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SKYRMIONS IN QUANTUM HALL SYSTEMS THÈSE DE DOCTORAT

This thesis studies skyrmions in the SU(4) quantum Hall ferromagnet. Skyrmions are localized textures in ferromagnetic systems. The graphene monolayer in a strong magnetic field can be viewed as a ferromagnet with electron spin and Dirac-valley pseudospin -Landau levels with different spin and valley are close in energy and form well-separated groups. Within one group, the Coulomb interaction has a manifest SU(4)-invariant form.

The model of skyrmions used in this thesis is a classical, static field theory obtained from the variational principle. The model has phenomenological parameters, which depend on substrates and other experimental settings. Based on symmetry analysis, I propose the ansatz for skyrmions at quarter-filling and half-filling of the N = 0 Landau level in graphene monolayer. Energy minimization of single skyrmions is then performed to determine the parameters in the skyrmion ansatz, resulting in different types of spin-valley skyrmions at both filling factors. Large skyrmions are identified in certain ranges of the phenomenological parameters, where the ferromagnetic background of the skyrmion undergoes a phase transition.

Single-mode spin-valley waves are also analyzed to characterize the SU(4) quantum Hall ferromagnet. A particular example shows instability of the ferromagnetic ground state.

of skyrmion types, whereas the black lines separate the regions of different ferromagnetic ground states. Arrows connecting the borders to the abbreviations, which indicate the type of the skyrmion (red) or the ferromagnetic background (black). Abbreviations in the diagram: "UEA" -Unentangled easy-axis; "UEP" -Unentangled easyplane; "EEA" -Entangled easy-axis; "EEP" -Entangled easy-plane; "sk." -skyrmion; "Ppin" -Pseudospin; "Ent." -Entanglement; "Defl." -Deflated.

le skyrmion est intégré. Le vecteur C décrit l'aimantation spin/pseudospin au centre de skyrmion.

Un exemple de cette description est illustré à la figure 5(a), où plusieurs possibilités du centre de skyrmion sont représentées. Toute la texture spin/pseudospin sur le xy-plan peut être écrite comme une interpolation entre le fond ferromagnétique et le centre skyrmion:

où

Le paramètre λ a une dimension de longueur et caractérise la taille du skyrmion. Une telle analyse décrit un skyrmion de charge-1. Dans l'antan ci-dessus, le C 4 -vecteur F est déterminé par l'état fondamental du NL N = 0 rempli trimestriellement, alors que le paramètre λ et le C 4 -vecteur C sont obtenus par minimisation de l'énergie d'un skymmion. Le résultat de la minimisation de l'énergie est affiché à la figure 6. Sur cette figure, les axes sont l'anisotropie pseudospin du système Hall quantique en monocouche de graphène. En accordant ces paramètres, on obtient différents types de skyrmions comme configurations énergiquement favorables. L'analyse détaillée du résultat est présentée à la section 4.4. K ↑ K ↓ K'↑ K'↓ Figure 7: Illustration pour les skyrmions spin-valley du NL N = 0 à ν = 2 du monocouche graphène. Dans le cas du demi-remplissage du NL N = 0, deux des quatre sous-niveaux sont complètement remplis. L'état fondamental ferromagnétique est décrit par deux C 4 -vecteurs, à savoir F 1 et F 2 , qui sont deux colonnes de la matrice de coordonnées de l'espace Gr(2, 4). Puisque les deux vecteurs sont orthogonaux et une transformation U(2) entre eux produit de nouveaux vecteurs équivalents aux originaux, il existe 8 paramètres pour déterminer F 1 et F 2 . Les deux vecteurs partagent quatre angles d'aimantation spin et pseudospin et les paramètres d'enchevêtrement sont différents. Différentes phases du NL N = 0 au demi-remplissage sont discutées dans la section 3.3. Les skyrmions de charge-1 au demi-remplissage du NL N = 0 sont caractérisés par les deux C 4 -vecteurs, F 1 et F 2 , qui décrivent le fond ferromagnétique et un autre C 4 -vecteur C au centre du skyrmion. Ces trois C 4 -vecteurs sont mutuellement orthogonaux. Un exemple du skyrmion est illustré à la figure 7. Dans cet exemple, le fond ferromagnétique a une aimantation spin complète et une aimantation pseudospin nulle, alors qu'au centre du skyrmion, la pseudospin est au maximum polarisée avec un spin total nul. Toute la texture spin/pseudospin sur le xy-plan peut être écrite comme une interpolation entre le fond ferromagnétique et le centre skyrmion:

au fond ferromagnétique et sont liés aux vecteurs F 1 et F 2 précités via une transformation U(2). Avec un tel système, différents types de skyrmions de charge-1 sont obtenus à partir de la minimisation de l'énergie à une autre anisotropie de pseudospin. Les résultats sont affichés à la figure 8. L'analyse détaillée du résultat est présentée dans la section 4.5. Cette thèse étudie les types possibles de skyrmions quantum Hall à un quart et demi de remplissage du NL N = 0 en monocouche graphène et fournit des conseils importants à la recherche expérimentale de skyrmions à puce quantique avec des techniques d'imagerie en espace réel pour le gaz à électrons bidimensionnel. En particulier, dans le NL N = 0, la pseudospin de la vallée se manifeste comme l'occupation sous-réseau. En principe, la spectroscopie de balayage par tunnel à résolution spin peut fournir l'image des skyrmions d'effet Hall quantique sur l'échelle du treillis

Figure 8: Diagram of skyrmion types at ν = 2 of N = 0 LL in graphene monolayer. Red lines mark the borders of skyrmions with different types of center vector C 2 , whereas the black lines separate the regions of different ferromagnetic ground states. Arrows connecting the borders to the abbreviations, which indicate the type of the skyrmion center (red) or the ferromagnetic background (black). Abbreviations in the diagram: "FM" -Ferromagnet; "CDW" -Charge density wave; "KD" -Kekulé dimer; "CAF" -Canted ferromagnet; "SS" -Spin singlet; "PS" -Pseudospin singlet; "NS" -Néel singlet.

et donc distinguer les différents types de skyrmion. La proposition pratique d'une expérience est sujette à une étude approfondie.

Résumé

Dans cette thèse, j'étudie les skyrmions dans le ferromagnétique SU(4) d'effet Hall quantique. Les skyrmions sont des textures localisées dans les systèmes ferromagnétiques. La monocouche de graphène dans un fort champ magnétique peut être considérée comme un ferromagnétique avec le spin électronique et le pseudospin de vallée de Dirac. Les niveaux de Landau acssociés à des spins et des vallées différentes sont proches en l'énergie et forment des groupes bien séparés. Dans un groupe, l'interaction de Coulomb montre forme invariance de SU [START_REF] Aharonov | Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field[END_REF].

Le modèle de skyrmions utilisé dans cette thèse est une théorie de champ classique et statique obtenue à partir du principe variationnel. Le modèle comporte des paramètres phénoménologiques, qui dépendent des substrats et d'autres paramètres expérimentaux. Sur la base de l'analyse de symétrie, nous proposons un ansatz pour les skyrmions au quart de remplissage et à la moitié du remplissage du niveau de Landau N = 0 de la monocouche de graphène. La minimisation de l'énergie du skyrmion unique est ensuite effectuée pour déterminer les paramètres dans l'ansatz de skyrmion ansatz, ce qui entraîne différents types de skyrmions spin-valley aux deux facteurs de remplissage.

Des grands skyrmions sont identifiés dans certaines gammes des paramètres phénoménologiques, où l'arrière-plan ferromagnétique du skyrmion subit une transition de phase.

Les ondes de spin-vallée monomode sont également analysées pour caractériser le ferromagnétique SU(4) d'effet Hall quantique. Un exemple particulier montre l'instabilité de l'état fondamental ferromagnétique.

Résumé

La figure 1 montre un exemple de skyrmion. Il s'agit d'une configuration non étendue du champ vectoriel unitaire m(r) intégré dans un fond uniforme qui représente habituellement le paramètre de commande. En général, l'existence d'un tel type de configurations requiert que l'espace du paramètre d'ordre Ω ait un deuxième groupe d'homotopie π 2 (Ω) = Z [START_REF] Hatcher | Algebraic topology[END_REF], ce qui est marqué d'un nombre entier connu sous le nom de charge topologique. Un tel type de configurations est stabilisé par un terme de gradient quadratique (∇m) 2 dans l'énergie libre Landau-Ginzburg du système ordonné. La forme d'un skyrmion est déterminée par d'autres termes énergétiques, par exemple le terme Moriya-Dzyaloshinskii [START_REF] Bogdanov | Thermodynamically stable "vortices" in magnetically ordered crystals. the mixed state of magnets[END_REF][START_REF] Bogdanov | Thermodynamically stable magnetic vortex states in magnetic crystals[END_REF][START_REF] Nagaosa | Topological properties and dynamics of magnetic skyrmions[END_REF] dans les aimants chiraux et l'interaction Coulomb de la charge topologique [START_REF] Sl Sondhi | Skyrmions and the crossover from the integer to fractional quantum hall effect at small zeeman energies[END_REF][START_REF] Moon | Spontaneous interlayer coherence in double-layer quantum hall systems: Charged vortices and kosterlitz-thouless phase transitions[END_REF] dans les ferromagnétiques de la fosse quantique. Les skyrmions individuels sont libres de se déplacer dans un environnement idéal où le paramètre de commande est uniforme en dehors des noyaux des skyrmions. [START_REF] Sampaio | Nucleation, stability and currentinduced motion of isolated magnetic skyrmions in nanostructures[END_REF][START_REF] Schütte | Inertia, diffusion, and dynamics of a driven skyrmion[END_REF] Le nombre de skyrmions dans une zone donnée est limité par leurs extensions spatiales et leurs interactions répulsives. Lorsque cette limite est proche de la saturation, les skyrmions sont commandés dans un réseau [START_REF] Côté | Collective modes of cP 3 skyrmion crystals in quantum hall ferromagnets[END_REF][START_REF] Mühlbauer | Skyrmion lattice in a chiral magnet[END_REF][START_REF] Yu | Real-space observation of a two-dimensional skyrmion crystal[END_REF] et une nouvelle phase émerge avec des modes sur le réseau de skyrmion dominant le faible spectre d'énergie. Le concept de skyrmion provient des travaux pionniers [START_REF] Skyrme | A non-linear field theory[END_REF][START_REF] Skyrme | A unified field theory of mesons and baryons[END_REF] de Skyrme sur les modèles phénoménologiques des mésons et des pions. [START_REF] Zahed | The skyrme model[END_REF][START_REF] Vladimir G Makhankov | The Skyrme Model: Fundamentals Methods Applications[END_REF] Dans ces thèse, un SU(2) champ U (x) est (a) (b) utilisé pour décrire les mésons et les pions dans l'espace tridimensionnel R 3 . Une condition de limite

K ↑ K ↓ K'↑ K'↓
U (|x| → ∞) = 1 (1) 
est imposée pour tenir compte de la localité des particules. Une telle condition aux limites compacte efficacement R 3 à S 3 . Puisque le target space SU(2) est également isomorphe à S 3 , il existe des configurations non triviales pour U (x) parce que π 3 (S 3 ) = Z [START_REF] Hatcher | Algebraic topology[END_REF]. Ces configurations non triviales sont connues sous le nom de "skyrmions" en raison de leur nature solitonique et de leur relation [START_REF] Witten | Current algebra, baryons, and quark confinement[END_REF] entre leur charge topologique et le nombre de baryons.

L'exemple le plus intuitif et largement étudié de skyrmions en matière condensée est le skyrmion en aimants chiraux [START_REF] Mühlbauer | Skyrmion lattice in a chiral magnet[END_REF] et les films minces magnétiques [START_REF] Yu | Real-space observation of a two-dimensional skyrmion crystal[END_REF][START_REF] Yu | Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet fege[END_REF]. Le paramètre de commande dans ces systèmes est l'aimantation m(x), dont la fluctuation en grandeur est supprimée et donc réduite à un champ vectoriel unitaire. Sur la condition limite

m(|x| → ∞) = m ∞ , (2) 
qui est similaire à celle du paragraphe précédent, l'espace bidimensionnel est compactif à S 2 , ce qui permet de former des configurations non triviales de m(x) depuis π 2 (S 2 ) = Z [START_REF] Hatcher | Algebraic topology[END_REF]. L'énergie libre de Landau-Ginzburg est donc un O(3) nonlinear sigma model [START_REF] Nagaosa | Topological properties and dynamics of magnetic skyrmions[END_REF] de m(x) avec l'interaction Dzyaloshinskii-Moriya [START_REF] Moriya | Anisotropic superexchange interaction and weak ferromagnetism[END_REF][START_REF] Ie Dzialoshinskii | Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances[END_REF][START_REF] Ie Dzyaloshinskii | Theory of helicoidal structures in antiferromagnets. 1. nonmetals[END_REF][START_REF] Ie Dzyaloshinskii | Theory of helicoidal structures in antiferromagnets. 3[END_REF] qui favorise les configurations skyrmion du paramètre d'ordre comme l'état fondamental.

Le sujet principal de cette thèse est le skyrmion d'effet Hall quantique [START_REF] Sl Sondhi | Skyrmions and the crossover from the integer to fractional quantum hall effect at small zeeman energies[END_REF][START_REF] Moon | Spontaneous interlayer coherence in double-layer quantum hall systems: Charged vortices and kosterlitz-thouless phase transitions[END_REF], qui existe dans les systèmes multi-composante d'effet Hall quantique [START_REF] Ezawa | Quantum hall ferromagnets[END_REF][START_REF] Jungwirth | Pseudospin anisotropy classification of quantum hall ferromagnets[END_REF][START_REF] Nomura | Quantum hall ferromagnetism in graphene[END_REF][START_REF] Réné Côté | Biased bilayer graphene as a helical quantum hall ferromagnet[END_REF][START_REF] Lee | Chemical potential and quantum hall ferromagnetism in bilayer graphene[END_REF][START_REF] Miravet | Pseudospin anisotropy of trilayer semiconductor quantum hall ferromagnets[END_REF]. Pour simplifier l'analyse, les niveaux Landau (NL) dans un système multi-composante d'effet Hall quantique sont regroupés selon les symétries. Sous un champ magnétique fort B, les NL dans le même groupe sont proches de l'énergie, alors que la séparation d'énergie des NL dans différents groupes est à l'échelle de l'énergie cyclotron, qui est la plus grande échelle d'énergie dans les systèmes multi-composante d'effet

Hall quantique. Habituellement, les groupes de NL deviennent plus distincts lorsque B augmente.

D'une manière conventionnelle, le «Niveau Landau» désigne le groupe de NL. Ce «niveau Landau» se compose de plusieurs «composants» ou de branches [voir la figure 2], qui sont en fait les LL dans le sens habituel, mais s'appellent «sous-niveaux».
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Il existe deux origines de composants ou de branches dans les systèmes multi-composante d'effet Hall quantique. Ils sont combinés pour distinguer les sous-niveaux dans un NL. Dans des matériaux réalistes qui hébergent le gaz électronique à deux dimensions, l'énergie Zeeman ∆ Z est habituellement petite par rapport à d'autres écailles d'énergie, telles que l'énergie cyclotron ω c (ou la séparation de NL) ou l'interaction Coulomb E C = e 2 / l B (l B = 25.6nm/ B[T] est l'échelle de longueur typique dans les systèmes d'effet Hall quantique). Par exemple, comme l'illustre la figure 3, dans la hétérostructure de GaAs-Al x Ga 1-x As, le rapport ω c /∆ Z est de ∼ 77 en raison de une petite masse de bande m * = (0.063 + 0.083x)m e [START_REF] Michael | Handbook series on semiconductor parameters[END_REF] et de un facteur g efficace g * = -0.44 [START_REF] Oestreich | Temperature and density dependence of the electron landé g factor in semiconductors[END_REF], alors que dans Le graphène de cette ration est ∆E 1-0 /∆ Z ∼ 300/ B[T] [START_REF] Douçot | Entanglement skyrmions in multicomponent quantum hall systems[END_REF][START_REF] Goerbig | Electronic properties of graphene in a strong magnetic field[END_REF]. Par conséquent, les NLs dans ces matériaux ont généralement deux sous-niveaux, qui sont proches de l'énergie et étiquetés par spin électronique. En outre, dans les systèmes multi-vallées -tels que les dispositifs en silicium [START_REF] Srijit Goswami | Controllable valley splitting in silicon quantum devices[END_REF][START_REF] Mark Rasolt | Dissipation due to a "valley wave" channel in the quantum hall effect of a multivalley semiconductor[END_REF], les AlAs quantum wells [START_REF] De Poortere | Enhanced electron mobility and high order fractional quantum hall states in alas quantum wells[END_REF][START_REF] Shayegan | Two-dimensional electrons occupying multiple valleys in alas[END_REF], la monocouche graphène [START_REF] Zhang | Experimental observation of the quantum hall effect and berry's phase in graphene[END_REF] bicouches [START_REF] Novoselov | Unconventional quantum hall effect and berry/'s phase of 2[pi] in bilayer graphene[END_REF] et trilayer [START_REF] Taychatanapat | Quantum hall effect and landau-level crossing of dirac fermions in trilayer graphene[END_REF],

SnTe [START_REF] Li | Su(3) quantum hall ferromagnetism in snte[END_REF], Ge quantum wells [START_REF] Lu | Density-controlled quantum hall ferromagnetic transition in a two-dimensional hole system[END_REF] -la dégénérescence de la vallée dans la structure de la bande d'électrons implique directement des sous-niveaux de Landau avec la même énergie. Chaque sousniveau est marqué par l'indice de la vallée. Dans les systèmes Hall Hall bicouches [START_REF] Sarma | Canted antiferromagnetic and spin-singlet quantum hall states in double-layer systems[END_REF][START_REF] Zf Ezawa | Spin-pseudospin coherence and cp 3 skyrmions in bilayer quantum hall ferromagnets[END_REF][START_REF] Stern | Theory of interlayer tunneling in bilayer quantum hall ferromagnets[END_REF][START_REF] Zf Ezawa | Interlayer exchange interactions, su (4) soft waves, and skyrmions in bilayer quantum hall ferromagnets[END_REF], le degré de liberté de la couche donne lieu également à des sous-niveaux Landau, qui sont marqués par l'indice de la couche.

À la proximité du remplissage entier des sous-niveaux de Landau dans un système d'effet Hall quantique à composants multiples, la principale contribution à la physique à faible énergie est l'excitation des sous-niveaux inoccupés dans le même LL, car l'excitation inter-LL coûterait beaucoup plus élevé d'énergie, comme je l'ai estimé au paragraphe précédent. Une telle réclamation est encore valable si l'on inclut l'énergie d'échange, qui provient de l'interaction Coulomb E C ∼ e 2 / l B . 

La dépendance au facteur g de l'énergie du skyrmion a été vérifiée par plusieurs expériences [START_REF] Schmeller | Evidence for skyrmions and single spin flips in the integer quantized hall effect[END_REF][START_REF] Maude | Spin excitations of a two-dimensional electron gas in the limit of vanishing landé g factor[END_REF][START_REF] Barrett | Optically pumped nmr evidence for finite-size skyrmions in gaas quantum wells near landau level filling ν = 1[END_REF][START_REF] Bayot | Giant low temperature heat capacity of gaas quantum wells near landau level filling ν = 1[END_REF][START_REF] Khandelwal | Spectroscopic evidence for the localization of skyrmions near ν = 1 as T → 0[END_REF].

Les skyrmions d'effet Hall quantique devraient en principe exister dans le système multicomposante d'effet Hall quantique hébergé par la monocouche de graphène, où chaque niveau de Landau se compose de 4 sous-niveaux marqués par l'indice de vallée K, K et l'indice de spin ↑, ↓ comme (K ↑, K ↓, K ↑, K ↓). Il existe des preuves [START_REF] Young | Spin and valley quantum hall ferromagnetism in graphene[END_REF] pour les skyrmions au remplissage du NL N = 0. La SU(4) symétrie approximative [START_REF] Yang | Collective modes and skyrmion excitations in graphene s u (4) quantum hall ferromagnets[END_REF] parmi les 4 sous-niveaux entraîne différents types de skyrmions [START_REF] Lian | Spin-valley skyrmions in graphene at filling factor ν = -1[END_REF].

J'utilise un Nonlinear Sigma Model du champ Grassmannien Z(r) ∈ Gr(ν, 4) pour décrire les skyrmions de Quantum Hall dans le N = 0 NL du monocouche de graphène. Deux cas sont étudiés séparément: le quart de remplissage (facteur de remplissage ν = 1) et le demi-remplissage (facteur de remplissage ν = 2).

Quart de remplissage signifie que l'un des quatre sous-niveaux du NL N = 0 est complètement rempli. Dans ce cas, l'état fondamental est un état ferromagnétique, qui est décrit par F -un m(r) embedded in a uniform background which usually represents the order parameter. In general, the existence of such kind of configurations requires that the space Ω of order parameter has nontrivial second homotopy group π 2 (Ω) = Z [START_REF] Hatcher | Algebraic topology[END_REF], thereby being labeled with an integer known as the topological charge. Such kind of configurations is stabilized by a quadratic gradient term (∇m) 2 in the Landau-Ginzburg free energy of the ordered system. The shape of a skyrmion is determined by other energy terms, for instance the Moriya-Dzyaloshinskii term [START_REF] Bogdanov | Thermodynamically stable "vortices" in magnetically ordered crystals. the mixed state of magnets[END_REF][START_REF] Bogdanov | Thermodynamically stable magnetic vortex states in magnetic crystals[END_REF][START_REF] Nagaosa | Topological properties and dynamics of magnetic skyrmions[END_REF] in chiral magnets and the Coulomb interaction of topological charge [START_REF] Sl Sondhi | Skyrmions and the crossover from the integer to fractional quantum hall effect at small zeeman energies[END_REF][START_REF] Moon | Spontaneous interlayer coherence in double-layer quantum hall systems: Charged vortices and kosterlitz-thouless phase transitions[END_REF] in quantum Hall ferromagnets. Individual skyrmions are free to move in an ideal environment where the order parameter is uniform outside the cores of skyrmions. [START_REF] Sampaio | Nucleation, stability and currentinduced motion of isolated magnetic skyrmions in nanostructures[END_REF][START_REF] Schütte | Inertia, diffusion, and dynamics of a driven skyrmion[END_REF] The number of skyrmions in a given area is limited by their spatial extensions and repulsive interactions. When such limit is close to saturation, skyrmions are ordered in a lattice [START_REF] Côté | Collective modes of cP 3 skyrmion crystals in quantum hall ferromagnets[END_REF][START_REF] Mühlbauer | Skyrmion lattice in a chiral magnet[END_REF][START_REF] Yu | Real-space observation of a two-dimensional skyrmion crystal[END_REF] and a new phase emerges with modes on the skyrmion lattice dominating the low energy spectrum. The concept of skyrmion originates from the pioneering works [START_REF] Skyrme | A non-linear field theory[END_REF][START_REF] Skyrme | A unified field theory of mesons and baryons[END_REF] of Skyrme on phenomenological models of mesons and pions. [START_REF] Zahed | The skyrme model[END_REF][START_REF] Vladimir G Makhankov | The Skyrme Model: Fundamentals Methods Applications[END_REF] In these works, an SU(2)-valued matrix field U (x) is used to describe the mesons and pions in the three-dimensional space R 3 . A natural boundary condition

U (|x| → ∞) = 1 (1.1)
is imposed to account for the locality of the particles. Such boundary condition effectively compactifies R 3 to S 3 . Since the target space SU(2) is also isomorphic to S 3 , there exist non-trivial configurations of U (x) because π 3 (S 3 ) = Z [START_REF] Hatcher | Algebraic topology[END_REF]. These non-trivial configurations are known as "skyrmions" because of their solitonic nature and the relation [START_REF] Witten | Current algebra, baryons, and quark confinement[END_REF] between their topological charge and the baryon number.

The most intuitive and widely investigated instance of skyrmions in condensed matter is the skyrmion in chiral magnets [START_REF] Mühlbauer | Skyrmion lattice in a chiral magnet[END_REF] and magnetic thin films [START_REF] Yu | Real-space observation of a two-dimensional skyrmion crystal[END_REF][START_REF] Yu | Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet fege[END_REF]. The order parameter in these systems is the magnetization m(x), whose fluctuation in magnitude is suppressed and hence reduced to a unit vector field. Upon the boundary condition

m(|x| → ∞) = m ∞ (1.2)
that is similar to the one in the previous paragraph, the two-dimensional space is compactified to S 2 , making it possible for non-trivial configurations of m(x) to form since π 2 (S 2 ) = Z [START_REF] Hatcher | Algebraic topology[END_REF].

The Landau-Ginzburg free energy is thus a O(3) nonlinear sigma model [START_REF] Nagaosa | Topological properties and dynamics of magnetic skyrmions[END_REF] of m(x) with the Dzyaloshinskii-Moriya interaction [START_REF] Moriya | Anisotropic superexchange interaction and weak ferromagnetism[END_REF][START_REF] Ie Dzialoshinskii | Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances[END_REF][START_REF] Ie Dzyaloshinskii | Theory of helicoidal structures in antiferromagnets. 1. nonmetals[END_REF][START_REF] Ie Dzyaloshinskii | Theory of helicoidal structures in antiferromagnets. 3[END_REF] which favors skyrmion configurations of the order parameter as the ground state.

The main topic of this thesis is the quantum Hall (QH) skyrmion [START_REF] Sl Sondhi | Skyrmions and the crossover from the integer to fractional quantum hall effect at small zeeman energies[END_REF][START_REF] Moon | Spontaneous interlayer coherence in double-layer quantum hall systems: Charged vortices and kosterlitz-thouless phase transitions[END_REF], which exists in multi-component QH systems [START_REF] Ezawa | Quantum hall ferromagnets[END_REF][START_REF] Jungwirth | Pseudospin anisotropy classification of quantum hall ferromagnets[END_REF][START_REF] Nomura | Quantum hall ferromagnetism in graphene[END_REF][START_REF] Réné Côté | Biased bilayer graphene as a helical quantum hall ferromagnet[END_REF][START_REF] Lee | Chemical potential and quantum hall ferromagnetism in bilayer graphene[END_REF][START_REF] Miravet | Pseudospin anisotropy of trilayer semiconductor quantum hall ferromagnets[END_REF]. To simplify the analysis, Landau levels (LLs) in a multi-component QH system are grouped according to (approximate) symmetries. Under a strong magnetic field B, LLs in the same group are close in energy, whereas the energy separation of LLs in different groups is on the scale of the cyclotron energy, which is the largest energy scale in multi-component QH systems. Usually the groups of LLs become more distinct when B increases. Conventionally, "Landau level" refers to the group of LLs. Such "Landau level" consists of multiple "components" or branches [See Fig. 1.2 for illustrations], which are in fact the LLs in the usual sense but are called "sub-levels". I keep this conventional terms and drop the quotation marks when mentioning them.
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There are two origins of components or branches in multi-component QH systems. They are combined to distinguish the sub-levels in a LL. In realistic materials that host the twodimensional electron gas, the Zeeman energy ∆ Z is usually small compared to other energy scales, such as the cyclotron energy ω c (or LL separation) or the Coulomb interaction E C = e 2 / l B (l B = 25.6nm/ B[T] is the typical length scale in QH systems). For instance, as illustrated in Fig. 1.3, in GaAs-Al x Ga 1-x As hetero-structure, the ratio ω c /∆ Z is ∼ 77 due to small band electron mass m * = (0.063 + 0.083x)m e [START_REF] Michael | Handbook series on semiconductor parameters[END_REF] and effective g-factor g * = -0.44 [START_REF] Oestreich | Temperature and density dependence of the electron landé g factor in semiconductors[END_REF], whereas in graphene such ration is ∆E 1-0 /∆ Z ∼ 300/ B[T] [START_REF] Douçot | Entanglement skyrmions in multicomponent quantum hall systems[END_REF][START_REF] Goerbig | Electronic properties of graphene in a strong magnetic field[END_REF]. Therefore, LLs in these materials usually have two sub-levels, which are close in energy and labeled by electron spin. Besides, in multi-valley systems -such as silicon devices [START_REF] Srijit Goswami | Controllable valley splitting in silicon quantum devices[END_REF][START_REF] Mark Rasolt | Dissipation due to a "valley wave" channel in the quantum hall effect of a multivalley semiconductor[END_REF], AlAs quantum wells [START_REF] De Poortere | Enhanced electron mobility and high order fractional quantum hall states in alas quantum wells[END_REF][START_REF] Shayegan | Two-dimensional electrons occupying multiple valleys in alas[END_REF], graphene monolayer [START_REF] Zhang | Experimental observation of the quantum hall effect and berry's phase in graphene[END_REF] bilayer [START_REF] Novoselov | Unconventional quantum hall effect and berry/'s phase of 2[pi] in bilayer graphene[END_REF] and trilayer [START_REF] Taychatanapat | Quantum hall effect and landau-level crossing of dirac fermions in trilayer graphene[END_REF], SnTe [START_REF] Li | Su(3) quantum hall ferromagnetism in snte[END_REF], Ge quantum wells [START_REF] Lu | Density-controlled quantum hall ferromagnetic transition in a two-dimensional hole system[END_REF] -valley degeneracy in the electron band structure directly implies Landau sub-levels with the same energy. Each sub-level is labeled by the valley index. In bilayer quantum Hall systems [START_REF] Sarma | Canted antiferromagnetic and spin-singlet quantum hall states in double-layer systems[END_REF][START_REF] Zf Ezawa | Spin-pseudospin coherence and cp 3 skyrmions in bilayer quantum hall ferromagnets[END_REF][START_REF] Stern | Theory of interlayer tunneling in bilayer quantum hall ferromagnets[END_REF][START_REF] Zf Ezawa | Interlayer exchange interactions, su (4) soft waves, and skyrmions in bilayer quantum hall ferromagnets[END_REF], the layer degree of freedom also gives rise to Landau sub-levels, which are labeled by the layer index.

In the vicinity of integer filling of Landau sub-levels in a multi-component QH system, the main contribution to the low-energy physics is the excitation to the unoccupied sub-levels within the same LL, since the inter-LL excitation would cost much higher energy, as I have estimated in the previous paragraph. Such claim is still valid if one include the exchange energy, which originates from the Coulomb interaction E C ∼ e 2 / l B . For instance, in GaAs-Al x Ga 1-x As hetero-structure, the ratio of cyclotron energy to exchange energy is ω c /E C = 0.38 B[T] with the dielectric constant = 13 QH skyrmion is the interpolation of these two types of excitations. It is useful to smear out the charge of a quasi-particle/quasi-hole in order to lower the energy cost due to exchange interaction.

In doing so, multiple spin flips are necessary for a smooth profile of the magnetization. The result in a two-component QH system is that the spin textures dress the quasi-particles/quasi-holes to lower their exchange energy. In this way, QH skyrmions are formed. In ideal cases, the spin texture around a quasi-particle/quasi-hole has the same profiles as the skyrmion shown in Fig. 1.1. It has also been illustrated in Fig. 1.4(d) for the profile of S z component in the two sub-levels. From the illustration, one can see that in the limit of small size, a QH skyrmion is reduced to a quasi-particle or a quasi-hole.

Compared to the skyrmions in chiral magnets and magnetic thin films, QH skyrmions do not have the Dzyaloshinskii-Moriya interaction for the magnetization, but instead has the Coulomb interaction of the topological charge. This is due to a more prominent feature [START_REF] Sl Sondhi | Skyrmions and the crossover from the integer to fractional quantum hall effect at small zeeman energies[END_REF] [110] [28] [START_REF] Ray | Quantum hall ferromagnets: Induced topological term and electromagnetic interactions[END_REF] [56] [START_REF] Douçot | Spin textures in quantum hall systems[END_REF] of QH skyrmions -the QH skyrmion carries electric charge, and the excess electric charge density δρ el (r) is directly related to the topological charge density ρ topo (r). Such interaction makes a QH skyrmion to be more spread out; but eventually the Zeeman energy counter-balance it by aligning the spin of QH electrons in the direction of the magnetic field. The result is a skyrmion with size R and energy E depending on the g-factor g [START_REF] Sl Sondhi | Skyrmions and the crossover from the integer to fractional quantum hall effect at small zeeman energies[END_REF]: Another piece of evidence for QH skyrmions is shown in Ref. [START_REF] Barrett | Optically pumped nmr evidence for finite-size skyrmions in gaas quantum wells near landau level filling ν = 1[END_REF], where optically pumped nuclear magnetic resonance [START_REF] Barrett | Directly detected nuclear magnetic resonance of optically pumped gaas quantum wells[END_REF] measurements of the Knight shift K S (ν, T ) of 71 Ga nuclei in GaAs-Al x Ga 1-x As quantum well was obtained as a function of filling factor ν in the vicinity of ν = 1

R l B 3 = 9π 2 2 8 l B 2 /m e e 2 (g ln |g|) -1 (1.3) E = 1 4 π 2 e 2 l B 1 + 3π 4 18 π 1/6 l B 2 /m e e 2
and the temperature T . The Knight shift is proportional to the spin magnetization density, which is then expressed with the help of the spin-flip per particle S and per hole A as

K S (ν) ∝ Θ(1 -ν) 2ν -1 (1 -A) -(1 -2A) + Θ(ν -1) 2ν -1 S + (1 -2S) .
(1.5) If S = A = 1, which is implied by the assumption of the absence of spin texture induced by particle/hole in the vicinity of ν = 1, the Knight shift K S (ν) would look like the solid curve in Fig. 1.6(a). However, the actual measurement reported in Ref. [START_REF] Barrett | Optically pumped nmr evidence for finite-size skyrmions in gaas quantum wells near landau level filling ν = 1[END_REF] shows clear deviation from the solid curve, leading to a conclusion that S = A = 3.6, which rules out the assumption of no spin texture and hence indicates multiple spin flip per particle/hole. Therefore a natural interpretation of the experimental data would be the formation of spin skyrmions in the vicinity of ν = 1. Ref. [START_REF] Khandelwal | Spectroscopic evidence for the localization of skyrmions near ν = 1 as T → 0[END_REF] studied further the temperature dependence of the Knight shift in similar settings and suggested a skyrmion dynamics picture to explain the measured data. It has also been argued in Ref. [START_REF] Bayot | Giant low temperature heat capacity of gaas quantum wells near landau level filling ν = 1[END_REF] that the observed anomalous enhancement of heat capacity in the vicinity of ν = 1 is due to the skyrmion-induced strong coupling of the nuclear spin system to the lattice.

QH skyrmions should in principle exist in multi-component QH system hosted by graphene monolayer, where each Landau level consists of 4 sub-levels labeled by the valley index K, K and the spin index ↑, ↓ as (K ↑, K ↓, K ↑, K ↓). There is evidence [START_REF] Young | Spin and valley quantum hall ferromagnetism in graphene[END_REF] for skyrmions at quarter filling of the N = 0 LL. The approximate SU(4) symmetry [START_REF] Yang | Collective modes and skyrmion excitations in graphene s u (4) quantum hall ferromagnets[END_REF] among the 4 sub-levels gives rise to various types of skyrmions [START_REF] Lian | Spin-valley skyrmions in graphene at filling factor ν = -1[END_REF]. In this thesis, I will provide detailed analysis on the QH skyrmions in graphene monolayer.

Overview of the thesis

This thesis focuses on quantum Hall (QH) skyrmions in a graphene monolayer as an SU(4) QH ferromagnet. The valley degree of freedom in graphene gives rise to the four-fold degeneracy of Landau levels.

Chapter 2 provides a basic introduction to Landau levels. The Landau wave functions have been worked out in §2.1 under a vector gauge potential, which is linear in spatial coordinates and contains These Landau levels resembles the Schrödinger's cat states. Finally, the form factor for Landau level is briefly discussed in §2.4 with emphasis on its generality.

Chapter 3 gives a lengthy discussion on QH ferromagnets, which could be simply understood as grouping of Landau levels with similar energy. Under strong perpendicular magnetic field, an approximate symmetry emerges among the electron spin and band valley degrees of freedom and the Coulomb interaction can be cast into a manifest SU(4) invariant form. The symmetry-breaking terms -for instance the Zeeman coupling, sub-lattice asymmetry and the electron interaction at lattice scale -are small compared to the long range Coulomb interaction. These are explained in §3.1. A comparison is made with the Hubbard model in the atomic limit to show the difference between the band gap and quasi-particle gap. In §3.2 I introduce the Hamiltonian H = H 0 + H 1 + V SU(4) + V SB for the SU(4) QH ferromagnet in a graphene monolayer. The kinetic part H 0 is a constant if one restricts the discussion in a single Landau level. The long range Coulomb interaction is written in an SU(4)-invariant form in V SU(4) and the symmetry-breaking terms are summarized in H 1 (quadratic terms) and V SB (quartic terms). Since the magnitude of V SU(4) is much larger than that of V SB , the ground state is determined by the former and the latter is treated as perturbations. At integer filling of sub-levels, the ground state is related to the irreducible representations [START_REF] Aharonov | Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field[END_REF] and [START_REF] Anandan | Geometry of quantum evolution[END_REF] of su(4).

Hartree-Fock treatment is given in §3. Chapter 2

Landau quantization

This chapter provides basic results of Landau quantization. §2. 

Ladder operators and wave functions

Consider the non-relativistic electron of mass m, charge -e (e > 0) moving in the xy-plane under a uniform perpendicular magnetic field B. The Hamiltonian is

H = 1 2m (p + eA) 2 , (2.1) 
where the vector potential satisfies

∇ × A = B = -Be z (B = const. > 0). (2.2)
The classical circular motion is governed by the Hamilton equations ṗ = -∂H/∂r and ṙ ≡ π/m = ∂H/∂p, where p is the canonical momentum and

π = m ṙ = p + eA (2.3)
is the mechanical momentum.

When the radius r c of the classical circular motion is comparable to the de Broglie wave length of the electron, the motion should be described by quantum mechanics. The radius r c can be estimated by the Bohr-Sommerfeld quantization condition (with n = 1)

nh = p • dr = (mv c )(2πr c ) = (eBr c )(2πr c ) , (2.4) 
where one integrates the velocity v c = eBr c /m of the electron along the circle of radius r c and obtain r c = h/2πeB. Usually the length scale where quantum mechanics is important is denoted by the magnetic length

l B = eB = 25.7 nm B[T] . (2.5) 
It depends only on the magnetic field and hence is universal to the physics of two-dimensional electron gas under strong magnetic field.

Ladder operator a and a † . A simple-minded quantization is achieved by the replacement p → -i ∇. Using [x, p] = i , one can compute the the commutator between two components of the mechanical momentum [defined in Eq.(2.

3)]

[π x , π y ] = i eB .

(2.6)

It is independent of the choice of gauge. The ladder operators a † and a can be defined in a gaugeindependent way:

a † = l B √ 2 (π x -iπ y ) , a = l B √ 2 (π x + iπ y ) , [a, a † ] = 1 . (2.7)
The Hamiltonian Eq.(2.1) becomes

H = ω c a † a + 1 2 (2.8)
where ω c = eB/m is the cyclotron frequency. The energy spectrum E N = ω c (N + 1 2 ) consists of equidistant energy levels, which are called Landau levels.

Ladder operator b and b † . Notice that the ladder operators a † and a consist of four basic operators -the (canonical) momentum operators (p x , p y ) = (-i ∂ x , -i ∂ y ) and coordinate operators (x, y). There are two non-vanishing commutators among them, namely [x, p x ] = i and [y, p y ] = i . It is then possible to use the four basic operators p x , p y , x, y to compose another pair of operators X and Y , which are independent of, and commute with a † and a, but [X, Y ] = 0. For uniform applied magnetic field, such operators are known as the guiding center operators. Classically an electron moves around a circle of radius r c = v c /ω c at a speed v c in the presence of uniform magnetic field perpendicular to xy-plane, as shown in Fig. 2.1. The coordinate r of the electron is heuristically decomposed as

r = R + η (2.9)
where R = (X, Y ) is the guiding center coordinate and

η = e z × v c = 1 mω c e z × π (2.10)
is the relative (cyclotron) coordinate. Promoting the above equation to operator relations, I define the guiding center operator as

X = x -η x = x + 1 mω c π y , Y = y -η y = y - 1 mω c π x .
(2.11)

One can verify the gauge-independent commutators

[X, Y ] = -il 2 B (2.12) [X, a] = [X, a † ] = [Y, a] = [Y, a † ] = 0 . (2.13)
It is convenient to define another pair of ladder operators from canonical transformation of X and

Y : b † = 1 √ 2l B (X + iY ) , b = 1 √ 2l B (X -iY ) , [b, b † ] = 1 . (2.14)
They commute with a and a † .

It is crucial to have uniform magnetic field applied to the system in order to perform the decomposition Eq.(2.9). The commutator [R, η] and [a(a † ), b(b † )] vanishes only under the uniform magnetic field, provided that the operators are defined in Eqs.(2.7), (2.14), (2.11).

Hilbert space. The above developments of ladder operators reveals that the Hilbert space of the Hamiltonian Eq.(2.1) is a direct product of two Hilbert spaces of the harmonic oscillator :

H = H a ⊗ H b = span |N, m ≡ |N a ⊗ |m b ; N, m = 0, 1, 2, • • • (2.15)
where I defined

|N a = (N !) -1/2 (a † ) N |0 a |m b = (m!) -1/2 (b † ) m |0 b a|0 a = 0 b|0 b = 0 (2.16)
The state ψ 0m (r) = r|N = 0, m in the lowest Landau level (LLL) satisfies the LLL condition aψ 0m (r) = 0 .

(2.17)

Landau wave functions in the linear gauge. It is worth mentioning that the above discussions are gauge independent. However, to solve the LLL condition, we need to specify the vector potential A. Following Ref. [START_REF] Aharonov | Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field[END_REF], I choose

A x , A y = B(∂ y K, -∂ x K) A x + iA y , A x -iA y = 2iB -∂K, ∂K (2.18) 
where

∂ ≡ ∂ z 1 2 (∂ x -i∂ y ), ∂ ≡ ∂ z 1 2 (∂ x + i∂ y ).
The ladder operators are rewritten in K as:

a = -i √ 2[∂ + (∂K)] a † = -i √ 2[∂ -(∂K)] b = √ 2 ∂ -(∂K) + z 2 b † = - √ 2 ∂ + (∂K) - z 2 (2.19)
For uniform magnetic field, ∇ × A = -B implies the following Poisson equation of the real-valued function K(x, y):

∂ 2 x K + ∂ 2 y K = 4∂∂K = 1 . (2.20)
Its solution has the following quadratic form (l B = 1):

K(x, y) = 1 2 (1 -ξ)x 2 + ξy 2 + 2λxy (2.21) K(z, z) = 1 4 zz + 1 8 (1 -2ξ -2iλ)z 2 + 1 8 (1 -2ξ + 2iλ)z 2 ,
where ξ, λ ∈ R are free parameters. With the above solution for K, the vector potential A can be computed from Eq.(2.18):

(A x , A y ) = B ξy + λx, -(1 -ξ)x -λy , (2.22) 
which is linear in x, y and hence called the linear gauge. As special cases, the symmetric gauge corresponds to (ξ, λ) = (1/2, 0), whereas the Landau gauge corresponds to (ξ, λ) = (0, 0) or (1, 0).

Gauge invariance implies that ξ, λ do not appear in any physical quantities. In the symmetric gauge (ξ, λ) = (1/2, 0), these expressions are particularly simple:

a = -i √ 2 ∂ + 1 4 z a † = -i √ 2 ∂ - 1 4 z b = √ 2 ∂ + 1 4 z b † = - √ 2 ∂ - z 4 .
(2.23)

General gauge transform. In fact, Eq.(2.21) can be written as

K(z, z) = 1 4 zz + φ(z, z) (2.24) 
where ∂∂ϕ = 0 is a harmonic function. The function φ generates the gauge transform of the vector potential

A x + iA y → A x + iA y -2iB∂φ. (2.25)
The most general form of the ladder operators are

a = -i √ 2 ∂ + (∂φ) + 1 4 z a † = -i √ 2 ∂ -(∂φ) - 1 4 z b = √ 2 ∂ -(∂φ) + 1 4 z b † = - √ 2 ∂ + (∂φ) - z 4 .
(2.26)

The statement in Ref. [START_REF] Brown | Bloch electrons in a uniform magnetic field[END_REF] that any function of operator p + eA (e > 0 for electrons) commutes with the one of p -eA is a special case of the mutually commuting ladder operators a, a † and b, b † in the above equations.

Lowest Landau level condition. Setting l B = 1 and making the Ansatz

ψ 0m (z, z) = h(z, z)e -K(z,z) , (2.27) 
the LLL condition becomes

aψ 0m (z, z) = -i √ 2e -K(z,z) ∂h(z, z) = 0, (2.28) 
which is equivalent to the holomorphic condition for h(•). To ensure that the wave functions ψ 0m (z, z)

in LLL are square-integrable, K in Eq.(2.21) must be positive-definite. Therefore the free parameters

ξ, λ ∈ R in K must satisfy 0 ≤ ξ ≤ 1 and |λ| ≤ ξ(1 -ξ). (2.29) 
"Vacuum state" ψ 00 . Besides the LLL condition Eq.(2.17), the "vacuum state" ψ 00 (r) = r|N = 0, m = 0 satisfies another condition bψ 00 (r) = 0.

(2.30)

Setting l B = 1 and inserting ψ 00 (z, z) = h(z)e -K(z,z) , one obtains

h (z) + (iλ + ξ - 1 2 )zh(z) = 0, (2.31) 
which has solution

h(z) = C 0 e 1 4 z 2 (1-2ξ-2iλ) = C 0 e V(z) (2.32) V(z) 1 4 z 2 (1 -2ξ -2iλ) . (2.33)
Finally the "vacuum state" ψ 00 (•) in a general gauge is

ψ 00 (z, z) = 1 √ 2π e -K(z,z)+V(z) = 1 √ 2π e -1 4 zz e 1 8 (1-2ξ-2iλ)z 2 -1 8 (1-2ξ+2iλ)z 2 (2.34)
where K(x, y) is given in Eq.(2.21) and C 0 = 1/ √ 2π is independent of ξ, λ. The symmetric gauge ξ = 1 2 and λ = 0 is a special case:

ψ 00 (r, θ) = 1 √ 2π e -r 2 4 . (2.35)
For the Landau gauge (ξ, λ) = (0, 0), one searches for eigenstate ψ 0x0 of the guiding center operator X = -i∂ y instead of the "vacuum state" ψ 00 . In this case the following equations Xψ 0x0 (x, y) = x 0 ψ 0x0 (x, y) (2.36)

ψ 0x0 (x, y) = h(x, y)e -K(x,y) K(x, y) = 1 2 x 2 .
lead to the solution

ψ 0x0 (x, y) = 1 2π e -1 2 (x-x0) 2 e +ix0y .
(2.37)

Similarly, for the Landau gauge(ξ, λ) = (1, 0), the wave function

ψ 0y0 (x, y) = 1 2π e -1 2 (y-y0) 2 e -iy0x (2.38)
is the eigenstate of the guiding center operator Y = i∂ x with eigenvalue y 0 . However, one can nevertheless set λ = 0 and ξ = 0, 1 in Eq.(2.34) to obtain

ψ 00 (x, y) = 1 √ 2π e -1 4 (x 2 +y 2 ) e ± i 2 xy
(2.39) as the "vacuum state" for the ladder operators in the Landau gauge.

Lowest Landau level wave functions ψ 0m (•). The orthogonal set of Landau orbit wave functions ψ 0m in the LLL can be obtained by applying the raising operator b † on the "vacuum state" ψ 00 . For generic value of ξ and λ one finds

ψ 0m (z, z) = z m √ 2π2 m m! e -K(z,z)+V(z) = z m √ 2π2 m m! e -1 4 zz e 1 8 (1-2ξ-2iλ)z 2 -1 8 (1-2ξ+2iλ)z 2 . ( 2.40) 
Such wave functions ring-shaped profiles for their amplitudes |ψ 0m (r)| 2 ∝ r 2m e -r 2 /2 , although the translation and/or rotation symmetry of the system appears to be broken due to the real-valued function K(x, y) Eq.(2.21) and hence the vector potential Eq. (2.22).

Wave functions ψ N m (•) in the N 'th Landau level. The ladder operator

a † = -i √ 2[∂ -(∂K)] acts on a generic wave function ψ(z, z) = h(z, z)e -K(z,z) as a † ψ(z, z) = -i √ 2 ∂h(z, z) -2h(z, z)∂K(z, z) e -K(z,z) . (2.41)
Instead of applying the above equation repeatedly on ψ 0m (z, z) [defined in Eq.(2.40)], I use the coherent state (I have taken the convention of Ref. [START_REF] John | Quantum many-particle systems[END_REF])

ψ m (w|z, z) exp[wa † ]ψ 0m (z, z) ≡ ∞ N =0 1 √ N ! w N ψ N m (z, z) (2.42) ψ m (0|z, z) ≡ ψ 0m (z, z) (2.43)
as a generating function of ψ N m (z, z). By solving the following coherent state conditions

aψ m (w|z, z) = wψ m (w|z, z) a † ψ m (w|z, z) = ∂ w ψ m (w|z, z), (2.44) 
one finds

ψ m (w|z, z) = g m (w, z, z)e -K(z,z) (2.45) g m (w, z, z) = 1 √ 2π2 m m! (z -i √ 2w) m e i √ 2 wz e V(z) (2.46) 
Expanding g m (w, z, z) to formal series and using the Rodrigues representation for the associated Laguerre polynomial L m-N N (x), one finds the coefficient 

g (N ) m (0, z, z) ∂ N ∂w N g m (w, z, z) w=0 = 1 √ 2π2 m m! e 1 2 zz+V(z) z 2 -m iz √ 2 N d N dx N x m e -x x= 1 2 zz = i N N ! √ 2π2 m-N m! z m L m-N N zz 2 e V(z) . ( 2 
ψ N m (z, z) = i N N ! 2π2 m-N m! z m L m-N N zz 2 e V(z)-K(z,z) (2.48)
which is in agreement (up to conventions for the complex coordinate z) with Eq.(3.41) in Jain's textbook [START_REF] Jainendra | Composite fermions[END_REF]. 

≡ ∞ m=0 1 √ m! (-iw) m ψ m (w|z, z) ≡ ∞ N =0 1 √ N ! w N ψ N (w|z, z) (2.49)
Notice that the symbol w conjugate to b † is independent of the symbol w conjugate to a † ; both of them should be understood as the formal variables in the generating function. Inserting Eq. (2.45) for the expression of ψ m (w|z, z) one finds

ψ(w, w|z, z) = 1 √ 2π e -1 2 (z-i √ 2w)(z+i √ 2w)+ 1
2 zz e V(z)-K(z,z) .

(2.50)

Notice that we cannot put a normalization coefficient e -ww for the above wave function since we require the coherent state condition Eq.(2.44) to hold for each coefficient on -iw in Eq.(2.49).

The coherent state ψ N (w|z, z) in N 'th Landau level can be derived by expanding the above equation in formal power series of w and compare the coefficient to Eq.(2.49). We find

ψ N (w|z, z) ∞ m=0 1 √ m! (-iw) m ψ N m (z, z) ≡ 1 √ N ! ∂ N ∂w N ψ(w, w|z, z) w=0 = i N √ 2π2 N N ! (z + i √ 2w) N e -i √ 2 zw e V(z)-K(z,z) , (2.51) 
which is dual to ψ m (w|z, z) in Eq.(2.45) in an obvious way. One can verify that ψ N (w|z, z) satisfies the following coherent state conditions

bψ N (w|z, z) = -iwψ N (w|z, z) b † ψ N (w|z, z) = i∂ w ψ N (w|z, z) (2.52)
as it should be. In the N = 0 Landau level with symmetric gauge (ξ, λ) = (1/2, 0), ψ N =0 (w|z, z) is nothing but the solution |R localized at R = (R X , R Y ) found in Ref. [START_REF] Kivelson | Cooperative ring exchange theory of the fractional quantized hall effect[END_REF]. 

Identifying z = x + iy, z = x -iy, w = (R Y + iR X )/ √ 2 and using V(z) -K(z, z) = -zz/4, it is clear that ψ N =0 R Y + iR X √ 2 |z, z ≡ r|R = 1 √ 2π e 1 4 |R| 2 e -
ψ N R Y + iR X √ 2 |z, z ≡ r|R, N = i N √ 2π2 N N ! (x -R X ) -i(y -R Y ) N e 1 4 |R| 2 e -1 4 |r-R| 2 -i 2 (r×R)•ez .
(2.54)

One can compute R, N |r|R, N to show that the state |R, N is indeed localized at R = (R X , R Y ).
Duality between the coherent states. Comparing Eq.(2.45) to Eq.(2.51) one observes an interesting duality. Apart from the exponential factor e V(z)-K(z,z) and the factor i N , the coherent state ψ N (w|z, z) Eq.(2.51) in N 'th Landau level is related to the coherent state ψ m (w|z, z) Eq. (2.45) at Landau orbit m by a complex conjugate. This duality is also evident from the coherent state ψ(w, w|z, z) in Eq.(2.50), since the part before the exponential factor e V(z)-K(z,z) is real.

Who is responsible for the magnetic translation group? The answer seems to be both set of the ladder operators a, a † , b, b † , because all of them contain the momentum operators (p x , p y ) = (-i ∂ x , -i ∂ y ), which are usually considered as the generators of the spatial translations in the absence of magnetic field. Indeed, the exponential of p x , p y acting on a function f (x, y) gives

e i (Xpx+Y py) f (x, y) = e (X∂x+Y ∂y) f (x, y) = f (x + X, y + Y ), (2.55) 
whereas a, a † and b, b † give different results (set l B = 1):

e 1 √
2 (ξa-ξa † ) f (x, y) = e iΘ1 e i(Imξ.Ax+Reξ.Ay) f (x + Imξ, y + Reξ) (2.56)

e 1 √ 2 (ζb-ζb † ) f (x, y) = e iΘ2 e i[Reζ.(Ax-y)+Imζ.(Ay+x)] f (x + Reζ, y + Imζ), (2.57) 
where Θ 1 and Θ 2 are obtained via Baker-Campbell-Hausdorff formula:

Θ 1 = 1 2 (Imξ) 2 ∂ x A x + (Reξ) 2 ∂ y A y + (ReζImζ)(∂ x A y + ∂ y A x ) = i 2 ζ 2 ∂ 2 K -ζ 2 ∂ 2 K (2.58) Θ 2 = 1 2 (Reζ) 2 ∂ x A x + (Imζ) 2 ∂ y A y + (ReζImζ)(∂ x A y + ∂ y A x ) = i 2 ζ 2 ∂ 2 K -ζ 2 ∂ 2 K (2.59)
The above equations define the magnetic translations of scalar functions on homogeneous space with uniform applied magnetic field. Both of them can be interpreted as "magnetic translation" operations. However, only the second one composed by b, b † is useful because it commutes with the Hamiltonian H(a, a † ), which is obtained by the Peierls substitution and justified by the principle of gauge invariance and series of works, e.g. Luttinger and Kohn [START_REF] Luttinger | Motion of electrons and holes in perturbed periodic fields[END_REF], Nenciu [START_REF] Nenciu | Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective hamiltonians[END_REF].

Setting (Reζ, Imζ) = dr = (dx, dy) and l B = 1, one obtains the infinitesimal form of Eq.(2.57)

and Eq.(2.57):

T (dr) = e iΘ2 e i(A(r)-r×ez)•dr e dr•∇ , (2.60) 
where Θ 2 ∼ O(dr 2 ) is of higher order, thus e iΘ2 = 1 for small dr. It commutes with the Schrödinger operator ∼ (-i∇ + A) 2 within the coordinate patch that contains dr. Accumulating such infinitesimal operation on the (complex) wave function ψ(r) along a curve C(a) adds a phase factor to the wave function after spatial translation

T [C r (a)]ψ(r) dr∈Cr (a) T (dr)ψ(r) = dr∈Cr (a)
e iΘ2 e i(Asym(r)+∇φ(r)-r×ez)•dr e dr•∇ ψ(r)

= e i[φ(r+a)-φ(r)] e iA[Cr (a)] ψ(r + a). (2.61) 
In the above formula, I denote the symmetric gauge potential A sym (r) = 1 2 r × e z , hence an arbitrary gauge potential A(r) = A sym (r) + ∇φ(r) is obtained by a gauge transform generated by the singlevalued potential φ(r) as in Eq.(2.25) and Eq.(2.26). The curve C r (a) starts at r and ends at r + a.

It is obtained from C(a) by a translation of r. Thus the shapes of C r (a) and C r (a) are identical but their starting points are different. The Keplerian area A[C] of the curve C is defined as

A[C] = 1 2 C (r × dr) z . (2.62) 
As has been pointed out in Ref. [START_REF] Brown | Bloch electrons in a uniform magnetic field[END_REF][START_REF] Zak | Magnetic translation group[END_REF], magnetic translations form a very complicated group.

It was explicitly shown in Ref. [START_REF] Zak | Magnetic translation group[END_REF] that each element in the group, i. 

r|R, N = ψ N w = R Y + iR X √ 2 |z, z
can be understood as the result of magnetic translation T -R , since

T -R r|0, N = e -1 √ 2 (Rb-Rb † ) ψ N,0 (z, z) = ψ N w = iR √ 2 |z, z ≡ r|R, N . (2.66)
Canonical transform on the ladder operators. Let us first define a bilinear mapping of operators:

B(O 1 , O 2 ) [O 1 , O 2 ]. (2.67) 
In the basis O = [a, a † , b, b † ] the matrix representation of B is B J 0 0 J J 0 1 -1 0 . (2.68)
The commutator of

O 1 = u 1 a + u 2 a † + u 3 b + u 4 b † and O 2 = v 1 a + v 2 a † + v 3 b + v 4 b † is thus a bilinear form [O 1 , O 2 ] = U T BV (2.69) with U = (u 1 , u 2 , u 3 , u 4 ) and V = (v 1 , v 2 , v 3 , v 4 ). The canonical transformation ã = U 11 a + U 12 a † , ã † = U 21 a + U 22 a † (2.70) and b = V 11 b + V 12 b † , b † = V 21 b + V 22 b † (2.71) with U T JU = J , V T JV = J (2.72)
preserves the symplectic structure J and the block-diagonal structure in the bilinear mapping B and hence preserves the commutator among the ladder operators -after the canonical transform Eq.(2.70) and Eq.(2.71), the commutation relations

[ã, ã † ] = [ b, b † ] = 1, [ã, b] = [ã † , b] = [ã, b † ] = [ã † , b † ] = 0 (2.73)
still hold. Such canonical transforms reflects the redundancy of the choice of ladder operators in constructing the Fock states. For instance, one can construct the squeezed states [START_REF] Stoler | Equivalence classes of minimum uncertainty packets[END_REF][START_REF] Stoler | Equivalence classes of minimum-uncertainty packets[END_REF] by using the canonical transformation U on a, a † to solve the Landau quantization of a quadratic Hamiltonian H with band mass anisotropy.

The most general form of canonical transform of a pair of (bosonic) ladder operators, say a, a † , can be formally written with the help of the exponential mapping of operators

U = exp i nm u nm (a † ) n a m = exp iW (2.74) with u * nm = u mn to ensure U U † = U † U = 1.
After the transformation the ladder operators become complicated superpositions of (a † ) n a m :

ã U aU † = ∞ k=0 i k k! ad k W (a) (2.75) ã † U a † U † = ∞ k=0 i k k! ad k W (a † ) (2.76)
where

ad k Y (X) = Y, ad k-1 Y (X) , ad 1 Y (X) = [Y, X]. (2.77) 
At the time of writing up the thesis, I am unable to exploit such general canonical transforms to get "suitable" ladder operators for the Landau levels and Landau orbits. Even a simple example for such canonical transform would be beyond the example with band mass anisotropy shown in §2.3.

Model Hamiltonians on honeycomb lattice

Let me first introduce the models altogether by introducing the honeycomb lattice with anisotropic nearest-neighbor hopping. (Kitaev in Ref. [START_REF] Kitaev | Anyons in an exactly solved model and beyond[END_REF] examined the spin models of this type.) The lattice

Hamiltonian reads

H = r∈• t 1 c † • (r + δ1 )c • (r) + t 2 c † • (r + δ2 )c • (r) + t 3 c † • (r + δ3 )c • (r) x∈• t 1 c † • (x -δ1 )c • (x) + t 2 c † • (x -δ2 )c • (x) + t 3 c † • (x -δ3 )c • (x) + r∈• (∆)c † • (r)c • (r) + x∈• (-∆)c † • (x)c • (x) (2.78)
where δ1 , δ2 and δ3 correspond to the red, green and blue bonds pointing from the white sub-lattice site • towards the black sub-lattice site • in Fig. 2.2. The associated hopping parameters are t 1 , t 2 and t 3 respectively. Notice that in general, one has δ1 + δ2 + δ3 = 0 for a deformed honeycomb lattice. The parameter ∆ characterize the difference of the on-site energy for the two sub-lattices.

In the following discussion, I choose the unit cell to be • -• joint by δ3 and the origin at the center of a hexagon, with the sub-lattice offset r • and r • for • and • respectively. Applying the Fourier transform

c • (r) = k e ik•(r-r•) c •k , c • (x) = k e ik•(x-r•) c •k (2.79) with r -r • ∈ Za 1 + Za 2 and x -r • ∈ Za 1 + Za 2 for r ∈ • and x ∈ • respectively, one finds H = k c † •k t 1 e -ik•( δ1+r•-r•) + t 2 e -ik•( δ2+r•-r•) + t 3 e -ik•( δ3+r•-r•) c •k k c † •k t 1 e ik•( δ1+r•-r•) + t 2 e ik•( δ2+r•-r•) + t 3 e ik•( δ3+r•-r•) c •k + k ∆ c † •k c •k -c † •k c •k = k Ψ † k ∆ f 123 (k) f 123 (k) * -∆ Ψ k k Ψ † k H k Ψ k (2.80) f 123 (k) = t 1 e ik•( δ1+r•-r•) + t 2 e ik•( δ2+r•-r•) + t 3 e ik•( δ3+r•-r•) (2.81) = t 1 e ik•( δ1-δ3) + t 2 e ik•( δ2-δ3) + t 3
where

Ψ k = [c •k , c •k ] T .
In the above discussions, I have assumed that the local orbits φ • (r) and φ • (x) associated to c • (r) and c • (x) are orthogonal at different lattice sites, so that the commutators

c a (r), c † b (r ) = δ ab δ rr , c a (r), c b (r ) = c a (r), c b (r ) = 0 (2.82)
are canonical. Such assumption may fail in other materials if the overlapping integral is large.

s 0 = d 2 rφ * • (r + δ3 )φ • (r) (2.83) (a) (b) (c)
In the following, I discuss several examples depicted in Fig. 2.2. They are derived from the general model.

Two-band models on honeycomb lattice. Setting in Eq.(2.80), the model for graphene monolayer is obtained (the distance between two neighboring atoms is set to 1). This choice satisfies δ1 + δ2 + δ3 = 0. Since the hopping parameters are isotropic, we remove the color on the bonds of the honeycomb lattice and represent the model by Fig. 2.2(a).

t 1 = t 2 = t 3 = t 0 (2.
The Hamiltonian is

H k = ∆ t 0 f (k) t 0 f (k) * -∆ , (2.86) 
where the structure factor

f (k) = e ik•( δ1-δ3) + e ik•( δ2-δ3) + 1 = 2e 3iky/2 cos √ 3 2 k x + 1, (2.87) 
is periodic in G and its phase is plotted in [Fig. 2.3(b)]. It vanishes at the so-called Dirac points as well as the equivalent points

K 1 = 4π 3 √ 3 (1, 0), K 2 = 4π 3 √ 3 cos π 3 , sin π 3 (2.88) (a) (b) (c) f (k) = e ik•a 2 + 1.2 e ik•a 3 + 0.6 f (k) = e ik•a 2 + e ik•a 3 + 1 f λ (k) = e ik•a 2 + e ik•a 3 + (1 + λ)
K 2 -K 1 , -K 1 , -K 2 and K 1 -K 2 .
The matrix S k for the orbital overlapping is

S k = 1 s 0 f (k) s 0 f (k) * 1 , (2.89) 
where s 0 is the orbital overlap in Eq.(2.83).

Modifying t 3 as t 3 = t 0 (1 + λ) and keeping the other settings as in Eq.(2.85), one obtains the model for the graphene monolayer elongated in y-direction, which is represented by the red bonds in Fig. 2.2(b). The Hamiltonian for this case is modified from Eq.(2.86) by replacing f (k) with

f λ (k) = e ik•( δ1-δ3) + e ik•( δ2-δ3) + (1 + λ). (2.90) 
The matrix S k for the orbital overlapping in this case is obtained similarly from Eq.(2.89). One should notice that the realistic strain on graphene monolayer tends to modify the directions of δ1,2,3

together with t 3 . The present modification is a toy model with simplest anisotropy.

The energy bands can be obtained from the secular equation For graphene monolayer, the energy bands are Low-energy model for graphene monolayer. As Eq.(2.92) suggests, the low energy model is obtained by expansion at k points where |f (k)| vanishes. For the graphene monolayer, such points are the so-called Dirac points -the K-point and K -point in the first Brillouin zone. The expansion of f (q + P ) at points P = K 1 , K 2 -K 1 and -K 2 gives q x + iq y , whereas the expansion at points

det[H k -E k S k ] = 0. ( 2 
E k = (1 -s 2 0 |f (k)| 2 ) -1 ± |t 0 | 1 -s 2 0 ∆ 2 |f (k)| 2 + (∆/t 0 ) 2 -s 0 t 2 0 |f (k)| 2 = ± |t 0 | |f (k)| 2 + (∆/t 0 ) 2 -s 0 t 2 0 |f (k)| 2 + O(s 2 0 , t 3 0 ) =    ± |∆| + ± 1 2 -s 0 t 2 0 |f (k)| 2 + O(s 2 0 , t 4 0 ) ∆ = 0 ± |t 0 | |f (k)| -s 0 t 2 0 |f (k)| 2 + O(s 2 0 , t 3 
P = K 2 , -K 1 and K 1 -K 2 gives -q x +
iq y . These expansions at K-point and K -point have to be unique since f (k) is periodic in G. One can write down the low energy model for electron states

Ψ k with k = q + K 1 at the vicinity of K-point or k = q + K 2 close to K -point: H K q = 3t 0 2 m q x + iq y q x -iq y -m , H K q = 3t 0 2 m -q x + iq y -q x -iq y -m , (2.93) 
where m = 2∆/3t 0 . In order to get a handsome-looking Hamiltonian, one can join the reversed basis

σ x Ψ q+K1 = c •q+K1 , c •q+K1 T at K-point with the modified basis σ z Ψ q+K2 = c •q+K2 , -c •q+K2
T at K -point to get the sublattice-swapped basis

Φ q = c •q+K1 , c •q+K1 , c •q+K2 , -c •q+K2 T (2.94)
then obtain

H q = 3t 0 2 q x τ 0 ⊗ σ x + q y τ 0 ⊗ σ y -mτ z ⊗ σ z , (2.95) 
where the 2 × 2 identity matrix τ 0 and τ z act on the valley and σ x , σ y , σ z act on the sub-lattice.

Notion of pseudospin. One has to be careful with the notion of pseudospin associated to the valley degree of freedom. The valley pseudospin is designed to facilitate the treatment of low energy degrees of freedom in multi-valley systems, where the valleys are usually related by the transformations in the point group. In the case of graphene monolayer, the full expansion of wave function Ψ(r) with respect to the Bloch states Ψ n,k (r) can be approximated as

Ψ(r) = n |k|<Λ C (1) nk Ψ n,k+K1 (r) + n |k|<Λ C (2) nk Ψ n,k+K2 (r), (2.96) 
where the cutoff Λ depends on the temperature and is much smaller than |K|. 

Landau quantization in Graphene

H = ω c aτ 0 ⊗ σ -+ a † τ 0 ⊗ σ + -M τ z ⊗ σ z (2.97)
with the cyclotron energy

ω c = √ 2 3t 0 2 a cc l B = √ 2 v F l B (2.98)
and the gap parameter 

M = ∆ ω c . ( 2 
Ψ ξ=+ N m = α ξ N |N a ⊗|m b , β ξ N |N -1 a ⊗|m b , 0, 0 T , Ψ ξ=- N m = 0, 0, α ξ N |N a ⊗|m b , β ξ N |N -1 a ⊗|m b T , (2.100) 
where N ∈ Z labels the Landau levels and m = 0, 1, 2, • • • labels the Landau orbits, and the coefficients are

α ξ N = -ξM + (sgnN ) M 2 + |N | M -ξ(sgnN ) M 2 + |N | 2 + |N | , (2.101) 
β ξ N = |N | M -ξ(sgnN ) M 2 + |N | 2 + |N | (2.102)
for N = 0 and

α ξ N =0 = 1, β ξ N =0 = 0. (2.103)
for N = 0. Thus the N = 0 Landau level eigenstates have a simple form:

Ψ ξ=+ N =0,m = |0 a ⊗ |m b , 0, 0, 0 T , Ψ ξ=- N =0,m = 0, 0, |0 a ⊗ |m b , 0 T . (2.104)
Notice that these coefficients do not depend on the Landau orbit label m. When the gap parameter M vanishes, the coefficients are:

α ξ N = (sgnN ) 1 √ 2 , β ξ N = 1 √ 2 . (2.105)
For this case, the Landau level eigenstates also have simple form:

Ψ ξ=+ N,m = 1 √ 2 (sgnN )|N a ⊗ |m b , |N -1 a ⊗ |m b , 0, 0 T Ψ ξ=- N,m = 1 √ 2 0, 0, (sgnN )|N a ⊗ |m b , |N -1 a ⊗ |m b T (2.106)
Magnetic translation symmetry of the Hamiltonian. In the following discussions, we set

e = = 1 and l B = 1/ √ B.
The Hamiltonian H(k + A), which is obtained by the substitution p → π = p + eA discussed in §2.1, commutes with the ladder operator b, b † because after Landau quantization the Hamiltonian becomes H(a, a † ) -a function of a, a † . In Ref. [START_REF] Cappelli | Infinite symmetry in the quantum hall effect[END_REF], the authors pointed out that there is an infinite set of generators

L n,m (b † ) n+1 b m+1 n, m ≥ -1 (2.107)
for the symmetry of H(k +A), they form the W ∞ algebra. [START_REF] Shen | W infinity and string theory[END_REF][START_REF] Odake | Unitary representations of w infinity algebras[END_REF] The full commutation relations for L n,m are provided in Ref. [START_REF] Cappelli | Infinite symmetry in the quantum hall effect[END_REF] and are not repeated here. Such a set of generators is prima facie redundant, as if we claim the generator of the (ordinary, non-magnetic) spatial translation symmetry is

P n,m = (p x + ip y ) n+1 (p x -ip y ) m+1 n, m ≥ -1 (2.108) 
with the generator p x , p y satisfying [p x , p y ] = 0. The generators P n,m are indeed redundant, because the product of a series of finite transformation

i exp nm w (i) nm P n,m ≡ exp nm i w (i) nm P n,m (2.109) 
is reduced to a simple form exp[i( wx p x + wy p y )]. The reason for such triviality is the affine structure on the coordinate space on which the translations are performed. In contrast, generators L n,m for different n, m do not commute with each other, the above reduction cannot be performed if P n,m is replaced by L n,m . The exponentials for different L n,m are not equivalent in general.

Contrary to Ref. [START_REF] Cappelli | Infinite symmetry in the quantum hall effect[END_REF], the Cartan sub-algebra is more than the set of generators {L n,n |n ≥ -1}.

To see this, we first need to connect this algebra to the Girvin-MacDonald-Platzman algebra [START_REF] Sm Girvin | Magneto-roton theory of collective excitations in the fractional quantum hall effect[END_REF] :

[ρ(z, z), ρ(w, w)] = 2i sin (Imzw) ρ(z + w, z + w) (2.110) ρ(z, z) e zb-zb † . (2.111)
The operator ρ(z, z) commutes with the Hamiltonian H(k + A) by similar reasons for that to L n,m .

The connection to L n,m can be seen in one expands ρ(z, z) and bring it to the normal-ordered form.

On the von Neumann lattice [START_REF] Boon | Discrete coherent states on the von neumann lattice[END_REF][START_REF] Dana | Adams representation and localization in a magnetic field[END_REF]]

L vN (η, τ ) = z mn = √ π(mη + nτ ) m, n ∈ Z, Im(ητ ) = 1 , (2.112) 
the operators in the set 

H vN (η, τ ) = {ρ(z, z * )|z ∈ L vN (η, τ )} (2.
A(η, τ ) = A(η, τ + η) = A(η + τ, τ ). (2.115) 
The modular invariance can be [START_REF] Dolan | Modular invariance, universality and crossover in the quantum hall effect[END_REF] related to the transformation rules [START_REF] Kivelson | Global phase diagram in the quantum hall effect[END_REF] of the filling factor of quantum Hall systems.

The problem for field theories on the von Neumann lattice is the over-completeness of such coherent state basis. [START_REF] Bargmann | On the completeness of the coherent states[END_REF]128,[START_REF] Bacry | Proof of completeness of lattice states in the k q representation[END_REF] However, such set is non-orthonormal and "over-complete by one state". Tedious procedures [START_REF] Boon | Amplitudes on von neumann lattices[END_REF][START_REF] Zak | Discrete weyl-heisenberg transforms[END_REF][START_REF] Mumford | Tata lectures on theta. I[END_REF] have to be implemented to remove the extra degrees of freedom in the field theory, making it not appealing as compared to other field theories for quantum Hall liquids.

A similar algebra

Γ n,m (a † ) n+1 a m+1 (2.116)
has been studied by Haldane in Ref. [START_REF] Read | Hall viscosity, orbital spin, and geometry: paired superfluids and quantum hall systems[END_REF][START_REF] Haldane | Geometry of landau orbits in the absence of rotational symmetry[END_REF], especially the sub-algebra

sl(2, R) ∼ = span Γ 1,1 , Γ 0,2 , Γ 2,0 , (2.117) 
which emerges [START_REF] Haldane | Geometry of landau orbits in the absence of rotational symmetry[END_REF] in the low-energy approximation of H(k) at band minimum.

Landau level degeneracy. When the applied magnetic field is strong enough such that the magnetic length l B is much smaller than the size of the system but still much larger than the size of the unit cell, the degeneracy of Landau levels can be estimated as the number of magnetic flux CHAPTER 2. LANDAU QUANTIZATION quanta N φ in the sample of area A:

N φ = BA h/e = A 2πl 2 B .
(2.118)

The quantity 2πl 2 B can be understood as the area "occupied" by one electron state in the particular Landau level, because the Pauli's exclusion principle requires that electrons in the same Landau level, if we do not consider their spin, should not "occupy" the same spatial region. Unfortunately, the factor of 2π does not appear in the most straightforward calculations. For instance, the coherent state |R, N in the N 'th Landau level solved in Eq.(2.54) gives

(∆x) 2 (∆y) 2 = 1 2 (N + 1)(N + 2)l 4 B (∆x) 2 (∆y) 2 = (N + 1) 2 l 4 B , (2.119) 
where ∆x x -x and ∆y y -y with x, y being the components of the full coordinate operator r in the left-hand-side of Eq.(2.9). The area "occupied" by each coherent state |R, N is obtained by taking the square root of one of the above quantities. The factor of 2π is missing. The Landau 

R m = √ 2ml B , (2.120) 
which agrees with the average radius of the wave function

ψ 0m R ψ 0m |(x 2 + y 2 )|ψ 0m = √ 2m + 1l B . (2.121) 
These radius suggest that the total area of N φ wave functions ψ 00 ,

ψ 01 , • • • , ψ 0,N φ -1 "occupies" an area of A = πR 2 N φ -1 ≈ 2πl 2 B N φ for large N φ .
For the Landau gauge (ξ, λ) = (0, 0) or (1, 0), the peaks of ψ 0x0 or ψ 0y0 are located on the lines x = x 0 or y = y 0 respectively. If we impose the periodic boundary condition in the translational invariant direction (y for ψ 0x0 and x for ψ 0y0 ), these lines will be of equal spacing with distance ∆ = 2πl 2 B /L 1 , where L 1 is the length in the translational invariant direction. Therefore, in a finite sample of width L 2 and area A = L 1 L 2 , there are at most

N φ = L 2 /∆ = A/2πl 2 B
wave functions in the lowest Landau level. The mathematically rigorous way to count the Landau level degeneracy invokes Dirac's quantization of magnetic flux and inevitably requires that the wave functions live on a compact manifold Σ (e.g. [START_REF] Iengo | Quantum mechanics and quantum hall effect on reimann surfaces[END_REF]). The difference between the maximal number of electrons in the lowest Landau level and the number of magnetic flux through the surface

S = ν -1 N e -N φ , (2.122) 
known as the Wen-Zee shift [START_REF] Xg Wen | Shift and spin vector: New topological quantum numbers for the hall fluids[END_REF], is a manifestation of the Riemann-Roch theorem (e.g. Ref. [START_REF] Eguchi | Gravitation, gauge theories and differential geometry[END_REF][START_REF] Forster | Lectures on Riemann surfaces[END_REF])

for counting the number of sections in the holomorphic line bundle on Σ. These topics are beyond the scope of this thesis.

Landau quantization of a generic Hamiltonian H(k). Usually the choice of Landau gauge leads to the 1d quantum mechanics analogy [START_REF] Montambaux | A universal hamiltonian for motion and merging of dirac points in a two-dimensional crystal[END_REF][START_REF] Heisenberg | Über quantentheoretische umdeutung kinematischer und mechanischer beziehungen[END_REF][START_REF] Born | Zur quantenmechanik[END_REF]25] 

π x ∼ X, π y ∼ P, [π x , π y ] = i eB ∼ [X, P ] = i ˜ , (2.123 
p n (z)∂ n f (z) + p n-1 (z)∂ n-1 f (z) + • • • + p 0 (z)f (z) = 0, (2.124) 
where p n (z) are holomorphic functions. The solution ψ n (X) of the Landau Hamiltonian in the Schrödinger-Heisenberg representation and the solution ψ n (z) in the Bargmann representation can be connected via the Bargmann transform [START_REF] Bargmann | On the completeness of the coherent states[END_REF][START_REF] Hall | Holomorphic methods in analysis and mathematical physics[END_REF]:

B(z, x) = e -x 2 +2xz-1 2 z 2
(2.125)

ψ n (z) = R B(z, x)ψ n (x)dx (2.126) ψ n (x) = C ψ n (z)B(z, x)e -|z| 2 dz (2.127)
Note that the complex variable z used in the Bargmann representation should not be confused with the complex coordinates of the xy-plane where the wave function lives. Nor should the complex variable z be related to the point k in the first Brillouin zone by z = k x + ik y in "an obvious way", although there is indeed a relation between z and k x + ik y , which will be illustrated in the following paragraphs via a toy model. Landau quantization of the k 3 + λk 2 model. Let us study a toy model by choosing f (k) =

k 3 + λk 2 (λ ∈ R) for the function f (k) = f (k x + ik y ) in Eq.
(2.86) and set t 0 = 1. For simplicity in notations we also set e = = 1. Such a model allows us to clarify the general mathematical procedures in solving H(a, a † ).

The band structure is presented in Fig. 2.5 for both ∆ = 0 and ∆ = 0 case. The two band bottoms are located at the quadratic band-touching point

p 1 : (k x , k y ) = (0, 0) (2.128)
and the Dirac point

p 2 : (k x , k y ) = (0, -λ). (2.129)
Landau quantization is pipelined as a chain of replacements:

k → k + A π ≡ π x + iπ y → √ 2Ba † → √ 2Bz (2.130) k * → k * + A * π * ≡ π x -iπ y → √ 2Ba → √ 2B∂. (2.131) 
The Hamiltonian becomes 

H(a, a † ) = ∆ -f ( √ 2Ba † ) -f ( √ 2Ba) -∆ , ( 2 
f ( √ 2Bz)f ( √ 2B∂)φ 1 (z) = (E 2 -∆ 2 )φ 1 (z). (2.133)
The other component can be obtained from φ 1 (z) as

φ 2 (z) = - 1 E + ∆ f ( √ 2B∂)φ 1 (z), (2.134) 
which suggests the following normalization of the eigenstate

Ψ E = [χ 1E , χ 2E ] T : 1 = Ψ † E Ψ E ≡ χ 1E |χ 1E + χ 2E |χ 2E = 1 π dz |φ 1 (z)| 2 + 1 |E + ∆| 2 f ( √ 2B∂)φ 1 (z) 2 e -|z| 2 .
(2.135)

Three linearly independent solutions of Eq.(2.133) for the lowest Landau level with energy

E = ∆ are η (1) (z) = 1, η (2) (z) = z, η (3) (z) = e -1 √ 2B λz-1 4B |λ| 2 (2.136)
where η (1) and η (2) come from the quadratic valley p 1 and η (3) is the contribution from the Dirac valley p 2 . From the Gram-Schmidt matrix for the above solutions (w.r.t. the inner product (f, g)

for holomorphic functions f, g in the Bargmann space)

G (η (i) , η (j) ) =     1 0 e -1 4B |λ| 2 0 1 -λ √ 2B e -1 4B |λ| 2 e -1 4B |λ| 2 -λ * √ 2B e -1 4B |λ| 2 1     , (2.137) 
we obtain the orthonormal basis

ϕ (1) (z) = b * η (1) (z) + aη (2) (z) ϕ (2) (z) = 1 2 -2a -1 e -1 4B |λ| 2 η (3) (z) -aη (1) (z) -bη (2) (z) ϕ (3) (z) = 1 2 + 2a -1 e -1 4B |λ| 2 η (3) (z) + aη (1) (z) -bη (2) (z) , (2.138) 
where η (1) and η (2) at the quadratic valley p 1 are hybridized by the coefficients

a = √ 2B |λ| 2 + 2B , b = λ |λ| 2 + 2B . (2.139)
The orthonormal eigenstates at E = ∆ can be constructed as

Ψ (k) E=∆ = ϕ (k) (z), 0 T k = 1, 2, 3.
(2.140)

In the limit of |λ| → ∞, the Gram-Schmidt matrix G goes to a 3 × 3 identity matrix and the above orthonormal basis becomes

lim |λ|→∞ ϕ (1) (z), ϕ (2) (z), ϕ (3) (z) = η (1) (z), 1 √ 2 η (2) (z), - 1 √ 2 η (2) (z) lim |λ|→∞ η (3) (z) = 0, (2.141) 
which demonstrates the decoupling of the valley p 1 from p 2 as the latter goes to infinity.

Interesting analogy can be made to the "Schrödinger cat states" [START_REF] Schrödinger | Die gegenwärtige situation in der quantenmechanik[END_REF][START_REF] Yurke | Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion[END_REF] (also known in the study of twisted bilayer graphene in Ref. [START_REF] De Gail | Topologically protected zero modes in twisted bilayer graphene[END_REF])

|cat± = N ± (α)(e αa † |0 ± e -αa † |0 ) N ± (α)(|α ± |-α ) (2.142)
as the ground state of the Cassinian oscillator [START_REF] Wielinga | Quantum tunneling in a kerr medium with parametric pumping[END_REF][START_REF] Puri | Engineering the quantum states of light in a kerr-nonlinear resonator by two-photon driving[END_REF]]

H = K (a † ) 2 -α 2 a 2 -α 2 , (2.143) 
where the normalization constant is

N + (α) -1 = 2 √ cosh |α| 2 for |cat+ and N -(α) -1 = 2 √ sinh |α| 2
for |cat-. If we consider |α and |-α as the lowest Landau levels from the two valleys located at ±α, the states ϕ (2) and ϕ (3) in the lowest Landau level of the k 3 + λk 2 model can be considered as two "cat states" composed by the state η (3) from the Dirac valley p 2 and the hybridized state aη (1) -bη (2) from the quadratic valley p 1 .

Form factor of Landau levels

The degrees of freedom in a two-dimensional electron system in magnetic field can be separated into the inter-Landau-level ones which are related to the ladder operators a, a † , and the intra-Landau-level ones which are associated to the ladder operators b, b † . Since the two sets of ladder operators commute, the physics within a single Landau level is decoupled from other Landau levels.

The influence of electronic band structure on Landau levels can be summarized by the form factor

F N N (k)
, which is a function of the Landau level index N, N (should not be confused with the number N that labels the Fock state |N for a, a † ) and the crystal momentum k. Such function exists at any strength of the applied magnetic field and for all k in the first Brillouin zone.

Form factor for the parabolic conduction band. The form factor F N N (k) exists at least locally in a region close to the band bottom. Consider the parabolic conduction band

H(k) ∝ k 2 .
The occupation number N for the ladder operators a, a † happens to be the Landau level index. The

Fock states |N = (1/ √ N !)(a † ) N |0
represents the corresponding Landau level. The form factor for the Landau levels N, N is thus

F N N (k) N e ik•η N , (2.144) 
where η is the relative coordinate defined in Eq.(2.10) and it is related to a, a † by

η x = i √ 2B (a -a † ) , η y = 1 √ 2B (a + a † ) (2.145) with = e = 1 such that l B = 1/ √ B.
Using the Baker-Campbell-Hausdorff formula, the operator exponent in Eq.(2.144) becomes

e ik•η = e 1 √ 2B (-ka+ka † ) = e 1 4B |k| 2 e -1 √ 2B ka e 1 √ 2B ka † , (2.146) 
where we denote k = k x + ik y and k = k x -ik y . In the Bargmann representation, the diagonal element F N N (k) can be easily computed:

F N N (k) N e ik•η N = 1 πN ! e 1 4B |k| 2 e -|z| 2 |z| 2N e -1 √ 2B kz e 1 √ 2B kz dz = e -1 4B |k| 2 L N 1 2B |k| 2 , (2.147) 
where L N (x) is the Laguerre polynomial. For N = 0, 1 one has

F 00 (k) = e -1 4B |k| 2 , F 11 (k) = e -1 4B |k| 2 1 - 1 2B |k| 2 .
(2.148)

Form factor for the conduction band with mass anisotropy. The above calculation is simple because of the coincidence between the Landau level and the Fock states |N . In the following paragraphs let us investigate a nontrivial case -the parabolic band with anisotropic mass. The

Hamiltonian is

H = 2 2m k a g ab k b (2.149)
where g ab is a 2×2 real symmetric positive definite matrix with determinant det g = 1. In appropriate basis of the k space, g ab is diagonal with g 11 = a, g 22 = a -1 and the real parameter a > 0 characterizes the anisotropy. The isotropic band-mass corresponds to a = 1. Under these settings, the Landau quantization results in a Hamiltonian which contains undesired terms such as (a † ) 2 and a 2 . We need to exploit the canonical transform on a, a † to simplify this Hamiltonian. In fact, for any anisotropy parameter a > 0, one finds the following canonical transform

U = 1 2 √ a 1 + a -1 + a -1 + a 1 + a = cosh γ sinh γ sinh γ cosh γ γ = 1 2 ln a, (2.150) 
which leads to the ladder operator ã, ã † after the canonical transform Eq.(2.70) and a standard harmonic oscillator Hamiltonian H = ω (ã † ã + 1 2 ). Perhaps a more obvious way to obtain such Hamiltonian is to perform canonical transform on the mechanical momentum π a to bring the Hamiltonian Eq.(2.149) with band mass anisotropy into a standard form H ∝ π2

x + π2 y . Haldane [START_REF] Fdm Haldane | Geometrical description of the fractional quantum hall effect[END_REF][START_REF] Fdm Haldane | When is a"wavefunction"not a wavefunction?: a quantum-geometric reinterpretation of the laughlin state[END_REF][START_REF] Haldane | Geometry of landau orbits in the absence of rotational symmetry[END_REF] has gone very far with a geometric interpretation of the band mass anisotropy and proposed a notoriously deep theory of guiding-center geometry, which is too deep to be presented here. One should notice that the absence of metric structure over the first Brillouin zone allows for arbitrary theories of the "metric in k-space". Exactly because the absence of the metric structure, the form factor should not rely on any metric.

The form factor F N N (k) for the Landau level N, N of the Hamiltonian Eq.(2.149) is computed as Eq.(2.147), with the Fock states

|N = (1/ √ N !)(ã † ) N |0
for the ladder operator ã, ã † and the same definition of the operator η for the relative coordinate as in Eq.(2.10) and Eq(2.145). We write

ik • η = 1 √ 2B (-ka + ka † ) = 1 √ 2B (-qã + qã † ) (2.151) with q = √ ak x + i √ a -1 k y , q = √ ak x -i √ a -1 k y . (2.152) 
The diagonal element F N N (k) can be obtained by replacing k in Eq.(2.147) by q and then insert the above equations:

F N N (k) = e -1 4B (ak 2 x +a -1 k 2 y ) L N 1 2B (ak 2 x + a -1 k 2 y ) . (2.153)
We observe that the quantity ak 2 x + a -1 k 2 y appears twice in the above equation and is actually proportional to the Hamiltonian. Therefore the above result justifies that the form factor is a function of Landau levels.

Form factor for the k 3 + λk 2 model. The form factor for Landau levels in the toy model [Eq.(2.132)] discussed earlier cannot be easily computed, except for the lowest energy ones given in Eq.(2.136) and Eq.(2.138). Direct computation with η (k) in Eq.(2.136) yields

η (i) e ik•η η (j) = e -1 4B |k| 2     1 -k * √ 2B S k k √ 2B 1 -|k| 2 2B k-λ √ 2B S k S * -k -k * -λ * √ 2B S * -k e i B Im(k * λ)     , (2.154)
where (1, 1) (2, 2) Instead of writing down the long expressions for the form factors

S k = e 1 2B k * λ-1 4B |λ| 2 . (2.155) (1, 1) (2, 2) (3, 3) (1, 2) (2, 3) (1, 3)
(3, 3) (1, 2) (2, 3) (1, 3)
F 00 (k|i, j) = ϕ (i) e ik•η ϕ (j) (2.156)
with the orthonormal basis ϕ (j) in Eq. (2.142). In order to have a good notion of "valley", the satellite peaks of the form factor should be suppressed.

Form factor for sub-levels in multicomponent QH system. The symmetries in graphene monolayer band structure simplifies the form factor for the Landau sub-levels. For N 'th Landau level, the form factor

F N N (k) is a 4 × 4 matrix. Under the basis pseudospin ⊗ spin = (K ↑, K ↓, K ↑, K ↓), F N N (k) is very trivial: F N N (k) =         Ψ + N e ik•η Ψ + N 0 Ψ + N e ik•η Ψ - N 0 0 Ψ + N e ik•η Ψ + N 0 Ψ + N e ik•η Ψ - N Ψ - N e ik•η Ψ + N 0 Ψ - N e ik•η Ψ - N 0 0 Ψ - N e ik•η Ψ + N 0 Ψ - N e ik•η Ψ - N         (2.157) 
where Ψ ξ=± N is given in Eqs.(2.100), (2.104). It is useful to compute F 00 (k) explicitly:

F 00 (k) =         Ψ + 0 e ik•η Ψ + 0 0 0 0 0 Ψ + 0 e ik•η Ψ + 0 0 0 0 0 Ψ - 0 e ik•η Ψ - 0 0 0 0 0 Ψ - 0 e ik•η Ψ - 0         , (2.158) 
where

Ψ + 0 e ik•η Ψ + 0 = Ψ - 0 e ik•η Ψ - 0 = e -1 4B |k| 2 , Ψ + 0 e ik•η Ψ - 0 = Ψ - 0 e ik•η Ψ + 0 = 0 . (2.159)
Notice that the inner product ψ|χ has to be adapted to the sublattice-swapped basis Eq.(2.94).

Chapter 3

Quantum Hall Ferromagnet

Under a strong magnetic field, the graphene monolayer exhibits enhanced symmetry among the electron spin and valley pseudospin and the long-range Coulomb interaction can be cast into an 

SU(4)-invariant form, which is discussed in §3.

Valley pseudospin and SU(4) symmetry

The rest of the thesis will focus on the low-energy Hamiltonian for graphene monolayer in strong magnetic field. The low-energy Landau levels at K and K points occur in pairs because of the symmetry of the honeycomb lattice. It is convenient to describe a group of four Landau levels in graphene monolayer -with spin up / down, at valley K / K -and treat them altogether. If we temporarily ignore the Zeeman coupling and make reasonable approximations on the Coulomb interaction, the Hamiltonian for electrons in single Landau level can be written in a manifestly SU(4)

invariant form. The symmetry-breaking terms can be included as perturbations.

Approximate SU(4) of Coulomb interaction. The long-wave part of a wave function of graphene monolayer with spin σ can be written as

φ σ (r) ≈ 1 √ vol n |k|<Λ A nkσ e i(K+k)•r u n,K+k (r) + B nkσ e i(K +k)•r u n,K +k (r) , (3.1) 
where vol is the area of the system, Λ is the cutoff on the crystal momentum and u n,q (r) = u n,q (r + R) is the periodic part of the Bloch wave function. Extracting the plane wave part e iK•r and e iK •r , the above wave function becomes

φ σ (r) = A σ (r)e iK•r + B σ (r)e iK •r . (3.2)
In the second quantization language, the particle density consists of a smooth part and a fast oscillating part:

ρ(r) = nσ φ † nσ (r)φ nσ (r) ≈ nσ A † nσ (r)A nσ (r) + B † nσ (r)B nσ (r) + e i(K -K)•r A † nσ (r)B nσ (r) + h.c. ρ K (r) + ρ K (r) + ρ 12 (r)e i(K -K)•r + ρ 21 (r)e i(K-K )•r (3.3)
Their contributions to the Coulomb interaction are completely different. By formal conservation of crystal momentum, the Coulomb interaction can be decomposed into inter-/intra-valley terms

V 1 = vol 2 q V (q)[ρ K (-q) + ρ K (-q)][ρ K (q) + ρ K (q)], (3.4) 
and back-scattering/Umklapp terms

V 2 = vol 2 q V ( 
q) ρ 12 (-q + ∆K)ρ 12 (q + ∆K) + h.c.

(3.5)

V 3 = vol 2 q V (q) ρ 12 (-q + ∆K)ρ 21 (q -∆K) + h.c. (3.6) 
= vol 2 q V (q + ∆K) ρ 12 (-q )ρ 21 (q ) + h.c.

where ∆K = K -K and the last line of V 3 is obtained by change of variable. The V 1 term is clearly symmetric under transformations between states at valley K and those at valley K .

In the absence of magnetic field and an interaction of intermediate or long-range (e.g. Coulomb interaction), |V (q + ∆K)| is clearly smaller than |V (q)|. Therefore, V 3 is much smaller than V 1 .

[64]

In the presence of magnetic field perpendicular to the xy-plane, each density operator contributes a form factor to the above integrals

ρ(k) = 1 vol vol dr e -ik•r ψ † (r)ψ(r) = 1 vol vol dr N m N m N m|r e -ik•r r|N m C † N m C N m = 1 vol N m N m N m e -ik•r N m C † N m C N m = 1 vol N N F N N (-k) mm [-k] mm C † N m C N m (3.8)
where the symbols

F N N (k) N e ik•η N (3.9) [k] mm m e ik•R m (3.10)
denote the form factors for Landau levels and Landau orbits, respectively. If restricted in a single Landau level, namely the N 'th Landau level, the density operator becomes

ρ N (k) 1 vol F N N (-k) mm [-k] mm ξ C † N mξ C N m ξ , (3.11) 
where the (diagonal) Landau level form factor F N N (k) is defined in Section 2.4 and usually contains

the exponential e -1 4 l 2 B |k| 2 ∼ e -#l 2 B a -2
0 , which further suppresses the V 2 term. However, the V 3 term leads to symmetry-breaking interactions [START_REF] Alicea | Graphene integer quantum hall effect in the ferromagnetic and paramagnetic regimes[END_REF] at the energy scale a 0 /l B .

The above arguments can be generalized to multi-valley systems, provided that the Landau level form factor contains a exponential decay factor and the interaction is of intermediate or long range.

The terminology "sub-level". Due to historical reasons, I have to keep the confusing terminology "Landau sub-level" in the rest of my thesis. It is clear that pseudospin is pseudo and Landau level can never split. In this thesis, by "Landau sub-level" I mean Landau level with distinguished spin and pseudospin, while by "Landau level" I mean a group of Landau (sub-) levels close in energy.

The analysis of energy scale in §1.1 shows that the splitting among the four (sub-) levels are small compared to other energy scales of the system. The reason to use the language of broken SU(4) symmetry is economical and by no means fundamental.

Sources of symmetry breaking in the presence of magnetic field. Two sources -namely (1) the Zeeman coupling, sub-lattice asymmetry, spin-orbit coupling and (2) Coulomb interactioncontribute to the symmetry breaking and lift of degeneracy of low-energy Landau levels. The Zeeman coupling, albeit small, directly lifts the degeneracy of the Landau levels with opposite electron spin.

The sub-lattice asymmetry opens band gap but does not break the valley symmetry in the absence of applied magnetic field. However, the wave functions in a low-energy Landau level have different amplitudes on the two sub-lattices and their ratio is different for different valley. Therefore the sublattice asymmetry has indirect effect on the valley pseudospin degeneracy. The spin-orbit coupling has mixed effect on the electron spin and valley pseudospin and complicates the level splitting. As mentioned earlier, the V 3 term in the Coulomb interaction also breaks the symmetry.

Comparison to Hubbard model in atomic limit. For a better understanding of the quantum Hall ferromagnet, it is instructive to compare it to the Hubbard model in the zero band-width limit.

The Hamiltonian for the interacting electrons on a lattice is

H = ij,σ T ij C † iσ C jσ + 1 2 ijkl,σσ V ij,kl C † iσ C † jσ C kσ C lσ H 0 + V. (3.12)
For narrow bands, the hopping term H 0 can be simplified as

H 0 = T 0 i,σ C † iσ C iσ + T 1 ij ,σ C † iσ C jσ , (3.13) 
where T 0 is the average energy of electron in the energy band and |T 1 | is proportional to the band width. The interaction term V can be simplified as [81]

V = 1 2 U i,σσ C † iσ C † iσ C iσ C iσ = U i n i↑ n i↓ , (3.14) 
where n iσ = C † iσ C iσ is the occupation number of electron of spin σ at site i. At the atomic limit, the band width is zero, i.e. T 1 = 0. In this case, H is diagonal in the Fock basis:

H = T 0 i n i↑ + n i↓ + U i n i↑ n i↓ + i ∆ Z (n i↑ -n i↓ ), (3.15) 
where I added the last term to describe the Zeeman coupling to applied magnetic field. Let us assume that the zero-width band is half-filled (one electron per site) by N electrons.

At zero interaction, i.e. U = 0, any Fock state of particle number N is an eigenstate of energy T 0 . If a magnetic field is applied, the ground state of the system is

|Ψ 0 = i C † i↓ |0 , (3.16) 
where the spin quantization axis is chosen according to the magnetic field. The excitation gap

∆ ex (N ) = E 1 (N ) -E 0 (N ) (3.17)
is defined as the difference between the ground state energy E 0 (N ) and the energy of first excitation E 1 (N ). At U = 0, we have ∆ ex (N ) = 2∆ Z because there must be a spin flip from the ground state to the first excited state. Adding one more electron to the system costs at least an energy of

E 0 (N + 1) -E 0 (N ) = T 0 + ∆ Z .
The case for non-zero interaction, i.e. U = 0, is different. While excitation gap is still ∆ ex (N ) = 2∆ Z , the energy cost of an additional electron

∆ qp (N ) E 0 (N + 1) -E 0 (N ), (3.18) 
which is termed quasi-particle gap in the following discussions, is ∆ qp (N ) = T 0 + ∆ Z + U , because on average one doubly-occupied site is unavoidable. Generally speaking, the quasi-particle gap takes account for both the kinetic energy and the interaction energy of the additional electron. Add more electron will cost the same energy

• • • = ∆ qp (N + 2) = ∆ qp (N + 1) = ∆ qp (N ) = T 0 + ∆ Z + U, (3.19) 
whereas the cost is

• • • = ∆ qp (N -2) = ∆ qp (N -1) = T 0 -∆ Z (3.20)
if we add one electron from a ground state with less electron from half-filling. The sudden increase of the quasi-particle gap ∆ qp at half-filling indicates that the interaction "splits" the two sub-bands of opposite spin.

Hamiltonian and ground state

In a Landau level with SU(4) invariance among the sub-levels, integer-filling of the sub-levels results in ferromagnetism similar to the Hubbard model in the zero band-width limit. In both cases the electron system has a "flat band" -in the Hubbard model it originates from a manual setting of the band width to zero, whereas in the model for quantum Hall ferromagnets I will discuss in this section, it is simply a consequence of Landau quantization. Compared to the Hubbard model, where the Coulomb interaction is simplified to the U -interactions on lattice sites, the interaction is generally complicated for electrons in a single Landau level.

Hamiltonian for quantum Hall ferromagnet. Since the energy difference of adjacent Landau levels are much larger than the Coulomb energy, as a first order approximation, one can consider the electrons in the N 'th Landau level. The effect of Landau level mixing will be discussed at the end of this section.

The Hamiltonian

H = H 0 + H 1 + V SU(4) + V SB (3.21)
for quantum Hall ferromagnet consists of four parts. The kinetic energy of electrons is the same for electron states with spin σ, pseudospin ξ and Landau orbit number m:

H 0 = E N mσξ C † mσξ C mσξ (3.22)
The SU(4)-invariant Coulomb interaction V SU(4) has the following form:

V SU(4) = vol 2 k =0 ρ N (k)V C (k)ρ N (-k), (3.23) 
where the projected density operator is generalized from Eq.(3.11) but has spin and pseudospin degrees of freedom:

ρ N (k) 1 vol F N N (-k) mm [-k] mm σξ C † N mσξ C N m σξ . (3.24) 
The symmetry-breaking interaction V SB and the Zeeman coupling term (or the mass term) H 1 will be discussed later.

Ferromagnetic states. At integer filling ν of sub-levels of the N 'th Landau level, the ground state |Ψ 0 of the Hamiltonian Eq.(3.21) must have uniform electron density so that

ρ N (k)|Ψ 0 = νρ 0 δ(k)|Ψ 0 V SU(4) |Ψ 0 = 0 (3.25)
where ρ 0 = (2πl 2 B ) -1 is the density of flux quanta per sub-level. At quarter filling of the N 'th Landau level, i.e. at relative filling factor ν = 1, there are three empty sub-levels and one filled sub-level. The many-particle state of uniform electron density is

|Ψ ν=1 [F ] = m 4 ζ=1 F ζ C † N mζ |ν = 0 (3.26)
where the spin index σ and valley index ξ are combined into

ζ = 1(↑ K), 2(↓ K), 3(↑ K ), 4(↓ K ), (3.27) 
and

F ζ ∈ C satisfies 4 ζ=1 F * ζ F ζ = 1.
The quantum state |ν = 0 is the "vacuum state" for the N 'th Landau level, i.e. the state in which the Landau levels are completely filled up to N -1.

At half filling of the N 'th Landau level, i.e. at relative filling factor ν = 2, there are two filled sub-levels and two empty sub-levels. Similarly, the state with uniform electron density is

|Ψ ν=2 [F ] = m 4 ζ=1 F 1ζ C † N mζ 4 η=1 F 2η C † N mη |ν = 0 (3.28)
where

F 1ζ , F 2ζ ∈ C for ζ = 1, 2, 3, 4 satisfies 4 ζ=1 F * aζ F aζ = 1 for a = 1, 2. One may propose [97] another Ansatz |Ψ ν=2 [G] = m 1 2 4 ζ,η=1 G ζη C † N mζ C † N mη |ν = 0 (3.29) with anti-symmetric coefficients G ζη ∈ C and Tr[GG † ] = 2. To ensure that |Ψ ν=2 [G] is uniform, it must satisfy ζ C † N mζ C N nζ |Ψ ν=2 [G] = 2δ mn |Ψ ν=2 [G] , (3.30) 
which is equivalent to the Plücker condition [START_REF] Ezawa | Ground-state structure in ν = 2 bilayer quantum hall systems[END_REF] αβµν G αβ G µν = 0.

(3.31) Such condition in fact reduces |Ψ ν=2 [G] to |Ψ ν=2 [F ] if G = F 1 ∧ F 2 ,
where the wedge product is defined in Eq. (3.39).

At fractional filling of sub-levels of the N 'th Landau level, the condition Eq.(3.25) still holds, but it is no longer easy to write down the state with uniform electron density as in Eq.(3.26) and

Eq.(3.28). The generalized Halperin many-particle wave function

Ψ m,n {z α iα } = 4 α=1 Nα iα<jα z α iα -z α jα mα 4 α<β Nα iα=1 N β j β =1 z α iα -z β j β n αβ × exp - 1 4 4 α=1 Nα iα=1 |z α iα | 2 (3.32)
serves as a good representation of the ground state. [START_REF] Goerbig | Analysis of a SU(4) generalization of halperin's wave function as an approach towards a SU(4) fractional quantum hall effect in graphene sheets[END_REF] The complex coordinate z α iα denotes the position of the i a 'th particle in sub-level α. Such wave function contains data m α for α = 1, 2, 3, 4

and n αβ for α, β = 1, 2, 3, 4, which are organized in the so-called K-matrix Counting the degrees of the polynomial of {z α iα } yields the following equation for the sub-level filling fractions: SU(4) transformations among sub-levels. The transformation in the entire Landau level is U(4), whereas the transformations among the empty sub-levels and among the filled sub-levels are U(3) and U(1) respectively. We get the invariant space for quarter-filling ν = 1 as the coset space

K =       m 1 n 12 n 13 n 14
K[ν 1 , ν 2 , ν 3 , ν 4 ] T = [1, 1, 1, 1] T . ( 3 
CP 3 = U(4) U(3) × U(1) . (3.36)
An element in such space corresponds to a 4 × 4 Hermitian projector P 2 = P of rank 1. The matrix P can be written as P = F F † , where F ∈ C 4 is normalized and is equivalent to e iϕ F . As explained in Appendix §G, the matrix P , or the vector F , can be parametrized by 6 real parameters.

By similar arguments, the invariant space for half-filling ν = 2 is 

Gr(2, 4) = U(4) U(2) × U(2) . ( 3 
[P ] αβ = N -1 φ Ψ ν [F ]| m C † mβ C mα |Ψ ν [F ] =    F α F * β ν = 1 F 1α F * 1β + F 2α F * 2β ν = 2 (3.38) 
The SU(4) transformations act on the quantum state |Ψ ν [F ] by changing its parameter F . At ν = 1, the fundamental representation [START_REF] Aharonov | Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field[END_REF] of SU(4) [START_REF] Bjãžrken | Elementary particles and su(4)[END_REF][START_REF] Hall | Lie groups, Lie algebras, and representations: an elementary introduction[END_REF][START_REF] Zee | Group theory in a nutshell for physicists[END_REF] acts on the vector F , whereas at ν = 2, the asymmetric product representation [START_REF] Anandan | Geometry of quantum evolution[END_REF] of SU(4) [START_REF] Bjãžrken | Elementary particles and su(4)[END_REF][START_REF] Hall | Lie groups, Lie algebras, and representations: an elementary introduction[END_REF][START_REF] Zee | Group theory in a nutshell for physicists[END_REF] acts on the wedge product

F 1 ∧ F 2 = f 11 f 23 -f 13 f 21 , f 11 f 24 -f 14 f 21 , f 12 f 24 -f 14 f 22 , f 11 f 22 -f 12 f 21 , f 12 f 23 -f 13 f 22 , f 13 f 24 -f 14 f 23 (3.39)
of the two vectors F 1 = [f 11 , f 12 , f 13 , f 14 ] T and F 2 = [f 21 , f 22 , f 23 , f 24 ] T . The matrix P transforms accordingly as SU(4) tensor with one covariant index α and one contravariant index β.

Symmetry-breaking interaction. Interaction leads to SU(4) symmetry breaking among the Landau sub-levels. The general form of symmetry-breaking interaction is

V SB = vol 2 k AB Γ A N (k) V AB (k) Γ B N (-k) , (3.40) 
Γ A N (k) 1 vol F N N (-k) mm [-k] mm ζζ C † N mζ Γ A ζζ C N m ζ , (3.41) 
where

Γ A (A = 1, 2, • • • , 15
) is the generator of the su(4) Lie algebra [START_REF] Bjãžrken | Elementary particles and su(4)[END_REF][START_REF] Hall | Lie groups, Lie algebras, and representations: an elementary introduction[END_REF][START_REF] Zee | Group theory in a nutshell for physicists[END_REF]. For graphene monolayer, the generator Γ can be written in the spin-valley basis ↑ K, ↓ K, ↑ K , ↓ K [Eq.(3.27)]:

Γ A ≡ Γ ij = τ i ⊗ σ j , i, j = 0, 1, 2, 3, (3.42) 
where i, j are not simultaneously zero. The Pauli matrices τ i and σ j act on valley pseudospin and electron spin, respectively. Both τ 0 and σ 0 are 2 × 2 identity matrices. Different from Eq.(3.25), in general,

Γ A N (k)|Ψ ν [F ]
do not have to be proportional to δ(k). The symmetry-breaking interaction V SB has two origins in graphene monolayer -the Coulomb interaction [START_REF] Alicea | Graphene integer quantum hall effect in the ferromagnetic and paramagnetic regimes[END_REF], and the interaction between the system and substrate [START_REF] Kharitonov | Phase diagram for the ν = 0 quantum hall state in monolayer graphene[END_REF]. In the N = 0 Landau level, the Hubbard on-site interaction give rise to the following interaction: [5]

V SB ∼ U k =0 1 4 ρ(k) ρ(-k) - 1 3 T i (k) T i (-k) + S i (k) S i (-k) + P z (k) P z (-k) (3.43) 
where

P i = Γ i0 = τ i ⊗ σ 0 , T i = Γ 3i = τ z ⊗ σ i and S i = Γ 0i = τ 0 ⊗ σ i .
The long-range Coulomb interaction generates the interaction [5]

V SB ∼ E C k =0 P z (k) P z (-k) (3.44) 
with E C = e 2 /(4πε 0 l B ). The substrate can induce the following form of interaction: [START_REF] Kharitonov | Phase diagram for the ν = 0 quantum hall state in monolayer graphene[END_REF] V SB = k =0 U ⊥ P x (k) P x (-k) + P y (k) P y (-k) + U z P z (k) P z (-k) .

(

3.45)

There are other symmetry-breaking terms which are linear in Γ A (k)dk. They can be described in general as

H 1 = vol A ∆ A Γ A N (k = 0). (3.46) 
Such terms originate from, for instance, the Zeeman coupling

H Z = ∆ Z vol drS z (r) = vol∆ Z S z (k = 0), (3.47) 
the mass term (only for N = 0 Landau level)

H M = ∆ M vol drP z (r) = vol∆ M P z (k = 0), (3.48) 
in the Dirac Hamiltonian induced by sub-lattice inequivalence, or the substrate induced spin-orbit term

H SO = ∆ SO vol drT z (r) = vol∆ SO T z (k = 0). (3.49) 
For bilayer quantum Hall systems [START_REF] Sarma | Canted antiferromagnetic and spin-singlet quantum hall states in double-layer systems[END_REF][START_REF] Zf Ezawa | Interlayer exchange interactions, su (4) soft waves, and skyrmions in bilayer quantum hall ferromagnets[END_REF][START_REF] Zf Ezawa | Su (4) skyrmions and activation energy anomaly in bilayer quantum hall systems[END_REF][START_REF] Paredes | Spin-isospin textured excitations in a double layer at filling factor ν = 2[END_REF] where the which-layer degrees of freedom is associated to the pseudospin, the inter-layer Coulomb interaction leads to V SB similar to Eq. (3.44) but with coefficient proportional to the layer separation. The bias voltage U across the bilayer gives rise to a term similar to Eq.(3.48) but with coefficient proportional to U .

Hartree-Fock theory

Hartree-Fock Hamiltonian at integer filling of sub-levels. The electrons restricted in the N 'th Landau level in a quantum Hall system with broken SU(4) symmetry can be described by the following Hamiltonian:

H = H 0 + H 1 + V SU(4) + V SB , (3.50) 
where H 0 , H 1 , V SU(4) and V SB are discussed in Eq. 

H HF = H HF 0 + H HF 1 + V HF SU(4) + V HF SB , (3.51) 
where the quadratic terms are

H HF 0 = H 0 = E N ζ m C † N mζ C N mζ (3.52) H HF 1 = H 1 = A ∆ A ζζ Γ A ζζ m C † N mζ C N mζ (3.53)
and the interactions become

V HF SU(4) = ζζ mm mζ V H SU(4) -V F SU(4) m ζ C † N mζ C N m ζ (3.54) V HF SB = ζζ mm mζ V H SB -V F SB m ζ C † N mζ C N m ζ , (3.55) 
where the Hartree and Fock potentials for the SU(4)-invariant interaction are:

mζ V H SU(4) m ζ = k =0 V (k)F N N (-k)[-k] mm ρ N (-k) = 0, (3.56) mζ V F SU(4) m ζ = 1 vol k =0 V C (k) |F N N (k)| 2 l [k] ml [-k] lm [P ] ζζ V F SU(4) δ mm [P ] ζζ , (3.57) 
while the Hartree and Fock potentials for the symmetry-breaking interaction are

mζ V H SB m ζ = 1 2 AB V H AB Γ A ζζ Tr[Γ B P ] + Tr[Γ A P ]Γ B ζζ δ mm , (3.58 
)

mζ V F SB m ζ = 1 2 AB V F AB Γ A P Γ B ζζ + Γ B P Γ A ζζ δ mm , (3.59) 
with the quantities

V H AB δ mm = 1 vol k V AB (k) |F N N (k)| 2 l [k] ll [-k] mm V H AB ρ 0 V AB (k = 0) |F N N (k = 0)| 2 (3.60) 
and

V F AB δ mm = 1 vol k V AB (k) |F N N (k)| 2 l [k] ml [-k] lm V F AB = 1 vol k V AB (k) |F N N (k)| 2 . (3.61)
Since the ground state |Ψ ν [F ] is uniform, the matrix element of the Hartree-Fock Hamiltonian

H HF is proportional to δ mm : mζ H HF m ζ = mζ H 0 + H 1 m ζ + mζ V H m ζ -mζ V F m ζ (3.62) with mζ H 0 + H 1 m ζ = δ mm E N Γ 0 + A ∆ A Γ A ζζ (3.63) mζ V H m ζ = 1 2 AB V H AB Tr[Γ B P ]Γ A + Tr[Γ A P ]Γ B ζζ δ mm (3.64) mζ V F m ζ = V F SU(4) P + 1 2 AB V F AB Γ A P Γ B + Γ B P Γ A ζζ δ mm . (3.65)
Hartree-Fock potential for δ-interaction. As an example for the quantity V H AB and V F AB in the Hartree-Fock Hamiltonian, let us compute these energy for the symmetry-breaking interactions V AB (r) = M AB δ(r).

(3.66)

According to Eq.(3.60) and Eq.(3.61), one obtains

V H AB = ρ 0 V AB (k = 0) |F N N (k = 0)| 2 = ρ 0 M AB (3.67) V F AB = 1 vol k V AB (k) |F N N (k)| 2 = ρ 0 M AB ρ -1 0 d 2 k 4π 2 |F N N (k)| 2 . (3.68)
For parabolic conduction band with isotropic mass, one has (l B = 1)

d 2 k |F N N (k)| 2 = 2π ∞ 0 dx e -x [L N (x)] 2 = 2π. (3.69)
Therefore, the Hartree energy and Fock energy for the δ-potential Eq.(3.66) are equal in this case. On the other hand, band mass anisotropy will lead to different Hartree and the Fock energies because a different form factor yields same V H AB but different V F AB , which depends on the anisotropy parameter.

Hartree-Fock energy. The parameter F in the ground state can be determined in a self-consistent way such that the the Hartree-Fock energy

E ν [F ] ≡ E ν [P ] N -1 φ Ψ ν [F ] H HF Ψ ν [F ] (3.70)
is minimized. Since F and P are equivalent, one can also minimize the following function of where the anisotropy parameters are

P E ν [P ] = E 0 ν [P ] + E H ν [P ] -E F ν [P ] (3.71) E 0 ν [P ] = E N Tr[P ] + A ∆ A Tr Γ A P (3.72) E H ν [P ] = AB V H AB Tr Γ A P Tr Γ B P (3.73) E F ν [P ] = V F SU ( 
u ⊥ = U ⊥ V H SB -V F SB u z = U z V H SB -V F SB . (3.78) 
These parameters do not vanish if the symmetry-breaking interaction potential are not short range,

or the system has band mass anisotropy.

The anisotropy energy E ν=1 [P ] has been studied in Ref. [START_REF] Lian | Spin-valley skyrmions in graphene at filling factor ν = -1[END_REF]. The phase diagram is presented in Fig. 3.1(a). There are four phases for the SU(4) quantum Hall ferromagnet at quarter filling ν = 1.

They are:

• Unentangled easy-axis pseudospin phase (UEA): Spin is polarized along the applied magnetic field and the valley pseudospin is polarized along the pseudospin z-axis, which is the direction in the pseudospin space that is associated to valley K and K . The "entanglement" parameter α = 0 (see Appendix §G) and the magnitude of spin magnetization is |S| = cos α = 1.

• Entangled easy-axis pseudospin phase (EEA): Same as previous case, except that the "entanglement" parameter α does not vanish, leading to reduced magnitude |S| = cos α < 1 of the spin magnetization S. Without the Zeeman term in the Hartree-Fock energy E ν=1 [P ], this phase would become a phase with "maximal entanglement" with α = π/2 and |S| = 0.

• Unentangled easy-plane pseudospin phase (UEP): Spin is polarized along the applied magnetic field and the valley pseudospin is polarized in a direction perpendicular to the pseudospin z-axis. The "entanglement" parameter α = 0 and the magnitude of spin magnetization is • Entangled easy-plane pseudospin phase (EEP): Same as previous case, except that the "entanglement" parameter α does not vanish, leading to reduced magnitude |S| = cos α < 1 of the spin magnetization S. Similar to the EEA phase, in the absence of the Zeeman term in the Hartree-Fock energy E ν=1 [P ], one would have a phase with "maximal entanglement" with α = π/2 and |S| = 0.

|S| = cos α = 1.
The spin and pseudospin magnetizations have been described in detail in Ref. [START_REF] Lian | Spin-valley skyrmions in graphene at filling factor ν = -1[END_REF]. Here are some comments on the transitions between two of the phases listed above. The transition from UEA phase to UEP phase passes via the line u ⊥ = u z , where the system has SU(2) symmetry for the pseudospin.

The pseudospin ferromagnet changes from an Ising type (u ⊥ > u z ) to an XY type (u ⊥ < u z ).

The transition between EEA and EEP phases also involves changes of the preferential pseudospin magnetization, but the magnitudes of the pseudospin is reduced. In contrast, the transitions between UEA and EEA phases, or between UEP and EEP phases, do not change the preferential direction of the pseudospin, but rather reduce their magnitudes, thus is different from the previous two transitions. These transitions would become sharp if the Zeeman term is absent in the Hartree-Fock energy E ν=1 [P ] -at the transition at u z = 0, u ⊥ > 0 or u z > 0, u ⊥ = 0, the "entanglement parameter" changes from α = 0 to α = π/2, and the magnitude of spin magnetization drops from |S| = 1 in the unentangled phase to |S| = 0 in the entangled phase. In other words, the Zeeman coupling has softened the UEA/EEA and UEP/EEP transitions.

Hartree-Fock phase diagram at ν = 2. At half filling ν = 2 of the N = 0 Landau level, one

has P = F 1 F † 1 + F 2 F † 2 , thus E ν=2 [P ] = const. + ∆ Z Tr S z P + g ⊥ t x (P ) + t y (P ) + g z t z (P ), (3.79) 
where the anisotropy parameters (in the case of the isotropic electron energy bands) are • Kekulé dimer phase (KD): Similar to the previous case with minimal spin magnetization and maximal pseudospin magnetization, but the pseudospin magnetization is polarized perpendicular to its z-axis. This corresponds to a picture of dimerized bonds arranged in a Kekulé representation of su(4).

g ⊥,z = U ⊥,z V H SB = U ⊥,z V F SB (3.
The symmetries of the SU(4) quantum Hall ferromagnet at half-filling of the N = 0 Landau level has been thoroughly investigated in Ref. [START_REF] Wu | So(5) symmetry in the quantum hall effect in graphene[END_REF]. The SU(2) pseudospin symmetry is restored at the line g ⊥ = g z , where the KD phase and CDW phase are equivalent because the direction of the pseudospin magnetization can be arbitrary. The KD/CDW transition requires a change in the pseudospin, thus affects both sub-levels. To the contrary, the CDW/FM transition requires a flip of spin and pseudospin in one of the two sub-levels. At the line g ⊥ + g z = -1/2 where the FM phase and CDW phase are equivalent, the symmetry-breaking interaction has SO(5) symmetry [START_REF] Wu | So(5) symmetry in the quantum hall effect in graphene[END_REF]. The FM/CAF transition only involves adjustment of the spinsone spin flip of one sub-level and then canting of the two opposite spins of opposite pseudospin. Finally, the CAF/KD transition is similar to the CDW/KD transition, in the sense that the pseudospin of both sub-levels are changed from easy-axis to easy-plane.

Residual U(1) symmetry with pseudospin. There is an important difference between the easy-axis and easy-plane phases at ν = 1, or between the KD and CDW phases at ν = 2. When the quantum Hall ferromagnet has preferential easy-plane pseudospin, the U(1) symmetry in the symmetry-breaking interaction always allows for the in-plane pseudospin magnetization to rotate in the plane perpendicular to the pseudospin z-axis. For the phases of an SU(4) QH ferromagnet with non-vanishing in-plane pseudospin magnetization, the polar angle of the pseudospin magnetization is always undetermined. This observation leads to discussions on the equivalent XY models in

Refs. [START_REF] Moon | Spontaneous interlayer coherence in double-layer quantum hall systems: Charged vortices and kosterlitz-thouless phase transitions[END_REF][START_REF] Nomura | Field-induced kosterlitz-thouless transition in the n = 0 landau level of graphene[END_REF].

Hartree-Fock phase diagram at fractional filling of sub-levels. Ref. [START_REF] Sodemann | Broken su(4) symmetry and the fractional quantum hall effect in graphene[END_REF] has considered special cases of fractional filling of sub-levels in the N 'th Landau level, where k sub-levels are completely filled and the other 4 -k sub-levels are partially filled. In this case, the ground state is no longer a Slater determinant and the Hartree-Fock method is not valid any more. The author asserted the representation of the sub-levels by the matrix

P = 4 k=1 ν k F k F † k , (3.82) 
where the filling factors can be, for example, (ν

1 , ν 2 , ν 3 , ν 4 ) = (1, 1, 2 3 , 0) or (1, 1, 1 3 , 1 3 
). The Hartree-Fock energy of the system can nevertheless be calculated with such matrix P via Eq. (3.76). Energy minimization leads to new phases refined from the canted anti-ferromagnetic (CAF) phase. One should notice that the matrix P defined above is no longer a projector since P 2 = P . Recall that at integer filling of sub-levels, the condition Eq.(3.25) for uniform state guarantees that the matrix P computed via Eq.(3.38) is projector. At fractional filling of sub-levels, the condition Eq.(3.25) should still be respected and the matrix P should still be computed via Eq. (3.38). However, the actual computation is far from trivial since the precise form of the uniform state |Ψ ν [F ] is complicated.

Even if one obtains the matrix P correctly, the minimal Hartree-Fock energy may be far from the correct ground state energy. In the case of integer filling, the minimal Hartree-Fock energy is precisely the ground state energy. Further discussions of the partially filled Landau sub-levels are beyond the scope of this thesis.

Beyond Hartree-Fock. The above analysis is based on primary Hartree-Fock approximation and ignored the effects of thermal and quantum fluctuations, as well as the screening of the interaction potential. Taking excitations into consideration, for instance the spin wave which will be discussed in next section, the interaction will be screened and renormalized The phase diagram may be altered accordingly and new phases may emerge. The degeneracy of the Landau level makes computations difficult beyond Hartree-Fock level. The Zeeman energy H 1 [Eq.(3.47)] will never be the rescue because its small energy scale.

Single-mode analysis of spin-pseudospin waves

Single-mode spin waves. As mentioned in the end of the previous section, primary Hartree-Fock treatment of the quantum Hall ferromagnet ignores the effects of thermal and quantum fluctuations.

Such effects can partially be discussed by including the spin-wave excitations. The single-mode approximation can be used to construct the spin-wave excitations above the presumed ferromagnetic ground state Ψ ν [F ].

Consider the following "single mode" of spin wave state

|k; ab Γ N,ab (k)|Ψ ν [F ] (3.83) Γ N,ab (k) mm [k] mm X † N ma X N m b (3.84) X N ma α F * aα C N mα (3.85)
where F a (a = 1, 2, 3, 4) forms an orthonormal and complete set of basis with respect to the uniform

density state |Ψ ν [F ] and 4 ≥ a > ν, 1 ≤ b ≤ ν.
Such states spans the Hilbert space H p-h of one particle and one hole. It can be understood as a propagating particle-hole pair with momentum k, which is a good quantum number because the Aharonov-Bohm phase of a particle and a hole cancels exactly. For each momentum k, there are C1 4-1 C 1 1 = 3 independent spin-wave modes at ν = 1 and C 1 4-2 C 1 2 = 4 independent modes at ν = 2. 1 The mode counting may also be understood by the representation theory of su(4) Lie algebra [START_REF] Bjãžrken | Elementary particles and su(4)[END_REF][START_REF] Hall | Lie groups, Lie algebras, and representations: an elementary introduction[END_REF][START_REF] Zee | Group theory in a nutshell for physicists[END_REF], whose weight diagrams are presented in Fig.F.2. The irreducible representation [START_REF] Aharonov | Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field[END_REF], [START_REF] Anandan | Geometry of quantum evolution[END_REF] and [START_REF] Aharonov | Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field[END_REF] One can verify that the set of states |k; ab is orthonormal:

k; ab|q; cd = mm nn [k] * mm [q] nn Ψ ν [F ]|X † N m b X N ma X † N nc X N n d |Ψ ν [F ] = N φ δ k,q δ ac δ bd (3.86)
where the operator X N ma is defined in Eq. (3.85). The dispersion of the single-mode spin wave is

ω ab (k) = k; ab|k; ab -1 k; ab|H|k; ab -Ψ ν [F ]|H|Ψ ν [F ] = N -1 φ Ψ ν [F ]| Γ † N,ab (k), H, Γ N,ab (k) |Ψ ν [F ] = ω (0) ab (k) + ω (1) ab (k) + ω SU(4) ab (k) + ω SB ab (k) , (3.87) 
where each term in the last line denotes the contribution of each piece in the Hamiltonian Eq.(3.50).

The four components of ω ab (k) are computed as follows:

• ω

(0) ab : Since H 0 , Γ N,ab (k) = 0, one has ω (0) ab (k) = 0.
• ω

(1)

ab : The contribution of H 1 can be computed once the following double commutator is known:

Γ † N,ab (k), Γ A N (q = 0), Γ N,ab (k) = 1 vol F N N (q = 0) m C † N mζ C N mη × F b F † a , Γ A , F a F † b ζη . (3.88)
Therefore the dispersion is

ω (1) ab (k) = N -1 φ vol A ∆ A × Ψ ν [F ]| Γ † N,ab (k), Γ A N (q = 0), Γ N,ab (k) |Ψ ν [F ] = A ∆ A F † a Γ A F a -F † b Γ A F b , (3.89) 
where F a (a = 1, 2, 3, 4) forms a complete set of basis that are used to construct |Ψ ν [F ] in Eqs.(3.26), (3.28) and the operator X N ma in Eq.(3.85).

• ω

SU(4) ab

: With the definition Eq.(3.11) for ρ N (k), it is easy to verify that

Ψ ν [F ]| Γ † N,ab (k), ρ N (q) ρ N (-q), Γ N,ab (k) |Ψ ν [F ] = S vol 2 |F N N (q)| 2 sin 2 k ∧ q 2 (3.90)
with S = 4. The SU(4)-component of the dispersion is

ω SU(4) ab (k) = SI S (k) (3.91) I S (k) = 1 2 ∞ 0 d 2 q 4π 2 |F N N (q)| 2 V C (q) sin 2 k ∧ q 2 , (3.92) 
where E C = e 2 / l B and V C (q) = 2π/|q|.

• ω SB ab : The SB-component of the dispersion is non-trivial. The general expressions of the double commutator

Θ AB N,ab (k, q) Γ † N,ab (k), Γ A N (q) Γ B N (-q), Γ N,ab (k) (3.93) 
and

Γ † N,ab (k), V SB , Γ N,ab (k) vol 2 q AB V AB (q)Θ AB N,ab (k, q) (3.94)
are tedious and will not be presented. Instead, the result for V SB in Eq.(3.44) is displayed below as an example, where Γ A N (q)= Γ B N (q)= P z N (q). One easily get

Ψ ν [F ]|Θ PzPz N,ab (k, q)|Ψ ν [F ] = 1 vol 2 |F N N (q)| 2 cos(k ∧ q)C + O (3.95)
and the SB-component of the dispersion in this case is

ω SB ab (k) = g CJ C2 (k) + OJ O (k) (3.96) J C2 (k) = 1 2 ∞ 0 d 2 q 4π 2 |F N N (q)| 2 V PzPz (q) cos(k ∧ q) (3.97) J O (k) = 1 2 ∞ 0 d 2 q 4π 2 |F N N (q)| 2 V PzPz (q) = 1 4π (3.98)
where V PzPz (q) = 1 and the coefficients in ω SB ab (k) are The sign of the strength g of the interaction potential V PzPz (q) = g is crucial to the stability of the ground state of SU( 4 In the above computation of the spin wave dispersion ω ab (k), the effect of interaction has not been carefully treated. The method of bosonization proposed in Ref. [START_REF] Westfahl | Landau level bosonization of a twodimensional electron gas[END_REF][START_REF] Doretto | Lowest landau level bosonization[END_REF][START_REF] Doretto | Bosonization approach for bilayer quantum hall systems at ν T = 1[END_REF][START_REF] Doretto | Quantum hall ferromagnetism in graphene: Su(4) bosonization approach[END_REF] is dangerous because the crudely truncated part of the commutator for spin-pseudospin operators Γ A N (k) could lead to catastrophic collapse of the many-body Hilbert space. A proper way to obtain the dispersion is via the poles of the spin susceptibility [START_REF] Kallin | Excitations from a filled landau level in the two-dimensional electron gas[END_REF] Neglecting the form factor F N N (k) and the factor of vol -1 in the definition of Γ A N (k) [Eq.(3.41)], the algebra among them can be summarized in the following commutator:

C = -2P z aa P z bb (3.99) O = c |P z ac | 2 + c |P z bc | 2 ≥ 0 (3.100) (a) I S (q) (b) J C2 (q)
χ abcd (k, ω) -i ∞ 0 e iωt Γ † N,ab (k, t), Γ N,cd (k, 0) . ( 3 
Γ A ⊗ [k], Γ B ⊗ [q] = iF AB K Γ K ⊗ [k + q] cos k ∧ q 2 + iD AB K Γ K ⊗ [k + q] sin k ∧ q 2 (3.102)
where the structural constants F AB K , D AB K satisfy

D AB 0 ≡ δ AB (3.103) D A0 K ≡ δ A K (3.104) F AB K = -F BA K (3.105) F A0 K = F 0A K = 0 (3.106)
and 2Γ 0 is equal to the identity matrix and

Γ A (A = 1, 2, • • • , 15)
is the generator of su(4) Lie algebra [START_REF] Bjãžrken | Elementary particles and su(4)[END_REF][START_REF] Hall | Lie groups, Lie algebras, and representations: an elementary introduction[END_REF][START_REF] Zee | Group theory in a nutshell for physicists[END_REF] with the structural constant F AB K and D AB K :

Γ A , Γ B = iF AB K Γ K , (3.107) Γ A , Γ B = iD AB K Γ K . (3.108)
The trace normalization of the generator Γ A is

Tr Γ A † Γ B = δ AB (3.109) for A, B = 0, 1, 2, • • • , 15.
The algebra Eq.(3.102) is derived from the Girvin-MacDonald-Platzman algebra, [START_REF] Sm Girvin | Collective-excitation gap in the fractional quantum hall effect[END_REF] which is also known as the W ∞ algebra [START_REF] Shen | W infinity and string theory[END_REF][START_REF] Odake | Unitary representations of w infinity algebras[END_REF][START_REF] Cappelli | Infinite symmetry in the quantum hall effect[END_REF][START_REF] Zf Ezawa | Noncommutative geometry, extended w ∞ algebra, and grassmannian solitons in multicomponent quantum hall systems[END_REF]. Its operator form is given in Eq.(2.111) in §2.3.

In its matrix form, the multiplication rule for two matrices [k] and [q] defined in Eq.(3.10) has the following form: .110) Therefore the commutator between them is

[k][q] = exp i k ∧ q 2 [k + q] . ( 3 
[k], [q] = 2i sin k ∧ q 2 [k + q] . (3.111)
Chapter 4

Quantum Hall Skyrmions

In the quantum Hall ferromagnet, the sub-levels in a Landau level are close in energy. Because of this, mixing among the sub-levels is easier than the inter-Landau-level mixing. At integer filling of the sub-levels, quasi-particles or quasi-holes are dressed with spin textures with finite spatial extension in order to minimize the energy. They become skyrmions.

This chapter is devoted to QH skyrmions. §4.1 shows the symmetry of the texture of a spin skyrmion, which motivates the discussion on the elastic model from variational analysis in §4. 

Symmetries of spin skyrmions

Variational state from the one-particle or one-hole state. The results from exact diagonalization [START_REF] Abolfath | Critical comparison of classical field theory and microscopic wave functions for skyrmions in quantum hall ferromagnets[END_REF] show that the following one-particle and the one-hole state (the LL index N is omitted in the subscripts of C and C † )

|Ψ p 0 C † 0↑ |↓↓ • • • ↓ (4.1) Ψ h 0 C 0↓ |↓↓ • • • ↓ (4.2)
with single spin flip do not have the lowest energy; the lowest-energy state has multiple spin flip and hence carries a spin texture. The simplest description of the spin texture would be a continuous unit vector field m(r), which determines a rotation operator e iΩ[m(r)] that acts on Ψ p 0 and rotates it to a normalized variational state

|Ψ p [m(r)] e iΩ[m(r)] |Ψ p 0 = e iΩ[m(r)] C † 0↑ |↓↓ • • • ↓ . (4.3)
Similarly, one can construct the variational state from the one-hole state Ψ h 0 :

|Ψ h [m(r)] e iΩ[m(r)] Ψ h 0 = e iΩ[m(r)] C 0↓ |↓↓ • • • ↓ . (4.4)
Intuitively, the operator e iΩ[m(r)] "dresses" the particle/hole with a spin texture m(r). The discussions on |Ψ h [m(r)] is similar to that on |Ψ p [m(r)] and are omitted in the following paragraphs.

The operator Ω[m] in the rotation operator e iΩ[m(r)] is defined implicitly from the following equations

m(r) = Λ Ψ p [m(r)] S(r) Ψ p [m(r)] , (4.5) 

S(r)

mn

C † N mα σ αβ C N nβ φ * N m (r)φ N n (r), (4.6) 
where Λ is a constant that ensures the normalization of m(r) at each spatial point r and φ N m (r) . Such a profile is called "Néel skyrmion" in the literature. [START_REF] Kézsmárki | Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor gav4s8[END_REF] The final step -"rotation of the radius" -suggests that we consider the rotation operation on the field m(r). The generator of a rotation of scalar field ψ(r) = ψ(r, θ) is

are
L = -i ∂ ∂θ , (4.7) 
where θ is the polar coordinate. The exponential of L acting on the scalar field ψ(r, θ) then gives

e iα Lψ(r, θ) = ψ(r, θ + α), (4.8) 
which implies that the rotation invariant scalar field is independent of the polar angle θ. For a vector field m(r) = m(r, θ) the spatial rotation L can be accompanied by an internal rotation Ŝ of the vector m: 

e iα( L+ Ŝ) m(r, θ) = e iα Ŝ m(r, θ + α) (4.9) (a) (b) (c) (d) (e) (f) (g) (h)
Ŝ = η     0 -i 0 i 0 0 0 0 0     , e iα Ŝ =     cos α η sin α 0 -η sin α cos α 0 0 0 1     , η = ±1. (4.10)
The null state of the generator L + Ŝ is invariant under the combined rotation Eq.(4.9). It has the form

m(r, θ) ∝ g(r) e -iη(θ+θ0) [i, 1, 0] T + e iη(θ+θ0) [-i, 1, 0] T + f (r)[0, 0, 1] T =     -1 -f (r) 2 sin[η(θ + θ 0 )] 1 -f (r) 2 cos(θ + θ 0 ) f (r)     , (4.11) 
where 

f (0) = 1, f (∞) =
Ψ p [e A m] = e iΩ[exp( A)m] |Ψ p 0 = 1 + O( 2 ) e A e iΩ[m] |Ψ p 0 ≡ 1 + O( 2 ) e A |Ψ p [m] = (1 + A )|Ψ p [m] + O( 2 ), (4.13) 
where we have 1, A T = -A and A † = -A . The operator A is uniquely determined by the generator A that acts on the vector field m(r) via the infinitesimal form of Eq.(4.5): 

Am(r) = Λ Ψ p [m(r)] [S(r), A ] Ψ p [m(r)] .
as variational parameters and following the general procedure of the variational analysis in Appendix §D, the effective Lagrangian can be constructed:

L[m, ṁ] = T [m, ṁ] -V [m] T [m, ṁ] Ψ[m]|i ∂ t |Ψ[m] V [m] Ψ[m]|H|Ψ[m] , (4.17) 
where

Ψ[m] can be either Ψ p [m] or Ψ h [m].
These fields are sections of the O(3) vector bundle M on the xy-plane. The discussion in the previous section concludes that L[m, ṁ] is invariant under global O(3) rotations of m(r). Therefore the lowest-order gradient expansion of V [m] is the elastic energy of a membrane in the target space S 2 , with isotropic stress and strain tensors:

V [m] = ρ s 2 d 2 r ∇m 2 + ∆V [m]. (4.18) 
It is called non-linear sigma model (NLSM). The elastic constant ρ s is called "spin stiffness" [START_REF] Auerbach | Interacting electrons and quantum magnetism[END_REF],

which is obtained by matching the dispersion of the "spin waves" in the system.

Kinetic term and Berry phase. The variational ansatz Ψ[m] maps the vector bundle M to the Kähler space of quantum states, inducing the Berry connection [18]

A(t) = Ψ[m(t)]|∂ t |Ψ[m(t)] = ρ 0 d 2 r ∂m ∂t • A(m) (4.19) 
where the normalization factor ρ 0 = (2πl 2 B ) -1 can be understood by matching dimensionalities of T [m, ṁ] and V [m], or discretizing the d 2 r integrals. The Berry connection density

A(m) Ψ[m]| δ δm |Ψ[m] = S cot θe φ (4.20)
is the vector potential for the magnetic monopole of charge S. Here S = 1/2 for spin-1/2 electrons.

Using the CP 1 -"spinor" Z parametrized as

Z = cos θ 2 , e iφ sin θ 2 T , (4.21) 
which is related to the unit vector m by the equation

m = Z † σZ , (4.22) 
the kinetic part of the Lagrangian can be written as

T [m, ṁ] = i A(t) = i ρ 0 d 2 r Z † ∂ t Z . (4.23) 
One may criticize that such expression is not invariant under a gauge transformation Z(r, t) → e iϕ(r,t) Z(r, t) (

of the CP 1 -field Z(r, t). It is a well-known fact that a sphere cannot be covered by a single coordinate patch (simply-connected open set). The above expression of T [m, ṁ] makes sense only with the integral over t, which should be understood as an integral of the 1-form

dT = i ρ 0 d 2 r Z † dZ (4.25)
on the manifold of time t. To properly write down the 1-form dT , one can choose the homogeneous coordinate

Z = (1 + |u| 2 ) -1 2 [1, u] T (4.26) 
or

Z = (1 + |w| 2 ) -1 2 [w, 1] T , (4.27) 
so that the one form is written as

dT = i ρ 0 2 udu -udu 1 + uu = i ρ 0 2 vdv -vdv 1 + vv . (4.28) 
There is no phase ambiguity with these coordinates.

Matching spin wave dispersions. The above discussion shows that the lowest-order gradient expansion of the effective Lagrangian is

L[m, ṁ] = L[Z, Ż] = T [Z, Ż] -V [Z] = d 2 r i ρ 0 Z † ∂ t Z -2ρ s DZ † • DZ , (4.29) 
where

D i Z = ∂ i Z -(Z † ∂ i Z)Z = (1 -ZZ † )∂ i Z and ρ 0 = 1/(2πl 2 B
) is the magnetic flux density in a Landau level. The low-energy excitations above the uniform state

m(r) = -e z = [0, 0, -1] T Z = [0, 1] T (4.30)
are the spin waves, whose configuration can be expressed by the "π-field" (the (r, t)-dependence of m, Z and π is not shown):

m • σ = e i πxσx+πyσy (-σ z ) e -i πxσx+πyσy Z = e i πxσx+πyσy [0, 1] T (4.31) 
To the lowest order of π x and π y , the effective Lagrangian in terms of the "π-field" is

L[π, π] = d 2 r ρ 0 π x ∂ t π y -π y ∂ t π x -2ρ s ∇π x 2 + ∇π y 2 + • • • . (4.32) 
The corresponding Euler-Lagrange equations are

ρ 0 ∂ t π x = 2ρ s ∇ 2 π y + • • • ρ 0 ∂ t π y = -2ρ s ∇ 2 π x + • • • , (4.33) 
which yields the dispersion

ω(k) = 2ρ s ρ 0 |k| 2 + • • • . (4.34) 
Such dispersion should match the dispersion obtained by the single-mode analysis in §3.4.

For SU(2) QH ferromagnet, the single-mode analysis gives the dispersion in the lowest Landau level as follows: where the integral I (0) S (k) is defined in Eq.(3.92) in §3.4. For the N = 0 Landau level, the integral is

ω ↑↓ (k) = ∆ Z + e 2 l B 4I (0) S (k) = ∆ Z + e 2 l B π 2 1 -e -|k| 2 4 I 0 |k| 2 4 = ∆ Z + 1 4 π 2 e 2 l B |k| 2 + O |k| 4 (4.35) Q=-3 Q=-2 Q=-1 Q=0 Q=+1 Q=+2 Q=+3 Configurations Energy Minimal configuration
I S (k) = 1 2 ∞ 0 d 2 q 4π 2 e -1 2 |q| 2 2π |q| sin 2 k ∧ q 2 = 1 4 π 2 1 -e -|k| 2 4 I 0 |k| 2 4 = 1 16 
π 2 |k| 2 + O |k| 4 . (4.36) 
Comparing to Eq.(4.34) one finds the spin stiffness

ρ s = 1 16π π 2 e 2 l B , (4.37) 
which agrees with the results in Ref. [START_REF] Sl Sondhi | Skyrmions and the crossover from the integer to fractional quantum hall effect at small zeeman energies[END_REF].

Topological charge. The gradient term 

E[m] = d 2 r ∇m 2 ≡ E[Z] = 4 d 2 r DZ † • DZ (4.38) 
D i Z = ∂ i Z -(Z † ∂ i Z)Z = (1 -ZZ † )∂ i Z in V [m] requires more discussions. For non-extensive configurations, it is fare to set a boundary condition m(|r| → ∞) → m ∞ Z(|r| → ∞) → Z ∞ (4.39) (a) (b) 
Q = d 2 r ρ topo (r) (4.40) 
ρ topo = 1 4π m • (∂ x m × ∂ y m) = 1 2πi ij D i Z † D j Z
where the integrand of the first integral is essentially an area element on the Bloch sphere of the unit vector m. Consider m(r) as a mapping from the xy-plane to the Bloch sphere. The integral, which is over the entire image of the xy-plane, counts the number of wrappings of the xy-plane over the Bloch sphere via mapping m(r). The image must be closed (see Fig. Within each topological sector ♠ Q , the energy E[m] or E[Z] is bounded from below:

E[m] ≡ E[Z] ≥ 8π|Q| . (4.41)
This is a consequence of the following Bogomolny-Prasad-Sommerfield (BPS) inequalities: [START_REF] Bogomolny | Stability of Classical Solutions[END_REF][START_REF] Prasad | Exact classical solution for the 't hooft monopole and the julia-zee dyon[END_REF] 

δ ij ∂ i m ± ik m × ∂ k m • ∂ j m ± jl m × ∂ l m dr ≥ 0 ⇔ 2E[m] ∓ 16πQ ≥ 0 , (4.42) 
or

δ ij D i Z ± i ik D k Z † D j Z ± i jl D l Z dr ≥ 0 ⇔ 1 2 E[Z] ∓ 4πQ ≥ 0 . (4.43) 
When the equality holds, m or Z must satisfy the BPS equations

∂ i m ± ij m × ∂ j m = 0 (+ for Q > 0 and -for Q < 0) (4.44) 
D i Z ± i ij D j Z = 0 (+ for Q > 0 and -for Q < 0) (4.45) 
which have the following (equivalent) solutions:

m(r, θ) = λ 2 + r 2|Q| -1     2r |Q| λ cos[Q(θ + θ 0 )] 2r |Q| λ sin[Q(θ + θ 0 )] λ 2 -r 2|Q|     (4.46) Z(x, y) = λ 2 + (x 2 + y 2 ) |Q| -1 2 λ, e iQθ0 (x + sgn(Q)iy) |Q| T , (4.47) 
and they are related by

m = Z † σZ . (4.48) 
The profiles of such skyrmions with Q = 1 and different values of θ 0 has been shown in Fig.

The particular feature of a QH skyrmions is that it carries electric charge [START_REF] Sl Sondhi | Skyrmions and the crossover from the integer to fractional quantum hall effect at small zeeman energies[END_REF][START_REF] Moon | Spontaneous interlayer coherence in double-layer quantum hall systems: Charged vortices and kosterlitz-thouless phase transitions[END_REF][START_REF] Dp Arovas | Su (n) quantum hall skyrmions[END_REF], which, to the lowest order of gradient of m(r), can be associated to the topological charge. Such highly nontrivial relation between the topological charge and electric charge has been verified independently in a series of publications -see Refs. 

holds in such case where

ρ topo (r) = 1 4π m • (∂ x m × ∂ y m) = 1 2πi ij D i Z † D j Z (4.50)
is the integrand in the expression of topological charge Q in Eq.(4.40). Ref. [START_REF] Sl Sondhi | Skyrmions and the crossover from the integer to fractional quantum hall effect at small zeeman energies[END_REF] pointed out that such identity follows from the cancellation of real-space Berry phase

A(r) = Z † (r)∇Z(r) (4.51) 
of spin texture represented by Z(r), by the Chern-Simons gauge field a CS (r), where the former give rise to ρ topo (r) as

ρ topo (r) = e z • ∇ × A(r) (4.52) 
and the latter is related to δρ el (r) via the Chern-Simons relation [START_REF] Shou Cheng Zhang | The chern-simons-landau-ginzburg theory of the fractional quantum hall effect[END_REF] δρ el (r) = (2k + 1)

φ 0 e z • ∇ × a CS (r) + A em (r) , (4.53) 
where ∇ × A em (r) = -Be z is the vector potential of the applied magnetic field and φ 0 = h/e is the magnetic flux quanta. The number (2k +1) counts the magnetic flux quanta attached to one electron in a Landau level. For integer filling of Landau sub-level one has k = 0, i.e. one flux quantum per electron.

It should be emphasized that the above Chern-Simons argument applies only at regions far from the core of the localized texture, i.e. the argument is valid in the infrared limit. In a preceding work

Ref. [START_REF] Lee | Boson-vortex-skyrmion duality, spin-singlet fractional quantum hall effect, and spin-1/2 anyon superconductivity[END_REF], the mechanism involved in the cancellation had already been discussed by generalizing the boson-vortex duality [START_REF] Karch | Particle-vortex duality from 3d bosonization[END_REF]. Interestingly, such mechanism appears to be crucial [START_REF] Senthil | Quantum criticality beyond the landau-ginzburg-wilson paradigm[END_REF] also in a model [START_REF] Read | Spin-peierls, valence-bond solid, and néel ground states of lowdimensional quantum antiferromagnets[END_REF] for the Néel-VBS (valence-bond solid) transition in antiferromagnetic quantum Heisenberg model, where the formation of skyrmions is responsible for the deconfined quantum criticality [START_REF] Senthil | Deconfined quantum critical points[END_REF].

The key insight from this work -order parameter of the VBS phase arises from a "dual theory"has been generalized recently [START_REF] Seiberg | A duality web in 2+1 dimensions and condensed matter physics[END_REF] to relate different quantum field theories in the infrared limit. In the context of QH ferromagnets, it is not clear whether any duality exists among the effective field theories for different phases.

The relation between the electric charge and the topological charge of the spin texture has also been verified to the lowest order of gradient expansion in Ref. [START_REF] Zf Ezawa | Topological solitons in the noncommutative plane and quantum hall skyrmions[END_REF] and Ref. [START_REF] Douçot | Spin textures in quantum hall systems[END_REF], which emphasize on the noncommutativity of the spin and charge density operators after being restricted to single Landau level. The semi-classical approach in Ref. [START_REF] Douçot | Spin textures in quantum hall systems[END_REF] is particularly intuitive. In this paper, a bi-local field ρ(r, r ) σ ψ † σ (r )ψ σ (r) has been expanded around the point R = (r + r )/2 up to second order of the ratio |r -r |/l B . An off-diagonal order parameter ψ † ↑ ψ ↓ appears in the expansion, and the lowest order term has the same form of ρ topo (r). The role of higher-order gradient terms in the expansion, however, has not been well understood.

Ref. [START_REF] Yu A Bychkov | Charged skyrmions: A condensate of spin excitons in a two-dimensional electron gas[END_REF] and Ref. [START_REF] Ray | Quantum hall ferromagnets: Induced topological term and electromagnetic interactions[END_REF] have verified independently that the second-order gradient expansion of V [m] contains not only the NLSM term shown in Eqs.(4.18), (4.38) and (4.29), but also a term proportional to the topological charge Q. Regrettably, the results do not agree -Ref. [START_REF] Ray | Quantum hall ferromagnets: Induced topological term and electromagnetic interactions[END_REF] has used the δ-interaction, making it hard to compare to the result in Ref. [START_REF] Yu A Bychkov | Charged skyrmions: A condensate of spin excitons in a two-dimensional electron gas[END_REF], which uses the Coulomb interaction. Without derivations, I present the result in Ref. [START_REF] Yu A Bychkov | Charged skyrmions: A condensate of spin excitons in a two-dimensional electron gas[END_REF] [Eq.( 32) of the paper]:

V [m] = ρ s 2 d 2 r (∇m) 2 -8πρ s d 2 r ρ topo (r) + ∆V [m] = ρ s 2 d 2 r (∇m) 2 -4m • (∂ x m × ∂ y m) + ∆V [m] , (4.54) 
where ∆V [m] contains more than three derivatives of m(r) and is neglected.

Dzyaloshinskii-Moriya term. Before going to higher-order gradient expansion of V [m], it is worth mentioning that in the model for other two-dimensional ferromagnets [START_REF] Bogdanov | Thermodynamically stable "vortices" in magnetically ordered crystals. the mixed state of magnets[END_REF][START_REF] Bogdanov | Thermodynamically stable magnetic vortex states in magnetic crystals[END_REF], there exists the so-called Dzyaloshinskii-Moriya term which stabilizes the texture of skyrmions and distinguishes the Q = 1 skyrmion and the Q = -1 anti-skyrmion. Such term originates from spin-orbit coupling in the hosting material and has the following appearance: [START_REF] Nagaosa | Topological properties and dynamics of magnetic skyrmions[END_REF] V

[m] = d 2 r J 2 ∇m 2 + αm • (∇ × m) -B • m , (4.55) 
where we also included the Zeeman coupling to the applied magnetic field B. It was pointed in

Ref. [START_REF] Jung Hoon Han | Skyrmion lattice in a two-dimensional chiral magnet[END_REF] that the corresponding formulation with the CP 1 field Z is

V [Z] = d 2 r 2J DZ † • DZ -B • (Z † σZ) , (4.56) 
with a modified covariant derivative

D i Z = ∂ i Z -(Z † ∂ i Z)Z+i α 2J σ i Z (4.57) 
where the Dzyaloshinskii-Moriya term αm • (∇ × m) is absorbed into the quadratic term. It is then very convenient to solve the first-order differential equation D i Z = 0 for the ground state of the ferromagnet. The Dzyaloshinskii-Moriya term may also exist in QH ferromagnets [START_REF] Réné Côté | Biased bilayer graphene as a helical quantum hall ferromagnet[END_REF][START_REF] Côté | Electromagnetic absorption and kerr effect in quantum hall ferromagnetic states of bilayer graphene[END_REF], but this topic is outside the scope of this thesis.

Coulomb interaction of topological charge. The identification of the excess electric charge density δρ el with the topological charge density ρ topo has immediate consequence for the ∆V [m] term which contains more than two gradients of the field m -spin texture has energy from the Coulomb interaction of its electric charge density:

∆V [m] = 1 2 dr dr ρ topo (r)V (r -r )ρ topo (r) + • • • (4.58)
where each ρ topo (r) contains two terms of ∂m and such term is the fourth order of the gradient

expansion of V [m].
The interaction is usually considered as the Coulomb interaction V (r) = e 2 / |r|.

In principle, such term could be verified by direct computation of the average

V [m] = Ψ p/h [m(r)] H Ψ p/h [m(r)] (4.59) 
where Ψ p/h [m] have been introduced earlier in Eqs.(4.3), (4.4). In practice, however, such direct but tedious computation has rarely been carefully. An enlightening discussion appears in

Ref. [START_REF] Douçot | Spin textures in quantum hall systems[END_REF], where the δ-interaction and Coulomb interaction has been discussed to reproduce Eq.( 4.58)

at Hartree-Fock level, i.e.

V [m] = V H [m] -V F [m] (4.60) 
where the Hartree term

V H [m] = 1 2 σσ dr dr V (r -r ) ψ † σ (r)ψ σ (r) ψ † σ (r )ψ σ (r ) (4.61) 
gives rise to the Coulomb interaction of topological charge, whereas the NLSM part in

V [m] is derived from Fock term V F [m] = 1 2 σσ dr dr V (r -r ) ψ † σ (r)ψ σ (r ) ψ † σ (r )ψ σ (r) . (4.62) 
These results are in agreement with Ref. [START_REF] Yu A Bychkov | Charged skyrmions: A condensate of spin excitons in a two-dimensional electron gas[END_REF] and Ref. [START_REF] Zf Ezawa | Interlayer exchange interactions, su (4) soft waves, and skyrmions in bilayer quantum hall ferromagnets[END_REF][START_REF] Zf Ezawa | Noncommutative geometry, extended w ∞ algebra, and grassmannian solitons in multicomponent quantum hall systems[END_REF][START_REF] Zf Ezawa | Su (4) skyrmions and activation energy anomaly in bilayer quantum hall systems[END_REF][START_REF] Zf Ezawa | Topological solitons in the noncommutative plane and quantum hall skyrmions[END_REF][START_REF] Francis | Quantum Hall effects: Field theoretical approach and related topics[END_REF]. The key technique leading to these results is the gradient expansion (also known as semi-classical expansion, WKB expansion [START_REF] Emmrich | Geometry of the transport equation in multicomponent wkb approximations[END_REF], asymptotic expansion, adiabatic expansion) of the bi-local order parameter

P σσ (r, r ) ψ † σ (r )ψ σ (r) = mm C † N m σ C N mσ N m |r r|N m . (4.63) 
around the center R = (r + r )/2 in order of |r -r |/l B . Essentially, such expansion is possible due to the noncommutative nature of the order parameter restricted in a single Landau level. Direct analogy can be made to the quantum mechanics in phase space [START_REF] Zachos | Quantum mechanics in phase space: an overview with selected papers[END_REF] where the Planck's constant is replaced by the square of magnetic length l 2 B in the derivative expansion of Groenewold-Moyal product [START_REF] Groenewold | On the principles of elementary quantum mechanics[END_REF][START_REF]Quantum mechanics as a statistical theory[END_REF]. The expansion of P σσ (r, r ) has also been made explicit in Ref. [START_REF] Zf Ezawa | Topological solitons in the noncommutative plane and quantum hall skyrmions[END_REF].

In the viewpoint of variational principle, it would be more natural to consider P σσ (r, r ) or equivalently C † N m σ C N mσ , instead of m(r), as variational parameters, since the former is more detailed and the latter can be derived from the former. The noncommutative nature of the field P σσ (r, r ), or equivalently the matrix C † N m σ C N mσ , suggests that the effective field theory may be a noncommutative field theory (NCFT) [START_REF] Douglas | Noncommutative field theory[END_REF][START_REF] Szabo | Quantum field theory on noncommutative spaces[END_REF], and the gradient expansion of V [m] discussed earlier could be considered as its semi-classical expansion. Moreover, QH skyrmions could well be noncommutative solitons [START_REF] Seiberg | String theory and noncommutative geometry[END_REF][START_REF] Gopakumar | Noncommutative solitons[END_REF], as was pointed out in Ref. [START_REF] Zf Ezawa | Noncommutative geometry, extended w ∞ algebra, and grassmannian solitons in multicomponent quantum hall systems[END_REF][START_REF] Zf Ezawa | Topological solitons in the noncommutative plane and quantum hall skyrmions[END_REF]. It was argued in Ref. [START_REF] Gubser | Phase structure of non-commutative scalar field theories[END_REF] that the NCFT for QH systems is not favorable because its physical prediction does not fit to the phenomenology of QH physics.

Other high-order gradient expansions. Ref. [START_REF] Apel | Hopf term and the effective lagrangian for the skyrmions in a two-dimensional electron gas at small g factor[END_REF] has identified another term in ∆V [m]:

∆V [m] = - 3 16 ρ s dr ∇ 2 m 2 . (4.64) 
Its effect would be minor modification of the shape of the skyrmion texture.

Elastic model for spin-valley skyrmions

Matrix field description of SU(4) QH ferromagnet. The non-linear sigma model for spin textures discussed above has been generalized [START_REF] Dp Arovas | Su (n) quantum hall skyrmions[END_REF] from SU(2) multi-component QH system [START_REF] Moon | Spontaneous interlayer coherence in double-layer quantum hall systems: Charged vortices and kosterlitz-thouless phase transitions[END_REF] to SU(N). For the case of graphene monolayer, Refs. [START_REF] Yang | Collective modes and skyrmion excitations in graphene s u (4) quantum hall ferromagnets[END_REF][START_REF] Goerbig | Electronic properties of graphene in a strong magnetic field[END_REF] show that the low-energy Landau levels are four-fold degenerate due to electron spin and Dirac valley degrees of freedom and have SU(4) symmetry among them. In the same spirit of deriving the effective Lagrangian for the vector field m(r), one may write down the effective Lagrangian for the spin-pseudospin texture, which is described by a matrix field P (r). Such a field should at least reproduce the unit vector field for spin texture if the valley degree of freedom is frozen, and vice versa generate the pseudospin texture if the spin degree of freedom is frozen. Due to the global SU(4) invariance of the system, the matrix P (r) at a given spatial point r must also be transformed by a particular representation of the SU(4) group. Moreover, the transformations on the filled sub-levels and on the empty sub-levels should not affect P (r), since they leave the system unchanged.

The choice of Grassmannian [START_REF] Griffiths | Principles of algebraic geometry[END_REF] satisfies the conditions above. In the following paragraphs, I will justify such choice. Similar discussions can be found in Refs. [START_REF] Zf Ezawa | Noncommutative geometry, extended w ∞ algebra, and grassmannian solitons in multicomponent quantum hall systems[END_REF][START_REF] Kharitonov | Phase diagram for the ν = 0 quantum hall state in monolayer graphene[END_REF].

For uniform density state |Ψ ν [F ] discussed in §. 3.2 for an SU(4) QH ferromagnet, the matrix field P (r) is uniform and has the following form [also Eq.(3.38) in §3.2]:

P = ν k=1 F k F † k , (4.65) 
where F 1 , F 

|Ψ ν [F ] = m 4 ζ=1 F 1ζ C † N mζ • • • 4 η=1 F νη C † N mη |ν = 0 . (4.66)
In general, a uniform density state of SU(N) QH ferromagnet with ν filled sub-levels can be described by a N × ν matrix in the coset space

Gr(ν, N ) U(N) U(ν) × U(N -ν) . (4.67)
In particular, the matrices describing SU(4) QH ferromagnet at ν = 1 and ν = 2 are in the coset space Gr(1, 4) ≡ CP 3 , Gr(2, 4) respectively.

Intuitively, one can promote the matrix P to a matrix field P (r) and use it as variational parameters. At each spatial point r, the decomposition Eq.(4.65) also applies to P (r) and gives

P (r) = ν k=1 Z k (r)Z † k (r) , (4.68) 
where Z 1 (r), Z 2 (r), • • • , Z ν (r) ∈ C 4 are normalized vectors for all r. Such decomposition will be clarified in the next paragraph when the NLSM is presented. In the following discussions, the dependence on spatial coordinate r will be omitted. The effective Lagrangian for a "locally ferromagnetic"

QH system can be constructed in the same manner as the previous discussion on the spin textures.

The presence of valley pseudospin in graphene monolayer gives rise to fourfold degenerate Landau levels and SU(4) as transformation group within each Landau level. There are different types of textures, they can be spatial variations of electron spin, the valley pseudospin, or the "entanglement" [START_REF] Douçot | Entanglement skyrmions in multicomponent quantum hall systems[END_REF] between them. The shape of textures depends on the symmetry-breaking interaction V SB , which are discussed in §3.2 and are present in general settings of the host material -graphene monolayer.

Spin-valley skyrmions are present in various appearances, which will be discussed in paragraphs below.

Nonlinear sigma model for matrix field. The variational principle (Appendix §D) gives the following effective Lagrangian of the SU(N) QH ferromagnet with ν filled sub-levels:

L[P, Ṗ ] = T [P, Ṗ ] -V [P ] T [P, Ṗ ] Ψ[P ]|i ∂ t |Ψ[P ] V [P ] Ψ[P ]|H|Ψ[P ] , (4.69) 
where V [P ] = V NLSM [P ] + V SB [P ] + ∆V [P ] consist of the NLSM part V NLSM [P ] and a contribution from the symmetry-breaking interaction V SB at the lowest order of the gradient expansion, together with ∆V [P ] at higher orders.

The easiest way of writing the NLSM for the matrix field P is to follow the procedure in Appendix §D with a homogeneous Kähler potential in the target space Eq.(4.67). The result is For the general matrix field P with target space Gr(ν, N ), the NLSM can be written down as a direct generalization of the NLSM for spin texture:

V NLSM [P ] = K dr Tr[∇P ∇P ] , (4.70 
E[Z] = dr 4 DZ † • DZ dr i=x,y ν k=1 4 D i Z k † D i Z k . (4.73)
It has the same form as Eq.(4.38) but Z here is a N × ν matrix (field)

Z =        z 11 z 21 • • • z ν1 z 12 z 22 • • • z ν2 . . . . . . . . . . . . z 1N z 2N • • • z νN        ν columns = Z 1 , Z 2 , • • • , Z ν , Z † i Z j = δ ij (4.74)
and the covariant derivative is

D i Z = ∂ i Z -ZA i = (1 -ZZ † )∂ i Z (4.75) 
A i = Z † ∂ i Z.
It is related to the matrix field P [also shown in Eq.(4.68)]

P = ZZ † = ν k=1 Z k Z † k , (4.76) 
With the help of the above equations and the decomposition Eq. 

A(t) = Ψ[P (t)]|∂ t |Ψ[P (t)] = ρ 0 dr Tr Z † ∂ t Z T [P, Ṗ ] = i A(t) = i ρ 0 dr Tr Z † ∂ t Z , (4.78) 
which should be understood, similar to earlier discussions on the kinetic term of the spin texture, as a 1-form:

dT = iA(t)dt = i ρ 0 dr Tr Z † dZ , (4.79) 
and the phase ambiguity can be eliminated by working with the Schubert standard form [START_REF] Dp Arovas | Su (n) quantum hall skyrmions[END_REF][START_REF] Griffiths | Principles of algebraic geometry[END_REF] for the matrix field Z. Another possibility could be the Plücker coordinate. Notice that the Berry connection cannot be written as 1-form with the matrix field P (r, t) because Tr P dP ≡ 0. However, it is still possible [START_REF] Dp Arovas | Su (n) quantum hall skyrmions[END_REF][START_REF] Senthil | Competing orders, nonlinear sigma models, and topological terms in quantum magnets[END_REF] to write down a 2-form Tr P dP ∧ dP on the two dimensional manifold of time t and auxiliary coordinate u.

Symmetry-breaking term. The symmetry-breaking interaction V SB discussed in §3.3 implies the following term for a slowly varying matrix field P (r):

V 

where V H AB and V F AB are defined in Eq.(3.60) and Eq.(3.61) in §3.3. For V AB (r) = M AB δ(r), it was shown that for parabolic conduction band with isotropic mass, one has

V H AB = V F AB = ρ 0 M AB , (4.81) 
therefore the energy Eq.(4.80) for slowly varying matrix field P can be written as

V SB [P ] = ρ 0 dr AB M AB Tr P Γ A Tr P Γ B -Tr P Γ A P Γ B . (4.82)
The symmetry-breaking interaction V SB also induces additional gradient terms because it introduces anisotropy to the target space of the matrix field P (r). The precise form of such term is given in Ref. [START_REF] Wu | So(5) symmetry in the quantum hall effect in graphene[END_REF]. In principle, the method provided in Ref. [START_REF] Douçot | Spin textures in quantum hall systems[END_REF] is sufficient to determine it. Topological charge and interaction. It is a known fact that the second homotopy group of

Gr(ν, N ) = U(N)/U(ν) × U(N -ν) is [78] π 2 Gr(ν, N ) = Z , (4.83) 
which means that the mapping from S 2 to Gr(ν, N ) can be labeled by the topological charge

Q = dr ρ topo (r) (4.84) 
ρ topo = 1 2πi ij Tr P ∂ i P ∂ j P = 1 2πi ij Tr D i Z † D j Z .
To describe localized textures, the following boundary conditions for Z [defined in Eq.(4.74)] and P

[decomposed as in Eq.(4.68)] are necessary:

Z(|r| → ∞) → Z ∞ U (r) (4.85) P (|r| → ∞) → P ∞ , (4.86) 
where U (r) is a ν × ν unitary matrix that is responsible for the transformations within the filled ν sub-levels. Under these boundary conditions, the texture of the matrix field approaches to uniform configurations at spatial infinity, and the xy-plane can be consistently compactified to S 2 by joining the r = ∞. Therefore the matrix field Z(r) or P (r) can be viewed as mapping from S 2 to Gr(ν, N ) and be labeled by Q ∈ Z in Eq. (4.84).

The relation between the topological charge density ρ topo [Eq. (4.84)] and the excess electric charge density δρ el is the same [START_REF] Dp Arovas | Su (n) quantum hall skyrmions[END_REF] 4.4 Spin-valley skyrmions at ν = 1.

Solution of BPS equation and skyrmion ansatz. At quarter filling ν = 1 of the N = 0 LL in the graphene monolayer, the matrix field P can be decomposed as P = ZZ † with one normalized four-component complex vector field Z. At each spatial point r, the vector field Z(r) is equivalent to Z(r)e iϕ(r) since they produce the same matrix field P (r). The technical details for parametrization of Z(r) at each point r are explained in Appendix §G. The important difference between the spinpseudospin texture described by P (r) and a "direct product" of textures in spin and pseudospin can be seen from a simple counting of parameters. At each spatial point r, the matrix field P (r)

is targeting at point in the symmetric space CP 3 and has 6 real parameters, they are two angles for the direction of spin magnetization, two angles for the pseudospin magnetization, and another two angles that describes the "mixing" or "entanglement" [START_REF] Douçot | Entanglement skyrmions in multicomponent quantum hall systems[END_REF] of spin and pseudospin. The last two angles originate from quantum mechanical superposition of the wave functions that carry spin and pseudospin degrees of freedom. They are not captured by the "direct product" of textures in spin and pseudospin. The SU(4) spin-valley symmetry of graphene monolayer guarantees that there is no preferred directions in the target space of the matrix field P .

To obtain configuration that minimizes the NLSM energy E[P ] in each class of matrix field P with topological charge Q, it is necessary to compose the BPS inequality for E[P ]. Working with the vector field Z, the BPS inequality for E[Z] has the same form as in Eq.(4.43). The solutions are skyrmions and are given in Appendix §H:

Z = N -1/2 λC + z Q F (4.88) N = |λ| 2 + |z| 2Q + 2Re λ * z Q (C † F ) , (4.89) 
where the center vector C is a normalized vector that characterizes the texture at r = 0, whereas the normalized vector F describes the "ferromagnetic background" of a skyrmion at r = ∞ and hence called the FM (ferromagnetic) vector. The parameter λ ∈ R can be understood as the size of the texture, because the solution has topological charge density 

ρ topo (r) = λ 2 Q 2 |r| 2(Q-1) π λ 2 + |r| 2Q 2 , (4.90) 
K ↑ K ↓ K'↑ K'↓
Ŝ = η 2 CC † -F F † η = sgnQ . (4.92)
The joint transformation of Z(r) of coordinate space and magnetization reads exp iα( L + Ŝ) and leaves the skyrmion ansatz invariant up to a global phase factor:

e iα( L+ Ŝ) Z(r) = e i η 2 α Z(r) . (4.93)
Method and result of energy minimization. Given the skyrmion ansatz Z(r) in Eq.(4.88), the Q = 1 skyrmion at quarter filling ν = 1 of the N = 0 LL of graphene monolayer is determined by the minimization of the following energy functional of matrix field P (r) = Z(r)Z † (r): I have also used E C = e2 /(4πε 0 l B ) as the energy scale and l B = /eB as the length scale. A radial deformation [START_REF] Lian | Spin-valley skyrmions in graphene at filling factor ν = -1[END_REF] (publication of the author of this thesis) of the solution Eq.(4.88) has been introduced to regularize the Zeeman energy of the texture. The final result is summarized in Fig. 4.5(a). Four types of skyrmions have been found:

E sk [P ] = V NLSM [P ] + ∆V [P ] + V SB [P ] -V SB [P FM ] , (4.94) 
• Spin skyrmion -They exist when the ferromagnetic background is unentangled easy-axis (UEA) or unentangled easy-plane (UEP) and |u ⊥ -u z | is large. The spin magnetizations 2 of the center vector C and the FM vector F have opposite directions with magnitude 1, but their pseudospin magnetizations3 are the same. In fact, the skyrmion ansatz can be factorized into Z spin (r) ⊗ Z ppin , where Z spin (r) is the CP 1 -field for the spin skyrmion given in Eq.(4.47), and Z ppin is a constant vector for pseudospin.

• Pseudospin skyrmion -They exist when the ferromagnetic background is unentangled easyaxis (UEA) or unentangled easy-plane (UEP) and |u ⊥ -u z | is small. In contrast to the spin skyrmions, the pseudospin magnetizations of the center vector C and the FM vector F have opposite directions with magnitude 1, but their spin magnetizations are the same. The skyrmion ansatz can be factorized into Z spin ⊗Z ppin (r) with constant vector Z spin and CP 1 -field Z ppin (r) that is identical to Eq.(4.47).

• Entanglement skyrmion -They exist in all types of ferromagnetic background. Both the spin and pseudospin magnetizations of the center vector C are reversed compared to the FM vector F . It is remarkable that in the skyrmion ansatz, only the entanglement parameters are changing throughout the xy-plane. The angles for spin and pseudospin magnetizations in the skyrmion ansatz are identical at different spatial points.

• Deflated pseudospin skyrmion -They exist when the ferromagnetic background is entangled easy-axis (EEA) or entangled easy-plane (EEP) and |u ⊥ -u z | is small. The spin magnetizations of the center vector C and the FM vector F are of the same directions but different magnitudes, and both of them are smaller than 1. The directions of pseudospin magnetizations for C and F reversed, and both magnetizations have magnitudes smaller than 1.

According to Appendix §G, the CP 3 -manifold can be imagined as a product of three spheres Several comments are in order. First, the transition between the Unentangled Easy-Axis (UEA) phase to Unentangled Easy-Plane (UEP) phase of the QH ferromagnet is coated by a pseudospin skyrmion phase if the filling factor slightly deviates from ν = 1. It reflects the fact that the pseudospin degrees of freedom are softer than the others when u ⊥ and u z are close. In fact, the pseudospin SU(2) symmetry is restored at u ⊥ = u z . Moreover, there will be jumps in the total spin magnetization of the QH system at the border of spin skyrmion region and pseudospin skyrmion region, but the energy of skyrmions at two sides of the border are the same. Second, the skyrmion size diverges when u ⊥ = u z [shown in Fig. 4 4.5 Spin-valley skyrmions at ν = 2.

Solution of BPS equation and skyrmion ansatz. At half-filling ν = 2 of the N = 0 LL of graphene monolayer, the target space of the matrix field with

P (r) = Z 1 (r)Z † 1 (r) + Z 2 (r)Z † 2 (r) (4.96) Z † 1 (r)Z 2 (r) ≡ 0 (4.97)
is the Grassmannian Gr(2, 4). The BPS inequality in this case has the same form as Eq.(4.43) for the spin texture, except that there is an additional summation over the sub-level index of the matrix

field Z = [Z 1 , Z 2 ] T . Denote N k = W † k W k for k = 1, 2, one has the solution (see Appendix §H for details) Z k (r) = N -1/2 k λ k C k + z Q k F k (k = 1, 2) (4.98) N k = |λ k | 2 + |z| 2Q k + 2Re λ * k z Q k (C † k F k ) , (4.99) 
where the topological charge of

P = Z 1 Z † 1 + Z 2 Z † 2 is Q = Q 1 + Q 2 .
Notice that λ 1 and λ 2 for the two sub-levels can be different. The orthogonal condition

Z † 1 (r)Z 2 (r) = 0 (4.100)
should be respected for all points r on the xy-plane. In particular, one has F † 1 F 2 = 0 at r = ∞ and C † 1 C 2 = 0 at r = 0. The orthogonal condition F † 1 C 2 = 0 and F † 2 C 1 = 0 are obtained from Z † 1 Z 2 = 0 at a generic point r. In the discussion of skyrmions at ν = 1, the orthogonality between the FM vector F and the center vector C is equivalent to the choice of the origin point of the xy-plane to be at the skyrmion center. It is important to notice that, at ν = 2 the condition F † 1 C 1 = 0 and F † 2 C 2 = 0 are not required by the BPS equation. The choice of origin can only fix one of the two orthogonality condition, leaving the other two free. Physically it means that the centers of skyrmions described by Z 1 and Z 2 are not necessarily coincide. To further illustrate the consequences of a skyrmion at ν = 2 with different centers in each level, we need some mathematical properties of the solution, which we shall discuss in the next paragraphs.

The matrix field P for filling factor ν = 3 can be related to a matrix field P for ν = 1 via a particle-hole transformation

P = 1 -P , (4.101) 
which represents a sub-level of holes. Thus the case of filling factor ν = 3 is equivalent to the case of ν = 1.

(a) Sub-level decoupling of NLSM energy and topological charge. The aforementioned orthogonality conditions

K ↑ K ↓ K'↑ K'↓ (b) K ↑ K ↓ K'↑ K'↓
F † i F j = δ ij = C † i C j F † 1 C 2 = 0 = F † 2 C 1 (4.102)
for the normalized vectors F 1 , F To prove this, notice that both the projector P k and its derivative ∂P k are linear combinations of four matrices

B k = F k F † k , F k C † k , C k F † k , C k C † k (k = 1, 2) . ( 4 

.105)

Due to the orthogonality conditions Eq.(4.102), the product of two matrices A 1 ∈ 

F 1 F † 1 , F 1 C † 1 , C 1 F † 1 , C 1 C † 1 and B 2 ∈ F 2 F † 2 , F 2 C † 2 , C 2 F † 2 , C 2 C †
E[P ] = E[P 1 ] + E[P 2 ] = 2Tr [∇P 1 ∇P 1 ] + 2Tr [∇P 2 ∇P 2 ] (4.106)
and

ρ topo [P ] = ρ topo [P 1 ] + ρ topo [P 2 ] = 1 2πi ij Tr [P 1 ∂ i P 1 ∂ j P 1 ] + 1 2πi ij Tr [P 2 ∂ i P 2 ∂ j P 2 ] . (4.107) 
Ansatz for Q = 1 skyrmions at ν = 2. The decoupling of the NLSM energy and the topological charge implies that the Q = 1 skyrmion must have the following form:

Z 1 = F 1 Z 2 = N -1/2 λC 2 + zF 2 N = |λ| 2 + |z| 2 , (4.108) 
where F 1 , F 2 , C 2 ∈ C 4 satisfies the orthogonality condition Eq.(4.102) plus the condition F † 2 C 2 = 0. At r = ∞, the matrix field P approaches to the ferromagnetic ground state

P FM f 1 f † 1 + f 2 f † 2 , (4.109) 
with normalized vectors f 1 , f 2 ∈ C 4 being related to F 1 , F 2 by a unitary transformation U (θ, ω, ϕ):

f 1 = U 11 (θ, ω, ϕ) F 1 + U 12 (θ, ω, ϕ) F 2 f 2 = U 21 (θ, ω, ϕ) F 1 + U 22 (θ, ω, ϕ) F 2 (4.110) 
where

U (θ, ω, ϕ) = e 1 2 i(ϕ+ω) cos θ i e 1 2 i(ω-ϕ) sin θ i e -1 2 i(ω-ϕ) sin θ e -1 2 i(ϕ+ω) cos θ ∈ U(2) . (4.111)
Such transformation is used to connect the f 1 , f 2 vectors representing the ground state of the SU(4)

QH ferromagnet at ν = 2 and the F 1 , F 2 vectors representing the texture at spatial infinity. They should produce the same matrix field, i.e.

P FM f 1 f † 1 + f 2 f † 2 ≡ F 1 F † 1 + F 2 F † 2 . (4.112) 
The ansatz Eq.(4.108) can be understood as an interpolation between the ferromagnetic back-

ground P FM = P (∞) = F 1 F † 1 + F 2 F † 2 and the skyrmion center P Cent = P (0) = F 1 F † 1 + C 2 C † 2 .
There are 4 choices for the vectors at skyrmion center in the present case, because one has to select one sub-level in the two filled ones for the ferromagnetic background to interpolate with one of the two empty sub-levels. The situation is exactly the same as the single-mode spin-valley waves discussed in §3.4. To describe the spin-valley waves, an orthonormal and complete set of basis F a (a = 1, 2, 3, 4) 

(r) = Z 1 (r)Z † 1 (r) + Z 2 (r)Z † 2 (r): E sk [P ] = V NLSM [P ] + ∆V [P ] + V SB [P ] -V SB [P FM ] , (4.113) 
where 

P FM = F 1 F † 1 + F 2 F † 2 with vectors F 1 , F 2 
in the skyrmion ansatz describes the ferromagnetic background of the skyrmion when |r| → ∞.

In practice, the vectors f 1 , f 2 representing the two filled sub-levels are obtained by minimization of the anisotropy energy V SB [P FM ] with the parametrization of The result of energy minimization with δ = ∆ Z /E C = 0.08 (the same setting as for ν = 1) is shown in Fig. 4.8(a). I found three types of vector C 2 at the skyrmion center and use them to distinguish different types of skyrmions. The regions in Fig. 4.8(a) are labeled as "SS", "PS" and "NS" with red lines as borders. They are:

P F M = f 1 f † 1 + f 2 f † 2 given in Ap- pendix §G.
• Spin singlet (SS) -The center vector C 2 is a spin singlet state, in which two sub-levels have opposite spin and same pseudospin at r = 0. Such center vector reveals that, if ferromagnetic background is in FM or CAF phase, the Q = 1 skyrmion at ν = 1 resembles the spin skyrmion in the case of ν = 1.

• Pseudospin singlet (PS) -Except for regions close to the borders, the center vector C 2 is a pseudospin singlet state, i.e. two sub-levels have opposite pseudospin and same spin at r = 0.

In this case, if ferromagnetic background is in KD or CDW phase, the Q = 1 skyrmion at ν = 1 resembles the pseudospin skyrmion in the case of ν = 1. • Néel singlet (NS) -In the rest of the g ⊥ -g z plane, the center vector C 2 is a Néel singlet state, which resembles the antiferromagnetic state that have opposite spin at different valley index.

Here are some remarks on the result of energy minimization at ν = 2. It is believed [START_REF] Young | Tunable symmetry breaking and helical edge transport in a graphene quantum spin hall state[END_REF] that the CAF phase is experimentally relevant for the graphene monolayer as an SU(4) QH ferromagnet.

Ref. [START_REF] Dmitry | Fractional and integer quantum hall effects in the zeroth landau level in graphene[END_REF] also pointed out that the parameter g ⊥ and g z tend to be large at ν = 2. According to the plot of skyrmion size in Fig. 4.8(b) along the large circle C 3 , large skyrmions exist when (g ⊥ , g z ) is close to the FM/CAF border (θ = π/2 on C 3 ) of the QH ferromagnet. Large skyrmion also exists when (g ⊥ , g z ) is close to the boundary between the FM and CDW phases (θ = 7π/4 on C 3 ). In this case, the skyrmion resembles the entanglement skyrmion at ν = 1 because to change from FM phase to CDW phase, one has to reverse both the spin and pseudospin of one of the two sub-levels.

Close to the FM/CDW border, it costs very little energy to do so. Therefore the energy would be close to 4πρ s for a skyrmion with F 2 and C 2 representing the sub-level before and after the change.

Otherwise, it seems impossible to find skyrmions since the skyrmion size is very close to l B , as shown in Fig. and the (1 + 1)-type

Z 1 = N -1/2 1 λ 1 C 1 + zF 1 Z 2 = N -1/2 2 λ 2 C 2 + zF 2 N k = |λ k | 2 + |z| 2 (k = 1, 2) . (4.115)
The decoupling of NLSM energy Eq.(4.106) and topological charge density Eq.(4.107) implies that the latter may have topological charge density that is concentrated in two regions. Since the topological charge density of a skyrmion is equal to the excess charge density carried by the texture, the electric charge in two regions has repulsive Coulomb interaction and may lead to an unstable Q = 2 skyrmion of (1 + 1)-type. The set of plane waves

W = u k (x) 1 (2π) d e ik•x k ∈ R d (A.8)
is orthonormal because Kähler structure. The total Hilbert space H of quantum states Ψ is Kählerian. [START_REF] Anandan | Geometry of quantum evolution[END_REF][START_REF] Heydari | Geometric formulation of quantum mechanics[END_REF] The "meaningfuul metric" (Re [• • • ] is not necessary but I keep it as that was presented in the publication)

u k , u q = 1 (2π) d V dx e i(q-k)•x = δ (d) (k -q) (A.
g ij = Re [ ∂ i ψ, ∂ j ψ ] -ψ, ∂ i ψ ∂ j ψ, ψ (D.8)
emphasized in Ref. [START_REF] Provost | Riemannian structure on manifolds of quantum states[END_REF] is induced from the Kähler metric (an infinite dimensional analogue of the Fubini-Study metric [START_REF] Anandan | Geometry of quantum evolution[END_REF] of the complex projective space CP n )

ds 2 = ∂ 2 ∂Ψ∂Ψ
ln S dΨ ⊗ dΨ (D.9) where h det h µν and h µν is the natrual metric in the base manifold B of the parameter field φ.

S = 1 + k =l Ψ k Ψ l Ψ k Ψ l , ( 
Unlike the Polyakov action for a Bosonic string, here h µν is given à priori when the parametrization of the quantum state Ψ is designed. One has to minimize V E [φ] w.r.t. the configuration of the parameter field φ(x), i.e. to search for a section in the fiber bundle M that minimizes V E [φ].

In fact, Eq.(D.16) is the lowest order of gradient expansion of the potential V [φ]. We obmit the discussion of higher order gradient expansion of V [φ] here because its form depends on concrete problems.

The kinetic part m X = (sin θ X cos φ X , sin θ X sin φ X , cos θ X ) , X = S, P (G.6)

T [φ, φ] = Ψ[φ]|i∂ t |Ψ[φ] (D.
where the three-component real unit vector m X represents direction of the magnetizations, and α ∈ [0, π) determines their magnitude. The eigenstates of the matrix m X • σ are I have confirmed that the parametrization Eq.(G.10) indeed covers the CP 3 manifold twice, by computing the volume of the parameter space with a metric induced from the real part of the natural Fubini-study metric [START_REF] Nakahara | Geometry, topology and physics[END_REF] g = Tr [P.dP ⊗ .dP ] (G.12)

[σ • m X ] ψ X = ψ X [σ • m X ] χ X = -
where "⊗" denotes the tensor product of the 1-forms in the cotangent space and "." means the usual matrix product. For CP 3 space, the metric and the volume form are (G.17)

It can be represented by a 4 × 4 Hermitian matrix P of rank 2 and eigenvalue 1, 1, 0, 0. Such matrix can be decompsed as

P = Z 1 Z † 1 + Z 2 Z † 2 (G.18)
where the normalized four-component complex vectors Z 1 , Z 2 are the eigenstates of the matrix P of eigenvalue 1, i.e. they satisfy P Z 1,2 = Z 1,2 , Z † 1 Z 2 = 0. The U(2) transformations can mix Z 1 and Z 2 , as well as their orthogonal complements.

According to Eq.(G.10), both Z 1 and Z 2 can be parametrized by 6 real parameters. However, the Gr(2, 4) manifold is 8-dimensional. Therefore, Z 1 and Z 2 must have 2 × 6 -8 = 4 parameters in common, which can be chosen arbitrarily from the 6 real parameters that parametrize each of them. Different choice can be connected via the U(2) unitary transformation which mixes Z 1 and Z 2 . Based on Eq.(G.10), I choose the common parameters to be θ S , φ S , θ P , φ P and parametrize Z 1 , Z 2 as The matrix P = Z 1 Z † 1 + Z 2 Z † 2 is now parametrized by 8 real variablesθ S , φ S , θ P , φ P in common, α 1 , β 1 for Z 1 and α 2 , β 2 for Z 2 .

Z 1 =
The parametrization of Z 1 , Z 2 and hence P = Z 1 Z † 1 + Z 2 Z † 2 has a four-fold Z 2 × Z 2 redundancy -one Z 2 is inhierated from the parametrization of the CP 3 -vector Z 1 and Z 2 , whereas the other Z 2 arises from the interchange of them. To be concrete, the former Z 2 redundancy reads e i(+φ S +φ T -β1) Z 1 (θ S , φ S , θ P , φ P , α 1 , β 1 ) = Z 1 (π -θ S , π + φ S , π -θ P , π + φ P , π -α 1 , β 1 ) e i(-φ S +φ T -β2+π) Z 2 (θ S , φ S , θ P , φ P , α 2 , β 2 ) = Z 2 (π -θ S , π + φ S , π -θ P , π + φ P , π -α 2 , β 2 ) with β 1 = -β 1 +2φ P + 2φ S (G.22)

β 2 = -β 2 -2φ P + 2φ S . (G.23)
These equations guarantee that, upon reversion of the spin and pseudospin directions, as well as the transformations of α 1 , α 2 , β 1 , β 2 shown in the above equations, the projector P (θ S , φ S , θ P , φ P , α 1 , β 1 , α 2 , β 2 ) remains unaltered. The other Z 2 redundancy is Z 1 (θ S , φ S , θ P , φ P , α 1 , β 1 ) (G.24)

= e +iφ S Z 2 (π -θ S , π + φ S , θ P , φ P , α 1 , β 1 )

Z 2 (θ S , φ S , θ P , φ P , α 2 , β 2 ) (G.25)

= e i(π-φ S ) Z 1 (π -θ S , π + φ S , θ P , φ P , π -α 2 , β 2 )

with 

β 1 = π + β 1 -2φ S (G.

G.3 Plücker coordinates

Besides the vectors Z 1 , Z 

Spin ⊕ [1]

[12]

Spin ⊗ [0]

Ppin ⊕ [1]

[12] Ppin

= [1]

[12]

Spin ⊗ [0]

Ppin ⊕ [0]

Spin ⊗ [1]

[12]

Ppin .

(G.34)

In "FM" or "spin singlet"

[1, 0, 0, 0] T [0, 0, 1, 0] T (1, 0, 0) (0, 0, 0)

"CDW" or "pseudospin singlet"

[1, 0, 0, 0] T [0, 1, 0, 0] T (0, 0, 0)

(1, 0, 0)

"KD"

The NLSM for the matrix field P in Eq.(H.1) can be expressed by the matrix field Z as follows:

E[Z] 4 ν k=1 dr DZ k † • DZ k . (H.6)
The Bogomolny-Prasad-Sommerfield (BPS) inequality holds:

δ ij D i Z ± i ik D k Z † D j Z ± i jl D l Z dr ≥ 0 ⇔ 1 2 E[Z] ∓ 4πQ ≥ 0 , (H.7)
where

Q = 1 2πi dr ij D i Z † D j Z . (H.8)
The BPS equation is satisfied when the inequality is saturated:

D i Z k ± i ij D j Z k = 0 (+for Q > 0 and -for Q < 0) , (H.9)
which can be rewritten with Z l = W l / W † l W l as follows: For ν = 1, Eq.(H.10) is simplified to

1 - ν k=1 W k W † k W † k W k ∂W l = 0 (Q > 0) 1 - ν k=1 W k W † k W † k W k ∂W l = 0 (Q < 0) , ( 
1 - W W † W † W ∂W = 0 (Q > 0) 1 - W W † W † W ∂W = 0 (Q < 0) . (H.11)
The first line is equivalent to up to permutations on rows. Using this standard form, Eq.(H.15) is written as which is equivalent to the holomorphic/anti-holomorphic conditions on the 2 × 2 matrix function V :

∂W = α (z, z) W , ( 
∂ 1 2×2 V = A V A (Q > 0) ∂ 1 2×2 V = Ã V Ã (Q < 0) , (H.
∂V = 0 (Q > 0) ∂V = 0 (Q < 0) . (H.18)
This equations lead to the solutions in Eq.(4.98) presented in the main text.

The solution of BPS equation for the NLSM of matrix field P targeting in the Gr(ν, N ) space is discussed in Ref. [START_REF] Pal | Multi-component spin textures in quantum hall ferromagnets[END_REF][START_REF] Zakrzewski | Low dimensional sigma models[END_REF].

Figure 1 :

 1 Figure 1: Skyrmion.

Figure 2 :

 2 Figure 2: Systèmes d'effet Hall quantique multi-composants. (a) Système d'effet Hall quantique à deux composants à ν = 1 où le composant spin-up électronique est complètement rempli. (b) La monocouche de graphène est un système d'effet Hall quantique à quatre composants. A ν = 2, chaque composant de vallée est rempli par des électrons spin-up.

Figure 3 :

 3 Figure 3: Echelles d'énergie. (bleu) GaAs-AlxGa 1-x As hétéro-structure et puits quantique, (rouge) graphène.La séparation d'énergie ∆E0-1 entre NL N = 0 et N = 1 est ∆E 0-1 = eB/m * pour GaAs-AlxGa 1-x As et ∆E 0-1 = √ 2 v F /l B pour le graphène. Notez que le rapport ∆E 0-1 /E C ∼ v F /(e 2 /) pour le graphène ne dépend pas de la longueur magnétique ni de toute autre échelle de longueur.
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 45213 Figure 4: Illustrations pour les excitations à faible énergie dans un LL avec deux sous-niveaux marqués par spin électronique. (a) Quasi-particule. (b) Quasi-trou. (c) Spin wave. (d) Spin skyrmion. Notez que la sous-figure (c) ne représente pas la répartition réaliste des spins d'électrons dans les sous-niveaux de Landau; c'est simplement à des fins démonstratives.
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 43 vecteur dans l'espace Gr(1, 4) = CP 3 . Un tel vecteur est paramétré par 6 angles -deux angles d'aimantation de spin, deux pour l'aimantation de pseudospin de vallée et les deux autres pour l'enchevêtrement. La signification des angles pour les magnétisations spin et pseudospin est intuitivement claire, alors que les angles d'enchevêtrement sont nouveaux pour le NL N = 0 du monocouche de graphène. La raison en est la symétrie SU(4) approximative parmi les quatre sous-niveaux. Les angles d'enchevêtrement enrichit les types d'états ferromagnétiques au sol au remplissage du quart du NL N = 0. Différentes phases du NL N = 0 au quart-remplissage sont discutées dans la section 3.Les skyrmions au remplissage du niveau N = 0 Landau sont caractérisés par deux C 4 -vecteurs orthogonaux F , C dans l'espace Gr(1, 4) = CP 3 . Le vecteur F décrit le fond ferromagnétique où
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 611 Figure 6: Diagram of skyrmion types at ν = 1 of N = 0 LL in graphene monolayer. Red lines mark the borders

Fig. 1 .

 1 Fig.1.1 shows an example of skyrmion. It is a non-extensive configuration of the unit vector field

Figure 1 . 1 :

 11 Figure 1.1: Skyrmion.

Figure 1 . 2 :

 12 Figure 1.2: Multi-component QH systems. (a) Two-component QH system at ν = 1 where electron spin up component is completely filled. (b) Graphene monolayer as a four-component QH system, at ν = 2, where each valley component is filled by spin-up electrons.

Figure 1 . 3 :

 13 Figure 1.3: Energy scales. (blue) GaAs-AlxGa 1-x As hetero-structure and quantum well, (red) graphene. The energy separation ∆E 0-1 between N = 0 and N = 1 LL is ∆E 0-1 = eB/m * for GaAs-AlxGa 1-x As and ∆E 0-1 = √ 2 v F /l B for graphene. Notice that the ratio ∆E 0-1 /E C ∼ v F /(e 2 / ) for graphene does not depend on the magnetic length nor any other length scales.

Figure 1 . 4 :

 14 Figure 1.4: Illustrations for low energy excitations in a LL with two sub-levels labeled by electron spin. (a) Quasiparticle. (b) Quasi-hole. (c) Spin wave. (d) Spin skyrmion. Notice that sub-figure (c) does not represent the realistic distribution of electron spins in the Landau sub-levels; it is merely for demonstrative purpose.
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 111 , whereas in graphene such ration is ∆E 1-0 /E C = 3.4 [43, 64]. There are two scenarios for the excitations -the quasi-particles/quasi-holes and the spin-valley waves. Quasi-particle or quasi-hole refers to the electron added or removed from the filled Landau sub-levels [illustrated in Fig.1.4(a)(b)], whereas the spin-valley wave is a spatially periodic distribution of electrons in different sub-levels [illustrated in Fig.1.4(c)]. These excitations should be the dominant low-energy modes in the multicomponent QH system.

-1/ 3 (Figure 1 . 5 :

 315 Figure 1.5: (a) (From Ref.[137]) Results of tilted-field experiments on the ν = 1 QHE. The energy gaps ∆ at fixed B ⊥ (obtained from the transport data) are plotted versus the Zeeman energy gµ B Btot in unit of e 2 / l B . The Zeeman energy is tuned by increasing the tilting angle θ = arccos(B ⊥ /Btot) of the sample from θ = 0, which corresponds to B ⊥ = Btot at the lower left in each set of data points. Different data sets correspond to different electron densities and mobilities (see main text in Ref.[137]). The dashed lines represent data-fitting of ∂∆/∂∆ Z = s = 7, which indicate that the effective spin of excitations is larger than 1/2. (b) (From Ref.[107]) Energy gap at ν = 1 as a function of the bare g-factor (bottom axis) and as a function of g * = gµ B B/(e 2 / l B ) (top axis). Solid line: energy gap for skyrmion excitation estimated in Ref.[151]. Short-dashed line: the dependence of the energy gap on the Zeeman energy, as E 0 + s |g| µ B B, with s = 1. Long dashed line: s = 7. Long-short dashed line: s = 33.

Figure 1 . 6 :

 16 Figure 1.6: (From Ref.[15]) The dependence of 71 Ga nuclei Knight shift K S on filling factor ν at B = 7.05 T (open circles) at T = 1.55 K. The solid line is the K S (ν) curve for particle/hole without spin texture, while the dashed line is fitted from data, indicating that the spin per additional particle/hole is larger than 1/2.

  2 and the resulting phase diagrams at ν = 1 (quarter-filling) and ν = 2 (half-filling) are presented with brief comments. Finally, the dispersions of single-mode spin-valley waves are computed in §3.3. The contributions from four parts of the Hamiltonian H are identified. With the general result of the dispersion, an example is given to show a possible instability of the ground state. Chapter 4 elaborates on QH skyrmions. An affordable description of the spin texture is the elastic model from variational analysis, which is presented in §4.2 and supported by a symmetry analysis in §4.1. The elastic model for spin texture is generalized in §4.3 to describe the spin-valley texture. The spin-valley skyrmions are discussed in the context of the elastic model and a continuous field.As results of energy minimization, different types of spin-valley skyrmions of topological charge 1 are presented in §4.4 for ν = 1 and §4.5 for ν = 2. Finally, the skyrmion of topological charge 2 at filling factor ν = 2 is argued to have an unstable form due to the Coulomb interaction of the topological charge.

Figure 2 . 1 :

 21 Figure 2.1: Geometry of the circular motion of an electron in the xy-plane under magnetic field B = -Bez with B > 0.

  e. each magnetic translation T , depends on the entire trajectory C(a) along which the infinitesimal operations are accumulated. The inverse of an element T [C(a)] is thus the accumulation of infinitesimal operations along the same curve but of opposite direction. Successive application of the magnetic translation would be the multiplication of elements in the group. If the shape of curve C(a) is specified, for instance to be straight lines connecting the origin and the point a, then the underlying mathematical structure for magnetic translations also fits to the projective representation of the ordinary (i.e. non-magnetic) translation group. Two magnetic translations T [C(a)] ≡ T a and T [C(b)] ≡ T b are composed as T a+b = e iϕ(b,a) T b T a , (2.63) where the 2-cocycle ϕ(b, a) satisfies ϕ(c, a + b) + ϕ(b, a) = ϕ(c, b) + ϕ(b + c, a) mod 2π (2.64) If the curve C(a) is straight line, according to Eq.(2.61) one has ϕ(b, a) = 1 2 (a × b) z . (2.65) Relation between coherent state r|R, N and r|0, N . The construction Eq.(2.54) of the coherent state

Figure 2 . 2 :

 22 Figure 2.2: Honeycomb-lattice based models: (a) Honeycomb lattice model (à la Kitaev) with general nearest neighbor hopping; (b) graphene monolayer; (c) graphene monolayer elongated in y-direction.

Figure 2 . 3 :

 23 Figure 2.3: Profile of the complex-valued structure factors for the honeycomb lattice models with δ1,2,3 chosen as in Eq.(2.85). In all plots, solid lines are the contours of the modulus |f (k)|, colors indicates the phase of the function. The border of first Brillouin zone is sketched in each plot since the structure of the honeycomb lattice does not change. (a) f 123 (k) for t 1 = 1, t 2 = 1.2 and t 3 = 0.6; (b) f (k) for graphene monolayer; (c) f λ (k) with anisotropy λ = 0.4. In the expressions we have a 2 = δ1 -δ3 and a 3 = δ2 -δ3 . The zero points of f (k) are present in all cases. In (b) the zero points coincide with the K and K point in the first Brillouin zone.
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 9124 Figure 2.4: Energy bands for graphene monolayer.

Fig. 2 .

 2 Fig.2.4 shows the band structure along the high symmetry lines Γ → K → Γ. It demonstrates that a non-zero ∆ opens gap at K-point, and a small s 0 leads to significant shift of the band structure at the band top and bottom.

In §2. 1 ,

 1 we have already discussed the mathematical procedure of Landau quantization of the simplest quadratic Hamiltonian at the bottom of conduction band. With the help of the ladder operators, such Hamiltonian becomes that of the harmonic oscillator. The Fock state |N a of the ladder operator a, a † [Eq.(2.16)] represents the degenerate energy levels, which are called Landau levels. Electron states inside each Landau level are labeled by the particle number of another pair of ladder operator b, b † [Eq.(2.16)]. Under a strong applied magnetic field, such description is sufficient for the physics in single, low-lying Landau level, because the Landau level spacing ω C is much larger than other energy scales of the system, and the magnetic length l B is large compared to the size of a unit cell. When the energy of Landau levels goes beyond the validity of the low-energy effective Hamiltonian at different valleys, one has to introduce corrections to various quantities, such as the form factor which is discussed in §2.4. More importantly, when the energy of Landau levels continues to rise and reaches the saddle point of the electronic band, Landau levels will break down and the Landau quantization of the low-energy effective Hamiltonian fails completely.

. 99 )

 99 Notice that the Hamiltonian is written in the sublattice-swapped basis Eq.(2.94). With the help of the Fock states |N a and |N b for the ladder operator a, a † and b, b † discussed in §2.1, the eigenstates of the above Landau quantized Hamiltonian can be written as

  orbit ψ N m solved in Eq.(2.48) gives averages that are identical to the case of |R, N and once again the factor of 2π is missing.The convincing way of counting the Landau level degeneracy is by analyzing the peaks and spatial extensions of the wave function amplitudes. For the symmetric gauge (ξ, λ) = (1/2, 0) and in the lowest Landau level, the peaks of wave function amplitude |ψ 0m | are located on the circles with radius

  ) which provides an efficient method in solving the Landau Hamiltonian H(k + (e/ )A) = H(π x , π y ) in the Schrödinger-Heisenberg representation. Here we demonstrate the application of Bargmann representation on solving the Landau Hamiltonian H(k+(e/ )A) = H(a, a † ) of ladder operators a, a † in the linear gauge. The ordering of operators a, a † is a notorious difficulty for general quantization of classical Hamiltonians and it is also non-trivial for the Landau quantization. Luckily, as long as one stays close to the band bottom, the choice of ordering is straightforward. Upon the replacement a † → z, a → ∂ (explained in Appendix C) and taking square of the Hamiltonian, one usually obtains a complex differential equation

2 Figure 2 . 5 :

 225 Figure 2.5: Low-energy band structure for the k 3 + λk 2 model. (a) Energy bands along ky = 0 for λ = -0.3, ∆ = 0 and ∆ = 0.002. (b) Iso-energy curves for ∆ = 0, λ = -0.3.

  .[START_REF] Mark Rasolt | Dissipation due to a "valley wave" channel in the quantum hall effect of a multivalley semiconductor[END_REF] it acts on the state Ψ = [χ 1 , χ 2 ] T . In the Bargmann representation, the two components of the wave function Ψ becomes χ 1,2 = φ 1,2 (z)e -|z| 2 with holomorphic functions φ 1,2 (z), and the Schrödinger's equation HΨ = EΨ becomes a complex differential equation for φ 1 (z):

Figure 2 . 6 :

 26 Figure 2.6: |F 00 (k|ij)| as a function of k for (i, j) = (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3) with B = 0.0005.

Figure 2 . 7 :

 27 Figure 2.7: |F 00 (k|ij)| as a function of k for (i, j) = (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3) with B = 0.005.

  (2.138), I plot the amplitudes |F 00 (k|i, j)| as a function of k for (i, j) = (1, 1), (2, 2),[START_REF] Achilles | The early proofs of the theorem of campbell, baker, hausdorff, and dynkin[END_REF][START_REF] Achilles | The early proofs of the theorem of campbell, baker, hausdorff, and dynkin[END_REF], (1, 2),[START_REF] Abolfath | Critical comparison of classical field theory and microscopic wave functions for skyrmions in quantum hall ferromagnets[END_REF][START_REF] Achilles | The early proofs of the theorem of campbell, baker, hausdorff, and dynkin[END_REF],[START_REF] Dmitry | Fractional and integer quantum hall effects in the zeroth landau level in graphene[END_REF][START_REF] Achilles | The early proofs of the theorem of campbell, baker, hausdorff, and dynkin[END_REF] in Fig.(2.6) and Fig.(2.7). The plots for (i, j) = (2, 3), (2, 2) and (3, 3) shows the same feature as the plot of Wigner function for the cat state |cat± in Eq.

1 .

 1 The rest of this chapter explains the consequence of the SU(4) invariance -it gives rise to the quantum Hall ferromagnetism, whose Hamiltonian and ground states at integer filling of sub-levels are discussed in §3.2. The symmetry-breaking interaction leads to various phases of the quantum Hall ferromagnet. In §3.3, the phases at quarter filling and half filling are discussed. The low-energy excitations in the quantum Hall ferromagnet are spin-valley waves. Their dispersions are discussed in §3.4 by single-mode approximation.
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 3435 In this thesis I focus on the regime where the sub-levels are at integer filling. Notice, however, that the states |Ψ ν [F ] with uniform electron density is not always the ground state of the SU(4)invariant Hamiltonian Eq.(3.21). One may invent an arbitrarily singular interaction V (r) (such as the parent interaction for the Laughlin state), which prefers particular combination of partially filled sub-levels. For instance, in a quantum Hall system with SU(3) invariance among the Landau sub-levels and at one-third filling of the N 'th Landau level, the ground state of the system can be a state with one of the three sub-levels being completely filled, or a combination of three partially filled sub-levels, each at filling factor 1/3. The former state can be represented by |Ψ ν=1 [F ] in Eq.(3.26) with ζ runs in 3 sub-levels (instead of 4), whereas the latter can be represented by the generalized Halperin state with Different interaction would prefer differently between the two states as ground state. Since the Kmatrix contains discrete data (m α and n αβ ) and the isotropic interaction V (r) can be parametrized by a discrete series of parameters (known as the Haldane pseudopotential), it is possible to compare the energy of all possible Halperin states with all possible configurations of the Haldane pseudopotential. Such exhaustive study is beyond the scope of this thesis. The important assumption for the studies of quantum Hall ferromagnets and skyrmions in this thesis is that the uniform density state |Ψ ν [F ] in Eq.(3.26) and Eq.(3.28) are the ground state of the SU(4)-invariant Hamiltonian Eq.(3.21).

( 3 .

 3 22), Eq.(3.46), Eq.(3.23) and Eq.(3.40) respectively. The corresponding Hartree-Fock Hamiltonian with respect to the ferromagnetic ground state |Ψ ν [F ] [Eq.(3.26), Eq.(3.28)] is

Figure 3 . 1 :

 31 Figure 3.1: Phase diagrams for the SU(4) quantum Hall ferromagnet in N = 0 Landau level. (a) Quarter filling ν = 1. (b) Half filling ν = 2.

Fig. 3 .

 3 1(b).There are four phases for the SU(4) quantum Hall ferromagnet at half filling ν = 2:• Ferromagnetic phase (FM): Spin is completely polarized and both pseudospin states are occupied. The spin magnetization is maximal while the pseudospin is minimal. It corresponds to P 1 and P 3 in the weight diagram Fig.F.2(c) of the [6] representation of su(4). • Charge density wave phase (CDW): Complementary to the previous case, both spin-up and spin-down states are occupied, whereas the pseudospin is polarized to its z-axis. The spin magnetization is minimal and the pseudospin is maximal. Since in N = 0 Landau level, the pseudospin +/-states occupies different sub-lattice, the two states with opposite spin occupies the same sub-lattice, giving a charge density modulation on the sub-lattice. It corresponds to P 2 and P 4 in the weight diagram Fig.F.2(c) of the [6] representation of su(4).

  pattern. It corresponds to a state lying in the green square P 2 -P 5 -P 4 -P 6 in the weight diagram Fig.F.2(c) of the [6] representation of su(4).• Canted anti-ferromagnetic phase (CAF): Without the Zeeman term in the Hartree-Fock energy, this phase would be an anti-ferromagnetic phase with alternating spin for each pseudospin, and hence each sub-lattice. In this case, both the spin and pseudospin magnetizations are minimal. The Zeeman coupling introduces canting of the opposite spins. It corresponds to a state lying in the blue square P 1 -P 5 -P 3 -P 6 in the weight diagram Fig.F.2(c) of the[START_REF] Anandan | Geometry of quantum evolution[END_REF] 

  correspond to the filling factor ν = 1, 2, 3 respectively. In the weight diagrams, each node represents a uniform density state, and two such states are connected by a line if they can be transformed into each other via Eq.(3.85). The structure of weight diagrams depends only on the representation. It is then straightforward to count the independent spin waves -In Fig.F.2(a), each node is connected to 3 nodes, which correspond to 3 independent spin waves associated to |Ψ ν=1 [F ] ; In Fig.F.2(c) the number is 4, thus there are 4 independent spin waves associated to |Ψ ν=2 [F ] .

Figure 3 . 2 :

 32 Figure 3.2: The integrals (a) I S (q) and (b) J C2 (q), plotted at N = 0, 1, 2 with appropriate units such that V C (k) = 2π/ |k|, V PzPz (k) = 1.

  ) quantum Hall ferromagnet represented by |Ψ ν [F ] , because a negatively dispersing component ω SB ab (k) would cause condensation of spin-wave excitations at finite k and hence drastically changes the ground state.

. 101 )

 101 SU(4)-extended GMP algebra. The double commutators Eqs.(3.88), (3.93) involved in the above computation of the spin wave dispersion ω ab (k) is unique for the quantum Hall ferromagnet.

  2. A generalization of the elastic model is given in §4.3, which allows for the discussions on spin-valley textures. As results of the minimization of skyrmion energy, different types of spin-valley skyrmions of topological charge 1 are presented in §4.4 for ν = 1 and §4.5 for ν = 2.

  the wave functions in the N 'th Landau level. The operator Ω[m] depends on the vector field m(r) in a non-trivial way, because m(r) is obtained rather from the state Ψ p [m], not from the angle parameters of spin rotations. However, it is non-trivial to write down the precise form of Ω[m]. Considerable efforts were made in Ref.[START_REF] Zf Ezawa | Topological solitons in the noncommutative plane and quantum hall skyrmions[END_REF][START_REF] Ezawa | Quantum hall ferromagnets[END_REF] in obtaining an explicit expression of Ω[m]. Symmetry of the variational field m(r). Without relying on concrete models of ferromagnets, let us discuss the symmetry of the spin texture, by examining the simplest continuous unit vector field m(r) which points upwards at r = 0 and downwards at |r| → ∞. Moving in the xy-plane along the radius at a fixed polar angle θ and rotate m(0) towards its opposite direction w.r.t. the e θ axis, one generates a string of unit vectors, which is depicted in Fig.4.1(a). Then rotate the radius together with the generated vectors on it, one can produce the entire profile of m(r) on the xy-plane, as is shown in Fig.4.1(b)

Figure 4 . 1 :

 41 Figure 4.1: (a,b) Néel skyrmion with θ 0 = π/2 in Eq.(4.11). (c,d) Néel skyrmion with θ 0 = -π/2, obtained by a global π-rotation of m(r) in the previous case. (e,f) Bloch skyrmion with θ 0 = π. (g,h) Anti-skyrmion with η = -1 and θ 0 = π/2 in Eq.(4.11).
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 12 and η = ±1. If the function f (r) is smooth and monotonically decreasing, the case θ 0 = ±π/2 corresponds to the "Néel skyrmion" shown in Fig.4.1(b) (d), whereas the case θ 0 = π corresponds to the "Bloch skyrmion", which is shown in Fig.4.1(f). The case with η = -1 is called anti-skyrmion. An example of Néel anti-skyrmion is shown in Fig.4.1(h). Symmetry of the effective Lagrangian L[m, ṁ]. The effective Lagrangian L[m, ṁ] = Ψ p [m]|i∂ t |Ψ p [m] -Ψ p [m]|H|Ψ p [m] (4.12) from the variational state Ψ p [m] is invariant under a global rotation of m(r). This can be shown by applying an infinitesimal global rotation e A on m(r). Such rotation changes m(r) by Am(r) + and hence changes Ψ p [m] into

(4. 14 )

 14 Because the Hamiltonian is invariant under global rotation, one has [H, A ] = 0. Because A does not depend on time, one also has [i∂ t , A ] = 0. Under the infinitesimal global rotation, the change of the effective Lagrangian vanishes:δL[m, ṁ] = Ψ p [m]|[i∂ t , δA ]|Ψ p [m] -Ψ p [m]|[H, δA ]|Ψ p [m] = 0. (4.15)Therefore, the effective Lagrangian is invariant under global rotations of m(r). Such symmetry allows for the construction of the non-linear sigma model, which is the topic of next section.

4. 2

 2 Elastic model for spin skyrmions O(3) non-linear sigma model. Considering the collection of unit vector fields m(r) = sin θ(r) cos φ(r), sin θ(r) sin φ(r), cos θ(r) T

Figure 4 . 2 :

 42 Figure 4.2: Energy profile of E = d 2 r ∇m 2 for different configurations m(r) with boundary condition m(|r| → ∞) → m∞. Topological sectors in configuration space are labeled by an integer Q. In each topological sector, the energy-minimizing configuration is marked by a black dot.

Figure 4 . 3 :

 43 Figure 4.3: (a) The image of xy-plane that does not wrap the Bloch sphere. (b) The image of xy-plane that wraps the Bloch sphere once. In both figures, the black and red arrows represent m(0) and m(∞) respectively.

4 . 3 )

 43 if m(r) satisfies the boundary condition Eq.(4.39). Therefore the Pontryagin number Q, or the number of wrappings, must be an integer. By the same reason, two configurations in different topological sectors cannot be connected via smooth deformations. There are infinite energy barriers in E[m] that block the transition between configurations in different topological sectors.

  [START_REF] Sl Sondhi | Skyrmions and the crossover from the integer to fractional quantum hall effect at small zeeman energies[END_REF] [110][START_REF] Yu A Bychkov | Charged skyrmions: A condensate of spin excitons in a two-dimensional electron gas[END_REF] [START_REF] Ray | Quantum hall ferromagnets: Induced topological term and electromagnetic interactions[END_REF] [56][START_REF] Douçot | Spin textures in quantum hall systems[END_REF]. One should not be surprised by the fact that the spin texture in QH ferromagnet carries electric charge because the texture is induced by an additional electron (or hole) on top of the integer-filled, spin-polarized Landau sub-level. The distinguishing feature is that the identity δρ el (r) = eρ topo (r)

  ) where K should be determined from the matching of the SU(N) spin waves to the results of the single-mode approximation. One can obtain the same result by making the analogy from the matrix version for the energy functional V [m] of spin texture m(r) in §4.2. Denote P = ZZ † , one can write the gradient term E[m] in the matrix field P : E[m] = dr ∇m 2 ≡ E[P ] 2 dr Tr[∇P ∇P ] , (4.71) where P is a 2 × 2 matrix field with CP 1 as the target space. Because the NLSM Eq.(4.70) for the SU(N) QH ferromagnet should be reduced to the one for spin if all other degrees of freedom are frozen, one then obtains K = ρ s (4.72) in Eq.(4.70).

( 4 .

 4 68), one can verify that Tr[∇P ∇P ] = 2 DZ † • DZ, hence E[Z] [in Eq.(4.73)] and E[P ] 2 dr Tr[∇P ∇P ] (4.77) for the general matrix field P are equivalent. Perhaps E[P ] is the simplest form of the NLSM, however, the Berry term has to be written in Z. (See paragraph below.)Kinetic term and Berry phase. The Berry connection and the kinetic part of the effective Lagrangian takes the natural form:[START_REF] Kharitonov | Phase diagram for the ν = 0 quantum hall state in monolayer graphene[END_REF][START_REF] Douçot | Spin textures in quantum hall systems[END_REF] 

  P (r)Γ A Tr P (r)Γ B -AB V F AB dr Tr P (r)Γ A P (r)Γ B ,

  Matching the spin-valley wave dispersion. With Eqs.(4.78) (4.70) and (4.82) in the effective Lagrangian, one can obtain the dispersions of various types of spin wave in the elastic model of the SU(N) QH ferromagnet. From the analysis in §3.4 it is evident that the spin-pseudospin wave depends on the ferromagnetic ground state. There is a limited number of branches of the spinpseudospin wave on a specific type of ground state. For graphene monolayer as an SU(4) QH ferromagnet, at filling factor ν = 1 of the N = 0 Landau level, there are 3 branches of the spinpseudospin wave, whereas at ν = 2 there are 4 branches. Ref.[START_REF] Wu | So(5) symmetry in the quantum hall effect in graphene[END_REF] claims an elastic energy functional of spin-pseudospin waves where all the 15 branches are present under appropriate constraints.

  as the relation for spin textures [discussed around Eq.(4.49)]. From the Chern-Simons point of view, such relation is highly unusual when ν > 1. For instance, the graphene monolayer at charge neutrality corresponds to the integer filling ν = 2 of the N = 0 Landau level in an SU(4) QH ferromagnet. The cancellation of real space Berry phase of the spin-valley texture and the Chern-Simons term has not been well understood. The Coulomb interaction of topological charge arises similarly as for the spin texture [see discussions around Eq.(4.60) in previous section]. The higher-order gradient expansion contains the term ∆V [P ] = 1 2 dr dr ρ topo (r)V (r -r )ρ topo (r) + • • • (4.87) where V (r) = e 2 / |r| and ρ topo (r) is the topological charge density Eq.(4.84) for the Gr(ν, N ) texture in SU(N) QH ferromagnet.
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 44 Figure 4.4: Illustration for (a) spin skyrmion and (b) different types of spin-valley skyrmions in graphene monolayer N = 0 LL at ν = 1.
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 45 Figure 4.5: (a) Diagram of skyrmion types at ν = 1 of N = 0 LL in graphene monolayer. Red lines mark the borders of skyrmion types, whereas the black lines separate the regions of different ferromagnetic ground states. Arrows connecting the borders to the abbreviations, which indicate the type of the skyrmion (red) or the ferromagnetic background (black). Abbreviations in the diagram: "UEA" -Unentangled easy-axis; "UEP" -Unentangled easyplane; "EEA" -Entangled easy-axis; "EEP" -Entangled easy-plane; "sk." -skyrmion; "Ppin" -Pseudospin; "Ent." -Entanglement; "Defl." -Deflated. (b) and (c) shows the skyrmion size (marked in black) and energy (marked in blue) along (b) Line A (u ⊥ + uz = -3.5) and (c) Line B (u ⊥ = 2.5) in sub-figure (a). The peak of the curves are located at u z0 = -1.75 along Line A and u z0 = 0.5 along Line B. Along Line C, the skyrmion size and energy behave similar to those along Line B and thus are not shown.

  Fig.4.6(c).] Finally, for the deflated pseudospin skyrmions [an example is shown in Fig.4.6(d)], the image of the compactified xy-plane appears in all the three spheres. In the spin and pseudospin Bloch spheres, the projected images are "deflated spheres", whereas the third sphere is only partially covered by the projected image in a way similar to Fig.4.3(a).

Figure 4 . 6 :

 46 Figure 4.6: Visualizations of several examples for skyrmions at ν = 1. At each spatial point r, the vector field Z(r) is parametrized with the method given in Appendix §G, leading to various shapes of images of the compactified xy-plane on the three spheres. The four examples are taken from the result of energy minimization, they are (a) spin skyrmion in UEA ferromagnetic background, which is the result at u ⊥ = -1 and uz = -2.5; (b) pseudospin skyrmion in UEP ferromagnetic background, at u ⊥ = -2 and uz = -1.5; (c) entanglement skyrmion in UEA ferromagnetic background, at u ⊥ = 0.3 and uz = 3; (d) deflated pseudospin skyrmion in EEA ferromagnetic background, at u ⊥ = 3.05 and uz = 3.

Figure 4 . 7 :

 47 Figure 4.7: Illustration for Q = 1 spin-valley skyrmion at (a) ν = 1 and (b) ν = 2 of the N = 0 LL in graphene monolayer, with the vectors in the ansatz being F 1 = [1, 0, 0, 0] T , F 2 = [0, 0, 1, 0] T , C 2 = [0, 1, 0, 0] T where the four components are labeled as (K ↑, K ↓, K ↑, K ↓).

2

  always vanishes. Therefore, the above properties can be proved by decomposing P k and ∂P k in the basis B k and use the linearity of the trace. The trace properties Eqs.(4.103) (4.104) imply the decoupling of the NLSM energy and the topological charge. The projector can be written as P = P 1 + P 2 with the notation P k in the previous paragraph, then one has

  has to be constructed with respect to the uniform density state |Ψ ν [F ] . The vectors F 1 , F 2 in the skyrmion ansatz play the same role as F a (1 ≤ a ≤ ν), whereas C 2 may coincide with one of the vectors F a (a > ν). In the analysis of spin-valley waves, different choices of F a (a > ν) would affect the energy dispersion via Eqs.(3.99), (3.100). Similarly, the energy of skyrmion at ν = 2 varies with C 2 in the ansatz, which is evident in the result of energy minimization shown in the next paragraph. The presence of the "masking" sub-level Z 1 in the ansatz makes the Q = 1 skyrmions at ν = 2 harder to characterize. Simple examples of skyrmions are counter-intuitive when being viewed by straightforward indicators such as the spin magnetization and valley occupation. In the discussions below, I use P Cent to characterize the skyrmions. Method and result of energy minimization. The Q = 1 skyrmion at quarter filling ν = 2 of the N = 0 LL of graphene monolayer is determined by the minimization of the following energy functional of matrix field P

  Then they are connected to F 1 , F 2 in the skyrmion ansatz by the U(2) transformation U (θ f , ω f , ϕ f ) given in Eq.(4.111) with undetermined angles θ f , ω f , ϕ f . Afterwards, the vectors c 1 , c 2 for the two empty sub-levels are parametrized similarly (see Appendix §G for details). The vector C 2 in the skyrmion ansatz is obtained by applying another unitary transformation U (θ c , ω c , ϕ c ) to mix the empty sub-levels with undetermined angles θ c , ω c , ϕ c . The vectors f 1 , f 2 , c 1 , c 2 and the mixing angles θ f , ω f , ϕ f , θ c , ω c , ϕ c , together with the size parameter λ are determined by the minimization of the skyrmion energy E sk [P ].

s

  Energy and skyrmion size on C 2

Figure 4 . 8 :

 48 Figure 4.8: (a) Diagram of skyrmion types at ν = 2 of N = 0 LL in graphene monolayer. Red lines mark the borders of skyrmions with different types of center vector C 2 , whereas the black lines separate the regions of different ferromagnetic ground states. Arrows connecting the borders to the abbreviations, which indicate the type of the skyrmion center (red) or the ferromagnetic background (black). Abbreviations in the diagram: "FM" -Ferromagnet; "CDW" -Charge density wave; "KD" -Kekulé dimer; "CAF" -Canted ferromagnet; "SS" -Spin singlet; "PS" -Pseudospin singlet; "NS" -Néel singlet. Skyrmion size along (b) circle C 3 [(g ⊥ + 1 4 ) 2 + (gz + 1 4 ) 2 = 3.5 2 ] and (c) circle C 2 [(g ⊥ + 1 4 ) 2 + (gz + 1 4 ) 2 = 0.15 2 ] in sub-figure (a). The peak of the curves are located at θ = 7π/4 on both curves.

Z 1 = F 1 Z 2 = N - 1 /2 λ 2 C 2 + z 2 F 2 N = |λ| 2 + |z| 2 ( 4

 1121222224 4.8(b). Q = 2 skyrmions. According to the skyrmion ansatz Eq.(4.98), there are two types of Q = 2 skyrmion, namely the (2 + 0)-type

eExample 4 .

 4 ik•(x -x) = R δ(x -x + R) = δ vol (x -x), (A.7) where R = m x L x e x +m y L y e y +• • • with m x , m y , • • • ∈ Z, and δ vol (r) means the Dirac delta function with r ∈ vol. The plane waves in infinite space.

Lemma 5 .Definition 6 .

 56 d dk e ik•(x -x) = δ (d) (x -x), (A.10) where we have used the sinc representation of the Dirac delta function The replacement rule between discrete and continuous k. Comparing the previous two examples, we have the replacement rule between discrete and conif we use the orthonormal basis defined in the previous two examples. Such replacement rule makes sense in the limit of vol → ∞. Fourier transform. Schrödinger equation. The Schrödinger equation for |Ψ[φ] can be obtained by the saddle point equation δ δφ S eff [φ] = 0 (D.5) for the effective action S eff defined in Eq.(D.2). In fact, the right-hand-side gives dt [ δΨ|(i∂ t -H)|Ψ + Ψ|(i∂ t -H)|δΨ ] = 0, (D.6) where Ψ| and |Ψ should be considered as independent variations of the normalized quantum state Ψ. The above equation holds iff [8] Ψ satisfies (i∂ t -H) |Ψ = 0. (D.7)

= i 2 ∂ 2

 22 D.10) where the function S has explicit form in the region where the l'th component of the quantum state Ψ is not zero, i.e. Ψ l = 0. Meanwhile, the Berry curvaturedA B ij dR i ∧ dR j = ∂ ∂R i n(R)| ∂ ∂R j |n(R) dR i ∧ dR j (D.11)proposed in Ref.[START_REF] Michael | Quantal phase factors accompanying adiabatic changes[END_REF] is induced from the Kähler form ω ∂Ψ∂Ψ ln S dΨ ∧ dΨ (D.12)with the same function S in Eq.(D.10). The function ln S that generates ds 2 and ω is called the Kähler potential. It can only be defined locally where one of the components of Ψ is nonzero. The variational ansatz Ψ[φ] is a submanifold in the total Hilbert space H. Such submanifold is actually an embedding of manifold M for the variation parameter in the Kähler manifold of the total Hilbert space H. Because of the embedding, the Kähler form induces a symplectic structure on M, which was discussed in details in Ref.[START_REF] Kramer | Geometry of the time-dependent variational principle in quantum mechanics[END_REF].Topological terms. The potential partV [φ] = Ψ[φ]|H|Ψ[φ] (D.13) has a non-linear σ-model term induced by the Kähler metric Eq.(D.9) if the variation parameter φ is a field. Denote the base manifold and the target manifold of the field φ as B and F respectively. The manifold M of the variation parameter field is a fiber bundle with projection π : M → B and local trivialization M| U = U × F, where U ⊂ B is an open set in the base manifold. The stress tensor ε and strain tensor σ can be defined locally in any open set U ⊂ B as ε ab (x) δ 2 V δφ a (x)δφ b (x) (D.14) elastic part V E [φ] of the potential V [φ] has the following form as a non-linear σ-model of the parameter field φ(x): V E [φ] = dx √ hh µν ε ab σ ab µν = dx √ hh µν δ 2 V δφ a δφ b ∂φ a ∂x µ ∂φ b ∂x ν , (D.16)

  ) of the Lagrangian L[φ, φ] = T [φ, φ] -V [φ] in Eq.(D.3) is usually a topological term. This is no surprise since a set of time-varying variation parameter φ(t) gives an orbit on the manifold M for the variation parameter and hence on the submanifold in the total Hilbert space H induced by the variational ansatz Ψ[φ]. The quantityA(t) = Ψ[φ(t)]|∂ t |Ψ[φ(t)] (D.18)spin and pseudospin operatorS i σ i ⊗ σ 0 T i σ 0 ⊗ σ i . (G.4) The spin and pseudospin magnetizations of P = ZZ † are M S Tr [SP ] = Z † SZ = |cos α| m S θ S , φ S M P Tr [T P ] = Z † T Z = |cos α| m P θ P , φ P , (G.5)

9 )

 9 They are used[START_REF] Douçot | Entanglement skyrmions in multicomponent quantum hall systems[END_REF] to parametrize the complex vector Z Z = cos α 2 ψ S ⊗ ψ P + e iβ sin α 2 χ S ⊗ χ P , (G.10) which has 6 real parameters: angles α, β appeared explicitly in Eq.(G.10), two angles contained in ψ S and χ S , as well as the other two contained in ψ P and χ P . These angles indded appears in the spin and pseudospin magnetizations of Z computed in Eq.(G.5).The parametrization of Z as Eq.(G.10) is redundant. In fact one has e i(φS+φP-β) Z θ S , φ S , θ P , φ P , α, β = Z π -θ S , π + φ S , π -θ P , π + φ P , π -α, β (G.11) β = -β + 2φ S + 2φ P .

S 2 ×S 2

 22 αβ |dθ S dφ S dθ P dφ P dαdβ (G.[START_REF] Bargmann | On the completeness of the coherent states[END_REF] Integrate vol on the entire parameter space S 2 × S 2 × S 2 , one hasV = P sin α cos 2 α sin θ S sin θ P = π 3 3 , (G.15)which is twice of the voluem of CP 3 space computed in Eq.(G.2), thereby confirming the two-foldZ 2 redundancy.The parametrization of Z is ambiguous at α = 0 or θ S,P = 0, π because β or φ S,P is not welldefined, but nevertheless Z is unique with these parameters.G.2 Parametrization of Gr(2, 4) manifoldThe 8-dimensional Gr(2, 4) manifold is defined as

26 ) β 2 dθ P sin θ S sin θ P π 0 dα 1 π 0 dα 2 2 = π 4 3 (G. 28 )

 2621022328 = π + β 2 +2φ S . (G.[START_REF] Brown | Bloch electrons in a uniform magnetic field[END_REF] They ensure that an interchange between α 1 and α 2 , accompanied by reversion of the spin magnetization and appropriate transformations of β 1 , β 2 , leaves the projector P (θ S , φ S , θ P , φP , α 1 , β 1 , α 2 , β 2 ) unchanged.The parametrization Eqs.(G.19) (G.20) indeed covers the Gr (2, 4) manifold four times, because the volume of the parameter space M = S 2 × S 2 × S 2 × S 2 is |cos(2α 1 ) -cos(2α 2 )| sin α 1 sin α which is four times larger than volume of the Gr(2, 4) manifold. Thus the four-fold Z 2 × Z 2 redundancy is confirmed.

=

  [START_REF] Réné Côté | Biased bilayer graphene as a helical quantum hall ferromagnet[END_REF] so that the first three components of P represents the direct product of spin triplet and pseudospin singlet, whereas the last three components corresponds to the direct product of pseudopin triplet and spin singlet. Such choice is based on the fact that P is essentially the asymmetric part of asymmetric part of[0] 

  H.10) where ∂ = (∂ x -i∂ y )/2 and ∂ = (∂ x + i∂ y )/2. The solutions of the above equations for N = 4 and ν = 1, 2 are discussed below.

H. 12 )] α 11 α 12 α 15 )

 121215 on which a transformation W = e β W with ∂β = α is applied and W satisfies the holomorphic condition∂W = 0 . (H.13)It is easy to find thatW = λC + z Q F (Q > 0) (H.14)APPENDIX H. SOLUTION TO BPS EQUATIONis the general solution. The same arguments apply to the second line of Eq.(H.11) and the solution has the same form.At ν = 2, Eq.(H.10) is equivalent to∂ [W 1 |W 2 ] = [W 1 |W 2 ] A = [W 1 |W 2 21 α 22 (Q > 0) ∂ [W 1 |W 2 ] = [W 1 |W 2 ] Ã = [W 1 |W 2There exist a general linear transformation W = W G, where W is the Schubert standard form[START_REF] Griffiths | Principles of algebraic geometry[END_REF] 
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  1.2. OVERVIEW OF THE THESISfree parameters that interpolates between the Landau gauge and the symmetric gauge. Coherent states are introduced as generating functions of the symmetric-gauge Landau wave function and can be understood as magnetic translations of a Gaussian wave function centered at the origin of the xy-plane. The canonical transformations of the ladder operators are mentioned because it is rarely discussed in the literature. After the discussion of Landau wave functions, model Hamiltonians on the honeycomb lattice are introduced in §2.2. The Hamiltonian for graphene monolayer is taken as the isotropic case of the model Hamiltonian. The corresponding low-energy effective Hamiltonian is discussed. The low-energy Landau levels in graphene monolayer are given in the beginning of §2.3. The discussion of Landau quantization for general Hamiltonians starts from the argument that the magnetic translation is responsible for the degeneracy of Landau level. To have a glimpse on the general case, the lowest Landau levels are solved for a toy model with two inequivalent valleys.

  The probability density profile |ψ N m | 2 for the Landau wave function in N 'th Landau level is still central symmetric, independent of the free parameters λ, ξ in the vector potential A.

	Coherent state in N 'th Landau level. With ψ m (w|z, z) in Eq.(2.42), one can further define
	ψ(w, w|z, z) exp[-iwb † + wa † ]ψ 00 (z, z)

  Landau quantization of model Hamiltonians. The procedure for Landau quantization described in §2.1 can be applied to the low energy Hamiltonian Eq.(2.93) or Eq.(2.95) for graphene monolayer discussed in §2.2. After Landau quantization, Eq.(2.95) becomes

  [START_REF]Quantum mechanics as a statistical theory[END_REF] commute with each other. Therefore, H vN (η, τ ) is contained in the Cartan sub-algebra of the Girvin-MacDonald-Platzman algebra or the W ∞ algebra. It is then clear that the Cartan sub-algebra consists not only of L n,n (which was claimed in Ref.[START_REF] Cappelli | Infinite symmetry in the quantum hall effect[END_REF]) but also L n,m , because the expansion of

each elements in H contains operators (b † ) m b n with m = n in general.

A field theory can be constructed on the von Neumann lattice L vN (η, τ ).

[START_REF] Imai | Field theory in a strong magnetic field and the quantum hall effect: Integer hall effect[END_REF][START_REF] Ishikawa | Field theory on the von neumann lattice and the quantized hall conductance of bloch electrons[END_REF] 

The coherent states

{ r|R, N |R X + iR X ∈ L vN (η, τ )} (2.114)

form a set of basis for the quantum states in N 'th Landau level with r|R, N computed in Eq.(2.54).

Since the von Neumann lattice is virtual, any physical quantities A(η, τ ) obtained from such field theory that depends on the choice of L vN (η, τ ) should exhibit modular invariance

[START_REF] Pd Francesco | Conformal field theory[END_REF] 

  .37) An element in such space corresponds to a 4 × 4 Hermitian projector P 2 = P of rank 2. It can bewritten as P = F 1 F † 1 + F 2 F † 2 with two orthogonal C 4 vectors F 1 and F 2 .It is evident that the U(2) transformation between F 1 and F 2 does not affect the matrix P . The parametrization of the matrix P or the vectors F 1 , F 2 with 8 parameters is discussed in Appendix §G.The matrix P is related to the quantum state |Ψ

ν [F ] [Eqs.(3.26), (3.28)] as follows for both cases ν = 1 and ν = 2:

  Tr (P x P ) 2 + Tr (P y P ) 2 + U z Tr (P z P ) 2 Landau level, one has P = F F † and Tr (ΓP ) 2 ≡ Tr ΓP

	Hartree-Fock phase diagram at ν = 1. Specifying the symmetry-breaking interaction V SB to
	be the form of Eq.(3.45) and include only the Zeeman coupling Eq.(3.47), one finds
	E 0 ν [P ] = E N Tr[P ] + ∆ Z Tr S z P		
	E H ν [P ] = V H SB U ⊥ Tr P x P	2 + Tr P y P	2 + U z Tr P z P	2
	E F ν [P ] = V F SU(4) Tr[P ] + V F SB U ⊥ (3.76)
	At quarter filling ν = 1 of the N = 0		
		4) Tr[P ] +	V F AB Tr Γ A P Γ B P	(3.74)
			AB	
	under the constraint			
			Tr[P ] = ν.	(3.75)

2 , thus E ν=1 [P ] = const. + ∆ Z Tr S z P + u ⊥ Tr P x P 2 + Tr P y P 2 + u z Tr P z P 2 , (3.77)

  [START_REF] Abolfath | Critical comparison of classical field theory and microscopic wave functions for skyrmions in quantum hall ferromagnets[END_REF] 

  , • • • , F ν ∈ C 4 are normalized vectors 1 used to construct the uniform density state [also

	Eq.(3.28) in §. 3.2]

  2 , C 1 , C 2 ∈ C 4 in the skyrmion ansatz Eq. (4.98) essentially decouples the two filled sub-levels. Denote P k = Z k Z † k for k = 1, 2 with Z k defined in Eq. (4.98), it is easy to show that if the vectors F 1 , F 2 , C 1 , C 2 in Z 1 and Z 2 satisfy the above orthogonality condition, then Tr [∂P j ∂P k ] ∝ δ

jk (4.103)

Tr [P i ∂P j ∂P k ] ∝ δ ij δ ki .

(4.104)

  V NLSM [P ], ∆V [P ], V SB [P ] are given in Eq.(4.70), Eq.(4.87), Eq.(4.82) respectively, and

  † 1 • Z 2 = 0 is always respected. Such choice of parametrization is convenient because the total spin magnetization M S and pseudospin magnetization M P can be computed as follows:M S Tr [SP ] = Z † 1 SZ 1 + Z † 2 SZ 2 = (cos α 1cos α 2 ) m S θ S , φ S M P Tr [T P ] = Z † 1 T Z 1 + Z † 2 T Z 2 = (cos α 1 + cos α 2 ) m P θ P , φ P . (G.21)

	cos Z 2 = cos	α 1 2 α 2 2	ψ S ⊗ ψ P + e iβ1 sin χ S ⊗ ψ P + e iβ2 sin	α 1 2 α 2 2	χ S ⊗ χ P ψ S ⊗ χ P ,	(G.19) (G.20)
	so that Z					

  2 and the matrix P , one can also use the Plücker coordinates to represent points in Gr(2, 4) manifold. The Plücker coordinates P = (p 1 , p 2 , p 3 , p 4 , p 5 , p 6 ) for Gr(2, 4) is defined as the 2 × 2 minors of the matrix Z 1 |Z 2 = = [z 11 , z 12 , z 13 , z 14 ] T and Z 2 = [z 21 , z 22 , z 23 , z 24 ] T are the normalized four-component vectors discussed in previous section. Using the wedge product and a linear mapping L : C 6 → C 6 , one may writeP = (p 1 , p 2 , p 3 , p 4 , p 5 , p 6 ) = L Z 1 ∧ Z 2 , (G.30)whereZ 1 ∧ Z 2 =z 11 z 23 -z 13 z 21 , z 11 z 24 -z 14 z 21 , z 12 z 24 -z 14 z 22 , z 11 z 22 -z 12 z 21 , z 12 z 23 -z 13 z 22 , z 13 z 24 -z 14 z 23 (G.31) is invariant under the U(2) transformation that mixes Z 1 and Z 2 . Because P ∧ P ≡ 0, one has the following constraint on the six Plücker coordinates: p 1 p 6 -p 2 p 5 + p 3 p 4 = 0 . (G.32) If the components of Z 1 , Z 2 are labelled as (K ↑, K ↓, K ↑, K ↓), it is then convenient to choose the linear mapping L (p 1 , p 2 , p 3 , p 4 , p 5 , p 6 ) = p 1 , p 2 + p 5

	where Z 1 √	2	      z 11 z 21 z 12 z 22 z 13 z 23 z 14 z 24 , p 3 , p 4 , p 2 -p 5       √ 2	, p 6 ,	(G.	(G.29)

  Table., I list some examples of points in Gr(2, 4) with the corresponding vectors Z 1 , Z 2 and

	4 , p 5 , p
	(p
	1 , p 2 , p 3 )
	(p
	P
	2
	Z
	1
	Z
	Plücker coordinates.
	example

6 )

The binomial coefficient is defined as C m n = n!/m!(n -m)!.

The name "spinor" for these vectors in Ref.[START_REF] Lian | Su(4) skyrmions in the ν = ±1 quantum hall state of graphene[END_REF][START_REF] Lian | Spin-valley skyrmions in graphene at filling factor ν = -1[END_REF] is inappropriate and I will not use it in this thesis.

The spin magnetization of vector Z is M S Tr [SP ] = Z † SZ = |cos α| m S with m S = 1, see Eq.(G.5) in Appendix G.

The pseudospin magnetization of vector Z is M P Tr [T P ] = Z † T Z = |cos α| m P with m P = 1, see Eq.(G.5) in Appendix G.

Chapter 5

Conclusions

In this thesis, I studied various types of quantum Hall skyrmions in graphene monolayer under strong magnetic field. The valley degrees of freedom in graphene are described by pseudospin, whose "magnetization" indicates the superposition of the electron states at two valleys. The long range Coulomb interaction is invariant under the SU(4) transformations among the spin and valley sub-levels in a Landau level. Therefore, graphene monolayer is understood as an SU(4) quantum ferromagnet, which is characterized by an elastic model with a continuous field. Such field describes the spin and pseudospin textures in the SU(4) quantum ferromagnet. In particular, the spin-valley skyrmions as localized textures are obtained by energy minimization. Various types of skyrmions arise from the ground state of the quantm Hall ferromagnet. They are distinguished by the textures at the center, as well as the size. At quarter filling of the N = 0 Landau level, I have found four types of skyrmions of topological charge 1 -spin skyrmions, pseudospin skyrmions, entanglement skyrmions and deflated pseudospin skyrmions. The pseudospin skyrmion is large when the quantum Hall ferromagnet has approximate pseudospin SU(2) symmetry. At half filling, the center of charge-1 skyrmion has three types -spin singlet, pseudospin singlet and Néel singlet. They corresponds to skyrmions similar to the spin skyrmion, pseudospin skyrmion and entanglement skyrmion at quarter filling. Large skyrmions have also been found at the boundary between the CDW and FM phase of the quantum Hall ferromagnet, as well as at the FM/CAF boundary. The charge-2 skyrmion is unstable if the two charges are distributed separately in two sub-levels. The experimental relevance of the works on the charge-1 skyrmion in N = 0 Landau level in graphene monolayer are discussed in ??.

Appendix A

Conventions for the Fourier transform Definition 1. Inner product.

The inner product of two functions f (x) and g(x) is defined as

where the integration is over the common domain of the two functions.

Definition 2. Orthonormal complete basis. The set of functions

Example 3. The plane waves in box of volume vol.

The set of plane waves

is orthonormal because

APPENDIX A. CONVENTIONS FOR THE FOURIER TRANSFORM

The Fourier transform of a function f (x) is defined as

whereas the inverse Fourier transform is

Remark 7. The Fourier transform of the density operator ρ(x) with the normalization

is defined differently because it contains two fields ψ † (x) and ψ(x). For discrete k,

The Fourier transform for continuous k is obtained by send the volume to infinity. The inverse Fourier transform is thus

for discrete k, and

for continuous k.

Remark 8. The Fourier decomposition of the interaction potential V (x) is

in two dimensional space, and

in three dimensional space. The interaction written in Fourier components of V and ρ with discrete

while the continuous k version is

Appendix B

Hartree-Fock method 

, up to the term with N/2 contractions.

where the normal ordered product

with respect to the vacuum |vac is defined as the rearrangement of the same set of operators by permuting all the operators that annihilate |vac to the right, multiplied by factor (-1) P with P being the number of nearest-neighbor permutations needed to get the normal-ordered product. The contraction of two operators is the difference between the plain product and the normal-ordered product :

which is always a c-number.

Proof. See Ref. [START_REF] Giuliani | Quantum theory of the electron liquid[END_REF].

Remark. For the purpose of the present thesis, the contraction and normal ordering should be understood in a more general way. Suppose  = aĉ † 1 +a ĉ1 and B = bĉ † 2 +b ĉ2 are linear combinations of the creation operators ĉ † 1 , ĉ † 2 and annihilation operator ĉ1 , ĉ2 with respect to the vacuum |vac . The normal ordering :  B : and the contraction • B• can be defined piecewisely:

The normal-ordered product of three or more operators can be understood similarly. Such understanding allows the application of Wick's theorem directly to the SU(N) QHFM Hamiltonian, where the operators c † mα and c nβ are linear combinations of the creation and annihilation operators with respect to a particular QHFM ground state.

B.2 Hartree-Fock method

Definition. Hartree-Fock approximation.

The Hartree-Fock approximation of the interaction

is defined with the help of Wick's theorem:

where we dropped the normal ordering of four operators, to neglect the quantum fluctuation. Using Eq.(B.2) and the identity v αβγδ = v βαδγ , V HF can be rewritten as

where the second line is assumed to be a small number and

Appendix C

Bargmann representation

The Bargmann representation [START_REF] Bargmann | On a hilbert space of analytic functions and an associated integral transform part i[END_REF][START_REF] Bargmann | On a hilbert space of analytie functions and an associated integral transform. part ii. a family of related function spaces application to distribution theory[END_REF][START_REF] Itzykson | Remarks on boson commutation rules[END_REF]] is a powerful tool for analyzing quantum mechanical problems with few degrees of freedom. For the quantum harmonic oscillator, one maps the Hilbert space spanned by |n to the space of L 2 holomorphic functions on the complex plane [76]

so that the creation operator a † is mapped to z and the annihilation operator a is mapped to ∂.

Under the inner product

one can check that z and ∂ are adjoint to each other:

where in the second line we have used the fact that f is holomorphic, so that ∂f = ∂f = 0. The Fock state |n is mapped to a holomorphic function

APPENDIX C. BARGMANN REPRESENTATION

In particular, the vacuum state |0 is mapped to φ 0 (z) = 1, which is a constant holomorphic function.

Notice that φ n (z) should not be confused with the coherent state

which is a ket in the Fock space spanned by |n . The Bargmann representation of the coherent state

which is parametrized by w. One can verify the coherent state condition

holds.

Using the Bargmann representation, one can convert the task of solving Hamiltonian H(a † , a) to the task of solving complex differential equations.

Appendix D

Time-dependent variational principle

The brief recipe for time-dependent variational calculation is the following: [START_REF] Kramer | Geometry of the time-dependent variational principle in quantum mechanics[END_REF][START_REF] Kishore | Semiquantal and Semiclassical Dynamics of Gaussian Wave Packets[END_REF] • Propose an Ansatz for the wave function

which contains a set of variation parameters φ. The collection of all possible parameters φ forms a manifold M.

• Compute the effective action

as a function(al) of the variation parameter φ.

• Perform the saddle point analysis with S[φ]. In particular, the energy functional E[φ] can be determined from the static configurations of the variation parameter φ: should be an integer multiple of 2πi.

If the base manifold B of the parameter field φ is even dimensional, then for a given section φ 0 (x) (configuration) in M, the Kähler form Eq.(D.12) induces the 2-form ω expressed locally in U l ⊂ B as ω

where the local coordinate on U l is (x µ , y µ ) ≡ (z, z) with z = x + iy and z = x -iy. The metric

depends on the embedding of the target manifold (the fiber) F in the Kähler space of quantum state Ψ. The function S(x) = S(Ψ[φ 0 (x)], Ψ[φ 0 (x)]) in the Kähler potential ln S is 

The computations of Z n and W n is very easy [START_REF] Casas | Efficient computation of the zassenhaus formula[END_REF][START_REF] Kimura | Full expansion of the baker-campbell-hausdorff formula[END_REF] so we omit them here. Instead, we tabulate a few terms with small n:

According to Ref. [START_REF] Eb Dynkin | Calculation of the coefficients in the campbell-hausdorff formula[END_REF][START_REF] Goldberg | The formal power series for log e x e[END_REF][START_REF] Achilles | The early proofs of the theorem of campbell, baker, hausdorff, and dynkin[END_REF]]:

The most useful case is when the commutator [X, Y ] = c is a c-number:

Appendix F

Irreducible representations of Lie algebra su(4)

Under the physical basis pseudospin ⊗ spin = (K ↑, K ↓, K ↑, K ↓) which is convenient for the study of graphene, the Cartan subalgebra of su(4) consists of 3 generators [START_REF] Bjãžrken | Elementary particles and su(4)[END_REF][START_REF] Zee | Group theory in a nutshell for physicists[END_REF]:

They support a three-dimensional root system, which is shown in 

The root vector

) for these generators are computed as

Here both τ x,y,z and σ x,y,z denote the Pauli matrices. The other 2×2 matrices are defined as

For a better visualization, the 12 generators are grouped in three lines in Eq. F. The four basis vectors of the fundamental representation [START_REF] Aharonov | Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field[END_REF] are [START_REF] Aharonov | Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field[END_REF] conjugate to [START_REF] Aharonov | Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field[END_REF], the four basis vectors are The 6-dimensional CP 3 manifold is a coset space

Its volume is

It can be represented by a 4 × 4 Hermitian matrix P of rank 1 and eigenvalue 1, 0, 0, 0. Such matrix can be decompsed as

where the normalized four-component complex vector Z ∈ C 4 is the eigenstate of the matrix P at eigenvalue 1 up to an overall phase factor e iϕ , i.e. Z satisfies P Z = Z. The U(3) transformation corresponds to the unitary transformation among three orthonormal complex vector

which are the orthogonal complement of Z, whereas the U(1) transformation is simply Z → e iϕ Z.

To further parametrize the normalized four-component complex vector Z ∈ C 

1 ) (0.508, 0, -0.492) (0, 0.707, 0) large canting [START_REF] Kharitonov | Phase diagram for the ν = 0 quantum hall state in monolayer graphene[END_REF] 

1 ) (0.994, 0, -0.006) (0, 0.111, 0) small canting [START_REF] Kharitonov | Phase diagram for the ν = 0 quantum hall state in monolayer graphene[END_REF] 

Examples of the Plücker coordinates for points in Gr [START_REF] Abolfath | Critical comparison of classical field theory and microscopic wave functions for skyrmions in quantum hall ferromagnets[END_REF][START_REF] Aharonov | Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field[END_REF].

Appendix H

Solution to BPS equation

The variational parameter field P (r) maps the compactified plane S 2 = R 2 ∪ {∞} to the Grassmannian Gr(ν, N ) = U(N)/U(ν) × U(N -ν). At each spatial point r, the matrix P (r) is a projector, which satisfies P (r) = P (r) 2 and Tr [P (r)] = ν. The elastic energy of the field P (r) can be written in the form of nonlinear sigma model

Using the N × ν matrix field

and write

where I have used the covariant derivative Single-mode spin-valley waves are also analyzed to characterize the SU(4) quantum Hall ferromagnet. A particular example shows instability of the ferromagnetic ground state.