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Résumé en français

Répondre aux problématiques et s’attaquer à l’inconnu a conduit à une croissance exponentielle
des besoins informatiques. Les humains ont repoussé les limites des connaissances chaque jour
grâce aux efforts des informaticiens. Ces derniers sont sans cesse sollicités pour développer et
améliorer les capacités de calcul des machines actuelles. Impactant divers domaines de recherche
comme la finesse de résolution météorologique ou la simulation du cerveau, ces efforts permettent
de traiter des données plus fines et plus importantes chaque jour.

Pour répondre à la demande croissante en puissance de calcul et en analyse de données,
les architectures actuelles mettent en œuvre simultanément de nombreuses techniques de paral-
lélisme. Les architectures deviennent de plus en plus complexes. Ces évolutions et améliorations
sont utilisées dans les machines HPC (de l’anglais, High Performance Computing).

Différents paradigmes ont émergé dans la littérature pour construire de telles infrastructures
de calcul à grande échelle. Les plus communes sont :

• Les clusters regroupant des nœuds de calculs, reliés entre eux par un réseau dédié [84];

• Les grilles informatiques, qui sont une collection de grappes géographiquement distantes
les unes des autres [47];

• Les Clouds, qui sont des ressources informatiques abstraites utilisées comme des services
à la demande. De telles infrastructures masquent des informations architecturales telles
que la topologie réseau ou l’emplacement des nœuds pour les utilisateurs finaux [17];

• Finalement, les supercalculateurs sont de larges architectures haute performance avec un
réseau haute vitesse dédié construit comme une seule machine, pour réduire la latence et
le temps de calcul.

La taille et la complexité de tels systèmes ralentissent la gestion efficace et rapide de telles
architectures. Toutes ces améliorations ne sont pas suffisantes pour répondre aux demandes
croissantes des applications, en quête de plus de puissance de calcul par opération. Les construc-
teurs de supercalculateurs sont principalement axés sur la performance, toujours à la recherche
de vitesse d’exécution plus élevée. Cette vision n’est plus viable avec une informatique haute
performance allant vers l’Exascale, supposé grand consommateur d’énergie.

La prochaine étape vers le calcul haute performance à grande échelle est l’Exascale, soit
atteindre 1018 opérations par secondes, un facteur 10 comparé à la meilleure machine publique
actuelle listée dans le Top500 [76].

L’Exascale permettra aux prochaines générations d’affronter et de répondre à des probléma-
tiques inaccessibles actuellement telles que de meilleures réactions aux changements climatiques,
une conception efficace des énergies renouvelables, une accélération de la guérison du cancer,
une meilleure compréhension de l’univers et de beaucoup d’autres mystères. Construire et faire
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fonctionner de manière permanente et efficace la première machine Exascale est un véritable
défi.

Plusieurs challenges doivent être abordés à différents niveaux tels que [12] :

• Accroître le passage à l’échelle des applications qui devront faire face et exploiter une
nouvelle ampleur de parallélisme;

• Faire face à une forte hétérogénéité des nœuds composés d’unités de calculs de différents
types (CPU, GPU, MICs, etc) impliquant une grande portabilité des applications;

• Produire des méthodologies de programmation pour faciliter l’utilisation et l’extension des
modèles de programmation actuels pour exploiter de telles machines et leurs hétérogénéités;

• Augmenter la mémoire et la capacité de stockage en parallèle des capacités de calculs;

• Une forte résilience aux erreurs, qui peut se produire à une plus grande échelle, inconnue
jusqu’à présent;

• Fonctionner autour de l’enveloppe de 20 à 30 MW. En augmentant seulement le pic de
puissance du premier et second supercalculateurs du Top500, il faudrait entre 150 MW et
340 MW pour construire une machine Exascale à partir de la même configuration, ce qui
est intenable. En effet, il représente respectivement 1/7 et 1/3 de la puissance maximale
pouvant produire une centrale nucléaire de 1000MW [42]. Ainsi, d’énormes efforts sur
l’efficience énergétique doivent être faits.

La première machine Exascale est encore à venir, mais l’architecture actuelle des 10 machines
les mieux classées du Top500 et l’architecture annoncée des premières machines Exascale [38]
supportent l’idée qu’une machine Exascale devrait avoir une architecture proche de la suivante :

• Des nœuds de calculs et de stockages de données séparées;

• Des milliers de cœurs dans un nœud de calculs avec une mémoire locale plus grande et
plus rapide que celle actuellement disponible dans les nœuds de calculs;

• Des centaines de milliers de nœuds composés de processeurs et d’accélérateurs hautement
parallèles tels que les MIC (Many Integrated Cores) et les GPU (Graphical Processing
Units), avec une énorme quantité de mémoire partagée à grande vitesse;

• Des milliers de nœuds de stockage de données atteignant des centaines de Pbytes cumulés;

• Un réseau très haut débit et dédié pour connecter étroitement tous les composants précé-
dents.

Ces changements s’accompagnent de coûts, venant des technologies de pointe utilisées dans
ces architectures mais aussi de leurs consommations d’énergie.

De tels systèmes à grande échelle mettent l’accent sur les problèmes présents mais qui ne
sont pas l’objectif principal des chercheurs. L’Exascale implique de nombreuses problématiques
comme la distribution de données, le développement et la réutilisation d’applications, la résilience
et la consommation d’énergie. Cette dernière problématique est liée à toutes les précédentes.
Par exemple, stocker et déplacer des données loin du nœud de calculs ou communiquer trop de
données serait désastreux du point de vue de la consommation énergétique. Un autre exemple



xiii

est l’exécution de services tels que la résilience ou l’ordonnancement, où le choix d’un algorithme
peut avoir un impact majeur sur l’énergie consommée. Cela fait de la problématique énergétique
un enjeu majeur, centrale et critique.

La consommation d’énergie est une préoccupation croissante et à la confluence de toutes ces
problématiques. En 2017, l’empreinte énergétique des systèmes informatiques dans le monde
est estimée à environ 7% de la demande mondiale en électricité. Elle est également responsable
de 2% des émissions mondiales de carbone [26]. Ces chiffres inquiétants ont des conséquences
financières et environnementales directes sur les gestionnaires d’infrastructure, comme les four-
nisseurs de Cloud et les opérateurs de supercalculateurs. Avec la multiplication des dispositifs
connectés par personne à travers le monde, la réduction de la consommation d’énergie des sys-
tèmes informatiques grande échelle est une étape obligatoire à franchir pour construire une
société numérique durable. Pour atteindre une machine Exascale durable, les informaticiens
doivent d’abord comprendre et être économes en énergie à tous les niveaux possibles sur les
supercalculateurs actuels, de l’infrastructure utilisée à l’application exécutée.

La somme des pics de consommation d’énergie des cinq premiers supercalculateurs au cours
du premier mois de cette thèse (Top500 datant de novembre 2015) était d’environ 50.512 MW,
alors que la dernière mise à jour de la somme de la liste (Top500 datant de Novembre 2017) est
d’environ 45, 01 MW. Une évolution et une prise de conscience de l’importance de la métrique du
pic de consommation par les constructeurs de supercalculateurs peut être remarquée. Bien que
cette métrique soit intéressante, elle ne suffit pas pour comprendre la consommation complète
de l’ensemble de l’installation.

La puissance utilisée (P ) à un temps donnée (t) par tout dispositif est composée de deux
parties :

• Pstatic est la partie fixe qui est due à une perte progressive d’énergie des condensateurs
chargés, habituellement appelés courant de fuite, présente dans tout dispositif composé de
transistors.

• Pdynamic est la partie variable, résultant de l’usage actif des composants :

P (t) = Pstatic + Pdynamic(t).

La puissance est la vitesse à laquelle le travail est effectué par le système étudié. Elle est
exprimée en Watts. Les métriques liées à la puissance, telles que la puissance maximale ou
la puissance moyenne, représentent le stress subit par les composants du système étudié. La
consommation d’énergie E d’un composant dépend de sa consommation d’énergie P au cours
du temps t. Pour un intervalle donné T1 à T2, avec T1 < T2, sa consommation énergétique est
donnée par la formule suivante:

E(T1, T2) =

∫ T2

T1

P (t)dt.

Ainsi, l’énergie, exprimée en Joules, est la quantité totale de travail effectué par un système
sur une période donnée. Les métriques liées à l’énergie représentent le travail nécessaire pour
accomplir une tâche ou un ensemble de tâches. Ces deux familles de métriques (liées à la
puissance et à l’énergie) permettent d’évaluer l’impact d’une architecture ou d’une application
du point de vue de la consommation. C’est la base de toutes les métriques liées à l’énergie.

Les installations informatiques, telles que les supercalculateurs et les centres de données
grande échelle, sont incontestablement de grands consommateurs d’énergie dont l’efficacité én-
ergétique doit être d’avantage améliorée. Plusieurs techniques ont été développées afin de réduire
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la consommation électrique de telles installations. Pour faire face à cette préoccupation crois-
sante, de nombreuses solutions ont été développées à plusieurs niveaux : infrastructure, matériel,
intergiciel et application. Les exemples de leviers matériels sont le “Dynamic Voltage et Fre-
quency Scaling” (DVFS) [101] ou encore l’allumage et l’extinction de composants [80]. Au niveau
des intergiciels, les politiques de planification de tâches peuvent également être étiquetées comme
des leviers [53]. Enfin, au niveau de l’application, la façon dont elle est implémentée a des effets
importants sur sa consommation de puissance et d’énergie [1].

Il est donc urgent de considérer l’efficacité énergétique comme un enjeu majeur de nos in-
stallations informatiques modernes, d’où l’utilisation obligatoire de ces leviers. Ces derniers sont
disponibles en grand nombre dans les centres de calculs grande échelle. En dépit de leurs gains
potentiels, les utilisateurs et les administrateurs ne considèrent pas tous les leviers disponibles
pour une meilleure efficacité énergétique. Néanmoins, l’utilisation de ces leviers, seuls mais
surtout combinés, pourrait être compliquée et contre-productive.

Cette thèse étudie la découverte, l’évaluation et l’usage efficace en énergie des leviers disponibles
dans les infrastructures de calculs grande échelle. La problématique de la modélisation et de
l’usage d’un levier énergétique unique dans de vraies conditions d’utilisation est abordée. Nous
répondons à la problématique de la combinaison de leviers, faisant partie de la même ou de dif-
férentes familles, et proposons des solutions génériques à l’usage dynamique de leviers combinés
devant faire face à des contraintes variables ou fixées. Enfin, le monitoring, la combinaison, et
l’analyse comparative générique de leviers combinés et l’extraction de connaissance sont étudiés.

Des précédents challenges, les objectifs suivants ont été fixés :

1. Fournir une méthodologie générique pour évaluer le gain potentiel d’un levier en tenant
compte des coûts éventuels;

2. Fournir une méthodologie pour modéliser et utiliser un levier seul, tout en prenant en
considération les multiples contraintes et coûts qui peuvent subvenir durant l’usage d’un
levier;

3. Fournir un modèle abstrait qui permet de détecter, combiner et d’évaluer automatiquement
les leviers existants;

4. Fournir une solution logiciel pour extraire une connaissance compréhensible depuis une
étude multi-leviers.

Sur la base des objectifs précédemment définis, nous présentons dans cette thèse les contri-
butions suivantes :

1. Nous proposons une définition de levier et d’acteur, ainsi qu’une première classification
des leviers habituellement disponibles dans un centre de calcul;

2. Nous décrivons notre méthodologie pour évaluer et modéliser un levier et l’appliquons à
l’allumage et l’extinction de machines sur des traces conséquentes de centres de calcul (de
quelques semaines à quelques années);

3. Nous proposons Green Factory, un intergiciel fortement extensible qui permet la dé-
couverte, la combinaison et l’évaluation automatique des leviers tout en recueillant les
métriques choisies pour construire une table de score, la table des leviers. Nous combinons
des leviers de différentes familles en recueillant des métriques relatives à la puissance et à
l’énergie consommée;
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4. De la table des leviers précédemment définie et obtenue, nous décrivons la connaissance
pouvant être extraite de cette table en utilisant des prédicats définis;

5. Nous proposons une première combinaison de leviers pour répondre à des contraintes
relatives à l’énergie consommée pour une application HPC utilisée en production.

Le manuscrit est organisé comme suit :

• Le Chapitre 2 présente notre classification en quatre familles des leviers énergétiques les
plus utilisés dans la littérature et comment ils affectent la consommation énergétique.

• Dans le Chapitre 3, nous proposons notre méthodologie pour détecter, étudier et évaluer
les usages possibles d’un levier énergétique. Nous appliquons ensuite partiellement cette
méthodologie sur les Thermo-Electric-Generators (TEG).

L’application de cette méthodologie sur les TEG est issue de [130]. Elle est aussi appliquée
dans [125, 129].

• Dans le Chapitre 4, nous appliquons entièrement la précédente méthodologie pour créer
des acteurs génériques pour le levier d’allumage et d’extinction, qui constitue une solution
intéressante à l’usage dynamique d’un centre de calculs grande échelle.

Ce Chapitre 4 est dérivé de [121, 124, 123, 128].

• Le Chapitre 5 propose une combinaison de leviers : le nombre de threads utilisés, le nombre
de processus utilisés ainsi que la version de codes utilisés pour une application spécifique.
Cette étude souligne la variabilité apportée par une combinaison de leviers et propose des
acteurs pour répondre à l’usage d’une telle combinaison de leviers.

• Le Chapitre 6 présente la construction de la table des leviers avec Green Factory, notre
intergiciel qui découvre, combine et évalue automatiquement les leviers combinés de même
que l’extraction de connaissances depuis la table des leviers.

Ce Chapitre 6 est issue de [126, 127].

• Enfin, le Chapitre 7 présente les conclusions et perspectives de ces travaux, avec un rappel
des contributions et résultats principaux.
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Answering problematics and tackling the unknown have led to the exponential growth of
computing needs. Humans have pushed boundaries of knowledge further every day, thanks to
efforts of computer scientists to grow and improve computing capabilities. These improvements
have impacted various research fields, from meteorology capabilities at very fine grain to brain
simulation at the neural level, allowing finer and bigger data to be treated. To face growing
computing needs, multiple techniques have been developed and implemented in the hardware to
improve computing capabilities and throughput of architectures, by treating several data at the
same time, or executing several tasks at the same time.

1.1 Short history of parallelism capabilities

Computer scientists tend to divide work among available resources where many calculations can
be done concurrently and large problems can be divided into smaller ones. These smaller tasks
can then be coordinated and solved at the same time.

In 1964, Cray’s CDC 6600 is the first machine to use Out-Of-Order [28] execution, where
processors choose instructions to execute from an analysis of the availability of input data and
execution units. By processing next instructions that are ready to run immediately and do not
depend on previous ones, the processor avoids idle periods.

In parallel, also in 1964, a concurrent to the CDC 6600, the IBM System/360 Model 91
proposes an architecture with Pipelining, where instructions are divided into sub-steps so the
instructions can be executed partly at the same time, thus keeping the processor busy all the
time [27].

1
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In 1964, the CDC 6600 is the first machine to use a Super-Scalar processor, where multiple
functional units receive work at the same time [24].

In 1966, ILLIAC IV is the first machine based on vectorial processor, following the first
Vectorial processor designed in 1963, named SOLOMON. Thus, it is the first machine to have
the status of “massively parallel machine” [99].

In 1993, Intel Paragon XP/S is the first machine to integrate multi-core computing CPU’s,
namely the i860/XP processor [41]. Multi-core consists in at least two independent processing
units, in the same processor. Thus, it adds the possibility of executing multiple programs or
multiple instructions from a same program, to increase the overall execution time.

From OutOfOrder to Multiprocessing, actual processors composing large scale computing
facilities, such as supercomputers, implement all the previously exposed parallelism techniques,
making it complicated to exploit every possible parallelism at the same time.

1.2 HPC facilities, a brief taxonomy

To answer the growing demand for computing power and data analysis, today’s architectures im-
plement all the previously exposed parallelism techniques, at the same time. Thus, they become
more and more complex. These evolutions and improvements are used as High Performance
Computing (HPC) facilities.

Different paradigms have emerged in the literature to build such large-scale computing fa-
cilities. The most common ones are:

• Clusters are collections of computing nodes, linked together with a dedicated network [84];

• Computing grids are a collection of clusters geographically distant from one another [47];

• Clouds are computing resources abstracted as on-demand services. Such infrastructures
hide architectural information like network topology or node location to end users [17];

• Supercomputers are very large, high-performance architectures with a dedicated high-
speed network built as a single machine, with a unique design to reduce latency and time
to compute.

The size and the complexity of such systems slow the efficient and fast management of
such architectures. All these improvements are still not enough to answer growing demands of
applications, always seeking for more computing power per operations. Supercomputer builders
are mainly focused on performance, always seeking for more and more performance, which is
not sustainable anymore, towards Exascale computing.

1.3 The Exascale challenges and predicted architecture

The next milestone to very large scale computing capabilities is Exascale computing, reaching
1018 operations per seconds, 10 times the actual best public supercomputers listed in Top500
list [76], named Sunway TaihuLight. This supercomputer reaches 93TFlops/s for a peak power
consumption of 15 MW (Mega Watt). Exascale will enable next generations to face and answer
problematics that are unattainable to ours such as better reactions to climate changes, efficient
design of cost efficient renewable energy, speeding up cancer curing, better understanding of the
universe, and a lot of other mysteries that humanity still has to reveal. Building and running
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permanently and efficiently the first Exascale machine is a real challenge. Several open challenges
have to be faced at different levels such as [12]:

• Achieving ultra large scale scalability, with applications that will have to face and exploit
a new magnitude of parallelism;

• Facing high heterogeneity, with nodes composed of computing units from various kinds
(CPU, GPU, MICs, etc) implying high portability of applications;

• Providing programming methodology to ease the usage and extent of current programming
models to exploit such machines and heterogeneity;

• Consistently increasing memory and storage, along with Exascale computing capabilities;

• Providing strong resiliency to errors, that may happen at a larger unseen scale, so far;

• Operating under the power envelope of 20 to 30 MW. From only scaling up the power
peak of Sunway TaihuLight and Tianhe-2, respectively the actual first and second super-
computers from the Top500’s list, it would require between 150MW to 340MW to build
an Exascale machine from the same setup, which is untenable. Indeed, it represents re-
spectively 1/7 and 1/3 of an average 1000 MW nuclear power plant at full throttle [42].
Thus, tremendous energy saving efforts have to be done.

The first Exascale machine is yet to come, but the actual architecture and setup of the top
10 public supercomputers from top500 and the announced architecture of machines towards
Exascale [38] support the idea that an exascale machine should have an architecture close to the
following one:

• Separated computing and data storage nodes;

• Thousands of computing cores in a computing node with larger and quicker than actual
local memory;

• Hundred thousands of nodes composed of highly parallel CPUs and accelerators like MICs
(Many Integrated Cores) and GPUs (Graphical Processing Units), with huge amount of
high-speed shared memory;

• Thousands of memory nodes reaching hundreds of Pbytes cumulated;

• Very high speed and dedicated network to tightly connect all the previous components at
multiple levels (intra and extra node).

This comes with a cost, either from state of the art technologies used in these architec-
tures but also from their energy consumptions. Such large-scale systems put an emphasis on
problematics that were present but not the main focus of researchers. Exascale implies a lot
of problematics like data distribution, application development and re-usability, resilience, and
energy consumption. This last problematic is linked to the previous ones. For instance, storing
and moving data far from the computing node or communicating too much data will be disas-
trous from an energy consumption perspective. Another example is the execution of services like
resiliency or scheduling, where choosing an energy consuming algorithm for this given service
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can have major impact on the overall consumed energy. That brings energy problematics as a
major, central and critical focus.

Energy consumption is a growing concern and on the verge of all these problematics. In
2017, the energy footprint of IT systems around the world is estimated around 7% of the global
electricity demand. It also is responsible of 2% of global carbon emission [26]. This worrying
consumption and carbon footprint have direct financial and environmental consequences on fa-
cility managers, such as Cloud providers and supercomputer operators. With the multiplication
of connected devices per person around the world, reducing the energy consumption of large-
scale computing systems is a mandatory step to address in order to build a sustainable digital
society. To reach a sustainable Exascale machine, computer scientists first have to be energy
efficient at every possible level on nowadays supercomputers, from infrastructure to application
level.

The sum of power peak consumption of top 5 supercomputers during the first month of this
thesis (Top500 November 2015) was around 50.512 MW, while the last update of the list’s sum
(Top500 November 2017) is around 45.01 MW. An evolution and a realization of the importance
of the power peak metric from supercomputer builders can be noticed. Although this metric is
relevant, it is not enough to estimate the complete consumption of the whole facility.

1.4 Energy efficiency in large-scale computing facilities

From large-scale facilities responding to high demand to connected end to end devices in our
pockets, IT systems and services are nowadays everywhere. These systems are composed of
various components to connect you to others (network related), to understand and answer quickly
your requests (computing related), to save and store all your data (storage related), all consuming
large amount of energy. Several metrics have been proposed and discussed for evaluating the
energy efficiency of computing facilities. In this section, we propose an overview and discussion
of existing metrics.

1.4.1 Power and Energy

The power used (P ) at a given time (t) by any system is composed of two main parts:

• Pstatic is the fixed part that is due to a gradual loss of energy from charged capacitors,
usually called leakage current, present in any transistor-composed device;

• Pdynamic is the variable part, resulting from the active usage of components, thus:

P (t) = Pstatic + Pdynamic(t).

The power is the rate at which the work is performed by the studied system. It is expressed
in Watts. Power-related metrics, like max power or average power, usually represent the stress
put on components of the studied system. The energy consumption E of a component depends
on its power usage P over time t. For a given time interval T1 to T2, with T1 < T2, its energy
consumption is given by:

E(T1, T2) =

∫ T2

T1

P (t)dt.
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Thus, the energy, which is expressed in Joules, is the total amount of work performed by a
system over a time period. Energy-related metrics represent the necessary work to complete a
task or set of tasks. These two metric families (energy and power related) are the de-facto metrics
to evaluate the impact of an architecture or application from its consumption perspective. It is
the basis of all energy-related metrics.

1.4.2 Evaluation of energy efficiency

Energy efficiency has been recognized as a major problematic of computer science. A lot of
metrics related to the energy efficiency of large-scale computing systems has emerged in the
literature.

PUE

Power usage effectiveness (PUE) is the most widely used metric for computing facilities for an
overall clue about energy efficiency of a facility. PUE is a ratio that represents how efficiently a
computing facility uses energy:

PUE =
TotalFacilityEnergy

ITEquipementEnergy
.

As suggested by its name, the TotalFacilityEnergy represents the sum of all the energy
consumed by all equipments in the facility. Thus, IT equipments, cooling components, and
other infrastructure-related elements are included in that factor. The ITEquipmentEnergy only
considers the energy consumed by computing-related components such as computing nodes,
networking devices, and storage units.

Although it is named “Power Usage Effectiveness”, it actually measures the energy usage of a
computing facility. PUE was introduced in 2006 and promoted by the Green Grid, a non-profit
organization of IT professionals. It has became the most commonly used metric for reporting
the energy efficiency of computing facilities.

The minimum possible score is 1.0 when TotalFacilityEnergy and ITEquipementEnergy
are equal, meaning that all the power provided is used only by IT equipment. So, the closer the
value is to 1.0, the more efficient the facility is. A PUE close to such a value indicates that a
greater portion of the power going to a facility is used for its computing and data treatment.
For instance, a PUE of 1.5 means that a facility needs half as much additional power as needed
for the IT equipment to operate, whereas a PUE of 2.0 means that a facility needs as much
additional power for non-IT elements as it does for IT hardware.

Despite being a standard, PUE has several limitations:

• A facility might lower its PUE when being under high load. A high IT load increases power
consumption of IT systems but cooling systems do not always scale accordingly, thus
raising the ITEquipementEnergy without scaling up the TotalFacilityEnergy factor
accordingly, resulting in a better PUE.

• The power dedicated to cooling systems will depend on location, duration and period of
the evaluation. Thus, a same facility computing the PUE at two different periods, cold
and hot weather, might output a completely different PUE.

Thus, a lot of other metrics have emerged through time to perfect the flaws of PUE and
compute energy efficiency differently.
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Compute Power Efficiency

CPE is a measure of the efficiency of a facility. Each Joule consumed in a computing facility is
not used to do useful work. Components consume energy even in idle state, while others use it
to perform computations, thus useful work.

CPE =
ITEquipementUtilization

PUE
.

ITEquipementUtilization represents the fraction of energy usefully used by components.
Although being a good improvement to the PUE metric, it is quite complicated to know at every
second and for every component if the energy is being used usefully. Thus, it is the responsibility
of the user of this metric to determine if a given device is using energy properly.

Performance per Watt

Performance per Watt is a measure of the energy efficiency for a particular component, archi-
tecture or facility. For every Watt consumed, it represents the amount of computation that can
be executed. A common measure is the FLOPS (Floating Point Operations Per Second) per
Watt, noted FLOPS/Watt. To fairly compare one architecture to the other, the same high
computing intensity benchmark should be implemented, such as LINPACK, used to rank all
supercomputers for the Top500.

Performance per Watt is the chosen metric for the Green500 list [46]. This list ranks the
same public supercomputers than the Top500 list, but instead of peak computing power delivered
(Flop/s), it focuses on an energy efficient perspective with performance per Watt (Flop/Watt)
as the main ranking metric.

Thermal Dissipated Power

Due to resistance in electronic circuits and the (very) high density of computing components
such as CPUs, the energy dissipated in form of heat is almost equal to all the energy consumed.
Thermal Dissipate Power is the maximum amount of heat generated by a component that a
cooling system has to dissipate. Thus, it also is a good hint on the maximal power consumption
of a component. An average CPU that populates facilities (Xeon E5-2690) has a TDP around
115 W, while the TDP of the Xeon Phi 7290, which populates a lot of supercomputers, is around
220 W.

Recently, manufacturers have been pointed out to evaluate TDP on non-intensive workloads,
thus not stressing the CPU at its rupture point as this metric is supposed to represent [61]. Thus,
Intel introduced a new metric called Scenario Design Power (SDP) that is supposed to represent
the mainstream usages of such devices.

Reusable and carbon dioxide related metrics

Finally, a few metrics are related to the impact that the facility has on the environment. The
Green efficiency coefficient (GEC) is a measure of energy that comes from renewable sources
that is used by components of the supercomputer. It is defined as:

GEC =
GreenEnergyConsumed

TotalEnergyConsumed
.



1.5. RESEARCH PROBLEMS AND OBJECTIVES 7

This metric can be used to evaluate the environment friendly nature of a computing facility.
However, this metric does not reveal the carbon emissions of a given facility.

CUE, for carbon usage effectiveness, represents the carbon dioxide emission in the environ-
ment:

CUE =
EmissionCO2

ITEquipementEnergy
,

where EmissionCO2 represents the total dioxide emissions from total energy absorbed by
components of a computing facility. It includes all green house gases such as CO2 and CH4,
carbone dioxide and methane respectively, that are emitted in the atmosphere, for a whole year.

Finally, the water usage effectiveness (WUE) is one of the few metrics that takes into account
the water used in a facility:

WUE =
WaterUsedAnnualy

ITEquipementEnergy
.

The previously exposed and described metrics can be expressed as a ratio between a given
important focus and energy consumed by IT equipment or the total energy consumption of
the complete facility. PUE is the most popular and widely spread metric across computing
facility vendors. It is usually used as a sale argument when it comes to new facilities. However,
its usability and computation are restricted. Important amount of information can be hidden.
For instance, equipment specifications and conditions of evaluation (duration, location, effective
load) are not expressed in this metric. As a direct consequence, most of research works focus on
the computing units themselves to measure the energy efficiency of an infrastructure and base
their analysis on energy and power related metrics.

Computing facilities such as data centers and supercomputers became through years more
and more complex eco-systems. For instance, water is used more and more often in such facilities,
from cooling components to humidification. Thus, using a combination of metrics to gather
different focuses is necessary. With growing energy consumption and worrying focuses such as
carbon emission and water outage, it is mandatory to use metrics related to such focuses like
WUE, CUE and GEC for water, carbon emission and green energy usage, respectively. These
metrics give good large-scale clues but not coarse-grain ones to detect and learn how to use
components and various possibilities of usage of different components.

1.5 Research problems and objectives

Computing facilities, such as supercomputers and large-scale data centers, are major energy
consumers whose energy efficiency is still to improve. Several techniques have been developed
in order to lower the electrical consumption of such facilities. To face this growing concern,
many solutions have been developed at multiple levels of computing facilities: infrastructure,
hardware, middleware, and application. Examples of hardware leverages are Dynamic Voltage
and Frequency Scaling (DVFS) [101] or Shutdown Techniques [80]. At the middleware level,
energy-efficient policies for task, jobs and resource managers can also be labeled as leverages [53].
Last, at the application level, the way an application is implemented has important effects on
its energy and power consumption [1].

It is urgent to embrace energy efficiency as a major concern of our modern computing fa-
cilities. Using these leverages is mandatory to improve energy efficiency. A lot of leverages are
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available on large-scale computing centers. In spite of their potential gains, users and adminis-
trators do not always consider using all available leverages to improve energy efficiency. However,
using these techniques, either alone or combined, could be complicated and counterproductive
if they were not wisely used.

This thesis investigates the discovery, evaluation and energy efficient usage of leverages avail-
able on a large-scale computing facility. The problematic of modeling and using a single energy
leverage on real-life scenarios is tackled. We also confront the problematic of combined energy
leverages, from same or different families, and tackle the issue of a generic solution to the dy-
namic usage of combined leverages answering various fixed or dynamic constraints. Finally,
the generic combination, monitoring and benchmarking of combined leverages and extraction of
knowledge from this combination is investigated.

From the previous challenges, the following objectives have been set:

1. Provide a generic methodology to evaluate the potential gain of a leverage by taking into
account possible costs;

2. Provide a methodology to model and use a single leverage while taking into account mul-
tiple constraints and costs that could happen during the usage of this leverage;

3. Provide an abstract model that permits to automatically detect, combine and benchmark
existing leverages;

4. Build a solution and software framework to extract humanly understandable knowledge
about combinations of leverages.

1.6 Contributions

Based on the objectives previously defined, we present in the thesis the following contributions:

1. We propose a definition of leverages and actors, and a first classification of usually available
leverages in a computing facility;

2. We describe our methodology to evaluate and model a leverage, and apply it to the shut-
down and wake-up leverages on consequent traces (from weeks to years of traces) of com-
puting facilities;

3. We propose Green Factory, an expendable framework that permits to automatically dis-
cover, combine and benchmark leverages while gathering chosen metrics to construct a
scoring table, the table of leverages. We combine leverages from different families while
gathering energy, power and performance metrics;

4. From the previously obtained and defined table of leverage, we describe a couple of rep-
resentative applications showing understandable knowledge that could be extracted from
this table of leverages;

5. We propose a selected usage of combined leverages to answer energy and power related
constraints for an HPC application used in production.
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1.7 Organization of the manuscript

The remainder of the manuscript is organized as follows.

• Chapter 2 presents a classification in four families of the most used leverages in the liter-
ature, together with their relative literature and how they affect energy consumption.

• In Chapter 3, we propose a methodology to detect, study and evaluate the possible usage
of a leverage as an energy and power leverage. We then apply part of the methodology to
the Thermo-Electric-Generator (TEG) leverage.

The application of the proposed methodology on Thermo-Electric-Generators is derived
from [130]:

– Issam Raïs, Laurent Lefèvre, Anne Benoit, Anne-Cécile Orgerie. “An Analysis of the
Feasibility of Energy Harvesting with Thermoelectric Generators on Petascale and Ex-
ascale Systems.” In Workshop Optimization of Energy Efficient HPC and Distributed
Systems (OPTIM 2016), in conjunction with the 2016 International Conference on
High Performance Computing and Simulation (HPCS 2016), 2016.

This methodology has also been used to study other leverages [125, 129, 122]:

– João Vicente Ferreira Lima, Issam Raïs, Laurent Lefèvre, Thierry Gautier. “Perfor-
mance and energy analysis of OpenMP runtime systems with dense linear algebra
algorithms” In The International Journal of High Performance Computing Applica-
tions 2018

– João Lima, Issam Raïs, Laurent Lefèvre, Thierry Gautier. “Performance and Energy
Analysis of OpenMP Runtime Systems with Dense Linear Algebra Algorithms.” In
SBAC-PAD 2017 Workshops, the International Symposium on Computer Architecture
and High Performance Computing, 2017.

– Pierre-François Dutot, Yiannis Georgiou, David Glesser, Laurent Lefèvre, Millian
Poquet, Issam Raïs. “Towards Energy Budget Control in HPC.” In 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2017.

• In Chapter 4, we fully apply the previously exposed methodology to create generic actors
and usage of these actors for Shutdown, a leverage that constitutes an relevant solution to
the dynamic usage of large-scale computing facilities.

Chapter 4 is derived from [121, 124, 123, 128]:

– Issam Raïs, Anne-Cécile Orgerie, Martin Quinson, Laurent Lefèvre. “Quantifying the
Impact of Shutdown Techniques for Energy-Efficient Data Centers.” In Concurrency
and Computation: Practice and Experience, 2018.

– Anne Benoit, Laurent Lefèvre, Issam Rais and Anne-Cécile Orgerie. “Reducing the
energy consumption of large scale computing systems through combined shutdown
policies with multiple constraints.” In International Journal of High Performance
Computing Applications, 2017.

– Anne Benoit, Laurent Lefèvre, Anne-Cécile Orgerie, Issam Raïs. “Shutdown Policies
with Power Capping for Large Scale Computing Systems.” In Euro-Par: International
European Conference on Parallel and Distributed Computing, 2017.
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– Issam Rais, Anne-Cécile Orgerie, and Martin Quinson. “Impact of Shutdown Tech-
niques for Energy-Efficient Cloud Data Centers.” In International Conference on Al-
gorithms and Architectures for Parallel Processing (ICA3PP), 2016.

• Chapter 5 proposes a combination of multiple leverages: number of threads, number of
processes and code version, for a specific type of application to underline the variability
proposed by the combined leverages. It also proposes actors to answer the usage of such
combined leverages.

• Chapter 6 presents the construction of the table of leverages with Green Factory: the Au-
tomatic Benchmark and Discovery of Energy Leverages, our framework that automatically
discovers, combines and benchmarks leverages along with the extraction of understandable
knowledge.

Chapter 6 is derived from [126, 127]:

– Issam Rais, Laurent Lefevre, Anne-Cécile Orgerie, Anne Benoit. “Exploiting the
Table of Energy and Power Leverages” In ICA3PP 2018 : 18th International Con-
ference on Algorithms and Architectures for Parallel Processing, Guangzhou, China,
November 15-17, 2018

– Issam Raïs, Mathilde Boutigny, Laurent Lefèvre, Anne-Cécile Orgerie, Anne Benoit.
“Building the Table of Energy and Power Leverages for Energy Efficient Large Scale
Systems” In HPCS2018 : IEEE The 16th Annual Meeting of International Conference
on High Performance Computing & Simulation, 2018.

• Finally, Chapter 7 presents conclusions and perspectives, with a summary of main contri-
butions and findings.
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Leverages: state of the art
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The elements composing a computing facility are not all used at full throttle all at the
same time, thus necessitating modulation of their activity on the fly. To answer that possible
variability on different possible usages, a lot of techniques having different states of usage exists
with various focuses.

We call these techniques Leverages.

Definition 1 A leverage L is a triplet L = (S, sc, fs), where S = {s0, s1, . . . , sn} is the set of
available valid states of L, sc is the current state of L, and fs is a function to update the current
state to a new state s′c ∈ S.

11
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Energy consumption is currently recognized as a major issue. This is also true on the
computing level where IT systems and connected devices per person are multiplied. Thus, our
overall consumption of energy of our IT devices keep rising. To deal with this growing concern,
from data-center building and management to the end connected device connected in our pocket,
such leverages had been developed to reduce / regulate directly or indirectly energy consumption.

An energy or power leverage is a leverage that has a high impact on the power or energy
consumption of a device through its various states or through the modification of its current
state. Switching from one state to another can have a cost in terms of time and energy.

Thus using these leverages at the right moment at their right state without deteriorating the
benefit of other leverages while respecting user constraints is a real challenge. In this thesis, we
recognize four families of leverages: infrastructure, hardware, middleware, and application.

2.1 Infrastructure leverages

In this section, leverages from the infrastructure family are developed. These leverages are
relative to the scope of the elements physically composing the data center or supercomputer.

2.1.1 Cooling systems

Servers composing supercomputers give off almost every Joule consumed as heat. This generated
heat could be dangerous to elements composing the facility if not well extracted or recycled.
Various ways of extracting this heat have been developed through the years.

• Air cooled systems, which is the most used state of this leverage in the majority of existing
supercomputer. Here, server racks are arranged into cold and hot aisles. In cold aisles,
the front sides of the server racks face each other. The aisle provides the cool intake air to
each server. Cold air is generated, usually from the floor, in cool aisles by the CRAC unit
(Computer Room Air Conditioner units). In hot aisles, the rear sides of the racks face the
aisles. Hot air is captured and returned, in a closed loop, to the CRAC input.

• Water-cooling systems are usually made of direct on-chip cooling. It consists in applying
water pipes on high density elements rejecting important amount of heat (like computing
units).

• Direct fluid immersion systems are immersing servers in liquids that can transport high
quantity of heat, such as water, oil or combined solutions.

• Free cooling is using the tempered air to cool the data center.

Usually, these states are atomic in a supercomputer, in the way that only one of these
solutions will be chosen during the setup of the supercomputer.

From an energy efficient perspective, it is clear that the cooling system, whatever choice
is made, has a great influence on the overall consumption of the complete facility. Literature
evaluates the part of the energy consumption of cooling systems to be between 30% to 50% of
the complete energy consumption of a facility [32, 83].
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2.1.2 Recycled energy: eligible harvesters

New ways to generate or at least recycle energy have to be explored. Despite technological and
software breakthrough to increase computational capabilities while reducing energy consump-
tion, it became a real limiting factor for large-scale computing centers. This is especially true for
supercomputers reaching petascale performance and aiming for exascale. Nowadays, sustained
one megaWatt per year costs around one million dollars per year for a datacenter usage [39].
None of this lost energy is reversed in a direct usable electricity for a direct re-use. Energy
harvesting is the process of extracting energy from surrounding environment [22]. Even if this
recovered energy concerns a few Joules, it is recycled from a previous consumption, and it is
thus increasing the energy efficiency. Every recycled Joule is a non produced one, thus avoiding
CO2 generation.

Several energy harvesting solutions exist. Among them, photovoltaics is the one in vogue: it
aims at transforming solar beams into electricity [71]. Piezoelectric generators are built to recycle
pressure expressed on a component and generate an amount of energy from the distortion of
the component [69]. Thermoelectricity aims at recycling wasted energy under heat form. Under
a delta temperature, a thermoelectric generator converts lost energy from heat to electricity
form [100]. Pyroelectricity follows the same principle but at higher delta temperature [87].

Thermo-electricity was discovered during the 19th century by Thomas Johann Seebeck. It is
a physical phenomenon where a thermal delta seen through a component results in an electrical
current [108]. A Thermo Electric Generator (TEG) can be used as a generator (when it is
exposed to a delta temperature) or as a cooler (when a current passes through it). Here, we
focus on the generator feature.

For years now, TEGs are used on spacial scientific programs like Voyager. TEGs are used to
provide energy in space where solar panels are too far from the sun to generate energy. TEGs
are not auto sufficient. Heat generated by plutonium isotope and cold space temperature (2 or
3 degrees above absolute zero) create a suitable environment for TEG power generation [10].

Renewable energy are still not as effective as fossil or nuclear generators, in their efficiency.
Although, it will be exploring the feasibility of such a leverage at the Exascale level can reveal
its relevancy, especially in a context where every recovered Joules could be critical for the overall
energy consumption.

2.1.3 Computing units

The core elements of computing facilities are the wide range of components, populating the
nodes, that perform computations. We call Computing Unit (CU) all ways that a data-center
or supercomputer have to compute a given task. The most widely spread are:

• CPU: for central processing unit is the core element of a node. It is the component that
carries instructions of a program.

• GPU: for Graphical Processing Unit, originally for graphical processing and rendering,
they turn out to be very efficient for embarrassingly parallel computations.

• MIC: for Many Integrated Cores, is a hybrid between CPU and GPU, where cores have the
same architecture that general purpose bootable CPUs ones, but combine a lot of small
cores, like in GPUs.

• ASIC: for Application Specific Integrated Circuit, is a customized circuit built specifically
to answer a specific task.



14 CHAPTER 2. LEVERAGES: STATE OF THE ART

• FPGA: for Field Programmable Gate Array, can be seen as a reconfigurable ASIC. In fact,
it is a dedicated circuit for an application but that can be reconfigured.

As computing nodes can be a combination of these CUs, this leverage could be split into two
families: bootable (with CPU and MIC) and accelerators CUs (with GPU, ASIC and FPGA).
The internal current state of such families is then the chosen architecture and model vendor for
the chosen family state.

Each one of these previous computing integrated circuits has its own field of action. Moving
towards Exascale means being able to run a wide range of applications, thus ASIC and FPGA
look inappropriate. Heterogeneity between general purpose CPUs bounded with accelerators
like GPUs and MICs seems to be the right compromise. Their performance per Watt is different
from one application to the other. Thus, choosing the wrong CU for a given task could lead to
a waste of energy [5].

2.1.4 Memory

Because computing is done on large amount of data, memory also has a high impact on energy
consumption. In [32], authors evaluated the impact of memory on energy consumption on a
node level. Depending on the usage, it varies from 19% to 48% of the total energy consumed,
on a node with a multi-core Intel Xeon architecture and on a node with a dual core Intel Atom,
respectively. Memory rises in various forms and at various points of the architecture: from
small sized very fast cache memory bounded to the CPU, to very large slow memory such as
hard drives. Thus, answering memory efficiency is one of the important challenges to build a
sustainable exascale system.

Nowadays current universal memory technology, DRAM for Dynamic Random-Access Mem-
ory, consists in a random access semiconductor memory. Each bit of data is stored in a separate
capacitor within a circuit. It is a Volatile Memory (VM) as the electric charge on the capacitors
leaks off gradually. Thus, a periodic refresh is needed to rewrite the data in the capacitors,
restoring them to their original charge. Otherwise, due to the gradual leak, the data on the
chip would be lost. Thus, it is a dynamic memory as opposed to Static Random-Access Memory
(SRAM) that is Non Volatile Memory (NVM). DRAM is usually used for big sized low speed
memory like RAM, when SRAM is used for high speed small size memory like cache.

Due to the high cost of SRAM and low efficiency of DRAM, memory manufacturers will have
to push the boundaries of actual memory capacity, energy efficiency, and performance to reach a
sustainable exascale system. The strongest contender to meet these requirements and to replace
the DRAM is the 3D XPoint (3D Cross point), a non-volatile memory (NVM) technology by
Intel and Micron Technology. It consists in a stackable cross-gridded data access array capable of
keeping the state of the information with no refreshments needed, even when turned off. Thus,
it combines the advantages of both SRAM and DRAM [19].

Memory components and computing components do not progress at the same speed. If this
trend is not reversed, future exascale systems may have a dramatical reduction of memory per
core with a direct effect of increasing communication and lowering computational efficiencies
and thus lowering the energy efficiency.

2.2 Hardware leverages

In this section, leverages from the hardware family are exposed. These leverages are relative to
the scope of available hardware techniques composing a computing node.
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2.2.1 Sleep states

To dynamically answer the changing load of a data-center or supercomputer, nodes and comput-
ing units possess sleep states. It consists in turning on and off resources depending on platform
usage.

ACPI, the Advanced Configuration and Power Interface [62], is a widely used open standard
that operating systems use to configure components and to perform power management. It
permits to put unused components to sleep through defined interfaces. Because it is not a
requirement, all of the possible states defined in this specification are not implemented in all
architectures. We focus on the ACPI sleeping states. They consist in various types of node
configurations including different shutdown approaches and protocols. According to the ACPI
specification, there are 5 possible sleeping states:

• S1 (weak): this is a low wake latency sleeping. No system context is lost and no hardware
is turned off in this state.

• S2 (weak): Similar to S1, except that CPU and system cache is lost.

• S3: low wake latency sleeping state where all context is lost except system memory, i.e.,
CPU, caches, and chip set context are lost. Hardware restores CPU and L2 configurations
and maintains memory context.

• S4: Lowest power but longest wake latency where only platform context is maintained.

• S5: System shutdown state. Similar to S4, except that the OS does not save any context.

Given this theoretical specification, we focus on the Linux implementation of this system
power management. The available sleep states on the Linux kernel are [64]:

• S0 or "Suspend to Idle": freezing user space and putting all I/O devices into low-power
states.

• S1 or "Standby / Power-On Suspend": same as S0, adding the fact that non boot CPUs are
put in offline mode and all low-level systems functions are suspended during transitions
into this state. The CPU retains power meaning operating state is lost, so the system
easily starts up again where it left off.

• S3 or "Suspend-to-RAM": Everything in the system is put into low power state mode.
System and device state is saved and kept in memory (RAM).

• S4 or "Suspend-to-disk": Like S3, adding a final step of writing memory contents to disk.

On the top of our knowledge, most of facility servers do not implement or allow S3 (Suspend-
to-RAM) sleep state, because of numerous errors when resuming (especially errors due to network
connections with Myrinet or Ethernet protocols). Typically, only S0, S4, and S5 (not described
as a linux sleep state in the kernel, but S5 corresponds to shutting down the system) are available
for operational use. Thus, sleep states is a relevant leverage to deal with idle periods seen on
nodes and can provide energy savings by reducing the static consumption of the nodes (PStatic).
However, previously mentioned states are not transition free. Indeed, they have a cost in time
and in energy, to go from one state to the other. This leverage has to be applied carefully to
avoid counterproductive effects on energy efficiency.
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2.2.2 DVFS

From smartphones to supercomputer nodes, DVFS, for Dynamic Voltage and Frequency Scaling,
raised as a popular leverage to modulate their working frequency and thus improve the energy
efficiency. DVFS is nowadays commonly available on recent HPC nodes present in supercom-
puters, such as the overly dominating CPU on top 500’s list: the intel Xeon e5-2690. This CPU
has a range of frequency from 2.90GHz to 3.80GHz.

DVFS is a leverage that modulates the voltage and/or frequency of a computing system.
Dynamic power (PDynamic) of CMOS circuits is a function of voltage (V ) and frequency (f) as:

PDynamic = C ∗ f ∗ V 2,

where C is the capacitance, a measure of how long it takes for a given current to produce a
given voltage change. As it is defined here, PDynamic is dominated by the V 2 factor. Hence, by
reducing the frequency, which is highly correlated to the voltage, energy can be saved.

Despite its popularity, the DVFS has several limitations [9, 67, 77]:

• It only acts on the dynamic part of power consumption (PDynamic), although for super-
computer nodes, the static part (PStatic) represents a big part of the consumption;

• It reduces the performance as it may increase execution time and lead to missed deadlines;

• Voltage transition requires time, around tens of microseconds, and thus implies energy
consumption;

• Due to the increase in leakage energy with high frequencies, constructors tend to build
multi-core architectures with lower ranges of frequencies;

• Power usage may raise the temperature, thus, increasing the voltage or frequency may
raise the system power demand, faster than the previous formula indicates.

In summary, the DVFS leverage can provide energy savings. These savings can be done
during the dynamic part of the consumption of a node, thus on non-idle periods. However,
because of its several limitations, it has to be applied carefully.

2.2.3 Simultaneous multi-threading

Simultaneous multi-threading (SMT) or hyper-threading for the Intel technologies, is a technique
to improve the overall efficiency of CPUs with hardware multi-threading at the core level. In
other words, multiple threads can run concurrently in a unique core of a given CPU. Even
when running on the same core, the threads are separated from a context perspective, from one
another. It allows multiple independent threads to keep the resources provided by processor
busy all the time (like avoiding bubbles in the pipelining process). SMT can be seen as a
multiple preemptive thread execution. It permits to reveal and extract additional instruction-
level parallelism from multiple threads [72].

Although SMT seems to be a good way of increasing the performance, it has several critical
drawbacks such as a danger of surcharging a core, where the CPU will spend all its time switch-
ing context between threads or processes running concurrently. Also, the limit concerning the
number of possible threads per core is not well defined, even from a manufacturer perspective,
because it highly depends on how the threads are using the core capabilities.
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Thus, this leverage could highly deteriorate performance and energy efficiency of an appli-
cation. These drawbacks push the HPC application developers not to use such a leverage, by
usually allocating only one thread per core, because of its high variability concerning perfor-
mance metrics. This leverage is to use with great parsimony.

2.3 Middleware leverages

In this section, leverages from the middleware family are developed. These leverages are in the
scope of available techniques helping the usage and setup of the supercomputer from a software
point of view.

2.3.1 Compiler

The compiler is the program that converts the code of the developer to binary understandable
by the machine through multiple passes.

Multiple compilers could be used to generate a given binary from a given source code. GCC,
The Gnu Compiler Collection, is the most common one. It is a front-end for multiple languages
developed and open source since 1987. Clang is an open source compiler for multiple languages
developed since 2005. ICC is the Inter C++ Compiler and it is proprietary. A given source code
compiled on a given machine with these three compilers is unlikely to generate the same binary
file. Thus, a variability from a performance and/or energy consumption metric is inevitable.

On top of our knowledge, no paper in the literature crosses the problematics of compilation
with energy efficiency, and focuses directly as a choice to generate various binary that can have
various impact on energy consumption. Most of the papers tackling these problematics use
DVFS and dynamic compilation to manage energy and performance trade-off, as for instance
in [63, 115], where authors developed a dynamic compilation phase where they automatically
detect sections of codes where the frequency could be reduced to gain energy. It can be summed
up as dynamic compiler techniques for microprocessor voltage and frequency control.

2.3.2 OpenMP runtime: tasks

OpenMP is the most widely used implementation of multi-threading. It is a method of par-
allelizing where a master thread forks a specified number of slave threads. The work is then
equally divided among them. The role of the runtime is mainly to create and allocate threads
to different processors. There are various OpenMP implementations of the OpenMP API such
as libGOMP, libOMP and XKaapi.

The differences raised here are mainly focused on task models, which is an emerging solution
to answer multi-threading. OpenMP dependent task model allows us to define dependencies
between tasks using declaration of accesses to memory with in, out, or inout. Two tasks are
independent (or concurrent) if and only if they do not violate the data dependencies of a reference
sequential execution order.

libGOMP is the OpenMP runtime that comes with the GCC compiler. Since version 4.9, it
implements dependent tasks. Dependencies between tasks are computed thanks to a hash table
that maps data to the last task writing data. Ready tasks are pushed into several scheduling
deques. The main deque stores all the tasks generated by the threads of a parallel region.
Tasks are inserted after the position of their parent tasks in order to keep an order close to the
sequential execution order. Because threads share the main deque, serialization of operations is
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guaranteed by a pthread mutex, which is a bottleneck for scalability. To avoid overhead in task
creation, libGOMP implements a task throttling algorithm that serializes task creation when
the number of pending tasks is greater than a threshold.

libOMP manages dependencies in the same way that libGOMP by using a hash table. Never-
theless, memory allocation during task creation relies on a fast thread memory allocator. libOMP
task scheduling is inspired from the Cilk almost non blocking work stealing algorithm [49] but
where deque operations are serialized using locks. It implies distributed deques management
with high throughput of deque operations. libOMP also implements a task throttling algorithm
by using bounded size deque.

XKaapi [52] is a task library for multi-CPU and multi-GPU architectures, which provides
binary compatible library with libGOMP [18]. Task scheduling is based on the almost non-
blocking work stealing algorithm from Cilk [49] with an extension to combine steal requests
in order to reduce overhead in stealing [105]. The XKaapi-based OpenMP runtime also has
support to many OpenMP extensions such as task affinity [112] that allows us to schedule tasks
on NUMA architectures, and to increase performance by reducing memory transfer and thus
memory energy consumption.

With most of the architectures becoming more and more parallel at the node level with more
and more computing cores, it is necessary to fully exploit this availability. From the literature,
the OpenMP runtime leverage is an appealing candidate to better energy efficiency. Although
at our knowledge, there is no work in the literature comparing the efficiency of runtimes on an
energy consumption level.

2.3.3 Shutdown policies

Here, we argue about the various algorithms or policies that the literature offers to deal with
shutdown techniques. Pioneering work on studying the energy-related impacts of shutdown
techniques started in 2001 [23, 85]. These early works did not consider any transition cost for
switching between the two state of this leverage: on and off. These works nonetheless showed the
potential impact of such techniques. Demaine et al. examine the power minimization problem
where the objective is to minimize the total transition costs plus the total time spent in the
active state [35]. They develop a (1 + 2α)-approximation algorithm, with α the transition cost.

However, the parameters considered for the transition costs of such policies highly vary
across the literature. Gandhi et al. take into account the energy cost of switching on servers
(no switching off cost as it is estimated to be negligible in comparison with the switching on
cost) [51]. This energy cost is assumed to be equal to the transition time multiplied by the
power consumption while in the on state while Lin et al. take into account the energy used for
the transition and the delay in migrating connections or data [73].

Shutdown techniques do not only impact energy consumption, they also affect temperature
and consequently cooling systems [119]. They can also be used for limiting the dark silicon
effect, i.e., the under-utilization of the device integration capacity due to power and temperature
effects [44]. This issue has lead to the introduction of user-specified, dynamic, hardware-enforced
processor power bounds, as for the Intel’s Sandy Bridge family of processors for instance [89]. At
a facility level, it translates into power budgeting, where the total power budget is partitioned
among the cooling and computing units, and where the cooling power has to be sufficient to
extract the heat of the computing power. Given the computing power budget, Zhan et al. propose
an optimal computing budgeting technique based on knapsack-solving algorithms to determine
the power limit for the individual servers [118].
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Thus, even on a leverage that is well studied, like shutdown techniques, high impact on a
data-center, from various point of views like energy or temperature, can be witnessed. It is thus
necessary to create such policies that answer the need for the leverage to switch state in order
to meet an objective. Due to the non-proportionality of actual electrical components [111] and
due to their high switch cost, it became necessary to use such shutdown policies.

2.3.4 Scheduling policies

Scheduling policies represent the way the jobs are delivered to the machines composing the
facility. Many papers focus on controlling the power and energy consumption through such
leverage that could have different focus or objective, either to minimize, or maximize. It could
depend on various objective of the belligerents (user, owner, electrical provider) of the facility.
For example, the owner can have the objective of maximizing the usage of its machines while
a green user can have the objective of minimizing the energy consumption of its runs. Thus, a
policy could maximize the throughput of computation, thus time spent executing the set of job,
or the overall energy spent to do the complete set. Here, we focus on energy and power related
scheduling policies.

Patki et al. [81] argue that thanks to the control of power consumption, one can buy a bigger
cluster for the same annual price. The objective is to control the final energy cost of the cluster
while keeping good performances even under power constraints (or power capping). In [45],
authors defend MaxJobPerf, a scheduling policy that maximizes the throughput of a fixed set
of jobs while maintaining a strong power capping constraint. Gholkar et al. in [54] presented a
2-level hierarchical power capping solution based on intel’s RAPL technology, which is adapted
to guarantee a local power capping.

An energy budget policy has been studied in [43]. The algorithm was implemented upon
LSF, which is a proprietary resource and job management system, and it makes use of CPU
Frequency scaling technique. The authors claim that while their policy manages to control the
cluster’s energy budget, they did not observe any energy reduction. In [78], Murali et al. study a
meta-scheduler that controls multiple HPC centers. In [66], Khemka et al. maximize a "utility"
function in a cluster with daily energy budget. They solve the problem thanks to an offline
heuristic. The objective is to reduce the overall cost by adapting the energy consumption to the
electricity price of each different cluster by allocating a subset of the energy budget to each of
them. Yang et al. [117] consider the scheduling problem with 2 periods: one during which an
energy limit is set, and the other one without energy limit. While this approach is relevant, the
algorithm they used is not scalable and is hardly usable with other constraints.

Job scheduling has a major impact on the utilization of data and computing components
of facilities and thus, a high impact on how energy is going to be consumed. It is a perfect
candidate to smooth the energy consumed during time through energy budget or controlled
power capping. Thus, scheduling policy is a relevant leverage to combine to other leverages to
control energy consumed during time of a studied facility.

2.3.5 Compression

Data transfer is also time and energy consuming, especially on large scale infrastructure where
memory per core keeps getting lower and where every node level consumption could have major
impact on the overall energy consumption, because of the scaling effect. Lossy and lossless com-
pression are relevant leverages to tackle these problematics. The impact of lossless compression
techniques on energy consumption has been studied in the literature. Barr et al. demonstrate
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that, using several typical compression algorithms, there is an energy consumption increase when
compression is applied before wireless transmission [8]. On the contrary, in [116], authors in-
vestigate the need of compression to reduce the energy consumed to save battery on hand-held
devices. Their results show that on key cases for devices downloading files, the gain of energy
consumption when using lossless compression can be significant. Welton et al. allocate idle
CPU resources to compress network traffic, thus reducing the amount of data transferred over
the network and increasing the effectiveness of network bandwidth [114]. In [68], the authors ex-
plore register file data compression for GPUs to improve power efficiency. Compression reduces
the width of the register file during read and write operations, which in turn reduces dynamic
power.

Satish et al. show that current cluster implementations suffer from high latency data com-
munication with large volumes of transfers across nodes, leading to inefficiency in performance
and energy consumption [93]. Authors conclude that these constraints can be overcome by using
a combination of efficient low-overhead data compression techniques to reduce transfer volumes
along with latency-hiding techniques.

Very recent papers [37, 48, 103, 104] have studied lossy compression as a key leverage to
reduce the data to process. It consists in preprocessing data using detectors to predict if data
is pertinent and should be sent to the computing kernel.

Despite several investigations on using lossy or non lossy compression as leverage to consume
less energy, none of the previous papers presented a simple model that could answer, at a given
time, if the compression could be beneficial from a current state of the system (size of file
currently exchanged, actual available bandwidth, energy consumption of nodes) and applied it
to the complexity of datacenter, supercomputer or other systems.

2.4 Application leverages

In this section, we develop the most used leverages in the application family. These leverages
are relative to the scope of the binary being generated and executed.

2.4.1 Number of threads and processes leverage

Multi-core architectures are nowadays the de-facto standard in modern architectures. The first
studied application leverage permits the usage of multiple cores during computation through
the spawn of multiple threads. OpenMP [31], a well-known application programming interface
abstraction for multi-threading, can be used to exploit this intra-node parallelism of multi-
cores. It consists of a set of directives that modify the behavior of the executed code, where a
master thread forks a specific number of slave threads that run concurrently. This multi-thread
leverage increases the CPU utilization of the node. Consequently, because of the non-power
proportionality of current hardware architectures [111], this leverage can improve the energy
efficiency of the node.

The second studied leverage is the multi-process leverage. It is a de-facto standard to exploit
the large scale distributed and massively parallel capabilities of modern architectures. It consists
in using distributed nodes across the facility to divide the work usually by passing messages
through the high speed network connecting the computing nodes. Such a shared distributed
memory process permits a treatment and a throughput that a single node cannot deliver at
once. MPI (Message Passing Interface) is a standardized and portable message passing library.
It is available in various languages used in high performance computing such as C, C++ and
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Fortran. At the end of 1993, the first normalization is standardized by researchers from academia
and industry [58, 113]. It consists in a set of primitives that permit both point-to-point and
collective communication.

As the two standards of both multi-threaded and multi-process computing, these two lever-
ages are tightly coupled in the literature, that usually uses the number of threads and processes
as leverage states to vary the energy used for computation.

In [70], the leverage is the number of OpenMP threads for a fixed number of MPI processes,
where this leverage is combined to the DVFS leverage. The contribution of the work is to
predict performance to reduce the energy consumption of an application. In [75], the leverages
used to reduce the consumption of an application are also the number of OpenMP threads and
the DVFS. However, in this paper, these leverages are used to recover the waiting time of MPI
processes. In [6], authors provide a mathematical formulation of the multi-objective performance
tuning problem. The work shows that energy-aware applications are possible through the usage
of such leverages. The number of MPI processes and the number of OpenMP threads are again
both used as leverages.

Thus, the choice of the number of OpenMP threads and the number of MPI processes are two
tightly coupled leverages in the literature. These leverages permit a precise control of PDynamic.
Thus, previous related works about number of threads and processes leverages have shown that
the choice of current states for both leverages help modulate the energy consumption of nodes.

2.4.2 Code Version Variability

From a given algorithm to a complete application, it exists various ways of reaching the same
output, either for example from implementation logic, usage of parallelism or chosen compilation
environment. The generated variety of code version could be a combination of leverage to be
energy efficient.

In [5], authors present a predictive model to estimate power consumption and computation
performance (execution time). The prediction is made for a given device. A single version of
code is given for each device from CPU to GPU. Thus, in this work, the selected version of code
is actually used to choose the best type of hardware to save energy. In [6], authors explore the
variability of the energy consumption of multiple CPU while using DVFS. Code versions are
provided as different binaries of the same application. Thus, the work points out the possibility
of obtaining multiple energy consumption behaviors by selecting a version of code while varying
the frequency of the processor.

Green programming (or coding) is used to reduce the consumption of a specific application
or service by iteratively modifying its source code by hand. For example, in [1], authors explore
the differences in terms of energy consumption between iterative and recursive versions of the
same application, thus different parallel code versions are not explored.

In [3], authors have built a framework to reduce the number of iterations in expensive se-
quential loops and functions through approximations. These reductions lead to energy savings.
In this work, the generation of a new version of the code is done through low level compilation
analysis. In [106], authors use an auto-tuning framework to study different code versions under
energy concerns. This work does not consider production scenarios and knowledge construc-
tion time. The auto-tuning framework used in the work generates different code transformation
strategies specific to numerical simulation.

Considering a real-case production application and multiple parallel implementations of this
real-case production application, hand-written codes are very long and difficult to produce.
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For this reason, green programming as it is experimented nowadays is difficult to conceive for
production codes. Simplifying the usage and generation of various versions of code is important,
even more to produce energy-efficient versions of codes.

However, none of the previous papers have contributed to an automation process of the
usage of code version leverage. Moreover, none of these works have studied the feasibility of
such Green Programming (GP) concept for production HPC numerical simulations.

2.4.3 Computation precision

Current architecture allow a wide variety of precision for computation. This leverage represents
this collection of possibilities (i.e., int, float, double). Such a leverage alters the precision of the
results computed by the application, but lower precision translates into shorter data represen-
tation and so, less computation and less energy consumption.

In [60], authors have shown that high precision of many applications, like audio and video
processing, is not always needed and that a lower precision can be tolerated to reach almost
the same output. In [59], authors study the effect of limited precision data representation
and computation on neural network training. Within the context of low-precision fixed-point
computations, they observe that the rounding plays a crucial role in the output. They show that
deep networks can be trained using only 16-bit wide fixed-point number representation without
deteriorating the output.

By relaxing the need for fully precise or completely deterministic operations, approximate
computing techniques allow substantial improvements of energy efficiency. Thus, precision of
computation is a relevant leverage for a wide range of applications to lower the energy consump-
tion of applications at the detriment of precision.

2.4.4 Vectorization

Current CPUs allow the usage of vectorization capabilities to exploit intra-core parallelism. On
Intel architectures, it started with MMX instruction in Pentium P5 architectures in 1997 [82]. It
was then extended to SSE [50]. SSE was then extended to SSE2, SSE3, SSSE3 and finally SSE4.
AVX [74] then introduces new instructions, followed by AVX2 and finally AVX512 available in
XeonPhi architecture. These instruction sets permit single instruction on multiple data (SIMD)
at application level.

Vectorization is also a possible leverage to use towards energy efficiency. In [20, 21], authors
have evaluated and showed that the i5 and i7 generations of Intel CPUs’ vectorization help to
consume less energy for computation intensive benchmark such as PARSEC. They also show
that vectorization should be used on specific cases (computation intensive algorithms with strict
data alignment), and using it when these conditions are not met could be counterproductive
from an energy perspective. Thus, using such a leverage combined with others has to be taken
cautiously.

2.5 State of the art: lessons learned

Scientists and application developers are always asking for more computation capabilities to
deal with finer grain and highly parallel applications. We showed, in the previous chapter, that
nowadays and future computing architectures keep getting complex and heterogeneous. The
next long awaited milestone is the Exascale computing, reaching 1018 operations per seconds.
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Nowadays, architectures are not able to reach this magnitude of computation, mainly because
it would not be sustainable from an energy perspective.

To answer the energy efficiency problematic and to have a better control over the power
and energy consumed, a lot of techniques have emerged at different levels of the computing
facility. These techniques were not all made to directly be energy efficient but to improve the
throughput of the entity on which it is working. In this manuscript, we call these techniques
leverages, entities that possess multiple states of activity, a way to switch from one state to the
other, and a current state that permits, to modulate a metric on which it is working. Thus,
energy and power leverages, which are our main focus in this thesis document, are leverages that
directly modulate the power or energy that it consumes. We categorize the existing leverages in
four different families: infrastructure, hardware, middleware, and finally application.

Many energy leverages such as shutdown policies or DVFS are well studied and possess an
important literature on their potential gain as energy leverages. Other potential leverages have
been exploited as performance leverages, such as OpenMP runtime, but they still do not have
a study on their potential status as an energy leverage. These leverages can be combined to
improve the energy efficiency of the facility. The hard objective to achieve is to reduce the energy
consumption and meet imposed constraints, while not deteriorating the computing efficiency or
resource utilization. All previously exposed leverages can play a key part in improving the
energy efficiency of a supercomputer, if used with caution. For example, literature shows that
the vectorization, as well as the compression leverage, can help towards energy efficiency if
properly used, in right conditions and specific cases, thus depending on other leverage usages
and environment setup.

Despite that, and on top of our knowledge, no methodology to evaluate the influence of a
leverage on its environment exists. In other words, no coarse grain methodology exists to say
if the usage of a leverage would be beneficial to the overall system’s metric focus, here energy
and power related metrics. Also, there is no simple model to say if it should be beneficial for
a leverage or a state of leverage to be used. There is no simple analysis tool to interpret the
interactions between a leverage and another during a leverage combination. Finally, there is no
such thing as an understandable knowledge or hint extractor from leverages combination. To
sum-up, no methodology to detect, evaluate and model a potential leverage exists nor permits
a direct analyze of the impact of a leverage on another one when combined.
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Underline, evaluate and model a single

power and energy leverage

Contents

3.1 Leverages and actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Leverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Mono leverage study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 How a leverage operates . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 How a leverage influences the studied metric . . . . . . . . . . . . . . . 28

3.2.3 Monitoring a leverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.4 Providing actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Mono leverage study applied to Thermo-Electric-Generators (TEG) 30

3.3.1 TEG leverage, how it operates . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Context and influence on studied metric . . . . . . . . . . . . . . . . . . 32

3.3.3 Theoretical context and evaluation metrics . . . . . . . . . . . . . . . . 33

3.3.4 Theoretical calibration to evaluate the impact of TEG . . . . . . . . . . 34

3.4 Conclusion about mono leverage study . . . . . . . . . . . . . . . . . 37

As shown in the previous chapter, a lot of techniques that we call leverages exist at different
levels of the facility, to modulate the usage of components. Leverages are most of the time easy
to use, but their impact on a given or a set of metrics is usually unknown. Most leverage studies
have been made manually without extractable methodology to discover, evaluate and use a given
leverage.

In this chapter, we give our focus and methodology that we will follow all along this
manuscript to study a leverage. This chapter presents the followed methodology to detect,
evaluate and model a leverage, to estimate its possible usage as an energy and power leverage.
First, leverages will be taken independently, before being combined later.

Computing facilities, such as datacenters and supercomputers, users and administrators are
facing various problematics in their day to day usage or administration of the given infrastruc-
ture, either from just a node or for a complete infrastructure usage level. We believe that a
fine grain knowledge about leverages is necessary to properly answer a given problematic. A
leverage can impact various measured metrics (like energy consumption, flops, execution time,
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...), so it can be used to answer multiple problematics. It is hard to use multiple leverages at the
same time to answer a given problematic. Thus, we first study an independent leverage. In this
manuscript, we mainly focus on how energy, power and performance related problematics are
impacted by the usage of key leverages from different families on real-case studies and scenarios.
All studies are done on real machines with real measurements.

From the literature, we can see that a lot of leverages can help answer a given problematic like
the reduction of energy consumption, but have to be carefully used. The controlled configuration
of a leverage can be a partial solution and a start of solution to a given problematic. Because
we focus on energy, power and time related metrics, we evaluate the potential gain of studied
leverages on these related metrics by taking into account their costs in time and energy.

3.1 Leverages and actors

In this section, we formally define Leverages and Actors, two terminologies that will be paired
and used all along our methodology description.

3.1.1 Leverage

We formally define a leverage with the following definition:

Definition 2 A leverage L is a triplet L = (S, sc, fs), where S = {s0, s1, . . . , sn} is the set of
available valid states of L, sc is the current state of L, and fs is a function to update the current
state to a new state s′c ∈ S.

The type of a state s ∈ S of a leverage L(S, sc, fs) can be any type such as frequency,
application version of code, or even working state of a node (on, off). A leverage is a way to
offer a choice to a user, as well as a way to modify this choice through the function fs. Day
life examples of leverages could be the gearbox of a car for which S is the set of available gears,
where fs is the clutch pedal (for a manual transmission vehicle), and sc is the current selected
gear. Note that a function is the object that permits to change the current state to another
possible state.

In the case of a computing server, we can for instance consider the DVFS capability (Dynamic
Voltage and Frequency Scaling) as a leverage. Assuming that the available DVFS frequencies
for a given CPU are 1.8 GHz, 2.3 GHz, and 2.6 GHz (the current one, so sc = 2.6 GHz), the
associated DVFS leverage is L({1.8 GHz, 2.3 GHz, 2.6 GHz}, 2.6 GHz, fDV FS), where fDV FS

is the DVFS system configuration file.
Thus, a leverage can be seen as a tool that possesses a fixed number of internal states S,

that helps a user to change its current state sc easily through its function fs. As a tool, the
leverage is not able to change its current state by itself. Indeed, changing the state of a leverage
is the aim of an actor.

3.1.2 Actor

We call Actor the smart entity that configures one state from S offered by one or multiple
leverages as the current one. More formally, let L be the set of possible leverages, and C a set
of constraints to fulfill. These constraints could be of any type. We also denote states(L) the
function that returns the set of states S of a leverage L.
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Definition 3 An actor A is a function that for a subset of leverages Lsub ⊂ L and a set of
constraints C ∈ Cn returns a set of new chosen states Sres, one for each leverage of L ∈ Lsub,
s′c ∈ states(L). Each new state s′c returned by an actor A is called a choice.

An actor aims at fulfilling constraints by choosing a new state s′c ∈ states(L). For example,
the OnDemand linux governor chooses the DVFS current state depending on the current system
load1. Most of the time, as the ideal solution is not available in states(L), a trade-off has to be
found between all constraints and objectives of C.

By its definition, we can realize that computing facilities such as data-centers and super-
computers are filled with leverages and potential energy and power leverages at different levels
of the facility. Because of that specificity, a user of this kind of facility is always using multiple
leverages at the same time, with or without being aware of their usage. A better knowledge of
available leverages, a better knowledge of their interactions and a smart usage through actors
that answers a set of constraints are then mandatory.

3.2 Mono leverage study

This section presents the proposed steps to follow to understand how a leverage operates and
how a leverage influences a given metric.

Detect All

States

Detect States

Transitions

Monitoring On 

Studied Metric

(a) (b) (c)

(d)

Influence On

Studied Metric

Influence Of

New Constraint: 

Provide Actor

Figure 3.1: Followed flow to evaluate, model and monitor a single energy and power leverage.

Figure 3.1 presents the followed flow that we are presenting in this section to discover the set
of states, the possible state transitions, the impact of states and transitions, their costs in the
studied context(s), and how to provide an actor to answer new constraints for a given leverage.
A squared step represents a non-automatic step where a study has to be done, while a rounded
one represents a step that can be automated. A green arrow represents a possible exploitable
output from the methodology, and a blue arrow represents an input.

3.2.1 How a leverage operates

The first thing to understand about a leverage is how it works. In other words, detecting all
states and how to go from one valid state to another is an inevitable step that has to be done to
start the study of a leverage. Depending on the leverage, this step can be done through a study
of the literature, by manual or automatic exploration of the studied infrastructure.

As previously exposed in subsection 3.1, a leverage has a set of possible states. These states
represent all the possibilities of configurations offered by the studied leverage. To discover the
set of all possible states, an exhaustive actor with no constraints that explores all possible

1https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
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states is needed. This actor can either be a physical user or an automated script manually or
automatically exploring possible configurations.

Depending on the leverage, all states cannot be reached from all other states. The states can
have precedences, meaning that a state cannot be reached if a previous state is not attained yet.
Understanding the interaction between states is also a mandatory. On Figure 3.1, this study
is represented by the two first circles. From this study, a graph of reachable states per current
state can be obtained, with a recorded way of switching from one state to the other ((a) output
in Figure 3.1).

F0

F1

F2

(a) DVFS

S0 . . .

Idle

S5

(b) Sleep States

Figure 3.2: State transitions, the example of DVFS and sleep state leverages.

Such an output is displayed in Figure 3.2. It presents the obtained graphs of transitions
for both DVFS and sleep state leverages on subfigures 3.2a and 3.2b, respectively. In this
illustrative example, Fn represents a possible frequency for the CPU, and Sn represents a possible
sleep state of a computing node. An arrow represents a possible transition between two states.
Every transition can have various ways to be activated and various associated costs. Thus,
every leverage is unique in its transition between states. DVFS, for example, can go from any
frequency to the other showing a fully connected graph between possible states, whereas it is
impossible to go from one sleep state to the other without passing by the idle state.

3.2.2 How a leverage influences the studied metric

A given studied problematic is usually related to a metric or set of metrics. The influence of
a leverage on a metric is linked to the understanding of the direct influence of changing the
current state and its influence on the studied metric, either during the switch of state or while
operating on the new state.

This study can first of all be done on a given problematic from a theoretical point of view.
For instance, shutdown is a relevant leverage to save the PStatic part of the energy consumed
by a component that is currently idle, while DVFS is a leverage that can modulate the energy
consumed dynamically (PDynamic), but does not change the power statically consumed by a com-
ponent. Therefore, even if these two leverages influence the same metric, the energy consumed
on a node level, they do not do it the same way.

Also, a studied leverage metric can be located on only one component or distributed between
many. For example, the Shutdown leverage has a mono-node energy consumption influence.
However, the compression / decompression leverage (previously exposed in section 2.3.5) has
a distributed metric between the sender and the receiver (energy consumed on the node that
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compresses the file and energy consumed on the node that decompresses the file). Another
example is the number of processes used to execute an application, that can be on one or
multiple nodes.

Thus, understanding how a leverage and all its states influence the studied metric is also a
mandatory step to evaluate how a leverage influences a used facility.

3.2.3 Monitoring a leverage

An aspect of the study of one leverage is to evaluate the real cost of a leverage in the multiple
contexts where it will be used. It can be done through theoretical study but also through
monitoring.

Monitoring the leverage can be done once transitions between states have been explored, in a
given context. Usually, the configuration of a leverage is not free depending on studied metrics,
here time and energy. Also, choosing a given state can highly impact the power and/or energy
consumed by a component facility.

Monitoring the leverage costs (transitions and states) on various contexts where it will be
used is mandatory to get an idea of how much the configuration of the leverage will cost, for
given metrics. The configuration of a leverage on its future context can reveal what are the
effects of a leverage on its environment.

To have the complete leverage knowledge, monitoring and storing costs of transition from
one state to the other, as well as a monitoring of the component metric throughput during a
given work (such as a given representative application or workload) is necessary. To do so, an
exhaustive actor with knowledge of the state transitions and with no constraints to fulfill is
needed to loop over possible leverages states (output (b) on workflow Figure 3.1).

3.2.4 Providing actors

Once that we know the set of states, the possible state transitions, the impact of states and
transitions and their costs on the studied context(s), an actor answering a new constraint for
the studied leverage can be provided.

An actor tells if the current state is beneficial to the studied metric. It could also tell us if
choosing a new configuration (choosing another state for the studied leverage) is beneficial to
answer the new constraint (input (d) in Figure 3.1), in a binary way (i.e., through a yes or no
answer). This answer is based on what would happen if the state was changed to another one,
thus tacking into account transition costs as well as the cost of the new current state. Such
an actor based on previously explored costs permits to quickly answer and combine actors to
answer multiple constraints at the same time.

Of course, a complete facility is facing other constraints. In our studies, energy consumption
is the main focus. But the complete facility will have other constraints during its usage, such
as power capping, cooling, electrical, maintenance, performance, etc. They can have influence
on one another, thus a trade-off has to be found. These constraints will either be for the
complete infrastructure or for a subset of nodes. Thus, an actor can be provided to answer these
constraints. In this methodology, we propose to provide one actor to every constraint ((c) in
Figure 3.1). With a set of actors being able to answer a given constraint each, we can compose
these actors to respect a set of chosen constraints at the same time.
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3.3 Mono leverage study applied to Thermo-Electric-Generators
(TEG)

In this section, we apply the previously proposed methodology to show that Thermo-Electric-
Generator (TEG) can be a relevant energy leverage for large-scale infrastructures. We chose an
infrastructure leverage for a purely theoretical application of our methodology to underline the
potential gains of such a leverage without providing any new actor.

Most of the energy consumed by resources in a computing facility is converted to heat.
This heat, induced by computing resources, is generally a waste of energy in supercomputers.
This is especially true in very large scale supercomputers, where the produced heat has to be
compensated with expensive and energy-consuming cooling systems. Energy is a critical aspect
for future supercomputing trends that currently try to achieve exascale, without having its
energy consumption reaching an important fraction of a nuclear power plant. Thus, new ways
of generating or recovering energy have to be explored. Energy harvesting consists in recovering
wasted energy. ThermoElectric Generators (TEGs) aim to recover energy by converting wasted
dissipated energy into usable electricity. By combining computing units (CU) and TEGs at
very large scale, we spotted a potential way to recover energy from wasted heat generated by
computations on supercomputers.

3.3.1 TEG leverage, how it operates

Energy could be produced from transformation of raw materials (oil, gas, coal, petrol, etc). Every
produced kiloWatt is accompanied with a generation of CO2 [90]. Because energy generators are
not 100% efficient, a significant part of energy is lost during the production and transport [34].
Only a slight percentage of the conversion of raw materials is transformed into electricity. For
example, the ratio between useful energy output and energy input (as known as energy conversion
efficiency) of a coal plant is 33-35% [25].

The growing demand for processing data and computing implies improvements of electronic
components. At the level of computing capabilities or energy consumption, computational com-
ponents of current machines are becoming more and more efficient. Despite technological and
software breakthrough to increase computational power while reducing energy consumption, it
became a real limiting factor for computers. This is especially true for supercomputers reaching
petascale performance and aiming for exascale, where sustained one megaWatt per year costs
around one million dollars per year [39].

To face such problematics and as previously mentioned in Section 2.1.2, new ways to generate
or at least recycle energy have to be explored. Energy harvesting is the process of extracting
energy from surrounding environment and thermoelectricity aims at recycling wasted energy
under heat form.

In a computing facility, a great part of consumed energy is lost in an exothermic way. For
the safety of components, this lost energy must be carried away. To do so, expensive air or water
cooling systems are built upon supercomputers. None of this lost energy is reversed in a direct
usable electricity for a direct re-use. Thermoelectricity seems to be the proper energy harvester
for this problem.

Binding CPUs and TEGs has been mentioned in [120]. It deals with common computers
built with only one computing unit (CU), and it experiments only around the idle part of a
CPU. Not stressing the CU implies lowering the delta temperature. Thus, the CPU is not under
deep stress as it would be in an intensive supercomputer scenario.
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The actual increase concerns about climate and energy efficiency force researchers to consider
all possible solutions to consume better. One of the main concerns is energy lost in an exothermic
way. Indeed, this energy enforces expensive costs in cooling systems. By transforming a part of
this dissipated energy, TEGs may reduce costs.

Figure 3.3: ThermoElectric Generator (TEG).

A thermo-electrical material transforms a thermal delta in electricity. TEGs are composed
by positively (p-type) and negatively (n-type) doped connected semiconductor couples (see Fig-
ure 3.3). N-P couples are the charge carriers that can freely move through the metal. These
carriers start to move under a delta temperature, according to the N-P couple properties. The
delta temperature creates an excitation of the doped charge carrier, thus it creates a movement
of the charge carrier, creating an electric current.

Ideally, a larger delta temperature creates a larger electrical current, but this statement is
highly coupled with the fact that a semiconductor is effective only on a range of temperature,
making the TEGs operational only on a limited delta temperature [100].

Other fields can have potential use of such a technique. A lot of heat is wasted from auto-
motive, specially from exhaust pipes. A lot of exhaust pipes accompanied with TEG prototypes
have emerged. Only 25 percent of the applied fuel energy made from combustion is used for
mobility and accessories. About 40 percent of this energy is lost in exhaust pipe. Even if
conversion percentage is low, it could lead to a nice ratio of CO2 emission reduction [57]. Ultra-
low power wireless sensors used for various measurements can also be combined with energy
harvesting techniques. Thanks to the energy harvesting part of the TEGs and the ultra-low
needs of power, it is nowadays possible to produce wireless sensors that are almost autonomous
systems [92].

A TEG can be composed from different alloys. Every alloy has a temperature where it
could be applied. The possible range of action on a TEG depends on a minimal and a maximal
temperature. In fact, under this minimum temperature, no power can be generated and over
this maximum temperature, the chosen TEG has an indeterminate behavior [100].

Here, we discuss the feasibility of using thermoelectric generators for petascale and future
exascale machines. How much harvested energy can we hope for? Is recovered energy sufficient
enough to be directly injected in CPUs or to be stored? How much time will it take to compensate
the cost of combining thermoelectric generators and computational units?
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3.3.2 Context and influence on studied metric

For the safety of the machine composing the supercomputer, the heat generated by CUs must
be carried away from CUs. This results in a huge amount of wasted energy, when taking into
account the dissipated energy from computation and from the expensive cooling system.

Generated energy from a TEG depends on the temperature on the cold and hot side. Thus,
it depends on the delta temperature between the two parallel sides. Table 3.1 presents the
extreme thermal context that could be witnessed on a supercomputer environment.

Table 3.1: Supercomputer extreme delta temperature in Celsius degree

Characteristic Temperature
hotspot 95 - 110
cooling system 15 - 25
delta 95

We can assume that, because of the intensity of the usage, every CU is close to the maximum
temperature. The hotspot informations correspond to the maximum reachable temperature by
a Xeon CPU and a Nvidia GTX Titan Z GPU. The cooling system temperature represents the
recommended range of temperature expected in a room containing computing components [56].
The delta is the difference between these two extreme temperatures. We make the hypothesis
that a TEG is placed on every CU and that the temperature on top of this TEG is equal to
the cooling system temperature. In other words, we consider that the cooling system in on top
of every CU (like with water cooling system), thus creating the needed delta temperature for a
TEG to generate electricity.

The maximum efficiency, noted ηmax, represents the maximum percentage that a TEG can
convert from a thermal Watt to an electric Watt. The formula of ηmax is described as follows:

ηmax =
∆T

Th

√
1 + ZT − 1√
1 + ZT + Tc

Th

, (3.1)

where

• Tc is the temperature on the cold side;

• Th is the temperature on the hot side;

• ∆T is the difference between the hot and cold side, i.e., ∆T = Th − Tc;

• ZT is the figure of merit of the TEG.

The maximum efficiency of TEG is therefore governed by the figure of merit ZT , that is a
parameter depending on the materials used to build the TEG, and by temperature of the hot and
cold side of the TEG. It also depends on the Carnot efficiency (the left factor on Equation (3.1),
i.e., ∆T/Th). This metric is needed to estimate the maximum usable power generated from a
TEG on a specific environment.

Applying this metric to the previously described environment (Table 3.1) allows us to obtain
the maximum efficiency reference, which depends on the ZT of the chosen TEG.

Figure 3.4 presents the evolution of the maximum efficiency, ηmax, as a function of the ZT of
TEGs with Tc = 15 Celsius degree, for three delta temperatures (∆T = 50, 75, 100). We consider
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Figure 3.4: Maximum TEG efficiency in the supercomputer scenario.

a ZT between 0 and 5, given that the state of the art TEG figure of merit is nowadays around
2.2 [15]. In a very optimistic setting with ZT = 5 and ∆T = 100, the maximum efficiency is
around 12%.

The most widespread alloy for thermal exchanges between computing units and TEGs is the
Bismuth Telluride (Bi2Te3) [55]. Literature [100] validates the fact that it is the only alloy that
can be applied in an environment described in Table 3.1. In fact, in a range between 15 and 100
Celsius degree, only one N-P couple can be built to be used in a TEG (respectively Bi2Te3 and
Sb2Te3). A TEG with these alloys has a device figure of merit ZT between 0.7 to 1.0 [91].

Considering Figure 3.4 and the known ZT of a compatible TEG, we can now say that the
maximum efficiency in our environment will be between 3 and 5%.

3.3.3 Theoretical context and evaluation metrics

In order to figure out if the usage of TEGs is relevant in a petascale or exascale environment,
we consider several scenarios.

For this analysis, we consider the state of art and potential CU candidates to an exascale
machine: the in vogue KNL XeonPhi [94] with a peak around 3.0 TFLOPS and a TDP of 200W ,
the very promising RexNeo2 announced around 0.256 TFLOP with a TDP only around 4W , and
the mainstream Xeon CPU [79] around 0.506 TFLOPS and 145W . We determine how many
megaWatts a machine reaching one exaFLOPS composed only with one of these computing units
will consume (see Table 3.2).

Following the Department of Energy (DOE) requirements, the expected exascale machine

2http://www.rexcomputing.com/
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Table 3.2: Hypothetical wattage and number of computing units (in million units) for an exascale
machine

Machine MegaWatts # CU
100% RexNeo 15 3.9
100% XeonPhi 66 0.3
100% Xeon 286 1.9

should achieve one exaFLOPS, with a consumption of 20 MW (or below) [98]. The machines in
Table 3.2 are the hypothetical machines made with only one of the computing units previously
presented.

The first observation is the fact that an exascale machine made only with RexNeo computing
units can achieve one ExaFLOPS with 15 MW, which is under the recommended limit fixed by
the DOE. The second observation is that a machine reaching one ExaFLOPS made only with
KNL XeonPhi or Xeon is unconceivable when considering power consumption and the required
limit imposed by the DOE. However, because these CUs are very common in the supercomputer
field, we will keep them in the study.

Along with overall recovered energy from the usage of TEG, the return on investment is an
important parameter to consider. In fact, as motivated earlier, TEGs offer a way to recover
wasted energy. Therefore, this recovered energy is an amount of energy that will not be asked
by the machine, thus it does not have to be produced elsewhere and bought. To compute the
return on investment, we consider a new metric yReturn: it represents the number of years after
which having installed TEGs on all CUs becomes profitable. It is defined as:

yReturn = TEGsOverallCost
SustainedWattCostOneY ear×recoveredEnergy

,

hence by dividing the overall cost of TEGs by the cost saved within one year thanks to the
generated energy. In fact, the TEG costs will be amortized on the recovered energy costs. This
generated energy could be directly used in the supercomputer or sold back to the provider, and
it corresponds to an amount of energy that would have been asked to the provider. Recovered
energy becomes a direct benefit past yReturn years.

3.3.4 Theoretical calibration to evaluate the impact of TEG

The followed hypothesis is to put a TEG on every computational unit and to estimate how
much energy would be recovered with the previous described environments (Table 3.1) extended
to these exascale machines (Table 3.2) and on current supercomputers. Table 3.3 shows the
hypothetical gain with a TEG with an efficiency ηmax between 3 and 5% on every CU on the
hypothetical machines that we chose for our exascale machines. In addition to the realistic
values, we study the best hypothetical efficiency (ZT= 5, ηmax around 12 % on Figure 3.4) in
the supercomputer case. Even if the percentage is low, the energy recovered is equivalent to a
non negligible computing unit number for every exascale machine.

Such an installation is beneficial only if the price of the deployment of TEGs is quite accessible
and if the return on investment is under the lifetime of the supercomputer on top of which it
was built.

In Table 3.4, we display the price of applying TEGs on every CU. Prices are from websites
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Table 3.3: Energy recovered in MegaWatts and equivalent computing unit consumption com-
pensation

Machine 3% (MW) 5% (MW) 12 % (MW)
100% RexNeo 0.47 0.78 1.87
100% XeonPhi 2 3.3 8.0
100% Xeon 8.5 14 34.38

Machine 3% (#CU) 5% (#CU) 12 % (#CU)
100% RexNeo 117 188 195 313 468 750
100% XeonPhi 10 000 16 667 40 000
100% Xeon 59 289 98 814 237 154

for common usage and TEG vendors ($43 and $104). We could imagine that the cost for such
a machine, per TEG, will be lower. As a lower bound, we consider an extreme case where a
TEG costs $1. Even with common usage prices, applying a TEG on every CU stays reasonable,
considering the price of a supercomputer such as Tianhe-2 as a reference. Note however that this
cost only integrates the raw cost of TEG, without considering manpower and other deployment
costs.

Table 3.4: TEG on CU - overall cost in million dollars and return on investment

Machine TEG $4 TEG $10 TEG $1
100% RexNeo 15.6 39 3.9
100% XeonPhi 1.3 3.3 0.3
100% Xeon 7.9 19.7 1.97

$4, 3% $10, 5% 1$,12%
100% RexNeo 33.3 50 2
100% XeonPhi 0.6 1 0.04
100% Xeon 0.9 1.3 0.05

Based on the hypothetical exascale machines described in Table 3.2, the cost of having a
TEG on every CUs of this machine is described in Table 3.4. The cost of one sustained Watt
per year is fixed at $1 in our case. The bottom part of this table shows the return on investment
of the different scenarios (i.e under various TEG cost and ηmax).

Because of the low FLOPS of RexNeo, a very high number of CUs are needed to achieve
one exaFLOPS. Thus, the return on investment for this machine is drastically high, overcoming
the usual life time of a supercomputer. Except for this specific configuration, other hypothetical
exascale machines benefit from TEGs between 8 months and 1 year and 4 months.

One can ask if the actual return on investment does not overcome the life time of a TEG.
In fact, TEGs could last more than 15 years [11], so there should be no need to replace them
during the lifetime of the supercomputer. In comparison, the return on investment of an exascale
machine made only with XeonPhi or Xeon computing unit is very low.

To see the potential impact of TEGs on a real architecture, we chose to focus on the second
machine on the top500, Tianhe-2 [107]. This supercomputer has been the number one machine
in terms of peak performance for three years (from 2013 to 2016).

3$4 TEG example
4$10 TEG example

http://www.aliexpress.com/item/Thermoelectric-Power-Generator-Peltier-Module-TEG-40-40mm-High-Temperature-150C/32591936479.html?spm=2114.01010208.3.183.qfuTCV&ws_ab_test=searchweb201556_10,searchweb201602_4_10017_10021_507_10022_10020_10018_10019,searchweb201603_1&btsid=bccb69e1-d8ab-40e1-8121-35594988a90e
http://www.aliexpress.com/item/Thermoelectric-Generator-TEP1-126T200-Seebeck-Power-Generation-Element/32561924360.html?spm=2114.01010208.3.1.YpugX0&ws_ab_test=searchweb201556_10,searchweb201602_4_10017_10021_507_10022_10020_10018_10019,searchweb201603_1&btsid=71dac770-8cc2-483d-bceb-196f3bf5dea3
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As exposed in [40], every CU of Tianhe-2 is composed of two Xeon processors and three
Xeon Phi accelerators. There are 16000 computational nodes accompanied with 4096 front end
nodes. It costs around 2.4 billion yuan, i.e., around 390 million US$ [107].

Tianhe-2 is composed of 32000 Xeon E5-2690 processors with each a TDP of 115W , along
with 48000 Intel Xeon Phi 31S1P accelerators, with a TDP of 270W . Finally, 4096 Galaxy
FT-1500 with a TDP of 65W , are composing the front end nodes of Tianhe-2.

The total facility energy and IT equipment energy exposed consumption of Tianhe-2 in
[40] is around 24 and 17 MW, respectively. The Power usage effectiveness (PUE) of such an
infrastructure is around 1.41.

As explained in Section 3.3.2, the maximum efficiency in a supercomputer environment and
with current TEGs technology is estimated to be between 3 and 5%, and the most optimistic
efficiency is around 12%.

Table 3.5: Energy recovered in MegaWatts and equivalent computing unit consumption com-
pensation in the Tianhe-2 case

Machine 3% (MW) 5% (MW) 12 % (MW)
XeonPhi 0.38 0.648 1.55
Xeon 0.11 0.184 0.44
Galaxy 0.0079 0.0133 0.032

Machine 3% (#CU) 5% (#CU) 12 % (# CU)
XeonPhi 960 1600 5760
Xeon 1440 2400 3840
Galaxy 122.88 204,8 491.2

Even if ηmax is equal to 3% of 5%, Table 3.5 shows that the energy recovered is equivalent
to a non negligible number of CUs. Such an installation could be beneficial if and only if the
return on benefit is inferior to the supercomputer lifetime.

Table 3.6: TEG on all Tianhe-2 CUs - Profitability (years)

TEG $10
3% 5% 12%

XeonPhi 2,89 1,73 0,72
Xeon 1,23 0,74 0,30
Galaxy 5,12 3,07 1,28
TEG $4

3% 5% 12%
XeonPhi 1,15 0,69 0,28
Xeon 0,49 0,29 0,12
Galaxy 2,05 1,23 0,51
TEG $1

3% 5% 12%
XeonPhi 0,28 0,17 0,07
Xeon 0,12 0,07 0,03
Galaxy 0,51 0,30 0,12

Table 3.6 presents how much time, in years, it would take to recover the cost of one TEG on
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every CU for Tianhe-2. This table presents various TEG configuration results. The worst case
concerns the front end node with a TEG that costs $10. If we consider only CUs, the worst case
is still the 3% TEG that costs $10, which will become profitable after approximately 3 years of
usage.

Tianhe-1A is up since 2010, Titan since 2012, while Tianhe-2 is up since 2013. Even in the
worst case, the time in which our hypothetical TEG deployment on Tianhe-2 CUs will become
profitable is way under the usage of a supercomputer. In fact, as shown in the Top500 list, a
supercomputer usage could last a few decades.

With a reasonable and realistic TEG cost and a recycling efficiency, it becomes profitable,
concerning CUs, only after 0.69 year, approximately 9 months (for example a $4 TEG with an
efficiency of 5%).

3.4 Conclusion about mono leverage study

Through this chapter, we studied a methodology to study a leverage:

• We focused on a general problem to answer and look for a relevant leverage to answer or
partially answer this question;

• We model the leverage, its various costs and influences, how it interacts with its environ-
ment and evaluate the various costs of the leverage;

• We understand the various contexts where the studied leverage could be applied and be
beneficial, from an energy perspective;

• We then provide a way to answer a new constraint for the given leverage thanks to a new
actor focusing and answering a unique constraint.

This methodology permits to evaluate and model a leverage, how it could be configured and
how useful it could be. This methodology only focuses on one leverage at a time, which permits
an analysis of the impact of a leverage on its environment. Thus it permits to evaluate and
make sure that a leverage will be relevant on a given set of contexts. These kind of studies are
necessary to assert that a given leverage is relevant and is significantly helping to answer a given
problematic.

In our theoretical application of our proposed methodology, we show that the TEGs are an
energy leverage in a supercomputer environment. Indeed, TEG usage could save energy and be
quickly profitable, even if it is not the best environment to exploit the potential of TEGs. In fact,
such an environment implies a low delta temperature between hot and cold side of the TEG,
a low hot temperature on the computing unit, and thus a low maximum efficiency. However,
theoretical applications show that even if only a small fraction of the heat could be transformed
into energy, the return on investment could be short. Thus, at the petascale or exascale level,
where every hypothetical energy gain is mandatory, it could be a new way to recover energy.
We present the feasibility of energy harvesting on a petascale and exascale environment using
the ThermoElectric Generators leverage.

Because this methodology is only focused on the study of one leverage, it does not allow us
to evaluate the interaction and the combination of leverages, or the influence on other leverage
usages. Also, it does not allow us to combine one leverage with the other and evaluate their
interactions. It allows us to evaluate and model a leverage and make sure that using such a
leverage will be beneficial in a given context.
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In the previous chapter, we explored the feasibility of studying a unique leverage with our
previously proposed methodology and applied it in a theoretical study of the Thermo Electric
Generators. In this chapter, we apply that methodology from the discovery of the leverage to
an expandable actor composition to fulfill several chosen constraints at the same time, with the
example of the Shutdown leverage.

Multiple constraints have to be taken into account for such a leverage to be applied on
real infrastructures: the time and energy cost of switching on and off, the power and energy
consumption bounds caused by the electricity grid or the cooling system, and the availability of
renewable energy. In this chapter, we propose actors translating these various constraints into
different shutdown approaches that can be combined for a multi-constraint purpose. Our actors
and their combinations are validated through simulations on a real workload trace.

4.1 Introduction

In Chapter 2, we exposed several leverages that have been proposed by system designers in
order to help reducing electrical power consumption, as for instance shutdown and slowdown
approaches. The first and most explored solution consists in turning on and off resources de-
pending on platform usage. Nowadays, hardware components of a datacenter or supercomputer
(servers, network switches, data storage, etc.) are not yet energy proportional. In fact, the static
part (i.e., the part that does not vary with workload) of the energy consumed, for instance by
computing units, represents a high part of the overall energy consumed by the nodes. Therefore,
shutting unused physical resources that are idle and not expected to be used in a predicted
duration could lead to non negligible energy savings, as previously exposed in Section 2.2.1.
Several works that studied the energy-related impacts of the shutdown leverage, as exposed
in Section 2.3.3, did not consider any transition cost for switching between on and off states,
but they nonetheless showed the potential impact of such a leverage. Yet, aggressive shutdown
policies are not always the best solution to save energy [80].

Shutdown seems to be a relevant leverage to save energy, but this leverage cannot be applied
at large scale if no constraint is respected on the target system. This is especially true if three
types of constraints are taken into account: the cost of shutdown and wake-up (in terms of time
and energy), electric and thermal constraints imposed to the whole infrastructure. We can see
the computing facility as a composition of IT machines and cooling system, communicating with
an electrical provider to deal with various electric related constraints.

Supporting shutdown of large amount of resources can be risky as it impacts the whole in-
frastructure of supercomputers (electricity provision, cooling systems, etc.). Resource providers
and managers can be human who are responsible of the administration of large supercomputers,
but they can also be software components that deal with resources (schedulers, resource man-
agement frameworks, etc.). Actually, turning off too many nodes could cause the temperature
to be too cold and the power used to be under the minimum power capping negotiated with
the electrical provider. Likewise, if too many nodes are turned on and if the energy consumed
during shutdown and wake-up sequences is taken into account (which is far from being free),
limits fixed by the power provider can greatly be overcome and at the same time, could cause
the temperature to raise drastically, creating hotspots. If such constraints are not taken into
account, they can put into danger machines composing the studied computing facility.
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This chapter addresses the question on how resource providers and managers can be helped
to validate their constraints concerning the shutdown of large amount of physical computing,
storage and networking resources. In the context of this chapter, the proposed actors and
validations will focus on servers (called nodes). The study of the shutdown leverage and the
proposed actors are done through the previously proposed methodology to underline, evaluate
and model a single energy leverages exposed in Chapter 3.

The proposed solutions in this chapter aim at:

• Modeling the shutdown leverage that can be used under actual and future supercomputer
constraints;

• Taking into account the impact of On→Off (from on to off state, corresponding to a shut-
down operation) and Off→On (from off to on state, corresponding to a wake-up operation)
sequences in terms of time, power and energy;

• Taking into account idle and off states observed after such sequences, since they deeply
impact the electrical usage of resources;

• Allowing a mono or combined usage of actors in order to help resource managers and
providers to respect several constraints at the same time.

This chapter explores the creation of shutdown actors for several constraints that can be
handled by resource providers and that deal with infrastructure constraints:

• The basic actors allow comparisons with several related works where turning on and off
can be free and immediate.

• The sequence-aware actors focus on the On→Off sequences when providers want to switch
off several useless resources and to switch them on again when these resources are needed.
These actors deal with the availability of scheduling On→Off sequences during gaps and
their potential energy benefits.

• The electricity-aware actors deal with the electrical provision of supercomputers in order
to avoid large-scale aggressive electrical demands (due to massive switch on of resources)
and to respect power capping requirements.

• The cooling-aware actors respect the constraints imposed by the cooling infrastructure
associated with the supercomputer. They follow the thermal constraints of the system by
reducing the number of possible On→Off sequences.

• The renewable-energy-aware actors support selective shutdown policies by considering the
electricity provenance (from renewable energy or from fossil-based energy sources).

The proposed actors are described one by one and their combined usage is illustrated. Such
actors are validated through simulation on real trace log usage.

The chapter is organized as follows. Section 4.2 exposes how the shutdown leverage operates,
following the first steps of the methodology presented in Section 3.2, from detecting all states
(Section 3.2.1), to evaluating the impact of such a leverage on energy (Section 3.2.2). Section 4.3
presents the monitoring of the shutdown leverages on various architectures, the fourth step
described in Section 3.2.3 of the proposed methodology. Section 4.4 presents the modeling of
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the various shutdown (On→Off) constraints and creation of all actors introduced above. It also
explains how the actors can be used and combined, which corresponds to the last step of the
methodology presented in Section 3.2.4. The experimental setup is described in Section 4.5.
Experimental results are analyzed in Section 4.6 and Section 4.7 for large scale and finer grain
studies, respectively. Finally, Section 4.8 concludes this work.

4.2 How shutdown leverage works

In this section, we develop the first steps of the previous methodology: evaluate and model the
states and state transitions for a given leverage, in this case the shutdown leverage.

4.2.1 Sequence definitions: example of Off→On sequences for nodes

For node i, Seqi = {(t0;AvgP0), . . . , (tn;AvgPn)} is the set of timestamps and average power
consumption measurements of an Off→On or On→Off sequence, where t0 and tn represent the
starting and ending time respectively of sequence Seqi on node i. The length of the sequence
is therefore tn − t0. At timestamp tk (1 ≤ k ≤ n), AvgPk is the average power consumption of
node i.

To monitor such sequences, we use an external power monitoring allowing us to trace power
consumption of nodes at a rate of one averaged power value per second. Figure 4.1 illustrates
the boot sequence (or Off→On sequence) on Linux based servers, widely used on supercomputer
infrastructures. First of all, power is supplied to SMPS (Switched-Mode Power Supply), which
converts AC to DC. The BIOS (Basic Input Output System) is bootstrapped and launches
POST (Power on Self Test), a series of tests by the BIOS, that checks the proper functioning of
different hardware components. Then MBR (Master Boot Record), the first or last bytes of the
disk, is loaded. MBR permits to launch GRUB (Grand Unified Bootloader), which is responsible
for choosing the kernel to be launched. INIT is the first executed process. It is in charge of
running all runlevels (“/etc/rcX.d/”).

Along with computing nodes, Grid’5000 provides management tools like kapower3, a utility
that allows a user to have control on the power status of a reserved node1. On mulitple sites, it
gives access to external wattmeters monitoring entire servers and providing one power measure-
ment per second per server with a 0.125 Watts accuracy. We monitor the boot sequence (wake-up
operation, Off→On) to detect when each event happens. Unfortunately, no information can be
extracted between BIOS and GRUB operations. The first event that can be monitored in this
sequence is the Kernel launch; this is the main reason of the aggregated sections of BIOS-MBR-
GRUB in Figure 4.2, which shows how the power evolves with time during a monitored boot
sequence, on a Taurus node (from Grid5000 experimental platform, previously explored in the
previous chapter, the node characteristics are presented in Table 4.1).

We get the time where kernel starts with the “dmesg” tool (which is a logging of what
happened during the launch of the kernel). The INIT monitoring is made by modifying the
runlevel script.

Next, we detail the set of possible states accounting for these Off→On and On→Off se-
quences.

1https://www.grid5000.fr/mediawiki/index.php/Power_State_Manipulation_commands

https://www.grid5000.fr/mediawiki/index.php/Power_State_Manipulation_commands
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Figure 4.1: Linux monitored boot sequence.
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Figure 4.2: Averaged monitored Off→On sequence of a Taurus node running Linux: BIOS-
MBR-GRUB sequence in red; Kernel in green; Init in gray (average of 50 runs).

4.2.2 Possible states and graph of transitions

Since we wish to account for Off→On and On→Off sequences, we partition the devices taken
into account into four distinct sets as illustrated in Figure 4.3:

• ON in progress: Set of nodes in the Off→On sequence;

• ON: Set of nodes turned on, able to receive computation. This state is divided into two
sub-states: Idle and Run;

• OFF in progress: Set of nodes in the On→Off sequence;

• OFF: Set of nodes turned off, unable to receive computation.

Figure 4.3: States and transitions during various sequences.

Furthermore, we denote by ALL the set of all nodes. We define our action scope only on
the Idle state, i.e., nodes that are turned on but not currently computing. Nodes on the Run
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state (i.e., currently computing) are not on the action scope of this actor, since it is rather the
scope of the scheduler to decide to stop computation and turn nodes to the Idle state. We need
however to be aware of the nodes in the Run state since we aim at ensuring a global power
capping. Thus, a node goes from the ON in progress state to the ON state through the Idle
state. It can leave the ON state only when it is in the Idle state.

In Figure 4.3, the dotted line square therefore represents the scope of the actors described
here. We aim at allowing a set of nodes to switch from one state to another, by taking one of
the four numbered transitions. Transitions 2 and 4 are automatically taken at the end of the
ON in progress or OFF in progress states, while we may decide to trigger transitions 1 or 3.

A node in the ON in progress state could be in several sub-states, according to the Linux
boot sequence: BIOS-MBR-GRUB, Kernel, Init, or whatever boot up sequence is defined on the
node. We consider other states as atomic.

We use the actors as follows: we decide what can be done at the current time-step Tc,
knowing that there is an idle interval of length Tgap on a given node. In our case, the actor
decides whether the node should be shut down, given the enforced constraints.

4.3 Shutdown energy calibration

This section presents the energy calibration concerning the shutdown leverage done on two types
of architectures: actual and promising architecture to reach energy proportionality. We imposed
a strict protocol for calibration: an idle period of 20 seconds, followed by a calibrated On→Off,
then a 20 seconds Off section finally followed by a Off→On sequence. Thus, every energy and
time calibration sequence is followed and previewed with idle periods to avoid noise.

4.3.1 Actual architectures

Grid’5000 servers are representative of typical architectures that can be found in usual datacen-
ters. As it is an experimental testbed mainly for distributed systems research, it presents a high
variety of servers (currently 24 different clusters). We used servers from three clusters which are
power-monitored (one server per cluster). These servers presents heterogeneous characteristics
described on top of the Table 4.1.

To obtain the needed calibration values, we monitored the three servers while performing
switching off and on operations. These nodes are running a standard Debian Jessie (Debian
GNU/Linux 8.0 for x64 architectures). The results presented on the bottom part of Table 4.1
show averaged values over 100 experiments for these operations with the S5 mode (regular
shutdown). Note that the standard variation of every chosen node for every chosen calibration
is negligible.

We performed similar experiments for the S4 mode (Suspend-to-Disk). However, our exper-
iments show that S4 mode takes more time to switch between On and Off states (TOnOff ) than
the S5, the same time for switching between Off and On (TOffOn), and a similar Off power
consumption (POff ). Consequently, this mode is useless from an energy point of view. The
nodes do not support the S3 mode (Suspend-to-RAM).

4.3.2 Future energy proportional architectures

The ARM big.LITTLE processor is an example of promising architecture from an energy point of
view. It combines a low-power processor with a high-performance one to offer an heterogeneous
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Table 4.1: Calibration nodes’ characteristics and energy parameters for On-Off and Off-On
sequences (average and standard deviation on 100 experimental measurements)

Features Orion Taurus Paravance
Server model Dell PowerEdge R720 Dell PowerEdge R720 Dell PowerEdge R630
CPU model Intel Xeon E5-2630 Intel Xeon E5-2630 Intel Xeon E5-2630v3
# of CPU 2 2 2
Cores per CPU 6 6 8
Memory (GB) 32 32 128
Storage (GB) 2 x 300 (HDD) 2 x 300 (HDD) 2 x 600 (HDD)
GPU Nvidia Tesla M2075 - -

Parameters Orion Taurus Paravance
Average Std dev. Average Std dev. Average Std dev.

EOffOn (J) 23,386 215.45 19,000 169.6 19,893 1,571.2
EOnOff (J) 775.79 125.6 616.08 75.23 1,115 82.3
TOffOn (s) 150 1.73 150 1.49 167.5 16.6
TOnOff (s) 6.1 1.0 6.1 0.7 13 1.9
Pidle (W) 135 0.5 95 0.4 150 0.9
Poff (W) 18.5 0.4 8.5 0.3 4.5 0.6

architecture closer to power proportionality than other processors even with dynamic frequency
scaling [65]. The idea consists in activating one processor at a time: either the low-power one
during low workload or the powerful one during high activity.

This concept has been extended to data centers in [109] in order to build power-proportional
servers. In this approach named BML (Big, Medium, Little), a computing node is composed
of three processing units aiming at different levels of workload and energy consumption. It is
assumed that each processing unit is able to be turned on and off independently from the others.

We take the same BML configuration that the calibration measurements presented in [110].
A Big unit corresponds to Graphene node on Grid’5000 platform, a Medium unit corresponds
to a Chromebook and finally, a Little unit corresponds to a Raspberry node. We then assume,
as in [110], that it exists a computing node composed with these three processing units. The
required energy values for BML nodes are provided in Table 4.2. The Medium unit presents a
behavior different from the two others with a TOffOn < TOnOff .

Table 4.2: Initial calibration values for independent BML units from [110]

Parameters Big Medium Little
EOffOn (J) 4,940 49.3 40.5
EOnOff (J) 760 77.6 36.2
TOffOn (s) 71 12 16
TOnOff (s) 16 21 14
Pidle (W) 47.7 4 3.1
Poff (W) 8 1.9 2.2

We consider several configurations where BML components can be turned off separately or
simultaneously. The considered configurations are the following:

• AtomicBML: the three processing units composing a BML node are turned off simultane-
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ously, behaving as a single node. For this configuration, the energy values EOffOn and
EOnOff are the sum of the three units’ values, the times TOffOn and TOnOff are the max-
imum as we assume that components can be switched in parallel, and the power values
Pidle and Poff are the sum.

• OnlyB, OnlyM, OnlyL: only one of the processing unit composing the BML node is turned
off. In this case, Poff corresponds to the sum of the Poff of the turned off processing
unit and the Pidle of the others. Pidle corresponds to the sum of the three Pidle. TOffOn,
TOnOff , EOffOn and EOnOff are equal to the values in Table 4.2 of the component which
is switched on or off.

• FlexibleBML: all possible computing units are turned off individually: if an idle period
does not allow for all processing units to be turned off, only the possible ones are turned
off.

These use cases represent possible configurations of future processing architectures which
should get closer to energy proportionality than current ones. One can wonder if shutdown
techniques can be beneficial for such architectures from an energy point of view.

4.4 Actors

In this section, we introduce and define all the actors and the constraints they are respecting in
Section 4.4.1. We then explain how to combine the actors in Section 4.4.2.

4.4.1 Actor definitions

In this section, we derive several actors, assuming that we have a given knowledge about the
node reservations, i.e., for each node, we have a list of intervals during which the node is in the
idle state. We aim at deciding whether this node can be turned off and then back on, while
respecting the constraints of the system and improving the goals. These are actor-dependent
and are detailed in the next sections.

We therefore provide an entity giving advice on changing the state of a (set of) node, making
sure that the overall system responds to the described constraints. This entity is called an actor.
It is, here, acting on the OnOff leverage.

Basic actors

Two basic actors are used by most works in the literature: either the nodes are never shut
down (No-OnOff actor), or there is no cost (time, energy, thermal) to turn on or off a node
(LB-ZeroCost-OnOff actor: Lower Bound Zero Cost OnOff actor), making it very simple to
shutdown a node (but very far from reality). In this context, the node consumes nothing when
executing an On→Off or Off→On sequence. Thus, there is no cost nor time spent to switch
state, and no power peak observed during the sequence. Therefore, switching on or off nodes
has no impact on the system. This LB-ZeroCost-OnOff actor hence provides a theoretical
lower bound on the gains that can be achieved by shutting down nodes.
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Sequence-aware actors

The sequence-aware actors make sure that the sequence observed on a node or set of nodes
during On→Off or Off→On sequences does not overcome the fixed constraints (time, energy,
etc). Therefore, we need to record a few data for every node composing the studied case, in
particular a record of the Off→On sequence and of the On→Off sequence.

Time constrained actor The Seq-Aw-T (Sequence-Aware Time) actor checks whether there
is enough time to perform an On→Off followed by an Off→On sequence on a node, given the
available time slot where the node is idle. Let Tgap be the size of the “gap”, i.e., the interval of
idle time of the node. Then, Seq-Aw-T allows us to turn off the node in this time slot if and
only if TOnOff + TOffOn ≤ Tgap, where TOnOff (resp. TOffOn) is the time spent by the node during
an On→Off (resp. Off→On) sequence.

Energy constrained actor The Seq-Aw-E actor (Sequence-Aware Energy) further refines
Seq-Aw-T by checking whether turning off the node is beneficial in terms of energy. The
minimum time Ts of the gap is now further constrained by the energy savings:

Ts = max

(

TOnOff + TOffOn,
EOnOff + EOffOn − Poff(TOnOff + TOffOn)

Pidle − Poff

)

,

where:

• Pidle is the power consumption when the node is in the Idle state (unused, but powered
on);

• Poff is the power consumption when the node is switched off (typically not null and lower
than Pidle);

• EOnOff is the energy consumed during the On→Off sequence;

• EOffOn is the energy consumed during the Off→On sequence.

The first term states, as for Seq-Aw-T, that at least a time TOnOff + TOffOn is needed to
turn off the node (and back on) during the idle interval. The second term ensures that there
will be gains in energy: the energy saved by running at Poff rather than Pidle is Ts(Pidle − Poff)
during the interval, but the additional energy due to the On→Off and Off→On sequences is
EOnOff + EOffOn − Poff(TOnOff + TOffOn). Therefore, if Ts < Tgap, where Tgap is the size of the
“gap”, i.e., the interval of idle time of the node, then it is beneficial to turn off (at the beginning
of the gap) then on (at the end of the gap) the node, in terms of energy consumption.

Electricity-aware actor

The electricity-aware actor, Elec-SF (Electrical Scalability Factor), aims at ensuring the safety
of the computing facility through its electrical provisioning, given that the following information
is provided: how many Watts could be added (ESF-Up) or retrieved (ESF-Down) in the facility
in a given duration? We call this the electrical scalability factor (ESF). For instance, between
0 W and 1, 000 W of power usage of IT equipment (WIT ), 10 Watts can be added in the facility
overall usage during one second, as illustrated in Table 4.3.
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For IT power (WIT ) ESFUp

0 W → 1, 000 W +10 W during 1s
1, 000 W → 10, 000 W +50 W during 1s
10, 000 W → 100, 000 W +100 W during 1s

Table 4.3: Electrical Scalability Factor illustration.

From this information, we can define the function electricalScalabilityFactor(X), which
returns true if the addition or removal of all nodes in set X will be supported energetically by
the infrastructure and the electrical provider, i.e., if the ESF is respected.

In this context, the actor allows us to turn off and then on nodes during an idle interval if
and only if the global ESF is respected for all nodes at the time of the On→Off and Off→On
sequences.

Power-capping-aware actor

The Power-Cap actor (Power-Capping-Aware) aims at maintaining an average power budget
and guaranteeing minimal or maximal electrical power consumption. Indeed, turning on and off
components could lead to hard power capping disruption.
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Figure 4.4: On→Off followed by Poff, Off→On, and finally Pidle section for Taurus (Grid’5000)
calibrated node (average of 50 runs).

Figure 4.4 shows a set of consecutive sequences: an On→Off sequence, a section in the OFF
state, an Off→On sequence, and finally a section in the idle state. These experiments represent
the shutdown and boot of a node during a gap (i.e., idle interval in the schedule). All the
previous actions energetically stress the node, whether it is in an upper or lower way.

A minimum power capping (POWERCAP_Min) represents a constraint set by the elec-
trical supplier, defined by providing a lower bound on power. A maximum power capping
(POWERCAP_Max) represents power limit fixed by the electrical provider, defined by an
upper bound on power. These minimum and maximum power capping values may be a function
of the time, i.e., the requirements may change in time.
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We introduce the function PowerSum(X), which returns the sum of the power consumed
by nodes in X.

We can turn Off or On nodes in setX if and only if PowerSum(ALL) ≥ POWERCAP_Min
and PowerSum(ALL) ≤ POWERCAP_Max at all time during the sequence.

Cooling system-aware actor

The Cool-Aw actor (Cooling System-Aware) accounts for the cooling system in use. Therefore,
we need to record basic informations about the chosen cooling system: the instantaneous needed
IT power (WIT ), and the Cooling Scalability Factor (CSFup and CSFdown) for every level of
cooling system, similar to the electrical scalability factor defined in Section 4.4.1.

We make the assumption that the cooling system has several working levels. Thus, several
power levels for cooling are available in function of the IT power needed by the cooling system.
For instance, between 0 W and 1, 000 W of power usage of IT equipment, one Watt can be
added in the facility overall usage during one second, as illustrated for CSFup in Table 4.4.

Renewable energy-aware actor

The last defined actor, Renew-E (Renewable Energy-Aware), assumes that we have the knowl-
edge of the provenance of energy (green or brown) at actual time and near future (predicted).
Green energy is provided with specific sources (sun, wind, etc.), while brown energy is mainly
provided with fossil materials (coal, oil, etc.). The aim of this actor is to minimize the usage
of brown energy. Hence, it decides to turn off nodes when brown energy can be saved. We as-
sume that the green energy production is done on-site, for instance through photovoltaic panels.
Furthermore, the facility does not sell its generated green energy. Therefore, no gain can be
obtained by turning off nodes when using the green energy. A consequence of this strategy is
that it will reduce the number of On→Off sequences for a same waste of usable energy.

At time t, EnergyProv(Src, t,X) checks if the provenance of energy on node X is Src,
where Src can be G (for green) or B (for brown). Then, at the beginning of an idle interval
(time-step tstart, interval of duration Tgap), we check whether there exists a time-step t such
that tstart < t < tstart+Tgap, and EnergyProv(B, t,X) is true. If this is the case, then we turn
off the node at time-step tstart.

4.4.2 Combining actors

The proposed actors can be implemented through several software components and organized
in a “workflow” of pipelined components. When an On→Off possibility happens in the system,
due to a gap in activity, this possibility is analyzed by each actor one by one. If each actor
gives an acceptance due to the observed constraints, the On→Off sequence can be scheduled.
We provide an example of combination of actors in Figure 4.5. It works as follows for a given
idle interval on a node:

For IT power (WIT ) between CSFup Level
0 W → 1, 000 W +1 W during 1s 1
1, 000 W → 10, 000 W +10 W during 1s 2
10, 000 W → 100, 000 W +100 W during 1s 3

Table 4.4: Cooling Scalability Factor illustration.
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• Seq-Aw-T advises the provider whether there is time to turn off the node and then back
on before it is in use again;

• Renew-E may tell the provider to turn off the node, because the current energy source
is brown;

• Cool-Aw may prevent the provider to turn off the node if it would stress it too much in
terms of temperature;

• Finally, Elec-SF may prevent the provider to turn off the node if it would stress it too
much in terms of electric power.
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Figure 4.5: Example of auto-triggered actor combination.

From the described combination of actors in Figure 4.5, a lot of possibilities are “consistent”
through the usage of the described actors, in their scope, their concerns and their combinations.

4.5 Experimental setup

To instantiate our actors in various configurations, we developed a simulator capable of replaying
a real datacenter trace, with real calibrations of nodes and jobs (time, power, energy).

4.5.1 Calibration of jobs, nodes and proposed simulation

Grid’5000[7], was used as a testbed. On the Lyon site, the energy consumption of all nodes
from all available clusters (Nova, Orion, Sagittaire, Taurus) is monitored through a dedicated
wattmeter, exposing one power measurement (Watt) per second with a 0.125 Watts accuracy
per node. Therefore, we can obtain detailed traces giving the energy consumption of jobs at
any time step. We extract an average power consumption of each job. Thanks to these traces,
we are able to replay in a realistic way the jobs and to simulate their corresponding energy
consumption.

We monitored Taurus nodes to calibrate in time, energy and power the Off→On and On→Off
sequences, as explained in Section 4.2; the results are detailed in Table 4.1.

The experimental setup must be close to the real environment where the actors want to be
applied, in order to be relevant during the analysis of the usage of such actors in a possible given
context. The following sections present our used experimental setups to show the relevance of
the shutdown leverage.

4.5.2 Experimental setup: large-scale study

Our first experimental setup represents large scales usage of the shutdown leverage to evaluate
its impact on large amount of nodes and for long periods of time. In order to provide a fair
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comparison among actors, we simulate their behavior on real workload traces. The simulation
tool is using calibration measurements that we performed on several servers representing different
hardware architectures. Simulations combine the workload traces and the energy calibration
values to compare actors.

The used workload traces come from two kinds of data centers: an experimental small-size
data center of an experimental testbed and a supercomputer for bioinformatics. They provide
two different utilization scenarios which exhibit different workload patterns and utilization levels.

Operational Cloud platform: E-Biothon

The E-Biothon platform is an experimental Cloud platform to help speed up and advance re-
search in biology, health and environment. It is based on four Blue Gene/P racks and a web
portal that allow members of the bioinformatics community to easily launch their scientific appli-
cations. Overall, the platform offers 4096 4-cores nodes, reaching a peak power of 56 Travel [33].

We obtained a workload trace for this platform covering from the 1st of January 2015 to the
1st of April 2016, so roughly 15 months of resource utilization. In this trace, the average size of
idle periods is around 2.8 hours while the overall usage is 98%.

Experimental testbed: Grid’5000

Grid’5000 is a large-scale and versatile testbed for experiment-driven research in all areas of
computer science, with a focus on parallel and distributed computing including Cloud, HPC
and Big Data [7]. Since 2005, the testbed offers distributed computing resources which are
highly reconfigurable. Thus, it is a unique operational platform dedicated to experiments. In
2016, it consists of about 1,000 servers embedding 8,000 overall, geographically distributed on
9 sites. For our evaluation, we took the workload trace of the Rennes site from the 1st of April
2010 to the 1st of April 2016, thus representing 6 years of resource utilization on this site. During
this period, the weighted arithmetic mean of the number of nodes is 149 and the average size of
idle periods is around 6.17 hours. The overall usage is around 33%.

4.5.3 Experimental setup: fine grain study

To show the impact of combined shutdown actors, a second experimental setup is used. For the
detailed evaluation of our various proposed actors, we extracted the real workload usage of the
Grid’5000 Lyon site from October 24, 2016 to November 1, 2016, thus representing approximately
one week of resource utilization on this site.

The trace only contains nodes that were used during this period, which is up to 76. We
consider that all nodes in the trace have similar Pidle, Poff, Off→On and On→Off sequences.
This work is focused on shutting down nodes, thus we consider that the scheduled jobs cannot
be moved.

We always combine a simulation of Seq-Aw-T with all other actors in order to allow a
correct execution of the actors when an On→Off followed by an Off→On sequence should occur.
Therefore, the evaluation of actors can be applied on the same workload.

Figure 4.6 represents the profile of accumulated power consumption of nodes in Lyon for the
extracted trace replayed with our previously exposed hypothesis. Table 4.5 presents statistics
for this trace, day by day in various points of interest: number of jobs, average job consumption,
and average job size. This week was chosen because of its representativeness of the workload
variability that we observed overall on this platform by looking at larger traces. Indeed, for
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Figure 4.6: Trace replay with No-OnOff (NO).
Day #Jobs Average job Average

power cons. (W) job size (s)
Oct. 24 (7PM to 12AM) 33 157.91 50,401.24
Oct. 25 (Full day) 144 155.08 23,002.74
Oct. 26 (Full day) 277 159.79 12,299.06
Oct. 27 (Full day) 353 154.11 13,819.43
Oct. 28 (Full day) 318 159.96 27,286.17
Oct. 29 (Full day) 171 174.11 41,525.71
Oct. 30 (Full day) 180 174.04 39,453.67
Oct. 31 (Full day) 563 173.39 12,821.24
Nov. 1 (12AM to 8AM) 48 179.25 17,179.17

Table 4.5: Grid5000 trace statistics.

this week, the power consumption trace exhibits important peaks (Oct. 28), short peaks (Oct.
31), short climbs (Oct. 24 to 25), important climbs (Oct. 26) and sustained stable sections
(Oct. 29), as shown in Figure 4.6 Variability of the trace can also be witnessed in Table 4.5 for
various usages either concerning number of jobs (for instance, the differences between Oct. 25
and 28), average job consumption (for instance, Oct. 27 vs 31) or average job size variability
(for instance, Oct. 26 vs 29) witnessed from one day to another.

The following sections present the results of the simulator for large scale and finer grain scale
on the extracted traces with calibrations of Orion, Taurus and Paravance nodes (Table 4.1) while
applying previously defined actors. Note that for the fine grain simulations, we always combine
the actors (except No-OnOff and LB-ZeroCost-OnOff) with Seq-Aw-T to ensure that
the node is in the On state when it starts computing on the trace (and hence that we decide to
turn off the node only if it can be turned on before the end of the interval).

4.6 Impact of energy-aware actor: large-scale study

This section explores the simulation results of the shutdown actor that focuses on energy
(Seq-Aw-E) with the various hardware calibrations and the large scale workload traces de-
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scribed in Section 4.5.2. For every trace replay, the nodes are assumed to be homogeneous.
Thus, every node of the trace is respecting the configuration of one of the calibrated nodes for
each run. Such a study permits to evaluate and give tenancies about expected energy saving at
large scale.

4.6.1 Experiments on actual architectures

We first examine the case of current architectures based on the calibration made on the Grid’5000
nodes and described in Table 4.1. While actor Seq-Aw-E always performs exact prediction of
the future workload in order to adequately switch on and off the nodes, Aggressive actor (Aggr.)
does not attempt to foresee the future and switches off a node as soon as it is unemployed. It
does not consider the future and tries to switch off a server as soon as it is in idle state without
any prediction attempt. Such an approach is expected to result in a higher energy consumption
than Seq-Aw-E because many idle periods may be lower than Ts. In such cases, switching off
increases the energy consumption compared to staying idle. The LB-ZeroCost-OnOff actor
assumes that state transitions have no cost in terms of energy and time, but switched off nodes
are still consuming a bit (Poff 6= 0), so the energy gains of this actor are not 100%.

Table 4.6 shows the percentage of energy that could be saved during idle periods with each
actor compared to the energy consumed if nodes are never switched off. The last two columns
present the average number of On-off cycles per node for the entire duration of the workload
(respectively 6 years and 15 months for the two workload traces).

Table 4.6: Energy gains on idle periods and number of on-off cycles per node for current servers

% Energy saved on idle periods # On-Off cycles per node
Calibration Seq-Aw-E Aggr. LB-ZeroCost-OnOff Seq-Aw-E Aggr.

Grid’5000 trace, 6 years, 149 nodes on average

Orion 85.87% 85.59% 86.29% 3,080 5,690
Taurus 90.56% 90.22% 91.05% 2,980 5,690
Paravance 96.66% 96.46% 97.00% 3,333 5,690

E-Biothon trace, 15 months, 4096 nodes

Orion 85.18% 84.56% 86.29% 33 70
Taurus 89.83% 89.07% 91.05% 33 70
Paravance 96.03% 95.61% 97.00% 38 70

The results show that by turning off nodes, even when considering On-Off and Off-On costs,
consequent energy gains can be made on real platforms. In the most unfavorable configuration
(ie. Orion configuration), by using shutdown techniques, we can theoretically save up to 86% of
the energy consumed while being in idle state. In the case of Grid’5000 trace, this percentage
represents around 706,000 kWh for the 6 years, so roughly a cost of 70,600 euros (at a cost
of 0.10 euros per kWh). For the E-Biothon trace, we can also save up to 86% of the energy
consumed in the idle case, this represents 109,000 kWh for 15 months, roughly 10,900 euros of
loss to keep servers idle.

The number of On-Off cycles per node reaches at the maximum 5, 690 for the 6-year Grid’5000
traces, so 2.59 per day, far less than the 50,000 start/stop cycles typically allowed by HDD
manufacturers during their 5-year lifetime under warranty [96, 97]. This clearly states that even
aggressive shutdown actors have no impact on disk lifetime.
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It is worth noticing that significant energy gains can be performed for both traces even
though they present completely different use cases. In particular, the E-Biothon trace comes
from an operational bioinformatics supercomputer and although energy savings are smaller than
for the Grid’5000 trace in comparison with the infrastructure size, they are still not negligible,
representing around 73,680 kWh per year for the Orion case (most unfavorable case) with a basic
shutdown actor like Aggr. (without prediction algorithm).

The energy saved with actors Seq-Aw-E andAggr. are very close to the LB-ZeroCost-OnOff

actor (around 2% difference in the worst case). Even without knowledge about the future (actor
Aggr.), energy gains are quite similar. This means that even simple shutdown actors – not
including workload predictions – can save consequent amounts of energy, close to the optimal
bound. These results show that the energy gains of Seq-Aw-E and Aggr. is too close (for Orion
0.28% of difference between the actors, roughly 2,000kWh over 6 years) to justify the elabora-
tion of a prediction algorithm: such a complex algorithm to design would only bring negligible
benefits from an energy point of view.

4.6.2 Experiments on promising future architectures with improved shut-

down modes

After this analysis on current hardware, we study the impact of shutdown techniques on en-
visioned future architectures: regular nodes with an S3 mode (Suspend-to-RAM) and power-
proportional nodes. For the S3 mode, it was not available on the Grid’5000 servers used for
our calibration measurements. However, one can assume that when this technology will be-
come more mature and used in hardware composing datacenters, it could present an appealing
trade-off between energy consumption (for switching off nodes) and reactivity (for their short
switching time TOnOff and TOffOn).

Table 4.7: Assumed energy calibration on envisioned nodes with S3 mode

Parameters Values

EOffOn (Joules) 2,300
EOnOff (Joules) 2,300
TOffOn (seconds) 10
TOnOff (seconds) 10
Pidle (Watts) 135
Poff (Watts) 37

Ts (seconds) 20

After discussing with people from the Leibniz Supercomputing Centre operating the Super-
MUC HPC system [2] on which S3 is available, we get quantitative indications stating that, the
power consumption on S3 mode is about twice bigger than when regularly switched off, and
that the On-Off and Off-On sequences are close in terms of duration. So, based on an Orion
calibration from our measurements (as presented in Table 4.1), we assume that an envisioned
node with S3 mode would present the energy calibration parameters shown in Table 4.7.

Table 4.8 compares the energy gains with this S3 mode to a regular shutdown (S5) for
the Orion case as shown in previous results presented in Table 4.6. Results indicate that S5
mode allows for more energy savings than S3 mode on these traces. Indeed, idle periods are
long enough to easily compensate for the energy and time costs of switching between states.



4.6. IMPACT OF ENERGY-AWARE ACTOR: LARGE-SCALE STUDY 55

Table 4.8: Energy gains on idle periods and number of on-off cycles per node with an envisioned
S3 mode

% Energy saved on idle periods # On-Off cycles per node
Calibration Seq-Aw-E Aggr. LB-ZeroCost-OnOff Seq-Aw-E Aggr.

Grid’5000 trace, 6 years, 149 nodes on average

Orion 85.87% 85.59% 86.29% 3,080 5,690
S3 72.51% 72.48% 72.59% 3,343 5,690

E-Biothon trace, 15 months, 4096 nodes

Orion 85.18% 84.56% 86.29% 33 70
S3 72.31% 72.26% 72.59% 52 70

However, the consumption while in S3 mode (Poff ) is, in this case, too high for competing
with the energy saving percentage reached with a regular shutdown. For the S3 mode to be
beneficial for workloads with consequent idle periods, it is thus required to diminish its energy
consumption (Poff ) rather than reducing the switching costs (and thus Ts).

4.6.3 Experiments on promising future energy-proportional architectures

Concerning power-proportional nodes, results are provided by Table 4.9 based on the calibration
values and configurations exposed in Section 4.3.2. As expected, for both actors, when only one
component over the three units composing the processing node can be switched off (cases OnlyL,
OnlyM and OnlyB), it consumes more than when the three can (AtomicBML and FlexibleBML).

Moreover, switching off only the Little or the Medium components result in little energy
savings (less than 9%). This explains that FlexibleBML – able to switch off the three components
independently or together – brings minor improvements compared to AtomicBML, where the
three components are always switched jointly (0.6% difference on actor Seq-Aw-E). For actor
Aggr. and configuration FlexibleBML, it gives the same results as configuration AtomicBML
because this actor automatically switches down all the components whenever possible, so it
produces the same behavior as AtomicBML in this case.

Table 4.9: Shutdown impacts with an energy-proportional architecture

% Energy saved on idle periods # On-Off cycles per node
Calibration Seq-Aw-E Aggr. LB-ZeroCost-OnOff Seq-Aw-E Aggr.

Grid’5000 trace, 6 years, 149 nodes on average

AtomicBML 77.66% 77.51% 77.91% 3,495 5,690
OnlyL 2.00% 2.00% 2.007% 5,690 5,690
OnlyM 8.93% 8.93% 8.941% 5,690 5,690
OnlyB 72.19% 72.05% 72.44% 3,511 5,690
FlexibleBML 77.72% 77.91% 5,690

E-Biothon trace, 15 months, 4096 nodes

AtomicBML 77.22% 76.93% 77.91% 42 70
OnlyL 2.00% 2.00% 2.007% 70 70
OnlyM 8.93% 8.93% 8.941% 70 70
OnlyB 71.78% 71.50% 72.44% 42 70
FlexibleBML 77.72% 76.93% 77.91% 70 70
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Similarly to previous results, we observe that actors Seq-Aw-E and Aggr. give comparable
results (0.79% of difference at maximum), and they are close to LB-ZeroCost-OnOff actor
(0.98% at most). Designing an accurate workload prediction algorithm has therefore little inter-
est for energy saving purpose. In the same way as previous results also, the number of On-Off
cycles is small enough not to modify the hardware life expectancy.

4.7 Impact of each actor: finer grain study

Previous large-scale simulations showed us that the Seq-Aw-E actor is relevant to save large
amounts of energy in various contexts. This section presents the results of simulation for all
actors presented in Actors definition section (Section 4.4). All graphs in this section represent a
trace replay for one or multiple combined actors with specific inputs. The one week long chosen
trace for this replay is detailed in section 4.5.3. Table 4.10 presents the energy consumption in
Joules of all actors in the figures included in this section.

4.7.1 Sequence-aware actors: Seq-Aw-T and Seq-Aw-E
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Figure 4.7: Trace replay No-OnOff (NO), Seq-Aw-T (SAT), Seq-Aw-E (SAE) and
LB-ZeroCost-OnOff (LB).

Figure 4.7 shows results of No-OnOff, Seq-Aw-T, Seq-Aw-E, and LB-ZeroCost-OnOff

actors, all previously defined section 4.4. Between the two sequence-aware actors, we can wit-
ness minor differences on the complete replay, for instance on Oct. 31 at 4:40, where Seq-Aw-T

allows more Off→On sequences to be scheduled. This is the reason why the difference between
the overall energy consumption of these actors is thin. Both of these actors lead to major en-
ergy savings, respectively 34.00% and 33.99% of energy savings compared to No-OnOff, as
shown in Table 4.10. In comparison with the No-OnOff trace replay, major power peaks are
witnessed because of the application of these actors. For instance, on Oct. 31, after a peak of
work around 12000W , a very low peak is witnessed around 1000W . Such behaviors could lead
to abrupt thermal changes and thus to hotspots and cool spots, so to possible deterioration of
the computing nodes.
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Actor Total energy consumed (Joules) # On→Off & Off→On % Saved
No-OnOff 6,083,698,688 0 0,0
LB-ZeroCost-OnOff 3,983,408,384 1794 34.52
Seq-Aw-T 4,015,736,064 964 33.99
Seq-Aw-E 4,015,201,024 844 34.00
Elec-SF max 4,611,556,352 819 24.19
Elec-SF max/2 5,078,084,608 767 16.53
Elec-SF max/4 5,461,449,728 647 10.22
Elec-SF max/8 5,828,239,360 451 4.19
Power-Cap 2000 min 4,401,067,520 855 27.65
Power-Cap 4000 min 4,593,668,096 761 24.49
Power-Cap 6000 min 5,059,857,408 617 16.82
Renew-E 4,132,427,520 423 32.07
Cool-Aw split 2 4,927,842,304 851 18.99
Cool-Aw split 7 5,054,783,488 831 16.91
All 5,386,375,168 315 11.46

Table 4.10: Trace replay’s energy consumption (in Joules), number of (On→Off, Off→On)
sequences added with actors, and percentage of energy saved compared to No-OnOff.

We also compare with LB-ZeroCost-OnOff, the actor with immediate On→Off with zero
cost, and we see that there is no significant difference in energy consumption observed when we
accurately describe the cost of On→Off and Off→On sections. However, the number of On→Off
that are effectively triggered is significantly lower, since we would not be able to resume the
execution in practice if we were using the LB-ZeroCost-OnOff actor.

4.7.2 Electricity-aware actor: Elec-SF

This section presents the results for Elec-SF, the actor that aims at ensuring the respect of
the electrical provider through scalability factors. ESFMax, the maximal electrical scalability
factor, is set to the maximum value witnessed during the No-OnOff replay (for ESFUp and
ESFDown). For other Elec-SF replays, we divided ESFMax by a factor to simulate more
constrained electrical context.

Figure 4.8 presents No-OnOff, Seq-Aw-T and Elec-SF with ESF set to max values
witnessed during the No-OnOff replay. We can note that Elec-SF does not give the same
results as Seq-Aw-T, 33.99% and 24.19% of energy savings compared to No-OnOff as showed
in Table 4.10, respectively. Thus, from extracted ESF factors from No-OnOff, we cannot get
the same results as Seq-Aw-T.

Figure 4.9 presents No-OnOff, Seq-Aw-T and Elec-SF with ESFMax divided by (1, 2, 4, 8).
One can note that the higher the ESF factors, the closest to Seq-Aw-T we can get. For in-
stance, around Oct. 25 at 11:45, the one with the lowest overall power usage (thus with the
highest number of Off→On sequences allowed) is the Seq-Aw-T replay, then we have ESFMax;
ESFMax/2 comes third and so on until ESFMax/8, which is merged with No-OnOff. The
influence of Elec-SF could also be clearly witnessed around Oct. 31 at 4:40, where Seq-Aw-T

is the only actor allowing such an important peak, while none of ESF actors can allow such a
behavior, because of fixed constraints.
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Figure 4.8: No-OnOff (NO), Elec-SF with max factor (ESF_1), and Seq-Aw-T (SAT).
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Figure 4.9: No-OnOff (NO), Elec-SF with all factors (ESF_1, ESF_2, ESF_4, ESF_8),
and Seq-Aw-T (SAT).

4.7.3 Power-Cap

This section presents the results on the Power-Cap actor. We set a maximum and a minimum
power cap throughout the simulation. We then modulate the minimal power cap to see how it
acts with the trace replay. As a reminder, to only evaluate the shutdown leverage, scheduled
jobs are fixed. Thus, we did not vary the maximal power cap because it highly depends on jobs
and also because the difference between Pidle and Poff is more important than the difference
between the peak witnessed during the Off→On or On→Off sequences and Pidle.

Figure 4.10 shows results of No-OnOff, Seq-Aw-T and Power-Cap with 2000, 4000 and
6000 as POWERCAP_Min. Even with the highest minimum power cap, here 6000W , we
still make important energy savings (around 16.82 % compared to No-OnOff). The stratified
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Figure 4.10: No-OnOff (NO), Power-Cap (with POWERCAP_Min = 2000, 4000, 6000)
and Seq-Aw-T (SAT).
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Figure 4.11: No-OnOff (NO), Cool-Aw (CA_Split2 and CA_Split7), and Seq-Aw-T (SAT).

power usage for every respected power cap was expected. In fact, a lower power cap permits more
Off→On sequences to be scheduled and thus, more energy savings. The lowest cap constraint
(2000W ) shows that we can respect a minimum power capping and still have a close to minimum
consumption.

4.7.4 Cool-Aw

Figure 4.11 represents the replay with No-OnOff, Seq-Aw-T, and Cool-Aw actors with two
different set-ups. With Split7, we simulate a “smooth” scalability with 7 levels. We set the
upper class (from 14000 W to 12000 W , noted [14000 : 12000], class 1) CSFMax to ESFMax.
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Then, every 2000 W size class under it divides ESFMax by i, with i the class number. For
instance, the [12000 : 10000] class has a CSFMax factor of ESFMax/2, until the [2000 : 0] class
with a CSFMax factor of ESFMax/7. Second, for Split2, two levels are set. CSFMax of [14000
: 7000] is set at ESFMax and [7000 : 0] is set at ESFMax/7, which represents a more abrupt
set-up. The logic is the same for CSFMin.

Split2 allows more On→Off sequences to be scheduled, and thus gets better energy savings.
Split2 stays longer with ESFMax as the CSFMax factor. For instance, note that from Oct. 25
at 7:00 AM to Oct. 27, Split2 is closer to Seq-Aw-T whereas Split7 is above both of them in
Figure 4.11. Such a behavior is due to a less constrained setup in Split2 in the upper classes.

4.7.5 Renew-E

Figure 4.12 presents an example of the usage of Renew-E, Seq-Aw-T and No-OnOff. The
provenance of energy is “Green” from start to Oct. 29 at 10:00 AM, “Brown” the rest of the
time. As a reminder, this actor minimizes the usage of “Brown” energy by scheduling an On→Off
sequence on a node if its current idle section contains “Brown” energy. This is why from start to
Oct. 29 at 10:00 AM, almost no node is turned off (Renew-E very close to No-OnOff). The
shift between Renew-E and No-OnOff at the beginning means that a few nodes are not used
in the “Green” section. Around Oct. 29 at 10:00 AM, nodes start to shutdown due to the shift
of the provenance (from “Green” to “Brown”).

Figure 4.13 presents a typical usage of renewable energy. We set “Green” provenance during
the day (from 7:00 AM to 7:00 PM) and “Brown” provenance at night. We can see that such
an actor with this input is very close to Seq-Aw-T. “Green” periods can be witnessed for
example Oct. 24 at 10:45 PM or Oct. 28 at 8:00 PM (basically where Seq-Aw-T is not fused
to Renew-E). One can note that the energy benefits of Renew-E (32.07%) are very close to
Seq-Aw-T (33.99%) with 2.2 times less On→Off sequences scheduled (it means that the Lyon
site from Grid’5000 is extensively used during the day).

4.7.6 Combining the actors

Figure 4.14 presents all the actors previously exposed (Elec-SF with ESFMax, Cool-Aw with
Split7, Renew-E with DayNight, Seq-Aw-T and No-OnOff) and “All” is the combination
of all of them. The combination of all the actors, previously described section 4.4.2, matches a
behavior of one of the actors that is part of the combination. For instance, around Oct. 28 at
8:00 PM or Oct. 25 at 10:45 PM, we recognize the behavior of Renew-E where nodes stay up
during green provenance. At the beginning, it matches the behavior of Cool-Aw with Split7
and it is very constrained at the beginning. Between Oct. 29 at 10:00 AM and Oct. 31 at
2:45 AM, we recognize the constraints set by Elec-SF with ESFMax not being able to have
the same gain as Seq-Aw-T. And finally, the behavior around the peak on Oct. 31 at 4:40
where “All” cannot go as low as Renew-E or Seq-Aw-T is similar to the behavior seen with
Cool-Aw and Elec-SF.

While Figure 4.14 presents all actors independently in a defined configuration and their com-
bination (All), Figure 4.15 progressively combines the actors together. For instance, “SAT_RE”
represents the combination of Seq-Aw-T and Renew-E actors, and “SAT_RE_CA_ESF” cor-
responds to “All” in Figure 4.14. Table 4.11 represents the energy consumption and the number
of On→Off sequences scheduled during the combined actors of Figure 4.15.

One can note that each added actor brings more constraints and thus allows less On→Off
sequences to be scheduled, compared to the previous combination, as shown in Table 4.11. Thus,
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Figure 4.12: No-OnOff (NO), Renew-E (RE_GreenBrown, green then brown energy) and
Seq-Aw-T (SAT).
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Figure 4.13: No-OnOff (NO), Renew-E (RE_DayNight, alternating green and brown energy)
and Seq-Aw-T (SAT).

Combined actors Total energy consumed (J) # On→Off
Seq-Aw-T 4,015,736,064 964
Seq-Aw-T, Renew-E 4,132,487,936 440
Seq-Aw-T, Renew-E, Cool-Aw 5,162,120,192 342
Seq-Aw-T, Renew-E, Cool-Aw, Elec-SF (All) 5,386,375,168 315

Table 4.11: Progressively combined actors.

the chosen combination of actors does have an effect on energy consumption and the number of
scheduled sequences.
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Figure 4.14: Independent actors and all combined actors (All).
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Figure 4.15: Progressively combined actors.

4.8 Conclusion

The energy efficiency of servers is increasing with Moore’s law. Yet, due to an increased demand
for Internet-based services, the energy consumption of large-scale systems keeps growing and it
is becoming more and more a worrying concern. Although shutdown techniques are available to
reduce the overall energy consumption during idle periods, they are rarely employed because of
their supposed impact on hardware.

Simulation results combining real workload traces and energy calibration measurements with
an energy focused actor, Seq-Aw-E, allows us to draw several conclusions. We showed that this
energy-focused actor can save, even in production data centers, important amounts of energy
otherwise wasted during idle periods. This conclusion remains true for envisioned future hard-
ware with power-proportional processing units. This study also showed that reducing the con-



4.8. CONCLUSION 63

sumption while in Off state has a greater impact on energy savings than reducing the switching
energy and time costs between On and Off states. For this reason, S3 (Suspend-to-RAM) and
S4 (Suspend-to-Disk) states are currently not beneficial in terms of energy consumption.

Although Seq-Aw-E permits great energy savings, switching on and off large scale infras-
tructures can be a real challenge due to several other constraints: temperature, power capping,
renewable energy provision, etc. While it is often assumed that nodes can be turned off at no
cost, we explore realistic scenarios where several constraints (power capping, electricity, thermal)
may prevent us from turning off a node at a given time step. We formally define actors tar-
geting various scenarios. Furthermore, we explain how these actors can be combined together.
A possible usage of these actors is illustrated through a set of simulations on a real workload
trace, showing the gain in energy that can be achieved given the constraints on the platform,
and providing clear guidelines about when a node can be turned off. Overall, the gain of the
non-realistic actor where nodes are instantaneously turned off during an idle period is very small
over the sequence-aware actor that turns off a node only if there is time to turn it on again be-
fore the next computation, and accounts for the power consumption during the Off→On and
On→Off sequences. Other actors (electricity-aware, power-capping-aware, cooling system-aware,
renewable energy-aware) further constrain the number of Off→On, hence leading to more energy
consumed, but better matching real-life scenarios.

Applying and following our previously proposed methodology permits us to underline, model
and evaluate the shutdown leverage. By evaluating, underling and modeling the costs of such
a leverage, we were able to create a combinable and extensible set of actors that answer a wide
range of concerns such as power capping, energy budget or renewable energy usages. Each actor
is focused on one constraint. With this study, we showed that it is possible to use a leverage to
minimize a metric, while ensuring and respecting fixed constraints through simple actors that
could be combined at ease. Although this actor combination allows us to respect constraints
like power capping and to reduce energy, it is only focused on one leverage, here shutdown. This
is a first building block of a more general approach that could include other leverages, such as
number of threads or number of process throttling.
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In the previous chapter, we proposed a complete set of models to answer multiple constraints
that could happen during the usage of multiple nodes of a facility at the same time. These models
can be composed and activated at ease. Even if they could be extended to other constraints,
they are not made to answer the energy effective usage of multiple leverages. In this chapter,
we propose a solution to combine and use multiple leverages at the same time and use the right
set of combination to answer the chosen constraints while being energy efficient.

Energy consumption is one of the major challenges of modern data centers and supercom-
puters. By applying Green Programming techniques, developers have to iteratively implement
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and test new versions of their software, thus evaluating the impact of each code version on their
energy, power and performance objectives. This approach is manual and can be long, challenging
and complicated, especially for High Performance Computing applications.

In this chapter, we formally introduce the definition of the Code Version Variability (CVV)
leverage and we present a first approach to automate Green Programming (i.e., CVV usage) by
studying the specific use-case of an HPC stencil-based numerical code, used in production. This
approach is based on the automatic generation of code versions implied by a Domain Specific
Language (DSL) and on the automatic choice of code version through a set of actors. Moreover,
a real case study is introduced and evaluated though a set of benchmarks to show that several
trade-offs are introduced by CVV. Finally, different kinds of production scenarios are evaluated
through simulation to illustrate possible benefits of applying various actors on top of the CVV
automation.

5.1 Introduction

Taking into account energy issues while programming a software is often called Green Program-
ming (GP). However, on one hand, by using such a technique, a developer has to write and
handle multiple versions of a code, and he has to compare them manually to finally choose
the one which suits the best his constraints and objectives (e.g., energy, power, performance
etc.). On the other hand, the growth of supercomputing capabilities increases both the energy
consumption and the complexity of supercomputer usage, which makes difficult and very tech-
nical the development of applications on such machines. In such a complex context, it is even
harder for a green programmer to deal with the generation, the comparison and the choice of the
version of code while taking into account modular constraints. Moreover, these constraints are
related to HPC systems administrators more than application developers such as, for example,
constraints related to contracts with electrical providers.

In this chapter, we propose three main contributions:

• a complete process toward automated Green Programming for production numerical sim-
ulations;

• a real case-study of our automated process to show its applicability;

• and a set of evaluations of our case-study to show both the relevance of the CVV lever-
age for better trade-offs between metrics, and the percentage gain by using our Green
Programming automation.

The remaining of this chapter is structured as follows. Section 5.2 presents the complete
automated process to take advantage of the CVV leverage. A complete case-study is then
detailed in Section 5.3. Sections 5.4 and 5.5 respectively detail the experimental setup and our
set of evaluations onto our case-study. Then, the evaluation of the CVV leverage through our
automatic solution is presented in Section 5.6, where we show that the automatic use of the
CVV leverage on production HPC applications is relevant. Finally, Section 5.7 concludes this
work.

5.2 Toward CVV Leverage Automation

In this section are presented the first two contributions of this chapter which are, first, the
introduction of the Code Version Variability Leverage, and second, a complete process for its
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usage automation onto production runs of a HPC application.

5.2.1 Code Version Variability Leverage

Considering that a given application could be implemented in various ways, we consider that
having the choice between code versions is also a leverage. We call this leverage the Code Version
Variability Leverage (CVV).

Definition 4 Considering a given application A, the Code Version Variability (CVV) leverage
LA is defined as LA(SA, sc, fA), where SA = {v0, . . . , vn} is the set of available code versions
of A, sc = vc is the current selected code version, and fA is a way to change the current code
version ( e.g., executing a different binary).

The CVV leverage is used in the specific case of HPC applications where the different code
versions are in fact representing different parallel implementations.

We do not address the case where fA is called during the execution of A. This is left for
future work. Instead, we consider that fA can be called between two production runs of A.

5.2.2 Green Programming automation: from generation to usage

Green programming (GP) consists in changing the way an application is implemented to improve
its energy efficiency (energy consumption, but also power-related metrics etc.) Thus, automatic
generation of several code versions (CVV) is the first necessary step to simplify GP.

However, in practice, particularly in the context of HPC applications, GP can be very difficult
to apply. Actually, implementing a single version of a large scale parallelized HPC application is a
long and difficult task, thus implementing multiple versions become almost infeasible. Moreover,
when considering GP, the entire development process is left to the application developer.

For this reason, we propose in this chapter a complete automated process to take advantage
of the CVV leverage. This process is depicted in Figure 5.1.

The CVV automation process is composed of three different phases. The first phase is re-
sponsible for the automatic generation of code versions. To do so, we propose to use Domain
Specific Languages (DSLs). Among existing solutions to ease HPC programming, Domain Spe-
cific Languages target a specific domain, in opposition to general purpose (parallel) languages.
By explicitly knowing the targeted domain, DSLs are able to automatically generates very effi-
cient HPC codes [36, 86, 95, 102]. Most of the time, DSLs are used to generate the code that
reaches the smallest execution time for a given application and a given hardware architecture.
We use DSLs as a mechanism to generate multiple versions of a code instead of a single one,
thus creating the set of states for the CVV leverage, represented by different squared colors in
Figure 5.1.

The second phase of the CVV automation process is to use a given subset of production
runs of an application to combine leverages, thus building a knowledge, which is complete at tk.
The number of runs needed to reach a complete knowledge tk depends on the prediction degree
handled in the knowledge building process: from “Null”, where all leverages combinations has
to be performed, to “High” where all of the knowledge is present from start (without the use of
any previous run). One can note that the knowledge is built upon a given set of metrics.

The knowledge built in the second phase is then used within the third phase, for any new
production run that happens after tk, to take decision regarding the code version to use for this
new production run according to the current constraints. The element which is responsible for
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Figure 5.1: Automation process of the CVV leverage composed of three phases, one to generate,
thanks to a DSL, code versions of the application, one to build the knowledge, and finally one
to choose, thanks to an actor, the best trade-off for each next production run.

this decision is called an actor. An example of actor is the OnDemand linux governor which
chooses the DVFS current state depending on the current system load1. We previously defined
actors in the description of our proposed methodology in Chapter 3.

Details on the specific case-study considered will be given in the next section. However,
one can note that the presented automation process is studied for regular production numerical
simulations only. A regular application is a simulation where performed computations are always
the same, whatever values of input and parameters are. This property is important to be able
to re-use the knowledge built in the second phase.

Finally, as the Green Programming automation is targeted by the above process, four types
of metrics (that will be detailed in the next section) are considered within the knowledge,
one related to execution time, one related to energy consumption, and two related to power
consumption. Considered constraints will also be related to these metrics.

5.3 Case study description

In this section is described the case-study addressed within this chapter. Regarding the automa-
tion process depicted in Figure 5.1, this section presents first the application use-case, second
the DSL used to generate CVV states, third how the knowledge is built and used by actors, and
finally which constraints are handled.

1https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
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5.3.1 FullSWOF2D application

As already explained, the automation process presented in the previous section targets regular
production numerical simulations. A numerical simulation simulates a physical phenomenon
by approximating the exact solution of partial differential equations through a set of numerical
schemes (computations). A numerical simulation discretizes the time through a time loop. At
each time iteration, a set of numerical computations are applied onto the entire (or a subset)
discretized space domain (namely a mesh). A numerical simulation is typically composed of (i)
a number of iterations, (ii) a mesh size, (iii) a set of numerical parameters (single numerical
values) and (iv) a set of input data sets representing physical quantities (e.g., speed, pressure
etc.). These physical quantities are mapped onto the mesh.

For a given domain size (i.e., mesh size), a production numerical simulation is used many
times by physicists, modifying input data sets and numerical parameters, to be as close as needed
to the real phenomenon to understand it.

A numerical simulation can be regular or irregular. Here, regular simulations are handled.
More particularly, stencil-based numerical simulations are considered. Thus, the same set of
computations are performed whatever numerical values of input data sets and parameters are.
As a result, by considering the same set of machines (i.e., same cluster) and the same input size,
performance behavior of stencil-based codes stays the same2. This makes possible to reuse the
knowledge built within the automation process for many production runs.

As an example of production numerical simulation, we consider FullSWOF2D3 [29] (denoted
FS2D), developed at the MAPMO laboratory, University of Orléans, France. FS2D consists
in solving the Shallow Water equations (two dimensional Navier-Stokes equations) using finite
volumes methods especially chosen for hydrodynamic purposes (transitions between wet and dry
areas, small water heights, etc.). FS2D is a complex numerical simulation composed of 32 stencil
kernels and 66 local kernels [14, 30].

As an illustration, in production, FS2D will be run many times with the same input size.
Actually inputs of FS2D are 8 numerical parameters (e.g., hydraulic conductivity, water vis-
cosity, pressure etc.), and 6 input data sets (e.g., rain, speed in each dimension etc.). Each
parameter and data set can be initialized in very different manners to study different physical
cases (already flooded grounds, dry grounds etc.). When considering simply 2 possible values
for each parameter and 2 possible input data sets, the number of possible runs is the Cartesian
product 28× 26 = 214 = 16, 384. This illustrates that a production numerical simulation can be
used many times using the same input size.

FS2D will be the considered application for the rest of this chapter.

5.3.2 The Multi-Stencil Language

The domain specific Multi-Stencil Language (MSL) [14, 30] enables to automatically generate
multiple HPC code versions of a multi-stencil numerical simulation from a lightweight data-
driven description of a numerical application and a set of sequential kernel codes. The semantic
and performances of MSL have been shown in [30]. MSL is used to generate four HPC code
versions of FS2D, thus producing the set of states SA of the CVV leverage.

These four versions are based on two different parallelization techniques. The first tech-
nique, namely data parallelization, divides the studied domain (data) into equally balanced

2http://www.agner.org/optimize/instruction_tables.pdf
3http://www.univ-orleans.fr/mapmo/soft/FullSWOF/

http://www.agner.org/optimize/instruction_tables.pdf
http://www.univ-orleans.fr/mapmo/soft/FullSWOF/
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sub-domains. Each sub-domain is computed by one computational resource (typically a core)
and communications between resources are added to perform correct computations. The second
technique, namely task parallelization, divides a program into sub-tasks. Each task is computed
by one computational resource and task dependencies are introduced to respect computation
order. The scheduling of task dependencies can be statically computed before the execution, or
can be dynamically decided at runtime. In MSL these techniques are implemented by using the
Message Passing Interface (MPI) and the OpenMP Application Programming Interface. The
four code versions produced by MSL are: (1) MpiBase, where data parallelization is applied by
domain decomposition and by using MPI; (2) MpiOmpFor, where data parallelization is intro-
duced at two different levels, first, by domain decomposition with MPI, and second, by using
parallel loops of OpenMP; (3) MpiOmpForkJoin, where both data and task parallelization tech-
niques are combined. The adopted task parallelization technique is a static fork/join scheduling
implemented using OpenMP; and finally (4) MpiOmpDyn, where both data and task paralleliza-
tion techniques are also combined, but where the adopted task parallelization technique is the
dynamic scheduling of tasks introduced in OpenMP 4.54.

One can note that these four code versions represent different approaches to parallelize
the code. Many other code versions could be studied such as versions using various cache
optimizations, different types of data, etc. These four versions, though, are difficult to write by
hand, thus being a pertinent case-study for GP automation.

5.3.3 Knowledge, actors and constraints

To entirely explain the case-study addressed within this chapter, it is needed to describe how
the knowledge is built and used by the automation process.

First, as depicted in Figure 5.1 the knowledge is built by using a certain number of production
runs until tk is reached, which means that the knowledge is complete. The number of runs to
perform before reaching tk depends on the number of possible combinations when exploring a
set of leverages. In this chapter three different leverages are considered. The first one is the
CVV leverage described in Section 5.2, the last two ones are the number of MPI processes and
OpenMP threads for a given parallel application on a given subset of nodes. These leverages
have already been used in [6, 70, 75]. Because the literature (previously developed in section 2.4)
often tightly couples these two leverages, we will treat it as a unique leverage. As an example,
our complete knowledge (combinations of CVV and #Processes/#Threads) when 12 cores are
available per machine (Table 5.1 of Section 5.4.1) contains 55 production runs. As illustrated
before, a very light use of FS2D in production already leads to 16,384 runs. This shows that
our methodology is realistic and feasible in our case-study.

Of course, when increasing the number of leverages, the size of the knowledge to build also
increases. For this reason, actors could be more or less intelligent and could need a smaller
knowledge to take a good decision (e.g., machine learning techniques). This type of actors will
be simulated during our evaluations in Section 5.5.

For each of the production runs used to build the knowledge (before tk), four metrics are
collected. The first metric is the Execution Time, denoted time. It measures the entire execution
time of one job, including initialization time.

The three remaining metrics are energy-related metrics. To define these metrics, we first
need to introduce notations:

4http://www.openmp.org/mp-documents/openmp-4.5.pdf

http://www.openmp.org/mp-documents/openmp-4.5.pdf
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• N is the number of computing nodes used by a job;

• T = {t0, . . . , tn−1} is the set of n timestamps of energy consumption measurements of a
job; t0 and tn−1 represent the starting and ending timestamps, respectively;

• pij , where i ∈ [0, N − 1], and j ∈ [0, n− 1], represents the power consumption (in Watts),
of a node i for the timestamp tj ;

• Pj =
∑

i∈[0,N−1] p
i
j represents the cumulated power measurements of all nodes for a given

timestamp tj ∈ [0, n− 1].

The second metric is the Maximum Cumulated Watt and is denotedmaxCWatt. It represents
the cumulated maximum power witnessed during the run of the application A for the set of
current selected states sc of considered leverages. It reflects how much the application, when
considering the current combination of leverage states, stresses the computing nodes on which
it is executed. It is defined as:

maxCWatt = max
j∈[0,n−1]

Pj (5.1)

The third metric is the Average Cumulated Watt and is denoted avrgCWatt. It represents
the cumulated average power consumption of the application A for the set of current states. It
is defined as follows:

avrgCWatt =

∑

j∈[0,n−1] Pj

n
(5.2)

Finally, the fourth metric is the Cumulated Joules and is denoted CJoules. It represents
the cumulated energy consumption of the run for the current leverages combination. It is the
energy consumption of all nodes used between t0 and tn for the execution of A. It is defined as
follows:

CJoules =
∑

j∈[0,n−2]

(tj+1 − tj) ∗ Pj (5.3)

A power capping constraint indicates a maximum power consumption value to not overpass
during a certain period of time. It is used in the literature as a possibility to constrain a complete
computing facility’s power consumption within a given power budget [16]. In the rest of this
chapter we consider this type of constraints. Power capping represents the type of constraints
imposed by electrical providers within their contracts or through a scheduler imposing various
power capping to every user [53]. One can note that this constraint can evolve through time.
In addition to this constraint, two functions have to be minimized: the execution time of each
run; and the energy consumption of each run.

In this section has been presented our complete considered case-study. This case-study
illustrates that our automation process of Green Programming is feasible. In the rest of this
chapter are detailed the experiments conducted on this case-study.

5.4 Experimental setup

In this section is detailed the experimental setup used for evaluations. First, the hardware is
described, then the chosen configurations to build knowledges are given.
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Table 5.1: Hardware configuration of Grid’5000 Taurus nodes and TGCC Curie thin nodes

Taurus Grid’5000 Curie Thin Nodes

CPU model Intel Xeon E5-2630 SandyBridge
Number of CPU 2 2
Cores per CPU 6 8
Total Memory (GB) 32 64
Compiler [-O3] gcc 4.9.1 gcc 4.9.1
MPI OpenMPI Bullxmpi
Network 10 Gigabit Ethernet fat-tree Infiniband

5.4.1 Hardware and energy monitoring

To conduct our evaluation, we use the Grid’5000 experimental platform and the Curie super-
computer. Presented experiments have been conducted on the cluster named Taurus of the site
of Lyon. The hardware configuration of this cluster is given in Table 5.1. The main advantage
of using Grid’5000 is that computing nodes are well equipped in terms of energy monitoring.
Each node is monitored by a wattmeter with a precision of 0.125 Watt (W) and that reports the
average of 36,000 measurements each second. Finally, Grid’5000 provides an API which returns
the power used for every node every second [88] which can be requested during execution (online)
or after the end of the execution (offline). Such a hardware setup allows us to have a fine grain
knowledge on energy consumption during a run. We used up to four of those nodes.

The TGCC Curie5 is a French petascale supercomputer ranked as the 93th supercomputer
of the Top500 list of November 20176. It is composed of three different types of nodes, each
with a specific hardware configuration. Experiments have been performed on the Thin Nodes
(Table 5.1) of the TGCC Curie supercomputer. Measurements on Curie thin nodes are done at
the electrical cabinet with dedicated wattmeters and are updated approximately every 5 minutes.
Energy monitoring can only be performed offline. Thus, such a configuration is less accurate
than Grid’5000 for energy consumption measurements. However, it allows us to perform larger
scale experiments, up to 2048 cores. To tackle the accuracy issue, we have performed much
longer jobs on Curie.

5.4.2 Knowledge configurations and representation

By using code versions (CVV) generated by MSL on FS2D for Phase 1 of Figure 5.1, we run a set
of benchmarks to build Knowledges. A Knowledge is built upon application production runs that
combine leverages for a given configuration (domain size and number of iterations). Moreover,
each run collects a set of metrics, as detailed in Sections 5.2.2 and 5.3.3. Two Knowledges
have been built in our evaluations and are summarized in Table 5.2 for Grid’5000 and Curie
experiments.

As already explained, one Knowledge uses a subset of production runs to collect metrics
regarding the combination of two application leverages. First, one of the available code ver-
sions of FS2D generated by MSL (CVV) and second the number of processes and threads
(#Processes/#Threads) chosen to run FS2D. For each run, the four metrics detailed in Sec-
tion 5.3.3 are measured (execution time, maxCWatt, avrgCWatt, and CJoules).

5http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm
6http://www.top500.org/lists/2017/11/

http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm
http://www.top500.org/lists/2017/11/
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Table 5.2: Knowledge configurations on FS2D.

Knowledge Cluster #nodes Domain size #Iterations
A Taurus Grid’5000 4 4000× 4000 100
B Taurus Grid’5000 4 1000× 1000 100
C Thin Curie 64/128 20000× 20000 10000

To analyze multiple metrics at the same time, we have chosen to use a pareto representation
and its associated pareto frontier (or pareto-front) which has been defined and used many times
and formally defined for energy concerns in [6]. Figure 5.2 gives an example of a 2D pareto
frontier, where each axis is a metric and each point represents measures registered for a given
job of a knowledge.
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Figure 5.2: Pareto frontier example

Points on the pareto frontier represent the set of best solutions (relative to the remaining
points), for a trade off between the two chosen metrics. Thus, they represent choices where no
improvement for a metric can be made without deteriorating the second one. Points on the
pareto-front are called dominant points while others are called dominated points. For example,
in Figure 5.2, choosing B over A decreases the first metric but increases the second one. Points
C, D, and E are dominated by A, which means that both metrics increase compared to A.

There is a wide panel of possible trade-offs between two chosen metrics. The trade-off could
be between two energy metrics or between an energy metric and the execution time.

Our benchmark framework (Section 5.4.2) executes a set of jobs which are the combination of
two application leverages. First, the set of available code versions of FS2D (CVV), and second,
the #Processes/#Threads configuration chosen to run FS2D. From the results produced by one
knowledge, a pareto can be built, where each point represents one job. To build a pareto, two
metrics among the described ones in Section 5.3.3 have to be chosen.

As already given as an example, on the Taurus cluster of Grid’5000 where cores = 12 the
total number of runs to perform to get the complete Knowledge A (pareto) is 55. On Curie, for
which cores = 16, 84 runs are needed to build Knowledge B. One can note that these numbers
of runs are small compared to the number of times the physicist (or its scripts) should possibly
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run the FS2D simulation (214 = 16, 384).

5.5 Case study evaluation

In this section, we present an experimental setup in order to show that the CVV leverage
introduces new variability of choice. To underline this variability, we combine it with another
leverage: the number of processes and threads noted #Processes/#Threads leverage. The results
presented in this section use the same hardware and metrics than the previous section.

5.5.1 Evaluation of the CVV leverage

First, we would like to show in our evaluations that choosing one code version or another while
measuring time, maxCWatt, avrgCWatt and CJoules, leads to a non trivial trade-off. Table 5.3
reports measurements of the four metrics when executing the same knowledge configuration A,
with the four code versions generated by MSL, on a single Taurus node. The Taurus node is
used with its full capacity, thus using its 12 cores.

Table 5.3: Time, maxCWatt, avrgCWatt and CJoules for the four different code versions gen-
erated by MSL on FS2D (CVV).

CVV leverage state time (s) maxCWatt avrgCWatt CJoules

MpiOmpDyn 133.37 253.25 237.97 31916.5
MpiOmpFor 128.25 257.87 239.80 30854.12

MpiOmpForkJoin 130.75 257.0 239.29 31515.25

MpiBase 142.5 254.87 235.22 33733.87

From Table 5.3, we can observe that “MpiOmpFor” and “MpiOmpForkJoin” are minimizing
time and CJoules, respectively. However, these code versions also have the highest values for
maxCWatt and avrgCWatt. As a result, and as expected, a correlation exists between the
execution time and the energy consumption (CJoules). However, minimizing these metrics leads
to high power consumption that could be problematic in the case of power capping constraints
either for a cluster administrators or a green scheduler translating energy budget to a power
capping. Moreover, Table 5.3 shows that for every state of the CVV leverage (code version),
non negligible variability can be observed in the four metrics.

5.5.2 Grid’5000 experiments: fine grain energy monitoring

For each code version, many different configurations of #Processes/#Threads are possible, each
point for one symbol (or color) represents one configuration. For example, the code version
MpiOmpForkJoin can be run be using 4 MPI processes and 12 OpenMP threads per MPI
process, or can be run by using 8 MPI processes and 6 OpenMP threads per MPI process. In
this case cores of the four nodes are fully used (12 per node), but the same benchmark can be
executed by using only 4 MPI processes and 2 OpenMP threads, etc.

For example, for Figure 5.3b, if a power constraint is set to 600W , the chosen state for
the CVV leverage would be “mpiOmpDyn”. In fact, it is the first point on the pareto-front to
answer the fixed constraint. Thus by definition, it is the point that minimizes execution time
while satisfying the power constraint.



5.5. CASE STUDY EVALUATION 75

100 200 300 400
time (s)

250

300

350

400

450

500

av
rg

CW
at

t (
W

)

mpiOmpFor
mpiBase
mpiOmpDyn
mpiOmpForkJoin

(a) Pareto representing benchmarks (2 nodes)

0 50 100 150 200 250 300 350
time (s)

500

600

700

800

900

av
rg

CW
at

t (
W

)

mpiOmpFor
mpiBase
mpiOmpDyn
mpiOmpForkJoin

(b) Pareto representing benchmarks (4 nodes)

Figure 5.3: Paretos with metrics time and avrgCWatt, for knowledge A of Table 5.2.

Figures 5.3b and 5.3b both presents a pareto on the metrics time and avrgCWatt, where all
runs of the knowledge A are represented (55 different runs). Each run has been performed 8
times and a median is computed. The pareto frontier is represented in blue. One can note a
variability of code versions on the pareto frontier. This means that among the set of best choices
for a trade-off between time and avrgCWatt, multiple code versions are represented. As a result,
the CVV leverage improves the trade-off that #Processes/#Threads leverage alone could reach.
Thus, it shows that the CVV leverage has an important impact on pareto frontiers and that
a trade-off could be needed to take into account multiple constraints and/or objectives (here
represented as metrics).

Figure 5.4 represents the same paretos that Figure 5.3, but for Knowledge B. First, the
pareto frontiers behave differently when only changing the domain size of the application. This



76 CHAPTER 5. COMBINING MULTIPLE LEVERAGES

0 5 10 15 20 25 30 35 40
time (s)

250

300

350

400

av
rg

CW
at

t (
W

)

mpiOmpFor
mpiOmpDyn
mpiBase
mpiOmpForkJoin

(a) Pareto representing benchmarks (2 nodes)

0 2 4 6 8 10 12 14 16
time (s)

500

550

600

650

700

750

800

av
rg

CW
at

t (
W

)

mpiOmpFor
mpiBase
mpiOmpDyn
mpiOmpForkJoin

(b) Pareto representing benchmarks (4 nodes)

Figure 5.4: Paretos with metrics time and avrgCWatt, for knowledge B of Table 5.2.

is explained by different performance behaviors when changing this parameter, as shown in [14].
Second, and as previously observed, more than one code version is on pareto frontiers which
means, again, that the CVV leverage can improve quality of choices.

5.5.3 TGCC Curie experiments: large scale

To conduct large scale experiments, TGCC Curie is used. The lack of precision for energy
monitoring of Curie has forced us to run very heavy configurations of the application, as described
in Table 5.2: execution time is between one and two hours. Moreover, available monitoring on
Curie restricts possible measurements to time and avrgCWatt.

Figures 5.5a and 5.5b show the results of Knowledge C from Table 5.2. More precisely,
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Figure 5.5: Paretos with metrics time and avrgCWatt, for knowledge C of Table 5.2.

Figure 5.5a illustrates the use of 1024 cores (i.e., 64 nodes), and Figure 5.5b the use of 2048
cores (i.e., 128 nodes). Because of our limited access to thin nodes of TGCC Curie, less jobs
have been performed than on Grid’5000 resulting in less points onto the pareto. However, the
same conclusions can be drawn as the results show that the CVV leverage is also relevant at
larger scale.

To conclude this section, the usage of CVV leverage implies high variability. In fact, in all
figures, if only one CVV leverage state (i.e one symbol) was available, many relevant choices onto
the pareto and more critically onto the pareto-front would not have been possible. Thus, the
usage of pareto-front helps to answer and automate CVV and #Processes/#Threads leverages
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position choice for a trade-off between two chosen metrics.

5.6 Simulation of Production Scenarios

In previous evaluations it has been shown that the CVV leverage, in our case-study, improves
possible choices when looking for a trade-off between different metrics, possibly not correlated.
However, when improving possible choices, the size of the knowledge to build also increases. For
this reason, this section evaluates the entire automated process presented in this chapter by sim-
ulating production scenarios on our case-study. This section shows that the automation of Green
Programming through the usage of the CVV leverage combined to the #Processes/#Threads
leverage is relevant and can lead to substantial gains. To have a complete control over the ap-
plied scenarios, we have chosen to simulate different production and power constraints scenarios
as if using a real production platform with other users.

As a reminder, Figure 5.1 represents the automation process of the CVV usage. This automa-
tion process is composed of three phases. Phases 2 and 3 are the ones concerned by production
runs and are the ones simulated within this section. The second phase builds the knowledge
needed in the third phase by using tk first production runs. The third phase uses the knowledge
as well as information on constraints to make adequate choices for each new production run.
For a given scenario our simulation computes the energy gain and the percentage of violation of
input constraints. Even if this section simulates production scenarios, results collected during
our real-case experiments are used. Thus, the knowledge presented in Figure 5.3b is used within
our simulation.

Three different elements are simulated within a given scenario: (1) the production scenario;
(2) the energy and power constraints considered during the production scenario; and (3) the set
of actors considered.

5.6.1 Production scenarios

The first production scenario is called soft. A total number of 210 = 1, 024 runs are performed
within this entire production scenario which is much less than the example given throughout
this chapter (16, 384 production runs). Thus, this scenario is not in favor of our process. This
production scenario has a low frequency usage with four runs a day (two of them during the
night, and two of them during the daytime). This scenario represents a soft arrival of production
runs during 256 days.

In the second production scenario, namely hard, the same total number of runs are performed.
However a high arrival frequency is simulated. Actually, twenty runs are performed per day which
leads to a hard use of production resources for 52 days (51 full days, plus 4 extra runs during
52th day). To make these scenarios more realistic we also introduce vacancies or maintenance
periods where runs are not performed.

5.6.2 Constraints

For the power constraints, we have chosen to simulate two types of power capping constraints.
On one hand, the first constraint, namely Fixed, represents a power capping value (i.e., max-
imum value to not overpass) constant through time. To choose a real case power capping for
knowledge A, we refer to results displayed in Figure 5.3b, where we have chosen the rounded
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value equidistant to the minimum and maximum reached avrgCWatt on the pareto-front. Thus,
650W has been chosen as Fixed constraint.

The second power constraint is denoted day-night. In this constraint, the maximum power
value is low during daytime and high during night. For knowledge A, 600W and 800W have
been chosen for day and night power constraints, respectively.

5.6.3 Actors

The two first actors considered in our simulation do not base their choice on any knowledge.
The first actor of this family is called Usual. This actor illustrates what usually happens in
production, i.e., a single code version and a single number of threads and number of processes
are used for all runs. The second one is denoted Random. This actor randomly chooses one
code version and one #Processes/#Threads leverage state for each production run. One can
note that both Usual and Random can perform choices that do not respect input constraints.
However, the power capping constraints have been chosen such that Usual never violates it. One
can note that this choice is not in favor of our process once again.

The third actor is the one we advocate in here. It is called BuildKlg. This actor makes
choices by using a full knowledge (i.e., complete paretos).

The last considered actor is called Ideal. This actor uses advanced machine learning strategies
to be able to make choices with a partial knowledge of previous runs. Thus, this actor reduces
the number of runs needed to reach tk. As this chapter does not focus on the proposal of new
actors, we have made the hypothesis that this Ideal actor is able to accurately discover the
complete knowledge without any previous run, which would be the perfect actor, even if not
feasible. Thus this actor represents the theoretical best case of our simulation.

Both BuildKlg and Ideal aims at first respecting power capping constraints and second
minimizing execution time and energy consumption.

5.6.4 Simulation results

This section analyzes the results of simulation for every proposed actor on any production
scenario and for any considered power constraint.

Two metrics are considered in results. First, the Violation metric represents the amount
of joules consumed over the fixed power limit (the bigger the value, the worst the actor is).
We could imagine that every Joule consumed over the limit represent an extra cost. However,
as the input cost per Joule highly depends on the infrastructure or electrical provider policies,
we represents the percentage of violation metric rather than the cost. Second, the total energy
consumption is represented.

Table 5.4 displays the results of these simulations. The total energy consumed and the
violation of constraints are represented for every scenario. Percentage of saved energy and
constraint violation are given using the Usual actor as a reference. Actually, for the Usual actor,
the CVV leverage position is set to mpiOmpDyn. While the #Prcocess/#Threads leverage is
set to 4/10 (4 MPI processes and 10 threads per MPI process). Moreover, we have chosen this
configuration because it always answers power capping constraints. Thus the simulated overall
consumption of Usual actor will always be the same, given that the chosen run is always the
same.

Regarding the violation rate, Random is the worst actor. One can note that BuildKlg has
very low percentage of violation (3.88% in the worst case, 0.41% in the best case). Moreover,
BuildKlg is very close to Ideal which is the best possible actor for this metric. The differences
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Table 5.4: Simulation results based on knowledge A in terms of energy consumption, violation
of constraints, and associated percentages compared to the Usual actor.

Actor Energy (J) Violation (J) % gain % Violation

Soft, Fixed

Usual 54192768,00 0,00 0,00 0,00
Ideal 31659648,00 0,00 41,58 0,00
Random 55849891,19 7465509,76 -3,06 13,37
BuildKlg 32619458,62 133449,82 39,81 0,41

Soft, Day-night

Usual 54192768,00 0,00 0,00 0,00
Ideal 43075597,13 1440879,81 20,51 3,35
Random 55867662,19 7074282,00 -3,09 12,66
BuildKlg 43567042,87 1686303,71 19,61 3,87

Hard, Fixed

Usual 54192768,00 0,00 0,00 0,00
Ideal 31659648,00 0,00 41,58 0,00
Random 55179811,31 3242795,56 -1,82 5,88
BuildKlg 32619458,62 133449,81 39,81 0,41

Hard, Day-night

Usual 54192768,00 0,00 0,00 0,00
Ideal 47837186,63 288175,96 11,73 0,60
Random 55849891,19 7465509,76 -3,06 13,37
BuildKlg 48165244,49 573153,42 11,12 1,19

between these two are the discovery part. In fact, during the pareto construction (discovering
all the CVV and #Processes/#Threads states combinations) the BuildKlg actor violates the
constraints. Even Ideal has penalties on Day-Night scenario. This is due to the fact that we
only consider knowledge of constraints at the start of a run. Thus, such penalties are due to a
change of the constraint value during the run (e.g., for job starting during the night and finishing
during the day).

If we only focus on the percentage of gain compared to Usual, the tendencies are the same
for every scenario. Random is always worst than Usual (negative percentage of gain), showing
that the current state of both the CVV and the #Prcocess/#Threads leverages is not to be
chosen randomly. For BuildKlg, we can see that for each case, energy savings are not negligible
(around 11% in the worst case and up to 39% in the best case). Ideal reaches the best energy
savings but is very close to BuildKlg (a difference of 1.77% in the worst case), implying that
such a clever actor may not be needed, in our case study.

In our evaluations we have shown that our automated process of Green Programming is
applicable on a real case-study and can almost reach ideal results for both the total energy
consumption and the rate of power capping violations. Thus, this work leads to energy and
money savings.
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5.7 Conclusion

Energy consumption is a growing concern for modern datacenters and supercomputers. Their
energy consumption increases with their size and has become a physical and financial limitation.
Green Programming (GP) is one of the available leverages to control energy consumption of
applications by adapting their behavior or versions of code. However, in GP a programmer
has to write multiple versions of a code, has to compare them manually and has to choose the
version that satisfies his constraints and objectives. When considering HPC applications, such
a process becomes almost infeasible as implementing one parallel version of a code is already a
complicated and long process.

Four contributions have been presented toward automated GP. First, we have introduced a
formal definition of the Code Version Variability (CVV) leverage. During evaluations we have
underlined that the CVV alone, as well as combined to another leverage, offers more variability of
choices, thus better trade-offs between execution time, energy consumption and power metrics.

Second, we have presented and detailed a first approach toward Green Programming (GP)
automation in the specific case of production applications that are regulars. This automation
process has three main steps: (i) the generation of code versions by using a DSL; (ii) the
construction of the knowledge by using a subset of production runs; and finally (iii) the automatic
choice, for each additional production run, of a combination of leverages states, by using an actor
and by considering current constraints.

Third, our automation process of GP has been applied to a real case-study where a real-case
numerical simulation has been selected, where a real-case DSL [30] has been used to produce
different code versions and where real-case constraints have been considered. This case-study
has shown the feasibility of our automation.

Finally, we have shown in our evaluations that our automated GP, applied onto our case-
study, gets significant energy savings as well as very low constraint violations compared to a usual
production case (no leverages considered), compared to a random case (by randomly choosing
states of leverages), and compared to a theoretical Ideal case (where the knowledge is known
from the start). Moreover, these results have been validated by simulation on two different
production scenarios and by considering different kinds of constraints through time. In addition
to this, results have shown that using very sophisticated actors, for example by using machine
learning techniques, is not relevant in our case-study.

Through this combination of three leverages, we are able to provide an automation process
of green programming for HPC applications. The chosen leverages were the CVV, the number
of processes and finally the number of threads. This first step was, like in the previous chapter,
to underline the fact that the proposed leverages have great influence on the energy related
metrics, thus are energy and power leverages. This study of energy leverages was made for the
CVV leverage alone, as #Processes/#Threads has been studied as an energy leverage in the
literature. We showed that through the given process to combine and use combined leverages,
we were able to minimize the energy consumption while always fulfilling the chosen constraints.
Thus, this method permits automatic usage of combined leverages for better energy efficiency
while answering fixed energy and power constraints. However, it does not permit to extract
understandable knowledge, hints or ranking about the combined leverages, usable by users such
as developers or site administrators.
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CHAPTER 6. AUTOMATIC DISCOVERY, COMBINATION, BENCHMARK AND

KNOWLEDGE EXTRACTION FOR COMBINED LEVERAGES

Large-scale distributed systems and supercomputers consume huge amounts of energy. As
described in chapter 2, a large set of capabilities and techniques that we call leverages exist to
modify power and energy consumption in large-scale systems. This includes hardware-related
leverages (such as Dynamic Voltage and Frequency Scaling), middleware (such as scheduling
policies) and application (such as the precision of computation) energy leverages. Discovering
such leverages, benchmarking and orchestrating them, remains a real challenge for most of the
users. In this chapter, we propose a solution to automatically build the table of leverages, a
score table that permits to evaluate combined leverages, associated with a large set of computing
resources. We also propose algorithms and predicates that ease the reading of the table of
leverages and extract knowledge from it. This is evaluated on several platforms and algorithms.
We show that the construction of the table can be parallelized at very large scale in order to
reduce its execution time while maintaining precision of observed knowledge.

6.1 Introduction

While Chapter 2 underline the fact that studies have been conducted on each one of the most
commonly used leverages, only few works consider combining them. For instance, in [70],
and [75], the authors combine the number of OpenMP threads and DVFS, and in [13], the
authors combine shutdown and DVFS leverages. In the case of shutdown, this leverage has
obvious impacts on other leverages: in the off state, no other leverage can be employed at the
application level, for instance. Indeed, the utilization of a given energy leverage can impact
both the utilization and the efficiency of another leverage. Moreover, the variety of leverages
and the complexity of modern hardware architectures, in terms of size and heterogeneity, makes
the energy efficiency more complex to reach for users.

In this chapter, we propose a first approach toward a completely automated process to
characterize the energy leverages available on computing nodes. The key idea of our contribution
consists in building a score table with a value for each leverage combination and each studied
metric. These scores are obtained through the execution of a representative benchmark. Based
on this score table, we can provide hints to users about the most suitable solution for their
application.

This chapter makes the following contributions:

1. We propose a generic framework formalizing the combination of leverages through the
definition of a table of energy leverages;

2. The table of energy leverages: a tool to help a user, a developer or an administrator to
choose which leverage or leverage combination suits the best his energy or power objectives;

3. We present a comprehensive experimental method based on benchmarks and a detailed
overview of its concrete implementation to build the table of energy leverages;

4. Algorithms to extract knowledge about the interaction of leverages and their influence on
energy consumption;

5. We analyze experimental results on several servers demonstrating how to parallelize the
building of the table.

The remaining of this chapter is structured as follows. Section 6.2 shows our process to build
the table of leverages, and Section 6.3 explains how this formalism is implemented. Section 6.4
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presents the experimental setup and a first full example of table of leverages. Section 6.5 then
presents how to exploit the raw data of the table of leverages and extract useful knowledge, while
Section 6.6 focuses on the genericity of our process. Section 6.7 demonstrates the parallelization
of the creation process of the table of leverages. Finally, Section 6.8 concludes this work.

6.2 Formalism of table of leverages

In this section, we describe the methodology applied to build a table of energy leverages, which
relies on metrics and benchmarks to characterize the performance and energy impact of each
leverage combination on a given node. For each metric and each benchmark, a score is attributed
to a given leverage combination. First, we describe the basic concepts used to build the table:
the metrics and benchmarks. Then, we present the formal definition of the table of leverages,
and finally, the methodology for building it.

6.2.1 Metrics

Leverages may influence the quality of service or performance of an application. For instance,
shutdown techniques may induce latency in waking up the required nodes. Consequently, for
these leverages, users need to determine their acceptable trade-off between energy-related metrics
and performance metrics.

Here, three different metrics that represent both energy and performance constraints are
explored. These metrics are measured for a given period of time corresponding to the time
spent during the execution of the benchmark.

The two first metrics are energy and power related metrics. To define them, we introduce
the following notations:

• T = {t0, . . . , tN} is the set of timestamps of energy consumption measurements of a given
run; t0 and tN represent the starting and ending timestamps, respectively;

• pj , j ∈ [0, N ], represents the power consumption (in Watt), of the considered node for the
timestamp tj .

Average Watt denoted avrgWatt, it represents the average power consumption of a chosen
run. It is defined as follows:

avrgWatt =

∑

j∈[0,N ] pj

N + 1
. (6.1)

Joules denoted Joules, it represents the energy consumption of the run. It contains the energy
consumption of the complete node used between t0 and tN . It is defined as follows:

Joules =
∑

j∈[0,N−2]

(tj+1 − tj)× pj . (6.2)

Execution time Finally, the execution time, denoted T ime, is the whole execution time of a
run, including initialization time.
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6.2.2 Benchmarks

A benchmark corresponds to a self-contained application that is representative of typical appli-
cations or portions of applications. The benchmark is compiled before the run. Once launched,
the metrics previously defined are collected during its execution.

Here, for the sake of clarity, we evaluate only one benchmark for a set of embedded leverages.
We chose to focus on a well-known CPU intensive code: the line per line matrix multiplication
(LpL MM) of dense random matrices. The choice of such a benchmark was also supported by a
recent survey about energy consumption in data-centers [32], where authors provide a breakdown
of a computing node’s energy consumption. They underline the fact that for a supercomputer
type of node, thus composed with a multi-core CPU, here an Intel Xeon, and large amount of
memory, here DDR3 type of memory, the CPU still holds the larger part of the energy consumed,
here 60% of the energy consumed by the node.

The same algorithm is implemented for the various leverage combinations. The considered
leverages in this application are multi-thread, computation precision and vectorization (previ-
ously exposed in Section 2.4). As a reminder, multi-thread is the leverage exploiting intra-node
parallelism through the spawn of threads. The computation precision is the leverages used to
modulate the precision of computation and finally, vectorization is the leverage using vectorial
capabilities of current computing components. For the last two leverages, a different state means
a different version of code, here generated by hand. Automatic generation of code version is
possible had has been used in Chapter 5 but it is not the focus of this chapter.

6.2.3 Formalization of the table of leverages

Format of the table of leverages

Here, we describe how to compute the score associated to each metric for each leverage. Let
X,Y, Z be the sets of available states of three leverages χ, ψ, ω: X = {x0, . . . , xnx}, Y =
{y0, . . . , yny}, and Z = {z0, . . . , znz}.

Let g1, . . . , gm be the measured metric functions, as for instance avrgWatt, Joules, and
T ime. For all u (1 ≤ u ≤ m), gu(xi, yj , zk) is the value of metric gu for the states xi, yj , zk
respectively for the leverages χ, ψ, ω.

In the table of leverages, each line corresponds to a combination of states for each leverage
and the columns correspond to the measured metrics. In order to ease the comparison, we
normalize each value on the minimum value for each metric. These normalized values constitute
the scores indicated in the table of leverages. Let h1, . . . , hm be the normalized versions of
g1, . . . , gm. So, we have, for 1 ≤ u ≤ m:

hu(xi, yj , zk) =
gu(xi, yj , zk)

min
xi′∈X,yj′∈Y,zk′∈Z

gu(xi′ , yj′ , zk′)
,

with hu(xi, yj , zk) being the value in the table of leverages in column of metric u and corre-
sponding to the line for the states xi, yj , zk respectively for the leverages χ, ψ, ω.

Methodology to build the table

Building the table of leverages requires to run the benchmark in its adequate version for each
leverage combination. Hereafter, we describe our methodology for running all the required
executions.
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Algorithm 1: Building the table of leverages: benchmark execution for each leverage
combination for a given set of metrics.

Input: LeverageTree: leverages to benchmark
Input: SelectedStates: name of states of leverages being currently benchmarked

1 mM : metric measurements;
2 for sc in root(LeverageTree).S do

3 if root(LeverageTree) is leaf then

4 Add sc to SelectedStates;
5 mM .start();
6 Benchmark(SelectedStates).exec();
7 mM .end();
8 tableOfLeverages[SelectedStates] ← mM ;
9 else

10 Add sc to SelectedStates;
11 Algorithm1(unseen_children(LeverageTree), SelectedStates);
12 end

13 end
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Figure 6.1: Example of LeverageTree input for Algorithm 1.

Algorithm 1 shows the generic pseudo-code to execute the adequate benchmark version on
the correct leverage combination for a given set of metrics. This algorithm has two inputs:
LeverageTree is a tree representing the set of selected states on the studied leverages, and
SelectedStates keeps trace of every current state of leverage involved so far. The functions
root(X) and unseen_children(X) return respectively the root of tree X, and the first unseen
child node of tree X. mM corresponds to an entity gathering metric values (as defined before in
our case: avrgWatt, Joules, and T ime). Benchmark corresponds to the entity that matches
the current state of every leverage SelectedStates and the corresponding binary file to execute,
exec corresponds to the execution of the benchmark. Thus, for all the considered leverages
(LeverageTree), the algorithm is executed recursively over their respective states (S) and col-
lects the metrics (mM) before moving to the next leverage combination. The metrics gathered
during the executions are saved in the TableOfLeverages entity.

Figure 6.1 shows an example of input used for Algorithm 1 in the following table of leverages
of this work. Rounded bullets represent states of the three considered leverages. The benchmark
chooses the corresponding binary, for leverages having different binaries in set of states S, here
Precision and Vectorization. Leverage nbThreads changes its state through environment variable.

When the execution of Algorithm 1 with Figure 6.1 as input is finished, the table of leverages
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Figure 6.2: Framework UML diagram

is complete for the considered benchmark.

6.3 Implementation of table of leverage

In order to be able to build the table of leverages, we created a framework to identify available
known leverages on a given hardware, benchmark the leverages combinations and collect the
associated metrics. This tool can run on a single node or on an entire cluster. It is designed to be
as flexible as possible on three basic concepts: leverage, metric and benchmark. This framework
fits the needs of a wide type of users, going from basic users without specific knowledge to
more experts ones capable of implementing new leverages, benchmarks and metrics collection
methods.

6.3.1 Leverages

As shown in Figure 6.2, the framework provides multiple interfaces to fully describe our ba-
sic concepts and to define a contract between a developer that wants to extend the explored
leverages, studied metrics or used benchmark. These contracts are implemented through a fully
abstract class, forcing a class inheriting from it to implement the needed functions. Thus, every
leverage class must be able to detect its availability (is_leverage_available()), to retrieve its cur-
rent status (get_actual_status()), to retrieve its list of available statuses (get_all_statuses())
and to change its actual status with a valid one (set_new_status()). For example, the avail-
ability of the DVFS can be validated if the file /sys/devices/system/cpu/cpu0/cpufreq ex-
ists. The actual status of the DVFS leverage for a specific core, here 0, can be found in a
configuration file /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq. Reading the scal-
ing_available_frequencies1 file permits to extract all statuses. Finally, the current state can be
changed using the command cpufreq-set.

6.3.2 Metrics

The framework also provides an interface for the metrics. It imposes to be able to start and end
the monitoring of a metric. It also imposes a metric to check the validity of obtained results

1Path file is /sys/devices/system/cpu/cpu0/cpufreq/



6.4. EXPERIMENTAL SETUP AND FIRST TABLE OF LEVERAGES 89

(check_validity_results()). The implementations of the metric contract is mandatory for a user
using the framework with other focuses than energy and power. Thus, such contract allow
various focus for a given study that is diretly linked to the focus of the user.

Grid’5000 provides an api, Kwapi, to get the collected data from the wattmeters in a given
period of time. Once a benchmark has been executed on a node, the contract asks kwapi for the
consumption of the node during this period of time.

Another possibility given by Grid’5000 is to use the live metric webpage. This webpage
returns the consumption metrics of the nodes of Grid’5000 every second. We created a script
that collects them every second. The framework then gets the metrics from the script by giving
the starting and ending timestamps of the benchmark execution.

Such method could also be exported to platforms without wattmeters. For example, we
implemented the contract for captors such as RAPL or IPMI, also to get energy related metrics.

The framework also implements a contract to retrieve FLOPs (FLoating point OPeration
per seconds). In order to retrieve the FLOPs, a script that collects the flops metrics during a
benchmark execution using the PAPI framework is deployed on used nodes. This method is not
specific to Grid’5000 and could be used on a different architecture.

6.3.3 Benchmark

The final contract is relative to the benchmark execution. The first function executes the given
binary. The second gives the current states of application leverages. A family of leverage is
relative to the application. Thus, the state of application leverages changes for every binary
(get_app_leverages_state()).

The framework copies and executes the given binary on chosen nodes. We assume that
compiled and ready to used binary files are passed to the framework.

6.3.4 Construction of the table of leverages

The table of leverage class uses previously presented contracts to implement Algorithm 1. Var-
ious modes of construction are provided.

Default method construct() method runs the same experiment on every node. Thus, every
node will make the same leverage exploration. This method can be time consuming. For example,
using our testbed, combining the first and last status of nbThreads leverage, Precision (int, float
and double) and Vectorization (SSE3 and None) leverages, takes approximately 1 hour and 30
minutes.

Automatic node spread work method In the construct_parallel() method, the framework
runs one scenario by dividing and assigning automatically work on nodes. The execution time of
the framework would be divided by the number of used nodes. If we take the previous example
combining the nbThreads, Precision and Vectorization, with 5 nodes, the execution time of the
framework for this scenario is around 18 minutes. However, the user will need to have a good
knowledge of the nodes and asked metrics in order to ensure coherent results.

6.4 Experimental setup and first table of leverages

In this section, we present the table of leverages built on a node from Grid’5000.
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6.4.1 Experimental setup

To evaluate our methodology in various computing environments, Grid’5000 is used as a testbed [7].

Table 6.1: Server Node characteristics

Features Taurus Nova
Server model Dell PowerEdge R720 Dell PowerEdge R430
CPU model Intel Xeon E5-2630 CPU E5-2620 v4
# of CPU 2 2
Cores per CPU 6 8
Memory (GB) 32 32
Storage (GB) 2 x 300 (HDD) 2 x 300 (HDD)
Date of arrival 11.2012 03.2017

As our focus is on energy and performance related metrics, we used the Grid’5000 Lyon
site that provides the energy consumption of every node from all available clusters is monitored
through dedicated wattmeters, exposing one power measurement per second with a 0.125 Watts
accuracy. Employed servers’ characteristic are shown in Table 6.1.

6.4.2 Table of leverages for three leverages

We apply our previous methodology for the three chosen leverages to the CPU intensive bench-
mark. This allows us to explore all possible states of chosen leverages and to build a complete
table of leverages. It has the following format: the first three columns present the states of the
#Threads, Precision, and V ectorization leverages respectively, while the last three columns
show the normalized results of the three metrics avrgWatt, Joules, and T ime, respectively, for
every combination of leverage.

As described in Table 6.2, a line of the table of leverage represents results of all gathered
metrics for the execution of a representative load for a chosen combination of leverages. The
results are normalized as shown in Section 6.2.3. The table of leverages gathers the knowledge
of a node, here Nova (Table 6.1), for a given workload done for multiple states of leverages
combined.

Explanation of the table: A lot of unexpected results, at first sight, are detected in
Table of leverage 6.2, like the combination with int being better than float and double when 1
and none are the chosen state for the nbThreads and Vectorization leverages, with this trend
being reversed when nbThreads is set to 32.

From the set of combination with 1 as the chosen state for leverage nbThreads, it is logic to
see that int is quicker than float then double from a cache usage perspective. Indeed, more data
can be brought into the cache to compute without the need to fetch new data compared to float
or double representations that need more space for the same amount of elements. As for the
SSE3 and AVX2 combinations, we have tremendous gain while using it compared to None, as
it uses vectorial capabilities of the used core. Using a leverage usually comes with a cost. This
statement is also true for the Vectorization leverage. An operation on vectors has costs, even if
it is low. For example it is known that loading and saving vectors has a non null cost.

With only one active thread, the current architecture, Broadwell here, allows turbo boost, a
technology that permits to reach a much higher frequency than the available ones (here it can
reach 3.0 GHz, when average frequency is 2.1 GHz). Also, when the OS detects too much load
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Table 6.2: Table of energy leverage states for LpL MM benchmark on a Nova node

Leverage states
avrgWatt(W) Joules(J) Time(sec)

#Threads Prec. Vect.

1 int none 1.05 65.09 61.89
1 int SSE3 1.06 28.26 26.56
1 int AVX2 1.06 29.32 27.67
1 float none 1.05 72.97 69.67
1 float SSE3 1.06 33.8 31.89
1 float AVX2 1.05 36.8 34.89
1 double none 1.06 81.59 76.89
1 double SSE3 1.07 58.52 54.89
1 double AVX2 1.06 57.72 54.22
32 int none 1.43 13.48 9.44
32 int SSE3 1.4 4.68 3.33
32 int AVX2 1.0 1.0 1.0
32 float none 1.45 7.4 5.11
32 float SSE3 1.41 3.76 2.67
32 float AVX2 1.56 3.11 2.0
32 double none 1.53 8.34 5.44
32 double SSE3 1.53 8.52 5.56
32 double AVX2 1.54 7.0 4.56

on a core, it context switches the running process and runs it on another core. By doing so,
the kernel saves the states (stack, registers) of the current process and loads it on another core,
implying a storing and loading cost of the given process. This phenomenon can happen several
times during a second. Thus, saving and charging states can create a lot of cache misses, which
could be dramatic with usage of vectorization, where loading and saving vectors is not free. As
AVX2 has longer vectors, its operations costs on vectors can be longer than SSE3. Thus, it starts
to be beneficial only when comparing double combinations for such a Vectorization leverage.

When threads are up to 32, data is more likely to be shared between caches of various used
cores. Without the previous struggles from caches for one core and because it is also well known
that floating points operations (float and doubles here) are well optimized on current architec-
tures and perform better than integers, {32, float, none} and {32, double, none} perform better
than {32, int, none}. All threads are sharing data on separated cache, SSE3 and AVX2 outper-
forms the none configuration, with AVX2 always outperforming SSE3 for a fixed combination.
Due to this data repartition between caches implied by the chosen configuration of the nbThreads
leverage, there is enough computation to overcome costs of larger vector operations, here AVX2
for all combinations.

Note that the best combination for all metrics used here is always the {32, int, AVX2}
combination. This result is the best combination to choose only if we have no constraints about
leverage choices. It is expected to see variation, as leverages highly modulate the usage of nodes,
either from intensity of usage for example of caches, core usage, availability of specific leverages
(like seen with turboboost with one thread).

Results of metrics from combination of leverages is thus complicated to fully explain without
a detailed knowledge of the architecture, the underlying used leverages and their influences on
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a given context. We propose predicates that helps a user underlining relevant tendencies from
the table of leverages. For example, this table could help a user to choose a combination taking
into account a fixed leverage state. Or to answer the following question: is there a leverage or
a state of leverage that is always better for a given metric?

6.5 Exploiting the table of leverages

In this section, we describe a methodology to exploit the table of leverages and to extract useful
knowledge, such as the influence and impact of one or multiple leverages on a given metric or set
of metrics. We propose two ways of extracting a score for each leverage. The first one corresponds
to the actual table: it normalizes the results of a given metric for every explored configuration.
The second one computes a ratio of contribution for each leverage in order to expose the most
relevant leverage (the one with the largest contribution to the considered metric).

We define below four exploitation scenario that can be supported by analyzing the table of
leverages. We illustrate how to answer these questions on the selected table (Table 6.2). These
questions target a single metric, hu.

Question 1: Is a selected combination of energy leverages states the best one for

metric hu? If a given combination is always the best, it means it should always be applied,
if possible, if one wants to optimize hu. Consider a combination of states xa, yb, zc of leverages
χ, ψ, ω for metric hu. We need to check whether for all i ∈ [0, . . . , nx]\{a}, j ∈ [0, . . . , ny]\{b},
and k ∈ [0, . . . , nz]\{c}, we have:

hu(xa, yb, zc) ≤ hu(xi, yj , zk).

On Nova nodes and for the three leverages (Table 6.2), the best combination for all three
studied metrics is {32, int, AVX2}.

Question 2: When I fix a state, do I always improve metric hu? Consider state xa of
leverage χ. We want to check whether for all i ∈ [0, . . . , nx]\{a}, for all l, j ∈ [0, . . . , ny], and
for all m, k ∈ [0, . . . , nz], we have:

hu(xa, yl, zm) ≤ hu(xi, yj , zk).

On the example of Table 6.2, for the Joules and T ime metric, only the nmax (here, 32)
state of nbThreads leverage answers this predicate, meaning that using this state will always
be beneficial. No specific results can be obtained with this question for the avrgWatt metric,
meaning that no leverage state is always better for this metric when used.

Question 3: If mulitple states are fixed for a subset of leverages, is a given state

for the remaining leverages the best choice to optimize hu? Consider that the state of
leverages ψ, ω is fixed to yb, zc. We are asking whether state xa of leverage χ is the best choice
for metric hu. Therefore, we need to check whether for all i ∈ [0, . . . , nx]\{a}, we have:

hu(xa, yb, zc) ≤ hu(xi, yb, zc),
which tells for instance that for the fixed combination {32, SSE3}, the best state for the

Precision leverage is float, when considering the Joules or T ime metric (Table 6.2). Although,
when focusing on avrgWatt as the studied metric, for the {32, SSE3} fixed combination, the
best state for the Precision metric is int.
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If only state zc for leverage ω is fixed, and we consider states xa and yb of leverages χ and
ψ respectively, we check whether for all i ∈ [0, . . . , nx] and for all j ∈ [0, . . . , ny], we have:

hu(xa, yb, zc) ≤ hu(xi, yj , zc).

Concerning the Joules metric (Table 6.2) for the fixed state float of the Precision leverage,
the best combination for the nbThreads and Vectorization leverages is {32, AVX2}. Although,
for the avrgWatt metric, fixing the state float of the Precision leverage, the best combination
for the nbThreads and Vectorization leverages is {32, SSE3}, respectively.

Applying this predicate allows to extract relevant results. Concerning the Joules and T ime
metrics, for the Precision and Vectorization leverages, no state emerges as the best one. In fact,
it highly depends on the chosen state of other leverages. One could for instance expect int to
always be the best state, but when comparing the {32, double, none} with {32, int, none}, we
see that the double combination is more effective than the int combination. Similar conclusions
can be drawn when the Vectorization leverage is used. AVX2 has larger vectors than SSE3, thus
we would expect it to be always more efficient. We note however that when nbThreads state is
equal to 1, {1, float, SSE3} is more effective than {1, float, AVX2}, leading to a different best
choice when combined to the nmax state (here, 32), where {32, float, AVX2} is more effective
than {32, float, SSE3}. Note that this combination emerges as the best one when SSE3 is fixed.

Concerning the avrgWattmetric, we also get relevant knowledge. In opposition to the Joules
and T ime metrics, no state emerges as the best one for the studied leverages. As AVX2 has
larger vectors than SSE3, we would expect it to always stress more the CPU, thus always having
higher values for this metric. It is the case with the {32, float} and {32, double} combinations.
However, it is not observed with other combinations. When nbThreads is set to 1, int is always
the best choice to minimize this metric, whatever the chosen state for Precision and Vectorization
leverages. Moreover, when Vectorization and nbThreads are set to any studied states, int is also
always the best choice to minimize the avrgWatt metric.

Question 4: Given a combination for all the leverages, how can we rank the states in

terms of contribution for metric hu? To answer this question, we consider a set of states
xa, yb, zc of leverages χ, ψ, ω. Then, for each state w ∈ {xa, yb, zc}, we compute the contribution
score mc(w) for this state on metric hu as follows. For state xa of leverage χ:

mc(xa) =
hu(xa, yb, zc)

max
i∈[0,...,nx]

hu(xi, yb, zc)
.

For state yb of leverage ψ:

mc(yb) =
hu(xa, yb, zc)

max
j∈[0,...,ny ]

hu(xa, yj , zc)
.

For state zc of leverage ω:

mc(zc) =
hu(xa, yb, zc)

max
k∈[0,...,nz ]

hu(xa, yb, zk)
.

Then, we rank the contribution scores mc(xa), mc(yb), mc(zc) in ascending order to answer the
question.

Table 6.3 presents the scoring related to the table of leverages previously presented in Ta-
ble 6.2. For the best combination {32, int, AVX2}, the ranking goes as follows for the Joules
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Table 6.3: Ranked impacts of energy leverage states for LpL MM benchmark on a Nova node

Leverage states Ranked impact for
#Threads(T) Prec.(P) Vect.(V) avrgWatt Joules Time

1 int none P,T,V P,T,V P,T,V
1 int SSE3 P,V,T V,P,T V,P,T
1 int AVX2 P,V,T V,P,T V,P,T
1 float none P,V,T P,T,V P,T,V
1 float SSE3 V,P,T V,P,T V,P,T
1 float AVX2 P,V,T V,P,T V,P,T
1 double none P,T,V P,T,V P,T,V
1 double SSE3 V,P,T V,P,T V,P,T
1 double AVX2 P,V,T V,P,T V,P,T
32 int none P,T,V T,P,V T,P,V
32 int SSE3 P,V,T T,V,P T,V,P
32 int AVX2 P,V,T T,V,P T,V,P
32 float none P,T,V T,P,V T,P,V
32 float SSE3 V,P,T T,P,V T,P,V
32 float AVX2 P,V,T T,V,P T,V,P
32 double none P,T,V T,P,V T,P,V
32 double SSE3 V,T,P T,P,V T,P,V
32 double AVX2 P,T,V T,V,P T,V,P

metric: “T,V,P” or “nbThreads, Vectorization, Precision”, meaning that the chosen state for
nbThreads here is the most contributing state in this combination, followed by the Vectoriza-
tion and then Precision states. Thus, for this combination, the precision leverage with the int
position has the lowest contribution.

This ranking points out relevant results for the Joules metric. We notice a switch between
two positions of a given leverage for the fixed combination of other leverage states: {32, double}.
In fact, when comparing the scoring of {32, double, SSE3} with {32, double, AVX2}, we get
respectively “nbThreads, Precision, Vectorization” and “nbThreads, Vectorization, Precision”.
In the first case, double and SSE3 have the same worst possible score, 1.0, meaning that it is the
worst state of this leverage for this combination. In the second case, AVX2 scores better than
SSE3 and thus, it is above double.

When nbThreads is set to 1, we note that combinations including SSE3 and AVX2 states
always have the Vectorization leverage state as the most contributing one, which leads to the
conclusion that it is always better to use SSE3 and AVX2 states for the Vectorization leverage
when nbThreads is set to 1.

For the {32, float, SSE3} combination, we get the scoring “nbThreads, Precision, Vector-
ization”. float gets a better score and thus a better position than SSE3 because it is the best
leverage state for the {32, SSE3} combination, leading to the conclusion that choosing float
instead of other Precision leverage states contributes more than choosing SSE3 instead of other
Vectorization leverage states for this combination.

For the avrgWatt metric, scoring underlines the fact that when choosing int as a state of
Precision leverage and for a fixed state of the Vectorization leverage, the sorting is always the
same. In fact, {32, int, none}, {32, int, SSE3} and {32, int, AVX2} get the exact same sorting
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of contribution that {1, int, none}, {1, int, SSE3} and {1, int, AVX2}, respectively. Moreover,
int is always the most contributing leverage state, which shows that int is always a good choice
to improve this metric.

This scoring also underlines the fact that in order to minimize the avrgWatt metric, a user
should better focus on Precision and Vectorization leverages, as nbThreads is never the most
contributing one.

This scoring highlights results that would have been difficult to notice just by looking at
the table. It allows a user to quantify how much a leverage position used in a combination
contributes to the overall performance for a given metric.

6.6 Genericity of tables of leverages

In this section, we analyze the possible generalization of the table of energy leverages, i.e., the
generalization of the extracted knowledge while varying the hardware node and the benchmark.
Matrix multiplication is known to appear in a lot of CPU intensive codes and thus is known to
be a representative code for CPU intensive kernels [4]. First, we analyze correlation between
tables of leverages for the three selected energy leverages on different hardwares devices (i.e.,
heterogeneous nodes) running the same benchmark. Then, we build the table of leverages for
another CPU-intensive only benchmark in order to illustrate the possible dependence between
the table of leverages extracted knowledge and the selected benchmark.

6.6.1 Hardware architecture dependence

Choosing a different node with a different hardware architecture implies hardware-level leverage
variability. First, we study the impact of the chosen node on the table of leverage. The same
leverage exploration and table exploration that Table 6.2 is executed on a different family of
nodes, the “Taurus” nodes, as detailed in Table 6.1.

Table 6.4: Table of energy leverage states for LpL MM benchmark on a Taurus Node

Leverage states
avrgWatt(W) Joules(J) Time(sec)

#Threads Prec. Vect.

1 int none 1.0 15.56 22.77
1 int SSE3 1.02 6.03 8.68
1 float none 1.0 16.86 24.65
1 float SSE3 1.02 7.19 10.32
1 double none 1.01 18.61 26.87
1 double SSE3 1.03 12.52 17.87
24 int none 1.49 3.78 3.71
24 int SSE3 1.46 1.28 1.29
24 float none 1.52 2.27 2.19
24 float SSE3 1.46 1.0 1.0
24 double none 1.58 2.55 2.35
24 double SSE3 1.56 2.45 2.29

Table 6.4 presents the obtained table of leverages on a “Taurus” node with the previously
studied benchmark (LpL MM). For the Taurus node, processors are older than for the Nova
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node and AVX2 is not a possible state for the Vectorization leverage. Thus, no combination
with AVX2 will appear in this table of leverages.

The answer of Question 1 (Section 6.5) for Table 6.4 concerning the Joules metric is {24,
float, SSE3}, in other words, it is the best combination of leverages for this metric for a Taurus
node. This combination is also the best choice that does not have AVX2 as a chosen state for
Vectorization leverage on Table 6.2 for the Nova node.

For the Question 3, for Nova node (Table 6.2), we fix {nmax, SSE3} and underline the
fact that float is the best state for the Precision leverage, which is also true for Taurus node
(Table 6.4).

This question also permits to underline a switch between {1, float, SSE}, {1, int, SSE3} and
the usage of the nmax state (here, 24) for the Taurus node (Table 6.4). In fact, {int, SSE3}
and {24, float, SSE3} are better than {float, SSE3} and {24, int, SSE3}, respectively. The
phenomenon also happens with the Nova node (Table 6.2).

Although, it also permits to underline the fact that, when using the SSE3 state, it is always
better than the none state for Vectorization leverage on Taurus node (Table 6.4), which is also
the case for Nova node (Table 6.2), except for {32, double, SSE3}, which is worse than {32,
double, none} for the Joules metric.

6.6.2 Benchmark dependence

Choosing a different benchmark implies various application-level leverage availability. We study
a benchmark very close to the initial line per line matrix multiplication (LpL MM). We introduce
a "Sqrt" operation for every multiplication operation, in the most inner loop. Thus, this new
benchmark keeps the same complexity, either in computation or memory. We also choose to
introduce this operation because it modifies the usage of vectorization (SSE3 and AVX2 have
an sqrt operation for vectors), thus representing a different CPU-intensive only benchmark.

Table 6.5: Table of energy leverage states for LpL MM SQRT benchmark on a Nova node

Leverage states
avrgWatt(W) Joules(J) Time(sec)

#Threads Prec. Vect.

1 float none 1.01 125.02 167.79
1 float SSE3 1.02 10.37 13.74
1 float AVX2 1.02 10.77 14.26
1 double none 1.0 112.0 151.29
1 double SSE3 1.01 33.54 44.71
1 double AVX2 1.01 33.78 45.03
32 float none 1.47 8.57 7.87
32 float SSE3 1.35 1.0 1.0
32 float AVX2 1.36 1.03 1.03
32 double none 1.39 5.21 5.05
32 double SSE3 1.4 3.22 3.11
32 double AVX2 1.39 3.17 3.08

Table 6.5 illustrates the table of energy leverage states for the modified benchmark (multi-
plication of matrix with square root operations). All combinations with int are missing because
sqrt operation result would have been stored in an int, thus loosing consequent information and
therefore, the obtained application results would have been very different for this version. We
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now compare this table with Table 6.2 which concerns the same Nova node for the unmodified
benchmark (LpL MM).

The answer of Question 1 (Section 6.5) for the Joules metric cannot be {32, int, AVX2}
because int is not a valid state for leverage Precision. Here, {32, float, SSE3} is the best
combination of leverages, which is also the first non-AVX2 result in Table 6.2 for the same
metric.

For Question 3, for Table 6.2, we fix {32, SSE3} and underline the fact that float is the
best state for the Precision leverage, which is also true for Table 6.5. On the other hand, when
we fix only float, {32, AVX2} emerges as the best combination for other possible leverages for
Table 6.2, while {32, SSE3} is the best one for Table 6.5.

This question also permits to underline a switch between {float, SSE3}, {float, AVX2} and
the usage of the 32 state for the nbThreads leverage for Table 6.2. In fact, {float, SSE3} and
{32, float, SSE3} are better than {float, AVX2} and {32, float, AVX2}, respectively. This
phenomenon is not observed in Table 6.5.

6.6.3 Conclusions about genericity

For Question 2 (Section 6.5), as expected, all tables of energy leverages of this chapter show
that using nbThreads at the maximum value will always be beneficial for the Joules metric.

Question 3 also permits to notice that when the number of threads is fixed, for a given
fixed Precision leverage state, using Vectorization leverage in SSE3 or AVX2 state will always
be beneficial for the Joules metric. This knowledge is true for every table of leverages in
this chapter except for one combination implying the SSE3 state. Indeed, on Table 6.2, the
predicate exposes that the {32, double, SSE3} combination is not better than the {32, double,
none} combination for this metric.

Furthermore, using the AVX2 state for a fixed Precision leverage state of double is always
better compared to other states for the Vectorization leverage.

Our predicates also underline the fact that when SSE3 is the chosen state for Vectorization,
the chosen state to minimize the Joulesmetric is always the float state for the Precision leverage,
whatever the chosen state for nbThreads is. For AVX2 state, the chosen state to minimize the
Joules metric is int, whatever the chosen state for nbThreads.

As we show with the previous analysis, between different architectures and benchmarks,
minor differences have been found on the extracted knowledge. In fact, the comparison of
different tables of leverages in different contexts (benchmarks or machines) underlines the fact
that high level and finer grain knowledge could be generalized.

We believe that it is possible to have a finer analysis or a more generic table. For example,
the proposed solution does not take into account the fact that the usage of SSE3 and AVX2
differs from one table to another. Another possible solution could be the scope of an assembly
operation instead of studying an entire benchmark. In such a context, a table of leverages could
be useful but hard to build. In fact, it would be extremely difficult to know with external
wattmeters as ours if the measured results are noise or relevant information. Furthermore, it
would be complex to determine what is a representative code for a specific operation, thus to
determine a relevant benchmark for this operation.
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6.7 Parallelization of the table construction

The construction of the table of leverages may take a long time if many different leverage com-
binations are considered. In this section, we explain how the construction could be parallelized,
so that the time to generate a complete table of leverages could be significantly reduced.
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Figure 6.3: Nova-1, 30 runs of various stresses

6.7.1 Re-usability of energy and performance metric, one node

The first hypothesis that we have to evaluate here is the fact that a node, exposed to the same
load, gives the same metric results, with very low variation.

We run various intensive workloads using stress2, a tool that applies a specific kind of stress
to the used node. We execute 30 times every stress on a unique “Nova” node. Figure 6.3 shows
results of such a protocol. For HDD stress (hard drive usage), three types of phases could be
recognized. The first one from t = 0s to t = 10s and last one from t = 35s to t = 80s are the

2https://people.seas.harvard.edu/~apw/stress/

https://people.seas.harvard.edu/~apw/stress/
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same for every run. The variation occurs between t = 10s and t = 35s. When the disk is active
and writing in various regions, the energy cost could differ depending on the chosen region for
writing. Moreover, unlink() unix function assures that the link is removed but the file may not
be deleted. We observe that for CPU, IO and RAM stress, all runs have approximately the same
behavior, meaning that one run on the same node exhibit similar energy consumption, for these
kinds of stress.

6.7.2 Re-usability of energy and performance metric, one family hardware

The second hypothesis that we have to evaluate here is the fact that extracted metrics could
also be used by different nodes with the same hardware.

We stress several nodes of the same hardware (Taurus or Nova clusters, 10 Taurus nodes
were used, while 5 Nova nodes were used) to observe how the standard variation concerning
various energy-efficiency and performance-related metrics evolve. We chose these two families
of hardware to evaluate a newly acquired node family (“Nova”, 2017) and an old one (“Taurus”,
2012). This evaluation is done with various intensive workloads that stress differently the energy
consumption of a node (CPU, IO, hard drive usage, RAM).

Table 6.6: Average (Av.) and standard deviation (StD.) of various workloads for various energy
and performance related metrics for various hardware architectures

Hardware family Joules (J) AvrgWatt(W) Time(t)
Av. - StD. Av. - StD. Av. - StD.

CPU
Taurus 6807.0 - 68.8 205.84 - 1.37 32.81 - 0.39
Nova 4998.86 - 49.3 154.91 - 1.09 32.06 - 0.43

HDD
Taurus 5055.98 - 365.33 140.58 - 2.98 35.85 - 2.4
Nova 9381.94 - 251.5 107.8 - 0.57 87.01 - 2.47

IO
Taurus 3957.52 - 34.98 123.46 - 0.21 32.0 - 0.3
Nova 4194.53 - 68.06 130.3 - 0.67 32.04 - 0.66

RAM
Taurus 5097.83 - 55.81 222.14 - 2.2 32.5 - 0.52
Nova 7282.26 - 115.89 158.53 - 0.8 31.93 - 0.44

Metrics and standard deviation averages of families of nodes are exposed in Table 6.6 for
CPU, HDD, IO, and RAM workloads. For this experiment, every node is doing the same work
at the same time. We get metrics results for every run (10 run averages on every node). We
then average values for families of nodes. Note that the standard variation for the three chosen
metrics are negligible for all stress benchmarks, except HDD (as already explained in the previous
subsection). Even for the Joules metric, we note that the variation is under the second of idle
consumption of both nodes for every benchmark, meaning that differences between metric results
from the same family of hardware are negligible.

These experiments show that for the same workload, same energy and performance behavior
could be witnessed for various nodes having the same configuration.
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6.7.3 Table of leverages, variability between nodes

In this section, we evaluate the same hypothesis for our previously defined table of leverage (Ta-
ble 6.2) with 5 nova nodes. For every leverage combination, we evaluate the standard deviation
of obtained metrics on all nodes. For every leverage combination, we extract the average and
the standard deviation of all used nodes. To explain these numbers easily, we also extract the
percentage represented by the standard deviation to the average.

Table 6.7: Table of energy leverage states for LpL MM benchmark on a 5 Nova nodes, average,
standard deviation and percentage of standard deviation for average

Leverage states avrgWatt (W) Joules (J) Time (sec)
#T. Prec. Vect. Av. StD. % Av. StD. % Av. StD. %

1 int none 118.99 3.53 2.96 66041.42 2016.32 3.05 555.0 1.1 0.2
1 int SSE3 120.48 3.44 2.86 28844.54 865.88 3.0 239.4 0.49 0.2
1 int AVX2 120.02 3.38 2.81 29862.48 881.6 2.95 248.8 0.4 0.16
1 float none 118.55 3.32 2.8 74258.92 2085.38 2.81 626.4 0.49 0.08
1 float SSE3 120.08 3.35 2.79 34416.58 1005.18 2.92 286.6 0.49 0.17
1 float AVX2 119.48 3.44 2.88 37445.13 1079.41 2.88 313.4 0.49 0.16
1 double none 120.06 3.43 2.86 83060.58 2379.14 2.86 691.8 0.4 0.06
1 double SSE3 120.75 3.48 2.88 59578.0 1735.06 2.91 493.4 0.49 0.1
1 double AVX2 120.45 3.44 2.86 58661.37 1740.92 2.97 487.0 0.89 0.18
32 int none 161.0 4.41 2.74 13684.79 374.68 2.74 85.0 0.0 0.0
32 int SSE3 158.72 4.67 2.94 4761.68 140.14 2.94 30.0 0.0 0.0
32 int AVX2 113.39 3.62 3.19 1044.21 73.82 7.07 9.2 0.4 4.35
32 float none 163.04 4.46 2.73 7499.91 205.06 2.73 46.0 0.0 0.0
32 float SSE3 158.58 4.13 2.6 3805.9 99.07 2.6 24.0 0.0 0.0
32 float AVX2 174.68 5.7 3.26 3211.55 48.17 1.5 18.4 0.49 2.66
32 double none 171.79 5.14 2.99 8450.54 198.45 2.35 49.2 0.4 0.81
32 double SSE3 172.62 4.97 2.88 8594.98 205.08 2.39 49.8 0.4 0.8
32 double AVX2 173.6 5.27 3.03 6978.92 231.53 3.32 40.2 0.4 1.0

Table 6.7 presents the same exploration that the previously presented Table of leverages 6.2
for 5 nova nodes with average, standard variation and percentage represented by the standard
deviation to the average, respectively, for every extracted metrics. While Table 6.8 presents the
same exploration but for Taurus nodes. The same matrix dimension is used for both exploration
(8192). Note that Taurus nodes does not have AVX as available state for the vectorization
leverage.

Table 6.7 underlines the fact that the most stable metric is undeniably time, with only three
combinations of leverage above or equal to 1% and only one combination, {1, int, none}, with
a standard deviation above 1 second. Same goes for Table 6.8, where only two combinations of
leverages are above 1%.

For Joules metric, every percentage is under 3.33% for Table 6.7, except for the less consuming
combination of leverages, {32, int, AVX} at 7.07%, which is still reasonable. This high value for
this combination could be explained by the fact that our wattmeters are giving a power value
every second, thus if a run is a bit longer than the 9 seconds, it will get an extra power value
that others will not have. Because there are not a lot of values (one per second), an extra value
on such a short run has high repercussions on the standard deviation. Because runs are longer
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Table 6.8: Table of energy leverage states for LpL MM benchmark on a 5 Taurus nodes, average,
standard deviation and percentage of standard deviation for average

Leverage states avrgWatt (W) Joules (J) Time (sec)
#T. Prec. Vect. Av. StD. % Av. StD. % Av. StD. %

1 int none 143.3 3.34 2.33 101226.43 2371.0 2.34 706.4 0.49 0.07
1 int SSE3 146.49 2.57 1.76 39406.17 693.39 1.76 269.0 0.0 0.0
1 float none 143.74 2.63 1.83 109872.73 2050.37 1.87 764.4 0.49 0.06
1 float SSE3 146.56 2.7 1.84 46926.95 842.17 1.79 320.2 0.4 0.12
1 double none 145.88 2.89 1.98 121376.55 2457.85 2.02 832.0 0.63 0.08
1 double SSE3 147.59 2.71 1.84 81676.02 1498.01 1.83 553.4 0.49 0.09
24 int none 215.39 2.9 1.35 24684.46 420.55 1.7 114.6 0.49 0.43
24 int SSE3 211.95 2.99 1.41 8308.44 146.41 1.76 39.2 0.4 1.02
24 float none 218.57 3.3 1.51 14906.06 197.2 1.32 68.2 0.4 0.59
24 float SSE3 210.8 3.15 1.5 6619.05 147.45 2.23 31.4 0.49 1.56
24 double none 228.68 3.38 1.48 16739.08 252.47 1.51 73.2 0.4 0.55
24 double SSE3 225.99 3.55 1.57 16044.3 221.76 1.38 71.0 0.63 0.89

on Table 6.8, percentage are more stable, between 2.34% and 1.32%. Finally, for the AvrWatt
metric, every percentage is under 3.27% for Table 6.7 and under 3.55 for Table 6.8.

These previous results (Table 6.6, Table 6.7 and Table 6.8) analysis underlines the fact that
for the same workload, same energy and performance behavior could be witnessed for various
nodes having the same configuration, under a low percentage of difference. Thus, for large scale
computing systems with large amounts of computing nodes with the same configuration, the
table of leverage could be done on only one node, or derived from a segmented construction on
multiple nodes and used as knowledge for other nodes.

6.8 Conclusion

There are a wide range of techniques, that we formally define as leverages, that permits to
modulate the computing capabilities and/or the energy/power used by a device. We propose
a generic solution to create a score table about multiple metrics for a given set of leverages,
called the table of leverages. Then, we extract fine grain knowledge and hints from it, thanks to
the defined predicates. Our solution underlines new knowledge about leverages alone and about
combinations of leverages. Thus, it allows us to extract influences of leverages on each other
and understandable knowledge by the user.

Generic knowledge could be extracted from tables using different CPU-intensive workloads
or different hardware devices. For example, our solution underlines the fact that if Precision
is set to the double state, it is always better to use it with AVX2 state for the Vectorization
leverage to minimize the Joules metric. Also, for Vectorization fixed to the SSE3 state, our
solution tells us that float is the best state to minimize the Joules metric. We also underline the
fact that unexpected behavior can be seen when combining leverages. For example, we underline
the fact that changing float or int to double for Precision, and keeping the SSE3 state activated
for Vectorization leverage, turns out to be counterproductive for the Joules metric.
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7.1 Conclusion

Energy consumption is one of the major problems of the current generation. With everyone
being connected through multiple devices at the same time, asking requests to large-scale fa-
cilities all the time, energy consumption of IT systems has drastically increased through these
last two decades. In 2017, the energy footprint of data centers and supercomputers around the
world is estimated around 7% of global electricity. It is also responsible of 2% of global carbon
emission [26]. This worrying consumption and carbon footprint has direct financial and envi-
ronmental consequences on data center managers, such as Cloud providers and supercomputer
operators. Reducing the energy consumption of large-scale computing systems is a mandatory
step to address in order to build a sustainable digital society.

This thesis has investigated the reduction and the evaluation of energy consumption of large-
scale computing systems through the usage of multi-level leverages present on such infrastruc-
tures. These leverages are usually easy to use but their influences on the energy consumption
could be difficult to analyze, as their usage alone or combined could be counter productive if not
wisely used. Thus, through our various contributions, we proposed methodologies, implementa-
tions and frameworks to evaluate, model and combine available leverages, alone or combined.

Chapter 2 presents our classification of available leverages in a data center or a supercom-
puter. It also gives a set of examples for each family with the most used and significant leverages
available on such infrastructure. We conclude this chapter by pointing out the fact that no
methodology is available in the literature to generically study leverages.

Based on this analysis, Chapter 3 presents our methodology to detect, evaluate, study and
estimate a given leverage as an energy and power leverage, from the evaluation of the possible
states of the studied leverage to the possible creation of actors answering multiple constraints
at the same time.
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In Chapter 4, this previously exposed methodology is then used to finely evaluate and model
the shutdown leverage and to create generic actors that answer the dynamic usage of a facility
with multiple constraints at the same time. Each of these actors has a unique focus on a given
constraint to respect, such as power capping or the provenance of energy and are built to be
easily composed.

A first methodology for the combination of leverages is then proposed in Chapter 5. This
methodology is used on a production application executed on real infrastructure as Curie Super-
computer. Through this technique, green programming can be easily achieved and automated,
even for HPC applications. We proposed a set of actors able to reduce the energy consumption
and respect fixed constraints.

In Chapter 6, we present a framework to build the table of power and energy leverages.
This highly extensible framework permits to discover, combine and benchmark a given set of
leverages. It also permits to extract understandable knowledge from the given table.

7.2 Perspectives

While this thesis presented solutions and proposed methodologies to underline, model and eval-
uate various leverages alone and combined, a lot of perspectives remain open for large-scale
energy consumption problematics.

7.2.1 Building the table of leverage for every phase

In Chapter 6, we showed that generic knowledge could be extracted from CPU-intensive phases
with a representative benchmark. We focused on CPU-intensive phases because HPC applica-
tions are known to be CPU intensive most of the time.

It will be relevant to perform the same study on other phases, such as IO-intensive phases.
This study would require to find the most relevant leverages for such a study to evaluate their
influences. These findings can be done with the proposed framework, a chosen set of leverages
to study and a representative IO benchmark.

7.2.2 Reducing the search state

Focusing on micro kernels that are representative of a possible phase of a real HPC application,
as done in Chapter 6, is a first step to the reduction of the possible search state. Also, the
parallelization of the creation of the table of leverages greatly reduces its time completion. If
we consider more combined leverages, reduction of time to complete the table of leverage could
be necessary. To achieve such a goal, prediction approaches could be used. Indeed, avoiding
unnecessary or too long combinations to be executed could be beneficial for the execution time.

Such an approach could be risky too. In fact, if the focus of the user is to exploit the given
predicate of the framework to better understand the interaction or the contribution of a leverage
in a combination, he will not have full information, because such an approach will avoid or partly
execute many combinations.

7.2.3 Supporting sub-application leverage

An approach that could be even more precise than the table per phase approach is the instruction
level table approach, where all measures would be done on an instruction level. Thus, all
application leverages would be replaced by all possible or most consuming instructions.
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Yet, this solution raises two main issues: the generation of the benchmark and the monitoring.
First, it can be hard to produce a benchmark or a section of code that uses only one instruction,
and benchmarks it for a power and energy table of leverage. Such benchmark has to be produced
in the nearest language to the machine, thus assembly, to be sure about which instruction is
used. Even with a good assembly developer, it is complex to produce assembly code with only
one major set of instructions. Second, the monitoring of such a fine grain benchmarking could
require finer grain monitoring that what is commonly available on our actual infrastructures
(i.e., external wattmeters and internal partial sensors such as RAPL). Thus, it could be hard to
produce such an instruction table of leverage.
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