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Abstract
The experimental work developed during this PhD is situated at the interface of two fields
of condensed matter physics, namely spin glasses and mesoscopic physics.
Spin glasses have been widely studied and are one of the problem that has been the most
discussed over the years, both on a theoretical and experimental point of view. It is
characterized by very peculiar properties that come to light as it exhibits a magnetic phase
transition at low temperatures that is already unusual. Indeed, this transition is due to
a mix of frustration and disorder in the magnetic structure of the system, making it an
exceptional model system for glasses and frustrated systems in general.
After many efforts, theoreticians managed to describe the fundamental state of the system
by the mean of two different and apparently incompatible approaches. The first one,
called RSB theory, is based on a mean-field approximation and predicts a complex phase
space with an unconventional hierarchical organization. The second is based on more
phenomenological approach and is named Droplet theory. It points towards a unique
ground state and explain all the observation by slow relaxation processes.
However, the question of the true nature of the spin glass phase is still heavily debated.
Mesoscopic physics, for its part, addresses the question of electronic transport for samples
in which the electrons keep their phase coherence.
If the electrons remains coherent, it is possible to see interference effects that are quantum
signs of what happens at the atomic level. In this work, it is used to probe the magnetic
and static disorder in spin glasses. Indeed, it is possible to interpret the change in those
interferences as changes in the microscopic disorder configuration and to know exactly how
the spin glass state evolves.
Some work have already tried to use coherent transport in spin glasses but this remains an
open field.
This work has then be dedicated to the implementation of transport measurement in spin
glasses and mesocopic conductors.
The first part will be focused on a the experimental setup that was used to perform very
precise transport measurements and on the processing of the data taken out of them.
In a second part, we will present some general physical characteristics of our samples such
as their resistance dependence to the temperature or magnetic field, before extracting the
quantum signature in magnetoresistance measurements.
Finally, we will discuss the results obtained. We show that strong changes in the micro-
scopic disorder happen even at low temperatures, in opposition to what is believed. We
argue that those observed changes are purely structural and come from systems that are
widely distributed in energy.
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Introduction

The fascinating glassy state
What is the common point between a stained glass window, honey, chocolate or even
shaving cream?
In this simple question, that could be the beginning of a joke, lies a very deep question in
condensed matter physics: what is a glass?
Surprisingly, each of those examples are indeed glasses. At first sight it seems really strange
to gather under the same name so different kind of items. However one can see the link
between them through their atomic structure.
What we call a glass in our daily life is in fact more precisely a “structural glass", meaning
that they look like a solid. That statement would naturally lead us to the common believe
that they are crystals. But it is totally wrong.
Indeed, crystals are perfectly organized structure with a long range order and a translation
invariance. Basically it is the same arrangement of atoms (an atomic "brick") repeated over
and over in every direction as if a child was playing with the same lego brick. If you know
this elementary brick, you’re able to find every property of this material. This approach
led to most of the major discoveries in condensed matter physics such as the description of
electronic conduction bands. But in the case of a glass, this picture falls apart!
Just imagine this crystalline perfection but in which each atoms is moved by a mad scientist
in a totally chaotic way... Now you have the perfect picture of a glass! The most common
way to get a glass is to take a liquid and cool down so fast that it doesn’t have the time to
crystallize (it is "quenched"). Indeed, in a liquid, atoms are free but, when frozen, they
get stuck at their position in a disordered way. One can then see a glass as a snapshot of
a liquid at a certain time. Then, on the contrary of a crystal, we end up with a totally
disordered system. Thus, from a microscopic point of view, no part of a glass seems like
the other and then no elementary brick nor long range order can be set! In that case it is
obviously much harder to describe the physical properties of such a system but some of
them can be guessed.
Intuitively one can deduce from the quench process that the system has no time to reach
the crystalline phase which is the ground state of the system. It is trapped in a metastable
state. The glassy state is then not static but dynamic and will evolve towards the crystalline
phase on huge time scales ranging from few seconds to centuries...

To summarize, glassy systems have several peculiar properties: they are disordered
despite being solid (with no long range order or symmetry), they exhibit a phase transition
between the liquid and glassy phases at a given temperature and their dynamic is very
slow.
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From this discussion we determined the features of structural glasses. But they can be
extended to other systems that are thus also glasses. For example the disorder can be not
only structural but also magnetic. It is the case in the well known spin glasses, that will
be at the centre of this thesis.

Spin glasses, a model system
Actually, a spin glass is not really what one would immediately call a glass. Indeed, it is
usually a piece of a certain non-magnetic material with magnetic moments (or ions) inside.
Moreover, its structure does not evolve over time. The spins remain at the same place as
well as the atoms of the material.
However, if we look into more details, it is definitely a glass.
As previously explained, calling something a glass is equivalent to say that there is disorder,
phase transition and slow dynamics.
In the case of spin glasses, this disorder is set with the magnetic moments. Indeed, those
moments are like tiny little interacting magnets randomly spread in the material lattice. If
one considers only those magnets, we will see that it forms a glass-like pattern in space
since they are randomly distributed. From that, we have the disorder. But we also need a
phase transition.
Since those magnets do not move, we cannot expect a structural phase transition. Here,
we face a magnetic one.
We can make a parallel with ferromagnetic compounds[67]. Above the Curie Temperature
𝑇𝑐, the magnetic atoms are totally free to flip as they want. But, as the thermal energy
drops, they will get ordered and will all align in the very same direction.
The same process happens in spin glasses when the temperature gets lower than the average
interacting energy between spins. Above this temperature 𝑇𝑔, we are in a paramagnetic
phase, whereas, below it, the magnetic spins will “freeze" in a certain configuration but in
a very unconventional way, because of the disorder!
So what about slow dynamics?
Many experiments displayed several peculiar features in those systems: ageing, memory,
frequency dependence (that will be detailed later) and slow dynamic in particular[69].

Those unusual behaviours led to many theoretical works over the years, starting from a
“simple" first-neighbours interaction model[68], to very complex mean-field theory[60] or
scaling ones[26, 27].
Actually, those theories can be extended to many other fields out of physics! Indeed, to
model such system, one needs to take into account many-body random interactions that
can be found in a wide range of applications such as finance, computer science (travelling
salesman problem) or even biology. Spin glasses are thus a model system for many more
applicable systems and finding the good model for it has many implications.
However, the two major theories, namely RSB and Droplet ones, are incompatible and,
yet, the question of knowing which one is relevant (if any) is still heavily debated.
A way to address this question would be to probe the internal structure of the spin glass
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and, to do so, we can use coherent electronic transport.

The electronic coherent transport as a probe
When one talks about electronic coherent transport, the underlying subject is often
mesoscpic physics.
Indeed, mesoscopic physics sits right between nanophysics (below the nanometre) and
macroscopic physics (above millimetre length)[65], where the lengths are of the order of
the phase coherence length of electrons 𝐿𝜑.
This particularity places mesophysics at the interface between two worlds: the “classical"
and the quantum one.
Through transport measurement at this scale, one can measure classical values that are
governed by the sample on a macroscopic level (such as resistance) BUT with quantum
corrections (such as Universal Conductance Fluctuations) due to coherence effect at the
atomic level.
If one can interpret those corrections, it is possible to probe the sample on an atomic level
and, more specifically, the disorder inside the samples.
We will see that measuring the resistance of the samples as a function of the magnetic field
gives us a unique fingerprint of the disorder, giving us the opportunity to compare them
by calculating their correlation.
In our case, we rely on the interaction between electrons and magnetic spins to observe
changes on those resistance measurements and thus in the magnetic configuration.
Moreover, observing and analysing those changes as a function of the temperature would
be a strong indication to determine which of the competing theories is the good one.

Outline of the manuscript
First, I will start by giving a theoretical and experimental overview of the two main physical
domains used during my PhD, namely spin glasses and coherent electronic transport.
Once those tools will have been developed, I will present the setup and techniques used to
measure with a high accuracy the resistances of our samples as well as to treat those data
to recover disorder measurements.
In the following, the general transport characteristics of our samples will be detailed and
interpreted.
In particular we will focus on resistance measurements as a function of the temperature
and then as a function of an applied magnetic field.
The quantum corrections to the resistivity will be extracted and compared to qualitatively
and quantitatively probe the changes in the microscopic disorder configuration.
We will show that changes are observed for temperatures much higher than 𝑇𝑔. However,
those changes are also shown on non-spin glasses samples. We then argue that those changes
are structural and have to be interpreted in terms of widely energetically distributed moving
systems in our samples.





CHAPTER 1
Spin glasses: A theoretical and experimental overview

Since our main focus is to probe the disorder inside a spin glass, we need to present its
main features to understand the physics involved.
In this first chapter, we will try to summarize the long history of spin glasses.

1.1 How to make a spin glass: disorder and frustration
From a general point of view, a system is said frustrated when it cannot minimize all the
energetic constraints at the same time. This concept is at the hearth of the spin glass
state[50].
This frustration can be induced either by the structure of the system itself i.e. its topology
or via the disorder.

1.1.1 Geometrical frustration
In the case the frustration is induced by the geometry, it is said geometrical.
The most striking example of geometrical frustration is the triangular lattice of Ising spins1

with anti-ferromagnetic coupling as shown in Fig.1.1.

?

J<0J<0

J<0

J<0J<0

J<0

J<0J<0

J<0

J<0J<0

J<0

a) b)

Figure 1.1: Example for the frustration concept with the Ising anti-ferromagnetic triangle.
a): One can see that whatever direction the spin "?" takes on the last vortex, one of the bond
will not be satisfied. b): Three examples of possible configurations minimizing the energy. We
see that for any configuration the total energy is the same (one bond unsatisfied): the system
ground state is degenerate in energy.

In that case each vertex of the triangle is occupied by an Ising spin and cannot move. If
two of those spins are fixed (here in vertexes 1 and 2), whatever will be the orientation
of the third one, the energy of one of the bond will not be minimized because of the

1 Ising spins can only take two values (-1 or +1), in opposition with Heisenberg spins that can take any
values between -1 and +1. In our case it means that Ising spins can only be "up" or "down".
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8 Chapter 1 Spin glasses: A theoretical and experimental overview

anti-ferromagnetic coupling: the system is frustrated. Another important feature of this
example is that, whatever is the spin configuration, the system energy doesn’t change. The
unsatisfied bond changes but not the total energy: all the configurations are energetically
equivalent i.e. the system has a three-fold degenerate ground state.
This kind of frustration can be found in so called spin ice systems. But to create a spin
glass, an ingredient is missing: disorder.

1.1.2 Disorder and frustration
In the previous example the frustration was induced in a perfectly defined structure. As
we saw earlier, this cannot happen in the case of a glass. Let’s assume three Ising spins
randomly distributed in a 2D space with a distance dependent coupling (in sign and
amplitude). Then this random distribution leads to disorder and one can end up with a
situation as in Fig.1.2

J<0

J>0 J>0

Figure 1.2: Example of frustration induced by the disorder. The spins are here placed on a
lattice and are coupled with a distance-dependent interaction (sign and amplitude). If we take
only the spins inside the blue elipse, we see that frustration is induced.

Now imagine billions of spins like that. On can intuitively see that, scaling up the
previous example, many bonds can be unsatisfied.
It is important to stress that this kind of frustration is different from the geometrical
one seen before. There is no simple way to go from one metastable configuration to
another. However they can be very close in energy (if the number of unsatisfied bounds is
approximately the same) and close to the lowest possible energy.
This is exactly what happens in a spin glass.

1.1.3 Canonical spin glasses
A spin glass is exactly what we defined in the previous paragraph but in 3D.
It is simply magnetic impurities (rare earth elements) randomly diluted in a non magnetic
metallic host (noble metal) e.g. Mn diluted in Ag, or Fe diluted in Au. The magnetic
moments of those atoms are coupled via the so called RKKY (Ruderman-Kittel-Kasuya-
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Yosida) interaction[40, 63, 79]:

𝐽𝑅𝐾𝐾𝑌 (𝑟) ∝ cos(2𝑘𝐹 𝑟)
(𝑘𝐹 𝑟)3 (1.1)

It is a long-range, indirect-exchange interaction that alternates between ferromagnetic or
anti-ferromagnetic according to the distance (see Fig.1.3). The mix between the randomness
in space and this RKKY interaction thus induces a magnetic frustration due to disorder!

Figure 1.3: Representation of the RKKY interaction potential as a function of the distance.
We see that the 𝐽𝑖𝑗 amplitude is reduced with the distance and alternates in sign.

Let’s now consider the energy in such a system.
It is possible to define the mean distance r̄ between two interacting spins and thus the
mean interaction energy < 𝐽 >= 𝐽0/𝑟

3[15]. It is then possible to define a temperature
𝑇𝑔 =< 𝐽 > /𝑘𝐵 such that, below 𝑇𝑔, the interaction energy becomes prominent.
At high temperature (𝑇 > 𝑇𝑔), the thermal energy 𝐸𝑡ℎ = 𝑘𝐵𝑇 is larger than < 𝐽 >. The
spins are thus thermally activated and can flip freely. The system is in a paramagnetic
phase. However, when the temperature is lowered such that 𝑇 < 𝑇𝑔, they cannot flip
anymore and start to organize depending on the orientation of the other spins via their
interactions. They are frozen.
This temperature 𝑇𝑔 is called glass temperature and is the equivalent, in the structural
glasses, of the transition temperature between the liquid and glassy states.
Intuitively one could think that a transition should appear at 𝑇 = 𝑇𝑔 as in structural
glasses. But, on the other hand, the fact that we need to use a mean interaction energy
could lead us to think that there is rather a smooth slow down of the dynamics, the most
interacting spins freezing first followed by the less ones.
The solution is to look for the usual signature of a transition i.e. the divergence of a
thermodynamic quantity at 𝑇 = 𝑇𝑔. In 1972, Cannella & Mydosh were the first to find a
sharp peak in the susceptibility (but surprisingly not in the specific heat!) (Fig.1.4 (a))
around the predicted glass temperature, proving the existence of a real transition between
the paramagnetic phase and the glass one[19].



10 Chapter 1 Spin glasses: A theoretical and experimental overview

(a) (b)

Figure 1.4: (a) Magnetic susceptibility as a function of the temperature 𝜒(𝑇 ) in AuFe for
several concentration ranging from 1% to 8%. A non-diverging peak is observed and shifts
towards lower temperatures as the concentration is lowered. (b) Magnetic susceptibility as a
function of the temperature 𝜒(𝑇 ) in AuFe for concentrations of 8% (higher panel) or 5% (lower
panel) and for different constant magnetic field applied. The peak is smoothed as the field
increases but is not shifted. It has to be noted that this effect happens even for really small
magnetic fields compared to any other caracteristic energy of the system. From [19].

This was the start of an intense theoretical as well as experimental work for about 30
years and that’s what will be described in the next section.

1.2 Theoretical models and related experiments
1.2.1 A first approach: the Edwards-Anderson model
As seen previously, the disorder needed to create a spin-glass comes from the randomness
in the spins positions. From a thermodynamic point of view, this picture leaves us with
two random variables: the distance between spins 𝑟 and the corresponding interaction
energy 𝐽(𝑟). The first step to the understanding of this spin glass phase is to determine an
order parameter. Unlike ferromagnet, there is no long-range order, and so, usual spatial
correlations cannot be used as order parameter. In 1975, instead of that, Edwards ans
Anderson (EA) had the idea to rather use an order parameter based on time correlations[66].
They thus define this parameter as:

𝑞𝐸𝐴 = lim
𝑡→∞

[⟨S𝑖(0)ůS𝑖(𝑡)⟩𝑇 ]𝑑𝑖𝑠 (1.2)

with ⟨ ⟩ being the thermal averaging and [ ]𝑑𝑖𝑠 the averaging over the disorder. Basically it
consists in observing if a spin still has the same orientation at 𝑡 = 0 and at 𝑡 → ∞. For
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𝑇 > 𝑇𝑔, the spin orientation is not fixed and then 𝑞𝐸𝐴 = 0. On the opposite, if the system is
totally frozen at 𝑇 ≪ 𝑇𝑔, the spin configuration will be the same over the time and 𝑞𝐸𝐴 = 1.

Their second important idea was to transfer the randomness that lies in the position
(random positionning) to the interaction parameter (random interactions) while positioning
spins on a regular square lattice. This model allows then to cleverly simplify the problem
by, on the one hand, taking a simple lattice but, on the other hand, introducing a non-
trivial interaction parameter distribution. The interaction parameter 𝐽 is thus taken with
Gaussian distribution probability centred on 0 and defined by:

𝑃 (𝐽) = 1√
2𝜋𝛥′2

exp
(︂

− 𝐽2

2𝛥′2

)︂
(1.3)

with 𝛥 being the variance of the distribution.
We thus obtain the following Hamiltonian:

H = −1
2

𝑁∑︁
⟨𝑖,𝑗⟩

𝐽𝑖𝑗𝑆𝑖 · 𝑆𝑗 + ℎ
𝑁∑︁
𝑖

𝑆𝑖 (1.4)

in which the first term corresponds to the spin-spin coupling and the second one to the
effect of an external magnetic field. We stress that, in this model, only first neighbours
interact.
Once one gets the Hamiltonian, it seems natural to calculate the free energy of the system
via the partition function Z defined as

Z = Tr (exp
(︂

−H

𝑘𝑏𝑇

)︂
) (1.5)

In a usual system, the free energy is defined by

F = −𝑘𝐵𝑇 ln(Z) (1.6)

But in the case of a spin glass, the system has a quenched disorder i.e. the structural
disorder is fixed (the spins don’t move in the sample), only the spin direction changes.
Then , to average over the disorder, one has to average ln Z over the Gaussian distribution
𝑃 (𝐽) of the interactions. Thus the formula for the free energy becomes:

[F[𝐽 ]]𝑑𝑖𝑠 = −𝑘𝐵𝑇 [ln(Z)[𝐽 ]]𝑑𝑖𝑠 (1.7)

and we end up with this calculation:

[F[𝐽 ]]𝑑𝑖𝑠 = −𝑘𝐵𝑇
ˆ

[ln(Z)[𝐽 ]]𝑑𝑃 (𝐽) = −𝑘𝐵𝑇
ˆ

[ln(Z)[𝐽 ]]𝑃 (𝐽)𝑑𝐽 (1.8)

which usually cannot be easily carried out due to the non-Gaussianity induced by the
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logarithm.
At this point one has to use the so-called replica trick:

lnZ = lim
𝑛→0

[︂
1
𝑛

(Z𝑛 − 1)
]︂

(1.9)

thus
[lnZ[𝐽 ]]𝑑𝑖𝑠 = lim

𝑛→0

[︂
1
𝑛

([Z𝑛[𝐽 ]]𝑑𝑖𝑠 − 1)
]︂

(1.10)

and then for n positive, we can express 𝑍𝑛[𝐽 ] in terms of n identical replicas of the system
with the same disorder distribution:

Z𝑛[𝐽 ] =
𝑛∏︁

𝛼=1
𝑍𝛼[𝐽 ] (1.11)

where Z𝛼 is the partition function of the 𝛼th replica.

The integral is then easy to calculate since we replaced the logarithm by

[Z𝑛[𝐽 ]]𝑑𝑖𝑠 =
ˆ
𝑃 [𝐽 ]Z𝑛[𝐽 ]𝑑[𝐽 ] (1.12)

At the end of the calculation we have to take the number of spins 𝑁 → ∞ and 𝑛 → 0.

This mathematical trick, even if very common in statistical physics, was the first key to
explore the glass phase and was really the beginning of the intense theoretical interest in
this field.
Unfortunately, this theory led to poor results concerning the matching with experiments.
Indeed, the equations are solvable only for 𝑇 → 𝑇𝑔 and 𝑇 → 0. It predicts well (at least
qualitatively) the peak in the magnetization discussed earlier but fails, for example, to
explain the effect of a small static field as seen by Cannella and Mydosh in the same
experiment (see Fig.1.4(b)).
We are now facing an impasse. This theory, despite being simple and yet elegant (replacing
site disorder by a Gaussian distribution of the interactions), fails to predict most of the
experimental results and even predicts non-oserved effects (a peak in the specific heat).
However, EA considered only first neighbour interactions while RKKY leads to a long
range correlation. The solution to this impasse resides thus in establishing a true mean-field
theory (i.e. consider not only first-neighbours interactions) while keeping this simple model.

1.2.2 A mean field theory: the Sherrington-Kirkpatrick model
Following this attempt, still in 1975, Sherrington and Kirkpatrick (SK) proposed the first
mean-field model, based on the EA model but with infinite-range interactions[68].
Basically, the mean field approximation allows to consider only the action of an effective
mean field on a spin i instead of the individual action of each other spins on it. The
retroaction from the spin i to the field is not considered such that fluctuations are not taken
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into account. It simplifies a N-body problem to a much easier 1-body solvable problem.
Using this approximation leads to assume (unphysically) the probability distribution 𝑃 (𝐽)
to be the same for every spin pair no matter how far they are in reality.
In addition, SK changes slightly the form of 𝑃 (𝐽) to include the possibility of ferromagnetism
by introducing a mean value 𝐽 ′

0 for 𝐽 . Moreover, since the interactions are now assumed
infinite ranged, one has to make 𝐽 ′

0 and 𝛥′ intensive values. Thus we define 𝛥 = 𝛥
′ ×

√
𝑁

and 𝐽0 = 𝐽
′
0 ×𝑁 (with 𝑁 the number of spins), leading to the new 𝑃 (𝐽):

𝑃 (𝐽) =
√︂

𝑁

2𝜋𝛥2 exp
(︂

−𝑁 (𝐽 − 𝐽0/𝑁)2

2𝛥2

)︂
(1.13)

If one repeats the replica trick, we end up with the following formula for the free energy
(assuming no external magnetic field):

−F/𝑘𝐵𝑇 = lim
𝑛→0

1
𝑛

⎧⎨⎩exp
[︂
𝛥2𝑁𝑛

4(𝑘𝐵𝑇 )2

]︂¨ +∞

−∞

∏︁
(𝛼𝛽)

(︂
𝑁

2𝜋

)︂1/2 𝛥

𝑘𝐵𝑇
𝑑𝑦(𝛼𝛽)

∏︁
(𝛼)

(︂
𝑁𝐽0

2𝜋𝑘𝐵𝑇

)︂1/2
𝑑𝑥(𝛼) ×𝐺− 1

⎫⎬⎭ (1.14)

with

𝐺 = exp

⎡⎣− 𝑁𝛥2

(𝑘𝑏𝑇 )2

∑︁
(𝛼𝛽)

1
2(𝑦(𝛼𝛽))2 − 𝑁𝐽0

𝑘𝐵𝑇

∑︁
(𝛼)

1
2(𝑥(𝛼))2

⎤⎦× (1.15)

exp

⎡⎣𝑁 ln Tr exp

⎡⎣(︂ 𝛥

𝑘𝐵𝑇

)︂2 ∑︁
(𝛼𝛽)

𝑦(𝛼𝛽)𝑆(𝛼)𝑆(𝛽) + 𝐽0
𝑘𝐵𝑇

∑︁
(𝛼)

𝑥(𝛼)𝑆(𝛼)

⎤⎦⎤⎦
where 𝑥 and 𝑦 are integration dummy variables, 𝛼 and 𝛽 are replica indices ranging from 1
to n, (𝛼𝛽) represents a couple of replicas.

From that equation SK calculated the integral using the steepest descent method to find
the saddle points 𝑦𝛼𝛽0 (with 𝐺′(𝑦𝛼𝛽0 ) = 0) . By taking 𝜕𝐺/𝜕𝑦(𝛼𝛽) = 0 and 𝜕𝐺/𝜕𝑥(𝛼) = 0
we obtain:

𝑦
(𝛼𝛽)
0 = ⟨𝑆(𝛼)𝑆(𝛽)⟩ (1.16)

that can be identified as the order parameter previously defined 𝑞𝐸𝐴, but with something
more subtle! Indeed, it is not a comparison between the same replica at different times
anymore, but a comparison between two replicas at equilibrium, that we will call overlap!
For 𝑇 > 𝑇𝑔, the spins are continuously flipping in the two replicas and thus 𝑦(𝛼𝛽)

0 =
⟨𝑆(𝛼)𝑆(𝛽)⟩ = 0. But for 𝑇 < 𝑇𝑔, the spins in both of the replicas are frozen and 𝑦

(𝛼𝛽)
0 ̸= 0.
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Since we identified 𝑦
(𝛼𝛽)
0 as the order parameter, we will rename it 𝑞(𝛼𝛽).

Following the same reasoning, we can also find the equivalent point for 𝑥(𝛼):

𝑥
(𝛼)
0 = ⟨𝑆(𝛼)⟩ (1.17)

that represents the local magnetisation 𝑚(𝛼) and so, the order parameter between the
paramagnetic and the ferromagnetic transition.

The main assumption SK made is to consider each replica as indistinguishable such
that the parameters are independent of their replica indices: 𝑞 = 𝑞(𝛼𝛽) = 𝑦

(𝛼𝛽)
0 and

𝑚 = 𝑚(𝛼) = 𝑥
(𝛼)
0 . Then taking the replica limit 𝑛 → 0, we obtain the so called replica-

symmetric model!
Replacing those values in (1.15), one can now express the free energy in a much simpler

way around this saddle point:

[𝐹 ]𝑑𝑖𝑠
𝑁𝑘𝐵𝑇

= −𝛥2(1 − 𝑞2)
(2𝑘𝐵𝑇 )2 (1.18)

+ 𝐽0𝑚

(2𝑘𝐵𝑇 )2 − 1√
2𝜋

ˆ
dz exp

(︂
−𝑧2

2

)︂
ln
[︃

2 cosh
(︃
𝛥𝑞1/2

𝑘𝐵𝑇
𝑧 + 𝐽0𝑚

𝑘𝐵𝑇

)︃]︃

Since 𝜕[𝐹 ]𝑑𝑖𝑠
𝜕𝑞

= 0 and 𝜕[𝐹 ]𝑑𝑖𝑠
𝜕𝑚

= 0, we have two auto-coherent relations:

𝑞 = 1√
2𝜋

ˆ
dz exp

(︂
−𝑧2

2

)︂
tanh2

[︃
𝛥𝑞1/2

𝑘𝐵𝑇
𝑧 + 𝐽0𝑚

𝑘𝐵𝑇
+ ℎ

𝑘𝐵𝑇

]︃
(1.19)

and:

𝑚 = 1√
2𝜋

ˆ
dz exp

(︂
−𝑧2

2

)︂
tanh

[︃
𝛥𝑞1/2

𝑘𝐵𝑇
𝑧 + 𝐽0𝑚

𝑘𝐵𝑇
+ ℎ

𝑘𝐵𝑇

]︃
(1.20)

Once those equations are set, it is possible to calculate 𝑞(𝑇 ) and 𝑚(𝑇 ) and a phase
diagram can thereby be established.

Moreover, since 𝜒(𝑇 ) = 𝜕𝑚(𝑇 )/𝜕ℎ and we have the evolution of 𝑚(𝑇 ), we can obtain
the susceptibility:

𝜒(𝑇 ) = [1 − 𝑞(𝑇 )]
𝑘𝐵𝑇 − 𝐽0[1 − 𝑞(𝑇 )] (1.21)

We stress that in the SK model 𝜒(𝑇 ) depends on 𝑞(𝑇 ) and thereby on the possibly applied
magnetic field!
When computed, this dependence qualitatively fits with the experimental data obtained by
Cannella and Mydosch. But that’s not the main success of the SK model!
In the ternary system 𝑃𝑑1−𝑦−𝑥𝐹𝑒𝑦𝑀𝑛𝑥, one can control the 𝐽0/𝛥 parameter (𝐽0 and 𝛥
being defined in eq.(1.13)), via the 𝑥 and 𝑦 concentration, and experimentally retrieve a
phase diagram as a function of the temperature and 𝐽0/𝛥. And, impressively, it turns out
to be the exact same image than the one predicted by SK (show in Fig.1.5) with even the
para → ferro → spin glass transition!
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(a) (b)

Figure 1.5: (a) Phase diagram obtained by SK with their model as a function of the
temperature and 𝐽0/𝛥 parameter. This phase diagram is exactly the same than the one
obtained experimentally. (b) Magnetic susceptibility curves obtained theoretically as a function
of the temperature 𝜒(𝑇 ) for 𝐽0/𝛥 = 0 and 𝐽0/𝛥 = 0.5 (up curve and low curve respectively).
The dashed lines are the one obtained for a constant magnetic field of ℎ = 0.1𝛥 applied. The
smooth of the curve observed experimentally when a magnetic field is applied is qualitatively
retrieved. From [68].

However, once again, SK predicts a cusp in the specific heat which is not observed exper-
imentally and, more problematically, a negative entropy is predicted at zero temperature.
This leads, of course, to question the limits of the SK solution validity.

1.2.3 The instability of the SK solution: a step towards (even more) complexity

In 1978, de Almeida and Thouless (AT) studied in detail the SK solution and showed that
it is stable above 𝑇𝑔 no matter the conditions, but is deeply unstable in the ferromagnetic
and spin glass phases[5]. Indeed, in the SK solution, the susceptibility becomes negative
at low temperature, being completely at odds not only with experiments but also with
correlation-function susceptibility, defined positive. AT thus defined a line called AT line,
in the B-T plane, separating the region in which SK is stable from the one where it is
unstable (see Fig.1.6).

AT showed that this instability comes from the the last choice of SK in their model viz.
the symmetric solution 𝑞 = 𝑞(𝛼𝛽) = 𝑦

(𝛼𝛽)
0 and 𝑚 = 𝑚(𝛼) = 𝑥

(𝛼)
0 . Taking this assumption

leads to an invalid solution to the mean-field model even if above the AT line the SK
solution seems valid.
From that statement, the only choice left to describe the low-temperature phase is to find
a solution in which the replica symmetry is broken.
This new solution was developed in 1979 by Giorgio Parisi and is called the Replica
Symmetry Breaking (RSB) solution!
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Figure 1.6: Diagram showing the AT line separating the stable zone from the unstable one
for the SK solution. This diagram is taken for 𝐽0 = 0 and inthe case of an applied magnetic
field 𝐻. From [5].

The Parisi solution: Breaking the replica symmetry
After multiple attempts in finding a good solution that would break the replica symmetry,
Parisi finally proposed the breakthrough[60] which has been eventually found as the good
solution to this problem (at least in the mean field limit[32, 70]).
Since he does not take the assumption that every 𝑞(𝛼𝛽) are equivalent, the order parameter
now becomes a matrix 𝑀 whose dimension is (𝑛× 𝑛) with 𝑛 the number of replica.
The idea of Parisi is to perform several operations on that matrix according to the so called
Replica Symmetry Breaking protocol. Let’s have a look at it, step by step:

𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚1⏞  ⏟  ⎡⎢⎢⎣
0 𝑞1 𝑞1 𝑞1
𝑞1 0 𝑞1 𝑞1
𝑞1 𝑞1 0 𝑞1
𝑞1 𝑞1 𝑞1 0

⎤⎥⎥⎦ 𝑞0

𝑞0
⎡⎢⎢⎣

0 𝑞1 𝑞1 𝑞1
𝑞1 0 𝑞1 𝑞1
𝑞1 𝑞1 0 𝑞1
𝑞1 𝑞1 𝑞1 0

⎤⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
𝑛

Figure 1.7: The matrix 𝑀 after a one-step RSB procedure. The matrix is cut into blocks of
size (𝑚1 ×𝑚1) (one-step RSB). The diagonal blocks are then filled with a new value 𝑞1 (except
for diagonal values set at 0) replacing the previous value 𝑞0. The values in the off-diagonal
blocks remain unchanged with the value 𝑞0. Here, 𝑛=8 and 𝑚1=4

One-step RSB First, one has to consider the previously defined 𝑛 × 𝑛 matrix 𝑀 filled
with 𝑞0 (i.e 𝑞(𝛼𝛽) = 𝑞0 ∀(𝛼,𝛽), the SK solution). Now we will start breaking it. In the RSB
procedure, Parisi take that matrix and divide it into blocks of size (𝑚1 × 𝑚1) with , of
course, 1 ≤ 𝑚1 ≤ 𝑛. In the blocks along the diagonals, 𝑞0 is replaced with a new value 𝑞1
while the off-diagonal blocks remain unchanged with value 𝑞0. In this configuration one
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can define a distribution 𝑃 (𝑞) that is the fraction of elements with value 𝑞 over the total
number of elements.
An example is showed in Fig.1.7 with 𝑛 = 8 (i.e. a 8×8 matrix). After one step with the
RSB procedure (taking 𝑚1 = 4), we end up with a new matrix and 𝑃 (𝑞) = 𝑛−𝑚1

𝑛− 1 𝛿(𝑞 −

𝑞0) + 𝑚1 − 1
𝑛− 1 𝛿(𝑞 − 𝑞1) = 𝑃 (𝑞0) + 𝑃 (𝑞1) with 𝑃 (𝑞0) = 32

64 = 1
2 and 𝑃 (𝑞1) = 32

64 = 1
2 .

At this point, it has to be noticed that 𝑛 is still a positive integer and that we have now to
take the replica limit 𝑛 → 0. The previous relation 1 ≤ 𝑚1 ≤ 𝑛 is then ’turned around’ in
this limit and becomes 1 ≥ 𝑚1 ≥ 0.
We end up with three parameters for the matrix, namely 𝑞0, 𝑞1 and 𝑚1, that all have to
fulfil the auto-coherence relations of equilibrium (exactly as in the steepest descent method)
i.e 𝜕[𝐹 ]𝑑𝑖𝑠

𝜕𝑞0
= 0, 𝜕[𝐹 ]𝑑𝑖𝑠

𝜕𝑞1
= 0 and 𝜕[𝐹 ]𝑑𝑖𝑠

𝜕𝑚1
= 0.

One can now calculate the new entropy at T=0 and, unfortunately, still find a negative
entropy BUT a bit less than in the SK solution! This encouraged Parisi to repeat this
procedure several times[57]!

full-step RSB Let’s call K the number of RSB-steps performed on the matrix. For K=2,
we divide again the 𝑚1-sized blocs in smaller blocs of size 1 ≤ 𝑚2 ≤ 𝑚1 ≤ 𝑛. Again
the non-diagonal blocs remain unchanged while, in the diagonal ones, a new value 𝑞2 is
introduced. In fact, for any K, 1 ≤ 𝑚𝐾 ≤ 𝑚𝐾−1 ≤ ... ≤ 𝑚1 ≤ 𝑛 (with 𝑚0 = 𝑛 and
𝑚𝐾+1 = 1) and we have (𝐾 + 1)𝑞𝑖 ranging from 𝑞0 to 𝑞𝐾 .
From the previous definition, one can extend the formula for 𝑃 (𝑞) to larger matrices:

𝑃 (𝑞) = 1
𝑛− 1

𝐾∑︁
𝑖=0

(𝑚𝑖 −𝑚𝑖+1)𝛿(𝑞 − 𝑞𝑖) (1.22)

So when one takes the replica limit 𝑛 → 0, we end up with:

𝑃 (𝑞) =
𝐾∑︁
𝑖=0

(𝑚𝑖+1 −𝑚𝑖)𝛿(𝑞 − 𝑞𝑖) (1.23)

And since 𝑃 (𝑞) is defined positive, we have to, as previously, ’turn around’ the relation on
the 𝑚’s to 1 ≥ 𝑚𝐾 ≥ 𝑚𝐾−1 ≥ ... ≥ 𝑚1 > 0.

When K becomes very large, one can see that the value 𝑞𝑖 becomes continuous (since we
have many values 𝑞𝑖 between 0 and 1), and one can rewrite it in a most convenient way as
a function:

𝑞𝑖 = 𝑞(𝑥) 𝑖𝑓 𝑚𝑖 ≤ 𝑥 ≤ 𝑚𝑖+1 (1.24)

Studying numerically the previously described equation used to find the saddle points 𝑞(𝛼𝛽)

and 𝑚(𝛼), one can assume that 𝑞𝑖 form an increasing function such that 𝑞𝑖+1 > 𝑞𝑖.
Eventually we have to get to the limit 𝐾 → ∞.
Now 𝑞(𝑥) is an increasing continuous function and , extending the equation 1.23 to
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𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚1⏞  ⏟  ⎡⎢⎢⎣
[︂

0 𝑞2
𝑞2 0

]︂
𝑞1 𝑞1
𝑞1 𝑞1

𝑞1 𝑞1
𝑞1 𝑞1

[︂
0 𝑞2
𝑞2 0

]︂
⎤⎥⎥⎦ 𝑞0

𝑞0

⎡⎢⎢⎢⎢⎣
𝑚2⏞  ⏟  [︂

0 𝑞2
𝑞2 0

]︂
𝑞1 𝑞1
𝑞1 𝑞1

𝑞1 𝑞1
𝑞1 𝑞1

[︂
0 𝑞2
𝑞2 0

]︂
⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

𝑛

Figure 1.8: The matrix 𝑀 after two steps with the RSB procedure. Compared to Fig.1.7,
the diagonal blocks are cut again into blocks of size (𝑚2 ×𝑚2) and the ones on the diagonal
are filled with a new value 𝑞2 replacing 𝑞1. The rest of the matrix remains unchanged with
values 𝑞0 or 𝑞1 . Here, 𝑛=8, 𝑚1=4 and 𝑚2=2

continuous 𝑞𝑖’s, one can show that:

𝑃 (𝑞) = d𝑥(𝑞)
d𝑞 𝑤𝑖𝑡ℎ 𝑞(𝑥(𝑞)) = 𝑞 (1.25)

This approach with 𝐾 → ∞ is called the full-step RSB and solves many problems in the
SK solution: it suppresses the low temperature negative entropy (we recover 𝑆(𝑇 = 0) → 0)
and it captures well the susceptibility behaviour without peak in the specific heat[58]!
But beside those nice achievements, one has to note that we end up with a continuous
order parameter 𝑞 ranging from 0 to 1[59]. It is totally at odd with usual phase transitions
where the order parameter is either 0 or 1!

1.2.4 Physical interpretation of the RSB solution

For now we’ve been talking only in terms of matrices, calculus and formula. But what
about the physical meaning of all this?
When we defined the order parameter 𝑞(𝛼𝛽) we didn’t really give it a physical signification.
We named it overlap, but what does it mean? If we look at the formula, it basically
represents how different the spin configuration of a given replica is from another. In
the SK solution, all the replicas are taken equivalent and this assumption is crucial in
understanding the physical implications of this solution. First of all, we used the work
’replicas’ for quite a while without giving to this term any physical meaning other than
just a mathematical artefact.
In 1983, Parisi had the idea to start from a physical point of view to find a new order
parameter for a spin glass revealing that 𝑞𝐸𝐴 is not a good one since it can be non-zero
also for ferromagnet and not only for spin glasses. The spin glass order parameter 𝑞𝛼𝛽
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proposed by Parisi 1 is then

𝑞𝛼𝛽 = 1
𝑁

𝑁∑︁
𝑖=1

𝑚𝛼
𝑖 𝑚

𝛽
𝑖 (1.26)

which is the overlap of the magnetization between two states.
Using arguments about the magnetic susceptibility, Parisi proved that this physical order
parameter is exactly equal to the one in the RSB model in the replica limit!
This calculation proves that the so called replicas are in reality the different ground
states of the system.
In fact, on a more physical way, one can see a replica as being the same system but heated up
over 𝑇𝑔 and then cooled down again such that both replicas are in the same conditions[48].
For SK, it means that every replica taken in the spin glass phase is equivalent to any other,
meaning any spin configurations taken below 𝑇𝑔 is energetically equivalent at equilibrium2

without any particular relations between them. One can then see that behind this
assumption, just taken to easily calculate the free energy, stands a really deep assumption
on the nature of spin glasses themselves:
In the SK solution, there are several equivalent degenerated ground states in
which the system eventually falls!
This is the classical picture of a phase space in which potential wells are more or less deep
and one of them is the ground state. But we’ve already discussed that this solution doesn’t
match with experiments or even with simple physical intuition (cf. the negative entropy).
Parisi then proposed to break this replica equivalence, and this leads to reconsider the
previously defined structure of the phase space.
By breaking the replica symmetry, Parisi indirectly destroyed the idea of equivalent ground
states in the low temperature phase. But with what kind of phase space did he replace this
picture? As done previously, just wonder about the meaning of the Parisi order parameter.
In the RSB, 𝑞(𝛼𝛽) is given with a probability distribution. If we stick to the previous
picture of replicas, it means that, in the same conditions (same sample, same temperature)
two cool-downs can lead to many different equilibrium states with particular relations
between them. Indeed, since 𝑞(𝛼𝛽) is taken between 0 and 1, it means that some states
are ’closer’ ( their spin configuration is not so different) while some other are ’further’. For
example if 𝑞(1,2) > 𝑞(1,3), the states 1 and 2 are closer than the states 1 and 3.
Even if the words ’closer’ or ’further’ are used here in a figurative way, it is in fact possible
to define a value 𝑑𝛼𝛽 representing a true (from a mathematical point of view) distance
between two states:

𝑑𝛼𝛽 = 1 − 𝑞𝛼𝛽 (1.27)

So, if two configurations are the same, 𝑞𝛼𝛽 = ⟨𝑆(𝛼)𝑆(𝛽)⟩ = 1 (the overlap is maximal) and
𝑑𝛼𝛽 = 0. The distance is then null and the states are identical!

1 Be careful, this is a priori different from 𝑞(𝛼𝛽)

2 In reality they are the same for 𝑇 = 0. For 0 < 𝑇 < 𝑇𝑔, the thermal energy activates some spins and
prevent the two states to be exactly the same, even if they are really close! That’s the reason why 𝑞 ̸= 1
at 𝑇 ̸= 0.
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Surprisingly, one can also show that the probability 𝑃 ′(𝑞) of having the overlap 𝑞𝛼𝛽 = 𝑞
given by:

𝑃 ′(𝑞) =
∑︁
𝛼𝛽

𝑃𝛼𝑃𝛽𝛿(𝑞𝛼𝛽 − 𝑞) (1.28)

(where we sum over all the equilibrium states and 𝑃𝛼 and 𝑃𝛽 are the probability to fall in
the 𝛼 and 𝛽 states respectively) is exactly the same than the previously defined 𝑃 (𝑞) if
averaged over the disorder!
It is now clear that here lies the deep and non-trivial interpretation of the RSB. We’ve
showed that the totally mathematical definition of the replicas is not only an identification
for some equilibrium states characteristics, but it represents fully those physical states (or
’energy valleys’ in phase space, or even ’spin configuration’ according to your preferential
denomination)!
One could say that the answer to how the system looks like is not yet given. It is true.
Even if we now know exactly where to look for. We said before that the main difference
between the SK and the Parisi solution is in the way of considering the replicas: symmetric
or not. For 𝑇 > 𝑇𝑔, the SK solution is stable and both solution are identical: 𝑃 (𝑞) is just
a delta function centred on zero (paramagnetic phase). Below 𝑇𝑔 things are different. In
the RSB, 𝑃 (𝑞) is now a symmetric function with maximum values on −𝑞𝑚 and 𝑞𝑚 (it is
even possible to show that 𝑞𝑚 = 𝑞𝐸𝐴 the order parameter for Edwards and Anderson) but
can take any value between them as pictures in Fig.1.9
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Figure 1.9: Representation of the 𝑃 (𝑞) for two temperatures at zero magnetic field. From
[50].

This 𝑃 (𝑞) also depends strongly on the temperature. Indeed, when the temperature is
decreased, 𝑞𝑚 increases and

lim
𝑇→0

𝑞𝑚 = 1

meaning that the new created states at low temperature are closer to each other.
This peculiar dependence on temperature is really at the heart of the understanding of
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the spin glass phase as described by the RSB scheme. When the temperature goes from
𝑇1 > 𝑇𝑔 to 𝑇2 < 𝑇𝑔, the picture of the phase space changes. We move from a paramagnetic
phase where there is just one energy valley to a more complicated phase space in which
the replicas are broken: the phase space is fragmented in multiple valleys with overlap
𝑞0 . If the temperature is again lowered, it corresponds to break even more the replicas
(more steps in the RSB procedure), meaning that the valleys break into sub-valleys whose
overlap between them is 𝑞1 (we remind here that 𝑞1 > 𝑞0). As long as the temperature
decreases the valleys continue to subdivide into sub-valleys with higher overlap. One of
the most striking consequence of this behaviour is that, despite the total absence of order
in the system, the phase space is ordered in a ultrametric way i.e. the fragmentation of
the valleys is hierarchical[51]!
This particularity can (almost) easily be explained with the above-defined distance 𝑑𝛼𝛽.
let’s take three states 𝛼, 𝛽 and 𝛾. Then for 𝑇 < 𝑇𝑔,

𝑑𝛼𝛽 ≤ max(𝑑𝛼𝛾 ,𝑑𝛾𝛽) (1.29)

which leads, for the overlap, to

𝑞𝛼𝛽 ≥ min(𝑞𝛼𝛾 ,𝑞𝛾𝛽) (1.30)

Even though the mathematical formalism is important, another way of visualizing it is to
represent the ultrametric hierarchy of states as a ’reverse family tree’ as pictured in Fig.1.10.

K=1

K=2

K = ∞

Figure 1.10: Representation as a tree of the hierarchical structure of the spin-glass phase
space.

The replica breakings are represented by branches splitting into several new branches.
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To determine the overlap between states, one needs to find their ’closer common ancestor’.
Let’s note that, if T stays stable, two branches cannot cross and then, even if the states
are degenerated in energy, the system cannot pass from one state to another.

This mean-field theory, wich has be proven to be the right one in infinite dimensions
(true mean-field), exhibits astonishing properties. Among them, the ability to define a
distance between states, a hierarchical (here ultrametric) structure of the energy landscape
or even a continuous order parameter. Moreover, it describes quite well the magnetic
properties of the system.
However, we can see two major weaknesses in this solution. The first one is that it is
proved to be right only in infinite dimensions! So what is the upper critical dimension?
And, more important, is it superior to 3? If it is the case, this theory and experiment can
be totally decorrelated...
The second one lies in the fact that we have no clues about the dynamics of the system.
Indeed this formalism is made for states at equilibrium and nothing is said about the
vitrification itself despite the numerous experiments revealing strong dynamical behaviours
in spin glasses.
This lack of informations about dynamics led some other theoreticians to imagine another
angle of attack. They tried to give a phenomenological picture of the spin glass phase
instead of a microscopically based theory.

1.2.5 Scaling theories
Alternative theories rose from those weaknesses. For example, in the middle of the 80’s,
Fisher and Huse proposed a new theory to explain the spin glasses behaviour: the droplet
model[26, 27]. In their theory, they take the same formalism than Edwards and Anderson,
i.e. a regular lattice with random bonds between first neighbours but consider that all
the behaviours in the spin glass phase comes from the excitations of a unique ground
state at zero temperature. This ground state is defined as a unique spin configuration 𝛤
and its energetically equivalent symmetric 𝛤 in which every spins are flipped on the other
direction.
Let’s take a ferromagnetic case for simplicity.
For Fisher and Huse those excitations correspond to thermally activated flipping of compact
groups of spins of size 𝐿(later called ’domains’ or ’droplet’), containing 𝐿𝑑 spins (d being
the dimension). One can see that those excitations will create tensions on the interface
with the rest of the sample, then requiring some energy 𝛥𝐸 to be created. Since the
dimension of the interface is 𝑑− 1 one can express the energy needed by

𝛥𝐸 ∼ 𝛾(𝑇 )𝐿𝑑−1 (1.31)

where 𝛾(𝑇 ) represents the interfacial tension coefficient.
If 𝑑− 1 > 0, the system will need more energy for large domains and thus this flipping is
not favoured. The ordered phase is then preserved for a finite temperature. In the opposite,
if 𝑑 − 1 < 0, even the smallest energy fluctuation will allow to create a flipped domain.
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The ordered ferromagnetic phase is then destroyed except at zero temperature.
In this system, the lower critical dimension is then 1: for 𝑑 < 1, no transition can exist for
𝑇 ̸= 0.

Now, come back to the spin glasses case.
It is pretty similar to the ferromagnetic case. However, in our case, we have frustration
and disorder that can make the droplet shape really complicated as seen in Fig.1.11 1.

Figure 1.11: Representation of a droplet as in the Droplet theory, taken as fractal.

The number of spins at the border is then not 𝐿𝑑−1 and, instead, the energy grows with
𝐿𝜃 with 𝜃 ≤ (𝑑− 1)/2. The equation 1.31 becomes:

𝛥𝐸𝑠𝑔 ∼ 𝛾(𝑇 )𝐿𝜃 (1.32)

One can thus see that if 𝜃 < 0, no transition can exist and if 𝜃 > 0, a finite temperature
transition is possible. Numerical calculations gave 𝜃 ≈ −0.29 for 𝑑 = 2 and 𝜃 ≈ 0.19 for
𝑑 = 3, showing that a spin glass transition is possible only for 𝑑 = 3[33].
We stress that this model is set for one specific assumption: short-range interactions for
Ising spins.

One can see that the strength of this model is to propose a dynamical behaviour in
the spin glass phase with this flipping process, i.e. the creation and destruction of those
droplets. As said before, one assume the droplets to be created by thermal fluctuations,
and so the dynamics are governed by droplets whose creating energy 𝛥𝐸𝑠𝑔 is below 𝑘𝐵𝑇 .

1 Fisher and Huse even infer that it is fractal
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Droplets of size 𝐿 are then given a relaxation time

𝜏𝑟 = 𝜏0 exp
(︂
𝐵𝐿(𝑇 )
𝑘𝐵𝑇

)︂
(1.33)

with 𝐵𝐿(𝑇 ) = 𝐵0(𝑇 )𝐿𝜓 representing the height of the energy barriers the droplet has to
pass to relax, 𝜃 < 𝜓 < 𝑑− 1 an independent exponent, and 𝜏0 a relaxation time constant.
Equivalently, a creation or relaxation process on a time scale 𝑡 involves a droplet of size

𝐿𝑟 =
(︂
𝑇

𝐵0
ln
(︂
𝑡

𝜏0

)︂)︂ 1
𝜓 (1.34)

It is even possible to qualitatively account for famous experiments as the one made
by E.Vincent et al. in 1997 about ageing[69]. In this experiment, a AgMn spin glass sample
is studied through magnetization measurement. The protocol consists in three steps as
explained in Fig.1.12

The first one is to cool down the sample from 𝑇1 > 𝑇𝑔 to a temperature 𝑇2 < 𝑇𝑔 with
a small magnetic field ℎ being applied. Then, ℎ is maintained during a waiting time 𝑡𝑤
while the system is at 𝑇2: this is step 2. And, finally, after 𝑡𝑤, the magnetic field ℎ is cut
and magnetization 𝑀 is measured over time. Results are displayed in Fig.1.13.

h

Magnetic field

Time

Temperature

                tw

T2

Tg

T1

h=0

t = 0

h

h=0
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Figure 1.12: Experimental protocol for ageing experiment. The temperature is first lowered
from 𝑇 = 𝑇1 > 𝑇𝑔 to 𝑇 = 𝑇2 < 𝑇𝑔 < under a magnetic field and we wait during a time 𝑡𝑤.
The field is then shut down and the magnetization is recorded.
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Figure 1.13: 1.a Recorded measurement of the magnetization as a function of time after the
ageing experiment protocol. 1.b Same data but with the time being normalized by 𝑡𝑤. We see
that data almost superimpose and have the same inflexion in their slope for 𝑡 ≈ 𝑡𝑤. From [69].

The magnetization is normalized with the magnetization 𝑀𝐹𝐶 measured when h is
applied. We clearly see that the relaxation of 𝑀 is strongly dependant on the waiting time
𝑡𝑤. As 𝑡𝑤 is increased, the relaxation gets slower: this behaviour is called ageing!
This phenomenon can be seen as the glass becoming ’stiffer’ over time i.e. it reaches a
more stable energy state. Thus, if the external conditions change, the system will have
more difficulties to get out of this stable state, inducing an evolution on longer time scales.
Moreover, the scaling on 𝑡𝑤,pictured on the right panel of Fig.1.13, shows a sudden change
in the slop around 𝑡 ≈ 𝑡𝑤. An explanation was given by Lundgren[46] observing that
this relaxation is unusual in the sense that it is slower than a simple exponential. This
consideration led him to conclude that it could be the result of several relaxations with
different time scales.
And here comes the droplet interpretation. When we wait for a time 𝑡𝑤, the size of the
droplets involved in the dynamics is 𝐿𝑡𝑤 ∝ ln(𝑡𝑤) as seen in eq.(1.34) . So when the field is
stopped the system will relax to another equilibrium state. However, at time 𝑡 < 𝑡𝑤, only
small sized droplets can flip, resulting in small changes since the larger droplets governing
the magnetization are still making the system ’stiff’. But, as time increases and finally
reaches the limit 𝑡 ≥ 𝑡𝑤, the domains involved in relaxation become greater than the one
created previously while waiting, and replace them: the previous spin configuration is then
’erased’. The relaxation is then no more affected by the ’rigidity’ created during 𝑡𝑤. This
behaviour cannot be explained by the Parisi mean-field theory whereas the droplet model
is powerful in explaining such experiments.

So if this model can explain features that the mean field theory cannot, why isn’t it
the only one in the community?
Actually, it has several important defaults. The first (and probably main) comes from
a simple argument from Imry[35]: the magnetization 𝑀 scales as 𝑁1/2 in a disordered
magnetic sample, meaning that, since 𝑁 evolves as 𝐿𝑑, we get 𝑀 ∝ 𝐿𝑑/2. If a field is
applied, the spins may align to the field and the free energy is then reduced by a factor
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𝐿𝑑/2. The stability condition for a spin glass is, since the interface energy still goes as 𝐿𝜃:
(𝑑/2) < 𝜃. However, we’ve seen earlier that 𝜃 ≤ (𝑑− 1)/2 ≤ 𝑑/2 leading to the conclusion
that the stability condition can never be satisfied. In other words, the spin glass state
cannot subsist under any magnetic field in the droplet model.
This limitation can be overcome by another simple argument. Close to the transition,
it is possible to determine 𝜏𝐿(ℎ), the relaxation time of a droplet of size 𝐿 under field
through scaling arguments. If the observation time 𝑡𝑜𝑏𝑠 is small compared to 𝜏𝐿(ℎ), the
system appears to be frozen even if not! Equivalently, one can say that there exist a field
ℎ(𝑡𝑜𝑏𝑠) below which the system seems to be frozen for the observer. But we should stress
that this kind of glassy ’transition’ is a dynamical effect and not at all a thermodynamic one.

1.2.6 Spin glasses: an experimental overview
For now we spoke about theory but also about some related experiments that fitted with
it.
But unfortunately, there exists many famous experiments that are not explained by any
theory but provides us with many peculiar properties of the spin glasses. Those one might
not be explained but are much than worth to present!

Frequency dependence In 1981, Mulder[49] made a similar experiment than the one made
by Cannella and Mydosh in 1972, namely he measured the susceptibility in a CuMn spin
glass. In his case, he determined the susceptibility with different measure frequency. It is
most of the time unnecessary since there is no dependence in usual magnetic transitions.
However in spin glasses it is!
Surprisingly, the position of the maximum is clearly dependent on the measure frequency
as can be seen on Fig.1.14.

Of course this moving peak is in contradiction with the idea of a real phase transition.
However we can see that this dependence remains small and ,finally, it is smaller and
smaller as frequency is decreased. Then, 𝑇𝑔 is usually defined as 𝑇𝑔 = lim𝜔→0 max𝜒′(𝜔).
This behaviour is explained by the fact that several relaxation times are present in a spin
glass and thus a time dependence in measurements are expected.

Irreversibility induced by small magnetic fields We presented earlier that the susceptibility
peak is smoother with even small magnetic fields. But we are not done yet!
We have first to define two experimental protocols: -Field cooled (FC) protocol: a magnetic
field ℎ is applied all long during the measurement starting from above 𝑇𝑔. The susceptibility
is measured when cooling down the sample
-Zero field cooled (ZFC) protocol: the sample is cooled down below 𝑇𝑔 and only then is
applied the magnetic field ℎ. The susceptibility is measured by heating up the sample.

The results obtained by Nagata in 1979 for both protocols[52] are displayed on Fig.1.15.
For 𝑇 > 𝑇𝑔 both susceptibility curves are perfectly superimposed. However, for 𝑇 < 𝑇𝑔, in
a FC protocol 𝜒 reaches a plateau while in the ZFC protocol, we recover the previously
observed peak around 𝑇𝑔 as 𝑇 is lowered!
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Figure 1.14: Real part of the magnetization in CuMn as a function of the temperature 𝜒′(𝑇 )
with 1% of Mn. The panel shows the same measurement for different AC frequency: as the
frequency is increased, the pic gets smaller, larger and shifts towards higher temperatures (the
frequency displayed here are 2.6 Hz (△), 10.4 Hz (×), 234 Hz (∘) and 1.33 kHz (�)). From
[49].

Figure 1.15: Magnetic susceptibility as a function of the temperature 𝜒(𝑇 ) in CuMn samples
for doping contents of 1.08% and 2.02%. For curves (b) and (d) no external magnetic field
applied during the cool down (ZFC procedure), then the susceptibility is recorded heating up
under a field of 6G. For the curves (a) and(c), the sample is cooled down under a field of 6G
(FC procedure) and the curves are recorded heating up. A strong irreversibility is observed
just by applying 6G, which is remarkable. From [52].



28 Chapter 1 Spin glasses: A theoretical and experimental overview

It has to be noted that this effect is visible even with ℎ ≈ 5 Gauss, which is far below any
energy scale of the system.

Temperature-based effects: memory and rejuvenation Those strange effects are not only
shown by manipulating the field but also the temperature.

Figure 1.16: Imaginary part of the magnetic susceptibility as a function of time 𝜒′′ . We
observe a relaxation when the sample is brought to T=12K. When it’s set to T=10K, the
precedent relaxation stops and a new one restarts from the beginning as if the system never
relaxed before: this is rejuvenation. However, as shown in the insert, when taken back at
T=12K, the system resumes its relaxation from exactly the same point it was interrupted
precendently: this phenomenon is called memory. From [69].

Indeed, by changing suddenly the temperature from 𝑇1 = 12𝐾 < 𝑇𝑔 = 16.7𝐾 to
𝑇2 = 10𝐾 and coming back to 𝑇1 (as presented in Fig.1.16), Lefloch and al.[69] highlighted
the existence of rejuvenation and memory in spin-glasses. The rejuvenation, in this con-
text, can be seen in the transition from 𝑇1 to 𝑇2. The out of phase measured susceptibility
is relaxing while staying at 𝑇1 (it ’ages’) but, when we suddenly change the temperature,
the susceptibility jumps up! This is unexpected since the thermal energy is lower and thus,
one would expect a simple slowing down of the relaxation. This appears like if the system
had never relaxed before coming at this temperature, like if it hadn’t aged: it is young
again!
The second (even more) stunning effect appears when the sample is brought back to 𝑇1.
As seen just previously, changing the temperature seems to ’erase’ the system history.
However, if one comes back to an already visited temperature, the relaxation restarts
exactly where it stops at the first visit. In the inset of Fig.1.16, it is very clear: there
is no discontinuity when one aggregates the two curves taken at 𝑇 = 12 K. The system
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’remembers’ it already relaxed in this state: it is a memory effect!

Figure 1.17: Imaginary part of the magnetic susceptibility as a function of time 𝜒′′ . In
this experiment the sample is cooled down from 25 K to 5K with two stops at 𝑇1 = 12𝐾 and
𝑇2 = 9𝐾. The system thus ages at those temperatures creating deeps in the data compared to
the reference. When brought back from 5K to 25K without stops, the curves still follow the
deeps created when cooled down. The system remembers it passed through two distincts stops
and relaxed. This is called double-memory. From [39].

One can then wonder if this memory is valid for several temperature. The answer has
been given by Jonason[39] and is pictured in Fig.1.17. In this experiment, we have three
parts. In the first one, the sample is warmed up at a fixed rate of 0.1 K.𝑚𝑖𝑛−1 from T=
5 k to 25 K. The resulting out of phase susceptibility is in solid line. The second part
consists in decreasing the temperature at the same rate until 𝑇1 = 12 K, where the cool
down is stopped for a time 𝑡𝑤1. The sample then ’ages’ at 𝑇1 for a time 𝑡𝑤1, resulting in a
relaxation of 𝜒′′. Then we continue cooling down until 𝑇2 = 9 K where we wait during a
time 𝑡𝑤2 before cooling again to 5K.
And here comes the interesting third part. The system is warmed up continuously from
5 to 25 K and, despite this, the measurements follow perfectly the dips experienced at 𝑇1
and 𝑇2 when cooled down, even with the same amplitude! We can then conclude than the
system remembers two successive ageing. The inset shows the same experiment for another
spin-glass material (here CuMn), proving that this property is shared by every spin-glass.

1.3 Conclusion
In this section we have presented the main theories and experiments related to spin glasses.
As we saw, this field has been at the centre of intense research both theoretical and
experimental but those works leave us with many open questions.
On the one hand we have a mean field theory developed by EA, sophisticated over the years
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by EA and finally Parisi, and on the other hand, a phenomenologically based scaling theory
namely the droplet theory developed by Fischer and Huse. Even if some experiments tends
to point at one or the other theory, both of them have forces and weaknesses that make
difficult to decide among them.

The mean field theory predicts a phase space with a specific hierarchical order (ultra-
metric) composed of many states. Moreover the order parameter developed corresponds to
the overlap between those states and, in relation with the ultrametricity, is continuously
distributed between 0 and 1. Concerning the transition, it is always possible even with
an applied magnetic field. However this theory is valid only in infinite dimension and for
states at equilibrium.

The droplet model, on the opposite, is valid in dimension 3 and introduce well dynamical
effects explaining some experiments. This theory, though, allows no spin glass state to
survive when a magnetic field is applied. The order parameter is here much more simple
and usual since it has only one value 𝑞𝐸𝐴 representing the fact that there is only one unique
ground state.
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Figure 1.18: Comparison of the distribution for 𝑃 (𝑞) and Paramagnetic-spin-glass transition
line in the mean field model and droplet one. In the mean field model, 𝑃 (𝑞) is continuous
in between −𝑞 and +𝑞 because of the multiple ground states predicted, whereas it is only
either −𝑞 or +𝑞 in the droplet model since only two ground states are available at equilibrium.
Moreover, on the one hand, the mean field model predicts a transition line even with a magnetic
field while, in the other hand, the droplet model tells us that a spin-glass state cannot exist
under any magnetic field.

The main issue in the spin glass problem is to find an observable in order to chose
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between both theories. As seen before, measuring the overlap 𝑞 directly would give clear
informations! However this quantity is hard to measure for several reasons:
- q is defined for systems at equilibrium. Yet the glass relaxes slowly towards equilibrium
and one could observe dynamics instead of the wanted states.
- to measure this overlap we need to have access to the microscopic details of the spin
configuration which is impossible with classical magnetic measurements . For now, only nu-
merical simulations and some studies in our group enabled us to achieve such measurements.

In this thesis we will use coherent electronic transport as a probe for the microscopic con-
figuration inside a mesoscopic spin glass. This probe allows us to investigate a microscopic
configuration by measuring a macroscopic signal, as we will explain in the next chapter.





CHAPTER 2
Coherent electronic transport in mesoscopic systems

In the present work we use quantum transport as a probe for the spin configuration inside
spin glasses. In this chapter I will introduce the theoretical elements needed to understand
how the coherent transport can be used for our measurements.

2.1 Characteristic lengths and regimes in electronic transport
2.1.1 The Fermi wavelength

In a metal at equilibrium, the conduction electrons are well described by the semi-classical
theory[11]. The ensemble of electrons can be seen as a free electron gas (Fermi liquid
theory) whose interactions are taken into account by renormalizing their mass (𝑚 becomes
𝑚*). This ensemble is described by fermionic properties. The energy of the gas is given by
the Fermi energy 𝐸𝐹 = ~2𝑘2

𝐹 /2𝑚* with ~ the Planck constant, 𝑚* the renormalized mass
and −→

𝑘𝐹 the Fermi wave vector. For 𝑇 ≪ 𝑇𝐹 ∼ 104 K (with 𝑇𝐹 = 𝐸𝐹
𝑘𝐵

) the electron gas
exhibits quantum properties. Thus the relevant characteristic length to be considered here
is the wavelength defined by 𝑘𝐹 i.e the Fermi wavelength

𝜆𝐹 = 2𝜋/𝑘𝐹 (2.1)

It can be seen as the spatial extension of the electron quasiparticle. In a metal this distance
is about a few Ångströms, meaning that, for a sample much larger than that, the previously
explained description in terms of free electron gas is valid.
Furthermore one can link the electron density to this wavelength by

𝑛𝑒 ∝
(︂

1
𝜆𝐹

)︂𝑑
(2.2)

where 𝑑 is the dimension of the system.

2.1.2 The mean free path

In the previous section we talked about electron gas in which electrons only interact with
each others. This is valid for an ideal material but, in a real one, the electrons can diffuse
on impurities. Two types of diffusion can then happen : an elastic diffusion, in which no
energy is exchanged, or an inelastic one, where some energy is transferred.

33
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The elastic mean free path
Usually an elastic diffusion happens when an electron hits static defaults (in the lattice
for example) or impurities. One can define the mean distance 𝑙𝑒 travelled by an electron
between two of those collisions. If 𝜆𝐹 ≪ 𝑙𝑒, the electrons propagate freely between defaults
and one can define an elastic collision time 𝜏𝑒 (Drude time) via the Fermi velocity 𝑣𝐹

𝑙𝑒 = 𝑣𝐹 𝜏𝑒 (2.3)

For a sample much larger than 𝑙𝑒, the electron motion is thus diffusive and one can define
the diffusion coefficient as

𝐷 = 1
𝑑
𝑣𝐹 𝑙𝑒 (2.4)

with 𝑑 the dimension of the system. Moreover, for any process in which a diffusive behaviour
takes place (i.e 𝜏𝑝𝑟𝑜𝑐𝑒𝑠𝑠 > 𝜏𝑒), one can associate a diffusion length[24]

𝐿𝑝𝑟𝑜𝑐𝑒𝑠𝑠 =
√︀
𝐷 𝜏𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (2.5)

It is important to stress that, since the electron doesn’t lose any energy in an elastic
diffusion, (

⃒⃒⃒−→
𝑘 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡

⃒⃒⃒
=
⃒⃒⃒−→
𝑘 𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑑

⃒⃒⃒
) and the process is fully reproducible, this static

disorder doesn’t affect the coherence of the electron wave.

The INelastic mean free path
The other possible kind of interaction are inelastic ones. We stress that, unlike elastic
processes, some energy is exchanged and thus, the diffuser (and the electron) may have
changed its state after one collision. Then, it appears clearly that the inelastic collisions are
an issue in preserving the electronic coherence and thus destroy the electronic interferences.
This usually happens when an electron hits anything else than a static default. The main
inelastic processes we may encounter are the electron-electron interaction (with 𝑙𝑒−𝑒 the
associated length travelled by the electron between two electron-electron interaction), the
electron-phonon one (associated to 𝑙𝑒−𝑝ℎ), the electron-photon one (associated to 𝑙𝑒−𝜈) and,
finally, the electron-magnetic impurity one (associated to 𝑙𝑒−𝑚). One can thus define the
inelastic mean free path 𝑙𝑖𝑛 as the characteristic length of the most prominent process[78]
i.e.

𝑙𝑖𝑛 ≡ min(𝑙𝑒−𝑒,𝑙𝑒−𝑝ℎ,𝑙𝑒−𝜈 ,𝑙𝑒−𝑚) (2.6)

As done in the previous section, and under the same conditions, it is once more possible to
define an inelastic collision time 𝜏𝑖𝑛 such that 𝑙𝑖𝑛 =

√
𝐷 𝜏𝑖𝑛.

2.1.3 The phase coherence length
Let’s talk about maybe the most fundamental length for our study : the phase coherence
length 𝐿𝜑.
𝐿𝜑 represents the average distance over which an electron keeps its phase well defined i.e.
the distance over which the interferences between electrons are possible!
One can define 𝜏𝜑 the phase coherence time related to 𝐿𝜑, and, in the limit where 𝐿𝜑 ≫ 𝑙𝑒
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we have :
𝐿𝜑 =

√︀
𝐷 𝜏𝜑 (2.7)

𝜏𝜑 represents the lifetime of a quasi particle before coming back to the Fermi level via
relaxation processes.
In this thesis, the experiments are based on electron interferences and thus require a large
enough phase coherence length over sample length ratio. 𝐿𝜑 is mainly limited by inelastic
processes and thus we want to increase 𝑙𝑖𝑛 as much as possible. Moreover, the phonon-
electron interaction is usually the prominent source of decoherence at high temperatures
(𝑇 > 1𝐾) and the electron-electron one at low temperatures (𝑇 < 1𝐾). Since both of those
couplings decrease with temperature, our aim is to reach the lowest possible temperature1.
To fulfil this requirement, we use a dilution fridge allowing us to go down to 𝑇 ≈ 50 mK.
Thus, going to really low temperatures seems to be a good idea to enhance 𝐿𝜑[64], but not
only ! Indeed, another issue can prevent us from measuring interferences : the thermal
length.

2.1.4 The thermal length
To understand this effect we now have to think a bit more about the electron energy.
Let’s consider an electron with energy 𝐸. While propagating, it will acquire an extra phase
𝜑 directly related to this energy 𝐸 and the time of propagation 𝑡 by

𝜑(𝑡) = 𝐸

~
𝑡 (2.8)

However, in a metal, not all the electrons have the same energy. Thus, an electron with
energy 𝐸1 and another with energy 𝐸2 will acquire a different extra phase leading to a
dephasing 𝛥𝜑 = 𝐸1 − 𝐸2

~
𝑡 = 𝜀

~
𝑡 between them.

Now, let’s suppose those two electrons propagate into a sample of size 𝐿 < 𝐿𝜑, such
that the electrons remain coherent inside the sample. In a diffusive regime, we already
defined 𝐷 the diffusion coefficient. Then one can imagine to define a time 𝜏𝐷 for which
the electron will visit the entire sample i.e. the time it will take them to pass from one
side of the sample to the other :

𝜏𝐷 = 𝐿2

𝐷
(2.9)

called the Thouless time[71].

Thus, while passing through the sample, the two electrons will acquire a dephasing
𝛥𝜑 = 𝜀

~
𝜏𝐷.

1 The other effects responsible for decoherence, especially magnetic diffusion, are not affected by lowering
the temperature and can thus become prominent once at very low temperatures (𝑇 < 10𝑚𝐾).
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For the moment it does not look like a big deal for interferences... Since the sample is
coherent, the two electrons can still interfere and are just dephased. But, in a realistic sam-
ple with temperature 𝑇 , there are not only two electrons but a continuum of electrons
whose energy ranges from 𝐸𝐹 to 𝐸𝐹 + 𝑘𝐵 𝑇 ! And here comes the problem...
When the electrons interfere, their phases are added and can give rise to quantum features.
Thus if the sample is long enough we end up in a situation for which all the phases average
to 0 i.e. no quantum effect can be seen! It has to be noted that the interferences are not
destroyed as for decoherence effect but simply blurred by the temperature.

Moreover, one can calculate the maximum length 𝐿𝑇 of the sample to avoid that blurring.
Indeed, we can see that the phases average to 0 when the two most dephased waves are
𝜋-dephased. Those two electrons are obviously the more energetically separated: the
electron with energy 𝐸𝐹 and the one at 𝐸𝐹 + 𝑘𝐵 𝑇 . Their phase difference 𝛥𝜑𝑚𝑎𝑥 is thus:

𝛥𝜑𝑚𝑎𝑥 = 𝑘𝐵 𝑇 − 0
~

𝑡 (2.10)

If this equals 𝜋 at the end of the sample we have:

𝛥𝜑𝑚𝑎𝑥 = 𝑘𝐵 𝑇 − 0
~

𝜏𝐷 = 𝜋 (2.11)

leading to

𝐿𝑇 =
√︂

~𝜋𝐷
𝑘𝐵 𝑇

(2.12)

This length is called the thermal length!
We calculated the maximum length for a given temperature 𝑇 but, experimentally, we’re
often looking for the opposite, namely the maximum temperature we can use for a given
sample length 𝐿. This gives the maximum temperature 𝑇𝑚𝑎𝑥 that is equal to

𝑇𝑚𝑎𝑥 = ~𝜋𝐷
𝑘𝐵 𝐿2 (2.13)

2.1.5 The system dimensions: different regimes for different sizes!

In the previous sections we defined the relevant distances or energies in a system for elec-
tronic transport. But, as we saw, some of them become relevant only in certain conditions.
From a general point of view, the system behaviour will be governed not by the absolute
value of its dimensions but by their relation to certain parameters.

If we care about electronic properties (like the density of state), we have to compare 𝜆𝐹
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with the system dimensions:

𝜆𝐹 ≪ 𝑡 < 𝑤 < 𝐿 ⇔ 3D
𝑡 ≪ 𝜆𝐹 ≪ 𝑤 < 𝐿 ⇔ 2D
𝑡 < 𝑤 ≪ 𝜆𝐹 ≪ 𝐿 ⇔ 1D
𝑡 < 𝑤 < 𝐿 ≪ 𝜆𝐹 ⇔ 0D

where t,w and L are respectively the thickness, the width and the length of the sample

However, if we care about coherence properties in electronic transport, the relevant
dimension to consider is 𝐿𝜑:

𝐿𝜑 ≪ 𝑡 < 𝑤 < 𝐿 ⇔ 3D
𝑡 ≪ 𝐿𝜑 ≪ 𝑤 < 𝐿 ⇔ 2D
𝑡 < 𝑤 ≪ 𝐿𝜑, 𝐿 ⇔ 1D

2.2 Theory of coherent transport
2.2.1 Landauer Formalism

If we consider quite big samples (meaning that every physical quantity can be considered
as homogeneous and in a diffusive regime), we can use the Drude formalism. However,
when we want to take into account coherent properties, one has to consider a different
approach. Indeed, if the physical quantities cannot be considered as mean values over the
sample, the conductivity in the sense of Drude is no longer usable. One needs to describe
the conductance in a different way. For that reason, in the 60’s, Landauer proposed a new
paradigm[41, 42] by describing the conductance as a transmission coefficient between two
reservoirs.
To explain that theory, let’s consider a current flowing perfectly into wires from one reservoir
to another. Between those two, a barrier with a transmission coefficient 𝑇 and reflection
one R is set as in Fig.2.1.
In the simplest case, the current flowing from reservoir 1 (with a chemical potential 𝜇1) to

reservoir 2 (with 𝜇2) is defined by 𝐼 = (𝜇1 −𝜇2) 𝜌(𝐸𝐹 ) 𝑒 𝑣𝐹 𝑇 = 2𝑒
2

ℎ
𝑇 𝑉 in which (𝜇1 −𝜇2)

represents the chemical potential difference between the reservoirs and can be seen as the
voltage 𝑉 applied on each side of the sample, 𝜌(𝐸𝐹 ) the density of states at the Fermi
level, 𝑒 the fundamental electronic charge, 𝑣𝐹 the Fermi velocity inside the sample and 𝑇
the previously defined transmission coefficient.
From there it comes naturally that the conductance 𝐺 is :
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Figure 2.1: Representation of a current flowing between two reservoirs (in blue). In between
those two reservoirs the current flows inside wires (in red) with perfect transmission and enters
a quantum conductor (in green). This quantum conductor is considered as a “barrier" with
a transmission coefficient 𝑇 allowing to go to the second reservoir, and a reflection one 𝑅
reflecting the electrons back to their original reservoir.
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Figure 2.2: Same picture as in Fig.2.1 but the wires are more described. Here the wires are
considered as roads with one lane for each direction, allowing electrons to go only one-by-one
using this unique lane to access the sample.

𝐺 = 𝐼

𝑉
= 2 𝑒

2

ℎ
𝑇 = 𝐺0 𝑇 (2.14)

with 𝐺0 = 2 𝑒
2

ℎ
the quantum of conductance.

So this is the formula if all the electrons encounter the same barrier in the sample i.e.

T
R

Reservoir 1
µ1

Reservoir 2
µ2}N  channels

Conductor

Figure 2.3: Same picture as in Fig.2.2 but the wires and electron channels are given a size!
Electron channels have a size 𝜆2

𝐹 and it is then possible to have many channels in a wire if its
section 𝑆 is large enough. More precisely we have 𝑁 channels in the wires with 𝑁 = 𝑆/𝜆2

𝐹 .

if they all follow the same way one after the other from one reservoir to the other, as on
a road with only one lane as in Fig.2.2. However, real wires are usually large enough to
be considered as highways with many traffic lanes. Indeed, a sample of section S contains
𝑁 = 𝑆/𝜆2

𝐹 “traffic lanes" called channels (which is simply the surface of the wire divided
by the size of a channel ∼ 𝜆2

𝐹 , with ∼ 𝜆𝐹 the Fermi wavelength representing the spatial
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extension of an electron). The situation can now be pictured as an highway with 𝑁 lanes
or channels, each of them carrying electrons at finite temperature (according to the Fermi
distribution). This is represented in Fig.2.3. We can now rewrite the previous conductance
formula with the many channels pictured as:

𝐺 = 2 𝑒
2

ℎ
𝑁 𝑇 = 𝐺0𝑁 𝑇 (2.15)

However this formulation sets aside the possibility for an electron to pass from one
channel 𝑖 on one side of the barrier to another channel 𝑗 on the other. From a more general
point of view we can consider all the channels being independent with a certain probability
𝑇𝑖𝑗 for the electron of being transmitted in channel 𝑗 (rhs) while entering in channel 𝑖
(lhs). The opposite scenario is of course possible and is defined by the probability 𝑅𝑖𝑗 of
entering in channel 𝑖 and being reflected in channel 𝑗 (with 𝑗 not necessary different from
𝑖). Since electrons can enter from both direction in the channel, we also define the same
values for electrons entering from rhs with 𝑇 ′

𝑖𝑗 and 𝑅′
𝑖𝑗 . In this way we can define a matrix

representing the conductor transport properties, namely a scattering matrix 𝑆

𝑆 =
[︂
𝑟 𝑡′

𝑡 𝑟′

]︂
with 𝑡 =

√︀
𝑇𝑖𝑗 and similarly for 𝑟.

Using this formalism, the conductance can be written[18] :

𝐺 = 2 𝑒
2

ℎ

∑︁
𝑖,𝑗

|𝑡𝑖𝑗 |2 = 2 𝑒
2

ℎ
Tr 𝑡𝑡† (2.16)

2.2.2 Quantum diffusion
After presenting the Landauer formulation, it seems natural to ask how the transmission
coefficients are defined.
Actually one has to focus on what happens in the sample itself and consider the real
paths[25] electrons are following1 inside to go from channel 𝑖 to channel 𝑗 on the other side.
And as can be pictured on figure 2.4, there are many way to do so !
Now let’s talk about electrons. At this level, electrons have to be considered as waves and
can be written in terms of wave function. From that statement it is natural to speak in
terms of quantum mechanics for the electronic transport : to go from one side to the other,
the electrons will explore ALL the possible paths at the same time !

To understand in a deeper way, we define the electrons as waves following a path p with
the form

𝐴𝑝 = |𝐴𝑝| exp(𝑖 𝐿𝑝
𝜆𝐹

) (2.17)

1 Obviously, the electrons do not “follow" those paths. Here we talk about electron probability waves
propagating along those paths. But the model is simpler to understand if we consider in-phase electrons
following different trajectories.
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Figure 2.4: Detailed representation of the quantum conductor. Electrons can enter in any
channel 𝑖 and go out in the same or in another channel 𝑗. Inside the conductor they can follow
many different paths to pass from channel 𝑖 to channel 𝑗 (two examples are in blue and green).
The electrons taking those different paths will, in the end, interfere to give the transmission
value 𝑡𝑖𝑗 for those channels.

with |𝐴𝑝| the amplitude of the wave, exp(𝑖 𝐿𝑝
𝜆𝐹

) expressing its phase and 𝐿𝑝 representing
the effective length of the path.
Then the total probability to pass through the sample from point 𝑟 to point 𝑟′ is defined
by[2] :

𝑃 (𝑟,𝑟′,𝑡) =
⃒⃒⃒⃒
⃒∑︁
𝑝

𝐴𝑝

⃒⃒⃒⃒
⃒
2

=
∑︁
𝑝

|𝐴𝑝|2 +
∑︁
𝑝 ̸=𝑝′

𝐴𝑝𝐴
*
𝑝′ (2.18)

=
∑︁
𝑝

|𝐴𝑝|2 +
∑︁
𝑝 ̸=𝑝′

|𝐴𝑝|
⃒⃒
𝐴𝑝′
⃒⃒
exp

(︀
𝑖𝑘𝐹

(︀
𝐿𝑝 − 𝐿𝑝′

)︀)︀
=

∑︁
𝑝

|𝐴𝑝|2 +
∑︁
𝑝 ̸=𝑝′

|𝐴𝑝|
⃒⃒
𝐴𝑝′
⃒⃒
exp

(︀
𝑖 𝛿𝜑𝑝−𝑝′

)︀
= 𝑃𝑐 + 𝑃𝑞

with 𝑃𝑐 =
∑︀

𝑝 |𝐴𝑝|2 the classical part of the conductivity (in the Drude sense i.e. the mean
value used in everyday life) and 𝑃𝑞 =

∑︀
𝑝 ̸=𝑝′ |𝐴𝑝|

⃒⃒
𝐴𝑝′
⃒⃒
exp

(︀
𝑖 𝛿𝜑𝑝−𝑝′

)︀
the quantum part of

the conductivity rising from the interferences between waves exactly like the double-slits
experiments with photons or electrons[37]!

This quantum part is usually negligible since the phase shift for each path is not corre-
lated to others and should vanish on average for large samples. Actually one can prove
that contribution not to be zero but of the order of one conduction channel ! This means
that if we have a large conductor with many channels, the contribution ratio 𝑃𝑞

𝑃𝑐
will be

really small. But in small samples (∼ 𝜇𝑚 large and 𝐿 ∼ 𝐿𝜑), i.e. with only a few channels,
this contribution is not negligible at all and is responsible for many quantum features[10].

2.2.3 Phase coherence and quantum signature
To understand how this quantum part acts on the conductivity, let’s focus on the formula
itself.
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We presented before the value 𝐿𝑝 as the effective length of the path to explain easily
the interference process. But 𝐿𝑝 contains actually two parts : a part concerning the real
geometrical length of the path and a second one taking into account the possibility of an
applied magnetic potential. This allows us to rewrite the phase difference for two paths 𝑝
and 𝑞 with length 𝐿𝑝 and 𝐿𝑞 as follow :

𝛿𝜑𝑝−𝑞 = 𝐿𝑝 − 𝐿𝑞 (2.19)

≈ 𝑘𝐹 (𝑙𝑝 − 𝑙𝑞) + 2𝜋 𝛷
𝛷0

≈ 𝛿𝜑𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟 + 𝛿𝜑𝑓𝑙𝑢𝑥

𝛿𝜑𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟 represents the real length difference between the two paths, depending only on
the disorder inside the system. 𝛷 represents the flux applied on the surface delimited by
the two paths and 𝛷0 = ℎ/𝑒 is the flux quantum. 𝛿𝜑𝑓𝑙𝑢𝑥 then represents the phase shift
induced by an hypothetical magnetic flux applied on the system.
This leads to some new quantum behaviour : since 𝛿𝜑𝑝−𝑞 depends on the disorder con-
figuration, it appears that even two samples created to be identical will have different
conductance because the disorder will be unique in each sample !
Moreover, when a magnetic field is applied, a phase shift is induced, leading to a 𝛷0 periodic
oscillation in the conductivity ! This term gives rise to many features including the famous
Aharonov-Bohm (AB) effect[1].

The Aharonov-Bohm effect
In 1985, Webb et al.[76] made the following experiment : they took small metal rings whose
intern diameter was 𝑑𝑖𝑛 = 784 nm and branches are 41 nm large in order to mesure their
resistance while sweeping a perpendicular magnetic field. This experiment gave evidences
of ℎ/𝑒 = 𝛷0 and ℎ/2𝑒 = 1

2𝛷0 periodic oscillations in the resistance as can be seen in Fig.2.5.
The ring is thin enough (compared to the diameter) to consider that there is only one

conduction channel in the ring1 and that both parts of the ring have the same length.
Under that statement, the resistance behaviour can be explained simply by the quantum
part of the resistivity described in the previous section. Indeed, electron can thus take
only two paths (namely 𝑝 and 𝑞) to go from one side of the ring to the other, one in each
branch.
As seen before 𝛿𝜑𝑝−𝑞 = 𝛿𝜑𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟+𝛿𝜑𝑓𝑙𝑢𝑥. We can already say that 𝛿𝜑𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟 = 𝑘𝐹 (𝑙𝑝−𝑙𝑞) =
0 since we supposed the paths being equally long. However, by applying a magnetic field

inside the ring (i.e. a flux), a dephasing 𝛿𝜑𝑓𝑙𝑢𝑥 = 2𝜋 𝛷
𝛷0

= 𝜋2𝐵 × 𝑑2
𝑖𝑛

2𝛷0
is created between

the two paths !
As the phase is 2𝜋 periodic, a 𝛷0 periodic oscillation is expected. With the dimensions of
the ring, a 𝛷0 flux corresponds to an applied field of 𝛥𝐵 = 0.0078 T and, as frequency in
the Fourier transform 1/𝛥𝐵 = 131 T-1. This corresponds exactly to what is observed in

1 Actually there are many channels in the ring but it is thin enough to consider them all equivalent with
the same length.
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Figure 2.5: Sample and results of the experience of Webb et al. in 1985. The picture
represents the sample which is a metallic ring with inside diameter 𝑑𝑖𝑛 = 784 and whose
wires are 41 nm large. The Fourier transform of resistance measurements as a function of the
magnetic field shows two distinct pics for fluxes exactly equal to ℎ/𝑒 = 𝛷0 and ℎ/2𝑒 = 1

2𝛷0

showing that oscillations of the resistance with precise frequencies. From [76].

Fig.2.5 !
Those oscillations are thus due to a dephasing between two electron paths with a
magnetic field! But, as said earlier, there are also evidences of 1

2𝛷0-periodic oscillations.
So where do they come from ? One could argue that it is simply the first harmonic of the
𝛷0-periodic oscillations (that will be referred later as AB oscillations). This seems to be a
good guess, right? We’ll see later in this chapter that it’s not totally right. But first, let’s
have a look at some other quantum interferences effects in larger samples !

Universal Conductance Fluctuations (UCF)
As seen previously, quantum effects appear to be relatively stronger for samples with only
few channels (i.e. with a small cross section) since it is of the order of one conduction
channel. But there is also another condition ! In the previous sections we talked about
interferences of electronic plane waves but that assumption stands only if we consider there
is only elastic diffusion i.e. 𝐿 ≤ 𝐿𝜑.
If we are in this regime, the conductance will be changed by the quantum corrections. It
has to be noticed that, at the end of the previous section 2.2.3 about quantum diffusion , I
took into account only two interacting paths, but there are usually many of them ! The
general idea, however, doesn’t change. And, since the length of each possible paths will
differ from a sample to another (due to different disorder configurations as said earlier),
it will lead to fluctuations in the conductivity between samples. Altshuler (1985)[9] and,
separately, Lee and Stone (1985)[43], calculated that the amplitude of such variations is
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surprisingly constant for a given dimensionality and, moreover, does not depend at all on
the mean conductance nor on any microscopic details of the disorder !
They are thus universal.

Ergodicity and magnetic field
Now let’s apply a magnetic field. We’ve seen that we have a 𝛷0 periodic oscillation in
an “Aharonov-Bohm" ring (that can be seen as an interferometer). But what about a
conductor with many channels in a disordered system ?
Actually the situation is a bit more complex. We can see this system as many “Aharonov-

Figure 2.6: Modelisation of a sample of size 𝐿 < 𝐿𝜑. Many AB rings are set in parallel to
represent the different paths the electrons can follow crossing the sample. Each of those rings
are of different size, showing that the magnetic field will generate different flux for each of the
paths.

Bohm" rings in parallel with different surfaces as can be seen in Fig.2.6, each of them
representing two interfering electron paths. Since the flux 𝛷 is proportional to the surface,
each of them will have a different magnetic-field period. This leads to the fact that if one
changes the magnetic field, not all the rings will dephase the electron paths by the same
amount. However, each of the rings still have a 𝛷0 period and it it always possible to
know how much it dephases for a given field. Thus, the electron paths are dephased with a
different amount in each rings but in a reproducible way since each ring can be considered
independent! From that, we can deduce that the conductivity will still be fluctuating
but with no period1 since the different frequency of the rings are superimposed!
But now, one question comes naturally in mind : can those fluctuations be related to the

1 Actually, one can observe that there is a “main" period which corresponds to rings of size 𝐿2
𝜑. This is

due to the fact that most of the paths participating in the UCFs have a size close to 𝐿𝜑.



44 Chapter 2 Coherent electronic transport in mesoscopic systems

UCF we talked about ?
The answer is yes according to the Ergodic hypothesis[6]. In our case, ergodicity means that
modifying the magnetic field is exactly equivalent to changing the disorder configuration
i.e. the average over the field, is equivalent to the average over the disorder (〈𝛿𝐺〉𝐵 ≡
〈𝛿𝐺〉𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟).
This hypothesis has been experimentally confirmed by Mailly et al.[23] in 1992 on Si doped
GaAs wires. In this experiment, they measured the magneto-resistance of a wire 46 times
at 45 mK, with thermal cycling to room temperature between each measurement to change
the microscopic disorder configuration.

Figure 2.7: Conductance as a function of the magnetic field on Si doped GaAs wires at 45
mK. 46 curves corresponding to different measurements are displayed. Those 46 measurements
were made on the same sample. A thermal cycling to room temperature is made between them
to change the microscopic disorder configuration in the wires. The difference between the curves
show that the change in the disorder configuration has a huge impact on the magneto-resistance
measurements and thus on the UCFs. From [23].

Those magneto resistance measurements allowed them to determine the mean value
〈𝛿𝐺〉𝐵 taken over 0.2T and also the mean amplitude of those oscillations.
Moreover, for a given field, each measurement exhibits a different conductance proving
that the disorder configuration has indeed been changed due to the thermal energy as can
be seen in Fig.2.7. It is possible to determine the mean value averaged over the disorder
〈𝛿𝐺〉𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟 (also called 𝐺) on the same range of field.
And what we observe in Fig.2.7 and Fig.2.8 is that 〈𝛿𝐺〉𝐵 ≡ 〈𝛿𝐺〉𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟 ! This leads to
a very important conclusion : Changing the magnetic field is totally equivalent to
changing the disorder configuration to observe UCFs[43].

However, the magnetic field has to be swept over a certain range to be equivalent to a
complete change in disorder configuration. It is then possible to determine a field 𝐵𝑐 for
which 𝐺(𝐵) and 𝐺(𝐵 +𝐵𝑐) are decorrelated (meaning that it is equivalent to a complete
disorder change).
This has been calculated by Lee et al. in 1985 and they proved that 𝐵𝑐 ∝ 𝜑0

𝑤𝐿𝜑
. Experi-
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Figure 2.8: Figure A : Average of all the 46 curves displayed in Fig.2.7. A theoretical fit that
doesn’t take UCFs into account is also displayed. The fact that the fit corresponds well to the
experiment reveals that the UCFs amplitude, once averaged over all the disorder configurations
goes to zero. Figure B : Variance of the conductance calculated with the 46 curves as a function
of magnetic field. The variance of the UCFs changes by a factor of two after 300 G as predicted
by the weak-localization theory we’ll see in the next section. From [23].

mentally, it means that to have a good equivalence between disorder averaging and field
averaging, one has to sweep the field at least over a few 𝐵𝑐.

Mesoscopic effects in a conductor : Length dependence and weak localization
In the previous section we have seen that the magnetic field has an effect on the phase
of the electrons and we related this to UCFs. But this field-dependent interference effect
leads to another remarkable feature.
Remember when we talk about Aharonov-Bohm effects in metallic rings? We said that we
would come back to it in order to explain the 𝛷0

2 -periodic oscillations. The time has come!

Those 𝛷0
2 -periodic oscillations, as said before, could simply be the first harmonic of the

𝛷0-periodic (AB) oscillations. But let’s have a look at another experiment before making a
definitive conclusion.
Imagine a chain of several identical Aharonov-Bohm rings as in Fig.2.9(left figure) and
check on the conductivity as a function of an applied magnetic field. What would we
expect? This question is pretty complex and has been experimentally addressed by C.P.
Umbach et al. in 1986[73].
In their experiment, they measure the conductivity of several arrays with different lengths

(ranging from 1 to 30 loops). The results are displayed if Fig.2.9.
The first observation is that the behaviour of 𝛥𝐺 = 𝛿𝐺/𝐺 as a function of the number of
rings is completely different for the 𝛷0

2 -periodic and the AB oscillations! As we can see, the
AB oscillations amplitude fades out as

√
𝑁 (with N the number of rings) while the other is
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Figure 2.9: Left picture : SEM image of the sample. Several metallic loops with the same size
are set in series. Right curves : Relative amplitude of the AB and AAS oscillations as a function
of the number of loops 𝑁 in series. The AAS relative amplitude remains constant because of
the robustness of the time-reversal invariant paths over the disorder. On the opposite, the AB
relative amplitude decreases with 𝑁 because of the randomness of the electron phase between
the loops. From [73].

constant. Those results are thus incoherent with our previous explanation of harmonics.
It must have another origin. Actually, those 𝛷0

2 -periodic oscillations were predicted by
Al’tshuler,Aronov and Spivak (AAS) in 1981[10] and arise from another interference effect.
The AB oscillations come from the interferences between two different paths. But what
about “self interacting" paths? Let me be clear: of course a wave cannot interact with
itself but it can interact with the one going through the same path but in the opposite
direction (clockwise and anti-clockwise)! This is pictured in Fig.2.10. Those paths are
called time-reversal invariant paths.
Those probability waves interfere constructively, strengthening each other and thus the
probability for the electron to remain in the loop (instead of going out) is enhanced.
Mathematically, it can be proven that the transmission of this kind of path is reduced by a
factor of 2, leading to a net reduction of the ring total conductivity: this phenomenon is
called coherent retrodiffusion! But why isn’t it reduced with the number of rings then?
In the experiment of Umbach, the rings are coherent (𝐿𝑟𝑖𝑛𝑔 < 𝐿𝜑) but the length between
rings is longer than 𝐿𝜑, meaning that the rings are not coherent one to another. In
the case of AB oscillations, it means that the variation of resistance of each ring 𝛥𝑅𝐴𝐵0
cannot simply be added. Indeed the correction to the resistance depend on the initial
phase of the electron entering the ring. Since the phase is randomized in between the
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Figure 2.10: Aharonov-Bohm ring with a example of time-reversal invariant path. The
paths going clockwise and anti-clockwise always interfere constructively and are dephased only
by applying a magnetic field in the loop. Thus, even if the the whole sample is not coherent, as
long as the two paths are coherent, the AAS oscillations relative amplitude remains constant.

rings, the correction 𝛥𝑅𝐴𝐵0 is then random for each ring. Thus, to obtain the total
variation of resistant 𝛥𝑅𝐴𝐵𝑡𝑜𝑡𝑎𝑙, one has to add 𝑁 random terms (one for each ring) whose
average value 𝛥𝑅𝐴𝐵0 is the same. Mathematically, the variance (or “size") of the addition
of random terms grows as

√
𝑁 . Thus, for AB oscillations, 𝛥𝑅𝐴𝐵𝑡𝑜𝑡𝑎𝑙 =

√
𝑁 × 𝛥𝑅𝐴𝐵0 i.e.

𝛥𝑅𝐴𝐵𝑡𝑜𝑡𝑎𝑙
𝑅𝑡𝑜𝑡𝑎𝑙

=
√
𝑁 ×𝛥𝑅𝐴𝐵0
𝑁 ×𝑅0

= 1√
𝑁

× 𝛥𝑅𝐴𝐵0
𝑅0

: QED!
Moreover, we saw earlier that the UCFs are intimately related to AB oscillations. Then,
can we say something about UCFs from what we’ve just said. The answer is clearly yes! In
Umbach experience, each ring can be said 𝐿𝜑 long. Adding several rings can thus be seen,
in the case of a real sample, as increasing the length of a sample. We can then deduce that
the UCFs size will be reduced by increasing the size of the sample.
In 1D-sample samples like ours with many channels leading to UCFs, the general idea
is then that UCFs amplitude is reduced by length of the sample (if 𝐿 > 𝐿𝜑, obviously)!

Let’s come back to AAS oscillations now. As explained before, the correction to the
resistance is due to paths making a full loop. It also means that we do not care about
the initial phase of the electron since, whatever the initial phase is, the two paths always
interact constructively! The effect can thus just be considered independent in each ring
and we can simply add the corrections of each of them: 𝛥𝑅𝐴𝐴𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑁 ×𝛥𝑅𝐴𝐴𝑆0 . We now

have 𝛥𝑅𝐴𝐴𝑆𝑡𝑜𝑡𝑎𝑙

𝑅𝑡𝑜𝑡𝑎𝑙
= 𝑁 ×𝛥𝑅𝐴𝐴𝑆0

𝑁 ×𝑅0
= 𝛥𝑅𝐴𝐵0

𝑅0
: the amplitude of AAS oscillations is thus

remarkably robust over the disorder!
This explanation was quite detailed but important to understand what happens in more
complex samples as metallic wires. In a sample such that 𝐿 ≫ 𝐿𝜑, you can “cut" it into
𝐿𝜑 long samples. We previously said that we can model such coherent part as "Aharonov-
Bohm" rings in parallel. It thus seems reasonable to model larger samples as several arrays
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of parallel "Aharonov-Bohm" rings put in series exactly as in Fig.2.11.
With that model, we end up with a situation very similar to the one we’ve just described!

+ + + + +

Figure 2.11: Representation of a sample thanks to AB rings. A coherent sample can be
described as seen in Fig.2.6 with AB rings in parallel : we can see that as a fundamental brick.
Thus, to describe a longer sample we just add several of those bricks in series. This model
allows to account for coherence effects in mesoscopic samples and is simple to visualize.

And indeed, in addition to the UCFs we described earlier thanks to the AB oscillations
(that will “disappear" for long enough samples as seen before), we observe an equivalent
for the AAS ones : the weak localization effect!
The time-reversal invariant paths we observe in rings can also be found in pieces of metals
as pictured in Fig.2.12. The “non-looping" paths are responsible for the average resistance
and are called diffusons 1 while the time-reversal invariant ones are responsible for the
weak localization and are called cooperons.

However, this weak localization effect is valid only for a field 𝐵 = 0. Indeed, since in
a real metal every loop has a different size and since the doubling probability of being
retrodiffused is 𝛷0/2 periodic, when one applies a magnetic field the effect is destroyed. To
be totally exact, to put the clockwise path and the anti-clockwise in antiphase, one has to
apply a field equivalent to 𝛥𝜑 = 4𝜋 𝜑

𝜑0
. Thus, it has to be noticed that the effect is totally

killed first in larger loops and then destroyed progressively in smaller ones2. Concerning the
relative amplitude of the effect, if we take the problem with all the channels (not only the
time-reversal invariant ones) , as in any quantum conduction effect, it is possible to show

that it is of the order of 2𝑒2

ℎ𝐺𝐷
= 2𝐺0

𝐺𝐷
= 1
𝑁𝑐

with 𝐺0 = 𝑒2

ℎ
the quantum of conductance,

𝐺𝐷 the classical part of the conductivity (also called Drude conductance) and 𝑁𝑐 = 𝐺𝐷
𝐺0

the number of conduction channels.

1 The attentive reader will have realized that UCFs are due to interferences between several diffusons.
2 Of course each loop still have a 𝛷0/2 period and thus, for a given field 𝐵, it is always possible to

find loops for which 𝐵 × 𝑆𝑙𝑜𝑜𝑝 = 𝑛 × 𝛷0/2. The two interfering paths are thus in phase and the weak
localization effect still appear. However the proportion of loops with paths in phase for 𝐵 ̸= 0 is totally
negligible and so their effect on the resistance.
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(a) : diffuson

(b) : cooperon

Ap

Ap
*

Ap
T*

Ap

Time reversal symmetric loop

Quantum crossing 
between paths

Quantum conductor

Quantum conductor

Figure 2.12: Schematic representation of (a) a diffuson and (b) a cooperon. The diffuson
corresponds to the classical part of the conductivity in which the amplitude 𝐴𝑝 along a
trajectory interfere with the its conjugate 𝐴*

𝑝. On the other hand, the cooperon includes a loop
and thus a time-reversal invariant path along its trajectory. The cooperons are thus responsible
for the weak-localization effect due to the the interference between 𝐴𝑝 and 𝐴𝑇 *

𝑝 , doubling the
reflection probability of the path.

Thus the total conductivity can be written (at zero magnetic field) as :

𝐺 = 𝐺𝐷 −𝐺𝑤𝑙 ∝ 𝑃𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 + 𝑃𝐶𝑜𝑜𝑝𝑒𝑟𝑜𝑛 = 𝑃𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛(1 −
𝑃𝐶𝑜𝑜𝑝𝑒𝑟𝑜𝑛
𝑃𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

) = 𝑃𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛(1 − 1
𝑁𝑐

)

(2.20)
where 𝐺𝑤𝑙 is the weak localization correction.
We can then see that the main component of the conductance corresponds to the Drude
one with only small corrections due to the weak localization.
In quasi-1D wires (as we will use in our experiments) one can show that this correction is
directly related to the ratio between 𝐿𝜑 and 𝐿 : 𝛥𝑔𝑤𝑙 ∝ −

𝐿𝜑
𝐿

Moreover, we’ve just seen that the effect is killed when one applies a magnetic field.
The limit is thus obtained when the field is high enough to break the reversibility in the
smallest loops, i.e. with a surface of the order of 𝑙2𝑒 1. In which case we finally recover the
Drude conductivity[44].

We’d like to finish this part by saying a word about the temperature influence on
the previously explained mesoscopic effects. Indeed, we did not speak at all about how

1 It is the smallest possible path to create a loop.
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important is the temperature at which the experiment are performed but it is crucial!
If we consider what happens with the temperature, the process occurring is the thermal
averaging. We saw earlier that the relevant length for such process is the thermal length
𝐿𝑇 . So if the sample is longer than 𝐿𝑇 , the UCF amplitude will be reduced.
Moreover, those experiments are performed at low temperature because 𝐿𝜑 is enhanced
due to the reduction of the phonon modes number, allowing us to avoid the previously
described averaging effect on disorder.

2.2.4 Onsager relations
Now that we presented the main features of mesoscopic samples and the formalism adopted
to explain the conduction properties, let’s focus on the measurements themselves.
When we talked earlier about Landauer formalism, we considered only the case in which
the wires are used for both sending current and measuring the potential i.e. the so called
“2-points" measurement. However, if the distance between probes is smaller than 𝐿𝜑, some
particular symmetries rule the magneto-conductance measurement and separating the
voltage probes and current wires becomes crucial. In most cases, however, we experimentally
use “2-points" measurements, even when two wires are used to send current and two others
to measure the voltage. Indeed, if the two measuring probes are separated by a distance
superior to 𝐿𝜑, the current and voltage wires are undistinguishable for the electronic
transport: in terms of electron phase there is no difference between the wires.
In his 1986 article, Büttiker[17] considered a fully coherent sample with four wires, each of
them being connected to well separated perfect reservoirs. A hole is created in the middle
of the sample such that a magnetic flux can be applied.
Since the wires are considered having only one conduction channel, and because of time
reversal symmetry1, we can expect some particular relations. Thus, the probability 𝑇𝑖,𝑗 of
transmitting (reflecting) an electron from wire 𝑖 to wire 𝑗 and the probability of reflecting
an electron in the same wire 𝑅𝑖,𝑖 can be proven to obey to the following relations[22, 56]:

𝑇𝑖,𝑗(𝜑) = 𝑇𝑗,𝑖(−𝜑) 𝑅𝑖,𝑖(𝜑) = 𝑅𝑖,𝑖(−𝜑) (2.21)

With 4 wires, it is then also possible to define four points resistances between wires
𝑅𝑚𝑛,𝑘𝑙 = (𝑉𝑘 − 𝑉𝑙)

𝐼𝑚𝑛
with the wires 𝑘 and 𝑙 measuring the voltage and 𝑚,𝑛 sending the

current. It can also been expressed through the previously defined probabilities:

𝑅𝑚𝑛,𝑘𝑙 = 𝐺0(𝑇𝑘𝑚𝑇𝑙𝑛 − 𝑇𝑘𝑛𝑇𝑙𝑚)/𝐷 (2.22)

1 A time reversal symmetric variable or process is defined as being identical if the time 𝑡 is changed to −𝑡.
For example, the mass of a particle is time reversal symmetric but the velocity is not. In our case, the
coherent electronic transport is symmetric upon time reversal but decoherence processes are not. Thus
if 𝐿 > 𝐿𝜑, the electronic transport cannot be considered as a time reversal symmetric process.
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with D a known mathematical coefficient independent from the indices.
From Eq.2.21, it is then possible to prove the so-called Onsager relations:

𝑅𝑚𝑛,𝑘𝑙(𝜑) = 𝑅𝑘𝑙,𝑚𝑛(−𝜑) (2.23)

This relations expresses that the measured resistance, when a flux 𝜑 is applied, is the
same than the one with a flux −𝜑 providing that we exchange the current and voltages
contacts ! This has been experimentally shown in 1986 by A.Benoit et al.[13] in a gold
ring as can be seen in Fig.2.13 where 𝐺14,23(𝐵) = 𝐺23,14(−𝐵)
This is a general result that can be used for Aharanov-Bohm oscillations but also, as we’ve
just seen and this is important in our case, for UCF’s.

Figure 2.13: Magneto-conductance measurements on Au rings with different wiring con-
figurations (shown in the right part of the figure). 𝐺𝑖𝑗,𝑘𝑙 corresponds to using wires 𝑖 and 𝑗
to send current and wires 𝑘 and 𝑙 as voltage probes. We observe that the the first and the
third configurations give mirror results i.e. 𝐺14,23(𝐵) = 𝐺23,14(−𝐵), giving evidences of the
Onsager relations. From [13].

Now that the Onsager relations have been established, let’s see what kind of informations
can be extracted from them.
It is now possible to define two quantities 𝛿𝐺𝑠 and 𝛿𝐺𝑚 such that :

𝛿𝐺𝑠 = (𝐺14,23(𝐵) +𝐺23,14(−𝐵))/2 (2.24)

𝛿𝐺𝑚 = (𝐺14,23(𝐵) −𝐺23,14(−𝐵))/2 (2.25)

Those values inform us about the symmetries in the system. Indeed, if the system is time-
reversal symmetric, then equation 2.23 holds and thus, 𝛿𝐺𝑠 = 𝐺14,23(𝐵) = 𝐺23,14(−𝐵)
while 𝛿𝐺𝑚 = 0. However, if the system breaks that symmetry, 𝛿𝐺𝑚 ̸= 0. But when will
that breaking happen ?
The simplest example is to take a magnetic sample. When a field B is applied, a magneti-
zation M is created. As the field is reversed to -B, the magnetization has to become -M if
one want to preserve the symmetry. It is the case for example in paramagnetic samples.
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The Onsager relations thus become : 𝐺14,23(𝐵,𝑀) = 𝐺23,14(−𝐵,−𝑀).
However, if the system has a preferential direction for the magnetism, (as in ferromagnets
or spin glasses), 𝑀(𝐵) ̸= −𝑀(−𝐵) and 𝛿𝐺𝑚 ̸= 0. Usually this value is thus used to
measure the magnetic contribution in the conductance and 𝛿𝐺𝑠 to determine the orbital
one.



CHAPTER 3
Mesoscopic physics and spin-glasses: a recent love story

As we mentioned in the the first chapters, this PhD has been dedicated to the study of
spin glasses by the mean of mesoscopic physics tools.
I presented the remarkable properties of glasses and particularly spin-glasses as well as
notions of coherent electronic transport in metals. This was necessary to understand the
real subject of this thesis which is an overlap between those two fields: coherent transport
and mesoscopic spin glasses.
Surprisingly, those two fields have been rarely studied together except in our group. The
main point of this new approach is that coherent transport is a powerful probe to establish
the phase diagram as well as, potentially, the topology of the spin glass phase space as we
will see later.

3.1 Kondo effect
Spin glasses are magnetically disordered material with frozen impurities. But above the
freezing temperature 𝑇𝑔, those impurities are free (i.e energy degenerated) and a peculiar
effect comes into light : the Kondo effect.
It is necessary to understand this effect to interpret the behaviour of the resistivity when
𝑇 > 𝑇𝑔 and thus detect when it deviates from the expected one, showing the onset of the
spin glass phase.
If magnetic impurities are present in a material, the resistivity is strongly modified at
low temperatures. While decreasing the temperature, resistivity in this kind of material
decreases as well until reaching a minimum and, finally, increases again logarithmically.
The first who described this effect was J. Kondo in 1964[36]. In his model he considers
the interactions (noted 𝐽) between free up-down energetically degenerated spins (±𝑆) and
conduction electrons spins (𝑠). He finds out, after a perturbation calculus to the third
order, that the dominant diffusion process at low temperature is due to those interactions,
increasing the resistivity. Indeed, while travelling, electrons can diffuse on magnetic
impurities by swapping their spin i.e if 𝑆 = 1/2 and 𝑠 = −1/2, we can end up with
𝑆 = −1/2 and 𝑠 = 1/2 : this is called “Kondo spin-flip".
Finally he gets the Kondo contribution to the resistivity:

𝜌𝐾𝑜𝑛𝑑𝑜(𝑇 ) = 3𝜋𝐽2𝑆(𝑆 + 1)
2𝑒2~𝜀𝐹

(︂
1 − 4𝐽𝜈(𝐸𝐹 ) ln 𝑘𝐵𝑇

𝐷

)︂
(3.1)

with 𝑒 the electron charge and 𝜈(𝐸𝐹 ) the density of state at the Fermi level.
Considering also the 𝑇 5 dependence to phonons and the effect of all impurities, Kondo
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gets the total resistivity for 𝑇 > 𝑇𝑔:

𝜌(𝑇 ) ∝ 𝛼𝑇 5 + 𝑐𝑖𝑚𝑝(𝜌𝛼 − 𝜌𝛽 ln𝑇 ) (3.2)

with 𝛼, 𝜌𝛼 and 𝜌𝛽 being constants and 𝑐𝑖𝑚𝑝 the impurity concentration.

Figure 3.1: Variation of the resitivity as a function of the temperature for AgFe2 and AgFe3
wires comparable to ours. As can be seen on the raw data (∘ and ◇), a logarithmic rise in the
resistivity is observed as the temperature is lowered. Moreover, they can perfectly be fitted by
the Kondo formula for S=1/2 (blue curve), proving that this rise comes from the Kondo effect.
From [47].

This formula works pretty well in explaining the usual shape of the resistivity as can
be seen in Fig.3.1 for AgFe wires similar to our samples[47]. However, the assumptions
taken are quite restrictive. First there should not be any impurity-impurity interactions
meaning that the concentration cannot be too high, otherwise impurities get too close one
to another and will interact. Second, he used the perturbation approach meaning that the
coupling 𝐽 has to remain weak to keep on using that formula.
But the most clearly visible problem of that formula comes from the fact that the resistivity
diverges for 𝑇 → 0. This issue comes from the fact that 𝐽 becomes way too strong at
very low temperatures and this perturbation method falls. The temperature for which the
approximation falls is called "Kondo temperature" (𝑇𝐾)
To solve this problem, Nozières[54] supposed lim

𝑇→0
𝐽 = ∞ (idea taken from Anderson) and

proposed to use the Fermi liquid formalism instead of the perturbation approach. Indeed,
for 𝐽 really high, impurities always have an electron cloud coupled to them, resulting in
an effective magnetically neutral complex. Thus, for 𝑇 ≪ 𝑇𝐾 , it can be considered as a
non-magnetic impurity for which the usual Fermi liquid description holds.

A second important feature, but not critical in our case, is the creation of a so-called
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Kondo cloud. The magnetic impurities also have a long range interaction with the electrons
by the same RRKY process than for creating a glass. Thus not only one unique electron is
forming a complex with the impurity but many electrons are attracted and form a cloud[34]
around it. This cloud is going larger with the temperature, and is of the order of 1

𝑇𝐾
at

𝑇 = 0.
When an impurity is totally surrounded by this Kondo cloud, we say that it is screened
and this complex appears as globally neutral. Our problem in that case is that we need
impurities to “see" each other since we want a spin glass! And if two impurities are too
far away (𝑑 > 1

𝑇𝐾
), they can’t see each other because of the screening... Thus no RKKY

interaction and no glass...
This can become a real problem at really low temperature (𝑇 < 1𝑚𝐾) where impurities
start to be almost fully screened. Experimentally we’ll never reach that limit and Kondo
cloud will not be a problem in our conductance measurements.

3.2 Universal conductance fluctuations in spin glasses
As seen in the previous chapter, Universal Conductance Fluctuations (UCF) can be
considered as fingerprints of the disorder inside samples since they depend strongly on the
disorder configuration. The idea of using them in spin glasses as a probe to investigate the
spin disorder configuration thus came naturally and was first proposed by Al’tshuler and
Spivak[9] in 1985. Practically, it means that we should see changes in the UCF if the spin
configuration changes but it will remain the same if it does not change at all.

3.2.1 First works on conductance fluctuations
In 1991, De Vegvar, Levy and Fulton[75] performed the first measurements of UCF as a
function of the magnetic field (what I will call a “UCF trace") as it is displayed in Fig.3.2.
In their experiment, they measured UCF traces on mesoscopic (2 x 0.42 x 0.9 𝜇m) 1000 ppm
CuMn spin glasses at different temperatures. As can be seen, clear quantum fluctuations are
present! Moreover, we can use the amplitude of those fluctuations to determine the phase
coherence length in the sample since they are directly related. Below the glass transition
(expected to be around 𝑇𝑔 ≈ 1𝐾), we can clearly see a rise in the fluctuations amplitude,
showing that in the glassy phase the coherence length is much longer. Indeed, in the glassy
phase, the spins are not degenerated anymore since they are frozen and, consequently,
the effective concentration of degenerated impurities 𝑐𝑖𝑚𝑝 decreases. The Kondo effect
is thus killed as the spins get frozen, diminishing the diffusion processes of electrons in
the sample. And since this process was dominant, 𝐿𝜑 is enhanced compared to the para-
magnetic (Kondo) phase. In the glassy phase, they estimate 𝐿𝜑 ≈ 1𝜇m, which is quite large.

From those measurements it is also possible to extract the magnetic contribution to
the conductivity 𝐺𝑚 defined in Chapter 2 thanks to Onsager relations. We remind the
reader that 𝐺𝑚 is only sensitive to fixed magnetic contributions such as the frozen spins in
a spin glass. Here, the magnetofingerprints are highly reproducible below the expected
𝑇𝑔, suggesting that the spin configuration remains the same once the transition is reached.
The disorder is frozen.
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Figure 3.2: Magnetic part of the conductivity as a function of the magnetic field for different
temperatures on a 1000 ppm CuMn spin glass. As the temperature is lowered, the amplitude
of the variation increases, proving an enhancement of the phase coherence length 𝐿𝜑 due to
the progressive freezing of spins. Moreover, the reproducibility of the traces proves that even
for 𝐵 ≫ 𝑘𝐵𝑇𝑔

𝜇𝐵
, the spin configuration is not affected. From [75].

Another remarkable property is that even upon cycling the magnetic field up to ten times
the typical exchange field 𝐵𝑔 = 𝑘𝐵𝑇𝑔

𝜇𝐵
, we see no decorrelation between traces as can be

seen in Fig.3.2! This is indeed surprising since we would expect the spins to be polarized
by such a large field. It thus suggests that the spin configuration is invariant even if one
applies large magnetic fields.
This pioneering work displays important results for our studies. First, it shows that the
UCF are reproducible below 𝑇𝑔 even with low concentration spin glasses (0.1%!), proving
that the disorder is frozen. Second, the glass appears being insensitive to the application of
large fields (up to ten times 𝐵𝑔), proving that UCF traces can be used over a large range
of magnetic field without perturbing the spin configuration.
However there are also unsolved questions. The calculated correlation between two 𝐺𝑚
traces after thermal cycling above 𝑇𝑔 should be close to zero since the configuration will
totally change. But the correlation stays quite high (𝐶 > 0.40) even after a heating at
𝑇 = 2𝑇𝑔. This could be explained by the presence of clusters, resulting in different freezing
strengths inside the sample[77].
To go further in the understanding of the glassy phase with this UCF probe, a deeper
insight on the UCF in the spin glass phase is necessary. Several recent works have been
recently conducted theoretically as well as experimentally in our group to shed some new
light on how tu use this new technique.
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3.2.2 A renewal

In our group, Thibaut Capron and Guillaume Forestier made the first steps for a new
experimental exploration of spin-glasses, a few years ago.
As explained just before, the amplitude of the UCFs increases when we reach 𝑇𝑔 because
of the freezing of spins that kills Kondo effect and thus increases 𝐿𝜑. But there is also
another way of lifting the spins degeneracy: magnetic field!
Indeed, when a magnetic field is applied, it will be more favourable for the spins to align
with it, lifting the degeneracy. Moreover, we saw that, even for strong field, the frozen spins
are not affected by the field since the traces are reproducible. Then, deep in the glassy
phase, once everything is frozen, we would expect to have a constant amplitude for the UCFs.

Figure 3.3: Variation of the resistance as a function of the perpendicular magnetic field on
a 700ppm AgMn spin glass wire at 80mK. The amplitude of the UCFs is not constant and
increases with the magnetic field despite the fact that 𝑇 ≪ 𝑇𝑔. This proves that some magnetic
spins remain unfrozen (and can be polarized) even at temperatures 𝑇 as low as corresponding
to 𝑇/𝑇𝑔 = 0.2. From [20].

However, T.Capron[20] proved that, even for 𝑇 ≪ 𝑇𝑔, the amplitude of the traces
increases as the magnetic field goes higher as pictured in Fig.3.3! And, as presented just
before, this means that 𝐿𝜑 increases. It confirms that some free magnetic impurities are
present and can be polarized by the field, acting on the coherence length. Thus, it still
exists free spins in the glassy phase even for 𝑇 = 𝑇𝑔/10, which is really surprising!
More quantitatively, we can relate the amplitude of the UCFs at low field with 𝐿𝜑. Thus,
𝜏𝜑, which is proportional to the number of free spins, can be deduced. And, even more
surprisingly, the results show that even at 𝑇/𝑇𝑔 = 0.2, 20% of the spins are free! This is
totally at odds with the previously accepted idea that all the spins get suddenly frozen at
𝑇𝑔.
This also unveils the fact that many spins do not participate in the formation of a spin
glass and that they have to be taken into account when one wants to consider electronic
transport in those magnetically disordered systems.
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At this point some people may argue that we are in small systems and that we’re extrapo-
lating results taken on bulk materials. I would answer that G. Forestier et al.[29] showed
that, even in small systems like ours, the 𝑇𝑔, the 𝑅(𝑇 ) and 𝑅(𝐵) (Fig.3.4) are totally
equivalent to the ones measured in bulk materials!

Figure 3.4: Resistivity without the electron-electron interaction contribution as a function of
the temperature for a 500ppm AgMn spin glass wire. On the left panel, we can clearly see the
decrease of the resistivity with the temperature until reaching 10K, due to the electron-phonon
interaction being killed (black fit). Then a logarithmic rise appears until 2K because of the
Kondo effect as shown in Fig.3.1 (orange fit). On the right panel, we present a zoom on the low
temperature part. After reaching the maximum at 𝑇𝑚, the resistivity decreases again due to
the apparition of the glassy phase. As the spins get frozen, the Kondo effect is killed resulting
in this decreasing. From [29].

Thus it means that the electronic transport in small systems and in bulk are the same.
We can then easily transpose the data we get from our systems to more “standard" spin
glasses.
From that, what else can we say about our measurements?
Actually, the main aim in our work is to precise more quantitatively how much the spin con-
figuration changes between two quenches. In order to do so, we base our further conclusions
on a quite recent article by D. Carpentier and E. Orignac[21]. In that paper, they propose
a theoretical expression allowing to connect directly the mathematical correlation between
UCF traces and the overlap between the real equilibrium states those UCFs represent.
As seen in Chapter 1, we can define an overlap 𝑞𝛼𝛽 between the different states in the
spin glass phase and, from that, a distance 𝑑𝛼𝛽 which is more easy to handle. Indeed, if
two states are almost identical the normalized distance is 𝑑𝛼𝛽 ≈ 0 and if they are really
different, they are “far" so 𝑑𝛼𝛽 ≈ 1. What is impressive is that those theoreticians proved
that comparing different UCF traces corresponding to different states allows to exactly
know quantitatively how far those two states are!
It can then give us information about the structure of the phase space as defined in the
Chapter 1.
Also, they propose an experimental process pictured in Fig.3.5

Basically, it consists in measuring the UCFs at a given temperature 𝑇0, heat up the
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Figure 3.5: Representation of the proposed protocol by D.Carpentier. A UCF trace 𝑛
representing the configuration 𝑆

(𝑛)
𝑖 is taken by sweeping the magnetic field at a temperature

𝑇𝑒𝑥𝑝 ≪ 𝑇𝑔. The field is then brought back to zero. After that, the system is heated up to a
temperature 𝑇 ′ ≫ 𝑇𝑔 during a time 𝑡𝑤 and then brought back to 𝑇𝑒𝑥𝑝. A new UCF trace 𝑛+ 1
representing the configuration 𝑆

(𝑛+1)
𝑖 is then taken. This process is repeated over and over.

At the end, the correlations between the traces are calculated, leading to having a statistical
distribution of correlation values, giving informations about the phase space structure. From
[21].

measured sample at a temperature 𝑇1 ≫ 𝑇𝑔 during a given time 𝑡 and then compare the
UCFs taken before and after the protocol. By repeating this process a large number of
times, statistics can be made and a distribution of the correlation values can be displayed.
From that, we can get the distribution of the overlap values 𝑃 (𝑞,𝐶), for this spin spatial
distribution 𝐶, but not directly the 𝑃 (𝑞) as defined before. Indeed, the 𝑃 (𝑞) is defined
as the average of 𝑃 (𝑞,𝐶) over all the possible configuration i.e. 𝑃 (𝑞) = ⟨𝑃 (𝑞,𝐶)⟩𝐶 . We
thus would need to experimentally get 𝑃 (𝑞,𝐶) for many different spatial distributions by
warming up the sample to a temperature such that spins can move in the sample and
repeat the previously defined protocol.
If the structure of the phase space is standard, as pictured in the droplet model, the 𝑃 (𝑞)
should have a standard distribution whereas in the case of a mean-field model as Parisi’s
one, the distribution would be totally different as pictured in Chapter 1, Fig1.9.

You have now all the keys to understand why the investigations on coherent electronic
transport in mesoscopic spin glasses are relevant to contribute to one of the biggest question
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in condensed matter physics: the nature of the spin glass phase!
And since we are really interested in addressing that question not only theoretically but for
real, I will now expose the different methods and equipments required to experimentally
answer it.



CHAPTER 4
Experimental setup

If one wants to study coherent electronic transport, many requirements are to be fulfilled
in the setup. First of all, 𝐿𝜑 must be comparable to the length of our samples1. Two
strategies seem available to achieve this point : the first one is to reduce the sample size
as much as you can to be close to 𝐿𝜑 while the second one, on the opposite, consists in
enhancing 𝐿𝜑 in the sample.
Another issue lies in being able to detect those quantum variations that are, as we have seen,
of the order of 𝑒2/ℎ. In systems like ours (typically a few tenth of ohms), it corresponds
to very small resistance variations. This requires our measurement lines to add as less
parasitic noise as possible. Indeed, we have two major sources of noise in our experiments,
electronic noise and thermal noise.
This chapter will be dedicated to the presentation of the experimental techniques allowing
us to fulfil all those requirements.

4.1 Sample fabrication
During my Phd I measured several kinds of samples made by different people. Some of
them were boron-doped diamond (Bousquet et al.), others were superconducting samples
(CEA Leti). Here I will focus on the samples used for my thesis main subjects: mesoscopy
and spin glasses.
The geometry of our samples are made in such a way that we are in a quasi-1D regime,
allowing us to have a better contrast

(︂
𝛥𝐺

𝐺

)︂
to see quantum effects. Indeed, when are

in this regime, the resistivity in enhanced as only a few conductions channels are present.
And since we’ve seen that those variations are of the order of 𝑒2/ℎ (i.e. one conductance
channel), it means that the smaller the conductance (the less conduction channels), the
more contrast we can get.
But other conditions have to be taken into account ! When we’ll measure UCFs, we need
to sweep the magnetic field over a few 𝐵𝑐 ≈ 𝛷0

𝑤 𝐿𝜑
(defined in Chap.2 as a critical field to

be in the ergodic limit). The main problem here is that 𝐵𝑐 is defined as the field needed to
put a quantum flux into a surface of size 𝐿𝜑 ×𝑤 (in the limit where 𝑤 < 𝐿𝜑). Thus 𝑤 has

1 A strong notable exception is the weak-localization feature that is totally robust to the length of the
sample.
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to be large enough to make 𝐵𝑐 experimentally reasonable1.
In the end we chose to make samples that are 100 nm large, 50 nm thick and few microns
long as shown in Fig.4.1.
Since those samples are of nanoscopic size, we need specific techniques to produce them,

I+

I-

I-
V- V+

V-

Figure 4.1: SEM image of a typical sample. The sample can be measured with two
configurations with the contacts in orange being unchanged. The first one is depicted in green.
It allows to measure the 3𝜇m sample (green). In violet is the second configuration that allows
us to measure the 25𝜇 sample.

like electronic lithography for example.
The samples I used were made by the previous PhD student that worked on the subject
(Dr. Guillaume Forestier) at the PTA (CEA Grenoble) with the following procedure :
Some resist is applied on a silicon wafer. Then a focused electron beam is used to draw
the desired pattern. Afterwards, the wafer is set into a developer fluid that will remove the
insulated resist (positive resist). Next, we simply have to deposit the desired material in
the holes we made and remove the remaining resist (lift-off process).

Now we got “pure" samples. In order to make spin-glasses, we have to dope them with
magnetic impurities. To do so, we use an ion implanter in Saclay (near Paris, France), in
which we irradiate our samples with a focused ion beam at a fixed power designed to dope
them uniformly with the desired concentration.

Once the samples are made, it is now time to measure them! For that, we need, as
previously explained, to enhance 𝐿𝜑 and thus cool them down to very low temperatures.

1 By reasonable we mean that we should be able to sweep over at least 10𝐵𝑐. And since 𝐵𝑚𝑎𝑥 = 6𝑇 in
our experiments, it gives a maximum limit of 𝐵𝑐 = 0.6𝑇 .
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4.2 Cryogenics
In order to go to low temperatures, we use a so-called “dilution" fridge.
The principle of this kind of fridge is to use a peculiar property of helium isotopes[45].
Indeed, helium can be naturally found with two different isotopes, namely 4𝐻𝑒 (99.9999
% of the total helium) and 3𝐻𝑒 (0.0001%). When a mixture of those two elements is set
around 870 mK, it undergoes a phase separation between a poorly concentrated 3𝐻𝑒 phase
(with a lot of 4𝐻𝑒) called “diluted phase" and a highly concentrated 3𝐻𝑒 phase (with few
4𝐻𝑒). Moreover, as can be seen on the phase diagram in Fig.4.2, the concentration in the
diluted phase is directly related to the temperature of the mixture.

Figure 4.2: Phase diagram of a mixture of 3𝐻𝑒 and 4𝐻𝑒. Below 870mK, a phase separation
appears between a poorly concentrated 3𝐻𝑒 phase (left branch on the diagram) and a highly
concentrated 3𝐻𝑒 phase (right branch on the diagram).

In a dilution fridge, this mixture is in a close pumping circuit as shown in Fig.4.3. The
proportion of each element is set such that the interface between the two phases appears
in the so called mixing chamber. This mixing chamber is simply a box whose section is
much larger than the tubes to increase the surface over which we can pump, and thus the
quantity of pumped mixture. As 3𝐻𝑒 is lighter than 4𝐻𝑒, the concentrated phase will be
on top of the mixing chamber and the diluted one on the bottom. The cooling process is
thus the following : if we manage to lower the concentration of 3𝐻𝑒 in the “diluted phase",
a disequilibrium will appear and will be offset by 3𝐻𝑒 migrating from the concentrated
phase to the diluted phase! This process is endothermic (meaning that it absorbs thermal



64 Chapter 4 Experimental setup

energy from the environment) and is responsible for the cooling process. In the fridge this
is achieved by directly pumping on the diluted phase. 3𝐻𝑒 being lighter, in proportion it
will be pumped more than the 4𝐻𝑒 and then the concentration of 3𝐻𝑒 decreases.

Mixing1chamber

Discrete1exchangers

Continuous1exchangers

Still1(700-9001mK)

4He1from1the1bath

1K1pot

Vacuum1Chamber

3He1and14He

3He
4He

Figure 4.3: Representation of a dilution fridge. The 3𝐻𝑒 is going in and gets cooled down
by the 4𝐻𝑒 bath, the 1K pot, and then by the outgoing mixture in the exchangers (continuous
and discrete). The mixture is pumped out of the fridge from the still. Pumping 3𝐻𝑒 from the
mixture is easier than 4𝐻𝑒, making a disequilibrium and starting the dilution process.

The pumped 3𝐻𝑒 then goes up in the fridge to the pump that is at room temperature
and is then reinjected, closing the circuit. And actually, if everything is done right, the
main heat flux comes from this reentering mixture, leading to a major problem to cool down
as you cannot avoid it. Indeed, in a cryostat, we cannot afford to have such a huge entering
heat when we already have leaks as the fridge is never perfectly isolated and thermalized.
Moreover, as we’re going down in temperature, the cooling power of our fridge decreases
as 𝑇 2 (which is really fast!). However, since the 3𝐻𝑒 going out of the mixing chamber is
really cold, it would be a shame not to use it to cool down the reinjected mixture coming
from room temperature! To do so, several heat exchangers are placed along the circuit to
maximise the efficiency of the process by pre-cooling the entering mixture with the one
going out.
It has to be noted that in order to be able to make this dilution process work, the mixture
has to be pre-cooled around 870mK to provoke the phase separation. This seems already a
big gap to cross since we’re starting from 300K...
But in reality it is not such a big deal!
First, we simply place the dilution circuit into liquid Helium at 4K placed in a dewar. This
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allows to pre-cool the whole system and mixture to 4K. Then, as we need to go below
that temperature, we need to isolate the sample and mixing chamber from that “warm"
environment. This is achieved by placing the sample chamber (IVC) into vacuum once it
is at 4K. That way, it won’t be in thermal contact with the 4K bath and can be cooled
down well below that temperature. Then, by making a Joule-Thomson expansion thanks
to a compressor in the dilution circuit, we bring the mixture temperature from 4K to 1K.
But we’re not yet to 870mK, we have one last step.
To go from 1K to the phase separation temperature, we just have to let the pumping
system do all the work! Indeed, at 1K we are pumping on a real mix of 3𝐻𝑒 and 4𝐻𝑒 as
it didn’t undergo its phase separation yet. The mixture can then be seen as a 3𝐻𝑒 gas
on which we pump. And since the temperature of 3𝐻𝑒 at low pressures can go down to
200mK, we have some cooling power to bring the whole system to 870mK!

4.3 Wires
Now that we are able to cool the sample down to very low temperatures, it is necessary to
ensure that nothing will bring extra heat and warm it up. Indeed, if the cryostat is empty
with no wire and only the sample we can go down to 10 mK. But, since we actually want to
measure the sample, we need to connect it with wires that will go up to our measurement
devices at room temperature. Unfortunately, when one connects something warm (here
at 300 K) with something cold (10 mK) some heat is exchanged... Our goal is thus to
minimize this exchange due to the wires.
Moreover, those wires have an electrical resistance and add some thermal noise on the
voltage measurements via the Johnson-Nyquist[38, 55] noise as well as they conduct hot
photons.
Those two issues lead us to adapt our setup in a particular way. First, we have to thermalize
our wires as much as possible on the different stages of our fridge. That way, once they
arrive on the sample, the wires will carry minimum heat because it will have been dissipated
all along the fridge before. To minimize even more the heat flux, we can use longer wires
to have more length and then increase the heat resistance (Wiedemann-Franz law)!
However, here we considered only heat flux coming from 300K directly into the wires.
Another source of heating comes from the surrounding environment via radiative pro-
cesses[30]. Indeed, any matter irradiates photons whose energy is proportional to their
temperature (black body). Thus, those photons can be absorbed by any other matter and,
in our case, by the wires or directly the sample. And if those photons are “hotter" than
the sample (for example coming from the IVC walls which are at 4K since touching liquid
helium), they will heat it up! To prevent that, the sample is shielded with some metal
box that is connected to the mixing chamber and thus irradiating only low temperature
photons. Concerning the wires, we use thermocoaxes between 4K and the sample. They
proved themselves to be excellent high frequencies filters[81] (perfect for photons) and do
not carry much heat. Moreover, we need long lines to thermalise the electrons. Indeed,
the dissipation via phonon is so reduced at low temperature that long wires are needed
for electrons to have time to thermalise. To summarize we use two meters-long wound
thermocoaxes wires in between 4K and the sample.
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From now on, you know everything to wire a cryostat from 4K to 10 mK.
However we didn’t say a thing about wires going from 300K to 4K. Actually this is much
simpler and the only problem resides in the thermal noise that they could bring. To prevent
that Johnson-Nyquist noise (scaling as

√
𝑅) and parasitic electromagnetic one, we simply

use shielded coaxial wires with very low resistance (few ohms per meter).
Well, now that we are able to electrically measure our samples at low temperatures, let’s
see the external setup!

4.4 Heating the samples
In most of my experiments, I need to be able to heat the sample at temperatures way higher
than 4K. And as we’ve just seen, the cryostat allows me to go to very low temperatures
but hardly higher than 4K. Of course we can still isolate the sample and then heat it
up by passing current into a resistor placed on the mixing chamber. This allows us to
heat all the fridge and thus use the usual thermometer to know the temperature. This
technique is, however, really time consuming as you can’t use high currents and the heat
has to propagate through a mass whose calorific capacity increases with temperature. For
example it would take about a day to warm the fridge up to 50K without burning the
wires...
Moreover, we are not interested in warming up the whole fridge! We just need to heat up
the sample. Thus we could just pass some current through it! The other interesting point
in doing so, is that it allows us to quench the sample fast after heating. Indeed, when one
stops passing current, the sample, since heated very locally, will rapidly recover its initial
temperature1

The crucial point here is to calibrate precisely this process. To do so, we rely on the
resistance variation of our sample as a function of the temperature. Indeed, we measure
once the R(T) of our sample by heating the whole cryostat and then compare it with the
one we get by heating with a current. Both curves are displayed on Fig.4.4. It is then
possible to identify which temperature corresponds to a given current, and thus, once
calibrated, to use the current to heat up the sample.
However, it has to be noticed that, below 1K, the electrons are really badly coupled to
phonons. Thus, passing current is not an efficient way to heat up the sample below 1K.
Hopefully, for those temperatures we can still heat with the dilution on, and that’s what
we will do.

1 Of course this requires a local heating only. If the environment is also heated the sample cannot relax
the heat properly.
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Figure 4.4: Calibration of the sample heating. In blue, the resistance as a function of the
fridge temperature is displayed. In red, the resistance as a function of the current sent in the
sample is shown. To calibrate the heating in the sample, we just make a comparison between
the two curves, allowing us to have the Heating Temperature as a function of the Current sent.

4.5 Magnetic field measurements
As explained in the previous chapters, most of my work will be based on magneto-resistance
measurements. In order to make those measurements, we need to sweep the magnetic
field applied on the sample. To achieve that, we use a 2-axes superconducting coil. It is
constituted of two separated parts : the first one is simply a solenoid allowing to apply
a field perpendicular to the sample and whose maximum value is 8 𝑇 ; the second one is
situated around the solenoid allowing us to make an in-plane field with a maximum value
of 1.3 𝑇 thanks to two Helmholtz coils.
The first choice we had to make was to choose the span over which we would sweep the
field. This has been a heavily debated subject and after some tests (that will be explained
later on) we chose to sweep in between 0 and 6 T.
This is quite simple but, during my PhD I faced a major problem while sweeping the
magnetic field. Indeed, during my first year some strange features appeared at low field
(< 1000 G) while sweeping. I later discovered that those features were undesired effects
due to a huge extra heating on the sample. The main question then was to discover where
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it was coming from. The first idea was a problem of spikes in the current sent into the coil.
But despite changing the power supply twice and recording the current sent to the coil to
check for anomalies, the problem was still there. I thus removed one by one every piece of
the setup. Upon close inspection, it appeared to be a problem inside the sample holder
and, actually, was the soldering...
To solve the problem I thus needed to design a new sample holder in which the soldering
wouldn’t be based on tin. The solution I opted for was to use silver-based epoxy as solder.
One of the main quality of that choice is that it is pretty easy to use since it is not necessary
to mix several components in that version. Moreover, even on small soldering the contact
resistance is really low (only 1 to 2 ohms). The counterpart of this, is that it is mechanically
weak and it has to be manipulated with caution.
Once the soldering problem was solved, we had to care about mechanical problems such as
the size of the sample holder, the length of the cables, etc..
The protective screen of the sample has a diameter of 28 mm, limiting the sample holder
size. We thus decided to design the sample holder as a PCB circle of diameter 26 mm on
which a metallic circuit is printed.
After the sample is glued, it is important to properly connect it electrically in order to
measure. First step, we obviously have to connect it to the sample holder. We just simply
bound it with Aluminium wires from the sample pad to a metallic part on the holder.
Second step, it is necessary to connect the sample holder to the measuring lines in the
cryostat. Moreover, we want to be able to disconnect the entire sample holder from the
cryostat to connect easily the sample and manipulate it before cooling down the fridge.
Thus we have to imagine a system in which we can plug the holder in the cryostat. For
that, we chose to use Omnectics connectors because it has been already used in cryogenics
without any noticeable problems or deterioration (as far as we know) and because of their
really small size allowing us to have two rows of twenty contacts on such a small surface.
Male connectors are set on the holder and female ones are set on the cryostat side. The
only problem with it, is that the connectors are so small that the pins are really close and
soldering them without bad contacts between them is not easy. Third (and final) step, we
have to connect the female connectors to the wires. For that the female connectors are set
on another PCB placed in a copper box. On this PCB the connectors are connected to
metallic tracks and then to the wires soldered with the previously cited silver epoxy.
Finally, this whole system allowed to reduce extra heating by, at least, a factor of ten.
The residual heating is probably due to some tin which is still present in the wires themselves.

Now that we solved that issue, we are able to send current into the sample and to
measure the voltage. However, we cannot simply measure the resistance with some usual
everyday devices as, for example, voltmeter: we wouldn’t be precise enough. We thus need
to use some special schemes that I will now describe.

4.6 Low noise measurements
As seen in the previous chapters, the typical variation of conductance we’re looking for
is of the order of 𝐺0. So what does it mean for the resistance variation? Let’s take
𝐺 = 𝐺𝑚 +𝛥𝐺, with 𝐺𝑚 the mean value of the conductance and 𝛥𝐺 the variation of it.
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Respectively we define 𝑅 = 𝑅𝑚 +𝛥𝑅. We thus have:

𝑅 = 1
𝐺

= 1
𝐺𝑚

(︁
1 + 𝛥𝐺

𝐺𝑚

)︁
= 𝑅𝑚

(︂
1 + 𝛥𝐺

𝐺𝑚

)︂−1

≈ 𝑅𝑚

(︂
1 − 𝛥𝐺

𝐺𝑚

)︂
𝑅 ≈ 𝑅𝑚 −𝑅2

𝑚𝛥𝐺

From here we get that

𝛥𝑅 = 𝑅2
𝑚𝛥𝐺

So now, if 𝛥𝐺 = 𝐺0, as we expect we have that 𝛥𝑅 = 𝑅2
𝑚𝐺0 and is thus dependent on

the absolute value of the resistance!
In our system, since the resistance of the samples is typically of 100 Ohms, this variation
will be roughly of 0.4 Ohms maximum if we are in the best conditions (like having 𝐿 < 𝐿𝜑).
Of course this is (unfortunately...) never the case and if we want to have a short sample,
the resistance will be way lower and the variations will be of the order of 0.01 Ohms... It
thus becomes clear that we need very precise devices.
To do so, we use a bridge configuration to increase the dynamic of our devices. By dynamic,
we mean the variation of signal over the total signal the device receives. Indeed, on digital
devices, it is much more difficult to see a variation of 1𝛺 over 1G𝛺 than 1𝛺 over 10𝛺
because of the discretization. If you have 16 bits and measure a 1G𝛺 signal, the lowest

variation 𝛥𝑅𝑚𝑎𝑥 you can see is 109

216 representing 15258 Ohms... There is no way you can

see a 1𝛺 variation... Whereas if your signal is of 10𝛺 you get 𝛥𝑅𝑚𝑎𝑥 = 10
216 = 1.5 × 10−4𝛺

making your 1𝛺 variation visible!
The bridge configuration allows us to add a negative signal to what we measure to compen-
sate its mean value. For example, if we are watching at the variation around a 40𝛺 signal
(𝛥𝑅𝑚𝑎𝑥 = 40

216 ), we will "subtract" 39 𝛺 and get a 𝛥𝑅𝑚𝑎𝑥 = 1
216 , which is much better!

But another point has to be considered. Having instruments with a high dynamic is of
course important but what about noise? Because if the signal is lower than your noise,
even with the best possible dynamic you’ll never be able to measure anything. We could
answer that to measure a resistance we could simply send more current and, just by Ohm’s
law, we would get a higher voltage and thus the Signal to Noise Ratio (SNR) would be
really high as the noise is constant no matter which current strength we send.
However, we face another issue here. If one sends a current in a resistive sample, some
Joule heating will appear. And, as we saw before, we made a lot of efforts to avoid extra
heating on the sample...
Actually, at the mesoscopic scale, we are less concerned by the sample temperature than
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by the electrons one (knowing that the electrons can be hotter than the sample but not
the opposite) but the idea remains. Actually our samples are smaller than 𝑙𝑒−𝑝ℎ when at
low temperatures such that we cannot count on the phonons to cools down our electrons.
In our case, the limit we have is then that the energy the electron can give to the sample
is lower than the thermal energy of the phonon bath i.e. 𝑒𝑉 = 𝑒𝑅𝐼 ≤ 𝑘𝐵𝑇 with 𝑉 the
voltage across the sample, 𝐼 the current and 𝑅 the resistance[61].
This gives us a strong limitation on the current we can send into the sample and brings
directly back on the table the question of noise.
Another solution to reduce the measured noise is to reduce the frequency window (band-
width) in which we measure. Indeed, that way, all the noise out of this window will be
excluded from the measurement. This can be achieved by using lock-in amplifiers.
Lock-in amplifiers are widely used in voltage measurement for their ability to exclude most
of the noise sources such as 50 Hz or high frequency noise.
In my case, the lock-in is used as a sinusoidal voltage source (ranging typically from 10 Hz
to 100kHz) and also as a measurement device. In short, it will multiply the signal sent to
the sample with the one measured, which will, based on a mathematical principle about
sinusoidal function, suppress any signal which is not at the same frequency as the exciting
signal. The bandwidth is then really small and the signal less noisy.
To enhance again the SNR, another simple trick would be to average the signal longer
by increasing the integration time of the lock-in (also called time constant). The lock-in
averages the signal longer, which reduces the final noise as the square root of the integration
time. This is even the simplest way actually... But of course when something is too simple,
there is a counterpart.

4.7 Setup calibration
And this counterpart is that averaging your signal can make you loose a lot of information!
On a general point of view, just imagine that your signal varies sinusoidally on time with a
temporal period of 𝑇 as on the blue curve in Fig.4.5. If one averages over a time which is
between 0 and 𝑇 , the result will be a curve whose amplitude is reduced and that will be
shifted as shown on the green curve of Fig.4.5. And even worse, if we average over a time
superior to 𝑇 what you’ll recover will just be zero...

An example on my measurement is displayed in Fig.4.6 for a given magnetic field sweep
speed. It is clear that when averaging, the data look smoother but also highly shifted and
that the amplitude is reduced.
As we have just seen, this problem is due to the fact that the signal changes too fast
compared to the integration time. The strategy here is then to keep a long integration
time (to increase the SNR) while making the signal change slower (from a temporal point
of view) by sweeping the magnetic field at a lower rate. This can be seen in Fig.4.7 where
the sweep rate is changed while keeping the integration time constant.

Of course this lengthens the measurement duration in a not negligible way... Moreover,
it has to be noticed that we’re not talking about minutes or seconds, but hours! And if the
duration is too long, we then recover the well-known 1/f noise that mainly comes from the
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Figure 4.5: In black, an example of a sinusoidal signal with a period 𝑇 . In green, the same
signal but averaged over a time 𝜏 = 3

4𝑇 , like would do a lock-in with a time constant 𝜏 . We
clearly can see that the amplitude of the oscillations is lowered and that the signal is shifted.
However, if the time constant is reduced, we recover a signal much closer from the original one
(red curve).

drift of the instruments over time. Unfortunately, that can be really annoying for our data
post-treatment...
As you can see, when improving the SNR, we have to face many problems. Indeed, when
we increase the integration time, we have to reduce the sweep speed and thus increase our
measurement duration leading to having 1/f noise.

It becomes now pretty clear that we need to find a good balance between all those
parameters to find the optimum ones for our experiments.
Let’s then start by the end: the 1/f noise. The noise curve is displayed on Fig.4.8

To keep the 1/f noise level at a reasonable level, we cannot afford experiments that last
more than 8 hours. Meaning that we have to sweep at a speed of 60000/8 × 3600 ≈ 2𝐺/𝑠
as the lowest speed. From that, we can deduce, from the previous measurements displayed
in Fig.4.6 , that we can average up to 20 seconds without loosing too much information.
Actually, the gain that you get by passing from 10 seconds to 20 seconds average is quite
negligible (we gain only a factor of

√
2 ≈ 1.4)... We thus decided, for the obvious reason of

making experiments faster, to speed up the sweeping to 5G/s with an integration time of
10 seconds leading to a roughly 4h long measurement.



72 Chapter 4 Experimental setup

Figure 4.6: Resistance as a function of the magnetic field for different lock-in time constants
and a fixed magnetic field sweep rate (0.1 G/s). With low time constants we ensure to get
the expected signal. As the time constant is increased, we see that the signal gets shifted and
looses its amplitude, as also shown in Fig.4.5.

You may have also noticed that I did not say a word about the frequency at which
the samples are measured. Indeed, we measure our samples at a really low frequency
(≈ 12Hz), which prevents us from any capacitive effects1 and allows us to measure at a
frequency at which the environment noise is at the lowest.
Now that we made our setup calibration clear in order to have nice raw data, let’s see how
the post-treatment is done.

1 The capacitance between our wires and the ground is ≈ 5nF and the total resistance of the wires and
the sample is ≈ 200𝛺, leading to a cut-off frequency around MHz...
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Figure 4.7: Resistance as a function of the magnetic field for different magnetic field sweep
rates and a fixed lock-in time constant (200ms). As seen in Fig.4.6, the lock-in time constant
and the magnetic field sweep rate have to be consistent with the variation speed of the signal.
Here, we see that when the field is slowly swept i.e. when the signal changes slowly.
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Figure 4.8: Fourier transform of the noise signal. The resistance of a sample has been
measured during 36 hours at a constant field. The signal measured is then the noise of our setup.
One can see that to keep the noise at a reasonable level, we need to keep the measurement
time below 8 hours.



4.8 Data post-processing 75

4.8 Data post-processing
We all know that post-processing is very important to obtain comprehensive results. But
the usual pitfall with it, is that you can make almost anything appear with a good post-
treatment1...
I thus want to explain how my data are treated such that there is no concern about it and
then about the results.
First, as seen before, we chose good parameters to have our raw data with all the in-
formations we need (not smoothing artificially or loosing amplitude). Then we obtain
magneto-resistance curves such as presented on Fig.4.9

Figure 4.9: Resistance of a pure silver sample as a function of the magnetic field. The signal
consists in two different parts, a classical one and a quantum one. The first one is fitted by a
polynomial fit that is subtracted afterwards.

Since we’re more concerned by the UCFs, it is crucial to remove the classical part of the
resistivity.
Two approaches were considered. The first one was to opt for a fixed band-pass filters
that would remove high frequency noise (that are not physical) and also the classical
low-frequency part of the resistivity. The problem with that option is that, because of
the low frequency noise, the measurements for two supposedly identical curves would be
different... Moreover, some of the low frequency components of noise (1/f noise, classical

1 As John Von Neumann said:“With four parameters I can fit an elephant, and with five I can make him
wiggle his trunk".
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part,..) have the same frequency than some signals we’re looking for!
We thus opted for the second option, namely to fit our data with a high-order polynomial
fit and subtract it. The counter part of this method is that the fit you take is slightly
different from one curve to another but it is also its strength! Indeed, as we’ve just said,
low frequency noise can change over time. Thus, the fit can adapt to that change and
provide a good subtraction of low-noise and classical part.
Thanks to that, we end up with exploitable UCF as can be seen in Fig.4.10

Figure 4.10: Quantum part of the resistance of a pure silver sample as a function of the
magnetic field. The date are the same as the ones of the Fig.4.9. The polynomial fit is
subtracted from the raw magnetoresistance data. We thus simply observe the quantum part of
the resistance, namely the UCF.

Now that this has been explained and that we can agree that nothing has been hidden
or that post-treatment will not interfere in our physical discussion, let’s get into it in the
next chapter!



CHAPTER 5
Experimental study of mesoscopic silver wires: changing disorder at low
temperatures?

All along my PhD I have been trying to implement an experimental setup to test the
idea developed in the previous chapters, namely using the electronic coherent transport to
probe the disorder inside metallic samples and more precisely spin-glasses.
In this chapter I present some experimental results that I managed to obtain during my
thesis on pure and manganese-doped mesoscopic silver wires.

5.1 Characterization of the samples
5.1.1 Geometry
The samples we used are 3 and 25𝜇m-long silver wires made by electronic beam lithography
(see Chapt.4 for more details), with a width of 200nm and a thickness of 50nm. Both
samples are part of the very same wire but measured with two different configurations.
One of the sample is left unimplanted (99.9999% pure silver) while the other is doped at
500ppm with Manganese (AgMn 500ppm). Those are depicted on Fig.5.1.
The first thing to do before performing any measurement is to precisely characterize our
samples in terms of electronic transport.

5.1.2 Temperature dependence of the resistance
The resistance of both types of sample is thus measured as a function of the temperature.
The results are displayed on Fig.5.2
The behaviour of the pure sample (a) is pretty simple to describe. When lowering the
temperature the resistance decreases due the lowering of electron-phonon interaction[2].
Once arriving at 10K, the resistance saturates and is not anymore limited by this electron-
phonon interaction but by the scattering on static impurities. Then, below 1K, another
phenomenon comes into light: electron-electron interactions[7]. From those interactions
result a 1√

𝑇
increase of the resistance below 1K to zero temperature.

We also get the resistivity at low temperatures (4K) 𝜌𝑝𝑢𝑟𝑒 = 𝑅× 𝑆

𝐿
= 39.12 × 2𝑒−7 × 5𝑒−8

25𝑒−6 =
1.564𝑒−8 = 15.64𝑛𝛺.𝑚.
And from that we get the elastic mean free path 𝑙𝑝𝑢𝑟𝑒𝑒 = 54𝑛𝑚, taking the Fermi velocity
𝑣𝐹 = 1.39 × 106𝑚.𝑠−1.
On the doped sample (b), on the other hand, the behaviour is much more complex. At
first, the resistance decreases from 300K to 10K because of the same processes happening

77
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Figure 5.1: SEM image of a typical sample. The sample can be measured with two
configurations with the contacts in orange being unchanged. The first one is depicted in green.
It allows to measure the 3𝜇m sample (green). In violet is the second configuration that allows
us to measure the 25𝜇 sample.

in the pure sample, namely the decreasing of electron-phonon interactions. But then, one
can see a large increase that was not present in the pure sample curve. So what happens?
Actually we already described this behaviour in the Chapter 3. Indeed, we are dealing here
with a metal in which magnetic impurities are present. We are thus in the perfect situation
to see the Kondo effect appear: the resistance increases logarithmically as the temperature
is lowered due to the interactions of the electrons with the magnetic impurities.

Again, we can get the resistivity at 4K 𝜌𝐴𝑔𝑀𝑛 = 𝑅× 𝑆

𝐿
= 18.1 × 2𝑒−7 × 5𝑒−8

3𝑒−6 = 60.3𝑛𝛺.𝑚
and the elastic mean free path 𝑙𝑑𝑜𝑝𝑒𝑑𝑒 = 15.7𝑛𝑚.

At this point we can already be sure of the presence of magnetic impurities in our sample
because of that behaviour. But what about the formation of a spin glass state? Shouldn’t
we be able to see it in the R(T)?
As can be seen in the inset of Fig.5.2(b), around 𝑇 = 1𝐾, the logarithmic increasing of the
resistance stops and a sudden drop is observed. As seen previously, for the Kondo effect
to happen we need free magnetic impurities. So if there is a sudden drop, it means that
something suppressed the Kondo effect i.e. something froze the impurities that are thus
not free anymore. We interpret that behaviour as the emergence of a spin-glass state that
freezes the spin in a certain configuration, diminishing the number of free spins and thus
killing the Kondo effect.
This global behaviour has been addressed theoretically by Vavilov and Glazzman[74]. They
indeed predict a competition between a Kondo phase and a spin-glass one, with the latter
being prominent at very low temperatures. From that, they predict the appearance of a
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Figure 5.2: Resistance as a function of the Temperature for the pure sample (a) and the
doped one (b). We can clearly see on (a) and (b) that both resistance behaviours above 10K
are equivalent, decreasing as phonon modes are getting inaccessible. At low temperatures,
(a) exhibits a standard behaviour for pure metals: it is flat between 10K and 1K and then
a 1√

𝑇
increase of the resistance is observed due to electron-electron interaction as shown in

the inset of Fig.5.2(a). The deviation from the linear fit comes from the saturation of the
electron temperature below 50mK. The doped sample on (b) has a different behaviour: a
Kondo logarithmic increase is observed until 1.5K, followed by a fast decreases due to the rise
of the spin glass state.
In both curves, the anomalies that can be seen at exactly 20K are due to a change of sensibility
on thermometer measurement and are thus not physical.

maximum in the resistivity at a temperature 𝑇𝑚 that is directly related to the freezing
temperature 𝑇𝑔 by

𝑇𝑚 = 𝛼𝑠
2 𝑇𝑔 ln

(︂
𝑇𝑔
𝑇𝐾

)︂
(5.1)

with 𝛼𝑠 being a constant depending on the spin and 𝑇𝐾 the Kondo temperature. In AgMn,
𝛼𝑠 = 2.33 and 𝑇𝐾 = 40𝑚𝐾[28, 62]. Here, extracting 𝑇𝑚 = 1.35𝐾 graphically and replacing
it in their formula, we get a freezing temperature of 𝑇𝑔 = 470𝑚𝐾. This value is very
consistent with the expected concentration of 500ppm that would give 𝑇 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑔 = 500𝑚𝐾.
From now on, we are sure that a spin-glass is present and that we doped with the right
concentration while the pure samples behave exactly as expected as a function of the
temperature.

5.1.3 𝐿𝜑 measurement: the weak anti-localization
Another important point to characterize in our samples, since we will use coherent transport,
is the electronic phase coherence length 𝐿𝜑.
To measure 𝐿𝜑 in a mesoscopic sample, we can see two different ways. The first one is to
use the weak localization[14] (or, in our case, anti-localization) process or the amplitude of
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the UCFs[3]. The latter needs much more parameters and assumptions to properly work.
In our system we thus decided to use the first one, namely, weak anti-localization.
As explained in chapter 2, this is an interference effect that results in a peak (or a dip)
in the resistivity around zero field. The width and height of the peak are directly related
to the dimensionality of the sample in terms of electronic transport, its geometry (that is
perfectly known from SEM imaging) and to 𝐿𝜑.

Figure 5.3: Resistance as a function of the magnetic field around zero field on the 25𝜇m-long
pure silver sample. This corresponds to a weak anti-localization measurement. The magnetic
field is swept between -350G and +350G, exhibiting a strong dip in the resistance around zero
field. By fitting this dip with known geometry parameters we can retrieve the value of 𝐿𝜑.
Here 𝐿𝜑 = 8𝜇𝑚.

In our sample, we know that we are in the case of 1D electronic transport since 𝐿𝜑 is of
the order of micron, whereas width and thickness are much smaller. Thus, by precisely
measuring the resistance around zero field for 50mK, 100mK, 200mK, 600mK, 900mK and
4K, and fitting our curves with the 1D weak anti-localization formula, we can obtain 𝐿𝜑(𝑇 ).
One typical curve taken at 200mK and its 1D weak anti-localization fit are displayed on
Fig.5.3. We retrieve values ranging from 2 microns at 4K to 9.5 microns at 50mK with a
spin-orbit length 𝐿𝑠𝑜 of 1.1 micron.
Those values are coherent with what is usually observed in such samples. The variation of
𝐿𝜑 as a function of temperature can easily be explained by the fact that, when one rises
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the temperature, more energy is available and thus more scattering processes are allowed to
happen. However, here, 𝐿𝜑 does not follow the expected 𝑇−1/3 dependence[8] as shown in

Figure 5.4: Logarithm of the L𝜑 values as a function of the temperature. The linear
adjustment taken above 100mK shows a 𝑇−1/5 dependence instead of the expected 𝑇−1/3 one.

Fig.5.4. Why is that? Unfortunately, at low temperatures, we had to make a compromise
between not over heating our sample and being able to precisely measure. We thus needed
to use slightly higher current that we should have done to respect the 𝑒𝑉 = 𝑘𝐵𝑇 rule. Our
sample is then heated slightly over the fridge temperature and its behaviour deviates from
the theory.
We stress that every single experiment that I will show later was made with the exact
same set of parameters, namely same time constant, magnetic field sweep speed, and,
crucially the same current as the one used to calculate 𝐿𝜑. Those values can thus be used
to interpret our further results without any restrictions.

5.2 Magnetoresistance and Universal Conductance Fluctuations (UCFs)
5.2.1 Magnetoresistance of the samples
Now that we fully characterized our samples in terms of size, shape, temperature depen-
dence and coherence parameters, we can start trying to extract the UCFs. To do so, we
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sweep the magnetic field between 0 and 6 teslas with a speed of 5 gauss per second at 100
mK, temperature for which we are deep in the glassy phase.
Data are plotted in Fig.5.5.

Figure 5.5: Left panel: Resistance of the 25𝜇m-long pure silver sample as a function of the
magnetic field. We observe an increase of the resistance as the field gets higher. This is coherent
with the free-electron model under the low-field assumption. Right panel: Resistance of the
25𝜇m-long AgMn sample as a function of the magnetic field. We observe a strong decrease of
the resistance as the field gets higher. This is explained by the fact that we polarize spins with
the field, diminishing the number of free spins and thus killing Kondo effect.

We can already see that, depending on the samples, the magnetoresistance behaviours
are really different.

Pure sample
It is theoretically pretty difficult to model the resistance behaviour of metals under field.
It depends on many parameters such as its composition, its crystallographic orientation,
etc...[11] But in most cases, by assuming the free-electron model in metals and under the
assumption of low-field, it is possible to prove that the resistance evolves quadratically
with the field[80].
And indeed, on the pure Ag sample, one can see that we recover the expected quadratic
behaviour as can be seen in the inset of Fig.5.5(a) in which it is plotted as a function of 𝐵2.

Doped sample
Concerning the spin glass sample, things are different. We observe a strong decrease in the
resistivity as we increase the field. As seen in the pure sample, in a metal without magnetic
impurities, we would expect an increase. But, here, in a spin glass, we have to deal with
many magnetic impurities which are not frozen as I explained in Chapt.3, even for 𝑇 ≪ 𝑇𝑔.
Thus, if we increase the field, some magnetic impurities will get polarized[12, 53]. And so,
as if we were lowering the temperature, diminishing the number of free magnetic spins will
result in lowering the resistance due to the weakening of the Kondo effect[29].
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5.2.2 Universal Conductance Fluctuations

Now that we understand the “classical" behaviour of our samples, we can extract the UCFs
following the protocol explained in Chapt.4: we fit our data to remove this classical part
and retrieve only the UCFs. One typical trace for the doped sample is shown in Fig.5.6.

Figure 5.6: Resistance variation of the AgMn sample as a function of the magnetic field after
removing the classical part. We thus retrieve only the quantum contribution to the resistance
i.e. Universal Conductance Fluctuations (UCFs). This kind of curve will now be called a “UCF
trace".

Since we explained earlier that UCFs are magneto-fingerprints of the disorder in the sample
and want to use this property to probe disorder changes, the first experiment to consider is
then to carry out the measurement of the UCFs twice with a ten minutes interval without
doing anything to the sample. This way we should be able to determine if our protocol is
destructive or not. If it is, the UCFs will change between two consecutive measurements
since it would have changed the disorder. If not, it will be perfectly reproducible.
We thus do two consecutive measurements on the doped sample to verify this hypothesis.
And, as we can see on Fig.5.7, those traces are perfectly reproducible!
This reproducibility with fields going above 6T is completely at odd with the energy scales
involved in the formation of our spin glass. Indeed, the energy to be considered in such
a case is 𝐸𝑔 = 𝑘𝐵𝑇𝑔, which corresponds roughly to a magnetic field 𝐵𝑔 around 0.1T for
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𝑇𝑔 = 500𝑚𝐾. This field should then represent the critical field over which the spin glass
would be destroyed, the spins being progressively polarized by the field. What is strange
here is that it is clear that the disorder has not changed since we recover the exact same
trace...
However, this behaviour has already been observed in previous experiments as the ones of
De Vegvar or even the ones of T. Capron in our group. This problematic has also been
addressed by D.Petit using torque measurements, showing that the critical field when one
is well below 𝑇𝑔 cannot be extracted so easily and is way higher than 𝐵𝑔. This could be
explained by the existence of cavity fields that can be hundred times higher than 𝐵𝑔 in
spin-glasses.
The conclusion at which we arrive is then that our measurement process does not change
the spin configuration in the glassy phase or, at least, not enough to be noticeable in our
traces.
This reproducibility is visually very clear but we need need a better way to compare the
different traces we will obtain.
The method we have used to quantify the reproducibility between UCF traces is to calculate
the correlations between the traces using the the Pearson coefficient 𝐶. It is the same
coefficient than the one proposed by Carpentier et al.[21] and explained in Chapt.3. The
correlation between two UCF traces 𝑈𝐶𝐹1 and 𝑈𝐶𝐹2 can be written as:

𝐶1,2 =
∑︀𝑛

𝑖=1(𝑈𝐶𝐹1𝑖 − 𝑈𝐶𝐹1)(𝑈𝐶𝐹2𝑖 − 𝑈𝐶𝐹2)√︁∑︀𝑛
𝑖=1(𝑈𝐶𝐹1𝑖 − 𝑈𝐶𝐹1)2

√︁∑︀𝑛
𝑖=1(𝑈𝐶𝐹2𝑖 − 𝑈𝐶𝐹2)2

(5.2)

in which 𝑈𝐶𝐹1𝑖 (respectively 𝑈𝐶𝐹2𝑖) are the data points from the trace 𝑈𝐶𝐹1, 𝑈𝐶𝐹1
is the mean value of 𝑈𝐶𝐹1 and 𝑛 is the number of points.
For two identical traces (same data) we will get 𝐶 = 1 whereas it will be 0 for two totally

independent, decorrelated traces. It follows that two curves taken consecutively without
doing anything to the sample should have a correlation 𝐶 = 1. But, as shown in Fig.5.7, we
only retrieve 𝐶 = 0.95. We interpret this difference by considering that our measurements
are not perfect. This problem can be reduced to one word: noise.
For our measurements, we can set 𝑈𝐶𝐹1 = 𝑈𝐶𝐹10 + 𝛥𝑈𝐶𝐹1 and 𝑈𝐶𝐹2 = 𝑈𝐶𝐹20 +
𝛥𝑈𝐶𝐹2, with 𝛥𝑈𝐶𝐹1 and 𝛥𝑈𝐶𝐹2 representing the noise contribution to the UCF traces.
Since both traces are taken with the same parameters and same setup, we can infer that
both noises 𝛥𝑈𝐶𝐹1 and 𝛥𝑈𝐶𝐹2 have the same spectral density and thus the same
standard deviation 𝜎𝑛 BUT are uncorrelated. From those assumptions we can get

𝐶 = 𝜎2
0

𝜎2
0 + 𝜎2

𝑛

× 𝐶0 = 1

1 +
(︂
𝜎𝑛
𝜎0

)︂2 × 𝐶0 (5.3)

with 𝐶0 being the Pearson coefficient without noise and 𝜎0 being the standard deviation
(so here, roughly, the amplitude) of UCF.
As can be seen, if we have noise (and it is always the case experimentally) it will decrease
𝐶 and the more noise we have, i.e. the greater is 𝜎𝑛, the more 𝐶 is affected.
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Figure 5.7: Two UCF traces taking on the same sample, one after another and few minutes
apart. As can be seen the two traces look identical, proving that our experiments didn’t alter
the sample disorder. In reality, calculating their Correlation coefficient 𝐶, we get 𝐶 = 0.952
instead of 1. We can easily attribute that small deviation to our experimental noise.

This correlation value between two supposedly identical curves, that we will call “Autocor-
relation", can thus be seen as a really good measure of the experimental noise we get and
its influence on the correlation calculation.
And even better, it directly gives us the SNR and hence the noise for our measurements!
Indeed, since for the two previous curves, 𝐶0 = 1, we get that 1

1 +
(︂
𝜎𝑛
𝜎0

)︂2 = 0.95 and thus

𝜎𝑛
𝜎0

≈ 0.23. From that, we can calculate the noise 𝑉𝑛 by knowing the measurement current 𝐼.
Here 𝜎0 ≈ 5×10−3𝛺, such that in volts it represents 𝑉0 = 𝜎0×𝐼 ≈ 5×10−3×2×10−7 ≈ 1𝑛𝑉 .
We thus get 𝜎𝑛

𝜎0
= 𝜎𝑛 × 𝐼

𝜎0 × 𝐼
= 𝑉0
𝑉𝑛

= 0.23 and then 𝑉𝑛 = 230𝑝𝑉 . Since we have a time

constant of 10 seconds on the lock-in, we thus get the noise 𝑆𝑛 =
√

10 × 𝑉𝑛 = 730𝑝𝑉/
√
𝐻𝑧

which is consistent with the noise added by our amplifiers (≈ 750𝑝𝑉/
√
𝐻𝑧).

Another important point has to be mentioned concerning the interpretation of this coeffi-
cient. In theory, it tells us precisely how much a disorder configuration is different from
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another one. But for that to be perfectly true, the coefficient which is considered has to be
taken over an infinite UCF trace, i.e. with a field which is swept over an infinite range.
Why is that? Well, on a mathematical point of view, if one takes totally independent
finite-sized samples1 the correlation between them will not be zero as there are always
coincidental correlations.
Practically, of course, such a trace is impossible to get2 but an approximation can be
made. Indeed, the problem here is to get a sample large enough to make those coincidental
correlations completely negligible. But what means “large enough" in that sense? We can
see that as a measure of how much information we have compared to what could call a
“noise". Thus the relevant scale would be “how much information do I have". And for that
we have to think about the field 𝐵𝑐 that we defined as the field over which we have to sweep
to be in the ergodic limit. In other words, it means that when we sweep over 𝐵𝑐 we have a
perfect fingerprint of the system disorder if the noise is null. But if we sweep only over 𝐵𝑐,
comparing with another decorrelated sweep, they will not have a correlation 𝐶 = 0 because
of coincidences. Thus, we have to sweep over many 𝐵𝑐 to be sure to have a significant
number of fingerprint to be compared and for the noise to be averaged, otherwise 𝐶 will
be overestimated as can be seen if we take different spans of field to calculate 𝐶.
Now that we’ve been clear with the correlation coefficient and its limits, let’s explain the
experimental protocol we follow.

5.3 Temperature annealing measurements
5.3.1 Experimental protocol
The protocol is quite simple and is depicted on Fig.5.8. At first, we take a UCF trace
of the sample at a given temperature 𝑇 = 𝑇0. Then, we heat the sample up to another
temperature 𝑇 = 𝑇1 during a given time 𝜏 before coming back to 𝑇0 again3. Another UCF
trace is then taken at 𝑇 = 𝑇0 right after the temperature has stabilized. The previously
defined Pearson correlation coefficient 𝐶(𝑇 ) is then used to compare them.
The first test is then to check that no evolution is visible over time at 𝑇0 and that any

change is only due to the annealing.
We thus measure two UCF traces with an interval of 24 hours between them. With
those new measurements, we get 𝐶 = 0.96, which is within noise level, meaning that no
decorrelation can be observed over time.
Now that we have a comparison point, we can actually heat up the sample.

5.3.2 Manganese doped silver sample
On Fig.5.9 are shown two traces for the AgMn sample with a measurement temperature
𝑇0 = 50𝑚𝐾 and heating temperature 𝑇1 = 600𝑚𝐾.

1 “Sample" is here to understand in the sense of quantity of data
2 Infinity is rarely accessible when one deals with experiments.
3 Note that above 4K we heat up the sample with a DC current. As we can switch it on or off instantly,

it allows us to heat and cool down the sample very fast.
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Figure 5.8: Schematic representation of the protocol used to calculate the correlations
between UCF traces. First we get a UCF trace at the measurement temperature 𝑇0, that
we will call UCF1. We then heat up our sample to a heating temperature 𝑇1 during a time
𝜏 . Finally we wait for the sample to come back to 𝑇0 and take another trace, UCF2. The
correlation coefficient 𝐶(𝑠𝑎𝑚𝑝𝑙𝑒,𝑇0,𝑇1,𝜏) is then calculated between those two traces.

As can be seen, they look pretty identical but let’s calculate the correlation coefficient.
Here we get 𝐶𝑑𝑜𝑝𝑒𝑑(0.6𝐾) = 0.957. Since 𝑇𝑔 has been confirmed to be equal to 500mK,
we face a big problem. We were expecting some significant decorrelation since we should
change drastically the spin configuration when 𝑇1 overcomes 𝑇𝑔.
Our first guess was to suppose that we did not heat the sample enough to really change
the spin configuration. Indeed, the R(T) curve shows that the interactions between spins
come to light already around 1.5 or 2K. So let’s have a try at 4K (=8𝑇𝑔). Result: we get
pretty much the same correlation coefficient (𝐶𝑑𝑜𝑝𝑒𝑑(4𝐾) = 0.93)... Maybe that was still
not enough!
Thus we decided to heat up the sample way higher than 𝑇𝑔 to be sure to change the spin
configuration.
A first point is taken for 𝑇1 ≈ 15𝐾≫ 𝑇𝑔. Since 𝑇𝑔 is 30 times lower than 𝑇1, we expect
the spin configuration to totally change when the sample is brought to 15 K.
And indeed, we finally see an effect! We get a correlation 𝐶𝑑𝑜𝑝𝑒𝑑(15𝐾) = 0.87 ≪ 𝐶𝑑𝑜𝑝𝑒𝑑(0𝐾)
for the spin-glass wire. However, we see here that we didn’t reach 𝐶 = 0 whereas we are
sure to have changed the spin configuration. So what happens?
To explain that behaviour we have to remember that our electrons do not diffuse only
on magnetic impurities, such that the UCF traces are not only determined by the spin
configuration but also by the static disorder in our sample. Our data has hence two
contributions, one magnetic and one static. Thus, what happens if the magnetic disorder
has totally changed but not the static one? If we come back to the Pearson coefficient
𝐶, our data can be rewritten as 𝑈𝐶𝐹1 = 𝑈𝐶𝐹1𝑚 + 𝑈𝐶𝐹1𝑜, with 𝑈𝐶𝐹1𝑚 being the
contribution of the magnetic disorder and 𝑈𝐶𝐹1𝑜 the static (or orbital) one. We can then
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easily get that

𝐶 = 𝜎2
𝑜

𝜎2
𝑜 + 𝜎2

𝑚

× 𝐶𝑜 + 𝜎2
𝑚

𝜎2
𝑚 + 𝜎2

𝑜

× 𝐶𝑚 = 1

1 +
(︂
𝜎𝑚
𝜎𝑜

)︂2 × 𝐶𝑜 + 1

1 +
(︂
𝜎𝑜
𝜎𝑚

)︂2 × 𝐶𝑚 (5.4)

with 𝜎𝑜 being the amplitude of the orbital contribution, 𝜎𝑚 the amplitude of the magnetic
one, 𝐶𝑜 the correlation between the static contributions and 𝐶𝑚 the correlation between
the magnetic ones.
We thus see that if the static disorder does not change (i.e. 𝐶𝑜 = 1) whereas the magnetic
one changes entirely (i.e. 𝐶𝑚 = 0) , as expected in our experiments for 𝑇1 > 𝑇𝑔, we get a
minimum 𝐶𝑚𝑖𝑛 = 1

1 +
(︂
𝜎𝑚
𝜎𝑜

)︂2 in the correlation values when the magnetic contributions,

i.e. the spin configurations, are totally decorrelated. This value is thus directly related to
the amplitude ratio between the two contributions.
So, here, we may have reached 𝐶𝑚𝑖𝑛 by heating at 𝑇1 = 15𝐾. However, the difference
between 𝐶𝑑𝑜𝑝𝑒𝑑(15𝐾) and 𝐶𝑑𝑜𝑝𝑒𝑑(0𝐾) is quite small, complicating the measurements if
𝐶𝑑𝑜𝑝𝑒𝑑(15𝐾) = 𝐶𝑚𝑖𝑛.
Then, to confirm that we reached the regime in which the magnetic part is totally random-
ized, we heat the sample slightly higher to see is there is any change in 𝐶. If not, it means
that we actually are in this regime and 𝐶𝑑𝑜𝑝𝑒𝑑(15𝐾) = 𝐶𝑚𝑖𝑛.
The results for 𝑇1 = 26𝐾 are depicted in Fig.5.11
And, surprisingly, we find 𝐶𝑑𝑜𝑝𝑒𝑑(26𝐾) = 0.74 < 𝐶𝑑𝑜𝑝𝑒𝑑(15𝐾)!
Since we are sure that the spin configuration has entirely changed at 15K, nothing more
should have happened at 26K... We thus need to conclude that something different is going
on than just a simple change in the spin configuration! Maybe having a look at the pure
sample could be useful.

5.3.3 Comparison between doped and pure samples
At first, we wanted to confirm experimentally that nothing was happening on UCFs in the
pure samples, such that we can perfectly know what is the spin-glass contribution to the
possible disorder change. Thus both doped AgMn and pure Ag wires were measured at
the same time with exactly the same protocol.
As for the doped one, first, we have to check that we have a full reproducibility on the
pure sample. Two typical traces for the pure Ag sample are displayed on Fig.5.12 with no
annealing. We get 𝐶 = 0.969, as expected for fully reproducible traces.
Since no magnetic spin is present in this sample, no change in the disorder should appear for
heating temperatures as low as the ones we use and thus 𝐶𝑝𝑢𝑟𝑒(𝑇 ) should be constant and
close to 1 for any of those temperatures. With the same protocol we measured 𝐶𝑝𝑢𝑟𝑒(0𝐾),
𝐶𝑝𝑢𝑟𝑒(16𝐾) and 𝐶𝑝𝑢𝑟𝑒(27𝐾). The results are shown on Fig.5.13.
Whereas, 𝐶𝑝𝑢𝑟𝑒(0𝐾) is almost equal to 1 as explained just before (𝐶𝑝𝑢𝑟𝑒(0𝐾) = 0.97), we
find 𝐶𝑝𝑢𝑟𝑒(27𝐾) < 𝐶𝑝𝑢𝑟𝑒(16𝐾) ≪ 1! Our first idea of an unchanged correlation coefficient
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Figure 5.9: Two UCF traces taken following the protocol described in Fig.5.8. They have
been measured at 𝑇0 = 50𝑚𝐾 with a heating temperature of 𝑇1 = 600𝑚𝐾.
As can be immediately seen, the two traces are really close and we can calculate
𝐶(𝐴𝑔𝑀𝑛,50𝑚𝐾,600𝑚𝐾,10𝑠) = 0.957. The sample magnetic disorder has not changed at
all!

at low temperatures on the pure sample is then proven to be totally wrong... End even
more importantly, it means that the static contribution to the correlation is way larger
than the magnetic one. Indeed, if we talk about spin-glasses, 𝐶𝑚 should be 0 above a few
𝑇𝑔. The problem here is that 𝐶𝑑𝑜𝑝𝑒𝑑(4𝐾) = 𝐶𝑑𝑜𝑝𝑒𝑑(0𝐾) = 0.95... Leading us to conclude
that 𝐶𝑚 is, in the best case, only as large as the noise in our system... Moreover, we can
see that 𝐶𝑝𝑢𝑟𝑒 decreases even faster than 𝐶𝑑𝑜𝑝𝑒𝑑 as 𝑇1 increases!
The change that we observe is thus mainly due to the static contribution 𝐶𝑜.
In a nutshell, we showed that the changes in the spin configuration cannot be measured
via UCF studies (up to our sensitivity) but also that we can see an evolution in the sample
disorder. This evolution is then due to structural changes at temperatures that are not
usually associated to atomic movements.

We need to do tests to get more clues about this unexpected behaviour. And since the
effect appears to be larger on the pure sample, we will focus on it.
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Figure 5.10: Two UCF traces taken on the same sample before and after a heating at
15K. We observe a slight change between them. And indeed, when calculating C, we get
𝐶(𝐴𝑔𝑀𝑛,50𝑚𝐾,15𝐾,10𝑠) = 0.87, which is out of noise level and the sign of a change in the
disorder.

5.3.4 Pure silver sample
So what can we change in our protocol to have more insights? We have four different
parameters in our protocol: 𝑇1, 𝑇0, the heating time 𝜏 and the length of the sample 𝐿.
Since we are plotting all our curves as a function of 𝑇1, its effect will not be considered
separately.

Annealing time dependence
The easiest and most intuitive thing to change first is 𝜏 . We thus chose different 𝜏
ranging from 1 second to 30 minutes with the exact same protocol for each of them taking
𝑇0 = 50𝑚𝐾 and 𝑇1 = 20𝐾 and 𝐿 = 25𝜇𝑚.
The results are displayed on Fig.5.14.
As we can see there is a dispersion in the data but it is does not seem at all related with the
time spent to heat the sample. Moreover, it has to be noticed that this dispersion remains
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Figure 5.11: Two UCF traces taken on the same sample before and after a heating at
26K. We observe a even more distinct change than between the ones taken with 𝑇1 = 15𝐾.
Their correlation coefficient 𝐶(𝐴𝑔𝑀𝑛,50𝑚𝐾,26𝐾,10𝑠) = 0.74 is indeed lower. It means that,
between 15 and 26K, more disorder has changed, which is not expected for a spin glass in
which 𝑇𝑔 = 0.5𝐾.

in an interval comparable to the noise of our measurement i.e. 𝛥𝐶(𝜏) ≈ 𝛥𝐶𝑛𝑜𝑖𝑠𝑒 ≈ 0.05.
The correlation can thus be said independent from 𝜏 for a given 𝑇0, 𝑇1 and length.
That study also allows us to conclude that whatever processes happen in our samples, it
happens on a time scale of less than one second and does not evolve with time. Following
that statement, we fixed 𝜏 = 6𝑠 for the rest of our studies.

Measurement temperature dependence
The second parameter to study is then 𝑇0, the temperature at which we measure our
sample before and after being heated up.
At first, we thought that this parameter would not change anything since all the changes
in the disorder happen while being heated up and not at our measurement temperature 𝑇0.
But it is worth to check!
To measure at a given temperature, one has to be able to keep that temperature constant
over the measurement time, which is close to 4 hours in our case. We are thus stuck over
temperatures ranging from 50mK to 800mK, due to the limitations of a dilution fridge.
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Figure 5.12: Two UCF traces taking on the same pure sample, one after another and few
minutes apart. As previously explained with the AgMn sample, the two traces look identical,
proving that our experiments didn’t alter the sample disorder. Here, we get 𝐶 = 0.969.

Another point of stability is obviously the one at 4 kelvins since we are using a wet dilution
fridge. Above that temperature, the next stable point potentially available would be the
one of liquid nitrogen (77K) but at such high temperatures it is impossible to see any UCFs
due to the dramatically small value of 𝐿𝜑 above 10K...
We thus took three different values for 𝑇0, namely 𝑇0 = 50𝑚𝐾, 𝑇0 = 600𝑚𝐾 and 𝑇0 = 4𝐾.
What is pretty striking is that there are big differences between samples in the correlation
coefficients for a given 𝑇1! First let’s see what happens when the measurement temperature
𝑇0 is changed whereas the length is kept constant as in Fig.5.15.
We can see that, as 𝑇0 is increased, the global behaviour remains the same (a decrease of
𝐶 as we anneal at higher temperatures), but changes dramatically on a quantitative point
of view.
Indeed, 𝐶 decreases faster as the measurement temperature 𝑇0 goes down.

Sample length dependence
Finally, we changed the only parameter left: the sample length.
We thus measured both long (25𝜇m) and short (3𝜇m) samples for all the 𝑇0 we mentioned
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Figure 5.13: Correlation coefficient C as a function of the heating temperature 𝑇1. In black,
we see that the correlation for the AgMn sample drops for 𝑇1 > 4𝐾. Surprisingly, whereas
there is no magnetic spins in the pure sample, its correlation (in red) drops also and even
faster than the doped one!

before.
The results are displayed on Fig.5.16. As can be easily seen, when one reduces the length
of a sample, the correlation coefficient remains higher!
It has to be noticed that this behaviour is robust for any temperature 𝑇0 we explored.
It is clear that, with any set of parameters, the effect of increasing 𝑇1 is always the same,
namely decreasing the correlation. The rate is clearly not the same depending on the
different parameters but qualitatively the effect of 𝑇1 remains.
We now have a full panorama of the effects of our protocol parameters, explaining their
limits and why we chose them that way.

Annealing at room temperature
The only parameter left without a proper explanation is then 𝑇1. You saw that we did not
go higher than 𝑇1 = 45𝐾 on our pure silver sample and might wonder why. The reason is
that we heat up the sample with some DC current (as explained in details in Chapt.4).
To go to 𝑇1 = 45𝐾 we already have to pass 1.5mA and if we would like to go higher we
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Figure 5.14: Calculated correlation coefficient for the same AgmN sample, with 𝑇0 = 50𝑚𝐾
and 𝑇1 = 20𝐾, as a function of the heating time 𝜏 . We see that the distribution of the
correlation values does not exceed the noise level. Hence, we can deduce that there is no effect
of the heating time 𝜏 on the correlation values between 1s and 30 minutes.

would risk to exceed the electro-migration critical current and blow up our sample. The
only way to increase 𝑇1 higher than that is thus to warm up the whole fridge. And the
only temperature easily available is 𝑇1 ≈ 300𝐾 i.e. room temperature. The result for such
a strong heat up is shown in Fig.5.17 and we can clearly see that the correlation is really
close to zero (𝐶𝑝𝑢𝑟𝑒(300𝑘) = 0.052). This is no surprise since Mailly et al. already proved
that a thermal cycling to room temperature totally randomizes the UCFs. But this is a
strong indication that we can reproduce previous results and go beyond them.

Repetition of heatings
Another way of characterizing our effects would be to see what happens when the annealings
are repeated over and over.
At first, before doing the experiment, we intuitively thought that the disorder would be
more and more changed as we repeat thermal cyclings. Indeed, we can easily imagine
that, everytime we heat, we move a certain proportion of the disorder, and thus 𝐶𝑁,𝑁+1
between the trace 𝑁 and the following trace 𝑁 + 1 is a constant. But after two cyclings
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Figure 5.15: Correlation values for the same sample but for different measurement tempera-
tures 𝑇0 as a function of the heating temperature. As 𝑇0 is increased we observe that C get
closer to 1. We attribute this behaviour to the fact that 𝐿𝜑 gets lower as the temperature is
increased, reducing the number of electronic paths that see a moved defaults on a 𝐿𝜑 distance.

we will have changed twice this proportion and thus 𝐶𝑁,𝑁+2 < 𝐶𝑁,𝑁+1. Hence we decided
to calculate all the correlations 𝐶𝛼,𝛽 for 6 consecutive and identical measurements. The
results are depicted on Fig.5.18.
As can be seen, all the values are around the same value with a really small dispersion,
such that we can say that 𝐶𝛼,𝛽 is constant! This result calls for another explanation that I
will give in the next section.

In this one I presented you the results that I obtained on both pure silver and man-
ganese doped mesoscopic silver wires. We will now discuss them and try to find physical
explanations.
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Figure 5.16: Correlation values for the different samples we studied at different measurement
temperatures 𝑇0 as a function of the heating temperature 𝑇1. We see that all the behaviours
and qualitatively the same: the correlation values drop as we heat more. But quantitatively,
the length of the samples 𝐿 and 𝑇0 appear to have a strong effect.
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Figure 5.17: Two UCF traces taken on the 25𝜇m long pure Ag sample before and after a
thermal cycling to room temperature. In contrast with the previously presented curves, those
two look very different, revealing a very strong change in the internal disorder of the sample,
as expected according to the experiments of Mailly et al. Here we can even calculate that
𝐶 = 0.052 ≈ 0, meaning that the disorder configuration has totally changed.



98 Chapter 5 Experimental study of mesoscopic silver wires: changing disorder at low temperatures?

Figure 5.18: Correlation values taken between every UCF traces among a six of them taken
after the same protocol. In this case we measured the UCFs on the 25𝜇m long pure silver wire
with 𝑇0 = 600𝑚𝐾 and thermal cyclings at 𝑇1 = 19𝐾. We see that all the correlations 𝐶𝛼,𝛽

have the same value, meaning that, when heating, we always change the same set of defaults
in the lattice.
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5.4 Discussion and interpretation
5.4.1 Energy scales
The first thing to notice is that we are talking about changes that appear in the structural
disorder of our wires i.e. atoms moving, vacancies and so on. The usual order of magnitude
in energy when one talks about such moving atoms is the electron-Volt (eV) or a fraction
of it. This might not sound like something big (electrons are small cute little particles and
one Volt is not a huge voltage) but in reality this energy is equivalent to a temperature of
more than 10 000 kelvins!
Even by taking a fraction of that we are roughly talking about temperatures of 1000 kelvins,
which is three order of magnitudes higher than our heating temperatures
On the other hand, we are dealing with temperatures much higher than the ones expected
to move the magnetic spins (𝑇𝑔 = 500𝑚𝐾) or even electron traps in the structure (of the
order of 1K).
The scale of energy involved in our measurements is thus completely at odds with any of
the processes expected to play a role in those samples.
Moreover, we see that there is a progressive decorrelation as we increase the temperature.
We conclude from this behaviour that we are thermally exciting some processes that are
widely distributed in energy. And since correlation values do not saturate until (at least)
45K, it means that we are not above their energies but, on the contrary, that their energy
distribution extends toward even higher temperatures.
Then, the main question is to know what is happening. If the UCFs are changing, it means
for sure that we change the structural disorder, that something is moving.

5.4.2 What is moving?
A first clue to answer this question could be found in the annealing repetition experiment
we described earlier. As a reminder, we measured a UCF trace, annealed our sample to
𝑇1 = 19𝐾, took another trace and repeated this protocol 6 times.
We saw that this experience leads to a weird result which is that all the correlation values
𝐶𝛼,𝛽 taken between any of the six traces 𝛼 and 𝛽 are the same.
We can directly interpret this result as the proof that the same proportion of disorder is
changed between any of the configurations represented by any trace 𝛼 and 𝛽.
Moreover, this result also necessarily implies that everytime we heat, we change the exact
same set of “impurities".
Indeed, let’s imagine that we change 10% of the disorder between UCF N and UCF N+1 by
heating up and then again 10% between UCF N+1 and UCF N+2. If those 10% represent
entirely different sets of impurity it means that we change 20% of the disorder between
UCF N and UCF N+2. Thus we would not have 𝐶𝑁,𝑁+2 = 𝐶𝑁,𝑁+1.
Of course this is the worst case scenario (the two sets are totally distinct) but this demon-
stration holds for any hypothesis in which the two sets are not the same.
But it still does not tell us what is moving. The only thing we can say now is that those
moving systems keep their energy even when their position changes. This peculiar property
led us to think about oscillating systems such as Two-level-systems (TLS).
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Shortly, TLS are two-level defects within a material (atoms, vacancies,...) that can oscillate
between positions separated by energy barriers in disordered systems such as glasses.
Studies showed that below 6-7K TLS can oscillate between positions without thermal
activation needed, simply by tunnelling effect.
However, above this temperature, TLS start to be activated by the thermal bath. Typically
those movement are associated with time constants on the order of the millisecond, which
is coherent with our measurement showing no dependence in time above 1 second and,
more importantly, moving defaults only above 4K[72]!
Moreover, those barriers do not change their energy as TLS oscillate, such that a TLS that
will have moved for 𝑇1 = 20𝐾, will move again if we anneal again at 20𝐾.
Even though we have no direct proofs of the fact that we are probing TLS, this is an
probability to consider.

5.4.3 Mesoscopic effects influence on the measure
So now, how to explain the behaviour we observed concerning the temperature and length
dependences?
It is clear that the decorrelation is much smaller in short samples than in long ones! But
why?
Since both samples are part of the very same wire, no change in the resistivity, diffusion
coefficient or density of defaults can be used as an argument in this discussion. Moreover,
we can easily assume that the proportion of defaults that are moved at a given temperature
is homogeneous all along the wire. It seems clear that we cannot explain this decorrelation
difference by a physical change between samples.
Thus if the answer is not to look for in a physical change, the answer necessarily lies in the
measurement technique itself i.e. the electronic transport and the UCFs.
As explained in the previous section, the main length to be considered in terms of electronic
transport in mesoscopic systems is the electronic coherence length 𝐿𝜑. Now let’s see how
this can act on our measurements.
From a transport point of view, all the coherent features (such as UCFs) appear on a scale
of 𝐿𝜑, such that we are always keen to look for a 𝐿

𝐿𝜑
dependence.

On the length dependence measurements, when we increase 𝐿, 𝐿

𝐿𝜑
increases and we observe

a drop in the correlation values as can be seen in Fig.5.16.
In a nutshell, it means that when 𝐿

𝐿𝜑
increases, 𝐶 decreases.

But, with that explanation, we face a problem.
Indeed, we also saw that on the temperature measurements, when one increases 𝑇0, the
correlation goes higher. We need to recall now that, when we increase the temperature, 𝐿𝜑
goes the opposite way and thus 𝐿

𝐿𝜑
is increased.

This gives us that if 𝐿

𝐿𝜑
increases, 𝐶 increases as well.

We have here a contradiction between our two measurements when trying to explain them
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using the 𝐿

𝐿𝜑
ratio.

This parameter is then, for sure, not the relevant one, to explain our measurements.
It appears that we have a competition between two distinct effects and that we need to
consider them separately.
Let’s start by the temperature one.

5.4.4 𝐿𝜑 dependence of the correlation
Considering only the 𝑇0 temperature dependence, we have to focus on what happens to
the UCFs correlation when 𝐿𝜑 is getting lower.
We’ve seen previously that their amplitude is strongly affected by 𝐿𝜑 but here this effect is
irrelevant. Indeed, since the correlation is calculated at a given 𝑇0, the two traces have the
same amplitude and there is no reason for which a change in the absolute amplitude would
change the correlation value since the coefficient is normalized.
Basically, 𝐶 compares the only form of the UCFs, and hence, the change of the disorder in
our samples. So maybe we should focus on how the moving defaults change the UCFs.
So, again, 𝐿𝜑 is the length to consider. We arrived to two different hypotheses concerning
the effect of the moving defaults. The first one is to say that, to change entirely the UCFs
(i.e. 𝐶 = 0) we need to move a certain proportion of the static disorder e.g. 30%. The
second one is to say that you need to change not a certain proportion of impurities but a
given number of them in a 𝐿𝜑 long section of the wire.
With the first idea, we would get the same correlation for a given heating temperature 𝑇1
whatever the value of 𝑇0. Indeed, even if we increase 𝑇0 and thus that 𝐿𝜑 is reduced, the
proportion of defaults that are moved on the scale of 𝐿𝜑 is the same, under the assumption
that the density of defaults is constant along the wire. However, this is in total contradiction
with the results we obtained. Hence, it is not the case in our measurements. Hypothesis 2
is then the only one remaining on the table.
The idea behind this hypothesis is that 𝐶 = 0 if all the electronic paths see at least one
moved impurity on a scale of 𝐿𝜑.1. This idea fits much better with our results. Indeed, on
a physical point of view, we can see that problem as the probability for an electronic path
to encounter a moved default over a length 𝐿𝜑. If the transport is 1D as in our samples, an
electronic path will pass through an average of N impurities, with N directly proportional
to the length on our sample. So, if there is only a few impurities that moved on a size 𝐿𝜑,
the probability 𝑃𝑚 for this path to see one moved impurity is quite low. However, with
many impurities , this probability rises.
Indeed, if 𝐿𝜑 is reduced, the absolute number 𝑁 of moved impurities inside it will be
smaller. Thus, if 𝐿𝜑 is reduced by a factor of two, 𝑁 will also be divided by two.
Let’s consider a fully coherent sample (𝐿 = 𝐿𝜑) in which 30% of the impurities are moved.
We can easily say that it is equivalent to considering that an impurity has 30% chance to
have changed after the annealing. It is thus pretty natural to say that 𝑃𝑚 = 1 − (1 − 0.3)𝑁 .
So if 𝐿𝜑 is large, 𝑁 will also be large, i.e 𝑃𝑚 will be close to one, meaning that almost all

1 We place ourselves in the strong coupling limit in which an electron scattering on an impurity is totally
randomly dephased as expected for static disorder.
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the electronic paths will have interacted with a moved impurity. The UCFs will thus be
totally changed, and 𝐶 will be low.
On the opposite, if 𝐿𝜑 is small, 𝑁 will also be small and 𝑃𝑚 will be close to zero. The
UCFs will thus be only partially changed and 𝐶 will be high.
So, as a conclusion, for the same proportion of moved defaults, if 𝐿𝜑 is small, 𝑃𝑚 will also
be and 𝐶 will be high. On the contrary, if 𝐿𝜑 is large, 𝑃𝑚 will follow and 𝐶 will be smaller:
QED!
Another effect that might be considered when one changes 𝐿𝜑 is related to the ergodicity.
Indeed, here, we gave an explanation exclusively based on the internal disorder but when
one changes 𝐿𝜑, the value of the critical ergodic field 𝐵𝑐 changes as well. Which means
that, as 𝐿𝜑 diminishes, 𝐵𝑐 rises and for a same field span we will have swept over less
𝐵𝑐, potentially giving us an ergodicity issue. This would also result in a higher 𝐶 as the
measurement temperature 𝑇0 gets higher.
Those two effects are thus probably happening at the same time, but are impossible to
distinguish with those measurements. For that we would need to measure samples with
different 𝐿𝜑 but also the same 𝐿

𝐿𝜑
ratio and sweep over the same number of 𝐵𝑐.

5.4.5 Length dependence of the correlation
Now let’s consider the 𝑇0 constant, such that, compared to the previous section, we will
now work with 𝐿𝜑 being a constant.
We’ve just seen before what happens on a sample of size 𝐿𝜑. But what would be the effect
of having a sample whose size 𝐿 is larger than 𝐿𝜑?
As we saw earlier, for any mesoscopic effects, the simplest way of considering this problem
is to “cut" the sample into sub-samples (or “blocks") of size 𝐿𝜑 and then see what happens
when we aggregate them.
Imagine now that we can measure individually each of those blocks. We would retrieve
UCFs traces for each sub-sample and could calculate the correlation on each of them.
From Chapt.2 we get that the UCF trace of the whole sample is simply the addition of
each sub-sample traces.
We’ll now make a strong assumption saying that each of those blocks taken individually,
has the same correlation coefficient after heating. This can be justified by the fact that,
since we have many electronic path1 that encounter many impurities, the previously defined
𝑃𝑚 can be seen not as a probability but really as the proportion of electronic path that
have changed, which should be the same in every block.
We have several blocks of size 𝐿𝜑, each of them having the same correlation coefficient 𝐶,
i.e. 𝐶𝑈𝐶𝐹𝑖,𝑈𝐶𝐹𝑖′ = 𝐶 for two traces 𝑈𝐶𝐹𝑖 and 𝑈𝐶𝐹𝑖′ taken on the same block 𝑖 before
and after annealing.
However, if we make the calculations, we see that if we calculate the correlation between
𝑈𝐶𝐹 = 𝑈𝐶𝐹1 +𝑈𝐶𝐹2 +𝑈𝐶𝐹3 + ...+𝑈𝐶𝐹𝑁 and 𝑈𝐶𝐹 ′ = 𝑈𝐶𝐹1′ +𝑈𝐶𝐹2′ +𝑈𝐶𝐹3′ +
... + 𝑈𝐶𝐹𝑁 ′, we get that 𝐶𝑈𝐶𝐹,𝑈𝐶𝐹 ′ = 𝐶𝑈𝐶𝐹𝑖,𝑈𝐶𝐹𝑖′ = 𝐶. Which is not at all what we

1 If we simply divide the section 𝑆 by the “size" of an electron in a metal 𝜆2
𝐹 , we get that the number of

electronic paths is of the order of 105.
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measured...
Something in our interpretation must be wrong.
First, we have to take into account that, in our measurements, we are rarely in the limit
where 𝐿 > 𝐿𝜑. Indeed, for 𝑇0 < 4K, even for 𝐿 = 25𝜇𝑚, we are in a limit where 𝐿 is of
the order of 𝐿𝜑1, such that it is difficult to say that we can approximate the sample to an
addiction of sub-blocks.
The only case where we could do that approximation would be for 𝑇0 = 4𝐾. However,
here, we’re dealing with another issue: 𝐿𝜑 is really small such that the number of defaults
seen by each path over a length 𝐿𝜑 is really small2. This leads to the fact that we cannot
say that 𝑃𝑚 corresponds to the proportion of changed paths and thus the correlation for
each block might not be constant.
An experiment that could allow us to conclude would then be to measure long samples for
which we have the limit 𝐿 > 𝐿𝜑 such that “cutting" the sample would be relevant.

5.4.6 Conclusion
Mesoscopic systems and alloys are believed to have two different disorder energy scales.
The first one, close to zero, corresponds to the energy of spin flips, electron traps,... while
the other one corresponds to very high energy (above 300K) excitations as moving atoms,
clustering or electromigration. Between these two extremes, no disorder changes are
expected to happen.
In this chapter, we measured UCF traces in metallic wires to probe the internal disorder of
such systems.
We showed that upon a heating inferior to 4K, no major changes are to signal. But we
cannot exclude the possibility of fast processes with low activation energy (e.g tunnelling
systems) below this temperature. Indeed, they would be invisible in our measurements
due to averaging.
However, after heating above 4K, modifications in the structure of the lattice can be
observed. Those modifications appears to have a broad energy distribution as more
and more changes are induced when the heating temperature is set higher, but with a
characteristic time below the second. This behaviour would match with TLS measurement
in which they retrieve the same characteristics.
Those measurements also provided results about mesoscopic effects that have a big impact
on the correlations between UCFs and thus, on how they can be used as a probe for
the disorder. Indeed, we have proved that those fluctuations are actually sensitive to
the absolute number of disorder sites that moved on a scale of 𝐿𝜑 and not on the total
proportion. Moreover, we showed that those moving disorder sites are always the same
when we heat up at the same temperature, which is a total surprise!
We have also shown that the correlations between traces are sensitive to the length of
the sample. We only have an incomplete interpretation of this effect but this leads to a
stronger decorrelation.
To sum up, thanks to UCFs correlations, we proved that major changes in the structural

1 In the best case scenario, with 𝑇0 = 600𝑚𝐾 and considering the 25𝜇𝑚 sample, we have 𝐿 ≈ 4𝐿𝜑.
2 We can approximate this number 𝑁 by dividing 𝐿𝜑 by 𝑙𝑝𝑢𝑟𝑒

𝑒 , which gives 𝑁 ≈ 50 impurities.
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disorder of metals happen even at low temperatures (10-50K), on opposition to what is
believed. Moreover, we also showed that this probe has to be handled with caution when
one wants to interpret data as they are very sensitive to a large range of parameters.



CHAPTER 6
Ancillary works

After the previous chapters you have (or not!) read, you know the results I obtained on
my main PhD subject: mesoscopic transport and spin glasses.
I’d like now to present some other works I did during the almost four years of my PhD.
Indeed, the issues that I had to solve concerning the extra heating due to the magnetic
field gave me some time to use my experimental skills on other’s researchers samples and
provide them results quite difficult to get on their setup.
I will show you three different experiments entirely decorrelated (not with the same meaning
than for the UCFs!) one with another.

6.1 Bolometers for millimetre wave absorption
At the end of my first PhD year, we’ve been contacted by a team working at the “Com-
missariat à l’énergie atomique et aux énergies alternatives-Laboratoire d’électronique et
de technologie de l’information" (also called CEA-Leti). This team asked us if we could
measure some devices at very low temperatures because their usual partners in their project
had weird results.
This project is dedicated to developing new millimetre-wavelength light sensors for spatial
purposes also known as bolometers[4].
So first, what is a bolometer? Well, the principle is quite simple.
It is a device designed to be a thermal detector of radiations i.e. it converts the energy
of an incident electromagnetic wave into heat and thus, a temperature elevation can be
measured.
It is divided in two main parts[31]:
-The absorber: As its name suggests, it is designed to absorb the incoming wave energy and
convert it into heat. Its heat capacity has to be really low such that even if it receives a
small amount of energy, the temperature elevation will be high. In the devices I measured,
this absorber consists in a superconducting metal, whose critical temperature 𝑇𝑐 is adjusted
such that the elevation of temperature turns it normal.
-The thermometer: It allows to measure the elevation of temperature resulting from the
energy absorbed by the absorber. In our case, the thermometer is a doped semiconductor.
The good thing with such compounds is that the resistivity varies a lot around zero
temperature even for a small 𝛥𝑇 .
One of the issue in creating such a device is then to precisely calibrate 𝑇𝑐 as well as the
resistivity profile of the thermometer.
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Figure 6.1: Resistance of different superconducting samples as a function of the temperature
while cooling down and warming up. As can be seen, the different samples have a constant
resistance before going down to zero while being cooled down, proving their superconductivity.
The hysteresis that can be seen when we warm up is typical of superconductors.

That’s why I measured the 𝑇𝑐 for different superconducting layers to choose the best
one for their purpose as well as the 𝑅(𝑇 ) of different semiconducting compounds.
The results for the superconducting absorbers are displayed in Fig.6.1
Those measurements were not difficult as long as it is done in a four-points configuration.

The tricky part came when measuring the thermometer part. For the less resistive ones
(around 1k𝛺), nothing in particular is to report. But, concerning the one whose resistance
value was already of about 1 M𝛺 at 200mK, it is a totally different story!

At first we found something weird: the resistivity would decrease at very low temperature!
After closer inspection, we realized that the phase of our signal was highly shifting as we
decreased the temperature, making us realize that something unusual was going on.
In my previous first chapters I mentioned the fact that capacitive effects wouldn’t play any
role in my measurements as the samples we measure are little resistive. However, here, it
has to be taken into account.
Indeed, the capacitance of our lines is of a few nano Farad1. Thus, if the resistance of our

1 Such a high capacitance on the measurement lines is pretty unusual. But here, it was designed on
purpose for the lines to act as a low-pass filter.
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system is too high, the cutoff frequency 𝑓𝑐 = 1
𝑅𝐶

becomes very low... to the point where
it matches our measurement frequency!

Figure 6.2: Resistance of two semi-conducting samples as a function of the temperature. On
panel (a), we can see that the resistance is quite low and no phase shift appears. Unfortunately,
the resistance saturates below 200mK, making it a bad sensor. On panel (b), however, the
sample has a huge resistance and a phase shift due to 𝑅𝐶 circuit appears. The resistance thus
have to be recalculated taking the phase into account. Since the resistance does not saturate,
it is a good sensor but its high resistivity makes it really difficult to measure properly.

Fortunately, since we’re also measuring the phase 𝜃 of our signal, we are able to retrieve
the real resistance value. After considering the problem of impedance matching, we get
that the measured modulus of the signal 𝑅𝑚 is directly related to the real resistance value
𝑅 by 𝑅𝑚 = 𝑅× cos(𝜃).
Thus, we get the real values as displayed in Fig.6.2.
As we can see, the sample called Tr12 would be a really bad thermometer as it saturates
below 200mK and exhibits a variation of only one order of magnitude between 1K and
50mK.
On the opposite, Tr14 is perfect! It has no saturation down to 50mK and varies of four
order of magnitude on the same range of temperature, meaning that any 𝛥𝑇 will lead to
a huge 𝛥𝑅. But (and it’s a big one), it is so resistive that a straight forward measure is
quite impossible.
Indeed, as we’ve just seen, you cannot use an AC current because of the phase shift it
will induce (and that you have to compensate by calculations). And even if you use DC
current, another problem will arise: the impedance of your measurements setup! Here we’ve
considered that all the current we’re sending in the system goes to the sample. But your
amplification system, or even your measurement devices, don’t have an infinite impedance.
We measured the resistance of our amplifiers to be around 1 G𝛺, making measurements
on over 100 M𝛺 resistors highly unprecise. When your measurement devices impedance
is comparable to the one of your sample, some current will flow into them and you will
underestimate the real resistance of the sample. And we’re not done yet!

To explain why, I now have to present the usual way of measuring resistances. The
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Figure 6.3: Representation of the setup we used to measure the samples. Filters are set to
eliminate the incoming and outcoming noise. Since our samples are way less resistive than
our polarization resistor 𝑅𝑝𝑜𝑙, the current is simply 𝐼 = 𝑉𝑝𝑜𝑙

𝑅𝑝𝑜𝑙
, with 𝑉𝑝𝑜𝑙 set by the lock-in. By

measuring the voltage 𝑉𝑠𝑎𝑚𝑝𝑙𝑒 we thus simply have that 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑉𝑠𝑎𝑚𝑝𝑙𝑒

𝐼
= 𝑉𝑠𝑎𝑚𝑝𝑙𝑒 × 𝑉𝑝𝑜𝑙

𝑅𝑝𝑜𝑙
.

usual measurement devices work as a source of current and recover the voltage across
the thermometer. To do so, a resistor 𝑅𝑝𝑜𝑙 is set in series with the measurement setup
as shown in Fig.6.3. In that case the total current flowing in the circuit is given by
𝐼 = 𝑉𝑝𝑜𝑙

𝑅𝑠𝑎𝑚𝑝𝑙𝑒 +𝑅𝑝𝑜𝑙
. And if 𝑅𝑝𝑜𝑙 is way bigger than 𝑅𝑠𝑎𝑚𝑝𝑙𝑒, the current flowing is driven

only by the value of 𝑅𝑝𝑜𝑙. Thus we know 𝐼 = 𝑉

𝑅𝑝𝑜𝑙
, we measure 𝑉𝑠𝑎𝑚𝑝𝑙𝑒 and, finally, we

can easily get 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑉𝑠𝑎𝑚𝑝𝑙𝑒
𝐼

. Unfortunately, the resistance we’re looking at gets very
large and the current cannot be precisely known anymore. The calculus of 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 thus
become unprecise and values are again underestimated.

In the end those measurements were useful to characterize the fabrication processes and
check the effect of doping on their samples.

6.2 Conduction properties of boron-doped diamond at low temperatures
Another experiment I did during my PhD was concerning boron-doped diamond, that was
studied by J.Bousquet for her PhD and her advisor T. Klein.
If one dopes enough almost any insulating material, it will become conductive. The
transition between this insulating phase and the conductive one can take two forms.
Either we have a insulator-metal(-superconductor) transition or, sometimes, a direct
insulator-superconductor one. Those kind of transitions attracted the interest of many
theoreticians as well as many experimentalists because the status of those transitions (due
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to disorder or not) is still heavily debated.
It is thus interesting to decorrelate the different factors involved.
The results previously obtained on boron-doped diamond seemed to plead for an insulator-
superconductor transition, making it a possible system to study such transitions. But why
is this particular compound so interesting? Actually, the interest of diamond is that it
has a really nice crystalline structure that allows to boron-dope it by substitution, and
thus to not increase too much the structural disorder compared to amorphous systems.
Moreover, diamond can be grown with good control on its size and thickness, reducing the
uncertainty about its dimensionality in terms of transport.
It is thus a good system to study the influence of doping content on the transport properties
considering that it has never been studied thoroughly before.
To do so, J.Bousquet developed a high quality fabrication process that allowed them to
have a very good control of the homogeneity of the doping and of the growth process. That
way, they could get unmatched quality samples!
The final goal of that study is then to determine the phase diagram of the boron-doped
diamond as a function of the temperature and the dopant concentration.
To do so, different samples are prepared with different thickness and different concentration.
Now comes the difficult part: how do you determine if the sample is a metal, a superconduc-
tor or an insulator? The answer lies in another question: what is a metal, a superconductor
or an insulator?
The definition in terms of electronic transport is the following: at zero temperature, a metal
has a finite resistance, a superconductor has zero resistance and an insulator has an infinite
resistance.
Measuring the resistance of the boron-doped diamond as a function of temperature is
thus a good way to determine the phase diagram. However, it has to be noticed that
we cannot experimentally go to 0K and thus we can’t distinguish between a metal and a
superconductor if its 𝑇𝑐 is inferior to 40 mK...
The first results obtained by J.Bousquet showed weird behaviours on some of her samples.
Indeed, few samples displayed a saturation below 1K: either the metal-superconductor
transition was incomplete (sudden drop of resistance but stopping at a finite value) or the
resistance goes down as a classical metal but saturates...

Since saturation at low temperatures is something unusual in terms of transport, they
decided to ask us for a measurement to confirm this.
The results are displayed on Fig.6.4

And, as can be seen, we do not see any saturation for any samples!
Moreover, the "metallic" samples behave exactly as expected theoretically for a 2D metal
or a 3D metal according to their respective dimensionality, and the incomplete transition
appears to be not-incomplete at all.
The reason for that is probably that the setup they used at first was not shielded enough
from external radiations and thus, that their samples were not really cooled down below
1K!
To summarize, our measurements allowed us to confirm the existence of a never-observed-
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Figure 6.4: Normalized resistance of boron-doped diamond in a metallic regime. On panels
(a) and (b) the results for a 3D sample is displayed. Both behaviours at high (panel(b)) and
low (panel(a)) temperatures can be perfectly fitted the formulas expected for a 3D metal. The
2D sample can equally easily be fitted as can be seen on panels (c) and (d). High (panel(d))
and low (panel(c)) temperatures curves are perfectly consistent with a 2D metal behaviour.

before metallic phase between the superconducting and the insulating ones[16].
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6.3 Phase coherence length in NiPtSi
My dear co-advisor François Lefloch had, beside my work, another subject going on with
another PhD student, Anaïs Francheteau.
One of the aspect of her PhD was the study of transistors with Silicon On Insulator (SOI)
technology.
And when one talks about transistors, one of the issue resides in its resistance. Indeed, if
the resistance is too high, you have to apply quite a high voltage to it, leading to a high
power consumption and a high thermal dissipation...
Actually the resistance of such a device is mainly due to the contact between the wires used
to apply the voltage and the transistor itself (drain and source). To reduce this contact
resistance, the idea they imagined was to make a superconducting contact that would turn
the drain and source superconducting too by proximity effect.
The proximity effect is the fact, for a superconducting metal, to “propagate" its super-
conducting properties to a non-superconducting metal over a small distance. Basically, it
means that the electrons coming from the superconducting metal continue to propagate as
Cooper pairs in the normal metal as long as they are still in phase.
Unfortunately this approach was not very successful as they didn’t observe any big prox-
imity effect... Thus, what was wrong?
To answer that question we have to consider the definition of proximity effect. And actually
we can see that the reason is quite simple: dephasing!
Indeed, if one of the electron of the Cooper pair is dephased, the Cooper pair is destroyed
and so the superconductivity. Here, we can see two reasons for which the phase could be
destroyed: the interface and the phase coherence inside the metal itself.
Indeed, if the interface between the superconductor and the metal is bad, the electrons will
be dephased right away, before even entering into the metal... And the other possibility is
that if 𝐿𝜑 is really small in the metallic part, proximity effect will be killed very fast since
the electrons are dephased on a scale of 𝐿𝜑.

To verify which of those assumptions is the good one, F. Lefloch asked me to measure
𝐿𝜑 for the metal they were using for transistors, namely NiPtSi.
And how do you measure 𝐿𝜑 in a metal? Weak (anti-)localization!
I explained and used weak localization measurements earlier in my PhD to determine 𝐿𝜑 in
my samples and the principle here is exactly the same. A weak anti-localization peak can
be measured in the resistivity at zero field. Its width and amplitude are directly related to
the value of 𝐿𝜑 (see Chapt.2 for more details). Thus, by fitting the curves we measure, and
knowing the geometry of the sample, we can extract 𝐿𝜑 with no adjustable parameters.
The results are displayed in Fig.6.5
We can see here that 𝐿𝜑 is of the order of a few microns whereas no proximity effect could
be seen on that scale. It thus means that 𝐿𝜑 is not the limiting factor for their device
to work and that the problem comes most probably from the fabrication process of the
superconducting-metal contact!



112 Chapter 6 Ancillary works

Figure 6.5: In blue, resistance of a NiPtSi sample as a function of the magnetic field. We
clearly see a weak anti-localization peak at zero field. In red is a fit of the weak anti-localization
peak. There is no other adjustable parameter than 𝐿𝜑. Typically, 𝐿𝜑 is of the order of a few
microns.



CHAPTER 7
General conclusion

For the last ten years, mesoscopic physics have been pointing towards quantum technologies
such as qubits and is even sometimes reduced to single-electron physics. However, the
concepts developed by Landauer on coherent electronic transport still haven’t been used to
their maximum extent. Even if some features were experimentally tested few years later
with a great success such as Aharonov-Bohm effect in metallic rings or UCF on Si doped
GaAs wires, its use has been mainly limited to experimental proofs of the theory.
Separately, but around the same years, the physics of spin glasses rised as one of the main
domain in condensed matter physics. Both experimental and theoretical interests lasted
for long and many amazing features were discovered, renewing the interest over the years.
But, unfortunately, the lack of conclusive experiments to address the question of its ground
state led to an impasse.
Surprisingly, those two fields were almost never considered together except for 1/f noise
experiments. Recently, a theoretical work tried to recombine those two subjects in order to
finally solve the remaining question of the spin glass ground state.
In this thesis, we based our work on this proposal to use coherent transport to quantitatively
differentiate between the different ground states of the system and compare them.
I focused my PhD on two main different tasks.

The first one was to improve the experimental setup to be able to measure Universal
Conductance Fluctuations without being destructive on Ag and AgMn mesoscopic samples.
This has been achieved by creating a tin-free measuring setup that allowed to keep a
constant temperature while measuring. Moreover, the setup had to be precisely calibrated
to enhance the signal/noise ratio without loosing physical information. This process has
been improved by optimizing the magnetic field sweep speed with time constant of the
measuring instruments.
This allowed us to get raw resistance curves but to extract exploitable UCF traces I had to
extract correctly the data. This process has been discussed and proved its reproducibility
over time.

The second one was devoted to the interpretation of those data.
Calculating the correlations between two traces taken on the same sample before and after
a heating gave us clues about changes in the disorder configurations. We thus showed that,
unfortunately we were not sensitive to the magnetic disorder that would have enabled us
to conclude about spin glasses.
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However we showed some new and intriguing features.
A progressive decrease of the correlation values for heating temperature between 4 and 80K
were proven. This is undoubtedly the sign of changes in the internal and static disorder of
our samples. The results showing the wide energy distribution of the moving systems and
the fact that, for a given temperature, the exact same set of those systems moves, would
be coherent with Two-Level Systems (TLS) oscillating between positions.
Moreover, we demonstrated the limitations of such measurements by showing its strong
dependence on several parameters depending on the samples, such as its length 𝐿 or phase
coherence length 𝐿𝜑. This study gave evidences of the high sensitivity of correlations to
the absolute number of changing defaults and showed the importance of the averaging to
qualitatively discuss the results.

This whole study now leads us to new questions.
Is this behaviour reproducible on different materials such as gold or iron? How to be
sensitive to the magnetic disorder in our systems?
First clues in AuFe systems obtained at the end of my PhD seems to point to a universality
of this behaviour but also to the difficulty to measure the magnetic part of the UCF. The
solution would be to have a more doped sample to increase the magnetic contribution in
our measurements.
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