N

N

Optimisation de programmes par reconnaissance de
templates
Christophe Alias

» To cite this version:

Christophe Alias. Optimisation de programmes par reconnaissance de templates. Calcul paralléle, dis-
tribué et partagé [cs.DC]. Université de Versailles Saint-Quentin-en-Yvelines, 2005. Frangais. NNT':
. tel-01892198

HAL Id: tel-01892198
https://theses.hal.science/tel-01892198
Submitted on 10 Oct 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01892198
https://hal.archives-ouvertes.fr

Pr.
Pr.
Pr.
Pr.

THESE

présentée par
Christophe ALIAS
pour obtenir le titre de
DOCTEUR de 'UNIVERSITE de VERSAILLES
Spécialité : Informatique

Sujet de la theése :

Optimisation de programmes par
reconnaissance de templates

Program Optimization by Template
Recognition and Replacement

Soutenue le 6 décembre 2005

Devant la commission d’examen composée de :

William JALBY Président Université de Versailles
Francois IRIGOIN Rapporteur ~ ENSM Paris

Pierre LESCANNE Rapporteur ENS Lyon

Paul FEAUTRIER Directeur ENS Lyon

Denis BARTHOU Examinateur Université de Versailles

Thése préparée a 1’Université de Versailles au sein du laboratoire PRiSM,
Unité Mixte de Recherche CNRS n°8144.

Remerciements

Cette thése, bien qu’étant le fruit d’un travail personnel, n’aurait certainement pas pu
aboutir sans la contribution d’un certain nombre de personnes que je tiens a remercier,
sincérement, ici.

En premier lieu, je tiens a remercier William Jalby pour avoir accepté de présider mon
jury de thése. Son dynamisme de tous les instants et sa capacité de travail impressionnante
en font un chercheur hors pair a qui je tiens ici a rendre hommage.

Je tiens également a remercier Frangois Irigoin ainsi que Pierre Lescanne pour I’honneur
qu’ils m’ont fait en acceptant de rapporter ma thése. Leurs précieuses remarques m’ont
permis d’améliorer grandement la qualité du manuscrit de thése, et ont apporté un
éclairage nouveau sur mes travaux.

Je tiens & exprimer toute ma gratitude a Paul Feautrier pour la confiance qu’il m’a
témoigné en acceptant de diriger ma thése. Ses conseils éclairés ainsi que ses nombreuses
remarques et suggestions ont permis a cette thése d’atteindre sa maturité actuelle.

A tout seigneur tout honneur, que Denis Barthou soit vivement remercié pour avoir
encadré ma thése avec autant de professionnalisme. Sa disponibilité permanente, ses
nombreuses remarques et suggestions et son incroyable aptitude a supporter mon caractére
ont fait de lui un encadrant exemplaire que je tiens, encore une fois, & remercier ici. Let
the mana be with you, Denis.

Sans oublier (comment le pourrais-je ?) mes collégues et amis, Karine, Christophe,
Patrick, Cédric et les autres, qui ont largement contribué a rendre ces années de thése
le plus agréable possible, malgré les inévitables moments difficiles. J’ai une pensée par-
ticuliére pour mes amis Algériens Amdjed, Issam, Lotfi et Lamia qui m’ont beaucoup
apporté, et & qui je souhaite la méme réussite’.

Une dernier paragraphe (mais pas le moindre) pour remercier ma famille, dont le
soutien inconditionnel et sans faille a largement contribué a I’aboutissement de ce travail,
et sans qui mon pot de thése n’aurait pas été si savouveux ;-) Encore merci a tous !

ISauf Amd_]ed qui & déja soutenu!

Table des matiéres

Présentation
1 Introduction
1.1 Motivations Lo e
1.2 Example of Optimization by Template Recognition
1.3 Difficulties in Template Recognition
1.3.1 Common Program Variations
1.3.2 Performance Prediction.
1.4 Contributions L
1.4.1 Template Recognition
1.4.2 Substitutiono
1.5 Outline. L
2 Definitions and Notations
2.1 Program Modelo
2.2 Templates L
2.3 Data Dependences
24 Program Slicingo L e
2.5 Program Equivalence Lo oL
2.6 Template Matching and Recognition
3 Related Work
3.1 Program Understanding Approaches
3.1.1 Cognitive Studies
3.1.2 Wills GRASPR
3.1.3 Johnson’s PROUST
3.1.4 Cimitile’s System Lo
3.2 Optimization Approaches
3.2.1 Pinter’s System L Lo
3.2.2 DiMartino’'s PAP
3.2.3 Kessler’'s PARAMAT
3.2.4 Bhansali’s Systemo Lo
3.2.5 Metzger’s System Lo Lo
3.3 Conclusion e

35
35
37
38
38
38
39
39
39
40

41
41
42
43
45
47
23

TABLE DES MATIERES

Overview of the Optimization Framework
4.1 Overview of the Framework

4.2 Motivating Example

43 Slicing

4.5 Substitution

4.4 Template Matching
Slicing

5.1 Background
5.1.1 Approximated Reaching Definitions
5.1.2 Tree Automata

5.2 Overview of the Method

5.3 A Formalization of Template Matching

5.4 Application to Template Recognition

5.5 An Approximation

5.6 An Example
5.7 Complexity Issues
5.8 Related Work

5.9 Discussion

Program Equivalence

6.1 Background
6.1.1 Exact Reaching Definitions
6.1.2 Systems of Affine Recurrence Equations
6.1.3 Presburger Relations

6.2 Motivating Example

6.3 Overview of the Method
6.4 Construction of the Unification Automaton
6.5 Analysis of the Unification Automaton
6.6 Related Work
6.7 Discussion

Template Matching with Semi-Unification
7.1 Background
7.1.1 Simply Typed A-calculus
7.1.2 High-Order Matching

7.2 Motivating Example

7.3 Principle of the Algorithm
7.3.1 Huet and Lang’s Procedure
7.3.2 Overview of the Method

7.4 Construction of the Unification Automaton

7.5 Analysis of the Unification Automaton
7.5.1 Overview
7.5.2 Unifiers Extraction
7.5.3 Input Mapping Extraction

TABLE DES MATIERES

7.5.4 Slice Extraction
7.6 Complexity Issues
7.7 Discussion

8 Template Matching with Tree-Automata

8.1 Motivating Example
8.2 Overview of the Method
8.3 Constructionof Arand Ap
8.4 Construction of Ap X Ap
85 Analysisof Ap x Ap
8.5.1 Overview of the Analysis
8.5.2 OR-branchings Generation
8.5.3 Failure Detection
8.5.4 Unifiers Extraction
8.5.5 Input Mapping Extraction
8.5.6 Slice Extraction
8.6 Complexity Issues
8.7 Experimental Results
8.7.1 OR-branchings Generation
8.7.2 Presburger Relations Handling
8.8 Discussiono

9 Substitution

9.1 Overview of the Method
9.2 Select the Separable Slices
9.2.1 Complementary Slice
9.2.2 Separability Test
9.3 Select the Optimal Substitution Set
9.3.1 Defining the Performance Gain
9.3.2 Selecting the Optimal Substitution Set .
9.4 Instantiate the Template
9.4.1 Template Variables
9.4.2 Input and Output Mapping
9.5 Perform the Substitutions
9.6 Related Work
9.7 Discussion

10 Experimental Results

10.1 Implementation Issues
10.1.1 Slicing oo
10.1.2 Template Matching

10.2 Experimental Results
10.2.1 Slicing
10.2.2 Template Matching with Tree-Automata
10.2.3 Template Matching with Semi-Unification

122
123
124

127
128
128
129
131
135
136
136
138
139
141
142
142
143
143
145
145

147
148
148
148
149
151
151
151
152
152
153
154
154
156

8 TABLE DES MATIERES

10.2.4 Substitution 166

10.3 Conclusion 168
11 Conclusion 171
11.1 Contributions 171
11.2 Perspectives L e e e e 172
11.2.1 Improvements 172

11.2.2 Applications 175
Personal Bibliography 177
Bibliography 179

Index 187

Présentation

Cette partie offre un résumé en francais de la thése écrite en anglais. Son organisation
respecte celle du document original et chacune de ses sections correspond & un chapitre ou
une partie dont les développements, algorithmes, preuves et exemples ont été simplifiés
ou retirés. Le lecteur s’intéressant a un sujet particulier est donc naturellement invité a
se reporter aux chapitres correspondants pour y trouver un niveau de détail satisfaisant.

I Introduction

La reconnaissance de templates consiste & trouver dans un programme toutes les par-
ties qui peuvent étre réécrites comme une instance d’un template. Le reconnaissance de
templates trouve de nombreuses applications en conception de compilateurs et en génie
logiciel. Citons par exemple le reverse-engineering, la vérification de transformations de
programmes, la factorisation de code ou encore 'optimisation de programmes. Dans
cette thése, nous nous intéressons au probléme de la reconnaissance de templates et & son
application a ’optimisation de programmes. Nous proposons une nouvelle optimisation
source-a-source qui réécrit automatiquement un programme pour utiliser une bibliothéque
optimisée. Etant donné un programme, notre méthode détecte les implémentations di-
rectes des fonctions d’une bibliothéque, et les remplace par ’appel de fonction approprié,
lorsque c’est possible et intéressant.

I.1 Motivations

Cette thése part d'un constat : quelque soit la qualité des optimisations, elles ne rem-
placeront jamais un bon algorithme. La plupart des optimisations appliquent en effet des
transformations locales bas-niveau, sans se soucier du calcul exprimé par le programme
[1] (propagation de constantes, simplifications algébriques, inlining) ; tandis que d’autres
optimisations tendent a exploiter le hardware de la meilleure maniére (parallélisation au-
tomatique [110], sélection optimale d’instructions [38], pipeline logiciel 7], allocation de
registres|20|, data prefetching [78|, hiérarchie mémoire |75]). Bien que ces optimisations
produisent des résultats satisfaisants, elles ne remplacent pas un bon algorithme, et amé-
nent bien souvent le programmeur & choisir entre:

e Optimisation & la main. Malheureusement, les langages de programmation
actuels cachent souvent les comportements critiques de ’architecture. Les effets
de cache, par exemple, rendent les performances imprévisibles. Par conséquent, il
est presque impossible de trouver a la main une optimisation proche de 1'optimal.

10 Présentation

¢ Routines optimisées. Une solution immeédiate est de chercher une routine opti-
misée existante. Elles se déclinent sous différentes formes, dont les langages métier
(Domain Specific Language, DSL) [107, 25], la programmation générative [28], ou
encore les bibliothéques adaptatives [99, 47, 22].

Les DSL fournissent un niveau d’abstraction permettant d’effectuer des optimisa-
tions haut-niveau trés aggressives. Par ailleurs, le programme résultant est souvent
plus facile a lire, et donc & maintenir. Bien que les DSLs soient une alternative
séduisante, ils posent des problémes de portabilité, et de support a long terme.

La programmation générative permet d’écrire un code en utilisant des constructions
de haut niveau, et de générer le code correspondant dans le langage usuel (typique-
ment C ou Fortran). Lex et Yacc sont des exemples typiques d’outils de programma-
tion générative, qui générent des analyseurs syntaxiques efficaces, et faciles & main-
tenir. Comme les DSL, les langages génératifs travaillent & un niveau d’abstraction
qui permet des optimisations aggressives.

Les bibliothéques adaptatives fournissent un panel de routines domain-specific tunées
pour I’architecture courante. Lors de 'installation, les routines sont exécutées en
faisant varier les parameétres qui affectent les performances (par exemple, la struc-
ture des boucles, la taille des tuiles, encore le facteur de déroulage). L’espace des
parameétres est exploré point par point, mesurant les performances de chaque vari-
ante, jusqu’a ce que la meilleure implémentation soit atteinte. Cette technique est
utilisée par de nombreuses bibliothéques optimisées comme ATLAS [99], FFTW [47]
ou PhiPAC |22]. Malgré le cott du tuning, les bibliothéques adaptatives semblent
étre une voie prometteuse pour I'optimisation.

La programmation générique [95, 93, 9, 97, 61, 28| est un paradigme récent qui utilise
des fonctions paramétrables par des types de données et des opérations génériques.
Outre le gain en temps de développement, la taille des bibliothéques s’en trouve
réduite, un seul template représentant une famille d’algorithmes. On évite ainsi de
faire exploser la taille de la bibliothéque en ajoutant une spécialisation de chaque
opération par structure de données. Par exemple, la Matrix Template Library [93]
abstrait 1’anneau sous-jacent et les opérations correspondantes (+ et x). En effet,
13 types de stockage, et 4 anneaux correspondant a différents niveaux de précision
ont étés ajoutés, permettant de représenter plus d’'une centaine de versions de la
méme routine! Comme la programmation générique est relativement nouvelle, il n’y
a encore qu’un nombre restreint de bibliothéques génériques, mais nous croyons que
ce paradigme sera trés largement utilisé dans le futur.

Apprendre et utiliser une nouvelle bibliothéque est une tache fastidieuse, et il est sur-
prenant de voir le peu d’aide apporté par le compilateur. Une solution naturelle serait
de chercher les occurrences immédiates des fonctions de bibliothéque dans le programme,
et de les remplacer par ’appel correspondant. Dans cette thése, nous proposons une
approche totalement automatique pour reconnaitre les occurrences des fonctions de bib-
liothéque, et les remplacer, lorsque c’est possible et intéressant par ’appel approprié. En
plus de fonctions, nous sommes également capables de trouver des instances de templates
dans le programme, fournissant les paramétres correspondants. Une telle caractéristique

1. Introduction 11

rend possible la réécriture automatique d’un programme pour utiliser une bibliothéque
générique.

1.2 Exemple d’optimisation par reconnaissance de templates

La figure 1 donne un exemple de template (a) a trouver dans un programme (b). Le
template représente une réduction générique sur un tableau I selon 'opérateur X. On
cherche a remplacer les réductions trouvées dans le programme par un appel vers une ver-
sion paralléle par_reduc (X ,I). La premiére étape de notre approche est de reconnaitre
toutes les instances du template dans le programme. Ici, nous obtenons les instances
suivantes:

e Lignes1a8, avec X (z,y) = z+y°, n =10, 1(0) = 0et I(k) = a(k) pour 1 < k < 10.
e Lignes 346, avec X(z,y) =z xy,n=>5,1(0) =1et I(k) = a(i) pour 1 <k <5.

Puisque les deux parties reconnues (slices) se recouvrent, on doit choisir la partie suscep-
tible de fournir la meilleure amélioration de performance. Par exemple, on peut choisir le
second slice. Il reste alors & générer le code avec la substitution. (voir (c)).

1s=0

. s =0
s = 1(0) ; do 1=_11’1° do i = 1,10
doi=1,n . So,=15 I(0) = 1
s = X(s,I(1) I T e 1(1:5) = a(i)
enddo 51 | p = pral® p = call par_reduc(\zy.rxy,I)
6 | enddo - ’
return s 7 s = s + s =8 +p
P enddo
8 enddo
(a) Template (b) Programme (¢) Programme optimisé

F1G. 1 — Un probléme de reconnaissance de templates

1.3 Difficultés de la reconnaissance de templates
Variations algorithmiques

La principale difficulté en reconnaissance de template vient des maniéres trés variées
d’implémenter un algorithme donné. Wills [102] donne une classification de tous les types
de variations qui peuvent étre trouvées dans un programme, que nous présentons sur la
figure 7.

En théorie, la reconnaissance d’algorithmes est plus difficile que 1’équivalence séman-
tique entre programmes, qui est elle-méme indécidable. La plupart des approches exis-
tantes pour la reconnaissance d’algorithmes sont basées sur un matching syntaxique, et
peuvent uniquement gérer les variations d’organisation. Malheureusement, la plupart des
variations trouvées dans les programmes sont des variations de structures de données, et
des variations de controle. Cette thése propose une heuristique capable de reconnaitre
dans la plupart des cas les variations d’organisation, de structure de données et de controle.
Notre approche ne peut toutefois pas gérer les variations sémantiques.

12

Présentation

Variations d’organisation

N’importe quelle permutation de statements indépen-
dents, et introduction de variables temporaires. L’exemple
suivant donne une variation d’organisation avec des per-
mutations légales (LP), du garbage code (GC) et des tem-
poraires (T):

Variations de contréle

N’importe quelle transformation de controle comme la if-
conversion, ’élimination de code mort, ou n’importe quelle
transformation de boucles comme le peeling, le splitting
ou le skewing. L’exemple suivant donne une variation de
controle avec un peeling:

s = a(0) s = a(0) s = a(0) s = a(0)
c=0 c=0 do i =1,n s = s + a(l)
doi=1,n GC garbage = 0 | s = s + a(i) do i = 2,n-1

s = s + a(i) doi=1,n enddo |s=s+a(i)

c=c+1 LP c=c+1 return s enddo
enddo T temp = a(i) s = s + a(n)
return s + c do j =1, p return s

GC | | garbage = garbage + 1
enddo

s = s + temp
GC | garbage = garbage + a(i)
enddo
return s + ¢

Variations de structure de données Variations sémantiques

Le méme calcul en utilisant une structure de données dif-
férente. L’exemple suivant donne une variation de struc-
ture de données avec des tableaux et des enregistrements:

N’importe quelle transformation qui fait des hypothéses
sur les propriétés des opérateurs. La transformation suiv-
ante suppose la commutativité de +:

s(0) = a(0) s.suml = a(0) s = a(0) s = a(0)

do i =1, 2%n doi=1,n do i =1,n do i =1,n

| s(i) = s(i-1) + a(i) | s.suml = s.suml + a(i) | s = s + a(i) | s = s + a(n-i+1)
enddo enddo enddo enddo

s.sum2 = a(n+1) return s return s
do i = n+2, 2*n

s.sum2 = s.sum2 + a(i)
enddo

return s.suml + s.sum2

return s(2*n)

FiG. 2 — Classification des variations de programmes

Prédiction de performances

La prédiction de performances permet ici de quantifier I'impact d’une substitution sur
les performances du programme. De la méme maniére que 1’équivalence sémantique,
on ne peut pas décider si une transformation améliore effectivement les performances
d’un programme [79]. Neéanmoins, plusieurs approches proposent des modéles précis,
comme ceux de Fahringer [40], Ghosh [51] ou Padua [21]. Ces approches fournissent, des
paramétres quantifiant les performances du programme, comme le temps d’exécution, ou
le nombre de défauts de cache ; elles utilisent souvent du profiling. Cette thése propose
une approche a base de benchmarking adaptée a la problématique de la reconnaissance
de templates.

I.4 Plan

La suite du résumé est structurée de la facon suivante. La section II présente les notions
nécessaires a la compréhension de notre approche. En particulier, une formalisation du
probléme de reconnaissance de templates est présentée, ainsi qu'une décomposition im-
portante, sur laquelle notre méthode se calque. La section III donne une vue d’ensemble

1. Définitions et notations 13

de la méthode et précise le role de chaque étape. Les sections IV, V et VIL.2 présentent
briévement chaque étape de notre méthode, dont on trouvera le détail et les preuves dans
la version anglaise. La section VII présente les résultats expérimentaux obtenus. Enfin,
la section VIII conclut et présente les pistes de recherches ouvertes par nos travaux.

IT Définitions et notations

Cette section définit les notions qui seront utilisées dans la suite de cette thése. Une
description formelle du probléme de la reconnaissance de templates est également donnée.
Apreés avoir présenté le modéle de programme étudié, on défini la notion de template. On
présente ensuite 1’équivalence de Herbrand, le sous-ensemble de I’équivalence sémantique
étudié dans cette thése. Enfin, on défini le probléme de la reconnaissance de template, et
on présente la décomposition de ce probléme qui sera suivie dans cette thése.

II.1 Modéle de programme

La méthode présentée dans cette thése est capable de traiter des programmes généraux.
Ceci étant, les parties de programmes a reconnaitre doivent étre des programmes a controle
statique.

Définition 1 (Programme a contréle statique). Un programme est a controle statique
sl vérifie les conditions suivantes:

o Les structures de données sont des scalaires et des tableaux.

e Les structures de controle autorisées sont la séquence, les conditionnelles if et les
boucles do.

e Les conditions, les bornes des boucles ainsi que les fonctions d’acces auz tableauz
sont des expressions affines des compteurs des boucles englobantes, et des parametres
de structure.

e Les blocs de base (statements) sont des affectations

La plupart des routines utilisées pour la résolutions de problémes d’algébre linéaire
sont des programmes a controle statique : décomposition LU, factorisation de Cholesky,
etc. La figure 3.(a) donne I’exemple bien connu du produit de deux polynémes. On notera
la fonction d’index affine (4, j) — i+ j de c, ainsi que les paramétres de structure n et m,
qui correspondent ici aux degrés des polyndémes a et b.

Un vecteur d’itération d’un statement S est constitué des valeurs des compteurs des
boucles englobant S. L’ensemble des vecteurs d’itération de S pendant I’exécution est
appélé domaine d’itération de S. Les domaines d’itération des programmes a controle
statique ont la bonne propriété d’étre des Z-polyédres calculables lors de la compilation.
Sous ces restrictions, de nombreux problémes peuvent étre décidés, comme ’analyse de
dépendances ezacte (instance-wise dataflow analysis) [43].

Une opération est une instance d’un statement S pendant I’exécution 7.e. un élément
de la trace d’exécution. Elle est généralement notée (S,), oul 7 est un vecteur d’itération
de S. Par exemple, (Sy, n,m) est la derniére opération du produit de polynomes.

14 Présentation

do i

= 0,n+m

N (81, 0) c(0) =0

Sy | cciéll) =0 (5 1) o1y = 0

oy (S1,2) <2 =0
s (S5,0,0) c(0) = c(0) + a(0)*b(0)
eI s (S2,0,1) (1) = c(1) + a(0)*b(1)
S| | cg) = c(irg) + a)eb(y) ($2,1,0) c(1) = c(1) + a(1)*b(0)
enzzido (S2,1,1) c(2) = c(2) + a(1)*b(1)
(a) Produit de polynémes (b) Trace d’exécution pour n =m =1

F1G. 3 — Produit de deux polynoémes

I1.2 Templates

Cette these étudie la reconnaissance de templates dans un programme. D’une certaine
facon, les programmes a controle statique sont des templates, puisque qu’ils dépendent de
parameétres de structure (cf. n et m dans exemple 3). On améliore le niveau de généricité
en permettant de paramétrer les programmes & controle statique avec des fonctions pures,
comme précisé dans la définition suivante:

Définition 2 (Template). Un template est un programme & contréle statique paramétré
par un tuple de fonctions (X;...X,), qu’on appelle des fonctions libres ou des variables
de template. Chaque fonction libre X; est supposée pure (pas d’effets de bord), et doit
étre utilisée dans le membre droit d’une affectation:

Le dernier point interdit 'utilisation des fonctions libres dans les conditions, et les
bornes des boucles do. Cette définition est générale, et ne restreint pas ’ordre des fonctions
libres. Dans cette thése, on supposera que les fonctions libres sont du second-ordre au
plus. Par exemple, voici le template d’une réduction paramétrée par la fonction libre X,
et le paramétre de structure n:

s = a(0)
doi=1,n

s = X(s,a(i))
enddo

return s

La fonction libre z peut étre substituée par n’importe quel morceau de code qui calcule
une valeur a partir de s and a(i), sans effet de bord.

Une instance d’un template 7" est un programme obtenu en substituant les fonctions
libres X = (X;...X,), les paramétres 77 = (ny...ny), et les inputs I = (Iy...I,) avec

—

des valeurs spécifiques. Elle est notée T[X, 1, f] Par exemple, on a:

1. Définitions et notations 15

s =1
do i 1,10
p=1 1 p=1
do j = 1,5 B(1) do j = 1,5
T| M)y. |p=p*y ,n=10, a= _ = p = p * B(i)
enddo : enddo
return T + p B(n) s =s+p
enddo
return s

De maniére générale, X n’est pas restreint aux programmes a controle statique, il peut
étre défini par n’importe quelle portion de code avec des boucles while et des expressions
non affines dans les conditions, les bornes de boucles, les fonctions d’index des tableaux,
etc. Cependant, on supposera dans cette thése que X ne peut étre défini que par un
programme a contrdle statique.

I1.3 Définitions visibles

Comme précisé en section 2.1, ’exécution d’un programme sur 'input I peut étre vue
comme une séquence d’opérations wi; wl; ...; wl; ... possiblement infinie. On définit
Vordre d’exécution < entre opérations comme: w] <; w] < i < j. < définit un ordre
total sur les opérations w!. On précise maintenant la notion de définition visible, qui sera

utilisée tout au long de cette thése.

Définition 3 (Définition visible). Considérons un programme exécuté sur un input
1, et une opération w lisant une variable v. La définition visible de la variable v est la
derniére opération T exécutée avant w qui écrit v. Elle généralement notée RD! (v) (pour
reaching definition):

RD! (v) = niax{T | T <jw et T écrit v}
I

La séquence d’opérations exécutée par les programmes & controle statique ne dépend
pas de l'input I. Par conséquent, on peut simplifier les notations et écrire: RD,(v) pour
RD/ (v). Dans I’exemple suivant:

S; sum = a(0)
doi=1,n

So ‘ sum = sum + a(i)
enddo

La définition visible de sum lue par (Ss,7) est :

- 1=1": <Sla>
RD g, 7 (sum) = { 2<i<n: (Sy,i—1)

Bien que le calcul des définitions visibles soit indécidable sur des programmes généraux, il
est possible dans les programmes a controle statique. Feautrier [43] en donne une solution
exacte que nous présentons page 88, chapitre 6.

16 Présentation

I1.4 Notion de slice

Un slice est une tranche de programme qui peut étre abstraite dans une fonction sans
modifier la sémantique du programme. La notion de slice a été introduite pour la premiére
fois par Weiser [98] pour aider ses étudiants a débugguer leurs programmes.

La définition de Weiser est trop imprécise pour notre propos puisqu’elle travaille au
niveau du statement. Nous proposons ci aprés une autre définition d’un slice, au niveau
de I’opération:

Définition 4 (Full slice). Considérons un programme P exécuté sur un input I, et
notons 1 une des opérations exécutées. Le full slice du programme P selon ’opération 7!
est la limite de la suite (§%;); définie par:

Q ={r"}
Qi+1 = U UweQi Uverhs(w) RDW(U)

ot ths(w) dénote Uensemble des variables lues par w. On écrit: Sh(r') = lim .
1—>00

Basiquement, un full slice contient exactement I’ensemble des operations nécéssaires
pour calculer la variable écrite par 7. Il est calculé en remontant les définitions visible
des variables lues par 77.

Avec cette définition, un full slice capture le morceau de programme requis pour cal-
culer une variable. Un slice est quelque peu différent, puisqu’il peut commencer son calcul
en partant de « paramétres » écrits par plusieurs opérations. Basiquement, un slice est
une tranche de programme qui peut étre abstraite dans une fonction pouvant dépendre
de parameétres.

Définition 5 (Slice). Reprenant les notations de la définition 2.5, et notant v = («f ... 4L)
un tuple d’opérations ot chaque ! est un ancétre de 71, le slice de P selon Uoutput 71 et

Uinput ¢ est la limite de la suite (€;); définie par :

Qo ={r"}
Qipr = UU,eq, Upernsg) RDw (v)

Ou l%/s(w) =0 siw est un 1}, et rhfvs(w) = rhs(w) sinon. On écrit Sp(1, ") = 111}23 Q.
Encore une fois, on écrira Sp(t, 7!') pour S&(1, 71) lorsque I n’est pas requis. C’est en
particulier le cas pour les programmes a controle statique.

I1.5 Equivalence de Herbrand

Dans cette thése, on considére une équivalence plus faible que I’équivalence sémantique
appelée équivalence de Herbrand. Au lieu d’indiquer que deux algorithmes calculent la
méme fonction (au sens mathématique), I’équivalence de Herbrand indique qu’ils utilisent
méme formule, syntaxiquement. Considérons un algorithme A qui prend en entrée un
tableau I, et qui retourne un tableau O. A réalise son calcul en utilisant un ensemble Fun
de fonctions atomiques i.e. constantes, opérations arithmétiques, et opérations internes

1. Définitions et notations 17

au langage utilisé. Par exemple, le produit de deux polynémes xg(x] donné en figure 3.(a)
utilise les fonctions atomiques +, * et 0.

Si on exécute A sur input I en maintenant les fonctions atomiques non-interprétées,
on obtient un tableau 74(I) de termes sur Fun. Par exemple, en prenant a =[1, 0] et
b=[0, 1+ 2], on obtient :

Txxy(@:0) = [(04+(1%0)) + (0% (1+2)), (0+ (1*(1+2)))+ (0%0)]

Suivant les travaux de Knoop et al. [91], on étend 1’équivalence de Herbrand aux algo-
rithmes, comme précisé dans la définition suivante.

Définition 6 (Equivalence de Herbrand). Deuz algorithmes A, et Ay sont Herbrand-
equivalents ssi pour chaque input I:

e soit Ay et Ay ne s’arrétent pas
e s0it Ay et Ay s’arrétent et retournent le méme tableau de termes:
Ta, (D)[i) = Ta, (1))
pour chaque i
Dans ce cas, on note Ay =y A,.

En d’autres termes, A; et A, sont Herbrand-équivalents s’ils calculent le méme tableau
de termes. La proposition suivante montre que =4 définit bien une équivalence sur les
programmes, qui est plus faible que I’équivalence sémantique.

Proposition 1 (Correction). Etant donnés deux algorithmes Ay et As, on a :
A1 E;LLA2:>A15A2

Bien que I’équivalence de Herbrand soit plus faible que ’équivalence sémantique, on ne
peut pas la décider sur des programmes généraux [13]. En dépit de classes d’équivalence
plus petites que 1’équivalence sémantique, I’équivalence de Herbrand couvre toutes les
variations de programme qui ne changent pas le terme calculé par le programme. Ces
variations incluent notament toutes les transformations de boucle standard, telles que le
splitting, la fusion, le déroulage, la torsion de domaines d’itérations, ou encore le tiling.
On pourra trouver plus de transformations de boucles dans le livre de Wolfe [104]. Pour
les mémes raisons, les variations d’organisation et de structure de données sont couvertes.
Ces caractéristiques importantes de I’équivalence de Herbrand sont résumées en figure 2.7.
Malheureusement, 1’équivalence de Herbrand ne couvre pas les variations qui utilisent les
propriétés sémantiques des opérateurs. Par exemple I'associativité et la commutativité
de +.

18 Présentation

I1.6 Reconnaissance de templates

Cette section présente une formalisation du probléme de reconnaissance de templates.
Apreés avoir défini le probléme du matching entre un programme et un template, on
présente une formalisation du probléme de reconnaissance de templates. En particulier,
on en donne une décomposition intéressante, qui sera suivie tout au long de cette these.

Le probléme du matching est de décider si un programme est une instance d’un tem-
plate, comme précisé dans la définition suivante:

Probléme 1 (Matching de template). Le probléme du matching entre un template
T et un programme P selon une équivalence ~ sur les programmes, consiste a décider
s’il existe une instance de T qui est équivalent a P au sens de ~. Plus précisement, on
cherche a trouver les fonctions libres X , les paramétres 7 et les inputs T tels que:

=

T[X,7, 1] ~ P

Par analogie avec la théorie de l'unification, une telle solution, si elle existe, est appelée
un semi-unificateur du probléme de matching T Zp.

Puisque ce probléme est plus difficile que I’équivalence selon ~, il est indécidable selon
I’équivalence sémantique, et 1’équivalence de Herbrand.

La définition suivante introduit le probléme plus général de la reconnaissance de tem-
plates, qui a pour but de trouver dans un programme les instances d’un template donné.

Probléme 2 (Reconnaissance de template). Etant donné un template T et un pro-
gramme P, le probléme de reconnaissance de template T <’ P selon une équivalence ~
consiste a trouver tous les slices de P qui matchent T selon ~.

Ce probléme est clairement plus compliqué que le probléme du matching de template,
et est par conséquent indécidable selon I’équivalence sémantique, et I’équivalence de Her-
brand.

Dans cette thése, on étudie le probléme de reconnaissance de templates selon 1’équivalence
de Herbrand =4. Une sur-approximation de 1’équivalence de Herband est utilisée pour
trouver les slices qui matchent le template a priori. Le résultat est un ensemble qui
contient les bons slices (conservativité). Une sous-approximation exacte de I’équivalence
de Herbrand est ensuite utilisée pour filtrer les bons candidats. La proposition suiv-
ante établit formellement cette décomposition pour n’importe quelle équivalence ~ sur
les programmes.

Proposition 2 (Décomposition). On considére un template T, un programme P, une
équivalence ~ sur les programmes et =, une sur-approximation de ~ (~ C =). La procé-
dure suivante résout le probléme de reconnaissance de template entre T et P selon ~:

1. Résoudre le probléme de reconnaissance de template 7' <* P selon ~.

2. Pour chaque slice S obtenu:

Résoudre le probléme de matching 7' Z S selon ~.

III. Vue d’ensemble de la méthode 19

On doit bien siir trouver un trade-off dans le choix de . En effet, une approximation
trop grossiére fournirait trop de slices a la cofiiteuse étape 2, alors qu'une approximation
trop précise serait trop coiiteuse.

La méthode de reconnaissance décrite dans cette thése suit cette décomposition.
L’étape 1 est appelée slicing, et exposée briévement dans la section IV. On consultera le
chapitre 5 pour une description compléte de la méthode, avec les preuves. Nous proposons
également deux heuristiques différentes pour réaliser 1’étape 2 (test d’instanciation). La
section V présente le test d’instanciation utilisant les automates d’arbre, dont on trouvera
une description approfondie chapitre 8. Un deuxiéme test, moins cofiteux, mais également
moins puissant, est proposé chapitre 7. Ces deux procédures résolvent le probléme du
matching selon des équivalences ~; resp. ~q, avec ~y C ~y C =4 C=.

IIT Vue d’ensemble de la méthode

La figure 4 donne une vue d’ensemble de la méthode. On suppose que le concepteur de la

Programme

Slices candidats

Test d’instanciation }-—{Implémentations directesj |
|

Slices yalides

|
Substitution Fonctions optimisées :
Programme optimisé|

Bibliotheque optimisée

Fi1G. 4 — Vue d’ensemble de la méthode

bibliothéque fournit une interface d’implémentations directes pour chacunes des fonctions.
Notre méthode applique deux grandes phases:

Phase de détection Cette phase se fait en deux étapes, et suit la décomposition pre-
sentée précédement:

e La méthode de slicing trouve les tranches de programme qui calculent le méme
terme que la fonction & détecter. Il s’agit d’une sur-approximation, qui détecte
plus de tranches qu’il n’y en a réellement. [’approximation abstrait les bornes
des boucles, et les branches choisies dans les conditionnelles. Cette analyse
traite ’ensemble du programme, et doit étre efficace.

e Le test d’instanciation prend les slices détectés par ’étape précédente, et
vérifie qu’ils sont bien équivalents & la fonction cherchée. Ce test repose sur

20 Présentation

une sous-approrimation de I’équivalence de Herbrand. Cette approximation est
siire dans le sens ol tous les slices retenus sont bien équivalents. Ceci étant,
des slices équivalents peuvent étre rejetés. Le résultat de cette phase est un
ensemble de slices équivalents, et les fonctions de bibliothéque correspondantes.

Phase de substitution Une fois les slices équivalents trouvés, il reste a selectionner ceux
dont la substitution est possible et intéressante. Malheureusement, les dépendances
de flot entre un slice et les opérations entrelacées peuvent interdire la substitution.
Voici un exemple de programme ou un daxpy a été découvert. Le slice est constitué
des opérations (S, 1) a (S,n):

doi=1,n
S y(i) = y(1) + a*x(i)
x(i+1) = 2xy (i)
enddo

Puisque le slice et les opérations entrelacées dépendent 1'un de ’autre, on ne peut
pas séparer le slice du reste du programme, pour le remplacer par un appel a daxpy.
Une fois les slices séparables trouvés, la sélection du bon ensemble de substitution
se fait par un systéme de notes. Deux autres solutions expérimentales basées sur du
benchmarking sont également proposées, I’'une décrivant exhaustivement 1’espace des
substitutions, et ’autre testant les substitutions en suivant une approche gloutonne.

IV Slicing

Pour simplifier la présentation, cette section présente une version allégée du slicing dans
laquelle les fonctions libres ne sont pas gérées. On trouvera une description compléte de
la méthode de slicing dans le chapitre 5.

La figure 5 présente un pattern (a) a trouver dans un programme (b). D’aprés la
définition de I’équivalence de Herbrand, un tel probléme revient & trouver les occurrences
du terme calculé par le pattern (¢) dans le terme du programme (d). On a ici un match
en prenant les noeuds colorés commes valeurs pour les inputs du pattern.

Une premiére étape est d’associer au pattern et au programme un automate d’arbre
permettant de parcourir facilement les termes calculés. Déroulant complétement le pat-
tern, on obtient la séquence d’opérations donnée figure 6.(a). Chacune de ces opérations
permet de calculer une partie du terme du pattern, comme montré en (b).

Par conséquent, un automate d’arbre reconnaissant exactement le terme calculé par le
pattern est:

1(0) — (51,)
+((S1,), (1)) = (52,1)
+((S2, 1), 1(2)) (52,2)

+(Son—1),1(n) — (Sayn)

Pour permettre aux inputs du pattern I(i) de prendre les valeurs représentées par les
noeuds colorés sur la figure 5.(d), on ajoute les transitions suivantes (dites de grignotage)

1V. Slicing 21

S1 s = I(0)
doi=1,n
Sg|s=s+I(i)

enddo

(a) Pattern

(¢) Terme du pattern (d) Terme du programme

F1G. 5 — Un probléme (simplifié¢) de reconnaissance de template

pour chaque cellule I(3):

pour chaque k

1414l

0 — <T1,>

1 — <T2,].)
x((Ty,1),a(1)) — (T3,1,1)
x((T3,1,1),a(2)) — (T3,1,2)
+((T1,), (15,1,2)) — (Ti,1)

.1 — <T2,].)
+((T3,10), a(1)) — (13,10,1)
x((T3,10,1),a(2)) — (T3,10,2)

+((11,9),(15,1,2)) — (T4,10)

Plus généralement, pour chaque opération w:

22 Présentation

<51,) s = I(0)
(S2,1) s = s + I(1)
(S2,2) s = s + I(2)
(S2,n)s = s + I(n)
(Su) |1(0) ol
(a) Pattern déroulé (b) Calcul correspondant

F1G. 6 — Sous-termes calculés par les différentes opérations

On génére la transition:

f(RD,(51) ---RDy(sy)) = w

ou RD,(s;) dénote la définition visible exacte de la variable s; dans I'opération w. Les
fonctions libres des templates nécessitent ’ajout de transitions supplémentaires, dont on
trouvera le détail dans le chapitre 5.

Il reste maintenant & parcourir simultanément les deux automates A7 and Ap en
calculant leur produit cartésien Ar x Ap. Voici un exemple de chemin de Ar x Ap
menant a une solution:

(Sa,1),(T0,1)

(81,).7(0) n . 1(0),(T5,1,2)
1(1),(T3,1,1)

1, [fa)

Noter le grignotage réalisé par les transitions sur les inputs 7(7). On construit enfin
un slice en collectant les opérations du programme sur un chemin décrivant toutes les
opérations du pattern. (Des feuilles jusqu’a I’état final de Ar, ici (Sa,n)).

En fait, les automates d’arbre Ar et Ap ont souvent un nombre paramétrique de
transitions. Par conséquent, on ne peut pas les traiter (ni les représenter) directement.
La méthode de slicing effectue alors une sur-approrimation en travaillant au niveau des
statements avec des définitions visibles approchées, dont on trouvera une définition dans
[1]. Une description de 'approximation est également donnée en section 5.1.1, page 70.
Les définitions visibles approchées assurent la finitude de A;, Ap et donc de Ar x Ap.
A partir d’un statement S (et non plus d’une opération) :

S: s=f(s1...5n)

On calcule la définition visible approchée @Q; = RDg(s;), qui donne un ensemble de state-
ments dont une instance au moins est une définition visible d’une instance de S (approx-
imation conservative). Il reste alors a émettre les transitions :

V. Test(s) d’instanciation 23

pour chaque combinaison de statements S; € ;. On peut montrer que l'algorithme
obtenu est conservatif i.e. tous les slices Herbrand-équivalents sont détectés. Cependant,
comme on 1’a remarqué précédement, cette approximation améne la méthode & émettre
des slices non-équivalents. On a donc besoin d’'une méthode ezacte pour vérifier que les
slices trouvés sont bien équivalents au pattern.

V Test(s) d’instanciation

La méthode de slicing retourne un ensemble de slices candidats qui matchent poten-
tiellement le template. Cette section présente briévement une méthode ezxacte, le test
d’instanciation, pour filtrer les slices qui matchent le template. Le détail de la méth-
ode pourra étre trouvé dans le chapitre 8. Par ailleurs, nous proposons un autre test
d’instanciation, dont nous ne parlerons pas ici, et dont on trouvera la description dans le
chapitre 7.

Le test d’instanciation suit les étapes de la méthode de slicing décrite dans la sec-
tion précédente. Une analyse de définition visibles exacte est appliquée pour obtenir les
automates d’arbre exacts Ar et Ap. (voir la figure 8.2, page 130). Comme les défini-
tion visibles peuvent dépendre des valeurs des compteurs de boucle, ces conditions sont
mises sur les transitions des automates d’arbre. Finalement, décider si le fragment de
code étudié est une instance du template se raméne a calculer les valeurs des comptes
tours obtenus en atteignant ’état final du produit cartésien. Une heuristique efficace [63]
permet d’effectuer ce calcul.

La puissance de cette approche est évaluée selon sa capacité a montrer I’équivalence
entre le slice et 'instance appropriée du template, 'un étant une variation de l'autre.
Le test supporte les variations venant des transformations de boucles (splitting, fusion,
skewing, tiling, unroll,...), des structures de données (scalar expansion, scalar promotion,
utilisation de variables temporaires), mais aussi de I’élimination de sous-expressions com-
munes et autres factorisations de calcul. Ceci étant, le test ne gére pas les propriétés
sémantiques des opérateurs telles que la commutativité, ou encore I'associativité. La fig-
ure 7 montre les différents types de variations supportés par notre test d’instanciation.

VI Substitution

Une fois les fonctions détectées dans le programme, il reste & les remplacer par I’appel
approprié vers la bibliothéque. On doit tout d’abord vérifier que la suppression du slice
est valide, puis générer le code, et finalement sélectionner parmis toutes les substitutions
celle qui produit la meilleure amélioration de performances.

V1.1 Validité de la substitution

La plupart du temps, les slices sont entrelacés avec le reste du programme. A cause
des dépendences de données, la suppression d’un slice peut changer la sémantique du

24

Présentation

return sum_a + sum_b

(a(0) +...) +a(n)+
(6(0) +...) + b(n)

(a) Programme original

sum(0) = a(0)
sum(n+1) = b(0)
do i=1,n

sum(i) = sum(i-1) + a(i)

sum(i+n+1) = sum(i+n) + b(i)

enddo
return sum(n) + sum(2*n+1)

(a(0) +...) +a(n)+
((0) +...) + b(n)

(c) Variation de structure de données

sum_a = a(0)
sum_b = b(0)
do i =1,n
temp = sum_b
sum_b = temp + b(i)
garbage = garbage + 1
sum_a = sum_a + a(i)
enddo
return sum_a + sum_b

(@(0) +...) + a(n)+
(b(0) + ..)+ b(n)

(b) Variation d’organisation

sum_a = a(0)
do i = 1,n,2
sum_a = sum_a + a(i)
sum_a sum_a + a(i+1)
enddo
if n mod 2 = 1 then
| sum_a = sum_a + a(n)
endif
sum_b = b(0)
do i =1,n
| sum_b = sum_b + b(i)
enddo
return sum_a + sum_b

(@(0) +...) + a(n)+
(b(0) + ..)+ b(n)

(d) Variation de controle

F1G. 7 — Variations supportées par le test d’instanciation

programme. Plus précisément, deux conditions sont requises pour qu’une substitution

soit valide:

e Aucune des variables temporaires du slice ne doit étre lue ou écrite dans le reste
du programme. Pour préserver la sémantique, la réplication des calculs nécessaires
devrait étre effectué, ce que nous ne gérons pas dans notre méthode.

e Les dépendences doivent étre dirigées exclusivement du slice vers le reste du pro-
gramme, ou bien du reste du programme vers le slice. Ceci interdit notament le cas
ou l'input du slice est construit dynamiquement a partir de output.

La seconde est exprimée par des conditions sur le slice complémentaire: considérons un al-
gorithme reconnu (slice) A = {(A1, 1) ...{Apn, I,)}, avec pour premiére opération (A1, 1),

-

et pour derniére opération (4, i,). Son slice complémentaire est I’ensemble des opérations
du reste du programme, exécutées entre la premiére et la derniére opération de A:

A={(S,1) | (A1,71) < (S,i) < (Apn,in) A Bi avec S = A;}

Une fois A calculé, il reste a décider s'il est séparable de A, afin d’effectuer la substitution.
On dit que A est séparable si les dépendences de flot partent exclusivement de A vers A,

VI. Substitution 25

ou bien ezclusivement de A vers A. Dans le premier cas, on dit que A est séparable par le
haut, et on peut placer I'appel avant A. L’exemple suivant montre un slice séparable par
le haut (& gauche), et sa substitution (a droite).

doi=1,n call daxpy(a,x,y)
| if i >= 2 then doi=1,n
A || s = yG-1 +1 | if i >= 2 then
endif A | s(i) = s(i) + 1
A | y(@) = y(@) + axx(i) endif
A | s(d) = 2¥xy(i) A4 | s@) = 2xy(i)
enddo enddo

Dans le deuxiéme cas, symétrique, on dit que A est séparable par le bas, et on peut
remplacer A par un appel aprés A. Voici un exemple de slice séparable par le bas (a
gauche), et sa substitution (& droite).

doi=1,n doi=1,n
| if x(i) >= 0 then | if x(i) >= 0 then
A | x(i) = s(d) + 1 A | x(i) = s(i) + 1
endif endif
A | y@) = y@) + axx(i) A | x(+1) = 2%x(4)
A | x(i+1) = 2%x(d) enddo
enddo call daxpy(a,x,y)

Dans les autres cas, on considére que A et A ne sont pas séparables, et on ne fait pas
de substitution. Voici un exemple de slice non-séparable:
doi=1,n
A_| y(i) = y(i) + a*x(i)
A | x(i+1) = 2%y (i)
enddo
On peut remarquer que n’importe quelle analyse de dépendence conservative peut étre
utilisée. Au pire, un slice séparable sera rejeté.
Une fois les slices séparables isolés, la substitution peut étre effectuée en supprimant
les opérations de A, et en placant I'appel avant, ou aprés A selon que le slice soit séparable
par haut, ou par le bas. Les opérations de A sont supprimées en ajoutant une garde :

S: if ¢ ¢ I then ...

devant chaque opération S, ou I designe ’ensemble des vecteurs d’itération de S dans
A. Deux portions de code doivent également étre ajoutées avant, et aprés le call, pour
exprimer les paramétres de la fonction a partir des variables du programme, et pour
récupérer le résultat du call dans le point de sortie du slice. Ces portions de code, qu’on
appelera code d’entrée, et code de sortie peuvent malheureusement dégrader les perfor-
mances du programme, et ainsi minimiser I’impact des substitions. Cet aspect est discuté
dans la section suivante.

VI.2 Sélectionner I’ensemble de substitutions optimal

Intuitivement, remplacer un code par un appel a une fonction optimisée devrait toujours
améliorer les performances du programme. Ce n’est malheureusement pas toujours le cas,
et ce pour plusieurs raisons:

26 Présentation

Codes d’entrée et de sortie Comme les inputs de la fonction reconnue n’ont pas tou-
jours leur propre disposition en mémoire, on doit ajouter des codes d’entrée et de
sortie, qui sont généralement des memcopy. De tels codes réduisent inévitablement
le gain de la substitution.

Hiérarchie mémoire Remplacer une portion de code par un appel vers une fonction
peut avoir un impact sur la localité, et ainsi réduire fortement les performances.

Pour ces raisons, la sélection parmis toutes les substitutions possibles du sous-ensemble
qui réalise les meilleures performances est obtenu de maniére empirique. Pour chaque
substitution, le code est compilé, exécuté sur un input donné, et le temps d’exécution est
mesuré. Comme le nombre de possibilités croit de maniére exponentielle avec le nombre de
détections, on choisi d’appliquer une méthode gloutonne qui s’exécute en temps linéaire.
On examine les substitutions incrémentalement, en gardant une substitution si le temps
d’exécution est inférieur au temps d’exécution précédent.

On pourrait diminuer le nombre de mesures a I'aide d’une technique sophistiquée de
prédiction de performances [21, 51]. De telles approches ne sont pas étudiées dans cette
these.

VII Résultats expérimentaux

La méthode présentée dans cette theése a été implementée dans un outil appelé TeMa
(Template Matcher). TeMa a étée implémentée en Objective Caml, et comporte plus de
17000 lignes de code. Nous avons implementé notre propre front-end Fortran, qui s’est
révélé capable de traiter avec succés plusieurs noyaux des SpecFP 2000 [54] et des Perfect
Club [39] benchmarks.

Nous avons appliqué notre méthode a la détection des appels a la bibliothéque BLAS
(Basic Linear Algebra Subroutines) [67] dans les noyaux des SpecFP 2000 et des Perfect
Club benchmarks. La reconnaissance a été effectuée sur un Pentium 4, 1.6 Ghz avec 256
MB RAM, et les facteurs d’accélération (speed-ups) ont été mesurés sur un Itanium 2,
897 Mhz bi-processeur avec 2 GB RAM. La figure 8 donne les speed-ups de trois fonctions

5 DAXPY
/. |e DSCAL
20 2|y ppor

Speed-up
&
<

10 50 100 150 200 500 1000
Rank

F1G. 8 — Speed-ups de trois fonctions BLAS souvent utilisées

VII. Résultats expérimentaux 27

Noyau Fonctions analysées % retenu Lignes de code
Original | Normalisé
171.swim 5: (Al 100 % 351 414
172.mgrid | 3: interp psinv resid 25 % 120 243
173.applu 3: Dblts buts rhs 14 % 446 1415
14: advt wcont smth
smthf csmth horsmt
301.apsi horbc dctdx dctdxd 6 % 464 807
dpdx dftdx ccrank
dudz dvdz
qcd 2: project syslop 5% 115 355
mdg 3: interf poteng intraf 52 % 646 1496
tis 2: trfa olda 26 % 127 171

TABLE 1 — Parties analysées dans les SpecFP et les Perfect Club benchmarks

BLAS usuelles. Basiquement daxpy calcule la combinaison linéaire i <— aZ+ % étant donné
un scalaire a et deux vecteurs I et 7/, dscal calcule la dilatation Z <— aZ et ddot calcule le
produit scalaire (Z|%). Ces courbes ont été obtenues en comparant les temps d’exécution
des fonctions BLAS, & ceux d’une implémentation directe, en faisant varier la dimension
des vecteurs (rank).

Nous avons restreint notre analyse aux fonctions qui représentent une part importante
du temps d’exécution. La table 1 détaille les fonctions analysées dans chaque noyau. La
colonne Normalisé donne le nombre de lignes aprés avoir normalisé chaque fonction pour
avoir une opération par affectation. Les formes normales de applu et mdg ont une taille
importante, puisqu’elles utilisent des affectations avec des formules de taille importante.
Notre base de patterns est constituée d’implémentations directes des fonctions BLAS.
Plusieurs variations sémantiques usuelles ont été ajoutées pour augmenter le nombre de
détections. Les sous-sections suivantes détaillent les résultats expérimentaux obtenus pour
chaque étape du processus de reconnaissance.

VII.1 Slicing

La méthode de slicing a pour but de trouver toutes les instances d’un template dans le
programme. Puisqu’elle repose sur une approximation conservative du flot de données,
plusieurs candidats non-équivalents peuvent étre retournés. Cette section présente une
étude expérimentale de la précision du slicing.

La figure 9 donne le nombre de slices candidats detectés pour chaque noyau, et met
en évidence les slices non-équivalents (noir), et les slices équivalents (gris et blanc). La
méthode de slicing retourne également les instances triviales des patterns. Par exemple,
Yy = ax + y peut étre considéré comme un daxpy sur des vecteurs a une dimension. Ceci
nous améne a distinguer les slices triviaux (gris), des slices dont la substitution pourrait
mener 4 une amélioration de performance (blanc). Par ailleurs, la figure 10 fait le point sur
la proportion de candidats non-équivalents, triviaux, et intéressants trouvés dans chaque
noyau.

Il apparait que 35.9% des candidats ne matchent pas, 56.4% sont des instances cor-

28 Présentation

300

275

250

225

200

175

[Jinteresting
1 50 [Trivial

W Not confirmed by instantiation

Detections

125

100 =

75

50

25 | e
il L P T [

xger
xtrmv
Qcb
xaxpy
xdot
xscal

F1G. 9 — Fonctions BLAS détectées dans les noyaux des SpecFP 2000 et des Perfect Club
benchmarks

rectes, mais sur des vecteurs de rang trop petit pour avoir des speed-ups, et 7.7% des
candidats sont des instances correctes qui peuvent étre remplacées par ’appel approprié

a BLAS.
Les résultats expérimentaux ont mis en évidence deux causes de mauvaises détections.

Absence de types Les définitions visibles approchées traitent les tableaux comme des
variables scalaires, et introduisent par conséquent des fausses dépendences entre les
statements. Ceci méne par exemple a confondre un daxpy y(i) = y(i) + a*x(i)
avec un produit scalaire dot = dot + a(i)*b(i).

Controle approché A cause de I'approximation faite par les définitions visibles ap-
prochées, les structures de controle ne sont traitées correctement. En effet, con-
sidérons le programme suivant (a gauche), et les définitions visibles approchées de
chacunes des variables lues (entre crochets [.|, & droite).

S1 s = a(0) s = a(0)
doi=1,n doi=1,n
if i mod 2 = 0 then if i mod 2 = 0 then
Sz | s =8 +1 | s = [51,53]1 + 1
endif endif
Ss3 s = s + a(i) s = [51,52,53]2 + a(i)
enddo enddo

Sir=s r = [S1,53]3

VII. Résultats expérimentaux 29

Kernel % Bad | % Trivial | % OK
171.swim 35.6 53.1 10.4
172.mgrid 56.7 23.3 20.0
173.applu 37.7 49.1 13.2
301.apsi 31.2 49.2 19.6
qcd 17.4 74.6 8.0
mdg 39.9 58.3 1.8
tis 21.4 75.0 3.6
SpecFP 2000 35.3 48.5 16.1
Perfect Club 35.9 61.4 2.7
Total 35.9 56.4 7.7

F1G. 10 — Répartition des détections

Considérons [],. Puisqu’on peut choisir indifférement S, ou S, les branches choisies
dans les conditionnelles sont ignorées. De la méme facon, on peut choisir indiffére-
ment S; ou bien un des statements Sy ou S3, ce qui améne & ignorer le nombre
d’itérations exécuté par les boucles.

Par ailleurs, 56.4% des slices sont des instances correctes, mais dont la substitution n’est
pas intéressante, puisqu’ils travaillent sur des vecteurs de rang trop faible pour obtenir
un speed-up. La plupart du temps, il s’agit d’expressions arithmétiques simples, comme
y = ax + y pour un daxpy. Finalement, 7.7% des slices sont des candidats corrects, et
intéressants, dont la substitution peut potentiellement améliorer les performances du pro-
gramme. Notre algorithme les a toutes découvertes, en particulier les instances «cachéesy.
En effet, la plupart des slices sont entrelacés avec le reste du programme, et fortement
destructurés.

VII.2 Substitution

Une fois les fonctions BLAS découvertes, il reste & sélectionner les substitutions qui
amélioreront effectivement les performances du programme. Cette section présente les
speed-ups résultant de (a) la recherche exhaustive dans l’espace des substitutions, ainsi
de (b) 'heuristique gloutonne présentée dans la section VII.2.

Recherche exhaustive

Nous avons appliqué une recherche exhaustive pour trouver la meilleure combinaison de
daxpy parmis les 12 detectées dans le noyau swim. L’espace de recherche comporte donc
2!2 = 4096 combinaisons de substitutions, dont ’exploration & pris 3 heures sur la machine
Itanium 2 utilisée pour les expérimentations.

La figure 11 donne les speed-ups obtenus en essayant tous les ensembles de substitu-
tions avec 1, 2, ..., 12 daxpys. Il apparait que le speed-up optimal est atteint avec deux
substitutions. Chaque sous-ensemble de test comporte un palier entre 65 % et 70 %, et
une partie entre 10 % et 25 %. Le palier s’explique par la présence des deux substitutions
dans chaque combinaison, et la partie basse par leur absence.

30 Présentation

Zg j@ﬁ\ EM G%h."'@'lna M%nm—%a—a

55
50

3;0/45
S 40
°©
g %
N 25 = B [N % ®« ®°7
fg‘ : ® % -~
- B
10 : ¥) %)
0=
@4 5 6 7 8 9 10 11

#Substitutions

Fi1G. 11 — Recherche exhaustive

Recherche gloutonne

Noyau daxpy scal dot gauss Gain (%) | Speed-up
Testé | Subst. | Testé | Subst. | Testé | Subst. | Testé | Subst.
171.swim 12 6 4 0 0 0 0 0 66.8 3.0
172.mgrid 7 7 6 0 0 0 0 0 3.6 1.04
173.applu | 32 0 4 0 1 0 2 0 0 1
301.apsi 8 2 28 0 0 0 0 0 0.7 1.0
qcd 8 0 1 0 2 0 0 0 0 1
mdg 0 0 10 3 2 0 0 0 16.5 1.19
tis 11 0 0 0 0 0 0 0 0 1
Moyenne 12.5 1.14

TABLE 2 — Recherche gloutonne

Nous avons appliqué notre heuristique gloutonne pour trouver les substitutions intéres-
santes dans les benchmarks analysés. La table 2 montre les speed-ups obtenus aprés avoir
appliqué les substitutions sur les différents noyaux. Il apparait que notre approche permet
d’obtenir un gain moyen de 12.5 %, correspondant & un speed-up de 1.14. Le speed-up
important de swim est dii & 6 daxpys travaillant sur des gros vecteurs (1334 éléments), et
prenant une part importante du temps d’exécution. Les fonctions détectées dans mgrid
travaillent avec des vecteurs de petite taille, ce qui explique le speed-up obtenu. La plu-
part des slices trouvés dans apsi n’ont pas pu étre substitués, faute d’étre séparables. De
méme que pour swim, les speed-ups obtenus pour mdg viennent de la taille importante
des tableaux manipulés par les fonctions détectées, et de la part importante prise dans le
temps d’exécution. Aucune bonne substitution n’a été trouvée dans les noyaux applu, qcd
et tis. En effet, elles nécessitent pour la plupart deux memcopy dans les codes d’entrée et
de sortie.

VIII. Conclusion 31

Noyau Slicing Test d’instanciation Total
171.swim 50 s 17 mn 17 mn 50 s
172.mgrid 8s 48 s 56 s
173.applu | 2 mn 55 s 20 mn 22 mn 55 s
301.apsi 2mn7s 7 mn 9mn 7s
qcd 1mn16s 8 mn 33 s 9 mn 49 s
mdg 14 mn 52 s 49 mn 1h 3 mn
tis 3s 1 mn 21 s 1 mn 24
Total 1h 44 mn

TABLE 3 — Temps d’exécution de la méthode de reconnaissance

VII.3 Temps d’exécution

La table 3 montre le temps d’exécution de ’ensemble du processus de reconnaissance,
détaillé étape par étape. Au final, notre méthode aura pris 1 h 44 mn pour optimiser
I’ensemble des noyaux présentés. Le lecteur trouvera des tests plus détaillés dans le
chapitre 10, avec en particulier une vérification expérimentale de la complexité théorique
du slicing et du test d’instanciation.

VIII Conclusion

Cette section rappelle les contributions principales de la thése, et présente briévement les
perspectives, dont on pourra trouver une description plus compléte et plus détaillée dans
le chapitre 11.

VIII.1 Contributions

Dans cette thése, nous avons proposé une approche totalement automatique pour recon-
naitre dans un programme les occurrences des fonctions d’une bibliothéque optimisée, et
les substituer par ’appel de fonction approprié lorsque c’est possible et intéressant. Notre
méthode est capable de détecter toutes les tranches de programme équivalentes aux fonc-
tions recherchées au sens de 1’équivalence de Herbrand ; un sous-ensemble de I’équivalence
sémantique qui ne tient pas compte de la sémantique des opérations atomiques. En plus
des fonctions, nous sommes également capables de trouver des instances de templates dans
un programme. Une telle caractéristique rend possible la reconnaissance de bibliothéques
de templates, et la réécriture d’'un programme pour utiliser des templates. Une fois les
instances trouvées dans le programme, il reste a sélectionner les candidats dont le rem-
placement par un appel de fonction est possible et améliore effectivement les performances
du programme. Nous proposons également un algorithme pour sélectionner les substitu-
tions valides, et pour générer le code avec la substitution. La sélection du bon ensemble
de substitution se fait par un systéme de notes. Deux autres solutions expérimentales
basées sur du benchmarking sont proposées, I'une décrivant exhaustivement 1’espace des
substitutions, et I'autre testant les substitutions en suivant une approche gloutonne.
Notre approche a étée implémentée dans l'outil TeMa (Template Matcher). TeMa
représente plus de 17000 lignes de code C++ et OCaml, et a été appliqué a la détec-

32 Présentation

tion des fonctions de la bibliothéque BLAS (Basic Linear Algebra Subroutines) dans les
noyaux des benchmarks SpecFP 2000 et Perfect Club. Les résultats expérimentaux mon-
trent un facteur d’accélération moyen de 1.14, avec un pique & 3 pour swim, un noyau de
SpecFP 2000.

VIII.2 Perspectives
Améliorations

Variations sémantiques Notre méthode de reconnaissance est capable de détecter les
portions de programme Herbrand-équivalentes a une instance d’un template donné.
Malheureusement, nous ne sommes pas capables pour le moment de gérer les vari-
ations algorithmiques utilisant des propriétés sémantiques sur les opérateurs atom-
iques telles que ’associativité, ou encore la commutativité. Une normalisation
«quick-and-dirty» du programme peut résoudre la plupart des cas simples. Nous
pensons que les régles de 'unification équationnelle peuvent mener & une solution
traitant des cas plus généraux.

Clétures transitives de relations de Presburger Notre test d’instanciation repose
sur I'exécution symbolique d’un automate & compteur, qui requiert le calcul de
I’ensemble des valeurs prises par un compteur sur un état. Comme toujours, le
probléme vient des cycles, qui ménent & calculer des clotiires transitives de relations
de Presburger. Nous utilisons actuellement I’heuristique implémentée dans la bib-
liothéque Omega. Malheureusement, cette procédure est coiiteuse et inadaptée a
I'usage intensif qu’en fait TeMa. Une partie des clotures transitives est constituée
de cas simples e.g. [i < ¢ — 1,7 > 0]x pouvant étre résolus avec une technique de
normalisation ad-hoc. Nous pensons que les automates de Presburger [105] sont un
point de départ prometteur pour traiter ’autre partie.

Applications

Vérification de transformations de programmes Les optimisations devenant de plus
en plus compliquées, il devient de plus en plus dur de certifier un compilateur. Une
solution serait de vérifier lors de la compilation que les optimisations n’altérent pas
la sémantique du programme. Notre test d’instanciation est déja capable de vérifier
I’équivalence sémantique avant et apres optimisation sur des programmes a controle
statique, et nous pensons qu’il pourrait étre étendu a des cas simples de programmes
avec des boucles while et des conditionnelles non-affines. Le travail de Denis Barthou
sur analyse de flot de données en présence de contraintes non-affines [12] fournit
des pistes intéressantes a explorer.

Model Checking Le model-checking consiste a vérifier qu’un programme satisfait les
contraintes temporelles spécifiées par une formule de logique temporelle LTL (Linear
Temporal Logic). Ce probléme peut étre résolu dans la classe des programmes dont
le calcul ne dépend pas des entrées, en associant au programme un automate dit de
Biichi Ap qui reconnait un sous-ensemble représentatif de ses traces d’exécution, et

VIII. Conclusion 33

un automate Ap qui reconnait toutes les traces qui valident la formule. 11 suffit alors
de vérifier que le langage L(Ap) — L(AF) est vide. Nous pensons que les templates
peuvent encoder un sous ensemble des formules LTL faisant de notre approche une
alternative intéressante aux automates de Biichi.

Réécriture automatique d’un programme dans un langage métier Les langages
métier, plus connus sous la terminologie anglo-saxonne de domain-specific languages
(DSL) permettent d’exprimer les programmes d’une maniére plus abstraite et com-
pacte que les languages impératifs généraux. Les compilateurs de DSL peuvent ef-
fectuer des optimisations plus aggressives que les compilateurs traditionnels. Dans
une publication récente [6], nous avons étudié la rétro-ingénierie de programmes For-
tran vers le langage SPL, un DSL dédié aux applications de traitement du signal.
Nous proposons une méthode pour retrouver les parties de programmes exprimables
en SPL, et nous pensons que notre méthode peut étre appliquée a d’autres DSL.
En plus d’améliorer la lisibilité du programme, cela permettrait de tirer profit des
optimisations effectuées par le compilateur du DSL.

34

Présentation

Chapter 1

Introduction

Template recognition consists in finding in a program all the parts that can be rewritten
as an instance of a given template. Such a facility has many applications in compiler
design and software engineering. One can cite reverse engineering, automatic program
comprehension, verification of program transformations, code refactoring, or program
optimization. In this thesis, we address the problem of template recognition, and its
application to program optimization. We propose a new source-to-source optimization
that automatically rewrites a program to use a performance library. Given a program,
we recognize naive implementations of library functions, and we replace them by a call to
the library whenever it is interesting.

1.1 Motivations

Most of compiler optimization techniques apply local transformations on the code, re-
placing sub-optimal fragments with better ones. They are often low-level, and applied
without knowing what the code is supposed to do [1]| (constant propagation, algebraic
simplifications, inlining). Further optimizations try to exploit the hardware in the best
manner (automatic parallelization [110], optimal code selection [38], software pipelining
[7], register allocation [20], data prefetching 78], data locality [75]). Unfortunately, these
optimizations are not enough to produce a definitively optimized code, and leads the
programmer to make a choice between:

e Hand optimizing. No matter how powerful the compiler optimizations are, they
are no substitute for good algorithms. Unfortunately, modern programming lan-
guage interface often hides critical hardware behaviors such as pipeline and cache
effects, which can leads to unpredictable performances. As a consequence, it is
difficult for a programmer to find a near-optimal implementation.

e Optimized routines. An immediate solution is to look for an existing optimized
routine. It may appears in the form of domain-specific languages [107, 25|, generative
approaches [28], or adaptative libraries [99, 47, 22].

Domain-specific languages (DSL) are programming languages dedicated to specific
problems (e.g. signal processing [88|, device drivers interfaces [92], large data-base

36 1. Introduction

handling [46]). They provide appropriate built-in abstractions and notations allow-
ing to perform high-level aggressive optimizations.

Generative programming allows to write a code by using high-level operations, and
to generate the corresponding code in the mainstream language. Lex and Yacc
are typical examples of generative programming tools, which provides powerful and
easy-to-maintain parsers. In the same manner as domain-specific languages, gener-
ative approaches provide an abstraction level allowing to perform aggressive opti-
mizations. Even if generative optimizations can produce a good code for individual
operations, it may miss optimizations which depend on context.

Adaptative libraries provide a bunch of domain-specific routines tuned for the cur-
rent architecture. At installation time the routines are benchmarked while varying
parameters which affects performances (for instance loop structures, tile size and
unroll factor). The parameter space is then explored point by point, and the per-
formance of each variant is measured until the best implementation is found. Such
an optimization technique is used in many optimized libraries such as ATLAS [99],
FFTW [47] and PhiPAC |22]. Despite the cost of the tuning pass, adaptative li-
braries seems to be a promising approach for optimization. For example, the authors
of FF'TW report superior performances over all commonly used FFT packages. In
addition, the systematic use of libraries ensure portability, reuse and readability of
code [59].

Generic programming [95, 93, 9, 97, 61] has emerged recently as a new powerful
paradigm for simplifying the development of libraries in which a set of algorithms
have to be implemented for many data-structures. In order to avoid code explosion,
the algorithms do not manipulate concrete data structures directly, but instead op-
erate on abstract interfaces defined for entire equivalence class of data structures.
For example, the Matrix Template Library |93] abstracts the sparse storage type of
the matrices, and the operations on the underlying ring. Additionally, 13 storage
types, and 4 rings corresponding to different precision types have been added, al-
lowing to represent more than one hundred of versions of the same routine! Since
generic programming is relatively new, there is a few number of generic libraries for
the moment, but we believe that this paradigm will be used widely in the future.

For the moment, the library functions must be called by hand. Research effort has
been made to provide a convivial and efficient environment to browse library functions.
Several approaches are able to retrieve a library function given pre- and post-conditions
(see for example [58|, [85] or [44]). However, learning and using a new library remains
fastidious, and it is surprising how little the compiler helps the programmer in this task.

A natural solution would be to search naive occurrences of library functions through
the program, and replace them by the corresponding call. Paul and Prakash [84] proposes
a pattern language with wildcards on syntactics entities which allows to find patterns
with specific sequences and imbrications of control structures. Despite a low complexity,
their approach is purely syntactic and cannot handle many program variations. Wills
[102] represents programs by their dependence graph, and encodes the knowledge about
functions to recover by using a graph-grammar. The recognition is then achieved by pars-
ing the program’s dependence graph according to graph-grammar rules. This approach

1.2. Ezample of Optimization by Template Recognition 37

is a pure bottom-up code-driven analysis based on exact graph matching. Unfortunately,
this approach is expensive, and the variations recognized directly depends on the gram-
mar rules. Additionally, the base of grammar rules seems to be difficult to maintain, and
oblige the user to add manually his own rules whenever he want to look for a new pattern.
Metzger [76] provides a complete framework to recognize algorithms in a program, and
to substitute them by an optimized call. His equivalence test is based on a normalization
of abstract syntax trees, and cannot handle many program variations.

In this thesis, we propose a fully automatic approach to recognize naive occurrences
of library functions, and to substitute them, whenever it is possible and interesting, by a
call to the optimized library. In addition to functions, we are also able to find template
instances in the source code, providing the relevant template variables for each match.
Such a characteristic enable the rewriting of a program to use generic libraries.

1.2 Example of Optimization by Template Recognition

Figure 1.1 provides a template (a) to find in a program (b). The template is a naive
implementation of a generic reduction over an array I with respect to the operator X.
We want to replace the reductions found in the program by a call to a parallel version
par_reduc (X ,I) provided by an efficient library. This is only possible if X has a special
form X =z @ f(y) where & is at least associative. How to decide this property has been
explained in [89] and will not be discussed further in this thesis. The first step of our
approach will recognize all the instances of the template in the program. Here we should
obtain the two following instances:

e Lines 1 to 8, with X (z,y) = z+y°, n =10, I(0) = 0 and I(k) = a(k) for 1 < k < 10.
e Lines 3 to 6, with X (z,y) =2 xy,n=>5,1(0) =1 and I(k) = a(i) for 1 <k <5.

Since the two recognized parts (slices) overlap, one must choose the slice whose substi-
tution will lead to the best performance improvement. Our selection algorithm depends
on parameters specified by the library designer. For instance, we could choose the second
slice. It remains then to generate the code with the right substitution (see (c)).

1s=0 <=0

s = 1(0) ; do 1==11’10 do i = 1,10

do i = 1,n R 1C0) = 1

s = X(s,I(3)) 1T I(1:5) = a(i)

enddo o | p = pra(d) p = call par_reduc(\zy.zXxy,I)
6 | enddo -

return s s =8 +p
7 s=s*Pp enddo
8 enddo

(a) Template (b) Program (¢) Optimized program

FiG. 1.1 — A template recognition problem

38

1. Introduction

1.3 Difficulties in Template Recognition

1.3.1 Common Program Variations

The main difficulty in algorithm recognition comes from the various way to implement
a given algorithm. Wills [102| provides a classification of all possible types of variations

that we summarize in figure 1.2.

Organization variations

Any permutation of independent statements and introduc-
tion of temporary variables. The following example give
an organization variation with legal permutations (LP),
garbage code (GC) and temporaries (T):

s = a(0)

c=0 c=0

GC garbage = 0
doi=1,n

c=c+1 LP | c=c+1
enddo T temp = a(i)
return s + ¢ do j=1,p
GC | | garbage = garbage + 1
enddo

s = s + temp
GC | garbage = garbage + a(i)
enddo
return s + ¢

Data structure variations

The same computation with a different data structure.
The following example give a data structure variation with
arrays and non-recursive structures:

Control variations

Any control transformation as if-conversion, dead-code
suppression and loop transformations as peeling, splitting,
skewing, etc. The following example give a control varia-
tion with a simple peeling:

s = a(0) s = a(0)
doi=1,n s =s + a(l)
|s=s+a(1) do i = 2,n-1
enddo | s = s + a(i)
return s enddo
s = s + a(n)
return s

Semantics variations

Any transformation which makes hypothesis on operator
properties. For example, the following transformation as-
sumes the commutativity of +:

s(0) = a(0) s.suml = a(0) s = a(0) s = a(0)

do i =1, 2%n doi=1,n do i =1,n do i =1,n

| s(i) = s(i-1) + a(i) | s.suml = s.suml + a(i) | s = s + a(i) | s = s + a(n-i+1)
enddo enddo enddo enddo

s.sum2 = a(n+1) return s return s
do i = n+2, 2*n

s.sum2 = s.sum2 + a(i)
enddo

return s.suml + s.sum2

return s(2*n)

F1G. 1.2 — Typology of program variations

In theory, algorithm recognition is more difficult than semantic equivalence between
programs, which is undecidable. Most existing approaches for algorithm recognition are
based on syntactic matching, and can only cope with some organization variations. Un-
fortunately, the occurrences of an algorithm are often data-structure or control variations.
This thesis proposes an heuristic able to recognize in most cases all possible kind of pro-
gram variations, except variations that take semantic properties of operators into account.

1.3.2 Performance Prediction

Performance prediction aims here to quantify the impact of a substitution on program
performances. In the same manner as semantic equivalence, the problem to decide whether
an transformation improve the performance is undecidable [79]. Nevertheless, several

1.4. Contributions 39

approaches provides accurate performance prediction models, such as Fahringer’s [40],
Ghosh’s [51] or Padua’s approches [21]. Such approaches provides parameters quantifying
the performances of the program, such as the execution time, or the number of cache
misses ; they are often based on profiling. Accurate performance prediction models are
not in the scope of this thesis.

1.4 Contributions

1.4.1 Template Recognition

In this thesis, we propose a fully automatic approach to recognize occurrences of library
functions in a program, and to substitute them, whenever it is possible and interesting, by
a call to the library. Our approach is able to recognize all the program slices computing
the same mathematical formula than the searched function. This allow to cope with
organization, data-structure and control variations, and more generally with any program
transformation which does not take operators properties (associativity, commutativity,
etc.) into account. In addition to functions descriptions, we are also able to find template
instances in the source code. Such a characteristic enable the recognition of template
libraries, and the rewriting of a program to use templates.

Our method is divided into three steps. One apply a first pass to get the program parts
which possibly matches the template. This step, called slicing is shown to be conservative,
we do not miss any legitimate instance (conservativity). Moreover, the amount of false
positive remains reasonnably low. A second pass check whether the slices are effectively
instances of the template by using an instantiation test. We provide two instantiations
tests based on different theoretical frameworks. The first one works in the context of
unification theory, and adapts Huet and Lang’s matching procedure [56]. The other one
represents the template and the program to match by tree-automata, and achieves the
matching by using a cartesian product. We show that the two algorithms differs by their
complexity and their detection capabilities. The first instantiation test has a relatively
low complexity ; it can only handle template variables X defined by a finite arithmetic
expression, The second instantiation test is able to detect template variables involving a
do loop e.g. the first unifier in the example above, at the cost of a greater complexity.
Finally, we select the interesting substitution, and we generate the corresponding program,
as stated in the next section.

1.4.2 Substitution

Once the proper instances are found within the program, it remains to select the slices
whose replacement by a library call is possible, and interesting. We propose a complete
algorithmic framework to select all valid substitutions, and to generate the corresponding
code. A separability test has been designed to decide whether a slice can be separate from
the remaining of the program. To select a good substitution set, we propose a preliminary
solution based on a system of marks, which provides correct results in practice.

40 1. Introduction

1.5 Outline

This thesis is structured as follows.

Chapter 2 states formally the problem of template recognition, and justifies the decom-
position slicing/exact instantiation test which is addressed in this thesis.

Chapter 3 presents and discusses several existing approaches for algorithm recognition,
motivated by program understanding and program optimization.

Chapter 4 provides an overview of our recognition framework, and describes accurately
the recognition process on a simple example.

Chapter 5 presents the first step of our recognition framework, a slicing method which
aims to find the program slices which possibly matches the template. A formalization
of the template recognition problem using tree automata is also presented, and is
used in Chapter 8.

Chapter 6 provides a detailed explanation of the exact equivalence test due to Barthou
et al [13], which inspires our two instantiation tests described in Chapters 7 and 8.

Chapter 7 expresses the template matching problem as a second-order matching prob-
lem, and proposes an instantiation test extending the equivalence test described in
Chapter 6 by using rules of Huet and Lang’s algorithm [56]. The obtained algorithm
is able to handle many template matching problems, with a linear complexity.

Chapter 8 presents another instantiation test based on tree-automata. The resulting
algorithm is an exact version of the slicing algorithm, which is able to handle more
template matching problems, but at a larger computation cost.

Chapter 9 describes a method to substitute the proper slices by a call to a library
function, whenever it is possible and interesting. The selection of the substitution
set, and the generation of the code with the substitutions are addressed.

Chapter 10 presents the implementation of these algorithms in a tool called TeMa, and
provides the experimental results obtained while matching the BLAS level 1 and
2 functions [67] in the kernels of the SpecFP 2000 [54] and the Perfect Club [39]
benchmarks. Particularly, x3 speed-up was obtained on the swim kernel.

Chapter 11 concludes this thesis by discussing the value of our work and possible future
developments.

Chapter 2

Definitions and Notations

In this chapter, we provide a formal description of the template recognition problem. We
also present several notions which are used in this dissertation. After defining what a
template is, we present two equivalence relations over programs, and we define formally
the problem of template recognition. We finally present and justify a decomposition of
this problem into two sub-problems, decomposition which is used in this thesis.

2.1 Program Model

The optimization framework presented in this thesis addresses general programs. How-
ever, the program parts to recognize must be static control programs.

Definition 2.1 (Static control program). A static control program satisfies the fol-
lowing conditions:

e Data structures are scalars and arrays.
e Control structures are sequences, if conditions and do loops.

e if conditions, do loop bounds and index functions of arrays are affine expressions
of surrounding loop counters, and of integer parameters.

e Basic statements are assignments.

Most linear algebra routines are static control programs: Gaussian elimination, LU
decomposition, Cholesky factorization, etc. Figure 2.1.(a) gives the example of the prod-
uct of polynomials. Notice the affine array index function (7,j) — i + j of ¢, and the
structure parameters n and m, which corresponds here to the degree of polynomials a and
b.

An steration vector of a statement S is constituted of the values of the counters of the
loops surrounding S. The set of iteration vectors of S during the execution is called the
iteration domain of S. Iteration domains of static control programs are Z-polytopes, and
can be computed at compilation time. Under these restrictions, several problems can be
decided, such as exact instancewise dataflow analysis [43].

42 2. Definitions and Notations

do i

= 0,n+m
N (S1,0) c(0) = 0
S1 | el =0 (S1,1) () =0
an‘,b_ o (51,2) c(2) =0
°d1 N _’g (S5,0,0) <c(0) = c(0) + a(0)*b(0)
ey e (S2,0,1) c(1) = c(1) + a(0)*b(1)
52 | C(1+J) = C(1+J) + a(l)*b(J) <527170) C(l) - C(l) + a(1)*b(0)
enddo (S2,1,1) c(2) = c(2) + a(1)*b(1)
enddo
(a) Product of polynomials (b) Execution trace forn =m =1

F1G. 2.1 — Product of polynomials

An operation is an instance of a statement S during the execution ¢.e. an element of
the execution trace. It is usually denoted by (S,), where i denotes an iteration vector of
S. For example, (S, n,m) is the last operation of the polynomial product (b).

2.2 Templates

This thesis investigates the recognition of template instances in programs. In a way, static
control programs are already templates, since they depend on integer parameters (cf. n
and m in the example 2.1). We enhance the level of genericity by allowing to parametrize
static control programs with pure functions, as stated in the following definition:

Definition 2.2 (Template). We define a template as a static control program parametrized
by a tuple of functions (X ...X,), that we call free functions or template variables. Fach
free function X; is assumed to be pure (no side effect), and must be involved in the right

hand side of an assignement:

The last point forbids template variables in conditions, and bounds of do loops. This
definition is general, and does not restrict the order of template variables. In this thesis,
we will assume that template variables are second-order at most. For instance, here is
the template of a reduction parametrized by the template variable X, and the structure
parameter n:

s = a(0)
doi=1,n

s = X(s,a(i))
enddo

return s

The template variable X can be substituted by any piece of code which computes a value
from s and a(i), with no side effect.

An instance of a template 7" is the program obtained by substituting the templates
variables X = (Xi...X,), the parameters 77 = (n;...n,) and the template inputs I=
(I ...I,) by specific values. It is denoted by T[)?, i, f] For instance, we can have:

2.3. Data Dependences 43

s =1
do i 1,10
p=1 1 p=1
do j = 1,5 B(1) do j = 1,5
T| M)y. |p=p*y ,n=10, a= _ = p = p * B(i)
enddo : enddo
return T + p B(n) s =s+p
enddo
return s

Generally, X is not restricted to static control programs, it can be defined as any
piece of code with do while loops, non-affine expressions in conditionals, loops bounds
and array index functions, etc. However, we will assume in this thesis that X is defined
by a static control program.

In a more theoretical manner, a template can be defined as a term t of A-calculus with
free variables X; ... X,,. Writing t = AX;...X,.t the closure of ¢, the instance of t w.r.t.
closed terms t; ...t, can be defined simply by the application £ ¢ ...%,.

2.3 Data Dependences

Data dependences were introduced by Bernstein [16] to represent ordering constraints
among operations in a program. More often, they are less restrictive than the sequential
execution order, and thus provide the compiler with more flexibility to rearrange the code.
Three kinds of dependences are usually defined:

e Flow dependence occurs when an operation writing a variable is followed in the
execution order by an operation reading the same variable.

o Anti-dependence occurs when an operation reading a variable is followed in the
execution order by an operation writing the same variable.

e Qutput dependence occurs between two operations writing the same variable.

Consider the following program:

S; sum = a(0)
doi=1,n

Sy ‘ sum = sum + a(i)
enddo

Flow dependences occurs from operations (Si,) to (Ss, 1), and from operations (S,) to
(S2,i4+ 1) when 1 < i < n —1 (write sum / read sum). Anti-dependences occurs from
operations (S3,7) to (Ss,i + 1), when 1 < ¢ < n — 1 (read sum / write sum). Finally,
output dependences occurs from operations (Si,) to (S, 1) and from operations (Ss, i) to
(Sy,i+ 1), when 1 < ¢ <n—1 (write sum / write sum).

Although checking whether a dependence exists between two operations is generally
undecidable, litterature provides many magy-approximations [110, 1] which work on general
programs ; and several exact solutions on particular kinds of programs [43, 72, 74, 87|.
The algorithms described in this thesis use approximate and exact flow dependences, that
we describe thereafter in a more formal manner.

44 2. Definitions and Notations

As stated in Section 2.1, the execution of a program on the input I can be seen as a
(possibly infinite) sequence of operations w{; wi; ...; wl; We define the ezecution
order <; between operations as w] <; w] & i < j.

<1 obviously defines a total order over the operations w!. We now define the notion
of reaching definition, which will be used along this thesis.

Definition 2.3 (Reaching definition). Consider a program ezecuted on an input I,
and an operation w reading a variable v. The reaching definition the variable v is the last
operation T executed before w that writes v. It is usually denoted RDL(v):

RD! (v) = H—1<aX{T | 7 <1 w and T writes v}
I

Hopefully, the operations executed by static control programs do not depend on the
input 1. Hence, we can simplify the notation, and write RD,,(v) for RD! (v). In the above
example, the reaching definition of sum read by (Ss,) is:

. 7=1: <Sla>
RD s, 7 (sum) = { 2<i<n: (Spi-1)

Unfortunately, reaching definitions computation is undecidable on general programs, since
the iteration domains of statements, and the conditional expressions values are generally
unknown at compile time. Consider any program built from P and @ € Z[X] in the
following manner:

To find the reaching definition of a(Q(Z)), we have to check whether the diophantine
equation P(x) = Q(x) has a solution over [1,n], with a parametric size n. This problem
is known as the tenth Hilbert’s problem, which has been proven undecidable [73]. Several
reasearches try nevertheless to provide an exact solution for particular kinds of programs.
Particularly, Feautrier [43] gives an exact solution restricted to static control programs.
His algorithm, which is used in our framework, is detailed in Chapter 6.

We finally introduce an object widely used in program analysis, the well-known depen-
dence graph. Whereas the common definition deals with statements, and allows to rep-
resent may-approximations of data-dependences, the definition proposed here is slightly
different, and propose to deal with exact flow dependences at operation level.

Definition 2.4 (Dependence graph). Consider a program P ezecuted on an input I,
and denote by wi...w! ... the operations executed. The dependence graph of P w.r.t. T
is a directed graph G(P,I) whose:

e Nodes are the operations w!
e Edges express the exact flow dependences:

w' = 7' < Fuv s.t. RDL;(v) = w’

2.4. Program Slicing 45

As for reaching definitions, one can write G(P) for G(P,) when the operations exe-
cuted by P do not depend on I. Once again, this is the case for static control programs.
Since an operation w cannot depend on the next operations 7 : w <; 7, the dependence
graph is a DAG. This important property is expressed in the following proposition.

Proposition 2.1. Given a program P and an input I, G(P,I) is a DAG.

Proof. Assume G(P,I) is not a DAG and consider a cycle w; — ... = w, — w;. Since
Wp — w1, Jv s.t. RDfL1 (v) = wy. As a consequence, w, <7 wi. By transitivity, we have
w1 <1 wi, which contradicts the definition of <;. O

Basically, G(P, I) can be seen as a compact representation of the the expression com-
puted by P while executing on I. Consider indeed the program given in figure 2.2 (a). The
program computes the well-known Fibonnacci sequence by using dynamic programming.
Since the program has no inputs, the operations executed are always the same, leading
to the dependence graph G(P) given in (b). Labelling each node of G(P) by the operator
used in the corresponding operation and handling the constant 1 as a 0-ary operation, we
obtain the DAG given in (c), which represents exactly the expression computed by the
program.

doi=1,5
if i =1 .or. i = 2 then
Cf) =1
else
£ = £(i-1) + £(i-2)
endif
enddo
(a) Original program (b) Dependence graph (c) Expression DAG

F1G. 2.2 — Similarities between dependence graph and expression tree

2.4 Program Slicing

Program slicing is a program analysis technique which aims to extract from the program
self-contained parts which can be factored out as a function. Program slicing was first
introduced by Weiser [98] to help students to debug their code. He defined a slicing
criterion as a pair (p, V'), where p is a program point and V' a subset of program variables.
A slice w.r.t. (p,V) is a subset of program statements that allow to compute the right
values of the variables of V. Figure 2.3 presents the slice of a program (a) w.r.t. the
slicing criterion (S, 7). The slice found is (b).

Weiser has shown that computing a slice with a minimum number of statements is
undecidable. However an approximation can be found by computing consecutive sets of

46 2. Definitions and Notations

sum = 0
fact = 1 fact = 1
e=0 e=20
doi=1,n do i =1,n
sum = sum + i
fact = factxi fact = factx*i
e = e + 1/fact e = e + 1/fact
enddo enddo
S r = 2%e S T = 2%e
(a) Original program (b) Slice w.r.t. (S,{r})

F1G. 2.3 — An example of slice

indirectly relevant statements, according to data-flow and control-flow dependences. Most
often, slices are built by following approrimate reaching definitions, from the selected
statement to the input of the program [98, 70, 48, 90|.

This definition of a slice is too imprecise for our purpose since it deals with statements,
and lead to include systematically all corresponding operations in the slice. We propose
thereafter another definition of a slice which deals with operations.

Definition 2.5 (Full slice). Consider a program P ezecuted on an input I, and denote
by 71 an executed operation. The full slice of the program P w.r.t. the operation 7' is the
limit of the sequence (§;); defined as follows:

Q ={r"}
Qit1 = Qi UUuen; Usernsw) RDuw(v)

where rhs(w) denotes the set of variables read by w. We write 3\1[3(7'[) = leglo Q.

As for the dependence graphs and the reaching definitions, when the operations ex-
ecuted by P do not depend on I, we write Sp(7') for S5(77). Basically, a full slice is
exactly the set of operations needed to compute the variable assigned by 7. It is built
by following the ezact reaching definitions of the variables readen by 77, up to the leaves
of G(P,I).

With this definition, a full slice captures the complete program part required to com-
pute a variable. A slice is slightly different since it can start from « parameters » values
written by several operations. Basically, a slice is a program part that can be factored
(or replaced) by a pure function.

Definition 2.6 (Slice). Taking the notations of definition 2.5, and denoting by ¢ =
(¢f..iL) a tuple of operations where each il is an ancestor of 71 in G(P, 1), the slice of
P w.r.t. output 1 and input v is the limit of the sequence (€;); defined by:

Qo ={r"}
Qipr = UU,eq, Uperns(u) RDu (v)

Where rhs(w) = 0 ifw is a uf and ths(w) = rhs(w) otherwise. We write SL(1,71) = lim ;.
71— 00

2.5. Program Equivalence 47

Once again, we write Sp(t,7") for SL(:,77) when I is not needed. Particularly, this is
the case for the static control programs.

One can remark that slices of static control programs have a parametric size at most.
Indeed, consider a static control program with statements Sj...S,, and corresponding
iteration domains D ... D,. The total number of operations executed is |D1|+...+|D,|
which is finite since the D; are Z-polytopes. However, their size can depend on an integer
parameter.

2.5 Program Equivalence

Algorithm recognition can be defined as the process of finding all the program slices
equivalent to a reference algorithm. This section makes this notion of equivalence between
programs precise. We first define the semantic equivalence, then we present the Herbrand-
equivalence, a weaker equivalence that is addressed in this thesis.

Semantics [103] is a theoretical framework to specify the behaviour of a program. One
traditionally distinguish three kind of semantics:

Operational semantics is concerned with how to execute programs. It describes how
the variables are modified during the execution of the program. Operational seman-
tics is usually described by a transition system specifying of to derive a state (S, o)
to a state o’ where S is a statement, and o and ¢’ are mappings specifying variables
values (memory states).

Denotational semantics associates to a program the function that it computes, also
called the function denoted. Denotational semantics provides a set of semantics
functions that maps each important syntactic category to a function of memory
states. The semantics functions are defined by compositionality. More accurately,
when a syntactic category S involves syntactic categories Sj...S,, the function
denoted by an object S is defined by using the functions denoted by the objects S;.

Axiomatic semantics specifies the behaviour of a program with assertions involving
inputs and outputs. Assertions are expressed in Hoare logic [55], and consists in
triplets [P] S [@] where S is a statement, and P and () are logical formula express-
ing relations between program variables. P describes the memory state before the
execution of S, whereas () describes the memory state obtained after the execution
of S. Axiomatic semantics defines the relation between P and @ by induction on the
construction rules of the programming language. It is often presented as a deduction
system.

With abstract interpretation [26], Cousot and Cousot provides a general framework
formalizing the construction of approximate or abstract semantics. Unlike usual or con-
crete semantics, abstract semantics describe the behaviour of the program over a set of
approximate or abstract values. For instance, integers can be approximated by intervals.
The abstract semantics are ordered in a lattice with respect to the precision relation.
When the approximation is rough enough, abstract semantics can be computed, and al-
low to (semi-)decide some non-trivial assertions on programs. In this manner, abstract
semantics allow to compute must-approximations.

48 2. Definitions and Notations

We provide now the concrete denotational semantics for the significant fragment of
Fortran 77 handled in this thesis. For presentation reasons, we will describe here only a
small subset of the language, including assignments, sequence, conditionals and loops (do
and do while). However, our optimization framework is able to handle most of Fortran
77 constructions.

The definition of denotational semantics requires the syntactic categories described in
the following table. The second column provides the variables that will be used to range
each category.

Num ¢, numeric values (integers, reals)

Bool ¢y, boolean values (true, false)

Ref v references to variables (scalars and arrays)
Funy fr k-ary functions

Expryum € Dumeric expressions
Exprg,,s € boolean expressions
Stmt S program statement

Interpreting Bool by B = {True, False} where True = \zy.x and False = \zy.y ; and
Num by the set of real numbers R ; we define a memory state as a mapping:

g:Ref — BUR

and we denote by X the set of memory states. Additionally, we assume the existence of
the following semantics functions:

N :Num — R
B :Bool — B
Fy: Fung — (BUR)* — BUR) where k € N— {0}

N maps a syntactic numeric value to its interpretation in R, B maps each syntactic
boolean value to its interpretation in B, and F}, provides an interpretation for each k-ary

syntactic function of Fun,. With these notations, we can define the denotational semantics
of expressions as a mapping:

E Expryym U Exprgoe — (X — B UR)

The definition is provided in figure 2.4.

Elen] = AoNei]
Eﬂcb]] =)\O'.B[[Cb]]
Ev] = Ao.o(v)
Elfeler-..ex)o = Filfel(Elei]o-..Elex]o)

F1G. 2.4 — Denotational semantics of expressions

2.5. Program Equivalence 49

In the same manner, we define denotational semantic of programs as a mapping:
P :Stmt — (¥ — %)

Figure 2.5 provides the definition of P. Since a do loop can be construct by using a while
loop, these rules are enough. In the definition of the assignement, the resulting memory
state is denoted by o[z — t] to show that it is identical to o except for the value of z. The
definitions of if and while exploit the definitions of True and False. The semantics of
while is recursive. One can remark that it is a fizpoint of A\f.Ao.(E[C]o f o P[S]o) o.
Consequently, a best definition is:

Plwhile C do S| = lfp(Af-Ao.(E[C]o foP[S]o) o)

where 1fp(f) denotes the least fixpoint of f. In a general manner, P is not computable
because of while loop.

Plv=-e] = MNo.olv— E[e]o]
P[[Sl, SQ]] = P[[SQ]] e} ’P[[Sl]]
P[if C then S; else S3] = Mo.(E[Clo P[Si]o P[S2]o)
Plwhile C'do S] = MNo.(E[Clo (P[while C do S] o P[S]o) o)

F1G. 2.5 — Denotational semantics of programs statements

Before defining the semantic equivalence, we first precise the notion of input and output
for a program. Basically, a program P achieves a sequence of readings and writings over
the references of Ref during its computation.

e The references whose first operation is a reading are called inputs of P and denoted
by _lp.

e The outputs of P is a given subset Op of references.

Given a context o, we will write 0)o, the restriction of o to the references of Op. Ad-
ditionally, we will indifferently talk about programs or algorithms. With these notations,
we define the semantic equivalence between two algorithms as follows.

Definition 2.7 (Semantic equivalence). Two algorithms A; and Ay are semantically
equivalent iff

e There exists a bijection 0 : Ref — Ref linking their inputs within a memory state.
e For each context o:

— either Ay and Ay don’t stop.

— or A1 and A, stop and output the same value:
(PlAi]o) 04, = (P[A2](0 ©6))0,,

In this case, we note A1 = A,.

50 2. Definitions and Notations

In other words, A; and A, are semantically equivalent if they compute the same (math-
ematical) function. Semantic equivalence is a well known problem, whose undecidability
is an immediate consequence of the halting problem.

In this thesis, we will consider a weaker equivalence called Herbrand-equivalence. In-
stead of indicating whether two algorithms compute the same (mathematical) function,
Herbrand-equivalence just indicates if they use the same mathematical formula, syntac-
tically. Consider an algorithm A which takes its inputs over an array I, and outputs an
array O. A achieves its computation by using a set Fun = NumUBoolUUj>1Funy, of atomic
functions i.e. constants, arithmetic operators and intrinsic functions. For example, the
polynomial product xg[xj given in figure 2.1 uses atomic functions +, * and 0. If we
execute A on a given input I by keeping the atomic functions uninterpreted, we obtain an

array T4(I) of terms over Fun. For instance, taking a = [, @] and b = [@ : 1,

we obtain:

Tea(@:0) = | 0+ (+[0)) + (0)+[1+2)) , (0+ (W+[1+2)) + (0] +[0] |

Denoting by 7 (Fun) the set of terms over Fun ; we define Herbrand memory states as
memory states with terms of 7 (Fun):

oy : Ref — T (Fun)

and we denote by X4 the set of Herbrand memory states. We extend the semantics
functions £ and P with Herbrand memory states:

Ex Expryym U Exprgqg — (X x Lyy — (BUR) x 7 (Fun))
Py : Stmt — (Ex Xy — XX Xy)

Figure 2.6 provides the definition of £ and Py. &£, denotes the first component computed
by £y (in BUR), and £, denotes the second component. Herbrand memory states basically
accumulate the terms computed for each reference used by the program ; while memory
states of X drive the execution of if and while.

With Py, one can define formally the notion of term computed.

Definition 2.8 (Term computed). Consider an algorithm A, and o and oy two equiv-
alent memory states containing an input 1. We write:

Tall) = (Avy.y)Pu[Aloown) o,

And we say that Ta(I) is the term computed by A on the input I.

When A outputs an array, T4(I) is an array of terms and we denote by T4 (I)[7] the
term indexed by .

2.5. Program Equivalence 51

5H|ICTL]] =)‘UUH(NHCn]]) cn())
Enlen] Aooy.(Bla] , a())
Enlv] Aooy.(o(v) , on(v))
EH[[fk(el Ce 6]0]]0'0'7{ = (Tk[[fk]](gi[[el]]aaﬂ PN Sﬁﬂek]]aaﬂ) y
fe(&Zleilooy ... E2ex]oon))

Pyllv=ce] = Aooy.(olv E;lelooy],onlv — E3[elooy])
Pu[S1; So] = Pu[Sa] o Pu[Si]
Pulif C then S; else So]| = Nooy.(E4[Clooy PulSiloon PulS2loon)
Pulwhile C'do S| = Mooy.(E5[Cloon
(PH[[while C do S]] o PH[[S]])UUH
(O-a JH))

F1G. 2.6 — Denotational semantics for Herbrand-equivalence
Following the work of Knoop et al. [91], we extend the Herbrand-equivalence to
algorithms as stated in the following definition.

Definition 2.9 (Herbrand-equivalence). Two algorithms A; and Ay are Herbrand-
equivalent iff:

e cither A1 and Ay do not stop.
e cither Ay and Ay stop and output the same array of terms:
Ta (D] = Ta, (D
For each relevant i.
In this case, we note Ay =4 As.

In other words, A; and A, are Herbrand-equivalent if they compute the same array of
terms. The following proposition establishes that Herbrand-equivalence is an equivalence
relation between programs, and is weaker than semantic equivalence.

Proposition 2.2 (Correction). Given two algorithms A; and As, we have:
A1 E'HA2:>A15A2

Proof. Assume A; =4 A, and consider an input I such that A;(I) and Ay(I) terminate.
Since Ta,(I) = Ta,(I) are in the Herbrand universe, [7T4,([)]z = [7Ta,()]z for every
interpretation 7 of atomic operations. Thus A;(I) = [Ta,(I)]z = [Ta,(I)]z = A2(I). O

Although Herbrand-equivalence is weaker than semantic equivalence, it has been
proven undecidable in [13]. In spite of equivalence classes smaller than full semantic equiv-
alence, Herbrand-equivalence covers all program transformations which do not change the

52 2. Definitions and Notations

term computed by the program. Such transformations include in particular all standard
loop transformations such as splitting, fusion, unroll, skewing or tiling. More loop trans-
formations can be found in [104]. For the same reasons, organization and data-structure
variations are covered. These important characteristics of Herbrand-equivalence are sum-
marized in figure 2.7.

sum_a = a(0)
sum_b = b(0)
do i=1,n
sum_a = sum_a + a(i)
sum_b sum_b + b(i)
enddo
return sum_a + sum_b

(a(0) +...) +a(n)+
(0(0) +...) 4+ b(n)

(a) Original program

sum_a = a(0)
do i = 1,n,2

sum_a = a(0) sum_a = sum_a + a(i)
sum_b = b(0) sum(0) = a(0) sum_a = sum_a + a(i+1)
do i =1,n sum(n+1) = b(0) enddo

temp = sum_b doi=1,n if n mod 2 = 1 then

sum_b = temp + b(i)
garbage = garbage + 1
sum_a = sum_a + a(i)
enddo
return sum_a + sum_b

(@(0) +...) +a(n)+
(6(0) + - .) + b(n)

(b) Organization variation

sum(i) = sum(i-1) + a(i)
sum(i+n+1) = sum(i+n) + b(i)
enddo
return sum(n) + sum(2*n+1)

(a(0) +...) +a(n)+
((0) +...) 4+ b(n)

(c¢) Data-structure variation

| sum_a = sum_a + a(n)
endif
sum_b = b(0)
do i =1,n

sum_b = sum_b + b(i)
enddo
return sum_a + sum_b

(@(0)+...) +a(n)+
(6(0) +...) +b(n)

(d) Control variation

F1G. 2.7 — Program variations supported by Herbrand-equivalence

Unfortunately, Herbrand-equivalence does not cover program variations taking seman-
tics properties of operators into account. For instance, associativity and commutativity
of 4+. This property is illustrated in figure 2.8 with three algorithms A;, A, and Aj;
semantically equivalent such that:

Av =y Ay #Fy As

Indeed, A; and A, compute the same term:

Ta,(a) = Ta,(a) = ((a(0) + a(1)) + ...+ a(9)) + a(10)

whereas A3 computes the term:

Tas(a) = a(10) + (a(9) + ...

which is not syntactically equal to T4, (a) and Ta,(a).

+ (a(1) + a(0)))

2.6. Template Matching and Recognition 53

s = a(0)
s = a(0) do i =1,5 . s = a(0)
. s =s + a(di) .
do i =1,10 do i=1,10
. enddo .
s = s + a(i) 4 i = 6.10 s = a(i) + s
enddo ? . enddo
s = s + a(i)
return s return s
enddo
return s
(A1) (A2) (43)

F1G. 2.8 — Three algorithms semantically equivalent with A; =4 Ay #4 As.

2.6 Template Matching and Recognition

This section states formally the problem addressed throughout this thesis. After defining
formally the matching problem at program level, we present the template recognition
problem. Particularly, we propose an interesting decomposition which will be followed in
this thesis. The template matching problem consists in deciding whether a program is an
instance of a template, as stated in the following definition.

Problem 1 (Template Matching). The template matching problem between a template
T and a program P w.r.t. a given program equivalence ~ consists in finding the values
for the free variables X, the parameters i and the template inputs I such that:

=

T|X,@, 1] ~ P

By analogy with unification theory, such a solution, if it exists, is called an semi-unifier
of the template matching problem T Zp.

Since this problem is more difficult than the equivalence problem w.r.t. ~, it is also
undecidable over = and =4. The following definition introduces the more general problem
of template recognition, that aims at finding all program slices equivalent to a specific
template instance.

Problem 2 (Template Recognition). Given a template T, a program P and an equiv-
alence ~ on programs, the template recognition problem 7' <* P consists in finding all
the slices of P that match with T w.r.t. ~.

This problem is obvioulsy more difficult than the template matching problem, and is
therefore undecidable w.r.t. = and =. This thesis addresses the template recognition
problem w.r.t. the Herbrand-equivalence =4. Our method consists in two passes, based
on two approximations of Herbrand equivalence. An over-approximation of Herbrand
equivalence is first used to discover an over set of the solution slices. Then, an exact
sub-approximation of Herbrand equivalence is used to filter the right slices. The following
proposition states formally this decomposition for any equivalence relation ~.

54 2. Definitions and Notations

Proposition 2.3 (Decomposition). Consider a template T, a program P, an equiva-
lence relation ~ over programs and ~ an over-approzimation of ~ (~ C =). The following
procedure solves the template recognition problem T <* P w.r.t. ~:

1. Solve the template recognition problem T <’ P w.r.t. ~.

2. For each slice S obtained:
Solve the matching problem T ZPwrt. ~

Proof. Consider a slice S satisfying T <* P w.r.t. ~. Since ~ C =2, S is obtained in step
1. Since S matches 7', S is obtained in step 2. Conversely, consider a slice S obtain from
the above procedure. S is a correct slice of P (step 1), which matches T w.r.t. ~ (step
2). This leads to the result. O

A trade-off must be found in the choice of . Indeed, a too rough approximation would
provide too many slices to the expensive step 2, whereas a too precise approximation will
be too expensive at step 1. The recognition framework described in this thesis respects
this decomposition. Especially, step 1 will be called slicing ; and detailed in Chapter 5.
The choice of =, and the amount of false positives will be discussed. We also propose two
differents heuristics to achieve step 2 in Chapters 7 and 8. These two different procedures
solve the matching problem w.r.t. ~q resp. ~o, with ~; C ~y C =4 C=. Before
describing our approach, we present several related works in the next chapter.

Chapter 3

Related Work

Algorithm recognition is an old and difficult problem of computer science, that has been
intensively addressed during the AT period (from the 70s to the 90s), and more sporad-
ically after. Most of the existing approaches are motivated by the maintenance of large
softwares and tends to provide frameworks helping the programmer to understand, debug
and maintain large softwares. These approaches are essentially based on psychological
experiments [100, 94| showing that in trying to understand a program, an experienced
programmer may recognize parts of the program design by identifying frequently used
computational structures in the code. Most of the existing approaches uses graph-parsing
to perform the recognition [102, 60|, while further approaches use symbolic execution
and general reasoning techniques [23|. Unfortunately, as far as we know, only a few
approaches are concerned with program optimization. As for program understanding ap-
proaches, most of them rely on graph-parsing to perform the recognition [86, 71|, while
other approaches uses heuristics to achieve the matching on the abstract syntax tree of
the program [64, 17, 76|.

This chapter presents and discusses several important works related to algorithm recog-
nition. Section 3.1 presents the methods concerned with reverse engineering and program
understanding, whereas Section 3.2 describes the few existing approaches motivated by
program optimization. The limitations of each method is pointed out, particularly, we
discuss — when it is possible — the scalability and the detection capabilities in terms of
program variations, as defined in introduction.

3.1 Program Understanding Approaches

Cognitive studies show how humans understand program, and provides the factors that
affect their understanding. This section summarizes several psychological aspects that
become fundamental bases of program understanding techniques.

3.1.1 Cognitive Studies

The programs to handle are often written by humans. Some psychological experiments
show the existence of recurring patterns in most programs, and a hierarchical structure
between them [100, 94], exploited by numerous algorithm recognition methods.

56 3. Related Work

Ehrlich and Soloway [94] have established experimentally the use of recurring basic
patterns in programming. According to Ehrlich, programming knowledge is a set of frame-
like structures, called plans, for handling stereotypical situations which arise frequently
in programming. Basically, a programmer would possess plans in memory for operations
such as iteration, counting, accumulating values, etc. These basic plans would serve as
building blocks for writing programs and also as the knowledge base for understanding
programs. More precisely, they establish that experimented programmer’s comprehension
is disturbed by programs that were written without a plan. They found that subjects
who have seen a subtle unplan-like program tended naturally to see a plan-like program
instead. It suggests that plan structure form a part of their mental representation.

Letovski [68] presents the mental representation of a program as a layered network
whose nodes represent goals and subgoals to be achieved ; each level representing the
subgoals needed to achieve the next level. This hierarchical organization of the knowledge
must be enough explicit in the program code to improve the program comprehension, and
thus to increase the productivity while maintaining software.

3.1.2 Will’'s GRASPR

Wills [102] investigates the application of graph-parsing to algorithm recognition. She
represents the program by a particular kind of dependence graph called flow-graph, whose
nodes and edges capture the data-flow information of the program. Figure 3.1 provides
the flow-graph of a selection-sort. One may remark the control environment attributes,
representing the control information. In the figure, the execution starts with nodes labeled
with cel. If the predicate < succeed, the control is given to nodes labeled with ce2,
otherwise, nodes with ce3 are executed.

The algorithm to recognize is represented by flow-graph grammar rules, that encode
the algorithm as a hierarchy of plans. The recognition is then achieved by parsing the
program graph according to the grammar rules. Figure 3.2 provides the parsing tree
obtained while recognizing the selection sort. The parsing tree provides a hierarchical
description of the program in terms of plans, that Wills call clichés. In addition to recover
algorithms, such a hierarchy provides an informal description of the program organization
to the user, allowing to improve the program comprehension. An important drawback of
this approach is the difficulty to maintain pattern base. Indeed, it requires the user to
add manually the graph-grammar rules whenever he adds a new plan to the library.

We now evaluate Will’s work by using the criteria described in introduction.

Scalability Wills has shown that the flow-graph parsing is NP-complete, and argues that
even if the cost of her algorithm is exponential in the worst case, it is feasible to
apply it to practical partial program recognition. However, no evaluation of the
method is provided on real applications.

Variations detected Organization variations are partially supported thanks to the graph
representation. All others variations (data-structure, control and semantics) can be
handled only if they are explicitly described in the pattern base.

3.1. Program Understanding Approaches o7

cel
‘\
for (i = 0; 1 < n - 1; i++)
for (j =1 + 1; j < n; j++)
, . . 2 3
if (soli] < so[jl1) { R RN
temp = sol[il]; \
] . Y loop
so[i] = sol[]j]; L
so[j] = temp; \ ," /\ control
} ceby, ceé split
N -
) outside ce
(a) (c) ce7 nil ce8

F1G. 3.1 — Flow-graph of a selection sort [102]

3.1.3 Johnson’s PROUST

PROUST [60] is another graph-parsing approach to analyze and debug Pascal programs
written by novice programmers. It takes as input the ezpected goals of the program, and
a rule-based hierarchical description between goals, and program patterns (plans) that
achieve them. Based on this information, PROUST performs a top-down analysis of the
program by searching the space of goal decomposition.

PROUST relies on plan difference rules to detect bugs and to propose a correction.
Plan difference rules basically provides the common bugs associated to a given plan. As a
consequence, PROUST capabilities strongly depends on the knowledge base. Additionally,
PROUST employs heuristics able to detect the bugs which are not specified by a plan
difference rule.

Scalability The scalability of the system will depends on the performance of the search
engine. The authors do not provide any complexity study of their method. Since
PROUST uses graph-parsing to achieve the recognition, we can assume that the
method is expensive, and consequently not scalable.

Variations detected In the same manner as Will’s approach, the organization variations
seems to be correctly supported, and the handling of the other variations directly
depends on the knowledge base.

o8

3. Related Work

SS: Sort-Selection
Forward-Selection-Sort

FSS:
<::::>ce0 FIS: Forward-Inner-Selection
N aname:so CEAE: Compare-Exechange-Array-Element
. pred:> CAE: Compare-Array-Element
' AEE: Array-Element-Exchange
! AA: Array-Assign
' BG: Bounded-Generation
BTP: Binary-Test-Predicate

ce0 : !
(::::)aname;so Gen: Generation
~<._pred:>

@ Sl
aname:so
.
ces S
< aname:so
J

succ:ce’
fail:nil S

’ 1
/ , cel N ced
h .
, | su;c:ceZ K succ:ce5
' | fall:ce3 : fail:ce6
[7 func:+1
aname:so
II ce7

AN func:+1
! ’
N

ce6
A func:+l '
T <

fail:¢e

.
K
/
’ cel .ce4 : 7
ce4 S5
succ: 083 func: +1 ;;if 222 ce5 e aname so- aname:so
1 fall nll N :
/
'

succ:ce7
fail:nil
out:ce8

ce5
aname:so

F1G. 3.2 — Parsing tree of selection sort [102]

3.1.4 Cimitile’s System

Cimitile, De Lucia and Munro [23] address the application of symbolic execution and gen-
eral reasonning techniques on algorithm recognition. They propose a method to identify
the slices verifying given pre-conditions and post-conditions, which consists in two steps.
They first compute a symbolic execution of the program, which assigns to each statement

its pre-condition.
The recovered conditions are then compared with the precondition and the postcondi-

tion of the abstraction. The comparison is achieved by a theorem prover which may need
user interaction to associate post-condition variables to program variables. Moreover, as
the problem of finding invariant assertions is in general undecidable, symbolic execution
may require user interaction to prove some assertions and assert some invariants.

3.2. Optimization Approaches 59

The statements where conditions are respectively equivalent to the precondition and
the postcondition of the specification are candidate to be the entry and exit points of the
slice implementing the abstraction.

Scalability No practical evaluation of their method, or theoretical study of complexity is
given, but their method seems to be costly. Moreover, the need for user interaction
makes the method inappropriate for large programs.

Variations detected Organizations variations seems to be handled. The detection of
the other variations directly depends on the capabilities of the theorem prover.

3.2 Optimization Approaches

We present now several approaches designed in the context of program optimization.
These approaches aims to be used in a fully automatic framework, such as a compiler.

3.2.1 Pinter’s System

Pinter and Pinter [86] propose a fully automatic approach to recognize algorithms, and
to replace them by a call to an optimized function. They first preprocess the program by
applying standard transformations such as dead-code elimination, common sub-expression
detection, etc. The loops are also normalized in order to put each loop carried dependance
between two consecutive iterations at most. Such a normalization cannot always be
applied, and is achieved by applying an unrolling. The preprocessed program is then
translated into a computation graph, a dependence graph whose nodes are labelled by
assignments operators, and indicates the dependence distances.

The matching and the replacement is then achieved by using graph grammars. While
rewriting, the recognized parts are replaced by the relevant idiom. Their list of idioms
particularly includes reductions, scan, recurrence equations, transposition, reflection and
FFT butterflies.

Scalability As for graph parsing approaches, their approach relies on the sub-graph
isomorphism problem which is NP-complete. Since no complexity study is given,
we can assume that their method is expensive.

Variations detected Due to the graph representation, organization variations are de-
tected. The others variations handled depends on the various preprocessing applied
on the program.

3.2.2 Di Martino’s PAP

Di Martino and Iannello [71| propose a bottom-up graph-parsing approach similar to
Wills’, which is essentially motivated by the recognition of parallelizable patterns. It
uses a hierarchical description of patterns, encoded by grammar rules. The basic level
of the representation is substantially a Program Dependence Graph (PDG), whose nodes
represents statements and edges represents control and data dependences.

60 3. Related Work

The graph-grammar rules and the program dependence graph are encoded by prolog
clauses, then the recognition is achieved by resolution. No information is provided on the
substitution. The evaluation is the same as Will’s approach.

Scalability Since the graph-parsing problem is NP-complete, we can claim that their
approach is not scalable.

Variations detected As Wills’ approach, the variations detected are limited to organi-
zation variations, and algorithmic variations described in the pattern base.

3.2.3 Kessler’s PARAMAT

PARAMAT [64] is an algorithm recognition system motivated by automatic paralleliza-
tion. As well as Pinter’s approach, the program is first normalized by applying several
transformations including constant propagation, induction variables detection and re-
placement, and dead code elimination. The recognition procedure is based on an exact
matching on the abstract syntax tree of the program. Whenever a conditional is reached,
the algorithm tries to matches directly. In case of failure, it applies an if-distribution. In
the same manner, the loops will be distributed in case of failure.

For each implementation pattern, PARAMAT provides a runtime prediction driver
that inspects a table of precomputed measured runtimes with varying problem sizes. The
main drawback of this approach is obviously the computation of the bench table, whose
size grows exponentially with the number of parameters. However, once the tables are
computed, the run-time prediction is faster and more accurate than theoretical estimation
functions [40, 53]. The back-end code generation is then achieved by an implementation
driver, that generates the code for any instance of a given pattern.

Scalability The pattern recognition uses a graph matching on an AST, which seems to
be linear in the program size. As a consequence, PARAMAT seems to be scalable,
even if no experimental results are provided.

Variations detected The normalization applied on the program allow PARAMAT to
detect some control variations. However, simple organization variations such as
variable renaming, or data-structure variation are not handled by the matching
procedure.

3.2.4 Bhansali’s System

Bhansali and Hagemeister [17] propose an approach to parallelization based on recognition
of domain-specific concepts within a sequential program, followed by a substitution by
the corresponding parallel routine. They rely on a simple pattern language, close to
the syntax of the target programming language, which is more readable and thus easier
to maintain than those of the previous approaches. The pattern language uses typed
wildcards to match differents syntactic entities in the source such as variables, functions
or type declaration. The wildcards allow to handle simple variations such as variable
renaming.

3.2. Optimization Approaches 61

The pattern library is organized in a hierarchical fashion, dividing domains in sub-
domains, downto a list of patterns. An interesting fact is that different domains can share
the same basic idioms.

While searching patterns in source code, the user is asked to narrow the set of patterns
to look for by going down the hierarchical tree, and choosing a node corresponding to the
patterns ezpected in the source code. The pattern recognition technique is based on an
exact matching on the abstract syntax tree (AST) of the program, which first looks for
basic idioms, then tries to combine them in order to recover patterns. Since the search
strategy combines top-down (user expectation) and bottom-up (recognition) approaches,
it is said to be hybrid. The authors do not provide any information about the substitution
by a library call.

Scalability The matching technique is based on Paul and Prakash approach [84], which
quadratic in the program size. Even if no experimental results are provided, we can
assume that their approach is scalable.

Variations detected Since the pattern recognition techique is based on an exact match-
ing on the program’s AST, the variations detected seems to be limited to variable
renaming. However, in the same manner as previous approaches, the detection
capabilities strongly depend on the pattern base.

3.2.5 Metzger’s System

Metzger and Wen [76| have built a complete environment to recognize and replace algo-
rithms. They first normalize the program and pattern AST by applying classical program
transformations (if-conversion, loop-splitting, scalar expansion...). Then they search the
program for good candidate slices. The candidate slices are strongly connected compo-
nents of the dependence graph, containing at least one for statement.

In the same manner as Bhansali’s approach, their equivalence test is based on an
isomorphism between the slice and the pattern AST. Given a set of correct slices, several
slices may overlap, leading to choose a particular subset of slices for substitution. They
also propose an approach to select the set of substitutions which should lead to the
best performance improvement. To perform this task, they associate to each algorithm
a number called saving, which quantifies the corresponding performance improvement.
Then they finally choose the set of substitutions which maximize the total savings.

Scalability Obviously, this approach is low cost, and scalable. One may point out the
large amount of candidate slices given by the first pass, but it is not a real problem
thanks to the low complexity of their equivalence test.

Variations detected Organization variations, resulting from the permutation of inde-
pendent statements or the introduction of temporaries are not handled by the al-
gorithm itself, but by preprocessing applied to the program. Reuse of temporaries
accross loop iterations for instance is not handled. In the same way, the control
variations supported are bounded by preprocessing.

62

3. Related Work

3.3 Conclusion

The evaluation of the different approaches presented in this chapter is summarized in the

table 3.1.
Approach Category Technique Replacement Scalability Variations detected

Will’s GRASPR [102] Prog. understanding | Bottom-up graph parsing No No Organization

Johnson’s PROUST [60] P.U. & aut. debug. Top-down graph-parsing No No Organization

Cimitile’s system [23] Prog. understanding Symbolic execution No No Potentially all

Pinter’s system [86] Optimization-based Bottom-up graph-parsing Yes No Organization

Di Martino’s PAP [71] Optimization-based Bottom-up graph-parsing No No Organization
Kessler’s PARAMAT [64] Optimization-based AST matching Yes Yes Organization & Control

Bhansali’s system [17] Optimization-based AST matching No Yes Organization

Metzger’s system [76] Optimization-based AST-matching Yes Yes Organization

TABLE 3.1 — Some approaches and their evaluation

AST-based approaches are able to cope with the same amount of variations than
dependence graph-based methods, whenever the control structures are normalized with
transformations reducing the control variations. As a consequence, a key point to detect
as much variations as possible is to work on an intermediate representation as much
independent as possible of control structures.

Most approaches enumerate exhaustively all the slices without using a slicing method.
It is typically the case of graph-parsing approaches. Metzger’s system is the only approach
which uses a decomposition slicing/equivalence test as described in chapter 2. The ap-
proach addressed in this thesis uses such a decomposition, and performs the recognition
on an intermediate representation as independent as possible of control structures. The
next chapter presents our approach, and applies it to match BLAS functions [67] on a
simple linear algebra kernel.

Chapter 4

Overview of the Optimization
Framework

The approaches described in Chapter 3 suffers of several drawbacks. First of all the equiv-
alence tests are often based on exact graph matching over ASTs or graph representation
of the program, and cannot handled complex variations such as data-structure or con-
trol variations. Moreover, none of these methods can recognize templates instances, and
rewrite a program according to common template libraries.

In this thesis, we propose a complete algorithmic framework to recognize template in-
stances within a program, and to substitute them by a call to an optimized library when it
leads to a performance improvement. In addition to organization variations, our template
recognition method is able to handle most of data-structure and control variations. Our
template recognition method follows the decomposition presented in Chapter 2, Section
2.3 and consists in a slicing method which finds an over-approximation of the matching
program slices, that we filter by applying an exact matching procedure. A pass of selection
of the slices to replace follows, then the code with the right substitutions is generated.
Section 4.1 describes the underlying hypothesis and the main steps of our method, then
Sections 4.3, 4.4 and 4.5 apply the whole method on the motivating example given in
Section 4.2.

4.1 Overview of the Framework

Figure 4.1 summarizes the different steps of our optimization framework. We take as input
a C or Fortran 90 program, and an optimized library. The library is assumed to provide
a public interface of naive implementations for each function. The template matching
problem is handled by following the decomposition described in Chapter 2, Proposition
2.3. An over-approximation of Herbrand equivalence is used to find the program slices
which possibly matches the template (slicing method). The result is a set of slices which
contains the relevant slices (conservativity). An exact sub-approximation of Herbrand
equivalence is then used to check whether the slices matches the template (Instantiation
test). Once the correct slices are found, they are substituted by a library call, whenever
it is possible and interesting.

64 4. Overview of the Optimization Framework

==
Slicing m

Candidate slices

— |

|
Instantia@——F[Naivc implcmcntations] I
|

Valid |slices

Substi@-—[lﬂﬂicient implementations} :
|

Optimized library

Optimized program

F1G. 4.1 — Main steps of our optimization framework

We provide thereafter a quick summary of these steps. The precise descriptions are in
the following chapters. Chapter 5 describes the slicing method, Chapters 7 and 8 provides
two instantiation test based on different theoretical frameworks. Finally, the substitution
step is described in Chapter 9.

4.2 Motivating Example

Given a matrix A of M,(R) and a vector x € R", the Krylov family associated to A and
x is defined by:

Kp(A4,x) = {x, Ax, A%, ..., APx}

Where p < n. Krylov families are commonly used in iterative methods such as Arnoldi
restarting method [10] to find eigen-values of large matrices. A quick and dirty program

to compute Kr, (left) and its implementation (right) could be written in the following
way:

K(0) = x
doi=1,p
do i’ = 1,n
X0, 77 Sy K(i,i%) = 0
TOI; _=1’£ x K; do j’ = 1,n
whe S | K(i,i%) = K(i,i?) + AGi?,3°)*K(i-1,37)
enddo enddo
enddo
enddo

Where x denotes a matrix-vector product, which is computed by the do loops with
counters 1’ and j’. We aim at rewrite this program by using the BLAS library [67] (Basic
Linear Algebra Subroutines), an efficient library to implement linear algebra algorithms.
As stated above, we assume that a naive implementation is provided for each BLAS
function.

4.8. Slicing 65

These naives implementations include particularly the following functions, where A is
a squared matrix, & and ¢ are two vectors, and « is a scalar:

dscal 7+« af
daxpy <+ aZ +74
ddot a <+ 2.4
dtrmv 7« AZ

Within the running example, we should obviously find the matrix-vector product and
substitute it by dtrmv. We summarize thereafter the steps of recognition (slicing method
and instantiation test) and substitution.

4.3 Slicing

We first apply an approrimate matching, the slicing method, which provides the different
possible occurrences of the library functions within the program. We obtain a set of slices
containing right occurences, but also wrong occurences, which will be filtered during the
next step. The results are given in the following table.

BLAS function | Occurrences found
dscal none

daxpy {S2}

ddot {Sl}, {Sl, SQ}
dtrmv {51}, {Sl, SQ}

The slicing method yields a set of statements over-approximating the slice. The exact
slice — in the meaning defined in chapter 2 — will be computed during the instantiation
test. Additionally, the surrounding loops to handle are not specified. This important
information will be recovered during the next step, the instantiation test.

The daxpy slice is a correct but trivial detection, constituted of an instance of S, with
a = A(l,j5"), T = [K(j',7 —1)] and § = [K(7,j)]. Such a detection is obviously not
interesting to replace, and will be discarded during the substitution pass.

Consider ddot. The slice reduced to {S;} is also a trivial detection, assuming that
0-dimension vectors are handled. The slice {S;, S} is a good candidate, restricted to S;
and Sy with the surrounding do loop with counter j’.

Consider dtrmv. {S;} is a wrong detection, and {Si, S2} is a good candidate including
the do loop with counters i’ and j’. Remark that this slice overlaps with the dot
product found at {Si,Se}. The overlapping between slices induces several substitution
sets, leading to choose the best one during the substitution pass.

4.4 Template Matching

Once the candidate slices are found in the program, it remains to check whether they
really match the naive implementations of library functions, by using an ezact matching,
the instantiation test. In addition to (semi)-decide whether the slice matches the naive

66 4. Overview of the Optimization Framework

implementation, the instantiation test provides also the exact slices in case of success.
For the dot product ddot, we obtain the following slice:

(S1,1,1") 7 and 7' are parameters
<52;iailaj,> 1 S]ISn

In the same manner the following slice is obtained for the matrix-vector product dtrmv:

(Sh,1,1") 1 is a parameter and 1 <7 <n
<52a7;37;,ajl> 1 Si,ajlgn

The trivial instances are also detected, and will be discarded during the substitution pass.
Remark that the efficiency of our optimization framework directly depends on the capacity
of our instantiation test to handle many program variations.

4.5 Substitution

Once the equivalent slices are found, it remains to substitute them by a call to the opti-
mized library. The flow-dependences between a slice and the interleaved operations can
forbid a substitution. Here is an example of program where a daxpy has been discovered.
The slice is constituted of operations (S, 1) to (S, n):

doi=1,n
S y(i) = y(1) + a*x(i)
x(i+1) = 2xy (1)
enddo

Since the slice and the interleaved operations depends on each other, we cannot separate
the slice from the interleaved operations to substitute it by a call to daxpy. Hence, a first
step is to select the slices which can be extracted by using a reaching definition analysis.

Since several slices may overlap, we have to select the set of slices whose substitution
will lead to the best performance. A first approach is to associate to each library function
a number quantifying its capacity to increase program performances. For example, we
could assume that we have the following gains:

BLAS function | Gain
dscal 1
daxpy 2
ddot 3
dtrmv 4

The gains are purely arbitrary, and will be used to make a choice whenever several slices
overlap. The optimal set of slices to substitute is then selected by solving a 0-1 program
whose constraints express the overlappings between slices. It will leads here to choose the
slice matching dtrmv. This approach is straighforward, and could be improved be using
more sophisticated performance prediction tools [21, 51, 41].

4.5. Substitution

67

Once a relevant set of slices is selected, we generate the code with the substitution.
Here, we would generate the following code, where the line 3 maps the program variables

to the function library inputs:

1 K(0) = x

2doi=1,p

3 | I(1:n) = K(@(i-1,1:n)
4 | K(i,1:n) =dtrmv(A,I)
5 enddo

Experimental results on SpecFP 2000 [54] and Perfect Club [39] benchmarks provided in
Chapter 10 will show that in most cases, the code to construct the inputs can be avoided,
and replaced by adding a stride in the call to the BLAS function.

68

4. Overview of the Optimization Framework

Chapter 5
Slicing

Given an instantiation test, a naive solution for template recognition would be to enumer-
ate all the program slices, and to compare them to the template. Due to the important
number of program slices, and the cost of comparison, such a solution is unrealistic. Con-
sequently, a slicing pass providing a reasonnable amount of program parts which possibly
match with the template is needed.

Several studies were achieved to find self-contained parts in a program, which can
be potentially factored in a function. In the literature, program slicing is more often
described as a program analysis technique, which aims to extract from a program the
minimum part able to compute the value of a variable on a given program statement.
Most often, the slicing techniques step the use-def chains from the output statement
to built the slices [98, 70, 48, 90|. Metzger [76] introduces the notion of computational
confluence, which aims to characterize the program parts which can potentially be factored
in a function. As Weiser, Metzger basically computes computationally confluent parts by
extracting strongly connected parts of the program dependence graph. Unfortunately,
these methods do not take slice semantics into account, and may provide a too large
amount of incorrect candidates.

In this chapter, we present a fast and efficient method to find in the program the
candidate slices which possibly match with the template w.r.t. Herbrand equivalence.
These slices will be checked by using the exact instantiation tests described in Chapters 7
and 8. Since the instantiation test is expensive, our slicing method must find all the right
slices with a small amount of false positives. In addition, one must keep a reasonnable
complexity. The slicing method presented in this chapter tries to find a balance between
these two opposite constraints.

This chapter is organized as follows: Section 5.1, introduces the notions needed to
understand our algorithm. In particular, we present the cartesian product over tree au-
tomata, which will be widely used in this thesis. Sections 5.3 and 5.4 present a formal-
ization of the template recognition problem that is approximated in Section 5.5 to obtain
the slicing algorithm. Section 5.6 executes the algorithm on a simple example providing
a more intuitive explanation. Section 5.7 provides a formal complexity study of the algo-
rithm, showing its linearity in the program size. Section 5.8 describes some related works
about program slicing techniques. We finally discuss the advantages and the drawbacks
of the algorithm in Section 5.9.

70 5. Slicing

5.1 Background

This section introduces some important notions used in our slicing method. Particularly,
we present the tree automata, an extension of finite-state automata to bound terms which
is widely used in this thesis.

5.1.1 Approximated Reaching Definitions

According to definition 2.3 page 44, while executing a program P on an input I, the
reaching definition of the variable v in the operationw : s = f(...v...) is the last operation
T executed before w that writes v:

When such an operation exists, we write RD/ (v) = 7 ; otherwise, RD/,(v) is undefined.
Denoting Q! the set of operations executed by P on I, and writing w : S to mean that
the operation w is an instance of the statement S ; an approximated reaching definition is
an application o dealing with statements:

3l 3w, 7€ QY withw: S, 7:T and RD,(v) =7 = T € as(v)

where S and T are statements of P and v is a variable read by S. In other words, an
approximated reaching definition of a variable v read by a statement S is a set containing
the statements 7" such that there exists an execution path (characterized by I'), where an
instance of T' is the reaching definition of an instance of S.

In this thesis, we will focus on the approximated scalar reaching definitions defined in
[1], page 683, that we will denote RDA. Basically, RDA handles array references a[u(;)]
as scalar variables a, and is unaware of conditionals and loop iteration numbers. For
instance, figure 5.1 gives an example of program (a) and the corresponding approximated
scalar reaching definitions (b).

S1 s = a(0) RDAg, (a) =0
doi=1,n
if i mod 2 = 0 then RDAs,(s) ={S1, S3 }

So | s=s+1
endif RDAs,(s) ={S1, S2, S5}
Ss3 s = s + a(d) RDAg,(a) =0
enddo
S4 r =58 RDAS4(8) = { Sl s 53}
(a) Original program (b) Approximated scalar reaching definitions

F1G. 5.1 — Approximated scalar reaching definitions

5.1. Background 71

5.1.2 Tree Automata

Our slicing algorithm uses a powerful extension of the finite state word automata called
tree automata [24], and defined as follows:

Definition 5.1 (Tree automaton). A tree automaton is a tuple:
A: (EaQan:A)

where ¥ is a signature, Q) the set of states, Qf C Q the set of final states, and A a set of
transition rules of the following type:

flgr---a) — ¢

wheren >0, f/n€X and ¢, q1,--.,qn € Q.
Additionally, — 1is a congruence over terms on % U Q:

t—t' = f(ty...t...t,) —> f(tr...t' ... &)
for each f € ¥, and t,t',t;...t, € T(XUQ).

Additionally, a term ¢ over ¥ is accepted by A if t — qr, where gy € Q. The set

of terms accepted by A is called the language recognized by A, and denoted by L(.A).
For instance, consider the tree automaton A provided in the figure 5.2.(a). The term

+(s(0), s(s(0))) — represented in (b) by a tree — is accepted by A. Indeed, (b) indicates
the different steps of the recognition, putting the states reached at each node in a frame.

+
£ ={0/0, s/1, +/2} /\
Q={q,49r}, Qr={ar} [q] 4]
0 — q ‘ ‘
A=S s(g) — ¢ [4] [4]
+Ha,9) — a5 ; 0
o |
0
(a) Tree automaton (b) A term recognized

F1G. 5.2 — A term recognized by a tree automaton

One can remark that tree automata have no initial states. Indeed, it is useless since
the recognition starts from leaves (here 0) up to a final state.

Tree automata are a generalization of finite-state word automata. For example, the
word automaton given in figure 5.3.(a) can be translated in the tree automaton given in
(b), where unary functions f/1 represent alphabet letters f. A special 0-ary symbol OJ
has been added to start the recognition. Here, the word automaton recognizes abba, while
the tree automaton recognizes the term a(b(b(a(O)))).

72 5. Slicing

b U — qQ

' a(g) — @

a a b(Q2) —

@ @ a(g) — gy
(a) Word automaton (b) Corresponding tree automaton

F1G. 5.3 — Tree automata generalize word automata

One may easily generalize this construction to every word automaton, identifying the
set of word automata over the alphabet ¥ = {a;...a,} to a subset of the tree automata
over the signature {a;/1...a,/1,00/0}.

We give now two important examples of tree automata, that will be used in our slicing
algorithm. We first provide a tree automaton recognizing ezactly a term, then we give a
tree automaton recognizing all the terms over a signature .

Example A. Tree automaton recognizing exactly a term

Figure 5.4 gives an example of term (a), and provides the tree automaton recognizing it
eractly. Basically, one associates to each sub-term a state ¢;, then we trivially generate
the transitions to construct a sub-term from its immediate sub-sub-terms (b).

£ ={0/0, s/1, +/2}

+ Q:{qlaq27q3aq45Q57q6}
Qr=1{g}

S S 0 — 1

s(q1) —

_) s(e) — g3

s 0 A —

0 — Q4

s(q) — Q5

+(g3,05) — g6
(a) Term (b) Corresponding tree automaton

FiG. 5.4 — Tree automaton recognizing exactly a term

Example B. Tree automaton recognizing all terms over X

A tree automaton recognizing all terms over a signature X is:

flg-..q) — ¢

for each f € X, where ¢ is taken as final state. For instance, figure 5.5 gives the tree
automaton recognizing all the terms over ¥ = {0/0, s/1,+/2} (a), and details the recog-
nition for the term +(s(s(0)),s(0)) (b). We can easily show by induction on term depth
that all the terms over ¥ are recognized.

5.1. Background 73

(9]
+
¥ ={0/0,s/1, +/2} /\
Q={q}, Qr={4q} [4] [4]
0 — q
A=qs) — ¢ [4] (4]
+a9) — q | 0
[q]
0
(a) Tree automaton (b) A term recognized

F1G. 5.5 — Tree automaton recognizing all the terms over X

Cartesian product

Most of usual operations on word automata such as determinization, minimization or
cartesian product extend naturally to tree automata [24]. Our slicing algorithm uses the
cartesian product over tree automata, which allows basically to walk through two tree
automata simultaneously.

Definition 5.2 (Cartesian product). The cartesian product of two tree automata
A = (21,Q1,Q51,A1) and Ay = (59, Q2, Qa, Ao) is the tree automaton Ay x Ay =
(Z,Q;Qf,A) defined by: ¥ =31 N¥s, Q = Q1 X Q2, Qf = Q1 X Qp2, and A = Ay X Ay,
where:

Ay x Ay ={ f((q1,41) --- (@) — (¢, ¢) |
flar--gn) — g€ Ay and f(q)...q,) — ¢ € Ay }

Consider for instance the tree automata A (left) and A’ (right):

0 — q 0 — (¢
st — ¢ s(q") —
+(¢.q9) — ¢ x(d.qd) — d;

The cartesian product A x A’ is then:

0 — (¢, ¢)

s((¢,4")) — (¢4
In the same manner as for word automata, the cartesian product of two tree automata
A; and A; recognizes the intersection of their languages £(A;) N L(As). This interesting
property will be used thereafter, making of the cartesian product the main mechanism of
our slicing method.

Quotient tree automata

We finish this section by introducing an important property of tree automata, which
will be used to establish the conservativity of our method. We first define the notion of
quotient tree automaton.

74 5. Slicing

Definition 5.3 (Quotient tree automaton). Consider a tree automaton A = (£,Q, Qr, A)
and =, an equivalence relation over Q). The quotient of A by = is the tree automaton:

4= (50/2 /5

A= {f(la).lw) — 0] | F@r - 0) — g € A)

where [q] denotes the equivalence class of ¢ w.r.t. =.

with:

Remark that this definition is not restricted to automata congruences, and can be ap-
plied to all possible equivalence relations over states. The following proposition establishes
that a quotient tree automaton 4/= recognizes at least the language of A:

Proposition 5.1 (Conservativity of the quotient). Consider a tree automaton A =
(2,Q,Qf,A) and =, an equivalence relation on the states of A. Then A/= recognizes at
least the language of A. More formally:

LA CL (A/E)

Proof. Consider t € L(A) obtained by a sequence of transitions:
T —1 ... — T;(f(ql .. qn)) —>i+1 T;(q) —i42 ... —7p qy

where T;(f(q1 . - . ¢,)) denotes a term of T (XUQ) with a subterm f(q¢; ... ¢q,) to be rewrited
in q. We can obviously have the same rewriting in 4/= with:

t— ... =i G(f([¢] - - [gn])) —im1 Ti[g]) —iz2 - —p lay]
which leads to the result.]

Consider for example the following tree automaton A, which recognizes the terms
cos" sin” 7 for n,p € N:

™ — S
sin(§) — S
S — C
cos(C) — C
C — gy

where g; is the final state. Consider the smallest equivalence relation verifying S = C.
The quotient of the state set is clearly {{S,C}, {¢s}}. Writing Q@ = {S,C} and Q; = {gr},
this leads to write 4/= as follows:

T — @
sin(Q) — Q@
Q — Q
cos(Q) — @
Q — Qy

We have obviously £(A) C L(A/=). Since = is not an automaton congruence, £(4/=) also
contains «bad» terms such as sin(cos(sin(7))).

5.2. Quverview of the Method 75

5.2 Overview of the Method

Figure 5.6 provides a simple example of template (a) to match in a program (b). The
template and the program are assumed to be normalized with one operator per statement
(at most). According to the definition of Herbrand equivalence, such a problem is equiv-
alent to find all the instances of the template term (c) in the program term (d). Colored
nodes represent a match with X =, n = ¢, I(0) = 1 and I(k) = a(l) for 1 < k < q.
This corresponds to the full slice:

Se((Ps,1,q) = {(Po, 1), (P, 1,1) ... (P3,1,q)}

Notice that other slices matches, including the whole program with X = 4+, n = p,
I(0) = 0 and I(k) = a(k)4.

Pl S = O
T, s = I(0) 1 orod =1
‘ P prod = 1
doi=1,n do j =1,q
T, input = Ifl) Py | prod = prodxa(i)
Ts s = X (s,input)
enddo
enddo
T, return s B S el
end enddo

P,,; return s

(a) Template (b) Program

(¢) Term computed by the template (d) Term computed by the program

F1G. 5.6 — Overview of the slicing

The main idea of our slicing method is to associate to the program and the template
a tree automaton accepting their computed terms (Section 5.3). The recognition is then
achieved by computing the cartesian product of the two tree automata (Section 5.4).
Finally, Section 5.5 desribes our slicing method, based on an approximation of the con-
struction rules. The approximation is shown to be conservative, ensuring the completeness
of the method.

76 5. Slicing

5.3 A Formalization of Template Matching

A convenient way to deal with the term computed by an algorithm is to built a tree
automaton recognizing its computed term and only it, given an input. Consider the
execution of the program slice S = S%((Ps, 1, q)) detailed above. Figure 5.7.(a) provides
the sequence of operations executed by the slice, and detail their contribution on the
computed term (b). Each node is annoted by the operation that computes it.

P10 | « |
(P»,1) ~ prod =1
(P3,1,1) prod = prod*a(1)
(Ps,1,2) prod = prod*a(1)
(Ps,1,q) prod = prod*a(1)

(a) Execution trace of the (colored) slice (b) Computed term

F1G. 5.7 — Sub-terms computed by the operations of the colored slice

Handling each operation as a state, a tree automaton Ag(a) recognizing ezactly the
term computed by the slice is:

1 — (Py,1)

*((Py,1),a(1)) — (P3,1,1)
*((P3,1,1),a(1)) — (P3,1,2)
W(Py1,g—1)a(1) — (Py1,q)

More generally, for each operation w:
w: s=f(s1...5n)
where s, s1...s, are scalar variables or array references, we generate the transition:
f(RDZ(s1)...RD2(sp)) — w

Taking the last operation as final state, we obtain a tree automaton Ag(a) called ezact
tree automaton of S on a, that recognizes eractly the term computed while executing the
slice on the input a.

In the general case, this tree automaton may have an infinite number of rules, which
make them impossible to handle directly. Indeed, when the slice does not stops on a, Ag(a)
is obviously infinite. Static control programs always execute the same (finite) sequence
of operations for each input instance, providing a finite tree automaton independent of
the input instance. However, static control slices may involve external variables (such as
n in the example) leading to a parametric number of rules, which are also impossible to
handle directly.

5.8. A Formalization of Template Matching 7

In the same manner, we associate to the template a tree automaton recognizing exactly
the terms computed by all its possible instances in the program. The construction follows
the same principle than for the program, and allows template variables (here X) and
template inputs (here I) to describe all possible expressions built with program operators.

As stated in background section, a tree automaton recognizing all possible terms over
a signature ¥ is f(g...q) — ¢ for each f € X. Handling each program input a(i) as a
functional symbol, we have here:

2 = {a(0)/0 ... a(p)/0, 0/0, 1/0, +/2, ¥/2}

which leads to the following tree automaton:

a(k) — ¢ foreach 0<k<p
0 — q
1 — q
+(¢:9) — ¢

*(q,q) — ¢

Consequently we can recognize all the instances of X (z, y) by adding the input transitions
x — q and y — ¢. More generally, from an operation:

w: s=X(81..-5)
where s, s ..., are scalar or array references, we generate the transitions:

RD!(s;)) — w

RD!(s,) — w
flw...w) — w foreach feX

Similarly, the template inputs are handled as 0-ary template variables. As a consequence,
from an operation with a template input:

w: s=1I(3)
we generate the transitions:
flw...w) — w foreach feXx

Figure 5.8 summarizes the construction rules of the exact tree automaton that can be
applied to templates and programs, for a given input /. Rule 1 can be applied to templates
and programs, whereas rule 2 is restricted to templates. The transitions RDL(si) - w
are called input transitions. Since the transitions f(w...w) — w loop on ¢, we call them
looping transitions. Additionally, there is no rule for template inputs, since they are
assimilated to 0-ary template variables.

Consider now the matching problem between the template 7" and the slice S: T 3.
We have the following equivalences:

S is an instance of T w.r.t. =y <= Va: T(S) € L(Ar(a))
< Va: {T(S)}NL(Ar(a)) #0
< Va: L(As(a)) N L(Ar(a)) # 0

78 5. Slicing

1. For each operation:
w: s=f(s1..-8n)

emit the transition:

f(RDL(s1)...RDL(s,)) — w

2. For each operation with a template variable:
w: s=X(s1...8,)

emit the transition:

RDI(s1) — w
RDi(sn) — w
flw...w) — w

for each operator f used in the program.

F1G. 5.8 — Construction rules of the ezact tree automaton

A classical solution to check the intersection emptiness of L(Ar(a)) and L(Ag(a)) is
to construct the cartesian product Ar(a) x Ag(a), and to verify that the final state is
reachable [24]. As a consequence, we have:

S is an instance of T <= Va : the final state of Ar(a) X Ag(a) is reachable

This provides an important expression of the matching problem w.r.t. =4 that will used
in this chapter, and in the instantiation test described in Chapter 8. The following section
extends this formalization to the template recognition problem.

5.4 Application to Template Recognition

Consider again the template recognition problem presented in figure 5.6. The following
lemma states that the exact tree automaton of a full slice w.r.t. an operation w is the
tree automaton of the program where w is taken as final state.

Lemma 5.1. Consider an operation w obtained while executing a program P on a given
input a. Writing Ap(a)[w] the tree automaton of P where w is taken as final state, we
have:

L(Ap(a)[w]) = L(Agyy (@) = {T(5p ()}

Proof. By construction, the state w recognizes exactly the term computed by the operation
w, and is reached by operations defining the full slice and only them (see figure 5.8, rule
1). The result follows. 0

Assume now that we have to discover in P all the full slices gj‘_f,(w) instances of T'.

Combining the lemma and the formulation given in the previous section, 8%(w) is an
instance of 7" iff the final state of Ar(a) X Ap(a)w] is reachable.

5.5. An Approxrimation 79

A naive solution would be to construct the cartesian product for each operation w
executed by the program. Since Ap(a)[w] is Ap(a) where w is taken as final state, it
is enough to built Ar(a) x Ap(a) and to collect the program operations w together with
(Tena,) (states ({Tena,),w)). Since the instantiation tests presented in Chapters 7 and 8
just need the last operation w of the slice, this information is enough for our purpose.

5.5 An Approximation

This section presents our slicing method which is a (conservative) approximation of the
formulation given in the two previous sections. The algorithm is provided, and followed
by a proof of conservativity that uses quotient of tree automata.

One can remark that we cannot compute A4 () for a general input I, since it requires
an exact dataflow information, which is not computable for arbitrary programs. We choose
to relax the dataflow information, replacing the ezact reaching definitions RD/(s) by
approzimated reaching definitions dealing at statement level RDAg(s). We then obtained
an approzximated tree automaton, whose construction algorithm is given in figure 5.9. Since
data-flow constraints are relaxed, the approximated tree automaton no longer depends on
inputs, and can be denoted by A4.

Algorithm Build Automaton

Input: The template or the program.
Output: The corresponding approximated tree automaton.

1. Associate a new state to each assignment statement.

2. For each statement:

S:s=f(s1..-8n)

add the transitions:

[7(S1...80) — 8|

for each S; € RDAg(s;)

3. For each statement with a template variable:
S:s5=X(s1...5p)

add the transitions:

Sl—)S

S, — S

for each S; € RDAg(s;) (input transitions)
And:

‘f(w...w)—)w‘

for each operator f used in the program (looping transitions)

F1G. 5.9 — Build _Automaton

80 5. Slicing

Since there is a finite number of statements, the approximated tree automata associ-
ated to the template (A7) and the program (.Ap) will be always finite. As a consequence,
the construction algorithm will always terminate.

Following the formalization given in the previous section, it remains now to compute
the cartesian product Ar x Ap and to collect the program statements together with the
final state of the template to have a the candidates slices. This is stated in the algorithm
described in figure 7.10.

Algorithm Output_ Slices

Input: Ar and Ap, template and program approximated tree automata.
Output: {O:...0,}, the output statements of each candidate slice.

1. Compute the Cartesian product A = Ar x Ap.
2. Mark the nodes with a final state of Ar, and emit the Ap part of marked states.

F1G. 5.10 — Output__ Slices

We show now that our slicing algorithm provides an over-approximation of the match-
ing slices. The following (technical) lemma exhibits a relation between the exact and the
approximated tree automata of A. It is a consequence of the definition of A4 which will
be used to prove lemma 5.3.

Lemma 5.2. Consider an algorithm A, and denote A4(I) its tree automaton for a given
input I, and Ay its approrimated tree automaton. Defining an equivalence relation =
over the operations of A by:

<Sl,’l,—1‘> = <SQ,Z;> <= S; =5,

We have:
Ay = UIAA(I)/:

Proof. Consider again the statement (S,7) : s = f(s1...s,), and denote by D% the
iteration domain of the statement S while executing A on the input /. By construction,
the rules of U;A4(7I) leading to S can be written:

f(RDyg(s51) - .. RDg (S,)

where i describes the iteration domain DL of S, and I describes all possible inputs.
Writing Stmt(S,7) = S and SI~ = Stmt RD (sk) the statement of the k-th argument of

f, the corresponding rules of UI.AA()/ = are
f(S1...5,) — S

where S;, € Uy U; Slﬁ - Additionally, the approximate reaching definition of the S; can be

written:
RDAs(S;) = Uy U; ST

which leads to emit the same rules than for UrAa(I) / —. O

5.6. An Example 81

As stated in Section 5.1.1, the approximated reaching definition RDA provides the right
data-flow information, among false one, since it is unaware of conditional and iterations
executed by in loops. As a consequence, the approximated tree automaton recognizes the
term computed by the algorithm, among «parasitic» terms. This is stated by the following
lemma, which is an immediate consequence of the previous lemma and the conservativity
of the quotient stated in Proposition 5.1.

Lemma 5.3. Consider an algorithm A, and denote A4(I) its tree automaton for a given

input I, and A, its approzimated tree automaton. Then A4 recognizes the terms recog-
nized by each As(I). More formally:

L(AA(I)) C L(Axs)

For each input I of A.

A conservative approximation of the instantiation test between a slice S and a template
T would be to check if the two approximated tree automata Ay and Ag can accept the
same term. Indeed, if S is an instance of T' w.r.t. Herbrand equivalence, they recognize
the same term, which will be in the language of their exact rewrite system, but also
in the language of their approximated tree automaton (previous lemma). Thus their
intersection will be non-empty. This would ensure the detection of the matching. The
following proposition states formally this property, and provides a proof.

Proposition 5.2 (Conservativity). Consider a template T and a program slice S with
approximated tree automata Ar and Ag. Thus:

S is an instance of T — L(Ar)NL(As) # 0

Proof. Assuming S is an instance of 7', we have: L(Ag(I)) N L(Ar(I)) # 0. According
to previous lemma, £(Ag(I)) C L(As) and L(Ar(I)) C L(Ar). The result follows. O

5.6 An Example

This section executes our slicing algorithm on a simple example, and detail all the steps
described above. We also provide a more intuitive explanation of the algorithm.

Consider the template matching problem given in figure 5.11. The template (a)
matches the reductions ; its input array has been substituted by a 0-ary template variable
X; which will match the program part computing the corresponding input values. The
program (b) computes 1 +2+ ...+ k by using a counter c. The slice with the statements
S1 and Sy matches with X (z,y) = +(x,y) and X; = c ; while the slice with C; and
Cy matches with X (z,y) = +(x,y) and X; = 1. Sub-figures (¢) and (d) provides the
approximated reaching definitions which will be used to compute the approximated tree
automata Ar and Ap.

82

5. Slicing

T1 s =0
doi=1,n

Tr input = X

T, s = X (s,input)
enddo

Tenq return s

(a) Template

RDAT, (s) ={T,T»}
RDAf, (input) = {T1}

RDA7, ,(s) = {T\,T>}

(¢) Template RDA

Sl s =0

Cl c=20
while ¢ <= k

So s=s+c

Cy c=c+1
enddo

(b) Program

RDAs,(s) = {51, 52}
RDAs,(c) = {C1,C>}

RDAC2 (C) = {01, 02}

(d) Program RDA

F1G. 5.11 — A template recognition problem

Construction of A and Ap

Applying Build Automaton to the template and the program, we obtain the tree au-
tomata given in figure 5.12. Rules emitted for each statement are separated by an empty

line.
In the template automaton, rules 2,3,4 allow to build for X; all possible expressions

using program operators (0, 1 and +). Rules 5,6,7 are input transitions built from RDA,
and rules 8,9,10 are looping transitions for X, allowing to build all terms using program

operators.
In the program automaton, each packet of rule is obtained by apply the step 2 of

Build _Automaton that enumerates all combinations of approximated reaching definitions.

0 4 7
2
0 — Ty
1 2 01
+(Ir,Tr) > Tp
5
n — T
T, 25 1
T s T
0o 25 1
1 2 1
—|—(T2,T2) L T2
T2 L) Tend

0 Xty 5

0 =25
+(S1,01) = S,
+(51,02) L> Sa
+(S2,C1) =5 S,
+(S2,Cz) L> Sa
+C,1) = G
+(CQ,].) i) Cy

F1G. 5.12 — Approximated tree automata of the template (left) and the program (right)

5.7. Complexity Issues 83

Construction and Analysis of Ar x Ap

It remains now to analyze Ay and Ap to find the candidates slices. Intuitively, the idea is
to step simultaneously the two automata starting from identical leaves (0 or 1), and firing
the reached transitions with the same operators. When the final state of the template
is reached, the corresponding program state corresponds to the output statement of the
slice. This information is enough for the following step of the recognition process (the
instantiation test). However, the whole slice could be computed by taking all program
states along the paths from leaves to final state.

For the sake of clarity, we do not provide Ar x Ap. Instead, figure 5.13 provides a
graphical representation of the rules of A7 x Ap leading to detect the slice with statements
Sl and SQ.

—— 51,51 £ S5, 51

+ 52,52 £ END,SQ

A, Cl £ 52, Cl

F1G. 5.13 — Rules of A7 x Ap leading to detect a candidate slice

Although the slicing method is conservative and provides all candidate slices w.r.t.
Herbrand-equivalence, several false positives are yield. The false detections are due to
the approximation made while computing the reaching definition RDA. All variables
are handled as scalars, which induces false dependences, and thus false transitions. In
addition, the loop iteration number, and the predicates in conditionals are ignored. An
experimental study measuring the accuracy, and highlighting the main causes of false
detections can be found in Chapter 10, Section 10.2.1.

5.7 Complexity Issues

We focus now on the theoretical complexity of the slicing method. This study is completed
by experimental results on SpecFP 2000 [54] and Perfect Club benchmarks [39] which can
be found in Chapter 10 Section 10.2.1.

Let us assume that the significant operation of our algorithm is the creation of a
transition, and consider a program P, with a statement:

S: s=f(s1...5n)

where s, s1 ... s, are scalar variables or array references. The number of transitions created
by Build Automaton is:

IRDAg(51)| ... x |RDAg(5,)|

84 5. Slicing

Thus the total number of transitions can be written P x d* where d is the average number
of RDA by reference, and a denotes the average arity of program operators. Experimental
results on SpecFP 2000 has shown that in average d = 4 and a = 2. Indeed, f is more
often standard arithmetic operators such as +, —, x or /. Thus, the average complexity
of Build_Automaton is 16P = O(P).

In the worst case, the number of transitions of Ay x Ap is T(Ar) x T(Ap) where
T(A) denotes the number of transitions of A. This case occurs when T and P uses only
one operator, which never occurs in real life examples. Thus the worst-case complexity
can be written:

(d*)*T x P = 256T x P = O(P)

As a consequence, the slicing method is linear in the program size. Furthermore, experi-
mental results on SpecFP 2000 and Perfect Club benchmarks confirms the linearity and
demonstrates the scalability of our method.

5.8 Related Work

This section present several significative approaches to locate functions within a program.
We first focus on slicing-based approaches |66, 23, 101, then we present two methods
based on metrics [11]|, and exact syntactic matching on program source [84].

The original definition of a program slice [98| involves slicing criterion, which is a
pair (p, V), where p is a program point and V' a subset of program variables. A program
slice on the slicing criterion (p, V) is a subset of program statements that preserves the
behavior of the original program at the program point p with respect to the program
variables in V. There exists several extensions of this definition to find functions among
source code including the work of Lanubile and Visaggio [66], Cimitile et al. [23] and
Wilde et al. [101], that we present thereafter.

Lanubile and Visaggio [66] added the set of input variables to the slice criterion. They
introduced the notion of transform slice, as the slice that computes the values of the
output variables at a given point, from the values of the input variables. Basically, the
computation of the slice stops as soon as statement that defines values for the input
variables are included in the slice.

Cimitile et al. |23] defined a method to identify slices verifying given pre-conditions and
post-conditions. They first compute a symbolic execution of the program, which assign
to each statement its pre-condition, then they use a theorem prover to extract the slices.
They need user interaction to associate post-condition variables to program variables.
Moreover, as the problem of finding invariant assertions is in general undecidable, symbolic
execution can require user interaction in order to prove some assertions and assert some
invariants. No practical evaluation of their method, or theoretical study of complexity is
given, but their method seems to be costly. Moreover, the need of user interaction makes
the method inappropriate in a fully automatic framework.

Wilde et al. [101] proposes a method based on test-cases to locate specific function-
alities in code. They use deterministic and probabilistic techniques to analyze the traces
resulting from the program execution. In general, this method outputs too large compo-
nents, including more functionalities than the one sought.

5.9. Discussion 85

Kontogiannis et al. [11] propose an approach to detect clones within large programs.
They describe a dynamic programming based approach which focus on whole sequence
of instructions (begin-end block and functions) and allow the detection of similar blocks
by using an edition distance. The distance between a pair of blocks is defined as the
least sequence of insert and deletes to rewrite one block by another. The underlying
hypothesis is that pairs with a small distance are likely to be clones caused by copy-
paste. This method is purely syntactic, and does not take into account of the program
semantics. Moreover, the variations supported seems to be limited to basic organization
variations. However, distance measures and heuristic metrics seems to be a low cost
method interesting to explore an a future work.

Paul and Prakash [84| proposes an extension of grep to find program patterns in source
code. They use a pattern language with wildcards on syntactics entities e.g. declaration,
type, variable, function, expression and statement which allow to find patterns with spe-
cific sequences and imbrications of control structures. For example, here is pattern used
to find the maximum in an array of integers:

{*
@[whileldowhile|for] {x
if($v_1[#] > $v_2) {x
$v_2 = $v_1[#]
*}
*}
*}

The wildcard {* *} means a statement with an arbitrary nesting depth. The expres-
sion @[while|dowhile|for] means either while, dowhile or for. $v_{name} means a
variable labeled by name and # means an expression. Their algorithm produces and in-
terprets a Code Pattern Automaton (CPA), which traverse the program’s AST according
to the pattern, and decides if it is an instance or not. They argue that the complexity
of their algorithm is O(n?) with n the number of AST nodes. Obviously, their approach
is limited to one programming language, and forces the user to make strong assumptions
in the implementation of patterns. It seems this approach cannot handle many other
program variations than variable renaming ($v_{name}) and garbage code ({* *}). Thus
candidate slices will be quite limited. Moreover, their algorithm is more expensive than
ours.

5.9 Discussion

We have described a new and efficient slicing method, able to find in any program the
potential instances of a given template. Our approach has been validated by recogniz-
ing BLAS 1 and 2 functions in several kernels of the SpecFP and Perfect Club bench-
marks. Experimental results has established that the amount of bad detections remains
reasonnable (about 36 % of detections). Moreover, all Herbrand-equivalent slices were
found, which confirms the result of conservativity stated by Proposition 5.2. Particularly,
organization, data-structure and control variations are detected. We provide thereafter
an intuitive explanation.

86 5. Slicing

Organization variations Our algorithm works on the def-use graph, which avoids the
artificial precedence constraints due to the text representation of the program. This
allows our algorithm to handle legal permutations and garbage code. Moreover, our
method compares two by two the operators used in the template and the program
handling the temporary assignments tmp = a as an e-transition.

Data structure variations Scalar RDA applies an aggressive normalization by handling
each variable as an array. The resulting data-flow information is over-approximated
and thus contains the exact one. The flow-dependence are stepped without taking
types of variables into account, allowing to handle data-structure variations.

Control variations A control variation may affect the execution order of operations
(tiling), or the program text (unroll), but the final expressions computed are still
the same, leading the def-use chains to describe the same sequence of operators.
As a consequence, all control variations which do not affect the final expression
computed are handled. This includes most of loop transformations (tiling, skewing,
loop fusion, interchange, etc).

Semantic variations Our method is able to detect all slices computing the same ex-
pression than the template, syntactically. Semantic variation changes the syntax of
the computed expression, and make it impossible to detect it. Semantic variations
represents all correct but undetected slices in the program.

In an other hand, we provide a complexity study establishing that our slicing method is
linear in the program size. This theoretical result has been confirmed by the experimental
results, which provides a reasonnable execution time on real-life applications (about 6
minutes on a kernel with 1264 lines of code). This demonstrates the scalability of our
approach.

Notice that other efficient methods with a different approximation level could be used,
it will not affect the correctness and the completness of the approach, according to Propo-
sition 2.3, page 54. Possible extensions may include type of variables (scalar, arrays), or
more accurate data-flow information.

Once the candidates slices are found, it remains to check whether they are effectively
instances of the template. This corresponds to step 2 in the decomposition provided in
Chapter 2, Proposition 2.3. The next chapters propose two different instantiation tests
to cope with this problem. They follow the principle of the equivalence test of Barthou
et al. [13], which we describe in the next chapter.

Chapter 6

Program Equivalence

The previous chapter presents an algorithm able to find within a program the slices which
possibly match a given template. To ensure the correctness of the substitution, a may test
is obviously not enough, and must be completed by an exact, must matching test.

Before describing our two matching procedures in the next chapters, we propose to
study here the particular case where the template to look for is actually not a template,
but a simple program. This difficult issue is better known as semantic equivalence, a well-
known undecidable problem, which has been intensively addressed in several domains such
as program verification or program slicing.

Necula [80] proposes an equivalence test in the scope of program validation, and more
precisely in translation validation for the optimization passes of compilers. He basically
rely on a symbolic evaluation which produces equivalence constraints, that needs a theo-
rem prover to be solved. His framework is based on the gcc front-end, and has been able
to validate optimized transformations on the gcc compiler and the linux kernel. Zuck et
al. [111] proposes another theoretical framework for translation validation of optimizing
compilers. Their tool, VOC, works on a low-level representation of the program near
to assembly language, and rely on a theorem prover to check proof obligations. Further
works aims to detect software clones and code duplication [11, 65]. They most often rely
on a metric based on edition distance, and syntactic properties of programs.

In this chapter, we present an algorithm due to Barthou et al. [13] to semi-decide
whether two static-control programs are Herbrand-equivalent. The method rely on a
simultaneous symbolic execution of both programs, and is able to detect all the variations
raised in introduction, except semantics variations. This method is not able to decide the
matching problem. However, it provides interesting ideas, which will be exploited within
our two instantiations tests, described in the two next chapters.

This chapter is organized as follows: Section 6.1 presents some preliminary notions
needed to understand the algorithm, including exact data-flow analysis, and Presburger
relations. Section 6.2 provides a motivating example which will be addressed during the
algorithm description. Section 6.3 sums up the main steps of the algorithm, then Sections
6.4 and 6.5 describe the two steps of the algorithm. Section 6.6 presents some approaches
related to the semantics equivalence. We finally provide a discussion in Section 6.7.

88 6. Program Equivalence

6.1 Background

6.1.1 Exact Reaching Definitions

The equivalence test described in this chapter needs an exact dataflow information in the
meaning defined in Chapter 2. Recall that the reaching definition of a variable v read by
an operation (S,) is the last operation (T, ;) executed before (S,7) which write v. It is
usually denoted RD 4 (v). Given the following example:

S1 s = a(0)
do i =1,n

Sy ‘ s =8 + a(i)
enddo

The reaching definition of s read by (Ss, Z} is:

_ 1=1: <Sl,>
RD(s,5(s) = { 2<i<n: (Syi—1)

Even if the reaching definition computation is undecidable in general, Feautrier provides
a solution for the particular case of static control programs [43], that we describe below.

Sequencing predicate

Consider two operations (S;, D and (S}, j} of a static control program. The part of 7 with
loop counters common to S; and S; is denoted by Z‘” In the following example:

do i= ...

do j = ...
do k = ...
s
enddo
S

enddo

enddo

We would have [4, j, k]j12 = [4, j], since the common loop nest of S; and S, is built from
loops over ¢ and j.

The following proposition shows that the execution order between two operations
(S, ;) and (S}, ;) of a static control program can be expressed by using the lexicographic
order between 7 and 7. A more detailed explanation can be found in [43].

Proposition 6.1 (Sequencing predicate). Consider two operations (S;, i) and (Sj,ﬁ
of a static control program. (Si,a is executed before (S, 7) iff the following condition is
achieve:

Z‘Z’j <K jm or (Z\Z] = ﬂw and S; is before S; in the program text)

Where < denotes the lexicographic order between integer vectors.
In this case, we write (S, 1) < (S;, 7)

6.1. Background 89

Consider now an operation (S, Z} of the program, which reads an array a:

S; . :a[u(m

-

In order to compute the last operation writing a[u(7)] before (S;,7), the idea is to
compute from each statement assigning a, its last instance executed before S;. These op-
erations are called direct dependences. The exact reaching definition of a is then obtained
by computing the maximum of these operations in the meaning of the execution order <.
These two steps are described thereafter.

Computing the Direct Dependences

The first step is to compute from each statement writing a the last operation executed
before (S;,7). Consider a statement S; assigning a:

S;: av(d)]=...

In order to compute its last instance executed before (S;, 77>, Feautrier proposes to write
the following integer program:

max.,
s.t.

e (S;,7) is a valid operation:

je D,

e 5, write the array cell read by S;:

e (S}, 7) is executed before (S;,):

<Sj’j> = <Su;>

Where D; denotes the iteration domain of the statement S;. Unfortunately, it is not a
true integer program since the definition of < involves lexicographic order, which involves
disjunctions or. Indeed, recall that the definition of < is:

1 < J1
0 J1 or (i; =7 and is < jo)
< & Or (7,1 = jl and 19 = j2 and ’i3 < j3)

or (iy =7 and ... and i, < j,)

90 6. Program Equivalence

Feautrier handles this problem by building one integer program by clause of the lex-
icographic order. The intuitive explanation is that the disjunctions of the sequencing
predicate leads to consider the search domain as a finite union of disjoint polyhedra
@1 U...UQ, (one polyhedra by clause). And since:

max (@1 U... UQ,) = max {max Q... maxQ, }

we can consider the max¢ (); as a direct dependence, whose max, will be computed
during the next step. Since); may depends on parameters, usual solvers such as CPLEX
[57] or LP_SOLVE [15] cannot be used. Feautrier has also designed an algorithm to solve
integer programs whose search domains depends on a parameter, this algorithm has been
implemented in the PIP tool [42].

Since the lexicographic maximum may depend on the parameter values, PIP presents
its results as selection trees called QUASTs (for QUasi-Affine Selection Tree). The syntax
of a quast is naturally defined as follows:

quast ::= L
(I
| if f(p) > 0 then quast else quast

Where | means that no solution was found, 7 is a solution vector, p'is a vector built from
the parameters, and f is an affine function. As a consequence, the direct dependence is
not a simple operation, but a quast providing the last writings for different parameters
values. The next steps aims to combine these quasts in order to obtain the quast giving
the last writing of a.

Combining the Direct Dependences

Once the direct dependences are computed, it remains to combine them in order to obtain
the quast giving the last writing of a. It can be achieved by applying the following rules:

1. maX%(J—aQ):Q
2. max_ ((S,5), (T,t)) =if (S,5) < (T,1) then (T,1) else (S, 5)

3. max_ (if f(p) then Qi} ey else Quge, Q) =

if f(p) then max_ (Qipep s @) else max. (Qulge >, @)

The max_ can then be used to combine the direct dependences {Q;...Q,}. Since
the maximum operator is associative and commutative, the application order has no
importance. Rules 1 and 3 can be directly applied. Since quast needs an atomic condition
on parameters (no conjunctions or disjunctions), the quast obtained from rule 2 needs to
be rewritten by using the rules:

e if ¢ and b then), else (), =

if a then (if b then Q) else @Q);) else Q-

6.1. Background 91

e if g or b then Q; else Q, =

if a then (if b then Q; else Q)
else (if b then @, else Q)

Applying the algorithm to compute the reaching definition of s in S2 in the above
example, we obtain the following direct dependences:

Sll <Sl,>
Sy if i > 2 then (S;,i — 1) else L

Applying the combination rules, we obtain the following rewriting:

max |if 4 > 2 then (S5,i — 1) else L, (S},)

—3 if i > 2 then max_|(Sy,7 — 1), (Si,)|else max_| L, (S,)

—9 if i > 2 then (S,,i — 1) else max.| L, (Si,)

—; if i > 2 then (S5,7 — 1) else (S1,)

which finally gives:

RD(s, iy (s) = if i > 2 then (S,,i — 1) else (S,)

Such a quast can easily be flattened in order to obtain a definition with a list of clauses
of the form i € D : (S, u(7)).

6.1.2 Systems of Affine Recurrence Equations

The equivalence test described in this chapter uses an intermediate representation called
System of Affine Recurrence Equations (SARE), and defined as follows.

Definition 6.1 (SARE). A System of Affine Recurrence Equations (SARE) is a tuple
S=3,A0,1,8), where X is a signature of functional symbols, A is a set of arrays of
terms over 3, O € A is the output of S, I C A is the set of inputs of S, and & is a set

of equations, called clauses, which define the value of O from the inputs of I. Each clause
of £ is defined as follows:

i€ D:Afl) = f(Bi[ui(@)]- . Ba[ua(3)))

where D is a Z-polyhedron, A € A — I, each B; € A, and the u; are affine functions.
Moreover, a SARE must satisfy the single assignment property i.e. each array cell A[Z]
must be defined one time at most.

92 6. Program Equivalence

d L= 1 Sl = G(O)
S | s= s aci i€ {1} Soli] = Si +afi)
2 | s=s+al ic{2..n}: Sl] = Sfi—1]+a()
enddo
O = SQ[H]
return s
(a) Original program (b) Corresponding SARE

F1G. 6.1 — Representation of a program by a SARE

Figure 6.1 provides an example of program, and the corresponding SARE, where
Y = {+/2}, A = {a, S, 52,0}, a is an input and O is the output. The SAREs are a
convenient intermediate representation for programs since they provide the exact data-
flow information, allowing to traverse the exact use-def chains easily. This important
property is exploited by the equivalence test described in this chapter.

The static control programs can be translated automatically in SAREs by applying the
algorithm described by Feautrier in [43]. The principle of the translation is summarized
thereafter.

Translating a static control program into a SARE

Consider a static control program with statements S; ... S,. For sake of clarity, we assume
without lost of generality that each statement uses at most one operator, but the algorithm
could also work without this constraint. Given a statement S;:

Si L. = f(Ul---Un)

We first compute the exact reaching definitions of the v; by using the algorithm described
in Section 6.1.1. Let us write the reaching definition of the variable v; in the following
manner: . .
i€ Dy (Sj1,050)

RD(Si,f) (Uj) = o .
i € Djn;: (Sin;» ;)
The notation S;; is a simplification for Sy;1), where u : [1,n] x N* — [1,n]. The same
simplification is achieved for the iteration vectors i. The corresponding SARE is then
obtained by generating the following clauses:

7_;‘6 Dl,kl N...N Dn,kn : Sz[;] = f(Sl,k1 [7_;‘1,]61] ... Sn,kn [Zn,kn])

For each statement S; and each 1 < k; < n;, where the i of S; [Z] denotes the symbolic
iteration vector of S;, build from the surrounding loop counter of S;.

Consider the static control program given in figure 6.1. The statement S; involves an
input array which has, by definition, no reaching definition. In this case, we keep a(0)
and we just emit the clause:

6.1. Background 93

Consider now the statement Sp. In the same manner, a(i) has no reaching definitions.
The reaching definition of s is:

ie{l}: (S1,)
RD(SM)(S) - { ie{2...n}: (Sy,i—1)

This leads to generate the following clauses:

ie {1} Soli] = Si + ali)
ie{2...n}: Sofi] = Sofi— 1]+ a(i)

Consider finally the statement return s. It could be handled as O = s, where
O denotes a special output variable. Since the reaching definition analysis provides
RD0,)(s) = (S2,n), we generate the following clause:

0= SQ[TL]
Finally, we obtain the following SARE:
Sl = CL(O)
ie{l}: Soli] = St + a(i)
O = SQ[TL]

which corresponds to the SARE given in figure 6.1.

6.1.3 Presburger Relations

The algorithm described in this chapter, and the instantiation tests given in the two
following chapters make an intensive usage of Presburger relations, that we present in
this section.

Presburger arithmetic is the first-order theory of the natural numbers with the addition
equality, and inequalities (N, +). It is defined by logical formulas built from —, V and
A, equality and inequality between integer affine contraints, and quantifiers 4 and V. An
example of Presburger formula is:

Ve (Jyer=2yVviyz=2y+1)

Testing the satisfiability of a Presburger formula is know as integer linear programming
and is decidable, but NP-complete [77]. Rabin and Fisher [45] have shown that the worst
case complexity of the satisfiability test is 22kn, where n is the number of variables of
the Presburger formula, and & is a constant. Computing exact solutions for large integer
programs is still an open problem. We can now define Presburger relations.

Definition 6.2 (Presburger relation). A Presburger formula ¢ involving variables
1 ...9, and Ji...Jp can be seen as a relation called Presburger relation or affine relation
from iy ...ty to ji...Jp, and written:

{1 dn) = [1---Jp) |0}

94 6. Program Equivalence

Presburger relations concisely summarize many informations required in program anal-
ysis. For instance, the following example captures the incrementation step of a loop
counter:

{[i]=[]|i'=i+1A1<i<n}

In the same manner as any relation, one can define union U and composition o operations
between two affine relations. The transitive closure of an affine relation R is classically
defined by:

R* = Loj Rk
k=0

where R° denotes the identity relation, and R* = R o RF~! for k¥ > 1. The computation
of transitive closures in undecidable in the general case, since they allow to simulate a
multiplication, and thus to cover the well known undecidable Peano arithmetic (N, +, x).
However, Kelly et al. [63| provide an efficient heuristic to solve this problem in some
specific cases. Their heuristic is implemented in the Omega library [62], that we use in
our implementation.

6.2 Motivating Example

Consider that we have to check the equivalence between the two following programs:

s = a(0
s = a(0) . (0)
. do i = 1,n-1
doi=1,n .
. ‘ s = s + a(i)

‘ s = s + a(i)

enddo
enddo

s = s + a(n)
return s

return s

The two programs compute the sum of the elements of the array a, and the last iteration
of the right program has been peeled. In order to simplify the presentation, we will assume
that n > 1. Since Tjepi(a) = D i o a(i) = Trignt(a) for any input array a, the two programs
are Herbrand-equivalent. We present thereafter the SAReQ algorithm due to Barthou et
al. [13], to check whether two static control programs are Herbrand-equivalent.

6.3 Overview of the Method

Figure 6.2 sums up the main steps of the SAReQ algorithm. Given two programs to
be compared, the first step is to build an automaton allowing to step them simultane-
aously as soon as the operators found are the same. In a way, the automaton represents
a simultaneous symbolic execution of the two programs. It remains to analyze the au-
tomaton, called unification automaton in order to decide whether the two programs are
Herbrand-equivalent. This step will basically achieve the symbolic execution of the two
programs and relies on a semi-decision procedure. These important steps are described
in the following sections.

6.4. Construction of the Unification Automaton 95

Construction of the unification automaton

Analysis of the unification automaton

Equivalence ?

F1G. 6.2 — Main steps of the SAReQ algorithm

6.4 Construction of the Unification Automaton

The main idea of the algorithm is to unroll simultaneaously the two programs starting
from their outputs (the return statement) as long as the head operators are the same.
The unrolling stops whenever a constant (1(), 2.5()) or an input element a(7) is reached.

When two inputs arrays are reached a(z) Z a(j) we have two verify that i = j. By analogy
with the unification theory, SAReQ solves the word problem over the terms computed by
the two algorithms: 7j.s(a) < Tright(a).

In order to step the terms computed by the two algorithms, we need an ezxact data-flow
information. SAReQ works on a dataflow representation described in Section 6.1.2 called
System of Affine Recurrence Equations (SARE). Applying the translation algorithm to
the running example, we obtain the two following SAREs:

ie{l}: Sl =5 +a() e oalth= oy +alt)
. ;) . i€{2...n—1}: Sofi] = Safi — 1] + a(4)
i€{2...n}: Ss[i] = Soi — 1] + a(3) B

O = Syn] S3 = So[n — 1]+ a(n)

0O =35

Following the standard rules of unification theory, the authors proposes to build an uni-
fication tree from the two programs by using the following construction rules:

Decompose (D)

Fltrooty) = f(&))| — [t =1 For each 1 < i < n.

Left Compute (LC)

S[E];t ZE_D) ti;t For each clause i € D : S[i] ;ti
of the left SARE.

Right Compute (RC)

t;S[Z] SN t;ti For each clausefED:S[E] ;ti

of the right SARE.

96 6. Program Equivalence

From the above SARESs, we obtain the unification tree given in the figure 6.3. For the
sake of clarity, Decompose, Left Compute and Right Compute are respectively denoted
by D, LC and RC. In addition, LC and RC have been applied simultaneously (LC/RC) to
reduce the number of states.

0o

LC/RC
Sa(n) < Ss
LC/RC
Sﬂn—D+am)£Sﬂn_D+a()%f o
B
'
Sa(n —1) ;52(n_1)‘

LC/RC

Sﬂ”—%+dn—D;Sﬂn—m+dn—D%9 e - em D Lamo1)
'

!
[
[
: D
Sl+a(1);51+a(1)%* - = == ==~ ~la) £a()

T
'D
!

51=5

LC/RC

a(0) = a(0)

F1G. 6.3 — Unification tree of left and right SAREs

Unfortunately, the unification tree has a parametric number of states, which makes it
impossible to handle directly. The authors solve this problem by introducing a generaliza-
tion rule allowing to handle the SARE’s array so(i) in the general case, given a symbolic
1. Figure 6.4 provides the complete system of construction rules used in the SAReQ al-
gorithm. Left Generalize (LC) and Right Generalize (RG) rules allow to substitute the
current index vector represented by u(s ‘) by the symbolic vector i. The transitions are
labelled by the assignement i «— (s ‘) In addition, Left Compute (LC) and Right Compute
(RC) rules can be fired only on generalized SARE’s arrays S ﬂ, which imposes to apply
a generalization rule before. Following the rules of unification theory, a failure occurs
whenever the head operators of the left and right hand side are differents, which leads to
add the Conflict rules.

6.4. Construction of the Unification Automaton 97

Decompose (D)

?

f(tltn);f(t'lt'n) — |t =t For each 1 < i < n.

Left Compute (LC)

For each clause 7 € D : S[i] a8
S[i] 2 €D N - t; of the left SARE. ¢ must be a
symbolic index vector generated
by the Left Generalize rule.

Right Compute (RC)

For each clause i € D : S[i| 2
e S[i] ieD ol 2 £ of the right SARE. i must be a
symbolic index vector generated
by the Right Generalize rule.

Left Generalize (LG)
S[u(;)] 2y i—u(?) Sm 2y Where 7 is a symbolic index vec-
tor of S, and u # Id.

Right Generalize (RG)
+ L S[u(;)] (3 + L Sm Where 7 is a symbolic index vec-
tor of S, and u # Id.

Conflict 1
f(tr...ty) =g(t, ...t,) | — | FAILURE Where f # g.

Conflict 2

Ftr o tn) 2 a(Z) R ngllllireszzlai%én input array of the
Conflict 3

a(_") z g(t. ..t;,) N ?Ze\;thegzlc{]és. an input array of the

Fi1G. 6.4 — Construction rules of the unification automaton

98 6. Program Equivalence

Applied from the initial state O Z O, these constructions rules produce a finite au-
tomaton, as stated in the following proposition proved by the authors of SAReQ in [13].
Remark the fized, which means that the number of states of the unification automaton
does not depends on a parameter e.g. 10 or 15, but not n — 2 or 2n + 1.

Proposition 6.2 (Finitude of the unification automaton). Let S; and Sy be two
SAREs, and A51;SQ be there unification automaton. Then A51;S2 has a fixed number of
states.

Applying these rules on the above example, we obtain the automaton given in figure
6.5. Once again, compute rules (LC and RC) and generalization rules (LG and RG) are
applied simultaneously on the left and right hand sides when it is possible, in order to

reduce the number of states. Starting from the initial state O < O, the left hand side is
first generalized by applying the LG rule. LG basically generates a symbolic index vector
i, and achieve the assignation i¢;, <— n. The right hand side is then computed. Since
the value of the symbol i, is unknown during the construction, the compute rules (here
LC) have to explore all the possibilities. This leads to generate unreachable states. For
presentation reasons, we have not provided the unreachable states. A consequence of
the generalization rules is to produce cycles such as LC/RC — D — LG/RG allowing to
capture the parametric-length branches of unification tree.

6.5 Analysis of the Unification Automaton

Once the unification automaton is built, it remains to analyze it in order to decide whether
the two programs are Herbrand-equivalent.

Basically, the two programs are equivalent if no failure state is reached from the ini-
tial state. Unfortunately, the systematic application of Left Compute (LC) and Right
Compute (RC) rules creates unreachable states. For instance, see figure 6.6, which pro-

vides the detail of the transitions fired from the state so(iz,) < s2(ig). Due to transitions
LG[ir, < n| and RG[ig < n|, iz, and ig are initialized with the same value. Moreover they
are decremented simultaneously (see transitions LG[i; < i, — 1] and RG|ig + ig — 1]).
Consequently, they have always the same value, and the transition detailed in figure 6.6 is
never fired, making the following states unreachable. Therefore, a first step of the analysis
is to detect the unreachable states, and to remove them.

We first introduce the definition of Memory-State Automata (MSA), allowing to ex-
press the unification automata in a formal framework. MSA were introduced by Boigelot
and Wolper in [18]. The definition provided by Feautrier et al. in [13] is the following:

Definition 6.3 (MSA). The state of an MSA has two parts: an element of a finite set
and a vector of integers. The vector associated to state p is denoted v, and the full state
is (p,vp). The dimension of v, is determined by p and is noted n,. A transition in an
MSA has three elements: a start state, p, an arrival state q, and a firing relation Fpy in
N x N'a. A transition from (p,v,) to (q,v,) can occur only if (vy,v,) € F,y. There is
an edge from p to q in an MSA iff F,, # 0.

6.5. Analysis of the Unification Automaton 99

LCip =1

[5266)] - [Sa(n =) + alw)]|- -

LC2 < ir, < n]l

Sa(n—1) + a(n) w

[Sa(in — 1) +a(in) | =
T

D,
Sa(ir—) 2 [Saln—1)])
LG[iL(—iL—l]
RG[igp < n —1] LC[QSi.L <n
; RC2 <igp <n—1] Sg(iL_1)+a(iL)|?= 52(Z‘R—l)+a(iR)WD

P,
el = EpETe|
LG[iL(—iL—l]
RG[iR(—iR—l]
[Brra®]2[siram]-- - - = - - - -~
D
525
LC/RC
a(0) | £ [a(0)

F1G. 6.5 — Unification automaton of the two programs

Let (po, vp,) be the initial state of the automaton. A state (p, v,) is reachable iff there
exists a finite sequence of transitions from the initial state to (p,v,):

1 -Pn Vpy -V, T (Pr = DA (Up g, 0p) € By)
The reaching set of p, noted A,, is the set of vectors v, such that (p,v,) is reachable from
the initial state.

In order to compute the reaching set of p, a method is to compute the regular expres-
sion recognizing all paths from the initial state to p, by using Arden’s lemma. On the
motivating example, the regular expression recognized by handling s (i) < so(ig) as a
final state is:

. . ip —i; — 1 2<i;<n ir —ir—1 1\
(2 <4, <nl- . o ;
lin =] [2< i <n] [i;ﬂ—n—l} ([QSiRSn—l] c [2R<—2R—1D

which leads to the reaching set { (ir,ir) | iz, = ig and 1 < iy,ig < n —1 }. Using this
method, the reaching set obtained from the states of the branch detailed in the figure 6.6
is (), leading to remove them.

100 6. Program Equivalence

LC[1 < if, < 7
RC[1 <ig<n-—1]

[Sa(in — 1) +a(in) | £ [Sa(in — 1) + a(is) |
T

‘ LClir, = LC[1 Kir, < n] ‘

} RC[2< jh <n—1] RClir 2\1] ‘

|Sl+a(1)|;|51+a(1)|‘
T

[Se+ a2 [Sslin— D + atin)|

[Salin— 1) + alin) | 2 [51 + a(1) ”

5[5 1)

LC/RG[%R —ip —].]

RC2<ir <n—1] RC[ip = 1]

[a©] £ [S2(in = 1) + alin)|

[«@] 2[5 +a0)

FAILURE FAILURE

F1G. 6.6 — Detail of the transitions fired from the state Sy(iy) < Sa(ir)

Because of cycles, the reaching set computation is undecidable in general. The au-
thors use the semi-decision procedure described in [63], and implemented in the Omega
library [62]. The algorithm computes the reaching sets for each node, and remove a node
when its reaching set is empty. Whenever the semi-decision procedure cannot achieve its
computation, the algorithm report a failure.

Once the unreachable nodes are removed, we obtain an unification automaton which
represents exactly the unification tree of the two SAREs to compare. It remains to check

the nodes involving the SAREs inputs a(ir,) = a(ir) by verifying that i;, = ig for each
possible path from the initial state O < 0. It is achieved by checking whether the reaching
set of a(ir) < a(ig) is included in { (ir,ig) | i = ig }. If a(ip) < a(ir) does not verify

this condition, a transition is fired from a(iz,) < a(ir) to a | FAILURE | state.

Following the rules used to solve the word problem in unification theory, the two
SAREs are Herbrand-equivalent iff no failure state is reachable. Thus, it remains to check
that the resulting MSA does not contain a state. The algorithm described in
figure 6.7 summarizes the main steps of the analysis.

6.6 Related Work

We present now several approaches related to equivalence checking. The first approches
are concerned with translation validation, and aims to certify the code produced by a

6.6. Related Work 101

Algorithm Analyze Unification Automaton

Input: A, an unification-automaton obtained by applying the rules of figure 6.4
Output: Are the two input SAREs equivalent? or
1. For each node n of A:
e Compute the reaching set r(n) of n [semi-decision procedure]

e If the semi-decision procedure fails, emit
e If r(n) = 0, remove n from A

2. If a failure state of A remains reachable, emit .

?

3. For each node a() =a(i
o Ifr() (ip,ig) | iL =ig }, emit ﬂ

4. emit .

ir) where a denotes the common input of the two SAREs:

F1G. 6.7 — Analyze Unification Automaton

compiler [111, 81, 27]. Then we introduce the model checking, which aims to check whether
a program verifies properties specified by a temporal logic formula [96, 50, 49, 37, 32|.
Finally, we present two slicing-based approaches to locate equivalent slices in a program
|65, 108].

Translation validation aims to verify that the code produce by a compiler is semanti-
cally equivalent to the source code. Such a problem is quite difficult since source-to-source
optimizations achieved by the compiler may be aggressive and deeply change the control
and data structures used in the program.

Zuck et al. [111] presents a theoretical framework for translation validation of opti-
mizing compilers. They describe VOC, a tool to validate several translations performed
by the SGI Pro-64 compiler. VOC works on a low-level representation near to assembly
language, and rely on a theorem prover to validate proof obligations. The loop invariants
are derived from inductions variables. VOC seems to be able to handle most control
variations, including most loop transformations such as reversal, interchange, tiling and
skewing, but does not deal with pointers, aliasing and procedure calls.

Necula [81] proposes a translation validation infrastructure, based on a simultaneous
symbolic execution of the source program and its translation. The symbolic execution
produces a simulation relation which link the variables used in both programs. The
equivalence is finally decided by solving the contraints produced by simulation relation.
The main drawback of this approach is its inability to cope with variations which changes
deeply the control structure of the program.

Currie et al. [27] propose an automatic approach to compare assembly-languages rou-
tines for DSPs. It basically achieves a symbolic execution of both assembly programs.
Since DSP codes contains numerous fixed-count loops, they can be unrolled completely
during the symbolic execution, leading to produce the (large) terms computed by both
programs. The comparison is then achieved by checking whether both terms are syntacti-
cally equals modulo associativity and commutativity of usual operators. Such an approach

102 6. Program Equivalence

is close to the equivalence test described in this chapter, without the loop constraint.

Jaramillo, Gupta and Soffa |53| propose an comparison checker to debug unsafe op-
timizations. Their tool, COP, executes the optimized and unoptimized programs and
compare the execution traces to get the earliest point of execution when the results differ.
The comparison needs a mapping between the operations of the original and the optimized
program that must be specified by the optimizer.

Model-checking aims to check whether a program verifies a property specified by a
formula of linear temporal logic (LTL). Model checking can be decided over finite-state
programs i.e. programs whose variables range over a finite domain. The program is viewed
as a finite-state machine (the Kripke structure), which represents the different memory
states during the execution. Such a structure can be easily translated into a finite state
automaton Ap recognizing all possible sequence of memory states (Biichi automaton)
[96]. A linear temporal logic formula ¢ aims to valid a class of memory-states sequences
verifying a given property. Standart algorithms [106, 50, 49] allow to compute the Buchi
automaton A, recognizing exactly these sequences. The model-checking problem is thus
reduced to check whether all sequences accepted by the automaton Ap are also accepted
by the automaton Ag. This leads to check that the automaton accepting L(Ap) N L(A,)
is empty. Such a problem is decidable, and can be checked in linear time [37]. Since the
Biichi automaton of the property ¢ has O(2/?l) states and the automaton representing the
program have O(|P|) states, the size of the product automaton Ap x Ay, which determines
the overall complexity of the method is @(|P|.2/#!). In practice, the exponent blowup of
the number of states is the main obstacle to model-checking [32].

Komondoor and Horwitz [65] propose a method to identify duplicated code segments
in C programs. They rely on a slicing techique over the program dependence to find
isomorphic parts that represent clones. Their method is able to detect the equivalence
of non-contiguous slices, and slices involving variable renaming and statement reordering.
Despite a low cost, their method can only cope with organization variations in the meaning
defined in introduction.

The method proposed by Yang, Horwitz and Reps [108] also deals with a program
dependence graph. They propose a sequence-congruence algorithm for detecting program
components that exhibits identical execution behaviours. Their algorithm consists in two
passes. The initial partition puts vertices with the same operators into the same classes.
Then they apply an algorithm inspired of Alpern [8] to find the coarsest partition coherent
with the initial partition.

6.7 Discussion

In this chapter, we have described a method due to Barthou et al. to check the equiva-
lence between two programs, and we have pointed-out its ability to cope with Herbrand-
equivalence. By construction, this method would be able to decide Herbrand-equivalence
if the transitive closure would be decidable, which is not the case, unfortunately. One
can say that Barthou et al. equivalence test is a semi-decision procedure for Herbrand-
equivalence, whose undecidable part is the computation of transitive closures of affine
relations.

6.7. Discussion 103

Since Herbrand-equivalence is (partially) handled, the method described in this chap-
ter is able to detect a wide range of program variations from organization to control
variations. Informally, this is mostly due to the data-flow representation (SARE), which
does not depends on data-structures and control structures. We provide thereafter a
detailed explanation for each kind of program variation.

Organization variations Since the SARE are an exact data-flow representation, they
allow the algorithm to describe exactly the statements involved in the computed
term without reaching the other ones. This leads to handle organization variations.

Data structure variations SAReQ performs a symbolic execution of both programs,
and check whether the operators used are the same without taking data-structures
into account. Moreover, the SARE representation normalizes data-structure with
multidimensional arrays. As a consequence, data-structures variations are handled.

Control variations Most of control variations do not affect the dependences, and con-
sequently the term computed by the program. These variations include particularly
most of loop transformations (peeling, skewing, tiling, etc), and also variations with
conditionals such as if-conversion.

Semantics variations Since SARe(Q) has been designed to check a syntactic equivalence
between the terms computed by both programs, it does not take account of opera-
tors properties such as associativity or commutativity. This unfortunately leads to
discard semantics variations.

As mentionned above, the critical operation of the equivalence test is the computation
of transitive closures for affine relations. In our implementation, this is achieved by using
the Omega library [62]. This operation is widely used in the algorithm which makes it
expensive in time.

In this thesis, we propose to detect generic libraries, involving templates. Generic
libraries is a new emerging library paradigm, which provides algorithms expressed in a
data-structure neutral fashion. This leads to reduce drastically the number of library
operations. Typically, for a library with D data-structures sharing O operations, a stan-
dard library will provides D x O operations, whereas a generic library will only provides
O generic operations, which can be instantiated on D data-structures. Such a feature
reduces considerably the number of library functions to learn, and thus the readability of
the code using the library. Another important fact is the increasing amount of generic
libraries which have emerged in the last years |95, 93, 9, 97, 61, 28|.

In order to address this problem, the two next chapters presents two different proce-
dures able to (semi-)decide whether a program slice is an instance of a template. The
first procedure is an extension of SAReQ , while the other one follows the principle of the
slicing method with an exact data-flow information.

104 6. Program Equivalence

Chapter 7

Template Matching with
Semi-Unification

The slicing method given in Chapter 5 provides a set of program slices that may match a
given template. The next step is to keep automatically the slices that must matches with
the template, and to provide the solutions in case of success.

The template matching problem is connected with the semi-unification problem, which
consists basically in resolving equations in term structures, where one term is bound. This
problem is known to be decidable when the type of free variables is limited to the fourth-
order. Huet and Lang [56] propose a second-order matching algorithm motivated by an
application to program schema recognition on functional programs. De Moor and Sittam-
palam [31] propose an extension of Huet and Lang’s algorithm to third-order matching.
Their method aims to apply optimizing transformations on functional program, such as
list promotion. Yokoyama et al. [109] restrict Huet and Lang’s algorithm to the class
of deterministic second-order patterns, and provide an algorithm in O(T? x P) where T
and P denotes the size of the template and the program. Unfortunately, none of these
methods are adaptable to imperative programs.

In the previous chapter, we have described an algorithm due to Barthou et al. to
semi-decide the equivalence problem between two programs, that we propose to extend
in this chapter to the matching problem between a template and an imperative static
control program (slice). As the matching procedures described in unification theory, our
algorithm is able to provide the unifiers, that is the values of the template variables that
ensure the equivalence with the program slice.

This chapter is structured as follows: Section 7.1 presents the simply typed A-calculus
and its high-order matching problem. Section 7.2 presents the motivating example, which
will be used to describe our algorithm. Section 7.3.1 shows the connection between the
template matching problem and the second-order matching problem, and points out some
limitations of the existing matching procedures. Section 7.3.2 sums the main steps of the
algorithm, described in Sections 7.4 and 7.5. Section 7.6 provides a complexity study of
the method, and reveals a time complexity in the same order than for the equivalence test
for a small number of template variables. Finally, Section 7.7 analyzes the capabilities
and the limitations of our method.

106 7. Template Matching with Semi-Unaification

7.1 Background

We first introduce some elements of simply typed A-calculus, then we present high-order
matching problem, and particularly second-order matching problem that we propose to
extend in this chapter in order to (semi)-decide the matching problem between a template
and a program.

7.1.1 Simply Typed A-calculus

The A-calculus is a theoretical functional programming language introduced by Alonzo
Church in 1936 in order to study the computable functions. It is surprisingly Turing-
complete, despite a minimal syntax ; and provides a convenient theoretical framework for
the high-order unification, and particularly the second-order matching problem addressed
in this chapter. This section presents briefly the basic notions needed to introduce the
matching problem.

Types

As most functional languages, simply typed A-calculus works with typed functions. In a
general manner, one could design a functional language working without types, applying a
simple rewriting until normalization. Types can be seen as a facility increasing readability
of a program, and allowing to track bugs. They are introduced here to have the notion
of order.

Definition 7.1 (Type). Given a countable set B whose elements are called base types,
we define the set T(B) of types by:

e BC 7(B)
e TandU e1(B) =T — U € 7(B)

For example, char — int and int — int — char are types of 7({char,int}). It may seem
at first glance that 7(B) does not types functions with several parameters. This problem
is solved by typing an n-ary function f: 77 x ... x T, = T as:

= (Th—...— (T, —1T))

Such a type transformation is called Currying. In order to handle naturally Currying, we
will simply write T} — ... — T,, — T', assuming the right associativity of —.

Definition 7.2 (Order). The order of a type T € 7(B) is defined as follows:
e if T is a base type of B, then o(T) =1
o f T=U—V, then o(T) = max{1 + o(U),o(V)}

Basically, the order represent the functional level of a type. first-order types are
constants, second-order types are functions of base types, third-order types are functions
taking second-order functions in parameter, etc.

7.1. Background 107

A-terms

The following definition specifies the syntax of the A-calculus. It basically rely on two
simple operations, which are function definition (abstraction) and function evaluation
(application).

Definition 7.3 (A-term). Given a countable set ¥ whose elements are called functional
symbols, and a countable set V whose elements are called variables we define inductively
the set A(X,V) of A-terms over ¥ and V' by:

e UV CA(XYV)
e zcVandte AX, V)= x.t € A(X,V) (Abstraction)
o t; and ty € A(X,V) = (t1t2) € A(X, V) (Application)

For instance, Az.\y.y and Az.(fz) are A-terms with functional symbols in {f} and
variables in {z,y}. For the sake of clarity, we will write Az; ...x,.t for Az Axs ... Az, L.
Additionaly, we will write t; ...t, for ((t1t2)...1%,).

Within simply-typed A-calculus, a type of 7(B) is assigned to each fonctional symbol
of ¥ and each variable of V. The type of a A\-term is thus defined in the following manner:

Definition 7.4 (Type of a A-term). The type Type(t) of a A-term t € A(3,V) is
defined by:

f) is given for each f € ¥

(
e Type(v) is given for each v € V

e Type(Az.t) = Type(z) — Type(t)

o Type((titz)) =V if Type(t:) =U — V and Type(ty) = U.

If the last condition is always verified, we note t : Type(t); and we say that t is well typed.

For example, assuming x : int and y : int — char, and f : char — char we should
have Az.f(yz) : int — char. In this chapter, we will consider only well-typed A-terms.
Additionally, we will talk about the order of a A-term ¢ for the order of its type o(Type(t)).

The free variables of a A-term ¢ are the variables of ¢ which are not in the scope of a
A. In a formal manner:

Definition 7.5 (Free variables). Given a A-term t, the set FV(t) of free variables
occurring in t is defined by:

o FV(f) =0 for any functional symbol f.
o FV(z) = {z} for any variable .

o FV(\x.t) = FV(t) — {z}

o FV((uv)) = FV(u) UFV(v)

108 7. Template Matching with Semi-Unaification

The variables of ¢ which are not free are said to be bound. If all variables of ¢ are
bound, ¢ is said to be ground, or closed. For example, Az.f(yz) have one free-variable y,
its bound variable is x.

A substitution is an application which replace all the occurences of variables by given
A-terms. In a more formal manner:

Definition 7.6 (Substitution). Given a A-term t and a variable x. We define the
substitution as an application o = [z1/t1 ... T, /t,] : A(Z, V) — A2, V) verifying:
e o(f) = f for any functional symbol f

e o(x;) =

(

(
eo(y)=yifyeV—{z...z.}

(

(

Q

uv) = (o(u)o(v))
e c(\y.t) =Ady.o(t) ifyeV —{z1...x,}

°
Q

o o(Az;.t) = Ay.o(ty), where y is a fresh variable, and t, is the term obtained by
substituting all free occurrences of x; int by y

An example of substitution and its application is [z/y](z(Az.x)) = y(Az.x).

Execution of a \-term

Once the syntax of the A-calculus is specified, it remains to provide an execution paradigm.
The execution of a A-term mainly rely on a syntactic evaluation the functions defined by
the abstraction rule. The following definition provides the execution rules of A-terms.

Definition 7.7 (S-reduction). We define the B-reduction by:
(Az.t)t —5 [z/t'](2)
The B-reduction is moreover compatible with the application and the abstraction:

(tu) —p (t'u)
t —pt = ¢ (ut) —5 (ut') whereu € A(X,V)
Azt — Azt

The reflexive and transitive closure of —4 is denoted by —7. The following example
provides the execution of a simple projection:

= (At
—p [y/t2ly
= to

Since A-calculus is Turing-complete, it is not limited to simple functions and can express
any computable function.

7.1. Background 109

A A-term is said to be in normal form if it can no more be rewritten by using (-
reduction. In the above example, ¢ is in normal form. In addition, a A-term ¢ is said to
be normalizable if there exists a A-term v in normal form such that:

t—)}}u

In this case, u can be see as the result of the computation described by t.

Depending on rewriting strategy, there may exists different paths to S-reduce ¢ to a nor-
mal form. For example, figure 7.1 provides all possible derivations of ((Az.z)(Az.z))((Ay.y)t)
to the normal form ¢.

|

((z.x)Mz.z)) (My-y)t

/\

(Az.2)((Ay.y)t (Az.z)(\z.x))t

S A

(Az.x)t

Fi1G. 7.1 — All possible sequences of S-reductions on a A-term
The following theorem demonstrates the unicity of the normal form by proving the
confluence of B-reduction.

Theorem 7.1 (Church-Rosser). Let t, u and v € A(X,V) such that t —% u and
t —% v. Then there ezists a A\-term w € A(X, V') with:

u—)}wandv—>§w

As a consequence, a normalizable A-term ¢ has a unique normal form, that we will
write ¢ |4.

Proposition 7.1 (Head normal form). Let ¢ be a normalized term well-typed term
with type Ty — ... T, — U, where U € B. Then the term t has the form:

t=Azx1... Azp(yuy ... uy)

where y € XU V.

When y € ¥, t is said to be a rigid A\-term, and when y € V, ¢ is said to be a flexible
A-term.

110 7. Template Matching with Semi-Unaification

7.1.2 High-Order Matching

High-order matching is a particular case of high-order unification, which consists in solving
equations on term structures, where one term is closed. These two important problems
are briefly presented in this section.

Definition 7.8 (Unification problem, Unifier). A unification problem is a system of

equations:
”
U = v

-~

Up = Up

where the u; and v; are A\-terms of A(X,V).
A unifier is a substitution o such that:

o(ui) Lg=o(vi) Ip
for each 1 < i < n, where = denotes the syntactic equivalence between \-terms.

We consider here unification problems with one equation (n = 1). For the sake of
clarity, the free variables of u; and v; will be denoted by using capital letters. Bound vari-
ables and fonctionals symbols will be denoted by small letters. An example of unification
problem is:

M. X (fx) < Azy. f(Xz)

which has an infinite set of unifiers, which can be written {[X/A\z.f"z], n € N}.

The unification problem is unfortunately undecidable. A proof using a reduction of
the tenth Hilbert’s problem can be found in [35], page 1025. In order to find interesting
decidable sub-cases, the idea commonly investigated in the litterature is to restrict the
order of the free-variables. For a given order n, the corresponding unification problem
is called n-th unification problem. Without such restrictions, we will talk about high-
order unification problem, or simply unification problem. Unfortunately, the unification
problem remains undecidable beyond the second-order [52].

We will now introduce an extension of the unification problem allowing to take into
account semantic properties of functional symbols.

Definition 7.9 (Equational theory). An equational theory is a set E of equalities
between A-terms of A(X,V). We built from E the least equivalence relation =g which
contains E.

Taking ¥ = {+}, an example of equational theory should be:

(+zy) =& (+yx)
(+(+2y)z) —=E (+2(+y2))

For any A-terms z, y and z € A(X,V) . This important equational theory specify the
commutativity and the associativity of +. The equational unification, or E-unification,
consists in solving an unification problem modulo the equivalence relation induced by a
given equational theory, as stated in the following definition.

7.2. Motivating Fxample 111

Definition 7.10 (Equational unification problem). An equational unification prob-
lem w.r.t. an equational theory F, or E-unification problem is a system of equations:

?
(5] =

-~

Up = Up

where the u; and v; are A\-terms of A(Z,V).
A unifier is a substitution o such that:

o(u;) Lg=p o(vi) s
for each 1 <1 < n.

Since equational unification is a generalization of unification, it is also undecidable.
We will now address an important restriction of the unification problems where a term
is bound in each equation. Such a unification problem is called (high-order)matching
problem, or semi-unification problem. Its unifiers are called semi-unifiers.

Definition 7.11 (Matching problem). A semi-unification problem or matching prob-

lem s a unification problem:
”
U = v

?
Up = Up

where the v; are bound A-terms of A(3, V). A unifier of matching problem, or semi-unifier
is a substitution o over A(X,V) such that:

o(ui) 1= v;
for each relevant 1.

Hopefully, the matching problem has been proven decidable for the orders two [56],
three [34] and four [82]. The decidability of the high-order matching problem is still open.
This chapter aims to extends the second-order matching procedure due to Huet and Lang
[56] in order to (semi-)decide the matching problem between a template and a program.

7.2 Motivating Example

We present now the running example that we will handle along this chapter. Consider

the following matching problem between a template (left) and a candidate program slice
(right):

s = ar(0) s = a(0)
doi=1,n doi=1,n

‘ s = X(s,ar(i)) ‘ s = s + a(i)
enddo enddo

return s return s

112 7. Template Matching with Semi-Unaification

The program computes the sum of the array a, while the template represents the
reductions over the array ap with respect to the operator X. The program obviously
matches the template with the unifier:

ar (i) =a(i) 1<i<n
X(z,y) =+(z,y)

In this chapter, we present an extension of the equivalence test described in Chapter 6,
able to semi-decide the matching problem between a template and a program.

7.3 Principle of the Algorithm

The equivalence algorithm described in Chapter 6 basically solves the word problem over
the terms computed by the two programs to be compared. In the same manner, the
matching problem between a template 7" and a program P can be written as a semi-
unification problem between the terms computed by T and P:

Aar(0) ... ar(n). Trlar) = Aa(0) ... a(n). Tr(a)

where the input array cells are handled as bound variables, and template variables as free
variables. Taking n = 2 in the motivating example, the matching problem between the
template and the program could be written as follows:

Xar(0)ar(1)ar(2). X (X (ar(0), ar(1)), ar(2)) = Xa(0)a(1)a(2). + (+(a(0), a(1)), a(2))

A simple solution would be to apply one of the unification procedures provided in the
litterature [56, 35]. Unfortunately they are not able to handle the case where the terms
to unify have a parametric size, which is often the case while matching a program to a
template. This chapter presents a matching algorithm obtained by combining the equiv-
alence test presented in chapter 6 with the Huet and Lang’s unification procedure [56],
that we describe thereafter.

7.3.1 Huet and Lang’s Procedure

Figure 7.2 provides Huet and Lang’s procedure [56], to solve the semi-unification problem.
Huet and Lang’s procedure basically inspects the left and right terms as long as the head
operators are the same (Decompose). If the head operators are different (Conflict),
the procedure stops and yields a failure L. The inspection stops whenever the left hand
side starts with a free variable X. Huet and Lang’s procedure will then try to define X
by all possible sub-terms starting from the top of the right hand side e.g. for the rhs
Aryz. + (x(z,y), z), the procedure would try the definitions O, +(0O, 0), +(x(0,0),0),
where [] denotes an argument of X. These definitions are built by choosing in a non-
deterministic manner to absorb the head operator of the rhs (Imitate), or to stop the
unrolling of the rhs (Project). The Decompose rule is then be applied to find further
free-variables to compute. When all free-variables are defined, the procedure stops by
firing the Delete rule, and provides the definitions in o.

7.8. Principle of the Algorithm

113

Delete
{)\:Z.t L /\a'c'.t} UE, o
E,o

Decompose
{Aj‘.f(tl ctn) 2 AEF(H] ..t;l)} UE,o

- ? o
{A:v.tl = A2t , ...

Conflict 1
{)\f.f(tl i t) £ ATg(H] ..tp)} UE,o
0, L
Conflict 2
{Ag‘c’.f(tl ty) £)\:z':’.wi)} UE,o
0, L
Conflict 3
)
{/\;i’.:z:i = AE.g(t) ... tp)} Ué,o
0, L
Project

{)\:E’.X(tl ty) £ /\a‘:'.t} UéE,o

{/\f.ti L Ag‘c’.t} UBE, o

Imitate

ALt = t’n} U, o

Where t is a term without free vari-
ables, t € T(Z).

Where f is a functional symbol of X.

If fand g€ X, and f #g.

If f is functional symbol of X.

If g is a functional symbol of X.

Where X is a free variable of X, and
o is expanded in 6 by defining X as
a projection on its i** parameter:

0=co[X(z1...24) = z{]

For a given 1 <14 < n.

{/\:E'.X(tl...tn) ZATf(H . ..t;,)} UE, o

? ?
{D2X1(00 . 0t) 28, . ATX (01 0t) S 1} UOE,0

Where X is a free variable of X, f
is a functional symbol of ¥ and o is
expanded in 6 by defining X in the
following manner:

0 =00 [X(Z) = f(X1(Z)... Xp(Z))]

where the X; are fresh free-variables.

FiG. 7.2 — Huet and Lang’s semi-unification procedure

114 7. Template Matching with Semi-Unaification

Applying Huet and Lang’s procedure on the above example, we would obtain the
unification tree provided in figure 7.3. Following the rules described in figure 7.2, we first
try to compute the value of X by testing all possible projections (Project 1 and Project2),
and the imitation of the rhs. The projections obviously lead to a conflict, since they lead
to compare a bound variable (a(0) or a(2)) to a term starting by a functional symbol of
Y. The imitation assumes X (z,y) = +(X12y, Xoxy), and leads to compute the values
of X; and X5. In the same manner, the projections and the imitation will be tested.
For presentation reasons, we just provide the choices leading to a solution, which are
Xi(z,y) = = and Xs(x,y) = y. This will lead to emit X (z,y) = +(z,y) as a solution
of the matching problem between the template and the program. The correspondance
between ar and a can moreover be found on the leaf states ; this important fact will be
exploited later to recover the mapping between template and program inputs.

lo

Ad7. X (X (a(0), (1)), a(2)) £ Ad. + (+(a(0), a(1)),a(2)) ‘

y/ Imitate\p%

Ad7.ar(0) = AG. + (+(a(0), a(1)), a(2)) ‘ Aai.ar(2) £ M. + (+(a(0), a(1)), a(2)) ‘

Conflict

FAILURE

Conflict

FAILURE

A Xo(+(X (a(0), a(1)), Xa(a(0),a(1))), a(2)) £ M.a(2)
I

Project 1 I

'

At X1 (+(X1(a(0), a(1), X2(a(0), a(1))), a(2)) = Ad. + (a(0), a(1)) ‘

At + (a(0), X(a(0),a(1))) = Ad. + (a(0), (1)) ‘

Decompose\

a7 X2(a(0), a(1)) £ Ad.a(l) ‘

Delete Project 2

SUCCESS Map.ar(1) = Ad.a(1)

Delete

SUCCESS

F1G. 7.3 — Unification tree of the template and the program for n = 2

Unfortunately, the terms computed by the template and the program have most often
a parametric size, which makes Huet and Lang’s procedure impossible to apply directly.
In the above example, we have for example 7r(ar) = X(... X (a(0),a(1))...a(n)). The
idea investigated in this chapter is to extend the equivalence test described in Chapter 6
with the rules Project and Imitate to construct the value of the template variables.

7.4. Construction of the Unification Automaton 115

7.3.2 Overview of the Method

Figure 7.4 sums up the main steps of our instantiation test. Following the equivalence
test, we propose to capture the unification tree of the template and the program into a
fixed size automaton, that we will analyze to check whether the program matches the
template and to provide the unifiers in case of success. The following sections describe
each of these important steps.

Tomplaie

Construction of the unification automaton

Analysis of the unification automaton

Fi1a. 7.4 — Overview of the instantiation test

7.4 Construction of the Unification Automaton

As stated in the previous section, the matching problem between a template 7" and a
program P can be written as a semi-unification problem between their computed terms:

\ar. Tr(ar) = Ad. Tp(a)

Since Tr(ar) and Tp(a) can have a parametric size, a direct application of Huet and
Lang’s procedure would lead to a unification tree with a parametric number of nodes.
Following the equivalence test described in Chapter 6, this section proposes to capture
the unification tree into an unification automaton with a non-parametric and finite number
of states.

In the same manner as the equivalence test, the template and the program are rep-
resented by a system of affine recurrence equations (SARE), a dataflow representation
allowing to step easily their computed terms. The definition of a SARE, and a translation
algorithm from a static control program can be found in Chapter 6. The SAREs obtained
from the template (left) and the program (right) are:

ie{0}: So[i] = ar(0) ie{0}: Ss[i] = a(0)
i€ {l...n}: Ssi] = X(S2[i — 1], ar(7)) ie{l...n}:S[i] = Sofi — 1] + a(i)

116 7. Template Matching with Semi-Unaification

Figure 7.5 provides the construction rules of the unification automaton. Following
Huet and Lang’s procedure, the states are extended with the current unifier 0. The two

SAREs are unfolded starting from the state O ~ O with the empty unifier (identity map-
ping). Decompose, Left Compute, Right Compute, Left Generalize and Right Generalize
are the same rules as in the equivalence test. The Decompose rule allows to inspect the
rigid-rigid equations until a flexible-rigid equation is found, while the compute rules LC
and RC allow to unfold on-demand the recurrence of both SAREs. In the same manner
as for the equivalence test, the generalization rules LG and RG ensure the finitude of the
automaton by folding the parametric length branches of the unification tree into cycles.
When a flexible-rigid equation X{(...) z t,o is reached, X is replaced by its value if it
is already defined in the current unifier o (Substitute). Otherwise, we try several def-
initions for X including the projections on its differents arguments (Project) and the
imitation of the rigid term (Imitate). Each of these assumptions which will be checked
during the analysis of the automaton in order to compute the unifiers of both template
and program. Remark that no transitions can be fired from the states following the ap-
plication of Project or Imitate to a previous state, since their current unifier are not the
same. Consequently, we can consider that Project and Imitate construct a search tree
whose leaves are assumptions on the template variables. For each leaf with a candidate
unifier o, an equivalence automaton is build by using SAReQ rules (decompose, compute
and generalize) to check the equivalence between o(7") and P.

For presentation reasons, we have not provided the rules leading to a failure in the
figure 7.5. They are the same than for the equivalence test, and basically occurs whenever
the two head operators of a rigid-rigid equation are not the same. We briefly recall them
thereafter:

Conflict 1
?
flty...t,) =gt . ..t;,) — | FAILURE Where f # g.
o
Conflict 2
Fltr . 1) 2z a(zT) _ [FAILURE Where a is an input array of the

pn right SARE.

Applying the construction rules to the motivating example, we obtain the automaton
given in figure 7.6. The value of the current unifier o is provided on the left side of
important states, after a projection or an imitation. Following the construction rules, the
two SAREs are unrolled until a flezible-rigid equation is obtained (first colored state).

Consider the first colored state. Since X is not defined by the current unifier,
Project and Imitate rules are applied. For presentation reasons, the two projections
are not detailed, but would lead to a failure. The imitation assumes that X (z,y) =
Xi(z,y) + Xo(z,y), and leads to compute the values of X; and X,. The right branch
of the following Decompose is not detailed for sake of clarity. Since Project and Imitate
require the heads symbol of the rhs to be a functional symbol of ¥ or an input, the Right
Compute rule is applied, leading to the next colored state.

From the next colored state, Huet and Lang rules are applied to compute X;. One

7.4. Construction of the Unification Automaton

117

Decompose (D)

Fltr . ty) = f(£) ..

)| — |t =

g

Left Compute (LC)

€D

S =] —E2 5|t Lt

g g

Right Compute (RC)

ieD

? ?
t = S[i] | ——— |t =t

g g

Left Generalize (LG)

- 1u(1)

S[u(@)] =t

g

Right Generalize (RG)

t = S[u(?)]

g

Substitute (S)

o
X(tl...tn)it —

g

Project (P)

Imitate (I)

?
;=1

oo [X — \.z;]

For each 1 <i < n.

For each clause i € D : S[i] < 4 of
the left SARE. i must be a symbolic
index vector generated by the Left
Generalize rule.

For each clause i € D : S[i] Z t; of
the right SARE. 7 must be a symbolic
index vector generated by the Right
Generalize rule.

Where i is a symbolic index vector
of §, and u # Id.

Where 7 is a symbolic index vector
of S, and u # Id.

When X is defined in o.

For each 1 < 7 < n. Where t is a
term of T(X), or an input array a(7)
of the right SARE. This rule is apply
when X is not defined in o.

Xt ... ta) = f(t ..

A || F(Xi (e tn) o Xp(tr -)

1
ool[X = M.f(X1(Z)... Xp(f))]

Where X;...X, are fresh free-
variables. This rule is apply when
X is not defined in o.

Fia. 7.5 — Construction rules of the unification automaton

118 7. Template Matching with Semi-Unaification

can remark that the imitation would lead to a parametric-length branch, allowing X to
absorb the whole term computed by the right SARE. Consequently, we choose to forbid
the imitation. A precise description of the forbidden imitations is provided thereafter.

Starting from the projection P1, a new state | X (Ss[ir — 1], air]) < Solip — 1] + alip]
is created. It is different from the first colored state since the unifiers are not the same.
Since X is already defined in the current unifier, the substitution rule is applied. Finally,
the cycle S — D — LC/RC captures the parametric-depth recurrence, while the projection
P2 provides an (assumption) of final value for X, which is X (z,y) =z + y.

LG[iT «— n]/RG[’LP <« TL]

Saliz] £ Selip]

LC[1 <ir <n]/RC1 <ip <7
P2

o X(z,y) = Xi(z,9) + Xz(-mﬁ} ‘+(X1(Sz[iT — 1], alir]), X2(Sa[ir — 1], ali7])) = Salip — 1] + alip]

o o ~—_

X1 (Seliz — 1], afiz]) < Sa[ir] ‘ Xo(Seliz — 1], afiz]) = alip] ‘
\
¥

RC[1 < ip <n]

FORBIDDEN

- —_— - — — - — —

|
coo L T

arlir] = Ssfip — 1] + afip] ‘

SaiT] L Solip — 1] + afip] ‘

chu <ir <n

X (Safiz — 1), aliz]) £ Salip — 1] + alip] ‘ FAILURE
Is
Solir — 1] + Xa(Salir — 1], alir]) = Salip — 1] + afir] ‘

=

Xa(Safiz — 1], aliz]) = aip]

LC[L < i <n]
RC[1 < ip < nl

D
LG[’LT — i — 1]
RG[iP —ip— 1]

F1G. 7.6 — Unification automaton of the template and the program for any n

Forbidden imitations This example shows that the imitation rule has to be applied
carefully to avoid parametric-length branches. Indeed, recall that we have to solve the
following matching problem:

Aar(0)...ar(n).X (... X (ar(0),ar(1))...) = Aa(0)...a(n). + (... + (a(0),a(1))...)

7.5. Analysis of the Unification Automaton 119

Each application of the imitation rule adds the head symbol + of the rhs to the current
definition of X. Since there is a parametric number of 4, we will obtained a parametric
number of states, leading to absorb the whole rhs.

A solution is to limit the number of application of the imitation to define a given tem-

plate variable. We choose to forbid the imitation of flezible-rigid states| X'(t .. .t,) < t,o
such that:

e There exists a predecessor | X (¢; .. .t,) Z t,0|of | X'(t;...t,) =t,0|in the unifica-
tion automaton e.g. colored states in figure 7.6.

e X' is involved in the definition of X.

In other words, we forbid a template variable to absorb a term defined by a recurrence.
As a consequence, we cannot handle unifiers defined by a loop. We will provide such
an example in section 7.7, page 124. Under this condition, the following proposition
establishes the finitude of the unification automaton.

Proposition 7.2 (Finitude of the unification automaton). Consider a matching

problem T Z P, and A the corresponding unification automaton. Then A has a finite
number of states.

Proof. Let us denote by Sr the template SARE and Sp the program SARE. The states
of A are of the form tr ~ tp,o.

e tp is one of the possible subterms of the clauses defining the program SARE, which
are in finite number.

e {7 iseither a subterm of S, or a free variable X (¢; .. .t,) which takes subterms of St
as arguments. The number of free variables of the template is finite. Moreover the
fresh free variable produced by the imitation rule is also finite. Indeed, a parametric
number of fresh free-variables would be necessarly produced by the imitation of a
recurrence of Sp, which is forbidden by the restriction on the imitation.

Finally, the finitude of each hand side ensures the finitude of A. O

7.5 Analysis of the Unification Automaton

The unification automaton obtained is a finite representation of the unification tree w.r.t.
the terms computed by the template and the program. Due to the representation, Huet’s
rules cannot be applied directly. An analysis pass is thus required to decide whether both
template and program match, and to compute the unifiers in case of success. In this
section, we present an extension of the analysis already described in Chapter 6 to achieve
this task.

120 7. Template Matching with Semi-Unaification

7.5.1 Overview

Figure 7.7 sums up the main steps of the analysis. The first step check whether the
template and the program matches, and provides in case of success the values to put in
the template variables (X in the motivating example). We then find the relevant mapping
between template and program inputs. Each of these steps are described thereafter.

[[Uniﬁcation automaton}]

Unifiers extraction

Input mapping extraction

Slice extraction

F1G. 7.7 — Overview of the analysis

7.5.2 Unifiers Extraction

In the same manner as the equivalence test, the generalization rules abstract array sub-
scripts, and lead to handle the arrays S [5] in the general case with a symbolic i. The
compute rules LC and RC are then applied in a systematic manner, and generates un-
reachable states. Unfortunately, the unreachable branches of the automaton may lead to
failure states even if the template and the program match. A first task is then to remove
the unreachable states from the automaton. Following the method described in section
6.5, page 98, we compute the reaching set of each state, then we remove the states whose
reaching set is empty. The resulting automaton represents exactly the unification tree of
the template and the program, and can handled by applying classical composition rules
of Huet and Lang’s procedure.

The algorithm described in figure 7.8 summarizes the main steps of the analysis.

Step 1 removes the unreachable states by applying the method described above. The
reaching sets are computed by using the heuristic described in [63] and implemented in
the Omega library [62]. It remains then to remove the nodes whose reaching set is empty.

Steps 2 and 3 check whether the algorithm fails. Following Huet and Lang’s algo-
rithm [56], the failures are propagated in a bottom-up manner by handling projection and
imitation rules as an OR-branching. Indeed, S will fail if all assumptions made in the
S; fail. In the other hand, the other rules are handled as AND-branching. Intuitively,
decompose and compute rules allow to explore the terms computed by the template and

7.5. Analysis of the Unification Automaton 121

the program ; and it is enough that sub-terms do not match so that the whole terms do
not match.

If the algorithm does not fail, the program matches the template. In this case, we
compute the corresponding unifier(s) (step 4). Following Huet and Lang algorithm, the
idea is to built the set of unifiers in a bottom-up manner, by applying rules allowing to lift

the set of unifiers up to the initial state. As stated above, a final state ¢ Z p, o contains a
unifier o built from the assumptions made while applying projections and imitation rules.
This justifies intuitively the first two rules. The unifiers obtained from the branches of
decompose and compute rules have to be gathered with a composition o to obtain the
whole unifier. For instance, in figure 7.6, the branches of the first decompose rule define
separately the values of X; and X5. Since two branches may define the same variable, we
have to check carefully that the definitions are the same. Projection and imitation are
construction rules which make assumptions on the value of the unifier. It is thus natural
to group the results obtained from each alternative by using union. Applying these rules
on the motivating example, we lift the unifier X (z,y) = z + y up to the initial state, and
we finally emit it as a unifier (step 5).

Algorithm Extract Unifiers

Input: A, a unification-automaton obtained by applying the rules of figure 7.5
Output: The set of unifiers U
1. For each node n of A:

e Compute the reaching set r(n) of n [semi-decision procedure]
e If the semi-decision procedure fails, replace n by FAILURE.
e If r(n) = 0, remove n from A

2. Propagate the failure nodes by applying the following rules:
D /LC/RC/LG/RG/S

o If S » FAILURE,
Replace S by FAILURE.

e 5 5, for 1 <i<n,and all the S; are a FATLURE,

Replace S by FAILURE.
3. If the failures are propagated up to the initial state O z O, emit .

4. Remove the return arcs of A, then compute the set of unifiers U = U[O L O] by
applying the following rules:

o U[F() = 0),0] = {o}
o Ulali7] = afip],0] = {0}

o IS 2R g for 1 <i<n: UIS] = {o10...00m | o; € UISH]}
o It 5 /RS g gor 1 < i < n: ULS] = U[S]

o It S s 8 for 1<i <n: U[S] =U[SL]U. .. UU[S,]

5. emit | YES, with U/ |.

FiG. 7.8 — Extract Unifiers

122 7. Template Matching with Semi-Unaification

7.5.3 Input Mapping Extraction

Once the unifiers are found, it remains to provide the relevant values of template inputs.
Basically, the unification automaton allows to unroll simultaneously the template and the
program until the template inputs are reached. We then obtain a leaf, which links the
template input to a program value, which can be either a program input a(i7), or a more
complex expression t(i_fa) depending on a counter ip. Consequently, the input mapping
can be obtained by inspecting the leaves.

Figure 7.9 provides the algorithm to recover the input mapping. As stated above,
we just collect the informations provided by reachable leaves. The last item expresses a
general failure of the unification automaton analysis, we do not know whether the program
matches the template.

Algorithm Extract_Inputs

Input: A, the unification automaton
Output: §, a mapping defining template inputs

For each leaf | ar (i) = t(ip) |

— ? -

e Compute the reaching set R of |ar(ir) = t(ip)

e For each (ir,ip) € R,

emit the mapping | ar(ir) A t(ip)

e In case of functional incoherence (two different definitions for a given ar(ir)), then

emit

Fi1G. 7.9 — Extract_ Inputs

In practice, reaching sets are expressed by a finite set of clauses, despite their paramet-
ric size. This guarantee that the mapping emitted has a finite representation. Consider

again the unification automaton given in figure 8.5. On the leaf state | ar|ir] = alip]| at
the bottom-left, we obtain the reaching set {(iy = 0,ip = 0)}, leading to emit emit the
mapping:

ar(0) ¥ ap(0)

7.5.4 Slice Extraction

The last step of the matching is to provide an exact description of the matched program
slice, in the meaning defined in Chapter 2, Section 2.4.

Intuitevely, the unification automaton reaches exactly the operations of the program
slice, starting from the operation assigning the output, to the first operations reading the
inputs. Since the SAREs are obtained from the algorithm described in Chapter 6, each
each array S[.] corresponds to an assignment S in the program.

7.6. Complexity Issues 123

Consequently, a simple algorithm to recover the program slice would be to compute
for each state corresponding to a statement S, the set of the program iteration vectors Zg
by using the reaching sets, then to emit {(S,7),7 € Zg}. Such an algorithm is summarized
in figure 7.10.

Algorithm Extract_Slice

Input: A, the unification automaton
Output: S, the corresponding program slice

For each state |t = Slip]

e Compute its reaching set R = {(i71,ip1)---(i7n,irn)}

o emit | {(S,ip1)...(S,ipn)}|

F1G. 7.10 — Extract_Slice

7.6 Complexity Issues

In the same manner as the equivalence test, we consider that the significative operation
of the algorithm is the computation of reaching sets.

The unification automaton can be viewed as a unification tree chosing the different
possible functions as unifiers, and whose leaves are unification automata like those built
by the equivalence test. Assume there is n template variables X ... X,. Each X; is used
in one node at most. Indeed, the project and imitate rules allow to define a value for
X, which will not be redefined in the following transitions. The projections produce |Xj|
branches, where |X;| denotes the arity of X; ; and the imitation produces one transi-
tion. As a consequence, the number of leaves of the unification tree described above is
I, (1] + 1)-

In the same manner as for equivalence test, the MSA built on the “leaves” of the
unification tree has O(T x P) nodes at most, where T resp. P denotes the number of
assignement in the template resp. the program. Consequently, the total number of nodes
of the whole MSA, and thus the worst-case complexity of the instantiation test can be

written:

n

@, (Tx P x H(|X,-\+1))

i=1
For a given template of size 1" with free variables X ... X, the complexity is thus linear
in the program size. In most cases, we deal with templates with n = 1 free variable and
with an arity |X;| = 2, leading to write the complexity 3 x T x P. In this case, the
complexity remains of the same order as for the equivalence test. This theoretical study
has been confirmed by experimental results obtained on SpecFP 2000 [54] and Perfect
Club [39] benchmarks, and presented in Chapter 10.

124 7. Template Matching with Semi-Unaification

7.7 Discussion

We have presented a new instantiation test based on the equivalence test described in
Chapter 6, and the Huet and Lang’s semi-unification procedure. In the same manner
as the equivalence test, our instantiation test is able to solve partially the matching
problem w.r.t Herbrand-equivalence, and can handle all program variations described in
introduction, excepts the semantics variations. For instance, we can handle the following
matching problem, and provide the unifier X (z,y) = = + 3y + 1.

s = a(0) s = a(0)
doi=1,n doi=1,n

| s = X(s,a(i)) b = 3*xa(i)
enddo s=s+b+1
return s enddo
(a) Template (b) Program

Combining with data-structure and control variations, we are also able to handle the
following matching problem, providing the same unifier:

s(0) = a(0)
s = a(0) doi=1,n,2
doi=1,n b = 3*a(i)
| s = X(s,a(i)) s(i) = s(i-1) + b + 1
enddo b = 3*xa(i+1)
return s s(i+1) = s(@) + b + 1
enddo
(a) Template (b) Program

Additionally, our method is able to provide the exact program slice corresponding to the
recognized algorithm. At the opposite of many slicing methods, the slice obtained does
not contain garbage. Moreover, our method is linear in the program size despite a big
constant due to the cost of Presburger relations computation. Experimental results on
the SpecFP 2000 and Perfect Club benchmarks have shown that the cost can be reduced
of 50 % by avoiding the re-computations of Presburger relations, leading to a reasonnable
execution time.

Unfortunately, the limitation on the application of the Imitation rule makes impos-
sible to detect unifiers defined by a loop. Consequently, the following matching problem
cannot be handled:

s = a(0)
s = a(0) do i = 1,10
doi=1,n p=1
| s = X(s,a(i) doj=1.5
enddo p=rp*ald)
enddo
return s

s=s+p
enddo

(a) Template (b) Program

7.7. Discussion 125

Indeed, a solution would be:
p=1
do j = 1,5

X(z,y) = P=p*y
enddo
return r + p

We can handle this problem by allowing systematically k£ nested imitations, for a
given k (k-limiting). Even if it would works here for £ = 5, such a solution has several
drawbacks.

e k has to be chosen in an arbitrary manner.

e We cannot handle loops do ¢ = 1, p with a parametric number of iterations.

e The k-limiting increases the size of the automaton, and thus the execution time of
the algorithm.

e Our method will provide here the expression X (z,y) =2+ ((((y X y) X y) X y) X y)
without recovering the loop.

The next chapter proposes another instantiation test able to provide unifiers expressed
with general do loops, without these drawbacks. It will also be able to handle general
programs, breaking the static control restriction.

126 7. Template Matching with Semi-Unaification

Chapter 8

Template Matching with
Tree-Automata

The previous chapter proposes a solution to the template matching problem by extend-
ing the equivalence test described in chapter 6 with the construction rules of Huet and
Lang matching procedure. Though the obtained algorithm can detect a large amount of
program variations, it cannot cope with matching problems whose unifiers are defined by
a loop. Additionally, it is limited to static control programs.

In this chapter, we present an alternative instantiation test able to break these lim-
itations. Following the slicing method, we associate to the template and the program a
tree-automaton recognizing ezactly their computed terms. The matching is then achieved
by checking their intersection emptiness. The main difficulty comes from the paramet-
ric size of the two tree automata, that makes the intersection emptiness undecidable. A
finite-size representation of the tree automata is proposed, and an heuristic is described,
allowing to handle successfully a significant amount of instances of this difficult problem.

Particularly, we show that parametric-length branches of the cartesian product are
repetitions of finite size schemas that can be captured using simple cycles. This allows to
represent the cartesian product by a classical finite state automaton. Several reachability
problems are also raised, and require the computation of transitive closures of Presburger
relations. Experimental results will show that the heuristic used (Omega) can handle
them in most cases.

This chapter is organized as follows: Section 8.1 presents the motivating example
used to illustrate our algorithm, described precisely in the following sections. Section 8.3
presents the finite size representation of the exact tree automata, then Sections 8.4 and
8.5 describe the intersection emptiness test. Section 8.6 presents a complexity analysis of
the instantiation test. Section 8.7 provides some experimental results with some practical
improvements. Finally, Section 8.8 summarizes the advantages and the drawbacks of the
method, and concludes by presenting possible improvements.

128 8. Template Matching with Tree-Automata

8.1 Motivating Example

Consider the following matching problem between a template (a) and a candidate program
slice (b):

s = a(0)
s = I(0) do i = 1,10
doi=1,n p=1
input = I(i) do j =1,5
s = X (s,input) | p =p * a(i)
enddo enddo
return s Send| s =8 +p
enddo
(a) Template (b) Program slice

The output statement provided by the slicing method is denoted by S,4. The template
matches the reductions over the input array I with a parametric size n, by using the generic
operator X (template variable). The program slice computes the expression ;" a(i)?
by using two nested loops. Our instantiation test returns the relevant values of template
parameters X, I and n making it semantically equivalent to the slice. Here, a solution
would be:

p=1

do j = 1,5
X(x,y) = |p=p=*y

enddo

return r + p

n = 1 (first loop counter of the program)

I(k) = a(k) for k between 1 and &

8.2 Overview of the Method

Following the slicing method, the instantiation described in this chapter checks the inter-
section emptiness of the eract tree automata of the template and the program.

Roughly speaking, the instantiation test steps simultaneously the template and slice
statements going up the data-flow dependences as long as the same operators are found. If
the stepping leads to different operators, the instantiation test fails. Whenever a free vari-
able is reached, program operators are absorbed (or not) in a non-deterministic manner,
similarly to Huet and Lang’s Project and Imitate rules.

The stepping use the eract tree-automata A and Ap built from the template and
the slice (see section 8.3), and is perform by computing their cartesian product Az X Ap,
backward starting from the final state (see section 8.4) . If the slice matches the template,
the template variables values are built by extracting and analyzing the parts of Ar x Ap
unrolling the free variables of the template on the slice (see section 8.5).

8.8. Construction of Ar and Ap 129

8.3 Construction of Ay and Ap

In this section, we present the construction of the exact tree automata for the template
and the program. The construction rules given in chapter 5 are used, and a simplification
is applied for the sake of clarity.

Recall that the construction rules of the exact tree automata were given, and justified
in figure 5.8, page 78.

Figure 8.2 gives the symbolic expression of the exact tree automata of the template (c),
and the program (d), without computing the reaching definitions RD. Once the reaching
definitions computed, we obtained the tree automata given in (e) and (f). In fact, they are
a finite representation of tree automata with a parametric number of rules. For instance,
the input transition (75,7 — 1) — (Ts,4), i € {2...n} represents n — 1 transitions.

Notice that these tree automata are similar to the SARE defined in section 6.1.2, page
91. Indeed, it is enough to swap left and right hand side of the rules to obtain the SAREs.

Unfortunately, to obtain (e) and (f), we need to compute the reaching definitions of
the whole program, whereas those of the slice would be enough. This approach is not
realistic, since the whole program has to be static control (to make the RD computable).
Additionally, the RD computation is expensive in time. The idea investiguated in this
chapter is to keep the RD unevaluated, and to compute them on-demand, while computing
the cartesian product A7 x Ap. Such an approach allows to handle static control slices in
general programs, and reduces drastically the cost of RD computation. Indeed, only RD
involved in the slice would need to be computed.

In order to simplify the notations (and particularly in the tree automata presented
thereafter), we will denote the reaching definition by symbols ®;, as shown in figure 8.1.
®x is the reaching definition that control the loop computing the composition of the
template variables X. We use the same notation for ®, and ®, in the program tree
automaton. In both automata, ®y is the reaching definition giving the operation (V).

®p, in another simple reaching definition giving the last instance of Py ({Ps,1,5)).

I0) —1 (I1,)

a(0) — (S1,)
I(t7) —2 (V,i)
1 — (Pl s Z)
Ox —3 (Tp,1)
oy —ra (Th,0) a(i) — (Vii,5)
1 —5 <T2, Z)
+(<T2=i)a<T27i>) —6 <T2ai> X((bX:CpV) — <P27iaj>
X(<T2=i)ﬂ<T27i>) —7 <T2,Z>
+(¢+,<DP2) i (SZ,i,j)
(T2; TL) —8 (Tend>
(a) Template automaton (b) Program automaton

F1G. 8.1 — Simplified notation for the RD

130 8. Template Matching with Tree-Automata
S1 s = a(0)
T, s = 1I(0) » do 1_=11,1o
doi=1,n 1 5—'_15
1% input = I(i) - °©J= ; -
T, s = X(s,input) input = ad
enddo Py P = p * input
Tend return s 52 znid: .
enddo

(a) Template

(b) Program

I(0) —n (T1,)
a(0) — (S1,)
I(z) —2 (V,3)
1 — <P1,i)
RD<T2,7:) (S) —3 (TQ, Z)
RD(Tz,i) (ZHPUt) —4 (T2: Z) a(z) — <‘/’ Za])
1 —5 (T2,0)
+(<T2’Z>7<T2;Z>) —6 (T2al) X(RD(PQ,i,j)(p)’RD(Pg,i,j)(inPUt)) — <P2’i’j)
X(<T27i>7 <T27Z>) —7 (T2: Z)
+(RD(s,,,5)(8),RD(s5,4,57(P)) —> (S2,1,5)
RD(Tend,)(s) —8 (Tend)
(c) Template exact tree automaton (d) Program exact tree automaton
without computing RD without computing RD
100) —1 (T1,) a(0) — (S1,)
I(5) —2 (V,3) 1 — (P1,1)
1) —s (i) [i=1 a(i) — (Vii,j)
ol D e By fietEen) (P [viid) — (Prig) [i=1]
(,Zi :;;1 éTi:;; X((P27i5j_1> ’<‘/;Za.7>) — (P27i’j> j6{2" 5}
+(<T25i>7 <T25i>) —6 (T27 Z)
X((T2,), (To,i)) —7 (To,i) +(| (S1,) |, (P2,4,5)) —> (S2,1)
(To,n) s (Tena) +((S2,i = D[(Poi5) — (Sa,)

(e) Template exact tree automaton

(f) Program exact tree automaton

F1G. 8.2 — Exact tree automata of the template and the program

8.4. Construction of Ar x Ap 131

8.4 Construction of Ar x Ap

Once Ar and Ap are built, it remains to step them simultaneously, in order to decide
whether the program slice P is an instance of the template T'. In this section, we describe
an algorithm to achieve this stepping. The cartesian product Ay X Ap summarizing the
stepping is obtained, and will be analyzed by applying an algorithm described in the next
section. We recall the following proposition, already given in chapter 5, page 78, that
justifies the computation of Ar X Ap to decide whether 7" is an instance of P.

Proposition 8.1 (Correction). Consider a matching problem T Z P where T is a
template and P is a program. The following assertions are equivalent:

(i) T Z P has a solution W.I.t. =
(ii) For each input Ip of P, there exists an input It of T such that:
L(Ar(I7)) N L(Ap(Ip)) # 0

Proof. Part (ii) = (i). Assume (ii). Since L(Ap(Ip)) = {Tr(Ip)}, Tr(Ip) is recognized
by Ar(Ir). Hence, there exists an instance 77 of T such that Tz, (Ir) = Tp(Ip). Denoting
by o the mapping from Ip to I stated by (ii), we can write: Tr,(0(Ip)) = Tp(Ip). Thus
Tt o 0 =4 P. This leads to (i), modulo o.

Part (i) = (ii). Assume now (i). Consequently, there exists an instance 77 of T such that
Tr =4 P. Then Tr,(I) = Tp(I) for each relevant input I (definition 2.9, page 51). Since
we have T, (I) € L(Ar(I)), and Tp(I) € L(Ap(I)), the result follows with the identity
mapping. 0

The classical solution to check the intersection emptiness of L(Ar(Ir)) and L(Ap(Ip))
is to compute the cartesian product Ar(Ir) x Ap(Ip), and to verify that the final state
is reachable.

In the general case, the template can output an array O[Z] with several dimensions. In
the tree-automaton, it appears on the final state, which depends on the output index i.
To be rigorous, we should consider the tree-automaton A(I) as a family of tree-automata
[A(I);];cp, where each element A([); is the tree-automaton recognizing the i-th element
of the output array, and D denotes the index domain of the output array. Consequently,
the general case of our problem is to compare the families of tree-automata [Az(I1)ilzp,
and [Ap(Ip)il;p,- An ideal solution should be to find a bijective mapping ¢ from Dp to

Dr and to compare Ar(Ir); to Ap(Ip) 5(7)» for each relevant output index i. This leads
to handle the three following cases:

e dim Dy = dim Dp In this case, we try the identity mapping.

e dim Dy < dim Dp This case occurs when the output of the slice is nested in a number
of loops greater than dim Dy. In the motivating example, this case occurs with the
loop 7. In this case, we identify two-by-two the dimensions of T to the last (more
nested) dimensions of P. The remaining dimensions of P are handled as structure
parameters.

132 8. Template Matching with Tree-Automata

e dim Dy > dim Dp In this case, we cannot find a restriction of the program slice’s
output which have the same dimension of the template’s output. Since the outputs
are not compatibles, we consider that the template and the program do not match,
and we yield a failure.

Once the mapping ¢ is found, we compute the cartesian product Ar(I7); x Ap(Ip) 567)

for a symbolic i (as inputs Iy and Ip). Unfortunately, the classical algorithm cannot
be applied, since the two tree-automata can have a parametric number of rules. Figure
8.3 provides the general schema of the cartesian product, obtained while starting the
construction backward, from the final state | (T¢,q,), (S2,[7]) | The cartesian product is

basically constituted of different parts unrolling X on Ip(i)°, then Ip(i — 1)5, then Ip(i —
2)5, until Ip(1)°. Each part allowing X to absorbs the needed x operations. Reaching
definitions are computed on-demand during the construction. The arrows with dotted
lines represent a decomposition rule, and detail the transitions needed to obtain each
argument of an operator (here + and X).

(Tenda)a (527 [l])

(T, [n]), (S, [1])

| +({T), 2) [T,) 2

t
[

| (T) | [T D, 1)|

Oy, Py - N .
<T27 [TL]), <P2’ [7:7 4]) (Va [n]>7 (V7 [7:7 5])

(T, o)) @] (T [, ov)|

e N

)F N 1 M () WV 53

(TQ, [TL -1

) (Sali= 1))

IT(H),IP(i)

e N
7 N

Pl - - - - -

(Tl =10 [T - 1) %
f

F1G. 8.3 — The last states of Ar(I7); x Ap(Ip),gs

Following the equivalence test, we handle the parametric size of the cartesian product
by introducing a generalization rule, allowing to describe only one time, in the general
case, the part unrolling X on Ip(k)® with a symbolic k, 1 < k < i. This allows to capture
the parametric-size cartesian product into a finite-size MSA, whose construction rules are
summarized thereafter.

8.4.

Construction of Ar x Ap 133

Template e-compute: From a state | (7, z;), e | where o is a generalized state (S, z})

or a symbol @ ; with an e-transition 7" — (T, i7) in Az, add the transition:

(T,ir),o| —|T", @

Program e-compute: From a state | e, (P, ip)|, where o is a generalized state (T, iz)

or a symbol ® ; with an e-transition P’ — (P, z;:) in Ap, add the transition:

.a<P:i_1;> — .aPI

—

Full compute: From a state | (T, iz), (P, ip) |, with the transitions f(e; ...e,) — (T iz)
in Ay and f(oy...0,) — (P,ip) in Ap, add the transition:

(T,ir),(P,ip)| — f([®1,01]--[®,0n])

Decompose: From a state f(‘ ®,0; ‘ . .‘on, oy, ‘), add the transitions:

Fos0]- - [®ns0n) —[®i; 0]

for1 <i<n.

Template generalization: From a state | (T, u(iz)), ® | with u # id, add a transition:

(T,ir),e

(T, u(ir)), e

Program generalization: From a state |e, (P, u(ip)) | with u # id, add the transition:

ip<—u(ip)

o, <P, U(Z;» o, <Pa 7';>

Template ®-compute: From a state apply if possible the exact algorithm de-
scribed in [43] to get the exact definition of ®:

®="T, ip € D,

If the algorithm cannot be applied, yield a | FAILURE |
Else, add the transitions:
—

For each k.

134 8. Template Matching with Tree-Automata

e Program ®-compute: From a state apply if possible the exact algorithm de-
scribed in [43] to get the exact definition of ®:

=P, ip € D,

If the algorithm cannot be applied, yield a | FAILURE |.
Else, add the transitions:

For each k.

Since we want to check whether the final state of the cartesian product is reachable
(intersection emptiness), we construct the cartesian product backward, from the final state

to the initial states (constant leaves f(), and states with a template input |ar[.], e]).

Rules Template e-compute, Program e-compute, Full compute and Decompose are clas-
sical construction rules of cartesian product. Rules Template generalization and Program
generalization to capture the parametric-length branches with a cycle. As stated below,
these rules guarantee the finiteness of the MSA. Finally, the rules Template ®-compute
and Program ®-compute allow to compute on-demand the reaching definitions needed to
achieve the comparison. These rules are quite important since they allow to compute
only the reaching definitions of the slice. The remainder of the program may contain
uncomputable reaching definitions, it will not hurt the matching. As a consequence, our
instantiation test is able to handle programs with uncomputable reaching definitions,
including programs with while loops and non-affine conditionals.

We will consider that a reaching definition is computable whenever Feautrier’s al-
gorithm can be applied. The following definition presents a simple test to check this

property.

Definition 8.1 (Static control-dependent statement). A statement is said to be
static control-dependent whenever all its surrounding control structures verify the con-
straints defined in the polytope model. More precisely:

e do loops with affine bounds

e Conditionals involving affine constraints over loop counters and structure parame-
ters.

Consider the example given on figure 8.4. The static control-dependent statements
are S1, S3, S4 and S5. S2 is not static control-dependent since it depends on a while
loop. While computing a reaching definition of a variable v, Feautrier’s algorithm will
handle all statements writing v. It will be appliable whenever each of these statements
are static control-dependent. On the example given figure 8.4, the reaching definition
RD(s;,i,jky(s1) of s1 in S5 is computable since the statements writing s1, S; and S3 are
static control-dependent. However, the reaching definition RD(g; ; ry(s2) of 82 in S5 is not
computable, since it needs S5, which is not static control-dependent. Indeed, it depend
on the definitions in the while loop.

8.5. Analysis of Ar x Ap 135

doi=1,n

Sl sl = ...
while ... do
do j = 1,ix%i
Lnddo
do j =1,1
So |SQ=
enddo
enddo
do j = i,n-i
S3 sl = ...
do k = 1,p
S4 |SQ= ..
enddo
do k = j+p,n
Sy | ... =81 + 82
enddo
enddo
enddo

F1G. 8.4 — General loop nest: static control dependent statements

The following proposition shows that the number of states of the MSA is always finite.

Proposition 8.2 (Finitude of the MSA). Let T Z P be matching problem where T is
a template and P is a program. Then the MSA of Ar X Ap has a finite number of states.

Proof. The states of the MSA are either as f(‘ ®,0(]...[®,,0,]), or as . The states
f(‘ ®,0; ‘) ‘ e, 0, ‘) are produced by the Full compute rule. They are obtained by com-
bining rules of A7 and Ap, which are in finite number. In addition, the compute rules
impose the states to generalized to be applied ((S,7), and not {S,u(7))). ® and o are thus
sub-terms of a clause of A7 or Ap, which are in finite number. O

Figure 8.5 provides the MSA built from the motivating example. The construction is
performed backward from the final state. As stated before, the generalizations over the
states with 4+, and x allow to capture the parametric branches with a finite number of
states. ¢-functions ®x, &, and &, are computed on-demand during the unrolling. Each
colored node makes an assumption on the value of X, that we will describe accurately in
the following sections. For presentation reasons, we just provide the transitions leading
to the solution.

8.5 Analysis of Ay x Ap

Once the MSA of A x Ap is built, it remains to analyze it in order to decide whether
the program slice is an instance of the template, and to provide the unifiers in case of
success. In this section, we describe a method to handle the MSA and to yield the unifiers
as SAREs.

136 8. Template Matching with Tree-Automata

(Tend7)7 (SZ, [l])

(Ta[n]), (S2[il)

s Pad .
1T N, lp &1

i «—ip —1

B | [|

(Ty,i7), (P, [ip,5])

(TaliT —11),(S2, [ip — 1) 7=

x (T, i7), 8,

(1, i7),2v)|

~
~
~

Sy, 2y

F1G. 8.5 — MSA representing Ar(I7); x .AP(IP)J(;) L) 1o

8.5.1 Overview of the Analysis

Figure 8.6 sums up the main steps of the analysis. A first step is to generate from
the MSA all possible OR-branchings corresponding to different assumptions on template
variables. We then check each of these OR-branching, by verifying if they do not leads
to an operator conflict. In this situation, we check another OR-branching. Otherwise,
we recover the definition of the template from the MSA that we emit as a solution. We
describe thereafter each of these steps.

8.5.2 OR-branchings Generation

The template tree-automaton contains non-deterministic transitions allowing to recognize
each possible instance of the template. During the construction of the MSA, these tran-
sitions are fired on-demand to imitate the program slice. Several assumptions are always
made between (a) imitate the slice (looping transitions) and (b) stop the definition of X
and continue to step the remaining of the template. This last choice is achieved by firing
input transitions allowing to reach an argument of the template variable. Since these
transitions are fired from the same node in a non-deterministic manner, we call them
OR-branchings.

The nodes starting an OR-branching have been colored in figure 8.5. One distinguish

generalized-OR-branchings starting from nodes |(S,, i), (P,ip)| and ®-OR-branchings

8.5. Analysis of Ar x Ap 137

4—(OR-branchings generation

Failure

Failure detection

Success

Unifiers extraction

Input mapping extraction

‘i Slice extraction

F1G. 8.6 — Overview of the analysis

starting from nodes | (Ss, z;), ® | where @ is a program ¢-function.

Figure 8.7 provides the detail of a ®-OR-branching followed by a generalized-OR-
branching. The ®-OR-branching allows to choose between unrolling X on the states
resulting from the application of Program ®-compute, or stopping the unrolling thanks
to Template e-compute transition. In the same manner, the generalized OR-branching is
built from rule Full compute, which allow to add a x to the current definition of X ; and
rules Template e-compute allowing to stop the unrolling.

-
]

(Ts,i1), PP,

(Tv,ir), (P, [ip, 5])

Looping

(T, i7), (P i P

_— _\
@, (P77 By, (PoliT, i7)

x((Ta,i7), @ || (T, i7), 9y)

Looping Input 1 Input 2

F1G. 8.7 — Detail of two OR-branchings

As stated in proposition 8.1, the program slice matches the template if the final state
of A7 x Ap is reachable from the initial state(s) (constants, and inputs Ir, Ip). This
occurs when there exists an unrolling of the MSA that reachs leave states (1() or inputs)
without operator conflicts. Such an unrolling chooses the right transitions in the OR-

138 8. Template Matching with Tree-Automata

branchings, to build the template variable X. Given a «choice of OR-branchings» leading
to a complete unrolling, one should recover the relevant definition of X. To simplify the
problem, we assume that the template variable computes the same term at each iteration.
This leads to consider that the branches chosen in the OR-branchings are always the
same. The approach investigated in this thesis is to handle each combination of OR-
branchings, and try to recover the corresponding value of X. The relevant combination
for the motivating example is given in figure 8.5.

Consider again the two OR-branchings given in figure 8.7. Denoting by &5, ®;, and
&/, the looping and the input transitions of the ®-OR-branching, and by G, G, and
G, the same branches for the generalized OR-branching, a systematic generation would
produce:

¢, G, @1 G, @1 G, @1, @1,

One remark that ¢, G, and ®; G, are redondant with ®; and ®;, since they lead
to the same definition of X. As a consequence, we have just to consider the following
OR-branchings:

(DLGL; ¢Il) (DIQ

and thus, we discard the branches G;, and Gy,. In a general manner, ®-OR-branchings

starting from a state | (S, iz}, ® | are immediatly followed by a Program ®-compute then

a Program generalization leading to a state of the form | (S, i), (P,ip) | which starts a
generalized OR-branching. Conversely, one can shows that a generalized OR-branching
follows a ®-OR-branching in the same way, except for the first generalized OR-branching
starting the unrolling of X. This important property lead to vary only ®-OR-branchings,
while enabling the full compute transition of the generalized OR-branchings.

8.5.3 Failure Detection

Once a combination of OR-branchings is chosen, we first check whether no failure state
is reachable, then we extract from the MSA the parts unrolling the templates variables,
in order to recover these definitions.

As stated in proposition 8.1, the program slice matches the template if the final state
of Ar x Ap is reachable from the initial state(s) (constants, and inputs Iy, Ip). Since
the MSA unrolls the term computed by the template 77(I) on the term computed by the
program slice 7p(I), identifying template variables to sub-trees of 7p(I). When 7" and
P do not match, the unrolling stops before covering all the term 7p(I), and produces a
failure due to operator conflict (see transition Full compute). Hence, we have to check
whether an operator conflict is reachable from the final state, or not.

Since the ®-compute rules choose systematically all the definitions of ¢-functions with-
out taking into account subscripts values, some transitions constraints may be always false,
leading to unreachable states. Before analyzing the MSA, the first step is thus to clean it
by removing the unreachable states. This can be achieved in the same manner as our first
method describe in chapter 7. For each state, we basically compute a regular expression
whose letters are affine relations. Applying the algorithm described in [63], we obtain the
reaching set of the state, which is the set of all possible subscript values while stepping all

8.5. Analysis of Ar x Ap 139

possible paths from the initial state. If the reaching set is empty, the state is unreachable,
and we remove it.

If there remains an operator conflict, then the OR-branching does make the proper
choices for the template variable, and we check another OR-branching. Otherwise, we
extract the unifiers from the MSA, by applying the method described thereafter.

8.5.4 Unifiers Extraction

In order to recover the value of the template variables from the MSA, we extract each part
of the MSA unrolling the program on a template variable X. This can be achieved by
filtering the MSA states with a template variable state. The motivating example has one
template variable state, which is (Ss,.). Each connected part is then handled as a sub-
automaton, whose initial state is the first state unrolling the template variable. Formally,
its predecessors have no template variable states. If several states verify this property,
we consider as many different automata as initial states. The final states starts the input
transitions, leading to template variable parameters.

Given the OR-branching provided in figure 8.5, we obtain the sub-automaton provided

in figure 8.8. We have put an arrow above the initial state | (S, z}), (Sa, z}) . In addition,

the final states ‘(I)X, O ‘ and ‘(I)V, Dy, ‘ are surrounded.

- - - - - -

‘+(| (T, ir), @4 |7| (To,i7), @p,
T
|

(T, ir), (Ps,[ip, 5])

x((im), 0. (13,67, 0)|

(Ty,i7), (P, [ip, jp — 1])

F1G. 8.8 — Sub-automaton unrolling X on the program slice

Once the set of sub-automata {A4; ... A,} is found, it remains to compute the set of
corresponding unifiers. Figure 8.9 provides an algorithm to compute the unifier corre-
sponding to a sub-automaton. The unifier is expressed by a system of affine recurrence
equations (SARE), a dataflow representation of a program introduced in chapter 6. The
symbolic iteration vector of @ = (¢r,¢p) is the concatenation of the iteration vectors of

140 8. Template Matching with Tree-Automata

the statements corresponding to ¢r and gp. For instance, the iteration vector of the first
state is [iz, ip]. The generation of the SARE clauses is driven by the transitions of the
sub-automaton. The generation stops on the leaf states reaching an argument of X. For
example, reaches the first argument of X (®x) that we write ;1 (step (f)). In

the same manner, reaches the second argument of X, denoted xs.

Algorithm MSA To SARE

Input: Ax, a sub-automaton of the MSA which unrolls the program on X.
Output: Sx, a SARE providing the definition of X .

1. If Q = (qr,qp) is a state of Ax, we write Q[i] to recall that 7 is the (symbolic)
iteration vector of @) in Ax.

2. (a) Let Q[i] be the initial state of Ax. Emit the clause:

Vi:X(z1...2,)(3) = Q)

(b) For each transition e-compute:
QL — Q']

Emit the clause:

Vi:Q(i) = Q'(d)

(¢) For each transition full compute:

QI — f(Q1...Qn)[]

Emit the clause:

Vi: Q@) = f(Q1(D)-..Qn(D)

(d) For each transition generalize:

Qf = o'

Emit the clause:

Vi Qi) = Q'(u(i))

(e) For each transition ®-compute:

Qi -2 Q')

Emit the clause:

i€D:Q()=Q'@)

(f) For each final state Qy[i] corresponding to the parameter z; of X, emit the
clause:

Vi:Qs(i) =z

Fic. 8.9 - MSA_To_SARE

8.5. Analysis of Ar x Ap 141

Applying the algorithm to the sub-automata given in figure 8.8, we finally obtain the
following SARE:

Vir,ip : X(z,y)(iT,ip) =|(Tz,iT), (S2,ip) |(iT,ip)

Vipip t| (Do ir),(So,ip) |(im,i7) :+<<Tz,i%>,<1>+ (i i2).] (Do, i7), @, (i},iE»))
Vir,ip | (T3,i7), @4 [(i7,ip) =[ox, 9]

Vip,ip | ®x, Py =z
Vit,ip | (Thir), @, |67, i) =| (@,), (P2, 167, 5)) |37 17)
Vir,ip | (T, (P, [iP,5)) (i i) =@, i), (P>, 107 37) (67 i7.5)

Yir,ip,Jp :

(To,i7), (Po. [iF. 7)) 70 i7007) = ((Ta,ir), @x |(iT,iP,jp),| (T2, iT), BV (i%,i;,ﬁa))
jp =0 :|(Tyir),®x |(i1,ip,jP) =1

1< jp <5:|(Th,ir), Bx |(i7,ip,iP) =@, 7). (P2, 107,37 — 1]) i, i, 37)

Vi, ip,0p | (Ioi7), (Bo, (7,57 — 1) [15, 7) = | (To,57), (P, [ip, 7)) (67, 5,57 — 1)

Viz,ip,ip | (T2,i7), By [(i7, i, i7) =[®v, & |(i7,ip, iP)
Vir,ip,ip :| ®v,®v |(i1,ip,5P) =y

Remark that the surrounding subscripts are useless since we assume X has the same
definition at each iteration. Thus we can remove them. In a more human-readable way,
this SARE can be written:

X(z,y) = +(z, P(5))
j=0 P(j) =1

1<j<5:P(F) =x(PGH~-1)y)

which corresponds to the expected unifier of the motivating example.

Once a unifier is built from each sub-automaton A;, we have to check whether two
sub-automata computing the same template variable provides the same value. This can be
done by applying the SAReQ algorithm [13]. If the SAREs computing the same template

variable are equivalent, they are emitted as a unifier of the matching problem T Zp
remains to inspect the other OR-branchings to find the other possible unifiers.

8.5.5 Input Mapping Extraction

Once the unifiers are found, it remains to provide the relevant values of template inputs.
In the same manner as the instantiation test described in the previous chapter, the carte-
sian product automaton unrolls simultaneously the template and the program until the

142 8. Template Matching with Tree-Automata

template inputs are reached, linking the template input to a program value, which can be
either a program input a(iz), or a more complex expression t(ip) depending on a counter
ip Consequently, the input mapping can be obtained by inspecting the leaves.

Figure 8.10 provides the algorithm to recover the input mapping. A stated above,
we just collect the informations provided by reachable leaves. The last item expresses a
general failure of the cartesian product automaton analysis, we do not know whether the
program matches the template.

Algorithm Extract Inputs

Input: At p, the cartesian product automaton
Output: §, a mapping defining template inputs

For each leaf | ar(it), S(ip) |

— -

e Compute the reaching set R of | ar (i), S(ip)

e For each (ir,ip) € R,

emit the mapping | ar(i7) S (ip)

e In case of functional incoherence (two different definitions for a given ar(ir)), then

emit

Fi1G. 8.10 — Extract Inputs

In practice, reaching sets are expressed by a finite set of clauses, despite their para-
metric size. This guarantee that the mapping emitted has a finite representation.

8.5.6 Slice Extraction

In the same manner as the instantiation test described in the previous chapter, the carte-
sian product allows to unroll simultaneously the template and the program, describing
exactly the program operations involved in the slice. The algorithm described in figure
8.11 follows the same idea than the algorithm described in the previous chapter. By
construction, the MSA exactly describes the program slice. We have thus to collect the
program statements reachable from the initial state, and to compute the corresponding
iteration vectors by using the reaching sets.

8.6 Complexity Issues

Consider the matching problem between a template with 7" statements and X free vari-
ables, and a program slice with P statements. In the worst case, each free variable
is unrolled on the whole program, providing X sub-automata A; ... Ax with P states.
Since an OR-branching tries to unroll a free variable, and to project on each argument,
it has a + 1 branches, where a is the arity of the free variable. Denoting by a;...ax

8.7. Experimental Results 143

Algorithm Extract_Slice

Input: A, the unification automaton
Output: S, the corresponding program slice

For each state | (T, ir), (P,ip) |

e Compute its reaching set R = {(i}l,i;l) . (z}n, irn)}

e emit | {(P,ipy)...(P,ip,)}|

FiG. 8.11 — Extract_Slice

the arities of the X free-variables, and bounding the number of OR-branchings in A; by
|A;| = P we finally obtain []._,(a; + 1)¥ combinations at most.

For each OR-branching combination, we have to re-compute the reaching set of each
node of the automaton. Hence, we have | Az p| <[], (a;+1)" reaching sets computations,
where |Aryp| denotes the number of states of the MSA. In the worst case, we have
|Aryxp| =T x P. Taking the reaching set computation as the significant operation, the
worst-case complexity of the instantiation test can be written:

O(TxPxﬁ(aH—l)P)

=1

More often, X = 1 and a; = 2, leading to write the complexity O(T x P x 3F). Although
the complexity is exponential in the slice size, we have to keep in mind that it is an
upper bound of the average complexity. Experimental results described thereafter show
that 25% of the OR branchings combinations can be pruned. Combined with another
optimization avoiding the redondances in reaching sets computations, the instantiation
test takes a few minutes in practice for slices with less than 10 statements.

8.7 Experimental Results

We provide thereafter a description of several important implementation points, including
particularly two techniques to reduce the amount of OR-branchings to handle, and the
reaching set to compute. Then we give some experimental results on simple matching
examples.

8.7.1 OR-branchings Generation

The key point to reduce the complexity of the algorithm is to reduce as much as possible
the number of OR-branchings to handle. We present thereafter two pruning techniques,
validated by experimental results.

144 8. Template Matching with Tree-Automata

Template Program Physical pruning RS pruning
Removed | Total | Removed | Total
temp _reduc | reducl 0 6 0 6
temp_reduc | reducl peel 6 36 2 30
temp _reduc | reduc2 6 36 5 30
temp_reduc | reduc2 peel 6 36 3 30
Removed 15.7 % 8.7 %

TABLE 8.1 — OR-branchings pruning

Figure 8.12.(a) provides a simple example of MSA with two OR-branchings A and B.
A naive OR-branchings generation will produce:

{albla aiby, asby, G2b2}
Since the choice of a; makes B unreachable, a1by can be discarded (physical pruning).

Remark that the OR-branching nodes do not always form a tree. Figure 8.12.(b) gives a
simple example, where none of the generated OR-branchings can be discarded.

F1G. 8.12 — Two simple examples of OR-branching

Once an OR-branching is chosen, the algorithm computes the reaching sets to remove
the unreachable states. Taking the previous example, if the OR-branching a;b; makes B
unreachable, then all the OR-branching of the form a;? will lead to the same simplified
MSA, and can be discarded (reaching set pruning).

Consider the two ®-OR-branchings at the bottom of figure 8.8. To reduce the amount
of OR-branchings, we consider that argument of free variables are different, and we discard
the same choices in the OR-branchings coming from a decompose. Such an optimization
reduces drastically the cost of the method and allows to handle most matching problems.

Table 8.1 provides experimental results for some matchings on small kernels. reducl is
a simple reduction computing the sum of an array, while reduc2 is the more complicated
reduction handled in this chapter. The peel are control variations with a peeling on the
main loop. Finally, temp reduc is the reduction template handled in all this thesis. It
appears that 24.4 % of the OR-branchings can be removed, leading to reduce significantly
the whole execution time.

8.8. Discussion 145

Template Program Cache RS Cache Closures Execution time
Hits | Misses | Total | Hits | Misses | Total
temp _reduc | reducl 95 98 193 | 554 4 558 22s
temp reduc | reducl peel | 1098 | 255 1353 | 2173 4 2177 2mnb5s
temp_reduc | reduc2 819 267 1086 | 3189 7 3196 3mn 38 s
temp_reduc | reduc2_peel | 901 273 1174 | 3251 9 3260 5mn 2 s
Reuse 76.5 % 99.7 %

TABLE 8.2 — Cache behaviour

8.7.2 Presburger Relations Handling

The significant operation of our algorithm is the computation of Presburger relations,
and particularly the transitive closures. In order to avoid to re-compute the same regular
expressions we maintain a base containing the computed Presburger relations with their
regular expression (reaching set cache). If the regular expression is not in the base, it is
computed by traversing the tree in post-fix order. In the same manner, transitive closures
are handled with another base (closures cache). These two bases are implemented with
an AVL indexed by the strings of the regular expressions.

Table 8.2 provides experimental results on the same kernels. The execution times were
measured on a Pentium 4, 1.6 GHz with 256 MB RAM. The reuse rate of the cache RS
is pretty good. Indeed, from one OR-branching to another, there is often a few change,
which affect only a small part of the MSA. As a consequence, most of the reaching sets
have already been computed. In another hand, the MSAs have a few cycles (see column
Cache Closure, Misses), which are involved in most regular expressions. This explains the
reuse rate of the cache closures.

Combining the OR-branching pruning with the caches allows to reduce significantly
the execution time (about 75 %). Even if the complexity remains exponential, the factor
is enough reduced to have a reasonnable execution time on average size patterns and
program slices (less than 10 assignements).

8.8 Discussion

We have proposed a new instantiation test able to cope with more matching problems
than the instantiation test presented in the previous chapter. Particularly, we are able
to handle most matching problems with a recursive unifier. In the same manner as the
equivalence test and the previous instantiation test, we are able to cope with all possible
program variations, except semantics variations.

Organization & Data structure variations The cartesian product traverses exactly
the program operations concerned with the template, without taking statements
interleaved within the program into account. Hence, organization variations are
handled. Moreover, our instantiation test compares the operations without tak-
ing account of variables, and particularly their type Consequently, data structure
variations are also handled.

146 8. Template Matching with Tree-Automata

Control variations The template and the program are traversed through the depen-
dences without taking account of control structures. For instance, we do not make
difference between n consecutive operations s = s + a(i) and the same statement
nested in a loop. Since control variations do not hurt the dependences between
operations, they are also handled.

However, the definitions obtained are by construction always a subset of the program’s
SARE clauses, which make impossible to detect unifiers whose definition needs to cut the
domain of a clause. For instance, consider the following matching problem:

0] = S5(n) 0] = S2(n X p)
1=0 : SQ(Z) = X(Sl) 1 =20 52(7,) Sl +1
1<i<[n]: Sa(i) = X(S2(i — 1)) 1<i<[nxp|: Sai) = Sa2(i — 1) +1

1 = S; =0

The program obviously matches the template with X defined as:

X(z) = S(p)
i=0 :S(') =z+1
1<i<[p]: SG) =S@-1)+1
S1 =0

But our method leads to a failure. Indeed, this definition of X is not a sub-SARE
of the program SARE, and would requires to split the iteration domains, that is nnot
allowed by our method.

Despite an exponential complexity, the method can be applied to slices with a rea-
sonnable size (~ 10 assignments) thanks to several optimization techniques allowing to
reduce the amount of OR-branchings, reaching sets and transitive closures to handle.
Experimental results on simple matching problems have shown that it decreases significa-
tively the cost of our instantiation test to a few minutes.

Chapter 9

Substitution

As suggested by the title of this dissertation, the last step of our method is to substitute
the occurences found in the program by the corresponding call to the optimized library,
whenever its possible and interesting. The first difficulty to deal with is to decide whether
the substitution is possible, in the meaning that it will preserve the program semantics.
There are indeed cases where cyclic flow dependences forbid the removal of the slice, and
finally its substitution by a call to the library. The next important issue to tackle is to
select the best, or at least, a good substitution set, that lead to a global performance
improvement. As we will see, this step raises important issues related to static perfor-
mance evaluation, a very difficult problem that we try to tackle here. Finally, it remains
to generate the code of the program with the calls to the library, in the most efficient way.

Whereas Metzger [76] uses a simple approach assigning a mark, the saving, to each
function library, Kessler [64] uses a performance prediction approach based on bench-
marking of library functions on the target architecture. More sophisticated performance
prediction approaches have been proposed, and provide a set of parameters which aims to
characterise the performances of the source program. Padua [21] proposes an analytical
approach based on the stack distance model to evaluate the number of cache misses, Ghosh
et al. |51] have introduced the cache miss equations as a mathematical framework that
precisely represents cache misses in a loop nest. Fahringer [41] proposes a profile-based
approach which benchmarks small kernels, and try to recognize them a the program, in
order to deduce the whole performance paremeters.

Following Metzger, the approach investigated in this chapter is to associate to each
library function a number quantifying its capacity to increase program performances. The
optimal set of slices to substitute is then selected by solving a 0-1 program whose con-
straints express the overlapping between slices. We also present an algorithm to generate
a straightforward code with substitution.

This chapter is organized as follows: Section 9.2 presents a method to decide whether
a slice can be separated from the program, and thus substituted. Section 9.3.2 presents
a simple algorithm to select a set of slices whose substitution will leads to a performance
improvement. Finally, Sections 9.4 and 9.5 present the algorithmic needed to instantiate
the template, and to generate the code with the substitution. Section 9.6 provides related
works on performance prediction, and Section 9.7 concludes, pointing out the limitations
of our method, and the possible improvements.

148 9. Substitution

9.1 Overview of the Method

Figure 9.1 sums up the main steps of the substitution. As mentioned in introduction, the
first step is to select the slices that can be substituted by a call to the library without
destroying the program semantics. This step is not so trivial, and requires the accurate
formalization and algorithms described in the next section. We then select the slices
whose substitution can lead to an improvement of program performances. Finally, we
perform the substitutions by generating the code with the relevant calls. The following
sections describe each of these steps.

Right Slices

Select the separable slices

Select the optimal substitution set

Perform the substitutions Optimized library

Optimized program|

F1G. 9.1 — Main steps of the substitution

9.2 Select the Separable Slices

Most often, the slices are interleaved with the rest of the program. Before performing
substitution, we have first to separate them from the program. In this section, we present
an algorithm to check whether a given slice is separable from the program. We first
introduce the notion of complementary slice, then we present our separability test.

9.2.1 Complementary Slice

Consider a recognized algorithm A = {(Ay,I}) ... (A, I,)}, with first operation (A, ;)
and last operation (A,,i,). Its complementary slice is the set of program operations
executed between the first and the last operations of A:

A={(8,3) | (A1, 1) < (S,3) < (An,in) A Bi st S = A;}

Consider the example given in figure 9.2, where the recognized algorithm is constituted
of operations:

A ={(A1,{9,10}), (A2, {}), (43,{1,2,3,4})}

9.2. Select the Separable Slices 149

}ﬁ s =0
doi=1, 10
P, a(i) = a(i-1) + 1
if i >= 9 then
A | dot = dot + 2xa(i)
endif
enddo
As dot = dot + bxc
P; s=s8+1

doi=1, 4
Py s = s + b(i)
Az dot = dot + a(i)*b(i)

enddo

F1G. 9.2 — Running example

Its complementary slice is thus:

;1:: {(IB,{10}>?<Iﬂa{1’2?3’4}>}

A can be computed from A using the algorithm described in figure 9.3. The first operation
of A is computed by searching the lexicographic minimum of I;. The last operation of
A is computed in the same way (step 1). Following the definition of A, we compute for
each statement P; the set of the corresponding operations between the first and the last
operations of A. The resulting set is an union of Z-polytopes whose emptiness can be
checked by using an appropriate solver [42] (step 2.(b)).

Algorithm Complementary

Input: The recognized algorithm A = {{A;, L) ... (Aq,)}
The program P = {(P1,Th) ... (Pp,T,)}
Output: A, the complementary of A in P
1. Let (Ay,41) be the first operation of A, and (A,,7,) be its last operation.
2. For each statement (P;,7;) € P, P; ¢ {41 ... A, }:
(a) Form the iteration domain: I = {i]i € Z; A (A1,71) < (Pi, 1) < (An,in)}
(b) If I #0, emit (P;, I).

Fi1G. 9.3 — Complementary

9.2.2 Separability Test

Once A is computed, it remains to check whether it is separable from A in order to replace
A by a call to an optimized library. A is said to be separable if all flow dependences start
exclusively from A to A, or exclusively from A to A.

If the flow dependences start exclusively from A to A, A is said top-separable from A,
and can be substituted by a call to A, before A.

150 9. Substitution

Here is an example of top-separable slice (left) and its substitution by a call (right):

doi=1,n call daxpy(a,x,y)
| if i >= 2 then doi=1,n
A | s() = yGE-1D +1 | if i >= 2 then
endif A || s@ =s@E) +1
A y(i) = y(i) + axx(i) endif
A | s(i) = 2xy(d) A | s(1) = 2¢y(d)

enddo enddo

In the case where flow dependences starts exclusively from_z to A, A is said down-
separable from A, and can be substituted by a call to A, after A. We provide thereafter
an example of down-separable slice (left) and its substitution by a call (right):

doi=1,n doi=1,n
| if x(i) >= 0 then | if x(i) >= 0 then
A || x(@) =s@) +1 A || x(d) =s@) + 1
endif endif
A | y@) = y(@@) + axx(i) A | x(i+1) = 2*x(i)
A | x(i+1) = 2%x(d) enddo
enddo call daxpy(a,x,y)

Otherwise, we consider that A and A are not separable, and we do not perform the
substitution. Here is an example of unseparable slice:

doi=1,n
A_| y(i) = y(i) + a*x(i)
A x(i+1) = 2%y (i)
enddo

On the motivating example, the slice is down-separable because of the flow dependence
from (P, 10) to (A, 10).

Whenever it is possible, we compute the flow dependences by using exact dataflow
analysis. Otherwise, we use an approximate reaching definition analysis. In this case, the
imprecise flow dependences can lead to reject a separable algorithm. In addition, we have
to check whether the side effects of the recognized algorithm are limited to its (official)
output. If an intermediate variable is readen out of the slice, we consider the algorithm
as inseparable. This can also be checked by using the flow dependences. In the same
manner, we compute the exact data-flow whenever it is possible. Otherwise, we use the
approximation provided by the reaching definitions analysis.

Remark that our separability test is a conservative approximation since it does not
enable inseparable slices. This property is stated in the following proposition, where our
separability test is denoted by Is Separable.

Proposition 9.1 (Correction). Consider a program P and a slice S C P. Then:
Is Separable(S) = S is separable from P

Proof. Suppose Is_Separable(S), and denote by {Si...S,} the smallest partition of S
whose elements are contiguous operations of S, and follow the execution order. More
formally:

9.8. Select the Optimal Substitution Set 151

e For each operations w; and wy € S; with w; < w < wy, we have w € S;.
e Given i < j, for each operations w € S; and W' € S, we have w < w'.

In the same manner, consider the same partition for the complementary slice S: {5 ...S,}.
By construction the S; alternates with the .S; in the execution order. Indeed, if S; and
S; alternates, one can fusion them to make a smaller partition, which contradicts the
hypothesis. Consequently, the whole sequence of operations can be written:

Sl; S_l; ceey Sn—l; Sn—l; Sn

When the slice is down separable, no dependence exists from S; to a S;;. Obviously no
dependences exists from S, to S;, since the operations of S;,j are executed after those
of S;. Consequenty, the portions S; and S, are independents and we can move the whole
slice after its complementary by applying legal commutations. In a symetric manner we
can show the correction of the top separability. O

9.3 Select the Optimal Substitution Set

Once the separable slices are selected, it remains to provide the slices whose substitution
leads to a performance improvement. We present here a preliminary approach to resolve
the overlappings between slices, choosing a substitution set leading to a reasonnable per-
formance improvement. We use a simple technique based on a system of marks, and we
do not involve an accurate performance prediction technique, which is not in the scope of
this thesis.

9.3.1 Defining the Performance Gain

We associate to each library function a real number called gain, which quantify the impact
of substitution on the program performances. This section does not aim to present an
automatic method to compute the performance gains. We assume they are provided by
the library developper, according to the observed speed-ups.

Although gains allow to make a choice between two conflicting slices, it is not clear that
the replacement will really improve program performances. A better approach, discussed
in conclusion but not investigated in this thesis would be to compare the performances of
the source program and the replaced program, for each possible replacement. Such a com-
parison would be achieved by using benchmarking, or analytical performance prediction
techniques, as described in related work [21, 51, 41].

9.3.2 Selecting the Optimal Substitution Set

Once the gain of each slice is known, it remains to select the substitution set with the
maximum gain. Since two slices can overlap, we cannot select all the slices. In this section,
we present the method proposed by Metzger [76] to get an optimal substitution set, given
a gain function over slices.

152 9. Substitution

Given a set of separable slices S = {S;...S,}, a valid substitution setis a part RC S
whose slices do not share operations (overlap). We define the gain of R as the sum of
its slices gain: g(R) = > . 9(s). With these definitions, an optimal substitution set is a
valid substitution set with the maximum gain: maxg is vaia g(R)-

Following Metzger [76], an optimal substitution set can be found by solving the fol-
lowing integer program with 0-1 variables:

max 519(81) +...+ Sng(sn)
s.c. s;+s; <1 for each overlapping slices S; and S;

Where s; is a 0-1 variable taking the value 1 when the slice S; is selected, and 0 otherwise.
The integer program just maximizes the gain of the substitution set under the constraint
that the slices must not overlap.

9.4 Instantiate the Template

Before applying the substitution, an important step is to set the template variables ac-
cording to the unifier provided by the instantiation test. The inputs and the output have
also to be set according to program variables. Consider indeed the example given in figure
9.4.(a) where a BLAS daxpy y < ax + y has been recognized. Before applying the daxpy,
one must setting up its inputs according to program variables (see (b), part I). In a
symetric manner, one must also put the results within program variables (part O).

doi=1,n doi=1,n
do j = 1,p I | y_input(1l:p) = y(i,1:p)
| y(i,j) = 2*x(1) + y(i,3) call daxpy(2 ... x ... y_input)
enddo O| y(i,1:p) = y_input(1l:p)

enddo enddo

(a) (b)
F1G. 9.4 — Input and output code

We provide thereafter a method to generate the code for free-variables, followed by
precise description of the input and output code generation.

9.4.1 Template Variables

Since the template variables are expressed are SAREs, a first task is to compute the
corresponding imperative program, and to put it in a function. Each SARE array S
represents a statement, whose iteration domain can be computed by union of the domains
D involved in its defining clauses:

U »

ieD: S[il=t

And whose scheduling function (S, D is exactly the SARE schedule. Union of Z-polyhedra
can be achieve by using the Polylib [69], and affine schedules can be computed with the

9.4. Instantiate the Template 153

algorithm described in [30]. It remains to give the schedule and the iteration domain of
each statement to an efficient code generator [14], to obtain the relevant definition of the
template variable.

9.4.2 Input and Output Mapping

Another important task is to generate the code to express the template inputs and output
with program variables. The instantiation test provides a mapping betwen a template
input I, and program expressions as follows:

ieDy: I(G) =t

Where the Dy, are Z-polyhedra and the tk(b are terms built from program basic operators
(+, %, etc), and program SARE’s arrays S[u(i)]. A first task is to substitute the S[u(i)]
by program variables in order to obtain a program-related definition of 7. Recall that the
SAREs are produced by the algorithm described in chapter 6, which associates exactly
one array S [_] to a program statement with iteration vector i:

S: s=..

and ensures that S[u(7)] contains the value computed by the operation (S,u(3)) i.e. the
value of s at the iteration (7). In order to recover this value, a simple solution is to insert
a statement keeping the values taken by s on the different iterations:

S: s=..
s_expanded[i] = s

It remains to substitute S[u(7)] by s_expanded|u(7)] in t() to obtain a program-related
definition of the template input I. Finally, for each definition i € Dy, : [T (D = tk@,
it remains to generates the code scanning the polyhedron Dj by using an efficient code
generator [14], and putting I(7) = t(7) as the executed statement.

Since we detect slices with one output statement, output mapping generation is
straighforward. Recall that the instantiation test constructs a mapping from template
output subscripts to slice output subscripts. On the above example, we have the map-
ping:

DS — DT

6:) (6,5) = J

y(i,j) — y_input(j)
It remains to generate the code to scan the iteration domain of the template Dy, putting
the assignment y(67'(7)) = y_input(i) in the loop nest. Such a code can be generated
by using an heuristic [14] minimizing the control. Experimental results will show that in
most cases, input and output mappings are straightforward, and can be achieved with a
fortran intrinsic a(... binf:bsup:step ...).

154 9. Substitution

9.5 Perform the Substitutions

Once the optimal substitution set is found, it remains to perform the substitution. In this
section, we present an algorithm able to remove a slice from the program, and replace it
by a call to the optimized library function.

Basically, the substitution deletes the operations of A, and puts the relevant call
before, or after A. It can be achieved by using the algorithm given in figure 9.5. If A
is top-separable, the call is inserted before the first operation of A (step 1). All relevant
operations of A are discarded by using a condition. If A; is not in a loop, it is removed
from the text (step 2). If A is down-separable, the call is inserted after the last operation
of A (step 3). Note that the call will also contains the input and output mappings whose
generation is detailed in the previous section.

Algorithm Substitute

Input: A={(A1,L)...(As,1,)}, the recognized algorithm
(F,ir) the first operation of A
(L,i1) the last operation of A

Output: P, the modified program

1. if A is top-separable, insert:
if 7 = iy then call Optimized_A
Before F.

2. Replace each statement A; by:
if 7 ¢ I; then A;

3. if A is down-separable, insert:
if 7 = iy, then call Optimized A
After L.

F1G. 9.5 — Substitute

The application of Substitute to the motivating example provides the program given
in figure 9.6. The generated code could be improved by deleting the conditional nestings
corresponding to an empty iteration domain. A more efficient code can be generated by
using a recent code generation technique [14].

9.6 Related Work

The key point of this chapter is the choice of the relevant substitution which should leads
to the best performance improvement. In this section, we present several approaches
which addresse the problem of performance prediction.

Padua et al. [21] propose an approach to compute a symbolic expression estimating
the the computation time Tpy spent by the processor itself, and the time Th;gas spent
while accessing the memory hierarchy. Their approach aims to handle general programs
with complex control flow such as loops with early exits and while loops. The sub-model

9.6. Related Work 155

P1 s =0
doi=1, 10
P, a(i) = a(i-1) + 1
if i >= 9 then
if ¢ ¢ {9,10} then
A | dot = dot + 2*a(i)
endif
endif
enddo
As; removed
Ps s=s+1

doi=1, 4
Py s = s + b(i)
if i ¢ {1...4} then
As | dot = dot + a(i)*b(i)
endif
call if i = 4 then call ...
enddo

F1G. 9.6 — The substituted program

for Topy estimates the time spent by the processor doing computation by counting the
number of operations executing in the CPU’s functional units. Given an instruction, they
compute a symbolic expression providing an upper bound of its number of instances. The
global expression is obtained by grouping together the different instuctions expressions,
weighted by the corresponding execution cycles on the target architecture. Th;pn esti-
mates the time spent while acessing the memory, by taking into account cache misses. An
upper bound on cache misses is estimated by using the stack distances model. Their stack
is basically an historic of memory accesses built from a program trace, which allows to
evaluate the number of distinct references between two accesses to the same memory cell.
They use this information to compute a symbolic expression providing an upper bound of
the number of cache misses. Their approach has been validated on SpecFP kernels with
target processors MIPS R10000 and UltraSparc ITi. Their experiments reveal an error of
20% in average, which is enough for our purpose.

Ghosh et al. [51] propose an analytical approach to evaluate the number of cache
misses in static control programs, without simulation. For each reference, they built a
system of linear diophantine equations, called cache miss equations whose solutions are
exactly its miss instances. They claim that mathematical techniques can be used to
compute the number of solutions, providing the exact number of cache misses.

Fahringer [41]| proposes a profile-based approach to estimate the performances of paral-
lel programs running on distributed memory parallel architectures. His tool, P3T, is based
on the underlying compilation and programming model of the Vienna Fortran Compiler
System, which is a High-performance Fortran style compiler using the Single-Program-
Multiple-Data (SPMD) programming model. The computation time estimation is based
on pre-measuring the performances of a large set of kernels from primitive operations e.g.
basic arithmetic operations to entire code patterns e.g. matrix multiply. The kernels
performances are pre-measured on different target architectures, on a significative set of
input instances. The computation time of the program is then estimated by detecting

156 9. Substitution

occurences of these kernels, and multiplying their pre-measured runtime by the state-
ment execution count, obtained by profiling. The results are finally accumulated together
to obtain the overall computation time. The quality of the prediction depends on the
completeness of the kernel library. Moreover the technique assumes that the kernel per-
formance remains the same when incorporating within a program, which is not sure. For
instance, the cache state just before the execution of the kernel may affects strongly its
performances. This last point is the major drawback of the gain system described in this
chapter.

9.7 Discussion

In this chapter, we have presented a method to select a subset of slices whose substitution
is possible, and should improve the performances of the source program. We have also
proposed an algorithm to generate the code with the substitutions.

The selection method depends on a total order between library functions, allowing
to make a selection whenever two slices overlaps. However, our approach does not take
account, of the effective performance improvement of the program. We assume that a
substitution will always improve performance, and that the performance improvement just
depends on the algorithmics used in the library function, independenly of the program.
Such an hypothesis is too strong. Indeed, a library function behaviour may strongly
depends on the cache state before the call.

In a future work, we would like to investigate more accurate performance prediction
models, such as Fahringer’s [40], Ghosh’s [51] or Padua’s approches [21]. Such predic-

tion models associates to a function f a vector of parameters II(f) which quantifies its
performances. For instance, it would contain a symbolic expression giving the execution
time and the number of cache misses. Given a slice S implementing a library function

f, a more accurate gain would be 1'[(483/1'@, where / denotes the division dimension
by dimension. Following the algorithm described in section 9.3.2, this would leads to
solve a 0-1 program with parameters. Such a program could be solved by using the PIP
tool [42], which would provides a selection tree expressing the better set of substitution
with respect to the parameters values. The generated code would follows the selection
tree, providing the corresponding substituted program for each leaf. The main drawback
of analytical-based performance prediction methods is that they works with an idealized
model of the target machine, which can leads to predictions that significantly differ from
the run times.

Another interesting approach would be to profile all possible substitutions over a
representative subset of input instances, and to choose the best [83]. Such an approach has
the advantages and the drawbacks of profile-based performance predictions approaches.
It will exactly take account of target architecture, however we are not sure that the
selected input instances are really representative. This last approach is addressed in the
experimental results, presented in the next chapter.

Chapter 10

Experimental Results

This chapter completes the theoretical study described in the previous chapters by provid-
ing experimental results on real-life examples. Our method is applied to the detection of
the BLAS functions (Basic Linear Algebra Subroutines) within the kernels of the SpecFP
2000 and the Perfect Club benchmarks. Experimental results report a substantial ac-
celeration factor for the kernels swim, mgrid and mdg, that confirms the efficiency and
the scalability of our method. Important details of our implementation, TeMa (Template
Matcher), are also presented and discussed.

Section 10.1 presents our tool, TeMa, whereas Section 10.2 provides and discusses the
experimental results obtained on the SpecFP and the Perfect Club benchmarks. We
finally conclude in Section 10.3.

10.1 Implementation Issues

The optimization framework presented in this thesis has been implemented in a tool called
(Template Matcher). TeMa is constituted of several seperate command line batch tools,
which works together. TeMa has been implemented in Objective Caml, and represents
more than 17000 lines of code. The different tools involved in TeMa and their relationships
are depicted in figure 10.1.

The normalization module allows to rewrite a program to have one operator by state-
ment. We have implemented our own Fortan 90 front-end. Most Fortran 90 programs are
correctly handled, but some syntactic constructions are not yet accepted, and need to be
modified by hand. Our front-end has handled with success seven kernels of the SpecFP
2000 [54] and Perfect Club benchmarks [39]. The experimental results show that the nor-
malization increases significantly the program size (see table 10.1). The normalization of
programs and patterns is always very fast, and will be used in the following treatments.
Before applying the slicing method, one may need to compute the approximate data-flow
information. This step is performed by the SSA-graph generator module, which computes
the SSA form of the program and yield the result in the form of particular kind of graph
called SSA-graph. Such a structure is useful to generate the tree automata during the
Slicing step. The slicing provides a set of output assignement numbers to the instantiation
test Matching.

157

158 10. Ezperimental Results

[Progﬂ [Patternﬂ

T
|

v

‘ Normalization ‘

< N
N
4 N

‘ SARE generation ‘

‘ SSA graph generation

Pattern instances

F1G. 10.1 — Overview of TeMa

In a symetric manner, the instantiation test needs an exact data-flow information
to work. This data-flow information is stored in a SARE (System of Affine Recurrence
Equations), which is generated from the normalized program by the SARFE generator. The
Matching module implements the instantiation test with second-order matching described
in chapter 7. It involves several GPL libraries including Omega [62] and Polylib [69],
interfaced by SPPoC [19].

10.1.1 Slicing
Approximated reaching definitions

The approximate data-flow analysis build a graph representation of the program called
SSA-graph. As stated in figure 10.2, the program is first put in SSA-form, then the SSA-
graph is generated, assigning a node to each assignment, and labelling the node by the
assignment operator. Remark that constants 0 and 1 are particular cases of operators,
with 0 arguments. Each node has one input port for each argument (black points). The
transitions are finally fired according to the data-flow information provided by the ¢-
functions. Our data-flow analyzer implements the algorithm described in [1] page 683.

s =0 sl = P
doi=1,n do i 1,n

|s=s+1 |s2 ¢(s1,s2) + 1

enddo enddo @

(a) Original program (b) SSA-form (c) SSA-graph

nm 1 o

F1G. 10.2 — Construction of the SSA-graph

10.1. Implementation Issues 159

Construction of the cartesian product

The slicing module itself inputs the SSA-graphs of the pattern and the program and ex-
ecutes the algorithm described in chapter 5. An OCaml library has been implemented
to handle tree-automata, and particuliarly to compute the cartesian product of two tree-
automata. The cartesian product is first built by applying directly the construction rules
given in definition 5.2, page 73. The rules of the two tree-automata are hashed with
respect to their head symbol in order to improve the construction. Unfortunately, the ob-
tained automaton contains unreachable states. They are eliminated by applying a flooding
algorithm starting from the leaves. The algorithm works on a graph representation of the
cartesian product which ensures its linearity in the number of states.

10.1.2 Template Matching

Construction of the unification automaton

In order to construct and manipulate simply the word automata, a generic OCaml library
has been implemented. Particularly, it uses a constructor:

val make_from_rules :
(’state -> (’transition * ’state) list) ->
(’state -> bool) ->
’state
-> (’state,’transition) automaton = <fun>

The first parameter is a function implementing the rule system defining the automaton,
as described in figure 7.5 page 117, or page 132. The second argument is a function
deciding whether a state is final, and the last one is the initial state of the automaton.
The library also includes a function of visualisation, using the dot tool [36].

Such a library allows to implement simply the contruction of the MSA for the two
instantiation tests. It then remains to provide an implementation of the rule system by
using OCaml filtering.

Analysis issues

Presburger relations are handled using the Omega library [62]| via the OCaml interface
provided by the SPPoC library [19]. A naive and inefficient implementation would be to
compute for each state its regular expression, and to give it to Omega in order to decide
whether the state is reachable. In order to avoid to compute the same regular expression
several times, we maintain a base containing the computed Presburger relations with their
regular expression (reaching set cache). If the regular expression is not in the base, it is
computed by traversing the tree in post-fix order. In the same manner, transitive closures
are handled with another base (closures cache).

These two bases are implemented with an AVL indexed by the strings of the regular
expressions, and allow to divide by two the execution time of the instantiation test. In-
deed, experimental results given in section 10.2.3 show a good reuse of regular expressions:
about 10 % for the reaching sets, and 96 % for the transitive closures.

160 10. Ezperimental Results

10.2 Experimental Results

We have apply our method to detect all the functions of BLAS level 1 and 2 [67] within the
kernels of the SpecFP 2000 [54] and the PerfectClub [39] benchmarks. The performance
library chosen is the Intel MKL (Math Kernel Library), which provides highly optimized
implementations of BLAS functions, among routines for solving problems of computa-
tional linear algebra, and some others computation intensive problems. The recognition
was performed on a Pentium 4, 1.6 Ghz with 256 MB RAM, and the speed-ups have been
measured on the target machine of MKL, an Itanium 2, 897 Mhz bi-processor machine
with 2 GB RAM.

50
45
40
35
30
25 vl

s /. |epsca
20 ” v DDOT

15
10 /
e
5 A
|
0 T T T T T)

10 50 100 150 200 500 1000
Rank

@ DAXPY

Speed-up

F1G. 10.3 — Speed-ups of three frequently used MKL functions

Figure 10.3 provides the speed-ups of three usual BLAS level 1 functions. Basically,
daxpy computes the linear combination ¥ <— af + % given a scalar a and two vectors ¥
and ¥, dscal computes the dilatation & < aZ and ddot computes the dot product (Z|7).
These curves have been obtained by comparing the execution time of the MKL function

to a straight implementation, while varying the vector dimension (rank).

We have restricted our analysis to several functions representing an important part of
the execution time. Table 10.1 provides the functions analyzed in each program. Column
Normalized gives the number of lines after normalizing the functions with one operation
by assignment. The normalized forms of applu and mdg functions have important sizes
since they use assignements with large formula.

Our pattern base is constituted of direct implementations of BLAS functions from
the mathematical description. Several usual semantics variations were also added to
increase the number of detections. For instance, for the dot product we will look for
implementations starting with dot < 0 or dot <— z(0) xy(0), and with left or right folding:
dot < dot +z (i) xy(3) or dot < (i) xy(i) + dot ; which leads to look for four different dot
products. The following sections detail the experimental results obtained for each module
of TeMa.

10.2. Ezperimental Results 161

Kernel Functions analyzed Coverage Lines of code
Original | Normalized
171.swim 5: (Al 100 % 351 414
172.mgrid | 3: interp psinv resid 25 % 120 243
173.applu 3: blts buts rhs 14 % 446 1415
14: advt wcont smth
smthf csmth horsmt
301.apsi horbc dctdx dctdxd 6 % 464 807
dpdx dftdx ccrank
dudz dvdz
qcd 2: project syslop 5% 115 355
mdg 3: interf poteng intraf 52 % 646 1496
tis 2: trfa olda 26 % 127 171

TABLE 10.1 — Program parts analyzed within SpecFP and Perfect Club benchmarks

10.2.1 Slicing

Our slicing method aims to provide all pattern occurences in the program. Since it relies
on an approximative, but conservative dataflow information, several non-equivalent slices
can be yielded. In order to reduce the recognition cost, we expect the slicing method to
be as accurate as possible. We provide thereafter an experimental study of the accuracy,
followed by an experimental verification of the theoretical complexity.

Accuracy

Figure 10.4 provides the amount of candidate slices detected for each kernel, and high-
tlights the non-equivalent slices (black), and the equivalent ones (grey and white). The
slicing method also yield trivial instances of patterns. For instance, y = ax + y could be
yielded as an instance of daxpy over one-dimension vectors. Consequently, we distinguish
trivial slices (grey), to non-trivial slices, whose substitution could lead to a performance
improvement (white). In addition, figure 10.5 provides the corresponding rates between
non-equivalent, irrelevant and interesting slices for each kernel.

It appears that 35.9% of candidates do not match, 56.4% are correct instances, but
over vectors with a too small rank to obtain speed-ups, and 7.7% of candidates are correct
and can be replaced by a call to BLAS. Experimental results has pointed out two causes
of bad detections.

Lack of types Approximate reaching definitions lead to handle any variable as a scalar
variable, and consequently to create wrong dependences between statements. This
will leads for example to confuse a daxpy y(i) = y(i) + a*x(i) with a dot product
dot = dot + a(i)#*b(i).

Lack of ¢-functions semantics Because of the approximation made by the scalar reach-
ing definitions used within the slicing method, the control structures are not han-
dled correctly. Consider indeed the following program (left) and its scalar SSA-form
(right).

162

10. Ezperimental Results

300

275

250

225

200

175

[Jinteresting

150

Detections

[Trivial
W Not confirmed by instantiation

125

100

75

50
25

a(0

s
do i

if i mod 2 = 0 then

)

i,n

Qcb

F1G. 10.4 — BLAS functions detected

sl = a(0)
do i i,n
if i mod 2 = 0 then

| s=s+1 | s2 = ¢1(s1,s3) + 1
endif endif
s = s + a(i) s3 = ¢2(s1,s82,s83) + a(i)
enddo enddo
r=-=s r = ¢3(s1,s3)

¢-function ¢, allows to control the execution of the loop and the conditional. Due to
the approximation, we can choose either s1, s2 or s3. As a consequence, our slicing
does not take into account the number of iterations of do loops and the branches
executed in the conditionals.

In addition, 56.4% of slices found are constituted of correct instances of patterns, but
whose substitution does not lead to a performance improvement, since they work on too
small input instances. They are often simple arithmetic expressions, such as y = ax +y
for a xaxpy. Finally, 7.7% of the slices is constituted by interesting candidates whose
substitution can potentially increase the program performance. Our algorithm seems
to have discovered all of them, and particularly hidden candidates. Indeed, most slices
found are interleaved with the source code, and deeply destructured. Most variations
found are data-structure variations e.g. daxpy on a particular dimension of an array,
and organization variations e.g. garbage code and temporaries. Moreover, semantics
variations introduced in the pattern base allow to detect more than 50 % of the candidates.

10.2. Ezperimental Results 163

Kernel % Not confirmed | % Trivial | % Interesting

171.swim 35.6 53.1 10.4 i

172.mgrid 56.7 23.3 20.0 I

173.applu 37.7 49.1 13.2 i

301.apsi 31.2 49.2 19.6]

qcd 17.4 74.6 8.0 I

mdg 39.9 58.3 1.8 i

tis 21.4 75.0 3.6 |

SpecFP 2000 35.3 48.5 16.1 2229288¢838°¢%
Perfect Club 35.9 61.4 2.7 295 :2°% £3§°
Total 35.9 56.4 7.7 SRR i

F1G. 10.5 — Repartition of detections

Slicing time

Table 10.2 provides the execution time of the slicing method on a Pentium 4, 1.8 GHz
with 256 MB RAM. Column Analyzed lines of code gives the size of the analyzed func-
tions for each kernel, column SSA indicates the time spent in the SSA-graph generation
(approximate data-flow analysis) needed by the slicing method Slicing. The execution
time of the SSA-graph generation and the slicing method remains reasonnable, except
for applu and mdg, since their SSA-graph have a more important average input degree
dp ~ 5.

Kernel Analyzed lines of code SSA Slicing Total
171.swim 414 19 s 31s 50 s
172.mgrid 243 3s 5s 8s
173.applu 558 1 mn 50 1mnb 2 mn 55
301.apsi 807 51 s 1 mn 16 2mn 7
qcd 355 40 s 36 s 1 mn 16
mdg 1264 8 mn 59 5 mn 53 14 mn 52
tis 171 0.5s 2s 2.5s
Total 3812 12 mn 42 | 8 mn 14 | 22 mn 10

TABLE 10.2 — Execution time of the slicing method

According to the complexity study given in chapter 5 section 5.7, the execution time
of the slicing method can be written a x dr2dp?TP where « is a constant, d; and dp
denote the average input degree of the SSA-graph of the template and the program, and
T and P denote the number of assignements within the template and the program. Table
10.3 provides the average ratio o = Effective_ Time / dr?dp*TP. The ratio is constant,
which confirms the theoretical result, and lead to write the execution time of the slicing
method in the following manner:

Tslicing(Ta P) ~13.52 x 107 x dp?dp*T P seconds

Obviously, o depends on the machine used, and needs to be recomputed for another
target machine. Combined with an evaluation Tyatching (7, P) of the execution time of
the instantiation test, such a formula can be useful to predict the execution time of the
whole recognition process.

164 10. Ezperimental Results

Kernel Average a (x107°)
171.swim 13.97
172.mgrid 14.57
173.applu 15.65
301.apsi 13.21
qcd 10.92
mdg 11.36
tis 14.94
Average 13.52

TABLE 10.3 — Experimental verification of the slicing complexity

10.2.2 Template Matching with Tree-Automata

For complexity reasons, this accurate (but expensive) test was not used in our experi-
ments on the SpecFP 2000 and the Perfect Club benchmarks. Instead, we better use
our matching method based on Huet and Lang’s procedure, whose preformance is de-
tailed in the next section. Nevertheless, reader interested by the performance of our
tree-automata-based algorithm can have a look at experimental results given in chapter
8, page 143.

10.2.3 Template Matching with Semi-Unification

We provide thereafter some experimental results allowing to characterize the statistical
behaviour of the instantiation test. As for the slicing method, we present an experimental
verification of the complexity, then we provide some statistical results about the reaching
set and closure caches used in our implementation.

Matching time

Table 10.4 provides the times spent in the exact data-flow computation of the program
(SARE), and the instantiation test itself (Matching). As for the slicing method, the time
spent in data-flow analysis remains reasonnable except for applu. Indeed, within the
functions analyzed, most of assignments read and write the same array rsd, which leads
to compute an important number of direct dependences. The important time spend in
the matching step for mdg is due to the important amount of candidates provided by the
slicing method. Most of them are trivial instances of BLAS level 1 functions. Additionally,
about 5 minutes are spent in the computation of transitive closures while matching the
dot product xdot and the matrix-vector product xtrmv.

Following the slicing method, we present now an experimental verification of the theo-
retical complexity. In chapter 7, section 7.6, we have shown that the theoretical complexity
can be written 7" X P, where T" denotes the number of assignements in the pattern, and
P denotes the number of assignements in the program.

Table 10.5 gives the average ratio o = Effective_Time / (T' x P). The ratio is nearly
constant, which confirms the theoretical result, and lead to write the execution time of
the instantiation test as Tmatching (1, P) = 0.12 x T' x P seconds.

10.2. Ezperimental Results 165

Kernel Analyzed lines of code | SARE Matching
171.swim 414 2 mn 15 mn
172.mgrid 243 13 s 35 s
173.applu 558 14 mn 6 mn
301.apsi 807 2 mn 5 mn
qcd 355 33 s 8 mn
mdg 1264 4 mn 45 mn
tis 171 41 s 40 s
Total 3812 24 mn | 1 h 22 mn

TABLE 10.4 — Execution time of the instantiation test

Kernel Average o
171.swim 0.23
172.mgrid 0.07
173.applu 0.10

301.apsi 0.15
qcd 0.08
mdg 0.12
tis 0.10

Average 0.12

TABLE 10.5 — Experimental verification of the matching complexity

This relation complete 7gjicing (T, P) obtained previously, and could be used to predict
the execution time of the whole recognition process. A possible application would be to
provide an estimation of the optimization time to the compiler, which could cancel the
optimization process whenever the estimated time is too important.

Cache statistics

During the computation of reaching sets, the instantiation test stores the reaching sets,
and the transitives closures computed with their corresponding regular expression in two
different caches, in order to avoid to compute two times the same Presburger relation.
We provide thereafter some statistics on the cache usage, showing a good reuse rate.
Table 10.6 provides the amount of misses and hits in the reaching set cache (cache RS),
and the closure cache (Cache Closures). The hits in the reaching set cache often come

from the states resulting of a Decompose rule. Indeed, the resulting states ¢; Z t; have
often the same reaching set than the source state f(f) = f (7?7) since Decompose produces
e-transitions. Remark that it is not true in a general manner, since a resulting state can
have several incomming transitions. The reaching set cache allows to take profit of the
reuse rate of 10.2%, leading to a substantial performance improvement. All the transitive
closures comes from the matching of xdot and xtrmv. Most of the matches have MSA
with one cycle, leading to compute the transitive closure one time (miss), and to reuse it
to compute the reaching sets of the following states (hits). This explains the important
reuse rate of transitive closures (96.5 %). These two caches improve the performances of
the instantiation test by 50 %, leading to a reasonnable execution time in practice.

166 10. Ezperimental Results

Kernel Cache RS Cache Closures
Hits | Misses | Total | Hits | Misses | Total
171.swim 415 2420 2835 0 0 0
172.mgrid 71 394 465 0 0 0
173.applu 239 2781 3020 42 2 44
301.apsi 382 2229 2611 124 6 130
qcd 45 1109 1154 39 2 41
mdg 1036 | 10971 | 12007 | 650 21 671
tis 118 375 493 0 0 0
Total 2306 | 20279 | 22585 | 855 31 886
Reuse rate 10.2 % 96.5 %

TABLE 10.6 — Cache statistics

10.2.4 Substitution

Once the BLAS functions discovered, it remains to perform the substitutions. This section
points out the limitations of the substitution algorithm and presents the speed-ups result-
ing from substitution. We first recall some basic definitions on speed-up and performance
gain.

Definition 10.1 (Speed-up, gain). Consider a program P with an optimized version
P,y executing on an input I during T resp. Ty, time units. The speed-up is defined by:

Speed-up =
p P Topt
While the gain is defined by:
To t
Gain i

The gains have the good property to be cumulated by a simple addition. Consider
indeed two local optimizations leading separately to gains G; and G5. The whole gain is
then simply G = G + Gb.

Since the substitution pass is not yet implemented, the substitution were applied by
hand to a subset of slices representing a significant part of the execution time. According
to the algorithm presented in chapter 9, section 9.4, we often need to set the function
inputs before applying the substitution. Consider indeed the following program, where a
scal has been recognized:

doi=1,n
x(1i,2) = a * x(i,2)

enddo
Since xscal function cannot be applied directly to x, we need to add a memcopy to set the
inputs:

x_dscal(1l:n) = x(1:n,2)
call dscal(n,a,x_dscal,l)
x(1:n,2) = x_dscal(1l:n)

10.2. Ezperimental Results 167

Unfortunately, such a memcopy reduces the performance improvement of dscal, and may
lead to a slow-down. Figure 10.6 shows the slow-downs caused by the input construction
on three frequently used BLAS 1 functions. The speedups are obtained by comparing the
performances of a direct implementation to the corresponding MKL function with one,
then two memcopys to its the inputs. When one input at most needs to be constructed,
we can already obtain speedups. Otherwise, the substitution leads to a slow-down of the
program.

1,8 1,2 2
a a
1,6 = u R = = 1,75 a—°
o o o 1
14 0.9 15
1,2 0,8
a a o 1,25 B
? 4 2 . 2 07 3
— —~— — D
8 % - o E 0.6 E 1 - . - .
& 08 & os a g
(2] (%) v 0,75
0,6 0,4
04 0,3 0,5
. 0,2
02 o 1 input o 1input 0,25 s
& 2inputs 0,1 ¢ 2inputs
0 T T T T T] 0 T T T T T | 0 T T T T T]
10 50 100 150 200 500 1000 10 50 100 150 200 500 1000 10 50 100 150 200 500 1000
Rank Rank Rank
(a). xaxpy (b). xscal (c). xdot

F1G. 10.6 — Slow-down resulting from input construction

Most of the inputs to construct are constituted of a dimension of a bigger array, fixing
the others dimensions ; for instance x_input (k) = a(i,j,k). Assuming a is an array of
dimension n X p X ¢, a solution to improve the performances would be to put directly a
in the call, adding a stride equal to the product of the first dimensions: n x p.

Kernel daxpy scal dot gauss Gain (%) | Speed-up
Tried | Subst. | Tried | Subst. | Tried | Subst. | Tried | Subst.
171.swim 6 6 4 0 0 0 0 0 66.8 3.0
172.mgrid 7 7 6 0 0 0 0 0 3.6 1.04
173.applu | 32 0 4 0 1 0 2 0 0 1
301.apsi 8 2 28 0 0 0 0 0 0.7 1.0
qecd 8 0 1 0 2 0 0 0 0 1
mdg 0 0 10 3 2 0 0 0 16.5 1.19
tis 11 0 0 0 0 0 0 0 0 1
Average 12.5 1.14

TABLE 10.7 — Speed-ups resulting from the substitution

Table 10.7 provides the speed-ups obtained after performing the substitution to the
different kernels. For each kernel, we detail the gain resulting from the substitution
of each function detected, and we provide the global speed-up. The experiments were
carried out on an Itanium 2 897 Mhz with 2 GB RAM, bi-processor. Fortran programs
were compiled using the g95 compiler. The selection of the functions to substitute were
achieved incrementally, starting from the first substitution, and checking at each step
whether a substitution increases the performance on a reference input.

168 10. Ezperimental Results

Kernel Analyzed lines of code SSA Slicing SARE | Matching Total
171.swim 414 19 s 3ls 2 mn 15 mn 17 mn 50 s
172.mgrid 243 3s 58 13 s 35s 56 s
173.applu 558 lmnb50 | 1mnbs | 14 mn 6 mn 22 mn 55 s
301.apsi 807 51s 1mnl16s | 2mn 5 mn O9mn 7s
qcd 355 40 s 36 s 33 s 8 mn 9 mn 49 s
mdg 1264 8mn 59 | 5mn 53s | 4mn 45 mn 1h 3 mn
tis 171 0.5s 2s 41 s 40 s 1mn 24 s
Total 1h 44 mn

TABLE 10.8 — Execution time of the recognition process

Despite the small number of functions found, the substitution leads to a global average
gain of 12.5%, corresponding to a speed-up of 1.14. The important speedup of swim is due
to six daxpy dealing with large arrays (with a size of 1334), and representing an important
part of the execution time. The substitutions in mgrid deals with small arrays leading
to small speedups. Several substitutions in apsi could not be achieved because of data
dependences with the complementary slice. As well as swim, the speedups obtained in
mdg are due to the important size of the arrays handled, and the important part taken
in the execution time. No good substitution was found in applu, qcd and tis. Indeed,
most of them needs two memcopy, and the remaining occurences work on too small input
instances to obtain speed-ups.

100%
90% —
80%
70% —
60% —
50%
40% —
30% —
20%
10% —

0%

9,16%

7,40%

M ssa

[Slicing
A sARE
[1Matching

Z 18,98%

64,47%

171.5wWwiM IR
172.MGRID : N
173.APPLU :
301.APSI ‘
QCD :
MDG
TIS [RXR
SpecFP 2000 ‘}\
Perfect Club
Total ‘

F1G. 10.7 — Repartition of the execution time

10.3 Conclusion

Table 10.8 provides the execution time of the whole recognition process, detailed module
by module. We provide the execution time of the approximate data-flow analysis (S55A)
followed by the slicing method Slicing, and the exact data-flow analysis SARE needed by
the instantiation test Matching. In addition, figure 10.7 depicts the repartitition of the
execution time for each kernel analyzed.

10.3. Conclusion 169

Except for applu, the execution times remains reasonnable. Since none of the works
presented in chapter 3 present experimental results with precise execution time, we cannot
compare their performances to ours. Concerning the repartition of the execution time,
more than 60 % of the execution time is taken by the exact method whereas the slicing
method takes only 7.4 %. This confirms that the slicing is fast method compared to the
instantiation test. The same remark applies on the approximate and the exact data-flow
analysis.

The experimentals results have shown that the optimization framework allows to ob-
tain speed-ups for 3 kernels out of the 7 kernels analyzed. The two causes of slow-downs
highlighted are (1) slices with a too small input size, and (2) slices needing several mem-
copy to build the inputs. Whereas it is generally impossible to predict the input size,
we can check easily the number of input to copy. In addition, we have shown that the
memcopys can be avoided in most cases by adding strides to the BLAS call, leading to
good speed-ups.

170 10. Ezperimental Results

Chapter 11

Conclusion

Assigning meanings to programs is a key-point to achieve high-level optimizations. This
thesis presents a new and efficient approach to increase abstraction level of programs, by
recognizing and abstracting known library functions. We can cope with a wide spectrum of
algorithmic variations, from variable renaming to complex control transformations (e.g.
splitting, skewing or tiling). A complete algorithmic framework is presented, formally
proven, and validated on the real life programs of the SpecFP 2000 [54]| and the Perfect
Club [39] benchmarks. This chapter summarizes the contributions of this thesis, and
details the perpectives opened in program analysis. Particularly, several improvements
and applications in program analysis are presented.

11.1 Contributions

A Complete Framework for Template Recognition and Replacement

In this thesis, we have proposed a new approach for program optimization, based on
automatic rewriting of a program to use an optimized library. We provide a complete
algorithmic framework covering all aspects of the problem from the recognition of the
library functions within the program, to the substitution. Previous works attempts to
solve this problem for general libraries [86, 71, 64, 17, 76], but most of them describe
only the recognition process, keeping the substitution process for future work. To our
knowledge, this thesis presents the first approach to handle generic libraries, whose func-
tions are expressed by templates. Our method has been implemented, and validated by
recognizing BLAS functions within the kernels of the SpecFP 2000 and the Perfect Club
benchmarks. We obtain an average speedup of 1.14, with a peak at 3 for swim, a kernel
of the SpecFP 2000.

Two Strong Methods for Template Recognition

In addition, we provide the first approach to recognize template instances in an imperative
program. Our recognition method relies on a slicing method, which detects the program
parts which possibly matches the template. We demonstate that our slicing method does
not miss any proper instance (conservativity, see proposition 5.2, page 81). Moreover, the

172 11. Conclusion

amount of wrong candidates slices remains low (under 50 %). We then check whether the
slices are effectively instances of the template by using an instantiation test. We provide
two instantiations tests based on different theoretical frameworks. The first one works in
the context of unification theory, and adapts Huet and Lang’s matching procedure [56].
The other one represents the template and the program with tree-automata, and achieves
the matching by using a cartesian product. We show that the two algorithms differs by
their complexity and their detection capabilities. The first instantiation test has a low
complexity, but it can only handle template variables X defined by a finite arithmetic
expression. Whereas the second instantiation test is able to detect template variables
involving a do loop despite a greater complexity. Another important contribution is the
demand-driven data-flow analysis performed by the second instantiation test. Such a
method allows to compute only the ¢-functions needed to achieve the matching. In ad-
dition to reduce the cost of the method, it breaks the static control restriction, allowing
to handle general programs, including for instance while loops, and non-affine condition-
als. The slicing method has been published in [5] and the instantiation test based on
second-order matching in [4]. In [3| we investigate the demand-driven computation of
¢-functions. The TeMa tool implementing our recognition framework has been published
in [2|. Finally, |6] addresses the application of our framework to recover program slices
which can be expressed in SPL, a domain-specific language involved in SPIRAL [107].

A New Substitution Method

Once the proper instances are found within the program, it remains to select the slices
whose replacement by a library call is possible, and interesting. We present an algorithm
based on a separability test to decide whether a substitution is possible. Since several
program slices can conflict (overlapping), we have to select a subset of slices whose sub-
stitution is possible, and will lead to the best performances improvement. Our selection
algorithm is inspired of Metzger’s approach [76], which provides a partial solution. The
selection of the best substitution set is still an open problem, which we would like to ad-
dress in a future work. We have also presented the algorithmic content needed to generate
the code with the substitution.

11.2 Perspectives

11.2.1 Improvements
Agregation

Our method is able to detect template’s occurrences with only one output statement.
Such a limitation leads to miss several interesting slices. Indeed, given an unrolled daxpy:

y(0) = a*x(0) + y(0)
y(1) = axx(1) + y(1)
y(2) = a*xx(2) + y(2)

our method would detects individually the statements as an instance of daxpy, but not
the whole daxpy since its outputs are shared by several statements.

11.2. Perspectives 173

One can remark that a daxpy is constituted of 1-dimension daxpy instances. A solution
investigated in a recent paper [6] is to detect “atomic” daxpys, then to agregate them to
make a larger daxpy. In a more general manner, consider an algorithm A which produces
an array, and a family of algorithms (A;);, where Az outputs the i-th array cell of A for
each possible input:

A(I) =x A

For each relevant input I and array index i. Then A is said to be an agregation of the A
Agregation induces a hierarchy between algorithms, and particularly between templates.
Typically, a daxpy is an agregation of several scalar daxpy, and a matrix-vector product
is an agregation of dot products. Figure 11.1 provides an agregation hierarchy between
some BLAS level 1 and 2 functions. A — B means “B is an agregation of A instances”.

dtrmv dgemv
BLAS 2 AT aAZ + By
daxpy ddot dscal
BLAS 1 oF + § Ty aF

@ @

F1G. 11.1 — A possible agregation hierarchy for some BLAS level 1 and 2 functions

A way to explore would be to detect the templates of the hierarchy by using our
recognition method. Then to agregate them in a bottom-up manner, from the leaves
functions to the top functions. If A is an agregation of (A;);, all combinations of A
instances would be agregated, to yield A instances.

Breaking the Static Control Constraint

We have proposed an instantiation test which computes on-demand the program ¢-
functions needed for the matching. This allows to handle general programs since un-
reached ¢-functions can be uncomputable. However, the templates instances must be
static control programs. An usefull extension would be to allow the free variables to
absorb program parts with uncomputable ¢-functions. For instance, we could handle
gaussian eliminations where the choice of the pivot is performed by a general function
j = pivot(a,i). Two ways could be explored:

e A first approach is to handle ¢-functions as functional symbols (+, x, etc). Given a
program clause S (i) = ¢(Sy(i), S5(7)) unrolled with a template variable X, we could
generate the transition X, S(7) Full compute #(X,51(3) , X,S5(i)) which puts ¢ in
the definition of X. This approach already works on simple examples where ¢ is
not nested in a cycle. The others cases needs to be studied.

174 11. Conclusion

e One can also view ¢-functions as SARE arrays with a general definition such as
d(x1 ... zp)[i] = x; Vi € D;, where i denotes the iteration vector of ¢. Although
the D; cannot be computed in a general manner, one can nevertheless built the
unification automaton using the construction rules given chapter 8. The difficulty
is then reported in the analysis pass, which have to deal with Presburger relations
depending on unknown domains.

Semantic Variations

Our recognition method is able to detect the program slices Herbrand-equivalent to an
instance of a given template. Unfortunately, we are not able to handle program variations
involving semantic properties of operators such as associativity or commutativity.

e An ambitious solution would be to extend the first instantiation test with the rules
Mutate and Splice of equational unification (see 33|, page 28). A direct application
would introduce one OR-branching by state involving an equation starting with a

functional symbol: f(£) Ztort=f (#). This would lead to handle an unrea-
sonnable amount of OR-branching combinations. To keep a reasonnable execution
time, a more accurate application of equational rules has to be investigated.

e Using the agregation hierarchy, another solution would be to generate for each basic
function a limited amount of semantic variations. This would allow to recognize
semantic variations of higher-level functions e.g. BLAS 2 on the example. This
empiric method, already applied with simple variations in our approach, seems
promising.

Transitive Closures

Our exact instantiation test rely on a symbolic execution of a counter automaton, which
leads to compute the set of all possible counters values on a statement. As always,
the problem comes from cycles which leads to compute transitive closures of Presburger
relations. We currently use a semi-decision procedure due to Pugh [63], and implemented
in the Omega calculator [62]. However, it is expensive and unfit for the intensive usage
performed by our instantiation test. Since most of the transitive closures are simple cases
e.g. [t = 1i—1,i > 0]*, we believe that a simple normalization technique should be
relevant. In addition, we would like to address this problem in a more general way by
studying Presburger automata [105].

Third-order Matching

We provide an instantiation test able to semi-decide whether a program is an instance
of a template, giving the corresponding free-variables values (unifiers). For instance,
our instantiation test is limited to second-order unifiers (simple functions). We believe
it would be interesting to find third-order unifiers (such as Caml functionals, functions
taking functions in parameter). In a recent paper, De Moor et Sittampalam [31] propose
a partial solution for functional programs, which seems interesting to investigate.

11.2. Perspectives 175

11.2.2 Applications
Model Checking

Model checking [96] aims to verify whether a program satisfy the temporal constraints
specified by a linear temporal logic formula (LTL). This problem can solved in a general
manner by associating to the program a Biichi automaton Ap recognizing a representative
sub-set of its execution traces, and an automaton .Ap which recognize all the traces
satisfying the formula. It remains then to check whether £L(Ap) — L(Ar) is empty. We
believe that templates can represent a sub-set of LTL formula, which could makes of our
approach an interesting alternative to Biichi automata.

Translation Validation and Program Verification

Due to increasing complexity of optimizations, it becomes more and more difficult to
certify a compiler. A solution is to check at compile time whether the optimizations
do not hurt the program semantics. Our instantiation test is already able to check the
equivalence before and after a source-to-source transformation on program parts with
static control, and we believe that it could be extended to simple cases of programs with
while loops and non-affine conditionals. The work of Denis Barthou on dataflow analysis
with non-affine constraints [12] provides insights in this direction.

Parallel Skeletons

A parallel skeleton [29] is a generic pattern of parallel computation which can be parametrized
by a small number of sequential functions. A simple example of parallel skeleton is PIPE,

a template taking a list of jobs f;...f, with a flow dependence from f; to f;;;, and
executing them as different stages of a pipeline. Within this skeleton, the parallelism
is achieved by allocating each job to a different processor. Using the OCaml style, its
signature can be written:

PIPE: (’data—’data) list — (’data—’data)

Another example is FARM, a skeleton which inputs a job and executes it in parallel
on a set of input data. The parallelism is achieved by using several processors to execute
the job. Assuming that the different instances of the job shared a context, its signature
can be written:

FARM: (’context—’input—’output)—+’context — (’input list—’output list)

In a future work, we would like to address the application of template recognition to
detect parallel skeletons. For the moment, we believe that our method could be applied to

detect simple skeleton with a fized number of jobs. For instance, the templates to detect
PIPE and FARM would be:

do i=1,n doi=1,n
| output (i) = X;(X(X;3(input(i)))) | output(i) = X(input(i))
enddo enddo

(a) PIPE with 3 stages (b) FARM

176 11. Conclusion

where the PIPE template is restricted to 3 stages. While writing the templates we have
to check carefully that the data-flow contraints are respected. For instance, in PIPE the
flow-dependence X3 — Xy — X; is given by the expression. Moreover, our matching
procedure will define the X; by pure functions, ensuring the absence of other dependence
between the X;. Unfortunately, this definition of the PIPE template is too restrictive since
it can just detects pipelines with three stages. In a future work, we would like the extend
our recognition framework to handle templates with an arbitrary number of free-variables.

Automatic Translation to a Domain-Specific Language

Domain-Specific Languages (DSL) allow to express programs in a more abstract and
compact way than traditional imperative languages. In addition, DSL compilers are able
to achieve more aggressive optimizations than traditional compilers. In a recent paper |[6],
we have investigated the re-engineering of Fortran programs to the SPL language [107], a
DSL used in signal processing applications. We propose a preliminary approach to recover
the program parts which can be expressed in SPL. We believe that our method can be
applied to other DSLs. In addition to increasing the readability of the program, it would
allow to take advantage of the optimizations performed by the DSL compiler.

Personal bibliography

Refereed International Conferences

e Christophe Alias and Denis Barthou. On Domain Specific Languages Reengineer-
ing. In Proceedings of the 4th ACM International Conference on Generative Pro-
gramming and Component Engineering (GPCE), Tallinn, Estonia, September 2005.
LNCS 3676, pp. 63-77, Springer-Verlag.

e Christophe Alias and Denis Barthou. Deciding Where to Call Performance Libraries.
In Proceedings of the 11th IEEE/ACM International Euro-Par Conference, Lisbon,
Portugal. LNCS 3648, pp. 336-345, Springer-Verlag.

e Christophe Alias and Denis Barthou. Algorithm Recognition based on Demand-
Driven Dataflow Analysis. In Proceedings of the 10th IEEE Working Conference on
Reverse Engineering (WCRE), Victoria, Canada, November 2003. IEEE Computer
Society.

Refereed International Workshops

e Christophe Alias. TeMa: an Efficient Tool to find High-Performance Library Pat-
terns in Source Code. In Proceedings of the First International Workshop on Pat-
terns in High-Performance Computing (PatHPC), Urbana-Champaign, USA, May
2005.

e Christophe Alias and Denis Barthou. On the Recognition of Algorithm Templates.
In Proceedings of the 2nd International Workshop on Compiler Optimization meets
Compiler Verification (COCV), Warsaw, Poland, April 2003. Published in Elec-
tronic Notes in Theoretical Computer Science (ENTCS) Vol. 82 No. 2.

Bibliography

[1]

2]

131

[4]

[5]

[6]

7]

18]

[9]

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1988.

C. Alias. TeMa: an efficient tool to find high-performance library patterns in source
code. In Proceedings of the First International Workshop on Patterns in High-
Performance Computing (PatHPC), University of Illinois at Urbana-Champaign,
USA, May 2005.

C. Alias and D. Barthou. Algorithm recognition based on demand-driven data-flow
analysis. In Proceedings of the 10th IEEE Working Conference on Reverse Engineer-
ing (WCRE), pages 296-305, Victoria, Canada, November 2003. IEEE Computer
Society.

C. Alias and D. Barthou. On the recognition of algorithm templates. In Proceed-
ings of the 2nd International Workshop on Compiler Optimization meets Compiler
Verification (COCYV), 6th European Conferences on Theory and Practice of Soft-
ware (ETAPS 2008), Warsaw, Poland, April 2003. Electronic Notes in Theoretical
Computer Science (ENTCS) Vol. 82 No. 2.

C. Alias and D. Barthou. Deciding where to call performance libraries. In Proceed-
ings of the 11th ACM International FEuro-Par Conference, pages 336-345, Lisbon,
Portugal, August 2005. LNCS 3648, Springer-Verlag.

C. Alias and D. Barthou. On domain specific languages reengineering. In Proceedings
of the Jth ACM International Conference on Generative Programming and Com-
ponent Engineering (GPCE’05), pages 63-77, Tallinn, Estonia, September 2005.
LNCS 3676, Springer-Verlag.

V.H. Allan, R. . Jones, R.M. Lee, and S.J. Allan. Software pipelining. ACM
Computing Surveys, 27(3):367-432, 1995.

B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting equalities of variables in
programs. In POPL’88.

P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato,
and L. Rauchwerger. STAPL: An adaptive, generic parallel C++ library. In Wkshp.
on Lang. and Comp. for Par. Comp. (LCPC), pages 193-208, August 2001.

179

180 BIBLIOGRAPHY

[10] W. E. Arnoldi. The principle of minimize iterations in the solutions of matrix
eigenvalues problems. In Quart. Appl. Math., volume 9, pages 17-29, 1951.

[11] M. Balaeinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Measuring
clone based reengineering opportunities. In METRICS’99, pages 292-303, 1999.

[12] D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy array dataflow analysis. J. of
Parallel and Distributed Computing, 40(2):210-226, February 1997.

[13] D. Barthou, P. Feautrier, and X. Redon. On the equivalence of two systems of
affine recurrence equations. In 8th International Furo-Par Conference, page 309.
Springer, LNCS 2400, 2002.

[14] C. Bastoul. Efficient code generation for automatic parallelization and optimization.
In ISPDC"2 IEEFE International Symposium on Parallel and Distributed Computing,
pages 23-30, Ljubjana, october 2003.

[15] M. Berkelaar. LP_SOLVE 5.1.1.8 Reference Manual. Eindhoven University of
Technology.

[16] A. J. Bernstein. Analysis of programs for parallel processing. IEEE Transactions
on Electronic Computers, 15(5):757-763, october 1966.

[17] S. Bhansali and J.R. Hagemeister. A pattern-matching approach for reusing software
libraries in parallel systems. In Proc. of the Workshop on Knowledge-based Systems
for the Reuse of Program Libraries.

[18] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proceedings
of the 6th International Conference on Computer-Aided Verification, volume 818 of
Lecture Notes in Computer Science, pages 55—67. Springer-Verlag, 1994.

[19] P. Boulet and X. Redon. SPPoC : manipulation automatique de polyédres pour la
compilation. 7SI, 8:1-31, 2001.

[20] P. Briggs. Register allocation via graph coloring. Technical Report TR92-183, 24,
1998.

[21] C. Cascaval, L. DeRose, D. A. Padua, and D. A. Reed. Compile-time based perfor-
mance prediction. In LCPC, 1999.

[22] C.-W. Chin, J. Bilmes, J. Demmel, and Krste Asanovic. The PHiPAC v1.0 matrix-
multiply distribution. Technical report, October 23 1998.

[23] A. Cimitile, A. De Lucia, and M. Munro. A specification driven slicing process
for identifying reusable functions. Journal of Software Maintenance: Research and
Practice, 8(3):145-178, 1996.

[24] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications, 1997. release October,
1rst 2002.

BIBLIOGRAPHY 181

[25] C. Consel, H. Hamdi, L. Réveillére, L. Singaravelu, H. Yu, and C. Pu. Spidle: A
DSL approach to specifying streaming applications. In GPCE, 2003.

|26] P. Cousot and R.Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL’77,
pages 238-252, 1977.

[27] D. W. Currie, A. J. Hu, and S. Rajan. Automatic formal verification of DSP
software. In Design Automation Conference, pages 130-135, 2000.

[28] K. Czarnecki. Generative Programming: Principles and Techniques of Software
Engineering Based on Automated Configuration and Fragment-Based Component
Models. PhD thesis, Technische Universitit Ilmenau, Germany, 1998.

[29] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, Q. Wu,
and R. L. While. Parallel programming using skeleton functions. In A. Bode,
M. Reeve, and G. Wolf, editors, PARLE ’93: Parallel Architectures and Languages
Europe, pages 146-160. Springer-Verlag, Berlin, DE, 1993.

[30] A. Darte, Y. Robert, and F. Vivien. Scheduling and automatic Parallelization.
Birkhauser, 2000.

[31] O. de Moor and G. Sittampalam. Higher-order matching for program transforma-
tion. Theoretical Computer Science, 269(1-2):135-162, 2001.

[32] S. Demri, F. Laroussinie, and Ph. Schnoebelen. A parametric analysis of the state
explosion problem in model checking. In volume 2285 of Lecture Notes in Com-
puter Science, editor, Proc. 19th Ann. Symp. Theoretical Aspects of Computer Sci-
ence (STACS’2002), pages 620631, March 2002.

[33] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), pages 243-320.
1990.

[34] G. Dowek. Third-order matching is decidable. Annals of Pure and Applied Logic,
69:135—155, 1994.

[35] G. Dowek. High-Order Unification and Matching. Handbook of Automated Rea-
sonning, Chapter 16. Elsevier Science, 2001.

[36] S. C. North K. P. Vo E. R. Gansner, E. Koutsofios. A technique for drawing directed
graphs. IEEE Trans. on Soft. Eng., 19(3), 1993.

[37] E. A. Emerson and C. L. Lei. Modalities for model-checking: Branching time
strikes back. In Proc. 12th ACM Symp. on Principles of Programming Languages,
New Orleans, 1985.

[38] M. A. Ertl. Optimal code selection in DAGs. In Principles of Programming Lan-
guages (POPL ’99), 1999.

182

BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

|44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

M. Berry et al. The Perfect Club benchmarks: Effective performance evaluation of
supercomputers. Int. J. of Supercomputer Applications, 3:5-40, March 1989.

T. Fahringer. Automatic Preformance Prediction for Parallel Programs on Massively
Parallel Computers. PhD thesis, University of Vienna, 1993.

T. Fahringer. Estimating and optimizing performance for parallel programs. /IEEE
Comp., 28(11):47-56, November 1995.

P. Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle,
22(3):243-268, 1988.

P. Feautrier. Dataflow analysis of scalar and array references. Int. J. of Parallel
Programming, 20(1):23-53, February 1991.

B. Fischer. Specification-based browsing of software component libraries. In Auto-
mated Software Engineering, pages 74-83, 1998.

M. J. Fischer and M. O.Rabin. Super-exponential complexity of presburger arith-
metic. In Proceedings of the SIAM-AMS Symposium in Applied Mathematics, vol-
ume 7, pages 27-41, 1974.

G. Fowler. Cql - a flat file database query language. In Proceedings of the USENIX
Winter 1994 Technical Conference, San Francisco, California, January 1994.

M. Frigo and S. Johnson. FFTW: An adaptive software architecture for the FFT.
In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing, volume 3,
pages 1381-1384. IEEE, 1998.

K. Gallagher. Using Program Slicing in Software Maintenance. PhD thesis, Uni-
versity of Maryland, 1989.

P. Gastin and D. Oddoux. Fast LTL to Biichi automata translation. In Lecture Notes
in Computer Science 2102, editor, Proceedings of CAV’01, pages 53-65, 2001.

R. Gerth, D. Peled, M. Vardi, , and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Proc. PSTV 1995 Conference, Warsaw, 1995.

S. Ghosh, M. Martonosi, and S. Malik. Cahe miss equations: An analytical repre-
sentation opf cache misses. In ICS, 1997.

W.D. Goldfarb. Note on the undecidability of the second-order unification problem.
Theretical Comp. Sci., 13:225-230, 1981.

M. Gupta. Automatic Data Partitionning on Distributed Memory Multicomputers.
PhD thesis, University of Illinois at Urbana-Champaign, 1992.

J. Henning. SPEC CPU 2000: Measuring cpu performance in the new millennium.
Computer, 33(7):28-35, 2000.

BIBLIOGRAPHY 183

[65] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576-583, October 1969.

[66] G. Huet and B. Lang. Proving and applying program transformations expressed
with second-order patterns. Acta Informatica, 11:31-55, 1978.

[57] ILOG. CPLEX 8.1 Reference Manual, 2002.

[568] J.-J. Jeng and B. H. C. Cheng. Using formal methods to construct a software compo-
nent library. In I. Sommerville and M. Paul, editors, Proceedings of the Fourth Fu-
ropean Software Engineering Confe rence, pages 397-417. Springer-Verlag, 1993.

[59] J.-J. Jeng and B.H.C. Cheng. Using formal methods to construct a software com-
ponent library. In Proc. of 4th Eur. Soft. Eng. Conf.

[60] W. L. Johnson and E. Soloway. PROUST: Knowledge-based program understand-
ing. IEEE Trans. on Software Engineering, 11(3):267-275, March 1985.

[61] S. Karmesin, J. Crotinger, J. Cummings, S. Haney, W. Humphrey, J. Reynders,
S. Smith, and T. Williams. Array design and expression evaluation in POOMA TI.
In ISCOPE, volume LNCS 1505, 1998.

[62] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Won-
nacott. The Omega Library Interface Guide. Technical report, Dept.
of Computer Science, Univ. of Maryland, College Park, 1996. URL:
http://www.cs.umd.edu/projects/omega/.

[63] W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Transitive closure of infinite
graphs and its applications. Int. J. of Parallel Programming, 24(6):579-598, 1996.

[64] C. W. Kessler. Pattern-driven automatic parallelization. Scientific Programming,
5(3):251-274, 1996.

[65] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code.
In SAS’2001.

. Lanubile an . Visagglo. EbExtracting reusable tunctions by flow graph-base
66| F. Lanubile and G. Vi io. E i ble functions by fl h-based
program slicing. IEEE Trans. on S.E., 23(4):246-259, 1997.

[67] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Alge-
bra Subprograms for Fortran usage. ACM Transactions on Mathematical Software,
5(3):308-323, September 1979.

[68] S. Letovski. Cognitive process in program comprehension. In E.Soloway and S. Iyen-
gar, editors, Empirical Studies of Programmers, Norwood, 1986.

|69] V. Loechner and D. Wilde. Parametrized polyhedra and their vertices. Int. J. of
Parallel Programming, 25(6), December 1977.

184 BIBLIOGRAPHY

[70] J. Lyle and M. Weiser. Automatic bug location by program slicing. In Proceedings
of the second International Conference on Computers and Applications, pages 877—
883, 1987.

[71] B. Di Martino and G. Iannello. PAP recognizer: A tool for automatic recognition of
parallelizable patterns. In IWPC’04, pages 164-174. IEEE Computer Society Press,
1996.

[72] V. Maslov. Lazy array data-flow dependence analysis. In POPL’94, pages 311-325,
Portland, OR, 1994.

[73] Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Mas-
sachusetts, 1993.

[74] D. Maydan, S. Amarasinghe, and M. Lam. Array dataflow analysis and its use in
array privatization. In POPL’93, pages 2-15, Charleston, SC, January 1993.

[75] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop trans-
formations. ACM Transactions on Programming Languages and Systems, 18(4):424—
453, July 1996.

[76] R. Metzger and Z. Wen. Automatic Algorithm Recognition: A New Approach to
Program Optimization. MIT Press, 2000.

[77] M. Minoux. Mathematical Programming, Theory and Algorithms. Wiley, 1986.

[78] T. Mowry, M. Lam, and A. Gupta. Design and evaluation of a compiler for prefetch-
ing. In ASPL, pages 62-73, 1992.

[79] S.S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann,
1997.

[80] G. Necula. Translation validation. In PLDI’2000, pages 83-95, 2000.

[81] G. C. Necula. Translation validation for an optimizing compiler. ACM SIGPLAN
Notices, 35(5):83-94, 2000.

[82] V. Padovani. Decidability of fourth-order matching. Mathematical structures in
computer science, 10(3).

[83] D. Padua. Personnal communication, May 2005.

[84] S. Paul and A. Prakash. A framework for source code search using program patterns.
IEEE Trans. on S.E., 20(6):463-475, June 1994.

[85] J. Penix, P. Baraona, and P. Alexander. Classification and retrieval of reusable
components using semantic features. In Proceedings of the 10th Knowledge-Based
Software Engineering Co nference, pages 131-138, 1995.

[86] S.S. Pinter and R. S. Pinter. Program optimization and parallelization using idioms.
ACM Trans. on Programming Languages and Systems, 1994.

BIBLIOGRAPHY 185

[87] W. Pugh and D. Wonnacott. An exact method for analysis of value-based array
data dependences. In LCP(C"93, pages 546-566, Porland, OR, August 1993.

[88] M. Piischel, B. Singer, J. Xiong, J. Moura, J. Johnson, D. Padua, M. Veloso, and
R. Johnson. SPIRAL: A generator for platform-adapted libraries of signal processing
algorithms. J. of High Perf. Computing and Applications, 1(18):21-45, 2004.

[89] X. Redon and P. Feautrier. Detection of scans in the polytope model. Parallel
Algorithms and Applications, 15:229-263, 2000.

[90] T. Reps, S. Horwitz, and D. Binkley. Interprocedural slicing using dependence
graphs. In ACM Trans. of Programming Languages, volume 12, pages 26-61, 1990.

[91] O. Ruthing, J. Knoop, and B. Steffen. Detecting equalities of variables: Combining
efficiency with precision. In Proceedings of the 6th International Static Analysis
Symposium (SAS’99), pages 232 — 247. Springer-Verlag, Heidelberg, LNCS 1694,
1999.

[92] L. Réveillére, F. Mérillon, C. Consel, R. Marlet, , and G. Muller. A DSL approach
to improve productivity and safety in device drivers development. In 15th IEEE In-
ternational Conference on Automated Software Engineering (ASE 2000), Grenoble,
France, September 2000.

[93] J. G. Siek and A. Lumsdaine. The matrix template library: A generic programming
approach to high performance numerical linear algebra. In ISCOPE, pages 59-70,
1998.

[94] E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. IEEE
Trans. on Software Engineering, 10:595—609, 1984.

[95] A. Stepanov and M. Lee. The standard template library. ANST X3J16-94-0095/ISO
WG21-NO482.

[96] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. First IEEE Symp. on Logic in Computer Science, pages 322—
331, 1986.

[97] T.L. Veldhuizen. Arrays in blitz++. In ISCOPE, volume LNCS 1505, 1998.

[98] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352-357, July 1984.

[99] R. C. Whaley and J. Dongarra. Automatically tuned linear algebra software. In
SuperComputing 1998: High Performance Networking and Computing, 1998.

[100] W. Wiedenbeck and V. Fix. Characteristics of the representation olf novice and
experts programmers: An empirical study. Int. J. Man-Machine Studies, 1993.

[101] N. Wilde and M.C. Scully. Software reconnaissance: Mapping program features to
code. Journal of Software Maintenance: Research and Practice, 7(1):49-62, 1995.

186 BIBLIOGRAPHY

[102] L. M. Wills. Automated Program Recognition by Graph Parsing. PhD thesis, MIT,
July 1992.

[103] G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.
[104] M. Wolfe. Optimizing Supercompilers for Supercomputers. 1989.

[105] P. Wolper and B. Boigelot. On the construction of automata from linear arithmetic
constraints. In TACAS, 2000.

[106] P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasonning about infinite computation
paths. In Proc. 24th IEEE Symp.on Foundations of Computer Science, pages 185
194, Tucson, 1983.

[107] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A language and compiler
for DSP algorithms. In Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation (PLDI), pages 298-308, 2001.

[108] W. Yang, S. Horwitz, and T. Reps. Detecting program components with equivalent
behaviors. Technical report, University of Wisconsin, Madison, 1989.

[109] T. Yokoyama, Z. Hu, and M. Takeichi. Deterministic second-order patterns in
program transformation. In LOPSRT’20035.

[110] H. Zima and B. Chapman. Supercompilers for parallel and vector computers. 1991.

[111] L. Zuck, A. Pnueli, Y. Fang, , and B. Goldberg. Voc: A methodology for the
translation validation for optimizing compilers. Journal of Universal Computer
Science, 9(3):223-247, 2003.

Symbols
Ap o 80
Ap(L) oo 76
Ao 80
Ar(D) oo 76
SL(TT) o 46
FV() e 108
GPI) o 45
L(A) 71
A V) e 107
Pl oo 50
Pl 49
RDAG(V) v 70
RDL(v). oo 44
SL(, 7y 47
Ta(I) oo 50
A 51
S i, 49
(S,0) e 42
DS 88
ey A 44
T(B) oo 106
O(T) e 106
A
abstract interpretation............... 47
adaptative library.................... 36
aggregation ... 172
Arden lemmaol 99
ATLAS .. 36
B
B-reduction oL 108
Biichi automaton.................... 102
benchmarking............. 60
C
capitalization
reaching set 145

187

transitive closure................ 145
cartesian product..................... 73
computation graph................... 59
control variations..................... 38
COP..o 102

D
data dependences 43

anti- ... 43

flow- ... 43

output-.........ii 43
data-structure variations............. 38
Decompose see Huet and Lang procedure
dependence graph.................... 45
direct dependence.................... 89
domain specific language 35

E
equational theory 110
equational unification............... 111
execution order....................... 44
F
Feautrier’s algorithm 88
FETW ..o 36
fixpointl 49
flow graph ol o6
free function 42
free variable......................... 108
full slice................. .. L. 46
G
generative programming.............. 36
generic programming................. 36
graph parsing 26
H
head normal form................... 109
Herbrand equivalence 51

188 INDEX
hierarchical library 61 program model......... 41
high-order matching................. 111 program tree automaton.............. 77
high-order unification 110 program understanding............... 95
Hoare logic.................c. ... 58 program variations
Huet and Lang procedure 112 control variations................. 38
data-structure variations 38
I organization variations........... 38
Imitate ... see Huet and Lang procedure semantics variations.............. 38
index function............. 41 program verification................. 101
%nstance REEEERETEERETTRERRE 42 Project see Huet and Lang procedure
%ntege'r programming 89 pruning
iteration vector....................... 41 physical o oo 144
K reaching set..................... 144
Kripke structure 102 Q
L QUAST ... 90
A-term 107 R
l.eXicographic order................... 88 reaching definition
library approximated. 70, 158
adaptative........................ 36 exact 44, 88
performance............... 35 on-demand ... 129
. template ... A 36 reaching set, 99
linear temporal logic................ 102 reasonning techniques................ 58
M
memory—stat'e AULOMALOT -+ oo 99 SARE....... S 91
model checking...................... 102 SCoP. see static control programs
MSA 99 semantic equivalence 49
semantics
OMEGA ... O 94 AxXioMAtic ..o 47
operationoiiii.l. 42 denotational...................... 47
OR-branching....................... 136 Herbra.nd """"""""""""" 50
organization variations............... 38 operational 47
usual 49
P semantics variations.................. 38
parallel skeleton..................... 175 sequencing predicate 44, 88
parametric integer programming. 89 skeleton see parallel skeleton
pattern language 60, 85 slice. ... 47
performance prediction.......... 60, 154 complementary.................. 148
Presburger relation................... 93 separable.......... 148
satisfiability 93 SPIRAL ... 35
transitive closure................. 94 STAPLo 36
program equivalence statement Ll 41
Herbrand 51 static control programs............... 41
usual ... 49 symbolic execution................... 58

INDEX

189

system of affine recurrence equations . 91

T
template L 42
instance................... . 42
variableol 42
template matching 53
template recognition 53
template tree automaton............. 7
term computed....................... 50
theorem proving...................... 58
translation validation 101
tree automaton.............. 71
approximated 79
cartesian product................. 73
of the program 7
of the template................... 7
quotient............., 73
recognized language 71
1772 0 S 106
CUITYING. ..o viie i 106
order. ...t 106

U
unification automaton............... 115
unification problem 110
unifier ... 110

\%
variations........ see program variations

vectorization............ see aggregation

Résumé

La plupart des optimisations appliquent des transformations locales bas-niveau, sans se soucier du
calcul exprimé par le programme. Bien que ces optimisations produisent des résultats satisfaisants, elles
ne sont pas encore suffisantes, et aménent bien souvent le programmeur & utiliser des bibliothéques
optimisées. Pour le moment, les bibliothéques optimisées doivent étre appelées & la main. Apprendre et
utiliser une nouvelle bibliothéque est malheureusement trés fastidieux, et il est surprenant de voir le peu
d’aide apporté par le compilateur. Une solution naturelle serait de chercher les occurrences immédiates
des fonctions d’une bibliothéque dans le programme, et de les remplacer par I’appel correspondant.

Dans cette thése, nous proposons une approche totalement automatique pour reconnaitre dans un
programme les occurrences des fonctions d’une bibliothéque optimisée, et les substituer par ’appel de
fonction lorsque c’est possible et intéressant. Notre méthode est capable de détecter toutes les tranches de
programme équivalentes aux fonctions recherchées au sens de ’équivalence de Herbrand ; un sous-ensemble
de I’équivalence sémantique qui ne tient pas compte de la sémantique des opérations atomiques. En plus
des fonctions, nous sommes également capables de trouver des instances de templates dans un programme.
Une telle caractéristique rend possible la reconnaissance de bibliothéques de templates, et la réécriture
d’un programme pour utiliser des templates. Une fois les instances trouvées dans le programmes, il
reste & sélectionner les candidats dont le remplacement par un appel de fonction est possible et améliore
effectivement les performances du programme. Nous proposons également un algorithme pour sélectionner
les substitutions valides, et pour générer le code avec la substitution. La sélection du bon ensemble
de substitution se fait par un systéme de notes. Deux autres solutions expérimentales basées sur du
benchmarking sont proposées, I'une décrivant exhaustivement ’espace des substitutions, et ’autre testant
les substitutions en suivant une approche gloutonne.

Notre approche a été implémentée dans l'outil TeMa (Template Matcher). TeMa représente plus de
17000 lignes de code C++ et OCaml, et a été appliqué & la détection des fonctions de la bibliothéque
BLAS (Basic Linear Algebra Subroutines) dans les noyaux des benchmarks SpecFP 2000 et Perfect Club.
Les résultats expérimentaux montrent un facteur d’accélération substantiel sur les noyaux swim, mgrid
et mdg.

Abstract

Most of compiler optimization techniques apply local transformations on the code, replacing sub-optimal
fragments with better ones. They are often low-level, and applied without knowing what the code is
supposed to do. Unfortunately, these optimizations are not enough to produce an optimal code, and
leads the programmer to use performance libraries. For the moment, the library functions must be called
by hand. However, learning and using a new library remains fastidious, and it is surprising how little the
compiler helps the programmer in this task. A natural solution would be to search naive occurrences of
library functions through the program, and to replace them by the corresponding call.

In this thesis, we propose a fully automatic approach to recognize occurrences of library functions
in a program, and to substitute them, whenever it is possible and interesting, by a call to the library.
Our approach is able to recognize all the program slices computing the same mathematical formula than
the searched function. This allow to cope with organization, data-structure and control variations, and
more generally with any program transformation which does not take operators properties (associativity,
commutativity, etc.) into account. In addition to functions descriptions, we are also able to find template
instances in the source code. Such a characteristic enable the recognition of template libraries, and the
rewriting of a program to use templates. Once the proper instances are found within the program, it
remains to select the slices whose replacement by a library call is possible, and interesting. We propose a
complete algorithmic framework to select all valid substitutions, and to generate the corresponding code.
To select a good substitution set, we propose a preliminary solution based on a system of marks. Two
other experimental approaches based on benchmarking are also investiguated.

Our approach has been implemented in the TeMa tool (Template Matcher). TeMa represents more
than 17000 lines of code, and was applied to the detection of the BLAS functions (Basic Linear Algebra
Subroutines) within the kernels of the SpecFP 2000 and the Perfect Club benchmarks. Experimental
results report a substantial acceleration factor for the kernels swim, mgrid and mdg.

