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Abstract 

Colloidal interactions in solution are the core of many industrial processes. 

Knowledge of the nature and intensity of these interactions leads to better 

process control. This is particularly true for the crystallization process, still perceived 

as an art, despite the efforts made during the last twenty years on its 

rationalization. Due to an excessive product consumption and to the time 

required to acquire reliable thermodynamic data, trial and error approach is still 

the method of choice for drug and protein crystallization. This thesis is focused on 

the development of more efficient measurement protocols for the determination 

of phase diagrams and the equation of state of a model molecule through the 

measurement of molecular interactions in solution, by means of different 

microfluidic approaches.  

Firstly, a simple and inexpensive mold-making process has been developed, 

avoiding the use of clean room facilities and standardized protocols, which are 

not normally affordable and accessible to all laboratories. Microfluidic chips were 

then built up using different UV cured polymers. Developed chips have the 

advantage of providing excellent resistance to most of organic solvents, acids 

and bases but also the ability of withstanding pressures of up to hundred bars. 

Furthermore, surface modification by chemical grafting of the microchannel walls 

enables to steadily change their wetting properties allowing the generation of 

water in oil or oil in water emulsions.  

The study of protein solutions at the nanoscale has been performed by 

coupling these experimental devices to small angle X-Ray scattering from a 

synchrotron source. First, a parametric study to determine the optimal operating 

conditions for obtaining the best signal quality was carried out. This study provides 

a basis for a measurement protocol which can be standardized in the future for 

other applications. At the end of this study, the form factors of various proteins 

were measured. These curves provided information about the size, the oligomeric 

state and overall the shape of the protein molecules.  Additionally, it was 

demonstrated neither the protein solutions nor the continuous phase were 

damaged by radiation and  the chosen surfactant chosen for the study did not 



      

 

 

 

 

 

interact with proteins. In addition, the study of protein interactions was performed 

by screening the charges of proteins by the continuous addition of a saline 

solution. The second virial coefficient was determined from the extrapolation of 

the structure factor at zero angle. The results are in good agreement with the 

results published in the literature but using  few milligrams of protein. 

The equation of state of lysozyme, relating the osmotic pressure to the volume 

fraction of protein, was also determined using a microfluidic device. The 

experimental setup was based on the mass transfer between a dispersed and a 

continuous phase. Drops of protein solution were generated in an organic solvent 

which is partially miscible with water and in which proteins are insoluble. Given 

the difference in chemical potential of water between the continuous and the 

dispersed phases, the water diffuses through the interface until thermodynamic 

equilibrium is reached. Knowing the chemical potential of the continuous phase 

(considered as an infinite medium due to the small size of the droplets generated 

as a dispersed phase), the activity of water in the disperse phase can be 

obtained. For a given range of water activity, the resulting equation of state was 

found to be in agreement with data reported in the literature. In contrast, when 

the transfer material is high, i.e. when the difference in activity is too high, the 

reorganization of the proteins within the drop is too slow leading the skin 

formation. To link the dynamic of the transfer to the thermodynamic properties of 

the system a first modeling approach is proposed. This approach aims to 

determine the equation of state of the protein using only one droplet. 
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Résumé en français 

Les interactions de colloïdes en solution  sont au cœur de nombreux procédés 

de génération de séparation de solides divisés. La connaissance de la nature 

ainsi que  l’intensité de ces interactions engendre une meilleure maîtrise du 

procédé. Ceci est particulièrement vrai pour les processus de cristallisation, 

encore perçu comme un art, malgré les efforts effectués durant ces vingt 

dernières années concernant leur rationalisation. L’essai-erreur est encore à 

l’heure actuelle la méthode de choix pour la cristallisation de protéines ou 

d’actifs pharmaceutiques. La raison principale est essentiellement liée à la 

consommation excessive en produit ainsi qu’au temps nécessaire pour acquérir 

des données thermodynamiques fiables. L’objectif des travaux de cette thèse est 

de mettre en place des outils microfluidiques génériques permettant de 

déterminer les diagrammes de phases et l’équation d’état d’une molécule 

modèle au travers de la mesure des interactions moléculaires  en solution. 

Un procédé simple et peu onéreux de fabrication de moule a été développé 

à partir de films sec. Les puces microfluidiques ont ensuite été réalisées à l’aide 

de polymères photoréticulables aux UV. Les puces développées présentent 

l’avantage d’offrir une très bonne résistance aux solvants organiques, aux acides 

et bases couramment utilisée mais résistent également à des pressions allant 

jusqu’à la centaine de bars. En outre, la modification par greffage chimique de 

la surface des microcanaux permet de générer des émulsions eau dans huile ou 

huile dans eau. 

L’étude des solutions de protéines à l’échelle nanométrique a été réalisée en 

couplant ces dispositifs expérimentaux à la diffusion de rayonnement X aux petits 

angles. Une étude paramétrique a permis de déterminer les conditions 

opératoires optimales en vue de l’obtention d’un signal de bonne qualité. A 

l’issue de cette étude, les facteurs de formes de différentes protéines ont été 

mesurés. Il a été mis en évidence que d’une part ni les solutions de protéines ni la 

phase continue n’étaient endommagées par les radiations et que le tensioactif 

retenu pour l’étude n’interagissait pas avec les protéines. En outre, l’étude des 

interactions faibles proteines-proteines a été réalisée en écrantant les charges 



      

 

 

 

 

 

des protéines en solution par l’ajout en continue une solution de saline. Le second 

coefficient du viriel a été déterminé à partir de l’extrapolation à angle nul du 

facteur de structure. Les résultats obtenus sont en très bon accord avec les 

résultats publiés dans la littérature mais en utilisant seulement quelques 

milligrammes de protéines. 

 L’équation d’état du lysozyme, reliant la pression osmotique à la fraction 

volumique, caractéristique des interactions en solution a été également 

déterminé à l’aide d’un dispositif microfluidique basé sur le transfert de matière 

entre d’une phase dispersée vers une phase continue. Des gouttes de solution 

aqueuse de protéines sont générées dans un solvant organique partiellement 

miscible avec l’eau dans lequel les protéines sont  insolubles. Etant donné la 

différence de potentiel chimique de l’eau entre la phase dispersée et la phase 

dispersée, l’eau diffuse au travers de l’interface jusqu’à l’équilibre 

thermodynamique. Connaissant le potentiel chimique de la phase continue 

(considérée comme un milieu infini), l’activité de l’eau dans la phase dispersée à 

l’équilibre peut être obtenue. Dans une certaine gamme de fraction volumique, 

l’équation d’état obtenu est en bon accord avec les données de la littérature. En 

revanche, lorsque le transfert de matière est trop important, lorsque la différence 

d’activité est trop importante, la réorganisation des protéines à l’intérieur de la 

goutte est trop lente et la formation d’une peau est observée. Afin de relier la 

dynamique du transfert aux propriétés thermodynamique du système une 

première approche de modélisation est proposée. Cette approche a pour but 

de déterminer l’équation d’état de la protéine avec une seule goutte. 
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Synthèse en français 

INTRODUCTION 

Les interactions colloïdales en solution sont au cœur de nombreux 

procédés industriels comme la filtration, la précipitation, le séchage et la 

cristallisation. La connaissance de la nature et de l'intensité de ces 

interactions conduit à une meilleure compréhension des processus 

élémentaires à l’origine des changements d’état de la matière et donc à 

un meilleur contrôle des procédés industriels.  Cependant la détermination 

expérimentale des interactions colloïdales ainsi que la mesure des 

propriétés macroscopiques  qui en découlent sont très consommatrice en 

produit et en temps. A l’heure actuelle, l’approche empirique essais-erreur 

(méthode de screening par des robots par exemple) est la méthode de 

choix dans l’industrie, mais cette approche ne permet pas de rationaliser 

l’étude des conditions opératoire en vue de la mise en place d’une 

méthodologie globale de dimensionnement d’un procédé ou de 

détermination des conditions optimales de cristallisation, de séchage ou 

de filtration par exemple. 

Ainsi, l'objectif de cette thèse est de développer des techniques de 

mesure plus efficaces des propriétés thermodynamiques des solutions 

protéines en utilisant des outils microfluidiques. Les principaux objectifs de 

cette approche sont les suivants: 

- de développer une technologie fiable, peu coûteuse, rapide et facile 

pour produire des systèmes microfluidiques polyvalent. 

- de mesurer in-situ, à l’aide de ces outils, les interactions protéine-protéine. 

- d’établir avec peu de produit dans un temps raisonnable  l’équation 

d’état d’une solution de protéine. 



      

 

 

 

 

 

Dans le premier chapitre, le processus de fabrication de puces 

microfluidiques est présenté. Tout d'abord, un moule rigide est conçu et 

préparé à l'aide de la méthode de photolithographie douce à l’aide de 

deux types de resines photosensibles : la SU-8 de MicroChem et film sec 

(série WBR2000) de chez DuPont.  

Selon les buts des puces microfluidiques, le masque est conçu avec 

plusieurs composants tels que les structures de génération de gouttelettes, 

les structures de mélange et de stockage. Le processus de 

photolithographie typique est effectué étape par étape (nettoyage de 

substrat, revêtement, exposition, cuisson, développement). Pour chaque 

étape, les paramètres de la littérature ont été optimisés  afin d'obtenir un 

moule avec la meilleure résolution possible. Les moules fabriqué à partir de 

la résine SU-8 possèdent de très bonnes propriétés physico-chimiques. 

Cependant, le procédé de production nécessite beaucoup de temps, 

des équipements coûteux et un environnement très propre (salle blanche). 

Ces contraintes ne sont pas ou peu satisfaites dans des laboratoires non 

spécialisés. En vue de mettre en place un procédé de fabrication peu 

onéreux et adapté a de nombreux laboratoires non spécialistes, un 

protocole de fabrication de moule a été mis en œuvre à partir de films sec 

photopolymérisables. Le protocole de fabrication développé pendant 

cette thèse a permis de fabriquer des moules dont la résolution est 

comprise entre 5 à 50µm, en fonction de l’épaisseur du moule.  

A partir de ces moules, des puces microfluidiques ont été construite à 

partir de polymère de type Thiolène. Deux types de polymères ont été 

utilisés: la NOA 81 (Norland Optical Adhesive) de Norland Inc. et OSTEmer 

322 de Mercene Lab (Suède). Les puces microfluidiques ainsi construites 

présentent des propriétés intéressantes en termes de résistance à une 

large gamme de produit chimiques, de résistance à la pression et des 

propriétés de surface ajustables.  
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Dans le deuxième chapitre de la thèse, ces puces microfluidiques ont été 

couplées à la diffusion de rayons X à petites angles (SAXS) afin d’étudier 

les interactions de protéines en solution. L’objectif de cette étude est : 

(1) De mettre en place un dispositif expérimental fiable permettant 

d’étudier le facteur de forme et de structure de solutions de protéines 

(2) d’étudier l’évolution des interactions faibles entre les molécules de 

protéines en solution en fonction des conditions opératoires. 

Dans le dernier chapitre, un système microfluidique a été utilisé pour 

étudier le phénomène de transfert de masse au cours de la dissolution de 

gouttes d'eau pure ou de gouttes contenant un solution de protéines dans 

un solvant organique. À la fin du processus de dissolution, taille finale de la 

goutte dépend de l'équilibre thermodynamique de l’eau à l’intérieur et à 

l’extérieur de la goutte. Cet état d’équilibre dépend de l’activité de l'eau 

dans initialement présente dans la phase continue. Lorsque l'équilibre 

thermodynamique est atteint, la connaissance de l'activité de l'eau dans 

phase continue permet de déterminer l'activité de l'eau dans l'eau à 

l'intérieur de la gouttelette. À partir de l'état final de la gouttelette de la 

solution de protéines, plusieurs paramètres thermodynamiques tels que la 

pression osmotique, le potentiel d'hydratation peuvent être déterminés. 

Ainsi, les expériences réalisées dans ce chapitre ont trois objectifs 

principaux: 

(1) de concevoir et valider un système microfluidique adaptée à l’étude 

de la déshydratation de de de solution de protéines. 

(2) D’obtenir l'équation d’état de solution de protéines reliant l’évolution 

de la pression osmotique à la fraction volumique en protéine. 



      

 

 

 

 

 

(3) Construire les premières bases d’un modèle de transfert basé sur les lois 

Fick (processus purement diffusif) pour prédire la dynamique de dissolution 

des gouttes.  
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CHAPITRE 1 

Protocole de fabrication de masque et de puces 

microfluidiques low-cost et rapide 

 

Partant du constat que les systèmes microfluidiques nécessitent à l’heure 

actuelle un investissement et un coût de maintenance conséquent pour 

les laboratoires, nous avons développé lors de ces travaux des protocoles 

de fabrication de moules et de puces microfluidiques rapide et peu 

onéreux à mettre en œuvre. 

1. Mise en place d’un protocole de fabrication de moules de puces 

microfluidique à partir de films secs. 

Dans un premier temps, les moules des puces microfluidiques sont réalisés 

à partir de films sec photosensibles de chez Dupont (film de type WBR 

2000). Ce type de fil a été retenu, après avoir effectué différents test sur 

différents film sec, il est apparu que ce type de films offrent une résolution 

importante et un rapport d’aspect (dimension latérale / dimension 

verticale des motifs) de l’ordre de 3.  

Après analyse systématique des conditions opératoires de fabrication des 

moules microfluidique  (température de lamination,  temps de repos, 

température de « bake », temps de développement et traitement de 

surface…) un protocole a été mis en place. Tout d’abord les films sec 

photosensibles sont laminés sur un substrat en verre à l’aide d’une 

lamineuse (XXXX) à une température de 95°C et une  vitesse de 1.2m/min. 

Le film est ensuite placé dans une étuve à 65°C pendant 25min afin 

d’améliorer l’adhésion de la résine sur le substrat.  L’exposition est réalisées 



      

 

 

 

 

 

avec une insoleuse UV KUB 3 ( = 365nm, P = 30W/cm²),  l’énergie optimale 

d’exposition en fonction de l’épaisseur des films est donnée sur la Figure 1 

 

Figure 1 Evolution de l'energie d'exposition en fonction de l'epaisseur de la 

résine 

Le développement des moules est ensuite réalisé à l’aide d’un 

développeur a spray avec un solution de K2CO3 à 1% massique à 25°C. Le 

temps de développement en fonction de l’épaisseur des films est donné 

dans le tableau XX.  Les moules sont ensuite rincé puis séché à l’azote et 

laissé a température ambiante pour une durée de 6h afin d’achever le 

processus de réticulation de la résine. 

Pour éviter l’adhésion des polymères (Polydimethyl siloxane, (PDMS), ou 

OSTEMER) il est nécessaire de traiter la surface des moules.  Ce traitement 

est réalisé dans un premier temps par immersion des moules dans du 

toluène perdant 30s, puis dans dans une suspension de fluoropolymère 

(NOVEC 1720). Les moules ainsi obtenus sont parfaitement hydrophobes et 

lipophobes. Un exemple de moule est présenté sur la Figure 2. 
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Figure 2 Exemple de moules en PDMS issue des deux technologie de fabrication 

(a) Films sec WBR 2000 (b) Résine liquide SU 8 2050 

 

2. Protocole de fabrication des puces microlfuidiques polyvalentes. 

Le Polydimethyl Siloxane (PDMS) est le matériau le plus utilisé pour la 

fabrication de puces microfluidiques. Il doit sa popularité a ses propriétés 

remarquables (parfaitement transparent dans l’UV et le visible, faible 

retrain, hydrophobe) et à sa facilité de mise en œuvre. Cependant, la 

principale faiblesse de se matériau est sa faible résistance à la plus part 

des solvants organiques (alcanes, cétone…). C’est la raison pour laquelle, 

ce matériau est assez peu utilisé en génie chimiques, par exemple,  pour 

l’étude de réactions complexes impliquant l’utilisation de fluides 

organiques.  Dans cette optique, nous avons développé des protocoles 

de fabrication de système microfluidiques (plus ou moins complexes) en 

utilisant des résines de type thiolène (NOA, OSTEMER). En outre, certaines 

de ces résines présentent l’avantage de contenir des groupements époxy 

permettant de fabriquer des plateformes de microfluidiques sur divers 

matériaux (acier, aluminium, polymères…). 



      

 

 

 

 

 

Les protocoles mis en place lors de cette thèse ont permis de fabriquer des 

systèmes microfluidiques dont les propriétés de surface (la mouillabilité 

notamment) peut être ajustée en fonction des besoins de l’étude. Ainsi il a 

été possible de générer de gouttes d’eau dans l’huile ou de gouttes 

d’huile dans l’eau. En outre, il a été montré que ces systèmes 

microfluidiques peuvent résister à des pressions allant jusqu’à 50bar, 

permettant l’étude de réaction à haute pression et l’utilisation de fluides 

surpercritique. 
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Chapitre 2 

Couplage microfluidique-diffusion de rayons X aux 

petits angles pour l’étude du facteur de forme et de 

structure des protéines en solution. 

 

Dans ce chapitre, nous nous intéressons à la détermination des facteurs de 

formes et de structure de protéines étudiée grâce au couplage entre 

microfluidique et SAXS. Des dispositifs microfluidiques sont conçus et 

développés pour générer des gouttes de phase aqueuses monodisperses 

contenant des protéines dans une solution tampon avec un agent de 

cristallisation, le tout dispersé dans une phase porteuse huileuse contenant 

un surfactant pour stabiliser l’interface des gouttes. Les gouttes ainsi 

générées sont transportées vers le faisceau de rayons X pour obtenir des 

données SAXS. Des informations sur la structure, la forme et les interactions 

entre protéines à l’échelle du nanomètre peuvent ainsi être obtenues. En 

faisant varier les débits des différentes solutions, il est facile et rapide 

d’étudier un très grand nombre de conditions physico-chimiques  

1.  Matériel et méthode 

a. Construction de la plateforme microfluidique. 

Les puces microfluidiques ont été développées à l’aide des protocoles 

présentés dans le premier chapitre de la thèse. Le lien entre la puce 

microfluidique et le porte-échantillon SAXS est réalisé en connectant un 

capillaire en silice de verre (ID 320µm, OD 435µm, Postnova Analytics) 

directement en sortie de puce. Le capillaire est scellé hermétiquement 

dans le porte-échantillon afin de maintenir le vide autour de lui, nécessaire 

pour l’obtention de données de diffusion de de bonne qualité. Pour 



      

 

 

 

 

 

acheminer les solutions à la puce, des seringues de 1mL (Hamilton, USA) 

sont connectées à la puce à l’aide de tubes en plastiques et de fines 

aiguilles métalliques (OD 300µM, Sigma-Aldrich, Allemagne) insérées dans 

la puce. Les débits sont contrôlés à l’aide de pousse-seringues haute 

précision (neMESYS Cetoni, Allemagne). Une illustration d’une puce est 

présenté en Figure 3. 

    

Figure 3 Puce microfluidique (gauche) et connexions au SAXS (droite) 

b. Diffusion de rayons X aux petits angles par rayonnement 

synchrotron (SAXS) 

Les mesures SAXS ont été réalisées sur la ligne de lumière BM29 à 

l’European Synchrotron Radiation Facility (ESRF) à Grenoble. Les images de 

diffusion en deux dimensions ont été obtenues avec un détecteur Pilatus 

1M. La longueur d’onde des rayons X et la distance entre le capillaire et le 

détecteur étaient de 0,099 nm et 2,87 m respectivement couvrant une 

gamme allant de 0,03 à 4,5 nm-1 pour le vecteur de diffusion. La taille du 

faisceau de rayons X est ajustée avec des fentes pour atteindre une taille 

de 90µm horizontalement et 165µm verticalement. Le porte-échantillon 

peut être déplacé par rapport au faisceau de quelques millimètres avec 

une précision de 10µm. Dans notre dispositif microfluidique, des gouttes 

aqueuses contenant de la protéine, du tampon et un agent de 

cristallisation sont formées et transportées par une huile fluorée contenant 

un surfactant pour stabiliser les interfaces de goutte. Deux différents 

surfactants ont été étudiés, le Perfluorooctanol (PFO) de Sigma-Aldrich et 
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un copolymère à trois blocs (PFPE-PEG-PFPE) de Ran Biotechnologies, tous 

deux dissous à une concentration précise dans de l’huile Krytox (DuPont) 

pour former des gouttes stables sans affecter la stabilité biologique et les 

interactions entre protéines. 

2. Résultats et discussion 

a.  Validation du dispositif expérimental 

La plupart des composés utilisés lors de ces expériences SAXS (protéine, 

surfactant, huile etc.) peuvent être dégradés par l’intense faisceau de 

rayonnement synchrotron. Il est donc nécessaire de trouver la bonne 

combinaison de composés, qui donne un signal SAXS suffisant sans effet 

de radiation. De plus, le surfactant ne doit pas interagir avec la protéine 

dans les gouttes et la dénaturer. Pour valider notre couplage 

microfluidique/SAXS et identifier le meilleur surfactant, la protéine 

rasburicase de forme native tétramérique a été testée dans des gouttes 

avec un tampon Tris à pH 8.0 et 2%m de perfluorooctanol dans de l’huile 

Krytox GPL100. Les courbes SAXS de la rasburicase présentant l’intensité 

diffusée en fonction du vecteur de diffusion sont présentées dans la figure 

2. Les points noirs sont les résultats expérimentaux et les courbes en 

pointillés éloignés et continue sont les intensités diffusées obtenues à partir 

des coordonnées atomiques avec CRYSOL (Svergun & al. (1995)) pour le 

dimère et le tétramère de rasburicase respectivement. La courbe en 

pointillés rapprochés obtenue avec OLIGOMER (Konarev & al. (2003)) 

représente la meilleure correspondance avec les résultats expérimentaux 

et indique que la protéine dans les gouttes est un mélange de 58% de 

tétramère et de 42% de dimère. Dans ces conditions expérimentales, la 

protéine est donc un mélange de la forme native tétramérique et d’une 

forme dissociée dimérique.  



      

 

 

 

 

 

   

Figure 4 Courbes SAXS de la rasburicase avec dans l’huile un surfactant 

Perfluorooctanol (gauche) et copolymère trois blocs PEG-PFPE-PEF (droite) 

 Cela suggère que le surfactant à l’interface, en particulier les têtes 

polaires dans la goutte aqueuse, pourrait interagir avec les tétramères de 

protéine, les dissociant en dimères. Par conséquent, le perfluorooctanol 

semble pouvoir dénaturer les protéines ce qui limite considérablement son 

utilisation pour nos expériences microfluidiques. 

Un autre surfactant a par conséquent été testé, un copolymère à trois 

blocs (PEG-PFPE-PEG) de Ran Biotechnologies dissous à 2%m dans l’huile 

Krytox. Les données SAXS avec ce surfactant et la rasburicase sont 

présentées dans la figure 2. Cette fois, la courbe CRYSOL pour le tétramère 

correspond parfaitement aux données expérimentales illustrant le fait que 

la protéine n’est pas dénaturée ce qui signifie que le surfactant est inerte 

vis-à-vis de la protéine. De plus, ces données illustrent qu’en utilisant notre 

système microfluidique, des données SAXS de bonne qualité, en accord 

avec les structures cristallographiques de macromolécules peuvent être 

obtenues. 

b. Etude des interactions faibles entre protéines 

L’objectif de la deuxième série d’expérience est l’étude de la variation 

des interactions faibles entre protéines en solution en variant la 

concentration en agent cristallisant. Afin d’induire un phénomène de 
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cristallisation, l’échantillon de protéine doit être dans un état d’interaction 

attractif. L’expérience est menée avec du lysozyme à une concentration 

stock de 130 mg/mL dans un tampon acétate à pH 4,4. L’huile et le 

tensioactif utilisés sont ceux précédemment retenus, le Krytox GPL100 et le 

copolymère à trois blocs respectivement. L’agent cristallisant utilisé est le 

sel NaCl à une concentration stock de 2M. Dans cette série d’expérience, 

les concentrations dans les gouttes pour la protéine sont de 21,7 – 52 – 86,7 

mg/mL et pour le sel de 0 – 100 – 200 – 300 – 400 mM pour un total de 15 

expériences. Des exemples de courbes SAXS correspondantes à deux 

concentrations en protéines sont présentées dans la Figure 5. 

 

Figure 5 Courbes SAXS pour différentes concentrations en sel et lysozyme : 21,7 

(gauche) 86,7 mg/mL (droite) 

L’intensité diffusée d’une solution de macromolécules en interaction faible 

peut être écrite : 



      

 

 

 

 

 

I(c,q)=I_FF (c=0,q)×S(c,q)                                                      (1) 

IFF représente l’idéalité de la solution, est appelé facteur de forme et ne 

dépend que de la macromolécule considérée (forme, taille, …). S est le 

facteur de structure et dépend des interactions faibles entre 

macromolécules en solution. 

Les interactions peuvent être caractérisées à l’aide du second coefficient 

du viriel A2 qui est relié aux variations du facteur de structure en fonction 

de la concentration de macromolécules (Vivarés, Bonneté (2002)). 

S(c,q=0)=1/(1+2MA_2 c)                                                     (2) 

Conformément à l’équation (2), la pente du tracé de S(c, q=0) en 

fonction de la concentration en protéine est -2MA2 ce qui donne accès à 

la valeur de second coefficient du viriel pour chaque concentration en sel. 

Ces valeurs sont présentées sur la figure 6. Les résultats illustrent qu’en 

l’absence de sel, la protéine est dans un état répulsif due à des répulsions 

électrostatiques causées par la charge nette positive du lysozyme à pH 

4,4. Lorsqu’une faible quantité de sel est ajoutée dans les gouttes, les 

charges du lysozyme sont partiellement écrantées et la répulsion due aux 

forces électrostatiques est réduite entraînant une diminution du second 

coefficient du viriel. Quand il y a assez de sel pour écranter toutes les 

charges du lysozyme, il n’y a plus de répulsion entre les protéines et les 

interactions deviennent attractives. Cela se produit dans notre cas pour 

des concentrations en sel supérieures à 180mM. Ces résultats sont en 

accord avec d’autres obtenus en micro volumes (Bonneté & al. (1999)). 

Ainsi, notre dispositif microfluidique permet d’obtenir des données de 

bonne qualité qui permettent d’étudier  les interactions entre 

macromolécules et de trouver des conditions optimales de cristallisation 

au travers de mesures du second coefficient du viriel, tout ceci en utilisant 



 

 

xxi 

 

 

 

une faible quantité de produit.  Dans cette étude, seuls 12 mg de lysozyme 

ont été utilisés. 

 

Figure 6  Second coefficient du viriel du lysozyme en fonction de la concentration 

en sel 

 

  



      

 

 

 

 

 

Chapitre 3  

Approche microfluidique pour la mesure de la 

déshydratation de protéines.  

 

La détermination de l’équation de l'état de colloïdes est d'une importance primordiale 

dans l'industrie (aliments, peinture, chimie, cosmétiques ...) puisqu'il définit les 

conditions opératoires de nombreux procédés tels que le séchage, le mélange, la 

filtration et la cristallisation. Pour déterminer cette équation d’état l’approche la plus 

utilisée est la mesure de la pression osmotique à l’aide de procédés membranaires. Cette 

technique expérimentale a été largement utilisée pour étudier le comportement de la 

caséine (Bouchoux et al. 2009; Bouchoux et al., 2010; Bouchoux et al., 2014), du 

lysozyme (Coralie Pasquier et al., 2016; Grobelny et al., 2014 ), et de l'ovalbumine (C. 

Pasquier et al. 2012). Cependant, malgré sa pertinence, cette technique présente 

plusieurs inconvénients, dont par exemple le volume d'échantillon de la chambre de 

dialyse (quelques millilitres) et le faible flux de perméation à travers la membrane (en 

raison d'un ratio de volume de surface non optimisé).  

Dans ce chapitre, une nouvelle méthode permettant de déterminer l'équation d'état 

d'une protéine modèle en solution est proposée. Cette méthodologie est basée sur le 

transfert de masse entre deux fluides partiellement miscibles. A l’aide d’un système 

microfluidique présenté sur la Figure 7 , des gouttes de phase dispersée (contenant le 

soluté et le solvant) sont générées dans une phase continue, dont les propriétés de 

mélanges telles que l’activité de l’eau sont connues.  
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Figure 7 Puce microfluiidque retenue pour cette étude. Cette puce est constituée 

d'une zone de génération de gouttes (h=l=50µm) et d'un serpentin (h=l=500µm). 

Le serpentin permet d'assurer un temps de séjour suffisant afin d'atteindre 

l'équilibre thermodynamique 

 

Dans cette étude la phase dispersée est constituée d’une solution aqueuse de protéine 

(lysozyme) et la phase continue est un solvant organique (1-décanol) avec une quantité 

connue d’eau. Dès que les gouttelettes sont générées, étant donnée la différence de 

potentiel chimique de l’eau dans la goutte et dans la phase dispersée, le transfert de 

masse se produit, l'eau transfère de la goutte vers la phase continue, jusqu'à ce qu'un 

équilibre thermodynamique soit atteint. En considérant que la protéine est immiscible 

avec le solvant organique, l’évolution temporelle du diamètre de la goutte permet de 

déterminer la quantité d’eau transférée. En outre, si le volume de phase continue est 

grand par rapport au volume de la goutte, la concentration en eau, et donc son activité, 

dans la phase continue loin de l’interface sont constante et égale à l’activité avant le 

transfert. Le dispositif expérimental permettant le suivi temporel de la taille de la goutte 

est présenté sur la Figure 8. 



      

 

 

 

 

 

 

Figure 8 Dispositif expérimental permettant le suivi temporel de la dissolution de la 

goutte 

Lorsque l’équilibre thermodynamique est atteint, l’égalité des potentiels chimiques de la 

phase continue et de la phase dispersée permet de déduire l’activité de l’eau dans la 

goutte. La pression osmotique de la solution est alors calculée à partir de la connaissance 

de l’activité de l’eau à l’équilibre par la relation : 

Πoms = kBT νw⁄ ln(aw) 

En réalisant ces expériences pour différentes teneurs en eau, l’évolution de la pression 

osmotique en fonction de la fraction volumique en protéine, peut être déterminée. 

Un exemple de suive d’une goutte en fonction du temps est présenté sur la Figure 9.  
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Figure 9 Evolution de la goutte en fonction du temps et de la position dans le 

serpentin pour un rapport de saturation de f=Ceau/Csat =0.4 

Sur la figure 10 est présentée la courbe caractéristique de dissolution d’une goutte 

contenant une solution de protéine. 

 

Figure 10 Evolution typique du diamètre de la goutte en fonction du temps (la 

courbe théorique de dissolution d’une goutte d’eau pure est donnée en rouge) 



      

 

 

 

 

 

Il apparait clairement sur cette figure, que le processus de dissolution peut être 

divisé en trois étapes : 

 Une première étape pendant laquelle la dissolution est rapide. Dans 

cette partie la goutte se comporte comme une goutte d’eau pure. 

La diminution du diamètre de la goutte est lié au transfert de l’eau 

qui n’est pas en interaction directe avec la protéine. 

 Lors de la deuxième étape, le transfert est ralenti. C’est à partir de 

cet instant que la goutte est déshydratée. 

 Dans la troisième partie,  le diamètre de la goutte est constant et 

l’équilibre thermodynamique est atteint. 

A partir des valeurs des plateaux obtenus pour différentes conditions opératoire, 

l’évolution de la pression osmotique en fonction de la fraction volumique en protéine, 

permettant la détermination de l’équation d’état, est présenté sur la figure 11. 

 

Figure 11 Evolution de la pression osmotique en fonction de la fraction volumique 

en protéine. 
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Comme présenté sur la figure 11, les données obtenues par cette approche sont 

en très bon accord avec les données de la littérature.  

Dans cette étude, une nouvelle approche de détermination de l’équation d’état 

de protéine est proposée. Les résultats obtenus avec ce nouveau dispositif 

expérimental sont en très bon accord avec les données issues de la littérature.  

En outre, cette approche permet également de suivre la dynamique du transfert. 

La mise en place d’une modélisation fine de la dissolution de la goutte (en 

couplant les deux lois de Fick) permettra la détermination de l’équation d’état 

de la protéine en utilisant une seule goutte.  

  



      

 

 

 

 

 

CONCLUSION  

Le travail présenté dans cette thèse comprend une approche originale pour le 

développement de nouvelles méthodologies plus efficaces pour l'étude du 

comportement de protéines en solution. 

Tout d'abord, afin de fournir des outils nouveaux analytiques à haut rendement 

permettant une réduction drastique de la consommation de réactifs et du temps de 

mesure, un protocole rapide, peu coûteux et robuste de fabrication de puces 

microfluidiques a été développé. Le protocole développé, lors de cette thèse, présente 

les avantages suivants: 

 Haute résolution, prototypage rapide et matériaux peu coûteux. Les structures 2D 

peuvent être fabriquées dans des laboratoires non spécialisé en microfabrication 

(en évitant les installations coûteuses de salle blanche). L'ensemble du processus, 

de la conception CAO à la fabrication de systèmes réels, prend moins de 24 

heures et le coût unitaire pour la fabrication d'une puce est inférieur à 5 euros. 

 Modification facile des propriétés de surface des microcanaux: Plusieurs 

techniques simples sont proposées pour modifier la chimie de surface des micro-

canaux pour les rendre hydrophiles ou hydrophobes, selon leur utilisation prévue. 

 Résistance aux produits chimiques et à la  pression : les puces ainsi fabriquées 

résistent aux solvants usuels utilisés dans les laboratoires de chimie et biologie. 

En outre, ces systèmes microfluidiques résistent à des pressions allant jusqu'à 200 

bars pendant plus de 20 minutes. 

Deuxièmement, ce protocole de fabrication a permis de développer des plates-formes 

microfluidiques peu coûteuses pour deux applications différentes. Dans le chapitre III, les 

interactions moléculaires de protéines en solution en présence d'agents précipitants (sel) 

ont été étudiées en couplant la microfluidiques de gouttes à  de la diffusion de rayons X 

aux petits angles issue d’un rayonnement synchrotron. Une optimisation complète des 

paramètres expérimentaux (matériaux, revêtement de surface, tensio-actifs, phase 



 

 

xxix 

 

 

 

porteuse…) a été menée afin de sélectionner les matériaux capables de résister aux 

dommages causés par les rayonnements intenses du synchrotron et tout en ne modifiant 

pas les propriétés  structurales des protéines en solution. Les expériences ont été 

réalisées sur la ligne BM29 à l’ESRF avec plusieurs protéines modèles. La dispositif 

microfluidique a  d'abord été testée avec de une protéine connue pour être 

particulièrement sensible à la dénaturation (Rasburicase). Le facteur de forme obtenu 

pour la Rasburicase est en bon  accord avec les données rapportées dans la littérature, 

validant le nouveau protocole expérimental. Par la suite, Les interactions protéine-

protéine ont été étudiées pour différentes concentrations de sel. Les expériences ont été 

menées avec succès en utilisant seulement quelques milligrammes de protéines et 

quelques dizaines de microlitres de solution. Les résultats ainsi obtenus sont en parfait 

accord avec les résultats issus de la littérature.  

Enfin, l’étude présentée dans le chapitre IV fut dédié à la détermination de  l’équation 

d’état d’une solution de protéine en diminuant drastiquement les temps de mesures 

ainsi que la consommation en produit (quelques mg de protéine). Cette nouvelle 

approche permet également de capter la dynamique du système. Une approche 

numérique  a été mise en place pour prédire l'évolution du diamètre des gouttelettes au 

cours du processus de déshydratation. En première approche, on a supposé que l'activité 

de l'eau dans la phase continue était égale au rapport 𝑎𝑤 = 𝑐 / 𝑐𝑠𝑎𝑡, cette approche 

certes imprécise, a permis de capter les ordres de gradeurs de la cinétique de 

dissolution, mais reste relativement imprécise. Une étude, plus poussée, de 

modélisation des transferts (en couplant la première et la seconde loi de Fick pour des 

systèmes non idéaux) ainsi qu’une modélisation rigoureuse thermodynamique de la 

phase continue (par une approche a enthalpie libre d’excès, par exemple) permettrait  

d’obtenir l’équation d’état de la proteine en n’utilisant qu’une seule gouttelette, mais 

également de déterminer des loi de comportement pour certaines transition structurales 

observées (cristallisation, formation de peau). 
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Colloids are fluids containing particles suspended in a liquid. The size of the 

dispersed molecule is larger than a simple molecule (having a diameter between 

1 to 1000 µm) but small enough to remain suspended.  So colloid is an 

intermediate state between suspensions and solutions. A representative example 

is milk, which is an emulsified colloid of liquid butterfat globules dispersed within a 

water-based solution. Colloidal particles give special physical properties of fluids 

and are therefore widely used in the industry to fine tune the physical-chemical 

properties of materials in which they are dispersed. Thousands of examples can 

be found in everyday life in which colloid are used: silica as a reinforcing filler in 

elastomer, as an abrasive in toothpaste, titanium oxide in glass, paint, drug 

dispersion… The overwhelmingly important property of colloids is their very large 

surface area. To some degree, they are all surface and their properties are those 

of their surface. Consequently, to control the properties of a colloidal suspension, 

intermolecular and surface acting forces are controlled: Van der Waals attractive 

force (leads to product instability), and electrostatic and steric repulsive forces 

(that stabilize the dispersion). These colloidal interactions in solution are the core 

of many industrial processes as filtration, precipitation, drying... Knowledge of the 

nature and intensity of these interactions leads to better process control. 

This is particularly true for the crystallization process, still perceived as an art, 

despite the efforts made during the last twenty years on its rationalization. 

Thermodynamically, protein crystallization is not very different from the 

crystallization of salt and small molecules. In both cases, the solution needs to be 

brought into a supersaturated state after which the (macro)molecule will 

hopefully start to crystallize. The whole crystal growth process can be 

conveniently visualized in a two-dimensional phase diagram (Figure I-1) 

representing the stable states (liquid, crystalline, precipitate) as a function of two 

crystallization variables. When the concentration of a protein solution is brought 

above its solubility limit, the solution becomes supersaturated. Depending on the 

level of supersaturation, this zone of the diagram can be divided into three 

regions: very high supersaturation (“precipitation”), where molecules form 

amorphous aggregates , intermediate supersaturation (“labile”), where both 

growth and nucleation occur, and lower supersaturation (“metastable”), where 
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only growth is supported. Because these regions are related to kinetic 

parameters, the boundaries between them are not well defined. As stated earlier, 

this “sort of” phase diagram, mixing kinetic and purely thermodynamic 

parameter, is universal and suitable to describe salt, drug, colloids… crystallization 

processes.  

 

Figure I-1: Illustration of crystallization protein phase diagram. The plot, based on the 

concentration of protein as a function of an adjustable parameter which can be pH, 

temperature, concentration of precipitant and so on. 4 regions are mentioned: under-

saturation, metastable zone, nucleation zone and precipitation zone. These arrows with 

black dots (initial conditions) are techniques to achieve crystals: (i) batch, (ii) vapor 

diffusion, (iii) dialysis and (vi) free interface diffusion(Chayen 2004). 

However, from a microscopic point of view, protein crystallization is very 

different since the interactions between proteins and thus the “nature” of the 

solvent can be fine-tuned through the introduction of a crystallizing agent that 

induce more attraction (salt for instance)  to promote aggregation or a polymer 

that induce a steric destabilization. The pioneers of protein crystallization 

rationalization Georges and Wilson(George and Wilson 1994) have proposed a 

thermodynamic explanation of how to perform protein crystallization 

experiments: the “solvent conditions which are known to promote protein  

crystallization are grouped in a narrow range of osmotic virial coefficient B22  

values that are somewhat negative. These solvent conditions can be referred to 
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as being 'moderately poor', i.e. the solvent has to be poor enough (slightly 

negative B22 values) to eventually promote the formation of craggs at high 

enough protein concentration but not so poor (larger negative B22 values) that 

praggs are produced which lead to an amorphous structure. Thus, B22 is clearly a 

dilute solution parameter that has a predictive character regarding protein 

crystallization. 

From these thermodynamic rules, many types of research have been 

conducted on the rationalization of protein crystallization, but due to an 

excessive product consumption and to the time required to acquire reliable 

thermodynamic data (i.e. virial coefficient, interactions in solution and protein 

equation of state), trial and error approach is still the method of choice for protein 

crystallization. 

From 1990s, the microfluidic is a versatile tool to study fluid flows at the 

microscale and for microscale analytical chemistry techniques. A potential 

strength of microfluidic systems is that they can be performed with laboratory 

conditions using a very small amount of reagents due to reduced volume. By this 

way, not only the volume of reagents can be nano- to femtoliters.  Thanks to 

advantages of microfluidic systems, they can be applied in many fields of 

applications such as drug delivery, diagnostic, organic synthesis and micro-

reactors(Xu et al. 2009)(Frenz et al. 2008)(G. Jones et al. 2011).  Recently, the 

development of microfluidic technique makes a huge (Zheng, Roach, and 

Ismagilov 2003; Zheng et al. 2004; Zheng, Gerdts, and Ismagilov 2005; Weigl and 

Sygusch 2002)breakthrough for protein crystallization studies. Thank to different 

behaviors of flow and mass transfer phenomenon at micro-scale, microfluidic 

systems allow to perform hundreds, evenly thousands of trails simultaneously on a 

single system. This helps to reduce the consumption of materials and time. 

However, all the aforementioned studies and most of the studies encountered in 

the literature deals with the reproduction in microfluidic systems of the high 

throughput screening experiments performed in batch or micro-wells experiments 

by robots.  
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Thus, the aim of this thesis is to develop a more efficient measurement 

techniques of thermodynamic properties of protein solutions by using microfluidic 

platforms. The main objectives of the approach are to: 

- Develop versatile, reliable, low cost, fast and easy technology to produce 

microfluidic platforms.  

- Measure in-situ  the protein-protein interaction. 

- Establish a protein equation of state in solution. 

The development of such a technology and methodologies must be 

immediately transferrable to any nonspecialized laboratory and easy to use in 

order to contribute to the development of rationalization of protein crystallization 

experiments. 

In the first chapter, the whole process of microfluidic fabrication is presented. It 

can be seen as the long process with three main steps. Firstly, a rigid master is 

designed and prepared using the photolithography method based on two 

different types of negative photoresists: SU-8 from MicroChem and dry film from 

DuPont. Depending on the purposes of microfluidic chips, the mask is designed 

with several components such as droplet generation structures, mixing and 

storage structures. The typical photolithography process is performed step by step 

(Substrate cleaning, coating, exposure, baking, development). For each step, the 

parameters from the literature are optimized to fit with our equipment to obtain 

better resolution of the rigid master. As the results, the SU-8 molds possess very 

good properties of physical/chemical resistances. However, the product process 

is time-consuming and required high-cost equipment and a very clean 

environment. In order to build the rigid master by a fast and cheap protocol, the 

use dry film photoresist is strongly recommended. Masters from dry film WBR series 

from DuPont were successfully fabricated in short time with simple and 

reasonable equipment which any laboratory can have. Moreover, even if the 

resolution of dry film master is lower than SU-8 master, it is enough for 

microchannel dimension ranging from 5 to 200 µm. Finally, the microchannel is 

built from UV-sensitive polymers using soft lithography technique. Two kinds of 

photosensitive materials were used: NOA 81 (Norland Optical Adhesive) of 

Norland Inc. and OSTEmer 322 from Mercene Lab (Sweden). The large range 
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(from 50 µm to 500 µm) of microchip dimension was successfully fabricated with 

very high resolution. Besides, the microfluidic chips fabricated have several 

excellent properties like chemical resistant, high-pressure resistance, and tunable 

surface properties. Depending on the purposes, the chips are modified to have a 

hydrophilic or hydrophobic surface.  

 

Figure I-2: An example for complete OSTEmer microchip prepared by soft lithography. 

The coupling of Small Angle X-ray Scattering (SAXS) and microfluidic chips to 

study the interactions of protein in solution is presented and discussed in Chapter 

III. In this chapter, the basic principle of SAXS and method to analyze the 

obtained scattering intensity data is first shown. Then, the SAXS experiments 

performed at BioSAXS BM29 at ESRF presented in this chapter, have two goals: 

(1) To validate the experimental setup by comparing the obtained data to 

data from the protein data bank. Moreover, other parameters such as the 

material of capillary, surfactant… were also determined to get a higher 

quality of SAXS data.  

(2) To study the variation of weak interactions between protein molecules in 

solution by varying the concentration of crystallization agent. 

In the last chapter, a microfluidic system was used to study mass transfer 

phenomenon happened during the dissolution of water or hydration of protein 
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solution droplets in an organic solvent. At the end of the dissolution process, the 

droplet reaches a final size that depends on the thermodynamic equilibrium, 

which depends on the water activity in the droplet and in the continuous phase. 

When the thermodynamic equilibrium is reached, the knowledge of the water 

activity in the continuous phase allows determining the water activity of water 

inside the droplet. From the final state of the protein solution droplet, several 

thermodynamic parameters such as the osmotic pressure, the hydration potential 

can be determined. Thus, the experiments performed in this chapter have three 

main goals: 

(1) To design and validate a microfluidic setup suitable for the dehydration of 

micro-droplet in drying medium to ensure the system can reach to the 

thermodynamic equilibrium. 

(2) To obtain the protein equation of state in the solution which relates the 

osmotic pressure to the volume fraction of protein. 

(3) To build a model base on Fick laws (purely diffusive process) to predict the 

shrinking of the droplet. 
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II.1. Introduction 

In this chapter, the fabrication process for the microfluidic setups is presented. 

The microfluidic systems have been built by soft lithography methods following the 

subsequent main steps: firstly, fabrication processes of rigid masters made from 

photoresists (liquid and dry film) are presented.  Then, the masters are used to 

fabricate solvent/pressure resistant microfluidic chips. These steps, in which some 

innovative techniques were applied to improve the process, will be discussed in 

more detail below.  .  

The first step of soft lithography method is to fabricate a patterned rigid master 

with the desired design. In the literature, numerous research groups have used SU-

8 negative photoresist to fabricate this kind of master(Lorenz et al. 1997)(Hwang, 

Lo, and Chin 2001). Thanks to the properties of SU-8 resists, the obtained molds 

present a high resolution. Moreover, SU-8 also displays a high resistance 

tosolvents. However, the SU-8 master fabrication process requires a costly 

equipment and very critical conditions. Hence, the price for whole fabrication 

process is high and it requires a long time for fabrication.  

In order to build a fast, reasonable and still reliable master mold, a novel 

negative photoresist of DuPont company was utilized. The photoresist is available 

as a thin film and widely utilized in the circuit board design industry. Because of its 

intrinsic properties, the dry film photoresist can be coated easily on the substrates 

(many types: glass, silicone, copper…) by simple lamination. After that, the dry 

film photoresist mold is finished just by following the lithography method with an 

inexpensive UV lamp and a non-toxic developer. The resolution of dry film is lower 

than SU-8, however, it is still acceptable to fabricate microfluidic systems with 

structures larger than 20 µm. In conclusion, depending on the purposes and 

requirements of the microfluidic systems, SU-8 technology can be applied for high 

definition master mold fabrication, with a high-cost and long-time process, and 

the dry film photoresist can be  utilized for building  fast, cheap and reliable 

microfluidic molds.  

For the microfluidic chip fabrication, we proposed the use of UV curable 

materials (e.g. NOA 81, OSTEmer)…to manufacture solvent/pressure resistant 
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systemsby using the micro-molding technique.. In addition, several methods were 

tested and improved for microchannels surface modification. On this sense, 

depending on the offend use of the microfluidic chip, the surface can be 

modified to be hydrophobic or hydrophilic in order to form W/O or O/W 

emulsions, respectively.  

II.2. Materials and methods 

II.2.1.1. Master mold fabricationMaster mold fabrication 

SU-8 2150 and SU-8 2050 (MicroChem, MA 02464 USA) were used as received. 

SU-8 2150 was used to fabricate thicker molds because of its higher viscosity.  SU-8 

was spin-coated using a Spin150 from POLOS-SPS EURO The Netherlands. 

Diacetone was used as developer of SU-8 photoresist. Dry film WBR series and MX 

2000 series were purchased from DuPont with thicknesses ranging from 20 to 120 

µm. Potassium carbonate, ACS, 99.0% (Alfa Aesar, Germany) and Magnesium 

Sulfate (anhydrous, reagent plus, >99.5 %) from Sigma – Aldrich were used to 

prepare the developer solution. Pouch laminator was purchased from MEGA 

Electronics to laminate thedry-film photoresists. This laminator can change the 

roller pressure, the rolling speed and temperature. A UV-KUB 1 equipment was 

used to mask-expose the master molds prior to their development.In oder to 

modify master molds surface to increase their nonsticking properties, 3M™ 

Novec™ 1720 (USA) Electronic grade coating (supplied by 3M and used as 

received) and Sigmacote (Sigma)were used as siliconizing reagents. Also toluene, 

anhydrous for analysis (Carlo Erba reagents, France) was applied with the same 

purpose.  

II.2.2. Microfluidic chip fabrication. 

NOA 81 and OSTEmer 322 Crystal Clear UV-curing polymers were purchased 

from Norland Products Inc. (USA) and Mercene Lab (Sweden), respectively. They 

were stored in a refrigerator for a dark and cold environment. The UV cure Station 

One (Mercene Labs, Stockholm, Sweden) and the previously mentioned UV-KUB 1 

were used for polymer UV-curing . For microchannels surface modification,, the 

following reagents were used: Perfluorodecyltrichlorosilane (PDTS), 96% was used 

as received from Alfa Aesar (Germany). Isooctane, dried was purchased from 
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VWR (USA). Benzophenone ReagentPlus, 99%, Irgacure R819- Phenylbis(2,4,6-

trimethylbenzoyl) phosphine oxide. 97%, powder, Allyl glycidyl Ether, 

Heptadecafluorodecyl methacrylate 97% and 2-hydroxyethyl methacrylate, 97% 

were purchased from Sigma-Aldrich.Finally, a Corona equipment  (EasytreatBC 

20, Boussey Control, Belgium) was used for surface cleaning using plasma 

treatment.  

II.3. Master design and fabrication process  

II.3.1. General aspects of photolithography process 

Photolithography is a process of transferring of geometric shapes from a masks 

to a thin layer of radiation-sensitive materials (called as photoresists) which are 

deposited on a substrate (wafer). Depending on the purposes, several 

photoresists can be applied. Photoresists are classified as a function of their 

behavior when they are irradiated. If the radiation transferred to the photoresists 

through the transparent parts of a mask make them insoluble in the developer 

solution, they are considered as negative. Conversely, if they become soluble, 

they are considered positive. A general schematic presentation of 

photolithography process is shown in the Erreur ! Source du renvoi introuvable.. 

 

Figure II-1: Typical lithography process, containing spin coating, exposure and 

development. 
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A general photolithography procedure is described hereafter: 

II.3.1.1. Contamination and cleaning 

Substrates (wafers) can generally be polluted by several contamination 

sources, both organic and inorganic. This contamination must be prevented as 

much as possible, or cleaned following standardized protocols. Contamination 

sources on the wafer can arise from vapor depositions, photoresist, fingerprints, 

containers, chemicals and so on. There are several ways to clean organic 

contaminations but the easiest way is rinsing by acetone or alcohol. After rinsing, 

the wafer must be washed by deionized (DI) water and dried by nitrogen flow. To 

remove inorganic residues, a mixture containing strongly oxidize acid solution is 

generally used. Depending on the lab-ware conditions, using the Piranha solution 

is recommended. The Piranha solution is a mixture of sulfuric acid (𝐻2𝑆𝑂4) and 

hydrogen peroxide (𝐻2𝑂2)  in a 4:1 ratio. Using this solution, not only organic 

matter, but also inorganic residues on the surface of substrate can be removed. 

Additionally, the Piranha solution adds more OH groups and turns substrate 

surface into hydrophilic. Finally, rinsing using DI water must be carefully carried out 

to ensure that all of Piranha solution is completely removed from wafers. 

II.3.1.2. Wafer pre-conditioning 

After cleaning the substrates, a heating process is recommended to improve 

the adhesion of photoresist by two ways: 

- At 100ºC, all of water present on the wafers surface is desorbed. Hence, few 

minutes at 100ºC are recommended.  

- An Increase of temperature up to 150°C also makes that all OH bonds present 

on the surface of oxidized substrates (e.g. glass, silicon…) are thermally cracked. 

These OH radicals form a hydrophilic surface which improve the wetting and 

contact with photoresists.  

The photoresist can be applied directly after heating to avoid absorbing water 

again. However, the wafer temperature should be tempered to room 

temperature in order to get a better homogeneity of the resist layer.  
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II.3.1.3. Photomask fabrication 

A typical process to fabricate photo-mask begins by a CAD design which is 

subsequently transferred to a physical support. Typically, a chrome-mask is 

generally used in the photolithography procedure because of its high resolution 

(Müllenborn, Dirac, and Petersen 1995). The size of the patterns in a chrome mask 

can go down to a few nanometers. However, the chrome masks are typically 

fabricated by using e-beam and laser writing which require specific and 

expensive facilities, and hence they are expensive. An alternative method to 

prepare a photo-mask with an inexpensive and rapid process was proposed by 

Xia et al (Xia and Whitesides 1998) and other researchers(Deng et al. 2000; Duffy 

et al. 1998; Anderson et al. 2000) . Here, printings from office printer with high or 

normal resolution on transparent films are used as masks for the lithography 

method. However, the smallest features which can be  fabricated by using this 

low cost approach is around 20 µm, provided by the limitation of printer resolution 

(Deng et al. 2000).  

 

Figure II-2 Example of Chrome mask (left) and transparency mask (right). 

 

II.3.1.4. Rigid master mold fabrication 

For master mold fabrication, the most widespread fabrication protocol is 

based on SU-8, a widespread epoxy–based negative photoresist. Here, the word 

“negative” means that the exposed parts become cross-linked and non-exposed 

parts are soluble in developer solution. The name of SU-8 refers that in the 
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molecule structure, there are eight epoxy groups. These epoxies will make cross-

links to the final structures.  

 

Figure II-3: (a) SU-8 photoresist molecule structure. (b) SU-8 made crosslinked by UV beam 

 

With these particular properties, the SU-8 photoresist presents some interesting 

features for microfabrication: (i) a high ratio aspect (15:1); (ii) Bio-compatible; (iii) 

high mechanical and chemical properties, as SU-8 has good solvent resistance. 

Additionally, the nature of SU-8 surface is hydrophobic. Hence, it is easy to directly 

obtain PDMS replicas by direct cast molding on the SU-8 structures, thus obtaining 

PDMS chips or PDMS masters. However, SU-8 requires extremely clean operating 

conditions (i.e. the use of clean room facilities is highly recommended), which are 

not easily achievable in a common laboratory, the fabrication protocol for a SU-8 

mold comprises several time-consuming steps and the material itself is very 

expensive. For that reason, we have developed a more simple and low cost 

master mold fabrication protocol, based on dry film technology. 

The dry film photoresists were originally developed more than 30 years ago. 

Initially, dry film were applied for printed circuit boards (PCB), but nowadays they 

are also applied for MEMS  and microfluidic systems fabrication (Tsai et al. 2006; 

Stephan et al. 2007; Garland, Murphy Jr, and Pan 2014; Chuan et al. 2004). A 

typical dry film resist is generally purchased with three-layer presentation: a thin 

negative photoresist layer is sandwiched between a bottom polyester layer and 

a top polyolefin sheet (usually 25 µm thick poly-ethylene). The polyethylene is 

coated to prevent sticking of photoresist on preceding polyester layer during roll 
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production. In this work, two types of negative photoresist dry film WBR series 2000 

and MX from DuPont incorporation are utilized:  

 

Figure II-4: (a) Dry-film formulation: Polyethylene-Resist-Polyester. (b) Lamination of dry film 

photoresist using laminator 

DuPont Dry film WBR 2000 series, which present high resolution, and multi-

purpose applications, compatible with lead-free electroplating and stencil 

printing. They are blue dry films with several available thicknesses: 50, 75,100 and 

120 microns. 

DuPont Dry film MX series, which are transparent and present higher resolution 

than WBR series, so they can be used to fabricate smaller scale structures. 

Both dry film based photoresists present several advantages for fast 

prototyping compared to conventional methods using liquid photoresists as the 

previously mentioned SU-8: 

(1) Easy to implement. 

(2) Not require cleanroom equipment, consequently, the process can be 

performed at standard laboratories. 

(3) Low-cost because dry film photoresist are produced at large scale for 

industrial applications. 

(4) A significant reduction of fabrication time (the whole  fabrication process 

for a microfluidic structure can be reduced to less than 24h)  

(5) Homogeneous thickness for the whole wafer. 

(6) Have a good adhesion to several substrates.  

(7) No bead edge. 
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(8) Low exposure energy. 

However, they still present some drawbacks. Firstly, the adhesion of dry film on 

glass substrates is not optimal. To improve it, a carefully cleaning process or 

preparation a dry film seed layer is recommended. This step will take more time.  

Secondly, unlike the SU-8 with hydrophobic surface, the dry films present a 

hydrophilic surface. Thus, in the PDMS casting process, dry film surface should be 

modified to hydrophobicity by silanization/ anti adherence processes. However, 

these processes cause side effects, as reducing the resolution of dry film and the 

adhesion as well.  

II.3.1.4.a. Dry film lithography process steps  

The lithography process for dry film is almost the same to other photosensitive 

materials like SU-8. However, because of their low content in solvents, the time of 

procedure is significantly reduced.  

Lamination (coating) 

In contrast to the typical spin coating processes for liquid photoresists, like SU-8, 

the dry film photoresist is directly laminated on a substrate using a pouch 

laminator. The substrate is cleaned using the cleaning process described above. 

In order to improve the adhesion between the photoresist and the substrate, a 

plasma treatment is also recommended. It was shown that the dry film can be 

applied to many types of materials such as copper and isolated mainboard for 

electronics industry, glass for laboratory… However, only glass substrates from 

Corning (Sigma-Aldrich, USA) were used in this work.  

The main advantage in this coating process is that the lamination equipment 

do not need special requirements. Hence, a typical office laminator can be used. 

With such laminators, the temperature and speed can be adjusted to fit with the 

thickness of laminated dry films. These factors play a very important role to obtain 

a good lamination. For instance, small air bubbles can be trapped during 

lamination when the temperature is too high and, in contrary, if low temperatures 

are applied, the adhesion between film and substrate or between film layers is 

reduced. Thus, temperature operational parameters need to be optimized. To 
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work with the WBR dry film from DuPont, the temperature of roller in a range from 

95°C to 100ºC is recommended.  

Before lamination, the polyethylene layer is peeled off to allow the contact 

between the resist layer and the substrate. The hot rolls on the laminator provide a 

smooth and internal dry contact between resist and substrate. After each 

lamination step, the dry film wafer should be checked to make sure there are no 

air bubbles or winkles on the surface before removing the polyester protection 

layer and applying another film afterwards. Depending on the desired total dry 

film thickness, the lamination can be repeated several times.  Since the dry film 

contains less solvent inside than liquid-type resists, a soft bake step is only optional. 

However, baking the laminated dry film in the oven at 65°C for 20 minutes is 

proposed to improve the adhesion. 

Exposure 

As other negative photoresists, the dry film crosslinking is activated by UV 

exposure. Any 365 nm wavelength UV lamp can be used, however in order to get 

better resolution, a high intensity light source is highly recommended. The last film 

protection layer is kept until in the end of exposure to avoid contamination during 

the process. This protection layer is removed before the development.  

During exposure, the two most important factors are the intensity of light 

source and the exposure time, configuring the exposure dose. According to the 

datasheet from DuPont, an intensity >20 mW/cm2 or >10 mW/cm2 is required, 

respectively for high or low resolution structures. For example, the UV-Kub 

irradiation equipment, with a power intensity of 25 mW/cm2   is good to work with 

high resolution. On the other hand, the time of exposure depends on the 

thickness of dry film. The relationship between the two parameters is shown in the 

Figure II-5 below. 
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Figure II-5: Thickness versus Exposure energy for Dry film WBR 2000 series. Marker (closed 

star) for the required minimum energy and (closed up triangle) for maximum energy. 

The Figure II-5 shows the maximum and minimum energy required to effectively 

expose a certain dry film thickness. The range between min and max values is 

suitable to get high resolution structures without over/under exposure. There is no 

significant difference for applying max and min value of energy.  

Post Exposure Bake (PEB) 

This is an optional step which can be applied to improve film resolution and 

development latitude, leading to complete development and a straight side wall 

by improving the crosslinking of the resist. Normally, the exposed dry film is baked 

on a hot plate at 100ºC for 55 seconds. Subsequently, the dry film is cooled down 

gradually to ambient temperature before continuing with the development step.   

Development 

The dry film is dipped in/sprayed with a Potassium/Sodium Carbonate solution 

1% wt. to remove the unexposed regions. The time of development not only 

depends on the thickness of dry film but also of the temperature of developer. 

With higher temperature, the development rate is higher. So, it is important to 

determine the good value of time and temperature for development.  The 

optimal development temperature is around 28ºC.  If the development is too 

long, the exposed structures can be attacked by developer, leading to lower 
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adhesion. If it is too short, some parts of unexposed patterns remain, leading to 

lower resolution.  

According to the presented steps for the preparation of a dry film master, a 

recommended protocol for obtaining structures larger than 200 µm is shown 

below: 

1. Clean the glass substrates by acetone. 

2. Clean by acid or Piranha solutions and rising by water. 

3. Use plasma gun Corona for 20 s. 

4. Laminate a 50-100 µm thickness dry film layer at 95ºC as a seed layer.  

5. Soft bake at 65ºC for 30 minutes. 

6. Let seed layer cool down to ambient temperature. 

7. Full exposure for seed layer by UV-KUB 3 for 9 s. 

8. Using plasma gun Corona for seed layer for 20 s. 

9. Laminate 2-3 layers of 100 µm thickness to reach desired thickness. 

10. Depending on the thickness, apply the necessary time for exposure to 

ensure a correct exposure dose. For instance, 300 µm channel needs 16 s 

for 25 mW/cm2 UV-source. 

11. Post exposure bake at 100ºC for 55 s. 

12. Develop for 10 minutes by 𝐾2𝐶𝑂3/𝑁𝑎2𝐶𝑂3 1% and rinse with 𝑀𝑔𝑆𝑂4 1% 

solution at least for 3 minutes. 

13. Dry by using an air flow and keep the dry-film at room temperature before 

a surface modification step. 

Surface modification 

Prior to PDMS casting, the dry film molds are silanized to prevent sticking. In the 

literature, lots of silanization processes have been reported,  and most of them 

used silane compounds such as Perfluorodecyltrichlorosilane (PDTS)(Sandison et 

al. 2007; Bass and Lichtenberger 2004; Jones et al. 2011; Lee et al. 2007) or 

trimethoxysilanes (Labit et al. 2009). The detailed protocol for each method is 

briefed below. 

- Vapor phase surface modification: The procedure is carried out by vapor phase 

deposition. The dry film master is placed on a sample holder (petri dish, for 
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example) inside a vacuum desiccator with some drops of PDTS. By changing the 

pressure inside the desiccator, the liquid PDTS becomes vapor phase and forms a 

very thin layer on top of the dry film master. The silanization process is performed 

for 30 minutes. Afterwards the master is baked at 100ºC for 1 hour.  

-  Liquid phase surface modification: This protocol uses liquid phase deposition of 

silane in an organic solvent (acetone, n-heptane, ethanol…). All steps of 

silanization are performed in full nitrogen glove box to avoid exposure to 

atmosphere humidity. The silanization box is shown in the Figure II-6. Briefly, the 

silanization box contains two gloves, an injection/withdraw system for nitrogen 

and air, and an input chamber with two doors. Initially the air is removed by 

means of a vacuum pump. When the pressure inside the box is low enough, the 

nitrogen is injected. Both injection and vacuum pumps are carefully controlled to 

keep the humidity inside the box below 5%.  

The silane solution is prepared by diluting 100 µL of Trimethoxysilane into 100 mL 

of n-heptane or other solvents before use. The samples (microchips – discussed 

below  –  or dry-film master) are directly dipped in the silane solution (or the 

solution is injected in the microchips) and incubated for 30 minutes. Subsequently, 

samples are carefully rinsed with heptane and dried under a nitrogen flow. Finally, 

samples are baked at 65ºC for 1 hour. 
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Figure II-6: The silanization box is designed and built at LGC. 

- Deposition of a monolayer of fluorous nanoparticles: Using 3M NOVEC1720 

Electronic Coating is a simple protocol to improve the anti-adherent properties of 

the dry film master. The dry film master is dipped in NOVEC solution for 20 minutes 

and baked at 150ºC by hot plate for a few minutes. We have tested that the 

deposited hydrophobic layer displays long-term stability.   

- Toluene treatment: Dipping the WBR 2000 series dry films on Toluene after 

photolithography is another way to improve its surface properties. After 

development, on the dry film surface can still remain small unexposed particles 

which can be dissolved by using Toluene. However, if the dipping time is too long, 

Toluene starts to dissolve the exposed dry film as well, reducing both the adhesion 

to the substrate and resolution of the master. 

II.4. PDMS Mold fabrication for UV-sensitive polymer casting 

Polydimethyl Siloxane (PDMS) is a mineral-organic polymer (containing carbon 

and silicon) of the siloxane family (name derived from silicon, oxygen and 

alkane).  The chemical formula of PDMS is CH3[Si(CH3)2O]n-Si(CH3)3 where n is the 

number of repeating monomer [Si(CH3)2O] unit as illustrated in the Figure II-7 
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Figure II-7: The chemical formula of Polydimethyl Siloxane(PDMS) 

In the soft photolithographic method, elastomer materials are used because 

of their ability to make a conformal contact with surfaces over large areas, and 

they can be released easily from rigid masters or complex structures (e.g. quasi-

three-dimensional structures). The PDMS possesses a low interfacial free energy 

and good chemical and thermal stability; this means that PDMS cannot bond 

easily with any materials, and it can be used from low to high temperatures 

without losing resolution (shrinking). Furthermore, thank to its UV transparency, can 

down to 250 nm, PDMS molds can be used to mold a variety of UV-curable 

polymers. 

To prepare PDMS mold, first the pre-polymer and curing agent are mixed with 

ratio 10:1, respectively. The mixture is then degassed in a desiccator to remove air 

bubbles. Next, the PDMS mixture is poured on a rigid master (SU-8 or dry film 

master, for instance). The PDMS is degassed again to remove air bubbles trapped 

after pouring. This step can enhance the resolution of PDMS stamp as well. The 

PMDS is cured by oven at 60ºC for more than 2 hours or at 100ºC for 1 hour. Finally, 

the PDMS stamp is gradually peeled off from the master.  

The natural surface property of PDMS is hydrophobic with the contact angle 

around 80º. However, the PDMS is proposed to silanize to obtain higher 

hydrophobicity which important in the PDMS replication process with polymers. 

Using NOVEC 1720 (3M, USA) is shown a good silanization result for PDMS as well. 

The PDMS mold is dipped in NOVEC solution for 20 minutes before curing in oven 

for 1 hour at 150ºC.  

The schematic illustration for PDMS casting process is shown in the Figure II-8. 
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Figure II-8 :  Casting of PDMS mold from a resist rigid master 

In contrast, PDMS elastomers have been showed some technical problems for 

soft lithography. The first is the swelling of cured PDMS molds caused by some 

nonpolar solvents such as toluene and hexane. The softness of PDMS mold 

reduces the aspect ratio of microstructures. If the ratio of height and width of 

desired features (aspect ratio h/w) is too large (illustrated in the Figure II-9), it 

duplicated by PDSM own weight. However, the aspect ratio is too small, 

insufficient relief structures can withstand and collapse to each other. The range 

of aspect ratio from 0.2 to 2 can produce good relief structures on PDMS 

(Delamarche et al. 1997). 
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Figure II-9: Deformation of PDMS molds. 

In fact, the PDMS can be used directly as a material for microfluidic chip. The 

PDMS microfluidics are built via PDMS-PDMS (Eddings, Johnson, and Gale 2008), 

and/or PDMS bonding with other materials (e.g. glass)(Zheng et al. 2004). The 

popular technique to modify the surface of PDMS is using oxygen plasma 

(Bhattacharya et al. 2005b). They showed that as the contact angle decreases, 

the bonding strength increases. In addition, four differently inexpensive methods 

to bond PDMS/PDMS were tested by Eddings et al. to determine the relative bond 

strength. The methods based on partial curing and uncured PDMS adhesive 

techniques which have a significant increasing on bonding compared to oxygen 

plasma and corona discharge method.  

Thank to vapor permeability of PDMS elastomer, the PDMS channels was used 

as tools to study protein crystallization conditions by vapor-diffusion (Zheng et al. 

2004).  However, in our case working in free vapor permeability, so PDMS 

microfluidic chips are not concerned. We only used PDMS as a mold to fabricate 

microfluidic systems using other materials such as UV-curable pre-polymers. 
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Figure II-10: The TEM images of PDMS molds which cast from WBR dry film master (a) and 

SU-8  photoresist ( b). 

The Figure II-10 shown the cross section and the wall channel of PDMS molds 

which were cast from SU-8 and WBR dry-film master, respectively. It is clearly to 

see that both cases were shown the straight wall of channel with smooth surface. 

This means that with the cheap materials as WBR dry-film for rigid master, a high 

quality of PDSM mold and evenly microfluidic chips were obtained.  

II.5. Solvent and pressure resistant microfluidic chips 

To fabricate microfluidic system, the micro-molding technique is applied on 

UV- curable or thermal-curable pre-polymers. As discussed above, PDMS stamps 

are fabricated by casting from rigid masters (SU-8 or dry film) with relief structures 

on their surfaces. These structures on PDMS molds are used as a mold for forming 

structures in the UV or thermally curable pre-polymers.  The typical process of 

micro-molding technique is illustrated in the Figure II-11. 
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Figure II-11: Micro-molding technique for fabrication of microfluidic systems 

Firstly, a certain amount of pre-polymer is dropped on a substrate; here the 

substrate is a clean glass slide. Afterward, the PDMS mold is placed over the pre-

polymer. A light pressure is applied on the PDMS mold in order to remove trapped 

air bubbles and to excess pre-polymer. The sandwich system PDMS- polymer- 

substrate is exposed by UV chamber to cure the pre-polymer. The pre-polymer is 

polymerized into solid phase during the curing procedure. The PDMS mold is 

gradually lifted off and left the polymer structures on the substrate. The complete 

microfluidic system is finished by closing the channel by a glass cover slip and 

injecting inlets and outlets.  

In this work, two UV curable materials to fabricate microfluidic platforms are 

discussed. These materials have been used in a wide range of micro-fabrication: 

Norland Optical Adhesive 81 (NOA 81) and OSTEmer polymer. 
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II.5.1. Norland Optical Adhesive (NOA) microfluidic chips 

NOA 81, a single component liquid adhesive thiol-ene based resin, are cured 

by UV irradiation. It is used generally as glue for very fast and effective way to 

precise bonding optical components.  NOA 81 is sensitive to entire long 

wavelength from 320 nm to 380 nm and the peak sensitive is around 365 nm. Thus, 

the UV irradiation source to cure NOA 81 with wavelength 365 nm is required. 

Some typical properties of NOA 81 are provided by Norland Inc. and showed in 

Table II-1.  

Table II-1: Typical properties of NOA 81(NOA81, 2016) 

Typical properties of NOA 81 

Solids 100% 

Viscosity at 25°C (non-cured) 300 cps 

Refractive Index of Cured Polymer 1.56 

Elongation at Failure 25% 

Modulus of Elasticity (psi) 200,000 

Tensile Strength (psi) 4,000 

Hardness - Shore D 90 

 

II.5.1.1. Protocol of fabrication chip using PDMS master 

The process to fabricate NOA 81 microfluidic chip is fast and simple(Philip 

Wägli et al. 2010)(Bartolo et al. 2008)(Hung, Lin, and Lee 2008). Following the soft 

photolithography method, the NOA 81 liquid is poured on a clean glass slide 

before applying PDMS mold. A light press is performed on the PDMS mold to fill 

NOA 81 over all of PDMS mold and remove air bubbles which trapped between 

PDMS mold and glass slide. The system is kept in ambient condition for few 

minutes before UV curing. Thank to the gas permeability of PDMS mold, small 

trapped air bubbles are absorbed. After then, the PDMS and NOA 81 system are 

exposed in UV chamber for few s or few minutes to cure NOA 81 depending on 
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the thickness of NOA 81 chip. The PDMS mold is lifted off from NOA 81 solid layer. 

An uncured thin layer of NOA 81 remains on surface of cured NOA 81 solid. A 

cover slip is put on to close the channel. A full exposure (i.e. longer time) is 

performed to cure the uncured layer which bonds NOA 81 and glass cover slip. 

The optimum bonding of NOA 81 and glass cover is accelerated at 65ºC for 12 

hours before use.  

For example, a 300 µm rectangular channel microchip is prepared by the 

protocol bellow:  

(1)  Drop 1-2 mL of NOA 81 on the glass slide. Spread the NOA 81 as much as 

possible to cover almost the glass slide. 

(2) Gradually put the PDMS master on the NOA 81 layer. If there are some air 

bubbles, try to remove by pressing lightly the PDMS mold. 

(3)  Expose by UV lamp. In this case, with the UV intensity by 25 mW/cm2, the 

300 µm thickness channel is exposed for 45 s. It is noticed that if the 

exposure takes so long, the NOA chip will be over cured leading a lower 

adhesion. And if not, the NOA 81 remains a layer of liquid NOA 81. 

Consequently, the liquid-NOA 81 can come into and block the channel 

during full exposure. 

(4) Cover a glass cover slip on the top of NOA 81 channel. A small pressure 

over the surface of microchip to ensure that the cover is in contact with 

NOA 81. Next, the closed chip is fully exposed by 2 minutes.  

(5) The complete microchip is kept in the oven at 65ºC at least before 

connectors assembly and surface modification process.  

II.5.1.2. Surface treatment of microfluidic chips 

To form a hydrophobic surface for NOA 81 microfluidic chips, several methods 

have been studied such as using Ag nanoparticles (M. Xu et al. 2010), modified 

formulation using APTES (Ph Wägli, Homsy, and de Rooij 2011), deposition of 

molecular monolayer (Gu, Duits, and Mugele 2010). Except the deposition 

method, other methods are complicated protocols and expensive cost. Hence, 

the deposition method is proposed to silanize the NOA 81 microfluidic devices. 

Following Gu et al, the FDTS solution was prepared under nitrogen and low 

humidity environment which contains 1.5% (v/v) FDTS in isooctane. The whole 
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process was carried out in the silanization box, described above, to avoid the 

effect of humidity in the air. Next, the FDTS solution was injected into closed NOA 

81 chips and incubated for at least 20 minutes. After then the excess FDTS was 

removed by rinsing carefully by isooctane and IPA. The NOA 81 chip is dried using 

nitrogen and kept at ambient temperature for overnight. The long lived of 

hydrophobic coating is shown in Table II-2. 

Table II-2: Contact angle for coated FDTS(Gu, Duits, and Mugele 2010) 

Contact angle Native NOA 81 

Coated FDTS – NOA 81 

Right after 

treatment 

3 days after 10 days after 

In air 70o±1o 112o±1o 100o±1o 111o±2o 

In oil* 96o±2o 156o±1o 155o±2o 155o±1o 

* Mineral oil with 5% wt. span 80 

 

II.5.2. OSTEmer microfluidic chips fabrication process 

As discussed above, NOA 81 is a potential material for microfluidic system. 

However, its price is expensive and it is difficult for bonding to any surface. In 

addition, the surface modification chemistry for NOA 81 is complicated protocol. 

Thus, an alternative material using thiol-ene click chemistry is proposed. This is Off-

Stoichiometry Thiol-ene (OSTE) polymer which had been developed in 2010 by 

Carlborg et al (C. F. Carlborg et al. 2011). 

II.5.2.1. Thiol-ene click chemistry 

During the twentieth century, there are two click reactions of thiol and allyl 

groups have been shown: (a) thiol-ene free radical and (b) thiol-ene catalyzed 

Michael reaction (Hoyle and Bowman 2010). 
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Generally, the thiol-ene click reactions are induced by photo-polymerization 

which had presence of photo initiation. In initiation step, a thiyl radical is formed, 

R-S•, under irradiation treatment (i.e. the abstraction of hydrogen from thiol 

group). 

 

After that, the thiyl radical can propagate through a direct addition to a carbon-

carbon double bond of terminal -ene, consequently a centered carbon radical is 

formed.  

 

On the chain transfer step, the centered carbon radical abstracts a Hydrogen 

atom from free thiol groups which becomes thiyl groups.  

 

The propagation and chain transfer can repeat several times and generate thiol-

ene reactions which mainly occur via different radical-radical combinations. 
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Based on UV-initiated thiol-ene click chemistry, the OSTE can apply to 

fabrication high resolution micro-features using direct lithography (Pardon et al. 

2014) or duplicating on defined mold. Karlsson et al indicated that an aspect 

ratio (1:8) was obtained (Karlsson et al. 2012). Furthermore, OSTE polymer has 

been showed as a polymer possesses tunable mechanical properties (C. F. 

Carlborg et al. 2011), biocompatibility  (Errando-Herranz et al. 2013), tunable 

chemistry surface (F. Carlborg et al. 2012) which can modify OSTE surface 

property to hydrophobic or hydrophilic using fluorinated or hydroxylated 

methacrylate, respectively. The OSTE polymer also shows very fast and facile 

bonding protocol at room temperature (C. F. Carlborg et al. 2011; Niklas 

Sandström et al. 2011). However, OSTE polymer has some drawbacks: (a) the 

bonding of OSTE layers is performed only one layer with excess thiol groups and 

one layer with excess allyl groups. (b) Some studies report a leaching of 

unreacted monomers as contaminations in micro-fluidic devices (Cramer et al. 

2010). (c) Limited high temperature performance with low glass transition 

temperature.  

In order to overcome these limits of OSTE polymer, a novel, superior ternary, 

dual cure, thiol-ene-epoxy (OSTE+) polymer system has been introduced. By the 

combination of epoxy groups with thiol-ene chemistry, new polymer is 

polymerized by two stages of UV activation. First UV curing provides thiol-ene 

networks with an intermediated, soft solid material which can be seen as an ideal 

surface for bio/chemical modification and bonding. Second UV curing results 

excess thiol and epoxy reactions which presented as an inert polymers with 

excellent engineering plastics properties (C. F. Carlborg et al. 2014; Haraldsson, 

Carlborg, and van der Wijngaart 2014). A typical platform of OSTE+ contains thiol, 

ene, epoxy groups and radical and anionic initiators. The chosen anionic initiator 

is often a tertiary amine which enhances the formation of thiyl radical from thiol 

groups; subsequently open the epoxy groups via anionic addition reactions.  
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On the other hands, the tertiary amines also react with epoxy groups to form 

zwitterions, which subsequently enable nucleophilic displacement in the 

presence of thiol groups. And the zwitterions also participate in epoxy homo-

polymerization. 
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II.5.2.2. Protocol of fabrication using PDMS master  

The combination of thiol-ene and thiol-epoxy reactors makes OSTE+ polymer 

useful for microfluidic fabrication(N. Sandström et al. 2015) and adhesive-free 

bonding (Vastesson et al. 2013; C. F. Carlborg et al. 2014; Zhou et al. 2014). A 

typical fabrication process of microfluidic device is shown in the Figure II-12. The 

OSTE+ is a commercial OSTEmer 322 40 Clear Crystal from Mercene Labs 

(Sweden). The kit pack contains 2 components: A and B. The mixture of A and B 

component with ratio 1:0.87 respective is well mixed for 2 minutes and degassed 

in desiccator. Then, the mixture OSTEmer containing thiol, epoxy and allyl 

monomers is filled in between PDMS molds and glass slides. The first exposure is 

performed with 365 nm UV light to establish thiol-ene networks and still remain 

excess thiol and epoxy monomers on the surface. The top and bottom layer are 

aligned precisely before the second UV exposure. The thiol-epoxy reaction 

happens to bond two polymer layers and close the microfluidic chip. 
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Figure II-12: Fabrication of microfluidic using OSTE+ and soft lithography method. 
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II.5.2.3. Protocol of fabrication using “quasi-injection molding” 

The injection molding is very effective method to fabricate microfluidic 

systems(Chandekar et al. 2008; N. Sandström et al. 2015). In general, the system 

contains two molds for the cover and the patterns which made by aluminum. For 

the case of OSTEmer, the mold for the cover is glass slide which transparent 

property for exposure by UV light. Both of molds are aligned together perfectly 

before injecting OSTEmer through an inlet. The air space inside two molds is 

replaced by OSTEmer during the injection, the air is removed through out a 

ventilation port. The UV light was applied on the transparent side of the mold (i.e. 

the side of glass slide) to cure OSTEmer. The two parts of the microfluidic chip are 

prepared with one for the cover and one for the channel. After peeling off from 

molds, the two parts of OSTEmer will be aligned together to complete the chips. 

The injection molding is very useful with many benefits such as the aluminum mold 

can use for many times, saving the materials... However, to design the patterns on 

the aluminum mold is quite difficult and expensive as well.  Hence, a novel way to 

build the mold is use of PDMS mold instead of aluminum mold. The method is 

called “quasi-injection molding” due to the similar way to the injection molding 

technique when using the two different molds. The detailed protocol to build the 

microfluidic chip is shown in the Figure II-13 below.  
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Figure II-13: Process to fabricate OSTEmer microfluidic chip using "quasi injection molding" 

technique 

The protocol can be split into two parts: preparing the channel layer and the 

bottom layer. Preparation of the channel: a PDMS mold with channel patterns 

and a flat PDMS mold to make cover are used. Firstly, the OSTEmer after 

degassing by vacuum chamber is poured directly to the channel PDMS mold. The 

air bubbles trapped in the PDMS mold are removed by the tweezer. Next, the 

cover PDMS mold is put gradually on the channel PDMS mold with OSTEmer to 

avoid trapping more air bubbles. The UV light with 365 nm wavelength is used to 

expose the paired mold systems for 90 s with UV intensity 10 mW/cm2. 

Preparation of bottom layer: the aim is to build a flat OSTEmer layer on a glass 

slide. Firstly, the OSTEmer is poured on the glass slide before covering by PDMS 

mold. The PDMS mold is put gradually on the OSTEmer to avoid air bubbles. 

Finally, the system is exposed to UV light in 30 s with UV intensity 25 mW/cm2.  
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Assembling the final chip: The PDMS molds are kept until finishing both parts of the 

chip. The first step, the PDMS mold of bottom layer is removed to get a flat 

OSTEmer layer on the glass substrate. And for the channel molds, at the beginning 

the PDMS mold for the channel is peeled off and still kept the PDMS mold of top 

layer. Two OSTEmer layers are precisely aligned under microscope. Press all of 

surface to ensure that two layers are well contacted. The last PDMS mold is 

removed and the OSTEmer chip is ready for next step: Surface Modification. 

II.5.2.4. Surface treatment of microfluidic chips 

The surface modification process for OSTEmer microfluidic devices has been 

showed in  few studies (F. Carlborg et al. 2012; Pardon et al. 2014). They also used 

the same protocol to spatially modify surface properties which radical mediated 

reaction of thiol and methacrylate monomers. Depending on fluorinated or 

hydroxylated methacrylate monomers is used, the surface is modified into 

hydrophilicity or hydrophobicity, respectively. The methacrylate solution is a 

mixture of hydroxylated/fluorinated methacrylate monomer, two photo initiators 

Benzophenone (BP) and TPO-L in toluene.  Briefly, after UV curing, BP will promote 

conversion of thiol groups into active thiyl radicals via the abstraction of hydrogen 

atoms. After that, the methacrylate monomers are added to thiyl radical via 

chain –wise reaction until the chain terminated. Because BP only abstracts 

hydrogen atoms from the thiol groups on surface, consequently the methacrylate 

molecules only graft on surface of OSTE layer. Carlborg et al (F. Carlborg et al. 

2012) also showed that more excess thiol groups on formulation of OSTEmer 

polymer, higher density of methacrylate chains on the surface, so higher degree 

of hydrophobicity or hydrophilicity. Both studies indicated that the distinct of the 

contact angle between hydrophobic and hydrophilic region is 95º.  
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Figure II-14: Surface modification of OSTEmer chip using methacrylate monomers 

II.5.2.4.a. Hydrophobic and hydrophilic surface modification 

As introduced above, the OSTEmer chip is modified the surface properties 

using mixture of hydroxylated/fluorinated methacrylate monomers. So, in order to 

change the nature surface property of OSTEmer chip into hydrophobic, the 

hydroxylated methacrylate solution is applied. The mixture is prepared by 

protocol which presented more detailed here: Heptadecafluorodecyl 

methacrylate 2% wt. is dissolved in Toluene with 2% wt. Benzophenone, 1% wt. Allyl 

glycidyl Ether and 0.5% wt.  Irgacure R819 (initiator). The solution is mixed well and 

stored in dark area before use. The solution is injected in OSTEmer chip by a 

syringe and exposed for 2 minutes with a 365 nm UV light source at 25 mW/cm2 

intensity. After that, the chip is slowly rinsed by Isopropanol for at least 3 minutes 

and dried by nitrogen. With this step, the chip is rid off almost excessed fluorinated 

methacrylate. Finally, the chip is stored in the oven at 100ºC for at least 1 hour. 

The mixture and protocol to change the surface of OSTEmer channel into 

hydrophilic are almost the same as the hydrophobic modification method, 

except that instead of using Heptadecafluorodecyl methacrylate, 2-hydroxyethyl 

methacrylate is used. All percentages of other components are kept the same as 

well.  
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Figure II-15: The contact angle of (left) nature, (middle) hydrophilic modification and 

(right) hydrophobic modification OSTEmer with contact angle are 80°, 88° and 110°, 

respectively. 

The Figure II-15 shown the contact angles of the nature, the hydrophilic 

modification and the hydrophobic modification OSTEmer. It is noticed that the 

nature surface property of OSTEmer is hydrophilic with contact angle by 88°. After 

the hydrophilic modification, the contact angle was decreased down to 80°. This 

was not so good result but still good enough for generation O/W droplets. For the 

hydrophobic modification was better with contact angle around 110°. The results 

are strongly agreed with results of methods mentioned in the literature(Zhou et al. 

2014). 

II.5.2.5. Chip testing 

II.5.2.5.a. Aqueous and non-aqueous droplet generation 

To test the surface modification, the droplet generation of aqueous/non-

aqueous is carried out. The generation water droplet in decanol and the 

hexadecane droplet in water were tested for hydrophobicity and hydrophilicity of 

surface channel, respectively. 

The Figure II-16 shown the generation of droplet water in decanol without 

surfactant.  Normally, the surfactant is used to increased the interface tension of 

water in decanol and lead the forming droplet more easily and stable. The 

silanized OSTEmer structure enabled to form the water droplet without surfactant 

proving that the surface of channel was hydrophobic enough. 
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Figure II-16: Water droplet generation in decanol without surfactant using NOA 81 

microfluidic chip. 

The work of testing non-aqueous droplet generation was carried out by 

Christina Wegner, a German internship student for her bachelor degree in 

Karlsruhe Institute of Technology (KIT), Germany. System goals are to study 

nucleation and crystallization process of hexadecane which depended on the 

temperature and volume of droplets. A microfluidic chip was designed to 

generate droplets of hexadecane in aqueous continuous phase (water) with or 

without the presence of surfactant. In this work, two types of surfactant Tween 20 

and Tween 60 were used. In the results, the modified surface of channel was 

hydrophilic enough to form hexadecane droplets in the water however the life-

time was under expectation. After one day working, the hydrophilicity is lowered 

causing hexadecane droplets stuck easily to the surface of channel.  

II.5.2.5.b. Common solvent resistance 

To test the solvent resistance of OSTEmer chip, several of solvents have been 

used. Small pieces of OSTEmer with channel pattern were dipped in several 

solvents at different period of time. Afterward, the samples were observed on a 

microscope to see any difference on the straight of channel walls. The Table II-3 

shown the list of solvents and period of time for resistance testing.  

  



 Chapter II - Development Of Microfluidic Systems 

 41 

 

Table II-3: List of solvents and period of time for testing OSTEmer chips. Here, Y (yes) and N 

(no) is abbreviation of the experiments have been done or not. 

Solvents/Time 1h 24h 1 week Observation 

Acetone Y Y Y Slightly swelling after a week 

Cyclohexane Y Y Y No difference 

Ethanol Y Y y No difference 

Heptane Y Y Y No difference 

Toluene Y Y N No difference 

Nitric acid Y Y Y Destruction occurred after 5 minutes. 

 

As the results, the OSTEmer chips had a good resistance to all common 

solvents such as acetone, cyclohexane, ethanol, heptane and toluene but the 

nitric acid. In the nitric acid, the OSTEmer dissolved rapidly even at few minutes 

and completely destroyed at 24 hours.  
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Figure II-17: Side views channel which tested by acetone, cyclohexane, ethanol and 

toluene by the period of time. 

The Figure II-17 shown the side views of each sample which contains channel 

patterns tested with some solvents for different period of time. For all of tested 

solvents, no significant damage was observed. The walls of channels were kept 

straightly from the beginning to the end.  This means that the original OSTEmer 

chip can stand to these solvents for a long time. 

II.5.2.5.c. High pressure testing 

There is a lack of publication in the literature which mentioned about high 

pressure resistance of OSTEmer chips. However,  Alexandre Martin’s publication 

on 2016 shown that OSTEmer microchips can stand for high pressure environment 
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(A. Martin et al. 2016). They indicated that the OSTEmer chips with the structures 

are illustrated in the Figure II-18, can stand for 20 minutes at the maximum 

pressure by 200 bar. 

 

Figure II-18: Schematic diagram with dimension of microfluidic chips using for high 

pressure. 

The preparation of microchips is followed the same protocol presented in Section 

II.5.2. However, in order to enhance the bonding, 2 mm thickness glass slides were 

used as a supporter and a cover. The pressure test for several OSTEmer chips was 

shown identical results, as shown in the Figure II-19. 

 

Figure II-19: The procedure for pressure test in OSTEmer microfluidic chip as a function of 

time. 
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The microchip is stood successfully at 200 bar without rupture of the glass or 

delamination of the different glass and polymer layers within the chip for 

approximately 20 minutes. In conclusion, besides other advantages of OSTEmer 

chip such as: easy to fabrication, easy to surface modification and high solvent-

resistance, it also owns the pressure-resistance property which will be versatile for 

many purposes. 

II.5.3. Near zero dead volume interconnections 

In order to create inlets and outlets for microfluidic devices, the connectors 

are used through two approaches: vertical and horizontal way. A vertical one, 

connector named Nanoports from Upchurch (USA) are proposed because of 

their advantages such as a lot of size of connector which fitted with various kinds 

of chips, easy to use, reusable…etc. However, the Nanoports also possesses itself 

some drawbacks. The first thing is its own expensive cost. Moreover, because of 

original design of Nanoports, death zones occur and causing unstable flow rate. It 

becomes a severe problem when tiny flow rates applied to generate nano-litter 

volume scale droplets.  

 

 

 

Figure II-20: 2 types of connectors: Nanoports Upchurch (right) and typical needle 

structure (left) 

By using the horizontal approach, the drawback of Nanoports connectors is 

eliminated. A small steel tubing with few hundred micrometers inner diameter can 

be used as connectors. These steel capillaries were obtained by removing from 

needles (Sigma). Normally, the needle contains three components: plastic base, 

epoxy glue and steel capillary( illustrated in the Figure II-20). The epoxy glue was 

easily dissolved by utilizing chloroform and afterward, the steel tubes were 
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carefully picked up from plastic bases with tweezer. With these steel capillaries, 

the dead zone in the connection is approximately by zero. However, after gluing 

in the microfluidic system, the steel capillaries are rarely reusable.   

For both cases, connectors are assembled on the microfluidic chips by an 

epoxy glue. Depending on the design of microfluidic chip, the Nanoports and 

steel capillary can be used separately or together. 

II.6. Conclusion 

In this chapter, a cheap and fast protocol for fabrication a versatile 

microfluidic system is presented. The microfluidic platforms are based on the soft 

lithography method for UV-sensitive materials shown a bunch of advantages than 

other techniques. The fast and low-cost protocol is proposed to build high 

throughput in 24 hours with less than 10 euros for each chip. The microfluidic chips 

are also proved to stand at high pressure around 200 bar for at least 20 minutes 

and for several common solvents. Moreover, easy modification surface of 

channel is the most valuable for different purposes dealing with W/O or O/W 

emulsions. According to these successes, microfluidic chips are fabricated to 

suitable for further experiments such as combination with SAXS and to study the 

mass transfer in dehydration of micro-droplets which discussed in the following 

Chapters. 
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III.1. Introduction 

Small Angle X-ray Scattering (SAXS) has become a powerful technique in 

colloidal science for determining size, shape and internal structure of polymer 

particles in the size range from a few nanometers up to about 100 nm(Fournet 

and Guinier 1955; Glatter and Kratky 1982; D. I. Svergun and Feigin 1986; Lindner 

and Zemb 1991; Kaler and Brumberger 1995; Hunter 1989) . SAXS is mainly applied 

to systems of randomly oriented and statistically distributed structures of colloidal 

dimensions, such as latexes (e.g. (Ballauff et al. 1996; Dingenouts, Norhausen, and 

Ballauff 1998; Dingenouts et al. 1999), supramolecular aggregations (e.g. micelles 

(e.g. (Hickl, Ballauff, and Jada 1996; Kratky and Müller 1982), proteins (Pilz 1982), 

natural and synthetic high polymers dispersed in solutions (e.g. (Kratky and Müller 

1982; Kirste and Oberthur 1982; Hickl et al. 1997; Kholodenko, Ballauff, and 

Granados 1998; Dingenouts, Norhausen, and Ballauff 1998) or precipitates in 

amorphous materials ( e.g. (Bergmann, Fritz, and Glatter 2000; Jörg Bolze et al. 

2000; J. Bolze et al. 2004). Small-Angle X-ray scattering has also been proved to 

be a powerful technique to investigate the structure of soft matter and biological 

macromolecules at the nanometer-scale (Kratky 1982; Feigin and Svergun 2016). 

It has demonstrated its potential for diverse applications, from nucleation studies 

(i.e. glycine crystals(Chattopadhyay et al. 2005) or colloidal silica(Pontoni, 

Narayanan, and Rennie 2004) to the determination of proteins molecular 

weight(Fischer et al. 2010) or to study protein interactions in solution prior to 

crystallization(Ducruix et al. 1996), protein structure(Mertens and Svergun 2010), or 

even conformational changes(Durchschlag et al. 1996). SAXS measurements 

have also been used to determine the second virial coefficient  𝐴2, a 

thermodynamic parameter characterising protein interaction which has been 

proved as a powerful tool to predict crystallization conditions, and therefore 

protein solubility. 

However, the required volume for each measurement (a few mL), together 

with a large number of experiments necessary to obtain reliable statistical 

information at each studied condition, makes this technique less convenient 

when working with high value compounds. To partially solve this issue, few studies 

are reported in literature proposing the coupling of single-phase continuous flow 
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microfluidics and SAXS in order to screen phase behaviours(Khvostichenko et al. 

2013), to study self-assembly of surfactants(H. P. Martin et al. 2010) or biological 

macromolecules(Brennich et al. 2011a) or also to investigate nucleation and 

growth of gold nanoparticles(Polte et al. 2010). But this approach presents a 

major drawback: A continuous flow can be unfavourable when fluids modify their 

characteristics after being mixed, as components are able to diffuse in the 

channels and, in the case of crystallization studies, a nucleating phase can inhibit 

the precipitation and growth of other different phases. In this sense, the use of 

droplet-based microfluidics seems to be more convenient. A dispersed phase 

can be created by mixing several miscible compounds and subsequently 

periodically separated by a continuous phase, generating monodisperse 

droplets, which are suspended in an external carrier phase thus behaving as 

isolated micro-reactors, as the immiscibility of the two phases prevents diffusion 

from one droplet to another.  With this technique hundreds/thousands of 

independent experiments can be generated with ease in a short period of time 

and using a very low quantity of reagents. So far, the promising combination of 

continuous flow droplet-based microfluidics and SAXS has been sparsely reported 

for very few and different approaches in the literature dealing with gold 

nanoparticles(Stehle et al. 2013) and liquid crystals(Otten et al. 2005).  

In this chapter, low cost microfluidic platforms presented will prove the 

convenience of combining high throughput droplet-based microfluidics and SAXS 

for the study of protein shape factor and weak interactions in solution. 

This chapter is divided into three parts. First, in order to state the fundamental 

basis of the study, basic principle, theoretical and practical aspect of SAXS 

dedicated to biological macromolecules are reviewed. Then a short 

bibliographic report of the coupling of microfluidics and SAXS from synchrotron 

source will be discussed.  In a second part of the chapter, the experimental setup 

will be presented and discussed. The experimental setup consists of a microfluidic 

platform, a sample holder (POD) and a real-time image acquisition routine used 

to improve data acquisition. The last part of this chapter is dedicated to the 

determination of a protein (Lysozyme) interactions in solution for different 

experimental conditions (e.g. salt concentration). 
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III.1.1. Theory background 

Small Angle X-ray Scattering (SAXS) is a non-destructive analytical technique 

to investigate structures of soft matter and biological macromolecules at the 

nanometer-scale(Glatter and Kratky 1982)(D. I. Svergun and Feigin 1986). An X-ray 

beam is sent through or onto a sample containing nanostructures, such as 

proteins, macromolecules or quantum dots. The beam interacts with the electrons 

of the sample and is scattered. The detected scattering pattern is characteristic 

of the nanostructures and can be used to determine their size, shape, internal 

structure and more. This method is extensively used for diverse applications, to 

study the nucleation of glycine crystals(Chattopadhyay et al. 2005), colloidal 

silica aggregation(Pontoni, Narayanan, and Rennie 2004), or to study proteins to 

determine their interactions in solution (Ducruix et al. 1996), their molecular 

weight(Fischer et al. 2010), their structure(Mertens and Svergun 2010), or even 

their conformational changes(Durchschlag et al. 1996). 

In synchrotron rings (as illustrated in the Figure III-1) electrons or positrons are 

accelerated to relativistic speeds and guided through devices inserted into the 

ring structure, e.g., bending magnets, wigglers, or modulators, to facilitate the 

emission of X-rays. Depending on the setup of these insertion devices, the 

characteristic properties of the emitted X-ray beam, such as flux, energy 

spectrum, coherence, and divergence, may be controlled(Als-Nielsen and 

McMorrow 2011). A beamline tangential to the synchrotron storage ring following 

such an insertion device then shapes and filters the initial X-ray beam to defined 

characteristics suitable for a particular experiment. 
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Figure III-1: Schematic principle of SAXS setup at ESRF ( Grenoble, France). 

In the case of biological SAXS, the reduction of parasitic and background 

scattering is a high importance as biological samples scatter only very weakly in 

comparison to other materials(Kirby et al. 2013). Moreover, biological materials 

are prone to radiation damage due to free radicals, leading to nonspecific 

aggregation in proteins and degradation in polynucleotides. An ideal SAXS 

beamline will strive to optimize photon delivery, focus, sample flow, and exposure 

times. A temperature-controlled environment for sample storage and exposure 

keeps proteins stable during data collection. As proteins come in all sizes, 

adjustable detector distance or user configurable energy changes are important. 

III.1.1.1. Basic aspect of SAXS  

 In a typical SAXS experiment (shown in the Figure III-2), a monochromatic 

beam of incident wave vector 𝑠0⃗⃗  ⃗ is selected and falls on the sample. 
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Figure III-2: Calculation of the phase difference  between the waves from scatters at 

points O and P in a particle. In the draw 𝑠  and 𝑠0⃗⃗  ⃗ are unit vectors in the direction of 

scattered and incident beams, respectively, and P is displaced from O by the vector 𝑟 ,  is 

denoted scattering angle and 𝑞  scattering vector.  

The scattered intensity is collected as a function of the so-called scattering 

angle 2𝜃. Elastic interactions are characterized by zero energy transfers, such that 

the final wave vector 𝑠  is equal in modulus to 𝑠0⃗⃗  ⃗. The relevant parameter to 

analyze the interaction is the momentum transfer or scattering vector 𝑞 = 𝑠 − 𝑠0⃗⃗  ⃗, 

defined by:  

𝑞 = | 𝑞 | =
4𝜋

𝜆
𝑠𝑖𝑛

𝜃

2
 Eq. III-1 

In SAXS experiments, the characteristic size of the sample is inversely proportional 

to the modulus of the scattering vector.  

The angle dependent scattering amplitude is related to the electron density 

distribution  𝜌(𝑟 ) of the scatterer by a Fourier transformation. 𝜌(𝑟 ) is the number of 

electrons per unit volume at the position 𝑟 . An element of volume 𝑑𝑉 at 𝑟  contains 

𝜌(𝑟 )𝑑𝑉 electrons. The scattering amplitude of the whole irradiated volume 𝑉 is 

given by: 

𝐴( 𝑞 ) = 𝐴𝑒∫ 𝜌(𝑟 )𝑒−𝑖𝑞⃗ 𝑟 𝑑𝑟 
𝑉

 Eq. III-2 
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Where 𝐴𝑒 is the scattering amplitude of one electron. 

The scattering intensity of one single particle 𝐼0( 𝑞 ) is the absolute square given 

by the product of the amplitude 𝐴( 𝑞 ) and its complex conjugate  𝐴∗( 𝑞 )  

𝐼0( 𝑞 ) = 𝐴( 𝑞 ). 𝐴
∗( 𝑞 ) = 𝐼𝑒∫ ∫ 𝜌(𝑟 )𝜌(𝑟 ′)𝑒−𝑖𝑞⃗ (𝑟 −𝑟 ′)𝑑𝑟 𝑑𝑟 ′

𝑉𝑉

 Eq. III-3 

with 𝐼𝑒 the single electron scattering intensity (von Laue 1960).  

In most case of SAXS performed on proteins, the following hypothesis is 

formulated: 

1. The particles are statistically isotropic and no long-range order exist (no 

correlations between particles for large spatial distances) 

2. The particles are embedded in a matrix (buffer, solvent...). The matrix is 

considered as an homogeneous medium with a constant electron 

density 𝜌0. Thus, the electron density in equations (Eq. III-2) and (Eq. III-3) 

should be replaced by the difference in electron density   ∆𝜌 = 𝜌 − 𝜌0.  

In this case, the average over all orientations leads to the fundamental 

formula of Debye:  

〈𝑒−𝑖𝑞⃗ 𝑟 〉Ω =
sin (𝑞𝑟)

𝑞𝑟
 Eq. III-4 

Thus, equation (Eq. III-3) can be reduced to: 

𝐼0( 𝑞 ) = 4𝜋∫ 𝛾(𝑟)
∞

0

sin (𝑞𝑟)

𝑞𝑟
𝑟2𝑑𝑟 Eq. III-5 

Equation (Eq. III-5) is the most general formula for the scattering pattern of any 

systems, which obey the above two restrictions. 𝛾(𝑟) is the correlation 

function(Debye and Bueche 1949), or characteristic function(Porod 1951). It can 

be obtained by the inverse Fourier transform with  

𝛾(𝑟) =
1

2𝜋2
∫ 𝐼0( 𝑞 )
∞

0

𝑞2
sin (𝑞𝑟)

𝑞𝑟
𝑑𝑞 Eq. III-6 

For 𝑞 = 0 and 𝑟 = 0, as the Debye factor equals to unity, equation (Eq. III-5) and 

(Eq. III-6) are simplified to: 
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𝐼0( 0) = 4𝜋∫ 𝛾(𝑟)
∞

0

𝑟2𝑑𝑟 Eq. III-7 

 

𝛾(0) =
1

2𝜋2
∫ 𝐼0( 𝑞 )
∞

0

𝑞2𝑑𝑞 = 𝑉𝑝∆𝜌
2 Eq. III-8 

For equation Eq. III-7 at q = 0, all secondary waves are in phase, so that 𝐼0(0) 

may be expected to be equal to the square of the total number of electrons 

in the irradiated volume 𝑉𝑃 (volume of one single particle). However, this 

quantity is experimentally not available (i.e. due to the presence of the beam). 

So, it should be regarded as an extrapolated value through Guinier 

approximation or Zimm plot. 

III.1.1.2. Guinier’s Law and radius of Gyration: 

At low 𝑞 region, i.e., for 𝑞𝑟 ≪ 1 the Debye factor 
sin(𝑞𝑟)

𝑞𝑟
= 1 −

(𝑞𝑟)2

3!
+⋯ equation 

(Eq. III-5) reduces to(Guinier 1939)  : 

𝐼0( 𝑞 ) = 4𝜋∫ 𝛾(𝑟)
∞

0

(1 −
(𝑞𝑟)2

6
+⋯)𝑟2𝑑𝑟 ≅ 𝐼0 (1 −

𝑞2𝑅𝑔
2

3
)  Eq. III-9 

As 𝑒−𝑥 ≅ 1 − 𝑥 equation (Eq. III-9) can be expressed as follows : 

𝐼0( 𝑞 ) ≅ 𝐼0𝑒𝑥𝑝(−
𝑞2𝑅𝑔

2

3
) Eq. III-10 

This is the so-called Guinier’s law, which is a most useful relation in SAXS analysis 

for proteins since it allows to obtain 𝑅𝑔 and 𝐼0(0) from scattering data in the region 

of smallest angles without any prior assumption on the shape and internal 

structure of the particles under investigation. 𝑅𝑔 the radius of gyration of the 

scatterer. For spherical particles with a radius 𝑅, the gyration radius is:  

𝑅𝑔 = √
3

5
𝑅 
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III.1.1.3. Inter-particle Interference  

In the whole discussion in previous section has focused on the scattering of 

single particle or in very dilute regime (i.e. 𝑐 → 0). For this kind of solution, it is 

assumed that the intensities are simply added to give the total scattering pattern, 

but with increasing concentration the inter-particle interference effects should be 

expected. This interference comes from two sources: pure geometric influence 

(impenetrability of the particles) and electrostatic Coulomb interaction. 

III.1.1.4. Definition of the structure factor 

In the case of a system of a volume 𝑉, containing 𝑁 identical quasi-spherical 

particles, the scattering intensity is a convolution of the “particle identity” term, 

𝐼0(𝑞), (the intra-particle interference), and an inter-particles term that must define 

all the possible arrangements of all the particles in the solution. This term is 

represented by the structure factor 𝑆(𝑞). Consequently, for non-diluted system the 

scattering intensity can be expressed as follows: 

𝐼( 𝑞) =
𝑁

𝑉
. 𝐼0(𝑞). 𝑆(𝑞) =

𝑁

𝑉
. ∆𝑛𝑒

2𝑃(𝑞). 𝑆(𝑞) Eq. III-11 

Where 𝑃(𝑞) is the form factor of the particle, corresponding to the scattering 

intensity of one single particle, but normalized to the number of excess electrons 

of one particle: 

𝑃(𝑞) =
𝐼0(𝑞)

𝐼0(0)
=
𝐼0(𝑞)

∆𝑛𝑒2
 Eq. III-12 

 

For   system  containing  identical  quasi-spherical particles  of radius 𝑅,  the 

structure factor 𝑆(𝑞) has been given by Guinier and Fournet (Fournet and Guinier 

1955): 

𝑆( 𝑞) = 1 + ∑∑cos( 𝑞  𝑟 𝑗𝑘)

𝑗≠𝑘𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

Eq. III-13 

with 𝑗 and 𝑘 represent scattering centers in different particles. In order to 

calculate the structure factor, a radial distribution function (or pair correlation 

function), 𝑔(𝑟) should be introduced. In a system of identical particles, this 
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function describes how density varies as a function of distance from a reference 

particle. The function 𝑔(𝑟) is a measure of the probability of finding a particle at a 

distance 𝑟 away from a particle taken as reference.  One property of this function 

is that:  

 For 𝑟 < 2𝑅, 𝑔(𝑟) = 0. 

 For 𝑟 ≫ 2𝑅, 𝑔(𝑟) = 1. 

Guinier and Fournet used this pair correlation function to express the average 

term in equation (Eq. III-13), which give the usual form of the structure factor:  

𝑆(𝑐, 𝑞) = 1 + (𝑁/𝑉)∫4𝜋𝑟2(𝑔(𝑟) − 1).
sin(𝑟𝑞)

𝑟𝑞
𝑑𝑟 Eq. III-14 

The pair correlation function 𝑔(𝑟) can then be calculated with help of the statistic 

mechanics, while the theory for simple liquids(Hansen and McDonald 1969a) can 

be applied to the colloidal systems. 

III.1.1.5. Protein – protein interactions 

In the solution, macromolecules interact through weak interaction forces: 

electrostatic and Van der Waals components but also more complicated forces 

like hydrogen bonds, hydration and hydrophobic interactions. These forces are 

medium range, from few angstroms up to few tens of angstroms and each term 

depends on physicochemical conditions such as pH, temperature, solvent… 

According to Curtis et al(Curtis, Prausnitz, and Blanch 1998), the interaction 

potential 𝑈(𝑟) for a pair of protein molecules in a salt solution with a center-to-

center distance, 𝑟, can be expressed by the sum of the following spherically 

symmetric potentials: 

𝑈(𝑟) = 𝑈ℎ𝑠(𝑟) + 𝑈𝑐(𝑟) + 𝑈𝑉𝑑𝑊(𝑟) + 𝑈𝑜𝑠(𝑟) + 𝑈𝑆𝐴(𝑟)  Eq. III-15 

Where: 

 𝑈ℎ𝑠(𝑟) is the hard sphere potential related to excluded volume effect. This 

potential is the expression that molecules cannot interpenetrate. With 

compact proteins, the excluded volume fraction is equal to 𝑣𝑐 where 

𝑣 = 0.74𝑚𝑙/𝑔 for most proteins. 
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 𝑈𝑐(𝑟) is the screened Coulomb potential. With monodisperse solutions, the 

charges are the same for all particles and the resulting potential is 

negative. 

 𝑈𝑉𝑑𝑊(𝑟) is the Van der Waals attractive potential. 

 𝑈𝑜𝑠(𝑟) is the depletion potential caused by the excluded-volume effect of 

salt ions. 

 𝑈𝑆𝐴(𝑟) is a potential that take into account the self-association of proteins. 

A general structure factor should consider all of the potentials described 

above. However, studies on the total interaction potential of proteins in salt 

solution indicate that, depending on the salt concentration, the interaction is 

dominated by only one or two of these potentials at any particular salt 

concentration. Therefore, the total potential can be simplified(Tardieu et al. 1999). 

For the sake of simplicity, 𝑈ℎ𝑠(𝑟), 𝑈𝑐(𝑟), 𝑈𝑉𝑑𝑊(𝑟) will be written as a hard core 

Yukawa potential, characterized by three parameters : the diameter of the hard 

core 𝑑 , the range 𝜎 and the depth 𝐽 of the potential well. 

(𝑟) = {

+∞,                                        𝑟 < 𝑑

𝐽 (
𝑑

𝑟
) exp (−

𝑟 − 𝑑

𝜎
) ,               𝑟 > 𝑑

 Eq. III-16 

For  repulsive Coulomb interaction(Derjaguin, Landau, and others 1941; 

Verwey and Overbeek 1948)  

𝐽 =

(
𝑍𝑝
2

𝑑 )
𝐿𝐵

(1 + 0.5𝜅𝑑)2
 

Eq. III-17 

where 𝐿𝐵 =
𝑒2

4𝜋𝜀𝜀0𝑘𝐵𝑇
   the Bjerrum length, 𝜅 = √4𝜋𝐿𝐵𝐼 is the inverse of Debye-Hückel 

screening length, 𝐼 denotes ionic strength and 𝑍𝑃 the charge of one particle. 

With large spherical particles in aqueous solvent, the Van der Waals potential can 

be written as (Israelachvili 1992): 

𝑈𝑉𝑑𝑊(𝑟) = −
𝐴

12
[
1

𝑥2 − 1
+
1

𝑥2
+ 2𝑙𝑛 (1 +

1

𝑥2
)] Eq. III-18 

Where 𝑥 = 𝑟/𝑑 and 𝐴 is the Hamaker constant. This potential diverges when 𝑟 is 

equal to the diameter, so a steric protection must be added to suppress this 
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divergence. For proteins like lysozyme, the Hamaker constant is calculated to be 

2.86𝐾𝐵𝑇.  

For one component fluid, the Ornstein-Zernicke equation(Hansen and McDonald 

1969b):  

ℎ(𝑟12) = 𝑐(𝑟12) +
𝑁

𝑉
∫ ℎ(𝑟13)𝑐(𝑟23)𝑑
𝑉

𝑟3 Eq. III-19 

links the total correlation function ℎ(𝑟) = 1 − 𝑔(𝑟) and the direct correlation 

function 𝑐(𝑟). By using a closure relation of Percus-Yevick that links the correlation 

functions and the pair potential the structure factor can be calculated by:  

𝑆(𝑞) =
1

1 −
𝑁
𝑉 𝐹𝑇𝑐(𝑞)

 
Eq. III-20 

Where 𝐹𝑇𝑐(𝑞) is the Fourier transform of the direct correlation function 𝑐(𝑟). 

For dilute solutions, or when only binary interactions are significant, 𝑔(𝑟) is directly 

related to the pair potential (𝑟) : 

𝑔(𝑟) ≅ exp (
−𝑈(𝑟)

𝑘𝐵𝑇
)  Eq. III-21 

At low 𝑞 region for 𝑞𝑟 ≪ 1 the Debye factor .
sin(𝑟𝑞)

𝑟𝑞
≅ 1 − (𝑞𝑟)2/3!, equation  (Eq. 

III-14) is reduced to (Fournet and Guinier 1955; Pötschke and Ballauff 2002) : 

𝑆(𝑐, 𝑞 → 0) = 1 + 4𝜋 (
𝑁

𝑉
)∫(exp(

−𝑈(𝑟)

𝑘𝐵𝑇
) − 1) . [1 −

(𝑞𝑟)2

6
] 𝑟2𝑑𝑟 

= 1 − 2𝜙𝐴2(1 −
1

6
𝑞2𝑑𝑒𝑓𝑓

2 ) 

Eq. III-22 

Where:  

𝐴2 = (
2𝜋

𝑉𝑝
)∫(exp(

−𝑈(𝑟)

𝑘𝐵𝑇
) − 1)𝑟2𝑑𝑟 

And 

𝑑𝑒𝑓𝑓
2 =

∫(exp (
−𝑈(𝑟)
𝑘𝐵𝑇

) − 1) 𝑟4𝑑𝑟

∫ (exp (
−𝑈(𝑟)
𝑘𝐵𝑇

) − 1) 𝑟2𝑑𝑟
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Since the structure factor at → 0 , 𝑆(𝑐, 𝑞 → 0) (i.e. the osmotic compressibility) is 

also related to the osmotic pressure Π of the solution by (Fournet and Guinier 

1955): 

𝑆(𝑐, 𝑞 → 0) =
𝑅𝑇

𝑀
(
𝜕Π

𝜕𝑐
)
−1

 

Where 𝑅 is the gas constant and Π is the osmotic pressure described by:  

Π = 𝑐 
𝑅𝑇

𝑀
(1 + 𝐴2𝑐 + 𝐴3𝑐

2 +⋯) Eq. III-23 

The second virial coefficient may be experimentally determined from the 

extrapolation at the 𝑞 origin of the scattering curves according to: 

1

𝑆(𝑐, 𝑞 → 0)
= 1 + 2𝑀𝐴2𝑐 + 𝑜(𝑐

2) Eq. III-24 

In slightly attractive regimes, the extrapolation can be done with Guinier plots or 

Zimm plots. 

Experimentally, the structure factor is obtained as the ratio of the scattering 

intensity at finite concentration (𝑐) and that at vanishing concentration (𝑐 → 0). Of 

course, the scattering intensity should be at first normalized to the concentration: 

𝑆(𝑐, 𝑞) =
𝐼(𝑞)/𝑐

(𝐼(𝑞)/𝐶)𝑐→0
 Eq. III-25 

This approach has been used extensively for determining phase diagrams and 

the interactions of proteins in solution as a function of salt concentrations for 

different salts. As for example, the group of Tardieu et al. where the pioneers in 

using this approach for determining the possible domain of crystallization of 

various proteins(Finet et al. 2004). Finet et al. had made a series of experiments 

with -crystallins and γ-crystallins proteins. The results obtained in terms of 

scattering curves are presented in the Figure III-3. For the γ-crystallins in a 50 mM 

Na Acetate buffer at pH 4.5, as well as for the α-crystallins in a 150 mM Sodium 

Phosphate buffer at pH=6.8, the interactions are repulsive.  In both cases, the 

addition of salt screens the charge, and induces an additional attraction but for 

the γ-crystallins, the salt is able to induce an attractive regime (the scattered 

intensity is above the form factor), which is not the case of the α-crystallins for 1 M 
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salt. The author also shown from this study that the efficiency of the anions follows 

the inverse (thiocyanate>chloride>acetate), or direct (acetate>chloride>nitrate) 

order of the Hofmeister series for the γ-crystallins, respectively, the α-crystallins. 

 

Figure III-3: Scattering curves of γ-crystallins in a 50 mM Na Acetate buffer at pH 4.5 and α-

crystallins in a 150 mM Na Phosphate buffer at pH=6.8 with different salts. 

Furthermore, in the same study, with the help of equation (Eq. III-22) the 

authors have determined the second virial coefficient, for various proteins 

(lysozyme, α-crystallins and γ-crystallins) and for various salts. These data were 

used to screen the possible region of crystallization of each protein. 

 

Figure III-4: The second virial coefficient several proteins in various salts 

III.1.2. Coupling microfluidics and Small Angle X-Ray Scattering. 

 During the past decade, given the growing interest of the microfluidic 

community to use in-situ characterization techniques, significant progress has 

been made in the use of microfluidic and X-ray scattering. Pollack et al (L. Pollack 
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et al. 2001; Lois Pollack et al. 1999)pioneered the combination of a simple 

microfluidic diffusion-based mixer with SAXS measurements in a flow-through cell 

to measure the dynamic of proteins and RNA folding after a pH jump. In this work, 

the authors used a pink X-ray beam focused onto the microfluidic mixer to record 

scattering patterns in the 0.04 − 0.5 nm-1 range. The size of the focused beam onto 

the chip is 10 × 40 µm2. To avoid background scattering from the micro-device, 

they sealed their microfluidic mixer with silicon nitride membranes as windows for 

the X-ray beam(Lois Pollack et al. 1999). Greaves and Manz reviewed all the 

problems related to X-ray analysis on microfluidic device(Greaves and Manz 

2005). They also showed successful X-ray fluorescence measurements using on 

chip X-ray generation. For X-ray scattering measurements, they reported 

diffraction data of weak intensities using a polycarbonate of bisphenol chip, and 

using a 1mm wide X-ray beam. The authors also indicated some 

recommendations in how to perform on-chip X-ray scattering measurements: (i) 

low absorption materials, (ii) thin chip thicknesses, (iii) high energies for small 

angles. 

 Otten et al. have used Kapton windows (polyimide polymer made by 

DuPont) in microfluidic chips to investigate soft matter by SAXS(Otten et al. 2005). 

This material is well suited to perform X-ray scattering experiments using intense 

micro-focused beams, as Kapton is both relatively resistant to the high intensities 

generated by a synchrotron, and almost transparent to X-rays. From this study, 

Barrett and coworkers(Barrett et al. 2006) fabricated by laser ablation thin 

microfluidic devices in Kapton in the Figure III-5. By studying the shear-induced 

transition of a complex fluid in a microchannel, they have demonstrated during 

these experiments that both large and small angle X-ray scattering can be 

performed for structural analysis, in the 0.03 < 𝑞 < 6 nm-1 range, with a spatial 

resolution of a few microns.  
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Figure III-5: Photograph of Kapton microfluidic chips compatible with synchrotron 

radiations developed by Salmon and coworkers(Barrett et al. 2006) 

 

Akiyama et al(Akiyama et al. 2002) and Uzawa et al(Uzawa et al. 2006; Uzawa et 

al. 2004) have also developed a continuous-flow mixing device to study the 

folding dynamics of several proteins by SAXS. Panine et al.(Panine et al. 2006) 

reviewed the status and limitations of these continuous-flow microfluidic-mixing 

devices for SAXS. Marmiroli et al. (Marmiroli et al. 2009) used a free-jet micromixer 

to study the kinetics of gold nanoparticle formation using time-resolved SAXS. All 

these rapid-mixing devices were designed specifically to study folding events or 

reaction kinetics with sub-millisecond time resolution. Microfluidic devices can also 

be used to perform very specific functions. For example, Martel and co-

workers(Martel et al. 2008; Martel et al. 2008) have studied silk fiber assembly by 

SAXS in a concentric flow microfluidic cell designed to mimic the geometry of the 

spinning duct of the silkworm.  

 Toft et al.(Toft et al. 2008) and La fleur et al.(Lafleur et al. 2011) reported a 

lab-on-chip high-throughput device for protein structural analysis on a 

microfluidic front-end named the bioXTAS chip. This chip enabled to automate 

mixing of samples by diffusion and featured a 500 nL X-ray chamber. Protein 

consumption was limited to 36 µL, with a total cycle time of 28 minutes.  

With the exception of the work of Salmon and coworker(Leng and Salmon 

2009), who used millifluidic in-tube geometry, all the microfluidic chips presented 

above are based on a really expensive or needs complex fabrication procedures 

and specifics equipment (hot embossing, high energy laser, etching...). The 
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following publication is a real breakthrough in combination of SAXS experiments 

and microfluidics.  

 Brennich and coworkers(Brennich et al. 2011b) have developed a multi-

layer microfluidic (see in the Figure III-6) device to follow the dynamics of 

intermediate filament assembly by coupling microfluidics and SAXS. This multi-

layer device prevents proteins from adsorbing to the channel walls by engulfing 

the protein jet with a fluid layer of buffer. To ensure compatibility with SAXS, the 

device is fabricated from UV-curable thiol-ene polymer. In that paper, the authors 

show that the weak background SAXS signal of these devices allow for the 

detection of molecular scattering profiles at low additional noise.   SAXS data 

were collected at different positions in the jet, corresponding to different salt 

concentrations, and they reveal distinct differences between the earliest 

assembly states. They found that the mean square radius of gyration 

perpendicular to the filament axis increases from 13 nm2 to 58 nm2 upon 

assembly.  

 

Figure III-6: (a) Sketch of the microfluidic channel. The channel inlet is shallower than the 

side inlets and the outlet, preventing contact between assembling vimentin and the 

channel walls. (b) Sketch of the cross and measurement positions. The position 0 is 

indicated by the gray arrow. (c) Log-log plot of the scattering curves. (d) Kratky 

plot(Brennich et al. 2011a). 

 In this direction, Stehle et al(Stehle et al. 2013) have done a very interesting 

study dealing with the determination of size and concentration of gold 

nanoparticles in aqueous suspension and also to probe in situ formation of gold 

nanoparticles by coupling droplet microfluidics and SAXS. In their work, the 
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droplets are generated either in capillary or using a PDMS chips. The droplets are 

then pumped through a thin-walled detection glass tube that is exposed to the X-

ray beam (as shown in the Figure III-7). This experimental setup is inexpensive and 

presented some flexibilities. 

 

Figure III-7: Schematic of a glass micro- capillary device for on-chip droplet formation and 

SAXS analysis. 

 With a droplet formation rate of about 10 Hz and a measurement time of 

900s, one SAXS experiment samples an average of about 9000 droplets. When 

SAXS is performed on a plain water-in-oil emulsion that does not host any 

additional load inside its droplets, the author observed scattering with 𝑑𝜎/𝑑Ω ≈

0.05 cm-1 in the range of 𝑞 = 0.5 − 2.5 nm-1, whereas the scattering at 𝑞 = 0.1 − 0.5 

nm-1 is up to one order of magnitude stronger, as shown in the Figure 

III-8(diamond ). This scattering can be addressed to several parasitic effects, 

including scattering by the detection micro-capillary, refraction at the droplet 

interfaces, and scattering due to surfactant micelles in the emulsion. However, if 

analytes are encapsulated within the droplets, all these contributions 

superimpose to the analyte scattering in an independent fashion. Thus, the plain-

emulsion scattering can be subtracted from the scattering that is obtained from 

analyte-less emulsions, thereby isolating the scattering of the analyte alone. When 

this approach is performed on droplets that contain a dilute suspension of gold 
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nanoparticles, the scattering is about one order of magnitude stronger than the 

scattering of the plain water-in-oil carrier emulsion in the range of 𝑞 = 0.1 − 0.5 nm-

1, whereas the two scattering curves converge at 𝑞 > 1 nm-1, as shown in the 

Figure III-8 (squares and diamonds). Subtraction of the plain-emulsion scattering 

from the scattering of the emulsified gold-nanoparticle suspension yields a curve 

that corresponds to the form factor of spherical nanoparticles with a Gaussian 

size distribution, as also shown in the Figure III-8 (filled circles). 

 This approach seems to be successful for characterizing strong scatterer, like 

gold nanoparticles, but this methodology cannot be applied for polymers or 

proteins due to the low electronic contrast between the solute and the solvent. 

 

Figure III-8: X-ray scattering curves recorded on gold nanoparticles dispersed within W/O 

emulsion droplets in a droplet-based microfluidic SAXS implementation.(Stehle et al. 2013). 

Here, squares denote the raw signal, whereas diamonds denote the signal of plain W/O 

emulsion. The gold nano-particle scattering is obtained by subtraction of 2 signals above.  
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III.2. Materials and methods 

III.2.1. Microfluidic devices  

 

 

Figure III-9: Design for SAXS microfluidic chip. (Left) the chip design with 3 inlets for protein, 

buffer and crystallization agent and one inlet for continuous phase, here as fluorous oil. 

(Right) the real microfluidic chip is fabricated by the soft lithography technique based on 

NOA 81 material. 

NOA 81 microfluidic devices with 200 µm deep, rectangular channels were 

fabricated using typical soft lithography methods as discussed in the previous 

section (illustrated in the Figure III-9). Following whole the fabrication process from 

rigid dry-film master, PDMS casting and soft lithography using NOA 81, the open 

channel was covered by cover slip (25x50x0.1mm, cover slips Menzel-Glaser, 

Germany) in order to form a closed channel. Afterward, the surface of NOA 81 

channel was modified using FDTS (Sigma- Aldrich) to achieve hydrophobic 

surface.  
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III.2.2. Connection to the SAXS sample holder (POD) 

 

Figure III-10: The whole setup of the combination of microfluidic system and SAXS. 

The Figure III-10 shown the whole setup of combination of microfluidic system 

and SAXS at synchrotron. It is noticed that there were two mains parts: microfluidic 

part and SAXS part. Firstly, the goal for the microfluidic part was the generation of 

droplets using a T-junction structure which contains three elements: protein, buffer 

and salt as the same order respectively. These elements are injected by a syringe 

pump system (neMESYS) controlled by a computer software in order to obtain the 

certain ratio among these elements. In addition, the generation process was 

observed by a microscope (Leica M250C) to check again the stability of the flow 

rate, the distance between droplets and the droplet size… After their formation in 

microfluidic chip, droplets are transferred to SAXS via a capillary which is 

connected with SASX sample holder, called POD. The POD has windows that the 

X-ray beam can expose to a specific region of the capillary. 
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The connection between the microfluidic chip and the SAXS sample holder 

were made by connecting capillaries (with internal diameters ranging from 250 to 

300 µm) to the exit of the microfluidic chip. The capillary was then hermetically 

sealed to the pod in order to keep vacuum level around the capillary required for 

high-quality SAXS data (illustrated in the Figure III-11). With this setup, SAXS 

experiments can be performed at a residual pressure of about 10-2 mBar. The 

capillaries were made of fused silica (ID 320 µm, OD 435 µm, Postnova analytics) 

or Kapton (ID 320 µm, Good-fellows). For the case of fused silica capillary, the 

capillary was glued to POD directly from the exit of microfluidic chip, hence 

droplets can be easily transferred to POD without leakage. 

 

Figure III-11: Structure of sample holder (POD) and glued Kapton/Quartz capillary inside. 

In another case with Kapton capillary, the capillary was glued to POD as 

shown in the Figure III-11. However, in order to connect to microfluidic chip one 

more connection device was required. The Figure III-12 shown the connection of 

two different capillaries : glass and Kapton. Normally, the glass capillary is glued 

at the outlet of microfluidic chip with ID 300 µm and OD 360 µm and the Kapton 

capillary is glued inside the POD. The connection (Upchurch) contains two parts: 

two crews and the body which presented in the Figure III-12. In order to be sure 

that no leakage happened, the sleeve tubes were placed inside. When the two 

crews went in the body, the tips of crews kept tightly the sleeve to two capillaries 

and made them in the same position. By testing the connection, the droplets are 

moved to connection and no droplet breaks is observed.  
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Figure III-12: The connection of glass capillary from the outlet of microfluidic chip and 

Kapton capillary to POD 

To deliver the fluids to the chip, 1mL syringes (Hamilton, USA) were connected 

with the microchip via glass capillaries with inner diameter of 250 µm and outer 

diameter of 365 µm (Postnova analytics, Germany). The flow rates were 

controlled by the high precision syringe pumps neMESYS from Cetoni, Germany. 

Synchrotron sourced SAXS measurements were performed on the beamline 

BM 29 at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. 

The working energy of BM29 is set between 7 and 15 KeV. The two-dimensional 

SAXS patterns were recorded with a 1M Pilatus detector, as shown in the Figure 

III-13. The experimental X-ray wavelength and the sample to detector distance 

were respectively 0.0991 nm and 2.87 m, covering a range of 0.03 − 4.5 nm-1 for 

the scattering vector 𝑞 = 4𝜋 sin 𝜃/𝜆 and the beam cross-section is 90 µm x 165 µm. 

The sample in capillary can be moved horizontally and vertically by a few 

millimeters with a precision of ten microns.  
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Figure III-13: Pilatus 1M at the moment is the best detector for solution SAXS- Beamline 29 

ESRF Grenoble - France 

Thanks to microfluidic design, water-in-oil droplets containing the protein, 

buffer and crystallization agent were formed and carried by fluorous oil 

containing surfactant in order to stabilize the droplets interface. In our work, two 

different surfactants were used: 1H,1H,2H,2H-Perfluorooctanol (PFO – 𝐶8𝐻5𝐹13𝑂) 

(Sigma) and a lab-made tri-block copolymer (PFPE-PEG-PFPE). Both surfactants 

were dissolved at a precise concentration in fluorous oil Krytox (DuPont) to make 

stable droplets without affecting biological stability and interactions between 

proteins.  

Three different proteins with different molar mass, oligomeric states, isoelectric 

point and crystallization agents were used in this study, Lysozyme (Sigma), 

Rasburicase (Sanofi). Firstly, in order to validate the setup of SAXS-microfluidic and 

to choose the more suitable surfactant that stabilizes droplets but does not 

interact with proteins, an active and native tetrameric form of Rasburicase was 

injected in droplets with Tris buffer at pH=8.0. After validation of the suitable 

surfactant to use, Lysozyme was used as a model protein to measure interaction 

between proteins in solution. 
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III.2.3. Real time image analysis and data acquisition 

In this device, the droplets pass through the detector and if the SAXS images 

are acquired “continuously”. Since the exposure time should be reduced to 

decrease radiation damage, a high number of images is achieved. The recorded 

SAXS curves result from the contribution of the scattering signal of the continuous 

phase, the interface, and the protein inside the droplet. As proteins are weak 

scatterer, the acquired SAXS signal of protein solution is very close to the one 

obtained for the continuous phase and of the interface as shown in the Figure 

III-14. 

 

Figure III-14: The scattering signal of the first set of experiment. Lysozyme 60mg/ml + salt 

300mM(cyan), the interface of droplets (blue), the oil (red) and the buffer (green).  

Consequently, the approach of Stehle et al (Stehle et al. 2013) cannot be used 

and the SAXS signals have to be acquired and/or treated only with the aqueous 

solution.  

To acquire clean SAXS data (comparable to the one obtained with 1.5 mm 

capillaries) it is necessary to average the data on 3 to 10 SAXS curves. If the data 

are acquired continuously, it is necessary to acquire up to 300 frames per 
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experiments to get enough data. This approach gives satisfactory results, but 

data treatment is really time consuming. In addition, when using continuous data 

acquisition, the capillary and the oil are exposed to intense X-ray radiation which 

can induce radiation damage of the capillary surface coating. To solve these 

problems, an acquisition system based on a real time image treatment software 

has been developed. This “macro” developed using open CV and Matlab, allows 

synchronizing the SAXS image acquisition on the Pilatus camera, the shutter that 

allows that open or close the X-ray beam and the detected droplets. A principle 

scheme of the acquisition setup is given on Figure III-15. 

 

Figure III-15: Scheme of the synchronization process: Once the droplets are detected, 

knowing the speed of each droplet, the beam position and the distance between the 

window of detection and the beam position, a delay time is calculated ( compatible with 

the opening and closing time of the shutter) and the acquisition is triggered. This 

approach allows us to get only the SAXS data within the droplets. 

The principle of the image treatment function is based on the fact that in 

microfluidic system, all the generated droplets have the same interface (either at 

the nose or at the tail of the droplet). Consequently, by using a simple 

autocorrelation function in Matlab or developed in open CV (to accelerate the 

procedure), it is possible to detect all the droplets passing in a defined position on 

the capillary. By defining different position inside the capillary, this approach 

allows determining the number of detected droplets, their instantaneous velocity, 

and the time when they reach the detection area. When this area is reached by 

a droplet, a transistor-transistor logic (TTL) signal is send to the fast shutter of the 

beam line and to the Pilatus camera. The TTL signal is generated using a USB-

RS232 converter (FTDI232, Future Technology International Device Ltd) able to 
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send a 1bit signal of 3V, compatible with the Pilatus and the shutter. The 

measured timing of the detection (i.e. between the detection to the generation 

of the signal) is from 10 to 15ms allowing to track more 40 images per second 

(which is the maximum frame rate of the Proscillica camera mounted on the 

beamline).  

III.3. Results and Discussion 

III.3.1. Validation of experimental setup 

III.3.1.1. Selection of the capillary materials 

In order to test the influence of the capillary material on SAXS data, two kinds 

of capillaries were tested: Kapton capillaries and surface modified quartz 

capillaries.  The inner diameter of the capillaries was 250 µm. Their scattering 

signal is shown in the Figure III-16. 

 

Figure III-16: The scattering signal of two different capillaries which were glued in the POD: 

Glass and Kapton capillary. 

The own scattering signal of Glass/Kapton capillary was determined by 

subtraction the scattering signal when capillary filled with and without water. The 

important result here is that both capillaries do not show the same adsorption 

characteristic. The minimum 𝑞-range are 0.1 and 0.5 for glass and Kapton 



 Chapter III - Protein interactions studied by saxs and microfluidic 

 75 

respectively. It should be noted that for quartz capillaries, the surface has been 

modified by silane solution using Sigmacote (Sigma-Aldrich) in order to render the 

surface hydrophobic and thus compatible with water in oil droplets. It is also 

important to notice that for Kapton, the features observed at low and high 

𝑞 disappear after subtraction. With both capillaries, a standard protein, BSA 

(bovine serum albumin), was tested with success in the glass capillary without oil 

in static for scattering/absorption ratio. For the rest of the study, quartz capillaries 

were used because of the better resolution obtained at low angles. 

III.3.1.2. Selection of the surfactant and oil 

The objective of the first experiment was to validate the pertinence of our 

experimental set-up. Indeed, most of the compounds used in these SAXS 

experiments (protein, surfactant, oil …) can be damaged by the X-ray beam. 

Therefore, a good combination of compounds in order to have a decent SAXS 

signal and to avoid radiation damage is required. Moreover, the surfactant can 

interact with the protein within the droplet and probably denature it, so we also 

had to be sure that the surfactant is inert for the protein. For this experiment 

Rasburicase, a homo-tetrameric protein at a concentration of 15 mg/mL in Tris 

buffer at pH = 8 was used. 

All classical fluorous oil used in microfluidic experiments (FC77, FC40, 

perfluorodecalin, HC220…) were irradiated in the same conditions as of the future 

experiments. Unfortunately, none of these oils were compatible with the high 

energy of X-ray generated at BM29. Indeed, after few millisecond of exposure, 

radiation damage of the oils was observed even in flow conditions. Radiation 

damages of the oil generate free radicals that interact with the surface of the 

capillary (i.e. react with the silane group at the quartz capillary surface or adsorb 

on the surface of the capillary). The modification of the surface capillary induced 

modification of the surface properties of the capillary and generated different 

SAXS signal for the same experiment. After testing of several commercial fluorous 

oils, it was found that Krytox GPL 100 (DuPont) oil as the best compromise 

between radiation damage and physicochemical properties.  

The first experiment was performed with PFO at 2% wt. in Krytox GPL100. The 

corresponding SAXS curves describing the scattered intensity as a function of the 
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scattering vector are presented in the Figure III-17(top). The black dots 

correspond to our experimental results whereas the green and red curves are 

respectively the scattering intensities obtained from atomic coordinates with 

CRYSOL which invented by Svergun et al. (D. Svergun, Barberato, and Koch 1995) 

for the tetramer and the dimer of Rasburicase (1r51.pdb). Finally, the blue curve 

obtained with OLIGOMER (Vivares and Bonneté 2002) which represents the best 

fit for our experimental result shows that the protein solution in the droplet is a 

mixture of 58% tetramer and 42% dimer. Under these experimental conditions (oil, 

surfactant), Rasburicase is in either native tetrameric form or completely 

dissociated dimeric form. It means that the surfactant at the interface of the 

droplet may interact with tetramers of Rasburicase. Some tetramers are 

dissociated into two dimers and thus, we can affirm that the PFO denatured 

proteins that limited its use for our microfluidic experiments. 

To avoid denaturation and interaction of surfactant with proteins in droplets, 

we synthetized a biocompatible surfactant, a tri-block copolymer PFPE-PEG-PFPE 

that has been described somewhere else (D. Svergun, Barberato, and Koch 1995) 

and used it at a concentration of 2% wt. in Krytox GPL100. SAXS experiment with 

Rasburicase is presented in the Figure III-17 (bottom). With this surfactant, it 

appears that the CRYSOL curve for the tetramer of Rasburicase perfectly fits our 

experimental data, which means that the protein is not denatured/dissociated 

and therefore that the surfactant is inert for the protein. 

Moreover, this shows that thanks to our microfluidic set-up, we can obtain 

experimental SAXS data that are in good agreement with crystallographic 

structures of macromolecules in solution. PFPE-PEG-PFPE and Krytox GPL100 have 

been proved as a good combination of compounds to study protein structure in 

droplets as they behave exactly as in usual SAXS experiments in micro-volume. 
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Figure III-17: SAXS curves of Rasburicase in the presence of surfactant PFO and triblock 

copolymer. (top) with PFO surfactant, the black dots are our experimental data, green 
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and red curves are scattering curves from atomic. (bottom) with triblock surfactant, the 

red line is the scattering signal of tetramer of Rasburicase (1.5r1.pdb). 

III.3.2. Study of weak interaction for crystallization conditions 

Weak interactions between protein molecules in solution was suited by varying 

the concentration of crystallization agent.  This experiment was done with the 

Lysozyme at a stock concentration of 130 mg/mL with a sodium acetate buffer at 

pH=4.4. The mixture of the oil and surfactant were the same as previously, 

respectively Krytox GPL100 and tri-block copolymer PFPE-PEG-PFPE. We utilized 

NaCl as crystallizing agent at a stock concentration of 2 mol/L. The droplets 

generation structure is Y-junction with the oil in the left channel, salt, buffer and 

protein in the top left, top middle and top right channel respectively. One of the 

advantages of the design of this microfluidic device is that we can screen several 

concentrations of crystallization agent (e.g. salt) just by changing the flow rate of 

the incoming solutions. For example, if we want to increase salt concentration, we 

have to increase salt flow rate but we also have to decrease buffer flow rate to 

generate droplets of the same volume. The following Table III-1 describes the 

different experimental conditions. The SAXS curves of the scattering intensity as a 

function of the scattering vector are represented in the Figure III-18. 
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Table III-1: Flow rates of the stock solutions and concentration of different compounds in 

droplets with Lysozyme, buffer and salt. 

Flow Rates (µL/min) Concentrations 

Oil Lysozyme NaCl Buffer –NaAc Lys(mg/mL) NaCl(mmol/L) 

4 0.5 0 2.5 21.7 0 

4 0.5 0.15 2.35 21.7 100 

4 0.5 0.3 2.20 21.7 200 

4 0.5 0.45 2.05 21.7 300 

4 0.5 0.6 1.9 21.7 400 

4 1.2 0 1.8 52 0 

4 1.2 0.15 1.65 52 100 

4 1.2 0.3 1.5 52 200 

4 1.2 0.45 1.35 52 300 

4 1.2 0.6 1.2 52 400 

4 2.0 0 1.0 86.7 0 

4 2.0 0.15 0.85 86.7 100 

4 2.0 0.3 0.7 86.7 200 

4 2.0 0.45 0.55 86.7 300 

4 2.0 0.6 0.4 86.7 400 

 

The relation between the scattered intensity and 𝐴2 the virial coefficient is 

discussed previously. The coefficient can describe the interaction state between 

the macromolecules. If 𝐴2 > 0, macromolecules are in a repulsive state and if 

𝐴2 < 0, the interactions are attractive. 
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Figure III-18: SAXS curves for lysozyme with increasing crystallization agent concentration 

from 0 to 400 mM with 3 values of lysozyme 21.7, 52 and 86.7 respectively. 
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To go further into details, we can calculate this second virial coefficient 𝐴2 for 

the different salt concentration. In fact, for a given SAXS curve with fixed protein 

and salt concentration, we can estimate the intensity when the scattering vector 

tends to zero thanks to Guinier plot as shown previously. The Guinier 

approximation can be re-written: 

𝐼(𝑐 → 0, 𝑞) = 𝐼(0,0). 𝑒𝑥𝑝{−(4𝜋2/3)𝑅𝑔
2𝑞2} 

This approximation is only valid at low scattering angles (i.e. 𝑞𝑅𝑔 < 1.3). By 

plotting 𝐿𝑛(𝐼) = 𝑓(𝑞2) for values of 𝑞 such as 𝑞𝑅𝑔 < 1.3 we can estimate the 

intensity when the scattering vector tends to zero 𝐼(𝑐, 𝑞 → 0). An example of 

Guinier plot for lysozyme concentration of 52 mg/mL and salt concentration of 

300 mM is shown in the Figure III-19. 

 

Figure III-19: Example of the Guinier plot for lysozyme at 52 mg/mL and salt about 300 mM 

For a given salt concentration, the approximation can be applied for each 

protein concentration and plotted the scattered intensity at 𝑞-origin 𝐼 (𝑐, 0) as a 

function of the protein concentration. These results are shown in the Figure III-20. 

By extrapolation, this graph gives access to the value of the scattered intensity at 

zero angle and at the zero protein concentration, the form factor 𝐼 (0,0). 
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Figure III-20: Scattering intensity at the zero angle as a function of lysozyme concentration 

for different salt concentration. It can be extrapolated to give access to the value of the 

form factor 𝐼(0,0). 

Once we know the value of this form factor, we can get back to the previous 

relation: 

𝐼(𝑐, 0) = 𝐼(0,0) ×
1

1 + 2𝑀𝐴2𝑐
 

At a given salt concentration, if we plot 
𝐼(0,0)

𝐼(𝑐,0)
− 1 as a function of the protein 

concentration 𝑐, we are supposed to have a straight line whose slope equals 

2𝑀𝐴2 and thus give access to the value of the second virial coefficient 𝐴2. These 

curves are illustrated in the Figure III-21. 
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Figure III-21: Linear regression for different salt (NaCl) concentration: 100, 200, 300 and 400 

mM/L. The slope of straight line equal 2𝑀𝐴2.  

 

Figure III-22: Variation of second virial coefficient for Lysozyme as a function of salt (NaCl) 

concentration. 

We finally have access to the second virial coefficient 𝐴2 values for each 

crystallization agent concentration and can plot them as a function of the 
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concentration to know the interaction state between molecules as shown in the 

Figure III-22. The interactions between proteins molecules have been investigated 

by several researcher groups (Ducruix et al. 1996; Bonneté et al. 2004). This graph 

highlights the fact that without salt, because of the positive charges net around 

lysozyme molecules at pH 4.4, the protein in a repulsive state. The addition of salt, 

the protein interaction potential changes smoothly from repulsive to attractive 

state due to a progressive screening of the charges at the Lysozyme surface. The 

attractive state was illustrated in the plot for salt concentration above 180 mM/L.  

These results are in really good agreement with previous results obtained in 

micro-batch volumes (Bonneté, Finet, and Tardieu 1999) that have been 

achieved quickly and with a few  of products. Therefore, it is concluded that 

obtaining a good data quality with our experimental microfluidic setup allows 

studying the interactions between macromolecules for crystallization condition 

screening via second virial coefficient measurements.  
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III.4. Conclusion and perspectives 

In this work, the combination of droplet based microfluidic system and SAXS is 

applied successfully for characterization of two proteins: Rasburicase and 

Lysozyme. In the first experiment, the coupling between microfluidic set-up and 

SAXS was validated underlining the fact that the protein in droplets have the 

same behaviours as in usual solution and all the data in the literature can be used 

as reference. In addition, in this first set of experiment, other serious technical 

problems were solved. For instance, some kinds of capillary which used for POD 

were tested to obtain the high quality of data (less noise from the wall of capillary 

and without radiation damage). In the results, for further experiments the 

Sigmacote modified surface glass capillary was chosen because of its better 

resolution at lower angles. Moreover, the tri-block copolymer surfactant also 

shown that was the good surfactant (i.e. no denatured protein was observed) 

which presented no interaction with the protein molecule within droplets.  

For the second set of experiment, the interaction of Lysozyme molecule in the 

presence of salt ( NaCl) at various concentration was studied using SAXS. The 

results shown that the interaction between protein molecule in the solution can 

be described by the second virial coefficient 𝐴2. If 𝐴2 > 0, macromolecules are in 

a repulsive state and if 𝐴2 < 0, the interactions are attractive. At the beginning, 

the protein solution without salt, the positive charges net around lysozyme 

molecules at pH 4.4, the protein in a repulsive state. By adding of salt (i.e. 

increasing the ionic strength), the protein interaction potential changes smoothly 

from repulsive to attractive state.  

Once again, the combination of SAXS and microfluidic have been shown the 

promised ability for studying the behavior of proteins as well as their interaction. 

Besides, because of system’s success, more perspectives for technique as well as 

methodology can be expected in the future. Firstly, in order to improve the 

precise and high quality of SAXS data, better quality of capillary in the POD will be 

applied (e.g. the wall of capillary thinner is better to limit noise). The 

synchronization process will be improved more precisely to achieve the SAXS 

signal of protein within droplet.  
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In the further experiment, the interaction of protein molecule in the 

nucleation/crystal growth process will be more focused. By integrating the 

temperature control system to microfluidic chips, the temperature of the whole 

system can be adjusted easily. By this method, the droplets containing three 

components can be reached to critical points by decreasing and keeping at low 

temperature before send to shoot. By this way, the scattering signal for each 

moment of nucleation/crystal growth can be observed.
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IV.1. Introduction 

In the previous chapter, the protein-protein interaction in the presence of 

crystallization agents (e.g. salt) was characterized using Small Angle X-ray 

Scattering method. Interactions of colloids in solution can also be studied through 

the determination of the equation of state which relates the osmotic pressure to 

the volumetric properties of the solution. The equation of state of colloids is of 

paramount importance in the industry (food, paint, chemistry, cosmetics…) since 

it defines the operating conditions of several processes such as drying, filtration 

mixing… One quite common, but not widely spread yet, approach for 

determining this thermodynamic property of the polyphasic system is based on 

the exchange of solvent by dialysis between the dispersion under study and a 

reservoir with a known osmotic pressure (or water activity if the solvent is water). In 

particular, this technique has been widely used for studying the behavior of 

casein(Bouchoux et al. 2009; Bouchoux et al. 2010; Bouchoux et al. 2014), of 

lysozyme (Coralie Pasquier et al. 2016; Grobelny et al. 2014), and ovalbumin(C. 

Pasquier et al. 2012) under compression. However, despite its relevancy, this 

technique suffers from several drawbacks : the sample volume of the dialysis 

chamber (few milliliters), and very permeation flux through the membrane (due to 

a no optimized surface volume ratio). In this chapter, a novel method to 

determine the equation of state of a model protein in solution is proposed. This 

methodology is based on the mass transfer between two partially miscible fluids. 

In order to understand this new approach, it is necessary to briefly introduce the 

experimental setup: In a microfluidic platform, monodispersed droplets of the 

dispersed phase are generated in a continuous phase. Here, the dispersed phase 

is an aqueous solution of protein (lysozyme) and the continuous phase is an 

organic solvent (1-decanol) in which water is partially miscible and the protein is 

not. As soon as the droplets are generated, mass transfer occurs, and water is 

continuously dissolved in the continuous phase, considered as an infinite reservoir, 

until a thermodynamic equilibrium is reached.  
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The basic principles of droplet dissolution process for two cases, (a) a pure 

liquid droplet and (b) a multicomponent droplet are shown in the Figure IV-1 

below.  

 

Figure IV-1: Dissolution of liquid droplet phase A into an immiscible liquid phase B.(left) for 

pure liquid and (right) for mixture liquid. 

Here, A and B correspond to the liquid phase inside the droplet and the 

surrounding medium, respectively. The components 1, 2 and 3 are designated by 

numerical subscripts. For example, the 𝐴1,3 means that the droplet phase A has 

two components 1 and 3. For the simplest case, let us consider that only 

component 1 can be dissolved in component 2 and that the phase B with 

component 2 is infinite (i.e. the component 1 in droplet can be totally dissolved in 

component 2 at the end of dissolution process without any significant 

modification of the concentration of liquid B). Based on these assumptions, the 

dissolution process of both cases can be separated into three main steps as 

represented in the Figure IV-1. For pure liquid droplet, (the scheme on the left), as 

soon as the phase A droplet with component 1 is generated and placed in the 

liquid phase B with component 2, the mass transfer starts and component 1 is 

dissolved into component 2 in the surrounding medium. Due to the loss of mass of 



 Chapter IV - Dehydration of protein solution 

 91 

component 1, the droplet’s volume decreases and thus the shrinking of droplet 

diameter occurs as a function of time. Consequently, at the end of the process 

when the component 1 is totally dissolved, the droplet disappears.  

In contrast, the dissolution of a liquid mixture droplet presents two differences 

compared to pure droplets. The dehydration process is longer and the droplet 

does not disappear at the end. In this case, the droplet containing components 1 

and 3 is formed and placed in the surrounding medium containing component 2. 

Taking the assumption that only component 1 can be dissolved in component 2, 

the loss of mass is thus only due to component 1 dissolution. At the end of the 

process, the component 1 is completely dissolved, and component 3 remains 

inside the droplet at a very high concentration. From this moment, the droplets 

size becomes steadily constant. Depending on the properties of component 3, 

the final phase of the droplet can be crystalline (Sivaji 1989), or glassifed micro-

beads(Rickard, Duncan, and Needham 2010).  

The Figure IV-2 shows a schematic depicting the evolution of water activity 

during droplet dehydration. Here, two cases are presented: a droplet of pure 

water and a protein solution droplet.  



 IV.1 -Introduction   

 

 92 

 

Figure IV-2: Water activity evolution of a pure water droplet (left) and a protein solution 

droplet (right) in a medium partially saturated by water. For the pure water droplet, the 

droplet's diameter decreases until its complete dissolution (i.e. 𝑅 = 0) whereas the 

diameter of the protein droplet decreases until the equilibrium of water activity inside the 

droplet and the surrounding medium is reached (Rickard’s PhD thesis 2011). 

The dissolution process can be divided into three different time steps. In the 

pure water droplet case, the water activity is always 1. At 𝑡 = 0, the droplet with 

radius 𝑅0 is formed and placed in a chamber partially saturated by water 

(𝑎𝑤 ≈ 0.5). A local thermodynamic equilibrium at the interface is assumed, so the 

water activity inside droplet is equal to water activity at the interface. Between 

0 < 𝑡 < 𝑡𝐷, (𝑡𝐷 is the time required to dissolve the droplet) the water inside the 

droplet starts diffusing into the surrounding medium and this causes a decrease of 

the droplet diameter (𝑅 < 𝑅0). However, the activity of pure water is equal to 1 

and the water activity of surrounding medium with 𝑟 ≫ 𝑅0 equals 0.5 as since the 

surrounding medium can be considered as an infinite medium. At the end of the 

process, at t = tD, the droplet totally disappears (R = 0) . 
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For a protein solution droplet, at the initial time 𝑡 = 0, the droplet has an initial 

diameter, 𝑅0  . In this case, the water activity of the protein solution droplet is 

smaller than 1 due to the presence of protein. By the time 0 < 𝑡 < 𝑡𝐷, analogously 

to  the pure water case, the water inside the droplet diffuses into the surrounding 

medium, the droplet loses water and thus,  its size decreases. However, in this 

case, the water activity in the droplet also decreases due to the increase in 

protein concentration. Using the same assumption about the local 

thermodynamic equilibrium, the water activity inside droplet is equal to the water 

activity at the droplets interface.  However, the difference between the water 

activity at 𝑟 ≫ 𝑅0 (i.e. at the infinite medium), and the activity at the interface and 

at infinite is smaller and therefore droplets diameter shrinking rate is lower. At the 

end of the dehydration process, when 𝑡 = 𝑡𝐷, the water activity inside the droplet 

is equilibrated with the water activity of the surrounding  medium (i.e. 𝑎𝑤.𝑖𝑛 =

𝑎𝑤.𝑜𝑢𝑡). Consequently, although there is still some water inside the droplet, there is 

no diffusion anymore and the droplets diameter,𝑅𝐷, remains constant. Hence, the 

protein concentration inside the droplet will increase from an initial value up to a 

critical point which depends on the relative humidity in the surrounding medium.  

The first protein solution dehydration experiments were performed by Rickard 

et al. In their work, the authors created single droplets of lysozyme solutions with 

an average diameter around 50 µm, using the micropipette technique and 

dipping them in 1-decanol media with a controlled water activity. Knowing the 

water activity of the surrounding medium, the initial concentration of protein 

inside the droplet, and the final diameter of the aqueous droplet, the remaining 

amount of water inside the droplet and the protein concentration was 

calculated. The authors made the link between this amount of water and the 

hydration potential of the proteins. However, compared to microfluidics the 

micropipette technique displays some disadvantages: it takes some time to 

prepare single droplets individually, the droplets generated are not perfectly 

monodispersed and all the droplets cannot be monitored during the entire 

dissolution process. 

One major assumption of this approach, which  is based on mass transfer,  is 

that the solute molecules (lysozyme in this case) are evenly distributed within the 
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droplet (i.e. the redistribution of protein molecule should be faster than the 

shrinking of droplets interface). The diffusion of water through the interface 

induces a diffusional flux of solute in the reversed direction – from the interface to 

the center of the droplet. If the diffusion of the solute molecule within the droplet 

is slow compared to the shrinking of the interface, a concentration gradient is 

formed inside the droplet. The high concentration of solute near the interface 

causes a local reduction of the water activity and a skin composed of a highly 

concentrated solute precipitates/aggregates formed at the droplet surface. Maki 

et. al. reported that the skin formation is induced by the weak water diffusion 

compared to the convective flow within the droplet (Maki and Kumar 2011).  

The relationship between diffusion and convection of solute within the droplet 

is usually represented by means of the Peclet number:  

Pe =
Jh0
D

 Eq. IV-1 

where 𝐽 is the flux diffusion which is calculated by the loss of volume, ℎ0 is the initial 

height of droplet – in case of the experiments reported here, the value is equal to 

2𝑅𝑜, the initial diameter of droplet – and 𝐷 is the diffusion coefficient of the solute. 

Other investigations (Baldwin et al. 2011; Manukyan et al. 2013 for instance) 

agreed that with a low 𝑃𝑒 < 1, the diffusion is controlling the process and induces 

a low gradient at the interface. In reverse, with high 𝑃𝑒 > 1 the convection is the 

governing factor and causes a high gradient at the interface. Consequently, the 

water activity at the interface will be affected.  

In this chapter, the influence of the experimental conditions in pure water and 

protein solution droplets dissolution/dehydration (saturation fraction, initial 

concentration, and initial droplet diameter) were studied. At the end of the 

dissolution/dehydration process (i.e. when the equilibrium is reached), the 

osmotic pressure and the hydration potential of protein molecules were 

calculated from the value of the final water activity inside the droplet, which 

equals the known water activity in surrounding medium. The results were 

compared and discussed with other results found in the literature, and with the 

Carnahan-Starling approximation.  Additionally, the dehydration process of 
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lysozyme solution droplets in 1-decanol is predicted by modeling the 

multicomponent droplets dissolution. Results are presented and discussed below. 

IV.2. Theoretical background of droplet dissolution 

The Epstein-Plesset (E-P) model has been applied to study the stability of gas 

bubbles in the liquid-gas bubbles since 1950 (Epstein and Plesset 1950). It showed 

that the evolution of gas bubble diameters was related to an under/over-

saturated amount of gas in the liquid. Following that theory, the group of D. 

Needham studied the dissolution of micro-droplets containing a single phase: air 

(Duncan and Needham 2004), liquid (Duncan and Needham 2006) or multi-

phase (Su and Needham 2013) in an immiscible liquid medium. Su et al (Su et al. 

2010) applied the Epstein- Plesset equation to investigate the effect of hydrogen 

bonding in water diffusion in liquid surrounding media with/without hydrogen 

bonds. They showed that the diffusion coefficient of water in alcohols is slower 

than in the corresponding alkane liquid with the same viscosity. In this way, they 

also explained why small solutes in large solvents have more quickly diffusion than 

the one predicted by the Stokes-Einstein equation. 

IV.2.1. The E-P equation for pure water droplet 

In their paper, Epstein and Plesset (Epstein and Plesset 1950) proposed to 

approximate the solution of the equation for the rate of dissolution of a gas 

bubble in an under-saturated liquid-gas solution. They considered a case that a 

spherical bubble with radius 𝑅 is placed at 𝑡 = 0 in a liquid-gas solution owning a 

uniform concentration of dissolved gas 𝐶𝑖. In a more recent paper, Duncan et al. 

(Su and Needham 2013) successfully tested this model for the dissolution of 

droplet in a well-defined liquid environment, proving that this theory can also be 

generalized to describe the dissolution of pure liquid droplets in an infinite 

isotropic solvent or solution. 

As in the case of bubble dissolution, for liquid droplet dissolution, the main 

variables are the concentration gradient from the droplet surface and the 

pressure gradient across the interface. The concentration gradient is caused by 

the difference between the concentration at the thermodynamic equilibrium at 

the interface of the droplet (𝐶 = 𝐶𝑠𝑎𝑡) and the concentration of the solution far 
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away from the droplet interface (𝐶𝑖𝑛𝑓𝑖 = 𝐶0). The pressure gradient arises from the 

interfacial tension and curvature of the droplet-medium interface which creates 

a Laplace overpressure in the droplet. In contrast to what obtained by Epstein-

Plesset for gas bubble dissolution, Duncan et al. have shown that the pressure 

gradient is negligible in the case of droplet dissolution, especially for large 

droplets (few tens of microns).  Hence, based on this work, the droplet dissolution 

is only governed by diffusion of the liquid forming the droplet to the continuous 

phase.  In the case of water diffusion in an organic solvent, the total flux of water 

at the boundary of spherical droplet is given by the Flick’s first law: 

dmw
dt

= 4πR2J = 4πR2D(
∂c

∂r
)
R
 Eq. IV-2 

where 𝑚𝑤 is the mass of water,𝐽 is the flux per unit area and 𝑐 the concentration 

of water at 𝑡 > 0 and at a distance 𝑟 > 𝑅 from the center of droplet. The temporal 

evolution of water concentration at a point 𝑟 > 𝑅 in the solution is given by the 

second Fick’s law: 

∂c

∂t
= D(

∂2c

∂r2
) Eq. IV-3 

The resolution of both equations proposed by Epstein and Plesset gives the 

following equation for the temporal evolution of the concentration of water in the 

continuous phase: 

(
∂c

∂r
)
R
= (c0 − cs ) {

1

R
+

1

√πDt
} Eq. IV-4 

The mass flow of water out from the droplet is: 

𝑑𝑚

𝑑𝑡
= 4𝜋𝑅2𝐷 (

𝑑𝑐

𝑑𝑟
)
𝑅
 

Since the mass of a spherical water, droplet is 𝑚 =
4

3
𝜋𝑅3𝜌 (with 𝜌 is the density of 

water)  its temporal evolution is given by : 

dm

dt
=
d(ρV)

dt
= 4πR2ρ(

dR

dt
) Eq. IV-5 

Solving Eq. IV-4 for  (
𝑑𝑅

𝑑𝑡
), we obtain 
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(
dR

dt
) =

1

ρ
(c0 − cs )D {

1

R
+

1

√πDt
} = −

cs 
ρ
(1 − f)D {

1

R
+

1

√πDt
} Eq. IV-6 

where 𝑓 = 𝑐0 𝑐𝑠⁄  is the saturation fraction of surrounding medium (in this case, 1-

decanol). The term in the bracket 
1

𝑅
+

1

√𝜋𝐷𝑡
 can be separated into two terms: the 

steady-state condition (1 𝑅⁄ ) and the transient condition (1 √𝜋𝐷𝑡) ⁄ respectively. 

IV.2.2. The modified E-P equation for a multicomponent mixture. 

In order to adapt the previous model for the dissolution of a multicomponent 

droplet in a continuous phase, Su and Needham (Su and Needham 2013) 

proposed a modification of the Epstein Plesset equation. The main hypothesis of 

this approach is that all the components in the droplet are perfectly mixed and 

homogeneously distributed, including at the interface.  

The total mass flux of the liquids in the droplet into the surrounding area is the 

sum of the mass flux of each component 𝑖, of the droplet: 

Jtot =∑Ji
i

 
Eq. IV-7 

The concentration at the edge of the droplet is given by Eq. IV-4. 

Following the first Fick’s law, the mass flux from the droplet is proportional to 

the concentration gradient via the diffusion coefficient. The mass of component 𝑖 

transferred by this flux is proportional to the surface area through which the flux 

occurs. To develop their model, the authors assumed that the surface fraction is 

proportional to the volume fraction. Thus, the mass flux of component 𝑖 is given 

by: 

dmi
dt

= ϑiDi(ci − cs ) {
1

R
+

1

√πDit
} Eq. IV-8 

where 𝜗𝑖 is the area fraction of component 𝑖 at the interface and 𝐷𝑖 is the 

diffusion coefficient of component 𝑖. The mass flux can be related to the volume 

changes via the density of each component, which can be related to the 

droplet radius.  
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In their paper, the definition of the surface fraction is vague and seems to be 

an adjustment parameter (proportional to the volume fraction). In addition, this 

approximation is a way of dealing with the condition of equality of chemical 

potential at the interface, but it has no fundamental basis. Moreover, Su and 

Needham assume that the equilibrium concentration is constant at the interface 

during dissolution but it cannot be.  

IV.2.3. Numerical approach for modeling the droplet dissolution. 

IV.2.3.1. Definition of the problem 

Given a non-ideal system, where diffusion occurs as a result of the disturbance 

of an equilibrium state characterized by a non-uniformity of the chemical 

potential, 𝜇, of the diffusion species, the first Fick’s law can be written as follows:  

Ji = −
DCi
kT
(
∂μi
∂r
) Eq. IV-9 

where 𝐷 is the diffusion coefficient, 𝐶 the concentration of the diffusing species, 

and 𝜇 the chemical potential of the diffusing species. Eq. IV-9 may be rewritten in 

terms of activity: 

Ji = −
DCi
kT
(
∂ ln ai
∂r

) = −
DCi
ai
(
∂ai
∂r
) Eq. IV-10 

With 𝜇𝑖 = 𝜇𝑖
0 + 𝑘𝑇 ln 𝑎𝑖 , 𝜇

0 being the standard chemical potential. 

The second Fick’s law becomes:  

∂Ci
∂t
+
1

r2
∂Jir

2

∂r
= 0 Eq. IV-11 

In the case of droplet dissolution, a droplet which contains pure water or a solute 

(protein for instance), the mass flux across the interface at 𝑟 = 𝑅 is given by:  

−
dmi
dt

= −ρi
dVi
dt
= 4πR2Ji Eq. IV-12 

With 𝑑𝑉𝑖 = 4 𝜋𝑅
2𝑑𝑅  and equation Eq. IV-9, the equation Eq. IV-12  can be re-

written as: 
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dR

dt
= −

1

ρ
Ji = −

DCi
ρai

(
∂ai
∂r
) Eq. IV-13 

IV.2.3.2.   Assumptions and boundary conditions  

In order to numerically solve the problem, several assumptions have been 

made: 

H1: a lumped system is assumed in the droplet (i.e. every variable at the surface 

of the droplet are the same as the one inside the droplet) 

H2: Fluid is unbounded in extent and quiescent. 

H3: in the case of an aqueous solution in an organic solvent, only water diffuses 

through the interface (the solute do not dissolve in an organic solvent, and the 

organic solvent do not diffuse in the droplet). 

H4: There is no slip velocity between the droplet and the continuous phase (the 

convection is neglected). 

H5:  Since the droplets are generated by a flow-focusing microfluidic structure 

and flowed along the channel which its dimensions are larger than droplet’s 

diameter, hence it can be assumed that the droplets were spherically symmetric. 

Initially, at 𝑡 = 0, the droplet has a known initial concentration and the surrounding 

medium has a uniform  water concentration of 𝐶0 = 𝑓. 𝐶𝑠𝑎𝑡. At any time, far away 

from the droplet, the concentration of water in the organic solvent is 𝐶∞ = 𝑓. 𝐶𝑠𝑎𝑡. 

IV.2.3.3. Discretization of the problem 

Different discretization schemes have been used (explicit, implicit and Crank-

Nicolson), however, for the sake of clarity, only the explicit scheme will be 

presented in this manuscript (the other numerical schemes and the grid definition 

are given in the Appendix A). 

The combination of Eq. IV-10 and Eq. IV-11 gives:  

∂Ci
∂t
−
D

r2
(2r

Ci
ai

∂ai
∂r
+ r2

1

ai

∂Ci
∂r

∂ai
∂r
− r2

Ci

ai
2 (
∂ai
∂r
)
2

+ r2
Ci
ai

∂2ai
∂r2

) = 0 Eq. IV-14 

The term 
𝜕𝐶𝑖

𝜕𝑟

𝜕𝑎𝑖

𝜕𝑟
 in this equation is non-linear (as the concentration and the activity 

are interdependent) and cannot be discretized using finite elements. To solve the 
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equation, as the solubility of water in the organic solvent is low, it is assumed that 

at 𝑟 > 𝑅 the solution behaves ideally (i.e. 
𝜕𝐶𝑖

𝜕𝑟
=
𝜕𝑎𝑖

𝜕𝑟
). Hence, the Eq. IV-14  can be 

simplified as: 

∂Ci
∂t
−
D

r2
(2r

Ci
ai

∂ai
∂r
+ r2

Ci
ai

∂2ai
∂r2

) = 0 Eq. IV-15 

As the surrounding solution is considered ideal, the activity can be calculated 

using the Henry law: 

lim
𝑥→0

𝑎

𝐶
= H𝑤𝑜 

with 𝐶 being the molar fraction of water in the organic solvent. In the case of 

water in 1-decanol, the Henry law constant is H𝑤𝑜 = 6.22 ± 0.2(Šegatin and 

Klofutar 2004). The activity is then calculated by: 

a𝑖 = C𝑖H𝑤𝑜 

Using the implicit scheme, for 𝑟 > 𝑅 the discretization of Eq. IV-14 equation is: 

𝐶𝑟
𝑡+1 = 𝐶𝑟

𝑡 + 𝐷 ∙ Δ𝑡 ∙
𝐶𝑟
𝑡

𝑎𝑟
𝑡  
∙ (
2

𝑟

𝑎𝑟+1
𝑡 − 𝑎𝑟−1

𝑡

2Δ𝑟
+
2

Δ𝑟
(
𝑎𝑟+1
𝑡 − 2𝑎𝑟

𝑡 − 𝑎𝑟−1
𝑡

Δ𝑟
) 

Knowing, 𝐶𝑟
𝑡+1 at 𝑟 = 𝑅+, the radius and the volume of the droplet can be 

calculated respectively from : (so-called equation radX) 

R𝑡+1 = 𝑅𝑡 + 𝐷𝐶2
𝑀

𝜌
Δ𝑡
𝑎𝑟=𝑅−
𝑡 − 𝑎𝑟=𝑅+

𝑡

Δ𝑟
 

and 

𝑉|𝑡+1 = Vp + 𝑉𝑤 = 𝐶𝑝|𝑡=0 ∙ 𝑉|𝑡=0 ∙ 𝑀𝑝 ∙ 𝑉𝑠𝑝,𝑝 +
𝐶𝑖|𝑡+1 ∙ 𝑉|𝑡+1 ∙ 𝑀𝑖

𝜌𝑤
 

where the subscript 𝑖 and 𝑝 are for the water and protein respectively, 𝑉𝑠𝑝,𝑝is the 

specific volume of the protein. The concentration of water inside the droplet at 

𝑡 = 𝑡 + 1, can then be calculated by: 

C𝑖,𝑖𝑛|𝑡+1 =
ρi
𝑀𝑖
−
𝜌𝑖 ∙ 𝑉𝑠𝑝,𝑝 ∙ 𝑀𝑝 ∙ 𝐶𝑝|𝑡=0 ∙ 𝑉|𝑡=0

𝑉|𝑡+1 ∙ 𝑀𝑤
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The activity of water or the droplet osmotic pressure can then be calculated 

either using a fitting of experimental data or from an equation of state 

(Carnahan-Starling EOS for instance). 

IV.2.3.4. Comparison between the E-P equation and the numerical 

code 

To test the validity of the numerical modeling, the result of equation RadX is 

compared to the results obtained using the E-P equation (Eq. IV-6), for the 

dissolution of a water droplet of 97µm in 1-decanol. The solubility of water in 1-

decanol was taken from the literature (Šegatin and Klofutar 2004) is 𝑚 =  2.4112 

mol.kg-1 and the diffusion coefficient of water in 1-decanol 𝐷 = 6𝑒 − 10 m2/s (Lin, 

Lu, and Hwang 1995). A comparison, in term of the temporal evolution droplet 

radius, between the E-P equation and the numerical model is given in the Figure 

IV-3.  

 

Figure IV-3: Comparison of the numerical model results and E-P equation for different 

water concentration in the continuous phase (𝑓). The grid size was 150, time step 𝑑𝑡 =
1𝑒−4s and 𝑑𝑟 = 0.05 µm 

The results obtained with the numerical code are in good agreement with the 

E-P equation. However, a difference in terms of diameter is observed at the end 

of the dissolution process (i.e. when the droplet radius is lower than 7µm). This 

could be attributed to the numerical scheme. However, different numerical 
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schemes, grid size, meshing methods have been tested and no improvements 

can be found. 
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IV.3.  Materials and Methods 

IV.3.1. Materials 

Lysozyme from chicken white egg (dialyzed, lyophilized, powder, ~100000 

U/mg, Sigma-Aldrich) was used as received. The ultra pure water was filtered by 

PURELAB machine (USA Resistivity of 18.18 MΩcm-1).  Pure 1-decanol grade 

(≥ 99%, Sigma-Aldrich) was used and keep dry using 3A molecule sieves (Sigma-

Aldrich) before used to prepare solutions with different water saturation fractions. 

The 1-decanol was chosen because of its solubility properties with water. The 

solubility of 1-decanol in water is low enough (approximately 0.01% volume) 

which allows us neglecting decanol diffusion into micro-droplets with initial 

volumes of tens of picoliters.  On the other hand, the solubility of water into 

decanol is high enough to ensure that the amount water in the droplet is much 

lower than the dissolution capability of the surrounding medium. For example, for 

a channel of 125 µm width, 500 µm depth and a length between two droplets of 

0.5 cm, the continuous phase enables to dissolve at least approximately 3500 

droplets of water which have the diameter around 50 µm. This means that with 

this configuration the 1-decanol surrounding medium can be considered as an 

infinite medium. 

Microfluidic platforms (made in OSTEmer 322) for droplet dissolution 

experiments were built according to the procedure described in Chapter II.   

IV.3.2.  Method for droplets dissolution in 1-decanol. 

Two different sets of experiment were carried out: (1) to validate the 

experimental setup, dissolution experiments of pure water droplets in 1-decanol 

with various saturation fraction of water, 𝑓 = 0, 𝑓 = 0.25, and 𝑓 = 0.5, were 

performed. The results obtained in terms of temporal evolution of the droplet 

radius were compared with E-P equation. (2) Determination of Lysozyme EOS in 

water: the dissolution of aqueous lysozyme solution droplets with different initial 

concentrations of Lysozyme in 1-decanol with different saturation fractions (𝑓 in a 

range from 0 to 0.9) were performed. 
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The experimental setup, shown in the Figure IV-4, contains a microfluidic chip 

with inlets and outlets connected to a syringe pump system (neMESYS, Cetoni 

GmbH, Germany) by means of PFA tubes (Upchurch, ID250µm; OD1/16”). The 

continuous and dispersed phase are transferred to the flow-focus structure in a 

microfluidic system in order to generate single droplets of the aqueous solutions. 

The droplets are kept and flowed in 1-decanol through the whole channel length 

of the microfluidic chip. The evolution and movement of the droplets are 

recorded by an inverted Zeiss Axio Observer microscope coupled to a high-

speed camera (Miro M120, Vision Research). The microscope is set by 10x 

magnification. The fast camera is set up at 40 frames per second and a resolution 

of 1200x800 pixels. The embedded memory of camera allows recording movies 

ranging from 3 to 15 minutes depend on the duration of the dissolution process. 

Finally, the movie is moved to a computer to be able to analyze the evolution of 

the size of the droplet. A Matlab program is utilized to automatically detect the 

diameter of droplets as a function of time. This program is based on a first 

autocorrelation function that detects the presence of the droplet in the channel. 

The diameter of the detected droplet is calculated either using a circle Hough 

function of Matlab or using a gray scale gradient induced by the presence of the 

droplet in the channel (the Matlab program is given in the Appendix B). 

 

Figure IV-4: Experimental setup for dissolution of single droplets using microfluidic system. 
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IV.3.3. Microfluidic chips preparation 

To study the diffusion of water from the protein solution droplet into the 

surrounding environment, several requirements for the microfluidic chip design 

are required: 

A) Generation of single droplets with homogeneous diameter. 

B) The distance between 2 droplets in a row should be large enough to 

satisfy the condition of an infinite dissolution environment.  

C) The geometry of the channel has to be long to ensure that the 

residence time of the droplet in the microfluidic chip is greater than the 

dissolution process duration. 

From these requirements, two types of microfluidic chips were designed with 

rectangular channels, as shown in the Figure IV-5. The first design consists of a 

flow-focusing structure to generate droplets and a long serpentine channel to 

store and to observe droplets dissolution. The height of the channel ranges from 

120 to 240 µm and the width of the serpentine is 500 µm. The total length of the 

serpentine channel is 84 cm. For the flow-focusing structure, the width of the 

channel is 50 µm to ensure the generation of small droplets. 
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Figure IV-5: Illustrations of designs for microfluidic systems.(a) the design with the 

serpentine channel and (b) the design with big storage zone. These designs have the 

same dimension for generation structures. 

In the second tested design, the droplet generation is the same as previously, 

but the storage part was modified to include a Hele-Shaw cell configuration to 

store the droplets as  illustrated in the Figure IV-5b. The large storage zone is 

designed with a funnel shape nozzle in order to gradually slow down the speed of 

the droplets before entering the big area.  Due to the large volume of organic 

solvent which can be stored in the Hele-Shaw cell, it is possible to dissolve 

thousands of water droplets. Both of designs were fabricated to test the 

configuration and the results are presented in the section Results and Discussion. 

1-decanol solutions with different water concentrations were prepared before 

starting the experiments by mixing, off-chip the dry 1-decanol and the water 

saturated decanol. 1- decanol was dried by storing it in 3𝐴 molecular sieves to 

absorb all dissolved water. In contrast, the full water saturated decanol was 

prepared by adding an amount of water, much higher than the water solubility in 

1-decanol, and aging the solution for at least 1 week before use. The term 
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saturation fraction 𝑓 is defined by the ratio of initial concentration of water in the 

solution over the saturated water concentration. Hence, 𝑓 ranges from 0 to 1. 

Given the very low solubility of Lysozyme in decanol <0.002 mg/mL (Rickard, 

Duncan, and Needham 2010),  the diffusion of Lysozyme into 1-decanol can be 

neglected within the time scale of the experiments. 

IV.3.4. Analysis methods: refractive index and hydration analysis.   

IV.3.4.1. Refractive index matching: in-situ lysozyme concentration 

measurement.  

During the dehydration experiment, the concentration of protein solution 

within droplet increased due to the loss of water. By this way, the refractive index 

of protein solution evolves as well. At a certain time, the droplet has the same 

refractive index with the 1-decanol in the surrounding medium, called 𝑛 −𝑚𝑎𝑡𝑐ℎ. 

And then it becomes invisible. From 𝑛 −𝑚𝑎𝑡𝑐ℎ value, the protein concentration at 

this time can be calculated. According to Rickard et al(Rickard, Duncan, and 

Needham 2010), the Lysozyme concentration at 𝑛 −𝑚𝑎𝑡𝑐ℎ is by 518 mg/mL . If the 

initial diameter and the 𝑛 −𝑚𝑎𝑡𝑐ℎ diameter of droplet are known, the initial 

protein concentration can be determined as well. 

However, it is a quite serious problem to determine the 𝑛 −𝑚𝑎𝑡𝑐ℎ diameter 

because of the invisibility of droplet. The temporal evolution of the droplet 

diameter is recorded for the whole dissolution process and the diameter at 

𝑛 −𝑚𝑎𝑡𝑐ℎ is determined by interpolation between the diameter before and after 

the droplet disappearance. The error of initial concentration calculation is in 

range 10-20 mg/mL.   

IV.3.4.2. Hydration analysis 

Let consider that the droplets containing water and Lysozyme are dissolving in 

the 1-decanol medium, just only water diffuses from droplet to outside. Obviously, 

the protein mass within the droplet is constant and determined by an initially 

given value. The water volume fraction is determined as: 

ϕw = 1 −
Cνp

1000
 Eq. IV-16 
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where 𝐶 is the initial concentration of protein, ν𝑝 is the protein specific volume 

which assumed to be constant  by 0.7 mL/g. The water in the protein solution 

includes the water in the hydration water (i.e. the water molecule directly 

interacting with the surface of protein molecules) and the water presented in the 

interstitial space of the protein. Hence the water volume fraction can be written 

as: ϕ𝑤 = 𝜙ℎ𝑦𝑑+ 𝜙𝑖𝑛𝑡. Here, the 𝜙𝑖𝑛𝑡 can be theoretically calculated using a term of 

packing efficiency and the random jammed state of hard core objects. It equals 

to 0.36 for spheres and 0.29 for ellipsoids (aspect ratio 1.5) (Chaikin et al. 2006). 

However, Rickard et al (Rickard, Duncan, and Needham 2010) calculated the 

interstitial space in vacuum and shown that the Lysozyme molecule can be 

packed more efficiently with ϕ𝑖𝑛𝑡 = 0.07 ± 0.01. 

The hydration potential of Lysozyme at the end of dehydration process in this 

work is presented by amount of hydration water, ℎ, (𝑔 of water per 𝑔 of Lysozyme) 

as a function of the water activity inside droplet (equal the water activity in the 

surrounding medium), whereas the amount of hydration water is calculated: 

h =
weight of water

weight of Lysozyme
=
1000ρwϕhyd

C
 Eq. IV-17 

where 𝜌𝑤 (g/m3)is the density of water and 𝐶(g/L) the initial concentration of 

protein.  

According to the experimental data of water solubility in 1-decanol(Šegatin 

and Klofutar 2003), the water activity as a function of saturation fraction is 

presented in the Figure IV-6.  
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Figure IV-6: Water activity as a function of saturation fraction. 

IV.3.5. Osmotic pressure and Equation of State (EOS) 

Many studies have shown that in the solution, the water molecules in contact 

with protein molecules in solution have different properties compared to the ones 

in the bulk (Halle et al. 1981; Otting and Wuethrich 1989). They need more energy 

to be removed than water molecules surrounded by other water molecules. This 

energy in the dehydration process can be seen as a needed energy to remove a 

water molecule in contact with Lysozyme to its ideal state. And it is expressed as a 

function of water activity:  

μw = μ0 + kBTln(aw) Eq. IV-18 

where 𝜇𝑤 is the chemical potential of water in the solution. 𝜇0 is the chemical 

potential of pure water.  

By dividing by molecule volume of water 𝜈𝑤, the osmotic pressure can be 

obtained: 

Πoms = kBT νw⁄ ln(aw)  Eq. IV-19 

Where 𝑇 = 298 𝐾 and 𝑘𝐵 is the Boltzmann’s constant. 

Let assume that dissolved protein molecules in water can be described as 

non-attractive rigid spheres and all the laws of physics can be applied. It is 



 IV.3 -Materials and Methods   

 

 110 

considered the case of hard sphere fluids with a sphere radius 𝑎, where the 

structure of fluid is determined by a radial distribution function 𝑔(𝑟), describing the 

probability of finding a neighboring particle. Here, 𝑟 is the distance from the 

center of the reference particle (i.e. the location origin). If  normalized,  𝑔(𝑟) = 1 

presents a randomly distributed suspension of non-interacting point particles. In 

the case of 𝑟 < 2𝑎, 𝑔(𝑟) = 0 as the particles can not interpenetrate. At low 

concentration, when 𝑟 =  2𝑎, 𝑔(𝑟) = 1, particles are arranged randomly. At high 

concentration, when 𝑟 = 2𝑎, 𝑔(𝑟) value is very high however, this value decays 

rapidly. 

The pressure tensor in the thermodynamic which absence of hydrodynamic 

interactions is expressed:  

σthermo = −
1

V
〈∑riFi

thermo

N

i=1

〉 Eq. IV-20 

where: 𝑟𝑖 is the location of particles as given by the vector, 𝐹𝑖 is the force acting 

on that particle and 𝑁 and 𝑉 are particles and volume, respectively.  

Conceptually, as the simplest case, the interaction between hard-sphere 

particles is excluded volume: the point particle gives a way to other take up 

space and cannot overlap. Consequently, this stress expression can be used to 

recalculate the osmotic pressure. The osmotic pressure can be derived from the 

stress due to the excluded volume of hard sphere where 𝜙ℎ𝑠 is the volume 

fraction of hard sphere molecule: 

Πosm − nkBT = −σii = 4nkBTϕhsg(2a) Eq. IV-21 

This means that the osmotic pressure caused by molecule interactions in 

suspension can be determined by the value of the radial distribution function 

𝑔(2𝑎)  from Carnahan-Starling approximation(Carnahan and Starling 1969) which 

can be expressed as:  

g(2a) =
1 − (ϕhs/2)

(1 − ϕhs)
3

 Eq. IV-22 

So the equation of state for hard sphere molecules can be expressed as:  
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Πosm
nkBT

= 
1 + ϕhs + ϕhs

2 − ϕhs
3

(1 − ϕhs)
3

 Eq. IV-23 

For the case of Lysozyme, the 𝜙ℎ𝑠 = 
4

3
𝜋𝑟3, whereas 𝑟 is the gyration radius of 

Lysozyme. 

IV.4. Results and Discussion 

IV.4.1. Validation of microfluidic designs 

The designs presented in the Figure IV-5 were tested for droplets generation 

and the study of the dissolution process. It was possible to achieve in both designs 

very homogenous and stable droplet generation with constant droplets diameter 

and frequency. However, droplet dissolution could only be tested successfully in 

the first design. In the second design, as the dimension of storage Hele-Shaw cell 

was huge compared to the flow rates of the continuous phase, droplets collided 

and coalesced easily. In addition, at lower flow rates, the droplets stuck to the 

walls.  In contrast, if the flow rates were high enough to avoid sticking, the length 

of the cell was too short to observe total droplet dissolution.  

In conclusion, the first design satisfied all conditions to perform dissolution 

experiments. Thus, this design was used for all the experiments presented in this 

chapter.  

IV.4.2. Dissolution of pure water droplets 

The experiments of dissolution of pure water droplets were carried out in three 

different saturation fraction 1-decanol media. These experiments were performed 

not only to test the E-P equation, but also to study the effect of water saturation 

fraction in 1-decanol in droplets dissolution. The evolution of droplet size is shown 

in the Figure IV-7.  
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Figure IV-7: The  evolution of pure water droplet size with initial diameter around 80 µm  is 

dissolving in pure 1-decanol as a function of time from 0s to 83s. 

The experimental data are in good agreement with the E-P model (see the 

Figure IV-8). In addition, using a flow rate of 0.03 µL/min for the dispersed phase 

and 5 µL/min for the 1-decanol, the droplet frequency is 16 droplets/min.  In this 

case, the volume of 1-decanol surrounding the droplet was large enough to be 

considered as an infinite medium to small droplets, so the water droplets were 

completely dissolved. With this constraint, a water droplet with an initial diameter 

about 80 µm was generated in the pure decanol (𝑓 = 0) in the Figure IV-7. By the 

time(𝑡 > 0), the size of droplet decreased due to diffusion of water from the 

droplet to the surrounding medium. When the droplet was totally dissolved, it 

disappeared (around 83s represented in the Figure IV-7). However, the droplets 

dissolution time depends on the initial volume/diameter and the saturation 

fraction (i.e. water activity). For example, for the 1-decanol with  𝑓 = 0.2 the 

dissolution time for a 100 µm diameter droplet is around 94s as shown in the Figure 

IV-8. These influences are more deeply discussed below.  
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Figure IV-8: Evolution of droplet's diameter by the time of  water droplet in 1-decanol with 

saturation fraction 𝑓 = 0.2. (black circle) is the experimental data and (red circle) is the E-P 

modeling data. 

The E-P modeling was applied to the case of a pure water droplet dissolution 

in 1-decanol with a saturation fraction 𝑓 = 0.2 (Figure IV-8) and considering a 

water diffusion coefficient  𝐷 = 6𝑒 − 10 m2/s. It is worth noting here that the 

empirical data perfectly fit with the modeling until the diameter of droplet goes 

below less than 20 µm. The difference observed might be explained by the 

sensitivity of the detection in the Matlab program. Below 15 µm, the program 

could not detect properly the droplet anymore. The fitting of experimental and 

modeling data also showed that the dissolution of pure water in 1-decanol is 

dominated just by diffusion of water.  

In order to investigate the dissolution kinetics, the mass flux of water diffusion in 

1-decanol was calculated. This flux is defined by the mass flow 𝑚 in the time 𝑡 

through the droplet surface area 𝑆. In that case, it is calculated from variation of 

droplet’s volume (∆V) in ∆𝑡 divided by the surface area of droplet 𝑆. By this way, 

the flux is determined from measured droplet diameters through the following 

expression: 

Fi = −D
dm

dt
(
1

S
) = −D

(Vi+1 − Vi)

(ti+1 − ti)
(
1

Si
) Eq. IV-24 
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Figure IV-9: Flux of diffusion and diameter evolution by the time of 90 µm initial diameter 

water droplet in pure 1-decanol. 

The relationship between the droplet diameter and flux of diffusion is depicted 

in the Figure IV-9. The experiments were carried out with a 90 µm initial diameter 

droplet diffusing in pure 1-decanol. The diameter of the droplet was 

automatically measured using the Matlab program and then the flux of diffusion 

was calculated based on these data as mentioned in the Eq. IV-24. According to 

the graph, at the beginning, 0 < 𝑡 < 50𝑠  the flux can be seen as constant at 

~ 4𝑒−10 (g/m2s). Subsequently, the flux starts to increase when the droplet 

diameter or time of dissolution reach a certain value. This means that at the final 

stage of dissolution, the dissolution rate becomes significantly faster. The rate 

increases to a maximum value when the diameter is minimum just before its 

complete dissolution.  

IV.4.2.1. Influence of saturation fraction of surrounding medium. 

The effect of the saturation fraction of surrounding media by the time of 

complete dissolution is studied for different saturation fractions 𝑓 of 1-decanol. 
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Figure IV-10: Dimensionless plot of dissolution water droplet in various 1-decanol saturation 

fractions ( 𝑓 = 0;  0.1 𝑎𝑛𝑑 0.2). 

The dissolution kinetic of water droplets in 1-decanol was studied by 

generating single water droplets dissolved into drying 1-decanol media at three 

different water saturation levels  𝑓 = 0, 𝑓 = 0.1 and 𝑓 = 0.2 (shown in the Figure 

IV-10). Since the droplet size affects its dissolution time, in order to compare the 

shrinking rate of the droplets, a dimensionless form of the E-P equation, 

independent to initial diameter and diffusion coefficient, was expressed. The 

terms Α = 𝑅/𝑅0 and 𝑇 = 𝜋𝐷𝑡/𝑅0
2 were employed and the E-P equation in 

dimensionless form was  re-written as:  

dA

dT
= −

cs
πρ
(1 − f) {

1

A
+
1

√T
} Eq. IV-25 

The Figure IV-10 shows the dissolution rates of water droplets in the 1-decanol 

solutions. When the saturation fraction increases (higher amount of water in 

decanol medium), the dissolution rate decreases. It is clearly shown in the graph 

that the dimensionless diameter decreased down to 0.6 for 𝑓 = 0, 𝑓 = 0.1 and 𝑓 =

0.2 when the dimensionless time increased with 𝑇 = 32, 𝑇 = 37 and 𝑇 = 41, 

respectively. Consequently, at a constant droplet initial diameter, the dissolution 

time at higher saturation fraction was longer.  
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IV.4.2.2. Influence of initial droplet diameter. 

Here, the dissolutions of droplets with different initial diameters in the same 

surrounding media were performed in order to reveal the influence of initial 

diameter. In this case, droplets with initial diameters of 90 µm and 135 µm were 

dissolved into pure 1-decanol medium (𝑓 = 0).  

 

Figure IV-11: Diameter evolution for 2 droplets with different initial diameter dissolving in 

pure 1-decanol 𝑓 = 0. 

As expected, the droplet with bigger diameter took a longer time to dissolve (~ 

160 s) compared to the smaller one (90 s).  

The variation of diffusion flux as a function of time for the two droplets is 

illustrated in the Figure IV-12. 
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Figure IV-12: Flux of diffusion of 2 droplets with different initial diameter(90 µm and 135 µm) 

dissolving  in  pure 1-decanol (𝑓 = 0). 

Firstly, the temporal evolution of the mass flux curve of a 135 µm droplet is 

considered. Since the diameter of the droplet is bigger than the depth of 

microchannel (120 µm), the droplet is confined between the top and the bottom 

of the channel. The flux of diffusion at the beginning of the process (0 < 𝑡 < 24𝑠) is 

larger than expected due to the higher velocity of 1-decanol at the top and 

bottom channel. However, when the droplet diameter is smaller than 120 µm (𝑡 

around 24 s), the flux decreases and starts to keep a constant value, for a certain 

time, before increasing again. The shrinking of the droplet was compared again 

with the E-P modeling and a good agreement was found between the 

experimental and the E-P equation. This means that the dissolution process for 

oversize droplet is still in agreement with theory and no other factors but diffusion 

is involved in dissolution process. However, only lower than 120 µm diameter 

droplets are considered in the protein dehydration experiments to ensure the 

dissolution rate low enough to avoid skin formation.  

IV.4.3. Typical experiment of droplet dissolution with lysozyme 

solution 

As described above, single spherical Lysozyme solution droplets were formed 

and transported into 1-decanol to investigate the dehydration process of 
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lysozyme solution. Here, the concentration of Lysozyme solution explored ranges 

from 50 to 150 mg/mL, the size of initial diameter ranges from 60 to 120 µm and 

the saturation fractions of 1-decanol ranges from 0.1 to 0.9.  

     

0s 5s 15s 35s 45s 

     

60s 100s 125s 150s 180s 

Figure IV-13: Dehydration process of a lysozyme solution droplet  with initial concentration 

of 80 mg/mL  in 1-decanol with  saturation fraction 𝑓 = 0.4 

The general dehydration process of Lysozyme solution droplets in the 1-

decanol medium with saturation fraction 𝑓 = 0.4 is illustrated in the Figure IV-13. 

According to the picture sequence, the droplet disappeared at a certain time 

due to refractive index matching of protein solution and 1-decanol (e.g. in case 

𝑓 = 0.4, 𝑡𝑛−𝑚𝑎𝑡𝑐ℎ = 57 s). When the chemical potential of water in the droplet and 

of water in the continuous phase are equal, i.e. when the thermodynamic 

equilibrium is reached, the diffusion of water stops and the droplet diameter 

remains constant  as shown in the Figure IV-14. 
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Figure IV-14: Comparison between the experimental data obtained from the dehydration 

of a  97 mg/mL  lysozyme droplet in 1-decanol (𝑓 = 0.3) and the E-P modeling data for a 

droplet of pure water with the same initial diameter. 

The use of microfluidic systems to study the dissolution of droplets has been 

rarely investigated in the literature. Hence, in order to test the dehydration 

process of a lysozyme solution droplet in 1-decanol using a microfluidic system, a 

comparison was performed between the evolution of a Lysozyme droplet with an 

initial concentration of 97 mg/mL in 1-decanol with 𝑓 = 0.3 and the E-P modeling 

data of a droplet of pure water with the same initial diameter. The dehydration 

process can be divided into three parts. The first part, the shrinking of the 

diameter perfectly fits with the modeled curve for the pure water droplet. This 

means that in the first part of the dissolution process, the system behaves as an 

ideal system. The protein solution is diluted enough so that the water and protein 

interactions are negligible. The water removed in this part can be considered as 

bulk water (with water activity always equal 1). When the concentration of 

protein inside the droplet increases, protein-water interactions increase as well, 

the difference in chemical potential becomes less important and the dissolution is 

slowed down. In that case, as shown in the Figure IV-14 the droplet diameter 

decreases from 57 µm down to 43 µm in 50 seconds. When the water activity on 
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both sides of the droplet interface are equilibrated, the diffusion of water stops 

and thus the droplet diameter stops shrinking. 

IV.4.3.1. The influence of initial diameters 

 

Figure IV-15: Influence of initial diameter in the dehydration process of a 90 mg/mL  

lysozyme solution droplet in 1-decanol with saturation fraction 𝑓 = 0.4. 

To illustrate the influence of the initial diameter on the dehydration process, let 

consider the case of dehydration of two droplets with the same initial 

concentration 90 mg/mL in 1-decanol (𝑓 = 0.4) with two different diameters (84 

µm and 96 µm). The results obtained in terms of diameter evolution as a function 

of time are given in the Figure IV-15 and the corresponding mass flux are 

presented in the Figure IV-16. As expected, larger droplets take more time to 

dehydrate and the final diameter is proportional to the initial diameter. The most 

interesting observation in this experiment is depicted in the Figure IV-16. Indeed, 

the mass flux of the larger droplet is almost constant (even if a small increase is 

observed, which can be attributed to an experimental error due to the 

measurement method) during the first part of the dissolution process and then 

decreases down to 0 at the thermodynamic equilibrium. For the smaller droplet, a 

different behavior is observed. After a period during which the mass flux is almost 

constant, an important increase is observed before the flux starts to decrease. 

The formation of this flux peak could initially be attributed to the formation of a 

skin of protein (aggregated proteins at the interface), this kind of peak in the flux 

can be characteristic of a skin breakage.  
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Figure IV-16: Flux of diffusion of water to drying medium(𝑓 = 0.4) with different droplet's 

initial diameter of Lysozyme droplets with 90 mg/mL. 

 

Figure IV-17: Relation between the mass diffusion flux and evolution of diameter in 1-

decanol 𝑓 = 0.4. 

However, in all the experiment performed when 𝑓 was greater than 0.05, no 

skin formation was observed during the droplet dehydration (Rickard and 

coworker made also this observation)(Rickard, Duncan, and Needham 2010). In 

addition, if a skin is formed at the droplet interface, the mass flux should first 

decrease, due to the skin formation. The skin at the interface is an additional 

barrier for the diffusion of water through the interface. When the skin breaks, as 
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the chemical potential of water inside the droplet is much higher than at the 

outside, a “fast” diffusion is observed to reach the thermodynamic equilibrium. 

This induces a fast increase (peak) of the mass flux.  From this observation and 

from the observation of the temporal evolution of the flux of pure water shown in 

the Figure IV-12, which presents the same behavior as the protein solution, the 

increase of the flux can be attributed both to the lower size of the droplet and to 

the increase of the surface to volume ratio, which favor the diffusion process. As 

shown in the Figure IV-17 in the case of the protein solution dehydration, the 

increase of the mass flux is obtained when the droplet diameter is below 50 µm. 

Similar results are obtained for the dissolution of the pure water droplets of 90 µm 

presented in the Figure IV-9. In that case, the mass flux increases when the droplet 

diameter is lower than 50 µm.   

These later observations are also supported by the simulation of the dissolution 

of Lysozyme solution droplets (presented in section IV.2.3). 

IV.4.3.2. The influence of initial protein concentration 

In order to study the influence of the initial concentration of lysozyme, 

experiments of droplets dehydration were carried out with the same initial droplet 

diameter at different initial concentrations, in1-decanol with a saturation fraction 

𝑓 = 0.25. The evolution of the droplet diameter by the time is plotted in the Figure 

IV-18. As previously observed, no matter the lysozyme concentration used, the first 

part of the dehydration curve perfectly fits with the E-P model, (i.e. the dissolution 

of pure water). In addition, the higher initial concentration, the higher final 

diameter and the faster final state are reached. It can be explained that the flux 

of both droplets has the same magnitude and behavior and it is independent to 

the initial concentration. The temporal evolution of protein concentration inside 

the droplet was calculated using the temporal evolution of the measured 

diameter. The variation of Lysozyme concentration inside the droplet as a 

function of time is presented in the Figure IV-19. In both cases with the saturation 

fraction 𝑓 = 0.25 1-decanol medium, the final concentration is 1100 mg/mL. 
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Figure IV-18: Diameter evolution of 2 droplets with the same initial diameter (100 µm) but 

different initial lysozyme concentration (130 and 175 mg/mL, respectively) dehydrating in 

1-decanol 𝑓 = 0.25 medium. 

 

Figure IV-19: Concentration change of droplets with the same initial diameter (100 µm) 

but different initial concentration of protein (130 mg/mL and 175 mg/mL) in 1-decanol 
𝑓 = 0.25  

Finally, some conclusions are extracted from this set of experiments. First, the 

protein concentration in the droplets reaches a constant value at the end of the 

process when the whole system reaches the equilibrium state. This value only 

depends on the saturation fraction of the drying medium. Consequently, higher 
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initial concentrations the droplets will reach the equilibrium faster. Second, from 

this preliminary results, some conclusions about the droplet dissolution process in a 

microfluidic system can be drawn: 

 If the initial diameter is smaller than the channel height and the droplet 

generation frequency is low enough, the continuous phase can be considered as 

infinite compared to the droplet size. 

 The initial diameter and the initial droplet concentration have no effect 

on the final state of the droplet 

 At high initial protein concentration, the final state can be reached 

faster without affecting the mass flux and the final concentration. 

IV.4.4. From the influence of saturation fraction to the equation of 

state of the protein 

IV.4.4.1. Influence of the saturation fraction 

 

Figure IV-20: The mass flux of droplets with the same initial concentration 100 mg/mL and 

same initial diameter 70 µm at 3 different values of 𝑓 = 0.24, 𝑓 = 0.35 and 𝑓 = 0.5. 

To test the influence of the saturation fraction of water in 1-decanol, protein 

droplets with the same initial diameter and the same initial concentration were 

dehydrated in 1-decanol with different saturation fraction. For instance, in the 

case of droplets with an initial diameter of 70 µm and initial protein concentration 

of 100 mg/mL the final diameters were 28 µm, 31 µm and 35 µm for 𝑓 = 0.24, 0.35 



 Chapter IV - Dehydration of protein solution 

 125 

and 0.5 respectively.  The temporal evolution of the water flux in these 

experiments are presented in the Figure IV-20. At the beginning of the 

experiment, the flux is constant. Then due to the decrease of the droplet size, the 

flux increases and then decreases until the system reaches the thermodynamic 

equilibrium. It is worth noting that when the saturation fraction increases, the flux is 

lower as the driving force (i.e. the difference in the chemical potential between 

the water inside and outside the droplet) of the transfer is lowered. 

 

Figure IV-21: Evolution of analogous droplets with 98 µm initial diameter and 100 mg/mL 

concentration at two different saturation fractions 𝑓 = 0 and𝑓 = 0.4. Here, the skin 

formation is observed for case 𝑓 = 0 leading the final diameter of droplet is larger than in 

𝑓 = 0.4. 

The Figure IV-21compares the dehydration of a lysozyme solution droplet (with 

a 98 µm initial diameter and 100 mg/mL initial concentration) in the pure decanol 

to the dehydration of an analogous droplet in decanol with 𝑓 = 0.4.  It is noticed 

that the final diameter in dehydration by pure 1-decanol is higher than in decanol 

which water is introduced.  As shown in the Figure IV-22, the aqueous droplet loses 

its spherical shape, clearly showing that a skin is formed during the dissolution 

process. This skin on the surface of the droplet prevents the mass transfer of water 

and leads a larger amount of water in the droplet at the end of the dissolution 

process.  
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Figure IV-22: The formation of skin on a droplet during its dehydration process at 𝑓 = 0.  

The change of the droplet shape can be clearly observed. 

IV.4.4.2. The hydration of protein solution. 

As observed in the previous experiments, as long as the droplet diameter is 

smaller than the height of the microfluidic channel in which droplets are 

generated, the final state of the protein solution droplet is only affected by the 

saturation factor. To study the influence of the saturation factor, and thus the 

relation between the hydration state of the protein in the solution and the water 

activity, several experiments were performed with a saturation factor ranging 

from 𝑓 = 0.1 to 𝑓 = 0.84, corresponding to a water activity ranging from 0.12 to 

0.95. Some experimental conditions used during the dehydration experiments are 

given in Table IV-1. 
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Table IV-1: Experimental conditions for each dehydration experiment performed  

Initial 

concentration 

(mg/mL) 

Initial 

diameter 

(µm) 

n-matched 

diameter 

(µm) 

End-

diameter 

(µm) 

Saturatio

n fraction 

Water 

activity 

Mea

n 𝐚𝐰 

STD 𝐚𝐰 Mean 

𝐡 

STD 

𝐡 

Mean

𝛗𝐋𝐲𝐬 

STD

𝛗𝐋𝐲𝐬 

Mean 

𝚷(bar) 

STD 

𝚷(bar 

150.5-176.28 90.11-95.45 66.64-67.6 48.62-51.17 0.02 0.05 0.05 0.00 0.05 0.06 0.88 0.07 4113.07 0 

109.37 104.69 62.34 46.70 0.05 0.12 0.12 0.00 0.07 0.00 0.86 0.00 2906.65 0.00 

106.58 - 139.29 102.85-109.5 61.47- 68.16 46.07-50.5 0.11 0.25 0.25 0.01 0.06 0.03 0.87 0.03 1898.76 42.72 

122.04 -140.96 66.09-98.93 40.82-64.11 30.97-48.58 0.15 0.30 0.30 0.03 0.10 0.00 0.83 0.00 1632.8 118.25 

99.99-156.68 69.49-108.28 42.29 -72.53 31.96-53.93 0.22-26 0.44-0.5 0.47 0.02 0.11 0.03 0.82 0.03 1021.93 54.39 

83.54-174.27 69.65103.48 44.71-67.34 34.56-50.40 0.27-0.3 0.51-0.55 0.52 0.02 0.13 0.04 0.80 0.04 883.73 40.25 

90.74-147.25 66.46-106.3 41.07-60.48 31.8-45.9 0.31-0.33 0.56-0.59 0.58 0.01 0.12 0.03 0.81 0.02 739.73 33.71 

90.74-118.95 66.01-106.08 36.94-64.96 28.41-50.41 0.35 0.61 0.61 0.00 0.13 0.02 0.8 0.02 666.74 0 

57.67-89.16 71.3-97.98 34.3-52.25 26.23-40.77 0.40 0.67 0.67 0.00 0.14 0.03 0.79 0.03 550.79 0 

67.11-80.25 83.69-96.37 42.35-50.61 33.8-39.3 0.45 0.72 0.72 0.00 0.17 0.06 0.77 0.05 455.29 0 

85.67-146.52 90.34-107.98 49.59-70.88 38.3-53.14 0.48 0.74 0.74 0.00 0.15 0.08 0.78 0.07 401.98 7.68 

95.27-148.75 66.31-100.92 37.7166.58 29.8-53.10 0.5-0.52 0.76-0.77 0.77 0.01 0.19 0.04 0.75 0.04 364.22 10.68 

74.29-108.59 67.44-99.26 36.07-58.84 29.08-46.68 0.56-0.59 0.80-0.83 0.82 0.0075 0.26 0.04 0.88 0.07 4113.07 0 



 

 

The obtained results were analyzed using equation Eq. IV-17, for the 

determination of the ratio of the mass of water to the mass of the protein. In 

addition, according to equation Eq. IV-23 and  Eq. IV-19, the osmotic pressure has 

been calculated from the water activity and the volume fraction of the protein 

concentration. The Table IV-1 presents the mean value and the corresponding 

standard deviations for the amount of water per amount of Lysozyme ℎ, the 

water activity 𝑎𝑤 and the volume fraction of Lysozyme φ𝐿𝑦𝑠. At least 5 droplets 

were analyzed for each experiment to attain a meaningful average value. It 

should be noticed that for high values of the saturation factor, the time needed 

to reach the equilibrium state is longer than the residence time of the droplet in 

the microfluidic channel. For these experiments, the droplets were generated in 

the microfluidic channel and then stored in a petri dish in order to measure the 

final state of the droplet. Only the initial diameter and the final diameter were 

measured. The equilibrium hydration levels at the end of the dissolution process 

are shown as a function of 𝑎𝑤 in the Figure IV-23 along with data published in the 

literature, (Rickard, Duncan, and Needham 2010)(Lüscher-mattli and Rüegg 

1982). In all cases, a higher 𝑎𝑤 in the surrounding medium resulted in a higher 

water content in the final protein phase. At 𝑎𝑤 > 0.8, the decanol dehydration 

data is in good agreement with the desorption isotherm and with single-particle 

vapor sorption data obtained from Rickard et al. However, for 𝑎𝑤 < 0.8 the 

experimental protein beads show lower levels of hydration than the one obtained 

by Rickard technique although they are in agreement with the absorption data.  
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Figure IV-23: Equilibrium hydration levels at the end of the protein droplets dehydration 

process using 1-decanol are shown as a function of 𝑎𝑤 compared to other data 

previously reported in the literature ( Absorption isotherm(Lüscher-mattli and Rüegg 1982) 

and Single particle vapor sorption(Rickard, Duncan, and Needham 2010)) 

IV.4.4.3. The equation of state of the protein. 

The evolution of the osmotic pressure as a function of the volume fraction of 

protein inside the droplets are plotted in the Figure IV-24 Together with the data 

obtained by Rickard et al. and the work Pasquier et al. (Coralie Pasquier et al. 

2016). A good agreement between the experimental data in this work and the 

data from the work of Pasquier et. al. is observed. In their work, the osmotic 

pressure was determined using a dialysis membrane from the experimental 

procedure of Bouchoux et al.(Bouchoux et al. 2010). Their method is a 

complementary method since it provides less “dried” protein solutions compare 

to the dehydration process in an organic solvent. As mentioned above, the main 

reason rises from the fact that at high amount of water in 1-decanol, the 

dissolution process takes much more time to reach the thermodynamic 

equilibrium than the residence time of the droplet in the microfluidic chip.   

The Carnahan-Starling equation of state is also plotted in the Figure IV-24 for a 

Lysozyme with a gyration radius of 14.64 Å(Torre, Huertas, and Carrasco 2000). It is 

worth noting that all the experimental data (for the present work and from 
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literature) are in good agreement with the trend given by the equation of state. 

However, in contrast to the data obtained by Pasquier et al. no crossover of the 

Carnahan-Starling equation is observed in our data. This could probably due to a 

different organization of the proteins molecules during between our experiments 

and their experiments. In addition, as no crossover of the equation of state is 

observed, during protein dehydration, the protein seems to remain in a repulsive 

state. However, this supposition needs to be confirmed by subsequent analysis (by 

SAXS for instance). 

 

Figure IV-24: Osmotic pressure 𝛱 as function of volume fraction of Lysozyme. The empirical 

data from this work is compared with osmotic pressure values previously reported in 

literature: (bullseyes)of Pasquier et al(Coralie Pasquier et al. 2016), (filled triangle) of 

Rickard(Rickard, Duncan, and Needham 2010) and (dash line) the Carnahan-Starling 

approximation. 

IV.4.5. Modeling of the dissolution process. 

As the Carnahan-Starling equation of state describes well the data obtained 

for the final state of the protein, it has been implemented in the modeling 

presented in section IV.2.3. A comparison between modeling and empirical data 
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in the dehydration process  by 1-decanol with 𝑓 = 0.1 is presented in the Figure 

IV-25 for the temporal evolution of the droplet size and in the Figure IV-26 for the 

mass flux. It is clearly observed that the model is in good agreement with the 

experimental data for the diameter. But the final diameter is over estimated with 

an inaccuracy of around 5 to 7µm.  

 

Figure IV-25: Evolution of droplet diameter versus modeling data for 𝑓 = 0.1 

 

Figure IV-26: Experimental mass flux versus modeling data for 𝑓 = 0.1 

In the case of the flux, a less quantitative agreement is obtained, but the 

general experimental trend is respected. As mentioned above in the experiments, 

after a nearly constant value of the flux at the beginning of the dissolution 

process, the mass flux increases significantly and decreases afterward. In the case 

of the modeling results, the increase of the mass flux happens at 𝑡 = 60 s 
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corresponding to diameter of 55 µm, which is in good agreement with the 

increase observed in the experiments. 

Some important differences between the modeling and the experiments 

should be noticed. Firstly, at the beginning, it is noticed a huge decrease of the 

mass flux (probably due to a numerical error in the estimation of the initial 

diameter) which is not observed experimentally. The end of the dehydration 

process predicted by the numerical model is 20 s faster than in the experimental 

process. In addition, the mass flux decrease predicted by the model is faster than 

the mass flux obtained experimentally. Similar trends are observed for the 

modeling of the dehydration process at higher saturation fractions. In the Figure 

IV-27 and the Figure IV-28, the results of the modeling and the corresponding 

experimental data are presented for the evolution of the droplet diameter and 

the mass flux with time. Again, the correlation in general lines is preserved and 

well described by the numerical model and the final diameter is still 

overestimated by the model. However, the decrease of the mass flux obtained in 

this case agrees well with the experimental data.    

 

Figure IV-27:Evolution of diameter (µm) versus modeling data for 𝑓 = 0.35 and 𝑓 = 0.5. 
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Figure IV-28: Experimental mass flux(g/m2s) as a function of time versus modeling data for 

𝑓 = 0.35 and 𝑓 = 0.5  

 The differences between the experimental data and the modeled data can 

be attributed to different issues in the model. First, as stated in section IV.2.3, in the 

continuous phase a strong assumption (due to the numerical method used and 

due to the non-linearity of the equation to be solved) was made on the fact that 

the diffusion in the continuous phase behaves as in an ideal system. In addition, in 

order to satisfy the condition that at 𝑐 = 𝑐𝑠𝑎𝑡, 𝑎𝑤 = 1, and at 𝑐 = 0, 𝑎𝑤 = 0, it was 

postulated that 𝑎𝑤 = 𝑐 𝑐𝑠𝑎𝑡⁄  meaning that the activity coefficient is constant and 

equal to  𝛾𝑤 =
1

𝐶𝑠𝑎𝑡
. Different modeling of the thermodynamic properties of the 1-

decanol / water solution were tested, using the relation proposed by  Segatin et 

al.(Šegatin and Klofutar 2004), but due to the uncertainty of the experiments 

(from the water activity in decanol and water activity in lysozyme solution), the 

results were not satisfactory. The main reason is that, at the beginning of the 

dissolution process, as soon as the water start to dissolve in the continuous phase, 

the calculated water activity inside the droplet becomes lower than the water 

activity in the continuous phase, which stops the dissolution process. In order to 

improve the modeling, a more detailed thermodynamic model is needed for the 

description of the continuous phase (i.e. using a PC-SAFT model for instance). 

The main purpose of our modeling approach is that if it is possible to follow the 

entire dissolution process of a colloidal solution. Then by taking the assumption 
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that the dissolution process is slow enough, at each time steps, the droplet is in a 

“quasi” equilibrium state with the surrounding medium. This means that the 

colloidal solution in the droplet goes through all the equilibrium states from a 

water activity of 1 to the final water activity. In that way, if the modeling is 

sufficiently precise, the equation of state of the colloidal solution can be obtained 

in a single experiment with a single droplet. To illustrate this, the evolution of a 

lysozyme droplet and the water activity as a function of time is given in the Figure 

IV-29 for a droplet with an initial diameter of 95 µm and a saturation fraction 

𝑓 = 0.2.  

 

Figure IV-29: Evolution of droplet diameter and water activity inside as a function of time.  

As it is qualitatively seen in this figure, at the beginning of the dissolution 

process, the activity of the water remains close to 1 and therefore the temporal 

evolution of the droplet diameter agrees well with the E-P model. Then the activity 

of water inside the droplet slowly decrease and the evolution of the diameter is 

no more in agreement with E-P modeling. At the end of the process, the activity 

coefficient reaches a constant value. The coupling of this experimental setup with 

an improved version of the numerical model (i.e. with no assumption of the 

continuous phase and a good thermodynamic model of the continuous phase), 
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can be a highly efficient method for the determination of the equation of state of 

colloidal systems. 

 

IV.5. Conclusions and Perspectives  

In this chapter, the use of microfluidic platforms is proposed to study the 

colloidal droplets dissolution in an organic solvent. Some important remarks are 

extracted from this work:  

A microfluidic platform was successfully fabricated based on soft lithography 

method. The fabricated microfluidic chips satisfied all the requirements for 

following the entire dissolution/dehydration of water/Lysozyme solution droplets in 

1-decanol media:  achieving the generation of stable aqueous droplets and a 

large enough channel for being considered as infinite. 

The experimental data of water droplet dissolution in the microfluidic chip 

were compared to E-P modeling data. The data were found in good agreement, 

thus validating the microfluidic setup in which the dissolution process was 

dominated by the diffusion of water molecules without the presence of 

convection.  

The influence of different factors, namely initial protein concentrations, initial 

droplet diameters, and the saturation fraction of the surrounding medium, were 

investigated. However, only the saturation fraction was found to play a significant 

role in the dissolution/dehydration process as long as the diameter of the droplet 

is smaller than the height of the channel. At the same saturation fraction, the final 

state of lysozyme concentration will be the same no matter the value of mass flux 

nor the initial concentration of protein. 

The hydration isotherms of lysozyme in aqueous media were obtained. Results 

were found to be in good agreement with the data previously reported in the 

literature. Moreover, the residence time to reach the isothermal equilibrium was 

significantly shorter than the one required using the other methods reported in the 

literature such as using dialysis membranes. 
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The first approach of modeling that describes the behavior of droplet dissolution is 

developed and proposed.  In this case, the modeling result agrees quite well with 

the experimental data for the droplets diameter evolution. However, the 

dissolution time predicted by the model was faster than the one observed 

experimentally. Nevertheless, the general experimental trend was preserved and 

well described by the numerical model. On the other hand, the numerical 

modeling for the flux displayed a lower quantitative agreement, although the 

general experimental trend is still respected. These deviations can be explained 

by differences coming from the model related to the initial assumptions which are 

not satisfied.  

However, several questions in this study are subject to improvement. First of all, 

some perspectives for technical issues are worth to be mentioned. The flow-

focusing structure operation, for droplet generation, depends on the syringe 

pump system. Unfortunately, the syringe pump system reached its operational 

limit when very small droplet was generated leading to instability in droplet 

generation. To improve this, the use of a pressure controlled system, able to 

generate isolated droplets on demand in a more reproducible way is proposed.   

During the dissolution process of protein solution, the refractive index of protein 

solution inside droplet changes as a function of protein concentration. When the 

two refractive indexes of organic phase and protein solution droplet matched, 

the droplet became invisible, causing important errors in the detection of droplet 

size. Thus, a special technique such as the Schlieren method can be coupled with 

the microfluidic system in order to present a more sensitive technique to monitor 

the refractive index variation. 

With these improvements, an automatic tracking of the droplets flowing in the 

channel can easily setup. This would allow recording the entire dissolution process 

with higher precision.  

Concerning the modeling, a complete thermodynamic model should be 

developed to describe the activity of water in decanol. The perturbed-chain 

statistical associating fluid theory (PC-SAFT) is proposed for developing this model 
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in the future. Additionally, the numerical model should be improved to solve non-

linear partial derivative equations.
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The work presented in this thesis spans a bottom-up approach for the 

development of new and more efficient methodologies for the study of the 

behavior of protein molecules in solution. 

First, in order to provide new and high-throughput analytical tools allowing a 

dramatic improvement on reagent consumption and experimental time, a fast, 

low-cost and robust protocol for microfluidic chips fabrication was developed. 

This protocol, based on cast molding over master molds fabricated with 

inexpensive dry film photoresists presents the following advantages:  

High resolution, fast prototyping and cheap materials: 2D structures can be 

fabricated in normal laboratory conditions (avoiding expensive clean room 

facilities) with low resolution film masks obtaining operative microfluidic channels 

down to 30 µm wide. The whole process from CAD design to real systems 

fabrication takes less than 24 hours, and the unit cost for the fabrication of a chip 

is less than 5 euros.  

Easy modification of microchannel surface properties: Several simple 

techniques are proposed to change the surface chemistry of the micro-channels 

to make them hydrophilic or hydrophobic, depending on their planned use.  

High chemical and pressure resistance: The chips fabricated in NOA 81 and 

OSTE materials were proven to stand some common organic solvents 

demonstrating a very good resistance without showing any significant damage of 

the fluidic structures. Additionally, microfluidic systems were also demonstrated to 

stand pressures up to 200 bar for more than 20 minutes maintaining their 

operability.  

Second, the fabrication protocol presented in Chapter II of the thesis allowed 

us to develop low-cost microfluidic platforms for two different applications. In 

Chapter III, protein molecular interactions in solution in presence of precipitant 

agents (salt) were studied by combining high-throughput droplet-based 

microfluidics and small angle X-ray scattering techniques. A complete 

optimization of experimental parameters was performed in terms of materials 

selection able to resist radiation damage and to not to affect protein structural 

properties in solution. The experiments were carried out at beamline 29, ESRF 
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Grenoble, France with two model proteins. The special microfluidic setup 

configuration was firstly tested with Rasburicase enzyme, which is known to be 

especially sensitive to denaturation. The results presented as a function of 

scattering intensity versus scattering vector, shown a strong agreement with data 

previously reported in the literature, validating the novel experimental protocol. 

Subsequently, the interaction of lysozyme molecules at the various concentration 

of salt NaCl was studied. It was shown that in absence of salt the protein displays 

a repulsive state. By means of a screening of conditions increasing salt 

concentration (i.e. increasing the ionic strength), it was shown that the protein 

interaction potential changed smoothly from a repulsive to an attractive state, 

giving an indication on protein solubility and suggesting an optimal range of 

conditions in which protein crystallization could be successfully performed. 

Experiments were successfully carried out using just a few milligrams of protein 

and few tens of microliters of solution. 

Finally, in Chapter IV, a second droplet-based microfluidic platform was 

developed to generate lysozyme solution droplets in 1-decanol continuous 

media. Droplets dehydration (occurring due to the diffusion of water molecules 

into the unsaturated continuous phase) was monitored at various initial saturation 

fractions of 1-decanol, and the equation of state of lysozyme in solution was 

determined through the relation of the osmotic pressure between protein 

molecules and the volume fraction of protein inside the droplets. In addition, the 

influences of all factors affecting dehydration process (i.e. initial droplet diameter, 

initial lysozyme concentration of and 1-decanol saturation fraction) were 

investigated. At the end of the dehydration process (i.e. when the system reaches 

the thermodynamic equilibrium), the water activity inside droplet equals the 

given water activity in 1-decanol. Hence, the hydration isotherms can be 

obtained. The equation of state found by this approach showed a good 

agreement with data reported in the literature as well as with the Carnahan-

Starling approximation. Additionally, a numerical approach to predict the 

evolution of droplets diameter during the dehydration process was also 

presented. In order to satisfy the model assumptions, water activity was assumed 

to be 𝑎𝑤 = 𝑐/𝑐𝑠𝑎𝑡. The modeling results revealed small discrepancies with the 
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experimental data but preserved and well described the general trends. To 

improve the model, a more detailed thermodynamic model is required.
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Appendix A 
 

I. Discretization of the problem using explicit, implicit and Crank-

Nicolson 

For this simulation, Fick’s second law is used which modified in terms of 

concentration: 

𝜕𝐶𝑤
𝜕𝑡

−
𝐷

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝐶𝑤
𝜕𝑟
) = 0 Eq. 1 

For this modification, these equations and assumption are needed: 

𝜇𝑖 = 𝜇𝑖
𝑠𝑡𝑑 + 𝐾𝑇 ln𝑎𝑖 = 𝜇𝑖

𝑠𝑡𝑑 +𝐾𝑇 ln 𝛾𝐶𝑖 Eq. 2 

From this equation, since 𝛾 is constant, 

𝜕𝜇𝑖
𝜕𝑟

=
KT

Ci

𝜕𝐶𝑖
𝜕𝑟

 Eq. 3 

With this equation, Fick’s first law can be modified, 

𝐽𝑖 = −𝐷
𝜕𝐶𝑖
𝜕𝑟

 Eq. 4 

Assume that 𝑎𝑖 = 𝛾𝐶𝑖 (𝛾 is constant) and 𝛾 = 1 𝐶𝑠𝑎𝑡⁄  

II. Explicit scheme (Euler method) 

Explicit scheme is the most basic scheme and this scheme predict future data 

with recent data. This scheme is stable when 𝛥𝑡 ≤
𝛥𝑟2

2𝐷
 and has an error with 

degree of second term of Taylor’s series expansion. 

With Fick’s first law and definition of activity, 

𝜕𝜇𝑖
𝜕𝑟

=
KT

𝑎𝑖

𝜕𝑎𝑖
𝜕𝑟

 Eq. 5 

𝐽𝑖 = −𝐷
𝜕𝐶𝑖
𝜕𝑟

= −
𝐷𝐶𝑖
𝑎𝑖

𝜕𝑎𝑖
𝜕𝑟

 Eq. 6 

Fick’s second law can be modified, 
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𝜕𝐶𝑤
𝜕𝑡

−
𝐷

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝐶𝑤
𝑎𝑤

𝜕𝑎𝑤
𝜕𝑟
) = 0 Eq. 7 

𝜕𝐶𝑤
𝜕𝑡

−
𝐷

𝑟2
(2𝑟

𝐶𝑤
𝑎𝑤

𝜕𝑎𝑤
𝜕𝑟

+ 𝑟2
1

𝑎𝑤

𝜕𝐶𝑤
𝜕𝑟

𝜕𝑎𝑤
𝜕𝑟

− 𝑟2
𝐶𝑤
𝑎𝑤
2
(
𝜕𝑎𝑤
𝜕𝑟
)
2

+ 𝑟2
𝐶𝑤
𝑎𝑤

𝜕2𝑎𝑤
𝜕𝑟2

) = 0 Eq. 8 

 

From Eq. 6: 

𝜕𝐶𝑤
𝜕𝑡

−
𝐷

𝑟2
(2𝑟

𝐶𝑤
𝑎𝑤

𝜕𝑎𝑤
𝜕𝑟

+ 𝑟2
𝐶𝑤
𝑎𝑤
2
(
𝜕𝑎𝑤
𝜕𝑟
)
2

− 𝑟2
𝐶𝑤
𝑎𝑤
2
(
𝜕𝑎𝑤
𝜕𝑟
)
2

+ 𝑟2
𝐶𝑤
𝑎𝑤

𝜕2𝑎𝑤
𝜕𝑟2

) = 0 Eq. 9 

𝜕𝐶𝑤
𝜕𝑡

− 𝐷
𝐶𝑤
𝑎𝑤
(
2

𝑟

𝜕𝑎𝑤
𝜕𝑟

+
𝜕2𝑎𝑤
𝜕𝑟2

) = 0 Eq. 10 

By discretization, 

𝐶𝑟
𝑡+1 − 𝐶𝑟

𝑡

Δ𝑡
− 𝐷

𝐶𝑟
𝑡

𝑎𝑟
𝑡  
(
2

𝑟

𝑎𝑟+1
𝑡 − 𝑎𝑟−1

𝑡

Δ𝑟𝑟 + Δ𝑟𝑟−1
+

2

Δ𝑟𝑟 + Δ𝑟𝑟−1
(
𝑎𝑟+1
𝑡 − 𝑎𝑟

𝑡

Δ𝑟𝑟
−
𝑎𝑟
𝑡 − 𝑎𝑟−1

𝑡

Δ𝑟𝑟−1
) = 0 Eq. 11 

 

Finally, 

𝐶𝑟
𝑡+1 = 𝐶𝑟

𝑡 + 𝐷 ∙ Δ𝑡 ∙
𝐶𝑟
𝑡

𝑎𝑟
𝑡  
∙ (
2

𝑟

𝑎𝑟+1
𝑡 − 𝑎𝑟−1

𝑡

Δ𝑟𝑟 + Δ𝑟𝑟−1
+

2

Δ𝑟𝑟 + Δ𝑟𝑟−1
(
𝑎𝑟+1
𝑡 − 𝑎𝑟

𝑡

Δ𝑟𝑟
−
𝑎𝑟
𝑡 − 𝑎𝑟−1

𝑡

Δ𝑟𝑟−1
) Eq. 12 

And activity in/outside can be calculated: 

𝑎𝑟
𝑡+1 =

𝐶𝑟
𝑡+1

𝐶𝑠𝑎𝑡
 Eq. 13 

After activity calculation, radius at t+1 should be calculated. 

R𝑡+1 = 𝑅𝑡 + 𝐷𝐶𝑠𝑎𝑡
𝑀

𝜌
Δ𝑡
𝑎𝑅+1
𝑡 − 𝑎𝑅

𝑡

Δ𝑟𝑅
 Eq. 14 

With Rt+1, concentration of water at the inside can be calculated. 

𝑉|𝑡+1 = Vp + 𝑉𝑤 = 𝐶𝑝|𝑡=0 ∙ 𝑉|𝑡=0 ∙ 𝑀𝑝 ∙ 𝑉𝑠𝑝,𝑝 +
𝐶𝑤|𝑡+1 ∙ 𝑉|𝑡+1 ∙ 𝑀𝑤

𝜌𝑤
 Eq. 15 

C𝑤,𝑖𝑛|𝑡+1 =
ρw
𝑀𝑤

−
𝜌𝑤 ∙ 𝑉𝑠𝑝,𝑝 ∙ 𝑀𝑝 ∙ 𝐶𝑝|𝑡=0 ∙ 𝑉|𝑡=0

𝑉|𝑡+1 ∙ 𝑀𝑤
 Eq. 16 

Finally, activity of water inside the bubble can be calculated 
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h𝑤,𝑖𝑛|𝑡+1 =
𝑀𝑤𝐶𝑤,𝑖𝑛𝑉𝑑𝑟𝑜𝑝|𝑡+1

𝑀𝑤𝐶𝑤,𝑖𝑛𝑉𝑑𝑟𝑜𝑝|𝑡+1 +𝑀𝑝𝐶𝑝,𝑖𝑛𝑉𝑑𝑟𝑜𝑝|𝑡+1
 Eq. 17 

aw = −3.0257ℎ
4 + 9.51814ℎ3 − 10.83145ℎ2 + 5.34444ℎ Eq. 18 

 

III. Implicit scheme (Backward Euler method) 

Since 𝐶𝑤 = 𝐶𝑠𝑎𝑡. 𝑎𝑤 from Eq. 2 

𝜕𝐶𝑤
𝜕𝑡

= 𝐶𝑠𝑎𝑡
𝜕𝑎𝑤
𝜕𝑡

 Eq. 19 

Fick’s second law in Eq. 10 becomes:  

𝜕𝑎𝑤
𝜕𝑡

− 𝐷(
2

𝑟

𝜕𝑎𝑤
𝜕𝑟

+
𝜕2𝑎𝑤
𝜕𝑟2

) = 0 Eq. 20 

By discretization for implicit scheme, 

𝑎𝑟
𝑡+1 − 𝑎𝑟

𝑡

Δ𝑡
− 𝐷(

2

𝑟𝑡+1
∙
𝑎𝑟+1
𝑡+1 − 𝑎𝑟−1

𝑡+1

Δ𝑟𝑟 + Δ𝑟𝑟−1
+

2

Δ𝑟𝑟 + Δ𝑟𝑟−1
(
𝑎𝑟+1
𝑡+1 − 𝑎𝑟

𝑡+1

Δ𝑟𝑟
−
𝑎𝑟
𝑡+1 − 𝑎𝑟−1

𝑡+1

Δ𝑟𝑟−1
) = 0 Eq. 21 

By organization, 

𝑎𝑟
𝑡 = −

2𝐷Δ𝑡

(Δ𝑟𝑟
𝑡+1 + Δ𝑟𝑟−1

𝑡+1)
(
1

Δ𝑟𝑟
𝑡+1

+
1

𝑟𝑡+1
) 𝑎r+1

𝑡+1 + (
2𝐷Δ𝑡

Δ𝑟𝑟
t+1Δ𝑟𝑟−1

𝑡+1 + 1)𝑎𝑟
𝑡+1

+
2𝐷Δ𝑡

(Δ𝑟𝑟
𝑡+1 + Δ𝑟𝑟−1

𝑡+1)
(
1

𝑟𝑡+1
−

1

Δ𝑟𝑟−1
𝑡+1) 𝑎r−1

𝑡+1 

Eq. 22 

Let 
2𝐷𝛥𝑡

(𝛥𝑟𝑟
𝑡+1+𝛥𝑟𝑟−1

𝑡+1)
(
1

𝑟𝑡+1
−

1

𝛥𝑟𝑟−1
𝑡+1) = 𝑚1,  (

2𝐷𝛥𝑡

𝛥𝑟𝑟
𝑡+1𝛥𝑟𝑟−1

𝑡+1 + 1) = 𝑚2 and 

 −
2𝐷𝛥𝑡

(𝛥𝑟𝑟
𝑡+1+𝛥𝑟𝑟−1

𝑡+1)
(

1

𝛥𝑟𝑟
𝑡+1 +

1

𝑟𝑡+1
) 𝑎𝑟+1

𝑡+1 = 𝑚3; 

So, Eq. 22 become: 

𝑎𝑟
𝑡 = 𝑚1 ∙ 𝑎𝑟−1

𝑡+1 +𝑚2 ∙ 𝑎𝑟
𝑡+1 +𝑚3 ∙ 𝑎𝑟+1

𝑡+1 Eq. 23 

 

This can be expressed in matrix form:  
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(

 
 

𝑎1
𝑡

𝑎2
𝑡

⋮
𝑎𝑟−1
𝑡

𝑎𝑟
𝑡 )

 
 
=

(

  
 

𝑚2 𝑚3 0
𝑚1 𝑚2 𝑚3
0 𝑚1 𝑚2

0  0    0
0  0    0
𝑚3  0    0

⋮    ⋮     ⋮
0    0     0
0    0     0

⋮ ⋮ ⋮
𝑚1 𝑚2 𝑚3
0 𝑚1 𝑚2)

  
 

(

 
 

𝑎1
𝑡+1

𝑎2
𝑡+1

⋮
𝑎𝑟−1
𝑡+1

𝑎𝑟
𝑡+1)

 
 

 Eq. 24 

At = M ∙ At+1 Eq. 25 

By using inverse matrix, activity at t+1 can be calculated 

At+1 = M−1 ∙ At Eq. 26 

 

After activity calculation, everything is same with Eq. 14 to Eq. 18 

IV.  Crank-Nicolson scheme 

Crank-Nicolson scheme is combination of explicit and implicit scheme. This 

scheme is also stable for always but shows oscillating behavior for wave equation 

when Δt is large. With same Δt and Δr, it has an error with degree of third term of 

Taylor’s series expansion. For this scheme, Fick’s second law should be modified in 

terms of activity like implicit scheme. 

From Eq. 20, by discretization for Crank-Nicolson scheme: 

𝑎𝑟
𝑡+1 − 𝑎𝑟

𝑡

Δ𝑡
− (𝐷(

1

𝑟𝑡+1
∙
𝑎𝑟+1
𝑡+1 − 𝑎𝑟−1

𝑡+1

Δ𝑟𝑟 + Δ𝑟𝑟−1
+

1

Δ𝑟𝑟 + Δ𝑟𝑟−1
(
𝑎𝑟+1
𝑡+1 − 𝑎𝑟

𝑡+1

Δ𝑟𝑟
−
𝑎𝑟
𝑡+1 − 𝑎𝑟−1

𝑡+1

Δ𝑟𝑟−1
) + 𝐷(

1

𝑟𝑡

∙
𝑎𝑟+1
𝑡 − 𝑎𝑟−1

𝑡

Δ𝑟𝑟 + Δ𝑟𝑟−1
+

1

Δ𝑟𝑟 + Δ𝑟𝑟−1
(
𝑎𝑟+1
𝑡 − 𝑎𝑟

𝑡

Δ𝑟𝑟
−
𝑎𝑟
𝑡 − 𝑎𝑟−1

𝑡

Δ𝑟𝑟−1
)) = 0 

Eq. 27 

 By organization 

𝐷Δ𝑡

(Δ𝑟𝑟
𝑡 + Δ𝑟𝑟−1

𝑡 )
(
1

Δ𝑟𝑟
𝑡
+
1

𝑟𝑡
) 𝑎r+1

𝑡 + (1 −
𝐷Δ𝑡

Δ𝑟𝑟
tΔ𝑟𝑟−1

𝑡 ) 𝑎𝑟
𝑡 +

𝐷Δ𝑡

(Δ𝑟𝑟
𝑡 + Δ𝑟𝑟−1

𝑡 )
(
1

Δ𝑟𝑟−1
𝑡 −

1

𝑟𝑡
) 𝑎r−1

𝑡

= −
𝐷Δ𝑡

(Δ𝑟𝑟
𝑡+1 + Δ𝑟𝑟−1

𝑡+1)
(
1

Δ𝑟𝑟
𝑡+1

+
1

𝑟𝑡+1
) 𝑎r+1

𝑡+1 + (
𝐷Δ𝑡

Δ𝑟𝑟
t+1Δ𝑟𝑟−1

𝑡+1 + 1)𝑎𝑟
𝑡+1

+
𝐷Δ𝑡

(Δ𝑟𝑟
𝑡+1 + Δ𝑟𝑟−1

𝑡+1)
(
1

𝑟𝑡+1
−

1

Δ𝑟𝑟−1
𝑡+1) 𝑎r−1

𝑡+1 

Eq. 28 

Set  
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𝐷Δ𝑡

(Δ𝑟𝑟
𝑡 + Δ𝑟𝑟−1

𝑡 )
(
1

Δ𝑟𝑟−1
𝑡 −

1

𝑟𝑡
)𝑎r−1

𝑡 = m1 (1 −
𝐷Δ𝑡

Δ𝑟𝑟
tΔ𝑟𝑟−1

𝑡 ) = 𝑚2 

𝐷Δ𝑡

(Δ𝑟𝑟
𝑡 + Δ𝑟𝑟−1

𝑡 )
(
1

Δ𝑟𝑟
𝑡 +

1

𝑟𝑡
) = 𝑚3 

𝐷Δ𝑡

(Δ𝑟𝑟
𝑡+1 + Δ𝑟𝑟−1

𝑡+1)
(
1

𝑟𝑡+1
−

1

Δ𝑟𝑟−1
𝑡+1) = 𝑚4 

(
𝐷Δ𝑡

Δ𝑟𝑟
t+1Δ𝑟𝑟−1

𝑡+1 + 1) = 𝑚5 −
𝐷Δ𝑡

(Δ𝑟𝑟
𝑡+1 + Δ𝑟𝑟−1

𝑡+1)
(
1

Δ𝑟𝑟
𝑡+1

+
1

𝑟𝑡+1
) 𝑎r+1

𝑡+1 = 𝑚6 

Equation become: 

𝑚1 ∙ 𝑎𝑟−1
𝑡 +𝑚2 ∙ 𝑎𝑟

𝑡 +𝑚3 ∙ 𝑎𝑟+1
𝑡 = 𝑚4 ∙ 𝑎𝑟−1

𝑡+1 +𝑚5 ∙ 𝑎𝑟
𝑡+1 +𝑚6 ∙ 𝑎𝑟+1

𝑡+1 Eq. 29 

 This can be expressed in matrix form: 

(

  
 

𝑚2 𝑚3 0
𝑚1 𝑚2 𝑚3
0 𝑚1 𝑚2

0  0    0
0  0    0
𝑚3  0    0

⋮    ⋮     ⋮
0    0     0
0    0     0

⋮ ⋮ ⋮
𝑚1 𝑚2 𝑚3
0 𝑚1 𝑚2)

  
 

(

  
 

𝑎1
𝑡

𝑎2
𝑡

⋮
𝑎𝑟−1
𝑡

𝑎𝑟
𝑡 )

  
 
=

(

  
 

𝑚5 𝑚6 0
𝑚4 𝑚5 𝑚6
0 𝑚4 𝑚5

0  0    0
0  0    0
𝑚6  0    0

⋮    ⋮     ⋮
0    0     0
0    0     0

⋮ ⋮ ⋮
𝑚4 𝑚5 𝑚6
0 𝑚4 𝑚5)

  
 

(

  
 

𝑎1
𝑡+1

𝑎2
𝑡+1

⋮
𝑎𝑟−1
𝑡+1

𝑎𝑟
𝑡+1)

  
 

 Eq. 30 

M ∙ At = M′ ∙ At+1 Eq. 31 

By using inverse matrix, activity at t+1 can be calculated 

At+1 = M−1 ∙ M ∙ At Eq. 32 

After activity calculation, everything is the same with Eq. 14 to Eq. 18. 

 

V. Moving VS Fixed grid 

Because of the shrinking of the bubble, two types of grid for distance has been 

considered. 

1. Moving grid 

For moving grid, zero point is put at surface of the bubble. Since the surface is 

moving by time, zero point and every grid point move together by following the 

surface.  
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Figure -1: Illustration of moving grid 

Since grid follow the surface, every data in grid move also. This moving of data 

make numerical error in general case. In this case, however, shrinking of bubble 

can make a flow toward a bubble. After the bubble shrink, a space nearby 

bubble will be empty, there for fluid will move to pack up the empty space. By 

using this grid, this phenomenon can be taken into account. However, for 

accurate simulation, since bubble is sphere shape, compacting of fluid because 

of shrinking of surface area should be considered. 

2. Fixed grid 

For fixed grid, zero point is put at center of the bubble. To consider a surface of 

the bubble, one additional grid should be put at the surface of the bubble, which 

is moving with surface but has independent value with distance. (Concentration 

at the surface or activity of inside). 

 

Figure -2: Illustration of fixed grid 

VI. The Matlab code for explicit scheme with moving grid 
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%Size of bubble in microfluidic coding 

%Explicit scheme 

%Including protein 

%flash about time 

  

clear all 

clc 

  

%Numerical data 

dt=0.00001;  %Delta t 

dr_ini=0.1;  %Delta r at first grid 

dr_rat=1.05;  %Delta r power ratio 

dr_exp=94;  %Delta r power step (after 94th grid, size of every grid 

remain same) 

t_end=50;  %End time 

r_step=200;  %Grid number 

t_space=0.1;  %Period for recoding 

  

%Input variables 

R_sp_0=52.5;  %Initial radius of Bubble 

D=595;  %Diffusivity coefficient 

C_sat=1.34444/(10^15);  %Saturation concentration (In decanol) 

f=0.74;  %Saturation factor 

rho=0.9991/(10^12);  %Density of water 

M=18;  %Molar weight of water 

Vf_p=0.0985;  %Volume fraction of protein 

Vsp_p=0.7*(10^12);  %Specific volume of protein 
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M_p=14300;  %Molecular weight of protein 

C_inf=f*C_sat;  %Concentration of water at outside 

C_p=Vf_p/(M_p*Vsp_p);  %Concentration of protein 

C_w=(1-Vf_p)*rho/M;  %Concentration of water at inside 

C_in=C_w; 

  

%Other variables 

t=0; 

t_step=round(t_end/dt); 

J=zeros(t_end/t_space+1,1);  %Flux 

C_temp=zeros(2,r_step);  %Concentration for calculation 

C=zeros(t_end/t_space+1,r_step);  %Concentration for record 

act_temp=zeros(2,r_step);  %Activity for calculation 

act=zeros(t_end/t_space+1,r_step);  %Activity for record 

R_sp=zeros(t_end/t_space+1,1); 

R_sp_temp=zeros(2,1); 

dr=zeros(1,r_step-1); 

  

%initial conditions 

  

%Assignment of grid size 

for i=1:r_step-1 

    if i<=dr_exp 

        dr(i)=dr_ini*dr_rat^(i); 

    else 

        dr(i)=round(dr(dr_exp)); 

    end 
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end 

  

%Assingnment of previous grid 

dr_temp=[dr(2:end),dr(end)]; 

  

real_r=cumsum(dr)+R_sp_0; 

  

%Initialization 

R_sp_temp(1)=R_sp_0; 

C_temp(1,:)=C_inf; 

C_temp(:,1)=C_in; 

hh=(C_w*M)/((C_p*M_p)+(C_w*M)); 

a_in=-3.0257*(hh^4)+9.51814*(hh^3)-10.83145*(hh^2)+5.34444*hh; 

a_inf=f; 

act_temp(1,:)=a_inf; 

act_temp(:,1)=a_in; 

  

drr=dr+dr_temp; 

  

for t=1:t_step-1 

    C_c=C_temp(1,2:end); 

    a_c=act_temp(1,2:end); 

    a_pr=act_temp(1,1:end-1); 

    a_ne=[act_temp(1,3:end),a_inf]; 

     

    %Concentration and activity calculation by discretized fick's second 
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law 

    C_temp(2,2:end)=C_c+(2*D*dt*C_c./a_c).*((a_ne-

a_pr)./(real_r.*drr)+((a_ne-a_c)./dr_temp-(a_c-a_pr)./dr)./drr); 

    act_temp(2,2:end)=C_temp(2,2:end)/C_sat; 

     

    %Radius cacluation 

    

R_sp_temp(2)=R_sp_temp(1)+(M*D*dt*(C_sat)*(reallog(act_temp(1,2)/act_tem

p(1,1))))/(rho*dr(1)); 

     

    %Concentration and Activity cacluation at inside 

    C_temp(2,1)=(rho/M)-

(rho*C_p*(R_sp_0^3)*M_p*Vsp_p)/((R_sp_temp(2)^3)*M); 

    

hh=(C_temp(2,1)*M*(R_sp_temp(2)^3))/((C_temp(2,1)*M*(R_sp_temp(2)^3))+(C

_p*M_p*(R_sp_0^3))); 

    act_temp(2,1)=-3.0257*(hh^4)+9.51814*(hh^3)-

10.83145*(hh^2)+5.34444*hh;%%%%%%%%%%%%%%% 

     

    %Recording 

    if mod(dt/t_space*(t-1),1)==0 

        R_sp(dt/t_space*(t-1)+1)=R_sp_temp(1); 

        J(dt/t_space*(t-1)+1)=-

(D*(C_sat)*(reallog(act_temp(1,2)/act_temp(1,1))))/(dr(1)); 

        C(dt/t_space*(t-1)+1,:)=C_temp(1,:); 

        act(dt/t_space*(t-1)+1,:)=act_temp(1,:); 

    end 

  

    real_r=real_r+R_sp_temp(2)-R_sp_temp(1); 
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    C_temp(1,:)=C_temp(2,:); 

    act_temp(1,:)=act_temp(2,:); 

    R_sp_temp(1)=R_sp_temp(2); 

     

    if R_sp_temp(2)<=0.1 

        break; 

    end 

     

end 

  

realt=0:t_space:t_end; 

figure(1) 

plot(realt,R_sp*2) 

figure(2) 

plot(realt,J) 

 

VII. The Matlab code for Crank- Nicolson scheme with moving grid 

%Size of bubble in microfluidic coding 

%Crank nicolson scheme 

%Including protein 

%flash about time 

  

clear all 

clc 

  

%Numerical data 
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dt=0.001;  %Delta t 

dr_ini=0.1;  %Delta r at first grid 

dr_rat=1.05;  %Delta r power ratio 

dr_exp=94;  %Delta r power step (after 94th grid, size of every grid 

remain same) 

t_end=50;  %End time 

r_step=200;  %Grid number 

t_space=0.1;  %Period for recoding 

  

%Input variables 

R_sp_0=51.75;  %Initial radius of Bubble 

D=595;  %Diffusivity coefficient 

C_sat=1.34444/(10^15);  %Saturation concentration (In decanol) 

f=0.74;  %Saturation factor 

rho=0.9991/(10^12);  %Density of water 

M=18;  %Molar weight of water 

Vf_p=0.0985;  %Volume fraction of protein 

Vsp_p=0.7*(10^12);  %Specific volume of protein 

M_p=14300;  %Molecular weight of protein 

C_inf=f*C_sat;  %Concentration of water at outside 

C_p=Vf_p/(M_p*Vsp_p);  %Concentration of protein 

C_w=(1-Vf_p)*rho/M;  %Concentration of water at inside 

C_in=C_w; 

  

%Other variables 

t=0; 

t_step=round(t_end/dt); 
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J=zeros(t_end/t_space+1,1);  %Flux 

C_temp=zeros(r_step,2);  %Concentration for calculation 

C=zeros(r_step,t_end/t_space+1);  %Concentration for record 

act_temp=zeros(r_step,2);  %Activity for calculation 

act=zeros(r_step,t_end/t_space+1);  %Activity for record 

R_sp=zeros(t_end/t_space+1,1); 

R_sp_temp=zeros(1,2); 

dr=zeros(r_step-1,1); 

  

%initial conditions 

  

%Assignment of grid size 

for i=1:r_step 

    if i<=dr_exp 

        dr(i)=dr_ini*dr_rat^(i); 

    else 

        dr(i)=round(dr(dr_exp)); 

    end 

end 

real_r=cumsum(dr)+R_sp_0; 

  

%Assingnment of next grid 

dr_temp=[0;dr(:,1)]; 

dr_temp(r_step+1,:)=[]; 

  

%Initialization 
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R_sp_temp(1)=R_sp_0; 

C_temp(:,1)=C_inf; 

C_temp(1,1)=C_in; 

hh=(C_w*M)/((C_p*M_p)+(C_w*M)); 

a_in=-3.0257*(hh^4)+9.51814*(hh^3)-10.83145*(hh^2)+5.34444*hh; 

a_inf=f; 

act_temp(:,1)=a_inf; 

act_temp(1,1)=a_in; 

  

%Building matrix 

mat_b=1+D*dt./(dr.*dr_temp); 

mat_b(1)=1; 

mat_b(r_step)=1; 

  

mat_e=1-D*dt./(dr.*dr_temp); 

mat_e(1)=1; 

mat_e(r_step)=1; 

  

R_cri=((rho*C_p*(R_sp_0^3)*M_p*Vsp_p)/(M*((rho/M)-C_sat)))^(1/3); 

  

for t=1:t_step-1 

    %Building matrix 

    mat_a=(D*dt./(dr+dr_temp)).*((1./real_r)-(1./dr_temp)); 

    mat_c=-(D*dt./(dr+dr_temp)).*((1./real_r)+(1./dr)); 

    mat_a(1,:)=[]; 

    mat_a(r_step-1)=0; 
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    mat_c(r_step,:)=[]; 

    mat_c(1)=0; 

     

    mat_d=-(D*dt./(dr+dr_temp)).*((1./real_r)-(1./dr_temp)); 

    mat_f=(D*dt./(dr+dr_temp)).*((1./real_r)+(1./dr)); 

    mat_d(1,:)=[]; 

    mat_d(r_step-1)=0; 

    mat_f(r_step,:)=[]; 

    mat_f(1)=0; 

     

    M_t=diag(mat_d,-1)+diag(mat_e)+diag(mat_f,1); 

    M_t_1=diag(mat_a,-1)+diag(mat_b)+diag(mat_c,1); 

     

    %Activity calculation by using matrix 

    act_temp(:,2)=M_t_1\(M_t*act_temp(:,1)); 

    C_temp(:,2)=C_sat*act_temp(:,2); 

     

    %Radius cacluation 

    R_sp_temp(2)=R_sp_temp(1)+(M*(D*C_sat*(act_temp(2,2)-

act_temp(1,2))/dr(1))*dt/rho); 

     

    %Concentration and Activity cacluation at inside 

    C_temp(1,2)=(rho/M)-

(rho*C_p*(R_sp_0^3)*M_p*Vsp_p)/((R_sp_temp(2)^3)*M); 

    

hh=(C_temp(1,2)*M*4*pi*(R_sp_temp(2)^3)/3)/((C_temp(1,2)*M*4*pi*(R_sp_te

mp(2)^3)/3)+(C_p*M_p*4*pi*(R_sp_0^3)/3)); 

    act_temp(1,2)=-3.0257*(hh^4)+9.51814*(hh^3)-
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10.83145*(hh^2)+5.34444*hh; 

     

    %Recording 

    if mod(dt/t_space*(t-1),1)==0 

        R_sp(dt/t_space*(t-1)+1)=R_sp_temp(1); 

        J(dt/t_space*(t-1)+1)=(D*(C_temp(1,2)-C_temp(2,2)))/(dr(1)); 

        C(:,dt/t_space*(t-1)+1)=C_temp(:,1); 

        act(:,dt/t_space*(t-1)+1)=act_temp(:,1); 

    end 

     

    real_r=real_r+R_sp_temp(2)-R_sp_temp(1); 

    C_temp(:,1)=C_temp(:,2); 

    act_temp(:,1)=act_temp(:,2); 

    R_sp_temp(1)=R_sp_temp(2); 

  

    if R_sp_temp(2)<=0.1 

        break; 

    end 

  end 

 realt=0:t_space:t_end; 

figure(1) 

plot(realt,R_sp*2) 

figure(2) 

plot(realt,J) 
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Appendix B 

I. Matlab program to detect droplet  

function []= circle_detect_funct(part,i1,ifin,objective,PathName,fname) 

se = strel('disk',5); 

switch objective 

    case 2.5 

        scale=3.831417625; 

    case 5 

        scale = 1.930501931; 

    case 10 

        scale=0.957854406; 

    case 20 

        scale = 0.479386385; 

    case 50 

        scale = 0.192913639; 

end 

FPS=40; 

xpeakcc_old=0; 

scalefactor=4; 

n1=1; 

% Read in the movie. 

mov = VideoReader([PathName fname]); 

  

% Determine how many frames there are. 

num_images = mov.NumberOfFrames; 
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% Extract the frame from the movie structure. 

I =read(mov,i1); 

% Create a filename. 

 

%%%%%%%% Calcul du temps 

ti=0; 

tf=ti+(num_images-1)/FPS; 

t=ti:1/FPS:tf; 

%%% PREMIERE IMAGE %%%% 

  

if part == 1 

Rmin=30;Rmax=80;  % circle radius range 

else 

   Rmin=20;Rmax=50;  % circle radius range  

end 

  

centersDark(1:num_images,1:2)=0; 

%radii=0; 

%%%%%% TROUVER LA GOUTTEi 

[cent, radiiDark] = imfindcircles(I, [Rmin Rmax], ... 

    'ObjectPolarity','dark','sensitivity',0.75); 

 if isempty(radiiDark) 

                [cent, radiiDark] = imfindcircles(I, [Rmin Rmax], ... 

                    'ObjectPolarity','dark','sensitivity',0.85); 

 end 
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center(n1,:)=cent; 

radii(n1)=radiiDark; 

%%%%% IMAGE ET DETECTION SUPERPOSEE 

%%%%%%%%%%% GENERATION DU TEMPLATE A PARTIR DE LA POSITION DU CERCLE 

template=dropcrop2(I,radiiDark(n1,:),center(n1,:)); 

time(1)=0; 

n=0; 

for i=i1+1 :3: ifin 

a=zeros(160); 

    %%%%%%%%% AUTOCORRELATION 

I =read(mov,i); 

tic 

    ncc = normxcorr2(template,I); 

    [max_ncc, imaxcc] = max((ncc(:)));%1er pic 

    toc 

    if(max_ncc>0.8); 

[ypeakcc, xpeakcc] = ind2sub(size(ncc),imaxcc(1)); 

        max_ncc; 

if(~isempty(xpeakcc_old)) 

            dx=xpeakcc-xpeakcc_old; 

end 

        xpeakcc_old=xpeakcc; 

         

        corr_offsetcc = [(xpeakcc-size(template,2))... 

            (ypeakcc-size(template,1))]; 

        xoffsetcc =  corr_offsetcc(1)+1; 

        yoffsetcc =  corr_offsetcc(2)+1; 
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        rect1=[max(xoffsetcc-5,1);max(yoffsetcc-

5,1);2*(ceil(max(radiiDark)))+20;2*(ceil(max(radiiDark)))+20]; 

         

        %%%%% Definition du nouveau template 

        template=imcrop(I,rect1); %%%%%%%%%%%%%%%%%%%% 

        %%%%% detection de la goutte dans le template 

if and(rect1(2)+rect1(3)<size(I,1),rect1(1)+rect1(4)<size(I,2)) 

               n1=n1+1; 

        time(n1)=t(i)-t(i1); 

        Rmin=max(uint16(radii(n1-1)-5),1); 

        Rmax=max(uint16(radii(n1-1)+5),10);  % circle radius range 

im_resized=imresize(I(rect1(2):rect1(2)+rect1(3),rect1(1):rect1(1)

+rect1(4)),scalefactor); 

[centersDark, radiiDark] = 

imfindcircles(im_resized,scalefactor*[Rmin Rmax], ... 

                'ObjectPolarity','dark','sensitivity',0.97); 

            if isempty(radiiDark) 

                [centersDark, radiiDark] = imfindcircles(im_resized, 

scalefactor*[Rmin Rmax], ... 

                    

'method','twostage','ObjectPolarity','dark','sensitivity',0.99); 

            end 

             

centersDark=round(centersDark/scalefactor); 

            radiiDark=radiiDark/scalefactor; 

%Recalage des centres par rapport ? la position  du template 

[riri pos]=min(abs(radiiDark - radii(n1-1))); 
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        radii(n1)=radiiDark(pos); 

        center(n1,2)=centersDark(pos,1) +rect1(2); 

        center(n1,1)=centersDark(pos,2) +rect1(1); 

         

        %%%%% IMAGE ET DETECTION SUPERPOSEE 

imagesc(I),hold on 

        axis image; 

        colormap(gray); 

        text(10, 110, ['t=', num2str(sprintf('%.2f',time(n1))),'s'], 

'FontSize', 14,... 

            'BackgroundColor', [.6, .6, .6], 'VerticalAlignment', 

'Bottom'); 

        text(200, 110, 

['D=',num2str(sprintf('%.2f',2*radii(n1))),'pixels'], 'FontSize', 14,... 

            'BackgroundColor', [.6, .6, .6], 'VerticalAlignment', 

'Bottom');%all the text option to try out with 

         text(600, 110, [ 

num2str(sprintf('%d',i)),'/',num2str(sprintf('%d',ifin))], 'FontSize', 

14,... 

            'BackgroundColor', [.6, .6, .6], 'VerticalAlignment', 

'Bottom');%all the text option to try out with 

        text(1000, 110, fname, 'FontSize', 14,... 

            'BackgroundColor', [.6, .6, .6], 'VerticalAlignment', 

'Bottom');%all the text option to try out with 

        viscircles(center(n1,:), radii(n1),'LineStyle','--');hold off 

%     %%%%% Generation du nouveau template a partir de la nouvelle 

taille 

        %     %%%%% et nouvelle position de la goutte 

        template=dropcrop2(template,radii(n1),centersDark(pos,:)); 

        end 



APPENDIX 

 

177 

    else 

        n=n+1; 

        if n>400 

            break; 

        end 

         

    end 

     

end 

if part==1  

tt=[PathName fname '_data_part1.mat']; 

d_p1=2*scale*radii; 

i1_p1=i1; 

ifin_p1=ifin; 

time_p1=time; 

save (tt,'d_p1','time_p1','i1_p1','ifin_p1','fname'); 

else 

tt=[PathName fname '_data_part2.mat']; 

d_p2=2*scale*radii; 

i1_p2=i1; 

ifin_p2=ifin; 

time_p2=time; 

save (tt,'d_p2','time_p2','i1_p2','ifin_p2','fname'); 

end 

1. Using a circle Hough function 

function circles = houghcircles(im, minR, maxR, thresh, delta) 

% 
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% HOUGHCIRCLES detects multiple disks (coins) in an image using Hough 

% Transform. The image contains separating, touching, or overlapping 

% disks whose centers may be in or out of the image. 

 

% Check input arguments 

if nargin==3 

  thresh = 0.33;   % One third of the perimeter 

  delta = 12;      % Each element in (x y r) may deviate approx. 4 

pixels 

elseif nargin==4 

  delta = 12; 

end 

if minR<0 || maxR<0 || minR>maxR || thresh<0 || thresh>1 || delta<0 

  disp('Input conditions: 0<minR, 0<maxR, minR<=maxR, 0<thresh<=1, 

0<delta'); 

  return; 

end 

  

% Turn a color image into gray 

origim = im; 

if length(size(im))>2 

  im = rgb2gray(im);    

end 

  

% Create a 3D Hough array with the first two dimensions specifying the 

% coordinates of the circle centers, and the third specifying the radii. 

% To accomodate the circles whose centers are out of the image, the 
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first 

% two dimensions are extended by 2*maxR. 

maxR2 = 2*maxR; 

hough = zeros(size(im,1)+maxR2, size(im,2)+maxR2, maxR-minR+1); 

  

% For an edge pixel (ex ey), the locations of its corresponding, 

possible 

% circle centers are within the region [ex-maxR:ex+maxR, ey-

maxR:ey+maxR]. 

% Thus the grid [0:maxR2, 0:maxR2] is first created, and then the 

distances 

% between the center and all the grid points are computed to form a 

radius 

% map (Rmap), followed by clearing out-of-range radii. 

[X Y] = meshgrid(0:maxR2, 0:maxR2); 

Rmap = round(sqrt((X-maxR).^2 + (Y-maxR).^2)); 

Rmap(Rmap<minR | Rmap>maxR) = 0; 

  

% Detect edge pixels using Canny edge detector. Adjust the lower and/or 

% upper thresholds to balance between the performance and detection 

quality. 

% For each edge pixel, increment the corresponding elements in the Hough 

% array. (Ex Ey) are the coordinates of edge pixels and (Cy Cx R) are 

the 

% centers and radii of the corresponding circles. 

edgeim = edge(im, 'canny', [0.15 0.2]); 

[Ey Ex] = find(edgeim); 

[Cy Cx R] = find(Rmap); 

for i = 1:length(Ex); 
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  Index = sub2ind(size(hough), Cy+Ey(i)-1, Cx+Ex(i)-1, R-minR+1); 

  hough(Index) = hough(Index)+1; 

end 

  

% Collect candidate circles. 

% Due to digitization, the number of detectable edge pixels are about 

90% 

% of the calculated perimeter. 

twoPi = 0.9*2*pi; 

circles = zeros(0,4);    % Format: (x y r t) 

for radius = minR:maxR   % Loop from minimal to maximal radius 

  slice = hough(:,:,radius-minR+1);  % Offset by minR 

  twoPiR = twoPi*radius; 

  slice(slice<twoPiR*thresh) = 0;  % Clear pixel count < 

0.9*2*pi*R*thresh 

  [y x count] = find(slice); 

  circles = [circles; [x-maxR, y-maxR, radius*ones(length(x),1), 

count/twoPiR]]; 

end 

  

% Delete similar circles 

circles = sortrows(circles,-4);  % Descending sort according to ratio 

i = 1; 

while i<size(circles,1) 

  j = i+1; 

  while j<=size(circles,1) 

    if sum(abs(circles(i,1:3)-circles(j,1:3))) <= delta 

      circles(j,:) = []; 
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    else 

      j = j+1; 

    end 

  end 

  i = i+1; 

end 

  

if nargout==0   % Draw circles 

  figure, imshow(origim), hold on; 

  for i = 1:size(circles,1) 

    x = circles(i,1)-circles(i,3); 

    y = circles(i,2)-circles(i,3); 

    w = 2*circles(i,3); 

    rectangle('Position', [x y w w], 'EdgeColor', 'red', 'Curvature', [1 

1]); 

  end 

  hold off; 

end 
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Résumé 

Les travaux de cette thèse portent sur le développement de système 

microfluidiques génériques pour la mesure de propriétés thermodynamiques de 

solutions de protéines.  Un procédé simple de fabrication de puces 

microfluidiques résistantes à la pression ainsi qu’à la majorité des solvants 

organiques a été développé. En outre, les propriétés de surface des microcanaux 

peuvent être ajustées afin de générer des émulsions eau dans huile ou huile dans 
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angles. Avec seulement quelque milligramme de produit, les données 

expérimentales obtenues ont permis de calculer le second coefficient du Viriel, 

grandeur thermodynamique permettant de quantifier les interactions entre 

protéines.  

Une nouvelle approche expérimentale a également été développée afin de 

déterminer l’équation d’état du lysozyme, équation reliant la pression osmotique 

à la fraction volumique. Ce système microfluidique est basé sur le transfert de 

matière entre d’une phase dispersée vers une phase continue. Dans une certaine 

gamme d’activité de l’eau, l’équation d’état obtenu est en bon accord avec les 

données de la littérature. Afin de relier la dynamique du transfert aux propriétés 

thermodynamique du système une première approche de modélisation est 

proposée. Cette approche a pour but de déterminer l’équation d’état de la 

protéine avec une seule goutte.  
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