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Abstract

Decades after the foundations of the Internet have been layered, both on
technical solutions (open protocols, exponential hardware improvements) and
social values (net neutrality, global connectivity), its ability to shift to different
paradigms continuously give researchers new and exciting challenges to solve.

The move to cloud computing is not new; yet the field is expanding, and
it is likely this is only the beginning. As more and more devices get an IP
address assigned (ranging from personal computers, to commodity servers,
supercomputers, smartphones, or the huge range of IoT devices), and produce
and consume data in complex systems, the needs arise to store, analyze,
aggregate, and re-distribute this data. Thousands of datacenters around the
world, often comprised of hundreds of thousands of servers, are getting more
powerful and complex.

We propose in this thesis to analyze specific sub-fields of datacenter
systems, at different abstraction layers, but for the same purpose: improving
the efficiency of large scale data processing.

The first study we conduct answers the following question: how to design
and integrate a scalable system, able to analyze and store millions of moni-
toring metrics, while making real-time predictions on their future behaviour
using machine learning algorithms. This is driven by an industrial challenge,
and is the general scope of the Smart Support Center project. Its strength
lies with its direct connection to the industry, and the insights we provide
about the research challenges we studied have a direct industrial impact, as
the developed solutions are in production.

The second study provides a low-level optimization of how real-time
data is ingested in a datacenter, and co-located within relevant data for its
processing, while avoiding a network bottleneck. Its implementation does
statistical analysis of the relationships between smaller pieces of the incoming
data, and an oracle decides how they should be handled. It stays up-to-date by

13
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continuously monitoring the evolution of data correlations and re-generating
optimized routing tables.

Finally, our third study dives in programming models for large scale data
analysis. We have realized it is difficult to write, execute, maintain, share
and improve distributed programs to extract intelligent information from
scattered data. While many frameworks add abstraction layers to make
this task easier, we went one step further, by defining a way to write data
processing computations in a descriptive, rather than programmatic, way.
This is done by assembling blocks of code in a directed graph, which brings
many advantages over writing conventional source code, such as the possibility
of manipulating programs in a high-level fashion. The data model, along with
the reference framework we developed, can be a foundation for innovative
ways to write and execute programs, especially for non-specialists.



Résumé en Français

La tendance des organisations à se tourner vers l’infonuagique s’est progres-
sivement développée ces dernières années, au point de voir se déployer des
milliers de centres de données à travers le monde. Ces centres peuvent contenir
plusieurs centaines de milliers d’ordinateurs, qui produisent et traitent en
permanence une énorme quantité de données. Ainsi, les systèmes qui les
régissent sont de plus en plus puissants et complexes, ouvrant la porte à de
nouveaux défis.

Nous proposons dans cette dissertation d’en analyser quelques-uns, à
différents niveaux de la pile logicielle dont sont compris les systèmes de
traitement de ces données massives, dans le but d’améliorer leurs performances
et leur accessibilité.

Prédiction de métriques de supervision

La première étude que nous menons à bout s’inscrit dans le projet Smart
Support Center. Ce projet de recherche est partagé entre plusieurs entreprises,
dont la spécialité est la supervision d’infrastructures informatiques et les
centres de support technique, et deux équipes de recherche spécialisées en
apprentissage automatique, extraction de connaissances, et systèmes. Son but
est de développer un ensemble de logiciels et méthodes, sur une infrastructure
distribuée, capable d’ingérer l’ensemble des métriques relevées par des agents
de supervision, afin de les stocker et de les analyser. Leur traitement en
temps réel permet d’effectuer des prédictions, afin de déceler en avance les
serveurs susceptibles de tomber en panne, dans le but de soulager les équipes
techniques et de maintenir les accords de niveau de service.

Pour ce faire, nous proposons et testons une architecture distribuée. Les
agents de supervision, qui surveillent en permanence l’état des machines
et des services qui fonctionnent dessus, reportent des métriques, organisées

15
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en séries temporelles, tels le nombre de processus en cours d’exécution ou
encore le taux de remplissage d’une partition sur un disque dur. Ces mesures
sont calculées selon une période prédéfinie, en général comprise entre une et
plusieurs minutes, et représentent ainsi l’évolution dans le temps de métriques
particulières. Dès qu’elles sont calculées, ces mesures sont transmises à un
courtier de messages, qui va se charger à la fois de les stocker dans une base
de données Apache Cassandra, et les transmettre à Apache Spark.

Cassandra est une base de données distribuée, orientée colonnes. Grâce à
un modèle de communication et de synchronisation en pair-à-pair, elle n’a pas
de point individuel de défaillance. De plus, elle exhibe de hautes performances,
et passe à l’échelle au moins jusqu’à plusieurs dizaines de milliers de nœuds.
Nous utilisons donc Cassandra comme base résiliente et autoritaire pour le
stockage de toutes les métriques, et des paramètres des modèles de prédiction
appris.

Afin de prédire le futur comportement des métriques, et après analyse
de leurs tendances habituelles, nous avons sélectionné la régression linéaire
comme premier algorithme d’apprentissage automatique, pour sa simplicité
et ses performances. Ce choix nous permet d’extraire des tendances générales,
tout en évitant un grand nombre de faux positifs dus aux pics, habituels dans
le cas de la supervision de systèmes. Pour l’implémenter, nous utilisons Spark,
dont l’intérêt principal est de distribuer des tâches sur un grand nombre de
machines, tout en gérant les pannes.

Après moult optimisations, nous obtenons des performances qui passent
à l’échelle de manière linéaire, et une métrique est prédite sur un cœur de
processeur en environ une seconde. Cette solution robuste permet de superviser
et prédire un grand parc de machines avec peu de ressources. Les détails de
cette architecture et son évaluation sont donnés dans le chapitre 3.

Routage de données et localité

Dans cette étude, nous nous intéressons aux données qui atteignent des
systèmes de traitement distribués en temps réel. Nous constatons que ces
données présentent souvent de fortes corrélations entre elles, ce qui permettrait
d’exploiter au mieux la colocation de messages traitant d’un même sujet, au
moment du choix de leur routage. Par exemple sur Twitter, les mots-clics
ont tendance à se développer autour de régions géographiques, souvent en
rapport avec des évènements extérieurs. Ainsi, un système effectuant des
analyses de données sur les micromessages, aura un intérêt à colocaliser les
tâches traitant un mot-clic particulier avec les tâches traitant une région
géographique particulière, afin de diminuer la charge sur le réseau.
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Nous proposons d’identifier ce type de corrélations en temps réel (car
elles évoluent dans le temps), d’implémenter un équilibreur de charge pour
acheminer les messages vers les bons nœuds en fonction de leur contenu et des
corrélations détectées, et d’écrire un algorithme de reconfiguration, qui permet
de conserver l’état des nœuds lorsque les tables de routage sont détectées.

Nous implémentons notre solution dans Apache Storm, un moteur de trai-
tement distribué de données en temps réel, et mesurons les gains : le nombre
de messages capables d’être traités par seconde (le débit) est considérablement
augmenté, jusqu’à 150%, avec des jeux de données réels reproduisant des en-
trées de Twitter et Flickr. Les détails des algorithmes, de leur implémentation,
des jeux de données et des résultats obtenus sont décrits dans le chapitre 4.

λ-blocks

Notre dernière étude porte sur les modèles de programmation de traitement
de données à grande échelle. Nous constatons qu’il est difficile d’écrire des
programmes distribués, même en utilisant des environnements de développe-
ment spécialisés, peu accessibles aux non-spécialistes. De plus, maintenir et
améliorer ces programmes tout en évitant la duplication de code n’est pas
tâche aisée.

Nous proposons ainsi λ-blocks, un environnement de développement pour
écrire des algorithmes de manière descriptive, et non programmative. Grâce à
une librairie de blocs (morceaux de code implémentant des tâches courantes,
ou faisant appel à des libraries spécialisées tel Spark), il est possible grâce à
un simple modèle de données de décrire un graphe orienté, dont les sommets
sont des blocs et leurs paramètres, et les liens les connexions entre les blocs,
représentant effectivement les flux de données.

Écrire un programme en décrivant un graphe présente un grand nombre
d’avantages. En tant que modèle de composants, λ-blocks exhibe des propriétés
tels la boîte noire (nul besoin de connaître les détails d’implémentation d’un
composant pour l’utiliser), la réutilisabilité (un composant peut aisément
appartenir à plusieurs graphes, et un graphe lui-même peut être réutilisé en
tant que sous-graphe d’un programme plus large), et le remplacement (si
un composant possède la même interface qu’un autre, il peut le remplacer,
par exemple s’il exhibe de meilleures performances). Ce simple modèle de
graphes, accompagné d’une riche librairie de composants pré-programmés,
permet ainsi d’écrire des algorithmes de transformation de données sans écrire
de code source.

Nous implémentons également un système de modules d’extension, qui
permet, avant ou pendant l’exécution, de manipuler le graphe, afin de le
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déboguer ou de l’optimiser par exemple. Nous ouvrons ainsi la porte à une
manière de raisonner sur un programme de transformation de données.

Nous comparons, en termes de performances, l’utilisation ou non de λ-
blocks, et obtenons une différence maximale de 50 ms, ce qui est négligeable
par rapport à la durée moyenne de ce type de programme, variant de quelques
secondes à quelques heures (voire beaucoup plus dans certains cas). Tous les
détails de λ-blocks, des exemples d’utilisation, et son évaluation sont dans le
chapitre 5.
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Introduction

« Two of the most famous products of Berkeley are LSD and Unix. I don’t
think that is a coincidence. »

The UNIX-HATERS Handbook [115]

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Problems description and challenges . . . . . . . . 21

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1 Context
This thesis is the result of my PhD studies in University of Grenoble Alpes,
more precisely in the ERODS team (Efficient and RObust Distributed Systems)
of the Laboratoire d’Informatique de Grenoble. As its name suggests, this
research team focuses on computer systems, and more particularly distributed
systems. While many areas are covered by the different team members (such
as multi-core systems, high-performance computing, kernels, and others),
I have focused my research on the programming of heterogeneous clusters
comprised of commodity servers.
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This is a large area, especially when taking into account the general move
of the industry towards cloud computing, and the many different research
teams exploring these new possibilities. However there are recurrent general
questions that arose: the improvement of the performances of datacenters;
and the improvement and accessibility of programming models to perform
distributed computing and large scale data processing.

These open questions are trimmed down to smaller problems, observed
through the lenses of the Smart Support Center [14] project. It is a research
project, involving actors from both industry and academia, which aims
to develop software and methods for a scalable platform to handle issues
in datacenters, through monitoring metrics collection, predictive analysis,
ticketing, and all their interactions. This project framed my thesis, and gave
me opportunities to work on the design and infrastructure of a distributed
system able to process, store, and predict time series; a low-level routing
algorithm to maximize data locality on a load-balancer; and finally a novel
programming model to reduce the complexities of processing large amounts
of data in complex systems.

1.2 Motivation

In 2013, a study reported that 90% of the data in the world had been generated
only during the previous two years [122]. The exponential growth of produced
data and the novel techniques to analyze it and extract meaningful information
has triggered an evolution of how data is used in many sectors. Computer
systems able to process this data get more and more complex, and building
end-to-end processes for these purposes usually requires deep knowledge from
specialists coming from different fields.

As of today, building a large user-facing service running in a datacenter
requires, on the technical side, knowing the intrinsics of the service logic,
operating systems, networks, monitoring, data storage, real-time data man-
agement, distributed systems, and more and more often, data analytics.

For example, the Smart Support Center project is building a system
receiving monitoring data from thousands of machines, constantly reporting
about the state of their services and their use of hardware resources. The
platform must store and reliably replicate this data, analyze it in real-time
to extract relevant knowledge about machine failures and performances,
predict potential future problems with machine learning prediction algorithms,
correlate the issues with a ticketing system, while constantly staying online
and providing guarantees about scaling and latency. To build such a system,
it is necessary to aggregate the combined knowledge coming from different



1.3. PROBLEMS DESCRIPTION AND CHALLENGES 21

disciplines, and while it gets more and more complicated, efficient layers must
be added, providing properties such as fault-tolerance, latency, and simplicity,
on which business logic can be built.

Ideally, these layers must be independent from the rest of the system,
so that they can be used elsewhere, and replaced when necessary. They
become more apparent when the problem is divided into smaller ones, which
we describe in the next sections.

1.3 Problems description and challenges
The problems we tackle in this thesis are blockers in the construction of large
systems to process data in a reliable way, while providing guarantees about
system properties. More precisely, we answer the following questions:

• How can we build a system to process real-time monitoring
metrics and give predictions about future issues? While some
traditional monitoring systems have measures to raise warnings ahead
of failures occurring, they are often unreliable. Moreover, they suffer
from scaling issues, and are often centralized, leading to single points
of failure. Building an end-to-end pipeline for processing these metrics
and giving reliable information as output requires a mix of distributed
databases, machine learning, messaging, and workload distribution. To
be useful, it needs to scale linearly and be sufficiently fast to let system
administrators fix problems without raising any service interruption.
As the first (and sometimes only) health metric of a datacenter, a
monitoring system also needs to be very reliable.

• How can we improve the latency and throughput of a dis-
tributed real-time processing engine? When real-time data hits
a distributed processing system, its load needs to be balanced across
different machines. More than often, different data points show strong
correlations between them, and benefit from being handled on the same
computer. This is a hard task, because these correlations are not static
and need to be dynamically discovered. This is a low-level problem
involving correlations discovery, dynamic generation of routing tables,
graph clustering, and hot reconfiguration involving state relocation.

• How can we abstract the complexity of programming large
scale data processing applications? In order to develop a system
which reads data, transforms it, and saves it, it is often necessary to
use multiple programming frameworks and libraries, especially if it is
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a distributed application. This requires knowledge in different areas,
and leads to writing programming patterns that are repeated across
different programs. This is also error-prone and difficult to debug. One
solution to this problem is to build an abstraction layer which brings
to developers the building blocks they need, leaving them the only
responsibility of assembling and configuring them according to their
needs. Adding such a layer hides complex code which can be seamlessly
reused in different applications.

1.4 Contributions
My research contributions belong to bigger projects, which include different
researchers and engineers, from academic research teams and industry. They
can be summarized as follows:

• Online Metrics Prediction in Monitoring Systems (Chapter 3): This
is a joint project between different companies in Grenoble (Coservit,
HPE), and two research teams of the LIG laboratory (AMA, ERODS).
Its contribution is the description of a scalable, distributed architecture,
for issuing failure predictions based on monitoring time series. It has
been carefully optimized and evaluated. An article summarizing the
system and the results obtained has been accepted for publication in
the DCPerf workshop of the Infocom conference [44].

• Data-aware routing (Chapter 4): this is also a joint project, between the
research teams SLIDE and ERODS. Its contributions are an algorithm
to detect correlations in the fields of real-time data, a way to route it to
favor physical locality, and a reconfiguration algorithm for the routing
tables, to keep the system dynamic. This chapter is very similar to our
published article in the Middleware 2016 conference [45].

• Lambda-blocks (Chapter 5): the contribution is a programming frame-
work, which allows to write data processing programs in a novel, more
efficient manner, while taking advantage of all the specialized tools
which exist for distributed processing. An article has been submitted
to an international conference.

1.5 Outline
• Chapter 2. We first present a general overview of cloud computing,
datacenter programming, large-scale data processing and components
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models, in order to give the big picture in which our contributions find
their context. The presented topics and paradigms are used throughout
this thesis, and when relevant more details are given. Our contributions
are compared with their related work in their own chapters.

• Chapter 3. We describe and evaluate the system developed to predict
machine failures with monitoring metrics, at the heart of the Smart
Support Center project. It is a scalable platform, able to process millions
of data points, evaluated with production data, and currently in use at
Coservit.

• Chapter 4. We then dive in load-balancing real-time data. We present
an algorithm to find correlations between the different fields of real-time
messages, in order to route them to favor data locality and avoid network
bottlenecks. We implemented this system for the Apache Storm engine,
and evaluated it with Twitter messages and Flickr data.

• Chapter 5. We describe a programming model to write data processing
applications without writing code, by assembling blocks. Its implemen-
tation as a framework is very fast, has a built-in plugin system, is
extensible through simple decorators to write new blocks, and proposes
a novel way to programmatically manipulate computation graphs. We
evaluated it with different algorithms on Wikipedia datasets.

• Chapter 6. Finally, we give our conclusions and present some future
work opportunities.
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Chapter 2
Background overview

« The problem with distributed systems, is that no matter what the question
is, the answer is inevitably ‘It Depends’. »

tef [108]

Contents
2.1 Cloud computing and datacenters . . . . . . . . . 26

2.2 Large-scale data processing . . . . . . . . . . . . . 32

2.3 Components and blocks programming . . . . . . . 37

This background shows the evolution of computer systems, and gives insights
on how scientists and developers reached the point of managing petabytes
of data on large datacenters, providing programmable interfaces to interact
with stored and real-time data, in a reliable and fast manner. We dive in
some architectures, explore some challenges and solutions, and give details
about a few selected and well-recognized ecosystems. In the last part, we
describe software architectures which promote components and their desirable
properties for designing systems, which we will use as a foundation for λ-blocks.
Although some presented systems seem not to have obvious connections with
the original work described in the further sections of this thesis, they are
either connected in the greater ecosystem of data processing software and
practices, or have design ideas that inspired ours.
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2.1 Cloud computing and datacenters
In the last decade, we have witnessed a move from in-house servers to cloud
computing, leading to many changes in how organizations handle their IT
infrastructure and their data. We describe in this section some technical
foundations that made this possible, foundations upon which we built our
solutions.

2.1.1 The emergence of cloud computing

Within the last years, the servers infrastructure of organizations has seen
a large growth, due to the ubiquity of Internet access points for end users,
diminution of hardware costs, and proliferation of data. Maintaining such
an infrastructure has a cost, and requires a deep knowledge in systems and
networks. This has led to a move to cloud computing [27]: computers and
services available on demand, tailored to the needs of small servers as well as
large distributed systems.

A cloud is a set of servers running special software, able to deploy and
configure virtual machines, virtual networks, and necessary operating systems.
Cloud computing leverages time sharing, based on two premises:

• A server is often not using all its resources;

• An application load evolves with time.

To cope with this, cloud infrastructures make a heavy use of virtual
machines (many VMs running on a physical server), and propose elastic
computing: the automatic increase and decrease of resources depending on
the service load. This way, cloud users only pay for the resources they use,
because servers are shared with others. The economic advantages it provides,
as well as the disappearance of the technical burden associated to managing
their own servers infrastructure, has led organizations to quickly adopt cloud
computing.

This in turn has given researchers and developers new challenges to solve,
due to this new paradigm (resources on demand) and its properties, the
always-increasing size of datacenters and their energy consumption, clients
data privacy, and cloud availability through service-level agreements.

Different cloud models have emerged [86], giving users the choice on how
they want to run their infrastructure. They include:

• Infrastructure as a service (IaaS). With this model, the provider
gives access to virtual machines, and it is up to the clients to provision
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them with operating systems, and configure and run their applications.
Often, many services are proposed, such as storage nodes, virtual
networks, IP addresses, load balancers, etc.

• Platform as a service (PaaS). PaaS is more restricted than IaaS, in
that users are given a pre-configured platform on which they run their
applications. Databases, storage, network, and other layers are included
in the model and can be relied upon. It is meant to let developers
focus on the application alone and not the deployment and management
operations.

• Software as a service (SaaS). On SaaS platforms, the execution of
a particular software is proposed to users. This removes the needs to
run this software on dedicated machines, and effectively outsources a
part of an application, for example its database or even its continuous
integration environment. Advantages include the optimizations generally
provided by specialists whose core of business if a certain software, or
auto-scaling resources according to the clients’ needs.

Clouds also present different deployment models. Private clouds are
operated by the organizations which use them for their own applications,
adding the costs of maintenance but removing the dependency upon a third-
party provider. On the other hand, public clouds are proposed as an external
service by specialized companies, which take the responsibility of running the
physical infrastructure. It is also possible for organizations to use a mix of
these two models, known as hybrid cloud: this allows for example to store
sensitive data on a private cloud, while still benefiting from the external
infrastructure for other tasks. Another use case is the elasticity: if resources
in a private cloud become too busy, a public cloud can take some of the
application load.

An example of a cloud management software is OpenStack [9]: it is a
complete suite of tools to run virtual machines on many machines. It supports
different hypervisors, can be controlled by an API and a graphical interface,
manages virtual networks and virtual disks, etc. Many of the experiments
shown in the later sections have been run on machines operated by OpenStack.

2.1.2 Virtual machines and hardware virtualization

Virtual machines (VMs) are systems embedded in others, in other words an
emulation of an operating system. By the means of specialized software (and
sometimes hardware virtualization capabilities), a system can create many
smaller sub-systems, providing them a subset of the hardware capacities of
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the host machine, and mapping the input and output devices. Some systems
emulate CPUs, which enables to run operating systems compiled for different
CPU architectures.

This provides some advantages:

• Isolation: a virtual machine is isolated from the host system and the
other VMs, and can only access what the host OS allows it to access.
This adds a layer of security: when a guest system is compromised, it
is hard for an attacker to escalate their access to the host system.

• Resource-sharing: a host server can divide its resources between
different guests systems.

• Reproducibility: it is easier to create a well-defined computer (with
regards to hardware specifications, operating system, and installed
software) in a virtual machine, allowing applications to run in a known,
reproducible environment.

• Systems on demand: with virtual machines, it is easier to create and
throw away new systems (for example to run short-lived applications).

• Different hardware: by emulating different CPU architectures, it is
possible to run systems compiled for different hardware without owning
it. It induces a performance overhead, but is nonetheless useful.

• Consumption measurements and billing: since the guest system
is supervised by the host system, it is easy to measure how much CPU
time and memory it is consuming, and adjusting its provided resources
accordingly. This can also be used to bill VM users only for what they
consume.

To efficiently dedicate a computer to running multiple virtual machines,
special systems called hypervisors have emerged. Hypervisors are starting,
monitoring and killing virtual machines on demand. Two types of hyper-
visors exist: special software running on an operating system (for example
QEMU [36]), or entire dedicated operating systems (for example Xen [32]).

2.1.3 Containers

Containers are similar to virtual machines in that they make it possible to
run many guest systems within a host operating system. However, their
implementation differ in the way the virtualization is achieved: instead of
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emulating hardware for an entire OS, the host kernel is used to containerize
a file system and the running processes.

The origin of containers comes from the FreeBSD jails [75], a mechanism
to isolate a set of files and processes from the rest of the system. This
adds a layer of security, and provides a way to effectively share a system
between different applications. Some benefits of virtual machines are lost
(total isolation, hardware virtualization), but the performance overhead is
much smaller.

The Linux kernel implements cgroups, a similar system, that makes it
able to isolate processes, files, and resources (CPU cores, memory, network. . . ).
Containers recently gained popularity when Docker [88] was introduced: based
on Linux’ cgroups, and adding a few bricks such as a union filesystem and a
way to build a container by describing the required steps in a Dockerfile, it
became an ecosystem for managing containers at scale.

2.1.4 Modern datacenters

Datacenters are the physical warehouses where a great number of servers
and network capabilities are hosted. Dynamics and constraints of distributed
systems running at the scale of hundreds of thousands of servers (sometimes
across different geographical locations) have uncovered new challenges and
new paradigms such as datacenter programming. Some of these challenges
are introduced in the book "The Datacenter as a Computer: An Introduction
to the Design of Warehouse-Scale Machines" [33]. A key point underlined in
this book is the machine failure rate at scale, which constantly happens. In
these environments, fault-tolerance is necessary, both for data and running
computations, and as such must be part of the design of every system.

Some researchers have pointed the need for a datacenter operating sys-
tem [121]. Arguing it is hard for scholars to work on such systems (because
they lack hardware and operations teams), they raise interesting points, no-
tably the fact that datacenter programming is hard and still in its inception,
and that there is a need for new paradigms and abstractions to bring complex
software development (able to run on large clusters) to non-experts.

2.1.5 Cluster schedulers

Cluster schedulers are an important layer of the foundations of datacenter
operating systems. Their role is to allocate different computers (often virtual
machines or containers) to the tasks that need them, such as long-running
services or batch jobs. We dive in this section into three different schedulers,
which present different design ideas.
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The first one is Mesos [69]. It is a brick of the Berkeley Data Analytics
Stack [59], a set of various software written for large-scale data processing,
storage, scheduling, etc. The goal of Mesos is to divide the resources of a
datacenter between different computation frameworks, while maximizing the
resource utilization, in a way that is compatible with current and future
frameworks.

Towards that end, Mesos proposes a two-step-scheduling: it first offers
resources to frameworks, which can accept or reject them. If they accept,
they in turn schedule their tasks on these resources. This has the benefit
of allowing frameworks to manage fault-recovery and data locality, which
would be hard to implement in a global scheduler not aware of frameworks’
specificities.

On top of this abstraction, Mesos offers several other features: different
allocation modules (fair between frameworks, or with priorities), fine-grained
resource allocation (task isolation is implemented via an isolation module, for
example containers, which makes node re-allocation fast), fault-tolerance for
the master node via Zookeeper [70], signalling of the failed nodes to framework
schedulers, etc.

It however has some limitations, for example it’s hard to allocate tasks
in an heterogeneous environment, where the biggest tasks which need a
consequent number of nodes might starve (wait indefinitely). Since it is
framework-agnostic, it doesn’t know the dependencies between frameworks,
which could leverage co-locality if they communicate data between each
other. Finally, the compatible frameworks need to make their own scheduler
compatible with Mesos’ API and design.

In conclusion, Mesos provides a way to share a cluster between frameworks,
and its resource offering model has been proved to work well in practice,
improving cluster utilization and speeding frameworks jobs.

Omega [104], developed at Google, has the same goals of Mesos, maximiz-
ing resource usage in a datacenter between different frameworks, while trying
to be more flexible than the two-step-scheduling abstraction. More precisely,
Omega overcomes the fact that framework schedulers don’t have an overall
view of the cluster, and can’t preempt tasks, which could help for instance
with data locality when necessary.

Omega uses a different abstraction: shared-state scheduling. The entire
state of the cluster is presented to all schedulers, which then make scheduling
attempts. Different policies can be implemented in the scheduler to answer
the queries in case of a conflict: gang-scheduling (all the nodes are allocated,
or nothing; this can delay other jobs), or incremental placement (nodes are
allocated progressively when they become available; the downside is that it
can lead to deadlocks). This permits frameworks to begin their job while not
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all the nodes are allocated yet, and maximizes resource utilization.
As with Mesos, this supports many scheduling policies, because frameworks

schedule their tasks on the allocated nodes themselves. Moreover, Omega
supports long running services (for example user-facing services over HTTP)
as well as small batch jobs, and can preempt other tasks towards data locality,
which can be more efficient than only using idle resources.

Omega has been tested at Google on their workload with very good
performance results.

Borg [113] is another software developed at Google. It is meant to be a
cluster manager at Google’s scale, for hundreds of thousands of machines.
Even though it supports different isolation mechanisms, it generally uses
containers, and hence it has been developed to manage a large pool of
containers executing tasks, and sometimes communicating with each other.
When a job is submitted, it is divided into tasks, which all have properties
such as their requirements. On the other side, registered machines have
physical attributes such as their number of CPU cores or their amount of
memory. Finally, users have quotas for the maximum number of resources
they can use in a time window.

The Borgmasters then match the jobs requirements with the available
resources, and synchronize the Borglets (the slaves), which among other
features run a web server to monitor their tasks, and restart them if they fail.
Borg benefits from many optimizations, and an important lesson learned is
that mixing resources (for production and development environments, service
jobs or batch jobs, with different users, etc) is more efficient than clustering
the machines between teams or job types.

Kubernetes [99] began as an open-source implementation of Borg, and
is now a widely-used cluster manager, often along Docker. The evolution
of container scheduling and management at Google with Omega, Borg and
Kubernetes is described in [42].

2.1.6 Monitoring at scale

The last topic we introduce with regards to cloud computing is monitoring.
Checking health of machines and services is particularly relevant in the context
of distributed systems, where failures often occur.

Monitoring engines often follow Nagios’ design [8]. It is based on a set of
configuration files, which describe computers, their network hierarchy, and
the services running on them. Nagios can then run monitoring plugins where
it is necessary, for instance a plugin checking the liveliness of a PostgreSQL
node would run on every server using PostgreSQL, periodically, and report
the results to the engine.
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An important point with plugins is their ability to report metrics, such as
the free disk space on a hard drive, or the number of processes on a system.
Since these metrics are checked regularly (often from every minute to every
few hours), they can be stored and used as time series: a series of points
indexed by their timestamp, showing the evolution of a metric. This opens
a lot of possibilities for time series predictions, using for instance machine
learning algorithms, and hence anticipation of machine failures.

This idea has been implemented to various degrees in the monitoring engine
Zabbix [16], for hardware failure prediction [48], for capacity planning [7],
equipment temperature [83], and many related domains.

2.2 Large-scale data processing

Managing data in large infrastructures requires more than shell one-liners.
We present in this section the modern paradigms for distributing work across
many computers, for both offline and real-time data.

2.2.1 The MapReduce paradigm

MapReduce [56] is a programming paradigm proposed by Google in 2004,
which abstracts away the complexity of distributed programming, in order to
easily distribute tasks on large clusters of machines.

A MapReduce developer must write their data processing algorithm in
terms of a map function (a map function applies a set of transformations to
every member of a list) and a reduce function (a reduce function reduces a
list into a single element). It is worth noting that it may be complicated to
express an algorithm in terms of MapReduce. When this is done, the map
and reduce functions are submitted to the engine along with some metadata
such as the number of required tasks for each step, and the framework will
distribute these tasks, optimizing for data locality and taking care of failed
tasks and stragglers (rescheduling their work on other machines). A set
of facilities are also implemented in MapReduce, such as optimizations for
the reduce functions, which can often be partially computed on the map
nodes before the shuffle phase (when usually a lot of data is sent back to the
reduce nodes, inducing network latency), the skipping of bad input data if it
deterministically makes the node crash, counter functions, etc.

MapReduce gained a lot of popularity, and the model has been imple-
mented in the open-source Hadoop ecosystem. A lot of academic literature
has been written on the topic, to improve its programming model and per-
formances. For example it is possible to apply database optimizations and
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static analysis to MapReduce programs to drastically improve their execution
times [71]. Other optimizations are described in [30].

2.2.2 The Apache Spark ecosystem

Many different frameworks, building on MapReduce’ success and improving
its performances, programming model, and range of applications, have been
implemented. We particularly focus on Apache Spark, which we have used in
the further sections.

Spark [119] leverages the processing of data while keeping it in memory.
This is a key difference with MapReduce: it can only run one pass on the
input data, and iterative algorithms (which require the output of step n to
be the input of step n+ 1, such as PageRank) need to save data to disk and
read it back later, adding a large overhead.

Resilient Distributed Datasets (RDDs) are at the core of Spark. They
are special data structures, built from input data, and on which one can
apply many operations. When methods on RDDs are called, Spark doesn’t
perform anything besides building a lineage graph: a directed acyclic graph
representing the set of operations to apply. When the computation is required
(for instance after calling a few transformation methods), Spark performs
some optimizations on the lineage graph, and divides it into tasks which are
distributed on the cluster. This approach works well with fault-tolerance:
whenever a task fails, its input can be re-computed just following the lineage
graph. However, this can be costly, that’s why Spark implements mechanisms
such as data checkpointing, to save data on disk after expensive steps.

This programming model is more flexible than MapReduce, because it
doesn’t limit the developer to express algorithms in terms of map and reduce
functions, but a large set of transformations. Hence, MapReduce, database-
inspired query languages, or graph algorithms can be easily implemented
on top of RDDs. Moreover, the in-memory approach, the lineage graph
recovery and the straggler mitigation give great performances, and it has
been measured to be faster than Hadoop for a wide range of data processing
applications.

Spark includes a graph library, GraphX [64]. It is meant as a system
to unify graph processing and dataflow programming, such that it stays
compatible with Spark’s data structures. It adds two collections, vertices
and edges, includes different graph algorithms, and many optimizations for
computing parallel graph operations, for example lazy joins between vertices
and edges, to avoid computing them if they are not used.

Spark SQL [28] is another library which is now part of Spark. Its goal is
to implement relational data processing on Spark data structures. To that
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end, it proposes a Dataframe API, which implements relational operations
on RDDs and external data sources. A Dataframe roughly corresponds to
a table in an SQL schema, on which operations such as select, join and
groupby can be applied. Catalyst takes care of optimizing the query plan,
and it is an easily extendable component, on which particular optimizations
for specific cases can be written.

MLlib [87] is another component of Spark. It is a machine learning library,
which implements a range of algorithms on top of Dataframes. Due to the
iterative nature of Spark’s lineage graphs, machine learning algorithms are
a good fit for them, and benefit from all the optimizations built into Spark.
MLlib also provides an API for building machine learning pipelines easily.

Finally, Spark have stream-processing capabilities, which are described in
Section 2.2.4.

2.2.3 Distributed frameworks performances

A lot of work has been done to improve the performances of distributed
computing; we present in this section a selection of optimizations methods
applied to Hadoop and Spark.

The behaviour of intensive workloads run on Intel processors with Hadoop
and Spark is studied in [72]. Observed metrics include the execution times
(confirming Spark is faster than Hadoop), disk input/output (the write/read
ratios are similar for both frameworks, while Spark has a higher disk access
frequency, probably due to its higher computation speed), memory bandwidth
(Spark has more stable memory access patterns), page access frequency (for
both frameworks, 80% of the requests access 20% of the pages), caches
access (with the L2 cache having a high miss rate compared to the L1D and
TLB caches), and branch prediction (Spark has a lower branch prediction
miss rate than Hadoop). Conclusively, these frameworks can benefit from
cache hierarchy optimizations, memory bandwidth optimizations, and disk
input/output optimizations.

A study of Spark’s bottlenecks is performed in [96]. Assumptions are often
made when doing distributed computing: network and disk are bottlenecks,
and stragglers are responsible for a high increase of job completion times.
This analysis reveals that this is not often the case, and CPU is the bottleneck
for diverse data processing computations. For this matter, the authors use
blocked time analysis, measuring when and why the processes are blocked.
The results are unexpected, as they show the network and disk latencies are
quite small, and optimizing them leads to small job completion decreases.
However, a lot of CPU time is spent serializing and deserializing compressed
data; moreover, using the JVM can have a strong overhead compared to
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C++. Spark can hence benefit from using carefully chosen serialization and
compression algorithms, a choice which can vary according to the type of
computation that is performed.

Hadoop has a large space of configuration parameters, which can greatly
influence job completion times. A framework has been written to try to profile
and optimize them [68]. It consists of a job profiler, which takes into account
the program, the data, its configuration, and the cluster setup, able to provide
cost estimates. Associated to a What-if engine, able to answer queries such as
"if we change this parameter, what will be the impact on execution time?", the
framework is able to give an optimized set of parameters. Profiles are created
by instrumenting sampled running jobs and estimation/simulation through
the What-if engine. The good accuracy of the engine (difference between
predicted and actual results) comes from the fact it captures a lot of subtleties
of MapReduce at a fine granularity. To enumerate the different parameters, it
implements gridding (all the values on a grid are tested) or recursive random
search (able to find local optimizations in randomly selected regions). This is
done in clusters of the settings space, which are usually independent, such as
the settings for the map phase and those for the reduce phase. The results are
conclusive, as job speeds of almost an order of magnitude can be obtained.

Finally, [54] looks at the shuffle stage of Spark jobs, which can be a
bottleneck because a lot of data is moving on the network. A lot of small files
(map tasks × reducer tasks) are created during this phase, which are requested
concurrently in a random order by the reducers; moreover, the inode cache
can’t contain them all, causing an overhead. An implemented solution reduces
the number of files (number of cores × reducer tasks): on ext4 filesystems,
this scales linearly, as opposed to Spark without this optimization. However,
this is slower on ext3 filesystems, due to some differences in how physical
data locality is achieved for large files, which works better with ext4. This
optimization led to a reduction of 50% of execution time for some jobs, which
shows the complex interactions the frameworks have with filesystems. Other
potential improvements are suggested, such as an overlap between the map
and reduce phases, or a shuffle done completely in-memory.

2.2.4 Stream processing frameworks

Stream processing engines are frameworks able to handle real-time data, as
opposed to batch processing, the one-time transformation of data already
recorded on storage. Different challenges are associated with stream processing:
load balancing (the throughput of incoming data can vary a lot, and decisions
must often be taken on where to route it), latency (extracting relevant
metrics from real-time data must often be fast, to provide timely and relevant
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answers), and reliability (if incoming data is lost before hitting a disk, it can’t
be recovered). We introduce in this section a few frameworks which exhibit
different designs to manage streaming data.

Spark Streaming implements the Discretized Streams (D-Streams) abstrac-
tion [120]. It is part of the core of Apache Spark, and uses some of its data
structures. Its principle is as follows: incoming data is grouped in an RDD
(on which all RDD operations are available), and the lineage graph associated
to it is computed repeatedly, for example every second. This is why it is called
Discretized Streams: instead of running continuous queries, Spark Streaming
does batch processing on smaller subsets of the data, as it reaches the system.
This abstraction is called micro-batch processing. Hence, it benefits from all
the features of Spark: fault-tolerance, recovery, straggler mitigation, and the
rich API of available transformations. On top of this, Spark Streaming adds
specific streaming operators: windowing (the grouping of records from past
time intervals on a sliding window), incremental aggregation over a sliding
window, state tracking (to transform a list of events into a list of updated
states). In order to not lose data in case of a failure, the input records are
saved before hitting the system. Moreover, for operators maintaining a state
(for example incremental aggregation), it is also stored in an RDD, and can
be recovered the same way. Spark Streaming implements "exactly-once"
semantics, meaning a record will traverse the lineage graph exactly one time.
Finally, it is possible to join stream data with historical data stored in an
RDD, to allow computations to be performed combining both sources.

Spark Streaming implements many optimizations and favours data locality
between nodes, which makes it fast, and scales linearly. However, by design,
there is always a small latency, at least as high as the chosen batch interval;
for this reason it doesn’t make it suitable for systems that require a very low
latency, such as trading.

Apache Storm [111] is a streaming engine which was initially acquired
by Twitter. To use it, a developer defines a set of spouts (data sources)
and bolts (operators transforming data), linked together in a topology: a
graph where each vertice is an operator (or a data source), and each link
represents the flow of data between two operators. A message consists of a
tuple, a set of records containing arbitrary fields. To efficiently distribute
tasks, Storm replicates each of them in different executors, placed on different
machines. It then implements different forwarding techniques for the flowing
data between the operators: shuffle grouping (a record is sent to a random
node), fields grouping (one field of the message is chosen to be a key, and all
messages belonging to the same key get routed to the same task; which is
often efficient for data locality), all grouping (the messages are duplicated
to each task), global grouping (all the messages are sent to a single task),
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local grouping (when possible, the message is sent to an executor running
on the same machine), and others. This makes Storm very extensible for
different workloads and types of applications. Storm implements "at most
once" or "at least once" semantics: the use of ackers, tasks acknowledging
received messages to their producers, will make Storm resend data in case of
a problem. Since this is optional, it falls back to "at most once" when not
used.

Some optimizations have been studied in Storm, for example new sched-
ulers taking decisions on operators placement [26]. It is also the engine we
chose for our data locality algorithm described in Chapter 4.

Other stream processing engines exist, but have not been studied exten-
sively in the frame of this thesis. They include Twitter Heron [79], Mill-
Wheel [21], S4 [94], Apache Samza [95], Apache Flink [46], Photon [24] and
others.

2.3 Components and blocks programming

We mix in this section some background about component models, flow-based
programming, and blocks programming. They are different concepts, but
they share some design ideas in the way units are composed together.

Components and flow-based systems are often used to implement ETL
(extract-transform-load) pipelines, which is one of the purposes of λ-blocks,
presented in Chapter 5.

2.3.1 Component-based software engineering

Component models and the practice of component-based software engineering
take their roots in different software development paradigms, most notably
object-oriented programming. The goal of component-based architectures is
to design and implement software such that it is easy to maintain, evolve,
and adapt; while at the same time leveraging code reuse. To achieve this, it
primarily focuses on the separation of concerns, by splitting software modules
into components communicating with each other. Properties of components
often include:

• Components have an interface. The interface describes how to
interact with the component, through its inputs and outputs. It doesn’t
specify how the functions are implemented, de facto making the compo-
nent a black box. This is the principle behind encapsulation: there is no
need to know the inner details of a component in order to use it.
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• Components are replaceable. A component can substitute another
one if it provides the same interface (or at least a superset of it) and
has the same functionality. This enables developers to easily replace a
part of the system without altering the other parts. This can be done
at compile time and even at run time: the choice of a component over
the other can be influenced by some conditions like the current state of
the program.

• Components are meant to be used in different contexts. Through
its interface, a component must have been designed to be used in differ-
ent systems, not restricted and only useful to one.

Sometimes, a components framework allows a component to be composed
of a set of other components, further leveraging code reuse and allowing a
complex function to be broken down in smaller pieces.

Some well recognized component-based frameworks include Enterprise
JavaBeans [65], Corba [114] (Common Object Request Broker Architecture),
OSGi [23], Fractal [40], and many others.

Components, when linked together in a software architecture, can easily
be represented with a graph, which opens possibilities for describing such an
architecture with a Domain Specific Language (DSL).

2.3.2 Flow-based programming

We focus in this section on dataflow programs meant to perform data trans-
formation. Flow-based programming is a particular type of component-based
architectures, where the components are black boxes transforming their input
and forwarding their output to their subscribers. Such a program is often
represented as a directed acyclic graph (DAG), where the nodes without any
vertice pointing to them represent the program inputs, and the nodes without
any vertice departing from them represent the outputs. In such a graph, data
flow from one node to the other, uni-directionally, and is transformed at every
step. Unix pipes implement such a system, with the restriction that the graph
is a list (a node can’t have two subscribers).

The Orange framework [57] takes this approach for building machine-
learning pipelines. In Orange, one defines a DAG to describe the steps to
perform to read data, clean it, feed it to machine-learning algorithms, and
compare and visualize results. Using a flow-based approach helps users to
interactively see how the data is transformed (which also helps for debugging),
while keeping the code base more easily maintainable, and maximizing the
reuse of components.
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StreamPipes [101] is another framework for implementing flow-based
programs through a graphical interface. Its particularity lies in how the
data is stored, through an RDF ontology. It is meant to wrap existing data
processing frameworks such as Apache Storm and Apache Flink, and is able to
serialize all the messages between operators with different messaging protocols,
including Apache Kafka and MQTT.

Apache Beam [1] is an implementation of the Dataflow Model [22] pub-
lished by Google. It can seamlessly work with batch- and stream-processing,
by defining pipelines of data-transformers in a directed acyclic graph. A
particularity of Beam is its ability to distribute jobs to different engines, for
example Google Cloud Dataflow, Apache Flink or Apache Spark, making it
engine-agnostic. It implements user libraries in Java and Python, making
a heavy use of operator overloading to define pipelines with a convenient
syntax.

2.3.3 Programming with blocks

Programming with visual blocks of code is a paradigm proposed to teach com-
puter programming to beginners. Frameworks propose a graphical interface,
which allows to write programs by composing them with blocks, which are
meant to wrap code instructions.

Figure 2.1 shows an excerpt of the MIT Scratch [100] graphical interface.
The program consists of a repeat block, containing smaller blocks giving
motion instructions to a sprite. Scratch helps users by hiding the complexities
of the inner blocks, allowing only its parameters to be changed, and provides
immediate visual feedback: for example it is not possible to construct actions
that are semantically wrong, such as inserting a repeat block in the condition
of an if block.

Other similar software exist, for example Blockly [60] and Snap [67].
This paradigm presents a lot of similarities with component-based ap-

proaches. A program is written by composing and embedding together
different independent components, which are black boxes, are meant to be
reused in different programs, can be parameterized, and can be composed of
other components.
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Figure 2.1 – MIT Scratch.



Chapter 3
Online metrics prediction in
monitoring systems

« A distributed system is one in which the failure of a computer you didn’t
even know existed can render your own computer unusable. »

Leslie Lamport [81]
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Our first contribution concerns the design of a scalable system, with a direct
application related to an industrial problem: handling a high numbers of
monitoring metrics, and using them for prediction purposes. Since an entire
end-to-end system is developed and presented, this contribution is positioned
at different layers of the data processing ecosystem.

Monitoring thousands of machines and services across multiple datacenters
produces a lot of time series points, giving a general idea of the health of
a cluster. However, there is a lack of tools to further exploit this data,
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for instance for prediction purposes. We propose to apply linear regression
algorithms to predict the future behavior of monitored systems and anticipate
downtimes, giving system administrators the information they need ahead of
the problems arising. This problem is quite challenging when dealing with
a high number of monitoring metrics, given our three main constraints: a
low number of false positives (thus blacklisting unpredictable metrics), a high
availability (due to the nature of monitoring systems), and a good scalability.
We implemented and evaluated such a system using production metrics from
Coservit, a French company specialized in IT monitoring.

The results we obtained are promising: sub-second latency per metric per
CPU core, for the entire end-to-end process. This latency is constant when
scaling the system to 125 cores on 4 machines, and the performances don’t
decrease with time: during 15 minutes, it is able to predict more than 100 000
monitoring metrics.

3.1 Introduction

Monitoring machines ensures a system is running correctly, and triggers human
intervention as soon as it is needed. This is especially relevant for user-facing
systems, and particularly when downtimes can lead to serious problems, e.g.
with hospitals and transportation systems. A lot of monitoring tools exist
nowadays, ranging from in-house scripts running various sanity commands
to ensure processes are working correctly, to complete suites, distributed on
many servers and constantly checking and aggregating thousands of metrics.
Apart from the simple “check the existence of a process” scripts, monitoring
software usually collect metrics (e.g. CPU load, used memory), check them
against defined thresholds (e.g. 80% of the maximum), raise alerts to system
administrators when these thresholds are exceeded, and generate reports
about resource consumption and error rates.

There are different kinds of collected metrics: system-related (CPU load,
remaining empty space on hard drives, network speed, etc.), services-related
(database uptime, web server open connections, memory used by processes,
etc.), or statuses (up, down, unknown). These metrics are timestamped, and
hence are collected as time series.

In order to enhance the current set of practices, we propose to detect
failures before they emerge, reducing human intervention and letting adminis-
trators plan their solutions.

Coservit [4], a French company providing a "monitoring as a service"
infrastructure, has collected and stored about one million different metrics
for more than 5 years, across dozens of thousands of physical hosts. We used
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this dataset to experiment different approaches, aiming to predict the future
behavior of these metrics.

The goal of our system is to make predictions about the health of online
services in the near future, in order for system administrators to perform
preventive maintenance, instead of reacting to problems and fixing them when
they occur. This is why we focused on a short time horizon, typically between
1 and 5 hours. For that purpose, we applied linear regressions on the different
collected metrics, using historical data to train our system. We found linear
regression to be the best fit for this kind of data and this horizon, thanks to
its ability to identify local trends.

We added the constraint of creating a scalable system that is not limited
to a maximum number of metrics, or a single host. It must also be as CPU-
efficient as possible, and for instance not waste resources learning metrics
which are too difficult to predict due to their volatile aspect.

The challenges we had to overcome to develop this system were the huge
amount of metrics collected by the monitoring engines, the processing time
per metric which had to be fast enough to be useful, and the avoidance of false
positives, to prevent raising alerts when it is not needed. Our contributions
are a scalable system architecture, and the feedback raised after extensively
testing it with industrial production data.

We found that more than 50% of the observed metrics are suitable for
linear regression prediction; as detailed in Section 3.3.4 the other ones are
too volatile to be accurately predicted with this method. The entire process
of retrieving measurements, building the learning parameters, predicting the
values, and storing the results takes about one second per metric. Moreover,
it scales linearly up to all the CPU cores we had at our disposal for evaluating
this system.

The rest of this chapter is organized as follows: we first give some back-
ground about the problem and the tools involved, before describing our system
in details. We then evaluate our results, and present the related work before
concluding and giving insights about future ideas.

3.2 Background

3.2.1 Monitoring

Monitoring, in its simplest form, consists of regularly checking the health
of a system or system component, to ensure it is meeting expectations.
Most software suites providing monitoring facilities offer convenience features:
formal description of monitored hosts and services, data polling or pushing,



44 ONLINE METRICS PREDICTION

alerts and alert escalations, aggregated reports, and graphical dashboards. We
dive in this section into some interesting properties, describing how metrics
are collected and how alert thresholds are defined.

Many monitoring systems such as Nagios [8], Zabbix [19] or Shinken [18]
allow system administrators to easily write scripts whose return value and
output can be passed to the monitoring engine, provided their standard
output conforms to the expected format. One script can return many metrics,
and it is usually run regularly: every few minutes or hours, depending on
the importance of the component and the relevance of the check. Using the
standard output as the message passing channel provides the ability to write
scripts with any language using any library, as long as they can write to
standard output. The monitoring engine gets the return value, parses the
key/value pairs of metrics, stores them along with a timestamp, and can raise
alerts if needed. A simple example of a RAM check output is as follows:

RAM OK;``|''RAM=1.4GB;3;3.9;0;4

A return value of 0 means the state of the service is OK, 1 is for WARNING, 2
is for CRITICAL, and 3 is for UNKNOWN. After this run, we get a message,
a value and its unit (1.4 GB), the warning and critical thresholds (3 and 3.9),
and the minimum and maximum possible values (0 and 4). There’s only one
collected metric in this example output, but the format allows for more to be
concatenated at the end.

Using these simple conventions, anything can be monitored, and the
collected metrics can be centralized for further processing.

The warning (resp. critical) threshold, if exceeded, will turn the monitored
component into a warning (resp. critical) state. This is used by the monitoring
engine to send alerts to the persons in charge, and to display warnings in
dashboards.

Two types of alerts exist: reactive and proactive. With the reactive alerts,
systems administrators receive notifications that a failure has occurred, for
example a disk has crashed. They can then proceed to fix the issue, but
downtimes can arise which may have an impact on end users. With the
proactive alerts, the notification is sent before the failure occurs, because a
threshold was exceeded, for example a disk reached 90% of its capacity. This
usually gives administrators some time to get the system back to a sane state.

3.2.2 Time series prediction

A time series is a variable evolving over time. Stock market prices, average
temperature of a city, consumption of a product and usage of a service are
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some examples of time series. Time series forecasting is predicting future
observations of a variable. As seen in Section 3.2.1, we consider discrete time
series, ordered in time, whose values are metrics collected from monitored
services. Time series prediction/forecasting has been studied for many years
and in many different domains, such as stock market analysis [20] and weather
prediction [50]. Over the past few years different machine learning methods
have been used to predict time series. Generally, due to the complexity of
the problem, in many cases complex models and algorithms have been used
to forecast the time series. For instance, many studies, such as [63] and [51],
use recurrent neural networks (RNNs) which are basically neural networks
adapted for time-dependent data.

Although these models can consider different factors, such as the depen-
dency between data points, and learn based on them via backpropagation
through time (BPTT) [116], practically they could be inefficient in some cases.
For instance, in the context of a datacenter, where highly dynamic metrics
from many devices are considered, the aforementioned methods may not be
good candidates due to time and space complexity. In such cases, one may
consider simpler methods such as regression approaches. Maybe the most
straightforward technique in this domain is the linear regression [66]. Though
very simple, the regression techniques are still very powerful and efficient [85],
particularly when the data and its intuition (such as critical thresholds on
metrics) change very rapidly, they can adapt the new settings of the system
very efficiently, due to the simplicity of the model.

3.3 System description

3.3.1 Architecture

We base our architecture around a Cassandra database, used for storing
monitored and predicted values, as well as prediction error rates.

Cassandra [80] is a distributed database with no single point of failure,
where all the nodes can answer queries. It provides data replication (including
among different datacenters), is fault-tolerant, and is highly scalable. Cas-
sandra is a column-oriented database, and leverages denormalization: since
it doesn’t support join queries, it is necessary to duplicate some fields into
different tables, in order to read them faster.

Figure 3.1 shows the main components of our architecture. We consider
the monitoring agents as black boxes, geographically scattered in different
datacenters, reporting metrics about the systems they monitor to a monitoring
broker. All the metrics are stored in Cassandra for further processing.
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Figure 3.1 – System architecture.

Spark workers find the metric identifiers ready to be processed in a Rab-
bitMQ message queue, read all the data points associated to them from
Cassandra, and run prediction algorithms with MLlib (described in Sec-
tion 3.3.3). The message queue serves as the producer/consumer middleware,
and is useful to regulate the flow of predicted metrics and which metrics need
to be processed. Once predictions are calculated, they are stored back into
Cassandra.

Finally, different end-user applications use the predicted metrics, most
notably a web-based graphical interface alerting users about future problems.

This architecture resembles a lambda-architecture [84]: it leverages his-
torical and real-time data to provide up-to-date predictions combining both
sources.

3.3.2 Data model

We use a Cassandra cluster to store all the collected metrics, as well as the
different computed predictions on them. The relevant tables are:

• metrics : stores the metric names (e.g. open_sockets, disk_available).

• metric_measurements : each row represents a measurement, and consists
of a metric id and a value, as well as a timestamp, a unit, the warning
and critical thresholds, and if relevant the minimum and maximum
possible values.

• metric_predictions : each row stores two predicted points (a point is a
value and its timestamp). The first point represents the metric in the
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near future (a few seconds ahead), while the second point is the metric
in a more distant future, determined by the prediction horizon. It is
enough to store two points for a linear regression.

• metric_errors: each row stores the root-mean-square error (RMSE)
calculated in the blacklisting process. This permits to later filter out
metrics whose measured values don’t align with the predictions.

The metrics stored in these Cassandra tables are flattened: they don’t
represent the hierarchy of hosts, services and metrics found in some monitoring
engines. This is on purpose: Cassandra is not used to store this kind of
information, which is better managed by specialized tools. In fact, this
schema is monitoring engine-agnostic: it is meant to be used by different
engines as a sink for their metrics.

3.3.3 Linear regression

We first discuss in this section why linear regression makes sense compared
to the legacy threshold methods, and then describe how we applied it on our
metrics.

Comparison with threshold

Most metrics have two thresholds: warning, and critical. A system in the
warning state continues to properly run, but it is a signal that some compo-
nents might break in the future. For instance a CPU whose load is 80% is
still working, but approaching its maximum capacity. Most systems will emit
a notification when a metric is above its warning threshold, but it doesn’t
mean the trend will continue and the metric will enter its critical state. In
our example, the CPU load can keep increasing, or decrease and leave the
warning state.

Looking at the evolution of data points among different kinds of metrics,
we identified 6 common scenarios, represented in Figure 3.2. Two situations
lead to the perplexity point, the point in time when metrics get closer to the
warning threshold, and from where three situations can arise. We evaluate
the benefits of linear regression versus the warning threshold for each of them:

• Slow rise followed by slow rise: linear regression is a perfect fit for this
situation, as it will easily identify the trend even before the warning
zone is reached.
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Figure 3.2 – Metric trend cases.

• Slow rise followed by quick rise: both linear regression and the threshold
system will be efficient if they refresh their measurements often enough.
If the rise is too fast, they will both predict the issue too late.

• Slow rise followed by transient rise: if linear regression can predict the
future decrease, it will avoid sending a false positive alert.

• Quick rise followed by slow rise: both systems might give a false positive,
or at least predict the issue too early. However, linear regression will be
better at predicting the change to normal state again.

• Quick rise followed by quick rise: depending of the frequency of the
measurements, the threshold system might alert too late about a fast
arising problem, whereas linear regression can predict it.

• Quick rise followed by transient rise: again, false positives might be
sent by both systems, but linear regression is better at anticipating the
return to normal state.

We saw that linear regression is better than the legacy threshold system
in 4 out of 6 scenarios, and better or equal in the other 2. That makes it a
good candidate for predicting the behavior of many metrics.
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Linear regression on monitoring metrics

We use the machine learning library bundled with Spark, MLlib, to perform
a linear regression on data distributed on different machines. The training
phase is performed independently for each metric, using a history size of 30
points. We found this value to be optimal: it gives good results (described in
more details in Section 3.4) while keeping the training phase to a reasonable
time (100 ms). Once performed, we store the prediction results back into
Cassandra in the metricpredictions table, available for consumption by different
front-ends, and by the error evaluation process (Section 3.3.4).

We didn’t explore in this work the potential correlations between different
metrics. We observed it often happens that multiple errors are reported from
the same machine in case of a failure (if it runs multiple monitored services),
but this is less obvious when predicting problems in advance. Nonetheless,
we keep this exploration of metrics correlation as future work.

Prediction horizon

The prediction horizon (the estimation of how long the predictions are valid)
is complex; as it is generally less and less correct over time. However, we
noticed that a maximum horizon of 8 hours is a good metric, and this is
the amount needed for reliability engineers to not wake up overnight to fix
services. The predictions are given as "best effort": they represent the best
values obtained by the system, but can’t give guarantees about their veracity.
It is important to note they are continuously recomputed, and hence never
out-of-date.

3.3.4 Metrics selection

Not all metrics are good candidates for prediction. Some metrics don’t show
any pattern, and never respect their predicted values. We use a blacklisting
algorithm to eliminate them, in order to save computing resources and avoid
false positives. A weekly batch script performs an error evaluation (RMSE,
Root Mean Square Error) of the predicted values, which are compared against
the observed values for the week. If the RMSE is higher than a given
threshold, the metric is blacklisted. It is of course possible for users to
reactivate blacklisted metrics to see if their predictions perform better.

3.3.5 Optimizations

This section describes some interesting optimizations that helped us greatly
reduce the time and resources needed for the various computations.
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Caching

Spark implements a persistence mechanism, which allows to cache data either
on memory, or on disk, or both. By analyzing the data processing chain,
one can spot the states where saving data brings computation time benefits,
typically when one Dataframe is to be used by many other functions. As
sometimes persistence can reduce performances, when the cost of caching
data is greater than the benefits it provides, comparing the performances
both with and without persistence is rather necessary. In our case, we found
that persisting the measurements data for a metric after it was retrieved from
Cassandra greatly reduced the processing time.

Dataframes

Spark provides different APIs to developers, the main one being Resilient
Distributed Dataset (RDD). RDDs are suitable to apply transformations
on large, unstructured datasets. On the other hand, Dataframes, another
container for distributed data, relies on tabular data organized into columns
and associated to a schema, like an SQL table. For relatively complex queries,
using Dataframes brings consequent speed-ups [17], because they benefit
from advanced optimizations such as a query planner (named the Catalyst
Optimizer). Since our data is already organized into tables (when it is stored
in Cassandra), we could compare both approaches, RDDs and Dataframes,
and the latter were the fastest.

Cassandra optimizations

Apache Cassandra being a distributed, column-oriented database, the key to
obtain good performances is to design a schema around the expected types of
queries it will get, at the price of duplicating data. Cassandra is optimized for
writes, and in order to get good performances for reads, it is necessary to well
partition the data. Good practices recommend two goals for that purpose:
balance data evenly across machines, and minimize the number of partitions
that need to be accessed for one query. It is recommended for a partition to
be a few hundreds of megabytes, and contain a few hundreds of thousands of
values. Our biggest table containing the measurements as reported by the
monitoring engine, and every unique monitored service having up to a few
metrics updated at most every minute, we decided to keep monthly partitions
per service, which would weigh around 60 MB. It is to be noted that yearly
partitions would be sustainable by Cassandra as well.
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Figure 3.3 – Number of metrics handled in 15 minutes, varying the number
of slaves and the number of CPU cores.

3.4 Evaluation

3.4.1 Setup

We ran the experiments on 4 physical machines (HPE Proliant DL380), with
16–28 hyper-threaded cores, and 128–256 GB of memory. We installed Debian
stretch 9.0, Spark 2.1.0, and Cassandra 3.0.9.

One machine is the master and the three others are slaves. We replayed
the production load triggered by the monitoring boxes reporting metrics, and
measured different parameters under different conditions.

We replay a dataset made of production data recorded on Coservit’s
servers. It represents two weeks of data, for 424 206 unique metrics. In total,
there are 1 500 335 458 data points, whose size is about 15 GB in total. To
get all these data points, 25 070 machines were monitored. An interesting
deduction we can make is that, on average, there are about 17 monitored
metrics per machine (the standard deviation is about 30 though, so it highly
depends on the type of machine).

3.4.2 Scaling

To check the system scaling performances, we measured the amount of metrics
which can be processed in a 15 minute time range, varying the amount of
slaves between 1 and 3, and the number of CPU cores between 5 and 125.
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Figure 3.4 – CPU load and memory consumption, when running on 100 cores
for 15 minutes.

Figure 3.3 shows the results. When using only 5 cores, the system could work
on about 7000 metrics (± 1000, depending on the number of slaves) in the
given time range. This value scales linearly with the number of CPU cores, for
the different amount of slave machines we tested; that’s because all metrics
are independent from each other and Spark manages this kind of setup very
well. The maximum performance obtained is when using the 125 CPU cores
at our disposal, and corresponds to about 108 000 predicted metrics in 15
minutes, or 120 per second. In conclusion, one metric takes about one second
to be predicted on one CPU core, end-to-end on the processing chain.

Figure 3.4 shows the CPU load and the memory used when running the
experiment with 100 cores. The machines are not overloaded, which leaves
room for other high-consumption processes such as Cassandra. Two things
are worth noting: the CPU load reaches 100% at the beginning, which is due
to the Spark jobs start-up. Afterwards, both CPU and memory stay very
stable: this is expected given the same work is done for every metric.
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Figure 3.5 – Time repartition of the end-to-end process for predicting a
metric (average with 90K metrics).

3.4.3 Time repartition

We also instrumented the different components of the processing chain, mea-
suring the time taken by each of them, and averaging it on all the metrics.
Figure 3.5 shows the results. Loading the data from Cassandra is what takes
most of the time (about half of the total); this is expected since Cassandra is
optimized for writes. Moreover, the network adds up to the latency. Creating
a Spark Dataframe is quite resource-consuming too, but once it’s created
it’s fast to work on it: the training and prediction times are relatively short.
Finally, saving the data back into Cassandra and publishing an acknowledge-
ment message to RabbitMQ is fast. End-to-end, the processing time of one
metric on one CPU core is about one second. This is an acceptable time given
our requirements, and is way below the prediction horizon (a few hours).

3.4.4 Load handling

Using these previous results:

• It takes 1 second to predict a metric (end-to-end);

• There are on average 17 monitored services per machine (in the case of
our dataset, a machine is either physical or virtual);
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and taking a pessimist average of 1 minute for the metric sampling period
(1 minute is usually the minimum period, and most metrics don’t gain to
be checked that often), we deduce we can handle 60× 24 = 1440 metrics on
a 24-core server. That means such a server can handle all the predictions
for about 85 machines, which is a very acceptable ratio. Since this system
scales linearly, increasing the number of cores will automatically increase the
metrics load a server can handle.

It is important to note that the described servers have monitoring storage
and prediction as their only role: they do not run other monitoring software,
user interface dashboards, etc. If a 24-core server seems a lot to handle 85
machines (or 1440 metrics), it appears the performances are better in practice:
the period is higher than 1 minute for most metrics, and the black-listing
process will reduce the load in any case for less predictable metrics.

3.4.5 Predictions accuracy

Finally, we measured the root-mean-square error (RMSE) for every predicted
metric. Due to outliers and "bad" metrics (which are too volatile to respond
well to linear regression), it is quite high: its average is 821.65, with a standard
deviation of 23 686.72. However its median is at 0.000 842: this tells us most
of the metrics have a very low RMSE. If we decide a good prediction has an
RMSE < 0.02, when we filter the results to keep only those below this value,
we get an average at 0.001 154, and a standard deviation at 0.003 403. More
interestingly, 58.5% of the metrics fall within that range, which is promising
for the benefits of linear regression over this system.

Figure 3.6 shows three examples of metrics measurements and predictions.
A vertical dotted line separates the training values from both the predicted
ones and what was actually measured. The first one is the swap memory of a
machine, with up-spikes probably due to the kernel swapping memory before
freeing it immediately afterwards. The second one represents the physical
memory of a machine, with down-spikes. Linear regression can’t predict
spikes, and that is something we intend to try with other, more complex,
machine learning algorithms. Note that the y-scale doesn’t begin at 0, hence
the spikes are smaller than what they appear. In these cases, not predicting
spikes is a feature, as they are sudden increases (or decreases) that are back to
normal almost immediately afterwards; hence we avoid raising false positive
alerts.

The third figure represents how full a disk partition is. This time an actual
problem is detected: the warning threshold is reached. It is predicted a bit
sooner than the actual problem occurrence, but this difference would have
trimmed down when getting new data.
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Figure 3.6 – Measurements and predictions for three different metrics.
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3.5 Related work

3.5.1 Time series

Time series forecasting is essential in many fields such as finance [61], health [62],
weather forecast [43] and marketing [35]. Auto regressive (AR) and mov-
ing average (MA) are two of the very first linear statistical approaches of
time series forecasting [49]. Auto Regressive Integrated Moving Average
(ARIMA) is a linear forecasting model, which includes both AR and MA
while considering trends in the time series [38]. With advances in probabilistic
machine learning, many studies utilize machine learning algorithms for time
series forecasting [37] along with statistical approaches [55]. Support vector
machines generalize well in high dimension [112]. With regression extension,
many studies used support vector regression for time series prediction [91].
Random Forest is an ensemble of weak learners [39] which results in good
generalization. They are used in many time series prediction applications [52].

3.5.2 Monitoring

Some industrial companies have implemented prediction systems to prevent
failures. Zabbix [16] uses different models (linear regression, polynomial
regression, etc.) to predict the future value of a given metric, and hence
predict when a critical threshold will be reached. Triggers compute the
predicted values each time a new metric value arrives. However, the choice of
the model and the parameters tuning has to be done manually for each metric,
which is resource-consuming and easily leads to errors. In our system, we use
cross-validation to automatically tune the parameters and we use blacklisting
to remove metrics that are not good candidates for linear regression algorithms.

Chalermarrewong et al. use time series analysis approach for hardware
failure prediction task [48]. They use self adjusting multi-step ARMA to
predict the future values which updates the model according to paired t-test.

In the capacity planning domain, Microsoft Azure [7] defines a set of
machine learning algorithms to compute predicted values. They offer a
graphical designer to easily define a web service that performs the learning.
However it does not perform predictions in real time.

Thermocast [83] focuses on predicting the thermal parameters of datacen-
ters. Their approach is similar, but it solves a different issue and doesn’t look
at server problems but rather the temperature of the various equipment.

Many systems (e.g. [82]) leverage elastic computing to predict Service-
Level Agreement (SLA) issues and provision enough resources for anticipated
workloads. Our solution is orthogonal to this problem, since some monitoring
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issues can be consequences of changes in the datacenter workload, but not all
of them.

Singh et al. describe an architecture for storing monitoring data and
update a wiki engine with the collected information [105]. They present
some similarities with our work in their choice of distributed engines, notably
Apache Spark and MLlib.

3.6 Conclusion

Monitoring machines in a datacenter helps determining which services are
down, and which resources need to be upgraded. It also generates a lot
of time series points: thousands of metrics, as diverse as a CPU load or
a database latency, constitute a set of metrics which can be leveraged for
prediction purposes. However, predicting the future behavior of monitoring
metrics poses a few challenges, the noteworthy ones being accuracy (to avoid
generating false positive alerts), and scalability (as more metrics enter the
system, it needs to stay fast).

We described and evaluated a system for leveraging this opportunity,
choosing linear regression as the main prediction algorithm, for its simplicity
and relevance for most of the observed metrics. We detailed the inner workings
of linear regression, as opposed to the threshold system in place within most
monitoring software suites; as well as the main components revolving around
it: persistence storage in a Cassandra database, work distribution among
servers with Spark, and blacklisting of less predictable metrics. The detailed
evaluation gave us great insights on this system, notably about its scalability
(it scales linearly up to at least 125 cores) and speed (the end-to-end processing
chain takes about one second on one CPU core to predict one metric). We
believe this system adds a great value to monitoring tools, by giving system
administrators information about potential future problems and downtimes,
and it allows to plan resources more efficiently.

There are many improvements we can implement as future work. We
plan to experiment with deep learning, in order to focus on long term global
trends, rather than local ones identified by linear regression. For blacklisted
metrics which are not good fits for linear regression, we can implement other
machine learning algorithms, and compare the performances obtained. Lastly,
we envisage to plug this system to a ticketing mechanism used by clients to
report problems, in order to match them with their host errors. This presents a
few challenges, because tickets are not labeled and natural language processing
will be required; but we’re confident it can lead to innovative customer support
solutions, such as the automatic deployment of operations in response to
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tickets reported, as soon as they are matched with the issues raised by the
monitoring system.
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Data-aware routing

« feature, n: a documented bug | bug, n: an undocumented feature »
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After presenting an end-to-end system for the Smart Support Center project,
we focus for our second contribution on a specific layer of the data processing
stack: the routing of real-time messages, and how it can be optimized by
looking for correlations in data.

Distributed stream processing engines continuously execute series of oper-
ators on data streams. Horizontal scaling is achieved by deploying multiple
instances of each operator in order to process data tuples in parallel. As the
application is distributed on an increasingly high number of servers, the like-
lihood that the stream is sent to a different server for each operator increases.
This is particularly important in the case of stateful applications that rely on
keys to deterministically route messages to a specific instance of an operator.

59
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Since network is a bottleneck for many stream applications, this behavior
significantly degrades their performance.

Our objective is to improve stream locality for stateful stream processing
applications. We propose to analyse traces of the application to uncover cor-
relations between the keys used in successive routing operations. By assigning
correlated keys to instances hosted on the same server, we significantly reduce
network consumption and increase performance while preserving load balance.
Furthermore, this approach is executed online, so that the assignment can
automatically adapt to changes in the characteristics of the data. Data
migration is handled seamlessly with each routing configuration update.

We implemented and evaluated our protocol using Apache Storm, with
a real workload consisting of geo-tagged Flickr pictures as well as Twitter
publications. Our results show a significant improvement in throughput.

4.1 Introduction

Stream processing engines such as Apache Storm [111] and Apache Spark
Streaming [120] have become extremely popular for processing huge volumes
of data with low latency. Streams of data are produced continuously in
a variety of context, such as IoT applications, software logs, and human
activities. Performing an online analysis of these data streams provides real-
time insights about data. For instance, the Twitter infrastructure processes
up to 150,000 tweets per second, and maintains a list of trending hashtags.
This cannot be done using batch jobs, as the processing delay would make the
result irrelevant by the time they are produced. Stream processing solves this
problem by continuously analysing the new tweets in memory, and updating
results within milliseconds.

A stream application consists of a directed acyclic graph in which vertices
are operators, and edges represent data streams between operators. To scale
horizontally, each operator is deployed as several instances distributed over
multiple servers. Stateful applications maintain statistics on different topics,
and use fields grouping to ensure that data tuples related to a given key are
always sent to the same instance of an operator. This assignment usually
relies on hash functions to obtain a random but deterministic routing. As
the application is deployed on a higher number of servers, the likelihood
that the recipient operator instance is located on a different server increases.
This increases the network consumption of the application, and significantly
degrades its performance.

In this work, we propose to build optimized routing tables to improve
network locality in streaming applications. We analyse the correlation between
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keys used in successive fields grouping, and explicitly map correlated keys to
operator instances executed on the same server. Hence, data tuples containing
these keys can be passed from one operator to the next through an address in
memory, instead of copying the data over the network. This has the advantage
of being faster, and avoids the saturation of the network infrastructure. Hash
functions suffer from skews in data distribution, as the most frequent keys
cause load imbalance on operator instances responsible for processing them.
As we collect statistics on the distribution of keys, routing tables can also
be used to ensure that the load remains even, which further improves the
throughput of the application.

Data streams fluctuate over time, and association between keys can vary
significantly. Consequently, we opt for an online approach to optimize routing
and reconfigure key routing without disrupting the application. To this end,
we add an instrumentation tool to stateful operators that gather statistics
on the frequency of key pairs. A coordinator collects these statistics from
all operators, and executes a graph partitioning algorithm to divide keys
between servers while balancing the load. Finally, an online data migration
protocol ensures that the state of reassigned keys is migrated between operator
instances without data loss. We evaluate our approach on Apache Storm. Our
workloads consist of synthetic datasets with varying degrees of key correlations,
and two real datasets from Twitter and Flickr. The results show a significant
improvement in throughput.

The rest of this chapter is organized as as follows: Section 4.2 provides
background information on streaming applications. Section 4.3 describes our
approach for optimizing data routing. We present the evaluation in Section 4.4.
We review the related work in Section 4.5, and conclude in Section 4.6.

4.2 Background
We present in this section some general stream processing concepts, before
focusing on stream routing between operators.

4.2.1 Stream processing

Application model

As introduced in Section 2.2.4, stream processing was developed to contin-
uously execute operators on potentially unbounded streams of data tuples.
Apache Storm [111], Flink [46], S4 [94], Samza [95], and Twitter Heron [79],
are examples of popular stream processing engines. Following the dataflow
programming paradigm, a stream processing application can be described
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Figure 4.1 – A simple wordcount stream application. S sends sentences,
operator A extract words, B converts them to lowercase, and C counts the
frequency of each word.

as a Directed Acyclic Graph (DAG). Vertices represent processing operators
(POs) that consume and produce data streams, which flow along edges. A
source constitutes the entry point of the DAG, and streams data tuples, such
as posted tweets or uploaded pictures, to POs. Stream processing implements
a share-nothing policy, so operators can be executed in parallel as they ma-
nipulate different tuples of data. Figure 4.1 represents a simple wordcount
application for streams of sentences. Data enters the DAG at the first PO A
and flows from the left to the right. A takes as input sentences and extracts
words, thus producing a stream of words. These words then reach B which,
for each input word, writes the same word in lower-case format to its output
stream. Finally, C counts the frequency of each word in its input stream.
POs A and B are stateless, as they do not update any internal state when
processing data, while C is stateful as it maintains frequency counts (stateful
POs and POIs are represented with double circles in the remainder of the
chapter). In a general case, each PO can input and output multiple streams
of data. In this chapter, for the sake of simplicity, we present applications
consisting of chains of POs, in which each PO has a single input and output
stream. The results presented remain, however, valid for more complex DAGs.
We also focus on streaming frameworks which implement long-running tasks
(such as Apache Storm), as opposed to the micro-batch processing model (as
in Apache Spark).

Scalability

This approach to stream processing scales horizontally by placing different
POs on different machines. Moreover, each PO of a DAG can be replicated
into different processing operator instances (POIs) to increase its throughput.
Figure 4.2 presents a possible deployment of the wordcount application. PO A
is replicated twice, with POIs A1 and A2 executing the same code in parallel.
In the remainder of this chapter, Xi refers to an instance of PO X executed
on server number i. In the case of a stateless PO such as A and B, this
replication is trivial: since no state is maintained, it does not matter which
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Figure 4.2 – Three components of a DAG having respectively 2, 2 and 3
instances each. A and B are stateless while C is stateful.

instance of the PO processes a given tuple of data. Hence, data streams
can be split arbitrarily between POIs of the same PO. However, replicating
stateful POs such as C is more complex. If a word w appearing multiple
times in the input sentences is processed each time by either C1, C2 or C3,
two problems appear. The first one relates to scalability. Each of the 3 POIs
of C maintains a state related to the frequency of w, so the total memory
consumption of C increases linearly with the number of replicas. The second
problem is that no single POI of C has the correct information regarding the
frequency of w. It is impossible for a POI of C to detect when the frequency
of w reaches a given threshold, in order to trigger an action for instance.
Thus, it is important to ensure that all occurrences of w are routed to the
same instance of C. While replicating processing operators is key to scale
stream processing, it must be used in combination with an appropriate stream
routing policy. We detail stream routing policies in Section 4.2.2.

4.2.2 Stream routing policies

The specification of the application DAG indicates which PO is the recipient
of another PO’s output stream. When several POIs are deployed for a given
PO it is important to also select which particular POI receives each tuple
of data from a stream: this is the role of the routing policy. Each edge of
the DAG is labeled with a choice of routing policy indicating how the output
stream of a PO is split between the POIs of the recipient PO. When a POI Xi

emits data for a POI Yi, both POIs are executed by the server i, so passing
the data is extremely fast. Only an address in memory is transmitted from a
thread to another. However, when Xi communicates with Yj with i 6= j, the
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two POIs are deployed on different servers, which can be on different racks,
or even different locations. The tuple goes through the network, which is less
efficient and can constitute a bottleneck for the system. We now review the 3
main stream routing policies.

Shuffle grouping

Data tuples are sent to a POI of the next PO with a round robin fashion.
This ensures a perfect load balancing between the POIs. This can however
only be used when routing to a stateless PO, as described in Section 4.2.1.
POI co-location is not taken into account, meaning that a message can be
routed to another server even if there is an instance of the destination PO
on the current server. This incurs a significant network overhead. This is
particularly inefficient when successively executing two stateless POs, such as
A and B in the example of Figure 4.2. If B is deployed over 5 POIs, then
80%, i.e. 4 tuples out of 5, of the data from A to B goes through the network.
This proportion only grows as the system is deployed on larger clusters. To
solve this issue, A and B could be combined in a new PO AB executing
both operators consecutively. This would avoid network communication, but
drastically limits the modularity and reusability of the POs.

Local-or-shuffle grouping

This grouping is an optimized version of the shuffle grouping: when a POI
of the recipient PO is located on the same server, it is selected. This policy
opportunistically avoids needless network communication, and mimics the
existence of the AB PO mentioned above. The guarantees in terms of load
balancing are slightly weaker, but for most applications, if the input of a A is
balanced then its output, and thus the input of B, remains balanced without
the need for a round robin assignment. Similarly to shuffle grouping, this
grouping is not appropriate for stateful POs.

Fields grouping

This policy is used when routing to a stateful PO. The developer selects fields
of data tuples as a key to determine the recipient POI, similarly to the reduce
function in MapReduce [56]. Hence, all tuples having the same key are sent
to the same POI. In the example of Figure 4.2 each word is used as a key
when routing from B to C. The default implementation of fields grouping
uses a hash function on the key to determine the recipient POI, but it is also
possible to define and maintain routing tables to explicitly assign keys to
POIs. Fields grouping is necessary to ensure the consistency of stateful POs.



4.3. LOCALITY-AWARE ROUTING 65

However, it can lead to load balancing issues when the distribution of keys is
skewed.

4.3 Locality-aware routing
In this section, we first state the problem, before providing our solution. In
order to do so, we describe how we identify the correlation between keys by
collecting statistics from the different POIs. We then focus on the generation
of the routing table, reduced to a graph clustering problem. Finally, we
describe our protocol that allows the routing tables of POIs to be changed
dynamically.

4.3.1 Problem statement

In this chapter, we tackle the problem of optimizing stream processing applica-
tions. In Section 4.2.2, we explain that network communication constitutes a
bottleneck in stream processing. Such bottleneck can easily be avoided when
routing to stateless POs through the use of local-or-shuffle grouping. Hence,
we argue that the main limitation comes from stateful POs that require fields
grouping to ensure consistency. Our objective is to maximize the locality of
streams routed using fields grouping.

Figure 4.3 shows a possible deployment of a stream processing application.
Each of the 4 POs has two POIs, deployed on two different servers. A and C
are stateless, while B and D are stateful, and maintain a state related to the
keys of the data tuples they receive, using a hash map for example. Stream
routing policies are indicated on the edges between POIs. Routing to C is
local to each server, but routing to B and D incurs network traffic between
servers. Our goal is to minimize the amount of traffic spanning across servers,
i.e. the traffic along (A1, B2), (A2, B1), (C1, D2), (C2, D1). More generally,
given a stream processing application with POs replicated across different
servers, for any two POs X and Y connected through fields grouping, our
goal is to minimize: ∑

i 6=j

traffic(Xi, Yj)

where the traffic function indicates the number of data tuples sent from one
POI to another. A trivial solution to this problem is to process all data
on a single server, which negates the benefits of deploying the application
on an additional server. Hence, we add the constraint that the load of the
application should remain balanced between POIs: the number of data tuples
received by a POI should not be higher than α times the average number
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Figure 4.3 – Deployment of a stateful streaming application, with fields
grouping linking POs A and B, local-or-shuffle grouping linking POs B and
C, and fields grouping linking POs C and D.

of tuples received by POIs of the same PO, where α ≥ 1 is the imbalance
bound.

In this work, we assume that the deployment of POIs on servers is static.
Our contribution is a protocol that generates optimized routing tables for
fields grouping. We propose to detect at run time the correlations between
keys used for consecutive field groupings in order to ensure that those keys
are handled by POIs located on the same server. For instance, if the POI B1,
after receiving a tuple with key k, frequently leads to sending a tuple with
key k′ to PO D, then we should make sure that D1 is the POI responsible
for k′. As streaming applications are executed on unbounded streams, the
characteristics of data may change over time. The routing optimization
protocol detects these changes and generates new appropriate routing tables.
In addition, as a key is assigned to a different POI, a data migration protocol
ensures that the state of the application is preserved.

4.3.2 Identifying correlations

Our goal is to leverage the correlation between keys used in consecutive fields
grouping to avoid routing streams over the network. The first step consists
in detecting candidate pairs of keys that show potential for optimization.
Let X and Y be two consecutive stateful POs with instances over a set of n
servers. Given two keys k and k′ used when routing to X and Y respectively,
the probability of the POIs processing a tuple containing k and k′ being
located on the same server is 1/n when using hash functions. Hence, by
ensuring that k and k′ route to the same server, the expected number of
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Figure 4.4 – PO instrumentation: every instance counts the key pairs it
receives and sends, and keeps the most frequent pairs in memory.

network messages avoided is f(k, k′).(n− 1)/n where f(k, k′) is the number
of data tuples containing k and k′. This shows that (i) routing optimization
becomes increasingly important as the number of servers increases, and (ii)
frequent pairs lead to the highest gains. Indeed, even if two keys always
appear simultaneously, and thus have a very strong correlation, the gains are
negligible if they are not frequent. Conversely, a loose correlation can lead to
significant gains if the keys are extremely frequent.

In the remainder of this section, we use the following application as a
running example: geolocated short messages containing hashtags (tweets)
are analysed to generate statistics about topics trending in geographical
regions [41]. The application contains two stateful POs, and routes first using
the region, and then using the hashtag. If the pair (Asia, #scala) appears
more often than the pair (Asia, #clojure), it means that people in Asia tweet
more often about Scala than Clojure. In this case, it is more important to
co-locate on the same server the POIs dealing with the keys Asia and #scala
than Asia and #clojure.
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Offline analysis

In cases where the workload is stable, correlations between keys are assumed
to remain constant over time. Consequently, it is possible to perform an
offline analysis on a large sample of the data and to accurately compute the
frequency of all key pairs. This information can then be used to compute
optimized routing tables that can be used for long periods of time without
the need for an update.

Online analysis

Data streams often fluctuate over time, particularly when they are generated
by human activity. For example, #breakfast is associated to America and
Europe at different moments of the day. In addition to diurnal and seasonal
patterns, flash events can occur, generating temporary correlations between
keys. It is necessary to detect these correlations at run time to perform an
online optimization of stream routing without interrupting the execution of
the application. For this purpose, we add an instrumentation tool to stateful
POs. For each passing message, a POI extracts the input key, which was
used to route the data tuple to this instance, and the output key, which
decides towards which POI the message is routed next. Pairs of keys are
stored in memory along with their frequency, as depicted in Figure 4.4.
Computing the frequency of pairs of keys online is a challenging problem,
as most of the resources, such as CPU and memory, should be dedicated to
the application, and not collecting statistics. To this end, we rely on the
SpaceSaving algorithm [90]. Using a bounded amount of memory, it maintains
an approximated list of the n most frequent pairs of keys. This limitation on
the collection of statistics is, fortunately, not problematic for most large-scale
datasets. Indeed, many real datasets follow a Zipfian distribution [25], with
few very frequent keys, and many rare keys. Identifying the pairs containing
the most frequent keys captures most of the potential for optimization, so the
loss compared to an exact offline approach is limited. Whenever the routing
of keys is updated, the statistics are reinitialized to only take into account
recent data and detect new trends.

4.3.3 Generating routing tables

In addition to the streaming application, we execute aManager, responsible for
analysing the statistics collected by the POIs and coordinating the deployment
of an optimized routing configuration. For each pair of consecutive stateful
POs X and Y , the manager periodically queries all POIs of X to obtain
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Figure 4.5 – A bipartite graph of the key pairs, showing different weights for
the vertices and edges, i.e., pairs.

their statistics on the frequency of associations between keys. These statistics
can be represented as a bipartite graph connecting keys of X to keys of Y .
Each key is a vertex weighted by its frequency, and an edge between keys
is weighted by the frequency of their co-occurrence. Figure 4.5 shows the
bipartite graph, as it would be constructed with the data in Figure 4.4. The
pairs observed the most frequently are represented by bold edges.

Creating the best assignment of keys to servers reduces to a graph parti-
tioning problem. We want to partition the bipartite graph such that pairs of
keys that appear together frequently are in the same group. In other words,
we try to miminize the added weights of the cut edges. That way, we can
co-locate on the same servers the instances which deal with correlated keys
and decrease the network utilization. In Figure 4.5, assuming the application
is deployed on n = 2 servers, Asia, #java and #ruby should be put on the first
one, while Oceania and #python on the second one. Load balancing between
servers is handled by balancing the sum of vertex weights in each partition.
In practice, we rely on the Metis partitioning library [76]. We construct the
bipartite key graph and provide it along with a balance constraint to Metis,
which in turn returns the partitioned graph. At this point, keys are assigned
to servers, so we can generate routing tables mapping these keys to the POIs
hosted on each server.

Each POI preceding a stateful PO uses the optimized routing table to
route a key to a POI. When a key is not present in the routing table, it falls
back to the standard hash-based routing policy.
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4.3.4 Online reconfiguration

In the case of an offline analysis, optimized routing tables can be loaded
at the start of the application. However, the online approach requires the
manager to send the updated routing tables to POIs, while not losing any
data tuple of the stream in the process.

The main difficulty when dealing with hot reconfiguration is state migra-
tion. Every stateful POI holds the state of the keys to which it is associated.
When a key is assigned to a different POI in the updated routing tables,
its corresponding state needs to be transferred between POIs. Moreover,
after POIs migrate the state of their previous keys, they should no longer
receive any message related to this key. This means that preceding POs in the
DAG must have proceeded to their reconfiguration first, and route messages
according to the new routing tables. To this purpose, we implemented a
protocol which orchestrates a progressive reconfiguration following the PO
order specified by the DAG. This protocol is shown in Figure 4.6 and described
more formally using pseudo-code in Listing 4.1.

The reconfiguration protocol is executed by the managerM . The manager
first asks every running POI to send the collected statistics (1). Upon
receiving them all (2), it builds the bipartite graph of the key pairs (see
Figure 4.5), partitions this graph with Metis, and computes the new routing
tables. It sends these tables to the respective POIs (3), and waits for all
acknowledgements (4). It then enter the propagates phase, and tell the
instances of the first PO to proceed to the reconfiguration (5). The two
instances update their routing table and exchange the state of the keys
whose assignment has changed (6). After this operation, they forward the
propagation instruction to the instances of the second PO (5), which in turn
update their routing tables and exchange their states if necessary (6).

The computational cost of this reconfiguration is linear in time with
respects to the number of POs, and linear in space with respects to the
number of key pairs which are counted.

The reconfiguration message sent by the manager to every instance is a
data structure containing:

• reconfigurationrouter: The new routing table, associating keys to POIs.

• reconfigurationsend: The list of keys whose state must be transferred
along with their respective recipients.

• reconfigurationreceive: The list of keys whose states are expected to be
received from other instances of the same PO.
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1 manager_migration():
2 for poi in POIS:
3 send(poi, GET_METRICS, nil) (1)
4

5 for poi in POIS:
6 metrics.add(receive(SEND_METRICS)) (2)
7

8 reconf = compute_reconfiguration(metrics)
9

10 for poi in POIS:
11 send(poi, SEND_RECONF, reconf[poi]) (3)
12

13 for poi in POIS:
14 receive(ACK_RECONF) (4)
15

16 for poi in POIS:
17 if predecessors[poi].is_empty():
18 send(poi, PROPAGATE, nil) (5)
19

20 poi_migration():
21 receive(GET_METRICS) (1)
22 send(manager, SEND_METRICS, my_metrics) (2)
23

24 my_reconf = receive(SEND_CONFIGURATION) (3)
25 send(manager, ACK_RECONF, nil) (4)
26

27 if my_predecessors.is_empty():
28 receive(PROPAGATE) # from manager
29 else
30 for poi in my_predecessors:
31 receive(PROPAGATE) (5)
32

33 update_routing(my_reconf[ROUTER])
34

35 for (poi, keys) in my_reconf[SEND]:
36 send(poi, MIGRATE, state(keys)) (6)
37

38 for (poi, keys) in my_reconf[RECEIVE]:
39 state.add_all(receive(MIGRATE)) (6)
40

41 for poi in my_successors:
42 send(poi, PROPAGATE, nil) (5)

Listing 4.1 – Pseudo-code for the reconfiguration algorithm.
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M A1 A2 B1 B2

compute
routing
tables

1 1 1 1
2 2 2 2

3 3 3 3
4 4 4 4

5 5

66

5 5
5 5

66

Figure 4.6 – Reconfiguration protocol, forwarding routing tables and key
states between POIs. (1) Get statistics. (2) Send statistics. (3) Send
reconfiguration. (4) Send ACK. (5) Propagate. (6) Exchange keys.

The data stream is not suspended during reconfiguration, so it is possible
that a POI receives a tuple associated to a key while it has not yet received
the state associated to it. In this case, tuples are buffered and are only
processed once the state of their key is received. This solution is preferable to
suspending the stream as some stream sources do not support back pressure
and would lose messages. To handle fault tolerance, the manager saves all
routing configurations to stable storage before starting reconfiguration. If a
POI crashes, the guarantees are the ones provided by the streaming engine
and are not impacted by state migration.
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4.4 Evaluation
In this section, we evaluate the benefits of locality-aware routing in stateful
streaming applications by implementing it in Apache Storm. We first present
the experimental setup. Then, we perform a thorough evaluation of application
throughput when varying a wide range of configuration parameters using a
synthetic workload. Afterwards, we switch to a real workload from Twitter
to evaluate the benefits of an online approach in the case of a fluctuating
workload. Finally, we evaluate the impact of reconfiguration on a real stable
dataset from Flickr.

Summary of results

We show using a synthetic workload that locality-aware routing significantly
outperforms hash-based routing. The difference increases with the number
of servers, the size of data tuples, and the amount of locality in the data.
We observe on a Twitter dataset that associations between hashtags and
locations vary over time. Our approach achieves a 50% locality on this
dataset when deployed on 6 servers, compared to 17% for hash-based routing.
We demonstrate that online reconfiguration is necessary to maintain this
locality, as an offline approach is unable to leverage transient correlations.
We also show that only the most frequent key associations are necessary
to achieve high locality score, thereby confirming that 1MB of memory per
POI is sufficient for collecting statistics. Finally, we observe the impact of
online reconfiguration on a stable dataset from Flickr, and notice a significant
throughput increase, thus validating our approach.

4.4.1 Experimental Setup

We implement locality-aware routing in Apache Storm in order to evaluate
its performance. We now describe the testbed and the application deployed.

Servers

Our platform for the experiments is a cluster of 9 physical servers. One of
them runs Nimbus, i.e. the Apache Storm master, and the other 8 are Apache
Storm workers. The workers are HPE Proliant DL380 Gen9 servers with the
following specifications:

• RAM 128 GB of DDR4 memory.

• CPU 2x 10-Core Intel Xeon E5-2660v3@2.6 GHz
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• Network The machines are linked through a 10 Gb/s network, using
Jumbo frames (MTU 9000). We also experiment 1 Gb/s network speed
by using a software to throttle bandwidth.

• Disk 15 × 6TB SATA disk.

• Software Debian 8.3.0 (stable), and Apache Storm 0.9.5.

Application

For evaluation purposes, we consider the case of a streaming application
closely related to the one described in Section 4.3. It consists of one source, S,
and two stateful POs, A and B. The first PO computes statistics based on the
first field of the tuples by counting the number of occurrences of its different
values, and the second PO executes the same operation on the second field.
Hence, fields grouping is used to route data tuples to both POs. Each PO
is deployed as n instances, n varying between 1 and 6. We later refer to the
number of instances as the parallelism of an experiment. We use the same
parallelism for both POs to ensure that every instance of the first PO has a
local instance of the second. For each PO X, the POI Xi is hosted on server
i. Hence, each server hosts both an instance of A and an instance of B.

4.4.2 Locality impact using synthetic workload

To assess the impact of locality on the performance of streaming applications,
we first consider the case of a synthetic workload. The source generates tuples
containing three fields: (integer, integer, padding). The first two fields, the
integers, vary between 1 and n. In this experiment, the locality parameter
controls the number of tuples in which these integers are equal. The last
field is here to allow experimenting with different tuple sizes, to simulate
workloads ranging from single words to small texts. We vary the padding
between 0 and 20kB.

We evaluate the performance of the application on this workload using 3
different versions of fields grouping.

• Hash-based: tuples are assigned to a POI using a hash function on the
key. This assignment is random but deterministic, and represents the
default implementation of fields grouping in Storm.

• Locality-aware: each tuple (i, j, p) is routed to the i -th instance of A,
Ai, and then to the j -th instance of B, Bj. Doing so, all the tuples
of type (i, i, p) are routed on the same server i. This implementation
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of fields grouping represents the approach advocated in this chapter.
These are the routing tables that would be generated by analysing the
data.

• Worst-case: tuples of type (i, i, p) are always routed through the network.
This represents a worst case scenario that has negative synergy with
locality. This allows us to obtain a lower bound on the performance of
the application.

We iterate over different values of following parameters: parallelism,
padding size, and locality ; and run the application with each of the 3 versions
of fields grouping presented above.

Figures 4.7 and 4.8 depict the throughput of the application when varying
parallelism. With a locality of 60%, all versions of fields grouping send
messages over the network. We observe that, as the size data tuples (padding)
increases, the gains of adding additional servers decrease. When padding is
at 20kB, we even notice a decrease of performance when switching from 1 to
2 servers. This behavior is symptomatic of stateful streaming applications:
network constitutes a bottleneck, and the proportion of tuples transiting
through the network increases with parallelism. For all padding sizes, locality-
aware clearly outperforms the other options, as it is the only option that scales
linearly for a parallelism higher than 2. A locality of 100% constitutes an
ideal case, in which locality-aware avoids all network communications. In this
setup, padding has no effect on the throughput as tuples are transferred in
memory. This experiment highlights the impact of network communications
on the throughput of streaming applications. Even when tuples are extremely
small (padding = 0), routing through the network lowers the performance by
22%. As expected, this value increases with the size of tuples.

Figure 4.9 presents results for varying values of locality. Hash-based
is not affected by locality, as it do not leverage it. Locality-aware gains
performance as the locality of the dataset increases, since the amount of
network communication decreases linearly with locality. We notice a plateau
above 90% of locality.

Figure 4.10 illustrates the variation of throughput for varying padding
sizes. The difference between locality-aware and the other options increases
both with the size of padding, and with parallelism. This behavior is explained
by the fact that in this experiment, locality-aware is able to preserve a ratio
of 80% local communications, while hash-based sends more network messages
as parallelism increases. Furthermore, network saturates faster when padding
is high. We note that in the most challenging configurations, the performance
of hash-based and worst-case are very similar.
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Figure 4.7 – Throughput when varying parallelism for 60% locality
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Figure 4.8 – Throughput when varying parallelism for 100% locality
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Figure 4.9 – Throughput when varying locality, with a message size of 12kB
and different parallelisms
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Figure 4.10 – Throughput when varying tuple sizes, with a locality of 80%
and different parallelisms
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Figure 4.11 – Occurrences of the hashtag #nevertrump in different states in
the USA.

4.4.3 Impact of online optimization

The approach presented in this work is online. It can detect correlation
between keys on a running application, and optimize locality even when the
characteristic of data vary over time. In this section, we evaluate the benefits
of online optimization over offline optimization. To this end, we rely on a real
dataset from Twitter containing timestamped content.

Twitter dataset

We crawl tweets from October 2015 to May 2016 using the API of Twitter.
Twitter provides for each tweet a location identifier which can be either the
location of the user at the moment of the tweet, or a location associated to the
content of the tweet. Locations can be countries, cities, or points of interests.
Overall, our dataset contains 173 million associations between locations and
hashtags. We set our application to first route using the location, and then
the hashtag.

Evolution of correlations over time

In social media, trends vary constantly and are often linked to events. Fig-
ure 4.11 shows the frequency of a popular hashtag on Twitter for different
locations. While the tag appears on all of the three locations, it is clearly
more correlated with Florida on March 3rd, with Virginia on the 9th and with
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Texas on the 11th. In the context of our application, this means that, to
optimize performance, the same hashtag should be co-located with 3 different
locations at different periods of time. This justifies the online nature of our
reconfiguration protocol: it is important to stay up-to-date regarding volatile
correlations. The next experiment shows how reconfiguration affects the
processing locality.
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Figure 4.12 – Locality and load balance obtained after reconfiguration with a
parallelism of 6, and period of one week. Online: reconfiguration every week.
Offline: one reconfiguration after one week. Hash-based: no reconfiguration.
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Online and offline optimization

In this experiment, we compare the effectiveness of the offline approach,
that computes a single configuration using a sample of data, and the online
approach, that continuously updates the configuration. We use 1 week of data
for the offline approach, while the online approach updates the configuration
every week. We also present the performance of hash-based routing as a
reference. We run this experiment with a parallelism of 6.

Figure 4.12a shows the evolution of locality over time, Hash-based achieves
a locality of 16.6%, which corresponds to a random assignment with 6 servers.
After one week, online and offline both obtain a sufficient amount of data to
perform locality-aware routing, which raises the locality to 49%. However,
this value decreases over time in the case of offline, and stabilizes around 40%.
Offline preserves locality for stable associations, but fails to leverage transient
ones. Online however maintains a locality in the vicinity of 50%. This shows
that to capture volatile correlations, reconfiguration should be triggered on a
regular basis. The experiments of Section 4.4.2 indicate that a 10% difference
in locality can lead to a throughput gain of 25%. This demonstrates the
benefits of the online optimization process in the case of fluctuating workloads.
Note that when generating routing tables, Metis reports an expected locality
of 75%. However, this locality is only achievable by running the exact dataset
that was used to compute the configuration. In practice, data of the next
week contains a significant proportion of new hashtags and locations that
were not observed previously and are thus routed using hash functions.

Now that we have established the need for regular reconfiguration in
order to optimize locality, we focus on the impact of reconfiguration on load
balancing. As shown by Figure 4.12b, hash-based distributes the load fairly
evenly, with an average of 12% additional traffic for the most loaded POI.
Online and offline both start with a balanced load, thanks to the statistics
collected on the frequency of keys. As the workload fluctuates, some hashtags
and locations become more frequent in the following weeks. This causes
the distribution of the load to deviate significantly. When optimizing for
locality, correlated keys are assigned to the same server. While this contributes
to diminishing network consumption and increasing throughput, this has a
potential drawback: correlated keys have a higher probability to have peaks
of activity simultaneously. Online is able to immediately correct these spikes
of unbalance, while offline stabilizes around 40% imbalance. This experiment
confirms that locality-aware routing is able to preserve load balance, and that
reconfiguration needs to be carried out regularly on fluctuating workloads. We
deliberately use long intervals of time (1 week) between reconfigurations for
the online approach to highlight deviations from optimal behavior (imbalance
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Figure 4.13 – Locality achieved when varying number of considered edges,
for different parallelisms.

spikes). In practice, as we show in Section 4.4.4, reconfiguration is extremely
fast and can be triggered much more frequently to account for deviations in
the frequency of keys.

Please note that the imbalance parameter α specified in Section 4.3.1 is
indeed used and set to 1.03, which is Metis default value. However, while it
is respected for the collected data on which the partitioning is achieved, its
impact on the future data cannot be predicted, although the reconfiguration
greatly improves the load balance as shown in Figure 4.12b.

Statistics collection

As stated in Section 4.3.2, our online protocol uses a bounded amount of
memory to collect statistics, and thus only retrieves information on the
most frequent pairs of keys, or edges. This experiment aims at quantifying
the impact of the number of considered top edges on the quality of the
reconfiguration. Figure 4.13 shows how the achieved locality varies with the
number of edges that we consider when performing the graph partitioning
for different parallelisms. Naturally, having information on more pairs of
keys results in better locality. However, considering the logarithmic scale of
the figure, we can double the locality for parallelism 6, for instance, with
only 0.1% of the total edges. Therefore, a quality/capacity trade-off is to be
made when choosing the number of edges for the reconfiguration protocol,
depending on the application and environment on which it will run. On this
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dataset, we find 106 edges is sufficient, so collecting statistics only occupies a
few MB of memory of each POI.

4.4.4 Reconfiguration protocol validation

The following experiments launch the application with and without our recon-
figuration protocol and see how the reconfiguration affects the application’s
performance. The tuples processed by our streaming application are of type
(tag, country, padding) which come from a dataset provided by Flickr and
described below.

Flickr dataset

This dataset [5] contains metadata about 100 million pictures posted on
Flickr. Among other fields, there is a geolocation and a list of user tags
for every picture. The geolocation is mapped to a country using data from
OpenStreetMap. This dataset represents a stable workload as there is no
temporal information and images are not ordered.

Throughput analysis

In this set of experiments, we launch our streaming application either without
reconfiguration or with a reconfiguration every 10 minutes, each run lasts
for 30 minutes. We do so for different tuple sizes (paddings) and using two
different network settings, 10Gb/s and 1Gb/s. As shown by the different plots
of Figures 4.14 and 4.15, a significant improvement of throughput follows
the first reconfiguration at t = 10min and is maintained throughout the
run. This proves that the real-life correlation of Flickr data is sufficient to
enhance performance through locality. As established in Section 4.4.2, the
performance gain does indeed increase following the size of the tuples. By
comparing results at 10Gb/s and results at 1Gb/s, we can see that the effect
of tuple size is even greater in the case of a more limited bandwidth. As for
the effect of parallelism, i.e., the number of instances of each PO, Figure 4.16
shows that the gap between throughput with and without reconfiguration is
more important for higher numbers of instances. These executions on real
workloads confirm the results obtained on synthetic workloads presented in
Section 4.4.2. We also notice that deploying an updated configuration and
migrating data is extremely fast and does not impact performance negatively,
as the throughput increase is noticeable immediately after t = 10min.
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Figure 4.14 – Evolution of the throughput with or without reconfiguration,
for a parallelism of 6, different padding sizes and a 10Gb/s bandwidth
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Figure 4.15 – Evolution of the throughput with or without reconfiguration,
for a parallelism of 6, different padding sizes and a 1Gb/s bandwidth
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Figure 4.16 – Average throughput for different parallelisms, and a padding of
4kB (on the 1Gb/s network). With reconfiguration, the average is measured
after the first reconfiguration.

4.5 Related work

4.5.1 Operator instance scheduling

When executing a streaming application, the scheduler deploys POIs on
servers. The assignment of POIs to physical servers has a significant impact
on the performance of the application. A first optimization criterion is
ensuring that each server is assigned an even share of the computational load.
A second objective is to locate tasks communicating frequently on the same
servers to avoid network saturation.

In the stream processing engine System S [77], several operators are
fused into a single processing element to achieve a good trade-off between
communication cost and execution parallelism. The approach proposed is
top-down, and starts by considering that all operators are part of the same
processing element. This processing element is then recursively divided using
graph partitioning algorithms.

Aniello et al. [26] proposed two schedulers for Storm. The offline scheduler
only considers the topology of the application and tries to place consecutive
POs on the same server. The online scheduler measures CPU and memory
consumption of POIs, as well as communication patterns between POIs. POIs
are then assigned to servers using a greedy algorithm, starting with the
pair of POIs that communicate the most. The topology used for evaluation
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alternates shuffle grouping and fields grouping for routing, and fields grouping
relies on hash functions only. The addition of local-or-shuffle grouping would
significantly contribute to reducing network communications.

Fisher et al. [58] solve the scheduling problem using graph partitioning.
POIs are vertices of the graph, and are weighted by the computational
resources they consume. Edges represent communications between POIs, and
are weighted by the amount of data that transits. In practice, the authors
use Metis to obtain high quality partitions while preserving load balance.

R-Storm [98] is a scheduler for Storm that aims at maximizing resource
utilization while minimizing latency. The developer declares the memory and
CPU utilization of each PO using a specific API. Then, a Knapsack-based
heuristic performs the POI assignment. The authors describe two topologies
typical of applications used by Yahoo in production. One of them is a chain,
while the other starts with a transformation PO branching into two chains.

Cardellini et al. [47] proposed to perform an embedding of servers into a
4-dimensional cost-space. These dimensions represent network characteris-
tics (latency and throughput), as well as processing power (utilization and
availability). Coordinates are then used to optimize scheduling, using a
spring-based formulation. The main novelty of this work is the use of the
P2P algorithm Vivaldi to assess network latency in a distributed manner.

The problem of scheduling POIs is orthogonal to our contribution. We
assume the existence of a scheduler that assigns POIs to servers, and take this
assignment as an input constraint. While schedulers see fields grouping as a
black box that cannot be optimized, our approach is able to improve data
placement to further reduce network usage. Any online scheduler that actively
measures communication between POIs can then notice the improvement and
re-visit the POI placement decision, leading to even better performance. Our
approach is similar to [58] as it relies on Metis for graph partitioning. Instead
of considering a graph of POIs communicating, we consider a graph of keys
that co-occur in the data.

4.5.2 Load balancing for stateful applications

Load balancing consists in ensuring that each server involved in a distributed
system receives an even share of the total load to avoid bottlenecks. As
explained in Section 4.2.2, stateless streaming applications rarely suffer from
imbalanced load, as data tuples can be sent to any instance of a given PO.
However stateful application use fields grouping to ensure that data tuples
containing the same key always reach the same POI. In the case of skewed
data distribution, POIs responsible for keys occurring frequently receive more
tuples to process than other POIs, and become bottlenecks. Several solutions
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have been proposed to limit the impact of data skew.
Nasir et al. [92] propose to use partial key grouping, where a key can be

sent to two different POIs instead of one. Each POI locally estimates the
load of its successors, and sends the data tuple to the least loaded of the
two options. This solution is elegant, as it relies on two hash functions and
does not require maintaining routing tables. However, it leads to additional
memory consumption as the state associated to a given key is maintained
by two POIs. This state is aggregated downstream, which limits the use
of this solution to associative operators and introduces latency. Partial key
grouping was improved to handle extremely frequent keys [93]. A list of the
most frequent keys is maintained using the SpaceSaving algorithm [90]. These
keys can be routed to any POI, instead of just two. This further increases
memory consumption but improves load balancing in extreme cases.

Similarly to [93], Rivetti et al. [102] proposed DKG, an algorithm that
maintains a list of the most frequent keys that cause load imbalance. These
keys are then explicitly mapped to POIs using routing tables, while less
frequent keys are routed using hash functions. This approach also relies on
the SpaceSaving algorithm for estimating frequencies.

Skewed key distribution also cause load imbalance in database systems.
E-store [107] keeps track of frequently accessed data tuples using SpaceSaving
and migrates them in order to balance load between servers. A routing layer
maintains the assignment of keys to servers using routing tables.

Our approach is similar to [93] as it relies on the SpaceSaving algorithm [90]
to obtain an online estimation of frequency in data streams. However the
statistics we collect are richer, as they involve pairs of keys. Hence, we
are able to use them for network locality optimization in addition to load
balancing. Moreover, our algorithm handles data migration in the case of a
reconfiguration. This important problem is left to the application developers
in [93].

4.5.3 Co-locating correlated keys

Workload-driven optimization consists in analysing the workload of an appli-
cation in order to tune the system to its specific activity. Schism [53] analyses
query logs of shared-nothing databases. Keys accessed by queries are repre-
sented as a graph, with edges weighted with the number of co-occurrences.
This graph is partitioned using Metis to obtain a new assignment of keys
to servers, such that each query can be answered with as few partitions as
possible. Dynasore [31] performs similar optimizations for building social
feeds. User profiles that are frequently accessed simultaneously are hosted
on the same server. The offline partitioning relies on Metis, while an online
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optimizer reacts to workload changes dynamically. A streaming application
can be interpreted as a continuous query, where operators (POIs) are placed
on servers and data streams through them. We aim at ensuring that all POIs
impacted by an execution query on a tuple of data are located on the same
server. Hence, our approach is similar to [31], as we analyse the workload to
uncover correlations between keys, but is optimized for stream processing.

4.6 Conclusion
Stateful streaming applications suffer from increasing network consumption
as they scale to multiple servers. To alleviate this drawback, we propose
to increase data locality by explicitly routing correlated keys to the same
servers. Our approach relies on lightweight statistics about co-occurrence
of keys collected by stream operators. A manager gathers all statistics and
performs a partitioning of the graph of keys to assign correlated keys to the
same server while enforcing load balancing. Data related to reassigned keys
is migrated following the order of operators in the application, which ensures
that the state of a key is preserved. While in this work we only consider
chains of POs, the same graph partitioning technique can be applied to more
complex DAGs. When measuring association between keys, successor keys
can be assigned to different POs, without changing the formulation of the
problem. We demonstrate the effectiveness of our approach on synthetic and
real datasets, by throughput increasing up to ×2 with relatively small tuples.
We prove the gain increases with the tuple size.

Our approach is able to deal with fluctuations in the correlations between
keys by continuously optimizing routing. When the workload is very volatile,
it is important to avoid triggering reconfigurations for ephemeral correlations,
as the cost of reconfiguring would not be amortized. As future work, we will
design estimators able to predict the impact of a reconfiguration to provide
more fine-grained information to the manager. Another promising area of
research is adapting this approach to hierarchical network structures. Instead
of having a binary model in which keys are co-located or not, distances between
servers can be taken into account to leverage rack locality when load balancing
prevents server locality. This could be done by using hierarchical clustering,
similarly to [31]. This however requires a larger testbed for validation.



Chapter 5
λ-blocks

« Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what to
do, let us concentrate rather on explaining to human beings what we want a
computer to do. »

Donald Knuth [78]

« The best code is no code at all. Every new line of code you willingly
bring into the world is code that has to be debugged, code that has to be read
and understood, code that has to be supported. »

Jeff Atwood [29]
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We’ve seen the integration of an end-to-end data processing system, and
an optimization of a low level routing algorithm. Our third contribution is
positioned higher in the data processing stack: it concerns the programming
abstractions available to developers when writing data processing computa-
tions, and integrates well with lower level systems and frameworks.

For that purpose, we present and evaluate λ-blocks1, a novel framework
to write data processing programs in a descriptive manner. The main idea
behind this framework is to separate the semantics of a program from its
implementation. For that purpose, we define a data schema, able to describe,
parameterize, compose, and link together blocks of code, storing a directed
graph which represents the data transformations. Along this data schema lies
an execution engine, able to read such a program, give feedback on potential
errors, and finally execute it. In our reference implementation, a computation
graph is described in YAML, linking together vertices of Python code blocks
defined in separate libraries.

The advantages of this approach are manyfold: faster, less error-prone
programming; reuse of code blocks; language- and framework-agnostic rep-
resentation of data processing programs; computation graph manipulations;
mixing of different specialized libraries; and finally middleware for potential
front-ends (such as graphical interfaces) and back-ends (other execution en-
gines). We notably aim to bring complex data processing computations to
non-specialists.

Our contributions lie within a description of the schema, and an analysis
of the reference execution engine. For that purpose we describe λ-blocks
internals, show some applications and evaluate the framework performances.
We measured the framework overhead to have a maximum value of 50 ms, a
negligible amount compared to the average duration of data processing jobs.

5.1 Introduction
Within many frameworks and systems, data analysis can be summed up
to a set of high-level operations: connect to a data store; fetch, clean and
transform data; save the obtained result. Data is flowing from one operator
to another, and the program can be easily represented with a directed graph,
where vertices are operators and edges connect them together. For example,
Apache Storm [111] allows to explicitly define such a graph when linking
together its agents (spouts and bolts), and Apache Spark [119] automatically
builds a lineage graph inferred from the successive methods called on its

1λ-blocks has been released under the Apache License version 2.0, and is available at
https://github.com/lambdablocks/lambdablocks.

https://github.com/lambdablocks/lambdablocks


5.1. INTRODUCTION 93

data structures (resilient distributed datasets). Many operations have been
standardized in the fields of relational algebra or functional programming:
map, reduce, filter, etc. Specialized libraries apply these operations to different
data containers, sometimes on distributed clusters of machines, with different
levels of optimization.

We argue these programs can be written in a higher-level fashion. By
writing one or more of these operations in a “code block”, we abstract out
the functional code of this block, in the same manner than a library function.
Having inputs and outputs, a block can then be a vertex of an oriented graph,
which can be reused in different computations.

We propose to write such a graph in a descriptive fashion, rather than
programmatic. Using for example YAML, a data serialization format partic-
ularly easy to read and parse, we can describe the vertices (linked to code
blocks with unique names) and their edges (an edge exists when one block’s
output is another block’s input). Moreover, a graph can itself be a sub-graph
of another graph, leveraging code-reuse one step further. Some advantages of
this approach include:

• strict separation of low-level data operations and high-level data pro-
cessing programs;

• direct manipulation of the computation graph, for optimization, instru-
mentation, etc;

• reusability of code, with blocks being used in many programs, and
computation graphs being composed of other graphs;

• easier reading, understanding, sharing, evolution and maintenance of a
data processing program;

• seamless mixing of different frameworks and libraries together;

• as a middleware layer, room for front-ends such as graph visualization
tools, and back-ends such as more optimized execution engines.

λ-blocks aims to bring framework-agnostic dataflow programming to large-
scale data processing, without losing any of the benefits provided by specialized
and well-optimized libraries implementing data operations.

The rest of this chapter is organized as follows: we first introduce some
background on data processing with graphs and component-based software en-
gineering, before diving into λ-blocks’ design, its graph description format and
its execution engine. We then present examples of graph manipulations and
data processing applications, before evaluating the framework’s performances.
We finally introduce some related work and conclude.
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read file
words.txt

filter
begins: ’a’ count

display
stdout

save file
result.txt

Figure 5.1 – A graph representing a program counting words in a file beginning
with ’a’.

5.2 Background

5.2.1 Data processing with DAGs

Directed acyclic graphs (DAGs) are often used to represent a finished list
of successive transformations to apply to input data in an efficient manner.
Vertices represent transformations, while oriented edges represent the links
between them, orchestrating the order in which the transformations must
be applied. The field of dataflow programming deals with the abstractions
behind this idea. In a dataflow-expressed program, the graph is not always
explicitly written by the developer, but used as the internal structure. Famous
examples include tabular spreadsheets, Makefiles, or large-scale processing
frameworks such as Apache Spark and Apache Storm.

DAGs are an efficient data structure for representing a flow of data
transformations, because it gives an abstraction over them. Moreover, a
vertex can have one or many incoming edges, thus allowing the combination
of different data sources together, and one or many outgoing edges, thus
maximizing data reuse.

An example of a simple dataflow program is shown in Figure 5.1. In
every vertex of this directed graph, an operation is shown, along with the
arguments it takes (except for count, which doesn’t take any). After a vertex
has executed its function, it passes the result to the vertices that subscribe
to it: for example, both display and save file read the result of count to
act upon it. The complete program counts the number of words beginning
with the character ’a’ in the file words.txt, shows the result in the console
and saves it in the file result.txt.

This example is as simple as it can be, but illustrates the principles of
dataflow programming: it links together operators transforming data, and
can be represented with boxes and arrows without losing its semantics.
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5.2.2 Component-based software engineering

As introduced in Section 2.3.1, component-based architectures leverage the
separation of a software system between different independent elements, called
components. More specifically, their properties we’re interested in mirroring
in λ-blocks are:

• Black box: an observer doesn’t need to know how a component works
in order to use it.

• Clear interface: components provide one (or multiple) defined interface
to interact with them, just as an object does in object-oriented pro-
gramming. A component interface can be for example defined by its
parameters, inputs and outputs; and the output of one component can
be the input of another one.

• Standalone: a component doesn’t need other components in order to
work, and can be used in different systems, given its interfaces are
honored.

• Composition: a component can be composed of multiple smaller com-
ponents, leveraging code reuse.

Components bring a clear separation of concerns to a system, and com-
partmentalize its different actors. Many component frameworks embed a
domain-specific language to describe the different components and how they
interact with each other. Some of these ideas are borrowed in λ-blocks,
but for a different kind of system: whereas components are different actors
communicating with each other in both directions to transmit messages and
instructions, in λ-blocks the components are only operators, transmitting
transformed data in one direction. The similarities comprise of the description
of actors and their relationships with a domain-specific language (when they
are themselves written in classical programming languages), the separation of
concerns, and the room for optimization which naturally exists when accessing
a high-level view of such a system.

5.3 λ-blocks

5.3.1 Terminology

We describe here the different abstractions used in λ-blocks. These objects
need to exist in any engine implementing the system:
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• Block: a standalone piece of code, able to provide information about
its behavior, either using introspection (with languages supporting it)
or embedded declarations (e.g. through decorators or class attributes).
A block needs to describe at least its ports and arguments (explained
below).

• Component: an instance of a block, i.e. a block with its arguments,
ready to run its functional code.

• Port: a named input or output of a block. The inputs are the data
provided to the block as arguments, and the outputs are its results.

• Argument: a runtime option of a block, such as a configuration value.
It is different from an input port, because it is not meant to carry
flowing data, but rather a variable to parameterize the block, initialized
in the topology.

• Registry: a catalog of blocks, providing their functional code along
with their metadata (a list of key-value pairs used to classify blocks)
and documentation.

• Topology: a computation graph, i.e. a high-level representation of
a data processing program, defining components and linking them
together as a DAG. Sometimes simply called graph.

• Sub-topology: a topology used as a component of another topology
(i.e. when using a graph as a vertex of a bigger graph). Sometimes
called sub-graph.

5.3.2 Architecture

Figure 5.2 shows the architecture of the system. Its different components are
as follows:

• The graph engine is the main controller, it is responsible for parsing
topologies, matching the vertices with code blocks, building the corre-
sponding graph, running different checks against it, and finally executing
it.

• Graph plugins can add functionalities, such as graph manipulation,
instrumentation, etc. They are plugged to the graph engine.



5.3. λ-BLOCKS 97

x
x

x

Block libraries

Blocks
registry

Graph
engine

Topology

API,
CLI

Graph
plugins

x

Figure 5.2 – System architecture.

• The blocks registry aggregates the code blocks defined in different blocks
libraries, and extracts their metadata, either through introspection or
through decorators or tags.

• A topology is the main input of the system, defined in one or more files.

• Finally, the system can be driven by an API and a CLI, and more
front-ends can be plugged, for instance graphical interfaces.

We kept the architecture modular, so that it is easily extendable, and the
different components can be replaced independently; this can be useful for
instance to extend the supported description and programming languages
(beyond YAML and Python).

5.3.3 Topologies format

The main design goals of the topology schema are simplicity and extensibility.
It is meant to be easily written by hand, even by non-programmers, who
would simply need to know the high-level concepts of data transformations
and the YAML syntax.

YAML is a data-serialization language, focusing on readability. It can
easily define lists and associative arrays, and supports typing. We chose it for
the simplicity of reading and writing data with it, and because it is fast to
parse.

There are two types of objects in a topology schema, blocks and sub-
topologies, described below.
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Defining and linking components

A topology consists of two YAML sections: the first one is a simple dictionary,
which permits to assign a name and various metadata to the topology. It is
useful when the number of maintained topologies grows within an organization,
and it permits to easily retrieve them through a search engine for example.
No key is mandatory in this first section, except the name when this topology
is to be composed with other ones, as it needs a unique identifier.

The second section lists the different components and links them together.
Some keys are defined in the reference implementation, and it is easy to add
new ones to further customize the topology. These keys are:

• block: the name of the block (from the blocks registry) that is to be
used;

• name: a unique name for this component;

• args: optional, it allows to give arguments to the block, to customize
its behavior;

• inputs: absent for entry-level blocks (the data sources), it permits to
link components together.

Both args and inputs are defined with a dictionary, because they are
always explicitly named. A block can have zero or more inputs, and zero or
more outputs. At the topology level, only the inputs are defined; its outputs
are inferred from the other blocks consuming them, and can sometimes remain
unused (if no other block subscribes to them).

Listing 5.1 shows a simple topology, which counts the users of a Linux-
based system (note it is incorrect since it will also count daemons and other
system users, but this is out of the scope of the example). The first block
will read a file line by line, and it knows which file to open through the
args.filename value. The second block will simply count the length of the
data structure it receives: it has one input, named data, which is linked to the
output result of the named block my_readfile. This block produces another
result, accessible through my_count.result, which could be displayed on a
console, saved to a file, or used as an input of other different blocks.

Encapsulating other topologies

The second type of component which can be defined in a YAML topology is
a topology itself, encapsulated and linked to blocks or other sub-topologies.
This poses a few challenges, mainly to keep the outer links simple to define.
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1 ---
2 name: count_users
3 description: Count number of system users
4 ---
5 - block: readfile
6 name: my_readfile
7 args:
8 filename: /etc/passwd
9

10 - block: count
11 name: my_count
12 inputs:
13 data: my_readfile.result

Listing 5.1 – A simple topology.

An example is shown in Listing 5.2, along with its graph representation in
Figure 5.3. On the left column, the main topology is defined, and it instantiates
a sub-topology block, count_pb, and linked to two blocks, my_file and
my_print. The bind_in dictionary permits to give inputs to this sub-topology,
while bind_out permits to use some of its outputs as inputs to other blocks.
The sub-topology is displayed on the right column.

Any block output can be used as a sub-topology input, and once they are
defined, they are accessible in the encapsulated topology through the special
dictionary $inputs. We keep the $ sign as the only reserved symbol, which
could be used in the future for different conveniences, for example to give
command-line parameters to a topology.

Similar to the bound inputs, any output of any block of the sub-topology
can be linked to a block. There is no need to use a special dictionary for
this purpose, since outputs are never explicitly declared. In this example, the
value count_pb.result means the output result of the block count of the
encapsulated topology count_pb.

The result of this is a program filtering errors in a log file, counting them,
and displaying the sum. It makes a great use of encapsulation, because the
sub-program taking care of filtering and counting could be used in other
topologies, for example with other log files as bound input, or with a block
saving the result in a database as bound output.
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1 --- ---
2 name: foo_errors name: count_pb
3 --- ---
4 - block: readfile - block: filter
5 name: readfile name: filter
6 args: args:
7 filename: foo.log contains: error
8 inputs:
9 - topology: count_pb data: $inputs.data

10 name: count_pb
11 bind_in: - block: count
12 data: readfile.result name: count
13 bind_out: inputs:
14 result: count.result data: filter.result
15

16 - block: print
17 name: print
18 inputs:
19 data: count_pb.result

Listing 5.2 – Encapsulation example. Left: the main topology; right: the
encapsulated topology. Reports the number of errors found in a file foo.log.
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readfile filter

count print

count_pb

Figure 5.3 – The DAG associated to the program counting errors. The
bind_in and bind_out links for the sub-graph are dotted.

5.3.4 Block internals

Blocks are the individual components of the topologies. They are independent
and reusable: they know nothing about a data processing program, except
their inputs and outputs. Most of them only take care of transforming data,
and hence don’t have side effects, in a purely functional manner. Some blocks
read data from stores (they are the entry points of the computation graph),
and some save back their results on storage. There is no restriction about
the programming language used to write the blocks, as long as they can be
called from the engine manipulating them. We chose Python for the reference
implementation for a few reasons:

• Simplicity: it is a design goal of λ-blocks to be as simple as possible, and
Python has been known for being very accessible to novice programmers.

• Variety of libraries: since blocks can wrap any library function, Python
is a good choice for combining distributed computing (for example
through pyspark, the Python package to interact with Spark), machine
learning (MlLib, scikit-learn), plotting (matplotlib), etc.

• Introspection: it is straightforward to inspect functions in Python, hence
the engine can infer a lot of metadata about a block (its arguments,
inputs, outputs, and documentation) without them being declared
explicitly. Any other metadata can be added with function decorators.

Two block examples are shown in Listing 5.3. A block named take is
registered through the @block decorator, which takes any pair of key/value
for tagging it, for example to categorize it. We then create a closure: the outer
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1 @block(engine='localpython')
2 def take(n: int=0):
3 """
4 Given a list of integers, returns the n
5 first items.
6 """
7 def inner(data: List[int])->ReturnType[List[int]]:
8 assert n <= len(data)
9 return ReturnEntry(result=data[:n])

10 return inner
11

12 @block(engine='spark')
13 def spark_distinct(numTasks=None):
14 """
15 Spark's distinct
16 """
17 def inner(data: pyspark.rdd.RDD) \
18 ->ReturnType[pyspark.rdd.RDD]:
19 o = data.distinct(numTasks)
20 return ReturnEntry(result=o)
21 return inner

Listing 5.3 – Two typical block structures.
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function takes the block’s arguments, while the inner function takes the block’s
inputs. We use Python’s type annotation capabilities to give types to the
arguments, inputs and outputs. The special ReturnType and ReturnEntry
give us the ability to properly define the block’s outputs, to overcome some
limitations of the dynamic manipulation of Python’s typing annotations. This
way, the arguments, inputs and outputs can all be documented and verified.

What happens in the inner function is the responsibility of the block devel-
oper, and can be anything Python can do, such as direct data manipulation,
library function wrapping, or input/output (to retrieve and store data).

The second function, spark_distinct, is a wrapper around the Spark
method which implements distinct on an RDD. Writing a wrapper around
other library functions allows to use those in λ-blocks along with the other
blocks.

5.3.5 Execution engine

The execution engine is the glue between the topologies and the Python blocks
of code. Upon initialization, it will parse a topology, build the associated
DAG (recursively when sub-topologies are involved), and associate each vertex
with a named block of code. It can then run some DAG manipulations, do
all the necessary checks, and execute the graph, giving each component its
inputs after they have been computed.

The execution engine must be fast, to reduce the overhead of the system
as much as possible, and also easy to extend, to leave the possibility of adding
graph manipulations. For the latter, atop the internal API to manipulate
edges, vertices, and the engine itself, it provides a plugin system, which makes
it easy to register hooks at the different steps of the graph execution. When
these hooks are called, they receive relevant parameters, such as the current
value of the flowing data for a certain block. Some possible manipulations
are described in the next section, showing both the use of the internal API
and the plugin system.

In the reference implementation, the engine is single-threaded. However,
each component can easily leverage parallelization by spawning multiple
threads. While this is not optimal for building a proper distributed system, it
is not λ-blocks’ role: distributed data processing frameworks such as Apache
Spark do it better. λ-blocks is meant to wrap their instructions in order to
combine their benefits with its own.
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count
in: List[Any]

out: int

sort
in: List[Any]
out: List[Any]

to_string
in: int
out: str

Figure 5.4 – Type checking.

5.4 DAG manipulations

As stated earlier, having a high-level representation of the processing graph
can bring many benefits, among them the possibility of reasoning on and
optimizing a data processing program. We describe two examples we imple-
mented, and it is easy to build more using λ-blocks’ internal API or plugin
system.

5.4.1 Type checking

Python does not benefit from compile-time type safety. However, it supports
type annotations for variables and functions, and these annotations include
base types as well as more complex ones, such as generic lists and dictionaries,
unions, callables, etc. Type checking can only happen statically, with the
Mypy [74] static analyzer. The links between the different blocks being
computed dynamically (from their YAML description), we implemented a
type checker, which runs right after the DAG construction. The types of
every vertex input and output have already been introspected, hence it is
enough to check that the types of both ends of an edge are compatible.

An example of type checking is shown in Figure 5.4. The block count
takes a list of elements, and returns the length of the list, as an integer. This
is fine for the block to_string, which takes an integer as an input, however
this doesn’t make sense for the block sort, which takes a list as an input.
The type checker, when verifying the edge between the blocks count and
sort, will see two incompatible types at its extremities, and will raise an
error.

This process was easily implemented thanks to the high-level DAG ma-
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nipulation features λ-blocks provides: iterating through vertices and edges,
accessing blocks’ details, and accessing the registry’s objects (functions, input
types, etc). This feature is useful on its own, but can also be leveraged when
writing a graphical interface: an edge could simply not be created between
two vertices if their types were not compatible. This reduces potential errors
while writing data processing programs, giving an immediate feedback to the
user.

5.4.2 Instrumentation

DAG manipulations can also be dynamic and happen at execution time. For
example, it is easy to instrument a program by measuring the time taken
by every of its components to execute. We implemented a plugin for that
purpose, using three hooks:

• before block execution: stores a timestamp associated to this block;

• after block execution: computes the time it took for the block to execute,
using the previous timestamp;

• after graph execution: sorts and displays all the recorded durations.

This can be done with a few lines of Python, and shows the easiness
with which one can add features to λ-blocks, when reasoning with a com-
putation graph as a top level object. An excerpt of the plugin code is
shown in Listing 5.4. The hooks are registered with the Python decorators
@before_block_execution, @after_block_execution, and
@after_graph_execution, and the plugin is activated with the help of the
plugins manager, through command-line parameters. The first hook is called
before each block is executed, and stores a timestamp. The second hook is
called after each block is executed, and with the help of the first timestamp
stored, it can deduce the execution time for every block. We simply display
the summary for every block with the third hook, once the whole DAG has
finished its execution.

An example of this plugin output is shown in Table 5.1 (durations and
timestamps have been truncated to the millisecond):

This example is simple: it downloads a list of words over http, splits the
result to generate a list of words, filters them to keep only those containing
the letter ’e’, and stores the result in a file. Unsurprisingly, the network call
is the longest, followed by the block writing the result on the disk.
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1 by_block = {} # timing by block: begin, end, duration
2

3 @before_block_execution
4 def store_begin_time(block):
5 name = block.fields['name']
6 by_block[name] = {}
7 by_block[name]['begin'] = time.time()
8

9 @after_block_execution
10 def store_end_time(block, results):
11 name = block.fields['name']
12 by_block[name]['end'] = time.time()
13 by_block[name]['duration'] = \
14 by_block[name]['end'] - by_block[name]['begin']
15

16 @after_graph_execution
17 def show_times(results):
18 longest_first = sorted(
19 by_block.keys(),
20 key=lambda x: by_block[x]['duration'],
21 reverse=True)
22 for blockname in longest_first:
23 print('{}\t{}\t{}\t{}'.format(
24 blockname,
25 1000 * by_block[blockname]['duration'],
26 by_block[blockname]['begin'],
27 by_block[blockname]['end']))

Listing 5.4 – Excerpt of the instrumentation plugin.

Table 5.1 – Block instrumentation results.

block duration (ms) begin end
read http 818 1509717620.416 1509717621.235
write lines 54 1509717621.305 1509717621.360
grep 49 1509717621.256 1509717621.305
split 20 1509717621.235 1509717621.256
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5.4.3 Debugging

Another dynamic DAG manipulation implemented with hooks is the debug
plugin: it prints the output of a block after it has executed, which gives the
developer an easy way to follow the transformation of data and spot mistakes.
It could easily be leveraged in a graphical interface, giving instant feedback
about misconfigured blocks or broken graphs. For that purpose, it is enough
to register a hook @after_block_execution, which receives a block and its
results as parameters. The only difficulty is to display a sample of the result,
to give a concise idea of the transformation being done.

Using the same example as in the previous section, we obtain:

For block read_http
result

"2\n1080\n&c\n10-point\n10th\n11-point\n12-point\n...

For block split
result

['2', '1080', '&c']

For block grep
result

['Aaberg', 'Aachen', 'aahed']

For block write_lines
No results for this block.

Each block (except the last one) has only one output field, named result.
We can see how the DAG transforms a string (the answer of an http re-
quest) containing newline characters, into a list of words, into a list of words
containing ’e’.

5.4.4 Other graph manipulations

The examples above showed the advantages gained when developers can
manipulate their programs, and plug hooks into their execution paths. We
list some other possibilities this API brings:

• Optimizations. Analyzing the graph could reveal patterns which have
room for optimization, for example two successive map functions can
be combined together.
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Figure 5.5 – Signature dependencies for a directed graph and a Merkle tree.

• Complexity analysis. Predicting the complexity of an execution
graph, and mixing it with the input size, could lead to interesting
execution time estimations.

• Reasoning. Having a high-level view of an execution graph opens the
door for automatic reasoning about the program: is it trying to count,
to filter, to aggregate? It would be interesting to classify programs
according to their type or the presence of recurring patterns.

• More developer tools. The API makes it easy for developers to add
and use plugins, which they can adapt for their uses: automatic sample
of the input data, caches (see Section 5.5), advanced debugging tools
tailored for their specific data types, etc.

5.5 Caching/Memoization

In order to cache certain computations, we implement a signature algorithm,
whose role is to uniquely identify a block instance within a DAG. To define
the uniqueness of a block instance, we declare that two blocks instances are
the same if:

• They are instances of the same block (identified by a unique name).

• They have the same parameter values.

• They have the same inputs.

Our signature algorithm is similar to a Merkle tree [89], in that a block
signature recursively depends on the signatures of its inputs.
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Figure 5.5 shows the similarities shared in the signature dependencies for
a directed graph and a Merkle tree. The hash (signature) of a node depends
on the hash of all the nodes pointing to it (the successors, in a tree). We
show in red the nodes whose hash the node x is dependent on to compute its
own hash.

We define a unique signature this way. Let H be the signature function,
B a block instance, and h a secure hash function:

H(B) = h(B.name, block name (not instance name)
B.args, list of (name, value) tuples
B.inputs) list of (name, H(block), connector) tuples

B.args is the list of arguments and the block accepts, along with the values
provided. To use a canonical version of this list, we order it alphabetically by
argument name.

B.inputs is the list of inputs the block accepts, where each item of this
list is a tuple containing the input name, the signature of the input block, and
the name of the port this input corresponds to. This is where the recursion
applies.

With this function, if an input changes in any predecessor of the block, it
will have a different signature. This gives us a way to associate a block instance
with a key, which can be used in a caching mechanism. With that in place,
two programs which share the same inputs and possibly input transformations
will benefit from the cache and improve their processing times.

We implemented the signature function in λ-blocks using SHA-256 as the
hash function, along with a cache provider abstract class, meant for plugins
to build upon. We also wrote a plugin that implements a cache on disk,
marshalling the Python results for that purpose using the pickle library.

It is important to note that this doesn’t replace the caching mechanisms
present in frameworks such as Spark, which are better optimized for their
data types and applications, and as such recommended to be used in place of
λ-blocks’ caches.

5.6 Examples

5.6.1 Wordcount

As a first example, Listing 5.5 shows a traditional wordcount program: its
goal is to output the 5 most used commands (without their parameters) in a
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1 ---
2 name: zsh-history-wordcount
3 description: The top 5 zsh commands
4 ---
5 - block: cat
6 name: readfile
7 args:
8 filename: /home/foo/.zhistory
9

10 - block: cut
11 name: cut
12 args:
13 sep: ' '
14 fields: [1]
15 inputs:
16 data: readfile.result
17

18 - block: group_by_count
19 name: reduce
20 inputs:
21 data: cut.result
22

23 - block: sort
24 name: sort
25 args:
26 key: "lambda x: x[1]"
27 reverse: true
28 inputs:
29 data: reduce.result
30

31 - block: head
32 name: head
33 args:
34 n: 5
35 inputs:
36 data: sort.result
37

38 - block: show_console
39 name: show_console
40 inputs:
41 data: head.result

Listing 5.5 – Wordcount over a terminal command history.



5.6. EXAMPLES 111

terminal emulator, along with their number of occurrences. For that purpose,
we apply these actions:

• read the zsh history file (block cat);

• extract the first field of each line, the program name (block cut);

• group every program name together, and count their occurrences, sim-
ilar to SQL’s SELECT COUNT(word). . . GROUP BY word (block
group_by_count);

• sort the result according to the second field (the number of occurrences),
in reverse order (block sort);

• take the first 5 results (block head);

• finally display the result to the user (block show_console).

Most of these block names are similar to UNIX commands, because they do
the same job (on Python datastructures rather than text streams), and come
from the blocks library unixlike.py, bundled with λ-blocks. After executing
this program, we obtained:

[('git', 506),
('rgrep', 125),
('cd', 121),
('less', 117),
('sudo', 89)]

This example shows the simplicity with which one can implement a data
processing program, by linking pre-written blocks with each other. While
in essence it carries the same ideas than writing a regular program using
libraries, the main difference is that we have in the resulting YAML file a
different representation of the program, a graph which can be manipulated
and optimized by any engine following its conventions. Moreover, it shows a
clear separation of concerns: the semantics of a data processing program on
one side, and the building blocks which actually transform the data on the
other side. Such a graph, which is language-agnostic (except for the lambda
function), can easily be written by any tool speaking YAML.
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5.6.2 Twitter API and encapsulated wordcount

The previous example showed a computation graph counting the occurrences
of commands in a terminal session history. Its input was a text file, and its
output the user console. The abstraction can go further, by encapsulating the
actual wordcount computation (group by, count, sort, head) in a sub-graph,
which can then act as black-box, accepting any list as input, and giving as
output a list of (item, count), like shown in Figure 5.6.

Wordcount
foo
bar
foo

(foo, 2)
(bar, 1)

Figure 5.6 – Wordcount as a black box.

To implement this, we separate the blocks doing the wordcount compu-
tation in a different file, which will be used as a sub-graph. In order to be
referenced later, we give it a unique name, topology-wordcount. Listing 5.6
shows a use-case of this sub-graph, while Figure 5.7 shows its representation.

Its goal is to compute the list of the most used hashtags on a news timeline,
AFP in this example. For that purpose, it uses a block twitter_search,
whose responsibility is to authenticate to Twitter with the provided crenden-
tials, submit an http query, parse the JSON response to a Python datastruc-
ture, and return it as its result. This job is abstracted in the block source
code, which makes it easy to further analyze any Twitter query using it as a
data source.

The next challenge is to extract the hashtags from the list, which contains
all kinds of metadata along with the tweet content. This is done with a
flatMap, a block that will apply a map function and then flattens the result
into a one-dimensional list: this is necessary, because a tweet may contain
zero, one, or many hashtags.

Once this is done, our data stream has the structure expected by the
wordcount sub-graph: a list of words. We use the topology entity, binding-in
this list, and binding-out the result, which we display as usual. We obtain
the following list, showing the 5 most trending tweets on the AFP timeline:

[('BREAKING', 10),
('UPDATE', 9),
('AFP', 5),
('AppleEvent', 2),
('Airbus', 1)]
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1 ---
2 name: twitter-wordcount
3 description: Extract the most used hashtags on the
4 recent AFP timeline.
5 ---
6 - block: twitter_search
7 name: twitter_search
8 args:
9 query: "from:afp"

10 client_key: xxx
11 client_secret: xxx
12 resource_owner_key: xxx
13 resource_owner_secret: xxx
14

15 - block: flatMap
16 name: extract_hashtags
17 inputs:
18 data: twitter_search.result
19 args:
20 func: "lambda x: [y['text'] for y in \
21 x['entities']['hashtags']]"
22

23 - topology: topology-wordcount
24 name: wordcount
25 bind_in:
26 data: extract_hashtags.result
27 bind_out:
28 result: head.result
29

30 - block: show_console
31 name: show_console
32 inputs:
33 data: wordcount.result

Listing 5.6 – Wordcount over the most recent hashtags from the press agency
AFP, using a sub-graph.
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twitter_search

flatMap
topology-wordcount

group_by_count,
sort, head

show_console

Figure 5.7 – Representation of the Twitter Wordcount with a topology-
wordcount sub-graph.

The sub-graph topology-wordcount acted as a black-box, effectively
counting unique words and giving their number of occurrences. It can be
used with any input and its output can be fed anywhere, as long as the data
structures are respected and the bindings correctly done.

5.7 Evaluation

5.7.1 Performances

The first metric we want to calculate is the overhead of using λ-blocks’ engine,
compared to a regular Python program. We run 3 different programs, and
compare their execution times on different setups:

• with λ-blocks;

• with λ-blocks and two plugins: debug and instrumentation;

• without λ-blocks, writing the equivalent code in a regular Python
fashion.

The three programs we run show different patterns of latency and com-
plexity:

• Wordcount on trending Twitter hashtags: we run the example shown in
Listing 5.6, which extracts hashtags from the Twitter API, and groups
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and counts them in a wordcount sub-graph. This program has a non-
negligible network overhead, since it needs to wait for the http queries
to complete before continuing. It is single-threaded.

• Wordcount on a local file (without network queries), over a Wikipedia
dataset [12] which we trimmed to consist of 10 million words. This
dataset is an HTML dump of the English version of Wikipedia. The
program is very similar to Listing 5.5, and is single-threaded.

• PageRank on an Apache Spark cluster, over a dataset of internal
Wikipedia hyperlinks [118]. For this purpose, we use the Spark wrapper
code blocks in λ-blocks’ lb.blocks.spark. The DAG has two entry
points (the file containing the links, and the one containing the page
names, both stored in HDFS), and the blocks use various Spark func-
tions. The YAML code for this program is shown in Appendix A. It
is run on a bare-metal Spark server.% with 24 CPU cores and 1GB of
RAM.

To obtain more precise results, we run the Twitter Wordcount 10 times for
each setup (with the program latency, that’s the limit to not reach the API
rate limits), the Wikipedia Wordcount 1000 times, and the Spark PageRank
10 times. We kept the average of the obtained values as our reference.

The times are measured with /usr/bin/time -p: real is the time taken
by the program to complete; user is the CPU time consumed in user mode by
the program, and sys is the CPU time consumed in kernel mode. If user and
sys don’t add up to real, it means the program was blocked during execution,
generally waiting for disk or network.

Figures 5.8, 5.9 and 5.10 show the results obtained. The first program,
in Figure 5.8, confirms there is indeed a network overhead, during which
the program is waiting (in the three cases), and is not consuming CPU
cycles. More importantly, by substracting times, we measure the overhead
of using λ-blocks: about 40 ms per run (we see in Section 5.7.2 how it can
be reduced further). The last interesting point is the negligible difference
between λ-blocks with and without plugins: inspecting the graph vertices and
instrumenting their computation times comes almost for free (the difference
is smaller than the standard deviation of multiple runs of the same setup).

Figure 5.9 shows almost the same execution times for the three setups,
and the first one (with λ-blocks) is even faster. This is not supposed to
be the case, because it executes more code by design, but comes from the
non-determinism of disk (and kernel cache) input/output: the speed varies
with time, hence the imprecision of the calculation. The key point here is
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Figure 5.8 – Twitter hashtags Wordcount.
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Figure 5.9 – Wikipedia file Wordcount.

that using λ-blocks doesn’t add any significant overhead if the job runs over
a few seconds.

Finally, Figure 5.10 depicts the execution times for the PageRank com-
puted with Spark. The first thing to notice is the low values of user and
sys times, too low to be visible on the plot. This time it is not due to the
majority of the program waiting for IO, but rather because the programs are
communicated to and executed by a Spark daemon. Hence the CPU times are
not seen by /usr/bin/time. However the real times are correct, and we can
use them to compare the setups. Similar to the previous experiments, using
λ-blocks doesn’t add any significant overhead; and for such a job duration
(about 14 minutes), it is negligible. Hence λ-blocks can easily drive a Spark
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Figure 5.10 – Wikipedia hyperlinks PageRank.

program at a low cost.

5.7.2 Engine instrumentation

In order to further reduce the overhead added by the use of λ-blocks’ engine
compared to writing regular Python programs, we instrument the framework
when running the Wikipedia Wordcount described above. We used a smaller
input file in order to have a total execution time comparable to the measured
overheads. We instrument three different setups, only changing the command-
line parameters of λ-blocks:

• Loading all the block modules, and two plugins;

• Loading only one block module, and two plugins;

• Loading only one block module, without any plugin.

Figure 5.11 shows the results we obtained, with the different steps fol-
lowed by λ-blocks : (1) Python startup, modules import and arguments
parsing; (2) Blocks registry creation, block modules import; (3) Plugin im-
port; (4) YAML parsing and graph creation; (5) Graph checks; (6) Graph
execution.

We note interesting results:

• Importing and executing plugins doesn’t add any visible overhead, which
confirms the results described in Section 5.7.1.



118 λ-BLOCKS

 0

 0.2

 0.4

 0.6

 0.8

 1

(1) (2) (3) (4) (5) (6)

ti
m

e 
(s

)

all blocks + plugins
selected blocks + plugins
selected blocks

Figure 5.11 – Instrumentation of a Wordcount program running under
different setups.

• Importing all the available blocks in the built-in block modules is very
costly: between 250 and 300 ms. Python’s import mechanisms are
known to being slow [13]. This is why we only imported selected block
modules in the previous section, to obtain a smaller overhead compared
to a standalone Python program.

• Building the computation graph, and running checks against it (cor-
rect YAML, type checking, absence of loops, etc), is very fast; this is
encouraging to develop more graph manipulation plugins.

Overall, the best optimization we found is to avoid importing block
modules if they are not to be used. We target our future work to develop
a λ-blocks daemon, in order to load modules only once and execute many
computation graphs on demand.

5.8 Related work
We introduced related tools in Section 2.3. We compare them against λ-blocks
to highlight their differences, and introduce a few others.

Blocks-based programming has gained a lot of attention recently [34]. λ-
blocks shares similar ideas, for example combining chunks of embedded code
to create larger programs. However, block-based graphical interfaces are not
oriented towards large scale data processing, and hence do not benefit from
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distributed libraries such as Apache Spark. We plan to explore some of their
innovative features such as recognition over recall [34], immediate feedback,
and impossibility to link blocks that don’t make sense together. We believe it
is a path towards bringing data processing and analysis to non-programmers.

Graphs from configuration is not a novel concept either. Pyleus [117] and
later Storm Flux [110] brought configuration-based topologies to the Apache
Storm [111] framework, for stream-processing. They both use a YAML format
to define topologies, and inspired λ-blocks. However, they are limited to
link spouts and bolts, the base objects of Storm, which are meant to process
online data.

Dataflow programming with pipelines has been implemented in numerous
frameworks. For machine-learning applications for example, scikit-learn [97]
and Apache Spark [109] have a built-in concept of Machine Learning Pipelines,
where different data processors are defined and linked with each other. How-
ever, the DAGs are created programmatically in their respective library
languages, and they are limited to the components of their frameworks.

The Orange framework [57] features a collection of widgets, linkable with
each other, to execute and visualize machine learning algorithms. Like λ-
blocks, it has a programming interface to implement new widgets in Python.
However, it is specialized in data mining, data exploration and machine
learning, and to the best of our knowledge it can’t be distributed on many
machines.

StreamPipes [101] is a framework for building and executing data stream
pipelines, oriented towards distributed real-time processing of data, between
sources and sinks. Some of their ideas are similar to those of λ-blocks (type
checking (and other verifications) between operators, independent and self-
contained blocks of code), but the framework differs with regard to some design
choices: stress towards wrapping external computing engines, formalization
of message passing between operators with data serialization formats (no
possibility to use direct memory transfers), and RDF as the description and
configuration language. Finally, it is oriented towards real-time data, whereas
λ-blocks focuses on offline analysis for now.

Cascading [3] is a layer on top of Apache Hadoop. It permits to program-
matically describe MapReduce jobs, by linking components together (sources,
pipes, and sinks) in any JVM-based language. It has some similarities with
λ-blocks, but also different goals: restricted to Hadoop and Flink, no graph
manipulation, no configuration-oriented description of jobs.

KeystoneML [106] is a framework written in Scala, leveraging the use
of high-level operators to build machine learning pipelines. Like the other
introduced frameworks, it has different goals than λ-blocks’, but shares the
dataflow design and the reuse of components.
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Apache Beam [1] also implements pipelines, and is able to run them on
different processing engines, including Apache Flink and Apache Spark. Its
goals are not exactly the same than those of λ-blocks, as its main feature
is to define a pipeline and have it executed on different runners; whereas
λ-blocks focuses on the expressiveness of programs and their manipulation as
graphs. We intend however to study the deployment of a program on different
executors, as λ-blocks would highly benefit from such a feature.

Other related tools [2, 6, 10, 11, 15] exist, but to the best of our knowl-
edge, none implements all the features of λ-blocks, in particular the DAG
specifications and the high-level graph manipulation abstractions.

A recent study [73] describes a new way of implementing large-scale data
transformations, using serverless architectures and stateless functions, such
as AWS Lambda on the Amazon public cloud. Using remote containers to
execute stateless functions, along with a distributed storage engine, can reduce
the complexity of distributing work on a cluster, by removing many of the
complex tasks (such as cluster configuration or task deployment). Although
λ-blocks’ approach is not on the same layer, it made us more confident that
implementing easy-to-use engines as a proxy between cluster systems and
developers is a way to greatly speed-up the writing of large-scale data analysis
programs.

5.9 Conclusion

We presented λ-blocks, a framework which permits to define execution graphs
for large scale data processing, combining blocks of code with high-level
manipulable directed acyclic graphs. Blocks are linked together, and the data
flows from the inputs to the outputs, transformed at every step. This approach
permits to combine different data processing frameworks, to represent the
high-level steps of an algorithm without code, and gives a way to manipulate a
program by changing its graph representation, or triggering actions when it is
executed, through the use of plugins. We described a reference implementation
of λ-blocks, which uses Python as the language for blocks and YAML as the
data-serialization format for topologies. We explained the design choices, the
system internals, and showed some practical examples of topologies. λ-blocks
has a very small overhead with regards to a system which doesn’t use explicit
computation graphs.

As future work, we want to explore how we can further reason about
these graphs. λ-blocks allows to work with a high-level DAG, which opens
opportunities for graph complexity analysis, serialization methods compari-
son, caching optimizations, automatic choosing of data processing libraries,
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in-depth monitoring, and verification of programs’ semantics. Another axis
we want to explore is data streaming, and how we can simply and efficiently
implement continuous queries on online data; as well as for example imple-
menting triggers with blocks, which could be used for many automation tasks
beyond the scope of data analysis. Another open problem is the representa-
tion of lambda functions: as of today, we used Python’s notation, because
the execution engine is written in Python. We plan to further explore the
possibilities to stay language-agnostic for this issue. Finally, we plan to look
for new ways to mirror library APIs, to simplify the writing and maintenance
of block collections.



122 λ-BLOCKS



Chapter 6
Conclusions

« Is the universe computable? If so, it may be much cheaper in terms of
information requirements to compute all computable universes instead of just
ours. »

A Computer Scientist’s View of Life, the Universe, and Everything [103]

We have presented the ecosystem of large-scale data processing, and three
contributions which live at different layers of the software stack.

The platform we introduced for the Smart Support Center project is an
example of a scalable architecture, tuned to perform time series predictions
to guess system failures in advance. Recording the past history of monitored
metrics and applying linear regression algorithms on it proved to be efficient
at predicting their future behaviour, while avoiding occasional spikes that
trigger false positive warnings on traditional monitoring systems. We’ve
built this at scale, using a Cassandra database to keep all the historical data
and the prediction parameters for every metric, along with Spark workers
to perform the predictions in real-time. Evaluating this system proved its
efficiency: it scales linearly up to (at least) 160 CPU cores, the end-to-end
pipeline to compute one prediction takes about 1 second, and it is possible
to manage 85 monitored servers (or 1440 monitored services on average) per
worker of our system, when using the most pessimistic values.

Our second contribution lies deeper on the stack, and concerns the routing
of data in a real-time distributed processing engine. To improve the through-
put and the latency such a system can handle, we designed an algorithm to
detect correlations in the keys of messages, for example the geolocated country
and the hashtags, in the case of tweets. Once the correlations are detected,
the messages exhibiting them can be routed such that they hop on fewer
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machines, because the worker nodes dealing with their keys are co-located.
This decreases the network use, allowing for better performances. Moreover,
because correlations are dynamic, this system is able to stay up-to-date with
a reconfiguration algorithm, in charge of updating the routing tables while
transferring state between worker nodes. The gains obtained with this system
highly depend on parameters such as the network speed and the correlation
potential the data exhibits, but the observed throughput ranged from 25%
to 150% higher than without data-aware routing. This was evaluated with
datasets coming from Twitter and Flickr.

Finally, higher on the stack, we described λ-blocks, a programming frame-
work acting as a proxy between developers and complex systems. It is meant
to allow non-distributed computing specialists to write data processing appli-
cations in a novel manner, by assembling blocks of code in a directed graph.
Blocks are meant to process data themselves, or wrap more specialized tools
such as distributed processing engines. λ-blocks comes with many batteries
included to build complex ETL (extract-transform-load) pipelines, without
writing any line of code. It leverages code reuse through block parameteriza-
tion and sub-graph embedding, and exposes a simple API to extend its block
libraries. Moreover, a plugins system gives developers a way to manipulate
the computation graph of their programs, which opens the door to innovative
ways to manipulate them. We showed examples of manipulations for instru-
mentation, debugging, and caching purposes. Using λ-blocks doesn’t impact
performances, as a maximum of 50 ms of overhead has been measured when
comparing against equivalent programs.

We have mentioned some future work opportunities in the previous chap-
ters. There are many directions we can take to make this work more useful
and stable, and many ways to add novel features on top of it. Extending the
developed systems would be very helpful:

• Adding other machine learning algorithms to Smart Support Center, and
notably deep learning algorithms, would make it easy to compare their
performances, and would bring interesting balances between coarse-
grained predictions (general long-term tendencies) and fine-grained
predictions (spikes, which often trigger false positive alerts). Integrating
such a system with the user tickets, the problems manually reported
by clients, is also quite challenging, as it involves text mining, and it
can trigger privacy and security problems (for example, a lot of tickets
contain credentials). The benefits of this automated assistance to system
administrators are directly translated to better service-level agreements
proposed by companies, and ultimately a better user experience for
their clients.
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• The routing algorithm which takes into account correlations between
the message fields can also be extended. Two natural and compatible
paths can be taken to make it more useful. The first one is its extension
to a multi-tiered network, where the distance between two virtual
machines is considered, instead of the binary assumption "on the same
server"/"on a different server". This makes the graph representation
and the routing decisions more complex, but is necessary if it needs to
be scaled up beyond a rack of servers. The second extension concerns
its implementation: it should be decoupled from Apache Storm, and be
usable as an independent layer. It requires a deeper abstraction, as the
actors of Storm (bolts and spouts) and those of other engines can follow
very different designs, but being able to use this routing optimization
on different engines and without updating application code would bring
high benefits to developers.

• Finally, λ-blocks’ included batteries can be easily extended. A very
useful thing to do would be the addition of new block libraries, to read
and write from different filesystems and databases, communicate with
APIs, and wrap some well-known distributed frameworks. The plugin
system for graph manipulation can also be extended to allow plugins to
perform more fine-grained computations, both static (before program
execution) and dynamic (at any step of the execution, not only before or
after each block). The addition of streaming features and the continuous
execution of a computation graph would make λ-blocks useful beyond
the offline computations it currently performs. Lastly, a solid iterative
system would be a really useful feature. Iterative computations are
currently done within blocks, which is a hack in that it is not optimal for
code reuse and algorithm representation. Inspiration from block-based
programming interfaces can give us elegant solutions to implement loops
and conditionals externally from blocks.

Beyond these extensions to our contributions, we conclude this thesis by
sharing a more long-term vision of the path λ-blocks can take to further
reduce the gap between programmers and complex data processing systems.
We would love to perform experiments on both sides of λ-blocks’ format: on
the programmer side, with for example graphical interfaces, automatic graph
generation, or even formal tools to verify the correctness of computations; and
on the system side, with an easy deployment of the framework through block
libraries’ dependencies, better execution monitoring and debugging tools,
and an execution environment comprised of light containers, automatically
configured without the complex knowledge required today for the maintenance
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of distributed systems. Of course, different tools should work together towards
these goals in an integrated ecosystem, and we’re far from pretending λ-blocks
should do all that, but it is the general direction we take when thinking of
it as a middleware between systems (computers, networks, and data) and
programs (algorithms, data transformations, and information extraction).
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Appendix A
Source code for PageRank in λ-blocks

1 ---
2 name: PageRank
3 ---
4 - block: spark_readfile
5 name: read_links
6 args:
7 filename: "hdfs://localhost:9000/wikipedia/wiki-topcats.txt"
8 master: "spark://127.0.1.1:7077"
9

10 - block: spark_map
11 name: split_urls
12 inputs:
13 data: read_links.result
14 args:
15 func: "lambda x: tuple(x.split())"
16

17 - block: spark_distinct
18 name: distinct_links
19 inputs:
20 data: split_urls.result
21

22 - block: spark_groupByKey
23 name: group_urls
24 inputs:
25 data: distinct_links.result
26
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27 - block: spark_map
28 name: ranks
29 inputs:
30 data: group_urls.result
31 args:
32 func: "lambda x: (x[0], 1.0)"
33

34 - block: spark_pagerank
35 name: pagerank
36 inputs:
37 links: group_urls.result
38 initial_ranks: ranks.result
39 args:
40 iterations: 10
41

42 - block: spark_readfile
43 name: read_names
44 args:
45 filename: "hdfs://localhost:9000/wikipedia/ \
46 wiki-topcats-page-names.txt"
47 master: "spark://127.0.1.1:7077"
48

49 - block: spark_map
50 name: split_names
51 inputs:
52 data: read_names.result
53 args:
54 func: "lambda x: tuple(x.split(maxsplit=1))"
55

56 - block: spark_filter
57 name: filter_empty
58 inputs:
59 data: split_names.result
60 args:
61 func: "lambda x: len(x) == 2"
62

63 - block: spark_join
64 name: join
65 inputs:
66 data1: pagerank.result
67 data2: filter_empty.result
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68

69 - block: spark_takeOrdered
70 name: take
71 inputs:
72 data: join.result
73 args:
74 num: 5
75 key: "lambda x: -x[1][0]"
76

77 - block: show_console
78 name: show
79 inputs:
80 data: take.result


	Acknowledgments
	Abstract
	Résumé en Français
	Introduction
	Context
	Motivation
	Problems description and challenges
	Contributions
	Outline

	Background overview
	Cloud computing and datacenters
	The emergence of cloud computing
	Virtual machines and hardware virtualization
	Containers
	Modern datacenters
	Cluster schedulers
	Monitoring at scale

	Large-scale data processing
	The MapReduce paradigm
	The Apache Spark ecosystem
	Distributed frameworks performances
	Stream processing frameworks

	Components and blocks programming
	Component-based software engineering
	Flow-based programming
	Programming with blocks


	Online metrics prediction
	Introduction
	Background
	Monitoring
	Time series prediction

	System description
	Architecture
	Data model
	Linear regression
	Metrics selection
	Optimizations

	Evaluation
	Setup
	Scaling
	Time repartition
	Load handling
	Predictions accuracy

	Related work
	Time series
	Monitoring

	Conclusion

	Data-aware routing
	Introduction
	Background
	Stream processing
	Stream routing policies

	Locality-aware routing
	Problem statement
	Identifying correlations
	Generating routing tables
	Online reconfiguration

	Evaluation
	Experimental Setup
	Locality impact using synthetic workload
	Impact of online optimization
	Reconfiguration protocol validation

	Related work
	Operator instance scheduling
	Load balancing for stateful applications
	Co-locating correlated keys

	Conclusion

	LambdaLambda-blocks
	Introduction
	Background
	Data processing with DAGs
	Component-based software engineering

	LambdaLambda-blocks
	Terminology
	Architecture
	Topologies format
	Block internals
	Execution engine

	DAG manipulations
	Type checking
	Instrumentation
	Debugging
	Other graph manipulations

	Caching/Memoization
	Examples
	Wordcount
	Twitter API and encapsulated wordcount

	Evaluation
	Performances
	Engine instrumentation

	Related work
	Conclusion

	Conclusions
	Bibliography
	Source code for PageRank in LambdaLambda-blocks

