
HAL Id: tel-01892665
https://theses.hal.science/tel-01892665v2

Submitted on 16 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimisation multi-objectifs pour l’inversion jointe de
données géodésiques

Séverine Furst

To cite this version:
Séverine Furst. Optimisation multi-objectifs pour l’inversion jointe de données géodésiques. Gen-
eral Mathematics [math.GM]. Université Montpellier, 2018. English. �NNT : 2018MONTS017�. �tel-
01892665v2�

https://theses.hal.science/tel-01892665v2
https://hal.archives-ouvertes.fr


THÈSE POUR OBTENIR LE GRADE DE DOCTEURTHÈSE POUR OBTENIR LE GRADE DE DOCTEUR
DE L’UNIVERSITE DE MONTPELLIERDE L’UNIVERSITE DE MONTPELLIER

En Mathématiques et Modélisation

École doctorale I2S

Unité de recherche Géosciences Montpellier

et Institut Montpelliérain Alexander Grothendieck

Multi-Objective Optimization
for Joint Inversion of Geodetic

Data

Présentée par Séverine Furst
Le 1er octobre 2018

Sous la direction de Bijan Mohammadi
et Jean Chéry

Devant le jury composé de

Riad Hassani, Professeur, Sofia-Antipolis Rapporteur
Luis Rivera, Professeur, EOST Rapporteur
Christel Tiberi, Chargée de recherche, GM Examinateur
Virginie Pinel, Chargée de recherche, ISTerre Examinateur
Dominique Dubucq, Géophysicien, Total Invité
Michel Peyret, Ingénieur de Recherche, GM Invité
Bijan Mohammadi, Professeur, IMAG Directeur
Jean Chéry, Directeur de Recherche, GM Co-directeur





The power of imagination makes us infinite.

John Muir





1

Remerciements

Il y a cinq ans je faisais un stage d’été en pétrophysique à Aberdeen en Écosse. Je n’imaginais
pas qu’aujourd’hui (14 juillet 2018), je serais à quelques jours de déposer ce manuscrit de thèse.
J’ai su relativement tôt que je voulais étudier les géosciences, mais cet attrait pour la recherche
s’est vraiment révélé en Nouvelle-Zélande pendant mon stage de master. Ensuite, il a fallu
trouver un projet de thèse. La première épreuve du doctorant à proprement parler. Réaliser
une thèse de doctorat demande de l’investissement personnel, professionnel et intellectuel dès
lors que l’on décide d’en faire une. Ce n’est pas tout d’être passionnée par un thème, il faut
aussi vouloir apprendre. Et pas seulement apprendre à chercher, mais aussi apprendre à être
chercheur: accepter les critiques et les conseils, prendre du recul, s’interroger, partager ses
travaux même inachevés, poser des questions, prendre des décisions, collaborer, échanger et
communiquer. Cette liste n’est certainement pas exhaustive, mais elle donne un aperçu de ce
que j’ai pu développer en plus des nouvelles connaissances en géophysique, au cours de ces trois
dernières années. L’ensemble de ce travail n’aurait pas été possible sans l’intervention d’un
grand nombre de personnes.

Je souhaite à présent les en remercier.

Je tiens tout d’abord à remercier Jean Chéry, Bijan Mohammadi et Michel Peyret qui ont
participé à l’encadrement de ma thèse. L’encadrement d’une thèse est un point essentiel pour
la bonne réussite du projet. Malgré des habitudes de travail différentes entre nous quatre, des
idées souvent difficiles à exprimer et des ambitions de travail toujours plus grandes, j’ai eu la
chance d’avoir une équipe d’encadrement présente, motivée, impliquée et soucieuse. Je voudrais
remercier plus particulièrement Jean Chéry pour ses conseils professionnels et personnels, sa
patience, la confiance qu’il a su m’accorder ainsi que toutes les sorties spéléo auxquelles j’ai pu
participer, le vélo et l’appartement. Je souhaite également remercier Frédéric Masson (EOST)
de nous avoir mis en contact et de m’avoir permis de réaliser ce projet de thèse.

Je tiens à remercier Luis Rivera et Riad Hassani d’avoir rapporter cette thèse. Je remercie
également Christel Tiberi et Virginie Pinel d’avoir acceptd́e faire partie de mon jury de thèse.
Les questions soulevés ont permis d’apprh́ender avec un oeil critique ce travail et ainsi, de me
rendre compte de l’étendue des applications et de l’intérêt de mon travail pour la communauté
scientifique.

Ces travaux de thèse ont pu être possibles grâce à la conviction et la motivation d’Antoine
Jacques (Total S.A.) pour développer de nouvelles méthodologies de surveillance et d’exploitation
en utilisant la géodésie. Je le remercie d’avoir convaincu la compagnie Total S.A. de financer
cette thèse en collaboration avec le LabEx NUMEV (n° ANR-10-LABX-20). En outre, je remer-
cie également les collègues de Total S.A., d’Aquitaine Electronique et de Drillstar Industries qui
participaient aux réunions d’avancement de thèse en apportant des connaissances sur le domaine,
en soulevant des questions et donnant des avis constructifs. Merci à Renaud Briand (Aquitaine
Electronique) pour son intérêt et son implication dans ce travail. Un grand merci aussi à Kyle
Anderson et à l’équipe de l’USGS Menlo Park (Californie) pour leur accueil durant l’été 2017,
leur soutien et leur partage de connaissances en déformation volcanique. Je souhaite remercier
les collègues du laboratoire Géosciences Montpellier pour leurs conseils, leurs discussions et les
échanges scientifiques et personnels. Je tiens à remercier Nicolas Saby et l’équipe de l’IREM
pour cette belle expérience de communication scientifique auprès des lycéens.



2

Mais que seraient trois années de thèse sans les collègues doctorants? Que ce soit dans le
même bureau, au café, autour d’une bière dans un bar, au Pota’GM, sur le terrain, dans les
conférences, en montagne, ils représentent une part majeure de cette joie de vivre et de tra-
vail durant ces trois années à Montpellier. Merci à Anaïs (Bébé) Maréchal, Robin Kurtz (la
Robinette) & Fredou, Romain Leroux-Mallouf, Bárbara Dressel, Sven Philit, Manon Dubois,
Manon Genti, La Gaine, Alizia Tarayoun & Oswald Malcles, Sofía Escario, Enora Tourneur,
Rémi Caillibotte & Alexandre Cugerone, Matthieu Plasman, Pierre Malié et tous les copains
de Ma Thèse en 180s. Benou, le BG du Larzac, c’était un plaisir de grimper avec toi, de te
provoquer, j’ai apprécié ta bonne humeur et tes répliques. Otta, on a failli commencer une coloc
au tout début, puis on a eu la flemme, mais il y a toujours eu cette complicité entre nous qui fait
que tu sois venue chez moi ce printemps! Avec Anitax, on a profité de tellement de soirées toutes
les trois. Merci pour votre sourire, vos accents, vos expressions, votre naturel, votre présence.
Sam mon co-bureau qui me supporte depuis le début, je te remercie pour ta présence et ton
soutien. Cyp, grand maître du jeu, merci pour tous les moments de partages et les folles soirées.
Laure, Max (le vieux) et Bowie, la fameuse canicrèche cette année, merci pour votre soutien
et vos plaisanteries, l’escalade et les soirées. Max (le jeune), Tim et Agathe, merci de m’avoir
motivée à sortir grimper quelques fois en falaise ou à la salle ces dernières semaines. Loïs, pour
tout le temps que tu as passé sur Youtube et sur les sites de comparaison de matériel ainsi que
ta motivation à nous emmener dans des aventures uniques. Ils ne sont pas tous doctorants (ou
docteurs), mais nous nous connaissons depuis les années à l’EOST (voire plus) et nous avons
continué à partager ensemble et nous nous soutenons aujourd’hui encore. Merci à Flo, Fanny &
Jerem, Nico, Jeannette & Vaval, Aubé & Gugu, le Patron & sa femme, Matthias, Paulo, Marion
et Baptiste.

S’il n’est pas toujours facile de faire une thèse, il est encore plus difficile de comprendre
le ressenti et les impressions d’un doctorant quand on ne l’a pas vécu soi-même. Je voudrais
remercier donc très chaleureusement mes parents, ma soeur et mon frère pour leur admiration,
leur soutien, leur fierté et leur confiance en moi. Aussi loin qu’ils étaient, ils me permettaient
de tester mes convictions et de totalement déconnecter afin de mieux recommencer.

Julie, Roulie, la mère Muel, Princess, peu importe comment je t’appelle tu as été pour moi
un pilier, une personne avec qui j’ai tant partagé émotionnellement et personnellement et à qui
je pouvais me plaindre parce que je savais qu’en retour tu faisais pareil. On a pris 2 chemins
différents, on ne vit pas la même chose, mais on se comprend et on s’admire. Sylvain, nos
chemins se sont croisés quelques fois depuis que je suis à Montpellier jusqu’à ce que tu t’installes
dans le bureau à l’automne dernier. Parachuté avec deux thésards en dernière année, tu as été
une bouffée d’innocence, de fraîcheur et bonne humeur pour moi. Ta présence, ton soutien et
ton admiration m’ont été très précieux cette année.

Les Soun! Une coloc qui s’est improvisée mais qui représente ma seconde famille, qu’on
soit tous ensembles ou éparpillés aux quatre coins de la Terre. Lisouille, j’adore te faire pleurer
de rire, découvrir ce que tu aimes manger, aller boire des mojitos, faire des jeux et chanter
des chansons Disney avec toi. Audrey, tu m’as fait découvrir en première tout mon potentiel
d’escalade, de rando, d’alpi, de ski, mais tu as surtout été une oreille bienveillante et une boule
d’énergie rayonnant de bonheur et ma moitié. Oli, nous avons partagé tellement d’expériences
personnelles et professionnelles, toujours prêt à aider ou à partir pour l’aventure, présent en
toutes circonstances, ta persévérance, ta force et ton intelligence font partie des qualités pour
lesquelles tu es un modèle pour moi. Merci à mon petit Pistou qui m’a fait garder la tête sur
les épaules.

Merci à tous d’être tels que vous êtes et de m’avoir soutenue dans cette aventure.



Table of Content

Chapter 1 Introduction 7

Chapter 2 Literature review : a glance of inverse
problems in geodesy 11

2.1 The muffin recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Forward models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1. Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1.1. Spherical source . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1.2. Planar dislocations . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2. Numerical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Geodetic observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1. Global Navigation Satellite System . . . . . . . . . . . . . . . . . . . 18

2.3.2. Interferometric Synthetic Aperture Radar . . . . . . . . . . . . . . . . 19

2.3.3. Tilt monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4. Levelling surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.5. Gravimetric surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Solving inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1. Some background about inversion theory . . . . . . . . . . . . . . . . 24

2.4.2. Optimization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2.1. Stochastic optimization . . . . . . . . . . . . . . . . . . . . 26
2.4.2.2. Gradient-based algorithms . . . . . . . . . . . . . . . . . . . 27
2.4.2.3. Semi-deterministic approach . . . . . . . . . . . . . . . . . . 27

2.4.3. Integrating multiple geodetic data . . . . . . . . . . . . . . . . . . . . 28



Chapter 3 Challenge of geodetic inverse problem 29

3.1 Introduction to geologic deformation sources . . . . . . . . . . . . . 31

3.2 Volcano deformation modeling . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1. From surveys to monitoring . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2. Deformation sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3. Plumbing system of Kı̄lauea, Hawaii . . . . . . . . . . . . . . . . . . . 33

3.3 Salt mining and induced strain . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1. About the salt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2. Deep rock salt reservoirs: case of Vauvert (France) . . . . . . . . . . . 37

3.3.3. Extraction and induced deformation . . . . . . . . . . . . . . . . . . . 39

3.3.4. Monitoring the deformation . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Deformation monitoring of unconventional reservoirs . . . . . . . . 44

3.4.1. About the fracking controversy . . . . . . . . . . . . . . . . . . . . . . 44

3.4.2. Nanometric deformation of a dead cow . . . . . . . . . . . . . . . . . . 45

3.5 A common methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 4 Global optimization for geodetic data 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Minimizing general cost functions . . . . . . . . . . . . . . . . . . . . 53

4.2.1. A step-by-step description . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1.1. Core minimization and first layer . . . . . . . . . . . . . . . 54
4.2.1.2. Second layer and more . . . . . . . . . . . . . . . . . . . . . 55

4.2.2. The mathematical approach . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2.1. Parameters initialization . . . . . . . . . . . . . . . . . . . . 56
4.2.2.2. Minimization algorithms and boundary value problems . . . . 57
4.2.2.3. Removing the over-determination . . . . . . . . . . . . . . . 57
4.2.2.4. Multi-level shooting method . . . . . . . . . . . . . . . . . . 58

4.3 Geodetic data parametrization . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1. Mapping a continuous function . . . . . . . . . . . . . . . . . . . . . . 59



4.3.2. Absolute vs relative measurements . . . . . . . . . . . . . . . . . . . . 60

4.3.3. Power-law noise in geodetic data . . . . . . . . . . . . . . . . . . . . . 60

4.3.4. Long-term tilt drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Definition of the functional . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 On the uniqueness of the solution . . . . . . . . . . . . . . . . . . . . 65

4.6 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 About the computation code . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Three levels of complexity . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 5 Large scale interseismic GPS dataset in-
version 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Lithosphere rigidity by adjoint based inversion of interseismic
GPS data, Application to the western United States . . . . . . . . 74

5.3 Discussion and future directions . . . . . . . . . . . . . . . . . . . . . 95

Chapter 6 Tilt time-series inversion and drift mod-
elling 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 How to use tilt series to estimate long-term instrumental drift? . 99

6.3 Determination associated to fracture opening . . . . . . . . . . . . 114

6.3.1. Forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.2. Synthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 7 Geodetic joint inversion 121



7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Creation of a synthetic dataset . . . . . . . . . . . . . . . . . . . . . . 123

7.2.1. Forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.2. Geodetic network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.3. Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2.4. Model parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3.1. Some insights of the optimization . . . . . . . . . . . . . . . . . . . . 128

7.3.2. Residual data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.2.1. GPS data . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.2.2. Tilt data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.3.2.3. InSAR data . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.3.2.4. Levelling data . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3.3. Optimal parameters and associated uncertainties . . . . . . . . . . . . 132

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Chapter 8 Discussion and future work 137

8.1 Achievements, weaknesses and upgrades . . . . . . . . . . . . . . . . 137

8.2 Geological reservoirs projects . . . . . . . . . . . . . . . . . . . . . . . 139

Chapter 9 Bibliography 143



Chapter 1

Introduction

The flat Earth model is one of the conceptions of Earth’s shape as a plane or disk
(Figure 1.1a). Many ancient cultures believed to the flat Earth theory and nowadays (in
2018) some societies yet support the idea of a flat Earth. However, the first evidence for
the spherical shape of the Earth was provided around 330 BC by Aristotle, ancient Greek
philosopher and scientist. Later around 240 BC, another Greek philosopher Eratosthenes
was able to estimate the Earth’s circumference at 250 000 stadia, about 40 000 km (com-
pared to the present-day value of 40 075.017 km at the equator, WGS-84) by comparing
altitude elevations of the mid-day sun at two places (Syenes and Alexandria, Egypt) a
known North-South distance apart. Although Earth looks perfectly spherical from space
(Figure 1.1b), its circumference and diameter differ at the poles from the equator. Be-
cause Earth rotates, this sphere is distorted by the centrifugal force. This force causes
objects to move outward from their center of gravity (e.g. the same force pushes outward
the bend the occupants of a car). The centrifugal force is greatest at the equator which
creates a outward bulge and therefore implies a larger radius of the Earth at the equator
(6 378 km instead of 6 356 km at the poles). Instead of being a true sphere, the Earth is
flattened at the poles : its shape is an oblate spheroid or ellipsoid, with a larger circum-
ference and radius at the equator.

The Earth’s shape is commonly represented on maps, projecting a 3-dimension object
in 2-dimensions. Topography is then used to measure and represent the Earth in terms of
horizontal coordinate system (e.g. latitude, longitude) and altitude. The altitude defines
the vertical distance between the mean sea level and a point at the Earth’s surface. An-
other description of the Earth is given by its geopotential field, associated to the variations
of gravitational acceleration, caused by mass excess or deficit at depth (Figure 1.1c). As
Gauss described it, the geoid is the "mathematical figure of the Earth" which corresponds
to the location of a given gravity potential value (gravity equipotential). It represents
the shape that would take the surface of the oceans under the only influences of Earth’s
gravity and rotation (e.g. without ocean motions, atmospheric loads and astronomical
tides). Everywhere on this surface, plumb lines would point perpendicular and a water
level would be parallel to the geoid. This smooth but asymmetric surface is the directly
linked to the uneven distribution of mass within and on the Earth’s surface.

7

http://earth-info.nga.mil/GandG/update/index.php?dir=wgs84&action=wgs84
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Figure 1.1: Different representations of the Earth. a) Medieval cosmology representing the flat
Earth bounded by a solid and opaque sky, or firmament on the Flammarion engraving (Flam-
marion, 1888). b) View of the Earth from space (NASA). c) 3D representation of the Geoid
undulations with ×20 000 vertical exaggeration (International Centre for Global Earth Models).

This latter model gives a physical representation of Earth’s shape. But the surface
can also be locally affected by different deformation processes depending on the forces
applied to the Earth’s parts. Solid bodies like rocks can deform when sufficiently large
forces are applied. The ability of a rock to handle the stress depends on its elastic and
plastic properties. Because rocks are constantly subjected to stresses due to thermal and
geodynamical processes, the Earth’s shape keeps changing since its formation. Melted
rocks arise along rift zones and cool down to create new oceanic floor, mountains rise
from subduction or collision of two tectonic plates and are being eroded, trenches form
along subduction zones in deep oceans, volcanoes inflate and deflate with deep magma
movements... Along with these natural processes, anthropogenic activities modify the
shape the Earth at different space and time scales. Indeed, surface displacements can also
be induced by the extraction or the storage of resources (e.g. salt, ore, oil, gas).

These permanent changes of the Earth’s surface are measured using instruments and
techniques developed for geodetic purposes. At the crossroads of astronomy, geophysics
and oceanography, geodesy aims at precisely defining the shape, dimensions and gravity
field of the Earth and its time evolution (Helmert, 1880). The geodetic devices used for
deformation monitoring depend on the application, the chosen method, and the preferred
measurement intervals in space and time. Among the various geodetic instruments, level-
ling has been used for almost two centuries to determine the height differences of a chosen
point with respect to the given datum, which is generally the mean sea level. In 2018, this
one dimensional measurement of the surface displacement is completed by other geodetic
measurements recorded by instruments with different time and space resolutions including
GNSS, InSAR and tiltmeters. Indeed, technological advances of the past 30 years per-
mit to develop these geodetic devices in order to measure more precisely and accurately
deformations of the Earth’s surface from the meter level down to the nanometer level.
Thanks to these complementary tools, the characterization of the Earth’s shape can now
be described in 3 dimensions. Using up to date geodetic instruments, changes of Earth’s
surface induced by deep processes are precisely measured. This deep strain is caused by

https://svs.gsfc.nasa.gov/12321
http://icgem.gfz-potsdam.de/vis3d/longtime
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numerous factors (e.g. incoming magma, extracting resources, fluids flow, creeping, rhe-
ological variations) leading to the deformation of the source and its surrounding medium
up to the surface. Therefore, using surface, aerial and satellite observations, we attempt
in this work to explain the surface deformation linked to the strain at depth. The pro-
cesses affecting the source can be elastic or anelastic, and they cause the volume of the
source to increase or decrease.

In this thesis, our goal is to quantify the deep strain from the knowledge of surface
motions. Because we are not explicitly seeking for the origin of the deformation, the
physical problem is formalized as a numerical formulation using analytical (or numerical)
models depending on the geometry of the source and the mechanical properties of the
medium. In a first kind of models, we assume that horizontal variations of interseismic
velocities are due to variations of lateral rigidities of lithospheric plates, considering a
numerical representation of lithospheric plate. For the second kind of models, we used
analytical models of spherical sources (Mogi, 1958) and planar dislocations (Okada, 1992)
in order to simulate deformations observed at the surface induced by volume variations.
The ground displacements can be observed in volcanic systems, salt mining and uncon-
ventional reservoirs by various geodetic instruments and techniques. In this work, we
explicitly consider GPS, tiltmeters, levelling surveys and InSAR interferograms. Linking
these observations to an assumed physical process is permitted using a dedicated inverse
strategy. By doing so, we aim at retrieving the parameters defining the process that
produces modelled data explaining at best the observed ones. Testing in an optimal way
as many values parameters as necessary, we build a function that estimates the similarity
between modelled and observed data, named the functional or cost function. This latter
should converge towards zero when the optimal parameters set is found. However, due
to imperfect data measurements, the functional never reaches this value. Moreover, due
to the possibly ill-posed nature of the inverse problem, the functional can display several
minima. There are many different methodologies of optimization used to minimize the
functional depending on the complexity of the physical problem, the considered data, the
level of desired precision or the computational capacities. In this work, we choose a global
optimization strategy to escape from local minima developed by Mohammadi and Saïac
(2003) which allows us to consider physical problems of different complexities and vari-
ous data types at low computational cost. Therefore, this work aims at jointly inverting
various geodetic data using a global optimization approach to recover the best model and
instrument parameters.

Among the motivations of this work, the long term monitoring of geological systems
remains challenging and persuaded us to develop an integrated methodology that could
be used to determine both instrumental and strain source parameters in various domains
(such as interseismic plate deformation, volcanic deformation, salt mining and hydraulic
fracturation in unconventional extraction of oil & gas reservoirs). Another motivation was
to implement an adapted inversion strategy for tilt data. Indeed, surface displacements
induced by extraction of oil & gas in unconventional reservoirs are nano- to micrometric
and only tiltmeters are sensitive enough to measure them. Therefore, this thesis is part
of the MIRZA project that focuses on building small drifting tiltmeters (see Chapter 3).
As a specific work parckage of the project, the work presented here allows to model the
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instrumental drift of tiltmeters along with volumetric variations of deep fractures. Ap-
plied to volcanic system or salt extraction, the joint inversion of multiple geodetic dataset
would permit to precisely determine the strain source along with long-term drift of tilt-
meters.

Figure 1.2 compiles 25 of the most recurrent words in this manuscript, highlighting
the preponderance of the data which can be real observations, synthetics data or modeled
data. This gives an insight of the different subjects that are approached in my thesis.
This manuscript is structured as follows: after briefly reviewing the inverse problems in
geodesy (Chapter 2), I present the key issues associated to geodetic reservoirs deformation
(Chapter 3) that brought us to develop our methodology (Chapter 4) demonstrated using
different levels of complexity. This approach is firstly used to determine the lateral rigidity
of the lithosphere using interseismic velocities measured in the Western United States
(Chapter 5). Then, we invert time series of synthetic tilt data to retrieve volume variations
of a spherical source and a tensile fracture (Chapter 6). Finally, a full joint inversion of
GPS, tilt, InSAR and levelling data is performed using our approach (Chapter 7). At
last, I summarize the contributions of the methodology and the remaining issues, leading
to improvements and future applications (Chapter 8).

Figure 1.2: Cluster of the most recurrent words in this manuscript (built using Voyant Tools
developed by Sinclair and Rockwell, 2014).



Chapter 2

Literature review : a glance of inverse
problems in geodesy

Résumé
On assimile souvent un protocole de chimie à une recette de cuisine, mais on peut faire

un rapprochement similaire entre la mise au point d’une recette de cuisine et le problème
inverse en géophysique. Par exemple si je cherche à reproduire ce muffin si délicieux de
la boulangerie, je vais commencer par choisir un ensemble d’ingrédients de base. Mais il
manque les quantités exactes pour obtenir le muffin souhaité. Une méthode pour les trou-
ver serait de cuisiner autant de muffins qu’il me sera nécessaire en testant des quantités
différentes jusqu’à finalement ne plus goûter aucune différence avec le muffin souhaité. En
faisant cela, je minimise l’écart, la différence, entre mon muffin et celui de la boulangerie.
Une fois les bonnes quantités trouvées, j’ai résolu ce que l’on appelle un problème inverse:
à partir du résultat (le muffin), j’ai relié mon modèle (les ingrédients) à mes inconnues
(les quantités) en utilisant ma recette.

Ce genre d’approche est couramment utilisée en géophysique avec, à la place du muffin,
des données mesurées par des instruments à la surface. Ces données sont le résultat de
phénomènes physiques en profondeur (quantités des ingrédients). Pour relier le tout, les
équations régissant mon modèle tiennent lieu de recette de cuisine.

Je présente dans ce chapitre un bref état de l’art sur le problème inverse en géodésie.
J’aborde tout particulièrement les notions qui seront employées tout au long de ce manuscrit
qui concernent les différents modèles directs (la recette), les données géodésiques (le muf-
fin) et les méthodes d’optimisation utilisées pour les relier.

11
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2.1 The muffin recipe

After gathering all the ingredients to bake muffins for dessert, you need to follow your
recipe to mix them in the right quantities to eventually obtain delicious muffins.

But now, imagine you want to replicate the muffins you just bought. You know the
ingredients that are commonly used in muffins’ recipes, but you need to identify the
quantities that will best reproduce the muffins. You need to bake as many muffins as
necessary varying the quantities until you cannot taste or see any difference with the
good muffin. So you are trying to minimize the distance separating your trial muffin from
the target muffin, such as

J = ‖trial muffin− target muffin‖

Solving the ingredient-recipe mystery is more commonly called an inverse problem :
I have the result (the muffins) and I want to find the unknowns (the quantities) from
the chosen recipe producing the muffin. And switching back to geophysics, we usually
record data at the surface (the muffins) that we try to explain the origin (the ingredients
quantities) using a conceptual model (the recipe).

The following sections review the forward models (the recipe), the data (the muffins)
used for inverse problems in geodesy and give a brief overview of different methodologies
to approach inverse problems.

2.2 Forward models

When it comes to build a strategy to retrieve characteristics of a physical system, we
need to choose the forward model that links the observations to the parameters we are
looking for. But to understand how such problem is solved, it is necessary to identify
forward models that are used through the inversion. Forward, because they give the
general response to a given set of parameters by applying theoretical models. In the case
of geodetic strain, they allow to link source characteristics (location, size, orientation,
internal stress or strain) to the surface deformation of the crust in response to rheological
processes.

Forward models can be divided into two categories: analytical and numerical. The
former ones allow the calculation of displacements, tilts, strain or stress induced by a
source at depth using mathematical relations solving the constitutive equations of the
problem as a whole. Widely used because of their low computational cost, they are
limited to simple geometries and rheological assumptions. On the opposite, numerical
models are based on spatial discretization of the source, its surrounding medium and the
topography. For such cases, the forward model accounts for a more precise description of
the geophysical properties of the medium. Nevertheless, this gain is much more expensive
computationally than analytical simulations.

In this section, I present some of the analytical and numerical models that are used
in this study or considered for further improvements.
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2.2.1. Analytical models

2.2.1.1. Spherical source

The so-called Mogi model is the simplest and probably the most used analytical so-
lution for a pressurized source in a homogeneous elastic half-space. Named after the
scientist, Kiyoo Mogi, that first applied it to a geophysical problem (Mogi, 1958), it con-
siders a spherical source embedded in an ideal semi-infinite uniform elastic body. This
source is defined by its radius a, centered at a depth zs beneath the free surface at z = 0
(Figure 2.1). A uniform internal pressure P is applied to the boundary of the spherical
source. The system is described by four variables, including the cartesian coordinates of
the point source (~x = xs, ys, zs) and pressure (P ) (Mogi, 1958). The approximation of a
point source stands as long as the depth of the source is at least three times the radius
of the source (Battaglia et al., 2013b). This model predicts 3-D surface displacement
~u = (ux, uy, uz) pointing in the direction from the source to the observation point (unit
vector ~n1, Figure 2.1) such as,

(2.1) ~u(a,R, P, ~n1) = (1− ν)Pa3

µR2 ~n1

with ~n1 the unit vector in the direction defined by the source and the observational point.
R =

√
(x− xs)2 + (y − ys)2 + (−zs)2 is the distance between the observation point at the

surface (x, y, 0). ν and µ are respectively the Poisson’s ratio and shear modulus.

Figure 2.1: Representation of an isotropic volume variation ∆V= 250 000 m3 embedded in
a homogeneous and elastic half space at 1500 m deep (after Mogi, 1958). The spherical source
should be small relatively to its depth (|zs|� a). The displacement ~u is pointing in the direction
~n1 while the tilt ~t is the spatial gradient of uz. The red curve represents the vertical displacement
(in mm) for such configuration and the green curve represents the values of tilt (in µrad).
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The volumetric change ∆V associated with the deformation can be introduced in
Eq. (2.1) using the definition of ∆V ,

(2.2) ∆V = π

µ
Pa3

which leads to,

(2.3) ~u(R,∆V, ~n1) = 1− ν
πR2 ∆V ~n1

Therefore, the surface deformation can be derived using either the volume variation of
the source ∆V or the associated radius a combined with the pressure P . The quantity
Pa3 is the "strength" of the singularity and therefore the cavity radius a and the pressure
change P are inseparable. The radius a of the source is often unknown for geophysical
applications and the volume change of the point source is more commonly estimated
rather than pressure changes (Mossop and Segall, 1999). The displacements produced by
volume or pressure changes can be measured using GPS, InSAR or levelling (described in
the next section).

The components of the ground tilt vector are given by the horizontal derivatives of
the vertical displacement ~uz such as ~t = −∇uz,

(2.4) ~t(zs, r, R,∆V, ~n2) = 1− ν
π

∆V 3zs r
R5 ~n2

with ~n2 the unit vector included in the plane tangent to the surface deformation pointing in
the direction of minimal deformation. r =

√
(x− xs)2 + (y − ys)2 is the distance between

the projection at the surface of the source and the observation point (Figure 2.1). If
the ground subsides, ~n2 points towards the center of the subsidence. On the contrary,
during an uplift (Figure 2.1) ~n2 points outwards the maximum uplift. Commonly used
in volcano deformation when observed data are sparse or showing axial symmetry, the
Mogi’s model is also employed as a test model before implementing more sophisticated
models (Bonafede and Ferrari, 2009). The main advantage of this forward model is the
small number of parameters involved, allowing rapid computation (Nunnari et al., 2005).
However, one needs to consider the limitations to the applicability of this model:

1. The sources must be deep compared to their radius.

2. The stress field becomes singular in the neighborhood of the source.

3. At this level of approximation, the size of the cavity cannot be estimated separately
from the pressure change.

4. When considering high negative pressure change, Eq. (2.2) shows that it can lead to
a negative final volume. Yet it is physically impossible obtaining such final volume.

Considering higher-order in the Taylor expansion to the stress and displacement fields
leads to the formulation given by McTigue (1987) for shallow sources and non-singular
stress field in the vicinity of the source. Starting from Eq. (2.1) the analytical solution
given by McTigue (1987) can be written in its factorized form as,

(2.5) ~u(a, zs, r, R,∆V, ~n1) = (1− ν)Pa3

µR2

{
1−

(
a

zs

)3
[

1
2

(1 + ν)
7− 5ν −

15
4

(2− ν)
7− 5ν

z2
s

R

]}
~n1
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Let’s call M = 1−
(
a
zs

)3 [1
2

(1+ν)
7−5ν −

15
4

(2−ν)
7−5ν

z2
s

R

]
. By considering a higher order term in the

expression of the volume change,

(2.6) ∆V = πa3P

µ

[
1 +

(
a

zs

)4
]

we can write an equivalent expression of Eq. (2.5) in terms of the change in volume of the
body,

(2.7) ~u(a, zs, r, R,∆V, ~n1) = (1− ν)
πR2 ∆V

[
1 +

(
a

zs

)4
]−1

M ~n1

This form eventually allows to search for all three parameters ∆V , a and zs.
If
(
a
zs

)3
<< 1, Eq. (2.5) and Eq. (2.7) reduce to the Mogi solution for a deep dilatation

source. Indeed, if we consider a source radius a = zs

2 the correction to the Mogi model
(second term in Eq. (2.7)) is only 12.5%. Thus, if the accuracy of the geodetic survey is
lower than 12.5% or if site effects produced by shallow heterogeneities and topography
affect by less than 12.5% the geodetic signal, then the Mogi’s assumptions are sufficient
(Battaglia et al., 2013a).

Ground tilt equations are finally derived from Eq. (2.7)

(2.8) ~t(a, zs, r, R,∆V, ~n2) = (1− ν)
π

∆V
[
1 +

(
a

zs

)4
]−1

M
3zs.r
R5 ~n2

If one wants to explain a lack of axial symmetry of geodetic data, models of cylindrical
(Yukutake and Tachinaka, 1967) and spheroidal (Davis, 1986a; Yang et al., 1988; Cervelli,
2013) sources have been explicitly written to account for more complex source geometries.
For instance, one can use an elongated spheroid (Yang et al., 1988) to model a conduit
under a constant pressure. Also, Camacho et al. (2011) propose an analytical approach to
consider source with a free geometry. They approximate the source by an aggregation of
elementary point sources, producing displacements and tilts that are the sum of individual
sources. Ronchin et al. (2017) propose another approach considering numerical models
(see next section).

This study focuses on modeling geological reservoirs such as hydrocarbons, salt and
volcanoes. These geological systems are deforming under a large variety of source pro-
cesses. Besides using spheroidal or elongated sources for salt caves or magmatic chambers,
it could be appropriate to model dikes or fractures. Therefore another model is useful:
the rectangular dislocation model.

2.2.1.2. Planar dislocations

The analytical solution for the surface and internal displacements, strains and tilts due
to a strike-slip, dip-slip and tensile dislocation in a half-space has been given by Okada
(1992):

(2.9) ui = 1
F

∫ ∫
S

∆uj
[
λδjk

∂uni
∂ζn

+ µ

(
∂uji
∂ζk

+ ∂uki
∂ζj

)]
nkdS
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where ui = (u1, u2, u3) are the 3 components of the displacement vector ~u at the observa-
tion point induced by a dislocation ∆uj = (ζ1, ζ2, ζ3) of a magnitude F across the surface
S. nk = (n1, n2, n3) is the normal vector to the surface S. uji is the ith component of
the displacement at the observation point due to a force F in the jth direction. λ and
µ are respectively the Lamé’s first parameter and the shear modulus. This general ex-
pression leads to a complex system of equations entirely described in Okada (1992). The
geometry is illustrated in Figure 2.2 for the specific case of surface deformation induced
by a planar dislocation. Similarly to the Mogi model or McTigue model, the half-space is
homogeneous, isotropic, elastic and assumes no topography. Here the source is a planar
facet, characterized by its length (L), width (W ), depth (zs) and dislocation type (strike
ζ1, dip ζ2 or tensile ζ3) (Figure 2.2). Because of its complex analytical expression, the tilt
vector is numerically calculated as −∇u3.

Figure 2.2: Representation of a dislocation in a homogeneous and elastic half space (Okada,
1992). The red arrows stand for the dislocation types 1) dip-slip, 2) strike-slip and 3) tensile.
The planar dislocation is located at a depth zs, has a width W , a length L and a dip δ.

2.2.2. Numerical models
The use of analytical models implies that the geometry of the source as well as the

characteristics of the medium remain simple. In the presence of complex structures nu-
merical models like finite elements, finite differences or boundary elements are needed.
Based on the source and medium discretization, they allow for the simulation of the de-
formation associated to one or several sources of any geometry and heterogeneous medium
(e.g. non flat topography, anelastic rheology).

When finite elements are used, the solution of governing differential equations of ana-
lytical models are approximated by decomposing the domain into blocks of either identical
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or various size and applying constitutive equations and stress balance to individual ele-
ments or nodes of the mesh (e.g. Dieterich and Decker, 1975; Dragoni and Magnanensi,
1989; Ooi and Yang, 2010; Anderson et al., 2015). If the domain of interest is large com-
pared to the size of the source, implementing an adaptive mesh makes sense. In order to
capture strain gradients, the mesh size should be finer near the source and coarser in the
far field. One can also use an adaptive mesh depending on the surface distribution of the
dataset.

The boundary element method transforms the volume problem into a surface problem
thanks to an integration of the stress balance equations. This may lead to a reduction
of computational time. Therefore such models are also widely used by the geophysical
community (e.g. Cayol and Cornet, 1997; Peltier et al., 2007; Maerten, 2010; Li et al.,
2015; Weng, 2015).

Although this thesis will mainly consider analytical models, we also used a numerical
model of a lithospheric plate in Chapter 5.

2.3 Geodetic observations

The Earth’s surface is shaped by numerous geological processes among which plate
tectonics and volcanism create the most obvious surface deformation features. Geodesy
focuses on the representation of the shape of the Earth based on various measurements
of surface displacement and gravitational field in a three-dimensional time-varying space.
Space and terrestrial techniques are used in geodesy to study these geodynamical phe-
nomena, using continuously recording instruments or repeat surveys.

Measuring surface deformation is handled by several surveying techniques, continu-
ous or repeated (Global Navigation Satellite System, Interferometric Synthetic Aperture
Radar, levelling, gravimetry, tiltmeters, strainmeters, Electronic Distance Measurement,
photography, photogrammetry, water-level gauging, lava lake-level...). I briefly describe
hereafter five of these techniques: Global Navigation Satellite System (GNSS), Interfero-
metric Synthetic Aperture Radar (InSAR), tilt, levelling and gravimetric surveys.

2.3.1. Global Navigation Satellite System
A Global Navigation Satellite System is achieved by a constellation of 18 to 30 satellites

put in Medium Earth Orbit (between 19 000 and 23 000 km above sea level, Hager et al.,
1991). There are currently four operational GNSSs: the Global Positioning System (GPS)
from the United States, the Russian GLONASS and the European Union’s GALILEO
which should be fully operational by 2020 just like the Chinese COMPASS. GNSS is
used to provide positioning in the inertial reference frame of the Earth. The system uses
receivers spread on the surface to measure the transmitting time of signals from GNSS
satellites. When at least four satellites are used (Figure 2.3), data post-processing allows
to compute the spatial coordinates of the receiver and its time evolution. The measure of
the receiver’s position is a 3-components values generally given with a daily accuracy of 1
mm (Hager et al., 1991) with respect to a reference frame named International Terrestrial
Reference Frame (ITRF).
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Therefore, GNSS networks provide with 3-D displacements and velocities vectors with
a wide range of sampling rates with respect to the ITRF. As far as possible, network are
used to continuously record time series (typical sampling rate of 1 to 30 s) but episodic
observations or campaigns are also conducted to improve spatial density.

Figure 2.3: a) Principle of acquisition of GNSS data with at least 4 satellites to compute
position of the receiver and time. b) GPS receiver antenna on the brine extraction site of
Vauvert (Gard, France).

2.3.2. Interferometric Synthetic Aperture Radar
Satellite radar orbiting at 800 km uses electromagnetic radiation at microwave fre-

quencies pointing to the side rather than straight down the targets. So the arrival path
of the radar signal is oblique to the surface being imaged (Figure 2.4). Conversely to
real aperture radar, synthetic aperture radar (SAR) is based on the Doppler effect. In-
deed, as Wiley (1965) first noticed, a large antenna aperture can be synthesized using
the frequency spread in the echo signal produced by the Doppler effect. This enables a
decametric ground resolution.

Imaging the Earth’s surface using radar systems is based on the spatial reflectivity
information from illuminated targets. Those targets need to be relatively invariant with
time so they are not blurred and can be followed through time.

Each pixel in a SAR image contains information about amplitude and phase, corre-
sponding respectively to the intensity of the returned radar energy and to a fraction of
complete wavelength (variations of phase). The measure of the Earth’s deformation can
be derived from the recorded phase by forming an interferogram. To do so, one subtracts
two images recorded over the same area at different times. The resulting phase-difference
fringes are proportional to the change in the distance between the ground and the satel-
lite. This process is repeated with tens or even hundreds of images from the same area
to improve the phase change resolution and to follow up the deformation through time
(Massonnet and Feigl, 1998; Richards, 2007).

Numerous missions include satellite imaging radar systems (ERS1 & 2, ENVISAT,
SENTINEL-1, TERRASAR-X, COSMO-SKYMED, RADARSAT, TANDEM-X, JERS1,
ALOS) with different orbit repeat cycles, from 6 to 46 days.
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The spatial coverage of InSAR technique is much better than the discrete sampling of
other geodetic techniques and is capable of imaging day and night. By using microwaves
(like GNSS), it has cloud-penetrating capabilities due to very low atmospheric absorption
at typical radar wavelengths. However, vegetation or snow cover are usually obstacles
that may affect the measure of ground deformation by decreasing the correlation between
successive images. Also, a long repeat time is a limitation to precise measures of ground
deformation for rapid events because of slow ground modifications. Finally, only the
deformation in the Line-Of-Sight direction of the satellite (Figure 2.4) is displayed by
interferograms. When corrected from topographic phase change, this component (uLOS)
of the deformation is measured with an accuracy of a few mm. With standard InSAR
treatment, tt is important to note that unlike GPS, a full 3-D ground displacement cannot
be achieved with InSAR.

Practically, standard InSAR faces major limitations among which decorrelation associ-
ated with vegetation coverage, atmospheric biases due to tropospheric condition changes,
or sensitivity to local Digital Elevation Model (DEM) errors. One way to cope with this,
is to adopt a Multi-Temporal InSAR approach (MT-InSAR) which processes time-series
of radar images (e.g. Ferretti et al., 2000; Berardino et al., 2002; Hooper et al., 2004).
The objective of such techniques is twofold. First, they select pixels (generally called
Permanent or Persistent Scatterers (PS)) that have a steady backscattering behavior over
the whole time-series. Then, they invert the ground deformation component of the in-
terferometric phase by discriminating it from other sources of phase delay (turbulent
atmospheric effect or DEM error), based on their spatio-temporal signature. This leads
to individual time-series of ground position for each PS from which mean velocities are
generally derived.

Figure 2.4: Geometric model of a SAR system. Slant range is the length between the antenna
and ground pixel while ground range is the distance between the ground track and the ground
pixel (from Zhou et al., 2009).
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2.3.3. Tilt monitoring

Measuring crustal tilt consists in estimating the temporal variations of rigid body
rotation with respect to the vertical plumb line (Figure 2.5). Thus, without using any
dedicated instruments, the tilt can be derived from other data (z-derivative of surface
displacement recorded by GPS), or instruments (seismometers, pendulum) or methods
(levelling) that are sensitive to ground tilt. Otherwise, we can distinguish between simple
and folded pendulums, liquid level systems (long-based tiltmeters) or bubble tiltmeters
(similar to a very high resolution carpenter’s level). A comprehensive review of tiltmeters
is provided by Agnew (1986). When installed within a few meters of the surface, tilt-
meters are plagued with ground tilt such as differential thermal expansion of near-surface
materials, rainfall and pumping effects. For instance, thermal effect or wind at the sur-
face produce locally a millirad signal on the surface while hydrology and earth tides create
amplitude ranging from 0.1 to 10 µrad.

In order to minimize these effects and to record crustal and reservoirs deformation,
borehole tiltmeters are installed at depth ranging from few meters to several tens of meters
(Harrison and Herbst, 1977; Ricco et al., 2018). These highly sensitive instruments (up
to 5 nrad of resolution, equivalent to 5 mm over 1000 km) measure temporal variations
of the orientation of their body with respect to the local gravity vector. The data are
continuously recorded in a standalone mode, no sophisticated processing is needed unlike
GPS or InSAR, apart from extracting the signal induced by terrestrial and oceanic tides
(Wyatt et al., 1982). Therefore, tilt data can be transfered and analyzed in nearly real
time which can be convenient to survey rapid surface deformation during volcanic unrest
for instance.

Figure 2.5: Measuring surface deformation induced by a decrease of spherical volume using
borehole tiltmeter and picture of a prototype of optical pendulum tiltmeter (Chawah et al., 2015a).
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2.3.4. Levelling surveys
Even if levelling is a low-tech geodetic approach, it remains one of the most accurate to

measure vertical height changes over kilometric baselines. Before the advance of satellite
geodesy, this method was the only one providing millimetric precision of the vertical mo-
tion (Jouanne et al., 1995, 1998; Nocquet et al., 2016). Differential levelling is commonly
used to complete circuits, lines or networks within a network of permanent benchmarks.
By repeated surveys, one can measure the height changes as a function of time. It features
a digital or optical level and one or two levelling rods (Figure 2.6). Starting from a point
of known or assumed elevation (BM1), several stable points are chosen along a line or
circuit to reach a final location (BM2). The level is then set up in such way that back-
sight (BS) reading on the bench mark as well as foresight (FS) reading the next point are
both allowed. The instrument is then shifted to some other position in forward direction
(Figure 2.6). The measure issued from levelling surveys is then relative to an initial point
which is used to adjust different profiles containing the same point (Jouanne et al., 1995,
1998; Nocquet et al., 2016).

Figure 2.6: Sketch of differential levelling procedure. The height differences between datum
point (BM1) and another benchmark (BM2) are estimated by accumulating differences between
foresight (FS) and backsight (BS) readings on a levelling rod.

Bossler (1984) reports the different configurations and their resolutions, ranging from
0.1 to 1 mm per km. The accuracy of the method is dependent of several factors; com-
bination of equipment, field procedures, survey characteristics (double-run sections, cir-
cuits) and type of corrections (rod scale, rod temperature, level collimation, refraction,
astronomic, orthometric, gravimetric). For high precision surveys, the elevation accuracy
ranges from 0.5 to 2 mm per

√
km (Bossler, 1984). It is important to notice that the error

on the measurements is increasing with the distance like a Brownian noise. This error
is markedly different from the one occurring on GPS, which displays a different error to
baseline relation.
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2.3.5. Gravimetric surveys
In some cases, ground deformation is significant enough to be detectable by gravime-

ters as these instruments are sensitive to changes in the subsurface distribution of mass.
Conversely, mass can change without surface deformation (Jacob et al., 2008; Fores et al.,
2017). Therefore, gravimetric and surface measurements bring complementary informa-
tion about physical processes occurring underground. Similarly to GPS stations, gravime-
ters can be used as continuous stations or during surveys. Combining both methods
provides a better spatial and temporal coverage.

Free-fall gravimeters such as Micro-g Lacoste FG5 (Sasagawa et al., 1995) provide
precise co-measurements of the time t and the falling distance d of a free-falling corner
cube in a vacuum chamber, giving the local value of the gravity g with an accuracy of 1
to 2 µGal (knowing that the gravity g = 981 000 000 µGal). FG5 and A10 instruments
(Micro-g) are the most affordable and transportable absolute gravimeters for geodetic
studies.

Relative gravimeters can measure the difference in the acceleration due to gravity at
different locations or times. Supraconductive gravimeters are the most precise of the
relative gravimeters, but they cannot be easily moved. For field surveys and uneven
environments, spring-based gravimeters (Figure 2.7) have been developed such as the
widely used Lacoste & Romberg CG-5 (accuracy of 5 µGal). Because its sensor is a
mechanical spring, these instruments provide a measure evolving with the aging of the
spring. In survey mode, the instrumental drift can be corrected by measuring at the exact
same place a few times a day knowing the time varying gravity of this specific site.

Figure 2.7: a) Principle of spring-base gravimeter. b) The CG5 relative gravimeter from
Lacoste & Romberg.
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2.4 Solving inverse problems

When the parameters of a model are known, the physical theories allow us to predict
the resulting measurements (e.g ground displacement or tilt). This is called the forward
problem. By contrast, the inverse problem aims at inferring the parameters of a given
model using the observations. This implies that an inverse problem does not necessarily
have a unique solution contrary to the forward problem which generally gives a unique
solution for one set of parameters. The core of this work is about the optimization of
inverse problems in geodesy. By inverse problems, we mean the process of estimating
the parameters producing surface observations. Optimization refers to the process of
minimization or maximization of a cost function by finding the best set of parameters in
a defined domain.

2.4.1. Some background about inversion theory
The inverse problem consists in finding an optimal set of model parameters p explaining

the observations d∗ (Tarantola, 2004) such as,

(2.10) d∗ = G(p)

whereG represents the governing equation relating the model parameters p to the observed
data d∗. The operator G can be linear or non-linear depending on the complexity of the
relation between the model parameters and the observations. Each component of the
parameter p can be seen as one degree of freedom of the system while each equation
introduced in G is a constraint for one degree of freedom.

By considering a linear problem, Eq. (2.10) reduces to:

(2.11) d∗ = Gp

Ideally, solving an inverse problem consists in inverting the matrix G to directly infer the
parameter from the observations. Eq. (2.11) becomes

(2.12) p = G−1d

where d is the modelled data. Because G is usually not invertible, this latter relation
cannot be directly applied.

To solve the inverse problem, one needs to compare the predicted data (d) from the
model to the observations (d∗). The comparison is made through the functional hereafter
named J , a function that measures the fit between modeled and observed data. Mini-
mizing this difference is the goal an optimization algorithm. For noise-free data and a
valid forward model of the phenomenon, the fit should be perfect. A common objective
function (or functional) is often characterized by the L-2 norm of the misfit between the
observations and predicted data.

(2.13) J = ‖d∗ − d‖2
2

Inverse problems are typically ill posed, as opposed to the well-posed problems more
typical when modeling physical situations where the model parameters or material prop-
erties are known. Jacques Hadamard first introduced the concept of a well-posed problem
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which is characterized by three conditions: existence, uniqueness, and stability of the
solution or solutions (Hadamard, 1902). Figure 2.8 represents geometric views of those
conditions depending on the convexity of the functional. If the functional admits a solu-
tion for the given parameters, the optimal case would be that the solution is unique and
stable (Figure 2.8a). However, it is not usually the case. The stability refers to whether
the solution is substantially changed when the perturbations are introduced in the optimal
state. For instance, the noise affecting the data may produce arbitrarily large errors in
the solutions. The solution is said non-unique when multiple sets of parameters give the
same minimum value of the functional (Figure 2.8b). Because real data contains noise
and sometimes more complex signals (e.g. drift), inverse problem in geophysics are more
likely to have no exact solution (Figure 2.8c) or even local minima (Figure 2.8d). Thus
the smallest value of the functional within a given range is a local minimum as long as the
entire domain of the functional has not been analyzed. If a minimum is also the smallest
value of the entire domain, then it refers to the global minimum of the function. This
latter value is the goal of an inverse problem that can be solved using different approaches
(see Section 2.4.2.).

Figure 2.8: Geometric views of different behaviours of the functional J with D the quadratic
distance between the observed and predicted data and p1 and p2 are model parameters. a) A well-
posed problem according to Hadamard’s definition (Hadamard, 1902), b) the problem converges
towards 0 but is non-unique, c) J has a unique minimum but the solution is not exact it does not
fully explain the data and d) non-convex J admitting local and global minima, which is usually
the case in geophysical inverse problems.
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When inverting geodetic data, we are exploring a functional with an unknown behav-
ior including data uncertainties and a specific parametrization. In most geodetic inverse
problem, a limited number of observations describe a finite number of unknown param-
eters, leading to an ill-conditioned problem. Therefore such problems are not well posed
in the sense of Hadamard, but one can develop methodology of optimization that tends
to approach Hadamard’s conditions: if a global minimum exists (even if it is non-null),
the inversion process should find it with respect to the data uncertainties and all addi-
tional signals. If more unknowns p than available equations are considered, the system
is underdetermined : there are not enough constraints restricting the degrees of freedom.
In such case, G (from Eq. (2.11)) is not invertible and the solution p provided by the
inversion is non-unique. Uniqueness of the solution can be targeted considering a pri-
ori constraints at different steps of the optimization: either during the process (e.g. a
Tikhonov regularization introduces additional information to solve ill-posed problems or
to prevent overfitting) or once the minimization is completed. This ensures smoother and
more stable results.

In the following studies, we could implement both approaches, depending on the a
priori information. To minimize the objective function, different algorithms can be con-
sidered.

2.4.2. Optimization algorithms
Optimization algorithms aim at resolving an inverse problem by minimizing a func-

tional involving a parameter set. The choice among different classes of algorithms is
dictated by the available knowledge of the functional and also by computational issues.
In most cases, only local minima are determined and reaching the global minimum is
not guaranteed. In Chapter 4, I detail the algorithm allowing us to approach the global
minimum of a general functional. But first, I give an overview of stochastic algorithms
and gradient descent algorithms.

2.4.2.1. Stochastic optimization

Such methods of optimization generate and use random variables, from random
functionals to random constraints. For instance, Markov Chain Monte Carlo methods
(MCMC) are a class of computational algorithms that calculates an approximated nu-
merical solution based on repeated random sampling. Monte Carlo methods rely on an
objective function which is used in the forward problem to calculate the difference be-
tween modelled and observed data. A probability density function is associated to these
values of the objective function to determine the optimal set of parameters. At the end
there are as much objective functions as random sampling, defining the probability of the
parameter set to give the smallest objective function. Even if the random search process
is potentially inefficient and therefore slow, it converges towards an optimum. They al-
low the simulation of systems with multiple coupled degrees of freedom. Sambridge and
Mosegaard (2002) gives an exhaustive review of the widespread use of Monte Carlo meth-
ods in geophysics. They are commonly used in inversions applied to fault characterization
(e.g. Yabuki and Matsu’ura, 1992; Minson et al., 2014), reservoir characterization (e.g.
Hesse and Stadler, 2014; Maerten et al., 2016, magmatic systems characterization (e.g.
Fukushima et al., 2000; Obrizzo et al., 2004; Segall, 2013; Anderson and Poland, 2016).
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2.4.2.2. Gradient-based algorithms

The lost hiker. The philosophy of the approach can be explained using a simple analogy. Let’s
imagine a hiker trapped by a heavy fog in the mountain and trying to get down, i.e. trying to
reach the valley (the minima). Therefore, the value of the function J is the current altitude of
the hiker. Due to the fog, the path is almost invisible except in the immediate vicinity of the
hiker. Hence he must use the local information to find the direction of the valley. The most
obvious way to do so is to look at the steepness of the hill at its current position and heads
toward the direction of the steepest descent. In this analogy, the hiker stands for the algorithm
which explores the sequence of parameter settings symbolized by the path. The steepness of the
hill represents the local slope at the current point, i.e. the gradient of the functional.

A gradient descent is a first-order iterative optimization algorithm (considering the
first derivative only of a Taylor development) also known as steepest descent. It aims at
finding the minimum of a functional generating a series of parameters allowing to approach
the target at best. The search direction is defined by the gradient of this functional at
the current point. The local minimum is thus iteratively determined by estimating the
gradient then moving to the next point in the direction of the negative gradient. The
value of the step ρ used to move to the next value can be constant at each iteration or
several ρ can be tested to find the one giving the smallest value. Starting from a fixed
initial value x0, the algorithm seeks the nearest local minimum of a function by stepping
from the current stage xi to the new one xi+1 by minimizing the local downhill gradient
−ρ∇J(xi).

Gradient descent strategy is working in spaces of any dimensions, even in infinite-
dimensional ones. The gradient descent can take many iterations to compute a local
minimum with a required accuracy, if the curvature in different directions is very different
for the given functional. Methods based on Newton’s method and inversion of the Hes-
sian using conjugate gradient techniques can be better alternatives (Nocedal and Wright,
1999). Generally, such methods consider the second order of a Taylor development and
converge in fewer iterations, but the cost of each iteration is higher.

Gradient-based algorithms are probably not the most common algorithms to retrieve
model parameters but numerous geophysical applications can be found in the literature
for electromagnetic (e.g. Cockett et al., 2015) or gravity (e.g. Qin et al., 2016; Zhaohai,
2016) data inversions. In this work, I use a methodology of inversion based on the steepest
gradient descent method.

2.4.2.3. Semi-deterministic approach

We previously distinguished deterministic approaches, which involve no degree of ran-
domness, from stochastic approaches based on a random sampling of the parametrization
space. The present work is based on the development of a semi-deterministic approach,
meaning that we consider a deterministic approach with some degree of randomness
(Ivorra, 2006). The algorithm later described in Chapter 4 is based on a steepest gradient
descent to seek local minima from an initial set of parameters. But a mix of gradient
descent and stochastic approach is superimposed to the gradient method to expand the
search by randomly choosing new sets of initial parameters. This allows to cover a wider
domain of the functional and eventually to converge towards the global minimum.
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2.4.3. Integrating multiple geodetic data
When inverting data of different natures, various terminologies are used including joint

inversion, data fusion or data assimilation. Because the differences between those process
are sometimes not well stated, I define here what I call joint inversion, data fusion and
data assimilation.

Joint inversion can be achieved if all the different data are linked to a common physical
model. This forward model describes the state of a system at a given time. For example,
analyzing surface deformation observation, requires joint inversion strategies to invert
multiple types of data with cross parameter constraints (e.g. Colombo et al., 2007; Palano
et al., 2008; Segall et al., 2013; Geirsson et al., 2014). The objective function for this joint
inversion problem can be formulated following the theory explained in Tarantola (2004)
by simply summing the squared data misfit normalized by their covariances. A weighting
factor can also be introduced to scale each data type contribution.

Alternatively, when speaking of data fusion or data assimilation, one combines hetero-
geneous data. More specifically, data assimilation uses new data to improve the definition
of the model deduced from previous observations. At each time interval, the previous state
of the model is considered to produce the best solution. Firstly developed and mainly
used for meteorology (e.g. Wilgan et al., 2015) or hydrology forecasting (e.g. Alvarado-
Montero et al., 2017), geophysical applications of data assimilation can also be found (e.g.
Wilschut et al., 2011; Hesse and Stadler, 2014; Zhan and Gregg, 2017).

The goal of this work is to assemble different kinds of data using a single forward
model in order to describe the evolution of a time dependent system. Based on the
previous definitions, we present in this manuscript a methodology of joint inversion of
time-dependent geodetic data. The corresponding methodology is described in Chapter 4.



Chapter 3

Challenges of geodetic inverse prob-
lem: a common methodology for min-
ing, oil and gas and volcanic strain?

Résumé
La déformation du sol a lieu à des échelles spatiales et temporelles très variées. Dans ce

travail, nous nous intéressons aux mouvements au sein des réservoirs géologiques. Nous
appellons réservoir géologique, un lieu oú sont accumulées des réserves, qu’elles soient
minérales, liquides, solides ou gazeuses. La variation de ces réserves, d’origine naturelle
ou induite par l’activité humaine, est la cause des déformations. Nous considérons dans
ce manuscrit les réservoirs (1) volcaniques, (2) miniers et (3) pétroliers (huile et gaz).
En effet, ces trois types de réservoirs sont particulièrement bien instrumentés et étudiés
d’un point de vue géodésique du fait des risques qui y sont associés ainsi que la gestion
de leur exploitation. Nous présentons des exemples concrets de ces 3 réservoirs afin de
discuter des enjeux qui leurs sont associés:

1. Volcanique: le système magmatique du Kı̄lauea (Hawaï);

2. Minier: le comportement des cavités salines (extraction et lessivage) à Vauvert (France);

3. Réservoirs pétroliers non-conventionel: l’extraction de gaz en Argentine (par Total
S.A)

Au cours de ma thèse, j’ai eu l’occasion de m’impliquer dans l’étude de ces différents
réservoirs. En collaboration avec Kyle Anderson de l’USGS, j’ai traité et inversé les don-
nées de tilt et de GPS issues de l’éruption de 2011 du Kı̄lauea. En outre, j’ai également
contribué à l’installation d’instruments sur le site de Vauvert. Enfin, j’ai participé aux
réflexions concernant le design d’un site pilote en Argentine qui vise à installer un réseau
de inclinomètres pour la surveillance de l’extraction de gaz. Je prévois de réaliser une
modélisation de ce design avec les outils développés dans la thèse.

29
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Je présente dans ce chapitre les différentes caractéristiques de chacun de ces réservoirs
et la déformation de surface qui leur est associée. Une revue des enjeux de la modélisation,
me conduit à proposer une méthodologie d’optimisation commune à ces 3 systèmes.
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3.1 Introduction to geologic
deformation sources

The geodetic techniques (described in Chapter 2) provide a time-space record of the
surface deformation above various kinds of reservoirs among which volcanoes are prob-
ably the most monitored and studied because of their high associated hazards and/or
risks (Fernández et al., 2017). Some sites like Kı̄lauea or Etna volcanoes are widely in-
strumented thanks to their readily access, recurring activity (at human time-scale) and
research centers means. Geological reservoirs such as salt mines also host some geodetic
instruments or surveys, due to legal obligations asking for the monitoring of the induced
deformation at the surface. For confidentiality reasons, dataset containing several types
of data are more seldom for oil and gas unconventional reservoirs, though several tilt and
InSAR surveys have been conducted on various plays to control the fracking process and
its consequences (Castillo et al., 1997; Olson et al., 1997; Warpinski et al., 1997; Fisher
and Warpinski, 2011; Warpinski, 2014; Jha et al., 2008; Zhou et al., 2015; Caffagni and
Bokelmann, 2016). For this reason, publications including inversions of multiple datasets
on Oil & Gas reservoirs are yet uncommon.

We develop a methodology to answer issues for those three types of reservoirs that I
describe hereafter.

1. Volcanic systems. Widely monitored by geodetic systems along with other sismo-
logical and geophysical instruments and geochemical measurements, volcanoes pro-
vide one of the best examples of large surface displacement. The main source of this
deformation, the volume change of magma in the magmatic chamber, is often treated
like a point source (Mogi or McTigue models, e.g. Segall, 2010; Lingyun et al., 2013)
while dikes propagation is usually modelled by a planar dislocation (Okada’s model,
e.g. Fukushima et al., 2005; Lundgren et al., 2013). The case of Kı̄lauea Volcano is
particularly studied thanks to its extended geodetic network and the accessibility
of both site and data (https://volcanoes.usgs.gov/volcanoes/kilauea/).

2. Salt mining. Mining activities are commonly subjected to monitoring due to the
surface deformation induced by this industry. Because of its long term subsidence
history, geographic location and the numerous available data, the salt exploitation
of Vauvert (Gard, France) is particularly interesting (Godano et al., 2012). Previous
studies (Raucoules et al., 2003, 2004) have highlighted a quasi-perfect spherical bowl
of subsidence in Vauvert. As a result, we assume that the extraction of salt from
deep layers can be assimilated to point sources in this case. Indeed, a dozen of wells
are continuously extracting the salt under the form of brine from lower saliferous
layer at a depth ranging from 2000 to 3000 m.

3. Unconventional reservoirs. During the exploration stage, oil and gas companies
conduct geophysical surveys (seismic reflexion/refraction, borehole seismic, well log-
ging) to estimate the potential of conventional and unconventional Oil & Gas reser-
voirs. While extracting the resource, they can also monitor this extraction using
repeated surveys or continuous measurements. These methodologies have provided
stable and reliable results but they remain expensive and limited. As the process of

https://volcanoes.usgs.gov/volcanoes/kilauea/


32

fracking can be considered as a sum of many planar dislocations (Okada’s model,
Astakhov et al., 2012; Warpinski, 2014), we could give a first approximation of the
induced deformation at the surface with a spatially optimized geodetic network and
using an appropriate mechanical model.

During my thesis I was partially involved in the study of the aformentioned geological
systems. In particular, I treated in collaboration with Kyle Anderson from USGS (Menlo
Park, USA) GPS and tilt data from the 2011 Kamoamoa eruption Kilauea Volcano and
inverted them considering a Mogi source. Furthermore, I contributed to install three
GPS stations and one tiltmeter on the extraction site of Vauvert. Further work has to be
done on the application of the inverse method on these three sites, representing important
perspectives of the present work. In a near future, I plan to design the experimental site
on Total S.A. exploitation in Argentine. In collaboration with Aquitaine Electronique, an
array of 20 optical tiltmeters is planned to be deployed on the field to monitor the different
steps of gas extraction. In this chapter, I describe these three geological reservoirs along
with their actual methodological challenges in order to conclude on the relevance for a
common methodology for inverting geodetic data.

3.2 Volcano deformation modeling

3.2.1. From surveys to monitoring
In the early years of volcano studies (before the 20th century), scientists were con-

ducting surveys and short-lived expeditions on volcanoes, usually as a response to major
eruptions. The concept of volcano monitoring which consists in studying volcanoes be-
fore, during and after eruptions, was introduced by the volcanologist Thomas A. Jaggar,
Jr. when founding the Hawaiian Volcano Observatory in 1912. Nowadays (in 2018), 79
observatories are continuously monitoring hundreds of volcanoes over the planet.

3.2.2. Deformation sources
On its way to the surface, the magma modifies the surrounding rocks and fluids

creating cracks, conduits and underground reservoirs. This induces a pressure change in
the medium, which is reflected on the surface by displacements that may progressively
reshape the volcano. Inflation of the surface occurs when magma accumulates in reservoirs
or fractures while deflation is observed whenever the magma eventually erupts emptying
the reservoirs and conduits. Shape variations due to inflation and deflation are determined
by ground-deformation measurements such as GPS velocities (e.g.: Fukushima et al.,
2005; Peltier et al., 2009), InSAR displacements (e.g.: Yun et al., 2006), levelling (e.g.:
Obrizzo et al., 2004), tilt (e.g.: Anderson et al., 2010; Gambino et al., 2014), strain
(e.g.: Sturkell et al., 2013) or gravimetry data (e.g.: Poland and Carbone, 2016). The
analytical models presented in Chapter 2 allow to approximate such deformation. For
instance, the volumetric changes undergone by a reservoir when magma fills it or erupts
are usually modelled by spherical sources (Mogi, 1958; McTigue, 1987). Besides isotropic
sources, other analytical models have been developed to account for more sophisticated
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source geometries and mechanical models yet tractable using analytical modelling. Among
those models, prolate spheroid (Yang et al., 1988), ellipsoid (Davis, 1986b), spherical
source embedded in a viscoelastic shell (Dragoni and Magnanensi, 1989) and open and
closed pipe (Bonaccorso and Davis, 1999) can be used to model more complex sources
requiring more parameters. Also, magma traveling through the medium can create cracks
or reactivate preexisting fractures. The resulting dikes of sills can therefore be modelled
like the opening of planar dislocations (Okada, 1992) or even penny shaped cracks (Fialko
et al., 2001). All those analytical models can be combined to build a complex model of
deformation, under the assumption of flat topography and homogeneous medium.

3.2.3. Plumbing system of Kı̄lauea, Hawaii
Kı̄lauea volcano is located on the island of Hawaii, on the southeastern slope of the

largest active volcano on Earth, Mauna Loa volcano. Topographically, Kı̄lauea appears
as only a bulge on the flank of Mauna Loa (Figure 3.1). Long thought as a satellite crater
of Mauna Loa, Kı̄lauea appears to have its own magma-plumbing system (Tilling et al.,
2010).

Figure 3.1: a) Topographic map of the Island of Hawaii and focus on the South-East part of the
island, on Mauna Loa and Kı̄lauea volcanoes. b) Volcanic activities are gathered within Kı̄lauea
summit caldera (Halema’uma’u lava lake) and Southwest and East Rift Zones (SRZ and ERZ)
where Mauna Ulu and Pu’u ’Ō’ō are craters of Kı̄lauea. The Hawaiian Volcano Observatory is
located on the border of the summit crater.

Volcanic activity at Kı̄lauea is known to be continuous along the East Rift Zone (Fig-
ure 3.1) since 1983, with some peaks of more violent activity such as the ongoing eruption
(started on the 2nd of May 2018). The magma supplies to the lower East Rift Zone gen-
erating one of the most significant eruption of the past few years with multiple fissure
eruptions, and even explosive eruption of ash punctually occurring at the summit crater.
This intense volcanic activity is monitored by a complete geodetic network (Figure 3.2)
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including GPS stations and surveys, levelling routes, tiltmeters, strainmeters and InSAR
studies (Tilling et al., 2010).

Figure 3.2: Geodetic network of Hawaii with a) Continuous GPS stations (red squares) and
survey benchmarks (blue dots), b) levelling lines and c) electronic tiltmeters (red squares), tilt
survey arrays (blue dots) and strainmeters (blue diamonds) (from Tilling et al., 2010).
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Because I partly processed and analyzed data associated to the 2011 Kamoamoa erup-
tion (4-9th March 2011), I display on Figure 3.3, GPS and tilt data from the summit station
of the Kilauea (UWEV and UWE respectively). With a daily sampling, the three com-
ponents of GPS record events of low frequency while tiltmeter measure high frequency
events (one data per minute). Figure 3.3 illustrates the typical order of magnitude of
displacements occurring on volcanoes (from several cm up to several tens of cm for strong
eruptions). For instance, the slow inflation of the caldera started almost 4 months prior
to the rapid deflation of 9.3 cm measured by the GPS. The tilt signal associated to
this event is as large as 71.6 µrad. On Figure 3.3b, higher frequency events (typically
Deflation-Inflation events) can be detected with tiltmeters.

Figure 3.3: a) Summit GPS (UWEV station) signal from 2009 to 2013 (from top to bottom:
East, North and Up components). The red rectangles indicates the interval considered for the
display of tilt data. b) Plot east-west (red) and north-south (blue) tilt from summit tiltmeter
(UWE station) from February 20th 2011 through 20th March 2011. The Kamoamoa eruption
occurred on the 4th of March.
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Apart from this specific event, the continuous activity of Kı̄lauea consists in short and
long-term trends of summit inflation and deflation, rift zone opening, slow slip events,
intrusions, formation of new eruptive vents, and other volcanic and tectonic changes. Let’s
now focus on deflation-inflation (DI) events occurring over periods of hours to days (rapid
and cyclic summit inflation and deflation). Because they are one of the most common
signals measured by geodetic network (GPS, InSAR, strain and tilt) they can be used to
specify the shallow magmatic plumbing of the volcano as they are also strongly correlated
to levels of lava lake from both the summit crater and Pu’u’Ō’ō crater (slightly shifted in
time due to its location, Figure 3.1). For the 2011 Kamoamoa eruption (Figure 3.3), these
changes in levels of lava lake were studied using gravimetric data (Poland and Carbone,
2016).

Figure 3.4: Interpretations of magmatic plumbing system of Kı̄lauea Volcano as a) Eaton and
Murata (1960) first suggested and b) proposed by Poland et al. (2014)

The scientific community has long been interested in the magmatic plumbing system
of Kı̄lauea. Following the model anatomy for the volcano proposed by Eaton and Murata
(1960) and later refined by Tilling and Dvorak (1993), the magma uprising from the
mantle underneath Kı̄lauea was stored in a shallow reservoir near the summit caldera (at
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few kilometers depth, Figure 3.4a). From there, the magma can either erupt in the caldera
or create fissure eruptions in the East or Southwest Rift Zones. Nowadays, numerous
studies aim at defining the plumbing system of the Kı̄lauea (Zurek, 2007; Lundgren et al.,
2013; Poland et al., 2014; Anderson et al., 2015; Orr et al., 2015; Zhai and Shirzaei, 2016)
using geodetic data and sometimes geochemical data. They agree on the complexity of the
system which includes a deep reservoir between 3 to 5 km deep feeding a shallower reservoir
about 1.5 km deep (Figure 3.4b). Nevertheless, few studies has yet jointly inverted more
than two data types. Therefore, the geometry (size and shape) of the summit magma
storage reservoir as well as the connections between the magmatic chambers and the
volcanic activities in rifting zones remain poorly constrained.

Because the volcanic activity of Kı̄lauea is monitored by such complete geodetic net-
work (Figure 3.2), the following studies could be relevant for the characterization of the
magma plumbing system:

1. Joint inversion of geodetic data. The evolution of volume changes over time
could be modelled using long time series of various data types.

2. Tilt inversion during Deflation-Inflation events. Deflation-Inflation events
are particularly well recorded on the summit tilt network because of the high sen-
sitivity and temporal resolution of borehole tiltmeters. If one can estimate the
long-term drift of those instruments, the source of Deflation-Inflation events could
be more accurately described. In turn, this would probably improve the knowledge
of plumbing system.

3.3 Salt mining and induced strain

3.3.1. About the salt
Rock salt (halite) is a sedimentary rock formed by the evaporation of sea water under

specific conditions at different geological times. These layers of salt are generally covered
by rock formations. They are located underground or inside mountains, though some can
also be found on the surface in desert regions. The buried layers of salt can be mined
for chemistry or hydrocarbons storage. They mainly contain crystals of sodium chlorite
(NaCl), but can also include impurities such as clay, anhydrite or calcite. The rocksalt is
particularly resistant to isotropic compression but creeps under lithostatic pressure with
a typical viscosity ranging from 1017 to 1020 Pa.s (van Keken et al., 1993). Variations of
composition and conditions of crystallization of the salt influence the creeping velocity by
a factor from 1 to 20, as well as its water-solubility.

3.3.2. Deep rock salt reservoirs: case of Vauvert (France)
The deep salt deposit of Vauvert (Gard, France) has been discovered during the 1952-

1962 oil survey conducted by ELF (Valette, 1991). Since 1972, the company KemOne
(previously ELF ATOCHEM-Saline de Vauvert) is extracting the salt from deep reser-
voirs (2500-3000 m) in the form of a solution saturated in salt, the brine. The salt deposit
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of Vauvert belongs to one of the on-shore half-graben of the extensional Camargue basin,
located in the Gulf of Lion passive margin (southern France). This graben results from
the Oligo-Aquitanian rifting of the margin during the Mediterranean Sea expansion. This
distensive phase spreads from -30 to -15 My and affects the rim of the Alpine belt (Pyre-
nees, Languedoc, Gulf of Lion, Camargue, Valentinois, Bresse, Rhine plain). The NE-SW
oriented basins are controlled by the SE-dipping Nîmes normal fault (Figure 3.5).

Figure 3.5: Geological cross-section (NW-SE) across the Camargue Basin. The site of brine
exploitation is delimited by the black rectangle (from Valette and Benedicto, 1995).

Camargue basin contains up to 4000 m of syn-rift sediments which overly a substratum
of carbonates from Lower Cretaceous (-130 My). The rapid Oligo-Aquitanian sedimenta-
tion formed a succession of continental to lagunal series generally found between 900 and
4900 m deep (Figure 3.6):

1. The Clay series gathers 2 sub-series: the "gray series" (2000 m-thick of deposit of
clay, sand, limestone, marl, conglomerate and lignite) and the "red series" (200 m of
clay and gypsiferous marls with several intercalations of marl and sand of palustrine
environment);

2. The Saliferous series (900 m-thick) with four formations: the infra-saliferous, the
lower saliferous, the intermediate marl and the upper saliferous formations;

3. The Marine clay series range from 800 to 1500 m-thick and correspond to three
sequences of Aquitanian deposits, mainly composed of clay with insertion of lime-
stones, sandstones or bench of dolomite.
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During the Miocene crustal spreading, syn-rift sediments were covered by transgressive
Burdigalian marine sediments and coastal molasses before being uplifted and eroded dur-
ing the Messinian event (from 5.96 to 5.33 million years ago). The whole formation was
finally overlaid by one last stage of sedimentation occurring during the Pliocene. This
geological description is described in Valette and Benedicto (1995).

Figure 3.6: Geological structural scheme of the concerned area, Vauvert (from Valette and
Benedicto, 1995).

3.3.3. Extraction and induced deformation
In-situ leaching (ISL), also called solution mining is either used to create caverns in

the rock salt layer for gas storage or to recover the salt in the form of brine that is then
transformed into chlorine and caustic soda. This process works by artificially dissolving
minerals occurring naturally in a solid state. When the extraction of salt aims at storing
hydrocarbons, only one well is drilled (Figure 3.7a). Water is then injected in the central
part of the tube (or in the annulus) and dissolves the salt on its way up (or down). Brine
is produced by the annulus (or in the central part).

If the extraction aims at recovering the salt for further transformation, two to more
wells can be hydraulically connected in the salt layer by initial or induced fracturation of
the medium. A configuration of two wells is defined as doublet and occasionally, triplet
can also be used. Water is injected in one well and brine produced in the other well (or
wells)(Figure 3.7b). To increase the productivity of doublets, water can be alternatively
injected in one and the other well (Valette, 1991).
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Figure 3.7: Solution mining a) for the creation of cavities in the rock salt layer to store
hydrocarbons or b) for the recovery of brine used in the chemical industry.

In few cases, additional hydraulic fracturation is necessary to reconnect doublets (1)
because the complexity of the salt layer (fracture, insoluble sublayers) may damage the
well or (2) as a result of cavern growth along the well decreasing the strain on the tube
and leading to the end of the tube to break. In both cases, the well is sealed by a plug
and extraction is translated upward in the salt layer.

When the quality of the extracted brine does not conform to the expectations, the
brine is used to complement another depleted brine until the doublet is sealed at the
surface. In such case, due to salt creeping an increase in pressure will be observed at the
well head. When this surface pressure reaches the lithostatic pressure of the cavern, it
must be released to insure security of the exploitation and integrity of the well. After a
rapid decrease in pressure, the well is drained during several years (up to several decades).
The pressure of the residual brine at depth induces the creep of the salt until the cavern
closure (Bérest et al., 2001).

At the salt exploitation of Vauvert, 43 wells (doublets or triplets with two wells under
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construction) were directly drilled in the salt layer to dissolve the anhydrite (Figure 3.9a).
Among those wells, 14 are extracting brine, two are being drained and the others are aban-
doned. For the active sets, water is injected in one well at a pressure of 95 bars, while
the second extract the brine at 2 bars. The underground circulation of fluid is allowed by
the fracturation created to connect the wells. This brine is then concentrated and stored
in a basin before being carried to Fos-sur-Mer, 70 km South-East of Vauvert. In 2017, up
to 1 million of tons of brine were extracted from about 4 active doublets (two as backup
doublets). The brine is then used in the chemical industry to produce chlorine and caustic
soda.

Let’s look at the extraction with numbers (Figure 3.8). Considering that the brine has
a salt content of 250 to 310 kg/m3 and rock salt has a volumetric mass of 2160 kg/m3,
the creation of a cavity of one cubic meter of salt produces around between 7 to 8.5 m3

of brine. Because part of the injected water replaces the salt downhole, more than 8.5
m3 of injected water is necessary to produce the above quantity of brine. Using these
parameters and considering as an illustration 712 days of data between January 7th 2015
until December 12th 2016, the doublets PA36-37 of the site of Vauvert produced 1.85
million of cubic meters of brine, corresponding to 538 000 tons of salt. Such amount of
salt extracted from the layer produces a cavity of nearly 250 000 m3 corresponding to a
radius of a spherical cavity of 39 m.

Figure 3.8: a) Pressure at the two wells of the doublets from January 7th 2015 (start of the
activity at this doublets) until November 27th 2016. High pressures are associated to the injection
well, while low pressure are linked to the production well. b) Production flow of extracted brine
at doublets PA36-37 and cumulative extracted volume of brine (blue curve). Data are provided
by KemOne company.
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Even if those cavities are filled with brine, the difference in density between rock salt
and brine produces a change in stress equilibrium that leads to elastic and visco-elastic
deformation of the surrounding medium (Bérest and Brouard, 2003; Bérest et al., 2006;
Berest et al., 2012). At the surface, a bowl of subsidence attests this deep deformation
(Raucoules et al., 2003).

Modelling the surface deformation of such exploitation could be appropriate not only
to predict the evolution of subsidence but also to understand the potential connections
between wells or with secondary reservoirs with the goal of improving the brine produc-
tivity. In particular, the large amount of available data in the salt exploitation in Vauvert
could be jointly inverted to precisely constrain the model. As for the choice of the model,
the process of extracting the salt can be approximated by elastic deformations when short
period of time are considered. More complex models can be envisaged to approach the
real behaviour of the salt:

• A linear elastic forward model with very low values of the elastic parameter as for
a damage approach (such as implemented by Got et al., 2017 based on Kachanov,
1958).

• Visco-elastoplastic models suitable for the salt behaviour such as Lemaître-Menzel-
Schreiner model (Vouille et al., 1984) Northon-Hoff model (Norton, 1929) or Munson-
Dawson model (Munson and Dawson, 1984).

3.3.4. Monitoring the deformation
Because of the large volumes of extracted salt, the surface deformation needs to be

monitored to prevent the potential damages to infrastructures of nearby cities. This
monitoring is mandatory for mining activities like salt extraction in Vauvert. Therefore,
the site is monitored since 1996 (Figure 3.9a), first performed only by IGN (Institut
Géographique National, Figure 3.9b) using levelling surveys. In 2009, the company Fugro-
Geoid yearly deploys three temporary GPS stations, to which we added four permanent
stations (one in 2015 and three in 2016). Besides GPS stations, the company achieved
InSAR studies from ENVISAT and SENTINEL-1 images (PhD thesis of Samuel Doucet in
preparation at Géosciences Montpellier) and gravimetric surveys (relative and absolute) in
collaboration with the research laboratory Géosciences Montpellier. Finally, in February
2018 we installed a Halliburton borehole tiltmeter next to one GPS station. Data are
continuously processed and these different geodetic surveys globally agree to state that
the subsidence above the exploitation reaches about 2 cm/yr as already shown by previous
studies (Raucoules et al., 2003).
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Figure 3.9: a) Geodetic network of the salt exploitation in Vauvert. Wellheads are represented
by red circles, GPS by inverted triangles (blue for permanent and green for survey benchmarks),
levelling benchmarks are identified by blue crosses and the tiltmeter is marked by a yellow dot
with an arrow indicating its exact location. b) Levelling data along the A-B profile (red line on
a) performed by IGN (Institut Géographique National) from 1996 to 2014. Here only one year
out of two is displayed to lighten the graph.
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3.4 Deformation monitoring of
unconventional reservoirs

3.4.1. About the fracking controversy
Hydraulic fracturing is a technique commonly used to improve reservoir connection

in geothermal power plants, salt reservoirs and Oil & Gas fields. Invented in the 40’s,
this technique is now widely used in non-conventional reservoirs thanks to increase of the
fuel price and the rapid progress in extraction techniques. Those compact shale reservoirs
present such low permeability (between 4.93×10−20 and 1.97×10−20 m2) that conventional
methods (oil and gas wells) are inefficient to extract the resource. Therefore, unconven-
tional methods are developed, such as hydraulic fracturation (fracking), to produce oil
and/or gas from the reservoir. It is used to create a large and complex network of frac-
tures which connects the production wells with the greatest possible volume of reservoir
rocks. Due to the scarcity of conventional reservoirs, those unconventional techniques
become necessary to reach more reservoirs and increase productivity but is highly contro-
versial. Indeed, scientific studies and citizen actions report the negative impacts of the
fracking activity on the environment and local communities. Among the negative impacts
of unconventional extraction (Jackson et al., 2014; Mayer, 2016; Meng, 2017), one may
cite:

• the use of large quantities of water injected in the reservoirs which also contain
chemicals;

• the post-treatment of this fluid;

• the management of the chemicals;

• the seismic hazards induced by the injection of pressurized water;

• the risk of ground and aquifer pollution due to gas or fluids leaks.

Rarely, the process of fracking might generate earthquakes detectable by the population,
such as the magnitude 4.4 event in British Columbia (Canada, 2014). Nevertheless, events
of such magnitude remain isolated while smaller events, called microseisms are commonly
induced by hydraulic fracturation. This activity is accurately monitored to identify faults
and fractures (Wessels et al., 2011) allowing to characterize the fracking process in the
vicinity of the well (Le Calvez et al., 2016). In this section, I present the technique of
hydraulic fracturation from a geodesist point of view, focusing on the surface deformation
and leaving the controversy as an open question.

A vertical well is drilled reaching the thin layer (∼ 200 m thick) containing the desired
resource (here the methane). Fractures are generated at multiple intervals of the horizontal
section of well drilled in the reservoir. To do so, perforating guns are used to perforate the
casing, cement and rock to connect the reservoir to the well. Then, fractures are created
by a well constrained injection of high-pressure fluids mainly composed by water and
proppant (typically sand) but also containing some chemical additives to improve fluid
stimulation. Under the pressure of about 68 MPa or 9880 psi (Antoine Jacques, Total
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S.A.), fractures are created in the reservoir rock. The proppant remains in the fractures
keeping them open when the pressure is relieved, thus permitting to fluids or gas to flow
from the reservoir to the exploitation well. At the end of hydraulic fracturing process,
a Stimulated Reservoir Volume (SRV) is created (about 10 000 m3, Zoback, 2007). The
stimulation segment of the well is then isolated using a specific plug and the process of
fracking is repeated. Once the entire horizontal section of the well has been stimulated,
the production begins, recovering first the injected water and then oil or gas (Figure 3.10).

Figure 3.10: Scheme of hydraulic fracturation.

3.4.2. Nanometric deformation of a dead cow
Because mining and Oil & Gas resources are becoming less and less accessible, their

exploitation is more challenging than ever. Therefore, the geodetic monitoring of uncon-
ventional reservoirs covers two major issues including (1) the optimization of reservoir
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withdrawal and (2) the respect of environmental constraints (e.g. hydraulic contamina-
tion of aquifer Vengosh et al., 2014; Zou et al., 2018). Even if microseismicity is already
used to characterize the fractures during hydraulic fracturation (Wessels et al., 2011; Le
Calvez et al., 2016), geodetic network could bring substantial constrain on the evolution
of the fluid withdrawal, identifying undrained Stimulated Reservoir Volumes, connections
between SRVs or fluids migrations through layers. In order to prevent industrial damage
and to minimize the environmental impact of resource extraction, the surface deformation
caused by a given production scenario must be accurately monitored and predicted.

The petroleum industry has been motivated since the inception of fracturing to under-
stand and control fracture growth (Zoback, 2007). Exploiting a low permeability reservoirs
implies deformation of surrounding rocks up to the surface, producing first uplift when
fluids are injected to generate fractures, then subsidence when the hydrocarbons are then
extracted. Although tiny, this surface deformation can be measured using arrays of highly
sensitive tiltmeters (Warpinski et al., 1997; Fisher and Warpinski, 2011; Warpinski, 2014).
Figure 3.11 illustrates the expected tilt deformation for a fracking stage injecting 10 000
m3 of fluids. Using Okada’s model, this synthetic example simulates the opening of 1 m
of a vertical fracture with dimensions of 100x100 m located at 3000 m deep and centered
at (5 km,5 km) in the domain (blue line exaggeration x5 on Figure 3.11). Figure 3.11
does not display real data from the creation of a Stimulated Reservoir Volume. The ver-
tical displacement and the x-component of the tilt along the profile A-B (grey line on
Figure 3.11a) is displayed on Figure 3.11. The maximum vertical displacement is 0.2 mm,
which is smaller than the resolution of GPS, InSAR and levelling techniques, while tilt
values range from 0 to 0.25 µrad, about 50 times greater than the resolution of tiltmeters.

Because the entire process of fracking (from used tools and instruments to injected
fluids) is expensive, optimizing the number of stages during the fracking is essential.
Overlapping fractures networks do not increase productivity, but companies expect no
gap between stages. To do so, a typical configuration considers one stage every 100 m,
with fractures spreading over 50 m high and 200 m away from the well and character-
ized by microseismicity (Lin and Zhang, 2016; Wu et al., 2017). The surface deformation
induced by hydraulic fracturing is function of fracture azimuth, dip, depth, and total
fracture volume. Estimating those parameters is mandatory in unconventional reservoir
exploitation if one wants to know whether the fractures are covering at best the reservoir
volume. Also, uncontrolled fracking may reach adjacent aquifers and create communi-
cation pathways for fracking fluids or hydrocarbons to pollute surface layers and water.
Multiple studies use tilt data (Castillo et al., 1997; Fisher and Warpinski, 2011; Astakhov
et al., 2012; Zhou et al., 2015) and few using InSAR data (Vasco et al., 2008) to retrieve
the fractures parameters defined by Okada’s analytical model. For instance, Fisher and
Warpinski (2011) showed that heights of most stimulated fractures are well-contained in
the reservoir layer. In addition, Astakhov et al. (2012) presented a new method to re-
trieve characteristics of complex network of fractures and Zhou et al. (2015) illustrated
the importance of an appropriate tilt fracture mapping to characterize multi-stages frac-
turing of cluster of wells. The principle of tiltmeter fracture mapping is to determine
hydraulic fracture geometry and Stimulated Reservoir Volume strain, by measuring this
fracture-induced rock deformation. Pinnacle-Halliburton company (specialized in frac-
ture mapping and reservoir monitoring services) provides services combing microseismic-
ity and microdeformation analysis to evaluate SRV changes during hydraulic stimulation.
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Figure 3.11: Simulation of the microdeformation induced by a vertical fracture (blue line
exaggeration ×5). a) Spatial distribution of the tilt norm and tilt vectors at potential instruments
locations. b) Horizontal profile (A-B on a) for the x-component of the tilt (black dots) and
associated vertical displacement (blue dots).

Because of confidentiality clauses, results of these analysis are rarely published or shared
(Astakhov et al., 2012), restricting the potential of such databases.

Therefore, as part of the MIRZA1 project, our working group aims at building a pilot
project on the unconventional field, Vaca Muerta, exploited by the French company Total
S.A in Argentina. Indeed, Total S.A is particularly interested in developing a new moni-

1Not to be confused with the song Mirza from Nino Ferrer (1965).

https://www.youtube.com/watch?v=rwCDEQY97rw


48

toring method of the ground displacement for unconventional exploitations. As tiltmeters
are extremely sensitive instruments, they would be appropriate instruments to measure
ground displacements induced by hydraulic fracturation and resource extraction. How-
ever, to cover the entire time of exploitation, the long-term drift of the instruments need
to be relatively small (Chawah et al., 2015b) and well constrained. Available instruments
(e.g. borehole tiltmeters from Halliburton, Lily tiltmeters from Jewell Instruments) dis-
play a drift of about ± 4 µrad/month. Thus a project of building low-drifting tiltmeters
has been initiated alongside with the methodology involving drift estimation developed in
this manuscript. A first project (ANR Lines 2009-2012) allowed to build a prototype of
a low drifting borehole tiltmeter (Chawah, 2012). Then, a more industry-driven project
(FUI MIRZA 2015-2018) was initiated. Named MIRZA (Monitoring Inclinométrique des
Risques dans les Zones Actives, Hazards Monitoring of Active Zones using Tiltmeters),
the project is now coordinated by the French company Aquitaine Electronique in collabo-
ration with two research laboratories, Géosciences Montpellier and the LAAS in Toulouse
(Laboratoire d’Analyse et d’Architecture des Systèmes, Laboratory for Analysis and Ar-
chitecture of Systems). Its main goal is to develop commercially available low drifting
tiltmeters.

The Vaca Muerta deposit is located at 3000 m deep and is several hundreds of meters
thick. Because of the reservoir’s depth, ground deformations are small. Total S.A op-
erates several blocks listed on Figure 3.12: Aguada Pichana Est, San Roque, Rincon La
Ceniza and La Escalonada. This project involves an optimized deformation survey using
low drifting tiltmeters currently built by Aquitaine Electronique, in order to monitor all
steps of extracting gas from unconventional reservoir using the methodology developed in
this thesis. Located at Neuquén Basin in Argentina, the Vaca Muerta is a sedimentary
formation of Jurassic and Cretaceous, hosting possibly one of the currently largest reser-
voir of hydrocarbons in the world (Romero-Sarmiento et al., 2017). Because the deposit
has highest porosity than common non-conventional reservoirs in North-America and the
pre-existing fractures network is significant, it makes it suitable to hydraulic fracturing.

We aim at designing an optimized tilt fracture mapping in the particular case of Vaca
Muerta exploitation for Total. Contrarily to most of geodetic studies that are only de-
voted to monitor the fracking stage, Total S.A. aims at monitoring all successive phases
of production over the time of exploitation. In this work, we attempt to demonstrate
by our modelling that this goal is feasible by combining low drifting tiltmeters and the
methodology of optimization developed hereafter. The combination of tilt monitoring and
adapted inversion technique would permit to follow the evolution of extracted volumes
with an estimation of drift parameters.
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Figure 3.12: Distribution of companies possessions on the blocks of Vaca Muerta.
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3.5 A common methodology

The aim of this chapter was to get the reader familiar with challenges associated to
the 3 types of reservoirs (volcanic, salt and hydrocarbons) in term of geodetic monitor-
ing and modelling. The tackled challenge remains the long term reservoir monitoring
for hazard assessment, though reservoirs optimization is highly requested by Oil & Gas
companies. We saw that surface displacements produced by different processes modify-
ing those reservoirs ranges from several micrometers (hydraulic fracturation) to several
decimeters (strong volcanic events).

However, those 3 reservoirs share common features that motivate us to build a common
methodology of inversion. We make the following remarks and hypothesis:

1. modelling the source of deformation is critical for economic, societal and environ-
mental reasons;

2. the induced surface deformation can be accurately monitored and studied using
extensive geodetic network;

3. a linear relation can be reasonably assumed between the strain source at depth and
the surface deformation, because strain remains small;

4. a small group of analytical sources (Mogi, McTigue or Okada’s model) may be used
as constitutive strain-stress models.

These reasons encouraged us to develop a global methodology, common to these three
kinds of geological systems, in order to jointly invert geodetic datasets. This methodology
is described in the following chapter (Chapter 4) and synthetic applications are provided
in Chapters 5, 6 and 7.



Chapter 4

Global optimization for geodetic data

Résumé
Nous avons présenté dans le chapitre précédent l’intérêt de développer une méthodolo-

gie d’inversion de données géodésiques commune aux trois systèmes géologiques consid-
érés (réservoirs magmatique, salifère et pétrolier). Nous utilisons dans ce chapitre les
différentes notions présentées dans le Chapitre 2 afin de décrire les principes techniques
de notre méthode d’optimisation.

Les données géodésiques observées contiennent de multiples informations sur tous les
mouvements environnants. Dès lors, pour les utiliser en modélisation, nous supposons que
le signal enregistré peut s’écrire comme la somme de différents signaux tels que celui pro-
duit par la source de déformation, du bruit et des décalages ou dérives. Selon la technique
géodésique considérée, le signal sera plus ou moins continu dans le temps et l’espace. Il
est donc nécessaire de déterminer une paramétrisation des données (dans l’espace et/ou
le temps) afin que l’espace des paramètres à optimiser soit adapté aux objectifs de l’étude.

L’inversion des données géodésiques pour retrouver les caractéristiques des phénomènes
profonds consiste à minimiser une fonction coût. Cette dernière n’étant pas forcément
convexe (elle peut présenter plusieurs minima), il est nécessaire de choisir une méthode
d’optimisation qui permet de converger vers une solution optimale pour tout l’espace des
paramètres. Dans cette thèse, la recherche de ce minimum global de la fonction coût
parmi tous ses minima locaux est fait grâce à un algorithme de minimisation globale.
Cette fonction coût est construite pour tenir compte à la fois de la dimension spatiale des
données mais aussi de leur évolution temporelle.

Dans ce chapitre, le processus d’optimisation global (Mohammadi and Saïac, 2003;
Ivorra, 2006) est d’abord détaillé avant de présenter la paramétrisation des données. Nous
aborderons ensuite la construction de la fonction coût et la non-unicité de la solution.
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4.1 Introduction

In Chapter 2, I introduced the various concepts used in the present chapter. Because
geodetic data are witnesses of the subsurface deformation, they need to be inverted to
retrieve the parameters of the physical model causing the deformation. In order to find
the best parameters explaining such phenomenon, one can find the global minimum of
a cost function by measuring the distance between the observations and the model. In
general, cost functions can have several local minima, meaning that it exists several sets
of parameters for which the difference between modelled data and observations is locally
minimized. It may be assumed that only one of those parameter sets reproduces the best
the data, which is the global minimum. We aim at escaping from local minima and to
do so, we use a global optimization approach developed by Mohammadi and Saïac (2003)
which allows to find the optimal solution at little extra-computational cost.

Inverting a single dataset might be relatively straightforward and easy to implement,
but the resulting parameters are often not sufficiently constrained. This may be due to the
simplicity of the forward model, the magnitude of the data uncertainties, the quality of the
geodetic network (number, location of instruments) and the type of measurement to be
inverted. Because instruments record different deformation data (ground displacement,
tilt, strain), they provide a wide range of information concerning the subsurface and
its internal strain. In most cases, data are interpreted individually trying to explain a
specific event. Indeed, joint inversion is reduced to specific sites where there are enough
trustworthy data from different instruments available at a similar time period. In order
to use geodetic data in modelling, one can separate the recorded signal with respect
to the different signal sources. From a modelling point of view, data are composed by
several signals including the source signal, the noise and potentially offsets or trends. For
example, tiltmeters are drifting in an unconstrained way, intrinsically to each instrument.
Therefore, if looking at long time periods (more than few days), inversion of geodetic data
should be able to separate source, drift and noise components.

In this chapter, I give a complete description of the methodology developed in this
thesis based on previous works (Mohammadi and Saïac, 2003; Ivorra, 2006; Chéry et al.,
2011) before illustrating the specific aspects in applications (Chapters 5, 6 and 7). To
do so, I first describe the machinery of the global optimization strategy, then I explain
the parametrization of the geodetic data before providing the features of the functional
and some strategies to evaluate the uncertainty propagation. Finally, I briefly present the
computational code that I developed in order to treat the geodetic problems of the next
Chapters.

4.2 Minimizing general cost functions

4.2.1. A step-by-step description

Geophysical inverse problems resume in finding an optimal model that fits best the
modelled data to observations. In the search for this optimal solution, we are seeking
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the global minimum of a cost function that must be provided by the user. Despite of its
explicit definition, the topology of this cost function is generally unknown and it is not
necessarily convergent, i.e. convex: the surface may be quite bumpy which means that
the functional can accept several local minima.

So how to find the global minimum? Our inversion process is based on the gradient
method: from initial value of parameters, we search the minimum of the cost function in
the direction defined by the gradient of this function. Thus, we are dependent of the initial
guess of the parameters. An obvious strategy would be to test several initial guesses.

Therefore the methodology described in this section is based on a recursive algorithm,
varying not only the parameters of the model, but also the initial guesses for a user
defined ’core’ minimization algorithm (Ivorra, 2006). The core denotes the algorithm
which allows to improve the initialization of a given local minimization algorithm (e.g.
conjugate gradient). This allows to ensure that a given set of optimal model parameters
realizes the global minimum of the cost function.

4.2.1.1. Core minimization and first layer

The method is illustrated on Figure 4.1 (1)-(4) and detailed below. Consider a func-
tional J whose behaviour is unknown (grey curve on the different plot of Figure 4.1) and
x a parameter ranging from xmin to xmax.

1. We initialize this parameter arbitrarily choosing x1
1 and we estimate the associated

functional J1. A conjugate gradient method is applied starting from x1
1 giving x1

1m.
We consider this point as a local minimum where J = J1m.

2. A second set of initial parameters x1
2 is then chosen such as x1

2 = x1
1 + α with α a

non-zero random vector in the parameter space from which the conjugate gradient
method gives J2m at x1

2m. If the functional is convex, we should find the same
optimal value at x1

1m = x1
2m.

3. if x1
1m 6= x1

2m and J2m 6= J1m a new value x1
3 is determined using a linesearch method

(e.g. the secant method):

(4.1) x1
3 = x1

2 − J2m
x1

2 − x1
1

J2m − J1m
,

x1
3 is projected in the admissible space and in particular has its components bounded

by those of xmin and xmax. If J1m ≈ J2m we introduce an admissible x1
3 with

the components randomly chosen in order to escape the plateau. Once more, the
functional is estimated from this new point x1

3 and the conjugate gradient method
leads to a new parameter x1

3m.

4. We call h1 (orange curve on Figure 4.1) the function defined by the optimal values
of the functional Jkm for each of the initialization of the conjugate gradient method.
The process is repeated as long as a user defined total number of functional evalu-
ations is not reached. A stopping criteria based on the value of the functional can
also be introduced if one has an indication on the infimum of the functional.

In Figure 4.1 h1 is made of plateaus and has a unique minimum level J3m.



Chapter 4. Global optimization for geodetic data 55

Figure 4.1: Graphical sketch of how the functional h1 is built (adapted from Ivorra (2006)).1)
Initialization of the parameter set with x1

1 and estimation of J1m. 2) x1
2 is randomly chosen to

estimate J2m. 3) Using a linesearch method, a third parameter set x1
3 is selected to deduce the

value of J3m . 4) h1 is the function defined by the optimal values of the functional Jkm.

4.2.1.2. Second layer and more

The functional can be more complex than in the above illustration (grey curve on
Figure 4.2). h1 increases the convexity of J , but, unlike in Figure 4.1, it does not have
a unique minimum level. In such cases, it is necessary to add a new layer following the
same procedure, but this time applied to the function h1 instead of J with the aim of
improving the initialization of the linesearch method Eq. (4.1). This construction leads
to the definition of a new functional h2 as shown in Figure 4.2 (green dashed line). Here
h2 has only three plateaus. The procedure can again be repeated building a constant
function h3 (red dashed curve in Figure 4.2). The algorithm ends when this situation is
reached. Hence, initializing the higher level (here level 3) with any admissible couple of
points, the outcome of the algorithm will be the same point and will correspond to the
optimal inital state for all lower levels processes, eventually leading to the global optimum,
if it is unique.

In the following section, more details are given on the mathematical framework behind
this approach.

4.2.2. The mathematical approach
We consider the minimization of a functional J(x), x ∈ Oad, where x is the optimization

variable and belongs to the admissible space Oad.
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Figure 4.2: Geometrical interpretation of h1 (orange), h2 (green dashed) and h3 (red dashed)
considering a function J (grey) non-convex with several minima close to each other (adapted
from Ivorra, 2006).

Global solution of such general minimization problems is of great importance in appli-
cations. However, it is usually stated that evolutionary algorithms are needed (Goldberg,
1989; Fonseca and Fleming, 1995). Such algorithms use mechanisms inspired by biological
evolution, such as reproduction, mutation, recombination, and selection. Unfortunately,
the complexity of these algorithms makes them difficult to use.

The algorithm briefly presented here enables to improve the global search features of
a user-defined local minimization algorithm (e.g. a gradient based algorithm, for more
details, see Section 2.4) and this with relatively small extra computational effort (Mo-
hammadi and Pironneau, 2009; Mohammadi and Saïac, 2003; Ivorra and Mohammadi,
2007).

4.2.2.1. Parameters initialization

The algorithm aims at improving the initialization of a given local minimization al-
gorithm (e.g. conjugate gradient). In the sequel, we call this algorithm the core. Any
such local search algorithm requires an initialization. If this initialization belongs to the
attraction basin of the global infimum, the core has a good chance to succeed in finding
the global solution. So the question is how to provide a good initialization for the core.

Let us consider the initialization not anymore as something given but as a variable
itself. This new variable has to be found solving a new optimization problem for a
functional defined by the best value found by the core for the different initializations.
Hence, solving this new optimization problem will improve the solution given by the core.

But then this new problem needs initialization too. And, a new optimization problem
can be introduced looking for the right initialization for this new problem.

This recursive construction can be pursued indefinitely adding new optimization layers
each providing an initial condition for the layer below. The algorithm stops when the
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functional is eventually convex.
In what follows, we suppose that :

• the functional has a unique global minimum Jm,

• the problem is feasible in the sense that there exists a unique point xm where
J(xm) = Jm,

• the functional is coercive (i.e. J(x)→∞ when ‖x‖→ ∞),

• the functional has enough regularity.

In practice, one does not know Jm. In such cases, the algorithm stops either when a max-
imum computational effort (e.g. number of functional evaluations) or when a given target
reduction in the functional value is achieved. Also, for the construction to be efficient,
one needs to solve the extra-optimization problems with simple and cheap algorithms. In
the sequel we use simple secant method.

4.2.2.2. Minimization algorithms and boundary value problems

Starting from an initial guess x0, a minimizing sequence can be built as:

(4.2)


xn+1 = xn − τnoptMn∇Jn,
x0 = x0,
τnopt = argminτ (J(xn − τMn∇Jn)) > 0

where Mn are positive definite matrices. This sequence converges to a local minimum
of J . The case Mn = Id corresponds to the classical steepest descent method. If Mn is
the inverse of the Hessian (∇2J)n of the functional we recover the Newton (resp. quasi-
Newton) method. For simplicity, we consider Mn = Id.

The iteration above corresponds to a discretization of (ẋ = −∇J, x(0) = x0). If the
optimization problem has a solution, solving the global minimization problem consists in
finding x(T ) solution of the following over-determined problem for a finite time T :

(4.3)


ẋ = −∇J,
x(0) = x0,
J(x(T )) = Jm.

In practice, we choose an a priori finite number of iteration N of Eq. (4.2), rather than
T and T = ∑N−1

n=0 τ
n
opt is a positive and finite quantity.

4.2.2.3. Removing the over-determination

The over-determination can be removed by considering the initial condition as a vari-
able to be found by shooting for the minimization of h(v) = J(xv) − Jm where xv is the
solution found after N iterations of Eq. (4.3) starting from v. The algorithm reads the
first initial values v1

1, v1
2 = v1

1 + α, the threshold value ε and P the number of iterations
to find the best v.

Compute h(v1
1) = J(xv1

1
)− Jm and h(v1

2) = J(xv1
2
)− Jm,

For p = 2, .., P Do
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If h(v1
p) = J(xv1

p
)− Jm > ε and ||v1

p − v1
p−1||> ε, Then

v1
p+1 = v1

p − h(v1
p)

(v1
p−v1

p−1)
h(v1

p)−h(v1
p−1) ,

Find xv1
p+1

after N iterations of Eq. (4.3) starting from v1
p+1.

Else Stop
EndIf

EndFor (p)
α indicates an admissible variation around the initial guess such that h(v1

1) 6= h(v1
2).

Eq. (4.1) is the secant method to find a zero of h(v1) along the direction defined by (v1
1, v

1
2).

4.2.2.4. Multi-level shooting method

As shown through our illustrations above, the algorithm above may not converge to
an initial state that guarantees the convergence to the global minimum. Indeed, the
application of the algorithm above leads to a piece-wise constant, non-convex functional
h. The idea is then to add an external loop to the algorithm above, minimizing the new
functional h. This leads to the following two-level algorithm:

v2
1, v2

2 = v2
1 + β, ε1, K, given

For k = 2, .., K Do
Compute h2(v2

1) and h2(v2
2),

If h2(v2
k) > ε1 and ||v2

k − v2
k−1||> ε1, Then

v1
1 = v2

k, v1
2 = v2

k + αk, ε2, P given,
Compute h1(v1

1) and h1(v1
2),

For p = 2, .., P Do
If h1(v1

p) > ε2 and ||v1
p − v1

p−1||> ε2, Then
v1
p+1 = v1

p − h1(v1
p)

(v1
p−v1

p−1)
h1(vp)−h1(v1

p−1) ,

Find xv1
p+1

after N iterations of Eq. (4.3) starting from v1
p+1,

Else (p) Stop
EndIf (p)

EndFor (p)

h2(v2
k) = h1(v1

p) and v2
k = v1

p,

v2
k+1 = v2

k − h2(v2
k)

v2
k−v2

k−1
h2

k
(v2

k
)−h2

k
(v2

k−1) ,

Else (k) Stop
EndIf (k)

EndFor (k)

Above, we denote hi(v) the successive generated functionals, with h1(v) = J(xv)−Jm,
i denotes the level of the external loop. αk should be linearly independent together and
with β.

The construction above can be pursued adding other new external loops. More details
on the development of this algorithm can be found in Mohammadi and Pironneau (2009);
Mohammadi and Saïac (2003); Ivorra and Mohammadi (2007).
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4.3 Geodetic data parametrization

4.3.1. Mapping a continuous function
Geodetic data are complex signals from which we are trying to extract information

about the ground deformation and source strain. Depending on the recording instruments,
data display various levels of continuity in time and space. For this study, encompass-
ing both time and space aspects of the deformation is performed choosing an adapted
parametrization (in time and/or space). Therefore, the parametrization consists in link-
ing physical observations to parameters of a model that needs to be optimized. If one
attempts to reproduce a continuous signal (e.g. Figure 4.3) using as much parameters as
data points, the optimization would not converge in a reasonable amount of time. There-
fore, a discretization of the data permits to sample both data and parameter spaces in
order to produce a tractable optimization problem. Also the sampling procedure should
reflect the required level of precision. For instance, one month of data sampled every
second (Figure 4.3) can be downsampled to 1 data every hour or day depending on the
type of event to model (e.g. high frequency events such as Deflation-Inflation event, see
Chapter 3 or low frequency events like volcanic eruptions).

Figure 4.3: One month of electronic tilt recordings at Kı̄lauea Volcano starting 5th of May.
The blue line shows the radial tilt at Uwēkahuna (UWE), on the northwest rim of Kı̄lauea’s
caldera. The green line is radial tilt at Pu’u ’Ō’ō (POC), on the north flank of Pu’u ’Ō’ō cone
(from USGS).

In the following manuscript, we do not discretize the interseismic GPS velocities when
infering the lateral variations of the lithosphere (Chapter 5). Instead, we discretize the
spatial domain of the model and its parameters using finite elements to approximate de-
formation. As for the study associated to reservoir deformation (Chapter 6), we use a
linear relation between tilt data and volume variations to parametrize tilt data. In the
later (Furst et al., submitted), we discretize by down-sampling the time-continuous dis-
tribution of 1440 tilt measurements for one tiltmeter (1 tilt measure every 6 hours) to
monthly data. Thus, the considered signal for one tiltmeter is composed by 12 measure-
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ments that are used to estimate the volume variation ∆V . To get back to the continuous
time domain, we interpolate the volume variations using a time-linear relation between
two adjacent samples of ∆V .

In the following sections, all data referring to the observations, that are real obser-
vations or synthetic observations, are noted as do, while data from the modelling are
mentioned as dm.

4.3.2. Absolute vs relative measurements
The measure of surface deformation can be either absolute, which means that the real

deformation is known without ambiguity at any given time in a fixed reference frame.
But it can also be given relatively to a reference state, station or time. For instance, the
displacements measured by GPS or levelling are often relative to a reference point where
zero displacement is arbitrarily assumed. Also, InSAR and tiltmeters give a difference of
deformation relatively to the onset of the measure which is not necessarily the start of
the deformation. By contrast, absolute gravity measurements provide the full measure of
gravitational attraction. This implies a potential translation of a dataset if its reference
frame is different from the zero-deformation assumption.

For these studies, we consider here that all datasets are expressed in the same geometric
and time frames.

4.3.3. Power-law noise in geodetic data
We assume that deformations observed at the surface are the results of some deep

physical process that we seek to understand. But the signal measured by instrument
contains a lot more information than just the contribution of the studied physical process.
In this perspective, we call noise all signals that are measured in addition to the source
signal. This noise can be deterministic or random. Deterministic noises include physical
processes (e.g. tides) or drift (e.g. due to the instrument construction, the installation
process, the coupling with the medium). These noises can sometimes be removed from
the signal when their origins are constrained by physical relations (tides). For noises
whose origins are more complex to apprehend (drift, brutal rupture in recordings), they
can be cleared from the signal by detrending the data during the processing. Also, as we
present in Chapter 6, we can consider this drift as unknown of the inverse problem to
estimate it. Non-deterministic noise can be approached using the power-law noise 1/fβ,
also named colored noise (ref). The color of noise is defined by the power 0 ≤ β ≤ 2.0
associated to the frequency f of the noise signal. The noise signal is produced by a
stochastic process intrinsic to the physics of the measurements (due to electronic, optical,
mechanical problems). For instance, building white noise α = 0 consists in randomly
choosing values within a specific standard deviation: the power spectrum of such signal
is flat. On the contrary, a Brownian noise α = 2, also known as "random walk" or
"drunkard’s walk", is built by cumulating random values with a time interval associated
to a physical process. For this kind of noise, the power spectrum decreases with increasing
frequency.

Random noise can strongly alter the recorded signal and its associated uncertainties.
For instance Figure 4.4 illustrates the evolution of white noise (grey dots bounded by
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dark grey dashed lines) and Brownian noise (brown dots bounded by dark brown dashed
lines) for 1 year. From the same initial standard deviation, the Brownian noise tends
to increase the standard deviation leading to wider uncertainties on the data as time is
going on. Furthermore, one can identify a linear trend in the Brownian noise which can
be surimposed to the deterministic linear signal.

Because of the characteristics of the different noise models (e.g. white or Brownian),
it can strongly influence the observed signal and the associated uncertainty when adding
some noise to the source signal (Figure 4.4).

Figure 4.4: White noise (grey dots) and Brownian noise (brown dots) over 1 year. The dashed
lines represent the standard deviation as function of time for the white noise (dark grey) and
for the Brownian noise (dark brown).

4.3.4. Long-term tilt drift
This work has been motivated by the goal of finding a new monitoring method of the

ground displacement for unconventional reservoirs using tiltmeters (see Chapter 3). In
this objective, I explicitly focus on the uncommon parametrization of tilt data which is
detailed hereafter.

Although borehole tiltmeters are sensitive to very small deformations, they are drifting
with time in a largely unconstrained way, intrinsic to each instrument and depending on
the installation setup (see Chapter 2). Indeed, a "good" instrument (presenting desired
characteristics in laboratory conditions) may display strong drift noise if not properly
installed on the field. Which means that the instrumental drift is increased by an imper-
fect installation (e.g. poor coupling between instrument and the medium, not perfectly
vertical). If correctly installed trying to reproduce the optimal conditions (as in the
laboratory), the drift stays as expected.
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It is convenient to assume that the actual tilt signal of ground deformation ~do(t) is
the sum of the signal produced by the source ~ds(t), a linear instrumental drift ~dd(t) and
some colored noise ~n(t) (Figure 4.5, Eq. (4.4)).

(4.4) ~do(t) = ~ds(t) + ~dd(t) + ~n(t)

We assume for each instrument that the drift is linear in time such as ~dd(t) = ~at with
t the length time series and ~a = (ax, ay) is a constant drift rate vector. Because drift
and noise are cumulative, they are largely influencing the tilt signal when time increases,
thus preventing the use of large tilt time series. Therefore, we aim at estimating those
parameters through the global optimization method.

Figure 4.5: Construction of a tilt signal for one component (t) of one instrument with a) the
signal of the source ds(t), b) the linear drift dd(t), c) the Brownian noise n(t) and d) the observed
tilt do(t).
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4.4 Definition of the functional

Because numerous instruments are disposed on the field with various geometrical de-
formations and record deformation over time, the functional must consistently assemble
this spatio-temporal information. This study considers not only 4 data types but also
several time series and instrumental parameters. Our goal is to build a single functional
considering all those aspects at once. We previously introduced the instrumental param-
eters. Below we describe our data fusion strategy and time integration procedures.

For a given data type (e.g. GPS, tiltmeters, interferograms), the difference between
modelled (~dm(p)) and observed (~do) data of dimension M is expressed through a residual
vector:

(4.5) ~D = ~d(p)− ~do

where p denotes the optimization variables (model parameters) associated to one source.
To this vector, we need to associate information about the quality of the data. This is done
using the covariance matrix for the given data, Σ, that represents the uncertainties on
the measurements. Because instruments do not have equivalent accuracy, the covariance
matrix can be different at each point of the dataset. The functional associated to this
data type is defined as:

(4.6) JM = 1
M

M∑
i=1
‖ ~Di‖2

Σ−1
i

= 1
M

M∑
i=1

~DT
i Σ−1

i
~Di,

where M is the number of data points at a given time and T denotes the transpose of the
vetor.

With this instantaneous quantity in hand, the cumulative expression of the functional
over time can be obtained by a discrete time integration. If we suppose a linear evolution
of the modelled data between two successive times ti and ti+1 we can use the trapezoidal
rule:

(4.7) JMN = 1
tN+1 − t1

N−1∑
i=1

(JM)i + (JM)i+1

2 [ti+1 − ti]

with N the number of time intervals, t1 and tN the initial and final times (Figure 4.6).
Thus, we minimize JMN which consists in minimizing the green surface on Figure 4.6a.
At the end of the optimization (Figure 4.6b), the value of JM for each time interval has
reached a minimum. As JM is built using weighted Euclidian norms, it is dimensionless.
Thus, we assume that the optimization is complete when JM ≤ 1.

The previous construction holds for one type of data. If P different data types are
present, we consider the following cumulative functional J :

(4.8) J =
P∑
i=1

ωi(JMN)i, with
P∑
i=1

ωi = 1.

By introducing weighting factors ωi we can adapt the contribution of one type of data
in the analysis. Unlike the covariance matrix that considers the uncertainties on the
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Figure 4.6: Construction of JMN for one type of data and N = 12 time series, a) from the
first iteration of the optimization to b) the optimal state. Note the difference in the vertical scale
between a) and b).

data, the weighting coefficients need to be user defined. If no rule can be chosen to set
the weighting coefficient, one way could be to study the Pareto front (Vassilvitskii and
Yannakakis, 2005) and determine each ωi needed to minimize the functional J . A Pareto
front is defined by a given set of solutions of J as a function of ωi.

In this study, we consider individual functional j for each data type, normalized by
the associated number of data and the inverse of their covariance matrix (Eq. (4.6)). At
this stage, we (1) include the resolution of the geodetic technique through the covariance
matrix and also (2) we get cleared from the number of points associated to each dataset.
Indeed, for highly uncertain data, their covariance matrix is large compared to the data
values, leading to small values of JM for the considered dataset. Also, we weight JM by
the number of data to get an average value for all points in the dataset. By doing that,
we equally consider large datasets (several hundreds of points) and small datasets (up to
tens of points). Thus when building the cumulative functional J , we actually compare
similar values to the data uncertainties.

Throughout this work, we set ωi = 1
P
with P the number of considered data type in the

inversion. Optimizing this functional using the global optimization method leads to one
set of parameters explaining the observation along with data residuals. These residuals
are defined by the difference between observed and modelled data Eq. (4.5) and can be
due to the noise inherent to the data, to the ill-chosen model or model parametrization
or to the lack of convergence of the optimization procedure.
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4.5 On the uniqueness of the solution

From the previous definition of the functional, we can either consider a whole dataset of
several data types during the inversion process or each data type can also be individually
inverted. Let’s then concentrate on tilt data used into a linear forward model.

The observations ~do(t) are made of the signals induced by the source, the instrumental
drift and some noise (see Section 4.3.4., Eq. (4.4)). During the inversion process, these
data are compared to various sets of modelled tilt, ~dm(t). The latter is expressed as
the sum of the source signal ~ds(t) and the linear drift ~dd(t) = ~at. We assume that the
ground deformation component ~ds(t) is a linear combination of strain source parameters
at depth. This linear relation is valid if we consider Mogi or McTigue models (Mogi,
1958; McTigue, 1987), which involve an elastic medium (homogeneous or heterogeneous)
equipped by observation points and submitted to strain sources at depth. For small
deformations of the medium, the source signal induced by one source can be written as,
(4.9) ~ds(t) = ~αp(t)
where ~α represents the contribution of a source unit strain to each instrument measure-
ment. For instruments close to the source, their corresponding ~α component display large
values, indicating a higher sensitivity to source parameters p(t) changes. This leads to
the definition of the modelled tilt,
(4.10) ~dm(t) = ~αp(t) + ~at

The noise ~n(t) is fully contained in the observations ~do(t) as we are not estimating it
through the inversion. When looking for source parameters and drift parameters, the
optimization algorithm converges towards an admissible parameter set (pa(t),~aa) which
also contains the linear trend included in the observation noises. In Table 4.1, I sum up
all the variables and their meanings.

Because of the relation given by Eq. (4.10), inverting tilt data clearly leads to infinite
sets of parameters (p(t),~a). Instead of converging towards a global minimum with one set
of parameters, the functional tends to a family of admissible combinations of parameters,
all explaining the data equally well. Therefore the optimization procedure finds one of the
infinite scenarios that are similarly close to the data, without being able to discriminate
the targeted one.

Thus, from Eq. (4.10) we can write the following relation,
(4.11) ~αp∗(t) + ~a∗t = ~αpa(t) + ~aat

where the true scenario is denoted by the exponent ∗ and the subscript a expresses any
of all the admissible scenarios given by the optimization. Can we restore the uniqueness
of the solution? To answer these questions, let’s look at the results of the optimization.
It produces one set of admissible parameters (pa) inducing tilt data (~da) explaining our
synthetic data (~do) to some residuals from the inversion. Starting from the admissible
solution (pa(t) ; ~aa) and Eq. (4.11), the desired solution (p∗(t) ; ~a∗) must simultaneously
satisfy:

~a∗ = ~aa −R~α(4.12)
p∗(t) = pa(t) +Rt(4.13)
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Variables Definitions
~do(t) = ~ds(t) + ~dd(t) + ~n(t) observation

~ds(t) = ~αp(t) strain source signal
~dd(t) tilt drift

~dm(t) = ~αp(t) + ~at modelled data

~n(t) noise

pa and p∗ admissible and desired source parameters

~aa and ~a∗ admissible and desired drift parameters

~α strain source unit for each instrument

R flow rate coefficient

Table 4.1: Reminder of all variables used in this section.

where R is a correction coefficient to be estimated, hereafter named the flow rate coeffi-
cient. This means that considering the same tilt residuals from the optimization, we are
exploring, by varying R, the whole range of admissible solutions for (p(t) ; ~a). Never-
theless, only one set of parameter is requested. Thus, we need to estimate the flow rate
coefficient in order to discriminate between all the possibilities.

Due to the lack of knowledge about the structure of p(t), we use a priori informa-
tion concerning the source model (through ~α of dimension N) and the drift parameters
(through ~a of dimension N). Indeed, the drift of an instrument does not depend on the
position of this instrument regarding the source position. This implies that there should
be no correlation between ~a∗ and ~α. From the definition of the correlation between two
vectors of same dimension, corr(~a∗, ~α) = 0 leads to

(4.14) E(~a∗~αT )− E(~a∗)E(~α)T
σ~a∗σα

= 0

where E and σ are respectively the expected value and the standard deviation of the dis-
tribution (~a∗ or ~α) and E(~a∗~α)−E(~a∗)E(~α) = cov(~a∗, ~α). Thus, the absence of correlation
between the two variables ~a∗ and ~α is only verified when,

(4.15) cov(~a∗, ~α) = 0

and replacing ~a∗ in Eq. (4.15) using Eq. (4.12),

cov(~aa −R~α, ~α) = 0
cov(~aa, ~α)−Rcov(~α, ~α) = 0

with cov(~α, ~α) = var(~α) the equation of the flow coefficient can eventually be deduced
like,

(4.16) R = cov(~aa, ~α)
var(~α)
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This reasoning allows us to find the desired solution from the infinite possibilities of
admissible solutions given by inverting only tilt data. If the strain source signal is sig-
nificant enough to be measured by other geodetic techniques, inverting tilt data together
with GPS, InSAR and/or levelling data could reduce the number of admissible solutions.
In Chapter 6, I illustrate how our methodology leads to recover both drift rates and volu-
metric source history using an example of the time inflation of a buried volumetric source
at depth.

4.6 Uncertainties

The predicted values cannot, in general, be identical to the observed values for two rea-
sons: data uncertainties and model imperfections. As we use a weighted Euclidian norm
to build the functional J (see Section 4.4), we account for data uncertainties. Considering
these uncertainties in the functional induces a propagation of uncertainties through the
inversion process from the data to the parameters. But propagating data uncertainty
leads to a fraction of uncertainty about the physical system value. Indeed, it does not
take into account model discrepancy (and other sources of uncertainty) (Tarantola and
Valette, 1982; Brynjarsdóttir and Ohagan, 2014). This source of uncertainty was firstly
introduced by (Kennedy and O’Hagan, 2001). They considered the problem of using
observations of the real physical system to learn about uncertain input parameters (the
process of calibration) and showed how to account for model discrepancy in calibration
and in subsequent predictions of the physical system. In this study, we only account for
the data uncertainties in the inversion process, but we acknowledge the existence of model
inadequacy.

It is generally not possible to set inverse problems properly without a careful analysis of
parameter uncertainties which consists in estimating a range of confidence of the optimized
parameters. One way to determine the model parameters uncertainties is to link the
covariance matrices of the parameters (Σ~p) and data (Σ~d) with assuming a linear relation:

(4.17) Σ~d = AΣ~pA
T

where the matrix A is a linear operator between parameters and data. Through this
relation we are seeking the parameters sensibility Σ~p according to data uncertainties Σ~d.
Because A is not necessarily invertible, analytically calculating this matrix can be nu-
merically unstable (Furst et al., 2017). Thus, finite differences can be used to simulate
perturbations on the data induced by small perturbations on the parameters. This is done
by perturbing the selected parameter around its optimum and then by running the opti-
mization again, the new solution displaying the results accounting for the perturbation.
Although more robust, it is computationally time-consuming.

In Furst et al. (2017) we assume A = ∇pd which is the Jacobian matrix made of the
derivatives of the velocities at geodetic measurement locations with respect to the model
parameters.
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4.7 About the computation code

The methodology described in this chapter allows for the optimization of various
inverse problems. Its implementation is achieved using Fortran 77 and 95 and can be
divided into 3 blocks featuring the global optimization in the master program, a user
interface for the parametrization of the model and a collection of routines including the
forward models and the construction of the functional.

• The optimization process is implemented in the main program named BMO. De-
veloped in previous studies (Ivorra, 2006; Ivorra and Mohammadi, 2007), it contains
the different layers of the semi-deterministic approach described in Section 4.2. A
well detailed user-guide is presented in Ivorra (2006).

• The main program calls the interface, BMO_user, from which the user can provide
information about the data, the functional or the calculation of the gradient (e.g.
for adjoint calculation). It permits to connect the optimization process to the user-
defined parametrization.

• The final block acts as a library of additional routines required to generate mod-
elled data from various forward models and to calculate the functional previously
described. I implemented the functional as well as two forward models already de-
scribed (Mogi and McTigue) and adjoined the routines for Okada’s model (Okada,
1992).

The flow chart of this optimization presented in Figure 4.7 summarizes our strategy
and the main functional relations. Our optimization parameters p are picked between
sources and instrumental parameters depending on the selected forward model (Mogi,
McTigue or Okada’s model). The free parameters are set to an initial guess in their
admissible variation domains. No a priori knowledge of these initial values is needed,
but when available providing shorter range of searching values accelerates the calculation.
This initial set of parameters includes the first model from which synthetic data are
produced using the constitutive equations of the chosen forward model (Figure 4.7). Model
predictions are then compared to the observations through the specific functional.

The stopping criteria is based either on a user-defined target value of the functional J
or on a prescribed maximum number of functional evaluations. Also, one could consider
that continuing the inversion is useless if individual functionals (JMN)i are below the
corresponding data uncertainty.

4.8 Three levels of complexity

In the following Chapters (5, 6 and 7) I present direct applications of the methodology,
using different kinds of observations and forward problems. The code that has been imple-
mented is able to treat three levels of complexity. To describe these levels of complexity, I
either vary the number of data types in the linear problem or consider time-independent
or time-dependent parameters in the optimization (Table 4.2).
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Figure 4.7: Workflow of the methodology with the three blocks of code: BMO, BMO_user and
Forward Models.

The I-level of complexity considers one data type with no time-dependent parameter.
As an illustration of this first level, we used interseismic velocity measured by GPS to
infer the shear rigidity of plate with an application to the San Andreas Fault. The II-
level includes time-dependent parameters in the optimization process. For this case, we
invert tilt time-series to retrieve both volume variations of a point source and the drift
parameters of the tiltmeters. Eventually, the III-level jointly inverts several data types
(GPS, tilt, InSAR and levelling) with time-dependent parameters. A synthetic example
is shown in Chapter 7.

Complexity Data Time Forward model Applicationlevel type dependency linearity

I 1 no yes GPS data inversion
Furst et al. (2017)

II 1 yes yes Tilt time series inversion
Furst et al 2018 (submitted)

III >1 yes yes Time-dependent
geodetic data fusion

Table 4.2: Review of the three levels of complexity used hereafter for the applications of the
methodology.
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Chapter 5

Large scale interseismic GPS dataset
inversion

Résumé

Ce chapitre propose une première application de la méthodologie d’optimisation décrite
dans le Chapitre 4. En ne considérant qu’un type de données géodésiques, les mesures
GPS, nous tentons de retrouver un paramètre de la croûte continentale, la rigidité au ci-
saillement . L’article "Lithosphere rigidity by adjoint-based inversion of interseismic GPS
data, application to the Western United States" (Furst et al., 2017) est un prolongement
du travail effectué par Chéry et al. (2011) basé sur la même méthodologie mais en y ap-
portant des perfectionnement qui permettent d’avoir des résultats plus robustes et fiables
et mieux résolus (l’adjoint a permis l’augmentation du nombre de paramètres considérés).

Le principe est le suivant: les variations latérales de vitesses intersismiques horizon-
tales peuvent s’expliquer par une variation latérale de rigidité que nous appellerons rigidité
cisaillante. Les vitesses intersismiques enregistrées par les GPS sont supposées représenter
les mouvements lents et continus induits par la tectonique des plaques. Tout mouvement
dû à des événements sismiques (co- et post-sismique) est supprimé (autant que possible)
des données GPS pour ne conserver que le signal intersismique. C’est à partir de ces don-
nées corrigées que nous pouvons retrouver certaines propriétés des plaques. En inversant
les données géodésiques, nous cherchons à les reproduire en faisant varier les paramètres
de notre modèle direct. En l’occurrence, nous avons choisi de considérer un problème
élastique linéaire avec une discrétisation de l’espace en élements finis pour créer notre
modèle numérique. Dans un premier temps, nous avons créé des données synthétiques
pour valider la méthode d’optimisation, puis nous l’avons appliquée à un jeu de données
réelles. Nous nous sommes intéressés à l’Ouest américain dans la partie Sud de la faille
de San Andreas. Ici, des zones à fort taux de déformation (le réseau de failles de San
Andreas) cotoient des zones où le taux de déformation est extrêmement faible (la Sierra
Nevada par exemple).

L’inversion des données intersismiques repose sur la minimisation de la somme des
écarts quadratiques entre les données modélisées et observées. L’objectif est de retrouver
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les paramètres du modèle qui prédisent au mieux les données observées. Ces paramètres
sont la rigidité cisaillante de la croûte, pour laquelle nous n’avons pas d’évaluation géo-
physique alternative, et les vitesses de déplacement au bord du domaine qui peuvent être
ajustées grâce aux conditions aux limites de Dirichlet (vitesses) du modèle. Un terme
de régularisation de type Tikhonov a été introduit dans la fonctionnelle. Il permet de
lisser ces conditions aux bords pour éviter des changements trop important du gradient
de vitesse. Le gradient de la fonctionnelle est ensuite calculé en utilisant la formulation
adjointe du problème direct, ce qui nous permet de considérer un nombre important de
paramètres d’optimisation tout en conservant un coup de calcul raisonnable. A l’issue de
l’optimisation, nous obtenons une distribution de la rigidité cisaillante accompagnée d’une
distribution des résidus en vitesse GPS ainsi qu’une distribution des incertitudes associées
aux paramètres de rigidité. Les résultats de taux de déformation associés à ce modèle sont
discutés et comparés aux études précédentes sur cette zone de l’Ouest Américain.
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5.1 Introduction

In a first stage of development of the methodology described in Chapter 4, we at-
tempted to infer the rigidity of continental plates using horizontal velocities measured by
GPS. This interseismic strain is a small fraction of millions years of continuous accumula-
tion of anelastic processes in the lithosphere due to plate motions. Although the flexure of
the lithosphere may be well constrained using a simple secular cooling model in the ocean
(Stewart and Watts, 1997), it remains challenging to determine this mechanical parame-
ter in the continents. In the case of flexure, plates submitted to topographic and other
internal loads display vertical motions controlled by plate rigidity (Watts, 2001). One
commonly estimates the flexural rigidity, expressed through the effective elastic thickness
(EET ) of the lithosphere, by studying the lithosphere’s vertical motion resulting from
long-term geological loads. However, plate can also be subjected to shear stress, inducing
horizontal motions. We imagine that the variations in horizontal displacements observed
in these conditions are due to lateral variations of lithosphere elastic properties, hereafter
named shear rigidity. In the following paper, we present an approach of inversion using
the horizontal velocities to evaluate lateral rigidity variations.

Because the present day strain of the Western United States has been thoroughly in-
vestigated using GPS geodesy, this area is quite adapted to illustrate our methodology.
Similarly to Chéry et al. (2011), we choose this area where weakly strained areas (e.g.,
the Sierra Nevada) are connected with areas of large strain rate (e.g. San Andreas Fault
system). We add some improvements to the optimization process: the adjoint formu-
lation of the gradient of the functional allows to consider huge number of optimization
variables, the boundary conditions are free parameters as well as rigidity and a Tikhonov
regularization is applied to the boundary conditions. Finally, we associate uncertainties
to the optimal rigidity distribution. We created synthetic cases first, in order to validate
the approach and then consider a homogeneous set of geodetic data: 615 GPS velocities
during interseismic period (Southern California Earthquake Center Crustal Motion Map
Version 3.0, SCEC CMM3). As this dataset is based on decades of GPS measurement,
the signal induced by significant seismic events is removed (Kreemer and Hammond, 2007).

The forward model considers a finite element model (CAMEF code, courtesy of R. Has-
sani) of an area of several hundreds of kilometers which can deform according to linear
and isotropic elasticity on plane stress. A uniform 2-D Delaunay mesh composed by tri-
angles is generated for a given spatial domain (for synthetic tests and application) leading
to 2284 individual elements for the application to Western United States (394 elements
for synthetic cases). Along the boundary of our domain, we apply Dirichlet boundary
conditions allowing us to compare to the observations. The boundary velocities are there-
fore free parameters intrinsic to each node of the mesh boundary. Besides, associated to
each element we also define the free parameter D (shear rigidity) which is linked to the
elastic parameters and interseismic velocities using the stress equilibrium of the model.
This constitutive equation links the strain rate to the stress rate and boundary conditions.
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As it is exposed in Chapter 4 this method involves the minimization of a cost function
J defined as the quadratic measure of the differences between measured and predicted
velocity fields on a discrete set of points. Because our inverse problem is ill-posed, we in-
clude regularization terms to control local fluctuations of the parameters (Tarantola, 2004;
Tikhonov, 1943). By doing so, our goal is to adjust the predicted data to the observed
data, while preserving some degree of regularity on the velocities along the boundaries.
As the result of the finite element discretization of the domain, the number of free pa-
rameters can reach several thousands. Although optimization becomes time consuming in
such conditions, one can reduce the optimization time and complete the inversion using
an adjoint formulation of the gradient of the functional with respect to the independent
parameters of the model. With no information about the convexity of the cost function
and its potential local minima, we apply the global optimization approach for one type
of data in order to converge towards the smallest admissible value of the functional.

The inversion of interseismic data produces a map of effective rigidity distribution
associated with velocity residuals and corresponding uncertainties for the rigidity. We
present and discuss these results, focusing on the sensitivity of the model with respect
to the data. We also compare our deformation model to previous studies of strain rate
and rigidity distribution in the Western United States and California. We finally propose
future applications of this method in different classes of tectonic or geodynamic problems.

5.2 Lithosphere rigidity by adjoint based in-
version of interseismic GPS data, Appli-
cation to the western United States
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considers that the rigidity of the lithosphere may be defined as its resistance to horizontal tectonic lateral forces.
In this case, a spatial distribution of an effective shear rigidity can be estimated from the analysis of the
interseismic velocity fields. We consider the Western United States zone where weakly strained areas (e.g., the
Sierra Nevada) are connected with areas of large strain rate (e.g. San Andreas Fault system). By inverting
interseismic strain distribution measured by geodetic methods, we infer the effective shear rigidity of the litho-
sphere. The forward problem is defined using the equations of linear elasticity. The inversion relies on the min-
imization of the sum of a quadratic measure of the differences between measured and modelled velocity fields.
The functional also includes regularization terms for the parameters of the model. The gradient of the functional
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two synthetic velocity distributions. Then, the effective shear rigidity variations of the Western United States
are estimated using the CMM3 interseismic velocities. The inversion displays low effective rigidities along the
San Andreas Fault system, the Mojave Desert and in the Eastern California Shear Zone, while rigid areas are
found in the Sierra Nevada and in the South Basin and Range. Finally, we discuss the differences between our
strain rate and rigidity maps with previously published results for the Western United States.
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1. Introduction

Geological strain occurring over millions of years results from the
continuous accumulation of anelastic processes in the crust and in the
lithosphere in response to plate motion. Active deformation areas are
identified by seismicity and geodetic deformation. In active deformation
area, the comparison of plates motion from geology and geodesy, at
these twodifferent time scales, provides a fair agreement in termof hor-
izontal velocities (Sella et al., 2002). Geologic and geodetic comparisons
can also be made across active faults using standard models for
interseismic strain (McCaffrey, 2005; Meade and Hager, 2005; Savage
and Burford, 1973). It appears that most of the documented faults dis-
play a close agreement between geodetic and geologic strain rates
(Vernant, 2015).

From a mechanical viewpoint, the close agreement between short
and long-term strain rates (i.e. time scales from 10 yrs to 1 Myrs) prob-
ably reflects the stability of the stress balance in the lithosphere under

the action of slowly evolving remote forces associated to subduction,
basal drag and, more generally, the plate system gravitational potential
energy. Under the action of these forces, strain distribution ismostly con-
trolled by the lithospheric strength. By strength wemean the maximum
force sustainable by the lithosphere. Like lithospheric stress, lithospheric
strength cannot be determined precisely with depth, unless with crude
rheological yield strength envelope models (Tesauro et al., 2011). In-
deed, a precise strength estimate with depth would require a detailed
knowledge of the temperature profile with depth, lithology and water
contents, as well as friction law in the brittle domain and temperature
dependent viscous laws in the ductile crust and mantle. Therefore, the
lithospheric strength can only be approached through its integral mea-
sure along depth, with numerical models of the lithosphere. These
solve stress equilibrium using elasto-visco-plastic laws with prescribed
boundary conditions (Bird and Kong, 1994; Chéry et al., 2001). However,
a simplified version of lithospheric strength is embedded in the concept
of effective elastic thickness (EET) applied to plate flexure. Indeed, it has
been shown that plates submitted to topographic and other internal
loads display vertical motions controlled by plate rigidity (Watts,
2001). Combined analysis of topographic and gravimetric signals allows
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for computing effective elastic thickness and its variation at continental
scale (Lowry and Smith, 1994; Pérez-Gussinyé et al., 2009). A fair agree-
ment is generally found between heat flow and EET where small values
of EET correspond to high heat flow zones.

Both lithospheric strength and effective elastic thickness are com-
monly associated with the long-term behaviour of the lithosphere.
However, these concepts can be adapted in order to interpret
interseismic geodetic measurements (Chéry, 2008). For a typical time
of 10 years of geodetic observation and in the absence of large earth-
quakes, a linear evolution of GPS motion is often observed. Therefore,
a collection of GPS velocities may be used in order to compute strain
ratemaps at plate scale (Kreemer et al., 2014). Even if this latter analysis
is purely kinematic, the resulting geodetic strain rate must satisfy stress
equilibrium over the time of observation. In such a problem, the un-
known is the incremental lithospheric strength. One example is the spa-
tial variation of the stress change integrated over the depth over the
time of GPS observation. The problem can be simplified assuming that
lateral strength variation is modulated by geodetic plate thickness
(Chéry, 2008). The integrated value of the shear-stress at depth is
what we call the effective shear rigidity. It is conceptually similar to
the flexural rigidity: the effective shear rigidity expresses the resistance
of the lithosphere to lateral forces (unit is N), while the effective flexural
rigidity is related to the resistance of the lithosphere to vertical bending
(unit is N·m).

In Chéry et al. (2011), we proposed a global optimization approach
to estimate effective plate rigidity maps by the inversion of a GPS veloc-
ity field. The inversion provides a rigidity field realizing a RMS between
the observed andmodelled velocity fields close to 2mm/yr for a dataset
in southern California. However,we faced difficulties to properlyfit high
velocity gradients in the vicinity of the San Andreas Fault system. This is
because the method did not allow the consideration of large inversion
problemand therefore the local spatial density of ourmodel parameters
was too low. Moreover, a priori velocity boundary conditions were nec-
essary and no uncertainties estimated.

In this paper, we present an enhanced version of the method to ad-
dress the previous issues:

• the number of optimization variables can now be arbitrary thanks to
the use of an adjoint formulation of the forward problem. This permits
high spatial resolution for the rigidity.

• boundary conditions are not anymore prescribed but now treated as
optimization variables as well.

• uncertainties are calculated for optimal rigidity value.

The paper is organized as follows: (1) we describe the new features
of the method and we state the differences with respect to Chéry et al.
(2011), (2) we demonstrate the efficiency of our new approach on a
synthetic dataset that mimics a strike slip fault locked at depth, (3) we
propose a refined rigidity map of southern California and we study the
sensitivity of the solution of the inversion problem with respect to the
location of domain boundaries. Finally, (4) we compare and discuss
our results with those already published, both in terms of strain rate
maps and effective elastic thickness.

2. Governing equations and forward modelling

Geophysical laws provide the mathematical framework to compute
the outcome of somephysical processes: this is called the forward prob-
lem. In other words, the model and its inputs are known and specific
data (e.g. seismic, geodetic, or magnetic) are sought thanks to the equa-
tions linking the physical parameters to the solution at the observation
location. Most of the time, we only have access to the consequences of a
physical process (e.g. the geodetic measurements). These consequences
need to be inverted to determine the physical properties of the Earth in-
terior (Tomography: e.g. Montelli et al., 2004; Tanaka et al., 2009. Volca-
noes and geothermal zones: e.g.; Anderson and Segall, 2013; Dzurisin,

2003; Mossop and Segall, 1999. Application to reservoirs: e.g. Hesse
and Stadler, 2014). In some cases, there are analytical theories dictating
the distribution of model's parameters that accurately reproduces the
observations. For most geophysical problems, the limited amount of
data used to reconstruct a model with infinite degrees of freedom
leads to the non-uniqueness of the solution. Consequently, the inverse
problem only provides one of the many models that explain the data
and has uncertainty because the real data are subject to uncertainties
and errors.

The effective elastic thickness of the lithosphere can vary laterally
due to both elastic properties and the rheological failure properties
that limit elastic strength. Flow strength depends on other factors
than the temperature. Also, part of the variation imaged by the geodetic
technique is probably due to the limits of frictional strength on faults
(Bird and Kong, 1994). The thermal plate regime probably exerts a
large influence due to the sensitivity of the effective plate rigidity with
respect to its temperature profile (Watts, 2001). Here, we model these
rigidity variations as lateral variations of the elastic properties of a
plate with constant thickness. Thus, our forwardmodel is made of a do-
main (Ω) symbolizing a 2-D plate, which can deform according to linear
and isotropic elasticity (Fig. 1). Along the boundary of the domain ∂Ω,
we apply Dirichlet conditions (i.e., in-plane velocities uBC) and assume
free normal traction at the surface of the plate (plane stress assump-
tion). This hypothesis means that strain perpendicular to the plane
can occur. The forwardmodel is therefore composed of three equations,
the stress equilibrium (Eq. (1)), a constitutive equation linking the
strain rate to the stress rate for a 2-D plate (Eq. (2)) and boundary con-
ditions (Eq. (3)):

div _σð Þ ¼ 0 on Ω ð1Þ

_σ i; j ¼ E x; yð Þ
1þ v

_εij þ v
1−2v

_εkkδij
� �

on Ω ð2Þ

u ¼ uBC on∂Ω ð3Þ

where _ε and _σ are the strain- and stress-rate tensors, δ is the Kronecker
delta function, i , j and k=1,2. Because of the relatively small variation
of the Poisson's ratio for the lithosphere, ν is assumed to be constant
and equal to 0.25. The Youngmodulus E remains the only free mechan-
ical parameter in this equation. Since the model is driven by a velocity
condition, only the relative variation of the Young's modulus matters
for strain computation. This means that any distribution of the form
C×E(x,y) provides the same velocity field u regardless the value of the
constant C. For this reason, we define the non-dimensional effective ri-

gidity distribution D(x,y) as Eðx;yÞ
Emin

where Emin is the minimum value of

E(x,y) over the domain. So, all distributions of D presented in this
paper range from 1 to some maximum values.

For a given spatial domain, we generate a uniform 2-D Delaunay
mesh composed by triangles. In order to estimate the velocity field u
at geodetic measurement locations we use the academic 2-dimensional
finite element code CAMEF. The code does not incorporate the value of
the plate thickness. Therefore, we cannot discriminate plate thickness
and elastic properties of the lithosphere from the rigidity values.
Hence, fixing an absolute value to the rigidity remains an open problem.
Finally, the velocity field u produced by the forward model depends on
two input parameter sets: the velocity boundary conditions uBC and the
distribution of D(x,y) (Fig. 1). Eventually, we try to fit uwith the obser-
vations u∗.

3. Inversion method

Running the direct problem requires the prescription of the velocity
on the boundary nodes and the rigidity for eachmesh element. Contrary
to the approach proposed in Chéry et al. (2011), the boundary condi-
tions are not imposed anymore in the inverse problem and are treated
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as optimization parameters. We associate one rigidity parameter to
each mesh element leading to a very large optimization problem. Our
global optimization algorithm requires the gradient of the functional.
We consider an adjoint formulation of the forward model to access
this gradient with respect to all the model parameters simultaneously.

3.1. Cost function

We want to invert observed data u∗ and determine the model pa-
rameters p(D,uBC) minimizing the distance (here L2-norm) between
the observed data u∗ and the predicted field u(p) inside the domain Ω:

J pð Þ ¼ u�−u pð Þk k2σ−1 ð4Þ

where J is the cost function to minimize, and subscript σ−1 means that
the L2-norm is weighted by the inverse of the covariance matrix of the
geodetic measurements.

Geophysical inverse problems are usually ill-posed and need to in-
clude a subjective degree of regularization to achieve relevant geophys-
ical solutions (e.g. Zaroli et al., 2013).We therefore introduce to the cost
function two Tikhonov regularization terms to control local fluctuations
of the parameter vector (Tarantola, 2004; Tikhonov, 1943).We separate
the regularization of the parameters along the boundaries uBC and those
associated to the rigidity D inside the domain:

J pð Þ ¼ u�−u pð Þk k2σ−1 þ λ1R1 Dð Þ þ λ2R2 uBCð Þ ð5Þ

where R1(D) and R2(uBC) are regularization operators. The former acts
over the domain and controls the regularity of the rigidity distribution,
while the latter monitors the regularity of the boundary conditions.
Both are particular forms of non-linear Laplace-Beltrami operators
with a local control of the level of regularization (Mohammadi and
Pironneau, 2009). The weights λi have to be chosen by the user. Series

of different optimizations have been run to highlight the effect of λi on
the inversion. By doing so, our goal is to adjust u(p) to the data u∗,
while preserving some degree of regularity on both the rigidity inside
the domain and the velocities along the boundaries. However, for each
simulation, we only have the values of the velocities (and not rigidity)
to comparewith. Hence, adjusting the regularity of the rigidity is largely
subjective and we found that using no regularization (λ1=0) for rigid-
ity leads to acceptable spatial rigidity gradients. Hence, in this study, we
only consider the regularization term of the boundary conditions.

In order to choose λ2, we explore the trade-off between the residual
data misfit Res(p)=‖u∗−u(p)‖2 and the regularization term R2(uBC).
This is featured in a trade-off or Pareto curve, which gathers all feasible
solutions that cannot be improved in any of the objectives without
degrading the other objectives (e.g. Vassilvitskii and Yannakakis,
2005). The selection of an optimally regularized solution depends
upon the requirements of a particular study. We will illustrate the im-
pact of the regularization over the boundary conditions for the rigidity
inversion in Southern California.

3.2. Global optimization

We apply a global optimization algorithm (Ivorra et al., 2013) to it-
eratively invert interseismic geodetic data. Global optimization is neces-
sary aswe have no information on the convexity of the cost function and
several local minima can be present. The global optimization strategy is
meant to improve the initial condition for classical gradient-based
methods looking for an initialization in the attraction basin of the global
optimum (Mohammadi and Pironneau, 2009).

In addition to the Tikhonov regularizationmentioned above, the gra-
dient of the functional is smoothed (Mohammadi and Pironneau, 2004,
2009) in order to control the regularity of the parameters. The optimiza-
tion algorithm ends when the functional or the variations of the

Fig. 1. Schematic representation of the optimization problem: the domainΩ is meshedwith elements of constant rigidityD(x,y) and submitted to Dirichlet boundary conditions along the
boundary ∂Ω. The black arrows symbolize the geodeticmeasurements u∗within the domain, the blue ones theDirichlet conditionswhich are part of the optimization variables and the red
ones are the solution of the model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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gradient are smaller than some user-defined thresholds. A synthetic
flow chart of the inverse problem is given in Fig. 2.

Functional derivatives computation is done using an adjoint formu-
lation of the forward model (e.g. Plessix, 2006). In most of the inverse
problems in geophysics, the cost function cannot be analytically linear-
ized. If a finite difference approach is adopted, the number of forward
computations for assessing the gradient of the functional is proportional
to the number of parameters. Let us briefly recall the adjoint technique.
The gradient of the functional with respect to themodel parameters can
be expressed as follows:

∇p J ¼ ∂ J
∂p

þ ∂ Jt

∂u
∂u
∂p

� �t

ð6Þ

where J is the functional, p the parameters and u the velocity calculated
at each node of the mesh. From the equilibrium equation Ku= f, we in-
corporate the rigidity matrix K and the stress vector f in (Eq. (6)):

∇p J ¼ ∂ J
∂p

þ ∂ Jt

∂u
� K−1 � ∂ f

∂p
−

∂K
∂p

u
� � !t

ð7Þ

Defining the adjoint variable V as the solution of the systemK t � V ¼
K � V ¼ ∂ J

∂u (because K is self-adjoint in our case), we obtain:

∇p J ¼ ∂ J
∂p

þ Vt � ∂ f
∂p

−
∂K
∂p

� u
� �� �t

ð8Þ

Consequently, the amount of computation needed to obtain the gra-
dient of the functional mostly corresponds to the solution of one for-
ward model, by opposition to a finite difference scheme which needs
a number of forward model solutions equal to the number of
parameters.

3.3. Model parameters initialization

Real GPS datasets present large spatial variations of density mea-
surements. GPS stations are usually set to observe the velocity gradient
around fault zones. Therefore, we usually expect null strain in geo-
graphical areas where measurements are sparse. This information can
be used to define the initial guess for the lithosphere rigidity in the op-
timization procedure. This is similar to what is done in topological opti-
mization (e.g. Allaire et al., 2004) where the initial structural rigidity is
set to the maximum admissible value. Optimization then aims at mak-
ing the structure softer and softer. A common problem in mechanical
structure design is to optimize the topology of an elastic structure
given certain boundary conditions. Optimality implies to minimize the
weight, but at the same time, the structure needs to be as strong and
rigid as possible. The rigidity of each element is hence reduced at each
iteration of optimization when requested.

Synthetic and real cases presented in this paper involve rigidity
reaching very large values in areas that exhibit little internal deforma-
tion. Thus, the rigidity amplitude ranges froma givenminimum to infin-
ity in no-deformation zones. This semi-open variation domain is not
suitable for numerical search. Consequently, we choose a parameteriza-
tion design using the compliance,C ¼ 1

D, of thematerial instead of the ri-
gidity. The compliance is defined over the interval [ε,1], the lower
bound corresponding to a quasi-rigid body. We have considered differ-
ent values of ε. It appears that a value of ε=0.01 which corresponds to
two order of magnitude admissible variation for the rigidity is sufficient
to fully capture the range of most strain-rates observed at the Earth's
surface (see discussion in Appendix B). This use of compliance insures
greater stability of the inversion process. For ease of understanding
and interpretation, we express our results in terms of rigidity D after
the inversion is completed.

3.4. Model parameters uncertainty

GPS observations are plagued with uncertainty due to various fac-
tors: instrumental noise, field measurement procedure, the skill of the
operator and local environmental motions. These uncertainties affect
in a complex way the GPS time series and generate a colored noise on
positions (Mao et al., 1999). But, these also induce uncertainties on
the model parameters determined through our optimization process.
For that reason, it is essential to quantify the impact of data uncertainty

Fig. 2. Sketch of optimization algorithm applied to plate rigidity inversion. For each
iteration we optimize both the rigidity within the domain and the velocity along the
boundaries.

Fig. 3. Distribution of the synthetic velocities considering an evenly sampled domain
(black arrows) and a randomly sampled domain whose density decreases with the
distance to the fault (red arrows). The fault (green line) is a dextral strike slip fault
locked during the interseismic motion. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 4.Results of the inversion for the synthetic casewith a geodetic spatial sampling (black dots on (a), (c) and (d))whose density is constantwhatever the distance to the fault (black line
at coordinate 0 along the Y-axis). (a) rigidity distribution determined by the optimization; (b) associated uncertainty; (c) norm of residual velocities; (d) misfit between predicted D and
theoreticalD⁎; (e) velocitymeasurements (black squareswith uncertainty bars) and velocities predicted by ourmodel (red circles) along the profile shown inwhite dotted line on (a); (f)
rigidity values and their associated uncertainties along the same profile. The plotted values are estimated at the barycentre of the elements of themesh in a 30-kmwide bandwidth centred
on the profile. The color code is the same as in (a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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propagating through the inversion. Hence, the resulting rigidity distri-
bution is complemented with a sensitivity map.

To determine the model parameters uncertainties, we link the co-
variancematrices of the parameters and data. Let us consider the obser-
vation u∗ (geodetic velocities) as a sum of a ‘true and noise-free’ value ur
with zero variance (i.e. cov(ur)=0) and an uncertain quantity δu:
u∗=ur+δu. For this sum, the covariance matrix is given by:

cov u�ð Þ ¼ cov urð Þ þ cov δuð Þ þ 2 cov ur ; δuð Þ ð9Þ

Because ur is deterministic, ur and δu are independent (i.e. cov(ur, -
δu)=0). Therefore, the covariance matrix reduces to:

cov u�ð Þ ¼ cov δuð Þ ð10Þ

We consider a linear relationship between δp and δu:

δu ¼ ∇pu
� � � δp ð11Þ

which leads to:

cov u�ð Þ ¼ I � cov δpð Þ � I t ð12Þ

where I ¼ ∇pu is the Jacobianmatrix made of the derivatives of the ve-
locities at geodetic measurement locations with respect to the model
parameters. Similarly to (Eq. (9)), we define the covariance matrix of
the predicted parameters cov(pobs) as:

cov pobsð Þ ¼ cov prð Þ þ cov δpð Þ þ 2 cov pr ; δpð Þ ð13Þ

where pr (the actual values of the parameters) is assumed deterministic.
Again, pr and δp are assumed independent, and therefore:

cov pobsð Þ ¼ cov δpð Þ ð14Þ

Finally, equation (Eq. (12)) becomes:

cov u�ð Þ ¼ I � cov pobsð Þ � I t ð15Þ

cov pobsð Þ ¼ I−1 � cov u�ð Þ � I−t ð16Þ

So, this equation formulates the uncertainty propagation from geo-
detic measurements to the model parameters via the Jacobian matrix
I . The construction of this matrix can be performed in two different
ways. The simplest approach consists in expressing it analytically as a
function of the gradients that have been evaluated during the resolution
of the adjoint problem. Indeed, I can be explicitly deduced from the

equation ∇p J ¼ ∂ J
∂p þ ðð∂ J∂uÞ

tIÞ
t
. This approach is straightforward and the-

oretically correct, but it is numerically unstable since it involves the in-
version of singular matrices. Consequently, it is more robust to build I
from finite difference computations. This consists in perturbating one
parameter around its optimum (typically by 10%), and then computing
the perturbation of the predicted velocity at all geodetic measurement
locations. This approach is numerically robust because it involves no
matrix inversion. With the second member of Eq. (16) in hand, we
can now provide an estimation of the variance (diagonal of the covari-
ance matrix) of the optimization variables.

In this study the parameter is the compliance C with its stan-
dard deviation dC=(diag (cov(C))1/2. We define dissymmetric
upper and lower bounds around the optimum for the rigidity pa-
rameter D ¼ 1

C ∈½ 1
CþdC ;

1
maxðC−dC;10−4Þ�. To represent the uncertainty on

the rigidity (dD) we use the fact that D is the inverse of the compliance
and therefore:

dD ¼ D2 � dC ð17Þ

4. Determination of effective rigidity for a synthetic case

Before running our optimization scheme on real cases, we evaluate
its efficiency to recover a given rigidity distribution D∗ (target rigidity)
associated with a specific 2-D velocity field u∗.

Surface strain across a locked fault zone can be interpreted either
using the concept of a slipping fault zone beneath a locking depth
(Savage and Burford, 1973) or by assuming a shear-rigidity variation
perpendicular to the fault (Chéry, 2008). Differences and similarities be-
tween these models are discussed in this latter paper. According to the
variable rigidity hypothesis, we define a target given by:

D� xð Þ ¼ 1þ x
d

� �2
ð18Þ

where D∗ is a non-dimensional rigidity, x is the distance to the fault and
d is a characteristic dimension. Solving force balancewithin such a plate
leads to the following fault-parallel velocity field:

u� ¼ s
π

arctan
x
d

� �
ð19Þ

Therefore, such a velocity distribution is the solution of the spatially
variable function of Eq. (18) but can also be associated to a screw dislo-
cation at depth (e.g., Savage and Burford, 1973). In the case of active
fault systems, d is generally associated to a physical locking depth
which can be estimated using geodesy and seismology. In the case of
the San Andreas Fault system, values of d range from 6 to 22 km de-
pending on the location along the fault and the method of determina-
tion (e.g. Smith-Konter et al., 2011).

We conduct two tests to verify the ability of the method to retrieve
the rigidity distribution given by Eq. (18) for different GPS data sets.
We also test different values of d (from 2 km to 17 km) in order to gen-
erate velocity fields commonly observed on the San Andreas Fault. The
specific case of fully-creeping faults (d ~ 0 km) is discussed in
Appendix A, with application to the SAF segment located North of
Parkfield. We focus here on the consequences of processing two differ-
ent spatial distributions of GPS data: (1) evenly spatially distributed and
(2) concentrated near highly strained zones. This corresponds to on site
situations (Fig. 3). Both distributions are made of about 120 GPS veloc-
ities vectors.

Several experiments have been conducted to define an optimal
mesh size. On the one hand, the computational time is related to the
mesh size. The finer is the grid, the longer will be the optimization
(about 60 times longer for a mesh 3.6 times finer). On the other hand,
the grid needs to be fine enough to capture the variations of the velocity
field, notably close to high velocity gradient areas such as the creep
zones of the Parkfield segment. Eventually, a spatially adaptive mesh
should be implemented.We choose toworkwith amean constant spac-
ing of 20 km. This configuration is generally a good compromise be-
tween the number of available geodetic measurements, the number of
parameters that need to be adjusted and the size of the object we
want to study.

For the first case, GPS measurements (black arrows on Fig. 3) are
uniformly distributed over the domain, with a constant spacing of

Fig. 5. Results of the inversion for the synthetic case that mimics a real geodetic spatial sampling (black dots on (a) (c) and (d)) whose density decreases with the distance to the fault
(black line at coordinate 0 along the Y-axis). (a) rigidity distribution from the optimization; (b) associated uncertainty; (c) norm of residual velocities; (d) misfit between predicted D
and theoretical D⁎; (e) velocity measurements (black squares with uncertainty bars) and velocities predicted by our model (red circles) along the South to North profile shown in
white dotted line on (a); (f) rigidity values and their associated uncertainties along the same profile. The opaque rectangle over the northern termination of rigidity and velocity
profile (e) and (f) highlights a zone where the density of measurements is low, leading to high rigidity uncertainties. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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20 km. For the second distribution, we mimic a “real” GPS network by
producing a velocity field whose spatial density decreases with the dis-
tance to the fault. In both cases, the domain is a 200-km square with a
20-km mesh size (394 elements). The dextral strike-slip fault (green
line on Fig. 3) has a slip rate s of 30 mm/yr and is locked at 10 km
depth. The admissible values for the non-dimensional relative rigidity
range from 1 to 100 (see Appendices A and B for a discussion of such a
choice).

We apply our optimization algorithm to invert the two velocity
fields (Figs. 4 and 5). In the case of the uniform dataset (Fig. 4a–f), we
first compare the synthetic velocities (red dots on Fig. 4e) to the
modelled ones (grey dots on Fig. 4e) along a profile (white dashed
line on Fig. 4a) perpendicular to the fault (black dashed line on Fig.
4a–c). The dataset from the inversion almost perfectly matches the
characteristic shape of a 2-D arctangent velocity field given by Eq.
(19) (Fig. 4e). The misfit between predicted D and theoretical D∗ (Fig.
4d) permits to estimate the tendency in over or under estimating D in
our inversions. Besides, the difference between synthetic and modelled
velocities, hereafter called residual velocities, is lower than 0.25 mm/yr
over the whole domain (Fig. 4c).

Contrary to real cases where the true effective rigidity distribution is
unknown, synthetic cases allow for testing the efficiency of our inver-
sion method to retrieve the quadratic rigidity field given by Eq. (18).
Fig. 4a shows the rigidity distribution over the whole domain of analy-
sis, while Fig. 4b shows the uncertainty distribution map and Fig. 4f fo-
cuses along one transect across the fault. We can notice that, as
expected, the code predicts a low rigidity zone (90% of the elements
ranging between 1 and 3) along a 40 km-wide area centred on the
fault. Also, D increases rapidly with the distance to the fault to reach
high values (N30) 60 km from the fault. Associated with these rigidity
values, we find uncertainties that are very small where rigidity is
small but quite high when the opposite occurs (Fig. 4b). This mainly
comes from the predominance of the (squared) rigidity term in Eq.
(17). This expresses the fact that, in areas that donot deform significant-
ly, very large values of rigidity are admissible (up to infinity) without
modifying significantly the local velocity field. Since our search interval
for rigidity is bounded, our optimal solutions tend to underestimate the
real rigidity in non-deforming areas. This can be seen far from the fault
in all the synthetic cases presented in this study (Figs. 4, 5, A.1 and A.2).
Finally, we find that, within the uncertainties estimated by our method
(Section 3.4), our predicted rigidity distribution fits its theoretical value.
This is clearly true along the transect crossing the fault on Fig. 4f.

For a data setwhose density decreaseswith distance to the fault (Fig.
5a–f), we observe the same ability for the optimization algorithm to re-
trieve an arctangent-shaped velocity field (Fig. 5f) and this despite
sparse data away from the fault. In this synthetic case, some elements
of the grid contain more than one velocity, making the capture of very
local velocity gradients difficult if not impossible using one single rigid-
ity parameter over each mesh element. Therefore, residual velocities
(Fig. 5c) are generally higher for case 2 than for case 1, with 10% of re-
sidual vectors N1 mm/yr (the 1σ uncertainty associated with the data
being 2mm/yr)mainly located in the vicinity of the fault where each el-
ement of the grid contains several GPS measurements. As a result, local
gradients aremore difficult to estimate than for case 1 and this could ex-
plain the distribution of residual we observe in Fig. 5c. Despite these
moderate residuals, the mean residual velocity over the whole dataset
is as low as 0.85 mm/yr which is lower than the 1σ uncertainty of the
data. This situation is typical of real dataset with a high density of GPS
installed in highly deformed areas.

Finally, as for the uniform case, we find that our inversion leads to a
distribution of rigidity that fits well its theoretical model within the pre-
dicted uncertainties (Fig. 5f). Indeed, considering the 40-kmbandwidth
around the fault, (Fig. 5a) shows that 66% of the elements show low ri-
gidities (between 1 and 3) while 29% present moderate ones (between
3 and 10). As described above, in very few deforming areas, the optimal
solution underestimates the real rigidity but the uncertainty associated

with these high values of rigidity tends to be quite high. Moreover, the
uncertainty values also depend on the local density of geodetic mea-
surements. Consequently, even when the optimization leads to fairly
correct values of low-to-moderate rigidity close to the fault, their uncer-
taintiesmay be large (Fig. 5b) as one can see along the transect between
20 and 100 km especially if the data distribution is random (Fig. 5f).
Again, we present the misfit between D and D∗.

Overall, the satisfactory results of this experience lead us to keep this
dimensioning of the grid (triangleswith about 20 km edges) for the real
case application below.

5. Effective rigidity of Western USA

5.1. Tectonic context and GPS data

The tectonic of theWestern United States mostly occurs in response
to the relativemotion between the Pacific plate and theNorth American
plate. Two main zones accommodating the deformation are the San
Andreas Fault system zone and the Basin and Range. In northern Califor-
nia, the relativemotion between the Pacific plate and the Sierra Nevada
reaches a differential rate of 30 mm/yr and results in large earthquakes.
East of the Sierra Nevada, a significant part of the deformation
(~10 mm/yr) occurs within the Basin and Range over a broad fault sys-
tem. To the south, most of the strain is accommodated by the San
Andreas Fault system while the southern Basin and Range is relatively
inactive (Kreemer and Hammond, 2007). Although significant vertical
deformation can occur during seismic events (Landers 1992, Northridge
1994 or HectorMine 1999 earthquakes, red stars on Fig. 6), vertical mo-
tion observed in the area are nearly 10 times smaller than the horizontal
velocities during interseismic periods (Smith-Konter et al., 2014). Con-
sequently, we chose to analyse only horizontal motion.

We focus our study on the southern part of the San Andreas Fault
system (SAFS) where high-quality spatially dense GPS measurements
are available.We use the CMM3 (Southern California Earthquake Center
Crustal Motion Map Version 3.0, SCEC CMM3) velocity field as it was
published by Kreemer and Hammond (2007). It is supposed to repre-
sent the interseismic motion that affects our region of interest. This
means that all transient motions induced by the seismic events of
Landers, Northridge and Hector Mine have been modelled and re-
moved. These data are associated with relatively homogeneous uncer-
tainties of 1.2 mm/yr in average.

A Lambert conformal conic projection is used to project the GPS ve-
locity field on a Cartesian frame. To evaluate the effect of the choice of
the domain, we analyse two overlapping areas shown in Fig. 6. We
aim at checking that effective rigidity values remain invariant regardless
of the chosen borders. The first area of interest, hereafter named Zone 1,
is limited by a red dashed line on Fig. 6 and is identical to the one used
by Chéry et al. (2011). Then, a translation moves Zone 1 by 100 km to-
wards the Northeast to obtain the second region called Zone 2 (blue
dashed lines on Fig. 6). Both areas include the central San Andreas
Fault system (SAFS) segment, the Eastern California Shear Zone
(ECSZ), the south Sierra Nevada (SN) to the North, the Mojave Desert
(MD) in the centre, the Salton Sea (SS) and the south Basin and Range
(SBR) to the East. The western part of Zone 1 contains a part of the Pa-
cific Plate along the Californian coast whereas Zone 2 is directly bound-
ed by the San Andreas fault to the West.

5.2. Model parameterization and regularization coefficients

According to the synthetic experiments presented above, we choose
a uniform grid spacing of 20 km. This configuration leads to meshes of
2284 elements.

At first, we attempt to evaluate the Tikhonov parameter λ2. To do so,
we analyse the trade-off between the normalized regularization member

of the functional along the domain boundaries,MðuBCÞ ¼ R2ðuBC Þ
maxðR2ðuBC ÞÞ, and
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the residual data misfit Res(p) at all geodetic measurements within the
domain (Fig. 7a). Each point of the curve represents an optimization for
a given value of the regularization parameter λ2. A decrease of M corre-
sponds to an increase of the regularization of the velocity field along the
domain boundary, meaning that high gradient changes of uBC are
smoothed. This would confer some degree of smoothness to the solution.
On the contrary, a reduction of regularization enables a better fit to high
velocity gradient changes along the domain boundary. These particularly
occur at the transition between highly deforming fault zones and rigid far
fields. Nevertheless, this may induce undesirable velocity gradient varia-
tionswhere the velocityfield is smooth. Hence, in order tofind the appro-
priate balance between the regularity of the boundary conditions and
velocity residual, we compare observed and modelled velocity distribu-
tions along the boundary (Fig. 7b–c–d). When the damping parameter
is small (Fig. 7b), we allow the regularization term of the functional to
be high. This in turn permits to better fit the observed velocities close to
the boundaries and consequently within the domain. Nevertheless, the
boundary solution may show in some places a degree of sharpness that
is not supported by any data. Increasing the damping parameter used in
Fig. 7c increases the regularity of the boundary conditions while still
fitting properly the data along the border. We observe that this is done
without significantly altering the fit between modelled and observed ve-
locities. Finally, increasing the damping parameter, whichmeans that ex-
tremely smooth boundary conditions become admissible, leads to
incompatibility betweenmodelled and observed velocities along the bor-
der (Fig. 7d). From this analysis, we set the regularization parameter λ2 to
10−3 for which the balance between the regularization of the boundary

conditions and the fit to observed velocities within the domain appears
to be optimal.

5.3. Results of the inversion

Considering the model geometry and parameterization previously
described,we perform the inversion of theGPS velocities for the two se-
lected zones (Zone 1 and Zone 2) of the Western United States.

5.3.1. Estimated relative rigidity and corresponding uncertainty distributions
The inversion of the interseismic velocities leads to the distribution

of effective rigidity illustrated by Fig. 8a–b. In the case of Zone 1 (Fig.
8a), the lowest values of D (1–1.5) are centred on the Mojave Desert,
whereas slightly higher rigidities (1.5–4) are observed along the San
Andreas Fault system and in the extreme South of the Eastern California
Shear Zone. However, lower values of rigidity (associated with higher
deformation rates) are expected along the San Andreas Fault system
rather than in the Mojave Desert. We expect that this artefact is likely
due to an over-correction of the post-seismic motion of the seismic
events of 1992 (Landers), 1994 (Northridge) and 1999 (Hector Mine)
within the CMM3 velocity field (Liu et al., 2015). When the GPS data
are processed to only keep the interseismic velocity, the post-seismic
answer of the earthquakes is estimated at its best. This artefact in our re-
sults could help identify the residual post-seismic motion left in the
data. As for the high rigidities (N12), they are associated to the South
Basin and Range and the South Sierra Nevada where no significant de-
formation needs to be accommodated. As an extension of Zone 1, the

Fig. 6. Spatial distribution of the geodetic measurements on the SAF system used for the inversion. The black arrows show the velocity field in the North American reference frame. Our
main domain of analysis is shown in the red rectangle (Zone 1 – 615 GPS velocities) while the blue one (Zone 2 – 530GPS velocities) represents a translation of the area of interest. The red
stars indicate the location of Landers (L), Northridge (N) and HectorMine (HM) earthquakes. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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inversion in Zone 2 (Fig. 8b) produces similar rigidity distribution along
the SAF and the extreme South of the ECSZ (1.5–4), with, again a sur-
prisingly low rigidity (b1.5) in the Mojave Desert. However, one main
difference can be underlined as a zone with rigidity ranging from 6 to
12 is found in the eastern part of the South Basin and Range.

As described in Section 3.4, we determine the uncertainties associat-
ed with our rigidity estimation which essentially result both from the
local measurement density and the uncertainties associated with the
data themselves. For each mesh element, we estimate the lower and
upper admissible value for rigidity (Fig. 9a–b). First, along all the active
fault systems, identified rigidity values are quite low as the amplitude
between the upper and lower bounds are lower than 3. The reliability
of our solution in deforming zones comes from the local high density

of measurements and from large amplitude of the deformation. Con-
versely, when entering rigid zones, where only few measurements are
available, the uncertainties increase very much reaching values that
typically range from 2.5 to above 16 by several orders of magnitude.
This is notably the case East of the ECSZ. Although the distribution of ri-
gidity shown in Fig. 8a suggests an optimal value of 6–12, uncertainties
in this area (Fig. 9) indicate that a much larger rigidity value (higher
than 16 by several orders of magnitude) is also valid. This can be
noted in the inversion over the shifted domain (Fig. 8b).

5.3.2. Associated residual velocities
Alongside with the distribution of the rigidity, we evaluate the dif-

ference between GPS and the modelled velocities to produce the

Fig. 7. Pareto curve for different regularization parameters used in the optimization algorithm applied to the southern California. (a) Plot of the normalized velocity variations norm as a
function of the residual data misfit as damping λ2 varies. (b), (c) and (d) represent the velocities observed within a 10-km distance of the domain boundary (green) and calculated on the
boundaries (red) for different damping parameter λ2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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residual map (Fig. 10a–b). The fit between observed and modelled data
is estimated using the normalized root mean square (NRMS)
(McCaffrey, 2005),

NRMS ¼ 0:5N−1 ∑
N

i¼1
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where e and n stand for the eastern and northern directions respective-
ly, r is the residual velocity, σ the data standard error and N the number

of data. In addition to the NRMS, the weighted root mean square
(WRMS) gives a measure of the a posteriori weighted scatter in the
fits (McCaffrey, 2005),
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For Zone 1 (Fig. 10a), we get a NRMS of 1.26, with a WRMS of
1.10 mm/yr that can be compared with the uncertainty of 1.20 mm/yr

Fig. 8.Distributions of the relative rigidity D represented for Zone 1 (a) and for Zone 2 (b). According to Eq. (23), the elastic thickness Tg is proportional toD. The GPS data are represented
by black dots, the faults by green lines and the Landers (L), Northridge (N) and HectorMines (HM) earthquakes bywhite stars. SAF, SN, ECSZ, SBR, MD and SS stand for San Andreas Fault,
Sierra Nevada, Eastern California Shear Zone, South Basin and Range, Mojave Desert and Salton Sea respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 9. (a) Lower and (b) upper bounds for the rigidity values around the optimal distribution displayed on Fig. 8a for Zone 1. In very few (or non-) deforming areas, Dmax reach values that
are several orders of magnitude higher than the optimal solution.
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associated with the data. The highest residuals (N4.5 mm/yr) occur on
the southern segments of the SAF, while intermediate residuals (2.5–
4.5mm/yr) are unevenly distributed between high and lowdata density
zones.

A similar analysis for Zone 2 gives a NRMS of 1.25 (Fig. 10b) with a
WRMS of 0.93 mm/yr. The difference observed in the values of both
zones can be explained by the data distribution. Indeed, the second
zone excludes some of the velocities that are poorly estimated by the
optimization (notably on the Pacific plate) and includes few vectors
that are better recovered.

6. Discussion

Based on the hypothesis that interseismic strain mostly reflects rhe-
ological contrasts across the lithosphere, the solved inverse problem en-
tirely depends on the quality of the CMM3 velocity field. Therefore, we
first discuss the sensitivity of the model result with respect to the data.
Then,we discuss our results (strain rate and rigidity distributions) in the
light of the ones provided by previous studies on western US and Cali-
fornia. We finally discuss the future use of our method for tectonic
and geodynamic purposes.

6.1. Robustness of the inversion

In this study, we use the entire dataset of the Southern California
Crustal Motion Map Version 3.0, involving 615 vectors for Zone 1 and
530 vectors for Zone 2. In order to evaluate the impact of data selection
on rigidity distribution, we perform complementary inversions using
identical parameterization, but removing GPS vectors whose residual
norms r are greater than a given threshold value. These residuals can
be due to three different factors:

1) GPS uncertainty. Data uncertainties range from 0.16 mm/yr to
3.71 mm/yr for the horizontal components with a RMS value of
1.20 mm/yr. The maximum data uncertainties are observed in the
South of Mojave Desert, along the Los Angeles Bay and for a few iso-
lated points in the Sierra Nevada and ECSZ.

2) Localmotions. Besides interseismic platemotions, some sitesmay be
affected by gravitational collapse, geothermal activity (e.g. Vasco et
al., 2002) or the exploitation of aquifer systems (e.g. Galloway et

al., 1998; Hoffmann et al., 2001). Many different processes can local-
ly obscure the GPS interseismic velocity component, such as
unravelled postseismic motions.

3) Modelling. The optimization algorithm and the forward model can
also be at the origin of the residual velocities. Indeed, a poor estima-
tion of the velocity along the boundaries could be the reason why
high residual velocities are observed at the junction between the
fault and the boundaries of the domain for both synthetic and real
data cases. Furthermore, our forward model includes several as-
sumptions such as an absence of body forces. Also, the data are as-
sumed free of post-seismic effects which can be inexact if all post-
seismic effects due to the Landers, Northridge and Hector Mine
earthquakes, for instance, have not been fully removed.

We choose to withdraw from 0.3% (r N 6 mm/yr) up to 50% (r
N 1.3 mm/yr) of the data in order to analyse the stability of the solution
of our inversion. The correspondingNRMS,WRMS and the correlation of
the rigidity distribution with respect to the one obtained by the previ-
ously described inversion are gathered in Table 1. We choose experi-
ment 1 as the reference solution to estimate the rigidity correlation.
Removing up to 10% of the GPSmeasurements exhibiting significant re-
siduals in our initial inversion (experiences 3 to 6 in Table 1) neither en-
hance the NRMS or the WRMS, nor significantly modify the rigidity
distribution. But considering only 50% of the data (experience 7 in
Table 1) improves the NRMS to 0.67 and the WRMS to 0.54 mm/yr and
leads to a rigidity correlation of 0.831 with themain features preserved.

Fig. 10. Norm of residual velocities between GPS andmodelled velocities associatedwith the rigidity distribution determined for a) Zone 1 (NRMS=1.26) and b) Zone 2 (NRMS=1.25).

Table 1
List of the experiments, the NRMS/WRMS values of the residual velocities and the correla-
tion of the rigidity distribution relatively to experiment 1.

Experiment Zone Grid
Size

Number of
GPS vectors

NRMS of the
residual
velocities

WRMS
(mm/yr)

Rigidity
correlation

1 1 20 615 1.26 1.10 1
2 2 20 530 1.25 0.93 0.831
3 1 20 613 (99.7%) 1.25 1.08 0.995
4 1 20 600 (97.5%) 1.21 1.04 0.986
5 1 20 583 (94.7%) 1.16 1.00 0.987
6 1 20 553 (90%) 1.10 0.93 0.958
7 1 20 307 (50%) 0.67 0.54 0.831
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This approach echoes the strategy Meade and Hager (2005) devel-
oped to reduce the number of stations and therefore to minimize the
uncertainty magnitude. While based on different quality criteria, they
remove about 50% of the initial dataset (CMM3) to compute their inver-
sions. Our results illustrate that selecting the datawith the lowest resid-
uals does not significantly influence the modelled rigidity (see
correlation in Table 1). However, in areas where data density is poor, a
reduction of 50% can lead to a completely different interpretation.
Therefore, keeping the whole dataset seems preferable.

6.2. Strain rate: comparison with other approaches

Most of strain rate computations derived from GPS velocity mea-
surements stand on a continuous approximation of a model velocity
field. A simpleway to compute the strain rate is to design a triangulation
of the GPS points collection and then assume that the velocity field in-
side each triangle evolves linearly. However, this method generates a
non-smooth strain map due to a linear interpolation of measured GPS
velocities. This method can be adapted to areas covered by sparse GPS
networks (Masson et al., 2005) but generates erroneous strain rates
when applied to dense networks such as the ones installed in California.
In this case, a smooth approximation of the velocity field needs to be
performed in order to avoid spurious strain ratemodelling. Consequent-
ly, a suitable method must also account for high strain gradient occur-
ring around fault zones. A large variety of mathematical approaches
can be used to deduce a strain rate map, often leading to relatively
large differences (Feigl et al., 1993; McCaffrey, 2005; Shen et al., 1996;
Tape et al., 2009).

Our optimal solution of rigidity distribution can be used for the de-
termination of strain rates over the whole study area. But, we have
shown above that our models systematically underestimate rigidity
in very few deforming areas, typically far from the active fault systems.
This bias is partly counterbalanced by the information provided by the
upper bound of the admissible rigidity values. These latter are very
close to the optimal solution in deforming zones, while they suggest
that a purely rigid behaviour may be considered when the deforma-
tion is very small, even though a slight deformation remains

admissible just considering geodetic measurements. Therefore, using
this “strongest” admissible solution is a way to conform to geological
considerations and block-model assumptions that state that, in most
cases, far from the faults, the blocks are rigid. So, we used the upper
bound rigidity distribution (Fig. 9b) for creating our strain rate map
(Fig. 11a).

We compare in Fig. 11 our strain rate map (through the 2nd invari-
ant of the strain tensor) with the one obtained by a method originally
proposed by Haines and Holt (1993) and later revised in the framework
of the strain map global project (Kreemer et al., 2014). Although both
methods depend on distinct assumptions, they produce similar intensi-
ties (N64 nanostrain/yr) located near faulted areas along the SAF and
the ECSZ. This overall similarity is probably due to the fact that both ap-
proaches are able to produce a low residual between the discrete and
the continuous velocity fields. Using our strongest admissible rigidity
solution leads to low strain estimates in weakly deforming areas that
are similar to the ones obtained by the global strain map project. This
can be noticed in the Great Valley between the SAF and the Sierra Neva-
da and along the Pacific coast.

A significant difference between the two strain rate maps can be
found only on two limited areas: offshore the Pacific coast and east of
the ECSZ. Because these two areas display low residuals (Fig. 10), we
guess that our model is likely not able to locally estimate the strain
rate precisely. This could be due on the one hand, to an improper esti-
mate of the boundary conditions notably within the Pacific plate, and
on the other hand, to a very low local data density. Indeed, whereas
Kreemer et al. (2014) only interpolate the strain rate dataset to best fit
the data, our solution aims at doing the same, but under the constraint
of the stress equilibrium equation (Eq. (1)). As demonstrated by the
synthetic benchmarks presented in Section 3.4, evenly distributed
data lead to a better estimation of the rigidity. Therefore, a future use
of our methodology could be to invert interpolated GPS velocities
(such as the ones provided by the Global Strain Rate Project) instead
of the original GPS data to compute effective rigidity distribution at a
continental scale.

Lastly, we compare the spatial distribution of our dilatational strain
rate solution with the one obtained by Kreemer et al. (2014) (Fig. 12).

Fig. 11. Distribution of the strain rate for Zone 1. Second invariant of the strain rate tensor from (a) the upper (strongest) admissible values of our rigidity optimization and (b) the global
strain map of Kreemer et al. (2014).
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Weuse thefirst invariant of the strain rate tensor (mean of its trace) as a
first-order approximation of the dilatational strain rate.

Neither the strain compatibility approach used by Kreemer et al.
(2014) nor our study, take vertical velocitymeasurements into account.
Nevertheless, the plane stress formalism of our modelling leads to the
prediction of vertical strain rates, which is not the case in Kreemer et
al. (2014) analysis. Yet, recent analyses (e.g., Becker et al., 2015) suggest
that the rate-change of vertical loading of the lithosphere may play a
dominant role in defining the distributions of seismicity and therefore
strain.

Despite the difference in their estimation, both spatial distributions
of the dilatation strain rate from Kreemer et al. (2014) and us are very
similar. They notably highlight the compressive context of the SAF sys-
tem along the central bend. The only noticeable difference can be found
along the fault system located north of Los Angeles where vertical mo-
tion is known to occur along active thrust faults (e.g. Northridge or
Compton faults).

6.3. Rigidity of the lithosphere and effective elastic thickness

In the following, we study the relation between in-plane rigidity as-
sociated with geodetic strain (this work) and the flexural rigidity de-
duced from gravity and topographic data analysis (Audet and
Bürgmann, 2011; Lowry and Pérez-Gussinyé, 2011; Tesauro et al.,
2011). In the case of a thin curved elastic plate, the relation between
the bending moment M and the flexural rigidity Df is given by:

M ¼ −Df
d2w
dx2

¼ Df

R xð Þ ð22Þ

where w is the vertical displacement of the plate and R(x) its local cur-
vature radius (e.g. Turcotte and Schubert, 2002). Using Eq. (2), a hori-
zontal force per unit area applied to a vertical section of the
lithosphere can be defined as:

F ¼ Dg εij þ
ν

1−2ν
εkkδij

� �
ð23Þ

where Dg is the stiffness of the lithosphere to horizontal strain. Dg is
equal to 2GTg where G is the shear modulus (Pa) and Tg the plate thick-
ness (m). Therefore, in-plane rigidity Dg is expressed in N while the

flexural rigidity Df is given in Nm, precluding a direct comparison be-
tween these two fields. In order to compare our relative rigidity map
with the flexural rigidity deduced from gravity and topographic data
analysis (Audet and Bürgmann, 2011; Lowry and Pérez-Gussinyé,
2011; Tesauro et al., 2011), we use the elastic thickness associated to
these two formalisms.

The study of Lowry and Pérez-Gussinyé (2011) provides a map of
the flexural elastic thickness (Te) for the entire western US. We assume
that a linear relationship exists between the in-plane plate rigidity and
its corresponding thickness (Chéry, 2008 and present work). Therefore,
our map of Tg is directly proportional to the distribution of D shown in
Fig. 8a. Although such a linear relationship is valid only if elastic param-
eters do not vary with depth, it provides a simple way to estimate the
effective elastic thickness for ourmodelling. For the purpose of compar-
isonwith Lowry and Pérez-Gussinyé (2011), we display their value of Te
over Zone 1 (Fig. 13). Flexural and geodetic elastic thicknesses displayed
in Fig. 13 show a very limited degree of agreement. For example, the
flexural thickness map predicts a thick plate for most of the SAF, while
a low geodetic elastic thickness is deduced using the interseismic veloc-
ity field. The only area suggesting some resemblance corresponds to the
Basin and Range around the ECSZ and the SAF around the Salton Trough
for which both methods display low elastic thickness. In order to find
some justifications about the large discrepancies between Te and Tg at
least two lines of arguments could be investigated.

First, despite the formal similarity between flexural plate and shear
plate theories (Chéry et al., 2011), they may reflect two distinct litho-
spheric behaviours. For example, as stated by Thatcher and Pollitz
(2008), plate flexure is the result of a long term loading over millions
of years, implying that the strain rate in most of the lithosphere is
close to zero. Te is a measure of stress that is supported dynamically
over very long timescales by a lithosphere that is in a state of frictional
failure and viscoelastic flow, meaning the strain rate is virtually zero.
However, given the shorter timescale of geodetic observation and the
clear evidence for seismic release of significant elastic strain potential
accumulated on century timescales, Tg likely does predominantly re-
flects the elastic behaviour of a thicker domain associated to
interseismic deformation. Another difference may come from the litho-
spheric loading. Vertical loads modify distinct components of the strain
tensor. Indeed, those induce flexure and plate motions and therefore
horizontal shear. Hence, distinct behaviours may emerge from these
kinds of load.

Fig. 12. Distribution of the first invariant of the strain rate tensor for Zone 1 from (a) our optimization and (b) the global strain map of Kreemer et al. (2014).
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In the brittle part of the crust, background seismicity is likely to re-
flect the loading of interseismic motion, therefore introducing an an-
elastic component into the analysed shear motion. Beneath the crust
and especially under a shear zone like the San Andreas Fault system,
the upper mantle presents a laterally variable and strong anisotropy
(Hartog and Schwartz, 2001). If such anisotropic behaviours occur at
both crustal and mantle levels, flexural and horizontal loading may ac-
tivate two different rheological systems that could result into significant
differences in terms of effective elastic thickness.

A second way to investigate is to assume that flexural and geodetic
thicknesses represent the same mechanical concept. However, they
could be differently revealed by the data because of the formal differ-
ences between the two inverse problems. In the case of flexural thick-
ness, the determination of Te is based on the correlation between
topographic and gravimetric signal. Among other factors, erosion can
smooth or sharpen the topographic signal. Even if its influence can be
accounted for in modelling approaches (e.g. Forsyth, 1985), the impact
of erosion on the determination of Te seems difficult to quantify due to
large uncertainty associated to past erosion. In addition, a geodynamical
setting mostly involving shear motion may not be adapted at all for a
flexural plate analysis because such a motion is not likely to produce
neither topographic nor gravimetric signals. Last but not least, inverse
theory of plate flexure requires that flexural thickness cannot be deter-
mined for resolutions smaller than the characteristic flexural wave-
length (Watts, 2001). This also may explain why a sharp rigidity
variation across the SAF cannot be resolved by this method. Even if
our methodology has never been used prior to Chéry et al. (2001), the
direct relation between shear strain and shear rigidity is likely to pro-
duce high resolution estimate of geodetic thickness for zones where
the geodetic strain is well defined. Conversely, we acknowledge that
our uncertainty analysis predicts inaccurate rigidity determination in
zones of low strain-rate like the Sierra Nevada. Also, lithospheric loads
like body forces and basal stress coming frommantlemotion can impact
the strain-rate field and therefore altering the determination of the
shear rigidity. The identification of the importance of such effects
must be tackled by future studies.

In order to better understand the discrepancy between flexural
and shear analysis, a tractable way would be to design a complete
mechanical model of western US as it was done for example by
Pollitz et al. (2010). Such a model could be used to predict synthetic
topographic, gravimetric and deformation datasets obeying to

momentum and constitutive equations. Then these “data” could be
inverted using the methodologies associated to flexural and shear
lithospheric deformation and compared to the rheological input of
the forward model.

7. Conclusion

A global inversion strategy has been proposed for the identification
of effective rigidity maps using GPS velocity fields under minimum a
priori assumptions. Taking advantage of the self-adjoint nature of the
governing equations, large dimensional problems coming from neces-
sary high resolution distribution of the rigidity have been considered.
Compared to the previous study carried out by Chéry et al. (2011), the
results are now backed by uncertainty analysis which suggests that
the effective rigidity can only be accurately determined in moderate
or highly strained areas.

This is a high-resolution methodology which can be seen as a me-
chanical model to link shear rigidity to interseismic strain with no
prior knowledge of fault locations. The main limitation of this approach
relies to the plane stress hypothesis used in the forward model. There-
fore, no strain variation occurswith depth for a given horizontal location
over the plate. This behaviour is probably over simplified around active
faults acting like screw dislocations as proposed by Savage and Burford
(1973). To complete what is presented here, the following directions
can be considered:

1) The 2D–effective rigidity model can be replaced by a 3D model of
Western United States including the effective elastic thickness as
the main geophysical parameter. Because this approach would in-
clude the full 3D strain rate tensor, it would provide a more realistic
approximation of the plate behaviour of the lithosphere especially
around faults.

2) The 2D approach can be used over wide areas, for instance at the
continental plate scale, after a splitting in patches. Thiswould permit
to determine large scale rigiditymaps in the framework of the global
strain map project of (Kreemer et al., 2014).

3) The strong spatial correlation between low rigidity areas and ac-
tive fault zones also suggests that our methodology could be ap-
plied for deciphering active faults in tectonically poorly known
areas.

Fig. 13. (a) Geodetic elastic thickness Tg associated to our study; (b) flexural elastic thickness Te given by Lowry and Pérez-Gussinyé (2011).
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Appendix A. Application to shallow creeping faults

In this appendix, we briefly discuss theway our approach deals with
very high strain rates andwhat this implies in term of prior search inter-
val for the relative shear-rigidity values.

Three terms contribute to the spatial regularization (smoothing) of
the modelled distribution of relative rigidity and, consequently, the
modelled velocity field. The first one simply comes from mesh size
and, therefore, from the spatial resolution of our model. Then, a
Tikhonov regularization term can be activated in the cost function (Eq.
(5)). Finally, a spatial smoothing process is performed on the gradient
of the functional (Fig. 2).

All these components of our approach are likely to limit the range of
strain rates that can be properly modelled. In particular, active faults
exhibiting very shallow creep are supposed to lead to local under-esti-
mation of rigidity gradients.

In practice, the mesh size is a few kilometres (20 km in the case of
this study over South California), the Tikhonov regularization term is
not active, and the smoothing process over the gradient of the func-
tional can have a very limited spatial extent. Despite the limitations
of the effects of these regularization components, we see that the
whole range of the expected strain rates (about 4 orders of magni-
tude) can hardly be captured by our approach. Nevertheless, we
demonstrate, hereafter, that (1) if the spatial sampling is high, then
using a 4-order of magnitude search interval allows for a good fit to
sharp velocity changes. (2) Using a 2-order of magnitude search
interval is sufficient in most cases, small but significant local residues
being present only in the case of extremely shallow creeping
behaviour.

First, we run our inversion on synthetic cases that are similar to
those presented in Section 3, but for which the locking depth is much
shallower: 2 km (Fig. A.1) and 0 km (Fig. A.2). For these experiments,
the mesh size is set to 3 km.

In the case of a 2-km locking depth, we find that exploring a 2-order
of magnitude interval for rigidity is sufficient to perfectly model the ve-
locity field (Fig. A.1). The only significant difference between the
modelled and the theoretical values of the relative rigidity appears on
non-significantly deforming zones at distances higher than about
20 km from the fault. Indeed, in these areas, we know that changing
the relative rigidity by several orders of magnitude has very small influ-
ence on the velocity prediction. So, again, we show that our approach
underestimates rigidity far from the active faults. Exploring a 4-order
of magnitude rigidity interval does not improve the fit to ground veloc-
ities. It only pushes a little bit away the limit where the real rigidity is
underestimated.

If we consider, now, the extreme case of a fault experiencing creep
up to the ground surface, then the strain rate across the fault is infinite.
A similar analysis to the preceding case shows that significant residues
remain close to the fault (Fig. A.2). Yet, their amplitudes are very small
(no N2 mm/yr) except exactly on the fault itself. In such an extreme
case, indeed, extending the search interval of rigidity from 2- to 4-
order of magnitude allows for the proper modelling of the velocity
field everywhere. Nevertheless, this better fit has been obtained at the
cost of the regularity of the rigidity distribution which is slightly altered
in non-deforming zones (upper and lower central areas).

Let's move now to the case of the SAF fault segment that is located
north of Parkfield. This segment is known to be experiencing very
shallow creep (e.g. Rosen et al., 1998). We use a 10-km mesh size
and run inversions varying the range of the admissible rigidity values
and the smoothing factors for the gradient of the cost function. All lead
to the same solution that is presented on Fig. A.3. Using a 4-order of
magnitude search interval does not provide additional information
that would not have been captured by a 2-order of magnitude search
interval. This may be due to the 10-km resolution of our mesh, as well
as the relatively low density of GPS measurements in the CMM3 data-
base, notably with respect to other high-resolution measurements like
InSAR.

In order to illustrate the efficiency of ourmodelling, we compare the
modelled velocity field with the CMM3 measurements along two pro-
files across the SAF system, one (A–B) just south of the city of San
Juan Bautista (Fig. A.3b), and the other (C–D) close to the city of
Parkfield (Fig. A.3c). It can be noticed that no significant pattern of the
deformation, as gathered by the CMM3 database, is missed by our
modelling. Moreover, this good fit has been obtained with a limited
range for the admissible rigidity values, which, in turn, guarantees
some degree of regularity of the rigidity distribution, even on very few
deforming areas.

Appendix B. Processing the SAF zone using a 4-orders of magnitude
range for admissible rigidity

In themain bodyof this paper,we determine the relative rigidity dis-
tribution (both for synthetic and real cases) from the exploration of a 2-
orders of magnitude range of rigidity values. Appendix A shows that,
unless we need to deal with sharp velocity gradients that are typically
found on very shallow creeping fault segments, this rigidity range is suf-
ficient to properly fit the interseismic velocity field within their uncer-
tainties. In this appendix, we show that using a wider range of
admissible rigidity value (4 orders of magnitude instead of 2) in the in-
version process applied to Southern California leads to a very similar
solution.

As noticed in Appendix A, the inversion becomes now longer
and less steady. Nevertheless, it converges to a solution which dif-
fers only in places where ground deformation is very small. Indeed,
setting the lowest relative rigidity value to 1, then most of the sig-
nificantly deforming areas exhibit relative rigidity values that are
below 20 (Fig. B1a). Only quasi non-deforming areas require rela-
tive rigidity values on the order of 100 or above. But we know
that, in very weakly deforming zones, large changes of high rigidity
values only lead to small changes in strain prediction. Fig. B1b
shows that, as expected, using a wider search domain leads to a
similar solution where ground deformation is significant, and to a
larger ratio between rigidity in non-deforming zones relatively to
deforming areas. However, both solutions (using a 2-fold or 4-fold
range of magnitude) fit the data globally in the same way. This con-
firms the fact that a very large range of rigidity is admissible far
from the active fault systems. This statement is illustrated again
by the lower and upper bound solutions (Fig. B1b–c). The rigidity
distribution is well constrained in significantly deforming zones,
lower and upper bounds being close to the optimal solution, but
badly constrained elsewhere. Typically, any value of rigidity higher
than 10 is an admissible solution for rigid areas.

In conclusion,we see that almost all the significant ground deforma-
tion is captured using a 2-orders ofmagnitude range for relative rigidity.
Increasing this range allows either a better modelling of ground defor-
mation induced by shallow surface creeping segments, or the assign-
ment of higher rigidity values in non-deforming zones. But, in this
latter case, the fit to the velocity field is very little improved and we
know that the uncertainties associatedwith these rigidity values remain
very high.
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Fig. A.1. Velocity and relative rigidity distributions for synthetic cases mimicking shallow creep on strike-slip faults. The locking depth is set to 2 km. The search interval for the relative
rigidity has 2 orders (left) or 4 orders (right) of magnitude. (a and d) Theoretical velocities (green dots) and modelled velocities (black dots) at measurement locations along the profile
(dotted black line) indicated in (c). (b and e) Theoretical (dashed curve) and modelled relative rigidity (colored dashes using same color palette as in (c) and (f) respectively) along the
same profile. (c and f) Spatial distribution of relative rigidity determined by our inversion. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. A.2. Same as Fig. A.1 but the locking depth is now set to 0 km.

Fig. A.3. (a) Relative rigidity distribution over the Parkfield segment of the SAF. Black squares indicate the location of the cities of San Juan Bautista (north) and Parkfield (south). White
arrows are the velocities of the CMM3 database. Measured (red circles) andmodelled (black circles) along-strike velocities along (b) A–B and (c) C–D profiles shown in (a). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5.3 Discussion and future directions

This first application of global optimization algorithm described in Chapter 4 allows
us to show how to solve a low complexity problem for geodetic inverse problems. The
term low complexity refers here to a single data type (GPS velocities) considered invariant
with time. In this case, we checked the efficiency of the methodology for the first level
of complexity, I-level (one data type, time-independent variables). The work presented
in this paper is an extension of a previously published paper (Chéry et al., 2011) with
significant methodological enhancements: (1) the use of the adjoint to include larger
parameters set at low computational cost, (2) the optimization of the boundary conditions
and (3) the generation of an uncertainty map to complete the distribution of the rigidity
from the inversion.

Alternatively to the elastic flexural theory, we focus in this paper on linking the shear
rigidity to the horizontal motion through the stress equilibrium equation. The adjoint
formulation of our forward problem allowed us to consider a high number of parameters
and therefore to produce a high resolution map of the rigidity. The application to the
western United-States using CMM3 interseismic velocities provides low effective rigidi-
ties in regions presenting high deformations (San Andreas Fault system, Mojave Desert,
Eastern California Shear Zone) while high rigidities are found in areas displaying little
deformations (South Basin and Range, Sierra Nevada). These rigidity variations are as-
sociated to low residual velocities (NRMS = 1.2) and effective rigidity are accurately
determined in moderately and highly strained areas. Furthermore, except in few places
(offshore the Pacific Coast and East of the East Californian Shear Zone), we are able to
retrieve most of the kinematic strain rate of the Global Strain Rate Map (Kreemer et al.,
2014), simply by taking into account the mechanical constraint of the stress equilibrium
equation.

As part of further applications of this study, we can imagine extending the 2D effective
model to a 3D model representation of the western US. As a result, the effective elastic
thickness deduced from the shear rigidity will become one of the free geophysical parame-
ter of the inversion, leading to a more realistic approximation of the plate characteristics
and behavior. Another possibility would be to use this 2D approach over wider areas such
as continental or even global scale. This could be achieved along with the global strain
map project of Kreemer et al. (2014). Finally, because of the strong spatial correlation
between low rigidity areas and active fault zones, our methodology could be applied for
deciphering active faults behaviour in tectonically poorly known areas or identifying post-
seismic residuals in the velocity fields. All these suggestions are only proposals to extend
our work and are not developed in this manuscript.

Nevertheless, this paper can be considered as a prelude of the central development of
my thesis which consists in jointly inverting various types of geodetic data. From this
I-level of complexity, I adapted and expanded the algorithm for time-varying problems
(several time intervals) described by a single data type displaying time-dependent com-
ponent, tilt data (second level of complexity, II-level). A III-level of complexity can be
defined if more than one kind of data is considered. This level combines several geodetic
data types (GPS, InSAR, levelling and tilt data) with time-dependent parameters.
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Chapter 6

Tilt time-series inversion
and drift modelling

Résumé
Dans ce chapitre, nous nous intéressons à un deuxième type de problèmes faisant in-

tervenir des paramètres de modèle de source dépendant du temps ainsi que des paramètres
instrumentaux inconnus. En effet, les jeux de données géodésiques sont bien souvent quasi-
continus dans le temps et forment des séries temporelles qui peuvent couvrir plusieurs an-
nées ou décennies. Dans le cas des données de tilt, l’extension de la couverture temporelle
peut se faire au détriment de la qualité du signal enregistré. En effet, le bruit coloré ou
Brownien contenu dans les données de tilt est dépendant du temps et propre à chaque
instrument. En outre, la dérive associée à chaque composante d’un instrument augmente
l’incertitude de la mesure et de ce fait, sa capacité à enregistrer le signal produit par la
source de déformation.

Nous proposons ainsi une nouvelle approche, dont les principes sont décrits dans le
Chapitre 4 qui permet d’estimer à la fois les paramètres de la source de déformation et les
paramètres de dérive des inclinomètres. Pour cela, nous faisons l’hypothèse d’une linéarité
entre la déformation de la surface et celle de la source. Nous considérons les variations
volumétriques subies par 1) une source sphérique (modèle de Mogi) et 2) une fracture en
ouverture (modèle d’Okada). Des jeux de données synthétiques associés à ces 2 types de
modèles sont créés pour illustrer et éprouver la méthodologie. Ce chapitre présente dans
un premier temps les détails de la méthodologie et son application avec une source de type
Mogi. Ces travaux ont fait l’objet d’un article soumis au journal Journal of Geodesy. Les
résultats obtenus pour le modèle de type Okada sont détaillés dans la deuxième partie du
chapitre.
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6.1 Introduction

The methodology developed in Chapter 4 has previously been applied to a single
type of data with time-independent parameters (I-level of complexity). However, geode-
tic datasets are generally made of long time series which can therefore be more difficult to
interpret due to the time-dependent noise and/or drift. For this reason, we extended the
methodology to time-varying problems. I present here the application of the approach
on a second level of complexity which still considers a single data type (tilt), but also
time-dependent instrumental parameters (long-term drift).

Although borehole tiltmeters are widely used to survey deformation in nearly real-
time, these high-resolution instruments are not suitable for long term monitoring due to
their poorly known linear drift. In volcano geodesy or reservoir monitoring, surface defor-
mation can be induced by the filling or draining of magmatic chambers, dike propagation,
hydraulic fracturation and fracture draining when oil and/or gas are extracted from un-
conventional reservoirs (see Chapter 3). When switching to modelling these phenomena,
analytical models such as point source Mogi (1958) and planar dislocation (Okada, 1992)
are widely used. For both models, ground deformation can be linearly expressed as a
function of volume variations. Therefore, when inverting tilt data to retrieve volume
variations of the source and drift rates, the inversion converges towards an infinity of
admissible parameters.

In this chapter, I present a new approach to estimate strain source variations and linear
tiltmeters drift using our optimization scheme. By assuming linear dependence between
source strain and source parameters, we demonstrate the potential of the methodology to
infer the drift parameters of tiltmeters and the volume changes of 2 types of sources: Mogi
(1958) and Okada (1992). Firstly, the approach is described and evaluated on synthetic
tilt data generated using a Mogi model. This study has been submitted to the journal
Solid Earth. Secondly, I consider the deformation induced by the opening of a fracture
using Okada’s model to demonstrate the robustness of our approach to recover the desired
parameters.

6.2 How to use tilt series to estimate long-
term instrumental drift?

Article to be submitted to Journal of Geodesy.
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Abstract. Borehole tiltmeters are widely used to continuously record small surface deformation of reservoirs and volcanoes. 

Because these instruments display unknown long-term drift, only short-term tilt signal can be used for monitoring purpose.  

We propose a method to invert long-term time series of tilt data induced by strain variations at depth. Assuming that tiltmeters 10 

drift linearly with time does not yield to uniqueness of volume variation. To overcome this problem, we first invert the data 

with no constrain on the drift to obtain one particular solution among all admissible. Then, using the linearity of the forward 

model, we use the statistical properties of the drift distributions to restore the uniqueness of the solution. We illustrate our 

approach with four synthetic cases simulating volume changes of a reservoir. We demonstrate the efficiency of our method 

and show that the accuracy of estimated volume variation dramatically improves if low drift tiltmeters are used. 15 

 

1 Introduction 

The deformation of the Earth’s surface reflects anthropogenic, tectonic and volcanic processes at depth (e.g., fault slip and/or 

mass transport) transmitted to the surface through the mechanical properties of the crust. To capture this ground deformation 

different geodetic instruments and techniques can be used. For instance, Global Navigation Satellite System (GNSS), 20 

Interferometric synthetic-aperture radar (InSAR) and levelling surveys commonly monitor millimetric motions of the ground. 

Complementary to this, tiltmeters locally measure the horizontal derivative of the vertical motion (hereafter denoted as tilt 

measurement) in one or two directions. These sensitive instruments are suitable for recording small deformations (Goulty, 

1976; Agnew, 1986) that would be beyond the resolution limit of other techniques. Unfortunately, these instruments are drifting 

with time, with drift rate amplitudes depending on instrument type, making these instruments often unusable for revealing 25 

slow deformation processes. 

Water-tube tiltmeters (10-500m) are intrinsically stable due to the length of the sensor. To minimize subsurface effects, they 

are usually installed in deep tunnels therefore displaying residual drifts as low as 0 . 1 𝜇rad/yr (e.g. Boudin et al., 2008). By 

contrast, short-base tiltmeters are usually installed in boreholes and display higher drift rates of 1-100 𝜇rad/y (Jahr et al., 2006, 

Chawah et al., 2015). Despite borehole tiltmeters are deployed as networks in volcanoes and geological reservoirs (e.g. 30 
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Gambino et al. 2014), their potential is far from being fully exploited partly because such tiltmeters are drifting in a completely 

unconstrained way, intrinsically to each instrument. In addition to drift, tiltmeters also display a time dependent noise that can 

be of various nature, such as environmental (e.g. Gambino et al., 2014; Goulty, 1976) or instrumental (Wu et al., 2015). The 

environmental noise is mostly induced by hydraulic loading, temperature effect or pressure gradient. These unwanted signals 

can be lowered when tiltmeters are installed in deep boreholes, to attenuate the amplitude of the noise. 5 

Although the resolution of borehole tiltmeters is as high as 1-5 nrad, tilt data are generally considered only during a short 

period of time due to the long-term drift and the noise. Indeed, to monitor long term reservoir extraction or magmatic chamber 

inflation/deflation, tilt time series with low drift and signal-to-noise ratio are essential (Wyatt et al. 1982; Kohl and Levine 

1993). Thus, the objective of this study is to infer instrumental drift through the solution of an inverse problem. To overcome 

the non-uniqueness of the solution, we developed a methodology to simultaneously estimate tiltmeters drift as well as strain 10 

source parameters from tilt series. We illustrate our approach with synthetic cases simulating ground deformation induced by 

a Mogi-type source (Mogi, 1958) whose volume varies over 11 months. 

 

2. Tilt data parametrization 

We consider a ground deformation signal recorded by N tiltmeters in both x and y directions directions. For each instrument, 15 

the observed tilt 𝑑𝑜
⃗⃗⃗⃗ (𝑡) is the sum of the signal produced by the source 𝑑𝑠

⃗⃗⃗⃗ (𝑡), an instrumental drift 𝑑𝑑
⃗⃗ ⃗⃗  (𝑡) and a cumulative 

noise 𝑐𝑛⃗⃗⃗⃗ (𝑡) as defined by Eq. (1): 

𝑑𝑜
⃗⃗⃗⃗ (𝑡) = 𝑑𝑠

⃗⃗⃗⃗ (𝑡) + 𝑑𝑑
⃗⃗ ⃗⃗  (𝑡)  + 𝑐𝑛⃗⃗⃗⃗ (𝑡) ,  (1) 

We assume for each instrument that the drift is linear in time such as 𝑑𝑑
⃗⃗ ⃗⃗  (𝑡) = 𝑎  ∙ 𝑡   with 𝑎  a constant drift rate vector (𝑎𝑥 , 𝑎𝑦) 

representing the slope of the drift and 𝑡 is the time elapsed since the beginning of recording. Because the tilt measurement is 20 

relative, we assume that the drift is zero at the beginning of observation. The number of unknown drift parameters associated 

to the problem is therefore 2N. 

In the following, we consider that the source strain 𝑑𝑠
⃗⃗⃗⃗ (𝑡) depends linearly of the source parameter at depth. Strictly speaking, 

this is obviously not valid in most cases. Nevertheless, such an approximation is considered as reasonable and is widely used 

in many geophysical domains. For instance, the use of Green functions is widespread for modeling ground deformation induced 25 

by dislocation at depth (Okada’s model) or volume changes of a deep reservoir (Mogi or McTigue models). For one source, 

the time varying deformation captured by the tiltmeters can be written as a product of a known coefficient vector 𝛼  and a 

continuous time function corresponding to a strain source parameter 𝑝(𝑡) defined by Eq. (2): 

𝑑𝑠
⃗⃗⃗⃗ (𝑡) = 𝛼 ∙ 𝑝(𝑡) ,  (2) 
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where 𝛼  is called the deformation model parameter and represent the contribution of a unit source parameter to the signal 

recorded by each tiltmeter.  Therefore, larger components in 𝛼  hold for instruments close to the source indicating a higher 

sensitivity with respect to the source. Combining Eqs.1 and 2, it becomes obvious that an infinite number of pairs involving 

𝑝(𝑡) and N drift rate vectors 𝑎   produce the same signal 𝑑𝑜
⃗⃗⃗⃗ (𝑡). Therefore, inverting the tilt data yields to a non-unique solution. 

Instead of converging towards a single global minimum with one set of parameters, the inversion process tends to a family of 5 

admissible combinations of parameters, all explaining the data equally well. Eventually, Eq. (3)  provides an admissible 

solution :  

𝑑𝑎
⃗⃗ ⃗⃗  (𝑡) = 𝛼  𝑝𝑎(𝑡) + 𝑎𝑎⃗⃗⃗⃗  𝑡 = 𝛼   𝑝∗(𝑡) +  𝑎∗⃗⃗⃗⃗   𝑡 ,  (3) 

where the subscript a expresses any of all admissible scenarios provided by the optimization, one of them being the desired 

scenario denoted by the exponent *. We use the statistical properties of the tilt parameters to recover the desired scenario, that 10 

is the closest admissible solution to the target. 

 

3. Optimization problem 

3.1 Global optimization 

We discretized the strain source parameter function 𝑝(𝑡) over M time steps, leading to a vector of length M. The total number 15 

of unknowns is therefore 2N + M, while the number of observations is 2N ∙ M . We follow a classical scheme of optimization 

to invert our tilt data to find an admissible set of both 𝑝𝑎 and 𝑎𝑎⃗⃗⃗⃗  . The free parameters are set to an admissible initial guess 

with no other a-priori knowledge. This initial set of parameters provides a first model 𝑑𝑚
⃗⃗ ⃗⃗  ⃗ using the constitutive Eqs. 1 and 2. 

Then, they are compared to the observations 𝑑𝑜
⃗⃗⃗⃗  through a functional denoted  𝐽. The stopping criteria is based on a target 

minimum value for the functional to be reached within given maximum number of iterations. Global optimization is necessary 20 

since we have no information on the convexity of the cost function and several local minima may be present.We apply a multi-

criteria global optimization algorithm (Ivorra et al., 2013) which aims at improving the initial condition for classical gradient-

based methods (Mohammadi & Pironneau, 2009). 

To build the global functional, we first compare for the N tiltmeters the model prediction 𝑑𝑚
⃗⃗ ⃗⃗  ⃗  to the observations 𝑑𝑜

⃗⃗⃗⃗  at a given 

time 𝑡𝑖 . We use a weighted Euclidian norm as defined by Eq. (4): 25 

𝐹𝑖 =  𝐷𝑖
⃗⃗  ⃗

𝑡
Σ𝑖

−1𝐷𝑖
⃗⃗  ⃗ ,  (4) 

where Σ𝑖  is the covariance error matrix of each measurement and 𝐷𝑖
⃗⃗  ⃗ = 𝑑𝑜

⃗⃗⃗⃗ (𝑡𝑖) − 𝑑𝑚
⃗⃗ ⃗⃗  ⃗(𝑡𝑖). In order to construct a fuctionnal 

assembling the M time steps, we integrate 𝐹𝑖 over time using a piecewise linear approximation between 𝑡𝑖 and 𝑡𝑖+1. Therefore, 

the global functionnal gathering all observations and the corresponding models can be written as Eq. (5): 
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𝐽 =  
1

𝑡𝑀+1−𝑡1
∑  

1

2
 [𝐹𝑖 + 𝐹𝑖+1][𝑡𝑖+1 − 𝑡𝑖]

𝑀−1
𝑖=1  ,  (5) 

The optimization is assumed to be successful whenever this functional is lower than the data uncertainties or while reaching 

the target minimum value, providing one optimal set (among an inifinite number of others) of 𝑝 and 𝑎  fitting at best the 

measurements. 

3.2 The non-uniqueness problem 5 

At the end of the optimization, we obtain one set of admissible parameters  𝑝𝑎 and 𝑎𝑎⃗⃗⃗⃗  that predicts tilt measurements 𝑑𝑎
⃗⃗ ⃗⃗   close 

to our observations 𝑑𝑜
⃗⃗⃗⃗  . The residual tilt is defined by the difference between the admissible dataset and the observations over 

the M time steps: 

𝑅𝑀𝑆𝑡𝑖𝑙𝑡 = (
∑ ‖𝐷⃗⃗ 𝑖‖

2𝑀
𝑖=1

𝑀
)
1/2

 ,  (6) 

This residual can be due to the noise 𝑐𝑛⃗⃗⃗⃗  embedded in the observations but also to some lack of convergence of the minimization 10 

process. Due to non-uniqueness, this admissible set of parameters provides a strain source history and a set of drift rates that 

can greatly differ from the target solution. Starting from the admissible solution (𝑝𝑎 ; 𝑎𝑎⃗⃗⃗⃗  ) and equation 3, the desired solution 

( 𝑝∗;  𝑎∗⃗⃗⃗⃗  ) must satisfy: 

𝑎∗⃗⃗⃗⃗ = 𝑎𝑎⃗⃗⃗⃗ − 𝑅 𝛼  ,  (7a) 

𝑝∗ = 𝑝𝑎 + 𝑅∗ 𝑡 ,  (7b) 15 

where 𝑅 =  
𝑝∗−𝑝𝑎

𝑡
 is a correction coefficient to be estimated. When varying 𝑅, we get admissible distributions of 𝑎  and 𝑝 . 

Having no indication on the strain source history 𝑝(𝑡) , we cannot use equation 7b to infer a suitable value for 𝑅. By constrast, 

equation 7a contains a-priori information concerning the source model (N components of 𝛼  ) and the drift parameters (N values 

of 𝑎  ). Because 𝛼  and 𝑎  datasets represent respectively the source effect (dependant to the instrument position with respect to 

source position) and the instrument properties, they must be statistically independant. Therefore, the value of 𝑅 in equation 7b  20 

must be chosen to provide a desired solution 𝑎∗⃗⃗⃗⃗  displaying a lack of correlation with 𝛼 . Hence, the enforcement of 

𝑐𝑜𝑣(𝑎∗⃗⃗⃗⃗ , 𝛼 ) = 0 leads to the following solution: 

𝑅 =  
𝑐𝑜𝑣(𝑎𝑎⃗⃗ ⃗⃗  ⃗,𝛼⃗⃗ )

𝑣𝑎𝑟(𝛼⃗⃗ )
 ,  (8) 

meaning that 𝑅 is the coefficient of the linear regression adusting 𝑎𝑎⃗⃗⃗⃗   as a function of 𝛼 . Using  an example of the time inflation 

of a buried volumetric source at depth, we show how our methodology leads to recover both the actual drift rates and volumetric 25 

source history. 
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4. Application to reservoir modeling 

4.1 Forward model 

The above optimization problem requires a linear relation between the source parameters and the observation. Therefore, this 

class of problem covers numerous elastic solutions (either analytical or numerical) used for reservoir modeling (Segall, 2010). 

Among them, the so-called Mogi model is the simplest and probably the most widely used analytical solution for a pressurized 5 

point source in a homogeneous elastic half-space (Mogi, 1958). The Mogi source is defined by its radius 𝑅, centered at a depth 

𝑧𝑠  beneath the free surface at 𝑧 = 0, 𝑧  being counted positive upwards. A uniform internal pressure 𝑃  is applied to the 

boundary of the spherical source. The volumetric change associated with the deformation is given by ∆𝑉 =
𝜋

𝜇
 𝑃𝑅3 with 𝜇 

being the shear modulus. The system is described by four variables, including the cartesian coordinates of the point source 

𝑥𝑠⃗⃗  ⃗ = (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) and the volumetric change (∆𝑉) that plays the role of the parameter 𝑝 in the optimization problem (section 3 10 

above). The Mogi model predicts 3-D surface deformation 𝑢⃗ = (𝑢𝑥, 𝑢𝑦 , 𝑢𝑧) at a given observation point 𝑥 = (𝑥, 𝑦, 0). The 

ground tilt vector is given by the horizontal derivatives of the vertical displacement 𝑢𝑧 = (𝑥, 𝑦). The tilt 𝑑𝑠
⃗⃗⃗⃗  is therefore the 

slope of 𝑢𝑧, considering that tilt vectors are pointing in direction of decreasing vertical displacements. Therefore, 𝑑𝑠
⃗⃗⃗⃗ = −∇𝑈⃗⃗ 𝑧 

(Uz being the vector made of the uz of all the tiltmeters at the time considered) and the tilt vector associated to a source is 

expressed by the following expressions: 15 

𝑑 𝑠 = 𝛼  ∆𝑉 ,  (9a) 

𝛼 =
3(1−𝜈)

𝜋

−𝑧𝑠 ∙ 𝑟

(𝑧𝑠
2+𝑟2)3/2  𝑛⃗  ,  (9b) 

where 𝜈 is the Poisson ratio (chosen to be 0.25), 𝑟 the horizontal distance √(𝑥𝑠 − 𝑥)2 + (𝑦𝑠 − 𝑦)2 between the source point 

and the observation point and 𝑛⃗  the unit vector pointing from the source to the observation point. Even if all four variables 

(𝑥𝑠 , 𝑦𝑠, 𝑧𝑠, ∆𝑉) can be considered as optimization parameters, we choose to fix the position of the source and to only seek for 20 

the volumetric changes over time. 

4.2 Synthetic data 

In addition to the tilt component induced by the source (Eq. 9a-b), we add to the synthetic signal some random 

tiltmeter drift and tiltmeter noise to generate 11 months of observations. We present hereafter the results of four different 

synthetic configurations involving different levels of drift and noise. Each tiltmeter is assumed to have a randomly chosen drift 25 

rate for both components using a uniform probability density function. The range of probability is chosen according to known 

average values for low drift ( 2.4 𝜇rad/yr) and moderate drift ( 48 𝜇rad/yr). Besides drift, we either consider no noise in 

the data (Cases 1a and 2a, see table 1) or, to be more realistic, we introduce Brownian noise in tilt data (Cases 1b and 2b). We 

assign a standard deviation of the short term tilt measurements of 𝜎𝑠ℎ𝑜𝑟𝑡 = 5 nrads and assume that a Brownian noise is leading 

to a maximum standard deviation 𝜎𝑚𝑎𝑥  at the end of the experiment. Given the lack of knowledge about noise for the borehole 30 

 
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tiltmeters cited above, we arbitrarily set the maximum standard deviation to 180 nrads after one year of experiment. The tilt 

covariance matrix is therefore built using the maximum standard deviation for both components of each tiltmeters (Kasdin, 

1995): 

𝜎 = 𝜎𝑠ℎ𝑜𝑟𝑡𝑇
𝐴/4 ,  (10) 

where 𝑇 is the number of iterations for each data sample required to reach 𝜎𝑚𝑎𝑥  after 11 months and 𝐴 is the type of noise (i.e. 5 

𝐴 = 0 for White noise and 𝐴 = 2 for Brownian noise). We estimate 𝑇 to 1440 using Eq. (10) for the specified values of 𝜎𝑠ℎ𝑜𝑟𝑡 

and 𝜎𝑚𝑎𝑥 . The deformation is produced by a spherical source embedded in an elastic medium at 1500 m deep and centered in 

a 10x10 km observation domain. The induced deformation is recorded by 50 tiltmeters randomly distributed (Fig. 1a). 

Synthetic data are monthly down-sampled values to decrease the time size of the problem (M=12), corresponding to monthly 

time-intervals volume variations (Fig. 1b). The volume change is set to zero during the first 2 months, then increases linearly 10 

to 250 000 m3 the next 5 months and finally goes back to zero after 2 months. The vertical deformation induced by a the 

volume variation of the source is therefore maximum at 𝑡 = 7 months. The corresponding synthetic ground deformation signal 

at this time is shown for case 1b (low drift instrument and noise of 180 nrad, Fig. 1c). An example of daily time series for x-

component of the tilt is shown Fig. 1d for the instrument marked with a green cross on Fig. 1a. 
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Fig. 1: Synthetic tilt produced by volumetric changes of a spherical source with an added drift of 2.4 𝝁rad/yr and a Brownian noise, 

during 11 months of the experiment. a) Screenshot of the vertical displacement 𝒖𝒛  (color scale) and tilt signal (black arrows) induced 

by a volumetric variation at 𝒕=7 (∆𝑽 = 𝟐𝟓𝟎 𝟎𝟎𝟎 m3, red star on b) of a spherical source (yellow cross). b) Evolution of the targeted 

volumetric changes over one year c) Typical random walk noise associated to the tilt over 11 months d) Synthetic tilt signal with 5 

drift and noise in x-direction for one tiltmeter (green cross on Fig. 1a). 
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4.3 Results 

The configurations and results of the four experiments previously described are summarized in Table 1. After the optimization 

process, we converge towards an admissible solution with a set of parameters, ∆𝑉𝑎 and 𝑎𝑎⃗⃗⃗⃗  giving the lowest residual between 

synthetic and modelled data, as provided by the RMS value that integrates time series over the whole time period. Table 1 5 

shows a coherent relation between instrumental properties (drift and level of noise) and 𝑅𝑀𝑆𝑡𝑖𝑙𝑡 . Indeed, the tilt residual only 

increases when adding noise to the data (cases 1b and 2b) but not when the level of drift increases (cases 2a and 2b). The 

inversion process provides a fairly homogeneous tilt residual over time for the whole set of tiltmeters (Fig. 2a). Also, the spatial 

distribution of the residual values between synthetic and modelled tilt vectors shows a lack of spatial trend for both amplitude 

and azimuth (Fig. 2b). 10 

 

Fig. 2: Residual tilt provided by global optimization for case 1b a) Time evolution of the norm of the residual tilt vectors for all 

instruments. Red crosses correspond to residual shown in b) Tilt residual pattern at t=7 month (black arrows) superimposed to the 

uplift model (solid isovalues). The position of the spherical source is represented by a yellow cross. 
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This admissible optimal solution is only one particular solution of the family associated to Eq. 3. Because no constrain is 

applied at this stage on the relation between 𝛼  (which expresses the dependency of ground measurements on their relative 

spatial distribution with respect to source location) and drift parameters 𝑎𝑎⃗⃗⃗⃗ , a clear correlation pattern occurs between these 

two quantities (Fig. 3 showing case 1b). In order to cancel this trend which is caused by the non-uniqueness of the inverse 5 

problem, we enforce the lack of correlation between the deformation model parameters 𝛼  and the desired drift parameters 𝑎∗⃗⃗⃗⃗  

by inserting the result of Eq. (8) in Eq. (7a). As a result, the components of 𝑎∗⃗⃗⃗⃗  display a variance similar to the one associated 

to the target drift coefficients (Fig. 3). In addition, there is an excellent agreement between the desired and target drift values 

with a residual value equal or smaller to 0.1 rad/yr for case 1b. Because this value is markedly smaller than the trend of the 

synthetic Brownian noise for case 1b (that is in average equal to 0.2 rad/yr, see Eq. (10) and Fig. 1c), we can conclude that 10 

the optimization process retrieves the sum of both deterministic and stochastic linear trends. Once the correction factor 𝑅 is 

determined, it can be used in Eq. (7b) to obtain the desired volume change ∆𝑉∗. Because the target volume change after 11 

months is zero, the flow trend rate 𝑉0̇ between initial and final values of ∆𝑉∗ should be zero. Therefore, the modelled value of 

𝑉0̇ in Table 1 provides some insight about the precision of instrumental drift determination. Unsurprisingly, low drift tiltmeters 

retrieve precisely the final target volume (Table 1 and Fig. 4a). Similar values of 𝑉0̇ provided by experiments 1a and 1b 15 

(respectively 2a and 2b) are due to identical set of the drift coefficients used for these experiments. Beyond these particular 

solutions, one needs to provide a statistical bound of the solution uncertainty. Two kinds of estimates are needed (1) the 

volumetric flow rate resolution 𝛿𝑉̇  (i.e. the accuracy of the linear component of the solution along time) (2) the instantaneous 

volume resolution 𝛿𝑉 . The former quantity is associated to the Eq. 7a and to the precision of determination of 𝑅. The latter 

term 𝛿𝑉 is linked to Eq. 9a and to the precision of the determination of d⃗ s that depends in turn from RMStilt. Because of the 20 

linear character of these equations, uncertainties on  𝛿𝑉̇  and 𝛿𝑉  associated respectively to 𝑅  and ∆𝑉  are given by the 

following relations: 

𝛿𝑉̇  = 𝑅𝑀𝑆𝑎∗ (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)⁄  ,    (11a) 

𝛿𝑉  = 𝑅𝑀𝑆𝑡𝑖𝑙𝑡 (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)⁄  ,  (11b) 

where 𝑅𝑀𝑆𝑎∗ is the residual drift rate computed over all components of 𝑎∗⃗⃗⃗⃗ , 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 being the minimum and maximum 25 

values over all components of 𝛼 . The computation of these values in Table 1 indicates that the target volume solution is 

adequately covered by this a-posteriori uncertainty computation of 𝛿𝑅 . Finally we check by removing the trend associated 

to targeted and modelled evolutions that the residual volume of the solution over time is bounded by a-posteriori uncertainty 

𝛿𝑉 , that is of 490m3 for case 1b (Fig. 4b). 
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Fig. 3: Relation between all components (x-y) of drift rate 𝒂𝒂⃗⃗ ⃗⃗   and model coefficients 𝜶⃗⃗  for case 1b of Table 1. Black dots refer to the 

components of 𝒂𝒂⃗⃗ ⃗⃗   that display a clear correlation with 𝜶⃗⃗  components. After a linear correction using the value of R provided by Eq. 

8, the components of  𝒂∗⃗⃗⃗⃗  are fully decorrelated with 𝜶⃗⃗  components. Target coefficients (blue crosses) are retrieved with a precision 

of 0.1 rad/yr. 5 
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 Test 1a 1b 2a 2b 

Configuration 
Drift (𝜇rad/y) ±2.4 ±2.4 ±48 ±48 

Noise (𝜇rad/y) 0 0.18 0 0.18 

Optimization 

 

𝑅𝑀𝑆𝑡𝑖𝑙𝑡  (nrad) 0.59 46.7 3.05 48.2 

Flow rate trend 𝑉0̇  

(103 m3/yr) 
2.14 2.03 -181 -182 

Flow rate uncertainty 

𝛿𝑉̇  (103 m3/yr) 
14.1 14.2 280 281 

Volume resolution 𝛿𝑉  (m3) 6 490 32 506 

 
Table 1: Configurations and results of the combination of global optimization and flow correction for four synthetic cases (1a-b and 

2a-b). The 𝑹𝑴𝑺𝒕𝒊𝒍𝒕 describes the mean residual in tilt measurements for all instruments over time. The flow rate trend 𝑽𝟎̇ represents 

the average slope of ∆𝑽  over the two first months and the two last months. The flow rate uncertainty 𝜹𝑽̇   and the volume 

resolution 𝜹𝑽  are provided according Eqs. (11a-b).  5 
 

 

Fig. 4: Evolution of volume variation ∆𝑉 along time for case 1b a) comparison of target volume variation (grey dotted line), modeled 

volume variation after flow correction (black plain line), upper and lower modeled volume variation at 2- uncertainties (blue and 

red dashed lines); b) residual volume equal to the difference between target and modeled volume with the linear trend removed for 10 
both solutions. 
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5. Discussion 

This two-step optimization approach allows for estimating the strain source change in a reservoir monitored by subsurface 

tiltmeters displaying a compound of linear drift but also colored noise. First, the resolution of the inverse problem with no 

constrain imposed on the drift rate leads to a family of solutions displaying an even adjustment to the data. The quality of the 

adjustment is directly linked to the amount of non-linear noise generated (or recorded) by the tiltmeters and does not involve 5 

the drift rate. Afterwards, the uniqueness of the solution (volume change and drift rate) is enforced by minimizing the 

correlation between deformation model parameters 𝛼  (that represents the sensitivity of the tiltmeters to volumetric change at 

depth) and drift parameters 𝑎  (that should be independent from source parameters). For this second step, the precision of 

volumetric change retrieval is directly linked to the average magnitude of drift. For the amount of deformation considered here 

(a maximum tilt of 15 rad) over a 11-months duration, low drift tiltmeters (2.4 rad/yr) allow for precise recovery of the 10 

trend of the volumetric solution with an uncertainty rate of 14 000 m3/yr for a depth source of 1500m. By contrast, the target 

solution is poorly retrieved if moderate drift tiltmeters are considered. We also show that the instantaneous volume uncertainty 

is linked to the amplitude of Brownian noise associated to the tiltmeters but does not depend on average drift rate amplitude. 

Therefore, our approach provides a relation between the quality of the tiltmeters (in term of linear drift and noise) and the 

precision of strain source retrieval for a given network configuration. As far as long term monitoring is concerned, the value 15 

of the short-term standard deviation of the tiltmeter (𝜎𝑠ℎ𝑜𝑟𝑡 in Eq. 10) presents little interest and must be completed by a 

quantification about the linear drift rate of the sensor as well as the magnitude of its time-dependent noise. 

To our knowledge, no method was previously available to mathematically separate tiltmeters drift from the surface deformation 

associated to a deep strain source over a monitoring time ranging from months to years. We overcome two difficulties: (1) the 

relatively large number of free parameters associated to both tiltmeters drift rates and a long strain source history and (2) the 20 

lack of a-priori knowledge on drift rates parameters distribution. At this stage, we found that splitting the minimisation step in 

the inversion problem and the retrieval of the drift parameters enforcing uniqueness makes the problem easy to adapt to 

different optimization strategies. We noticed however that this two-step method could be replaced by a global formulation. 

Indeed, removing the correlation between source and drift parameters inside the global minimization algorithm can also be 

achieved by looking for drift parameters having the lowest variance. This multi-criteria problem can be solved introducing, 25 

for instance, a weighted functional linear combination of the model-data misfit and the drift parameters variance. 

6. Conclusion 

Our inverse methodology paves the way for long-term tilt monitoring of concentrated or distributed sources of strain at depth, 

notably for geothermal areas, oil & gas reservoirs and volcanoes. The generic key features can be retained: 

1. The approach is usable for any forward model involving a linear relation between source parameter (typically volume 30 

change) and surface deformation (tilt or strain). Therefore, all small strain elastic formulations involving non-spherical sources 

(Segall, 2010), opening dislocations (Okada, 1992), or even inhomogeneous distributions of the medium properties (Masterlark 

et al. 2016) are suitable. 
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2. Our methodology relies on the assumption of the independence between source parameters and drift parameters. The 

enforcement of this statistical property provides a way for determining confidence intervals of parameters. This first study 

suggests that only low drift tiltmeters (ie, lower than a few rad/yr) are useful for long term geodetic monitoring without 

additional geodetic measurements like GNSS or InSAR. 

3. Instrumental drift and noise can be extracted from the residual signal of a network of tiltmeters. Although we have chosen 5 

a low level of noise compared to instrumental drift, this study demonstrates that tilt residual critically depends on the non-

linear instrumental behaviour. In addition, the analysis of tilt network residual using approaches developed for GNSS time 

analysis (Williams, 2003) may bring insight on long-term correlated noise of borehole tiltmeters that is poorly known so far. 

4. The methodology could be extended to account for other geodetic measurement like GNSS times series, InSAR and leveling 

in order to perform a model-data fusion (e.g. Gregg & Pettijohn, 2016). In this case, a multi-criteria functional would combine 10 

all geodetic measurements with their relative weights and error covariance as well as an estimation of the correlation between 

drift and source parameters. 
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6.3 Determination associated
to fracture opening

The mathematical formalism described in Section 6.2 and tested using synthetics
data and a Mogi’s model shows how to retrieve both drift parameters and strain source
parameters over a long period of time. This could permit the use of tilt time series for
reservoir and volcano monitoring.

Because our approach only requires the linearity of the forward model between the data
and the volume variations, it is applicable to a broad range of deformation models used in
volcano geodesy and geomechanical reservoir modeling. For instance, volume variations
can be induced when dikes open under the pressure of ascending magma. Besides, in
unconventional reservoirs the process of hydraulic fracturation produces volumetric strain
when creating or draining a Stimulated Reservoir Volume. Planar dislocations (Okada,
1992) can be used to model both processes and their associated ground deformation.
Thus, as a complement to the previous experiment, I present here the application of the
methodology using synthetic data generated using Okada’s model.

6.3.1. Forward model

The modelling of fracture opening is often done using planar dislocation which ana-
lytical expression is given by Okada (1992) (see Chapter 2). In such case, the problem
can be described by 9 parameters including the cartesian coordinates of the center of the
fracture, ~xs=(xs,ys,zs), the azimuth φ (with respect to the East, trigonometric rotation)
and dip δ (with respect to the horizontal) of the plane, and the length L, width W and
3-D dislocation ∆ui (dip ζ1, rake ζ2, opening ζ3) of the fracture. In our case of fracture
opening (also called tensile case), ∆ui = ζ3, limiting the parameters number to 8. For
such tensile case, the equation of the vertical displacement u3 resumes to (Okada, 1992):

(6.1) u3 = ζ3 × F (φ, δ,W,L, ~xs, ~x)

where F is a function including all parameters except for the dislocation. Thus the
vertical displacement is proportional to ζ3. As the tilt vector is numerically calculated
using ~ds = −∇u3 (Eq. (2.9) in Chapter 4), the tilt signal ~ds is also proportional to ζ3.
This allows us to assume once more a linear relation between observations and volume
variations (∆V = ζ3 W L ). Similarly to Eq.9a from Section 6.2, we can write:

(6.2) ~α =
~ds

∆V

In order to compare with Mogi’s model results, we keep a level of complexity similar to the
previous section in order to jointly invert volume history and tiltmeters drift. Therefore
we choose to fix all source parameters except the opening dislocation ζ3 which is then the
only free parameter of Okada’s model in the optimization.
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6.3.2. Synthetics

As previously done, we consider the observed tilt signal ~do(t) as the sum of the source
signal ~ds(t), the instrumental drift ~dd(t) and some Brownian noise ~cn(t) (see Chapters 4
and 6). We use the same values of the 2 components of the long-term drift as in case 1b
of the example generated in previous section (Section 6.2). The Brownian noise is built
similarly to the one considered in previous section: from the standard deviation of the
short term tilt measurement σshort= 5 nrads, the standard deviation of the noise reaches
a maximum σmax of 180 nrads at the end of the experiment.

We simulate the ground deformation induced by 2 models involving a fracture of di-
mensions 100x100 m at 2000 m depth whose associated volume changes ∆V are equivalent
to previous study (Figure 6.1a). Therefore, the history of fracture opening in meters ζ3
evolves with time from 0 to 25 m. The corresponding volume can be computed by multi-
plying the fracture area (104 m2) by the amount of opening (Figure 6.1). Such variations
in ζ3 are obviously not representative of the real physical model, but allow us to create a
numerical approximation of the volume.

The 2 models of fractures differ from their azimuth φ and dip δ such as:

• Case 3a involves a low dipping fracture (φ = 61°, δ = 37°) which produces compa-
rable deformation as the Mogi source of the paper (Figure 6.1b).

• Case 3b corresponds to a near-vertical fracture (φ = 22°, δ = 79°, Figure 6.1c).

The same network of tiltmeters as for Mogi’s modelling is used to monitor the deformation.

Figure 6.1: Synthetic tilt and uplift produced by the opening of 2 fractures with different azimuth
φ and dip δ. a) Evolution of the volume variation during the 11 months of experiment duration.
The red star indicates the time and volume values for building ground deformation presented on
b) and c). b) Deformation induced by a low dipping fracture (upper limit shown by a yellow
marker, ×5 exaggerated) : azimuth φ = 61°, dip δ = 37°. c) Deformation induced by a quasi-
vertical fracture (upper limit shown by a red marker, ×5 exaggerated) : azimuth φ = 22°, dip
δ = 79°.
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6.3.3. Results
Following the methodology described in Chapter 4 and illustrated in the previous

section, we performed a global optimization in order to retrieve volume variations and
drift parameters associated to the synthetic data. Table 6.1 summarizes the results of the
2-step optimization, from the inversion to the flow rate correction. After the first part
of the inversion process, values of RMStilt (49.8 nrads and 50.3 nrads for cases 3a and
3b respectively) are similar to the ones for cases 1b and 2b associated to Mogi’s Model
(Table 6.1 and Section 6.2 Table 1).

For case 3a, the parameters values of the flow rate correction, the flow rate trend
V̇0=3.56 m3/yr, the flow rate uncertainty δV̇=15 m3/yr and the volume correction δV=570
m3 are also very similar to those of cases 1b and 2b (Table 6.1). Comparing cases 3a and
3b, a factor 2.4 can be noticed for the flow rate trend V̇0=8.47 m3/yr (V̇0=3.56 m3/yr for
Case 3a). Concerning flow rate uncertainty, this ratio is 2 (case 3a δV̇=15.00 m3/yr and
case 3b δV̇=30.48 m3/yr). The same ratio is observed for the volume resolution (case 3a
δV= 570 m3 and case 3b δV= 1151 m3). This proportionality can be understood as δV̇
and δV are built according to Eq.11a and Eq.11b (Section 6.2) and are proportional to

1
αmax−αmin

. For case 3b, this value is 8.9 10−5 µrad/m3, which is 2 times larger than the
value of 4.4 10−5 µrad/m3 for case 3a.

Test 3a 3b
RMStilt(nrad) 49.8 50.3

Flow rate trend V̇0 (103m3/yr) 3.56 8.47
Flow rate uncertainty δV̇ (103m3/yr) 15.00 30.48

Volume resolution δV m3 570 1151

Table 6.1: Configurations and results of the combination of global optimization and flow cor-
rection for the two synthetic cases (3a and 3b). The RMStilt describes the mean residual in tilt
measurements for all instruments over time. The flow rate trend V̇0 represents the average slope
of ∆V over the two first months and the two last months. The flow rate uncertainty δV̇ and the
volume resolution δV are provided according Eq.11a and Eq.11b from Section 6.2

Figure 6.2 represents the relation between all components of the drift rate ~a and model
coefficients ~α. The drift rates obtained after the inversion are defined by the black dots.
For the case 3a, the values found by the inversion process are almost completely uncorre-
lated from the model coefficient (Figure 6.2a). Because the parameter domain is explored
randomly following the optimization steps described in Chapter 4, the inversion can con-
verge to an admissible solution which is close to the target one. The linear relation (Eq.
7a Section 6.2) links the drift to the model coefficients, this trend being more obvious on
Figure 6.2b. The estimation of the flow rate correction R is calculated using Eq. 8 of
Section 6.2 Then, by correcting the drift rate, a new set of uncorrelated drift to model
coefficient is given by the red dots on Figure 6.2. Because these results are produced from
a synthetic dataset, we can compare the corrected drift rates (red dots) to the target drift
rates (blue crosses).
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Figure 6.2: Relation between all components (x-y) the model coefficients ~α and the drift rates
~aa before (black dots) and after (red dots) correction along with target drift rates (blue crosses)
for cases a) 3a and b) 3b. The dashed lines define the limits of the uniform distribution used to
create synthetic models.

Once R is estimated, the volume variations can be deduced from Eq.7b. Because
the correction does not fully retrieve the target drift, one can observe a remaining linear
trend, the flow rate trend. This trend is estimated to 3.56 103 ± 15.00 103 m3/yr for
case 3a, to be compared to 8.47 103 ± 30.48 103 m3/yr for case 3b. Figure 6.3 illustrates
the efficiency of the flow rate correction for cases 3a and b respectively by representing
the targeted evolution (grey dashed line), the evolution after flow rate correction (black
plain line) bounded by the a-posteriori 2-σ uncertainty 2δV̇ . The resolution of the volume
variation is calculated from Eq.11b and is given by δV in Table 6.1 (570 m3 and 1151 m3

for cases 3a and b respectively). It allows to bound the instantaneous volume variation at
a given time. It can be noticed that the difference between target and corrected volume
is always within the bounds given by δV .
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Figure 6.3: a) Comparison of target volume variations (grey dashed line), modeled volume
variations after flow correction (black plain line), upper and lower modeled volume variations
at 2-σ uncertainties (colored dashed lines); b) residual volume showing the difference between
target and modeled volumes with the linear trend removed for both solutions. Blue dashed lines
represent the volume resolutions δV estimated from Eq.11b.

6.4 Discussion

In this chapter, we have considered geodetic problems combining time-dependent pa-
rameters, the volume variation of a source at depth, and instrumental parameters, i.e.
the long-term drift rates of tiltmeters. These problems correspond to the II-level of com-
plexity described in Chapter 4 and allowed us to check the efficiency of our methodology.
Synthetic tilt data are built using 2 types of forward models, 1) a spherical source based
on Mogi (1958) and 2) a fracture opening described by Okada model (Okada, 1992).

The inversion of tilt data leads to non-unique solutions. Therefore, we developed a
two-step optimization approach to first resolve the inverse problem with no constraint on
the drift rate. In the second step, we enforce the uniqueness of the solution by minimizing
the correlation between the model coefficients ~α and the drift parameters ~a.

These 2 synthetic examples using different forward models (Mogi and Okada models)
illustrate the ability of the optimization process to jointly retrieve the volume history and
drift rates of tiltmeters for a given set of fixed model parameters. To do so, we set all
fixed parameters to their true value. But what happens if one of the fixed parameters has
a false value? Let’s take the case 3a from previous section (Okada’s model for a fracture
dipping at 37°) to study this question. I introduce some changes in the initial values of
the fixed model parameters (xs, ys, zs, φ or δ) that are summarized in Table 6.2.
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Parameters Case 3a Case 3a1 Case 3a2 Case 3a3 Case 3a4

xs 5000 m 5000 m 5000 m 5000 m 4000 m
ys 5000 m 5000 m 5000 m 5000 m 4000 m
zs 2000 m 2000 m 2000 m 1000 m 2000 m
φ 61 ° 0 ° 61 ° 61 ° 61 °
δ 37 ° 37 ° 90 ° 37 ° 37 °

Optimization
J 6.3 10−2 37.5 33.5 43.8 87.1

RMStilt 0.05 µrads 0.93 µrads 1.7 µrads 1.0 µrads 1.4 µrads
RMSa 1.4 µrads/yr 1.9 µrads/yr 2.3 µrads/yr 1.9 µrads/yr 2.3 µrads/yr

Table 6.2: Table summarizing the different modifications introduced in the model parameters
(in red) and the associated residuals in terms of tilt and drift rates.

Results discussed below are obtained after the inversion of tilt data. From these new
experiments, some remarks can be made:

• In all those 4 experiments, the inversion process converges towards a value of the
functional J largely higher than 1 (from 33.5 to 87.1). Hence, we did not perform
any flow rate correction as the functional J has not converged.

• Modifying the azimuth (φ=0°, case 3a1) of the fracture influences the tilt residuals
(RMStilt = 933 nrads), but only moderately changes the standard deviation of
the drift rates (RMSa=1.9 µrads/yr). Despite the false azimuth, the inversion
find volume variations not too far from the expected ones (Figure 6.4). One can
conjecture some explanations: 1) an azimuth change produces a rotation of the
modelled deformation pattern but same amplitude of surface deformation and 2)
the induced deformation is nearly symmetrical hence, the azimuth does not change
the determination of the volume variations. Indeed, for the case of a near-horizontal
fracture, the predicted ground displacement is almost one of a Mogi source which is
perfectly spherical. Thus rotating the fracture does not introduce much difference
in the signal measured by the network of tiltmeters. The difference resides in the
source signal measured by each tiltmeter: changing the azimuth induces a change in
the tiltmeters that are the most sensitive to the deformation (i.e. whose associated
α are the largest).

• Changing the dip, the depth or the horizontal position of the source also introduce
high residuals on the tilt data and on the standard deviation of the drift rates.
However, the largest error is occurring on the volume change retrieval (Figure 6.4).

These additional simulations open the discussion to future work that would focus on the
effects induced by uncertainties or errors associated with different forward models, on the
model coefficients ~α, i.e. comparing the coefficients ~α associated to Mogi’s model with
the ones of Okada’s model.

We completed these optimization experiments in order to study the behaviour of the
functional, data residual and parameters resolution for the purpose of optimizing more
source parameters (e.g. position, dip and azimuth of the source). Indeed, while position of
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Figure 6.4: Comparison of optimized volume variations for the 5 inversions: case 3a (black
line), case 3a1 (green line), case 3a2 (magenta line), case 3a3 (blue line) and case 3a4 (orange
line). The target volume history can be assimilated to the one of case 3a.

the source can be fairly constrained in mining and oil & gas reservoirs, magmatic sources
are generally poorly located. Therefore, additional simulations setting the position of
the source as part of the parameters to be optimized could complement our collection of
demonstrating tests before being able to consider real cases.

One way to improve this optimization approach would be to resolve the inverse problem
including a constraint on the drift rate minimization. To do so, a new term in the global
functional J could be added to minimize the variance of the drift rates. Indeed, the
variance of the desired solution in term of drift rates ~a∗ can be developed using Eq.9a:

(6.3) var(~a∗) = var(~aa −R~α)

Assuming ~aa and ~α are independent, this leads to,

(6.4) var(~a∗) = var(~aa) +R2var(~α)− 2 R cov(~aa, ~α)

Finally, using the definition of R = cov(~aa, ~α))/var(~α) from previous section (Eq.8), the
variance of ~a∗ resumes to:

(6.5) var(~a∗) = var(~aa)−
cov(~aa, ~α)2

var(~α)
Consequently, the variance of the desired solution is lower than the one of the admissible
solution, whatever this latter is.

The desired solution is given by the solution of the minimum of variance var(~aa). This
would enforce the uniqueness of the solution directly during the inversion process. Such
modification of the functional could be necessary for solving more complex problems, as
we will see and discuss in the next chapter.



Chapter 7

Geodetic joint inversion

Résumé
Dans les Chapitres 5 et 6, nous avons éprouvé notre méthodologie sur des problèmes de

complexités croissantes. Ainsi, nous avons démontré l’intérêt et l’utilité d’appliquer une
approche d’optimisation globale pour un type de données et des paramètres d’optimisation
indépendants du temps (complexité de niveau I, Chapitre 5) ou dépendants du temps (com-
plexité de niveau II, Chapitre 6). Dans ce chapitre, nous nous intéressons au niveau III
de complexité qui comprend l’inversion de plusieurs types de données géodésiques avec des
paramètres d’inversion qui peuvent aussi dépendre du temps.

En effet, dans le cas des systèmes volcaniques, les jeux de données géodésiques intè-
grent souvent différents types de mesures de déformation du sol. Parmi les instruments et
techniques qui mesurent ces déplacements, nous considérons les GPS, les inclinomètres,
les images InSAR et les profils de nivellement. Ces mesures de déformation étant com-
plémentaires, avec des précisions et des résolutions variées, nous pouvons probablement
améliorer l’estimation des paramètres du modèle en les inversant conjointement.

Pour ce faire, je présente dans une première partie le modèle de source qui m’a servi
à créer les données synthéthiques enregistrées par un réseau géodésique fictif comprenant
des GPS, des inclinomètres, des interférogrammes InSAR et des profils de nivellement.
Dans une seconde partie, je décris les résultats obtenus à l’issue de l’inversion de ces
données synthétiques en terme de variations de volume, de dérive instrumentale et de
résidus associés aux données.
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7.1 Introduction

In the two previous Chapters (5 and 6), we demonstrate the efficiency of our method-
ology for the two first levels of complexity described in Chapter 4: the I-level considers
a single type of data with time-independent parameters and the II-level also assumes a
single data type but with time-dependent parameters. In this chapter, we are presenting
the implementation of the approach for the III-level of complexity which involves several
data types and time-dependent parameters.

From the 3 types of reservoirs considered in this manuscript, the most diversified
geodetic networks are certainly those installed on volcanic systems, including GPS, tilt-
meters, levelling lines and InSAR images. Such networks not only contain various types
of data, but they can also cover long time series lasting up to several decades (Gambino
et al., 2014; Derrien et al., 2015; Bonforte et al., 2017; Narváez Medina et al., 2017).
Because these considered geodetic techniques are complementary and present different
spatial and/or temporal resolutions, jointly inverting all of them could improve model
parameters estimation and resolution.

In the following chapter, we apply the optimization process to a synthetic case simu-
lating the inflation of a spherical source (Mogi, 1958). The induced ground deformation is
monitored by GPS, tiltmeters, levelling surveys and InSAR images. The chapter is struc-
tured as follow: I first describe the source of deformation before focusing on the geodetic
network and associated data. Once the model parametrization is stated, I describe the
results in terms of volume variations, drift rates and data residuals.

7.2 Creation of a synthetic dataset

7.2.1. Forward model
The expansion or contraction of geological reservoirs can be modeled at first order

by a dilatation source in an elastic half space. In order to create our synthetic dataset,
we assume that surface displacements are produced by a spherical source embedded in a
homogeneous, isotropic, elastic half space (Mogi, 1958). The Mogi source is located 1500
m beneath the free surface (Figure 7.1a) in a medium with a shear modulus µ=30 GPa
and a Poisson’s ratio ν=0.25.

In this experiment, we consider an increase of internal volume strain of the source
similarly to studies in Chapter 6. Therefore, the history of volume variation is monitored
during 11 months and is described in Figure 7.1b. The pressure involved to create such
volume variations can be derived using Eq. (2.2) (see Chapter 2) such as:

(7.1) ∆V = πa3

µ
P

where πa3

µ
can be seen as a linear coefficient that is independent of the volume variations.
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Indeed, starting from a lithostatic initial state of the spherical source (i.e. a reservoir),
we consider the variations of the associated volume due to an increase or decrease of the
pressure P . Assuming 2 spheres with radius a1 < a2, the pressure involved to produce
equivalent volume variations ∆V are such as P1 > P2. Which means that it is easier (in
terms of applied pressure) to increase the volume of a large reservoir than a smaller one.

Figure 7.1: a) Configuration of the Mogi model with the source centered in a 10 km by 10 km
domain. The sphere is embedded in a homogeneous, isotropic, elastic flat half space characterized
by a shear modulus µ=30 000 MPa and a Poisson’s coefficient ν=0.25. b) History of volume
variations of the source over 11 months of experiment.

7.2.2. Geodetic network
Let’s assume that the synthetic deformation induced by the volume variations of the

sphere is monitored using multiple geodetic instruments and techniques. In an attempt
to build a realistic geodetic network recording surface deformation above geological reser-
voirs, our synthetic network includes 10 GPS stations, 5 borehole tiltmeters, 19 levelling
markers and 400 InSAR points distributed over the studied domain (Figure 7.2). InSAR
points are supposed to sample a denser grid. For the sake of consistency with real net-
works, the number of each geodetic instruments and the spatial distribution of each type
have been carefully assigned.
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GPS stations and tiltmeters are commonly installed above a known or supposed source
of deformation while levelling lines are crossing the deformation zone and InSAR interfer-
ograms are more able to cover the entire area. Our geodetic network may been one of the
three types of geological reservoirs presented in Chapter 3. Because position of the source
of volcanic event is generally unknown, GPS and tiltmeters are commonly placed all over
the volcanic edifice depending on the accessibility (e.g. on the flanks of the volcano, near
active or not fissures or craters) to capture the maximum information about ground defor-
mation. To the contrary, in salt mining and hydraulic fracturation, instrument positions
are well defined on the base of microseismicity (see Chapter 3). In all cases, geodetic
instruments are optimally deployed to capture the deep source deformation.

Our synthetic network is built based on these realistic conditions with a known position
of the source (red point on Figure 7.2). The 5 tiltmeters are in a 2 km radius from the
source (magenta crosses on Figure 7.2). Seven GPS are located in the vicinity of the
source and they are backed up by 3 stations further away from the source (blue inverted
triangles on Figure 7.2). The levelling profile starts from the South-West and ends Est
of the domain (profile from A to B on Figure 7.2). Finally, we use a uniform spatial
discretization of the InSAR data (black dots on Figure 7.2). By doing this, we obtain 400
points instead of several thousands that could be found on domains of such dimensions
under propitious conditions (stability of the reflectors throughout the year).

Figure 7.2: Distribution of the synthetic geodetic network. The source location is known and
is represented by a red circle. Locations of GPS and tiltmeters stations are indicated by blue
inverted triangles and magenta crosses respectively. The levelling line starts from point A and
ends at point B, with 19 markers shown by the black points. Finally the background grid indicates
the points of InSAR data. The station ST01 is chosen for representing GPS and tilt data on
Figure 7.3.
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7.2.3. Data generation
This synthetic network monitors the deformation induced by the volume strain of the

source described in Section 7.2.1. (Figure 7.3a). We generate data ~do as the sum of the
source ~ds, drift ~dd and/or noise ~cn signals. Hereafter, I detail the construction of each
data type.

Figure 7.3: Representation of geodetic data associated to the synthetic model. a) Volume
variation of the spherical source over 11 months of the experiments. The red star indicates the
time for which InSAR data and levelling data are represented (d and e respectively): ∆V=250
000 m3 at t=7. b) Vertical displacement of the GPS station located at ST01 on d and Figure 7.2.
c) x-component of the tilt measured by the tiltmeter of station ST01 as well. d) Displacement
along the line of sight of the satellite produced by the volume variation . The yellow cross stands
for the location of the source. Station ST01 indicates the emplacement of the GPS and tiltmeter
producing data on b and c. The levelling line is also represented. e) Vertical displacement of
levelling along the profile A-B (see Figure 7.2) at t=7.

1. GPS data. The signal recorded by the GPS’s is considered to be the sum of the
source signal along with some noise: (~do)gps = ~ds + ~ngps. Mao et al. (1999) sug-
gest that noise of all three components of GPS data can be approximated using a
combination of white (α = 0) and pink (α = 1) noise (also named flicker noise).
Because the purpose of this study is not to analyze the influence of the type of
noise in the determination of the parameters, we generate only white noise for all 3
components of the displacement. This noise is randomly chosen within a standard
deviation of σ=1 mm (see Chapter 4). Therefore, the GPS covariance matrix is
built using the standard deviation and using Eq.10 of Chapter 6: σgps = σTA/4.
With A=0 for white noise, the uncertainties associated to the three components of
the GPS data are therefore σgps=1 mm. Figure 7.3b shows the vertical displacement
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of station ST01 (Figure 7.2). Starting from a daily measure of GPS, we choose to
down-sample the signal to have 12 time intervals.

2. Tilt data. Similarly as in Chapter 6, we build the observed tilt by adding to
the source signal, a time-dependent linear drift and a Brownian noise: (~do)tilt =
~ds + ~dd + ~ntilt. The drift components are randomly chosen using a uniform proba-
bility function ranging from -2.4 µrad/yr to +2.4 µrad/year. The Brownian noise
is generated by accumulating random values within a standard deviation depend-
ing on the time of experiment. We use the standard deviation of the short term
measurement σshort=5 nrads. After one year, we assume a standard deviation of
180 nrads. This leads to a number of iterations T=1440 (from Eq.10 of Chapter 6)
which hence corresponds to the total number of synthetic tilt data (Figure 7.3c).
The covariance matrix is set using final value, σtilt=0.18 µrads, of Eq.6 (Chapter 6).

3. InSAR data. InSAR interferograms measure the 1-D displacement along the Line
Of Sight (LOS) of the satellite. The LOS is defined here by the heading angle of
15° and by the incidence angle of 19.5 °. Interferograms are generated considering
the source signal and some time-dependent noise: (do)insar = ds + ninsar. The noise
associated to InSAR data is induced by several factors including geometrical decor-
relation (difference in the orbital position of the satellite between 2 acquisitions),
temporal decorrelation (difference in time between 2 images) and all spatially cor-
related noise (atmospheric bias). This implies that the uncertainties associated to
InSAR data should vary in time and space. Because we generate synthetic data,
we do not proceed to the geometrical and temporal decorrelation nor correct the
images from any correlated noise. As a result, we choose a common value of un-
certainty for all data points. Similarly to GPS data, we consider white noise. The
white noise associated to InSAR data is randomly chosen for each point within a
standard deviation σ=3 mm, leading to uncertainty of σinsar =3 mm. A synthetic
interferogram is shown on Figure 7.3d imaging the displacement along the line of
sight of the satellite at t=7 of the experiment. The displacement does not reflect the
real vertical displacement due to the obliquity of the LOS. The LOS displacement
is significantly different from the measure of the vertical displacement of GPS or
levelling.

4. Levelling data. When measuring surface heights along a levelling profile, a reference
point is chosen implying that levelling measurements are relative to this point. To
account for the relative character of this measurement, an offset parameter can be
set up in the model. Besides, the ground deformation is measured with respect to a
cumulative error proportional to e

√
d where e is a nominal error and d the distance

between 2 markers of the levelling line (see Chapter 2). Associated to the data an
error model need to be defined in order to consider this measurement error. At
this time of the thesis development, we have not yet implemented these features of
levelling measures (offset, spatial noise). Consequently, we set the reference point
far enough from the deformation such as there is no surface displacement. There-
fore, this choice is equivalent to a parameter offset with a zero value. Although our
synthetic data are free from noise, we must choose an error model to normalize the
residuals associated to the levelling data in the functional (Eq. (4.6)). Therefore,
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we consider a maximal error such as σlevel = e
√
dmax with dmax the total distance

between the first and last marker of the line (Mossop and Segall, 1999). We choose
e=2 mm (see Chapter 2) and compute the associated error with dmax=8.71 km (Fig-
ure 7.3). Thus, the uncertainty associated to the levelling measurement is σlevel=5.9
mm. The levelling profile at t=7 is represented on Figure 7.3e.

7.2.4. Model parametrization

Once the forward model and the geodetic data have been defined, we can look at
the parameters of the optimization. Although we can set the location of the source and
the volume variation as free parameters, we choose to optimize only volume variation
along with the drift parameters (as in Chapter 6). This configuration matches the goal of
modelling salt mining and hydraulic fracturation that often have a fairly precise source
position. Thus the inversion assumes a spatially fixed source and 22 free parameters (12
values of ∆V and 10 values of drift coefficient).

7.3 Results

7.3.1. Some insights of the optimization

To retrieve the parameters of the forward model, we jointly invert the 4 types of data
using the methodology described in Chapter 4. Let’s remind the formulation of the global
functional J (Eq. (7.2) in Chapter 4):

(7.2) J =
P∑
i=1

ωiJMNi, with
P∑
i=1

ωi = 1.

where JMNi are functionals associated to each data type and integrate over the time.
In this study, the weighting coefficient ωi are set to 1/P=0.25. After checking the con-
vergence of the inversion with 1 and 2 layers in the process (see Chapter 4), it appears
that global optimization is unnecessary in such case; meaning that the global minimum
is simply found by a steepest gradient descent.

In Figure 7.4, I represent the evolution of J with respect to JMNi (i=1,2,3,4 stand
for GPS, tilt, InSAR of levelling data respectively). The values of JMNi and therefore
J are dimensionless because of the normalization of the residuals (square of the differ-
ence between modelled and observed data) by the covariance matrix of each data type.
One can notice that JMN1 and JMN3 do not decrease below 1. All JMNi are converging
towards an optimal state except for JMN4. It reaches its optimal value at the 12th itera-
tion (JMN4=10−5) and then increases (JMN4=2.10−4) again while the others JMNi keep
decreasing slightly (not visible on Figure 7.4 due to the vertical log scale). Nevertheless,
JMN4 has very little influence in the functional J compared to JMN1 or JMN2. At the end
of the inversion, J=0.95 and reflects the optimal state of our parameter set.
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Figure 7.4: Convergence of individual JMNi (blue curve for GPS, pink curve for tilt, green
curve for InSAR and black curve for levelling) and global J (red curve) functionals. The global
functional is built using the individual functionals, each one weighted by 0.25. The global mini-
mum is reached at iteration 15.

7.3.2. Residual data
In addition to the evaluation of each functional (GPS, tilt, InSAR, levelling) we com-

ment the difference between modelled and observed geodetic data, that are associated to
residual data distributions in space and time (Figure 7.5a-h). The fit between modelled
and observed data is estimated using the root mean square value.

We can describe the RMS at 3 different scales for each data type:

• Data point scale: For each data points k, we determine the difference between
modelled and observed data (black crosses on Figure 7.5b,d,f,h). Figure 7.5a,c,e,g
represent this spatial distribution of data residuals at time t=7.

• Time point scale: Summing the residuals of all data points at a given time leads
to an averaged residual for the considered time j (red crosses on Figure 7.5b,d,f,h).

• Experiment scale: Finally, in Table 7.1 we indicated the average residuals over
the entire time of the experiment.

Hereafter, we detail the residuals associated to each data type.

7.3.2.1. GPS data

GPS residuals associated to each data points are systematically lower than 4 mm (black
crosses on Figure 7.5b). By looking at Figure 7.5a, one can check that the residuals at
t=7 are uncorrelated to the spatial locations of GPS stations. Moreover, this is true for
all time series. The average residual per time series varies between 0.7 to 2 mm for an
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Figure 7.5: Spatial and temporal distributions of GPS (upper left), tilt (lower left), InSAR
(upper right) and levelling (lower right) residuals. The source of deformation is indicated by a
red dot on a), c) and e). a) Spatial distribution of the GPS residuals at time t=7 (rectangle on
b). b) Temporal distribution of the GPS residuals and mean residual for each time series (red
crosses). c) and d), e) and f), g) and h) represent the same as a) and b) for tilt, InSAR and
levelling data respectively.
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average value for the entire experiment of 1.58 mm (Table 7.1). This value is greater than
the data uncertainty σgps=1 mm, that could be due to the coarse spatial distribution of
the stations and the noise distribution. As detailed in Section 7.2.3., some white noise is
added to the source signal, with a time constant standard deviation of 1 mm. For stations
close to each other, there are some redundancy in the measured signal with different noise
signal. As a result, the signal measured by those 2 stations can diverge and the model
cannot explain both signals.

7.3.2.2. Tilt data

Tilt residuals at each point are smaller than 0.03 µrad (black crosses on Figure 7.5d)
and they are correlated to the spatial distribution (red crosses on Figure 7.5c). Indeed,
because the inversion finds admissible values ~aa but fails in recovering the true values ~a∗,
the tilt residuals remain correlated to ~α components. Although this correlation is clear on
Figure 7.5c, we apply the linear regression between ~α and ~a to quantify the correlation,
leading to a value of -0.1. Comparing to a correlation of 0.9 when inverting only tilt data,
we can assume that GPS, InSAR and levelling data significantly contribute for removing
the ambiguity of the solution (Figure 7.6). Because the correlation is not equal to zero,
this results in some correlation between tilt residuals and their associated ~α. We could
expect that with no correlation between those parameters, the tilt residual would also be
uncorrelated to the spatial distribution of the instruments. At this stage of development,
from the relation ~dd + ~aat = ~d∗ + ~a∗t, we can only provide for the admissible values and
not the desired ones yet. For each time series, the average value of residuals fluctuates
between 0.005 and 0.025 µrad for an average residual over whole experiment of 0.013 µrad
(Table 7.1). This residual value is largely lower than the tilt uncertainty of 0.18 µrad and
currently, we can only give conjectures about this result. These low residuals could be
explained by the parametrization of the tilt data. Indeed, tilt data are built like the sum
of the source signal, a linear trend and some Brownian noise displaying some linear trend
too. But in the optimization process, we parametrize the tilt data as the sum of the
source signal and a linear drift. Therefore, when inverting tilt data, the optimization tries
to explain the total linear trend present in the data, which is the sum of the drift rates
and the linear trend from the Brownian noise.

7.3.2.3. InSAR data

InSAR data present residuals lower than 15 mm (black crosses on Figure 7.5f) that
are again spatially uncorrelated. The average value per time series appears to be fairly
constant, certainly due to the number of data point (red crosses on Figure 7.5e). The
associated average RMS for the experiment is 3.14 mm which is about the same as the
data uncertainty (3 mm, Table 7.1), meaning that the inversion has converged to an
optimal solution. Similarly to GPS data, I would assume that this value of residuals is
due to the redundancy of the information.

7.3.2.4. Levelling data

The residuals associated to levelling points are very low, with values ranging from
0 to 0.3 mm (black crosses on Figure 7.5h). This can be explained by the absence of
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time-dependent noise in levelling data. However, the average residual per time series
increases with time (red crosses on Figure 7.5g). We suppose this is linked to the retrieval
of the volume variations. Indeed, with no errors in the levelling data, the measured signal
is directly the source signal. As we recover the volume variations with respect to some
residuals (Figure 7.6b), it implies the same pattern in the average levelling residual per
time series. Although the residuals increase with time, the average residual (0.076 mm)
over the experiment remains largely lower than the data uncertainties (5.9 mm).

7.3.3. Optimal parameters and associated uncertainties
Once the joint inversion of GPS, tilt, InSAR and levelling data has converged, we

obtain a set of optimal parameters including volume strain and drift rates. Figure 7.6a
represents the history of the volume variations given by the inversion process (red dots
and line) compared to the target volume history (black line). In order to display the
difference between modelled and target volume variations, Figure 7.6b shows only this
difference (the volume residuals). The volume variations are retrieved with a maximum
residual of V̇0=2884 m3 at t=10.

Figure 7.6: a) Optimal history of volume variations from the inversion process (red dots and
line) compared to the target history (black line). b) Difference between the modelled volume
variations and the target values. c) Drift rates from the inversion (red crosses) compared to the
target drift rates (black dots).
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Comparing the modelled values of drift rates (red crosses on Figure 7.6) to the target
ones (black dots on Figure 7.6) reveals more obvious differences. This discrepancy can be
explained by the fact that the optimization algorithm explains all linear trends contained
in the data, which means that in addition to the linear drift, it also finds the linear trend
of the Brownian noise. For this reason, we observe such difference between observed and
target drift rates, while keeping such low value of (JMN)tilt (Figure 7.4).

Associated to the volume variations, we attempt to estimate the instantaneous vol-
ume resolution δV . To do so, let’s recall our main modelling assumption: the ground
displacement for each instrument is linearly linked to the volume variations. Therefore,
each signal ~di measured by the different data types (GPS, tilt, InSAR, levelling) can be
written as,

(7.3) ~di = ~αi ∆V

where αi are the model coefficient associated to each specific data type. The expression
of δV associated to each data type can be deduced from this equation (Eq. (7.3)). This
coefficient is a measure of the volume resolution at a given time series which depends on
the precision of the determination of ~di. Thus, this latter does not consider the potential
linear trend of the solution with time, but only the measure of the data misfit RMSi,
leading to:

(7.4) δV = RMSi
αimax − αimin

In the previous chapter, we also characterize the measure of the accuracy of the linear
component of the solution with time δV̇ . However, this was possible because we assume
a long-term drift in tilt data unlike GPS, levelling or InSAR data. For this reason, we
cannot use the same definition of δV̇ and we have not found the right expression of this
coefficient yet.

Table 7.1 present for each data type, the associated uncertainty σi, the value of individ-
ual functional (JMN)i, the difference between modelled and observed data RMSi and the
instantaneous volume resolution δV . The values of (JMN)i are discussed in the previous
section while values of RMSi are the subject of the following section. When looking at
data type individually, one can notice that the instantaneous volume resolution is largely
better for tilt data δV=142 m3 and levelling data δV=760 m3 due very low residuals.

Data type i σi JMNi optimal RMSi δV
GPS 1 mm 2.67 1.58 mm 19 799 m3

tilt 0.180 µrad 5.6 10−3 0.013 µrad 142 m3

InSAR 3 mm 1.11 3.14 mm 31 605 m3

level 5.9 mm 2.02 10−4 0.076 mm 760 m3

Table 7.1: Data uncertainties σi and results of the joint inversion of GPS, tilt, InSAR and
levelling data, including the (JMN )i at the end of the inversion, the associated residual RMSi,
the flow rate uncertainty δV̇ and the volume resolution δV .
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7.4 Discussion

The global optimization approach has been finally tested for the III-level of complexity
which considers 4 types of geodetic data along with time-dependent model parameters.
We choose to monitor the inflation of a Mogi source by a realistic geodetic network com-
posed of 10 GPS stations daily sampled, 5 tiltmeters with one measure every 6 h, 12
InSAR images (made of 400 reflectors) and 12 levelling profiles (made of 19 markers).
Once more, the optimization process succeeded in retrieving the model parameters. But
this time, no global optimization is needed to converge towards the solution, certainly
due to the correct location of the source initially set.

Indeed, when optimizing the horizontal position of the source, xs and ys, along with
the volume variations and the drift rates needs the activation of the second layer in the
global optimization approach. We initialize the position of the source at xs=4000 and
ys=4000. The search interval associated to the horizontal position of the source is a square
of 3 by 3 kilometers. By doing so, we are able to retrieve nearly the same set of volume
variations and drift rates (Figure 7.7), but we also recover the horizontal position of the
source, with x∗

s=5002.6 m and y∗
s=5001.7 m. When increasing the search interval (square

of 10 by 10 kilometers) of the horizontal position, the inversion does not converge towards
the solution.

Figure 7.7: a) Representation of the volume variations. The results from the first joint inver-
sion (only ∆V ) are represented by the black line. The results from the second joint inversion
(looking for ∆V and horizontal position of the source xs and ys) correspond to the red dashed
line. They are both compared to the target volume history (grey dashed line). b) Comparison
of the optimal drift rates from the second inversion (red crosses) with the first inversion (black
dots) and the target drift rates (grey crosses).

What is the contribution of the joint inversion to the parameters estimation? Invert-
ing individually GPS, tilt and InSAR data leads to very similar values of JMN (hence,
JMN = J for the inversion of a single type) summarized in Table 7.2 and Figure 7.8. How-
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ever in the case of tilt inversion, the flow rate correction needs to be applied to recover the
volume variation (Figure 7.8). This suggests that considering 5 tiltmeters strategically
installed is sufficient to retrieve both volume variations and drift coefficient. The only
difference lies in the inversion of levelling data (JMNi=2.02 10−4 instead of 2.7 10−8).
Whereas the three first data type considers some noise, the levelling data are assumed to
have space-dependent error (as a function of the square root of the distance in kilome-
ters). This implies to perfectly converge towards the exact solution for volume variations
whereas volumes remain less constrained when only GPS or InSAR are inverted. Al-
though we invert signals that can be individually optimized, the joint inversion improves
the determination of the optimization parameters.

Data type i JMNi joint inversion JMNi single inversion
GPS 2.67 2.60
tilt 5.6 10−3 2.4 10−3

InSAR 1.11 1.11
level 2.02 10−4 2.7 10−8

Table 7.2: Comparison of JMNi from the joint inversion and from the inversion of individual
data type.

Figure 7.8: Representation of the volume variations from the joint and individual inversions
of GPS, tilt, InSAR and levelling for a) the whole experiment and b) focusing at the 3 last
time steps. The black line corresponds to the results of the joint inversion, the green line to
the inversion of GPS data, the magenta to tilt data, the blue to InSAR data, the orange to
levelling data and the dashed red line to the corrected drift. The target volume variations match
the volume variations from the inversion of levelling data.

One may find surprisingly that each individual inversion leads to a correct estimations
of the volume variations. This is due to our choice to model volume variations that are
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significant enough to be solved by each instrument separately. This is the reason why we
can invert the data separately. However, the volume variations may not always be of such
intensity (e.g. in salt mining or oil & gas reservoirs), requiring then, a joint inversion for
a precise volume variation estimation.

Although this first experience was successful, many other parameters configurations
need to be explored. For instance, one could attempt to optimize not only the volume
variations, but also the position of the source or its characteristics (dip, azimuth for
Okada’s model). For a model configuration similar to the one of this chapter, we should
be able to converge to an admissible set of parameters. Nevertheless, with lower values
of volume variations, only tilt data are able to detect the induced deformation and thus
would influence the functional J . Without the contribution of the other data in the
determination of the parameters, the optimal solution would again be one among all
admissible and the flow rate correction would be needed to enforce the uniqueness.



Chapter 8

Discussion and future work

8.1 Achievements, weaknesses and upgrades

In this manuscript I present a methodology developed in order to address the challenge
of long term reservoir monitoring. The ground deformation is measured by various geode-
tic means including GPS networks, InSAR images, tiltmeters and levelling routes. They
are complementary in characterizing the displacement of the surface: cartesian coordi-
nates for GPS, along the Line Of Sight of the satellite for InSAR, gradient of the vertical
displacement for tiltmeters, vertical displacement for levelling and the change in gravity
attraction if gravimeters are operating. In order to connect these observations to the ori-
gin of the deformation, we developed inverse problems, assuming analytical or numerical
mechanical models describing the physical phenomenon. After solving these problems, an
optimal set of parameters from the model should produce modelled data that are close to
the observations with respect to the associated uncertainties. Because the quest for the
best parameters is non-unique and can be computationally slow and filled with obstacles
due to the nature of the functional, the optimization approach is based on an algorithm
developed by Mohammadi and Saïac (2003) matching the following criteria:

1. it accounts for potential local minima,

2. it considers physical problems of various complexities,

3. it jointly inverts several data types,

4. it is computationally straightforward and fast.

The optimization aims at finding the parameters of the desired model that best re-
produce the observations. To do so, the algorithm wisely explores the parameters domain
in its whole. It does not only seek for optimal values of the parameters using a steepest
gradient descent but it also tries to find the initial condition that leads to the global
optimum. We applied this optimization approach to geodetic systems and demonstrated
its efficiency and high potential on three levels of complexity considering 1 to 4 types of
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data and 3 different models (1 numerical and 2 analytical). The I-level refers to a problem
considering 1 type of data (interseismic GPS velocities) and time-independent parameters
(lateral rigidities of the lithosphere in the vicinity of the San Andreas Fault system). For
this application, we illustrate the methodology on both synthetic and real data (Western
United States) leading to a publication in Tectonophysics (Furst et al., 2017). The II-level
involves 1 type of data (2-D tilt) and includes both time-independent parameters (drift
rates associated to both components of the tiltmeters) and time-dependent parameters
(volume variations of the source in time). In this case, synthetic data with colored noise
have been produced and results will be submitted to the journal Journal of Geodesy.
Finally, the III-level jointly inverts 4 types of geodetic data (GPS, tilt, InSAR and lev-
elling) in order to recover time-independent parameters (drift rates) and time-dependent
parameters (volume variations of the source). Again, only synthetic data are used to
illustrate this level of complexity. These 3 applications highlight the potential for the
global optimization to treat various geodetic inverse problems under minimum a priori
assumptions. I would like to emphasize the following points:

• The approach allows to consider a high number of free parameters (cases with more
than 2000 parameters to optimize have been tested) using an adjoint formulation
of the forward model. This leads to a high resolution exploration of the optimal
parameters at reasonable computational cost (3h of simulations using a laptop). For
smaller number of parameters (one hundred), the inversion is completed in a matter
of a few minutes (∼3 min with a laptop).

• For tilt data inversion, the associated long-term drift can be jointly estimated with
source parameters by adding a second step to the optimization. Firstly, the inverse
problem is solved with no constraint on the drift rate, leading to one out of all
admissible sets of parameters. Uniqueness is then enforced by assuming that source
parameters are independent from drift parameters. This 2-step approach stands
as long as the considered forward model involves a linear relation between source
parameters ~α and drift parameters ~a. A paper describing this approach is about to
be submitted in Journal of Geodesy. Associated to each application, we attempted
to back the optimal set of parameters by a careful uncertainty analysis. Nevertheless,
when jointly inverting several data types, we are not able to estimate the uncertainty
associated to the long term trend.

• A joint inversion of various geodetic data allows to improve the parameters deter-
mination. Adding GPS, InSAR and levelling data to tilt measurements permits to
remove the ambiguity of the solution. However, it must be recalled that that the
tilt signal is by far the most sensitive to small strain changes. Then, if the source
signal is not significant enough to be detected with GPS, InSAR or levelling, the
functional would only be affected by the tilt signal. In this case, the 2-step approach
could be used to enforce uniqueness of the solution.

• Jointly inverting all geodetic data leads to modelled tilt, whose associated tilt drift
are slightly correlated to the source parameters. Unfortunately, this correlation can-
not be removed using the 2-step optimization as we defined it. Indeed, the second
step changes drift rates associated to tiltmeters and also volume variations. There-
fore, these modified volume variations induce in turn different GPS, InSAR and
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levelling predictions. As a result, the correction used to decorrelate drift parame-
ters from tilt signal must be implemented in a 1-step inversion process. To do so,
I would assume that considering the variance of the drift rates in the functional
would help removing this ambiguity between parameters and tilt data (see Chap-
ter 6 for demonstration). This new term would be minimized simultaneously with
the residual associated to each data type.

• Most of the geodetic data that we considered are relative measurements, which
means that they measure the deformation relatively to some translation. As of to-
day (July 5th 2018), we do not consider any translation factor. Implementing these
new parameters could therefore be an improvement of the algorithm for process-
ing real geodetic datasets. This evolution is clearly needed for notorious relative
measurements such as levelling or InSAR.

• We develop a single numerical tool separating the inverse problem from the forward
models to provide inversion of various geodetic data types considering problems of
increasing complexity. Therefore, other forward models can be easily added like
more complex physical models including for instance a spherical source with a vis-
coelastic shell (Dragoni and Magnanensi, 1989) or finite element models (Dieterich
and Decker, 1975).

These enhancements would complete the present-day methodology and permit the
application to a wide range of geophysical inverse problems. Despite we demonstrate the
ability of the method to solve relatively complex synthetic problems, a clear weakness
of this work is relative to the lack of using real geodetic data. Therefore, I attempt to
reconnect to the challenges associated with the 3 geological reservoirs and discussed future
projects involving the salt reservoir of Vauvert (France), the unconventional exploitation
of a gas reservoir (Vaca Muerta, Argentina) and Kı̄lauea volcano (Hawaï).

8.2 Geological reservoirs projects

We have seen in Chapter 3 the characteristics and challenges associated to 3 different
geological reservoirs. In this section, I present some ongoing projects that could become
relevant for the application of the developed methodology.

Since February 2018, the salt exploitation in Vauvert is equipped with a Hallibur-
ton tiltmeter, measuring the deformation induced by the extraction of brine, but also by
draining two nearby wells. Data have not yet been processed nor analyzed, but they could
be used in a joint inversion, along with GPS, InSAR, levelling and gravimetric data, in or-
der to model the reservoir deformation associated to salt withdrawal. The joint inversion
would be appropriate because the ground deformation is significant enough (∼2 mm/yr)
to be measured by GPS, levelling (see Figure 3.9), tiltmeters, gravimetry (Eugène, 2016)
and InSAR (Raucoules et al., 2003; Maisons and Raucoules, 2006). This particular ex-
ample could become a benchmark for implementing additional forward models, as fluid
pressure and brine flow (injected and extracted) and salt saturation are also monitored
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by the company. Besides, as part of the MIRZA project, one prototype of low drifting
tiltmeter is planned to be installed in the same hole as Halliburton’s tiltmeter. By doing
so, we aim at comparing the signal of these 2 tiltmeters during several months to give a
first estimation of the long-term drift of each tiltmeter. Once we validate the low-drift
characteristic of MIRZA tiltmeter (i.e. checking measured signals, level of drift, reliabil-
ity of the installation process and other potential issues), we plan to set up a pilot on
one of Total’s field in Argentina to monitor the unconventional exploitation of the Vaca
Muerta layer in collaboration between Total S.A and Aquitaine Electronique. Contrary
to Vauvert’s site, the inversion method would be tested a network of 20 to 30 tiltmeters.

For this project, I aim to apply the methodology developed in my thesis to moni-
tor the different steps of a production well, from the stimulation of the first reservoir
volume to the long-term draining of the entire network. Using MIRZA’s tiltmeters, we
would assume that the volume variations involved during the fracking would be well con-
strained (as shown by previous studies: Pinnacle Technologies, 2007; Astakhov et al.,
2012, Figure 8.1a). With respect to the cited work, a major evolution would be the use
of the tiltmeters network to follow the long-term evolution of volume variations (up to
2-3 years) thanks to the low drifting tilmeters and the optimization approach that we
developed. Because the deformation induced by one fracking is tens of nanometers (Fig-
ure 8.1b), only tilt data could measure it during the first stages. However, when draining
the Stimulated Reservoir Volumes, the cumulative deformation should be detectable on
InSAR images. The joint inversion of tilt data and InSAR signals would lead to the esti-
mation of these different Stimulated Reservoir Volumes varying in time, highlighting how
they are drained and if they are drained.

Figure 8.1: a) Representation of multistages hydraulic fracturing in an unconventional reser-
voir (note the variable vertical scale). We assimilate the network of fractures produced during
one stimulation stage as a planar dislocation (red rectangle). b) Simulation of a fracking stage
using an Okada’s tensile model. The injected volume is 10 000 m3 and stimulates a vertical
fracture of 100×100 m. The tilt signal distribution informs about the location of maximum de-
formation. If opening is simulated on fracture 2, the deformation translates with respect to the
distance between the 2 vertical fractures.
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Before deploying tiltmeters on the field, the design of the surface tiltmeter network is
mandatory to anticipate the quality of the fracture mapping network. To do so, I plan to
create a synthetic experiment, simulating the history of volume variations, with several
stages of nearly instantaneous hydraulic fracturing and a long-term depletion due to gas
extraction. I would assume some pre-existing fracturation in the medium (following a
priori geologic information) that would be assimilated to a tensile plan opening under
the injected fluid. Figure 8.1b illustrates one fracking stage measured by 25 tiltmeters
randomly placed above the horizontal well. The continuous distribution of the tilt signal
amplitude is displayed by the colored scale of the figure. For such studies, I could vary the
geometry of each fracture zone but also the volume variations involved in the extraction
to understand how the ground surface is reacting to different deep strain sources. This
could help to define the number of necessary tiltmeters and to place them in order to
optimize the network that would capture at best the geometry and the deformation of the
Stimulated Reservoir Volumes. This first analysis would allow to efficiently deploy a net-
work of tiltmeters on the selected pilot well in Argentina. If the experiment is successful,
the methodology could become widely used for long-term geodetic monitoring and data
inversion in nearly real time.

Joint inversions have sometimes be performed to better constrain the source of the
deformation, for modelling the propagation of a dike or locating the magmatic chamber
and its inflation/deflation. Concerning Kı̄lauea volcano, jointly inverting GPS, tilt and
InSAR data during Kamoamoa eruption in 2011 has not yet been tested. Modelling the
source of this event could help to better constrain the source of Deflation-Inflation events
occurring at the summit crater of the volcano. Moreover, using our approach could help
to model the evolution of volume variations during several months, instead of considering
isolated events. For such simulation, it would probably be necessary to consider a finite
element model to account for a free geometry of the source, the rheological variations
of the medium and the topography. This improvement of the forward model should not
change the nature of the optimization problem as long as a linear strain-stress relationship
is assumed.

These are proposals for applying our methodology to real cases but others could be
envisaged and developed.
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Abstract
The Earth’s surface is affected by numerous local processes like volcanic events, landslides or earthquakes.

Along with these natural processes, anthropogenic activities including extraction and storage of deep resources (e.g.
minerals, hydrocarbons) shape the Earth at different space and time scales. These mechanisms produce ground
deformation that can be detected by various geodetic instruments like GNSS, InSAR, tiltmeters, for example. The
purpose of the thesis is to develop a numerical tool to provide the joint inversion of multiple geodetic data associated
to plate deformation or volume strain change at depth. Four kinds of applications are targeted: interseismic plate
deformation, volcano deformation, deep mining, and oil & gas extraction. Different inverse model complexities were
considered: the I-level considers a single type of geodetic data with a time independent process. An application is
made with inverting GPS data across southern California to determine the lateral variations of lithospheric rigidity
(Furst et al., 2017). The II-level also accounts for a single type of geodetic data but with a time-dependent process.
The joint determination of strain change history and the drift parameters of a tiltmeter network is studied through
a synthetic example (Furst et al., submitted). The III-level considers different types of geodetic data and a time-
dependent process. A fictitious network made by GNSS, InSAR, tiltmeters and levelling surveys is defined to compute
the time dependent volume change of a deep source of strain. We develop a methodology to implement these different
levels of complexity in a single software. Because the inverse problem is possibly ill-posed, the functional to minimize
may display several minima. Therefore, a global optimization algorithm is used (Mohammadi and Saïac, 2003). The
forward part of the problem is treated by using a collection of numerical and analytical elastic models allowing to
model the deformation processes at depth. Thanks to these numerical developments, new advances for inverse geodetic
problems should be possible like the joint inversion of various types of geodetic data acquired for volcano monitoring.
In this perspective, the possibility to determine by inverse problem the tiltmeter drift parameters should allow for a
precise determination of deep strain sources. Also, the developed methodology can be used for an accurate monitoring
of oil & gas reservoir deformation.

Keywords : Geodesy, Inversion, Geological reservoirs, Optimization, Modelling

Résumé
La surface terrestre est affectée par de nombreux processus locaux tels que des événements volcaniques, des

glissements de terrain ou des tremblements de terre. Parallèlement à ces processus naturels, les activités anthropiques, y
compris l’extraction et le stockage des ressources profondes (par exemple, les minéraux ou les hydrocarbures) façonnent
la Terre à différentes échelles spatiales et temporelles. Ces mécanismes produisent une déformation du sol qui peut être
détectée par divers instruments et techniques géodésiques tel que le GNSS, l’InSAR, les inclinomètres. Le but de cette
thèse est de développer un outil numérique permettant l’inversion conjointe de multiples données géodésiques associées
à la déformation de la plaque ou au changement de contrainte volumique en profondeur. Quatre types d’applications
sont ciblés: la déformation intersismiques des plaques, la déformation des volcans, l’exploitation minière profonde et
l’extraction de pétrole et de gaz. Différentes complexités du modèle inverse ont été considérées: le niveau I considère
un seul type de données géodésiques avec un processus indépendant du temps. Une application est réalisée avec
l’inversion des données GPS à travers le sud de la Californie pour déterminer les variations latérales de la rigidité
lithosphérique (Furst et al., 2017). Le niveau II représente également un seul type de données géodésiques mais avec
un processus dépendant du temps. La détermination conjointe de l’historique des changements de contrainte et des
paramètres de dérive d’un réseau d’inclinomètres est étudiée à l’aide d’un exemple synthétique (Furst et al., soumis).
Le niveau III considère différents types de données géodésiques et un processus dépendant du temps. Un réseau
fictif combinant des données GNSS, InSAR, inclinométriques et de nivellement est défini pour calculer le changement
de volume dépendant du temps d’une source profonde de déformation. Une méthodologie pour implémenter ces
différents niveaux de complexité est développée dans un seul logiciel. Parce que le problème inverse peut être mal
posé, la minimisation de la fonctionnelle peut produire plusieurs minima. Par conséquent, un algorithme d’optimisation
global est utilisé (Mohammadi and Saïac, 2003). Le problème direct est traité en utilisant un ensemble de modèles
élastiques numériques et analytiques permettant de modéliser les processus de déformation en profondeur. Grâce à
ces développements numériques, des avancées concernant les problèmes inverses en géodésie devraient être possibles
telle que l’inversion jointe de différents types de données géodésiques acquises lors de la surveillance des volcans. Dans
cette perspective, la possibilité de déterminer par inversion les paramètres de dérive des inclinomètres permettrait une
détermination précise des sources de déformation profondes. En outre, la méthodologie développée peut être utilisée
pour une surveillance précise de la déformation des réservoirs de pétrole et de gaz.

Mots-clefs : Géodésie, Inversion, Réservoirs géologiques, Optimisation, Modélisation
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