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DOCTEUR de TÉLÉCOM SUDPARIS

Sujet de la thèse :
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fik, Aurélien, Catherine, Elie, Mamdouh, Bruno, Stanislas, Yu, Manon, Alain,
Amal, Eric, Adam, Nancy, ainsi que d’autres qui n’ont été que de passage.
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Chapter 1

Résumé en Français -
French Abstract

1.1 Présentation

1.1.1 Contexte

Le déploiement des réseaux FTTH est actuellement l’un des défis les plus im-
portants des opérateurs de télécommunications, pour des raisons financières (la
couverture de la France est estimée à plusieurs dizaines de milliards d’euros)
ainsi que pour l’image de la marque. La solution majoritairement choisie par les
opérateurs est de déployer des réseaux optiques passifs (PON) (voir [45], [55]).
Le répartiteur (splitter) optique passif est l’équipement clef d’un réseau PON.
Cet appareil est connecté à une fibre optique d’un côté (fibre amont), et à plu-
sieurs fibres de l’autre côté (fibres aval, voir Fig. 1.1). Il divise le signal venant
de la fibre en amont sur les fibres aval, et regroupe le signal venant des fibres
en aval sur la fibre en amont. Les architectures PON sont composées de N ni-
veaux de répartition (voir [35], N étant généralement compris entre 1 et 3). On
travaille ici avec des réseaux à un niveau de répartiteurs, mais le travail effectué
s’applique à n’importe quelle architecture.

Cette thèse aborde un sous-problème du design des réseaux FTTH, qui
consiste à relier un point où sont situés les équipements (centre de répartiteurs
ou NRO) à plusieurs autres (clients ou répartiteurs), avec des câbles de fibres,
à coût minimal. Dans un PON à plusieurs niveaux, le problème apparait entre
chaque niveau (voir Fig. 1.1). Par exemple, les câbles peuvent avoir à relier un
centre de répartiteurs de haut niveau à plusieurs centres de plus bas niveau
(voir Fig. 1.1b). L’architecture PON ainsi que la position des répartiteurs est
supposée connue et fixée par des décisions faites auparavant (voir Section 2.2.1).
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(a) Architecture à un niveau de
répartiteurs. Le problème de câblage
apparait dans le réseau de transport et
dans chaque réseau de distribution.

(b) Architecture à N niveaux de
répartiteurs. Le problème appa-
rait aussi entre chaque centre
de répartiteurs et les centre de
répartiteurs de niveau inférieur as-
sociés.

Figure 1.1: Architectures optiques

1.1.2 Eléments

Câbles et Génie Civil

Les câbles sont composés de trois niveaux : un câble contient plusieurs modules,
et un module contient plusieurs fibres. Tous les modules d’un même câble sont
identiques. Dans ce travail, on impose à tous les modules d’un réseau FTTH
d’être identiques. Les demandes sont exprimées en nombre de modules, dont
le but est de servir des groupes de clients. Cela nous permet de considérer
uniquement deux niveaux, les câbles et les modules (voir Fig. 1.2a). Un module
actif est un module connecté au équipements à ses deux extrémités. Les autres
sont inutilisés.

Les câbles sont déployés le long du génie civil (voir Fig. 1.2b), composé de
conduites existantes (venant du réseau de cuivre, du réseau électrique, . . . ). Les
câbles les plus larges ont un diamètre de 2,5 centimètres (voir les catalogues
de constructeurs de câbles, [23], [33]), tandis que les conduites des réseaux de
télécommunication sont généralement d’au moins 30 centimètres de diamètre.
(voir [49]). Cela nous amène à supposer que l’on peut installer autant de câbles
que l’on veut dans une conduite. Creuser de nouvelles conduites est en général
exclu à cause de coûts trop importants. Le long des conduites se trouvent des
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(a) vue en coupe d’un câble de
60 fibres et abstraction (b) Exemple de génie civil avec demande

Figure 1.2: Structure des câbles et génie civil

cabinets (aussi appelés alvéoles ou chambres) dans lesquels les câbles peuvent
subir des opérations. Certains de ces cabinets ont une demande en fibre.

Opérations

Dans les cabinets, les câbles peuvent subir deux opérations différentes, qui
amènent à avoir trois configurations de base (voir Fig. 1.3) :

• Continuation : le câble traverse le cabinet sans subir aucun changement.

• Epanouissement (splicing) : cette opération consiste à couper un câble
au niveau du cabinet, souder une partie de ses modules aux modules de
nouveaux câbles, et cela dans une boite de soudure. La taille de la boite
dépend de la taille du câble épanoui.

• Piquage (tapping) : cette opération consiste à ouvrir la gaine du câble,
souder une partie de ses modules à ceux de nouveaux câbles, le tout dans
une boite de soudures. La taille de la boite correspond à la taille du câble
piqué. Celui-ci continue hors du cabinet avec plus de modules inactifs qu’il
n’en avait. Comparé à un épanouissement, cette opération requiert moins
de soudures, mais un coût de déploiement de câbles plus important.

En utilisant ces techniques, on peut construire un réseau de câbles satis-
faisant la demande. Cependant, des règle d’ingénierie dépendant du contexte
doivent être prises en compte. Voici celles suivies par Orange :

• Pour faciliter la maintenance, un câble créé ne peut jamais contenir des
modules venant de deux câbles différents (voir Fig. 1.4).
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Figure 1.3: dans un cabinet, câbles continués, épanouis et piqués

• Au plus un câble peut être soit épanoui soit piqué dans une même cabinet.
Cela est imposé par les autorités de régulation afin de laisser de l’espace
physique à la concurrence (voir [5]).

Demande

La demande doit toujours être satisfaite avec des modules venant d’un seul et
même câble. Cela peut être fait de deux façons différentes (voir Fig. 1.5)

Elle est soit servie par câble, lorsqu’un câble entier est utilisé, soit servie par
modules, lorsque des modules venant d’un épanouissement d’un ou piquage sont
utilisés. Afin d’éviter les différences de qualité de service perçues par des clients
voisins, ces deux techniques ne peuvent pas être utilisées ensemble.
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Figure 1.4: Un câble ne peut pas contenir des modules de deux câbles différents

Coûts

Les coûts considérés dans ce travail sont ceux payés par l’opérateur Orange (voir
Fig. 1.6). Ils additionnent le prix du matériel et le prix de la main d’oeuvre :

• Le coût d’une boite de soudures est une fonction en escalier croissante en
fonction de la taille du boitier. Cela vient du fait que l’on a un nombre
limité de boitiers différents proposés par les constructeurs de câbles.

• Le coût des soudures est une fonction croissante linéaire par morceaux en
fonction du nombre de soudures à effectuer dans un cabinet.

• Le coût d’un câble est croissant et concave en fonction du type de câble
(nombre de modules), et linéaire en fonction de sa longueur.

Le coût total de déploiement d’un réseau que l’on considère est la somme
du prix des câbles, des soudures, et des boites. Un compromis apparait entre
le prix des câbles, qui dépend de leur longueur, et les prix des boitiers et des
soudures, qui n’en dépendent pas.

Le design d’un plan de déploiement de câbles (solution du problème) est
complètement décrit par les éléments suivants :

• Une liste de conduites à utiliser

• Une liste de câbles, et pour chacun sa taille, son nombre de modules actifs,
et le chemin sur lequel il doit être déployé.

• Une liste de points de séparation (épanouissement ou piquage) liant les
câbles entre eux

• Pour chaque point de demande, le câble servant cette demande, et la façon
dont elle est servie (par modules ou par câbles).
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Figure 1.5: La demande peut être servie de deux façons différentes, qui ne
peuvent pas être combinées

De plus, les règles d’ingénierie spécifiques au problème considéré doivent être
respectées afin d’avoir une solution faisable.

Backfeed

Le long des chemins sur lesquels on peut déployer les câbles, certains peuvent
aller vers l’amont du génie civil, c’est à dire depuis la demande de fibres vers la
source (voir Fig. 1.7). On appelle cela � backfeed � , et il se peut que cela fasse
partie d’un déploiement de coût minimal.

Figure 1.7: Illustration du backfeed

Différentes politiques de backfeed sont explorées au chapitre 5.

Maintenance

On introduit ici une retriction possible du problème qui peut être imposée à
cause de considérations de maintenance. On oblige tous les câbles traversant
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Figure 1.6: Coûts des boites, soudures et câbles
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une même conduite à venir d’un même cabinet (éventuellement la source des
fibres). Cette restriction est ilustrée Fig. 1.8. En effet, en supposant que tous les
câbles traversant une conduite sont abimés, une opération doit être faite dans
tous les cabinets d’origine de chacun de ces câbles. Si la règle est respectée, une
inter vention est nécessaire dans seulement un cabinet.

Figure 1.8: Gauche : épanouissement respectant la règle de maintenance. Sur
chaque conduite, les câbles viennent d’un seul cabinet. Droite : épanouissement
ne respectant pas la règle. Sur la conduite en bas à droite, deux câbles différents
viennent de cabinets différents.

Ces considérations de maintenance sont traitées au chapitre 6.

1.2 Problèmes abordés

En introduisant ou pas des contraintes d’ingénierie, on peut obtenir une grande
variété de problèmes. On résume ici les différents problèmes traités.

On définit Fiber Cables Network Design (FCND) de la façon suivante :

• Le génie civil disponible est un graphe général.

• L’épanouissement et le piquage sont tous deux autorisés.

• La demande peut être servie par câble et par modules.

• Le backfeed n’est pas autorisé.

• La règle de maintenance ne s’applique pas.

C’est le sujet du chapitre 3.
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Fiber Cables Network Design in an Arborescence (FCNDA) est défini comme
une restriction de FCND où le génie civil disponible a une structure d’arbre. On
le traite au chapitre 4.

On définit Backfeed Fiber Cables Network Design (BFCND) comme suit :

• Le génie civil disponible a une structure d’arbre

• Seul l’épanouissement est autorisé.

• Seul le service de la demande par câble est autorisé.

• Le backfeed est permis.

• La règle de maintenance ne s’applique pas.

Ce problème est étudié au chapitre 5.
On définit SFCND (Splicing only Fiber Cables Network Design) comme une

restriction de FCNDA où seul l’épanouissement est autorisé (pas de piquage).
Enfin, on définit ESFCND (Easy-maintenance Splicing only Fiber Cables Net-
work Design) comme une restriction de SFCND où la règle de maintenance
décrite Section 1.1.2 s’applique. Ces deux problèmes sont étudiés au chapitre 6.

Une description succinte se trouve table 1.1.

Table 1.1: Propriétés des différents problèmes

Problem
génie
civil

piquage
autorisé

service demande
par modules
autorisé

backfeed
autorisé

règle de
maintenance

FCND graphe oui oui non non
FCNDA arbre oui oui non non
BFCND arbre non non oui non
SFCND arbre non oui non non

ESFCND arbre non oui non oui

1.3 Résultats

1.3.1 Chapitre 3

Ce chapitre se concentre sur le problème FCND. On propose de le résoudre
par programmation en nombres entiers. En observant les solutions, on s’est
aperçus que l’introduction des techniques de piquage et d’épanouissement dans
le design de réseaux permet des économies significatives. Cela justifie le fait de
se concentrer sur le design de réseaux de câbles uniquement.

Sur le plan théorique, le problème est prouvé être NP-difficile et dur à ap-
proximer. Sa relation avec deux autres problèmes classiques, l’arbre de Steiner
et l’arborescence des plus courts chemins est montrée.
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Sur le plan algorithmique, la solution de programmation entière proposée est
capable de résoudre les plus petites instances Les inégalités valides introduites
réduisent les temps de calcul de façon significative. Cependant, les instances
plus larges restent hors de portée. Cela justifie le fait d’étudier le problème
indépendamment d’éléments comme le positionnement des répartiteurs, ce qui
le rendrait encore plus dur à résoudre. Cela nous a aussi amenés à étudier
FCNDA dans le chapitre 4.

1.3.2 Chapitre 4

Ce chapitre se concentre sur le problème Fiber Cables Network Design in an
Arborescence, restriction de FCND où une arborescence du génie civil est déjà
sélectionnée. Il introduit deux modèles pour la résolution, un basé sur des che-
mins et l’autre sur des graphes. Le problème est prouvé être NP-difficile et dur à
approximer avec un ratio 3

2 . On montre aussi la difficulté qu’il y a à le modéliser
avec un certain jeu de variables, justifiant la complexité des modèles utilisés.

Les programmes en nombres entiers proposés ici sont assez performants pour
résoudre des instances de taille réelle. Les deux modèles sont améliorés à l’aide
d’inégalités valides qui améliorent de façon significative les performances.

Du point de vue financier, en introduisant la possibilité d’effectuer des opérations
d’épanouissement et de piquage, on arrive à économiser 25 % des coûts totaux.
Cela est comparable à ce que l’on avait avec FCND.

Le travail effectué dans ce chapitre sera la base pour l’implémentation d’un
outil d’aide à la décision à Orange. En effet, il donne des économies significatives
sans prendre trop de temps sur les instances réelles. De plus, des contraintes
additionnelles peuvent être ajoutée sur les deux modèles, comme des contraintes
de capacités physiques, notamment avec le modèle chemin.

Cependant, il reste des opérations effectués par les techniciens qui ne sont pas
couvertes par ce chapitre. C’est le cas du Backfeed, qui est le sujet du chapitre
suivant.

1.3.3 Chapitre 5

Ce chapitre traite le problème Backfeed Fiber Cables Network Design (BFCND).
L’introduction du backfeed dans le processus d’optimisation permet d’obtenir
des gains significatifs, avec cependant des calculs plus longs. L’effet des inégalités
valides introduites pour notre formulation suggère que ces temps peuvent être
encore réduits.

Sur le plan opérationnel, le backfeed rend les opérations de maintenances
plus difficiles. Le chapitre suivant introduit une contrainte ayant pour but de
faciliter cette maintenance.

1.3.4 Chapitre 6

Ce chapitre traite deux problèmes, l’un étant contraint par une régle de mainte-
nance : Easy maintenance Splicing Only Fiber Cables Network design (ESFCND) ;
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l’autre ne l’étant pas : Splicing Only Fiber Cables Network design (SFCND).
Pour le problème non contraint, une résolution par programmation en nombres
entiers est proposée. Des inégalités valides la rendent plus utilisable en pratique.
Pour le problème contraint, on a introduit deux méthodes de résolution : une
basée sur de la programmation mixte incluant des inégalités valides, et l’autre
par programmation dynamique. Elles sont complémentaires, la programmation
dynamique étant plus efficace sur des instances où les noeuds du graphe de génie
civil ont un degré faible.

Sur le plan théorique, le problème non contraint est plus complexe. Il reste
NP-difficile avec certains paramètres fixés, alors que le problème contraint de-
vient solvable en temps polynomial, ou approximable, suivant les paramètres
choisis. Les expérimentations numériques ont confirmé cette tendance sur des
instances réelles.

Au niveau opérationnel, la règle de maintenance peut être considérée comme
un comprimis raisonnable entre les coûts de déploiement et les coûts de mainte-
nance. L’appliquer augment les coûts de déploiement de 3,7 % sur nos instances
test.

1.3.5 Implémentation

Ces travaux seront utilisés pour l’implémentation d’un outil informatique pour
la planification du déploiement de réseaux FTTH par Orange. Un logiciel exis-
tant sélectionne tout d’abord un arbre du génie civil. Puis, les demandes sont
groupées en � Points A � (PA). Sur cette arborescence, le problème FCNDA
est résolu, en utilisant le modèle par chemins du chapitre 4. Enfin, les PA sont
reliés aux points de demande, en utilisant éventuellement le backfeed.

Cela représente une amélioration considérable par rapport à l’ancienne ver-
sion du programme qui prenait ces décisions de façon sous-optimale en utilisant
une programmation dynamique gloutonne.

Un autre avantage de cette approche est la flexibilité de la programma-
tion en nombres entiers. Elle permet en effet d’ajouter aisément des contraintes
spécifiques à une instance, ce qui n’était pas le cas de la technique utilisée au-
paravant.
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Chapter 2

Introduction

Chapter Abstract

This chapter introduces the topic of this thesis, FTTH network design. Section
2.1 presents the issues related to the design of fiber cables networks, such as
cable separation techniques and associated technical constraints. Section 2.2
is a short summary of the literature available regarding the FTTH network
design. It provides some insight about the classical problems on which the
FTTH network design inherits, and describes some works tackling the FTTH
network design.
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2.1 Problem Presentation

2.1.1 Context

Deploying a FTTH network is one of the most important challenges currently
faced by telecommunications operators for economical reasons (France covering
is estimated to several dozen billion euros) and brand image. The technolog-
ical solution overwhelmingly chosen by operators is to deploy Passive Optical
Networks (PON) (see [45], [55]).

The passive optical splitter (also called “optical splitter” or “splitter”) is the
key equipement of a PON. This equipment is connected to one optical fiber on
one side (upstream fiber), and to several fibers on the other side (downstream
fibers, see Fig. 2.1). It splits the signal coming from the upstream fiber on
downstream fibers, and groups the signals coming from the downstream fibers
on the upstream fiber. PON architectures are, in their standardized definition,
composed of N-splitting stages/levels (see [35], N being usually between 1 and
3 in operational contexts due to service eligibility concerns). We consider here
the single-splitting stage PON (see Fig. 2.1) since it is the one imposed by the
French regulator for deployment in medium population density areas in France
(see [6]), and thus currently the most widely deployed.

The set of cables linking a Central Office (CO) to the splitters is referred to
as “transport network” (which can be referred to as “feeder network” or “feeder
tree” depending on the context and optical architecture). Notice that several
splitters are usually installed in the same location. The set of cables linking
these co-located splitters to multiple households is referred to as “distribution
network”. In the following, a fiber network will refer to a single transport or
distribution network.

This thesis tackles a sub-problem of the FTTH network design problem,
which consists in linking one equipment location (CO or splitters) to several
others (respectively splitters or clients), using fiber cables, at minimal cost.
This problem appears several times in the deployment of a single-splitting stage
FTTH network (see Fig. 2.1). In a PON with several splitting stages, the
same problem appears between each splitting stage. In this case, cables are
to be deployed between a high-level splitter location and associated lower-level
splitter locations (see Fig. 2.1b). The PON architecture and splitter locations
are supposed to be fixed due to previous decision making (see Section 2.2.1).

2.1.2 General elements

Cable Structure

Fiber cables are made of three layers: one cable containing several fiber mod-
ules, and one fiber module containing several optical fibers. All fiber modules
from a cable are identical (hold the same number of fibers) due to the cable
manufacturer’s design. In this thesis, we assume that all modules from a fiber
network are identical.
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(a) Single-splitting stage architecture.
The cabling problem appears in the
transport network and in each distri-
bution network

(b) General N-splitting stages ar-
chitecture. The problem appears
between one splitter location and
the associated lower-level splitter
locations

Figure 2.1: Optical architectures

Due to economies of scale and engineering rules, demands are expressed as a
number of modules, meant to serve groups of clients. This allows us to consider
only two layers, fiber cables and fiber modules (see Fig. 2.2a left). An “active
module” is a module connected to the optical splitter at one extremity, and to
the demand equipment at the other. The other ones, which remain unused, are
referred to as “dead modules”.

Cables are laid across the civil engineering structure, made of existing ducts
(copper line network, electric lines, ... ). Largest cables used for FTTH deploy-
ment have a diameter between 0.2 and 2.5 centimeters (see cable manufacturer’s
catalogs such as [23], [33]), while ducts for telecommunication networks are usu-
ally at least 30 centimeters wide (see [49]) and at least 60 centimeters deep
(see [49] and local regulations on ducts). We therefore assume it is possible
to install as many cables as desired in a duct. Digging new ducts is generally
excluded due to its high cost. Along the ducts of this structure are located
cabinets (also referred to as concrete rooms or man holes) where cables can be
separated. Some of these cabinets have a demand.

Cable separation techniques

At a cabinet, the cables can endure two different separation operations leading
to three basic scenarii (see Fig. 2.3):
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(a) cross-section of a 60-fiber ca-
ble and fiber abstraction (b) civil engineering and demand location example

Figure 2.2: Cable structure and civil engineering

• Cable extending: a cable goes through a cabinet without undergoing any
change.

• Cable splicing: this operation consists in cutting a cable at the cabinet,
welding some of its modules to those of new cables, and putting a pro-
tective box in this cabinet. The size of the box matches the size of the
spliced cable.

• Cable tapping: this operation consists in opening the sheath of the cable,
welding some of its modules to those of new cables, and putting a protec-
tive box in this cabinet. The size of the box matches the size of the tapped
cable. The tapped cable goes out of the cabinet with more dead modules
than it had upstream. Note that compared to a splicing, this operation
yields less welds, but may incur a higher cable cost.

In the following, spliced and tapped cables will be referred to altogether as
“separated cables”, while splicing and tapping points will be grouped under the
term “separation point”. After a splicing in a cabinet, the new cables starting
at this cabinet are called “born cables”. As for a tapping, the continuation of
the tapped cable is referred to as a “continued cable”, while the other cables
starting at the same cabinet are also called born cables. Finally, cables starting
at the root are referred to as born cables. Born cables and continued cables are
grouped under the term “created cables”.

Using these separation techniques, one can build a fiber cable network satis-
fying demands. However, some context-dependent engineering rules have to be
taken into account. We enumerate below the rules considered by Orange:

• In order to facilitate maintenance, a created cable can never contain active
modules coming from two different cables (see Fig. 2.4 for illustration).
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Figure 2.3: extended, spliced and tapped cables at a cabinet

• At most one cable can be either spliced or tapped at a given cabinet.
This is imposed by the french regulation authority in order to leave some
physical space for competitors (see [5]).

Demand supplying techniques

The demand should always be satisfied by modules from one cable, and can
then be served in two different ways (see Fig. 2.5). It is either “cable-served”
when only one full cable is used, or “module-served” when modules taken from
a splicing or tapping point are used. In order to avoid differences in terms of
quality of service perceived by neighboring customers, these two ways (cable-
served and module-served) cannot be combined in a cabinet.
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Figure 2.4: One cable cannot contain active modules coming from two different
cables

Related cost items

The costs considered in this work are those currently incurred by the network
operator (see Fig. 2.6). They include both material and manpower aspects:

• The cost of a welding box is an increasing scale function with respect to
the size of the box. This comes from the limited number of available box
sizes in manufacturer’s catalogs.

• The manpower cost for welding fibers is a linearly piecewise concave in-
creasing function with respect to the number of fibers in a given cabinet.

• The cost of a cable includes manpower and material costs. This cost is
concave with respect to the cable type (number of modules), and linear
with respect to its length.

The total cost is the sum of the cost of cables, the cost of boxes and the cost of
welds. A trade-off appears between cable deployment costs, which depend on
the cable length, and cable separation costs (boxes and welds). Intuitively, long
distances will result in a lot of cable separations, since welds and boxes costs
become negligible, while short distances will result in few cable separations.

The design of a cable deployment scheme (solution to the problem) is fully
described by the following elements.

• A set of ducts to be used.

• A list of cables, each one including its size, its number of active modules,
and the path on which it is deployed.

• A list of separation points linking the cables.
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Figure 2.5: The demand can be served in two separate ways, which cannot be
combined.

• For each demand point, the cable serving it, and the way the demand is
served.

Additionally, the engineering rules specific to the problem tackled must be
respected in order to have a feasible solution.

The informed reader can guess that the space of possible solutions will be
explored by using integer variables. It is possible to use variables based on
the description above (for instance, using one boolean variable per path, cable
size, and number of active modules within this cable size). However, this full
description is computationally quite expensive. The several sets of variables used
were actually all different from a straightforward description. When needed, we
will specify how to get a cable deployment scheme from a feasible set of variables.

Backfeed policies

Among the paths on which one can deploy cables, some may go ”upstream” the
civil engineering structure, that is on a direction from the fiber demand to the
fiber source (see Fig. 2.7). This is referred to as ”backfeed”, and can be part of
a minimum cost deployment.
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Figure 2.6: Cost of the boxes, welds and cables
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Figure 2.7: Illustration of backfeed

Backfeed policies are explored in Chapter 5

Operations Administration and Maintenance considerations

We introduce here a possible restriction of the problem that can be imposed
due to maintenance considerations. We restrict the problem by imposing that
all cables going through a given duct are born in the same cabinet (eventually
the fiber source). This restriction is illustrated in Fig. 2.8. It is motivated by
operations and maintenance considerations. Indeed, assuming all the cables of
a given duct are damaged, then an intervention has to be done at the cabinets
where each of these cables are born. If the rule is respected, an intervention is
necessary in only one cabinet.

Figure 2.8: Left: Splicing configuration respecting the maintenance rule. On all
edges, cables are born in the same cabinet; Right: Possible splicing configuration
in conflict with the maintenance rule. On the bottom-right duct, two different
cables are born in different cabinets.

Such OAM considerations are investigated in Chapter 6.
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2.2 Literature Review

Some of the work presented in this thesis can also be found in [1], [2], [4] and [3].

2.2.1 FTTx network design

The fiber networks can be classified between the endpoint of the network. The
option that offers the most bandwidth is the Fiber To The Home. However, one
can also find Fiber To The Building (FTTB) networks, where the fiber stops at
the base of a building, and is continued by legacy copper networks. Frequently
encountered networks also include Fiber To The Cabinet (FTTC), where the
fiber is stopped at a street cabinet, an Fiber To The District (FTTD), where
the fiber is stopped in a commutation device located in the district. A slightly
different case is the Fiber To The Antenna (FTTA), where the fibers connect
antennas rather than households. All these networks are gathered by the generic
term FTTx. The FCND problem applies to FTTH, FTTB and FTTC, since
the operations after the cabinet are ignored.

In earlier works, we can find comparisons of these technologies, where the
operator had to decide where to stop the fiber network, and where to use copper
(see [53]). Nowadays, the lower cost of fiber optics, reduced by technological
improvements, make the fiber to the home more and more widespread.

An abundant literature can be found on different FTTx optimization prob-
lems. The changes in local regulations as well as choices regarding the architec-
ture make different problems appear. Moreover, the wide range of equipment
to be installed rises an even wider range of decision problems. Indeed, the deci-
sions of installing several different equipment are usually combined. This rises
more elaborate problems from ”classical” ones.

A worthy but never reached goal would be to devise a decision process able to
decide all the different elements of a FTTH network at once. Some recent works,
such as [44], introduce a MIP-based method for a global view of the FTTH
optimization, including many levels of decision (OLT cards, optical architecture,
splitter location, ducts, cables, splicing operations). The cable network design
introduced (cables and splicing operations) is simpler than in FCND (no tapping
considered for instance). Despite this simplification, the computations are done
in a heuristic fashion. One can infer that a global approach including high
level decisions (architecture, OLT cards and splitter location) as well as all the
elements described in Section 2.1 would be too much to handle for the state of
the art solvers and machines. It is also concluded in the survey [30].

This explains why in an operational context, decisions of different types are
successively questioned and validated. Notice that the order of decisions is not
fixed and depends on the operator. For instance, in the work [57], splitters and
OLT cards are installed after the ducts have been selected and cables have been
laid out. It is assumed that enough cables have been deployed so that the cable
level of decision can be ignored. In this thesis, we will assume that the elements
are selected in the following order.

• First, the optical architecture is decided.
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• Then, for a given zone, the position of the Central Office and the Splitter
Locations are decided.

• Finally, the civil engineering ducts are selected and the cables network
design is done.

The optical architecture chosen is often one of the first elements to be de-
cided. Note that a homogenous optical architecture is not always present, see
for instance [56]. The work [45] compare the single-stage architecture (no split-
ting) to the single-splitting stage architecture. Its conclusions favor the single-
splitting stage on the use-cases available.

Once the optical architecture is fixed, one can tackle the facility location/allocation
and network design problem (see Fig. 2.1). It consists in deciding the splitter
location and the routes the fiber cables will take. A significant amount of work
considering this problem with different hypothesis is available in the literature.
In the case of the 1-splitting stage FTTH (also called 2-level FTTH, see Fig.
2.1a), the reader can refer for instance to [29], [17], [28], [46], or [11]. The case
of the 2-splitting stages is dealt with in [14], and a generalization for any num-
ber of splitting stages is proposed in [32] (the title points to a 2-splitting stage
network, which is the main focus of the paper, but a generalization is proposed
nonetheless). Heuristic approaches are also available for large-scale instances
(see [54], [43], [39]).

Throughout this entire thesis, we will consider that the optical architecture
and splitter locations have already been selected thanks to the works referred to
above. In most works tackling splitter location problems, ducts are also selected.
In Chapter 3, we will discard the ducts selected by this process of the decision
making and include it in a new step. In Chapters 4, 5 and 6, we will consider
the set of ducts in which the cables are to be deployed as already selected by a
previous decision process.

From an operator’s point of view, the goal of a FTTH network is to connect
and charge the clients. There is no guarantee that a client will ask for its
connection, or to which operator it will ask. This appears in several papers,
and eventually leads to specific marketing strategies (see [50]) or game theory
modeling (see [12]). Other papers, such as [40], include a prize collecting aspect,
in case the operator wants to decide to leave some areas to the competition
(lost prize). The strategy chosen by Orange is to be able to connect almost
every FTTH client in France (see [7]). When clients have a fiber connection,
Orange is always present, eventually together with a competing operator. This
decision is mostly due to brand image considerations. Under these conditions,
the prize collecting aspect will not be considered (we have to be able to ”collect
all prizes”).

Some works consider client uncertainty (such as [32], [31]). The client un-
certainty is an interesting aspect worth considering, since it matches the client
behavior. However, in our case, we will consider the uncertainty of each de-
mand location individually which leads to straightforward simplifications. The
demand to be served at each cabinet is considered fixed.
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In many different networks, one has to ensure some redundancy between the
nodes (equipment, facilities, ...). In case of failure, the network should be able to
become quickly operational. This can be done by rerouting traffic on alternate
routes, defined proactively. Resiliency is especially important for core networks,
where a lot of traffic is at stake. A large literature is available regarding the
design of such resilient networks (see [51], [58], [22]), including a wide range of
failures (see [47]). However, in the case of FTTH networks, a redundant system
is considered too expensive to be deployed. This is mostly due to the nature of
optical splitters: being passive equipment, they are unable to reroute the traffic
in case of a damaged link. The failures are to be repaired as fast as possible.
This explains why the maintenance rule described in 2.1.2 has been introduced.

In the recent survey [30], the issue of cable separation techniques (splicing
and tapping, see Section 2.1) is highlighted as an incomplete field of study,
especially regarding manpower cost. We should note that some works such
as [42], [44] and [37], do include the splicing technique, and cable separation costs
depending only on the cable size. A heuristic algorithm presented in [19] includes
cables weld cost and the splicing technique, but provides suboptimal solutions.
Some papers consider the protective sheath surrounding the cables (see [36]),
without exploring cable separation techniques. This thesis aims to tackle cables
network design more accurately, by including for instance tapping, backfeed
and module-served demand nodes (see Section 2.1). All these operations are
currently practiced by the technicians in charge of laying down the network.

2.2.2 Related problems

Steiner Tree Problem

The Steiner Tree Problem (STP) is one of the earliest network design prob-
lems to be introduced. It has many variants from different application fields
(electricity networks, telecommunications, ...). The STP has been extensively
studied in the literature. It is one of the 21 NP-complete problems from the
paper [34], some of the first ones to be introduced. As we will see in Chapter 3,
a significant amount of the work that has been done for the STP can be reused
for the FCND problem. This concerns especially the works done in polyhedral
analysis.

The STP can be formulated as follows. Given a graph G = (V,E), a set of
terminal nodes T ⊆ V , find a connected subgraph G′ = (V ′, E′) of G such that
|E′| is minimal and spanning the terminal nodes (T ⊆ V ′). The minimality of
E′ ensures G′ is a tree.

As we will see in Chapter 3, a significant amount of the work that has been
done for the STP can be reused for the FCND problem. This concerns especially
the works done in polyhedral analysis.

Among the papers that tackle it, we will refer to [26] for a study of the
different possible MIP formulations of the STP. It compares several possible
formulations and shows that they have different qualities. The formulation on
which we base ourselves is the following.
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Let us consider G = (V,E) an oriented symmetrical graph, meaning for
(i, j) ∈ E, (j, i) ∈ E. For v ∈ V , let us call Γ−(v) the set of incoming edges
of v, and Γ+(v) the set of outgoing edges of v. Let us pick an artificial root
node r ∈ T from the set of terminal nodes. Let us define, for e ∈ E, xe the
boolean variable equal to 1 iff e is art of the minimal steiner tree. Let us define,
for e ∈ E and t ∈ T a continuous flow variable fe,t. The minimal Steiner Tree
Problem can be formulated as follows.

min
∑
e∈E

xe (2.1)

such that ∀v ∈ V,
∑

e∈Γ−(v)

xe ≤ 1 (2.2)

∀t ∈ T,
∑

e∈Γ−(r)

fe,t −
∑

e∈Γ+(r)

fe,t = −1 (2.3)

∀t ∈ T, ∀t′ ∈ T \ {r}
∑

e∈Γ−(t′)

fe,t −
∑

e∈Γ+(t′)

fe,t = 1 (2.4)

∀t ∈ T, ∀v ∈ V \ T
∑

e∈Γ−(v)

fe,t −
∑

e∈Γ+(v)

fe,t = 0 (2.5)

∀e ∈ E,∀t ∈ T, fe,t ≤ xe (2.6)

(2.1) denotes the objective to be minimized. (2.2) ensure the solution does
not contain any loop. Constraints (2.3), (2.4) and (2.5) make sure the solution
is connected. A path denoted by the flow goes from the root node to each
terminal. Finally, (2.6) ensures that if an edge e is on the selected path from
the root node to a terminal, then e is part of the solution.

Remark 2.2.1 In a practical application, one often sees the weighted STP,
where weights we are affected to each edge e ∈ E, and the objective to be min-
imized is

∑
e∈E we · xe. For applications related to the FTTH, one can also

consider a weight associated to the flow variables, wfe,t which corresponds to the
cost of fibers.

Some advantages of this formulation are shown in [26]. It has a higher
continuous relaxation than its non-oriented counterpart. Another advantage is
its compacity (polynomial number of variables and constraints).

Regarding the polyhedral analysis, a significant amount of work is available
in [10], [25], [15], [16] and [21]. Those papers introduce many types of facets
and valid inequalities for the STP (called ”odd-hole”, ”anti odd-hole”, ”wheel”,
partitions, ...). As we will see in chapter 3, any polyhedral study of the STP
can be reused for the FCND.

Knapsack problem

The Knapsack problem was one of the earliest combinatorial decision problems
to be introduced. It can be formulated as follows. Given a maximum weight
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W , a set of n items, each with value vi and weight wi for i ∈ {1, .., n}, find a
subset of items S ⊆ {1, .., n} maximizing the total values

∑
i∈S vi such that the

total weight of the items is smaller than W (
∑
i∈S wi ≤W ).

This problem is shown to be NP-complete in [34]. It can be solved optimally
by dynamic programming, as shown in [52]. This dynamic programming solution
can be modified into a Fully Polynomial Time Approximation Scheme (FPTAS),
available in [27].

The Knapsack problem can be formulated as an integer program as follows.
With the same notation, let us introduce for i ∈ {1, .., n} the boolean variable
Xi equal to 1 iff object i is selected in the Knapsack. Then, we can solve the
following integer program:

max
∑

i∈{1,..,n}

vi ·Xi

such that
∑

i∈{1,..,n}

wi ·Xi ≤W (2.7)

∀i ∈ {1, .., n}, Xi ∈ {0, 1}

Constraint 2.7 expresses that the total weight cannot exceed the limit W .
The covering problem is the minimization version of this problem. It can be

formulated as an integer program as follows:

min
∑

i∈{1,..,n}

vi ·Xi

such that
∑

i∈{1,..,n}

wi ·Xi ≥W (2.8)

∀i ∈ {1, .., n}, Xi ∈ {0, 1}

On can see that this formulation is quite simple, since it has only one con-
straint. While it is not a network design problem, its simple structure makes it
relate to many other problems, including cables network design. The covering
problem will be used in Chapter 6 for two purposes, on one hand to provide
valid inequalities, and on the other hand to propose a FPTAS based on the
FPTAS for Knapsack.

2.3 Problems tackled

The consideration (or lack of) of regulatory and engineering rules from Section
2.1 can lead to a large set of variants of fiber cables network design problems.
Below is a Synthesis of the decision problems tackled in this thesis and the
organization of the manuscript.

We sum up here how the different problems tackled in this thesis differ.
Fiber Cables Network Design (FCND) is defined as follows

14



• The civil engineering structure available is a general graph.

• Both tapping and splicing are allowed.

• Demand nodes can be both cable-served and module-served.

• No backfeed is allowed

• The maintenance rule does not apply

It will be tackled in Chapter 3.

Fiber Cables Network Design in an Arborescence (FCNDA) is defined as
a restriction of FCND where the civil engineering structure available is an ar-
borescence. It will be addressed in Chapter 4.

We define Backfeed Fiber Cables Network Design (BFCND) as follows

• The civil engineering structure available has a tree topology.

• Only splicing is allowed.

• Demand nodes can be only cable-served.

• Backfeed is allowed

• The maintenance rule does not apply

This problem is studied in Chapter 5.
We define SFCND (Splicing only Fiber Cables Network Design) as a restric-

tion of FCNDA where only splicing operations are allowed. Finally, we define
ESFCND (Easy-maintenance Splicing only Fiber Cables Network Design) as a
restriction of SFCND where the maintenance rule described in Section 2.1.2
applies. Both SFCND and ESFCND will be considered in Chapter 6.

These problems are summed up in Table 2.1.

Table 2.1: Properties of the different problems

Problem
given
civil
engineering

tapping
allowed

module-served
demand nodes
allowed

backfeed
allowed

maintenance rule
applies

FCND graph yes yes no no
FCNDA tree yes yes no no
BFCND tree no no yes no
SFCND tree no yes no no

ESFCND tree no yes no yes
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Chapter 3

Fiber Cables Network
Design Problem

Chapter Abstract

This chapter tackles the FCND problem. Recall that it can be stated as
follows. Given a civil engineering infrastructure, the decision problem consists
in selecting an arborescence from this infrastructure, a set of cables with enough
active modules to serve the demand on each arc and associated separation points
on the nodes. Separation points should conserve the number of active modules
so that active modules are not interrupted from the fiber source to the demand.
While minimizing the total cost (cable deployment, welding boxes and welds),
each demand node should be either cable served or module served by a single
cable, and at most one separation point per node is allowed.

An integer linear programming model is proposed in Section 3.1. The models
is reinforced thanks to valid inequalities in Section 3.1.4, and its relation with
the Steiner Tree Problem (STP) is discussed. Asymptotic behavior is studied
in Section 3.3. A complexity study including inapproximability results is done
in Section 3.2. Finally, computational experiments on real-life instances are
presented in Section 3.4.
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Hypothesis

An a graph describing the civil engineering structure is given, as well as
demand points, and the number of fiber modules to be brought at each demand.
The civil engineering structure selected should be an arborescence. In this
arborescence, fiber cables have to be deployed in order to satisfy the demand.

Figure 3.1: extended, spliced and tapped cables at a cabinet

In this problem, one has the possibility to:

• Use two different cable separation techniques: splicing and tapping (see
Fig. 3.1). At most one of these operations can be done in a given node.
The separation techniques conserve the number of active modules.

• Serve the demand in one of two different fashions: cable-served when one
full cable is used, or module-served when modules from a cable are used.

Backfeed is not allowed, and the maintenance constraint does not apply.

3.1 Integer Programming

3.1.1 Notation

An symmetric directed graph G = (V,E) describes the civil engineering struc-
ture, V ∗ = V \ r denotes the set of nodes without the root r. Each node i has a
demand of Di modules. VD denotes the set of nodes with a non-zero demand,
and VN the set of nodes with no demand.
For i ∈ V , we note Γ+(i) = {j ∈ V |(i, j) ∈ E} (since G is symmetric, we have
Γ+(i) = {j ∈ V |(j, i) ∈ E}). Each arc (i, j) ∈ E has a length ∆(i,j).
The cables available are from a discrete set L = {1, .., L}, each cable having a
number of modules Ml with l ∈ {1, .., L}. The set of possible active modules
inside a cable of size l is denoted byMl = {1, ..,Ml}. Each cable size has a cost
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per length unit of Clel , the cost of a welding box of size l is PBl, and the cost
for welding m modules is PWm.

The decision variables are the following:

• ∀(i, j) ∈ E,Xi,j ∈ {0, 1}: the binary variable which is equal to 1 iff some
cables are installed in the duct described by arc (i, j).

• ∀(i, j) ∈ E,∀l ∈ L,∀m ∈ Ml, ki,j,l,m ∈ {0, .., |VD|}: the number of cables
with Ml fiber modules from which m are active going through arc (i, j).

• ∀i ∈ V ∗,∀l ∈ L,∀m ∈ Ml, b
spl
i,l,m ∈ {0, 1}: the binary variable equal to 1

if we splice in node i a cable with Ml modules of fibers from which m are
active.

• ∀i ∈ V ∗,∀l ∈ L,∀m ∈ Ml, k
born
i,l,m ∈ {0, ..,ML}: the number of cables born

in node i having Ml modules of fibers from which m are active.

• ∀i ∈ V ∗,∀l ∈ L,∀m ∈ Ml, b
tap
i,l,m ∈ {0, 1} stands for the binary variable

equal to 1 iff we tap a cable in node i having Ml modules of fibers from
which m are active.

• ∀i ∈ V ∗,∀l ∈ L,∀m ∈ Ml, b
ctn
i,l,m ∈ {0, 1}: the binary variable equal to 1

iff the continuation of a tapped cable in node i has Ml modules of fibers
from which m are active modules.

• ∀i ∈ V ∗,∀m ∈ ML, wi,m ∈ {0, 1}: the binary variable equal to 1 iff m
modules are weld in either a tapping or a splicing in node i.

• ∀i ∈ VD, ui: the binary variable which equal to 1 iff the demand is served
thanks to remaining modules of a spliced or tapped cable.

3.1.2 Formulation

A description of a cabling solution by the model is available in Fig. 3.2 (only
variables not equal to 0 are noted).

The cables fiber network design problem can be cast into an integer linear
program as follows:

min
∑

(i,j)∈E,l∈L

∑
m∈Ml

Clel ·∆(i,j) · ki,j,l,m +
∑

i∈V ∗,l∈L

∑
m∈Ml

(bspli,l,m + btapi,l,m) · PBl

+
∑

i∈V ∗,m∈ML

wi,m · PWm

such that

∑
j∈Γ+(i),l∈L

∑
m∈Ml

m · kj,i,l,m =
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Figure 3.2: Model example

∑
j∈Γ+(i),l∈L

∑
m∈Ml

m · ki,j,l,m +Di ∀i ∈ V ∗, (3.1)

∑
j∈Γ+(i)

kj,i,l,m − bspli,l,m − b
tap
i,l,m =

∑
j∈Γ+(i)

ki,j,l,m − kborni,l,m − bctni,l,m ∀i ∈ VN ,∀l ∈ L,∀m ∈Ml, (3.2)

∑
j∈Γ+(i)

ki,j,l,m − kborni,l,m − bctni,l,m =

∑
j∈Γ+(i)

kj,i,l,m − bspli,l,m − b
tap
i,l,m ∀i ∈ VD,∀l ∈ L,∀m ∈Ml \ {Di},

(3.3)∑
j∈Γ+(i)

ki,j,l,m − kborni,l,m − bctni,l,m ≤
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∑
j∈Γ+(i)

kj,i,l,m − bspli,l,m − b
tap
i,l,m ∀i ∈ VD,∀l ∈ L,m = Di, (3.4)

(
∑
l∈L

∑
m∈Ml

∑
j∈Γ+(i)

ki,j,l,m − kborni,l,m

− bctni,l,m) + 1− ui =∑
l∈L

∑
m∈Ml

∑
j∈Γ+(i)

kj,i,l,m − bspli,l,m − b
tap
i,l,m ∀i ∈ VD, (3.5)

0 ≤
∑

j∈Γ+(i)

ki,j,l,m − kborni,l,m − bctni,l,m ∀i ∈ V ∗,∀l ∈ L,∀m ∈Ml, (3.6)

∑
l∈L

∑
m∈Ml

(
bspli,l,m + btapi,l,m

)
≤

∑
j∈Γ+(i)

Xj,i ∀i ∈ V ∗, (3.7)

∑
m∈Ml

bctni,l,m =
∑
m∈Ml

btapi,l,m ∀(i, l) ∈ V ∗ × L, (3.8)

∑
l∈L

∑
m∈Ml

m · kborni,l,m =
∑

m∈ML

m · wi,m ∀i ∈ V ∗, (3.9)

∑
m∈ML

wi,m ≤ 1 ∀i ∈ V ∗, (3.10)

∑
j∈Γ+(i)

Xj,i ≤ 1 ∀i ∈ VN , (3.11)

∑
j∈Γ+(i)

Xj,i = 1 ∀i ∈ VD, (3.12)

Xi,j ≤
∑
l∈L

∑
m∈Ml

ki,j,l,m ∀(i, j) ∈ E, (3.13)

∑
l∈L

∑
m∈Ml

ki,j,l,m ≤ Xi,j |VD| ∀(i, j) ∈ E, (3.14)

X,w, bspl, btap, bctn, u ∈ {0, 1}
k ∈ {0, .., |VD|}, kborn ∈ {0, ..,ML}

Among the terms of the cost function, first comes the cost of the cables, then
the cost of eventual welding boxes at a node, while the last term corresponds
to the price of welds. Equations (3.1) are flow conservation constraints related
to active modules. They ensure that active modules entering each node either
satisfy the demand or leave the node.
Constraints (3.2) make sure that cables entering a no-demand node which are
neither tapped nor spliced are extended in the same way. The first term stands
for the incoming cables, minus the eventual tapped or spliced one, and the sec-
ond term for the outgoing cables, minus the eventual created ones. Indeed, if
only the k variables are non-null, every cable arriving at the node will have
the exact replica at the outcome of the node. Observe that if there is either a
splicing or a tapping of a cable of type l with m active modules (either bspli,l,m = 1
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or btapi,l,m = 1), then the downstream cables born after this operation and the
continued cable (if a tapping occurs) can never have the same number of active
modules (i.e., kborni,l,m = 0 and bctni,l,m = 0).
The three following equations are the equivalent equations concerning demand
nodes. Constraints (3.3) ensure any cable with a number of active modules dif-
ferent from Di is continued at node i ∈ VD. Indeed, since the demand can only
be served by one cable, this cable will have Di active modules. Equations (3.4)
ensure that more cables not affected in node i with Di active modules arrive
at the node i than the ones leaving it. In fact, if the demand is served by one
full cable (ui = 0), then all but one of the inequalities of type (3.4) are satisfied
with equality. This is also expressed by constraints (3.5) which make sure the
demand point is only satisfied by one cable, as specified in Section 2.1.
Constraints (3.6) express the fact that the number of cables going out of a node
without coming from a tapping or splicing operation is nonnegative. Equations
(3.7) ensure that at most one of the two operations of splicing and tapping can
be performed in each node as specified in Section 2.1. It uses the fact that∑
j∈Γ+(i)

Xj,i ≤ 1 by (3.11) and (3.12), and if no cable arrive at a node, it cannot

be host to a splicing or tapping operation. (3.8) make sure that after tapping
the size of the continued cable does not change while the number of active mod-
ules changes (decreases). Constraints (3.9) and (3.10) ensure the variable w
counts the number of welds done in a given point. Notice that then number of
active modules in born cables is equal to the number of welds. Finally, equations
(3.11), (3.12), (3.13) and (3.14) stand for the fact that the set of used arcs is
a tree of the civil engineering infrastructure. Compared to the formulation in
Section 2.2, the variables k have the role of the flow variables which ensure the
connectivity of the tree.

In order to give more insight into the validity of the model, we prove in the
following that the equations from the model imply the conservation of active
modules.

Proposition 3.1.1 Equations (3.1) to (3.14) imply the following

∀i ∈ VN ,
∑
l∈L

∑
m∈Ml

m · (btapi,l,m + bspli,l,m) =∑
l∈L

∑
m∈Ml

m · (kborni,l,m + bctni,l,m) (3.15)

∀i ∈ VD,
∑
l∈L

∑
m∈Ml

m · (btapi,l,m + bspli,l,m) =

Di · ui +
∑
l∈L

∑
m∈Ml

m · (kborni,l,m + bctni,l,m) (3.16)

Proof. Multiplying (3.2) by m and summing gives

∀i ∈ VN ,
∑
l∈L

∑
m∈Ml

m · (
∑

j∈Γ+(i)

kj,i,l,m − btapi,l,m − b
spl
i,l,m) =

21



∑
l∈L

∑
m∈Ml

m · (
∑

j∈Γ+(i)

ki,j,l,m − kborni,l,m − bctni,l,m)

Then, using (3.1) to simplify gives (3.15).
Multiplying (3.3) and (3.4) by m and summing gives

∀i ∈ VD,
∑
l∈L

∑
m∈Ml

m · (
∑

j∈Γ+(i)

kj,i,l,m − btapi,l,m − b
spl
i,l,m) =

Di −Di · ui +
∑
l∈L

∑
m∈Ml

m · (
∑

j∈Γ+(i)

ki,j,l,m − kborni,l,m − bctni,l,m)

Then, using (3.1) gives (3.16). �

Equations (3.15) and (3.16) show that module conservation applies to splicing
and tapping operations, as specified in Section 2.1. Since with (3.7), at most
one cable is either spliced or tapped, active modules from a tapped or spliced
cable are used for created cables and an eventual module-served node. Apart
from module conservation, demand nodes need further explanation.
Let us focus on a node i ∈ VD where ui = 1. Then, (3.5) combined with (3.4)
become

∀l ∈ L such that Di ∈Ml,
∑

j∈Γ+(i)

kj,i,l,Di − b
spl
i,l,Di

− btapi,l,Di
=

∑
j∈Γ+(i)

ki,j,l,Di − kborni,l,Di
− bctni,l,Di

This induces that all cables unaffected by splicing or tapping operations are
unchanged in i (similarly to (3.2)).
Let us focus on a node i ∈ VD where ui = 0. Then, (3.5) combined with (3.4) tell
us that only one of the equations (3.5) has a strict inequality, with a difference
between left and right terms of 1. In other words, ∃l0 ∈ L|Di ∈Ml0 such that

∀l ∈ L \ {l0},
∑

j∈Γ+(i)

kj,i,l,Di − b
spl
i,l,Di

− btapi,l,Di
=

∑
j∈Γ+(i)

ki,j,l,Di − kborni,l,Di
− bctni,l,Di∑

j∈Γ+(i)

kj,i,l0,Di − b
spl
i,l0,Di

− btapi,l0,Di
= 1 +

∑
j∈Γ+(i)

ki,j,l0,Di − kborni,l0,Di
− bctni,l0,Di

This shows that the demand is served in a cable served way by a cable of size
l0. All other cables unaffected by tapping or splicing operations are continued
with the same size and same number of active modules.
Finally, constraints (3.6) make sure that if a cable is created in a node, there
is indeed, a cable of the same size and same number of active modules going
out of this node. Combined with (3.2) and (3.5), it also ensures that if a cable
is separated in a node, then there is an incoming cable with the same size and
number of active modules.
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With the notation Nml =
∑
l∈LMl, this model holds (|V | − 1)(3Nml +

ML) + |VD| + |E| boolean variables, (|V | − 1 + |E|)Nml integer variables and
(|V | − 1)(5 + 2Nml + L) + |V D|(Nml + 1) + 2|E| constraints.

Remark 3.1.1 In some contexts (see for instance [54]), the use of a duct may
not be free. In this case, the model can be adapted by including to the cost
function the term +

∑
(i,j)∈E Xi,jP

duct
i,j , where P ducti,j stands for the cost of using

the duct described by arc (i, j).

3.1.3 Preprocessing

Optimal solutions for the linear program described above enjoy particular prop-
erties. More specifically, under optimality, it is possible to fix the value of some
variables to zero.

A born cable having a number m of active module always has the minimum
size able to hold m modules. Said another way, if m belongs to Ml−1, there is
no reason to create a cable of size l with m active modules. This leads to the
following equations:

∀i ∈ V ∗,∀l ∈ L,∀m ∈Ml−1, k
born
i,l,m = 0. (3.17)

For the same reason, the number of cables at the root node satisfy similar
equations.

∀(j, l) ∈ Γ+(r)× L, ∀m ∈Ml−1, kr,j,l,m = 0 (3.18)

Moreover, if a demand node is of degree 1, then there is no need for neither
tapping nor splicing in it. This is summarized as follows:

∀i ∈ VD, if |Γ+(i)| = 1, then ∀l ∈ L,∀m ∈Ml,

kborni,l,m = 0, bctni,l,m = 0, btapi,l,m = 0, bspli,l,m = 0, ui = 0. (3.19)

Remark 3.1.2 In the real-life instances we have at our disposal, many demand
points are of incidence degree one.

3.1.4 Valid inequalities

Steiner tree related inequalities

The variable X describes an oriented tree of the civil engineering architecture
covering r and VD. Some reinforcements related to this structure are proposed
hereinafter.

First, let us consider nodes without demand (called ”Steiner nodes” in the
classical STP). If an incoming arc is selected, then at least one outgoing arc has
to be selected. Which gives:

∀i ∈ VN ,
∑
j∈Γ+(i)Xj,i ≤

∑
j∈Γ+(i)Xi,j (3.20)
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Let STmin denote the minimum number of arcs of an arborescence covering
VD and r. STmin can be computed by solving a standard steiner tree problem.
We can get the following

∑
(i,j)∈E Xi,j ≥ STmin (3.21)

Remark 3.1.3 While computing STmin is supposed to be NP-hard, it is not
computationally expensive for the sizes of our instances.

Also note that a solution using arc (i, j) cannot contain arc (j, i) (in other
words there are no tours of length 2).

∀(i, j) ∈ E, Xi,j +Xj,i ≤ 1 (3.22)

What follows states that if an arc (i, j) is part of a the solution, and if i is
not the root, then one of the incoming arcs of i must be part of the solution. It
follows from the connectivity of the solution. Hence

∀(i, j) ∈ E such that i 6= r,
∑
j′∈Γ+(i)\{j}Xj′,i ≥ Xi,j (3.23)

Many other inequalities of this type can be found in the literature (see [10],
[15], [16] or [25] for instance). However, here, the most numerous variables are
not the ones related to this Steiner Tree structure of the solution (the Xi,j).
This is why in the following we will focus more on inequalities specific to the
problem.

Chvátal-Gomory cuts

The inequalities below are Gomory-Chvatal rounding cuts.

Proposition 3.1.2 The following inequalities are valid for FCND.

∀m ∈ML,
∑

j∈Γ+(r)

∑
l∈L|m∈Ml

∑
m′∈{m,..,Ml}

kr,j,l,m′ ≤
⌊∑

i∈VD
Di

m

⌋
(3.24)

Proof. We can get from (3.1):∑
j∈Γ+(r),l∈L

∑
m∈Ml

m · kr,j,l,m =
∑
i∈VD

Di

Hence, for m ∈ML,∑
j∈Γ+(r)

∑
l∈L|m∈Ml

∑
m′∈{m,..,Ml}

m · kr,j,l,m′ ≤
∑
i∈VD

Di. The wanted inequality is

then obtained by simple rounding. �
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Problem related inequalities

To improve the quality of the linear relaxation, we should add more valid in-
equalities. Some of them are presented here.

After a tapping operation, the continued cable has less active modules. This
gives the following:

Proposition 3.1.3 Every optimal solution of the FCND problem verifies

∀(i, l) ∈ V ∗ × L, ∀m′ ∈Ml \ {1},
∑

m∈{1,..,m′−1}

bctni,l,m ≥
∑

m∈{1,..,m′}

btapi,l,m. (3.25)

The proposition below exploits the fact that, tapping and splicing can never
simultaneously occur in the same node. This is true in particular for a given
cable size l.

Proposition 3.1.4 Every optimal solution of the FCND problem verifies

∀i ∈ V ∗,∀l ∈ L,∀m ∈Ml, b
tap
i,l,m + bctni,l,m +

∑
l′∈L

∑
m′∈M′l

bspli,l′,m′ ≤ 1. (3.26)

Proof. Let us consider, in an optimal solution S of the FCND problem, i ∈
V ∗, l ∈ L, and m ∈Ml.

If a splicing is done in i,
∑
l′∈L

∑
m′∈M′l

bspli,l′,m′ = 1, then by (3.7) (which

specifies that at most one operation can be done in a node), we have btapi,l,m =

bctni,l,m = 0.

Otherwise, let us assume btapi,l,m = 1, which means there is a tapping, and

bctni,l,m = 1, a continued cable with the same number of active modules goes out

of i. Then, the solution identical to S but with btapi,l,m = bctni,l,m = 0 is cheaper
and feasible, which contradicts our hypothesis. Hence the result. �

Assume that m modules are welded in a node i where m ∈ {1, ..,m′}, then
some downstrean cables will be born in i and each one of these cables has at
most m′ active modules. This gives us the proposition below

Proposition 3.1.5 The following inequalities are valid for the FCND problem

∀i ∈ VN ,∀m′ ∈ML,
∑
l∈L

∑
m∈{1,..,min(m′,Ml)}

kborni,l,m ≥
∑

m∈{1,..,m′}

wi,m. (3.27)

Writing that a welding box is installed only if either a splicing or a tapping
occurs, we get equality (3.28).

∀i ∈ V ∗,
∑
l∈L

∑
m∈Ml

bspli,l,m + btapi,l,m =
∑

m∈ML

wi,m. (3.28)

The next inequality just says that when a cable having m active modules is
spliced in a node i ∈ VN (no demand in i), then exactly m modules should be
welded.

∀i ∈ VN ,∀m ∈ML,
∑

l∈L|m∈Ml

bspli,l,m ≤ wi,m. (3.29)
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Proof. Let us consider i ∈ VN and m ∈ ML such that
∑
l∈L|m∈Ml

bspli,l,m = 1.

Then, by (3.7), we know that there is no tapping operation done in i, and that no
other splicing is done. Which means (3.15) becomes

∑
l∈L
∑
m′∈Ml

m′ ·kborni,l,m′ =∑
l∈L|m∈Ml

m · bspli,l,m. By (3.9), we have the result. �

We also know that for such non demand nodes, tapping a cable with m′

active modules requires welding at least 1 and at most m′ − 1 modules. This
can be shown using (3.8) and (3.15). As a consequence, the following inequality
holds.

Proposition 3.1.6 The following inequalities are valid for the FCND problem.

∀i ∈ VN ,∀l ∈ L,∀m′ ∈Ml, b
tap
i,l,m′ ≤

∑
m∈{1,m′−1}

wi,m′−m. (3.30)

Note that in a no-demand point at least two cables must come out of a
splicing or tapping operation for it to be worth the money paid. This is noted
by ∀i ∈ VN ,

∑
l∈L
∑
m∈Ml

kborni,l,m + bctni,l,m ≥ 2
∑
l∈L
∑
m∈Ml

btapi,l,m + bspli,l,m. Be-
sides, the downstream cables have always less active modules than the upstream
cables, which gives:

Proposition 3.1.7 Every optimal solution of the FCND problem verifies

∀i ∈ VN ,∀m′ ∈ML,
∑
l∈L

∑
m∈{1,..,min(m′,Ml)}

kborni,l,m + bctni,l,m ≥

2
∑
l∈L

∑
m∈{1,..,min(m′,Ml)}

btapi,l,m + bspli,l,m (3.31)

Similarly, this is also true for a cable-served demand point, which is noted

Proposition 3.1.8 Every optimal solution of the FCND problem verifies

∀i ∈ VD,∀m′ ∈ML, ui +
∑
l∈L

∑
m∈{1,..,min(m′,Ml)}

kborni,l,m + bctni,l,m ≥

2 ·
∑
l∈L

∑
m∈{1,..,min(m′,Ml)}

btapi,l,m + bspli,l,m (3.32)

For a node i ∈ VN , if the number of cables arriving at this node is strictly
smaller than the number of arcs covered downstream of this node
(
∑
l∈L
∑
m∈Ml

∑
j∈Γ+(i) kj,i,l,m <

∑
j∈Γ+(i)Xi,j), then this node must be

the host of a splicing or tapping operation (i.e.
∑
m∈ML

wi,m = 1 ). Since∑
j∈Γ+(i)Xi,j ≤ |Γ+(i)| − 1, we have:

Proposition 3.1.9 The following inequalities are valid for the FCND problem

∀i ∈ VN , (
∑
l∈L

∑
m∈Ml

∑
j∈Γ+(i)

kj,i,l,m) + (|Γ+(i)| − 2)
∑

m∈ML

wi,m ≥
∑

j∈Γ+(i)

Xi,j(3.33)

26



Proof. Let us consider in a FCND solution i ∈ VN such that
∑
j∈Γ+(i)Xi,j ≥

1. If
∑
l∈L
∑
m∈Ml

∑
j∈Γ+(i) kj,i,l,m ≥

∑
j∈Γ+(i)Xi,j , then the inequality is

verified.
If
∑
l∈L
∑
m∈Ml

∑
j∈Γ+(i) kj,i,l,m <

∑
j∈Γ+(i)Xi,j . Let us assume that∑

m∈ML
wi,m = 0. Then, by (3.28), it means that there is no operation done

in i, which means there are no born or continued cables (see (3.15)). Therefore,
(3.2) becomes

∑
l∈L
∑
m∈Ml

∑
j∈Γ+(i) kj,i,l,m =

∑
l∈L
∑
m∈Ml

∑
j∈Γ+(i) ki,j,l,m <∑

j∈Γ+(i)Xi,j . However, summing (3.13) on all outgoing arcs of i gives∑
l∈L
∑
m∈Ml

∑
j∈Γ+(i) ki,j,l,m ≥

∑
j∈Γ+(i)Xi,j .

So
∑
m∈ML

wi,m = 1, hence the result. �

Remark 3.1.4 There are |VN |(2ML+Nml+2)+2|E|+2|ML|+(|V |−1)(2Nml+
ML) additional constraints. The effect of these inequalities is assessed in Section
3.4.

3.2 Complexity

We first show that the FCND problem is NP-hard by reducing it to a Steiner
tree problem. More precisely, it is NP-hard in a restricted context: one cable
size and demands of 1 module. This implies the NP-hardness in the general
case.

Proposition 3.2.1 The FCND problem is NP-hard even with one cable size
and demands of 1 module.

Proof. Let us consider an instance of the Steiner Tree decision problem, a graph
G = (V,E), T ⊆ V a set of terminals, and an integer n ∈ N. The question as-
sociated to this instance is ”is there a tree G′ made of edges and nodes of G
spanning T with at most n edges?”

Let us reduce it to the following FCND instance.

• A civil engineering structure identical to G = (V,E) where all the edges
have length one.

• A root node r ⊆ T .

• A demand of 1 active module for every node in T ⊆ r.

• A set of |T | − 1 cables of sizes {1, .., |T | − 1}. All cables have a cost per
length unit equal to 1.

• Zero cost for welds and boxes.

The question associated to this instance is ”is there a solution of cost at
most n?”

If the Steiner Tree instance is feasible. Then, we have a tree G′ with at most
n edges spanning T . Let us build the FCND solution where:
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• The civil engineering structure used is G′.

• Demand nodes which are leaf nodes of G′ are cable-served, served by a
cable of size M1.

• If a non-root node v ∈ V has an outgoing degree larger than 2 in G′, a
splicing is done in v. One cable of size M1 is deployed on (u, v) where u is
the successor of v, it is spliced in v, and |Γ+(v)| − 1 cables are born, one
for each outgoing arc. If v is a demand node, the demand is served in a
module-served way.

• All non leaf nodes v in VD are module-served by a splicing. The number
of born cables in this splicing is |Γ+(v)| − 1 (see previous point).

First, let us note that in this solution only one cable is deployed on each
arc of G′. Indeed, it is true for the arcs having leaf nodes as a target. By
construction, it is also true for higher arcs.

The cost of this solution is only the cost for deploying cables. Since there is
one cable of cost per length unit 1 on ducts of length 1, the cost on one duct is
1, and the total cost of this solution is at most n.

Hence the FCND instance is feasible.

If the FCND instance has a solution of cost at most n. This solution uses an
arborescence of the civil engineering infrastructure. Furthermore, this arbores-
cence spans the root r and all the demand nodes, that is all nodes in T . On
each arc of this arborescence, at least one cable is deployed, which contributes
to the total cost for at least 1. Hence there cannot be more than n arcs of G
used in this arborescence. So the Steiner Tree decision problem was feasible.

Since the two instances are equivalent, we have the result. �

We show in the following that the FCND problem is not approximable within
a ratio of 2.

Proposition 3.2.2 The FCND problem cannot be approximated within a ratio
2− ε for any ε > 0.

Proof. Let us consider ε > 0.
Let us consider an instance GH = (V H , EH) of the Hamiltonian chain prob-

lem.

Let us reduce it to the following FCND instance:

• A civil engineering structure G = (V,E) where V = V H ∪ {r}, E =
EH ∪ {(r, v)|v ∈ V H} where v is a node in V H . The length of the arcs
going out of r is 1, the length of the arcs in E is 0.

• All the nodes in V H have a demand of 1 active module.
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• Only one cable size containing |V H | active modules is available. Its cost
per length unit is 1.

• The cost of welds is constant ∀m ∈ {1, .., |V H |}, PWm = 1, the cost of
boxes is zero.

The question we ask is ”is there a solution of the FCND instance with a cost
at most 1” ?

Let us assume this FCND instance has a solution of cost 1. Then, it means
there is only one cable deployed on edge (r, v), since the solution requires at
least one cable. Furthermore, since a weld costs at least 1, there cannot be any
welds in the solution. Since all demand nodes are served by only one cable,
this implies that the nodes in V H are all served in a module-served way by a
tapping (see Fig. 3.3), except one. Since all demand nodes are served by a
single cable, the path on which this cable is deployed goes through all the nodes
in V H . In other words, this path is a hamiltonian chain, and the hamiltonian
chain instance was feasible.

Figure 3.3: Module-served demand node with a tapping operation and without
any born cables. A box is onstalled, there are no welds to be done.

Reciprocally, let us assume the Hamiltonian chain instance was feasible.
Then, we can build the solution where

• Only one cable goes out of the root.

• This cable follows a hamiltonian chain in GH . It serves all the nodes in
the interior of the chain in a module-served way by a tapping operation.

• The last node of the hamilonian chain is cable-served by this cable.
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This solution has a cost of 1, since the only cost source is to deploy the cable
on (r, v).

Let us assume we have a polynomial time approximation scheme A able to
give a solution with a ratio 2− ε. Here is a polynomial time algorithm able to
decide the feasibility of any hamiltonian chain problem instance.

• Reduce the hamiltonian chain instance to the FCND instance described
above.

• Run A on this FCND instance.

• If the solution returned by A has a cost strictly less than 2, then declare
the hamiltonian chain instance feasible. Otherwise, declare it unfeasible.

If the cost c′ of the solution given by A verifies c′ < 2, then the cost c∗

of an optimal solution verifies c∗ < 2. Since the cost of a solution is integer,
c∗ ≤ 1. This implies hamiltonian chain instance is feasible. If the cost c′ of the
solution given by A verifies c′ ≥ 2, the cost c∗ of the optimal solution verifies
c∗ ≥ c′ 1

2−ε > 1. Since c∗ is integer, it implies c∗ ≥ 2, and hamiltonian chain
instance was not feasible. Therefore, this algorithm provides the answer of the
hamiltonian chain problem.

Hence the result. �

3.3 Asymptotic behavior

In this section, we study the shape of the arborescences used in optimal so-
lutions as a function of the costs. We do not know of any easy way to find
an optimal solution arborescence without solving the problem. The problem
of finding this arborescence is generally NP-hard (see Section 3.2). However,
under some conditions, it relates to classical problems. In the following, we
provide some insight about the arborescence selected in optimal solutions when
separation costs are negligible and when cable separation costs are negligible.

We study two cases: first, the case where the cable deployment costs are
negligible compared to cable separation costs. In this case, the arborescence
selected is the shortest paths arborescence. Second, we study the case where
the cable separation costs is negligible compared to cable deployment costs,
and cables are large enough to contain all active modules. In this case, the ar-
borescence selected is a solution of the Weighted Minimal Steiner Tree Problem.

Let us note, for i ∈ VD, dpri the length of the shortest path between the root
node r and i in G. Let us note Cmini = min{Clel |l ∈ L,Ml ≥ Di} the smallest
cable large enough to supply the demand in i.

Proposition 3.3.1 Let us consider an FCND instance. If
∑
i∈VD

dpri ·Cmini <
PB1 (the cost of the smallest box is larger than the cost of the solution without

30



separation), then in any optimal solution of the FCND instance, the arborescence
selected is formed of the shortest paths from the root to each demand node.

Proof. Let us consider the FCND solution where one cable coming from the
root serves each demand point by going through the shortest path. The size
of each of these cables is known, it is the Cmini for i ∈ VD. The cost of this
solution is

∑
i∈VD

dpri · Cmini .
Furthermore,

• any solution with at least one cable separation will cost at least PB1,

• any solution without cable separation but where a different arborescence
is selected will be more expensive.

Hence the result. �

In the following, we note Dtot =
∑
i∈VD

Di the sum of all demands in the

FCND instance. Let us note CST the length of the minimal weighted Steiner
Tree spanning the demand nodes and the root. Since the number of possible
trees spanning VD is finite, there is a largest real number δST > 0 such that
a tree spanning VD and r has either a length of CST or a length larger than
CST + δST . While in practice computing δST can be hard, it is easily lower
bounded. For instance, if the lengths of the edges are integer and dividable by
n ∈ N , then we have δST ≥ n.

Proposition 3.3.2 Let us consider a FCND instance. If

• M1 ≥ Dtot (the smallest cable contains more than Dtot modules)

• δST · Cle1 ≤ (|VD| − 1) · (PB1 + PWDtot)

Then any optimal solution of FCND uses as civil engineering structure an op-
timal solution of the Weighted Steiner Tree Problem.

Proof. Let us consider such a FCND instance. We can build a solution where
the civil engineering structure used is the minimal weigthed steiner tree spaning
VD and r. We call G′ = (V ′, A′) this arborescence oriented from the root node.
We build the following solution in which all arcs have only one cable of size M1

(the smallest cable size).

• Leaf nodes are cable-served demand nodes, served by a cable of size M1.

• If a non-root node v ∈ V ′ has an outgoing degree d larger than 2 in G′,
a splicing is done in v. One cable of size M1 is deployed on the only
arc of A′ whose target is v, it is spliced in v, and d cables are born, one
for each outgoing arc. If v is a demand node, the demand is served in a
module-served way.

• All non leaf nodes v in VD are module-served by a splicing. The number of
born cables in this splicing is the outgoing degree of v in G′ (see previous
point).
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First, let us note that in this solution only one cable is deployed on each arc of
G′. Indeed, it is true for the arcs having leaf nodes as a target. By construction,
it is also true for higher arcs.

Then, let us note that there cannot be more than |VD| − 1 splicing points.
Indeed, let us consider a splicing in this solution. The spliced cable contains at
least the active modules of one of the born cables and one additional demand
point (either from a module-served demand point or from another born cable).
Since at least one cable goes out of the root, there is at most |VD| − 1 splicing
operations.

This solution has a cost of CST · Cle1 + ε where ε is the cost for boxes an
welds. With the previous point, we have ε ≤ (|VD| − 1) · (PB1 + PWDtot)

Let us consider a solution of the FCND problem using an arborescence which
is not a Minimal Weighted Steiner Tree of G. It has at least one cable on each
arc it uses, so its cost is at least (CST + δST ) ·Cle1 > CST ·Cle1 + ε. So it cannot
be an optimal solution of FCND.

Hence the result. �

The next Section assesses the numerical complexity of the models as well as
some properties of the solutions obtained.

3.4 Numerical results

The two models (the base model with variables filtered and the enhanced model
with reinforcements) were tested on real-life instances. The solving algorithm
was the default branch and bound from Cplex version 12.6.0.0. The solver
configuration used was the default setting. The experiments were run on a
computer composed of 4 processors of CPU 5110 and clocked at 1.6 GHz each.
We consider here 6-fiber modules, and the cables have 1, 2, 4, 6, 8, 12, 18 or 24
modules. The instances are parts of the cities of Clermont-Ferrand and Arles
(France), some of their key features are described in Table 3.1; ”Cl” designs
areas of Clermont-Ferrand, and ”Ar” areas from Arles.

The costs used were real costs based on operator’s internal studies that are
currently used in network planning tools of Orange.
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Table 3.1: Key features of the different instances

instance nodes edges
demand
nodes

total
demand

overall
length (m)

zone 0 Cl 83 82 26 38 1566.3
zone 1 Cl 82 85 25 40 1908.2
zone 2 Cl 77 79 24 40 1695.5
zone 3 Cl 70 73 20 28 2161.5
zone 4 Cl 81 87 24 34 1943.4
zone 5 Cl 74 75 22 58 2652.9
zone 6 Cl 57 59 14 20 1132.9
zone 7 Cl 64 64 13 59 1896.0
zone 8 Cl 84 86 21 35 3398.3
zone 0 Ar 127 127 45 61 5697.1
zone 1 Ar 190 220 38 55 35 289.2
zone 2 Ar 128 136 35 66 6941.6
zone 3 Ar 125 124 43 80 2917.1
zone 4 Ar 139 139 44 68 5039.1
zone 5 Ar 168 186 43 67 13 906.5
zone 6 Ar 229 249 35 68 14 525.0
zone 7 Ar 243 270 41 63 35 131.8
zone 8 Ar 353 398 68 78 56 776.8

The base model ((3.1) to (3.19)) is noted model (A) and the enhanced model
((3.1) to (3.32)) is noted model (B). The optimal solutions and continuous re-
laxation values are presented in Table 3.2. We also consider the greedy solution
of FCND where neither tapping nor splicing is allowed. The obtained solution
is obviously a feasible solution of the initial problem. The cost of this solution
is also shown in Table 3.2. The character ”-” means the optimal solution could
not be found with our computing power.
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Table 3.2: Solution values

instance
continuous
relaxation
model (A)

continuous
relaxation
model (B)

optimal
solution

solution
without
splicing
or tapping

zone 0 Cl 1773.9 2062.5 2188.9 2596.7
zone 1 Cl 1845.6 2105.2 2241.0 2372.0
zone 2 Cl 2163.6 2520.1 2685.2 3013.1
zone 3 Cl 1224.4 1470.7 1551.1 1613.1
zone 4 Cl 1684.8 2007.8 2181.2 2627.5
zone 5 Cl 3572.5 3981.8 4155.8 5003.7
zone 6 Cl 992.2 1177.5 1289.1 1372.0
zone 7 Cl 1201.5 1281.8 1341.0 1348.1
zone 8 Cl 3114.2 3549.1 4093.9 6115.0
zone 0 Ar 4035.2 4927.4 5697.1 7395.2
zone 1 Ar 5544.1 7625.9 9350.1 11960.4
zone 2 Ar 4723.0 5325.7 5965.3 7647.7
zone 3 Ar 4746.8 5429.5 5945.3 7219.0
zone 4 Ar 3642.3 4545.9 4860.2 5623.4
zone 5 Ar 4293.3 5354.6 6347.6 8075.3
zone 6 Ar 6653.6 7503.8 - 12 766.1
zone 7 Ar 7533.8 10 401.8 - 15 421.3
zone 8 Ar 15 427.3 19 783.3 - 44 766.7

The comparison of the two models shows a significant improvement of the
continuous relaxation value with the enhanced model, going in average from
77% to 91% of the solution value for instances where the solution is known.
According to Table 3.2, when neither tapping nor splicing is allowed, the solution
is in average 20% more expensive than the optimal solution, and more important
on longer infrastructures.

We also report in Table 3.3 how the optimal solution’s cost is decomposed:
cable costs, cost of welds and welding box costs. In the optimal solutions, the
overall cost of welds stands for in average 18% of the total cost while the cost of
boxes is in average 3.5 % of the total cost. Note that for longer instances, the
number of splicing and tapping points, as well as the costs of welds and welding
boxes, is higher.
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Table 3.3: Composition of the different cost sources in optimal solutions

instance cable cost welds cost
protective
box cost

number of
tapping or
splicing points

zone 0 Cl 1765.1 330 93.8 3
zone 1 Cl 1667.1 480 93.8 3
zone 2 Cl 1955.9 660 69.3 2
zone 3 Cl 1382.1 120 49.0 2
zone 4 Cl 1503.5 588 89.6 2
zone 5 Cl 3106.2 960 89.6 2
zone 6 Cl 949.8 270 69.3 2
zone 7 Cl 1256.4 60 24.5 1
zone 8 Cl 3254.7 660 179.2 4
zone 0 Ar 4321.4 1050 366.8 10
zone 1 Ar 8099.3 900 350.8 11
zone 2 Ar 4393.1 1344 228.2 6
zone 3 Ar 4373.0 1344 228.2 6
zone 4 Ar 3714.0 918 228.2 6
zone 5 Ar 5385.8 660 301.8 9

The computing times obtained with both models are displayed in Table 3.4.
In order to avoid having too much constraints in model (B), those from (3.25) -
(3.30) and (3.31) - (3.33) are removed from the branch and bound algorithm if
they concern a node i such that in the initial relaxation

∑
l∈L
∑
m∈Ml

(btapi,l,m +

bspli,l,m) = 0. In addition to the total computing time, we also provide the time
before appearance of a first integer solution.
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Table 3.4: Computation times

with model (A) with model (B)

instance time (s)
time until
first integer (s)

time (s)
time until
first integer (s)

zone 0 Cl 12.1 10.2 7.2 4.1
zone 1 Cl 41.6 25.7 101.7 22.7
zone 2 Cl 87.8 34.0 62.8 52.9
zone 3 Cl 18.8 18.8 14.7 4.0
zone 4 Cl 39.5 21.7 146.2 81.5
zone 5 Cl 11.9 11.4 10.6 4.3
zone 6 Cl 45.7 22.2 33.4 4.6
zone 7 Cl 8.4 7.6 2.5 2.3
zone 8 Cl 4350.0 697.3 14667.4 417.8
zone 0 Ar 135.8 73.9 122.7 72.8
zone 1 Ar 567.5 208.9 561.9 463.5
zone 2 Ar 341.8 102.7 597.7 88.6
zone 3 Ar 66.0 19.2 98.5 23.6
zone 4 Ar 40.5 40.4 24.0 18.2
zone 5 Ar 4065.9 173.3 - 3151.9
zone 6 Ar - - - 469.9
zone 7 Ar - - - 12 001.0
zone 8 Ar - - - -

The computation time grows with the parameters described in table 3.1. The
length of the underlying network has an influence as long distances between the
splitter and the demand nodes triggers more splicing and tapping operations in
the optimal solution, which means more variables from the ILP of section 3.1.2
will be non-null. Model (B) finds the optimal solution faster than the model
(A) in 60% of the instances. It finds an integer solution faster than the model
(A) in 75% of the cases.

In order to estimate the influence of the set of available cables L, we solve
the cable design problem with only 5 cable sizes: 1, 2, 6, 12 or 24 modules
per cable. Table 3.5 displays the obtained results: the solution cost and the
computing times when 5 cable sizes are considered. These results should be
compared with those given in Table 3.2. The average use of cables in both cases
(5 cable sizes and 8 cable sizes) are also reported. The costs used are the same
than for previous computations.
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Table 3.5: Influence of the set of cables available

with 5 cables sizes with 8 cables sizes

instance solution time (s)
percentage
of active
modules

percentage
of active
modules

zone 0 Cl 2206.8 4.7 95 95
zone 1 Cl 2248.5 14.7 95 95
zone 2 Cl 2685.2 27.3 95 95
zone 3 Cl 1590.0 16.9 89 93
zone 4 Cl 2195.4 40.6 93 95
zone 5 Cl 4345.2 14.5 84 89
zone 6 Cl 1293.1 13.0 94 94
zone 7 Cl 1489.3 1.7 87 98
zone 8 Cl 4162.5 1111.1 89 93
zone 0 Ar 5912.9 65.1 88 90
zone 1 Ar 9757.0 382.9 83 83
zone 2 Ar 5996.6 122.6 90 91
zone 3 Ar 5975.5 59.4 90 99
zone 4 Ar 4904.7 16.8 91 91
zone 5 Ar 6507.2 17 964.5 93 92
zone 6 Ar - - - -
zone 7 Ar - - - -
zone 8 Ar - - - -

Observe that the cost is in average 2% higher in the 5 cable solution than in
the 8 cable solution. The chosen subset of available cables gives a pretty good
approximation of the optimal solution. As for the computing time, solving the
problem with only 5 cable sizes is generally much faster than solving it with 8
sizes. Consequently, one can use this technique to get a sub-optimal solution in
a shorter time.

Regarding environmental aspects, it is desirable to use as much modules as
possible in the used cables. The average active modules

overall modules ratio is 93 % in the 8
cables solution, while it goes down to an average of 90 % in the 5 cables solution.

3.5 Conclusion

This chapter addresses the Fiber Cables Network Design problem. We proposed
to tackle it thanks to integer programming and valid inequalities. By studying
the solutions, we noticed that the introduction of splicing and tapping techniques
enable significant cost savings. This justifies our focus on fiber cables.

On a theoretical point of view, the problem is NP-hard and hard to approx-
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imate. Furthermore, it is linked to the Steiner Tree problem, since the design
of a fiber cables network is done ”inside” a Steiner Tree, in the sense that the
used civil engineering structure must be an arborescence spanning all demand
points. The relation with the Steiner Tree problem can be seen in the asymp-
totic behavior of FCND for negligible cable separation costs. The relation with
the shortest paths arborescence is highlighted by the behavior of FCND for
negligible cable deployment costs.

On an algorithmic point of view, the integer programming solution proposed
was able to solve successfully the smallest real-life instances. The valid inequal-
ities introduced significantly decrease the computation times. However, the
largest real-life instances stay out of reach. This justifies to study the problem
independently from elements such as splitter location, which would make the
problem even harder to tract. This lead us to tackle the FCNDA problem in
Chapter 4, which is a restriction of FCND in an arborescence, for which we can
expect to have more instances within our reach.
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Chapter 4

Fiber Cables Network
Design in an Arborescence
Problem

Chapter Abstract

This chapter tackles the FCNDA problem. It can be seen as a restriction of
FCND where the civil engineering structure available is a tree. Recall that it
can be stated as follows. Given an arborescence describing the civil engineering
infrastructure, the decision problem consists in selecting a set of cables with
enough active modules to serve the demand on each arc and associated sepa-
ration points on the nodes. Separation points should conserve the number of
active modules so that active modules are not interrupted from the fiber source
to the demand. While minimizing the total cost (cable layout, welding boxes
and welds), each demand node should be either cable served or module served
by a single cable, and at most one separation point per node is allowed.

We study the complexity of the problem in Section 4.1: we prove that it is
NP-hard, inapproximable, and that it cannot be easily modeled using a certain
set of variables. This leads us to introduce the two integer linear programming
models proposed in Sections 4.2.2 and 4.3.2. The first one is path based and uses
a very different approach than what was done for the FCND, while the second
one is arc-based and inspired by the model of Section 3.1. Variable fixings
and valid inequalities are proposed for both models. Finally, computational
experiments are presented in Section 4.4.
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Hypothesis

An arborescence of the civil engi-
neering structure is given, as well as
demand points, and the number of
fiber modules to be brought at each
demand. This implies that the num-
ber of modules going through each
duct is known (see example from
Fig. 4.1).

Figure 4.1: civil engineering and de-
mand location example

In this problem, one has the possibility to:

• Use two different separation techniques: splicing and tapping. At most
one of these operations can be done in a given node. The separation
techniques conserve the number of active modules.

• Serve the demand in one of two different fashions: cable-served when one
full cable is used, or module-served when modules from a cable are used.

Backfeed is not allowed, and the maintenance constraint does not apply.

4.1 Complexity

4.1.1 Proof of NP-completeness

Let us prove that the decision version of FCNDA is NP-complete even with 1
cable size and 2 potential splicing or tapping locations. We consider the Number
Partitioning Problem (NPP), which is proven to be NP-complete in [34], and
we prove that it can be reduced in polynomial time to a particular instance of
FCNDA with an equivalent answer.
(NPP):
Instance: We have a set of N integers ni (

∑
i∈{1,..,N} ni is supposed to be even).

Question: Is there a subset S ⊆ {1, .., N} such that
∑
i∈S ni =

∑
i6∈S ni ?

We consider an instance of (NPP) that we associate to the following FCNDA
instance.
Let (V,A) be an arborescence describing the civil engineering structure (V =
{r, 0, 1} ∪ {vi|i ∈ {1, .., N}}, A = {(r, 0); (0, 1); (1, vi)|i ∈ {1, .., N}}); only one
type of cable with a number of modules M1 = 1

2

∑
i∈{1,..,N} ni is available, its

cost per length unit is Cle1 = 1. The length of all arcs of the arborescence are
zero, except (r, 0) which is of length 1. This means the cost of a cable created in r

40



is 1, and the cost of the other ones is 0. The number of active modules associated
with each arc are: mact

(r,0) = mact
(0,1) =

∑N
i=1 ni;∀i ∈ {1, .., N},mact

(1,vi)
= ni, which

means that the demand points are the vi, i ∈ {1, .., N} and have respective
demands ni. This network is represented in Fig. 4.2a. We consider a zero cost
for welding and welding boxes.

(a) FCNDA instance for the NP-
completeness proof

(b) Solution considered in the NP-
completeness proof

Figure 4.2: Illustration of the instance and solution considered for the NP-
completeness proof

The question associated to this FCNDA instance is ”Is there a cabling solu-
tion cheaper than 2 ?”.
Let us first assume that (NPP) is feasible: ∃S ⊆ {1, .., N} such that

∑
i∈S ni =∑

i6∈S ni. We then build the following cabling solution:

• Two cables holding only active modules are installed on link (r, 0).

• In node 0, one incoming cable is spliced into N−|S| born cables. The born
cables have a number of active modules ni, i 6∈ S and serve the demand
nodes (vi)i6∈S .

• On link (0, 1), one cable coming from r with only active modules, and
N − |S| cables serving demand nodes in {vi|i 6∈ S} are installed.

• In node 1, the incoming cable with only active modules is spliced into
|S| born cables. The born cables have ni active modules and serve the
demand nodes (vi)i∈S .

• One cable is installed on each link (1, vi).

Since the number of active modules is conserved in each splicing, the cabling
solution described above is feasible (it is illustrated in Fig. 4.2b). Its cost is
equal to 2, as the cables created in r have a cost of 1, and the other ones have
a cost of 0.

Inversely, let us assume that (NPP) is not feasible: then, the solution de-
scribed above is not possible anymore. One cable is not large enough to cover
link (r, 0), it cannot contain all the required active modules. Let us assume
there is a solution with only two cables on (r, 0). Since their combined num-
ber of modules is

∑
i∈{1,..,N} ni, they both hold only active modules. If one
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of them directly served the demand without enduring any operation, then the
(NPP) instance was trivially feasible (one of the ni is half the total sum). So
both of them endure a splicing operation, one in node 0, the other in node 1.
Let us consider the cables created in 1. They serve a subset S1 of the demand
nodes, and have a respective number of active modules of ni, i ∈ S1. Since
the number of active modules in a splicing operation is conserved, we have∑
i∈S1

ni = 1
2

∑
i∈{1,..,N} ni and the (NPP) instance was feasible.

Consequently, at least 3 cables need to be installed on arc (r, 0), and such
solution has a cost of at least 3.

4.1.2 Inapproximability

Proposition 4.1.1 The FCNDA problem cannot be approximated within a ra-
tio 3

2 − ε for any ε > 0.

Proof. Let us consider ε > 0. Let us assume there is a polynomial time ap-
proximation algorithm A which is able to give a solution with a ratio 3

2 − ε. Let
us consider an instance of (NPP).
Here is a polynomial time algorithm which can solve any instance of (NPP):

• Associate the FCNDA instance described in Section 4.1.1 to this (NPP)
instance.

• Compute the cost of the solution given by the approximation algorithm A.

• If this cost is higher or equal than 3, answer false. Otherwise, answer true.

If the cost c′ of the solution given by A verifies c′ < 3, then the cost c∗ of an
optimal solution verifies c∗ < 3. Since the cost of a solution is integer, c∗ ≤ 2.
This implies (see Section 4.1.1) that the (NPP) instance is feasible. If the cost
c′ of the solution given by A verifies c′ ≥ 3, the cost c∗ of the optimal solution
verifies c∗ ≥ c′ 2

3−2ε > 2. Since c∗ is integer, it implies c∗ ≥ 3, and the (NPP)
instance is not feasible. Hence, this algorithm provides the answer of the (NPP)
problem. �

4.1.3 On the possible sets of decision variables

The models described later in Sections 4.2 and 4.3 use several types of variables.
We can partly justify this choice by showing that a ”minimalist” choice of vari-
ables leads to a formulation where one cannot assess the feasibility of a solution
in a polynomial time with respect to the number of variables. Let us introduce
L = {1, .., L} the set of available cables types of a FCNDA instance, VD the set
of demand nodes, and ML the size of the largest cable. The number of modules
weld in a node varies between 0 and ML, while the number of cables going
through an arc varies between 1 and |VD|. Let us assume the FCNDA problem
has a formulation using the set of variables x = (xca, xbox, xwe) described as
follows:
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• ∀(i, j) ∈ A,∀l ∈ L, xca(i,j),l denotes the number of cables of size l going

through arc (i, j). Its value varies between 0 and |VD|

• ∀i ∈ V ∗,∀l ∈ L, xboxi,l is the binary variable equal to 1 iff there is a welding
box for a cable of size l installed in node i.

• ∀i ∈ V ∗,∀m ∈ {1, ..,ML}, xwei,m is the binary variable equal to 1 iff there
are m welds performed in node i.

These variables seem required to express the objective function. For a given
instance I of the problem, |I| denotes the instance size.

Proposition 4.1.2 There is no algorithm F and polynomial P such that for
every instance I of the problem, for any value of x, F(I, x) answers the question
”is x feasible?” (is there a feasible solution of variables x?) in a time smaller
than P (|I|), unless P = NP.

Proof. Let us assume we have such an algorithm. We then propose a polyno-
mial time algorithm able to solve all instances of (NPP). Let us consider INPP

an instance of this problem.

• First, associate to the NPP instance the instance of the FCNDA problem
described in Section 4.1.1, which we note IFCNDA, with the same notation.
We have a polynomial Q such that |IFCNDA| ≤ Q(|INPP |).

• Second, look for the feasibility of all solutions with two cables on the
arc (r, 0). This can be done using algorithm F by testing the sets of
variables with values xca(r,0),1 = 2; xca(1,vi),1 = 1 for all i ∈ {1, .., N};
xbox0,1 = xbox1,1 = 1; for m = 1

2

∑
i∈{1,..,N} ni, x

we
0,m = xwe1,m = 1; for all

m′ 6= m,xwe0,m′ = xwe1,m′ = 0. The only variable for which all possible val-
ues are tested is xca(0,1),1. Feasibility of these solutions can be verified in

O(|IFCNDA|P (|IFCNDA|)) = O(Q(|INPP |)P (Q(|INPP |))).

• If one of these solutions is feasible, then declare INPP feasible.

This algorithm is valid since one of the tested solutions is feasible iff INPP is
feasible. Indeed, let us assume the INPP instance is feasible. Then, there is a
solution to IFCNDA with two cables coming out of the root (see Section 4.1.1).
This implies that one of the tested values for x is feasible. Inversely, let us
assume at least one of the tested values of x are feasible. Then, IFCNDA has
at least one solution with two cables coming out of the root. This implies, by
Section 4.1.1, that INPP is feasible. Hence the result. �

The link between this proposition and the formulations one can expect is the
following. In most formulations used to tackle NP-hard problems, one implicitly
assumes that given a set of variable values, one can assess its feasibility in
polynomial time. Indeed:
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• Any ILP formulation of the kind Ax ≤ b, x ∈ Z where A is a matrix and
b is a vector of appropriate size, with constraints separable in polynomial
time, gives a straightforward feasibility verification algorithm: one can
check whether the constraints are violated or not.

• Let us consider harder formulations, such as quadratically constrained
programming. Any constraint of the form xTQx+aTx ≤ b can be checked
in polynomial time for a given x. Which implies no formulation of this
kind with a polynomial number of constraints can be expected. Similarly,
other non-linearly constrained formulations can be excluded as well.

We do not intend to give an exhaustive list of the formulations used in
the literature. However, these elements are enough to suggest that using the
variables x as defined above is a very hard route to follow. We deduce from
Proposition 4.1.2 that an ILP formulation using the variables above will contain
constraints that are difficult to separate. This leads us to add more variables
and propose the next two formulations of Sections 4.2 and 4.3.

4.2 Path-based integer programming formula-
tion

4.2.1 Notation

An instance of the FCNDA problem is noted as follows. An arborescence G =
(V,A) describes the selected civil engineering structure where V denotes the set
of concrete rooms (where cable separation can be performed) and A represents
the set of ducts. Let r be the root of G and let V ∗ = V \ {r}. The set of paths
in G is denoted by P. Given any path p ∈ P, s(p) is the first node of p (source)
and t(p) is the last node (target). Each node i ∈ V has a demand of Di active
modules (Di ≥ 0). VD ⊂ V ∗ denotes the set of nodes with a non-zero demand,
while VN ⊂ V ∗ denotes the set of nodes with zero demand. Each arc (i, j) ∈ A
has a length ∆(i,j) > 0. For i ∈ V , we denote by Γ+(i) its set of successors
{j ∈ V |(i, j) ∈ A}, and for i ∈ V ∗, let γ(i) be the unique predecessor of i. The
number of active modules going through (i, j) ∈ A, denoted by mact

(i,j), can be

calculated recursively starting with pendant vertices i (leaf nodes) by assigning
Di to mact

(γ(i),i) and writing that mact
(i,j) =

∑
j′∈Γ+(j)m

act
(j,j′) +Dj .

The available cables are from a discrete set L = {1, .., L}, each cable type
being characterized by a number of modules Ml with l ∈ {1, .., L}. L is ordered
with respect to M , i.e. ∀(l, l′) ∈ L2, l < l′ ⇐⇒ Ml < Ml′ . The set of possible
numbers of active modules inside a cable of type l is denoted byMl = {1, ..,Ml}.
Each cable has a cost per length unit Clel , while the cost of a welding box of
type l is PBl (recall that the size of the welding box depends of the size of the
separated cable), and the cost for welding m modules is PWm, all costs being
strictly positive and increasing with respect to size.

The decision variables of the model are described below:

44



• ∀p ∈ P,∀l ∈ L, bborn,sepp,l ∈ {0, 1}: the binary variable equal to 1 iff there
is a cable going through path p, born in s(p) and separated in t(p) (either
spliced or tapped). Recall that since there is at most one cable that can

be separated in a concrete room, bborn,sepp,l is binary. Also recall that s(p)
can be equal to the root r of G.

• ∀p ∈ P,∀l ∈ L, bctn,sepp,l ∈ {0, 1}: the binary variable equal to 1 iff there is
a cable going through path p, which is the continuation of a cable tapped
in s(p) and separated in t(p). Observe that s(p) 6= r.

• ∀p ∈ P such that t(p) ∈ VD,∀l ∈ L, bborn,demp,l ∈ {0, 1}: the binary variable
equal to 1 iff the demand of node t(p) is served by a cable on path p in
a cable-served way, and this cable is a cable born in s(p). Its number of
active modules is then Dt(p).

• ∀p ∈ P such that t(p) ∈ VD,∀l ∈ L, bctn,demp,l ∈ {0, 1}: the binary variable
equal to 1 iff the demand of node t(p) is served by a cable on path p in a
cable-served way, and this cable is the continuation of a cable tapped in
s(p). Its number of active modules is then Dt(p).

• ∀p ∈ P,mborn,sep
p ∈ {0, ..,ML}: the number of active modules of the cable

going through path p, born in s(p) and either spliced or tapped in t(p).
Notice that such a cable cannot serve a demand in a cable-served way but
might serve it in a module-served way.

• ∀p ∈ P,mctn,sep
p ∈ {0, ..,ML − 1}: the number of active modules of the

cable going through path p, continuation of a cable tapped in s(p) and
either spliced or tapped in t(p). Observe again that such a cable cannot
serve a demand in a cable-served way but might serve it in a module-served
way.

• ∀i ∈ V ∗,∀m ∈ ML, wi,m ∈ {0, 1}: the binary variable equal to 1 iff there
are m modules to be weld in node i.

For the sake of clarity, a description of a small cabling solution by the model
is given in Fig. 4.3.

4.2.2 Formulation

The FCNDA problem can be formulated as follows

min
∑
p∈P

∑
(i,j)∈p

∑
l∈L

Clel ·∆(i,j) · (bborn,sepp,l + bborn,demp,l + bctn,sepp,l + bctn,demp,l )

+
∑
i∈V ∗

∑
m∈ML

PWm · wi,m +
∑
p∈P

∑
l∈L

PBl · (bborn,sepp,l + bctn,sepp,l ) (4.1)

such that
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∑
p∈P|t(p)=i

(mborn,sep
p +mctn,sep

p ) =

∑
p∈P|s(p)=i

(mborn,sep
p +mctn,sep

p )

+
∑

p∈P|s(p)=i,t(p)∈VD

∑
l∈L

Dt(p) · (bborn,demp,l + bctn,demp,l ) ∀i ∈ VN , (4.2)

∑
p∈P|t(p)=i

(mborn,sep
p +mctn,sep

p )

+
∑

p∈P|t(p)=i

∑
l∈L

Di · (bborn,demp,l + bctn,demp,l ) = Di

+
∑

p∈P|s(p)=i

(mborn,sep
p +mctn,sep

p )

+
∑

p∈P|s(p)=i,t(p)∈VD

∑
l∈L

Dt(p) · (bborn,demp,l + bctn,demp,l ) ∀i ∈ VD, (4.3)

∑
l∈L

Ml · bborn,sepp,l ≥ mborn,sep
p ∀p ∈ P, (4.4)∑

l∈L

(Ml − 1) · bctn,sepp,l ≥ mctn,sep
p ∀p ∈ P, (4.5)∑

p∈P|s(p)=i

bctn,sepp,l + bctn,demp,l ≤

∑
p∈P|t(p)=i

bborn,sepp,l + bctn,sepp,l ∀i ∈ V ∗, l ∈ L, (4.6)

∑
p∈P|t(p)=i

∑
l∈L

bborn,sepp,l + bctn,sepp,l ≤ 1 ∀i ∈ V ∗, (4.7)

∑
l∈L

∑
p∈P|t(p)=i

bborn,demp,l + bctn,demp,l ≤ 1 ∀i ∈ VD, (4.8)

∑
m∈ML

m · wi,m =
∑

p∈P|i=s(p)

mborn,sep
p

+
∑

p∈P|s(p)=i,t(p)∈VD

∑
l∈L

Dt(p) · bborn,demp,l ∀i ∈ V ∗, (4.9)

∑
m∈ML

wi,m ≤ 1 ∀i ∈ V ∗, (4.10)

bborn,sepp,l , bctn,sepp,l , bborn,demp,l , bctn,demp,l ∈ {0, 1} ∀p ∈ P,∀l ∈ L,
wi,m ∈ {0, 1} ∀i ∈ V ∗,∀m ∈ML,

mborn,sep
p ∈ {0, ..,ML},mctn,sep

p ∈ {0, ..,ML − 1} ∀p ∈ P.

The cost function (4.1) is a combination of cable costs (first term), weld
costs (second term) and welding box costs (third term).
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Figure 4.3: Path model illustration on a small example; a tapping is permormed
in node 1
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Constraints (4.2) and (4.3) describe modules in separation points. Equa-
tions (4.2) ensure active modules conservation in no-demand separation points.

Recall that the term
∑
p∈P|s(p)=i,t(p)∈VD

∑
l∈LDt(p) · bborn,demp,l is the number of

active modules of an eventual cable born in i and serving t(p), and∑
p∈P|s(p)=i,t(p)∈VD

∑
l∈LDt(p) · bctn,demp,l is the number of active modules of an

eventual cable continued from a tapping in i and serving t(p). Equations (4.3)
ensure active modules conservation in separation points with demand. In the
case we have a cable-served node,

∑
p∈P|t(p)=i

∑
l∈LDi · (bborn,demp,l +bctn,demp,l ) =

Di, and the equation regarding an eventual separation point is equivalent to
(4.2). Otherwise,

∑
p∈P|t(p)=i

∑
l∈L(bborn,demp,l + bctn,demp,l ) = 0, and we can see

that the separated cable has the number of active modules required to both serve
the demand and create the created cables. Note that the variables do not allow
the number of modules in a cable to change unless a separation point is encoun-
tered, and that all cables serving the demand in a cable-served way have by defi-
nition the proper number of modules (

∑
p∈P|s(p)=i,t(p)∈VD

∑
l∈LDt(p) · bborn,demp,l

or
∑
p∈P|s(p)=i,t(p)∈VD

∑
l∈LDt(p) · bctn,demp,l ). Hence, ensuring that modules are

conserved in separation points with (4.2) and (4.3) is enough to ensure that
modules are conserved in any node of the network.
Equations (4.4) and (4.5) make sure that cables are large enough to hold their
number of active modules. Recall that in the continuation of a tapped cable,
there is at least one dead module. Constraints (4.6) define tapping operations
properly. Whenever the continuation of a tapped cable of size l appears in i,
there is a cable of the same size separated in i. Constraints (4.7) ensure that
no more than one cable is either spliced or tapped in a node. It is valid in both
VN and VD, since a cable of type l ∈ L on path p ∈ P serving a node in a cable-
served way would be denoted either by bborn,demp,l or by bctn,demp,l . Equations (4.8)
ensure that demand nodes are served by at most one cable. Equations (4.9)
and (4.10) make sure that the variable wi,m is equal to 1 iff there are m welds
performed in node i.

Remark 4.2.1 This ILP model holds 4|P| ·L+ML · |V ∗| binary variables, 2|P|
integer variables, and (4 + L) · |V ∗| + |VD| + 2|P| constraints. The number
of paths in an arborescence of n nodes varies between n − 1 (star graph, of
the form (V,A) with V = {v1, .., vn} and A = {(v1, vi)|i ∈ {2, .., n}} ) and
n(n−1)

2 (linear graph or path graph, of the form (V,A) with V = {v1, .., vn} and
A = {(vi−1, vi)|i ∈ {2, .., n}} ).

It is possible to set the value of some variables of this model by pre-processing
the data.

4.2.3 Preprocessing

By definition, no continuation of a tapped cable comes from the root. Hence

∀p ∈ P such that s(p) = r, ∀l ∈ L, bctn,sepp,l = bctn,demp,l = 0
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Demand nodes can only be served by one cable. This implies that if it is
served in a cable-served way, the number of modules of the serving cable cannot
be smaller than the required number of active modules. Besides, if the cable
serving a node is the continuation of a tapped cable, it must have at least one
dead module. Hence

∀i ∈ VD,∀l ∈ L, such that Di > Ml,
∑
p∈P|t(p)=i b

born,dem
p,l = 0

∀i ∈ VD,∀l ∈ L, such that Di + 1 > Ml,
∑
p∈P|t(p)=i b

ctn,dem
p,l = 0

Similarly, if a demand node is served in a cable-served way by a born cable,
then the size of this cable must be optimal with respect to the demand it serves.
Indeed, if there exists a smaller cable size which is large enough to serve the
demand, one could have chosen this smaller size instead, which gives a cheaper
solution. This leads to

∀p ∈ P s.t. t(p) ∈ VD,∀l ∈ L \ {1}, if Ml−1 ≥ Dt(p), then bborn,demp,l = 0

First, recall that cable-served demand nodes can only be served by one cable,
holding exactly as many active modules as required. Furthermore, when some of
these enter a separation point, they gather their active modules into one cable,
its number of active modules being a sum of some of the demands downstream.
Recursively, this means that all cables hold a number of active modules which
is a sum of the demand in some demand nodes. Since the number of welds
performed in a node is the sum of the number of active modules of cables born
in this node, it is also a sum of some of the demands downstream. Hence, some
values for this number are known to be impossible. Let us note ∀i ∈ V, V ari the
arborescence rooted in i, i excluded, and PM(i) := {

∑
j∈J Dj |J ⊆ V ari } (PM

stands for possible number of active modules).

∀i ∈ V ∗,∀m ∈ML \ PM(i), wi,m = 0

The following propositions use some properties of the welding cost function
PW .

Lemma 4.2.1 From the concavity of PW and PW0 = 0, we can derive:
PW is subadditive,
∀m0 ∈ML,∀m1 ≤ m0,∀m2 ≤ m1, PWm0 −PWm0−m1 ≥ PWML

−PWML−m2 .

Proof. First, for m and m′ in ML such that m + m′ ∈ ML,by concavity,
we have PWm ≥ m

m+m′PWm+m′ + m′

m+m′PW0 and PWm′ ≥ m′

m+m′PWm+m′ +
m

m+m′PW0. Summing gives the result.

Let us now consider m2 ≤ m1 ≤ m0 ∈ ML. Since PW is growing,
PWML

− PWML−m1 ≥ PWML
− PWML−m2 . Besides, the concavity of PW

gives PWML−m1
≥ m1

ML+m1−m0
PWm0−m1

+ ML−m0

ML+m1−m0
PWML

and PWm0
≥

ML−m0

ML+m1−m0
PWm0−m1

+ m1

ML+m1−m0
PWML

. Summing gives the result. �
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The following proposition deals with cable-served nodes and the path on
which the cable serving it lies. We can determine the cost of serving it by a
continued cable on this path (

∑
(i,j)∈p ∆(i,j) ·Clel ) and compare it to the cost of

a born cable (
∑

(i,j)∈p ∆(i,j) ·Clel′ +PWm). If serving it by the continuation of a
tapped cable is more expensive than serving with a born cable, the born cable
will always be chosen, which makes sure no continuation of a cable tapped in
s(p) will serve it.

Proposition 4.2.2 Let us consider p ∈ P such that t(p) ∈ VD, s(p) 6= r, and
let m be Dt(p). Let consider l ∈ L\{1} and assume ∃l′ < l such that

∑
(i,j)∈p ∆(i,j)·

(Clel −Clel′ ) > PWm and Ml′ ≥ m. Every optimal solution of the FCNDA prob-

lem verifies bctn,demp,l = 0.

Proof. Let us consider an optimal solution of the FCNDA problem S, p ∈ P
such that t(p) ∈ VD, s(p) 6= r, s(p) 6= r, and l ∈ L\{1}. Let us note m = Dt(p),

and assume ∃l′ < l such that
∑

(i,j)∈p ∆(i,j) · (Clel − Clel′ ) > PWm, Ml′ ≥ m.

Let us assume bctn,demp,l = 1, t(p) is served by the continuation of a cable tapped
in s(p). If ∀m′ ∈ ML, ws(p),m′ = 0 (the case where no welds are performed
in s(p)), let us consider the solution S′ identical to S everywhere except for

ws(p),m = 1, bborn,demp,l′ = 1 and bctn,demp,l = 0. S′ is cheaper than S and feasible.
Otherwise, ∃!m0 ∈ ML such that ws(p),m0

= 1. Besides, with (4.2) and (4.7),
m0 ≤ML−m (by counting the number of active modules, the number of welds
performed in s(p) cannot be larger than ML−m). Let us consider the solution S′

identical to S everywhere except for b
′ctn,dem
p,l = 0, b

′born,dem
p,l′ = 1, w′s(p),m0+m =

1, ws(p),m0
= 0. S′ is the solution where a splicing is performed in s(p) and a

born cable of size l′ is deployed on p. It is cheaper and feasible. Indeed, the
difference δ between the cost of S and the cost of S′ is δ =

∑
(i,j)∈p ∆(i,j) ·(Clel −

Clel′ )+PWm0
−PWm0+m, and by the subadditivity of PW , δ ≥

∑
(i,j)∈p ∆(i,j) ·

(Clel − Clel′ )− PWm > 0. Hence the result. �

By considering a born cable not coming from the root, it is possible to
determine the cost for creating this cable at the root. If it is cheaper to create
it at the root than creating it downstream in a separation point, then in any
optimal solution, this cable will be started at the root.

Proposition 4.2.3 Let us consider p ∈ P such that s(p) 6= r and let us note p′

the only path such that t(p′) = t(p) and s(p′) = r. For any l ∈ L \ {1}, let m be
Ml−1 + 1. If

∑
(i,j)∈p′\p C

le
l ·∆(i,j) < PWML

− PWML−m, then every optimal

solution of the FCNDA problem verifies bborn,sepp,l = bborn,demp,l = 0.

Proof. Let S be an optimal solution. Let us consider p ∈ P such that s(p) 6= r
and let us note p′ the only path such that t(p′) = t(p) and s(p′) = r. Let us
consider l ∈ L \ {1}, and let us denote m = Ml−1 + 1. Furthermore, let us

assume
∑

(i,j)∈p′\p C
le
l ·∆(i,j) < PWML

− PWML−m and bborn,sepp,l = 1 (there is

a born cable on path p). We know that m1 = mborn,sep
p ≥ Ml−1 + 1 (see also

50



(4.13)), which means, by (4.9) and (4.10), that ∃!m0 ≥ mborn,sep
p , ws(p),m0

= 1
(m0 denotes the number of welds performed in s(p)). It also means by (4.2)
and (4.7) that ∃!p0 ∈ P,mborn,sep

p0 +mctn,sep
p0 ≥ m0 (p0 is the path on which the

cable separated in s(p) lies).
If mctn,sep

p0 > 0 (the cable on p0 is the continuation of a tapped cable). Then,

mborn,sep
p0 = 0 and the solution S′ identical to S everywhere except form

′ctn,sep
p0 =

mctn,sep
p0 −m1, b

′born,sep
p,l = 0, b

′born,sep
p′,l = 1, m

′born,sep
p′ = mborn,sep

p , w′s(p),m0
= 0

and w′s(p),m0−m1
= 1 is cheaper and feasible. S′ is the solution where instead

of installing a cable on p, one is installed on p′, which increases cable costs but
reduces welds costs. Indeed, the difference D between the cost of S and the cost
of S′ is D = PWm0 − PWm0−m1 −

∑
(i,j)∈p′\p C

le
l · ∆(i,j) and by concavity of

PW (see Lemma 4.2.1), D ≥ PWML
− PWML−m −

∑
(i,j)∈p′\p C

le
l ·∆(i,j) > 0.

If mborn,sep
p0 > 0 (the cable on p0 is a born cable). Then, mctn,sep

p0 = 0 and

the solution identical to S everywhere except for m
′born,sep
p0 = mborn,sep

p0 −
m1, b

′born,sep
p,l = 0, b

′born,sep
p′,l = 1, m

′born,sep
p′ = mborn,sep

p , w′s(p),m0
= 0 and

w′s(p),m0−m1
= 1 is cheaper and feasible (the difference between the costs of S

and S′ is the same as in the previous case).

A similar reasoning can be conducted in the case bborn,demp,l = 1. Hence the
result. �

4.2.4 Valid inequalities

As will be shown in Table 4.3, the continuous relaxation of the ILP of Section
4.2.2 is not tight enough. Hereinafter we provide valid inequalities aiming to
strengthen the continuous relaxation. The practical effectiveness of each family
of valid inequalities is assessed in Table 4.5 through numerical experiments.

The following cuts express that any demand node i will be served by at least
one cable, the size of which must be able to hold the demand.

Proposition 4.2.4 Every optimal solution of the FCNDA problem verifies

∀i ∈ VD,
∑

p∈P|t(p)=i

( ∑
l∈L|Ml≥Di

bborn,demp,l

+
∑

l∈L|Ml≥Di+1

(bborn,sepp,l + bctn,demp,l ) +
∑

l∈L|Ml≥Di+2

bctn,sepp,l

)
≥ 1 (4.11)

Four different cases can occur on a given node i. First, if the node is served
in a cable-served way by a born cable, this cable must contain at least Di active
modules. Second, if it is served in a cable-served way by a continued cable, then
it has at least one dead module in addition to Di active modules. Third, when
the node is module-served by a born cable, then this cable has at least one more
active module than what the demand requires, since new cables are created.
Finally, if i is module-served by the continuation of a tapped cable, then this
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cable contains at least one dead module, and at least one active module more
than Di.

The inequalities below state that at least two active modules must be present
in any separated cable of an optimal solution. Indeed, any cable without active
modules can be removed to give a cheaper feasible solution. Any cable with
only one active module serves the demand.

Proposition 4.2.5 Every optimal solution of the FCNDA problem satisfies

∀p ∈ P, 2 ·
∑
l∈L

bctn,sepp,l ≤ mctn,sep
p (4.12)

Proof. Let us assume that in an optimal solution S of the FCNDA problem, we
have a path p1 ∈ P such that mctn,sep

p1 = 1 and
∑
l∈L b

ctn,sep
p1,l

= 1. This means
there is a tapping done in the node s(p1), which is not the root, and let us note
m1 ≤ ML − 1 the number of welds done in s(p1). Our hypothesis also means
that there is a cable with only one active module getting separated in t(p1) on
path p1. Let us call p2 the path on which continues the only cable created in
t(p1). It is a born cable, since doing a tapping with only the continued cable
coming out is impossible in an optimal solution (it would mean a protective box
is installed for nothing). We then have t(p1) = s(p2), and let us call p0 ∈ P
the only path such that s(p0) = s(p1) and t(p0) = t(p2). Let us consider the
solution S′ identical to S everywhere, but where we replace the two cables on
p1 and p2 by a cable of size l = 1 on the path p0, born in s(p0). The variables
values of S′ different from those of S are:

• w′s(p0),m1+1 = 1, w′s(p0),m1
= 0 (we ”shift” the weld that used to be done

in t(p1) to s(p1))

• ∀l ∈ L, bctn,sep
′

p1,l
= 0; mctn,sep′

p1 = 0 (there is no more cable continued from
a tapping done in s(p1) on the path p1)

• bborn,dem
′

p0,1
=
∑
l∈L b

born,dem
p2,l

; bborn,sep
′

p0,1
=
∑
l∈L b

born,sep
p2,l

(the cable on p0

in S′ has the same role than the born cable on p2 in S, one of the sums is
equal to 1).

• mborn,dem′

p0 = mborn,dem
p2 ; mborn,sep′

p0 = mborn,sep
p2 (the cable on p0 in S′ has

the same role than the born cable on p2 in S, one of the sums is equal to
1).

Since we use the smallest cable size, the overall cost of cables of S′ is smaller
than the one of S. Furthermore, by the concavity of PW , doing m1 + 1 welds
in s(p1) is cheaper than doing m1 welds in s(p1) and one weld in t(p1). Which
means S′ is cheaper than S. Hence the result. �

The inequalities below deal with the relation between the size of a born cable
and its number of active modules.
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Proposition 4.2.6 Every optimal solution of the FCNDA problem verifies

∀p ∈ P,mborn,sep
p ≥

∑
l∈L

bborn,sepp,l +
∑

l∈L\{1}

Ml−1 · bborn,sepp,l (4.13)

The intuition is that born cables have an optimal size regarding the number
of active modules they hold: if a cable of size l is created, it must contain at least
Ml−1 + 1 active modules; otherwise, one can replace this cable with a smaller
one of size l − 1, leading to a solution of lower cost.

Let us now focus on no-demand nodes. A cable is separated iff there are welds
in this node. Note that this inequality cannot be generalized to VD. Indeed, it
is possible to have a tapping in a module-served demand node without creating
any born cables, which means no welds are performed.

Proposition 4.2.7 Every optimal solution of the FCNDA problem satisfies

∀i ∈ VN ,
∑

m∈ML

wi,m =
∑

p∈P|t(p)=i

∑
l∈L

(bborn,sepp,l + bctn,sepp,l ) (4.14)

The following proposition asserts that if m ≤ m′ welds are performed in a
given node, then there will be born cables going out of this node with at most
m active modules. Since these are born cables, their size cannot exceed the
smallest size able to contain m′ active modules (denoted by l1).

Proposition 4.2.8 Every optimal solution of the FCNDA problem verifies

∀i ∈ V ∗,∀m′ ∈ML, if l1 = min{l ∈ L|Ml ≥ m′}, then∑
m∈{1,..,m′}

wi,m ≤
∑

p∈P|s(p)=i

∑
l∈L|l≤l1

(bborn,demp,l + bborn,sepp,l ) (4.15)

Let us focus on degree 2 nodes. What follows implies that in a sequence of
adjacent nodes of degree 2 without demand, a separation point will be preferably
made either in the last node of the sequence, or upstream of the sequence.

Proposition 4.2.9 Every optimal solution of the FCNDA problem satisfies

∀(i, j) ∈ A, such that i ∈ VN and |Γ+(i)| = 1,
∑

m∈ML

wj,m ≥
∑

m∈ML

wi,m(4.16)

Proof. Let us assume there is a separation point in a degree 2 no-demand node
i and no separation point in its successor j (Fig. 4.4 center).
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Figure 4.4: illustration of the proof of (4.16)

Let us distinguish two cases.
- If the sum of the cost per length unit of cables created in i, equal to∑
p∈P|s(p)=i

∑
l∈L C

le
l · (b

born,sep
p,l + bctn,sepp,l + bborn,demp,l + bctn,demp,l ), is larger than

the cost per length unit of the cable separated in i, then one can ”shift” the
separation point downstream to j and find a cheaper solution (Fig. 4.4 left).

- Let us consider the case where the sum of the costs per length unit of all
created cables is smaller than the cost per length unit of the separated cable.
First, note that this isn’t possible if a tapping was performed in i. Indeed, in a
tapping, the continued cable is as expensive as the tapped cable, and there are
additional born cables. So we have a splicing operation in i. Let us consider
the last separation point encountered by this spliced cable (upstream of i). Let
us consider the solution where, instead of creating this cable (whether it was
born or not), we create the downstream cables (Fig. 4.4 right). First, note that
in this new solution, the overall cable cost is lower by hypothesis. Then, note
that the welds that were in i are performed in another node instead. Since PW
is subadditive, the overall price of welds is then lower. This gives a cheaper
feasible solution. Hence the result. �

The inequalities below state that if there are m ≥ m′ welds performed in a
given node, then there is a separated cable containing at least m′ active modules.
Furthermore, if this cable has been tapped, it contains at least an additional
dead module.

Proposition 4.2.10 The following constraints are valid inequalities for the FC-
NDA problem.

∀i ∈ V ∗,∀m′ ∈ML,
∑
m≥m′

wi,m ≤
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∑
p∈P|t(p)=i

(
∑

l∈L|Ml≥m′
bborn,sepp,l +

∑
l∈L|Ml≥m′+1

bctn,sepp,l ) (4.17)

Equations (4.18) assert that the required number of active modules in any
arc is respected. It is redundant with the model.

Proposition 4.2.11 Let us first show that constraints (4.2) to (4.10) induce
the following equations:

∀(i, j) ∈ A,mact
(i,j) = (4.18)∑

p∈P,(i,j)∈p

(
mborn,sep
p +mctn,sep

p +
∑
l∈L

Dt(p) · (bborn,demp,l + bctn,demp,l )

)

Proof. First, (4.18) is clear for any arc (i, j) such that Γ+(j) = ∅. Indeed,
in that case, j ∈ VD, otherwise the node j does not contribute to the prob-
lem. Then, (4.3) becomes

∑
p∈P,t(p)=j

∑
l∈LDt(p) · (bborn,demp,l + bctn,demp,l ) =∑

p∈P,(i,j)∈p
∑
l∈LDt(p) · (bborn,demp,l + bctn,demp,l ) = Dj = mact

(i,j). Validity of

(4.18) can then be deduced by induction. Let us consider (γ(i), i) ∈ A, such
that i ∈ VD and ∀j ∈ Γ+(i),

∑
p∈P,(i,j)∈p(m

born,sep
p + mctn,sep

p +
∑
l∈LDt(p) ·

(bborn,demp,l + bctn,demp,l )) = mact
(i,j). By summing these equations for all arcs (i, j)

with j ∈ Γ+(i), as well as (4.3) for i, we have∑
p∈P|t(p)=i

(mborn,sep
p +mctn,sep

p ) +
∑

p∈P|t(p)=i

∑
l∈L

Di · (bborn,demp,l + bctn,demp,l ) +

∑
j∈Γ+(i)

∑
p∈P,(i,j)∈p

(
mborn,sep
p +mctn,sep

p +
∑
l∈L

Dt(p) · (bborn,demp,l + bctn,demp,l )

)
=

∑
j∈Γ+(i)

mact
(i,j) +Di +

∑
p∈P|s(p)=i

(mborn,sep
p +mctn,sep

p )

+
∑

p∈P|s(p)=i,t(p)∈VD

∑
l∈L

Dt(p) · (bborn,demp,l + bctn,demp,l )

Recalling that {p ∈ P|∃j ∈ Γ+(i), (i, j) ∈ p} ∪ {p ∈ P|t(p) = i} = ({p ∈
P|(γ(i), i) ∈ p} ∪ {p ∈ P|s(p) = i}), and mact

(γ(i),i) = Di +
∑
j∈Γ+(i)m

act
(i,j) we

have the result. A similar calculation can show (4.18) for i ∈ VN by using (4.2).
�

Let us introduce MIR (mixed integer rounding) type inequalities. Let us

consider a ∈ A. Let R be the function defined on R2
>0 by R(α, β) = β−α ·

⌊
β
α

⌋
,

the remainder of the division of β by α. Let µa be the function defined on R2
>0

by µa(α, β) = R(α, β) ·
⌊
β
α

⌋
+ min(R(α, β), R(α,mact

a )).

Remark 4.2.2 Most inequalities from the model are from one of two cases. By
noting them

∑
i∈I aixi ≤ b, we either have b = 0 or ∀i ∈ I, ai = b. In both

cases, the application of MIR cuts does not provide any improvement.
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Proposition 4.2.12 The following constraints are valid inequalities for the FC-
NDA problem

∀a ∈ A,∀y ∈ R,
∑

p∈P|a∈p

∑
l∈L

(
µa(y,min(mact

a ,Ml)) · bborn,sepp,l +

µa(y,min(mact
a ,Ml − 1)) · bctn,sepp,l

)
+

∑
p∈P|a∈p

∑
l∈L

µa(y,Dt(p)) · (bborn,demp,l + bctn,demp,l ) ≥ µa(y,mact
a ) (4.19)

Proof. Note that for any arc a ∈ A, the terms of (4.4) can be upper-bounded

thanks to constraints (4.5) and (4.18). This gives
∑
p∈P|a∈p

∑
l∈LMl ·bborn,sepp,l +

(Ml−1) ·bctn,sepp,l +
∑
p∈P|a∈p

∑
l∈LDt(p) ·(bborn,demp,l +bctn,demp,l ) ≥ mact

a . Besides,

we can note that the coefficients of the left hand side larger than mact
a can be

lowered to mact
a , the inequation defines the same set of integer solutions.

This gives
∑
p∈P|a∈p

∑
l∈Lmin(Ml,m

act
a ) · bborn,sepp,l + min(Ml − 1,mact

a ) ·
bctn,sepp,l +

∑
p∈P|a∈p

∑
l∈LDt(p) · (bborn,demp,l + bctn,demp,l ) ≥ mact

a .

Dividing by some y ∈ R and applying mixed integer rounding such as in [9],
gives the result. �

Let us consider i ∈ V ∗, and let us define, for n ∈ {1, .., |Γ+(i)|}, ηi,n =
min

{∑
j∈J m

act
(i,j)|J ⊆ Γ+(i), |J | = n

}
. Intuitively, if a node i ∈ V ∗ is of

outgoing degree d, then either there are at least d cables upstream of i, or new
cables are created. If new cables are created, then they must be able to hold
the number of active modules of at least the outgoing arcs of i with the smallest
number of active modules. This enables us to give a lower bound for the number
of welds to be performed, expressed in the inequalities below.

Proposition 4.2.13 The following constraints are valid inequalities for the FC-
NDA problem

∀i ∈ V ∗,
∑

p∈P|i∈p\{s(p),t(p)}

∑
l∈L

(bborn,sepp,l + bborn,demp,l + bctn,sepp,l + bctn,demp,l )

+
∑

p∈P|s(p)=i

∑
l∈L

(bctn,sepp,l + bctn,demp,l )

+
∑

n∈{1,..,|Γ+(i)|}

∑
m∈ML|m≥ηi,n

wi,m ≥ |Γ+(i)| (4.20)

Proof. Let us consider i ∈ V ∗. In the case
∑

p∈P|i∈p\{s(p),t(p)}

∑
l∈L

(bborn,sepp,l +

bborn,demp,l + bctn,sepp,l + bctn,demp,l ) ≥ |Γ+(i)|, the inequality is immediate.

Let us assume
∑

p∈P|i∈p\{s(p),t(p)}

∑
l∈L

(bborn,sepp,l +bborn,demp,l +bctn,sepp,l +bctn,demp,l ) =

n0 < |Γ+(i)| (there are not as many cables going through i unchanged than arcs
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going out of i). This implies there are cables created in i.
- If the new cables are created out of a tapping. First of all, it means∑
p∈P|s(p)=i

∑
l∈L

(bctn,sepp,l + bctn,demp,l ) = 1. Besides, one cable created in i can be the

continuation of a tapped cable. The other ones cover the remaining |Γ+(i)| −
n0 − 1 arcs. The sum of their number of active modules must hence be at least
ηi,|Γ+(i)|−n0−1. So since these are all born cables, by (4.9), this implies ∃m0 ≥
ηi,|Γ+(i)|−n0−1, wi,m0 = 1. Let us consider the term

∑
n∈{1,..,|Γ+(i)|}

∑
m∈ML|m≥ηi,n

wi,m.

For n ∈ {1, .., |Γ+(i)| − n0 − 1}, m0 ≥ ηi,n, so
∑

m∈ML|m≥ηi,n
wi,m = 1. Hence,

by summing all these terms,
∑

n∈{1,..,|Γ+(i)|}

∑
m∈ML|m≥ηi,n

wi,m ≥ |Γ+(i)|−n0− 1,

and the inequality holds.
- If the cables are created out of a splicing, then born cables cover the remaining
|Γ+(i)| − n0 arcs. The sum of their number of active modules must hence be at
least ηi,|Γ+(i)|−n0

. So by (4.9), this implies ∃m0 ≥ ηi,n, wi,m0
= 1. With a rea-

soning similar to the previous case, it means
∑

n∈{1,..,|Γ+(i)|}

∑
m∈ML|m≥ηi,n

wi,m ≥

|Γ+(i)| − n0, and the inequality holds. �

The following proposition asserts that in any separation point of a no-
demand node, at least two cables are created (born or continuing a tapped
cable), and the created cables cannot be larger than the separated one.

Proposition 4.2.14 Every optimal solution of the FCNDA problem verifies

∀i ∈ VN ,∀l′ ∈ L,
∑

p∈P|s(p)=i

∑
l≤l′

(
bborn,sepp,l + bctn,sepp,l + bborn,demp,l + bctn,demp,l

)
≥

2 ·
∑

p∈P|t(p)=i

∑
l≤l′

(
bborn,sepp,l + bctn,sepp,l

)
(4.21)

A part of the proof shows that any separation point in which only one cable
is created can be replaced. The most complicated case is when a big cable is
spliced into a smaller cable. In that case, the smaller cable could have been
created upstream.

Proof. Let us consider, in an optimal solution S of the FCNDA problem,
i ∈ VN and l′ ∈ L. Let us assume that

∑
p∈P|s(p)=i

∑
l≤l′(b

born,sep
p,l + bctn,sepp,l +

bborn,demp,l + bctn,demp,l ) < 2
∑
p∈P|t(p)=i

∑
l≤l′(b

born,sep
p,l + bctn,sepp,l ). With (4.7), it

means
∑
p∈P|t(p)=i

∑
l≤l′(b

born,sep
p,l + bctn,sepp,l ) = 1, which implies∑

p∈P|s(p)=i
∑
l≤l′(b

born,sep
p,l + bctn,sepp,l + bborn,demp,l + bctn,demp,l ) =∑

p∈P|s(p)=i
∑
l≤l′(b

born,sep
p,l + bborn,demp,l ) = 1 (only one cable is created). Let

us note p2 ∈ P and l2 ∈ L the only couple such that s(p2) = i and bborn,sepp2,l2
+

bborn,demp2,l2
= 1. Let us note p1 ∈ P and l1 ∈ L the only couple such that t(p1) = i

and bborn,sepp1,l1
+ bctn,sepp1,l1

= 1, and p0 ∈ P the only path such that s(p0) = s(p1)
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and t(p0) = t(p2).
Let us assume l2 ≥ l1 (the created cable is at least as large as the separated
one). The number of active modules of the created cable is equal to the one of
the spliced cable. This splicing is then useless. So l2 < l1 (the created cable is
smaller than the separated one). The spliced cable is then the continuation of
a tapped cable. Otherwise, its number of active modules would be larger than
Ml2 + 1 (see (4.13)). So the cable on p1 is the continuation of a tapped cable.
Let us replace both cables by only one cable born in s(p0) lying on p0, of size
l2, having the same number of active modules. First, the cost of this cable is
less than the cost of the two previous ones. Moreover, the cost of the protective
box in i is saved. Finally, the welds performed in i are done in s(p0) instead.
Since PW is subadditive, the overall cost of welds is smaller. This leads to a
cheaper solution. Hence the result. �

Remark 4.2.3 This model can be modified to take into account duct capacities.
Indeed, for an arc (i, j) ∈ A and a given cable type l ∈ L, the number of cables of

type l going through (i, j) is given by
∑
p∈P|(i,j)∈p(b

born,sep
p,l +bborn,demp,l +bctn,sepp,l +

bctn,demp,l ). Hence, capacity constraints can be added to the model. For instance,
the simple case where all cables have the same diameter and one can install at
most n(i,j) cables along arc (i, j) can be implemented by adding the constraints

∀(i, j) ∈ A,
∑
l∈L

∑
p∈P|(i,j)∈p

(bborn,sepp,l + bborn,demp,l + bctn,sepp,l + bctn,demp,l ) ≤ n(i,j)

The next section introduces an arc-node model for the FCNDA.

4.3 Arc based integer programming formulation

The following model is the adaptation of the model from Section 3.1 where the
civil engineering graph is a tree. It is possible to exploit the properties of the
civil engineering arborescence, especially when introducing valid inequalities.

4.3.1 Notation

We introduce the following decision variables:

• ∀(i, j) ∈ A,∀l ∈ L,∀m ∈ Ml, ki,j,l,m ∈ {0, .., |VD|}: the number of cables
with Ml fiber modules from which m are active in (i, j).

• ∀i ∈ V ∗,∀l ∈ L,∀m ∈Ml, b
spl
i,l,m ∈ {0, 1}: the binary variable that is equal

to 1 iff we splice in node i a cable with Ml modules of fibers from which
m are active modules.

• ∀i ∈ V ∗,∀l ∈ L,∀m ∈ Ml, k
born
i,l,m ∈ {0, ..,ML}: the number of cables born

in node i having Ml modules of fibers from which m are active modules.
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• ∀i ∈ V ∗,∀l ∈ L,∀m ∈Ml, b
tap
i,l,m ∈ {0, 1}: the binary variable that is equal

to 1 iff we tap a cable in node i having Ml modules of fibers from which
m are active modules.

• ∀i ∈ V ∗,∀l ∈ L,∀m ∈ Ml, b
ctn
i,l,m ∈ {0, 1}: the binary variable equal to 1

iff the continuation of a tapped cable in node i has Ml modules of fibers
from which m are active modules.

• ∀i ∈ V ∗,∀m ∈ ML, wi,m ∈ {0, 1}: the binary variable that is equal to 1
iff m modules are weld in either a tapping or a splicing on node i.

• ∀i ∈ VD, ui ∈ {0, 1}: the binary variable that is equal to 1 iff i is served
in a module-served way.

For the sake of clarity, a description of a small cabling solution by the model is
given in Fig. 4.5.

4.3.2 Formulation

The fiber cable network design problem can be cast into an integer linear pro-
gram as follows:

min
∑

(i,j)∈A

∑
l∈L

∑
m∈Ml

Clel ·∆(i,j) · ki,j,l,m

+
∑
i∈V ∗

∑
m∈ML

PWm · wi,m

+
∑
i∈V ∗

∑
l∈L

∑
m∈Ml

PBl · (bspli,l,m + btapi,l,m) (4.22)

such that∑
l∈L

∑
m∈Ml

m · ki,j,l,m = mact
(i,j) ∀(i, j) ∈ A, (4.23)

∑
m∈Ml

btapi,l,m =
∑

1≤m≤Ml−1

bctni,l,m ∀i ∈ V ∗,∀l ∈ L,

(4.24)∑
l∈L

∑
m∈Ml

bspli,l,m + btapi,l,m ≤ 1 ∀i ∈ V ∗, (4.25)

∑
l∈L

∑
m∈Ml

m · kborni,l,m =
∑

m∈ML

m · wi,m ∀i ∈ V ∗, (4.26)

∑
m∈ML

wi,m ≤
∑
l∈L

∑
m∈Ml

(
bspli,l,m + btapi,l,m

)
∀i ∈ V ∗, (4.27)

kγ(i),i,l,m − bspli,l,m − b
tap
i,l,m =

∑
j∈Γ+(i)

ki,j,l,m − kborni,l,m − bctni,l,m

∀i ∈ VN ,∀l ∈ L,∀m ∈Ml, (4.28)
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kγ(i),i,l,m − bspli,l,m − b
tap
i,l,m =∑

j∈Γ+(i)

ki,j,l,m − kborni,l,m − bctni,l,m

∀i ∈ VD,∀l ∈ L,∀m ∈Ml such that m 6= Di, (4.29)

kγ(i),i,l,Di
− bspli,l,Di

− btapi,l,Di
≥∑

j∈Γ+(i)

ki,j,l,Di
− kborni,l,Di

− bctni,l,Di

∀i ∈ VD,∀l ∈ L such that Di ∈Ml, (4.30)∑
l∈L|Di∈Ml

(kγ(i),i,l,Di
− bspli,l,Di

− btapi,l,Di
) =

1− ui +
∑

l∈L|Di∈Ml

(
∑

j∈Γ+(i)

ki,j,l,Di
− kborni,l,Di

− bctni,l,Di
) ∀i ∈ VD, (4.31)

0 ≤
∑

(i,j)∈Γ+(i)

ki,j,l,m − kborni,l,m − bctni,l,m

∀i ∈ V ∗,∀l ∈ L,∀m ∈Ml, (4.32)

ki,j,l,m ∈ {0, .., |VD|}; kborni,l,m ∈ {0, ..,ML}
∀(i, j) ∈ A,∀i ∈ V ∗,∀l ∈ L,∀m ∈Ml,

btapi,l,m ∈ {0, 1}; b
spl
i,l,m ∈ {0, 1}; b

ctn
i,l,m ∈ {0, 1};wi,m ∈ {0, 1}

∀i ∈ V ∗,∀l ∈ L,∀m ∈Ml.

The cost function (4.22) is a combination of cable costs (first term), weld
costs (second term) and welding boxes costs (third term).

Equations (4.23) ensure, with the definition of mact, conservation of the
number of active modules at each node (they either leave the node or serve the
demand). Constraints (4.24) control the dimensioning of continued cables with
respect to the original tapped ones (it has the same size). Constraints (4.25)
ensure that at most one of the two operations of splicing and tapping can be
performed in each node. Constraints (4.26) and (4.27) ensure a proper counting
of the number of welds in each node, based on the number of active modules in
born cables.

Constraints (4.28) make sure that incoming cables of a no-demand node
which are neither tapped nor spliced are continued with the same size and
same number of active modules. The first term stands for the incoming cables,
minus the eventual separated cable, and the second term for the outgoing cables,
minus the eventual created ones. Together, (4.23) and (4.28) ensure module
conservation in splicing and tapping operations of no-demand nodes (see (4.33)).

Constraints (4.29), (4.30) and (4.31) are related to demand nodes. If the
number of active modules of a cable is not equal to the demand, the behaviour
of the cables is similar to the one of no-demand nodes: it is either spliced,
tapped or leaves the node. (4.30) expresses the fact that if the number of active
modules of a cable is equal to the demand, then, among the cables unaffected
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Figure 4.5: Arc model illustration on a small example; a tapping is permormed
in node 1

by tapping or splicing, there are always more cables incoming in the node than
outgoing. The ones unaffected by the demand or a tapping and splicing are
continued identically. Equations (4.31) ensure demand nodes are either served
by only one cable or by modules from a tapping/splicing operation, and that
this cable has the right number of active modules. Together, constraints (4.23),
(4.29) and (4.31) ensure module conservation in splicing and tapping operations
(see (4.34)).

In order to give more insight into on the validity of the models, we prove
in the following that the equations from the model imply the conservation of
active modules.

Proposition 4.3.1 Equations (4.23) to (4.32) imply the following

∀i ∈ VN ,
∑
l∈L

∑
m∈Ml

m · (btapi,l,m + bspli,l,m) =
∑
l∈L

∑
m∈Ml

m · (kborni,l,m + bctni,l,m)(4.33)

∀i ∈ VD,
∑
l∈L

∑
m∈Ml

m · (btapi,l,m + bspli,l,m) = Di · ui +
∑
l∈L

∑
m∈Ml

m · (kborni,l,m + bctni,l,m)(4.34)
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Proof. Multiplying (4.28) by m and summing gives

∀i ∈ VN ,
∑
l∈L

∑
m∈Ml

m · (kγ(i),i,l,m − btapi,l,m − b
spl
i,l,m) =

∑
l∈L

∑
m∈Ml

m · (
∑

j∈Γ+(i)

ki,j,l,m − kborni,l,m − bctni,l,m)

Then, using (4.23) and the fact that mact
(γ(i),i) =

∑
j∈Γ+(i)m

act
(i,j) gives (4.33).

Multiplying (4.29) and (4.31) by m and summing gives

∀i ∈ VD,
∑
l∈L

∑
m∈Ml

m · (kγ(i),i,l,m − btapi,l,m − b
spl
i,l,m) =

Di −Di · ui +
∑
l∈L

∑
m∈Ml

m · (
∑

j∈Γ+(i)

ki,j,l,m − kborni,l,m − bctni,l,m)

Then, using (4.23) and the fact that mact
(γ(i),i) = Di+

∑
j∈Γ+(i)m

act
(i,j) gives (4.34).

�

Equations (4.33) and (4.34) show that module conservation applies to splicing
and tapping operations, as specified in Section 2.1. Since with (4.25), at most
one cable is either spliced or tapped, active modules from a tapped or spliced
cable are used for created cables and an eventual module-served node. Apart
from module conservation, demand nodes need further explanation.
Let us focus on a node i ∈ VD where ui = 1. Then, (4.30) combined with (4.31)
become

∀l ∈ L such that Di ∈Ml, kγ(i),i,l,Di
− bspli,l,Di

− btapi,l,Di
=∑

j∈Γ+(i)

ki,j,l,Di
− kborni,l,Di

− bctni,l,Di

This induces that all cables unaffected by splicing or tapping operations are
unchanged in i (similarly to (4.28)).
Let us focus on a node i ∈ VD where ui = 0. Then, (4.30) combined with
(4.31) tell us that only one of the equations (4.30) has a strict inequality, with a
difference between left and right terms of 1. In other words, ∃l0 ∈ L|Di ∈ Ml0

such that

∀l ∈ L \ {l0}, kγ(i),i,l,Di
− bspli,l,Di

− btapi,l,Di
=

∑
j∈Γ+(i)

ki,j,l,Di − kborni,l,Di
− bctni,l,Di

kγ(i),i,l0,Di
− bspli,l0,Di

− btapi,l0,Di
= 1 +

∑
j∈Γ+(i)

ki,j,l0,Di − kborni,l0,Di
− bctni,l0,Di

This shows that the demand is served in a cable served way by a cable of size
l0. All other cables unaffected by tapping or splicing operations are continued
with the same size and same number of active modules.
Finally, constraints (4.32) make sure that if a cable is created in a node, there is
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indeed, a cable of the same size and same number of active modules going out
of this node. Combined with (4.28) and (4.30), it also ensures that if a cable
is separated in a node, then there is an incoming cable with the same size and
number of active modules.

Remark 4.3.1 Introducing notation Nml =
∑
l∈LMl, this model holds (|V | −

1)(3Nml + ML) + |VD| boolean variables, (|V | − 1 + |E|)Nml integer variables
and (|V | − 1)(5 + 2Nml + L) + |VD|(Nml + 1) constraints. Compared to the
model of Section 4.2.2 ( (4.1) - (4.10)), it can hold either more or less variables,
depending on the values L, (Ml)l∈L and on G (see Table 4.2 and Remark 4.2.1).

4.3.3 Preprocessing

We can fix the value of some variables.
First of all, no cable holding only one active module can endure a separation.

Tapping of a cable holding one active module is useless. In the case of a splicing
operation, only one cable can be born, and must be strictly smaller. Such an
operation could be avoided by creating a smaller cable instead (see (4.21) and
its justification) in the upstream separation point. In other words, ∀i ∈ V ∗,∀l ∈
L, btapi,l,1 = bspli,l,1 = 0.

Notice that the feasibility of (4.23) implies that some variables are equal to
zero. This illustrates the fact that no cable can hold more active modules than
the arc it goes through.

∀(i, j) ∈ A,∀m ∈ML such that m > mact
(i,j),

∑
l∈L|m∈Ml

ki,j,l,m = 0

∀i ∈ V ∗,∀m ∈ML such that m > mact
(γ(i),i),

wi,m =
∑

l∈L|m∈Ml

bspli,l,m =
∑

l∈L|m∈Ml

btapi,l,m =
∑

l∈L|m∈Ml

bctni,l,m =
∑

l∈L|m∈Ml

kborni,l,m = 0

In any optimal solution, no cable begins with a size larger than what it needs
to hold its active modules. This can be written

∀l ∈ L,∀m ∈Ml−1,
∑

j∈Γ+(r)

kr,j,l,m = 0

(recall that r stands for the root node of the arborescence)

∀i ∈ V ∗,∀l ∈ L,∀m ∈Ml−1, k
born
i,l,m = 0

Similarly to the model of Section 4.2.2, a cable will hold a number of ac-
tive modules equal to the sum of a subset of the demands in the underlying
arborescence. Recall from Section 4.2.3 that ∀i ∈ V, V ari denotes the arbores-
cence rooted in i, i excluded, and PM(i) = {

∑
j∈J Dj |J ⊆ V ari }. Let us note

PM ′(i) = {
∑
j∈J Dj |J ⊆ (V ari ∪ {i})}. A cable going through any arc (i, j)

must hold a number of active modules which is a sum of some demands from
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nodes located in the arborescence rooted in j, j included. This leads to the
following simplifications:

∀i ∈ V ∗,∀m ∈ML \ PM(i), wi,m = 0

∀i ∈ V ∗,∀l ∈ L,∀m ∈Ml \ (∪j∈Γ+(i)PM
′(j)), bctni,l,m = kborni,l,m = 0

∀i ∈ V ∗,∀l ∈ L,∀m ∈Ml \ PM ′(i), btapi,l,m = bspli,l,m = 0

∀(i, j) ∈ A,∀l ∈ L,∀m ∈Ml \ PM ′(j), ki,j,l,m = 0

4.3.4 Valid inequalities

Valid inequalities are added to tighten the relaxation of the model of Sec-
tion 4.3.2.

Let us consider tapping operations in an optimal solutions. The continuation
of a tapped cable always has strictly less active modules than the tapped cable.
This gives us the following proposition.

Proposition 4.3.2 Every optimal solution of the FCNDA problem verifies

∀i ∈ V ∗,∀l ∈ L,∀m′ ∈Ml \ {1},
∑

m∈{1,..,m′−1}

bctni,l,m ≥
∑

m∈{1,..,m′}

btapi,l,m (4.35)

The proposition below asserts the simultaneous appearance of tapping and
splicing operations with welds in no-demand nodes. Its meaning is similar to
(4.14).

Proposition 4.3.3 The following equalities are valid for the FCNDA problem

∀i ∈ VN ,
∑
l∈L

∑
m∈Ml

bspli,l,m + btapi,l,m =
∑

m∈ML

wi,m (4.36)

If a cable holding m′ active modules is tapped, there is at least 1 and at
most m′ − 1 welds. If a cable holding m ∈ {1, ..,m′ − 1} modules is spliced in
a no-demand node, then all its active modules are used to create born cables,
and m welds are performed, leading to the following proposition.

Proposition 4.3.4 The following constraints are valid inequalities for the FC-
NDA problem

∀i ∈ VN ,∀m′ ∈ML,
∑

l∈L|m′∈Ml

btapi,l,m′ +

∑
m∈{1,..,m′−1}

∑
l∈L|m∈Ml

bspli,l,m ≤
∑

m∈{1,..,m′−1}

wi,m (4.37)

For any i ∈ V ∗ and n ∈ {1, .., |Γ+(i)|}, let ηi,n be min{
∑
j∈J m

act
(i,j)|J ⊆

Γ+(i), |J | = n} (see (4.20)). The following constraints express the fact that if
there are not enough cables coming to a node to have one for each outgoing arc,
then there must be a separation operation in this node. Its meaning is similar
to (4.20).
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Proposition 4.3.5 The following constraints are valid inequalities for the FC-
NDA problem

∀i ∈ VN ,
∑
l∈L

∑
m∈Ml

kγ(i),i,l,m −
∑
l∈L

∑
m∈Ml

bspli,l,m

+
∑

n∈{1,..,|Γ+(i)|}

∑
m∈ML|m≥ηi,n

wi,m ≥ |Γ+(i)| (4.38)

∀i ∈ VD,
∑
l∈L

∑
m∈Ml

kγ(i),i,l,m −
∑
l∈L

∑
m∈Ml

bspli,l,m

+
∑

n∈{1,..,|Γ+(i)|}

∑
m∈ML|m≥ηi,n

wi,m ≥ |Γ+(i)|+ 1− ui (4.39)

Proof. Let us consider i ∈ VN .
Let us start with the case where

∑
l∈L
∑
m∈Ml

bspli,l,m+btapi,l,m = 0 (there is no
separation point in i). Then, the cables going through α(i) are exactly the cables
going through i without enduring any operation in i. So using the variables
of Section 4.2.1 we have

∑
l∈L

∑
p∈P|i∈p\{s(p),t(p)}

(bborn,sepp,l + bborn,demp,l + bctn,sepp,l +

bctn,demp,l ) =
∑
l∈L
∑
m∈Ml

kγ(i),i,l,m and
∑
p∈P|s(p)=i

∑
l∈L(bctn,sepp,l +bctn,demp,l ) =

0. With (4.20), we have the result.
Let us consider the case where there is a splicing in i, which gives∑

l∈L

∑
m∈Ml

bspli,l,m = 1. The cables going through α(i) are the cables going through i

without enduring any operation in i and the cable spliced in i. So using the vari-
ables of Section 4.2.1 gives

∑
l∈L

∑
p∈P|i∈p\{s(p),t(p)}

(bborn,sepp,l + bborn,demp,l + bctn,sepp,l +

bctn,demp,l ) =
∑
l∈L

∑
m∈Ml

kγ(i),i,l,m−
∑
l∈L

∑
m∈Ml

bspli,l,m and
∑
p∈P|s(p)=i

∑
l∈L(bctn,sepp,l +

bctn,demp,l ) = 0. By (4.20), we have the result.
Let us consider the case where there is a tapping in i, which gives∑

l∈L

∑
m∈Ml

btapi,l,m = 1. The cables going through α(i) are the cables going through

i without enduring any operation in i and the cable tapped in i. Besides,
the continuation of this tapped cable leaves the node i, which gives, with the
variables of Section 4.2.1,

∑
p∈P|s(p)=i

∑
l∈L

(bctn,sepp,l + bctn,demp,l ) = 1.

So
∑
l∈L

∑
p∈P|i∈p\{s(p),t(p)}

(bborn,sepp,l + bborn,demp,l + bctn,sepp,l + bctn,demp,l )

+
∑

p∈P|s(p)=i

∑
l∈L

(bctn,sepp,l + bctn,demp,l ) =
∑
l∈L

∑
m∈Ml

kγ(i),i,l,m. With (4.20), we have

the result.
The case where i ∈ VD can be proved in a similar way. If ui = 1, then the

node is module-served and the equations related to it are similar. Otherwise,
one of the cables going through α(i) is used to serve the demand. �

What follows states that in any optimal solution, at least two cables are
created in a separation point of a no-demand node. Furthermore, these cables
always have less active modules. It is somehow similar to (4.21).
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Proposition 4.3.6 Every optimal solution of the FCNDA problem verifies

∀i ∈ VN ,∀m′ ∈ML,
∑
l∈L

∑
m∈{1,..,min(m′,Ml)}

kborni,l,m + bctni,l,m ≥

2
∑
l∈L

∑
m∈{1,..,min(m′,Ml)}

btapi,l,m + bspli,l,m (4.40)

Proof. Let us consider i ∈ VN and an optimal solution of the FCNDA prob-
lem. In the case

∑
l∈L
∑
m∈Ml

btapi,l,m + bspli,l,m = 0 (no cable is separated in
i), the inequalities are immediate. Otherwise, by (4.25), we have a unique

m0 for which
∑
l∈L|Ml≥m0

btapi,l,m0
+ bspli,l,m0

= 1 (there is a separated cable of

size m0). Furthermore, at least two cables must be created in a separation
point in i (see (4.21) with l′ = L). So we have

∑
l∈L
∑
m∈Ml

kborni,l,m + bctni,l,m ≥
2
∑
l∈L
∑
m∈Ml

btapi,l,m+bspli,l,m = 1. Besides, with active module conservation, the
created cables have less modules than the separated cable. So for any m′ < m0,∑
l∈L
∑
m∈{1,..,min(m′,Ml)}(b

tap
i,l,m + bspli,l,m) = 0 and we have (4.40).

And for m′ ≥ m0, we have∑
l∈L
∑
m∈{1,..,min(m′,Ml)} k

born
i,l,m + bctni,l,m ≥ 2, which gives (4.40). Hence the re-

sult. �

The following proposition asserts that in any optimal solution, at least two
cables are created in a separation point of a cable-served demand node.

Proposition 4.3.7 Every optimal solution of the FCNDA problem verifies

∀i ∈ VD,∀m′ ∈ML, ui +
∑
l∈L

∑
m∈{1,..,min(m′,Ml)}

kborni,l,m + bctni,l,m ≥

2
∑
l∈L

∑
m∈{1,..,min(m′,Ml)}

btapi,l,m + bspli,l,m (4.41)

Proof. Let us consider in an optimal solution S a node i ∈ VD, and m′ ∈ML.
If ui = 0, the equations describing this node are similar to those describing
no-demand nodes, and we get the result by (4.40).
If ui = 1, let us assume that ui +

∑
l∈L
∑
m∈{1,..,min(m′,Ml)} k

born
i,l,m + bctni,l,m <

2
∑
l∈L
∑
m∈{1,..,min(m′,Ml)} b

tap
i,l,m + bspli,l,m.

This means
∑
l∈L
∑
m∈{1,..,min(m′,Ml)} k

born
i,l,m + bctni,l,m = 0 and∑

l∈L
∑
m∈{1,..,min(m′,Ml)} b

tap
i,l,m+ bspli,l,m = 1 (there is a separation point without

any created cable, only used for serving the demand in i in a module-served
way). Then, the solution S′ identical to S everywhere except for u′i = 0 and

∀l ∈ L,∀m ∈ Ml, b
′spl
i,l,m = b

′tap
i,l,m = 0 is cheaper and feasible, which contradicts

our hypothesis. Hence the result. �

Let us introduce mixed integer rounding cuts. Let us consider (i, j) ∈ A.

Similarly to (4.19), let R be the function defined on R2
>0 by R(α, β) = β−α·

⌊
β
α

⌋
,

the remainder of the division of β by α. Let µ(i,j) be the function defined on

R2
>0 by µ(i,j)(α, β) = R(α, β) ·

⌊
β
α

⌋
+ min(R(α, β), R(α,mact

(i,j))).
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Proposition 4.3.8 The following constraints are valid inequalities for the FC-
NDA problem

∀(i, j) ∈ A,
∑
l∈L

µi,j(y,m) · ki,j,l,m ≥ µi,j(y,mact
(i,j)) (4.42)

Proof. Dividing (4.23) by some y ∈ R and applying mixed integer rounding
such as in [9] gives the result. �

Remark 4.3.2 This model can be adapted to integrate duct capacities. This can
be done similarly to the ILP of Section 4.2.2: the number of cables of a given
size l ∈ L going through a given duct (i, j) ∈ A is equal to

∑
m∈Ml

ki,j,l,m.

4.4 Computational results

4.4.1 Test description and setting

We assessed the models on real-life instances from the French cities of Arles
(denoted “Ar”), Carcassonne (“Ca”), Clermont-Ferrand (“Cl”) and Etrepilly
(“Et”). For each city, distribution zones are denoted with a “D” followed by its
index, and the transport zone is denoted with a “T” (transport and distribution
zones are illustrated in Fig. 2.1). Table 4.1 provides key features of the different
instances. The first column reports the number of paths of the civil engineering
arborescence, the second one the number of arcs, the third column (labeled “deg
3+”) stands for the number of nodes of degree 3 or more. The fourth column
displays the number of demand nodes, the fifth reports the total demand while
the last column provides the average distance from the root to demand points.

Distribution zones are to be covered with cables containing 6-fiber modules,
using cables of 1, 2, 4, 6, 8, 12, 18 or 24 modules, while transport zones are to
be covered with cables containing 12-fiber modules, using cables of 1, 2, 4, 8,
12, 16 or 20 modules. The costs used in this Section are real costs currently
charged to Orange by the subcontractors in charge of deploying the network.

The algorithm used to solve the ILP is the branch and bound from Cplex
version 12.6.0.0. in its default configuration, unless specified otherwise. The
experiments were run on a computer composed of 4 processors Intel Xeon of
CPU 5110 and clocked at 1.6 GHz each.

In the following, the expression “base path model” refers to the model from
Section 4.2.2 only including preprocessing of Section 4.2.3, while “enhanced
path model” refers to the one from Section 4.2.2 with the valid inequalities
from Section 4.2.4. Similarly, the expression “base arc-node model” refers to
the model from Section 4.3.2 including preprocessing from Section 4.3.3 while
“enhanced arc-node model” refers to the one from Section 4.3.2 with all valid
inequalities from Section 4.3.4.

This Section is organized as follows. A benchmark for performances is in-
troduced in Section 4.4.2. Base models are compared in Section 4.4.2, while
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Table 4.1: key features of the instances

instance features

number
of paths

number
of arcs

deg 3+
number of
demand
nodes

total
demand

average
distance (m)

Et D 1 1776 153 30 48 67 1366.7

Et D 2 1762 124 28 39 56 2961.9

Et D 3 4590 196 36 50 63 3259.0

Or D 1 1284 181 39 57 75 275.2

Or D 2 885 123 22 41 62 366.4

Or D 3 1456 152 38 52 66 447.7

Or D 4 856 94 20 29 56 296.5

Or D 5 820 109 24 38 64 248.5

Or D 6 1409 172 37 57 76 432.1

Or D 7 1389 146 33 43 65 277.6

Ar D 1 1180 113 35 45 61 325.0

Ar D 2 979 103 29 38 55 602.1

Ar D 3 1299 103 21 35 66 368.8

Ar D 4 1256 123 26 43 80 276.3

Ar D 5 1037 129 25 44 68 242.8

Ar D 6 1453 137 28 43 67 358.6

Ar D 7 3017 139 26 35 68 587.9

Ar D 8 1732 163 30 41 63 691.2

Ar D 9 3273 219 53 68 78 1384.7

Ar T 2673 204 54 65 65 1505.7

Or T 4079 289 81 95 95 1264.7

Et T 1605 110 30 35 35 3137.3

Ca T 4091 283 75 88 88 1999.7

enhanced models are assessed in Section 4.4.2. The optimal solution character-
istics are discussed in Section 4.4.3 from an operational point of view. Possible
restrictions of the problem are considered in Section 4.4.4.

4.4.2 Model comparison

Table 4.2 reports the number of variables, constraints and valid inequalities of
each model. The numbers of valid inequalities mentioned includes all families
from Section 4.2.4 (in column “path model”) and from Section 4.3.4 (in column
“arc model”).

The number of variables for both models is quite similar, the path model
having more variables in most of the cases (17 instances over 23). Note that
instances with significantly more paths than arcs have significantly more vari-
ables for the path model. The path model has less constraints than the arc-node
model in all instances.
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Table 4.2: key features of the models

instance variables constraints
valid
inequalities

arc
model

path
model

arc
model

path
model

arc
model

path
model

Et D 1 21135 32333 29565 5508 39777 8610

Et D 2 21238 32623 23665 5087 31769 7834

Et D 3 31893 82749 36400 11630 50060 16019

Or D 1 18385 23122 34487 4845 46278 8034

Or D 2 13937 16212 23328 3299 31019 5583

Or D 3 19105 27096 29054 4812 38510 7692

Or D 4 13484 15498 18341 2929 24766 4794

Or D 5 12705 14965 21307 3034 28259 5060

Or D 6 16783 25566 33020 4987 44021 8120

Or D 7 16829 24914 27229 4585 36777 7336

Ar D 1 19596 22323 23958 3917 31489 6360

Ar D 2 45052 18325 33695 4264 47248 7517

Ar D 3 23920 23649 23361 4157 31762 6893

Ar D 4 16206 22947 23480 4043 31011 6729

Ar D 5 17936 18994 25838 3774 34516 6348

Ar D 6 27727 26295 30489 4953 41773 8055

Ar D 7 57101 53969 39824 8805 57043 13758

Ar D 8 49316 30683 42562 6409 60552 10658

Ar D 9 77701 60753 62544 10838 88031 17123

Ar T 19124 43193 32312 7655 43064 11068

Or T 27764 66253 45962 11432 60997 16391

Et T 11416 25981 17420 4455 23220 6347

Ca T 25893 65938 44686 11383 59745 16218

Greedy algorithm

As a benchmark, a greedy algorithm providing a sub-optimal solution is pro-
posed, in which all the demand nodes are cable-served (cf Fig. 2.5), and no
separation points are considered (cf Fig. 2.3). The size of the cable serving each
demand node is then the smallest one that is greater than the demand. The only
computation effort consists in computing, for each i ∈ VD, min{l ∈ L|Ml ≥ Di}.

Base models

For computational tests on both base models, a limit on the computation time
was set at 600 seconds. Table 4.3 reports the results obtained with the path
and arc-node base models (the column “solution” reports the value of the best
solution found), as well as the greedy solution without separation described
above (in the column labeled “greedy solution”). As performance indicators,
we report the ratio between the initial relaxation and the optimal solution (in
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the column labeled “relaxation”; the optimal solution is displayed in Table 4.4),
the computation time (“time”), the number of branches explored during the
branch-and-bound process (“branch”), the final gap (“final gap”), and the time
spent until the appearance of the first integer solution (“time to first integer”).
Since the greedy solution is computed in a very short time (less than a second
for all instances), the associated computation time is not reported.

The best solutions found with the base models are on average roughly 25 %
cheaper than the greedy solutions. This shows that allowing tapping and splicing
operations enables much savings. Besides, note that the cost of a greedy solution
grows with respect to the average root to demand points distance. This is due
to the fact that their cost is composed only of cable deployment cost, which
grows linearly with the length of the cables.

Comparing base model performances, the main observation is that the arc-
node model was overall more efficient. It was able to solve 22 instances out of
23 optimally within the time limit, while the base path model was able to solve
only 3 of them. In addition, the best solution found by the arc-node model was
always better than the one given by the path model.

As for the resolution process, we provide insight on the better performances
of the base arc-node model. Its initial relaxation was always better than the
one of the base path model. There is a significantly larger number of nodes in
the branch and bound procedure for the path model compared to the arc-node
model (on average about 7 times less for the arc-node model), which explains
the larger computation times. This can be seen as a consequence of the smaller
value of the relaxation. On a side note, the first integer solution appeared on
average 1 second into the resolution process in the path model, while it took on
average 10 seconds with the arc-node model.

Enhanced models

For computational tests with the enhanced model, no time limit was set. We
tried different ways of including the valid inequalities into the solving process by
cutting planes. With the exception of mixed integer cuts, including all families
completely at the beginning of the branch-and-bound turned out to be the most
efficient method. One possible explanation is that the relaxation of the base
models was too weak, especially for the path model. Since the number of valid
inequalities is not huge, adding them at the root turns out to be a reasonable
strategy. Regarding Mixed Integer Rounding cuts (4.19) and (4.42), for an arc

a ∈ A, we picked cuts with values of y in { mact
a

n+0.001 |n ∈ {1, ..,m
act
a }}. These

values are chosen to be the smallest values of y for a given constant right hand
side. The ones which increase the initial relaxation were added at the root of
the Branch-and-Bound algorithm (after the initial relaxation is computed, the
violated cuts are added). The left part of Table 4.4 displays the results obtained
with the valid inequalities. The indicators are denoted in the same way than
in Table 4.3. The final gap being always equal to zero, it is not reported. The
optimal solution is displayed separately and the times of appearance of the first
integer solutions are not reported.
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Both enhanced models solved all instances to optimality. The enhanced
arc-node model proved faster on 18 of our 23 instances, solving instances in
26 seconds on average, while the enhanced path model needed on average 54
seconds. This was partly due to the number of explored branches during the
branch-and-bound process, with an average around 1400 for the arc-node model
and around 4500 for the path model. Compared to the base models, the valid
inequalities were more beneficial to the path model, since the initial relaxation
to optimal solution ratio jumped from 55.7 % to 98.0 %, while the average
improvement for the arc-node was about 2.5 %, with an initial relaxation to
optimal solution ratio of 97.3 %. One can explain this by the fact that the base
arc-node model relaxation was already tight.

Table 4.4: Results of enhanced models

instance arc-node model path model
relaxation
(%)

time
(s)

branch
relaxation
(%)

time
(s)

branch

Et D 1 97.2 10 120 98.1 16 3851

Et D 2 98.4 5 0 99.8 8 922

Et D 3 96.2 13 0 98.6 56 4677

Or D 1 97.0 4 0 97.8 4 0

Or D 2 97.8 3 0 99.3 1 0

Or D 3 95.2 21 1244 95.4 105 15 179

Or D 4 97.0 4 0 97.4 6 330

Or D 5 98.4 3 0 98.8 4 236

Or D 6 96.3 23 3924 96.2 47 8537

Or D 7 96.9 9 79 98.9 9 535

Ar D 1 96.9 15 816 96.6 22 2873

Ar D 2 97.2 16 773 99.9 16 4556

Ar D 3 95.2 102 4986 94.8 147 16 157

Ar D 4 95.0 63 8797 95.7 25 5250

Ar D 5 98.2 10 83 98.4 2 0

Ar D 6 96.8 20 2357 98.0 11 1313

Ar D 7 95.5 198 9506 96.4 414 30 041

Ar D 8 98.3 5 0 99.5 6 0

Ar D 9 95.9 18 0 98.3 336 10 628

Ar T 99.7 1 0 99.8 1 0

Or T 99.4 3 0 99.6 2 0

Et T 99.9 1 0 99.9 1 0

Ca T 99.3 2 0 99.3 6 0

The average influence of each family of valid inequalities considered individ-
ually is displayed in Table 4.5. For any family of valid inequalities, let us note
”B1R” the value of the initial relaxation of the base model to which we add only
this family, ”BMR” the value of the initial relaxation of the base model, ”EMR”
the value of the initial relaxation of the enhanced model, ”E1R” the value of
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the initial relaxation of the enhanced model from which we remove this family,
and ”OS” the optimal solution. For each reinforcement, the value displayed in
the line labeled ”gap closure base model” is B1R-BMR

OS - BMR : it displays the influence
of this reinforcement alone compared to the base model. The value displayed
in the line labelled ”gap closure enhanced model” is EMR - E1R

OS - EMR : it displays the
influence of this reinforcement alone compared to the enhanced model. Valid
inequalities (4.38) and (4.39), as well as (4.40) and (4.41), are displayed together
due to their similar meaning.

Table 4.5: Influence of the different families of valid inequalities

path model

valid inequality (4.11) (4.12) (4.13) (4.14) (4.15) (4.16)
gap closure
base model
(%)

37.1 63.0 42.2 35.8 35.6 35.6

gap closure
enhanced
model (%)

32.4 33.3 32.0 32.0 31.5 51.0

valid inequality (4.17) (4.19) (4.20) (4.21)
gap closure
base model
(%)

36.0 45.6 38.7 35.6

gap closure
enhanced
model (%)

33.2 72.2 40.6 31.9

arc-node model

valid inequality (4.35) (4.36) (4.37) (4.38), (4.39) (4.40), (4.41) (4.42)
gap closure
base model
(%)

25.8 2.6 13.7 15.2 5.8 50.5

gap closure
enhanced
model (%)

28.5 5.2 0.6 5.1 3.0 50.3

All families of valid inequalities have some impact on the initial relaxation.
Besides, none is completely dominated by the others combined, as shown by the
gap closure to the enhanced model. Note that mixed integer rounding inequal-
ities (families (4.19) and (4.42)) have the biggest influence on the relaxation
for both models. Valid inequalities related to the path model have much more
effect than the ones related to the arc-node model. This was expected, since
the initial relaxation of the base arc-node model was already tighter than the
one of the base path model.
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Sensitivity to the number of cables

The number of variables of each model depends directly on the cable sizes con-
sidered. To highlight the impact of those parameters on the enhanced models,
we introduced new cable sizes of 30, 36, 42 and 48 modules for the distribution
zones, and new cable sizes of 24, 28, 32 and 40 modules for the transport zones.
The results are displayed in Table 4.6.

The initial relaxation for both models stayed in the same range than for the
8 cables data, with an average of 98.1 % for the path model, and of 97.4 %
for the arc-node model. This ratio was larger for the path model for 21 of our
instances. Furthermore, the path model was faster for 20 instances out of 23,
with an average computation time of 57 seconds, while the average computation
time of the arc-node model was 88 seconds.

One can assume this tendency is due to the variation of the number of
variables with respect to cable sizes. For the path model, this number grows
affinely with the number of cable sizes (L, see Section 4.2.1), while for the arc-
node model, this number grows linearly with the sum of cable sizes (

∑
l∈LMl,

see Section 4.3.2). This suggests that with a lot of different available cables, one
should favor the path approach.
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Table 4.6: Performance of enhanced models with 4 additional cable types

path model arc node model

instance relaxation time branches relaxation time branches

Et D 1 97.9 24 4688 97.1 24 144

Et D 2 99.8 7 447 98.4 15 0

Et D 3 98.9 121 8618 98.1 44 1795

Or D 1 97.8 5 0 97.0 13 0

Or D 2 99.3 1 0 97.8 9 0

Or D 3 95.8 81 7472 95.2 66 3410

Or D 4 97.5 6 315 97.0 9 0

Or D 5 99.1 5 135 98.4 12 0

Or D 6 95.9 21 5269 96.5 103 9279

Or D 7 98.8 10 649 96.9 19 0

Ar D 1 96.1 36 5121 96.7 61 3371

Ar D 2 97.1 48 6918 96.8 60 3593

Ar D 3 94.0 59 3168 93.6 416 5744

Ar D 4 97.1 9 0 97.5 259 3593

Ar D 5 98.8 2 0 98.2 11 0

Ar D 6 97.7 14 1267 96.5 45 3917

Ar D 7 97.5 608 21 703 95.4 758 9819

Ar D 8 99.4 8 0 98.3 17 0

Ar D 9 99.3 234 8173 98.2 46 0

Ar T 99.8 2 0 99.7 6 0

Or T 99.5 5 0 99.4 10 0

Et T 99.9 1 0 99.9 3 0

Ca T 99.3 7 0 99.3 10 0

Sensitivity to the demand

To assess the influence of the number of demand nodes, we built fictive instances
based on the civil engineering structure of Orvault distribution instances (la-
belled ”Or D”), on which a demand of 1 active module has been added at some
nodes previously without demand. The number of demand nodes added is a
percentage of the existing number of demand nodes. The results related to the
average computation time are displayed in Figure 4.6.

The impact on the computation time is significant, the computation times
for of the arc-node and path models being multiplied respectively by more than
30 and 6. For the arc-node model, the computation time grows from 10 seconds
(reached with no fictive demand nodes) to 357 seconds (with 90% additional
demand nodes). Regarding the path model, the computation time grows from
54 seconds (reached with no fictive demand nodes) to 249 seconds (with 90%
additional demand nodes).

This significant growth can be explained for the arc-node model by the addi-
tional variable u which is defined on demand nodes, as well as the relative sim-
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Figure 4.6: Evolution of the average computation time with respect to the
number of demand nodes on fictive instances

plicity of equations (4.28) for no-demand nodes compared to equations (4.29),
(4.30) and (4.31) for nodes with demand. As for the path model, it can be
explained by a larger number of variables on nodes with demand. Indeed, for
a demand node i and a path p finishing in i (t(p) = i), for l ∈ L, we define

variables bborn,demp,l and bctn,demp,l describing a cable serving the demand. These
are not defined on a no-demand node.

4.4.3 Optimal design characteristics and operational rec-
ommendations

Table 4.7 reports some characteristics of the optimal designs. To gain insight
in the structure of optimal deployments, we choose to display the number of
splicing and tapping points, the number of separation points located on nodes
of degree 3 or more (column “separation in deg 3+”), the number of cables
going out of the root, and the percentages of cable deployment and separation
costs (cable separation cost being the addition of boxes and welds costs).
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Table 4.7: Solutions features

instance
splicing
points

tapping
points

separation
in deg 3+

cables at
the root

cable
deployment
cost

cable
separation
cost

Et D 1 0 13 13 14 87.5 12.5

Et D 2 1 7 8 3 91.7 8.3

Et D 3 1 16 17 11 92.7 7.3

Or D 1 0 9 9 30 83.2 16.8

Or D 2 0 9 9 17 80.0 20.0

Or D 3 0 14 14 18 78.0 22.0

Or D 4 0 7 7 9 80.4 19.6

Or D 5 0 5 5 19 81.7 18.3

Or D 6 1 10 10 13 76.5 23.5

Or D 7 0 9 9 23 82.5 17.5

Ar D 1 0 8 8 10 74.9 25.1

Ar D 2 0 11 10 12 86.3 13.4

Ar D 3 0 4 4 7 73.6 16.4

Ar D 4 0 6 6 11 73.6 16.4

Ar D 5 0 5 5 21 77.1 22.9

Ar D 6 0 7 6 25 84.4 15.6

Ar D 7 0 9 9 4 75.4 24.6

Ar D 8 0 10 10 12 86.3 13.7

Ar D 9 1 24 25 5 82.9 17.1

Ar T 1 11 12 31 90.6 9.4

Or T 1 14 15 58 91.8 8.2

Et T 2 6 8 9 92.4 7.6

Ca T 4 17 21 40 92.0 8.0

First, note that despite inequality (4.16), which states that separation points
are performed rather in the last node of a series of adjacent degree 2 nodes with-
out demand, 1.2% of separation points are located in nodes of degree 2 without
demand. This illustrates the necessity of keeping such nodes. Theoretically it is
imposed by the engineering rule allowing at most one cable separation in a node.
However, this could be used for designing a presumably good quality heuristic
solution where no separation points would be allowed in nodes of degree 2. It
can be implemented by merging arcs of such series, thus reducing the problem
size.

On a different note, observe that 95% of the separation points of optimal
designs are tapping points. By comparing the instances for which splicing points
are chosen to the average root-demand distance (see Table 4.1), we can note that
the splicing is usually chosen for the instances where the demands are located
far away from the root. This illustrates the asymptotic behavior of the problem
regarding distances. For short distances, cables cost becomes negligible, and no
separation will be done. For long distances, welds costs become negligible, and
splicing operations will be chosen. This could be used to simplify the problem
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with small losses for short instances. Excluding the splicing option can ease
decision making while providing a solution close to optimal.

To get a deeper insight regarding solution shapes, the number of cables
coming out of the root node is worth being discussed for two main reasons.
First, it shows that despite the economy of scale of cable capacity, the optimal
solution is often far from using only the biggest cables available, even at the
root. Furthermore, it illustrates some diversity of the optimal design depending
on the instance.

As for cost sources, the most expensive part of the solutions is always the
cable deployment cost, which stands on average for 83 % of the total cost,
with some variation. Despite the fact that cable separation costs are relatively
low, the impact of separation techniques is quite high as already shown by the
greedy solution (cheapest solution obtained without separation). These obser-
vations should be useful to decision makers in charge of strategic choices prior
to the network design itself (choice of the subcontractor, cable and weld cost,
cable manufacturer, ...).

4.4.4 Restricted problem analysis

Section 4.4.3 suggests that a solution where only tapping is allowed would be
of good quality. We studied two restricted cases: when only tapping is allowed,
and when only splicing is allowed. The cheapest solution with only splicing can
be obtained by giving zero value to some variables:

• For the path model, ∀p ∈ P,∀l ∈ L, bctn,sepp,l = bctn,demp,l = 0;

∀p ∈ P,mctn,sep
p = 0

• For the arc-node model, ∀i ∈ V ∗,∀l ∈ L,∀Ml, b
tap
i,l,m = bctni,l,m = 0

The cheapest solution with only tapping allowed can be obtained as follows:

• For the path model, inequality (4.6) becomes

∀i ∈ V ∗,∀l ∈ L,
∑
p∈P|s(p)=i b

ctn,sep
p,l + bctn,demp,l =

∑
p∈P|t(p)=i b

born,sep
p,l +

bctn,sepp,l . It specifies that in every separation point there should be a con-
tinued cable, implying that this separation point is a tapping.

• For the arc-node model, one can give value 0 to the following variables
∀i ∈ V ∗,∀l ∈ L,∀m ∈Ml, b

spl
i,l,m = 0

All inequalities developed in Sections 4.2.4 and 4.3.4 are still valid for the
restricted problems. The results are displayed in Table 4.8.
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Table 4.8: Restricted problem solutions

instance only splicing allowed only tapping allowed
path
model
time (s)

arc-node
model
time (s)

solution
cost

path
model
time (s)

arc-node
model
time (s)

solution
cost

Et D 1 2 3 16 460.7 14 12 15 958.1

Et D 2 1 1 27 710.3 7 2 27 245.7

Et D 3 9 5 33 129.2 103 11 32 696.4

Or D 1 1 1 7003.8 5 3 6803.2

Or D 2 0 2 6748.6 1 2 6363.8

Or D 3 6 12 8541.3 72 15 7932.6

Or D 4 1 4 4138.8 7 3 3941.9

Or D 5 0 2 4459.9 4 3 4233.8

Or D 6 3 6 9318.1 17 16 9017.2

Or D 7 1 2 5577.0 9 5 5206.7

Ar D 1 2 7 6087.3 20 13 5738.2

Ar D 2 4 8 9869.0 14 10 9350.1

Ar D 3 3 4 6125.8 119 94 5965.3

Ar D 4 4 37 6461.9 20 50 5945.3

Ar D 5 0 2 5081.8 1 3 4860.2

Ar D 6 2 5 6544.2 11 14 6347.6

Ar D 7 8 7 8638.6 398 181 8295.9

Ar D 8 2 3 12 248.4 5 4 11 519.7

Ar D 9 42 21 24 422.8 249 12 23 112.5

Ar T 1 3 79 288.2 2 10 78 116.7

Or T 2 7 99 450.6 3 12 98 373.3

Et T 1 3 80 602.2 1 5 80 239.3

Ca T 3 7 139 572.6 7 32 138 799.2

The cost of the solutions with only tapping was on average 0.2 % more
expensive than the optimal solution, while the cost of the solution with only
splicing was on average 4.2% more expensive than the optimal solution. It was
expected that the solution with only tapping would be of better quality than
the solution with only splicing (see column 2 and 3 of Table 4.7).

Let us focus on the computation time of the problem with only splicing. The
average time was of 7 seconds with the arc-node model, and 5 seconds for the
path model. These are significantly lower than the computation times of the
nominal (unconstrained, tapping and splicing allowed) problem, which were on
average of 26 and 54 seconds.

The computation times for the problem with only tapping was higher than
the computation time with only splicing: 24 seconds on average for the arc-node
model and 57 seconds on average for the path model. The difference between
the two models (path and arc-node) can be explained here by the difference
in the formulation simplifications: for the arc-node model, the restriction was
expressed by setting to zero some variables, which makes the computations

79



easier, while for the path model, the restriction was expressed by adding some
constraints. Moreover, compared to the nominal problem, the computation
times are comparable.

4.5 Conclusion

This chapter addresses the problem of fiber cables network design in tree shaped
infrastructures via integer linear programming methods. Two main models are
introduced, one of them is based on paths, while the other is based on arcs. The
problem is also proven to be NP-hard, and hard to approximate within a ratio
smaller than 3

2 .
The integer programming approaches proposed here are efficient enough to

solve real-life instances. Each model is enhanced thanks to valid inequalities.
The enhancements introduced sensitively improve the computational perfor-
mances.

Regarding cost savings, by introducing the possibility of doing some splicing
and tapping operations, one can save around 25% of the total cost. This is
comparable to the savings obtained with the FCND problem, for which more
possibilities were available.

The work done in this chapter will be the basis for the implementation of
a decision aid tool at Orange. Indeed, it allows significant cost savings, while
not being too time-expensive on real-life instances. Furthermore, additional
engineering rules can be added for both models if needed, such as duct capacities
for instance. This is especially true for the path-based formulation. However,
some operations effectively used by technicians are out of reach with this model.
The following chapter tackles backfeed, which is a possible operation not covered
by these formulations.
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Chapter 5

Backfeed in Fiber Cables
Network Design

Chapter Abstract

This chapter tackles the problem of Backfeed Fiber Cables Network Design
(BFCND). Recall that it can be stated as follows: given a civil engineering
arborescence, a root node, demand nodes, a set of available cables and the
associated costs, find the fiber cables network design with minimal cost, while
respecting the engineering rules listed in Section 2.1. At most one cable can
be spliced in a cabinet (no tapping is allowed). One full cable must serve each
demand (cable-served way only). Cables can be deployed on a path going partly
”upstream” the civil engineering structure.

An integer programming based solution is proposed, and some associated
valid inequalities are introduced in Section 5.1. The problem is proven to be
NP-hard in Section 5.2. The formulation is assessed on real-life instances in
Section 5.3.
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Hypothesis

An arborescence of the civil engineering structure is given, as well as demand
points, and the number of fiber modules to be brought at each demand. This
implies that the number of modules going through each duct is known. In this
problem, the only cable separation technique allowed is splicing. Furthermore,
all demand nodes are assumed to be cable-served leaf nodes.

We allow for the cables to be deployed upstream the civil engineering struc-
ture, which is referred to as ”backfeed” (see Fig. 5.1).

Figure 5.1: Illustration of backfeed

The maintenance constraint does not apply.

5.1 Integer Programming Formulation

5.1.1 Formulation

A non-oriented tree G = (V,E) describes the selected civil engineering structure
where V denotes the set of concrete rooms and E represents the set of ducts.
Let r be a pendant node representing the CO and let V ∗ = V \ r. The set of
oriented cable paths in G is denoted by P. Given any p ∈ P, s(p) ∈ V is the
origin node of p and t(p) ∈ V ∗ is its target node. VD ⊂ V ∗ denotes the set
of pendant vertices of G excluding r and VN = V ∗ \ VD. Each pendant node
i ∈ VD has a non-null demand Di.

The cables available are from a discrete set L = {1, .., L}, each cable type
being characterized by a number of modules Ml with l ∈ {1, .., L}. L is ordered
with respect to M , i.e. ∀(l, l′) ∈ L2, l ≤ l′ ⇐⇒ Ml ≤ Ml′ . The set of possible
numbers of active modules inside a cable of type l is denoted byMl = {1, ..,Ml}.
The cost for laying out a cable of size l ∈ L on path p ∈ P is Cp,l, while the
cost of a welding box of type l is PBl, and the cost for welding m modules is
PWm, all costs being strictly positive.

The decision variables of the model are described below:

• ∀p ∈ P,∀l ∈ L, bp,l is the binary variable equal to 1 iff there is a cable of
size l set in path p, born in s(p) and either spliced or serving a demand in
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t(p) (it is spliced if t(p) ∈ VN and serving a demand if t(p) ∈ VD). Recall
that s(p) can be equal to the root r.

• ∀p ∈ P,mp denotes the number of active modules of the cable laid out in
path p, born in s(p) and either spliced or serving a demand in t(p).

• ∀i ∈ VN ,∀m ∈ ML, wi,m is the binary variable equal to 1 iff there are m
modules to be weld in node i.

Figure 5.2: Illustration of the model on a small example. A cable is spliced in
node 1.

For the sake of clarity, the model is illustrated in figure 5.2. The BFCND
problem can be formulated as follows:

min
∑
p∈P

∑
l∈L Cp,l · bp,l +

∑
i∈VN

∑
m∈ML

PWm · wi,m
+
∑
p∈P|t(p)∈VN

∑
l∈L PBl · bp,l

such that

∀i ∈ VN ,
∑

p∈P|t(p)=i

∑
l∈L

bp,l ≤ 1 (5.1)

∀i ∈ VD, l1 = min{l ∈ L|Ml ≥ Di},
∑

p∈P|t(p)=i

bp,l1 = 1

∑
p∈P|t(p)=i

∑
l∈L\l1

bp,l = 0 (5.2)

∀p ∈ P|t(p) ∈ VD,mp = bp,l1 ·Di (5.3)

∀p ∈ P,
∑
l∈L

Ml · bp,l ≥ mp (5.4)

∀i ∈ VN ,
∑

p∈P|t(p)=i

mp =
∑

p∈P|s(p)=i

mp (5.5)

∀i ∈ VN ,
∑

m∈ML

m · wi,m =
∑

p∈P|i=s(p)

mp (5.6)
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∀i ∈ VN ,
∑

m∈ML

wi,m ≤ 1 (5.7)

The cost function is the sum of the cost of cable deployment, the cost of
welds, and the cost of protective boxes.

Equations (5.1) ensure that at most one cable is spliced in a no-demand
node. Constraints (5.2) ensure the demand is served by exactly one cable. The
size of this cable is known, it is the smallest size which can contain the demand.
Constraints (5.3) ensure that the cable serving the demand holds enough active
modules. (5.4) make sure that cables are large enough to hold their number
of active modules. Equations (5.5) ensure active modules conservation in a
splicing. Note that as long as (5.1) and (5.4) stand, then at most one of the
terms of the left side of (5.5) is non-null. Finally, (5.6) and (5.7) ensure the
number of welds to be done is properly counted.

5.1.2 Valid Inequalities

The equations below state that for a given number of active modules, the size
of a cable must be the smallest one able to hold as many active modules.

Proposition 5.1.1 Any optimal solution of the BFCND problem verifies

∀p ∈ P|t(p) ∈ VN ,mp ≥
∑
l∈L

bp,l +
∑
l∈L\1

Ml−1 · bp,l (5.8)

Proof. Let us assume that in an optimal solution S of the problem, ∃p ∈ P
such that t(p) ∈ VN ,∃l ∈ L,mp <

∑
l∈L bp,l +

∑
l∈L\1Ml−1 · bp,l. This implies∑

l∈L bp,l = 1, and we have mp ≤
∑
l∈L\1Ml−1 · bp,l. Let us consider the

solution S′ identical to S everywhere but in b′p,l = 0 and b′p,l−1 = 1. Then, the
only constraint where terms change from S to S′ is (5.4) in p, and we can see
that S′ is feasible. Since it is also cheaper, we have the result. �

These equations denote the simultaneous appearance of welds and splicing
points. Besides, they also take into account that in the splicing of a cable of
size l, there are at least Ml−1 + 1 and at most Ml welds.

Proposition 5.1.2 The following inequalities are valid for the BFCND problem

∀i ∈ VN ,∀l ∈ L,
∑

m∈Ml\Ml−1

wi,m =
∑

p∈P|t(p)=i

bp,l (5.9)

Proof. Let us consider an optimal solution S of the problem. Let us consider
i ∈ VN and l ∈ L. If

∑
p∈P|t(p)=i bp,l = 1, then (5.4) and (5.8) give Ml−1 + 1 ≤

mp ≤ Ml. Using (5.5) and (5.6) gives
∑
m∈Ml\Ml−1

wi,m = 1. Reciprocally, if∑
m∈Ml\Ml−1

wi,m = 1, then (5.5) and (5.6) give Ml1 + 1 ≤
∑
p∈P|t(p)=imp ≤

Ml which implies
∑
p∈P|t(p)=i bp,l = 1. �

84



Let us note G′ = (V,A) the arborescence obtained by orienting G with r
as a root. For i ∈ V , we note Γ+(i) = {j ∈ V |(i, j) ∈ A} and ∀i ∈ V ∗,
γ(i) denotes the unique predecessor of i. A lower bound of the number of active
modules going through (i, j) ∈ A, denoted by mact

i,j , can be calculated recursively
starting with pendant vertices i by assigning Di to mact

γ(i)i and writing that

mact
i,j =

∑
j′∈Γ+(j)m

act
j,j′ .

Proposition 5.1.3 The following equations are valid inequalities for the BFCND
problem

∀a ∈ A,∀x ∈ R|x > 0,
∑

p∈P|a∈p

∑
l∈L

⌈Ml

x

⌉
bp,l ≥

⌈mact
a

x

⌉
(5.10)

Proof. By starting from the number of active modules going through each
edge, we have

∑
p∈P|(i,j)∈pmp ≥ mact

i,j . Furthermore, we can upper bound the

left hand term using (5.4), which gives∑
p∈P|(i,j)∈p

∑
l∈L bp,l ≥ mact

i,j

Dividing by some x ∈ R and rounding gives the result. �

Remark 5.1.1 If P = PA (no backfeed is allowed), some variables can be
eliminated from the model. In this case, it is not possible to have a number of
welds in i larger than mact

γ(i),i. In other words, ∀m ∈ ML, if m > mact
γ(i),i, then

wi,m = 0.

5.2 Complexity

Let us show that BFCND is NP-hard. The next proof uses the same reduction
than the one used in Section 4.1.

Proposition 5.2.1 BFCND is NP-complete even with 1 cable size and 2 po-
tential splicing locations.

Proof. We consider the Number Partitioning Problem (NPP), which is proven
to be NP-complete in [34], and we prove here that it can be reduced in polyno-
mial time to a particular instance of BFCND with an equivalent answer.
(NPP):
Instance: We have a set of N integers ni (

∑
i∈{1,..,N} ni is supposed to be even).

Question: Is there a subset S ⊆ {1, .., N} such that
∑
i∈S ni =

∑
i6∈S ni ?

We consider an instance of (NPP) that we associate to the following BFCND
instance.
Let (V,A) be an arborescence describing the civil engineering structure (V =
{r, 0, 1} ∪ {vi|i ∈ {1, .., N}}, A = {(r, 0); (0, 1); (1, vi)|i ∈ {1, .., N}}); only one
type of cable with a number of modules M1 = 1

2

∑
i∈{1,..,N} ni is available, its

cost per length unit is C1 = 1. The length of all arcs of the arborescence are
zero, except (r, 0) which is of length 1. This means the cost of a cable created in
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r is 1, and the cost of the other ones is 0. The number of active modules associ-
ated with each arc are: mact

(r,0) = mact
(0,1) =

∑N
i=1 ni;∀i ∈ {1, .., N},mact

(1,vi)
= ni,

which means that the demand points are the vi, i ∈ {1, .., N} and have respec-
tive demands ni. This network is represented in Fig. 5.3a. We consider a zero
cost for welding and welding boxes.

(a) BFCND instance for the NP-
completeness proof

(b) Solution considered in the NP-
completeness proof

Figure 5.3: Illustration of the instance and solution considered for the NP-
completeness proof

The question associated to this BFCND instance is ”Is there a cabling solu-
tion cheaper than 2 ?”.
Let us first assume that (NPP) is feasible: ∃S ⊆ {1, .., N} such that

∑
i∈S ni =∑

i6∈S ni. We then build the following cabling solution:

• Two cables holding only active modules are installed on link (r, 0).

• In node 0, one incoming cable is spliced into N−|S| born cables. The born
cables have a number of active modules ni, i 6∈ S and serve the demand
nodes (vi)i6∈S .

• On link (0, 1), one cable coming from r with only active modules, and
N − |S| cables serving demand nodes in {vi|i 6∈ S} are installed.

• In node 1, the incoming cable with only active modules is spliced into
|S| born cables. The born cables have ni active modules and serve the
demand nodes (vi)i∈S .

• One cable is installed on each link (1, vi).

Since the number of active modules is conserved in each splicing, the cabling
solution described above is feasible (it is illustrated in Fig. 5.3b). Its cost is
equal to 2, as the cables created in r have a cost of 1, and the other ones have
a cost of 0.

Inversely, let us assume that (NPP) is not feasible: then, the solution de-
scribed above is not possible anymore. One cable is not large enough to cover
link (r, 0), it cannot contain all the required active modules. Let us assume
there is a solution with only two cables on (r, 0). Since their combined num-
ber of modules is

∑
i∈{1,..,N} ni, they both hold only active modules. If one

86



of them directly served the demand without enduring any operation, then the
(NPP) instance was trivially feasible (one of the ni is half the total sum). So
both of them endure a splicing operation, one in node 0, the other in node 1.
Let us consider the cables created in 1. They serve a subset S1 of the demand
nodes, and have a respective number of active modules of ni, i ∈ S1. Since
the number of active modules in a splicing operation is conserved, we have∑
i∈S1

ni = 1
2

∑
i∈{1,..,N} ni and the (NPP) instance was feasible.

Consequently, at least 3 cables need to be installed on arc (r, 0), and such
solution has a cost of at least 3.

Hence the two instances are equivalent, and BFCND is NP-hard. �

The results proven for FCNDA in Section 4.1 can also be proven for BFCND
using this reduction.

In the following, ”base model” denotes the model with equations (5.1) to
(5.7) while ”enhanced model” denotes the model with equations (5.1) to (5.9).
Let us denote G′ = (V,A) the arborescence obtained by orienting G with r as
a root. In the following, PA denotes all paths in the arborescence G′ while PE
denotes all oriented paths in the non-oriented tree G.

5.3 Numerical Results

The models were assessed on real-life instances extracted from french cities with
various population densities. The costs used were those currently paid by the
operator Orange to sub-contractors in charge of the network deployment. We
use 7 different types of cables, which hold 1,2,4,8,12,16 or 20 modules. The
instances were solved with the Branch-and-Bound algorithm of Cplex 12.6.0 in
its default configuration. Key features of each instance are presented in table
5.1.

Table 5.1: Instances key features

features
instance |VN | |VD| |PA|

Arles 139 65 2673
Clermont 194 95 4079
Lannion 75 35 1605

Carcassonne 195 88 4091
Brest 153 74 2744

Lorient 129 60 2405
Merignac 86 41 1356

Table 5.2 reports algorithmic results when no backfeed is allowed. The col-
umn labeled ”LR” displays the ratio linear relaxation

optimal solution , the column labeled ”time”
displays the computation time for each optimal solution, the column labeled
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”branches” displays the number of nodes explored by the Branch-and-Bound al-
gorithm, and the column labeled ”gap closure” reports the ratio enhanced model LR - base model LR

optimal solution - base model LR .

Table 5.2: Algorithmic results

base model enhanced model

instance
LR
(%)

time
(s)

branches
gap closure
(%)

time
(s)

branches

Arles 85.4 181 74122 15.6 10 0
Clermont 84.8 544 129 606 16.0 23 0
Lannion 87.8 456 204 158 17.8 9 0

Carcassonne 84.0 159 40 616 21.4 22 0
Brest 85.9 141 47 848 21.7 9 0

Lorient 87.0 457 250 109 19.8 13 70
Merignac 83.9 6 7669 27.5 2 0

The model was able to solve all the instances proposed in less than 600
seconds, and the valid inequalities made the resolution easier. The average
computation time was reduced from 277 seconds with the base model to 13
seconds with the enhanced model. As for the computational side, the proposed
valid inequalities tighten the linear relaxation. The gap between the linear re-
laxation and the optimal solution is reduced in average by 20 % in the enhanced
model.

As for operational aspects, we define three different backfeed policies:

I No backfeed allowed. In this case, P = PA.

II Backfeed allowed for cables serving the demand only. In this case, P =
PA∪{p ∈ PE , t(p) ∈ VD}. This is the choice currently favored by Orange.

III Backfeed allowed for every cable. This means P = PE (PA ⊂ PE).

The cost and computation time of the optimal solutions obtained with each
strategy are reported in table 5.3.

The solution without backfeed was in average 25 % more expensive than the
one with all backfeed allowed. This shows how allowing this technique can be
useful. On a different note, the cost of the solution with only last cable backfeed
allowed is almost the same as the one with all backfeed allowed, changing in
only 2 instances and being in average only 0.3% more expensive. This shows
that most backfeed is done closer to the splitters than to the central office. One
may interpret this as a consequence of the concave cost of cables with respect to
the diameter: the relatively small linear cost of large cables coming out of the
root makes them go close to demand points without backfeed, and these cables
are then spliced into several smaller ones serving the demand with backfeed.

The computation time in each case increases with the number of paths. It
is in average 12 seconds with policy I, 37 seconds with policy II and 387 sec-
onds with policy III. This was expected since the number of variables increases
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Table 5.3: Policies assessment

Policy I Policy II Policy III
instance time solution time solution time solution

Arles 10 88 880.4 21 68 064.8 112 68 064.8
Clermont 23 113 100.5 94 84 717.9 828 84 331.0
Lannion 9 88 835.6 11 75 791.1 46 75 791.1

Carcassonne 22 157 347.2 71 130 922.2 988 130 922.2
Brest 141 101 140.1 39 82 447.5 576 82 447.5

Lorient 13 97 899.2 20 76 720.6 134 76 720.6
Merignac 2 55 486.5 6 46 008.3 27 45 132.5

significantly with looser policies. In case of instances are too large to be solved
with policy III, one can assume that choosing policy II instead would give a
very good sub-optimal solution quickly.

5.4 Conclusion

The introduction of backfeed into the cable network optimization process enables
significant savings at the expense of harder computations. The effect of the valid
inequalities provided for our integer programming formulation suggests that it
can still be further tightened in order to reduce computation times.

On an operational level, backfeed makes network operations, administration
and maintenance activities more complex. This leads us to the following chapter,
in which we introduce additional constraints meant to facilitate these future
activities.
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Chapter 6

Easy-Maintenance Fiber
Cables Network Design

Chapter Abstract

This chapter deals with the maintenance constraint introduced in Section
2.1, and illustrated in Figure 6.1. It tackles two problems which differ by the
introduction of this constraint, the unconstrained problem referred to as SFCND
and the constrained problem referred to as ESFCND. SFCND can be defined as
a restriction of FCNDA where no tapping is allowed. ESFCND can be defined as
a restriction of SFCND where the maintenance constraint has to be respected.
Recall that the maintenance constraint can be formulated as follows: cables
going through a given duct must be born in the same cabinet (see Fig. 2.8).

For each problem, a specific integer programming solution is proposed in
Section 6.1. Valid inequalities are also introduced for both problems. Then,
Section 6.2 presents two algorithms for the resolution of ESFCND: an exact
dynamic programming algorithm in Section 6.2.1 as well as a FPTAS in Section
6.2.2. The theoretical complexities of both problems are proven and compared
in different contexts in Section 6.3. Finally, the efficiency of the models as well
as the properties of the solutions are assessed in Section 6.4.
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Hypothesis

In the two problems considered in this chapter, an arborescence of the civil
engineering structure is given, as well as demand points, and the number of
fiber modules to be brought at each demand. This implies that the number of
modules going through each duct is known.

In this problem, one has the possibility to:

• Use the splicing technique.

• Serve the demand in one of two different fashions: cable-served when one
full cable is used, or module-served when modules from a cable are used.

Backfeed is not allowed.

Figure 6.1: Left: Splicing configuration respecting the maintenance rule. On all
ducts, cables are born in the same cabinet; Right: Possible splicing configuration
in conflict with the maintenance rule. On the bottom-right duct, two different
cables are born in different cabinets.

The maintenance rule (see Fig. 6.1) applies only to ESFCND. Recall that it
is the following: ”cables going through the same duct must be born in the same
cabinet”.

6.1 Integer Programming

6.1.1 SFCND

Notation and formulation

The following notations will also be used in section 6.2.
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An arborescence G = (V,A) describes the civil engineering infrastructure, V
the cabinets and A the ducts, and its root r ∈ V denotes the fiber source (CO or
splitter location). For any i ∈ V,Di ∈ N denotes the demand (number of active
modules required) in node i. We define V ∗ = V \ r, the set of demand nodes is
noted VD = {v ∈ V,Dv > 0}, the set of nodes without demand VN = V ∗ \ VD.
Each arc (i, j) ∈ A has a length ∆(i,j) > 0 and must contain mact

i,j active modules
(mact

i,j being known, since we are in an arborescence). For i ∈ V , we denote Γ+(i)
the set successors of i and γ(i) its predecessor.

We have L different cable types at our disposal, we note L = {1, .., L} the
set of cables. Cables of type l ∈ L have a size of Ml ∈ N modules, and for l ∈ L,
we note Ml = {1, ..,Ml} (the range of possible number of active modules in a
cable of type l).

For l ∈ L, let us define Clel the cost per length unit of a cable of size l,
and PBl the cost of a box of size l. For m ∈ ML, let us define the cost
of the smallest cable able to contain m active modules Cminm = Clel1 where
l1 = min{l ∈ L,m ≤Ml}, and PWm the cost for welding m modules.

We introduce P the set of directed paths of G, and for p ∈ P, we note by
s(p) its source node, t(p) its target node, and ∆p its length (which extends ∆
from A to P).

We define the following variables:

• ∀l ∈ L, ∀p ∈ P, ksplp,l ∈ {0, 1} the binary variable equal to 1 iff there is a
cable of size l on path p spliced in t(p).

• ∀p ∈ P, kdemp ∈ {0, 1} the binary variable equal to 1 iff there is a cable on
path p serving the demand in t(p) in a cable-served way. Its size is known,
it is min{l ∈ L|Ml ≥ Dt(p)}.

• ∀p ∈ P,mspl
p ∈ {0, ..,ML} the number of active modules of the cable on

path p spliced in t(p).

• ∀i ∈ V ∗,∀m ∈ ML, wi,m the binary variable equal to 1 iff m welds are
done in node i.

The problem can be formulated as follows:

min
∑
p∈P

∆p ·

(
CminDt(p)

· kdemp +
∑
l∈L

Clel · k
spl
p,l

)
+
∑
i∈VN

∑
m∈ML

PWm · wi,m +
∑
p∈P

∑
l∈L

PBl · ksplp,l

such that∑
p∈P|t(p)=i

∑
l∈L

ksplp,l ≤ 1 ∀i ∈ V ∗, (6.1)

∑
p∈P|t(p)=i

kdemp ≤ 1 ∀i ∈ VD, (6.2)
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∑
l∈L

Ml · ksplp,l ≥ m
spl
p ∀p ∈ P, (6.3)∑

p∈P|t(p)=i

mspl
p = Di · (1−

∑
p∈P|t(p)=i

kdemp )

+
∑

p∈P|s(p)=i

(mspl
p +Dt(p)k

dem
p ) ∀i ∈ V ∗, (6.4)

∑
m∈ML

m · wi,m =
∑

p∈P|i=s(p)

(mspl
p +Dt(p) · kdemp ) ∀i ∈ V ∗, (6.5)

∑
m∈ML

wi,m ≤ 1 ∀i ∈ VN , (6.6)

kdem, kspl, w ∈ {0, 1};mspl ∈ {0, ..,ML}

In the cost function, the first term stands for the cost of cables, the second
term for the cost of welds, and the last term for the cost of boxes. Equations
(6.1) ensure at most one cable is spliced in a node. Constraints (6.2) a most
one cable serves the demand in a cable-served way. Equations (6.3) make sure
that spliced cables are large enough to contain their number of active modules.
Constraints (6.4) are active module conservation equations. The left hand side
term stands for the number of modules of the spliced cable. The first right side
hand term is the number of modules necessary to serve the demand, in case it is
not cable-served. The last term is the number of active modules of born cables.
Finally, (6.5) and (6.6) ensure that w counts the number of welds to be done in
each node.

Remark 6.1.1 It is possible to fix the value of some variables. First, notice
that leaf nodes are demand nodes. These nodes will be served in a cable-served
way, and no operation will be done inside them. This gives, for all nodes i ∈
VD such that |Γ+(i)| = 0:

∀m ∈ML, wi,m = 0

∀p ∈ P|t(p) = i,∀l ∈ L, ksplp,l = 0

Furthermore, the number of welds done in a node cannot exceed the number
of active modules going out of this node. This gives:

∀i ∈ V ∗,∀m ∈ML, if m >
∑

j∈Γ+(i)

mact
i,j , wi,m = 0

Valid inequalities

We propose here several valid inequalities to tighten the formulation.
Let us define, for all m ∈ N, the minimum cost per length unit of a set of

cables able to contain m active modules denoted by LB(m). For a given m,
LB(m) = {min

∑
l∈L C

le
l · nl|

∑
l∈LMl · nl ≥ m,n ∈ NL}.
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Proposition 6.1.1 The following inequalities are valid for the ESFCND prob-
lem:

∀(i, j) ∈ A,
∑

p∈P|(i,j)∈p

(∑
l∈L

(Clel · k
spl
p,l ) +

Cmin(Dt(p)) · kdemp

)
≥ LB(mact

i,j ) (6.7)

The left hand side is the cost per length unit of the cables going through
(i, j).

Let us consider a path p ∈ P such that t(p) ∈ VD and s(p) 6= r. If there
is a cable deployed on p, born in s(p) and serving the demand in t(p), then we
know there is a splicing operation done in s(p). Furthermore, there is at least
Dt(p) welds in this operation, since the cable serving t(p) contains Dt(p) active
modules.

Proposition 6.1.2 The following valid inequalities are valid for the ESFCND
problem:

∀p ∈ P|t(p) ∈ VD and s(p) 6= r, kdemp ≤
∑

m≥Dt(p)

ws(p),m (6.8)

Proof. Let consider a path p ∈ P such that t(p) ∈ VD, s(p) 6= r, and kdemp = 1
(t(p) is cable served by a cable on p). By (6.5), it gives

∑
m∈ML

m · wsp,m ≥
Dt(p) (there are at least Dt(p) welds done in s(p)). Which means, with (6.6),
∃!m0 ≥ Dt(p), wsp,m0 = 1. Hence the result. �

6.1.2 ESFCND

ESFCND can be solved by using the same variables as in Section 6.1.1. The
cost function is the same, the set of feasible solutions is described by constraints
(6.1) to (6.6) to which we add the maintenance constraints described below:

∀(p, p′) ∈ P2 such that s(p) 6= s(p′) and ∃a ∈ A, a ∈ p and a ∈ p′,
kdemp + kdemp′ ≤ 1 (6.9)∑

l∈L

ksplp,l +
∑
l∈L

ksplp′,l ≤ 1 (6.10)∑
l∈L

ksplp,l + kdemp′ ≤ 1 (6.11)

These constraints ensure that on two paths which have different origins but
an arc in common, there can be only one cable. Constraints (6.9) ensure it in
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the case the two cables are serving the demand. Constraints (6.10) in the case

both cables are spliced (at most one term in the sum
∑
l∈L k

spl
p,l is equal to 1,

since there can be at most one splicing operation in t(p), the same goes for p′).
Finally, constraints (6.11) in the case one of them is spliced and the other one
serves the demand.

The next section introduces an alternative mixed integer programming ap-
proach for ESFCND, based on arcs rather than paths. It uses the properties of
the problem, and has less variables and less constraints.

Notations and formulation

We keep the same notations for the problem instance. In addition, let us define
for (i, j) ∈ A,Ui,j an upper bound of the cost per length unit of the cables going
through duct (i, j).

We define the following variables:

• ∀(i, j) ∈ A, xi,j ∈ {0, 1} the binary variable equal to 1 iff the cables on arc
(i, j) are born in i.

• ∀(i, j) ∈ A, ci,j ∈ R the continuous variable equal to the cost per length
unit of the cables on arc (i, j).

• ∀(i, j) ∈ A, zi,j ∈ R the continuous variable equal to xi,j · ci,j .

• ∀i ∈ VD, ui ∈ {0, 1} the binary variable equal to 1 iff the node i is module-
served.

• ∀i ∈ V ∗,∀m ∈ ML, wi,m the binary variable equal to 1 iff m welds are
done in node i (since its meaning is identical to Section 6.1.1, we keep the
same name).

• ∀i ∈ V ∗,∀l ∈ L, yi,l the binary variable equal to 1 iff a cable of size l is
spliced in i.

The problem can be formulated as follows:

min
∑
i∈V ∗

∑
m∈ML

PWm · wi,m

+
∑

(i,j)∈A

∆(i,j) · ci,j +
∑
i∈V ∗

∑
l∈L

PBl · yi,l

(6.12)

such that

cγ(i),i =
∑
l∈L

Clel yi,l +
∑

j∈Γ+(i)

ci,j
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−
∑

j∈Γ+(i)

zi,j + (1− ui) · CminDi
∀i ∈ VD, (6.13)

cγ(i),i =
∑
l∈L

Clel yi,l +
∑

j∈Γ+(i)

ci,j −
∑

j∈Γ+(i)

zi,j ∀i ∈ VN , (6.14)

∑
l∈L

Ml · yi,l ≥ Di · ui +
∑

j∈Γ+(i)

mact
i,j · xi,j ∀i ∈ VD, (6.15)

∑
l∈L

Ml · yi,l ≥
∑

j∈Γ+(i)

mact
i,j · xi,j ∀i ∈ VN , (6.16)

∑
l∈L

yi,l ≤ 1 ∀i ∈ V ∗, (6.17)∑
m∈ML

m · wi,m =
∑

j∈Γ+(i)

mact
i,j · xi,j ∀i ∈ V ∗, (6.18)

∑
m∈ML

wi,m ≤ 1 ∀i ∈ V ∗, (6.19)

zi,j ≥ ci,j − Ui,j · (1− xi,j) ∀(i, j) ∈ A, (6.20)

zi,j ≤ Ui,j · xi,j ∀(i, j) ∈ A, (6.21)

zi,j ≤ ci,j ∀(i, j) ∈ A, (6.22)

u,w, x, y ∈ {0, 1}; c, z ∈ R

The first term of the cost function denotes the cost of welds, the second
term stands for the cost of cables, and the last term stands for the cost of
boxes. Equations (6.13) ensure the cost per length unit of any arc is properly
counted. The term

∑
l∈L C

le
l yi,l stands for the cost of the cable spliced in i,

if any. If for some arc (i, j) ∈ A such that j ∈ Γ+(i) we have xi,j = 0, then
the cables on (i, j) come from (γ(i), i) unchanged. Otherwise, they come from
the splicing operation done in i. The last term stands for the cost of the cable
serving the demand in i. Equations (6.14) are the equivalent concerning nodes
without demand. Equations (6.15), (6.16) and (6.17) ensure the cable spliced
in i is large enough to contain its active modules. The first term of the right
hand side of (6.15) stands for modules serving the demand, the second term for
modules of born cables. Constraints (6.18) and (6.19) ensure the variable wi,m
is equal to 1 iff there are m welds done in node i. Finally, constraints (6.20),
(6.21) and (6.22) ensure ∀(i, j) ∈ A, zi,j = xi,j · ci,j (these are linearisation
equations).

Remark 6.1.2 It is possible to fix the value of some variables. Assuming there
exists i ∈ V ∗ and m1 ∈ ML such that wi,m1

= 1, then by (6.18), we know
there exists S ⊆ Γ+(i) such that m1 =

∑
j∈Sm

act
i,j . This gives by contraposition

∀i ∈ V ∗, ∀m ∈ ML if m 6∈ {
∑
j∈Sm

act
i,j |S ⊆ Γ+(i)} then wi,m = 0. It can

be computed in O(|Γ+(i)| ×ML) (which is not a polynomial with respect to the
instance size, provided ML is not coded in an unary system).
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Valid Inequalities

The continuous relaxation of the formulation introduced above shows is weak,
mostly due to the linearisation of z. We propose here several valid inequalities
to tighten it.

In nodes without demand, if a cable of size l is spliced, then it has a number
of active modules between Ml and Ml−1+1; otherwise one could install a smaller
cable and obtain a cheaper solution. With the convention M0 = 0 andM0 = ∅,
this gives:

Proposition 6.1.3 Every optimal solution of the ESFCND problem verifies

∀i ∈ VN ,∀l ∈ L, yi,l =
∑

m∈Ml\Ml−1

wi,m (6.23)

Proof. Let us consider an optimal solution S of the ESFCND problem. Let us
consider i ∈ V ∗ and l ∈ L such that yi,l = 1 (a box of size l is installed in i).
This gives us 1 ≤

∑
j∈Γ+(i)m

act
i,j · xi,j (there are cables born in i); otherwise we

could obtain a cheaper solution by setting yi,l to 0.
Either (6.16) or (6.15) give us Ml ≥

∑
j∈Γ+(i)m

act
i,j · xi,j . Furthermore, with

(6.18) and (6.19), we can obtain ∃m0 ∈ {1, ..,Ml}, wi,m0
= 1 (in other words,

m0 ≤Ml welds are done in i).
If l = 1, we have the result.
Otherwise, let us assume m0 ≤ Ml−1. Then, the solution S′ identical to S

everywhere but in y′i,l−1 = 1 and y′i,l = 0 is a feasible cheaper solution (it is the
solution obtained by replacing the cable spliced in i by a smaller cable, leading
to a smaller cost for boxes and cables). Which contradicts our hypothesis.

Hence the result. �

With a reasonment similar to the one from Proposition 6.1.1 (see definition
of LB), we can get a lower bound of the cost per length unit of the cables on
each arc.

Proposition 6.1.4 The following inequalities are valid for the ESFCND prob-
lem:

∀(i, j) ∈ A, ci,j ≥ LB(mact
i,j ) (6.24)

If the cables on some arc (i, j) ∈ A are born in i, then at least mact
i,j welds

are done in node i. This implies what follows.

Proposition 6.1.5 The following inequalities are valid for the ESFCND prob-
lem

∀(i, j) ∈ A, xi,j ≤
∑

m∈ML|m≥mact
i,j

wi,m (6.25)

Proof. Let us consider a solution of the ESFCND problem. Let us consider
(i, j) ∈ A such that xi,j = 1. This implies, by (6.18) that

∑
m∈ML

m · wi,m ≥
mact
i,j . Then, with (6.19), it follows that ∃!m0 ≥ mact

i,j , wi,m = 1 (only one of the
variables wi,m can be equal to 1). Hence the result. �
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6.2 Dynamic Programming for ESFCND

For any node i ∈ V ∗, we introduce the additional notation V pr(i), which refers
to the set of nodes on the path from the root to i, excluding i and including r.

6.2.1 Exact Algorithm

The ESFCND problem can be solved by Algorithm 1. To each node i ∈ V ∗, and
for each node j ∈ V pr(i), we associate to i a label < j,C(i, j) >∈ V pr(i) × R
where C(i, j) is the minimum cost of the network rooted in i plus the cost of
the cables on the path from j to i, assuming these are born in node j.

Algorithm 1 Exact Resolution Algorithm for ESFCND

1: procedure INITIALISATION()
2: for i ∈ VD|Γ+(i) = ∅ do
3: for j ∈ V pr(i) do
4: Add to i the label < j,CminDi

·∆p > where p ∈ P is the only path
s.t. s(p) = j and t(p) = i.

5: end for
6: Declare i labeled.
7: end for
8: end procedure
9: procedure RECURSION()

10: while ∃r′ ∈ Γ+(r) such that r′ has not been labeled do
11: for every node i ∈ V ∗ such that all nodes in Γ+(i) have been labeled

do
12: for j ∈ V pr(i) do
13: . We select the operation in i minimizing the network cost.
14: Add the label < j,C(i, j) > to node i where

C(i, j) = min
S⊆Γ+(i),u∈{0,1}

∑
k∈S

C(k, i) +
∑

k∈Γ+(i)\S

C(k, j)

+PWm + ∆p · Clel1 + ∆p · CminDi
· (1− u) (6.26)

with

{
m =

∑
k∈Sm

act
i,k ; l1 = min{l ∈ L|Ml ≥ u ·Di +

∑
k∈Sm

act
i,k }

p ∈ P is the only path such that s(p) = j, t(p) = i

15: end for
16: Declare i labeled.
17: end for
18: end while
19: end procedure
20: procedure TERMINATION()
21: return

∑
r′∈Γ+(r) C(r′, r)

22: end procedure
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The algorithm is initialized at leaf nodes (line 4), which are cable-served
demand nodes, and where the size of the cable serving the demand is known.

For a node i such that all nodes in Γ+(i) have been labeled, and for j ∈
V pr(i), (6.26) computes the minimum cost network if the next operation is
done in j. For i ∈ V ∗ and k ∈ Γ+(i), k ∈ S iff the cables going through arc
(i, k) are born in node i. Similarly, the boolean u is equal to 1 iff the node i is
module-served (its meaning is similar than the variable ui in Section 6.1.2).

We propose to compute it with a brute-search algorithm on the set S and on
u. For given nodes i ∈ V ∗, j ∈ V pr(i), it can be done in O(|Γ+(i)| × 2|Γ

+(i)|+1).

Lemma 6.2.1 Algorithm 1 runs in time O(21+max Γ × |V |2) where max Γ de-
notes the maximal degree (number of successors) of a node in the graph.

This can be shown by summing the operations done for each loop.

Remark 6.2.1 This implies that if the maximal degree of nodes in the graph is
bounded by a constant, then algorithm 1 runs in polynomial time.

For a non-leaf node i ∈ V ∗ and j ∈ V pr(i), when we compute (6.26), we do
not consider the cost of the welds done in j. This comes later, while j is being
labeled. It does not influence the network below, since all cables going through
(γ(i), i) are born in i. C∗ is the sum of the following elements:

• the cost of the network in the arborescence rooted in i, including the cost
of the welds and boxes in i (if any)

• the cost of cables deployed from i to j

This leads us to show the next proposition to show the validity of the algo-
rithm.

Proposition 6.2.2 Let us consider i ∈ V ∗. When i is declared labeled in al-
gorithm 1, there exists a node j ∈ V pr(i) such that in the label < j,C(i, j) >,
C(i, j) describes the cost of the minimum ESFCND solution in the arborescence
rooted in node i plus the cost of the cables on the path from j to i.

We will start to prove it for leaf nodes, then recursively on higher nodes.

Proof. ? Let us consider a leaf node i. In the minimum cost network, it is
served in a cable-served way with a cable of type l1 = min{l ∈ L|Ml ≥ Di}.
This cable is born in some node j ∈ V pr(i), eventually the root. Let us call
p ∈ P the only path such that s(p) = j and t(p) = i. The label < j,C(i, j) > of
i has a cost of CminDi

·∆p.
? Let us consider a non-leaf node i ∈ V ∗ such that all nodes in Γ+(i) have

been labeled. In the minimal cost network, the cables going through arc (γ(i), i)
are all born in a node j ∈ V pr(i). Thanks to the maintenance constraint, we
know that they are all born in the same node. Since all nodes k ∈ Γ+(i) have
been labeled, for each of these nodes, there is a node jk ∈ V pr(k) such that in the
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label < jk, C(k, jk) >, C(k, jk) describes the cost of the minimum cost network
in the arborescence rooted in k plus the cost of the cables on the path from jk
to k. Furthermore, since the cables going through arc (γ(i), i) are all born in
j, we have either jk = j or jk = i. Let us consider the label < j,C(i, j) > of
node i. If in the minimal network i is module-served, then we will have u = 0
in the computation of (6.26). Furthermore, let us consider k ∈ Γ+(i). If jk = i,
we will have k ∈ S in the computation of (6.26), and k ∈ Γ+(i) \ S otherwise.
Hence the result. �

The termination of the algorithm derives from Proposition 6.2.2. For each
node r′ ∈ Γ+(r), we have V pr(r′) = {r}. This implies, using this proposition,
that in the label < r,C(r′, r) >, C(r′, r) is the cost of the minimum network cost
in the arborescence rooted in r′ plus the cost of the cables on (r, r′). Summing
these values gives the minimum network cost.

The computation of (6.26) at each step is not done in polynomial time. There
are many algorithms able to tackle it (dynamic programming, brute search,
...). We propose a way to tackle it in the next section which allows us to
give an approximation in polynomial time, thus providing a polynomial time
approximation algorithm.

6.2.2 Approximation algorithm

In this Section, we propose here a Fully Polynomial Time Approximation Scheme
(FPTAS) for ESFCND, in the case where:

• The height of the arborescence describing the civil engineering is upper
bounded by H ∈ N.

• The number of intervals on which the cost of the welds PW is a linear
function with respect to m is upper bounded by F ∈ N (recall that PW
is defined to be piecewise linear).

We introduce the following additional notation. PW is decomposed into its
linear components. For f ∈ {1, .., F}, we have successive integers Bf such that
∀m ∈ {Bf , .., Bf+1}, PWm = PW a,f ×m+ PW b,f .

A FPTAS for the knapsack problem is available in [41]. This algorithm A
gives, for an instance of the knapsack problem, and a number α > 1, a solution
S to the knapsack problem of cost Capprox where Capprox ≤ α×OPT and OPT
is the optimal solution cost (here, we consider the minimization version of the
knapsack problem, or ”covering problem”).

In algorithm 1, the computation of (6.26) is the only step which is not done
in polynomial time. We propose to solve it with algorithm 2, which reformulates
it as a series of knapsack problems. Then, each of the knapsack problems can
be approximated thanks to the knapsack FPTAS.
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Algorithm 2 Computation of (6.26)

1: procedure C(i, j) calculation()
2: Define Cmin := +∞
3: for l ∈ L do
4: for f ∈ {1, .., F} do
5: if ({Ml−1 + 1, ..,Ml}) ∩ {Bf , .., Bf+1} 6= ∅ then
6: m1 := max(Ml−1 + 1, Bf )
7: Solve the following knapsack problems

C1 = min
∑
k∈Γ+(i)

(
xk · C(k, i) + (1− xk) · C(k, j)

)
+PW a,f ×

∑
k∈Γ+(i) xk ·mact

i,k + PWb,f + ∆(i,j) · Clel
+∆(i,j) · Cmin(Di) (6.27)

such that
∑
k∈Γ+(i) xk ·mact

i,k ≥ m1

8: end if
9: if ({Ml−1 + 1, ..,Ml}) ∩ {Bf −Di, .., Bf+1 −Di} 6= ∅ then

10: m2 := max(Ml−1 + 1, Bf )−Di

C2 = min
∑
k∈Γ+(i)

(
xk · C(k, i) + (1− xk) · C(k, j)

)
+PW a,f ×

∑
k∈Γ+(i) xk ·mact

i,k + PW b,f + ∆(i,j) · Clel (6.28)

such that
∑
k∈Γ+(i) xk ·mact

i,k ≥ m2

x ∈ {0, 1}|Γ+(i)|

11: end if
12: Cmin := min(Cmin, C1, C2)
13: end for
14: end for
15: Cmin := min(Cmin,

∑
k∈Γ+(i) C(k, j))

16: return Cmin

17: end procedure

The algorithms spans all possible cable sizes. For each cable size l, it com-
putes the minimum cost splicing operation in which a cable of size l is spliced
in i. (6.27) computes the minimal cost splicing in the case u = 0, and (6.28)
computes the minimal cost splicing in the case u = 1. Finally, in line 15, it
compares the best splicing obtained with the cost of continuing all cables.

The following lemma stems from the concavity of PW .

Lemma 6.2.3 ∀(f, f ′) ∈ {1, .., F}2, if f ≤ f ′, then ∀m ≥ Bf ′ , PW
a,f ′ ×m +

PW b,f ′ ≤ PW a,f ×m+ PW b,f

Proof. Let us assume ∃(f1, f2) ∈ {1, .., F}2, with f1 ≤ f2 and ∃m ≥ Bf2 such
that PW a,f2 ×m+ PW b,f2 > PW a,f1 ×m+ PW b,f1 .
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Since PW b,f is decreasing with respect to f , this means PW a,f2 > PW a,f1 ,
which contradicts the concavity of PW .

Hence the result. �

From this lemma, we can get that if, for some l ∈ L and f ∈ F , C1 is reached
for values of xk such that

∑
k∈Γ+(i)m

act
i,k xk > Bf+1 (the values returned by the

knapsack problem are higher than the range of welds we consider), then a lower
value of C1 can be reached for l and f + 1. A similar reasoning can be done for
C2.

Let us consider H ∈ N. Let us consider an instance of ESFCND where the
civil engineering arborescence height is upper bounded by a constant H. We
propose the following FPTAS for ESFCND.

Let us consider α > 1. There is a polynomial time algorithm A which
approximates the knapsack within a ratio α

1
H . Run algorithm A′ which is a

variant of algorithm 1 where:

• Each computation of (6.26) is done with algorithm 2.

• In algorithm 2, each computation of (6.27) and (6.28) is approximated
with algorithm A.

This algorithm runs in polynomial time. Indeed, in algorithm 1, the only step
which is not done in polynomial time is replaced by a polynomial time algorithm.

Proposition 6.2.4 Algorithm A′ returns a cost v of the ESFCND problem such
that v ≤ αv∗ where v∗ is the cost of optimal solution of ESFCND.

Proof. ? Let us consider a leaf node i ∈ VD. The labels C(i, j) for j ∈ V pr(i)
have the same value in algorithm 1 and algorithm A′.

? Let us consider a non-leaf node i ∈ V ∗ and j ∈ V pr(i). In the computation

of (6.26) by algorithm 2, C∗ is approximated with a ratio of α
1
H . Its value is the

sum of welds and boxes costs and of a linear combination of the values of C(k, i)
and C(k, j) for k ∈ Γ+(i). So it multiplies the approximation ratios of the values
of C(k, i) and C(k, j). Hence, each time a node is labeled, the approximation

ratio of its labels are α
1
H time the approximation ratio of its children node.

Hence the global multiplicative ratio of this algorithm is α.

The next section assesses the complexity of SFCND and ESFCND.

6.3 Complexity

We show in Section 6.3.1 that SFCND is NP-hard even with 1 cable size and
an upper bound on the node degree of 2, and in Section 6.3.2 that ESFCND is
NP-hard.
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6.3.1 SFCND

Let us consider the Number Partitioning Problem (NPP), which is shown to be
NP-complete in [34].
Instance: A set of N strictly positive integers {ni ∈ N|i ∈ {1, .., N}}.
Question: Is there a partition of the integers S ⊆ {1, .., N}} such that

∑
i∈S ni =∑

i6∈S ni ?
We consider an instance of the NPP and associate it to the following SFCND

instance: Let G = (V,A) be an arborescence describing the civil engineering
structure, (V = {r, 0, 1}∪{vi|i ∈ {1, .., N}}, A = {(r, 0); (0, 1); (1, v1); (vi−1, vi)|i ∈
{2, .., N}}) (G is a chain graph), r is the fiber source. The demand nodes are
{vi, i ∈ {1, .., N}} and have respective demands ni, i ∈ {1, .., N} modules. Only
one type of cable is available, with size M1 = 1

2

∑
i∈{1,..,N} ni. Its cost per

length unit is C1 = 1. The lengths of all arcs of the arborescence are null,
except (r, 0) which is of length 1. This means the cost of a cable born in r is 1,
and the cost of the other ones is 0. The cost of welds and boxes is null.

The question associated to this SFCND instance is ”Is there a cabling solu-
tion cheaper than 2 ?”.
? If (NPP) is feasible: ∃S ⊆ {1, .., N} such that

∑
i∈S ni =

∑
i6∈S ni. We then

build the following cabling solution:

• Two cables holding only active modules are installed on link (r, 0).

• In node 0, one incoming cable is spliced into N−|S| born cables. The born
cables have a number of active modules ni, i 6∈ S and serve respectively
the demand nodes (vi)i6∈S .

• In node 1, the cable coming from the root with only active modules is
spliced into |S| born cables. The born cables have ni active modules and
serve the demand nodes (vi)i∈S .

Since the number of active modules is conserved in each splicing, the cabling
solution described above is feasible (it is illustrated in Fig. 6.2, as well as the
instance). Its cost is equal to 2.

Figure 6.2: Instance and solution used in the complexity proof
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? If (NPP) is not feasible. Then, the solution described above is not possible
anymore. One cable is not large enough to cover link (r, 0). Two cables cannot
cover (r, 0) either, since they would both have only active modules, which would
mean that the (NPP) problem was feasible. Consequently, at least 3 cables need
to be installed on arc (r, 0), and such a solution has a cost of a least 3.

Remark 6.3.1 The solution illustrated in Fig. 6.2 is not valid for ESFCND,
the maintenance rule is not respected in nodes 0 and 1.

We showed in Section 4.1.1 that FCNDA in NP-hard. The same proof can
be conducted for SFCND, and show that it is NP-hard in the following context

• One cable size available.

• Civil engineering arborescence height of 3.

• Null welding cost.

6.3.2 ESFCND

ESFCND can be shown to be NP-complete by reduction from the (NPP). With
the same notations, let us consider an instance of the NPP and associate it to
the following ESFCND instance. The civil engineering structure is described by
the set of nodes is V = {r, 0}∪{vi|i ∈ {1, .., N}}; the set of arcs A = {(0, vi)|i ∈
{1, .., N}} ∪ {(r, 0)}; r is the fiber source, the nodes {vi|i ∈ {1, .., N}} have a
demand of ni modules. The length of all arcs except (r, 0) is null. We have
N + 1 cables available:

• N cables of sizes ni modules and cost per length unit ni

• A cable of size 1
2

∑N
i=1 ni and cost per length unit 1

2

∑N
i=1 ni − 1

The cost of welds and boxes is null.
The question we ask is ”is there a solution of cost at most

∑N
i=1 ni − 1”?

? If (NPP) is feasible. Then, we have S ⊆ {1, .., N} such that
∑
i∈S ni =∑

i6∈S ni. We consider the solution of ESFCND where

• For i ∈ {1, .., N}, on each arc (0, vi), we lay down a cable of size ni

• In the node 0, a cable of size 1
2

∑
i∈{1,..,N} ni is spliced. Cables of size

ni, i ∈ S are born, and serve the demand of nodes vi, i ∈ S.

• On the arc (r, 0), a cable of size 1
2

∑
i∈{1,..,N} ni holding only active mod-

ules is deployed (the one spliced in 0); as well as N − |S| cables of sizes
ni, i 6∈ S which serve the demand in nodes vi, i 6∈ S.

The cost of this solution is the cost of cables on arc (r, 0) which is
∑
i∈{1,..,N} ni−

1. It is illustrated in Fig. 6.3.
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Figure 6.3: Instance and solution used in the complexity proof for ESFCND

? If (NPP) is not feasible. In a minimal cost solution, the size of cables
serving the demand is known. For a given i ∈ {1, .., N}, vi is served by a cable
of size ni. Which leaves three types of solutions to consider.

The solution without splicing has a cost
∑
i∈{1,..,N} ni. Each demand node

is served by a cable coming directly from the root r.
Any solution where a cable of size 1

2

∑
i∈{1,..,N} ni is spliced in 0 has a cost

at least equal to
∑
i∈{1,..,N} ni. Indeed, let us note E ⊆ {1, .., N} the set such

that cables of sizes ni, i ∈ E are born in 0. Since the NPP instance is not
feasible, we have

∑
i∈E ni <

1
2

∑
i∈{1,..,N} ni, so the cost of cables which are

continued in 0 is
∑
i6∈E ni >

1
2

∑
i∈{1,..,N} ni, and the total cost of the network

is
∑
i6∈E ni + 1

2

∑
i∈{1,..,N} ni − 1 ≥

∑
i∈{1,..,N} ni.

Any solution where a smaller cable is spliced in 0 has a cost at least equal
to
∑
i∈{1,..,N} ni. Indeed, in any splicing of a cable of size ni for a given i ∈

{1, .., N}, the spliced cable is at least as expensive than the born cables.

6.3.3 Synthesis

To the results proven here, we can add those deducible from Section 6.2. The
restriction of ESFCND where there is an upper bound on the node degree can
be solved in polynomial time, since in that case the computation of (6.26) can
be done in polynomial time. This implies that it is also polynomial when more
parameters are fixed. Furthermore, we showed in Section 6.2.2 that the problem
admits a FPTAS under some conditions. As for SFCND, its NP-hardness in a
restricted setting implies its NP-hardness in the more general cases. These
results are summed up in table 6.1.

Table 6.1 shows a theoretical difference in the complexities of the two prob-
lems ESFCND and SFCND. We assess the numerical aspect of this difference
in the next section.
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Table 6.1: Complexity of the two problems in different contexts

Problem Complexity

Fixed
elements

none
maximum
degree

maximum
degree
L

F,H

SFCND NP-hard NP-hard NP-hard NP-hard

ESFCND NP-hard P P
NP-hard,
FPTAS

6.4 Results

We assessed the solution methods on real-life instances taken from the city of
Arles (France).

The cables available have a size of 1, 2, 4, 6, 8, 12, 18 or 24 modules. The
resolution algorithm for the MIPs was the Cplex 12.6 default branch-and-bound
algorithm.

Table 6.2: key features of the real-life instances

instance features
max
degree arcs demand

nodes
total
demand

Ar 1 4 113 45 61
Ar 2 6 103 38 55
Ar 3 5 103 35 66
Ar 4 6 123 43 80
Ar 5 7 129 44 68
Ar 6 6 137 43 67
Ar 7 4 139 35 68
Ar 8 5 163 41 63
Ar 9 4 219 68 78

6.4.1 Models comparison

The results of the numerical experiments regarding the SFCND and ESFCND
problem are displayed respectively in tables 6.3 and 6.4, ”base model” always
refers to the MIP without valid inequalities, and ”enhanced model” to the MIP
with valid inequalities. The columns of both tables are labeled as follows: ”time”
stands for the computation time; ”CR” stands for the continuous relaxation as
a ratio of the optimal solution; ”Br” stands for the number of explored branches
of the Branch and Bound algorithm.

Regarding SFCND, the valid inequalities have had a positive effect on the
average computation time, which went down from 546 to 62 seconds. However,
on most instances (8 out of 9), the MIP is solved faster without the valid in-
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Table 6.3: Results for SFCND

instance base formulation
enhanced
formulation

time
(s)

CR
(%)

time
(s)

CR
(%)

Ar 1 8 90.3 16 91.0

Ar 2 9 83.7 24 92.4

Ar 3 17 92.2 22 93.3

Ar 4 19 89.2 46 90.0

Ar 5 1 94.9 2 95.2

Ar 6 2 92.5 3 94.7

Ar 7 13 92.4 29 93.7

Ar 8 8 89.6 12 91.7

Ar 9 4837 89.4 408 91.6

equalities. This suggest that they are more useful for instances that are hard to
solve. Regarding the algorithm, the continuous relaxation goes from an average
of 90.5 % to 92.6 %. The high relaxation of the base model can explain the
mitigated impact of the inequalities on the performances.

Regarding ESFCND, all instances were easier to solve (computation times
are displayed in milliseconds). The valid inequalities have had a beneficial ef-
fect on the computation time, all instances are solved faster with the enhanced
formulation. The average computation time goes from 1730 to 329 ms. On an
algorithmic level, the initial relaxation goes from an average of 13.2 % of the op-
timal solution cost to 87.3 % of the optimal solution cost. This has a significant
impact on the number of nodes of the branch-and-bound algorithm, which goes
from an average of 1100 branches to an average of 4 branches; 7 instances out
of 9 were solved without branching. The dynamic programming approach was
more efficient than the enhanced integer programming formulation, it solved 7
out of 9 instances faster.

6.4.2 Sensitivity analysis

Section 6.3 points to the maximal node degree as a key element of the problems
complexity. Since the highest node degree of all real-life instances is between
4 and 7, we used fictive instances to assess the performances of each resolu-
tion technique when some of the nodes have a high degree. Their features are
displayed in table 6.5.

107



Table 6.4: Results for ESFCND

instance base formulation enhanced formulation
dynamic
programming

time
(ms)

CR
(%)

Br
time
(ms)

CR
(%)

Br
time
(ms)

Ar 1 1457 14.0 1191 305 89.2 0 324

Ar 2 1174 17.8 462 239 86.6 0 239

Ar 3 1317 13.6 153 318 81.7 0 66

Ar 4 742 15.7 72 268 86.8 0 87

Ar 5 746 18.2 0 477 89.2 0 88

Ar 6 1477 15.5 66 238 91.8 0 110

Ar 7 1667 9.7 1045 190 80.1 0 121

Ar 8 1786 9.4 414 344 89.8 21 103

Ar 9 5204 5.3 6302 507 90.8 9 306

Table 6.5: key features of the fictive instances

instance features
max
degree arcs

demand
nodes

total
demand

Fi 10 11 20 15 71

Fi 11 12 22 16 84

Fi 12 13 24 18 97

Fi 13 14 26 19 112

Fi 14 15 28 21 112

Fi 15 16 30 22 127

Fi 16 17 32 24 144

Table 6.6: Computation time on fictive instances (ms)

instance
enhanced
model
SFCND

enhanced
model
ESFCND

dynamic
programming

Fi 10 205 166 322

Fi 11 327 77 652

Fi 12 993 332 1409

Fi 13 1130 120 3800

Fi 14 1369 347 12 403

Fi 15 1450 98 39 654

Fi 16 2691 280 164 243

As expected, the dynamic programming algorithm was very sensitive to the
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node degree, the computation time growing exponentially. The enhanced MIP
formulation for ESFCND was able to solve all instances in less than one second,
with an average of 200 ms. This is the opposite of the results obtained on real-life
instances, where the dynamic programming was more efficient. As for SFCND,
the MIP formulation proved to be efficient, with an average computation time
of 900 ms. Although the instances with a higher degree are harder to solve, it
stays tractable in practice. One should favor a MIP based approach, regardless
of the problem, when dealing with high degree nodes.

6.4.3 Operational considerations

We compared the optimal solutions of both problems. Results are displayed in
table 6.7, the column labeled ”arcs with rule broken” denotes the number of
arcs where the maintenance rule (illustrated in figure 2.8) is broken.

Remark 6.4.1 The SFCND problem has already been solved numerically in
Chapter 4 as the restriction of FCNDA without any tapping. Since some in-
stances are similar, one can see that the results of the third column of Table 6.7
below can already be found in the fourth column of Table 4.8 of Chapter 4.

Table 6.7: Optimal solution costs and characteristics

instance
Solution
ESFCND

Solution
SFCND

arcs with
rule broken

Ar 1 6156.6 6087.3 6

Ar 2 10 357.3 9870.0 8

Ar 3 6546.2 6125.8 14

Ar 4 6720.8 6461.9 14

Ar 5 5081.8 5081.8 0

Ar 6 6546.5 6544.2 1

Ar 7 9348.0 8638.6 18

Ar 8 12 328.3 12 248.4 4

Ar 9 25 619.1 24 422.8 15

The optimal solution of ESFCND is in average 3.7 % more expensive than
the optimal solution of SFCND. This can be seen as an acceptable loss in capital
expenditure if it is compensated by an easier maintenance, depending on the
importance accorded to it.

The maintenance rule is broken in almost every real-life instance we tried (8
out of 9). In average, it is not respected in 6.2 % of the arcs, which is significant.
This suggests that the optimal solutions of SFCND will be much harder to repair
in case of failure on one of the arcs. These elements can be taken into account
to establish a strategy in case of node failure.
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6.5 Conclusion

This chapter tackles two fiber cables network design problems, one uncon-
strained by maintenance consideration (SFCND) and the other one constrained
(ESFCND). Regarding the unconstrained problem, one integer programming
based solving algorithm was proposed. Associated valid inequalities make it
more tractable in practice. We proposed two solution methods for the con-
strained problem. These methods are complementary, as they prove efficient
in different contexts: the dynamic programming approach is generally faster in
graphs where nodes have a small degree, whereas the mixed integer program-
ming, embedding efficient valid inequalities, is generally faster otherwise.

On a theoretical level, the unconstrained problem seems much more complex
to solve than the constrained problem. Fixing some parameters makes the
constrained problem approximable or solvable in polynomial time, depending
on the parameters, while the unconstrained problems remains NP-hard and
unapproximable within a ratio of 3

2 . Our numerical experiments confirmed this
tendency on real-life instances.

As for the operational side, the maintenance rule can be considered as a
reasonable compromise between capital expenditure for the network deployment
and maintenance costs. Its implementation only increases the optimal solution
cost by 3.7 % on our test instances.
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Chapter 7

Synthesis

Theoretical Results

Resolution

This thesis introduces several decision problems related to the design of fiber
cable networks. We provided at least one resolution method for each of these
problems:

• FCND has an integer programming based resolution method.

• FCNDA has two different integer programming based resolution methods.
One of them is based on the one ILP used for FCND.

• BFCND has one integer programming based resolution method.

• SFCND has one integer programming based resolution method; it is in-
spired by the work done for FCNDA.

• ESFCND has one specific mixed integer programming based method as
well as a dynamic programming resolution algorithm.

Valid inequalities

The basic formulations of each problem was not so easy to solve on real-life
instances. Each was enhanced by several families of valid inequalities, which
reduced significantly the computation times. These valid inequalities were es-
pecially necessary in the cases where the continuous relaxation of the basic
formulation was weak.

The coefficients of the valid inequalities are in most cases easy to determine.
However, in some cases we used inequalities with coefficient that are NP-hard to
compute (see (3.21) and (6.24), were coefficients are determined respectively by
a Steiner Tree problem and a Knapsack problem). Those were easy to handle,
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since the problems we solved to determine those coefficients were much smaller
in size than the fiber cables problem considered (FCND or SFCND).

Complexity

We showed in this thesis that all problems considered are NP-hard. However,
there are still differences between their complexities.

This can be seen in the approximation ratios. It was shown (Section 3.2)
that FCND cannot be approximated within a ratio of 2, while we showed that
FCNDA, BFCND and SFCND cannot be approximated within a ratio of 3

2 (re-
spectively in Sections 4.1, 5.2 and 6.3). On the other hand, a FPTAS under some
conditions was provided for ESFCND, showing that it can be approximated as
close as desired to the optimal solution.

We showed that the FCNDA problem could not be easily modeled with a
certain set of variables in Proposition 4.1.2. This result is also valid for the
FCND, BFCND and SFCND problems, it can be shown using the same reduc-
tion. However, the ESFCND problem, which considers an additional mainte-
nance constraint, has a MIP formulation with less variables that was used to
solve it in Section 6.1.2.

Practical results

The results obtained differ in their possible use. All solutions provided are
feasible network designs. However, for a decision regarding the entire network,
one should focus more on Chapters 3 and 4. Indeed, the introduction of tapping
enables more cost savings.

FCND and FCNDA

The design of Fiber Cables Networks in the FTTH is a significant issue for
decision makers. By studying the solutions, it was shown in Chapters 3 and 4
that the introduction of the cable separation techniques (splicing and tapping)
enables significant cost savings. This justifies our focus on fiber cables.

On a computational side, those savings are not easy to obtain. Regarding
FCND, the integer programming solution proposed was able to solve successfully
the smallest real-life instances. The valid inequalities introduced significantly
decrease the computation times. However, the largest real-life instances stay
out of reach. Regarding FCNDA, the integer programming approaches pro-
posed here were efficient enough to solve real-life instances. The enhancements
introduced sensitively improve the computational performances. Furthermore,
the two integer approaches proposed are efficient in different contexts. In case
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of an implementation, one could choose the one more suitable to the cases en-
countered.

Backfeed

The backfeed technique is practiced in real-life deployments by some Orange
affiliates. The introduction of backfeed into the cable network optimisation
process enables significant savings at the expense of harder computations.

Operations Administration and Maintenance considerations

We introduced in Chapter 6 a constraint meant to ease Administration and
Maintenance Operations, especially repairs in case of failures. We compared
two problems which differ by this constraint. After providing several resolution
methods, we were able to compare the solutions.

The maintenance rule introduced can be considered as a reasonable compro-
mise between capital expenditure for the network deployment and maintenance
costs. Its implementation only increases the optimal solution cost by 3.7 % on
our test instances.

We think this rule still needs to be developed for a more general problem in
order to be implemented. Indeed, we compared it without the possibility to do
any tapping.

We proposed two solution methods for the constrained problem. These meth-
ods are complementary, as they prove efficient in different contexts: the dynamic
programming approach is generally faster in graphs where nodes have a small
degree, whereas the mixed integer programming, embedding efficient valid in-
equalities, is generally faster otherwise.

Implementation

The work done in his thesis was implemented in a decision aid tool for Orange.
The implementation uses a civil engineering arborescence, given by previous
decision making. Then, demand nodes are gathered in Points A (PA) for man-
agement reasons. Then, on this arborescence, the FCNDA problem is solved,
using the path-based model from Chapter 4. Finally, the PA are connected to
their respective demand nodes, eventually using the backfeed technique.

This is a significant improvement over the older version of the decision aid
tool, which used to tackle these decisions in a sub optimal fashion, using a
dynamic programming algorithm.

Another advantage of this approach is the flexibility of integer programming.
Indeed, it allows to formulate easily constraints specific to an instance, which is
not the case with dynamic programming.
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Perspectives

Arborescence selection

Chapter 3 tackles a more general problem than Chapter 4. It enables to make
more important savings. On a purely financial level, it would be interesting to
be able to tackle FCND. However, the studies of Chapter 3 showed that it is
not yet within our computing power.

A different approach for solving FCND consists in selecting an arborescence
first and then solve the FCNDA problem on it. This provides a sub-optimal
solution for FCND. It is the solution chosen by Orange. A question that arises
in this approach is: ”which arborescence should we pick in order to have a good
sub-optimal solution for FCND?”.

Some elements of answer to this question are given by Section 3.3. Indeed,
this arborescence is simpler to select in two asymptotic cases: one with negligi-
ble cable deployment costs, and the other one with negligible cable separation
costs (welds and boxes). In further research, one could investigate more thor-
oughly this aspect of the problem.

Signal quality

In order to properly function, the network has to ensure a certain level of signal
amplitude. While going through an FTTH network, the amplitude of a signal
is attenuated. Some of this attenuation is due to the splitters. It is not our
concern here, since we consider the splitting ratio of the network as well as the
splitter locations to be fixed.

However, two other sources of signal intensity losses are due to the Fiber
Cables Network Design:

• The distance on which the signal goes through fiber optics.

• The number and quality of the fiber welds the signal has to go through.
Indeed, at each fiber weld, some losses occur.

Since some of this amplitude depends on the FCND solution chosen, it would
be interesting to model the signal quality constraints. We leave this problem
for future research.

Duct capacity

As specified in Section 2.1, duct capacities should in most real-life cases not
be an issue, due to the relatively small size of fiber cables compared to ducts.
Furthermore, we showed how to adapt the models of Chapter 4 (Remarks 4.2.3
and 4.3.2) in case capacity constraints are needed.
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However, capacity constraints can still occur, and can be harder to model
than the adaptation proposed. Indeed, it can be related to a circle packing
problem. A possible direction of future research could be to investigate the
different ways to express capacity constraints in order to implement them.

Client uncertainty

An aspect that can vary in practical applications is the number of clients. In-
deed, it is usually not fixed before the network deployment. It would be in-
teresting to formulate the problem with client uncertainty rather than a fixed
demand. However, in order to have a good estimation of the client behavior,
one needs preliminary studies.
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