
HAL Id: tel-01892649
https://theses.hal.science/tel-01892649

Submitted on 10 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalizing Time and Causality in Polychronous
Polytimed Models

Hai Nguyen Van

To cite this version:
Hai Nguyen Van. Formalizing Time and Causality in Polychronous Polytimed Models. Modeling and
Simulation. Université Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLS282�. �tel-01892649�

https://theses.hal.science/tel-01892649
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N

N
T

: 2
01

8S
AC

LS
28

2 Formalizing Time and Causality
in Polychronous Polytimed

Models

Thèse de doctorat de l’Université Paris-Saclay
préparée à l’Université Paris-Sud

École doctorale n°580
Sciences et Technologies de l’Information et de la Communication

Spécialité Informatique

en vue de l’obtention du grade de

Docteur en Informatique

Thèse présentée et soutenue à Orsay le 27 septembre 2018, par

Hai Nguyen Van

Composition du jury

Catherine Dubois
Professeur, ENSIIE
Frédéric Mallet
Professeur, Université Nice Sophia Antipolis
Stephan Merz
Directeur de recherche, Inria Nancy
Timothy Bourke
Chargé de recherche, Inria Paris
Marc Pantel
Maître de conférences, Université de Toulouse
Mihaela Sighireanu
Maître de conférences HDR, Université Paris Diderot
Frédéric Boulanger
Professeur, CentraleSupélec
Burkhart Wolff
Professeur, Université Paris-Sud

Présidente

Rapporteur

Rapporteur

Examinateur

Examinateur

Examinatrice

Directeur

Directeur

H
A

I
N

G
U

Y
EN

 V
A

N
FO

R
M

A
LI

ZI
N

G
 T

IM
E

 A
N

D
 C

AU
SA

LI
T

Y
 I

N
 P

O
LY

C
H

RO
N

O
U

S
 P

O
LY

T
IM

ED
 M

O
D

EL
S

Formalizing Time and
Causality in Polychronous
Polytimed Models

Hai Nguyen Van

PhD thesis defended on September 27th, 2018

Frédéric Mallet Professor at Université Nice Sophia Antipolis
Stephan Merz Senior Researcher at Inria Nancy
Catherine Dubois Professor at ENSIIE
Timothy Bourke Research Scientist at Inria Paris
Marc Pantel Associate Professor at IRIT/INPT, Université de Toulouse
Mihaela Sighireanu Associate Professor at Université Paris Diderot
Frédéric Boulanger Professor at CentraleSupélec
Burkhart Wolff Professor at Université Paris-Sud

0 V1 VR liftoff

3 s

time-SI

speed-SI

speed-KT

V1-reach

VR-reach

RTO

liftoff

30.1

56.5

110.0

37.0

69.4

135.0

40.0

75.0

145.9

FACULTÉ
DES SCIENCES
D’ORSAY

F O R M A L I Z I N G T I M E A N D C A U S A L I T Y I N
P O LY C H R O N O U S P O LY T I M E D M O D E L S

D O C T O R A L T H E S I S

Hai Nguyen Van

A thesis submitted in fulfillment of the requirements
for the degree of

Doctor of Philosophy in Computer Science

FACULTÉ
DES SCIENCES
D’ORSAY

Committee in charge

Frédéric Mallet Referee
Stephan Merz Referee
Catherine Dubois Examiner
Timothy Bourke Examiner
Marc Pantel Examiner
Mihaela Sighireanu Examiner
Frédéric Boulanger Supervisor
Burkhart Wolff Supervisor

September 2018

This document was typeset using LATEX and inspired from the typographical
style classicthesis by André Miede and Ivo Pletikoić.

Hai Nguyen Van: Formalizing Time and Causality in Polychronous Polytimed Mod-
els, Doctoral Thesis, © September 2018

Ông, bà, mẹ thân yêu của con.

A B S T R A C T

Integrating components into systems turns out to be difficult when these
components were designed according to different paradigms or when they rely
on different time frames which must be synchronized. This synchronization
may be event-driven (an event occurs because another event occurs) or time-
driven (an event occurs because it is time for it to occur). Considering that each
component admits its own time frame, and that they may not be related, a
unique global time line may not exist.

We are interested in specifying synchronization patterns for such polychro-
nous and polytimed systems. Our study had led us to design semantic models
for a timed discrete-event language, called the TESL language developed by
Boulanger et al. This language has been used for coordinating the simulation
of composite models and testing system integration.

In this thesis, we present a denotational semantics providing an accurate
and logic-consistent understanding of the language. Then we propose an op-
erational semantics to derive satisfying runs from TESL specifications. It has
been used for testing purposes, through the implementation of a solver, named
Heron. To tackle the issue of the consistency and correctness of these semantic
rules, we developed a co-inductive intermediate semantics that relates both the
denotational and the operational semantics. Then we establish properties over
the relation of our semantic models: soundness, completeness and progress, as
well as local termination. Finally, our formalization and these proofs have been
fully mechanized in the Isabelle/HOL proof assistant.

vii

R É S U M É

L’intégration de composants dans un système peut s’avérer difficile lorsque ces
composants ont été conçus selon différents paradigmes ou s’ils se basent sur
différents cadres de temps devant être synchronisés. Cette synchronisation peut
être dirigée par les évènements (un évènement est provoqué par un autre), ou
dirigée par le temps (un évènement se produit parce qu’il en est l’heure). En
considérant que chaque composant admet son propre cadre de temps et qu’ils
peuvent ne pas être reliés, il est possible qu’une unique ligne de temps globale
n’existe pas.

Nous nous intéressons à la spécification de schémas de synchronisation pour
de tels systèmes polychrones et polytemporisés. Notre étude nous a mené à la
conception de modèles sémantiques pour un langage temporisé à évènements
discrets, appelé TESL et développé par Boulanger et al. Ce langage a été utilisé
pour coordonner la simulation de modèles composites et pour tester l’intégra-
tion de systèmes.

Dans cette thèse, nous présentons une sémantique dénotationnelle fournis-
sant une compréhension précise et logiquement cohérente du langage. Puis
nous proposons une sémantique opérationnelle afin de dériver des traces d’exé-
cutions satisfaisant une spécification TESL. Celui-ci a été utilisé pour les pro-
blématiques de test des systèmes, à travers l’implantation d’un solveur nommé
Heron. Pour résoudre la question de cohérence et de correction de ces règles
sémantiques, nous avons également développé une sémantique intermédiaire
coinductive reliant les deux sémantiques dénotationnelles et opérationnelles.
Nous établissons des propriétés sur la relation entre les deux sémantiques :
correction, complétude, progrès ainsi que terminaison locale. Enfin, notre for-
malisation ainsi que les preuves associées ont été entièrement mécanisées dans
l’assistant de preuve Isabelle/HOL.

ix

TÓM TẮT NỘI DUNG

Tổng hợp các bộ phận thành hệ thống tỏ ra là một vấn đề khó khi các bộ phận
được thiết kế bằng các phương pháp hệ khác nhau hay là khi chúng hoạt động
trong các khung thời gian khác nhau được đồng bộ hóa. Sự đồng bộ hoá này có
thể do sự kiện dẫn định (một sự kiện xảy ra là do một sự kiện khác xảy ra), hay
sự đồng bộ hoá này là do thời gian dẫn định (một sự kiện xảy ra là do đến lúc
nó phải xảy ra). Trong trường hợp các bộ phận có khung thời gian riêng mà lại
không liên đới với nhau, thời gian toàn cục duy nhất có thể không tồn tại.

Chúng tôi quan tâm đến vấn đề định rõ dạng mẫu đồng bộ hoá cho các hệ
thống đa bộ (polychronous) và đa thời hoá (polytimed). Nghiên cứu của chúng
tôi đưa đến việc thiết kế các mô hình ngữ nghĩa cho một ngôn ngữ thời hoá
(timed) có các sự kiện rời rạc (discrete event). Ngôn ngữ này được gọi là TESL
do Boulanger và đồng nghiệp thiết kế nên. Ngôn ngữ này đã được dùng để điều
phối việc mô phỏng các mô hình hỗn ghép và để kiểm nghiệm (testing) sự tổng
hợp hệ thống.

Trong luận án này chúng tôi trình bày một ngữ nghĩa biểu thị (denotational
semantics) nhằm hiểu ngôn ngữ này chính xác và mạch lạc về mặt logic. Sau
đó, chúng tôi đề xuất một ngữ nghĩa tác vụ (operational semantics) nhằm suy
ra cách vận hành thoả mãn các đặc tính (specification) diễn đạt bằng ngôn ngữ
TESL. Ngữ nghĩa tác vụ này đã được dùng cho mục đích kiểm nghiệm (testing)
thông qua một công cụ giải (solver) do chúng tôi tạo ra, tên là Heron. Để đảm
bảo tính mạch lạc và chuẩn xác của các qui tắc ngữ nghĩa (semantic rules) này,
chúng tôi lập một ngữ nghĩa đồng-quy nạp trung gian (intermediate co-inductive
semantics), cho phép liên kết được hai ngữ nghĩa biểu thị và tác vụ. Rồi chúng
tôi xác minh các tính chất (property) của mối liên hệ giữa các mô hình ngữ
nghĩa này: cụ thể là hợp lý (soundness), hoàn chỉnh (completeness), tiến triển
(progress) và kết thúc (termination). Phương pháp hình thức hóa (formalization)
mà chúng tôi đề xuất và các phép chứng minh đều được tự động hoá hoàn toàn
trong công cụ hỗ trợ chứng minh Isabelle/HOL.

Many thanks to Thao Dang for correcting this translation.

xi

C O N T E N T S

1 introduction 1

1.1 Context . 1

1.2 Problem . 3

1.2.1 Architectural Composition of Systems 3

1.2.2 Independent Timeframes for Independent Models 5

1.3 Goals and Issues . 6

1.4 Related Work . 7

1.5 Contributions . 8

2 theoretical and technical background 11

2.1 Systems, Models and their Interactions 11

2.1.1 Synchronous and Reactive Systems 11

2.1.2 Realtime Systems . 13

2.1.3 Heterogeneous Systems . 14

2.2 Execution and Simulation with ModHel’X 16

2.2.1 Initial Inspiration . 16

2.2.2 From ModHel’X to TESL 18

2.3 Interactive Theorem proving in Formal Methods 20

2.3.1 Mathematical Preliminaries 20

2.3.2 Programming with Lambda-calculi 22

2.3.3 Theory of Demonstration in a Nutshell 27

2.3.4 The Isabelle/HOL Proof Environment 30

3 language core : teslε 35

3.1 Structures for Execution Traces . 37

3.2 Syntax . 37

3.2.1 The Radiotherapy Machine Example 41

3.2.2 The Power Window Example 42

3.3 Formal Semantics . 45

3.3.1 Denotational Semantics . 45

3.3.2 Operational Semantics . 47

3.3.3 Simulation Steps . 51

4 language with asynchronous extensions : tesl? 55

4.1 Syntax . 55

4.1.1 The Airplane Takeoff Example 57

4.2 Formal Semantics . 60

4.2.1 Denotational Semantics . 60

4.2.2 Towards Stuttering Invariance 61

4.2.3 Operational Semantics . 62

5 language with sequential operators : tesl 65

5.1 Syntax . 65

xiii

xiv contents

5.1.1 The Concurrent Computations Example 68

5.2 Operational semantics . 70

5.2.1 Sustained Implication . 70

5.2.2 Await Implication . 71

5.2.3 Delayed Implication . 71

5.2.4 Filtered Implication . 72

5.2.5 When Implication . 73

6 formal and mechanized certification 75

6.1 Intermediate Semantics and Expansion Properties 76

6.2 Certifying Denotational and Operational Semantics 79

6.2.1 Soundness . 80

6.2.2 Completeness . 80

6.2.3 Progress . 81

6.3 Hygge: a Mechanized Theory in Isabelle/HOL 82

6.3.1 Basic Types and Definitions of the Theory 83

6.3.2 Denotational and Operational Semantics 84

6.3.3 Guarantees and Safety Properties 86

6.3.4 Towards a Certified Solver 87

7 application to testing and monitoring 89

7.1 Heron: a Solver for TESL Specifications 90

7.2 Scenario Conformance Monitoring and Error Detection 92

7.3 Input/output Conformance Testing 94

7.4 Performance . 95

8 conclusion and perspectives 97

8.1 Summary . 97

8.2 Perspectives . 98

bibliography 99

list of figures , tables and listings 105

list of definitions and theorems 109

list of symbols 111

list of acronyms 113

acknowledgments 115

declaration of authorship 117

1
I N T R O D U C T I O N

The software did exactly what it was told to do. In fact it did it perfectly. The reason it
failed is that it was told to do the wrong thing.

— Somers, J. (2017, Sept 26). The Coming Software Apocalypse. The Atlantic.

1.1 context

Software is everywhere. In the past few years, the prevalence of software has
altered the way industrial systems are now being designed. What used to be
electromechanical has crucially become software, whether in an airplane or
in a car. The ability of software to implement and automate complex tasks
in a much more efficient way than mechanical and electrical devices [MSE04,
MV04], has led to its widespread use in most complex systems. As portrayed in
Figure 1, the volume of embedded software carried in Airbus aircrafts exhibits
an exponential growth curve.

A300 A310 A320 A330 A380

0

20

40

60

80

100
Delmas, 2016

2.3 ·10−2 2
5

12

108

So
ft

w
ar

e
Vo

lu
m

e
(i

n
M

B)

Figure 1: Volume of embedded software in Airbus transport-category aircrafts

However, designing software relies on human intelligence and confidence.
Based on this assumption, software are naturally prone to errors and misun-
derstanding. In the best scenario, faults can eventually cause no harm or shall
be prevented upstream. With a more complex system comes even greater risks
of fault. With a more critical system comes a greater degree of gravity. To en-

1

2 introduction

sure safety of such systems which can involve human lives or large money
investment, the demand for program verification has grown rapidly in the past
decades. Especially when considering the complexity growth, it is unavoidable
to automate verification procedures at the expense of manual analysts to ensure
safety, security and maintainability of such large systems. These techniques are
based on logic and mathematics: they are called formal methods.

Two complementary approaches intervene in this process: modeling and veri-
fication.

• On one side, the goal of modeling is to provide an interface for analysts to
abstract systems or physical behaviors into simpler objects. The obvious
outcome is the ability to conceptualize and classify real world problems
to some extent. The very same way that a country map serves as a more
understandable representation of geography and geometry. A model is
nothing but a “map” of what we expect from the real world with respect
to some degree of abstraction. It should not overapproximate, otherwise
it will not demonstrate enough relevance.

• On the other side, we are willing to use models to verify and validate re-
quired properties on the real-world system. We require that the associated
semantics is understandable enough to assess and make decisions. In an
approximation, we lose granularity but gain ability, and even automation
of decisions and procedures. As opposed to a too low approximation that
remains too complex to reason upon.

As a matter of fact, the game is all about looking for a compromise where the
model is accurate enough to reflect real-world behaviors, while remaining sim-
ple enough to gain perspective and to assess properties.

Nonetheless, comparing physical systems to a country “map” would be too
simplistic. A model itself is also a moving object, that can be executed in some
cases to produce behaviors. This is where simulation opposes verification, and
provides the ability to run the model as we run programs. Similarly to satisfi-
ability in logical systems, simulation is done by means of a solver. Again, the
game is about finding the best compromise to yield an accurate simulation,
while keeping a very expressive modeling language.

In fact, models are not so different from programs, they can take inputs,
then can be executed to produce an observable output. They serve as programs
described in a more abstract shape, where programming details do not take
part in the design process. In a relative degree of abstraction, they can even be
translated into low-level programs. All the drawbacks related to programming
details (bit-wise operations, pointers, registers. . .) do not take part in the pro-
cess, and design engineers can produce code while designing models closer to
physical systems. From this statement, the trend in industrial system modeling
has evolved leading to the usage of domain-specific languages: this is the aim

1.2 problem 3

of Model-Based Design (MBD). This sequence of transformations is exhibited
by the model of a simple autopilot (using a Proportional–Integral–Derivative
(PID) controller) in Figure 2a, then a generated program code in Figure 2b, then
the compiled machine code in Figure 2c, and finally the hardware integration
in Figure 2d.

In OutFilters
Proportional
plus integral
compensator

Gain

+
+

(a) Controller Model

while​(​true​) ​{
 error ​=​ desired_value ​–​ actual_value
 integral ​=​ integral ​+​ ​(​err ​*​ iter_time​)
 derivative ​=​ ​(​err ​–​ err_prior​)​ ​/​ iter_time
 output ​=​ KP​*​err ​+​ KI​*​integral ​+​ KD​*​derivative
 err_prior ​=​ err
 sleep ​(​iter_time​)
}

(b) Program
 94 001F 8680 NFLGG2 ​LDAA #$80
 95 0021 9744 ​STAA ALUC
 96 0023 DC00 ​LDD ERRX
 97 0025 DD45 ​STD AREGH
 98 0027 8601 ​LDAA #$01
 99 0029 9749 ​STAA ALUF
 100 002B DC00 ​LDD KPNUM
 101 002D DD47 ​STD BREGH

(c) Machine Code (d) Hardware (a BendixKing autopilot)

Figure 2: From model to hardware

1.2 problem

Our problem is located around the design of complex systems, which involves
different formalisms for modeling their different parts or aspects. The global
model of a system may therefore consist of a coordination of concurrent sub-
models that use differential equations, state machines, synchronous data-flow
networks, discrete event models and so on. This raises the interest in archi-
tectural composition languages that allow for “bolting the respective sub-models
together”, along with their various interfaces, and specifying the various ways
of collaboration and coordination.

1.2.1 Architectural Composition of Systems

The following diagram in Figure 3 of a heterogeneous system model may give
an intuition over the application scenarios we have in mind, assuming different
subsystems A, B and C described in different programming or specification
formalisms, which are coordinated by some architectural glue in the center,
having only access to the interfaces of the subsystems.

In order to tackle the heterogeneous nature of the subsystems, we abstract
their behavior as clocks. Each clock models an event – something that can occur
or not at a given time. From a system-centric perspective, an event corresponds
to a change of some predicate over time-continuous variables, e.g., threshold

4 introduction

A
Timed FSM B

Continuous Time (ODEs)

C
Lustre/SCADE

Architectural
glue

in
te
rf
ac
e

interface

interface

Figure 3: A heterogeneous timed system model

crossing. Then the time at which the event occurred is measured in a time frame
associated with each clock, and the nature of time (integer, rational, real or any
type with a linear order) is specific to each clock. When the event associated
with a clock occurs, the clock ticks. In order to support any kind of behavior
for the subsystems, we are only interested in specifying what we can observe
at a series of discrete instants. There are two constraints on observations: a
clock may tick only at an observation instant, and the time on any clock cannot
decrease from an instant to the next one. However, it is always possible to
add arbitrary observation instants, which allows for stuttering and modular
composition of systems.

Example 1 (The Car Power Window Model). From another perspective of the
issue of heterogeneous modeling in the real world, we cite the example of a
power window system [BHJM11] as found in modern cars. The components
of such a system are designed by people from different technical domains
(electronics, mechanics, automation, control. . .). They are based on different
languages and different paradigms: this is where heterogeneity comes into op-
eration. This kind of system revolves around three main parts as shown in
Figure 4 which can be modeled this way

1. The electromechanical window subsystem with synchronous dataflow
graphs [LM87];

2. The controller with a timed finite state machine [AD94a];

3. The communication bus, which serves as a medium among system parts,
with discrete events.

The abstraction we shape to connect heterogeneous parts is determined by
the interface borders of each model. Each part works as a black box providing
independent behaviors. Their relation and how they are interleaved is meant to
become the behavior of the global system.

1.2 problem 5

AUTO

BUS

Timed Finite
State Machine

Synchronous
DataflowDiscrete

Events

Figure 4: Interaction within heterogeneous parts in the power window case

1.2.2 Independent Timeframes for Independent Models

One of the key ingredient of heterogeneous modeling we also investigate is the
ability for each independent model to live in a completely independent time-
frame. These timeframes are not related unless specified. This belief of how
time should be handled is not uncommon and can even also be required. In this
approach, we want to eliminate the usual assumption of an absolute Newtonian
time, as found in most timed formalisms including timed automata [AD94b].
Hence we consider specification languages with support for events that occur
in independent time frames or in related time frames where time elapses ac-
cording to some relation.

Example 2 (Relativity between Systems). An example of an application is the
combined effects of relative speed (according to Special Relativity) and a weaker
gravity (according to General Relativity) that make time run faster by 38µs per
day for a GPS satellite than for a stationary receiver on Earth.

The dates in seconds in their time frames are related by an affine relation:

tsat =

(
1+

38.10−6

24× 3600

)
trec + offset.

Time frames in which time elapses in a related way live in the same time
island. Time frames which belong to different time islands have unrelated no-
tions of time, which can flow independently. Although this representation of
time is natural in heterogeneous models, it has seldom been studied in the lit-
erature. Such situations are observed when we consider time as measured by
the processor clock in distributed systems. Each system performs computations
in its own time frame where the clock speed varies with respect to processor
load and power consumption. Even if for each run of the distributed system, it
was possible to map dates from one system to dates in the other system, this
mapping is not predetermined, and we should be able not to specify such a
mapping. However, we need a time frame in each local system to specify that

6 introduction

trec

tsat

Figure 5: Effects of relativity on GPS satellite time measurements

some computation is eventually performed after a given duration. We therefore
need time frames that live in different time islands.

1.3 goals and issues

We are interested in languages that allow for specifying timed coordination of
subsystems by addressing the following conceptual issues:

• events may occur in different sub-systems at unrelated times, leading to
polychronous systems, which do not necessarily have a common base clock,

• the behavior of the sub-systems is observed only at a series of discrete in-
stants, and time coordination has to take this discretization into account,

• the instants at which a system is observed may be arbitrary and should
not change its behavior (stuttering invariance),

• coordination between subsystems involves causality, so the occurrence of
an event may enforce the occurrence of other events, possibly after a cer-
tain duration has elapsed or an event has occurred a given number of
times,

• the domain of time (discrete, rational, continuous,. . .) may be different in
the subsystems, leading to polytimed systems,

• the time frames of different sub-systems may be related (for instance, time
in a GPS satellite and in a GPS receiver on Earth are related although they
are not the same).

In this scheme, our problem is twofold:

1.4 related work 7

1. How can we specify the occurrence of events in related or unrelated time
frames?

2. How can we derive potentially infinite traces for such specifications that
combine different paradigms?

1.4 related work

The interest of our study was focused on the Tagged Events Specification Lan-
guage (TESL), a specification language developed by Boulanger et al. [BJHP14]
to coordinate heterogeneous models and behaviors inside the ModHel’X sim-
ulation framework [HB09]. It deals with discrete events (represented as clocks)
and expresses time and causality constraints. They can be gathered in three
main classes.

event-triggered implications . The occurrence of an event on one clock
might trigger another one: “Whenever clock a ticks, clock b will tick under
conditions”.

time-triggered implications . This kind of causality enforces the pro-
gression of time. The occurrence of an event triggers another one after
a chronometric delay measured on the time scale of a clock.

tag relations . When all clocks are combined in a specification, each of
them lives in its own “time island”, with a potentially independent time
scale. The purpose of tag relations is to link these different time scales.

TESL is a polychronous and polytimed language. Polymorphic time exists
in the family of synchronous languages that were designed in the 1980’s, such
as Lustre [HCRP91], Esterel [Ber00] and Signal [GBBG87]. In these languages,
time is purely logical (there are no dates nor chronometric durations), and can
be used for modeling occurrences of any kind of events, hence the polymorphic
nature of time.

Some synchronous models derive all clocks from a root clock, which de-
fines the instants where the system reacts. On the contrary, polychronous mod-
els [TBG+

13] do not constrain all clocks to derive from a single reaction clock,
allowing a more relaxed and concurrent execution of systems. Polychrony is
supported by the Signal language and in Polychronous automata [LGGTB15].

Another source of inspiration for TESL is the Clock Constraint Specifica-
tion Language (CCSL) [MDADS10, And09], which supports asynchronous con-
straints on the occurrence of events. It has an executable semantics [ZM16]
and a denotational semantics [DAG14]. However, all these approaches do not
support chronometric clocks, with dates and durations. They measure time in
numbers of ticks on a clock, not in elapsed durations on a time scale. In oppo-
sition, TESL supports chronometric time, and allows different clocks to live in
different time frames, hence its polytimed nature.

8 introduction

Timed automata [AD94b] support both discrete events and measuring dura-
tions on a time scale, with several mechanization approaches of their seman-
tics [GBFA13, PM01, HCOH93]. However, this time scale is global and uniform:
all clocks in a timed automaton progress at the same rate.

The GEMOC initiative [CCF+
15] has been putting the focus on the develop-

ment of frameworks to facilitate the creation and integration of heterogeneous
modeling languages. In particular, the BCOoL language [VLDCM15] is specifi-
cally targeted at coordination patterns for Domain Specific Events, which define
the interface of a domain specific modeling language.

1.5 contributions

Implemented as a simulation solver

Certi�ed in proof assistant

TESLε
TESL
TESL



sporadic
tag relation

implies
time delayed

precedes
kills

implies not

sustained
filtered
await

delayed
when not

Figure 6: Overview of the contributions developed in this thesis

Our contributions are divided in five parts which are summarized in Fig-
ure 6.

1. In Chapter 3, we first isolate a fragment of the TESL language that we
name TESLε and that is expressive enough to deal with event-triggered
and time-triggered event synchronization. This minimalistic language con-
sists of four constraint operators:

• sporadic: An event will occur at a specific date;

1.5 contributions 9

• tag relation: The timeframes of clocks are synchronized through
some arithmetic relation;

• implies: An event occurrence will instantaneously trigger another
one ;

• time delayed: An event occurrence will trigger another one after a
delay measured on some timeframe.

Our understanding of these mathematical objects first starts with defining
how these operators shall describe runs (also called execution traces). This
is done with a denotational semantics that gives a mathematical description
of the run set for each operator. Then, we need another formalism to gen-
erate these runs in a constructive way. This is done with a symbolic opera-
tional semantics that incrementally generates runs by means of a rewriting
system. Additionally, we prove the key property of local termination that
ensures that computing one simulation instant will terminate.

2. In Chapter 4, we develop an extension named TESL?. Above the previ-
ous minimal fragment, we investigate on the addition of operators to
increase the expressiveness of the language to the extent of compliance
towards real-time modeling frameworks and standards. We notably add
asynchrony to express events with constraints on past events, as well as
some other operators.

• precedes: An occurrence of an event is necessarily preceded by the
occurrence of another event;

• implies not: An event occurrence prevents an occurrence of another
event at the same instant;

• kills: An event occurrence prevents any further occurrence of an-
other event.

In the same way, we provide to these additional operators, a conservative
extension to the denotational and the operational semantics.

3. In Chapter 5, we complete the minimal fragment given in TESLε with ad-
ditional operators as originally found in the TESL language. They consist
of five sequential symbols, i.e., they embed in their structure a state to be
taken into account.

• filtered implies: Implication between events holds within a ratio-
nal pattern;

• delayed implies: An event occurrence triggers another one after de-
laying by a number of event occurrences;

• sustained implies: Implication between events holds within a range
of start and stop control events;

• await implies: An occurrence of an event is triggered when all the
awaited events have occurred at least once;

10 introduction

• when implies: An occurrence of an event is triggered when two
events occur simultaneously.

They are covered with an extension to the operational semantics for solv-
ing purposes.

4. The goal is to relate the operational and denotational semantics that were
previously defined. This is done in Chapter 6 through a coinductive char-
acterization of the language fragments, in the style of expansion laws as
in modal logics. Doing so bridges the gap between both semantics, and
allows us to state safety properties on our approaches. In particular, our
study provides three main properties on our system:

soundness The operational semantics produces runs that are sound
with respect to the denotational semantics;

completeness Any denoted run of the denotational semantics can be
produced by the operational semantics;

progress Also served for testing and simulation purposes, the opera-
tional semantics produces runs where time eventually progresses;

The theory has been formalized into the Isabelle/HOL proof assistant
and all mechanized contributions are available at

https://github.com/heron-solver/hygge

5. Finally in Chapter 7, we explore possibilities given by the operational
semantics we developed for TESL. We applied it for testing and monitor-
ing concurrent models. This was done by implementing it into a solver
for specifications, named Heron [NBB+

17]. It solves TESL specifications
and returns satisfying run prefixes. The solver and its source code are
distributed at

https://github.com/heron-solver/heron

https://github.com/heron-solver/hygge
https://github.com/heron-solver/heron

2
T H E O R E T I C A L A N D T E C H N I C A L B A C K G R O U N D

When your tires are flat, you look at your tires, they are flat. When your software is
broken, you look at your software, you see nothing.

— Gérard Berry

This chapter is dedicated to the introduction of related tools and technolo-
gies that are studied in this thesis. Section 2.1 aims at presenting how some
systems are nowadays modeled. Then we focus on a modeling and simulation
platform named ModHel’X in Section 2.2 that has become the root of our study.
Finally, we present an environment for formal proofs, named Isabelle/HOL
in Section 2.3, that is the key tool to fully certify the well-foundedness of our
approaches.

2.1 systems , models and their interactions

2.1.1 Synchronous and Reactive Systems

Embedded systems are nothing new. However, their pervasive presence in
everyday-life objects (cars, phones, home appliances) has drawn considerable
attention in recent years. Among different models, languages and formalisms,
the public interest has grown on synchronous reactive programming languages
in the 1980’s. This approach is central to the design of digital circuits such as
processors, and hence applied to the field of embedded software.

They rely on the synchronous hypothesis, which assumes that computations
and behaviors can be divided into instantaneous discrete computation steps,
called reactions or execution instants. A program is assumed to react quickly
enough to perceive all external events and in suitable order. A close analogy
can be made with cycles in computation circuits. This lockstep computation
paradigm is necessary to program circuits containing registers as found in most
of computers. A cycle represents a logical step, not a physical time step. The
paradigm is interesting in the sense that it allows to be compiled into executable
code and guarantees deterministic execution and space and time bounds.

Similarly to short-circuits in electronics or deadlocks in parallel systems, the
synchronous hypothesis may cause paradoxes (causality cycles). In an impera-
tive language such as Esterel, these are preceived as

11

12 theoretical and technical background

lack of behavior A signal is emitted if and only if it is absent ;

multiple behaviors A signal must be present if and only if it is present.

2.1.1.1 Lustre

Lustre is a declarative language based on the dataflow model as used by most
control engineers: this for instance includes analog diagrams, block-diagrams,
gates and flip-flops. It is a core language for the SCADE development environ-
ment [Ber07].

A Lustre program is a set of equations, defining sequences of values. It con-
tains point-wise boolean and arithmetical operators, a unit-delay and sampling
operators. It is directly equivalent to graphical representation by block dia-
grams. Moreover, it is synchronous in the sense that at every tick of a global
clock, every operation does a step. A variable of common usage is in fact a
stream ruled by equations. For instance, the equation Z = X+ Y means that for
every instant n ∈N,

Zn = Xn + Yn

A satisfying stream for this equation would trivially be:

X 1 2 1 4 5 6 . . .

Y 2 4 2 1 1 2 . . .

X + Y 3 6 3 5 6 8 . . .

Discretizing time and events with synchrony, allows the language to make
use of the unit delay. This consists of referring to the value of a stream at
the previous step of the computation. Let us consider the linear recurrence
(Sn)n∈N with S0 = X0 and Sn = Sn−1 +Xn. It is written in Lustre as

S = X -> pre S + X

As depicted by the following stream, Lustre features two operators used in
the value delay. One is the unary operator of precedence, written pre. It yields
the value of some stream at the previous computation step. Then the binary
operator “followed by”, written ->, yields a new stream where the first operand
initializes the stream then is followed by the stream of the second operand. In
particular, the latter is necessary to define initial values for delayed streams
which face undefined values, as depicted below by the nil symbol.

X 1 2 1 4 5 6 . . .

pre S nil 1 3 4 8 13 . . .

pre S + X nil 3 4 8 13 19 . . .

S = X -> pre S + X 1 3 4 8 13 19 . . .

2.1 systems , models and their interactions 13

2.1.2 Realtime Systems

Finite-state machines – or automata [HMU01] – allow to elide programming
details in order to reason over global behaviors. They enjoy interesting proper-
ties such as decidability, and enough expressiveness to encode logical problems
such as Presburger arithmetic. However, they are limited by a too high level of
abstraction. They deal with pure logical time: events occur and are ordered,
but their distance is not measurable. Hence systems in which time constraints
need to be considered, cannot be expressed by pure automata. Rajeev Alur and
David Dill introduced timed automata [AD94a] in the early 1990s to overcome
this issue. Their formalism is based on the addition of real-valued variables to
measure time duration between transitions of the automation. Such variables
can be reset along some transitions, or serve as transition guards, and progress
at the same rate.

A simple example depicting a situation where timed constraints are neces-
sary, would be the mouse double-click. A simple click selects an item on screen,
while a double-click opens it. A double click is detected when the elapsed time,
i.e., the duration, between two clicks is less than 500 ms. The timed automaton
in Figure 7 captures this behavior (the 100 ms delay before returning to the
idle state after detecting a click or a double click is arbitrary).

idle wait

simple

double

press

x := 0

x > 500 ms
x:=0

press

x := 0

x > 100 ms

x > 100 ms

Figure 7: Capturing a mouse double-click with a timed automata

modeling with timed automata In the following paragraphs, we recall
a few properties over timed automata as defined by [AD94a]. Note such clocks
are slightly different from those we have in mind.

clocks constraints . For a set of clock variables C, the set Φ(C) is induc-
tively defined by

δ := x 6 λ|λ 6 x|¬δ|δ∧ δ

14 theoretical and technical background

where x is a clock in C and λ ∈ R

Definition 3 (Timed Automaton [AD94a])

A timed automaton A is a tuple 〈S,S0,C,Σ, I,E〉, where

S is a finite set of locations (or nodes),

S0 ⊆ S is a set of initial locations,

C is a finite set of real-valued variables standing for clocks,

Σ is a finite alphabet called actions,

I : S→ Φ(C) maps a location to a set of clock constraints,

E ⊆ S× S× Σ×P(C)×Φ(C) gives the set of transitions.

An edge 〈s1, s2,a,R, δ〉 represents a transition from location s1 to s2 on input
symbol a. The set R ⊆ C denotes the clocks to be reset (to 0) with this transition,
and δ is a clock constraint over C to be satisfied when the transition is taken.

Example 4 (Double-click Automata). The automata shown on Figure 7 is made
of four locations S = {idle, wait, simple, double}, whose start is set at idle.
They rely on a unique action Σ = {press} and a unique clock C = {x}. Transitions
and clock constraints are given by:

E = { 〈idle, wait, press, {x},∅〉,
〈wait, simple,⊥, {x}, {¬x 6 500}〉,
〈wait, double, press, {x},∅〉,
〈simple, idle,⊥,∅, {¬x 6 100}〉,
〈double, idle,⊥,∅, {¬x 6 100}〉 }

Although timed automata enjoy polynomial-space reachability analysis, they
suffer in terms of language-theoretic issues: they cannot be complemented nor
determinized, and the problems of language inclusion and universality are un-
decidable [AD94a]. More importantly, the structure of global time does not
allow to specify models evolving at different rates, which is one of the require-
ments of our study.

2.1.3 Heterogeneous Systems

The problem of heterogeneous modeling rises when different models of compu-
tation are involved in modeling subparts of the system, and how they should
interact. We consider how to combine different paradigms such as: state ma-
chines, block diagrams, process networks, discrete systems, continuous sys-
tems.

2.1 systems , models and their interactions 15

ptolemy ii The approach developed in Ptolemy [Pto14, EJL+
03] relies on

hierarchical composition. The idea is that each hierarchical level uses only one
Model of Computation (MoC). Then their semantics are adapted along three
axes: data, time, and control. Each paradigm is named a semantic domain pro-
vided with execution rules, called a MoC. Each model is defined by actors, that
stand for components that are executed concurrently and sharing data and
messages via ports. An example of model is shown on Figure 8 where three
actors A, B and C interact through their ports. The director (green rectangle)
describes the MoC of the current actor. Then each composite actor gets described
by “smaller” actors.

1.5. MODEL HIERARCHY

Figure 1.4: A hierarchical actor model consisting of a top-level composite actor
and two submodels, each of which is also a composite actor.

1.5 Model Hierarchy

Models of complex systems are often complex. There is an art (the art of model engi-
neering) to constructing good models of complex systems. A good model of a complex
system provides relatively simple views of the system in order to faciliate easier under-
standing and analysis. A key approach to creating models with simplified views is to
use modeling hierarchy, where what appears to be single component in one model is,
internally, another model.

A hierarchical actor model is shown in Figure 1.4. It is an elaboration of Figure 1.3
where actors A and C are revealed to be themselves actor models. An atomic actor
(where atomic comes from the ancient Greek atomos, meaning indivisible), is one that
is not internally defined as an actor model. A composite actor, in contrast, is itself a
composition of other actors. The ports p and q in the figure bridge the levels of hierarchy.
A communication from D, for example, will eventually arrive at actor E after traversing
ports and levels of the hierarchy.

12 Ptolemaeus, System Design

Figure 8: A hierarchical actor model of Ptolemy II (extracted from [Pto14])

Heterogeneity is featured by MoC that Ptolemy handles. Here are a few:

communicating sequential processes Processes communicate by means
of instantaneous rendezvous points. A token is put in a receiver and re-
trieved by another process during the rendezvous.

continuous time An Ordinary Differential Equation (ODE) can be expressed
with integrators and each port in this domain denotes a function on con-
tinuous time.

discrete event Actors communicate with events placed on a timeline (cre-
ated by Lukito Muliadi [Mul99]), where each of them has a value and a
timestamp.

process network Processes communicate by means of FIFO queues [Kah74]
as implemented in receivers.

16 theoretical and technical background

synchronous dataflow A restriction of the latter is the Synchronous Data
Flow (SDF) model [LM87]. The execution of an actor is done by consum-
ing a fixed number of tokens from input and producing a fixed number
of token on output. This allows to statically analyze deadlock and bound-
edness.

The interaction between components needs an interface for each subpart. The
goal is to manage how sending and receiving information for each actor is han-
dled in a generic way. [dAH01] propose a theoretical model in which the issue
is tackled by using interface automata. Each actor is provided with invocation
methods that describe how they are fired and how they receive input tokens.
Such methods are directly put in correspondence with transitions of interface
automata.

2.2 execution and simulation with modhel’x

ModHel’X [HB09] is a framework that similarly addresses the issue of model-
ing several formalisms into a single model. In this framework, heterogeneous
components can be modeled by heterogeneous design paradigms, and the in-
teraction among components and the environment refers to model composition.
Compared to Ptolemy in which interface between components can be incom-
pletely designed, ModHel’X adds a structure of interface blocks that prevents
this lack of design.

2.2.1 Initial Inspiration

the clock-constraint specification language CCSL [Mal08] is a
synchronization language used in the TimeSquare modeling framework. It ap-
plies as an intermediate language for the Modeling and Analysis of Real-Time
and Embedded systems (MARTE) profile [SG13] for the Unified Modeling Lan-
guage (UML), and provides specification and simulation for timed models.
Events are modeled by clocks that define the timeline of events. Logical time
is the main paradigm where time is counted as a number of events. This lan-
guage allows to write specifications for the coordination of models thanks to
polychronous clauses:

synchronous clauses . Events occur instantaneously because other events
occur: coincidence, exclusion and subclocking.

asynchronous clauses . Events occur due to other events in the past: prece-
dence.

Dealing with pure logical time, as in temporal logics, can be useful nowa-
days from a computer-centric view, notably in the context of energy saving
where processor clocks no longer have fixed frequencies, but are lowered (or

2.2 execution and simulation with modhel’x 17

Figure 9: The TimeSquare framework

increased) depending on the current computation needs. Still, the restriction
brings a too high level of abstraction from a system-centric view. Even if the
attempt at modeling realtime problems [PFD11] can be in some cases reduced
to time discretization, where a continuous time domain would be sampled and
reasoned upon with discrete instants, this limitation however entails that oc-
curring events would be observed at the limits of the sampling window. This
approximation may indicate that an event occurs instantaneously with another,
while reality shows that they are just very close.

the tagged signal model The Tagged Signal Model [LSV96] is a frame-
work aiming at describing with a denotational semantics a MoC by means of
signals and systems. A signal is modeled by a sequence of samples, each of
them is attached a time tag ordered in a domain. Time between different do-
mains can be adapted with morphisms. On the contrary, this framework is
too mathematically-theoretical and does not integrate a constructive way to de-
scribe such objects. However, this idea is integrated in the TESL language, and
aims at bridging the final gap to solve MARTE models, where time is not only
discrete but also continuous.

Following this idea, Tag Machines [BCC+
08] propose an algebra of tag struc-

tures and define parallel composition for heterogeneous models similarly. This
setting precisely and mathematically captures the notions of logical time, phys-
ical time, causality, scheduling constraints. . . as a unifying mathematical frame-
work to relate such paradigms. However, relations between time scales are
not explicit and the semantic model lacks constructiveness, which prevents a
machine-concretization of the ideas.

18 theoretical and technical background

2.2.2 From ModHel’X to TESL

Figure 10: The ModHel’X framework with the car power window case study

The main issue of modeling and simulation revolves around determining
the global behavior of such a system and in defining how the heterogeneous
parts in question shall be composed to compute this global behavior. ModHel’X
[BHJM11] is an experimental platform which provides an interface between
these heterogeneous components. It is based on a block diagram description of
models, encapsulated in interface blocks. Doing so allows to model the hetero-
geneous parts, but also how they are supposed to interact. It relies on TESL to
specify the coordination of the heterogeneous parts of a model.

}  ��
➡���

������������������������������������

������������ ��

�����

������������������������

����

��
�������

��������

∑��

���������

×�
�������

�������

�����

������������������

���������

����� ���������

���

�����
���������

�����������

������������������������������������
����������������������������������

Figure 11: Subsystem interface within the supermodel (extracted from [BHJM11])

2.2 execution and simulation with modhel’x 19

The example of the power window is a well-known case study in hetero-
geneous modeling. It depicts the challenge of modeling a power window as
widespread in cars nowadays. Each part of the system is modeled by a MoC,
i.e., an abstract machine with semantics rules. Figure 4 illustrates this exam-
ple in the context of the ModHel’X modeling framework as well. This system
contains a position button, the controller and the electromechanical subsystem.
The controller is modeled by a timed finite state machine, the electromechanical
part by a synchronous dataflow model, and the multiplexed communication on
the bus is described by discrete events.

Figure 12: Adapting semantics between discrete events and timed finite state machines
(extracted from [BHJM11])

While the execution of each of these small models is known and standard,
heterogeneous modeling tackles the issue of executing these models in paral-
lel. This supermodel should synchronize the inputs and outputs of each of its
component part. ModHel’X abstracts models to consider their interface only.
The execution flow runs through all the layers of the supermodel, in a way that
semantic adaptation is ensured and performed at each border of models: they are
based on their corresponding interface blocks as shown on Figure 11.

Figure 12 depicts the adaptation performed by the discrete event/timed FSM
interface block on the running example. In this case, the translation is trivial. On
the left hand-side, discrete events are translated into timed finite state machines
(TFSM) events: an event on the cmd discrete event input pin is interpreted into
a cmd_up or cmd_neutral TFSM event according to its boolean value (0 or 1).
The other way of the translation is analogous.

To adapt semantics, ModHel’X uses interface blocks as in Figure 13 to de-
scribe how information is synchronized. A block is a black-box with an interface.
It has pins for input and output; and a structure, that is a relation between pins
and is defined by the semantics of the MoC. A model is the combination of the
MoC and the structure.

Finally, the time constraints for the semantic adaptation in the whole super-
model are flattened into a TESL specification (given in Listing 4 on page 43)
that is detailed and explained further in Section 3.2.2.

20 theoretical and technical background

ÉCOLE

SUPÉRIEURE

D’ÉLECTRICITÉ Generic Meta-model

Unit of behavior : Block, “black box” with an interface

Unit of interface : Pin, for sending and getting information

Structure : Relations between pins, semantics is defined by the MoC

Model : Model = structure + MoC

Hierarchical heterogeneity

InterfaceBlock : behavior is described by a Model

Model

C

Composite MoC

X

InterfaceBlock

YM

Model

C

Composite

MoC

A B

Semantic Adaptation for Models of Computation Languages and models of computation June 24 2011 8 / 22
Figure 13: Interface blocks in ModHel’X (extracted from [BHJM11])

2.3 interactive theorem proving in formal methods

To understand the foundations of mathematics, logicians from the past cen-
turies investigated how to reason over numbers, and without loss of generality,
over general structures. It is necessary to define a sound basis of computability,
to ensure that all computations done nowadays and in various areas of engi-
neering, are themselves sound, that they do not run on inconsistent foundations
and shall not lead to mistakes and failures. To ensure that, metamathematics, now
called logic, tackle the issue of defining such consistent foundations.

Likewise, defining semantics for specification or programming languages
shall rely on similar accurate and sound basis for the verification and the sim-
ulation of models. Interactive theorem proving tames the issue of formalizing
theories and proofs by mechanizing the logical processes. Hence, a semantic
or logical theory is proved, the same way as the execution of a program. This
section presents a brief overview of the historical foundations that have led to
the actual Isabelle/HOL proof environment [NWP02, NK14] which is at the
heart of our methodology.

2.3.1 Mathematical Preliminaries

We give hereafter some useful mathematical notations for the reader and shall
assume that she or he is familiar with set and recursion theory. That is, N, Z,
Q and D will denote usual sets in mathematics. U = {()} is the singleton set
which contains exactly one element called unit, and B is the set of booleans.

2.3.1.1 Sets, Products and Kleene Stars

Let S be a set. The operator card denotes set cardinality for finite sets, i.e., "the
number of elements in a set". P(S) denotes the powerset of S and Sn as the
n-time cartesian product of S. In particular, its elements will be called tuples over
S and denoted here as (u0, . . . ,un−1), where each u0, . . . , un−1 is a component
of the tuple. Moreover, a sequence over S is an arrow N → S and is denoted as

2.3 interactive theorem proving in formal methods 21

(ui)i∈N. A word over S is an object of the Kleene closure S? which be can be
defined as follows

S? =
⋃
i∈N

Si

We adopt the following and similar notations for tuples, sequences and
words. The k-component projection of a sequence u is written uk or u[k]. The
prefix of length k of the word u is u<k or (ui)i<k. The suffix starting at the k-th
component of u is u>k or (ui)i>k.

Furthermore, a subsequence (or subword) of u is a sequence v such that there
exists a non-decreasing arrow φ : N→ N satisfying vk = uφ(k) (whereN ⊆N).
This weakens the following idea: y is a factor of uwhenever there exists x, z such
that u = x · y · z where · denotes the concatenation of words.

2.3.1.2 Relations and Reductions

Let S be a set. A binary relation R on S is a subset of S× S. Two elements x and
y of S are said to be in relation with R, also denoted x R y if (x,y) ∈ R. Recall

• R is reflexive iff for all x ∈ S, (x, x) ∈ R ;

• R is symmetric iff for all x,y ∈ S, (x,y) ∈ R implies (y, x) ∈ R ;

• R is transitive iff for all x,y, z ∈ S, (x,y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R.

Let R be a binary relation and S a set. We denote R|S as the restriction of R
over domain S, i.e., R|S = {(x,y) : x ∈ S and x R y}. Composing relations R1 and
R2 is given by

R1 · R2
def
= {(x,y) | ∃z (x, z) ∈ R1 and (z,y) ∈ R2}

Finally, we define

• R0 as the reflexive closure,

R0 = {(a,a) | a ∈ S}

• Rn as the n-composition,

Rn = R · Rn−1

• R+ as the transitive closure,

R+ =

∞⋃
n=1

Rn

• R∗ as the reflexive-transitive closure.

R∗ = R+ ∪ R0

22 theoretical and technical background

2.3.1.3 Domains, Recursion and Fixpoints

In recursion theory, let S,S ′ be two sets. The set of partial recursive functions is
S ⇀ S ′, while the set of total functions is S → S ′. Let P be a predicate, Kleene’s
µ-operator (also called minimization operator) is defined as

µx.
[
P(x)

]
= inf

{
x ∈N : P(x)

}
if ∃x P(x)

Finally, we will need some fixpoint theory. Let (X,v,t,u,⊥,>) be a complete
lattice. Recall the following notations

fp(f) =
{
x ∈ X : f(x) = x

}
lfpx f = minvX

{
y ∈ fp(f) : x vX y

}
if exists

lfp f = lfp⊥ f

The usage of least fixpoint operators is restricted to specific algebraic struc-
tures called lattices. The following is a very fundamental fixpoint theorem
which gives the existence and ability to construct the fixpoint of a function
by successive iterations of the function
Theorem 5 (Fixpoint in a CPO (Tarski, Kleene))

If f : X → X is continuous in a complete partial order X and ⊥ is the least element
of X then lfp f exists and can be computed as

lfp f = sup
{
fn(⊥) : n ∈N

}

2.3.2 Programming with Lambda-calculi

2.3.2.1 Untyped Lambda-calculus

In the 1930s, Alonzo Church first introduced a model of computation called
lambda-calculus. In this logical system where terms are called λ-terms, the goal
is to follow the basic rules of functions,

variable A symbol which indistinguishably serves as parameter or function.

application Applying a function to an argument.

abstraction Defining a function with an additional parameter. A variable
is abstracted inside the body of a function.

This system is purely syntactical and only uses variable binding and substitu-
tion to serve its goal. All terms are undistinguished: the parameter of a function
can be a function itself. For instance, the λ-term λx.x stands for a mathematical
object that associates a λ-term x with the same λ-term x. In mathematics, it can
be interpreted as the trivial identity function x 7→ x. In computer science, it can
be a program function that outputs its input.

2.3 interactive theorem proving in formal methods 23

Definition 6 (Grammar of the untyped λ-calculus)

A λ-term M of the untyped λ-calculus is given by

M ::= x (variable)

| λx. M (term abstraction)

| MM (term application)

However, the meaning of such a system needs to be properly defined. A
simple operational semantics can be defined by reductions as given by the
following rule.

Definition 7 (Reductions of the untyped λ-calculus)

(λx.M)E→
β
M[x/E] (β-reduction)

Definition 8 (Equivalence in the untyped λ-calculus)

λx.M[x]→
α
λy.M[y] (α-conversion)

λx.Mx→
η
M (η-expansion)

A β-reduction explicits how some term is computed into a “smaller” one,
e.g., computing the value returned by a function applied to a parameter. The
α-conversion corresponds to renaming the parameter name of a function from
x to y. Note this does not change the behavior of the term if the newly renamed
variable has not already occured before. The application of a function λx.M on
a term E directly corresponds to the term M where free occurrences of symbol
x are substituted by E.

confluence and non-termination The β-reduction we mentioned ear-
lier can be applied at different stages of a term. The order of applying such a
reduction was indeed left unspecified. We can ask ourselves: If we apply some
order of reduction instead of another order of reduction, will we get the same result in
the end? The following theorem gives the answer by stating that β-reduction is
confluent. Two sequence of reductions will eventually reduce to the same term.

Theorem 9 (Confluence of λ-calculus (Church, Rosser))

Let M,M1,M2 be λ-terms such that M1
∗←
β
M
∗→
β
M2. There exists a term M ′,

such that

M1
∗→
β
M ′

∗←
β
M2.

24 theoretical and technical background

Even if confluence property gives good guarantees, it is however not suffi-
cient to provide a safe logical framework of computation. Indeed, this lambda-
calculus is untyped and permits non termination: there are terms that can be
infinitely reducing, they are said to be non strongly normalizing.

Example 10 (Non-termination of ∆∆). For instance, let us consider

∆ = λx.(x x)

The term ∆ is a function that takes as input a function x, and yields its appli-
cation on itself. It is a β-normal form as there exists no further sequence of
β-reductions starting from this term. However, we observe that

∆∆ =
(
λx.(x x)

)(
λx.(x x)

)
→β

(
x x
)[
x/λx.(x x)

]
=

(
λx.(x x)

)(
λx.(x x)

)
= ∆∆

The term ∆∆ is looping. Whenever we apply a β-reduction, the same term is
being yielded.

The previous observation leads to the following: the lambda-calculus system
is as expressive as Turing machines. Any Turing-computable problem can be
expressed in lambda-calculus. It consequently serves as a universal model of
computation given the Church-Turing thesis. This is exhibited by Curry’s fixed-
point combinator that serves to define recursion,

Y def
= λF. (λx. F(x x)) (λx. F(x x))

that has the key property of unfolding the recursion of a functional F (again a
λ-term),

Y F x = F (Y F) x

Example 11 (Factorial function). To define a factorial function fact, we first
assume that we have a conditional if-then-else, the natural integers (e.g., Church
encoding), as well as multiplication ×, predecessor −1 and a predicate isZero
that decides whether an integer is zero. The functional F we define is

F f n
def
= if isZero(n)

then 1

else n× (f(n− 1))

As a matter of fact, the factorial function is defined as

fact def
= Y F

A consequence of these statements is that the problem of deciding whether
two λ-terms are equivalent is undecidable.

2.3 interactive theorem proving in formal methods 25

2.3.2.2 Simply-typed Lambda-calculus

While the untyped λ-calculus is fully adequate to represent computations, it
is yet unsafe to form a basis for logic. In 1940, Church introduced a compu-
tationally weaker but consistent variant of the latter, named the simply typed
lambda-calculus, and abbreviated λ→. The idea is to consider that terms live in
specific domains or universes, and shall remain inside: this is called typing. A
typing judgment provides a statement that enforces some term t to be of type A
given a collection of other type assignments Γ . It is written Γ ` t : A, and reads
“given the typing context Γ , t has type A”.

The issue of term typing is ensured by proving typing judgments. To do
so, Church provided derivation rules, which serve as proof rules. A typing
judgment is valid whenever there exists a derivation tree whose leaves are only
made of axioms, under the following rules

Definition 12 (Typing Rules of λ→)

Γ + {x : A} ` x : A
(ax)

Γ + {x : A} ` t : B
Γ ` λx.t : A→ B

(→i)

Γ ` t : A→ B Γ ` u : A

Γ ` t u : B
(→e)

The axiom rule (ax) states if some context contains the type assignment x : A,
then x admits type A; no further derivation is required. The introduction rule
(→i) states that if a term t has type B with a context containing the information
that x has type A, then the abstraction of t with x is a term λx.t of type A→ B.
Finally, the elimination rule (→e) states that under some context Γ , if t is of
type A→ B and u of type A, the application of t on u is a term t u of type B.

Remark 13. The pattern that we observe on Rule (→e) is very similar to modus
ponens, which is a rule of inference in propositional logic corresponding to
implication elimination. The theorem of proof-program isomorphism by Curry,
Howard and de Bruijn will explore this idea.

Remark 14. Type annotations in simply typed lambda-calculus resemble a lot
of functions as known in elementary set theory. Indeed, they can be straight-
forwardly interpreted so: types are mapped to sets, and typing judgments to

26 theoretical and technical background

functions. Assume that for any basic type ι there exists a non-empty set Sι1, we
can inductively associate a set JAK to each type A:

JιK = Sι

JA→ BK = JBKJAK

where BA is the set of all functions from set A to set B.

2.3.2.3 Polymorphism with ML-style

A program can serve the same purpose while being applied to different types.
In our logical system, we wish a term to have the ability to admit possibly
several distinct types, this is called polymorphism. Let us consider the example
of a list-sorting function: sorting elements is independent of the type of the
elements, given a comparison function. The simply typed lambda-calculus is
monomorphic, while we want to be able to specify this kind of polymorphic
type:

∀α. (α→ α→ bool)→ α list→ α list

which can later be instantiated with concrete types, such as

(int→ int→ bool)→ int list→ int list

(float→ float→ bool)→ float list→ float list

Compared to λ→, we internalize the type variables inside the type system. This
way we are able to reason and manipulate elements in an abstract way: the
variable α is said to be an abstract type.

damas-milner system . Girard (1972) and Reynolds (1974) independently
introduced the polymorphic λ-calculus, so-called System F. It is a direct ex-
tension of λ→, which abstracts types the same way that terms are abstracted.
They introduce a different level of abstraction and application for types. Unfor-
tunately, such a type system faces too much impracticability. More precisely in
the Curry-style variant without explicit annotations, type checking i.e., checking
whether some λ-term admits a specific type, is not decidable. Moreover, if we
write terms without fully expliciting type annotations, the goal of type inference
is to compute the weakest type that the term admits. Both problems have been
proven to be equivalent [Wel99], and hence undecidable.

Damas and Milner’s type system (1978), also abbreviated ML-style, offer a
restricted approach of polymorphism that overcomes such obstacles. It is cur-
rently at the heart of well-known functional programming languages, such as

1 That is type ι is inhabited

2.3 interactive theorem proving in formal methods 27

Standard ML, OCaml and Haskell. The core idea is based upon a small exten-
sion of λ→ with a primitive let-binding. It consists of factoring out a subex-
pression e1 in a term e2[x/e1] using a let-binding let x = e1 in e2. Here is
an implicitly-typed version, where an ML-term M is defined by the following
grammar

Definition 15 (Grammar of ML-style)

A λ-term M of λ→ is given by

M ::= x (variable)

| λx. M (term abstraction)

| MM (term application)

| let x =M inM (let-binding)

where we recall in gray the grammar for λ→.

In this system, the let-binding no longer exists as the usual syntactic sugar
let x = M1 in M2 := (λx.M2) M1. It is defined as a language primitive with a
proper typing rule. In particular, the grammar of types has two levels: types on
one side, type schemes on the other side. From now on, we have

Definition 16 (Type schemes in ML-style)

τ ::= α (types)

| τ→ τ

σ ::= τ (type schemes)

| ∀α. σ

In this setting, the problem of deciding whether two λ-terms are equivalent
is decidable, and provides good logical foundations.

2.3.3 Theory of Demonstration in a Nutshell

To increase confidence in theories and proofs, we need to formalize the logical
reasoning that drives proofs as we usually know them. The biggest advances
were brought in the 1930s by Gentzen and Prawitz. We present a short intro-
duction to the topic of demonstration based on natural deduction. The goal is
to define a logical system to allow proof-checking in finite time. Consequently,
this allows to mechanize the task of checking whether a proof is logically valid.
In propositional logic, e.g., SAT problems, proofs can be given with truth tables
and values which is a semantic perspective. Yet, proofs as we usually have in
mind are rather based on a syntactical perspective made of conclusions derived
from premises.

28 theoretical and technical background

The first deduction systems were brought by Hilbert but were not practical
to carry out proofs. The biggest advance was brought by Gentzen with the
introduction of judgment rules for Natural Deduction (ND) [Dal04].

2.3.3.1 Natural Deduction

Let us restrict ourselves to the connectives⇒ (implication), ∧ (conjunction) and
⊥ (false). ND is a proof calculus that allows to prove statements by deriving
a proof tree. Each connective admits an introduction and an elimination rule.
To prove a term, the proof designer will interactively provide a tree leading to
axiom leaves.
Definition 17 (Deduction System)

A deduction system is a set of judgment rules of the kind

A0 . . . An−1
An

.

This rule reads as “from the assumptions A0 to An−1, we conclude An”.

In the following, ¬A is an abbreviation for A⇒ ⊥.

Definition 18 (Rules of Natural Deduction)

A∧B

A

A∧B

B
(∧e)

A B

A∧B
(∧i)

A A⇒ B

B
(⇒e) [A]

· · ·
B

A⇒ B
(⇒i)

⊥
A

(⊥e) [¬A]

· · ·
⊥
A

(RAA)

The rules for ∧ are straightforward: (Rule ∧e) If we have A∧B, then we can
have A; as well as we can have B. (Rule ∧i) If we simultaneously have A and
B, then we have A∧ B. For the implication connective: (Rule ⇒e) If we have
A and A ⇒ B, then we have B. (Rule ⇒i) If we can derive B from A (as an
hypothesis), then we have A⇒ B. In the case of ⊥: (Rule ⊥e) An absurdity can
derive anything (ex falso quodlibet); (Rule RAA) on the side, the principle of
proof by contradiction is similar, but states that if we can derive a contradiction
from ¬A, then there exists a derivation of A.

2.3 interactive theorem proving in formal methods 29

The terms given in square brackets introduce the principle of canceling (or
discharging) hypotheses. In the introduction rule of ⇒, the hypothesis A has
disappeared to continue the proof with B, but we store the information of A
without necessarily using it, so that it will be useful at some other time in the
upper derivations of the tree.

A well-known example of Rule RAA in analysis would be: if we want to
prove that some l is the unique limit of a sequence (un), we prove that the
sequence admits at most one limit: we suppose there are two distinct limits l
and l ′, and finally derive a contradiction.

2.3.3.2 Proofs in Higher-Order Logic

Although first-order logics, we have in mind to represent predicates and sym-
bol functions, enjoy good properties (countable set of valid formulae), they are
however insufficient to express higher-order properties as would be found in
elementary mathematics. For instance,

P x→ P x

will remain true, no matter what value is assigned to x. In other words, first-
order logic would express this as

∀x P x→ P x

Still, whatever the interpretation is given to the predicate P, the formula re-
mains valid. This cannot be expressed in first-order logic but we want to write

∀P ∀x P x→ P x

This is why higher-order logic overcomes this limitation by extending the
power of expressiveness and allows quantification over predicates and func-
tions. For instance, usual induction schemes apply for any property P on in-
ductive structures as on natural integers,

P(0)

[
P(n)

]
· · ·

P(n+ 1)

P(n)
(ind)

The logic system of Isabelle/HOL is based on natural deduction of Higher
Order Logic (HOL) [Chu40] where terms come from the λ-calculus with poly-
morphism in ML-style.

30 theoretical and technical background

2.3.4 The Isabelle/HOL Proof Environment

Isabelle/HOL [NWP02, NK14] is the specialization for HOL of the Isabelle
generic system for implementing logical formalisms. It is a combination of logic
and functional programming. It uses the Damas-Milner type system extended
with type classes and integrates ND, while providing support for the usual
constructs of functional programming, such as pattern-matching, datatypes, re-
cursive functions and definitions, and records.

Figure 14: The jEdit IDE with datatypes in Isabelle/HOL

Figure 14 depicts the jEdit IDE that is used for developing theories in Is-
abelle/HOL. The keyword datatype creates a new sum type named list which
has a type parameter ’a, and two constructors Nil and Cons. They are similar
to the usual definition of lists. Nil denotes the empty list, while Cons denotes
the concatenation of a term of type ’a with another list containing elements of
the same type ’a. Then two functions app and rev are inductively defined on
the structure of the sum type ’a list. The first function appends the elements
of the right-component list to the left-component list by inductively unfolding
the structure. The second function reverses the elements of the list. Finally, the
keyword value executes a term by computing its normal form.

2.3 interactive theorem proving in formal methods 31

2.3.4.1 Brief Syntax

Isabelle strongly relies on conservative extensions. This means that the addition
of theories will not break provability of any term from the previous theory.
Theories are decomposed into definitions and lemmas that are described by
the following type system.

The type system of HOL consists of four sorts of types

• base types, also called constants, like bool for the type of truth values, nat
for the type of natural integers, and int for the type of mathematical
integers;

• type constructors such as list for the type of lists and set for the type of
sets;

• function types written as⇒

• types variables written as ’a, ’b. . .

A term t of type τ is written t :: τ. Types can be left unspecified and Isabelle
automatically infers when disambiguation is not necessary.

Similarly to functional programming subject reduction holds: if f is a function
(i.e., a λ-term) of type τ1 ⇒ τ2 and t is a term of type τ1, then the application of
both is a term f t of type τ2. Likewise, the usual syntactic sugars of functional
programming are available:

• conditional value, written as if b then t1 else t2;

• let-binding, written as let x = t in u;

• pattern-matching written as case t of pat1 ⇒ t1 | . . . | patn ⇒ tn.

Logical formulae are terms of type bool. They contain the basic constants
True, False and are closed under negation (¬), conjunction (∧), disjunction (∨),
implication (−→) and quantification (∀, ∃). Above these constructs, Isabelle em-
ploys meta-implication (=⇒) to structure derivations. Let A0 . . . An be logical
formulae, a meta-term A0 =⇒ . . . =⇒ An−1 =⇒ An is similar to the structure
of ND for inference rules:

A0 . . . An−1
An

Finally,
∧

denotes introduced variables in the proof context as found with dis-
charged hypotheses in ND.

2.3.4.2 Statements and Proofs

Proofs in Isabelle/HOL can be stated in two ways. To highlight the differences
between both approaches, we first illustrate the classic apply-script style on the
small theory shown on Figure 14.

32 theoretical and technical background

apply-script style Proofs are sequences of tactics application. They con-
sist of rule applications or proof methods. They are linear while proof trees
are branching. Hence, they are applied on the proof tree on pre-order traversal.
Due to these restrictions, they are unreadable and hardly maintainable.

The function rev entails the following theorem: reversing a reversed list
yields the same list.

1 theorem rev_rev: "rev (rev l) = l"

Note that l appears here as a free variable, it is considered in Isabelle as
universally quantified outside by default. The typical proof process for lists is
structural induction (empty, then non-empty cases).

2 apply (induction l)

The current proof state now contains two goals to solve and the output win-
dow of Isabelle displays

proof (prove)

goal (2 subgoals):

1. rev (rev Nil) = Nil

2.
∧

x1 l. rev (rev l) = l =⇒
rev (rev (Cons x1 l)) = Cons x1 l

The first subgoal is the base case with the empty list Nil. The second one
is the inductive case with the non-empty list and the induction hypothesis in
assumption. Then the proof process continues by solving the first goal, poten-
tially yielding even more subgoals. Finally, the proof ends whenever no subgoal
is left. In this case, the subgoals are trivial enough to be solved by Isabelle’s sim-
plification engine and the proof ends with

3 apply (simp) solves the first subgoal
4 apply (simp) solves the second subgoal
5 done

isar style To take advantage of the branching nature of proofs, the Isar
language [Nip03] structures breakpoints to decompose a proof into manually
defined goal statements, so that it is not necessary to “run” the proof to know
the proof state. The proof designer adopts a forward reasoning and writes
proofs as naturally as on a chalkboard.

In the style of Isar, subgoals have to be clearly stated by the proof designer.
Compared to the Isabelle engine produced subgoal, a “manual” subgoal can be
declared in a different order, or can contain renamed variables, as long as it can
pass unification. If the proof is by induction, Isabelle recognizes the structure,
and the proof directly reflects the idea of usual induction reasoning. A proof
sketch of the previous theorem would be

2.3 interactive theorem proving in formal methods 33

2 proof (induction l)

3 case Nil corresponds to the base case
4 then show ?case

5 by simp

6 next

7 case (Cons x1 l) corresponds to the inductive step
8 then show ?case

9 by simp

10 qed

Although Isar-style proofs may seem more verbose, they ensure a higher
level of maintainability compared to other well-known proof assistants. By en-
joying unification, structural changes in the proof engine that may lead to proof
incompatibilities between prover versions that are more easily handled in this
situation. Besides, any non-proficient Isabelle user can read and understand the
underlying proof structure.

Example 19 (Irrationality of
√
2). To prove that

√
2 is not a rational number, we

use a proof by contradiction. Assume it was rational, it would decompose as
a fraction m

n where m and n are coprime mathematical integers. This entails
m2 = 2n2, and that 2 divides m2, and consequently m. Thus, 2 divides m and
then again n, so both are not coprime, which conflicts with the assumption.
Hence,

√
2 cannot be rational. This pattern is written in Isabelle/HOL as

Listing 1: Proof sketch of irrationality of
√
2 in Isabelle/HOL

1 theorem sqrt2_not_rational: "sqrt (real 2) /∈ Q"

2 proof

3 let ?x = "sqrt (real 2)"

4 assume "?x ∈ Q"

5 then obtain m n :: nat where

6 sqrt_rat: "|?x| = real m / real n"

7 and lowest_terms: "coprime m n" by ...

8 then have "real (m^2) = (?x)^2 * real (n^2)" by ...

9 then have eq: "m^2 = 2 * n^2" by ...

10 then have "2 divides m^2" by ...

11 then have "2 divides m" by ...

12 have "2 divides n" by ...

13 with ‹2 divides m› have "2 divides gcd m n" by ...

14 with lowest_terms have "2 divides 1" by ...

15 then show False by ...

16 qed

34 theoretical and technical background

2.3.4.3 Type Classes and Instanciation

In algebraic structures, it is necessary to reason at higher order than sets. For
instance, a semigroup (S,⊗) is the pair of a set S and an inner connective ⊗
that satisfies the property of associativity. Likewise, Isabelle allows to specify
that some type with some operations shall satisfy a specific algebraic structure:
this is the idea of type classes [Haf13]. In this case, we write

1 class semigroup =

2 fixes mult :: "’α ⇒ ’α ⇒ ’α" (infixl "⊗" 70)

3 assumes assoc: "(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

A non-refutable idea is that the set of mathematical integers (type int) with
usual addition is a semigroup. By omitting proofs, we simply write

4 instantiation int :: semigroup

5 begin

6 definition mult_int_def : "i ⊗ j = i + (j::int)"

7 instance proof by ... qed

8 end

2.3.4.4 Semantic Subtyping

Another feature of Isabelle/HOL is the introduction of new types with the
typedef command to create semantic subtypes in the style of Gordon/HOL.
From a type α, it uses a set comprehension S = {x : α | P x} over type α to
create another type β, and axiomatizes two isomorphisms

Abs : α→ β

Rep : β→ α

These arrows satisfy the equations

∀x Rep x ∈ S
∀x Abs(Rep x) = x

∀x ∈ S Rep(Abs x) = x

As an example, we can define a type even_int for even integers as follows.
Note that the type definition comes with a proof obligation that states that the
subtype admits an inhabitant. Otherwise a type defined by an empty-set would
lead to inconsistencies.

1 typedef even_int = "{ n::int. n mod 2 = 0 }"

2 by (meson mem_Collect_eq mod_0)

3

L A N G U A G E C O R E : TESL ε

Less is more.

Our aim is to design a declarative language for specifying timed behaviors
of discrete events and their synchronization. In our setting, event occurrences
(aka ticks) are grouped in clocks, which give them a time-stamp (aka a tag) on
their own time scale. Tags represent the occurrence of the event at a specific time.
The tag domains used for time must be totally ordered; typically, they are reals,
rationals, integers, as well as the singleton U, which is used for purely logical
clocks where time does not progress.

event-triggered implications . The occurrence of an event on one clock
might trigger another one: “Whenever clock a ticks, clock b will tick under con-
ditions”. For instance, to model the fact that the minutes hand of a watch moves
every minute, we will say that the clock min implies the clock move.

time-triggered implications . This kind of causality enforces the pro-
gression of time. The occurrence of an event triggers another one after a chrono-
metric delay measured on the time scale of a clock. For instance, in order to
specify that the clock min ticks every minute, we can require that min clock im-
plies itself with a time delay of 1.0 measured on its time scale. It is important
to note that this delay is a duration (a difference between two tags) and not a
number of ticks.

tag relations . When all clocks are combined in a specification, each of
them lives in its own “time island”, with a potentially independent time scale.
The purpose of tag relations is to link these different time scales. For instance,
time runs 60 times as fast on clock sec as on clock min. This does not mean
that the faster clock has more ticks, it only means that in any given instant,
the tags of these clocks are in a ratio of 60. In general, TESL allows for fairly
general tag relations (permitting even acceleration or slow-down); for the sake
of simplicity, we will present only affine tag relations throughout the examples;
this reduces the complexity of constraint solving to handling linear equation
systems.

35

36 language core : teslε

Here is a TESL specification for the examples above:

Listing 2: Specification of a clock watch in TESLε

1 rational-clock sec

2 rational-clock min sporadic 0.0

3 unit-clock move

4 tag relation sec = 60.0 * min

5 min implies move

6 min time delayed by 1.0 on min implies min

Lines 1 to 3 declare clocks sec and min with rational tags, and clock move with
the unit tag. The constraint sporadic enforces a tick on min with tag 0.0. Line 4

specifies that time on sec flows 60 times as fast as on min. Line 5 requires that
each time the min clock ticks, the move clock ticks as well. Line 6 forces clock
min to be periodic with period 1.0, specifying that it ticks every minute. The
grammar of such expressions will be detailed further in Section 4.1.

sec

min

move

0.0 60.0 120.0

0.0 1.0 2.0

() () ()

0 1 2

(a) Returned by simulation engine

sec

min

move

0.0 60.0 61.0 120.0

0.0 1.0
61
60 2.0

() () () ()

0 1 2 3

(b) Alternative possibility at instant 3

Figure 15: Two partially satisfying runs of the clock watch

We study a specification language that defines the set of possible execution
traces or runs of a global system. In Figure 15 we present two of them:

• Runs are presented by ticks (solid red rectangles).

• They are timestamped with tags (small green numbers) on the time-scales
of the clocks sec, min and move.

• Additionally, they are grouped in a sequence of synchronization instants
(dashed vertical lines above blue numbers).

Note that an infinity of other runs satisfy this specification, both from an
architectural point of view (runs with additional clocks) and from a behavioral
point of view (runs with additional ticks or instants). For instance, Figure 15b
shows a run with an additional tick on move, which may correspond to a move-
ment of the minute hand caused by manually setting the time on the watch.

The original TESL simulator only computes “minimal” runs, as first shown
in Figure 15a, which makes its interpretation deterministic. Since our objective
is to turn TESL into a specification language for timed behaviors, we consider
not only minimal runs of the system, but any run of a given specification.

3.1 structures for execution traces 37

3.1 structures for execution traces

More formally, we chose to model a run as a map from clocks to event occurrences.
The latter consists of a boolean indicating the occurrence, and a time tag which
gives the date of the occurrence in the time frame of the clock.

Definition 20 (Run)

Runs are defined as

K countable set of clocks K1,K2, . . .

T domain of tags

Σ = K→
(
B×T

)
set of instants

Σ∝ = N→ Σ set of runs

ρn nth position (instant) in the run ρ ∈ Σ∝

For clarity purposes, we elide some conditions applied to tags:

algebraic structure . The tag set T is an abbreviation for a field together
with a total order 〈T,+T,×T, 0T, 1T,6T〉;

monotony. For a given run ρ ∈ Σ∝, the tags on any clock K are non-decreasing
with respect to the instant index n.

Moreover, we define two projections that extract the components of an event
occurrence:
Definition 21 (Projections for Ticks and Tags)

ticks(σ(K)) ticking predicate of clock K at instant σ ∈ Σ (first projection)

tag(σ(K)) tag value of clock K at instant σ ∈ Σ (second projection)

Example 22. For instance in Figure 15a, where the tags are rationals for clocks
sec and min: Tsec = Tmin = Q; while unit for clock move: Tmove = U. The run is
noted ρ, we have

ticks(ρ0(sec)) = false tag(ρ0(min)) = 0.0

ticks(ρ0(min)) = true tag(ρ0(move)) = ()

3.2 syntax

The first collection of operators of the TESL language consists of basic formulae
that capture the essence of timed constraints along with synchronous causality.
They are expressive enough to illustrate causality and time scale relation be-
tween events. Here is a grammar.

38 language core : teslε

Definition 23 (Grammar of TESLε)

A TESLε formula Ψ is given by

Ψ ::= 〈atom〉 ∧ . . . ∧ 〈atom〉
〈atom〉 ::= 〈clock〉 sporadic 〈tag〉 on 〈clock〉

| tag relation b〈clock〉, 〈clock〉c ∈ 〈relation〉
| 〈clock〉 implies 〈clock〉
| 〈clock〉 time delayed by 〈tag〉 on 〈clock〉 implies 〈clock〉

where 〈clock〉 ∈ K, 〈tag〉 ∈ T, and 〈relation〉 ⊆ T×T.

A specification Ψ is a conjunction of atomic formulae that must be all satis-
fied. We give some intuition of the required behavior for each atomic formulae
with examples that illustrate technical points that we detail further.

sporadic on.

Kevt sporadic τ on Kmeas

specifies that some event will occur on the first clock Kevt at timestamp (tag)
τ measured on the second clock Kmeas. Figure 16 shows three runs of length 2
that satisfy the statement where τ = 1.0. Both Figure 16a and Figure 16b show
the event occurrence depicted by a tick on clock Kevt and a time tag of 1.0 on
Kmeas instantaneously: these runs are said to be satisfying. On the other side
Figure 16c shows a run when the time on clock Kmeas has not elapsed enough
so that Kevt could tick. Even if it does not show an event occurrence that would
match with the statement, it can serve as a prefix for a future run where time
would have progressed enough to reach the desired time tag. As the future part
is not yet clear, this run is said to be partially satisfying

Kmeas

Kevt

1.0 1.5

0 1

(a) Event occurrence with time
1.0 at instant 0

Kmeas

Kevt

0.5 1.0

0 1

(b) Delay of then event occur-
rence to instant 1

Kmeas

Kevt

0.0 0.5

0 1

(c) Delay even further

Figure 16: Satisfying runs for the sporadic on atom where τ = 1.0

sporadic .

K sporadic τ

3.2 syntax 39

is a syntactic sugar that mixes the event and measuring clocks. It is a direct
synonym for K sporadic τ on K and admits the same way two satisfying runs
as shown in Figure 17.

K
1.0

0 1

(a) Event occurrence with
time 1.0 at instant 0

K
1.0

0 1

(b) Delay of then event occur-
rence to instant 1

Figure 17: Satisfying runs for the sporadic syntactic sugar

tag relation.

tag relation bK1, K2c ∈ R

gives a relation between the time frames of two clocks K1 and K2. The tags of
the clocks must satisfy the relation at every instant. Such can be interpreted as
a way to express how time flows faster or slower on some clock, compared to
others. It enforces the tag-driven paradigm where time is precisely measured
and stamped with a tag, but not a number of tick counts as in many discrete
models. Figure 18 shows two satisfying runs of the formula with two different
tag domains (integers and reals) and the arithmetic relation R = ((x1, x2) 7→
x1 = 2x2).

K1

K2

4

2

6

3

0 1

(a) Tag relation on integers N

K1

K2

2
√
2

√
2

2
√
3

√
3

0 1

(b) Tag relation on reals R

Figure 18: Satisfying runs for the tag relation formula where R = ((x1, x2) 7→ x1 =

2x2)

implies .

K1 implies K2

is a synchronous implication. It specifies in every instant, if the clock K1 is tick-
ing, then the second clock K2 is ticking too. It is a stream-wise interpretation of
the logical implication in propositional logic. Figure 19 shows a satisfying run
where the master clock K1 is false (idle) or true (ticking), and the consequence

40 language core : teslε

on the slave clock K2 at every instant. It is not possible for K1 to tick and K2
not to.

K1

K2

0 1 2

Figure 19: A satisfying run for the implies formula

time delayed.

Kmaster time delayed by τ on Kmeas implies Kslave

is a time-triggered implication. Whenever the first (master) clock Kmaster is tick-
ing, the time tag on the second (measuring) clock Kmeas is instantaneously mea-
sured and delayed by a duration of τ to obtain the date in a future instant at
which the third (slave) clock Kslave will have to tick. Figure 20 shows a satis-
fying run with two ticks on the clock Kmaster, whose instantaneous timestamp
on Kmeas is delayed with a duration of 0.1 and triggers at that new timestamp a
tick on Kslave.

Kmaster

Kmeas

Kslave

0.0

0.0

1.0

0.1 0.2

2.0 3.0

0.3

0 1 2 3

Figure 20: A satisfying run for the time delayed formula where τ = 0.1

periodic . Note on Figure 20 that the minimum number of ticks on Kslave
depends on the number of ticks on Kmaster. Conflating both clocks would cre-
ate a loop where each tick requires another successor tick. This leads to the
definition of periodic clocks by means of a syntactic sugar: K periodic τ means
K time delayed by τ on K implies K. It admits a partially satisfying run given
by Figure 21 where τ = 0.1. As every tick requires a successor one, the fourth
tick requires another fifth, and so on. Hence, this run cannot fully satisfy the
formula. Consequently, its only satisfying runs are infinite.

Remark 24. Following the previous remark, we observe that satisfying runs of
TESL can be either finite or infinite. Nevertheless, according to our experiments,

3.2 syntax 41

K
1.0 1.1 1.2 1.3

0 1 2 3

Figure 21: A satisfying run for the periodic formula

we believe that the infinite satisfying runs can be folded and symbolically and
finitely described under some conditions. A periodicity of range modulo re-
naming of timestamps with respect to some relation has been observed each
time. This idea will be explored in future work.

3.2.1 The Radiotherapy Machine Example

2

The Therac 25

Therac 25 Turntable

Figure 22: The Therac-25 radiotherapy machine [LT93]

This small core language is able to express needs for physical computations
and event-driven behaviors. We are interested in modeling the simple behavior
of a radiotherapy machine used in cancer treatment. The patient has a pre-
scription of 2 Gy of radiation in low-dose-rate of 1.5 Gy.h−1. Here is a TESLε
specification expressing the case in Listing 3:

Listing 3: Specification of a radiotherapy machine in TESLε

1 rational-clock hr // Time unit in hours

2 rational-clock gy // Radiation unit in Gray

3 unit-clock start sporadic () // Start emitting rays

4 unit-clock stop // Stop emitting rays

5 unit-clock emstop // Emergency stop

6 tag relation gy = 1.5 * hr

7 start time delayed by 2.0 on gy implies stop

42 language core : teslε

8 emstop implies stop

Lines 1 to 5 declare clocks hr and gy with rational tags, and clocks start,
stop and emstop with the unit tag. The constraint sporadic enforces a tick on
start. Line 6 specifies that time on hr flows 1.5 times as fast as on gy. Line 7

specifies that each time clock start ticks, clock stop will tick after a delay of
2.0 measured on the time scale of clock gy. Line 8 requires that each time the
emstop clock ticks, the stop clock instantaneously ticks as well.

hr

gy

start

stop

emstop

0.0

0.0

()

1.33

2.0

()

0 1

(a) Normal situation

hr

gy

start

stop

emstop

0.0

0.0

()

0.5

0.75

()

()

1.33

2.0

()

0 1 2

(b) Emergency stop

Figure 23: Two partially satisfying behaviors for the radiotherapy machine

Two behaviors are illustrated in Figure 23. They show possible execution
traces or runs satisfying the TESL specification. Likewise, a run consists of a
sequence of synchronization instants (dashed gray lines). Each of them contains
ticks (solid red rectangles) timestamped with tags (small numbers) on the time-
scales of the clocks hr, gy, start, stop and emstop.

The original TESL simulator only computes “minimal” runs, as depicted by
Figure 23a, which corresponds to a deterministic interpretation creating only
mandatory event occurrences. On the other side, Figure 23b shows a behavior
with an additional tick on clock emstop when the time on clock hr is 0.5, which
may correspond to a manual push on an emergency stop button. Needless to
say that the specification admits an infinite number of satisfying runs.

3.2.2 The Power Window Example

Recall the example of the car power window from Section 2.2.2. It consists
of four subsystems: a button, a Timed Finite State Machine (TFSM), a SDF
model of the electromechanical servo, and a Discrete Events (DE) model of
the Controller Area Network (CAN) bus, which interconnects the three latter
subsystems. Let us only consider raising up the window.

1. The command given by the button can only by pulled up and released,
modeled by the clocks btn_up and btn_neutral.

3.2 syntax 43

2. From the controller side, clocks up and stop both stand for the input
events of the TFSM ; and clock power for the output event interpreted as
sending a power command to the electromechanical servo.

3. The electromechanical servo has an input event denoted by the clock
update_power, corresponding to an update of the power to deliver to the
motor engine. As it is modeled by a SDF, the event can only be consid-
ered when it reacts to compute the next state occurring every 50 ms and
modeled by a input event of clock react

Listing 4: Specification of a power window in TESLε

1 unit-clock btn_up // the button is pulled up

2 unit-clock btn_neutral // the button is released

3 unit-clock up // the TFSM receives an up event

4 unit-clock stop // the TFSM receives a stop event

5 unit-clock power // the TFSM produces a power event

6 unit-clock update_power // the SDF model gets a new power command

7 unit-clock react // the SDF model reacts to its inputs

8 rational-clock realtime // real-time in seconds

9 rational-clock bus // time scale of the CAN bus

10

11 // The transmission delay on the CAN bus is 2 ms

12 tag relation realtime = 0.002 * bus

13 btn_up time delayed by 1.0 on bus implies up

14 btn_neutral time delayed by 1.0 on bus implies stop

15

16 // When the TFSM receives an input, it updates its output

instantaneously

17 up implies power

18 stop implies power

19

20 // The transmission delay on the CAN bus is 2 ms

21 power time delayed by 1.0 on bus implies update_power

22

23 // The window must react every 50ms (periodic clock)

24 react time delayed by 0.05 on realtime implies react

This specification ignores the values that are sent over the bus, it specifies
only when things happen since its goal is to coordinate the behaviors of the
subsystems. Lines 1 to 7 declare the clocks that compose the interface of the
subsystems for the architectural glue, as explained on Figure 3. The unit-clock

keyword simply restricts the domain of the time stamps of these clocks. Lines
8 and 9 declare chronometric clocks used to measure elapsed time on the CAN
bus and in the real world. Their time domains are restricted to rationals. Line
12 specifies that when 1 unit of time elapses on the bus clock, 0.002 s elapses on
the real time clock, which means that time is measured in units of 2 ms on the

44 language core : teslε

bus clock. Lines 13 and 14 specify that when the button is pulled up or released,
the TFSM receives its up or stop input event 1 unit of time later, measured in
the time frame of the bus clock (2 ms in real time). Lines 17 and 18 specify that
the state machine reacts instantaneously to its inputs by producing its power

output event. Line 21 specifies the transmission delay on the bus between the
state machine and the SDF subsystem. Last, line 24 specifies that the reaction
of the SDF subsystem is periodic, because it implies itself with a time delay of
50 ms.

btn_up

btn_neutral

up

stop

power

update_power

react

realtime

bus

react_scenario

up_scenario

neutral_scenario

0.

0.

0.

0.

0.

5.

5E-3

2.5

5E-6

5.

3.5

7E-3

7E-6

7.

7.

4.5

9E-3

9E-6

9.

9.

0.05

25.

5E-5

50.

50.

0.1

50.

1E-4

100.

100.

0.15

75.

1.5E-4

150.

150.

0.2

100.

2E-4

200.

200.

0.25

125.

2.5E-4

250.

250.

0.3

150.

3E-4

300.

300. 320.

0.32

160.

3.2E-4

320.

161.

0.322

3.22E-4

322.

322.

162.

0.324

3.24E-4

324.

324.

0.35

175.

3.5E-4

350.

350.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 24: A satisfying run for the power window specification

Figure 24 depicts a satisfying run. From a physical interpretation, let us set
our time reference on the realtime clock. The user pulls the button up (clock
btn_up) at 5ms. The controller receives this information (clock up) at 7ms due to
the transmission delay on the CAN bus, and immediately sets the power for the
window motor (clock power). Then, the mechanical part receives the command
at 9ms (clock update_power). The next tick of the periodic react clock occurs
at 50ms, which is the time at which the new value of the power is taken into
account and the window starts moving up. At 320ms, the user releases the but-
ton, which switches back to neutral (clock btn_neutral). With the transmission
delay between the button and the controller, then again between the controller
and the mechanical servo, the new value of the power is updated at 324ms. The
next reaction of the window (clock react) occurs at 350ms, which is the time
at which the window stops moving up. The additional clocks react_scenario,
up_scenario and neutral_scenario are used to describe the user interface sim-
ulation scenario.

3.3 formal semantics 45

3.3 formal semantics

This section aims at defining formal semantics that describe the previous for-
mulae, which we call denotational (Section 3.3.1) and operational (Section 3.3.2).

3.3.1 Denotational Semantics

A denotational semantics is a mathematical description of a program, mainly
based on ordered set theory, similarly to Scott and Strachey [Sto77]. It is usually
expressed as a mathematical function, so-called interpretation, which denotes
every program into a set of satisfying states or traces. Moreover, one of the
main required properties is compositionality: there is a morphism from program
composition to the denoted space.

To describe all satisfying runs of a TESL specification, we give them a math-
ematical description in Definition 25, which we call denotational semantics. This
captures precisely the set of runs conforming to a specification with no regards
to the order of formulae. Indeed, this is directly reflected by the interpreta-
tion of formula conjunction as run space intersection. More precisely, a run ρ
satisfies:

• a sporadic on atom, as previously but when clock Kevt is ticking and the
tag on Kmeas is τ at the same instant;

• a tag relation atom, if for every index n, the arithmetic relation holds;

• an implies atom, when for every index n, if clock K1 is ticking then K2
is ticking too at the same instant;

• a time delayed atom, whenever a clock Kmaster is ticking, there exists
in the future instants a tick on Kslave with a tag distance of δτ on the
measuring clock Kmeas.

46 language core : teslε

Definition 25 (Interpretation of TESLε formulae)

The denotational semantics of TESL formulas is given inductively on for-
mulae as sets of runs.
q
ψ0 ∧ . . . ∧ ψk

y
TESL

def
=

q
ψ0

y
TESL ∩ . . . ∩

q
ψk

y
TESLq

Kevt sporadic τ on Kmeas
y
TESL

def
= {ρ ∈ Σ∝ | ∃n ∈N ticks(ρn(Kevt)) is true and tag(ρn(Kmeas)) = τ}q

tag relation bK1, K2c ∈ R
y
TESL

def
= {ρ ∈ Σ∝ | ∀n ∈N tag(ρn(K1)) and tag(ρn(K2)) are related by R}

q
K1 implies K2

y
TESL

def
= {ρ ∈ Σ∝ | ∀n ∈N ticks(ρn(K1)) implies ticks(ρn(K2))}q

Kmaster time delayed by δτ on Kmeas implies Kslave
y
TESL

def
= {ρ ∈ Σ∝ | ∀n ∈N ticks(ρn(Kmaster))

implies ∃m > n ticks(ρm(Kslave))

and tag(ρm(Kmeas)) = tag(ρn(Kmeas)) + δτ}

Usual properties of associativity, commutativity, idempotency and neutrality
of TESL conjunction are preserved under set intersection (∅ is a TESL specifi-
cation which denotes the empty conjunction).

Lemma 26 (Associativity, Commutativity, Idempotence and Neutrality)

Let Ψ1,Ψ2,Ψ3 be TESLε formulae. We have
q
(Ψ1 ∧ Ψ2) ∧ Ψ3

y
TESL =

q
Ψ1 ∧ (Ψ2 ∧ Ψ3)

y
TESL (associativity)

q
Ψ1 ∧ Ψ2

y
TESL =

q
Ψ2 ∧ Ψ1

y
TESL (commutativity)

q
Ψ1 ∧ Ψ1

y
TESL =

q
Ψ1

y
TESL (idempotency)

q
∅ ∧ Ψ1

y
TESL =

q
Ψ1

y
TESL (neutrality)

Proof: By set-theoretical reasoning and usual properties of ∩.

Remark 27. While investigating CCSL which is a close language to TESL, we ob-
served that the mathematical structure that lies under the denotational seman-
tics proposed by [DAG14] suggests the usage of indexes for ticks and prece-
dence relation. This means that every tick on a clock lives as an existing entity
and shall be additionally annotated with an incremental index. This is differ-
ent from our approach where ticks do not exist themselves, but are a reflection
of event occurrence modeled as a boolean object. Our indexes are attached to

3.3 formal semantics 47

instants, instead of ticks. This abstains from defining a notion of coincidence
as an instant is by its essence a coincidence instant. For these reasons, we be-
lieve our approaches have made semantics formalization simpler and suited
for mechanization.

3.3.2 Operational Semantics

Defining an operational semantics allows to give a meaning to a program as
a sequence of machine configurations. The goal is to consider a program as a
transition system or an abstract machine, where evaluation steps are explicited
to follow an accurate order and a precise granularity of operations. The litera-
ture depicts this approach for various paradigms:

• imperative programming (IMP, [Win93]),

• functional programming (λ-calculus, [Chu32]),

• object-oriented programming (σ-calculus, [AC96]).

Likewise, our concern is to provide a semantics that considers TESLε as a
language that can be evaluated to derive possible satisfying runs of a given
specification. As such, we have defined a semantics that non-deterministically
executes a specification where branches may lead to different – but still possi-
bly satisfying – behaviors. The idea we follow is that a TESLε formula can be
consumed by producing smaller primitives. In this setting, a configuration is
composed of three parts which we informally call: past, present and future. This
semantics behaves by unfolding past-present-future where future constraints
are moved into present constraints, and present constraints into past constraints
(as primitives) by means of reduction rules.

3.3.2.1 Primitives for Run Contexts

Symbolic runs are defined by run contexts constructed from a set of run primitives
introduced below. Run contexts may contain variables that can be arbitrarily
instantiated; instances of symbolic runs with ground terms are called concrete
runs. We define tag variables in Definition 28, and then primitives in Definition 29

that are used to describe prefixes of satisfying runs, as filled in run contexts.
Note that compared to TESL atomic formulae, they now deal with fixed instant
indexes.
Definition 28 (Tag Variables)

The set of tag variables V consists of symbols tvarKn where n ∈N and K ∈ K.
tvarKn reads as the symbolic time stamp on clock K at instant n.

Definition 29 (Run Primitives)

A run primitive γ ∈ Γ is a constraint symbol of the following kind:

48 language core : teslε

• K ⇑n forces clock K to tick at instant index n ;

• K 6⇑n forces clock K to not tick (to be absent) at instant index n ;

• K ⇓n x forces clock K to have timestamp (tag constant or variable) x at
instant index n ;

• btvarK1n1 , tvarK2n2c ∈ R enforces the arithmetic relation R between the vari-
ables tvarK1n1 and tvarK2n2 .

They are interpreted by J_Kprim as:

q
{γ0 ; . . . ; γk}

y
prim

def
=

q
γ0
y
prim ∩ . . . ∩

q
γk
y
prim

q
K ⇑n

y
prim

def
=
{
ρ ∈ Σ∝ | ticks(ρn(K)) is true

}
q
K 6⇑n

y
prim

def
=
{
ρ ∈ Σ∝ | ticks(ρn(K)) is false

}
q
K ⇓n x

y
prim

def
=

ρ ∈ Σ∝
∣∣∣∣∣∣ tag(ρn(K)) =

x if x ∈ T

tag(ρn ′(K ′)) if x = tvarK
′
n ′ ∈ V


q
btvarK1n1 , tvarK2n2c ∈ R

y
prim

def
=
{
ρ ∈ Σ∝ | tag(ρn1(K1)) and tag(ρn2(K2))) are related by R

}
It is possible to construct run contexts that contain contradictory primitive

constraints. They are interpreted as the empty set reflecting the fact that they
do not denote any concrete run. We observe the following:

Lemma 30 (Decidability of Run Contexts)

If tag relations are affine relations, then the consistency of a run context Γ is decid-
able. That is we can decide whether

q
Γ
y
prim 6= ∅.

Proof: The affine relations as found in the original TESL language belong to
the class of linear arithmetic problems which are known to be decidable for
integers and rationals, using Fourier-Motzkin elimination. The propositional
part is a SAT problem and their combination remains decidable.

Without loss of generality, any class of decidable arithmetic relations pre-
serves decidability of consistency for run contexts. Our model is agnostic enough
that the combination of SAT with any decidable arithmetic problem remains de-
cidable again.

This lemma is particularly important as it allows us to construct consistent
runs from TESL specifications. The consequence is that it is possible to decide
whether there exists a run prefix of fixed length that would partially satisfy the
specification.

3.3 formal semantics 49

3.3.2.2 Configurations of the Execution Process

We now define the machinery for constructing symbolic runs. We chose to treat
TESL as a logic of resources. Processing these formulae produces additional
constraint primitives, which refine the shape of satisfying symbolic runs.

The rules of our operational semantics relate configurations of our symbolic
execution process, similarly to triples in a Hoare logic. Configurations consist
of:
Definition 31 (Configuration)

A configuration is a tuple Γ |=n Ψ .Φ, where

• n is the current simulation instant index ;

• Γ is the run context containing primitives describing the “past” ;

• Ψ is the TESL-formula to satisfy in the “present” ;

• Φ is the TESL-formula to satisfy in the “future” of the process.

3.3.2.3 Execution Rules

The operational semantics can be seen as an abstract machine, in which a con-
figuration corresponds to an abstract state comprising the past (Γ), present (Ψ)
and future (Φ) of the symbolic run under construction. The execution of this
kind of abstract machine is two-fold:

1. Moving parts from the future to the present (introduction)

2. Consuming the present to produce the past (elimination)

The introduction rule (Definition 32) initializes a new instant to construct by
incrementing the index counter and moving future parts into the present. On
the other side, the elimination rules (Definition 33) produce past primitives
by consuming present formulae. Iterating the application of these rules will
produce runs by adding more and more constraints in Γ , thus constructing a
run prefix.

Definition 32 (Introduction Rule →i)

The relation→i is the smallest relation satisfying:

Γ |=n ∅ .Φ →i Γ |=n+1 Φ .∅ (instanti)

Definition 33 (Elimination Rules →e)

The relation→e is the smallest relation satisfying the following rules, where
time delayed by is abbreviated as tdby to save space.

50 language core : teslε

Γ |=n Ψ ∧ (K1 sporadic τ on K2) .Φ (sporadic− one1)

→e Γ |=n Ψ .Φ ∧ (K1 sporadic τ on K2)

Γ |=n Ψ ∧ (K1 sporadic τ on K2) .Φ (sporadic− one2)

→e Γ ∪

{
K1 ⇑n
K2 ⇓n τ

}
|=n Ψ .Φ

Γ |=n Ψ ∧ (tag relation bK1, K2c ∈ R) .Φ (tagrele)

→e Γ ∪
{
btvarK1n , tvarK2n c ∈ R

}
|=n Ψ .Φ ∧ (tag relation bK1, K2c ∈ R)

Γ |=n Ψ ∧ (K1 implies K2) .Φ (impliese1)

→e Γ ∪
{
K1 6⇑n

}
|=n Ψ .Φ ∧ (K1 implies K2)

Γ |=n Ψ ∧ (K1 implies K2) .Φ (impliese2)

→e Γ ∪

{
K1 ⇑n
K2 ⇑n

}
|=n Ψ .Φ ∧ (K1 implies K2)

Γ |=n Ψ ∧ (Kmaster tdby δt on Kmeas implies Kslave) .Φ (time− delayede1)

→e Γ ∪
{
Kmaster 6⇑n

}
|=n Ψ .Φ ∧ (Kmaster tdby δt on Kmeas implies Kslave)

Γ |=n Ψ ∧ (Kmaster tdby δt on Kmeas implies Kslave) .Φ (time− delayede2)

→e Γ ∪
{
Kmaster ⇑n

}
|=n Ψ ∧ (Kslave sporadic (tvarKmeas

n + δt) on Kmeas)

. Φ ∧ (Kmaster tdby δt on Kmeas implies Kslave)

These rules are used to completely consume the present in order to be al-
lowed to progress to the next instant. In particular, it is necessary to repeat
the elimination process as much as necessary to empty the present formula.
Here are the different possibilities to eliminate specification constraints from
the present.

• K1 sporadic τ on K2: similar to the previous one, but with the time stamp
constraint on K2 (Rule sporadic− one1 and Rule sporadic− one2);

• tag relation bK1, K2c ∈ R: the corresponding primitive is added to in-
stantaneously constraint the timescales of clocks K1 and K2, and the for-
mula is put into the future since it has to be satisfied at every instant
(Rule tagrele);

• K1 implies K2: either clock K1 is not ticking (Rule impliese1), or both
clocks K1 and K2 are instantaneously ticking (Rule impliese2). In both
cases, the formula is copied into the future as it has to be satisfied at
every instant;

• Kmaster time delayed by δt on Kmeas implies Kslave: either master clock
Kmaster is not ticking and we only copy the formula into the future be-
cause there is no tick to delay (Rule time− delayede1); or it is ticking
and we need to force a tick on slave clock Kslave when the time on Kmeas
reaches tvarnKmeas

+ δt, which is the current tag on measuring clock Kmeas

3.3 formal semantics 51

delayed by duration δt, and lastly the formula is copied into the future
(Rule time− delayede2).

3.3.3 Simulation Steps

The goal of consuming formulae by means of reduction rules defined previ-
ously is to compute the current instant (or step) of simulation. To ensure this
computation, we give a property that ensures that computing one step neces-
sarily terminates. In particular, this is ensured by stating that the relation →e
is well-founded.
Proposition 34 (Local Termination)

The relation→e is well-founded.

Proof: All the elimination rules seem to strictly decrease the number of for-
mulas in the “present” part of the state, and a state with an empty “present”
part is in normal form with respect to→e. The fined-grained proof exhibits an
integer interpretation that values more importantly the future part, and shows
that the relation is well-founded.

A reduction step is an introduction or an elimination,

Definition 35 (Reduction →)

We define→ def
= →i ∪ →e.

Remark 36. If a sequence of reductions under → is infinite, Proposition 34 im-
plies that this sequence contains an infinite number of introduction steps. In
other words, reducing a configuration eventually increases the instant index:
time flows. This will be echoed in Theorem 62.

A simulation step consists of building the next instant of the symbolic run by:

1. Initializing a new instant with reduction →i (uniquely defined by the
Rule instanti);

2. a) Repeating elimination rules given in→e.

b) Until irreducibility, i.e. when Ψ = ∅.

Definition 37 (Simulation Step →)

A simulation step is defined as a reduction rule

→ := {(Γ1 |=n ∅ .Φ1)→i · →∗e (Γ2 |=n+1 ∅ .Φ2) | Γ1 and Γ2 are consistent}
(simulation)

where · is the composition of relations, and→∗e the reflexive transitive closure
of→e.

52 language core : teslε

Note that we add a consistency constraint on Γ -contexts as we are interested
in symbolic runs that have concrete instances. Indeed, reductions given by →
are purely syntactical and do not take into account the constraints in Γ . For
instance,→e allows adding K ⇑n to a context that already contains K 6⇑n.

Following the specification given as an example in Listing 2 (denoted as
Φhandwatch), we illustrate the use of our operational rules in Figure 25 where
tag relation is abbreviated as trel. We start with an empty symbolic run
and show the two first simulation steps on the left hand-side. Then, focus is
set on the first step and exhibits the underlying reduction details on the right-
hand side. This step is decomposed into the application of the introduction
rule instanti, then a sequence of elimination reductions (sporadic− one2, tagrele,
impliese2, time− delayede1), until irreducibility.

3.3 formal semantics 53

|=0 ∅ .Φhandwatch

0.0

0.0

1

|=1 ∅

0.0

0.0

60.0

1.0

1 2

|=2 ∅

1

|=1



min sporadic 0.0

trel sec = 60.0 × min

min implies move

min time delayed by 1.0

on min implies min


. . . .

0.0

1

|=1


trel sec = 60.0 × min

min implies move

min time delayed by 1.0

on min implies min



0.0

0.0

1

|=1


min implies move

min time delayed by 1.0

on min implies min



0.0

0.0

1

|=1

{
min time delayed by 1.0

on min implies min

}
. . . .

(instanti)

(sporadic− one2)

(tagrele)

(impliese2)

(time− delayede2)

i

e

e

e

e

(simulation)

(simulation)

Figure 25: Detail of the reduction steps of the operational semantics

4

L A N G U A G E W I T H A S Y N C H R O N O U S E X T E N S I O N S : TESL ?

Our study investigated even further than the operators of the original TESL.
Only the synchronous constraints of CCSL were preserved in the original TESL
language in order to provide a constructive and concrete way to solve specifi-
cations with time tags. Indeed, the past-asynchronous formulae of CCSL com-
bined with the support for tags in TESL were initially incompatible, as past-
asynchrony requires to backtrack and compute a non-concretizable time tag in
the past. We observed that the abstraction of tags in TESLε with a symbolic
approach overcomes very well the previous limitations of the TESL solver. We
propose in this chapter an extension which we call TESL?.

4.1 syntax

The extended language consists of TESLε along with two asynchronous oper-
ators and an additional synchronous operator: (strictly or weakly) precedes,
kills and implies not. From the grammar of TESLε in Chapter 3, we extend
and add these symbols to the atomic formulae

Definition 38 (Grammar of TESL?)

A TESL? formula Ψ is given by the addition to TESLε of the following

〈atom〉 ::= . . .

| 〈clock〉 strictly precedes 〈clock〉
| 〈clock〉 weakly precedes 〈clock〉
| 〈clock〉 kills 〈clock〉
| 〈clock〉 implies not 〈clock〉

In the next paragraphs, we detail and illustrate these operators.

strictly precedes .

K1 strictly precedes K2

55

56 language with asynchronous extensions : tesl?

is a formula that specifies that a tick on K2 injects on a tick of K1 on past
instants. An event occurrence shown on K2 admits a necessary and unique
consequence of an event occurrence on K1. This kind of causality is slightly
different from causality as understood in implication, it considers that events
on K2 necessarily admit a parent event: we call it necessary causality. Figure 26a
shows a satisfying run where each tick is injected on a tick of the previous
instants: the first tick on K2 points to the one in instant 0 on K1, and the second
tick on K2 points to the one in instant 2 on K1. Figure 26b has yet an additional
tick which does not change the property as there are enough ticks on K1 to
“fulfil the needs” of K2.

K1

K2

0 1 2 3

(a) Two events in K2 depend on exactly two oth-
ers on K1 strictly asynchronously

K1

K2

0 1 2 3

(b) Additional ticks on K1 still preserve the de-
pendence property

Figure 26: Satisfying runs for the strictly precedes formula

weakly precedes .

K1 weakly precedes K2

is similar to the strict precedence. It is a weakened version of the latter, and
allows some tick on K2 to inject on a tick on K1 potentially instantaneously. In
Figure 27, the first tick of K2 depends on the tick at instant 0 on K1, while the
second one instantaneously depends on the tick at instant 3 on K1.

K1

K2

0 1 2 3

Figure 27: A satisfying run for the weakly precedes formula

kills .

K1 kills K2

is a formula that specifies that whenever K1 ticks, K2 shall remain absent from
then on. This clock is said to be dead. In Figure 28, K1 ticks and prevents K2
from ticking from then on.

4.1 syntax 57

K1

K2

0 1 2 3 4 5 6

Figure 28: A satisfying run for the kills formula

implies not.

K1 implies not K2

is a formula that specifies that whenever K1 ticks, K2 shall instantaneously
remain absent. In Figure 29, K1 ticks and prevents K2 from instantaneously
ticking.

K1

K2

0 1 2

Figure 29: A satisfying run for the implies not statement

Remark 39 (Equivalence between CCSL and TESL?). As stated at the beginning
of the section, difficulties related to the combination of past-asynchrony and
time tag computation have been overcome by symbolic approaches. Here is a
translation that gives the correspondence between CCSL and TESL? formulae.

ccsl formula equivalent tesl
?

formula

K1 coincides with K2 K1 implies K2 ∧ K2 implies K1

K1 in exclusion with K2 K1 implies not K2 ∧ K2 implies not K1

K1 is subclock of K2 K2 implies K1

K1 precedes K2 K1 strictly precedes K2

K1 depends on K2 K1 weakly precedes K2

4.1.1 The Airplane Takeoff Example

Let us introduce our extensions of the language by modeling the takeoff pro-
cedure of a public transportation airplane as illustrated by Figure 30. The pro-
tocol revolves around airspeed thresholds giving obligations and restrictions
for pilots. The first is V1 (decision speed), and gives a speed threshold from
which pilots are not allowed to reject the takeoff procedure (RTO), otherwise
risking braking without enough runway remaining. Above this value, takeoff

58 language with asynchronous extensions : tesl?

is mandatory. At VR (rotate speed) the pilot commands the aircraft to rotate on
its main wheels, and the aircraft finally lifts off after about 3 seconds.

0 V1 VR lifto�

3 s

Runway available to gain speed Runway available to abort
(a) Go situation

0 V1RTO

Runway available to gain speed Runway available to abort
(b) No Go situation

Figure 30: Takeoff procedure according to the certification standards

Consider a Boeing 737-800 with flaps 1 rolling on wet runway and gaining
speed on a uniform acceleration of 1.875m.s−2. The precomputed speed thresh-
olds are: V1 = 110 kt and VR = 135 kt. In our setting, we consider six clocks
that describe the behavior of events:

time-SI physical time in seconds (s)

speed-SI aircraft speed in m.s−1

speed-KT aircraft speed in knots (kt)

V1-reach V1 speed threshold event

VR-reach VR speed threshold event

RTO rejected takeoff procedure event

liftoff aircraft liftoff event

Here is a TESL? specification expressing the case in Listing 5:

Listing 5: Specification of an airplane takeoff in TESL?

1 rational-clock time-SI // in [s]

2 rational-clock speed-SI // in [m.s^-1]

3 rational-clock speed-KT // in [kt]

4

5 // Uniform acceleration

6 tag relation speed-SI = 1.875 * time-SI

7

8 // Unit conversion between [m.s^-1] and [kt]

9 tag relation speed-KT = 1.944 * speed-SI

10

4.1 syntax 59

11 // Speed thresholds

12 V1-reach strictly precedes VR-reach

13 V1-reach sporadic 110.0 on speed-KT

14 VR-reach sporadic 135.0 on speed-KT

15

16 // Takeoff rejection is forbidden after reaching V1

17 V1-reach kills RTO

18 // Rejecting takeoff prevents from reaching takeoff speeds

19 RTO kills V1-reach

20 // Liftoff occurs 3s after reaching VR

21 VR-reach time delayed by 3.0 on time-SI implies liftoff

Lines 1 to 3 specify the tag domain for clocks time-SI, speed-SI and speed-KT

to be rationals. Then, the next two constraints deal with how time flows: Line
6 describes the uniform acceleration profile of the aircraft with a linear con-
straint, while Line 9 describes unit conversion for speeds between knots and
m.s−1 (as in SI units). Line 12 specifies that reaching VR is possible whenever
V1 has been reached in the past, that is VR-reach ticks if V1-reach has ticked
before. Lines 13 and 14 specify that clocks V1-reach and VR-reach shall tick
whenever their associated threshold values are measured on the timeframe of
clock speed-KT. Lines 17 and 19 describe some kind of race condition between
clocks V1-reach and RTO. Whichever event occurs first, permanently prevents
the other. It is not possible to reject takeoff if V1 has been reached. Besides, it is
not possible to reach V1 if takeoff rejection procedure is engaged. Finally, Line
21 specifies that whenever VR is reached, time is measured on the timeframe
of time-SI and delayed with a duration of 3s to trigger aircraft lift off.

time-SI

speed-SI

speed-KT

V1-reach

VR-reach

RTO

liftoff

30.1

56.5

110.0

A

37.0

69.4

135.0

A

40.0

75.0

145.9

A

0 1 2

(a) Takeoff in normal conditions

time-SI

speed-SI

speed-KT

V1-reach

VR-reach

RTO

liftoff

25.0

46.8

91.1

A A A

0 1 2

(b) Rejected takeoff at 25 sec

Figure 31: Two partially satisfying behaviors for the takeoff procedure

Two behaviors are given in Figure 31. Additionally, a skull stands for perma-
nent absence of event occurrence (clock death). Due to space restrictions, tags

60 language with asynchronous extensions : tesl?

may be truncated up to four digits. The first behavior depicted by Figure 31a,
corresponds to a “minimal” interpretation of the model, where the simulation
starts when speed reaches 110.0 on clock speed-KT, and a tick appears on clock
V1-reach to notify reaching decision speed. As a matter of fact, clock RTO im-
mediately dies, as it is impossible to engage any emergency stop procedure
from then on. Then, whenever speed is 135.0 on speed-KT, clock VR-reach ticks.
After 3 s, the aircraft finally lifts off the ground and clock liftoff is ticking.
On the other side, Figure 31b shows a behavior with a additional tick on clock
RTO when the time on clock time-SI is 25, which corresponds to engaging stop
procedure. As it occurred when speed was less than V1, clock V1-reach is now
prevented from ticking and cannot cause lift off.

Figure 32: Throttle console of a Boeing 737 used in takeoff rejection procedure

4.2 formal semantics

4.2.1 Denotational Semantics

Similarly to Definition 25 for TESLε we wish to provide a mathematical under-
standing of what we expect from these operators, as long as compositionality
remains the leading property. To carry out this idea, we extend the interpreta-
tion function

q
_
y
TESL in Definition 40. A run ρ satisfies:

• an implies not atom, when for every index n, if clock K1 is ticking then
K2 must not tick at the same instant;

• a weakly precedes atom, when from every index n, the number of times
clock K1 has ticked is greater or equal than the number of times clock K2
has ticked;

• a strictly precedes atom, when for every index n, the number of times
clock K1 has ticked from the previous instant is greater or equal than the
number of times clock K2 has ticked from the current instant;

• a kills atom, whenever clock K1 is ticking, clock K2 will be prevented
from ticking forever from that instant.

4.2 formal semantics 61

Definition 40 (Interpretation of TESL? formulae)

The denotational semantics of TESL? formulae is given inductively as sets
of runs in Definition 25 and extended with the following.

q
K1 implies not K2

y
TESL

def
= {ρ ∈ Σ∝ | ∀n ∈N ticks(ρn(K1)) implies ¬ ticks(ρn(K2))}q

K1 weakly precedes K2
y
TESL

def
=

{
ρ ∈ Σ∝

∣∣∣ ∀n ∈N card
{
j 6 n

∣∣∣ ticks(ρj(K1))} > card
{
j 6 n

∣∣∣ ticks(ρj(K2))}}
q
K1 strictly precedes K2

y
TESL

def
=

{
ρ ∈ Σ∝

∣∣∣ ∀n ∈N card
{
j < n

∣∣∣ ticks(ρj(K1))} > card
{
j 6 n

∣∣∣ ticks(ρj(K2))}}
q
K1 kills K2

y
TESL

def
=

{
ρ ∈ Σ∝

∣∣ ∀n ∈N ticks(ρn(K1)) implies ∀n ′ > n ¬ ticks(ρn ′(K2))
}

4.2.2 Towards Stuttering Invariance

An important property that is derived from the denotational semantics is in-
variance by stuttering and ensures compositionality of models. Similarly to the
composition of automata, the addition of stutter or silent instants, allows the ac-
commodation for their differences and hence interleave each of their steps. For
instance, the seminal specification language LTL is known to have a stuttering-
invariant fragment [Lam83, KS05]. Our intuition that any TESL specification
is stuttering-invariant is proved by Boulanger1. The proof is based on dilating
functions that are applied on satisfying run sets that are shown to preserve
property satisfaction. This idea can be illustrated by the previous example of
the airplane takeoff. The satisfying run shown in Figure 31a is a minimal ob-
servation of the execution of the system considering the only necessary event
occurrences. The idea is that the semantic model is not too restrictive and al-
lows to compose with other models for other systems.

In practice, simulation can also be run with an additional chronometric model
that ticks at fixed time value. This observation is exhibited by composing the
specification Listing 5 with a chronometer that would be ticking every 5 sec.

22 rational-clock chronometer sporadic 0.0

23 tag relation chronometer = time-SI

24 chronometer time delayed by 5.0 on chronometer implies chronometer

The process of dilating time is hence illustrated by Figure 33. Every event
occurring in the “minimal” run in Figure 31a is finally retrieved in the new run
from reaching V1 to airplane liftoff.

1 See https://heron-solver.github.io/hygge/Stuttering.html

https://heron-solver.github.io/hygge/Stuttering.html

62 language with asynchronous extensions : tesl?

time-SI

speed-SI

speed-KT

V1-reach

VR-reach

stop

liftoff

chronometer
0.

0.

0.

0.

5.

9.375

5.

18.225

10.

18.75

10.

36.45

15.

28.125

15.

54.675

20.

37.5

20.

72.9

25.

46.875

25.

91.125

30.

56.25

30.

109.35 110.

56.584

30.178

30.178 35.

65.625

35.

127.575 135.

69.444

37.037

37.037 40.

75.

40.

145.8

40.037

75.069

145.93

40.037 45.

84.375

45.

164.025

50.

93.75

50.

182.25

55.

103.125

55.

200.475

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 33: Takeoff in normal conditions with a chronometer in parallel

4.2.3 Operational Semantics

As seen in the previous paragraphs, the operator precedes is an asynchronous
operator that is oriented towards the past. It enforces a property that needs
to count ticks that already exist in the past of the run being built. We observe
that the primitives given in Definition 29 are not sufficient to encompass this
need. Indeed, they only deal with fixed instants, and the operational semantics
of TESLε in Definition 33 only progresses by unfolding formulae towards the
future. To overcome this limitation, we first need to extend the run primitives.
In particular, we add a tick counting arithmetic relation, in the style of relation
between tag variables.

Definition 41 (Extended Run Primitives for TESL?)

A run primitive γ ∈ Γ is a constraint as in Definition 29 or a symbol of the
following kind:

• dc1, c2e ∈ R enforces the arithmetic relation R between tick counters c1
and c2;

• K 6⇑>n forces clock K to not tick (remain idle) from instant index n on,

which are interpreted by J_Kprim as:

q
K 6⇑>n

y
prim

def
=
{
ρ ∈ Σ∝ | ∀n ′ > n ticks(ρn(K)) is false

}
q
dc1, c2e ∈ R

y
prim

def
=
{
ρ ∈ Σ∝ |

q
c1
yρ
cnt and

q
c1
yρ
cnt are related by R

}
,

and where c1 and c2 are tick counter symbols of the following kind

• #<nK is the number of ticking instants on clock K in run ρ from instant
0 until n excluded;

• #6nK is the number of ticking instants on clock K in run ρ from instant
0 until n included;

4.2 formal semantics 63

which are evaluated by
q

_
y_
cnt as:

q
#<nK

yρ
cnt

def
= card

{
j < n

∣∣ ticks(ρj(K)) is true
}

q
#6nK

yρ
cnt

def
= card

{
j 6 n

∣∣ ticks(ρj(K)) is true
}

Remark 42. The structure of primitives now contains tick counters that are ex-
pressions meant to yield the number of times an event occurs until a given
run and a given instant index. On top of that, the addition of these primitives
exhibits a duality between ticks and tags.

ticks tags

_ ⇑_ _ ⇓_

d_, _e ∈ _ b_, _c ∈ _

Table 1: Duality in run primitives between ticks and tags

From these extensions on run primitives, we can express our operators in the
new setting as the addition of new elimination rules:

Definition 43 (Extended Elimination Rules →e for TESL?)

The relation →e is the smallest relation satisfying the rules given in Defini-
tion 33 and as follows

Γ |=n Ψ ∧ (K1 implies not K2) .Φ (implies− note1)

→e Γ ∪
{
K1 6⇑n

}
|=n Ψ .Φ ∧ (K1 implies not K2)

Γ |=n Ψ ∧ (K1 implies not K2) .Φ (implies− note2)

→e Γ ∪

{
K1 ⇑n
K2 6⇑n

}
|=n Ψ .Φ ∧ (K1 implies not K2)

Γ |=n Ψ ∧ (K1 weakly precedes K2) .Φ (weakly− precedese)

→e Γ ∪
{
b#6K1n, #6K2nc ∈ >

}
|=n Ψ .Φ ∧ (K1 weakly precedes K2)

Γ |=n Ψ ∧ (K1 strictly precedes K2) .Φ (strictly− precedese)

→e Γ ∪
{
d#<K1n, #6K2ne ∈ >

}
|=n Ψ .Φ ∧ (K1 strictly precedes K2)

Γ |=n Ψ ∧ (K1 kills K2) .Φ (killse1)

→e Γ ∪
{
K1 6⇑n

}
|=n Ψ .Φ ∧ (K1 kills K2)

Γ |=n Ψ ∧ (K1 kills K2) .Φ (killse2)

→e Γ ∪

{
K1 ⇑n
K2 6⇑>n

}
|=n Ψ .Φ ∧ (K1 kills K2)

64 language with asynchronous extensions : tesl?

The same way as in TESLε these rules are used to completely consume the
present to produce the past. The elimination steps are repeated until irreducibil-
ity. The extension of elimination rules proceeds this way

• K1 implies not K2: either clock K1 is not ticking (Rule implies− note1), or
clock K1 ticks and prevents K2 to instantaneously tick (Rule implies− note2).
In both cases, the formula is copied into the future as it has to be satisfied
at every instant;

• K1 weakly precedes K2: at this instant, the number of times clock K1 has
ticked is greater or equal to the number of times clock K2 has ticked
(Rule weakly− precedese). Then, the constraint is repeated in the future;

• K1 strictly precedes K2: at the previous instant, the number of times
clock K1 has ticked is greater or equal to the number of times clock K2
has from this instant (Rule strictly− precedese). Again, the constraint is
repeated in the future;

• K1 kills K2: either clock K1 is not ticking (Rule killse1), or clock K1 ticks
and prevents K2 to tick from this instant and forever on (Rule killse2). In
both cases, the formula is copied into the future as it has to be satisfied at
every instant.

The property of local termination remains preserved as elimination rules
presented above ensures the strict decrement of the number of Ψ-formulae.

Remark 44. The usage of the primitive _ 6⇑>_ has been illustrated in Figure 31

with the superficial symbolA (skull) to emphasize on the clock death. No event
can ever occur on the died clock from the very moment that the killing clock
has triggered. Moreover, the extended primitives preserve decidability with the
same assumptions of Lemma 30.

5

L A N G U A G E W I T H S E Q U E N T I A L O P E R AT O R S : TESL

The operators we have defined in TESLε and TESL? will be proved to exhibit
guarantees in Chapter 6. In the next paragraphs, we explore another class of
operators for which we give an operational semantics. These operators carry
a state, e.g., a counter or a boolean, that may change during the execution of
the operational semantics, similarly to sequential circuits containing registers.
Except for one operator which is meant to complete and formalize the original
TESL language.

We give hereafter five operators of the complete language for which we pro-
vide operational rules that are used for deriving runs, but are not (yet) proven
to be safe. This is meant to be done in future work. They consist of five op-
erators as found in the original TESL language: sustained implies, await

implies, delayed implies, filtered implies and when implies. Note that the
last operator is not sequential but meant to complete and retrieve the original
TESL language.

5.1 syntax

From the grammar of TESLε in Chapter 3, we add these symbols to the already
existing atomic formulae. They correspond to those found in the original TESL
language.

Definition 45 (Grammar of TESL)

A TESL formula Ψ is given by the addition to TESLε of the following

〈atom〉 ::= . . .

| 〈clock〉 sustained from 〈clock〉 to 〈clock〉 implies 〈clock〉
| await 〈clock〉 . . . 〈clock〉 implies 〈clock〉
| 〈clock〉 delayed by 〈nat〉 on 〈clock〉 implies 〈clock〉
| 〈clock〉 filtered by 〈nat〉, 〈nat〉 (〈nat〉, 〈nat〉)∗ implies 〈clock〉
| 〈clock〉 when 〈clock〉 implies 〈clock〉

where 〈nat〉 ∈N.

65

66 language with sequential operators : tesl

sustained implication.

Kmaster sustained from Kbegin to Kend implies Kslave

is a formula that enforces the implication between Kmaster and Kslave when
enabled by a tick on Kbegin and disabled by a tick on Kend. In Figure 34, the
range of instants where sustained implication holds is (1; 4] as it starts when
Kbegin ticks at instant 1 and stops when Kend ticks at instant 4. Notice that any
additional tick on clock Kbegin during that instant range will not affect the state
of the formula as long as it is not deactivated by Kend.

Kmaster

Kbegin

Kend

Kslave

0 1 2 3 4 5

Figure 34: A satisfying run for the sustained implies formula

await implication.

await Km1 Km2 Km3 . . . implies Kslave

is a formula which specifies that as soon as all clocks Km1, Km2, Km3 . . . have
ticked, Kslave shall tick instantaneously. In Figure 35, we illustrate with only
two master clocks Km1 and Km2. They ticked in the instant range [1; 2] which has
led to the instant tick on Kslave at instant 2. Again at instant 3, both Km1 and
Km2 ticked, hence will Kslave accordingly.

Km1

Km2

Kslave

0 1 2 3

Figure 35: A satisfying run for the await implies formula

delayed implication.

Kmaster delayed by n on Kcount implies Kslave

5.1 syntax 67

is a formula which specifies a delayed implication. Whenever clock Kmaster ticks
at some instant, a number of ticks n shall be counted on clock Kcount, to trig-
ger a tick on clock Kslave. In Figure 36, the presented run partially satisfies the
specification where n = 3. A tick on clock Kmaster at instant 0, will create a
tick depending on counting tick occurrences on clock Kcount. These happen at
instants 1, 2, 4 and instantaneously trigger clock Kslave. Compared to the time

delayed by atom, the measurement is no longer made on tags, but on count-
ing ticks. Similarly, whenever Kmaster ticks, an intermediate operator reaches

implies is produced. It does not focus on tags, but stores a decreasing counter;
whenever the counter reaches 1, the slave clock is triggered.

Kmaster

Kcounting

Kslave

0.5

0.5 1.

1.

2.

2. 2.5

2.5 3.

3.

0 1 2 3 4

Figure 36: A satisfying run for the delayed implies formula where n = 3

filtered implication.

Kmaster filtered by s, k (rs, rk)∗ implies Kslave

is a formula which specifies implication between clocks Kmaster and Kslave un-
der a skip-keep pattern condition: s ticks on Kmaster are skipped and k ticks are
kept, then we repeat the process by skipping rs ticks and keeping rk ticks. In
the example of satisfying run in Figure 37, we chose these values to illustrate:
s = 1, k = 2, rs = 1 and rk = 3.

Kmaster

Kslave

0 1 2 3 4 5 6 7 8 9 10

Figure 37: A satisfying run for the filtered implies formula

when implication.

Kmaster when Ksampling implies Kslave

is a formula which specifies that whenever Kmaster and Ksampling ticks at the
same instant, a tick shall appear on Kslave. Stream-wise, it is equivalent to con-

68 language with sequential operators : tesl

junction in propositional logic in premise of the implication. The run presented
in Figure 38 shows that whenever Kmaster and Ksampling simultaneously tick,
then Kslave ticks to enforce implication.

Kmaster

Ksampling

Kslave

0 1 2 3

Figure 38: A satisfying run for the when implies formula

5.1.1 The Concurrent Computations Example

Compared to the previous language variants, the formulae given in this chap-
ter contain a “state”. They are useful whenever some information needs to be
stored in order to rule how some event will be triggered. To illustrate this pro-
cess, we consider the example from [BJHP14] of two CPUs. Each of them lives
in an independent timeframe, and respectively computes a value A and a value
B. Whenever both results are available, the first CPU computes A+B.

Listing 6: Specification of concurrent computations for two CPUs in TESL

1 rational-clock CPU1_time // time scale on CPU 1

2 rational-clock compute_A sporadic 1.0 // start computing A at 1.0

3 tag relation compute_A = CPU1_time

4 unit-clock A_available

5 compute_A time delayed by 0.5 on CPU1_time implies A_available

6

7 rational-clock CPU2_time // time scale on CPU 2

8 rational-clock compute_B sporadic 2.0 // start computing B at 2.0

9 tag relation compute_B = CPU2_time

10 unit-clock B_available

11 compute_B time delayed by 1.5 on CPU2_time implies B_available

12

13 // start computing A+B when both A and B are available

14 unit-clock compute_A_plus_B

15 await A_available B_available implies compute_A_plus_B

16

17 unit-clock A_plus_B_available

18 compute_A_plus_B time delayed by 1.0 on CPU1_time implies

A_plus_B_available

From Line 1 to 5 on Listing 6, the first CPU is in charge of computing the
value of A on a timeframe given by clock CPU1_time. The computation starts at

5.1 syntax 69

1.0 and the value will be available after a time delay of 0.5 on that timeframe.
On the other side, Lines 7 to 11 specify the computation of the value of B by
the second CPU. Likewise, the computation however starts at 2.0 and finishes
after a time delay of 1.5 based on the timeframe of CPU2_time. Lines 15 and
17 gives the constraint on the way to trigger clock compute_A_plus_B: as soon
as clocks A_available and B_available are triggered, clock compute_A_plus_B

will be triggered too. Finally, Line 18 states that the value of A+ B is available
after a duration of 1.0 on the timeframe of the first CPU.

Remark 46. The reader will carefully observe that both timeframes are unrelated,
which allows any interleaving of events and any timescale relation between
them. This lack of specification is necessary in this case to describe physical
systems evolving independently and related in unknown ways, e.g., as would
be found in distributed computing. Timed automata are known to hardly ad-
dress these issues [ABG+

08].

compute_A

CPU1_time

A_available

compute_B

CPU2_time

B_available

compute_A_plus_B

A_plus_B_available

2.0

1.0

1.0

2.0

1.5

3.5

1.5

3.5

2.5

2.5

0 1 2

Figure 39: A satisfying run of concurrent computations example

A satisfying run of the previous specification is given in Figure 39. Both
clocks compute_A and compute_B start on their own timeframes, respectively on
timestamps 1.0 and 2.0. On the next instant, results for A and B are available
and shown by the ticking clocks A_available and B_available while time is
1.5 on CPU1_time and 3.5 on CPU2_time. They instantaneously trigger the com-
putation of the sum of A and B by triggering clock compute_A_plus_B. Finally,
this result is available on the following instant 2.0 exhibited by the ticking clock
A_plus_B_available when the time is 2.5 on CPU1_time.

70 language with sequential operators : tesl

5.2 operational semantics

In this section, we give the operational semantics for the full TESL language.
Compared to TESL?, we do not need to extend primitives, and keep relying on
those defined in Definition 29.

Definition 47 (Extended Elimination Rules →e for TESL)

The relation →e is the smallest relation satisfying the rules given in Defini-
tion 33 and in the following subsections.

5.2.1 Sustained Implication

In the following operational rules, we have defined an intermediate formula
named sustained until. The difference between formulae sustained implies

and sustained until lies under the idea of whether the operator is “activated”
or not. It remains deactivated if Kbegin does not tick (Rule sustained− frome1) or
gets activated otherwise (Rule sustained− frome2).

Γ |=n Ψ ∧ (Kmaster sustained from Kbegin to Kend implies Kslave) .Φ (sustained− frome1)

→e Γ ∪
{
Kbegin 6⇑n

}
|=n Ψ .Φ ∧ (Kmaster sustained from Kbegin to Kend implies Kslave)

Γ |=n Ψ ∧ (Kmaster sustained from Kbegin to Kend implies Kslave) .Φ (sustained− frome2)

→e Γ ∪
{
Kbegin ⇑n

}
|=n Ψ .Φ ∧ (Kmaster sustained until Kend restarts Kbegin implies Kslave)

In case the operator is already enabled and that clock Kend does not tick,
synchronous implication between clocks Kmaster and Kslave is checked and the
operator remains activated in the future of the process (Rules sustained− untile1
and sustained− untile1).

Γ |=n Ψ ∧ (Kmaster sustained until Kend restarts Kbegin implies Kslave) .Φ (sustained− untile1)

→e Γ ∪

{
Kend 6⇑n
Kmaster 6⇑n

}
|=n Ψ .Φ ∧ (Kmaster sustained until Kend restarts Kbegin implies Kslave)

Γ |=n Ψ ∧ (Kmaster sustained until Kend restarts Kbegin implies Kslave) .Φ (sustained− untile2)

→e Γ ∪


Kend 6⇑n
Kmaster ⇑n
Kslave ⇑n

 |=n Ψ .Φ ∧ (Kmaster sustained until Kend restarts Kbegin implies Kslave)

If Kend ticks, then causality is checked for the last time, then operator gets
disabled from the next instant (Rules sustained− untile3 and sustained− untile4).

5.2 operational semantics 71

Γ |=n Ψ ∧ (Kmaster sustained until Kend restarts Kbegin implies Kslave) .Φ (sustained− untile3)

→e Γ ∪

{
Kend ⇑n
Kmaster 6⇑n

}
|=n Ψ .Φ ∧ (Kmaster sustained from Kbegin to Kend implies Kslave)

Γ |=n Ψ ∧ (Kmaster sustained until Kend restarts Kbegin implies Kslave) .Φ (sustained− untile4)

→e Γ ∪


Kend ⇑n
Kmaster ⇑n
Kslave ⇑n

 |=n Ψ .Φ ∧ (Kmaster sustained from Kbegin to Kend implies Kslave)

5.2.2 Await Implication

To handle the asynchronous operator await implies, we provide four rules.
Compared to the previous rules, they deal with collections of clocks and are
applied under syntactic conditions (empty or non-empty collections). Moreover,
they can reduce into the present or into the future; compared to the previous
rules, which directly reduce into the future of the process.

We need a state Kawait containing all clocks that need to be listened. Another
state Kinsts that contains clocks that need to be listened in this instant and Klisten
which is the current clock to deal with for the elimination rule. If Klisten ticks,
then we remove it from Kremn and we continue with the instantaneous clocks to
listen Kinsts in the next reduction steps still in the present of the process (Rule
awaite1). Otherwise, Kremn remains unchanged and we continue with the next
listening clocks Kinsts (Rule awaite2).

Γ |=n Ψ ∧ (await Kawait remains Kremn instantly {Klisten}∪Kinsts implies Kslave) .Φ (awaite1)

→e Γ ∪
{
Klisten ⇑n

}
|=n Ψ ∧ (await Kawait remains Kremn r {Klisten} instantly Kinsts implies Kslave) .Φ

Γ |=n Ψ ∧ (await Kawait remains Kremn instantly {Klisten}∪Kinsts implies Kslave) .Φ (awaite2)

→e Γ ∪
{
Klisten 6⇑n

}
|=n Ψ ∧ (await Kawait remains Kremn instantly Kinsts implies Kslave) .Φ

When we exhausted Kinsts, the operator has listened to all instantaneous lis-
tening clocks, and will eventually trigger if the remaining clocks can be heard in
the future; thus the formula jumps into the future (Rule awaite3). Finally, if there
is no remaining clock to listen either instantaneously, either asynchronously,
then we must trigger Kslave (Rule awaite4).

Γ |=n Ψ ∧ (await Kawait remains Kremn 6= ∅ instantly ∅ implies Kslave) .Φ (awaite3)

→e Γ |=n Ψ .Φ ∧ (await Kawait remains Kremn instantly Kremn implies Kslave)

Γ |=n Ψ ∧ (await Kawait remains ∅ instantly ∅ implies Kslave) .Φ (awaite4)

→e Γ ∪
{
Kslave ⇑n

}
|=n Ψ .Φ ∧ (await Kawait remains Kawait instantly Kawait implies Kslave)

5.2.3 Delayed Implication

Here two groups of reduction rules appear. To eliminate a delayed implies for-
mula, we focus on clock Kmaster. If Kmaster is absent, then the operator is simply

72 language with sequential operators : tesl

discarded and the formula switches to the future (Rule delayede1). Otherwise,
in the case Kmaster is ticking, a counter implication is created and stores in the
future that, as soon as m ticks have been counted on clock Kcounting, a tick will
be fired on Kslave (Rule delayede2).

Γ |=n Ψ ∧ (Kmaster delayed by m on Kcounting implies Kslave) .Φ (delayede1)

→e Γ ∪
{
Kmaster 6⇑n

}
|=n Ψ .Φ ∧ (Kmaster delayed by m on Kcounting implies Kslave)

Γ |=n Ψ ∧ (Kmaster delayed by m on Kcounting implies Kslave) .Φ (delayede2)

→e Γ ∪
{
Kmaster ⇑n

}
|=n Ψ .Φ ∧ (Kcounting reaches m implies Kslave)

∧ (Kmaster delayed by m on Kcounting implies Kslave)

The second group of reduction rules deals with the elimination of the reaches
implies operators. On the counting clock Kcounting, if it is not ticking, then it
gets discarded and the counter remains the same m (Rule reaches− impliese1).
Otherwise, the counter is decremented (Rule reaches− impliese2). As soon as
the counter value is 1, Kslave is triggered and the operators disappears (Rule
reaches− impliese3).

Γ |=n Ψ ∧ (Kcounting reaches m implies Kslave) .Φ (reaches− impliese1)

→e Γ ∪
{
Kcounting 6⇑n

}
|=n Ψ .Φ ∧ (Kcounting reaches m implies Kslave)

Γ |=n Ψ ∧ (Kcounting reaches m+ 1 implies Kslave) .Φ (reaches− impliese2)

→e Γ ∪
{
Kcounting ⇑n

}
|=n Ψ .Φ ∧ (Kcounting reaches m implies Kslave)

Γ |=n Ψ ∧ (Kcounting reaches 1 implies Kslave) .Φ (reaches− impliese3)

→e Γ ∪

{
Kcounting ⇑n
Kslave ⇑n

}
|=n Ψ .Φ

5.2.4 Filtered Implication

In this case, the operator carries itself the state of whether it is skipping or
keeping synchronous causality between master and slave clocks. Four cases of
reduction rules correspond to the four integer counters of the filtered implica-
tion. If clock Kmaster does not tick, we simply discard the operator switching it
to the future and counters remain the same values (Rule filterede1).

Γ |=n Ψ ∧ (Kmaster filtered by s, k (rs, rk)∗ implies Kslave) .Φ (filterede1)

→e Γ ∪
{
Kmaster 6⇑n

}
|=n Ψ .Φ ∧ (Kmaster filtered by s, k (rs, rk)∗ implies Kslave)

Otherwise, Kmaster ticks and three cases appear with respect to the values of
the counter of ticks to skip s, and the counter of ticks to keep k. If the number
of ticks we skip s is non-zero, it means the process is in a state of skipping, so
the current tick is skipped and the counter decremented (Rule filterede2).

5.2 operational semantics 73

Γ |=n Ψ ∧ (Kmaster filtered by s+ 1, k+ 1 (rs, rk)∗ implies Kslave) .Φ (filterede2)

→e Γ ∪
{
Kmaster ⇑n

}
|=n Ψ .Φ ∧ (Kmaster filtered by s, k+ 1 (rs, rk)∗ implies Kslave)

Otherwise it is zero, which means it has entered a state of keeping ticks on
the master clock. If the "keeping" counter is greater or equals to 2, a tick is trig-
gered on Kslave and the k counter is decremented (Rule filterede3). Eventually
k = 1 and we keep for the last time, then we reset counter values with the
repeating counters rs and rk (Rule filterede4).

Γ |=n Ψ ∧ (Kmaster filtered by 0, k+ 2 (rs, rk)∗ implies Kslave) .Φ (filterede3)

→e Γ ∪

{
Kmaster ⇑n
Kslave ⇑n

}
|=n Ψ .Φ ∧ (Kmaster filtered by 0, k+ 1 (rs, rk)∗ implies Kslave)

Γ |=n Ψ ∧ (Kmaster filtered by 0, 1 (rs, rk)∗ implies Kslave) .Φ (filterede4)

→e Γ ∪

{
Kmaster ⇑n
Kslave ⇑n

}
|=n Ψ .Φ ∧ (Kmaster filtered by rs, rk (rs, rk)∗ implies Kslave)

5.2.5 When Implication

Similarly to propositional logic, we provide three rules to reduce a when implies.
Note that this operator does not contain a state but is meant to complete the for-
malization and retrieve the original TESL language. If the master clocks is not
ticking, then the operator is discarded (Rules when− impliese1 and when− impliese2).
Otherwise, both clocks are ticking and so must Kslave (Rule when− impliese3).

Γ |=n Ψ ∧ (Kmaster when Ksampling implies Kslave) .Φ (when− impliese1)

→e Γ ∪
{
Kmaster 6⇑n

}
|=n Ψ .Φ ∧ (Kmaster when Ksampling implies Kslave)

Γ |=n Ψ ∧ (Kmaster when Ksampling implies Kslave) .Φ (when− impliese2)

→e Γ ∪
{
Ksampling 6⇑n

}
|=n Ψ .Φ ∧ (Kmaster when Ksampling implies Kslave)

Γ |=n Ψ ∧ (Kmaster when Ksampling implies Kslave) .Φ (when− impliese3)

→e Γ ∪


Kmaster ⇑n
Ksampling ⇑n
Kslave ⇑n

 |=n Ψ .Φ ∧ (Kmaster when Ksampling implies Kslave)

Additionally, we also provide rules to reduce a when not implies which are
analogous to the previous formula.

74 language with sequential operators : tesl

Γ |=n Ψ ∧ (Kmaster when not Ksampling implies Kslave) .Φ (when− not− impliese1)

→e Γ ∪
{
Kmaster 6⇑n

}
|=n Ψ .Φ ∧ (Kmaster when not Ksampling implies Kslave)

Γ |=n Ψ ∧ (Kmaster when not Ksampling implies Kslave) .Φ (when− not− impliese2)

→e Γ ∪

{
Kmaster ⇑n
Ksampling ⇑n

}
|=n Ψ .Φ ∧ (Kmaster when not Ksampling implies Kslave)

Γ |=n Ψ ∧ (Kmaster when not Ksampling implies Kslave) .Φ (when− not− impliese3)

→e Γ ∪


Kmaster ⇑n
Ksampling 6⇑n
Kslave ⇑n

 |=n Ψ .Φ ∧ (Kmaster when not Ksampling implies Kslave)

6
F O R M A L A N D M E C H A N I Z E D C E RT I F I C AT I O N

operational

semantics

intermediate

semantics

denotational

semantics

soundness

completeness

te
rm

in
at

io
n

Figure 40: Map of relations between semantics

In this chapter, we give key properties to ensure the consistency of the op-
erational semantics of TESL?. We are particularly interested in establishing es-
sential properties of soundness (Theorem 57), completeness (Theorem 60), and
progress (Theorem 62). Such properties precisely rely on the denotational se-
mantics first defined. To achieve this goal, the key idea is to exhibit how one
semantics is reflected in the other. We thus decompose the denotational seman-
tics into a stepwise denotational semantics that serves as an intermediate semantics
between both operational and denotational semantics. We observe that

1. it is trivially equivalent to the denotational semantics (Lemma 50);

2. it directly reflects the behavior of the operational semantics through a
coinductive characterization (Proposition 53).

Therefore it follows that each behavior given by a branch of the operational
semantics derivation is step-by-step captured by the stepwise denotational se-
mantics. We aim at showing that operational and denotational semantics derive
and denote the same runs.

Remark 48. All of these properties are valid for general tag relations. Compared
to the original TESL language which only considers affine tag relations, our
model is agnostic to this restriction and considers any arithmetic relation. Yet,
they are decidable only for some fragments of arithmetic, such as affine rela-
tions.

75

76 formal and mechanized certification

6.1 intermediate semantics and expansion properties

In Definition 40 we have defined a denotational semantics to mathematically
describe all satisfying runs of a specification. Our goal is to decompose it into
smaller parts in order to reason step-by-step over one specific instant, instead
of runs as a whole. Our first step is to weaken the previous definition of the
interpretation of TESL formulae. In Definition 49 we give a slight variation of
this definition where the required behavior is ensured only from a given step
i, no matter what happens before. This is depicted by quantification over index
n, minored by parameter i.

Definition 49 (Stepwise Interpretation of TESL? formulae)

The stepwise interpretation of a TESL? formula Ψ, denoted with
q
Ψ
y>i
TESL, is

defined as
q
ψ0 ∧ . . . ∧ ψk

y>i
TESL

def
=

q
ψ0

y>i
TESL ∩ . . . ∩

q
ψk

y>i
TESL

q
K1 sporadic τ on K2

y>i
TESL

def
= {ρ ∈ Σ∝ | ∃n > i ticks(ρn(K1)) is true and tag(ρn(K2)) = τ}

q
tag relation bK1, K2c ∈ R

y>i
TESL

def
= {ρ ∈ Σ∝ | ∀n > i tag(ρn(K1)) and tag(ρn(K2)) are in relation R}

q
K1 implies K2

y>i
TESL

def
= {ρ ∈ Σ∝ | ∀n > i ticks(ρn(K1)) implies ticks(ρn(K2))}

q
Kmaster time delayed by δτ on Kmeas implies Kslave

y>i
TESL

def
= {ρ ∈ Σ∝ | ∀n > i ticks(ρn(Kmaster))

implies ∃m > n ticks(ρm(Kslave))

and tag(ρm(Kmeas)) = tag(ρn(Kmeas)) + δτ}
q
K1 weakly precedes K2

y>i
TESL

def
=

{
ρ ∈ Σ∝

∣∣∣ ∀n > i card
{
j 6 n

∣∣∣ ticks(ρj(K1))} > card
{
j 6 n

∣∣∣ ticks(ρj(K2))}}
q
K1 strictly precedes K2

y>i
TESL

def
=

{
ρ ∈ Σ∝

∣∣∣ ∀n > i card
{
j < n

∣∣∣ ticks(ρj(K1))} > card
{
j 6 n

∣∣∣ ticks(ρj(K2))}}
q
K1 kills K2

y>i
TESL

def
= {ρ ∈ Σ∝ | ∀n > i ticks(ρn(K1)) implies ∀p > n ¬ ticks(ρp(K2))}

It is trivial that the stepwise interpretation links to the corresponding deno-
tational interpretation by starting at instant index 0 (Lemma 50).

Lemma 50 (Start step)

For any TESL? formula Ψ,
q
Ψ
y
TESL =

q
Ψ
y>0
TESL.

6.1 intermediate semantics and expansion properties 77

Proof: The runs in
q
Ψ
y>0
TESL contains all instants of index greater or equal to 0,

yet indices are always greater or equal to 0.

Likewise, associativity, commutativity, idempotency and neutrality are pre-
served (Lemma 51).

Lemma 51 (Stepwise Associativity, Commutativity, Idempotence and Neutrality)

For any TESL specification Ψ and any instant index i,

q
(Ψ1 ∧ Ψ2) ∧ Ψ3

y>i
TESL =

q
Ψ1 ∧ (Ψ2 ∧ Ψ3)

y>i
TESL (associativity)

q
Ψ1 ∧ Ψ2

y>i
TESL =

q
Ψ2 ∧ Ψ1

y>i
TESL (commutativity)

q
Ψ ∧ Ψ

y>i
TESL =

q
Ψ
y>i
TESL (idempotency)

q
∅ ∧ Ψ

y>i
TESL =

q
Ψ
y>i
TESL (neutrality)

Proof: By set-theoretical reasoning and usual properties of ∩.

The next observation that leads our study is that quantifiers we use in the
denotational definition of TESL are bounded by integers. This allows to unfold
them into smaller parts. This is depicted in Proposition 53 that gives the link
between both operational and denotational semantics. This unfolding property
shows a pattern that strongly resembles that of reduction rules given by the
operational semantics. In particular, coinductively unfolding the denotational
semantics is “similar” to deriving a reduction step of the operational semantics.

Remark 52. This result strongly resembles to expansion laws in LTL. Indeed, the
mechanism in Proposition 53 unfolds the same way that LTL formulae are
unfolded. Recall that #6__ denotes a counter of ticks as in Definition 41.

78 formal and mechanized certification

Proposition 53 (Coinductive Unfolding)

The stepwise interpretation can be coinductively unfolded as

q
K1 sporadic τ on K2

y>i
TESL

=
q
K1 sporadic τ on K2

y>i+1
TESL

∪
q
K1 ⇑i

y
prim ∩

q
K2 ⇓i τ

y
prim

q
tag relation bK1, K2c ∈ R

y>i
TESL

=
q
btvarK1i , tvarK2i c ∈ R

y
prim ∩

q
tag relation bK1, K2c ∈ R

y>i+1
TESL

q
K1 implies K2

y>i
TESL

=
q
K1 6⇑i

y
prim ∩

q
K1 implies K2

y>i+1
TESL

∪
q
K1 ⇑i

y
prim ∩

q
K2 ⇑i

y
prim ∩

q
K1 implies K2

y>i+1
TESL

q
Kmaster time delayed by δτ on Kmeas implies Kslave

y>i
TESL

=
q
Kmaster 6⇑i

y
prim ∩

q
Kmaster time delayed by δτ on Kmeas implies Kslave

y>i+1
TESL

∪
q
Kmaster ⇑i

y
prim ∩

q
Kslave sporadic tvarKmeas

i + δτ on Kmeas
y>i
TESL

∩
q
Kmaster time delayed by δτ on Kmeas implies Kslave

y>i+1
TESL

q
K1 weakly precedes K2

y>i
TESL

=
q
d#6iK1, #6iK2e ∈ >

y
prim ∩

q
K1 weakly precedes K2

y>i+1
TESL

q
K1 strictly precedes K2

y>i
TESL

=
q
d#<iK1, #6iK2e ∈ >

y
prim ∩

q
K1 strictly precedes K2

y>i+1
TESL

q
K1 kills K2

y>i
TESL

=
q
K1 6⇑i

y
prim ∩

q
K1 kills K2

y>i+1
TESL

∪
q
K1 ⇑i

y
prim ∩

q
K2 6⇑>i

y
prim ∩

q
K1 kills K2

y>i+1
TESL

Proof: By unfolding universal and existential quantifiers and substituting parts
with Definition 29 and Definition 49. The rules of state that

q
Ψ
y>i
TESL can be

decomposed in what happens at index i and what happens starting from index
i+ 1.

Again, we find the pattern past-present-future:

• the past is described by J_Kprim, which is the denotation of fixed primi-
tives,

• the present by J_K>iTESL, which denotes runs that are instantaneously valid,

• and the future by J_K>i+1TESL , which denotes runs that are valid in the future
instants.

For instance, when eliminating a time delayed formula, Rule time− delayede1
and Rule time− delayede2 are respectively mirrored at denotational level by the
union of two sets of runs.

6.2 certifying denotational and operational semantics 79

Following the previous observation, we interpret configurations as follows:

Definition 54 (Interpretation of Configurations)

The interpretation of a configuration Γ |=n Ψ .Φ is
q
Γ |=n Ψ .Φ

y
config

def
=

q
Γ
y
prim ∩

q
Ψ
y>n
TESL ∩

q
Φ
y>n+1
TESL .

Consequently, it is trivial to show that the interpretation of a TESL? formula
Ψ is the same as the interpretation of the initial configuration starting at Ψ
(Lemma 55).

Lemma 55 (Start Configuration)

For any TESL? formula Ψ, we have
q
Ψ
y
TESL =

q
∅ |=0 Ψ .∅

y
config.

Proof: By unfolding Definition 54:
q
∅
y
prim and

q
∅
y>n+1
TESL are the whole set

of runs, since ∅ is not constraining anything, and
q
Ψ
y>0
TESL is

q
Ψ
y
TESL by

Lemma 50.

6.2 certifying denotational and operational semantics

• •

•

•

•

•

•

· · ·

· · ·

· · ·

· · ·

d
e
r
iv

e
d

b
r
a
n
c
h
e
s

d
e
n
o
t
a
t
io

n
a
l

in
t
e
r
p
r
e
t
a
t
io

n

run space

Figure 41: Deriving and denoting in the run space

Such a coinductive pattern is useful as it explains the behavior of the oper-
ational semantics at a denotational level and bridges the gap between both
semantics. The goal of the following theorems is to state that denotational and
operational will respectively denote and derive the same runs.

80 formal and mechanized certification

6.2.1 Soundness

To establish soundness, we ensure that any successor configuration contains runs
that were indeed coming from the previous configuration. We show that each
reduction step is sound, in the sense that a run matched by a successor config-
uration is inferred from the configuration it originates from (Lemma 56).

Lemma 56 (Sound Reduction)

For any reduction Γ |=n Ψ .Φ→ Γ ′ |=n ′ Ψ
′ .Φ ′, we have

q
Γ |=n Ψ .Φ

y
config ⊇

q
Γ ′ |=n ′ Ψ

′ .Φ ′
y
config.

Proof: Using Definition 43 and 54, and by case analysis on →. The case for
→i is trivial, the reduction is of the form Γ |=n Ψ .∅ → Γ |=n+1 ∅ . Ψ: the
semantics of both sides are the same. In the case for→e, n ′ = n+ 1. The case is
solved invoking Proposition 53 to decompose the semantics at instant n using
the semantics at instant n+ 1.

Finally, soundness generalizes Lemma 55 and 56 to an arbitrary number of
reductions starting from the initial configuration.

Theorem 57 (Soundness)

Let Ψ be a TESL? formula. For all k and all configurations Γ ′ |=n ′ Ψ ′ .Φ ′ such
that ∅ |=0 Ψ .∅→k Γ ′ |=n ′ Ψ ′ .Φ ′, we have

q
Ψ
y
TESL ⊇

q
Γ ′ |=n ′ Ψ

′ .Φ ′
y
config.

Proof: By induction on k. For the base case, when k = 0 we have Γ ′ = Ψ ′ = ∅
and n ′ = 0. Lemma 55 then tells us that

q
Ψ
y
TESL =

q
Γ ′ |=n ′ Ψ

′ .Φ ′
y
config. For

the inductive case, we suppose that the result is true for k and we consider
k+ 1 reductions:

∅ |=0 Ψ .∅ →k Γ ′ |=n ′ Ψ
′ .Φ ′ → Γ ′′ |=n ′′ Ψ

′′ .Φ ′′.

The induction hypothesis tells us that
q
Ψ
y
TESL ⊇

q
Γ ′ |=n ′ Ψ

′ .Φ ′
y
config, and

we can conclude using Lemma 56 and transitivity of ⊇.

6.2.2 Completeness

Completeness consists of showing that if a run ρ belongs to the denotation of
a configuration, this configuration rewrites to one whose denotation also con-
tains ρ. To achieve this, we first define an operator that captures direct succes-
sors (Definition 58). Then we show that any denoted run can be retrieved in
some successor configuration (Lemma 59).

6.2 certifying denotational and operational semantics 81

Definition 58 (Direct Successors)

For any configuration Γ |=n Ψ .Φ, we define

Cnext(Γ |=n Ψ .Φ)

def
=

{
Γ ′ |=n ′ Ψ

′ .Φ ′
∣∣ (Γ |=n Ψ .Φ)→ (Γ ′ |=n ′ Ψ

′ .Φ ′)
}

.

Lemma 59 (Complete Direct Successors)

For any configuration Γ |=n Ψ .Φ, we have
q
Γ |=n Ψ .Φ

y
config ⊆

⋃
X∈Cnext(Γ |=nΨ.Φ)

q
X
y
config.

Proof: Similarly to the proof of Lemma 56. We proceed by induction on the
number of formulae in Ψ. If Ψ is empty, the only possible reduction is →i,
the reduction is of the form Γ |=n Ψ .∅ → Γ |=n+1 ∅ . Ψ: there is only one
possible X, whose semantics is equal to

q
Γ |=n Ψ .Φ

y
config. If Ψ is not empty,

the reduction is a →e-reduction. The case is solved invoking Proposition 53

to decompose the semantics at instant n using the semantics of the possible
reducts at instant n+ 1.

Hence, completeness holds for an arbitrary number of reductions starting
from initial configuration.

Theorem 60 (Completeness)

Let Ψ be a TESL? formula and ρ a satisfying run, i.e., ρ ∈
q
Ψ
y
TESL. For all k, there

is a configuration Γ ′ |=n ′ Ψ ′ .Φ ′ such that

∅ |=0 Ψ .∅→k Γ ′ |=n ′ Ψ ′ .Φ ′ and ρ ∈
q
Γ ′ |=n ′ Ψ

′ .Φ ′
y
config.

Proof: By induction on k. When k = 0, we conclude using Lemma 55. For
the inductive case, we assume that the result is true for k and consider the
k+ 1 case. From induction hypothesis we find a configuration Γ ′ |=n ′ Ψ ′ .Φ ′

such that ∅ |=0 Ψ . ∅ →k Γ ′ |=n ′ Ψ ′ .Φ ′ and ρ ∈
q
Γ ′ |=n ′ Ψ

′ .Φ ′
y
config.

From Lemma 59, we deduce that there is some X ∈ Cnext(Γ |=n Ψ .Φ) such
that ρ ∈

q
X
y
config. This X is the configuration we are looking for to close the

inductive case.

6.2.3 Progress

Progress ensures the increase of the length of the run in construction. We estab-
lish that for any instant index, a configuration can be “executed” to produce a
run prefix whose length is incremented by 1 (Lemma 61). Then in Theorem 62

82 formal and mechanized certification

we show that for any instant index, a specification can be “executed” to pro-
duce a run prefix of such length from the initial configuration.

Lemma 61 (Instant Index Increase)

Let Γ |=n Ψ .Φ be a configuration and ρ a satisfying run, i.e., ρ ∈
q
Γ |=n

Ψ .Φ
y
config. There is Γ ′, Ψ ′, Φ ′ and a number of reductions k such that

Γ |=n Ψ .Φ→k Γ ′ |=n+1 Ψ ′ .Φ ′ and ρ ∈
q
Γ ′ |=n+1 Ψ

′ .Φ ′
y
config.

Proof: By induction on the size of Ψ. When Ψ is empty, we can just pick k = 1 as
the reduction will be a→i-reduction, and both sides of the reduction will have
the same semantics. Now, supposing that the result is true for any Ψ containing
i formulae, assume that Ψ contains i+ 1 formulae. Lemma 59 tells us that there
exists a configuration X such that Γ |=n Ψ .Φ→ X and ρ ∈

q
X
y
config. Since Ψ is

not empty, the reduction is a →e-reduction and the “present” part of X is now
of size i: we can apply the induction hypothesis and close the case.

Theorem 62 (Progress)

Let Ψ be a TESL? formula and ρ a satisfying run, i.e., ρ ∈
q
Ψ
y
TESL. For all n ′,

there is Γ ′, Ψ ′, Φ ′ and a number of reductions k such that

∅ |=0 Ψ .∅→k Γ ′ |=n ′ Ψ ′ .Φ ′ and ρ ∈
q
Γ ′ |=n ′ Ψ

′ .Φ ′
y
config.

Proof: By induction on n ′. For the base case, n = 0: we can pick k = 0, and
both sides of the reduction are equal. Suppose now that the result is true for
n ′, and let us prove it for n ′ + 1. We can apply the induction hypothesis: it
yields Γ ′, Ψ ′, Φ ′ and a number k such that ∅ |=0 Ψ .∅ →k Γ ′ |=n ′ Ψ ′ .Φ ′
and ρ ∈

q
Γ ′ |=n ′ Ψ

′ .Φ ′
y
config. We can then invoke Lemma 61 yielding us the

required configuration at instant n ′ + 1.

6.3 hygge : a mechanized theory in isabelle/hol

The whole theory developed in this section has been formalized in a proof
assistant. It contains approximately 2000 lines of Isabelle/HOL code, and is
compliant with Isabelle2018. It is distributed as a free library, named Hygge, at

https://github.com/heron-solver/hygge

We give some excerpts that highlight the main ideas presented above. Fig-
ure 42 presents a dependency graph that introduces the architecture of the
theory as concretized in the proof environment and published online. Note
that this formal library tackles the issue of formalization to the extent of frag-
ments and extensions presented in Chapter 4 that have led to TESL?. To keep

https://github.com/heron-solver/hygge

6.3 hygge : a mechanized theory in isabelle/hol 83

this presentation short and simple, we give excerpts and elide the complete
definitions.

TESL

HOL

Pure

Run

Denotational Operational

Corecursive_Prop

Hygge_TheoryIsabelle system

Figure 42: Dependency graph of the mechanized theory

The formal theory starts with Pure and HOL which are the core libraries of
Isabelle/HOL. They consist of the usual definitions and theorems for logical
reasoning in higher-order logic including standard data structures, e.g., induc-
tive functions, lists. . . Then TESL and Run provide basic definitions and notations
used in the formalization of the language as in Section 3.1 and Section 3.2. On
one hand, Denotational gives the denotational semantics as in Section 3.3.1
and Section 4.2.1. On the other hand, the theory Operational gives the oper-
ational semantics as in Section 3.3.2 and Section 4.2.3. The link between both
theories as described earlier in Chapter 6 is made in Corecursive_Prop which
gives the main coinductive nature of the semantics. Finally, Hygge_Theory states
the key properties of soundness, completeness, progress and local termination.

6.3.1 Basic Types and Definitions of the Theory

Usual datatypes are the basic constructs that serve to represent TESL? terms. A
formula is given as a list of atomic formulae.

datatype 'τ TESL_atomic =
SporadicOn "clock" "'τ tag_expr" "clock"

| TagRelation "clock" "clock" "('τ tag_const × 'τ tag_const) ⇒ bool"
| Implies "clock" "clock"
| ImpliesNot "clock" "clock"
| TimeDelayedBy "clock" "'τ tag_const" "clock" "clock"
| WeaklyPrecedes "clock" "clock"
| StrictlyPrecedes "clock" "clock"
| Kills "clock" "clock"

type_synonym 'τ TESL_formula = "'τ TESL_atomic list"

84 formal and mechanized certification

A timestamp is also defined by a datatype which has structural properties:
plus, minus, times, divide, inverse, order, total order. This reflects precisely
the conditions applied to tags which state that their are a totally ordered field
as required in Definition 20. This mechanism is achieved through type class
instanciations.

instantiation tag_const :: (plus)plus
instantiation tag_const :: (minus)minus
instantiation tag_const :: (times)times
instantiation tag_const :: (divide)divide
instantiation tag_const :: (inverse)inverse
instantiation tag_const :: (order)order
instantiation tag_const :: (linorder)linorder

datatype 'τ tag_const =
TConst 'τ ("τcst")

In the same way, we define primitives as seen in Definition 29 and 41.
datatype 'τ constr =

Timestamp "clock" "instant_index" "'τ tag_expr" ("_ ⇓ _ @ _")
| Ticks "clock" "instant_index" ("_ ⇑ _")
| NotTicks "clock" "instant_index" ("_ ¬⇑ _")
| NotTicksUntil "clock" "instant_index" ("_ ¬⇑ < _")
| NotTicksFrom "clock" "instant_index" ("_ ¬⇑ ≥ _")
| TagArith "tag_var" "tag_var" "('τ tag_const × 'τ tag_const) ⇒ bool" ("⌊_, _⌋ ∈ _"
| TickCntArith "cnt_expr" "cnt_expr" "(nat × nat) ⇒ bool" ("⌈_, _⌉ ∈ _"
| TickCntLeq "cnt_expr" "cnt_expr" ("_ ≼ _")

type_synonym 'τ system = "'τ constr list"

)
)

A configuration as in Definition 31 is a tuple.
type_synonym 'τ config = "'τ system * instant_index * 'τ TESL_formula * 'τ TESL_formula"

Finally, a run as described in Definition 20 is defined as a new type ’τ run,
which is a semantic subtype of nat ⇒ ’τ instant. It restricts to the only mono-
tonic runs with respect to each clock timeline. Indeed, we require that time (as
depicted by timestamps) does not rollback.

abbreviation hamlet where "hamlet ≡ fst"
abbreviation time where "time ≡ snd"
type_synonym 'τ instant = "clock ⇒ (bool × 'τ tag_const)"
typedef (overloaded) 'τ::linordered_field run =
"{ ρ::nat ⇒ 'τ instant. ∀c. mono (λn. time (ρ n c)) }"

6.3.2 Denotational and Operational Semantics

The denotational semantics is defined as an interpretation function from TESL?

terms to the type of runs, as done in Definition 25 and 40.

6.3 hygge : a mechanized theory in isabelle/hol 85

Theory Denotational
theory Denotational
imports Run

theory Denotational
imports

"TESL"
"Run"

begin

section ‹Denotational interpretation for atomic TESL formulae›

(* PHOTO *)

fun TESL_interpretation_atomic

:: "('τ::linordered_field) TESL_atomic ⇒ 'τ run set" ("⟦ _ ⟧TESL") where

"⟦ K1 sporadic ⦇τ⦈ on K2 ⟧TESL =
 { ρ. ∃n::nat. hamlet ((Rep_run ρ) n K1) = True
 ∧ time ((Rep_run ρ) n K2) = τ }"
| "⟦ K1 sporadic ⦇τvar(Ki, ni) ⊕ δτ⦈ on K2 ⟧TESL =

 { ρ. ∃n::nat. hamlet ((Rep_run ρ) n K1) = True
 ∧ time ((Rep_run ρ) n K2) = time ((Rep_run ρ) ni Ki) + δτ }"
| "⟦ time-relation ⌊K1, K2⌋ ∈ R ⟧TESL =

 { ρ. ∀n::nat. R (time ((Rep_run ρ) n K1), time ((Rep_run ρ) n K2)) }"
| "⟦ master implies slave ⟧TESL =

 { ρ. ∀n::nat. hamlet ((Rep_run ρ) n master) ⟶
 hamlet ((Rep_run ρ) n slave) }"
| "⟦ master implies not slave ⟧TESL =

 { ρ. ∀n::nat. hamlet ((Rep_run ρ) n master) ⟶
 ¬ hamlet ((Rep_run ρ) n slave) }"
| "⟦ master time-delayed by δτ on measuring implies slave ⟧TESL =

 { ρ. ∀n. hamlet ((Rep_run ρ) n master) ⟶
 (let measured_time = time ((Rep_run ρ) n measuring) in
 ∃m ≥ n. hamlet ((Rep_run ρ) m slave)
 ∧ time ((Rep_run ρ) m measuring) = measured_time + δτ
)
 }"
| "⟦ K1 weakly precedes K2 ⟧TESL =

 { ρ. ∀n::nat. (run_tick_count ρ K2 n) ≤ (run_tick_count ρ K1 n) }"
| "⟦ K1 strictly precedes K2 ⟧TESL =

 { ρ. ∀n::nat. (run_tick_count ρ K2 n) ≤ (run_tick_count_strictly ρ K1 n) }"
| "⟦ K1 kills K2 ⟧TESL =

 { ρ. ∀n::nat. hamlet ((Rep_run ρ) n K1) ⟶ (∀m≥n. ¬ hamlet ((Rep_run ρ) m K2)) }"

section ‹Denotational interpretation for TESL formulae›

Theory Denotational (Isabelle2017: October 2017) file:///home/psaxl/code/hygge/docs/Denotational.html

1 of 5 8/24/18, 4:32 PM

On the other side, the operational semantics is defined by a inductive prop-
erty that directly expresses the reduction rules defined in Definition 32, 33 and
43.

Theory Operational
theory Operational
imports Run

theory Operational
imports

"TESL"
"Run"

begin
text{* Operational steps *}

abbreviation uncurry_conf
:: "('τ::linordered_field) system ⇒ instant_index ⇒ 'τ TESL_formula ⇒ 'τ TESL_formula ⇒ 'τ config"
"Γ, n ⊢ Ψ ▹ Φ ≡ (Γ, n, Ψ, Φ)"

inductive operational_semantics_intro
:: "('τ::linordered_field) config ⇒ 'τ config ⇒ bool" ("_ ↪i _" 70) where

instant_i:
"(Γ, n ⊢ [] ▹ Φ)

 ↪i (Γ, Suc n ⊢ Φ ▹ [])"

inductive operational_semantics_elim
:: "('τ::linordered_field) config ⇒ 'τ config ⇒ bool" ("_ ↪e _" 70) where

sporadic_on_e1:
"(Γ, n ⊢ ((K1 sporadic τ on K2) # Ψ) ▹ Φ)

 ↪e (Γ, n ⊢ Ψ ▹ ((K1 sporadic τ on K2) # Φ))"
| sporadic_on_e2:
"(Γ, n ⊢ ((K1 sporadic τ on K2) # Ψ) ▹ Φ)

 ↪e (((K1 ⇑ n) # (K2 ⇓ n @ τ) # Γ), n ⊢ Ψ ▹ Φ)"
| tagrel_e:
"(Γ, n ⊢ ((time-relation ⌊K1, K2⌋ ∈ R) # Ψ) ▹ Φ)

 ↪e (((⌊τvar(K1, n), τvar(K2, n)⌋ ∈ R) # Γ), n
 ⊢ Ψ ▹ ((time-relation ⌊K1, K2⌋ ∈ R) # Φ))"
| implies_e1:
"(Γ, n ⊢ ((K1 implies K2) # Ψ) ▹ Φ)

 ↪e (((K1 ¬⇑ n) # Γ), n ⊢ Ψ ▹ ((K1 implies K2) # Φ))"
| implies_e2:
"(Γ, n ⊢ ((K1 implies K2) # Ψ) ▹ Φ)

 ↪e (((K1 ⇑ n) # (K2 ⇑ n) # Γ), n ⊢ Ψ ▹ ((K1 implies K2) # Φ))"
| implies_not_e1:
"(Γ, n ⊢ ((K1 implies not K2) # Ψ) ▹ Φ)

 ↪e (((K1 ¬⇑ n) # Γ), n ⊢ Ψ ▹ ((K1 implies not K2) # Φ))"
| implies_not_e2:
"(Γ, n ⊢ ((K1 implies not K2) # Ψ) ▹ Φ)

 ↪e (((K1 ⇑ n) # (K2 ¬⇑ n) # Γ), n ⊢ Ψ ▹ ((K1 implies not K2) # Φ))"

Theory Operational (Isabelle2017: October 2017) file:///home/psaxl/code/hygge/docs/Operational.html

1 of 4 8/24/18, 4:31 PM

Then the core property of our formalization is given by the coinductive un-
folding (Proposition 53). It describes how unfolding TESLε formulae in denota-
tional semantics is similar to deriving runs in operational semantics. Here are a
few excerpts that illustrate this mechanization. Proofs are based on elementary
set-theoretical reasoning.

86 formal and mechanized certification

lemma TESL_interp_stepwise_sporadicon_coind_unfold:
shows "⟦ K1 sporadic τ on K2 ⟧TESL≥ n =

 ⟦ K1 ⇑ n ⟧prim ∩ ⟦ K2 ⇓ n @ τ ⟧prim
 ∪ ⟦ K1 sporadic τ on K2 ⟧TESL≥ Suc n"
lemma TESL_interp_stepwise_tagrel_coind_unfold:

shows "⟦ time-relation ⌊K1, K2⌋ ∈ R ⟧TESL≥ n =
 ⟦ ⌊τvar(K1, n), τvar(K2, n)⌋ ∈ R ⟧prim
 ∩ ⟦ time-relation ⌊K1, K2⌋ ∈ R ⟧TESL≥ Suc n"
lemma TESL_interp_stepwise_implies_coind_unfold:

shows "⟦ master implies slave ⟧TESL≥ n =
 (⟦ master ¬⇑ n ⟧prim ∪ ⟦ master ⇑ n ⟧prim ∩ ⟦ slave ⇑ n ⟧prim)

 ∩ ⟦ master implies slave ⟧TESL ≥ Suc n"
lemma TESL_interp_stepwise_timedelayed_coind_unfold:

shows "⟦ master time-delayed by δτ on measuring implies slave ⟧TESL≥ n =

 (⟦ master ¬⇑ n ⟧prim ∪ ⟦ master ⇑ n ⟧prim ∩ ⟦ slave sporadic ⦇τvar(measuring, n) ⊕ δτ⦈ on measuring ⟧

 ∩ ⟦ master time-delayed by δτ on measuring implies slave ⟧TESL≥ Suc n"

proof -
have "{ ρ. ∀m≥n. hamlet ((Rep_run ρ) m master) ⟶ hamlet ((Rep_run ρ) m slave) }

 = { ρ. hamlet ((Rep_run ρ) n master) ⟶ hamlet ((Rep_run ρ) n slave) }
 ∩ { ρ. ∀m≥Suc n. hamlet ((Rep_run ρ) m master) ⟶ hamlet ((Rep_run ρ) m slave) }"

using nat_set_suc[of "n" "λx y. hamlet ((Rep_run x) y master) ⟶ hamlet ((Rep_run x) y slave)"
then show ?thesis by auto

qed

lemma TESL_interp_stepwise_implies_not_coind_unfold:
shows "⟦ master implies not slave ⟧TESL≥ n =

 (⟦ master ¬⇑ n ⟧prim ∪ ⟦ master ⇑ n ⟧prim ∩ ⟦ slave ¬⇑ n ⟧prim)

 ∩ ⟦ master implies not slave ⟧TESL≥ Suc n"
proof -

have "{ ρ. ∀m≥n. hamlet ((Rep_run ρ) m master) ⟶ ¬ hamlet ((Rep_run ρ) m slave) }
 = { ρ. hamlet ((Rep_run ρ) n master) ⟶ ¬ hamlet ((Rep_run ρ) n slave) }
 ∩ { ρ. ∀m≥Suc n. hamlet ((Rep_run ρ) m master) ⟶ ¬ hamlet ((Rep_run ρ) m slave) }"

using nat_set_suc[of "n" "λx y. hamlet ((Rep_run x) y master) ⟶ ¬ hamlet ((Rep_run x) y slave)"
then show ?thesis by auto

qed

(* PHOTO *)

lemma TESL_interp_stepwise_timedelayed_coind_unfold:
shows "⟦ master time-delayed by δτ on measuring implies slave ⟧TESL≥ n =

 (⟦ master ¬⇑ n ⟧prim
 ∪ ⟦ master ⇑ n ⟧prim
 ∩ ⟦ slave sporadic ⦇τvar(measuring, n) ⊕ δτ⦈ on measuring ⟧TESL≥ n)

 ∩ ⟦ master time-delayed by δτ on measuring implies slave ⟧TESL≥ Suc n"

proof -
have "{ ρ. ∀m≥n. hamlet ((Rep_run ρ) m master) ⟶

 (let measured_time = time ((Rep_run ρ) m measuring) in
 ∃p ≥ m. hamlet ((Rep_run ρ) p slave) ∧ time ((Rep_run ρ) p measuring) = measured_time +
 = { ρ. hamlet ((Rep_run ρ) n master) ⟶
 (let measured_time = time ((Rep_run ρ) n measuring) in
 ∃p ≥ n. hamlet ((Rep_run ρ) p slave) ∧ time ((Rep_run ρ) p measuring) = measured_time +
 ∩ { ρ. ∀m≥Suc n. hamlet ((Rep_run ρ) m master) ⟶
 (let measured_time = time ((Rep_run ρ) m measuring) in
 ∃p ≥ m. hamlet ((Rep_run ρ) p slave) ∧ time ((Rep_run ρ) p measuring) = measured_time +

using nat_set_suc[of "n" "λx y. hamlet ((Rep_run x) y master) ⟶
 (let measured_time = time ((Rep_run x) y measuring) in
 ∃p ≥ y. hamlet ((Rep_run x) p slave) ∧ time ((Rep_run x) p measuring) = measured_time +

then show ?thesis by auto
qed

lemma TESL_interp_stepwise_weakly_precedes_coind_unfold:
shows "⟦ K1 weakly precedes K2 ⟧TESL≥ n =

Theory Corecursive_Prop (Isabelle2017: October 2017) file:///home/psaxl/code/hygge/docs/Corecursive_Prop.html

6 of 14 8/24/18, 4:33 PM

6.3.3 Guarantees and Safety Properties

Finally, soundness (Theorem 57), completeness (Theorem 60), progress (Theo-
rem 62) are given by the following theorems. Their proofs are mainly based on
induction over Ψ, i.e., induction over formulae, and induction over the length
of run k.

theorem soundness:
assumes "([], 0 ⊢ Ψ ▹ []) ↪k 𝒮"
shows "⟦⟦ Ψ ⟧⟧TESL ⊇ ⟦ 𝒮 ⟧config"

theorem completeness:
assumes "ρ ∈ ⟦⟦ Ψ ⟧⟧TESL"

shows "∃𝒮. (([], 0 ⊢ Ψ ▹ []) ↪k 𝒮)
 ∧ ρ ∈ ⟦ 𝒮 ⟧config"

theorem progress:
assumes "ρ ∈ ⟦⟦ Ψ ⟧⟧TESL"

shows "∃k Γk Ψk Φk. (([], 0 ⊢ Ψ ▹ []) ↪k (Γk, n ⊢ Ψk ▹ Φk))
 ∧ ρ ∈ ⟦ Γk, n ⊢ Ψk ▹ Φk ⟧config"

The local termination property (Proposition 34) states that the elimination
rules are terminating. To prove so, we prove that such a reduction is well-
founded (using predicate WfP).

theorem instant_computation_termination:
shows "wfP (λ(𝒮1:: 'a :: linordered_field config) 𝒮2. (𝒮1 ↪e← 𝒮2))"

6.3 hygge : a mechanized theory in isabelle/hol 87

6.3.4 Towards a Certified Solver

The Isabelle/HOL proof assistant features a code generator, turning HOL the-
ories into corresponding executable programs. One of our approaches was to
take advantage of the Isabelle execution engine to generate a certified solver.

Listing 7: Basic example with two sporadic constraints

1 K1 sporadic 1

2 K1 sporadic 2

3 K1 implies K2

The above specification is a small example that illustrates our experiment.

Figure 43: Executing the operational semantics in Isabelle/HOL

Figure 43 shows the implementation we integrated inside the Isabelle proof
environment. The solver consists of Standard ML code based upon the Is-
abelle calculus engine and uses parts of the Eisbach module [MMW16]. From
the operational rules, prefixes of symbolic runs are generated with a tactic

88 formal and mechanized certification

heron_next_step that mimics the computation of a simulation step as in Def-
inition 37. However, due to a design choice of reusing existing modules and
avoiding adhoc unsafe tweaks, it appeared that computing runs was hardly
feasible. That was highly reflected by Isabelle computing states each time it
attempts at backtracking, instead of saving them. This is even worsened by the
semantic subtyping on runs which ensures that tags on clocks are monotonic
as shown in Table 2.

number of steps time (in sec)

1 57.2

2 Timeout

3 Timeout

Table 2: Generating run prefixes in the Hygge theory

Figure 44: A spurious run

If we discard the property of monotonic run tags that is modeled in the type
of concrete runs with semantic subtyping, we gain time but lose consistency in
produced runs. Figure 44 illustrates a spurious run that can be produced if we
backtrack to exhibit another generated run. Table 3 illustrates time to produce
the run in Figure 43.

number of steps time (in sec)

1 0.19

2 1.31

3 5.83

Table 3: Generating run prefixes in the Hygge theory ignoring semantic subtyping

To provide a usable tool in concrete situations, we decided to develop a par-
allel implementation in Standard ML that is fully described next.

7

A P P L I C AT I O N T O T E S T I N G A N D M O N I T O R I N G

Testing is a collection of verification processes with the intention to highlight
errors and misbehaviors in systems. As an example in the context of Cyber-
Physical Systems (CPS), the aim is the observation of a dynamic entity mostly
embedded in the physical world given some limited interface. In an analogous
manner to the assessment of airline pilots on simulators, testing in the context
of simulation also applies for subsystems that need to be assessed against sce-
narios and environments to ensure their good behaviors. Singularly with the
increase of MBD in development processes, the integration of simulation has
reduced cost and time for verification procedures. In particular, Hardware-in-
the-loop (HIL) simulation is a real-time simulation used to test real develop-
ment hardware against realistic but virtual stimuli (actuators, sensors, inter-
mediate control). This particularly suits for testing systems in need of critical
properties, such as autopilots [JT07] or collision avoidance systems in aircrafts
[LLL00]. Simulation can help the goal of testing and monitoring systems. In
a continuously-reactive system, simulation is done by means of a closed-loop
with feedback where

• either the System Under Test (SUT) that is modeled, is simulated against
the physical world that provides reaction through control and acquisition
drivers (Figure 45a),

• either the SUT is a hardware code or circuit concretized from the model,
and that is tested against a simulated physics model (Figure 45b).

Physical world

Simulation of the
System-under-Test

control acquisition

(a) Simulated system

Concretized
System-under-Test

Simulation of the
physics model

input output

(b) Simulated physical environment

Figure 45: Heterogeneous simulation as in HIL

89

90 application to testing and monitoring

Due to the compositional nature of our framework, the separation between
submodels (serving as representations for subsystems) is clear and surrounds
HIL simulation testing by considering the whole external stimuli as again an-
other parallel subsystem. In this section, we scrutinize the idea of testing and
monitoring in the context of simulation. Both approaches may seem similar,
they admit a few differences.

testing . A specific input is associated with a specific expected output of
the system. In this input/output semantics approach, we wait until the
system comes to a proper termination and then observe its final output
(through predefined limited interfaces).

monitoring . To go further, the previous idea is broadened and now tracks
the system behavior during execution (at runtime) to detect unexpected
behaviors. This form of trace semantics is suitable to reactive systems that
may loop, or may get stuck in deadlock. Once again, the observation is
limited by runtime interfaces.

Our purpose is to provide a testing/monitoring framework with the interest
of considering timed aspects of systems. Under some specific conditions, some
event shall occur (or not) under time constraints. Such issues have already been
investigated in [KT09] in the context of timed automata. Here we study in the
context of our framework. Given the operational semantics for TESL that we
studied in the previous chapters, the design and implementation of a solver
for TESL specifications is straightforward. A collection of specification formu-
lae can be constructively solved to produce runs that satisfy the specification
requirements. Additionally, these runs are sound and complete, based on the
equivalence with the denotational semantics shown in Chapter 6 to the scale of
the TESL? fragment.

7.1 heron : a solver for tesl specifications

Since the operational semantics of TESL can be seen as an abstract execution
machine, its implementation is a natural result. The prototype solver is called
Heron [NBB+

17], and is distributed as free software at

https://github.com/heron-solver/heron

It is more general than the original deterministic TESL solver since it is not
restricted to “minimal” runs. It consists of approximately 2500 lines of Stan-
dard ML code, and is compiled with MLton [Wee06]. Heron is a standalone
command-line interpreter, which takes a TESL specification as input and pro-
duces prefixes of satisfying symbolic runs. The solver is complete in the sense
discussed in Chapter 6, i.e., it produces all satisfying runs up to a fixed step in-
dex. Assuming that the ‘future’ formula contains no contradiction, this means

https://github.com/heron-solver/heron

7.1 heron : a solver for tesl specifications 91

Figure 46: Running the Heron solver on Listing 7

that the satisfying symbolic runs have instances which are exactly the prefixes
of all satisfying concrete runs.

Heron can be used in four modes:

exhaustive exploration. The non-deterministic nature of our semantics
allows multiple choices for deriving runs. By default, they are all explored
when no specific simulation policy is given. In this mode, state-space explosion
emerges quickly.

minimal fast simulation. Several heuristic policies are provided to re-
strict the state-space, among them, the “minimal run strategy” mimics the origi-
nal TESL simulator by making events occur as early as possible, and only when
mandatory (a clock does not tick unless an implication or a sporadic constraint
forces it to tick). These policies turn Heron into an execution engine targeted at
specific kinds of runs.

scenario monitoring . The state-space can also be restricted by the be-
havior of a concrete SUT observed at its interfaces (see Figure 3). The observed
behavior — both from the interface of system components and from the archi-
tectural glue — is checked against the TESL specification.

scenario testing . For testing, scenario monitoring is extended with the
concept of distinguished driving-clocks, for which Heron can produce tagged
event instances that are consistent with the current constraint-set (it essentially
picks an instance at each instant among the consistent instances). These event-
instances can be converted into suitable stimuli for the SUT (however, we have
currently not yet implemented a driver for this).

In the following, we discuss the monitoring scenario in more detail and then
refine it into a kind of input-output conformance [Tre96] test scenario.

92 application to testing and monitoring

7.2 scenario conformance monitoring and error detection

The Heron solver can be used as an online monitoring tool, permitting to tackle
the infinite number of possibilities for concrete test-runs at all possible instants.
The conformance monitoring scenario makes the following assumptions:

1. we assume the monitor has an access to the SUT interfaces (see Figure 3)
via a driver that abstracts observations into tagged events on clocks;

2. we assume that the computing time of the driver and of Heron can be
neglected with regard to the execution time of the SUT, and

3. we assume that the system is output deterministic; i.e after an initializa-
tion of the SUT by the tester, it is possible to track the state of the SUT by
only observing its inputs and outputs [BW16].

The idea for the monitoring scenario is to filter out the branches in the set of
runs maintained by Heron that are no longer compatible with the behavior of
the system, as observed through the interfaces. If the SUT produces a behavior
that does not conform to the specification, the solver will fail to produce a
satisfying configuration and abort.

A monitoring sequence is illustrated in Figure 47. The solver first starts by
generating all satisfying states (circled |=). It then keeps the states that are com-
patible with the observed behavior of the SUT (plain circles), while dropping
the other ones (dashed gray circles). When the SUT produces a bad behavior
(circled 6|=), the solver drops all of its states and finds none that match the
behavior of the SUT. No further simulation is possible.

example : based on the specification shown in Listing 2 on page 36, we use
the @scenario directive to feed Heron with the observed behavior, and the
@step directive to take this behavior into account and update the reachable
states:

7 @scenario strict 1 min move

8 @step

9 @scenario strict 2 min move

10 @step

11 @scenario strict 3 move

12 @step

13 @scenario strict 4 min move

14 @step

For instance in Line 7, we tell Heron that we observed that clocks min and
move tick at instant 1. The strict option indicates that only the given clocks
tick, all the others remain idle in that instant. Alternatively, we could use:

9 @scenario strict 2 (min-> 1.0) move

7.2 scenario conformance monitoring and error detection 93

Paths generated by Heron

|=

|= |=

|= |= |=

|= |= |=

SUT

|=

|=

|=

6|=

Step 0
Conformance

Step 1
Conformance

Step 2
Conformance

Step 3
Violation

Figure 47: Executing Heron and the SUT in parallel

to indicate that the tag on clock min at this instant is 1.0. This instantiates the
symbolic tag variable in the symbolic run with a concrete tag for clock min.
Thus, the observations on the concrete run of the SUT can be used to prune
execution branches that are not relevant for the future of the run.

In the above example, the solver finds 24 symbolic runs, among them the one
shown in Figure 15b:

@print

Simulation result:

sec min move

[1] � ↑ 0.0 ↑
[2] � ↑ 1.0 ↑
[3] � � ↑
[4] � ↑ 2.0 ↑

The output shows a run containing four instants, with a timeline for each of
the specified clocks (sec, min, move). A ticking clock is depicted by the upwards
arrow (↑) with the associated time tag on the right. An idle clock is depicted by
the circled slash (�). If nothing is specified for a clock, it can either tick or not.

property violation. As long as the SUT produces behaviors for which
the solver does not detect a contradiction, the observed run “potentially con-

94 application to testing and monitoring

forms” to the TESL specification. However, if a non-conforming behavior oc-
curs, the solver detects a contradiction in its constraint set. For instance, if in
step 3, clock min ticks but clock move does not, we have:

7 @scenario strict 1 min move

8 @step

9 @scenario strict 2 min move

10 @step

11 @scenario strict 3 min

12 @step

In this case, the solver detects the violation of the min implies move formula.

ERROR: No further state found.

Simulation is now stuck in inconsistent mode.

7.3 input/output conformance testing

We consider online testing as an extension of online monitoring with a policy
for generating input stimuli on the fly. This policy explores the state space with
respect to a particular coverage criterion.

In order to use Heron as an online testing tool, the clocks that are considered
as inputs must be declared as driving-clocks:

7 @driving-clock move

After this declaration, Heron may be instrumented by:

8 @event-solve 2

which leads to the invocation of a constraint solver (Lemma 30) for step 2,
which by default chooses for the driving clocks, an input that satisfies the con-
straints. More sophisticated generation policies could be implemented.

conformance : if the future of a configuration becomes empty or stable, the
observed run “fully conforms” to the TESL specification. A (future) specifica-
tion is stable, if it represents a Büchi-automaton producing an infinite behavior
such as:

min time delayed by 1.0 on min implies min

which represents an infinite stream of event occurrences, each separated from
the previous one by a 1.0 time delay measured on the time scale of clock min.
For the moment, we only have an incomplete set of patterns to characterize
stable specifications. Moreover, we cannot conclude if we do not reach such a
configuration during the test, which corresponds to the classical inconclusive
situation in conformance testing.

7.4 performance 95

7.4 performance

Benchmarks have been realized on a conventional laptop computer with an
Intel Core™ i5-2520M CPU @ 2.50GHz and 8 GB of RAM. The results are logged
in Table 4 based on examples provided by the official gallery of TESL1:

• HandWatch: The minute hand of a clockwatch as in Listing 2.

• LightSwitch: A fluorescent light bulb takes some time to become com-
pletely lit after switched on, and some other time to be off after being
switched off.

• ConcurrentComp: Two CPUs are executing in parallel and on different
timeframes to compute the final result A+B, provided that each of them
is in charge of computing A on one side and B on the other side (as in
Listing 6).

• LeapYears: Determine leap years.

• Engine: Ignition in a four-stroke petrol engine with related timeframes
for the crankshaft, the camshaft and real time.

The results measure time (in sec or min:sec) and memory usage (in kB) for
each specification with respect to three policies and with respect to the number
of simulation steps: exhaustive exploration, minimal run (given by the policy
asap) and system monitoring.

In the first case, the state-space explosion is notably highlighted by timeouts
at the first instants. This is a direct consequence of the branching nature of the
operational semantics. On the other side, executing the specification (with the
minimal run policy) or monitoring an SUT are feasible in reasonable time. In-
deed, the only conforming behaviors are preserved, and hence can be handled
with reasonable time and space resources.

1 See http://wdi.supelec.fr/software/TESL/Gallery

http://wdi.supelec.fr/software/TESL/Gallery

96 application to testing and monitoring

h
h

h
h
h

h
h
h

h
h
h

h
h
h

hh
Exam

ple
Policy

and
steps

Exhaustive
M

inim
alR

un
SU

T
M

onitoring

1
2

3
4

1
2

3
4

1
2

3
4

H
andW

atch
Tim

e
0.

0
2

0.
0

0
0.

0
1

0.
0

7
0.

0
0

0.
0

0
0.

0
0

0.
0

0
0.

0
0

0.
0

0
0.

0
0

0.
0

2

M
em

ory
2

4
1

2
3

1
2

4
6

4
6

4
1

0
2

6
4

2
5

9
2

2
5

1
2

3
2

2
0

3
2

2
0

2
4

9
6

3
2

3
6

3
8

9
2

5
7

6
8

LightSw
itch

Tim
e

0.
0

0
0.

0
6

3.
2

0
1

0:
0

2.
8

1
0.

0
0

0.
0

0
0.

0
1

0.
0

2
0.

0
0

0.
0

2
0.

0
4

0.
1

1

M
em

ory
3

1
3

2
9

8
7

2
2

8
8

1
2

0
4

0
2

9
6

7
6

3
1

7
2

5
3

0
0

7
0

8
8

7
0

6
4

3
1

8
0

7
0

8
0

8
1

4
0

1
2

4
4

4

C
oncurrentC

om
p

Tim
e

0.
0

0
1.

7
7

1
0:

2
6.

3
2

Tim
eout

0.
0

2
0.

0
6

0.
0

8
0.

0
6

0.
0

2
0.

2
3

1.
1

9
3.

2
7

M
em

ory
7

0
6

4
1

4
5

2
0

8
4

0
2

9
6

8
8

7
1

2
0

7
9

1
6

7
8

5
6

7
8

6
0

7
1

3
6

1
5

9
5

6
6

8
8

6
4

1
2

1
8

8
4

LeapYears
Tim

e
0.

0
1

3.
2

4
1

5:
1

2.
4

1

Tim
eout

0.
0

5
0.

0
6

0.
0

7
0.

0
8

0.
0

1
0.

5
2

1.
1

2
1.

5
3

M
em

ory
8

3
2

0
2

1
7

6
8

8
4

0
2

9
7

9
2

8
3

5
6

8
3

8
4

8
2

6
0

8
3

6
0

8
3

3
2

3
9

8
3

2
3

9
8

2
0

3
9

8
8

4

Engine
Tim

e
0.

0
0

0.
0

3
0.

3
2

8.
3

4
0.

0
0

0.
0

1
0.

0
1

0.
0

1
0.

0
0

0.
0

2
0.

0
4

0.
0

8

M
em

ory
3

2
1

2
7

7
5

2
2

0
7

2
8

3
4

2
2

4
0

3
3

0
0

4
7

8
0

6
6

2
8

7
1

9
6

3
2

5
2

7
3

8
4

8
0

4
4

8
4

6
0

Table
4:Benchm

arking
H

eron
on

TESL
officialgallery

8
C O N C L U S I O N A N D P E R S P E C T I V E S

8.1 summary

The context of this thesis revolves around designing semantic structures for a
timed discrete-event specification language for the composition and the simu-
lation of composite models. More specifically, our study was focused on the
TESL language that is at the heart of the ModHel’X simulation environment.
The initial problem arises when such a semantic framework needs to qualify
for two main properties:

compositionality The semantic composition of two models yields the se-
mantics of the supermodel.

executability It should be constructive (in other words, runnable) to allow
the derivation of execution traces.

Our solution tackles the issues in question with the introduction and the
study of three language variants named TESLε, TESL? and TESL that target
specification and verification of timed systems. The first two variants, TESLε
and TESL?, both admit a denotational and an operational semantics. They are
linked and have been proven to be equivalent by means of an intermediate se-
mantics that is stepwise compared to the denotational one. This has led us to a
property exhibiting the reflection between both denotational and operational se-
mantics, and allows the derivation of properties ensuring the well-foundedness
of our approaches: soundness, completeness, progress and local termination. In
an effort to fully validate our approaches, our results are fully mechanized us-
ing the Isabelle/HOL proof assistant.

Finally, the addition of the remaining operational rules that cover the com-
plete language in the TESL variant allows us to develop a constructive solver of
the complete original language. It is an efficient implementation of the complete
operational semantics that can be used for runtime monitoring and testing. It
integrates as well extensions of TESL?.

97

98 conclusion and perspectives

8.2 perspectives

Following our contributions, we foresee several open questions to be addressed.

generic sequential formulae . The structure of formulae presented in
the third extension of TESL seems to follow a common pattern in which causal-
ity formulae trigger events with respect to a conditioned state. For example,
delayed by contains the current number of ticks to skip before triggering a
clock, while await contains a state enumerating clocks that have ticked to keep
track of the clocks that need to be awaited before triggering another clock. A
monadic approach seems necessary to factorize these components. This would
consist of a generic type (lists, integers, tuples, or any of their composition)
along with predicates ruling the order of execution:

〈clock〉 implies 〈clock〉 conditioned by 〈predicate〉 on 〈state〉
resettable whenever 〈predicate〉 initially 〈state〉

folding infinite runs . In our experiment, we believe that infinite runs
can be folded modulo renaming of the tag variables given that tag relations are
affine. The direct consequence of this makes TESL a description language for
regular behaviors to the degree of abstraction of symbolic tag variables. This
would allow static analysis on properties such as deadlock, mutual exclusion. . .

1 2 3 4 5 6 7

. . .

Figure 48: A sequence of configurations with “equivalence” between 6th and 3rd

integration as a uml marte solver . As stated in Remark 39, we be-
lieve our framework turns the solver into a suitable tool for solving coordina-
tion of timed models in UML MARTE [SG13]. Moreover, its foundations are
proved to compute the exact satisfying runs of a specification. Hence, it could
be integrated to reliably monitor realtime systems for faults and error detection.

certified solvers at a larger scale The language variants we present
seem close to existing models but we believe are more expressive while enjoy-
ing good properties. A further study should highlight the power of expres-
siveness of TESL compared to other languages and paradigms. Furthermore,
the coinductive characterization that serves our properties would likely apply
in the context of other languages, and as we exhibited, the process of mecha-
nizing and generating code for such formalized theories opens doors towards
certified solvers for timed languages.

B I B L I O G R A P H Y

[ABG+
08] S. Akshay, Benedikt Bollig, Paul Gastin, Madhavan Mukund,

and K. Narayan Kumar. Distributed timed automata with inde-
pendently evolving clocks. In Franck van Breugel and Marsha
Chechik, editors, CONCUR 2008 - Concurrency Theory, pages 82–
97, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[AC96] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1st edition, 1996.

[AD94a] Rajeev Alur and David L. Dill. A theory of timed automata. The-
oretical Computer Science, 126(2):183 – 235, 1994.

[AD94b] Rajeev Alur and David L. Dill. A theory of timed automata. The-
oretical Computer Science, 126:183–235, 1994.

[And09] Charles André. Syntax and Semantics of the Clock Constraint
Specification Language (CCSL). Research Report RR-6925, INRIA,
2009.

[BCC+
08] Albert Benveniste, Benoît Caillaud, Luca Carloni, Paul Caspi, and

Alberto Sangiovanni-Vincentelli. Composing Heterogeneous Re-
active Systems. ACM Transactions on Embedded Computing Systems
(TECS), 7(4), 2008.

[Ber00] Gérard Berry. The foundations of Esterel. In Gordon Plotkin,
Colin Stirling, and Mads Tofte, editors, Proof, Language, and Inter-
action, pages 425–454. MIT Press, Cambridge, MA, USA, 2000.

[Ber07] Gérard Berry. Scade: Synchronous design and validation of em-
bedded control software. In S. Ramesh and Prahladavaradan Sam-
path, editors, Next Generation Design and Verification Methodologies
for Distributed Embedded Control Systems, pages 19–33, Dordrecht,
2007. Springer Netherlands.

[BHJM11] F. Boulanger, C. Hardebolle, C. Jacquet, and D. Marcadet. Seman-
tic adaptation for models of computation. In 2011 Eleventh Inter-
national Conference on Application of Concurrency to System Design,
pages 153–162, June 2011.

[BJHP14] Frédéric Boulanger, Christophe Jacquet, Cécile Hardebolle, and
Iuliana Prodan. TESL: a language for reconciling heterogeneous

99

100 bibliography

execution traces. In Formal Methods and Models for Codesign (MEM-
OCODE), 2014 Twelfth ACM/IEEE International Conference on, pages
114–123, Lausanne, Switzerland, Oct 2014.

[BW16] Achim D. Brucker and Burkhart Wolff. Monadic sequence testing
and explicit test-refinements. In Tests and Proofs - 10th International
Conference, TAP 2016, Held as Part of STAF 2016, Vienna, Austria,
July 5-7, 2016, Proceedings, pages 17–36, 2016.

[CCF+
15] Benoit Combemale, Betty H.C. Cheng, Robert B. France, Jean-

Marc Jezequel, and Bernhard Rumpe. Globalizing Domain-Specific
Languages, volume 9400 of LNCS, Programming and Software Engi-
neering. Springer International Publishing, 2015.

[Chu32] Alonzo Church. A set of postulates for the foundation of logic.
Annals of Mathematics, 33(2):346–366, 1932.

[Chu40] Alonzo Church. A formulation of the simple theory of types. The
Journal of Symbolic Logic, 5(2):56–68, 1940.

[DAG14] Julien Deantoni, Charles André, and Régis Gascon. CCSL denota-
tional semantics. Research Report RR-8628, Inria, November 2014.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata.
SIGSOFT Softw. Eng. Notes, 26(5):109–120, September 2001.

[Dal04] D. Dalen. Logic and Structure. Universitext (1979). Springer, 2004.

[EJL+
03] J. Eker, J. W. Janneck, E. A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig,

S. Neuendorffer, S. Sachs, and Yuhong Xiong. Taming heterogene-
ity - the Ptolemy approach. Proceedings of the IEEE, 91(1):127–144,
Jan 2003.

[GBBG87] P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. Syn-
chronous data flow programming with the language SIGNAL.
IFAC Proceedings Volumes, 20(2):359 – 364, 1987. 2nd IFAC Work-
shop on Adaptive Systems in Control and Signal Processing 1986,
Lund, Sweden, 30 June-2 July 1986.

[GBFA13] Manuel Garnacho, Jean-Paul Bodeveix, and Mamoun Filali-
Amine. A mechanized semantic framework for real-time systems.
In Víctor Braberman and Laurent Fribourg, editors, Formal Mod-
eling and Analysis of Timed Systems: 11th International Conference,
FORMATS 2013, Buenos Aires, Argentina, August 29-31, 2013. Pro-
ceedings, pages 106–120, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[Haf13] Florian Haftmann. Haskell-style type classes with Isabelle/Isar,
2013.

bibliography 101

[HB09] Cécile Hardebolle and Frédéric Boulanger. Multi-formalism mod-
elling and model execution. International Journal of Computers and
their Applications, 31(3):193–203, July 2009. Special Issue on the
International Summer School on Software Engineering.

[HCOH93] Roger Hale, Rachel Cardell-Oliver, and John Herbert. An embed-
ding of timed transition systems in HOL. Formal Methods in System
Design, 3(1):151–174, Aug 1993.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
chronous dataflow programming language Lustre. Proceedings of
the IEEE, 79(9):1305–1320, September 1991.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. In-
troduction to automata theory, languages, and computation, 2nd
edition. SIGACT News, 32(1):60–65, March 2001.

[JT07] Dongwon Jung and Panagiotis Tsiotras. Modeling and hardware-
in-the-loop simulation for a small unmanned aerial vehicle. In
AIAA Infotech@ Aerospace 2007 Conference and Exhibit, page 2768,
2007.

[Kah74] Gilles Kahn. The semantics of simple language for parallel pro-
gramming. In IFIP Congress, pages 471–475, 1974.

[KS05] Antonín Kučera and Jan Strejček. The stuttering principle revis-
ited. Acta Informatica, 41(7–8):415–434, 2005.

[KT09] Moez Krichen and Stavros Tripakis. Conformance testing for real-
time systems. Form. Methods Syst. Des., 34(3):238–304, June 2009.

[Lam83] Leslie Lamport. What good is temporal logic? In R. E. A. Mason,
editor, IFIP Congress on Information Processing, pages 657–668, 1983.

[LGGTB15] Paul Le Guernic, Thierry Gautier, Jean-Pierre Talpin, and Loïc
Besnard. Polychronous automata. In TASE 2015, 9th International
Symposium on Theoretical Aspects of Software Engineering, pages 95–
102, Nanjing, China, September 2015. IEEE Computer Society.

[LLL00] C. Livadas, J. Lygeros, and N. A. Lynch. High-level modeling and
analysis of the traffic alert and collision avoidance system (tcas).
Proceedings of the IEEE, 88(7):926–948, July 2000.

[LM87] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Pro-
ceedings of the IEEE, 75(9):1235–1245, Sept 1987.

[LSV96] Edward A. Lee and Alberto L. Sangiovanni-Vincentelli. The
tagged signal model a preliminary version of a denotational

102 bibliography

framework for comparing models of computation. Technical Re-
port UCB/ERL M96/33, EECS Department, University of Califor-
nia, Berkeley, 1996.

[LT93] N. G. Leveson and C. S. Turner. An investigation of the Therac-25

accidents. Computer, 26(7):18–41, July 1993.

[Mal08] Frédéric Mallet. Clock constraint specification language: specify-
ing clock constraints with UML/Marte. Innovations in Systems and
Software Engineering, 4(3):309–314, 2008.

[MDADS10] Frédéric Mallet, Julien Deantoni, Charles André, and Robert De Si-
mone. The Clock Constraint Specification Language for building
timed causality models. Innovations in Systems and Software Engi-
neering, 6(1-2):99–106, March 2010.

[MMW16] Daniel Matichuk, Toby Murray, and Makarius Wenzel. Eisbach: A
proof method language for Isabelle. Journal of Automated Reason-
ing, 56(3):261–282, Mar 2016.

[MSE04] P. J. Mosterman, J. Sztipanovits, and S. Engell. Computer-
automated multiparadigm modeling in control systems technol-
ogy. IEEE Transactions on Control Systems Technology, 12(2):223–234,
March 2004.

[Mul99] L. Muliadi. Discrete event modeling in ptolemy ii. Technical Re-
port UCB/ERL M99/29, EECS Department, University of Califor-
nia, Berkeley, 1999.

[MV04] Pieter J. Mosterman and Hans Vangheluwe. Computer auto-
mated multi-paradigm modeling: An introduction. SIMULA-
TION, 80(9):433–450, 2004.

[NBB+
17] Hai Nguyen Van, Thibaut Balabonski, Frédéric Boulanger, Chan-

tal Keller, Benoît Valiron, and Burkhart Wolff. A symbolic op-
erational semantics for TESL - with an application to heteroge-
neous system testing. In Formal Modeling and Analysis of Timed
Systems - 15th International Conference, FORMATS 2017, Berlin, Ger-
many, September 5-7, 2017, Proceedings, pages 318–334, 2017.

[Nip03] Tobias Nipkow. Structured proofs in Isar/HOL. In Herman
Geuvers and Freek Wiedijk, editors, Types for Proofs and Programs,
pages 259–278, Berlin, Heidelberg, 2003. Springer Berlin Heidel-
berg.

[NK14] Tobias Nipkow and Gerwin Klein. Concrete Semantics: With Is-
abelle/HOL. Springer Publishing Company, Incorporated, 2014.

bibliography 103

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Is-
abelle/HOL: A Proof Assistant for Higher-order Logic. Springer-Verlag,
Berlin, Heidelberg, 2002.

[PFD11] Marie-Agnès Peraldi-Frati and Julien Deantoni. Scheduling Multi
Clock Real Time Systems: From Requirements to Implemen-
tation. In International Symposium on Object/Component/Service-
oriented Real-time Distributed Computing, number 14th in IEEE in-
ternational Symposium on Object/Component/service Oriented
Real-Time Distributed Computing, page 50; 57, Newport Beach,
United States, March 2011. IEEE computer society. NewPort
Beach.

[PM01] Christine Paulin-Mohring. Modelisation of timed automata in
Coq. In Naoki Kobayashi and Benjamin C. Pierce, editors, Theoreti-
cal Aspects of Computer Software: 4th International Symposium, TACS
2001 Sendai, Japan, October 29–31, 2001 Proceedings, pages 298–315,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[Pto14] Claudius Ptolemaeus, editor. System Design, Modeling, and Simula-
tion using Ptolemy II. Ptolemy.org, 2014.

[SG13] B. Selic and S. Gerard. Modeling and Analysis of Real-Time and Em-
bedded Systems with UML and MARTE: Developing Cyber-Physical
Systems. The MK/OMG Press. Elsevier Science, 2013.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press, Cambridge, MA,
USA, 1977.

[TBG+
13] Jean-Pierre Talpin, Jens Brandt, Mike Gemünde, Klaus Schneider,

and Sandeep Shukla. Constructive polychronous systems. In
Sergei Artemov and Anil Nerode, editors, Logical Foundations of
Computer Science, volume 7734 of Lecture Notes in Computer Science,
San Diego, CA, United States, January 2013. Springer.

[Tre96] Jan Tretmans. Test generation with inputs, outputs and repetitive
quiescence. Software - Concepts and Tools, 17(3):103–120, 1996.

[VLDCM15] Matias Ezequiel Vara Larsen, Julien Deantoni, Benoit Combemale,
and Frédéric Mallet. A behavioral coordination operator language
(BCOoL). In 18th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS 2015), August 2015.

[Wee06] Stephen Weeks. Whole-program Compilation in MLton. In Pro-
ceedings of the 2006 Workshop on ML, ML ’06, pages 1–1, New York,
NY, USA, 2006. ACM.

104 bibliography

[Wel99] J.B. Wells. Typability and type checking in System F are equivalent
and undecidable. Annals of Pure and Applied Logic, 98(1):111 – 156,
1999.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages:
An Introduction. MIT Press, Cambridge, MA, USA, 1993.

[ZM16] M. Zhang and F. Mallet. An executable semantics of Clock Con-
straint Specification Language and its applications. In Formal Tech-
niques for Safety-Critical Systems: 4th International Workshop, FTSCS
2015, pages 37–51, Cham, 2016. Springer.

L I S T O F F I G U R E S

Figure 1 Volume of embedded software in Airbus transport-category
aircrafts . 1

Figure 2 From model to hardware 3

Figure 3 A heterogeneous timed system model 4

Figure 4 Interaction within heterogeneous parts in the power win-
dow case . 5

Figure 5 Effects of relativity on GPS satellite time measurements . 6

Figure 6 Overview of the contributions developed in this thesis . 8

Figure 7 Capturing a mouse double-click with a timed automata 13

Figure 8 A hierarchical actor model of Ptolemy II (extracted from
[Pto14]) . 15

Figure 9 The TimeSquare framework 17

Figure 10 The ModHel’X framework with the car power window
case study . 18

Figure 11 Subsystem interface within the supermodel (extracted
from [BHJM11]) . 18

Figure 12 Adapting semantics between discrete events and timed
finite state machines (extracted from [BHJM11]) 19

Figure 13 Interface blocks in ModHel’X (extracted from [BHJM11]) 20

Figure 14 The jEdit IDE with datatypes in Isabelle/HOL 30

Figure 15 Two partially satisfying runs of the clock watch 36

Figure 16 Satisfying runs for the sporadic on atom where τ = 1.0 38

Figure 17 Satisfying runs for the sporadic syntactic sugar 39

Figure 18 Satisfying runs for the tag relation formula where R =

((x1, x2) 7→ x1 = 2x2) . 39

Figure 19 A satisfying run for the implies formula 40

Figure 20 A satisfying run for the time delayed formula where
τ = 0.1 . 40

Figure 21 A satisfying run for the periodic formula 41

Figure 22 The Therac-25 radiotherapy machine [LT93] 41

Figure 23 Two partially satisfying behaviors for the radiotherapy
machine . 42

Figure 24 A satisfying run for the power window specification . . 44

Figure 25 Detail of the reduction steps of the operational semantics 53

Figure 26 Satisfying runs for the strictly precedes formula . . . 56

Figure 27 A satisfying run for the weakly precedes formula 56

Figure 28 A satisfying run for the kills formula 57

Figure 29 A satisfying run for the implies not statement 57

105

Figure 30 Takeoff procedure according to the certification standards 58

Figure 31 Two partially satisfying behaviors for the takeoff procedure 59

Figure 32 Throttle console of a Boeing 737 used in takeoff rejection
procedure . 60

Figure 33 Takeoff in normal conditions with a chronometer in par-
allel . 62

Figure 34 A satisfying run for the sustained implies formula . . 66

Figure 35 A satisfying run for the await implies formula 66

Figure 36 A satisfying run for the delayed implies formula where
n = 3 . 67

Figure 37 A satisfying run for the filtered implies formula . . . 67

Figure 38 A satisfying run for the when implies formula 68

Figure 39 A satisfying run of concurrent computations example . . 69

Figure 40 Map of relations between semantics 75

Figure 41 Deriving and denoting in the run space 79

Figure 42 Dependency graph of the mechanized theory 83

Figure 43 Executing the operational semantics in Isabelle/HOL . . 87

Figure 44 A spurious run . 88

Figure 45 Heterogeneous simulation as in HIL 89

Figure 46 Running the Heron solver on Listing 7 91

Figure 47 Executing Heron and the SUT in parallel 93

Figure 48 A sequence of configurations with “equivalence” between
6th and 3rd . 98

L I S T O F TA B L E S

Table 1 Duality in run primitives between ticks and tags 63

Table 2 Generating run prefixes in the Hygge theory 88

Table 3 Generating run prefixes in the Hygge theory ignoring
semantic subtyping . 88

Table 4 Benchmarking Heron on TESL official gallery 96

106

list of figures , tables and listings 107

L I S T I N G S

Listing 1 Proof sketch of irrationality of
√
2 in Isabelle/HOL . . . 33

Listing 2 Specification of a clock watch in TESLε 36

Listing 3 Specification of a radiotherapy machine in TESLε 41

Listing 4 Specification of a power window in TESLε 43

Listing 5 Specification of an airplane takeoff in TESL? 58

Listing 6 Specification of concurrent computations for two CPUs
in TESL . 68

Listing 7 Basic example with two sporadic constraints 87

L I S T O F D E F I N I T I O N S

3 Definition (Timed Automaton [AD94a]) 14

6 Definition (Grammar of the untyped λ-calculus) 23

7 Definition (Reductions of the untyped λ-calculus) 23

8 Definition (Equivalence in the untyped λ-calculus) 23

12 Definition (Typing Rules of λ→) 25

15 Definition (Grammar of ML-style) 27

16 Definition (Type schemes in ML-style) 27

17 Definition (Deduction System) . 28

18 Definition (Rules of Natural Deduction) 28

20 Definition (Run) . 37

21 Definition (Projections for Ticks and Tags) 37

23 Definition (Grammar of TESLε) . 38

25 Definition (Interpretation of TESLε formulae) 46

28 Definition (Tag Variables) . 47

29 Definition (Run Primitives) . 47

31 Definition (Configuration) . 49

32 Definition (Introduction Rule→i) 49

33 Definition (Elimination Rules→e) 49

35 Definition (Reduction→) . 51

37 Definition (Simulation Step→) 51

38 Definition (Grammar of TESL?) . 55

40 Definition (Interpretation of TESL? formulae) 61

41 Definition (Extended Run Primitives for TESL?) 62

43 Definition (Extended Elimination Rules→e for TESL?) 63

45 Definition (Grammar of TESL) . 65

47 Definition (Extended Elimination Rules→e for TESL) 70

49 Definition (Stepwise Interpretation of TESL? formulae) 76

54 Definition (Interpretation of Configurations) 79

58 Definition (Direct Successors) . 81

109

110 list of definitions and theorems

L I S T O F T H E O R E M S A N D L E M M A S

5 Theorem (Fixpoint in a CPO (Tarski, Kleene)) 22

9 Theorem (Confluence of λ-calculus (Church, Rosser)) 23

26 Lemma (Associativity, Commutativity, Idempotence and Neu-
trality) . 46

30 Lemma (Decidability of Run Contexts) 48

34 Proposition (Local Termination) . 51

50 Lemma (Start step) . 76

51 Lemma (Stepwise Associativity, Commutativity, Idempotence and
Neutrality) . 77

53 Proposition (Coinductive Unfolding) 78

55 Lemma (Start Configuration) . 79

56 Lemma (Sound Reduction) . 80

57 Theorem (Soundness) . 80

59 Lemma (Complete Direct Successors) 81

60 Theorem (Completeness) . 81

61 Lemma (Instant Index Increase) . 82

62 Theorem (Progress) . 82

L I S T O F S Y M B O L S

N Natural integers

Z Mathematical integers

Q Rationals

R Reals

U Unit

B Booleans

σ Instant

Σ Set of instants

n Instant index, i.e. integer

ρ Run

Σ∝ Set of runs

γ Run primitive

Γ Run context, i.e. set of run primitives

_ ⇑_ Primitive for occurring (ticking) event

_ 6⇑_ Primitive for absent event

_ 6⇑>_ Primitive for dead event

_ ⇓_ _ Primitive for tagged event

b_, _c ∈ _ Arithmetic relation between tags

d_, _e ∈ _ Arithmetic relation between tick counters

#6__ Tick counter from the past

#<__ Tick counter strictly from the past

K Clock

K Set of clocks

τ Tag (also called timestamp)

T Domain of tags

tvar__ Tag variable

111

112 list of symbols

ϕ,ψ Atomic TESL formula

Φ,Ψ TESL formula, i.e. set of atomic formulae

R Arithmetic relation

_ |=_ _ . _ Configuration

→i Introduction Rule

→e Elimination Rule

→ Reduction

→ Simulation step

q
_
y_
cnt Evaluation of a tick counter expression

q
_
y
prim Interpretation of a run context

q
_
y
TESL Interpretation of a TESL formula

q
_
y
config Interpretation of a configuration

L I S T O F A C R O N Y M S

CAN Controller Area Network. 42

CCSL Clock Constraint Specification Language. 7, 16,
46, 55, 57

CPS Cyber-Physical Systems. 89

DE Discrete Events. 42

HIL Hardware-in-the-loop. 89, 90

HOL Higher Order Logic. 29–31

MARTE Modeling and Analysis of Real-Time and Embed-
ded systems. 16, 17, 98

MBD Model-Based Design. 3, 89

MoC Model of Computation. 15, 17, 19

ND Natural Deduction. 28, 30, 31

ODE Ordinary Differential Equation. 15

PID Proportional–Integral–Derivative. 3

SDF Synchronous Data Flow. 16, 42–44

SUT System Under Test. 89, 91–93, 95

TESL Tagged Events Specification Language. 7, 8, 10,
17–19, 36, 37, 40, 46–48, 55, 61, 65, 73, 75–77, 90,
97, 98, 104

TFSM Timed Finite State Machine. 42, 43

UML Unified Modeling Language. 16, 98

113

A C K N O W L E D G M E N T S

Whatever happens, happens for the best.

First and foremost, there may not be enough words on Earth to express deep
gratitude to my supervisors Frédéric Boulanger and Burkhart Wolff. Without
their advice and constant assistance I may not have been able to conduct this
research programme. I am also indebted to Chantal Keller, Lina Ye, Thibaut
Balabonski, Safouan Taha, and Benoît Valiron, who volunteered in the project.
Their contribution and the amount of time spent with them was truly reward-
ing. Surely, I will never forget the great generosity of Véronique Benzaken and
Evelyne Contejean, whom I have attended a heart-warming welcome since day
one: they kept glowing like sunshine every single day at work.

Likewise, I cannot forget the great support of my family and friends who
have witnessed challenges I faced: my father Diep, my sister Anh, my brother
Minh, my cousin Quynh Anh and my aunt Thúy. Nor can I forget those I have
met on the last stretch of this journey and who I consider as part of my own
family: Zaza, Alexandra, Huy and Arvid. They all constantly stood by my side:
Gia d̄ình là số mô. t! I also wish to thank Romain, Julien, Damien, Farah and
Marielle for being part of my life. We were seperated apart, but I know you
will find happiness.

I would like to thank as well the VALS research group and my fellow (past
and present) mates for all the funny and amazing discussions over lunch and
smoke breaks (I know that sounds wrong): Catherine L., Stefania D., Nicolas B.,
Clément F., Houssem H., Marie L., Chuan X., Fabien D., Pierre B., Georges O.,
George M., Alexandra Z., Romain A., Yakoub N., Frédéric T., but also Régine B.,
Delphine L., Sylvie B., Sylvain C., Frédéric V. and Kim N. Also, David D. and
Aygul J. were were not just colleagues, they were also my friends and I appreci-
ate how supportive they were to me. The technical and administrative staff also
gave me invaluable help and I am thankful to Stéphanie D., Martine, Claude,
Gladys and Myriam who helped me with the paperwork. Also teaching duties
would not have been possible without Sandrine D. at UFR Sciences.

Last but not the least, I am grateful to all the uplifting people that I had the
chance to meet on the prefix of my path. They enlightened this road so strongly
that I had been able to drive towards success. This starts with school teachers
who witnessed my greatest loss and guided me through: Mrs Fontaine, Mr
Balbastre, Florence Maignan, Francis Berr, and Isabelle Thevenin. Then, I was
lucky enough to have met Olivier Robert and Pierdavide Coïsson from Institut
de Physique du Globe de Paris who gave me the opportunity to be part of

115

116 acknowledgments

something launched at 800 km altitude on orbit. I also wish to thank Sébastien
Bardin and Zaynah Dargaye at CEA LIST who gave me a glimpse into the
world of research. My grateful thanks are also extended to my past teachers
during Bachelors and Masters studies at Université Paris Diderot. Their broad
passion for teaching was inspiring: Delia Kesner, Paul-André Melliès, Roberto
Di Cosmo, Sedki Boughattas, Yann Regis-Gianas and Gilles Dowek.

I appreciate the amount of time spent by Frédéric Mallet and Stephan Merz
for reviewing this work, but also Timothy Bourke for proof-reading it, and
finally Catherine Dubois, Marc Pantel, and Mihaela Sighireanu for being part
of the final jury that seals the big chapter of my academic career.

D E C L A R AT I O N O F A U T H O R S H I P

I, Hai Nguyen Van, declare that this thesis titled, “Formalizing Time and Causal-
ity in Polychronous Polytimed Models” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-
tributed myself.

Orsay, France, September 2018

Hai Nguyen Van

117

H
A

I
N

G
U

Y
EN

 V
A

N
FO

R
M

A
LI

ZI
N

G
 T

IM
E

 A
N

D
 C

AU
SA

LI
T

Y
 I

N
 P

O
LY

C
H

RO
N

O
U

S
 P

O
LY

T
IM

ED
 M

O
D

EL
S

Formalizing Time and
Causality in Polychronous
Polytimed Models

Hai Nguyen Van

PhD thesis defended on September 27th, 2018

Frédéric Mallet Professor at Université Nice Sophia Antipolis
Stephan Merz Senior Researcher at Inria Nancy
Catherine Dubois Professor at ENSIIE
Timothy Bourke Research Scientist at Inria Paris
Marc Pantel Associate Professor at IRIT/INPT, Université de Toulouse
Mihaela Sighireanu Associate Professor at Université Paris Diderot
Frédéric Boulanger Professor at CentraleSupélec
Burkhart Wolff Professor at Université Paris-Sud

0 V1 VR liftoff

3 s

time-SI

speed-SI

speed-KT

V1-reach

VR-reach

RTO

liftoff

30.1

56.5

110.0

37.0

69.4

135.0

40.0

75.0

145.9

FACULTÉ
DES SCIENCES
D’ORSAY

Sciences et technologies
de l’information
et de la communication (STIC)

ÉCOLE DOCTORALE

R É S U M É É T E N D U

L’intégration de composants dans un système peut s’avérer difficile lorsque ces composants ont été
conçus selon différents paradigmes ou s’ils se basent sur différents cadres de temps devant être
synchronisés. Il peut s’agir d’équations différentielles, d’automates, de réseaux de processus, de
graphes de flot de données synchrones, de circuits séquentiels... Cette synchronisation peut être
alors dirigée par les évènements (un évènement est provoqué par un autre), ou bien dirigée par le
temps (un évènement se produit parce qu’il en est l’heure). En considérant que chaque composant
admet son propre cadre de temps et qu’ils peuvent ne pas être reliés, il est possible qu’une unique
ligne de temps globale n’existe pas. Cette question de temps non-newtonien intervient aussi bien
dans les calculs physiques de systèmes soumis aux ralentissements temporels expliqués par la
théorie de la relativité, que dans les calculs de systèmes distribués en informatique.

Dans le cadre industriel existant, ces systèmes sont souvent modélisés par des outils de type UML/-
SysML ou Simulink/Stateflow, où non seulement leur sémantique est informelle mais leurs inter-
actions restent complètement implicites et dépendantes du solveur associé au formalisme. Pour
palier cela, des environnements plus développés et plus précis, tels que Ptolemy II, ModHel’X/-
TESL ont été conçus pour donner une sémantique d’exécution afin de comprendre et de simuler les
comportements engendrés par ces modèles hétérogènes. Ces outils sont toutefois limités par leur
but premier, qui consiste en la simulation et l’exécution des modèles, et non leur vérification. Nous
tentons de dépasser de telles limitations en cherchant une famille d’approches sémantiques plus
favorables à notre problématique de vérification de propriétés. Pour cela, nous nous intéressons à
la spécification de schémas de synchronisation pour de tels systèmes polychrones et polytempori-
sés. Notre étude nous a mené à la conception de modèles sémantiques pour un langage temporisé
à évènements discrets, appelé TESL et développé par Boulanger et al. Ce langage a été conçu pour
coordonner la simulation de modèles composites et pour tester l’intégration de systèmes.

Dans cette thèse, nous présentons une famille de sémantiques répondant chacune à des probléma-
tiques spécifiques. Tout d’abord, nous donnons une sémantique dénotationnelle fournissant une
compréhension précise et logiquement cohérente du langage. Puis dans une approche d’exécution,
nous proposons une sémantique opérationnelle afin de dériver des traces d’exécutions satisfaisant
une spécification TESL. Celle-ci a été utilisée pour les problématiques de test des systèmes, à tra-
vers l’implantation d’un solveur nommé Heron. Celui-ci permet notamment de mettre en évidence
des erreurs et des fautes de comportements qu’un système-sous-test pourrait déclencher. Le sol-
veur calcule précisément et de manière symbolique, tous les comportements qu’un système devrait
satisfaire.

Pour résoudre la question de cohérence et de correction de ces règles de sémantique opération-
nelle, nous avons également développé une sémantique intermédiaire, qui est dénotationnelle et
pas-à-pas. Celle-ci relie les deux sémantiques dénotationnelle et opérationnelle en les mettant en
correspondance. Elle explicite leurs fortes similarités par le biais d’une propriété de dépliage co-
inductif des schémas de formules du langage. Cela nous a permis de dériver et d’établir des pro-
priétés sur la relation entre les deux sémantiques : la correction (la dérivation d’une exécution
est dénotationnellement correcte), la complétude (une exécution dénotée est opérationnellement
dérivable), le progrès (toute spécification cohérente admet une exécution de longueur arbitraire),
et la terminaison locale (le calcul d’un instant d’exécution est terminant). Enfin, dans un effort de
rigueur dans nos approches formelles, notre formalisation ainsi que les preuves associées ont été
entièrement mécanisées dans l’assistant de preuve Isabelle/HOL.

Sciences et technologies
de l’information
et de la communication (STIC)

ÉCOLE DOCTORALE

F O R M A L I S AT I O N D U T E M P S E T D E L A C A U S A L I T É D A N S
L E S M O D È L E S P O LY C H R O N E S P O LY T E M P O R I S É S

L’intégration de composants dans un système peut s’avérer difficile lorsque ces composants ont été conçus selon
différents paradigmes ou s’ils se basent sur différents cadres de temps devant être synchronisés. Cette synchronisation
peut être dirigée par les évènements (un évènement est provoqué par un autre), ou dirigée par le temps (un évènement
se produit parce qu’il en est l’heure). En considérant que chaque composant admet son propre cadre de temps et qu’ils
peuvent ne pas être reliés, il est possible qu’une unique ligne de temps globale n’existe pas.

Nous nous intéressons à la spécification de schémas de synchronisation pour de tels systèmes polychrones et polytem-
porisés. Notre étude nous a mené à la conception de modèles sémantiques pour un langage temporisé à évènements
discrets, appelé TESL et développé par Boulanger et al. Ce langage a été utilisé pour coordonner la simulation de
modèles composites et pour tester l’intégration de systèmes.

Dans cette thèse, nous présentons une sémantique dénotationnelle fournissant une compréhension précise et logique-
ment cohérente du langage. Puis nous proposons une sémantique opérationnelle afin de dériver des traces d’exé-
cutions satisfaisant une spécification TESL. Celui-ci a été utilisé pour les problématiques de test des systèmes, à travers
l’implantation d’un solveur nommé Heron. Pour résoudre la question de cohérence et de correction de ces règles sé-
mantiques, nous avons également développé une sémantique intermédiaire coinductive reliant les deux sémantiques
dénotationnelles et opérationnelles. Nous établissons des propriétés sur la relation entre les deux sémantiques : correc-
tion, complétude, progrès ainsi que terminaison locale. Enfin, notre formalisation ainsi que les preuves associées ont
été entièrement mécanisées dans l’assistant de preuve Isabelle/HOL.

Mots clés : Hétérogénéité, Synchronie, Concurrence, Coordination, Sémantique, Simulation, Test, Surveillance

F O R M A L I Z I N G T I M E A N D C A U S A L I T Y I N
P O LY C H R O N O U S P O LY T I M E D M O D E L S

Integrating components into systems turns out to be difficult when these components were designed according to
different paradigms or when they rely on different time frames which must be synchronized. This synchronization
may be event-driven (an event occurs because another event occurs) or time-driven (an event occurs because it is time
for it to occur). Considering that each component admits its own time frame, and that they may not be related, a
unique global time line may not exist.

We are interested in specifying synchronization patterns for such polychronous and polytimed systems. Our study
had led us to design semantic models for a timed discrete-event language, called the TESL language developed by
Boulanger et al. This language has been used for coordinating the simulation of composite models and testing system
integration.

In this thesis, we present a denotational semantics providing an accurate and logic-consistent understanding of the
language. Then we propose an operational semantics to derive satisfying runs from TESL specifications. It has been
used for testing purposes, through the implementation of a solver, named Heron. To tackle the issue of the consistency
and correctness of these semantic rules, we developed a co-inductive intermediate semantics that relates both the
denotational and the operational semantics. Then we establish properties over the relation of our semantic models:
soundness, completeness and progress, as well as local termination. Finally, our formalization and these proofs have
been fully mechanized in the Isabelle/HOL proof assistant.

Keywords: Heterogeneity, Synchrony, Concurrency, Coordination, Semantics, Simulation, Testing, Monitoring

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme des Merisiers RD 128 / 91190 Saint-Aubin, France

	Dedication
	Abstract
	Contents
	1 Introduction
	1.1 Context
	1.2 Problem
	1.2.1 Architectural Composition of Systems
	1.2.2 Independent Timeframes for Independent Models

	1.3 Goals and Issues
	1.4 Related Work
	1.5 Contributions

	2 Theoretical and Technical Background
	2.1 Systems, Models and their Interactions
	2.1.1 Synchronous and Reactive Systems
	2.1.1.1 Lustre

	2.1.2 Realtime Systems
	2.1.3 Heterogeneous Systems

	2.2 Execution and Simulation with ModHel'X
	2.2.1 Initial Inspiration
	2.2.2 From ModHel'X to TESL

	2.3 Interactive Theorem proving in Formal Methods
	2.3.1 Mathematical Preliminaries
	2.3.1.1 Sets, Products and Kleene Stars
	2.3.1.2 Relations and Reductions
	2.3.1.3 Domains, Recursion and Fixpoints

	2.3.2 Programming with Lambda-calculi
	2.3.2.1 Untyped Lambda-calculus
	2.3.2.2 Simply-typed Lambda-calculus
	2.3.2.3 Polymorphism with ML-style

	2.3.3 Theory of Demonstration in a Nutshell
	2.3.3.1 Natural Deduction
	2.3.3.2 Proofs in Higher-Order Logic

	2.3.4 The Isabelle/HOL Proof Environment
	2.3.4.1 Brief Syntax
	2.3.4.2 Statements and Proofs
	2.3.4.3 Type Classes and Instanciation
	2.3.4.4 Semantic Subtyping

	3 Language Core: TESL
	3.1 Structures for Execution Traces
	3.2 Syntax
	3.2.1 The Radiotherapy Machine Example
	3.2.2 The Power Window Example

	3.3 Formal Semantics
	3.3.1 Denotational Semantics
	3.3.2 Operational Semantics
	3.3.2.1 Primitives for Run Contexts
	3.3.2.2 Configurations of the Execution Process
	3.3.2.3 Execution Rules

	3.3.3 Simulation Steps

	4 Language with Asynchronous Extensions: TESL
	4.1 Syntax
	4.1.1 The Airplane Takeoff Example

	4.2 Formal Semantics
	4.2.1 Denotational Semantics
	4.2.2 Towards Stuttering Invariance
	4.2.3 Operational Semantics

	5 Language with Sequential Operators: TESL
	5.1 Syntax
	5.1.1 The Concurrent Computations Example

	5.2 Operational semantics
	5.2.1 Sustained Implication
	5.2.2 Await Implication
	5.2.3 Delayed Implication
	5.2.4 Filtered Implication
	5.2.5 When Implication

	6 Formal and Mechanized Certification
	6.1 Intermediate Semantics and Expansion Properties
	6.2 Certifying Denotational and Operational Semantics
	6.2.1 Soundness
	6.2.2 Completeness
	6.2.3 Progress

	6.3 Hygge: a Mechanized Theory in Isabelle/HOL
	6.3.1 Basic Types and Definitions of the Theory
	6.3.2 Denotational and Operational Semantics
	6.3.3 Guarantees and Safety Properties
	6.3.4 Towards a Certified Solver

	7 Application to Testing and Monitoring
	7.1 Heron: a Solver for TESL Specifications
	7.2 Scenario Conformance Monitoring and Error Detection
	7.3 Input/output Conformance Testing
	7.4 Performance

	8 Conclusion and Perspectives
	8.1 Summary
	8.2 Perspectives

	Bibliography
	List of Figures, Tables and Listings
	Figures
	Tables
	Listings

	List of Definitions and Theorems
	Definitions
	Theorems

	List of Symbols
	List of Acronyms
	Acknowledgments
	Declaration of Authorship

