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Résumé

Dans cette thèse on s’intéresse à un modèle mathématique décrivant l’adaptation
du développement des populations de moustiques face à l’usage intensif des in-
secticides durant la nuit (moustiquaires imprégnées, répulsifs en spray, répulsifs
avec diffuseur électrique, . . .).

Le modèle proposé dans cette thèse est structuré en âge et dépend du temp-
s/moment où le moustique pique pour prendre son repas. Ceci nous conduit
à des modèles du type ultra parabolique. Le terme de renouvellement de la
population de moustiques est non-local, comme pour tous les problèmes démo-
graphiques, mais comporte ici un noyau qui permet à la nouvelle génération
d’adapter son temps de piqure (repas). Ceci est dû à la sélection de certains
moustiques qui piquent plus tôt ou plus tard que les autres moustiques, suite à
la pression imposée par l’usage intensif des pesticides à l’intérieur des habitats
et en particulier durant la nuit. Les conditions aux bords par rapport au mo-
ment de piqure (repas) seront périodiques car selon les espèces, les moustiques
prennent toujours leurs repas au même moment de la journée.

Le modèle non linéaire de diffusion par âge non local avec conditions aux
limites périodiques est donné par:

Dp− δ∆p+ µp = m(x)u(a, t, x)p, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24),
(0.1)

où Qa† = (0, a†)× (0, T )× (0, 24) et

Dp(a, t, x) = lim
ε→0

p (a+ ε, t+ ε, x)− p (a, t, x)

ε
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est la dérivée directionnelle de p par rapport à la direction (1, 1, 0).
Les principaux résultats peuvent être classés dans 4 parties.
Dans une première partie, nous étudions le problème structuré par l’âge

(0.1) modélisant la plasticité des moustiques dans un environnement naturel,
c’est-à-dire u ≡ 0. Nous étudions d’abord le spectre d’un opérateur A qui est
le générateur infinitésimal d’un C0-semigroupe. On montre que l’opérateur n’a
qu’une seule valeur propre réelle λ0 algébriquement simple et est plus grande
que n’importe quelle partie réelle des autres valeurs propres.
Par la théorie des semigroupes, on montre que le semigroupe T (t) généré par
A a l’expression asymptotique

T (t)φ(a, x) =eλ0te−λ0aT(0, a)Cλ0

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)

∫ a

0

e−λ0(a−δ)

T(δ, a)φ(δ, s)dδdsda+ o(e(λ0−ε)t)

où T(τ, s) = e−
∫ s
τ µ(ρ)dρeB(s−τ), Cλ0 = lim

λ→λ0
(λ−λ0)(I−Bλ)

−1 et ε est un nombre

positif tel que σ(A) ∩ {λ|λ0 − ε ≤ Reλ ≤ λ0} = λ0.
Grâce à ce développement asymptotique, nous montrons que si λ0 > 0, il

n’y a pas de solution d’équilibre stable non négative; quand λ0 = 0, il existe
une infinité de solutions d’équilibre stables non triviales; quand λ0 < 0, seules
des solutions d’équilibre régulières triviales 0 existent.

Enfin, nous présentons des simulations numériques pour la population de
moustiques lors de l’usage de moustiquaires imprégnées d’insecticide. On peut
voir que l’utilisation de moustiquaires imprégnées d’insecticide peut amener
les moustiques à changer leurs habitudes et leur temps de piqure.

Dans la deuxième partie, nous étudions le problème de contrôle optimal de
(0.1) avec m(x) ≡ 1. Notre objectif principal est de prouver qu’il existe un
contrôle optimal u(a, t, x) dans le cas d’usage limité d’insecticides, c’est-à-dire
que u(a, t, x) est limité par deux fonctions ς1(a, t, x) et ς2(a, t, x).
Le problème de contrôle optimal se formule comme suit:

(OH) Maximize

{
−
∫
Qa†

u(a, t, x)pu(a, t, x)dtdxda

}
,

soumis à u(a, t, x) ∈ U ,

U = {u(a, t, x) ∈ L2(Qa†)| ς1(a, t, x) ≤ u(a, t, x) ≤ ς2(a, t, x) a.e. in Qa†},

où ς1(a, t, x), ς2(a, t, x) ∈ L∞(Qa†), ς1(a, t, x) ≤ ς2(a, t, x) ≤ 0 a.e. in Qa† et
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pu(a, t, x) est la solution du modèle EDP.

Nous montrons d’abord l’existence de solutions ainsi que le principe de
comparaison pour un système généralisé lié à notre problème d’âge structuré.
Ensuite, nous prouvons l’existence du contrôle optimal pour la meilleure récolte
(OH). Enfin, nous établissons les conditions nécessaires d’optimalité.

Dans la troisième partie, nous étudions la contrôlabilité exacte locale d’un
problème structuré en âge modélisant la capacité des vecteurs du paludisme à
changer leur temps de morsure et éviter les conditions environnementales stres-
santes engendrées par l’utilisation des pulvérisateurs à l’intérieur des habita-
tions et des moustiquaires imprégnées d’insecticide. L’existence d’une solution
stable non positive ps(a, x) a été obtenue par les résultats dans la première
partie. Nous cherchons à trouver un contrôle tel que la solution p(a, t, x) du
problème structuré par âge puisse être égale à la solution stable ps(a, x) après
un temps limité, disons p(a, T, x) = ps(a, x). Pour ce faire, nous transformons
le problème en un problème de zéro exacte contrôlabilité, c’est-à-dire

Dp− δ∆p+ µ(a)p = m(x)u(a, t, x)(p+ ps), (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24),

où p0(a, x) = p0(a, x)− ps(a, x).

Nous établissons une nouvelle inégalité de Carleman pour (0.1). Ensuite,
nous démontrons notre résultat en étudiant l’équation d’Euler-Lagrange. Fi-
nalement, nous faisons une simulation numérique en comparant la situation
sans contrôle avec celle oú il y a un contrôle spécifique. Nous pouvons trouver
que quand il n’y a pas de contrôle, la solution p(a, t, x) ne peut pas être proche
de la solution stable ps(a, x) et nous pouvons trouver un contrôle tel que la
solution p(a, t, x) est proche de ps(a, x) à t = T .

Dans la quatrième partie, nous nous intéressons au problème de la plasticité
du moustique dans le cas de mortalité non linéaire, c’est-à-dire

Dp− δ∆p+ µ(a, w(t, x))p = u(a, w(t, x))p, (a, t, x) ∈ Q,

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ R+ × R,

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× R.



vi

où Q = (0, a†)×R+ ×R. Nous supposons que le taux de fécondité est impor-
tant et que le taux de mortalité naturel est faible. Nous étudions ensuite le
comportement en temps long de la population mature w(t, x) =

∫ a†
a0
p(a, t, x)da

où a0 est l’âge de maturité, sous différentes stratégies de contrôle. Première-
ment, nous prouvons que s’il n’y a qu’un contrôle limité avec les insecticides,
la population mature de moustiques ira à l’infini. D’un autre côté, si le con-
trôle insecticide est très important, cela signifie que le taux de mortalité total
µ(a, w) − u(a, w) est important. Ensuite, la population va doucement tendre
vers 0. En fait, une situation plus réaliste est que la population ne peut pas
être infiniment grande ou très petite en raison de la limitation de la stratégie
de contrôle par insecticides. Cela signifie que la population mature w(t, x)

peut atteindre certains états d’équilibré. Ainsi, dans le cas intermédiaire, nous
dérivons un modèle temporel pour la population mature, c’est-à-dire

wt − δ∆w =

∫ a†

a0

(−µ(a, w) + u(w))p(a, t, x)da

+Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

w(t− a0, x− z − s)dz
]
fδa0(s)ds,

pour t > 0, x ∈ R et

w(s, x) =

∫ a†

a0

p0(a+ s, x)da, for s ∈ [−a0, 0] and x ∈ R,

qui peut être gouverné par une sous-équation

wt − δ∆w ≥− g(w) + u(w)w

+Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

w(t− a0, x− z − s)dz
]
fδa0(s)ds,

et une super-équation

wt − δ∆w ≤u(w)w

+Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

w(t− a0, x− z − s)dz
]
fδa0(s)ds.

Nous prouvons l’existence de fronts de déplacement pour la sous-équation et
l’utilisons pour prouver que la population mature atteindra finalement un
équilibre entre les états positifs de la sous-équation et de la super-équation.

Pour conclure cette dernière section nous effectuons des simulations numériques
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pour illustrer nos résultats théoriques.

Mots clés: modèle structuré en âge, comportement asymptotique,
contrôlabilité, résistance comportementale, méthode adjointe, con-
trôle optimal





Abstract

This dissertation is concerned with an age structured problem modelling mos-
quito plasticity. The main results can be divided into four parts.

The first part presents an age structured problem modelling mosquito plas-
ticity in a natural environment. We first investigate the analytical asymptotic
solution through studying the spectrum of an operator A which is the in-
finitesimal generator of a C0-semigroup. Additionally, we get the existence
and nonexistence of nonnegative steady solutions under some conditions.

In the second part, we study the optimal control of an age structured prob-
lem. Firstly, we prove the existence of solutions and the comparison principle
for a generalized system. Then, we prove the existence of the optimal control
for the best harvesting. Finally, we establish necessary optimality conditions.

In the third part, we investigate the local exact controllability of an age
structured problem modelling the ability of malaria vectors to shift their biting
time to avoid the stressful environmental conditions generated by the use of
indoor residual spraying (IRs) and insecticide-treated nets (ITNs). We estab-
lish a new Carleman’s inequality for our age diffusive model with non local
birth processus and periodic biting-time boundary conditions.

In the fourth part, we model a mosquito plasticity problem and investi-
gate the large time behavior of matured population under different control
strategies. Firstly, we prove that when the control is small, then the matured
population will become large for large time and when the control is large, then
the matured population will become small for large time. In the intermedi-
ate case, we derive a time-delayed model for the matured population which
can be governed by a sub-equation and a super-equation. Finally, we prove
the existence of traveling fronts for the sub-equation and use it to prove that
the matured population will finally be between the positive states of the sub-
equation and super-equation.

Keywords: age structured model, asymptotic behaviour, control-
lability, behavioural resistance, adjoint method, optimal control
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Chapter 1

Introduction

Throughout the human history, people have always been combating against
many infectious diseases, such as malaria, dengue, yellow and Chikungun-
ya fever, encephalitis and the diseases have caused uncounted mortality of
mankind. One of the most studied diseases is malaria, which is mainly trans-
mitted by Anopheles gambiae and Anopheles funestus and is caused by a
species of parasite that belongs to the genus Plasmodium [18] . This pathol-
ogy affects millions of people over the world, being predominant in equatorial
region, e.g., Amazon rainforest, sub-saharan Africa and South East Asia. The
Plasmodium is transmitted by female Anopheles mosquitoes when they bite
and, thus, feed on human blood. As the statistical data show, malaria affects
more than 100 tropical countries, placing 3.3 billion people at risk [98] and one
African child’s life is taken by malaria every minute [99].

During the past decades, many researchers studied the pathology of these
infectious diseases and tried to control the transmission of them. To reduce hu-
man’s suffering from malaria, people have been seeking efficient ways to control
the malaria transmission for many years. The main strategies of controlling
malaria are insecticide treated nets (ITNs) and indoor residual spraying (IRs)
[18, 50, 68, 98]. Control mechanims acting on disease dynamics take into
account the behaviourally characteristics of mosquito population, such as an-
throphagy, endophily, endophagy, physiological susceptibility to pyrethroids,
and night-biting preference. The effectiveness of these strategies depends on
the susceptibility of the vector species to insecticides and their behaviour, ecol-
ogy and population genetics [87]. Therefore, in the past decades, pyrethroid-
treated bed nets are widely deployed in Africa, the estimated percentage of
households with one impregnated net having increased from 3% in 2000 to
53% to 2012 [99]. By using these strategies, we see that the control of malaria
has made slow but steady progress and the overall mortality rate has dropped

1



1. Introduction

by more than 25% since 2000 [68].
However, mosquitoes are adapting due to insecticide pressure related to

(ITNs) and (IRs) usage. The recent reports on Malaria transmission shown
that the long-term use of residual spraying (IRs) and insecticide-treated nets
(ITNs) has been driving mosquito physiological and behavioural resistance
[26, 28, 76, 87, 89, 96]. Many mosquito species exhibit high levels of phenotypic
plasticity that can be expressed on host preference, biting activity, etc. Such
heritable phenotypic plasticity allows individuals mosquitoes to flexibly adapt
their behaviour according to the environmental conditions. The development
of a crepuscular, outdoor feeding phenotype among anopheline population has
been observed in areas of intensive use of IRs and ITNs. This adjust on
biting time can jeopardize the success of Malaria control and promotes parasite
evolution [38] and is more difficult to avoid than physiological ones that can
be controlled by taking the form of rotation of a different class of insecticide
[77].

Whereas, more realistic problems are always related to the bitting time.
Thus, one of the most important thing we need to pay attention to is that the
long-term use of residual spraying (IRs) and insecticide-treated nets (ITNs)
leads to the emergence of insecticide-resistant Anopheles mosquitoes [28, 76,
96] which has great influence on the biting time of mosquitoes. Formerly, the
maximum of anophelines aggressiveness was typically observed in the middle
of night. In 1990, Fontenille [35] showed that the An. funestus biting peak
occurred from 01:00 to 03:00 indoors and from 02:00 to 05:00 outdoors. But,
after the implementation of long-lasting insecticidal nets (LLINs), Anopheles
funestus showed a behavioural change in biting activity that An. funestus
reached a peak of aggressiveness between 08:00 and 9:00, remaining anthro-
pophilic and endophilic, while adopting diurnal feeding, essentially on humans
[87]. Meanwhile, in the study [103], Anopheles arabiensis showed early biting
activities in Ethiopia after use of (LLINs )both indoors and outdoors; and 80
percent of this vector were captured before 22:00 with a peak activity between
19:00 to 20:00. In southern Benin, the researchers obtained the similar results
that 26.4% of An. funestus were caught after 06:00 by scaling up of universal
coverage with (LLINs). And, in the recent papers [70, 74, 87, 103] showed
substantial diurnal and early biting activity and more frequent outdoor biting.
All these studies showed An. funestus has adapted its biting time to the new
situation.

The emergence of the new biting time behavioural adaptation of mosquitoes
in response to insecticidebased vector control interventions may make control
tools ineffective, close awareness in the context of pre-elimination of malaria

2



and also constitute a risk to people who are so accessible. Since mosquito
behaviour is an essential component for assessing vectorial capacity to trans-
mit malaria, the emergence of the new biting time behaviour can significantly
increase the risk for malaria transmission and represents a new challenge for
malaria control. One of the most challenging problems in science is to model
biological phenomena. The great number of parameters involved in the dy-
namics of a biological population makes deduction of a general model quite
difficult.

Hence, it is very important and necessary to consider the bitting time in the
following researches of the control of mosquitoes and researches on the popula-
tion dynamics of mosquitoes become essential. Here it is intended to develop a
mathematical model based on partial differential equations to understand and
study possible adaptations of Anopheles species.

Therefore, in this dissertation, we are going to model mosquito population
adaption by additional vector control strategies about the bitting time. This
model is an ultra-parabolic partial differential equation with nonlocal terms
corresponding to birth and selection processus. The density of mosquitoes
p(a, t, x) will depend on time t, age a and also bitting time x. The introduc-
tion of the variable x in the system has the objective of illustrate mosquito
biting behaviour, which will be of great importance in the following research
on mosquitoes control. We suppose that the continuous usage of (ITNs) and
(IRs) can reduce the fitness of mosquito populations by reducing its oviposition
rate or increasing its mortality rate. The model also incorporates the idea that
individuals have some amount of plastic adaptability that permits mosquito-
adaptation to stressful situations and these stress-induced modifications are
inherited. Selection also occurs in the renewal process allowing persistence of
the adapted species and maximizing the mosquito fitness. The new generation
of mosquitoes can adapt to ensure its survival and reproduction, changing the
biting time in order to maximize its fitness. As for Chapters 2-4 of this dis-
sertation, we first consider a linear model describing the dynamics of a single
species population with age dependence, bitting time dependence and spatial
structure as follows

Dp− δ∆p+ µp = m(x)u(a, t, x)p, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24),
(1.1)

3



1. Introduction

where Qa† = (0, a†)× (0, T )× (0, 24) and

Dp(a, t, x) = lim
ε→0

p (a+ ε, t+ ε, x)− p (a, t, x)

ε

is the directional derivative of p with respect to direction (1, 1, 0) . For p(a, t, x)

smooth enough, it is easy to know that

Dp(a, t, x) =
∂p(a, t, x)

∂t
+
∂p(a, t, x)

∂a
.

Here, p(a, t, x) is the distribution of individuals of age a ≥ 0 at time t ≥ 0

and bitting at time x ∈ [0, 24], a† means the life expectancy of an individual
and T is a positive constant. m(x) is the characteristic function of ω, where
ω ∈ (0, 24) is a nonempty open subset. As we announced, the mosquitoes
can adapt their bitting time. Thus, we set their adapting model to be a ∆

diffusion with a diffusive coefficient δ. Moreover, β(a) denotes the natural
fertility-rate of individual of age a and µ(a) denotes the natural death-rate
(more assumptions will be made later). In fact, the new generation is also
able to adapt the bitting time in order to maximize its fitness. Let η be the
maximum bitting time difference which the new generation can reach and we
model the adaption of the new generation by a kernel K(x, s) as defined as
below

K(x, s) =

{
(x− s)2e−(x−s)2 , s ∈ (0, 24),

0, else.

The control function u(a, t, x) represents the insecticidal effort, such as the use
of (ITNs) and (RIs).

The study of population dynamics equations can be traced back to the
works of Malthus [66] in 1798. Malthus introduced the simplest population
dynamics model which he supposed that the rate of population growth is pro-
portional to the size of the population, that is,

P ′(t) = αP (t), t > 0,

where α ∈ R is the intrinsic growth constant. An more realistic improved
model was proposed by Verhulst [92] in 1838, that is,

P ′(t) = αP (t)− γP 2(t), t > 0,

where α ∈ R is the intrinsic growth constant, while α
γ
is called the environ-

mental carrying capacity (γ > 0). But, one of the deficiencies of the above
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ordinary differential equation models is that they do not take into account an
age structure which can influence population size and behaviour in realistic
situations. In 1911, one of the most important improvements is that Sharpe
and Lotka [81] first proposed the age-structured continuous model without
diffusion as follows

Dp(a, t) + µ(a)p(a, t) = 0, a ∈ (0, a†), t > 0,

where a† is the maximal age for the population species and µ(a) is the mor-
tality rate and depends only on age a. Whereas, more realistic problems
are always related to some general continuous models with diffusion for age-
structured populations. Therefore, in the following few decades, the study of
age-dependent population dynamics with diffusion has been intensively devel-
oped by mathematical researchers. Some of the main results of this develop-
ment need to be mentioned. In 1973, Gurtin and MacCamy [44] took into
consideration diffusion for age-structured populations and extended in [45] af-
ter 4 years. Under appropriate boundary conditions, Gurtin and MacCamy
investigated the following problem

Dp(a, t, x) + µ(a, P (t, x))p(a, t, x)− k∆p(a, t, x) = 0,

P (t, x) =

∫ a†

0

p(a, t, x)da,

p(0, t, x) =

∫ a†

0

β(a, P (t, x))p(a, t, x)da,

where (a, t, x) ∈ (0, a†) × (0,+∞) × Ω, Ω ⊂ Rn. Another important study
worth to mention is that a book of analysis and control of age-dependent
population dynamics was written by Aniţa [13] in 2000. This book is the first
book devoted to the control of continuous age structured population dynamics
and it introduces the most important problems, approaches and results in the
mathematical theory of age-dependent models. In this book, Aniţa [13] studied
the following system from many interesting aspects

Dp(a, t, x)− k∆p+ µ(a, t, x)p = f(a, t, x), (a, t, x) ∈ QT ,
∂p
∂ν

(a, t, x) = 0, on ΣT ,

p(0, t, x) =

∫ a†

0

β(a)p(a, t, x)da, (t, x) ∈ (0, T )× Ω,

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× Ω,

where QT = (0, a†)×(0, T )×Ω, ΣT = (0, a†)×(0, T )×∂Ω. In the recent years,
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1. Introduction

there are many works devoted to an age structure model with and without
diffusion [3, 4, 5, 6, 7, 13, 34, 105]. One important direction is the optimal
control of an age structured problem which has been widely studied, one refers
to [11, 12, 15, 34, 53, 58, 59, 105]. Meanwhile, the study of the controllability
of partial differential equations of an age structure model also plays a very
important role, one can refer to [16, 31, 36, 57, 90]. For an overview on age
structured population dynamics models and their mathematical analysis, we
refer to [37, 51, 55, 95].

In Chapters 2-4 of this dissertation, we mainly focus on the study of the
following three aspects of system (1.1):
1 mathematical analysis of this model;
2 optimal control of this model;
3 local exact controllability of this model.

In Chapter 5 of this dissertation, we then adapt the model (1.1) to a non-
linear one by setting that the natural death-rate µ and the control term u are
depending on age a and the matured population

∫ a†
a0
p(a, t, x)da, where a0 is

the matured age. In Chapter 5, we mainly focus on the large-time behavior of
the matured population of mosquitoes by the usage of ITNs and IRs. We can
see detailed presentation of the model and settings in Section 1.4.

In the following of this chapter, we state the main results of this disserta-
tion.

1.1 Mathematical analysis of an age structured
problem

It is well known that mathematical analysis of an age structured problem
modeling phenotypic plasticity in mosquito behaviour in a natural environment
plays an important role in the study of the control of mosquitoes. Therefore,
in Chapter 2, we consider the system (1.1) corresponding to u(a, t, x) ≡ 0 to
model the plasticity of mosquitoes in a natural environment, namely without
any intervention of human activities, such as (IRs) and (ITNs). That is,

Dp− δ∆xp+ µ(a)p = 0, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24).
(1.2)

6



1.1. Mathematical analysis of an age structured problem

Notice that in our model, the boundary condition is assumed to be periodic
and the fertility term is nonlocal with the kernelK(x, s). In fact, both Dirichlet
boundary condition and local fertility term are very popular in mathematical
modeling, such as dynamics population models of a single species with age
dependence and spatial structure. We now review some known results about
such models, that is, replacing the periodic boundary condition and the fertility

term by the Dirichlet condition and
∫ a†

0

β(a)p(a, t, x)da respectively. Chan

and Guo [22] considered this model in the semigroup framework, by setting
the fertility-rate β and the mortality-rate µ being independent of the space
variable x, that is,

Dp−K∆xp+ µ(a)p = 0, (a, t, x) ∈ (0, a†)× (0, T )× Ω,

p(a, t, x)|∂Ω = 0, (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)p(a, t, x)da, (t, x) ∈ (0, T )× Ω,

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× Ω,

where Ω is a limited smooth domain in Rn. They identified the infinitesimal
generator and studied its spectral properties, which could be used to get the
asymptotic behavior of the solutions. Then, Guo and Chan [42] removed the
independence setting of β, µ, that is,

Dp−K∆xp+ µ(a, x)p = 0, (a, t, x) ∈ (0, a†)× (0, T )× Ω,

p(a, t, x)|∂Ω = 0, (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a, x)p(a, t, x)da, (t, x) ∈ (0, T )× Ω,

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× Ω.

They got the asymptotic expression of the solution by analyzing the spectrum
of the infinitesimal generator. We also refer to the works of Langlais [56], for
the study of the long-time behaviour of the model where β and µ depend on
the distribution p. The controllability problems on this model are also very
attractive. Ainseba and Aniţa [5, 13] studied the local exact controllability of
such model with the Dirichlet boundary condition and the local fertility term.
The control problem with Neumann boundary condition can be referred to
[6, 7].

We are interested in the ways on which Guo and Chan [22, 42] studied
the asymptotic behaviour of the population model in [22, 42] throught the
analysis of the spectrum of the infinitesimal generator and using some positive
semigroup theories. In this dissertation, we mainly focus on the asymptotic
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1. Introduction

behavior in Chapter 2. The key step for our paper is to find, for any initial
p0(a, x) ∈ D(A), the asymptotic expression p(a, t, x).

Before presenting our results, we need to introduce some useful notations.
Let X = L2((0, a†)× (0, 24)) with the usual norm and the operator A : X −→
X defined as

Aφ(a, x) = −∂φ(a, x)

∂a
+ δ∆φ(a, x)− µ(a)φ(a, x),∀φ(a, x) ∈ D(A), (1.3)

where

D(A) = {φ(a, x)|φ,Aφ ∈ X,φ(a, 0) = φ(a, 24), ∂xφ(a, 0) = ∂xφ(a, 24),

φ(0, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)φ(a, s)dsda}. (1.4)

From the definition of the operator A, the system (1.2) can be transformed
into an evolutionary equation on the space X:

dp(a, t, x)

dt
= Ap(a, t, x),

p(a, 0, x) = p0(a, x).

For the following notations, we can refer to Marek [67, p.609] and Clement
[25] for instance. If A is a linear operator fromX intoX, then ρ(A) denotes the
resolvent set of A, that is, ρ(A) is the set of all complex numbers λ for which
(λI−A)−1 is a bounded automorphism of A (let R(λ,A) = (λI−A)−1 called the
resolvent operator), where I denotes the identity operator. The complement
of ρ(A) in the complex plane is the spectrum of A, and it is denoted by σ(A).
We denote by γ(A) the spectral radius of A, that is,

γ(A) = sup{|λ| : λ ∈ σ(A)}.

If A is an infinitesimal generator of a C0-semigroup T (t) on the space X, the
spectral bound s(A) can be denoted by

s(A) = sup{|λ| : Reλ ∈ σ(A)}.

And the growth bound of the semigroup T (t) can be shown as

ω(A) = inf
t>0

1

t
log ‖T (t)‖L2((0,a†)×(0,24)) = lim

t→+∞

1

t
log ‖T (t)‖L2((0,a†)×(0,24)).

We assume the following assumptions throughout Chapter 2:
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1.1. Mathematical analysis of an age structured problem

(J1) µ(a) ∈ L1
loc([0, a†)) and

∫ a†

0

µ(ρ)dρ =∞;

(J2) β(a) ∈ L∞((0, a†)), mes{a|a ∈ [0, a†], β(a) > 0} > 0;
(J3) p0(a, x) ∈ L∞((0, a†)× (0, 24)), p0(a, x) ≥ 0.

The following theorems are the main results of Chapter 2 and they will be
proved in Chapter 2.

Theorem 1.1. For any initial p0(a, x) ∈ D(A), the semigroup solution of
(1.2) has the following asymptotic expression:

p(a, t, x) =eλ0te−λ0aT(0, a)Cλ0

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)

∫ a

0

e−λ0(a−σ)T(σ, a)

p0(σ, s)dsdadσ + o(e(λ0−ε)t),

where λ0, Cλ0and T(τ, s) will be defined in Chapter 2.

The steady state of our model is very important, especially for our further
researches about the control problem. The steady state of (1.2) is denoted by
ps, and should be a solution of

∂aps(a, x)− δ∆ps(a, x) + µ(a)ps(a, x) = 0, (a, x) ∈ (0, a†)× (0, 24),

ps(a, 0) = ps(a, 24), a ∈ (0, a†),

∂xps(a, 0) = ∂xps(a, 24), a ∈ (0, a†),

ps(0, x) =
∫ a†

0
β(a)

∫ x+η

x−η K(x, s)ps(a, s)dsda, x ∈ (0, 24).

(1.5)
Furthermore, ps(a, x) satisfies

ps(a, x) ≥ 0 a.e. (a, x) ∈ (0, a†)× (0, 24). (1.6)

Theorem 1.2. Consider (1.5) with λ0 satisfying Theorem 1.1.
(1) If λ0 > 0, then there is no nonnegative solution of (1.5) satisfying (1.6).
(2) If λ0 = 0, then there exists infinitely many nontrivial solutions of (1.5)

satisfying (1.6). Furthermore, for any nonzero steady state ps(a, x), there
exists ρ0 > 0 such that

ps(a, x) ≥ ρ0 > 0, a.e. (a, x) ∈ (0, a1)× (0, 24),

where a1 ∈ (0, a†).
(3) If λ0 < 0, then only trivial solutions ps of (1.5) satisfying (1.6) exist, that

is
ps(a, x) = 0 a.e. (a, x) ∈ (0, a†)× (0, 24).
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1. Introduction

The rest of Chapter 2 is organized as follows. In Section 2.1, we make
some preparations which are necessary in what follows and we prove that A is
an infinitesimal generator of a C0-semigroup T (t). In Section 2.2, we get the
asymptotic behavior of (1.2) by analyzing the spectrum of the semigroup T (t).
Many abstract theories about semigroups used in this part can be referred
to [25, 80, 104]. According to the asymptotic behaviour, we investigate the
existence of steady states in Section 2.3. In Section 2.4, we present numerical
simulations when there are insecticide-treated bed nets (ITNs).

1.2 Optimal control of an age structured prob-
lem

In Chapter 3, we focus on the study of (1.1) with m(x) = 1 for all x ∈ (0, 24),
that is,

Dp− δ∆p+ µ(a)p = u(a, t, x)p, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24).
(1.7)

Our main goal is to prove that there exists an optimal control u(a, t, x) in
limited conditions, that is, u(a, t, x) is bounded by two functions ς1(a, t, x) and
ς2(a, t, x) such that the insecticidal efficiency reaches the best. Since the control
function u(a, t, x) is negative, it means that we can deal with the following
optimal problem

(OH) Maximize

{
−
∫
Qa†

u(a, t, x)pu(a, t, x)dtdxda

}
,

subject to u(a, t, x) ∈ U ,

U = {u(a, t, x) ∈ L2(Qa†)| ς1(a, t, x) ≤ u(a, t, x) ≤ ς2(a, t, x) a.e. in Qa†},

where ς1(a, t, x), ς2(a, t, x) ∈ L∞(Qa†), ς1(a, t, x) ≤ ς2(a, t, x) ≤ 0 a.e. in Qa†

and pu(a, t, x) is the solution of system (1.7). Here, we say that the control
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1.2. Optimal control of an age structured problem

u∗ ∈ U is optimal if∫
Qa†

u∗(a, t, x)pu
∗
(a, t, x)dtdxda ≤

∫
Qa†

u(a, t, x)pu(a, t, x)dtdxda,

for any u(a, t, x) ∈ U . The pair (u∗(a, t, x), pu
∗
(a, t, x)) is an optimal pair and∫

Qa†

u∗(a, t, x)pu
∗
(a, t, x)dtdxda is the optimal value of the cost functional.

Let us recall some history about the optimal control researches. Since
1985 when Brokate [21] first proposed the optimal control of the population
dynamical system with an age structure, it has been widely concerned and
extensively studied by more and more researchers in the past few years. It
is worth mentioning that the researches of Gurtin and Murphy [46, 47] about
the optimal harvesting of age structured populations provide an important
basis for subsequent researches of the optimal control problem. As is well
known, the optimal harvesting problem governed by nonlinear age dependent
population dynamics with diffusion was considered by Aniţa [13], where he
mainly discussed the impact of the control in homogeneous Neuman boundary
conditions. For more rich results about the optimal control of an age structure
with non-periodic boundary conditions, one can refer to [11, 12, 34, 105] and
references cited therein. Note that the above results are about non-periodic
boundary conditions.

However, we have seen from the practical significance of biology that it is
advantageous to consider age-structured models with periodic boundary con-
ditions and nonlocal birth processes. We would like to refer to [10, 73] for some
studies about the optimal control problem with periodic boundary conditions.
We also refer to [15, 53, 59, 58] as reviewing references of the optimal control
problem. Let us now mention some of our work about other aspects of system
(1.7) with periodic boundary conditions and nonlocal birth processes. In [63],
large time behaviour of the solution for such age structured population model
was considered. Moreover, we considered the local exact controllability of such
age structured problem in [64]. In Chapter 3, we study the optimal control of
system (1.7).

From the biological point of view, we make the following hypotheses through-
out Chapter 3:

(J1) µ(a) ∈ L∞loc((0, a†)),
∫ a†

0

µ(a)da = +∞ and µ(a) ≥ 0 a.e. in (0, a†);

(J2) β(a) ∈ L∞((0, a†)), β(a) ≥ 0 a.e. in (0, a†);
(J3) p0(a, x) ∈ L2((0, a†)× (0, 24)), p0(a, x) ≥ 0 a.e. in (0, a†)× (0, 24).

Now we state our main results in Chapter 3.
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Theorem 1.3. For any u(a, t, x) ∈ U , there exists a unique solution pu(a, t, x) ∈
L2(Qa†) of the system (1.7).

Theorem 1.4. Problem (OH) admits at least one optimal pair (u∗(a, t, x),

p∗(a, t, x)).

Theorem 1.5. Let (u∗(a, t, x), p∗(a, t, x)) be an optimal pair for (OH) and
q(a, t, x) be the solution of the following system

Dq + δ∆q − µ(a)q + β(a)

∫ x+η

x−η
K(x, s)q(0, t, s)ds = −u∗q − u∗,

q(a, t, 0) = q(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xq(a, t, 0) = ∂xq(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

q(a†, t, x) = 0, (t, x) ∈ (0, T )× (0, 24),

q(a, T, x) = 0, (a, x) ∈ (0, a†)× (0, 24).
(1.8)

Then, one has

u∗(a, t, x) =

{
ς1(a, t, x), if q(a, t, x) > −1,

ς2(a, t, x), if q(a, t, x) < −1.

Chapter 3 is organized as follows. In Section 3.1, we prove the existence
of solutions and the comparison result for a linear model which is (1.7) in
general settings. Section 3.2 is devoted to the proof of the existence of an
optimal control of system (1.7) by Mazur’s Theorem. Section 3.3 focuses on
the necessary optimality conditions.

1.3 Local exact controllability of an age struc-
tured problem

In Chapter 4, we study the local exact controllability of an age structured prob-
lem modelling phenotypic plasticity in mosquito behaviour. That is, we prove
the existence of a control u(a, t, x) of system (1.1) such that the population of
mosquitoes can reach a steady state.

We first recall some results of Theorem 1.2. Let ps(a, x) be a nontrivial
steady-state of (1.1) and be a solution of (1.5). By a result of Theorem 1.2,
we have steady states

ps(a, x) ≡ 0, for λ0 < 0,

ps(a, x) > 0, for λ0 = 0,
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1.3. Local exact controllability of an age structured problem

where λ0 is the unique real eigenvalue of the infinitesimal generator governed
by (1.1) with u(a, t, x) ≡ 0 (refer to Chapter 2 for the details).

In Chapter 4, we only consider the later case, that is, ps(a, x) such that

ps(a, x) ≥ ρ0 > 0, a.e. (a, x) ∈ (0, a1)× (0, 24),

where ρ0 is positive constant and a1 ∈ (0, a†). The objective of Chapter 4
is to prove the existence of a control u(a, t, x) such that the solution of (1.1)
satisfies

p(a, T, x) = ps(a, x), a.e. (a, x) ∈ (0, a1)× (0, 24),

p(a, t, x) ≥ 0, a.e. (a, t, x) ∈ Qa† .

Obviously, the last inequality is because biological reasons: p(a, t, x) represents
the density of a population. We can see that our main problem is equivalent
to the exact null controllability problem of the following system

Dp− δ∆p+ µ(a)p = m(x)u(a, t, x)(p+ ps), (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24),
(1.9)

where p0(a, x) = p0(a, x)− ps(a, x).

In the last years many works were devoted to the controllability of partial
differential equations of parabolic type [16, 31, 36, 57, 90]. For an overview on
age structured population dynamics models and their mathematical analysis
we refer to [37, 51, 55, 95]. The controllability of age structured problems
modeling demographical processes was considered in [3, 4, 5, 6, 7, 13]. The
nonlocal birth process in these models is nonlocal with respect to the age
variable a, that is,

p(0, t) =

∫ a†

0

β(a)p(a, t)da.

The local exact controllability of the age structured problem with diffusion
was established in [5]. The main proof is based on Carleman’s inequality
for the adjoint equation, one can refer to [4, 8, 13]. For the linear Lotka-
McKendrick model without spatial structure, Viorel Barbu et al. established
an observability inequality for the backward adjoint system [17] to get the
exact controllability.
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In Chapter 4, we discuss the local exact controllability of (1.1) with time-
biting periodic boundary conditions and nonlocal birth process with respect
to chronological age and biting-time. In Chapter 4, we also get a Carleman’s
inequality for our periodic boundary case.

Let a† be a finite positive number. From the biological point of view, we
make the following assumptions throughout Chapter 4:

(J1) µ(a) ∈ L1
loc([0, a†)) and

∫ a†

0

µ(ρ)dρ =∞;

(J2) β(a) ∈ L∞((0, a†)), there exists a0, a1 ∈ (0, a†) such that β(a) = 0 a.e.
a ∈ (0, a0) ∪ (a1, a†), β(a) > 0 a.e. a ∈ (a0, a1);

(J3) p0(a, x) ∈ L∞((0, a†)× (0, 24)), p0(a, x) ≥ 0 and p0(a, x) 6≡ 0 a.e.(a, x) ∈
(0, a†)× (0, 24).

The following theorem is the main result of Chapter 4.

Theorem 1.6. If ‖p0(a, x)‖L∞((0,a†)×(0,24)) is small enough, then there exists
u(a, t, x) ∈ L2(Qa†) such that the solution of (1.9) satisfies

p(a, T, x) = 0, a.e.(a, x) ∈ (0, a†)× (0, 24),

p(a, t, x) ≥ −ps(a, x), a.e.(a, t, x) ∈ Qa† .

Chapter 4 is organized as follows. In Section 4.1, we give some preparations
which are important and necessary in what follows. In particular, we get a
Carleman inequality corresponding to our problem with periodic boundary
condition. Section 4.2 focuses on the local exact controllability of (1.1), that
is, we would prove Theorem 1.6 with the help of a system with an ordinary
initial value. In Section 4.3, we present numerical simulations of (1.1).

1.4 Large-time behavior of an age structured
model

In Chapter 5, we adapt our model (1.1) and investigate the dynamics of the
mosquitoes population with the usage of (ITNs) and (IRs). Let µ(a, w) ≥ 0

be the natural death-rate of individuals of age a and the matured population

w(t, x) =

∫ a†

a0

p(a, t, x)da.

We set that the (ITNs) and (IRs) are only useful to matured population, that
is, u(a, w) = 0 for a ∈ [0, a0) and u(a, w) = u(w) for a ∈ [a0, a†). Therefore,
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1.4. Large-time behavior of an age structured model

we model the mosquito plasticity problem as the following system
Dp− δ∆p+ µ(a, w(t, x))p = u(a, w(t, x))p, (a, t, x) ∈ Q,

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ R+ × R,

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× R.
(1.10)

where Q = (0, a†)× R+ × R.

Let us recall some history about the single species with age structure re-
searches. Before 1990, many researchers considered diffusion into a time delay
model by simply adding a diffusion term to the corresponding delay ordinary
differential equation model, see Memory [69] and Yoshida [102]. But, in the
nature biology, individuals have not been at the same point in time at previous
times. Thereupon, in 1990, Britton [20] first proposed to address the problem
for a delayed Fisher equation on an infinite domain. More details in Chapter
5.2 will be given to see how we derive our problem into a time-delayed prob-
lem. Since it is so important for an age structure model to derive a reaction
diffusion equation with time delay, more and more researchers have widely
concerned and extensively studied about this problem in the past few years,
see [40, 83, 85, 86].

Meanwhile, as for the reaction diffusion equations with time delay, there
are rich results about local delay and nonlocal delay. For the reaction diffusion
equations with local time delay, the KPP and bistable nonlinear diffusion equa-
tions with a discrete delay were considered by Schaaf [82]. In [97], more general
reaction-diffusion systems with finite delay were studied by using the classical
monotone iteration technique and the sub- and supersolutions method. For
more rich results about the reaction-diffusion equations with discrete delay ,
one can refer to [23, 24, 29, 33, 84] and references cited therein. It is worth
mentioning that the research of Ma and Zou [65] provided a more generalized
method than Chen [23, 24] for a class of discrete reaction-diffusion monostable
equation with delay.

By the practical significance of biology, it is advantageous to consider the
reaction diffusion equations with nonlocal delays. We would like to mention
the work of Britton [19, 20], since they first attempted to study the perodic
traveling wave solutions in reaction-diffusion equations with nonlocal delays.
Since then, there are many researchers devoted to proving the existence of
traveling wave solutions of these type equations mainly by three methods:
the perturbation theory [1, 40], the geometric singular perturbation theory
[2, 14, 40, 78], the monotone iteration method [30, 72, 86, 93, 94]. In fact, the
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posterior results concerning about the existence of traveling wave solutions in
Chapter 5 are due to the monotone iteration method [86, 94].

In Chapter 5, we consider that the bitting behavior of mosquitoes is periodic
with 24 hours a day. It means that we consider the initial value p0(a, x)

satisfying
p0(a, x+ 24) = p0(a, x), x ∈ R

and the solution p(a, t, x) satisfying

p(a, t, x+ 24) = p(a, t, x), a ∈ (0, a†), t ∈ R+, x ∈ R.

We are interested in how the insecticidal control u(a, w) ( such as ITNs and
IRs) effects the matured population of mosquitoes, that is, the large time
behavior of w(t, x). From the biological point of view, we make the following
hypotheses throughout this paper:

(J1) The death rate µ(a, w) ≥ 0 satisfies that

µ(a, w) =

{
µ1(a), a ∈ [0, a0),

µ2(a, w), a ∈ [a0, a†),

where µ1(a) ∈ L∞(0, a0), µ2(a, w) is continuous with respect to a and w,
µ2(a, w) ∈ L∞loc(a0, a†) for every w ≥ 0 and

∫ a†
0
µ(a, w)da = +∞ for every

w ≥ 0. As a matter of fact, the natural death population can not exceed
the amount of matured population, that is, 0 ≤

∫ a†
a0
µ(a, w)p(a, t, x)da ≤

w(t, x). Thus, we assume 0 ≤
∫ a†
a0
µ(a, w)p(a, t, x)da ≤ g(w) for some

smooth continuous function g(w).
(J2) The birth rate β(a) satisfies

β(a) =

{
0, a ∈ [0, a0),

β, a ∈ [a0, a†),

where β is a positive constant.
(J3) The insecticidal control u(a, w) ≤ 0 satisfies that

u(a, w) =

{
0, a ∈ [0, a0),

u(w), a ∈ [a0, a†),

where u(w) is a C2 function in w.
(J4) p0(a, x) ∈ L∞([0, a†]×R), p0(a, ·) ≥6≡ 0 for every a ∈ [0, a†] and p0(a, x+

24) = p0(a, x) for x ∈ R.
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1.4. Large-time behavior of an age structured model

(J5) We assume that supw≥0 µ(a, w) ≤ µ̃(a) where µ̃(a) ∈ L∞loc([0, a†)) and
β(a) is sufficiently large such that

∫ a†
0
β(a)e−

∫ a
0 µ̃(ρ)dρda is sufficiently

large for every w ≥ 0 which can ensure that there are mosquitos sur-
viving forever.

We give some comments about these hypotheses. Notice that in (J1),
the condition

∫ a†
0
µ(a, w)da = +∞ for every w ≥ 0 ensures a† being the life

expectancy of an individual, that is,

p(a†, t, x) = 0, t ∈ R+, x ∈ R

(refer to [13]). From Theorem 1.7, the last assumption (J5) implies that if there
is only less insecticidal control, the matured population of mosquitoes will go
to infinity. In biological meaning, (J5) means that the fertility-rate is large
and the natural death-rate is small and then the population will keep growing.
On the other hand, if the insecticidal control is very large, it means that the
total death-rate µ(a, w) + u(a, w) is large and

∫ a†
0
β(a)e−

∫ a
0 (µ(ρ,w)+u(ρ,w))dρda is

small in some sense. Then, the population will be decaying to 0 for large time.
Such threshold can be more clear for some other population models, one can
refer to [7].

Now we state the main results of Chapter 5.

Theorem 1.7. (i) If supw≥0 |u(w)| is small enough, then one has that

w(t, x)→ +∞, as t→ +∞.

(ii) If infw≥0 |u(w)| is large enough, then one has that

w(t, x)→ 0, as t→ +∞.

In fact, a more realistic situation is that the population can not be infinite
large or very small because of the limitation of insecticidal control strategy. It
means that the matured population w(t, x) may reach some balanced states.
In Section 5.2, we will derive a time-delayed model for w(t, x), that is, w(t, x)

satisfies

wt − δ∆w =

∫ a†

a0

(−µ(a, w) + u(w))p(a, t, x)da

+Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

w(t− a0, x− z − s)dz
]
fδa0(s)ds,

(1.11)
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1. Introduction

for t > 0, x ∈ R and

w(s, x) =

∫ a†

a0

p0(a+ s, x)da, for s ∈ [−a0, 0] and x ∈ R. (1.12)

Since 0 ≤
∫ a†
a0
µ(a, w)p(a, t, x)da ≤ g(w) by (J1), one has that w(t, x) is gov-

erned by the following sub-equation and super-equation

wt − δ∆w ≥− g(w) + u(w)w

+Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

w(t− a0, x− z − s)dz
]
fδa0(s)ds,

(1.13)

and

wt − δ∆w ≤u(w)w +Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

w(t− a0, x− z − s)dz
]
fδa0(s)ds.

(1.14)

As we announced, the insecticidal control will be enhanced as the popu-
lation of mosquitoes increasing and finally the population of mosquitoes will
reach a balanced state, that is, the death-rate will offset the birth-rate in some
sense. Therefore, we assume that both sub-equation and super-equation can
reach a balanced state, that is,
(H1) there is w2 > 0 such that −g(w2) + u(w2)w2 + MβM1w2 = 0, −g(w) +

u(w)w + MβM1w > 0 for 0 < w < w2, −g′(w2) + u′(w2)w2 + u(w2) +

MβM1 < 0 and g(0) = g′(0) = u(0) = 0,
(H2) there is w3 > 0 such that u(w3)w3 +MβM1w3 = 0.
Here,M1 =

∫ +∞
−∞

∫ η
−η z

2e−z
2
dzfδa0(s)ds. Since g(w) ≥ 0 for w ≥ 0, it is obvious

that w2 ≤ w3.
We then derive the existence of traveling fronts of the sub-equation. In fact,

the traveling front can describe the invasion of one steady state to another. It
implies that the area in which the matured population of mosquitoes is close
to w2 will invade the area with less mosquitoes.

Theorem 1.8. Assume that (H1) hold. There exists a c∗ > 0 such that for
every c > c∗, the equation

wt − δ∆w =− g(w) + u(w)w

+Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

w(t− a0, x− z − s)dz
]
fδa0(s)ds (1.15)
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1.4. Large-time behavior of an age structured model

for (t, x) ∈ R+ × R, admits a traveling front φ(x+ ct) connecting 0 and w2.

Now, let us come back to the problem (1.11) with (1.12). Notice that
w(s, x+ 24) = w(s, x) for s ∈ [−a0, 0] and x ∈ R since p0(a, x+ 24) = p0(a, x)

for a ∈ [0, a†] and x ∈ R. We assume that the matured population is not large
at the initial time, that is,

w(s, x) ≤ w3, s ∈ [−a0, 0], x ∈ R.

Assume further that −g(w) + u(w)w satisfies
(H3) for every γ ∈ (0, 1), there exist a = a(γ) > 0 and α = α(γ) > 0 such

that for any θ ∈ (0, γ] and w ∈ [0, w2],

(1−θ)(−g(w)+u(w)w)−(−g((1−θ)w)+u((1−θ)w)(1−θ)w) ≤ −aθwα.

Theorem 1.9. Assume that (H1), (H2) and (H3) hold. For problem (1.11)
with the initial value (1.12), it holds that for each γ ∈ (0, 1), there exist T > 0,
ρ > 0 and σ > 0 such that for each ε ∈ [0, γ], the following functions

w(t, x) ≥ (1− εe−ρt)φ(x+ ct+ σεe−ρt), for t ≥ T ,

w2 ≤ w(t, x) ≤ w3, as t→ +∞.

Theorem 1.9 means that the population of matured mosquitoes will finally
reach a balance between w2 and w3.

The rest of Chapter 5 is organized as follows. In Section 5.1, we analyze
the large time behavior of the matured population when the control is small
and when it is large, that is, we prove Theorem 1.7. Section 5.2 is devoted to
the proof of the existence of traveling fronts for the sub-equation and the proof
of Theorem 1.9. In Section 5.3, we present numerical simulations of (1.10).
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Chapter 2

Mathematical analysis of an age
structured problem

In this chapter, we first study the long time behaviour of the mosquito popula-
tion without the intervention of human activities. It implies that in the general
model (1.1), we set u(a, t, x) = 0. Our goal is to find an asymptotic expression
for the mosquito population under no control, that is, Theorem 1.1. From the
asymptotic expression, we can get the existence and nonexistence of the steady
state. Finally, we do numerical simulations for the mosquito population when
there are insecticide-treated bed nets (ITNs). One can see that the usage of
ITNs can lead to a change in the mosquitoes bitting time.

2.1 Preliminaries

In this section, we give some auxiliary lemmas as a preparation for our main
results that will be derived later. In fact, we have to prove that A is an
infinitesimal generator of a C0-semigroup T (t).

At the beginning of this section, we study the following system

Dp− δ∆xp+ µ(a)p = 0, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) = C

∫ a†

0

β(a)p(a, t, x)da, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24),

(2.1)
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2. Mathematical analysis of an age structured problem

where C can be any constant. Defining the operator F : X → X as:

Fφ(a, x) = −∂φ(a, x)

∂a
+ δ∆φ(a, x)− µ(a)φ(a, x),∀φ(a, x) ∈ D(F), (2.2)

where

D(F) = {φ(a, x)|φ,Aφ ∈ X,φ(a, 0) = φ(a, 24), ∂xφ(a, 0) = ∂xφ(a, 24),

φ(0, x) = C

∫ a†

0

β(a)φ(a, x)da},

we can rewrite (2.1) as 
dp(a, t, x)

dt
= Fp(a, t, x),

p(a, 0, x) = p0(a, x).

Define an operator

Fλ =

∫ a†

0

Cβ(a)e−λae−
∫ a
0 µ(ρ)dρeBada, (2.3)

where the operator B : L2((0, 24)) −→ L2((0, 24)) is defined as

Bu(x) = δ∆u(x),

for u(x) satisfying {
u(0) = u(24),

u′(0) = u′(24).

Lemma 2.1. The operator F defined by (2.2).

(1) F has a real dominant eigenvalue λ̃0, that is, λ̃0 is greater than any real
parts of the eigenvalues of F.

(2) For the operator Fλ̃0, 1 is an eigenvalue with an eigenfunction φ0(x). Fur-
thermore, γ(Fλ̃0) = 1.

Proof. (1) We denote by (λi, φi)i≥0 the eigenvalues and the eigenfunctions of
the following problem

− δ∆φi(x) = λiφi(x), x ∈ (0, 24),

φi(0) = φi(24),

∂xφi(0) = ∂xφi(24),
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2.1. Preliminaries

where
∫ 24

0
φ2
i (x)dx = 1, i ≥ 0, and φ0(x) > 0 with x ∈ (0, 24). It is obvious

that λ0 = 0 and φ0(x) is a fixed positive constant. We also assume that
0 = λ0 < λ1 ≤ λ2 ≤ · · · .

Let F be the operator in L2(0, a†) defined as

Fφ(a) = −dφ(a)

da
− µ(a)φ(a), ∀φ ∈ D(F ),

where

D(F ) = {φ(a)|φ, Fφ ∈ L2(0, 24), φ(0) = C

∫ a†

0

β(a)φ(a)da}.

Let {λ̂j}j≥0 be the eigenvalues of F , that is, the solutions of the following
equation

1− C
∫ a†

0

β(a)e−λ̂ja−
∫ a
0 µ(ρ)dρda = 0. (2.4)

We assume that λ̂0 > Reλ̂1 ≥ Reλ̂2 ≥ · · · , even if it means re-arrange λ̂j.

Now, we divide two steps to consider the following equation

(λI− F)φ = ψ, ∀ψ ∈ X. (2.5)

Step 1, for any i, j ≥ 0, λ+ λi 6= λ̂j, define

φ(a, x) =
∞∑
i=0

R(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x),

where 〈ψ(a, x), φi(x)〉 =
∫ 24

0
ψ(a, x)φi(x)dx, R(λ, F ) = (λI − F )−1, the resol-

vent operator of F . Firstly, we prove that φ(a, x) ∈ X is well defined. Since
F is the infinitesimal generator of a bounded strongly continuous semigroup
from [52], there exist constants M , ω > 0 such that

‖R(λ, F )‖ ≤ M

Reλ− ω
, for Reλ > ω.

Recalling that λi →∞ as i→∞, there is a constant N such that Re(λ+λi) >
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2. Mathematical analysis of an age structured problem

ω when i > N . Then, one can compute that

∞∑
i=0

‖R(λ+ λi, F )〈ψ, φi〉‖2

≤
N∑
i=0

‖R(λ+ λi, F )〈ψ, φi〉‖2 +

[
M

Re(λ+ λN)− ω

]2 ∞∑
i=N+1

‖〈ψ, φi〉‖

≤
N∑
i=0

‖R(λ+ λi, F )〈ψ, φi〉‖2 +

[
M

Re(λ+ λN)− ω

]2

‖ψ‖2

<∞.

It implies that φ(a, x) ∈ X is well defined. Secondly, we prove φ(a, x) is a
solution of (2.5). For any n > 0,

(λI− F)
n∑
i=0

R(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x)

=
n∑
i=0

[λR(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x)− FR(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x)]

=
n∑
i=0

[λR(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x)− FR(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x)

−R(λ+ λi, F )〈ψ(a, x), φi(x)〉δ∆φi(x)]

=
n∑
i=0

((λ+ λi)I− F )R(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x)

=
n∑
i=0

〈ψ(a, x), φi(x)〉φi(x)

→ψ(a, x), n→∞.

Since F and ∆ are both closed operators on X, one can infer that F is closed.
Hence,

(λI− F)φ = ψ.

That is, φ(a, x) is a solution of (2.5). Furthermore, it can be shown that φ is
the unique solution of (2.5), and thus λ ∈ ρ(F), the resolvent set of F and

R(λ,F)ψ =
∞∑
i=0

R(λ+ λi, F )〈ψ(a, x), φi(x)〉φi(x).
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Step 2, for some i, j such that λ+λi = λ̂j, it is easy to check that φ(a, x) =

e−(λ+λi)a−
∫ a
0 µ(ρ)dρφi(x) satisfies (λI− F)φ = 0, that is, λ = λ̂j − λi ∈ σ(F). In

particular, λ̃0 = λ̂0 − λ0 is the dominant eigenvalue of F, with eigenfunction

φλ̃0(a, x) = e−λ̂0−
∫ a
0 µ(ρ)dρφ0(x).

It is easy to check that Cφ0(x) is the eigenfunction of the eigenvalue 1 of
Fλ̃0 , where λ̃0 = λ̂0 − λ0. Let any φ(x) ∈ L2(0, 24) be expanded as

φ(x) =
∞∑
i=0

αiφi(x).

Then,

Fλ̃0φ(x) =
∞∑
i=0

αi

∫ a†

0

Cβ(a)e−λ̃0ae−
∫ a
0 µ(ρ)dρeBaφi(x)da

=
∞∑
i=0

αi

∫ a†

0

Cβ(a)e−(λ̃0+λi)ae−
∫ a
0 µ(ρ)dρdaφi(x).

Since λi ≥ λ0 and then λ̃0 + λi ≥ λ̂0, it follows from (2.4) that∫ a†

0

Cβ(a)e−(λ̃0+λi)ae−
∫ a
0 µ(ρ)dρda ≤ 1.

Thus, γ(Fλ̃0) = 1.

Following the proof of lemma 1 in [42] carefully, we can get the following
lemma:

Lemma 2.2. For any 0 ≤ s0 < a+, there exists a unique mild solution u(s,x),
0 ≤ τ ≤ a+ − s0 to the evolution equation on X for any initial function
φ(x) ∈ L2((0, 24)) {

∂u(s,x)
∂s

= (−µ(s0 + s) + B)u(s, x),

u(τ, x) = φ(x),

where the operator B0 is considered to be the Laplace operator with periodic
boundary condition. Define solution operators of the initial value problem by

T(s0, τ, s)φ(x) = u(s, x), ∀φ(x) ∈ L2((0, 24)),

then T(s0, τ, s)φ(x) is a family of uniformly linear bounded compact positive
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operators on X and is strongly continuous about τ ,s. Furthermore,

T(s0, τ, s) = e−
∫ s
τ µ(s0+ρ)dρeB(s−τ),

where eBs is the positive analytic semigroup generated by the operator B.

Proof. Define an operator Hs0 : C([τ, s], L2((0, 24))) → C([τ, s], L2((0, 24)))

as:
Hs0(u(s, x)) = eB(s−τ)φ(x)−

∫ s

τ

eB(s−σ)µ(s0 + σ)u(σ, x)dσ,

where 0 < s ≤ a†− s0. Then follow the proof of Lemma 1 in [42] step by step,
we can get our result, so we omit the details here.

Lemma 2.3. The operator A defined by (1.3) and (1.4) is the infinitesimal
generator of a C0-semigroup T (t) on the space X.

Proof. First note that a C0-semigroup T (t) implies that there exists a constant
ω and M ≥ 1, so that

‖T (t)‖ ≤Meωt, ∀t ≥ 0.

Our strategy here is to apply the generalized Hille-Yoside Theorem (refer to
Theorem 8.2.5 of [101] and Corrollary 3.8 of [75]), that is, to prove: (i) A is
closed and D(A) = X; (ii) for any λ > ω, λ ∈ ρ(A), and

‖Rn(λ,A)‖ ≤ M

(λ− ω)n
, n = 1, 2, 3 · · · .

(i) One can compute that

〈Aφ(a, x), φ(a, x)〉

=〈−∂φ(a, x)

∂a
+ δ∆φ(a, x)− µ(a)φ(a, x), φ(a, x)〉

=−
∫ a†

0

∫ 24

0

∂φ

∂a
φdadx−

∫ a†

0

∫ 24

0

µ(a)φ2dadx+ δ

∫ a†

0

∫ 24

0

∆φφdadx

≤−
∫ a†

0

∫ 24

0

∂φ

∂a
φdadx+ δ

∫ a†

0

∫ 24

0

∆φφdadx

≤1

2

∫ 24

0

φ2(0, x)dx

(2.6)
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=
1

2

∫ 24

0

(∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)φ(a, s)dsdx

)2

dx

≤η
∫ 24

0

(∫ a†

0

β2(a)da

)(∫ a†

0

∫ x+η

x−η
K2(x, s)φ2(a, s)dads

)
dx

≤N
∫ a†

0

β2(a)da〈φ(a, x), φ(a, x)〉,

for some constants N > 0, which also implies that A is an m-dissipative oper-
ator when λ ∈ ρ(A) for all sufficiently large λ > 0. In fact, if this claim holds,
A is a closed operator, and combining with the m-dissiptiveness of A, we know
that, for all sufficiently large λ, (A−λI) is dissipative and R(I−(A−λI)) equals
the whole space X. Thus from Theorem 4.6 in [75], it follows that D(A− λI)
is dense in X and so is D(A), since X is a Hilbert space.

(ii) Now, we prove that λ ∈ ρ(A) for all sufficiently large λ > 0. In order
to do this, we deal with the following equation

(λI− A)φ(a, x) = ψ(a, x), ∀ψ ∈ X,

that is, {
∂φ(a,x)
∂a

= −(λ+ µ(a))φ(a, x) + δ∆φ(a, x) + ψ(a, x),

φ(0, x) =
∫ a†

0
β(a)

∫ x+η

x−η K(x, s)φ(a, s)dsda.

Let T(0, τ, s) = T(τ, s) = e−
∫ s
τ µ(ρ)dρeB(s−τ) and by Lemma 2.2, one has

φ(a, x) = e−λaT(0, a)φ(0, x) +

∫ a

0

e−λ(a−δ)T(δ, a)ψ(δ, x)dδ,

and

φ(0, x)−
∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)e−λaT(0, a)φ(0, s)dsda

=

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)

∫ a

0

e−λ(a−δ)T(δ, a)ψ(δ, s)dδdsda. (2.7)

Then define the operator Bλ : L2((0, 24))→ L2((0, 24)) by

Bλ(φ(x)) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)e−λaT(0, a)φ(s)dsda. (2.8)

Here, notice that Bλ(φ(x)) is nonlocal in x with φ(x), since the part of the
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operationBλ on φ(x) is the integral
∫ x+η

x−η K(x, s)T(0, a)φ(s)ds. This is different
of [22] and [42], whose related operators are local. Therefore, λ ∈ ρ(A) if and
only if 1 ∈ ρ(Bλ). Furthermore, it follows from (2.7) and (2.8) that

φ(0, x) =(I−Bλ)
−1

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)

∫ a

0

e−λ(a−δ)T(δ, a)ψ(δ, s)dδdsda,

and

R(λ,A)ψ(a, x) =e−λaT(0, a)(I−Bλ)
−1

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)

∫ a

0

e−λ(a−δ)

T(δ, a)ψ(δ, s)dδdsda+

∫ a

0

e−λ(a−δ)T(δ, a)ψ(δ, x)dδ. (2.9)

By the definitions of K(x, s) and T(0, a), we can show that

‖Bλ‖ ≤ ‖
∫ a†

0

β(a)e−λae−
∫ a
0 µ(ρ)dρeBada‖,

which implies that
lim

λ→+∞
‖Bλ‖ = 0.

Hence, for all sufficiently large λ > 0, (I−Bλ)
−1 exists and is bounded. Thus

1 ∈ ρ(Bλ) which is equivalent to λ ∈ ρ(A).
From (2.6) , one can obtain after some computations that

‖Rn(λ,A)‖ ≤ M

(λ− ω)n
, n = 1, 2, 3 · · · .

This completes the proof.

2.2 Asymptotic behavior

In this section, we study the asymptotic behavior of solutions of (1.2) by
analyzing the spectrum of the semigroup. It means that we will prove Theorem
1.1.

Now, we state the asymptotic expression which indicates the asymptotic
behavior.

Theorem 2.4. (1) For the eigenvalues of the operator A, there is only one
real eigenvalue λ0 which is algebraically simple and is larger than any
real part of the other eigenvalues.
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2.2. Asymptotic behavior

(2) The semigroup T (t) has the asymptotic expression

T (t)φ(a, x) =eλ0te−λ0aT(0, a)Cλ0

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)

∫ a

0

e−λ0(a−δ)

T(δ, a)φ(δ, s)dδdsda+ o(e(λ0−ε)t)

where Cλ0 = lim
λ→λ0

(λ − λ0)(I − Bλ)
−1 and ε is any positive number such

that σ(A) ∩ {λ|λ0 − ε ≤ Reλ ≤ λ0} = λ0 holds.

Proof. (1) It will be done in two steps: (i) prove that A has only one real
eigenvalue λ0 and λ0 is larger than any real part of the other eigenvalues; (ii)
prove that λ0 is algebraically simple by showing T (t) is compact for t ≥ a†.

(i) Define

E = {φ ∈ L2([0, 24])|
∫ x+η

x−η
K(x, s)φ(s)ds ≥ Cφ(x)},

where C > 0 is a sufficiently small constant.
Recall Fλ in (2.3) and denote the restrictions of Bλ, Fλ on E by Bλ,Fλ

respectively. Then from (2.8) and (2.3),

Bλ ≥ Fλ.

Given any nonnegative function φ(x), ψ(x) ∈ L2([0, 24]), both not identical to
zero, then from [9] and [71], 〈eBaφ, ψ〉 > 0 for all a > 0. From the expression
of Bλ and K(x, s), it follows that

〈Bλφ, ψ〉 > 0, for all real λ > 0. (2.10)

Furthermore, if φ(x) ∈ E, from assumption (J1), (J2) and the expression of
Fλ, we know that

〈Bλφ, ψ〉 ≥ 〈Fλφ, ψ〉 > 0, for all real λ > 0.

From Lemma 2.1, there is a λ̃0 such that γ(Fλ̃0) = 1 and 1 is an eigenvalue
of Fλ̃0 with the eigenfunction φ0(x). Remembering that φ0(x) is a positive
constant, it is easy to check that φ0(x) ∈ E, even if it means reducing C.
Hence,

Fλ̃0φ0 = Fλ̃0φ0 = φ0,

which implies
γ(Fλ̃0) ≥ 1.
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2. Mathematical analysis of an age structured problem

Moreover, since γ(Fλ̃0) ≤ γ(Fλ̃0) = 1, one obtains that

γ(Fλ̃0) = 1.

Therefore we conclude that

γ(Bλ̃0
) ≥ γ(Bλ̃0

) ≥ γ(Fλ̃0) = 1.

On the other hand, limλ→+∞ γ(Bλ) = 0 and hence by continuity there exists
a real λ0 such that

γ(Bλ0) = 1.

Since Bλ0 is a compact positive operator, by Krein-Rutman Theorem there
exists a nonnegative φλ0(x) ∈ L2(0, 24) such that

Bλ0φλ0(x) = φλ0(x), (2.11)

it means that
σ(Bλ0) 6= ∅.

Since (2.10), the operator Bλ is semi-nonsupporting. From Theorem 4.3 of
[67], we learn that γ(Bλ) is strictly monotone decreasing with respect to real
λ. This is equivalent to the uniqueness of the real eigenvalue of operator A.
That is,

σ(A) 6= ∅.

When λ > λ0 and γ(Bλ) < γ(Bλ0) = 1, (I − Bλ)
−1 exists and is positive,

and hence R(λ,A) is positive from (2.9). Thus, λ0 is larger than any real part
of the other eigenvalues.

(ii) Integrating along the characteristic, we obtain

p(a, t, x) =


T(a− t, 0, t)p0(a− t, x), a ≥ t,

T(0, 0, a)

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t− a, s)dsda, a < t.

When t ≥ a†,

T (t)φ(a, x) = T(0, 0, a)

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)[T (t− a)φ](a, s)dsda.
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2.2. Asymptotic behavior

Let φn weakly converge to φ in X. By the compactness of T(0, 0, a), one has

‖T(0, 0, a)

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)[T (t− a)(φn − φ)](a, s)dsda‖L2([0,24])

→0, n→ +∞.

On the other hand,

‖T(0, 0, a)

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)[T (t− a)(φn − φ)](a, s)dsda‖L2([0,24])

≤ ‖T(0, 0, a)‖‖
∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)[T (t− a)(φn − φ)](a, s)dsda‖L2([0,24])

≤M‖φn − φ‖L2([0,24])

is bounded. Using the dominant convergence theorem, we get

lim
n→∞

‖T (t)(φn − φ)‖ = 0.

That is, T (t)φn converge strongly to T (t)φ. Thus, T (t) is compact.
By the results of [25], the semigroup T (t) generated by A, is a positive

semigroup and
λ0 = s(A) = ω0(A)

where s(A), ω0(A) denote the spectral bound of A and the growth bound of
the semigroup T (t) respectively. Since T (t) is compact, it is known from [25]
that

ωess(A) = −∞.

Furthermore, from Theorem 9.10 in [25], it is easy to get that

λ0 = {λ|Reλ = s(A)}.

It means that λ0 is a pole of the resolvent of R(λ,A). Thus,

γ(Bλ0) = 1

is a pole of R(λ,Bλ0). Moreover, by (2.10), one obtains that Bλ0 is a non-
semisupporting operator. Since Theorem 1 in [80], one can obtain that

γ(Bλ0) = 1

is an algebraically simple eigenvalue of Bλ0 . This is equivalent of λ0 being an
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2. Mathematical analysis of an age structured problem

algebraically simple eigenvalue of A.
(2) From (1), we have that

σ(A) ∩ {λ|λ0 − ε ≤ Reλ ≤ λ0} = λ0,

and T (t) is a compact operator. Then from Theorem 5 of [104], there are
constants C and T0, such that

‖T (t)− T (t)Pλ0‖ ≤ Ce
(λ0−ε)t , t ≥ T0,

where T (t) is the semigroup generated by A, Pλ0 is the mapping from X to
Bλ0 , and Bλ0 is the eigenvalue space of λ0 of A. Furthermore,

T (t)φ = T (t)Pλ0φ+ o(e
(λ0−ε)t). (2.12)

Since λ0 is an algebraically simple eigenvalue of A, it is known from [49] that

Pλ0φ = lim
λ→λ0

(λ− λ0)R(λ,A)φ. (2.13)

Combining (2.12) and (2.13),

T (t)φ = eλ0t lim
λ→λ0

(λ− λ0)R(λ,A)φ+ o(e
(λ0−ε)t).

Then, using the expression (2.9) of R(λ,A)φ,

T (t)φ(a, x) =eλ0te−λ0aT(0, a)Cλ0

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)∫ a

0

e−λ0(a−δ)T(δ, a)φ(δ, s)dδdsda

+ o(e(λ0−ε)t).

Remark 2.5. Here, we can see that Theorem 1.1 is a direct result of Theorem
2.4, so the proof of Theorem 1.1 is complete.

2.3 Existence of steady states

As for the steady states (1.5) satisfying (1.6), our main result is Theorem 1.2.
In this section, we prove Theorem 1.2 directly according to Theorem 2.4.
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2.3. Existence of steady states

Proof. Firstly, let λ0 be as defined in Theorem 2.4. Then, we look for the
steady states (1.5) in the following three cases according to the sign of λ0.

(1) When λ0 > 0, we argue this case by a contradiction. Assume that
ps(a, x) is a nonnegative solution of (1.5) satisfying (1.6). It is easy to see that
ps(a, x) = p(a, t, x) is also a solution of the following system

Dp(a, t, x)− δ∆p(a, t, x) + µ(a)p(a, t, x) = 0, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = ps(a, x), (a, x) ∈ (0, a†)× (0, 24).

Then by a result of Theorem 1.1, one can have the following asymptotic ex-
pression

p(a, t, x) =eλ0te−λ0aT(0, a)Cλ0

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)∫ a

0

e−λ0(a−σ)T(σ, a)p0(σ, s)dsdadσ + o(e(λ0−ε)t).

Thus,

‖ps(a, x)‖L2((0,a†)×(0,24)) = lim
t→+∞

‖p(a, t, x)‖L2((0,a†)×(0,24)) = +∞,

which is a contradiction. Thus, there is no nonnegative solution of (1.5) satis-
fying (1.6).

(2) When λ0 = 0, it means that 0 ∈ σ(A). From the definition of A, every
eigenfunction related to 0 and its multiplications by any constant are solutions
of (1.5).

Recalling (2.11) from the proof of Theorem 2.4, there is a nonnegative
function φλ0(x) ∈ L2(0, 24) such that

Bλ0(φλ0(x)) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)e−λ0aT(0, a)φλ0(s)dsda = φλ0(x).

By Lemma 2.2, one knows that T(0, a) is a bounded operator on X. Using
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2. Mathematical analysis of an age structured problem

Cauchy-Schwarz inequality, for arbitrary x0 ∈ (0, 24), one obtains

|φλ0(x)− φλ0(x0)|

=

∣∣∣∣∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)e−λ0aT(0, a)φλ0(s)dsda

−
∫ a†

0

β(a)

∫ x0+η

x0−η
K(x0, s)e

−λ0aT(0, a)φλ0(s)dsda

∣∣∣∣
≤‖β(a)‖L∞(0,a†)

∣∣∣∣∫ a†

0

∫ x+η

x−η
K(x, s)T(0, a)φλ0(s)dsda

−
∫ a†

0

∫ x0+η

x0−η
K(x0, s)T(0, a)φλ0(s)dsda

∣∣∣∣
≤‖β(a)‖L∞(0,a†)

∣∣∣∣∫ a†

0

∫ x+η

x−η
(K(x, s)−K(x0, s))T(0, a)φλ0(s)dsda

∣∣∣∣
+ ‖β(a)‖L∞(0,a†)

∣∣∣∣∫ a†

0

∫ x+η

x0−η
K(x0, s)T(0, a)φλ0(s)dsda

∣∣∣∣
+ ‖β(a)‖L∞(0,a†)

∣∣∣∣∫ a†

0

∫ x+η

x0+η

K(x0, s)T(0, a)φλ0(s)dsda

∣∣∣∣
≤‖β(a)‖L∞(0,a†)‖K(x, s)−K(x0, s)‖L2(x−η,x+η)‖T(0, a)φλ0(s)‖L2((0,a†)×(0,24))

+ ‖β(a)‖L∞(0,a†)

(∫ x+η

x0−η
|K(x0, s)|2ds

) 1
2

‖T(0, a)φλ0(s)‖L2((0,a†)×(0,24))

+ ‖β(a)‖L∞(0,a†)

(∫ x+η

x0+η

|K(x0, s)|2ds
) 1

2

‖T(0, a)φλ0(s)‖L2((0,a†)×(0,24))

≤C‖β(a)‖L∞(0,a†)‖K(x, s)−K(x0, s)‖L2(x−η,x+η)‖φλ0(s)‖L2(0,24)

+ C‖β(a)‖L∞(0,a†)

(∫ x+η

x0−η
|K(x0, s)|2ds

) 1
2

‖φλ0(s)‖L2(0,24)

+ C‖β(a)‖L∞(0,a†)

(∫ x+η

x0+η

|K(x0, s)|2ds
) 1

2

‖φλ0(s)‖L2(0,24)

→0, as x→ x0.

Thus, φλ0(x) is continuous about x. Then, from the proof of Lemma 2.3, it is
easy to check that

φ(a, x) = T(0, a)φλ0(x)

is an eigenfunction of the eigenvalue λ0 = 0 of A. Therefore, the steady states
are

ps(a, x) = cT(0, a)φλ0(x) ≥ 0, for any constant c > 0.
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2.3. Existence of steady states

By a result of Lemma 2.2, we know that T(0, a) is strongly continuous with
respect to a. Hence, ps(a, x) is continuous about a, x in (0, a†)× (0, 24).

Consider smooth function v(a, x) such that

v(a, x) = e
∫ a
0 µ(ρ)dρps(a, x) ≥ 0, a.e (a, x) ∈ (0, a†)× (0, 24).

Then, from (1.5), v(a, x) satisfies
∂av − δ∆v = 0, (a, x) ∈ (0, a†)× (0, 24),

v(a, 0) = v(a, 24), a ∈ (0, a†),

∂xv(a, 0) = ∂xv(a, 24), a ∈ (0, a†),

v(0, x) =
∫ a†

0
β(a)

∫ x+η

x−η K(x, s)e−
∫ a
0 µ(ρ)dρv(a, s)dsda, x ∈ (0, 24).

(2.14)

From the strong maximum principle,

v(a, x) > 0, for(0, a†)× (0, 24).

Then,

v(0, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)e−

∫ a
0 µ(ρ)dρv(a, s)dsda > 0, forx ∈ (0, 24).

Assume by contradiction that v attains its minimum 0 at (a0, 0), that is,

v(a0, 0) = 0, for some a0 ∈ (0, a†).

Then,
∂av(a0, 0) = 0, and ∂xv(a0, 0) ≥ 0.

Since v(a, o) = v(a, 24) for a ∈ (0, a†), one has that

v(a0, 24) = 0, ∂av(a0, 24) = 0and ∂xv(a0, 24) ≤ 0.

Since ∂xv(a, 0) = ∂xv(a, 24) for a ∈ (0, a†), we obtain that

∂xv(a0, 0) = ∂xv(a0, 24) = 0.

Since v(a, x) > 0 for (0, a†)× (0, 24),

∆v(a0, 0) = ∂xxv(a0, 0) > 0.

Thus,
(∂av − δ∆v)(a0, 0) < 0
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which is a contradiction of the first equation of (2.14). So that,

v(a, 0), v(a, 24) > 0, for a ∈ (0, a†).

By v(0, x) =
∫ a†

0
β(a)

∫ x+η

x−η K(x, s)e−
∫ a
0 µ(ρ)dρv(a, s)dsda, one also has that

v(0, 0), v(0, 24) > 0.

Therefore, we can conclude that for any a1 < a†,

ps(a, x) = e−
∫ a
0 µ(ρ)dρv(a, x) > 0, a.e. in [0, a1]× [0, 24]

since
∫ a

0
µ(ρ)dρ <∞ for a < a†. Finally, there exists ρ0 > 0 such that

ps(a, x) ≥ ρ0 > 0, a.e. (a, x) ∈ (0, a1)× (0, 24).

(3) When λ0 < 0, it follows from the arguments of (1) that

‖ps(a, x)‖L2((0,a†)×(0,24)) = lim
t→+∞

‖p(a, t, x)‖L2((0,a†)×(0,24)) = 0.

Thus,
ps(a, x) = 0 a.e. (a, x) ∈ (0, a†)× (0, 24).

2.4 Numerical simulations

In the following, we consider the mosquito plasticity with the usage of insecticide-
treated bed nets (ITNs), that is, we consider

Dp− δ∆xp+ µ(a)p = u(x)p, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24).
(2.15)

We provide some numerical simulations to illustrate the interaction between
the solution of (2.15) and the usage of ITNs. We assume that a† = 1, that is,
a ∈ [0, 1). We consider system (2.15) with the parameters taking the values as
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2.4. Numerical simulations

follows

δ = 0.001, η = 0.1 β(a) = 50e−0.1(a−0.4)2 and µ(a) = 0.5e2.4a.

We set that the mosquitoes are alive between 21:00 pm and 3:00 am at the
initial time and the mosquitoes reach the bitting peak at 24:00. That is, we
set that

p0(a, x) = 0.5e−(0.625(x−12))2e−10(a−0.4)2 .

We consider that people use ITNs when they sleep from 22:00 pm to 2:00 am,
that is, we set the usage of ITNs by

u(x) =

{
25, x ∈ [10, 14],

0, else.

Then, in figures 1-3, we plot the solution of (2.15). We can see that the
bitting peak of mosquitoes shifts to the 7:00 pm and 7:00 am.
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2. Mathematical analysis of an age structured problem

Figure 1: the solution p(a, t, x) of (2.15) for t = 0 and t = 0.2 with ITNs.
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2.4. Numerical simulations

Figure 2: the solution p(a, t, x) of (2.15) for t = 0.4 and t = 0.6 with ITNs.
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Figure 3: the solution p(a, t, x) of (2.15) for t = 0.8 and t = 1 with ITNs.
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Chapter 3

Optimal control of an age
structured problem

In this chapter, we set the control term u(a, t, x), such as ITNs and IRs, is
bounded according to reality that the insecticide strategy can not be used
unlimited. Our goal is to prove that there exist an optimal control u(a, t, x)

such that the insecticidal efficiency is the best. We also give the necessary
optimality conditions.

3.1 Preliminaries

In this section, we study some properties of the following system, which is (1.7)
in general settings,

Dp− δ∆p+ µ(a, t, x)p = f(a, t, x), (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24),
(3.1)

where β, p0 are under the assumptions (J2), (J3), µ and f satisfy

µ(a, t, x) ∈ L∞loc([0, a†)× [0, T ]× [0, 24]), µ(a, t, x) ≥ 0 a.e. in Qa† , (3.2)

f(a, t, x) ∈ L2(Qa†), f(a, t, x) ≥ 0 a.e. in Qa† .

Especially, we prove that there exists a unique solution of system (3.1) and
the comparison principle for system (3.1).
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Before going further, we need an auxiliary lemma, which can be proved by
following the proof of [13, Lemma A2.7].

Lemma 3.1. For any y0(x) ∈ L2(0, 24), g(t, x) ∈ L2((0, T ) × (0, 24)), there
exists a unique solution

y(t, x) ∈ L2((0, T );H1(0, 24)) ∪ L2
loc((0, T );H2(0, 24))

of the following system
∂y
∂t

(t, x)− δ∆y(t, x) = g(t, x), (t, x) ∈ (0, T )× (0, 24),

y(t, 0) = y(t, 24), t ∈ (0, T ),

y′(t, 0) = y′(t, 24), t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, 24).

Remark 3.2. It is known that there exists an orthogonal basis {ϕj}j∈N ⊂
L2(0, 24) and {λj} ⊂ R+, λ0 = 0, λj → +∞ as j → +∞ such that

−∆ϕj(x) = λjϕj(x), in (0, 24),

ϕj(0) = ϕ(24),

ϕ′j(0) = ϕ′j(24).

We can replace the basis in the proof of [13, Lemma A2.7] by our {ϕj}j∈N and
follow the same proof to get Lemma 3.1.

Let us first deal with the case when µ satisfies
(A) µ ∈ L∞(Qa†), µ(a, t, x) ≥ 0 a.e. in Qa† .

Lemma 3.3. For any fixed f(a, t, x) ∈ L2(Qa†), b(t, x) ∈ L2((0, T )× (0, 24)),
there exists a unique solution pb(a, t, x) ∈ L2(Qa†) of the following system

Dp− δ∆p+ µ(a, t, x)p = f(a, t, x), (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) = b(t, x), (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24),

(3.3)

where µ is under (A).

Proof. Fix any q(a, t, x) ∈ L2(Qa†), we first prove that the following system
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has a unique solution pb,q(a, t, x),

Dp− δ∆p+ µq = f, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) = b(t, x), (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24).

(3.4)

Let S be an arbitrary characteristic line of equation

S = {(a0 + s, t0 + s); s ∈ (0, α)},

where (a0, t0) ∈ {0}×(0, T )∪(0, a†)×{0} and (a0 +α, t0 +α) ∈ {a†}×(0, T )∪
(0, a†)× {T} and define

p̃(s, x) = p(a0 + s, t0 + s, x), (s, x) ∈ (0, α)× (0, 24),

q̃(s, x) = q(a0 + s, t0 + s, x), (s, x) ∈ (0, α)× (0, 24),

f̃(s, x) = f(a0 + s, t0 + s, x), (s, x) ∈ (0, α)× (0, 24),

µ̃(s, x) = µ(a0 + s, t0 + s, x), (s, x) ∈ (0, α)× (0, 24).

(3.5)

According to Lemma 3.1, the following system admits a unique solution

p̃ ∈ L2((0, α);H1(0, 24)) ∩ L2
loc((0, α);H2(0, 24)),

∂p̃
∂s
− δ∆p̃ = f̃ − µ̃q̃, (s, x) ∈ (0, α)× (0, 24),

∂xp̃(s, 0) = ∂xp̃(s, 24), s ∈ (0, α),

p̃(s, 0) = p̃(s, 24), s ∈ (0, α),

p̃(0, x) =

{
b(t0, x), a0 = 0, x ∈ (0, 24),

p0(a0, x), t0 = 0, x ∈ (0, 24).

(3.6)
In fact, multiplying the first equation of system (3.6) by p̃ and integrating on
(0, s)× (0, 24), one has

‖p̃(s)‖2
L2(0,24) ≤‖p̃(0)‖2

L2(0,24) + ‖f̃ − µ̃q̃‖2
L2((0,α)×(0,24))

+

∫ s

0

‖p̃(τ)‖2
L2(0,24)dτ, ∀s ∈ [0, α].

Then by a lemma from Bellman (see in Appendix) we get

‖p̃(s)‖2
L2(0,24) ≤ C(‖p̃(0)‖2

L2(0,24) + ‖f̃ − µ̃q̃‖2
L2((0,α)(0,24)))e

α, ∀s ∈ [0, α]. (3.7)
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Now let us denote

pb,q(a0 + s, t0 + s, x) = p̃(s, x), (s, x) ∈ (0, α)× (0, 24)

for any characteristic line S. It follows from Lemma 3.1 and (3.7) that

pb,q ∈ L2(S;H1(0, 24)) ∩ L2
loc(S;H2(0, 24))

for almost any characteristic line S, and pb,q satisfies

Dpb,q − δ∆pb,q + µ(a, t, x)q = f(a, t, x), (a, t, x) ∈ Qa† ,

pb,q(a, t, 0) = pb,q(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xpb,q(a, t, 0) = ∂xpb,q(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

pb,q(0, t, x) = b(t, x), (t, x) ∈ (0, T )× (0, 24),

pb,q(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24).

(3.8)

Now we prove that
pb,q(a, t, x) ∈ L2(Qa†).

It is known that there exists an orthonormal basis {ϕj}j∈N ⊂ L2(0, 24) and
{λj} ⊂ R+, λ0 = 0, λj → +∞ as j → +∞ such that

−∆ϕj(x) = λjϕj(x), in (0, 24),

ϕj(0) = ϕ(24),

ϕ′j(0) = ϕ′j(24).

Then, one has that

f(a, t, x)− µ(a, t, x)q(a, t, x)

=
∞∑
j=1

vj(a, t)ϕj(x), in L2(0, 24), a.e. (a, t) ∈ (0, a†)× (0, T ),

b(t, x) =
∞∑
j=1

bj(t)ϕj(x), in L2(0, 24), a.e. t ∈ (0, T ),

p0(a, x) =
∞∑
j=1

pj0(a)ϕj(x), in L2(0, 24), a.e. a ∈ (0, a†).

Furthermore, pb,q(a, t, x) has the following expression

pb,q(a, t, x) :=
∞∑
j=1

pjb,q(a, t)ϕj(x), in L2(0, 24) a.e. (a, t) ∈ (0, a†)× (0, T ).
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By substituting pb,q(a, t, x) into (3.8), one gets that pjb,q(a, t) satisfies
Dpjb,q + λjδp

j
b,q = vj(a, t), (a, t) ∈ (0, a†)× (0, T ),

pjb,q(0, t) = bj(t), t ∈ (0, T )

pjb,q(a, 0) = pj0(a), a ∈ (0, a†).

One can follow the computation of Lemma 4.1 in Aniţa [13, p.113− 114] and
get that pb,q(a, t, x) ∈ L2(Qa†) satisfies

‖pb,q‖2
L2(Qa† )

≤ eT (‖p0‖2
L2((0,a†)×(0,24)) + ‖b‖2

L2((0,T )×(0,24)) + ‖f − µq‖2
L2(Qa† )

).

(3.9)

For an arbitrary q(a, t, x) ∈ L2(Qa†), we have obtained that system (3.4)
has a solution pb,q ∈ L2(Qa†). Define p̄b,q(a, t, x) = 1/λpb,q(a, t, x) for a suffi-
ciently large constant λ. Let us set a mapping Π : L2(Qa†)→ L2(Qa†) by

Π(qi(a, t, x)) =
1

λ
pb,qi(a, t, x) = p̄b,qi(a, t, x).

Take any two functions q1, q2 ∈ L2(Qa†) and then p̄b,q1 − p̄b,q2 satisfies

D(p̄b,q1 − p̄b,q2)− δ∆(p̄b,q1 − p̄b,q2) + µ
λ
(q1 − q2) = 0, (a, t, x) ∈ Qa† ,

(p̄b,q1 − p̄b,q2)(a, t, 0) = (p̄b,q1 − p̄b,q2)(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂x(p̄b,q1 − p̄b,q2)(a, t, 0) = ∂x(p̄b,q1 − p̄b,q2)(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

(p̄b,q1 − p̄b,q2)(0, t, x) = 0, (t, x) ∈ (0, T )× (0, 24),

(p̄b,q1 − p̄b,q2)(a, 0, x) = 0, (a, x) ∈ (0, a†)× (0, 24).
(3.10)

By the result of (3.9), one has

‖p̄b,q1 − p̄b,q2‖2
L2(Qa† )

≤ eT

λ
(‖µ(q1 − q2)‖2

L2(Qa† )
), in L2(Qa†).

Obviously, when T is small enough and since λ is sufficiently large, p̄b,q(a, t, x)

is a contraction mapping with respect to q(a, t, x). Consequently, there exists
a unique solution pb(a, t, x) = λp̄b(a, t, x) of system (3.3) for sufficient small T .
However, one can extend T by following previous steps for t ∈ (T, 2T ). Thus,
system (3.3) has a unique solution pb(a, t, x) ∈ L2(Qa†).

One can follow the same idea of the proof of [13, Lemma 4.1.2] to get the
following Lemma.

Lemma 3.4. For any b1(t, x), b2(t, x) ∈ L2((0, T ) × (0, 24)), 0 ≤ b1(t, x) ≤
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b2(t, x) a.e. in (0, T )× (0, 24), one has

0 ≤ pb1(a, t, x) ≤ pb2(a, t, x), a.e. in Qa† ,

where pb1(a, t, x) and pb2(a, t, x) are the solutions of system (3.3) under (A)

with b1(a, t, x) and b2(a, t, x) respectively.

Lemma 3.5. There exists a unique solution p(a, t, x) ∈ L2(Qa†) of system
(3.1) under (A).

Proof. Let us define an operator F : L2((0, T )× (0, 24))→ L2((0, T )× (0, 24))

by

(Fb)(t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)pb(a, t, s)dsda, a.e. in (0, T )× (0, 24).

For any fixed bi ∈ L2((0, T ) × (0, 24)) (i = 1, 2), let pb1 , pb2 ∈ L2(Qa†) be the
solutions of system (3.1) with b1(a, t, x), b2(a, t, x) respectively. Let v(a, t, x) =

pb1(a, t, x)− pb2(a, t, x), then v(a, t, x) satisfies

Dv − δ∆v + µ(a, t, x)v = 0, (a, t, x) ∈ Qa† ,

v(a, t, 0) = v(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xv(a, t, 0) = ∂xv(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

v(0, t, x) = b1(t, x)− b2(t, x), (t, x) ∈ (0, T )× (0, 24),

v(a, 0, x) = 0, (a, x) ∈ (0, a†)× (0, 24).

(3.11)

Then it follows by the computation of Lemma 4.1 in Aniţa [13, p.116] that∫ T

0

e−λt‖v(t)‖2
L2((0,a†)×(0,24))dt ≤

1

λ

∫ T

0

e−λt‖b1(t)− b2(t)‖2
L2(0,24)dt

for any λ > 0. Consider L2((0, T )×(0, 24)) with the norm ‖b‖ =
(∫ T

0
e−λt‖b(t)‖2

L2(0,24)dt
)2

,
for any b ∈ L2((0, T )× (0, 24)). Then one has

‖Fb1 − Fb2‖2

=

∫ T

0

e−λt‖
∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)(pb1(a, t, s)− pb2(a, t, s))dsda‖2

L2(0,24)dt

≤C
∫ a†

0

β2(a)da

∫ T

0

e−λt‖v(t)‖2
L2((0,a†)×(0,24))dt

≤C
λ

∫ a†

0

β2(a)da‖b1 − b2‖2,
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where C is an appropriate positive constant related to K(x, s). One can choose
λ large such that

λ > C

∫ a†

0

β2(a)da

and then F is a contraction mapping on L2((0, T )×(0, 24)) with the norm ‖·‖.
This completes the proof.

From Lemma 3.5, one gets that the operator F is a contraction mapping.
Moreover, combined with Lemma 3.4, one can follow the rest of the proof of
[13, Lemma 4.1.1] to get the following comparison principle for (3.1).

Lemma 3.6. If pi(i ∈ 1, 2) are the solutions of the following systems

Dpi − δ∆pi + µi(a, t, x)pi = fi, (a, t, x) ∈ Qa† ,

pi(a, t, 0) = pi(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xpi(a, t, 0) = ∂xpi(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

pi(0, t, x) =

∫ a†

0

βi(a)

∫ x+η

x−η
K(x, s)pi(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

pi(a, 0, x) = p0i(a, x), (a, x) ∈ (0, a†)× (0, 24),

where µ1 ≥ µ2, f1 ≤ f2, β1 ≤ β2, p01 ≤ p02 and µ1, µ2 satisfy (A), then

0 ≤ p1(a, t, x) ≤ p2(a, t, x) a.e. in Qa† .

By referring to the proof of [13, Theorem 4.1.3, Theorem 4.1.4] for the case
when µ(a, t, x) satisfies (3.2), one can define

µN(a, t, x) = min{µ(a, t, x), N}, for any N ∈ N+,

and denote pN(a, t, x) to be the solution of system (3.1) with µN . Passing to
the limit as N → +∞ for pN(a, t, x), one can get the solution of system (3.1).
Then by the results of Lemma 3.5 and Lemma 3.6, we can get the following
lemma.

Lemma 3.7. There is a unique solution p(a, t, x) ∈ L2(Qa†) of system (3.1)
with µ satisfying (3.2). If pi(i ∈ 1, 2) are the solutions of system (3.1) with µ1,
f1, β1, p01 and µ2, f2, β2, p02 respectively (µ1, µ2 satisfy (3.2)) and µ1 ≥ µ2,
f1 ≤ f2, β1 ≤ β2, p01 ≤ p02, then

0 ≤ p1(a, t, x) ≤ p2(a, t, x) a.e. in Qa† .

Remark 3.8. According to Lemma 3.7 , we obtain the result of Theorem 1.3
directly.
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3.2 Existence of an optimal control

In this section, our main job is to obtain the existence of an optimal control
of (1.7) by Mazur’s Theorem, that is, we prove Theorem 1.4.

Proof of Theorem 1.4. Let Ψ : U → R+ be defined by

Ψ(u) =

∫
Qa†

u(a, t, x)pu(a, t, x)dtdxda.

Then by the definition of u(a, t, x), we have∫
Qa†

ς1(a, t, x)p(a, t, x)dtdxda ≤ Ψ(u) ≤ 0,

where p(a, t, x) is a solution of system (1.7) with u ≡ 0, µ ≡ 0, β = ‖β(a)‖L∞(0,a†),
p0 = ‖p0‖L∞((0,a†)×(0,24)), that is,

Dp− δ∆p = 0, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0, (a, x) ∈ (0, a†)× (0, 24).
(3.12)

Thus, we can assume that d = infu∈U Ψ(u), and there exists a sequence {uN} ∈
U,N ∈ N∗ such that

Ψ(uN)→ d, N → +∞. (3.13)

Since the result of Lemma 3.7, one obtains 0 ≤ puN (a, t, x) ≤ p(a, t, x) a.e. in Qa† .
Thus there exists a subsequence which still be denoted by {uN} such that

puN → p∗ weakly in L2(Qa†).

Here, let pui satisfy the following system

Dpui − δ∆pui = uip
ui , (a, t, x) ∈ Qa† ,

pui(a, t, 0) = pui(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp
ui(a, t, 0) = ∂xp

ui(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

pui(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)pui(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

pui(a, 0, x) = p0, (a, x) ∈ (0, a†)× (0, 24).
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Then, by Mazur’s Theorem, one has that ∀ε > 0, there exists λNi ≥ 0,∑kN
i=N+1 λ

N
i = 1 such that

‖p∗ −
kN∑

i=N+1

λNi p
ui‖L2(Qa† )

≤ ε, kN ≥ N + 1.

Denote p̃N(a, t, x) =
∑kN

i=N+1 λ
N
i p

ui(a, t, x), we obtain

p̃N → p∗ in L2(Qa†).

Now we consider the sequence {ũN}N∈N∗ of controls {ui}. Here ũN(a, t, x)

is defined by

ũN(a, t, x) =



∑kN
i=N+1 λ

N
i ui(a, t, x)pui(a, t, x)∑kN
i=N+1 λ

N
i p

ui
(a, t, x), if

kN∑
i=N+1

λNi p
ui 6= 0,

ς1(a, t, x), if

kN∑
i=N+1

λNi p
ui = 0.

It is easy to check that ũN ∈ U . Thus, one learns that there exists a subse-
quence {ũN}N∈N∗ such that

ũN → u∗ weakly in L2(Qa†).

Obviously, p̃N(a, t, x) is a solution of

Dp− δ∆p+ µ(a)p = ũN(a, t, x)p, (a, t, x) ∈ Qa† ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24).
(3.14)

Passing to the limit in (3.14), we get

Dp∗ − δ∆p∗ + µ(a)p∗ = u∗p∗, (a, t, x) ∈ Qa† ,

p∗(a, t, 0) = p∗(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xp
∗(a, t, 0) = ∂xp

∗(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

p∗(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)p∗(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

p∗(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24).
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It means that p∗(a, t, x) is the solution of system (1.7) corresponding to u∗(a, t, x).
By the result of Ψ(uN)→ d, as N → +∞, one has

kN∑
i=N+1

λNi Ψ(ui) =

kN∑
i=N+1

λNi d = d.

Therefore, we have

kN∑
i=N+1

λNi Ψ(ui)

=

kN∑
i=N+1

λNi

∫
Qa†

ui(a, t, x)pui(a, t, x)dxdtda

=

∫
Qa†

ũN(a, t, x)p̃N(a, t, x)dxdtda

→
∫
Qa†

u∗(a, t, x)p∗(a, t, x)dxdtda

=Ψ(u∗).

Using (3.13) and the last equation, we can conclude that d = Ψ(u∗).

3.3 Necessary optimality conditions

In this section, our goal is to obtain the necessary optimality conditions of
(OH) which is Theorem 1.5.

Proof of Theorem 1.5. First of all, we can get that system (1.8) has a unique
solution q(a, t, x) ∈ L2(Qa†) by the same method as in the proof of the existence
and uniqueness of solutions of system (1.7) in Section 2, so we omit the details
here.

Since (u∗, p∗) is an optimal pair for (OH), we have∫
Qa†

u∗pu
∗
dtdxda ≤

∫
Qa†

(u∗ + εv)pu
∗+εvdtdxda

for any ε > 0 small enough, arbitrary v(a, t, x) ∈ L∞(Qa†) such that{
v(a, t, x) ≤ 0, if u∗(a, t, x) = ς2(a, t, x),

v(a, t, x) ≥ 0, if u∗(a, t, x) = ς1(a, t, x),
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which implies∫
Qa†

u∗
pu
∗+εv − pu∗

ε
dtdxda+

∫
Qa†

vpu
∗+εvdtdxda ≥ 0. (3.15)

Let

zε(a, t, x) =
pu
∗+εv(a, t, x)− pu∗(a, t, x)

ε
,

yε(a, t, x) = εzε(a, t, x),

then yε(a, t, x) satisfies

Dyε − δ∆yε + µ(a)yε = u∗yε + εvpu
∗+εv, (a, t, x) ∈ Qa† ,

yε(a, t, 0) = yε(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xy
ε(a, t, 0) = ∂xy

ε(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

yε(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)yε(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

yε(a, 0, x) = 0, (a, x) ∈ (0, a†)× (0, 24).

Multiplying the first equation by yε and integrating on Qt = (0, a†)× (0, t)×
(0, 24), one obtains

‖yε(t)‖2
L2((0,a†)×(0,24)) ≤ C

∫ t

0

‖yε(s)‖2
L2((0,a†)×(0,24))ds+ ε

∫
Qt

|v|pu∗+εv|yε|dsdxda.

Then by the result of Lemma 3.7 and Bellman’s Lemma (see in Appendix), we
get

‖yε(t)‖2
L2((0,a†)×(0,24))

≤ε2

∫
Qa†

|v|2p2dtdxda+ (1 + C)

∫ t

0

‖yε(s)‖2
L2((0,a†)×(0,24))ds

≤ε2e(1+C)t

∫
Qa†

|v|2p2dtdxda

where p(a, t, x) is a solution of system (3.12), t ∈ [0, T ] and C is a positive
constant. This implies that

yε → 0 in L∞(0, T ;L2((0, a†)× (0, 24))) as ε→ 0+. (3.16)

So the following convergence holds

pu
∗+εv → pu

∗
in L∞(0, T ;L2((0, a†)× (0, 24))) as ε→ 0+.
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Recalling the definition of zε(a, t, x), one has that zε(a, t, x) satisfies

Dzε − δ∆zε + µ(a)zε = u∗zε + vpu
∗+εv, (a, t, x) ∈ Qa† ,

zε(a, t, 0) = zε(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xz
ε(a, t, 0) = ∂xz

ε(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

zε(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)zε(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

zε(a, 0, x) = 0, (a, x) ∈ (0, a†)× (0, 24).

Let hε(a, t, x) = zε(a, t, x) − z(a, t, x), where z(a, t, x) is a solution of the
following system

Dz − δ∆z + µ(a)z = u∗z + vpu
∗
, (a, t, x) ∈ Qa† ,

z(a, t, 0) = z(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xz(a, t, 0) = ∂xz(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

z(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)z(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

z(a, 0, x) = 0, (a, x) ∈ (0, a†)× (0, 24).

Following the above proof step by step, we can get that

‖hε(t)‖2
L2((0,a†)×(0,24)) ≤ e(1+C)t

∫
Qa†

|v|2|yε|2dtdxda.

Using (3.16), one obtains

zε → z in L∞(0, T ;L2((0, a†)× (0, 24))) as ε→ 0+.

Passing to the limit in (3.15), it follows∫
Qa†

u∗zdtdxda+

∫
Qa†

vpu
∗
dtdxda ≥ 0, (3.17)

for arbitrary v(a, t, x) ∈ L∞(Qa†) such that{
v(a, t, x) ≤ 0, if u∗(a, t, x) = ς2(a, t, x),

v(a, t, x) ≥ 0, if u∗(a, t, x) = ς1(a, t, x).

Multiplying the first equation of system (1.8) by z(a, t, x) and integrating on
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3.3. Necessary optimality conditions

Qa† , we get∫
Qa†

(
Dq + δ∆q − µ(a)q + β(a)

∫ x+η

x−η
K(x, s)q(0, t, s)ds

)
z(a, t, x)dtdxda

=

∫
Qa†

(−u∗q − u∗) z(a, t, x)dtdxda.

Then by some calculations, one obtains∫
Qa†

vpu
∗
qdtdxda =

∫
Qa†

u∗zdtdxda. (3.18)

Combining (3.17) with (3.18), we learn that∫
Qa†

vpu
∗
(q + 1)dtdxda ≥ 0, (3.19)

for arbitrary v(a, t, x) ∈ L∞(Qa†) such that{
v(a, t, x) ≤ 0, if u∗(a, t, x) = ς2(a, t, x),

v(a, t, x) ≥ 0, if u∗(a, t, x) = ς1(a, t, x).

Now, for any (a, t, x) ∈ Qa† , if pu
∗
(a, t, x) 6= 0 holds, we can conclude that

u∗(a, t, x) =

{
ς1(a, t, x), if q(a, t, x) > −1,

ς2(a, t, x), if q(a, t, x) < −1.

In the rest of this section, we just to consider the set B = {(a, t, x) ∈
Qa†|pu

∗
(a, t, x) = 0}. Take any function w(a, t, x) ∈ L∞(Qa†) such that

w(a, t, x) 6= 0 for (a, t, x) ∈ B and w(a, t, x) ≡ 0 for (a, t, x) ∈ Qa† − B

and u∗ + w ∈ U . Let z(a, t, x) = pu
∗+w − pu∗ and then it satisfies

Dz − δ∆z + µ(a)z = u∗(a, t, x)z + w(a, t, x)z, (a, t, x) ∈ Qa† ,

z(a, t, 0) = z(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

∂xz(a, t, 0) = ∂xz(a, t, 24), (a, t) ∈ (0, a†)× (0, T ),

z(0, t, x) =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)z(a, t, s)dsda, (t, x) ∈ (0, T )× (0, 24),

z(a, 0, x) = 0, (a, x) ∈ (0, a†)× (0, 24).

By the uniqueness result, one can infer that z(a, t, x) ≡ 0 a.e. in Qa† . This im-
plies that we can change u∗ in B with arbitrary values in [ς1(a, t, x), ς2(a, t, x)]
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3. Optimal control of an age structured problem

and the value of the related cost functional of (OH) remains the same. Then
the conclusion is obvious and the proof is complete.
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Chapter 4

Local exact controllability of an
age structured problem

In this chapter, we investigate the local exact controllability of the mosquito
model. Our goal is to prove and numerically simulate that there exists a control
u(a, t, x) such that the mosquito population whose initial value is close to a
positive steady state can reach the steady state at a finite time.

4.1 Preliminaries

Let us start with some nations. Here T ∗ ∈ (0,+∞), then we define

α(t, x) =
eλψ(x) − e2λ‖ψ‖C([0,24])

t(T ∗ − t)
,

φ(t, x) =
eλψ(x)

t(T ∗ − t)
,

where λ is an appropriate positive constant and ψ(x) will be defined in the
following lemma.

In order to derive the Carleman inequality of our problem, we need the
following lemma.

Lemma 4.1. Let ω0 ⊂ ω be a nonempty bounded set of (0, 24). Then there
exists a function ψ ∈ C2([0, 24]) such that

ψ(x) 6≡ 0,

ψ(0) = ψ(24) = 0,

ψ′(0) = ψ′(24),
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4. Local exact controllability of an age structured problem

|ψ′(x)| ≥ β > 0, ∀x ∈ (0, 24) \ ω0, (4.1)

where β is a positive constant.

Remark 4.2. To prove Lemma 4.1, we construct a function ψ(x) such that
for any fixed ω0 and (a, b) ⊂ ω0 for 0 < a < b < 24:

ψ(x) =



1− exp( C1

x− 3a+b
4

+
√
C1), x ∈ [0, 3a+b

4
),

1, x = 3a+b
4
,

1− exp(2− b−a
2(x− 3a+b

4
)
), x ∈ (3a+b

4
, a+b

2
],

−1 + exp(2− b−a
2( 3b+a

4
−x)

), x ∈ [a+b
2
, 3b+a

4
),

−1, x = 3b+a
4
,

−1 + exp( C2
3b+a

4
−x +

√
C2), x ∈ (3b+a

4
, 24],

where C1 = (3a+b
4

)2 and C2 = (24− 3b+a
4

)2.
Now we check that ψ(x) ∈ C2([0, 24]) and it satisfies Lemma 4.1. By some

calculations, one can obtain

ψ(0) = ψ(24) = 0,

ψ′(0) = ψ′(24) = 1,

ψ′(x) =



exp( C1

x− 3a+b
4

+
√
C1) C1

(x− 3a+b
4

)2
, x ∈ [0, 3a+b

4
),

− b−a
2
exp(2− b−a

2(x− 3a+b
4

)
) 1

(x− 3a+b
4

)2
, x ∈ (3a+b

4
, a+b

2
],

− b−a
2
exp(2− b−a

2( 3b+a
4
−x)

) 1
(x− 3a+b

4
)2
, x ∈ [a+b

2
, 3b+a

4
),

exp( C2
3b+a

4
−x +

√
C2) C2

(x− 3a+b
4

)2
, x ∈ (3b+a

4
, 24],

ψ′′(x) =



exp( C1

x− 3a+b
4

+
√
C1)(− C1

2

(x− 3a+b
4

)4
− 2C1

(x− 3a+b
4

)3
), x ∈ [0, 3a+b

4
),

− b−a
2
exp(2− b−a

2(x− 3a+b
4

)
)( b−a

2(x− 3a+b
4

)4
− 2

(x− 3a+b
4

)3
), x ∈ (3a+b

4
), a+b

2
],

b−a
2
exp(2− b−a

2( 3b+a
4
−x)

)( b−a
2(x− 3a+b

4
)4
− 2

(x− 3a+b
4

)3
), x ∈ [a+b

2
, 3b+a

4
),

exp( C2
3b+a

4
−x +

√
C2)( C2

2

(x− 3a+b
4

)4
+ C2

(x− 3a+b
4

)3
), x ∈ (3b+a

4
, 24],

lim
x→ 3a+b

4

−
ψ′′(x) = lim

x→ 3a+b
4

+
ψ′′(x) = 0,

lim
x→a+b

2

−
ψ′′(x) = lim

x→a+b
2

+
ψ′′(x) = 0,

lim
x→a+3b

4

−
ψ′′(x) = lim

x→a+3b
4

+
ψ′′(x) = 0.
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4.1. Preliminaries

Then it is easy to see that the lemma holds.

Now, let z(t, x), g(t, x) ∈ L2((0, T ∗) × (0, 24)), we consider the following
periodic boundary value problem.

Lemma 4.3. For the solutions of the following problem,
zt(t, x) + δ∆z(t, x) = g(t, x), (t, x) ∈ (0, T ∗)× (0, 24),

z(t, 0) = z(t, 24), t ∈ (0, T ∗),

∂xz(t, 0) = ∂xz(t, 24), t ∈ (0, T ∗),

there exist positive C, s0 such that∫ T ∗

0

∫ 24

0

(
1

sφ
z2
t +

1

sφ
z2
xx + s3φ3z2 + sφz2

x)e
2sαdxdt

≤C
(∫ T ∗

0

∫
ω

s3φ3z2e2sαdxdt+ ‖esαg‖2
L2((0,T ∗)×(0,24))

)
, ∀s > s0.

Proof. For convenience, we denote

w(t, x) = esα(t,x)z(t, x).

Then w(t, x) satisfies

wt − sαtw + δwxx − 2δsλψ′φwx + δs2λ2(ψ′)2φ2w

− (δsλψ′′φ+ δsλ2(ψ′)2φ)w = esα(t,x)g(t, x), (4.2)

and

w(T ∗, x) = w(0, x) = 0, x ∈ (0, 24).

Define

L1w = δwxx − sαtw + δs2λ2(ψ′)2φ2w, (4.3)

and

L2w = wt − 2δsλψ′φwx − 2δsλ2(ψ′)2φw. (4.4)

It follows that (4.2) is equivalent to

L1w + L2w = fs(t, x), (t, x) ∈ (0, T ∗)× (0, 24), (4.5)
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4. Local exact controllability of an age structured problem

where

fs(t, x) = g(t, x)esα(t,x) − δsλ2(ψ′)2φw + sλδψ′′φw. (4.6)

Taking L2-norm of (4.5), we obtain

‖fs‖2
L2((0,T ∗)×(0,24)) =‖L1w‖2

L2((0,T ∗)×(0,24)) + ‖L2w‖2
L2((0,T ∗)×(0,24))

+ 2(L1w,L2w)L2((0,T ∗)×(0,24)). (4.7)

After some calculations, one gets

(L1w,L2w)L2((0,T ∗)×(0,24))

=

∫ T ∗

0

∫ 24

0

(
δ2s3λ4(ψ′)4φ3w2 + 3δ2sλ2(ψ)′2φw2

x

)
dxdt+X1 + J1,

where

X1 =

∫ T ∗

0

∫ 24

0

(
1

2
sαttw

2 − δs2λ2(ψ′)2φφtw
2 + 3δ2s3λ3(ψ′)2ψ′′φ3w2

− δs2λ
∂

∂x
(αtψ

′φ)w2 − 2δ2sλ2 ∂

∂x
(ψ′ψ′′φ)w2 − 3δ2sλ3(ψ′)2ψ′′φw2

−δ2sλ4(ψ′)4φw2 + 2δs2λ2αt(ψ
′)2φw2 + δ2sλψ′′φw2

x

)
dxdt,

and

J1 =

∫ T ∗

0

(
δwtwx − δ2sλψ′φw2

x − δ2s3λ3(ψ′)3φ3w2 + δs2λαtψ
′φw2

− 2δ2sλ2(ψ′)2φwwx + δ2sλ2 ∂

∂x
((ψ′)2φ)w2) |24

0 dt.

From the definition of ψ(x) and z(t, 0) = z(t, 24), zx(t, 0) = zx(t, 24), one gets
that

w(t, 0) = w(t, 24), wx(t, 0) = wx(t, 24).

Then, after some calculations, we have

J1 = 0,

and one can easily prove that

|X1| ≤ C

∫ T ∗

0

∫ 24

0

((s3λ3φ3 + sλ4φ)w2 + sλφw2
x)dxdt, s ≥ 1, λ ≥ 1,
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4.1. Preliminaries

where the constant C is independent of s and λ. Combining (4.1) with (4.7),
one obtains

‖fs‖2
L2((0,T ∗)×(0,24))

=‖L1w‖2
L2((0,T ∗)×(0,24)) + ‖L2w‖2

L2((0,T ∗)×(0,24))

+ 2

∫ T ∗

0

∫ 24

0

(
δ2s3λ4(ψ′)4φ3w2 + 3δ2sλ2(ψ′)2φw2

x

)
dxdt

+ 2X1

=‖L1w‖2
L2((0,T ∗)×(0,24)) + ‖L2w‖2

L2((0,T ∗)×(0,24))

+ 2

∫ T ∗

0

∫
ω0

(
δ2s3λ4(ψ′)4φ3w2 + 3δ2sλ2(ψ′)2φw2

x

)
dxdt

+ 2

∫ T ∗

0

∫
[0,24]\ω0

(
δ2s3λ4(ψ′)4φ3w2 + 3δ2sλ2(ψ′)2φw2

x

)
dxdt

+ 2X1

≥‖L1w‖2
L2((0,T ∗)×(0,24)) + ‖L2w‖2

L2((0,T ∗)×(0,24))

+ 2

∫ T ∗

0

∫
[0,24]\ω0

(δ2β4s3λ4φ3w2 + 3δ2β2sλ2φw2
x)dxdt

+ 2X1.

Taking λ > 0 sufficiently large, by virtue of (4.5) and (4.6), it follows that

‖L1w‖2
L2((0,T ∗)×(0,24)) + ‖L2w‖2

L2((0,T ∗)×(0,24)) +

∫ T ∗

0

∫ 24

0

(s3λ4φ3w2

+ sλ2φw2
x)dxdt

≤C
(
‖esαg‖2

L2((0,T ∗)×(0,24)) +

∫ T ∗

0

∫
ω0

(s3λ4φ3w2 + sλ2φw2
x)dxdt

)
, ∀s > s0,

(4.8)

where C, s0 are appropriate constants. Then it follows from (4.3), (4.4) and
(4.8) that∫ T ∗

0

∫ 24

0

(
1

sφ
w2
t +

1

sφ
w2
xx + s3λ4φ3w2 + sλ2φw2

x

)
dxdt

≤C
(
‖esαg‖2

L2((0,T ∗)×(0,24)) +

∫ T ∗

0

∫
ω0

(s3λ4φ3w2 + sλ2φw2
x

)
dxdt.
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4. Local exact controllability of an age structured problem

Recalling w(t, x) = esα(t,x)z(t, x), then∫ T ∗

0

∫ 24

0

(
1

sφ
z2
t +

1

sφ
z2
xx + s3λ4φ3z2 + sλ2φz2

x)e
2sαdxdt

≤C
(
‖esαg‖2

L2((0,T ∗)×(0,24)) +

∫ T ∗

0

∫
ω0

(s3λ4φ3z2e2sα + sλ2φz2
xe

2sα)dxdt

)
,

∀s > s0. (4.9)

Multiplying the equation (4.2) by sλ2φze2sαρ(x) in ((0, T ∗)×(0, 24)), where
ρ(x) ∈ C∞0 (ω), ρ(x) ≡ 1 in ω0 and integrating by parts with respect to t and
x, one gets ∫ T ∗

0

∫
ω0

sλ2φz2
xe

2sαdxdt

≤C
(∫ T ∗

0

∫
ω

s3λ4φ3z2e2sαdxdt+ ‖esαg‖2
L2((0,T ∗)×(0,24))

)
.

By using (4.9), we have∫ T ∗

0

∫ 24

0

(
1

sφ
z2
t +

1

sφ
z2
xx + s3λ4φ3z2 + sλ2φz2

x)e
2sαdxdt

≤C
(∫ T ∗

0

∫
ω

s3λ4φ3z2e2sαdxdt+ ‖esαg‖2
L2((0,T ∗)×(0,24))

)
,∀s > s0.

This completes the proof.

According to Lemma 4.3 , we obtain the following estimates directly.

Corollary 4.4. Let z(t, x) be as defined in Lemma 4.3 and recall ψ(x) which
is obtained in Lemma 4.1, then there exist positive C, s0 such that∫ T ∗

0

∫ 24

0

(
t(T ∗ − t)e2sα

s

(
z2
t + z2

xx

)
+

s3e2sα

t3(T ∗ − t)3
z2 +

se2sα

t(T ∗ − t)
z2
x

)
dxdt

≤ C

(∫ T ∗

0

∫
ω

s3e2sα

t3(T ∗ − t)3
z2dxdt+ ‖esαg‖2

L2((0,T ∗)×(0,24))

)
, ∀s > s0.

4.2 The optimality system

In this section, we prove our main Theorem 1.6. Before the proof of Theorem
1.6, we first give a lemma which shows some estimates playing an important
role in the proof of Theorem 1.6.
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4.2. The optimality system

Let T0 ∈ (0,min{a0,
T
2
, a† − a1}), we define the following auxiliary areas

and function:

DT0 = (0, T0)× (0, 24),

H = L∞((0, 2T0)× (0, 24)),

Q2T0 = (0, a†)× (0, 2T0)× (0, 24),

G = (0, a†)× (0, T0) ∪ (0, T0)× (T0, 2T0),

Γ0 = {T0} × (T0, 2T0) ∪ (T0, a† − T0)× {T0},

and

ϕ(a, t, x) =

{
e−2sα(t,x)t3(T0 − t)3, if t ≤ a, (a, t) ∈ G,
e−2sα(a,x)a3(T0 − a)3, if a < t, (a, t) ∈ G.

Before going further, we need the following auxiliary lemma.

Lemma 4.5. Let pu(a, t, x) be the solution of the system

Dp− δ∆p+ µ(a)p = mm̃(a, t)u(a, t, x)p, (a, t, x) ∈ Q2T0 ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, 2T0),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, 2T0),

p(0, t, x) = b(t, x), (t, x) ∈ (0, 2T0)× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24),

(4.10)
where b(t, x) ≥ 0, p0(a, x) ≥ 0, m̃(a, t) is the characteristic of G. Then, the
following optimal control problem

Minimize
{∫

G

∫ 24

0

ϕ|u(a, t, x)pu(a, t, x)|2dxdtda+
1

ε

∫
Γ0

∫ 24

0

|pu − ps|2dxdl
}

with u ∈ U , where

U = {u ∈ L2(Q2T0); ζ1(a, t, x) ≤ u(a, t, x) ≤ ζ2(a, t, x) a.e. in Q2T0}

and ζ1, ζ2 ∈ L∞, has an optimal pair (u∗, p∗).

Proof. Let

Ψ(u) :=

∫
G

∫ 24

0

ϕ|u(a, t, x)pu(a, t, x)|2dxdtda+
1

ε

∫
Γ0

∫ 24

0

|pu − ps|2dxdl.

Since u ∈ U and by the comparison principle for (4.10) (which can be referred
to [62, Lemma 2.7]), one has that 0 ≤ pu(a, t, x) ≤ pζ2(a, t, x) in Q2T0 . Then,
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4. Local exact controllability of an age structured problem

there is d ≥ 0 such that
d = inf

u∈U
Ψ(u).

Thus, there is a sequence {ui}i∈N ⊂ U such that

d ≤ Ψ(u) < d+
1

i
and Ψ(ui)→ d.

By similar arguments as the proof of [62, Theorem 1.2], there exist ũN and
p̃N such that

kN∑
N+1

λNi ui(a, t, x)pui(a, t, x) = ũN(a, t, x)p̃N(a, t, x),

where
∑kN

N+1 λ
N
i = 1 and there exist u∗, p∗ such that

ũN → u∗ weakly in L2(Q2T0),

p̃N → p∗ in L2(Q2T0).

Thus, one has that

kN∑
N+1

λNi Ψ(ui) =

kN∑
N+1

λNi

∫
G

∫ 24

0

ϕ|ui(a, t, x)pi(a, t, x)|2dxdtda

+

kN∑
N+1

λNi
1

ε

∫
Γ0

∫ 24

0

|pi − ps|2dxdl

≥
∫
G

∫ 24

0

ϕ|
kN∑
N+1

λNi ui(a, t, x)pi(a, t, x)|2dadtdx

+
1

ε

∫
Γ0

∫ 24

0

|
kN∑
N+1

λNi pi − ps|2dxdl

=

∫
G

∫ 24

0

ϕ|ũN(a, t, x)p̃N(a, t, x)|2dxdtda

+
1

ε

∫
Γ0

∫ 24

0

|p̃N − ps|2dxdl

→
∫
G

∫ 24

0

ϕ|u∗(a, t, x)p∗(a, t, x)|2dxdtda

+
1

ε

∫
Γ0

∫ 24

0

|p∗ − ps|2dxdl.
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4.2. The optimality system

Since Ψ(ui)→ d = infu∈U Ψ(u), we have that∫
G

∫ 24

0

ϕ|u∗(a, t, x)p∗(a, t, x)|2dxdtda+
1

ε

∫
Γ0

∫ 24

0

|p∗ − ps|2dxdl = d.

This completes the proof.

Let b(t, x) ∈ H and ‖b‖L∞((0,2T0)×(0,24)) be small enough.

Lemma 4.6. For the following system

Dp− δ∆p+ µ(a)p = mm̃(a, t)u(a, t, x)(p+ ps), (a, t, x) ∈ Q2T0 ,

p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a†)× (0, 2T0),

∂xp(a, t, 0) = ∂xp(a, t, 24), (a, t) ∈ (0, a†)× (0, 2T0),

p(0, t, x) = b(t, x), (t, x) ∈ (0, 2T0)× (0, 24),

p(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24),

(4.11)
where m̃(a, t) is the characteristic of G, there exists a solution pu(a, t, x) which
satisfies

pu(a, t, x) = 0, a.e. (a, t, x) ∈ Γ0 × (0, 24),

‖pu‖L∞(Q2T0
) ≤ C(‖p̄0‖L∞((0,a†)×(0,24)) + ‖b‖L∞((0,a†)×(0,24))),

where C is an appropriate constant.

Proof. First of all, for any ε, we consider the optimal control problem related
to (4.11),

Minimize
{∫

G

∫ 24

0

ϕ|u(a, t, x)(p+ ps)|2dxdtda+
1

ε

∫
Γ0

∫ 24

0

|p|2dxdl
}
. (4.12)

Ψε(u) denote the value of the cost function in u. Since the cost function
Ψε(u) : L2(Q2T0) −→ R+ is continuous and

lim
‖u‖L2(Q2T0

)→+∞
Ψε(u) = +∞,

then it follows that u(a, t, x) is bounded. Then by the result of lemma 4.5,
we obtain that there exists at least one minimum point for Ψε. Furthermore,
there is an optimal pair (uε(a, t, x), pε(a, t, x)) for (4.12), which satisfies (4.11),
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4. Local exact controllability of an age structured problem

that is,

Dpε − δ∆pε + µ(a)pε = m(x)m̃(a, t)uε(pε + ps), (a, t, x) ∈ Q2T0 ,

pε(a, t, 0) = pε(a, t, 24), (a, t) ∈ (0, a†)× (0, 2T0),

∂xpε(a, t, 0) = ∂xpε(a, t, 24), (a, t) ∈ (0, a†)× (0, 2T0),

pε(0, t, x) = b(t, x), (t, x) ∈ (0, 2T0)× (0, 24),

pε(a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24).

(4.13)
Now we consider the Euler-Lagrange Equation related to (4.11) and define

I(τ) =

∫
G

∫ 24

0

ϕ|(uε + τ û(a, t, x))(pτ + ps)|2dxdtda+
1

ε

∫
Γ0

∫ 24

0

|pτ |2dxdl,

(4.14)

where τ is an arbitrary constant, û(a, t, x) ∈ L2([0, a†]× [0, 2T0]× [0, 24]) is an
arbitrary function and pτ (a, t, x) satisfies

Dpτ − δ∆pτ + µ(a)pτ = m(x)m̃(uε + τ û)(pτ + ps), (a, t, x) ∈ Q2T0 ,

pτ (a, t, 0) = pτ (a, t, 24), (a, t) ∈ (0, a†)× (0, 2T0),

∂xpτ (a, t, 0) = ∂xpτ (a, t, 24), (a, t) ∈ (0, a†)× (0, 2T0),

pτ (0, t, x) = b(t, x), (t, x) ∈ (0, 2T0)× (0, 24),

pτ (a, 0, x) = p0(a, x), (a, x) ∈ (0, a†)× (0, 24).

(4.15)
Note that

pε(a, t, x) = lim
τ→0

pτ (a, t, x).

According to (4.13) and (4.15), we obtain

D pτ−pε
τ
− δ∆pτ−pε

τ
+ µ(a)pτ−pε

τ
= m(x)m̃uε

pτ−pε
τ

+m(x)m̃û(pτ + ps),
pτ−pε
τ

(a, t, 0) = pτ−pε
τ

(a, t, 24),

∂x
pτ−pε
τ

(a, t, 0) = ∂x
pτ−pε
τ

(a, t, 24),
pτ−pε
τ

τ(0, t, x) = 0,
pτ−pε
τ

(a, 0, x) = 0,

where a ∈ (0, a†), t ∈ (0, 2T0), x ∈ (0, 24). Then defining

z(a, t, x) = lim
τ→0

pτ − pε
τ

, (4.16)
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4.2. The optimality system

it is easy to verify that z(a, t, x) satisfies

Dz − δ∆z + µ(a)z = mm̃uεz +mm̃û(pε + ps), (a, t, x) ∈ Q2T0 ,

z(a, t, 0) = z(a, t, 24), (a, t) ∈ (0, a†)× (0, 2T0),

∂xz(a, t, 0) = ∂xz(a, t, 24), (a, t) ∈ (0, a†)× (0, 2T0),

z(0, t, x) = 0, (t, x) ∈ (0, 2T0)× (0, 24),

z(a, 0, x) = 0, (a, x) ∈ (0, a†)× (0, 24).

(4.17)
Here, recalling (4.14), (4.16) and deriving I(τ) with respect to τ at τ = 0, one
has

I ′(0) =2

∫
G

∫ 24

0

ϕ(uε(a, t, x))2(pε + ps)lim
τ→0

pτ − pε
τ

dxdtda

+ 2

∫
G

∫ 24

0

ϕuε(a, t, x)û(a, t, x)(pε + ps)
2dxdtda

+
2

ε

∫
Γ0

∫ 24

0

pε lim
τ→0

pτ − pε
τ

dxdl

=2

∫
G

∫ 24

0

ϕ(uε(a, t, x))2(pε + ps)z(a, t, x)dxdtda

+ 2

∫
G

∫ 24

0

ϕuε(a, t, x)û(a, t, x)(pε + ps)
2dxdtda

+
2

ε

∫
Γ0

∫ 24

0

pεz(a, t, x)dxdl.

Let qε(a, t, x) ∈ Q2T0 satisfying:

qε(a, t, x) = ϕ(a, t, x)uε(a, t, x)(pε(a, t, x) + ps(a, x)).

Then, one gets:

I ′(0) =2

∫
G

∫ 24

0

qε(a, t, x)m(x)m̃(a, t)uε(a, t, x)z(a, t, x)dxdtda

+ 2

∫
G

∫ 24

0

qε(a, t, x)m(x)m̃(a, t)û(a, t, x)(pε + ps)dxdtda

+
2

ε

∫
Γ0

∫ 24

0

pεz(a, t, x)dxdl

+ 2

∫
G

∫ 24

0

(1−m(x)m̃(a, t))ϕuε(pε + ps)(uεz + û(pε + ps))dxdtda.
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4. Local exact controllability of an age structured problem

By the first equation of (4.17), it follows after some calculations:

I ′(0) =2

∫
G

∫ 24

0

z(a, t, x)(−Dqε − δ∆qε + µ(a)qε)dxdtda

− 2

∫
G

δ(qε(a, t, 24)∂xz(a, t, 24)− qε(a, t, 0)∂xz(a, t, 0))dtda

+ 2

∫
G

δ(z(a, t, 24)∂xqε(a, t, 24)− z(a, t, 0)∂xqε(a, t, 0))dtda

+ 2

∫
Γ0

∫ 24

0

z(a, t, x)(qε(a, t, x) +
1

ε
pε(a, t, x))dxdl

+ 2

∫
Γ\Γ0

∫ 24

0

z(a, t, x)qε(a, t, x)dxda

+ 2

∫
G

∫ 24

0

(1−m(x)m̃(a, t))ϕuε(pε + ps)(uεz + û(pε + ps))dxdtda.

Since z(a, t, x) and û(a, t, x) are arbitrary, we can get that qε(a, t, x) is the
solution of

Dq(a, t, x) + δ∆q(a, t, x)− µ(a)q(a, t, x) = 0, (a, t, x) ∈ G× (0, 24),

q(a, t, 0) = q(a, t, 24), (a, t) ∈ G,
∂xq(a, t, 0) = ∂xq(a, t, 24), (a, t) ∈ G,
q(a, t, x) = 0, (a, t, x) ∈ (Γ \ Γ0)× (0, 24),

q(a, t, x) = −1
ε
pε(a, t, x), (a, t, x) ∈ Γ0 × (0, 24),

(4.18)
where Γ = (0, T0)× {2T0} ∪ {a†} × (0, T0) ∪ Γ0 ∪ (a† − T0, a†)× {T0} and

(1−m(x)m̃(a, t))ϕuε(pε + ps) = 0.

Thus one can get uε(a, t, x) and pε(a, t, x) satisfy

uε(pε + ps(a, x)) = m(x)m̃(a, t)qεϕ
−1(a, t, x), a.e.(a, t, x) ∈ Q2T0 . (4.19)

Multiplying the first equation in (4.18) by pε and integrating on Q2T0 , we
obtain∫
G

∫
ω

ϕ(a, t, x)|uε(t)(pε(a, t, x) + ps(a, x))|2dxdtda+
1

ε

∫
Γ0

∫ 24

0

|pε(a, t, x)|2dxdl

= −
∫ T0

0

∫ 24

0

b(t, x)qε(0, t, x)dxdt−
∫ a†−T0

0

∫ 24

0

p0(a, x)qε(a, 0, x)dxda.

66



4.2. The optimality system

Now, define

ũε(t, x) = uε(γ + t, θ + t, x), (t, x) ∈ (0, T0)× (0, 24),

p̃ε(t, x) = pε(γ + t, θ + t, x), (t, x) ∈ (0, T0)× (0, 24),

p̃s(t, x) = ps(γ + t, x), (t, x) ∈ (0, T0)× (0, 24),

q̃ε(t, x) = qε(γ + t, θ + t, x), (t, x) ∈ (0, T0)× (0, 24),

µ̃(t) = µ(γ + t), t ∈ (0, T0).

(4.20)

And, let S be an arbitrary characteristic line of equation

S = {(γ + t, θ + t); t ∈ (0, T0)}, (γ, θ) ∈ (0, a† − T0)× {0} ∪ {0} × (0, T0).

Then combining (4.11) with (4.20), we learn that (ũε(t, x), p̃ε(t, x)) satisfies

p̃εt − δ∆p̃ε + µ̃(t)p̃ε = m(x)ũε(t, x)(p̃ε + p̃s), (t, x) ∈ (0, T0)× (0, 24),

p̃ε(t, 0) = p̃ε(t, 24), t ∈ (0, T0),

∂xp̃ε(t, 0) = ∂xp̃ε(t, 24), t ∈ (0, T0),

p̃ε(0, x) =

{
b(θ, x), γ = 0, x ∈ (0, 24),

p0(γ, x), θ = 0, x ∈ (0, 24).

(4.21)
Furthermore, according to (4.19) and the definition of ϕ(a, t, x), one has

ũε(t, x)(p̃ε + p̃s) = m(x)q̃ε
e2sα(t,x)

t3(T0 − t)3
, a.e. (t, x) ∈ (0, T0)× (0, 24), (4.22)

where q̃ε is the solution of
q̃εt(t, x) + δ∆q̃ε(t, x) = µ̃(t)q̃ε(t, x), (t, x) ∈ (0, T0)× (0, 24),

q̃ε(t, 0) = q̃ε(t, 24), t ∈ (0, T0),

∂xq̃ε(t, 0) = ∂xq̃ε(t, 24), t ∈ (0, T0),

q̃ε(T0, x) = −1
ε
p̃ε(T0, x), x ∈ (0, 24).

(4.23)

Multiplying the first equation in (4.23) by p̃ε(t, x) and integrating on DT0 ,∫ T0

0

∫
ω

e−2sα(t,x)t3(T0 − t)3|ũε(t, x)(p̃ε + p̃s)|2dxdt+
1

ε

∫ 24

0

|p̃ε(T0, x)|2dx

= −
∫ 24

0

p̃ε(0, x)q̃ε(0, x)dx. (4.24)
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4. Local exact controllability of an age structured problem

Then, applying Corollary 4.4, for s ≥ max(s0, C‖µ̃‖2/3
C([0,a†−T0])), we obtain∫

DT0

(
t(T0 − t)e2sα

s

(
q̃2
εt + |∆q̃ε|2

)
+

s3e2sα

t3(T0 − t)3
q̃2
ε +

se2sα

t(T0 − t)
q̃2
εx

)
dxdt

≤ C

(∫ T0

0

∫
ω

s3e2sα

t3(T0 − t)3
q̃2
εdxdt+

∫
DT0

e2sα‖µ̃‖2
C([0,T0])q̃

2
εdxdt

)

≤ C

∫ T0

0

∫
ω

s3e2sα

t3(T0 − t)3
q̃2
εdxdt, (4.25)

where q̃εt and q̃εx are defined by the following equations respectively,

q̃εt =
∂q̃ε
∂t
,

q̃εx =
∂q̃ε
∂x

.

On the other hand, multiplying the first equation in (4.23) by q̃ε(t, x), we
obtain

1

2

d

dt

∫ 24

0

q̃2
ε(t, x)dx− δ

∫ 24

0

q̃2
εx(t, x)dx−

∫ 24

0

µ̃(t)q̃2
ε(t, x)dx = 0,

d

dt

∫ 24

0

q̃2
ε(t, x)dx ≥ 0, a.e. t ∈ (0, T0).

Then after some calculations, one gets∫ 24

0

q̃2
ε(0, x)dx ≤ C

∫ T0

0

∫ 24

0

e2sα

t3(T0 − t)3
q̃2
ε(t, x)dxdt.

By the result of (4.25), we have∫ 24

0

q̃2
ε(0, x)dx ≤ C

∫ T0

0

∫
ω

e2sα

t3(T0 − t)3
q̃2
ε(t, x)dxdt. (4.26)

Using Young’s inequality, (4.22), (4.24) and (4.26), we obtain∫ T0

0

∫
ω

e−2sα(t,x)t3(T0 − t)3|ũε(t, x)(p̃ε + p̃s)|2dxdt+
1

ε

∫ 24

0

|p̃ε(T0, x)|2dx

≤ C‖p̃ε(0, x)‖2
L2((0,24)). (4.27)
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Then combining (4.25) with (4.27), we get∫
DT0

(
t(T0 − t)e2sα

s

(
q̃2
εt + |∆q̃ε|2

)
+

s3e2sα

t3(T0 − t)3
q̃2
ε +

se2sα

t(T0 − t)
q̃2
εx

)
dxdt

≤ C‖p̃ε(0, x)‖2
L2(0,24).

As a consequence,

‖ṽε‖2
W 1,2

2 ((0,T0)×(0,24))
≤ C‖p̃ε(0, x)‖2

L2(0,24),

ṽε(t, x) =
e2sα

t3(T0 − t)3
q̃ε(t, x), (t, x) ∈ (0, T0)× (0, 24).

Then according to the standard theory, we know that

W 1,2
2 ((0, T0)× (0, 24)) ⊂ L∞((0, T0)× (0, 24)),

and for any ε > 0, we may infer that

‖ṽε‖2
L∞((0,T0)×(0,24)) ≤ C‖p̃ε(0, x)‖2

L2(0,24). (4.28)

The last estimate and the existence theory of parabolic boundary value
problems in Lr (see [54]) imply that on a subsequence we have that

ṽε(t, x)→ ṽ(t, x) weakly in L∞((0, T0)× (0, 24))

p̃ε(t, x)→ p̃ṽ(t, x) weakly in L∞((0, T0)× (0, 24)),

where (ṽ(t, x), p̃ṽ(t, x)) satisfies

p̃ṽt − δ∆p̃ṽ + µ̃p̃ṽ = m(x)ṽ, (t, x) ∈ (0, T0)× (0, 24),

p̃ṽ(t, 0) = p̃ṽ(t, 24), t ∈ (0, T0),

∂xp̃
ṽ(t, 0) = ∂xp̃

ṽ(t, 24), t ∈ (0, T0),

p̃ṽ(0, x) =

{
b(θ, x), γ = 0, x ∈ (0, 24),

p0(γ, x), θ = 0, x ∈ (0, 24),

p̃ṽ(T0, x) = 0 a.e. x ∈ (0, 24). (4.29)

We claim that there exists a positive constant c5 such that

p̃ε(t, x) + p̃s(t, x) ≥ c5 > 0, (t, x) ∈ (0, T0)× (0, 24),
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4. Local exact controllability of an age structured problem

which will be proved in the last part of the proof. Since

ũε(t, x)(p̃ε(t, x) + p̃s(t, x)) = m(x)ṽε(t, x),

we have that

ũε(t, x)→ ũ(t, x) weakly in L∞loc((0, T0)× (0, 24)),

where (ũ(t, x), p̃ũ(t, x)) satisfies (4.21) and

ũ(t, x) =
m(x)ṽ(t, x)

p̃ṽ(t, x) + p̃s(t, x)
, (t, x) ∈ (0, T0)× (0, 24).

From the uniqueness of the solution of (4.21), we known that

p̃ṽ(t, x) = p̃ũ(t, x), (t, x) ∈ (0, T0)× (0, 24).

Furthermore, according to (4.21) and (4.29), we get

p̃ũ(T0, x) = 0 a.e. x ∈ (0, 24),

‖p̃ũ‖2
L∞((0,T0)×(0,24)) ≤ C(‖p̃ε(0, x)‖2

L∞(0,24) + ‖m(x)ṽ‖2
L∞((0,T0)×(0,24))).

Then recalling (4.28), one has

‖p̃ũ‖2
L∞((0,T0)×(0,24)) ≤ C‖p̃ε(0, x)‖2

L∞(0,24).

For (u(a, t, x), pu(a, t, x)) given by (ũ, p̃ũ) on each characteristic line, we get

u(a, t, x) ∈ L2((0, a†)× (0, 2T0)× (0, 24)),

and pu is the solution of (4.11) satisfying

pu(a, t, x) = 0, a.e. (a, t, x) ∈ Γ0 × (0, 24),

‖pu‖L∞(Q2T0
) ≤ C(‖p̄0‖L∞((0,a†)×(0,24)) + ‖b‖L∞((0,2T0)×(0,24))). (4.30)

Now, we prove that there exists a positive constant c5 such that

p̃ε(t, x) + p̃s(t, x) ≥ c5 > 0 for (t, x) ∈ (0, T0)× (0, 24).

Let p∗(t, x) = p̃ε(t, x) + p̃s(t, x) and recall that p̃ε satisfies (4.21), one has that
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p∗(t, x) satisfies

∂tp
∗ − δ∆p∗ + µ̃(t)p∗ = m(x)ũεp

∗, (t, x) ∈ (0, T0)× (0, 24),

p∗(t, 0) = p∗(t, 24), t ∈ (0, T0),

∂xp
∗(t, 0) = ∂xp

∗(t, 24), t ∈ (0, T0),

p∗(0, x) =

{
b(θ, x) + p̃s(0, x), γ = 0, x ∈ (0, 24),

p0(γ, x) + p̃s(γ, x), θ = 0, x ∈ (0, 24).

(4.31)

Therefore, our main goal is equivalent to prove that

p∗(t, x) > 0, (t, x) ∈ [0, T0]× [0, 24]

by two steps.

Step one, we prove

p∗(t, x) > 0 for (t, x) ∈ (0, T0)× (0, 24).

Firstly, when γ = 0, p∗(0, x) = b(θ, x) + p̃s(0, x). Since ps ≥ ρ0 > 0 and
‖b‖L∞((0,2T0)×(0,24)) is small enough, one knows that there exists a constant c1

such that
p∗(0, x) ≥ c1 > 0.

Secondly, when θ = 0, p∗(0, x) = p0(γ, x) + p̃s(γ, x). Since ps ≥ ρ0 > 0 and
‖p0(a, x)‖L∞((0,a†)×(0,24)) is small enough, we obtain that there exists a constant
c2 such that

p∗(0, x) ≥ c2 > 0.

According to these, we learn that there exists a constant c3 such that

p∗(0, x) ≥ c3 > 0.

By the strong maximum principle, it implies that

p∗(t, x) > 0, (t, x) ∈ (0, T0)× (0, 24).

Step two, we prove p∗(t, x) > 0 in the following four cases where the vari-
ables (t, x) are on the boundary of (0, T0) × (0, 24). By the strong maxi-
mum principle, we have that p∗(t, x) can reach the minimum at the boundary
of (0, T0) × (0, 24). Case 1, if p∗(t, x) attains its minimum at (0, x1), then
p∗(t, x) ≥ p∗(0, x1). Since step one, one knows p∗(0, x) ≥ c3 > 0 for x ∈ (0, 24).
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4. Local exact controllability of an age structured problem

Thus,
p∗(t, x) > 0.

Case 2, if p∗(t, x) attains its minimum at (T0, x2), then p∗(t, x) ≥ p∗(T0, x2).
Since p̃ε(t, x) → p̃ṽ(t, x) weakly in L∞((0, T0) × (0, 24)) and p̃ṽ(T0, x) =

0 a.e. x ∈ (0, 24), one has that p̃ε(T0, x) → 0 and there exists a constant
c4 such that p∗(T0, x) ≥ c4 > 0. Thus,

p∗(t, x) > 0.

Case 3, if p∗(t, x) attains its minimum at (t1, 0), then p∗(t, x) ≥ p∗(t1, 0). We
assume by contradiction that p∗(t1, 0) = 0. Then, it follows from the strong
maximum principle that ∂xp∗(t1, 24) < 0. By the third equation of (4.31), we
obtain that ∂xp∗(t1, 0) < 0 which contradicts the minimum of p∗(t, x) at (t1, 0).
Thus,

p∗(t, x) ≥ p∗(t1, 0) > 0.

Case 4, if p∗(t, x) attains its minimum at (t2, 24), then p∗(t, x) ≥ p∗(t2, 24).
By our periodic boundary condition, we have p∗(t2, 24) = p∗(t2, 0). It follows
from case 3 that

p∗(t, x) ≥ p∗(t2, 0) > 0.

This completes the proof.

In what follows, we are ready to prove our null exact controllability result.
That is to say, we prove Theorem 1.6.

Proof of Theorem 1.6. For any b(t, x) ∈ H, we denote

Φ(b) =

{∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)pu(a, t, s)dsda

}
⊂ L2((0, 2T0)× (0, 24)),

where u(a, t, x) ∈ L2((0, a†) × (0, 2T0) × (0, 24)), pu is the solution of (4.11)
satisfying (4.30) and pu(a, t, x) = 0, a.e. (a, t, x) ∈ Γ0× (0, 24). There exists an
element in Φ(b) which does not depend on b, and we divide it into two cases
as follows:
• If t > T0, then ∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)pu(a, t, s)dsda = 0.

This is because β(a) = 0, a.e. a ∈ (0, T0) and pu(a, T0, x) = 0, for a ≥ T0.
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• If t < T0, then∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)pudsda =

∫ a†−T0

T0

β(a)

∫ x+η

x−η
K(x, s)pudsda.

Thus, this depends only on p̄0 and not on b. We also have that

pu(a, 2T0, x) = 0, a.e. ∈ (0, a†)× (0, 24),

∫ a†−T0

T0

β(a)

∫ x+η

x−η
K(x, s)pu(a, t, s)dsda ≤ C‖β‖L∞(0,a†) · ‖p̄0‖L∞((0,a†)×(0,24)).

(4.32)

So, for any u(a, t, x) as above we can take

b(t, x) =

{
0, a.e. (t, x) ∈ (T0, 2T0)× (0, 24)∫ a†

0
β(a)

∫ x+η

x−η K(x, s)pu(a, t, s)dsda, a.e. (t, x) ∈ (0, T0)× (0, 24)

a fixed point of the multi-valued function Φ. By (4.30) and (4.32) we have

‖pu‖L∞(Q2T0
) ≤ C‖p̄0‖L∞(0,a†).

Thus, if ‖p̄0‖L∞(0,a†) is small enough, there exists u(a, t, x) ∈ L2((0, a†) ×
(0, 2T0)× (0, 24)) and p(a, t, x), such that the solution of (1.9) satisfies

p(a, 2T0, x) = 0 a.e. (a, x) ∈ (0, a†)× (0, 24),

‖p‖L∞(Q2T0
) ≤ C‖p̄0‖L∞(0,a†) ≤ ρ0

and in conclusion

p(a, t, x) ≥ −ρ0, a.e. (a, t, x) ∈ Q2T0 .

Hence,
p(a, t, x) ≥ −ps(a, x), a.e. (a, t, x) ∈ Q2T0 .

Therefore, we conclude the controllability of (1.1).

4.3 Numerical simulations

In the following, we provide some numerical simulations to illustrate the local
exact controllability of (1.10). We rescale the bitting time variable x ∈ [0, 24]
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intro x ∈ [0, 1] and we assume that a† = 1, that is, a ∈ [0, 1). We consider
system (1.10) with the parameters taking the values as follows

δ = 0.001, η = 0.1, β(a) = 3ce−0.1(a−0.4)2 and µ(a) = 0.5e2.4a,

where c is a constant to be given.
We suppose that ps(a, x) = e−

∫ a
0 µ(s)ds is a steady solution. It implies that

1 =

∫ a†

0

β(a)

∫ x+η

x−η
K(x, s)ps(a, s)dsda.

By numerical computation, we can get that

c ≈ 15.314.

Then, ps(a, x) is a steady solution of (1.10), as shown in figure 4.

Figure 4: the steady solution ps(a, x) = e−
∫ a
0 µ(s)ds.

Now, we set that

p0(a, x) = ps(a, x) + 0.5e−4a sin(2πx) and u(a, t, x) = 0.

In following figures 5 and 6, we plot the solution of (1.10) without control,
that is, u(a, t, x) = 0. We can see that the solution can not converge to the
steady solution.
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Figure 5: the solution p(a, t, x) for t = 0 and t = 0.25 under no control.
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Figure 6: the solution p(a, t, x) for t = 0.5 and t = 1 under no control.
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By comparison, we set that

m(x) = 1 for x ∈ [0, 1] and u(a, t, x) = 1.2e−5t sin(2πx).

In the following figures 7 and 8, we plot the solution of (1.10) under control
u(a, t, x). We can see that the solution converges to the steady solution.

77



4. Local exact controllability of an age structured problem

Figure 7: the solution p(a, t, x) for t = 0 and t = 0.25 under control.
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4.3. Numerical simulations

Figure 8: the solution p(a, t, x) for t = 0.5 and t = 1 under control.
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Chapter 5

Large-time behavior of an age
structured model

In this chapter, we set that the insecticide strategy such as ITNs and IRs
is only useful for matured mosquitoes according to reality. Our goal is to
investigate the long time behaviour of the matured population of mosquitoes
under different kinds of control u(a, t, x). We deduce a time-delayed model
for the matured population which also has its own interest. At last, we do
numerical simulations for this problem.

5.1 Proof of Theorem 1.7

In this section, our main job is to study the behavior of the matured mosquitos
population when the control |u(w)| is small enough and large enough.

Let us start with the following assumptions:

(A1) µ∗(a) ∈ L1
loc([0, a†)),

∫ a

0

µ∗(ρ)dρ <∞, where a < a† and
∫ a†

0
µ∗(ρ)dρ =

+∞;
(A2) β∗(a) ∈ L∞((0, a†)), mes{a|a ∈ [0, a†], β

∗(a) > 0} > 0;
(A3) p∗0(a, x) ∈ L∞((0, a†)× (0, 24)), p∗0(a, x) ≥ 0.

Now, we first consider the following system

Dq − δ∆q + µ∗(a)q = 0, (a, t, x) ∈ Qa† ,

q(a, t, 0) = q(a, t, 24), (a, t) ∈ (0, a†)× R+,

∂xq(a, t, 0) = ∂xq(a, t, 24), (a, t) ∈ (0, a†)× R+,

q(0, t, x) = C

∫ a†

0

β∗(a)q(a, t, x)da, (t, x) ∈ R+ × (0, 24),

q(a, 0, x) = p∗0(a, x), (a, x) ∈ (0, a†)× (0, 24),

(5.1)
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5. Large-time behavior of an age structured model

where Qa† = (0, a†) × R+ × (0, 24) and C is a positive constant. Define the
operator F : X → X as:

Fφ(a, x) = −∂φ(a, x)

∂a
+ δ∆φ(a, x)− µ∗(a)φ(a, x),∀φ(a, x) ∈ D(F), (5.2)

where

D(F) = {φ(a, x)|φ,Aφ ∈ X,φ(a, 0) = φ(a, 24), ∂xφ(a, 0) = ∂xφ(a, 24),

φ(0, x) = C

∫ a†

0

β∗(a)φ(a, x)da}.

Then, we can write (5.1) as
dq(a, t, x)

dt
= Fq(a, t, x),

q(a, 0, x) = p∗0(a, x).

Define an operator

Fλ =

∫ a†

0

Cβ∗(a)e−λae−
∫ a
0 µ
∗(ρ)dρeBada,

where the operator B : L2((0, 24)) −→ L2((0, 24)) is defined as

Bu(x) = δ∆u(x),

for u(x) satisfying {
u(0) = u(24),

u′(0) = u′(24).

From [61, Lemma 2.1], one has the following lemma directly.

Lemma 5.1. The operator F defined by (5.2).
(1) The operator F has a real dominant eigenvalue λ̃0, that is, λ̃0 is greater

than any real part of the eigenvalues of F.
(2) For the operator Fλ̃0, 1 is an eigenvalue with the eigenfunction φ0(x).

Furthermore, γ(Fλ̃0) = 1, where γ(Fλ̃0) is the spectral radius of Fλ̃0, that
is, γ(Fλ̃0) = sup{|r| : r is an eigenvalue of Fλ̃0}.

Furthermore, one can get the following lemma.

Lemma 5.2. The eigenvalue λ̃0 obtained in Lemma 5.1 is such that
(1) if C

∫ a†
0
β∗(a)e−

∫ a
0 µ
∗(ρ)dρda > 1, then λ̃0 > 0.
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5.1. Proof of Theorem 1.7

(2) if C
∫ a†

0
β∗(a)e−

∫ a
0 µ
∗(ρ)dρda < 1, then λ̃0 < 0.

Proof. We denote by (λi, φi)i≥0 the eigenvalues and eigenfunctions of the fol-
lowing problem 

− δ∆φi(x) = λiφi(x), x ∈ (0, 24),

φi(0) = φi(24),

∂xφi(0) = ∂xφi(24),

where
∫ 24

0
φ2
i (x)dx = 1, i ≥ 0, and φ0(x) > 0 in (0, 24). It is obvious that

λ0 = 0 and φ0(x) is a fixed positive constant. We also assume that 0 = λ0 <

λ1 ≤ λ2 ≤ · · · .
Let H be the operator in L2(0, a†) defined as

Hφ(a) = −dφ(a)

da
− µ∗(a)φ(a), ∀φ ∈ D(H),

where

D(H) = {φ(a)|φ,Hφ ∈ L2(0, 24), φ(0) = C

∫ a†

0

β∗(a)φ(a)da}.

Let {λ̂j}j≥0 be the eigenvalues of H, that is, the solutions of the following
equation

1− C
∫ a†

0

β∗(a)e−λ̂ja−
∫ a
0 µ
∗(ρ)dρda = 0.

We assume that λ̂0 > Reλ̂1 ≥ Reλ̂2 ≥ · · · , even if it means re-arrange λ̂j.
From [61, Lemma 2.1], one knows that

λ̃0 = λ̂0 − λ0 = λ̂0.

It is obvious that if C
∫ a†

0
β∗(a)e−

∫ a
0 µ
∗(ρ)dρda > 1, then

λ̃0 > 0.

If C
∫ a†

0
β∗(a)e−

∫ a
0 µ
∗(ρ)dρda < 1, then

λ̃0 < 0.
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5. Large-time behavior of an age structured model

Lemma 5.3. Let q(a, t, x) be the solution of

Dq − δ∆q + µ∗(a)q = 0, (a, t, x) ∈ Qa† ,

q(a, t, 0) = q(a, t, 24), (a, t) ∈ (0, a†)× R+,

∂xq(a, t, 0) = ∂xq(a, t, 24), (a, t) ∈ (0, a†)× R+,

q(0, t, x) =

∫ a†

0

β∗(a)

∫ x+η

x−η
K1(x, s)q(a, t, s)dsda, (t, x) ∈ R+ × (0, 24),

q(a, 0, x) = p∗0(a, x), (a, x) ∈ (0, a†)× (0, 24).

(1) If
∫ a†

0
β∗(a)e−

∫ a
0 µ
∗(ρ)dρda is sufficiently large and

K1(x, s) =

{
(x− s)2e−(x−s)2 , (x, s) ∈ (0, 24)× (0, 24),

0, else,

then

q(a, t, x)→ +∞, as t→ +∞ for every a ∈ [0, a1], x ∈ [0, 24],

where a1 ∈ (a0, a†).
(2) If

∫ a†
0
β∗(a)e−

∫ a
0 µ
∗(ρ)dρda is sufficiently small and K1(x, s) ≡ K1 where K1

is a positive constant, then

q(a, t, x)→ 0, as t→ +∞ for every a ∈ [0, a†], x ∈ [0, 24].

Proof. By referring to [61, Theorem 1.1], one knows that q(a, t, x) has an
asymptotic expression

q(a, t, x) =eλ0te−λ0aT(0, a)Cλ0

∫ a†

0

β∗(a)

∫ x+η

x−η
K1(x, s)

∫ a

0

e−λ0(a−σ)T(σ, a)

p0(σ, s)dsdadσ + o(e(λ0−ε)t).

Here, λ0 is the algebraically simple real eigenvalue of the operator A : L2((0, a†)

×(0, 24)) −→ L2((0, a†)× (0, 24)) defined as

Aφ(a, x) = −∂φ(a, x)

∂a
+ δ∆φ(a, x)− µ∗(a)φ(a, x),∀φ(a, x) ∈ D(A),

D(A) = {φ(a, x)|φ,Aφ ∈ X,φ(a, 0) = φ(a, 24), ∂xφ(a, 0) = ∂xφ(a, 24),

φ(0, x) =

∫ a†

0

β∗(a)

∫ x+η

x−η
K1(x, s)φ(a, s)dsda}.
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And λ0 is larger than real part of the any other eigenvalues of the operator A.
T(τ, s) = e−

∫ s
τ µ
∗(ρ)dρeB(s−τ). Cλ0 = lim

λ→λ0
(λ−λ0)(I−Bλ)

−1 , where the operator

Bλ : L2((0, 24))→ L2((0, 24)) defined as

Bλ(φ(x)) =

∫ a†

0

β∗(a)

∫ x+η

x−η
K1(x, s)e−λaT(0, a)φ(s)dsda.

(1) From the proof of [61, Theorem 3.1], one can take C in (5.1) sufficiently
small such that

λ0 ≥ λ̃0.

Note that the choice of C depends on K1(x, s). Then, if
∫ a†

0
β∗(a)e−

∫ a
0 µ
∗(ρ)dρda

is sufficiently large such that C
∫ a†

0
β∗(a)e−

∫ a
0 µ
∗(ρ)dρda > 1, by the result of

Lemma 5.2 (1), one has that

λ0 ≥ λ̃0 > 0.

From the asymptotic expression, one gets that

q(a, t, x)→ +∞, as t→ +∞ for every a ∈ [0, a0], x ∈ [0, 24].

(2) Similar as the arguments of the proof of [61, Theorem 3.1], one can take
C in (5.1) sufficiently large and prove that

λ0 ≤ λ̃0.

Then, if
∫ a†

0
β∗(a)e−

∫ a
0 µ
∗(ρ)dρda is sufficiently small such that

C

∫ a†

0

β∗(a)e−
∫ a
0 µ
∗(ρ)dρda < 1,

by the result of Lemma 5.2 (2), one has that

λ0 ≤ λ̃0 < 0.

From the asymptotic expression, one has that

q(a, t, x)→ 0, as t→ +∞ for every a ∈ [0, a0], x ∈ [0, 24].

This completes the proof.

Following the proof of [13, Lemma 4.2.2] carefully, we can get the following
lemma:
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5. Large-time behavior of an age structured model

Lemma 5.4. If pi(i ∈ 1, 2) are the solutions of the following systems
Dpi − δ∆pi + µi(a, w)pi = 0, (a, t, x) ∈ Qa† ,

pi(0, t, x) =

∫ a†

0

βi(a)

∫ x+η

x−η
Ki(x, s)pi(a, t, s)dsda, (t, x) ∈ R+ × (0, 24),

pi(a, 0, x) = p0i(a, x), (a, x) ∈ (0, a†)× (0, 24),

where w(t, x) =
∫ a†
a0
p(a, t, x)da, µ1(a, w), µ2(a, w) ∈ L∞loc([0, a†)) for every

w ≥ 0 and are locally Lipschitz functions with respect to w, β1, β2 satisfy (A2),
K1, K2 ∈ L2([0, 24]2), p01, p02 satisfy (A3) and µ1 ≥ µ2, β1 ≤ β2, K1 ≤ K2,
p01 ≤ p02, then

0 ≤ p1(a, t, x) ≤ p2(a, t, x) a.e. in Qa† .

Proof. Following [13, Theorem 4.2.2], one can easily get the previous compar-
ison principle. Thus, we omit the details.

We now extend q(a, t, x) to x ∈ R periodically such that

q̃(a, t, x) = q(a, t, x), x ∈ [0, 24],

q̃(a, t, x+ 24) = q̃(a, t, x), x ∈ R.

Then, q̃(a, t, x) satisfies
Dq̃ − δ∆q̃ + µ∗(a)q̃ = 0, (a, t, x) ∈ Q,
q̃(0, t, x) =

∫ a†
0
β∗(a)

∫ x+η

x−η K̃1(x, s)q̃(a, t, s)dsda, (t, x) ∈ R+ × R,
q̃(a, 0, x) = q̃0(a, x), (a, x) ∈ (0, a†)× R,

(5.3)
where

q̃0(a, x) = p∗0(a, x), x ∈ [0, 24],

q̃0(a, x+ 24) = q̃0(a, x), x ∈ R,

K̃1(x, s) = K1(x, s), x ∈ [0, 24], s ∈ [0, 24],

K̃1(x, s) = 0, x ∈ [0, 24], s < 0 and s > 24,

K̃1(x+ 24, s+ 24) = K̃1(x, s), x ∈ R, s ∈ R.

By Lemma 5.3, one has the following lemma.

Lemma 5.5. Let q̃(a, t, x) be the solution of system (5.3).
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(1) If
∫ a†

0
β∗(a)e−

∫ a
0 µ
∗(ρ)dρda is sufficiently large and

K1(x, s) =

{
(x− s)2e−(x−s)2 , (x, s) ∈ (0, 24)× (0, 24),

0, else,
(5.4)

then

q̃(a, t, x)→ +∞, as t→ +∞ for every a ∈ [0, a1] and x ∈ R.

(2) If
∫ a†

0
β∗(a)e−

∫ a
0 µ
∗(ρ)dρda is sufficiently small and K1(x, s) ≡ K1 where K1

is a positive constant, then

q̃(a, t, x)→ 0, as t→ +∞ for every a ∈ [0, a†] and x ∈ R.

Proof of Theorem 1.7. (i) Let p(a, t, x) be the solution of (1.10). From the
assumption (J5), one can take |u(w)| small enough such that

µ(a, w)− u(w) ≤ sup
w≥0

(µ(a, w)− u(a, w)) := µ∗(a),

and
∫ a†

0
β(a)e−

∫ a
0 µ
∗(ρ)dρ is sufficiently large. Let q̃(a, t, x) be the solution of

system (5.3) with µ∗(a), β(a), K̃1(x, s) and q̃0(a, x) where K̃1(x, s) is the peri-
odic extension of K1(x, s) defined by (5.4) and q̃0(a, x) = p0(a, x). Obviously,
one has

K̃1(x, s) ≤ K(x, s).

By Lemma 5.4, one has that

p(a, t, x) ≥ q̃(a, t, x).

Then, from Lemma 5.5 (i), one has that

w(t, x) ≥
∫ a†

a0

q̃(a, t, x)da ≥
∫ a1

a0

q̃(a, t, x)da→ +∞, as t→ +∞.

(ii) By the assumptions (J1), (J3), we know that

µ(a, w)− u(a, w) ≥ inf
w≥0

µ(a, w) + inf
w≥0

(−u(a, w)).

Then let µ∗(a) = infw≥0 µ(a, w) + infw≥0(−u(a, w)) and |u(a, w)| be large e-
nough such that

∫ a†
0
β(a)e−

∫ a
0 µ
∗(ρ)dρ is small enough. Let q̃(a, t, x) be the so-

lution of system (5.3) with µ∗(a), β(a), K̃1(x, s) and q̃0(a, x) where q̃0(a, x) =
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5. Large-time behavior of an age structured model

p0(a, x) and K̃1(x, s) ≡ K1 := sup(x,s)∈R2 K(x, s). By Lemma 5.4, one has that

p(a, t, x) ≤ q̃(a, t, x).

Then, from Lemma 5.5 (ii), one has that

w(t, x) ≤
∫ a†

a0

q̃(a, t, x)da→ 0, as t→ +∞.

This completes the proof.

5.2 Traveling fronts and Theorem 1.9

In the this section, we first derive a reaction-diffusion equation with time delay
for the system (1.10) by using a similar method developed by So [86]. Then,
we prove the existence of traveling fronts for the sub-equation (1.13)-(1.14)
and Theorem 1.9.

5.2.1 Derivation of the model

In this subsection, we derive a model for the matured mosquitoes population of
system (1.10) with two age classes and a fixed maturation period in a temporal
unbounded domain. By integrating (1.10), one obtains

wt−δ∆w = p(a0, t, x)+

∫ a†

a0

(−µ(a, w)+u(w))p(a, t, x)da, t > 0, x ∈ R. (5.5)

In the following, we specify p(a0, t, x). For any fixed s > 0, let V s(t, x) =

p(t− s, t, x), s ≤ t ≤ a0 + s, x ∈ R, we have

∂V s(t, x)

∂t
= δ∆V s(t, x)− µ1(t− s)V s(t, x), s ≤ t ≤ a0 + s, x ∈ R. (5.6)

By Fourier transform, let V s(t, x) =
∫ +∞
−∞ f(t, ε)e−iεxdε, one gets

∂V s(t, x)

∂t
=

∫ +∞

−∞

∂f(t, ε)

∂t
e−iεxdε, s ≤ t ≤ a0 + s, x ∈ R. (5.7)

∆V s(t, x) = −
∫ +∞

−∞
ε2f(t, ε)e−iεxdε, s ≤ t ≤ a0 + s, x ∈ R. (5.8)
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By virtue of (5.6), (5.7), (5.8) and after some calculations, we obtain

f(t, ε) = f(s, ε) exp

[∫ t−s

0

(−δε2 − µ1(τ))dτ

]
,

V s(t, x) =

∫ +∞

−∞
f(τ, ε) exp

[∫ t−s

0

(−δε2 − µ1(τ))dτ

]
e−iεxdε. (5.9)

Recalling the form of p(t− s, t, x), we see

p(0, t, x) = V s(s, x) =

∫ +∞

−∞
f(s, ε)e−iεxdε.

Thus, p(0, t, x) is the Fourier transform of f(s, ε), it means that

f(s, ε) =
1

2π

∫ +∞

−∞
p(0, s, y)eiεydy. (5.10)

Using the results of (5.9) and (5.10), we have

p(a0, t, x) = V t−a0(t, x)

=

∫ +∞

−∞
f(t− a0, ε) exp

[∫ a0

0

(−δε2 − µ1(τ))dτ

]
e−iεxdε

=

∫ +∞

−∞

1

2π

∫ +∞

−∞
p(0, t− a0, y)eiεydy exp

[∫ a0

0

(−δε2 − µ1(τ))dτ

]
e−iεxdε

=
1√

4πδa0

e−
∫ a0
0 µ1(τ)dτ∫ +∞

−∞

[∫ a†

0

β(a)

∫ y+η

y−η
K(y, s)p(a, t− a0, s)dsda

]
exp

[
−(x− y)2

4δa0

]
dy.

By the definition of K(x, s) and (J2), one can get that

p(a0, t, x) = Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

w(t− a0, x− z − s)dz
]
fδa0(s)ds, (5.11)

where M = e−
∫ a0
0 µ1(τ)dτ and fδa0(x) = 1√

4πδa0
exp(− x2

4δa0
). Then combining

(5.11) with (5.5), for t > 0, x ∈ R, one gets

wt − δ∆w =

∫ a†

a0

(−µ(a, w) + u(w))p(a, t, x)da

+Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

w(t− a0, x− z − s)dz
]
fδa0(s)ds.
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5. Large-time behavior of an age structured model

On the other hand, we set the initial value

w(s, x) =

∫ a†

a0

p(a, s, x)da =

∫ a†

a0

p0(a+ s, x)da, for −a0 ≤ s ≤ 0.

Since p0(a, ·) ≥6≡ 0 for every a ∈ [0, a†], one has that

w(s, ·) ≥6≡ 0, for every s ∈ [−a0, 0].

Notice that w(t, x+ 24) = w(t, x) since p(a, t, x+ 24) = p(a, t, x).

5.2.2 Existence of traveling fronts

In this subsection, we study the sub-equation (1.15) and prove Theorem 1.8.
The purpose of this section is to establish the existence of traveling fronts of
(1.15).

A traveling front of (1.15) is a solution w(t, x) = φ(x + ct), where c > 0

is the wave speed and φ ∈ C(R;R) is a non-decreasing function satisfying the
following equation

cφ
′
(ξ) =δφ

′′
(ξ)− g(φ) + u(φ)φ(ξ)

+Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

φ(ξ − s− z − ca0)dz

]
fδa0(s)ds, (5.12)

with the boundary conditions

lim
ξ→−∞

φ(ξ) = 0, lim
ξ→∞

φ(ξ) = w2, (5.13)

where ξ = x+ ct. Then, for ξ ∈ R, we define the following profile set

Γ = {φ ∈ C(R;R)|(1) φ(ξ) is non-decreasing;

(2) lim
ξ→−∞

φ(ξ) = 0; lim
ξ→∞

φ(ξ) = w2}.

Notice that since g(w), u(w) and their derivatives are continuous, there exists
a constant b ≥ 0 such that

(−g(φ) + u(φ)φ)− (−g(ψ) + u(ψ)ψ) + b(φ− ψ) ≥ 0,

where φ, ψ ∈ Γ and 0 ≤ ψ(ξ) ≤ φ(ξ) ≤ w2. Furthermore, define H :
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5.2. Traveling fronts and Theorem 1.9

C(R;R)→ C(R;R) by

H(φ)(ξ) =bφ(ξ)− g(φ) + u(φ)φ(ξ)

+M

∫ +∞

−∞
β

[∫ η

−η
z2e−z

2

φ(ξ − s− z − ca0)dz

]
fδa0(s)ds.

It follows that the equation of (5.12) involves the following nonhomogeneous
system of ordinary differential equation

cφ
′
(ξ) = δφ

′′
(ξ)− bφ(ξ) +H(φ)(ξ), ξ ∈ R. (5.14)

By exploring H(φ), we get the following lemma directly.

Lemma 5.6. For any φ, ψ ∈ Γ, we have
(1) H(φ)(ξ) ≥ 0, for all ξ ∈ R.
(2) H(φ)(ξ) is non-decreasing in ξ ∈ R.
(3) H(ψ)(ξ) ≤ H(φ)(ξ), for all ξ ∈ R, provided ψ ∈ C(R;R) is such that

0 ≤ ψ(ξ) ≤ φ(ξ) ≤ w2, for all ξ ∈ R.

Proof. By some simple calculations, it is easy to get these results. Thus, we
omit the proof.

Now, we define subsolutions and supersolutions for (5.14) as follows.

Definition 5.7. A function φ ∈ C(R;R) is called a supersolution of (5.14)
if φ′ and φ′′ exist almost everywhere and are essentially bounded on R, and φ
satisfies

cφ
′
(ξ) ≥ δφ

′′
(ξ)− bφ(ξ) +H(φ)(ξ), a.e in R.

A subsolution of (5.14) is defined in a similar way by reversing the inequality
in (5.7).

In the following, we first assume that there exists a pair (φ, φ), where φ ∈ Γ

is a supersolution and φ is a subsolution of (5.14) (which is not necessarily in
Γ), such that
(G1) 0 ≤ φ(ξ) ≤ φ(ξ) ≤ w2, for all ξ ∈ R;
(G2) φ(ξ) 6≡ 0.

Our goal is to prove that the equation of (5.12) has a solution φ(ξ) satisfy-
ing the boundary conditions (5.13) by the iterative method. It is equivalent to
verify that the equation of (5.14) has a solution φ(ξ) satisfying (5.13). Natural-
ly, we start our iteration with a subsolution of (5.12) as the following iteration
scheme:

cφ
′

n(ξ) = δφ
′′

n(ξ)− bφn(ξ) +H(φn−1)(ξ), ξ ∈ R, n = 1, 2, . . . , (5.15)
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5. Large-time behavior of an age structured model

with the boundary conditions

lim
ξ→−∞

φn(ξ) = 0,

lim
ξ→∞

φn(ξ) = w2,

where φ0(ξ) = φ(ξ). Among all solutions of (5.15), we choose a special one
and explore its properties as below φn(ξ) = 1

δ(β1−β2)

[∫ ξ

−∞
eβ1(ξ−s)H(φn−1)(s)ds+

∫ ∞
ξ

eβ2(ξ−s)H(φn−1)(s)ds

]
,

φ0(ξ) = φ(ξ),

where ξ ∈ R, n = 1, 2, . . . , and

β1 =
c−
√
c2 + 4δb

2δ
, β2 =

c+
√
c2 + 4δb

2δ
.

Following the proof of lemma 3.3, lemma 3.4 and proposition 3.5 in [97] as step
by step, we can get the following Lemma.

Lemma 5.8. The sequence of functions {φn(ξ)}∞n=0 satisfies
(1) φn ∈ Γ, for all n = 1, 2, . . .;
(2) 0 ≤ φ(ξ) ≤ φn(ξ) ≤ φn−1(ξ) ≤ φ(ξ) ≤ w2, for all ξ ∈ R, n = 1, 2, . . .;
(3) Each φn(ξ) is a supersolution of (5.12);
(4) φ(ξ) = lim

n→∞
φn(ξ) is a solution of (5.12) satisfying (5.13).

Now, we summarize the above lemmas and obtain the following Theorem.

Theorem 5.9. Suppose that (5.12) has a supersolution φ ∈ Γ and a subso-
lution φ (which is not necessarily in Γ) satisfying (G1), (G2). Then (5.12)
has a solution satisfying the boundary conditions (5.13). That is, (5.13) has a
traveling wavefront solution φ, which connects 0 and the positive equilibrium
w2.

We see that it is significant for us to prove the existence of a pair of su-
persolution and subsolution of (5.12) satisfying (G1), (G2). In the rest of
this subsection, we will construct such a pair of supersolution and subsolution.
Following the theory of Wang [94], we define the function

∆c(λ) = δλ2 − cλ+ M̃c(λ), (5.16)
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5.2. Traveling fronts and Theorem 1.9

where M̃c(λ) = Mβeδa0λ
2−λca0

∫ η

−η
z2e−z

2

e−λzdz. Then, we can get the follow-

ing lemma.

Lemma 5.10. There exist c∗ and λ∗ such that

(1) ∆c∗(λ
∗) = 0 and

∂

∂λ
∆c∗(λ)|λ=λ∗ = 0;

(2) If 0 < c < c∗, then ∆c(λ) > 0 for any λ > 0;
(3) If c > c∗, then the equation ∆c(λ) = 0 has two positive real roots λ1, λ2

such that 0 < λ1 < λ2 and

∆c(λ) =


> 0, λ < λ1,

< 0, λ1 < λ < λ2,

< 0, λ > λ2.

Proof. By some calculations, we obtain

∂

∂λ
∆c(λ) =2δλ− c+Mβeδa0λ

2−λca0
∫ η

−η
z2e−z

2

(−z)e−λzdz

+Mβeδa0λ
2−λca0(δa0λ− ca0)

∫ η

−η
z2e−z

2

e−λzdz,

∂2

∂λ2
∆c(λ) =2δ +Mβeδa0λ

2−λca0
∫ η

−η
z2e−z

2

(z − (2δa0λ− ca0))2e−λzdz

+Mβeδa0λ
2−λca02δa0λ

∫ η

−η
z2e−z

2

e−λzdz > 0,

∂

∂c
∆c(λ) = −λ+Mβ(−λa0)eδa0λ

2−λca0
∫ η

−η
z2e−z

2

(−z)e−λzdz < 0,

∆c(0) = M̃c(0) = Mβ

∫ η

−η
z2e−z

2

dz > 0,

∂

∂λ
∆c(0) = −c+Mβ

∫ η

−η
z2e−z

2

(−z)dz +Mβ(−ca0)

∫ η

−η
z2e−z

2

dz < 0,

93



5. Large-time behavior of an age structured model

∆0(λ) = δλ2 + M̃0(λ) = δλ2 +Mβeδa0λ
2

∫ η

−η
z2e−z

2

e−λzdz > 0,

lim
λ→+∞

∆c(λ) = +∞.

Then it is easy to see that the lemma holds.

Lemma 5.11. Let c∗, λ1 and λ2 be defined as in Lemma 5.10, and choose
ρ > 0 sufficiently small so that ρ < λ1 < λ1 + ρ < λ2. Then for fix c > c∗,
there exists a constant L > 1 such that the functions φ and φ defined by

φ(ξ) = min
{
w2, w2e

λ1ξ
}
, ξ ∈ R (5.17)

φ(ξ) = max
{

0, w2(1− Leρξ)eλ1ξ
}
, ξ ∈ R (5.18)

are a supersolution and a subsolution of (5.12), respectively.

Proof. First of all, we see that it is easy to verify that φ, φ satisfy (G1), (G2).
Now, We begin by proving that φ and φ are a pair of supersolution and subso-
lution of (5.12). Our strategy here is to prove this part into two steps: (i) φ is
a supersolution of (5.12) satisfying φ ∈ Γ; (ii) there exists a sufficiently large
L such that φ is a subsolution of (5.12).

Step(i): Note that φ ∈ Γ is obvious. If ξ ∈ (0,+∞). Then φ(ξ) = w2,
φ
′
(ξ) = φ

′′
(ξ) = 0. Since the definition of φ(ξ), 0 ≤ φ(ξ − s − z − ca0) ≤ w2.

Recalling (A1), we have

cφ
′
(ξ)− δφ′′(ξ) + bφ(ξ)−H(φ)(ξ) ≥ 0.

This is because that

cφ
′
(ξ)− δφ′′(ξ) + bφ(ξ)−H(φ)(ξ)

=g(w2)− u(w2)w2 −Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

φ(ξ − s− z − ca0)dz

]
fδa0(s)ds

≥g(w2)− u(w2)w2 −MβM1w2

=0.

If ξ ∈ (−∞, 0). Then φ(ξ) = w2e
λ1ξ, φ′(ξ) = w2λ1e

λ1ξ, φ′′(ξ) = w2λ
2
1e
λ1ξ.
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5.2. Traveling fronts and Theorem 1.9

Recalling (5.12), (5.16) and the assumptions (J1), (J3), one obtains

cφ
′
(ξ)− δφ′′(ξ) + bφ(ξ)−H(φ)(ξ)

=cw2λ1e
λ1ξ − δw2λ

2
1e
λ1ξ + g(φ)− u(φ)w2e

λ1ξ

−Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

w2e
λ1(ξ−s−z−ca0)dz

]
fδa0(s)ds

≥(−∆c(λ1) + M̃c(λ1))w2e
λ1ξ

−Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

w2e
λ1(ξ−s−z−ca0)dz

]
fδa0(s)ds

=M̃c(λ1)w2e
λ1ξ − M̃c(λ1)w2e

λ1ξ

=0.

Therefore, φ ∈ Γ is a supersolution of (5.12).

Step(ii): If ξ ∈ (1
ρ

ln 1
L
,+∞). Then φ(ξ) = 0, φ′(ξ) = φ′′(ξ) = 0. Since the

definition of φ(ξ), φ(ξ − s− z − ca0) ≥ 0. Thus,

cφ′(ξ)− δφ′′(ξ) + bφ(ξ)−H(φ)(ξ)

=−Mβ

∫ +∞

−∞

[∫ η

−η
z2e−z

2

φ(ξ − s− z − ca0)dz

]
fδa0(s)ds

≤0.

If ξ ∈ (−∞, 1
ρ

ln 1
L

). Then φ(ξ) = w2(1− Leρξ)eλ1ξ, φ′(ξ) = w2(λ1 − L(ρ+

λ1)eρξ)eλ1ξ and φ′′(ξ) = w2(λ2
1 − L(ρ + λ1)2eρξ)eλ1ξ. By Lemma 5.10, one

obtains

∆c(ρ+ λ1) = δ(ρ+ λ1)2 − c(ρ+ λ1) + M̃c(ρ+ λ1) < 0.

Notice from the Taylor expansion that g(φ)−u(φ)φ = g(0)+g′(0)φ+1
2
g′′(θ1)φ2−

(u(0) + u′(θ2)φ)φ, where 0 ≤ θ1, θ2 ≤ φ. Then by the assumption (H1), we
have g(φ)−u(φ)φ ≤ L̃φ2 ≤ L̃w2

2e
2λ1ξ where L̃ = maxw∈[0,w2](|g′′(w)|+ |u′(w)|).

Since that ρ is small such that ρ < λ1, g(φ)− u(φ)φ ≤ L̃w2
2e

(ρ+λ1)ξ. Thus,

cφ′(ξ)− δφ′′(ξ) + bφ(ξ)−H(φ)(ξ)

=cw2(λ1 − L(ρ+ λ1)eρξ)eλ1ξ − δw2(λ2
1 − L(ρ+ λ1)2eρξ)eλ1ξ + g(φ)

− u(φ)φ−Mβ

∫ +∞

−∞

∫ η

−η
z2e−z

2

φ(ξ − s− z − ca0)dzfδa0(s)ds
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≤cw2(λ1 − L(ρ+ λ1)eρξ)eλ1ξ − δw2(λ2
1 − L(ρ+ λ1)2eρξ)eλ1ξ + L̃w2

2e
(ρ+λ1)ξ

−Mβ

∫ +∞

−∞

∫ η

−η
z2e−z

2

w2(1− Leρ(ξ−s−z−ca0))eλ1(ξ−s−z−ca0)dzfδa0(s)ds

=cλ1w2e
λ1ξ − cw2L(ρ+ λ1)e(ρ+λ1)ξ − δw2λ

2
1e
λ1ξ + δw2L(ρ+ λ1)2e(ρ+λ1)ξ

+ L̃w2
2e

(ρ+λ1)ξ −Mβw2e
λ1ξeλ

2
1δa0−λ1ca0

∫ η

−η
z2e−z

2

e−zλ1dz

+Mβw2Le
(ρ+λ1)ξe(ρ+λ1)2δa0−(ρ+λ1)ca0

∫ η

−η
z2e−z

2

e−z(ρ+λ1)dz

=− w2e
λ1ξ∆c(λ1) + w2Le

(ρ+λ1)ξ∆c(ρ+ λ1) + L̃w2
2e

(ρ+λ1)ξ

=w2e
(ρ+λ1)ξ∆c(ρ+ λ1)

(
L+

w2L̃

∆c(ρ+ λ1)

)
<0.

Here, L is a sufficiently large positive constant. Therefore, φ is a subsolution
of (5.12). The proof is complete.

5.2.3 Proof of Theorem 1.9

In this subsection, we also assume that (H1), (H2), (H3) hold. In order to study
the population of matured mosquitoes, we need the following two results which
are established by Wang et al. [94].

Lemma 5.12. [94, Theorem 3.3] Equation (1.15) has a unique mild solution
w(t, x) on [0,+∞] and w(t, x) is a classical solution to (1.15) for (t, x) ∈
(a0,+∞) × R. Furthermore, for any pair of supersolution w(t, x) and sub-
solution w(t, x) of (1.15) on [0,+∞) with 0 ≤ w(t, x), w(t, x) ≤ w2 for
t ∈ [−a0,+∞), x ∈ R, and w(s, x) ≥ w(s, x) for x ∈ R, s ∈ [−a0, 0], there
holds

w(t, x) ≥ w(t, x), x ∈ R, t ≥ 0,

w(t, x)− w(t, x) ≥ Θ(J, t− t0)

∫ z+1

z

(
w(t0, y)− w(t0, y)

)
dy

for any J ≥ 0, x and z ∈ R with |x− z| ≤ J , and t > t0 ≥ 0, where

Θ(J, t) =
1√

4πdt
exp

(
−L1t−

(J + 1)2

4dt

)
, J ≥ 0, t > 0

and L1 = max0≤w≤w2 |g′(w) + u′(w)w + u(w)|. In particular, if there exists
x0 ∈ R such that w(0, x0) > w(0, x0), then w(t, x) > w(t, x) for any x ∈ R and
t > 0.
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Lemma 5.13. [94, Lemma 3.7] For each γ ∈ (0, 1), there exist ρ > 0 and
σ > 0 such that for each ε ∈ [0, γ], the following function

w(t, x) = (1− εe−ρt)φ(x+ ct+ σεe−ρt) (5.19)

is a subsolution of (1.15), where t ∈ R, x ∈ R and φ is a traveling front of
(1.15).

Proof of Theorem 1.9. Recalling the equation (1.12) which is the definition of
w(s, x), we have w(s, x) =

∫ a†
a0
p0(a + s, x)da 6≡ 0 for every s ∈ [−a0, 0] and

w(s, x) ≤ w3. Then, by Lemma 5.12, one has that

w(t, x) ≤ w3, for t > 0 and x ∈ R.

w(t, x) > 0, for t > 0 and x ∈ R.

It follows that infx∈Rw(T + s, x) > 0 for some fixed T > 0 and s ∈ [−a0, 0].
Then, by Lemma 5.13, one can pick ε > 0 close 1 enough such that

w(s, x) = (1− εe−ρs)φ(x+ cs+ σεe−ρs)

≤ (1− ε)φ(x+ cs+ σεe−ρs)

≤ inf
x∈R

w(T + s, x)

≤ w(T + s, x), for s ∈ [−a0, 0] and x ∈ R.

Therefore, by Lemma 5.12, it follows that

w(T + t, x) ≥ w(t, x), for t ≥ 0 and x ∈ R.

Then, using (5.19), one can obtain

w(T + t, x) ≥ w2, as t→ +∞.

This completes the proof.

5.3 Numerical simulations

In the following, we provide some numerical simulations to illustrate the inter-
action between the matured population and the control. We rescale the bitting
time variable x ∈ [0, 24] into x ∈ [0, 1] and we assume that a† = 1, that is,
a ∈ [0, 1). We take the matured age a0 = 0.1. We consider system (1.10) with
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5. Large-time behavior of an age structured model

the parameters taking the values as follows

δ = 0.001, η = 0.1, β(a) =

{
0, a ∈ [0, a0),

200, a ∈ [a0, 1),

p0(a, x) = 0.5e−10(x−0.5)2e−10(a−0.4)2 for x ∈ [0, 1].

Firstly, we take that

µ(a, w) =

{
0.1a, a ∈ [0, a0),

0.1a0 + 0.5e2.4a, a ∈ [a0, 1),
(5.20)

and consider (1.10) under no control, that is, u(a, w) = 0. Then, in figures
9 and 10, we plot the matured population w(t, x). We can see that w(t, x)

becomes very large as time goes. It implies that if there is no control, the
matured population will be very large.

Figure 9: the matured population w(t, x) for t = 0 and t = 0.25 with no
control.

Figure 10: the matured population w(t, x) for t = 0.5 and t = 1 with no
control.
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Now, we still take µ(a, w) be (5.20) and take the control large as

u(a, w) =

{
0, a ∈ [0, a0),

−w2 − 95, a ∈ [a0, 1),

Then, in following figures 11 and 12, we plot the matured population w(t, x).
We can see that w(t, x) becomes very small as time goes. It means that under
large control, the matured population will extinct.

Figure 11: the matured population w(t, x) for t = 0 and t = 0.25 with control
u(a, w).

Figure 12: the matured population w(t, x) for t = 0.5 and t = 1 with control
u(a, w).

Finally, we take that

µ(a, w) =

{
0.1a, a ∈ [0, a0),

0.1a0 + 0.5e2.4aw, a ∈ [a0, 1),
and u(a, w) =

{
0, a ∈ [0, a0),

−w2, a ∈ [a0, 1).

In following figures 13, 14 and 15, we plot the matured population w(t, x). We
can see that w(t, x) is in [5, 6] as time goes. It implies that under suitable
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5. Large-time behavior of an age structured model

control, the matured population will be controlled to be bounded and will not
extinct.

Figure 13: the matured population w(t, x) for t = 0 and t = 0.25.

Figure 14: the matured population w(t, x) for t = 0.5 and t = 1.

Figure 15: the matured population w(t, x) for t = 1.5 and t = 2.
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Appendix

Bellman’s Lemma [13]: If x ∈ C([a, b]), ψ ∈ L1(a, b), ψ(t) ≥ 0 a.e. t ∈
(a, b), M ∈ R and for each t ∈ [a, b],

x(t) ≤M +

∫ t

a

ψ(s)x(s)ds,

then

x(t) ≤M exp

(∫ t

a

ψ(s)ds

)
.
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