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Abstract

This thesis studies skyrmions in the SU(4) quantum Hall ferromagnet. Skyrmions are localized
textures in ferromagnetic systems. The graphene monolayer in a strong magnetic field can be viewed
as a ferromagnet with electron spin and Dirac-valley pseudospin – Landau levels with different spin
and valley are close in energy and form well-separated groups. Within one group, the Coulomb
interaction has a manifest SU(4)-invariant form.

The model of skyrmions used in this thesis is a classical, static field theory obtained from the
variational principle. The model has phenomenological parameters, which depend on substrates and
other experimental settings. Based on symmetry analysis, I propose the ansatz for skyrmions at
quarter-filling and half-filling of the N = 0 Landau level in graphene monolayer. Energy minimiza-
tion of single skyrmions is then performed to determine the parameters in the skyrmion ansatz,
resulting in different types of spin-valley skyrmions at both filling factors. Large skyrmions are iden-
tified in certain ranges of the phenomenological parameters, where the ferromagnetic background of
the skyrmion undergoes a phase transition.

Single-mode spin-valley waves are also analyzed to characterize the SU(4) quantum Hall ferro-
magnet. A particular example shows instability of the ferromagnetic ground state.



Résumé

Dans cette thèse, j’étudie les skyrmions dans le ferromagnétique SU(4) d’effet Hall quantique. Les
skyrmions sont des textures localisées dans les systèmes ferromagnétiques. La monocouche de
graphène dans un fort champ magnétique peut être considérée comme un ferromagnétique avec
le spin électronique et le pseudospin de vallée de Dirac. Les niveaux de Landau acssociés à des spins
et des vallées différentes sont proches en l’énergie et forment des groupes bien séparés. Dans un
groupe, l’interaction de Coulomb montre forme invariance de SU(4).

Le modèle de skyrmions utilisé dans cette thèse est une théorie de champ classique et statique
obtenue à partir du principe variationnel. Le modèle comporte des paramètres phénoménologiques,
qui dépendent des substrats et d’autres paramètres expérimentaux. Sur la base de l’analyse de
symétrie, nous proposons un ansatz pour les skyrmions au quart de remplissage et à la moitié du
remplissage du niveau de Landau N = 0 de la monocouche de graphène. La minimisation de l’énergie
du skyrmion unique est ensuite effectuée pour déterminer les paramètres dans l’ansatz de skyrmion
ansatz, ce qui entraîne différents types de skyrmions spin-valley aux deux facteurs de remplissage.
Des grands skyrmions sont identifiés dans certaines gammes des paramètres phénoménologiques, où
l’arrière-plan ferromagnétique du skyrmion subit une transition de phase.

Les ondes de spin-vallée monomode sont également analysées pour caractériser le ferromagnétique
SU(4) d’effet Hall quantique. Un exemple particulier montre l’instabilité de l’état fondamental
ferromagnétique.



Résumé

La figure 1 montre un exemple de skyrmion. Il s’agit d’une configuration non étendue du champ
vectoriel unitaire m(r) intégré dans un fond uniforme qui représente habituellement le paramètre
de commande. En général, l’existence d’un tel type de configurations requiert que l’espace du
paramètre d’ordre Ω ait un deuxième groupe d’homotopie π2(Ω) = Z [78], ce qui est marqué d’un
nombre entier connu sous le nom de charge topologique. Un tel type de configurations est stabilisé
par un terme de gradient quadratique (∇m)2 dans l’énergie libre Landau-Ginzburg du système
ordonné. La forme d’un skyrmion est déterminée par d’autres termes énergétiques, par exemple
le terme Moriya-Dzyaloshinskii [21, 20, 116] dans les aimants chiraux et l’interaction Coulomb de
la charge topologique [151, 110] dans les ferromagnétiques de la fosse quantique. Les skyrmions
individuels sont libres de se déplacer dans un environnement idéal où le paramètre de commande
est uniforme en dehors des noyaux des skyrmions. [136, 139] Le nombre de skyrmions dans une
zone donnée est limité par leurs extensions spatiales et leurs interactions répulsives. Lorsque cette
limite est proche de la saturation, les skyrmions sont commandés dans un réseau [32, 114, 166] et
une nouvelle phase émerge avec des modes sur le réseau de skyrmion dominant le faible spectre
d’énergie.

Figure 1: Skyrmion.

Le concept de skyrmion provient des travaux pionniers [148, 149] de Skyrme sur les modèles
phénoménologiques des mésons et des pions. [169, 106] Dans ces thèse, un SU(2) champ U(x) est
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Figure 2: Systèmes d’effet Hall quantique multi-composants. (a) Système d’effet Hall quantique à deux composants
à ν̃ = 1 où le composant spin-up électronique est complètement rempli. (b) La monocouche de graphène est un système
d’effet Hall quantique à quatre composants. A ν̃ = 2, chaque composant de vallée est rempli par des électrons spin-up.

utilisé pour décrire les mésons et les pions dans l’espace tridimensionnel R3. Une condition de limite

U(|x| → ∞) = 1 (1)

est imposée pour tenir compte de la localité des particules. Une telle condition aux limites compacte
efficacement R3 à S3. Puisque le target space SU(2) est également isomorphe à S3, il existe des
configurations non triviales pour U(x) parce que π3(S3) = Z [78]. Ces configurations non triviales
sont connues sous le nom de "skyrmions" en raison de leur nature solitonique et de leur relation
[160] entre leur charge topologique et le nombre de baryons.

L’exemple le plus intuitif et largement étudié de skyrmions en matière condensée est le skyrmion
en aimants chiraux [114] et les films minces magnétiques [166, 165]. Le paramètre de commande
dans ces systèmes est l’aimantation m(x), dont la fluctuation en grandeur est supprimée et donc
réduite à un champ vectoriel unitaire. Sur la condition limite

m(|x| → ∞) = m∞, (2)

qui est similaire à celle du paragraphe précédent, l’espace bidimensionnel est compactif à S2, ce
qui permet de former des configurations non triviales de m(x) depuis π2(S2) = Z [78]. L’énergie
libre de Landau-Ginzburg est donc un O(3) nonlinear sigma model [116] de m(x) avec l’interaction
Dzyaloshinskii-Moriya [112, 46, 47, 48] qui favorise les configurations skyrmion du paramètre d’ordre
comme l’état fondamental.

Le sujet principal de cette thèse est le skyrmion d’effet Hall quantique [151, 110], qui existe dans
les systèmes multi-composante d’effet Hall quantique [52, 87, 120, 33, 100, 108]. Pour simplifier
l’analyse, les niveaux Landau (NL) dans un système multi-composante d’effet Hall quantique sont
regroupés selon les symétries. Sous un champ magnétique fort B, les NL dans le même groupe sont
proches de l’énergie, alors que la séparation d’énergie des NL dans différents groupes est à l’échelle de
l’énergie cyclotron, qui est la plus grande échelle d’énergie dans les systèmes multi-composante d’effet
Hall quantique. Habituellement, les groupes de NL deviennent plus distincts lorsque B augmente.
D’une manière conventionnelle, le «Niveau Landau» désigne le groupe de NL. Ce «niveau Landau»
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Figure 3: Echelles d’énergie. (bleu) GaAs-AlxGa1−xAs hétéro-structure et puits quantique, (rouge) graphène.
La séparation d’énergie ∆E0−1 entre NL N = 0 et N = 1 est ∆E0−1 = ~eB/m∗ pour GaAs-AlxGa1−xAs et
∆E0−1 =

√
2~vF/lB pour le graphène. Notez que le rapport ∆E0−1/EC ∼ ~vF/(e2/ε) pour le graphène ne dépend

pas de la longueur magnétique ni de toute autre échelle de longueur.

se compose de plusieurs «composants» ou de branches [voir la figure 2], qui sont en fait les LL dans
le sens habituel, mais s’appellent «sous-niveaux».

Il existe deux origines de composants ou de branches dans les systèmes multi-composante d’effet
Hall quantique. Ils sont combinés pour distinguer les sous-niveaux dans un NL. Dans des matériaux
réalistes qui hébergent le gaz électronique à deux dimensions, l’énergie Zeeman ∆Z est habituellement
petite par rapport à d’autres écailles d’énergie, telles que l’énergie cyclotron ~ωc (ou la séparation de
NL) ou l’interaction Coulomb EC = e2/εlB (lB = 25.6nm/

√
B[T] est l’échelle de longueur typique

dans les systèmes d’effet Hall quantique). Par exemple, comme l’illustre la figure 3, dans la hétéro-
structure de GaAs-AlxGa1−xAs, le rapport ~ωc/∆Z est de ∼ 77 en raison de une petite masse de
bande m∗ = (0.063 + 0.083x)me [147] et de un facteur g efficace g∗ = −0.44 [124], alors que dans Le
graphène de cette ration est ∆E1−0/∆Z ∼ 300/

√
B[T] [43, 64]. Par conséquent, les NLs dans ces

matériaux ont généralement deux sous-niveaux, qui sont proches de l’énergie et étiquetés par spin
électronique. En outre, dans les systèmes multi-vallées – tels que les dispositifs en silicium [68, 132],
les AlAs quantum wells [37, 145], la monocouche graphène [175] bicouches [122] et trilayer [156],
SnTe [101], Ge quantum wells [104] – la dégénérescence de la vallée dans la structure de la bande
d’électrons implique directement des sous-niveaux de Landau avec la même énergie. Chaque sous-
niveau est marqué par l’indice de la vallée. Dans les systèmes Hall Hall bicouches [35, 53, 152, 54],
le degré de liberté de la couche donne lieu également à des sous-niveaux Landau, qui sont marqués
par l’indice de la couche.

À la proximité du remplissage entier des sous-niveaux de Landau dans un système d’effet Hall
quantique à composants multiples, la principale contribution à la physique à faible énergie est
l’excitation des sous-niveaux inoccupés dans le même LL, car l’excitation inter-LL coûterait beau-
coup plus élevé d’énergie, comme je l’ai estimé au paragraphe précédent. Une telle réclamation est
encore valable si l’on inclut l’énergie d’échange, qui provient de l’interaction Coulomb EC ∼ e2/εlB.
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Figure 4: Illustrations pour les excitations à faible énergie dans un LL avec deux sous-niveaux marqués par spin
électronique. (a) Quasi-particule. (b) Quasi-trou. (c) Spin wave. (d) Spin skyrmion. Notez que la sous-figure (c) ne
représente pas la répartition réaliste des spins d’électrons dans les sous-niveaux de Landau; c’est simplement à des
fins démonstratives.

Par exemple, dans l’hétéro-structure de GaAs-AlxGa1−xAs, le rapport de l’énergie du cyclotron à
l’énergie d’échange est ~ωc/EC = 0.38

√
B[T] avec la constante diélectrique ε = 13 [111], alors que

dans le graphène, cette ration est ∆E1−0/EC = 3.4 [43, 64]. Il existe deux scénarios pour les exci-
tations: les quasi-particles/quasi-holes et les ondes spin-valley. La quasi-particule ou le quasi-trou
se réfère à l’électron ajouté ou retiré des sous-niveaux Landau remplis [illustré à la figure 4(a) (b)],
alors que l’onde spin-valley est une distribution spatialement périodique des électrons dans différents
sous-niveaux [illustré à la figure 4 (c)]. Ces excitations devraient être les modes dominants de faible
énergie dans le système multi-composante d’effet Hall quantique.

Le skyrmion d’effet Hall quantique est l’interpolation de ces deux types d’excitations. Il est utile
de calmer la charge d’une quasi-particles/quasi-holes afin de réduire le coût de l’énergie en raison
de l’interaction d’échange. Ce faisant, plusieurs bascules sont nécessaires pour un profil en douceur
de l’aimantation. Le résultat dans un système d’effet Hall quantique à deux composants est que les
textures de rotation s’habillent des quasi-particles/quasi-holes pour abaisser leur énergie d’échange.
De cette façon, les skyrmions d’effet Hall quantique sont formés. Dans les cas idéaux, la texture
de rotation autour d’une quasi-particle/quasi-hole a les mêmes profils que le skyrmion montré à
la figure 1. Il a également été illustré à la figure 4 (d) pour le profil du composant Sz dans les
deux sous-niveaux. A partir de l’illustration, on peut voir que, dans la limite de la petite taille, un
skyrmion d’effet Hall quantique est réduit à une quasi-particle ou à un quasi-hole.

Par rapport aux skyrmions dans les aimants chiraux et les films minces magnétiques, les
skyrmions d’effet Hall quantique n’ont pas l’interaction Dzyaloshinskii-Moriya pour l’aimantation,
mais ont plutôt l’interaction Coulomb de la charge topologique. Ceci est dû à une caractéristique
plus importante [151] [110] [28] [133] [56] [42] des skyrmions d’effet Hall quantique – le skyrmion
d’effet Hall quantique porte une charge électrique et la densité de charge électrique excédentaire
δρel(r) est directement liée à la densité de charge topologique ρtopo(r). Cette interaction rend un
skyrmion d’effet Hall quantique plus étalé; mais, finalement, l’énergie de Zeeman l’équilibre en alig-
nant le spin des électrons dans la direction du champ magnétique. Le résultat est un skyrmion avec
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Figure 5: Illustration pour les skyrmions spin-valley du NL N = 0 à ν̃ = 1 du monocouche graphène.

la taille R et l’énergie E selon le facteur g [151]:

(R
lB

)3

=
(9π2

28

)( lB
ε~2/mee2

)
(g ln |g|)−1 (3)

E =
1

4

√
π

2

e2

εlB

[
1 +

3π

4

(18

π

)1/6( lB
ε~2/mee2

)−1/3

(g ln |g|)1/3
]
. (4)

La dépendance au facteur g de l’énergie du skyrmion a été vérifiée par plusieurs expériences [137,
107, 15, 17, 91].

Les skyrmions d’effet Hall quantique devraient en principe exister dans le système multi-
composante d’effet Hall quantique hébergé par la monocouche de graphène, où chaque niveau de
Landau se compose de 4 sous-niveaux marqués par l’indice de vallée K, K′ et l’indice de spin ↑, ↓
comme (K ↑,K ↓,K′ ↑,K′ ↓). Il existe des preuves [163] pour les skyrmions au remplissage du NL
N = 0. La SU(4) symétrie approximative [162] parmi les 4 sous-niveaux entraîne différents types de
skyrmions [103].

J’utilise un Nonlinear Sigma Model du champ Grassmannien Z(r) ∈ Gr(ν̃, 4) pour décrire les
skyrmions de Quantum Hall dans le N = 0 NL du monocouche de graphène. Deux cas sont étudiés
séparément: le quart de remplissage (facteur de remplissage ν̃ = 1) et le demi-remplissage (facteur
de remplissage ν̃ = 2).

Quart de remplissage signifie que l’un des quatre sous-niveaux du NL N = 0 est complètement
rempli. Dans ce cas, l’état fondamental est un état ferromagnétique, qui est décrit par F – un
C4-vecteur dans l’espace Gr(1, 4) = CP3. Un tel vecteur est paramétré par 6 angles - deux an-
gles d’aimantation de spin, deux pour l’aimantation de pseudospin de vallée et les deux autres pour
l’enchevêtrement. La signification des angles pour les magnétisations spin et pseudospin est intuitive-
ment claire, alors que les angles d’enchevêtrement sont nouveaux pour le NL N = 0 du monocouche
de graphène. La raison en est la symétrie SU(4) approximative parmi les quatre sous-niveaux. Les
angles d’enchevêtrement enrichit les types d’états ferromagnétiques au sol au remplissage du quart
du NL N = 0. Différentes phases du NL N = 0 au quart-remplissage sont discutées dans la section
3.3.

Les skyrmions au remplissage du niveau N = 0 Landau sont caractérisés par deux C4-vecteurs
orthogonaux F , C dans l’espace Gr(1, 4) = CP3. Le vecteur F décrit le fond ferromagnétique où



Figure 6: Diagram of skyrmion types at ν̃ = 1 of N = 0 LL in graphene monolayer. Red lines mark the borders
of skyrmion types, whereas the black lines separate the regions of different ferromagnetic ground states. Arrows
connecting the borders to the abbreviations, which indicate the type of the skyrmion (red) or the ferromagnetic
background (black). Abbreviations in the diagram: “UEA” – Unentangled easy-axis; “UEP” – Unentangled easy-
plane; “EEA” – Entangled easy-axis; “EEP” – Entangled easy-plane; “sk.” – skyrmion; “Ppin” – Pseudospin; “Ent.” –
Entanglement; “Defl.” – Deflated.

le skyrmion est intégré. Le vecteur C décrit l’aimantation spin/pseudospin au centre de skyrmion.
Un exemple de cette description est illustré à la figure 5(a), où plusieurs possibilités du centre de
skyrmion sont représentées. Toute la texture spin/pseudospin sur le xy-plan peut être écrite comme
une interpolation entre le fond ferromagnétique et le centre skyrmion:

Z = N−1/2
[
(x+ iy)F + λC

]
, (5)

où F †C = 0 et N = x2 + y2 + λ2. Le paramètre λ a une dimension de longueur et caractérise la
taille du skyrmion. Une telle analyse décrit un skyrmion de charge-1. Dans l’antan ci-dessus, le
C4-vecteur F est déterminé par l’état fondamental du NL N = 0 rempli trimestriellement, alors
que le paramètre λ et le C4-vecteur C sont obtenus par minimisation de l’énergie d’un skymmion.
Le résultat de la minimisation de l’énergie est affiché à la figure 6. Sur cette figure, les axes sont
l’anisotropie pseudospin du système Hall quantique en monocouche de graphène. En accordant ces
paramètres, on obtient différents types de skyrmions comme configurations énergiquement favorables.
L’analyse détaillée du résultat est présentée à la section 4.4.
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Figure 7: Illustration pour les skyrmions spin-valley du NL N = 0 à ν̃ = 2 du monocouche graphène.

Dans le cas du demi-remplissage du NL N = 0, deux des quatre sous-niveaux sont complètement
remplis. L’état fondamental ferromagnétique est décrit par deux C4-vecteurs, à savoir F1 et F2, qui
sont deux colonnes de la matrice de coordonnées de l’espace Gr(2, 4). Puisque les deux vecteurs sont
orthogonaux et une transformation U(2) entre eux produit de nouveaux vecteurs équivalents aux
originaux, il existe 8 paramètres pour déterminer F1 et F2. Les deux vecteurs partagent quatre angles
d’aimantation spin et pseudospin et les paramètres d’enchevêtrement sont différents. Différentes
phases du NL N = 0 au demi-remplissage sont discutées dans la section 3.3.

Les skyrmions de charge-1 au demi-remplissage du NL N = 0 sont caractérisés par les deux
C4-vecteurs, F1 et F2, qui décrivent le fond ferromagnétique et un autre C4-vecteur C au centre
du skyrmion. Ces trois C4-vecteurs sont mutuellement orthogonaux. Un exemple du skyrmion est
illustré à la figure 7. Dans cet exemple, le fond ferromagnétique a une aimantation spin complète et
une aimantation pseudospin nulle, alors qu’au centre du skyrmion, la pseudospin est au maximum
polarisée avec un spin total nul. Toute la texture spin/pseudospin sur le xy-plan peut être écrite
comme une interpolation entre le fond ferromagnétique et le centre skyrmion:

Z1 = N−1/2
[
(x+ iy)F

′

1 + λC
]

(6)

Z2 = F
′

2 (7)

où F
′

1 et F
′

2 correspondent au fond ferromagnétique et sont liés aux vecteurs F1 et F2 précités via une
transformation U(2). Avec un tel système, différents types de skyrmions de charge-1 sont obtenus
à partir de la minimisation de l’énergie à une autre anisotropie de pseudospin. Les résultats sont
affichés à la figure 8. L’analyse détaillée du résultat est présentée dans la section 4.5.

Cette thèse étudie les types possibles de skyrmions quantum Hall à un quart et demi de rem-
plissage du NL N = 0 en monocouche graphène et fournit des conseils importants à la recherche
expérimentale de skyrmions à puce quantique avec des techniques d’imagerie en espace réel pour
le gaz à électrons bidimensionnel. En particulier, dans le NL N = 0, la pseudospin de la vallée
se manifeste comme l’occupation sous-réseau. En principe, la spectroscopie de balayage par tunnel
à résolution spin peut fournir l’image des skyrmions d’effet Hall quantique sur l’échelle du treillis



Figure 8: Diagram of skyrmion types at ν̃ = 2 of N = 0 LL in graphene monolayer. Red lines mark the
borders of skyrmions with different types of center vector C2, whereas the black lines separate the regions of different
ferromagnetic ground states. Arrows connecting the borders to the abbreviations, which indicate the type of the
skyrmion center (red) or the ferromagnetic background (black). Abbreviations in the diagram: “FM” – Ferromagnet;
“CDW” – Charge density wave; “KD” – Kekulé dimer; “CAF” – Canted ferromagnet; “SS” – Spin singlet; “PS” –
Pseudospin singlet; “NS” – Néel singlet.

et donc distinguer les différents types de skyrmion. La proposition pratique d’une expérience est
sujette à une étude approfondie.



Contents

Abstract v

1 Introduction 1
1.1 Skyrmions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Landau quantization 9
2.1 Ladder operators and wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Model Hamiltonians on honeycomb lattice . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Landau quantization in Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Form factor of Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Quantum Hall Ferromagnet 39
3.1 Valley pseudospin and SU(4) symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Hamiltonian and ground state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Hartree-Fock theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Single-mode analysis of spin-pseudospin waves . . . . . . . . . . . . . . . . . . . . . 56

4 Quantum Hall Skyrmions 61
4.1 Symmetries of spin skyrmions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Elastic model for spin skyrmions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Elastic model for spin-valley skyrmions . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Spin-valley skyrmions at ν̃ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Spin-valley skyrmions at ν̃ = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Conclusions 91

A Conventions for the Fourier transform 92



B Hartree-Fock method 96
B.1 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.2 Hartree-Fock method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

C Bargmann representation 99

D Time-dependent variational principle 101

E Zassenhaus formula and Baker-Campbell-Hausdorff Formula 105
E.1 Zassenhaus formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
E.2 Baker-Campbell-Hausdorff Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

F Irreducible representations of Lie algebra su(4) 107

G Parametrization of CP3 and Gr(2, 4) manifold 110
G.1 Parametrization of CP3 manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
G.2 Parametrization of Gr(2, 4) manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
G.3 Plücker coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

H Solution to BPS equation 118

Bibliography 121



Chapter 1

Introduction

1.1 Skyrmions

Fig.1.1 shows an example of skyrmion. It is a non-extensive configuration of the unit vector field
m(r) embedded in a uniform background which usually represents the order parameter. In general,
the existence of such kind of configurations requires that the space Ω of order parameter has non-
trivial second homotopy group π2(Ω) = Z [78], thereby being labeled with an integer known as the
topological charge. Such kind of configurations is stabilized by a quadratic gradient term (∇m)2 in
the Landau-Ginzburg free energy of the ordered system. The shape of a skyrmion is determined by
other energy terms, for instance the Moriya-Dzyaloshinskii term [21, 20, 116] in chiral magnets and
the Coulomb interaction of topological charge [151, 110] in quantum Hall ferromagnets. Individual
skyrmions are free to move in an ideal environment where the order parameter is uniform outside
the cores of skyrmions. [136, 139] The number of skyrmions in a given area is limited by their spatial
extensions and repulsive interactions. When such limit is close to saturation, skyrmions are ordered
in a lattice [32, 114, 166] and a new phase emerges with modes on the skyrmion lattice dominating
the low energy spectrum.

Figure 1.1: Skyrmion.
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(a) (b) K ↑

K ↓

K'↑

K'↓

Figure 1.2: Multi-component QH systems. (a) Two-component QH system at ν = 1 where electron spin up
component is completely filled. (b) Graphene monolayer as a four-component QH system, at ν = 2, where each valley
component is filled by spin-up electrons.

The concept of skyrmion originates from the pioneering works [148, 149] of Skyrme on phe-
nomenological models of mesons and pions. [169, 106] In these works, an SU(2)-valued matrix
field U(x) is used to describe the mesons and pions in the three-dimensional space R3. A natural
boundary condition

U(|x| → ∞) = 1 (1.1)

is imposed to account for the locality of the particles. Such boundary condition effectively com-
pactifies R3 to S3. Since the target space SU(2) is also isomorphic to S3, there exist non-trivial
configurations of U(x) because π3(S3) = Z [78]. These non-trivial configurations are known as
“skyrmions” because of their solitonic nature and the relation [160] between their topological charge
and the baryon number.

The most intuitive and widely investigated instance of skyrmions in condensed matter is the
skyrmion in chiral magnets [114] and magnetic thin films [166, 165]. The order parameter in these
systems is the magnetizationm(x), whose fluctuation in magnitude is suppressed and hence reduced
to a unit vector field. Upon the boundary condition

m(|x| → ∞) = m∞ (1.2)

that is similar to the one in the previous paragraph, the two-dimensional space is compactified
to S2, making it possible for non-trivial configurations of m(x) to form since π2(S2) = Z [78].
The Landau-Ginzburg free energy is thus a O(3) nonlinear sigma model [116] of m(x) with the
Dzyaloshinskii-Moriya interaction [112, 46, 47, 48] which favors skyrmion configurations of the order
parameter as the ground state.

The main topic of this thesis is the quantum Hall (QH) skyrmion [151, 110], which exists in
multi-component QH systems [52, 87, 120, 33, 100, 108]. To simplify the analysis, Landau levels
(LLs) in a multi-component QH system are grouped according to (approximate) symmetries. Under
a strong magnetic field B, LLs in the same group are close in energy, whereas the energy separation
of LLs in different groups is on the scale of the cyclotron energy, which is the largest energy scale in
multi-component QH systems. Usually the groups of LLs become more distinct when B increases.
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EC ΔE0-1ΔZ
GaAs

B=25T

ΔE0-1ΔZ EC

Graphene

B=5T

Material ∆E0−1 EC = e2/(4πε0εlB) ∆Z = g∗µBB

GaAs-AlxGa1−xAs 20(B[T]) K 50
√
B[T] K (ε = 13) 0.3(B[T]) K (g∗ = 0.44)

Graphene 420
√
B[T] K 120

√
B[T] K (ε = 5.24) 1.3(B[T]) K (g∗ = 2)

Figure 1.3: Energy scales. (blue) GaAs-AlxGa1−xAs hetero-structure and quantum well, (red) graphene. The
energy separation ∆E0−1 between N = 0 and N = 1 LL is ∆E0−1 = ~eB/m∗ for GaAs-AlxGa1−xAs and ∆E0−1 =√

2~vF/lB for graphene. Notice that the ratio ∆E0−1/EC ∼ ~vF/(e2/ε) for graphene does not depend on the magnetic
length nor any other length scales.

Conventionally, “Landau level” refers to the group of LLs. Such “Landau level” consists of multiple
“components” or branches [See Fig.1.2 for illustrations], which are in fact the LLs in the usual sense
but are called “sub-levels”. I keep this conventional terms and drop the quotation marks when
mentioning them.

There are two origins of components or branches in multi-component QH systems. They
are combined to distinguish the sub-levels in a LL. In realistic materials that host the two-
dimensional electron gas, the Zeeman energy ∆Z is usually small compared to other energy scales,
such as the cyclotron energy ~ωc (or LL separation) or the Coulomb interaction EC = e2/εlB

(lB = 25.6nm/
√
B[T] is the typical length scale in QH systems). For instance, as illustrated in

Fig.1.3, in GaAs-AlxGa1−xAs hetero-structure, the ratio ~ωc/∆Z is ∼ 77 due to small band electron
mass m∗ = (0.063 + 0.083x)me [147] and effective g-factor g∗ = −0.44 [124], whereas in graphene
such ration is ∆E1−0/∆Z ∼ 300/

√
B[T] [43, 64]. Therefore, LLs in these materials usually have two

sub-levels, which are close in energy and labeled by electron spin. Besides, in multi-valley systems
– such as silicon devices [68, 132], AlAs quantum wells [37, 145], graphene monolayer [175] bilayer
[122] and trilayer [156], SnTe [101], Ge quantum wells [104] – valley degeneracy in the electron band
structure directly implies Landau sub-levels with the same energy. Each sub-level is labeled by the
valley index. In bilayer quantum Hall systems [35, 53, 152, 54], the layer degree of freedom also
gives rise to Landau sub-levels, which are labeled by the layer index.

In the vicinity of integer filling of Landau sub-levels in a multi-component QH system, the main
contribution to the low-energy physics is the excitation to the unoccupied sub-levels within the same
LL, since the inter-LL excitation would cost much higher energy, as I have estimated in the previous
paragraph. Such claim is still valid if one include the exchange energy, which originates from the
Coulomb interaction EC ∼ e2/εlB. For instance, in GaAs-AlxGa1−xAs hetero-structure, the ratio
of cyclotron energy to exchange energy is ~ωc/EC = 0.38

√
B[T] with the dielectric constant ε = 13
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(a) (b)

(c) (d)

Figure 1.4: Illustrations for low energy excitations in a LL with two sub-levels labeled by electron spin. (a) Quasi-
particle. (b) Quasi-hole. (c) Spin wave. (d) Spin skyrmion. Notice that sub-figure (c) does not represent the realistic
distribution of electron spins in the Landau sub-levels; it is merely for demonstrative purpose.

[111], whereas in graphene such ration is ∆E1−0/EC = 3.4 [43, 64]. There are two scenarios for the
excitations – the quasi-particles/quasi-holes and the spin-valley waves. Quasi-particle or quasi-hole
refers to the electron added or removed from the filled Landau sub-levels [illustrated in Fig.1.4(a)(b)],
whereas the spin-valley wave is a spatially periodic distribution of electrons in different sub-levels
[illustrated in Fig.1.4(c)]. These excitations should be the dominant low-energy modes in the multi-
component QH system.

QH skyrmion is the interpolation of these two types of excitations. It is useful to smear out the
charge of a quasi-particle/quasi-hole in order to lower the energy cost due to exchange interaction.
In doing so, multiple spin flips are necessary for a smooth profile of the magnetization. The result
in a two-component QH system is that the spin textures dress the quasi-particles/quasi-holes to
lower their exchange energy. In this way, QH skyrmions are formed. In ideal cases, the spin texture
around a quasi-particle/quasi-hole has the same profiles as the skyrmion shown in Fig.1.1. It has
also been illustrated in Fig.1.4(d) for the profile of Sz component in the two sub-levels. From the
illustration, one can see that in the limit of small size, a QH skyrmion is reduced to a quasi-particle
or a quasi-hole.

Compared to the skyrmions in chiral magnets and magnetic thin films, QH skyrmions do not
have the Dzyaloshinskii-Moriya interaction for the magnetization, but instead has the Coulomb
interaction of the topological charge. This is due to a more prominent feature [151] [110] [28] [133]
[56] [42] of QH skyrmions – the QH skyrmion carries electric charge, and the excess electric charge
density δρel(r) is directly related to the topological charge density ρtopo(r). Such interaction makes
a QH skyrmion to be more spread out; but eventually the Zeeman energy counter-balance it by
aligning the spin of QH electrons in the direction of the magnetic field. The result is a skyrmion
with size R and energy E depending on the g-factor g [151]:

(R
lB

)3

=
(9π2

28

)( lB
ε~2/mee2

)
(g ln |g|)−1 (1.3)

E =
1

4

√
π

2

e2

εlB

[
1 +

3π

4

(18

π

)1/6( lB
ε~2/mee2

)−1/3

(g ln |g|)1/3
]
. (1.4)
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(a) (b)

Figure 1.5: (a) (From Ref.[137]) Results of tilted-field experiments on the ν = 1 QHE. The energy gaps ∆ at fixed
B⊥ (obtained from the transport data) are plotted versus the Zeeman energy gµBBtot in unit of e2/εlB. The Zeeman
energy is tuned by increasing the tilting angle θ = arccos(B⊥/Btot) of the sample from θ = 0, which corresponds to
B⊥ = Btot at the lower left in each set of data points. Different data sets correspond to different electron densities and
mobilities (see main text in Ref.[137]). The dashed lines represent data-fitting of ∂∆/∂∆Z = s = 7, which indicate
that the effective spin of excitations is larger than 1/2. (b) (From Ref.[107]) Energy gap at ν = 1 as a function of the
bare g-factor (bottom axis) and as a function of g∗ = gµBB/(e

2/εlB) (top axis). Solid line: energy gap for skyrmion
excitation estimated in Ref.[151]. Short-dashed line: the dependence of the energy gap on the Zeeman energy, as
E0 + s |g|µBB, with s = 1. Long dashed line: s = 7. Long-short dashed line: s = 33.

The g-dependence of skyrmion energy has been verified by several experiments, as I will discuss in
the next paragraph.

There is clear evidence on the existence of skyrmions in multi-component QH systems. Transport
measurements of 2DEG in GaAs − AlxGa1−xAs hetero-structure and quantum well with sample
tilting [137] reveals the temperature and tilt angle dependence of the longitudinal resistance Rxx
at ν = 1. Fitting the data to the Arrhenius formula Rxx = A exp(−∆/2T ), the authors obtained
the thermal activation gap ∆ as a function of the tilt angle, or equivalently the Zeeman energy
∆Z = gµBBtot at fixed perpendicular field B⊥ [Fig.1.5(a)]. Since the contributions to the thermal
activation gap ∆ arising partly from the Zeeman coupling, the slope s = ∂∆/∂∆Z of the curve
∆(∆Z) is the effective spin s of the charge carriers. Fig.1.5(a) clearly shows that it is larger than
1/2. Ref.[107] reported activation gap measurements with tunable Zeeman coupling by changing the
effective g-factor with pressure. The result is shown in Fig.1.5(b) and is consistent with the picture
of multiple spin-flip caused by spin skyrmions.

Another piece of evidence for QH skyrmions is shown in Ref.[15], where optically pumped nu-
clear magnetic resonance [16] measurements of the Knight shift KS(ν, T ) of 71Ga nuclei in GaAs-
AlxGa1−xAs quantum well was obtained as a function of filling factor ν in the vicinity of ν = 1

and the temperature T . The Knight shift is proportional to the spin magnetization density, which
is then expressed with the help of the spin-flip per particle S and per hole A as

KS(ν) ∝ Θ(1− ν)
[
2ν−1(1−A)− (1− 2A)

]
+ Θ(ν − 1)

[
2ν−1S + (1− 2S)

]
. (1.5)
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Figure 1.6: (From Ref.[15]) The dependence of 71Ga nuclei Knight shift KS on filling factor ν at B = 7.05 T (open
circles) at T = 1.55 K. The solid line is the KS(ν) curve for particle/hole without spin texture, while the dashed line
is fitted from data, indicating that the spin per additional particle/hole is larger than 1/2.

If S = A = 1, which is implied by the assumption of the absence of spin texture induced by
particle/hole in the vicinity of ν = 1, the Knight shift KS(ν) would look like the solid curve in
Fig.1.6(a). However, the actual measurement reported in Ref.[15] shows clear deviation from the
solid curve, leading to a conclusion that S = A = 3.6, which rules out the assumption of no spin
texture and hence indicates multiple spin flip per particle/hole. Therefore a natural interpretation
of the experimental data would be the formation of spin skyrmions in the vicinity of ν = 1. Ref.[91]
studied further the temperature dependence of the Knight shift in similar settings and suggested
a skyrmion dynamics picture to explain the measured data. It has also been argued in Ref.[17]
that the observed anomalous enhancement of heat capacity in the vicinity of ν = 1 is due to the
skyrmion-induced strong coupling of the nuclear spin system to the lattice.

QH skyrmions should in principle exist in multi-component QH system hosted by graphene
monolayer, where each Landau level consists of 4 sub-levels labeled by the valley index K, K′ and
the spin index ↑, ↓ as (K ↑,K ↓,K′ ↑,K′ ↓). There is evidence [163] for skyrmions at quarter filling of
the N = 0 LL. The approximate SU(4) symmetry [162] among the 4 sub-levels gives rise to various
types of skyrmions [103]. In this thesis, I will provide detailed analysis on the QH skyrmions in
graphene monolayer.

1.2 Overview of the thesis

This thesis focuses on quantum Hall (QH) skyrmions in a graphene monolayer as an SU(4) QH
ferromagnet. The valley degree of freedom in graphene gives rise to the four-fold degeneracy of
Landau levels.

Chapter 2 provides a basic introduction to Landau levels. The Landau wave functions have been
worked out in §2.1 under a vector gauge potential, which is linear in spatial coordinates and contains
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free parameters that interpolates between the Landau gauge and the symmetric gauge. Coherent
states are introduced as generating functions of the symmetric-gauge Landau wave function and can
be understood as magnetic translations of a Gaussian wave function centered at the origin of the
xy-plane. The canonical transformations of the ladder operators are mentioned because it is rarely
discussed in the literature. After the discussion of Landau wave functions, model Hamiltonians on
the honeycomb lattice are introduced in §2.2. The Hamiltonian for graphene monolayer is taken as
the isotropic case of the model Hamiltonian. The corresponding low-energy effective Hamiltonian
is discussed. The low-energy Landau levels in graphene monolayer are given in the beginning of
§2.3. The discussion of Landau quantization for general Hamiltonians starts from the argument that
the magnetic translation is responsible for the degeneracy of Landau level. To have a glimpse on
the general case, the lowest Landau levels are solved for a toy model with two inequivalent valleys.
These Landau levels resembles the Schrödinger’s cat states. Finally, the form factor for Landau level
is briefly discussed in §2.4 with emphasis on its generality.

Chapter 3 gives a lengthy discussion on QH ferromagnets, which could be simply understood
as grouping of Landau levels with similar energy. Under strong perpendicular magnetic field, an
approximate symmetry emerges among the electron spin and band valley degrees of freedom and the
Coulomb interaction can be cast into a manifest SU(4) invariant form. The symmetry-breaking terms
– for instance the Zeeman coupling, sub-lattice asymmetry and the electron interaction at lattice
scale – are small compared to the long range Coulomb interaction. These are explained in §3.1. A
comparison is made with the Hubbard model in the atomic limit to show the difference between the
band gap and quasi-particle gap. In §3.2 I introduce the Hamiltonian H = H0 +H1 + VSU(4) + VSB

for the SU(4) QH ferromagnet in a graphene monolayer. The kinetic part H0 is a constant if one
restricts the discussion in a single Landau level. The long range Coulomb interaction is written in an
SU(4)-invariant form in VSU(4) and the symmetry-breaking terms are summarized in H1 (quadratic
terms) and VSB (quartic terms). Since the magnitude of VSU(4) is much larger than that of VSB,
the ground state is determined by the former and the latter is treated as perturbations. At integer
filling of sub-levels, the ground state is related to the irreducible representations [4] and [6] of su(4).
Hartree-Fock treatment is given in §3.2 and the resulting phase diagrams at ν̃ = 1 (quarter-filling)
and ν̃ = 2 (half-filling) are presented with brief comments. Finally, the dispersions of single-mode
spin-valley waves are computed in §3.3. The contributions from four parts of the Hamiltonian H

are identified. With the general result of the dispersion, an example is given to show a possible
instability of the ground state.

Chapter 4 elaborates on QH skyrmions. An affordable description of the spin texture is the elastic
model from variational analysis, which is presented in §4.2 and supported by a symmetry analysis
in §4.1. The elastic model for spin texture is generalized in §4.3 to describe the spin-valley texture.
The spin-valley skyrmions are discussed in the context of the elastic model and a continuous field.
As results of energy minimization, different types of spin-valley skyrmions of topological charge 1
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are presented in §4.4 for ν̃ = 1 and §4.5 for ν̃ = 2. Finally, the skyrmion of topological charge 2
at filling factor ν̃ = 2 is argued to have an unstable form due to the Coulomb interaction of the
topological charge.



Chapter 2

Landau quantization

This chapter provides basic results of Landau quantization. §2.1 shows the Landau wave functions
in a general linear gauge. §2.2 introduces the Hamiltonian for graphene monolayer, which is the
hosting material for quantum Hall skyrmions. §2.3 discusses the Landau quantization of the low-
energy Hamiltonian for graphene monolayer. To show the general procedure of Landau quantization,
a toy model is analyzed. §2.4 explains the form factor of Landau levels.

2.1 Ladder operators and wave functions

Consider the non-relativistic electron of mass m, charge −e (e > 0) moving in the xy-plane under a
uniform perpendicular magnetic field B. The Hamiltonian is

H =
1

2m
(p+ eA)

2
, (2.1)

where the vector potential satisfies

∇×A = B = −Bez (B = const. > 0). (2.2)

The classical circular motion is governed by the Hamilton equations ṗ = −∂H/∂r and ṙ ≡ π/m =

∂H/∂p, where p is the canonical momentum and

π = mṙ = p+ eA (2.3)

is the mechanical momentum.
When the radius rc of the classical circular motion is comparable to the de Broglie wave length of

the electron, the motion should be described by quantum mechanics. The radius rc can be estimated
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r v

B

Figure 2.1: Geometry of the circular motion of an electron in the xy-plane under magnetic field B = −Bez with
B > 0.

by the Bohr-Sommerfeld quantization condition (with n = 1)

nh =
z
p · dr = (mvc)(2πrc) = (eBrc)(2πrc) , (2.4)

where one integrates the velocity vc = eBrc/m of the electron along the circle of radius rc and obtain
rc =

√
h/2πeB. Usually the length scale where quantum mechanics is important is denoted by the

magnetic length

lB =

√
~
eB

=
25.7 nm√
B[T]

. (2.5)

It depends only on the magnetic field and hence is universal to the physics of two-dimensional
electron gas under strong magnetic field.

Ladder operator a and a†. A simple-minded quantization is achieved by the replacement p →
−i~∇. Using [x, p] = i~, one can compute the the commutator between two components of the
mechanical momentum [defined in Eq.(2.3)]

[πx, πy] = i~eB . (2.6)

It is independent of the choice of gauge. The ladder operators a† and a can be defined in a gauge-
independent way:

a† =
lB√
2~

(πx − iπy) , a =
lB√
2~

(πx + iπy) , [a, a†] = 1 . (2.7)

The Hamiltonian Eq.(2.1) becomes

H = ~ωc
(
a†a+

1

2

)
(2.8)
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where ωc = eB/m is the cyclotron frequency. The energy spectrum EN = ~ωc(N + 1
2 ) consists of

equidistant energy levels, which are called Landau levels.

Ladder operator b and b†. Notice that the ladder operators a† and a consist of four basic
operators – the (canonical) momentum operators (px, py) = (−i~∂x,−i~∂y) and coordinate operators
(x, y). There are two non-vanishing commutators among them, namely [x, px] = i~ and [y, py] = i~.
It is then possible to use the four basic operators px, py, x, y to compose another pair of operators X
and Y , which are independent of, and commute with a† and a, but [X,Y ] 6= 0. For uniform applied
magnetic field, such operators are known as the guiding center operators. Classically an electron
moves around a circle of radius rc = vc/ωc at a speed vc in the presence of uniform magnetic field
perpendicular to xy-plane, as shown in Fig. 2.1. The coordinate r of the electron is heuristically
decomposed as

r = R+ η (2.9)

where R = (X,Y ) is the guiding center coordinate and

η = ez × vc =
1

mωc
ez × π (2.10)

is the relative (cyclotron) coordinate. Promoting the above equation to operator relations, I define
the guiding center operator as

X = x− ηx = x+
1

mωc
πy , Y = y − ηy = y − 1

mωc
πx . (2.11)

One can verify the gauge-independent commutators

[X,Y ] = −il2B (2.12)

[X, a] = [X, a†] = [Y, a] = [Y, a†] = 0 . (2.13)

It is convenient to define another pair of ladder operators from canonical transformation of X and
Y :

b† =
1√
2lB

(X + iY ) , b =
1√
2lB

(X − iY ) , [b, b†] = 1 . (2.14)

They commute with a and a†.
It is crucial to have uniform magnetic field applied to the system in order to perform the de-

composition Eq.(2.9). The commutator [R,η] and [a(a†), b(b†)] vanishes only under the uniform
magnetic field, provided that the operators are defined in Eqs.(2.7), (2.14), (2.11).
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Hilbert space. The above developments of ladder operators reveals that the Hilbert space of the
Hamiltonian Eq.(2.1) is a direct product of two Hilbert spaces of the harmonic oscillator :

H = Ha ⊗Hb = span
{
|N,m〉 ≡ |N〉a ⊗ |m〉b ; N,m = 0, 1, 2, · · ·

}
(2.15)

where I defined

|N〉a = (N !)−1/2(a†)N |0〉a
|m〉b = (m!)−1/2(b†)m|0〉b
a|0〉a = 0

b|0〉b = 0 (2.16)

The state ψ0m(r) = 〈r|N = 0,m〉 in the lowest Landau level (LLL) satisfies the LLL condition

aψ0m(r) = 0 . (2.17)

Landau wave functions in the linear gauge. It is worth mentioning that the above discussions
are gauge independent. However, to solve the LLL condition, we need to specify the vector potential
A. Following Ref.[4], I choose

(
Ax, Ay

)
= B(∂yK,−∂xK)(

Ax + iAy, Ax − iAy
)

= 2iB
(
− ∂K, ∂K

)
(2.18)

where ∂ ≡ ∂z , 1
2 (∂x − i∂y), ∂ ≡ ∂z , 1

2 (∂x + i∂y). The ladder operators are rewritten in K as:

a = −i
√

2[∂ + (∂K)]

a† = −i
√

2[∂ − (∂K)]

b =
√

2
[
∂ − (∂K) +

z

2

]
b† = −

√
2
[
∂ + (∂K)− z

2

]
(2.19)

For uniform magnetic field, ∇ × A = −B implies the following Poisson equation of the real-valued
function K(x, y):

∂2
xK + ∂2

yK = 4∂∂K = 1 . (2.20)
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Its solution has the following quadratic form (lB = 1):

K(x, y) =
1

2

(
(1− ξ)x2 + ξy2 + 2λxy

)
(2.21)

K(z, z) =
1

4
zz +

1

8
(1− 2ξ − 2iλ)z2 +

1

8
(1− 2ξ + 2iλ)z2,

where ξ, λ ∈ R are free parameters. With the above solution for K, the vector potential A can be
computed from Eq.(2.18):

(Ax, Ay) = B
(
ξy + λx,−(1− ξ)x− λy

)
, (2.22)

which is linear in x, y and hence called the linear gauge. As special cases, the symmetric gauge
corresponds to (ξ, λ) = (1/2, 0), whereas the Landau gauge corresponds to (ξ, λ) = (0, 0) or (1, 0).
Gauge invariance implies that ξ, λ do not appear in any physical quantities. In the symmetric gauge
(ξ, λ) = (1/2, 0), these expressions are particularly simple:

a = −i
√

2
[
∂ +

1

4
z
]

a† = −i
√

2
[
∂ − 1

4
z
]

b =
√

2
[
∂ +

1

4
z
]

b† = −
√

2
[
∂ − z

4

]
. (2.23)

General gauge transform. In fact, Eq.(2.21) can be written as

K(z, z) =
1

4
zz + φ(z, z) (2.24)

where ∂∂ϕ = 0 is a harmonic function. The function φ generates the gauge transform of the vector
potential

Ax + iAy → Ax + iAy − 2iB∂φ. (2.25)

The most general form of the ladder operators are

a = −i
√

2
[
∂ + (∂φ) +

1

4
z
]

a† = −i
√

2
[
∂ − (∂φ)− 1

4
z
]

b =
√

2
[
∂ − (∂φ) +

1

4
z
]

b† = −
√

2
[
∂ + (∂φ)− z

4

]
. (2.26)
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The statement in Ref.[27] that any function of operator p+ eA (e > 0 for electrons) commutes with
the one of p− eA is a special case of the mutually commuting ladder operators a, a† and b, b† in the
above equations.

Lowest Landau level condition. Setting lB = 1 and making the Ansatz

ψ0m(z, z) = h(z, z)e−K(z,z), (2.27)

the LLL condition becomes

aψ0m(z, z) = −i
√

2e−K(z,z)
[
∂h(z, z)

]
= 0, (2.28)

which is equivalent to the holomorphic condition for h(·). To ensure that the wave functions ψ0m(z, z)

in LLL are square-integrable, K in Eq.(2.21) must be positive-definite. Therefore the free parameters
ξ, λ ∈ R in K must satisfy

0 ≤ ξ ≤ 1 and |λ| ≤
√
ξ(1− ξ). (2.29)

“Vacuum state” ψ00. Besides the LLL condition Eq.(2.17), the “vacuum state” ψ00(r) =

〈r|N = 0,m = 0〉 satisfies another condition

bψ00(r) = 0. (2.30)

Setting lB = 1 and inserting ψ00(z, z̄) = h(z)e−K(z,z̄), one obtains

h′(z) + (iλ+ ξ − 1

2
)zh(z) = 0, (2.31)

which has solution

h(z) = C0e
1
4 z

2(1−2ξ−2iλ) = C0e
V(z) (2.32)

V(z) ,
1

4
z2(1− 2ξ − 2iλ) . (2.33)

Finally the “vacuum state” ψ00(·) in a general gauge is

ψ00(z, z) =
1√
2π

e−K(z,z)+V(z) =
1√
2π

e−
1
4 zze

1
8 (1−2ξ−2iλ)z2− 1

8 (1−2ξ+2iλ)z2 (2.34)

where K(x, y) is given in Eq.(2.21) and C0 = 1/
√

2π is independent of ξ, λ. The symmetric gauge
ξ = 1

2 and λ = 0 is a special case:

ψ00(r, θ) =
1√
2π

e−
r2

4 . (2.35)



2.1. LADDER OPERATORS AND WAVE FUNCTIONS 15

For the Landau gauge (ξ, λ) = (0, 0), one searches for eigenstate ψ0x0 of the guiding center operator
X = −i∂y instead of the “vacuum state” ψ00. In this case the following equations

Xψ0x0(x, y) = x0ψ0x0(x, y) (2.36)

ψ0x0
(x, y) = h(x, y)e−K(x,y)

K(x, y) =
1

2
x2 .

lead to the solution
ψ0x0

(x, y) =
1

2π
e−

1
2 (x−x0)2e+ix0y. (2.37)

Similarly, for the Landau gauge(ξ, λ) = (1, 0), the wave function

ψ0y0(x, y) =
1

2π
e−

1
2 (y−y0)2e−iy0x (2.38)

is the eigenstate of the guiding center operator Y = i∂x with eigenvalue y0. However, one can
nevertheless set λ = 0 and ξ = 0, 1 in Eq.(2.34) to obtain

ψ00(x, y) =
1√
2π

e−
1
4 (x2+y2)e±

i
2xy (2.39)

as the “vacuum state” for the ladder operators in the Landau gauge.

Lowest Landau level wave functions ψ0m(·). The orthogonal set of Landau orbit wave func-
tions ψ0m in the LLL can be obtained by applying the raising operator b† on the “vacuum state”
ψ00. For generic value of ξ and λ one finds

ψ0m(z, z) =
zm√

2π2mm!
e−K(z,z)+V(z) =

zm√
2π2mm!

e−
1
4 zze

1
8 (1−2ξ−2iλ)z2− 1

8 (1−2ξ+2iλ)z2 . (2.40)

Such wave functions ring-shaped profiles for their amplitudes |ψ0m(r)|2 ∝ r2me−r
2/2, although the

translation and/or rotation symmetry of the system appears to be broken due to the real-valued
function K(x, y) Eq.(2.21) and hence the vector potential Eq.(2.22).

Wave functions ψNm(·) in the N ’th Landau level. The ladder operator a† = −i
√

2[∂− (∂K)]

acts on a generic wave function ψ(z, z) = h(z, z)e−K(z,z) as

a†ψ(z, z) = −i
√

2
[
∂h(z, z)− 2h(z, z)∂K(z, z)

]
e−K(z,z). (2.41)
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Instead of applying the above equation repeatedly on ψ0m(z, z) [defined in Eq.(2.40)], I use the
coherent state (I have taken the convention of Ref.[118])

ψm(w|z, z) , exp[wa†]ψ0m(z, z) ≡
∞∑
N=0

1√
N !

wNψNm(z, z) (2.42)

ψm(0|z, z) ≡ ψ0m(z, z) (2.43)

as a generating function of ψNm(z, z). By solving the following coherent state conditions

aψm(w|z, z) = wψm(w|z, z)

a†ψm(w|z, z) = ∂wψm(w|z, z), (2.44)

one finds

ψm(w|z, z) = gm(w, z, z)e−K(z,z) (2.45)

gm(w, z, z) =
1√

2π2mm!
(z − i

√
2w)me

i√
2
wz

eV(z) (2.46)

Expanding gm(w, z, z) to formal series and using the Rodrigues representation for the associated
Laguerre polynomial Lm−NN (x), one finds the coefficient

g(N)
m (0, z, z) ,

∂N

∂wN
gm(w, z, z)

∣∣∣∣
w=0

=
1√

2π2mm!
e

1
2 zz+V(z)

(z
2

)−m( iz√
2

)N[ dN

dxN
(
xme−x

)∣∣∣∣
x= 1

2 zz

]

=
iNN !√

2π2m−Nm!
zmLm−NN

(zz
2

)
eV(z). (2.47)

Comparing Eq.(2.45) with Eq.(2.42) one finally obtains

ψNm(z, z) = iN
√

N !

2π2m−Nm!
zmLm−NN

(zz
2

)
eV(z)−K(z,z) (2.48)

which is in agreement (up to conventions for the complex coordinate z) with Eq.(3.41) in Jain’s
textbook [86]. The probability density profile |ψNm|2 for the Landau wave function in N ’th Landau
level is still central symmetric, independent of the free parameters λ, ξ in the vector potential A.
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Coherent state in N ’th Landau level. With ψm(w|z, z) in Eq.(2.42), one can further define

ψ(w,w|z, z) , exp[−iwb† + wa†]ψ00(z, z)

≡
∞∑
m=0

1√
m!

(−iw)mψm(w|z, z)

≡
∞∑
N=0

1√
N !

wNψN (w|z, z) (2.49)

Notice that the symbol w conjugate to b† is independent of the symbol w conjugate to a†; both of
them should be understood as the formal variables in the generating function. Inserting Eq.(2.45)
for the expression of ψm(w|z, z) one finds

ψ(w,w|z, z) =
1√
2π

e−
1
2 (z−i

√
2w)(z+i

√
2w)+ 1

2 zzeV(z)−K(z,z). (2.50)

Notice that we cannot put a normalization coefficient e−ww for the above wave function since we
require the coherent state condition Eq.(2.44) to hold for each coefficient on −iw in Eq.(2.49).

The coherent state ψN (w|z, z) in N ’th Landau level can be derived by expanding the above
equation in formal power series of w and compare the coefficient to Eq.(2.49). We find

ψN (w|z, z) ,
∞∑
m=0

1√
m!

(−iw)mψNm(z, z) ≡ 1√
N !

[ ∂N

∂wN
ψ(w,w|z, z)

∣∣∣∣
w=0

]

=
iN√

2π2NN !
(z + i

√
2w)Ne

− i√
2
zw

eV(z)−K(z,z), (2.51)

which is dual to ψm(w|z, z) in Eq.(2.45) in an obvious way. One can verify that ψN (w|z, z) satisfies
the following coherent state conditions

bψN (w|z, z) = −iwψN (w|z, z)

b†ψN (w|z, z) = i∂wψN (w|z, z) (2.52)

as it should be. In the N = 0 Landau level with symmetric gauge (ξ, λ) = (1/2, 0), ψN=0(w|z, z) is
nothing but the solution |R〉 localized at R = (RX , RY ) found in Ref.[95]. Identifying z = x + iy,
z = x− iy, w = (RY + iRX)/

√
2 and using V(z)−K(z, z) = −zz/4, it is clear that

ψN=0

(RY + iRX√
2

|z, z
)
≡ 〈r|R〉 =

1√
2π

e
1
4 |R|

2

e−
1
4 |r−R|

2− i
2 (r×R)·ez . (2.53)
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The sign before the term i
2 (r ×R) · ez is different because we use the convention Eq.(2.2) for the

vector potential, whereas the extra factor e
1
4 |R|

2

is due to our convention of the coherent states
in Eq.(2.49). Since the coherent state is restricted in a single Landau level and the coherent state
condition for a, a† is no longer required, one can remove e

1
4 |R|

2

from the above equation for a proper
normalization. From Eq.(2.51) we also derive

ψN

(RY + iRX√
2

|z, z
)
≡ 〈r|R, N〉 =

iN√
2π2NN !

[
(x−RX)− i(y −RY )

]N
e

1
4 |R|

2

e−
1
4 |r−R|

2− i
2 (r×R)·ez .

(2.54)

One can compute 〈R, N |r|R, N〉 to show that the state |R, N〉 is indeed localized at R = (RX , RY ).

Duality between the coherent states. Comparing Eq.(2.45) to Eq.(2.51) one observes an in-
teresting duality. Apart from the exponential factor eV(z)−K(z,z) and the factor iN , the coherent
state ψN (w|z, z) Eq.(2.51) in N ’th Landau level is related to the coherent state ψm(w|z, z) Eq.(2.45)
at Landau orbit m by a complex conjugate. This duality is also evident from the coherent state
ψ(w,w|z, z) in Eq.(2.50), since the part before the exponential factor eV(z)−K(z,z) is real.

Who is responsible for the magnetic translation group? The answer seems to be both set
of the ladder operators a, a†, b, b†, because all of them contain the momentum operators (px, py) =

(−i~∂x,−i~∂y), which are usually considered as the generators of the spatial translations in the
absence of magnetic field. Indeed, the exponential of px, py acting on a function f(x, y) gives

e
i
~ (Xpx+Y py)f(x, y) = e(X∂x+Y ∂y)f(x, y) = f(x+X, y + Y ), (2.55)

whereas a, a† and b, b† give different results (set lB = 1):

e
1√
2

(ξa−ξa†)
f(x, y) = eiΘ1ei(Imξ.Ax+Reξ.Ay)f(x+ Imξ, y + Reξ) (2.56)

e
1√
2

(ζb−ζb†)
f(x, y) = eiΘ2ei[Reζ.(Ax−y)+Imζ.(Ay+x)]f(x+ Reζ, y + Imζ), (2.57)

where Θ1 and Θ2 are obtained via Baker-Campbell-Hausdorff formula:

Θ1 =
1

2

[
(Imξ)2∂xAx + (Reξ)2∂yAy + (ReζImζ)(∂xAy + ∂yAx)

]
=
i

2

(
ζ2∂

2K − ζ2
∂2K

)
(2.58)

Θ2 =
1

2

[
(Reζ)2∂xAx + (Imζ)2∂yAy + (ReζImζ)(∂xAy + ∂yAx)

]
=
i

2

(
ζ2∂2K − ζ2

∂
2K
)

(2.59)

The above equations define the magnetic translations of scalar functions on homogeneous space
with uniform applied magnetic field. Both of them can be interpreted as “magnetic translation”
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operations. However, only the second one composed by b, b† is useful because it commutes with the
Hamiltonian H(a, a†), which is obtained by the Peierls substitution and justified by the principle of
gauge invariance and series of works, e.g. Luttinger and Kohn [105], Nenciu [119].

Setting (Reζ, Imζ) = dr = (dx, dy) and lB = 1, one obtains the infinitesimal form of Eq.(2.57)
and Eq.(2.57):

T (dr) = eiΘ2ei(A(r)−r×ez)·dredr·∇, (2.60)

where Θ2 ∼ O(dr2) is of higher order, thus eiΘ2 = 1 for small dr. It commutes with the Schrödinger
operator ∼ (−i∇+A)2 within the coordinate patch that contains dr. Accumulating such infinites-
imal operation on the (complex) wave function ψ(r) along a curve C(a) adds a phase factor to the
wave function after spatial translation

T [Cr(a)]ψ(r) ,
∏

dr∈Cr(a)

T (dr)ψ(r)

=
∏

dr∈Cr(a)

eiΘ2ei(Asym(r)+∇φ(r)−r×ez)·dredr·∇ψ(r)

= ei[φ(r+a)−φ(r)]eiA[Cr(a)]ψ(r + a). (2.61)

In the above formula, I denote the symmetric gauge potential Asym(r) = 1
2r×ez, hence an arbitrary

gauge potential A(r) = Asym(r) +∇φ(r) is obtained by a gauge transform generated by the single-
valued potential φ(r) as in Eq.(2.25) and Eq.(2.26). The curve Cr(a) starts at r and ends at r+ a.
It is obtained from C(a) by a translation of r. Thus the shapes of Cr(a) and Cr′(a) are identical
but their starting points are different. The Keplerian area A[C] of the curve C is defined as

A[C] =
1

2

∫
C
(r × dr)z. (2.62)

As has been pointed out in Ref.[27, 170], magnetic translations form a very complicated group.
It was explicitly shown in Ref.[170] that each element in the group, i.e. each magnetic translation
T , depends on the entire trajectory C(a) along which the infinitesimal operations are accumulated.
The inverse of an element T [C(a)] is thus the accumulation of infinitesimal operations along the
same curve but of opposite direction. Successive application of the magnetic translation would be
the multiplication of elements in the group.

If the shape of curve C(a) is specified, for instance to be straight lines connecting the origin
and the point a, then the underlying mathematical structure for magnetic translations also fits to
the projective representation of the ordinary (i.e. non-magnetic) translation group. Two magnetic
translations T [C(a)] ≡ Ta and T [C(b)] ≡ Tb are composed as

Ta+b = eiϕ(b,a)TbTa, (2.63)
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where the 2-cocycle ϕ(b,a) satisfies

ϕ(c,a+ b) + ϕ(b,a) = ϕ(c, b) + ϕ(b+ c,a) mod 2π (2.64)

If the curve C(a) is straight line, according to Eq.(2.61) one has

ϕ(b,a) =
1

2
(a× b)z. (2.65)

Relation between coherent state 〈r|R, N〉 and 〈r|0, N〉. The construction Eq.(2.54) of the
coherent state

〈r|R, N〉 = ψN

(
w =

RY + iRX√
2

|z, z
)

can be understood as the result of magnetic translation T−R, since

T−R 〈r|0, N〉 = e
− 1√

2
(Rb−Rb†)

ψN,0(z, z) = ψN

(
w =

iR√
2
|z, z

)
≡ 〈r|R, N〉 . (2.66)

Canonical transform on the ladder operators. Let us first define a bilinear mapping of
operators:

B(O1,O2) , [O1,O2]. (2.67)

In the basis O = [a, a†, b, b†] the matrix representation of B is

B ,

[
J 0

0 J

]
J ,

[
0 1

−1 0

]
. (2.68)

The commutator of O1 = u1a+u2a
†+u3b+u4b

† and O2 = v1a+ v2a
†+ v3b+ v4b

† is thus a bilinear
form

[O1,O2] = UTBV (2.69)

with U = (u1, u2, u3, u4) and V = (v1, v2, v3, v4). The canonical transformation

ã = U11a+ U12a
† , ã† = U21a+ U22a

† (2.70)

and
b̃ = V11b+ V12b

† , b̃† = V21b+ V22b
† (2.71)

with
UTJU = J , V TJV = J (2.72)

preserves the symplectic structure J and the block-diagonal structure in the bilinear mapping B

and hence preserves the commutator among the ladder operators – after the canonical transform
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Eq.(2.70) and Eq.(2.71), the commutation relations

[ã, ã†] = [b̃, b̃†] = 1,

[ã, b̃] = [ã†, b̃] = [ã, b̃†] = [ã†, b̃†] = 0 (2.73)

still hold. Such canonical transforms reflects the redundancy of the choice of ladder operators in
constructing the Fock states. For instance, one can construct the squeezed states [153, 154] by using
the canonical transformation U on a, a† to solve the Landau quantization of a quadratic Hamiltonian
H with band mass anisotropy.

The most general form of canonical transform of a pair of (bosonic) ladder operators, say a, a†,
can be formally written with the help of the exponential mapping of operators

U = exp
[
i
∑
nm

unm(a†)nam
]

= exp
[
iW
]

(2.74)

with u∗nm = umn to ensure UU† = U†U = 1. After the transformation the ladder operators become
complicated superpositions of (a†)nam:

ã , UaU† =

∞∑
k=0

ik

k!
adkW (a) (2.75)

ã† , Ua†U† =

∞∑
k=0

ik

k!
adkW (a†) (2.76)

where
adkY (X) =

[
Y, adk−1

Y (X)
]
, ad1

Y (X) = [Y,X]. (2.77)

At the time of writing up the thesis, I am unable to exploit such general canonical transforms to
get “suitable” ladder operators for the Landau levels and Landau orbits. Even a simple example for
such canonical transform would be beyond the example with band mass anisotropy shown in §2.3.

2.2 Model Hamiltonians on honeycomb lattice

Let me first introduce the models altogether by introducing the honeycomb lattice with anisotropic
nearest-neighbor hopping. (Kitaev in Ref.[94] examined the spin models of this type.) The lattice
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Hamiltonian reads

H =
∑
r∈◦

[
t1c
†
•(r + δ̂1)c◦(r) + t2c

†
•(r + δ̂2)c◦(r) + t3c

†
•(r + δ̂3)c◦(r)

]
∑
x∈•

[
t1c
†
◦(x− δ̂1)c•(x) + t2c

†
◦(x− δ̂2)c•(x) + t3c

†
◦(x− δ̂3)c•(x)

]
+
∑
r∈◦

[
(∆)c†◦(r)c◦(r)

]
+
∑
x∈•

[
(−∆)c†•(x)c•(x)

]
(2.78)

where δ̂1, δ̂2 and δ̂3 correspond to the red, green and blue bonds pointing from the white sub-lattice
site ◦ towards the black sub-lattice site • in Fig.2.2. The associated hopping parameters are t1, t2
and t3 respectively. Notice that in general, one has δ̂1 + δ̂2 + δ̂3 6= 0 for a deformed honeycomb
lattice. The parameter ∆ characterize the difference of the on-site energy for the two sub-lattices.
In the following discussion, I choose the unit cell to be •− ◦ joint by δ̂3 and the origin at the center
of a hexagon, with the sub-lattice offset r◦ and r• for ◦ and • respectively. Applying the Fourier
transform

c◦(r) =
∑
k

eik·(r−r◦)c◦k , c•(x) =
∑
k

eik·(x−r•)c•k (2.79)

with r − r◦ ∈ Za1 + Za2 and x− r• ∈ Za1 + Za2 for r ∈ ◦ and x ∈ • respectively, one finds

H =
∑
k

c†•k
[
t1e−ik·(δ̂1+r◦−r•) + t2e−ik·(δ̂2+r◦−r•) + t3e−ik·(δ̂3+r◦−r•)

]
c◦k∑

k

c†◦k
[
t1eik·(δ̂1+r◦−r•) + t2eik·(δ̂2+r◦−r•) + t3eik·(δ̂3+r◦−r•)

]
c•k

+
∑
k

∆
[
c†◦kc◦k − c

†
•kc•k

]
=
∑
k

Ψ†k

[
∆ f123(k)

f123(k)∗ −∆

]
Ψk ,

∑
k

Ψ†kHkΨk (2.80)

f123(k) = t1eik·(δ̂1+r◦−r•) + t2eik·(δ̂2+r◦−r•) + t3eik·(δ̂3+r◦−r•) (2.81)

= t1eik·(δ̂1−δ̂3) + t2eik·(δ̂2−δ̂3) + t3

where Ψk = [c◦k, c•k]T.
In the above discussions, I have assumed that the local orbits φ◦(r) and φ•(x) associated to

c◦(r) and c•(x) are orthogonal at different lattice sites, so that the commutators

{
ca(r), c†b(r

′)
}

= δabδrr′ ,
{
ca(r), cb(r

′)
}

=
{
ca(r), cb(r

′)
}

= 0 (2.82)

are canonical. Such assumption may fail in other materials if the overlapping integral

s0 =

∫
d2rφ∗•(r + δ̂3)φ◦(r) (2.83)
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(a) (b) (c)

Figure 2.2: Honeycomb-lattice based models: (a) Honeycomb lattice model (à la Kitaev) with general nearest
neighbor hopping; (b) graphene monolayer; (c) graphene monolayer elongated in y-direction.

is large.
In the following, I discuss several examples depicted in Fig.2.2. They are derived from the general

model.

Two-band models on honeycomb lattice. Setting

t1 = t2 = t3 = t0 (2.84)

and
δ̂1 =

(
cos

π

6
, sin

π

6

)
, δ̂2 =

(
cos

5π

6
, sin

5π

6

)
, δ̂3 =

(
cos

3π

2
, sin

3π

2

)
(2.85)

in Eq.(2.80), the model for graphene monolayer is obtained (the distance between two neighboring
atoms is set to 1). This choice satisfies δ̂1 + δ̂2 + δ̂3 = 0. Since the hopping parameters are isotropic,
we remove the color on the bonds of the honeycomb lattice and represent the model by Fig.2.2(a).
The Hamiltonian is

Hk =

[
∆ t0f(k)

t0f(k)∗ −∆

]
, (2.86)

where the structure factor

f(k) = eik·(δ̂1−δ̂3) + eik·(δ̂2−δ̂3) + 1 = 2e3iky/2 cos

√
3

2
kx + 1, (2.87)

is periodic in G and its phase is plotted in [Fig.2.3(b)]. It vanishes at the so-called Dirac points

K1 =
4π

3
√

3
(1, 0), K2 =

4π

3
√

3

(
cos

π

3
, sin

π

3

)
(2.88)
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(a) (b) (c)

f(k) = eik·a2 + 1.2 eik·a3 + 0.6 f(k) = eik·a2 + eik·a3 + 1 fλ(k) = eik·a2 + eik·a3 + (1 + λ)

Figure 2.3: Profile of the complex-valued structure factors for the honeycomb lattice models with δ̂1,2,3 chosen as
in Eq.(2.85). In all plots, solid lines are the contours of the modulus |f(k)|, colors indicates the phase of the function.
The border of first Brillouin zone is sketched in each plot since the structure of the honeycomb lattice does not change.
(a) f123(k) for t1 = 1, t2 = 1.2 and t3 = 0.6; (b) f(k) for graphene monolayer; (c) fλ(k) with anisotropy λ = 0.4. In
the expressions we have a2 = δ̂1 − δ̂3 and a3 = δ̂2 − δ̂3. The zero points of f(k) are present in all cases. In (b) the
zero points coincide with the K and K′ point in the first Brillouin zone.

as well as the equivalent points K2−K1, −K1, −K2 and K1−K2. The matrix Sk for the orbital
overlapping is

Sk =

[
1 s0f(k)

s0f(k)∗ 1

]
, (2.89)

where s0 is the orbital overlap in Eq.(2.83).
Modifying t3 as t3 = t0(1 + λ) and keeping the other settings as in Eq.(2.85), one obtains the

model for the graphene monolayer elongated in y-direction, which is represented by the red bonds
in Fig.2.2(b). The Hamiltonian for this case is modified from Eq.(2.86) by replacing f(k) with

fλ(k) = eik·(δ̂1−δ̂3) + eik·(δ̂2−δ̂3) + (1 + λ). (2.90)

The matrix Sk for the orbital overlapping in this case is obtained similarly from Eq.(2.89). One
should notice that the realistic strain on graphene monolayer tends to modify the directions of δ̂1,2,3

together with t3. The present modification is a toy model with simplest anisotropy.
The energy bands can be obtained from the secular equation

det[Hk − EkSk] = 0. (2.91)
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Figure 2.4: Energy bands for graphene monolayer.

For graphene monolayer, the energy bands are

Ek = (1− s2
0 |f(k)|2)−1

(
± |t0|

√(
1− s2

0∆2
)
|f(k)|2 + (∆/t0)2 − s0t

2
0 |f(k)|2

)
= ± |t0|

√
|f(k)|2 + (∆/t0)2 − s0t

2
0 |f(k)|2 +O(s2

0, t
3
0)

=

± |∆|+
(
± 1

2 − s0

)
t20 |f(k)|2 +O(s2

0, t
4
0) ∆ 6= 0

± |t0| |f(k)| − s0t
2
0 |f(k)|2 +O(s2

0, t
3
0) ∆ = 0

(2.92)

Fig.2.4 shows the band structure along the high symmetry lines Γ→ K → Γ. It demonstrates that
a non-zero ∆ opens gap at K-point, and a small s0 leads to significant shift of the band structure
at the band top and bottom.

Low-energy model for graphene monolayer. As Eq.(2.92) suggests, the low energy model is
obtained by expansion at k points where |f(k)| vanishes. For the graphene monolayer, such points
are the so-called Dirac points – the K-point and K ′-point in the first Brillouin zone. The expansion
of f(q+P ) at points P = K1, K2 −K1 and −K2 gives qx + iqy, whereas the expansion at points
P = K2, −K1 and K1 −K2 gives −qx + iqy. These expansions at K-point and K ′-point have to
be unique since f(k) is periodic in G. One can write down the low energy model for electron states
Ψk with k = q +K1 at the vicinity of K-point or k = q +K2 close to K ′-point:

HK
q =

3t0
2

[
m qx + iqy

qx − iqy −m

]
, HK′

q =
3t0
2

[
m −qx + iqy

−qx − iqy −m

]
, (2.93)
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where m = 2∆/3t0. In order to get a handsome-looking Hamiltonian, one can join the reversed basis
σxΨq+K1 =

[
c•q+K1 , c◦q+K1

]T atK-point with the modified basis σzΨq+K2 =
[
c◦q+K2 ,−c•q+K2

]T
at K ′-point to get the sublattice-swapped basis

Φq =
[
c•q+K1 , c◦q+K1 , c◦q+K2 ,−c•q+K2

]T (2.94)

then obtain
Hq =

3t0
2

(
qxτ0 ⊗ σx + qyτ0 ⊗ σy −mτz ⊗ σz

)
, (2.95)

where the 2× 2 identity matrix τ0 and τz act on the valley and σx, σy, σz act on the sub-lattice.

Notion of pseudospin. One has to be careful with the notion of pseudospin associated to the
valley degree of freedom. The valley pseudospin is designed to facilitate the treatment of low
energy degrees of freedom in multi-valley systems, where the valleys are usually related by the
transformations in the point group. In the case of graphene monolayer, the full expansion of wave
function Ψ(r) with respect to the Bloch states Ψn,k(r) can be approximated as

Ψ(r) =
∑
n

∑
|k|<Λ

C
(1)
nkΨn,k+K1(r) +

∑
n

∑
|k|<Λ

C
(2)
nkΨn,k+K2(r), (2.96)

where the cutoff Λ depends on the temperature and is much smaller than |K|.

2.3 Landau quantization in Graphene

In §2.1, we have already discussed the mathematical procedure of Landau quantization of the simplest
quadratic Hamiltonian at the bottom of conduction band. With the help of the ladder operators,
such Hamiltonian becomes that of the harmonic oscillator. The Fock state |N〉a of the ladder
operator a, a† [Eq.(2.16)] represents the degenerate energy levels, which are called Landau levels.
Electron states inside each Landau level are labeled by the particle number of another pair of ladder
operator b, b† [Eq.(2.16)]. Under a strong applied magnetic field, such description is sufficient for
the physics in single, low-lying Landau level, because the Landau level spacing ~ωC is much larger
than other energy scales of the system, and the magnetic length lB is large compared to the size of
a unit cell. When the energy of Landau levels goes beyond the validity of the low-energy effective
Hamiltonian at different valleys, one has to introduce corrections to various quantities, such as the
form factor which is discussed in §2.4. More importantly, when the energy of Landau levels continues
to rise and reaches the saddle point of the electronic band, Landau levels will break down and the
Landau quantization of the low-energy effective Hamiltonian fails completely.
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Landau quantization of model Hamiltonians. The procedure for Landau quantization de-
scribed in §2.1 can be applied to the low energy Hamiltonian Eq.(2.93) or Eq.(2.95) for graphene
monolayer discussed in §2.2. After Landau quantization, Eq.(2.95) becomes

H = ~ω
′

c

(
aτ0 ⊗ σ− + a†τ0 ⊗ σ+ −Mτz ⊗ σz

)
(2.97)

with the cyclotron energy
~ω
′

c =
√

2
3t0
2

acc
lB

=
√

2
~vF

lB
(2.98)

and the gap parameter
M =

∆

~ω′c
. (2.99)

Notice that the Hamiltonian is written in the sublattice-swapped basis Eq.(2.94). With the help of
the Fock states |N〉a and |N〉b for the ladder operator a, a† and b, b† discussed in §2.1, the eigenstates
of the above Landau quantized Hamiltonian can be written as

Ψξ=+
Nm =

[
αξN |N〉a⊗|m〉b, β

ξ
N |N − 1〉a⊗|m〉b, 0, 0

]T
, Ψξ=−

Nm =
[
0, 0, αξN |N〉a⊗|m〉b, β

ξ
N |N − 1〉a⊗|m〉b

]T
,

(2.100)
where N ∈ Z labels the Landau levels and m = 0, 1, 2, · · · labels the Landau orbits, and the
coefficients are

αξN =
−ξM + (sgnN)

√
M2 + |N |√(

M − ξ(sgnN)
√
M2 + |N |

)2

+ |N |
, (2.101)

βξN =

√
|N |√(

M − ξ(sgnN)
√
M2 + |N |

)2

+ |N |
(2.102)

for N 6= 0 and
αξN=0 = 1, βξN=0 = 0. (2.103)

for N = 0. Thus the N = 0 Landau level eigenstates have a simple form:

Ψξ=+
N=0,m =

[
|0〉a ⊗ |m〉b, 0, 0, 0

]T
, Ψξ=−

N=0,m =
[
0, 0, |0〉a ⊗ |m〉b, 0

]T
. (2.104)

Notice that these coefficients do not depend on the Landau orbit label m. When the gap parameter
M vanishes, the coefficients are:

αξN = (sgnN)
1√
2
, βξN =

1√
2
. (2.105)
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For this case, the Landau level eigenstates also have simple form:

Ψξ=+
N,m =

1√
2

[
(sgnN)|N〉a ⊗ |m〉b, |N − 1〉a ⊗ |m〉b, 0, 0

]T
Ψξ=−
N,m =

1√
2

[
0, 0, (sgnN)|N〉a ⊗ |m〉b, |N − 1〉a ⊗ |m〉b

]T (2.106)

Magnetic translation symmetry of the Hamiltonian. In the following discussions, we set
e = ~ = 1 and lB = 1/

√
B. The Hamiltonian H(k + A), which is obtained by the substitution

p → π = p + eA discussed in §2.1, commutes with the ladder operator b, b† because after Landau
quantization the Hamiltonian becomes H(a, a†) – a function of a, a†. In Ref.[29], the authors pointed
out that there is an infinite set of generators

Ln,m , (b†)n+1bm+1 n,m ≥ −1 (2.107)

for the symmetry of H(k+A), they form theW∞ algebra. [146, 123] The full commutation relations
for Ln,m are provided in Ref.[29] and are not repeated here. Such a set of generators is prima facie
redundant, as if we claim the generator of the (ordinary, non-magnetic) spatial translation symmetry
is

Pn,m = (px + ipy)n+1(px − ipy)m+1 n,m ≥ −1 (2.108)

with the generator px, py satisfying [px, py] = 0. The generators Pn,m are indeed redundant, because
the product of a series of finite transformation

∏
i

exp
[∑
nm

w(i)
nmPn,m

]
≡ exp

[∑
nm

(∑
i

w(i)
nm

)
Pn,m

]
(2.109)

is reduced to a simple form exp[i(w̃xpx+ w̃ypy)]. The reason for such triviality is the affine structure
on the coordinate space on which the translations are performed. In contrast, generators Ln,m for
different n,m do not commute with each other, the above reduction cannot be performed if Pn,m is
replaced by Ln,m. The exponentials for different Ln,m are not equivalent in general.

Contrary to Ref.[29], the Cartan sub-algebra is more than the set of generators {Ln,n|n ≥ −1}.
To see this, we first need to connect this algebra to the Girvin-MacDonald-Platzman algebra [62] :

[ρ(z, z), ρ(w,w)] = 2i sin (Imzw) ρ(z + w, z + w) (2.110)

ρ(z, z) , ezb−zb
†
. (2.111)

The operator ρ(z, z) commutes with the Hamiltonian H(k+A) by similar reasons for that to Ln,m.
The connection to Ln,m can be seen in one expands ρ(z, z) and bring it to the normal-ordered form.
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On the von Neumann lattice [23, 34]

LvN(η, τ) =
{
zmn =

√
π(mη + nτ)

∣∣m,n ∈ Z, Im(ητ) = 1
}
, (2.112)

the operators in the set
HvN(η, τ) = {ρ(z, z∗)|z ∈ LvN(η, τ)} (2.113)

commute with each other. Therefore, HvN(η, τ) is contained in the Cartan sub-algebra of the Girvin-
MacDonald-Platzman algebra or the W∞ algebra. It is then clear that the Cartan sub-algebra
consists not only of Ln,n (which was claimed in Ref.[29]) but also Ln,m, because the expansion of
each elements in H contains operators (b†)mbn with m 6= n in general.

A field theory can be constructed on the von Neumann lattice LvN(η, τ). [83, 84] The coherent
states

{〈r|R, N〉|RX + iRX ∈ LvN(η, τ)} (2.114)

form a set of basis for the quantum states in N ’th Landau level with 〈r|R, N〉 computed in Eq.(2.54).
Since the von Neumann lattice is virtual, any physical quantities A(η, τ) obtained from such field
theory that depends on the choice of LvN(η, τ) should exhibit modular invariance [60]

A(η, τ) = A(η, τ + η) = A(η + τ, τ). (2.115)

The modular invariance can be [38] related to the transformation rules [96] of the filling factor of
quantum Hall systems.

The problem for field theories on the von Neumann lattice is the over-completeness of such
coherent state basis. [14, 128, 11] However, such set is non-orthonormal and “over-complete by one
state”. Tedious procedures [24, 171, 115] have to be implemented to remove the extra degrees of
freedom in the field theory, making it not appealing as compared to other field theories for quantum
Hall liquids.

A similar algebra
Γn,m , (a†)n+1am+1 (2.116)

has been studied by Haldane in Ref.[134, 74], especially the sub-algebra

sl(2, R) ∼= span
{

Γ1,1,Γ0,2,Γ2,0

}
, (2.117)

which emerges [74] in the low-energy approximation of H(k) at band minimum.

Landau level degeneracy. When the applied magnetic field is strong enough such that the
magnetic length lB is much smaller than the size of the system but still much larger than the size
of the unit cell, the degeneracy of Landau levels can be estimated as the number of magnetic flux
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quanta Nφ in the sample of area A:

Nφ =
BA
h/e

=
A

2πl2B
. (2.118)

The quantity 2πl2B can be understood as the area “occupied” by one electron state in the particular
Landau level, because the Pauli’s exclusion principle requires that electrons in the same Landau
level, if we do not consider their spin, should not “occupy” the same spatial region. Unfortunately,
the factor of 2π does not appear in the most straightforward calculations. For instance, the coherent
state |R, N〉 in the N ’th Landau level solved in Eq.(2.54) gives

〈
(∆x)2(∆y)2

〉
=

1

2
(N + 1)(N + 2)l4B〈

(∆x)2
〉 〈

(∆y)2
〉

= (N + 1)2l4B, (2.119)

where ∆x , x−〈x〉 and ∆y , y−〈y〉 with x, y being the components of the full coordinate operator
r in the left-hand-side of Eq.(2.9). The area “occupied” by each coherent state |R, N〉 is obtained
by taking the square root of one of the above quantities. The factor of 2π is missing. The Landau
orbit ψNm solved in Eq.(2.48) gives averages that are identical to the case of |R, N〉 and once again
the factor of 2π is missing.

The convincing way of counting the Landau level degeneracy is by analyzing the peaks and
spatial extensions of the wave function amplitudes. For the symmetric gauge (ξ, λ) = (1/2, 0) and
in the lowest Landau level, the peaks of wave function amplitude |ψ0m| are located on the circles
with radius

Rm =
√

2mlB, (2.120)

which agrees with the average radius of the wave function ψ0m

〈R〉 ,
√
〈ψ0m|(x2 + y2)|ψ0m〉 =

√
2m+ 1lB. (2.121)

These radius suggest that the total area of Nφ wave functions ψ00, ψ01, · · · , ψ0,Nφ−1 “occupies” an
area of A = πR2

Nφ−1 ≈ 2πl2BNφ for large Nφ. For the Landau gauge (ξ, λ) = (0, 0) or (1, 0), the
peaks of

∣∣ψ0x0

∣∣ or ∣∣ψ0y0

∣∣ are located on the lines x = x0 or y = y0 respectively. If we impose the
periodic boundary condition in the translational invariant direction (y for ψ0x0 and x for ψ0y0), these
lines will be of equal spacing with distance ∆ = 2πl2B/L1, where L1 is the length in the translational
invariant direction. Therefore, in a finite sample of width L2 and area A = L1L2, there are at most
Nφ = L2/∆ = A/2πl2B wave functions in the lowest Landau level.

The mathematically rigorous way to count the Landau level degeneracy invokes Dirac’s quanti-
zation of magnetic flux and inevitably requires that the wave functions live on a compact manifold
Σ (e.g. [82]). The difference between the maximal number of electrons in the lowest Landau level
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and the number of magnetic flux through the surface

S = ν−1Ne −Nφ, (2.122)

known as the Wen-Zee shift [157], is a manifestation of the Riemann-Roch theorem (e.g. Ref.[49, 59])
for counting the number of sections in the holomorphic line bundle on Σ. These topics are beyond
the scope of this thesis.

Landau quantization of a generic Hamiltonian H(k). Usually the choice of Landau gauge
leads to the 1d quantum mechanics analogy [109, 79, 26, 25]

πx ∼ X, πy ∼ P, [πx, πy] = i~eB ∼ [X,P ] = i~̃, (2.123)

which provides an efficient method in solving the Landau Hamiltonian H(k+ (e/~)A) = H(πx, πy)

in the Schrödinger-Heisenberg representation. Here we demonstrate the application of Bargmann
representation on solving the Landau HamiltonianH(k+(e/~)A) = H(a, a†) of ladder operators a, a†

in the linear gauge. The ordering of operators a, a† is a notorious difficulty for general quantization
of classical Hamiltonians and it is also non-trivial for the Landau quantization. Luckily, as long as
one stays close to the band bottom, the choice of ordering is straightforward. Upon the replacement
a† → z, a→ ∂ (explained in Appendix C) and taking square of the Hamiltonian, one usually obtains
a complex differential equation

pn(z)∂nf(z) + pn−1(z)∂n−1f(z) + · · ·+ p0(z)f(z) = 0, (2.124)

where pn(z) are holomorphic functions. The solution ψn(X) of the Landau Hamiltonian in the
Schrödinger-Heisenberg representation and the solution ψn(z) in the Bargmann representation can
be connected via the Bargmann transform [14, 76]:

B(z, x) = e−x
2+2xz− 1

2 z
2

(2.125)

ψn(z) =

∫
R
B(z, x)ψn(x)dx (2.126)

ψn(x) =

∫
C
ψn(z)B(z, x)e−|z|

2

dz (2.127)

Note that the complex variable z used in the Bargmann representation should not be confused
with the complex coordinates of the xy-plane where the wave function lives. Nor should the complex
variable z be related to the point k in the first Brillouin zone by z = kx + iky in “an obvious way”,
although there is indeed a relation between z and kx + iky, which will be illustrated in the following
paragraphs via a toy model.
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Figure 2.5: Low-energy band structure for the k3 +λk2 model. (a) Energy bands along ky = 0 for λ = −0.3, ∆ = 0
and ∆ = 0.002. (b) Iso-energy curves for ∆ = 0, λ = −0.3.

Landau quantization of the k3 + λk2 model. Let us study a toy model by choosing f(k) =

k3 + λk2 (λ ∈ R) for the function f(k) = f(kx + iky) in Eq.(2.86) and set t0 = 1. For simplicity
in notations we also set e = ~ = 1. Such a model allows us to clarify the general mathematical
procedures in solving H(a, a†).

The band structure is presented in Fig.2.5 for both ∆ = 0 and ∆ 6= 0 case. The two band
bottoms are located at the quadratic band-touching point

p1 : (kx, ky) = (0, 0) (2.128)

and the Dirac point
p2 : (kx, ky) = (0,−λ). (2.129)

Landau quantization is pipelined as a chain of replacements:

k → k +A , π ≡ πx + iπy →
√

2Ba† →
√

2Bz (2.130)

k∗ → k∗ +A∗ , π∗ ≡ πx − iπy →
√

2Ba→
√

2B∂. (2.131)

The Hamiltonian becomes

H(a, a†) =

[
∆ −f(

√
2Ba†)

−f(
√

2Ba) −∆

]
, (2.132)

it acts on the state Ψ = [χ1, χ2]T. In the Bargmann representation, the two components of the wave
function Ψ becomes χ1,2 = φ1,2(z)e−|z|

2

with holomorphic functions φ1,2(z), and the Schrödinger’s
equation HΨ = EΨ becomes a complex differential equation for φ1(z):

f(
√

2Bz)f(
√

2B∂)φ1(z) = (E2 −∆2)φ1(z). (2.133)
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The other component can be obtained from φ1(z) as

φ2(z) = − 1

E + ∆
f(
√

2B∂)φ1(z), (2.134)

which suggests the following normalization of the eigenstate ΨE = [χ1E , χ2E ]T:

1 = Ψ†EΨE ≡ 〈χ1E |χ1E〉+ 〈χ2E |χ2E〉

=
1

π

∫
dz
[
|φ1(z)|2 +

1

|E + ∆|2
∣∣∣f(
√

2B∂)φ1(z)
∣∣∣2 ]e−|z|2 . (2.135)

Three linearly independent solutions of Eq.(2.133) for the lowest Landau level with energy E = ∆

are
η(1)(z) = 1, η(2)(z) = z, η(3)(z) = e

− 1√
2B
λz− 1

4B |λ|
2

(2.136)

where η(1) and η(2) come from the quadratic valley p1 and η(3) is the contribution from the Dirac
valley p2. From the Gram-Schmidt matrix for the above solutions (w.r.t. the inner product (f, g)

for holomorphic functions f, g in the Bargmann space)

G ,
[
(η(i), η(j))

]
=


1 0 e−

1
4B |λ|

2

0 1 − λ√
2B

e−
1

4B |λ|
2

e−
1

4B |λ|
2 − λ∗√

2B
e−

1
4B |λ|

2

1

 , (2.137)

we obtain the orthonormal basis

ϕ(1)(z) = b∗η(1)(z) + aη(2)(z)

ϕ(2)(z) =
1√

2− 2a−1e−
1

4B |λ|
2

[
η(3)(z)−

(
aη(1)(z)− bη(2)(z)

)]
ϕ(3)(z) =

1√
2 + 2a−1e−

1
4B |λ|

2

[
η(3)(z) +

(
aη(1)(z)− bη(2)(z)

)]
, (2.138)

where η(1) and η(2) at the quadratic valley p1 are hybridized by the coefficients

a =

√
2B√

|λ|2 + 2B
, b =

λ√
|λ|2 + 2B

. (2.139)

The orthonormal eigenstates at E = ∆ can be constructed as

Ψ
(k)
E=∆ =

[
ϕ(k)(z), 0

]T
k = 1, 2, 3. (2.140)
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In the limit of |λ| → ∞, the Gram-Schmidt matrix G goes to a 3 × 3 identity matrix and the
above orthonormal basis becomes

lim
|λ|→∞

(
ϕ(1)(z), ϕ(2)(z), ϕ(3)(z)

)
=
(
η(1)(z),

1√
2
η(2)(z), − 1√

2
η(2)(z)

)
lim
|λ|→∞

η(3)(z) = 0, (2.141)

which demonstrates the decoupling of the valley p1 from p2 as the latter goes to infinity.
Interesting analogy can be made to the “Schrödinger cat states” [138, 167] (also known in the

study of twisted bilayer graphene in Ref.[36])

|cat±〉 = N±(α)(eαa
†
|0〉 ± e−αa

†
|0〉)

, N±(α)(|α〉 ± |−α〉) (2.142)

as the ground state of the Cassinian oscillator [159, 131]

H = K
(
(a†)2 − α2

)(
a2 − α2

)
, (2.143)

where the normalization constant is N+(α)−1 = 2
√

cosh |α|2 for |cat+〉 and N−(α)−1 = 2
√

sinh |α|2

for |cat−〉. If we consider |α〉 and |−α〉 as the lowest Landau levels from the two valleys located at
±α, the states ϕ(2) and ϕ(3) in the lowest Landau level of the k3 + λk2 model can be considered
as two “cat states” composed by the state η(3) from the Dirac valley p2 and the hybridized state
aη(1) − bη(2) from the quadratic valley p1.

2.4 Form factor of Landau levels

The degrees of freedom in a two-dimensional electron system in magnetic field can be separated
into the inter-Landau-level ones which are related to the ladder operators a, a†, and the intra-
Landau-level ones which are associated to the ladder operators b, b†. Since the two sets of ladder
operators commute, the physics within a single Landau level is decoupled from other Landau levels.
The influence of electronic band structure on Landau levels can be summarized by the form factor
FNN ′(k), which is a function of the Landau level index N,N ′ (should not be confused with the
number N that labels the Fock state |N〉 for a, a†) and the crystal momentum k. Such function
exists at any strength of the applied magnetic field and for all k in the first Brillouin zone.

Form factor for the parabolic conduction band. The form factor FNN ′(k) exists at least
locally in a region close to the band bottom. Consider the parabolic conduction band H(k) ∝ k2.
The occupation number N for the ladder operators a, a† happens to be the Landau level index. The
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Fock states |N〉 = (1/
√
N !)(a†)N |0〉 represents the corresponding Landau level. The form factor for

the Landau levels N,N ′ is thus
FNN ′(k) ,

〈
N
∣∣eik·η∣∣N ′〉 , (2.144)

where η is the relative coordinate defined in Eq.(2.10) and it is related to a, a† by

ηx =
i√
2B

(a− a†) , ηy =
1√
2B

(a+ a†) (2.145)

with ~ = e = 1 such that lB = 1/
√
B. Using the Baker-Campbell-Hausdorff formula, the operator

exponent in Eq.(2.144) becomes

eik·η = e
1√
2B

(−ka+ka†)
= e

1
4B |k|

2

e
− 1√

2B
ka

e
1√
2B
ka†

, (2.146)

where we denote k = kx + iky and k = kx − iky. In the Bargmann representation, the diagonal
element FNN (k) can be easily computed:

FNN (k) ,
〈
N
∣∣eik·η∣∣N〉

=
1

πN !
e

1
4B |k|

2

∫
e−|z|

2

|z|2N e
− 1√

2B
kz

e
1√
2B
kz
dz

= e−
1

4B |k|
2

LN
( 1

2B
|k|2

)
, (2.147)

where LN (x) is the Laguerre polynomial. For N = 0, 1 one has

F00(k) = e−
1

4B |k|
2

, F11(k) = e−
1

4B |k|
2
(

1− 1

2B
|k|2

)
. (2.148)

Form factor for the conduction band with mass anisotropy. The above calculation is simple
because of the coincidence between the Landau level and the Fock states |N〉. In the following
paragraphs let us investigate a nontrivial case – the parabolic band with anisotropic mass. The
Hamiltonian is

H =
~2

2m
kag

abkb (2.149)

where gab is a 2×2 real symmetric positive definite matrix with determinant det g = 1. In appropriate
basis of the k space, gab is diagonal with g11 = a, g22 = a−1 and the real parameter a > 0

characterizes the anisotropy. The isotropic band-mass corresponds to a = 1. Under these settings,
the Landau quantization results in a Hamiltonian which contains undesired terms such as (a†)2 and
a2. We need to exploit the canonical transform on a, a† to simplify this Hamiltonian. In fact, for
any anisotropy parameter a > 0, one finds the following canonical transform

U =
1

2
√
a

[
1 + a −1 + a

−1 + a 1 + a

]
=

[
cosh γ sinh γ

sinh γ cosh γ

]
γ =

1

2
ln a, (2.150)
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which leads to the ladder operator ã, ã† after the canonical transform Eq.(2.70) and a standard
harmonic oscillator Hamiltonian H = ~ω′(ã†ã+ 1

2 ).
Perhaps a more obvious way to obtain such Hamiltonian is to perform canonical transform on

the mechanical momentum πa to bring the Hamiltonian Eq.(2.149) with band mass anisotropy into
a standard form H ∝ π̃2

x+ π̃2
y. Haldane [72, 73, 74] has gone very far with a geometric interpretation

of the band mass anisotropy and proposed a notoriously deep theory of guiding-center geometry,
which is too deep to be presented here. One should notice that the absence of metric structure over
the first Brillouin zone allows for arbitrary theories of the “metric in k-space”. Exactly because the
absence of the metric structure, the form factor should not rely on any metric.

The form factor FNN ′(k) for the Landau level N,N ′ of the Hamiltonian Eq.(2.149) is computed
as Eq.(2.147), with the Fock states |N〉 = (1/

√
N !)(ã†)N |0〉 for the ladder operator ã, ã† and the

same definition of the operator η for the relative coordinate as in Eq.(2.10) and Eq(2.145). We write

ik · η =
1√
2B

(−ka+ ka†) =
1√
2B

(−qã+ qã†) (2.151)

with
q =
√
akx + i

√
a
−1
ky , q =

√
akx − i

√
a
−1
ky. (2.152)

The diagonal element FNN (k) can be obtained by replacing k in Eq.(2.147) by q and then insert
the above equations:

FNN (k) = e−
1

4B (ak2x+a−1k2y)LN
( 1

2B
(ak2

x + a−1k2
y)
)
. (2.153)

We observe that the quantity ak2
x + a−1k2

y appears twice in the above equation and is actually
proportional to the Hamiltonian. Therefore the above result justifies that the form factor is a
function of Landau levels.

Form factor for the k3 + λk2 model. The form factor for Landau levels in the toy model
[Eq.(2.132)] discussed earlier cannot be easily computed, except for the lowest energy ones given in
Eq.(2.136) and Eq.(2.138). Direct computation with η(k) in Eq.(2.136) yields

〈
η(i)
∣∣∣eik·η∣∣∣η(j)

〉
= e−

1
4B |k|

2


1 − k∗√

2B
Sk

k√
2B

1− |k|
2

2B
k−λ√

2B
Sk

S∗−k
−k∗−λ∗√

2B
S∗−k e

i
B Im(k∗λ)

 , (2.154)

where
Sk = e

1
2B k

∗λ− 1
4B |λ|

2

. (2.155)
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(1, 1) (2, 2) (3, 3)

(1, 2) (2, 3) (1, 3)

Figure 2.6: |F00(k|ij)| as a function of k for (i, j) = (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3) with B = 0.0005.

(1, 1) (2, 2) (3, 3)

(1, 2) (2, 3) (1, 3)

Figure 2.7: |F00(k|ij)| as a function of k for (i, j) = (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3) with B = 0.005.



38 CHAPTER 2. LANDAU QUANTIZATION

Instead of writing down the long expressions for the form factors

F00(k|i, j) =
〈
ϕ(i)

∣∣∣eik·η∣∣∣ϕ(j)
〉

(2.156)

with the orthonormal basis ϕ(j) in Eq.(2.138), I plot the amplitudes |F00(k|i, j)| as a function of k for
(i, j) = (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3) in Fig.(2.6) and Fig.(2.7). The plots for (i, j) = (2, 3),
(2, 2) and (3, 3) shows the same feature as the plot of Wigner function for the cat state |cat±〉 in
Eq.(2.142). In order to have a good notion of “valley”, the satellite peaks of the form factor should
be suppressed.

Form factor for sub-levels in multicomponent QH system. The symmetries in graphene
monolayer band structure simplifies the form factor for the Landau sub-levels. ForN ’th Landau level,
the form factor FNN (k) is a 4×4 matrix. Under the basis pseudospin⊗spin = (K ↑,K ↓,K′ ↑,K′ ↓),
FNN (k) is very trivial:

FNN (k) =



〈
Ψ+
N

∣∣∣eik·η∣∣∣Ψ+
N

〉
0

〈
Ψ+
N

∣∣∣eik·η∣∣∣Ψ−N〉 0

0
〈

Ψ+
N

∣∣∣eik·η∣∣∣Ψ+
N

〉
0

〈
Ψ+
N

∣∣∣eik·η∣∣∣Ψ−N〉〈
Ψ−N

∣∣∣eik·η∣∣∣Ψ+
N

〉
0

〈
Ψ−N

∣∣∣eik·η∣∣∣Ψ−N〉 0

0
〈

Ψ−N

∣∣∣eik·η∣∣∣Ψ+
N

〉
0

〈
Ψ−N

∣∣∣eik·η∣∣∣Ψ−N〉

 (2.157)

where Ψξ=±
N is given in Eqs.(2.100), (2.104). It is useful to compute F00(k) explicitly:

F00(k) =



〈
Ψ+

0

∣∣∣eik·η∣∣∣Ψ+
0

〉
0 0 0

0
〈

Ψ+
0

∣∣∣eik·η∣∣∣Ψ+
0

〉
0 0

0 0
〈

Ψ−0

∣∣∣eik·η∣∣∣Ψ−0 〉 0

0 0 0
〈

Ψ−0

∣∣∣eik·η∣∣∣Ψ−0 〉

 , (2.158)

where〈
Ψ+

0

∣∣∣eik·η∣∣∣Ψ+
0

〉
=
〈

Ψ−0

∣∣∣eik·η∣∣∣Ψ−0 〉 = e−
1

4B |k|
2

,
〈

Ψ+
0

∣∣∣eik·η∣∣∣Ψ−0 〉 =
〈

Ψ−0

∣∣∣eik·η∣∣∣Ψ+
0

〉
= 0 . (2.159)

Notice that the inner product 〈ψ|χ〉 has to be adapted to the sublattice-swapped basis Eq.(2.94).



Chapter 3

Quantum Hall Ferromagnet

Under a strong magnetic field, the graphene monolayer exhibits enhanced symmetry among the
electron spin and valley pseudospin and the long-range Coulomb interaction can be cast into an
SU(4)-invariant form, which is discussed in §3.1. The rest of this chapter explains the consequence
of the SU(4) invariance – it gives rise to the quantum Hall ferromagnetism, whose Hamiltonian and
ground states at integer filling of sub-levels are discussed in §3.2. The symmetry-breaking interaction
leads to various phases of the quantum Hall ferromagnet. In §3.3, the phases at quarter filling and
half filling are discussed. The low-energy excitations in the quantum Hall ferromagnet are spin-valley
waves. Their dispersions are discussed in §3.4 by single-mode approximation.

3.1 Valley pseudospin and SU(4) symmetry

The rest of the thesis will focus on the low-energy Hamiltonian for graphene monolayer in strong
magnetic field. The low-energy Landau levels at K and K ′ points occur in pairs because of the
symmetry of the honeycomb lattice. It is convenient to describe a group of four Landau levels
in graphene monolayer – with spin up / down, at valley K / K ′ – and treat them altogether. If
we temporarily ignore the Zeeman coupling and make reasonable approximations on the Coulomb
interaction, the Hamiltonian for electrons in single Landau level can be written in a manifestly SU(4)

invariant form. The symmetry-breaking terms can be included as perturbations.

Approximate SU(4) of Coulomb interaction. The long-wave part of a wave function of
graphene monolayer with spin σ can be written as

φσ(r) ≈ 1√
vol

∑
n

∑
|k|<Λ

[
Ankσei(K+k)·run,K+k(r) +Bnkσei(K

′+k)·run,K′+k(r)
]
, (3.1)
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where vol is the area of the system, Λ is the cutoff on the crystal momentum and un,q(r) = un,q(r+

R) is the periodic part of the Bloch wave function. Extracting the plane wave part eiK·r and eiK
′·r,

the above wave function becomes

φσ(r) = Aσ(r)eiK·r +Bσ(r)eiK
′·r. (3.2)

In the second quantization language, the particle density consists of a smooth part and a fast
oscillating part:

ρ(r) =
∑
nσ

φ†nσ(r)φnσ(r)

≈
∑
nσ

[
A†nσ(r)Anσ(r) +B†nσ(r)Bnσ(r) + ei(K

′−K)·rA†nσ(r)Bnσ(r) + h.c.
]

, ρK(r) + ρK′(r) + ρ12(r)ei(K
′−K)·r + ρ21(r)ei(K−K

′)·r (3.3)

Their contributions to the Coulomb interaction are completely different. By formal conservation of
crystal momentum, the Coulomb interaction can be decomposed into inter-/intra-valley terms

V1 =
vol

2

∑
q

V (q)[ρK(−q) + ρK′(−q)][ρK(q) + ρK′(q)], (3.4)

and back-scattering/Umklapp terms

V2 =
vol

2

∑
q

V (q)
[
ρ12(−q + ∆K)ρ12(q + ∆K) + h.c.

]
(3.5)

V3 =
vol

2

∑
q

V (q)
[
ρ12(−q + ∆K)ρ21(q −∆K) + h.c.

]
(3.6)

=
vol

2

∑
q′

V (q′ + ∆K)
[
ρ12(−q′)ρ21(q′) + h.c.

]
(3.7)

where ∆K = K − K ′ and the last line of V3 is obtained by change of variable. The V1 term
is clearly symmetric under transformations between states at valley K and those at valley K ′.
In the absence of magnetic field and an interaction of intermediate or long-range (e.g. Coulomb
interaction), |V (q + ∆K)| is clearly smaller than |V (q)|. Therefore, V3 is much smaller than V1.
[64]
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In the presence of magnetic field perpendicular to the xy-plane, each density operator contributes
a form factor to the above integrals

ρ(k) =
1

vol

∫
vol

dr e−ik·rψ†(r)ψ(r)

=
1

vol

∫
vol

dr
∑
Nm

∑
N ′m′

〈Nm|r〉 e−ik·r 〈r|N ′m′〉C†NmCN ′m′

=
1

vol

∑
Nm

∑
N ′m′

〈
Nm

∣∣e−ik·r̂∣∣N ′m′〉C†NmCN ′m′
=

1

vol

∑
NN ′

FNN ′(−k)
∑
mm′

[−k]mm′C
†
NmCN ′m′ (3.8)

where the symbols

FNN ′(k) ,
〈
N
∣∣eik·η∣∣N ′〉 (3.9)

[k]mm′ ,
〈
m
∣∣eik·R∣∣m′〉 (3.10)

denote the form factors for Landau levels and Landau orbits, respectively. If restricted in a single
Landau level, namely the N ’th Landau level, the density operator becomes

ρN (k) ,
1

vol
FNN (−k)

∑
mm′

[−k]mm′
(∑

ξ

C†NmξCNm′ξ
)
, (3.11)

where the (diagonal) Landau level form factor FNN (k) is defined in Section 2.4 and usually contains
the exponential e−

1
4 l

2
B|k|

2 ∼ e−#l2Ba
−2
0 , which further suppresses the V2 term. However, the V3 term

leads to symmetry-breaking interactions [5] at the energy scale a0/lB.
The above arguments can be generalized to multi-valley systems, provided that the Landau level

form factor contains a exponential decay factor and the interaction is of intermediate or long range.

The terminology “sub-level”. Due to historical reasons, I have to keep the confusing terminology
“Landau sub-level” in the rest of my thesis. It is clear that pseudospin is pseudo and Landau level
can never split. In this thesis, by “Landau sub-level” I mean Landau level with distinguished spin
and pseudospin, while by “Landau level” I mean a group of Landau (sub-) levels close in energy.
The analysis of energy scale in §1.1 shows that the splitting among the four (sub-) levels are small
compared to other energy scales of the system. The reason to use the language of broken SU(4)

symmetry is economical and by no means fundamental.

Sources of symmetry breaking in the presence of magnetic field. Two sources – namely
(1) the Zeeman coupling, sub-lattice asymmetry, spin-orbit coupling and (2) Coulomb interaction –
contribute to the symmetry breaking and lift of degeneracy of low-energy Landau levels. The Zeeman
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coupling, albeit small, directly lifts the degeneracy of the Landau levels with opposite electron spin.
The sub-lattice asymmetry opens band gap but does not break the valley symmetry in the absence
of applied magnetic field. However, the wave functions in a low-energy Landau level have different
amplitudes on the two sub-lattices and their ratio is different for different valley. Therefore the sub-
lattice asymmetry has indirect effect on the valley pseudospin degeneracy. The spin-orbit coupling
has mixed effect on the electron spin and valley pseudospin and complicates the level splitting. As
mentioned earlier, the V3 term in the Coulomb interaction also breaks the symmetry.

Comparison to Hubbard model in atomic limit. For a better understanding of the quantum
Hall ferromagnet, it is instructive to compare it to the Hubbard model in the zero band-width limit.
The Hamiltonian for the interacting electrons on a lattice is

H =
∑
ij,σ

TijC
†
iσCjσ +

1

2

∑
ijkl,σσ′

Vij,klC
†
iσC

†
jσ′Ckσ′Clσ , H0 + V. (3.12)

For narrow bands, the hopping term H0 can be simplified as

H0 = T0

∑
i,σ

C†iσCiσ + T1

∑
〈ij〉,σ

C†iσCjσ, (3.13)

where T0 is the average energy of electron in the energy band and |T1| is proportional to the band
width. The interaction term V can be simplified as [81]

V =
1

2
U
∑
i,σσ′

C†iσC
†
iσ′Ciσ′Ciσ = U

∑
i

ni↑ni↓, (3.14)

where niσ = C†iσCiσ is the occupation number of electron of spin σ at site i. At the atomic limit,
the band width is zero, i.e. T1 = 0. In this case, H is diagonal in the Fock basis:

H = T0

∑
i

(
ni↑ + ni↓

)
+ U

∑
i

ni↑ni↓ +
∑
i

∆Z(ni↑ − ni↓), (3.15)

where I added the last term to describe the Zeeman coupling to applied magnetic field. Let us
assume that the zero-width band is half-filled (one electron per site) by N electrons.

At zero interaction, i.e. U = 0, any Fock state of particle number N is an eigenstate of energy
T0. If a magnetic field is applied, the ground state of the system is

|Ψ0〉 =
∏
i

C†i↓|0〉, (3.16)
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where the spin quantization axis is chosen according to the magnetic field. The excitation gap

∆ex(N) = E1(N)− E0(N) (3.17)

is defined as the difference between the ground state energy E0(N) and the energy of first excitation
E1(N). At U = 0, we have ∆ex(N) = 2∆Z because there must be a spin flip from the ground
state to the first excited state. Adding one more electron to the system costs at least an energy of
E0(N + 1)− E0(N) = T0 + ∆Z.

The case for non-zero interaction, i.e. U 6= 0, is different. While excitation gap is still ∆ex(N) =

2∆Z, the energy cost of an additional electron

∆qp(N) , E0(N + 1)− E0(N), (3.18)

which is termed quasi-particle gap in the following discussions, is ∆qp(N) = T0 + ∆Z + U , because
on average one doubly-occupied site is unavoidable. Generally speaking, the quasi-particle gap takes
account for both the kinetic energy and the interaction energy of the additional electron. Add more
electron will cost the same energy

· · · = ∆qp(N + 2) = ∆qp(N + 1) = ∆qp(N) = T0 + ∆Z + U, (3.19)

whereas the cost is
· · · = ∆qp(N − 2) = ∆qp(N − 1) = T0 −∆Z (3.20)

if we add one electron from a ground state with less electron from half-filling. The sudden increase
of the quasi-particle gap ∆qp at half-filling indicates that the interaction “splits” the two sub-bands
of opposite spin.

3.2 Hamiltonian and ground state

In a Landau level with SU(4) invariance among the sub-levels, integer-filling of the sub-levels results
in ferromagnetism similar to the Hubbard model in the zero band-width limit. In both cases the
electron system has a “flat band” – in the Hubbard model it originates from a manual setting of the
band width to zero, whereas in the model for quantum Hall ferromagnets I will discuss in this section,
it is simply a consequence of Landau quantization. Compared to the Hubbard model, where the
Coulomb interaction is simplified to the U -interactions on lattice sites, the interaction is generally
complicated for electrons in a single Landau level.
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Hamiltonian for quantum Hall ferromagnet. Since the energy difference of adjacent Landau
levels are much larger than the Coulomb energy, as a first order approximation, one can consider
the electrons in the N ’th Landau level. The effect of Landau level mixing will be discussed at the
end of this section.

The Hamiltonian
H = H0 +H1 + VSU(4) + VSB (3.21)

for quantum Hall ferromagnet consists of four parts. The kinetic energy of electrons is the same for
electron states with spin σ, pseudospin ξ and Landau orbit number m:

H0 = EN
∑
mσξ

C†mσξCmσξ (3.22)

The SU(4)-invariant Coulomb interaction VSU(4) has the following form:

VSU(4) =
vol

2

∑
k 6=0

ρN (k)VC(k)ρN (−k), (3.23)

where the projected density operator is generalized from Eq.(3.11) but has spin and pseudospin
degrees of freedom:

ρN (k) ,
1

vol
FNN (−k)

∑
mm′

(
[−k]mm′

∑
σξ

C†NmσξCNm′σξ

)
. (3.24)

The symmetry-breaking interaction VSB and the Zeeman coupling term (or the mass term) H1 will
be discussed later.

Ferromagnetic states. At integer filling ν̃ of sub-levels of the N ’th Landau level, the ground
state |Ψ0〉 of the Hamiltonian Eq.(3.21) must have uniform electron density so that

ρN (k)|Ψ0〉 = ν̃ρ0δ(k)|Ψ0〉

VSU(4)|Ψ0〉 = 0 (3.25)

where ρ0 = (2πl2B)−1 is the density of flux quanta per sub-level.
At quarter filling of the N ’th Landau level, i.e. at relative filling factor ν̃ = 1, there are three

empty sub-levels and one filled sub-level. The many-particle state of uniform electron density is

|Ψν̃=1[F ]〉 =
∏
m

( 4∑
ζ=1

FζC
†
Nmζ

)
|ν̃ = 0〉 (3.26)
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where the spin index σ and valley index ξ are combined into

ζ = 1(↑ K), 2(↓ K), 3(↑ K ′), 4(↓ K ′), (3.27)

and Fζ ∈ C satisfies
∑4
ζ=1 F

∗
ζ Fζ = 1. The quantum state |ν̃ = 0〉 is the “vacuum state” for the N ’th

Landau level, i.e. the state in which the Landau levels are completely filled up to N − 1.
At half filling of the N ’th Landau level, i.e. at relative filling factor ν̃ = 2, there are two filled

sub-levels and two empty sub-levels. Similarly, the state with uniform electron density is

|Ψν̃=2[F ]〉 =
∏
m

( 4∑
ζ=1

F1ζC
†
Nmζ

)( 4∑
η=1

F2ηC
†
Nmη

)
|ν̃ = 0〉 (3.28)

where F1ζ , F2ζ ∈ C for ζ = 1, 2, 3, 4 satisfies
∑4
ζ=1 F

∗
aζFaζ = 1 for a = 1, 2. One may propose [97]

another Ansatz

|Ψν̃=2[G]〉 =
∏
m

(1

2

4∑
ζ,η=1

GζηC
†
NmζC

†
Nmη

)
|ν̃ = 0〉 (3.29)

with anti-symmetric coefficients Gζη ∈ C and Tr[GG†] = 2. To ensure that |Ψν̃=2[G]〉 is uniform, it
must satisfy (∑

ζ

C†NmζCNnζ
)
|Ψν̃=2[G]〉 = 2δmn|Ψν̃=2[G]〉, (3.30)

which is equivalent to the Plücker condition [51]

εαβµνGαβGµν = 0. (3.31)

Such condition in fact reduces |Ψν̃=2[G]〉 to |Ψν̃=2[F ]〉 if G = F1 ∧ F2, where the wedge product is
defined in Eq.(3.39).

At fractional filling of sub-levels of the N ’th Landau level, the condition Eq.(3.25) still holds,
but it is no longer easy to write down the state with uniform electron density as in Eq.(3.26) and
Eq.(3.28). The generalized Halperin many-particle wave function

Ψm,n

(
{zαiα}

)
=

4∏
α=1

Nα∏
iα<jα

(
zαiα − z

α
jα

)mα 4∏
α<β

Nα∏
iα=1

Nβ∏
jβ=1

(
zαiα − z

β
jβ

)nαβ
× exp

(
− 1

4

4∑
α=1

Nα∑
iα=1

|zαiα |
2
)

(3.32)

serves as a good representation of the ground state. [65] The complex coordinate zαiα denotes the
position of the ia’th particle in sub-level α. Such wave function contains data mα for α = 1, 2, 3, 4
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and nαβ for α, β = 1, 2, 3, 4, which are organized in the so-called K-matrix

K =


m1 n12 n13 n14

n21 m2 n23 n24

n31 n32 m3 n34

n41 n42 n43 m4

 . (3.33)

Counting the degrees of the polynomial of {zαiα} yields the following equation for the sub-level filling
fractions:

K[ν1, ν2, ν3, ν4]T = [1, 1, 1, 1]T. (3.34)

In this thesis I focus on the regime where the sub-levels are at integer filling. Notice, however,
that the states |Ψν̃ [F ]〉 with uniform electron density is not always the ground state of the SU(4)-
invariant Hamiltonian Eq.(3.21). One may invent an arbitrarily singular interaction V (r) (such
as the parent interaction for the Laughlin state), which prefers particular combination of partially
filled sub-levels. For instance, in a quantum Hall system with SU(3) invariance among the Landau
sub-levels and at one-third filling of the N ’th Landau level, the ground state of the system can be
a state with one of the three sub-levels being completely filled, or a combination of three partially
filled sub-levels, each at filling factor 1/3. The former state can be represented by |Ψν̃=1[F ]〉 in
Eq.(3.26) with ζ runs in 3 sub-levels (instead of 4), whereas the latter can be represented by the
generalized Halperin state with

K =


3 0 0

0 3 0

0 0 3

 . (3.35)

Different interaction would prefer differently between the two states as ground state. Since the K-
matrix contains discrete data (mα and nαβ) and the isotropic interaction V (r) can be parametrized
by a discrete series of parameters (known as the Haldane pseudopotential), it is possible to compare
the energy of all possible Halperin states with all possible configurations of the Haldane pseudopo-
tential. Such exhaustive study is beyond the scope of this thesis.

The important assumption for the studies of quantum Hall ferromagnets and skyrmions in this
thesis is that the uniform density state |Ψν̃ [F ]〉 in Eq.(3.26) and Eq.(3.28) are the ground state of
the SU(4)-invariant Hamiltonian Eq.(3.21).

SU(4) transformations among sub-levels. The transformation in the entire Landau level is
U(4), whereas the transformations among the empty sub-levels and among the filled sub-levels are
U(3) and U(1) respectively. We get the invariant space for quarter-filling ν̃ = 1 as the coset space

CP3 =
U(4)

U(3)×U(1)
. (3.36)
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An element in such space corresponds to a 4× 4 Hermitian projector P 2 = P of rank 1. The matrix
P can be written as P = FF †, where F ∈ C4 is normalized and is equivalent to eiϕF . As explained
in Appendix §G, the matrix P , or the vector F , can be parametrized by 6 real parameters.

By similar arguments, the invariant space for half-filling ν̃ = 2 is

Gr(2, 4) =
U(4)

U(2)×U(2)
. (3.37)

An element in such space corresponds to a 4 × 4 Hermitian projector P 2 = P of rank 2. It can be
written as P = F1F

†
1 +F2F

†
2 with two orthogonal C4 vectors F1 and F2. It is evident that the U(2)

transformation between F1 and F2 does not affect the matrix P . The parametrization of the matrix
P or the vectors F1, F2 with 8 parameters is discussed in Appendix §G.

The matrix P is related to the quantum state |Ψν̃ [F ]〉 [Eqs.(3.26), (3.28)] as follows for both
cases ν̃ = 1 and ν̃ = 2:

[P ]αβ = N−1
φ 〈Ψν [F ]|

(∑
m

C†mβCmα
)
|Ψν̃ [F ]〉

=

FαF ∗β ν̃ = 1

F1αF
∗
1β + F2αF

∗
2β ν̃ = 2

(3.38)

The SU(4) transformations act on the quantum state |Ψν [F ]〉 by changing its parameter F . At
ν̃ = 1, the fundamental representation [4] of SU(4) [19, 75, 173] acts on the vector F , whereas at
ν̃ = 2, the asymmetric product representation [6] of SU(4) [19, 75, 173] acts on the wedge product

F1 ∧ F2 =
(
f11f23 − f13f21, f11f24 − f14f21, f12f24 − f14f22,

f11f22 − f12f21, f12f23 − f13f22, f13f24 − f14f23

)
(3.39)

of the two vectors F1 = [f11, f12, f13, f14]T and F2 = [f21, f22, f23, f24]T. The matrix P transforms
accordingly as SU(4) tensor with one covariant index α and one contravariant index β.

Symmetry-breaking interaction. Interaction leads to SU(4) symmetry breaking among the
Landau sub-levels. The general form of symmetry-breaking interaction is

VSB =
vol

2

∑
k

∑
AB

[
ΓA
N (k)VAB(k) ΓB

N (−k)
]
, (3.40)

ΓA
N (k) ,

1

vol
FNN (−k)

∑
mm′

(
[−k]mm′

∑
ζζ′

C†NmζΓ
A
ζζ′CNm′ζ′

)
, (3.41)
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where ΓA(A = 1, 2, · · · , 15) is the generator of the su(4) Lie algebra [19, 75, 173]. For graphene
monolayer, the generator Γ can be written in the spin-valley basis ↑ K, ↓ K, ↑ K ′, ↓ K ′ [Eq.(3.27)]:

ΓA ≡ Γij = τ i ⊗ σj , i, j = 0, 1, 2, 3, (3.42)

where i, j are not simultaneously zero. The Pauli matrices τ i and σj act on valley pseudospin and
electron spin, respectively. Both τ0 and σ0 are 2× 2 identity matrices. Different from Eq.(3.25), in
general, ΓA

N (k)|Ψν̃ [F ]〉 do not have to be proportional to δ(k).
The symmetry-breaking interaction VSB has two origins in graphene monolayer – the Coulomb

interaction [5], and the interaction between the system and substrate [92]. In the N = 0 Landau
level, the Hubbard on-site interaction give rise to the following interaction: [5]

VSB ∼ U
∑
k 6=0

[1

4
ρ(k) ρ(−k)− 1

3

(
T i(k)T i(−k) + Si(k)Si(−k)

)
+ P z(k)P z(−k)

]
(3.43)

where P i = Γi0 = τ i ⊗ σ0, T i = Γ3i = τ z ⊗ σi and Si = Γ0i = τ0 ⊗ σi. The long-range Coulomb
interaction generates the interaction [5]

VSB ∼ EC

∑
k 6=0

[
P z(k)P z(−k)

]
(3.44)

with EC = e2/(4πε0lB). The substrate can induce the following form of interaction: [92]

VSB =
∑
k 6=0

[
U⊥
(
P x(k)P x(−k) + P y(k)P y(−k)

)
+ UzP z(k)P z(−k)

]
. (3.45)

There are other symmetry-breaking terms which are linear in
∫

ΓA(k)dk. They can be described
in general as

H1 = vol
∑
A

∆AΓA
N (k = 0). (3.46)

Such terms originate from, for instance, the Zeeman coupling

HZ = ∆Z

∫
vol

drSz(r) = vol∆ZSz(k = 0), (3.47)

the mass term (only for N = 0 Landau level)

HM = ∆M

∫
vol

drP z(r) = vol∆MP z(k = 0), (3.48)
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in the Dirac Hamiltonian induced by sub-lattice inequivalence, or the substrate induced spin-orbit
term

HSO = ∆SO

∫
vol

drT z(r) = vol∆SOT z(k = 0). (3.49)

For bilayer quantum Hall systems [35, 54, 55, 126] where the which-layer degrees of freedom is
associated to the pseudospin, the inter-layer Coulomb interaction leads to VSB similar to Eq.(3.44)
but with coefficient proportional to the layer separation. The bias voltage U across the bilayer gives
rise to a term similar to Eq.(3.48) but with coefficient proportional to U .

3.3 Hartree-Fock theory

Hartree-Fock Hamiltonian at integer filling of sub-levels. The electrons restricted in the
N ’th Landau level in a quantum Hall system with broken SU(4) symmetry can be described by the
following Hamiltonian:

H = H0 +H1 + VSU(4) + VSB, (3.50)

where H0, H1, VSU(4) and VSB are discussed in Eq.(3.22), Eq.(3.46), Eq.(3.23) and Eq.(3.40) respec-
tively. The corresponding Hartree-Fock Hamiltonian with respect to the ferromagnetic ground state
|Ψν̃ [F ]〉 [Eq.(3.26), Eq.(3.28)] is

HHF = HHF
0 +HHF

1 + V HF
SU(4) + V HF

SB , (3.51)

where the quadratic terms are

HHF
0 = H0 = EN

∑
ζ

(∑
m

C†NmζCNmζ′
)

(3.52)

HHF
1 = H1 =

∑
A

∆A

∑
ζζ′

ΓA
ζζ′

(∑
m

C†NmζCNmζ′
)

(3.53)

and the interactions become

V HF
SU(4) =

∑
ζζ′

∑
mm′

〈
mζ
∣∣∣(V H

SU(4) − V
F
SU(4)

)∣∣∣m′ζ ′〉C†NmζCNm′ζ′ (3.54)

V HF
SB =

∑
ζζ′

∑
mm′

〈
mζ
∣∣(V H

SB − V F
SB

)∣∣m′ζ ′〉C†NmζCNm′ζ′ , (3.55)
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where the Hartree and Fock potentials for the SU(4)-invariant interaction are:〈
mζ
∣∣∣V H

SU(4)

∣∣∣m′ζ ′〉 =
∑
k 6=0

[
V (k)FNN (−k)[−k]mm′

〈
ρN (−k)

〉 ]
= 0, (3.56)

〈
mζ
∣∣∣V F

SU(4)

∣∣∣m′ζ ′〉 =
1

vol

∑
k 6=0

VC(k) |FNN (k)|2
(∑

l

[k]ml[−k]lm′
)
[P ]ζζ′ , VF

SU(4)δmm′ [P ]ζζ′ , (3.57)

while the Hartree and Fock potentials for the symmetry-breaking interaction are

〈
mζ
∣∣V H

SB

∣∣m′ζ ′〉 =
1

2

∑
AB

VH
AB

[
ΓA
ζζ′Tr[ΓBP ] + Tr[ΓAP ]ΓB

ζζ′
]
δmm′ , (3.58)

〈
mζ
∣∣V F

SB

∣∣m′ζ ′〉 =
1

2

∑
AB

VF
AB

[ (
ΓAPΓB

)
ζζ′

+
(
ΓBPΓA

)
ζζ′

]
δmm′ , (3.59)

with the quantities

VH
ABδmm′ =

1

vol

∑
k

VAB(k) |FNN (k)|2
(∑

l

[k]ll[−k]mm′
)

VH
AB , ρ0VAB(k = 0) |FNN (k = 0)|2 (3.60)

and

VF
ABδmm′ =

1

vol

∑
k

VAB(k) |FNN (k)|2
(∑

l

[k]ml[−k]lm′
)

VF
AB =

1

vol

∑
k

VAB(k) |FNN (k)|2 . (3.61)

Since the ground state |Ψν̃ [F ]〉 is uniform, the matrix element of the Hartree-Fock Hamiltonian
HHF is proportional to δmm′ :

〈
mζ
∣∣HHF

∣∣m′ζ ′〉 =
〈
mζ
∣∣(H0 +H1

)∣∣m′ζ ′〉+
〈
mζ
∣∣V H

∣∣m′ζ ′〉− 〈mζ∣∣V F
∣∣m′ζ ′〉 (3.62)

with

〈
mζ
∣∣(H0 +H1

)∣∣m′ζ ′〉 = δmm′
(
ENΓ0 +

∑
A

∆AΓA
)
ζζ′

(3.63)

〈
mζ
∣∣V H

∣∣m′ζ ′〉 =
(1

2

∑
AB

VH
AB

[
Tr[ΓBP ]ΓA + Tr[ΓAP ]ΓB

])
ζζ′
δmm′ (3.64)

〈
mζ
∣∣V F

∣∣m′ζ ′〉 =
(
VF

SU(4)P +
1

2

∑
AB

VF
AB

[
ΓAPΓB + ΓBPΓA

])
ζζ′
δmm′ . (3.65)



3.3. HARTREE-FOCK THEORY 51

Hartree-Fock potential for δ-interaction. As an example for the quantity VH
AB and VF

AB in the
Hartree-Fock Hamiltonian, let us compute these energy for the symmetry-breaking interactions

VAB(r) = MABδ(r). (3.66)

According to Eq.(3.60) and Eq.(3.61), one obtains

VH
AB = ρ0VAB(k = 0) |FNN (k = 0)|2 = ρ0MAB (3.67)

VF
AB =

1

vol

∑
k

VAB(k) |FNN (k)|2 = ρ0MAB

(
ρ−1

0

∫
d2k

4π2
|FNN (k)|2

)
. (3.68)

For parabolic conduction band with isotropic mass, one has (lB = 1)∫
d2k |FNN (k)|2 = 2π

∫ ∞
0

dx e−x[LN (x)]2 = 2π. (3.69)

Therefore, the Hartree energy and Fock energy for the δ-potential Eq.(3.66) are equal in this case. On
the other hand, band mass anisotropy will lead to different Hartree and the Fock energies because a
different form factor yields same VH

AB but different VF
AB, which depends on the anisotropy parameter.

Hartree-Fock energy. The parameter F in the ground state can be determined in a self-consistent
way such that the the Hartree-Fock energy

Eν̃ [F ] ≡ Eν̃ [P ] , N−1
φ

〈
Ψν̃ [F ]

∣∣HHF
∣∣Ψν̃ [F ]

〉
(3.70)

is minimized. Since F and P are equivalent, one can also minimize the following function of P

Eν̃ [P ] = E0
ν̃ [P ] + EH

ν̃ [P ]− EF
ν̃ [P ] (3.71)

E0
ν̃ [P ] = ENTr[P ] +

∑
A

∆ATr
[
ΓAP

]
(3.72)

EH
ν̃ [P ] =

∑
AB

VH
ABTr

[
ΓAP

]
Tr
[
ΓBP

]
(3.73)

EF
ν̃ [P ] = VF

SU(4)Tr[P ] +
∑
AB

VF
ABTr

[
ΓAPΓBP

]
(3.74)

under the constraint
Tr[P ] = ν̃. (3.75)
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Hartree-Fock phase diagram at ν̃ = 1. Specifying the symmetry-breaking interaction VSB to
be the form of Eq.(3.45) and include only the Zeeman coupling Eq.(3.47), one finds

E0
ν̃ [P ] = ENTr[P ] + ∆ZTr

[
SzP

]
EH
ν̃ [P ] = VH

SB

[
U⊥
(
Tr
[
P xP

]2
+ Tr

[
P yP

]2)
+ UzTr

[
P zP

]2]
EF
ν̃ [P ] = VF

SU(4)Tr[P ] + VF
SB

[
U⊥
(
Tr
[
(P xP )2

]
+ Tr

[
(P yP )2

])
+ UzTr

[
(P zP )2

]]
(3.76)

At quarter filling ν̃ = 1 of the N = 0 Landau level, one has P = FF † and Tr
[
(ΓP )2

]
≡ Tr

[
ΓP
]2,

thus

Eν̃=1[P ] = const.+ ∆ZTr
[
SzP

]
+ u⊥

(
Tr
[
P xP

]2
+ Tr

[
P yP

]2)
+ uzTr

[
P zP

]2
, (3.77)

where the anisotropy parameters are

u⊥ = U⊥
(
VH

SB − VF
SB

)
uz = Uz

(
VH

SB − VF
SB

)
. (3.78)

These parameters do not vanish if the symmetry-breaking interaction potential are not short range,
or the system has band mass anisotropy.

The anisotropy energy Eν̃=1[P ] has been studied in Ref.[103]. The phase diagram is presented in
Fig.3.1(a). There are four phases for the SU(4) quantum Hall ferromagnet at quarter filling ν̃ = 1.
They are:

• Unentangled easy-axis pseudospin phase (UEA): Spin is polarized along the applied magnetic
field and the valley pseudospin is polarized along the pseudospin z-axis, which is the direction
in the pseudospin space that is associated to valley K and K ′. The “entanglement” parameter
α = 0 (see Appendix §G) and the magnitude of spin magnetization is |S| = cosα = 1.

• Entangled easy-axis pseudospin phase (EEA): Same as previous case, except that the “entan-
glement” parameter α does not vanish, leading to reduced magnitude |S| = cosα < 1 of the
spin magnetization S. Without the Zeeman term in the Hartree-Fock energy Eν̃=1[P ], this
phase would become a phase with “maximal entanglement” with α = π/2 and |S| = 0.

• Unentangled easy-plane pseudospin phase (UEP): Spin is polarized along the applied magnetic
field and the valley pseudospin is polarized in a direction perpendicular to the pseudospin
z-axis. The “entanglement” parameter α = 0 and the magnitude of spin magnetization is
|S| = cosα = 1.
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Figure 3.1: Phase diagrams for the SU(4) quantum Hall ferromagnet in N = 0 Landau level. (a)
Quarter filling ν̃ = 1. (b) Half filling ν̃ = 2.

• Entangled easy-plane pseudospin phase (EEP): Same as previous case, except that the “en-
tanglement” parameter α does not vanish, leading to reduced magnitude |S| = cosα < 1 of
the spin magnetization S. Similar to the EEA phase, in the absence of the Zeeman term in
the Hartree-Fock energy Eν̃=1[P ], one would have a phase with “maximal entanglement” with
α = π/2 and |S| = 0.

The spin and pseudospin magnetizations have been described in detail in Ref.[103]. Here are some
comments on the transitions between two of the phases listed above. The transition from UEA phase
to UEP phase passes via the line u⊥ = uz, where the system has SU(2) symmetry for the pseudospin.
The pseudospin ferromagnet changes from an Ising type (u⊥ > uz) to an XY type (u⊥ < uz).
The transition between EEA and EEP phases also involves changes of the preferential pseudospin
magnetization, but the magnitudes of the pseudospin is reduced. In contrast, the transitions between
UEA and EEA phases, or between UEP and EEP phases, do not change the preferential direction
of the pseudospin, but rather reduce their magnitudes, thus is different from the previous two
transitions. These transitions would become sharp if the Zeeman term is absent in the Hartree-
Fock energy Eν̃=1[P ] – at the transition at uz = 0, u⊥ > 0 or uz > 0, u⊥ = 0, the “entanglement
parameter” changes from α = 0 to α = π/2, and the magnitude of spin magnetization drops from
|S| = 1 in the unentangled phase to |S| = 0 in the entangled phase. In other words, the Zeeman
coupling has softened the UEA/EEA and UEP/EEP transitions.
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Hartree-Fock phase diagram at ν̃ = 2. At half filling ν̃ = 2 of the N = 0 Landau level, one
has P = F1F

†
1 + F2F

†
2 , thus

Eν̃=2[P ] = const.+ ∆ZTr
[
SzP

]
+ g⊥

[
tx(P ) + ty(P )

]
+ gztz(P ), (3.79)

where the anisotropy parameters (in the case of the isotropic electron energy bands) are

g⊥,z = U⊥,zVH
SB = U⊥,zVF

SB (3.80)

and
ti(P ) = Tr

[
P iP

]2 − Tr
[
(P iP )2

]
. (3.81)

Four phases are obtained from energy minimization of Eν̃=2[P ] in Ref.[92]. Based on a different
parametrization (in Appendix §G), I reproduced the phase diagram and present it in Fig.3.1(b).
There are four phases for the SU(4) quantum Hall ferromagnet at half filling ν̃ = 2:

• Ferromagnetic phase (FM): Spin is completely polarized and both pseudospin states are oc-
cupied. The spin magnetization is maximal while the pseudospin is minimal. It corresponds
to P1 and P3 in the weight diagram Fig.F.2(c) of the [6] representation of su(4).

• Charge density wave phase (CDW): Complementary to the previous case, both spin-up and
spin-down states are occupied, whereas the pseudospin is polarized to its z-axis. The spin
magnetization is minimal and the pseudospin is maximal. Since in N = 0 Landau level, the
pseudospin +/− states occupies different sub-lattice, the two states with opposite spin occupies
the same sub-lattice, giving a charge density modulation on the sub-lattice. It corresponds to
P2 and P4 in the weight diagram Fig.F.2(c) of the [6] representation of su(4).

• Kekulé dimer phase (KD): Similar to the previous case with minimal spin magnetization and
maximal pseudospin magnetization, but the pseudospin magnetization is polarized perpendic-
ular to its z-axis. This corresponds to a picture of dimerized bonds arranged in a Kekulé
pattern. It corresponds to a state lying in the green square P2 − P5 − P4 − P6 in the weight
diagram Fig.F.2(c) of the [6] representation of su(4).

• Canted anti-ferromagnetic phase (CAF): Without the Zeeman term in the Hartree-Fock en-
ergy, this phase would be an anti-ferromagnetic phase with alternating spin for each pseu-
dospin, and hence each sub-lattice. In this case, both the spin and pseudospin magnetizations
are minimal. The Zeeman coupling introduces canting of the opposite spins. It corresponds to
a state lying in the blue square P1 − P5 − P3 − P6 in the weight diagram Fig.F.2(c) of the [6]

representation of su(4).

The symmetries of the SU(4) quantum Hall ferromagnet at half-filling of the N = 0 Landau level
has been thoroughly investigated in Ref.[161]. The SU(2) pseudospin symmetry is restored at the
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line g⊥ = gz, where the KD phase and CDW phase are equivalent because the direction of the
pseudospin magnetization can be arbitrary. The KD/CDW transition requires a change in the
pseudospin, thus affects both sub-levels. To the contrary, the CDW/FM transition requires a flip of
spin and pseudospin in one of the two sub-levels. At the line g⊥ + gz = −1/2 where the FM phase
and CDW phase are equivalent, the symmetry-breaking interaction has SO(5) symmetry [161]. The
FM/CAF transition only involves adjustment of the spins – one spin flip of one sub-level and then
canting of the two opposite spins of opposite pseudospin. Finally, the CAF/KD transition is similar
to the CDW/KD transition, in the sense that the pseudospin of both sub-levels are changed from
easy-axis to easy-plane.

Residual U(1) symmetry with pseudospin. There is an important difference between the
easy-axis and easy-plane phases at ν̃ = 1, or between the KD and CDW phases at ν̃ = 2. When
the quantum Hall ferromagnet has preferential easy-plane pseudospin, the U(1) symmetry in the
symmetry-breaking interaction always allows for the in-plane pseudospin magnetization to rotate in
the plane perpendicular to the pseudospin z-axis. For the phases of an SU(4) QH ferromagnet with
non-vanishing in-plane pseudospin magnetization, the polar angle of the pseudospin magnetization
is always undetermined. This observation leads to discussions on the equivalent XY models in
Refs.[110, 121].

Hartree-Fock phase diagram at fractional filling of sub-levels. Ref.[150] has considered
special cases of fractional filling of sub-levels in the N ’th Landau level, where k sub-levels are
completely filled and the other 4 − k sub-levels are partially filled. In this case, the ground state
is no longer a Slater determinant and the Hartree-Fock method is not valid any more. The author
asserted the representation of the sub-levels by the matrix

P =

4∑
k=1

νkFkF
†
k , (3.82)

where the filling factors can be, for example, (ν1, ν2, ν3, ν4) = (1, 1, 2
3 , 0) or (1, 1, 1

3 ,
1
3 ). The Hartree-

Fock energy of the system can nevertheless be calculated with such matrix P via Eq.(3.76). Energy
minimization leads to new phases refined from the canted anti-ferromagnetic (CAF) phase. One
should notice that the matrix P defined above is no longer a projector since P 2 6= P . Recall that at
integer filling of sub-levels, the condition Eq.(3.25) for uniform state guarantees that the matrix P
computed via Eq.(3.38) is projector. At fractional filling of sub-levels, the condition Eq.(3.25) should
still be respected and the matrix P should still be computed via Eq.(3.38). However, the actual
computation is far from trivial since the precise form of the uniform state |Ψν̃ [F ]〉 is complicated.
Even if one obtains the matrix P correctly, the minimal Hartree-Fock energy may be far from
the correct ground state energy. In the case of integer filling, the minimal Hartree-Fock energy is
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precisely the ground state energy. Further discussions of the partially filled Landau sub-levels are
beyond the scope of this thesis.

Beyond Hartree-Fock. The above analysis is based on primary Hartree-Fock approximation and
ignored the effects of thermal and quantum fluctuations, as well as the screening of the interaction
potential. Taking excitations into consideration, for instance the spin wave which will be discussed
in next section, the interaction will be screened and renormalized The phase diagram may be altered
accordingly and new phases may emerge. The degeneracy of the Landau level makes computations
difficult beyond Hartree-Fock level. The Zeeman energy H1 [Eq.(3.47)] will never be the rescue
because its small energy scale.

3.4 Single-mode analysis of spin-pseudospin waves

Single-mode spin waves. As mentioned in the end of the previous section, primary Hartree-Fock
treatment of the quantum Hall ferromagnet ignores the effects of thermal and quantum fluctuations.
Such effects can partially be discussed by including the spin-wave excitations. The single-mode
approximation can be used to construct the spin-wave excitations above the presumed ferromagnetic
ground state Ψν̃ [F ].

Consider the following “single mode” of spin wave state

|k; ab〉 , ΓN,ab(k)|Ψν̃ [F ]〉 (3.83)

ΓN,ab(k) ,
∑
mm′

[k]mm′X
†
NmaXNm′b (3.84)

XNma ,
∑
α

F ∗aαCNmα (3.85)

where Fa (a = 1, 2, 3, 4) forms an orthonormal and complete set of basis with respect to the uniform
density state |Ψν̃ [F ]〉 and 4 ≥ a > ν̃, 1 ≤ b ≤ ν̃. Such states spans the Hilbert space Hp−h of one
particle and one hole. It can be understood as a propagating particle-hole pair with momentum
k, which is a good quantum number because the Aharonov-Bohm phase of a particle and a hole
cancels exactly. For each momentum k, there are C1

4−1C
1
1 = 3 independent spin-wave modes at

ν̃ = 1 and C1
4−2C

1
2 = 4 independent modes at ν̃ = 2. 1 The mode counting may also be understood

by the representation theory of su(4) Lie algebra [19, 75, 173], whose weight diagrams are presented
in Fig.F.2. The irreducible representation [4], [6] and [4] correspond to the filling factor ν̃ = 1,
2, 3 respectively. In the weight diagrams, each node represents a uniform density state, and two
such states are connected by a line if they can be transformed into each other via Eq.(3.85). The
structure of weight diagrams depends only on the representation. It is then straightforward to count

1The binomial coefficient is defined as Cmn = n!/m!(n−m)!.
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the independent spin waves – In Fig.F.2(a), each node is connected to 3 nodes, which correspond to
3 independent spin waves associated to |Ψν̃=1[F ]〉; In Fig.F.2(c) the number is 4, thus there are 4
independent spin waves associated to |Ψν̃=2[F ]〉.

One can verify that the set of states |k; ab〉 is orthonormal:

〈k; ab|q; cd〉 =
∑
mm′

∑
nn′

[k]∗mm′ [q]nn′〈Ψν̃ [F ]|X†Nm′bXNmaX
†
NncXNn′d|Ψν̃ [F ]〉

= Nφδk,qδacδbd (3.86)

where the operator XNma is defined in Eq.(3.85). The dispersion of the single-mode spin wave is

~ωab(k) = 〈k; ab|k; ab〉−1 〈k; ab|H|k; ab〉 − 〈Ψν̃ [F ]|H|Ψν̃ [F ]〉

= N−1
φ 〈Ψν̃ [F ]|

[
Γ
†
N,ab(k),

[
H,ΓN,ab(k)

]]
|Ψν̃ [F ]〉

= ω
(0)
ab (k) + ω

(1)
ab (k) + ω

SU(4)
ab (k) + ωSB

ab (k) , (3.87)

where each term in the last line denotes the contribution of each piece in the Hamiltonian Eq.(3.50).
The four components of ωab(k) are computed as follows:

• ~ω(0)
ab : Since

[
H0,ΓN,ab(k)

]
= 0, one has ω(0)

ab (k) = 0.

• ~ω(1)
ab : The contribution of H1 can be computed once the following double commutator is

known:

[
Γ
†
N,ab(k),

[
ΓA
N (q = 0),ΓN,ab(k)

]]
=

1

vol
FNN (q = 0)

∑
m

C†NmζCNmη

×
([
FbF

†
a ,
[
ΓA, FaF

†
b

]])
ζη
. (3.88)

Therefore the dispersion is

~ω(1)
ab (k) = N−1

φ vol
∑
A

∆A

× 〈Ψν̃ [F ]|
[
Γ
†
N,ab(k),

[
ΓA
N (q = 0),ΓN,ab(k)

]]
|Ψν̃ [F ]〉

=
∑
A

∆A

(
F †aΓAFa − F †bΓAFb

)
, (3.89)

where Fa (a = 1, 2, 3, 4) forms a complete set of basis that are used to construct |Ψν̃ [F ]〉 in
Eqs.(3.26), (3.28) and the operator XNma in Eq.(3.85).
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• ~ωSU(4)
ab : With the definition Eq.(3.11) for ρN (k), it is easy to verify that

〈Ψν̃ [F ]|
[
Γ
†
N,ab(k),

[
ρN (q) ρN (−q),ΓN,ab(k)

]]
|Ψν̃ [F ]〉

=
S

vol2
|FNN (q)|2 sin2

(k ∧ q
2

)
(3.90)

with S = 4. The SU(4)-component of the dispersion is

ω
SU(4)
ab (k) = SIS(k) (3.91)

IS(k) =
1

2

∫ ∞
0

d2q

4π2
|FNN (q)|2 VC(q) sin2

(k ∧ q
2

)
, (3.92)

where EC = e2/εlB and VC(q) = 2π/|q|.

• ~ωSB
ab : The SB-component of the dispersion is non-trivial. The general expressions of the

double commutator

ΘAB
N,ab(k, q) ,

[
Γ
†
N,ab(k),

[
ΓA
N (q) ΓB

N (−q),ΓN,ab(k)
]]

(3.93)

and [
Γ
†
N,ab(k),

[
VSB,ΓN,ab(k)

]]
,

vol

2

∑
q

∑
AB

VAB(q)ΘAB
N,ab(k, q) (3.94)

are tedious and will not be presented. Instead, the result for VSB in Eq.(3.44) is displayed
below as an example, where ΓA

N (q)= ΓB
N (q)= P z

N (q). One easily get

〈Ψν̃ [F ]|ΘPzPz
N,ab(k, q)|Ψν̃ [F ]〉 =

1

vol2
|FNN (q)|2

[
cos(k ∧ q)C +O

]
(3.95)

and the SB-component of the dispersion in this case is

~ωSB
ab (k) = g

[
CJC2(k) +OJO(k)

]
(3.96)

JC2(k) =
1

2

∫ ∞
0

d2q

4π2
|FNN (q)|2 VPzPz(q) cos(k ∧ q) (3.97)

JO(k) =
1

2

∫ ∞
0

d2q

4π2
|FNN (q)|2 VPzPz(q) =

1

4π
(3.98)

where VPzPz(q) = 1 and the coefficients in ωSB
ab (k) are

C = −2P z
aaP

z
bb (3.99)

O =
∑
c

|P z
ac|

2
+
∑
c

|P z
bc|

2 ≥ 0 (3.100)



3.4. SINGLE-MODE ANALYSIS OF SPIN-PSEUDOSPIN WAVES 59

(a) IS(q) (b) JC2(q)

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

q lB

I
S

(0
)

N=0
N=1
N=2

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

q lB

I
C

2
(1
)

N=0
N=1
N=2

Figure 3.2: The integrals (a) IS(q) and (b) JC2(q), plotted at N = 0, 1, 2 with appropriate units
such that VC(k) = 2π/ |k|, VPzPz(k) = 1.

The Fb, Fa vectors that are used in the definition of the operators ΓN,ab(k) and XNmb in
Eq.(3.84).

The sign of the strength g of the interaction potential VPzPz(q) = g is crucial to the stability of
the ground state of SU(4) quantum Hall ferromagnet represented by |Ψν̃ [F ]〉, because a negatively
dispersing component ωSB

ab (k) would cause condensation of spin-wave excitations at finite k and
hence drastically changes the ground state.

In the above computation of the spin wave dispersion ~ωab(k), the effect of interaction has not
been carefully treated. The method of bosonization proposed in Ref.[158, 39, 40, 41] is dangerous
because the crudely truncated part of the commutator for spin-pseudospin operators ΓA

N (k) could
lead to catastrophic collapse of the many-body Hilbert space. A proper way to obtain the dispersion
is via the poles of the spin susceptibility [88]

χabcd(k, ω) , −i
∫ ∞

0

eiωt
〈[

Γ
†
N,ab(k, t),ΓN,cd(k, 0)

]〉
. (3.101)

SU(4)-extended GMP algebra. The double commutators Eqs.(3.88), (3.93) involved in the
above computation of the spin wave dispersion ωab(k) is unique for the quantum Hall ferromagnet.
Neglecting the form factor FNN (k) and the factor of vol−1 in the definition of ΓA

N (k) [Eq.(3.41)],
the algebra among them can be summarized in the following commutator:

[
ΓA ⊗ [k],ΓB ⊗ [q]

]
= iFAB

K ΓK ⊗ [k + q] cos
(k ∧ q

2

)
+ iDAB

K ΓK ⊗ [k + q] sin
(k ∧ q

2

)
(3.102)
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where the structural constants FAB
K , DAB

K satisfy

DAB
0 ≡ δAB (3.103)

DA0
K ≡ δA

K (3.104)

FAB
K = −FBA

K (3.105)

FA0
K = F0A

K = 0 (3.106)

and 2Γ0 is equal to the identity matrix and ΓA (A = 1, 2, · · · , 15) is the generator of su(4) Lie
algebra [19, 75, 173] with the structural constant FAB

K and DAB
K :[

ΓA,ΓB
]

= iFAB
K ΓK, (3.107){

ΓA,ΓB
}

= iDAB
K ΓK. (3.108)

The trace normalization of the generator ΓA is

Tr
[
ΓA†ΓB

]
= δAB (3.109)

for A,B = 0, 1, 2, · · · , 15.
The algebra Eq.(3.102) is derived from the Girvin-MacDonald-Platzman algebra, [61] which is

also known as the W∞ algebra [146, 123, 29, 57]. Its operator form is given in Eq.(2.111) in §2.3.
In its matrix form, the multiplication rule for two matrices [k] and [q] defined in Eq.(3.10) has the
following form:

[k][q] = exp
(
i
k ∧ q

2

)
[k + q] . (3.110)

Therefore the commutator between them is[
[k], [q]

]
= 2i sin

(k ∧ q
2

)
[k + q] . (3.111)



Chapter 4

Quantum Hall Skyrmions

In the quantum Hall ferromagnet, the sub-levels in a Landau level are close in energy. Because of
this, mixing among the sub-levels is easier than the inter-Landau-level mixing. At integer filling
of the sub-levels, quasi-particles or quasi-holes are dressed with spin textures with finite spatial
extension in order to minimize the energy. They become skyrmions.

This chapter is devoted to QH skyrmions. §4.1 shows the symmetry of the texture of a spin
skyrmion, which motivates the discussion on the elastic model from variational analysis in §4.2. A
generalization of the elastic model is given in §4.3, which allows for the discussions on spin-valley
textures. As results of the minimization of skyrmion energy, different types of spin-valley skyrmions
of topological charge 1 are presented in §4.4 for ν̃ = 1 and §4.5 for ν̃ = 2.

4.1 Symmetries of spin skyrmions

Variational state from the one-particle or one-hole state. The results from exact diagonal-
ization [2] show that the following one-particle and the one-hole state (the LL index N is omitted
in the subscripts of C and C†)

|Ψp
0〉 , C†0↑|↓↓ · · · ↓〉 (4.1)∣∣Ψh
0

〉
, C0↓|↓↓ · · · ↓〉 (4.2)

with single spin flip do not have the lowest energy; the lowest-energy state has multiple spin flip and
hence carries a spin texture. The simplest description of the spin texture would be a continuous
unit vector field m(r), which determines a rotation operator eiΩ[m(r)] that acts on Ψp

0 and rotates
it to a normalized variational state

|Ψp[m(r)]〉 , eiΩ[m(r)]|Ψp
0〉 = eiΩ[m(r)]C†0↑|↓↓ · · · ↓〉. (4.3)
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Similarly, one can construct the variational state from the one-hole state Ψh
0 :

|Ψh[m(r)]〉 , eiΩ[m(r)]
∣∣Ψh

0

〉
= eiΩ[m(r)]C0↓|↓↓ · · · ↓〉. (4.4)

Intuitively, the operator eiΩ[m(r)] “dresses” the particle/hole with a spin texture m(r). The discus-
sions on |Ψh[m(r)]〉 is similar to that on |Ψp[m(r)]〉 and are omitted in the following paragraphs.

The operator Ω[m] in the rotation operator eiΩ[m(r)] is defined implicitly from the following
equations

m(r) = Λ
〈

Ψp[m(r)]
∣∣S(r)

∣∣Ψp[m(r)]
〉
, (4.5)

S(r) ,
∑
mn

C†NmασαβCNnβφ
∗
Nm(r)φNn(r), (4.6)

where Λ is a constant that ensures the normalization of m(r) at each spatial point r and φNm(r)

are the wave functions in the N ’th Landau level. The operator Ω[m] depends on the vector field
m(r) in a non-trivial way, because m(r) is obtained rather from the state Ψp[m], not from the
angle parameters of spin rotations. However, it is non-trivial to write down the precise form of
Ω[m]. Considerable efforts were made in Ref.[56, 52] in obtaining an explicit expression of Ω[m].

Symmetry of the variational field m(r). Without relying on concrete models of ferromagnets,
let us discuss the symmetry of the spin texture, by examining the simplest continuous unit vector
field m(r) which points upwards at r = 0 and downwards at |r| → ∞. Moving in the xy-plane
along the radius at a fixed polar angle θ and rotate m(0) towards its opposite direction w.r.t. the
eθ axis, one generates a string of unit vectors, which is depicted in Fig.4.1(a). Then rotate the
radius together with the generated vectors on it, one can produce the entire profile of m(r) on the
xy-plane, as is shown in Fig.4.1(b). Such a profile is called “Néel skyrmion” in the literature. [90]

The final step — “rotation of the radius” — suggests that we consider the rotation operation on
the field m(r). The generator of a rotation of scalar field ψ(r) = ψ(r, θ) is

L̂ = −i ∂
∂θ
, (4.7)

where θ is the polar coordinate. The exponential of L̂ acting on the scalar field ψ(r, θ) then gives

eiαL̂ψ(r, θ) = ψ(r, θ + α), (4.8)

which implies that the rotation invariant scalar field is independent of the polar angle θ. For a vector
field m(r) = m(r, θ) the spatial rotation L̂ can be accompanied by an internal rotation Ŝ of the
vector m:

eiα(L̂+Ŝ)m(r, θ) = eiαŜm(r, θ + α) (4.9)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: (a,b) Néel skyrmion with θ0 = π/2 in Eq.(4.11). (c,d) Néel skyrmion with θ0 = −π/2, obtained by a
global π-rotation of m(r) in the previous case. (e,f) Bloch skyrmion with θ0 = π. (g,h) Anti-skyrmion with η = −1
and θ0 = π/2 in Eq.(4.11).
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where [L̂, Ŝ] = 0. If m(r) is invariant under such combined rotation, the generator Ŝ can be
determined from m(0) because at least the internal rotation should leave m(0) unaltered. If we
further require that the magnetization is uniform far from r = 0, then m(|r| → ∞) = ±m(0).

Without loss of generality by assumingm(0) = [0, 0, 1]T andm(∞) = [0, 0,−1]T, we obtain two
solutions distinguished by η:

Ŝ = η


0 −i 0

i 0 0

0 0 0

 , eiαŜ =


cosα η sinα 0

−η sinα cosα 0

0 0 1

 , η = ±1. (4.10)

The null state of the generator L̂+ Ŝ is invariant under the combined rotation Eq.(4.9). It has the
form

m(r, θ) ∝ g(r)
(

e−iη(θ+θ0)[i, 1, 0]T + eiη(θ+θ0)[−i, 1, 0]T
)

+ f(r)[0, 0, 1]T

=


−
√

1− f(r)2 sin[η(θ + θ0)]√
1− f(r)2 cos(θ + θ0)

f(r)

 , (4.11)

where f(0) = 1, f(∞) = −1 and η = ±1. If the function f(r) is smooth and monotonically
decreasing, the case θ0 = ±π/2 corresponds to the “Néel skyrmion” shown in Fig.4.1(b) (d), whereas
the case θ0 = π corresponds to the “Bloch skyrmion”, which is shown in Fig.4.1(f). The case with
η = −1 is called anti-skyrmion. An example of Néel anti-skyrmion is shown in Fig.4.1(h).

Symmetry of the effective Lagrangian L[m, ṁ]. The effective Lagrangian

L[m, ṁ] = 〈Ψp[m]|i∂t|Ψp[m]〉 − 〈Ψp[m]|H|Ψp[m]〉 (4.12)

from the variational state Ψp[m] is invariant under a global rotation ofm(r). This can be shown by
applying an infinitesimal global rotation eεA on m(r). Such rotation changes m(r) by εAm(r) +

O(ε2) and hence changes Ψp[m] into

∣∣Ψp[eεAm]
〉

= eiΩ[exp(εA)m]|Ψp
0〉 =

(
1 +O(ε2)

)
eεA eiΩ[m]|Ψp

0〉

≡
(
1 +O(ε2)

)
eεA |Ψp[m]〉 = (1 + εA )|Ψp[m]〉+O(ε2), (4.13)

where we have ε � 1, AT = −A and A † = −A . The operator A is uniquely determined by the
generator A that acts on the vector field m(r) via the infinitesimal form of Eq.(4.5):

Am(r) = Λ
〈

Ψp[m(r)]
∣∣[S(r),A ]

∣∣Ψp[m(r)]
〉
. (4.14)
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Because the Hamiltonian is invariant under global rotation, one has [H,A ] = 0. Because A does
not depend on time, one also has [i∂t,A ] = 0. Under the infinitesimal global rotation, the change
of the effective Lagrangian vanishes:

δL[m, ṁ] = 〈Ψp[m]|[i∂t, δA ]|Ψp[m]〉 − 〈Ψp[m]|[H, δA ]|Ψp[m]〉 = 0. (4.15)

Therefore, the effective Lagrangian is invariant under global rotations of m(r). Such symmetry
allows for the construction of the non-linear sigma model, which is the topic of next section.

4.2 Elastic model for spin skyrmions

O(3) non-linear sigma model. Considering the collection of unit vector fields

m(r) =
[

sin θ(r) cosφ(r), sin θ(r) sinφ(r), cos θ(r)
]T (4.16)

as variational parameters and following the general procedure of the variational analysis in Appendix
§D, the effective Lagrangian can be constructed:

L[m, ṁ] = T [m, ṁ]− V [m]

T [m, ṁ] , 〈Ψ[m]|i~∂t|Ψ[m]〉

V [m] , 〈Ψ[m]|H|Ψ[m]〉, (4.17)

where Ψ[m] can be either Ψp[m] or Ψh[m]. These fields are sections of the O(3) vector bundleM
on the xy-plane. The discussion in the previous section concludes that L[m, ṁ] is invariant under
global O(3) rotations of m(r). Therefore the lowest-order gradient expansion of V [m] is the elastic
energy of a membrane in the target space S2, with isotropic stress and strain tensors:

V [m] =
ρs
2

∫
d2r

(
∇m

)2
+ ∆V [m]. (4.18)

It is called non-linear sigma model (NLSM). The elastic constant ρs is called “spin stiffness” [10],
which is obtained by matching the dispersion of the “spin waves” in the system.

Kinetic term and Berry phase. The variational ansatz Ψ[m] maps the vector bundle M to
the Kähler space of quantum states, inducing the Berry connection [18]

A(t) = 〈Ψ[m(t)]|∂t|Ψ[m(t)]〉 = ρ0

∫
d2r

∂m

∂t
·A(m) (4.19)
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where the normalization factor ρ0 = (2πl2B)−1 can be understood by matching dimensionalities of
T [m, ṁ] and V [m], or discretizing the

∫
d2r integrals. The Berry connection density

A(m) , 〈Ψ[m]| δ
δm
|Ψ[m]〉 = S cot θeφ (4.20)

is the vector potential for the magnetic monopole of charge S. Here S = 1/2 for spin-1/2 electrons.
Using the CP1-“spinor” Z parametrized as

Z =
(

cos
θ

2
, eiφ sin

θ

2

)T

, (4.21)

which is related to the unit vector m by the equation

m = Z†σZ , (4.22)

the kinetic part of the Lagrangian can be written as

T [m, ṁ] = i~A(t) = i~ρ0

∫
d2rZ†∂tZ . (4.23)

One may criticize that such expression is not invariant under a gauge transformation

Z(r, t)→ eiϕ(r,t)Z(r, t) (4.24)

of the CP1-field Z(r, t). It is a well-known fact that a sphere cannot be covered by a single coordinate
patch (simply-connected open set). The above expression of T [m, ṁ] makes sense only with the
integral over t, which should be understood as an integral of the 1-form

dT = i~ρ0

∫
d2rZ†dZ (4.25)

on the manifold of time t. To properly write down the 1-form dT , one can choose the homogeneous
coordinate

Z = (1 + |u|2)−
1
2 [1, u]T (4.26)

or
Z = (1 + |w|2)−

1
2 [w, 1]T, (4.27)

so that the one form is written as

dT =
i~ρ0

2

udu− udu

1 + uu
=
i~ρ0

2

vdv − vdv

1 + vv
. (4.28)

There is no phase ambiguity with these coordinates.
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Matching spin wave dispersions. The above discussion shows that the lowest-order gradient
expansion of the effective Lagrangian is

L[m, ṁ] = L[Z, Ż] = T [Z, Ż]− V [Z]

=

∫
d2r

[
i~ρ0Z

†∂tZ − 2ρs
(
DZ

)† ·DZ] , (4.29)

where DiZ = ∂iZ − (Z†∂iZ)Z = (1− ZZ†)∂iZ and ρ0 = 1/(2πl2B) is the magnetic flux density in a
Landau level. The low-energy excitations above the uniform state

m(r) = −ez = [0, 0,−1]T

Z = [0, 1]T (4.30)

are the spin waves, whose configuration can be expressed by the “π-field” (the (r, t)-dependence of
m, Z and π is not shown):

m · σ = ei
[
πxσx+πyσy

]
(−σz) e−i

[
πxσx+πyσy

]
Z = ei

[
πxσx+πyσy

]
[0, 1]T (4.31)

To the lowest order of πx and πy, the effective Lagrangian in terms of the “π-field” is

L[π, π̇] =

∫
d2r

[
~ρ0

(
πx∂tπy − πy∂tπx

)
− 2ρs

((
∇πx

)2
+
(
∇πy

)2)
+ · · ·

]
. (4.32)

The corresponding Euler-Lagrange equations are

~ρ0∂tπx = 2ρs∇2πy + · · ·

~ρ0∂tπy = −2ρs∇2πx + · · · , (4.33)

which yields the dispersion
~ω(k) =

2ρs
ρ0
|k|2 + · · · . (4.34)

Such dispersion should match the dispersion obtained by the single-mode analysis in §3.4.
For SU(2) QH ferromagnet, the single-mode analysis gives the dispersion in the lowest Landau

level as follows:

~ω↑↓(k) = ∆Z +
( e2

εlB

)
4I

(0)
S (k) = ∆Z +

e2

εlB

√
π

2

[
1− e−

|k|2
4 I0

( |k|2
4

)]
= ∆Z +

1

4

√
π

2

e2

εlB
|k|2 +O

(
|k|4

)
(4.35)
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Figure 4.2: Energy profile of E =
∫

d2r
(
∇m

)2 for different configurationsm(r) with boundary conditionm(|r| →
∞) → m∞. Topological sectors in configuration space are labeled by an integer Q. In each topological sector, the
energy-minimizing configuration is marked by a black dot.

where the integral I(0)
S (k) is defined in Eq.(3.92) in §3.4. For the N = 0 Landau level, the integral is

IS(k) =
1

2

∫ ∞
0

d2q

4π2
e−

1
2 |q|

2 2π

|q|
sin2

(k ∧ q
2

)
=

1

4

√
π

2

[
1− e−

|k|2
4 I0

( |k|2
4

)]
=

1

16

√
π

2
|k|2 +O

(
|k|4

)
. (4.36)

Comparing to Eq.(4.34) one finds the spin stiffness

ρs =
1

16π

√
π

2

e2

εlB
, (4.37)

which agrees with the results in Ref.[151].

Topological charge. The gradient term

E [m] =

∫
d2r

(
∇m

)2 ≡ E [Z] = 4

∫
d2r

(
DZ

)† ·DZ (4.38)

DiZ = ∂iZ − (Z†∂iZ)Z = (1− ZZ†)∂iZ

in V [m] requires more discussions. For non-extensive configurations, it is fare to set a boundary
condition

m(|r| → ∞)→m∞

Z(|r| → ∞)→ Z∞ (4.39)
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(a) (b)

Figure 4.3: (a) The image of xy-plane that does not wrap the Bloch sphere. (b) The image of xy-plane that wraps
the Bloch sphere once. In both figures, the black and red arrows represent m(0) and m(∞) respectively.

such that the magnetization outside the region |r| ≤ R is approximately uniform. The energy
profile E [m] for smooth configurations m(r) is shown in Fig.4.2. The configuration space ♣, i.e.
the collection of fields m(r), is a disjoint union of topological sectors ♠Q, which are labeled by the
topological charge Q ∈ Z. Such integer is the well-known Pontryagin number

Q =

∫
d2r ρtopo(r) (4.40)

ρtopo =
1

4π
m · (∂xm× ∂ym) =

1

2πi
εij
(
DiZ

)†(
DjZ

)
where the integrand of the first integral is essentially an area element on the Bloch sphere of the
unit vector m. Consider m(r) as a mapping from the xy-plane to the Bloch sphere. The integral,
which is over the entire image of the xy-plane, counts the number of wrappings of the xy-plane over
the Bloch sphere via mapping m(r). The image must be closed (see Fig.4.3) if m(r) satisfies the
boundary condition Eq.(4.39). Therefore the Pontryagin number Q, or the number of wrappings,
must be an integer. By the same reason, two configurations in different topological sectors cannot
be connected via smooth deformations. There are infinite energy barriers in E [m] that block the
transition between configurations in different topological sectors.

Within each topological sector ♠Q, the energy E [m] or E [Z] is bounded from below:

E [m] ≡ E [Z] ≥ 8π|Q| . (4.41)

This is a consequence of the following Bogomolny-Prasad-Sommerfield (BPS) inequalities: [22, 129]∫
δij
(
∂im± εikm× ∂km

)
·
(
∂jm± εjlm× ∂lm

)
dr ≥ 0 ⇔ 2E [m]∓ 16πQ ≥ 0 , (4.42)

or ∫
δij
(
DiZ ± iεikDkZ

)†(
DjZ ± iεjlDlZ

)
dr ≥ 0 ⇔ 1

2
E [Z]∓ 4πQ ≥ 0 . (4.43)
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When the equality holds, m or Z must satisfy the BPS equations

∂im± εijm× ∂jm = 0 (+ for Q > 0 and − for Q < 0) (4.44)

DiZ ± iεijDjZ = 0 (+ for Q > 0 and − for Q < 0) (4.45)

which have the following (equivalent) solutions:

m(r, θ) =
[
λ2 + r2|Q|]−1


2r|Q|λ cos[Q(θ + θ0)]

2r|Q|λ sin[Q(θ + θ0)]

λ2 − r2|Q|

 (4.46)

Z(x, y) =
[
λ2 + (x2 + y2)|Q|

]− 1
2
[
λ, eiQθ0(x+ sgn(Q)iy)|Q|

]T
, (4.47)

and they are related by
m = Z†σZ . (4.48)

The profiles of such skyrmions with Q = 1 and different values of θ0 has been shown in Fig.4.1.
The particular feature of a QH skyrmions is that it carries electric charge [151, 110, 9], which, to

the lowest order of gradient of m(r), can be associated to the topological charge. Such highly non-
trivial relation between the topological charge and electric charge has been verified independently in
a series of publications – see Refs.[151] [110] [28] [133] [56] [42]. One should not be surprised by the
fact that the spin texture in QH ferromagnet carries electric charge because the texture is induced
by an additional electron (or hole) on top of the integer-filled, spin-polarized Landau sub-level. The
distinguishing feature is that the identity

δρel(r) = eρtopo(r) (4.49)

holds in such case where

ρtopo(r) =
1

4π
m · (∂xm× ∂ym) =

1

2πi
εij
(
DiZ

)†(
DjZ

)
(4.50)

is the integrand in the expression of topological charge Q in Eq.(4.40). Ref.[151] pointed out that
such identity follows from the cancellation of real-space Berry phase

A(r) = Z†(r)∇Z(r) (4.51)

of spin texture represented by Z(r), by the Chern-Simons gauge field aCS(r), where the former give
rise to ρtopo(r) as

ρtopo(r) = ez ·∇×A(r) (4.52)
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and the latter is related to δρel(r) via the Chern-Simons relation [174]

δρel(r) = (2k + 1)φ0ez ·∇×
[
aCS(r) +Aem(r)

]
, (4.53)

where ∇×Aem(r) = −Bez is the vector potential of the applied magnetic field and φ0 = h/e is the
magnetic flux quanta. The number (2k+1) counts the magnetic flux quanta attached to one electron
in a Landau level. For integer filling of Landau sub-level one has k = 0, i.e. one flux quantum per
electron.

It should be emphasized that the above Chern-Simons argument applies only at regions far from
the core of the localized texture, i.e. the argument is valid in the infrared limit. In a preceding work
Ref.[99], the mechanism involved in the cancellation had already been discussed by generalizing the
boson-vortex duality [89]. Interestingly, such mechanism appears to be crucial [142] also in a model
[135] for the Néel-VBS (valence-bond solid) transition in antiferromagnetic quantum Heisenberg
model, where the formation of skyrmions is responsible for the deconfined quantum criticality [144].
The key insight from this work – order parameter of the VBS phase arises from a “dual theory” –
has been generalized recently [140] to relate different quantum field theories in the infrared limit. In
the context of QH ferromagnets, it is not clear whether any duality exists among the effective field
theories for different phases.

The relation between the electric charge and the topological charge of the spin texture has also
been verified to the lowest order of gradient expansion in Ref.[56] and Ref.[42], which emphasize
on the noncommutativity of the spin and charge density operators after being restricted to single
Landau level. The semi-classical approach in Ref.[42] is particularly intuitive. In this paper, a
bi-local field ρ(r, r′) ,

∑
σ

〈
ψ†σ(r′)ψσ(r)

〉
has been expanded around the point R = (r + r′)/2

up to second order of the ratio |r − r′|/lB. An off-diagonal order parameter
〈
ψ†↑ψ↓

〉
appears in

the expansion, and the lowest order term has the same form of ρtopo(r). The role of higher-order
gradient terms in the expansion, however, has not been well understood.

Ref.[28] and Ref.[133] have verified independently that the second-order gradient expansion of
V [m] contains not only the NLSM term shown in Eqs.(4.18), (4.38) and (4.29), but also a term
proportional to the topological charge Q. Regrettably, the results do not agree – Ref.[133] has used
the δ-interaction, making it hard to compare to the result in Ref.[28], which uses the Coulomb
interaction. Without derivations, I present the result in Ref.[28] [Eq.(32) of the paper]:

V [m] =
ρs
2

∫
d2r (∇m)2 − 8πρs

∫
d2r ρtopo(r) + ∆V [m]

=
ρs
2

∫
d2r

[
(∇m)2 − 4m · (∂xm× ∂ym)

]
+ ∆V [m] , (4.54)

where ∆V [m] contains more than three derivatives of m(r) and is neglected.
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Dzyaloshinskii-Moriya term. Before going to higher-order gradient expansion of V [m], it is
worth mentioning that in the model for other two-dimensional ferromagnets [21, 20], there exists
the so-called Dzyaloshinskii-Moriya term which stabilizes the texture of skyrmions and distinguishes
the Q = 1 skyrmion and the Q = −1 anti-skyrmion. Such term originates from spin-orbit coupling
in the hosting material and has the following appearance: [116]

V [m] =

∫
d2r

[J
2

(
∇m

)2
+ αm · (∇×m)−B ·m

]
, (4.55)

where we also included the Zeeman coupling to the applied magnetic field B. It was pointed in
Ref.[77] that the corresponding formulation with the CP1 field Z is

V [Z] =

∫
d2r

[
2J
(
DZ

)† ·DZ −B · (Z†σZ)
]
, (4.56)

with a modified covariant derivative

DiZ = ∂iZ − (Z†∂iZ)Z+i
α

2J
σiZ (4.57)

where the Dzyaloshinskii-Moriya term αm · (∇×m) is absorbed into the quadratic term. It is then
very convenient to solve the first-order differential equation DiZ = 0 for the ground state of the
ferromagnet. The Dzyaloshinskii-Moriya term may also exist in QH ferromagnets [33, 31], but this
topic is outside the scope of this thesis.

Coulomb interaction of topological charge. The identification of the excess electric charge
density δρel with the topological charge density ρtopo has immediate consequence for the ∆V [m]

term which contains more than two gradients of the field m – spin texture has energy from the
Coulomb interaction of its electric charge density:

∆V [m] =
1

2

∫
dr

∫
dr′ρtopo(r)V (r − r′)ρtopo(r) + · · · (4.58)

where each ρtopo(r) contains two terms of ∂m and such term is the fourth order of the gradient
expansion of V [m]. The interaction is usually considered as the Coulomb interaction V (r) = e2/ε|r|.

In principle, such term could be verified by direct computation of the average

V [m] =
〈

Ψp/h[m(r)]
∣∣H∣∣Ψp/h[m(r)]

〉
(4.59)

where
∣∣Ψp/h[m]

〉
have been introduced earlier in Eqs.(4.3), (4.4). In practice, however, such di-

rect but tedious computation has rarely been carefully. An enlightening discussion appears in
Ref.[42], where the δ-interaction and Coulomb interaction has been discussed to reproduce Eq.(4.58)
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at Hartree-Fock level, i.e.
V [m] = VH[m]− VF[m] (4.60)

where the Hartree term

VH[m] =
1

2

∑
σσ′

∫
dr

∫
dr′ V (r − r′)

〈
ψ†σ(r)ψσ(r)

〉〈
ψ†σ′(r

′)ψσ′(r
′)
〉

(4.61)

gives rise to the Coulomb interaction of topological charge, whereas the NLSM part in V [m] is
derived from Fock term

VF[m] =
1

2

∑
σσ′

∫
dr

∫
dr′ V (r − r′)

〈
ψ†σ(r)ψσ′(r

′)
〉〈
ψ†σ′(r

′)ψσ(r)
〉
. (4.62)

These results are in agreement with Ref.[28] and Ref.[54, 57, 55, 56, 58]. The key technique leading
to these results is the gradient expansion (also known as semi-classical expansion, WKB expansion
[50], asymptotic expansion, adiabatic expansion) of the bi-local order parameter

Pσσ′(r, r
′) ,

〈
ψ†σ′(r

′)ψσ(r)
〉

=
∑
mm′

〈
C†Nm′σ′CNmσ

〉
〈Nm′|r′〉 〈r|Nm〉 . (4.63)

around the center R = (r+ r′)/2 in order of |r− r′|/lB. Essentially, such expansion is possible due
to the noncommutative nature of the order parameter restricted in a single Landau level. Direct
analogy can be made to the quantum mechanics in phase space [168] where the Planck’s constant
~ is replaced by the square of magnetic length l2B in the derivative expansion of Groenewold–Moyal
product [70, 113]. The expansion of Pσσ′(r, r′) has also been made explicit in Ref.[56].

In the viewpoint of variational principle, it would be more natural to consider Pσσ′(r, r′) or
equivalently

〈
C†Nm′σ′CNmσ

〉
, instead of m(r), as variational parameters, since the former is more

detailed and the latter can be derived from the former. The noncommutative nature of the field
Pσσ′(r, r

′), or equivalently the matrix
〈
C†Nm′σ′CNmσ

〉
, suggests that the effective field theory may

be a noncommutative field theory (NCFT) [44, 155], and the gradient expansion of V [m] discussed
earlier could be considered as its semi-classical expansion. Moreover, QH skyrmions could well be
noncommutative solitons [141, 67], as was pointed out in Ref.[57, 56]. It was argued in Ref.[71]
that the NCFT for QH systems is not favorable because its physical prediction does not fit to the
phenomenology of QH physics.

Other high-order gradient expansions. Ref.[7] has identified another term in ∆V [m]:

∆V [m] = − 3

16
ρs

∫
dr
(
∇2m

)2
. (4.64)

Its effect would be minor modification of the shape of the skyrmion texture.
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4.3 Elastic model for spin-valley skyrmions

Matrix field description of SU(4) QH ferromagnet. The non-linear sigma model for spin
textures discussed above has been generalized [9] from SU(2) multi-component QH system [110]
to SU(N). For the case of graphene monolayer, Refs.[162, 64] show that the low-energy Landau
levels are four-fold degenerate due to electron spin and Dirac valley degrees of freedom and have
SU(4) symmetry among them. In the same spirit of deriving the effective Lagrangian for the vector
field m(r), one may write down the effective Lagrangian for the spin-pseudospin texture, which is
described by a matrix field P (r). Such a field should at least reproduce the unit vector field for spin
texture if the valley degree of freedom is frozen, and vice versa generate the pseudospin texture if
the spin degree of freedom is frozen. Due to the global SU(4) invariance of the system, the matrix
P (r) at a given spatial point r must also be transformed by a particular representation of the SU(4)

group. Moreover, the transformations on the filled sub-levels and on the empty sub-levels should
not affect P (r), since they leave the system unchanged.

The choice of Grassmannian [69] satisfies the conditions above. In the following paragraphs, I
will justify such choice. Similar discussions can be found in Refs.[57, 92].

For uniform density state |Ψν̃ [F ]〉 discussed in §. 3.2 for an SU(4) QH ferromagnet, the matrix
field P (r) is uniform and has the following form [also Eq.(3.38) in §3.2]:

P =

ν̃∑
k=1

FkF
†
k , (4.65)

where F1, F2, · · · , Fν̃ ∈ C4 are normalized vectors1 used to construct the uniform density state [also
Eq.(3.28) in §. 3.2]

|Ψν̃ [F ]〉 =
∏
m

( 4∑
ζ=1

F1ζC
†
Nmζ

)
· · ·
( 4∑
η=1

Fν̃ηC
†
Nmη

)
|ν̃ = 0〉. (4.66)

In general, a uniform density state of SU(N) QH ferromagnet with ν̃ filled sub-levels can be described
by a N × ν̃ matrix in the coset space

Gr(ν̃, N) ,
U(N)

U(ν̃)×U(N− ν̃)
. (4.67)

In particular, the matrices describing SU(4) QH ferromagnet at ν̃ = 1 and ν̃ = 2 are in the coset
space Gr(1, 4) ≡ CP3, Gr(2, 4) respectively.

1The name “spinor” for these vectors in Ref.[102, 103] is inappropriate and I will not use it in this thesis.
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Intuitively, one can promote the matrix P to a matrix field P (r) and use it as variational
parameters. At each spatial point r, the decomposition Eq.(4.65) also applies to P (r) and gives

P (r) =

ν̃∑
k=1

Zk(r)Z†k(r) , (4.68)

where Z1(r), Z2(r), · · · , Zν̃(r) ∈ C4 are normalized vectors for all r. Such decomposition will be
clarified in the next paragraph when the NLSM is presented. In the following discussions, the depen-
dence on spatial coordinate r will be omitted. The effective Lagrangian for a “locally ferromagnetic”
QH system can be constructed in the same manner as the previous discussion on the spin textures.
The presence of valley pseudospin in graphene monolayer gives rise to fourfold degenerate Landau
levels and SU(4) as transformation group within each Landau level. There are different types of tex-
tures, they can be spatial variations of electron spin, the valley pseudospin, or the “entanglement”
[43] between them. The shape of textures depends on the symmetry-breaking interaction VSB, which
are discussed in §3.2 and are present in general settings of the host material – graphene monolayer.
Spin-valley skyrmions are present in various appearances, which will be discussed in paragraphs
below.

Nonlinear sigma model for matrix field. The variational principle (Appendix §D) gives the
following effective Lagrangian of the SU(N) QH ferromagnet with ν̃ filled sub-levels:

L[P, Ṗ ] = T [P, Ṗ ]− V [P ]

T [P, Ṗ ] , 〈Ψ[P ]|i~∂t|Ψ[P ]〉

V [P ] , 〈Ψ[P ]|H|Ψ[P ]〉 , (4.69)

where V [P ] = VNLSM[P ] + VSB[P ] + ∆V [P ] consist of the NLSM part VNLSM[P ] and a contribution
from the symmetry-breaking interaction VSB at the lowest order of the gradient expansion, together
with ∆V [P ] at higher orders.

The easiest way of writing the NLSM for the matrix field P is to follow the procedure in Appendix
§D with a homogeneous Kähler potential in the target space Eq.(4.67). The result is

VNLSM[P ] = K

∫
drTr[∇P∇P ] , (4.70)

where K should be determined from the matching of the SU(N) spin waves to the results of the
single-mode approximation. One can obtain the same result by making the analogy from the matrix
version for the energy functional V [m] of spin texture m(r) in §4.2. Denote P = ZZ†, one can
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write the gradient term E [m] in the matrix field P :

E [m] =

∫
dr
(
∇m

)2 ≡ E [P ] , 2

∫
drTr[∇P∇P ] , (4.71)

where P is a 2× 2 matrix field with CP1 as the target space. Because the NLSM Eq.(4.70) for the
SU(N) QH ferromagnet should be reduced to the one for spin if all other degrees of freedom are
frozen, one then obtains

K = ρs (4.72)

in Eq.(4.70).
For the general matrix field P with target space Gr(ν̃, N), the NLSM can be written down as a

direct generalization of the NLSM for spin texture:

E [Z] =

∫
dr 4

(
DZ

)† ·DZ ,
∫

dr
∑
i=x,y

ν̃∑
k=1

4
(
DiZk

)†
DiZk . (4.73)

It has the same form as Eq.(4.38) but Z here is a N × ν̃ matrix (field)

Z =


z11 z21 · · · zν̃1

z12 z22 · · · zν̃2

...
...

...
...

z1N z2N · · · zν̃N


︸ ︷︷ ︸

ν̃ columns

=
[
Z1, Z2, · · · , Zν̃

]
, Z†i Zj = δij (4.74)

and the covariant derivative is

DiZ = ∂iZ − ZAi = (1− ZZ†)∂iZ (4.75)

Ai = Z†∂iZ.

It is related to the matrix field P [also shown in Eq.(4.68)]

P = ZZ† =

ν̃∑
k=1

ZkZ
†
k , (4.76)

With the help of the above equations and the decomposition Eq.(4.68), one can verify that
Tr[∇P∇P ] = 2

(
DZ

)† ·DZ, hence E [Z] [in Eq.(4.73)] and

E [P ] , 2

∫
drTr[∇P∇P ] (4.77)
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for the general matrix field P are equivalent. Perhaps E [P ] is the simplest form of the NLSM,
however, the Berry term has to be written in Z. (See paragraph below.)

Kinetic term and Berry phase. The Berry connection and the kinetic part of the effective
Lagrangian takes the natural form: [92, 42]

A(t) = 〈Ψ[P (t)]|∂t|Ψ[P (t)]〉 = ρ0

∫
drTr

[
Z†∂tZ

]
T [P, Ṗ ] = i~A(t) = i~ρ0

∫
drTr

[
Z†∂tZ

]
, (4.78)

which should be understood, similar to earlier discussions on the kinetic term of the spin texture,
as a 1-form:

dT = iA(t)dt = i~ρ0

∫
drTr

[
Z†dZ

]
, (4.79)

and the phase ambiguity can be eliminated by working with the Schubert standard form [9, 69]
for the matrix field Z. Another possibility could be the Plücker coordinate. Notice that the Berry
connection cannot be written as 1-form with the matrix field P (r, t) because Tr

[
PdP

]
≡ 0. However,

it is still possible [9, 143] to write down a 2-form Tr
[
PdP ∧ dP

]
on the two dimensional manifold of

time t and auxiliary coordinate u.

Symmetry-breaking term. The symmetry-breaking interaction VSB discussed in §3.3 implies
the following term for a slowly varying matrix field P (r):

VSB[P ] =
∑
AB

VH
AB

∫
drTr

[
P (r)ΓA

]
Tr
[
P (r)ΓB

]
−
∑
AB

VF
AB

∫
drTr

[
P (r)ΓAP (r)ΓB

]
, (4.80)

where VH
AB and VF

AB are defined in Eq.(3.60) and Eq.(3.61) in §3.3. For VAB(r) = MABδ(r), it was
shown that for parabolic conduction band with isotropic mass, one has

VH
AB = VF

AB = ρ0MAB , (4.81)

therefore the energy Eq.(4.80) for slowly varying matrix field P can be written as

VSB[P ] = ρ0

∫
dr
∑
AB

MAB

(
Tr
[
PΓA

]
Tr
[
PΓB

]
− Tr

[
PΓAPΓB

])
. (4.82)

The symmetry-breaking interaction VSB also induces additional gradient terms because it intro-
duces anisotropy to the target space of the matrix field P (r). The precise form of such term is given
in Ref.[161]. In principle, the method provided in Ref.[42] is sufficient to determine it.
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Matching the spin-valley wave dispersion. With Eqs.(4.78) (4.70) and (4.82) in the effective
Lagrangian, one can obtain the dispersions of various types of spin wave in the elastic model of
the SU(N) QH ferromagnet. From the analysis in §3.4 it is evident that the spin-pseudospin wave
depends on the ferromagnetic ground state. There is a limited number of branches of the spin-
pseudospin wave on a specific type of ground state. For graphene monolayer as an SU(4) QH
ferromagnet, at filling factor ν̃ = 1 of the N = 0 Landau level, there are 3 branches of the spin-
pseudospin wave, whereas at ν̃ = 2 there are 4 branches. Ref.[161] claims an elastic energy functional
of spin-pseudospin waves where all the 15 branches are present under appropriate constraints.

Topological charge and interaction. It is a known fact that the second homotopy group of
Gr(ν̃, N) = U(N)/U(ν̃)×U(N− ν̃) is [78]

π2

(
Gr(ν̃, N)

)
= Z , (4.83)

which means that the mapping from S2 to Gr(ν̃, N) can be labeled by the topological charge

Q =

∫
dr ρtopo(r) (4.84)

ρtopo =
1

2πi
εijTr

[
P∂iP∂jP

]
=

1

2πi
εijTr

[(
DiZ

)†(
DjZ

)]
.

To describe localized textures, the following boundary conditions for Z [defined in Eq.(4.74)] and P
[decomposed as in Eq.(4.68)] are necessary:

Z(|r| → ∞)→ Z∞U(r) (4.85)

P (|r| → ∞)→ P∞ , (4.86)

where U(r) is a ν̃ × ν̃ unitary matrix that is responsible for the transformations within the filled ν̃
sub-levels. Under these boundary conditions, the texture of the matrix field approaches to uniform
configurations at spatial infinity, and the xy-plane can be consistently compactified to S2 by joining
the r =∞. Therefore the matrix field Z(r) or P (r) can be viewed as mapping from S2 to Gr(ν̃, N)

and be labeled by Q ∈ Z in Eq.(4.84).
The relation between the topological charge density ρtopo [Eq. (4.84)] and the excess electric

charge density δρel is the same [9] as the relation for spin textures [discussed around Eq.(4.49)].
From the Chern-Simons point of view, such relation is highly unusual when ν̃ > 1. For instance, the
graphene monolayer at charge neutrality corresponds to the integer filling ν̃ = 2 of the N = 0 Landau
level in an SU(4) QH ferromagnet. The cancellation of real space Berry phase of the spin-valley
texture and the Chern-Simons term has not been well understood.

The Coulomb interaction of topological charge arises similarly as for the spin texture [see dis-
cussions around Eq.(4.60) in previous section]. The higher-order gradient expansion contains the
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term
∆V [P ] =

1

2

∫
dr

∫
dr′ρtopo(r)V (r − r′)ρtopo(r) + · · · (4.87)

where V (r) = e2/ε|r| and ρtopo(r) is the topological charge density Eq.(4.84) for the Gr(ν̃, N)

texture in SU(N) QH ferromagnet.

4.4 Spin-valley skyrmions at ν̃ = 1.

Solution of BPS equation and skyrmion ansatz. At quarter filling ν̃ = 1 of the N = 0 LL in
the graphene monolayer, the matrix field P can be decomposed as P = ZZ† with one normalized
four-component complex vector field Z. At each spatial point r, the vector field Z(r) is equivalent to
Z(r)eiϕ(r) since they produce the same matrix field P (r). The technical details for parametrization
of Z(r) at each point r are explained in Appendix §G. The important difference between the spin-
pseudospin texture described by P (r) and a “direct product” of textures in spin and pseudospin
can be seen from a simple counting of parameters. At each spatial point r, the matrix field P (r)

is targeting at point in the symmetric space CP3 and has 6 real parameters, they are two angles
for the direction of spin magnetization, two angles for the pseudospin magnetization, and another
two angles that describes the “mixing” or “entanglement” [43] of spin and pseudospin. The last two
angles originate from quantum mechanical superposition of the wave functions that carry spin and
pseudospin degrees of freedom. They are not captured by the “direct product” of textures in spin
and pseudospin. The SU(4) spin-valley symmetry of graphene monolayer guarantees that there is
no preferred directions in the target space of the matrix field P .

To obtain configuration that minimizes the NLSM energy E [P ] in each class of matrix field P

with topological charge Q, it is necessary to compose the BPS inequality for E [P ]. Working with
the vector field Z, the BPS inequality for E [Z] has the same form as in Eq.(4.43). The solutions are
skyrmions and are given in Appendix §H:

Z = N−1/2
(
λC + zQF

)
(4.88)

N = |λ|2 + |z|2Q + 2Re
[
λ∗zQ(C†F )

]
, (4.89)

where the center vector C is a normalized vector that characterizes the texture at r = 0, whereas
the normalized vector F describes the “ferromagnetic background” of a skyrmion at r = ∞ and
hence called the FM (ferromagnetic) vector. The parameter λ ∈ R can be understood as the size of
the texture, because the solution has topological charge density

ρtopo(r) =
λ2Q2 |r|2(Q−1)

π
(
λ2 + |r|2Q

)2 , (4.90)
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(a)

↓

↑ (b) K ↑

K ↓

K'↑

K'↓

Figure 4.4: Illustration for (a) spin skyrmion and (b) different types of spin-valley skyrmions in graphene monolayer
N = 0 LL at ν̃ = 1.

which is concentrated in a disk of radius λ on the xy-plane. If the center of the skyrmion is chosen
to be at the origin of xy-plane, one has

F †C = 0 . (4.91)

Such a choice introduces axial symmetry in both the texture and the topological charge density
of the skyrmion and simplifies the energy minimization by reducing the number of parameters in
the ansatz. The above solutions can be easily reduced to Eq.(4.47) for two-component vector field
Z, since C is uniquely determined by the above equation with respect to F , which is given by
the ferromagnetic environment far outside the texture. In contrast, for the spin-valley skyrmions
in graphene monolayer at ν̃ = 1, there are three independent choices of C with respect to F (see
Fig.4.4 for illustrations). Eventually the center vector C is determined by minimizing the full energy
of the skyrmion.

Symmetry of the skyrmion ansatz. In §4.1 I showed that the vector field m(r) of a spin
skyrmion is invariant under the joint action of coordinate space rotation generated by L̂ =

−i∂θ[Eq.(4.7)], and the rotation of magnetization generated by Ŝ [Eq.(4.10)]. The invariant unit
vector field is determined up to its radial profile [Eq.(4.11)]. The skyrmion ansatz Eq.(4.88) shows
similar rotational invariance. While the coordinate space rotation should always be generated by
L̂ = −i∂θ, the rotation of the vector Z(r) at each spatial point r is generated by

Ŝ =
η

2

(
CC† − FF †

)
η = sgnQ . (4.92)

The joint transformation of Z(r) of coordinate space and magnetization reads exp
[
iα(L̂+ Ŝ)

]
and

leaves the skyrmion ansatz invariant up to a global phase factor:

eiα(L̂+Ŝ)Z(r) = ei
η
2 αZ(r) . (4.93)

Method and result of energy minimization. Given the skyrmion ansatz Z(r) in Eq.(4.88),
the Q = 1 skyrmion at quarter filling ν̃ = 1 of the N = 0 LL of graphene monolayer is determined
by the minimization of the following energy functional of matrix field P (r) = Z(r)Z†(r):

Esk[P ] = VNLSM[P ] + ∆V [P ] + VSB[P ]− VSB[PFM] , (4.94)
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Figure 4.5: (a) Diagram of skyrmion types at ν̃ = 1 of N = 0 LL in graphene monolayer. Red lines mark the borders
of skyrmion types, whereas the black lines separate the regions of different ferromagnetic ground states. Arrows
connecting the borders to the abbreviations, which indicate the type of the skyrmion (red) or the ferromagnetic
background (black). Abbreviations in the diagram: “UEA” – Unentangled easy-axis; “UEP” – Unentangled easy-
plane; “EEA” – Entangled easy-axis; “EEP” – Entangled easy-plane; “sk.” – skyrmion; “Ppin” – Pseudospin; “Ent.” –
Entanglement; “Defl.” – Deflated. (b) and (c) shows the skyrmion size (marked in black) and energy (marked in blue)
along (b) Line A (u⊥ + uz = −3.5) and (c) Line B (u⊥ = 2.5) in sub-figure (a). The peak of the curves are located
at uz0 = −1.75 along Line A and uz0 = 0.5 along Line B. Along Line C, the skyrmion size and energy behave similar
to those along Line B and thus are not shown.



82 CHAPTER 4. QUANTUM HALL SKYRMIONS

where VNLSM[P ], ∆V [P ], VSB[P ] are given in Eq.(4.70), Eq.(4.87), Eq.(4.82) respectively, and PFM =

FF † with vector F in the skyrmion ansatz describes the ferromagnetic background of the skyrmion
when |r| → ∞.

I set the magnetic field at B = 50T for the skyrmion energy minimization, thus the ratio between
Zeeman energy ∆Z and Coulomb energy EC is

δ =
∆Z

EC
=

gµBB

e2/(4πε0εlB)
= 0.011

√
B[T] ≈ 0.08 . (4.95)

I have also used EC = e2/(4πε0εlB) as the energy scale and lB =
√
~/eB as the length scale.

A radial deformation [103] (publication of the author of this thesis) of the solution Eq.(4.88) has
been introduced to regularize the Zeeman energy of the texture. The final result is summarized in
Fig.4.5(a). Four types of skyrmions have been found:

• Spin skyrmion — They exist when the ferromagnetic background is unentangled easy-axis
(UEA) or unentangled easy-plane (UEP) and |u⊥ − uz| is large. The spin magnetizations 2 of
the center vector C and the FM vector F have opposite directions with magnitude 1, but their
pseudospin magnetizations 3 are the same. In fact, the skyrmion ansatz can be factorized into
Zspin(r)⊗Zppin, where Zspin(r) is the CP1-field for the spin skyrmion given in Eq.(4.47), and
Zppin is a constant vector for pseudospin.

• Pseudospin skyrmion — They exist when the ferromagnetic background is unentangled easy-
axis (UEA) or unentangled easy-plane (UEP) and |u⊥ − uz| is small. In contrast to the spin
skyrmions, the pseudospin magnetizations of the center vector C and the FM vector F have op-
posite directions with magnitude 1, but their spin magnetizations are the same. The skyrmion
ansatz can be factorized into Zspin⊗Zppin(r) with constant vector Zspin and CP1-field Zppin(r)

that is identical to Eq.(4.47).

• Entanglement skyrmion — They exist in all types of ferromagnetic background. Both the
spin and pseudospin magnetizations of the center vector C are reversed compared to the FM
vector F . It is remarkable that in the skyrmion ansatz, only the entanglement parameters are
changing throughout the xy-plane. The angles for spin and pseudospin magnetizations in the
skyrmion ansatz are identical at different spatial points.

• Deflated pseudospin skyrmion — They exist when the ferromagnetic background is entangled
easy-axis (EEA) or entangled easy-plane (EEP) and |u⊥ − uz| is small. The spin magneti-
zations of the center vector C and the FM vector F are of the same directions but different

2The spin magnetization of vector Z is MS , Tr [SP ] = Z†SZ = |cosα|mS with ‖mS‖ = 1, see Eq.(G.5) in
Appendix G.

3The pseudospin magnetization of vector Z isMP , Tr [T P ] = Z†T Z = |cosα|mP with ‖mP‖ = 1, see Eq.(G.5)
in Appendix G.
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magnitudes, and both of them are smaller than 1. The directions of pseudospin magnetizations
for C and F reversed, and both magnetizations have magnitudes smaller than 1.

According to Appendix §G, the CP3-manifold can be imagined as a product of three spheres (shown
in Fig.G.1 and Fig.4.6), which I call the spin Bloch sphere, pseudospin Bloch sphere and entanglement
sphere, respectively. The CP3-field Z(r) for a skyrmion is a mapping from the compactified xy-plane
to these spheres. For a spin skyrmion, regardless of the extra foldings due to the redundancy of
paramterization [Eq.(G.11)], the image of the compactified xy-plane is projected onto the entire
spin Bloch sphere, while its projection on the other two spheres are only points. [See Fig.4.6(a).]
In this way, the pseudospin has been “factored out” from the spin, and there is no entanglement
between them. The projected image of the compactified xy-plane wraps the spin Bloch sphere in
the same way as shown Fig.4.3(b). For the pseudospin skyrmions [Fig.4.6(b) shows an example], the
pseudospin Bloch sphere is wrapped by the projected image of the compactified xy-plane. For the
entanglement skyrmions, the image of the compactified xy-plane is projected onto the entanglement
sphere, while the projections appear as lines through the spin and pseudospin Bloch spheres. [See
Fig.4.6(c).] Finally, for the deflated pseudospin skyrmions [an example is shown in Fig.4.6(d)], the
image of the compactified xy-plane appears in all the three spheres. In the spin and pseudospin
Bloch spheres, the projected images are “deflated spheres”, whereas the third sphere is only partially
covered by the projected image in a way similar to Fig.4.3(a).

Several comments are in order. First, the transition between the Unentangled Easy-Axis (UEA)
phase to Unentangled Easy-Plane (UEP) phase of the QH ferromagnet is coated by a pseudospin
skyrmion phase if the filling factor slightly deviates from ν̃ = 1. It reflects the fact that the
pseudospin degrees of freedom are softer than the others when u⊥and uz are close. In fact, the
pseudospin SU(2) symmetry is restored at u⊥ = uz. Moreover, there will be jumps in the total spin
magnetization of the QH system at the border of spin skyrmion region and pseudospin skyrmion
region, but the energy of skyrmions at two sides of the border are the same. Second, the skyrmion
size diverges when u⊥ = uz [shown in Fig.4.5(b)], because it costs very little to make pseudospin
textures when the pseudospin SU(2) symmetry is restored. In fact at uz = −1.75 the skyrmion
energy equals to 4πρs, which indicates that the Coulomb interaction energy and the anisotropy
energy vanishes. At this point, the pseudospin skyrmion is eventually blown up by the Coulomb
interaction. In contrast, tuning uz along Line B, there is no restoration of any symmetry. The peak
in the skyrmion size does not diverge [shown in Fig.4.5(c)] and the skyrmion energy are always larger
than 4πρs, because there is still a penalty in anisotropy energy when the skyrmion size increases or
decreases too much.
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Spin Pseudospin Entanglement
MS(θS, φS, α) MP(θP, φP, α) (α, β)

(a)

(b)

(c)

(d)

Figure 4.6: Visualizations of several examples for skyrmions at ν̃ = 1. At each spatial point r, the vector field Z(r) is
parametrized with the method given in Appendix §G, leading to various shapes of images of the compactified xy-plane
on the three spheres. The four examples are taken from the result of energy minimization, they are (a) spin skyrmion
in UEA ferromagnetic background, which is the result at u⊥ = −1 and uz = −2.5; (b) pseudospin skyrmion in UEP
ferromagnetic background, at u⊥ = −2 and uz = −1.5; (c) entanglement skyrmion in UEA ferromagnetic background,
at u⊥ = 0.3 and uz = 3; (d) deflated pseudospin skyrmion in EEA ferromagnetic background, at u⊥ = 3.05 and
uz = 3.
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4.5 Spin-valley skyrmions at ν̃ = 2.

Solution of BPS equation and skyrmion ansatz. At half-filling ν̃ = 2 of the N = 0 LL of
graphene monolayer, the target space of the matrix field with

P (r) = Z1(r)Z†1(r) + Z2(r)Z†2(r) (4.96)

Z†1(r)Z2(r) ≡ 0 (4.97)

is the Grassmannian Gr(2, 4). The BPS inequality in this case has the same form as Eq.(4.43) for
the spin texture, except that there is an additional summation over the sub-level index of the matrix
field Z = [Z1, Z2]T. Denote Nk = W †kWk for k = 1, 2, one has the solution (see Appendix §H for
details)

Zk(r) = N−1/2
k

(
λkCk + zQkFk

)
(k = 1, 2) (4.98)

Nk = |λk|2 + |z|2Qk + 2Re
[
λ∗kz
Qk(C†kFk)

]
, (4.99)

where the topological charge of P = Z1Z
†
1 + Z2Z

†
2 is Q = Q1 +Q2. Notice that λ1 and λ2 for the

two sub-levels can be different. The orthogonal condition

Z†1(r)Z2(r) = 0 (4.100)

should be respected for all points r on the xy-plane. In particular, one has F †1F2 = 0 at r =∞ and
C†1C2 = 0 at r = 0. The orthogonal condition F †1C2 = 0 and F †2C1 = 0 are obtained from Z†1Z2 = 0

at a generic point r. In the discussion of skyrmions at ν̃ = 1, the orthogonality between the FM
vector F and the center vector C is equivalent to the choice of the origin point of the xy-plane
to be at the skyrmion center. It is important to notice that, at ν̃ = 2 the condition F †1C1 = 0

and F †2C2 = 0 are not required by the BPS equation. The choice of origin can only fix one of
the two orthogonality condition, leaving the other two free. Physically it means that the centers of
skyrmions described by Z1 and Z2 are not necessarily coincide. To further illustrate the consequences
of a skyrmion at ν̃ = 2 with different centers in each level, we need some mathematical properties
of the solution, which we shall discuss in the next paragraphs.

The matrix field P for filling factor ν̃ = 3 can be related to a matrix field P ′ for ν̃ = 1 via a
particle-hole transformation

P ′ = 1− P , (4.101)

which represents a sub-level of holes. Thus the case of filling factor ν̃ = 3 is equivalent to the case
of ν̃ = 1.
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Figure 4.7: Illustration for Q = 1 spin-valley skyrmion at (a) ν̃ = 1 and (b) ν̃ = 2 of the N = 0 LL in graphene
monolayer, with the vectors in the ansatz being F1 = [1, 0, 0, 0]T, F2 = [0, 0, 1, 0]T, C2 = [0, 1, 0, 0]T where the four
components are labeled as (K ↑,K ↓,K′ ↑,K′ ↓).

Sub-level decoupling of NLSM energy and topological charge. The aforementioned or-
thogonality conditions

F †i Fj = δij = C†iCj

F †1C2 = 0 = F †2C1 (4.102)

for the normalized vectors F1, F2, C1, C2 ∈ C4 in the skyrmion ansatz Eq. (4.98) essentially decouples
the two filled sub-levels. Denote Pk = ZkZ

†
k for k = 1, 2 with Zk defined in Eq. (4.98), it is easy to

show that if the vectors F1, F2, C1, C2 in Z1 and Z2 satisfy the above orthogonality condition, then

Tr [∂Pj∂Pk] ∝ δjk (4.103)

Tr [Pi∂Pj∂Pk] ∝ δijδki . (4.104)

To prove this, notice that both the projector Pk and its derivative ∂Pk are linear combinations of
four matrices

Bk =
{
FkF

†
k , FkC

†
k, CkF

†
k , CkC

†
k

}
(k = 1, 2) . (4.105)

Due to the orthogonality conditions Eq.(4.102), the product of two matrices A1 ∈{
F1F

†
1 , F1C

†
1 , C1F

†
1 , C1C

†
1

}
and B2 ∈

{
F2F

†
2 , F2C

†
2 , C2F

†
2 , C2C

†
2

}
always vanishes. Therefore,

the above properties can be proved by decomposing Pk and ∂Pk in the basis Bk and use the linearity
of the trace.

The trace properties Eqs.(4.103) (4.104) imply the decoupling of the NLSM energy and the
topological charge. The projector can be written as P = P1 + P2 with the notation Pk in the
previous paragraph, then one has

E [P ] = E [P1] + E [P2] = 2Tr [∇P1∇P1] + 2Tr [∇P2∇P2] (4.106)

and

ρtopo[P ] = ρtopo[P1] + ρtopo[P2] =
1

2πi
εijTr [P1∂iP1∂jP1] +

1

2πi
εijTr [P2∂iP2∂jP2] . (4.107)
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Ansatz for Q = 1 skyrmions at ν̃ = 2. The decoupling of the NLSM energy and the topological
charge implies that the Q = 1 skyrmion must have the following form:

Z1 = F1

Z2 = N−1/2
(
λC2 + zF2

)
N = |λ|2 + |z|2 , (4.108)

where F1, F2, C2 ∈ C4 satisfies the orthogonality condition Eq.(4.102) plus the condition F †2C2 = 0.
At r =∞, the matrix field P approaches to the ferromagnetic ground state

PFM , f1f
†
1 + f2f

†
2 , (4.109)

with normalized vectors f1, f2 ∈ C4 being related to F1, F2 by a unitary transformation U(θ, ω, ϕ):

f1 = U11 (θ, ω, ϕ)F1 + U12 (θ, ω, ϕ)F2

f2 = U21 (θ, ω, ϕ)F1 + U22 (θ, ω, ϕ)F2 (4.110)

where

U(θ, ω, ϕ) =

[
e

1
2 i(ϕ+ω) cos θ i e

1
2 i(ω−ϕ) sin θ

i e−
1
2 i(ω−ϕ) sin θ e−

1
2 i(ϕ+ω) cos θ

]
∈ U(2) . (4.111)

Such transformation is used to connect the f1, f2 vectors representing the ground state of the SU(4)

QH ferromagnet at ν̃ = 2 and the F1, F2 vectors representing the texture at spatial infinity. They
should produce the same matrix field, i.e.

PFM , f1f
†
1 + f2f

†
2 ≡ F1F

†
1 + F2F

†
2 . (4.112)

The ansatz Eq.(4.108) can be understood as an interpolation between the ferromagnetic back-
ground PFM = P (∞) = F1F

†
1 +F2F

†
2 and the skyrmion center PCent = P (0) = F1F

†
1 +C2C

†
2 . There

are 4 choices for the vectors at skyrmion center in the present case, because one has to select one
sub-level in the two filled ones for the ferromagnetic background to interpolate with one of the two
empty sub-levels. The situation is exactly the same as the single-mode spin-valley waves discussed in
§3.4. To describe the spin-valley waves, an orthonormal and complete set of basis Fa (a = 1, 2, 3, 4)
has to be constructed with respect to the uniform density state |Ψν̃ [F ]〉. The vectors F1, F2 in the
skyrmion ansatz play the same role as Fa (1 ≤ a ≤ ν̃), whereas C2 may coincide with one of the
vectors Fa (a > ν̃). In the analysis of spin-valley waves, different choices of Fa (a > ν̃) would affect
the energy dispersion via Eqs.(3.99), (3.100). Similarly, the energy of skyrmion at ν̃ = 2 varies with
C2 in the ansatz, which is evident in the result of energy minimization shown in the next paragraph.
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The presence of the “masking” sub-level Z1 in the ansatz makes the Q = 1 skyrmions at ν̃ = 2

harder to characterize. Simple examples of skyrmions are counter-intuitive when being viewed by
straightforward indicators such as the spin magnetization and valley occupation. In the discussions
below, I use PCent to characterize the skyrmions.

Method and result of energy minimization. The Q = 1 skyrmion at quarter filling ν̃ = 2

of the N = 0 LL of graphene monolayer is determined by the minimization of the following energy
functional of matrix field P (r) = Z1(r)Z†1(r) + Z2(r)Z†2(r):

Esk[P ] = VNLSM[P ] + ∆V [P ] + VSB[P ]− VSB[PFM] , (4.113)

where VNLSM[P ], ∆V [P ], VSB[P ] are given in Eq.(4.70), Eq.(4.87), Eq.(4.82) respectively, and PFM =

F1F
†
1 +F2F

†
2 with vectors F1, F2 in the skyrmion ansatz describes the ferromagnetic background of

the skyrmion when |r| → ∞.
In practice, the vectors f1, f2 representing the two filled sub-levels are obtained by minimization

of the anisotropy energy VSB[PFM] with the parametrization of PFM = f1f
†
1 + f2f

†
2 given in Ap-

pendix §G. Then they are connected to F1, F2 in the skyrmion ansatz by the U(2) transformation
U(θf , ωf , ϕf ) given in Eq.(4.111) with undetermined angles θf , ωf , ϕf . Afterwards, the vectors c1, c2
for the two empty sub-levels are parametrized similarly (see Appendix §G for details). The vector C2

in the skyrmion ansatz is obtained by applying another unitary transformation U(θc, ωc, ϕc) to mix
the empty sub-levels with undetermined angles θc, ωc, ϕc. The vectors f1, f2, c1, c2 and the mixing
angles θf , ωf , ϕf , θc, ωc, ϕc, together with the size parameter λ are determined by the minimization
of the skyrmion energy Esk[P ].

The result of energy minimization with δ = ∆Z/EC = 0.08 (the same setting as for ν̃ = 1)
is shown in Fig.4.8(a). I found three types of vector C2 at the skyrmion center and use them to
distinguish different types of skyrmions. The regions in Fig.4.8(a) are labeled as “SS”, “PS” and “NS”
with red lines as borders. They are:

• Spin singlet (SS) — The center vector C2 is a spin singlet state, in which two sub-levels have
opposite spin and same pseudospin at r = 0. Such center vector reveals that, if ferromagnetic
background is in FM or CAF phase, the Q = 1 skyrmion at ν̃ = 1 resembles the spin skyrmion
in the case of ν̃ = 1.

• Pseudospin singlet (PS) — Except for regions close to the borders, the center vector C2 is a
pseudospin singlet state, i.e. two sub-levels have opposite pseudospin and same spin at r = 0.
In this case, if ferromagnetic background is in KD or CDW phase, the Q = 1 skyrmion at
ν̃ = 1 resembles the pseudospin skyrmion in the case of ν̃ = 1.
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Figure 4.8: (a) Diagram of skyrmion types at ν̃ = 2 of N = 0 LL in graphene monolayer. Red lines mark the
borders of skyrmions with different types of center vector C2, whereas the black lines separate the regions of different
ferromagnetic ground states. Arrows connecting the borders to the abbreviations, which indicate the type of the
skyrmion center (red) or the ferromagnetic background (black). Abbreviations in the diagram: “FM” – Ferromagnet;
“CDW” – Charge density wave; “KD” – Kekulé dimer; “CAF” – Canted ferromagnet; “SS” – Spin singlet; “PS” –
Pseudospin singlet; “NS” – Néel singlet. Skyrmion size along (b) circle C3 [(g⊥+ 1

4
)2 +(gz + 1

4
)2 = 3.52] and (c) circle

C2 [(g⊥ + 1
4

)2 + (gz + 1
4

)2 = 0.152] in sub-figure (a). The peak of the curves are located at θ = 7π/4 on both curves.
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• Néel singlet (NS) — In the rest of the g⊥ − gz plane, the center vector C2 is a Néel singlet
state, which resembles the antiferromagnetic state that have opposite spin at different valley
index.

Here are some remarks on the result of energy minimization at ν̃ = 2. It is believed [164] that the
CAF phase is experimentally relevant for the graphene monolayer as an SU(4) QH ferromagnet.
Ref.[1] also pointed out that the parameter g⊥ and gz tend to be large at ν̃ = 2. According to the
plot of skyrmion size in Fig.4.8(b) along the large circle C3, large skyrmions exist when (g⊥, gz) is
close to the FM/CAF border (θ = π/2 on C3) of the QH ferromagnet. Large skyrmion also exists
when (g⊥, gz) is close to the boundary between the FM and CDW phases (θ = 7π/4 on C3). In
this case, the skyrmion resembles the entanglement skyrmion at ν̃ = 1 because to change from FM
phase to CDW phase, one has to reverse both the spin and pseudospin of one of the two sub-levels.
Close to the FM/CDW border, it costs very little energy to do so. Therefore the energy would be
close to 4πρs for a skyrmion with F2 and C2 representing the sub-level before and after the change.
Otherwise, it seems impossible to find skyrmions since the skyrmion size is very close to lB, as shown
in Fig.4.8(b).

Q = 2 skyrmions. According to the skyrmion ansatz Eq.(4.98), there are two types of Q = 2

skyrmion, namely the (2 + 0)-type

Z1 = F1

Z2 = N−1/2
(
λ2C2 + z2F2

)
N = |λ|2 + |z|2 (4.114)

and the (1 + 1)-type

Z1 = N−1/2
1

(
λ1C1 + zF1

)
Z2 = N−1/2

2

(
λ2C2 + zF2

)
Nk = |λk|2 + |z|2 (k = 1, 2) . (4.115)

The decoupling of NLSM energy Eq.(4.106) and topological charge density Eq.(4.107) implies that
the latter may have topological charge density that is concentrated in two regions. Since the topo-
logical charge density of a skyrmion is equal to the excess charge density carried by the texture, the
electric charge in two regions has repulsive Coulomb interaction and may lead to an unstable Q = 2

skyrmion of (1 + 1)-type.



Chapter 5

Conclusions

In this thesis, I studied various types of quantum Hall skyrmions in graphene monolayer under
strong magnetic field. The valley degrees of freedom in graphene are described by pseudospin,
whose “magnetization” indicates the superposition of the electron states at two valleys. The long
range Coulomb interaction is invariant under the SU(4) transformations among the spin and valley
sub-levels in a Landau level. Therefore, graphene monolayer is understood as an SU(4) quantum
ferromagnet, which is characterized by an elastic model with a continuous field. Such field describes
the spin and pseudospin textures in the SU(4) quantum ferromagnet. In particular, the spin-valley
skyrmions as localized textures are obtained by energy minimization. Various types of skyrmions
arise from the ground state of the quantm Hall ferromagnet. They are distinguished by the textures
at the center, as well as the size. At quarter filling of the N = 0 Landau level, I have found four
types of skyrmions of topological charge 1 — spin skyrmions, pseudospin skyrmions, entanglement
skyrmions and deflated pseudospin skyrmions. The pseudospin skyrmion is large when the quantum
Hall ferromagnet has approximate pseudospin SU(2) symmetry. At half filling, the center of charge-1
skyrmion has three types — spin singlet, pseudospin singlet and Néel singlet. They corresponds to
skyrmions similar to the spin skyrmion, pseudospin skyrmion and entanglement skyrmion at quarter
filling. Large skyrmions have also been found at the boundary between the CDW and FM phase
of the quantum Hall ferromagnet, as well as at the FM/CAF boundary. The charge-2 skyrmion is
unstable if the two charges are distributed separately in two sub-levels. The experimental relevance
of the works on the charge-1 skyrmion in N = 0 Landau level in graphene monolayer are discussed
in ??.



Appendix A

Conventions for the Fourier transform

Definition 1. Inner product.
The inner product of two functions f(x) and g(x) is defined as

〈f, g〉 ,
∫

dxf∗(x)g(x) (A.1)

where the integration is over the common domain of the two functions.

Definition 2. Orthonormal complete basis.
The set of functions

U =
{
ui(x)

∣∣ i ∈ I} (A.2)

is orthonormal iff
〈ui, uj〉 = δij (A.3)

and ∑
i∈I

u∗i (x)ui(x
′) = δ(x′ − x). (A.4)

Example 3. The plane waves in box of volume vol.
The set of plane waves

W =
{
uk(x) ,

1√
vol

eik·x
∣∣∣k ∈ ( 2π

Lx
nx,

2π

Ly
ny, · · ·

)
, nx, ny ∈ Z

}
(A.5)

is orthonormal because
〈uk, uq〉 =

1

vol

∫
V

dx ei(q−k)·x = δk,q (A.6)
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and

∑
k

u∗k(x)uk(x′) =
1

vol

∑
k

eik·(x
′−x) =

∑
R

δ(x′ − x+R)

= δvol(x
′ − x), (A.7)

where R = mxLxex+myLyey+· · · withmx,my, · · · ∈ Z, and δvol(r) means the Dirac delta function
with r ∈ vol.

Example 4. The plane waves in infinite space.
The set of plane waves

W =
{
uk(x) ,

1√
(2π)d

eik·x
∣∣∣k ∈ Rd

}
(A.8)

is orthonormal because

〈uk, uq〉 =
1

(2π)d

∫
V

dx ei(q−k)·x = δ(d)(k − q) (A.9)

and ∑
k

u∗k(x)uk(x′) =
1

(2π)d

∫
dk eik·(x

′−x) = δ(d)(x′ − x), (A.10)

where we have used the sinc representation of the Dirac delta function∫ +∞

−∞
dk eikx ≡ lim

Λ→∞

∫ +Λ

−Λ

dk eikx

= lim
Λ→∞

1

ix
eikx

∣∣∣k=+Λ

k=−Λ

= 2π lim
ε→0+

1

πε
sinc(ε−1x)

= 2πδ(x). (A.11)

Lemma 5. The replacement rule between discrete and continuous k.
Comparing the previous two examples, we have the replacement rule between discrete and con-

tinuous k
1

vol

∑
k

↔ 1

(2π)d

∫
dk (A.12)

if we use the orthonormal basis defined in the previous two examples. Such replacement rule makes
sense in the limit of vol→∞.

Definition 6. Fourier transform.
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The Fourier transform of a function f(x) is defined as

fi , 〈ui, f〉 , (A.13)

whereas the inverse Fourier transform is

f(x) =
∑
i∈I

fiui(x). (A.14)

Remark 7. The Fourier transform of the density operator ρ(x) with the normalization∫
vol

dxρ(x) = N (A.15)

is defined differently because it contains two fields ψ†(x) and ψ(x). For discrete k,

ρ(k) ,
1

vol

∫
vol

dx e−ik·xρ(x). (A.16)

At k = 0, one has ρ(k = 0) = N/vol. In general, the dimensions of both ρ(k) and ρ(x) are [vol]−1.
The Fourier transform for continuous k is obtained by send the volume to infinity. The inverse
Fourier transform is thus

ρ(x) =
∑
k

eik·xρ(k) (A.17)

for discrete k, and

ρ(x) =
vol

(2π)d

∫
dk eik·xρ(k) (A.18)

for continuous k.

Remark 8. The Fourier decomposition of the interaction potential V (x) is

V (x) =
1

vol

∑
k

eik·xV (k) =
1

(2π)d

∫
dk eik·xV (k) . (A.19)

The dimension of V (k) is [Energy] · [vol]. For example, the Coulomb interaction VC(x) = 1/|x| has
the Fourier component

VC(k) =

∫
dx e−ik·xV (x) =

∫ ∞
0

2π
1

r
J0(|k|r)rdr =

2π

|k|
(A.20)
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in two dimensional space, and

VC(k) =

∫
dx e−ik·xV (x) =

∫ R

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dϕ e−i|k|r cos θ 1

r

=
4π

|k|2
[
1− cos(|k|R)

]
(A.21)

in three dimensional space. The interaction written in Fourier components of V and ρ with discrete
k is

V =
1

2

∫
vol

dx

∫
vol

dx′ρ(x)V (x− x′)ρ(x′)

=
1

2vol

∑
k

(∫
vol

dx eik·xρ(x)
)
V (k)

(∫
vol

dx′ e−ik·x
′
ρ(x′)

)
=

vol

2

∑
k

ρ(−k)V (k)ρ(k) , (A.22)

while the continuous k version is

V =
1

2

∫
vol

dx

∫
vol

dx′ρ(x)V (x− x′)ρ(x′)

=
1

2

∫
dk

(2π)d

(∫
vol

dx eik·xρ(x)
)
V (k)

(∫
vol

dx′ e−ik·x
′
ρ(x′)

)
=

vol2

2

∫
dk

(2π)d
ρ(−k)V (k)ρ(k) . (A.23)



Appendix B

Hartree-Fock method

B.1 Wick’s theorem

Theorem. Wick’s theorem.
The product of N creation and annihilation operators ÂB̂ · · · Ŷ Ẑ is identical to its normal order-

ing : ÂB̂ · · · Ŷ Ẑ :, plus the sum of normal-ordered operators with one contraction : ÂB̂ · · · Ŷ •Ẑ• :,
two contractions : ÂB̂ · · · Ŵ ••X̂••Ŷ •Ẑ• :, etc., up to the term with bN/2c contractions.

ÂB̂ · · · Ŷ Ẑ = : ÂB̂ · · · Ŷ Ẑ :

+ : ÂB̂ · · · X̂Ŷ •Ẑ• : + : ÂB̂ · · · X̂•Ŷ Ẑ• : + · · ·

+ : ÂB̂ · · · V̂ Ŵ ••X̂••Ŷ •Ẑ• : + : ÂB̂ · · · V̂ ••Ŵ X̂••Ŷ •Ẑ• : + · · ·

+ · · · (B.1)

where the normal ordered product
: P̂ Q̂ · · · Û V̂ :

with respect to the vacuum |vac〉 is defined as the rearrangement of the same set of operators by
permuting all the operators that annihilate |vac〉 to the right, multiplied by factor (−1)P with P

being the number of nearest-neighbor permutations needed to get the normal-ordered product. The
contraction of two operators is the difference between the plain product and the normal-ordered
product :

Â•B̂• = ÂB̂− : ÂB̂ :≡ 〈vac|ÂB̂|vac〉 (B.2)

which is always a c-number.

Proof. See Ref.[63].
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Remark. For the purpose of the present thesis, the contraction and normal ordering should be
understood in a more general way. Suppose Â = aĉ†1+a

′
ĉ1 and B̂ = bĉ†2+b

′
ĉ2 are linear combinations

of the creation operators ĉ†1, ĉ
†
2 and annihilation operator ĉ1, ĉ2 with respect to the vacuum |vac〉.

The normal ordering : ÂB̂ : and the contraction Â•B̂• can be defined piecewisely:

: ÂB̂ : ≡: (aĉ†1 + a
′
ĉ1)(bĉ†2 + b

′
ĉ2) :

= ab : ĉ†1ĉ
†
2 : + ab

′
: ĉ†1ĉ2 : + a

′
b : ĉ1ĉ

†
2 : + a

′
b
′

: ĉ1ĉ2 : (B.3)

Â•B̂• ≡ ab ĉ†•1 ĉ
†•
2 + ab

′
ĉ†•1 ĉ

•
2 + a

′
b ĉ•1ĉ

†•
2 + a

′
b
′
ĉ•1ĉ
•
2 (B.4)

The normal-ordered product of three or more operators can be understood similarly. Such under-
standing allows the application of Wick’s theorem directly to the SU(N) QHFM Hamiltonian, where
the operators c†mα and cnβ are linear combinations of the creation and annihilation operators with
respect to a particular QHFM ground state.

B.2 Hartree-Fock method

Definition. Hartree-Fock approximation.
The Hartree-Fock approximation of the interaction

V =
1

2

∑
αβγδ

vαβγδ ĉ
†
αĉ
†
β ĉγ ĉδ (B.5)

is defined with the help of Wick’s theorem:

VHF =
1

2

∑
αβγδ

vαβγδ ×
(
〈vac|ĉ†β ĉγ |vac〉 : ĉ†αĉδ : +〈vac|ĉ†αĉδ|vac〉 : ĉ†β ĉγ :

− 〈vac|ĉ†β ĉδ|vac〉 : ĉ†αĉγ : −〈vac|ĉ†αĉγ |vac〉 : ĉ†β ĉδ :
)

+ 〈vac|V |vac〉 , (B.6)

where we dropped the normal ordering of four operators, to neglect the quantum fluctuation. Using
Eq.(B.2) and the identity vαβγδ = vβαδγ , VHF can be rewritten as

VHF =
∑
αβγδ

vαβγδ ×
(
〈vac|ĉ†β ĉγ |vac〉ĉ†αĉδ − 〈vac|ĉ†β ĉδ|vac〉ĉ†αĉγ

)
+ 〈vac|V |vac〉 − 〈V 〉HF (B.7)
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where the second line is assumed to be a small number and

〈V 〉HF =
∑
αβγδ

vαβγδ ×
(
〈vac|ĉ†β ĉγ |vac〉〈vac|ĉ†αĉδ|vac〉 − 〈vac|ĉ†β ĉδ|vac〉〈vac|ĉ†αĉγ |vac〉

)
. (B.8)



Appendix C

Bargmann representation

The Bargmann representation [12, 13, 85] is a powerful tool for analyzing quantum mechanical
problems with few degrees of freedom. For the quantum harmonic oscillator, one maps the Hilbert
space spanned by |n〉 to the space of L2 holomorphic functions on the complex plane [76]

HL2(C, α) ,

{
φ(z) | ∂φ = 0 ;

∫
C
|φ(z)|2 α(z)dz < +∞

}
(C.1)

with
α(z, z) =

1

π
e−zz, dz = dRe(z)dIm(z) (C.2)

so that the creation operator a† is mapped to z and the annihilation operator a is mapped to ∂.
Under the inner product

(f, g) =
1

π

∫
C
f(z)g(z)e−zzdz, (C.3)

one can check that z and ∂ are adjoint to each other:

(zf, g) =
1

π

∫
C
f(z)zg(z)e−zzdz =

1

π

∫
C
f(z)g(z)(−∂e−zz)dz

=
1

π

∫
C

[∂f(z)g(z)]e−zzdz =
1

π

∫
C
f(z)[∂g(z)]e−zzdz

= (f, ∂g), (C.4)

where in the second line we have used the fact that f is holomorphic, so that ∂f = ∂f = 0. The
Fock state |n〉 is mapped to a holomorphic function

φn(z) ,
1√
n!
zn, (C.5)
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In particular, the vacuum state |0〉 is mapped to φ0(z) = 1, which is a constant holomorphic function.
Notice that φn(z) should not be confused with the coherent state

|w〉 = ewa
†
|0〉, (C.6)

which is a ket in the Fock space spanned by |n〉. The Bargmann representation of the coherent state
|w〉 in HL2(C, α) is

φw(z) ,
∞∑
n=0

1√
n!
wnφn(z) ≡ ewz, (C.7)

which is parametrized by w. One can verify the coherent state condition

∂zφw(z) = wφw(z) (C.8)

holds.
Using the Bargmann representation, one can convert the task of solving Hamiltonian H(a†, a) to

the task of solving complex differential equations.



Appendix D

Time-dependent variational principle

The brief recipe for time-dependent variational calculation is the following: [98, 127]

• Propose an Ansatz for the wave function

Ψ(r) = 〈r|Ψ[φ]〉 (D.1)

which contains a set of variation parameters φ. The collection of all possible parameters φ
forms a manifoldM.

• Compute the effective action

Seff [φ] =

∫
dt L[φ, φ̇] (D.2)

L[φ, φ̇] = 〈Ψ[φ]|i∂t −H|Ψ[φ]〉 (D.3)

as a function(al) of the variation parameter φ.

• Perform the saddle point analysis with S[φ]. In particular, the energy functional E[φ] can be
determined from the static configurations of the variation parameter φ:

E[φ] = −Seff [φ|static]. (D.4)

It is usually assumed that the result φ0 of minimization of E[φ] should give the quantum state
|Ψ[φ0]〉, which corresponds to the ground state of the Hamiltonian H.

Several comments are in order.
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Schrödinger equation. The Schrödinger equation for |Ψ[φ]〉 can be obtained by the saddle point
equation

δ

δφ
Seff [φ] = 0 (D.5)

for the effective action Seff defined in Eq.(D.2). In fact, the right-hand-side gives∫
dt [〈δΨ|(i∂t −H)|Ψ〉+ 〈Ψ|(i∂t −H)|δΨ〉] = 0, (D.6)

where 〈Ψ| and |Ψ〉 should be considered as independent variations of the normalized quantum state
Ψ. The above equation holds iff [8] Ψ satisfies

(i∂t −H) |Ψ〉 = 0. (D.7)

Kähler structure. The total Hilbert space H of quantum states Ψ is Kählerian. [6, 80] The
“meaningfuul metric” (Re [· · · ] is not necessary but I keep it as that was presented in the publication)

gij = Re [〈∂iψ, ∂jψ〉]− 〈ψ, ∂iψ〉 〈∂jψ,ψ〉 (D.8)

emphasized in Ref.[130] is induced from the Kähler metric (an infinite dimensional analogue of the
Fubini-Study metric [6] of the complex projective space CPn)

ds2 =

[
∂2

∂Ψ∂Ψ
lnS

]
dΨ⊗ dΨ (D.9)

S = 1 +
∑
k 6=l

(
Ψk

Ψl

)(
Ψk

Ψl

)
, (D.10)

where the function S has explicit form in the region where the l’th component of the quantum state
Ψ is not zero, i.e. Ψl 6= 0. Meanwhile, the Berry curvature

dA , BijdRi ∧ dRj =

(
∂

∂Ri
〈n(R)|

)(
∂

∂Rj
|n(R)〉

)
dRi ∧ dRj (D.11)

proposed in Ref.[18] is induced from the Kähler form

ω =

[
i

2

∂2

∂Ψ∂Ψ
lnS

]
dΨ ∧ dΨ (D.12)

with the same function S in Eq.(D.10). The function lnS that generates ds2 and ω is called the
Kähler potential. It can only be defined locally where one of the components of Ψ is nonzero. The
variational ansatz Ψ[φ] is a submanifold in the total Hilbert space H. Such submanifold is actually
an embedding of manifoldM for the variation parameter in the Kähler manifold of the total Hilbert
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space H. Because of the embedding, the Kähler form induces a symplectic structure onM, which
was discussed in details in Ref.[98].

Topological terms. The potential part

V [φ] = 〈Ψ[φ]|H|Ψ[φ]〉 (D.13)

has a non-linear σ-model term induced by the Kähler metric Eq.(D.9) if the variation parameter φ
is a field. Denote the base manifold and the target manifold of the field φ as B and F respectively.
The manifoldM of the variation parameter field is a fiber bundle with projection π :M→ B and
local trivialization M|U = U × F , where U ⊂ B is an open set in the base manifold. The stress
tensor ε and strain tensor σ can be defined locally in any open set U ⊂ B as

εab(x) ,
δ2V

δφa(x)δφb(x)
(D.14)

σabµν(x) ,
∂φa

∂xµ
∂φb

∂xν
, (D.15)

so that the elastic part VE [φ] of the potential V [φ] has the following form as a non-linear σ-model
of the parameter field φ(x):

VE [φ] =

∫
dx
√
hhµνεabσ

ab
µν =

∫
dx
√
hhµν

[
δ2V

δφaδφb

]
∂φa

∂xµ
∂φb

∂xν
, (D.16)

where h , det
[
hµν
]
and hµν is the natrual metric in the base manifold B of the parameter field φ.

Unlike the Polyakov action for a Bosonic string, here hµν is given à priori when the parametrization
of the quantum state Ψ is designed. One has to minimize VE [φ] w.r.t. the configuration of the
parameter field φ(x), i.e. to search for a section in the fiber bundle M that minimizes VE [φ].
In fact, Eq.(D.16) is the lowest order of gradient expansion of the potential V [φ]. We obmit the
discussion of higher order gradient expansion of V [φ] here because its form depends on concrete
problems.

The kinetic part
T [φ, φ̇] = 〈Ψ[φ]|i∂t|Ψ[φ]〉 (D.17)

of the Lagrangian L[φ, φ̇] = T [φ, φ̇] − V [φ] in Eq.(D.3) is usually a topological term. This is no
surprise since a set of time-varying variation parameter φ(t) gives an orbit on the manifold M for
the variation parameter and hence on the submanifold in the total Hilbert space H induced by the
variational ansatz Ψ[φ]. The quantity

A(t) = 〈Ψ[φ(t)]|∂t|Ψ[φ(t)]〉 (D.18)
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is nothing but the connection induced by the Kähler structure. If the orbit is closed and the
fundamental group π1(M) ofM is nontrivial, the quantity∫

dt T [φ, φ̇] = i

∫
dtA(t) (D.19)

should be an integer multiple of 2πi.
If the base manifold B of the parameter field φ is even dimensional, then for a given section φ0(x)

(configuration) inM, the Kähler form Eq.(D.12) induces the 2-form ω̊ expressed locally in Ul ⊂ B
as

ω̊
∣∣∣
Ul

=

[
i

2

∂2

∂z∂z
lnS[φ0]

]
dz ∧ dz

=
1

2
Gab[φ0]

∂φa0
∂xµ

∂φb0
∂yν

dxµ ∧ dyν , (D.20)

where the local coordinate on Ul is (xµ, yµ) ≡ (z, z) with z = x+ iy and z = x− iy. The metric

Gab ,
∂2

∂φa∂φb
lnS (D.21)

depends on the embedding of the target manifold (the fiber) F in the Kähler space of quantum state
Ψ. The function S(x) = S(Ψ[φ0(x)],Ψ[φ0(x)]) in the Kähler potential lnS is

S[φ0] = 1 +
∑
k 6=l

(
Ψk[φ0(x)]

Ψl[φ0(x)]

)(
Ψk[φ0(x)]

Ψl[φ0(x)]

)
(D.22)

in the open set Ul ⊂ B. The integration of the n’th order wedge product of the 2-form ω̊ on the
base manifold gives

bn =

∫
B

∧
n

ω̊, (D.23)

they are related to the topological numbers of the given section φ0(x) (configuration) inM.



Appendix E

Zassenhaus formula and

Baker-Campbell-Hausdorff Formula

E.1 Zassenhaus formula

et(A+B) = etAetB
( ∞∏
n=2

et
nZn(A,B)

)
(E.1)

es(A+B) =
( n=2∏
∞

es
nWn(A,B)

)
esBesA (E.2)

Zn(A,B) =
1

n!

{ dn

dtn
(e−t

n−1Zn−1 · · · e−t
2Z2e−tBe−tAet(A+B))

}
t=0

(E.3)

Wn(A,B) =
1

n!

{ dn

dsn
(es(A+B)e−sAe−sBe−s

2W2 · · · e−s
n−1Wn−1)

}
s=0

(E.4)

The computations of Zn and Wn is very easy [30, 93] so we omit them here. Instead, we tabulate a
few terms with small n:

Z2 = −1

2
[A,B] (E.5)

Z3 = −1

6
(2[[A,B], B] + [[A,B], A]) (E.6)

Z4 = − 1

24
([[[A,B], A], A] + 3[[[A,B], A], B] + 3[[[A,B], B], B]) (E.7)

· · ·
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W2 =
1

2
[A,B] = −Z2 (E.8)

W3 = −1

6
(2[[A,B], B] + [[A,B], A]) = Z3 (E.9)

W4 =
1

24
([[[A,B], A], A] + 3[[[A,B], A], B] + 3[[[A,B], B], B]) = −Z4 (E.10)

· · ·

E.2 Baker-Campbell-Hausdorff Formula

According to Ref.[45, 66, 3]:

eZ ≡ eXeY = exp
{ ∞∑
k=1

Qk

}
(E.11)

Q1 = X + Y (E.12)

Q2 =
1

2
[X,Y ] (E.13)

Q3 =
1

12

(
[X, [X,Y ]] + [Y, [Y,X]]

)
(E.14)

Q4 = − 1

24
[Y, [X, [X,Y ]]] (E.15)

· · ·

The most useful case is when the commutator [X,Y ] = c is a c-number:

eXeY = eX+Y e
1
2 [X,Y ] (E.16)



Appendix F

Irreducible representations of Lie

algebra su(4)

Under the physical basis pseudospin⊗ spin = (K ↑,K ↓,K′ ↑,K′ ↓) which is convenient for the study
of graphene, the Cartan subalgebra of su(4) consists of 3 generators [19, 173]:

{Sz = σ0 ⊗ σz , Pz = σz ⊗ σ0 , Nz = σz ⊗ σz} , (F.1)

They support a three-dimensional root system, which is shown in Fig.F.1. The remaining 12 gener-
ators Ei ∈ E are

E = {τ+ ⊗ σ+, τ− ⊗ σ−, τ+ ⊗ σ−, τ− ⊗ σ+,

τK ⊗ σ+, τK ⊗ σ−, τK′ ⊗ σ+, τK′ ⊗ σ−,

τ+ ⊗ σ↑, τ− ⊗ σ↑, τ+ ⊗ σ↓, τ− ⊗ σ↓ } . (F.2)

The root vector αi = (si, ti, ni) (i = 1, 2, · · · , 12) for these generators are computed as

[Sz, Ei] = siEi , [Tz, Ei] = tiEi , [Nz, Ei] = niEi . (F.3)

Here both τx,y,z and σx,y,z denote the Pauli matrices. The other 2×2 matrices are defined as

σ± = σx ± iσy , τ± = τx ± iτy , σ↑,↓ =
1

2
(σ0 ± σz) , τK,K′ =

1

2
(τ0 ± τz) . (F.4)

For a better visualization, the 12 generators are grouped in three lines in Eq. F.2, and colored in
red, blue and green respectively in Fig. F.1.
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Figure F.1: The root system of su(4). The symbols Ei (i = 1, 2, · · · , 12) represent the 12 roots in E, in an order
shown in Eq.(F.2). Their root vectors are written below the symbols and definitions.

The weight diagrams for the irreducible representation [4], [4] and [6] are shown in Fig.F.2. Each
weight |s, t, n〉 is labeled by three numbers:

Sz|s, t, n〉 = s|s, t, n〉 , Tz|s, t, n〉 = t|s, t, n〉 , Nz|s, t, n〉 = n|s, t, n〉 . (F.5)

The four basis vectors of the fundamental representation [4] are{∣∣∣∣12 , 1

2
,

1

2

〉
,

∣∣∣∣−1

2
,

1

2
,−1

2

〉
,

∣∣∣∣12 ,−1

2
,−1

2

〉
,

∣∣∣∣−1

2
,−1

2
,

1

2

〉}
, (F.6)

which are labeled by P1, P2, P3 and P4 in Fig.F.2(a). Similarly for the irreducible representation
[4] conjugate to [4], the four basis vectors are{∣∣∣∣12 , 1

2
,−1

2

〉
,

∣∣∣∣−1

2
,

1

2
,

1

2

〉
,

∣∣∣∣12 ,−1

2
,

1

2

〉
,

∣∣∣∣−1

2
,−1

2
,−1

2

〉}
, (F.7)

which correspond to P 1, P 2, P 3 and P 4 in Fig.F.2(b). The irrep [6] has six basis:

{|1, 0, 0〉, |0, 1, 0〉, |−1, 0, 0〉, |0,−1, 0〉, |0, 0, 1〉, |0, 0,−1〉} , (F.8)

and they are labeled by Pi (i = 1, ..., 6) in Fig.F.2(c).
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(a) (b)

(c)

Figure F.2: Weight diagram of the irreducible representations of su(4) Lie algebra . (a) Fundamental representation
[4]. (b) Irreducible representation [4] dual to [4] (c) Asymmetric representation [6]. The weights (si, ti, ni) are
computed by Eq.(F.3) and shown as points labeled by Pi in each diagram. The colored lines connects the weights are
the root vectors in Fig.F.1.



Appendix G

Parametrization of CP3 and Gr(2, 4)

manifold

G.1 Parametrization of CP3 manifold

The 6-dimensional CP3 manifold is a coset space

CP3 =
U(4)

U(3)×U(1)
. (G.1)

Its volume is

vol
[
CP3

]
=

vol
[
U(4)

]
vol
[
U(3)

]
× vol

[
U(1)

] =
24π

4(4+1)
2 /3!2!1!0!(

2π
1(1+1)

2 /0!
)(

23π
3(3+1)

2 /2!1!0!
) =

π3

6
. (G.2)

It can be represented by a 4× 4 Hermitian matrix P of rank 1 and eigenvalue 1, 0, 0, 0. Such matrix
can be decompsed as

P = ZZ† (G.3)

where the normalized four-component complex vector Z ∈ C4 is the eigenstate of the matrix P at
eigenvalue 1 up to an overall phase factor eiϕ, i.e. Z satisfies PZ = Z. The U(3) transformation
corresponds to the unitary transformation among three orthonormal complex vector Z1, Z2, Z3 ∈ C4

which are the orthogonal complement of Z, whereas the U(1) transformation is simply Z → eiϕZ.
To further parametrize the normalized four-component complex vector Z ∈ C4, let us label the

components of Z as (K ↑,K ↓,K′ ↑,K′ ↓) and use the Pauli matrices σi (i = 1, 2, 3) to define the
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spin and pseudospin operator

Si , σi ⊗ σ0

Ti , σ0 ⊗ σi . (G.4)

The spin and pseudospin magnetizations of P = ZZ† are

MS , Tr [SP ] = Z†SZ = |cosα|mS

(
θS, φS

)
MP , Tr [T P ] = Z†T Z = |cosα|mP

(
θP, φP

)
, (G.5)

mX = (sin θX cosφX, sin θX sinφX, cos θX) , X = S,P (G.6)

where the three-component real unit vector mX represents direction of the magnetizations, and
α ∈ [0, π) determines their magnitude. The eigenstates of the matrix mX · σ are

[σ ·mX]ψX = ψX

[σ ·mX]χX = −χX , X = S,P (G.7)

with

ψX =
(

cos
θX

2
, eiφX sin

θX

2

)T

(G.8)

χX =
(
− e−iφX sin

θX

2
, cos

θX

2

)T

. (G.9)

They are used [43] to parametrize the complex vector Z

Z = cos
α

2
ψS ⊗ ψP + eiβ sin

α

2
χS ⊗ χP, (G.10)

which has 6 real parameters: angles α, β appeared explicitly in Eq.(G.10), two angles contained
in ψS and χS, as well as the other two contained in ψP and χP. These angles indded appears in the
spin and pseudospin magnetizations of Z computed in Eq.(G.5).

The parametrization of Z as Eq.(G.10) is redundant. In fact one has

ei(φS+φP−β)Z
(
θS, φS, θP, φP, α, β

)
= Z

(
π − θS, π + φS, π − θP, π + φP, π − α, β′

)
(G.11)

β′ = −β + 2φS + 2φP.

I have confirmed that the parametrization Eq.(G.10) indeed covers the CP3 manifold twice, by
computing the volume of the parameter space with a metric induced from the real part of the
natural Fubini-study metric [117]

g = Tr [P.dP ⊗ .dP ] (G.12)
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Spin Pseudospin Entanglement
MS(θS, φS, α) MP(θP, φP, α) (α, β)

(a)

(b)

(c)

(d)

Figure G.1: Visualizations of several examples for the parametrization of Z with six angles. When α = 0, such as
in (a) and (c), the spin and pseudospin magnetizations have magnitude 1 and are on their Bloch spheres, whereas
for α ∈ (0, π/2), for example (b) and (d), the spin and pseudospin magnetizations are generally in the Bloch spheres
because their magnitudes are smaller than 1.
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where “⊗” denotes the tensor product of the 1-forms in the cotangent space and “.” means the usual
matrix product. For CP3 space, the metric and the volume form are

gαβ = Re
[
Tr
[
P.
∂P

∂xα
.
∂P

∂xβ

]]
(G.13)

vol =
√
|gαβ |dθSdφSdθPdφPdαdβ (G.14)

Integrate vol on the entire parameter space S2 × S2 × S2, one has

V =

∫
S2×S2×S2

vol

=
(2π)

3

64

∫ π

0

dα

∫ π

0

dθS

∫ π

0

dθP sinα cos2 α sin θS sin θP

=
π3

3
, (G.15)

which is twice of the voluem of CP3 space computed in Eq.(G.2), thereby confirming the two-fold
Z2 redundancy.

The parametrization of Z is ambiguous at α = 0 or θS,P = 0, π because β or φS,P is not well-
defined, but nevertheless Z is unique with these parameters.

G.2 Parametrization of Gr(2, 4) manifold

The 8-dimensional Gr(2, 4) manifold is defined as

Gr(2, 4) =
U(4)

U(2)×U(2)
. (G.16)

Its volume is

vol
[
Gr(2, 4)

]
=

vol
[
U(4)

]
vol
[
U(2)

]2 =
24π

4(4+1)
2 /3!2!1!0!(

22π
2(2+1)

2 /1!0!
)2 =

π4

12
. (G.17)

It can be represented by a 4× 4 Hermitian matrix P of rank 2 and eigenvalue 1, 1, 0, 0. Such matrix
can be decompsed as

P = Z1Z
†
1 + Z2Z

†
2 (G.18)

where the normalized four-component complex vectors Z1, Z2 are the eigenstates of the matrix P of
eigenvalue 1, i.e. they satisfy PZ1,2 = Z1,2, Z

†
1Z2 = 0. The U(2) transformations can mix Z1 and

Z2, as well as their orthogonal complements.
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According to Eq.(G.10), both Z1 and Z2 can be parametrized by 6 real parameters. However,
the Gr(2, 4) manifold is 8-dimensional. Therefore, Z1 and Z2 must have 2 × 6 − 8 = 4 parameters
in common, which can be chosen arbitrarily from the 6 real parameters that parametrize each of
them. Different choice can be connected via the U(2) unitary transformation which mixes Z1 and
Z2. Based on Eq.(G.10), I choose the common parameters to be θS, φS, θP, φP and parametrize Z1,
Z2 as

Z1 = cos
α1

2
ψS ⊗ ψP + eiβ1 sin

α1

2
χS ⊗ χP (G.19)

Z2 = cos
α2

2
χS ⊗ ψP + eiβ2 sin

α2

2
ψS ⊗ χP, (G.20)

so that Z†1 · Z2 = 0 is always respected. Such choice of parametrization is convenient because the
total spin magnetization MS and pseudospin magnetization MP can be computed as follows:

MS , Tr [SP ] = Z†1SZ1 + Z†2SZ2 = (cosα1− cosα2)mS

(
θS, φS

)
MP , Tr [T P ] = Z†1T Z1 + Z†2T Z2 = (cosα1+ cosα2)mP

(
θP, φP

)
. (G.21)

The matrix P = Z1Z
†
1 + Z2Z

†
2 is now parametrized by 8 real variables – θS, φS, θP, φP in common,

α1, β1 for Z1 and α2, β2 for Z2.
The parametrization of Z1, Z2 and hence P = Z1Z

†
1 +Z2Z

†
2 has a four-fold Z2 ×Z2 redundancy

– one Z2 is inhierated from the parametrization of the CP3-vector Z1 and Z2, whereas the other Z2

arises from the interchange of them. To be concrete, the former Z2 redundancy reads

ei(+φS+φT−β1)Z1 (θS, φS, θP, φP, α1, β1) = Z1 (π − θS, π + φS, π − θP, π + φP, π − α1, β
′
1)

ei(−φS+φT−β2+π)Z2 (θS, φS, θP, φP, α2, β2) = Z2 (π − θS, π + φS, π − θP, π + φP, π − α2, β
′
2)

with

β′1 = −β1+2φP + 2φS (G.22)

β′2 = −β2−2φP + 2φS . (G.23)

These equations guarantee that, upon reversion of the spin and pseudospin directions, as
well as the transformations of α1, α2, β1, β2 shown in the above equations, the projector
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P (θS, φS, θP, φP, α1, β1, α2, β2) remains unaltered. The other Z2 redundancy is

Z1 (θS, φS, θP, φP, α1, β1) (G.24)

= e+iφSZ2 (π − θS, π + φS, θP, φP, α1, β
′
1)

Z2 (θS, φS, θP, φP, α2, β2) (G.25)

= ei(π−φS)Z1 (π − θS, π + φS, θP, φP, π − α2, β
′
2)

with

β′1 = π + β1−2φS (G.26)

β′2 = π + β2+2φS . (G.27)

They ensure that an interchange between α1 and α2, accompanied by reversion of the spin magneti-
zation and appropriate transformations of β1, β2, leaves the projector P (θS, φS, θP, φP, α1, β1, α2, β2)

unchanged.
The parametrization Eqs.(G.19) (G.20) indeed covers the Gr (2, 4) manifold four times, because

the volume of the parameter spaceM = S2 × S2 × S2 × S2 is

V =

∫
M

vol

=
(2π)

4

512

∫ π

0

dθS

∫ π

0

dθP sin θS sin θP

∫ π

0

dα1

∫ π

0

dα2 |cos(2α1)− cos(2α2)| sinα1 sinα2

=
π4

3
(G.28)

which is four times larger than volume of the Gr(2, 4) manifold. Thus the four-fold Z2 × Z2 redun-
dancy is confirmed.

G.3 Plücker coordinates

Besides the vectors Z1, Z2 and the matrix P , one can also use the Plücker coordinates to represent
points in Gr(2, 4) manifold. The Plücker coordinates P = (p1, p2, p3, p4, p5, p6) for Gr(2, 4) is defined
as the 2× 2 minors of the matrix

[
Z1|Z2

]
=


z11 z21

z12 z22

z13 z23

z14 z24

 (G.29)

where Z1 = [z11, z12, z13, z14]T and Z2 = [z21, z22, z23, z24]T are the normalized four-component
vectors discussed in previous section. Using the wedge product and a linear mapping L : C6 → C6,
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one may write
P = (p1, p2, p3, p4, p5, p6) = L

(
Z1 ∧ Z2

)
, (G.30)

where

Z1 ∧ Z2 =
(
z11z23 − z13z21, z11z24 − z14z21, z12z24 − z14z22,

z11z22 − z12z21, z12z23 − z13z22, z13z24 − z14z23

)
(G.31)

is invariant under the U(2) transformation that mixes Z1 and Z2. Because P ∧ P ≡ 0, one has the
following constraint on the six Plücker coordinates:

p1p6 − p2p5 + p3p4 = 0 . (G.32)

If the components of Z1, Z2 are labelled as (K ↑,K ↓,K′ ↑,K′ ↓), it is then convenient to choose
the linear mapping

L (p1, p2, p3, p4, p5, p6) =

(
p1,

p2 + p5√
2

, p3, p4,
p2 − p5√

2
, p6

)
, (G.33)

so that the first three components of P represents the direct product of spin triplet and pseudospin
singlet, whereas the last three components corresponds to the direct product of pseudopin triplet
and spin singlet. Such choice is based on the fact that P is essentially the asymmetric part of

asymmetric part of

([
1

2

](1)

Spin

⊗
[
1

2

](1)

Ppin

)
⊗

([
1

2

](2)

Spin

⊗
[
1

2

](2)

Ppin

)

= asymmetric part of
(

[0]
(12)
Spin ⊕ [1]

[12]
Spin

)
⊗
(

[0]
(12)
Ppin ⊕ [1]

[12]
Ppin

)

=
(

[1]
[12]
Spin ⊗ [0]

(12)
Ppin

)
⊕
(

[0]
(12)
Spin ⊗ [1]

[12]
Ppin

)
. (G.34)

In Table., I list some examples of points in Gr(2, 4) with the corresponding vectors Z1, Z2 and
Plücker coordinates.
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Appendix H

Solution to BPS equation

The variational parameter field P (r) maps the compactified plane S2 = R2∪{∞} to the Grassman-
nian Gr(ν̃, N) = U(N)/U(ν̃) × U(N− ν̃). At each spatial point r, the matrix P (r) is a projector,
which satisfies P (r) = P (r)2 and Tr [P (r)] = ν̃. The elastic energy of the field P (r) can be written
in the form of nonlinear sigma model

E [P ] , 2

∫
drTr

[
∇P∇P

]
. (H.1)

Using the N × ν̃ matrix field

Z =


z11 z21 · · · zν̃1

z12 z22 · · · zν̃2

...
...

...
...

z1N z2N · · · zν̃N


︸ ︷︷ ︸

ν̃ columns

=
[
Z1, Z2, · · · , Zν̃

]
, Z†i Zj = δij (H.2)

and write

P = ZZ† =

ν̃∑
k=1

ZkZ
†
k , (H.3)

one can show that

Tr[∇P∇P ] =

ν̃∑
k=1

2
(
DZk

)† ·DZk , (H.4)

where I have used the covariant derivative

DiZ = ∂iZ − ZAi = (1− ZZ†)∂iZ (H.5)

Ai = Z†∂iZ .
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The NLSM for the matrix field P in Eq.(H.1) can be expressed by the matrix field Z as follows:

E [Z] , 4

ν̃∑
k=1

∫
dr
(
DZk

)† ·DZk . (H.6)

The Bogomolny-Prasad-Sommerfield (BPS) inequality holds:∫
δij
(
DiZ ± iεikDkZ

)†(
DjZ ± iεjlDlZ

)
dr ≥ 0 ⇔ 1

2
E [Z]∓ 4πQ ≥ 0 , (H.7)

where
Q =

1

2πi

∫
dr εij

(
DiZ

)†(
DjZ

)
. (H.8)

The BPS equation is satisfied when the inequality is saturated:

DiZk ± iεijDjZk = 0 (+for Q > 0 and− for Q < 0) , (H.9)

which can be rewritten with Zl = Wl/
√
W †l Wl as follows:

(
1−

ν̃∑
k=1

WkW
†
k

W †kWk

)
∂Wl = 0 (Q > 0)

(
1−

ν̃∑
k=1

WkW
†
k

W †kWk

)
∂Wl = 0 (Q < 0) , (H.10)

where ∂ = (∂x − i∂y)/2 and ∂ = (∂x + i∂y)/2. The solutions of the above equations for N = 4 and
ν̃ = 1, 2 are discussed below.

For ν̃ = 1, Eq.(H.10) is simplified to

(
1− WW †

W †W

)
∂W = 0 (Q > 0)(

1− WW †

W †W

)
∂W = 0 (Q < 0) . (H.11)

The first line is equivalent to
∂W = α (z, z)W , (H.12)

on which a transformation W = eβW ′ with ∂β = α is applied and W ′ satisfies the holomorphic
condition

∂W ′ = 0 . (H.13)

It is easy to find that
W ′ = λC + zQF (Q > 0) (H.14)
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is the general solution. The same arguments apply to the second line of Eq.(H.11) and the solution
has the same form.

At ν̃ = 2, Eq.(H.10) is equivalent to

∂ [W1|W2] = [W1|W2]A = [W1|W2]

[
α11 α12

α21 α22

]
(Q > 0)

∂ [W1|W2] = [W1|W2] Ã = [W1|W2]

[
α̃11 α̃12

α̃21 α̃22

]
(Q < 0) (H.15)

There exist a general linear transformation W = W ′G, where W ′ is the Schubert standard form [69]

W ′ =


1 0

0 1

w13 w23

w14 w24

 (H.16)

up to permutations on rows. Using this standard form, Eq.(H.15) is written as

∂

[
12×2

V

]
=

[
A

V A

]
(Q > 0)

∂

[
12×2

V

]
=

[
Ã

V Ã

]
(Q < 0) , (H.17)

which is equivalent to the holomorphic/anti-holomorphic conditions on the 2× 2 matrix function V :

∂V = 0 (Q > 0)

∂V = 0 (Q < 0) . (H.18)

This equations lead to the solutions in Eq.(4.98) presented in the main text.
The solution of BPS equation for the NLSM of matrix field P targeting in the Gr(ν̃, N) space is

discussed in Ref.[125, 172].
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Résumé : Dans  cette  thèse,  j’étudie  les
skyrmions  dans  le  ferromagnétique  SU(4)
d’effet Hall quantique. Les skyrmions sont des
textures  localisées  dans  les  systèmes
ferromagnétiques. La monocouche de graphène
dans  un  fort  champ  magnétique  peut  être
considérée comme un ferromagnétique avec le
spin électronique et le pseudospin de vallée de
Dirac. Les niveaux de Landau acssociés à des
spins
et  des  vallées  différentes  sont  proches  en
l’énergie et  forment des groupes bien séparés.
Dans  un  groupe,  l’interaction  de  Coulomb
montre forme invariance de SU(4).

Le modèle de skyrmions utilisé dans cette thèse
est  une théorie de champ classique et  statique
obtenue  à  partir  du  principe  variationnel.  Le
modèle  comporte  des  paramètres
phénoménologiques,  qui  dépendent  des
substrats et d’autres paramètres expérimentaux. 

Sur  la  base  de  l’analyse  de  symétrie,  nous
proposons  un  ansatz  pour  les  skyrmions  au
quart  de  remplissage  et  à  la  moitié  du
remplissage du niveau de Landau N = 0 de la
monocouche de graphène.  La minimisation de
l’énergie  du  skyrmion  unique  est  ensuite
effectuée pour  déterminer  les  paramètres  dans
l’ansatz  de  skyrmion  ansatz,  ce  qui  entraîne
différents  types  de  skyrmions  spin-valley  aux
deux  facteurs  de  remplissage.  Des  grands
skyrmions  sont  identifiés  dans  certaines
gammes des paramètres phénoménologiques, où
l’arrière-plan  ferromagnétique  du  skyrmion
subit une transition de phase.

Les  ondes  de  spin-vallée  monomode  sont
également  analysées  pour  caractériser  le
ferromagnétique SU(4)  d’effet  Hall  quantique.
Un  exemple particulier  montre  l’instabilité  de
l’état fondamental ferromagnétique.
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Abstract : This thesis studies skyrmions in the
SU(4)  quantum Hall  ferromagnet.  Skyrmions
are localized textures in ferromagnetic systems.
The graphene monolayer in a strong magnetic
field  can  be  viewed  as  a  ferromagnet  with
electron  spin  and  Dirac-valley  pseudospin  –
Landau levels with different spin and valley are
close  in  energy  and  form  well-separated
groups.  Within  one  group,  the  Coulomb
interaction  has  a  manifest  SU(4)-invariant
form.

The model of skyrmions used in this thesis is a
classical, static field theory obtained from the
variational  principle.  The  model  has
phenomenological  parameters,  which  depend
on substrates and other experimental settings. 

Based  on  symmetry  analysis,  I  propose  the
ansatz for skyrmions at quarter-filling and half-
filling of the N = 0 Landau level in graphene
monolayer.  Energy  minimization  of  single
skyrmions is then performed to determine the
parameters in the skyrmion ansatz, resulting in
different types of spin-valley skyrmions at both
filling factors.  Large skyrmions are identified
in  certain  ranges  of  the  phenomenological
parameters,  where  the  ferromagnetic
background of the skyrmion undergoes a phase
transition. 

Single-mode  spin-valley  waves  are  also
analyzed  to  characterize  the  SU(4)  quantum
Hall ferromagnet. A particular example shows
instability of the ferromagnetic ground state.
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