function can take a lot of time and will use a lot of network. To overcome this limitation Spark introduces broadcast variables.

Broadcast variables compute the closure of a term and then send the serialization of the closure in a peer-to-peer fashion to all working nodes. This way we allow the programmer to avoid serializing multiple times the same data and the sharing mechanism can be done in parallel of computing tasks.

For instance, if we have a text database and a dictionary of some sort. If the dictionary takes a few hundred megabytes then each filter or map using this dictionary would imply to send the whole dictionary. If the dictionary is stored in a broadcast variable, then it would be distributed more efficiently and Spark does not have to send the dictionary along with each use.

SparqlGX

SparqlGX [START_REF] Graux | SPAR-QLGX: efficient distributed evaluation of SPARQL with apache spark[END_REF] is a distributed sparql query evaluator. SparqlGX origins predate the inception of the µ-algebra but the µ-algebra helped us to extend and characterize the supported fragment. The syntax of the fragment of sparql queries accepted by SparqlGX is more restricted than the syntax of sparql translatable to µ-algebra as it e.g. does not consider Property Paths which were one of the main motive behind the inception of µ-algebra.

SparqlGX uses the Spark framework to manage the distributed computation. However, Spark does not natively support efficient recursion nor general joins or minuses. Thereby we cannot directly translate our work on the µ-algebra over to Spark. Yet, using ideas developed for µ-algebra, I was able to advance SparqlGX in multiple aspects, for instance extending its fragment (based on the safe compatible lookup) or optimize more (based on cardinality estimation).

We will not go deep into the details of the architecture of SparqlGX but if the reader is interested we invite her/him to look into the submitted journal version [START_REF] Graux | The SPAR-QLGX System for Distributed Evaluation of SPARQL Queries[END_REF] of our sparql paper and we now present two extensions of SparqlGX enabled by our work on µ-algebra.

The two modes of SparqlGX

SparqlGX can operate into two modes: standalone or with a load phase. When operating in the standalone version, SparqlGX takes a file containing the whole dataset and run the query against this file. The optimization strategy has no knowledge of the data and therefore proceed using an heuristic approach.

In the load version, SparqlGX stores the data using the vertical partitioning approach. The main concept behind this idea is to store a triple s p o by storing the couple s, o in a file named p which allows SparqlGX to process more efficiently queries where no triple pattern has a variable predicate. Furthermore, the load phase allows SparqlGX to capture statistics about the data that can be used for the cardinality estimation phase (as explained in chapter 6). These statistics will allow to choose more efficient plans for terms as we will explain in the next chapter.

Safe joins for SparqlGX

With these extensions, SparqlGX now supports the select fragment of the sparql query language with modifiers and where the graph pattern is a query composed of triple patterns, conjunctions, disjunctions and optionals but where conjunctions (resp. optionals) are restricted to safe conjunctions (resp. safe optionals). The syntax of sparql queries accepted in SparqlGX is presented in figure 5.2.

A operator between two µ-algebra terms ϕ 1 , ϕ 2 (or equivalently between two sparql subqueries) is safe when P (ϕ 1 ) ∩ P (ϕ 2 ) = C(ϕ 1 ) ∩ C(ϕ 2 ) which allows us (as explained in section 5.1.3) to have a fast join algorithm. 

Conclusion

In this chapter, we have investigated how we can evaluate µ-algebra terms and deduced from this evaluation a cost model for our general evaluation scheme. We have then presented two evaluators that we implemented based on this general compilation scheme. These two evaluators correspond to two different types of applications: SparqlGX handles only a fragment of the sparql languages but run on an efficient distributed platforms, musparql on the other hand is a single core evaluator but can handle and optimize complex queries. In our general optimization scheme for the evaluation of µ-algebra terms we rely on a cost model to guess what is the estimated best QEP. And this cost model itself relies on a cardinality estimation. While a naive cardinality estimation leads to already interesting results, we investigated the use of more complex schemes to assess the number of solutions to a µ-algebra term.

The task of estimating the number of solutions to a given query, even a simple conjunctive query, has been the center of many research projects and yet still is an active research subject. The next chapter is devoted to present the current state of our research, especially in the context of SparqlGX (i.e. the safe fragment).

CHAPTER 6

Cardinality estimation of µ-algebra terms Our general method of compilation relies on a rewrite systems that produce multiples terms. A cost model is then used to determine the most efficient term but this cost model uses a cardinality estimation.

There exists a variety of query evaluation schemes but, in most of them, estimating the cardinality of intermediate results is key for performance, especially when the computation is distributed and the datasets are very large. For example, it helps in choosing a join order that minimizes the size of intermediate results. It is therefore a well studied subject, especially for the relational model and for sql databases. Estimating the cardinality of sparql queries however, even for the simple conjunctive fragment, raises new challenges.

In this context, we propose a new cardinality estimation based on statistics about the data. Our cardinality estimation is a worst-case analysis tailored for the conjunctive fragment of sparql and capable of taking advantage of the implicit schema often present in rdf datasets (e.g. functional dependencies). This implicit schema is captured by statistics therefore our method does not need for the schema to be explicit nor perfect (our system performs well even if there are a few "violations" of these implicit dependencies).

We implemented our cardinality estimation and used it to optimize the evaluation of queries by SparqlGX. We benchmark SparqlGX: equipped with our cardinality estimation, the query evaluator SparqlGX performs better against most queries (sometimes by an order of magnitude) and is only ever slightly slower.

While our approach is mainly focused on BGP as it is a well established fragment of sparql note that our approach applies to the whole conjunctive fragment of µ-algebra.

As this section could be read relatively independently from the rest of this thesis, we recall some definition specific for the evaluation of BGP.

Definition 27 (Mapping Collection). A "mapping collection" is a set of mappings with the additional information of a domain d 1 , . . . , d k shared by all mappings in the collection (i.e. all the mappings in the collection have d 1 , . . . , d k as domain).

The solutions of a TP (s, p, o) on a graph G is the mapping collection whose domain is the domain of (s, p, o) and a mapping m belongs to this mapping collection if (s , p , o ) ∈ G (where x = x when x ∈ V and x = m(x) otherwise).

Definition 28 (Compatible Mappings). Two mappings m 1 and m 2 are compatible (written

m 1 ∼ m 2 ) when m 1 (c) = m 2 (c) for all c ∈ dom(m 1 ) ∩ dom(m 2 ).
Given two compatible mappings m 1 and m 2 we define their sum as the mapping whose domain is dom(m 1 ) ∪ dom(m 2 ) and (m 1 + m 2 )(c) = m 1 (c) when c ∈ dom(m 1 ) and m 2 (c) otherwise.

Definition 29 (Join). Given two mapping collections A and B, the join of A and B (written

A B) is defined as (m A + m B | m A ∼ m B and (m A , m B ) ∈ A × B)
A BGP is a list of TPs (t 1 , . . . , t n ), the solution of a BGP (t 1 , . . . , t n ) is the collection mapping corresponding to the join of solutions of individual TP (the join operation is associative and commutative so all join orders lead to the same mapping collection). In this section, we first tackle the problem of estimating the number of solution for a given BGP on an rdf dataset then briefly explain how we plain to handle the full µ-algebra cardinality estimation.

Summaries

We will now manipulate projections of mapping collections. If c is in the domain of a mapping collection M = m 1 , . . . , m n , the values (m 1 (c), . . . , m n (c)) form a multiset which is the projection of the mapping collection M on the column c. Our cardinality estimation is based on summaries of projection of mapping collections.

The projections that we manipulate are often very large (as large as the query answer), that is why, in practice, we manipulate multiset summaries. Multiset summaries are a tight representation that over-approximates multisets.

Definitions

The informal intuition behind a multiset summary is to represent it using the most frequent elements and summarize the rest with three numbers.

Given a multiset M = (m 1 , . . . , m n ) the indicator function χ M (x) = |{i | x = m i }| counts the number of each element m from M such that m = x. Given a multiset M represented via its indicator function χ : S → N, we will compute a small set S ⊂ S and represent M in two parts: the elements of M belonging to S and the other elements (belonging in S \ S ). In order to represent the elements of M in S , we simply restrict the indicator function χ to this S and to represent the multiset E of elements of M in S \ S we use three integers: T the Total number of elements in E, D the number of Distinct values in E, and Y the maximal multiplicitY of an element in E.

Definition 30 (Multiset summary). Formally, a multiset summary corresponds to a quintuple < S , χ , T, D, Y > where S ⊂ S, χ is a function from S to N, and (T, D, Y ) ∈ N 3 . < S , χ , T, D, Y > is a summary of the multiset represented by χ M : S → N when:

• χ over-approximates χ on S , i.e. ∀v ∈ S χ(v) ≤ χ (v);

• Y is an upper bound on χ(v) for v ∈ S , i.e. ∀v ∈ S \ S χ(v) ≤ Y ;

• T is an upper bound on the number of elements counted with multiplicity of the multiset not in S , i.e. v∈S\S χ(v) ≤ T ;

• D is an upper bound on the number of distinct elements of the multiset that is not in

S , i.e. |{v ∈ S \ S | χ(v) > 0}| ≤ D.
Definition 31 (Column summary). The multiset summary < S, χ, T, D, Y > is a column summary for the column c of the mapping collection m 1 , . . . , m k when < S, χ, T, D, Y > is a summary for the multiset (m 1 (c), . . . , m k (c)).

Definition 32 (Collection Summary). N, s is a collection summary for the collection mapping over the domain c 1 , . . . , c k if N ∈ N is greater than the number of mappings in the collection and s is a set of pairs s = {(c 1 , S 1 ), . . . , (c k , S k )} where each S i is a column summary of the column c i .

Example of summaries

Let us consider the following rdf dataset of 11 triples:

A memberOfTeam 1 A memberOfTeam 2 A memberOfTeam 3 B memberOfTeam 1 C memberOfTeam 1 E memberOfTeam 3 1 teamLeader B 2 teamLeader A 3 teamLeader C 4 teamLeader D 5 teamLeader E
There are two predicates: memberOfTeam and teamLeader. A possible collection summary for the tp (?s memberOfTeam ?o) is 6, {?s →< {A}, {A → 3}, 3, 3, 1 >; ?o →< {1}, {1 → 3}, 3, 2, 2 >} and for the tp (?s teamLeader ?o) one possible collection summary is 5, {?s →< {B}, {B → 1}, 4, 4, 1 >; ?o →< {1}, {1 → 1}, 4, 4, 1 >}. With only the information of these summaries we can deduce that, in the dataset, the relation induced by the memberOfTeam, is such that the subject A might appear several times but -except for this A-other team members have only one team. In addition, we know that the team 1 has 3 members and the other teams have less than 2 members.

In the summary of the relation induced by teamLeader (i.e. the relation between ?s and ?o in (?s teamLeader ?o)) we see that this relation is bijective: all the subjects ?s and all the objects ?o are each present only once.

Therefore if we need to compute the solutions of the bgp: (?member memberOfTeam ?team . ?team teamLeader ?leader) we know that there are less than 6 solutions: the relation teamLeader is bijective therefore the number of solutions of this bgp is less than the number of solutions for the tp: (?member memberOfTeam ?team).

Simple operations on summaries

We define the following operations on multiset summaries:

• count(cs, v): the function that returns the number of times the value v can appear in a multiset summarized by cs;

count(< S, χ, T, D, Y >, v) = χ(v) v ∈ S Y v ∈ S
• truncate(cs, n): the multiset summary where we enforce that each value appears at most n times. Formally, truncate(< S, χ, T, D, Y >) = < S, min(χ, n), min(T, D × n), D, min(Y, n) > (where min(χ, n)(x) = min(n, χ(x)));

• limit(cs, n): the multiset summary where we enforce that there are at most n elements. More precisely we have limit(< S, χ, T, D, Y >) = < S, min(χ, n), min(T, n), min(D, n), min(Y, n) >;

• size(cs): the estimated size of the multiset summarized by cs, size(< S, χ, T, D, Y > ) =

x∈S χ(x) + T ;

• the sum of two multisets over S represented by χ 1 and χ 2 is defined as

(χ 1 + χ 2 )(x) = χ 1 (x) + χ 2 (x).
The sum of two multiset summaries is defined as

< S 1 , χ 1 , T 1 , D 1 , Y 1 > + < S 2 , χ 2 , T 2 , D 2 , Y 2 >=< S 1 ∪ S 2 , χ , T 1 + T 2 , D 1 + D 2 , Y 1 + Y 2 with: χ (x) =      χ 1 (x) + χ 2 (x) when x ∈ S 1 ∩ S 2 χ 1 (x) + Y 2 when x ∈ S 1 \ S 2 Y 1 + χ 2 (x) when x ∈ S 2 \ S 1
We have the property that if a multiset m 1 is summarized by s 1 and m 2 by s 2 then m 1 + m 2 is summarized by s 1 + s 2 ;

• Given a multiset {m 1 , . . . , m k } with its summary < S, χ, T, D, Y > we can multiply them by an integer n: {m 1 , . . . , m k } × n is the multiset containing k × n elements:

n elements m i for each 1 ≤ i ≤ k; this multiset is summarized by < S, χ, T, D, Y > ×n =< S, χ × n, T × n, D, Y × n > (with (χ × n)(x) = χ(x) × n);
• Given a collection summary s = (t,{(c 1 , s 1 ), . . . , (c k , s k )}) we note: summ(s, c k ) = s k the summary for the column c k ; cols(s) = {c 1 , . . . , c k } the set of columns of the summarized collection and size(s) = t the size of the summary over-approximated by s.

The multiplicative factor

Given two collection summaries s A (resp. s B ) summarizing two collection mappings A = {A 1 , . . . , A n } (resp. B = {B 1 , . . . , B m }) we want to compute a collection summary for the solutions of A B. In order for this summary to be precise, we will introduce in this section the "multiplicative factor" and in the next section we will show how to use the multiplicative factor to compute a relatively precise summary for A B.

The mapping collection A B can be seen as a cartesian product A×B where we removed mappings (m A , m B ) that do not agree on all the common columns of A and B. Each mapping m is thus built using a unique pair (m A , m B ) ∈ A × B (but such a pair does not necessarily correspond to a mapping of A B). If we track which mappings of A and B were used to build which mappings of A B, we can count for each mapping m A ∈ A its "multiplicative factor": the number of mappings in A B that were built using m A . The i-th multiplicative factor of A toward B is defined as the i-th greatest multiplicative factor of an element of A (or 0 if |A| < i).

As summaries work with over-approximation we will show in this section how to compute, with only the summaries for A and B, a bound for the i-th multiplicative factor mult(s A , s B , i), i.e. an over-approximation to mult(A, B, i) for any A and B such that A (resp. B) is summarized by s A (resp. s B ).

A common column

Let c be a column shared between A and B (note that such a c does not necessarily exist). A mapping m A ∈ A can only be combined with mappings m B ∈ B to form mappings of A B when m A (c) = m B (c). Therefore, a mapping m A ∈ A can only be used to build, at most,

count(summ(s B , c), m A (c)) mappings of A B. Let cs A =< S A , χ A , T A , D A , Y A > (resp. cs B =< S B , χ B , T B , D B , Y B >
) be the column summary for the column c in s A (resp. in s B ) then for each v ∈ S A ∪ S B there are, at most, count(s A , v) mappings of A and each can be combined with count(cs B , v) mappings of B. To that we need to add that the, at most, T A mappings m ∈ A with m(c) ∈ S A ∪ S B can each be joined with, at most, Y B elements.

In total this gives us T A + v∈S A ∪S B count(cs A , v) values that over-approximate the various multiplicative factors of elements of A. By sorting these values, the i-th greatest value gives us a bound on mult(s A , s B , i).

Note that the mappings with values for the columns c falling into S B \S A might be counted twice: each of the T A elements produces Y B mappings of A B, but for each v ∈ S B \ S A we also counted that Y A mappings produced χ B (x) each. However, this is not an actual issue since we combine the several bounds on mult(s A , s B , i), in particular, i > size(s A ) implies mult(s A , s B , i) = 0 and size(s A ) ≤ T A + v∈S A count(cs A , v).

General case

There are no more than size(s A ) mappings in A and each can be used in at most size(s B ) mappings of A B, we have a first bound:

mult(s A , s B , i) ≤ size(s B ) when i ≤ size(s A ) 0 otherwise
Then, we simply use the technique presented earlier on each column shared between the domains of A and B. Each column giving us a new bound on mult(s A , s B , i) and we combine all of them: if mult(s

A , s B , i) ≤ k 1 and mult(s A , s B , i) ≤ k 2 then mult(s A , s B , i) ≤ min(k 1 , k 2 ).

An example

Lets us consider the two datasets and their join presented in figure 6.1 both containing a letter, a color and in one we have an ID and in the other a GID. In the joined dataset, we have all of these columns. Notice that valid rdf would require to have uris but for the sake of clarity we use numbers, letters and colors that could easily be translated into uris (e.g. 1 could be translated into <http://example.com/1>). Thus, a collection summary for the Set 1 is:

(7, { letter →< {A, B, C}, {A → 1, B → 5, C → 1})}, 0, 0, 0 >, color →< {Red, Blue}, {Red → 3, Blue → 1})}, 2, 2, 1 >, ID →< {0, 1}, {0 → 1, 1 → 1})}, 4, 4, 1 >})
And a collection summary for the Set 2 is: (6, { letter →< {A, B}, {A → 5, B → 1})}, 0, 0, 0 >, color →< {Red, Blue}, {Red → 3, Blue → 3})}, 0, 0, 0 >, GID →< {g0, g1}, {g0 → 1, g1 → 1})}, 4, 4, 1 >}) Now, we can represent graphically the multiplicative factor from Set 1 to Set 2. The i-th value represents the i-th multiplicative factor. In the figure 6.2, the 7 × 6 grid represents the first bound on the multiplicative factor. There are 7 elements in Set 1, each of which can be multiplied 6 times.

The red part corresponds to the bound given by the column summary for the column letter: A is present once in Set 1 but 5 times in Set 2 so we have one 5 in our multiplicative factors; B is present 5 times in Set 1 but once in Set 2 so we have five 1 in our multiplicative factors C is present once in A but not in Set 2 therefore we have one 0. We sort them and it gives us the red part: 5, 1, 1, 1, 1, 1, 0.

The green part corresponds to the bound given by the column color. Red is present thrice in Set 1 and each can be combined with 3 elements from Set 2 and Blue is present once but can also be multiplied thrice. Once sorted, it gives us: 3, 3, 3, 3.

The blue part corresponds to the min of all bounds (which is also the intersection of shapes). The total number of elements in the join guessed by our method is the area of this blue part which is 6.

Our method guessed 6 while the actual size of the joined set is only 4 but notice that there exists sets with the same summaries that have a join of size 6. For instance, we could exchange the color of ID 0 and ID 3 in Set 1 to get a join of size 6 (for which our algorithm would be perfect). 0 1 2 3 4 5 6 7 ⇒ 0 1 2 3 4 5 6 7 Figure 6.2: Combining multiplicative factors for several columns.

The total operator

Once the multiplicative factors from A to B for all i ∈ N (i.e. mult(s A , s B , i)) have been computed we can compute the total operator. The function total(s A , s B , n, k) gives a bound on the number of mappings of A B that can be built using n different mappings of A when we know that each of those mappings has a multiplicative factor bounded by k ∈ N ∪ {∞}:

total(s A , s B , n, k) = i≤n min(k, mult(s A , s B , i))
For instance in the example given above we know that the total number of mappings is total(s A , s B , size(s A ), ∞). And if we want to now the number of entry Red in the column summary of the column color of Set1 Set2, we know that there are n = 3 Red in Set1 and k = 3 in Set2. We thus know that there are less than n × k = 9 Red in the column color of Set1 Set2 but the function total(s A , s B , 3, 3) = 5 gives us a tighter bound.

Joining summaries

Given two collection summaries s A (resp. s B ) summarizing two collections mappings A = {A 1 , . . . , A n } (resp. B = {B 1 , . . . , B m }) we want to compute a collection summary for the solutions of A B.

We suppose that we computed a bound for total(s A , s B , n, k). The total number of mappings of A B can be bounded by min(total(s A , s B , size(A), size(B)), total(s B , s A , size(B), size(A)).

Combining summaries for non common columns

Let c be a column in the domain of A but not in the domain of B, let cs A =< S A , χ A , T A , D A , Y A > be the summary for the column c of A, the summary we compute for the column c of A B is < S a , χ , T , D A , Y > where:

• T = total(s A , s B , T A , ∞) • Y = total(s A , s B , Y A , ∞) • χ = total(s A , s B , χ(x), ∞)
Columns that are in the domain of B but not in the domain of A are treated symmetrically.

COMPUTING COLLECTION SUMMARIES REPRESENTING THE SOLUTIONS OF A SINGLE

Combining summaries for a common column

Let c be a column in the domain of both A and B, let cs A =< S A , χ A , T A , D A , Y A > (resp. cs B =< S B , χ B , T B , D B , Y B >) be the summary for the column c of A (resp. of B). Each mapping m of A will be used in at most count(cs B , m(c)) mappings of A B, therefore the count(cs A , m(c)) mappings sharing the value m(c) will be used in, at most, total(s A , s B , count(cs A , m(c)), count(cs B , m(c))) mappings of A B. Note that by symmetry between A and B we also have that it will be used in, at most, total(s B , s A , count(cs B , m(c)), count(cs A , m(c))) mappings of A B.

Our summary for the column c of A B is < S a ∪ S b , χ , T , min(D A , D B ), Y > where:

• T = min(total(s A , s B , T A , Y B ), total(s B , s A , T B , Y A )) • Y = min(total(s A , s B , Y A , Y B ), total(s B , s A , Y B , Y A )) • χ (x) = min(total(s A , s B , count(cs A , x), count(cs B , x)), total(s B , s A , count(cs B , x), count(cs A , x)))

Computation of the join summaries in practice

When computing a summary representing the join of two given summaries, most of the running time of the algorithm is spent in the computation of the total operator and computing mult(s A , s B , i).

We optimize the computation of these using a clever representation. First, we see that the multiple mult are obtained as the combination (through a min) of piecewise constant functions and thus is also a piecewise constant function and the number of pieces of i → mult(s A , s B , i) is linear in the number of pieces defining s A and s B (i.e. the total number of distinguished elements in s A and s B which is generally very small compared with size(s A ) and size(s B )).

If there are m pieces of the function i → mult(s A , s B , i) then naively computing total(s A , s B , n, k) would be linear in m. However using a tree to compute partial sums we can get down to a logarithmic computation (i.e. O(ln(m))) of total(s A , s B , n, k). Since there are O(m) × c calls (where c is the number of columns represented by A and B) to this function this gives us a O(ln(m) × m × c) algorithms to compute the summary of the join of two multisets represented by summaries whose size is m and the number of columns is c.

Computing collection summaries representing the so-

lutions of a single TP

Computing a multiset summary from a multiset

Given a multiset defined by χ on the set S we compute its multiset summary of size K by sorting S by χ decreasing, we extract from this the set S of the K first elements (S ⊆ S, the set of size K with the biggest χ). Then the computed summary is < S , χ, T, D, Y > where

T = x∈S\S χ(x), D = |{x ∈ S \ S | χ(x) > 0}| and Y = max x∈S\S (χ(x)).
Choosing K allows to set a balance between precision of summaries and the time needed to compute them. In practice we adopt the same constant K for all summaries. We notice that computing summaries with several thousands of elements performs well in practice. In section 7.5, we report on practical experiments with K = 3000.

Gathering statistics

We recall that in the rdf format, the predicate carries the "semantic" relationship. In most datasets there is usually a limited number of different predicates in the datasets and in queries variable predicates are relatively rare [START_REF] Arias | An Empirical Study of Real-World SPARQL Queries[END_REF].

During the load phase we compute the list of all predicates P (in one pass over the data) and (in a second pass) we compute for each p ∈ P (in parallel), a collection summary corresponding to the solution of the TP (?s p ?o). To do that, we compute the list T p of triples that have p as a predicate, we then compute a multiset summary o p for the object of T p and a multiset summary s p for the subjects of T p , the collection summary is |T p |, {(?s, s p ), (?o, o p )}.

Summaries are computed recursively: we start by computing summaries for individual TP and then combine them. Let (t s t p t o ) be a TP, let us show how to compute its associated summary.

Fixed predicate t p = p

Let us consider first, the cases where the predicate is fixed to a value p, depending on whether the subject is fixed (either the variable ?s or the value s) and whether the object is fixed (either ?o or o) we have four cases (the case (s, ?o) is symmetrical to (?s, o) and thus not treated):

Case t s =?s and t o =?o: the returned summary is simply: size(s p ), {(?s, s p ), (?o, o p )}.

Case t s = s and t o = o: this TP has either 0 or 1 solution and binds 0 columns. The returned summary is (0, ∅) when count(s p , s) = 0 or count(o p , o) = 0 and (1, ∅) otherwise.

Case t s =?s and t o = o: this TP has, at most, count(o p , o) solutions and only binds the column ?s. The returned summary is count(o p , o), {(?s, truncate(s p , 1))}.

Variable predicate t p =?p

Let us note r, the collection summary for the solutions of (t s t p t o ), the idea is to combine the summaries s i (summary for (t s p i t o )) for each p i ∈ P . We build r such that size(r) = p i ∈P size(s i ) and for each eventual bounded column c (c ∈ {?s, ?o}), then summ(r, c) = p i ∈P summ(s i , c) and, finally, the summary for the column ?p, is < P, χ p , 0, 0, 0 > where χ p (p i ) = size(s i ).

Duplicated variable

It is possible in sparql to have a variable that is present twice (or thrice). Since there are only three parts to a triple pattern there is at most one duplicated variable. If t p is the duplicated variable, we apply the replacement scheme proposed in 6.2.4 but we replace all the duplicated parts (and not only t p ).

• broadcastCost we also suppose that the cost of broadcasting a mapping collection is linear with a coefficient broadcastCost, however the Broadcast operation breaks when the mapping collection does not fit into RAM, that is why we have:

• broadcastThreshold that indicates the maximum size of a mapping collection that we can broadcast.

In our translation, the individual tp are all translated exactly once, we set their cost to 0.

For a HashJoin(a, b) we need to compute a and b then shuffle a (resp. b) so that they are hashed on dom(sol(a)) ∩ dom(sol(b)), this costs shuffleCost×size(a) (respectively shuffleCost×size(b)) but only if a (resp. b) is not already correctly shuffled. We also need to materialize HashJoin(a, b) -even if both components are already shuffled-which costs size(HashJoin(a, b)).

For a Broadcast(v, a, b) we need to compute a, send the full set of solutions of a to each workers and then compute b; therefore the cost of Broadcast(v, a, b) is broadcastCost×size(a) plus the cost of computing a and b. However broadcast(v, a, b) can break if a is not small enough to fit into RAM, that is why we impose size(a) < broadcastThreshold.

For a LocalJoin(a, v) we need to compute a and join it with v -already computed-it costs size(LocalJoin(a, v)) plus the cost of computing a.

Optimizing the query plan

Given a bgp (t 1 , . . . , t n ) the naive translation is to simply join T P (t i ) using at each step a hash-join algorithm: HashJoin(T P (t 1 ), HashJoin(. . . , T P (t n )) . . . ).

The naive translation is often not the most efficient plan: we might have to materialize large intermediate results (that could be avoided by using a different join order) and it might also yield shuffles that could be avoided. For instance, if t 1 and t 4 bind ?a, t 2 binds ?a and ?b, t 3 binds ?b and ?c, then the naive translation shuffles t 1 and t 2 on ?a then it shuffles t 1 t 2 and t 3 on ?b and finally it shuffles t 1 t 2 t 3 and t 4 on ?a whilst the order (((t 1 t 4 ) t 2 ) t 3 ) implies one less (potentially costly) shuffle.

Furthermore, the HashJoin algorithm is not always the most appropriated join algorithm [START_REF] Curé | On the Evaluation of RDF Distribution Algorithms Implemented over Apache Spark[END_REF]: when one mapping collection is large enough compared to the other then a broadcast-join (i.e. Broadcast the small dataset to all workers then do a LocalJoin) avoids a costly shuffle of the large dataset to the price of sending a small mapping collection to all workers.

Finally, when a triple t i binds only one variable v, has a small number of solutions and at least one of the t j , with j = i, contains v in its domain, it might be more efficient to broadcastfilter t i . Broadcast-filtering t i consists in computing Broadcast(v i , T P (t i ), P ) where P is a term computing t 1 . . . t i-1 t i+1 . . . t n and T P (t j ) = LocalJoin(T P (t j ), v i ) if v is in the domain of t j and T P (t j ) = T P (t j ) otherwise.

To find the query plan minimizing our cost estimation, we essentially enumerate possible plans: that filter-broadcast or not triples, with all possible join orders and for each join we consider the hash-join and the broadcast-joins. Our algorithm thus enumerates an exponential number of plans. However, with a few simple heuristics to cut down the number of plans and the heavy use of memoization, it performs well in practice as we now illustrate.

Extensions

We now present extensions to this method that we are considering for the future.

Combine with a cardinality estimation on nodes

For the moment, our method relies on the semantic relationship carried by the predicate. Relying on this relationship works well for some query shapes but it is not very efficient on some other such as star-shaped queries.

A star-shaped query is a BGP query in which there is a variable shared by all triple patterns, and this variable is the only variable shared between two TP. For instance let us consider the query C3 from watdiv shown below. Our method guesses that there are at most ∼ 2.45 billions solutions while there are actually ∼ 42 million solutions to this query. Our prediction is thus far from the actual number (yet for a query with 6 auto joins two orders of magnitude is reasonable and can still be useful for plan generation).

The problem with our method on this query is that our method relies on the semantic relationship carried on the edges. In the above query C3 our method rightfully guesses e.g. the number of gender (?v5), of given names (?v6), of age (?v4) per ?v0 (that is why our guess that is not too far off) however our method does not precisely get how many distinct v0 have all the properties likes, f riendOf , etc. One way to be much more accurate on such patterns would be to use methods of cardinality estimation based on nodes such as the Characteristics Sets [START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins[END_REF].

The characteristics sets define a "type" for each node in an rdf graph based on which predicates label the outgoing edges of the node. With p different predicates there can 2 p types but in practice many different nodes have the same type and it suffices to merge very similar types to have a manageable number of types.

Without this merging of types, the cardinality estimation on star shapes query such as C3 would be exact. Therefore it is not surprising that their cardinality estimation is very precise on such queries. However, as soon as the query is not star shaped, the precision decreases rapidly.

The characteristic set method is not a worst-case analysis for general queries but, even with the merging of similar types, it is a worst-case analysis for star-shaped queries. We plan in the future to use the characteristic set method to improve the accuracy on star shaped subpatterns appearing in queries. Since of the main drawback of our method is the accuracy on such patterns, we believe the global accuracy of our system would be much improved.

Consider subsets of columns for summaries

For the moment, the summaries described above are applied column by column, a collection summary is essentially the combination of the summaries of the multisets that are projection of a column. We could also consider collection summary as the combination of the summaries of the multisets that are projection of a subset of the columns. For a collection that has n columns, this would means 2 n summaries but n is generally very small. And when n is large we could limit ourselves to subsets that appear as a key of a join, or subset of less than k column (which means n k summaries). This could also enable us to treat the case of missing values, i.e. collection summaries for collections where the domain of mappings are not all the same.

Cardinality estimation for the full µ-algebra fragment

The method we have presented so far can be easily translated for the conjunctive queries of µalgebra (i.e. the µ-algebra programs composed of joins, filters and variables). While there are no reason to suppose that most µ-algebra programs are conjunctive, many of the µ-algebra programs we manipulated (and produced via a sparql translation) contained conjunctive parts where the optimization (and thus the cardinality estimation) was important.

Using the extension presented above to work on subsets of columns with potentially missing values, we can estimate the cardinality of the union, minuses and joins. The handling of several other operators is also trivial with collection summaries: renaming, duplication, removal of columns can all be performed with the same operations on summaries.

For the udf operators (aggregation and mapping) we can not get a precise a list of values for the output columns since they are treated as black boxes. But we can say that the number of mappings after the operator is less than before the operator was applied (and exactly the same for mappings) and that untouched columns contain the same multiset of values. In aggregation, we can also say that the n-upplet containing the key column is unique.

The cardinality estimation for fixpoints is an hard and interesting problem. For instance, in sparql, the transitive closure on a predicate (such as ?a knows + ?b) can lead to a number of solutions that is anywhere between linear and quadratic in the number of triples with knows.

In our prototype we rely on a worst case analysis: we compute the number of distinct values each column can take and simply make the product (since two different mappings need two different value in at least one column). This analysis leads to very far off cardinality estimation in many scenarios but it handles well the cases of transitive closures where of the part of the closure is fixed.

Conclusion

In the present study, we introduced a worst-case cardinality estimation based on a new concept: collection summaries, which are extracted from statistics on the data. We have showed how to compute collection summaries for Basic Graph Patterns and how they can be used to estimate the cardinality of query answers.

With this cardinality estimator, we now have all the pieces for evaluating sparql queries using the µ-algebra. The next chapter will now assess the benefits of our approach in comparison with the state of the art.

CHAPTER 7

Comparision of our approach with the state of the art

In the last chapters we have presented all the building blocks necessary to write an efficient sparql query processor. Using these building blocks we have implemented two sparql query evaluators based on this method. A natural follow-up question is to investigate the benefits of our approach in comparison with the state of the art.

The results of this comparison will be split into three parts: in the first part, we will demonstrate that, from a theoretical perspective, our µ-algebra considers query execution plans for queries with recursion that other methods cannot consider.

In a second part we will rediscover this theoretical comparison from an experimental perspective. We will run various query executors ( sql based, Datalog engines and native sparql query executors) and exhibit a query and a large class of graphs on which all query executors (except ours) performs at least quadratically in the number of nodes in the graph while our imple-mentation has a linear time complexity. We will then carry on with more queries and more graphs to show that our method can often outperform others in various scenarios.

As we showed in chapter 1 of the preliminaries, Spar-qlGX is on par with other state of the art distributed query evaluators. It has a very good average query times but sometimes choose poorly its query execution plans. In the third part of this chapter, we will thus present how the cardinality estimation scheme presented in chapter 6 allows us to chose smarter query execution plans and can drastically improves the performance of SparqlGX.

Theoretical comparison of µ-algebra bottom-up evaluation and other approaches on recursive queries

The optimized evaluation of sparql is well studied especially for the BGP fragment. The evaluation of recursive queries is also a well studied subject especially outside of the sparql language. As we have seen, sparql 1.1 introduced Property Paths that can contain recursive parts. The specific question of Property Path is a subject that has been much less tackled than the BGP fragment as noticed by [YGG15, BBC + 17].

Complex queries (for instance containing recursion) are not are not always supported by query evaluators and when they are, they also are not well optimized. The gMark benchmark [BBC + 17] compared various possible backends for graph databases. Their benchmark included SQL databases, Datalog engines, native graphs databases based on openCypher or sparql. With their benchmark, they found out that "In the presence of recursion, [they] actually observed numerous failures on the majority of the studied systems". This observation arrives despite using relatively small graphs (less than 16 000 nodes) and relatively simple queries (union of regular path queries).

In this section, we will examine the various ways of handling those type of Regular Path Queries and will compare sparql-tailored query engines along with other query engines. In this section we propose to compare our approach to various lines of work that have tackled the subject from the more ad-hoc, tailored for sparql to very general approaches: Reachability joins, Waveguide, Regular Path queries, SQL extended for recursive queries and finally recursive Datalog.

For this section, we introduce a syntactic sugar to explain more precisely the difference between the plans of each formalism. Given two terms ϕ and ψ, both defining binary relations between the columns s and o, we define as syntactic sugar: ϕ/ψ = π mid (ρ mid o (ϕ)) (ρ mid s (ψ)) .

The relational algebra

The relational algebra introduced by Codd built the foundations of our work. Similarly to our work the relational algebra operates on a "set semantic" (while SQL operates on a "bag" semantic). The relational algebra differs from our work in several points. The two most salient ones being that the relational algebra works on a fixed domain and that it is not equipped with a fixpoint operator.

There exists a line of work (see e.g. [START_REF]Alpha: an extension of relational algebra to express a class of recursive queries[END_REF]) to extend the relational algebra with an operator α representing recursive queries. If ϕ is a relational algebra term defining a binary relation, α(ϕ) represents the transitive closure of ϕ. If this operator is sufficient to represent sparql, it does not allow for a plan space as large as our µ-algebra. Indeed with ϕ 1 /ϕ 2 /ϕ 3 , the α-extended algebra does not distinguish between the two following plans :

• the plan where we compute ϕ = ϕ 1 /ϕ 2 before computing the transitive closure, which corresponds to compute R 0 = ϕ then R i+1 = R i /ϕ

• the plan where at each step we join with ϕ 1 or ϕ 2 , i.e.

R 0 = ϕ, R 2i+1 = R 2i /ϕ 1 , R 2i+2 = R 2i+1 /ϕ 2 .
Furthermore, when producing a plan for a query such as ?a knows * bob this algebra represents the query as something similar to σ o=bob (α(knows(?a, o))) where the knows * is on its own (without the fixed part bob) even though at the execution of the query we probably do not want to compute the whole knows * relation but rather start from ?a = bob and progressively discover ?a such that ?a knows * bob.

As we have seen, several rdf data engines use sql as a backend for querying. And since sql supports recursive queries through Common Table Expression (CTE), one way to handle recursive queries would be to just translate those with recursive CTE. However the support of recursive CTE varies very much between vendors:

• some explicitly do not support recursive CTE such as MariaDB / MySQL ;

• some have a partial support (e.g. they do not support cycles) such as Oracle ;

• such some support all type of CTE but consider CTE as optimization barrier (which prevents pushing selections into them) such as PostgreSQL and SQLite ;

• and finally some support CTE with optimization but this optimization is similar to a "Magic Set" approach which does not optimize all queries.

This approach was followed in [START_REF] Yakovets | Evaluation of sparql property paths via recursive sql[END_REF] but as the authors note and the authors of [BBC + 17] also note, this method is not very successful as the databases engines are not tailored for this kind of use and most of them do not optimize recursive CTE. Some SQL vendors are therefore capable of expressing recursive queries but not optimize them.

sparql based method of optimization sparql-algebra

The building blocks of the sparql-algebra are the Property Paths and the Triple Patterns. They can be combined with various types of joins and minuses but there is no recursivity in sparql outside of the Property Paths blocks. Which means it is not possible to constrain a recursive Property Path inside the sparql-algebra.

For instance if we have Join(P P (?a knows * ?b), P P (?a name John)) there is no plan grouping the two PP into something like P P (?a[name John]/knows * ?b). In practice an evaluator might chose to evaluate P P (?a name John) and then choose the mappings solution and build from them to produce the mappings solution of both PP but it cannot represent this plan differently than joining the result of both PP.

The evaluators ARQ and Virtuoso are both based on the sparql algebra. Virtuoso has this quadratic behaviour (even though it is very fast) but does not seem to be affected by the order of the query. ARQ time complexity seems to depend on the order of the query but the way it is programmed makes ARQ unable to handle queries on graphs larger than 3000 nodes and we can therefore not really attest of the quadratic or not behaviour.

Automata

Given a Regular Path Query, it is possible to translate the regular expression into an automaton and use this automaton to evaluate the query.

One way to evaluate the query with an automaton and manipulate tuples (n 1 , n 2 , q) to indicate that there is a path from n 1 to n 2 labeled by q. At the beginning we either start With this rewriting the Datalog evaluation will only manipulates X that are named axel in KT rans and thus not compute the set of pairs of people linked by a chain of knows but only a subset where the first is named axel.

Note that for this adornment to work we need simultaneously to have the Datalog engine to adorn N amed before KT rans in the Sol rule and since X is the first variable of KT rans, we need KT rans to be the "right" translation of knows * (in opposition to the "left" translation which would be the equivalent KT ransRev(X, Y ) : -Knows(X, Y ), KT ransRev(X, Y ) : -Knows(X, Z), KT ransRev(Z, Y )).

In our benchmark we used the well-known Datalog developed by Ramsdell1 tool, the dlv engine and the Vlog system[UJK16].

An experiment for µ-algebra bottom-up with a recursive query

In this section we translate our theoretical comparison into an experimental one. To that end we compare our prototype using the techniques presented in this paper with other existing RDF or SQL stores in the context of SPARQL with recursive Property Paths and we show that our prototype do deliver the theorized complexity and thus outperforms other approaches.

Query used

Our first query consists in the query to retrieve the pair of nodes x and y such that x is linked to bob with an edge named and is linked to y through a path composed of edges knows. There are several version of this query:

• the sparql version of the query is given in the figure 7.1;

• the SQL version of the query had to be slightly adapted for each SQL store but we give the Postgres version in figure 7.2. These hand-translated SQL versions suppose that the data is stored without prefixes with one table "subject-object" for the predicate <http://example/named> and one for <http://example/knows>) with indexes;

• we also considered a Datalog version of the query presented in figure 7.3. Notice that the Datalog query also contains the graph that is partially omitted for obvious space reasons. In the Datalog version the query is simplified to its bare minimum: we just asks whether there is a path from any node to 42 an the path is either a reflexive, transitive closure or just a transitive closure. path (X,Y) :-path (X, Z ) , edge (Z ,Y ) . s o l :-path (_, 4 2 ) . s o l ? path (X,X) :-edge (X,_) . path (X,X) :-edge (_,X) . path (X,Y) :-path (X, Z ) , edge (Z ,Y ) . s o l :-path (_, 4 2 ) . s o l ? 

Graphs

We considered several graphs: a chain of n nodes and a simple loop. In both cases <http://example/name is linked to <http://example/name_i + 1> which is represented is figure 7.4 and in the loop we additionally connect the first and last nodes. 

SQL

SQL is based on the relational algebra. Both have been extensively studied either for themselves or in the context of sparql query evaluation. However using SQL for the optimization of sparql has been not been very successful even without considering PP [START_REF] Erling | RDF Support in the Virtuoso DBMS[END_REF][START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins[END_REF]. Even if they are not supported by all SQL stores, recursive queries do exist in SQL. Vendors introduced in their product various extensions allowing some kind of recursion and in its 99 version, SQL introduced Common Table Expressions (CTE) allowing recursive queries. Recursive CTE allow for a very broad kind of recursive queries, broader than what is allowed in the α-extended. However not all SQL databases support all these features (e.g. MySQL does not even support recursive CTE) and vendors generally consider CTE as "optimization fences". We benchmarked several SQL databases in our benchmark comparison. Jena is an Apache framework for building semantic web and linked data application. ARQ is the SPARQL query evaluator of Jena and it has full SPARQL 1.1 support.

ARQ does optimize queries but its optimizer does not optimize all SPARQL 1.1. Figure 7.6 reports on the time spent evaluating queries on two queries ARQ 1 and ARQ 2 . ARQ 1 is our benchmark query while ARQ 2 is the same query but where we exchanged the order or the PP. As the figure shows ARQ sometimes also has the quadratic behaviour (depending on the order the PP in the input query). ARQ, even with the "good" ordered query ARQ 1 , breaks with a stackoverflow when evaluating paths with around 3000 nodes . Virtuoso also optimizes queries and is pretty fast (the fastest beside our prototype) but as we see in figure 7.7 it still exhibits a quadratic behaviour. Virtuoso does not seem to depend on the order of PP in the query. 

Our prototype

The query of our benchmark is similar to the example query of section 3.5. Its naive translation is: s π o σ o=name_42 (T ) . After optimization it is: µ(X = init ∪ π m (K ρ m ?a (X))) where init = β ?a ?b π o σ o=name_42 (ρ ?b s (T )) and K = π p σ p=knows (ρ m o ρ ?a s (T ) ) . We verify experimentally that the execution time for our prototype is linear. Our results are presented in figure 7.9 (note that the Y axis goes from 0 to 4 × 10 6 and not to 10 8 as in other figures and the X axis goes up to 10 6 ). 

Pushing the benchmark further

In order to get a more precise picture of how much our method improves on existing methods, we wanted to use a benchmark making use of linear recursion. The simplest use is the Union of Conjunctive Regular Path Queries. In the tasweet paper, the benchmark is composed of a single disjunctive RPQ on a single graph, the recent gMark benchmark includes what they call "recursive" queries through a custom extension of SPARQL that allows to repeat Property Paths but only a limited number of times.

That is why we devised an experiment to compare the tools performing the best in our first tests with our prototype based on the µ-RA. We designed our benchmark to have simple queries on large graphs.

Competitors In our second setup, we removed ARQ and SQLite, which performed very poorly in our first setup. We also removed Virtuoso that was the second top performing in our first benchmark (after our prototype), as it is limited to a very specific type of recursive queries (in our benchmark, only 2 of the 10 queries were accepted by virtuoso).

Queries As randomly generated queries tend to have too few or too many solutions, we selected 10 queries containing between one and three fixpoints and presenting diverse behaviours on query engines. These queries are presented in Table 7.1; the number of solutions to our ten queries are presented in table B.1 and in figure 7.10.

Graphs

We also generated randomly graphs with varying number of nodes n (with n logarithmically spaced between n = 100 and n = 50 × 10 6 ). In these graphs there were 5 labels P 1 to P 5. The edges were generated randomly such that the label P i corresponds to 2n(1 -i/5) + 20 edges. This allows for P 1+ to be very large (roughly n 2 ) while P 5 is always very selective (with 20 edges). In order to ensure that all queries had solutions, for each label P i, we also added edges N 0

P i -→ r 1 , r 2 P i
-→ N 0 and N 0 P i -→ N 0 (for two random nodes r 1 and r 2 ).

Setup For each of the graphs and each of the queries we measured the query time (it thus does not include the time to load the data). These times include the time to optimize the query. The complete results are shown in Table B.2 of the appendix (times are in milliseconds) and in the plot of figure 7.11. As for the first benchmark, we gave Postgres indexes for a fast access to both sides of edges.

Q1 and Q2 Q1 and Q2 have roughly the same solutions. This is not necessary (the queries are not equivalent) but it is due to the fact that P 1+ captures almost all pairs of nodes while P 5+ is very close to P 5. Postgres has the same behaviour on both queries: by looking at the plan the Postgres optimizer selected, we see that it computes P 1+ and P 5+ or P 5 separately and then joins the results. It is thus not very surprising that both queries take roughly the same time since the computation of P 5+ is fast (as it is very small).

On the opposite, our prototype is slower on Q2. The query plan for Q2 selected by our prototype is a merged fixpoint starting from P 1/P 5 and appending/preppending P 1 and P 5. For Q1, our prototype starts from P 1/P 5 and just tries to prepend P 1 which takes less time, hence the time difference between Q1 and Q2. However, our prototype still is the fastest on both queries as it does not try to materialize the full P 1+.

Q3, Q4, Q5 On these queries, our prototype starts from a set of valid triples ?a, ?b, ?c then discovers new solutions. These plans are optimal in the sense that all partial solutions are solutions of the query but our prototype is not always the fastest.

Q3 Postgres is the fastest on Q3. Q3 has a lot of solutions (∼ 10 6 for n = 1000 and ∼ 10 8 for n = 2500). Postgres evaluates this query by computing all the transitive closures Q4 On Q4, we see that many of the evaluators perform roughly the same. Despite the fact that Postgres has access to indexes and and is very efficient, our prototype is slightly faster on large graphs our prototype, this can be attributed to the optimality of our plan that starts only from valid triplets.

Q6, Q7, Q8 & Q9 These queries include a constant node (N 0) from which our prototype will start building solutions. It is therefore not surprising that our prototype outperforms the other systems.

Q6 On Q6, all systems except our prototype seem to materialize P 1+ which takes a lot of time. Systems fail on Q6 as they fail on Q1 and Q2.

Q7, Q8 & Q9 all these queries are queries where the Datalog engines outperform Postgres. This is due to the triggering of the magic set algorithm that avoids the full materialization of the P 1+ relation. Despite this use of the magic set, these query engines perform an order of magnitude slower than our prototype except on a few graphs where the number of solutions is very small. Q10 This query includes three fixpoints on P 3, P 4 and P 5. For each of these predicates P i, the size of P i+ stays linear in the size of P i (contrary to e.g. P 1 for which the size of P 1+ grows quadratically with the graph size). This is why query engines such as Postgres perform well. Our prototype starts with pairs (?a, ?b) that are solutions to ?a P 4/P 5 + ?b with a fixpoint; then it computes solutions to ?a P 4/P 5 + /P 3 ?b 10 3 10 4 10 5 10 6 10 7 10 -2 (which is a valid solution) then, in a second fixpoint, grows this fixpoint by adding a ?a or a ?b.

Synthesis

In all queries, our system performs well, beating the Datalog engine on nearly all the graphs for all the queries. Furthermore, in the majority of the queries we considered, our system outperformed Postgres, often by several orders of magnitude. For the setups where our system is outperformed by Postgres, the difference is less important and can be imputed (in a large part) to the sheer performance of Postgres plan execution and not its plan space. Indeed, in Postgres, we stored triples as integers with indexes on both sides of edges while our prototype stores triples using a simple scheme and plain text files.

Sources to run the benchmark can be found on https://gitlab.inria.fr/tyrex-public/ mu-RA and sources to our prototype can be found on https://gitlab.inria.fr/jachiet/ musparql.

Efficiency of distributed sparql query evaluators

The efficiency of query evaluators can be assessed for a wide range of different scenarios and along a wide set of metrics. This efficiency is measured on several runs of a batch of queries on a given dataset. Theses measurements therefore depend on the scenario (the dataset and queries used). The efficiency is often considered using the metric "mean time to answer a query". In this section we will therefore base our comparison on this metric but it is also possible to include other metrics which is something that we investigated further for distributed sparql query evaluators in [START_REF] Graux | The SPAR-QLGX System for Distributed Evaluation of SPARQL Queries[END_REF].

Handling simple queries (e.g. BGP) on very large graphs is a subject that has been attempted, CliqueSquare, PigSPARQL, S2RDF and RYA are example of stores capable of handling large datasets.

We report here on the empirical comparison published in [START_REF] Graux | The SPAR-QLGX System for Distributed Evaluation of SPARQL Queries[END_REF] (in which I participated) comparing several open source and state of the art sparql query evaluators. This comparison uses two popular benchmarks for sparql: LUBM and WatDiv. These benchmarks contain a set of queries (Q1-14 for LUBM and F1-5, C1-3, L1-5 and F1-5 for WatDiv) along with a dataset generator. The figure 7. [START_REF][END_REF] shows the query time for LUBM10k that is LUBM with a dataset of 1.38 billion triples and for WatDiv1k that is WatDiv with a dataset of 109 millions triples. As we can see on the figure the comparison is mixed: some evaluators perform well on average but poorly on some queries (such as RYA); others perform well but cannot handle very large datasets (such as 4store). As one can see, SparqlGX, which is a sparql query evaluator that we developed [START_REF] Graux | SPAR-QLGX: efficient distributed evaluation of SPARQL with apache spark[END_REF], performs well on average. However, as noted by [START_REF] Abbas | Optimising SPARQL Query Evaluation in the Presence of ShEx Constraints[END_REF], plans selected using simple statistics by SparqlGX are sometimes suboptimal which will motivate the need for more diverse plans (and thus our algebra) along with better statistics (and thus our cardinality estimation). 

Experimental of SparqlGX with our cardinality estimation

As we have seen in the last section, SparqlGX is a competitive distributed sparql query evaluator. We have implemented the cardinality estimation scheme described in chapter 6 into the SparqlGX evaluator and in this section we report on our benchmark testing the impact of our cardinality estimation on the performance. Since SparqlGX already has optimization strategies based on statistics, the SparqlGX-core can be used as a common basis of comparison to benchmark the various optimization modules. The source code of our complete prototype is available online with SparqlGX.

Related Work

Estimating the number of solutions for a query has long been viewed as a key element in the optimization of queries and it is a well-studied problem in the relational world A second line of work [START_REF] Kim | Type-based semantic optimization for scalable RDF graph pattern matching[END_REF] takes as input an actual schema and produces an optimized query plan based based on information extracted from the schema.

A third line of work [START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins[END_REF][START_REF] Gubichev | Exploiting the query structure for efficient join ordering in sparql queries[END_REF] tries to derive the implicit schema of an rdf graph by fitting nodes into characteristic sets, or by summarizing [START_REF] Gurajada | TriAD: A distributed shared-nothing RDF engine based on asynchronous message passing[END_REF] the graph into large entities. These approaches are the closest in spirit to the approach that will present but they tend to focus on finding an implicit schema type for nodes while our approach is more focused on finding an implicit schema for edges.

Setup

Our cardinality estimator was tested using various k for the statistic size k = 0, k = 100, k = 1 000, k = 10 000. We also compared ourselves with the stats module of SparqlGX [GJGL16b] that re-organizes tp using statistics about the dataset collected at load time plus general heuristic to obtain a fast query execution plan. We also compared this enhanced SparqlGX with NoOptim module of SparqlGX that does not optimize anything.

Our prototype uses Apache Spark [ZCD + 12] version 2.1.0 in a cluster of two computing nodes running debian each equipped with 20 GB of RAM and 24 cores of computation. The dataset was stored using Hadoop 2.7.3.

Datasets and queries

We tested the optimization against the benchmark Lubm [GPH05] 10k that contains 1.38 billions triples and weights 232 GB uncompressed while the WatDiv [AHÖD14] 10k contains NoOptim Stats k=0 k=100 k=1000 k=10000 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 In Lubm, most queries (Q4 to Q13) compute an empty answer unless the dataset is extended with reasoning. We did not extend the dataset with reasoning but we left those queries as it is an interesting use-case of our method to detect empty answers (which it fails to do for instance for Q11 by predicting 20 results or less).

The time spent in evaluating each query of these benchmarks and each query optimizer are shown graphically in figure 7.17 and numerically in figure 7.18. These times do not include the translation time that took less than one second for all queries except for C2 and F 4 with k = 10 000 (for which it took approximately 10s but we have no doubt that this compilation could be further optimized). Notice that the time axis of the figure 7.17 is logarithmic.

Experimentation

Between each query the Spark cluster was stopped and relaunched. The OS did not restart between queries but we flushed the writing cache. All queries ran three times and we interleaved the different methods so that all methods benefit equally from the read cache. We took the best of the three for each method (other metrics would give an advantage to the last tested method). All experiments were stopped after 10 minutes of computation. That "stats" query optimizer of SparqlGX had to be stopped for the query Q13.

The statistics were collected with a double pass on the data during the load phase and the uncompressed size of the collected statistic is 28 MB for WatDiv, 7.8 MB for Lubm and 143 MB for DBpedia, for k = 10 000 (it is roughly linear in the size of k). Compared with the dataset size, the size of statistics is negligible (less than a thousandth) and the computation time of statistics is also negligible compared with the loading time. However during the translation of a query with n triple patterns we can compute up to 2 n summaries each of size roughly linear in k. Therefore a k larger than 10 000 would imply a long computation time. This problem could be tackled by adapting k dynamically in consideration with the number of triple patterns in the queries and their constant parts.

Results: comparison between different query optimizers

On most queries, the SparqlGX query evaluator goes the fastest when equipped with our summaries and k = 10 000. And the query time tends to decrease as k increases. On the opposite there are several queries with a non-empty result where our method vastly outperforms the stats module of SparqlGX. Moreover, see figure 7.17, the NoOptim module of SparqlGX is always slower -by sometimes two or more orders of magnitude-than our summaries with k = 10 000. Nonetheless, when dealing with very simple sparql queries, e.g. Q6 & Q14 of Lubm, involving only one tp, the five tested cases appear to need similar times to answer.

There are two queries for which the stats module is faster than our k = 10 000 optimizer: C2 and F 4. Both queries are complex but the problem is with the fact that Spark evaluation adds a constant, non negligible constant time on the evaluation of small broadcast joins. Indeed, broadcast joins imply to collect the data on the driver before sending it and the collect operation in Apache Spark is costly: it forbids other operation to run in parallel and a few seconds of delay to wait for all executors to finish where only a fraction of the cluster is working. We try to fix our cost model to take this fixed cost into account but then we were cornered by the limit of precision of our cardinality estimation.

Notice our approach can lead to very sub-optimal plans when the cardinality estimations are very far-off; but in these benchmark queries our query plans are all optimal or near optimal in query evaluation time.

Precision of the cardinality estimations

On the 34 queries of the benchmark there are only 28 for which algorithm prediction was off by less than 10 6 solutions and 15 that are off by less 100.

The queries of WatDiv and Lubm are designed to be relatively complex queries containing large star patterns and it is thus not surprising that our estimations are sometimes far-off by one or two orders of magnitudes (sometimes even more). Furthermore these queries tend to be very selective compared with the size of intermediate sets involved. However we would like to point the following:

• the useful cardinality estimations to optimize the query are not on the final query but on subqueries, and in this benchmark subqueries are often much more precise (as the precision degrades with the number of TP involved);

• we are using overestimation, which means than an error will never trigger a risky plan;

• even on far-off cardinality estimations our cardinality estimation tends to favor good plans; for instance if we have three sets A, B and C and the estimation of A is k times the actual number of elements in A, then the estimated cost of the plans (A B) C

and (A C) B will be multiplied by k but are generally kept in the same relative order (unless C and B are also far-off);

• if we fall back on another cardinality estimation for the join orders and use the worst case estimation only for broadcast joins then even a factor of 100 is actually not very much. If we allow the broadcast of sets of size up to 10 8 then a error of two order of magnitude -i.e. 100×-effectively allows broadcast for sets of size up to 10 6 .

Conclusion

In this chapter, we have evaluated the benefits of our contributions. This evaluation was split along three criteria.

In the first part, we compared the plans that are considered for recursive queries when using our µ-algebra and the plans that can be considered with other query evaluators such as the relational algebra, Datalog and other sparql query evaluators. This comparison shows that our µ-algebra considers more plans and among those additional plans are plans that are much more efficient.

In the second, we translate this theoretical into an empirical comparison. We choose a very simple query for which our method considers more plans and we observe that our prototype implementation takes a time linear in the size of the graph to be evaluated while others methods take a quadratic time. This results is not surprising after our theoritical comparison but it validates the comparison experimentally.

Finally in a third part, we compare the performance of SparqlGX equipped with diverse query optimizers. A heuristic one, a statistical one and four variations of the cardinality estimator that we introduced. The results are that our new cardinality estimation allows SparqlGX to choose better plans. Equipped with our estimation, SparqlGX performs faster on most queries, sometimes by an order of magnitude.

CHAPTER 8

Conclusions & Perspectives

Conclusions

During my PhD, I tackled the question of the efficient evaluation of sparql and proposed a new approach based on a new tool: the µ-algebra.

Chapter 1 presents rdf and sparql. rdf is a data model describing graphs. sparql is a rich language to query rdf graphs. sparql query evaluation raises challenges: how to evaluate such a rich query language on graphs that are, by nature, very large. More precisely: how can we find efficient query plans to handle even simple queries but on very large datasets? How can we find efficient plans for complex queries on which today's evaluators tends to fail even on relatively small datasets? Since the relational model was at the center of most of the research in database, before addressing those questions, we needed to dive into the relational model and what it can offer to evaluate sparql queries.

Chapter 2 briefly presents the relational model and its query languages. The research on the relational algebra and sql in particular are a great basis on which we can build query evaluators and optimizers. However, in their current form, relational-based sparql query evaluators suffer from inefficiencies and there are multiple reasons at the root of these inefficiencies:

• relational query evaluators do not optimize well some type of queries such as recursive queries;

• relational query languages and sparql do not match well semantically;

• and finally some features of sparql are hard to evaluate efficiently.

To address these two first points, we have presented our µ-algebra, inspired by the relational algebra but adapted to handle both the recursivity part and the non-relational (missing values) part.

Chapter 3 then presented this µ-algebra. This algebra takes its inspiration from the relational algebra but diverges on some essential points: as it name suggests the relational algebra describes relations while solutions to our algebra are sets of mappings that do not necessarily share the same domain. Furthermore our algebra is equipped with a novel fixpoint operator µ. For this fixpoint to be well-defined we restricted ourselves to "linear" terms and introduced a translation from a large fragment of the sparql-algebra to our µ-algebra. Since our algebra is a variation of the relational algebra and since the relational algebra optimization is based on rewrite rules, the direction we have followed is to investigate the rewrite rules and strategies can be applied for our µ-algebra.

Chapter 4, after some motivating examples, starts by introducing definitions, lemmas and theorems laying the ground work for new rewrite rules. We then equipped our µ-algebra with a typing system capturing the shape of the domain of the solutions for a µ-algebra term. The chapter continued with the presentation of our rewrite rules that we decomposed into "normalizing" rules and "producing". The "normalizing" rules allow us to reduce the search space for terms will the later allow us to discover new terms. Finally, we presented our rewrite algorithm and an example of a term rewritten. Now that our method can produce numerous equivalent terms, there are two natural questions: how can one evaluate those terms? how to select the most efficient term to be evaluated? These two questions are inherently linked as the efficiency is relative to the evaluation method. We therefore tackled both questions in the following chapter.

Chapter 5 investigated how we can evaluate µ-algebra terms and deduced from this evaluation a cost model for our general evaluation scheme. We have then presented two evaluators that we implemented based on this general compilation scheme. These two evaluators correspond to two different types of applications: SparqlGX handles only a fragment of the sparql languages but run on an efficient distributed platforms, musparql on the other hand is a single core evaluator but can handle and optimize complex queries. In our general optimization scheme for the evaluation of µ-algebra terms, we rely on a cost model to guess what is the estimated best QEP. And this cost model itself relies on a cardinality estimation. While a naive cardinality estimation already leads to interesting results, we investigated the use of more complex schemes to assess the number of solutions to a µ-algebra term. The task of estimating the number of solutions to a given query, even a simple conjunctive query, has been the center of many research projects and yet still is an active research subject.

Chapter 6 introduced a worst-case cardinality estimation based on a new concept: collection summaries, which are extracted from statistics on the data. We showed how to compute these collection summaries for conjunctive queries and how they can be used to estimate the cardinality of query answers. With this cardinality estimator, we had all the pieces for evaluating sparql queries using the µ-algebra.

Chapter 7 evaluated the benefits of our contributions. This evaluation is split along three criteria. In the first part, we compared the plans that are considered for recursive queries when using our µ-algebra and the plans that can be considered with other query evaluators such as the relational algebra, Datalog and other sparql query evaluators. This comparison showed that our µ-algebra consider more plans and among those additional plans are plans that are much more efficient. In the second, we translated this theoretical into an empirical comparison. We choose a very simple query for which our method considers more plans and we observed that our prototype implementation takes a time linear in the size of the graph to be evaluated while others methods take a quadratic time. This results validated experimentally the theoretical comparison. Finally in a third part, we compared the performance of SparqlGX equipped with diverse query optimizers. A heuristic one, a statistical one and four variations of the cardinality estimator that we introduced. The results are that our new cardinality estimation allows SparqlGX to choose better plans. Equipped with our estimation, SparqlGX performed faster on most queries, sometimes by an order of magnitude.

Perspectives

Cardinality estimation

We have many ongoing research ideas to improve the cardinality estimation that are detailed in section 6.4. We could improve the precision of our statistics by combining them with other statistics provided by other ongoing works in the field of cardinality estimation.

Our statistics works relatively well for the conjunctive fragment (which corresponds to the BGP fragment of sparql queries). It would be interesting to further investigate the precision of our method on BGP but also on richer fragments. A good precision might be very hard to achieve on the full µ-algebra but a first step would be to assess the precision of our method e.g. on the fragment composed of safe unions and conjunctions which is notoriously hard to optimize.

On the languages covered

For the moment, our system has only be tested for sparql. There is current trend of more and more languages and it would be interesting to research how well other query languages can be translated into the µ-algebra and benefits from our approach.

In our work, we expect to see the µ-algebra as a potential target language for several expressive language. One language that we could investigate is OpenCypher which is a graph query language that includes regular path queries and operates on property graphs. Another example of language that we could consider is XPath. XPath allows some restricted form of recursive queries. Our language could be seen as either as a target for XPath or for regular XPath which allows for unrestricted recursive queries.

As we have seen, one very interesting aspect of our µ-algebra is its ability to capture more rewriting that what SQL and Datalog were natively capable of. One direction that we could investigate is to try to apply directly our optimization to Datalog and SQL engines. In fact, even if we do not have results just yet, this direction is already explored.

On the µ-algebra

For the moment µ-algebra is evaluated either in our prototype or, for a small fragment, translated into the distributed framework Spark. However, µ-algebra shares similarities with recursive SQL and one other direction that we could pursue is to investigate the compilation of µ-algebra into this recursive SQL using our intermediate representation as a logical optimization phase leaving the details of the physical optimization to well-tuned SQL engines. In a similar fashion, we could investigate the translation of µ-algebra into Datalog.

µ-algebra possesses naturally a set semantics. Just like SQL that can be seen as a bag semantic version of the relational algebra, we could investigate the potential of µ-algebra equipped with a bag semantic: what rewriting rules continue to hold, etc.. There are many cases where such a set semantics would be more appropriated and we could foresee that the translation of sparql would be simpler as this modified µ-algebra would directly have a set semantics.

Finally the µ-algebra is a relatively rich language and as one of the advantages of sparql is to enrich data with ontologies, one direction that we could pursue is to rewrite incoming sparql queries to take into account the ontology. Thanks to the expressivity of our µ-algebra, we could take into account a broad class of ontologies.

On its execution

For the moment, the evaluation of µ-algebra terms is implemented as a prototype in a single core evaluator. There are several directions of improvements for this evaluator.

The current prototype uses rather naive implementation that we could optimize. For instance the data structures to encode rdf graphs are essentially strings. It would be much more efficient to use an auxiliary data structure to encode uri, blank nodes and litterals not with strings but with pointers or integers and put more indexes on data. Such optimization would not necessarily improve performance in a distributed setup but they would in a singlemachine implementation. Furthermore, we could also improve the efficiency by using multiple core to implement the various operators.

As explained in section 5.4, SparqlGX can be seen as an implementation for a small fragment of µ-algebra in Apache Spark. Apache Spark does not possess an efficient iteration for the moment and Spark model of computation is very far from a stream approach as described in chapter 5. One direction we should investigate is the translation of our prototype in a distributed framework using more a dataflow approach (more similar to the compilation we presented) or equipped with a real fixpoint computation.

when sim(ψ, Y ) = 0 we have let (Y = ϕ) in ψ V [X/S] = ψ V [X/S,Y / ϕ V [X/S] ] = ψ V [X/S,Y /∅] and by induction on ψ, A ⊆ B ⇒ ψ V [X/A,Y /∅] ⊆ ψ V [X/B,Y /∅] and thus the result holds.

when sim(ϕ, X) = 0 we have let 

(Y = ϕ) in ψ V [X/A] = ψ V [X/A,Y / ϕ V [X/A] ] = ψ V [X/A,Y / ϕ V [X
(Y = ϕ) in ψ V [X/A] = ψ V [X/∅,Y / ϕ V [X/A] ] ⊆ ψ V [X/∅,Y / ϕ V [X/B] ] = let (Y = ϕ) in ψ V [X/B] .
A.1.3 Theorem 1

Theorem 1. Given a fixpoint expression µ(X = ϕ) that is valid in the sense of definition 17 and an environment V , the function f (S) = ϕ V [X→S] has the following properties:

1. ∀W = ∅ f (W ) = w∈W f ({w}) 2. ∀A, B, C A = B ∪ C ⇒ f (A) = f (B) ∪ f (C)
3. f has a least fixpoint P with P = µ(X = ϕ) V

Proof. We will first prove by induction on the size of formula the following property: given a valid term ϕ, for all S we have ∀m ∈ ϕ V [X/S] ∃w m ∈ S m ∈ ϕ V [X/{wm}] .

• Using lemma 1 the property is clearly true for terms ϕ such that sim(ϕ, X) = 0. And the only variable Y with sim(Y, X) = 1 is X. For X the property trivially holds (with w m = m).

• For unary operators ϕ ∈ {β b a (ϕ 1 ) , ρ b a (ϕ 1 ) , π a (ϕ 1 ) , θ(ϕ 1 , g : C → D)} we have m ∈ ϕ V [X/S] implies the existence of m ∈ ϕ V [X/S] such that m is the image of m through this operator. By the induction hypothesis, for m there is w such that m ∈ ϕ 1 V [X/{w m }] and thus m ∈ ϕ V [X/{w m }]

• For a join operator ϕ = ϕ 1 ϕ 2 we have that since sim(ϕ, X) = sim(ϕ 1 , X) + sim(ϕ 2 , X) and sim(ϕ, X) = 1 then either sim(ϕ 1 , X) = 0 ∧ sim(ϕ 2 , X) = 1 or sim(ϕ 2 , X) = 0 ∧ sim(ϕ 1 , X) = 1. In either case m ∈ ϕ V [X/S] implies the existence of m 1 ∈ ϕ 1 V [X/S] and m 2 ∈ ϕ 2 V [X/S] such that m = m 1 + m 2 . For the i ∈ {1, 2} such that sim(ϕ i ) = 1, there exists w such that m i ∈ ϕ i V [X/{wm i }] . For j = 3 -i we have sim(ϕ j , X) = 0 and thus ϕ j V [X/S] = ϕ j V [X/∅] = ϕ j V [X/{wm i }] which means that in any case m 1 ∈ ϕ 1 V [X/{wm i }] , m 2 ∈ ϕ 2 V [X/{wm i }] and thus m ∈ ϕ V [X/{wm i }] .

• For the term ϕ = ϕ 1 λ ϕ 2 with λ ∈ { , \\ , \, -} any mapping m ∈ ϕ V [X/S] is built using at least one mapping m 1 from ϕ 1 V [X/S] . By induction, we have w such that m 1 ∈ ϕ V [X/{w}] . But sim(ϕ 2 , X) = 0 thus ϕ 2 V [X/S] = ϕ 2 V [X/{w}] and thus ϕ V [X/S] = ϕ V [X/{w}] .

• For the term ϕ = ϕ 1 ∪ ϕ 2 , m ∈ ϕ V [X/S] implies m ∈ ϕ 1 V [X/S] or m ∈ ϕ 2 V [X/S] .

By induction we have w such that m ∈ ϕ 1 V [X/{w}] or m ∈ ϕ 2 V [X/{w}] and thus m ∈ ϕ V [X/{w}] .

• Given the term µ(Y = ϕ) we have sim(µ(Y = ϕ)) = 0 (since it cannot be 2) and thus the result. A.2 Relationship between µ-algebra and existing relational variants

A.2.1 Turing Hardness of the µ-algebra

Our language comprises a map operator θ(ϕ, g : C → D) where f is supposedly taken from a set of reasonable expressions. Such expressions should contain at least the function x → x+1 as it is a function present in the sparql standard.

Adding a constant With just the function g : x → x + 1 it is easy to add any constant to a column of a mapping. Let Add(k, a, ϕ) be the term that adds k on the column a of the mapping solutions of ϕ.

To implement this function we can use the following recursive technique: Add(0, a, ϕ) = ϕ Add(k + 1, a, ϕ) = θ(ϕ, g : {a} → {a})

Note that here Add is not directly a µ-algebra term but a macro to generate µ-algebra terms.

• ρ q q (π v (π q (X T R ))) fetch the new state into q and the value w to write.

• π w (BinAdd(l, w, M ultiply(2, l, •))) actually writes w

• Divide(2, r, v, •) fetches the new value.

Encoding the left transitions is done in a similar fashion. We suppose that all theses transitions are encoded into the term Step(X) that computes one step of the TM:

Step(X) = Step R (X) ∪ Step L (X)
Encoding the computation As we have seen, if the variable X contains mapping representing TM, we can simulate the computation of the next state of the TM by a µ-algebra term. It is also easy to encode the initial state of the TM as the left and right side of the tape are initially empty and therefore can be both represented as 0. The overall term that returns a mapping corresponding to the final step of the TM if it exists or returns an emptyset is:

σ q=q f µ(X = |q → q 0 , v → 0, l → 0, m → 0| ∪ Step(X))
Note that if ϕ is linear in some variable X, then in all of our macros M , then M (ϕ) also was (at most) linear in X and therefore the final term is indeed be linear.

A.2.2 The halting problem

We have seen that TM computations can be encoded into µ-algebra, yielding a result only when the TM halts. Since µ-algebra has a negation, we can negate the output above and returns a non-empty set when the TM does not halt which proves that the µ-algebra is strictly more powerful than a TM.

A.2.3 Expressive power of restricted µ-algebra

As we have seen, equipping the map operator with even very simple function leads to the expressive power of a Turing Machine. That is why it is interesting to consider the expressive power of the fragment of our language that does not comprise the map θ(ϕ, g : C → D) nor the aggregation Θ (f, g, C, D) ϕ operators.

Syntactic sugar Some of our operator can be seen as syntactic sugar such as that is an union between a and a \. From an expressive power point of view we can remove those. As explained in section 4.2.1, it is also possible to get rid of let binders.

Safe unions One of the ways that our terms differ from the relational algebra is because our terms might have "missing values". As we will see in the next chapter it is possible to compute the set of columns that might be defined for any given term (this set also depends on the set of columns in the environment where this term is evaluated). Therefore for each union where the two terms might have a different set of column, we complete those terms so that their type match using a new value M ISSIN G (this is very similar to the translation of sparql to SQL that uses NULL).

Path(1,2). Access(1). Access(X) :-Access(Y), Path(X,Y) can be made 3-ary in the following way:

Path(1,2,c). Access(1,c,c). Access(X,c,c) :-Access(Y,c,c), Path(X,Y,c)

Step 2: one rule datalog Given a Datalog program P , we can always modify P so that there is only one recursive rule and one "output" rule in P . The idea is to first convert P into a n-ary program P (for some n) then creates a unique n + 1 rules that takes as its first argument the name of the rule. For instance, our running example becomes: Rec(path,1,2,c). Rec(access,1,c,c). Rec(access,X,c,c) :-Rec(access,Y,c,c), Rec(path,X,Y,c). Output(X) :-Rec(access,X,c,c).

From a derivation rule to µ-algebra It is a well-known fact that non-recurisve datalog and the relational algebra coincide (see e.g. chapter 14 of the alice book [START_REF]Foundations of Databases: The Logical Level[END_REF]). Given a production head( Ȳ ) : -body 1 ( X1 ), . . . , body k ( Xk ) we can translate body 1 ( X1 ), . . . , body k ( Xk ) using k -1 joins between each body i , renames to rename arguments of body i , antiprojections to remove existential variables, and filters for constants. Finally we use joins with constants for the constants of the head and renames for the variables.

For instance, if we translate the Datalog IBD Rec into a term Rec that has 4 columns (a 1 , a 2 , a 3 and a 4 ) the translation of the body Rec(access,X,c,c) :-Rec(access,Y,c,c), Rec(path,X,Y,c). is ρ Y a2 (π a 1 (π a 3 (π a 4 (σ a1=access∧a3=c∧a4=c (Rec))))) π a 1 π a 4 ρ Y a3 ρ X a2 (σ a1=path∧a4=c (Rec)) The whole translation is (using body to denote the above term): ρ a2 X (π Y (body)) |a3 → c| |a4 → c| |a1 → access| From inflationary Datalog ¬ to µ-algebra Given an inflationary-Datalog ¬ program P that, w.l.o.g., has recursive rule Rec and one output rule Output we can translate Rec to a fixpoint of the form µ(Rec = ϕ 1 ∪ . . . ϕ k ) where each ϕ i corresponds to one derivation of the rule Rec. Finally we translate each production of Output into a term ψ (where Rec is replaced by the fixpoint above) and we generate a term that is the union of all these ψ.

Given our initial example we have the term O (here we cut the translation to ease the reading):

B 1 = |a 1 → path| |a 2 → 1| |a 3 → 2| |a 4 → c| B 2 = |a 1 → access| |a 2 → 1| |a 3 → c| |a 4 → c| A 1 = ρ Y
a2 (π a 1 (π a 3 (π a 4 (σ a1=access∧a3=c∧a4=c (Rec))))) A 2 = ρ Y a3 ρ X a2 (π a 1 (π a 4 (σ a1=path∧a4=c (Rec))))

B 3 = ρ a 3 X (π Y (A 1 A 2 )) B 4 = µ(Rec = B 1 ∪ B 2 ∪ B3) O =
π a 1 (π a 3 (π a 4 (σ a 1 =access (B) 4 )))
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The semantics does coincide with inflationary-Datalog ¬ because the formula B 1 ∪ B 2 ∪ B 3 captures the "immediate consequence" of the Datalog program.

From stratified Datalog to µ-algebra In a stratified Datalog program, each rule can be indexed with an integer n such that a negation of a rule indexed by k can only appear in the production rule of a term indexed with k > k.

In the case of a stratified Datalog program, merging all the rules into one will break the stratification. The trick here is to operate stratum by stratum and translate the stratum i into a rule Rec i . The resulting program will have one rule per stratum.

Just like in the inflationary case, each stratum i can be translated into a unique fixpoint µ(X i = ϕ i ). The production rules of the stratum i can only reference to a Rec j where j ≤ i. We translate Rec i into X i and the Rec j into µ(X j = ϕ j ). Note that each ϕ i can contain several occurrences of Rec j with j < i and that makes the translation exponential but all the fixpoints do are non mutually recursive and positive.

Let us consider the following example (already stratified):

Path(...) an EDB Access_1(0). Access_1(X) :-Access_1(Y),Path(Y,X)

Access_2(1). Access_2(X) :-Access_2(Y),Path(Y,X), not Access_1(Y)

We translate Path into a term µ(X 0 = ϕ 0 ) (despite the fixpoint ϕ 0 is actually not recursive as Path is an EDB). Then we translate Access 1 :

µ X 1 = |a 1 → 0| ∪ ρ a 1
a 2 (π a 1 (X 1 P ath)) Then we translate Access 2 (using Access 1 to denote the term above) :

µ X 2 = |a 1 → 1| ∪ ρ a 1
a 2 (π a 1 (X 2 P ath Access 1 ))

From linear Datalog to restricted-µ Given a linear Datalog program, we can use the stratified translation. In the resulting term each ϕ i is composed of ψ 1 ∪ . . . ψ k where each of the ψ j corresponds to a linear production rule and thus contains at most one occurrence of X i therefore our µ-algebra term is also linear (in addition to be recursive and positive as proven by the stratified translation). All in all, our term does belong to restricted-µ.

From restricted-µ to linear Datalog This direction is actually very simple once we know how to translate a term to a Datalog program, we just need to check that the resulting term is actually linear. To translate terms into Datalog, we work bottom-up associating each subterm ϕ to a Datalog rule. Datalog rules have columns that are indexed (there is a first column, a second, a third, etc.) while µ-algebra has column names. To handle this discrepancy, we suppose that we have calculated the type of each term (i.e. we compute a set of column names), then we order column names (any total order on the column names can be used).

The only difficulty here is the language of filters, in restricted-µ we actually impose no restriction on the filter conditions; for the translation we suppose that only the equality is used.

We thus recursively create production rules for each Datalog predicate s ϕ ( T ) corresponding the each term ϕ s ϕ ( T ) (where T is the ordered set of columns of the type of ϕ).

• For ϕ = ϕ 1 ϕ 2 we create a rule for the join: s ϕ ( T ) ← s 1 ( T1 ), s 2 ( T2 ).

• For ϕ = ϕ 1 ∪ ϕ 2 we have two production rules, one for each ϕ i : s ϕ ( T ) ← s ϕ i ( Ti ).

• For ϕ = ϕ 1 ϕ 2 we create the rule s ϕ ← s ϕ 1 ( T1 ), ¬s ϕ 2 ( T2 ).

• For ϕ = σ a=b (ϕ ) we create the rule s ϕ ( T1 , b, T2 ) ← s ϕ ( T1 , b, T2 ) if we suppose that the ordered type of ϕ is T1 , a, T2

• For ϕ = π p (ϕ ) we create the rule s ϕ ( Tϕ ) ← s ϕ ( Tϕ )

• For ϕ = β b a (ϕ ) we create the rule s ϕ ( T ) ← s ϕ ( Tϕ ) where T is Tϕ where we inserted a a in the place of where b will be stored.

• For ϕ = µ(X = ϕ ) we create the rule s X ( T ) ← s ϕ ( Tϕ ).

• For ϕ = X we create the rule s X ( T ) ← s ϕ ( Tϕ ).

Since the restricted-µ term is linear we can see that each production rule contain at most one subgoal that is recursive with the head.

A.3 Proofs of chapter 4

A.3.1 Lemma 6 Lemma 6. Let C be such that C ⊆ dom(w), for all m ∈ ϕ V [X/{w}] \ ϕ V [X/∅] there exists p ∈ perm(ϕ, X, C) such that ∀c p(c) = ⊥ ∨ (m(c) = ⊥ ∧ m(c) = w(p(c))).

Proof. We prove that by induction on the size of ϕ. In this proof, we note s(ϕ, V, X, S) = ϕ V [X/S] \ ϕ V [X/∅] . When ∀c p(c) = ⊥ ∨ (m(c) = ⊥ ∧ m(c) = w(p(c))) we say that m is a p-image of w.

• When sim(ϕ, X) = 0 then s(ϕ, X, {w}) = ∅ (note that this includes but is not limited to ϕ = µ(Y = ϕ 1 ), ϕ = |c 1 → v 1 , . . . , c n → v n |, ϕ = Y for Y = X).

• Given ϕ = ϕ 1 ∪ ϕ 2 and m ∈ s(ϕ, V, X, S) we have m ∈ s(ϕ 1 , V, X, S) or m ∈ s(ϕ 2 , V, X, S) and by induction the existence of p ∈ perm(ϕ 1 , X, C) or p ∈ perm(ϕ 2 , X, C).

All in all, we have the existence of p ∈ perm(ϕ, X, C) such that m is the p-image of w.

• Given ϕ ∈ {ϕ 1 \\ ϕ 2 , ϕ 1 \ ϕ 2 , ϕ 1 -ϕ 2 , σ s (ϕ 1 )} we have m ∈ s(ϕ, V, X, {w}) which implies m ∈ s(ϕ 1 ) and by induction m is a p-image of w for p ∈ perm(ϕ 1 , X, C) = perm(ϕ, X, C).

• Given ϕ = ϕ 1 ϕ 2 and m ∈ s(ϕ, V, X, {w}). By definition m ∈ ϕ 1 ϕ 2 V [X/{w}] for i ∈ {1, 2} we have m 1 ∈ ϕ 1 V [X/{w}] and m 2 ∈ ϕ 2 V [X/{w}] ∪ {{}} such that m = m 1 +m 2 . Since sim(ϕ 2 , X) = 0 we have m 1 ∈ s(ϕ 1 , V, X, {w}). By induction we get p ∈ perm(ϕ 1 , X, C) = perm(ϕ, X, C) such that for all c, p(c) = ⊥ ∨ (m 1 (c) = ⊥ ∧ m 1 (c) = w(p(c))). But m = m 1 + m 2 implies m 1 (c) = ⊥ ⇒ (m(c) = ⊥ ∧ m(c) = m 1 (c)), by combining both we have the desired property: p(c) = ⊥∨(m(c) = ⊥∧m(c) = w(p(c))).

• Given ϕ = ϕ 1 ϕ 2 and m ∈ s(ϕ, V, X, {w}). We have (m 1 , m 2 ) such that m = m 1 + m 2 and exactly one of the m i ∈ s(ϕ i , X, {w}) (otherwise sim(ϕ, X) ≥ 2). m i is a p-image of some p ∈ perm(ϕ i , X, C). • For (let (Y = ϕ) in ψ), we have:

-Either sim(ψ, Y ) = 0 and f (let (Y = ϕ) in ψ, V, X, {w}) = f (ψ, V, X, {w}) gives us the results by induction (perm(ψ, X, C) ⊆ perm(let (Y = ϕ) in ψ)).

-Or sim(ϕ, X) = 0 but in this case let

(Y = ϕ) in ψ V [X/{w}] = ψ V [X/{w},Y / ϕ V [X/∅] ]
and the result holds by induction on V = V [Y / ϕ V [X/∅] ] and ψ.

-Or sim(ψ, X) = 0 and sim(ϕ, X) = sim(ψ, Y ) = 1. Let m ∈ f (let (Y = ϕ) in ψ, V, X, {w}) there exists w Y such that m ∈ f (ψ, V [X/∅], Y, {w Y }) with w Y ∈ f (ϕ, V, X, {w}). By induction we have p 1 such that w Y is a p 1 -image of w and p 1 ∈ perm(ϕ, X, C).

With C = im(p 1 ) we have by induction the existence of p 2 such that m is the p 2 image of w Y , by composing p 1 and p 2 we obtain the result.

• Finally, for ϕ = X, we have m ∈ s(ϕ, V, X, {w}) implies m = w and since C ⊆ dom(w) we do have that m is a p-image of w.

A.3.2 Lemma 7

Lemma 7. Given a term ϕ, an environment V , a variable X and a mapping w, If c ∈ dom(w), ∀Y, sim(ϕ, Y ) = 0 ∨ (∀m ∈ V (Y )c ∈ dom(m)), and canAdd(ϕ, X, c) then we have for all v (with w(v) = w + {c → v}):

1. ∀m ∈ ϕ V [X/{w}] c ∈ dom(m); 2. ϕ V [X/{w}] = π c (ϕ) V [X/{w(v)}] ; 3. ∀m ∈ ϕ V [X/{w(v)}] c ∈ dom(m) ∨ m(c) = v.
Proof. Point 1 raises absolutely no challenge: c is not in the domain of mapping in the environment and due to the definition of canAdd, c can only syntactically appear below a π c (ϕ). We will now prove points 2 & 3 by induction on the size of formula we have:

• For ϕ such that sim(ϕ, X) = 0 we have ϕ V [X/{w}] = ϕ V [X/{w(v)}] and point 1 gives us 2 & 3.

• For ϕ 1 ∪ ϕ 2 , ϕ V [X/{w}] = ϕ 1 V [X/{w}] ∪ ϕ 2 V [X/{w}] and canAdd(ϕ, X, c) implies canAdd(ϕ 1 , X, c) and canAdd(ϕ 2 , X, c) thus by induction ϕ V [X/{w}] = π c (ϕ 1 ) V [X/{w(v)}] ∪ π c (ϕ 2 ) V [X/{w(v)}] = π c (ϕ) V [X/{w(v)}] and thus points 2 & 3. Either m ∈ ϕ V [X/U i ] (and the result is trivial) or m ∈ ψ V [X/{w }] for some w ∈ U i . By induction we have w ∈ V i with w = w + {b → w (a)} and by lemma 7 we have that w ∈ V i implies m ∈ V i+1 2. canAdd(ψ, X, a) ensures that values for a are not relevant to the computation of ψ.

• For ϕ 1 ϕ 2 , ϕ V [X/{w}] = ϕ 1 ϕ 2 V [X/{w}] = {a + b | a ∈ ϕ 1 V [X/{w}] ∧ b ∈ ϕ 2 V [X/
More precisely let U i+1 = ϕ ∪ κ V [X/U i ] and V i+1 = ϕ ∪ π a (κ) V [X/V i ] with U 0 = V 0 = ∅. We will show that

V i = {{c → v ∈ m | c = a} | m ∈ U i }.
This is true for i = 0. And by lemma 7 this propagate by induction.

3. canAdd(ψ, X, a) ∧ canAdd(ψ, X, b) ensures that values for a and b are not relevant to the computation of ψ: just like the other we can prove that V i (i.e. the ith step of µ X = ϕ ∪ ρ b a (κ) ) is the image of U i (the i-th step of µ(X = ϕ ∪ κ)) through a renaming of the column a into b.

Lemma 12. Given a term ϕ an a environment V and its abstraction Γ then ∀m ∈ ϕ V C(ϕ, Γ) ⊆ dom(m) ⊆ P (ϕ, Γ).

Proof. We prove the result by induction on the size of ϕ.

• Let m ∈ ϕ 1 ∪ ϕ 2 V we have m ∈ ϕ 1 or m ∈ ϕ 2 and thus C(ϕ 1 , Γ) ⊆ dom(m) ⊆ P (ϕ 1 , Γ) or C(ϕ 2 , Γ) ⊆ dom(m) ⊆ P (ϕ 2 , Γ) and thus in both cases C(ϕ 1 , Γ)∩C(ϕ 1 , Γ) ⊆ m ⊆ P (ϕ 1 , Γ) ∪ P (ϕ 1 , Γ).

• Let m ∈ ϕ 1 ϕ 2 V we have m 1 ∈ ϕ 1 V and m 2 ∈ ϕ 2 V and dom(m) = dom(m 1 ) ∪ dom(m 2 ) thus the result.

• For ϕ ∈ {π a (ψ) , ρ b a (ψ) , β b a (ψ) , σ f (ψ)} the result is obvious.

• For the special filters ϕ = σ bnd(c) (ψ) and ϕ = σ ¬bnd(c) (ψ) the result comes from the semantics of eval(bnd(c), m) that evaluates to true only for mappings binding the column c.

• For ϕ ∈ {ϕ 1 \\ ϕ 2 , ϕ 1 \ ϕ 2 , ϕ 1 -ϕ 2 } we have m ∈ ϕ V implies m ∈ dom(ϕ 1 ) and thus the result.

• • For ϕ = |c 1 → v 1 , . . . , c n → v n | the result is obvious.

• For ϕ = ∅ any set will be ok.

• For let (X = ϕ) in ψ we have let

(X = ϕ) in ψ V = ψ V [X/ ϕ V ]
. By induction we have ∀m ∈ ϕ V C(ϕ, Γ) ⊆ dom(m) ⊆ P (ϕ, Γ) and thus Γ[C(ϕ, Γ), P (ϕ, Γ)] is an abstract environment of V [X/ ϕ V ] and thus the result.
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 11 Figure 1.1: Graph representation of our example dataset

  and B |A might be much smaller than A and B and thus A |B B |A might be faster to compute Storing for each pair A, B the sets A |B and B |A might be very large. But they actually store these reduced sets (A |B and B |A ) only when they are empty or small compared with A and B.

Definition 6 .

 6 A tuple schema is a sequence of attributes and an attribute is a pair (d, c) where d is a domain of values and c belongs to C. The domain d is the column type and c is the column name. Definition 7. A tuple (or row) is a sequence of ordered pair of values and domain. A tuple (v 1 , d 1 ), . . . , (v n , d n ) is compatible with a tuple schema (d 1 , c 1 ), . . . , (d m , c m ) when m = n and for all 1 ≤ i ≤ n, d i = d i (the domains match). Definition 8. A database schema is a triple (D, R, h) where: • D is the domain of atomic values,

Definition 10 .

 10 A relational database S = (D, R, h) contains a set of relations R such that heading of r ∈ R is h(r) and the values of tuples in the relation all belong to D.
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  Figure 2.2: Schematic representation of our approach and the chapter decomposition

  e. A \ B ∪ C when B ⊆ A and A otherwise; • the notation A[B ↔ C] indicates the set A where B and C and simultaneously replaced i.e. it represents the A \ (C ∪ B) ∪ C ∪ B where C = C when B ⊆ A ∅ otherwise and
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 31 Figure 3.1: Grammar of µ-algebra

  Exchanges the value associated with a and b in the mappings solution of ϕ; when a (resp. b) is not bound then this operator just renames b into a (resp. a into b); π a (ϕ) Removes the column a from the mappings of ϕ; β b a (ϕ) The effect of this operator is that in all mappings of ϕ, b is mapped to the same value as a (or no value if a is not in the mapping). θ(ϕ, g : C → D) Maps the mappings m solution of ϕ through the function g. The notation θ(ϕ, g : C → D) indicates that when g is given a mapping m with dom(m) ⊇ C it returns the mapping m | D + g(m |C ) (where m | D denotes the mapping m where we remove the D part and m |C denotes the mapping m limited to the domain C). When C ⊆ dom(m), our operator leaves the mapping unchanged. Θ (ϕ, g, C, D) Corresponds to a reduce operation using the user-defined function g and where the key is the complement of C; i.e. two (or more) mappings m 1 , m 2 are mapped to the same value when dom(m 1 ) \ C = dom(m 2 ) \ C and ∀c ∈ dom(m 1 ) \ C : m 1 (c) = m 2 (c); Θ (ϕ, g, C, D) can be seen as the reduce or combine where θ(ϕ, g : C → D) is the map in a map-Reduce setup; for all M , we have g(M ) = D. The mappings m such that C ⊆ dom(m) are discarded.
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 36 Figure 3.6: Example of the aggregation operator.

  then we compute the union A ∪ B and reduce the solutions: Θ (A ∪ B , Card, {ID, Card}, {Card}).

Figure 3 .

 3 Figure 3.11: Translation of a query in bag semantics.

Figure 3 . 12 :

 312 Figure 3.12: Translation of a distinct query.

  the mappings of X also bind the column tmp then the semantics changes: in µ(X = (π tmp (ρ tmp o (K) ρ tmp s (X)) ∪ K) |tmp → v|) all recursive solutions m (i.e. all solutions except those from K |c → tmp|) will have r(s) = r(tmp) = v which is generally not the same as µ(X = π tmp (ρ tmp o (K) ρ tmp s (X)) ∪ K) |tmp → v| where solutions m of the fixpoint are simply extended with m(tmp) = v. 3. Finally the column we add might also interact with themselves. For instance, let µ(X = ϕ) be a fixpoint where a and b are not columns of solutions and do not appear. Then µ(X = ϕ (|a → v| ∪ |b → v|)) has not the same solutions as µ(X = ϕ) (|a → v| ∪ |b → v|) because in the first term we will compute (|a → v| ∪ |b → v|) joined with itself which has 3 solutions ({a → v}, {b → v}, {a → v, b → v}) while (|a → v| ∪ |b → v|) has only two solutions.

  when when canAdd(ψ, X, b)∧canAdd(ψ, X, a) Proof Sketch. See full proof in appendix A.3.11.

Figure 4 . 1 :

 41 Figure 4.1: Definition of P and C.

  d} and a, b, d all different. This fixpoint actually computes the reflexive transitive closure of the relation between a and b induced by ϕ and then joins the relation between a and b induced by ψ which gives an overall relation between a and d.

  . , a n , b is b 1 , . . . , b n and d is d 1 , . . . , d k (note that we do not need to have k = n). Given a fixpoint expression of the form µ X = ψ ∪ π b 1 . . . π bn ρ b 1 a 1 . . . ρ bn an (X) ϕ with P (ϕ, Γ) = C(ϕ, Γ) = {a 1 , . . . , c n , b 1 , . . . , b n }, P (ψ, Γ) = C(ψ, Γ) = {a 1 , . . . , a n , d 1 , . . . , d k } and a i , b j , d l all different.
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  Figure 5.1: Graphical representation of a compiled term ϕ
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 5 Figure 5.2: Syntax of supported sparql queries in SparqlGX.
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 7 Figure 7.2: SQL version of the main query

Figure 7 . 3 :

 73 Figure 7.3: Datalog version of the main query

Figure 7

 7 Figure 7.4: A loop graph of size 10 composed of knows with for each node an extra information of a name

Postgres 10 .

 10 2 & SQLite 3.24 Postgres and SQLite both consider Common

  Figure 7.5: Time for Postgresl and SQLite
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 76 Figure 7.6: Time for ARQ depending on triple order

  Figure 7.7: Query evaluation time for Virtuoso

  rpe(?a knows * ?b) rpe(?b named name_42) where rpe(?a knows * ?b) = ρ a s ρ b o (µ(X = β o s (N ) ∪ π m (ρ m o (X) ρ m s (π p (σ p=knows (T )))))) and rpe(?b named name_42) = ρ ?b
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 7 Figure 7.9: Time for our prototype
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 710 Figure 7.10: Number of solutions for each query and each graph size in our second benchmark.

Figure 7

 7 Figure 7.11: Query time (in seconds) as function of the size of the graph for each of our 10 queries.

  /∅] ] and by induction onψ, A ⊆ B ⇒ ψ V [X/A,Y /W ] ⊆ ψ V [X/B,Y /W ]and thus with W = ϕ V [X/∅] the result holds.when sim(ψ, X) = 0 we have sim(ϕ, X) = sim(ψ, Y ) = 1, by lemma 1 we haveψ V [X/S ,Y /S] = ψ V [X/∅,Y /S]and by induction we haveW ⊆ D ⇒ ψ V [X/∅,Y /W ] ⊆ ψ V [X/∅,Y /D] .But by induction we also haveA ⊆ B ⇒ ϕ V [X/A] ⊆ ϕ V [X/B] and thus with W = ϕ V [X/A] and D = ϕ V [X/B] we have A ⊆ B ⇒ let

•

  Finally for let (Y = ϕ) in ψ and m ∈ let (Y = ϕ) in ψ V [X/S] we have that sim(let (Y = ϕ) in ψ 1 that implies either sim(ψ, X) = 1 and sim(ψ, Y ) = 0, in which case let(Y = ϕ) in ψ V [X/S] = ψ V [X/S,Y / ϕ V [X/S] ] = ψ V [X/S,Y /∅]in which case the induction hypothesis applies on ψ and we havew such that m ∈ ψ V [X/{w},Y /∅] and thus m ∈ let (Y = ϕ) in ψ V [X/S] ;or sim(ψ, X) = 1 and sim(ϕ, X) = 0, in which case let(Y = ϕ) in ψ V [X/S] = ψ V [X/S,Y / ϕ V [X/S] ] = ψ V [X/S,Y / ϕ V [X/∅] ]and by induction on ψ we havew such that m ∈ ψ V [X/{w},Y / ϕ V [X/∅] ] = ψ V [X/{w},Y / ϕ V [X/{w}] ] and thus m ∈ let (Y = ϕ) in ψ V [X or sim(ψ, X) = 0, sim(ψ, Y ) ≤ 1 and sim(ϕ, X) = 1, in which case let (Y = ϕ) in ψ V [X/S] = ψ V [X/S,Y / ϕ V [X/S] ] = ψ V [X/∅,Y / ϕ V [X/S] ]. By the induction hypothesis on ψ andY we have that m ∈ ψ V [X/∅,Y / ϕ V [X/S] ] implies that there exists w ∈ ϕ V [X/S] such that ψ V [X/∅,Y /{w }] . By reusing the induction hypothesis on w ∈ ϕ V [X/S] we have w such that w ∈ ϕ V [X/{w}] . Since {w } ⊆ ϕ V [X/{w}] , using lemma 2 we have m ∈ ψ V [X/∅,Y / ϕ V [X/{w}] ] = let (Y = ϕ) in ψ V [X/{w}] .Now, with this property we have f (W ) ⊆ w∈W f ({w}) but since {w} ⊆ W we also have (lemma 2) f ({w}) ⊆ f (W ) and thus f (W ) = w∈W f ({w})Points 2. and 3. come easily as consequences of point 1.

•

  But m = m i + m 2 implies m i (c) = ⊥ ⇒ (m(c) = ⊥ ∧ m(c) = m i (c)), by combining both we have the desired property: p(c) = ⊥∨(m(c) = ⊥∧m(c) = w(p(c))). For ϕ = π a (ϕ 1 ) we have m ∈ s(ϕ, V, X, {w}) implies m ∈ s(ϕ 1 , V, X, {w}) such that there exist p ∈ perm(ϕ 1 , V, X, {w}) with m the p -image of w and m = m except m(a) = ⊥. But p with p(a) = ⊥ and p = p elsewhere belongs to perm(ϕ, V, X, {w}) and m is a p-image of w.• For ϕ = ρ b a (ϕ 1 ) we have m ∈ s(ϕ, V, X, {w}) and m ∈ s(ϕ, V, X, {w}) with m = m except m (a) = m(b) and m (b) = m(a). By induction for m we have p ∈ perm(ϕ 1 , V, X, {w}) such that m is the p -image of w. By construction we have p ∈ perm(ϕ, V, X, {w}) such that m is a p-image of w: for c ∈ {a, b}, m(c) = m (c) = w(p (c)) = w(p(c)) and m(a) = m (b) = w(p (b)) = w(p(a)). • For ϕ = ρ b a (ϕ 1 ) we have m ∈ s(ϕ, V, X, {w}) and m ∈ s(ϕ 1 , V, X,{w}) with m = m except m (a) = m(b) and m (b) = m(a). By induction on m we have p ∈ perm(ϕ 1 , V, X, {w}) such that m is the p -image of w. By construction we have p ∈ perm(ϕ, V, X, {w}) such that m is a p-image of w: for c ∈ {a, b}, m(c) = m (c) = w(p (c)) = w(p(c)) and m(a) = m (b) = w(p (b)) = w(p(a)). • For ϕ = β b a (ϕ 1 ) we have m ∈ s(ϕ, V, X, {w}) and m ∈ s(ϕ 1 , V, X, {w}) with m = m except m(b) = m(a) = m (a). By induction on m we have p ∈ perm(ϕ 1 , V, X, {w}) such that m is the p -image of w. By construction we have p ∈ perm(ϕ, V, X, {w}) such that m is a p-image of w: for c = b, m(c) = m (c) = w(p (c)) = w(p(c)) and m(b) = m (a) = w(p (a)) = w(p(b)). • For ϕ = θ(ϕ 1 , g : C → D) we have m ∈ s(ϕ, V, X, {w}) and m ∈ s(ϕ 1 , V, X, {w}) with m = m except m(c) = f (m )(c) for c ∈ D if dom(m ) ⊆ C. By induction on m we have p ∈ perm(ϕ 1 , V, X, {w}) such that m is the p -image of w. By construction we have p ∈ perm(ϕ, V, X, {w}) such that m is a p-image of w: for c ∈ D, m(c) = m (c) = w(p (c)) = w(p(c)) and for c ∈ D, p(c) = ⊥ which thus proves that m is a p-image of w.

••

  {w}] ∧ a ∼ b}. But for each pair (a, b) ∈ ϕ 1 V [X/{w}] × ϕ 2 V [X/{w}] we have a pair (a , b ) ∈ ϕ 1 V [X/{w(v)}] × ϕ 2 V [X/{w(v)}] with (a (x) = a(x) ∧ b (x) = b(x)) ∨ x = c.Since each of a (c) and b (c) are either undefined or equal to the value v and a ∼ b we have a ∼ b and ifc ∈ dom(a + b ) then (a + b )(c) = v. For ϕ 1 λ ϕ 2 with λ ∈ {\\ , \, } we have sim(ϕ 2 , X) = 0 and by induction ϕ 1 V [X/{w}] = π c (ϕ 1 ) V [X/{w(v)}] . For m ∈ ϕ 2 V [X/{w(v)}] we have c ∈ dom(m) which implies π c (ϕ) V [X/{w(v)}] = π c (ϕ 1 ) λ ϕ 2 V [X/{w(v)}](the compatibility will not change nor their shared domain). Note that canAdd(ϕ 1 -ϕ 2 , X, c) requires sim(ϕ 1 , X) = 0 because otherwise c might be defined by ϕ 1 and change the set of solutions. For unary operatorsϕ ∈ {ρ b a (ϕ) 1 , β b a (ϕ) 1 , π a (ϕ) 1 , θ(ϕ 1 , g : C → D)σ f ϕ 1 } we ensure that c ∈ {a, b} ∪ F C(f ) ∪ C ∪ Dand the result follows easily. • For a variable, we either have X = Y and the result is clear because of the constraint on AV [Y ] or X = Y and the result comes from the definition of w(v). w ∈ U i such that w = w + {b → w (a)}. By lemma 6, m(a) = w(a) and by lemma 7 and lemma 8 we have m ∈ ψ V [X/{w }] with m = m + {a → m(a)} which proves V i+1 ⊆ {m+{b → m(a)} | m ∈ U i+1 }. Now let m ∈ U i+1 and let m = m +{b → m (a)}.

  For ϕ = θ(ψ, g : C → D) we have for all m ∈ θ(ψ, g :C → D) V a m ∈ ψ V with either C ⊆ m and dom(m) = dom(m ) ∪ D or dom(m) = dom(m ). That is why C(ϕ, Γ) = C(ψ, Γ) ∪ D when C ⊆ C(ψ, Γ) and C(ϕ, Γ) = C(ψ, Γ) otherwise (and similarly for P ).

table representation

 representation In this example the relation T heaters has schema (N ame, String), (Address, String), (Rooms, Integ while the relation M ovies has schema (T itle, String), (Date, Datetime), (T heater, String) using the data type String, Integer and Datetime.

	, we have:		
		Theaters	
	Name	Address	Rooms
	"La Nef"	"bd Edourd Rey"	7
	"Le Mélies" "caserne de Bonne" 3
	"Le Club"	"rue Phalanstère"	3
		Movies	
	Title	Date	Theater
	"Inception"	12/08/2010 20h "Le Mélies"
	"Toy Story 3"	13/08/2010 17h "Le Club"
	"Toy Story 3"	13/08/2010 20h "Le Club"
	"Toy Story 3"	10/08/2010 17h "Le Mélies"
	"Akmareul boatda"	10/08/2010 16h "Le Club"
	"How to train your dragon" 12/03/2010 18h "Pathé Chavant"
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  Table Expressions (CTE) as optimization barriers. It is thus not surprising that they actually compute the whole knows_star relation before selecting pairs (s, o) such that s = name_42. Our tests do find this quadratic behavior (see fig 7.5). Even PSQL with indexes on s and o for the table knows go above the second barrier for a graph with 1000 nodes.
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  Curiously none of the tested Datalog solver (Vlog fetched july 2018, Ramsdell 2.6, DLV of december 2012) was able to respond quickly despite a relatively simple derivation path: sol :-path(_,42) :-path(42,42) :-edge(42,_) :-edge(42,43) and only DLV with the optimization parameter -brave was able to answer quickly in the simplest case (no cycle in the graph).

											DLV -brave
	Time (s)										Datalog DLV 2 Datalog 2 Vlog 1
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				Figure 7.8: Time for Datalog solvers			

Table 7 .

 7 1: Our queries: Pi are labels, Ni are nodes and then joining them. The plan of Postgres is not more optimal than ours; however, Postgres is very efficient to retrieve data and join huge quantities of partial results. It thus gains on our prototype as long as the individual transitive closures are not much larger than the final result (which is what happens here and not on Q1 and Q2 with P 1+).

	Name		Query	
	Q1	?a	(P 1+)/P 5	?b
	Q2	?a	(P 1+)/(P 5+)	?b
	Q3	?a	(P 1+)/P 2	?b
		?b	P 3+	?c
	Q4	?a	(P 4|P 5)+	?b
		?b	P 3+	?c
	Q5	?a	P 2+	?b
		?a	P 4+	?c
		?a	P 5	N 0
	Q6	?a	P 1 + /P 2	?b
		N 0	P 3+	?b
	Q7	N 0	P 1/(P 2+)	?a
	Q8	N 0	(P 1+)/(P 2+)	?a
	Q9	N 0	P 1/(P 1+)	?a
	Q10	?a (P 4+)/(P 5+)/(P 3+) ?b

  [START_REF] Piatetsky | Accurate estimation of the number of tuples satisfying a condition[END_REF]. Various techniques successful in the relational world (e.g. histograms[START_REF] Ioannidis | The history of histograms (abridged)[END_REF][START_REF] Oommen | An Empirical Comparison of Histogram-Like Techniques for Query Optimization[END_REF]) have been less successful for the semantic web[START_REF] Erling | RDF Support in the Virtuoso DBMS[END_REF][START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins[END_REF]. The main reasons for that is the heterogeneous and string nature of rdf[START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins[END_REF] and the fact that sparql queries usually contain a lot of self-joins that are notoriously hard to optimize[START_REF] Pitoura | Self-join size estimation in large-scale distributed data systems[END_REF].Various works have tackled the specific issue of cardinality estimation for sparql. A first line of work [SSB + 08] introduced the "selectivity estimation" now in use in several sparql evaluators [ZYW + 13]. Variants of this method have been implemented in popular sparql query evaluators (e.g. in RDF-3X[START_REF] Neumann | RDF-3x: A RISC-style Engine for RDF[END_REF]).
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	7.5. EXPERIMENTAL OF SPARQLGX WITH OUR CARDINALITY ESTIMATION163
		Lubm Query	Q1		Q2	Q3	Q4	Q5	Q6	Q7
		Stats		35.32		46.57	40.48	26.81	9.97	8.15 +	14.82
		k=0		21.79		10.66 + 11.69 +	23.10	10.97	8.14 +	18.57
		k=100		15.09		95.15	12.51 + 0.75 + 0.78 + 7.98 + 0.68 +
		k=1000 11.96 Lubm Query 14.15 97.21 Q8 Q9 Q10	Q11	Q12	Q13	Q14
			Stats		11.23		20.72	13.04	11.39	18.81	⊥	28.64 +
			k=0		71.95		15.86	14.22	9.21 +	13.44	0.73 + 29.06 +
	Time (s)	10 1 10 2 0.76 WatDiv Query k=100 C1 C2 Stats 48.21 40.64 + k=0 42.19 46.13	C3 42.89 16.60	S1 67.18 8.10 + 7.34 + S2 15.20	S3 9.60 10.37	S4 16.46 9.42	S5 9.96 8.90 + 7.41 + 6.94 + S6 S7 19.25 15.27
		k=100	42.63	45.03		15.45	7.55 + 7.13 + 8.67 + 6.75 + 7.91 + 7.56 + 7.51 +
		10 0 k=1000 14.01 WatDiv Query 39.41 + 48.16 L1 L2 L3	L4	L5	F 1	F 2	F 3	F 4	F 5
		Stats	13.13	7.21 +	11.17	5.67 + 7.63 +	17.04	50.25	28.45	43.54	40.92
		k=0	7.57 +	9.19		6.14 + 5.87 + 7.48 +	9.66 +	10.23 + 19.80 + 12.42 +	20.41
		k=100 k=1000	7.91 + 7.95 +	9.26 9.40	6.24 + 6.51 + 7.88 + 10.39 + 11.45 + (a) Query response times (seconds) Lubm10k 21.53 6.4 + 5.34 + 6.80 + 12.00 9.76 + 21.15	11.28 + 12.64 +	21.46 20.75
		k=10000	7.85 +	9.49		6.37 + 6.14 + 7.57 + 10.96 + 10.01 +	21.38	12.31 + 18.39
	Time (s)									
		C1	C2	C3			S1	S2	S3	S4	S5	S6	S7
				(b) Query response times (seconds) WatDiv10k
	Time (s)									
		L1	L2	L3			L4	L5	F1	F2	F3	F4	F5
				(c) Query response times (seconds) WatDiv10k
		Figure 7.17: Time spent to answer Lubm and WatDiv queries

+

Figure

7

.18: Query time results for SparqlGX against Lubm10k and WatDiv 10k with the "stats" and "summaries" optimizers 1.10 billions triples and weights 149 GB. We also loaded DBpedia [ABK + 07] with 2.2 billions triples and weighting 301 GB.

http://www.ccs.neu.edu/home/ramsdell/tools/Datalog/

Remerciements

Recursive terms

Definition 22. A term ψ is said recursive in X when for all V , ψ V [X/∅] = ∅.

Definition 23. Given a term ϕ and a variable X the term ϕ is said syntactically recursive in X when rec(ϕ, X) = . rec is defined recursively as: rec(ϕ 1 \\ ϕ 2 , X) = rec(ϕ 1 , X) rec(ϕ 1 \ ϕ 2 , X) = rec(ϕ 1 , X) rec(ϕ 1 -ϕ 2 , X) = rec(ϕ 1 , X) rec(ϕ 1 ϕ 2 , X) = rec(ϕ 1 , X) rec(ϕ 1 ∪ ϕ 2 , X) = rec(ϕ 1 , X) ∧ rec(ϕ 2 , X) rec(ϕ 1 ϕ 2 , X) = rec(ϕ 1 , X) ∨ rec(ϕ 2 , X) rec(ρ b a (ϕ) , X) = rec(ϕ, X) rec(π a (ϕ) , X) = rec(ϕ, X) rec(β b a (ϕ) , X) = rec(ϕ, X) rec(θ(ϕ, g : C → D), X) = rec(ϕ, X) rec(Θ (ϕ, g, C, D) , X)

Lemma 11. A term ϕ syntactically recursive in the variable X is recursive in X, i.e. rec(ϕ, X) = ⇒ ∀V : ϕ V [X/∅] = ∅ .

Proof Sketch. See full proof in appendix A.3.8. The proof is simply an induction on the size of ϕ such that rec(ϕ, X) = .

Decomposed fixpoints

Definition 24. A fixpoint µ(X = ϕ ∪ ψ) is said decomposed into (ϕ, ψ) when ϕ is constant in X and ψ is recursive in X. ϕ is the constant part and ψ is the recursive part.

Theorem for filtered and joined decomposed fixpoints

We now present specialized versions of Theorem 3 and Theorem 2 for decomposed fixpoints. These theorems are important because they allow the rewriting of fixpoint in a way that can limit the size of intermediate computation (a filter always reduces the size and a join sometimes reduces the size) while always leaving the recursive part unchanged. In practice, recursive computations are expensive and limiting the size of the recursive term has a great impact on performance.

Theorem 4. Let µ(X = ϕ ∪ ψ) be a decomposed fixpoint with ϕ its constant part, ψ its recursive part and let κ be a µ-algebra term, V an environment, and C, D, E sets with:

Algorithm 2 Recursively producing terms by applying one rewriting rule on a subterm of the given term function exploreTerm(ϕ,Γ)

If the predicate is not duplicated but we have a duplicated variable then the triple is of the form (?s p ?s) (if the predicate is variable we first apply the replacement scheme).

Let T p , {(?s, s p ), (?o, o p )} be the collection summary pre-computed for the TP (?s p ?o) with s p =< S s , χ s , T s , D s , Y s >. Then we compute the possible number of different values in the intersection of the multiset represented by s p and o p :

Optimization of distributed BGP query plans with an over-estimation

In this section, we showcase how to use a worst-case cardinality estimation to optimize the query plan of a distributed sparql query evaluator.

Query plan

We suppose that the evaluator has access to the four following primitives:

• T P (t) takes a tp t and returns the mapping collection solution of t;

• HashJoin(a, b) takes two terms a and b and returns the join of the mapping collections returned by a and b;

• Broadcast(v, a, b) takes two terms a and b, stores the mapping collection returned by a into v and then evaluates b;

• LocalJoin(a, v) returns the join of the mapping collection returned by a and the mapping collection stored into v.

The idea behing the Broadcast(v, a, b) primitive is to first compute once the solution for a, then store it into the variable v that is sent to all computing nodes. This way, during the computation of b, if we come across a LocalJoin(c, v) then each computing node holds the whole mapping collection v and the join can be done locally.

Query plan cost

We now present how to compute the cost of a query plan. We note sol(a) the mapping collection return by evaluating the query plan a and size(a) its size. We do not have access to the actual size of the mapping collection solution of a query plan but all query plans correspond to bgp and we know how to estimate their size: given a bgp, we compute a collection summary s and its estimated cardinality is just size(s). Since our cardinality estimation is a worst case, our query plan cost estimation also constitutes a worst-case analysis.

Our query plan cost analysis is conditioned by three constants:

• shuffleCost we suppose that the cost of shuffling a mapping collection has a cost linear in its size with a coefficient shuffleCost, with (n, n, q 0 ) when q 0 is final or with with the sets (n 1 , n 2 , q i ) for each transition q 0 l i -→ q i and n 1 l i -→ n 2 in the graph. Then at each iteration we apply one transition. It is possible to push further this idea using Brzozowski's derivatives, see e.g. [START_REF] Nolé | Regular path queries on massive graphs[END_REF] where they introduce Vertigo, a system capable of querying a graph with several billions nodes or to use weighted automata, see e.g. [START_REF] Shoaran | Fault-tolerant computation of distributed regular path queries[END_REF].

Waveguide

Waveguide [START_REF] Yakovets | Towards Query Optimization for SPARQL Property Paths[END_REF] introduced Waveguide Plans (WGP) allowing the optimized evaluation of PP. WGP mix together α-plans (which are plans based on the relational algebra) and FA-plans (which are based on automata). They show that their method subsumes both approaches, more precisely they show that both approaches force the associativity.

Given the regular expression a/b/c the automata approach will compute the binary relation R recursively with R 0 = β o s (N ) and R i+1 = ((R i /a)/b)/c while the α-approach will compute R i+1 = R i /(a/b/c). In the mean time the WGP will also contain a plan that has the following computation: R i+1 = (R i /a)/(b/c). Notice that our approach also considers these three possible plans.

Given several PP, Waveguide translates each and then joins them. In comparison, our approach translates each PP into a µ-algebra term and joins them but before the optimization of the query. Which means the evaluation of PP can be interleaved. For instance given 3 PP: ?a knows * ?b, ?b lastname Doe and ?b f irstname John our optimizer proposes the plan that starts by finding the valid nodes ?b then finds the ?a reachable from these ?b.

Waveguide being not publicly available, we asked the author to provide us with a copy to include it in our benchmark but we did not receive an answer. Therefore Waveguide is not included in our benchmark.

Reachability Joins

Reachability joins are the basis of the Ferrari system [START_REF] Gubichev | Sparqling Kleene: Fast Property Paths in RDF-3x[END_REF] which brought fast Property Paths into rdf-3X. The idea is that given two terms A and B, both defining binary relations, their reachability join (noted A R B) is equal to the join of A with the transitive closure of B.

It is equivalent to A α(B) but, in this system, B and A have to have one common variable and B corresponds to a set of pre-determined predicates.

The Ferrari system is very fast for star over patterns for which it pre-computed reachability indexes but it is incapable of handling the computation of arbitrary stars (which can appear in sparql). Furthermore, from an expressiveness point of view, A R B = A α(B) and therefore it suffers the same problem with associativity as α-plans: it cannot express plans such as µ(X = β o s (N ) ∪ (X/A)/(B/C)). The magic set optimization [START_REF] Gardarin | Evaluation of Database Recursive Logic Programs As Recurrent Function Series[END_REF] is capable of pushing selection but only on fixed terms. This technique uses adornments. An adornment defines for each argument of a relation whether it is free (f) or bound (b). For a n-ary relation, there are thus 2 n adornments.

Magic Sets for Datalog

Intuitively, when we write R(X, Y )? in a Datalog solver, we expect to find the couples of (X, Y ) that validates R. In practice, there are many cases where e.g. we know X and we want to get the corresponding Y (which would be written e.g. R(42, Y ).

A relation R is adorned by v 1 ...vn (noted R v 1 ...vn when R is used in contexts where the i-th argument is known for the i such that v i = b and either known or unknown for the i such that v i = f . For instance the use of R(42, Y ) will be adorned by bf but it could also be adorned with f f . Note that each adornment will be valid depending on the use, if we issue two commands R(42, Y )?, resp. R(X, 42)?, they can be adorned with the bf , resp. f b but the only adornment of R valid for both is f f .

The goal of the "Magic Set" technique is to find adornments for all relations where most variables are bound because when variables are bound, we don't have to materialize the full set of solutions to a relation but limit ourselves.

Note for a Datalog program there often exist a variety of possible adornments. One way to adorn (and therefore evaluate) Datalog programs is left-to-right. In such a situation, we start from the top. We know the adornment of the output. Then given a conjunctive rule

) and an adornment for R. We note B the set of bound variable. At first B is the subset of {X 1 , . . . , X n } that is bound by the adornment. Then the adornment of R i is given by which variables of X 1 1 . . . X 1 k 1 are in B and we add to B all the variables of R 1 and we iterate to get an adornment for each R i .

Example Let us consider the following example corresponding to the Datalog translation of our example sparql query. sparql query SELECT ?x ?y { ?x :named :axel . ?x :knows+ ?y . } in Datalog (supposing a relation per predicate) the program is:

We can adorn the program :

And obtain the following "magic" program:

Proofs of chapter 3

Proposition 1. For all pairs of mappings (m 1 , m 2 ) and all filter f such that dom(m

and thus the definition of F C works as expected.

Proof. eval(f

) by induction on the size of f .

• For f = bnd(c), we have eval(bnd(c))(m 1 ) = eval(bnd(c)(m 2 ) by definition.

In any case we have the evaluation of a filter f on a mapping m only depends on the F C(f ) part of the domain of m.

A.1.1 Lemma 1

Lemma 1. Given a term ϕ valid in the sense of definition 17 and such that sim(ϕ, X) = 0

Proof.

• For binary formulas ϕ 1 λ ϕ 2 with λ ∈ {∪, , , \\ , \, -}, since sim(ϕ, X) = 0 we have that sim(ϕ 1 , X) = 0 and sim(ϕ 2 , X) = 0 which gives us recursively

also does not depend on S.

• For unary operators β b a (ϕ 1 ), ρ b a (ϕ 1 ), π a (ϕ 1 ), θ(ϕ, g : C → D) and Θ (ϕ, g, C, D) the same argument as for binary operators applies: ϕ V does not depend on V (X). The only difficulties are for let binders and fixpoints.

• Given the term "let (Y = ϕ) in ψ" such that sim(let (Y = ϕ) in ψ, X) = 0. We have that sim(ψ, X) = 0 which means ψ V [X/S] = ψ V [X/∅] and either sim(ϕ, X) = 0 or sim(ψ, Y ) = 0.

-

In all cases let

• Finally, given the term

Proof. We prove this lemma by induction on the size of formulas.

• Lemma 1 implies this lemma when sim(ϕ, X) = 0.

• For ϕ 1 ϕ 2 and A ⊆ B we have by induction

thus the result holds.

and by induction we have that

thus the result holds.

• For ϕ = λ(ϕ 1 ) with λ a unary operator, (i.e. ϕ ∈ {β b a (ϕ 1 ) , ρ b a (ϕ 1 ) , π a (ϕ 1 ) , θ(ϕ 1 , g :

• For a fixpoint µ(Y = ϕ), either sim(µ(Y = ϕ), X) = 0 and the result is obvious or sim(µ(Y = ϕ), X) = 2 and the term is not valid.

• For a let (Y = ϕ) in ψ we have several cases depending on whether sim(ϕ, X) = 0, sim(ψ, X) = 0 and sim(ψ, Y ) = 0:

Multiplying by 2 Now with this function we can craft a set of mappings representing the integers {a → x, b → 2 × x} with the term:

Note that once again T imes(2, a, b) is a macro that generates an actual µ-algebra term. Equipped with this set we can now multiply by 2, for instance to multiply a column a in a term ϕ by two:

) Conversely, it is also possible to divide and stores the carry in the column c:

Adding 0-1 value Let ϕ be a µ-algebra term with a column a that either contains 0 or 1, we design BinAdd(ϕ, a, b) the term that adds the values contained in the column a to the column b.

Encode the tape of the Turing Machine The tape of a TM is doubly infinite ruban that can store values. It is known that values can be restricted to 0 and 1 without loss of generality. We encore the right side of the tape r 0 , r 1 . . . as the integer as i r i × 2 i that will be stored in the r column of mappings. The left side of the tape l 0 , l 1 , . . . will also be encoded as i l i × 2 i and will be stored in the l column.

Encode the transition At each step, a TM reads a value v and has a state q, then, depending on q and v it write a value w, change to a state q and then either moves left or right on the tape. Given a TM we encode the transitions into two terms T R (for the right transitions) and T L (for the left transitions) in the following way: T S is a union of mappings, each mapping describing a transition. In a mapping m in T S , we have:

• m(q) that describes the current state,

• m(v) the current value,

• m(q ) the new state,

• m(w) the value to write.

If a term X contains the mappings describing TM at some step, the following term computes the same TM after one step if it uses a right transition:

Step R (X) = π w BinAdd(l, w, M ultiply(2, l, Divide(2, r, v, ρ q q (π v (π q (X T R ))))))

Indeed:

For the same reason, among the three difference operator \\ , \, -we can restrain ourselves to -. Note that terms with only safe unions andcan be exponentially less compact but from an expressive power point of view, it has no effect. Emptysets As show in chapter 4, terms that contains emptysets are either equivalent to the emptyset or we can simplify them so that they do not contain the emptyset anymore.

Equivalent fragment We all the restriction proposed above, we can consider the following syntax:

We call this fragment in this section restricted-µ and we study the effect of imposing the linearity in our term.

A.2.4 Datalog & µ-algebra expressive powers

In this section we present how to translate various Datalog into µ-algebra. The results presented here are not at the heart of our work and most of them are already known in the literature (with very similar statements and with similar proofs, see e.g. [START_REF] Abiteboul | Datalog extensions for database queries and updates[END_REF] or [START_REF]Foundations of Databases: The Logical Level[END_REF] regarding Datalog and the while + language).

The only novelty of this proof relies in the proof that the linearity of restricted-µ actually reduce the expressive power. However to understand why we need to present a translation from Datalog to µ-algebra and back. We will therefore not rely on formal proofs but we will build some intuition and provide examples.

Datalog with only one IBD We recall in this section that datalog programs can always be transformed to programs that have only one recursive rule and one output rule (this is exercise 14.17 of the alice book [START_REF]Foundations of Databases: The Logical Level[END_REF]).

Step 1: the n-aryfication Given a Datalog program P , we can always modify P so that all rules in P are n-ary for some n. To do that we simply take n to be the maximal arity over all the rules and extend all the rules with a constant c to match this arity.

For instance:

• For a let (Y = ϕ) in ψ we have, as usual, three cases:

and thus the result

Using the induction hypothesis on ψ and

-Finally, when sim(ψ, X) = 0 we have: let

Similarly, let

Since there is a one to one-or-two correspondence between m Y and m Y we only need to prove points 2 & 3 for each m Y . When m Y = m Y then the property is trivial: let

When m Y = m Y +{c → v} we apply the induction hypothesis on ψ, V [X/∅], Y and m Y (c and v unchanged). It gives us that

Therefore we have points 2 & 3.

A.3.3 Lemma 8

Lemma 8. Let ϕ be a µ-algebra term, X a variable, c a column and C a set of columns with c ∈ C and canAdd(ϕ, X, c) then perm(ϕ, X, C ∪ {c}) = {p ∪ {c → c} | p ∈ perm(ϕ, X, C)}.

Proof. We prove this lemma by induction on the size of ϕ.

the result is obvious following the definition of perm.

• For ϕ ∈ {ρ b a (ϕ 1 ) , π a (ϕ 1 ) , θ(ϕ 1 , g : C → D), σ f (ϕ 1 )}, we have canAdd(ϕ, X, c) which implies that perm(ϕ, X, C ∪ {c}) is the image of perm(ϕ 1 , X, C) via a transformation that leave the c image unchanged.

All in all, perm(let

A.3.4 Theorem 2

Theorem 2. Let µ(X = ϕ) be a fixpoint, V an environment, C and a filter f with:

Proof. We define

there are two cases:

A.3.5 Lemma 9

Lemma 9. Let ϕ and ψ be µ-algebra terms, V an environment and D and C be sets of columns such that:

Let us prove W i = V i and V i ⊆ U i by induction on i.

For i = 0, it is trivial and for i = 1 we have

We have

A.3.6 Lemma 10

Lemma 10. Let ϕ and ψ be µ-algebra terms, V an environment, c a column and D and C be sets of columns such that:

Depending on whether c ∈ dom(v) we have:

In both cases m = m + m 2 and thus m ∈ W i+1 .

We now need to prove that m

Depending on whether c ∈ dom(m) there are two cases:

In all cases we have m 2 ∈ ψ V [X/∅] and thus m 1 + m 2 ∈ V i+1 .

A.3.7 Theorem 3

Theorem 3. Let µ(X = ϕ) be a fixpoint and ψ be a µ-algebra term, V an environment, and C, D, E sets with:

Proof. We prove recursively on the number of columns defined by

If ψ defines 0 columns, we have either ψ V = ∅ or ψ V = {{}} and in both cases we have µ(X = ϕ) ψ V = µ(X = ϕ ψ) V . Now, we suppose that ψ defines n+1 columns c 1 , . . . , c n+1 . Since {c 1 , . . . , c n+1 } can be split into E and D verifying the conditions of the theorem then {c 1 , . . . , c n } can also be split into E\ {c n+1 } and D\{c n+1 } and using the induction hypothesis we have

From requirement 1 of the theorem we have that ψ π c n+1 (ψ

2. We can prove recursively that ∀p ∈ perm(ϕ, X, C ∪ {c 1 , . . . , c n }), ∀i p(c i ) = c i : for all c i ∈ D we have that by requirement 3 and we can add each of the c i ∈ E via lemma 8.

3. canAdd(ϕ π c n+1 (ψ) , X, c) = canAdd(ϕ, X, c n+1 ) ∧ (sim(ψ, X) = 0) = .

We are therefore in the conditions of lemma 10, which gives us that µ X = ϕ π c n+1 (ψ) ψ V = µ X = ϕ π c n+1 (ψ) ψ V and concludes our proof when c n+1 ∈ E.

2. We can prove recursively that ∀p ∈ perm(ϕ, X, C ∪ {c 1 , . . . , c n+1 }), ∀i p(c i ) = c i : for all c i ∈ D we have that by requirement 3 and we can add each of the c i ∈ E via lemma 8.

We are therefore in the conditions of lemma 9, which gives us that µ X = ϕ π c n+1 (ψ) ψ V = µ X = ϕ π c n+1 (ψ) ψ V and concludes our proof when c n+1 ∈ D.

In all cases we have µ(X = ϕ) ψ V = µ(X = ϕ ψ) V .

A.3.8 lemma 11

Lemma 11. A term ϕ syntactically recursive in the variable X is recursive in X, i.e. rec(ϕ, X) = ⇒ ∀V : ϕ V [X/∅] = ∅ .

Proof. By induction on the size of ϕ such that rec(ϕ, X) = :

• For let (Y = ϕ) in ψ we have:

either rec(ψ, X) = and thus by induction on

or rec(ψ, Y ) = rec(ϕ, X) = and thus by induction on V, X we have ϕ V [X/∅] = ∅ and by induction on

• For ∅, Y , |c 1 → v 1 , . . . , c n → v n | and µ(Y = ϕ) the result is clear.

A.3.9 Theorem 4

Theorem 4. Let µ(X = ϕ ∪ ψ) be a decomposed fixpoint with ϕ its constant part, ψ its recursive part and let κ be a µ-algebra term, V an environment, and C, D, E sets with:

Proof. First we have by the general theorem3 on join and fixpoint that µ

Since for all i ∈ N we have ψ

A.3.10 Theorem 5 Theorem 5. Let µ(X = ϕ ∪ ψ) be a decomposed fixpoint with ϕ its constant part and ψ its recursive part, V an environment, C and a filter f with:

Proof. By the general Theorem 2 on filtered fixpoints we have that: σ

for w a mapping such that C ⊆ dom(w) and eval(f, w) = .

Clearly

, by lemma 6 there exists p ∈ perm(ψ, X, C) such that ∀c :

By the requirement of the theorem (and in a very similar way to the proof of Theorem 3) we have ∀c ∈ E x ∪ D x m(c) = u(c) and thus m ∼ u. Let E X = {c 1 , . . . , c n } we have dom(m) = dom(v) + E X and by repeated application of lemma 7 we have π

. Therefore if w is the mapping m restrained to the domain C Y we have w ∈ π c 1 (. . . π cn (ξ)) V [Y /{u+v}] implies w ∈ ξ V [Y /{v}] with v ∈ V j . Therefore w ∈ V j+1 and m = w + u is in W i,j+1 .

Let m ∈ W i,j+1 , we have v j ∈ V j , v j+1 ∈ V j+1 and u i ∈ U i such that v j+1 ∈ κ ∪ ξ V [Y /{v j }] . By requirements of the theorem ∀c ∈ D Y v j+1 (c) = v j (c) and thus v j ∼ u i . And by repeated application of lemma 7 we have (v j+1 + u i ) ∈ ξ ∪ κ V [Y /{v j +u i }] and thus

In all the case we have ξ ∪ κ ϕ V [Y /W i,j ] = W i,j+1 . Since sim(ξ ∪ κ ϕ, X) = 0 we also have ξ ∪ κ ϕ V [Y /W i,j ,X/W i,j ] By complete symmetry between ξ and ψ we have ψ ∪ κ ϕ V [X/W i,j ,Y /W i,j ] = W i+1,j .

Let 2. π a (µ(X = ϕ ∪ ψ)) V = µ(X = π a (ϕ) ∪ ψ) V when canAdd(ψ, X, a)

3. ρ b a (µ(X = ϕ ∪ ψ)) V = µ X = ρ b a (ϕ) ∪ ψ V when when canAdd(ψ, X, b)∧canAdd(ψ, X, a)

Proof. The theorem holds because:

1. values for b will propagate as constant but values for a also thanks to condition 3: let U 0 = ∅, U i+1 = ϕ ∪ ψ V [X/U i ] , V 0 = ∅ and V i+1 = β b a (ϕ) ∪ ψ V [X/V i ] we will show that V i = {m + {b → m(a)} | m ∈ U i }. Let us proceed by induction. This is true for i = 0. Let i ∈ N and let m ∈ V i+1 = ϕ ∪ ψ V [X/V i ] we have either that m ∈ ϕ V [X/∅] (which trivially gives us the result) or that m ∈ ψ V [X/V i ] . In the second case, we have w ∈ V i such that m ∈ ψ V [X/{w}] . But by induction we have

• For µ(X = ϕ) we have U 0 = ∅, U i+1 = ϕ V [X/U i ] and µ(X = ϕ) V = lim i→∞ U i . We show by induction on i that (W C i , W P i ) is a valid type for U i . For i = 0 it is clear. And if the induction hypothesis holds for i ∈ N then Γ[X/V i ] is a valid abstraction for the environment V [X/U i ] and by the general induction we have the result.

• Finally for variables the result is obvious by the definition of abstract environment.