
HAL Id: tel-01891633
https://theses.hal.science/tel-01891633v1

Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning representations from functional MRI data
Arthur Mensch

To cite this version:
Arthur Mensch. Learning representations from functional MRI data. Machine Learning [stat.ML].
Université Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLS300�. �tel-01891633�

https://theses.hal.science/tel-01891633v1
https://hal.archives-ouvertes.fr

N
N

T
:
2
0
1
8
S

A
C

L
S

3
0
0

Apprentissage de représentations en

imagerie fonctionnelle

Thèse de doctorat de l’Université Paris-Saclay

préparée à Université Paris-Sud et Inria

Ecole doctorale n◦580 Sciences et technologies de l’information et de la

communication (ED STIC)
Spécialité de doctorat : Mathématiques et Informatique

Thèse présentée et soutenue à Gif-sur-Yvette, le 28 septembre 2018, par

ARTHUR MENSCH

Composition du Jury :

Jalal Fadili

Professeur, ENSICAEN, GREYC, CNRS Rapporteur – président

Bin Yu

Professeure, UC Berkeley, États-Unis Rapporteure – absente

Moritz Große-Wentrup

Professeur, LMU München, Allemagne Examinateur

Aapo Hyvärinen

Professeur, UCL, Gatsby Institute, Royaume-Uni Examinateur

Bertrand Thirion

Directeur de recherche, Inria, CEA, équipe Parietal Directeur de thèse

Gaël Varoquaux

Chargé de recherche, Inria, CEA, équipe Parietal Co-encadrant de thèse

Julien Mairal

Chargé de recherche, Inria, équipe Thoth Co-encadrant de thèse

L E A R N I N G R E P R E S E N T I O N S
F R O M F U N C T I O N A L M R I D ATA

arthur mensch

Dissertation submitted in partial fulfillement of the
requirements for the degree of Doctor of Philosophy.

Université Paris-Saclay

Sciences et Technologies de l’Information

et de la Communication

September 2015 – September 2018

Parietal team, Inria Saclay / Neurospin, CEA. France

P H . D . C O M M I T T E E

director :
Pr. Bertrand Thirion, Inria, CEA, Parietal team, Saclay, France

supervisors:
Pr. Julien Mairal, Inria, Thoth team, Grenoble, France
Pr. Gaël Varoquaux, Inria, CEA, Parietal team, Saclay, France

reviewers:
Pr. Jalal Fadili, ENSICAEN, GREYC, CNRS, Caen, France
Pr. Bin Yu, University of California, Berkeley, USA

examiners:
Pr. Moritz Große-Wentrup, LMU München, Germany
Pr. Aapo Hyvärinen, University College London, UK

jury president:
Pr. Jalal Fadili, ENSICAEN, GREYC, CNRS, Caen, France

This thesis was prepared in Parietal team, at Inria Saclay and Neu-
rospin, CEA, from September 2015 to September 2018. It was funded
by a grant from the Ministère de l’Enseignement Supérieur et de la
Recherche.

© Arthur Mensch, September 2018

A B S T R A C T

Thanks to the advent of functional brain-imaging technologies, cog-
nitive neuroscience is accumulating maps of neural activity responses
to specific tasks or stimuli, or of spontaneous activity. In this work,
we consider data from functional Magnetic Resonance Imaging (fMRI),
that we study in a machine learning setting: we learn a model of
brain activity that should generalize on unseen data. After reviewing
the standard fMRI data analysis techniques, we propose new meth-
ods and models to benefit from the recently released large fMRI data
repositories. Our goal is to learn richer representations of brain activ-
ity. We first focus on unsupervised analysis of terabyte-scale fMRI data
acquired on subjects at rest (resting-state fMRI). We perform this anal-
ysis using matrix factorization. We present new methods for running
sparse matrix factorization/dictionary learning on hundreds of fMRI

records in reasonable time. Our leading approach relies on introduc-
ing randomness in stochastic optimization loops and provides speed-
up of an order of magnitude on a variety of settings and datasets.
We provide an extended empirical validation of our stochastic sub-
sampling approach, for datasets from fMRI, hyperspectral imaging
and collaborative filtering. We derive convergence properties for our
algorithm, in a theoretical analysis that reaches beyond the matrix fac-
torization problem. We then turn to work with fMRI data acquired on
subject undergoing behavioral protocols (task fMRI). We investigate
how to aggregate data from many source studies, acquired with many
different protocols, in order to learn more accurate and interpretable
decoding models, that predicts stimuli or tasks from brain maps. Our
multi-study shared-layer model learns to reduce the dimensionality
of input brain images, simultaneously to learning to decode these im-
ages from their reduced representation. This fosters transfer learning
in between studies, as we learn the undocumented cognitive com-
mon aspects that the many fMRI studies share. As a consequence,
our multi-study model performs better than single-study decoding.
Our approach identifies universally relevant representation of brain
activity, supported by a few task-optimized networks learned during
model fitting.

Finally, on a related topic, we show how to use dynamic program-
ming within end-to-end trained deep networks, with applications in
natural language processing.

R É S U M É

Grâce aux avancées technologiques dans le domaine de l’imagerie
fonctionnelle cérébrale, les neurosciences cognitives accumulent une
grande quantité de cartes spatiales décrivant de manière quantitative
l’activité neuronale suscitée dans le cerveau humain en réponse à des
tâches ou des stimuli spécifiques, ou de manière spontanée. Dans
cette thèse, nous nous intéressons plus particulièrement aux données
issues de l’imagerie par résonance magnétique fonctionnelle (IRMf),
que nous étudions dans un cadre d’apprentissage statistique. Dans ce
cadre notre objectif est d’apprendre des modèles d’activité cérébrale
à partir des données. Nous proposons différentes nouvelles manières
de profiter de la grande quantité de données IRMf disponible.

Tout d’abord, nous considérons les données d’IRMf de repos, que
nous analysons grâce à des méthodes de factorisation de matrices.
L’utilisation de ce type de méthode est classique dans un contexte
d’apprentissage statistique non-supervisée. Dans le cas de l’IRM fonc-
tionnelle, l’objectif est d’extraire des données un nombre réduit de
cartes du cerveau (dites de réseaux fonctionnels) sur lesquelles les
données peuvent être projetées avec une faible perte de signal. Les
réseaux obtenus (que nous souhaitons parcimonieux) délimitent des
régions cérébrales dans lesquelles le signal d’activation est fortement
corrélé. Malheureusement, la taille des données des nouvelles études
d’IRM fonctionnelle de repos (plusieurs millions d’image tridimen-
sionelles, qui contiennent plusieurs centaines de milliers de voxels
chacune) rend très coûteux la décomposition de ces données via une
factorisation matricielle, et donc l’extraction de réseaux fonctionnels
informés par une quantité de données inédite à ce jour.

En conséquence, nous présentons de nouvelles méthodes pour cal-
culer en un temps raisonnable une factorisation parcimonieuse d’une
matrice de donnée constituée plusieurs centaines d’enregistrements
d’IRMf. En premier lieu, nous proposons d’effectuer un prétraitement
des données d’entrée à l’aide de projections aléatoires, avant d’ap-
prendre une décomposition matricielle depuis les données réduites.
Si cette méthode nous permet de traiter en moins d’une journée des
données d’une taille de l’ordre de 50 Go, elle n’est pas adaptée pour
procéder à l’extraction de réseaux à partir de récents jeux de données
de plusieurs téra-octets, comme celui du Human Connectome Project,
qui propose des enregistrements pour plus de mille sujets.

Notre méthode principale, proposée en deuxième partie, introduit
une réduction aléatoire de la dimension des données, via un sous-
échantillonage, dans une boucle d’apprentissage en ligne qui résoud
le problème de factorisation parcimonieuse. L’algorithme proposé con-
verge plus de 10 fois plus vite que les meilleures méthodes exis-
tantes, pour différentes configurations et sur plusieurs jeux de don-
nées. Nous effectuons une vaste validation expérimentale de notre ap-
proche de sous-échantillonnage aléatoire. Nous proposons une étude

théorique et asymptotique des propriétés de convergence de notre al-
gorithme, dans le cadre plus général des algorithmes de majorisation-
minimisation.

Dans un troisième temps, nous nous intéressons aux données d’IRMf

d’activation. Nous démontrons comment agréger différents études
acquises suivant des protocoles distincts afin d’apprendre des mo-
dèles joints de décodage plus justes et interprétables. Notre modèle
multi-études apprend à réduire la dimension des images cérébrales
en entrée en même temps qu’il apprend à les classifier, pour chacune
des études, à partir de leurs représentations réduites. Cela suscite un
transfert d’information entre les études. En conséquence, notre mo-
dèle multi-étude est plus performant que les modèles de décodage
appris sur chaque étude séparément. Notre approche identifie une
représentation universellement pertinente de l’activité cérébrale, sup-
portée par un petit nombre de réseaux optimisés pour l’identification
de tâches.

Pour finir, sur un sujet connexe, nous nous intéressons à de nou-
velles méthodes pour effectuer de la prédiction structurée, avec des
applications variées en traitement du langage naturel. Nous propo-
sons une manière générique de relâcher les algorithmes de program-
mation dynamique qui apparaissent dans les méchanismes d’infé-
rence pour la prédiction de structures (par exemple, l’étiquettage syn-
taxique d’une phrase). Cela permet d’entraîner les représentations in-
termédiaires, paramétrées par des réseaux de neurones profonds, des
données d’entrée en aval de ces méchanismes d’inférence.

A C K N O W L E D G M E N T S

I warmly thank Pr. Jalal Fadili and Pr. Bin Yu, who accepted to
review this manuscript, as well as Pr. Eric Moulines, Pr. Moritz
Große-Wentrup and Pr. Aapo Hyvärinen, for accepting to be part of
my defense jury.

I am most grateful to my three supervisors, Bertrand Thirion, Gaël
Varoquaux and Julien Mairal, for guiding me throughout these three
years. You were extraordinarily available for advise, provided great
directions of research, showed a great patience when it came to teach
me how to write, how to prove things, how to gain insight on what
we were doing. Working at your side taught me rigor, perseverance
and hard-work, and I hope to live up to your teachings in the future.

I am indebted to Mathieu Blondel, with whom it was a joy to
work in Kyoto and alongside whom I discovered other aspects of
machine learning. My three years of peregrinations owe much to
the great people of Parietal team. I am thankful to Mehdi Rahim,
Alexandre Abraham and Michael Eickenberg who were great men-
tors and examples, to Jérôme Dockès who joined me at Parietal after
so many years of friendship, to Carole Lazarus, Loubna El Gued-
dari and Hamza Cherkaoui for being great coffee sharers beyond
the first-floor/second-floor rift, to Pierre Ablin, Mathurin Massias
and Jérôme-Alexis Chevalier for being zealous co-animators of the
Club des amateurs du plateau de Saclay, to Patricio Cerda for being
a great first person to meet every morning in Porte d’Orléans, to Ka-
malaker Reddy Dadi for being a most reliable colleague, to Thomas
Moreau for often sparring me reviews in conferences, to Guillaume
Lemaître, Joan Massich Vall and Joris van den Bossche for forming
a most enjoyable agile software team, to André Manoel, Ana Luísa
Pinho, Loïc Estève, Daria La Rocca, Darya Chyzhyk, Denis Enge-
mann and Demian Wassermann who were great people to discuss
with. I thank Alexandre Gramfort, Joseph Salmon and Philippe Ciu-
ciu, who were knowledgeable advisors and great supporters during
my stay. I thank Régine Bricquet, Tiffany Caristan, Corinne Petitot
and Stéphanie Druetta for their efficiency at handling administrative
issues.

I dearly thank Elvis Dohmatob and Olivier Grisel who, besides be-
ing great friends, taught me a lot lot and formed superb collaborators.
I thank Alberto Bietti, Anna Korba, Eugène N’Diaye, Thibaud Rahier
without whom conferences and summer schools would not have been
as fun, and who were great companions in the machine learning com-
munity. Finally, I thank my friends from every horizon (fortunately
not everyone does machine learning for a living yet), my family, my
parents, brothers and sister, without whom none of this would have
been possible. And of course, Émilie, of infinite patience, for whom
ça n’a pas dû être facile tous les jours.

C O N T E N T S

1 overview 12

1.1 Organization of the manuscript 12

1.2 A note on chapter ordering 15

i (mf for) functional neuro-imaging

2 neuro-imaging background 17

2.1 Studying the brain through functional MRI 17

2.2 Resting-state functional MRI 19

2.3 Task fMRI data analysis 22

2.4 Conclusion . 27

3 dictionary learning for fmri 28

3.1 Matrix factorization for resting-state fMRI 28

3.2 Dictionary learning for resting-state fMRI 30

3.3 Time-compressed dictionary learning 31

3.4 Validation and results of compressed DL 34

3.5 Changing model and going beyond 39

ii huge matrix factorization

4 stochastic subsampling for huge matrix factor-
ization 44

4.1 Overview of Part II . 44

4.2 Background and proposed approach 45

4.3 Prior art: online matrix factorization 47

4.4 Algorithm outline . 50

4.5 Subsampled online matrix factorization 52

5 somf algorithm properties 60

5.1 Prior art: stochastic majorization-minimization 60

5.2 Stochastic approximate majorization-minimization . . 62

5.3 Convergence analysis . 62

5.4 Conclusion . 68

6 subsampled online matrix factorization in prac-
tice 69

6.1 Experiments with SOMF 69

6.2 Extension to matrix completion 76

6.3 Conclusion of Part II . 80

iii deeper models for multi-study cognitive mapping

7 learning multi-study neural representations of

cognition 83

7.1 Introduction . 83

7.2 Results . 85

7.3 Discussion . 91

7.4 Detailed method . 94

7.5 Design discussion . 99

7.6 Data corpus and references 107

iv new algorithmic layers for deep structure pre-
diction

8 differentiable dynamic programming 110

8.1 Introduction . 111

8.2 Smoothed max operators 112

8.3 Differentiable dynamic programming layers 113

8.4 Examples of computational graphs 118

8.5 Differentiable structured prediction 121

8.6 Structured and sparse attention 125

8.7 Conclusion . 126

v conclusion

9 conclusion 129

9.1 Software . 130

Bibliography 131

Appendices
a proofs of chapter 7 — somf and samm analysis 148

a.1 Proofs of convergence 148

b proofs and results from chapter 8 — differen-
tiable dp 163

b.1 Proofs and detailed derivations 163

b.2 Examples of algorithm instantiations 172

b.3 Experimental details and further results 176

A C R O N Y M S

ACC Anterior cingulate cortex

ADHD Attention Deficit Hyperactivity Disorder

BART Balloon analog risk taking

BCD Block coordinate descent

BLEU Bilingual evaluation understudy score

BOLD Blood-oxygen-level dependant

CRF Conditional random field

CPU Central processing unit

DAG Directed acyclic graph

DL Dictionary learning

DLPFC Dorsolateral prefrontal cortex

DP Dynamic programming

DTW Dynamic time warping

ECOG Electrocorticography

EEG Electro-encephalography

FISTA Fast iterative soft thresholding algorithm

FFA Fusiform face area

fMRI Functional magnetic resonance imaging

GLM General linear model

GPU Graphics Processing Unit

HCP Human Connectome Project

HRF Hemodynamic-response function

ICA Independent component analysis

IO In-out

IPS Intraparietal sulcus

IRMf Imagerie à résonance magnétique fonctionnelle

L-BFGS Limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm

LDA Latent discriminant analysis

LSTM Long-short term memory network

MAP Maximum a posteriori

MEG Magneto-encephalography

MF Matrix factorization

MFCC Mel-frequency cepstral coefficients

MNI Montreal Neurological Institute

MRI Magnetic resonance imaging

MSTON Multi-study task-optimized networks

NER Named entity recognition

NMF Non-negative matrix factorization

OMF Online matrix factorization

PCA Principal component analysis

RMSE Root mean square error

SAGA Stochastic average gradient amélioré

SAMM Stochastic approximate majorization-minimization

SGD Stochastic gradient descent

SMM Stochastic majorization-minimization

SOMF Stochastic online matrix factorization

SPCA Sparse principal component analysis

SVD Singular value decomposition

SVM Support vector machine

SVR Support vector regression

UKBB UK BioBank

N O TAT I O N

We denote scalars, vectors and matrices using lower-case, bold
lower-case and bold upper-case letters, e.g., x, x and X. We denote
the elements of X by xi,j, its rows by xi, and its columns by x(i).
Depending on context, subscript will also be used to denote iteration
number, as in xt, the value of x at iteration t of a given algorithm.
We use calligraphic font X to denote ensembles. When dealing with
approximated value and comparing them to a ground truth, we use
superscript ⋆ to denote the non-approximated value. Finally, we of-
ten use the notation x̄ to denote an empirical or true expected value.
Specific notations will be recalled where needed.

Notation Name Definition

[1, n] = [n] Integers from 1 to n {1. . . . , n}

‖x‖2 Vector euclidean norm (ℓ2 norm)
(∑n

i=1 x
2
i)
)1/2

‖x‖1 Vector/matrix ℓ1 norm
∑n

i=1 |xi|

〈x,y〉 Vector scalar product
∑n

i=1 xiyi

supp(x) Support of x in R
n {j ∈ [1, n] : xj 6= 0}

‖X‖2F Matrix Frobenius norm
(∑n,m

i,j1= x2i,j)
)1/2

〈X,Y〉 Frobenius scalar product
∑n,m

i,j=1 xi,jyi,j

Tr X Trace of X
∑n

i=1 xi,i

Diag(x) Diagonal matrix with diagonal x

X† Moore-Penrose pseudo-inverse

B1/2 ℓ1/ℓ2 unit ball in R
n

conv(Y) Convex hull of Y

H(q) Shannon Entropy
∑n

i qi logqi

△n (n− 1)-probability simplex {λ ∈ R
D
+ : ‖λ‖1 = 1}

N(µ,Σ) Normal distribution

P[A] Probability of event A

E[X] Expected value of X
∑

A P[X = x]x

1
O V E RV I E W

Functional MRI is a powerful brain-imaging modality: it allows to
better understand how the brain work by recording with very little in-
trusion the brain activity of an active human subject with a good time
(1s) and spatial resolution (1mm). The field of fMRI is becoming data
intensive, as the number of publicly available studies is constantly
growing, and as several acquisition campaigns on large cohorts have
provided tens of thousand hours of brain records. This has called for
changing analysis methods, that have been shifting from inferential
statistics to statistical learning for the last 10 years. It is now consen-
sual that models of brain activity recorded in fMRI should be learned

from data, and validated by performing prediction on left-out data,
which cast fMRI analysis as a machine-learning challenge. The size of
newly released fMRI data requires strong adaptation of existing ma-
chine learning techniques, given their unusual shape: they are high
dimensional (with hundreds of thousands of voxels), and come in
numerous samples with low signal-to-noise ratio. In this thesis, we
specifically address the problem of efficiently finding rich representa-
tion of brain activity using large-scale fMRI data repositories.

1.1 organization of the manuscript

The following work is organized around three major research di-
rections, that led to different series of publications.

1.1.1 (Matrix factorization for) functional imaging analysis

What is functional Magnetic Resonance Imaging (fMRI), how is
functional MRI data analysed today, why does the growing amount
of data requires new methods? We provide an overview of functional
MRI analysis, in both unsupervised (resting-state data) and super-
vised (task data) settings in Chapter 2, which introduces the several
data analysis formalisms we reuse throughout this work. In Chap-
ter 3, we propose a new method based on random projections (Halko
et al., 2011; Johnson and Lindenstrauss, 1984) to preprocess data and
accelerate the extraction of functional networks from resting-state
fMRI data using dictionary learning (Olshausen and Field, 1997; Varo-
quaux et al., 2011). This method is useful but hard to deploy on
datasets with thousands of fMRI acquisitions: to circumvent this is-
sue, and propose a new problem formalization, that will be central to
Part ii.

1.1 organization of the manuscript 13

Published work

Mensch, A., Varoquaux, G., & Thirion, B. (2016b). Com-
pressed online dictionary learning for fast fMRI decompo-
sition. In Proceedings of the IEEE International Symposium on

Biomedical Imaging (ISBI),
Dohmatob, E., Mensch, A., Varoquaux, G., & Thirion,

B. (2016). Learning brain regions via large-scale online
structured sparse dictionary learning. Advances in Neural

Information Processing Systems.

1.1.2 Huge matrix factorization

Matrix factorization plays a major role in functional MRI analysis,
especially when dealing with resting-state data, i. e. data acquired
on subjects left idle in their scanner. The size of the data produced
by fMRI studies sets new scalability challenges for this category of
pattern extraction methods. How can we factorize large (high dimen-
sional) and tall (numerous samples) matrices in reasonable time? In
Chapter 4, we propose a new flexible algorithm for matrix factoriza-
tion, that is an order of magnitude faster than the fastest existing
methods (Mairal et al., 2010) on the datasets we consider. Our algo-
rithm, that we dub SOMF, is able to factorize huge, dense, and po-
tentially square matrices, into factors that may be sparse, dense and
potentially non-negative. It relies on a new optimization method that
is both random in the sample (column) and feature (row) direction.
We provide a complete theoretical analysis of the properties of SOMF

in Chapter 5, in which we extend the class of stochastic majorization-
minimization algorithms (Mairal, 2013b) by perturbating their vari-
ous steps. We show that it enjoys the same convergence properties as
existing methods. We perform an empirical validation of SOMF for a
variety of domains in Chapter 6, where we discuss how it accelerates
matrix factorization for hyperspectral imaging data, collaborative fil-
tering (R. M. Bell and Koren, 2007), and of course resting-state fMRI.

Published work

Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G.
(2016a). Dictionary learning for massive matrix factoriza-
tion. Proceedings of the International Conference on Machine

Learning (ICML),
Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G.

(2018b). Stochastic Subsampling for factorizing huge ma-
trices. IEEE Transactions on Signal Processing, 66(1), 113–
128.

1.1.3 Deeper and richer models for task fMRI and structured data

For a bird’s-eye view, functional MRI data is available in two ma-
jor forms: a few large-scale studies (e. g., Sudlow et al., 2015; Van

1.1 organization of the manuscript 14

Essen et al., 2012), that perform resting-state and generic task pro-
tocols over hundreds to thousands of subjects; hundreds of smaller
task fMRI studies, that explore specific aspects of cognition by apply-
ing carefully designed but disparate experimental protocols on a few
dozens of subjects, who are asked to execute some tasks or stimulated
in various ways.

The statistical power of data analysis methods for these smaller
studies is limited by their sample size (Button et al., 2013). On the
other hand, large efforts have been recently made to gather many
small fMRI in the same public repositories (Poldrack et al., 2013).
Can aggregating data from many small size sources and leverag-
ing the large-size datasets allow us to learn more powerful models ?
Many task fMRI studies indeed share some common cognitive aspects,
which should allow to increase the effective classification power of
learned models. Yet a major challenge for this approach lies in the
fact that the relationships between various studies are undocumented.
In Chapter 7, we design a new multi-layer model that performs de-
coding over dozens of studies aggregated together. The multi-layer,
shared-parameter structure of our model allows to learn the relation-
ship between protocols and permits effective transfer learning. In
other words, it ensures that the information learned from classifying
each study benefits the other studies. Our model has higher pre-
diction performance than single-study decoders; it produces cogni-
tive representation of brain activity over multi-study task-optimized net-

works, that form a universal and interpretable basis for inter-subject
decoding.

Published work

Mensch, A., Mairal, J., Bzdok, D., Thirion, B., & Varo-
quaux, G. (2017). Learning neural representations of hu-
man cognition across many fMRI studies. Advances in Neu-

ral Information Processing Systems.

1.1.4 New algorithmic layers for deep structure prediction

This last part, that may be considered as an appendix, was pre-
pared during an internship at NTT Communication Science Labs, Ky-
oto, Japan. In Chapter 8, we depart from fMRI and linger on the
idea, already present in Chapter 7, of introducing new components
to existing models and train them in an end-to-end fashion. More
precisely, we provide a general approach for introducing dynamic
programming mechanisms within deep networks, and show how to
make these mechanisms differentiable and therefore suitable for back-
propagation training. Our approach, based on smoothing techniques
(Nesterov, 2005), allows to perform dense or sparse inference within
(simple) graphical models and backpropagate through it. We show
how to apply it in natural language processing settings (neural ma-
chine translation, named entity recognition), and audio-to-score align-
ment.

1.2 a note on chapter ordering 15

Published work

Mensch, A., & Blondel, M. (2018). Differentiable dy-
namic programming for structured prediction and atten-
tion. Proceedings of the International Conference on Machine

Learning (ICML).

1.1.5 Software

We developed several Python packages for reproducibility and reuse
of the work presented in this dissertation. The detailed list is pro-
vided in Chapter 9.

1.2 a note on chapter ordering

Appendices may be skipped at first read as they are not essential
for understanding the overall story. The reader more interested in
more theoretical machine learning and optimization would first go
for chapters 4, 5 and 8. In contrast, chapters 3, 6 and 7 are more
specifically focused on machine learning for fMRI.

Part i

(M AT R I X FA C T O R I Z AT I O N F O R)
F U N C T I O N A L N E U R O - I M A G I N G

2
N E U R O - I M A G I N G B A C K G R O U N D

In this chapter, we introduce the general goals and the type of data
that were studied in this thesis. This is useful to understand the var-
ious directions that we took. The general objective of this thesis was
the analysis of large-scale functional Functional magnetic resonance
imaging (fMRI) data. Its driving motivation could be stated as such:
we wish to handle at reasonable cost the numerous studies that are
now publicly available, in order bring more precise and general sta-
tistical representation of brain activity. Yet new methods and models
have to be developed to 1) handle the size of data that ambitious data
acquisition projects are now producing and 2) handle the protocol
variability of past and future functional MRI studies, by increasing
model complexity.

In this chapter, we provide a synthetic overview (Section 2.1) of the
purpose of functional MRI in cognitive science, so as to make clearer
the final interest of the presented methods to the reader. We refer to
e. g., Poldrack et al. (2011) for more in-depth reference. Functional MRI

protocols come in two major flavors, task and resting-state, that were
both studied in this thesis. We will present their general principles
and their associated analysis techniques in Section 2.2 and 2.3.

This chapter is focused on neuroimaging rather than mathematical
formulations: we delay the introduction of models and methods and
their inscription within a larger machine-learning/signal processing
literature to the relevant following chapters.

2.1 studying the brain through functional mri

Let us first recall the basis of neuro-imaging, before focusing on
functional MRI principles and technical aspects.

2.1.1 Neuro-imaging

Neuro-imaging sciences endeavor to measure brain activity from
human or animal subjects and relate it to experimental conditions
and behavior observations. It is founded on the observation1 that cog- 1 Neuroscience can

be traced back to

Ancient Egypt

medicine, that

already observed

relations between

brain trauma

localisation and

behavior (Kandel

et al., 1981).

nition has measurable effects on the brain, that are somehow shared
across subjects, and to some extent across species. In theory, this
should allow to map the cognitive functions onto the physical brain
and describe cognitive processes implementation in quantitative ways,
that should reasonably generalize across subjects.

Means of signal acquisition are various and in constant evolution.
Table 2.1 describes some of them. Modalities may be considered from
different point of views: they vary in their level of intrusion, their
spatial resolution, their temporal resolution and their level of noise.

2.1 studying the brain through functional mri 18

Modality Principles S. res. T. res. Intrusiveness

ECOG
Electric field evoked
inside the implanted brain 1 mm 10 ms Surgical

intervention

EEG/MEG
Electric/Magnetic field
evoked from surface activity 1 cm 10 ms Harmless

fMRI BOLD signal (whole brain) 2 mm 1 s High B field

Table 2.1 – Examples of neuro-imaging modalities: all varies in resolution
and intrusiveness. fMRI is often a good compromise.

Similarly, experimental protocols vary in how much they are close
to day-to-day cognitive tasks (looking at blinking dots versus looking
at a movie) and in the level of the cognitive functions they recruit
(hearing beeps versus making complex risk-taking decisions).

2.1.2 Functional Magnetic Resonance Imaging (fMRI)

In this work, we focus on fMRI, a modality introduced by Ogawa
et al. (1990). This mean of observation, which is performed in an MRI

scanner, is non intrusive yet it provides a satisfying temporal and spa-
tial resolution. Unlike Electro-encephalography (EEG) and Magneto-
encephalography (MEG), functional MRI does not directly measure
electric of magnetic field that are stemmed by neurons in activity.
In contrast, it leverages Magnetic Resonance Imaging (MRI, Lauter-
bur, 1973)2 to measure the variation in the level of oxygenated and 2 in itself a powerful

modality to discern

in between biological

tissues with various

magnetic properties

deoxygenated blood within the blood vessels that irrigate neurons.
As spiking neurons require hemoglobin-provided di-oxygen to pro-
duce energy, a neuronal activity increase in any volume of the brain
is followed within five second by an increase of oxygenated blood
in this volume and by an undershoot that lasts roughly 30 seconds.
These oxygen-dependent variations are detectable through Magnetic
resonance imaging (MRI), and are extracted as the Blood-oxygen-level
dependant (BOLD) signal.

modelisation. The biological phenomena at stake are modelled
as such: the observed BOLD signal is the result of convoluting the
neuronal activity in the volume of interest with an Hemodynamic-
response function (HRF), that models delay, amplitude and under-
shoot of the level of oxygenated blood within this volume. Namely,
writing xv and x̃v : [0, T]→ R, the continuous BOLD and neuronal ac-
tivity that we wish to measure within voxel v, we assume that there
is a function ξ : R

+ → R such that

xv(t) = (x̃v ◦ ξ)(t) ∀t ∈ [0, T], (2.1)

where ξ has either an established form (see e. g., Lindquist et al.,
2009), or may be estimated from data (Makni et al., 2008; Pedregosa
et al., 2015). This modelling is fundamentally linear, in the sense that
the BOLD signal is assumed to be proportional to the neuronal activ-
ity. It will be central in task fMRI analysis (see Section 2.3). At the

2.2 resting-state functional mri 19

end of the fMRI acquisition, we obtain a sequence of brain images,
i. e. one time-series per voxel that records the intensity of the neural
activity, convoluted by the hemodynamic response, within this voxel,
plus noise from various sources. Typically, these time-series have a
period of 0.8 to 3 seconds, and the space resolution (i. e. the volume of
each voxel) varies from 1mm3 to 27mm3, depending on the spatial
resolution that the scanner allows. Note that these volumes contain
millions of neurons: although functional MRI has a good spatial res-
olution compared to other non intrusive modalities, it is still many
orders of magnitude above the cellular level.

preprocessing . fMRI raw data must typically be corrected for vari-
ous noise sources that deteriorate the signal-to-noise ratio of the BOLD

time series. Most importantly, subject head motion is recorded and re-
gressed through within-record registration, as are physiological con-
ditions (heart-beat, respiration). The physical artifacts related to the
scanning process (e. g., the fact that slices are recorded one after an-
other, causing time jitter, and the non-uniformity of the base magnetic
field) are also monitored and compensated in preprocessing steps.
Typically, the public datasets on which we developed new techniques
are already provided as pre-processed time series for which physio-
logical and physical confounds have already been regressed.

group-level analysis . In most functional MRI studies, the same
acquisition protocol is performed on different subjects and potentially
several times on each subject. Analysis of the BOLD signal may then
be performed at a subject-level, or at the group-level. Depending on our
goals, we may choose to model differently the inter and intra-subject

variability of records. To perform group analysis, single-subject brain
images are typically registered to a common template (the MNI space,
introduced in Evans et al., 1993), so as to reduce the variability in
brain shape. Even though this leads to a loss in anatomical informa-
tion, this approach is motivated by the fact that brain networks are
often located within well defined anatomic regions that are shared
across subjects, modulo some non-rigid transformation. This work
does not focus on inter-subject variability, and will assume that brain
images arise from a distribution that is shared across subjects, once
they have been registered to the MNI space.

2.2 resting-state functional mri

Resting-state fMRI data are central in modern fMRI analysis as it is
cheap to acquire and contains much intrinsic information about brain
functioning — we review it briefly, as it is central in this thesis.

2.2.1 Protocol description

The simplest way to obtain functional MRI data is indeed to follow
the resting-state protocol. As its name indicates, it consists in acquir-

2.2 resting-state functional mri 20

ing the BOLD signal from a subject that has been asked to rest in the
scanner, namely to do nothing in particular. No stimuli nor specific
task is provided. This data acquisition process yields unlabelled data,
in the sense that nothing is known as to the thought process that is
going on in the subject mind. These data may be thought as brain

movies, with 1 image per second, and in between 50,000 to 200,000

voxels per image. Resting-state protocol is the cheapest way to ac-
quire fMRI data: as such, it is widely available: the Human Connec-
tome Project (HCP, Van Essen et al., 2012) provides 4,000 records of 15

minutes acquired across 1,000 subjects, while the UK BioBank (UKBB)
initiative (Sudlow et al., 2015) endeavors to gather data for 100,000

subjects.

2.2.2 Scientific purpose

Resting-state data contain interesting information regarding the
subject brain. They allow to identify various functional networks, that
correspond to spatial regions that tend to activate together. With
these networks at hand, we hope to reduce the dimensionality of
the signal from 105 voxels to a few hundreds components without
loosing cognitive information. Uncovering these functional networks
at scale is the driving motivation of a part of this thesis (Chapter 3

and 4), while we show how to use these networks in new decoding
pipelines (see Section 2.3) in Chapter 7.

Historically, the functional networks uncovered from resting-state
data have first been used to construct bio-markers for certain diseases:
Alzeimer disease (Greicius, 2008), Parkinson disease (Wu et al., 2009),
autism spectrum disorder (Abraham et al., 2017; Weng et al., 2010),
Attention Deficit Hyperactivity Disorder (ADHD, Yu-Feng et al., 2007).
It has also been shown to be related to behavior, e. g., fluid intelligence
(S. M. Smith et al., 2015). More precisely, the time correlation struc-
ture between the various functional networks is often of interest to
better understand how the brain of a single subject functions. These
correlations can be estimated in the framework of functional connec-

tivity (Biswal et al., 1995; Fox and Raichle, 2007), that is still being
refined (e. g., Rahim et al., 2017).

Recently, many studies have also demonstrated the interest of us-
ing resting-state data to better frame inter-subject variability in more
complex protocols involving controlled stimuli (Sabuncu et al., 2009;
S. M. Smith et al., 2009). At a more fundamental level, resting-state
analysis is central to better understand the role of functional networks
in cognition, e. g., the default-mode network (Greicius et al., 2003),
a pre-eminent network in resting-state that tends to activate during
mind-wandering, or amygdala (Roy et al., 2009), a brain region partly
responsible for emotional responses.

2.2 resting-state functional mri 21

V
o
xe

ls

Time

=

k spatial maps Time

x

Figure 2.1 – Modelling of the brain signal in resting-state fMRI. The data
matrix writes as a product of two matrices that yield spatial
and temporal information respectfully.

2.2.3 Linear modeling and functional networks

Due to their very indirect nature, BOLD images are very noisy: it is
estimated that cognitive tasks that subjects undertake only explains
5% of the variance of the voxel time-series (Raichle and Mintun, 2006).
When trying to use BOLD data to learn a statistical model of the brain,
we thus have to come up with models of reasonable complexity. Un-
covering functional networks from resting-state images is thus often
performed using the simplest model possible: brain images are as-
sumed to be the linear combination of spatial functional networks
(that can be seen template brain images), that are fixed across time.
Mathematically, this can be written as follow: brain images contain-
ing the bold signal form a sequence in R

p, that we denote (xt)t∈[n],
where n is the number of single frames and p the number of voxels.
We assume that the images from this sequence are approximately a
linear combination of k spatial maps in R

p — the functional networks,
written (dj)j∈[k], so that

xt =

k∑

j=1

αt,jdj + ǫt, (2.2)

where αt ∈ R
k denotes the loadings at time t, associated with the net-

works (dj)j and ǫt ∈ R
p is a residual term. The spatial maps, gath-

ered in a matrix D ∈ R
p×k, will be estimated from data X ∈ R

p×n,
so as to minimize residuals and enforce some meaningful properties
over D. The model is illustrated in Figure 2.1. Estimating D will be
the purpose of Chapter 3 and 6.

Once again, in multi-subjects studies, we may choose whether or
not to model inter-subject variability or consider it as a confound.
Typically, we may choose to estimate a different dictionary Ds for
each subject s, or simply consider each brain image from each subject
as a linear combination of the same dictionary D. We follow the latter
path in this work, as it is more readily amenable to recent datasets
with thousands of subjects.

2.3 task fmri data analysis 22

2.3 task fmri data analysis

Functional MRI may also be acquired with more complex protocols,
that involve presenting sensitive stimuli or ask the acquired subject to
perform a task. Performing such task fMRI study typically requires to
design of an experimental protocol that will be presented to the sub-
ject several time during acquistion. The objective of this approach is
to relate the presented stimuli or the observed reactions of the subject
(i. e. experimental base condition) to the subject’s brain activity — this
is known as encoding. Reversely, we may wish to predict base condi-
tions from brain images, namely to decode the brain into experimental
conditions.

2.3.1 Encoding stimuli into the brain: standard fMRI analysis

Encoding tries to relate a base condition sequence (e. g., sequences
of different images presented to the subject) to brain activity. For
this, we once again use a linear model, in what is known as the
General linear model (GLM) in the literature (Friston et al., 1994). Typ-
ically, conditions can be modelled as multi-dimensional time-series
x : [0, T] → R

k, where k is the number of different stimuli that are
presented to the subject during the acquisition and T is the length of
the experiment. For example, Haxby et al. (2001b) present images of
faces, cats, and scissors to the subject: in this case, the three time se-
ries ỹ1, ỹ2 and ỹ3 corresponds to the onsets of face, cat and scissors
visualization, respectively. Similarly, functional localizer protocols
(e. g., Pinel et al., 2007b) show a variety of stimuli to subjects, that are
known to recruit localized parts of the cortex. Base conditions include
visual and auditory stimuli, computation and motor commands.

2.3.1.1 The General Linear Model

We assume that these stimuli immediately trigger a neuronal re-
sponse x̃v within each voxel v of the subject brain, and that this re-
sponse is the sum of the response of this voxel to each stimulus ỹi for
i ∈ [k]. Namely, there exists β ∈ R

k and an i.i.d. noise time-series ǫv
such that, for all t ∈ [0, T],

x̃v(t) =

q∑

i=1

βv,iỹi(t) + ǫ̃v(t), and thus, convoluting with ξ,

xv(t) =

q∑

i=1

βv,iyi(t) + ǫv(t), where ǫv(t) ∼ N(0, σ2
v) (2.3)

where we used the HRF model (2.1) to recover a model relating the
BOLD signal xv to the convoluted signals (yi , ỹi ◦ ξ)i∈[k]. Each voxel
is thus associated with a vector βv, that contains the linear suscepti-
bility of that voxel to each condition presented in the protocol. Fig-
ure 2.2 illustrates the standard model (2.3) for a single voxel v.

We estimate the (βv)v from data using linear regression. Namely,
we define X ∈ R

n×p the discretized matrix of BOLD time-series and

2.3 task fmri data analysis 23

Figure 2.2 – The General Linear Model relates the BOLD signal in each voxel
v to the base conditions (yi)i∈[k] of the experiments, convo-
luted by the HRF at this voxel. Those form the design matrix Y .
Adapted from Pedregosa (2015).

Y ∈ R
n×k the discretized matrix of HRF-convoluted stimuli (yi)i —

known as the design matrix3. We compute B̂ = Y†X ∈ R
k×p (the β- 3 For coherence with

previous and next

sections, X and Y

are inverted w.r.t.

classical notations in

linear regression. X

is transposed w.r.t.

Section 2.2.

maps), that solve minB∈Rk×p ‖X−BY‖2F. These maps may be either
computed for a single subject, or at the group-level (concatenating
experiments for different subject across time).

2.3.1.2 Statistical maps

To provide a statistical interpretation of the B̂ maps, those are typi-
cally transformed into z-score maps. We wish to know how much the
susceptibility of voxel v to the condition i differs from zero, compared
to the noise in the estimation of regressors. For this, we compute the
following t-statistic for each voxel:

tv,i =
β̂v,i

V̂
1/2
ǫv (β̂v,i)

, where V̂ǫv(β̂v,i) = (YY⊤)−1
i,i σ̂

2
v (2.4)

and σ̂2
v = ‖xv − βvY‖22/(n − k) is estimated from data. Then, t-

statistics are converted to z-statistics by applying an Student to Gaus-
sian transform. We thus obtain a set of maps Z ∈ R

p×k: these maps
forms the systematic output of task fMRI studies, analysed from an
univariate point-of-view. Z-maps may be used to select voxels of inter-
est for a given stimuli. For example, we may want to select the vox-
els of the map ti ∈ R

p that differ from zero with associated p-value
p < 0.05. We thus obtain a selection of voxels that are triggered prefer-
entially by condition i, and a localization of the brain regions recruited
by this condition. This localization is best represented as a thresholded

statistical map. We display in Figure 2.3a and 2.3b the z-maps associ-
ated with video stimuli and audio stimuli, from a single-subject func-
tional localizer analysis. We may also use non-thresholded z-maps as

2.3 task fmri data analysis 24

(a) Auditory stimulus

(b) Video stimulus

(c) Audio-video contrast

(d) Video-audio contrast

Figure 2.3 – Base condition and contrast z-maps for a single subject analysis
of the functional localizer protocol. Thresholded z-maps outline
brain functional regions. Adapted from Nistats documentation,
with data from Pinel et al., 2007b

inputs of a decoding task, as they constitute a summary of the effect of
each base conditions on each subject brain — non thresholded maps
will be the input data in Chapter 7.

2.3.1.3 Contrasts

Neuroscientists often prefer to estimate the z-statistic associated
with some contrast between regressors, e. g., β̂v,1 − β̂v,2 for face-vs-
cats in Haxby et al. (2001b) experiment. This approach, known as
cognitive subtraction (Petersen et al., 1989), is typically useful to com-
pare two base conditions that share some common aspects (both stim-
uli are images in previous example) but differs in others (the content
of images differs). Contrasting regressors then allow to narrow the
condition whose effect is measured — e. g., identify face recognition
brain regions. Back to the functional localizer protocol, we also plot
the audio-video and video-audio contrast z-maps in Figure 2.3. The con-

2.3 task fmri data analysis 25

trast z-maps better outline the visual and auditory cortex than base
condition z-maps — and are indeed preferred for discussion. Formu-
las to derive z-maps for contrasts are easily adapted from equation
(2.4). 1

2.3.2 Decoding brain images into stimuli

We turn to presenting decoding for task fMRI, as this will pro-
vide background for Chapter 7, where we classify z-maps from many
maps and subjects.

The standard analysis presented in Section 2.3.1 handles each voxel
separately (in a mass univariate setting). It thus captures how differ-
ent regions of the brain may interact for a specific task, and misses
some information (Cox and Savoy, 2003; Haxby et al., 2001b).

Decoding infers more information by identifying task/conditions
using whole brain images as input. Those brain images should al-
ready summarize brain activation either at the subject or the group
level, and are typically the z-maps or β-maps obtained running the
GLM (Mumford et al., 2012). Decoding thus performs multi-variate pat-

tern analysis of voxel activation (see Haynes, 2015, for a review), and
provides new information on the relation between brain patterns and
stimuli.

2.3.2.1 Statistical learning formulation

The problem of task identification is cast as a classification or regres-

sion problem: we wish to learn a model that can detect or predict a
specific task from a (group or individual) summary of the effect of
several tasks on the brain. Mathematically, this is formulated as fol-
lows: we wish to assign a target (stimuli/behavior) y ∈ {0, k} to each
brain activation maps (typically, z-maps) X ∈ R

p, using a model fθ,
that is fitted to train data (Xi,yi)i∈[n]. For example, in the Haxby et
al. (2001b) experiment, the target corresponds to the category of the
visual stimuli presented to the subject. The statistical learning frame-
work (see e. g., Bishop, 1995) demands that the performance of mod-
els be tested on left-out data (e. g., depending on the target discovery,
left-out groups, subjects, records). If the model fθ performs well on
left-out brain images, we may introspect it and study its classification
boundaries. Those boundaries contain information regarding which
brain region is selectively recruited by the studied stimuli.

Although learned models may be chosen arbitrarily, the fMRI com-
munity widely prefers linear classification/regression models, that
seem to provide the best performances. Starting from the seminal
work of Cox and Savoy (2003), Support Vector Machines (SVM/SVR,
Hearst et al., 1998) have been very popular in the field, as well as
Linear Discriminant Analysis (LDA, Fisher, 1938). For instance, Fig-
ure 2.4 shows the brain map that discriminates face from cat visual

1. In Chapter 7, we will poll statistical maps from many studies and avoid using
complex contrasts, as designing those requires in-depth knowledge of each protocol
and hardly scales-up to large repository analysis.

2.3 task fmri data analysis 26

Figure 2.4 – Classification map for decoding face vs cat stimuli in the Haxby
et al. (2001b) experiment. Taken from Nilearn documentation.

stimuli. It is computed by fitting a linear SVM classifier to z-maps
associated with face and cat stimuli. We observe that the Fusiform
face area (FFA) region possesses very high coefficients, as expected: it
is known to be crucial for face recognition (Kanwisher et al., 1997).

2.3.2.2 Handling scarse high dimensional data

Decoding in fMRI is a typical hard learning setting. The avail-
able data are relatively scarce: each recorded subject provides as
much statistical maps as tested conditions. Even in very large stud-
ies like HCP, that costed more than $40 millions, we may only work
with 43, 000 statistical maps, that corresponds to 18 base conditions
recorded twice on 1200 subjects. Although we can hope to increase
the size of the datasets by considering the raw BOLD time-series and
increase performance by performing decoding in the time domain
(Loula et al., 2017), decoding from statistical maps remains a strong
baseline. Morally, we thus own little data with high signal.

On the other hand, the data to decode (i. e. classify or use for re-
gression) are very high dimensional, as they live in the whole brain
space, of typically p = 200, 000 voxels. Estimating models, even lin-
ear ones, without overfitting requires some care. Several approaches
have been used for this, that may be combined together. They may
roughly be categorized in four categories.

— Feature selection. We may perform decoding from a reduced
voxel space R

q. It may found by searching the brain space with
a small sliding window (Searchlight, Kriegeskorte et al., 2006), or
by simple univariate feature selection (Pereira et al., 2009), e. g.,

using analysis of variance.

— Region-of-interest selection. We may restrict the voxel space in
which decoding is performed to brain regions which we assume
to contain the relevant signal (see e. g., Etzel et al., 2009, for a
review). Selection should be performed beforehand if we wish
to avoid biasing relevance results. It typically relies on man-
ually defined regions based on anatomical landmarks (Devlin
and Poldrack, 2007), or on regions obtained using functional
localizers (Saxe et al., 2006).

— Dimension reduction. We project the input brain signal onto a
lower dimensional space, using parcellation or brain decomposi-

2.4 conclusion 27

tion obtained beforehand (see Mourão-Miranda et al., 2005, for
seminal work in fMRI). Parcellation or base brain vectors may be
obtained from anatomical atlases (e. g., Desikan et al., 2006), or
through data-driven analysis (S. M. Smith et al., 2009; Yeo et al.,
2011), typically using resting-state data as in Section 2.2.

— Regularization. We may regularize the decoding linear models
to inject priors on the classification maps we wish to obtain.
Regularization includes sparsifying penalties — e. g., Lasso (Tib-
shirani, 1996; Yamashita et al., 2008) or Group-Lasso regres-
sion (Ng and Abugharbieh, 2011; Yuan and Lin, 2006) if we wish
the sparsity patterns to be shared across maps — and structure
inducing penalties such as total variation norms (Michel et al.,
2011).

Note that increasing the amount of data available allows to reduce
the amount of regularization to be injected, as we will see reviewing
Dohmatob et al. (2016) work in Chapter 3. It also allows to work
in higher dimension. This is the starting point of Chapter 7, where
we endeavor to gather multiple studies to increase the number of
statistical maps usable to estimate decoding models.

2.4 conclusion

We have reviewed the three essentials blocks of fMRI analysis from
a statistical learning point of views: resting-state analysis with unsu-
pervised methods, encoding methods (a.k.a. standard analysis) for
univariate voxel activity analysis, and decoding methods, meant to
perform multi-variate pattern recognition in voxel space. In this the-
sis, we will start working on resting-state data (Chapter 3 and Part ii),
before moving to the development of new models for task fMRI analy-
sis (Part iii). The following Chapter 3 introduces matrix-factorization
methods for resting-state analysis, and proposes new approaches to
handle large fMRI datasets.

3
D I C T I O N A RY L E A R N I N G F O R F M R I : D ATA
C O M P R E S S I O N , M O D E L T R A N S P O S I T I O N

In this chapter, we first review how resting-state functional MRI
time-series can be analysed through sparse or dense matrix factor-
ization techniques, and the computational issues of existing formu-
lations. We then introduce a new approach based on random pro-
jections to handle these computational issues for sparse matrix fac-
torization of medium-scale datasets. This approach was presented
in

Mensch, A., Varoquaux, G., & Thirion, B. (2016b). Com-
pressed online dictionary learning for fast fMRI decom-
position. Proceedings of the IEEE International Symposium on

Biomedical Imaging (ISBI).

It is easy to implement and reasonably efficient, and was thus
promptly proposed in Nilearn (Abraham et al., 2014), an end-user
fMRI analysis software for neuroscientists. We linger on the valida-
tion methods developed in the context of this work, as they outline
the hard problem of validation and parameter selection in matrix fac-
torization applications.

Finally, we analyse the practical limitations of the above approach,
and show how we can reformulate sparse matrix factorization for
fMRI in a more convenient way. This reformulation will be used ex-
tensively in the experimental section of Chapter 4.

3.1 matrix factorization for resting-state fmri

As presented in Section 2.2, resting-state fMRI data analysis implies,
as an initial step, to decompose a set of 3D records (xs)s (BOLD time-
series sampled in a volumic voxel grid) into a sum (2.2) of spatially
located functional networks that isolate parts of the brain signal. Func-
tional networks should form a relevant basis for the experimental
signals, i. e. represent these signals in a low-dimensional space, and
explain the time-series variation with low residuals. As such, func-
tional networks have been successfully used for feature extraction
before performing statistical learning — decoding, biomarker extrac-
tion, etc.

3.1.1 Model and data

Mathematically, multi-record resting-state fMRI data constitute a set
of matrices (Xs)s∈[N] in (Rn×p)t, with p voxels per volume4, ns tem- 4 Recall that we

have flattened the 3D

brain images using a

binary brain mask.

poral samples per record, and N subjects. Rewriting (2.2) with matrix

3.1 matrix factorization for resting-state fmri 29

product, we seek to decompose subject s records on k base compo-
nents:

∀s ∈ [N], Xs ≈ AsDs with Ds ∈ R
k×p, As ∈ R

ns×k. (3.1)

We are especially interested in (Ds)s, which contain the functional
networks for subject s. Existing decomposition techniques vary in
the criterion they optimize, and on the hierarchical model they rely
on at the group level. In the following, we will work with the most
simple hierarchical model, that consists in performing time concate-
nation of the records – first proposed by Calhoun et al. (2001) for ICA.
Namely, we extract a single set D ∈ R

k×p of functional networks for
all subjects, i. e. Ds = D for all s. We denote n ,

∑
s ns, A ∈ R

n×k

and X ∈ R
n×p the vertical concatenation of (As)s and (Xs)s, and

seek to decompose X as X ≈ AD.

3.1.2 Existing decomposition methods

While performing Principal component analysis (PCA) on brain
images has been the first method to be proposed to extract basis
components from fMRI data, Independent Component Analysis (ICA,
A. J. Bell and Sejnowski, 1995; Hyvärinen and Oja, 2000) is presently
the most popular decomposition technique in the field (Calhoun et
al., 2001; McKeown et al., 1998). It involves finding a spatial basis
D ∈ R

p×k that is closest to a set of spatially independent sources.
Works preceding this thesis (Varoquaux et al., 2011) have shown that
good results can be obtained imposing sparsity rather than indepen-

dence over the spatial components D. They rely on the dictionary

learning formulation, first introduced by Olshausen and Field, 1997,
following seminal work on sparsity (Tibshirani, 1996). Like ICA, dic-
tionary learning permits to extract functional networks that are repro-
ducible across subjects, and that match regions extracted from task
fMRI studies. We will focus on this method in the following.

3.1.3 Computational caveats

All the aforementioned decomposition techniques suffer from their
lack of scalability, as they were initially designed to be applied to
small datasets. The recent increase in publicly available dataset size
like HCP (Van Essen et al., 2012) has revealed their limits in terms of
memory usage and computational time. Consequently, efforts have
been made to make decomposition methods available for large-scale
studies, possibly with several groups. They involve using a more
complex hierarchical model for dictionary learning (Varoquaux et al.,
2011) or incremental PCA techniques (S. M. Smith et al., 2014). How-
ever, the latter only proposes PCA and ICA based decomposition meth-
ods, which do not naturally yield sparse maps, and the former suffers
from its computational complexity. As of 2015, running a standard de-
composition algorithm with 200 components on the full HCP dataset
(4 TB) required more than a week of of computation on a very large
workstation.

3.2 dictionary learning for resting-state fmri 30

3.2 dictionary learning for resting-state fmri

In this chapter, we focus on dictionary learning methods for fMRI,
and show how to make them more scalable in both time and memory.
Let us start by reviewing the use of dictionary learning in the context
of fMRI.

3.2.1 Sparse brain map extraction with dictionary learning

A good spatial decomposition of X ∈ R
n×p should allow a good

reconstruction of data and the components it contains should be spa-

tially localized. To that effect, we seek to find a dictionary D sparse

in voxel space, hoping that sparsity translates into maps with a few
small connected regions. Such a decomposition setting can be for-
malized in the Dictionary learning (DL) optimization framework, that
combines a sparsity inducing penalty to a reconstruction loss. We
seek to find k dense temporal atoms A, i.e. base time-series, that will
constitute loadings for k sparse spatial maps D, with good signal re-
covery. This leads to the following optimization problem, similar to
the original formulation5 of Olshausen and Field (1997): 5 that used a smooth

version of the ℓ1
penalty.min

A∈R
n×k,

D∈R
k×p

1

2
‖X−AD‖2F + λ‖D‖1 s.t. ∀j ∈ [k], ‖a(j)‖2 6 1 (3.2)

For a given solution (A,D) of (3.2), every row dj of D contains the
loadings related to the j-th temporal atoms aj. In this case, D corre-
sponds to a spatial code and A to a temporal dictionary6. Thanks to the 6 The terminology

code/dictionary is

here transposed

compared to the

usual computer

vision DL problem.

ℓ1 penalty on D, we expect each row to be sparse (Tibshirani, 1996).
The constraint on the columns of A simply prevent D from becoming
arbitrarily small, which would cancel out the ℓ1 penalty effect.

Mairal et al., 2010 introduce an efficient online algorithm to solve
(3.2). In our case, it streams voxel time-series, i. e. streams columns of
X, to progressively learn A. We will thoroughly present and extend
this algorithm in Chapter 4. For now, it suffices to know that under
conditions satisfied in neuro-imaging, the algorithm finds (asymptot-
ically) a matrix A that is a stationary point of the following objective,
equivalent to (3.2),

min
A∈Rn×k

‖X−AD(A)‖2F s.t. ∀j ∈ [k], ‖a(j)‖2 6 1, where

D(A) , argmin
D∈Rk×p

1

2p
‖X−AD‖2F + λ‖D‖1, (3.3)

although it never materializes the full matrix D, and only solve the
Lasso problem (3.3) for small fractions of X columns, which form
mini-batches of voxels. The final spatial components that we are inter-
ested in are then obtained solving the final Lasso problem

D = argmin
D∈Rk×p

1

2
‖X−AD‖2F + λ‖D‖1.

A good initialization for temporal atoms is required to obtain an ex-
ploitable solution as the dictionary learning objective (3.2) is not con-
vex. It can typically be obtained by computing time-series associated

3.3 time-compressed dictionary learning 31

with an initial guess on activation maps Dinit, e. g., obtained from
known anatomical brain networks. The initial temporal atoms Ainit

are then computed by solving minA ‖X−ADinit‖2F.

3.2.2 Scalability challenge

Following Mairal et al. (2010), online dictionary learning has an
overall complexity of O(npk2), as convergence is typically reached
within few epochs on resting-state fMRI data. In theory, the dictio-
nary learning problem therefore scales linearly in the size of the data.
However, on large rest fMRI datasets, online dictionary learning faces
two main challenges that make wall-clock processing time grow faster
than data size.

out-of-core requirements . For datasets like HCP (n = 4 · 106,
p = 2 · 105), typical computers are unable to hold all data in memory.
It is thus necessary to stream the data from disk, which is only rea-
sonably efficient if the data are stored in the same direction as they
are accessed. Yet online DL algorithms require to pass 3 times over
data, during which samples are accessed in different directions (row-
wise for initialization, columnwise for DL and final Lasso regression),
while fMRI images are naturally stored row-wise in our formalism.
For the sake of efficiency, storage copy and manipulation is required,
which is a serious issue for neuroscientists dealing with over 1TB
datasets. Going out-of-core sets a large performance gap between
small datasets and large datasets.

grid search . The sparsity of the maps obtained depends critically
on parameter λ, that scales non trivially with n. It is therefore impos-
sible to set it independently from the spatial resolution, and several
runs must be performed to obtain the most interesting maps, relative
to their neurological relevance or a supervised validation criterion.
Grid search should be run in parallel for efficiency, which is a serious
issue when doing out-of-core computation, as simultaneous access to
the disk from different processes makes the pipeline IO-bound. Re-
ducing the dataset size therefore reduces disk and memory usage,
which permits the efficient use of more CPUs.

Both issues suggest to reduce memory usage by reducing the size
of the dataset while keeping the essential part of its signal. Being able
to keep data in memory indeed avoids drastic loss in performance,
while reducing the dataset size should also bring a quasi-linear im-
provement in theoretical complexity. We will first address this dimen-
sion reduction idea using random projections.

3.3 time-compressed dictionary learning

It is possible to obtain reasonably exploitable components from a
40 record dataset with a total of 6, 000 samples. This drove us to in-
vestigate how large datasets, that provide more than 105 samples, can

3.3 time-compressed dictionary learning 32

be reduced to fit in memory before performing dictionary learning,
with controlled perturbation compared to DL on non-reduced data.

3.3.1 Reducing the temporal dimension before learning the dictionary

Resting-state brain images are not uniformly scattered in voxel
space, and should exhibit some low dimension structure: we expect
them to be scattered close to some low rank subspace of R

p, spanned
by a set of ms vector Xs

r ∈ R
ms×p. We thus perform a hierarchi-

cal rank reduction: Xs is first approximated by a rank ms surrogate
matrix PsX

s
r, where Ps is a matrix of R

ms×ns . A final rank k de-
composition is computed over concatenated data. We show that such
reduction preserves enough signal to allow good map extraction. Ge-
ometrically, we project X onto a low rank subset of R

ns×p, defining

Ps , argmin
P∈Rms×ns

‖Xs −P⊤PXs‖2F, Xs
r , PsXs. (3.4)

We may then write Xs = P⊤Xs
r + Es, where Es is a residual full rank

noise matrix. We approximate Xs with Xs
r at subject level to retain

subject variability. We denote Xr ∈ R
m×p the vertical concatenation

of (Xs
r)s, where m =

∑
sms. Replacing X by Xr in (3.2), we obtain

the reduced dictionary learning objective

min
A∈R

m×k,
D∈R

k×p

1

2
‖Xr −AD‖2F + λ‖D‖1 s.t. ∀j ∈ [k], ‖a(j)‖2 6 1 (3.5)

The dimensionality of the solution Ar is changed compared to (3.2),
whereas the size of D remains the same, as no reduction has been
performed in voxel space. Any solution Dr, that we recover solving

Dr = argmin
D∈Rk×p

1

2
‖Xr −ArD‖2F + λ‖D‖1

can therefore still be interpreted as spatial functional networks. Im-
portantly, we must have m > k so that Xr is at least of rank k to
recover k sparse activation maps. On the other hand, we show that
using (Xs

r)s matrices with ms < k still provides good results.
When applying the online dictionary learning algorithm to com-

pressed data Xr, time and memory complexity are reduced by a factor
α = m

n , where m should typically be of the same order than k. This
speed-up becomes supra-linear when reduction allows to go from
out-of-core to in-core computation. Of course, compression comes
with an additional cost, namely the time required for matrix reduc-
tion — we analyse this cost further on.

While (3.4) can be seen as another way of decomposing (Xs)s, let
us stress that this decomposition is performed in voxel space, in con-
trast with dictionary learning itself, that identifies a good basis in
time space. The objective is to quickly find a good summary of each
(Xs)s prior to applying dictionary learning, so as to reduce the di-
mensionality of the dictionary learning problem. We summarize the
compressed DL approch in Figure 3.1.

3.3 time-compressed dictionary learning 33

p voxels

k spatial maps

k time series

Reduced loadings ArReduced matrix Xr

p voxels

n
1

ti
m

ef
ra

m
es

Subject 1

Xs
r

X1 X1
r = P1X1

Dictionary learning

m
1

su
m

m
ar

ie
s

Group spatial

maps D

Concatenation

m
s

Subject s
Xs

x

Full data (Xs)s

Random projection

X1 ≈ P1⊤P1X1

Figure 3.1: Summary of the compressed dictionary learning approach for fast sparse spatial maps extraction.

3.3.2 Time compression methods

We compare two approaches for performing temporal dimension
reduction:

range-finding approach Xs
r can be computed so as to exactly

minimize ‖Es‖2F with truncated Singular value decomposition (SVD),
following Eckart-Young-Mirsky theorem (1936). However, exact SVD

computation is typically performed in O(pn2), which is above the
complexity of dictionary learning and makes prior data reduction
useless when trying to reduce both computation time and memory
usage. Fortunately, we show that we do not need to work with the
exact best rank-ms approximation of X to obtain a satisfying V. Fol-
lowing Halko et al. (2011), we seek Ps ∈ Rms×ns such that

‖Xs −Ps⊤PsXs‖F ≈ min
rank(Ys)6ms

(

‖Es‖2F = ‖Xs − Ys‖2F
)

In Alg. 4.4, Halko et al. (2011) propose a fast, randomized algo-
rithm to compute such Ps, with high probability control7 of the resid- 7 Due to Johnson

and Lindenstrauss

(1984) lemma.
ual error ‖Ês − Es‖F, where Ês , Xs − Ps⊤PsXs. We use the output
of this algorithm to set Xs

r , PsXs, and proceed to solving (3.5)
For a single subject, the randomized range finding (rf) algorithm

has a O(npms) complexity, which is typically much lower than the
complexity of dictionary learning, provided ms ≪ k2. Dimension
reduction may be performed in parallel for all subjects, or sequen-
tially if few CPUs are available. Respectively, computation gain are
expected if maxs(ms) ≪ k2 or m ≪ k2, which will be the case for
datasets of reasonable size. In practice, we show in Section 3.4.2 that
the cost of reduction becomes negligible with respect to the reduction
of dictionary learning cost, when the reduction ratio is high enough.

subsampling . In a more straightforward way, we can set Xs
r to

contains a subset of Xs rows, of size ms. This category of reduction
includes time subsampling (ss) (e. g., taking 1 frame every 5 seconds)

3.4 validation and results of compressed dl 34

of resting-state fMRI records. In this case, ‖Ês
ss − Es‖F cannot be con-

trolled, and is expected to be larger than ‖Ês
rf − Es‖F. Subsampling,

for example, is expected to alias high frequency signal in records, pre-
venting the recovery of activation maps with high frequency tempo-
ral loadings dictionary learning on reduced data. This approach will
serve as a baseline for measuring the benefits of the range-finding
approach.

3.4 validation and results of compressed dictionary learn-
ing

Assessing the validity of compression before dictionary learning
is in itself a challenge as it requires to compare sets of spatial maps
that are obtained with a stochastic algorithm. We design a metric to
assess the overlap between two sets of functional networks despite
this property. We then demonstrate the efficiency of our compression
approach on two resting-state fMRI datasets.

3.4.1 Validation

comparing sets of maps . Validation of dictionary learning meth-
ods for resting-state fMRI is challenging, as there is no ground truth
to assess the quality of resulting maps. However, we can assess how
much a set of maps Dr obtained on a reduced dataset Xr from (3.5) is
comparable to a set of maps D obtained on X solving (3.2). The met-
ric used between b two sets of maps D and Dr should be invariant
to map ordering and map scaling. To enforce this invariance, we find
the best one-to-one coupling between maps of D and Dr and com-
pute the mean correlation between all best assigned couple of maps.
Formally,

ci,j ,
|(d(i))

⊤dr,(j)|

‖d(i)‖2‖dr,(j)‖2
, d(D,Dr) , max

Ω∈Sk

Tr
(

ΩC),

where Sk is the set of permutation matrices of R
k×k. C holds the ab-

solute cosine similarities between each pair of maps of D and Dr,
while d(D,Dr) is the mean correlation between all best assigned
maps. Ω can be computed efficiently using the Hungarian algo-
rithm (Kuhn, 1956), as k remains reasonably small (k < 1000).

handling random results . (3.2) and (3.5) admits many local
minima that depend on the online DL algorithm initialization, and on
the order used for streaming the matrix columns. We index the differ-
ent runs of DL with an integer ξ that represents the seed used for this
algorithm. For every compressed/non-compressed matrix Y obtain
from X, we expect the maps D(Y , ξ) output by dictionary learning
to capture the same neurological/physical phenomena, regardless of
the seed ξ. We wish to be capable of measuring the effect of compres-
sion on the quality of the output spatial maps, despite the stochastic
confounders inherent to the nature of the online DL algorithm. For

3.4 validation and results of compressed dl 35

this, we perform l = 10 different runs of online DL algorithm with dif-
ferent seeds (ξi)i∈[l], sampled randomly, as in Himberg et al. (2004).
We then write Dl(Y) = [D(Y , ξ1)

⊤, . . . ,D(Y , ξl)
⊤]⊤ the vertical con-

catenation of the output maps using matrix Y and consider the metric

dl(X,Y) , d
(

Dl(X),Dl(Y)
)

. (3.6)

As l grows, dl(X,Xr) becomes the ideal metric for measuring the
effect of compressing X into Xr over the quality of the DL output,
as its variance over selecting seeds reduces. In practice, we may yet
only work with a finite number of runs. To circumvent this issue,
we compare dl(X,X) to dl(X,Y), where the seeds used to produce
the left and right matrices Dl in (3.6) are sampled differently. The
latter metric should be close to the former if the compression does
not destroy too much information — in other word, we compare the
deviation of solutions due to data compression to their variance due
to randomness.

3.4.2 Results

We validate our reduction framework over two different datasets
with different size: the ADHD dataset, with 40 records, n= 150 time
steps per record (2GB); a subset of HCP dataset, using 40 subjects, 2

records per subject, and n = 400 (25GB).
Dictionary learning output depends on its initialization, and the

problem of choosing the best number of components k is very ill-
posed. We bypass these problems by choosing k= 70 for HCP, k= 20

for ADHD dataset, and use reference ICA-based maps RSN20 and RSN70

from S. M. Smith et al. (2009) for initialization.
For benchmarking, we measure CPU time only, i. e. ignore IO tim-

ings as they are very platform dependent. Note that our method is
also beneficial for IO as it has a lower memory footprint than full-scale
dictionary learning and may thus avoid out-of-core computation. We
use scikit-learn for computation, along with the Nilearn neuro-imaging
library. Code for the methods and experiments is available online.

metric validity. We perform the following experiment. We first
choose λ to obtain little overlapping maps when running dictionary
learning on the non-compressed matrix X. Then, we compute dl(Y ,X)

with Y = {X, (Xr)rf,m, (Xr)ss,m}, for various m ∈ [n/40, n]. As the re-
lationship between λ and a given level of sparsity depends on m, we
run DL on Y on a range of λ so as to find the value that matches best
the reference run.

Figure 3.2 shows the behavior of dl(X,Y) as l increases. Observ-
ing dl(X,X) (blue curve), we see that running DL several times does
produce sets of maps that overlap more and more" dl(X,X) increases
and its variance across seeds decrease. This suggest that our indica-
tor does cater for randomness in DL algorithms and is a principled
approach for comparing compressed and uncompressed dictionary
learning.

3.4 validation and results of compressed dl 36

.6

.7

.8

reduction ratio: 0.05

1 2 3 4 5 6 7 8 9 10

Number of concatenated result sets in Vl(Y)

.6

.7

.8

reduction ratio: 0.20

C
o
rr

es
p
o
n
d
en

ce
w

it
h

re
f.

d
l
(X

,
Y
)

Non-reduced

Range-finder

Subsampling

Figure 3.2 – Correspondence between compressed DL map-set and non-
compressed DL map-set. We use different compression meth-
ods and ratios and increase the number of runs to show dl sta-
bilization; variance over runs computed using 4 different seed
sequences; ADHD dataset.

quantitative performance . For α > .025, and l > 2, Figure 3.2
shows that the distance between DL maps and compressed DL maps is
comparable, as dl(X,Xr) ≈ dl(X,X). Maps from Dl(X) and Dl(Xr),
respectively obtained with or without compression, have therefore
the same quality for neuroscientists — it is not possible to tease them
apart more than we can tease apart the results of DL obtained with
different seeds. For large compression factors, typically α < .1 on
ADHD and α < .05 on HCP, range-finding reduction performs signifi-
cantly better than subsampling. Both methods perform similarly for
small compression factors, which shows that subsampling already
provides good low-rank approximation of X for large m. Using the
range-finding algorithm for the proposed hierarchical compression
model is therefore useful when drastically reducing data size, typi-
cally when loading very large datasets in memory.

qualitative accuracy. We validate qualitatively our results, as
this is crucial in DL decomposition: maps obtained from reduced data
should capture the same underlying neurological networks as refer-
ence maps. In Fig. 3.3, we display matched maps when comparing
two map-sets. For this, we find matchings between the maps Dl(X)

and Dl(Xr), and we display the maps corresponding to the median-
value of this matching. Maps are strongly alike from a neurological
perspective. In particular, maps do not differ more between our re-
duced dictionary learning approach and the reference algorithm than
across two runs of the reference algorithm with different seeds.

time and quality tradeoff . For efficient neuroimaging data
analysis, the important quantity is the tradeoff between quality of the
results and computation time. On Figure 3.4, we plot d(Dl(X),Dl(Y))

3.4 validation and results of compressed dl 37

Reference runN
o
n
-r

ed
u
ce

d
X x = 42 z = −60

Second run

x = 42 z = −60

Range-finder (Xr)rf

R
ed

u
ce

d
X

r

Subsampling (Xr)ss

Figure 3.3 – Median-aligned maps with various compression methods. Sub-
set of the HCP dataset; reduction ratio α = .025.

against computational CPU time, for various Y . Using range-finding
algorithm and to a lesser extent time subsampling on data before
map decomposition does not significantly deteriorate results up to
large reduction factor, while allowing large gains in time and mem-
ory. Compression can be higher for larger datasets: we can compress
the HCP-derived dataset up to 40 times, and the ADHD dataset up to
20 times, keeping dl(X,Xr) within the standard deviation of dl(X,X).

.7

.75

.8

A
D

H
D

0.05

0.2

0.05 0.1 0.5 1

CPU Time (relative to non-reduced DL(X))

.6

.7

.8

H
C

P

0.0250.05

C
o
rr

es
p
o
n
d
en

ce
w

it
h

re
f.

d
l
(X

,
Y
)

Non-reduced

Range-finder

Subsampling

Reduction ratio

Figure 3.4 – Time/quality trade-off using range-finder projectors and sub-
sampling before DL; blue stripe recalls correspondence of re-
sults when performing different runs of DL on the full matrix X.
l = 10, 3 for ADHD, HCP; variance over runs computed using 4

distinct sequences of seeds.

The range-finder algorithm adds a time overhead that shift the per-
formance curve towards the right for large compression ratios. How-
ever, it allows 4 times lower memory usage than subsampling for
equivalent quality and time budget. It thus provides a higher overall

3.4 validation and results of compressed dl 38

CPU Time Overlap dl(X,Y)

Dataset Ratio α Reduced Non-red. Red Y = Xr Non-red Y=X

HCP .025 849 s 7425 s .703±.141 .628±.105

ADHD .05 71 s 186 s .796±.020 .801±.016

Table 3.1 – Time/quality trade-off of compressed dictionary learning, com-
pared to reference dictionary learning, for good trade-off com-
pression ratios α.

efficiency when considering IO timings. Note that benchmarks were
performed on a single core, while reduction can be parallellized over
subjects to reduce its overhead — range-finding should therefore al-
ways be preferred to trivial subsampling.

We outline good time/quality trade-off reduction ratios in Fig. 3.4
and provide numerical values in Table 3.1. Those ratios depend on
the number of functional networks k and on the input dataset, but
any reasonably low reduction ratio (typically, setting ms-k) is likely
to produce good results with little quality loss. Following this strat-
egy, we set α = .025 and performed the entire processing of a subset
of 100 subjects of the HCP dataset (384GB) on a single workstation
(with 64GB RAM) in less than 7 hours, obtaining usable functional
networks. Note that the following Chapters 6 and 7 instead consider
full HCP releases (with 500, then 900 subjects), which do not fit in
memory even with drastic compression.

3.4.3 Discussion

In the previous sections, we introduced the use of a randomized
range finding algorithm to reduce large scale datasets before per-
forming dictionary learning and extracting spatial maps. To prove
efficiency of time reduction before dictionary learning, we have de-
signed a meaningful indicator to measure result maps correspondence,
and have demonstrated that fMRI time samples have a low rank struc-
ture that allows range finding projection to be more efficient than
simple subsampling. This approach enables a 40-fold data reduction
upon loading each record.

Unfortunately, this approach has strong limitations when it comes
to handling datasets with thousands of subjects. First, as fMRI datasets
are acquired and thus stored time-wise, i. e. row-wise in our formal-
ism, the compressed matrix Xr ultimately needs to be materialized
in memory (an out-of-core approach would require to transpose Xr

on disk, an operation that would become the bottleneck of the entire
pipeline). This is only possible if Xr remains of reasonable size. For
4TB datasets like HCP, even with a compression factor of 40, this re-
quires 100GB of memory per compressed DL process, and is therefore
beyond the capacity of regular machines.

3.5 changing model and going beyond 39

Secondly, the temporal dictionary learning approach suffers from
its three-phase nature: initialization from known spatial components,
learning of temporal atoms, sparse regression into spatial components.
We would hope to be able to learn spatial components D in a single
pass over data.

Finally, the idea of using temporal time-series as samples for online
dictionary has two major drawbacks. First, it makes the selection of
the sparsity parameter λ dependent on the dimensionality of sam-
ples n. This implies that a good λ depends on the number and length
of records in a study. As a consequence, λ must be recomputed using
grid-search for new studies, or if the study size increases. It would
be much more convenient if the λ parameter depended on the spatial
resolution of the scanner. Furthermore, the present approach does
not permit to refine a trained dictionaries using new records from
new subjects. Building on this discussion, we now propose a refor-
mulation of the data decomposition problem that will prove much
more convenient.

3.5 changing model and going beyond

The crux of the limitations above lies in the fact that the online
dictionary learning algorithm focuses on learning the left-side factor
of the matrix factorization X = AD. In our formalism, the left-side
factor A corresponds to temporal components, whereas we are actually
interested in recovering spatial components. This forces us to 1) stream
artificial temporal samples, whereas the data are presented in the form
of spatial samples and 2) to compute the right side factor at the end of
the dictionary learning loop. We therefore propose to transpose the
matrix factorization problem (3.1), so as to learn directly the spatial
components on the left-side factor. The dictionary learning problem
requires to be adapted to enforce sparsity on this factor. We will see
that the new problem offers further flexibility for enforcing structure
over spatial maps. More importantly, it will allow the use of a much
faster algorithm presented in Chapter 4.

3.5.1 Transposed problem

We may choose to stack brain images acquired during resting-state
protocols columnwise instead of columnwise, and obtain matrices
Xs ∈ R

p×n, where p is the number of acquired voxels and n the
number of time samples. Similar to (3.1), we wish to find a dictionary
Ds ∈ R

p×k of sparse spatial components (functional networks) and
a code As ∈ R

k×n of temporal loadings:

Xs ≈ DAs at subject level, X ≈ DA at group level. (3.7)

Like before, we assume that all records are decomposed on the same
spatial dictionary D, and X and A are formed of horizontal concate-
nation of (Xs)s and (As)s. Note that, compared to (3.1), the spatial
components D are now found on the left-side factor in (3.7).

3.5 changing model and going beyond 40

This is by design: the online dictionary learning algorithm is pre-
cisely designed to find such left-side factor by streaming the columns
of X. We have to adapt the penalties and constraints used for our
purpose: we want to find a sparse dictionary D, and a dense code A.
Inspired by Mairal et al. (2010), we consider the following objective
function

min
D∈R

p×k,
A∈R

k×n

1

2
‖X−DA‖2F + λ‖A‖22 s.t. ∀j ∈ [k], ‖d(j)‖1 6 1. (3.8)

We have replaced the ℓ2 ball constraints on the atoms of the dictio-
nary by ℓ1 ball constraints. Such constraint has a similar sparsifying
effect as the ℓ1-penalty had on previous DL formulation. For A fixed,
minimizing (3.8) over D amounts to minimizing a quadratic function
over a polytope with vertices: the solution D tends to be located at
the edges of this polytope, which corresponds to sparse (dj)j. The
ℓ2 penalty plays a similar role as the ℓ2 ball constraint in (3.2), and
ensures that the constraints over D are well saturated. The sparsity of
solutions D increases with λ. This setting bears some similarity with
the original Sparse principal component analysis (SPCA) formulation
from Zou et al. (2006). Compared to their formulation, no orthogonal-
ity constraint is enforced on D. This is better suited to our purpose
we typically want to capture components that explain different but
comparable aspect of the variance of brain images.

Online dictionary learning constructs a sequence (Dt)t that con-
verges toward a critical point of the objective function

min
D∈Rp×k

‖X−DA(D)‖2F s.t. ∀j ∈ [k], ‖d(j)‖1 6 1, where

A(D) , argmin
A∈Rk×n

1

2
‖X−DA‖2F + λ‖A‖22 (3.9)

by streaming mini-batches of b samples xt ∈ R
p×b, and solving small

ridge regression problems

αt = argmin
α∈Rk×b

1

2
‖xt −Dt−1α‖2F + λ‖α‖22

at each iteration. Asymptotically, we obtain a dictionary D that
solves (3.8). Through this reformulation, we tackle the three limi-
tations of the original DL formulation discussed above:

— It allows to learn D in one phase only, starting from a known
dictionary Dinit and streaming columns of X.

— It requires to stream brain images, which is how fMRI data are
acquired and stored — typically, we may retrain a dictionary
with new data easily.

— Its regularization parameter λ should be adapted to p but not to
n, which is less cumbersome when adapting pipelines to new
studies with different number of samples.

To learn the spatial maps D ∈ R
p×k, we are yet confronted to

the same high dimensionality problem that existed when learning

3.5 changing model and going beyond 41

A ∈ R
n×k in the original problem: p is typically of the order of 105,

while n ranges from 104 to 106 in Section 3.3 and 3.4. Tackling the
computational cost created by the high dimensionality of data will
be the full purpose of Chapter 4. The approach will differ radically
from Section 3.4 as we are now interested in the left-side term of X

factorization, and can perform online compression.
Before closing this chapter, we explore a first extension that (3.8)

reformulation permits: enforcing structured penalties over the spa-
tial dictionary D by slightly modifying the online dictionary learning
algorithm of Mairal et al. (2010).

3.5.2 Complex spatial regularization for brain maps

The current constraint set C = {D ∈ R
p×k, ‖d(j)‖1 6 1 ∀ j ∈ [k]}

used in (3.8) over D enforces sparsity over the dictionary D.
In neuro-imaging, we may wish to obtain function networks whose

regularity goes beyond simple sparsity. Interpretable and efficient
functional networks should 1) have only a few non-zero voxels 2)
these voxels should form well defined, small connex components.
This may improve the interpretability of functional networks in the
light of known anatomical structure. For this reason, Dohmatob, M.,
et al. (2016) proposed to augment the objective (3.9) with a further
penalty on the dictionary, and to solve

min
D∈Rp×k

‖X−DA(D)‖2F + γ

k∑

j=1

‖∇d(j)‖2F (3.10)

s.t. ∀j ∈ [k], ‖d(j)‖1 6 1, where

A(D) , argmin
A∈Rk×n

1

2
‖X−DA‖2F + λ‖A‖22

where ‖∇d(j)‖2F is known as a GraphNet penalty in neuro-imaging
(Grosenick et al., 2013). It penalizes the spatial variations of the dic-
tionary component d(j) ∈ R

p, viewed as a 3 dimensional image. By
pushing the dictionary components to have little spatial variation, we
force the learned brain components to be more focal and to exhibits
well localized connected components (i. e. spatial “blobs”).

In the formulation above, we view the spatial discrete derivative op-
erators ∂{x,y,z} : R

p → R
p, and the spatial discrete gradient operator

∇ : R
p → R

p×3 , [∂x, ∂y, ∂y] as linear operators on the space of 3D
brain images. The new introduced penalty is smooth, and requires
minimal modifications of the online matrix factorization algorithm to
run. We simply need to evaluate the its gradient for each component
j: a classical derivation shows that it is 2γ∆d(j), where the linear
operator ∆ : R

p×p computes the discrete Laplacian of d(j). This gra-
dient is computable in a time proportional to the number of voxels;
introducing the GraphNet penalty in the objective (3.10) only slows
down online matrix factorization iterations by a constant factor 3.

Introducing the supplementary GraphNet penalty in the problem
(3.10) improves the quality of final brain components when learning

3.5 changing model and going beyond 42

Figure 3.5 – Introducing a GraphNet penalty over the spatial dictionary in
the matrix factorization objective improves the quality of output
sparse spatial maps (top), compared to simply relying on the ℓ1
constraints of (3.9) (bottom). Extracted from (Dohmatob et al.,
2016), courtesy of its first author.

from small datasets, as illustrated in Figure 3.5. On the other hand,
it introduces a further hyperparameter γ that needs to be tuned. The
interest of the method decreases as we move to larger datasets such
as HCP, as the sparse maps that we learn from these datasets are
naturally focal and well localized, without tailored modification of
the objective (3.9) beyond the ℓ1 ball constraints.

Part ii

H U G E M AT R I X FA C T O R I Z AT I O N

4
S T O C H A S T I C S U B S A M P L I N G F O R H U G E
M AT R I X FA C T O R I Z AT I O N

Part II is the most mathematically heavy of this thesis. We depart
from fMRI analysis to dig deeper into the core of matrix factorization
algorithms.

4.1 overview of part ii

As discussed in Chapter 3, existing approaches for matrix factor-
ization are not readily usable to extract base sparse or sparsifying
components from terabyte scale datasets. We therefore designed a
matrix-factorization algorithm, called subsampled online matrix factor-

ization (SOMF), that scales to input matrices with both huge number
of rows and columns.

SOMF can learn factors sparse or dense and/or non-negative, which
makes it suitable for dictionary learning, sparse component analysis,
and non-negative matrix factorization. In brief, SOMF streams ma-
trix columns while subsampling them to iteratively learn the matrix
factors. At each iteration, the row dimension of a new sample is re-
duced by subsampling, resulting in lower time complexity compared
to a simple streaming algorithm. We present SOMF in detail in this
chapter. Beforehand, we provide context on matrix factorization in
machine learning and signal processing. We review some algorithms
that were proposed, and detail online matrix factorization (OMF), on
which SOMF is based.

Our method comes with convergence guarantees to reach a station-
ary point of the matrix-factorization problem. The convergence analy-
sis is based on analyzing the robustness to perturbation of a wider cat-
egory of algorithm, known as stochastic majorization-minimization
algorithms (Mairal, 2013b). We present the generalized stochastic ap-

proximate majorization-minimization framework and the convergence
analysis of SOMF in Chapter 5.

In Chapter 6, we demonstrate the efficiency of SOMF on massive
functional Magnetic Resonance Imaging data (2 TB of resting-state
data, that corresponds to the release of 500 subjects of the HCP study),
and on patches extracted from hyperspectral images (103 GB). For
both problems, in which we use different penalties on rows and
columns, we obtain significant speed-ups compared to state-of-the-
art algorithms. Finally, we present a adaptation of our algorithm
to explicit collaborative filtering, which provides large speed-ups com-
pared to the fastest methods available for models relying on matrix
factorization.

4.2 background and proposed approach 45

This part is based on a line of two publications. In

Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G.
(2016a). Dictionary learning for massive matrix factoriza-
tion. Proceedings of the International Conference on Machine

Learning (ICML),

we provide a first version of the SOMF algorithm, with a large em-
pirical study of its performance on resting-state fMRI data and on
collaborative filtering. In an extended journal version

Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G.
(2018b). Stochastic Subsampling for factorizing huge ma-
trices. IEEE Transactions on Signal Processing, 66(1), 113–
128,

we modify the SOMF algorithm to be able to establish some asymptotic
convergence guarantees. We provide a full analysis of SOMF asymp-
totic behavior, based on a larger theoretical framework. We validate
our method on hyperspectral images, and on fMRI data.

4.2 background and proposed approach

4.2.1 Matrix factorization in machine learning

Matrix factorization is a flexible approach to uncover latent factors
in low-rank or sparse models. With sparse factors, it is used in dictio-
nary learning, and has proven very effective for denoising and visual
feature encoding in signal and computer vision (see e.g., Mairal et al.,
2014). When the data admit a low-rank structure, matrix factorization
has proven very powerful for various tasks such as matrix completion
(Candès and Recht, 2009; Srebro et al., 2004), word embedding (Levy
and Goldberg, 2014; Pennington et al., 2014), or network models (Y.
Zhang et al., 2009). It is flexible enough to accommodate a large set of
constraints and regularizations, and has gained significant attention
in scientific domains where interpretability is a key aspect, such as
genetics (H. Kim and Park, 2007) and of course neuro-imaging, as we
discussed in Chapter 3. In this chapter, our goal is to adapt matrix-
factorization techniques to huge-dimensional datasets, i.e., with large
number of columns n and large number of rows p. Specifically, our
work is motivated by the rapid increase in sensor resolution, for ex-
ample in hyperspectral imaging or fMRI, and the challenge that the
resulting high-dimensional signals pose to current algorithms.

As a widely-used model, the literature on matrix factorization is
very rich and two main classes of formulations have emerged. The
first one addresses a convex-optimization problem with a penalty pro-
moting low-rank structures, such as the trace or max norms (Srebro
et al., 2004). This formulation has strong theoretical guarantees (Can-
dès and Recht, 2009), but lacks scalability for huge datasets or sparse
factors. For these reasons, we focus on a second type of approach,
which relies on non-convex optimization. Stochastic (or online) opti-
mization methods have been developed in this setting. Unlike classi-
cal alternate minimization procedures, they learn matrix decomposi-

4.2 background and proposed approach 46

tions by observing a single matrix column (or row) at each iteration.
In other words, they stream data along one matrix dimension. Their
cost per iteration is significantly reduced, leading to faster conver-
gence in various practical contexts. More precisely, two approaches
have been particularly successful: stochastic gradient descent (Bot-
tou, 2010) and stochastic majorization-minimization methods (Mairal,
2013b; Razaviyayn et al., 2013). The former has been widely used
for matrix completion (see R. M. Bell and Koren, 2007; Burer and
Monteiro, 2004; Recht and Ré, 2013, and references therein), while
the latter has been used for dictionary learning with sparse and/or
structured regularization (Mairal et al., 2010). Despite those efforts,
stochastic algorithms are currently unable to deal efficiently with ma-
trices that are large in both dimensions.

4.2.2 Proposed approach: leveraging stochastic optimization and random-

ization

We propose a new matrix-factorization algorithm that can handle
such matrices. It builds upon the stochastic majorization minimiza-
tion framework of Mairal (2013b), which we generalize for our prob-
lem. In this framework, the objective function is minimized by itera-
tively improving an upper-bound surrogate of the function (majoriza-

tion step) and minimizing it to obtain new estimates (minimization

step). The core idea of our algorithm is to approximate these steps to
perform them faster. We carefully introduce and control approxima-
tions, so to extend convergence results of Mairal (2013b) when neither
the majorization nor the minimization step is performed exactly.

For this purpose, we borrow ideas from randomized methods in
machine learning and signal processing. Indeed, quite orthogonally
to stochastic optimization, efficient approaches to tackle the growth
of dataset dimension have exploited random projections (Bingham
and Mannila, 2001; Johnson and Lindenstrauss, 1984) or sampling,
reducing data dimension while preserving signal content. Large-
scale datasets often have an intrinsic dimension which is significantly
smaller than their ambient dimension. Good examples are biological
datasets (McKeown et al., 1998) and physical acquisitions with an un-
derlying sparse structure enabling compressed sensing (Candès and
Tao, 2006). In this context, models can be learned using only random
data summaries, also called sketches. For instance, randomized meth-
ods (see Halko et al., 2011, for a review) are efficient to compute PCA
(Rokhlin et al., 2009), a classic matrix-factorization approach, and to
solve constrained or penalized least-square problems (Lu et al., 2013;
Sarlos, 2006). On a theoretical level, recent works on sketching (Pi-
lanci and M. Wainwright, 2015; Raskutti and Mahoney, 2015) have
provided bounds on the risk of using random summaries in learning.

Using random projections as a pre-processing step is not appeal-
ing in our applicative context since factors learned on reduced data
are not interpretable. On the other hand, it is possible to exploit ran-

dom sampling to approximate the steps of online matrix factorization.

4.3 prior art : online matrix factorization 47

Factors are learned in the original space whereas the dimension of
each iteration is reduced together with the computational cost per
iteration.

Notation

We recall that matrices are written using bold capital letters and
vectors using bold small letters (e.g., X, α). We use superscript to
specify the column (sample or component) number, and write X =

[x(1), . . . , x(n)]. We use subscripts to specify the iteration number, as
in xt. The floating bar, as in ḡt, is used to stress that a given value
is an average over iterations, or an expectation. The superscript ⋆

is used to denote an exact value, when it has to be compared to an
inexact value, e.g., to compare α⋆

t (exact) to αt (approximation).

4.3 prior art : online matrix factorization

We first clarify the matrix factorization problem of interest, that
generalizes the one we came across in Chapter 3. We recall a spe-
cific stochastic algorithm to solve it observing one column (or a mini-
batch) at every iteration. In Chapter 5, we cast this algorithm in
the stochastic majorization-minimization framework (Mairal, 2013b),
which we will use in the convergence analysis.

4.3.1 Problem statement

In our setting, the goal of matrix factorization is to decompose a
matrix X ∈ R

p×n — typically n signals of dimension p — as a prod-
uct of two smaller matrices:

X ≈ DA with D ∈ R
p×k and A ∈ R

k×n,

with potential sparsity or structure requirements on D and A. In
signal processing, sparsity is often enforced on the code A. As pre-
viously discussed in Chapter 3, this problem is known as dictionary

learning (Olshausen and Field, 1997). In such a case, the matrix D is
called the “dictionary” and A the sparse code. We use this terminol-
ogy throughout this work.

Generalizing (3.8), learning the factorization is typically performed
by minimizing a quadratic data-fitting term, with constraints and/or
penalties over the code and the dictionary:

min
D∈C

A∈R
k×n

n∑

i=1

1

2

∥

∥x(i) −Dα(i)
∥

∥

2

2
+ λΩ(α(i)), (4.1)

where A , [α(1), . . . ,α(n)], C is a column-wise separable convex set
of R

p×k and Ω : R
p → R is a penalty over the code. Both con-

straint set and penalty may enforce structure or sparsity, though C

has traditionally been used as a technical requirement to ensure that
the penalty on A does not vanish with D growing arbitrarily large.

4.3 prior art : online matrix factorization 48

Two choices of C and Ω are of particular interest. The problem of
dictionary learning sets C as the ℓ2 ball for each atom and Ω to be
the ℓ1 norm. Due to the sparsifying effect of ℓ1 penalty (Tibshirani,
1996), the dataset admits a sparse representation in the dictionary. On
the opposite, finding a sparse set in which to represent a given dataset,
with a goal akin to sparse PCA (Zou et al., 2006), requires to set as the
ℓ1 ball for each atom and Ω to be the ℓ2 norm. Our work considers
the elastic-net constraints and penalties (Zou and Hastie, 2005), which
encompass both special cases. Fixing ν and µ in [0, 1], we denote by
Ω(·) and ‖ · ‖ the elastic-net penalty in R

p and R
k:

Ω(α) , (1− ν)‖α‖1 +
ν

2
‖α‖22, (4.2)

C ,
{

D ∈ R
p×k/‖d(j)‖ , (1−µ)‖d(j)‖1+

µ

2
‖d(j)‖22 6 1

}

.

Following Mairal et al. (2010), we can also enforce the positivity of D
and/or A by replacing R by R

+ in C, and adding positivity con-
straints on A in (4.1), as in non-negative sparse coding (Hoyer, 2004).
We rewrite (4.1) as an empirical risk minimization problem depend-
ing on the dictionary only. The matrix D solution of (4.1) is indeed
obtained by minimizing the empirical risk f̄

D ∈ argmin
D∈C

(

f̄(D) ,
1

n

n∑

i=1

f(D, x(i))
)

, (4.3)

where f(D, x) , min
α∈Rk

1

2

∥

∥x−Dα
∥

∥

2

2
+ λΩ(α),

and the matrix A is obtained by solving the linear regression

min
A∈Rk×n

n∑

i=1

1

2

∥

∥x(i) −Dα(i)
∥

∥

2

2
+ λΩ(α(i)).

The problem (4.1) is non-convex in the parameters (D,A), and hence
(4.3) is not convex. However, the problem (4.1) is convex in both D

and A when fixing one variable and optimizing with respect to the
other. As such, it is naturally solved by alternate minimization over
D and A, which asymptotically provides a stationary point of (4.3).
Yet, X has typically to be observed hundred of times before obtaining
a good dictionary. Alternate minimization is therefore not adapted to
datasets with many samples.

4.3.2 Online matrix factorization

When X has a large number of columns but a limited number of
rows, the stochastic optimization method of Mairal et al. (2010) out-
puts a good dictionary much more rapidly than alternated minimiza-
tion. In this setting (see Bottou et al., 2018, for a review), learning the
dictionary is naturally formalized as an expected risk minimization

min
D∈C

f̄(D) , Ex[f(D, x)], (4.4)

4.3 prior art : online matrix factorization 49

Algorithm 1 Online matrix factorization (Mairal et al., 2010, OMF)
Input: Initial iterate D0, sample stream (xt)t>0, number of itera-
tions T .
for t from 1 to T do

Draw xt ∼ P.
Compute αt = argminα∈Rp

1
2

∥

∥xt −Dt−1α
∥

∥

2

2
+ λΩ(α).

Update the parameters of aggregated surrogate ḡt:

C̄t =
(

1−
1

t

)

C̄t−1 +
1

t
αtα

⊤
t .

B̄t =
(

1−
1

t

)

B̄t−1 +
1

t
xtα

⊤
t .

(4.7)

Compute (using block coordinate descent):

Dt = argmin
D∈C

1

2
Tr (D⊤DC̄t) − Tr (D⊤B̄t).

Output: Final iterate DT .

where x is drawn from the data distribution and forms an i.i.d. stream
(xt)t. In the finite-sample setting, (4.4) reduces to (4.3) when xt is
drawn uniformly at random from {x(i), i ∈ [1, n]}. We then write it
the sample number selected at time t.

The online matrix factorization algorithm proposed by Mairal et al.
(2010) is summarized in Algorithm 1. It draws a sample xt at each
iteration, and uses it to improve the current iterate Dt−1. For this, it
first computes the code αt associated to xt on the current dictionary:

αt , argmin
α∈Rk

1

2
‖xt −Dt−1α‖22 + λΩ(α). (4.5)

Then, it updates Dt to make it optimal in reconstructing past samples
(xs)s6t from previously computed codes (αs)s6t:

Dt ∈ argmin
D∈C

(

ḡt(D) ,
1

t

t∑

s=1

1

2

∥

∥xs −Dαs

∥

∥

2

2
+ λΩ(αs)

)

. (4.6)

Importantly, minimizing ḡt is equivalent to minimizing the quadratic
function

D→ 1

2
Tr (D⊤DC̄⊤

t) − Tr (D⊤B̄t),

where B̄t and C̄t are small matrices that summarize previously seen
samples and codes:

B̄t =
1

t

t∑

s=1

xsα
⊤
s C̄t =

1

t

t∑

s=1

αsα
⊤
s .

As the constraints C have a separable structure per atom, Mairal et al.
(2010) uses projected block coordinate descent to minimize ḡt. The
function gradient writes ∇ḡt(D) = DC̄t − B̄t, and it is therefore

4.4 algorithm outline 50

enough to maintain B̄t and C̄t in memory to solve (4.6). B̄t and C̄t

are updated online, using the rules (4.7) (Algorithm 1).
The function ḡt is an upper-bound surrogate of the true current

empirical risk, whose definition involves the regression minima com-
puted on current dictionary D:

f̄t(D) ,
1

t

t∑

s=1

min
α∈Rp

1

2

∥

∥xs −Dα
∥

∥

2

2
+ λΩ(α) 6 ḡt(D). (4.8)

Using empirical processes theory (Van der Vaart, 2000), it is possible
to show that minimizing f̄t at each iteration asymptotically yields a
stationary point of the expected risk (4.4). Unfortunately, minimizing
(4.8) is expensive as it involves the computation of optimal current
codes for every previously seen sample at each iteration, which boils
down to naive alternate-minimization.

In contrast, ḡt is much cheaper to minimize than f̄t, using block
coordinate descent. It is possible to show that ḡt converges towards
a locally tight upper-bound of the objective f̄t and that minimizing
ḡt at each iteration also asymptotically yields a stationary point of
the expected risk (4.4). This establishes the correctness of the online

matrix factorization algorithm (OMF). In practice, the OMF algorithm
performs a single pass of block coordinate descent: the minimization
step is inexact. This heuristic will be justified as one of our theoretical
contribution in Chapter 5.

Mini-batches and learning weights

For efficiency, it is essential to use mini-batches {xs, s ∈ Tt} of size
η instead of single samples in the iterations (Mairal et al., 2010). The
surrogate parameters B̄t, C̄t are then updated by the mean value
of {(xsα

⊤
s ,αsα

⊤
s)}s∈Tt

over the batch. The optimal size of the mini-
batches is usually close to k. (4.7) uses the sequence of weights (1t)t
to update parameters B̄t and C̄t. Mairal et al. (2010) replaces these
weights with a sequence (wt)t, which can decay more slowly to give
more importance to recent samples in ḡt. These weights will prove
important in our analysis.

We turn to introduce the new matrix factorization algorithm at the
core of our contribution.

4.4 algorithm outline : stochastic subsampling for

high dimensional data decomposition

The online algorithm presented in Section 4.3 is very efficient to
factorize matrices that have a large number of columns (i.e., with a
large number of samples n), but a reasonable number of rows — the
dataset is not very high dimensional. However, it is not designed to
deal with very high number of rows: the cost of a single iteration
depends linearly on p. On terabyte-scale datasets from fMRI with
p = 2 · 105 features, the original online algorithm requires one week
to reach convergence. This is a major motivation for designing new
matrix factorization algorithms that scale in both directions.

4.4 algorithm outline 51

- Data

 access

- Dictionary

 update

Stream

columns

- Code com-

 putation Subsample
rows

Online matrix

factorization

Proposed
algorithm

Alternate-

minimization

 (dim.)

Iteration t

Seen at t Seen at t+1Unseen at t

(d

im
.)

Updated at t

Figure 4.1 – Stochastic subsampling further improves online matrix factoriza-
tion to handle datasets with large number of columns and rows.
X is the input p×n matrix, Dt and At are respectively the dic-
tionary and code at time t.

In the large-sample regime p ≫ k, the underlying dimensionality
of columns may be much lower than the actual p: the rows of a sin-
gle column drawn at random are therefore correlated and redundant.
This guides us on how to scale online matrix factorization with regard
to the number of rows:

— The online algorithm OMF uses a single column of (or mini-
batch) of X at each iteration to enrich the average surrogate and
update the whole dictionary.

— We go a step beyond and use a fraction of a single column of X
to refine a fraction of the dictionary.

More precisely, we draw a column and observe only some of its rows
at each iteration, to refine these rows of the dictionary, as illustrated
in Figure 4.1. To take into account all features from the dataset, rows
are selected at random at each iteration: we call this technique stochas-

tic subsampling. Stochastic subsampling reduces the efficiency of the
dictionary update per iteration, as less information is incorporated in
the current iterate Dt. On the other hand, with a correct design, the
cost of a single iteration can be considerably reduced, as it grows with
the number of observed features. Section 6.1 shows that the proposed
algorithm is an order of magnitude faster than the original OMF on
large and redundant datasets.

First, we formalize the idea of working with a fraction of the p

rows at a single iteration. We adapt the online matrix factorization
algorithm, to reduce the iteration cost by a factor close to the ratio of
selected rows. This defines a new online algorithm, called subsampled

online matrix factorization (SOMF). At each iteration, it uses q rows of
the column xt to update the sequence of iterates (Dt)t.

4.5 subsampled online matrix factorization 52

4.5 subsampled online matrix factorization

Formally, as in online matrix factorization, we consider a sample
stream (xt)t in R

p that cycles onto a finite sample set {x(i), i ∈ [1, n]},
and minimize the empirical risk (4.3). Note that we solve the fully
observed problem despite the use of subsampled data, unlike other
recent work on low-rank factorization (Mardani et al., 2015). Exten-
sions to partially observed data is discussed in Section 6.2.

4.5.1 Stochastic subsampling

We want to reduce the time complexity of a single iteration. In the
original algorithm, the complexity depends linearly on the sample
dimension p in three aspects:

— xt ∈ R
p is used to compute the code αt,

— it is used to update the surrogate parameters B̄t ∈ R
p×k,

— Dt ∈ R
p×k is fully updated at each iteration.

Our algorithm reduces the dimensionality of these steps at each it-
eration, such that p becomes q = p

r in the time complexity analysis,
where r > 1 is a reduction factor. Formally, we randomly draw, at it-
eration t, a mask Mt that “selects” a random subset of xt. We use it
to drop a part of the features of xt and to “freeze” these features in
dictionary D at iteration t.

It is convenient to consider Mt as a R
p×p random diagonal matrix,

such that each coefficient is a Bernouilli variable with parameter 1
r ,

normalized to be 1 in expectation. ∀j ∈ [0, p− 1],

P
[

Mt[j, j] = r
]

=
1

r
, P

[

Mt[j, j] = 0
]

= 1−
1

r
. (4.9)

Thus, r describes the average proportion of observed features and
Mtxt is a non-biased, low-dimensional estimator of xt:

E
[

‖Mtxt‖0
]

=
p

r
= q E

[

Mtxt
]

= xt.

with ‖ · ‖0 counting the number of non-zero coefficients. We define
the pair of orthogonal projectors Pt ∈ R

q×p and P⊥
t ∈ R

(p−q)×p that
project R

p onto Im(Mt) and Ker(Mt). In other words, PtY and P⊥
t Y

are the submatrices of Y ∈ R
p×y with rows respectively selected and

not selected by Mt. In algorithms, PtY ← Z ∈ R
q×n assigns the

rows of Z to the rows of Y selected by Pt, by an abuse of notation.
In brief, subsampled online matrix factorization, defined in Algo-

rithm 2, follows the outer loop of online matrix factorization, with
the following major modifications at iteration t:

— it uses Mtxt and low-size statistics instead of xt to estimate the
code αt and the surrogate gt,

— it updates a subset of the dictionary PtDt−1 to reduce the sur-
rogate value ḡt(D). Relevant parameters of ḡt are computed
using Ptxt and αt only.

4.5 subsampled online matrix factorization 53

Algorithm 2 Subsampled online matrix factorization (SOMF)
Input: Initial iterate D0, weight sequences (wt)t>0, (γc)c>0, sam-
ple set {x(i)}i>0, number of iterations T .
for t from 1 to T do

Draw xt = x(i) at random and Mt following (4.9).
Update the regression parameters for sample i:

c(i) ← c(i) + 1, γ← γc(i) .

β
(i)
t ← (1− γ)G

(i)
t−1 + γD⊤

t−1Mtx
(i), βt ← β

(i)
t .

G
(i)
t ← (1− γ)G

(i)
t−1 + γD⊤

t−1MtDt−1, Gt ← Ḡ
(i)
t .

Compute the approximate code for xt:

αt ← argmin
α∈Rk

1

2
α⊤Gtα−α⊤βt + λΩ(α). (4.10)

Update the parameters of the aggregated surrogate ḡt:

C̄t ← (1−wt)C̄t−1 +wtαtα
⊤
t .

PtB̄t ← (1−wt)PtB̄t−1 +wtPtxtα
⊤
t .

Compute simultaneously (using Algorithm 3 for 1st line):

PtDt ← argmin
Dr∈Cr

1

2
Tr (Dr⊤DrC̄t) − Tr (Dr⊤PtB̄t).

P⊥
t B̄t ← (1−wt)P

⊥
t B̄t−1 +wtP

⊥
t xtα

⊤
t . (4.11)

Output: Final iterate DT .

We now present the three steps of SOMF in details. For comparison
purpose, we write all variables that would be computed following
the OMF rules at iteration t with a ⋆ superscript. For simplicity, in
Algorithm 2 and in the following paragraphs, we assume that we use
one sample per iteration —in practice, we use mini-batches of size
η. The next derivations are transposable when a batch It is drawn at
iteration t instead of a single sample it.

4.5.2 Code computation

In the OMF algorithm presented in Section 4.3, α⋆
t is obtained by

solving (4.5), namely

α⋆
t ∈ argmin

α

1

2
α⊤G⋆

tα−α⊤β⋆
t + λΩ(α), (4.12)

where G⋆
t = D⊤

t−1Dt−1 and β⋆
t = D⊤

t−1xt. For large p, the com-
putation of G⋆

t and β⋆
t dominates the complexity of the regression

step, which depends almost linearly on p. To reduce this complexity,
we use estimators for G⋆

t and β⋆
t , computed at a cost proportional to

the reduced dimension q. We propose three kinds of estimators with
different properties.

4.5 subsampled online matrix factorization 54

4.5.2.1 Masked loss

The most simple unbiased estimation of G⋆
t and β⋆

t whose computa-
tion cost depends on q is obtained by subsampling matrix products
with Mt:

Gt = D⊤
t−1MtDt−1

βt = D⊤
t−1Mtxt.

(a)

Solving (4.10) then amounts to minimize the masked loss

min
α∈Rk

1

2
‖Mt(xt −D⊤

t−1α)‖22 + λΩ(α). (4.13)

Gt and βt are computed in a number of operations proportional to q,
which brings a speed-up factor of almost r in the code computation
for large p. On large data, using estimators (a) instead of exact G⋆

t

and β⋆
t proves very efficient during the first epochs (cycles over the

columns).8 However, due to the masking, Gt and βt are not consis- 8 Estimators (a) are

also available in the

infinite sample

setting, when

minimizing the

expected risk (4.4)
from a i.i.d sample

stream (xt)t.

tent estimators: they do not converge to G⋆
t and β⋆

t for large t, which
breaks theoretical guarantees on the algorithm output. Empirical re-
sults in Section 6.1.5 show that the sequence of iterates approaches a
critical point of the risk (4.3), but may then oscillate around it.

4.5.2.2 Averaging over epochs

At iteration t, the sample xt is drawn from a finite set of samples
{x(i)}i. This allows to average estimators over previously seen sam-
ples and address the non-consistency issue of (a). Namely, we keep
in memory 2n estimators, written (G

(i)
t ,β

(i)
t)16i6n. We observe the

sample i = it at iteration t and use it to update the i-th estimators
Ḡ

(i)
t , β̄(i)

t following

β
(i)
t = (1− γ)G

(i)
t−1 + γD⊤

t−1Mtx
(i)

G
(i)
t = (1− γ)G

(i)
t−1 + γD⊤

t−1MtD
(i)
t ,

where γ is a weight factor determined by the number of time the
one sample i has been previously observed at time t. Precisely, given
(γc)c a decreasing sequence of weights,

γ = γ
c
(i)
t

where c
(i)
t =

∣

∣

∣

{

s 6 t, xs = x(i)
}∣
∣

∣ .

All others estimators {G
(j)
t ,β

(j)
t }j 6=i are left unchanged from iteration

t− 1. The set {G(i)
t ,β

(i)
t }16i6n is used to define the averaged estima-

tors

Gt , G
(i)
t =

∑

s6t,xs=x(i)

γ
(i)
s,tD

⊤
s−1MsDs−1

βt , β
(i)
t =

∑

s6t,xs=x(i)

γ
(i)
s,tD

⊤
s−1Msx

(i),
(b)

4.5 subsampled online matrix factorization 55

where γ
(i)
s,t = γ

c
(i)
t

∏
s<t,xs=x(i)(1− γ

c
(i)
s
). Using βt and Gt in (4.10),

αt minimizes the masked loss averaged over the previous iterations
where sample i appeared:

min
α∈Rk

∑

s6t

xs=x(i)

γ
(i)
s,t

2
‖Ms(x

(i) −D⊤
s−1α)‖22 + λΩ(α). (4.14)

The sequences (Gt)t and (βt)t are consistent estimations of (G⋆
t)t

and (β⋆
t)t — consistency arises from the fact that a single sample x(i)

is observed with different masks along iterations. Solving (4.14) is
made closer and closer to solving (4.12), to ensure the correctness of
the algorithm (see Section 5.3). Yet, computing the estimators (b) is
no more costly than computing (a) and still permits to speed up a
single iteration close to r times. In the mini-batch setting, for every
i ∈ It, we use the estimators G

(i)
t and β

(i)
t to compute α

(i)
t . This

method has a memory cost of O(nk2). This is reasonable compared
to the dataset size 1 if p≫ k2.

4.5.2.3 Exact Gram matrix computation

To reduce the memory usage, another strategy is to use the true

Gram matrix Gt and the estimator βt from (b):

Gt , G⋆
t = D⊤

t−1Dt−1

βt ,
∑

s6t,xs=x(i)

γ
(i)
s,tD

⊤
s−1Msx

(i) (c)

As previously, the consistency of (βt)t ensures that (4.4) is correctly
solved despite the approximation in (αt)t computation. With the par-
tial dictionary update step we propose, it is possible to maintain Gt

at a cost proportional to q. The time complexity of the coding step is
thus similarly reduced when replacing (b) or (c) estimators in (4.12),
but the latter option has a memory usage in O(nk). Although es-
timators (c) are slightly less efficient in the first epochs, they are a
good compromise between resource usage and convergence. We sum-
marize the characteristics of the three estimators (a)–(c) in Table 4.1,
anticipating their empirical comparison in Section 6.1.

1. It is also possible to efficiently swap the estimators (G(i)
t)i on disk, as they are

only accessed for i = it at iteration t.

Table 4.1 – Comparison of estimators used for code computation

Est. βt Gt Convergence
Extra

mem. cost

1st epoch

perform.

(a) Masked Masked X

(b) Averaged Averaged X nk2 X

(c) Averaged Exact X nk

4.5 subsampled online matrix factorization 56

4.5.3 Dictionary update

In the original online algorithm, the whole dictionary Dt−1 is up-
dated at iteration t. To reduce the time complexity of this step, we
add a “freezing” constraint to the minimization (4.6) of ḡt. Every row
r of D that corresponds to an unseen row r at iteration r (such that
Mt[r, r] = 0) remains unchanged. This casts the problem (4.6) into a
lower dimensional space. Formally, the freezing operation comes out
as a additional constraint in (4.6):

Dt = argmin
D∈C

P⊥
t D=P⊥

t Dt−1

1

2
Tr (D⊤DC̄t) − Tr (D⊤B̄t). (4.15)

The constraints are separable into two blocks of rows. Recalling the
notations of (4.2), for each atom d(j), the rules ‖d(j)‖ 6 1 and the
freezing constraint P⊥

t d
(j) = P⊥

t d
(j)
t−1 can indeed be rewritten

{
‖Ptd

(j)‖ 6 1− ‖d(j)
t−1‖+ ‖Ptd

(j)
t−1‖ , r

(j)
t

P⊥
t d

(j) = P⊥
t d

(j)
t−1.

Solving (4.15) is therefore equivalent to solving the following problem
in R

q×k, with Br
t , PtBt,

Dr ∈ argmin
Dr∈Cr

(1

2
Tr (Dr⊤DrC̄t) − Tr (Dr⊤B̄r

t) , ḡrt(D
r)
)

(4.16)

where Cr =
{
Dr∈R

q×k/∀j ∈ [0, k− 1], ‖dr(j)‖ 6 r
(j)
t

}
.

The rows of Dt selected by Pt are then replaced with Dr, while
the other rows of Dt are unchanged from iteration t− 1. Formally,
PtDt = Dr and P⊥

t Dt = P⊥
t Dt−1. We solve (4.16) by a projected

Block coordinate descent (BCD) similar to the one used in the original
algorithm, but performed in a subspace of size q. We compute each
column j of the gradient that we use in the block coordinate descent
loop with q× k operations:

(∇ḡrt(Dr))(j) = Drc̄
(j)
t − b̄

r(j)
t ∈ R

q,

where c̄
(j)
t and b̄

r(j)
t are the j-th columns of C̄t and B̄r

t. Each reduced
atom dr(j) is projected onto the elastic-net ball of radius r

(j)
t , at an

average cost in O(q) following (Duchi et al., 2008; Mairal et al., 2010).
This makes the complexity of a single-column update proportional to
q. Performing the projection requires to keep in memory the values
{n

(j)
t , 1− ‖d(j)

t ‖}j, which can be updated online at a negligible cost.
We provide the reduced dictionary update step in Algorithm 3,

where we use the function enet_projection(u, r) that performs the
orthogonal projection of u ∈ R

q onto the elastic-net ball of radius r.
As in the original algorithm, we perform a single pass over columns
to solve (4.16). Dictionary update is now performed with a number
of operations proportional to q, instead of p in the original algorithm.
Thanks to the random nature of (Mt)t, updating Dt−1 into Dt re-
duces ḡt enough to ensure convergence.

4.5 subsampled online matrix factorization 57

Algorithm 3 Partial dictionary update

Input: Dictionary Dt−1, projector Pt, statistics C̄t, B̄t, norms
(n

(j)
t−1)06j<k

, Gram matrix Gt (optional).

Dt ← Dt−1, Gt ← Gt −D⊤
t−1PtDt−1.

for j ∈ permutation([1, k]) do

r
(j)
t ← n

(j)
t−1 + ‖Ptd

(j)
t−1‖.

u← Ptd
(j)
t−1 +

1
C̄t[j,j]

(Ptb̄
(j)
t −PtDtc̄

(j)
t). ⊲ in R

q

Ptd
(j)
t ← enet_projection(u, r

(j)
t). ⊲ in R

q

n
(j)
t ← r

(j)
t − ‖Ptd

(j)
t ‖.

Gt+1 ← Gt +D⊤
t PtDt.

Output: Dictionary Dt, norms (n
(j)
t)j, Gram matrix Gt+1.

gram matrix computation. Performing partial updates of Dt

makes it possible to maintain the full Gram matrix Gt = G⋆
t with

a cost in O(qk2) per iteration, as mentioned in Section 4.5.2.3. It is
indeed enough to compute the reduced Gram matrix D⊤PtD before
and after the dictionary update:

Gt+1 = D⊤
t Dt = Gt −D⊤

t−1PtD
⊤
t−1 +D⊤

t PtD
⊤
t .

4.5.4 Surrogate computation

The computation of αt using one of the estimators above defines a
surrogate gt(D) , 1

2‖xt −Dαt‖22 + λΩ(α), which we use to update
the aggregated surrogate ḡt , (1−wt)ḡt−1 +wtgt, as in online ma-
trix factorization. We follow (4.7) (with weights (wt)t) to update the
matrices B̄t and C̄t, which define ḡt up to constant factors. The up-
date of B̄t requires a number of operations proportional to p, which
we want to avoid. Fortunately, it is possible to leverage the use of two
threads to circumvent this issue.

4.5.4.1 Parallel parameter update

Performing block coordinate descent on ḡrt indeed requires to ac-
cess B̄r

t = PtB̄t only. Assuming we may use use more than two
threads, this allows to parallelize the dictionary update step with the
update of P⊥

t B̄t. In the main thread, we compute PtB̄t following

PtB̄t ← (1−wt)PtB̄t−1 +wtPtxtα
⊤
t .

which has a cost proportional to q. Then, we update in parallel the
dictionary and the rows of B̄t that are not selected by Mt:

P⊥
t B̄t ← (1−wt)P

⊥
t B̄t−1 +wtP

⊥
t xtα

⊤
t .

This update requires k(p− q)η operations (one matrix-matrix prod-
uct) for a mini-batch of size η. In contrast, with appropriate imple-
mentation, the dictionary update step requires 4 kq2 to 6 kq2 opera-
tions, among which 2 kq2 come from slower matrix-vector products.

4.5 subsampled online matrix factorization 58

Assuming k ∼ η, updating B̄t is faster than updating the dictionary
up to r ∼ 10, and performing (4.11) on a second thread is seamless in
term of wall-clock time. More threads may be used for larger reduc-
tion or batch size.

4.5.4.2 Truly partial update

It is in fact possible to replace the parallel updates of B̄t with the
following asynchronous updates:

P⊥
t B̄t , P⊥

t B̄t−1

PtB̄t , (1−
p

q
wt)PtB̄t−1 +

p

q
wtPtxtα

⊤
t , (4.19)

while maintaining the convergence guarantees presented in Chap-
ter 5. This was the approach we proposed in a first version of the
SOMF algorithm (Mensch et al., 2016a). (4.19) has the advantage of
updating only q rows of B̄t at each iteration. On the other hand, it
introduces an extra source of perturbation to the original OMF algo-
rithm. The effect of the perturbation is unfortunately too strong com-
pared to the computational speed-up provided by (4.19). Theoretical
analysis bears resemblance to a recent work of Leblond et al. (2017)
proposed for the SAGA algorithm. Note that we will reuse (4.19) in the
empirical adaptation of SOMF for matrix completion, in Section 6.2.

4.5.5 Weight sequences

Algorithm 2 require to specify (wt)t and (γc)c. We provide usable
form for those sequences in Assumption (B) of the analysis: wt =

1
tu

and γc = 1
cv , where u ∈ (1112 , 1) and v ∈

(

3
4 , 3u− 2

)

to ensure conver-
gence. Weights have little impact on convergence speed in practice.

4.5.6 Subsampling and time complexity

Subsampling may be used in only some of the steps of Algorithm 2,
with the other steps following Algorithm 1. Whether to use subsam-
pling or not in each step depends on the trade-off between the com-
putational speed-up it brings and the approximations it makes. It
is useful to understand how complexity of OMF evolves with p. We
write s the average number of non-zero coefficients in (αt)t (s = k

when Ω = ‖ · ‖22). OMF complexity has three terms:

(i) O(pk2): computation of the Gram matrix Gt, update of the
dictionary Dt with block coordinate descent,

(ii) O(pkη): computation of βt = D⊤
t−1xt and of B̄t using xtα

⊤
t ,

(iii) O(k s2 η): computation of αt using Gt and βt, using matrix
inversion or elastic-net regression.

Using subsampling turns p into q = p
r in the expressions above. It

improves single iteration time when the cost of regression O(k s2 η) is
dominated by another term. This happens whenever p

r > s2, where
r is the reduction factor used in the algorithm. Subsampling can

4.5 subsampled online matrix factorization 59

bring performance improvement up to r ∼ p
s2

. It can be introduced in
either computations from (i) or (ii), or both. When using small batch
size, i.e., when η < k, computations from (i) dominates complexity,
and subsampling should be first introduced in dictionary update (i),
and for code computation (ii) beyond a certain reduction ratio. On
the other hand, with large batch size η > k, subsampling should be
first introduced in code computation, then in the dictionary update
step. The reasoning above ignore potentially large constants. The
best trade-offs in using subsampling must be empirically determined,
which we do in Chapter 6.

conclusion

This chapter introduced the SOMF algorithm in detail and provided
the intuitions that guided its design. SOMF possess asymptotic almost-
sure convergence guarantees, that may be stated in an optimization
framework adapted to a wider set of problems than matrix factoriza-
tion. Chapter 5 provides a theoretical analysis of SOMF.

5
A L G O R I T H M P R O P E RT I E S V I A S T O C H A S T I C
A P P R O X I M AT E
M A J O R I Z AT I O N - M I N I M I Z AT I O N

In this chapter, we present the stochastic approximate majorization-

minimization (SAMM) framework and the convergence analysis of SOMF.
At its core, our analysis controls the perturbations that approximate
code computation and approximate surrogate minimization introduce
in the sequence of iterate (Dt)t. We establish that the iterate sequence
converges toward a critical point of the objective (4.3), i. e.

min
D∈C

f̄(D) ,
1

n

n∑

i=1

min
α∈Rk

(1

2

∥

∥x−Dα
∥

∥

2

2
+ λΩ(α)

)

,

with positive directional derivatives.
To better understand the mechanisms at stake, and make our ap-

proach modular, we work in the more general framework of stochas-
tic majorization minimization (Mairal, 2013b), which abstracts the
steps of online matrix factorization. We start by recalling what is
stochastic majorization-minimization and how it encompass the OMF

algorithm. We then turn to analyse the convergence properties of
SAMM algorithms. We use these to obtain guarantees on SOMF conver-
gence.

5.1 prior art : stochastic majorization-minimization

Online matrix factorization belongs to a wider category of algo-
rithms introduced by Mairal (2013b), that minimize locally tight up-
per bounding surrogates instead of a more complex objective, in order
to solve an expected risk minimization problem

min
θ∈Θ

f̄(θ) , Ex[f(θ, x)].

Generalizing online matrix factorization, we introduce in Algorithm 4

the stochastic majorization-minimization (SMM) algorithm, which is at
the core of our theoretical contribution. SMM algorithms extends
the popular class of majorization-minimization algorithms (Ortega
and Rheinboldt, 1970), of which gradient descent (Cauchy, 1847) and
batch alternated minimization for matrix factorization are instances.

In online matrix factorization, the true empirical risk functions
f̄t and their surrogates ḡt follow the update rules, with generalized
weight (wt)t set to (1t)t in (4.6) – (4.8):

f̄t , (1−wt)f̄t−1 +wtft, ḡt , (1−wt)ḡt−1 +wtgt, (5.1)

5.1 prior art : stochastic majorization-minimization 61

Algorithm 4 Stochastic majorization-minimization (Mairal, 2013b)
Input: Initial iterate θ0, weight sequence (wt)t>0, sample stream
(xt)t>0, number of iteration T .
for t from 1 to T do

Draw xt ∼ P, get ft : θ ∈ Θ→ f(xt, θ).
Construct a surrogate of ft near θt−1, that meets

gt > ft, gt(θt−1) = ft(θt−1).

Update the aggregated surrogate:

ḡt = (1−wt)ḡt−1 +wtgt.

Compute

θt = argmin
θ∈Θ

ḡt(θ).

Output: Final iterate θT .

where the pointwise loss function and its surrogate are

ft(D) , min
α∈Rk

1

2
‖xt −Dα‖22 + λΩ(α),

gt(D) ,
1

2
‖xt −Dαt‖22 + λΩ(αt).

(5.2)

The function gt is a majorizing surrogate of ft: gt > ft, and gt is tan-
gent to ft in Dt−1, i.e, gt(Dt−1) = ft(Dt−1) and∇(gt− ft)(Dt−1)=0.
Recall that at each step of online matrix factorization:

— The surrogate gt is computed along with αt, using (4.5).

— The parameters B̄t, C̄t are updated following (4.7). They define
the aggregated surrogate ḡt up to a constant.

— The quadratic function ḡt is minimized efficiently by block co-
ordinate descent, using parameters B̄t and C̄t to compute its
gradient.

The SMM framework simply formalizes the three steps above, for a
larger variety of loss functions ft(θ) , f(θ, xt), where θ is the parame-
ter we want to learn (D in the online matrix factorization setting). At
iteration t, a surrogate gt of the loss ft is computed to update the ag-
gregated surrogate ḡt following (5.1). The surrogate functions (gt)t
should upper-bound the loss functions (ft)t and be tight in the cur-
rent iterate θt−1 (e. g., the dictionary Dt−1). This simply means that
ft(θt−1) = gt(θt−1) and ∇(ft − gt)(θt−1) = 0. Computing ḡt can be
done if gt is defined simply; in OMF, it is linearly parametrized by
the couple of matrices (αtα

⊤
t , xtα

⊤
t). ḡt is then minimized to obtain

a new iterate θt — this is summarized in Algorithm 4.

surrogate examples . Online matrix factorization uses a varia-
tional form for gt, that involves the computation of a minimizer.

5.2 stochastic approximate majorization-minimization 62

When ft is L-smooth, we obtain another well known tight upper-
bound surrogate by setting, for all θ ∈ Θ,

gt(θ) , ft(θt−1) + 〈θ− θt−1,∇ft(θt−1)〉+
L

2
‖θ− θt−1‖22.

Using this class of surrogates in SMM exactly amount to perform
stochastic gradient descent with step-sizes wt

L .
It can be shown following Mairal (2013b) that stochastic majoriza-

tion minimization algorithms asymptotically find stationary points
of the expected risk Ex[f(θ, x)] under mild assumptions recalled in
Section 5.3. SMM admits the same mini-batch extensions as OMF.

We now propose an extension of the SMM framework that allows
both the majorization and minimization steps to be approximated.
We will show that convergence guarantees may be maintained despite
those approximations.

5.2 stochastic approximate majorization-minimization

The SOMF algorithm can be understood within the stochastic ma-
jorization minimization framework. The modifications that we pro-
pose are indeed perturbations to the first and third steps of the SMM

presented in Algorithm 4:

— The code is computed approximately: the surrogate is only an
approximate majorizing surrogate of ft near Dt−1.

— The surrogate objective is only reduced and not minimized, due
to the added constraint and the fact that we perform only one
pass of block coordinate descent.

We propose a new stochastic approximate majorization-minimization

(SAMM) framework handling these perturbations:

— A majorization step (4 – Algorithm 4), computes an approximate

surrogate of ft near θt−1: gt ≈ g⋆t , where gt is a true upper-
bounding surrogate of f̄t.

— A minimization step (6 – Algorithm 4), finds θt by reducing
enough the objective ḡt: θt ≈ θ⋆t , argminθ∈Θ ḡt(θ), which
implies ḡt(θt) & ḡt(θ

⋆
t).

The SAMM framework is general, in the sense that approximations
are not specified. The next section provides a theoretical analysis of
the approximation of SAMM and establishes how SOMF is an instance
of SAMM. Its main practical result is Proposition 5.1, that provides
convergence guarantees for SOMF, under the same assumptions made
for OMF in Mairal et al. (2010).

5.3 convergence analysis

We establish the convergence of SOMF under reasonable assump-
tions. For the sake of clarity, we first state our principal result (Propo-
sition 5.1), that guarantees SOMF convergence. It is a corollary of a

5.3 convergence analysis 63

more general result on SAMM algorithms. To present this broader re-
sult, we recall the theoretical guarantees of the stochastic majorization-
minimization algorithm from Mairal (2013b) (Proposition 5.2); then,
we show how the algorithm can withstand pertubations (Proposi-
tion 5.3). Proofs are reported in Section A.1. SAMM convergence is
proven before establishing SOMF convergence as a corollary of this
broader result. As a side contribution, our extension proves that per-
forming a single pass of block coordinate descent to update the dic-
tionary, an important heuristic introduced by Mairal et al. (2010), is
indeed correct.

5.3.1 Convergence of SOMF

Similar to Mairal et al. (2010) and Mardani et al. (2015), we show
that the sequence of iterates (Dt)t asymptotically reaches a critical
point of the empirical risk (4.3). We introduce the same hypothesis
on the code covariance estimation C̄t as in Mairal et al. (2010) and a
similar one on Gt — they ensure strong convexity of the surrogate
and boundedness of (αt)t. They do not cause any loss of general-
ity as they are met in practice after a few iterations, if r is chosen
reasonably low, so that q > k. The following hypothesis can also be
guaranteed by adding small ℓ2 regularizations to f̄.

(A) There exists ρ > 0 such that for all t > 0, C̄t,Gt ≻ ρI.

We further assume, that the weights (wt)t and (γc)c decay at spe-
cific rates. We specify simple weight sequences, but the proofs can be
adapted for more complex ones.

(B) There exists u ∈ (1112 , 1) and v ∈
(

3
4 , 3u− 2) such that, for all

t > 0, c > 0, wt = t−u, γc = c−v.

The following convergence result then applies to any sequence
(Dt)t produced by SOMF, using estimators (b) or (c). f̄ is the em-
pirical risk defined in (4.3).

Proposition 5.1 (SOMF convergence). Under assumptions (A) and (B),

f̄(Dt) converges with probability one and every limit point D∞ of (Dt)t is

a stationary point of f̄: for all D ∈ C

∇f̄(D∞,D−D∞) > 0

This result applies for any positive subsampling ratio r, which may
be set arbitrarily high. However, selecting a reasonable ratio remains
important for performance, as we will discuss in Chapter 6.

Proposition 5.1 is a corollary of a stronger result on SAMM algo-
rithms. As it provides insights on the convergence mechanisms, we
formalize this result in the following.

5.3.2 Basic assumptions and results on SMM convergence

We first recall the main results on stochastic majorization minimiza-
tion algorithms, established in Mairal (2013b), under assumptions

5.3 convergence analysis 64

that we slightly tighten for our purpose. In our setting, we consider
the empirical risk minimization problem

min
θ∈Θ

(

f̄(θ) ,
1

n

n∑

i=1

f(θ, x(i))
)

, (5.3)

where f : R
K ×X→ R is a loss function and

(C) Θ ⊂ R
K and the support X of the data are compact.

This is a special case of (4.4) where the samples (xt)t are drawn uni-
formly from the set {x(i)}i. The loss functions ft , f(·, xt) defined on
R

K can be non-convex. We instead assume that they meet reasonable
regularity conditions:

(D) (ft)t is uniformly R-Lipschitz continuous on R
K and uniformly

bounded on Θ.

(E) The directional derivatives ∇ft(θ, θ ′ − θ), as defined by Bor-
wein and Lewis (2010) and ∇f̄(θ, θ ′ − θ) exist for all θ and θ ′ in R

K.

Assumption (E) allows to characterize the stationary points of prob-
lem (5.3), namely θ ∈ Θ such that ∇f̄(θ, θ ′ − θ) > 0 for all θ ′ ∈ Θ

— intuitively a point is stationary when there is no local direction in
which the objective can be improved.

Let us now recall the definition of first-order surrogate functions
used in the SMM algorithm. (gt)t are selected in the set Sρ,L(ft, θt−1),
hereby introduced.

Definition 5.1 (First-order surrogate function). Given a function f :

R
K → R, θ ∈ Θ and ρ, L > 0, we define Sρ,L(f, θ) as the set of functions

g : R
K → R such that

— g is majorizing f on Θ and g is ρ-strongly convex,

— g and f are tight at θ — i.e., g(θ) = f(θ), g − f is differentiable,

∇(g− f) is L-Lipschitz, ∇(g− f)(θ) = 0, where ∇ is the classical

differential operator.

In OMF, gt defined in (5.2) is a variational surrogate 1 of ft. We
refer the reader to Mairal (2013a) for further examples of first-order
surrogates. We also ensure that ḡt should be parametrized and thus
representable in memory. The following assumption is met in OMF,
as ḡt is parametrized by the matrices C̄t and B̄t.

(F) Parametrized surrogates. The surrogates (ḡt)t are parametrized
by vectors in a compact set K ⊂ R

P. Namely, for all t > 0, there
exists κt ∈ K such that ḡt is unequivocally defined as gt , ḡκt .

Finally, we ensure that the weights (wt)t used in Algorithm 4 de-
crease at certain rates, slightly less stringent than our assumption (B).

(G) There exists u ∈ (34 , 1) such that wt = t−u.

1. In this case as in SOMF, gt is not ρ-strongly convex but ḡt is, thanks to assump-
tion (A). This is sufficient in the proofs of convergence.

5.3 convergence analysis 65

When (θt)t is the sequence yielded by Algorithm 4, the following
result (Proposition 3.4 in Mairal, 2013b) establishes the convergence
of (f̄(θt))t and states that θt is asymptotically a stationary point of
the finite sum problem (5.3), as a special case of the expected risk
minimization problem (4.4).

Proposition 5.2 (Convergence of SMM, from Mairal, 2013b). Under

assumptions (C) – (G), (f̄(θt))t>1 converges with probability one. Every

limit point θ∞ of (θt)t is a stationary point of the risk f̄ defined in (5.3).
That is,

∀θ ∈ Θ, ∇f̄(θ∞, θ− θ∞) > 0.

The correctness of the online matrix factorization algorithm can be
deduced from this proposition.

5.3.3 Convergence of SAMM

We now introduce assumptions on the approximations made in
SAMM, before extending the result of Proposition 5.2. We make hy-
potheses on both the surrogate computation (majorization) step and
the iterate update (minimization) step. The principles of SAMM are
illustrated in Figure 5.1, which provides a geometric interpretation
of the approximations introduced in the following assumptions (H)

and (I).

5.3.3.1 Approximate surrogate computation

The SMM algorithm selects a surrogate for ft at point θt−1 within
the set Sρ,L(ft, θt−1). Surrogates within this set are tight at θt−1 and
greater than ft everywhere. In SAMM, we allow the use of surrogates
that are only approximately majorizing ft and approximately tight at θt−1.
This is indeed what SOMF does when using estimators in the code
computation step. For that purpose, we introduce the set Tρ,L(f, θ, ǫ),
that contains all functions ǫ-close of a surrogate in Sρ,L(f, θ) for the
ℓ∞-norm:

Definition 5.2 (Approximate first-order surrogate function). Given a

function f : R
K → R, θ ∈ Θ and ǫ > 0, Tρ,L(f, θ, ǫ) is the set of ρ-strongly

convex functions g : R
K → R such that

— g is ǫ-majorizing f on Θ: ∀ κ ∈ Θ, g(κ) − f(κ) > −ǫ,

— g and f are ǫ-tight at θ — i.e., g(θ)− f(θ) 6 ǫ, g− f is differentiable,

∇(g− f) is L-lipschitz.

We assume that SAMM selects an approximative surrogate in the set
Tρ,L(ft, θt−1, ǫt) at each iteration, where (ǫt)t is a deterministic or
random non-negative sequence that vanishes at a sufficient rate.

(H) For all t > 0, there exists ǫt > 0 such that gt ∈ Tρ,L(ft, θt−1, ǫt).
There exists a constant η > 0 such that E[ǫt] ∈ O(t2(u−1)−η) and
ǫt →∞ 0 almost surely.

5.3 convergence analysis 66

As illustrated in Fig. 5.1, given the OMF surrogate g⋆t ∈ Sρ,L(ft, θt−1)

defined in (5.2), any function gt such that ‖gt − g⋆t‖∞ < ǫ is in
Tρ,L(ft, θt−1, ǫ) — e.g., where gt uses an approximate αt in (5.2).
This assumption can also be met in matrix factorization settings with
difficult code regularizations, that require to make code approxima-
tions.

5.3.3.2 Approximate surrogate minimization

We do not require θt to be the minimizer of ḡt any longer, but en-
sure that the surrogate objective function ḡt decreases “fast enough”.
Namely, θt obtained from partial minimization should be closer to
a minimizer of ḡt than θt−1. We write (Ft)t and (Ft− 1

2
)
t

the filtra-
tions induced by the past of the algorithm, respectively up to the end
of iteration t and up to the beginning of the minimization step in
iteration t. Then, we assume

(I) For all t > 0, ḡt(θt) < ḡt(θt−1). There exists µ > 0 such that,
for all t > 0, where θ⋆t = argminθ∈Θ ḡt(θ),

E [ḡt(θt) − ḡt(θ
⋆
t)|Ft− 1

2
] 6 (1− µ)(ḡt(θt−1) − ḡt(θ

⋆
t)). (5.4)

Assumption (I) is met by choosing an appropriate method for the
inner ḡt minimization step — a large variety of gradient-descent al-
gorithms indeed have convergence rates of the form (5.4). In SOMF,
the block coordinate descent with frozen coordinates indeed meet
this property, relying on results from Wright (2015). When both as-
sumptions are met, SAMM enjoys the same convergence guarantees as
SMM.

5.3.3.3 Asymptotic convergence guarantee

The following proposition guarantees that the stationary point con-
dition of Proposition 5.2 holds for the SAMM algorithm, despite the
use of approximate surrogates and approximate minimization.

Proposition 5.3 (Convergence of SAMM). Under assumptions (G) – (F),

the conclusion of Proposition 5.2 holds for SAMM.

Surrogate approximation Partial minimization

Figure 5.1 – Both steps of SAMM make well-behaved approximations. The
operations that are performed in exact SMM are in green and
superscripted by ⋆, while the actual computed values are in
orange. Light bands recall the bounds on approximations as-
sumed in (H) and (I).

5.3 convergence analysis 67

Assumption (H) is essential to bound the errors introduced by the
sequence (ǫt)t in the proof of Proposition 5.3, while (I) is the key
element to show that the sequence of iterates (θt)t is stable enough
to ensure convergence. The result holds for any subsampling ratio
r, provided that (A) remains true. Full proofs are provided in Sec-
tion A.1.2.

5.3.3.4 Proving SOMF convergence

Assumptions (A) and (B) readily implies (C)–(G). With Proposi-
tion 5.3 at hand, proving Proposition 5.1 reduces to ensure that the
surrogate sequence of SOMF meets (H) while its iterate sequence meets
assumption (I). Full proofs are provided in Section A.1.3.

5.3.4 Discussion and variants

The SOMF algorithm relies on a somewhat complicated assump-
tion (B) on the learning weights (wt)t and on a reduction mechanism
that we further discuss.

weight decay. The original OMF algorithm is provably convergent
for wt = t−u, with u ∈ (34 , 1]. Decreasing u below 1 allows the
algorithm to forget about past iterates and may slightly increase con-
vergence speed. This assumption (G) is already stronger than the
one required by SGD for convex objectives (Bottou, 1999) and on-
line expectation-minimization for exponential families (Cappé and
Moulines, 2009), for which we may set u ∈ (12 , 1]. The convergence
of SOMF relies on a variance reduction mechanism, and therefore de-
mands a slightly more stringent condition that arises from the proofs:
u ∈ (1112 , 1), as stated in assumption (B). This may be informally un-
derstood as follow: controlling the variance induced by the stochastic
subsampling mechanism requires not to forget about the past too quickly.

reducing the subsampling ratio. Instead of using the vari-
ance reduction mechanism formalised in equation (b) and (c), we may
simply gradually reduce the subsampling ratio r = p

q , so as to meet
assumption (H). It if enough to define a sequence of subsampling
sizes (qt)t ∈ [1, p] so that

1−
qt

p
∈ o(t(2(u−1)−η)), (5.5)

with η > 0 and u ∈ (34 , 1] such that wt = 1
tu for all t > 0. We

then perform the simpler update (a), namely solve the masked elastic-
net/ridge problem (4.13), recalled here:

αt = min
α∈Rk

1

2
‖Mt(xt −Dt−1α)‖22 +Ω(α),

where Mt is a random Bernouilli matrix with parameter qt

p . Of
course, (5.5) assumes that qt → p, i. e. that subsampling is no longer
used asymptotically. The convergence of the resulting algorithm may

5.4 conclusion 68

therefore appears less surprising than the guarantees obtained on
SOMF with updates (b) and (c). However, (5.5) tells us that qt may
increase slowly: typically, we may choose qt = p − q1/m

2(u−1)+η
t ,

where mt is the number of the current epoch and q0 is the subsam-
pling size at the first epoch. For u = 1, qt can even remain approxi-
mately constant, as qt = p− q1/m

η
t is valid for any positive η. This

further justifies the use of the update (4.13).

5.4 conclusion

We have established the convergence of SOMF and provided modu-
lar properties to analyse algorithms that perform perturbed stochastic
majorization-minimization. Due to the non-convexity of the problem,
our analysis does not provide rates of convergence in Proposition 5.1
and 5.3. This calls for a strong empirical validation of the method.
We present it in Chapter 6, to which it is possible to move directly.

6
S U B S A M P L E D O N L I N E M AT R I X
FA C T O R I Z AT I O N I N P R A C T I C E

In this chapter, we experiment the performance of SOMF algorithm
on various problems (dictionary learning, sparse component anal-
ysis, non-negative matrix factorization) and various datasets (two
datasets of fMRI and one dataset from hyperspectral imaging). We
demonstrate the usefulness of subsampling, and of the various de-
tails of the SOMF algorithm. We show quantitatively and qualitatively
that the speed-up provided by SOMF makes huge matrix factoriza-
tion amenable to practitioners. Finally, we consider an extension of
the SOMF algorithm, that makes it usable for matrix completion. We
assess the performance of this extension on explicit collaborative fil-
tering.

6.1 experiments with somf

The SOMF algorithm is designed for datasets with large number of
samples n and large dimensionality p. Indeed, as detailed in Section
4.5, subsampling removes the computational bottlenecks that arise
from high dimensionality. Proposition 5.1 of Chapter 5 establishes
that the subsampling used in SOMF is safe, as it enjoys the same
guarantees as OMF. However, as with OMF, no convergence rate is
provided. We therefore perform a strong empirical validation of sub-
sampling.

We tackle two different problems, in functional Magnetic Reso-
nance Imaging (fMRI) and hyperspectral imaging. Both involve the
factorization of very large matrices X with sparse factors. As the data
we consider are huge, subsampling reduces the time of a single itera-
tion by a factor close to p

q . Yet it is also much redundant: SOMF makes
little approximations and accessing only a fraction of the features per
iteration should not hinder much the refinement of the dictionary.
Hence high speed-ups are expected — and indeed obtained. All ex-
periments can be reproduced using open-source code.

6.1.1 Problems and datasets

6.1.1.1 Functional MRI

As discussed in Chapter 3, matrix factorization has long been used
in fMRI, since the seminal work of McKeown et al. (1998). Data are
temporal series of 3D images of brain activity and are decomposed
into spatial modes capturing regions that activate synchronously. They
form a matrix X where columns are the 3D images, and rows corre-
sponds to voxels. Interesting dictionaries for neuroimaging capture
spatially-localized components, with a few brain regions. This can

6.1 experiments with somf 70

be obtained by enforcing sparsity on the dictionary: we use an ℓ2
penalty and the elastic-net constraint. SOMF streams subsampled 3D
brain records to learn the sparse dictionary D. Data can be huge: we
use the whole HCP500 release (Van Essen et al., 2012), with n = 2.4 ·106
(2000 records, 1 200 time points) and p = 2 · 105, totaling 2 TB of dense
data. For comparison, we also use a smaller public dataset (ADHD200,
M. P. P. D. Milham et al., 2012) with 40 records, n = 7000 samples
and p = 6 · 104 voxels. Importantly, we seek a low-rank factorization,
to keep the decomposition interpretable — k = 70≪ p.

6.1.1.2 Hyperspectral imaging

Hyperspectral cameras acquire images with many channels that
correspond to different spectral bands. They are used heavily in
remote sensing (satellite imaging), and material study (microscopic
imaging). They yield digital images with around 1 million pixels,
each associated with hundreds of spectral channels. Sparse matrix
factorization has been widely used on these data for image classifi-
cation (Chen et al., 2011; Soltani-Farani et al., 2015) and denoising
(Maggioni et al., 2013; Peng et al., 2014). All methods rely on the ex-
traction of full-band patches representing a local image neighborhood
with all channels included. These patches are very high dimensional,
due to the number of spectral bands. From one image of the Aviris
project (Vane, 1987), we extract n = 2 · 106 patches of size 16× 16 with
224 channels, hence p = 6 · 104. A dense dictionary is learned from
these patches. It should allow a sparse representation of samples:
we either use the classical dictionary learning setting (ℓ1/elastic-net
penalty), or further add positive constraints to the dictionary and
codes: both methods may be used and deserved to be benchmarked.
We seek a dictionary of reasonable size: we use k ∼ 256≪ p.

6.1.2 Experimental design

To validate the introduction of subsampling and the usefulness of
SOMF, we perform two major experiments.

— We measure the performance of SOMF when increasing the re-
duction factor, and show benefits of stochastic dimension reduc-
tion on all datasets.

— We assess the importance of subsampling in each of the steps of
SOMF. We compare the different approaches proposed for code
computation.

validation. We compute the objective function (4.3) over a test set
to rule out any overfitting effect — a dictionary should be a good
representation of unseen samples. This criterion is always plotted
against wall-clock time, as we are interested in the performance of
SOMF for practitioners.

tools . To perform a valid benchmark, we implement OMF and SOMF

using Cython (Behnel et al., 2011). We use coordinate descent (Fried-

6.1 experiments with somf 71

Table 6.1 – Summary of experimental settings

Field Functional MRI Hyperspectral imaging

Dataset ADHD HCP Patches from Aviris

Factors D sparse, A dense D dense, A sparse

samples n 7 · 103 2 · 106 2 · 106

features p 6 · 104 2 · 105 6 · 104

X size 2 GB 2 TB 103 GB

Use case ex. Extracting predictive feature Recognition / denoising

Table 6.2 – CPU time to reach convergence (< 1% test objective)

Dataset ADHD Aviris (NMF) Aviris (DL) HCP

Algorithm OMF SOMF OMF SOMF OMF SOMF OMF SOMF

Conv. time 6 min 28 s 2 h 30 43 min 1 h 16 11 min 3 h 50 17 min

Speed-up 11.8 3.36 6.80 13.31

man et al., 2007) to solve Lasso problems with optional positivity
constraints. Code computation is parallelized to handle mini-batches.
Experiments use scikit-learn (Pedregosa et al., 2011) for numerics, and
nilearn (Abraham et al., 2014) for handling fMRI data. We have re-
leased the code in an open-source Python package. Experiments were
run on 3 cores of an Intel Xeon 2.6GHz, in which case computing
P⊥
t B̄t is faster than updating PtDt.

parameter setting . Setting the number of components k and
the amount of regularization λ is a hard problem in the absence of
ground truth. Those are typically set by cross-validation when ma-
trix factorization is part of a supervised pipeline. For fMRI, we set
k = 70 to obtain interpretable networks, and set λ so that the decom-
position approximately covers the whole brain (i.e., every map is k

70)

sparse). For hyperspectral images, we set k = 256 and select λ to
obtain a dictionary on which codes are around 3% sparse. We cycle
randomly through the data (fMRI records, image patches) until con-
vergence, using mini-batches of size η = 200 for HCP and Aviris, and
η = 50 for ADHD (small number of samples). Hyperspectral patches
are normalized in the dictionary learning setting, but not in the non-
negative setting — the classical pre-conditioning for each case. We
use u = 0.917 and v = 0.751 for weight sequences.

6.1.3 Reduction brings speed-up at all data scales

We benchmark SOMF for various reduction factors against the orig-
inal online matrix factorization algorithm OMF Mairal et al. (2010), on
the three presented datasets. We stream data in the same order for
all reduction factors. Using variant (c) (true Gram matrix, averaged
βt) performs slightly better on fMRI datasets, whereas (b) (averaged

6.1 experiments with somf 72

5s 1min 6min

2.80

2.85

2.90

2.95

T
es
t
o
b
je
ct
iv
e
va
lu
e

×10
4

Time

ADHD
Sparse dictionary

2 GB

1min 1h 5h

0.105

0.106

0.107

0.108

0.109
Aviris
NMF

103 GB

1min 1h 5h

0.35

0.36

0.37

0.38

0.39

0.40

T
es
t
o
b
je
ct
iv
e
va
lu
e

Time

Aviris
Dictionary learning

103 GB

OMF: SOMF: r = 4

r = 6

r = 8

r = 12

r = 24r = 1

Best step-size SGD

100s 1h 5h 24h

0.98

1.00

1.02

1.04

×10
5

HCP
Sparse dictionary

2 TB

Figure 6.1 – Subsampling provides significant speed-ups on all fMRI and hy-
perspectral datasets. A reduction factor of 12 is a good overall
choice. With larger data, larger reduction factors can be used for
better performance — convergence is reached 13× faster than
state-of-the-art methods on the 2TB HCP dataset.

Gram matrix and βt) is slightly faster for hyperspectral decomposi-
tion. For comparison purpose, we display results using estimators (b)
only.

6.1.3.1 Benchmarking SOMF

Figure 6.1 plots the test objective against CPU time. First, we ob-
serve that all algorithms find dictionaries with very close objective
function values for all reduction factors, on each dataset. This is not
a trivial observation as the matrix factorization problem (4.3) is not
convex and different runs of OMF and SOMF may converge towards
minima with different values. Second, and most importantly, SOMF

provides significant improvements in convergence speed for three dif-
ferent sizes of data and three different factorization settings. Both ob-
servations confirm the relevance of the subsampling approach. Quan-
titatively, we summarize the speed-ups obtained in Table 6.2. On fMRI

data, on both large and medium datasets, SOMF provides more than
an order of magnitude speed-up. Practitioners working on datasets
akin to HCP can decompose their data in 20 minutes instead of 4h pre-
viously, while working on a single machine. We obtain the highest
speed-ups for the largest dataset — accounting for the extra redun-
dancy that usually appears when dataset size increase. Up to r ∼ 8,
speed-up is of the order of r — subsampling induces little noise in
the iterate sequence, compared to OMF. Hyperspectral decomposition
is performed near 7× faster than with OMF in the classical dictionary
learning setting, and 3× in the non-negative setting, which further
demonstrates the versatility of SOMF.

6.1 experiments with somf 73

Comp. 1 Comp. 2 Comp. 3
Time: 14h

841k patchesOMF

r = 1 Time: 177 s

3k patches

SOMF

r = 24

Time: 179 s

87k patches

Figure 6.2 – Given a 3 minute time budget, the atoms learned by SOMF are
more focal and less noisy that those learned by OMF. They are
closer to the dictionary of first line, for which convergence has
been reached.

6.1.3.2 Comparison with stochastic gradient descent

It is possible to solve (4.3) using projected stochastic gradient de-
scent (sgd, Duchi and Singer (2009)). We use the gradient of D →
ft(D) evaluated in Dt−1 to compute Dt with fixed step-size η:

∇Dft(Dt−1) = (xt − (Dt−1α
⋆
t)α

⋆
t ,

Dt ← Dt−1 − η∇Dft(Dt−1)

where α⋆
t is defined in (4.5). Computation of ∇Dft(Dt−1) is derived

from Danskin theorem (1966). Its form when α⋆
t is the solution of a

Lasso regression is due to Mairal et al. (2009).
On all tested settings, for high precision convergence, sgd (with the

best step-size among a grid) is slower than OMF and even slower than
SOMF. In the dictionary learning setting, sgd is somewhat faster than
OMF but slower than SOMF in the first epochs. sgd further requires
to select the step-size by grid search. In contrast, SOMF and OMF

performance little depends on the parameters u and v, and do not
require hyper-parameter search for solver parameters.

6.1.3.3 Qualitative results on dictionaries

Qualitatively, given a certain time budget, we compare the dictio-
naries obtained on different datasets.

hyperspectral images . Figure 6.2 compares the results of OMF

and the results of SOMF with a subsampling ratio r = 24, in the non-
negative setting. Our algorithm yields a valid smooth bank of filters
much faster. 9 9 As expected, OMF

and SOMF does not

output the same

final dictionaries,

but some atoms

remains very close

along the updates of

both algorithms,

when streaming data

in the same order.

We select such

atoms in Fig 6.2.

functional mri . Figure 6.3 shows that with the same time bud-
get, the proposed reduction approach with r = 12 on half of HCP data
(500 subjects in this experiment) gives better results than processing
a small fraction of the data without reduction: segmented regions are
less noisy and closer to processing the full data. Practitioners are thus
able to derive a usable dictionary from one of the largest fMRI dataset
available in less than half a day. This was out-of-reach using existing
techniques.

6.1 experiments with somf 74

235 h run time

Original OMF algorithm
1 full epoch

10 h run time

1
24 epoch

10 h run time

Proposed SOMF algorithm
1
2 epoch, reduction r=12

Figure 6.3 – Brain atlases: outlines of each map at half the maximum value
(λ = 10−4). Top left: the reference OMF algorithm on the full
dataset. Top right: the reference algorithm on a twentieth of the
dataset. Bottom: the proposed SOMF algorithm with a similar
run time: half the dataset and r = 12. Compared to a full
run of the baseline algorithm, the figure explore two possible
strategies to decrease computation time: processing less data
(top right), or our approach (bottom). Our approach achieves a
result closer to the gold standard in a given time budget.

39

42

No subsampling Subsampling for: Time to compute:

Dictionary

Gram matrix

Surrogate
parameters

Code

No reduction r = 6 r = 24

0

10

C
o
m
p
u
ta
ti
o
n
ti
m
e

p
er

sa
m
p
le

(m
s)

Dicti
onary

+ Surro
gate

+ Code
Dicti

onary

+ Surro
gate

+ Code

Figure 6.4 – Profiling OMF and SOMF for HCP decomposition. Partial dictio-
nary update removes the major bottleneck of online matrix fac-
torization for small reductions. For higher reduction, parameter
update and code computation must be subsampled to further
reduce the iteration time.

6.1.3.4 Finding the right subsampling ratio

Table 6.2 reports convergence time within 1%, which is enough
for application in practice. SOMF is less beneficial when setting very
high precision: for convergence within 0.01%, speed-up for HCP is
3.4. This is expected as SOMF trades speed for approximation. For
high precision convergence, the reduction ratio can be reduced after
a few epochs. As expected, there exists an optimal reduction ratio,
depending on the problem and precision, beyond which performance
reduces: r = 12 yields better results than r = 24 on Aviris (dictionary
learning) and ADHD (sparse components), for 1% precision.

6.1 experiments with somf 75

10
−1

10
0

10
1

97000

97500

98000

98500

99000

99500

100000

T
es
t
o
b
je
ct
iv
e
fu
n
ct
io
n

Zoom

10
−2

10
−3

(relative to lowest value)

Subsampling ratio

None

r = 12

r = 24

10
0

10
1 Time

10
−2

10
−3

Code computation

No subsampling (19)

Averaged estimators (c)

Masked loss (a)

Figure 6.5 – Approximating code computation with the proposed subsam-
pling method further accelerates the convergence of SOMF. Re-
fining code computation using past iterations (averaged esti-
mates) performs better than simply performing a subsampled
linear regression.

Our first experiment establishes the power of stochastic subsam-
pling as a whole. In the following two experiments, we refine our
analysis to show that subsampling is indeed useful in the three steps
of online matrix factorization.

6.1.4 For each step of SOMF, subsampling removes a bottleneck

In Section 4.4, we have provided theoretical guidelines on when
to introduce subsampling in each of the three steps of an iteration of
SOMF. This analysis predicts that, for η ∼ k, we should first use partial
dictionary update, before using approximate code computation and
asynchronous parameter aggregation. We verify this by measuring
the time spent by SOMF on each of the updates for various reduction
factors, on the HCP dataset. Results are presented in Figure 6.4. We
observe that block coordinate descent is indeed the bottleneck in OMF.
Introducing partial dictionary update removes this bottleneck, and as
the reduction factor increases, code computation and surrogate ag-
gregation becomes the major bottlenecks. Introducing subsampling
as described in SOMF overcomes these bottlenecks, which rationalizes
all steps of SOMF from a computational point of view.

6.1.5 Code subsampling is useful for high reduction

It remains to assess the performance of approximate code compu-
tation and averaging techniques used in SOMF. Indeed, subsampling
for code computation introduces noise that may undermine the com-

6.2 extension to matrix completion 76

putational speed-up. To understand the impact of approximate code
computation, we compare three strategies to compute (αt)t on the
HCP dataset. First, we compute (α⋆

t)t from (xt)t using (4.12). Sub-
sampling is thus used only in dictionary update. Second, we rely on
masked, non-consistent estimators (a), as in Mensch et al. (2016a) —
this breaks convergence guarantees. Third, we use averaged estima-
tors (βt,Gt) from (c) to reduce the variance in (αt)t computation.

Figure 6.5 compares the three strategies for r ∈ {12, 24}. Partial
minimization at each step is the most important part to accelerate
convergence: subsampling the dictionary updates already allows to
outperforms OMF. This is expected, as dictionary update constitutes
the main bottleneck of OMF in large-scale settings. Yet, for large reduc-
tion factors, using subsampling in code computation is important to
further accelerate convergence. This clearly appears when comparing
the plain and dashed black curves. Using past estimates to better ap-
proximate (αt)t yields faster convergence than the non-converging,
masked loss strategy (a). Note that the latter one remains a good
option as it is simpler to implement and almost as efficient.

Before concluding this chapter, we introduce an extension of the
SOMF algorithm that allows it to handle missing values. Although
the proposed algorithm is not provably convergent, it can be used to
perform fast collaborative filtering.

6.2 extension to matrix completion

SOMF algorithm may be adapted to handle a different kind of ma-
trix factorization problem, known as low-rank matrix completion. In
this setting, we have only access to a masked data matrix M ∗ X,
where X,M ∈ R

n×p are the data matrix and masking binary matrix,
and ∗ denote the elementwise product between two matrices. For-
mally, we want to find D ∈ R

p×k and A ∈ R
k×n so that DA is

low-rank and M ∗ X ≈ M ∗ (DA). We then predict the unknown
values of X as X̂ , DA.

One of the best known application of low-rank matrix completion
is explicit collaborative filtering. In this setting, every user from a pool
of n individuals ranks a subset of p items (e. g., movies). We want
to gather all the ratings to predict the ratings that each individual
would make for each of the p items. This amounts to complete a user-
item rating matrix X, of which we only observe the ratings that were
provided by the users.

6.2.1 Problem setting

Low-rank matrix factorization is traditionally stated as the follow-
ing empirical minimization problem, known as maximum margin ma-
trix factorisation (Srebro et al., 2004):

min
D∈R

p×k

A∈R
k×n

n∑

i=1

∥

∥m(i) ∗ (x(i) −Dα(i))
∥

∥

2

2
+

λ

2
(‖D‖22 + ‖A‖22), (6.1)

6.2 extension to matrix completion 77

where m(i) is the i-th column of M. The joint ℓ2 penalty on D and
A enforce DA to be low-rank (Fazel et al., 2001). The low property
is typically also ensured by hard setting k to be lower than min(p, n).
This setting was successfully used by the winners of the Netflix chal-
lenge (R. M. Bell and Koren, 2007).

To adapt SOMF to solve a problem similar to (6.1), we write, for all
i ∈ [n], M(i) , p

q(i) Diag(m(i)), where q(i) , ‖m(i)‖0 is the number

of observed coefficient in sample x(i). Every mask M(i) have the
same diagonal form as in (4.9), as if it were sampled from a 1-centered

Bernouilli distribution of parameter q(i)

p . In the matrix completion
case, the masks are provided: coefficients of x(i) masked out by M(i)

are unknown and can never be accessed during training. We propose
to solve the following objective

min
D∈C

1

n

n∑

i=1

min
α∈Rk

(
1

2

∥

∥M(i)(x(i) −Dα)
∥

∥

2

2
+ λ‖α‖22), (6.2)

where C constrains D atoms to live in ℓ2 unit balls. Objective (6.2)
is highly similar to (6.1), expect for the penalty on D that has been
replaced by a constraint. Importantly, it focuses on the left-side factor
D only, as does the matrix factorization objective (4.3) central to this
chapter. This will allow to reuse the principles of SOMF.

related work . Szabó et al. (2011) proposed an algorithm similar
to OMF to solve an objective akin to (6.2). Unfortunately, the single
iteration complexity of their algorithm is proportional to p and not to
the effective size q(i) of sample xt = x(i). This makes it unusable for
large-scale matrices with few non-zero coefficients. In contrast, the
algorithm we now propose achieves the appropriate complexity.

6.2.2 Proposed algorithm

To solve (6.2), we propose the following algorithm. At iteration t,
we sample xt = x(i) and Mt = M(i), and

— Compute αt solving (4.13), i. e.

αt , argmin
α∈Rk

1

2
‖Mt(xt −D⊤

t−1α)‖22 + λ‖α‖22.

— Update C̄t as in SOMF and B̄t using the partial update equa-
tion (4.19), i. e.

P⊥
t B̄t , P⊥

t B̄t−1

PtB̄t , (1−
p

q(i)
wt)PtB̄t−1 +

p

q(i)
wtPtxtα

⊤
t ,

— Update D to solve the “frozen” problem (4.15), i. e. changes the
coefficients of PtD only:

Dt , argmin
D∈C

P⊥
t D=P⊥

t Dt−1

1

2
Tr (D⊤DC̄t) − Tr (D⊤B̄t).

6.2 extension to matrix completion 78

Compared to SOMF algorithm, two aspects have changed. First,
we do not use the mechanisms (b) or (c) to reduce the variance that
stochastic subsampling introduces. This is no longer possible as we
always look at sample x(i) with the same mask M(i). Secondly, for
the same reason, we are not able to update the full statistic B̄t at
each iteration, as we can only the coefficients gathered in Ptxt. We
therefore perform partial updates of B̄t, using a scaling coefficient p

q(i)

to compensate for the different frequencies at which rows appear in
the streaming process.

completion at test time . Past the first epoch, at iteration t, ev-
ery column i of X can be predicted using the last code α

(i)
t , αs

that was computed for this column, i. e. the largest s 6 t such that
xs = x(i). At iteration t, for all i in [n], we set x̂(i) , Dtαs. Prediction
thus only requires a single additional matrix computation using the
recorded parameters Dt and At , (α

(i)
t)i∈[n].

6.2.3 Experiments

We validate the performance of the proposed algorithm on explicit
collaborative filtering.

6.2.3.1 Setting

Figure 6.6 – Learning speed for collaborative filtering for datasets of differ-
ent size: the larger the dataset, the greater our speed-up.

We evaluate the scalability of our method on datasets of different
dimension: MovieLens 1M, MovieLens 10M, and 140M ratings Net-
flix dataset. We stream user ratings to our algorithm: p is the number
of movies and n is the number of users. As n≫ p on Netflix dataset,
this increases the benefit of using an online method. We have ob-
served comparable prediction performance streaming item ratings.

6.2 extension to matrix completion 79

Table 6.3 – Comparison of performance and convergence time for online
masked matrix factorization and coordinate descent method.

Test RMSE Convergence time

Dataset CD SOMF CD SOMF Speed-up

ML 1M 0.872 0.866 6 s 8 s ×0.75

ML 10M 0.802 0.799 223 s 60 s ×3.7

NF (140M) 0.938 0.934 1714 s 256 s ×6.8

baseline . We compare our algorithm to a coordinate descent based
method (Yu et al., 2012), that provides state-of-the art convergence
time performance on our largest dataset. Although stochastic gradi-
ent descent methods for matrix factorization can provide slightly bet-
ter single-run performance (Takács et al., 2009), these are notoriously
hard to tune and require a precise grid search to uncover a working
schedule of learning rates. In contrast, coordinate descent methods
do not require any hyper-parameter setting and are therefore more
efficient in practice. We benchmarked various recommender-system
codes (MyMediaLite, LibFM, SoftImpute, spira), and chose coordinate
descent algorithm from spira as it was by far the fastest.

preprocessing . Successful prediction should take into account the
biases associated to users and items. We compute these biases on
train data following Hastie et al. (2015) (alternated debiasing). We use
them to center the samples (xt)t that are streamed to the algorithm,
and to perform final prediction.

details . Both baseline and proposed algorithm are implemented
in a computationally optimal way, enabling fair comparison based on
CPU time. Benchmarks were run using a single 2.7 GHz Xeon CPU,
with k = 30 components in the dictionary. For Movielens datasets,
we use a random 25% of data for test and the rest for training. We
average results on five train/test split for MovieLens in Table 6.3. On
Netflix, the probe dataset is used for testing. Regularization parame-
ter λ is set by cross-validation on the training set: the training data is
split 3 times, keeping 33% of Movielens datasets for evaluation and
1% for Netflix, and grid search is performed on 15 values of λ be-
tween 10−2 and 10. We assess the quality of obtained decomposition
by measuring the Root mean square error (RMSE) between prediction
on the test set and ground truth. We use mini-batches of size n

100 .

6.2.3.2 Performance benchmark

We report the evolution of test RMSE across time in Figure 6.6. Con-
vergence is virtually achieved, despite the lack of theoretical guaran-
tees. We report test RMSE at convergence and wall-clock convergence
time in Table 6.3. Benchmarks are performed on the final run, after
selecting the regularization parameter λ.

6.3 conclusion of part ii 80

1 10 40Epoch

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

R
M
S
E
o
n
te
st

se
t

Learning rate β0.75

0.78

0.83

0.86

0.92

0.94

0.97

1.00

MovieLens 10M

.1 1 10 20
0.93

0.94

0.95

0.96

0.97

0.98

0.99
Netflix

Figure 6.7 – Learning weights: on two different datasets, optimal conver-
gence is obtained for β ∈ [.85, .95], predicted by theory.

The proposed method converge toward a solution that is at least as
good as that of coordinate descent, and slightly better on Movielens
10M and Netflix (140M ratings). Our algorithm brings a substantial
performance improvement on medium and large scale datasets. On
Netflix, convergence is almost reached in 4 minutes (score under 0.1%
deviation from final RMSE), which makes our method 6.8 times faster
than coordinate descent. Moreover, the relative performance of our
algorithm increases with dataset size. Indeed, as datasets grow, less
epochs are needed for our algorithm to reach convergence (Fig. 6.6).
This is a significant advantage over coordinate descent, that requires
a stable number of cycle on coordinates to reach convergence, regard-
less of dataset size.

6.2.3.3 Learning weights

Unlike SGD, and similar to the vanilla online dictionary learning al-
gorithm, our method does not critically suffer from hyper-parameter
tuning. We tried weights wt = 1

tu as described in Section 4.5.5, and
observed that a range of u yields fast convergence. Theoretically,
from (G), u must be in (.75, 1] to ensure convergence of stochastic
majorization minimization algorithms. Although the matrix comple-
tion algorithm adapted from SOMF is not provably convergent, we
obtain optimal accuracy decrease for u ∈ [.85, 0.95], as observable in
Figure 6.7. We report results for β = 0.91 in Figure 6.6 and Table 6.3.

6.3 conclusion of part ii

In the previous three chapters, we introduced SOMF, a matrix fac-
torization algorithm that can handle input data with very large num-
ber of rows and columns. It leverages subsampling within the inner
loop of a streaming algorithm to make iterations faster and accelerate
convergence. We show that SOMF provides a stationary point of the
non-convex matrix factorization problem. To prove this result, we ex-
tend the stochastic majorization-minimization framework to two ma-
jor approximations. We assess the performance of SOMF on real-world
large-scale problems, with different sparsity/positivity requirements
on learned factors. In particular, on fMRI and hyperspectral data de-

6.3 conclusion of part ii 81

composition, we show that the use of subsampling can speed-up de-
composition up to 13 times. SOMF may also be adapted to perform ex-
plicit collaborative filtering, with very good performance. The larger
the dataset, the more SOMF outperforms state-of-the art techniques,
which is very promising for future applications. This call for adapta-
tion of our stochastic subsampling approach to learn more complex
models.

Part iii

D E E P E R M O D E L S F O R M U LT I - S T U D Y
C O G N I T I V E M A P P I N G

7
L E A R N I N G M U LT I - S T U D Y N E U R A L
R E P R E S E N TAT I O N S O F C O G N I T I O N F O R
C O M P R E H E N S I V E I N T E R - S U B J E C T D E C O D I N G

In this chapter, we consider the problem of inter-subject decoding in
fMRI, and specifically address the following question: can we gather
the many publicly available task fMRI studies to learn new cognitive
models that are both more interpretable and more accurate than ex-
isting methods, that have been shown to be fragile due to the small
sample sizes (Button et al., 2013) ?

We build upon the work from Chapter 4–6 to learn functional net-
works from a large repository of resting-state data. We inject these
into supervised models that classify statistical maps from many stud-
ies into the stimuli/tasks used in these studies. More precisely, we
resort to three-layer linear models: the first two layers incorporate
information from resting-state data and perform successive dimen-
sion reductions; the last layer is constituted of one classification head
per study. The dimension reduction of input brain images is jointly

learned with the many classification tasks, so as to allow transfer learn-

ing across tasks.
Our multi-study model is thus deeper that the usual decoding mod-

els, although it remains linear. We show that it performs quantita-
tively better than the usual models used for decoding, and that it
may be used to uncover interesting cognitive networks in the brain.
Interpreting statistical learning models with multiple layers is chal-
lenging: we propose a new approach based on matrix factorization
and ensembling to produce models with interpretable layers from
equivalent non-interpretable models.

This chapter is a substantial extension of the work

Mensch, A., Mairal, J., Bzdok, D., Thirion, B., & Varo-
quaux, G. (2017). Learning neural representations of hu-
man cognition across many fMRI studies. Advances in Neu-

ral Information Processing Systems,

and has been uploaded as a preprint under the title

Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G.
(2018a). Extracting universal representations of cognition
across brain-imaging studies. arXiv:1809.06035 [stat.ML].

It is written with the cognitive neuroscience community as a tar-
get — we slightly tone down on mathematical formalism and give a
stronger cognitive perspective to our approach.

7.1 introduction

Cognitive neuroscience is progressively accumulating records of
neural activity responses to specific tasks or stimuli, and the num-

7.1 introduction 84

ber of publicly available fMRI records is increasing in two major direc-
tions. First, relatively generic task data are being acquired on cohorts
of subjects in the thousands (Sudlow et al., 2015; Van Essen et al.,
2012), along with a large amount of resting-state data. Secondly, the
conclusions obtained on smaller-cohort task studies (with dozens of
subjects) are being made available in standard format and common
repositories (Poldrack et al., 2013). Within this positive context, the
conclusions of Button et al. (2013) brought to the light the low sta-
tistical power of analyzing these small studies with standard meth-
ods. Since those still form the majority of data in neuro-imaging, this
lack of power is a central challenge for cognitive neuroimaging. As
stressed by Poldrack et al. (2017), increasing the number of training
samples in cognitive inference may therefore be the only way to at
last provide strong conclusions on functional localization — and the
community should endeavor to work with much larger cohorts.

Yet, large-scale studies are costly and there is little hope to acquire
many single-subject records for the multitude of precise psychologi-
cal processes that are of interest when studying the brain. Despite the
richness of their data, task-broad fMRI initiatives, also known as deep
phenotyping (Nooner et al., 2012; Pinho et al., 2018), are doomed to
remain limited in number of subjects, and therefore hard to exploit to
produce inter-subject cognitive atlases. This may appear somewhat
of a dead-end, unless we leverage the aforementioned accumulation
of functional data across studies. Combining many large and small-
cohort studies to learn common cognitive models would indeed dras-
tically increase their observed evidence.

A major obstacle against this endeavor lies in the heterogeneity of
the protocols used to produce statistical maps of brain activity. As
stressed by Newell (1973), aggregating knowledge across cognitive
neuroscience experiments is intrinsically difficult due to the diverse
nature of the hypotheses and conclusions of the investigators. Con-
cretely, every task fMRI study aims at isolating brain effects underly-
ing some study-specific psychological processes. The conclusions it
provides are statistical maps that correspond to carefully designed
but study-exclusive stimuli, that seldom have any exact counterpart
in other studies.

These statistical maps will typically be used to learn inter-subject
decoding models, that predict stimuli from statistical maps acquired
on new subjects (Poldrack et al., 2009). As a modern consequence of
Newell’s curse, taking advantage of using different studies to learn
brain map decoders requires to circumvent the undocumented nature
of protocols’ relationships, or in other word the absence of known
connections between the different cognitive labels we wish to predict.

To address this issue, several works (Koyejo and Poldrack, 2013;
Schwartz et al., 2013; T. D. Wager et al., 2013) rely on cognitive
ontologies (e. g., Turner and Laird, 2012) to decompose psychologi-
cal manipulations onto common meaningful cognitive concepts, that
they predict using a single model. Although it proved successful in
providing well defined region atlases, this approach hardly scales up
to the current size of public repositories as it requires a high level

7.2 results 85

of supervision: a human must classify every condition from every
study into a common nomenclature. It is also prone to be biased to-
ward specific understanding of cognition. On the other side of the
supervision spectrum, large-scale meta-analysis initiatives (Yarkoni
et al., 2011) relates key coordinates extracted from statistical maps
to a summarized description of the scientific papers they appear in.
Although quantitative meta-analysis techniques provide useful sum-
maries of the existing literature, they are hindered by label noise in
the experiment descriptions, and the weak information on brain acti-
vation provided by author-selected coordinates (Salimi-Khorshidi et
al., 2009).

In this chapter, we show how to learn multi-study decoding mod-
els from full statistical maps, without preliminary labelling of any
sort. That is, we give up on defining ad-hoc cognitive ontologies,
which is a fundamental problem in psychology (Uttal, 2001), and let
interesting cognitive directions be extracted from data. For this, we
start from the minimal hypothesis that activation maps may be de-
scribed on atomic basis functions that captures the neural building
blocks underlying cognitive processes (Barrett, 2009). Leveraging ad-
vances in multi-task learning (Ando and T. Zhang, 2005; Y. Xue et al.,
2007) with deep models (e.g., Collobert and Weston, 2008; LeCun et
al., 2015), we learn these functions in a fully data-driven way, so that
they are fit for decoding every study of our corpus. We argue that our
starting point hypothesis and approach constitute a sound direction
to overcome the known limitations (Poldrack and Yarkoni, 2016) of
single-study cognitive subtraction models. Our model indeed 1) ex-
tracts interpretable task-optimized spatial networks, that constitute a
valid approximation of basic cognitive directions and 2) significantly
improves decoding performance for a vast majority of studies, as the
information provided by every statistical image helps decoding left-
out subject images across paradigms.

7.2 results

We begin with a concise overview of our methodological approach,
that will be further described in Section 7.4.

7.2.1 Method overview

Our approach of multi-study inter-subject decoding has three ma-
jor aspects, that we summarize in Figure 7.1. First, as made possible
by the increasing availability of public task functional MRI data, we
aggregate (Figure 7.1a) statistical maps from many task studies and
the BOLD time-series from one or several large resting-state studies, to
serve as input to the proposed model. Statistical maps are obtained
by standard analysis, computing z-statistics maps for either base con-
ditions or contrasts of interest when those are publicly specified.

We cast inter-subject decoding as a machine-learning classification
problem, where models predict the contrast/condition class from an

7.2 results 86

4TB resting-state data

HCP900

OpenfMRI

HCP

Camcan

Brainomics

40000 task

fMRI contrast maps

into one model

...

(a) Aggregation
from many

fMRI studies

...

x

Information flow

x
Learned network

combination

1st layer

assignment

Non-negative

matrix factorization

SUCCESSFUL

GO

HOUSE

HORIZONTAL

CHECKERBOARD

Joint training

Study-wise decoding

REWARD

BALLOON

EXPLODE

...
...

...
...

(b) Deep linear model

Interpretable
complexity

reduction (c)

Resting-state

functional loadings

512 resting-state

networks

Task functional

loadings

128 task-optimized

networks

Contrast

maps

200,000

voxels

Contrast

prediction

FACE BODY

HOUSE TOOL

512 components

Figure 7.1 – We perform inter-subject decoding using a shared three-layer
model trained on multiple studies. An initial layer projects the
input images from all studies onto functional networks learned
on resting-state data. Then, a second layer combines the func-
tional networks loadings into common meaningful cognitive di-
rections, that are used to perform decoding for each study in a
third-layer. The second and third layer are trained jointly, fos-
tering transfer learning across studies.

input z-map. The proposed linear classification model features three

layers of transformation (Figure 7.1b). The first layer projects input
z-maps onto functional components (e. g., 512) that are learned from
resting-state data. The second layer performs a further dimension
reduction (e. g., with 128 output features) and outputs a common em-

bedding of all input data; the embedded data from each study are
then classified into their respective contrast/condition classes by a
third study-specific layer. The second layer and the many classifi-
cation heads of the third layer are jointly learned using regularized
stochastic optimization. Overall, this approach reflects our starting
point cognitive hypothesis: cognition may be represented on basic
cognitive functions distributed spatially in the brain. On the other
hand, we expect that, for all studies, projecting on this basis should
improve or at least preserve across-subject predictive accuracy, by
removing confounds while keeping intact the cognitive signal. We
should therefore be able to label input brain maps from a shared uni-
versal low-dimensional brain representation, that we assume to be a
combination (described in the second layer) of resting-state functional
networks (assigned to the first layer). Our approach simultaneously
learns to compute and to decode from this representation, for every
study of our corpus.

As our model suffers from parametrization invariances, we per-
form a post-hoc linear transformation of the second and third layer,
based on an ensembling method, to uncover an interpretable repre-
sentation (Figure 7.1c) of the learned dimension reduction. Together,
the first two layers project input data onto multi-study task-optimized

networks (MSTON), whose loadings offer a general multi-study and

7.2 results 87

multi-subject representation of the cognitive signal contained in sta-
tistical maps.

0% 20% 40% 60% 80%
Decoding accuracy on test set

The Human Connectome Project
Stop-signal w/ spoken & manual resp.

UCLA LA5C
Simon task
Stop-signal

Plain or mirror-reversed text
CamCan audio-visual

Localizer
High-level math

Cross-language repetition priming
Spatio-temporal judgement (retake)

Twin localizer
Word & object processing

Constit. struct. of sent. & music
Emotion regulation

Sentence/music complexity
Spatio-temporal judgement

Arithmetic & saccades
Brainomics localizer
Incidental encoding

False belief
Face recognition

Visual object recognition
Classification learning

Stop-signal & classification
Compression

BART, stop-signal, emotion
Motor task & word/verb generation

Auditory & Visual Oddball
Rhyme judgment

Weather prediction
Mixed-gambles

Balloon Analog Risk-taking
Stop-signal & classification (retake)

Classif. learning & reversal

Task fMRI study

Decoding from
voxels
Decoding from
multi-study
networks
Chance level

-5% 0% 5% 10%15%
Multi-study acc. gain

(a) Using the multi-study model improves performance for 28 / 35 studies

-10.0% -5.0% 0.0% 5.0% 10.0% 15.0%
Accuracy gain compared to baseline median

Standard decoding
from voxels

Decoding from
functional networks
Decoding from
multi-study
task-optimized
networks

(b) Performance details for 20 half-split evaluations

50% 60% 70% 80% 90%100%
Baseline balanced accuracy

-5%

0%

5%

10%

M
ult

i-s
tu

dy
 b

-a
cc

. g
ain

Contrast

(c) Gain vs. baseline score

4 16 32 100 400
Number of train subjects

0%

5%

10%

15%

20%

M
ult

i s
tu

dy
 a

cc
. g

ain Study

(d) Gain vs. study size

Figure 7.2 – Performing joint training improves the performance of inter-
subject decoding for most studies (a). Overall, decoding from
task-optimized networks leads to a median improvement accu-
racy of 5%; improvement is skewed across studies (b). Stud-
ies of typical size strongly benefits (d) from transfer learning,
whereas little information is to be gained for larger or easier to
decode studies (c)

7.2 results 88

7.2.2 Data and performance metrics

We present the results obtained by applying our method on a set
of 35 publicly available task fMRI studies, listed in Table (7.1); a few
are performed on cohorts of hundreds of subjects (e. g., HCP, Camcan,
LA5C), but most feature more common cohorts of 10 to 20 subjects.
These studies all follow different experimental protocols, although
those are known to recruit related aspects of cognition (e. g., motor,
attention, judgement tasks, object recognition). We measure accuracy

on left-out subjects for each study, and compare the scores obtained
by our model to results obtained by simpler baseline decoders, that
classify z-maps separately from each study, and directly from voxels.
To analyse more specifically the impact of our method on the predic-
tion accuracy for each contrast/condition, we also discuss balanced

accuracy, that is computed for each predicted class. Details on data
and metrics are reported in the detailed method section 7.4.

7.2.3 Multi study training inter-subject decoding

Figure 7.2 summarizes our quantitative results. For 28 out of the 35

task fMRI studies that we consider (Figure 7.2a), following our train-
ing procedure and thereby decoding contrast/condition from multi-
study task-optimized networks brings a significant improvement in
test prediction accuracy. It reaches +17% for the most sensitive stud-
ies, with a median of 4.9% across studies and cross-validation splits.

We explain our model performance from the transfer learning it per-
mits across the many study decoding tasks. By minimizing a joint

objective that combines training losses from every study, we learn a
second-layer representation that is efficient for many study-specific
decoding tasks; the second layer parameters therefore incorporate in-
formation from all studies; the joint objective further permits informa-
tion transfer among the many classification heads of the third layer.
Although we have no knowledge on how experiments are effectively
related from a cognitive point of view, our quantitative results show
that some of these relations can be learned during training to improve
decoding performance.

Studies that benefit from using multi-study training have diverse
cognitive focuses. Among the highest accuracy gains, we find cog-
nitive control (stop-signal), classification studies, and localizer-like
protocols. Our corpus contains many of such studies: the number of
samples that brings information on the associated cognitive networks
is substantially increased from single-study to multi-study decoding.
Our model thus learns to capture the activation of these networks
across subjects more efficiently, thereby leading to the observed im-
provement. In contrast, for a few studies, among which HCP and
LA5C, we observe a slight negative transfer effect. This is not surpris-
ing: as HCP holds 900 subjects, it may not benefit from the aggregation
of much smaller studies; LA5C focuses on higher-level cognitive pro-

7.2 results 89

Figure 7.3: Visualization of some of task-optimized networks. Our approach allows to learn networks which
are important for inter-subject decoding across studies. These networks, individually focal and collectively
well spread across the cortex, are readily associated with the cognitive tasks they contribute to predict. We
display a selection of these networks, named with the salient anatomical brain region they recruit, along with
word clouds representation of the stimuli each network pushes to predict.

cesses with limited counterparts in the other studies, which prevents
effective transfer.

Figure 7.2b shows that simply projecting data onto resting-state
functional networks instead of using our three layer model does not
significantly improve decoding, although the net effect varies from
study to study. Appending a further supervised dimension reduction
is thus necessary to improve overall decoding accuracy. As expected
(Figure 7.2c), easy and hard-to-classify contrast classes little benefit
from multi-study training, whereas classes whose balanced accuracy
is around 80% profit from the highest balanced accuracy improve-
ment. Figure 7.2d shows that the benefit of multi-study training is
higher for smaller studies, confirming that out method can be seen as
a regularization from external data. To further outline the benefits of
multi-study training for small datasets, we show how it affects learn-
ing curves in Section 7.4: gain increases as training size is reduced.

7.2.4 Multi-study task-optimized networks

Training the second and third layer of our model using stochastic
gradient descent identifies a subspace of the brain images onto which
projecting helps decoding. Found subspaces prove remarkably stable
across runs (see Section 7.4.6). Performing non-negative matrix factor-
ization over the parameters of the second layer across multiple runs
finds interpretable directions in a “mean” subspace. In voxel space,

7.2 results 90

these directions form multi-study task optimized networks, which
constitutes the support of the learned low-dimensional representa-
tion of input z-maps.

We outline the contours of the extracted MSTON in Figure 7.3a. The
networks cover the entire cortex, an expected design consequence,
fostered by the broad coverage of cognition of the studies we gath-
ered. Task optimized networks should indeed capture information
for discriminating in between cognitive classes with very diverse lo-
calizations. Overall, the activations associated with the 545 contrasts
of our analysis cover the entire cortex, which pushes MSTON to be
well spread over the brain. Brain regions that are systematically in-
volved and studied in task fMRI protocols, e. g., motor cortex, auditory
cortex and primary visual cortex are over-segmented by MSTON, i. e.

appear in several different networks. As capturing information in
these regions is crucial for decoding many contrasts in our corpus,
our model dedicates a large part of its representation capability for
it. Decoding requires to compare distributed activation: as an appar-
ent consequence, MSTON are non-connected networks, as outlined in
Figure 7.3b. For instance, both fusiform gyri appears together in the
yellow network.

Most importantly, Figure 7.3b-c shows that our method singles out
networks with cognitive meaning. Every network is important for
classifying z-maps into a few classes, whose names are represented
in word-clouds (Figure 7.3c). Our method finds cognitive networks at
different levels. At a lower level, it identifies the primary visual cor-
tex, associated with contrasts such as checkerboard stimuli, and both
hand motor cortices, associated with many tasks demanding motor
functions. At a higher level, it identifies the left DLPFC and the IPS

in a single network, which is recruited by decoding tasks related to
calculation and comparison. It successfully delineates the language
network and the right posterior insula, which is detected to be im-
portant in decoding tasks involving music. Several found networks
involve regions of the brains recruited by wide range of tasks, such as
the cerebellum, the anterior insula, and the ACC, a part of the salience
network.

7.2.5 Impact of multi-study training on classification maps

To better understand how the use of multi-study training and lay-
ered architecture improve decoding performance, we compare clas-
sification maps obtained using our model to baseline classification
maps in Figure 7.4a. Those are simple to obtain, as our model even-
tually remains a simple linear classifier from voxels to classes. For
contrasts for which balanced accuracy gain is significant, the classi-
fication maps are less noisy and more focal. They single out deter-
minant regions more clearly, e. g., the fusiform face area (FFA, row 1)
in classification maps for the face-vs-house contrast, or the left motor
cortex in maps (row 2) predicting pumping action in BART tasks. The
language network is typically better delineated by our model (row 3),

7.3 discussion 91

and so is the posterior insula in music related contrasts (row 4). These
improvements are due to two aspects: first, projecting onto a lower
dimension subspace has a denoising effects on z-maps, that is already
at play when projecting onto simple resting-state functional networks.
Next, using multi-study task-optimized networks contribute to find-
ing sharper images. Our method slightly decreases performance for a
small fraction of contrasts: typically, maps associated vertical checker-
board (row 5), an easy-to-decode and very localized condition. Our
model renders them as more distributed, a consequence of multi-
study training that has here a negative effect.

In a dual perspective, we display in Figure 7.4b the representa-
tion of input z-maps that the projection on task-optimized networks
brings. Projected data are more focal, i. e. spatial variations that are
unlikely to be related to cognition are smoothed. It is therefore less
confounded, which allows decoders to generalize better across sub-
jects than when classifying raw input directly. This is once again a
combined effect of the first layer (projection on functional networks)
and of the trained second layer.

In Figure 7.5, we compare correlation between classification maps
obtained with our model and the baseline decoder. The absolute
correlation between classification maps within and across studies is
higher on average. Th is is because the whole classification matrix
is low-rank and influenced by the many studies we consider — the
classification maps of our model are supported by networks relevant
for cognition. As a consequence, it is easier to cluster maps into
meaningful groups using hierarchical clustering based on cosine dis-
tances. For instance, we outline inter-study groups of maps related
to left-motor functions, or calculation tasks. Hierarchical clustering
on baseline maps is less successful: the associated dendrogram is less
structured, and the distortion introduced by clusters is higher (as sug-
gested by the smaller cophenetic coefficient). Clusters are harder to
identify, due to a smaller contrast in the correlation matrix. Multi-
study training thus acts as a regularizer, by forcing maps from each
study to be more correlated to maps from other studies.

7.3 discussion

Our approach shows that using hierarchical models trained end-to-
end can be successful in functional neuroimaging. This is interesting
in several aspects. First, in practice, our approach can be seen as a
universal way to improve the accuracy of decoding in a new study.
Many task fMRI experiments are still performed on cohorts of less
than 30 subjects. In this regime,it is highly likely that decoding per-
formance improves when aggregating existing studies to the new one
in a factored, multi-study model (Figure 7.2a,d). As the repositories
of publicly available data are progressively getting normalized and
accessible, our model provides an easy-to-deploy upgrade over sim-
ple decoders. We have shown that improvements are also qualitative,
as the interpretation of decoding maps is made easier (Figure 7.4).

7.3 discussion 92

Figure 7.4 – Classification maps (a) obtained from multi-study training of
decoding models are smoother and more focal. Relevant brain
regions are often better underlined. In a dual perspective, the
representation of input data (b) on task-optimized networks is
simpler and therefore easier to classify.

Secondly, our approach shows the benefits of uncovering inter-
pretable cognitive networks that capture information relevant for ma-
ny decoding tasks. This provides quantitative evidence of the struc-
turing of the human mind in various basic networks. Capturing all
these networks is beyond the scope of any single fMRI study. Yet

7.3 discussion 93

Figure 7.5: Cosine distances between classification maps, obtained with our multi-study decoder (top) and
with decoders learned separately (bottom), clustered using average-linkage hierarchical clustering. The
classification maps obtained when decoding from task-optimized networks are more easily clustered into
cognitive-meaningful groups using hierarchical clustering — the cophenetic coefficient of the top clustering
is thus higher.

aggregation of many cognitive studies allows to find interesting ap-
proximations, that we call MSTON and study in Figure 7.3.

Our approach was driven by the recent successes of deep non-linear
models in computer vision and medical imaging. Although this may
seem disappointing, we were not able to increase performance by de-
parting from linear models: any introduction of non linearities in our
models leads to a drastic increase of overfitting and does not improve
left-out accuracy. On the other hand, the principle of using a layered
model proves successful: having more fMRI data at our disposal al-
lows to learn “deeper” models, although those should remain linear.
Sticking to linear models has the further advantage of allowing easy
interpretation of decoding models. Techniques issued from the deep
learning communities prove very useful to train models that general-
ize well across subjects: we used dropout regularization, batch nor-
malization and advanced stochastic gradient technique as those are
essential for successful transfer learning and good generalization per-
formance. We departed from the traditional convex models used in
neuro-imaging: for this reason, we had to resort to post-hoc analy-
sis of learned models, as detailed in Section 7.4.6, to uncover MSTON,
inspired by methods for interpreting neural network predictions.

We suggest that widening our model by aggregating more studies
using a systematic pipeline will allow us to find better descriptions

7.4 detailed method 94

of task-optimized networks. These could in turn be used in subse-
quent analysis. For example They may be tuned at the individual
level using recent methods akin to Tavor et al. (2016), or leveraged
to compute biomarkers in place of resting-state functional networks
(used in e. g., Abraham et al., 2017; Greicius, 2008).

7.4 detailed method

We describe in mathematical terms the multi-layer decoder at the
center of our method. We start by formalizing the joint objective loss
and the model training process.

7.4.1 Inter-subject decoding setting

We consider N task functional MRI studies, on which we perform
inter-subject decoding, as formalized in Chapter 2. In each study j,
nj subjects are made to perform several tasks. Acquired BOLD time-
series are registered to a common template using non-linear registra-
tion, after motion and slice-timing corrections. BOLD time-series are
then fed to standard analysis, that fits a linear model relating the de-
sign matrix of each experiment to the activation of every voxel. From
the obtained beta maps, we compute z-statistics maps, either associ-
ated with each of the base conditions (stimulus or task) of the exper-
iments, or to contrasts defined by the study’s authors. In both case,
z-maps are labeled with a number 1 6 k 6 cj that corresponds to k-
th contrast/base condition (called contrast in the following). Overall,
this produced a set of z-maps (xji)i∈[cjnj]

living in R
p, where p is the

number of voxels, associated with a sequence of contrast (ki)i∈[cjnj].
Inter-subject decoding proposes a model fθ : R

p → [1, cj] that pre-
dicts contrast from z-maps, i. e. k̂ji , fθ(x

j
i), where θ is learned from

training data, and the performance of the model is assessed on left-
out subjects.

7.4.2 Baseline voxel-space decoder

Baseline decoders are linear classifier models defined separately
for each study j, that take full brain images as input. For every input
map xi ∈ R

p, we compute the logits li in R
c as

li , Wxi +b,

where W ∈ R
c×p and b ∈ R

c are the parameters of the linear model
to be learned for study j — we drop the exponent j in this paragraph.
Logits yield a classification probability vector using the softmax oper-
ator. At test time, we predict the label corresponding to the maximal
logit, i. e. ŷi = argmax16y6c li,y. The model is trained on the data

7.4 detailed method 95

(xi, yi)i∈[n] by minimizing the regularized multinomial classification
problem

min
W∈R

c×p

b∈R
c

−
1

n

n∑

i=1

(

li,yi
(W,b) + log(

c∑

k=1

exp li,k(W,b))
)

+ λ‖W‖2F.

(7.1)

7.4.3 Baseline dimension reduced decoder

A variant of the voxel-based decoders is obtained by introducing a
first-layer dimension reduction learned from resting-state data. This
amounts to computing

li , VDxi +b,

where V ∈ R
c×k form the classifying weights of the model, and

the matrix D ∈ R
k×p is assigned during training to functional net-

works learned on resting-state data, as detailed in Section 7.4.5. Mul-
tiplying input data by D projects statistical images onto meaning-
ful resting-state components, in an attempt to improve classification
performance and reduce computation cost, akin to the methods pro-
posed in S. M. Smith et al. (2009) and Yeo et al. (2011). The model
is trained solving the convex objective (7.1) separately for each study,
replacing W by V ∈ R

c×k:

min
V∈R

c×k

b∈R
c

−
1

n

n∑

i=1

(

li,yi
(V,b,D)+ log(

c∑

k=1

exp li,k(V,b,D))
)

+λ‖V‖2F.

(7.2)

Our results (Figure 7.2c) show that decoding from functional net-
works is not significantly better than decoding from voxels directly.
For both baselines, the parameter λ is found by half-split cross-valida-
tion 1. Training is performed using a L-BFGS solver. We use non stan-
dardized maps (xi)i as input as we observed that standardization
hinders performance.

7.4.4 Three-layer model description

Our three-layer model adds a second shared linear layer in between
the projection on functional networks and the classification models.
We still have

lji , Wjxji +bj

for every z-map i and study j. However, in this case, we introduce a
coupling in between the various parameters (Wj)j∈[N] of each study,
that should decompose on on common basis LD, where L is esti-
mated from the whole corpus of data. Formally, we assume that

1. over the values (10i)i={−3,−2...,3}

7.4 detailed method 96

there exist matrices L ∈ R
l×k, (Uj)j∈[N], so that l < k < p, and for

all j ∈ [N],

Wj , UjLD, where Uj ∈ R
cj×l. (7.3)

The matrix D corresponds to the first-layer weights pictured in Fig-
ure 7.1, L to the second’s, and (Uj,bj)j to the various classification
heads of the third. In this work, we choose k ≈ 512, l = 128. While
D remains fixed, the second-layer matrix L and the N classification
heads (Uj)j∈[N] are jointly learned during training, a necessary step
toward improving decoding accuracy. The “shared-layer” parameter-
ization (7.3) is a common approach in multi-task learning (Ando and
T. Zhang, 2005; Y. Xue et al., 2007), and should allow transfer learn-

ing between decoding tasks, under certain conditions. In our setting,
both the data distribution from the different studies and the classi-
fication task associated with each study differ — this is a particular
case of inductive transfer learning, described by Pan and Yang (2010).10 10 less studied than

the classical

multi-task setting

where input data are

single-source but

learning tasks are

multiple.

Without refinement nor regularization, we seek a local minimizer
the following non-convex objective function, that combines the classi-
fication objectives (7.1) from all studies:

min
L∈R

l×k

(Uj,bj)j

−

N∑

j=1

(nj)β

nj

nj
∑

i=1

(

l
j
i,yi

(Uj,bj,L) − log(
cj
∑

k=1

exp l
j
i,k(U

j,bj,L))
)

,

(7.4)

where the dependence on D is implicit. The scalar β ∈ [0, 1] is a
parameter that regulates the importance of each study in the joint
objective, that we further discuss later. We solve the problem (7.4)
using stochastic optimization. Namely, at each iteration, we compute
an unbiased estimate of the objective (7.4) and its gradient w.r.t. the
model parameters, to perform a stochastic gradient step. For this,
we randomly choose study j with a probability proportional to (nj)β,
and consider a mini-batch of z-maps (xji)j∈B, that we use to compute
the unbiased objective estimate

−
1

B

n∑

i=1

−
(

l
j
i,ki

log(
c∑

k=1

exp l
j
i,k)
)

, (7.5)

from which we compute gradients w.r.t. L, Uj and bj.
Minimizing (7.4) leads to strong overfitting and low performance

on left-out data, with performance similar to fitting (7.1) without reg-
ularization, separately for each study. Adding ℓ2 regularization to
the second and third layer weights gives little benefit, as we discuss
in Section 7.5.1 On the other hand, introducing dropout (Srivastava
et al., 2014) during training alleviates the overfitting issue and al-
lows transfer learning to occur. Dropout is a stochastic regulariza-
tion method that is designed to prevent the weights from each layer
to co-adapt, and ensure that the information is well spread across
coefficients rows and columns (Neyshabur, 2017). In our case, this
favors transfer learning, as it ensures that no single row of L, or in

7.4 detailed method 97

plain words no task-optimized network, becomes dedicated to a sin-

gle study. We further discuss the different methods that foster transfer
of information between studies in Section 7.5.1.

We use the variational flavor of dropout (Kingma et al., 2015) to
make individual dropout rate for every study adaptive. This slightly
improves performance compared to binary dropout: every decoding
task requires a different level of regularization, depending on the
size of the study and the hardness of the task, and it is beneficial to
estimate it from data. During training, at every iteration, for every
input sample i of a minibatch from study j, we randomly draw two
multiplicative noise matrices

MD = Diag([bD,t]t∈[k]), Mj
L = Diag([bL,t]t∈[l]),

where bD,t ∼ N(1, α) and bL,t ∼ N(1, αj), with α fixed and αj esti-
mated from data. 2 We then compute the noisy logits

lji , UjMj
LLMDDxji +bj,

and use these to compute the loss (7.5), to which we add a regulariza-
tion term that regulates the learning of αj, introduced by Molchanov
et al. (2017). We compute the gradient w.r.t. L, Uj, bj using the local
reparametrization trick (Kingma et al., 2015). We refer to Molchanov
et al. (2017) for more details on variational dropout and Bayesian
grounding of this approach.

Optimization is performed using Adam (Kingma and Ba, 2015), a
flavor of stochastic gradient descent that depends less on the step-
size. We use batch normalization (Ioffe and Szegedy, 2015) between
the second and third layer, as it slightly improves performance — it
reduces potential negative transfer learning — and training speed.

7.4.5 Resting-state data

As mentioned above, we use resting-state data to compute the first-
layer weights D ∈ R

k×p, where k = 512. We consider data from
the HCP900 release, and stack all records to obtain a data matrix X ∈
R

n×p. We then use the method proposed in Chapter 4– 6 to solve the
sparse non-negative matrix factorization problem

A,D , argmin
D∈C,A∈Rk×n

‖X−AD‖2F + λ‖A‖2F (7.6)

where the constraint C =
{
D ∈ R

k×p, ‖dj‖1 6 1,dj > 0
}

enforces
every dictionary component to live in the simplex of R

p, ensuring
sparsity and positivity of the functional networks. The sparsity level
is chosen so that D covers the whole brain with as little overlap as
possible.

2. This Gaussian dropout has a similar behavior to the more commonly used
binary dropout with parameter p = α

α+1 .

7.4 detailed method 98

second-layer initialization. To initialize the weights of the
second layer weights, we learn a smaller dictionary Dl ∈ R

l×p as
in (7.6), where l = 128. We then compute the initial weights Ll so that
Dl ≈ LlD using least-square regression. This way, the two first layers
of the initial layer initially behave as a projection on l = 128 larger
functional networks, which is a reasonable prior for reducing brain
statistical maps. This initialization slightly improves performance, as
we discuss in Section 7.5.3.

grey matter restriction. To help interpreting the obtained mo-
del, we found it helpful to remove from D the fraction (9%) of the
functional networks components located in the white matter and the
cerebrospinal fluid areas, turning k = 512 into k = 465. We discuss
the effect of this restriction in Section 7.5.3.1.

7.4.6 Post-hoc model transformation with ensembling

Given any invertible matrix M ∈ R
l×l, the non-regularized ver-

sion of the objective (7.4) is left invariant when transforming L into
ML and each Uj into UjM−1. This prevents us from interpreting
the coefficients of L at the end of the training procedure, and to re-
trieve relevant networks by reading the weights of the second weight.
The only aspect of L that remains unchanged after a linear parame-
ter transformation is its span. Dropout regularization, that favors the
canonical directions in matrix space (Srivastava et al., 2014), should
break this symmetry, but does not help to uncover meaningful direc-
tions in the span of L in practice.

On the other hand, we found that this span was remarkably stable
across runs on the same data, whether when varying initialization or
simply the order in which data are streamed during stochastic gra-
dient descent. More precisely, we trained our model 100 times with
different seeds, and concatenated the weights (Lr)r of the second-
layer into a big matrix L̄. We performed a SVD on this matrix, and
observed that the first l = 128 components captured 98% of the vari-
ance of L̄ when using the same initialization but different streaming
order, and 96% when also using a different random initialization. De-
spite the many local minima that objective (7.4) admits, the span of L
thus remains close to some reference span that we can extract with a
matrix factorization method.

The above remark suggested the following ensemble method. We
run the learning algorithm r = 100 times, and store the weights (Lr)r
of the second layer for each run, along with the average matrices and
biases

W̄j =
1

r

r∑

N=1

Uj
sLs b̄j =

1

r

r∑

N=1

bj
r, ∀ j ∈ [N]

that combine the second and third-layer weights and biases for each
study j and run N, and average them across runs. We then stack the
second-layer weights (Lr)r into a fat matrix L̃ ∈ R

l r×k on which we

7.5 design discussion 99

perform sparse non-negative matrix factorization. Namely, we com-
pute L̄ ∈ R

l×k, the new weight matrix for the second layer, solving

min
L∈C

min
K∈Rl×l r

1

2
‖L̃−KL‖2F + λ‖K‖22,

where C =
{
L ∈ R

l×k, ‖lj‖1 6 1, lj > 0
}

and λ regulates the sparsity
of L̄. Finally, we compute new weights Ūj for all the classification
heads of the third layer, so that W̄j ≈ ŪjL⋆, from a least-square
point of view, for each study j. The new model is then formed of
parameters D, L̄, (Ūj, b̄j)j∈[N]. In plain words, we obtain sparse non-
negative second-layer weights L⋆, and define from these weights a
new model that is as close as possible to the ensemble of all learned
models

{
D,Ls, (U

j
s,b

j
s)j

}

N∈[r]
.

The columns of L̄ are now interpretable separately, as the non-
negative and sparse constraints have broken the inherent parameter
invariance of the original model. The columns of L̄ hold the coeffi-
cients for combining resting-state networks held in D into l multi-
study task-optimized networks L̄D ∈ R

l×p. We initialize the sparse
NMF algorithm with the weights Ll computed in Section 7.4.5, to in-
ject a small prior regarding final MSTON distribution: before running
NMF, those are set to LlD ≈ Dl, i. e. are close to large resting-state
functional networks.

We observed that directly enforcing negativity/sparsity over L dur-
ing the training of the model led to a strong loss in accuracy. Finding
a consensus model through a post-hoc ensembling transformation
thus proves to be the right solution for obtaining both performance
improvement and interpretability.

7.5 design discussion

In this section, we discuss the various choices when made for de-
signing our model and training procedures. To this end, we perform
diverse quantitative and qualitative comparisons of model variants.

7.5.1 How to induce transfer learning ?

We start by discussing the various way in which we can force infor-
mation sharing across studies in training our multi-layer model.

7.5.1.1 The need for objective coupling

Without modification nor constraint on the second layer output
size l, we cannot expect to observe any transfer learning by solving
the joint objective (7.4). Indeed, in the general case where we allow
l > c ,

∑N
j=1 c

j, we let (Ṽj,bj)j ∈ R
c×k be the unique solutions

of the non-regularized convex problems (7.1) and Ṽ ∈ R
c×k be their

vertical concatenation. We then form the matrices

7.5 design discussion 100

L =

[

Ṽ

0 ∈ R
l−c×k

]

∈ R
l×k and

U1

...

UN

,
[

Ic ∈ R
c×c, 0 ∈ R

l−c×l

]

,

(7.7)

in which L is split into row-blocks (Ṽj)j, dedicated to and learned
on single studies. It follows from elementary considerations that the
matrices (L, (Uj,bj)j) form a global minimizer of (7.4), that is formed
from the solutions of the separated problems (7.2). It is therefore pos-
sible to find solutions of (7.4) for which no transfer occur. Two modi-
fications of the objective (7.4) allows to enforce transfer: dropout reg-
ularization and low-rank constraints, that we present and compare.

7.5.1.2 Dropout as a transfer incentive

First, as presented in the method section (7.4), we can use dropout
in between the second layer weight L and the third layer head weights
Uj. Dropout prevents constructions of block-separated solution of
objective (7.4) similar to the one proposed in (7.7). Indeed, every
reduced sample LDxji fed to the third layer classification head j can
see any of his features corrupted by multiplicative noise ML during
training. This pushes the model to capture information relevant for
all studies in every activation of the second layer. In other word, the
projection performed on any task-optimized network lhD, for h ∈ [l]

should be relevant for decoding every study. This fosters transfer
learning as L carry multi-study aggregated information at the end of
training, unlike in (7.7).

7.5.1.3 Transfer through low-rank constraints/penalty

A second approach to transfer is to force the matrices

V ,

V1

...

VN

,

U1

...

UN

L,

formed of the parameters of the joint objective (7.4) to be low-rank. In
this case, the subspace of R

c×k in which V evolves is strictly smaller
than R

c×k, and we cannot always find a global minimum of the
joint objective (7.4) formed with the solutions Ṽ of the separate objec-
tives (7.2), as we did in the construction (7.7). As a consequence, the
data from studies truly influence the solutions (L, (Uj,bj)j) of (7.4),
and transfer is theoretically possible.

The low-rank property may be enforced in two ways. First, we may
set it as a hard constraint, setting l < c in the joint objective (7.4). This
is in practice what we do when selecting l = 128, as c = 545 in our
experiments.

Alternatively, following Srebro et al. (2004), we may resort to a
convex objective function parametrized by V ∈ R

c×k, that penalizes

7.5 design discussion 101

V rank. We learn Vj ∈ R
cj×k for all study j ∈ [N] solving the joint

objective

min
(Vj,bj)j

−

N∑

j=1

(nj)β

nj

nj
∑

i=1

(

l
j
i,yi

(Vj,bj) − log(

cj
∑

k=1

exp l
j
i,k(V

j,bj))
)

+ λ
∥

∥

∥

[

V1⊤ . . .VN⊤
]∥

∥

∥

⋆
, (7.8)

where ‖V‖⋆ is the nuclear norm of V, defined as
∑min(c,k)

i=1 σi(V),
with (σi(V))i singular values of V. The nuclear norm is a convex
proxy for the rank of matrix V. As a consequence, the rank of the
solution decreases from min(c, k) to 0 as λ increases. The objec-
tive (7.8) is solvable using proximal-methods, e. g., using FISTA (Beck
and Teboulle, 2009). However, these methods become impractical
when c becomes large — it requires to perform a c× c SVD at each
iteration. Fortunately, there exists a non-convex objective (Rennie and
Srebro, 2005), amenable to stochastic gradient descent (R. M. Bell and
Koren, 2007), that includes the solution of (7.8) as a minimizer. It is
obtained setting l = max(x, k) and adding ℓ22 penalties to the objec-
tive (7.4):

min
L∈R

l×k

(Uj,bj)j

−

N∑

j=1

(nj)β

nj

nj
∑

i=1

(

l
j
i,yi

(Uj,bj,L) − log(
cj
∑

k=1

exp l
j
i,k(U

j,bj,L))
)

+
λ

2

(

‖L‖2F +
N∑

j=1

‖Uj‖2F
)

, where Uj ∈ R
cj×l ∀ j ∈ [N].

We solve this objective using Adam, similarly to the main method. It
is possible to continue using dropout in between the first and second
layer while enforcing V to be low-rank — this can then be understood
as a regularization technique through feature noising (S. Wager et al.,
2013).

7.5.1.4 Empirical comparison

Both the dropout and low-rank approaches are competitive a priori
to foster transfer learning. Our final method uses a combination of
both, as it enforces a hard low-rank constraint and uses dropout. This
choice was motivated by the comparison displayed in Figure 7.6. We
compare three regularization variants, measuring the improvement
due to hard low-rank constraints and the difference between dropout
and ℓ2. ℓ2 accuracy gain is an upper-bound of its actual performance
in practice, as we take the highest performing λ on the test sets. The
three estimators uses input dropout (p = 0.25), while dropout be-
tween layer 2 and 3 is initialized to p = 0.75 when used. We ob-
serve that forcing V to be low-rank is beneficial, and that dropout
regularization performs significantly better than low-rank inducing
ℓ2 penalties, which justifies using dropout and hard-rank constraints
for regularization.

7.5 design discussion 102

-10.0% -5.0% 0.0% 5.0% 10.0%
Accuracy gain compared to proposed model median

Standard decoding:
from voxels

Transfer via 2
regularization

Transfer via 2
regularization +
hard rank constr.

Transfer via
Dropout +
hard rank constr.

Variant

Voxel

Main
model

Figure 7.6 – Quantitative comparison of regularization techniques: dropout
with hard-rank constraints outperform ℓ2 regularization with
and without hard-rank constraints.

-10.0% -5.0% 0.0% 5.0% 10.0%
Accuracy gain compared to proposed model median

Standard decoding:
from voxels

2nd layer trained
on N - 1 studies
3rd layer trained
on target study

2nd + 3rd layer
trained on
N studies jointly

Variant

Voxel

Main
model

Figure 7.7 – Quantitative improvement linked to training the model on the
join objective (7.4), versus improvement linked to transfer in the
second-layer only.

7.5.2 Performance without joint training

We have argued that training the joint objective (7.4) improves
decoding performance as the data from every study influences the
learned weights in bot the second and third layer. This can be mea-
sured by comparing the performance of learning task-optimized net-
works on all studies but a target one, and freezing these networks (i. e.

use them for a fixed dimension reduction) to learn the target decoder.
We observe in Figure (7.7) that this approach, that allows transfer
through the second layer only, performs better than the baseline, but
worse than our approach. This shows that using a joint objective also
foster transfer in the classification heads of the third layer.

7.5 design discussion 103

7.5.3 Interpretability incentives

-10.0% -5.0% 0.0% 5.0% 10.0%
Accuracy gain compared to proposed model median

Standard decoding:
from voxels

Random init.
No consensus

Resting-state init.
No consensus

Random init.
Consensus model

Resting-state init.
Consensus model

Variant

Voxel

Main
model

Figure 7.8 – Quantitative improvement linked to ensembling and resting-
state initialization in our model.

Our approach involves model interpretability as a core require-
ment. Three factors contribute to output cognitive meaningful task-
optimized networks. First, the initial first layer, learned on resting-
state data, coarsens the resolution of networks in a way adapted to
typical brain signal. Second, we compute a consensus model, so that
the task-optimized network loadings held in L are non-negative and
interpretable. Third, we initialize the second-layer weights so that
LinitD corresponds to resting-state functional networks. This initial-
ization is used both during the training phase and the consensus
phase.

consensus model . In Figure 7.8, we measure the quantitative ef-
fects of the two later factors on decoder accuracy. Learning a con-
sensus model using sparse NMF is crucial for finding interpretable
direction in the span of L. Without this refinement, the directions we
obtain are similar to the one displayed in Figure 7.9a, and are not
interpretable. The consensus phase also contributes positively to the
model decoding performance (+.5% overall accuracy). We attribute
this improvement to an ensembling effect similar to the benefits of
bagging (Breiman, 1996), as the final model summarizes 100 training
runs on the same data, with different random seeds.

resting-state initialization. Figure 7.8 shows that resting-
state based initialization of the second-layer has no measurable im-
pact on performance, and thus provides more interpretable compo-

7.5 design discussion 104

Figure 7.9 – Without interpretability refinements (a), resting-state based ini-
tialization (b) and grey matter components selection (c), some
task-optimized networks may be hard to interpret/ not relevant
from a cognitive perspective.

nents with no accuracy cost, as the qualitative discussion will show.
Qualitatively, we show examples of three components found with-
out resting-state initialization in Figure 7.9b. Two of those are scat-
tered networks, that capture various connected components whose
co-occurrence is not interpretable: those are likely artifacts due to
random initialization. Using resting-state initialization finds such net-
works much more rarely. It remains interesting to note that most
of the components found without resting-state based prior bear cog-
nitive meaning, similar to the third components displayed in Fig-
ure 7.9b.

7.5.3.1 Effect of selecting grey-matter components

We project data onto a subset of 465 out of 512 functional networks
learned on HCP resting-state data, selecting the networks that inter-

7.5 design discussion 105

-10.0% -5.0% 0.0% 5.0% 10.0%
Accuracy gain compared to proposed model median

Standard decoding:
from voxels

Decoding from
all-brain
func. networks

Grey matter
func. networks

Variant

Voxel

Main
model

Figure 7.10 – Working with functional networks located in the grey matter
only has not significant impact on performance.

sect with an anatomical grey-matter mask. This avoids finding MSTON

that that are distributed or formed with non grey-matter regions.
In Figure 7.9c, we show that without those precautions, our model
finds networks located in the white matter and the neuro-spinal fluid
zones. Quantitatively, as expected, performing classification from
grey-matter components only brings a non-significant performance
loss (Figure 7.10).

7.5.4 Effect of variational dropout and batch normalization

-10.0% -5.0% 0.0% 5.0% 10.0%
Accuracy gain compared to proposed model median

Standard decoding:
from voxels

Fixed Dropout

No batch norm.

Adaptive Dropout
and batch norm.

Variant

Voxel

Main
model

Figure 7.11 – Batch normalization and adaptive variational dropout both
have a beneficial impact on classification accuracy of the final
learned decoder.

We introduced variational dropout and batch normalization in the
training procedure of our algorithm. Figure 7.11 shows that is in-
deed beneficial. Variational dropout allows a gain of +1% compared
to baseline; batch normalization benefit is smaller but positive, and

7.5 design discussion 106

allows faster training — in line with its original purpose (Ioffe and
Szegedy, 2015).

7.5.5 Study weights

4 16 32 100 400
Number of train subjects-5%

0%

5%

10%

15%
M

ult
i s

tu
dy

 a
cc

. g
ain =0.0

=0.6
=1.0

0.0 0.5 1.0
 s.t. study weight size

0.0%

2.5%

5.0%

Ac
cu

ra
cy

 g
ain

 (m
ed

ian
)

Figure 7.12 – Impact of changing the study weight in the joint objective.
Large studies should be given more weights (β→ 1) to prevent
negative transfer learning. Yet using an intermediary β ≈ 0.6
(i. e. giving more weight to samples from small studies) is ben-
eficial for performance on studies with less than 10 subjects.

Our model learns the second and third layer weights by solving

min
L∈R

l×k

(Uj,bj)j

−

N∑

j=1

(nj)β

nj

nj
∑

i=1

(

l
j
i,yi

(Uj,bj,L) − log(
cj
∑

k=1

exp l
j
i,k(U

j,bj,L))
)

,

in which the many studies can be given various weights. At one
extreme, we may consider that all studies of the corpus should be
weighted the same, which amounts to setting β = 0 in (7.4). At
the opposite, we can consider that each brain map from each study
should have the same importance, which amount to set β = 1. As
Figure 7.12b shows, it is beneficial to set an intermediary β, typically
β = 0.6. On the one hand, we do want to give the smallest study
of our corpus a non negligible importance; on the other hand, we
wish large corpus, that provide a greater amount of information, to
remain more weighted than smaller ones. Our amortized reweighting
amounts to give every study j an “effective sample size”

n
j
eff =

N∑

i=1

ni njβ

∑N
i=1 n

iβ
,

that is larger than the true sample size for smaller studies and smaller
for larger studies. We observe on Figure 7.12a that the negative trans-
fer learning endured by large-study decoders such as HCP and LA5C

reduces as these studies are given more weight (β→ 1). On the other
hand, the performance on small datasets slightly reduces for β > 0.6.
It also reduces for low β, hinting at the importance of large studies
for improving small studies decoding.

7.6 data corpus and references 107

We thus have provided justifications for all the technical design
choices made in training our decoding model: regularization, joint
training, training refinements, choice of study weights.

7.6 data corpus and references

In this last section, we detail our experiment pipeline, the numer-
ical parameters needed for reproducing this study, and the sources
from which we obtained our corpus of studies.

7.6.1 Reproduction details

We used nilearn (Abraham et al., 2014) and scikit-learn (Pedregosa
et al., 2011) in our experiment pipelines, the SOMF algorithm (see
Chapter 6) for learning resting state dictionary and PyTorch (Paszke
et al., 2017) for model design and training. A Python package 3 is
available for reproducibility and reuse. It provides the multi-scale
resting-state dictionaries extracted from HCP, as those are costly to
learn.

general cross-validation scheme . For every validation ex-
periment and comparison, we perform 20 half-split of all data. Name-
ly, we consider half of the subjects of every study for training, and
test the decoder on the other half. As two studies (Rizk-Jackson et al.,
n.d.) share subjects, we also ensure that no single subject appears in
both the training and the test sets across studies.

baseline parameter selection. We cross validate the λ param-
eter on a grid {10i, i = [−3, 3]}.

dropout rate . We use a dropout rate of p = 0.25 in between the
first and second layer and initialize study-specific dropout rates with
p = 0.75 in between the second and third-layer classification heads
(i. e. we set α = p

1−p in variational dropout).

resting-state dictionaries . We obtain the 512-components and
128-components resting-state dictionaries by choosing λ on a grid
{10i, i = [−5, 1]}, so that we obtain components that cover the whole
brain with minimal overlapping.

consensus phase . We run the training procedure 100 times with
different random seeds. We set λ = 10−4, so as to obtain 80% spar-
sity.Higher sparsity leads to a slight decrease in performance, lower
sparsity is softer on symmetry breaking, which may reduce inter-
pretability. This parameter has little influence.

3. github.com/arthurmensch/cogspaces

7.6 data corpus and references 108

7.6.2 Task fMRI studies

Table 7.1 recapitulates the various studies used in our corpus and
provide their sources. The names corresponds to the ones used in
Figure 7.2.

Task name Source study

High-level math Amalric and Dehaene (2016)

Localizer Pinel et al. (2007a)

Brainomics localizer Papadopoulos Orfanos et al. (2017)

CamCan audio-visual Shafto et al. (2014)

Constit. struct. of sent. & music Cauvet (2012) and Hara et al. (2009)

Sentence/music complexity Devauchelle et al. (2009)

Balloon Analog Risk-taking Schonberg et al. (2012)

Classification learning Aron et al. (2006)

Rhyme judgment G. Xue and Poldrack (2007)

Mixed-gambles Tom et al. (2007)

Plain or mirror-reversed text Jimura et al. (2014)

Stop-signal w/ spoken & manual resp. G. Xue et al. (2008)

Stop-signal Aron et al. (2007)

BART, stop-signal, emotion Cohen (2009)

Weather prediction Foerde et al. (2006)

Stop-signal & classification Rizk-Jackson et al. (n.d.)

Stop-signal & classification (retake) Rizk-Jackson et al. (n.d.)

Cross-language repetition priming Alvarez et al. (2002)

Classif. learning & reversal Poldrack et al. (2001)

Simon task Kelly and M. Milham (n.d.)

Flanker task (event-related) Kelly et al. (2008)

Visual object recognition Haxby et al. (2001a)

Word & object processing Duncan et al. (2009)

Emotion regulation T. D. Wager et al. (2008)

False belief Moran et al. (2012)

Incidental encoding Uncapher et al. (2011)

Motor task & word/verb generation Gorgolewski et al. (2013)

Auditory & Visual Oddball Collier et al. (2014)

Spatio-temporal judgement Gauthier et al. (2012)

Spatio-temporal judgement (retake) Gauthier et al. (2012)

The Human Connectome Project Barch et al. (2013)

Face recognition Henson et al. (2011)

Arithmetic & saccades Knops et al. (2009)

UCLA LA5C Poldrack et al. (2016)

Twin localizer Pinel and Dehaene (2013)

Compression Vagharchakian et al. (2012)

Table 7.1 – Studies used in our corpus

Part iv

N E W A L G O R I T H M I C L AY E R S F O R D E E P
S T R U C T U R E P R E D I C T I O N

8
D I F F E R E N T I A B L E D Y N A M I C P R O G R A M M I N G
F O R S T R U C T U R E D P R E D I C T I O N A N D
AT T E N T I O N

In this chapter, we depart from fMRI, the main domain of appli-
cation of this thesis, and consider the problem of learning rich rep-
resentations for structured prediction. We present a general approach
for performing end-to-end training of (potentially deep) models that
involves predicting structured entities, i. e. objects that belongs to
combinatorial sets, through the application of dynamic programming
algorithms. The work presented in this chapter is the result of an four
months collaboration with Mathieu Blondel, in NTT Communication
Laboratories, Kyoto, Japan. It was recently presented and published
under the title

Mensch, A., & Blondel, M. (2018). Differentiable dy-
namic programming for structured prediction and atten-
tion. Proceedings of the International Conference on Machine

Learning (ICML)

It possesses some connections with concepts studied in the previ-
ous chapters. First, we show how to introduce sparsity in structured
prediction, and transform single output prediction models into mod-
els that predict a small set of possible structures. Second, we show
how to minimize a range of objective functions that involves com-
puting maximizers, similar to what we did when designing the SOMF

algorithm.
Dynamic programming (DP) constitutes the starting point of this

chapter. It solves a variety of structured combinatorial problems by
iteratively breaking them down into smaller sub-problems. In spite
of their versatility, many DP algorithms are non-differentiable, which
hampers their use as a layer in neural networks trained by backpropa-
gation. To address this issue, we propose to smooth the max operator
in the dynamic programming recursion, using a strongly convex regu-
larizer. This allows to relax both the optimal value and solution of the
original combinatorial problem, and turns a broad class of DP algo-
rithms into differentiable operators. Theoretically, we provide a new
probabilistic perspective on backpropagating through these DP oper-
ators, and relate them to inference in graphical models. We derive
two particular instantiations of our framework, a smoothed Viterbi
algorithm for sequence prediction and a smoothed DTW algorithm
for time-series alignment. We showcase these instantiations on struc-
tured prediction (audio-to-score alignment, NER) and on structured
and sparse attention for translation.

8.1 introduction 111

8.1 introduction

Modern neural networks are composed of multiple layers of nested
functions. Although layers usually consist of of elementary linear
algebraic operations and simple non-linearities, there is a growing
need for layers that output the value or the solution of an optimiza-
tion problem. This can be used to design loss functions that capture
relevant regularities in the input (Cuturi and Blondel, 2017; Lample
et al., 2016) or to create layers that impose prior structure on the out-
put (Amos and Kolter, 2017; Djolonga and Krause, 2017; Y. Kim et al.,
2017; Niculae and Blondel, 2017).

Among these works, several involve a convex optimization prob-
lem (Amos and Kolter, 2017; Djolonga and Krause, 2017; Niculae
and Blondel, 2017); others solve certain combinatorial optimization
problems by dynamic programming (Cuturi and Blondel, 2017; Y.
Kim et al., 2017; Nowak et al., 2018). However, because dynamic
programs (Bellman, 1952) are usually non-differentiable, virtually all
these works resort to the formalism of conditional random fields
(CRFs) (Lafferty et al., 2001), which can be seen as changing the
semiring used by the dynamic program — replacing all values by
their exponentials and all (max,+) operations with (+,×) operations
(Verdu and Poor, 1987). While this modification smoothes the dy-
namic program, it looses the sparsity of solutions, since hard assign-
ments become soft ones. Moreover, a general understanding of how
to relax and differentiate dynamic programs is lacking. We propose
to do so by leveraging smoothing (Moreau, 1965; Nesterov, 2005) and
backpropagation (Linnainmaa, 1970). We make the following contri-
butions.

1. We present a unified framework for turning a broad class of
dynamic programs into differentiable operators. Unlike existing
works, we propose to change the semiring to use (maxΩ,+)

operations, where maxΩ is a max operator smoothed with a
strongly convex regularizer Ω (Section 8.2).

2. We show that the resulting DP operators, that we call DPΩ, are
smoothed relaxations of the original DP algorithm and satisfy
several key properties, chief among them convexity. In addition,
we show that their gradient, ∇DPΩ, is equal to the expected

trajectory of a certain random walk and can be used as a sound
relaxation to the original dynamic program’s solution. Using
negative entropy for Ω recovers existing CRF-based works from
a different perspective — we provide new arguments as to why
this Ω is a good choice. On the other hand, using squared ℓ2
norm for Ω leads to new algorithms whose expected solution is
sparse. We derive a clean and efficient method to backpropagate
gradients, both through DPΩ and ∇DPΩ. This allows us to
define differentiable DP layers that can be incorporated in neural
networks trained end-to-end (Section 8.3).

3. We illustrate how to to derive two particular instantiations of
our framework, a smoothed Viterbi algorithm for sequence pre-

8.2 smoothed max operators 112

DTW�H(θ) = �7.49 DTWk·k2(θ) = 9.61

Figure 8.1 – DTWΩ(θ) is an instantiation of the proposed smoothed dy-
namic programming operator, DPΩ(θ), to the DTW computa-
tional graph. In this picture, θ is the squared Euclidean distance
matrix between the observations of two time-series. The gradi-
ent ∇DTWΩ(θ) is equal to the expected alignment under a cer-
tain random walk characterized in Section 8.3.3 and is a sound
continuous relaxation to the hard DTW alignment between the
two time-series (here depicted with a yellow path). Unlike ne-
gentropy regularization (left), ℓ22 regularization leads to exactly
sparse alignments (right). Our framework allows to backpropa-
gate through both DTWΩ(θ) and ∇DTWΩ(θ), which makes it
possible to learn the distance matrix θ end-to-end.

diction and a smoothed DTW algorithm for supervised time-
series alignment (Section 8.4). The latter is illustrated in Figure
8.1. Finally, we showcase these two instantiations on structured
prediction tasks (Section 8.5) and on structured attention for
neural machine translation (Section 8.6).

Notation

We denote scalars, vectors and matrices using lower-case, bold
lower-case and bold upper-case letters, e.g., y, y and Y . We denote
the elements of Y by yi,j and its rows by yi. We denote the Frobenius
inner product between A and B by 〈A,B〉 ,

∑
i,j ai,jbi,j. We denote

the (D− 1)-probability simplex by △D , {λ ∈ R
D
+ : ‖λ‖1 = 1}. We

write conv(Y) , {
∑

Y∈Y λYY : λ ∈ △|Y|} the convex hull of Y, [N] the
set {1, . . . ,N} and supp(x) , {j ∈ [D] : xj 6= 0} the support of x ∈ R

D.
We denote the Shannon entropy by H(q) ,

∑
i qi logqi.

We have released an optimized and modular PyTorch implementa-
tion 1 for reproduction and reuse.

8.2 smoothed max operators

In this section, we introduce smoothed max operators (Beck and
Teboulle, 2012; Nesterov, 2005; Niculae and Blondel, 2017), that will
serve as a powerful and generic abstraction to define differentiable
dynamic programs in Section 8.3. Let Ω : R

D → R be a strongly

1. https://github.com/arthurmensch/didyprog

8.3 differentiable dynamic programming layers 113

convex function on △D and let x ∈ R
D. We define the max operator

smoothed by Ω as:

maxΩ(x) , max
q∈△D

〈q, x〉−Ω(q). (8.1)

In other words, maxΩ is the convex conjugate of Ω, restricted to the
simplex. From the duality between strong convexity and smoothness,
maxΩ is smooth: differentiable everywhere and with Lipschitz con-
tinuous gradient. Since the argument that achieves the maximum
in (8.1) is unique, from Danskin’s theorem (1966), it is equal to the
gradient:

∇maxΩ(x) = argmax
q∈△D

〈q, x〉−Ω(q).

The gradient is differentiable almost everywhere for any strongly-
convex Ω (everywhere for negentropy). Next, we state properties
that will be useful throughout this chapter.

Lemma 8.1. Properties of maxΩ operators

Let x = (x1, . . . , xD)⊤ ∈ R
D.

1. Boundedness: If Ω is lower-bounded by LΩ,D and upper-bounded by

UΩ,D on the simplex △D, then

max(x) −UΩ,D 6 maxΩ(x) 6 max(x) − LΩ,D.

2. Distributivity of + over maxΩ:

maxΩ(x+ c1) = maxΩ(x) + c ∀c ∈ R.

3. Commutativity: If Ω(Pq) = Ω(q), where P is a permutation matrix,

then maxΩ(Px) = maxΩ(x).

4. Non-decreasingness in each coordinate:

maxΩ(x) 6 maxΩ(y) ∀x 6 y

5. Insensitivity to −∞: xj = −∞⇒ ∇maxΩ(x)j = 0.

Proofs are given in Section B.1.1. In particular, property 3 holds
whenever Ω(q) =

∑D
i=1ω(qi), for some function ω. In this chapter,

we focus on two specific regularizers Ω: the negentropy −H and the
squared ℓ2 norm. For these choices, all properties above are satisfied
and we can derive closed-form expressions for maxΩ, its gradient
and its Hessian — see Section B.2.1. When using negentropy, maxΩ
becomes the log-sum-exp and ∇maxΩ the softmax. The former satis-
fies associativity, which as we shall see, makes it natural to use in dy-
namic programming. With the squared ℓ2 regularization, as observed
by Martins and Astudillo (2016) and Niculae and Blondel (2017), the
gradient ∇maxΩ is sparse. This will prove useful to enforce sparsity
in the models we study.

8.3 differentiable dynamic programming layers

DP is a generic way of solving combinatorial optimization problems
by recursively solving problems on smaller sets. We first introduce
this category of algorithms in a broad setting, then use smoothed max
operators to define differentiable DP layers.

8.3 differentiable dynamic programming layers 114

8.3.1 Dynamic programming on a DAG

Every problem solved by dynamic programming reduces to finding
the highest-scoring path between a start node and an end node, on
a weighted directed acyclic graph (DAG). We therefore introduce our
formalism on this generic problem, and give concrete examples in
Section 8.4.

Formally, let G = (V,E) be a DAG, with nodes V and edges E. We
write N = |V| > 2 the number of nodes. Without loss of generality, we
number the nodes in topological order, from 1 (start) to N (end), and
thus V = [N]. Node 1 is the only node without parents, and node N

the only node without children. Every directed edge (i, j) from a par-
ent node j to a child node i has a weight θi,j ∈ R. We gather the edge
weights in a matrix θ ∈ Θ ⊆ R

N×N, setting θi,j = −∞ if (i, j) /∈ E

and θ1,1 = 1. We consider the set Y of all paths in G from node 1

to node N. Any path Y ∈ Y can be represented as a N×N binary
matrix, with yi,j = 1 if the path goes through the edge (i, j) and
yi,j = 0 otherwise. In the sequel, paths will have a one-to-one corre-
spondence with discrete structures such as sequences or alignments.
Using this representation, 〈Y ,θ〉 corresponds to the cumulated sum
of edge weights, along the path Y . The computation of the highest

score among all paths amounts to solving the combinatorial problem

LP(θ) , max
Y∈Y

〈Y ,θ〉 ∈ R. (8.2)

Although the size of Y is in general exponential in N, LP(θ) can
be computed in one topologically-ordered pass over G using dynamic

programming. We let Pi be the set of parent nodes of node i in graph
G and define recursively

v1(θ) , 0

∀ i ∈ [2, . . . ,N] : vi(θ) , max
j∈Pi

θi,j + vj(θ). (8.3)

This algorithm outputs DP(θ) , vN(θ). We now show that this is
precisely the highest score among all paths.

Proposition 8.1. Optimality of dynamic programming

∀θ ∈Θ : DP(θ) = LP(θ)

The optimality of recursion (8.3) is well-known (Bellman, 1952). We
prove it again with our formalism in Section B.1.2, since it exhibits the
two key properties that the max operator must satisfy to guarantee
optimality: distributivity of + over it and associativity. The cost of
computing DP(θ) is O(|E|), which is exponentially better than O(|Y|).

In many applications, we will often rather be interested in the ar-

gument that achieves the maximum, i.e., one of the highest-scoring
paths

Y⋆(θ) ∈ argmax
Y∈Y

〈Y ,θ〉. (8.4)

This argument can be computed by backtracking, that we now relate
to computing subgradients of LP(θ).

8.3 differentiable dynamic programming layers 115

linear program , lack of differentiality. Unfortunately, the
linear program value LP(θ) is not differentiable everywhere w.r.t. θ.
To see why this is the case, notice that (8.2) can be rewritten as a linear
program over the convex polytope conv(Y):

LP(θ) = max
Y∈conv(Y)

〈Y ,θ〉.

From the generalized Danskin theorem (Bertsekas, 1971),

Y⋆(θ) ∈ ∂LP(θ) = argmax
Y∈conv(Y)

〈Y ,θ〉,

where ∂ denotes the subdifferential of LP(θ), i.e., the set of subgradi-
ents. When Y⋆(θ) is unique, ∂LP(θ) is a singleton and Y⋆ is equal to
the gradient of LP(θ), that we write ∇LP(θ). Unfortunately, Y⋆(θ)

is not always unique, meaning that LP(θ) is not differentiable every-
where. As we will show in Section 8.5.2, this hinders optimization as
we can only train models involving LP(θ) with subgradient methods.
Worse, Y⋆(θ), a function from Θ to Y, is discontinuous and has null
or undefined derivatives. It is thus impossible to use it in a model
trained by gradient descent.

8.3.2 Smoothed max layers

To address the lack of differentiability of dynamic programming,
we introduce the operator maxΩ, presented in Section 8.2, and con-
sider two approaches.

smoothing the linear program . Let us define the Ω-smoothed
maximum of a function f : Y→ R over a finite set Y using the follow-
ing shorthand notation:

maxΩ
Y∈Y

f(Y) , maxΩ((f(Y))Y∈Y).

A natural way to circumvent the lack of differentiability of LP(θ) is
then to replace the global max operator by maxΩ:

LPΩ(θ) , maxΩ
Y∈Y

〈Y ,θ〉 ∈ R. (8.5)

From Section 8.2, LPΩ(θ) is convex and, as long as Ω is strongly
convex, differentiable everywhere. In addition, ∇LPΩ(θ) is Lipschitz
continuous and thus differentiable almost everywhere. Unfortunately,
solving (8.5) for general Ω is likely intractable when Y has an expo-
nential size.

smoothing the dynamic program . As a tractable alternative,
we propose an algorithmic smoothing. Namely, we replace max by
maxΩ locally within the DP recursion. Omitting the dependence on Ω,
this defines a smoothed recursion over the new sequence (vi(θ))

N
i=1:

v1(θ) , 0

∀i ∈ [2, . . . ,N] : vi(θ) , maxΩ
j∈Pi

θi,j + vj(θ). (8.6)

8.3 differentiable dynamic programming layers 116

The new algorithm outputs DPΩ(θ), vN(θ), the smoothed highest score.
Smoothing the max operator locally brings the same benefit as before
— DPΩ(θ) is smooth and ∇DPΩ(θ) is differentiable almost every-
where. However, computing DPΩ(θ) is now always tractable, since it
simply requires to evaluate (vi(θ))

N
i=1 in topological order, as in the

original recursion (8.3). Although LPΩ(θ) and DPΩ(θ) are generally
different (in fact, LPΩ(θ) > DPΩ(θ) for all θ ∈ Θ), we now show
that DPΩ(θ) is a sensible approximation of LP(θ) in several respects.

Proposition 8.2. Properties of DPΩ

1. DPΩ(θ) is convex

2. LP(θ) − DPΩ(θ) is bounded above and below:

(N− 1)LΩ,N > LP(θ) − DPΩ(θ) 6 (N− 1)UΩ,N,

with Lemma 8.1 notations.

3. When Ω is separable, DPΩ(θ) = LPΩ(θ) if and only if Ω = −γH,

where γ > 0. In other word, the only separable regularization

for which smoothing the dynamic program amounts to smoothing the

whole associated linear program is the negentropy.

Proofs are given in Section B.1.3. The first claim can be surprising
due to the recursive definition of DPΩ(θ). The second claim implies
that DPγΩ(θ) converges to LP(θ) when the regularization vanishes:
DPγΩ(θ)→γ→0 LP(θ); LPγΩ(θ) also satisfies this property. The “if”
direction of the third claim follows by showing that max−γH satis-
fies associativity. This recovers known results in the framework of
message passing algorithms for probabilistic graphical models (e.g.,

M. J. Wainwright and Jordan, 2008, Section 4.1.3), with a more alge-
braic point of view. The key role that the distributive and associative
properties play into breaking down large problems into smaller ones
has long been noted (Aji and McEliece, 2000; Verdu and Poor, 1987).
However, the “and only if” part of the claim is new to our knowledge.
Its proof shows that max−γH is the only maxΩ satisfying associativ-
ity, exhibiting a functional equation from information theory (Horibe,
1988). While this provides an argument in favor of entropic regular-
ization, ℓ22 regularization has different benefits in terms of sparsity of
the solutions.

8.3.3 Relaxed argmax layers

It is easy to check that ∇LPΩ(θ) belongs to conv(Y) and can be
interpreted as an expected path under some distribution induced by
∇maxΩ, over all possible Y ∈ Y — see Section B.1.4 for details. This
makes∇LPΩ(θ) interpretable as a continuous relaxation of the highest-
scoring path Y⋆(θ) defined in (8.4). However, like LPΩ(θ), comput-
ing ∇LPΩ(θ) is likely intractable in the general case. Fortunately,
∇DPΩ(θ) is always easily computable by backpropagation and enjoys
similar properties, as we now show.

8.3 differentiable dynamic programming layers 117

computing ∇DPΩ(θ). Computing∇DPΩ(θ) can be broken down
into two steps. First, we compute and record the local gradients along-
side the recursive step (8.6):

∀ i ∈ [N] : qi(θ) , ∇maxΩ(θi + v(θ)) ∈ △N,

where v(θ) , (v1(θ), . . . , vN(θ)). Since we assume that θi,j = −∞

if (i, j) 6∈ E, we have supp(qi(θ)) = Pi. This ensures that, similarly
to vi(θ), qi(θ) exclusively depends on (vj(θ))j∈Pi

. Let Cj be the
children of node j ∈ [N]. A straighforward application of backprop-
agation (cf. Section B.1.5) yields a recursion run in reverse-topological

order, starting from node j = N− 1 down to j = 1:

∀ i ∈ Cj : ei,j ← ēiqi,j then ēj ←
∑

i∈Cj

ei,j,

where ēN ← 1 and ei,j ← 0 for (i, j) /∈ E. The final output is
∇DPΩ(θ) = E. Assuming maxΩ can be computed in linear time, the
total cost is O(|E|), the same as DP(θ). Pseudo-code is summarized in
Section B.1.5.

associated path distribution. The backpropagation formulae
we derived have a probabilistic interpretation. Indeed, Q(θ) ∈ R

N×N

can be interpreted as a transition matrix: it defines a random walk on
the graph G, i.e., a finite Markov chain with states V and transition
probabilities supported by E. The random walk starts from node N

and, when at node i, hops to node j ∈ Pi with probability qi,j. It
always ends at node 1, which is absorbing. The walk follows the path
Y ∈ Y with a probability pθ,Ω(Y), which is simply the product of the
qi,j of visited edges. Thus, Q(θ) defines a path distribution pθ,Ω. Our
next proposition shows that ∇DPΩ(Y) ∈ conv(Y) and is equal to the
expected path Eθ,Ω[Y] under that distribution.

Proposition 8.3. ∇DPΩ(θ) as an expected path

∀θ ∈Θ : ∇DPΩ(θ) = Eθ,Ω[Y] = E ∈ conv(Y).

Proof is provided in Section B.1.5. Moreover, ∇DPΩ(θ) is a prin-
cipled relaxation of the highest-scoring path Y⋆(θ), in the sense that
it converges to a subgradient of LP(θ) as the regularization vanishes:
∇DPγΩ(θ) −−−→

γ→0
Y⋆(θ) ∈ ∂LP(θ). When Ω = −γH, the distributions

underpinning LPΩ(θ) and DPΩ(θ) coincide and reduce to the Gibbs
distribution pθ,Ω(Y) ∝ exp(〈θ,Y〉/γ). The value LPΩ(θ) = DPΩ(θ)

is then equal to the log partition. When Ω = γ‖ · ‖2, some transitions
between nodes have zero probability and hence some paths have zero
probability under the distribution pθ,Ω. Thus, ∇DPΩ(θ) is typically
sparse — this will prove interesting to introspect the various models
we consider (typically, the smaller γ, the sparser ∇DPΩ(θ)).

8.3.4 Multiplication with the Hessian ∇2DPΩ(θ)Z

Using ∇DPΩ(θ) as a layer involves backpropagating through the
gradient∇DPΩ(θ). This requires to apply the Jacobian of∇DPΩ oper-

8.4 examples of computational graphs 118

ator (a linear map from R
N×N to R

N×N), or in other words to apply
the Hessian of DPΩ, to an input sensibility vector Z, computing

∇2DPΩ(θ)Z = ∇〈∇DPΩ(θ),Z〉 ∈ R
N×N,

where derivatives are w.r.t. θ. The above vector may be computed in
two ways, that differ in the order in which derivatives are computed.
Using automatic differentiation frameworks such as PyTorch (Paszke
et al., 2017), we may backpropagate over the computational graph a
first time to compute the gradient ∇DPΩ(θ), while recording opera-
tions. We may then compute 〈∇DPΩ(θ),Z〉, and backpropagate once
again. However, due to the structure of the problem, it proves more
efficient, adapting Pearlmutter’s approach (1994), to directly compute
〈∇DPΩ(θ),Z〉 ∈ R, namely, the directional derivative at θ along Z.
This is done by applying the chain rule in one topologically-ordered
pass over G. Similarly to the gradient computation, we record prod-
ucts with the local Hessians Hi(θ) , ∇2maxΩ(θi + v(θ)) along the
way. We then compute the gradient of the directional derivative using
backpropagation. This yields a recursion for computing ∇2DPΩ(θ)Z

in reverse topological-order over G. The complete derivation and the
pseudo-code are given in Section B.1.7. They allow to implement
DPΩ as as a custom twice-differentiable module in existing software.
For both approaches, the computational cost is O(|E|), the same as for
gradient computation. In our experiments in Section 8.5.2, our cus-
tom Hessian-vector product computation brings a 3×/12× speed-up
during the backward pass on GPU/CPU vs. automatic differentiation.

related works . Smoothing LP formulations was also used for
MAP inference (Meshi et al., 2015) or optimal transport (Blondel et
al., 2018) but these works do not address how to differentiate through
the smoothed formulation. An alternative approach to create struc-
tured prediction layers, fundamentally different both in the forward
and backward passes, is SparseMAP (Niculae et al., 2018).

summary. We have constructed the operator DPΩ(θ), a smooth,
convex and tractable relaxation to the value of LP(θ). We have also
shown that ∇DPΩ(θ) belongs to conv(Y) and is therefore a sound
relaxation to solutions of LP(θ). To conclude this section, we formally
define our proposed two layers.

Definition 8.1. Differentiable dynamic programming layers

Value layer: DPΩ(θ) ∈ R

Gradient layer: ∇DPΩ(θ) ∈ conv(Y)

8.4 examples of computational graphs

We now illustrate two instantiations of our framework for specific
computational graphs.

8.4 examples of computational graphs 119

8.4.1 Sequence prediction

We demonstrate in this section how to instantiate DPΩ to the com-
putational graph of the Viterbi algorithm (Rabiner, n.d.; Viterbi, 1967),
one of the most famous instances of DP algorithm. We call the result-
ing operator VitΩ. We wish to tag a sequence X = (x1, . . . , xT) of
vectors in R

D (e.g., word representations) with the most probable out-
put sequence (e.g., entity tags) y = (y1, . . . , yT) ∈ [S]T . This problem
can be cast as finding the highest-scoring path on a treillis G. While
y can always be represented as a sparse N×N binary matrix, it is
convenient to represent it instead as a T × S× S binary tensor Y , such
that yt,i,j = 1 if y transitions from node j to node i on time t, and 0

otherwise — we set y0 = 1. The potentials can similarly be organized
as a T × S× S real tensor, such that θt,i,j = φt(xt, i, j). Traditionally,
the potential functions φt were human-engineered (Sutton, McCal-
lum, et al., 2012, Section 2.5). In recent works and in our approach,
they are learned end-to-end (Bottou et al., 1997; Collobert et al., 2011;
Lample et al., 2016).

Using the above binary tensor representation, the inner product
〈Y ,θ〉 is equal to

∑T
t=1φt(xt, yt, yt−1), y’s cumulated score. This

is illustrated in Figure 8.2 on the task of part-of-speech tagging. The
bold arrows indicate one possible output sequence y, i.e., one possible
path in G.

start

1,1

1,2

1,3

θ1,3,1

2,1

θ2,1,3

2,2

2,3

3,1

3,2
θ3,2,1

3,3

0

0

0

end

the boat sank

〈Y ,θ〉 = θ1,3,1 + θ2,1,3 + θ3,2,1

n
o
u
n

v
e
r
b

d
e
t

Figure 8.2 – Computational graph of the Viterbi algorithm.

When Ω = −H, we recover linear-chain conditional random fields
(CRF) (Lafferty et al., 2001) and the probability of y (Y in tensor repre-
sentation) given X is

pθ,−H(y|X)∝ exp(〈Y ,θ〉)= exp
(

T∑

t=1

φt(xt, yt, yt−1)
)

. (8.7)

From Prop. 8.3, the gradient ∇Vit−H(θ) = E ∈ R
T×S×S is such that

et,i,j = pθ,−H(yt = i, yt−1 = j|X). The marginal probability of state
i at time t is simply pθ,−H(yt = i|X) =

∑S
j=1 et,i,j. Using a differ-

ent Ω simply changes the distribution over state transitions. When
Ω = ‖ · ‖2, the marginal probabilities are typically sparse. Pseudo-
code for VitΩ(θ), as well as gradient and Hessian-product computa-
tions, is provided in Section B.2.2. The case Ω = ‖ · ‖2 is new to our
knowledge.

8.4 examples of computational graphs 120

When Ω = −H, the marginal probabilities are traditionally com-
puted using the forward-backward algorithm (Baum and Petrie, 1966).
In contrast, we compute ∇Vit−H(θ) using backpropagation while ef-
ficiently maintaining the marginalization. An advantage of our ap-
proach is that all operations are numerically stable. The relation be-
tween forward-backward and backpropagation has been noted before
(e.g., Eisner (2016)). However, the analysis is led using (+,×) opera-
tions, instead of (maxΩ,+) as we do. Our Viterbi instantiation can
be generalized to graphical models with a tree structure, and to ap-
proximate inference in general graphical models, since unrolled loopy
belief propagation (Pearl, 1988) yields a dynamic program. We note
that continuous beam search Goyal et al., 2017 can also be cleanly
rewritten and extended using VitΩ operators.

8.4.2 Time-series alignment

We now demonstrate how to instantiate DPΩ to the computational
graph of DTW (Sakoe and Chiba, 1978), whose goal is to seek the
minimal cost alignment between two time-series. We call the resulting
operator DTWΩ. Formally, let NA and NB be the lengths of two
time-series, A and B. Let ai and bj be the ith and jth observations
of A and B, respectively. Since edge weights only depend on child
nodes, it is convenient to rearrange Y and θ as NA ×NB matrices.
Namely, we represent an alignment Y as a NA ×NB binary matrix,
such that yi,j = 1 if ai is aligned with bj, and 0 otherwise. Likewise,
we represent θ as a NA ×NB matrix. A classical example is θi,j =

d(ai,bj), for some differentiable discrepancy measure d. We write Y

the set of all monotonic alignment matrices, such that the path that
connects the upper-left (1, 1) matrix entry to the lower-right (NA, NB)

one uses only ↓,→,ցmoves. The DAG associated with Y is illustrated
in Figure 8.3 with NA = 4 and NB = 3 below.

start

1,1

θ1,1

2,1

1,2

3,1

1,3

2,2

θ2,2
2,3

θ2,3

3,2

1,4

2,4

3,3

θ3,3

3,4
θ3,4

end

〈Y ,θ〉 = θ1,1 + θ2,2 + θ2,3 + θ3,3 + θ3,4

Figure 8.3 – Computational graph of the DTW algorithm.

Again, the bold arrows indicate one possible path Y ∈ Y from start
to end in the DAG, and correspond to one possible alignment. Using
this representation, the cost of an alignment (cumulated cost along
the path) is conveniently computed by 〈Y ,θ〉. The value DTWΩ(θ)

8.5 differentiable structured prediction 121

can be used to define a loss between alignments or between time-
series. Following Proposition 8.3, ∇DTWΩ(θ) = E ∈ R

NA×NB can
be understood as a soft alignment matrix. This matrix is sparse when
Ω = ‖ · ‖2, as illustrated in Figure 8.1 (right).

Pseudo-code to compute DTWΩ(θ) as well as its gradient and its
Hessian products are provided in Section B.2.3. When Ω = −H, the
operator DTWΩ(θ) defines a conditional random field known as soft-
DTW, and the probability pθ,Ω(Y |A,B) is a Gibbs distribution similar
to (8.7) (Cuturi and Blondel, 2017). The case Ω = ‖ · ‖2 and the
computation of ∇2DTWΩ(θ)Z are new and allow new applications.

8.5 differentiable structured prediction

We now apply the proposed layers, DPΩ(θ) and ∇DPΩ(θ), to
structured prediction (Bakır et al., 2007), whose goal is to predict a
structured output Y ∈ Y associated with a structured input X ∈ X. We
define old and new structured losses, and demonstrate them on two
structured prediction tasks: named entity recognition and time-series
alignment.

8.5.1 Structured loss functions

Throughout this section, we assume that the potentials θ ∈ Θ

have already been computed using a function from X to Θ and let
C : Y× Y → R+ be a cost function between the ground-truth output
Ytrue and the predicted output Y .

convex losses . Because C is typically non-convex, the cost aug-
mented structured hinge loss (Tsochantaridis et al., 2005) is often used
instead for linear models

ℓC(Ytrue;θ) , max
Y∈Y

C(Ytrue,Y) + 〈Y ,θ〉− 〈Ytrue,θ〉. (8.8)

This is a convex upper-bound on C(Ytrue,Y
⋆(θ)), where Y⋆(θ) is de-

fined in (8.4). To make the cost-augmented decoding tractable, it is
usually assumed that C(Ytrue,Y) is linear in Y , i. e., it can be written
as 〈CYtrue ,Y〉 for some matrix CYtrue . We can then rewrite (8.8) using
our notation as

ℓC(Ytrue;θ) = LP(θ+CYtrue) − 〈Ytrue,θ〉.

However, this loss function is non-differentiable. We therefore pro-
pose to relax LP by substituting it with DPΩ:

ℓC,Ω(Ytrue;θ) , DPΩ(θ+CYtrue) − 〈Ytrue,θ〉.

Losses in this class are convex, smooth, tractable for any Ω, and by
Proposition 8.2, property 2, a sensible approximation of ℓC. In addi-
tion, they only require to backpropagate through DPΩ(θ) at training
time. It is easy to check that we recover the structured perceptron loss

8.5 differentiable structured prediction 122

with ℓ0,0 (Collins, 2002), the structured hinge loss with ℓC,0 (Tsochan-
taridis et al., 2005) and the CRF loss with ℓ0,−H (Lafferty et al., 2001).
The last one has been used on top of LSTMs in several recent works
(Lample et al., 2016; Ma and Hovy, 2016). Minimizing ℓ0,−H(θ) is
equivalent to maximizing the likelihood pθ,−H(Ytrue). However, min-
imizing ℓ0,‖·‖2 is not equivalent to maximizing pθ,‖·‖2(Ytrue). In fact,
the former is convex while the latter is not.

non-convex losses . A direct approach that uses the output dis-
tribution pθ,Ω minimizes the risk

∑
y∈Y pθ,−H(Y)C(Ytrue,Y). As dis-

cussed by Stoyanov and Eisner (2012), this can be achieved by back-
propagating through the minimum risk decoder. However, the risk is
usually non-differentiable, piecewise constant (D. A. Smith and Eis-
ner, 2006) and several smoothing heuristics are necessary to make the
method work (Stoyanov and Eisner, 2012).

Another principled approach is to consider a differentiable approx-
imation ∆ : Y × conv(Y) → R+ of the cost C. We can then relax
C(Ytrue,Y

⋆(θ)) by ∆(Ytrue,∇DPΩ(θ)). Unlike minimum risk training,
this approach is differentiable everywhere when Ω = −H. Both ap-
proaches require to backpropagate through ∇DPΩ(θ), which is twice
as costly as backpropagating through DPΩ(θ) (see Section 8.3.4).

8.5.2 Named entity recognition

Let X = (x1, · · · , xT) be an input sentence, where each word xt is
represented by a vector in R

D, computed using a neural recurrent ar-
chitecture trained end-to-end. We wish to tag each word with named
entities, i.e., identify blocks of words that correspond to names, loca-
tions, dates, etc. We use the specialized operator VitΩ described in
Section 8.4.1. We construct the potential tensor θ(X) ∈ R

T×S×S as

∀ t > 1, θ(X)t,i,j , w⊤
i xt + bi + ti,j,

and θ(X)1,i,j , w⊤
i xt + bi, where (wi, bi) ∈ R

D ×R is the linear
classifier associated with tag i and T ∈ R

S×S is a transition matrix.
We learn W, b and T along with the network producing X, and com-
pare two losses:

Surrogate convex loss: ℓ0,Ω(Ytrue;θ),

Relaxed loss: ∆(Ytrue,∇DPΩ(θ)),

where ∆(Ytrue,Y) is the squared ℓ2 distance when Ω = ‖ · ‖22 and the
Kullback-Leibler divergence when Ω = −H, applied row-wise to the
marginalization of Ytrue and Y .

experiments . We measure the performance of the different losses
and regularizations on the four languages of the CoNLL 2003 dataset.
Following Lample et al. (2016), who use the ℓ0,−H loss, we use a
character LSTM and FastText (Joulin et al., 2016) pretrained embed-
dings computed using on Wikipedia. Those are fed to a word bidi-
rectional LSTM to obtain X. Architecture details are provided in Sec-
tion B.3.1. Results are reported in Table 8.1, along with reference

8.5 differentiable structured prediction 123

S-LOC
B-LOC
I-LOC
E-LOC
S-ORG
B-ORG
I-ORG
E-ORG
S-PER
B-PER
I-PER
E-PER
S-MISC
B-MISC
I-MISC
E-MISC

O

Entropy regularization
S-LOC
B-LOC
I-LOC
E-LOC
S-ORG
B-ORG
I-ORG
E-ORG
S-PER
B-PER
I-PER
E-PER
S-MISC
B-MISC
I-MISC
E-MISC

O

Entropy regularization

T
ak
ao

Sa
ko
h ,

fir
st

vi
ce

pr
es
id
en
t at

U
ni
on

B
an
k of

Sw
it
ze
rla
nd in

T
ok
yo
,

sa
id : ”

M
ay
be a

do
lla
r at

10
4.
50ye
n is

no
t

ac
ce
pt
ab
le (to

Sa
ka
ki
ba
ra) ,
bu
t it

m
ay be

ok
ay atth
e

cu
rr
en
t

le
ve
l , atth
e

lo
w
er

en
d of

11
2

ye
n . ”

S-LOC
B-LOC
I-LOC
E-LOC
S-ORG
B-ORG
I-ORG
E-ORG
S-PER
B-PER
I-PER
E-PER
S-MISC
B-MISC
I-MISC
E-MISC

O

L2 regularization

” I
th
in
k

hi
s

vi
ew
s

on
(

U
.S
.

T
re
as
ur
y

Se
cr
et
ar
y

R
ob
er
t)

R
ub
in ’s

co
m
m
en
ts

w
er
e

in
de
ed

w
ha
t

he
hi
m
se
lf

th
in
ks

ab
ou
t

th
e

do
lla
r , ”

sa
id

H
an
k

N
ot
e ,

ch
ie
f

de
al
er at

Su
m
it
om

o
B
an
k .

S-LOC
B-LOC
I-LOC
E-LOC
S-ORG
B-ORG
I-ORG
E-ORG
S-PER
B-PER
I-PER
E-PER
S-MISC
B-MISC
I-MISC
E-MISC

O

L2 regularization

Figure 8.4: Test predictions from the entropy and ℓ22 regularized NER models. Red dots indicate ground truth.
When using ℓ22 regularization, model predictions are sparse (grey borders indicates non-zero cells). They are
thus easier to introspect for ambiguities, as we can list a finite number of possible outputs.

results with different pretrained embeddings. We first note that the
non-regularized structured perceptron loss ℓ0,0, that involves work-
ing with subgradients of DP(θ), perform significantly worse than
regularized losses. With proper parameter selections, all regularized
losses perform within 1% F1-score of each other, although entropy-
regularized losses perform slightly better on 3 out of 4 languages.
However, the ℓ22-regularized losses yield sparse predictions, whereas
entropy regularization always yields dense probability vectors. Qual-
itatively, this allows to identify ambiguous predictions more easily.
This is illustrated in Figure 8.4, in which we display a few tagged
English sequences. The model using ℓ22 regularization correctly iden-
tifies an ambiguous entity (Union Bank of Switzerland) and proposes
two non zero tag sequences: Union Bank of Switzerland as an organiza-
tion, or Union Bank as an organization and Switzerland as a location.

set of top predictions . Probabilities of every tag sequence can
be computed using the matrix Q, as described in Section 8.3.3 — this
remains tractable as long as the matrix Q is sparse enough, so that
the number of non-zero probabilities sequence remains low. Using
the ℓ22 regulariation thus allows to enumerate all non-zero probability
entities and provide the user with a set of top k predictions. Poten-
tially, this would allow to trade precision for recall at test time. In
contrast, the model using negentropy regularization never assign a
zero probability to any tag sequence — it is not tractable to sort these
probabilities and provide the user with a small set of interesting se-
quences.

8.5 differentiable structured prediction 124

Table 8.1 – F1 score comparison on CoNLL03 NER datasets.

Ω Loss English Spanish German Dutch

Negent. Surrogate 90.80 86.68 77.35 87.56

Relaxed 90.47 86.20 77.56 87.37

ℓ22 Surrogate 90.86 85.51 76.01 86.58

Relaxed 89.49 84.07 76.91 85.90

0 Struct. perceptron 86.52 81.48 68.81 80.49

Lample et al., 2016 90.96 85.75 78.76 81.74

Table 8.2 – Mean absolute deviation of alignment using an end-to-end
trained multinomial classifier and a pre-trained one.

Linear model Train Test

End-to-end trained 0.17± 0.01 1.07± 0.61

Pretrained 1.80± 0.14 3.69± 2.85

Random θ 14.64± 2.63 14.64± 0.29

8.5.3 Supervised audio-to-score transcription

We use our framework to perform supervised audio-to-score align-
ment on the Bach 10 dataset (Duan and Pardo, 2011). The dataset con-
sists of 10 music pieces with audio tracks, MIDI transcriptions, and
annotated alignments between them. We transform the audio tracks
into a sequence of audio frames using a feature extractor (see Section
B.3.2) to obtain a sequence A ∈ R

NA×D, while the associated score se-
quence is represented by B ∈ R

NB×K (each row bj is a one-hot vector
corresponding to one key bj). Each pair (A,B) is associated with an
alignment Ytrue ∈ R

NA×NB . As described in Section 8.4.2, we define
a discrepancy matrix θ ∈ R

NA×NB between the elements of the two
sequences. We set the cost between an audio frame and a key to be
the log-likelihood of this key given a multinomial linear classifier:

∀ i ∈ [NA], li , − log(softmax(W⊤ai + c)) ∈ R
K

and ∀ j ∈ [NB], θi,j , li,bj
,

(8.9)

where (W, c) ∈ R
D×K ×R

K are learned classifier parameters. We
predict a soft alignment by Y = ∇DTW−H(θ). Following (Garreau
et al., 2014), we define the relaxed loss

∆(Ytrue,Y) , ‖L(Y − Ytrue)
⊤‖2F,

where L a the lower triangular matrix filled with 1. When Y ∈ Y is
a true alignment matrix, ∆(Ytrue,Y) is the area between the path of

8.6 structured and sparse attention 125

Audio

S
co
re

o
n
se
t

Record 1

Pretrained multinomial End-to-end training Ground truth

Audio

S
co
re

o
n
se
t

Record 2

Audio

S
co
re

o
n
se
t

Record 3

Audio

S
co
re

o
n
se
t

Record 4

Figure 8.5 – Alignment maps between score onsets and audio frames on test
data from the Bach10 dataset. Our end-to-end trained model
qualitatively performs better than the baseline model.

Ytrue and Y , which corresponds to the mean absolute deviation in the
audio literature. When Y ∈ conv(Y), it is a convex relaxation of the
area. At test time, once θ is learned, we use the non-regularized DTW

algorithm to output a hard alignment Y⋆(θ) ∈ Y.

results . We perform a leave-one-out cross-validation of our model
performance, learning the multinomial classifier on 9 pieces and as-
sessing the quality of the alignment on the remaining piece. We re-
port the mean absolute deviation on both train and test sets. A solid
baseline consists in learning the multinomial classifier (W, c) before-
hand, i.e., without end-to-end training. We then use this model to
compute θ as in (8.9) and obtain Y⋆(θ). As shown in Table 8.2, our
end-to-end technique outperforms this baseline by a large margin.

In Figure 8.5, we display the alignment maps we obtained using
our algorithm and using the baseline multinomial model followed
by a hard-DTW alignment computation. These alignment maps cor-
respond to the predicted onsets of keys. Our model (in orange) per-
forms visibly better in predicting onsets.

End-to-end training thus allows to fine-tune the distance matrix θ

for the task at hand.

8.6 structured and sparse attention

We show in this section how to apply our framework to neural
sequence-to-sequence models augmented with an attention mecha-
nism (Bahdanau et al., 2015). An encoder first produces a list of
vectors X = (x1, . . . , xT) representing the input sequence. A decoder
is then used to greedily produce the corresponding output sequence.
To simplify the notation, we focus on one time step of the decoding
procedure. Given the decoder’s current hidden state z and X as in-
puts, the role of the attention mechanism is to produce a distribution
w ∈ △T over X, for the current time step. This distribution is then

8.7 conclusion 126

typically used to produce a context vector c , X⊤w, that is in turn
invoved in the computation of the output sequence’s next element.

structured attention layers . Y. Kim et al. (2017) proposed a
segmentation attention layer, which is capable of taking into account
the transitions between elements of X. They use a linear-chain CRF to
model the probability pθ,−H(y|X) of a sequence y = (y1, . . . , yT),
where each yt is either 1 (“pay attention”) or 0. They then pro-
pose to use normalized marginal probabilities as attention weights:
wt ∝ pθ,−H(yt = 1|X). They show how to backpropagate gradients
through the forward-backward algorithm, which they use to compute
the marginal probabilities.

generalizing structured attention. With Section 8.4.1 no-
tation, any y can be represented as a tensor Y ∈ {0, 1}T×2×2 and the
potentials as a tensor θ ∈ R

T×2×2. Similarly to Y. Kim et al. (2017),
we define

θt,1,j , xtMz+ t1,j and θt,0,j , t0,j,

where xMz is a learned bilinear form and T ∈ R
2×2 is a learned tran-

sition matrix. Following Section 8.4.1, the gradient ∇VitΩ(θ) is equal
to the expected matrix E ∈ R

T×2×2 and the marginals are obtained
by marginalizing that matrix. Hence, we can set wt ∝ pθ,Ω(yt =

1|X) = et,1,0 + et,1,1. Backpropagating through ∇VitΩ(θ) can be car-
ried out using our approach outlined in Section 8.3.4. This approach
is not only more general, but also simpler and more robust to under-
flow problems than backpropagating through the forward-backward
algorithm as done by Y. Kim et al. (2017).

experiments . We demonstrate structured attention layers with an
LSTM encoder and decoder to perform French to English translation
using data from a 1 million sentence subset of the WMT14 fr-en chal-
lenge. We illustrate an example of attention map obtained with ne-
gentropy and ℓ22 regularizations in Figure 8.6. Non-zero elements are
underlined with borders: ℓ22-regularized attention maps are sparse
and more interpretable — this provides a structured alternative to
sparsemax attention (Martins and Astudillo, 2016). Results were all
within 0.8 point of BLEU score on the newstest2014 dataset. For French
to English, standard softmax attention obtained 27.96, while entropy
and ℓ22 regularized structured attention obtained 27.96 and 27.19 —
introducing structure and sparsity therefore provides enhanced inter-
pretability with comparable performance. We provide model details,
full results and further visualizations in Section B.3.3.

8.7 conclusion

In this chapter, we proposed a theoretical framework for turning
a broad class of dynamic programs into convex, differentiable and
tractable operators, using the novel point of view of smoothed max

8.7 conclusion 127

Se
lo
n
m
oi , il y a

de
ux

ni
ve
au
x de

ré
po
ns
e de lapa

rt du

go
uv
er
ne
m
en
t

fra
nç
ais

.

In
my

opinion
,

there
are
two

levels
of

response
from
the

French
Government

.
(eos)

Structured attention — entropy

Se
lo
n
m
oi , il y a

de
ux

ni
ve
au
x de

ré
po
ns
e de lapa

rt du

go
uv
er
ne
m
en
t

fra
nç
ais

.

Structured attention — L2

Figure 8.6 – Attention maps obtained with structured attention. Although
both regularizations led to the same translation (y-axis) in this
example, attention is sparse and more interpretable with ℓ22.

operators. This approach sheds a new light on how to transform dy-
namic programs that predict hard assignments (e.g., the maximum
a-posteriori estimator in a probabilistic graphical model or an align-
ment matrix between two time-series) into continuous and probabilis-
tic ones. We provided a new argument in favor of negentropy regu-
larization by showing that it is the only one to preserve associativity

of the smoothed max operator. We showed that different regulariza-
tions induce different distributions over outputs and that ℓ22 regular-
ization has other benefits, in terms of sparsity of the expected out-
puts. Generally speaking, performing inference in a graphical model
and backpropagating through it reduces to computing the first and
second-order derivatives of a relaxed maximum-likelihood estimation
— leveraging this observation yields elegant and efficient algorithms
that are readily usable in deep learning frameworks, with various
promising applications.

Part v

C O N C L U S I O N

9
C O N C L U S I O N

In this thesis, we developed two new approaches for functional
MRI analysis, that opens new perspectives for taking advantage of the
amount of data that is now available.

First, in Chapter 3–5, we showed that sparse matrix factorization
techniques were amenable to the terabytes of data produced by rest-
ing state fMRI. We learned that introducing random perturbation in
learning algorithms can prove beneficial if these perturbations allows
to perform faster updates while keeping most of the signal. We can
know learn dictionaries of 1000 components from the HCP1200 dataset
in a few days, which opens new perspectives for subsequent analysis:
we are the first to provide so many continuous functional networks
learned on nearly 5000 resting-state fMRI records.

We are now performing an extensive validation of these networks
for various neuro-imaging tasks. In a work to appear, we show that
using functional networks learned on thousands of subjects for re-
ducing the dimensionality of input data is beneficial for diverse data
analysis tasks performed by neuroscientists. We argue in favor gather-
ing fMRI studies in the form of loadings over the functional networks
we provide, at different scale (128, 512, 1024 components), in common
public repositories.

Second, in Chapter 7, we showed the interest of dusing eeper mod-
els in predictive modeling for neuro-imaging. We established that
multi-layer models could identify meaningful cogntitive directions in
which decoding is made easier, and successfully aggregate the infor-
mation from many studies to improve decoding accuracy. We per-
formed an extensive study of the components that made our model
accurate and interpretable, and established the interest of newly in-
troduced regularization and training techniques (Dropout, batch nor-
malization, Adam) in the field of fMRI. The method based on ensem-
bling and NMF that we introduced extract interesting directions in the
output space of an intermediary layer is new and may be of interest
in other applications — the problem of producing interpretable deep
models is indeed quite fundamental in the field. This line of research
brings an interesting perspective in machine learning: first, learning
over-parametrized models with stochastic optimization and regular-
ization allows to take a step forward in performance. Yet, to interpret
the predictions of these models, we have to step down and transform
the learned models in ways that reduces the effect of random training,
so as to recover meaningful parameters.

The matrix factorization methods we developed in Chapter 4–5 ex-
hibits the power of stochastic subsampling, which appears an effi-
cient method to accelerate training of models with high-dimensional
inputs. The SMM framework that we extended into SAMM includes
stochastic gradient descent (SGD as an instance. The performance

9.1 software 130

gain obtained by sketching surrogate computations and freezing a
large fraction of the model parameter (the dictionary D) at each iter-
ation suggests that these approaches should be useful when running
SGD on more general non-convex objectives than the matrix factor-
ization one. Meanwhile, our methods proved useful in several MF

applications (hyperspectral imaging, collaborative filtering), and are
likely to provide large speed-ups for working with high spatial and
temporal resolution modalites, such as electron microscopy imaging,
tomography, etc.

Finally, the smoothing approach proposed in Chapter (8) is simple
yet general, and is likely to be amenable to other algorithms that
have an approximate dynamic programming structure (e. g., Dijsktra
algorithm), and to reinforcement learning problems. The fact that ℓ22
smoothing provides a way to compute sparse marginals in graphical
models is also an interesting properties. It permits to output small
sets of top-scored predictions, which should improve performance
(typically, in text analysis and language translation).

9.1 software

A number of software contributions have been performed within
the context of this thesis. All produced code was written in Python,
using a combination of scikit-learn11, nilearn12, Cython13, PyTorch14 for 11 scikit-learn.org

12 nilearn.github.io

13 cython.org

14 pytorch.org

experiment design, efficient routine writing and model design, re-
spectively. Software references are provided in the main section of
this thesis.

The work presented in Chapter 4–5 is available as a Python pack-
age called modl, that heavily relies on Cython for core algorithmic
implementation:

github.com/arthurmensch/modl

The work presented in Chapter 7 is available as a Python package
called cogspaces. The multi-layer model is defined and trained using
PyTorch, while the pipelines for handling data and evaluating perfor-
mance relies on scikit-learn.

github.com/arthurmensch/cogspaces

The work presented in Chapter 8 is available as a Python pack-
age called didyprog. The new dynamic programming layers are im-
plemented using PyTorch low-level CPU/GPU API. We provide these
layers and wrap them in a higher level library for natural language
processing, and in existing models for neural machine translation.

github.com/arthurmensch/didyprog

During these three years, I had the joy to contribute to scikit-learn

(improvement in the decomposition module, SAGA algorithm, cython

compilation system) and nilearn (dictionary learning module).

B I B L I O G R A P H Y

Abraham, A., Milham, M. P., Di Martino, A., Craddock, R. C., Sama-
ras, D., Thirion, B., & Varoquaux, G. (2017). Deriving repro-
ducible biomarkers from multi-site resting-state data: an Autism-
based example. NeuroImage, 147, 736–745.

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A.,
Kossaifi, J., . . . Varoquaux, G. (2014). Machine learning for neu-
roimaging with Scikit-Learn. Frontiers in Neuroinformatics, 8, 14.

Aji, S. M., & McEliece, R. J. (2000). The generalized distributive law.
IEEE Transactions on Information Theory, 46(2), 325–343.

Alvarez, R. P., Jasdzewski, G., & Poldrack, R. A. (2002). Building mem-
ories in two languages: an fMRI study of episodic encoding in
bilinguals. In Society for Neuroscience Abstracts.

Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for
advanced mathematics in expert mathematicians. Proceedings of

the National Academy of Sciences, 113(18), 4909–4917.
Amos, B., & Kolter, J. Z. (2017). Optnet: differentiable optimization

as a layer in neural networks. In Proceedings of the International

Conference on Machine Learning (pp. 136–145).
Ando, R. K., & Zhang, T. (2005). A framework for learning predictive

structures from multiple tasks and unlabeled data. Journal of

Machine Learning Research, 6, 1817–1853.
Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R.

(2007). Triangulating a cognitive control network using diffusion-
weighted magnetic resonance imaging (MRI) and functional MRI.
The Journal of Neuroscience, 27, 3743–3752.

Aron, A. R., Gluck, M., & Poldrack, R. A. (2006). Long-term test–
retest reliability of functional MRI in a classification learning
task. NeuroImage, 29, 1000–1006.

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Transla-
tion by jointly learning to align and translate. In Proceedings of

the International Conference on Learning Representation.
Bakır, G., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., & Vish-

wanathan, S. V. N. (2007). Predicting structured data. The MIT
Press.

Banderier, C., & Schwer, S. (2005). Why Delannoy numbers? Journal

of Statistical Planning and Inference, 135(1), 40–54.
Barch, D. M., Burgess, G. C., Harms, M. P., Petersen, S. E., Schlaggar,

B. L., Corbetta, M., . . . Consortium, W. U.-M. H. (2013). Func-
tion in the human connectome: task-fMRI and individual differ-
ences in behavior. NeuroImage, 80, 169–189.

Barrett, L. F. (2009). The future of psychology: connecting mind to
brain. Perspectives on Psychological Science, 4(4), 326–339.

Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic
functions of finite state Markov chains. The Annals of Mathemati-

cal Statistics, 37(6), 1554–1563.

bibliography 132

Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM Journal on Imaging

Sciences, 2(1), 183–202.
Beck, A., & Teboulle, M. (2012). Smoothing and first order methods:

a unified framework. SIAM Journal on Optimization, 22(2), 557–
580.

Beck, A., & Tetruashvili, L. (2013). On the convergence of block co-
ordinate descent type methods. SIAM Journal on Optimization,
23(4), 2037–2060.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith,
K. (2011). Cython: the best of both worlds. Computing in Science

& Engineering, 13(2), 31–39.
Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization

approach to blind separation and blind deconvolution. Neural

Computation, 7(6), 1129–1159.
Bell, R. M., & Koren, Y. (2007). Lessons from the Netflix prize chal-

lenge. ACM SIGKDD Explorations Newsletter, 9(2), 75–79.
Bellman, R. (1952). On the theory of dynamic programming. Proceed-

ings of the National Academy of Sciences, 38(8), 716–719.
Bertsekas, D. P. (1971). Control of uncertain systems with a set-membership

description of the uncertainty. (Doctoral dissertation, Massachusetts
Institute of Technology).

Bingham, E., & Mannila, H. (2001). Random projection in dimension-
ality reduction: applications to image and text data. In Proceed-

ings of the SIGKDD Conference (pp. 245–250).
Bishop, C. M. (1995). Pattern Recognition and Machine Learning. Springer.
Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995).

Functional connectivity in the motor cortex of resting human
brain using echo-planar MRI. Magnetic Resonance in Medicine,
34(4), 537–541.

Blondel, M., Seguy, V., & Rolet, A. (2018). Smooth and sparse optimal
transport. In Proceedings of the International Conference on Artifi-

cial Intelligence and Statistics.
Borwein, J. M., & Lewis, A. S. (2010). Convex analysis and nonlinear

optimization: theory and examples. Springer Science & Business
Media.

Bottou, L. (1999). On-line learning and stochastic approximations. On-

line Learning in Neural Networks, 9–42.
Bottou, L. (2010). Large-scale machine learning with stochastic gradi-

ent descent. In Proceedings of COMPSTAT (pp. 177–186).
Bottou, L., Bengio, Y., & LeCun, Y. (1997). Global training of docu-

ment processing systems using graph transformer networks. In
Proceedings of the Conference on Computer Vision and Pattern Recog-

nition (pp. 489–494).
Bottou, L., Curtis, F., & Nocedal, J. (2018). Optimization methods for

large-scale machine learning. SIAM Review, 60(2), 223–311.
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge

university press.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–

140.

bibliography 133

Burer, S., & Monteiro, R. D. C. (2004). Local minima and convergence
in low-rank semidefinite programming. Mathematical Program-

ming, 103(3), 427–444.
Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J.,

Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: why
small sample size undermines the reliability of neuroscience.
Nature Reviews Neuroscience, 14(5), 365–376.

Calhoun, V., Adali, T., Pearlson, G., & Pekar, J. (2001). A method for
making group inferences from functional MRI data using inde-
pendent component analysis. Human Brain Mapping.

Candès, E. J., & Recht, B. (2009). Exact matrix completion via con-
vex optimization. Foundations of Computational Mathematics, 9(6),
717–772.

Candès, E. J., & Tao, T. (2006). Near-optimal signal recovery from
random projections: Universal encoding strategies? IEEE Trans-

actions on Information Theory, 52(12), 5406–5425.
Cappé, O., & Moulines, E. (2009). Online EM algorithm for latent data

models. Journal of the Royal Statistical Society: Series B, 71(3), 593–
613.

Cauchy, L. A. (1847). Méthode générale pour la résolution des sys-
tèmes d’équations simultanées. In Compte Rendu à l’Académie des

Sciences de Paris.
Cauvet, E. (2012). Traitement des structures syntaxiques dans le langage

et dans la musique (Doctoral dissertation, Paris 6).
Chen, Y., Nasrabadi, N. M., & Tran, T. D. (2011). Hyperspectral im-

age classification using dictionary-based sparse representation.
IEEE Transactions on Geoscience and Remote Sensing, 49(10), 3973–
3985.

Cohen, J. R. (2009). The development and generality of self-control (Doc-
toral dissertation, University of the City of Los Angeles).

Collier, A. K., Wolf, D. H., Valdez, J. N., Turetsky, B. I., Elliott, M. A.,
Gur, R. E., & Gur, R. C. (2014). Comparison of auditory and
visual oddball fMRI in schizophrenia. Schizophrenia research, 158,
183–188.

Collins, M. (2002). Discriminative training methods for hidden Markov
models: theory and experiments with perceptron algorithms. In
Proceedings of ACL (pp. 1–8).

Collobert, R., & Weston, J. (2008). A unified architecture for natu-
ral language processing: Deep neural networks with multitask
learning. In Proceeding of the International Conference on Machine

Learning (pp. 160–167).
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., &

Kuksa, P. (2011). Natural language processing (almost) from
scratch. The Journal of Machine Learning Research, 12, 2493–2537.

Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imag-
ing (fMRI) "brain reading": detecting and classifying distributed
patterns of fMRI activity in human visual cortex. NeuroImage,
19(2 Pt 1), 261–270.

bibliography 134

Cuturi, M., & Blondel, M. (2017). Soft-dtw: a differentiable loss func-
tion for time-series. In Proceedings of the International Conference

on Machine Learning (pp. 894–903).
Danskin, J. M. (1966). The theory of max-min, with applications. SIAM

Journal on Applied Mathematics, 14(4), 641–664.
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C.,

Blacker, D., . . . Killiany, R. J. (2006). An automated labeling sys-
tem for subdividing the human cerebral cortex on MRI scans
into gyral based regions of interest. NeuroImage, 31(3), 968–980.

Devauchelle, A. D., Oppenheim, C., Rizzi, L., Dehaene, S., & Pallier, C.
(2009). Sentence syntax and content in the human temporal lobe:
an fMRI adaptation study in auditory and visual modalities.
Journal of Cognitive Neuroscience, 21(5), 1000–1012.

Devlin, J. T., & Poldrack, R. A. (2007). In praise of tedious anatomy.
NeuroImage, 37(4), 1033–1041, discussion 1050–1058.

Djolonga, J., & Krause, A. (2017). Differentiable learning of submod-
ular functions. In Advances in Neural Information Processing Sys-

tems (pp. 1014–1024).
Dohmatob, E., Mensch, A., Varoquaux, G., & Thirion, B. (2016). Learn-

ing brain regions via large-scale online structured sparse dictio-
nary learning. In Advances in Neural Information Processing Sys-

tems.
Doob, J. L. (1990). Stochastic processes. John Wiley & Sons.
Duan, Z., & Pardo, B. (2011). Soundprism: an online system for score-

informed source separation of music audio. IEEE Journal of Se-

lected Topics in Signal Processing, 5(6), 1205–1215.
Duchi, J., Shalev-Shwartz, S., Singer, Y., & Chandra, T. (2008). Effi-

cient projections onto the ℓ1-ball for learning in high dimen-
sions. In Proceedings of the International Conference on Machine

Learning (pp. 272–279).
Duchi, J., & Singer, Y. (2009). Efficient online and batch learning using

forward backward splitting. Journal of Machine Learning Research,
10, 2899–2934.

Duncan, K., Pattamadilok, C., Knierim, I., & Devlin, J. (2009). Con-
sistency and variability in functional localisers. NeuroImage, 46,
1018–1026.

Eckart, C., & Young, G. (1936). The approximation of one matrix by
another of lower rank. Psychometrika, 1(3), 211–218.

Eisner, J. (2016). Inside-outside and forward-backward algorithms are
just backprop (tutorial paper). In Proceedings of the Workshop on

Structured Prediction for NLP (pp. 1–17).
Etzel, J. A., Gazzola, V., & Keysers, C. (2009). An introduction to

anatomical ROI-based fMRI classification analysis. Brain Research,
1282, 114–125.

Evans, A., Collins, D., Mills, S., Brown, E., Kelly, R., & Peters, T. (1993).
3d statistical neuroanatomical models from 305 MRI volumes.
(pp. 1813–1817). IEEE.

Fazel, M., Hindi, H., & Boyd, S. (2001). A rank minimization heuris-
tic with application to minimum order system approximation.
(4734–4739 vol.6). IEEE.

bibliography 135

Yu-Feng, Z., Yong, H., Chao-Zhe, Z., Qing-Jiu, C., Man-Qiu, S., Meng,
L., . . . Yu-Feng, W. (2007). Altered baseline brain activity in
children with ADHD revealed by resting-state functional MRI.
Brain and Development, 29(2), 83–91.

Fisher, R. A. (1938). The statistical utilization of multiple measure-
ments. Annals of Human Genetics, 8(4), 376–386.

Foerde, K., Knowlton, B., & Poldrack, R. A. (2006). Modulation of
competing memory systems by distraction. Proceedings of the Na-

tional Academy of Science, 103, 11778–11783.
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain

activity observed with functional magnetic resonance imaging.
Nature Reviews Neuroscience, 8(9), 700.

Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). Path-
wise coordinate optimization. The Annals of Applied Statistics,
1(2), 302–332.

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D.,
& Frackowiak, R. S. (1994). Statistical parametric maps in func-
tional imaging: a general linear approach. Human brain mapping,
2(4), 189–210.

Garreau, D., Lajugie, R., Arlot, S., & Bach, F. (2014). Metric learning
for temporal sequence alignment. In Advances in Neural Informa-

tion Processing Systems (pp. 1817–1825).
Gauthier, B., Eger, E., Hesselmann, G., Giraud, A.-L., & Kleinschmidt,

A. (2012). Temporal tuning properties along the human ventral
visual stream. The Journal of Neuroscience, 32, 14433–14441.

Gorgolewski, K. J., Storkey, A., Bastin, M. E., Whittle, I. R., Wardlaw,
J. M., & Pernet, C. R. (2013). A test-retest fMRI dataset for motor,
language and spatial attention functions. GigaScience, 2(1), 6.

Goyal, K., Neubig, G., Dyer, C., & Berg-Kirkpatrick, T. (2017). A con-
tinuous relaxation of beam search for end-to-end training of
neural sequence models. arXiv:1708.00111 [cs].

Greicius, M. D. (2008). Resting-state functional connectivity in neu-
ropsychiatric disorders. Current Opinion in Neurology, 21(4), 424–
430.

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Func-
tional connectivity in the resting brain: a network analysis of
the default mode hypothesis. Proceedings of the National Academy

of Sciences, 100(1), 253–258.
Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., & Taylor,

J. E. (2013). Interpretable whole-brain prediction analysis with
GraphNet. NeuroImage, 72, 304–321.

Gselmann, E. (2011). Entropy functions and functional equations. Math-

ematical Communications, (16), 347–357.
Halko, N., Martinsson, P.-G., & Tropp, J. A. (2011). Finding structure

with randomness: probabilistic algorithms for constructing ap-
proximate matrix decompositions. SIAM Review, 53(2), 217–288.

Hara, N., Cauvet, E., Devauchelle, A. D., Dehaene, S., Pallier, C. et
al. (2009). Neural correlates of constituent structure in language
and music. NeuroImage, 47, S143.

bibliography 136

Hastie, T., Mazumder, R., Lee, J. D., & Zadeh, R. (2015). Matrix com-
pletion and low-rank SVD via fast alternating least squares. Jour-

nal of Machine Learning Research, 16, 3367–3402.
Haxby, J. V., Gobbini, I. M., Furey, M. L., Ishai, A., Schouten, J. L.,

& Pietrini, P. (2001a). Distributed and overlapping representa-
tions of faces and objects in ventral temporal cortex. Science,
293(5539), 2425–2430.

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L.,
& Pietrini, P. (2001b). Distributed and overlapping representa-
tions of faces and objects in ventral temporal cortex. Science,
293(5539), 2425–2430.

Haynes, J.-D. (2015). A primer on pattern-based approaches to fMRI:
principles, pitfalls, and perspectives. Neuron, 87(2), 257–270.

Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998).
Support vector machines. IEEE Intelligent Systems and their appli-

cations, 13(4), 18–28.
Henson, R. N., Wakeman, D. G., Litvak, V., & Friston, K. J. (2011).

A parametric empirical bayesian framework for the EEG/MEG
inverse problem: generative models for multi-subject and multi-
modal integration. Frontiers in Human Neuroscience, 5.

Himberg, J., Hyvärinen, A., & Esposito, F. (2004). Validating the inde-
pendent components of neuroimaging time series via clustering
and visualization. NeuroImage, 22, 1214.

Horibe, Y. (1988). Entropy of terminal distributions and the Fibon-
nacci trees. The Fibonacci Quarterly, (26), 135–140.

Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness
constraints. Journal of Machine Learning Research, 5, 1457–1469.

Hyvärinen, A., & Oja, E. (2000). Independent component analysis:
algorithms and applications. Neural Networks, 13(4-5), 411–430.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep
network training by reducing internal covariate shift. In Proceed-

ings of the International Conference on Machine Learning (pp. 448–
456).

Jimura, K., Cazalis, F., Stover, E. R. S., & Poldrack, R. A. (2014). The
neural basis of task switching changes with skill acquisition.
Frontiers in Human Neuroscience, 8.

Johnson, W. B., & Lindenstrauss, J. (1984). Extensions of Lipschitz
mappings into a Hilbert space. Contemporary Mathematics, 26(1),
189–206.

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., & Mikolov,
T. (2016). Fasttext.zip: compressing text classification models.
arXiv preprint arXiv:1612.03651.

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Biochemistry, D. o., Jessell,
M. B. T., Siegelbaum, S., & Hudspeth, A. J. (1981). Principles of

neural science. Elsevier.
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform

face area: a module in human extrastriate cortex specialized for
face perception. Journal of Neuroscience, 17(11), 4302–4311.

Kelly, A., & Milham, M. (N.d.). Simon task. https://openfmri.org/
dataset/ds000101.

bibliography 137

Kelly, A., Uddin, L. Q., Biswal, B. B., Castellanos, F., & Milham, M.
(2008). Competition between functional brain networks medi-
ates behavioral variability. NeuroImage, 39, 527.

Kim, H., & Park, H. (2007). Sparse non-negative matrix factorizations
via alternating non-negativity-constrained least squares for mi-
croarray data analysis. Bioinformatics, 23(12), 1495–1502.

Kim, Y., Denton, C., Hoang, L., & Rush, A. M. (2017). Structured at-
tention networks. In Proceedings of the International Conference on

Learning Representation.
Kingma, D. P., & Ba, J. (2015). Adam: a method for stochastic opti-

mization. In International Conference for Learning Representations.
Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational Dropout

and the local reparameterization trick. In Advances in Neural In-

formation Processing Systems (pp. 2575–2583).
Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S.

(2009). Recruitment of an area involved in eye movements dur-
ing mental arithmetic. Science, 324, 1583–1585.

Koyejo, O., & Poldrack, R. A. (2013). Decoding cognitive processes
from functional MRI. In NIPS Workshop on Machine Learning for

Interpretable Neuroimaging (pp. 5–10).
Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based

functional brain mapping. Proceedings of the National Academy of

Sciences, 103(10), 3863–3868.
Kuhn, H. W. (1956). Variants of the Hungarian method for assignment

problems. Naval Research Logistics, 3(4), 253–258.
Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional ran-

dom fields: probabilistic models for segmenting and labeling
sequence data. In Proceedings of the International Conference on

Machine Learning (pp. 282–289).
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer,

C. (2016). Neural architectures for named entity recognition. In
Proceedings of NAACL (pp. 260–270).

Lauterbur, P. (1973). Image formation by induced local interactions:
examples employing nuclear magnetic resonance. Nature, 242,
190.

Leblond, R., Pedregosa, F., & Lacoste-Julien, S. (2017). ASAGA: asyn-
chronous parallel SAGA. In Proceedings of the International Con-

ference on Artificial Intelligence and Statistics (pp. 46–54).
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,

521(7553), 436–444.
Levy, O., & Goldberg, Y. (2014). Neural word embedding as implicit

matrix factorization. In Advances in Neural Information Processing

Systems (pp. 2177–2185).
Lindquist, M. A., Loh, J. M., Atlas, L. Y., & Wager, T. D. (2009). Mod-

eling the hemodynamic response function in fMRI: efficiency,
bias and mis-modeling. NeuroImage, 45(1), S187–S198.

Linnainmaa, S. (1970). The representation of the cumulative rounding error

of an algorithm as a Taylor expansion of the local rounding errors

(Doctoral dissertation, Univ. Helsinki).

bibliography 138

Loula, J., Varoquaux, G., & Thirion, B. (2017). Decoding fMRI activity
in the time domain improves classification performance. Neu-

roImage.
Lu, Y., Dhillon, P., Foster, D. P., & Ungar, L. (2013). Faster ridge regres-

sion via the subsampled randomized hadamard transform. In
Advances in Neural Information Processing Systems (pp. 369–377).

Luong, T., Pham, H., & Manning, C. D. (2015). Effective approaches
to attention-based neural machine translation. In Proceedings of

EMNLP (pp. 1412–1421).
Ma, X., & Hovy, E. (2016). End-to-end sequence labeling via bidirec-

tional LSTM-CNNs-CRF. In Proceedings of ACL (pp. 1064–1074).
Maggioni, M., Katkovnik, V., Egiazarian, K., & Foi, A. (2013). Non-

local transform-domain filter for volumetric data denoising and
reconstruction. IEEE Transactions on Image Processings, 22(1), 119–
133.

Mairal, J. (2013a). Optimization with first-order surrogate functions.
In Proceedings of the International Conference on Machine Learning

(pp. 783–791).
Mairal, J. (2013b). Stochastic majorization-minimization algorithms

for large-scale optimization. In Advances in Neural Information

Processing Systems (pp. 2283–2291).
Mairal, J., Bach, F., & Ponce, J. (2014). Sparse modeling for image and

vision processing. Foundations and Trends in Computer Graphics

and Vision, 8(2-3), 85–283.
Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning

for matrix factorization and sparse coding. Journal of Machine

Learning Research, 11, 19–60.
Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., & Bach, F. R. (2009).

Supervised Dictionary Learning. In D. Koller, D. Schuurmans,
Y. Bengio, & L. Bottou (Eds.), Advances in Neural Information Pro-

cessing Systems (pp. 1033–1040). Curran Associates, Inc.
Makni, S., Idier, J., Vincent, T., Thirion, B., Dehaene-Lambertz, G., &

Ciuciu, P. (2008). A fully Bayesian approach to the parcel-based
detection-estimation of brain activity in fMRI. NeuroImage, 41(3),
941–969.

Mardani, M., Mateos, G., & Giannakis, G. B. (2015). Subspace Learn-
ing and Imputation for Streaming Big Data Matrices and Ten-
sors. IEEE Transactions on Signal Processing, 63(10), 2663–2677.

Martins, A. F., & Astudillo, R. F. (2016). From softmax to sparse-
max: a sparse model of attention and multi-label classification.
In Proceedings of the International Conference on Machine Learning

(pp. 1614–1623).
McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann,

S. S., Bell, A. J., & Sejnowski, T. J. (1998). Analysis of fMRI data
by blind separation into independent spatial components. Hu-

man Brain Mapping, 6(3), 160–188.
Mensch, A., & Blondel, M. (2018). Differentiable dynamic program-

ming for structured prediction and attention. In Proceedings of

the International Conference on Machine Learning (ICML).

bibliography 139

Mensch, A., Mairal, J., Bzdok, D., Thirion, B., & Varoquaux, G. (2017).
Learning neural representations of human cognition across many
fMRI studies. In Advances in Neural Information Processing Sys-

tems.
Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G. (2016a). Dictio-

nary learning for massive matrix factorization. In Proceedings of

the International Conference on Machine Learning (ICML).
Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G. (2018a). Extract-

ing universal representations of cognition across brain-imaging
studies. arXiv:1809.06035 [stat.ML].

Mensch, A., Mairal, J., Thirion, B., & Varoquaux, G. (2018b). Stochastic
Subsampling for factorizing huge matrices. IEEE Transactions on

Signal Processing, 66(1), 113–128.
Mensch, A., Varoquaux, G., & Thirion, B. (2016b). Compressed online

dictionary learning for fast fMRI decomposition. In Proceedings

of the IEEE International Symposium on Biomedical Imaging (ISBI).
Meshi, O., Mahdavi, M., & Schwing, A. G. (2015). Smooth and strong:

MAP inference with linear convergence. In Adavnces in Neural

Information Processing Systems.
Métivier, M. (1982). Semimartingales: a course on stochastic processes.

Walter de Gruyter.
Michel, V., Gramfort, A., Varoquaux, G., Eger, E., & Thirion, B. (2011).

Total Variation regularization for fMRI-based prediction of be-
havior. IEEE Transactions on Medical Imaging, 30(7), 1328–1340.

Michelot, C. (1986). A finite algorithm for finding the projection of a
point onto the canonical simplex of R

n. Journal of Optimization

Theory and Applications, 50(1), 195–200.
Milham, M. P. P. D., Fair, D. P.-C., Mennes, M. P. D., & Mostofsky,

S. H. M. D. (2012). The ADHD-200 consortium: a model to ad-
vance the translational potential of neuroimaging in clinical neu-
roscience. Frontiers in Systems Neuroscience, 6.

Molchanov, D., Ashukha, A., & Vetrov, D. (2017). Variational Dropout
Sparsifies Deep Neural Networks. In Proceedings of the Interna-

tional Conference on Machine Learning (pp. 2498–2507).
Moran, J. M., Jolly, E., & Mitchell, J. P. (2012). Social-cognitive deficits

in normal aging. The Journal of Neuroscience, 32, 5553–5561.
Moreau, J.-J. (1965). Proximité et dualité dans un espace hilbertien.

Bullet de la Société Mathémathique de France, 93(2), 273–299.
Mourão-Miranda, J., Bokde, A. L. W., Born, C., Hampel, H., & Stet-

ter, M. (2005). Classifying brain states and determining the dis-
criminating activation patterns: support vector machine on func-
tional MRI data. NeuroImage, 28(4), 980–995.

Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012).
Deconvolving BOLD activation in event-related designs for mul-
tivoxel pattern classification analyses. NeuroImage, 59(3), 2636–
2643.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions.
Mathematical Programming, 103(1), 127–152.

bibliography 140

Newell, A. (1973). You can’t play 20 questions with nature and win:
Projective comments on the papers of this symposium. Visual

Information Processing, 1–26.
Neyshabur, B. (2017). Implicit Regularization in Deep Learning (Doctoral

dissertation, Toyota Technological Institute at Chicago).
Ng, B., & Abugharbieh, R. (2011). Generalized sparse regularization

with application to fMRI brain decoding. In Proceedings of the In-

ternational Conference on Information Processing in Medical Imaging

(pp. 612–623).
Niculae, V., & Blondel, M. (2017). A regularized framework for sparse

and structured neural attention. In Adavnces in Neural Informa-

tion Processing Systems (pp. 3340–3350).
Niculae, V., Martins, A. F., Blondel, M., & Cardie, C. (2018). Sparse-

MAP: differentiable sparse structured inference. In Proceedings

of the International Conference on Machine Learning.
Nooner, K. B., Colcombe, S. J., Tobe, R. H., Mennes, M., Benedict,

M. M., Moreno, A. L., . . . Milham, M. P. (2012). The NKI Rock-
land Sample: a Model for Accelerating the Pace of Discovery
Science in Psychiatry. Frontiers in Neuroscience, 6, 152.

Nowak, A., Folqué, D., & Bruna, J. (2018). Divide and conquer net-
works. Proceedings of the International Conference on Learning Rep-

resentation.
Ogawa, S., Lee, T.-M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic

resonance imaging with contrast dependent on blood oxygena-
tion. Proceedings of the National Academy of Sciences, 87(24), 9868–
9872.

Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an over-
complete basis set: A strategy employed by V1? Vision Research,
37(23), 3311–3325.

Ortega, J. M., & Rheinboldt, W. C. (1970). Iterative Solution of Nonlinear

Equations in Several Variables. Academic Press.
Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE

Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.
Papadopoulos Orfanos, D., Michel, V., Schwartz, Y., Pinel, P., Moreno,

A., Le Bihan, D., & Frouin, V. (2017). The Brainomics/Localizer
database. NeuroImage, 144, 309–314.

Paszke, A., Gross, S., Chintala, S., & Chanan, G. (2017). Pytorch: ten-
sors and dynamic neural networks in Python with strong GPU
acceleration.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of

plausible inference. Elsevier.
Pearlmutter, B. A. (1994). Fast exact multiplication by the Hessian.

Neural computation, 6(1), 147–160.
Pedregosa, F. (2015). Feature extraction and supervised learning on fMRI:

from practice to theory (Doctoral dissertation, Université Pierre et
Marie Curie-Paris VI).

Pedregosa, F., Eickenberg, M., Ciuciu, P., Thirion, B., & Gramfort, A.
(2015). Data-driven HRF estimation for encoding and decoding
models. NeuroImage, 104, 209–220.

bibliography 141

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., . . . Duchesnay, É. (2011). Scikit-learn: machine learn-
ing in Python. Journal of Machine Learning Research, 12, 2825–
2830.

Peng, Y., Meng, D., Xu, Z., Gao, C., Yang, Y., & Zhang, B. (2014). De-
composable nonlocal tensor dictionary learning for multispec-
tral image denoising. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (pp. 2949–2956).
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: global

vectors for word representation. In Proceeding of the Conference

on EMNLP (pp. 1532–43).
Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning clas-

sifiers and fMRI: a tutorial overview. NeuroImage, 45(1 Suppl),
S199–S209.

Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E.
(1989). Positron emission tomographic studies of the processing
of singe words. Journal of cognitive neuroscience, 1(2), 153–170.

Pilanci, M., & Wainwright, M. (2015). Iterative hessian sketch: fast and
accurate solution approximation for constrained least squares.
Journal of Machine Learning Research, 17, 1–33.

Pinel, P., & Dehaene, S. (2013). Genetic and environmental contribu-
tions to brain activation during calculation. NeuroImage, 81, 306–
316.

Pinel, P., Thirion, B., Meriaux, S., Jobert, A., Serres, J., Bihan, D. L., . . .
Dehaene, S. (2007a). Fast reproducible identification and large-
scale databasing of individual functional cognitive networks.
BMC neuroscience, 8, 91.

Pinel, P., Thirion, B., Meriaux, S., Jobert, A., Serres, J., Le Bihan, D., . . .
Dehaene, S. (2007b). Fast reproducible identification and large-
scale databasing of individual functional cognitive networks.
BMC Neuroscience, 8, 91.

Pinho, A. L., Amadon, A., Ruest, T., Fabre, M., Dohmatob, E., Denghien,
I., . . . Thirion, B. (2018). Individual Brain Charting, a high res-
olution fMRI dataset for cognitive mapping. Scientific Data, 5,
180105.

Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews,
P. M., Munafò, M. R., . . . Yarkoni, T. (2017). Scanning the hori-
zon: towards transparent and reproducible neuroimaging re-
search. Nature Reviews Neuroscience, 18(2), 115–126.

Poldrack, R. A., Barch, D. M., Mitchell, J., Wager, T. D., Wagner, A. D.,
Devlin, J. T., . . . Milham, M. (2013). Toward open sharing of
task-based fMRI data: the OpenfMRI project. Frontiers in Neu-

roinformatics, 7, 12.
Poldrack, R. A., Clark, J., Pare-Blagoev, E., Shohamy, D., Creso Moy-

ano, J., Myers, C., & Gluck, M. (2001). Interactive memory sys-
tems in the human brain. Nature, 414(6863), 546–550.

Poldrack, R. A., Congdon, E., Triplett, W., Gorgolewski, K. J., Karls-
godt, K., Mumford, J. A., . . . Cannon, T. et al. (2016). A phenome-
wide examination of neural and cognitive function. Scientific

Data, 3, 160110.

bibliography 142

Poldrack, R. A., Halchenko, Y. O., & Hanson, S. J. (2009). Decoding
the large-scale structure of brain function by classifying men-
tal states across individuals. Psychological Science, 20(11), 1364–
1372.

Poldrack, R. A., Nichols, T., & Mumford, J. A. (2011). Handbook of

functional MRI data analysis. Cambridge University Press.
Poldrack, R. A., & Yarkoni, T. (2016). From brain maps to cognitive

ontologies: informatics and the search for mental structure. An-

nual Review of Psychology, 67(1), 587–612.
Rabiner, L. R. (N.d.). A tutorial on hidden Markov models and se-

lected applications in speech recognition. In Proceedings of the

IEEE (Vol. 77, 2, pp. 257–286).
Rahim, M., Thirion, B., & Varoquaux, G. (2017). Population-shrinkage

of covariance to estimate better brain functional connectivity. In
International Conference on Medical Image Computing and Computer-

Assisted Intervention (pp. 460–468).
Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging.

Annual Review of Neuroscience, 29, 449–476.
Raskutti, G., & Mahoney, M. (2015). Statistical and algorithmic per-

spectives on randomized sketching for ordinary least-squares.
In Proceedings of the International Conference on Machine Learning

(pp. 617–625).
Razaviyayn, M., Hong, M., & Luo, Z.-Q. (2013). A unified conver-

gence analysis of block successive minimization methods for
nonsmooth optimization. SIAM Journal on Optimization, 23(2),
1126–1153.

Recht, B., & Ré, C. (2013). Parallel stochastic gradient algorithms for
large-scale matrix completion. Mathematical Programming Com-

putation, 5(2), 201–226.
Rennie, J. D. M., & Srebro, N. (2005). Fast maximum margin matrix

factorization for collaborative prediction. In Proceedings of the

International Conference on Machine Learning (pp. 713–719).
Rizk-Jackson, A., Aron, A. R., & Poldrack, R. (N.d.). Classification

learning and stop-signal (one year test-retest). https://openfmri.
org/dataset/ds000017.

Rokhlin, V., Szlam, A., & Tygert, M. (2009). A randomized algorithm
for principal component analysis. SIAM Journal on Matrix Anal-

ysis and Applications, 31(3), 1100–1124.
Roy, A. K., Shehzad, Z., Margulies, D. S., Kelly, A. C., Uddin, L. Q.,

Gotimer, K., . . . Milham, M. P. (2009). Functional connectivity
of the human amygdala using resting state fMRI. NeuroImage,
45(2), 614–626.

Sabuncu, M. R., Singer, B. D., Conroy, B., Bryan, R. E., Ramadge, P. J.,
& Haxby, J. V. (2009). Function-based intersubject alignment of
human cortical anatomy. Cerebral Cortex, 20(1), 130–140.

Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm op-
timization for spoken word recognition. IEEE Transactions on

Acoustics, Speech, and Signal Processing, 26, 43–49.
Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., &

Nichols, T. E. (2009). Meta-analysis of neuroimaging data: a

bibliography 143

comparison of image-based and coordinate-based pooling of
studies. NeuroImage, 45(3), 810–823.

Sarlos, T. (2006). Improved approximation algorithms for large matri-
ces via random projections. In Proceedings of the IEEE Symposium

on Foundations of Computer Science (pp. 143–152).
Saxe, R., Brett, M., & Kanwisher, N. (2006). Divide and conquer: a

defense of functional localizers. NeuroImage, 30(4), 1088–1096,
discussion 1097–1099.

Schonberg, T., Fox, C., Mumford, J. A., Congdon, C., Trepel, C., & Pol-
drack, R. A. (2012). Decreasing ventromedial prefrontal cortex
activity during sequential risk-taking: an fMRI investigation of
the balloon analog risk task. Frontiers in Neuroscience, 6, 80.

Schwartz, Y., Thirion, B., & Varoquaux, G. (2013). Mapping paradigm
ontologies to and from the brain. In Advances in Neural Informa-

tion Processing Systems (pp. 1673–1681).
Shafto, M. A., Tyler, L. K., Dixon, M., Taylor, J. R., Rowe, J. B., Cusack,

R., . . . Matthews, F. E. (2014). The Cambridge Centre for Ageing
and Neuroscience (Cam-CAN) study protocol: a cross-sectional,
lifespan, multidisciplinary examination of healthy cognitive age-
ing. BMC Neurology, 14, 204.

Smith, D. A., & Eisner, J. (2006). Minimum risk annealing for training
log-linear models. In Proceedings of COLING/ACL (pp. 787–794).

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay,
C. E., . . . Laird, A. R. (2009). Correspondence of the brain’s func-
tional architecture during activation and rest. Proceedings of the

National Academy of Sciences, 106(31), 13040–13045.
Smith, S. M., Hyvärinen, A., Varoquaux, G., Miller, K. L., & Beckmann,

C. F. (2014). Group-pca for very large fMRI datasets. NeuroImage,
101, 738.

Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens,
T. E., Glasser, M. F., . . . Miller, K. L. (2015). A positive-negative
mode of population covariation links brain connectivity, demo-
graphics and behavior. Nature Neuroscience, 18(11), 1565.

Soltani-Farani, A., Rabiee, H. R., & Hosseini, S. A. (2015). Spatial-
aware dictionary learning for hyperspectral image classification.
IEEE Transactions on Geoscience and Remote Sensing, 53(1), 527–
541.

Srebro, N., Rennie, J., & Jaakkola, T. S. (2004). Maximum-margin ma-
trix factorization. In Advances in Neural Information Processing

Systems (pp. 1329–1336).
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhut-

dinov, R. (2014). Dropout: a simple way to prevent neural net-
works from overfitting. Journal of Machine Learning Research, 15(1),
1929–1958.

Stoyanov, V., & Eisner, J. (2012). Minimum-risk training of approxi-
mate CRF-based NLP systems. In Proceedings of NAACL (pp. 120–
130).

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., . . .
Landray, M. (2015). UK BioBank: an open access resource for

bibliography 144

identifying the causes of a wide range of complex diseases of
middle and old age. PLoS Medicine, 12(3), 1–10.

Sulanke, R. A. (2003). Objects counted by the central Delannoy num-
bers. Journal of Integer Sequences, 6(1), 3.

Sutton, C., McCallum, A. et al. (2012). An introduction to conditional
random fields. Foundations and Trends on Machine Learning, 4(4),
267–373.

Szabó, Z., Póczos, B., & Lorincz, A. (2011). Online group-structured
dictionary learning. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (pp. 2865–2872). IEEE.
Takács, G., Pilászy, I., Németh, B., & Tikk, D. (2009). Scalable collabo-

rative filtering approaches for large recommender systems. Jour-

nal of Machine Learning Research, 10, 623–656.
Tavor, I., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi,

S. (2016). Task-free MRI predicts individual differences in brain
activity during task performance. Science, 352(6282), 216–220.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological),
58(1), 267–288.

Tom, S. M., Fox, C. R., Trepel, C., & Poldrack, R. A. (2007). The neu-
ral basis of loss aversion in decision-making under risk. Science,
315(5811), 515–518.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large
margin methods for structured and interdependent output vari-
ables. Journal of Machine Learning Research, 6, 1453–1484.

Turner, J. A., & Laird, A. R. (2012). The cognitive paradigm ontology:
design and application. Neuroinformatics, 10(1), 57–66.

Uncapher, M. R., Hutchinson, J. B., & Wagner, A. D. (2011). Dis-
sociable effects of top-down and bottom-up attention during
episodic encoding. The Journal of Neuroscience: The Official Jour-

nal of the Society for Neuroscience, 31(35), 12613–12628.
Uttal, W. R. (2001). The new phrenology: the limits of localizing cognitive

processes in the brain. The MIT press.
Vagharchakian, L., Dehaene-Lambertz, G., Pallier, C., & Dehaene, S.

(2012). A temporal bottleneck in the language comprehension
network. The Journal of Neuroscience, 32, 9089–9102.

Van der Vaart, A. W. (2000). Asymptotic statistics. Cambridge Univer-
sity Press.

Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J.,
Bucholz, R., . . . Curtiss, S. W. (2012). The Human Connectome
Project: a data acquisition perspective. NeuroImage, 62(4), 2222–
2231.

Vane, G. (1987). First results from the airborne visible/infrared imag-
ing spectrometer (AVIRIS). In Annual Technical Symposium of the

International Society of Optics and Photonic (pp. 166–175).
Varoquaux, G., Gramfort, A., Pedregosa, F., Michel, V., & Thirion, B.

(2011). Multi-subject dictionary learning to segment an atlas of
brain spontaneous activity. Proceedings of the International Confer-

ence on Information Processing in Medical Imaging, 22, 562.

bibliography 145

Verdu, S., & Poor, H. V. (1987). Abstract dynamic programming mod-
els under commutativity conditions. SIAM Journal on Control and

Optimization, 25(4), 990–1006.
Viterbi, A. (1967). Error bounds for convolutional codes and an asymp-

totically optimum decoding algorithm. IEEE Transactions on In-

formation Theory, 13(2), 260–269.
Wager, S., Wang, S., & Liang, P. S. (2013). Dropout training as adap-

tive regularization. In Advances in Neural Information Processing

Systems (pp. 351–359).
Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C.-W., &

Kross, E. (2013). An fMRI-based neurologic signature of physi-
cal pain. New England Journal of Medicine, 368(15), 1388–1397.

Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A., &
Ochsner, K. N. (2008). Prefrontal-subcortical pathways mediat-
ing successful emotion regulation. Neuron, 59, 1037–1050.

Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponen-
tial families, and variational inference. Foundations and Trends on

Machine Learning, 1(1–2), 1–305.
Weng, S.-J., Wiggins, J. L., Peltier, S. J., Carrasco, M., Risi, S., Lord,

C., & Monk, C. S. (2010). Alterations of resting state functional
connectivity in the default network in adolescents with autism
spectrum disorders. Brain Research, 1313, 202–214.

Wright, S. J. (2015). Coordinate descent algorithms. Mathematical Pro-

gramming, 151(1), 3–34.
Wu, T., Wang, L., Chen, Y., Zhao, C., Li, K., & Chan, P. (2009). Changes

of functional connectivity of the motor network in the resting
state in Parkinson’s disease. Neuroscience Letters, 460(1), 6–10.

Xue, G., Aron, A. R., & Poldrack, R. A. (2008). Common neural sub-
strates for inhibition of spoken and manual responses. Cerebral

Cortex, 18, 1923–1932.
Xue, G., & Poldrack, R. A. (2007). The neural substrates of visual

perceptual learning of words: implications for the visual word
form area hypothesis. Journal of Cognitive Neuroscience, 19, 1643–
1655.

Xue, Y., Liao, X., Carin, L., & Krishnapuram, B. (2007). Multi-task
learning for classification with dirichlet process priors. Journal

of Machine Learning Research, 8(Jan), 35–63.
Yamashita, O., Sato, M., Yoshioka, T., Tong, F., & Kamitani, Y. (2008).

Sparse estimation automatically selects voxels relevant for the
decoding of fMRI activity patterns. NeuroImage, 42(4), 1414–1429.

Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager,
T. D. (2011). Large-scale automated synthesis of human func-
tional neuroimaging data. Nature Methods, 8(8), 665–670.

Yeo, T. B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari,
D., Hollinshead, M., . . . Buckner, R. L. (2011). The organization
of the human cerebral cortex estimated by intrinsic functional
connectivity. Journal of Neurophysiology, 106(3), 1125–1165.

Yu, H.-F., Hsieh, C.-J., & Dhillon, I. (2012). Scalable coordinate descent
approaches to parallel matrix factorization for recommender

bibliography 146

systems. In Proceedings of the International Conference on Data Min-

ing (pp. 765–774).
Yuan, M., & Lin, Y. (2006). Model selection and estimation in regres-

sion with grouped variables. Journal of the Royal Statistical Soci-

ety: Series B (Statistical Methodology), 68(1), 49–67.
Zhang, Y., Roughan, M., Willinger, W., & Qiu, L. (2009). Spatio tempo-

ral compressive sensing and internet traffic matrices. IEEE/ACM

Transactions on Networking, 20(3), 662–676.
Zou, H., & Hastie, T. (2005). Regularization and variable selection

via the elastic net. Journal of the Royal Statistical Society. Series B

(Methodological), 67(2), 301–320.
Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal com-

ponent analysis. Journal of Computational and Graphical Statistics,
15(2), 265–286.

A P P E N D I C E S

A
P R O O F S O F C H A P T E R 7 — S O M F A N D S A M M
A N A LY S I S

This appendix to Chapter 5 contain the detailed proofs of Propo-
sition 5.3 and Proposition 5.1. This section can be skipped at first
reading.

a.1 proofs of convergence

We introduce three lemmas that will be crucial to prove SAMM con-
vergence, before establishing it by proving Proposition 5.3. Finally,
we show that SOMF is indeed an instance of SAMM (i.e. meets the
assumptions (C)–(I)), proving Proposition 5.1.

a.1.1 Basic properties of the surrogates, estimate stability

Let us first recall a basic inequality for L-Lipschitz continuous func-
tions. This inequality is useful in the demonstration of Lemma A.2
and Proposition 5.3. Let f : Θ ⊂ R

K → R be a function with L-
Lipschitz gradient. That is, for all θ, θ ′ ∈ Θ, ‖∇f(θ) −∇f(θ ′)‖2 6
L‖θ− θ ′‖2. Then, for all θ, θ ′ ∈ Θ,

f(θ ′) 6 f(θ) +∇f(θ)⊤(θ ′ − θ) +
L

2
‖θ− θ ′‖22. (A.1)

In this section, we derive an important result on the stability and
optimality of the sequence (θt)t, formalized in Lemma A.3 — intro-
duced in the main text. We first introduce a numerical lemma on the
boundedness of well-behaved deterministic and random sequence.

Lemma A.1 (Bounded quasi-geometric sequences). Let (xt)t be a se-

quence in R
+, u : R ×R → R, t0 ∈ N and α ∈ [0, 1) such that, for

all t > t0, xt 6 αxt−1 + u(xt, xt−1), where u(x, y) ∈ o(x + y) for

x, y→∞. Then (xt)t is bounded.

Let now (Xt)t be a random sequence in R
+, such that E[Xt] < ∞. We

define (Ft)t the filtration adapted to (Xt)t. If, for all t > t0, there exists a

σ-algebra Ft ′ such that Ft−1 ⊆ Ft ′ ⊆ Ft and

E[Xt|Ft ′] 6 αXt−1 + u(Xt, Xt−1),

then (Xt)t is bounded almost surely.

Proof. We first focus on the deterministic case. Assume that (xt)t is
not bounded. Then there exists a subsequence of (xt)t that diverges
towards +∞. We assume without loss of generality that (xt)t → ∞.

A.1 proofs of convergence 149

Then, xt + xt−1 →∞ and for all ǫ > 0, using the asymptotic bounds
on u, there exists t1 > t0 such that

∀t > t1, xt 6 αxt−1 + ǫ(xt + xt−1)

and therefore xt 6
α+ ǫ

1− ǫ
xt−1.

Setting ǫ small enough, we obtain that xt is bounded by a geometri-
cally decreasing sequence after t1, and converges to 0, which contra-
dicts our hypothesis. This is enough to conclude.

In the random case, we consider a realization of (Xt)t that is not
bounded, and assumes without loss of generality that it diverges to
+∞. Following the reasoning above, there exists β < 1, t1 > 0, such
that for all t > t1, E[Xt|Ft ′] 6 βXt−1, where Ft−1 ⊆ Ft ′ ⊆ Ft. Taking
the expectation conditioned on Ft−1, E[Xt|Ft−1] 6 βXt−1, as Xt−1

is deterministic conditioned on Ft−1. Therefore Xt is a supermartin-
gale beyond a certain time. As E[Xt] < ∞, Doob’s forward conver-
gence lemma on discrete martingales (Doob, 1990) ensures that (Xt)t
converges almost surely. Therefore the event {(Xt)t is not bounded}
cannot happen on a set with non-zero probability, less it would lead
to a contradiction. The lemma follows.

We then derive some properties of the approximate surrogate func-
tions used in SAMM. The proof is adapted from Mairal (2013b).

Lemma A.2 (Basic properties of approximate surrogate functions).
Consider any sequence of iterates (θt)t and assume there exists ǫ > 0 such

that gt ∈ TL,ρ(ft, θt−1, ǫ) for all t > 1. Define ht , gt − ft for all t > 1,

h̄0 , h0 and h̄t , (1−wt)h̄t−1 +wtht. Under assumptions (D) – (G),

(i) (∇ht(θt−1))t>0 is uniformly bounded and there exists R ′ such that

{∇ht}t is uniformly bounded by R ′.

(ii) (ht)t and (h̄t)t are uniformly R ′-Lipschitz, (gt)t and (ḡt)t are uni-

formly (R+ R ′)-Lipschitz.

Proof. We first prove (i). We set α > 0 and define θ ′=θt−α
∇ht(θt)

‖∇ht(θt)‖2
.

As ht has a L-Lipschitz gradient on R
K, using Taylor’s inequality (A.1)

ht(θ
′) 6 ht(θt) −α‖∇ht(θt)‖2 +

Lα2

2
(A.2)

‖∇ht(θt)‖2 6
1

α
(ht(θt) − ht(θ

′)) +
Lα

2
6

2

α
ǫ+

Lα

2
,

where we use ht(θt) < ǫ and −ht(θ
′
t) 6 ǫ from the assumption

gt ∈ TL,ρ(ft, θt−1, ǫ). Moreover, by definition, ∇ht exists and is L-
lipschitz for all t. Therefore, ∀ t > 1,

‖∇ht(θ)‖2 6 ‖∇ht(θt)‖2 + L‖θt−1 − θ‖2

Since Θ is compact and (‖∇ht(θt)‖2)t>1 is bounded in (A.2), ∇ht is
bounded by R ′ independent of t. (ii) follows by basic considerations
on Lipschitz functions.

A.1 proofs of convergence 150

Finally, we prove a result on the stability of the estimates, that de-
rives from combining the properties of (gt)t and the geometric de-
crease assumption (I).

Lemma A.3 (Estimate stability under SAMM approximation). In the

same setting as Lemma A.2, with the additional assumption (I) (expected

linear decrease of ḡt suboptimality), the sequence ‖θt − θt−1‖2 converges

to 0 as fast as (wt)t, and θt is asymptotically an exact minimizer. Namely,

almost surely,

‖θt − θt−1‖2 ∈ O(wt) and ḡt(θt) − ḡt(θ
⋆
t) ∈ O(w2

t).

Proof. We first establish the result when a deterministic version of (I)

holds, as it makes derivations simpler to follow.

a.1.1.1 Determistic decrease rate

We temporarily assume that decays are deterministic.

(Idet) For all t > 0, ḡt(θt) < ḡt(θt−1). Moreover, there exists µ > 0

such that, for all t > 0

ḡt(θt) − ḡt(θ
⋆
t) 6 (1− µ)(ḡt(θt−1) − ḡt(θ

⋆
t))

where θ⋆t = argmin
θ∈Θ

ḡt(θ),

We introduce the following auxiliary positive values, that we will
seek to bound in the proof:

At , ‖θt − θt−1‖2, Bt , ‖θt − θ⋆t‖2,
Ct , ‖θ⋆t − θ⋆t−1‖2, Dt , ḡt(θt) − ḡt(θ

⋆
t).

Our goal is to bound At. We first relate it to Ct and Bt using convex-
ity of ℓ2 norm:

A2
t 6 3B2

t + 3B2
t−1 + 3C2

t . (A.3)

As θ⋆t is the minimizer of ḡt, by strong convexity of (ḡt)t,

ρ

2
B2
t =

ρ

2
‖θt − θ⋆t‖22 6 Dt, (A.4)

while we also have

ρ

2
‖θ⋆t − θ⋆t−1‖22 6 ḡt(θ

⋆
t−1) − ḡt(θ

⋆
t)

6 (1−wt)
(

ḡt−1(θ
⋆
t−1) − ḡt−1(θ

⋆
t)
)

+wt

(

gt(θ
⋆
t−1) − gt(θ

⋆
t)
)

6 wt(R+ R ′)‖θ⋆t − θ⋆t−1‖2, and thus Ct 6 wt
2Q

ρ
. (A.5)

The second inequalities holds because θ⋆t−1 is a minimizer of ḡt−1

and gt is Q-Lipschitz, where Q , R+ R ′, using Lemma A.2. Replac-
ing (A.4) and (A.5) in (A.3) yields

A2
t 6

6

ρ
(Dt +Dt−1) +

12Q2

ρ
w2

t , (A.6)

A.1 proofs of convergence 151

and we are left to show that Dt ∈ O(w2
t) to conclude. For this, we

decompose the inequality from (Idet) into

Dt 6 (1− µ)(ḡt(θt−1) − ḡt(θ
⋆
t))

= (1− µ)
(

wt

(

gt(θt−1) − gt(θt)
)

+wt

(

gt(θt) − gt(θ
⋆
t)
)

)

+ (1− µ)
(

(1−wt)
(

ḡt−1(θt−1) − ḡt−1(θ
⋆
t−1)

)

+ (1−wt)
(

ḡt−1(θ
⋆
t−1) − ḡt−1(θ

⋆
t)
)

)

6 (1− µ)(wtQ(At +Bt) +Dt−1), (A.7)

where the second inequality holds for the same reasons as in (A.5).
Injecting (A.4) and (A.6) in (A.7), we obtain

D̃t 6 (1− µ)D̃t−1

w2
t−1

w2
t

+ u(D̃t, D̃t−1), (A.8)

where we define D̃t ,
Dt

w2
t
.

Injecting (A.4) and (A.6) in (A.7), we obtain

D̃t 6 (1− µ)D̃t−1

w2
t−1

w2
t

+ u(D̃t, D̃t−1), where

u(D̃t, D̃t−1) , (1− µ)Q̃

(

√

3(D̃t + D̃t−1

w2
t−1

w2
t

) + Q̃+

√

D̃t

)

.

From assumption (G), w2
t−1

w2
t
→ 1, and we have, from elementary com-

parisons, that u(D̃t, D̃t−1) ∈ o(D̃t + D̃t−1) if Dt →∞. Using the
determistictic result of Lemma A.1, this ensures that D̃t is bounded.
Combined with (A.4), this allows to conclude.

a.1.1.2 Stochastic decrease rates

In the general case (I), the inequalities (A.4), (A.5) and (A.6) holds,
and (A.8) is replaced by

E[D̃t|Ft− 1
2
] 6 (1− µ)D̃t−1

w2
t−1

w2
t

+ u(D̃t, D̃t−1),

Taking the expectation of this inequality and using Jensen inequality,
we show that (A.7) holds when replacing D̃t by E[D̃t]. This shows
that E[Dt] ∈ O(w2

t) and thus E[Dt] < ∞. The result follows from
Lemma A.1, that applies as Ft−1 ⊆ Ft− 1

2
⊆ Ft.

a.1.2 Convergence of SAMM — Proof of Proposition 5.3

We now proceed to prove the Proposition 5.3, that extends the
stochastic majorization-minimization framework to allow approxima-
tions in both majorization and minimizations steps.

Proof of Proposition 5.3. We adapt the proof of Proposition 3.3 from
Mairal (2013b) (reproduced as Proposition 5.2 in our work). Relaxing

A.1 proofs of convergence 152

tightness and majorizing hypotheseses introduces some extra error
terms in the derivations. Assumption (H) allows to control these
extra terms without breaking convergence. The stability Lemma A.3
is important in steps 3 and 5.

a.1.2.1 Almost sure convergence of (ḡt(θt))

We control the positive expected variation of (gt(θt))t to show that
it is a converging quasi-martingale. By construction of ḡt and prop-
erties of the surrogates gt ∈ Tρ,L(ft, θt−1, ǫt), where ǫt is a non-
negative sequence that meets (H),

ḡt(θt) − ḡt−1(θt−1)

= (ḡt(θt) − ḡt(θt−1)) +wt(gt(θt−1) − ḡt−1(θt−1))

6 wt(gt(θt−1) − ḡt−1(θt−1))

6 wt(gt(θt−1) − ft(θt−1)) +wt(ft(θt−1) − f̄t−1(θt−1))

+wt(f̄t−1(θt−1) − ḡt−1(θt−1))

6 wt(ft(θt−1) − f̄t−1(θt−1)) +wt(ǭt−1 + ǫt), (A.9)

where the average error sequence (ǭt)t is defined recursively: ǭ0 ,
ǫ0 and ǭt , (1−wt)ǫt−1 +wtǫt. The first inequality uses ḡt(θt) 6
ḡt(θt−1). To obtain the forth inequality we observe

gt(θt−1) − ft(θt−1) < ǫt

by definition of ǫt and f̄t(θt−1) − ḡt(θt−1) 6 ǭt, which can easily be
shown by induction on t. Then, taking the conditional expectation
with respect to Ft−1,

E[ḡt(θt) − ḡt−1(θt−1)|Ft−1]

6 wt sup
θ∈Θ

|f(θ) − f̄t−1(θ)|+wt(ǭt−1 + E[ǫt|Ft−1]). (A.10)

We have used the fact that ǫt−1 is deterministic with respect to Ft−1.
To ensure convergence, we must bound both terms in (A.10): the first
term is the same as in the original proof with exact surrogate, while
the second is the perturbative term introduced by the approximation
sequence (ǫt)t. We use Lemma B.7 from Mairal (2013b), derived
from the theory of empirical processes: E[supθ∈Θ |f(θ) − f̄t−1(θ)|] =

O(wtt
1/2), and thus

∞∑

t=1

wtE[sup
θ∈Θ

|f(θ) − f̄t−1(θ)|] < C

∞∑

t=1

t1/2w2
t < ∞ (A.11)

where C is a constant, as t1/2w2
t = t1/2−2u and u > 3/4 from (G). Let

us now focus on the second term of (A.10). Defining, for all 1 6 i 6 t,
wt

i = wi

∏t
j=i+1(1−wj),

E[ǭt] =

t∑

i=1

wt
iE[ǫt] 6 wt

t∑

i=1

E[ǫt].

A.1 proofs of convergence 153

We set η > 0 so that 2(u − 1) − η > −1. Assumption (H) ensures
E[ǫt] ∈ O(t2(u−1)−η), which allows to bound the partial sum

t∑

i=1

E[ǫi] ∈ O(t2u−1−η).

Therefore, we have

wtE[ǭt−1 + E[ǫt|Ft−1]] = wtE[ǫt−1] +wtE[ǫt]

6 w2
t

(

t∑

i=1

E[ǫt]
)

+wtE[ǫt] (A.12)

6 At2u−2u−1−η +Bt2u−u−2−η 6 Ct−1−η,

where we use u < 1 on the third line and the definition of (wt)t
on the second line. Thus

∑∞
t=1wtE[ǭt−1 + E[ǫt|Ft−1]] < ∞. We

use quasi-martingale theory to conclude, as in Mairal (2013b). We
define the variable δt to be 1 if E[ḡt(θt)− ḡt−1(θt−1)|Ft−1] > 0, and 0

otherwise. As all terms of (A.10) are positive:

∞∑

t=1

E[δt(ḡt(θt) − ḡt−1(θt−1))]

=

∞∑

t=1

E[δtE[ḡt(θt) − ḡt−1(θt−1)|Ft−1]]

6
∞∑

t=1

wtE[sup
θ∈Θ

|f(θ) − f̄t−1(θ)|+ ǭt−1 + E[ǫt|Ft−1]|] < ∞.

As ḡt are bounded from below (f̄t is bounded from (D) and we easily
show that ǭt is bounded), we can a quasi-martingale convergence the-
orem originally found in Métivier (1982). It ensures that (gt(θt))t>1

converges almost surely to an integrable random variable g⋆, and that
∑∞

t=1 E[|E[ḡt(θt) − ḡt−1(θt−1)|Ft−1]|] < ∞ almost surely.

a.1.2.2 Almost sure convergence of f̄(θt)

We rewrite the second inequality of (A.9), adding ǭt on both sides:

0 6 wt

(

ḡt−1(θt−1) − f̄t−1(θt−1) + ǭt−1

)

6 wt

(

gt(θt−1) − ft(θt−1)
)

+wt

(

ft(θt−1) − f̄t−1(θt−1)
)

+
(

ḡt−1(θt−1) − ḡt(θt)
)

+wtǭt−1

6 wt

(

ft(θt−1) − f̄t−1(θt−1)
)

+
(

ḡt−1(θt−1) − ḡt(θt)
)

+wt(ǫt + ǭt−1), (A.13)

where the left side bound has been obtained in the last paragraph by
induction and the right side bound arises from the definition of ǫt.
Taking the expectation of (A.13) conditioned on Ft−1, almost surely,

0 6 wt(f(θt−1) − f̄t−1(θt−1))

− E[ḡt(θt) − ḡt−1(θt−1)|Ft−1] +wt(ǭt−1 + E[ǫt|Ft−1]),

A.1 proofs of convergence 154

We separately study the three terms of the previous upper bound.
The first two terms can undergo the same analysis as in Mairal (2013b).
First, almost sure convergence of the sum

∞∑

t=1

E
[

|E[ḡt(θt) − ḡt−1(θt−1)|Ft−1]|
]

implies that E
[

ḡt(θt) − ḡt−1(θt−1)|Ft−1

]

is the summand of an al-
most surely converging sum. Second, wt

(

f(θt−1) − f̄t−1(θt−1)
)

is
the summand of an absolutely converging sum with probability one,
less it would contradict (A.11). To bound the third term, we have
once more to control the perturbation introduced by (ǫt)t. We have
∑∞

t=1wtǭt−1 +wtE[ǫt|Ft−1] < ∞ almost surely, otherwise Fubini’s
theorem would invalidate (A.12).

As the three terms are the summand of absolutely converging sums,
the positive term wt(ḡt−1(θt−1)− f̄t−1(θt−1)+ ǭt−1) is the summand
of an almost surely convergent sum. This is not enough to prove that
h̄t(θt) , ḡt(θt) − f̄t(θt) →∞ 0, hence we follow (Mairal, 2013b) and
make use of its Lemma A.6. We define Xt , h̄t−1(θt−1) + ǭt−1.
As (H) holds, we use Lemma A.3, which ensures that (h̄t)t>1 are
uniformly R ′-Lipschitz and ‖θt − θt−1‖2 = O(wt). Hence,

|Xt+1 −Xt| 6 |h̄t(θt) − h̄t−1(θt−1)|+ |ǭt − ǭt−1|

6 R ′‖θt − θt−1‖2 + |ǭt − ǭt−1|, as h̄t is R ′-Lipschitz

6 O(wt) + |ǭt − ǭt−1|, as ‖θt − θt−1‖2 = O(wt)

From assumption (H), (ǫt)t and (ǭt)t are bounded. Therefore |ǭt −

ǭt−1| 6 wt(|ǫt|+ |ǭt−1|) ∈ O(wt) and hence

|Xt+1 −Xt| 6 O(wt).

Lemma A.6 from Mairal (2013b) then ensures that Xt converges to
zero with probability one. Assumption (H) ensures that ǫt →∞ 0

almost surely, from which we can easily deduce ǭt →∞ 0 almost
surely. Therefore h̄t(θt) → 0 with probability one and (f̄t(θt))t>1

converges almost surely to g⋆.

a.1.2.3 Almost sure convergence of f̄(θt)

Lemma B.7 of (Mairal, 2013b), based on empirical process theory
(Van der Vaart, 2000), ensures that f̄t uniformly converges to f̄. There-
fore, (f̄(θt))t>1 converges almost surely to g⋆.

a.1.2.4 Asymptotic stationary point condition

Preliminary to the final result, we establish the asymptotic station-
ary point condition (A.15) as in Mairal (2013b). This requires to adapt
the original proof to take into account the errors in surrogate com-
putation and minimization. We set α > 0. By definition, ∇h̄t is
L-Lipschitz over R

K. Following the same computation as in (A.2), we
obtain, for all α > 0,

‖∇h̄t(θt)‖2 6
2

α
ǭt +

Lα

2
, (A.14)

A.1 proofs of convergence 155

where we use |h̄t(θ)| 6 ǭt for all θ ∈ R
K. As ǭt → 0 and the inequal-

ity (A.14) is true for all α, ‖∇h̄t(θt)‖2 →∞ 0 almost surely. From the
strong convexity of ḡt and Lemma A.3, ‖θt − θ⋆t‖2 converges to zero,
which ensures

‖∇h̄t(θ
⋆
t)‖2 6 ‖∇̄ht(θt)‖2 + L‖θt − θ⋆t‖2 →∞ 0. (A.15)

a.1.2.5 Parametrized surrogates

We use assumption (F) to finally prove the property, adapting the
proof of Proposition 3.4 in Mairal (2013b). We first recall the deriva-
tions for obtaining (A.16) We define (κt)t such that ḡt = gκt for all
t > 0. We assume that θ∞ is a limit point of (θt)t. As Θ is compact,
there exists an increasing sequence (tk)k such that (θtk)k converges
toward θ∞. As K is compact, a converging subsequence of (κtk)k
can be extracted, that converges towards κ∞ ∈ K. From the sake of
simplicity, we drop subindices and assume without loss of general-
ity that θt → θ∞ and κt → κ∞. From the compact parametrization
assumption, we easily show that (ḡκt)t uniformly converges towards
ḡ∞ , ḡκ∞

. Then, defining h̄∞ = ḡ∞ − f̄, for all θ ∈ Θ,

∇f̄(θ∞, θ− θ∞) = ∇ḡ∞(θ∞, θ− θ∞) −∇h̄∞(θ∞, θ− θ∞) (A.16)

We first show that ∇f̄(θ∞, θ − θ∞) > 0 for all θ ∈ Θ. We consider
the sequence (θ⋆t)t. From Lemma A.3, ‖θt − θ⋆t‖2 → 0, which im-
plies θ⋆t → θ∞. ḡt converges uniformly towards ḡ∞, which implies
(ḡt(θ

⋆
t))t → ḡ∞(θ∞). Furthermore, as θ⋆t minimizes ḡt, for all t > 0

and θ ∈ Θ, ḡt(θ⋆t) 6 ḡt(θ). This implies ḡ∞(θ∞) 6 infθ∈Θ ḡ∞(θ) by
taking the limit for t→∞. Therefore θ∞ is the minimizer of ḡ∞ and
thus ∇ḡ∞(θ∞, θ− θ∞) > 0.

Adapting the work of Mairal (2013b), we perform the first-order
expansion of h̄t around θ⋆t (instead of θt in the original proof) and
show that∇h̄∞(θ∞, θ−θ∞) = 0, as h̄t differentiable, ‖∇h̄t(θ

⋆
t)‖2 → 0

and θ⋆t → θ∞. This is sufficient to conclude.

a.1.3 Convergence of SOMF — Proof of Proposition 5.1

Proof of Proposition 5.1. From assumption (D), (xt)t is ℓ2-bounded by
a constant X. With assumption (A), it implies that (αt)t is ℓ2-bounded
by a constant A. This is enough to show that (gt)t and (θt)t meet
basic assumptions (C)–(F). Assumption (G) immediately implies (B).
It remains to show that (gt)t and (θt)t meet the assumptions (H) and
(I). This will allow to cast SOMF as an instance of SAMM and conclude.

a.1.3.1 The computation of Dt verifies (I)

We define D⋆
t = argminD∈C ḡt(D). We show that performing sub-

sampled block coordinate descent on ḡt is sufficient to meet assump-
tion (I), where θt = Dt. We separately analyse the exceptional case
where no subsampling is done and the general case.

First, with small but non-zero probability, Mt = Ip and Alg. 3

performs a single pass of simple block coordinate descent on ḡt. In

A.1 proofs of convergence 156

this case, as ḡt is strongly convex from (A), (Beck and Tetruashvili,
2013; Wright, 2015) ensures that the sub-optimality decreases at least
of factor 1− µ with a single pass of block coordinate descent, where
µ > 0 is a constant independent of t. We provide an explicit µ in
Section A.1.4.1.

In the general case, the function value decreases deterministically
at each minimization step: ḡt(Dt) 6 ḡt(Dt−1). As a consequence,
E[ḡt(Dt)|Ft− 1

2
,Mt 6= Ip] 6 ḡt(Dt−1). Furthermore, ḡt and hence

ḡt(D
⋆
t) are deterministic with respect to Ft− 1

2
, which implies

E[ḡt(D
⋆
t)|Ft− 1

2
,Mt 6= Ip] = ḡt(D

⋆
t).

Defining d , P[Mt = Ip], we split the sub-optimality expectation
and combine the analysis of both cases:

E[ḡt(Dt) − ḡt(D
⋆
t)|Ft− 1

2
]

= dE[ḡt(Dt) − ḡt(D
⋆
t)|Ft− 1

2
,Mt = Ip]

+ (1− d)E[ḡt(Dt) − ḡt(D
⋆
t)|Ft− 1

2
,Mt 6= Ip]

6
(

d(1− µ) + (1− d)
)

(ḡt(Dt−1) − ḡt(D
⋆
t))

=
(

1− dµ
)

(ḡt(Dt−1) − ḡt(D
⋆
t)).

a.1.3.2 The surrogates (gt)t verify (H)

We define g⋆t ∈ Sρ,L(ft,Dt−1) the surrogate used in OMF at iter-
ation t, which depends on the exact computation of α⋆

t , while the
surrogate gt used in SOMF relies on approximated αt. Formally, us-
ing the loss function ℓ(α,G,β) , 1

2α
⊤Gα−α⊤β+ λΩ(α), we recall

the definitions

α⋆
t, argmin

α∈Rk

ℓ(α,G⋆
t ,β

⋆
t), αt, argmin

α∈Rk

ℓ(α,Gt,βt),

g⋆t(D) , ℓ(α⋆
t ,D

⊤D,D⊤xt), gt(D) , ℓ(αt,D
⊤D,D⊤xt).

The matrices G⋆
t , β⋆

t are defined in (4.12) and Gt, βt in either the
update rules (b) or (c). We define ǫt , ‖g⋆t − gt‖∞ to be the ℓ∞
difference between the approximate surrogate of SOMF and the ex-
act surrogate of OMF, as illustrated in Figure 5.1. By definition, gt ∈
Tρ,L(ft, θt−1, ǫt). We first show that ǫt can be bounded by the Froebe-
nius distance between the approximate parameters Gt, βt and the
exact parameters G⋆

t ,β
⋆
t . Using Cauchy-Schwartz inequality, we first

show that there exists a constant C ′ > 0 such that for all D ∈ C,

|gt(D) − g⋆t(D)| 6 C ′‖αt −α∗
t‖2. (A.17)

Then, we show that the distance ‖αt −α∗
t‖2 can itself be bounded:

there exists C ′′ > 0 constant such that

‖αt −α⋆
t‖2 6 C ′′(‖G⋆

t −Gt‖F + ‖β⋆
t −βt‖2). (A.18)

We combine both equations and take the supremum over D ∈ C,
yielding

ǫt 6 C(‖G⋆
t −Gt‖F + ‖β⋆

t −βt‖2), (A.19)

A.1 proofs of convergence 157

where C is constant. Detailed derivation of (A.17) and (A.18) relies
on assumption (A) and are reported in Section A.1.4.2.

In a second step, we show that ‖G⋆
t −Gt‖F and ‖β⋆

t −βt‖2 vanish
almost surely, sufficiently fast. We focus on bounding ‖βt −β⋆

t‖2 and
proceed similarly for ‖Gt −G⋆

t‖F when the update rules (b) are used.
For t > 0, we write i , it. Then

βt , β
(i)
t =

∑

s6t,xs=x(i)

γ
(i)
s,tD

⊤
s−1Msx

(i),

where γ
(i)
s,t = γ

c
(i)
t

∏
s<t,xs=x(i)(1−γ

c
(i)
s
) and c

(i)
t =

∣

∣

{
s 6 t, xs = x(i)

}∣
∣.

We can then decompose βt −β⋆
t as

βt −β⋆
t =

∑

s6t,xs=xt=x(i)

γ
(i)
s,t(Ds−1 −Dt−1)

⊤Msx
(i)

+D⊤
t−1

(∑

s6t,xs=xi)

γ
(i)
s,tMs − I

)

x(i). (A.20)

The latter equation is composed of two terms: the first one captures
the approximation made by using old dictionaries in the computation
of (βt)t, while the second captures how the masking effect is aver-
aged out as the number of epochs increases. Assumption (B) allows
to bound both terms at the same time. Setting η , 1

2 min
(

v− 3
4 , (3u−

2) − v
)

> 0, a tedious but elementary derivation presented in Sec-
tion A.1.4.3 indeed shows E[‖βt −β⋆

t‖2] ∈ O(t2(u−1)−η) and ǫt → 0

almost surely. The SOMF algorithm therefore meets assumption (H)

and is a convergent SAMM algorithm. Proposition 5.1 follows.

We postponed the proof of three highly technical results in the
proof above. We turn to establish them.

a.1.4 Detailed derivations in the proof of Proposition 5.1

Let us first exhibit a scaler µ > 0 independent of t,for which (I) is
met.

a.1.4.1 Geometric rate for single pass subsampled block coordinate descent

For D(j) ∈ R
p×k any matrix with non-zero j-th column d(j) and

zero elsewhere

∇ḡt(D+D(j)) −∇ḡt(D) = C̄t[j, j]d
(j)

and hence ḡt gradient has component Lipschitz constant Lj = C̄t[j, j]

for component j, as already noted by Mairal et al. (2010). Using the
terminology from Wright (2015), ∇ḡt has coordinate Lipschitz constant

Lmax , max
06j<k

C̄t[j, j] 6 max
t>0,06j<k

αt[j]
2 6 A2,

as (αt)t is bounded from (A). As a consequence, ḡt gradient is also
L-Lipschitz continuous, where Wright, 2015 note that L 6

√
kLmax.

Moreover, ḡt is strongly convex with strong convexity modulus ρ > 0

A.1 proofs of convergence 158

by hypothesis (A). Then, Beck and Tetruashvili, 2013 ensures that
after one cycle over the k blocks

E[ḡt(Dt) − ḡt(D
⋆
t)|Ft−1,Mt = Ip]

6
(

1−
ρ

2Lmax(1+ kL2/L2max)

)

(ḡt(Dt−1) − ḡt(D
⋆
t))

6
(

1− µ
)

(ḡt(Dt−1) − ḡt(D
⋆
t)) where µ ,

ρ

2A2(1+ k2)

a.1.4.2 Controling ǫt from (Gt,βt), (G
⋆
t ,β

⋆
t) — Equations (A.17) and

(A.18)

We detail the derivations that are required to show that (H) is
met in the proof of SOMF convergence. We first show that (αt)t is
bounded. We choose D > 0 such that ‖d(j)‖2 6 D for all j ∈ [k] and
D ∈ C, and X such that ‖x‖2 6 X for all x ∈ X. From assumption (A),
using the second-order growth condition, for all t > 0,

ρ

2
‖αt − 0‖22 6 λΩ(0) − (

1

2
α⊤
t Gtαt −α⊤

t βt + λΩ(αt)

ρ

2
‖αt‖22 +

1

2
α⊤
t Gtαt 6 0+ ‖αt‖2‖βt‖2, hence

ρ‖αt‖22 6
√
krDX‖αt‖2, and therefore

‖αt‖2 6

√
krDX

ρ
, A.

We have successively used the fact that Ω(0) = 0, Ω(αt) > 0, and
‖βt‖2 6

√
krDX, which can be shown by a simple induction on the

number of epochs. For all t > 0, from the definition of αt and α⋆
t , for

all D ∈ C:

|gt(D) − g⋆t(D)| =
∣

∣

∣

1

2
Tr D⊤D(αtα

⊤
t −α⋆

tα
⋆
t
⊤
) − (αt −α⋆

t)
⊤D⊤xt

∣

∣

∣

6
1

2
‖D⊤D‖F‖αtα

⊤
t −α⋆

tα
⋆
t
⊤‖F

+ ‖D‖F‖xt‖2‖αt −α⋆
t‖2

6 (kD2A+
√
kDX)‖αt −α⋆

t‖2,

where we use Cauchy-Schwartz inequality and elementary bounds
on the Froebenius norm for the first inequality, and use
αt,α

⋆
t 6 A, xt 6 X for all t > 0 and d(j) 6 D for all j ∈ [k] to

obtain the second inequality, which is (A.17) in the main text.
We now turn to control ‖αt −α⋆

t‖2. We adapt the proof of Lemma
B.6 from Mairal, 2013a, that states the lipschitz continuity of the min-
imizers of some parametrized functions. By definition,

α⋆
t = argmin

α∈Rk

ℓ(α,G⋆
t ,β

⋆
t) αt = argmin

α∈Rk

ℓ(α,Gt,βt),

A.1 proofs of convergence 159

Assumption (A) ensures that Gt ≻ ρIk, therefore we can write the
second-order growth condition

ρ

2
‖αt −α⋆

t‖22 6 ℓ(αt,G
⋆
t ,β

⋆
t) − ℓ(αt,Gt,βt)

ρ

2
‖αt −α⋆

t‖22 6 ℓ(α⋆
t ,Gt,βt) − ℓ(α⋆

t ,G
⋆
t ,β

⋆
t), and therefore

ρ‖αt −α⋆
t‖22 6 p(αt) − p(α⋆

t), where

p(α) , ℓ(α,Gt,βt) − ℓ(αt,G
⋆
t ,β

⋆
t).

p takes a simple form and can differentiated with respect to α. For
all α ∈ R

k such that ‖α‖2 6 A,

p(α) =
1

2
α⊤(Gt −G⋆

t)α−α⊤(βt −β⋆
t)

∇p(α) = (Gt −G⋆
t)α− (βt −β⋆

t)

‖∇p(α)‖2 6 A‖Gt −G⋆
t‖F + ‖βt −β⋆

t‖2 , L

Therefore p is L-Lipschitz on the ball of size A where αt and α⋆
t live,

and

ρ‖αt −α⋆
t‖22 6 L‖αt −α⋆

t‖2
‖αt −α⋆

t‖2 6
A

ρ
‖Gt −G⋆

t‖F +
1

ρ
‖βt −β⋆

t‖2,

which is (A.18) in the main text. The bound (A.19) on ǫt immediately
follows.

a.1.4.3 Bounding ‖βt −β⋆
t‖2 in equation (A.20)

Taking the ℓ2 norm in (A.20), we have ‖βt −β⋆
t‖2 6 BLt + CRt,

where B and C are positive constants independent of t and we intro-
duce the terms

Lt ,
∑

s6t,xs=xt=x(i)

γ
(i)
s,t‖Ds−1 −Dt−1‖F,

Rt ,
∥

∥

∥

(∑
s6t,xs=x(i) γ

(i)
s,tMs

)

− I
∥

∥

∥

F
.

conditioning on the sequence of drawn indices . We re-
call that (it)t is the sequence of indices that are used to draw (xt)t
from {x(i)}i, namely such that xt = x(it). (it)t is a sequence of
i.i.d random variables, whose law is uniform in [1, n]. For each
i ∈ [n], we define the increasing sequence (t

(i)
b)

b>0
that record the

iterations at which sample (i) is drawn, i.e. such that itb = i for all
b > 0. For t > 0, we recall that c

(i)
t > 0 is the integer that counts

the number of time sample (i) has appeared in the algorithm, i.e.

c
(i)
t = max {b > 0, t

(i)
b 6 t}. These notations will help us understand-

ing the behavior of (Lt)t and (Rt)t.

A.1 proofs of convergence 160

bounding Rt . The right term Rt takes its value into sequences that
are running average of masking matrices. Formally, we have Rt =

‖M̄(it)
t − I‖F, where we define for all i ∈ [n],

M̄
(i)
t ,

c
(i)
t∑

b=1

γ
(i)

t
(i)
b ,t

(i)
c

Mtb , which follows the recursion

M̄
(i)
t = (1− γ

c
(i)
t

)M̄
(i)
t−1 + γ

c
(i)
t

Mt if i = it

M̄
(i)
t = M

(i)
t−1 if i 6= it

M̄
(i)
0 = 0 for all i ∈ [n]

(A.21)

When sampling a sequence of indices (is)s>0, the n random matrix
sequences [(M̄

(i)
t)t60]i∈[n]

follows the same probability law as the

sampling is uniform. We therefore focus on controling (M̄
(0)
t)t. For

simplicity, we write ct , c
(0)
t . When E[·] is the expectation over the

sequence of indices (is)s,

E[‖M̄(0)
t − I‖F]2 6 E

[

p∑

j=1

(M̄
(0)
t [j, j] − 1)

]

= pE[(M̄
(0)
t [0, 0] − 1)]

6 Cp(ct)
1/2γct = Cp(ct)

1/2−v, (A.22)

where C is a constant independent of tWe have simply bounded the
Froebenius norm by the ℓ1 norm in the first inequality and used the
fact that all coefficients Mt[j, j] follows the same Bernouilli law for
all t > 0, j ∈ [p]. We then used Lemma B.7 from Mairal, 2013b
for the last inequality. This lemma applies as Mt[0, 0] follows the
recursion (A.21). It remains to take the expectation of (A.22), over all
possible sampling trajectories (is)s>0:

E[Rt] = E
[

E[Rt|(is)s]
]

= E
[

E[‖M(it)
t − I‖F|(is)s]

]

(A.23)

= E
[

E[‖M(0)
t − I‖F|(is)s]

]

= E[‖M(0)
t − I‖F]

= CpE[(ct)
1/2−v

] 6 CpE[(ct)
2(u−1)−η

].

The last inequality arises from the definition of the exponent η ,
1
2 min

(

v− 3
4 , (3u− 2) − v

)

, as follows. First, η > 0 as u > 11
12 . Then,

we successively have

5

2
− 2u <

2

3
<

3

4
, as u >

11

12
, v >

3

4
+ 2η >

5

2
− 2u+ 2η,

1

2
− v <

1

2
−

5

2
+ 2u− 2η = 2(u− 1) − 2η < 2(u− 1) − η,

which allows to conclude. Lemma B.7 from Mairal, 2013b also en-
sures that Mt[0, 0] → 1 almost surely when t → ∞. Therefore
(M̄

(0)
t − I)t converges towards 0 almost surely, given any sample se-

quence (is)s. It thus converges almost surely when all random vari-
ables of the algorithm are considered. This is also true for (M̄(i)

t − I)t
for all i ∈ [n] and hence for Rt.

A.1 proofs of convergence 161

bounding Lt . As above, we define n sequences [(L
(i)
t)t]i∈[n]

, such

that Lt = L
(it)
t for all t > 0. Namely,

L
(i)
t ,

∑

s6t,

xs=xt=x(i)

γ
(i)
s,t‖Ds−1 −Dt−1‖F

=

c
(i)
t∑

b=1

γ
(i)

t
(i)
b ,t

(i)

c
(i)
t

∥

∥Dtb−1 −Dt
c
(i)
t

−1

∥

∥

F

.

Once again, the sequences
[

(L
(i)
t)t

]

i
all follows the same distribu-

tion when sampling over sequence of indices (is)s. We thus focus
on bounding (L

(0)
t)t. Once again, we drop the (0) superscripts in the

right expression for simplicity. We set µ , 3u− 2− η. From assump-
tion (B) and the definition of η, we have v < µ < 1. We split the
sum in two parts, around index dt , ct− ⌊(ct)µ⌋, where ⌊·⌋ takes the
integer part of a real number. For simplicity, we write d , dt and
c , ct in the following.

L
(0)
t =

c∑

b=1

γtb,tc

∥

∥Dtb−1 −Dtc−1

∥

∥

F

6 2
√
kD

d∑

b=1

γtb,tc +

c∑

b=d+1

γtb,t

tc−1∑

s=tb−1

ws

, 2
√
kDL

(0)
t,1 + L

(0)
t,2

On the left side, we have bounded ‖Dt‖F by
√
kD, where D is defined

in the previous section. The right part uses the bound on ‖Ds −Dt‖F
provided by Lemma A.3, that applies here as (I) is met and (A.19)
ensures that (‖gt − g⋆t‖∞)t is bounded.

We now study both L
(0)
t,1 and L

(0)
t,2 . First, for all t > 0,

L
(0)
t,1 ,

d∑

b=1

γtb,tc =

d∑

b=1

γb

c∏

p=b+1

(1− γp) 6
d∑

b=1

γb(1− γc)
c−b

6
(1− γc)

⌊cµ⌋

γc
6 cv exp

(

log(1−
1

cv
)cµ
)

6 C ′cv exp(cµ−v) 6 Cc2(u−1)−η = C(ct)
2(u−1)−η,

where C and C ′ are constants independent of t. We have used
µ > v for the third inequality, which ensures that log(1− 1

cv)c
µ ∈

O(cµ−v). Basic asymptotic comparison provides the last inequality,
as ct → ∞ almost surely and the right term decays exponentially in
(ct)t, while the left decays polynomially. As a consequence, L(0)t,1 → 0

almost surely.
Secondly, the right term can be bounded as (wt)t decays suffi-

ciently rapidly. Indeed, as
∑c

b=1 γtb,t = 1, we have

L
(0)
t,2 ,

c∑

b=d

γtb,t

tc−1∑

s=tb−1

ws 6 max
d6b6c

(

tc−1∑

s=tb−1

ws

)

=

tc−1∑

s=td−1

ws

6 wtd(tc − td) =
tc − td

(td)
u =

ct − dt

(dt)
u

tc − td

ct − dt
(
dt

td
)u

A.1 proofs of convergence 162

from elementary comparisons. First, we use the definition of µ to
draw

ct − dt

(dt)u
6

(ct)
µ

(ct)u(1− c
µ−1
t)u

6 C(ct)
µ−u = C(ct)

2(u−1)−η,

were we use the fast that η − 1 < 0. We note that for all b > 0,
tb+1 − tb follows a geometric law of parameter 1

n , and expectation n.
Therefore, as c− d → ∞ when t → 0, from the strong law of large
numbers and linearity of the expectation

tc − td

c− d
=

1

c− d

c−1∑

b=d

tb+1 − tb → n,

td

d
=

1

d

d−1∑

b=0

tb+1 − tb → n almost surely.

As a consequence, tc−td
ct−dt

(dt

td
)u → n1−u almost surely. This immedi-

ately shows L
(0)
t,2 → 0 and thus L

(0)
t → 0 almost surely. As with Rt,

this implies that Lt → 0 almost surely and therefore

‖βt −β⋆
t‖2 → 0 almost surely.

Finally, from the dominated convergence theorem, E[tc−td
ct−dt

(dt

td
)u] →

n1−u for t→∞. We can use Cauchy-Schartz inequality and write

E[L
(0)
t,2] = E[

tc − td

(td)
u] 6 E[

ct − dt

(dt)
u]E[

tc − td

ct − dt
(
dt

td
)u]

6 C ′
E[

ct − dt

(dt)
u] 6 CC ′

E[(ct)
2(u−1)−η

],

where C ′ is a constant independent of t. Then

E[Lt] = E
[

E[L
(it)
t |(is)s]

]

= E
[

E[L
(0)
t |(is)s]

]

= E[L
(0)
t] 6 2

√
kDE[L

(0)
t,1] + E[L

(0)
t,2] ∈ O((ct)

2(u−1)−η
).

Combined with (A.23), this shows that

E[‖βt −β⋆
t‖2] ∈ O((ct)

2(u−1)−η
).

As ct follows a binomial distribution of parameter (t, 1
n),

ct

t → 1
n

almost surely when t→ 0. Therefore E[(ct

t)
2(u−1)−η)]→ nη−2(u−1),

and from Cauchy-Schwartz inequality,

E[‖βt −β⋆
t‖2] 6 CE[(

ct

t
)2(u−1)−η)]t2(u−1)−η ∈ O(t2(u−1)−η).

We have reused the fact that converging sequences are bounded. This
is enough to conclude.

B
P R O O F S A N D R E S U LT S F R O M C H A P T E R 8 —
D I F F E R E N T I A B L E D Y N A M I C P R O G R A M M I N G

b.1 proofs and detailed derivations

This section contains the proofs of the propositions and lemmas
presented in the main text. It also contains derivations of gradient,
directional derivative and Hessian-product computations.

b.1.1 Proof of Lemma 8.1 (properties of maxΩ)

property 1 (boundedness). Let q⋆ and q⋆
Ω be the solutions of

maxq∈△D q⊤x and maxq∈△D q⊤x − Ω(q), respectively. Then, we
have

maxΩ(x) = 〈q⋆
Ω, x〉−Ω(q⋆

Ω) > 〈q⋆, x〉−Ω(q⋆) = max(x)−Ω(q⋆)

and

max(x) −Ω(q⋆
Ω) > 〈q⋆

Ω, x〉−Ω(q⋆
Ω) = maxΩ(x).

Combining the two and using LΩ,D 6 Ω(q) 6 UΩ,D ∀q ∈ △D, we
obtain

max(x) −UΩ,D 6 max(x) −Ω(q⋆) 6 maxΩ(x) 6 max(x) −Ω(q⋆
Ω)

6 max(x) − LΩ,D.

When Ω(q) =
∑

i qi logqi, we have the tight inequality − logD 6
Ω(q) 6 0 ∀q ∈ △D and hence

max(x) 6 maxΩ(x) 6 max(x) + logD.

When Ω(q) = 1
2‖q‖2, we have the tight inequality 1

2D 6 Ω(q) 6
1
2 ∀q ∈ △D and hence

max(x) −
1

2
6 maxΩ(x) 6 max(x) − 1

2D .

Note that the difference UΩ,D − LΩ,D is equal to logD when Ω is
the negative entropy and to D−1

2D 6 1
2 when Ω is the squared ℓ2 norm.

Since logD > 1
2 for all integers D > 2, we get a better approxima-

tion of the max operator using squared ℓ2 norm than using negative
entropy, whenever D > 2.

property 2 (distributivity of + over maxΩ). This follows
immediately from

maxΩ(x+ c1) = max
q∈△D

〈q, x+ c1〉−Ω(q)

= max
q∈△D

〈q, x〉−Ω(q) + c = maxΩ(x) + c.

B.1 proofs and detailed derivations 164

Using our shorthand notation, this simply becomes

maxΩ
Y∈Y

(f(Y) + c) =

(

maxΩ
Y∈Y

f(Y)

)

+ c.

property 3 (commutativity). Assume Ω(Pq) = Ω(q) for all
permutation matrices P. Let P−1 be the inverse permutation matrix
associated with P. Then we have

maxΩ(Px) = max
q∈△D

〈q,Px〉−Ω(q) = max
q∈△D

〈P−1q, x〉−Ω(q)

= max
q∈△D

〈q, x〉−Ω(Pq) = max
q∈△D

〈q, x〉−Ω(q).

property 4 (non-decreasingness in each coordinate). If
x 6 y, then for all q ∈ △D, 〈x,q〉−Ω(q) 6 〈y,q〉−Ω(q), as all q
coordinates are non-negative. Thus maxΩ(x) 6 maxΩ(y).

property 5 (insensitivity to −∞). As we have

maxΩ(x) = maxq∈△D〈q, x〉−Ω(q),

if xj=−∞, then qj = ∇maxΩ(x)j = 0 is the only feasible solution for
the jth coordinate.

b.1.2 Proof of Proposition 8.1 (optimality of DP recursion)

Let vi(θ) be the highest-score path up to node i ∈ [N]. Let Yi be
the set of paths y = (y1, . . . , yL) starting from node 1 and reaching
node i, that is y1 = 1 and yL = i. Note that L may depend on y but
we do not make this dependency explicit. Because nodes are sorted
in topological order, we can compute vi(θ) by

vi(θ) = max
y∈Yi

L∑

t=2

θyt,yt−1
= max

y∈Yi

L−1∑

t=2

θyt,yt−1
+ θyL,yL−1

= max
y∈Yi

L−1∑

t=2

θyt,yt−1
+ θi,yL−1

.

Recall that Pi is the set of parent nodes of node i. From the associativ-

ity of the max operator,

vi(θ) = max
j∈Pi

max
y∈Yi

yL−1=j

(

L−1∑

t=2

θyt,yt−1
+ θi,yL−1

)

= max
j∈Pi

max
y∈Yi

yL−1=j

(

L−1∑

t=2

θyt,yt−1
+ θi,j

)

.

From the distributivity of + over max, we obtain

vi(θ) = max
j∈Pi

 max
y∈Yi

yL−1=j

L−1∑

t=2

θyt,yt−1

+ θi,j = max
j∈Pi

vj(θ) + θi,j,

where we used the fact that the inner max operations are independent
of yL = i. This concludes the proof of the optimality of (8.3).

B.1 proofs and detailed derivations 165

b.1.3 Proof of Proposition 8.2 (properties of DPΩ(θ))

We prove in this section the three main claims of Proposition 8.2.
For the first two claims, we rewrite (8.3) and (8.6) using the following
notations:

v0i (θ) , max(u0
i (θ)) and vΩi (θ) , max(uΩ

i (θ)), where

u0
i (θ) , (θi,1 + v01(θ), . . . , θi,i−1 + v0i−1(θ),−∞, . . . ,−∞) ∈ R

N,

uΩ
i (θ) , (θi,1 + vΩ1 (θ), . . . , θi,i−1 + vΩi−1(θ),−∞

︸︷︷︸
i

, . . . ,−∞) ∈ R
N.

These definitions are indeed valid as per Lemma 8.1, property 5.

proof of DPΩ(θ) convexity. Since vΩ1 (θ) = 0, it is trivially con-
vex. Assume that vΩ2 (θ), . . . , vΩi−1(θ) are convex. Then, vΩi (θ) is
the composition of maxΩ and uΩ

i , a convex function and a function
which outputs a vector whose each coordinate is convex in θ. By in-
duction, since maxΩ is non-decreasing per coordinate (cf. Lemma 8.1
property 4), vΩi (θ) is convex (e.g., Boyd and Vandenberghe, 2004, Sec-
tion 3.2.4). Therefore vΩi (θ) is convex for all i ∈ [N] and DPΩ(θ) =

vΩN(θ) is convex.

proof of DPΩ(θ) bound. We clearly have vΩ1 (θ) > v01(θ). As-
sume that vΩj (θ) > v0j (θ) − (j− 1)UΩ,N for all j ∈ {2, . . . , i− 1}. That
is, uΩ

i (θ) > u0
i (θ) − (i− 2)UΩ,N1, where 1 ∈ R

N is the unit vector.
Then, by induction, we have

maxΩ(uΩ
i (θ)) > maxΩ(u0

i (θ)) − (i− 2)UΩ,N

> max(u0
i (θ)) − (i− 1)UΩ,N,

where we used Lemma 8.1, properties 1, 2 and 4. Therefore vΩi (θ) >
v0i (θ)−(i−1)UΩ,N for all i ∈ [N] and hence, DPΩ(θ) > LP(θ)−(N−

1)UΩ,N. Using a similar reasoning we obtain v0i (θ) − (i− 1)LΩ,N >
vΩi (θ) and therefore LP(θ) − (N− 1)LΩ,N > DPΩ(θ). To summarize,
we obtain

LP(θ) − (N− 1)LΩ,N > DPΩ(θ) > LP(θ) − (N− 1)UΩ,N,

which concludes the proof. Note that using property 1 of Lemma 8.1,
this immediately implies a bound involving LPΩ(θ) instead of LP(θ).

proof that Ω = −γH ⇒ DPΩ(θ) = LPΩ(θ). We first show that
maxΩ is associative.

Lemma B.1. Associativity of maxΩ when Ω = −γH

We have maxΩ(maxΩ(x), c) = maxΩ(x, c) ∀x ∈ R
D, c ∈ R.

B.1 proofs and detailed derivations 166

Proof. We simply use the closed form of maxΩ when Ω = −γH (cf.
Section B.2.1):

maxΩ(maxΩ(x), c) = γ log(exp(maxΩ(x)/γ) + exp(c/γ))

= γ log

(

exp

(

log
D∑

i=1

exp(xi/γ)

)

+ exp(c/γ)

)

= γ log

(

D∑

i=1

exp(xi/γ) + exp(c/γ)

)

= maxΩ(x, c),

and the lemma follows.

Using our shorthand notation, Lemma B.1 can be used to write

maxΩ
(y1,...,yi,...,yL)

f(y) = maxΩ
v

maxΩ
(y1,...,v,...,yL)

f(y).

This is precisely the associative property that we used in the proof of
Proposition 8.1. The second property that we used, the distributivity
of + over max, holds for any maxΩ, as per Lemma 8.1 property 2.
Thus, the same proof as Proposition 8.1 is also valid when we sub-
stitute max with maxΩ, when Ω = −γH, which yields LPΩ(θ) =

DPΩ(θ).

proof that Ω = −γH⇐ DPΩ(θ) = LPΩ(θ). Mirroring the previ-
ous proof, we first characterize the regularizations Ω for which maxΩ
is associative.

Lemma B.2. Let Ω : △D → R be a regularization function, i. e., domΩ =

△D. Assume that there exist ω convex lower-semi-continuous defined on

[0, 1] such that Ω(q) =
∑d

i=1ω(qi). If

maxΩ(maxΩ(x), c) = maxΩ(x, c) ∀x ∈ R
D, c ∈ R,

then Ω(q) = −γ
∑d

i=1 qi log(qi) for some γ > 0.

Proof. We start by writing the associativity property for three ele-
ments. For all x1, x2, x3 ∈ R,

maxΩ
(

(x1, x2, x3)
)

= maxΩ
(

maxΩ(x1, x2), x3)
)

= max
q+q3=1
q,q3>0

q max
q̃1+q̃2=1

q̃i>0

(

q̃1x1 + q̃2x2 −ω(q̃1) −ω(q̃2)
)

+ q3x3 −ω(q3) −ω(q)

= max
q1+q2+q3=1

qi>0

q1x1 + q2x2 + q3x3 −Φ(q1, q2, q3),

where we define Φ(q1, q2, q3) as

(q1 + q2)
(

ω
(q1

q1 + q2

)

+ω
(q2

q1 + q2

)

)

+ω(q1 + q2) +ω(q3).

B.1 proofs and detailed derivations 167

We have performed a variable change q1,2 = q q̃1,2 at the second line,
and noticed q = q1 + q2. Therefore

maxΩ
(

(x1, x2, x3)
)

= Φ⋆(x1, x2, x3),

where Φ⋆ is the convex conjugate of Φ restricted to]0, 1]3. By def-
inition, we also have maxΩ

(

(x1, x2, x3)
)

= Ω⋆(x1, x2, x3), so that
Ω⋆ = Φ⋆ on R

3. As Ω is convex and lower semi-continuous, we
can apply Moreau-Yoshida theorem and obtain Ω⋆⋆ = Ω = Φ⋆⋆ 6 Φ.

Suppose that there exists q = (q1, q2, q3) ∈ △3 such that we
have Φ(q1, q2, q3) < Ω(q1, q2, q3). Given the forms of Φ and Ω,
Φ(q1, q2, 0) < Ω(q1, q2, 0). We let x = (x1, x2,−∞) ∈ R

3 such that

maxΩ(x1, x2,−∞) = maxΩ(x1, x2)

= x1q1 + x2q2 −ω(q1) −ω(q2) = 〈x,q〉−Ω(q)

< 〈x,q〉−Φ(q) 6 max
q∈△3

〈x,q〉−Φ(q)

= maxΩ
(

maxΩ(x1, x2),−∞)
)

,

leading to a contradiction. Therefore Ω > Φ over △3, and finally
Ω = Φ. We have used the fact that the operator ∇maxΩ : R

2 → △2

is surjective, as △2 is a one-dimensional segment, ∇maxΩ is contin-
uous and reaches the extreme values ∇maxΩ(0,−∞) = (1, 0) and
∇maxΩ(−∞, 0) = (0, 1) — which allows to use the intermediate
value theorem.

To conclude, for all q1, q2 ∈]0, 1] such that q1 + q2 6 1, we have

ω(q1) +ω(q2) = (q1 + q2)
(

ω
(q1

q1 + q2

)

+ω
(q2

q1 + q2

)

)

+ω(q1 + q2),

and thus, for all 0 < y 6 1, 0 < x < 1,

ω(xy) +ω((1− x)y) −ω(y) = y(ω(x) +ω(1− x)) (B.1)

where we have set y = q1 + q2 and x = q1

q1+q2
. The functional equa-

tion (B.1) was first studied in the field of information theory. As first
shown by Horibe (1988, Theorem 0), and further extended (Gselmann,
2011), all measurable solutions have the form

ω(x) = −γx log(x),

where γ > 0 is a constant. The lemma follows.

Assuming that Ω is not equal to −γH for any γ > 0, the previous
lemma tells us that the associativity property is not met for a triplet
(x1, x2, x3) ∈ R

3. In Figure B.1, we construct a graph G such that

DPΩ(θ) = maxΩ(maxΩ(x1, x2), x3) 6= LPΩ(θ) = maxΩ(x1, x2, x3)

The proposition follows.

b.1.4 Computation of ∇LPΩ(θ) and interpretation as an expectation

We show that ∇LPΩ(θ) ∈ conv(Y), and characterize a path distri-
bution of which ∇LPΩ(θ) is the expectation.

B.1 proofs and detailed derivations 168

0 1
x1

2

x2

3

x3

4
0

0

5

0

6
0

0

Figure B.1 – In general, v6(θ) = DPΩ(θ) 6= LPΩ(θ).

convex hull of Y. We rewrite LPΩ(θ) = maxΩ(u(θ)), where
u(θ) , (〈Y ,θ〉)Y∈Y. Using the chain rule, we have

∇LPΩ(θ) = Ju(θ)
⊤∇maxΩ(u(θ)), (B.2)

where Ju is the Jacobian of u w.r.t. θ, a matrix of size |Y|× (N×N).
The horizontal slices of Ju are exactly all the paths Y of Y. Using
∇maxΩ(u(θ)) ∈ △|Y|, we conclude that ∇LPΩ(θ) ∈ conv(Y).

induced distribution. From (B.2), we see that the regularized
gradient ∇LPΩ(θ) rewrites as

∑
Y∈Y pθ,Ω(Y) Y , where we define the

distribution

pθ,Ω(Y) ,
(

∇maxΩ(u(θ))
)

Y∈Y
.

Unfortunately, since u(θ) ∈ R
|Y|, computing pθ,Ω(Y), let alone the

expectation Eθ,Ω[Y] under that distribution, is intractable for gen-
eral Ω.

b.1.5 Proof of Proposition 8.3 (computation of ∇DPΩ(θ))

gradient computation. We first derive the recursion over E ,
∇DPΩ(θ) using sensitivity analysis, a.k.a backpropagation calculus.
For any (i, j) ∈ E, since θi,j influences only vi, a straightforward
application of the chain rule gives

ei,j =
∂vN

∂θi,j
=

∂vN

∂vi

∂vi

∂θi,j
. (B.3)

Recall that v = (v1, . . . , vN) and qi , ∇maxΩ(θi + v). With this
vector defined, we can now easily derive the two terms on the r.h.s
of (B.3). Differentiating (8.6) w.r.t. θi,j straightforwardly gives the
second term ∂vi

∂θi,j
= qi,j.

The first term must be computed recursively. Recall that Cj denotes
the children of node j. Since a node j influences only its children
i ∈ Cj, using the chain rule, we get

∂vN

∂vj
=

∑

i∈Cj

∂vN

∂vi

∂vi

∂vj
, ēj. (B.4)

Differentiating (8.6) w.r.t. vj again gives ∂vi

∂vj
= qi,j. By definition, we

also have ∂vN

∂vi
= ēi and ei,j = ēiqi,j. Hence,

ēj =
∑

i∈Cj

ēiqi,j =
∑

i∈Cj

ei,j.

B.1 proofs and detailed derivations 169

Combining the above, for any j ∈ [N − 1], we obtain the following
two-step recursion

∀ i ∈ Cj, ei,j = ēiqi,j and ēj =
∑

i∈Cj

ei,j.

The values (ei,j)(i,j)∈E
can thus be computed in reverse topological

order over the nodes of G, initializing ēN = ∂vN

∂vN
= 1. The pseudo-

code is summarized in Algorithm 5.

associated random walk . It remains to show that E is also the
expectation of Y ∈ Y support of the following random walk, defined
informally in the main text. Formally, we define the random sequence
(wt)t as

w0 = N, ∀ t > 0, ∀ i ∈ [N], ∀ j ∈ Pi, P[wt = j|wt−1 = i] = qi,j.

We set yi,j , {∃ t > 0 s.t. wt−1 = i,wt = j} where is the character-
istic function of an event, thereby defining a random variable Y ∈ Y,
with distribution D. We leave implicit the dependency of P in θ and
Ω. As the depth of wt (number of edges to connect to the root node)
is strictly decreasing with t, (wt)t reaches node 1 in finite time with
probability one and is constant after this event. We introduce the
random variables (ȳj)j, defined for all j ∈ [N] as

ȳj , {∃ t > 0,wt = j} =
∑

i∈Cj

yi,j if j 6= N, 0 otherwise.

By definition, using the fact that P[wt = j|wt−1 = i] is independent
of t (Markov property), for all i ∈ Cj and for all j ∈ [N− 1], we have

P[yi,j = 1] = E[yi,j]

= P[∃ t > 0,wt−1 = i]P[wt = j|wt−1 = i] = E[ȳi]qi,j.

Linearity of the expectation then provides

E[ȳj] =
∑

i∈Cj

E[yi,j],

with initialization E[ȳN] = 1. We recover the same two-step recursion
as the one defining E and ē, with the same initialization. Hence the
probabilistic interpretation of the gradient, where the expectation is
taken with respect to the distribution D of Y :

E = Eθ,Ω[Y] and ē = Eθ,Ω[ȳ].

B.1 proofs and detailed derivations 170

Algorithm 5 Compute DPΩ(θ) and ∇DPΩ(θ)

Input: Edge weights θ ∈ R
N×N

v1 ← 0, ēN ← 1, Q,E← 0 ∈ R
N×N

for i ∈ [2, . . . ,N] do ⊲ Topological order
vi ← maxΩ

j∈Pi

θi,j + vj

(qi,j)j∈Pi
← ∇maxΩ

j∈Pi

θi,j + vj

for j ∈ [N− 1, . . . , 1] do ⊲ Reverse topological order
∀ i ∈ Cj, ei,j ← qi,jēi, ēj ←

∑
i∈Cj

ei,j

Return: DPΩ(θ) = vN, ∇DPΩ(θ) = E ∈ R
N×N

Intermediate computation for Algorithm 6

ē , [ē]Ni=1 ∈ R
N, Q ∈ R

N×N

Algorithm 6 Compute 〈∇DPΩ(θ),Z〉 and ∇2DPΩ(θ)Z

Input: Edge weights and perturbation θ,Z ∈ R
N×N

Call Algorithm 5 with input θ to get ē and Q

v̇1 ← 0; ˙̄eN ← 0, Q̇, Ė← 0 ∈ R
N×N

for i ∈ [2, . . . ,N] do ⊲ Topological order
v̇i ←

∑
j∈Pi

qi,j(zi,j + v̇j) (A1)
(q̇i,j)j∈Pi

← JΩ
(

(qi,j)j∈Pi

)

(zi,j + v̇j)j∈Pi
(A2)

for j ∈ [N− 1, . . . , 1] do ⊲ Reverse topological order
∀ i ∈ Cj, ėi,j ← q̇i,jēi + qi,j ˙̄ei (A3)
˙̄ej ←

∑
i∈Cj

ėi,j

Return: 〈∇DPΩ(θ),Z〉 = v̇N
∇2DPΩ(θ)Z = Ė ∈ R

N×N

b.1.6 Computation of the directional derivative 〈∇DPΩ(θ),Z〉

The derivations of the following two sections allows to write Algo-
rithm 6. Let v̇i , 〈∇vi(θ),Z〉, where vi(θ) is defined in (8.6). Since
vi only directly depends on vj + θi,j for j ∈ Pi, a straightforward
differentiation of 〈∇vi(θ),Z〉 gives

v̇i =
∑

j∈Pi

∂vi

∂vj

(

v̇j + zi,j
)

.

Recall that ∂vi

∂vj
= qi,j and has already been obtained when computing

∇DPΩ(θ). Hence equation (A1), reproduced here:

∀ i ∈ [2, . . . ,N] : v̇i =
∑

j∈Pi

qi,j(v̇j + zi,j). (B.5)

This recursion can be computed in topological order, starting from
v̇1 = 0 to finish at v̇N = 〈∇DPΩ(θ),Z〉.

B.1 proofs and detailed derivations 171

b.1.7 Computation of the Hessian-vector product ∇2DPΩ(θ)Z

For convenience, let us define ∇2DPΩ(θ)Z , Ė. For (i, j) /∈ E, we
evidently have ėi,j = 0. For (i, j) ∈ E, since θi,j influences only vi and
v̇i, we obtain

ėi,j =
∂v̇N

∂θi,j
=

∂v̇N

∂vi

∂vi

∂θi,j
+

∂v̇N

∂v̇i

∂v̇i

∂θi,j
.

We will now show how to derive each of the right-hand side terms
in turn. We already know that ∂vi

∂θi,j
= qi,j. We also have ∂v̇N

∂v̇i
=

ui. Indeed, observe that v̇j only directly influences v̇i for i ∈ Ci.
Therefore, we have

∂v̇N

∂v̇j
=

∑

i∈Cj

∂v̇N

∂v̇i
qi,j ∀j ∈ [N− 1] (B.6)

and ∂v̇N

∂v̇1
= 1. Comparing (B.4) and (B.6), we see that (∂v̇N

∂v̇i
)
i

follows

the same recursion as (∂vN

∂vi
)
i
. Since ∂v̇N

∂v̇n
= ∂vN

∂vn
, both sequences are

equal:

∂v̇N

∂v̇i
=

∂vN

∂vi
= ei.

Next, we derive ∂v̇i

∂θi,j
. Since, for j ∈ Pi, v̇j + zi,j does not depend on

θi,j, differentiating (B.5) w.r.t. θi,j, we obtain

∂v̇i

∂θi,j
=

∑

k∈Pi

∂qi,j

∂θi,j
(v̇k + zi,k)

=
∑

k∈Pi

∂2vi

∂θi,j∂θi,k
(v̇k + zi,k) , q̇i,j.

This can be conveniently rewritten in a vectorial form as

q̇i = ∇2maxΩ(θi + v) (zi + v̇) = JΩ(qi) (zi + v̇),

where we have defined v̇ , (v̇1, . . . , v̇N) and where we have used the
function JΩ defined in Section B.2.1, that conveniently computes the
Hessian of maxΩ from its gradient. The Hessian has this form for
both negentropy and ℓ22 regularizations. In a practical implementa-
tion, we only need to compute the coordinates (i, j) of Q̇, for j ∈ Pi.
Namely, as specified in (A2),

(q̇i,j)j∈Pi
← JΩ

(

(qi,j)j∈Pi

)

(zi,j + v̇j)j∈Pi
.

Finally, we derive ∂v̇N

∂vi
. Since vj influences only vi and v̇i for i ∈ Cj,

the chain rule gives

∂v̇N

∂vi
=

∑

j∈Ci

∂v̇N

∂vj

∂vj

∂vi
+

∂v̇N

∂v̇j

∂v̇j

∂vi
=

∑

j∈Cj

ėi,j , ˙̄ei.

Combining the above, for any j ∈ [N − 1], we obtain the following
two-step recursion (A3), reproduced here:

B.2 examples of algorithm instantiations 172

∀ i ∈ Cj, ėi,j = q̇i,jei + qi,j ˙̄ei and ˙̄ej =
∑

i∈Cj

ėi,j.

Similarly to the computation of ∇DPΩ(θ), our algorithm computes
this recursion in reverse topological order over the graph G, yielding
∇2DPΩ(θ)Z = Ė.

b.2 examples of algorithm instantiations

We provide the explicit forms of maxΩ and its derivative for the
negentropy and ℓ22 regularizations. Then, we provide details and
pseudo-code for the two instances of differentiable dynamic program-
ming presented in Section 8.4.

b.2.1 Examples of maxΩ

Negative entropy. When Ω(q) = γ
∑D

i=1 qi logqi, where γ > 0

(smaller is less regularized), we obtain

maxΩ(x) = γ log

(

D∑

i=1

exp(xi/γ)

)

∇maxΩ(x) = exp(x/γ)
/

D∑

i=1

exp(xi/γ)

∇2maxΩ(x) = JΩ(∇maxΩ(x)),

where JΩ(q) , (Diag(q) − qq⊤)/γ. Note that ∇maxΩ(x) recovers
the usual “softmax” with temperature γ = 1. For a proof of the ex-
pression of maxΩ, see, e.g., (Boyd and Vandenberghe, 2004, Example
3.25).

squared ℓ2 norm . When Ω(x) = γ
2 ‖x‖22 with γ > 0, we obtain the

following expressions

maxΩ(x) = 〈q⋆, x〉− γ

2
‖q⋆‖22

∇maxΩ(x) = argmin
q∈△D

‖q− x/γ‖22 = q⋆

∇2maxΩ(x) = JΩ(∇maxΩ(x)),

where JΩ(q) , (Diag(s) − ss⊤/‖s‖1)/γ and s ∈ {0, 1}D is a vector
that indicates the support of q. Note that ∇maxΩ(x) is precisely the
Euclidean projection onto the simplex of x/γ and can be computed
exactly in worst-case O(D logD) time using the algorithm of (Mich-
elot, 1986) or in expected O(D) time using the randomized pivot al-
gorithm of (Duchi et al., 2008). It can be efficiently performed on
Nvidia GPUs since recently. An important benefit of the squared ℓ2
norm, compared to the negative entropy, is that ∇maxΩ(x) tends to
be sparse. This is useful, among other things, to define sparse atten-
tion mechanisms (Martins and Astudillo, 2016; Niculae and Blondel,
2017).

B.2 examples of algorithm instantiations 173

b.2.2 Sequence prediction with the smoothed Viterbi algorithm

computational graph . As illustrated in Section 8.4, the DAG
contains a start node, S nodes for each time step and end node. There-
fore |V| = N = TS+ 2. Only nodes from consecutive time steps are
connected to each other. Taking into account the start and end nodes,
the total number of edges is therefore |E| = (T − 1)S2 + 2S.

representation. We follow the notation of Section 8.4, i.e. we
represent Y and θ as T ×S×S tensors (we can safely ignore the edges
connected to the end node since their value is 0). We represent Y as
a binary tensor such that yt,i,j = 1 if Y is in states i and j in time
steps t and t− 1, and yt,i,j = 0 otherwise. Likewise, we represent the
potentials θ as a real tensor such that θt,i,j contains the potential of
transitioning from state j to state i on time t.

algorithms . Applying recursion (8.6) to this specific DAG, we ob-
tain a smoothed version of the Viterbi algorithm. Let vt,i be the score
of being in state i up to time t. We can rewrite the smoothed Bellman
recursion as

vt,i(θ) , maxΩ
j∈[S]

vt−1,j(θ) + θt,i,j = maxΩ(vt−1(θ) +θt,i).

The value VitΩ(θ) , maxΩ(vT (θ)) can be computed in topological
order, starting from v0(θ). The total computational cost is O(TS2). Us-
ing the computations of Section 8.3.3 and Section 8.3.4 to this specific
DAG, we can compute ∇VitΩ(θ), 〈∇VitΩ(θ),Z〉 and ∇2VitΩ(θ)Z

with the same complexity. The procedures are summarized in Algo-
rithm 7 and Algorithm 8, respectively. From Proposition 8.2 property
1, VitΩ(θ) is a convex function for any Ω.

Algorithm 7 Compute VitΩ(θ) and ∇VitΩ(θ)

Input: Potential scores θ ∈ R
T×S×S

⊲ Forward pass
v0 = 0S

for t ∈ [1, . . . , T], i ∈ [S] do

vt,i = maxΩ(θt,i + vt−1)

qt,i = ∇maxΩ(θt,i + vt−1)

vT+1,1 = maxΩ(vT); qT+1,1 = ∇maxΩ(vT)

⊲ Backward pass
uT+1 = (1, 0, . . . , 0) ∈ R

S

for t ∈ [T, . . . , 0], j ∈ [S] do

et,·,j = qt+1,·,j ◦ut+1; ut,j = 〈et,·,j, 1S〉
Return: VitΩ(θ) = vT+1,1

∇VitΩ(θ) = (et−1,i,j)
T,S,S
t=1,i,j=1

Intermediary computations for Alg. 8:
Q , (q)T+1,S,S

t=1,i,j=1,U , (u)T+1,S
t=1,j=1

B.2 examples of algorithm instantiations 174

Algorithm 8 Compute 〈∇VitΩ(θ),Z〉 and ∇2VitΩ(θ)Z

Input: Z ∈ R
T×S×S,θ ∈ R

T×S×S

Call Alg. 7 with input θ to get U, Q
⊲ Forward pass
v̇0 = 0S

for t ∈ [1, . . . , T], i ∈ [S] do

v̇t,i = 〈qt,i, zt,i + v̇t−1〉
q̇t,i = JΩ(qt,i) (zt + v̇t−1)

v̇T+1,1 = 〈qT+1,1, v̇T 〉; q̇T+1,1 = JΩ(q̇T+1,1) v̇T
⊲ Backward pass
u̇T+1 = 0S; Q̇T+1 = 0S×S

for t ∈ [T, . . . , 0], j ∈ [S] do

ėt,·,j = qt+1,·,j ◦ u̇t+1 + q̇t+1,·,j ◦ut+1

u̇t,j = 〈ėt,·,j, 1S〉
Return: 〈VitΩ(θ),Z〉 = v̇T+1

∇2VitΩ(θ)Z = (ėt−1,i,j)
T,S,S
t=1,i,j=1

b.2.3 Monotonic alignment prediction with the smoothed DTW

computational graph . As illustrated in Section 8.4, the DAG

contains a start node and NANB nodes. Therefore, the number of
vertices |V| is NANB + 1. Due to the monotonic constraint, each node
may only be connected with at most 3 other nodes. The cardinality
of Y is the Delannoy number (NA−1,NB−1), as studied by Banderier
and Schwer (2005) and Sulanke (2003). That number grows exponen-
tially with NA and NB.

representation. We follow the notation of Section 8.4, i.e. we
represent Y and θ as NA ×NB matrices. We represent Y as a binary
matrix such that yi,j = 1 if ai is aligned with bj, and yi,j = 0 oth-
erwise. Likewise, we represent θ as a real matrix such that θi,j is a
measure of “discrepancy” between ai and bj.

algorithms . Following the DTW literature (Sakoe and Chiba, 1978),
we seek an alignment with minimal cost. For that reason, we introduce
the smoothed min operator, its gradient and its Hessian as follows

minΩ(x) , −maxΩ(−x)

∇minΩ(x) = ∇maxΩ(−x)

∇2minΩ(x) = −∇2maxΩ(−x)

= −JΩ(∇maxΩ(−x))

= −JΩ(∇minΩ(x)).

Applying (8.6) to the DTW DAG gives rise to a smoothed version of
the algorithm. Let vi,j(θ) be the alignment cost up to cell (i, j). Then
the smoothed DTW recursion is

vi,j(θ) = θi,j + minΩ(vi,j−1(θ), vi−1,j−1(θ), vi−1,j(θ))

B.2 examples of algorithm instantiations 175

The value DTWΩ(θ) , vNA,NB
(θ) can be computed in O(NANB)

time. Applying the derivations of Section 8.3.3 and Section 8.3.4
to this specific DAG, we can compute ∇DTWΩ(θ), 〈∇DTWΩ(θ),Z〉
and ∇2DTWΩ(θ)Z with the same complexity. The procedures, with
appropriate handling of the edge cases, are summarized in Algorithm
9 and 10, respectively.

Note that when Ω is the negative entropy, DTWΩ(θ) is known as
soft-DTW (Cuturi and Blondel, 2017). While the DP computation of
DTWΩ(θ) and of its gradient were already known, the generalization
to any strongly convex Ω and the computation of ∇2DTWΩ(θ)Z are
new. From Proposition 8.2 property 1, DTWΩ(θ) is a concave function
of the discrepancy matrix θ for any Ω. With respect to time-series,
DTWΩ is neither convex nor concave.

Algorithm 9 Compute DTWΩ(θ) and ∇DTWΩ(θ)

Input: Distance matrix θ ∈ R
NA×NB

⊲ Forward pass
v0,0 = 0; vi,0 = v0,j = ∞, i ∈ [NA], j ∈ [NB]

for i ∈ [1, . . . ,NA], j ∈ [1, . . . ,NB] do

vi,j = di,j + minΩ(vi,j−1, vi−1,j−1, vi−1,j)

qi,j = ∇minΩ(vi,j−1, vi−1,j−1, vi−1,j) ∈ R
3

⊲ Backward pass
qi,NB+1 = qNA+1,j = 03, i ∈ [NA], j ∈ [NB]

ei,NB+1 = eNA+1,j = 0, i ∈ [NA], j ∈ [NB]

qNA+1,NB+1 = (0, 1, 0); eNA+1,NB+1 = 1

for j ∈ [NB, . . . , 1], i ∈ [NA, . . . , 1] do

ei,j = qi,j+1,1 ei,j+1 + qi+1,j+1,2 ei+1,j+1 + qi+1,j,3 ei+1,j

Return: DTWΩ(θ) = vNA,NB

∇DTWΩ(θ) = (e)NA,NB

i,j=1

Intermediate computations for Algo. 10:
Q , (q)NA+1,NB+1,3

i,j,k=1 ; E , (e)NA+1,NB+1
i,j=1

B.3 experimental details and further results 176

Algorithm 10 Compute 〈∇DTWΩ(θ),Z〉, ∇2DTWΩ(θ) Z

Input: θ ∈ R
NA×NB ,Z ∈ R

NA×NB

Call Algo. 9 with input θ to retrieve Q and E

⊲ Forward pass
v̇i,0 = v̇0,j = 0, i ∈ [0, . . . ,NA], j ∈ [NB]

for i ∈ [1, . . . ,NB], j ∈ [1, . . . ,NA] do

v̇i,j = zi,j + qi,j,1 v̇i,j−1 + qi,j,2 v̇i−1,j−1 + qi,j,3 v̇i−1,j

q̇i,j = −JΩ(qi,j) (v̇i,j−1, v̇i−1,j−1, v̇i−1,j) ∈ R
3

⊲ Backward pass
q̇i,NB+1 = q̇NA+1,j = 03, i ∈ [0, . . . ,NA], j ∈ [NB]

ėi,NB+1 = ėNA+1,j = 0, i ∈ [0, . . . ,NA], j ∈ [NB]

for j ∈ [NB, . . . , 1], i ∈ [NA, . . . , 1] do

ėi,j = q̇i,j+1,1 ei,j+1 + qi,j+1,1 ėi,j+1+

q̇i+1,j+1,2 ei+1,j+1 + qi+1,j+1,2 ėi+1,j+1+

q̇i+1,j,3 ei+1,j + qi+1,j,3 ėi+1,j

Return: 〈∇DTWΩ(θ),Z〉 = v̇NA,NB

∇2DTWΩ(θ) Z = (ė)NA,NB

i,j=1

b.3 experimental details and further results

Finally, we provide details on the architecture used in experiments,
with additional figures.

b.3.1 Named entity recognition (Section 8.5.2)

Our model extracts word embedding from a 300-dimensional look-
up table concatenated with a 50-dimensional character embedding.
This character embedding corresponds to the concatenation of the
last hidden unit of a bi-directional character LSTM, as in Lample et
al. (2016). Character embedding size is set to 50. A word LSTM
then produces sentence-aware features for each word. This LSTM is
bi-directional with 100-dimensional hidden units per direction. The
final features X used to build the potential tensor θ are thus 200-
dimensional. Note that, in contrast with Lample et al. (2016):

— The look-up table is initialized with 300-dimensional embed-
dings from FastText (Joulin et al., 2016), trained on Wikipedia
corpus.

— We do not pad letters prior to feeding the character LSTM as it
is not principled.

— We do not train the unknown word embedding as we found it
had no effect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme
to build a richer VitΩ model than if we used the simpler IOB (Inside-
Outside-Begin) scheme, that has a lower number of tags. We per-
formed a small grid-search to select the step-size and batch-size used
for optimization: s ∈ {0.005, 0.01, 0.02}, b ∈ {8, 32, 128}. For each lan-
guage and each loss, we select the highest-scoring model on the vali-
dation set, and report the test score.

B.3 experimental details and further results 177

The model is strongly subject to overfitting using the convex surro-
gate loss and the log likelihood. We have to use a small batch size
(b = 8) and vanilla SGD with large step size (s = 0.01) to avoid
this overfitting issue. For all losses, accelerated stochastic optimizers
have all lower generalization performance than SGD. This was also
noticed by Lample et al. (2016) when using the classical negative log-
likelihood as a loss.

b.3.2 Supervised audio-to-score transcription (Section 8.5.3)

Audio sequences, sampled at 22.05 kHz, are split into frames of
512 samples. We extract the following features from these sequences:
energy, spectral centroid, spectral bandwidth, and the 5 first Mel-
frequency cepstral coefficients (MFCC) features. All features are cen-
tered around the median and normalized. The ∇DTWΩ layer is writ-
ten in Cython 1, and hence run on CPU. This technical choice was sug-
gested by the fact that we have to write explicit loops to specify the
topological and reverse topological pass over the DTW computation
graph (see Algorithm 9). However, it is possible to use only contigu-
ous vector operations and thus take advantage of GPU computations
— this is left for future work. We use SciPy’s 2 LBFGS-B solver to per-
form end-to-end training and multinomial regression. We use a ℓ22
regularization on the weight W,: we selected it using a grid search
over {10−5, 10−4, . . . , 1} and selected 10−3.

b.3.3 Structured and sparse attention (Section 8.6)

We use OpenNMT-py library 3 to fit our structured attention model.
Model architecture and optimization details are as follow:

— We use a bidirectional LSTM encoder and decoder, with 500

units in each direction and a depth of 2 layers .
— The decoder is fed with the input representation as in Luong

et al. (2015).
— SGD training with s = 1 learning rate, decaying from epoch 8 to

epoch 15 with rate 0.65, batch size of size 256.
— Training sentence of lengths superior to 50 are ignored, and

translated sentence are forced to a length inferior to 100.
— The temperature parameter is set to γ = 2 for entropy, and

γ = 10 for ℓ22. Performance is not affected much by this param-
eter, provided that it is not set too low in the ℓ22 case — with a
too small γ, VitΩ reduces to unregularized MAP estimation and
∇VitΩ has zero derivatives.

We use a 1-million sentence subject of WMT14 English-to-French cor-
pus, available at http://nmt-benchmark.net/. We use Moses tok-
enizer and do not perform any post-processing, before computing
BLEU score on detokenized sentences (multi_bleu.perl script).

1. http://cython.org/
2. http://scipy.org/
3. http://opennmt.net/

B.3 experimental details and further results 178

Table B.1 – Detokenized BLEU score on newstest2014 data, comparing soft-
max attention with structured attention.

Attention model WMT14 1M fr→en WMT14 en→fr

Softmax 27.96 28.08

Entropy regularization 27.96 27.98

ℓ22 reg. 27.21 27.28

implementation. We implemented a batch version of the ∇VitΩ
layer on GPU, using the PyTorch tensor API. Model with negentropy-
regularized attention mechanism runs 1/2 as fast as the softmax at-
tention mechanism (approximately 7500 tokens/s vs 15000 tokens/s
on a single Nvidia Titan X Pascal). With ℓ22 regularization, it is only
1/3 as fast: approximately 5000 tokens/s. Although this remains rea-
sonable, it could certainly be optimized by rewriting kernels using
lower-level languages (e.g., using ATen API from PyTorch.)

further results . Table B.1 provides BLEU scores for both trans-
lation directions on the 1 million sentence subset of WMT14 we used.
We observe that the introduction of structure and sparsity does not
hinder the general performance of the model. We provide several
examples of attention maps in Figure B.2, that illustrate the sparsity
patterns ℓ22 regularization uncovers.

B.3 experimental details and further results 179

L’
aff
ai
re

N
SA

so
ul
ig
ne l’

ab
se
nc
e

to
ta
le de

dé
ba
t

su
r le

re
ns
ei
gn
em

en
t

The

NSA

case

highlights

the

total

absence

of

debate

on

intelligence

.

(eos)

Regular attention

L’
aff
ai
re

N
SA

so
ul
ig
ne l’

ab
se
nc
e

to
ta
le de

dé
ba
t

su
r le

re
ns
ei
gn
em

en
t

The

NSA

case

highlights

the

complete

lack

of

debate

on

intelligence

.

(eos)

Structured attention — entropy

L’
aff
ai
re

N
SA

so
ul
ig
ne l’

ab
se
nc
e

to
ta
le de

dé
ba
t

su
r le

re
ns
ei
gn
em

en
t

The

NSA

case

highlights

the

total

lack

of

debate

on

intelligence

.

(eos)

Structured attention — L2

A
ti
tr
e d’

ex
em

pl
e , la

pr
és
en
ce de

M
oh
am

m
ed

M
er
ah

da
ns le
s

zo
ne
s

tr
ib
al
es à

M
ira
ns
ha
h a

ét
é

si
gn
al
éeau
x

Fr
an
ça
is

gr
âc
e

au
x

m
oy
en
s de la

N
SA
.

For
example

,
the

presence
of

Mohammed
Merah

in
the

tribal
areas

in
Miranshah

was
reported

to
the

French
through

the
means

of
NSA

.
(eos)

Regular attention

A
ti
tr
e d’

ex
em

pl
e , la

pr
és
en
ce de

M
oh
am

m
ed

M
er
ah

da
ns le
s

zo
ne
s

tr
ib
al
es à

M
ira
ns
ha
h a

ét
é

si
gn
al
éeau
x

Fr
an
ça
is

gr
âc
e

au
x

m
oy
en
s de la

N
SA
.

For
example

,
the

presence
of

Mohammed
Merah

in
the

tribal
areas

in
Miranshah

was
reported

to
the

French
through

the
means

of
NSA

.
(eos)

Structured attention — entropy

A
ti
tr
e d’

ex
em

pl
e , la

pr
és
en
ce de

M
oh
am

m
ed

M
er
ah

da
ns le
s

zo
ne
s

tr
ib
al
es à

M
ira
ns
ha
h a

ét
é

si
gn
al
éeau
x

Fr
an
ça
is

gr
âc
e

au
x

m
oy
en
s de la

N
SA
.

For
example

,
the

presence
of

Mohammed
Merah

in
the

tribal
areas

in
Miranshah

was
reported

to
the

French
by

means
of

the
NSA

.
(eos)

Structured attention — L2

Le
pr
em

ie
r , c’es
t

lo
rs
qu
e

le
ur
s

al
lié
s - et ça aét
é le

ca
s

ré
ce
m
m
en
t -

ap
pr
en
ne
nt

qu
e

le
ur
s

di
rig
ea
nt
s ,

pa
rf
oi
s

au
pl
us

ha
ut

so
m
m
et dele
ur

E
ta
t ,

on
t

ét
é

su
rv
ei
llé
s .

The
first
is

when
their
allies

–
and
this
was
the
case

recently
–

learn
that
their

leaders
,

at
the

highest
peak

of
their
state

,
were

monitored
.

(eos)

Regular attention

Le
pr
em

ie
r , c’es
t

lo
rs
qu
e

le
ur
s

al
lié
s - et ça aét
é le

ca
s

ré
ce
m
m
en
t -

ap
pr
en
ne
nt

qu
e

le
ur
s

di
rig
ea
nt
s ,

pa
rf
oi
s

au
pl
us

ha
ut

so
m
m
et dele
ur

E
ta
t ,

on
t

ét
é

su
rv
ei
llé
s .

The
first
is

when
their
allies

–
and
this
has

been
the
case

recently
–

learn
that
their

leaders
,

sometimes
at
the
top
of

their
state

,
have
been

monitored
.

(eos)

Structured attention — entropy

Le
pr
em

ie
r , c’es
t

lo
rs
qu
e

le
ur
s

al
lié
s - et ça aét
é le

ca
s

ré
ce
m
m
en
t -

ap
pr
en
ne
nt

qu
e

le
ur
s

di
rig
ea
nt
s ,

pa
rf
oi
s

au
pl
us

ha
ut

so
m
m
et dele
ur

E
ta
t ,

on
t

ét
é

su
rv
ei
llé
s .

The
first
is

when
their
allies

–
and
this
was
the
case

recently
–

learn
that
their

leaders
,

sometimes
at
the
top
of

their
state

,
were

monitored
.

(eos)

Structured attention — L2

L’
O
N
U

do
nn
e un

bi
la
n

m
êm

e
pl
us

él
ev
é

av
ec

97
9

m
or
ts et 1

90
2

bl
es
sé
s .

The
UN
is

giving
an

even
higher

balance
sheet
with
979
dead
and
1

injured
.

(eos)

Regular attention

L’
O
N
U

do
nn
e un

bi
la
n

m
êm

e
pl
us

él
ev
é

av
ec

97
9

m
or
ts et 1

90
2

bl
es
sé
s .

The
UN

gives
a

much
higher

balance
sheet
with
979
dead
and
1

902
injured

.
(eos)

Structured attention — entropy

L’
O
N
U

do
nn
e un

bi
la
n

m
êm

e
pl
us

él
ev
é

av
ec

97
9

m
or
ts et 1

90
2

bl
es
sé
s .

The
UN
has
a

higher
balance
sheet
with
979
dead
and
1

902
injured

.
(eos)

Structured attention — L2

Figure B.2: Attention on test samples from Newstest2014. Borders indicate non-zero cells. Translations (y-axis)
are often qualitatively equivalent, while attentions maps are sparse in the ℓ22 case.

Titre : Apprentissage de représentation en imagerie fonctionnelle

Mots clés : Apprentissage, imagerie fonctionnelle, factorisation de matrice, dictionnaire, optimisation

Résumé : Grâce aux avancées technologiques dans

le domaine de l’imagerie fonctionnelle cérébrale, les

neurosciences cognitives accumulent une grande

quantité de cartes spatiales décrivant de manière

quantitative l’activité neuronale suscitée dans le cer-

veau humain en réponse à des tâches ou des stimuli

spécifiques, ou de manière spontanée. Dans cette

thèse, nous nous intéressons particulièrement aux

données issues de l’imagerie par résonance magné-

tique fonctionnelle (IRMf), que nous étudions dans un

cadre d’apprentissage statistique. Notre objectif est

d’apprendre des modèles d’activité cérébrale à partir

des données. Nous proposons différentes nouvelles

manières de profiter de la grande quantité de don-

nées IRMf disponible. Tout d’abord, nous considé-

rons les données d’IRMf de repos, que nous traitons

grâce à des méthodes de factorisation de matrices.

Nous présentons de nouvelles méthodes pour calcu-

ler en un temps raisonnable une factorisation parci-

monieuse de matrices constituées de centaines d’en-

registrements d’IRMf. Cela nous permet d’extraire des

réseaux fonctionnels à partir de données d’une en-

vergure inédite. Notre méthode principale introduit

une réduction aléatoire de la dimension des don-

nées dans une boucle d’apprentissage en ligne. L’al-

gorithme proposé converge plus de 10 fois plus vite

que les meilleures méthodes existantes, pour diffé-

rentes configurations et sur plusieurs jeux de don-

nées. Nous effectuons une vaste validation expéri-

mentale de notre approche de sous-échantillonnage

aléatoire. Nous proposons une étude théorique des

propriétés de convergence de notre algorithme. Dans

un second temps, nous nous intéressons aux don-

nées d’IRMf d’activation. Nous démontrons comment

agréger différents études acquises suivant des pro-

tocoles distincts afin d’apprendre des modèles joints

de décodage plus justes et interprétables. Notre mo-

dèle multi-études apprend à réduire la dimension des

images cérébrales en entrée en même temps qu’il

apprend à les classifier, pour chacune des études, à

partir de leurs représentations réduites. Cela suscite

un transfert d’information entre les études. En consé-

quence, notre modèle multi-étude est plus performant

que les modèles de décodage appris sur chaque

étude séparément. Notre approche identifie une re-

présentation universellement pertinente de l’activité

cérébrale, supportée par un petit nombre de réseaux

optimisés pour l’identification de tâches.

Title: Learning representations from functional MRI data

Keywords: Machine learning, functional imaging, matrix factorization, dictionary, optimization, deep learning

Abstract: Thanks to the advent of functional brain-

imaging technologies, cognitive neuroscience is ac-

cumulating maps of neural activity responses to spe-

cific tasks or stimuli, or of spontaneous activity. In this

work, we consider data from functional Magnetic Res-

onance Imaging (fMRI), that we study in a machine

learning setting: we learn a model of brain activity that

should generalize on unseen data. After reviewing the

standard fMRI data analysis techniques, we propose

new methods and models to benefit from the recently

released large fMRI data repositories. Our goal is

to learn richer representations of brain activity. We

first focus on unsupervised analysis of terabyte-scale

fMRI data acquired on subjects at rest (resting-state

fMRI). We perform this analysis using matrix factor-

ization. We present new methods for running sparse

matrix factorization/dictionary learning on hundreds of

fMRI records in reasonable time. Our leading ap-

proach relies on introducing randomness in stochastic

optimization loops and provides speed-up of an order

of magnitude on a variety of settings and datasets.

We provide an extended empirical validation of our

stochastic subsampling approach, for datasets from

fMRI, hyperspectral imaging and collaborative filter-

ing. We derive convergence properties for our algo-

rithm, in a theoretical analysis that reaches beyond

the matrix factorization problem. We then turn to work

with fMRI data acquired on subject undergoing be-

havioral protocols (task fMRI). We investigate how to

aggregate data from many source studies, acquired

with many different protocols, in order to learn more

accurate and interpretable decoding models, that pre-

dicts stimuli or tasks from brain maps. Our multi-study

shared-layer model learns to reduce the dimensional-

ity of input brain images, simultaneously to learning

to decode these images from their reduced represen-

tation. This fosters transfer learning in between stud-

ies, as we learn the undocumented cognitive common

aspects that the many fMRI studies share. As a con-

sequence, our multi-study model performs better than

single-study decoding. Our approach identifies uni-

versally relevant representation of brain activity, sup-

ported by a few task-optimized networks learned dur-

ing model fitting. Finally, on a related topic, we show

how to use dynamic programming within end-to-end

trained deep networks, with applications in language.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Abstract
	Résumé
	Acknowledgments
	Contents
	Acronyms
	1 Overview
	1.1 Organization of the manuscript
	1.2 A note on chapter ordering

	 (MF for) Functional neuro-imaging
	2 Neuro-imaging background
	2.1 Studying the brain through functional MRI
	2.2 Resting-state functional MRI
	2.3 Task fMRI data analysis
	2.4 Conclusion

	3 Dictionary learning for fMRI
	3.1 Matrix factorization for resting-state fMRI
	3.2 Dictionary learning for resting-state fMRI
	3.3 Time-compressed dictionary learning
	3.4 Validation and results of compressed DL
	3.5 Changing model and going beyond

	 Huge matrix factorization
	4 Stochastic subsampling for huge matrix factorization
	4.1 Overview of Part II
	4.2 Background and proposed approach
	4.3 Prior art: online matrix factorization
	4.4 Algorithm outline
	4.5 Subsampled online matrix factorization

	5 SOMF algorithm properties
	5.1 Prior art: stochastic majorization-minimization
	5.2 Stochastic approximate majorization-minimization
	5.3 Convergence analysis
	5.4 Conclusion

	6 Subsampled online matrix factorization in practice
	6.1 Experiments with SOMF
	6.2 Extension to matrix completion
	6.3 Conclusion of Part II

	 Deeper models for multi-study cognitive mapping
	7 Learning multi-study neural representations of cognition
	7.1 Introduction
	7.2 Results
	7.3 Discussion
	7.4 Detailed method
	7.5 Design discussion
	7.6 Data corpus and references

	 New algorithmic layers for deep structure prediction
	8 Differentiable dynamic programming
	8.1 Introduction
	8.2 Smoothed max operators
	8.3 Differentiable dynamic programming layers
	8.4 Examples of computational graphs
	8.5 Differentiable structured prediction
	8.6 Structured and sparse attention
	8.7 Conclusion

	 Conclusion
	9 Conclusion
	9.1 Software

	Bibliography
	Appendices
	A Proofs of Chapter 7 — SOMF and SAMM analysis
	A.1 Proofs of convergence

	B Proofs and results from Chapter 8 — Differentiable DP
	B.1 Proofs and detailed derivations
	B.2 Examples of algorithm instantiations
	B.3 Experimental details and further results

