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Résumé 
Titre de la thèse : Design, réalisation et test in situ d’une caméra muon pour des applications en sciences 
de la terra et en génie civil 
Mots-clés : muon cosmique, tomographie, Micromegas, chambre projection temporelle, rayonnement 
cosmique, muographie 
 
Cette thèse est dédiée à la création d'un nouvel outil pour la mesure directionnelle du flux muonique basé 
sur une chambre de projection temporelle fine avec un plan de lecture Micromegas, afin d’obtenir un 
détecteur compact avec une résolution angulaire compatible avec les applications d’imagerie ou de 
monitoring en génie civil et géophysique. La principale motivation est de développer un détecteur capable 
de combler le vide technologique pour les applications ayant des contraintes d’encombrement et de 
transportabilité. 
Cette thèse fournit une revue des différentes technologies de détection de muons existantes et de leurs 
divers domaines d’application. Deux techniques de mesure de muons sont présentées : la muographie par 
transmission ou par diffusion. La muographie par transmission, mieux adaptée aux grandes cibles, est 
basée sur l'atténuation du flux naturel de muons cosmiques due à l'opacité des matériaux traversés. Cette 
technique passive et non-destructive fournit des informations originales qui pourront être intégrées dans 
une démarche d’imagerie. 
Le manuscrit présente la méthodologie utilisée pour la caractérisation du flux incident de muons à la fois 
en surface et dans des conditions souterraines. Une description détaillée des processus physiques 
déclenchés par le passage d'un muon à travers le détecteur est fournie. Les résultats des simulations des 
processus de formation du signal sont présentés et commentés pour justifier les choix du design des 
composants clés afin de répondre aux exigences de performance quant à résolutions temporelle, spatiale 
et angulaire. L'influence des paramètres opérationnels ou externes tels que le gain, la température ou la 
présence de contaminants est également traitée. 
La thèse étudieen détail les principales phases de conception et d'assemblage du détecteur MUST2, incluant 
(i) le design du plan de lecture Micromegas, (ii) le choix du gaz, (iii) le design d'un élément homogénéisateur 
de champ électrique (iv) le choix de l'instrumentation électronique et du signal de déclenchement associé 
au passage du muon, et (v) la création d'un système auxiliaire de gestion du gaz. 
La polyvalence du détecteur MUST2 a été prouvée avec l'utilisation réussie de différentes options de 
déclenchement et d’acquisition. Les données sont obtenues au travers d’un logiciel développé pour le 
système d’acquisition modulaire du CERN SRS, puis analysées avec un algorithme de reconstruction de la 
trajectoire, qui récupère le temps de passage, la position 2D, les angles zénith et azimut des muons qui 
traversent le détecteur. Les caractéristiques, les performances et les limites de la chaîne d'acquisition de 
données sont présentées et évaluées. Une série de directives visant à améliorer l’efficacité de la chaîne 
d'acquisition est proposée. 
Une série de tests de caractérisation a été effectuée dans différents environnements : faisceau contrôlé de 
muons, ciel ouvert, au fond d'une vallée et dans des conditions souterraines. Ces tests ont contribué à une 
meilleure compréhension des performances du détecteur et ont permis de régler ses paramètres 
opérationnels. Malgré les faibles statistiques des tests, les flux mesurés montrent une bonne corrélation 
avec les environnements ciblés. Une campagne de mesures en conditions réelles a été menée sur le barrage 
de Saint-Saturnin-les-Apt (Vaucluse). Les résultats expérimentaux obtenus, sont conformes aux valeurs 
anticipées par le modèle numérique, la transportabilité sur le terrain et la capacité à effectuer des mesures 
hors laboratoire à long terme ont été démontrées. En revanche, l’impact de la température externe sur 



l’acquisition des données devra être compensée pour obtenir une acquisition stable permettant de surveiller 
l’évolution temporelle du flux de muons. 
En conclusion, les bons résultats obtenus lors de ces tests permettent de valider la caméra MUST2 à des 
fins de muographie en transmission. 
 



Abstract 
Thesis title: Design, construction and in situ testing of a muon camera for Earth science and civil 
engineering applications. 
Keywords: cosmic muon, tomography, Micromegas, time projection chamber, cosmic rays, muography 
 
This thesis is dedicated towards the creation of a new direction-sensitive tool for muon flux measurement 
based on a thin time projection chamber with a Micromegas readout, to achieve a compact detector with 
an angular resolution compatible with civil engineering and geophysics imagery and monitoring 
applications. The main motivation is to develop a detector capable to fill the technological gap for 
applications with compactness and transportability constraints. 
The dissertation provides a review of the different existing muon detection technologies and their diverse 
fields of application. Two muon imaging techniques are introduced: transmission and scattering 
muography. Transmission muography, more suitable for big targets, is based on the attenuation of the 
natural-occurring cosmic-muon flux due to the opacity of the material they traverse. This non-destructive, 
passive technique provides original information that can be used for imaging purposes. 
The work covers the methodology used towards the characterization of the incidental muon flux both on 
the surface and in underground conditions. A detailed description of the physical processes triggered by 
the passage of a muon through the detector is provided. Results of the simulations of the signal formation 
processes are presented and discussed to justify the design choices of the key components so as to meet 
performance requirements in term of temporal, spatial and angular resolution. The influence of operational 
or external parameters such as the gain, temperature or presence of contaminants is covered as well. 
The thesis describes in detail the principal phases of design and assembly of the MUST2 detector, including: 
(i) the design of the Micromegas readout layout, (ii) the choice of gas, (iii) the conception of an electric 
field homogenizer, (iv) the choice of the electronics instrumentation and its trigger signal, and (v) the 
creation of an auxiliary system to manage the gas. 
The versatility of MUST2 has been proved with the successful use of different trigger options and 
electronics. The data is acquired by means of software developed for the CERN’s Scalable Readout System 
electronics and subsequently analyzed with a muon trajectory reconstruction algorithm, which retrieves 
the: time of passage, 2D position, zenith and azimuth angles of the muons traversing the detector. The 
characteristics, performance and limitations of the data acquisition chain are presented and evaluated, a 
series of guidelines towards the improvement of its efficiency of are provided. 
A series of characterization tests has been carried out in different environments: controlled muon beam, 
open sky, at the bottom of a valley and in underground conditions. These tests have enabled a better 
understanding of the performance of the detector and allowed to tune up its operational parameters. 
Despite the weak statistics of the test runs, the measured muon flux has shown a good correlation with 
the surrounding target volumes. A campaign of measurements in real field conditions has been carried out 
at the Saint-Saturnin-les-Apt (Vaucluse, France) dam. The experimental results obtained are in consonance 
with the values anticipated by the digital model, the field transportability and the capability to perform 
long-term out-of-lab measurements have been demonstrated. On the downside, the impact of the external 
temperature on the data acquisition should be balanced out to get a steady acquisition and monitor the 
temporal evolution of the muon flux. 
In conclusion, the successful proof-of-concept trial allows to validate the MUST2 camera for transmission 
muography purposes. 
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1.1. Objectives 

 
The main objective of the current doctoral thesis is to develop a new non-

destructive system using muons for in-situ imaging and monitoring the density of 
large volumes of matter. This new geophysical tool is meant to monitor civil 
engineering works or geological and hydrogeological volumes. 

The present work aims at enabling the market release of a new high-
technology instrument in the framework of natural hazard and risk management. 
To do so, it is necessary to take care of the following scientific and technical 
issues: 

• Ensure the academic/industrial know-how transfer. 
 

• The realization of a sturdy, reliable, portable and ergonomic 
detector for ground and underground operation. 
 

• The fine characterization of the detector, (for instance: spatial and 
temporal resolution, efficiency, gain, etc.) and calibration protocol. 
 

• Develop of a user interface and data analysis package. 
 

• The detector’s deployment and tune-up in the case study sites to 
monitor: tunnel, mine, cliff or landslide instable zones.  

 
The multidisciplinary nature of the present work, that combines particle 

physics, geophysics, instrumentation and industrial design among others, makes 
impossible to address exhaustively all the topics covered. The author aims at 
providing a document that allows a skilled person to understand: 

• The origin and interest of cosmic muons for tomographic purposes. 
 

• The physical processes that enable the muon detection with the 
presented technology. 
 

• The considerations and design choices towards the manufacture 
and industrialization of the technology. 
 

• The techniques and software developed to analyze the data 
acquired with the aim of characterize the muon flux trough the 
detector. 
 

• The characterization process of the technology’s performance. 
 

• The results of a real case field test to validate the detector’s 
transportability, long time data acquisition capability and dynamic 
imaging potential.  
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1.2. Project introduction 
1.2.1 Context of the project 

The project T2DM2 (acronym for Temporal Tomography of Density by the 
Measurement of Muons) was born in 2008, when Stéphane Gaffet and Pierre 
Salin developed the idea of using a muon detector to help to elucidate the 
dynamics of the water transfer process though the non-saturated zone of the 
Albion plateau (South–East of France). The entire massif is characterized by an 
important hydrogeological system, with several karstic structures within a thick 
unsaturated area overlying a saturated zone linked to the 1.100 km2 broad water 
reservoir of Fontaine de Vaucluse, France. 

The privileged position of the Low Background Noise Underground 
Research Laboratory (LSBB URL), as seen in Figure 1.1, allows access to the 
non-saturated zone of the aquifer at different depths, enabling the deployment of 
muon cameras to image the spatial and temporal dynamics fluid flow across the 
unsaturated zone of the reservoir. 

 
Figure 1. 1 Conceptual south-north cross-section of the southern flank of Albion plateau. The black 

horizontal line represents the vertical plane projection layout of the LSBB’s galleries [Sénéchal, 2013] i . 

  
During the period of 2008-2013 the project was focused on verifying the 

feasibility of the concept by testing several prototypes based on combinations of 
different Time Projection Chambers (TPC) read by Micro-Pattern Gaseous 
Detectors (MPGD). Ever since, the project members have actively participated in 
CERN1’s RD51 Collaboration, whose objective is the development and out-of-
CERN valorization of MPGD technologies. The mission of the RD51 is to facilitate 
the development of advanced gas-avalanche detector technologies and 
associated electronic-readout systems, for applications in basic and applied 
research. Because of this collaboration the project has access to the Micromegas 
(MICRO MEsh GAseous Structure) detector and the Scalable Readout System 
(SRS) to instrument it. 

                                            
1 European Organization for Nuclear Research 
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In parallel, the incorporation in 2012 of Fanny Hivert was the result of a 
collaboration between the CNRS2 and the MAIF foundation. Her thesis, entitled: 
“Characterization of the rock density and its spatial and temporal variations using 
muons: application to the Low Noise Underground Laboratory (LSBB)” was 
defended in 2015. In it, she used numerical simulations of muon flux to estimate 
the acquisition conditions required to detect a certain density variation for a given 
depth, with a special interest to the scattering of muons in relation to the density 
of material. The combination between her model and field measurements 
performed with liquid scintillators provided by the CPPM3 (ANTARES project), led 
to an estimation of the average density of the rocks located above the LSBB in 
good agreement with the expected value. 

In 2013 the particle physicist co-leader of the project, Pierre Salin, retired 
and Stephan Gaffet, geophysicist assumed leadership of T2DM2. The LSBB 
hired under its own resources the author with the aim to construct a new detector 
based on the prototypes and capable of withstanding the field measurements in 
order to validate the proof of concept. This innovative muon camera, named 
MUST2 (MUon Survey Tomography based on Micromegas detectors for 
Unreachable Sites Technology), is based on a thin TPC read by a resistive bulk-
Micromegas. The resources necessary to construct 5 additional detectors were 
provided by a combination of LSBB’s own resources and European Regional 
Development Fund (ERDF). 

Later in 2014, Thomas Serre started a 1-year post-doctoral fellow to 
develop the necessary software for the particle trajectory reconstruction. His 
participation was possible thanks to the LSBB and INSU4 funds. 

At this point and given the potential industrial interest of the technology, 
the LSBB, after consultation with the Society for the Acceleration of the 
Technology Transfer South-East(SATT), decided to start a patent process. 

In 2015, the French Geological Survey (BRGM) and IRIS Instruments 
joined the project and the partnership resulted in the current doctoral work. The 
author obtained a CIFRE5 fellowship6 hosted by IRIS Instruments and with the 
support of the French National Association of Technologic Research (ANRT). 
The academic institution in charge of the thesis is the École Doctorale Sciences 
Fondamentales et Apliquées of the Université Nice-Sophia Antipolis. 

The T2DM2 project interacts periodically with the worldwide muon 
tomography network and participates in the annual meetings of the Muographers 
community. The partners of the collaboration are among the promoters of the 
Marie Skłodowska-Curie Innovative Training Network proposals to create a 
European Muography Network submitted in 2016 and in 2017 for a second round. 
 

                                            
2 French National Center for Scientific Research 
3 Particle Physique Center of Marseille 
4 French National Institute of Universe Science 
5 French acronym for Industrial Convention of Formation trough Research 
6 Reference CIFRE 2015/0325 
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1.2.2 The members of the collaboration 

-BRGM 
The BRGM (Bureau de Recherches Géologiques et Minières) is France’s 

reference public institution for Earth Sciences applications in the management of 
surface and subsurface resources and risks. This organization was created in 
1959 and operates as a public industrial and commercial institution, reporting to 
the Ministry of Higher Education, Research and Innovation, the Ministry for the 
Ecological and Inclusive Transition, and the Ministry of Economy and Finance.  

Figure 1.2 highlights the foundational objectives of the BRGM.  
 

 
Figure 1. 2 Key roles of the BRGM. 

 
During the year 2017 a memorandum of understanding was signed 

between the BRGM and the University of Tokyo’s Earthquake Research Institute 
(ERI) to enhance their scientific cooperation towards the reduction and manage 
disaster risks through the muography imaging technique.  

The tasks of the BRGM within the collaboration are: 
- To suggest and provide access to suitable study sites in order to address 
specific challenges for the development of the technology due to its knowledge 
of the geological environment and the mining sites. 
- To consult during the development of a new tool for muon tomography, due to 
its vocation of developing new techniques and methodologies for better 
understanding the subsurface. 
- To offer guidance on natural risk, since one of its main goals it’s to “deliver the 
necessary tools for the management of soils, subsoils and their resources, risk 
prevention and policy responses to climate change”. 
  

Scientific 
research Support to public 
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development

Mine 
Safety

International 
cooperation

Training
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-IRIS Instruments 
IRIS Instruments, established in 1990 in Orléans (France), is a private 

company jointly owned by BRGM (51% holding) and the Japanese 
geotechnology group OYO (49%). It specializes in geophysical instrumentation 
for subsurface explorations and monitoring and designs. It produces and markets 
throughout the world geophysics equipment for environmental applications, water 
prospecting, geotechnologies and mineral prospecting (see Figure 1.3). 

IRIS Instruments R&D’s department represents more than 30% of the 
company activity. This department is dedicated not only to improving their exiting 
catalogue, but also to help provide new tools for geophysicist. 

 

 
Figure 1. 3 Most well-known technologies commercialized by IRIS Instruments. 

 
The role of IRIS Instruments as a partner is:  

-To build bridges between the different actors working in the muon tomography 
field in order to accelerate the progress towards a reliable muography tool for 
geophysics. 
-To advise during the process of converting a laboratory operational prototype 
into a sturdy product, capable of being transported and operated under harsh 
field conditions in a non-controlled environment. 
-To lead the industrialization process of the technology given its experience in 
the development of geophysical tools from their conception to their 
commercialization worldwide. 
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-LSBB 
The Low Background Noise Underground Research Laboratory (LSBB) of 

Rustrel (France) is a ground- and underground-based facility for interdisciplinary 
research, development and innovation. From an administrative stand point, since 
2012 the LSBB is a Unité Mixte de Service, UMS3538, funded and led by four 
scientific trusteeships: (i) Aix-Marseille University, (ii) CNRS, (iii) University of 
Avignon and (iv) University of Nice. The trusteeship council agreed to delegate 
the management of the LSBB Underground Research Laboratory to the CNRS 
Institution represented by Younis Hermes until March 2018, and Ghislaine Gibello 
since April 2018, CNRS Regional Delegates for the Provence and Corsica 
district, acting on their behalf. 

This unique laboratory is the outcome of the decommissioning in 1997 of 
a former launch control system of nuclear missiles. Its exceptionally low seismic 
and electromagnetic background noise makes it possible to carry out highly 
sensitive activities in a landscape far away from major sources of anthropogenic 
disturbances. 

The LSBB URL fosters the cross-fertilization between solid Earth, Earth-
atmosphere, astrophysics, particle physics, geology, geo-mechanics, 
electromagnetic environment, physics, rock engineering, metrology, electronics, 
the Cold War contemporary history and life sciences at European and 
international scales, and boosts the know-how transfer in diverse areas of 
metrology. The LSBB is based on the strength and diversity of scientific and 
industrial expertises available in Provence-Alpes-Côte-d’Azur, and on the 
openness of the LSBB platform to regional, European and international 
programs, taking advantages of: 

• A fully equipped underground access (ranging up to 500 m depth along 
~4.000 m of galleries) below ~500.000 m2 of land within a low anthropogenic 
background area and within the very thick and sensitive unsaturated zone of the 
main European geological underground water reservoir solely filled by rainwater. 
It allows basic and applied researches linked notably with regard to the 
development of new high-sensitive instrumentation in the frame of geophysics, 
astrophysics, particle physics and life science. 

• The presence of multi-physics experiments and instrumentations still 
running at LSBB that allows the emergence of new skills for metrology, 
instrumentation and methodology for the observation and experimentation. 

The assets of the LSBB with regard to the project are the following: 
- As the original promoter of the project, it is the institution that values the 
knowledge acquired during the former years. 
- Its multidisciplinary ambience fosters the exchange with diverse disciplines, 
leading to original approaches to overcome the technological challenges and 
development of innovative applications. 
- The multiple experiences carried out during over 20 years provide an 
exceptionally well-known operational framework in terms of geology and 
hydrogeology. 
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- It gives access to the necessary facilities for the construction of the detectors; 
including a clean room for the detector assembly. 
- The layout of the LSBB galleries offers an easy access to an underground 
environment with low background noise conditions. In addition, electricity and a 
network connection are available in most of the facilities, easing the material 
deployment and enabling remote operation.  
- Its surface facilities are extremely helpful for the open-sky measurements 
necessary for the technology validation. 
 

1.3. References 

i Se ́ne ́chal, G., Rousset, D. and Gaffet, S. (2013) Ground-penetrating 
radar investigation inside a karstified limestone reservoir. Near Surface 
Geophysics. Vol 11, No 3, 283 - 291 
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Chapter 2 abstract 
 
Muon tomography (or muography) covers a set of techniques based on 

the measurement of cosmic ray muons to generate images of the material they 
traverse based on the material’s physical properties. Primary cosmic rays from 
outer space hit the upper atmosphere and naturally produce a shower of 
secondary particles, including muons. 

Cosmic muons, as a result of their high energy and lack of strong 
interaction, are able to penetrate up to several hundreds of meters underground. 
The muon flux decreases progressively according to the medium opacity, setting 
the basis for transmission muography (detailed in Chapter 3). 

To quantify the flux decrease for imaging purposes, it is necessary to get 
a precise muon flux characterization at ground level as a reference input. The 
described empirical model allows analysis of the muon flux transmitted across 
the matter.  

On the other hand, matter behaves as an energy filter for muons. The 
muons’ energy spectrum evolves according to the opacity of the medium. The 
survival probability permits estimation of the muon flux received by the detector 
for and compare to the muon flux measure (e.g. critical zone survey, dam 
monitoring, etc.). 
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2.1. Introduction 

What are muons? Where do they come from? What makes muons 
particularly suitable for imaging purposes? These are often the first questions that 
outsiders address when facing muography.  

This chapter provides an essential introduction with a walk through the 
discovery of cosmic rays and the evolution of awareness about this phenomenon.  

Thanks to the contribution of a large number of scientists, the behavior and 
components of cosmic rays have been progressively unraveled during the last 
150 years. This chapter delves into the different factors that influence the 
development of air showers and sheds some light on how they can be modeled. 
Then, it will focus more specifically on the properties of muons and what makes 
them suitable for imaging large volumes of matter. 

The chapter also addresses the characterization of the muon flux both at 
the surface and underground as a vector of information for muon tomography. 

 
2.2. Cosmic Rays 

2.2.1 Discovery of radiation and cosmic rays 

The first sign of the existence of cosmic rays was observed in the end of 
the 18th century after the French physicist Charles Augustin de Coulomb made 
three reports on electricity and magnetism to France’s Royal Academy of 
Sciences. In the third report, he described an experiment with a torsion balance 
designed by himself (see Figure 2.1), which showed that the device would 
spontaneously discharge due to the action of the air instead of defective 
insulation [Coulomb, 1785]i. 

 

 
Figure 2. 1 Torsion balance electrometer. Figure from [Coulomb, 1785]. 
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In 1850, Carlo Matteucci and later, in 1879, William Crookes showed that 
the rate of spontaneous discharge decreased at lower pressures. The search for 
an explanation for the nature of this spontaneous discharge opened the door to 
the discovery of radiation and subsequently cosmic rays. 

The late 19th century was a fruitful period for a better understanding of 
subatomic physics. Wilhem Ro ̈ntgen discovered X-rays in 1895 while 
investigating cathode rays. He realized that they could have medical applications 
and took an image of his wife’s hand, as seen in Figure 2.2 (Left) [Ro ̈ntgen, 1895] 
ii. A year later, Henri Becquerel discovered radioactivity when he placed uranium 
salts on top of a photographic plate enveloped in black paper. The salts caused 
a blackening of the plate despite the paper in between (see Figure 2.2 (Right) 
[Becquerel 1903] iii). Becquerel concluded that invisible radiation that could pass 
through paper was causing the plate to react. 

 
 

In 1897, Thomson showed that cathode rays were composed of negatively 
charged particles, smaller than atoms. This marks the discovery of the electron, 
the first known elementary particle. At the same time, Marie Curie [Curie, 1898]iv 
realized that uranium is not the only element capable of emitting radiation and 
discovered a new property of matter, radioactivity. 

Radioactivity soon became the subject of intense investigation and by 
1899 Ernest Rutherford found two associated forms of radiation, which he called 
α (protons)1 and β (electrons). In 1900, Philippe Villard discovered a third, 
penetrating radiation, which Rutherford named γ -rays. 

The experiments carried out by Julius Elster and Hans Geitel on shielded 
electroscopes lead to the conclusion that the different types of radiation have a 
penetration power proportional to their energy and even suggested that ionization 
of air could be caused by penetrating extra-terrestrial radiation. 

In the dawn of the 20th century, ambient radiation is a known phenomenon, 
but the general belief was that it had a telluric origin. 

                                            
1 It will be proved later that alpha particles correspond to helium-4 nuclei. 

Figure 2. 2 (Left) Hand with Rings: print of first medical X-ray made by W. Röntgen. (Right) Image of 
Becquerel's photographic plate. The shaded area results from the exposure to radiation from a uranium 

salt. 
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In 1901 Charles Wilson tests if the ionizing radiation has an extra-
terrestrial origin. He took measurements of natural radioactivity inside an old 
railway tunnel expecting attenuation related to the underground conditions. 
However, due to the observational error, he saw no reduction compared to 
outside on the surface [Wilson, 1901]v. The scientific community largely 
dismissed the theory.  

It is in 1909 when Theodor Wulf designed and built a more performant and 
more transportable electrometer, shown in Figure 2.3. After measuring the 
ionization of the air in various locations, he concluded that his results were 
consistent with the hypothesis that the penetrating radiation was caused by 
radioactive substances in the upper layers of the Earth’s crust. Thus, if the 
radioactivity was coming from the Earth, it should decrease with height. 

Figure 2. 3 Wulf’s original electroscope. 

To validate his hypothesis he designed an experiment, conducted at the 
Eiffel tower, where he compared the values at the base against those from the 
top [Wulf, 1910]vi. Unfortunately, the measurements, despite being correct, could 
not prove his hypothesis due to the disagreement with an analogue experiment 
carried out in Valkenbourg [Paul et Robert-Esil, 2009]vii. 

Only in 1912, and thanks to two independent experiments, was the extra-
terrestrial origin of cosmic rays proven [De Angelis, 2013]viii. On the one side, the 
physicist Domenico Pacini (figure 2.4 (Left)) performed a pioneer experiment of 
underwater measurement of radiation. He observed the radiation strength to 
decrease 20% when going from the surface to 3 meters underwater (both in a 
lake and in a sea). He also found a reduction of 30% in the measurements 300m 
away from the shore compared to measurements on land [Pacini, 1912]ix. Their 
results suggested that a meaningful portion of the radiation must be independent 
of emission from the Earth’s crust. 



Ignacio Lázaro Roche 

 14 

 
 

On the other side, Viktor Hess (Figure 2.4 (Right)) started in 1911 a new 
campaign to assess the effect of height in the measurements. But unlike Wulf, he 
employed balloons to reach grater altitudes. In the measurements performed at 
an altitude of around 1.100 meters, did not find an essential change in the amount 
of radiation compared with ground level. Afterwards, in 1912, Hess reached 5.300 
meters during a near-total eclipse of the Sun. With the moon blocking much of 
the Sun's visible radiation, Hess still measured rising radiation at rising altitudes. 
He stated that: "The results of my observation are best explained by the 
assumption that a radiation of very great penetrating power enters our 
atmosphere from above" [Hess, 1912]x.  

This event marks the discovery of cosmic rays.  
2.2.2 Unraveling the cosmic rays 

The cloud chamber, invented by Charles Wilson in 1911 [Wilson, 1911]xi, 
is an important breakthrough in the history of particle physics and cosmic rays. 
This device, originally developed to study atmospheric phenomena, made it 
possible to record the tracks of the particles, visible as trails of droplets, and to 
photography them. During the first half of the 20th century, experiments that 
looked at cosmic rays passing through cloud chambers revealed the existence of 
several fundamental particles. 

Nevertheless, after multiple observations of cosmic rays, its nature 
remained still undetermined. The study of Rutherford on atomic structure shed 
some light on this issue [Rutherford, 1911]xii. In his analysis of the wide-angle 
scattering of α-particles from gold, he concluded that the results demonstrated 
that the positive charge of the atom was concentrated in a little, central region, 
the nucleus. A few years later, in 1919, he proclaimed the discovery of the proton 
as a primary constituent of the nucleus. 

Figure 2. 4 (Left) Domenico Pacini making a measurement in 1910. (Right) V. Hess in a balloon used for 
his measurements. 
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During the late twenties, the nature of cosmic rays became a subject of 
discussion. Whereas Robert Millikan was convinced that the primary cosmic rays 
were photons released in the synthesis of heavier elements from hydrogen in 
space and coined the term “cosmic rays”, Arthur Compton stated that the cosmic 
particles were charged. 

Technical developments ran parallel to this fierce debate. In 1929 Hans 
Geiger and Walter Müller introduced the Geiger-Müller detector [Geiger-Müller, 
1929]xiii, which represented a big step forward for the field. The detector consisted 
of a gas-filled tube capable of registering individual charged particles. A 
combination of detectors working in coincidence mode allows determination of 
the path of a cosmic ray. 

This technique inspired Bruno Rossi to conceive the coincidence detector 
shown in Figure 2.5. It confirmed the results that most of the detected cosmic 
rays were charged particles and had too much energy to be created from gamma 
rays emitted in the synthesis of elements, dismissing Millikan’s proposition 
[Rossi, 1930]xiv. Later, in 1932, he found that 60% of the cosmic rays could pass 
through a 25-cm piece of lead, could also traverse 1 m of lead. Rossi confirmed 
that the cosmic ray flux contains a soft component easily absorbed in a few 
millimeters of lead, and a hard component of charged particles. 

 

 
Figure 2. 5 Rossi's Cosmic ray telescope, consisting of two coincidence counters mounted on pivots so 

measurements could be made in any direction. 
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Around the same time Jacob Clay, during his trip between Java and the 
Netherlands, observed a latitude effect in his measurements [Clay, 1927]xv. He 
witnessed a drop of cosmic rays’ intensity near the equator. This effect follows 
from the dipole behavior of the Earth’s magnetic field, which deflects the charged 
particles coming from outer space and expels the ones below a certain energy 
threshold. This effect reaches its limit near the geomagnetic equator and 
decreases progressively towards the poles. To broaden the scope of the 
experiment, Arthur Compton led a worldwide measurement campaign to assess 
the geographic effect. These measurements, shown in Figure 2.6, confirmed the 
latitude effect that Clay had noticed previously, and hence, provided another 
proof that cosmic rays are charged particles [Crozon, 2005]xvi. 

Another effect was predicted by Bruno Rossi, an asymmetry related to the 
sign of the charge of cosmic rays. The Earth’s magnetic field bends incoming 
charged particle showers so that if they are more negative, more come from the 
east than from the west and vice-versa, it is the so-called "east-west effect". 

Three independent experiments: [Johnson, 1933]xvii, [Alvarez, 1933]xviii 
and [Rossi, 1934a]xix. found that the intensity is, in fact, greater from the west, 
proving that most primary cosmic rays are positive. While testing the 
instrumentation for his East-West experiment, Rossi, discovered the occurrence 
of extensive showers of particles produced by interactions of cosmic rays in the 
atmosphere, a phenomenon subsequently studied by Pierre Auger, whose name 
became associated with this discovery. 

 

 
Figure 2. 6 Map with isocosmic lines, the values indicate the number of ions per cm3 and second. The dots 

represent the measurement stations at sea level. 

 
 



Chapter 2. Muons. 

 17 

2.2.3 Cosmic-ray air shower 

Rossi noted coincidences between several counters placed in a horizontal 
plane, far in excess of chance coincidences. He noted in one of his papers: "... it 
seems that once in a while the recording equipment is struck by very extensive 
showers of particles, which causes coincidences between the counters, even 
placed at large distances from one another" [Rossi, 1934b]xx. This was the first 
proof of the production of showers of secondary particles. 

In 1937 Pierre Auger, unaware of Rossi's former report, detected the same 
phenomenon while measuring with two Geiger-Müller detectors located many 
meters apart in coincidence mode to reduce the background noise. The 
coincidence rate obtained was higher than the expected accidental rate and he 
started a systematic investigation of the showers. He deployed detectors in Paris, 
at the Pic du Midi and in Jungfraujoch observatory, the last ones coupled to a 
cloud chamber.  

As seen in Figure 2.7, while the counting rate drops in going from 10 
centimeters to 10 meters, the rate decreases faster at larger distances. Auger 
had recorded "extensive air showers" and he concluded that the observation 
seemed best described by the theory of electron-photon cascades, with a particle 
of very high energy starting a cascade at the top of the atmosphere, which rises 
to a maximum number of particles way down and fades in the atmosphere. 
Despite his error, Auger succeed to estimate the total energy of the shower, and 
thus of the primary particle, nearly 1015 eV [Auger, 1939]xxi.  

 
Figure 2. 7 The black dots represent the rate of coincidences per hour of two detectors. The solid line 

shows a model that fits the experimental data while the dashed line stands for the predicted result 
considering that the primary particles causing the air shower are electrons or photons. 
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It was only in 1946 that Auger noticed the different origin of showers. On 
the one hand the presence of penetrating particles, such as muons, made by 
Cocconi, Loverdo and Tongiorgi unveil a mesonic component of the air shower. 
On the other hand, Skobelzyn et al. found coincidences with detectors more than 
1 km apart, which could not be explained by the proposed theory [Hillas, 1972]xxii. 

2.2.4 Primary particles 

The principal components of primary cosmic-ray particles are protons 
(79%) and helium nucleus (15%) but, as seen in Figure 2.8 from [Gaisser and 
Satenv, 2008]xxiii, they might also be photons or nucleus from heavier elements. 

 

 
Figure 2. 8 Fluxes by nuclei component of the primary cosmic radiation in particles per energy-per-nucleus 

are plotted vs energy-per-nucleus. 
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Big air showers are produced by the interaction of high-energy cosmic 
primary particles with the atmospheric nuclei, causing a spallation reaction. The 
large energy spectrum of cosmic primary particles ranges from 106 eV to 1020 eV 
as seen in Figure 2.9 from [Grieder, 2001]xxiv. 

 
Figure 2. 9 Muon energy spectrum of primary cosmic-ray particles. This figure includes every type of 

nuclei. 

 
The energy spectrum can be divided into three different zones according 

to the energy of the primary cosmic-ray particles.  
The low-energy particles, up to a few GeV, mainly originate from the Sun 

and are modulated by the solar winds [Spurio, 2015]xxv. To measure them, 
detectors have been installed in the upper layers of the atmosphere in space. 
The most well-known is the alpha magnetic spectrometer AMS-02 (see Figure 

Knee 

Ankle 
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2.10) located on the exterior of the International Space Station [Aguilar, 2013]xxvi. 
The size constraint inherent to space equipment is balanced by the high flux of 
these particles. 

 

 
Figure 2. 10 Alpha magnetic spectrometer AMS-02. Picture from NASA-ISS. 

 
The second zone contains the particles with energies ranging from 10 GeV 

to 10 PeV. They come, in most cases, from outside of the solar system, whose 
origin is explained by Fermi [Fermi, 1949]xxvii. He proposed that these particles 
would be generated by massive stars during the last stellar stage of their lives, 
one final gigantic explosion called supernova. The protons undergo diffusive 
shock acceleration and reach high energy when being repeatedly reflected, 
usually by a magnetic mirror. 

As evidenced by Figure 2.9, the flux of primary cosmic-ray particles in this 
zone, Φ", decreases exponentially. The behavior of this flux may be described 
by the Equation (2.1) proposed by Gaisser [Gaisser, 1990]xxviii. 

 

Φ" #
$

%&'·)*·)
+ = 1,8 0

123

%&'·)*·)
4 · 5[789];<   (2.1) 

 
Due to the particle heterogeneity, the graph presents two slope 

discontinuities: one near 5·1015 eV called the “knee” and the other close to 1018 

eV called the “ankle”. Transitions might be associated with different cosmic 
sources. The general consensus is that the knee represents the transition from 
galactic sources (supernova remnants) and extra-galactic sources (AGN, 
blazars, etc). 

Therefore, the value of = depends on the energy rank considered; for 
instance, = ≈ 2,68 for the particles with energies ranging from a few keV to 100 
TeV and = ≈ 3,15 for higher energies. 

The third zone consists of very energetic particles with over 1015 eV and 
their origin remains uncertain to this day. The detection of these events is rare 
(below 1 particle/(m2·year)). 
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2.2.5 Development of an air shower 

According to the kind of interacting particle, the air shower has two 
simultaneous natures: electromagnetic and hadronic [Grieder, 2010]xxix. The 
development of an air shower (see Figure 2.11 from [Gosse and Phillips, 2001]xxx) 
can be divided into three different components. 

 

 
Figure 2. 11 The cosmic ray cascade. Secondary particle production in atmosphere and rock. 

 
1. Hadronic component. 

The bulk of air showers are initiated by hadrons. A hadron is a composite 
particle made up of quarks held together by a strong force. They comprise 
baryons (e.g. protons and neutrons) and mesons. Due to their high energy and 
strong interaction, they are highly interacting particles and produce a great 
number of secondary particles when colliding against the nuclei of the 
atmospheric atoms (AN), as seen in Equation (2.2). 
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p + AN	 → p	, n	, AN	, JK	, 	J±	, M±	   (2.2) 
 

where p is a proton, n is a neutron, J are pions and K stands for kaons. The first 
three products (p, n and AN), allow a sustained chain reaction and increasingly 
deeper propagation of the air shower into the atmosphere. 

The neutral pion JK has an extremely short mean lifetime (8,4·10-14 s) and 
decays into gamma rays (see a more detailed explanation in Point 2, 
electromagnetic component). Charged pions 	J± have a longer half live than the 
neutral ones (26 ns), and their behavior will be influenced by the atmosphere 
density. A dense atmosphere will lead to a matter interaction of type (2.2) and 
create another hadronic air shower. On the contrary, a light atmosphere allows 
the decay of the pion into a muon N and a neutrino O. 

 
J± 	→ 	N± +	OP	(OPR )	    (2.3) 

   
The upper layers of the atmosphere favor the decay of pions, but as the 

atmosphere becomes denser while approaching the ground, the trend reverses 
and new hadronic showers are created. Therefore, the meteorological variations 
of the atmosphere may modify in an non-neglectable way the composition of the 
cosmic ray shower. The kaon interactions are detailed in Point 3, mesonic 
component. 

2. Electromagnetic component. 
Neutral pions and other particles, upon decay, transform an important 

fraction of the hadron’s energy into high energy gamma rays. When the, the 
gamma ray γ is very energetic, it induces a pair production: 

 
γ + AN	 → 	AN +	8U +	8;	    (2.4) 

 
These electrons, e (either negative or positive) interact in turn with matter 

and produce new gamma rays though bremsstrahlung: 
 

	8± + AN	 → 	AN +	 	8± + 	=	   (2.5) 
 
In both cases – Equations (2.4) and (2.5)- γ and e interact with the electric 

field near the AN. The repetitive pair production and bremsstrahlung process 
creates an exponential growth of the electromagnetic shower, made of photons 
and electrons. The passage of the air shower causes air Cherenkov, air 
fluorescence and radio emission. This process will stop when the resulting photon 
has an energy close to the electrons rest mass, when the ionization losses will 
take overtake bremsstrahlung, restraining the growth of the electromagnetic 
shower.  
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3. Mesonic component.
The mesonic component consists of kaons and pions that decay into 

muons, electrons and neutrinos. The decay of pions has been already presented 
in Equation (2.3). The following reactions show the decay of kaons and muons. 

	M± → 	N± +	OP	(OPR ) (2.7) 

	N± → 	 8± +	O2(O2R ) +	OPR 	(OP	) (2.8) 

The large majority of atmospheric muons (~ 90 %) are produced by the 
pion decay mechanism, while the kaon decay represents less than 1%. The 
decay of muons in Equation (2.8), producing electrons, also contribute to the 
electromagnetic component of the air shower. 

Figure 2.12, from [Gaisser and Stanev, 2008]xxxi, illustrates the variation of 
the vertical flux for the major components of the air shower, depending on the 
atmospheric depth (expressed as the density of the air times the travelled 
distance, V

%&'
). The muon flux reaches its maximum at ~10-15 km of altitude.

Figure 2. 12 Vertical fluxes for E>1GeV. Points show the μ− 
measurements. 
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2.2.6 Cosmic rays at sea level 

The extent of the air shower depends mainly on the energy of the initiating 
particle. Low energy events develop in the high atmosphere and fade out as the 
atmosphere gets denser, only their muon and neutrino components are able to 
reach the surface. On the other hand, high energy events reach a maximum 
potential near ground level; ultra-high-energy cosmic rays (E >1018 eV) can 
generate billions of particles, which spread over a few tens of square kilometers. 

The flux and distribution of particles that reach the ground level depends 
on several factors as seen before. The latitude (North-South effect), the polarity 
of particles (East-West effect), the altitude and the local weather conditions are 
among the most important. Table 2.1 shows the percentage of different cosmic 
rays’ components at sea level.  

Note that the table doesn’t include neutrinos, despite their being 106 times 
more abundant than muons. This is due to the fact that neutrinos are electrically 
neutral and interact only via the weak subatomic force and gravity: this makes 
them extremely feebly interactive with matter and therefore extremely hard to 
detect with regular detectors. Cosmic neutrino detectors must be very large, from 
several thousands of m3 on, to detect a significant number of events and are 
usually underground (e.g. Super-Kamiocande [Fukuda, 2001]xxxii) or underwater 
(e.g. Antares [Adrian-Martínez, 2012]xxxiii) in order to avoid the background 
radiation such as cosmic muons. 
 
Table 2.1. Cosmic rays components at sea level [Bogdanova, 2006]xxxiv. 

Total flux Muons Secondary neutrons Electrons Protons & Pions 

300 W

	XY·Z
 63% 21% 15% <1% 

 
Muons are the most abundant charged particles at sea level and their role 

is explained in detail in the next chapter. The nucleonic component, neutrons and 
protons, at ground level are degraded remnants of the primary cosmic radiation, 
as seen in Equation (2.2).  

The electrons come from the electromagnetic component, also called soft 
component. While at high altitude the decay of neutral pions is a more important 
source of electrons, positrons and photons, at sea level muon decay is the 
dominant source of low-energy electrons. The knock-on electrons (secondary 
electrons with enough energy to escape from the primary radiation beam and 
produce further ionization) make a small contribution at low energy as well 
[Hayakawa, 1969]xxxv. 
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2.3. The interest of muons 
2.3.1 Discovery of muons 

The first observation of a muon was in 1936 when Anderson was studying 
cosmic rays [Anderson and Neddermeyer, 1937]xxxvi. He detected a particle that, 
under the influence of a magnetic field, curved differently than known particles.  

The experimental setup, shown in Figure 2.13 (from [Leprince-Ringuet, 
1945]xxxvii), consisted of a cloud chamber with a screen inside and a certain 
magnetic field around the copper cylinder. Charged particle trajectories are 
modified in a magnetic field, with the curvature depending on the particle’s mass 
and energy (Larmor radius). Since the loss of energy through the screen is known 
and the setup enables two different measurements (before and after the screen), 
it allows the calculation of the particle’s mass and energy. 

The particle coming from point A with a thin, almost straight trajectory and 
discontinuous track, represents a muon with high energy. Once it crosses the 
glass screen and loses energy, its track becomes thicker and its Larmor radius 
smaller. 

 
Figure 2. 13 Photo of two tracks with two different energies (A and C) from the same muon inside a cloud 

chamber under a magnetic field. 

 
By the shape and direction of the curve, Anderson guessed that the 

particle should have a negative charge and a mass intermediate between the 
electron and the proton, thus its original name mesotron (from the Greek mes- 
for middle). The existence of this new particle was confirmed only a year later 
[Stevenson, 1937]xxxviii. The discovery of more intermediate particles (pion in 
1947) led to the creation of a new family called mesons and the mesotron was 
renamed “µ-meson”. 

Glass 
 screen  

Copper 
cylinder 
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2.3.2 Muon fundamental properties 

Muons are elementary particles, which means that according to present 
theories, they are not made of other particles or whose substructure is still 
unknown. As seen in Figure 2.14, the muon is a fermion and it has spin of ½. It 
belongs to the lepton second generation, which means that it does not undergo 
strong interactions. On the other hand, they are susceptible to the other 
fundamental forces: the weak force, the electromagnetic force, and the 
gravitational force. 

It is a negatively charged particle (q= -1 e), but like all elementary particles, 
the muon has a corresponding antiparticle of reverse charge (+1 e) and identical 
mass and spin: the antimuon (also named positive muon). Muons are denoted by 
μ− and antimuons by μ+. 

Muons have a mass 207 times larger than the electron (0,511 MeV/c2 vs 
105,66 MeV/c2). Due to their greater mass, they do not emit as much 
bremsstrahlung radiation as electrons, which allows them to penetrate deeper 
into matter than electrons for a given energy. 

 
Figure 2. 14 Classification of elementary particles according to the standard model. Source Wikimedia 

Commons. 
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Muons are unstable particles with a mean lifetime (average length of time 
before its decay) of 2,2 µs. If we consider that they travel at 99,98 % of speed of 
light, a simple calculation would tell us that most shouldn’t travel more than a few 
hundreds of meters. Yet, muons are capable of traveling long distances, for 
instance a particle with a zenith angle of 60º must cross 30 km of atmosphere to 
reach the ground. 

The explanation of this effect is that muons undergo time dilatation due to 
their near-light speed [Easwar, 1991]xxxix. According to the theory of special 
relativity, the time interval between two events is not invariant from one observer 
to another, but depends on the relative speeds of the observers' reference 
frames. The Lorentz transformation, see Equations (2.9) and (2.10), accounts for 
this effect and provides the cosmic muon mean lifetime in our time frame: 

 
τ = γ\ · τK     (2.9) 

 
where gL (Lorentz factor) is given by the following equation: 
 

γ\&]^_ =
$

`$;abcde'
f'

     (2.10) 

 
Solving Equation (2.10) for g&]^_h ih⁄ = 0,9998 we obtain γL ~70. 

Therefore, the mean lifetime and reach of the cosmic muon are extended to 154 
µs and to ~50 km respectively. 

On the other hand, low energy muons (few GeV) have a Lorentz factor γL 
of 2 � 10 which induces a mean decay length of � 6 km. Since cosmic pions are 
typically produced at altitudes of 15 km and decay relatively fast, the daughter 
muons do not reach the sea level but rather decay themselves as shown in 
Equation (2.8). 

 
2.4. Muon flux characterization towards tomography 

2.4.1 Muon flux modeling at sea level 

The need to characterize the natural flux of muons plays a major role in 
using muons to create tomographic images based on absorption. Figure 2.15 
(Left), adapted from [Cecchini, 2012]xl, represents the integral fluxes (averaged 
over the 11-year solar cycle) energy distribution of the main components of 
cosmic rays arriving at sea level in latitudes ~40º. 
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It is possible to differentiate three regions according to the muon energy: 

A. Eµ < 1 GeV, where the spectrum is close to flat. In this region muon decay and 
muon energy loss must be taken into account. 

B. 1 GeV < Eµ< mn,o, being mo= 115 GeV and mn= 850 GeV the critical energies1 
for kaons and pions in the vertical direction respectively [Kellog, 1989]xli. Over 
~100 GeV the energy loss is negligible, and the muon flux follows the same 
power law as parent mesons. 

C. Eµ > mn,o: given the increase in the Lorentz factor and the small thickness of 
the atmosphere, the kaon and pion decay are suppressed. In this region, the 
flux of non-vertical muons is higher as seen in Figure 2.15 (Right). 

 
For muons with energy close to 4 GeV (average energy at sea level), the 

angular distribution is well represented by cos2q. As the zenith angle increases 
(and therefore the muon’s path through the atmosphere), the low energy muons 
decay before reaching the ground level, increasing the average Eµ for that given 
angle. 

The muon energy and angular distribution is the effect of a convolution of 
the production spectrum, decay and energy losses in the atmosphere. The 
equilibrium between decay and interaction is a decisive factor in stablishing the 
relative importance of the two processes, and is based on the meson component 
characteristics. 

                                            
1 The critical energy is defined as the point where the energy loss 

contributions from ionization and radiative processes are balanced. More details 
in Section 2.4.2. 

Figure 2. 15  (Left) Averaged integral fluxes of muons, electrons, photons and protons arriving at latitudes 
~40º. (Right) Angular distribution of muons at the ground for different muon energies. 
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The differential muon flux (ΦP) depends on the energy at sea level of the 
muon (Eµ) and its zenith angle (q), and is defined as follows: 

 

ΦPp5P, qr =
stupvu,wr

sx	sy	sz	svu
	

&]^_)
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   (2.11) 

 
where {|P is the number of muons crossing an area (dA), during a given time 
(dt) from a certain solid angle (dW). 
 

There are three different approaches to quantify the muon flux at sea level: 
a) Measures: the direct measurement of the muon flux is the only way to 

determine it precisely, yet it presents some disadvantages: the detector’s 
efficiency and eventual corrections due to its geometry must be considered 
and the background noise accounted for. 

b) Numerical simulation based on Monte Carlo methods: there are softwares 
such as CORSIKA (COsmic Ray SImulations for KAscade), which allow the 
detailed simulation of extensive air showers, including the muon fluxes for 
different locations and heights [Heck, 1998]xlii. 

c) Empirical model: experimental data of muon flux can be fitted, and the 
parameters of the curve calculated to predict the flux. The limitation of this 
approach is that the fit is only valid for a certain part of the muon spectrum.  

So far it doesn’t exist a software or unified model to describe the entire 
spectrum, hence the user must choose the most convenient model and 
parameters according to his needs.  

Considering the approach (c), one of the most widespread models is that 
proposed by Gaisser in 1990 and subsequently improved by other contributors, 
shown in Equation (2.12): 
 

ΦPp5P, qr ≈ } · 5P
;<
· p~oPp5P, qr + ~�Pp5P, qr + Ä%r · Å1(5, q)  (2.12) 

 
 

where: 
- Eµ is the muon energy at sea level in GeV, 
- q is the muon zenith angle in radians, 
- A is a normalization factor (0.14 123

%&'·)*·)
), 

- ~oP  describes the muons produced by pions: it considers the pion 
production in the atmosphere ÇoP=1, the branching ratio ÉoP=1 and the 
pion critical energy mo = 115 GeV. This factor is given as follows: 
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~oPp5P, qr =
ÑÖu·ÇÖu

$U
Ü.Ü·àu·âäãå

çÖ

    (2.13) 

 
- ~�P describes the muons produced by kaons: it considers the kaon 

production in the atmosphere Ç�P = 0,085, the branching ratio É�P = 
0,635, and the pion critical energy mo = 850 GeV. This factor is given as 
follows: 
 

~�Pp5P, qr =
Ñéu·Çéu

$U
Ü.Ü·àu·âäã å

çé

    (2.14) 

 
- rc refers to the ratio of the prompt1 muons to pions. This effect wasn’t 

considered in Gaisser’s original model, but was introduced by [Tang, 
2006]xliii to reflect the effect of high energy muons. Its contribution is 
important for our application, as it describes a fraction of the muon 
spectrum which is likely to be found in underground measurements. 

- Å1(5, q) is the probability for a muon to reach sea level. 
 
Different estimations of these parameters for specific conditions are 

provided by several authors. A thorough comparative analysis have been made 
by [Lesparre, 2010]xliv. 

As seen in Figure 2.16, the incident zenith angle (q) of the muons in the 
Gaisser model, was defined as the angle between the particle’s trajectory and 
the axis normal to the high atmosphere over the detector.  

Given that the Earth is not flat, muons with high incident angles have 
different apparent angular values. Lesparre proposed Equation (2.15) to account 
for the Earth’s curvature. It describes more accurately the real path of muons with 
q > 60º along the atmosphere, where the effect of the curvature is non-negligible: 

 

ièêq∗ = í1 −
$;(%^)w)'

î$U
ïñób
òô

ö
'    (2.15) 

 
where õúy&  is the muon production altitude for particles with q > 60º (~32 km) 
and ùû is the radius of the Earth (~6.370 km). 

                                            
1 Prompt muons are generated from charmed particle decay and other so-

called prompt or direct processes. Unlike muons originated from pion and kaon 
decays, they don’t show dependence with the zenith angle. 
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Figure 2. 16 Diagram to illustrate the difference between q and q*. Adapted from Lesparre. 

 
Another simplification assumed by Gaisser was that the energy of the 

muon arriving at sea level (5P) was the same as the energy at the moment of 
production (5üP). As seen in the previous section, however, muons lose energy 
during their atmospheric displacement (∆E), given as follows: 

 
5üP = 5P + ∆E     (2.16) 

∆E = 	¢úy& · 	#
£§

•¶ß	 w∗
− ®K+    (2.17) 

 
where: 

- a™´¨ is the ionization energy loss (~2ÆØ∞·•¨
'

±
), responsible for 99 % of the 

total energy loss [Bichsel, 2010]xlv, 
- ®≤ is the atmospheric opacity at sea level (1.030 V

%&'
) [Dar, 1983]xlvi, 

- ®K is median opacity of the atmosphere between its external boundary and 
the muon production altitude (120 V

%&'
) [Tang, 2006]. 

 
Equation 2.17 takes into consideration that the muons undergo different 

gradients of density according to their trajectories. The air density changes faster 
per unit of length traveled for near vertical muons than for the ones with a tilted 
incident angle. 

The muon’s probability to reach the sea level, Å1(5, q), is associated with 
the muon decay due to its energy loss and is defined as: 

 

Å1 = 	#
£≥·•¶ß	 w

∗

£§
+

¥u
µÜ

âäãå∗·à∂u   (2.18) 

where =P;$= 1,04 GeV. In consequence, the energy required for a muon to reach 
the ground is proportional to its incidence angle. The decay phenomenon is 
observed in particles whose energy is below 1 TeV of energy: beyond this point 
the particle has a high probability to reach the sea level [Lesparre, 2010]. 

Detector Muon trajectory 

Muon production 
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For a given energy, the muon flux presents a maximum at a characteristic 
zenith angle. This angle increases with the energy. Therefore, given the 
modifications to Gaisser’s original model detailed above, Equation (2.12) may be 
rewritten as:  

 

ΦP
).∑.p5P, qr ≈ } · 5üP

;<
· ∏

ÑÖu·ÇÖu

$U
Ü.Ü·à∂u·âäã å

çÖ

+
Ñéu·Çéu

$U
Ü.Ü·à∂u·âäã å

çé

+ Ä%π · #
£≥·•¶ß	 w

∗

£§
+

¥u
µÜ

âäãå∗·à∂u (2.19) 

 
This model will be used to describe the muon flux at the surface during the 

present work. 
Figure 2.17 shows the differential muon flux ( P

%&'·)·)*·123
) at sea level 

calculated with Equation (2.19) The flux is shorted by the particle’s energy and 
arrival zenith angle, where 0º represents the zenith and 90º represents the 
horizontal muons.  

 

 
Figure 2. 17 Angular and energy distribution of the differential muon flux at sea level. 
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The muon detection technology presented in this work is able to 
reconstruct the trajectory of a muon while it crosses the detector. Yet, it is not 
capable of determining the energy of the particle recorded. Under this 
circumstance, the differential flux provided by Equation (2.19) is not directly 
comparable to the measurement.  

To overcome this constraint, the differential muon flux can be integrated 
over the muon energy as seen in Equation (2.20). 

 

∫(q)	#
&]^_)

%&'·)*·)
+ = 	∫ ΦP

).∑.(5, q){5
º

vu
   (2.20) 

 

where 5P  is the muon energy at rest, ~0,1 GeV. 

Figure 2.18 represents the muon flux integrated over energy calculated 
with Equation (2.20) for a latitude near the geomagnetic parallel 40º North. It is 
possible to recognize the sinusoidal shape of the differential flux and the 
decreasing trend for high zenithal angles. Since only the zenith angles are 
considered, the East-West effect is not observable in the figure. 

 

 
Figure 2. 18 Muon flux integrated over energy at sea level as a function of the zenith angle. 
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2.4.2 Interaction between muons and matter  

As seen in the previous sections, the muon flux is progressively attenuated 
because of the particle’s energy loss. The amount of energy lost depends on the 
particle’s initial energy and the kind of interaction. The most part of losses are 
due to ionization and radiation (Bremsstrahlung, pair-production and photo-
nuclear) reactions. 

-Ionization: it is the result from the loss of an electron when a moving 
charged particle collides with subatomic particles or other atoms. 

The mean energy loss (sv
sΩ

) due to ionization might be modeled for heavy 
charged particles with velocities in the range of 0.1 ≤ æ< ≤ 1.000 via the Bethe-
Bloch equation [Amsler, 2010]xlvii: 

 

−
sv

sΩ
= M · øh ·

¿

x
·
$

¡'
· 0
$

h
· ¬√ #

h·&ƒ·ûbñ≈(%·<
∆·¡)'

«'
+ − æh −

»p¡¥r

h
−

»(¡·<)

h
4 (2.21) 

 
where, K = 0,03071 GeV/mwe, ø is the charge of the particle, Z and A are 
respectively the number of protons and nucleons of the medium atoms, c is the 
speed of light in vacuum, β = v/c is the muon velocity as a fraction of the speed 
of light, =L is the Lorentz factor, …2 is the electron rest mass, m is the particle’s 
mass, I the ionization potential or energy (average energy transmitted to the 
ejected electron resulting from ionization) and   is a density effect correction. 

À&úΩ is the maximum energy transfer, which can be approximated as: 
 

À&úΩ =
h·&ƒ·%

'·¡'·<'

$Uh·<·&ƒ &⁄ U(&ƒ &⁄ )'
    (2.22) 

 
The following radiative effects are also a direct consequence of the 

passage of muons: 
-Bremsstrahlung: the electromagnetic radiation produced by the 

deceleration of a muon when deflected by the electric field of nearby atoms. In 
this procedure, the energy lost due to the change of trajectory is emitted in form 
of a photon. This process is analogue to the one in the air shower production 
shown in Equation (2.5).  

-Pair-production: as seen in Equation (2.4), when the gamma ray created 
by bremsstrahlung is energetic enough (>1,02 MeV), it can trigger a positron-
electron pair production. 

-Photo-nuclear: rarer than the previous interaction, it occurs due to the 
inelastic interaction between the bremsstrahlung gamma ray and a near nucleus.  

The average energy loss for these radiative processes increases almost 
linearly with energy: at TeV muon energies, it represents about 10% of the energy 
loss rate. 
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The combined effect of these interactions is shown in Equation (2.23): 
 

−
sv

s£
= ¢Ã^_ÃÕúyÃ^_(5) + É(5)*úsÃúyÃ^_ · 5  (2.23) 

 
where ¢(5)Ã^_ÃÕúyÃ^_  is the energy variation due to ionization characterized by 
Equation (2.21) and É(5)*úsÃúyÃ^_ represents the energy variation due to the 
radiation processes: pair production, photo-nuclear and principally 
bremsstrahlung [Bichsel, 2010]xlviii. 

Figure 2.19, from [Beringer, 2012]xlix, gives an overview of the contribution 
from the different interactions to the stopping power of positive muons while going 
through copper depending on the particle energy. 

 
Figure 2. 19 Stopping power (-dE⁄dx) for positive muons in copper as a function of their momentum. Solid 
curves indicate the total stopping power and dotted lines illustrate the individual contribution to the energy 

loss. 

 
The muons lose energy while passing through the atmosphere 

proportionally to the amount of matter they go through. To quantify this effect, the 
opacity of the medium is defined as the density (g/cm3) integrated over the 
distance traveled (cm). It may be called "interaction length" as well and the 
standard unit is g/cm2. Sometimes, particularly when speaking about 
underground muons, opacity is measured in meters water equivalent (mwe); 
being the conversion factor 1 mwe = 100 g/cm2.  

The opacity of the atmosphere is about 10 mwe for vertical trajectories and 
the energy loss for muons is about 0,2 GeV per mwe. During its travel, a muon 
loses about 2 GeV in passing through the atmosphere, mainly by ionization. The 
mean energy of muons reaching sea level is about 4 GeV [Nakamura, 2010]l. 

E 
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2.4.3 Muon flux underground 

The present work is focused in the characterization of a muon detection 
system for subsurface measurements. Under these conditions, the low energy 
muons are statistically non-significant and thus they will be henceforth neglected. 

 For the expected range of energies, ionization is the main responsible for 
the loss of energy. This region starts with a minimum ionization energy and 
follows a linear trend that continues up to ~1 TeV, where the transition between 
the ionization and radiative zones begins. The midpoint of the transition occurs 
at a critical energy (5P%), which is characteristic of the traversed medium and is 
defined as the energy where the ionization losses are equal to the radiation 
losses. 

 

	5P% = 	
ú(vuf)

Ñ(vuf)
     (2.24) 

 
Beyond 5P% , the radiative loss becomes dominant and the energy loss is 

proportional to Z·(Z+1)/A for different materials. 
The form of the diagram shown in Figure 2.19 is slightly different according 

to the medium that the muons penetrate. In the case of muons traversingstandard 
rock1, the shape is analogous to the previous one, but the minimum ionization 
energy is at 297 MeV and the critical energy 5P%  is 693 GeV [Groom, 2001]li.  

With Equation (2.21), it is possible to calculate the energy loss of muons 
with energies between the minimum ionization energy and ~1 TeV in standard 
rock: 

 

−
sv

s£
≅ ¢(5)Ã^_ÃÕúyÃ^_ ≅ 250	

23·%&'

V
   (2.25) 

 
As a consequence, the muons require a minimal energy to successfully 

cross a certain opacity in order to balance the energy loss. This so-called minimal 
energy (5P&) is calculated by several authors (e.g. Jourde and Lesparre) by 
integrating Equation (2.21): 

 

5P&(®) − ∫
sv

s£
{®

£

K
= 5P     (2.26) 

 
were 5P  is the rest energy of the muon, 105,66 MeV. 

Figure 2.20 shows the minimal amount of energy necessary for a muon to 
cross a certain length of standard rock, calculated with Equation (2.26). 

                                            
1 Standard rock (A=22, Z=11, œ = 2,65

–
i…—“ ) 
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It is important to note that the energy loss described by Equation (2.21) is 
a combination of two different behaviors. While the losses due to ionization can 
be considered as continuous in the energy range considered, the radiative loss 
is a discrete process. This leads to a statistical distribution of energy loss for high 
energies.  Due to the stochastic nature of the energy loss processes, it becomes 
necessary to introduce the concept of survival probability W(E,®), which is 
defined as the probability that a muon with a given energy traverses a certain 
opacity without being stopped. 

 
Figure 2. 20 Minimal energy of muons as a function of the length of standard rock’s traversed. 

  
 

The survival probability is connected to the 5P& through the following 
relation: 

 
Å(5P&, ®) = 0,5    (2.27) 

  
The survival probability of muons with a certain energy decreases as the 

opacity gets larger, and is helpful in estimating the evolution of the muon 
spectrum with depth when the surface flux is known.  

The MUon SImulation Code (MUSIC) [Kudryavtsev, 2009]lii  is a Monte 
Carlo open source code. It is dedicated to the simulation of muon propagation 
through rock or water and allows approximation of the survival probability and 
particle energies by providing the depth, rock’s composition and density, and the 
muon initial energy. 

Figure 2.21, obtained by [Hivert, 2015]liii with the MUSIC code using a 
sample of 10.000 muons per depth, shows the survival probability of muons with 
different energies while crossing different depths of standard rock. 
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Figure 2. 21 Muon survival probability of muons according to their energy for different depths of standard 

rock. 

 
By multiplying the survival probabilities with the flux at sea level obtained 

from Equation (2.19), the underground muon flux can be estimated. Figure 2.22, 
from [Hivert, 2017]liv, compares the vertical muon flux (q=0) at sea level against 
the same flux after crossing 500 m of standard rock. Three different areas can be 
distinguished: (A) muons with 5P < 5P&  are not able to pass through 500 m of 
standard rock; (B) the muons are partially attenuated by the rock; (C) almost all 
the muons can reach a 500 m depth of standard rock; for these energies, the 
muon fluxes at sea level and at 500 m are not significantly different. 

 

 
Figure 2. 22 Comparison of the vertical muon fluxes at sea level and at 500 m depth of standard rock. 
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Analogous to the muon flux at sea level, the integrated muon flux can be 
obtained with Equation (2.28) for underground conditions:  
 

 ∫(®, q)	#
&]^_)

%&'·)*·)
+ = 	∫ ΦP

).∑.(5, q) · W(E, ®){5
º

K
  (2.28) 

 
However, its calculation is very time-consuming due to the Monte-Carlo 

procedure to obtain the survival probability. A relatively good approximation is to 
integrate between 5P&(®) and infinity instead of the entire energy spectrum: 

 

∫(®, q) 	#
&]^_)

%&'·)*·)
+ = 	∫ ΦP

).∑.(5, q){5
º

vub(£)
   (2.29) 

 
Unlike Equation (2.20) for open sky measurements, Equation (2.29) takes 

the opacity into consideration. Note that the lower limit of the integral is the muon 
minimal energy for a certain opacity, instead of the muon rest energy. 

The muon flux attenuation is the most important parameter in performing 
muon transmission tomography, but another factor should be taken into 
consideration when imaging large volumes. Muons interact with matter by 
Coulomb scattering, which deflects their trajectories. While low-energy particles 
present in the first meters of depth are more sensitive to this interaction, the 
scattering probability increases with the medium opacity as well. Ideally, a flat 
topography and homogeneous medium lead to the balance between missing 
scattered muons and incoming muons resulting from the scattering at the 
neighboring points. 

In real life, the work of [Hivert, 2015] demonstrated that density 
heterogeneities will lead to trajectory variations on the order of a few cm for 
several hundreds of mwe crossed, because of the muon scattering.  

Due to the limited opacity of the targets analyzed during the present work, 
this effect will not be taken into account, but its influence shouldn’t be neglected 
systematically.  
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2.5. Conclusion 

Primary cosmic rays from deep space hit the upper atmosphere and 
produce a shower of secondary particles, including muons. These charged 
particles, created naturally all around us, have a set of properties which allow 
them to propagate up to several hundreds of meters underground. The muon flux 
decreases progressively, with an absorption correlated with the medium opacity, 
and may be used as a vector of information. 

Absorption based muon tomography uses on the decrease of the muon 
flux with depth increase to calculate the density of the matter crossed, which 
allows the creation of density chart inside big unreachable volumes.  

In order to do so, the muon flux characterization, both at ground level and 
underground, is primordial. The empirical models described herein allow 
estimation of estimate this flux as a starting point for the tomography. 
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Chapter 3 abstract 
 
There exist several ways to detect muons, each with different arguments 

for and against depending on the targeted application. The broad scope of 
methods available nowadays has led to the design of application-oriented 
detectors in order to enhance their performance. 

Micromegas-like detectors have proven to be a versatile tool for temporal 
monitoring of large volumes with a compact size, light weight, relative low cost 
and ground and underground operation capabilities. Nowadays, there are 
different setups based on Micromegas readout planes capable of performing 
muon tomography measurements in different domains. 

There are two main techniques for muon tomography: transmission and 
scattering. Both of them rely on the direction-sensitive measurement of the 
cosmic muon flux. Due to the intrinsic limitations of each technique, only 
transmission appears suitable to image large volumes. 

Muography provides reliable, original and independent information 
relatively to the physics of the measures produced by the seismic, gravimetry or 
resistivity soundings of the Earth for instance. It is thus as a complementary 
method in several disciplines, it eases the resolution of the inverse problem to 
obtain in situ the density distribution of the targeted volume. 
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3.1. Muon detection technologies 

Ever since the discovery of muons in 1936, several technologies have 
proven their capability to react to the passage of these particles though them or 
to measure the effects produced by their movement. This section provides an 
overview of the most employed methods nowadays to detect muons, as well as 
their differentiating features and main applications. 

3.1.1 Visual detection 

The visual detection technologies allow the direct visualization of the 
particle’s trajectory in a temporary or permanent way. 

As seen in Chapter 2, the first technology capable of identifying muons 
was the cloud chamber. It consists of a sealed compartment containing a 
supersaturated vapor of water or alcohol. Charged particles collide with the 
gaseous mixture and create electrostatic forces. This originates condensation 
centers that lead to the formation of a trail of droplets, visible for a few seconds. 
The data acquisition relies on the analysis of photographic images of the trails. 
The chamber provides information about the particle due to the characteristic 
shapes of the trails. It is possible to determine, when subjected to magnetic field, 
the particle’s direction, speed, quantity of movement and sign of electric charge. 

Cloud chambers were widely used before the introduction in the late ’60s 
of the multiwire proportional chamber [Sauli, 1977]i. Charpak's invention, 
awarded with the Nobel prize in 1992, would revolutionize particle detection. With 
computer science booming, it made the data acquisition quick, automated and 
electronic. The slow response speed relegated cloud chambers to the 
background, which ended up mainly as educational tools to illustrate particle 
physics to the general public. 

Another technique based on making the particle’s tracks visible, this time 
in a permanent way though, is the nuclear emulsion. The principle of functioning 
is based on high sensitive photographic films. 

The emulsion films used for muography are usually made of silver bromide 
crystals interspersed in a gel. Traversing ionizing particles sensitize the crystals 
and create a latent image. A development is therefore necessary to fix the image. 
In this process the metallic silver coalesces onto the sensitized site, growing 
folded micrometric filaments, named grains. These structures are visible as dark 
spheroids on a bright background. The alignment of grains reveals the path of 
the particle in the medium, and films of 20~30 μm become 3D a tracking detector 
with a sub-micrometric precision and good angular precision (few mrad). Figure 
3.1 from [Bozza, 2017]ii, shows an automatized microscope scanning the nuclear 
film at different depths, by varying its focal distance. 

Unfortunately, nuclear emulsion films are sensitive from their production to 
their development and the latent image may fade out if the environmental 
conditions are not appropriate (i.e. hot temperatures and high humidity). The lack 
of time trigger or event time information (unlike electronic detectors) complicate 
the data analysis and motivates the use of a double-coating configuration in order 
to filter the non-desired data.  
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Figure 3. 1 Readout robot analyzing a nuclear emulsion with an automatic microscope. 

 
This technique has been employed in the last decade to successfully 

image volumes in domains such as archeology [Morishima,2017]iii, volcanology 
[Tanaka, 2017]iv or nuclear reactors [Morishima,2012]v. It is especially interesting 
when a power supply is not available, or the instrumented area presents a difficult 
access. 

In conclusion, the assets of the nuclear emulsion are its sub-micrometric 
3D spatial resolution, the lightness of plates required for the measurement, it 
allows a modular assembly and doesn’t need a power source to record data. On 
the other hand, this technique is sensitive to environmental parameters and lacks 
timing information of the particle’s passage, making the temporal monitoring 
extremely hard. Nowadays, the focus is on improving the readout speed to 
minimize the considerable time elapsed between the acquisition and the results. 

Another family of visual detectors take advantage of the Cherenkov light 
produced along the muon path and can be seen in Figure 3.2 from [Catalano, 
2016]vi. The characteristic ring-like image (Figure 3.2 (Left)) produce by muons 
has been previously employed for optical calibration of telescopes. More recently, 
Catalano has proposed a new approach to study the interior of volcanoes by the 
use of Cherenkov telescopes (Figure 3.2(Right)) to detect the relativistic cosmic-
ray muons that survive after crossing Mount Etna [Catalano, 2016]. 

The muons with an energy higher than the threshold value (∼ 5 GeV in the 
atmosphere at sea level) produce Cherenkov light. This radiation occurs in the 
visible and ultraviolet regions of the electromagnetic spectrum. These photons 
are reflected by the primary mirror of the telescope onto secondary mirror which 
focuses them onto the camera 

The resulting annular pattern contains all the essential information to 
reconstruct the particle direction and energy.  

This technique offers the advantage of a negligible background and a good 
spatial resolution (~0,14 deg). The downsides reside in the weight and size of the 
telescope (analogue to a shipping container), which makes difficult the transport 
and deployment of the telescope in certain study sites, and the complications to 
acquire data in broad daylight. 



Chapter 3. Muon detection for imaging applications. 

 47 

 
3.1.2 Hodoscopes 

Hodoscopes are instruments that determine the trajectories of passing 
charged particles. Hodoscopes are typically made up of many segments; the 
combination of segments detecting an event is then used to infer the passage 
point of the particle through the device. 

Typically, the detection segments are composed of scintillating material, 
which emits light when a charged particle passes through it. In terms of material, 
there are two main groups according to its nature: organic and inorganic. Both 
rely on the emission of a photon due to the transition of an electron from an 
excited state to a less energetic state. The first case takes advantage of the 
electronic properties of organic polymers, while the second case relies on the 
electronic bandgap structure of a semiconductor glass. 

The organic scintillators are the most widely used for muography purposes 
and they can be both in liquid or plastic forms, which makes them very versatile 
to fit different experimental configurations. 

The scintillation light is usually converted into exploitable signal by means 
of a photomultiplier tube (PMT). The PMT is a vacuum tube consisting of: 

- an input window to let the photons pass, 
- a photocathode to convert photons into electrons (also known as 

photoelectrons), 
- focusing electrodes to focus and accelerate the photoelectrons towards 

the dynodes, 
- dynodes (electron multipliers) to create successive electron cascades by 

means of secondary electron emission 
- and an anode to collect the output signal.  

The PMT multiplies the current produced by incident light and provides a 
low-noise, high frequency (few ns) response. 

 

Figure 3. 2 (Left) Muon ring images with Cherenkov telescope. (Right) ASTRI SST-2M telescope 
proposed for muon tomography. 
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Some experimental setup configurations may include wavelength shifting 
optical fibers between the scintillator and the PMT to adapt the light spectrum. 

For some systems the strength of the light can be proportional to the 
deposited energy. The deposited energy can be determined by calibrations, 
which then can be used to infer information about the original particle's energy. 

When a segment measures a significant amount of light, the experimenter 
can suppose that a particle passed through that segment. The segments are 
generally disposed in a matrix-like configuration to reconstruct the point of 
passage in two dimensions and at least two separated layers are required to 
determine the tridimensional trajectory of the particle.  

In reality, dummy tracks originated by random coincidence events or 
background radiation (especially while performing surface measurements) are a 
non-negligible source of noise due to their capacity to blur the relevant 
information. The two main approaches to reduce the noise so generated are: 

- the incorporation of additional planes of detection to restrict accidental 
coincidences 

- shielding layers (steel or lead for example) between detection planes to 
block low energy ionizing particles such as electrons or positrons.  
As a consequence, the hodoscopes used for muon tomography are 

relatively heavy and bulky, for instance the telescope of Figure 3.3 weights ~700 
kg, more than a half of which is due to the lead shielding [Jourde, 2015]vii. 

 

 
Figure 3. 3 Muon telescope from Diaphane project composed of aligned scintillator planes. 
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Hodoscopes are reliable and sturdy detectors for tracking charged 
particles. However, their spatial resolution is limited by the segment size. In 
applications where the spatial resolution is very important, hodoscopes have 
been superseded by other detectors such as nuclear emulsion films and gaseous 
detectors. 

3.1.3 Gaseous detectors 

Historically, gaseous detectors were the first devices permitting detection 
of charged particles. The single wire counter, invented in 1908 by Rutherford and 
Geiger [Rutherford, 1908]viii, was based on Townsend avalanches, which appear 
in gases subject to a high enough electric field [Townsend, 1901]ix.  

Townsend avalanches originate when free electrons (called primary 
electrons) in a gas undergo strong acceleration. Due to collisions with atoms and 
molecules, the primary electrons produce secondary electrons via impact 
ionization. These secondary electrons are also accelerated and collide with the 
near gas atoms and molecules, releasing more electrons in every stage. Hence, 
a single primary electron can trigger an avalanche of electrons and the charge is 
amplified with a certain multiplication factor, called the gas gain.  

Wire counters have a cylindrically shaped hollow cathode with a thin anode 
wire along the central axis. A narrow region of strong electric field is generated 
around the wire. The electron avalanches are developed in this region within a 
radius of a few wire diameters. These early detectors could reach a gas gain of 
~100. In the initial stages, these detectors were not position sensitive, but 
afterwards some advanced designs were capable of detecting where along the 
wire the primary electron was liberated. 

In the decades of 1950-1960, the first two-dimensional position-sensitive 
gas detectors were introduced: the spark and streamer parallel-plate chambers. 
Both consisted of two parallel metallic electrodes coupled to a separated 
triggering detector. When the trigger is activated after the passage of a charged 
particle, a short pulse of high voltage is applied between the electrodes. The 
primary electrons can, depending on the high voltage applied, either produce 
avalanches or, at higher voltages, sparks and streamers (see Section 4.�.3�
for more details). 

 The sparks and streamers were photographed or filmed to determine the 
position of the passing particles [Chikovani, 1964]x. The superposition of several 
detectors allows the visualization of the particle’s tracks in three dimensions. 
Nevertheless, the complication and low rate operation of these detectors 
restricted their applications. 

The next breakthrough came with the invention of the multiwire 
proportional chamber invented by Georges Charpak and colleagues in 1968, 
seen in Figure 3.4 [Charpak, 1968]xi. This device contains an anode plane made 
of parallel wires, with a pitch of a few mm, located between two metallic cathodes. 
The chamber is filled with a carefully chosen gas, such as an argon/methane mix, 
and the detector operates in an avalanche mode (the different modes are detailed 
in Section 4.���). The signals are recorded on the nearest wire and present 
a charge proportional to the ionization effect of the detected particle. 
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Figure 3. 4 From left to right, Georges Charpak, Fabio Sauli and Jean-Claude Santiard working on a 
multiwire chamber in 1970. Image from CERN document server, original ref.: 8-8-70. 

While performing high time resolution measurements of the current pulses 
of the wires, and taking into account the drift time of ions, it is possible to infer the 
distance at which the particle passed the wire. This increases the accuracy of the 
path reconstruction and is known as a drift chamber. 

In 1970-1980s, the parallel-plate-type detectors made a come-back thanks 
to the invention of the resistive plate chambers (RPC) which replaced the metallic 
electrodes with resistive ones [Parkhomenchuk, 1971]xii. The RPC have become 
widely used as muon detectors due to the large area of coverage (of order m2), 
time resolution of ~ns and space resolution of order cm. A particular model of 
RPC made with low resistivity glass plates (GRPC), as seen in Figure 3.5 from 
[Raveendrababu, 2016]xiii, present interesting features for tracking muons 
[Cârloganu, 2013]xiv. 

Nowadays, a team of the University of Louvain is developing a gas-tight 
mini-GRPC detector, focused in applications with challenging available volumes 
[Wuyckens, 2018]xv. 
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Figure 3. 5 Schematic section of a Resistive Plate Chamber. 

 
Micropattern detectors represent the newest family of avalanche gaseous 

detectors. The invention of the microstrip gas counter (MSGC) at the end of the 
1980s [Oed, 1988]xvi was the starting point of this now well-known family. The 
MSGC is made of alternating anode and cathode strips with a pitch of less than 
1 mm over an insulator (e.g., glass surface or PCB).  

For the first time, microelectronic technology was applied in the 
manufacturing of gaseous detectors. Its main advantage was to offer a large area 
planar detector with small gaps between the electrodes. This enabled the 
operation at significantly lower voltages than the classical detectors. Despite the 
very limited applications nowadays, the most important contribution was to trigger 
a chain of developments and collective efforts, which led to the conception of a 
new generation of micropattern gaseous detectors. 

In 1992 Charpak and collaborators developed the micromesh gaseous 
detector structure (MICROMEGAS) detector as an evolution of the multiwire 
proportional chamber [Charpak, 1994]xvii. Micromegas is a micro-pattern gas 
detector (MPGD) that detects particles by amplifying the charges created by the 
ionization of the gas, usually a noble-gas-based blend. It consists of a two-stage 
parallel plate avalanche chamber with a sub-millimetric amplification gap. Both 
spaces are physically separated by a micromesh. Regularly-spaced insulating 
supports attach (in bulk versions) and keep constant the distance between this 
mesh and the anode plane made of printed copper tracks.  

The more recent Micromegas [Giomataris, 2006]xviii includes a resistive 
layer acting as spark protection to reduce the discharge current, preventing the 
front-end electronics from being damaged [Alexopoulos, 2011]xix. The detailed 
description of the Micromegas readout plane, used for the present work, would 
exceed the scope of this chapter and can be found in Chapter 5. 

Another member of the MPGD family used for detecting muons is the gas 
electron multiplier (GEM). The GEM, as seen in Figure 3.6 from [Francke, 2004]xx, 
is a hole-type detector made of dielectric sheets metalized on both sides with a 
matrix of holes through it. The voltage applied between the metalized electrodes 
produces a strong electric field inside the holes.  
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The electric field is sufficiently strong for triggering the avalanche of 
primary electrons. This detector has several unique features such as the 
possibility to operate in avalanche mode to increase the maximum achievable 
gain or the possibility to combine a GEM with other gaseous detectors.  

 

 
Figure 3. 6 Schematic drawing of a GEM detector and the principle of its operation. 

 
Despite the great variety of gaseous detector, all are based on the same 

principle. The incident radiation ionizes a gas and releases primary electrons. 
These primary electrons are either detected directly or trigger subsequent 
avalanches in regions of the detector with a strong electric field. The electrical 
signals, so generated and amplified, are large enough to allow detection even of 
relatively weak primary ionization.  

These relatively light and compact detectors provide a good spatial (the 
values may vary between different configurations) and time resolution and allow 
the temporal data monitoring. On the other hand, a gaseous detector’s 
performance depends on both the quality of the gas and environmental 
parameters such as temperature or pressure that must be monitored and/or 
compensated to get a steady measurement. 
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3.2. Tomography 

Nowadays imaging techniques allow the knowledge and mapping of 
certain physical properties of the medium below its surface with non-invasive 
methods and permit its temporal monitoring. Properties like electrical 
conductivity, strength, deformation, water content, porosity or density might be 
deduced by the influence in measurable variables such as electrical current, 
velocity of propagation, absorption of acoustic and electromagnetic waves and 
variation of the gravitational field. 

Tomography aims at inferring the distribution of these physical properties 
inside the volume to be monitored, on the basis of information provided by 
external measurements. 

3.2.1 Density tomography in geophysics 

The density distribution is essential to understand and anticipate the 
physical behavior of a solid in many domains of Earth sciences. It makes possible 
to identify potential zones of brittleness and the temporal evolution gives precious 
information about the dynamics of processes inside the monitored volume. 

In geophysics, there are already robust techniques (e.g. electrical 
resistivity and gravimetry) used to map the subsoil structure. They provide an 
excellent referent to validate the original data coming from muon measurements. 
Moreover, muon tomography provides complementary and independent 
information which expands the available information. 

- Electrical resistivity: The basic principle for electrical methods is the
different conductivity of distinct kinds of soil. Stone might impede the flow of 
electricity, while the organic deposits might conduct electricity more easily than 
surrounding soils. In most systems, there is an injection of current into the ground 
using a pair of metallic current probes. This current creates a potential difference 
in the ground which is recorded by other electrodes, called voltage or potential 
probes. The measured voltage can be converted into an apparent resistivity 
value. In general, larger probe spacing results in a greater depth of investigation, 
but at the cost of sensitivity and spatial resolution. 

The apparent resistivity can provide a range of information regarding the 
material being tested. Different types of soil compositions have different 
resistivities. Nevertheless, this is not a direct measurement of density. Different 
soils with different densities or under different circumstances (water content for 
instance) may have the same apparent resistivity. This non-unicity of the model 
complicates the interpretation of the electrical resistivity results by themselves. 

In this framework, muon tomography provides alternative and independent 
information to reduce the degrees of freedom of the system and validate the 
model, such as in the work presented by [Lesparre, 2012]xxi and [Portal, 2013]xxii. 

- Gravimetry: Gravimetry is the measurement of the integrated strength of
a gravity (g) field. Multiple measurements in space allows 3D inversion of the g 
distribution to obtain the medium density. Gravimetry is subject to several factors 
that affect the quality of the measure, such as latitude, altitude, nearby relief, 
atmospheric load and instrumental drift. It is necessary to balance out these 
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effects in order to isolate and map the g distribution, from which the density map 
can be deduced. 

The coupling of gravimetry with tomographic muon measurements in the 
field of volcanology is well documented in the work of [Lesparre, 2012], [Portal, 
2013], [Cârloganu, 2013], [Nishiyama, 2014]xxiii and [Jourde, 2015]xxiv among 
others. 

A main advantage of the joint muon-gravity inversion concerns the 
improvement of the resolution obtained in the deeper parts of the density model. 
Despite the fact that this part is not directly sampled by muon tomography, a 
piece of information obtained by the muon data is transferred to the deep regions 
of the model integrated by the gravity measurements. 

3.2.2 Muon tomography principle 

Muon tomography aims at determining the density distribution of 
geological bodies by measuring their screening effect on the natural flux of 
cosmic muons. There are two kinds of muographic techniques depending on the 
muon interaction taken into account to model their transmission across the 
matter: (i) absorption of muon flux taking into account the energy loss and the 
scattering of the muons during their interactions with the atoms during their 
transmission across the matter, and (ii) the signature of the deviation of the 
muons induced by scattering against matter with high Z values. Energy loss and 
scattering of muons take place simultaneously, independently of the matter being 
traversed. However, their contribution varies depending on the case. The current 
work is focused in rectilinear transmission or absorption muography1. 

Figure 3. 7 (Left) Principle of transmission tomography due to the muon flux attenuation because of the 
loss of energy. (Right) Principle of scattering tomography due to the deviation of the muon. 

1 Transmission muography or muon radiography are often used as 
synonyms. 
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- Transmission or absorption muography: Because of the energy loss, a
muon has only a certain probability to cross a given amount of material. As seen 
in Figure 3.7 (Left), the initial muon flux decreases after the passage of the muon 
through the matter. The minimal amount of energy necessary for a muon to 
successfully cross a certain depth of standard rock and its survival probabilities 
have been previously discussed in Section 2.4.3. 

The fraction of muons that cross a material is mostly determined by the 
integrated density over the path length, called opacity. The experimental 
measurements of the muon flux in different directions through an object from a 
given point of view (the location of the muon detector), gives access to a map of 
the object’s mean opacity along these directions. If the dimensions of the object 
are known, the integrated density might be obtained. This technique is possible 
thanks to the wide energy distribution of cosmic muons, allowing some of them 
to cross several hundred meters of rock. 

Measurements from one single point of view enable the creation of 2D 
maps of an object. Nevertheless, by merging different 2D projections it is possible 
to obtain 3D information. This can be achieved either with one muon detector and 
successive measures from different locations or by encircling the object to image 
with several instruments. 

A muography telescope suitable for transmission consists of one or 
several detectors that reconstruct the muon trajectory to infer its path through the 
object to image. The telescope, located downstream from the object, extrapolates 
the trajectory of the muons passing through the detector towards the object. 
Another possible configuration requires an additional telescope upstream the 
object, acting as a constraint to identify non-crossing muons [Procureur, 2018]xxv. 

In both cases, the resulting muography image is composed of the 
accumulation of many muon tracks. The sharpness and accuracy of the image 
will depend on the angular resolution of the telescope, the scattering within the 
object and between the object and the telescope, and the inherent noise of the 
instrument itself.  

- Deviation or scattering muography: The multiple Coulomb scattering
originating from the interaction of muons with the nuclei of matter, seen in Figure 
3.7 (Right), is dependent on the atomic number Z. An experimental setup suitable 
for scattering muography requires 2 trackers to measure the muon trajectory 
before and after crossing the structure. This allows determination of the diffusion 
angle and position of individual muons through the structure. The analysis of the 
spatial distribution and magnitude of muon scattering events provides information 
about the internal composition of structures. This technique is particularly useful 
in discriminating between materials of high, medium, and low atomic number, Z 
[Gnanvo, 2010]xxvi. 

Compared to the transmission mode, the deviation muography mode 
requires installation of telescopes stacked on both sides of the object. The 
imaging time in this mode is usually much smaller. However, these two modes 
aim at different applications. Scattering muography is mostly valid for modest 
opacity, as the technique is only capable of reconstructing one scattering point. 
Objects inducing multiple scattering will produce images with artifacts. 
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3.2.3 Overview of forward and inverse problems 

There are two different approaches to assess the interaction of muons with 
matter inside the object intended for imaging. 

A direct approach takes into consideration the incoming muon flux falling 
upon the volume to image and applies physical theories to predict the outgoing 
flux by taking into account the matter properties (i.e., density distribution and 
material composition) and the volume’s geometry and dimensions. This problem 
of predicting the result of measurements is called the forward modelling. 

On the other hand, the inverse approach, best-known as inverse problem, 
aims at inferring the physical properties of matter via the measurement of muons 
[Tarantola, 1982]xxvii. 

While the forward problem has (in deterministic physics) a unique solution, 
the inverse problem does not. As an example, consider measurements of the 
surviving muons after the passage of an obstacle: given the distribution of mass 
inside the obstacle, one can unequivocally predict the number of muons that will 
succeed in crossing the obstacle (forward problem), but there are different 
distributions of mass for the obstacle that give exactly the same outcome, and 
thus different valid solutions. 

The scientific procedure for the study of a physical system in order to solve 
the inverse problem can be divided into the three different steps: 
a) Parameterization of the geological target: establishing of a minimal amount

of model parameters (e.g. sub-volumes with fixed density) whose values
completely characterize the geological target

b) Forward modeling: implement the physical laws allowing to predict the results
of measurements.

c) Iterative inverse modeling: make perturbation of the parameter values of the
model in order to minimize the misfit between the measurements done and
the modelled ones.

The inverse problem is an iteration process between the different steps, 
where the knowledge of the geological properties of the volume helps to create a 
more robust model and to converge faster to a solution for this problem 
[Tarantola, 2005]xxviii. There is a strong feedback between these steps, and a 
good improvement in one of them is usually followed by advances in the other 
two. 

The inverse problems have the particularity of being often unstable; by 
repeating the inversion of a given data set, the results may show important 
divergences. Thus, it is possible that the result of the inversion (despite being a 
valid solution) doesn’t show a good agreement with reality [Pitt, 2002]xxix. 
Regularization methods can be used to minimize this undesirable effect, but the 
most effective asset is to acquire as much data as possible to enhance the 
inversion stability to get a strongly coherent result [Demoment, 2001]xxx�

The resolution of the inverse problem to obtain precise density 
measurement requires dedicated Monte Carlo (MC) simulations. The inefficiency 
of classical MC simulations for large volumes and distant ~1 m2 detectors leads 
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to very time- and resource-consuming calculations to estimate the muon flux 
crossing the object and the detector. A recent approach to enhance the resolution 
of the inverse problem is based on backwards MC techniques [Niess, 2017]xxxi. 
This technique consists of simulating the muon flux starting from the detection 
plane towards the targeted volume. This guarantees to sample only useful events 
and increases the performance of the simulation. 

 
3.3. Transmission muography through years, evolution and 

applications 

The first tomographic application for muon measurements was proposed 
by George at the beginning of the 1950s [George, 1955]xxxii to determine the 
overburden of a tunnel in an Australian mine by the measurement of the cosmic 
muon flux. Geiger counters were deployed both on surface and inside the mine 
to determinate the overburden induced by the ice at surface level. The measure 
established an opacity of 163±8 mwe, which was validated by the result of the 
drilling and sampling at the same site (175±6 mwe). At the time, George could 
determine the significant differences of soil thickness in different directions by 
moving the experimental setup. However, his detector was neither reliable nor 
precise enough to find density heterogeneities related to the presence of ores. 

In the late 1960s, the Nobel Prize laureate, Luis Alvarez installed tracking 
detectors in the Belzoni chamber inside the pyramid of Kahfre. The objective was 
to reveal the existence of any void in the overlaying rock structure, indicator of 
the presence of hidden crypts or chambers. The experimental setup, seen in 
Figure 3.8 from [Alvarez, 1970]xxxiii, consisted in a stack of two spark chambers 
(1.8 m × 1.8 m) and three scintillators, one on the top and 2 at the bottom. An 
iron shield was included between the two lower scintillators to filter low energy 
particles. The acceptance of the detector covered 19 % of the volume of the 
pyramid. 

 

 
Figure 3. 8 (Left) Experimental setup of Alvarez inside the pyramid of Kahfre. (Right). The measured 

scatter plots (a) without any correction, (b) with correction for detector acceptance and (c) with correction 
on the surface heterogeneities of the pyramid; (d) is the result of the Monte Carlo simulation including the 

Kings’ chamber. 
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The experiment recorded more than 106 muons, and the detector could 
determine the pyramid’s corners location with a precision within 1 meter (Figure 
3.8 (Right) b). Furthermore, a Monte Carlo simulation of the measurement was 
also performed (Figure 3.8 (Right) d). According to the results (Figure 3.8 (Right) 
c), the existence of a hidden chamber inside the explored volume was not 
confirmed. 

In 2015, the Heritage Innovation Preservation (HIP) Institute launched a 
new scientific mission to probe the heart of the largest pyramids of Egypt with 
non-destructive techniques. In this occasion, three different technologies for 
transmission muography were installed in parallel. On the one hand, the 
University of Nagoya installed nuclear emulsion plates inside the Queen’s 
chamber. On the other hand, KEK placed a scintillator hodoscope at the same 
location. Finally, the CEA installed three Genetic Multiplexed Micromegas based 
telescopes outside of the pyramid. 

The analysis, seen in Figure 3.9 from from [Morishima, 2017]xxxiv, revealed 
a void, called ScanPyramids’ Big Void. It was detected with a high confidence by 
three different muon detection technologies and three independent analyses. 
First observed by the Nagoya team, then confirmed by the other two teams, this 
finding represented a great leap forward for muography in terms of technology 
visibility among the non-scientific public. 

 
Figure 3. 9 Nagoya team ScaPyramid’s results: figures (a) and (b) are the experimental measurements 
and (c) and (d) the result of MC simulations. A & B areas represent known cavities: King’s chamber and 

Grand Gallery respectively. 



Chapter 3. Muon detection for imaging applications. 

 59 

Currently, there are other groups working in archeology with different 
muon techniques such as: 

- METROPOLIS project, which uses scintillator hodoscopes in order to 
monitor the Bourbonic tunnel at mount Echia site in Italy [Saracino, 2017]xxxv. 

- The Universidad Nacional Autonoma de México is searching for hidden 
chambers at the Teotihuacan Pyramid of the Sun with multiwire proportional 
chambers [Menchaca-Rocha, 2011]xxxvi. 

 Other than archeology, volcanology was among the firsts scientific 
disciplines to include muography in its toolbox. 

In 1995, Nagamine proposed muography to image the inside of volcanic 
edifices [Nagamine, 1995]xxxvii, and eventually to predict eruptions. He conceived 
a plastic scintillator hodoscope with an adjustable acceptance by playing with the 
relative distance between the two detection planes. The first results allowed to 
successfully recognize the profile of Mt. Tsukuba, a non-volcanic site. 

A few years later, the team of Hiroyuki Tanaka performed the first 
muographic measurements of an active volcano at Mt. Asama. The shielding 
layer between the detection planes allowed the discrimination of low energy 
radiation, and thus noise reduction [Tanaka, 2001]xxxviii. The acquired data in this 
campaign and in 2003 was in good agreement with MC simulations and revealed 
the presence of the volcanic crater, as seen in green in Figure 3.10 from [Tanaka, 
2003]xxxix. 

 
Figure 3. 10 Muon radiography of Mt. Asama. The green concavity represents the volcanic crater. It is 

visible thanks to the higher muon flux compared to the rest of the mountain (blue). 

 
After the eruption of 2004, Mt. Asama could not be accessed, and conventional 
geophysical methods, such as electromagnetic and seismic techniques could not 
be performed. Tanaka et al. deployed nuclear emulsion detectors with the aim of 
detecting the differences due to the eruption. The results of their measurements, 
shown in Figure 3.11 from [Tanaka, 2007]xl, permitted identification of structural 
changes in the volcano associated with the eruption.  
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Figure 3. 11 (A) Map of the Asama volcano with the location of the emulsion cloud chamber with an arrow. 
The section AB shows the plane of the density distribution plotted in panel B. The solid black line shows 

the summit crater. (B) Reconstructed average density distribution of the summit crater, showing the 
solidified magma (red zone) at the crater floor. 

The black dotted line in Figure 3.11(B) shows the original crater floor, 
visible in Figure 3.10. It Is possible to recognize the solidified magma region, and 
the low-density zone just below the magma, associated with the magma conduit. 

Despite the success of achieving the first muographic image of an active 
volcano, the emulsion cloud chambers are not applicable to perform live 
measurements of the density distribution of volcanoes due to the offline analysis. 
The real-time measurement of the lava movement inside the volcano is essential 
to predict the future eruptions. 

The next innovative experiment was performed at Satsuma-Iwojima, 
during an eruption period. It obtained for the first time sequential muon 
radiographic images about the magma dynamics. The higher density magma 
ascended in the crater and the flow of the lower density volcanic gases was faster 
than the magma body. This observation was consistent with the models of 
volcanology [Shinobara, 2012]xli. 

This was the starting point for several projects that will use different muon 
technologies to image volcanos: 

-�DIAPHANE project, born in 2008 in order to monitor the active volcanos
at the French Antilles, with a particular focus on the Soufrière volcano at 
Guadeloupe island [Gilbert, 2010]xlii�

-TOMUVOL, created in 2009 to monitor the biggest volcanic region of�
Europe, in Auvergne, France. The monitored object is the Puy de Dôme volcano 
due to its proximity to the city of Clermont-Ferrand [Cârloganu, 2013]. 

-MU-RAY collaboration, from 2010, intends to perform volcano�
radiography, in particular at Mt. Stromboli, Mt. Vesuvius and Mt. Etna [Ambrosino, 
2014]xliii�
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The above experiments help to prove the added value of muon 
radiography for underground cavity research and for subsurface density 
mapping. However, the application-oriented development of particle detectors is 
necessary to fully exploit the potential of this technique. 

Muography has proven to be useful in the field of civil engineering as well. 
In 2005 the French electric company EDF studied a technique in order to estimate 
the snow cover thickness of mountains, in order to predict the rise of water 
downstream due to the melt [Paquet, 2006]xliv. 

Another example is the radiography of the Saclay water tower seen in 
Figure 3.12 from [Bouteille, 2017]xlv. It is possible to observe both the evolution 
of the water level of the reservoir and the structural elements of the construction. 
 

 
Figure 3. 12 Muon radiography of the water tank of Saclay and an illustrative picture of the structure. 

 
A recent application for muon tomography aims at monitoring the Carbon 

Capture and Storage (CCS) [Kudryavtsev, 2012]xlvi. CCS has been proposed to 
minimize the greenhouse effect produced by the carbon dioxide. 

A way to prevent the release of CO2 into the atmosphere is by capturing 
CO2 emissions at the source, mainly from power stations. Once compressed into 
a liquid, it could be stored typically 1.5 - 3.5 km beneath the seabed in depleted 
oil or gas fields, or saline aquifers. 

Nevertheless, a challenge of CCS is the capability of measuring how full 
the underground storage sites are, and to understand the migration of CO2 once 
stored underground.  

The Sheffield University is developing a borehole muon detector, capable 
of fitting inside a 20 cm diameter hole and resistant to elevated temperatures 
(over 40º C). Currently, after a preliminary phase of simulations, there is a 
prototype of detector being tested at the Boulby underground laboratory 
[Thompson, 2014]xlvii. 
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To conclude, Table 3.1 summarizes the main projects working on muon 
tomography based on transmission, sorted by technology, which are today 
working on transmission-based muon tomography. 

 
Table 3.1. Summary of the main projects working on muon tomography based on 
transmission, the technology used and its foreseen applications. 

Detector 
family Technology Project 

Foreseen 
application 

Visual 
detection 

Nuclear emulsion film 
Nagoya Univ. 
(Japan) 

Nuclear reactor 
imaging 

Nuclear emulsion film 
Scan pyramids 
Nagoya Univ. 
(Japan) 

Archeology 

Nuclear emulsion film 
Bern Univ. 
(Switzerland) 

Glacier mapping 

Nuclear emulsion film 
Involcan-Iter-ERI 
(Spain-Japan) 

Volcanology 

Cherenkov telescope 
Astri 
(Italy) 

Volcanology 

Scintillator 
hodoscope 

Plastic scintillators 

Muraves - 
Metropolis 
(Italy – Belgium - 
Japan) 

Volcanology 
Archeology 

Plastic scintillators 
DIAPHANE 
(France) 

Volcanology 
Civil structures 

Borehole plastic 
scintillators 

Deep carbon 
(U.K.) 

CO2 storage monit. 

Plastic scintillators 
Kyushu Univ. 
(Japan) 

Civil structures 
Education 

Plastic scintillators 
CRM 
GeoTomography  
(Canada) 

Geophysics 
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Detector 
family Technology Project 

Foreseen 
application 

Gaseous 
detector 

Glass resistive plate 
chambers 

TOMUVOL 
(France) 

Volcanology 

Small gas-tight glass 
resistive chambers 

Université 
catholique de 
Louvain 
(Belgium) 

Muography in 
confined spaces 

Thick Gas Electron 
Multiplier 

Sun Beam 
Lingacom 
(Israel) 

Geophysics 

Multiwire proportional 
chamber 

UNAM Univ. 
(Mexico) 

Archeology 

Multiwire proportional 
chamber 

REGARD 
(Hungary) 

Geophysics 

Genetic multiplexing 
multilayer 
Micromegas 

Scan pyramids 
CEA 
(France) 

Archeology 
Civil structures 

Micromegas in Time 
Projection Chamber 

T2DM2  
(France) 

Geophysics 
Hydrogeology 
Civil structures 

 
3.4. Conclusion 

Through the years, several devices have allowed muon detection based 
on different physical principles of its interaction with matter. Muon detection has 
evolved in parallel to major breakthroughs, such as the incorporation of 
computers in the data acquisition and analysis processes or the components 
industrial fabrication and miniaturization. Today there is a broad range of muon 
detection technologies with different assets depending on the targeted 
application.  

Regarding the present work, the Micromegas family of detectors provide a 
versatile tool to perform temporal monitoring of the muon flux with a compact and 
light detector. Different configurations of Micromegas detectors, such as the 
multilayer detector or the time projection chamber, are currently used to perform 
muon tomography measurements in different domains.  
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Muography provides reliable, original and independent information. Used 
as a complementary method in several disciplines (e.g., volcanology, nuclear 
management or geological surveys), eases the resolution of the inverse problem 
to obtain the density distribution. 

3.5. References 

i F. Sauli (1977). Principles of operation of multiwire proportional and drift 
chambers. CERN 77-09. 

iiBozza, C. et al. (2017). Nuclear emulsion techniques for muography. 
Annals of geophysics, 60, 1, S0109 

iii Morishima, K., Procureur, S. et al. (2017) Discovery of a big void in 
Khufu’s Pyramid by observation of cosmic-ray muons. Nature Vol. 552, 386 

iv Tanaka, H.K.M., et al. (2007). High resolution imaging in the 
inhomogeneous crust with cosmic-ray muon radiography: the density structure 
below the volcanic crater floor of Mt. Asama, Japan. Earth Planet. Sci. Lett. 263 
104. 

v Morishima, K., et al. (2012). First demonstration of cosmic ray muon 
radiography of reactor cores with nuclear emulsions based on an automated 
high-speed scanning technology. Proceedings of the 26th Workshop on 
Radiation Detectors and Their Uses in KEK, 27-36. 

viCatalano, O., Del Santo, M., Mineo, T., Cusumano, G., Maccarone, M.C., 
Pareschib, G. (2016). Volcanoes muon imaging using Cherenkov telescopes. 
Nucl. Instr. Meth. Phys. Res. Section A. Vol. 807, 5-12 

vii Jourde, K. (2015) Un nouvel outil pour mieux comprendre les syste ̀mes 
volcaniques: la tomographie par muons, application a ̀ la Soufrier̀e de 
Guadeloupe. Doctoral dissertation. 

viii Rutherford, E., & Geiger, H. (1908). An electrical method of counting the 
number of α -particles from radio-active substances. Proceedings of the Royal 
Society of London. Series A, 81, 141–161. doi:10.1098/ rspa.1908.0065 

ix Townsend, J. S., & Kirkby, P. J. et al. (1901). Conductivity produced in 
hydrogen and carbonic acid gas by the motion of negatively charged ions. Phi. 
Mag., &. Journal of Science, 1, 630–642 

x Chikovanii, G. E., Roinishviki, V. N., & Mikhailov, V. A. (1964). Operation 
mechanism of the track spark chamber. Nuclear Instruments and Methods, 29, 
261–269. doi:10.1016/0029-554X(64)90378-7 

xi Charpak, G., Bouclier, R., & Bressani, T. et al. (1968). The use of 
multiwire proportional counters to select and localize charged particles. Nuclear 
Instruments and Methods, 62, 262–268. doi:10.1016/0029- 554X(68)90371-6 

xii Parkhomenchuk, V. V., Pestov, Y. N., & Pertovykh, N. V. (1971). A spark 
counter with large area. Nuclear Instruments and Methods, 93, 269–270. 
doi:10.1016/0029-554X(71)90475-7 

xiii Raveendraba, k. et al. (2016) Study of glass properties as electrode for 
RPC. Conference proceedings of 13th Workshop on Resistive Plate Chambers 
and Related Detectors (RPC2016). doi: 10.1088/1748-0221/11/07/C07007 

xiv Cârloganu, C. et al. (2013). Towards a muon radiography of the Puy de 
Dôme. Geosci. Instrum. Method. Data Syst., 2, 55–60  



Chapter 3. Muon detection for imaging applications. 

 65 

                                                                                                                                
xv Wuyckens, S., Giammanco, A., Demin, P. and Cortina Gil, E. (2018). A 

portable muon telescope based on small and gas-tight Resistive Gas Chambers. 
arXiv:1806.06602v1 

xvi Oed, A. (1988). Position-sensitive detector with microstrip anode for 
electron multiplication with gases. Nuclear Instruments and Methods in Physics 
Research, 251, 35. 

xvii Charpak, G., Crotty, I., & Giomataris, Y. et al. (1994). A high-rate, high-
resolution asymmetric wire chamber with microstrip readout. Nuclear In- 
struments and Methods in Physics Research, A346, 506–509. doi:10.1016/0168-
9002(94)90585-1 

xviii Y. Giomataris et al. (2006). Micromegas in a Bulk.  
Nucl.Instrum.Meth. A560, 405-408 

xix T Alexopoulos et al. (2011). A spark-resistant bulk-micromegas 
chamber for high-rate applications. Nucl. Instr. Meth. Phys. Res. Section A. Vol. 
640.1, 110–118. 

xx Francke, T. snd Peskov, V. (2014). Innovative Applications and 
Developments of Micro-Pattern Gaseous Detectors. Engineering Science 
Reference. ISBN 978-1-4666-6014-4 

xxi Lesparre, N., Gibert, D., Marteau, J., Komorowski, J. C., Nicollin, F. & 
Coutant, O. (2012). Density muon radiography of La Soufriere of Guadeloupe 
volcano: comparison with geological, electrical resistivity and gravity data. 
Geophysical Journal International, 190, 1008-1019. DOI :10.1111/j.1365-
246X.2012.05546.x. 
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Chapter 4 abstract 
 
This chapter describes the physical principles and processes that enable 

the muon detection and reconstruction of its trajectory with a gaseous detector 
composed of time projection chamber (TPC) with a Micromegas readout plane. 

When a muon enters the conversion and drift volume of the TPC, it creates 
along its track clusters of electron-ion pairs. The primary electrons so created are 
driven by an electric field to the position sensitive amplification structure, i.e. the 
Micromegas detector, where the electric field strength reaches significantly 
higher values. In this region the primary electrons experience an avalanche 
multiplication which enables the detection of signals generated by a small number 
of primary electrons. 

The choice of gas mixture is a key parameter in enhancing the detection 
performance. The number, type and proportion of its components will influence 
the response of the detector during the entire signal formation process from the 
primary electron yield to the gain. The electric fields, present in both the drift 
volume and amplification gap, play a major role in the charge transport and 
multiplication. 

A harmony between these elements is therefore required in order to meet 
a set of physical and technical constraints, with the aim of designing an optimized 
detector suitable for muon tomography as well as establishing the operational 
parameters according to the acquisition conditions.  
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4.1. Parameters that affect the physical processes 

Numerous parameters influence the signal formation processes and affect 
the signal formation. Several authors have performed studies on the causality 
between a parameter variation and the change in the detector’s performance. To 
cite some relevant examples, the gas and environmental variable parameters 
have been assessed by [Adloff, 2009]i, the humidity and dust effect on the 
leakage current were studied by [Wang, 2013]ii and the micromesh geometrical 
aspects have been considered by [Kuger, 2017] iii. 

Each parameter might potentially affect multiple processes and in turn, 
each process is influenced by multiple parameters and affects several 
characteristics. Figure 4.1 summarizes the most impacting interactions of this 
system of dependencies. 

Figure 4. 1 Schematic flowchart with the MUST2 detector physics processes. The parameters that affect 
the processes are listed at the left and the effects in the detector characteristics are on the right. 
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4.2. Time projection chamber 

The Time Projection Chamber (TPC) idea was made possible thanks to 
the development of the Multi Wire Proportional Chamber (MWPC). The MWPC 
represents a powerful tool for particle identification and tracking. It provides the 
energy loss rate (stopping power dE/dx) and, in some cases, the particle energy. 
They have good spatial and time resolution, scalability, low material budget and 
high trigger rate capabilities. By including two superposed perpendicular wire 
planes, it is possible to infer the 3D spatial information. A stack of planes can be 
used to register slices of the ionization path.  

A method to simplify this structure was proposed by David Nygren only six 
years after the invention of the MWPC [Nygren, 1978]iv. He developed a 
technique to reconstruct the ionization path by projecting the electrons associated 
with the incident particle passage in a single detector. To do so, a constant 
electric field is applied inside a gaseous chamber, with the readout plane in the 
anode end. In this so-called time projection chamber, whose working principle is 
sketched in Figure 4.2, the electric drift field does not have to be very strong to 
avoid charge amplification, but intense enough to drive as orthogonally as 
possible the primary charges through the chamber towards the readout plane. 

Despite the near-light speed of particles like muons traversing the time 
projection chamber, the much slower drift speed of electrons inside the gas allows 
the detector to quantify time differences with fast-enough front-end electronics. 
These relative delays, of a few tens of ns in our case, are generated during the 
drift of the primary charges to the readout plane. Hence, if the drift speed is 
constant, the delays are proportional to the relative distances between the 
particular positions where ionization was produced when projected on the drift 
field axis. The correct interpretation of these time differences allows the full three-
dimensional reconstruction of the track. 

Figure 4. 2 Working principle of a TPC. Figure from LCTPC.org by O. Schäfer. 
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4.3. Gaseous detectors, principle of operation 

The detection of a particle requires energy deposition by the traversing 
particle in the detector. Avalanche gaseous detectors were the first devices 
capable of detecting a low number of primary electrons created by ionization of a 
gas. This is due to the charge amplification produced when primary electrons 
trigger an avalanche of secondary electrons, ions, and photons in the detector 
region immersed in strong enough electric field. Electron multipliers are ideal 
noise free amplifiers, capable of amplifying a single electron with a gain1 of up to 
G=107, and theoretically with no output signal in the absence of radiation. The 
signal formation in gaseous detectors covers a sequence of different physical 
processes and presents similarities between the different detector’s families. 

Figure 4.3 shows a simulation of the gas ionization after the passage of 
one charged particle and the subsequent electron transport under the operation 
conditions, for the geometry corresponding to the detector used in the present 
work2. The simulation was done with the software Garfield [Veenhof, 2010] v. 

In it, it is possible to differentiate the following characteristic regions 
explained above:  
1) Conversion of the incident radiation (green line) into primary electrons (green 

dots) and ions. This conversion can happen and trigger signal formation 
anywhere in the detection volume, including the amplification zone. 

2) Drift region of the TPC, where the primary electrons drift towards a 
multiplication region (electron paths in yellow line). 

3) Level of the micromesh, which acts as a porous frontier between the drift and 
amplification zones. 

4) Amplification zone where the primary electrons create many secondary 
electrons (brown dots), these secondary electrons drift towards the readout 
plane. 

5) Collection electrode structure, capable of transmitting the signal to the 
readout electronics. 

 

                                              
1 The gain (G) is defined as the ratio between the number of primary 

electrons and secondary electrons. 
2 Gas blend: Isobutane 2%, CF4 10% and Argon QS, 𝐸𝑑𝑟𝑖𝑓𝑡= 600 V/cm, 

𝐸𝑎𝑚𝑝= 33 kV/cm, TPC height: 5 cm, amplification gap: 128 µm 



Ignacio Lázaro Roche 

74 

 

Figure 4. 3 Simulation of the passage of a muon inside the MUST2 detector. 

- Conversion and drift zone: In the first stage, the presence of an electric
field ( ⃗𝐸 𝑑𝑟𝑖𝑓𝑡) prevents electron-ion pairs from recombining and allows the signal 
development.  The strength and shape of 𝐸⃗ 𝑑𝑟𝑖𝑓𝑡 are designed to optimize the 
electron drift in terms of speed, diffusion3 and trajectory deflection. Primary 
electrons are accelerated along the field lines, acquire momentum and will likely 
scatter with other gas constituents. Characteristic values for the drift process are 
the mean drift velocity, and the transversal (DT) and longitudinal diffusion (DL) of 
electrons. 

- Amplification zone: The drifting electrons are guided to the amplification
volume of higher field strength ( ⃗𝐸 𝑎𝑚𝑝), where they accumulate more energy in-
between collisions and hence become more likely to cause ionization. Each 
released electron is accelerated in turn and can cause further ionization leading 
to the formation of an electron avalanche (see Section 4.9.1 for more details). 
This charge amplification process is stopped once the electrons are either 
captured by a cation or the electrode, or the electric field strength is sufficiently 
reduced to provoke ionizing collisions. The output signal amplitude process 
depends in part on the electron yield resulting from this amplification process. A 
group of these secondary electrons created by one primary electron is called a 
cluster. 

In parallel to the fast electrons travelling to the resistive anode of the 
Micromegas readout plane, the remaining ions drift slowly towards the cathode, 

3 Diffusion is the process of particles being deviated from a straight 
trajectory because of the multiple scattering caused by interactions such as 
collisions. 
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in our case the micromesh. This charge separation and subsequent movement 
induces a charge on both electrodes. The micromesh can also be used as a 
complementary readout structure when connected to electronics that allows 
measuring the current and processing it into a charge signal.  

Although the secondary electrons resulting from the signal amplification 
might be collected on a readout electrode, the measured signal mainly depends 
on the relative movement of the charges in the amplification zone. The charge 
spread along the resistive layer during the discharge of the electrode is 
characterized by the Shockley–Ramo theorem. This theorem proposes that each 
charge q moving in the vicinity of an electrode at a speed v inside an electric field 
E will induce on the electrode a charge Q following Equation (4.1). 

 

𝑄 = ∫𝐸 · 𝑞 · 𝑣 𝑑𝑡     (4.1) 

 

4.4. Gas ionization 

Primary electrons are produced by diverse mechanisms as seen in Figures 
4.3 and 4.4. This process has several dependences: (i) the type of the gas 
compounds, (ii) the type of the ionizing particle, and (iii) the strength of the 
particular energy deposition. An incoming particle might stochastically ionize the 
gas when its energy exceeds the ionization potential of the gas, in which case it 
creates along its track -and nearby- a number of delta rays, (i.e. the secondary 
electrons kicked out from the gas atoms and molecules with enough energy to 
escape a significant distance away from the primary radiation trajectory and 
produce further ionization). These low energy delta electrons produce short and 
very dense ionization tracks as they slow down in the gas, and release in turn 
new electron-ion pairs. The result is dense clusters of electron-ion pairs along the 
track of the primary radiation. 

Another mechanism for primary electron production is when a charged 
particle kicks out electrons from an inner shell of the atoms or molecules. This 
triggers a chain of phenomena, fluorescent photon emission and expulsion of 
Auger electrons. 

The arbitrariness of this process is translated into discontinuous tracks 
with eventually large distances between two successive ionizations created by 
the same particle, mainly with large angle tracks (far from the orthogonal axis of 
the detector readout plane). This effect can be seen in the Figure 4.3 from [Kuger, 
2017], where the arrival of secondary electrons is discontinuous. 
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Figure 4. 4 Schematic section of a Micromegas detector, primary ionization and signal formation 

processes for different event types: (a) a single electron inserted in the detector; (b) perpendicularly or (c) 
inclined trespassing MIP; (d) electron-ion cloud caused by an X-ray photon. Blue dots and lines represent 

electrons while red is for cations. 

 
The ionization yield is primarily determined by the gas mixture. The total 

number of produced electrons (NT) can be calculated from the following relation: 
 

𝑁𝑇 =
𝑑𝐸

𝑑𝑥⁄
𝑊𝐼

     (4.2) 

 

where 𝑑𝐸
𝑑𝑥⁄  is the deposited energy inside the detector volume and WI is the 

mean energy required to produce an electron-ion pair. Table 4.1 provides an 
overview of the gas properties of the noble gas and compounds used in different 
gas blends to operate the detector MUST2. 

When the detector contains a gas blend instead of a pure gas, the 
interaction of the incoming particle with a homogeneous gas mixture can be seen 
as a successive transition through layers of a pure gas. The mean energy loss 
can be obtained by a weighted summation of the i components (Bragg rule of 
stopping power additivity), where the weighting factors pi correspond to their 
proportion: 

 

− 𝑑𝐸
𝑑𝑥

= ∑ 𝑝𝑖 ·𝑖 (−𝑑𝐸
𝑑𝑥

)
𝑖
    (4.3) 
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Table 4.1. Properties of gases at NTP (20ºC, 1 atm). EX: first excitation energy; 
EI: ionization energy; WI average energy to produce an electron-ion pair; 
dE/dx|min: differential energy loss; NP: primary and NT: total number of electron-
ion pairs per cm for a unit charge minimum ionizing particle. Data from 
[Patrignani, 2016]vi. 

Gas Density 
mg·cm-3 

EX 

eV 
EI 

eV 
WI 

eV 
𝒅𝑬 𝒅𝒙⁄ |𝒎𝒊𝒏 
keV·cm-1 

NP 

cm-1 
NT 

cm-1 

Ar 1.66 11.6 15.7 26 2.53 25 97 

CO2 1.84 7.0 13.8 34 3.35 35 100 

CF4 3.78 10.0 16.0 54 6.38 63 120 

iC4H10 2.49 6.5 10.6 26 5.67 90 220 

 
The same principle can be applied to the average number of primaries NP 

and total ionization NT per path length, as well as for the average energy per 
electron-ion pair WI. The fluctuation in the number of independent primary 
ionization processes is determined by Poisson statistics with 𝜎(𝑁𝑃) = √𝑁𝑃. In our 
case, a Micromegas with a 5 cm height conversion and drift space, filled with 
Ar:CF4:iC4H10 (88:10:2), an average of 161.3 ± 12.7 primary interactions with the 
gas are expected heterogeneously distributed along a perpendicular track as the 
one seen in Figure 4.3 (b).  

 
4.5. Signal strength  

The signal strength (S) is used to define the charge deposited in the gas 
volume by a muon traversing a gaseous detector operated in a proportional 
mode4, such as the Micromegas, and is directly related, among other parameters, 
to the gain of the detector, G. 

In order to infer the deposited energy in the detector, the electronics must 
maintain the proportionality between S and the charge created in the detector’s 
amplification stage and can be represented by the conversion factor cr/o. In our 
case, the information relative to the passage of the muon is transferred to the 
detector in the TPC. Yet S is proportional to the amount primary electrons arriving 
in the amplification region. This is due to the fact that the majority of the charge 
is created in the amplification gap and collected on the resistive layer anode 
(electrons) and the micromesh (majority of cations). A small portion of the total 
number of ions, those generated in the conversion and drift volume, is collected 
in the drift cathode. 

Theoretically, all primary electrons created during the primary ionization 
(NT) should contribute to S. However, several processes contribute to a decrease 

                                              
4 The produced charge is proportional to the deposited charge by the 

muon. 
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in primary electrons before they reach the amplification zone or trigger an 
avalanche. This fraction of electrons lost (L) reduces the total charge yield during 
amplification, and thus the signal strength.  

 
S = NT · (1 − L) · G · cr/o     (4.4) 

 
The electron loss is mainly due to three processes: recombination after 

primary ionization (R), attachment to gas constituents during scattering (A) and 
neutralization of the electrons (N). On the one hand, the origin and consequences 
of A is detailed in Section 4.7. On the other hand, in Micromegas-like detectors, 
the passage of electrons through the micromesh represents a critical stage for N 
and a fraction of electrons may be neutralized in this boundary zone. The fraction 
of surviving electrons (1 − N) is commonly called electron transparency (T) and 
its effect is seen in Section 4.8. Therefore (4.4) may be rewritten as: 

 

S = NT · (1 − R) · (1 − A) · T · G · cr/o    (4.5) 
 
Unfortunately, the validity of the factorization (4.5) is limited due to the 

assumption of independence of the processes. While their independence is 
ensured on a per electron level, it is not guaranteed for variables summing over 
several electrons or processes undergoing interactions, such as R or A losses. 
Process factorization describes well enough a single electron response signal, 
but systems involving multiple electrons are commonly treated numerically to 
consider the possible interactions between the processes. 

During the present work, to overcome the aforementioned constraint, the 
software MAGBOLTZ has been used [Biagi, 1999]vii. It numerically solves the 
Boltzmann transport equations for electrons in gas mixtures under the influence 
of electric and magnetic fields, and takes into account the interactions between 
the processes of energy loss. 
 

4.6. Drift of electrons and ions: gas choice 

A detailed description of all the processes involved during the ion transport 
inside the detector would exceed the scope of this thesis. Therefore, only the 
basic considerations are considered in order to provide a general understanding 
of the matter. 

Because of the electron production, positive ions (cations) are also 
generated in the gas volume at two different stages, gas ionization and 
amplification. Cations created by primary ionization in the conversion/drift volume 
are usually guided to the drift cathode and neutralized, while the primary 
electrons are utilized to create a signal. On the other hand, the movement of the 
cations within the amplification zone should be taken into account to characterize 
adequately the behavior of the detector: while the processes for electrons and 
ions are similar, ions move several orders of magnitude more slowly in the gas, 
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because of their larger mass. Their probability to undergo a scattering process is 
drastically reduced compared to electrons in the same electric field. 

By applying Equation (4.1) in the case of a detector under a constant 
electric field, the charge Q will depend on the distance travelled by each charge. 
Since most of the ionizations happen de facto in the vicinity of the anode plane 
in the amplification zone (128 µm thick), the fast electrons will produce a prompt 
signal, and the cations a longer tail which represent as seen in Figure 4.5 found 
in [Bouteille, 2017]viii. 

 
Figure 4. 5 Typical signals induced by electrons (blue) and ions (red) in a Micromegas detector. 

 

The drift of the electrons through the detector towards the anode (readout 
plane) is a key process for a TPC. The deviation suffered by the electrons from 
the theoretical projection point, compared to its actual arrival position at the 
readout plane (𝜎𝑥,𝑦), and the deviation of the expected arrival time (𝜎𝑡) produces 
a diffusion of the topological information that affects the TPC imaging accuracy 
(see Figure 4.2).  

Electrons are not constantly accelerated by the 𝐸⃗ 𝑑𝑟𝑖𝑓𝑡, but instead rapidly 
reach a steady drift velocity (𝑣 𝑑), which manifests itself macroscopically. This drift 
speed can be more easily described by 

 

𝑣𝑑⃗⃗⃗⃗ = 𝜇𝑖𝑜𝑛 · 𝐸⃗ 𝑑𝑟𝑖𝑓𝑡     (4.6) 

 
where μion is the gas-dependent ion mobility, which does not vary with the electric 
field over a wide electric field range and is not significantly influenced by the 
mixture of the molecular gases. On the other hand, μion depends on the pressure 
and temperature of the gas through the expression: 

𝜇𝑖𝑜𝑛(𝑃, 𝑇) = 𝜇𝑖𝑜𝑛(𝑃0, 𝑇0) · 𝑇 𝑇0
⁄ · 𝑃0

𝑃⁄     (4.7) 
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Mobilities for several ions in argon at Normal Temperature and Pressure 
(NTP) conditions are compiled in Table 4.2; the CO2 is included due to the gas 
blend Ar:CO2 (93:7) used punctually during an experiment to test the self-trigger 
induced by the micromesh. The mobility of ions in mixtures of gas can be obtained 
with Blanc’s law: 

 

1 𝜇𝑖𝑜𝑛⁄ = ∑ 𝑝𝑗 𝜇𝑖𝑜𝑛𝑗⁄𝑛
𝑗=1     (4.8) 

 

where pj is the volume fraction of gas j in the mixture and 𝜇𝑖𝑜𝑛𝑗 in the mobility of 
the ion in the gas j. 

 

Table 4.2: Mobility of ions in argon at NTP (20ºC, 1 atm). 

Main gas Ion precursor μion       𝒄𝒎
𝟐

(𝑽 · 𝒔)⁄  Source 

Argon 

𝑠𝑒𝑙𝑓 1.7 [McDaniel, 1973]ix 

iC4H105 
1.56 
2.15 

[Schultz, 1977]x 
[Yamashita, 1992]xi 

CF4 1.10 [Santos, 2017]xii 

CO2 1.72 [McDaniel, 1973] 

 
The goal while running a TPC is to look for the highest mobility to rapidly 

flush the ions and minimize the deformation of the electric field. This further has 
a positive influence on the discharge probability, as a quick drain of space charge 
reduces the streamer formation probability (see Section 4.9.3 for more details 
about the streamer formation). 

From the electron point of view, the optimum scenario is a gas that allows 
a long mean free path (low cross section) and hence, with a low possibility to 
absorb the electron. The electrons would be able to reach high velocities and be 
only driven by the drift field with small deviations. Unfortunately, low cross section 
and ease of ionization are frequently conflicting features for a simple gas, 
therefore mixtures are frequently used.  

The most common choice is a gas mixture based in a noble gas with 
addition of a, usually small, amount of quencher6 gas. The gas mixtures of the 
type Ar + CF4 + hydrocarbon are recommended for applications in high rate drift 

                                              
5 The discrepancy of values is due to the assumption or not of the Blanc’s 

law by the authors. 
6 Quenching refers to any process which decreases the fluorescence 

intensity. 
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chambers in terms of space charge problems [Yamashita, 1992]. The gas blend 
chosen for the current experience, Ar:CF4:iC4H10 (88:10:2), follows this strategy. 

Although the pure argon gas has a low probability of interaction with 
muons, its tendency to elastic collisions produces an undesirable effect due to 
the dispersion of the direction of the electron's velocity in each collision. The cross 
section has a minimum at very low drift fields due to a quantum interaction 
between the electron and the gas molecule wave lengths, named the Ramsauer-
Townsend minimum, which is related to a maximum in the drift velocity. On the 
other hand, the quench gas, CF4 in our case, yields higher drift velocities; a high 
𝐸⃗ 𝑑𝑟𝑖𝑓𝑡 is however needed to balance out the high cross section. 

Based on this strategy of combining gases with complementary properties, 
the interaction between the mean free path and the efficiency of the reset 
mechanism makes the drift speed as a function of the electric field develop a 
peak whose amplitude and position depend on the mixture composition: the 
higher the quench fraction, the faster the gas can be, but stronger 𝐸⃗ 𝑑𝑟𝑖𝑓𝑡 are 
needed. This peak is clearly revealed in Figure 4.6 for green and purple gas 
mixtures. 

The presence of isobutane, iC4H10, in the mixture is doubly justified due 
to its contribution to the amplification properties of the gas and to the important 
improvement of the pure noble gases drift features. Unfortunately, the elastic 
cross section of isobutane is also very high in contrast to CF4. In consequence, 
even with higher fractions of isobutane, drift velocities larger than ~5 cm/μs 
cannot be surpassed in two-component argon-isobutane mixtures. 

The minimal drift speed required to record the entire signal produced in 
the TPC (5 cm height) within a suitable time window for the chosen electronics 
(around 675 ns per event) is ~7,7 cm/μs. Therefore, a mixture of the three 
components is required for the correct operation of the detector. 

Nowadays, with a better understanding of electron gas interaction 
processes on a microscopic level, and the availability of libraries with the different 
gases cross sections, the use of algorithms to calculate and predict drift 
properties becomes more and more affordable and widespread. In the present 
work, electron drift velocities and diffusion coefficients as a function of the electric 
field have been calculated with MAGBOLTZ. Figure 4.6 shows the result of 
simulations of electron drift speed depending on the electric field for different gas 
mixtures. The red dotted line represents the electric field necessary to obtain the 
maximal drift speed of the electrons with the gas mixture chosen for the MUST2 
detector, Ar:CF4:iC4H10 (88:10:2). The relatively flat zone close to highlighted 
point suggests that small variations in the drift electric field have a small impact 
in the electron drift speed. 
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Figure 4. 6 Electron drift velocities as a function of the electric field for different gas mixtures calculated 
with MAGBOLTZ. The red dotted line marks the electronic drift velocity for the TPC operational conditions. 

Section 5.3, dedicated to the gas characterization, provides more 
information about the simulations carried out in order to characterize the drift 
speed of the electrons in gas mixtures of Ar:CF4:iC4H10 with different proportions. 
The longitudinal (𝜎𝑧) and transversal (𝜎𝑥,𝑦) diffusion of the electrons as a function 
of the 𝐸⃗  are also presented and discussed. 

4.7. Effects of gas contamination 

Apart from the gas mixture selection, the gas contamination can have a 
large impact on the attachment of electrons. The gas mixture in the detection 
volume may contain impurities as a result of an inaccurate gas fabrication 
process, out-gassing of components, the defective air-tightness of the gas circuit 
or an insufficient air-purge before operation. The main source of external 
contamination in our experimental setup is the (humid) atmospheric air. As seen 
in Equation (4.5) the loss of electrons by attachment (A) contributes to the loss of 
information. TPCs are especially sensitive to this effect due to their longer drift 
path. 

Operational 
conditions 
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The most abundant element in air, N2, and other noble gases do not have 
electron attachment mechanisms. The contribution of minor components such as 
H2 and CF4 in atmospheric air is minuscule and its impact negligible. On the other 
hand, oxygen-based compounds such as O2, H2O and CO2, give the largest 
attachment contribution to electron absorption as a result of the following 
processes: 

 

𝑒− + 𝑂2  →  𝑂2
−              (4.9) 

𝑒− + 𝑂2  →  𝑂− + 𝑂      (4.10) 

𝑒− + 𝐻2𝑂 →  𝐻 + 𝑂𝐻−     (4.11) 

𝑒− + 𝐻2𝑂 →  𝐻2 + 𝑂−     (4.12) 

𝑒− + 𝐻2𝑂 →  𝐻𝑂 + 𝐻−     (4.13) 

𝑒− + 𝐶𝑂2  →  𝐶𝑂 + 𝑂−     (4.14) 

 
For electron scattering energies of 0.1-1.0 eV attachment losses are 

dominated by (4.9) [Biagi, 2015]xiii. Therefore, electron losses by Oxygen 
contaminations are prevalent during drift in low electric fields (<500 kV/cm). For 
electron scattering energies >3 eV, dissociative attachments become more 
frequent [Itikawa, 2015]xiv. While the total cross section maximum for (4.10) and 
(4.13) are higher, these processes have a higher energy threshold than (4.14).  
A rather large contamination with water vapor would contribute only with very 
strong drift fields ≥ 2 kV/cm. 

Simulations by [Kuger, 2017] show that even the presence of 0.1% O2 has 
an impact on the electron yield in low drift fields, with attachment losses over 10% 
for 𝐸𝑑𝑟𝑖𝑓𝑡 = 600 V/cm. 

On the other hand, the presence of H2O below 1% has a small effect on 
the general drift velocities and diffusion coefficients, and their effect on the 
attachment is expected to be unimportant. Unfortunately, the presence of 
humidity increases the probability of discharges between the micromesh and the 
resistive layer, with a series of unwanted consequences as described in Section 
4.9.3. 

With the aim to minimize the undesirable effects of the two aforementioned 
contaminants, the gas circuit includes specific filters for O2 and H20. 

 

4.8. Mesh transparency 

Many of the Micromegas assets derive from the division of the detector’s 
volume into two subvolumes: the drift and the amplification regions. 
Nevertheless, a physical barrier, the micromesh, is placed between them. 
Introduced in Section 4.5, the mesh transparency (also known as electron 
transmission in early publications) refers to the survival probability of electrons 
while traversing this structure.  

The micromesh is conceived to allow the electrons to pass, but some will 
be neutralized by the grounded mesh wires, with the subsequent loss of 
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information. The opposite phenomenon, but less probable occurs for ions: most 
of them will be collected in the micromesh but some can pass through it to the 
drift volume. We will pay special attention to primary electrons transiting from the 
drift volume to the amplification gap. 

Figure 4.7 shows a zoom near the micromesh of a 2D electrostatic 
simulation of the MUST2 detector with a carbon sputtered resistive layer. The 
reddish curves represent the isovoltage lines, its values inside the amplification 
gap vary from 0V (grounded micromesh) to +440V at the resistive layer stripes. 
The scale goes to -3kV due to the TPC simulation, also considered. Black traces 
indicate the field lines, which reveal the most probable path for the charge drift 
towards the resistive anode or drift cathode for electrons and cations respectively. 

 

 
Figure 4. 7 Electrostatic simulation near the micromesh, performed with COMSOL multiphysics®xv. 

 
It is possible to appreciate the funnel-like distortion of the field lines near 

the micromesh (a) due to the transition between 𝐸⃗ 𝑑𝑟𝑖𝑓𝑡  →  𝐸⃗ 𝑎𝑚𝑝. Punctual 
distortions close to the resistive layer stripes (b) and the pillars that hold the 
micromesh are also noticeable (c). 

The analytic description of the transparency of Micromegas detectors has 
been approached by assessing the fraction Ω𝑚𝑒𝑠ℎ of field lines terminating on the 
wire or mesh compared to the total originating from the cathode. The Micromegas 
case is not suitable for a two dimensions simplification [Bunemann, 1949]xvi, 

Pillar 
  Ç                                Ç 

Resistive layer stripes 

Zoom 
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instead an approximation by two successive grids of crossed wires with the same 
values for 𝐸⃗ 𝑑𝑟𝑖𝑓𝑡 and 𝐸⃗ 𝑎𝑚𝑝 was proposed by [Sauli, 2014]xvii as follows: 

𝑇 ≤ (1 − Ω𝑚𝑒𝑠ℎ)2 (4.15) 

where: 

Ω𝑚𝑒𝑠ℎ(𝐸𝑑𝑟𝑖𝑓𝑡, 𝐸𝑎𝑚𝑝, 𝜌) =
(𝐸𝑑𝑟𝑖𝑓𝑡 + 𝐸𝑎𝑚𝑝)

𝜋 · 𝐸𝑑𝑟𝑖𝑓𝑡
· √𝜌2 − (

𝐸𝑎𝑚𝑝 − 𝐸𝑑𝑟𝑖𝑓𝑡

𝐸𝑑𝑟𝑖𝑓𝑡 + 𝐸𝑎𝑚𝑝
)

2

− 

− (𝐸𝑎𝑚𝑝−𝐸𝑑𝑟𝑖𝑓𝑡)
𝜋·𝐸𝑑𝑟𝑖𝑓𝑡

· 𝑐𝑜𝑠−1 · (𝐸𝑎𝑚𝑝−𝐸𝑑𝑟𝑖𝑓𝑡

𝐸𝑑𝑟𝑖𝑓𝑡+𝐸𝑎𝑚𝑝
· 1
𝜌
) (4.16) 

and 𝜌 = 2𝜋𝑟 𝑝⁄  is a geometrical factor with r the radius of the wire and p the pitch 
of the micromesh. The expression (4.16) is valid within the range 1 − 𝜌

1 + 𝜌⁄ <
𝐸𝑎𝑚𝑝

𝐸𝑑𝑟𝑖𝑓𝑡
⁄ < 1 + 𝜌

1 − 𝜌⁄ . For values of 𝐸𝑎𝑚𝑝
𝐸𝑑𝑟𝑖𝑓𝑡

⁄  above the upper limit, the

transparency tends towards 1. In our case, the geometrical factor of the 
micromesh 𝜌 = 2 · 𝜋 · 9𝜇𝑚 63𝜇𝑚⁄ ≈ 0,898 and the upper limit is therefore 18,5. 

Given an electric field ratio 𝐸𝑎𝑚𝑝
𝐸𝑑𝑟𝑖𝑓𝑡

⁄ ≈50-557, the theoretical transparency is 

optimal. 
Nevertheless, the analytic approach neglects the effect of electron 

scattering during the drift. To take these effects into account, a full simulation of 
the microscopic processes is be required. 

To characterize the electron movement across three dimensional woven 
meshes, the COMSOL Multiphysics® software has been used as simulation tool. 
The AC/DC Electrostatic module has been used along with the module for the 
transport of diluted species. The first module creates the electric field framework, 
and the second simulates the drift of electrons by analogy to the mass transport 
of a dissolved species (solute species) or a component in a gas mixture. 

The simulation was carried out by modeling a unit cell of 1cm2 that contains 
all the representative readout elements: resistive layer stripes and X and Y 
readout stripes. The mesh geometry was simplified due to the requirement of 
computing resources to simulate its actual shape of interwoven wires.  

Instead of a woven mesh, the micromesh is represented as a grid-like flat 
volume made of 18 μm thick stainless-steel, with squares holes of 63 μm side. 
The amplification gap thickness is 128 μm and the drift distance 5 mm.  

The chamber was flushed with Ar:CF4:iC4H10 (88:10:2). The gas mixture’s 
traverse and longitudinal diffusion coefficients have been calculated with the 

7 The ratio considers 𝐸𝑑𝑟𝑖𝑓𝑡= 600 V/cm and 𝐸𝑎𝑚𝑝 ≈ 30-33 kV/cm, which 
corresponds to Vdrift= -3000 V and Vres= 380-420 V.
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Garfield software for the detailed simulation of two- and three-dimensional drift 
chambers. 

The drift electric field has been fixed to 600 V/cm for the reasons detailed 

in Section 4.6, and the ratio 𝐸𝑎𝑚𝑝
𝐸𝑑𝑟𝑖𝑓𝑡

⁄  has been sampled by varying 𝐸𝑎𝑚𝑝.  

 

 
Figure 4. 8 Scheme of the unit cell of the Micromegas detector. Performed with COMSOL multiphysics®. 

 
The determination of the electron transparency was accomplished by 

placing two probes within the assessed volume, the first one in the micromesh 
volume and the second one comprising the rest of the gas volume. Transparency 
was calculated as the ratio between the number of electrons into the amplification 
gap compared to total number of electrons produced. 

Figure 4.9 summarizes the results of the transparency simulations. Larger 
values of the electric field ratio lead to better transparency values. Nevertheless, 
if the 𝐸𝑑𝑟𝑖𝑓𝑡 has to remain constant, the rise of 𝐸𝑎𝑚𝑝 may lead to the creation of 
sparks, streamers or other undesirable process presented in Section 4.9. 
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Figure 4. 9 Results of transparency simulations. 

For the technical reasons stated above, the operation zone of the MUST2 
is in the interval of field ratios between 50 and 55. The calculated values of 
transparency for this region of interest vary from 93 to 94 ± 9,6%. The values 
here presented are consistent with the results obtained by [Kuger, 2017], who 
performed a detailed simulation of different kinds of mesh models under different 
electric fields and gas mixtures. 

Square wires are much simpler to model than woven meshes and less 
time-consuming when performing simulations. Nevertheless, when compared 
against experimental data, this kind of coarse approach leads to simulated 
transparencies lower than the actual experimental measures [Nikolopoulos, 
2011]xviii. In reality, for the type of mesh used (geometrical parameters and 

interweave), the low drift electric field (< 700 V/cm) and high ratio 𝐸𝑎𝑚𝑝
𝐸𝑑𝑟𝑖𝑓𝑡

⁄ , the 

detector transparency is very close to 1 and its effect can be neglected for the 
current application. 

 

4.9. Avalanche multiplication 

The primary electrons created by radiation in the drift/conversion region 
are transported by an electric field to the multiplication structure where the electric 
field strength reaches significantly larger values. In this region the primary 
electrons experience avalanche multiplication.  

4.9.1 Gain 

The survival electrons entering into the amplification gap of the detector 
(n0), also called signal electrons, undergo acceleration within a strong electric 
field (𝐸𝑎𝑚𝑝). They can accumulate enough energy between collisions to cause 
ionization, thus releasing an additional free electron. As seen in Section 4.4, a 
free electron can acquire sufficient kinetic energy Ek to ionize the gas atoms or 
molecules via inelastic collisions (if Ek>Ei) so that after the collision another free 
electron appear in the gas. 
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Repetition of this charge amplification process by the initial, as well as the 
newly released electrons, causes a cascade of electron multiplication, typically 
referred to as an electron avalanche, first discovered by J. Townsend [Townsend, 
1901]xix. 

Mathematically this avalanche process can be described by: 

 
𝑑𝑛𝑒(𝑥)

𝑑𝑥
= 𝛼 ·  𝑛𝑒     (4.17) 

 

where 𝑛𝑒(𝑥) is the number of avalanche electrons at a given position x along the 
amplification direction, and 𝛼 is the first Townsend coefficient. The total number 
of electrons created in the avalanche after passing a distance d will be: 

 

𝑁𝑒 = 𝑛0 · 𝑒𝑥𝑝 (∫ 𝛼 · 𝑑𝑥𝑑
0 )    (4.18) 

 

Thus, when the electric field is uniform, D is constant and the number of 
electrons reaching the anode (𝑁𝑒) depends on the distance between the two 
electrodes (d) and the number of electrons that trigger the avalanche: 

 

𝑁𝑒 = 𝑛0 · 𝑒𝛼·𝑑    (4.19) 

 

Considering the gain (G) as the ratio of the number of signal-to-produced-
electrons, Equation (4.19) can be rewritten as follows: 

 

𝐺 = 𝑒𝛼·𝑑     (4.20) 

 
Nevertheless, the Micromegas amplification gap does not behave like a 

perfect parallel plate device due to the micro-mesh and cathode non-flat 
geometry. As a consequence, the distance parameter between electrodes does 
not define accurately the system and the amplification field presents 
heterogeneities.  

The generalized form of the reduced first Townsend coefficient is given by 
the expression [Davidov, 2006]xx:  

 
𝛼
𝜌

= 𝐴 · 𝑒𝑥𝑝(−𝐵·𝜌
𝐸

)    (4.21) 

 

where 𝜌 is the molecular density of the gas and A and B are parameters 
depending on the gas type and electric field range.  
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During operation, the larger number of photons emitted in radiant de-
excitation increases as well. A photo-electric effect at the cathode of the 
Micromegas detector, the micromesh, frees an electron which in turn triggers a 
secondary avalanche. These secondary avalanches occur potentially delayed 
and displaced with respect to the initial avalanche due to the distance travelled 
by the photon (unaffected by the electric field) and they are often experimentally 
not distinguishable.  

Therefore, a measured gas gain Gexp is biased by the statistical occurrence 
of secondary avalanches: 

𝐺𝑒𝑥𝑝 = 𝐺
1−𝛽·𝐺

(4.22) 

where 𝛽 is the second Townsend coefficient, representing the mean probability 
to trigger a secondary avalanche per electron in the initial avalanche. 

The mean gain G and its relative variance are the two macroscopic 
measurable parameters for assessing the electron amplification. Correctly setting 
the gain of the detector is a prerequisite for its successful operation. 

The gain variance inherent to the stochasticity of the process, on the other 
hand, is the determining factor for the detector’s energy resolution. Gain variance 
might be accurately modeled by a Polya distribution [Eggenberger, 1923]xxi. 

The targeted application for the MUST2 detector, muon transmission 
tomography, relies on the determination of the origin and flux of incoming muons 
and does not require mandatorily to determining the energy loss of the muons. 

4.9.2 Operation modes 

The performance of gaseous detectors is strongly reliant on the gain. The 
same detector can behave in different modes by varying the electric field: 
1. Recombination region (G < 1): with a very low electric field, the separation of

the primary electron-ion pairs is not entirely possible, and a fraction of the
charge-pairs recombine.

2. Ionization chamber mode or Unity-gain (G = 1): with an electric field near the
recombination threshold, only the electron-ion pair created by primary
ionization is measured.

3. Proportional region (G ≈ 103 - 105): with an electric field larger than the
amplification threshold, primary electrons succeed to trigger avalanches of
stable mean gain and gain fluctuation. The integrated charge is proportional
to the initial number of signal electrons; thus, it is possible to infer the
deposited energy of the traversing particle.

4. Range of limited proportionality (G ≈ 105-108): the proportionality between
deposited energy and signal is gradually lost due to the electric field distortion
caused by the accumulation of ions near the anodes and the additional
avalanches with nonlinear effects.

5. Saturation or Geiger-Müller mode (G ≈ 108 - 109): the total charge collected
saturates, and the electric field between the fast electron avalanche and the
ions dominate the amplification process, which allows for recombination
processes associated with a photon emission. These photons, not affected



Ignacio Lázaro Roche 

 90 

by the electric field, may trigger secondary avalanches. As a consequence, 
the amplification spreads along the anode and eventually causes a 
breakdown of the voltage, impeding temporarily the amplification until the 
field is restored. The electric field strength reduction becomes too important, 
and results in a self-quenching of the avalanche. 

6. Discharge region (G > 109): if the power source responsible for the electric 
field does not have a current cutoff protection, the ions density becomes 
sufficiently high that the electrons go freely from cathode to anode and cause 
a discharge. These sparks can cause irreversible damage to the detector. 

 

The values of gain between modes are dependent on the geometry of the 
amplification zone and may differ between different configurations. The reference 
values presented above refer to the Micromegas detectors of the ATLAS 
experiment [Kuger, 2017]. 

Figure 4.10 from [Silva, 2015]xxii, illustrates the different modes or regimes 
of operation of gaseous detectors. The pulse size is proportional to the gain of 
the detector, and the applied voltage may differ depending on the type of detector. 

Micromegas based detectors operate usually with a gain near 104, thus in 
the proportional region and distant from the sparking zone as seen in the previous 
section. Nevertheless, certain circumstances may foster the appearance of 
sparks during normal operation, such as the presence of impurities in the 
amplification gap, local distortions of the micromesh or humidity among others. 

 
Figure 4. 10 Six-region curve for gas-filled detectors. 

4.9.3 Discharges 

One of the main disadvantages of the Micromegas technology, before the 
incorporation of the resistive layer, was the vulnerability to discharges. These 
violent discharges, often referred to as sparks, cause a voltage drop, rendering 
the detector less efficient until the potential difference is restored, and may also  
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cause irreversible damage at both the micromesh and the readout tracks. The 
high current can damage the downstream readout electronics as well. 

The Paschen law predicts the theoretical breakdown voltage as a function 
of the distance between electrodes, type of gas between them and its pressure: 

 

𝑉𝐵 = 𝐵·𝑝·𝑑

ln(𝐴·𝑝·𝑑)−𝑙𝑛[𝑙𝑛(1+ 1
𝛾𝑠𝑒

)]
    (4.23) 

 
where VB is the breakdown voltage, p is the gas pressure, d is the gap distance 
between electrodes, 𝛾𝑠𝑒  is the secondary-electron-emission coefficient, A is the 
saturation ionization in the gas at a particular E/p (reduced electric field value), 
and B is related to the excitation and ionization energies [Paschen, 1889]xxiii. 
 By means of Equation (4.23), it is possible to obtain Figure 4.11 (Image 
adapted from [Wittenberg, 1962]xxiv), which shows the theoretical breakdown 
voltage of several gases under different conditions of pressure and electrode 
distance. For instance, considering a constant distance of 100 μm between the 
micromesh and the resistive layer, and an atmospheric pressure of 760 mmHg, 
the green dotted line marks the breakdown voltage in dry air, 927V. On the other 
hand, the black dotted line represents the same geometry, but with argon instead 
of air at 790 mmHg (30 mmHg is the typical overpressure of the TPC volume). In 
this case the breakdown voltage drops to near 450V. 
 

 
Figure 4. 11 Paschen’s law breakdown curves for various gases. 

 
The knowledge of the breakdown voltage is particularly meaningful for the 

present work in two scenarios:  
- Detector benchmarking tests: after its fabrication, a detector undergoes a 
process of quality control in open air to identify construction errors that may lead 
to its malfunction. Smaller than expected breakdown voltages indicate the 
presence of contaminating particles or defective areas that should be removed 
or neutralized. 
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- The presence of sparks during detector operation may shed some light on the 
gas quality or environmental parameters during the acquisition. Besides the 
damage to the detector, the presence of sparks leads to electric field instabilities 
that alter the amplification stage, and thus the signal strength. The stability of the 
electric field is critical to maintaining the dead time as small as possible (Typically 
between 10−3 and 10−2 s). In addition, the breakdown voltage sets a physical limit 
to the detector operational parameters. 

Another mechanism of spark formation has been introduced in the 
previous section. When the detector’s gain exceeds a gain of ~108, the avalanche 
reaches a critical size, called the Raether limit [Raether, 1964]xxv and leads to the 
formation of a streamer. 

Figure 4.12 shows a schematic illustration of streamer development. When 
the total charge in the avalanche is close to the Raether limit (T0 in the picture), 
the field lines near the primary avalanche undergo a focusing effect and start to 
bend towards the primary avalanche.  

In T1, secondary electrons created adjacent to the primary avalanche 
move towards it and generate secondary avalanches. In T2, the secondary 
avalanches create a fast-moving thin plasma filament inside the gas volume, 
called a streamer.  

When the streamer reaches the resistive layer, it creates a conductive trail 
and produces a discharge and local drop of the electric field. 

 

 
Figure 4. 12 Schematic illustration of streamer development process. 

 
Actually, Micromegas-like detectors, seldom reach gains over 105 because 

of the mechanism explained above. Derived avalanches are started by a 
secondary photon, which induces a photo-electron in a gas molecule or the mesh 
material.  

The choice of gas components, as seen in Section 4.6, is crucial in order 
to minimize this undesirable effect. The quencher component of the gas must 
have a good absorption cross section for these photons, and lead to the excitation 
of non-radiative states (rotational, vibrational). In the absence of a quench 
component, pure argon would break down before achieving G > 103 in typical 
microbulks [Dafni, 2009]xxvi. 
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Chapter 5 abstract 
 
The present chapter aims at describing the design choices and the 

reasons that motivated them, in adapting existing tools in order to match the 
project requirements and goals. It also covers the development of innovative 
solutions to fill in the technological gaps encountered during the construction 
process. 

Section 1 provide a brief summary of the Micromegas detector origins and 
the distinctive factors between its different versions as well as the reasons that 
motivated its selection for this work. Section 2 provides a detailed description of 
the specifications and manufacturing of the detector’s readout which was used 
during the work. 

As seen in Chapter 4, the gas management plays a major role in the 
performance of the detector. The results of the numerical simulations of the gas 
physical properties, relevant for the detector design and operation, are presented 
in Section 3. Section 4 provides a walkthrough of the gas conditioning system, 
which is coupled to the detector and responsible for the gas quality. It controls 
the gas flow and pressure, and prevents contaminants from entering into the 
detection volume. 

Section 5 depicts the numerical simulations of the electric field conducted 
to minimize the artifacts related to the electric field distortions within the TPC, and 
to design the field homogenizer elements. The angular resolution of the MUST2 

is also discussed. The assembly process of the detector is illustrated in Section 
6 together with the benchmark tests before its approval. 

Section 7 provides a description of the two different kinds of 
instrumentation tested with the MUST2 detector for retrieving and storing the data 
associated with the passage of muons. 

Last but not least, some detectors used in the present work malfunctioned 
or manifested contamination symptoms during the experiments. Section 8 
summarizes the servicing process carried out to recover, when possible, the 
faulty units. 
  



Chapter 5. Technology description and developments. 

 97 

5.1. Introduction 
5.1.1 MUST2 functioning principle 

As mentioned in Chapter 1, the MUon Survey Tomography based on 
Micromegas detectors for Unreachable Sites Technology (MUST2) camera is a 
gaseous muon detector. Conceived both for ground- and underground operation, 
it is a compact, portable and robust tool for geophysics and civil engineering. The 
detector consists of a thin TPC (detailed in Section 4.2) with a Micromegas 
readout plane. This innovative combination presents interesting distinctive 
features, allowing a wide angular acceptance of the detector with a light weight 
and reduced volume, hence iswell adapted for confined spaces or underground 
operation.  

 
As seen in Figure 5.1, when the muon enters the conversion and drift 

chamber, it ionizes the gas. The generated electrons will drift orthogonally 
towards the micromesh under the influence of the electric field in this region. 
Once the electron passes the micromesh, it enters the amplification gap with a 
much stronger electric field, where it undergoes acceleration that creates an 
avalanche effect which amplifies the charge. The charge displacement induces a 
signal by capacitive coupling in both the micromesh and the readout tracks. The 
first signal can be used to command the acquisition instrumentation and the 
second one for the image reconstruction. 
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Figure 5. 1 Schematic cross-section of the MUST2 to illustrate its functioning principle. 
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5.1.2 Micromegas, a member of MPGD 

A century after the discovery of the gas amplification basic principle, 
gaseous detectors are widely used in applications where a large coverage area 
is required with a low materials budget. The development of photolithography and 
microprocessing techniques in the circuit board industry have led to a transition 
in the field of gaseous detectors during the last decades from wire structures to 
Micro-Pattern Gas Detector (MPGD). Figure 5.2 shows the timeline for several 
most spread MPGD technologies. 

 

 
Figure 5. 2 Timeline of the MPGD technology developments. In blue, the creation RD51 CERN research 

group dedicated to the development of MPGD technologies. 

 
The first MPGD was the Micro Strip Gas Counter (MSGC) conceived by 

Oed [Oed, 1986]i. It consisted basically of a MWPC, but instead of wires it had 
metallic printed strips in a glass base. Later, many original MPGDs structures 
have developed from this initial idea. Two main designs have emerged, because 
of ease in manufacturing, operational stability and superior performances for 
tracking applications: the Gas Electron Multiplier (GEM) [Sauli, 1997]ii and the 
Micromegas [Giomataris, 1996]iii. This established two subgroups in turn: strip-
and-hole and micromesh based MPGDs. Figure 5.3 illustrates the family tree with 
the most relevant MPGDs. 

MPGDs are nowadays employed in several nuclear and high-energy 
physics experiments, medical imaging instruments and geophysics, but many 
more applications are foreseen. They outperform traditional wire chambers in 
terms of rate capability, time and position resolution, granularity, stability and 
radiation hardness [Duarte, 2010]iv. 
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Micromegas-like detectors are good candidates for muon tracking 

purposes due to their high spatial resolution (down to ~10 μm, typically 100 μm) 
[Derré, 2001]v, fast response to signals (down to ∼10-20 ps, typically 10 ns) at 
high counting rates [Papaevangelou, 2018]vi. 

 
 

 

 
Figure 5. 3 Family tree of MPGD. Image A: GEM structure taken with an electron microscope (from CERN 
GDD group). Image B: InGrid detector observed with an electron microscope (image from H van der Graaf). 

  
5.1.2 Bulk resistive Micromegas  

As seen in Figure 5.3, the Micromegas family offers several options that 
can be combined according to the nature and layout of its characteristic elements, 
i.e. micromesh and readout anode. Table 5.1 summarizes the hardware 
differences between members of this family and their distinctive features. 
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Table 5.1. Comparative table of Micromegas-based detectors’ features. 

 Bulk Resistive MicroBulk InGrid Piggyback 

Hardware 
difference 

Woven wire 
micromesh 
integrated to 
the anode 
through 
pillars  

Resistive 
layer 
between 
the 
micromesh 
and the 
anode 

The mesh 
is printed 
in 
Kapton® 
film, 
thinner 
than bulk 

Aluminum 
microgrid 
integrated 
onto a 
pixel 
detector  

The 
resistive 
layer is 
deposited 
on a thin 
ceramic 
substrate 

Distinctive 
features 

Robustness 
Industrialized 

Spark 
protection 

High 
energy 
resolution 

Best 
energy 
resolution 

Large 
dynamic 
range of 
resistivity 

 
The current work aims at the development of a pre-industrial tool, therefore 

both commercial availability and verified robustness of components play a major 
role in the decision-making. 

Having this in mind, the Micromegas bulk-type detectors (invented only a 
few years after the standard Micromegas [Giomataris, 2006]vii) benefit from the 
manufacturing machinery and processes used by the Printed Circuit Board (PCB) 
industry to fix the micromesh at a permanent and constant distance above the 
readout plane. This kind of detector is characterized by its robustness and large 
area coverage (up to 2-3 m2). It has been widely used since 2005, and are 
foreseen in large scale particle physics experiments such as the Large Hadron 
Collider at CERN [Bianco, 2016]viii.  

The pioneer manufacturers, CEA and CERN MPGD workshops, have 
made significant efforts since 2012 towards the detector industrialization. The 
goal is to transfer the know-how and outsource the production of bulk-
Micromegas to industrial partners, e.g., the PCB manufacturers Elvia in France 
and Eltos in Italy. 

On the other hand, the formation of discharges, detailed in Section 4.9.3, 
brings a series of undesirable effects that might lead, in the worst-case scenario, 
to permanent damage of the Micromegas detector or the downstream electronics. 
The incorporation of resistive layers between the micromesh and the readout 
anode, developed between 2005 and 2013, can convert bulk-Micromegas 
anodes into spark-resistant detectors, while maintaining their precision and 
preventing the hardware from harmful consequences. 

Due to the factors explained above, the T2DM2 project commissioned a 
batch of 6 bulk-Micromegas resistive detectors in 2013. Four of these were 
assigned to the CERN’s MPGD workshop; the remaining two, to Elvia.  
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In 2014, the project received the first 4 units from CERN. The two units 
awarded to Elvia encountered production issues during the resistive layer 
pressing, and had to be resent to the CERN’s workshop for completion. The 5th 
detector was delivered in 2015. 

At the time, recent advances in resistive layer manufacturing gave to the 
project a unique opportunity to slightly modify the structure of the 6th unit before 
its completion. A new technique, mastered by the Kobe University in order to 
produce big Diamond Like Coated Resistive Layers (DLCRL), motivated the 
upgrade of the former resistive layer made with the technique of screen printing. 
Finally, the 6th detector with a DLCRL was delivered in 2016. 
 

5.2. Micromegas readout plane 
5.2.1 Elements and layout 

In order to evaluate the size of the Micromegas readout plane for the 
MUST2 detector, two conflicting aspects have been taken into account. On the 
one hand, in order to minimize the acquisition time, the active surface of detection 
must be maximized. On the other, the transportability is compromised by its large 
size, the fabrication process becomes technically challenging, and the cost to 
instrument the device increases. 

The width of the Micromegas plane has been established by the 
constraints associated with the manufacturing process. The majority of standard 
equipment used for printing circuit boards are capable of handling panels of width 
up to a maximum of 600 mm.  

As for the length, the maximal dimension is given by considering the 
practical aspects of transport (a length similar to the 1200 mm of a standard 
pallet), in-situ deployment at the LSBB, and required instrumentation.  

The actual external dimensions of the MUST2 Micromegas readout plane 
are 555 x 1.155 mm2, which enables its fabrication with standard equipment. 
These dimensions come from the addition of the surface occupied by the readout 
tracks, plus the necessary space to host the drift field cage and the electronics 
interface. 

All six detectors commissioned by T2DM2 present the same readout and 
connectivity configuration. Figure 5.4 shows the location of the following 
elements: 

-Micromesh. This element acts as a frontier between the conversion/drift 
zone and the amplification gap. A distinguishing feature of the MUST2 
Micromegas readout plane is that the micromesh is isolated from the TPC frame.  

The only ground connection possible is the designated pad to retrieve the 
signal from the mesh, with the aim of creating a trigger signal associated with the 
muon passage. 
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-Readout tracks. Placed in two superimposed surfaces shifted 90º, they 
provide hit position information in the coordinate orthogonal to their plane. They 
contain a series of copper tracks that are parallel beneath the active detection 
zone, and converge in groups of 128 tracks to the front-end electronics connector 
interface.  

The lower Y readout plane contains 512 channels of 0.7 mm width and 1 
mm pitch grouped in 4 connectors, while the upper X readout plane contains with 
1.024 channels of 0.3 mm width and 1 mm pitch grouped in 8 connectors. 

The difference of width between the tracks of the two readout planes is 
motivated by the layout of the layers. The lower readout layer, the Y plane, is 
farther from the resistive layer where the capacitive signal is generated. The width 
of the Y tracks is maximized in order to get as much signal as possible.  

On the other hand, the upper X readout layer produces an undesirable 
screening effect; the track width must be as narrow as possible while keeping a 
minimal size to receive the signal. 

-Resistive layer. The anode spark-protection element. As mentioned 
above, two different resistive layers have been used in the present work: screen 
printed and diamond like coating.  

Another distinguishing feature of the MUST2 Micromegas readout plane is 
the fact that that the resistive layer is divided longitudinally into four equal 
sections. Each section is electrically-isolated from its neighbors and allows the 
four different sectors to operate independently. This feature has proven to be 
especially useful when certain areas of the detector present malfunction due to 
aging or assembly problems. 

-TPC ground connector. This copper pad enables the electrical connection 
of the time projection chamber to the ground outside of the detector’s sealed 
volume. 

 
According to the distribution of the previously cited elements, the absolute 

area can be divided in turn into two regions:  
-Active surface of detection. The part of the detector capable of producing 

a measurable output associated with the muon passage. It corresponds to the 
region where the readout tracks, resistive layer and micromesh are aligned, and 
measures 1.024x512 mm2 (86,5% of the Micromegas readout plane area). 

-Service or rim area. The part surrounding the active surface, and 
insensitive to the muon passage. This area contains the necessary electrical or 
mechanical connections between elements for the detector operation. 
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Figure 5. 4(Up) Overview of the MUST2 Micromegas detection plane. (Down) Zoom of the readout tracks 

and their dimensions. 

 
Since the Micromegas readout plane is meant in this work for a single-

plane tracking device, the anode must be capable of retrieving the 2D position of 
the ionization associated with the particle passage. To do so, there are two 
classical approaches: 

- Pixel-based detectors: the active surface is divided into a matrix of 
readout pads, each instrumented individually to provide the position directly. The 
main disadvantage is the large number of channels necessary in order to cover 
a large are with good spatial resolution. Experiments, such as ASACUSA, are 

Active surface 
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making electrical connections between pads to form discontinuous strips track in 
order to reduce the number of instrumented channels [Radics, 2015]ix. 

- Strip-based detector: the active surface contains a series of copper tracks 
which provide information about the position across the strip direction. In order to 
retrieve the position in 2D, a second readout layer with strips placed 
perpendicularly can be superimposed.  

This method has two drawbacks, the first is associated with the non-
uniqueness of XY track correspondences during simultaneous events. The 
second is related to the signal transmission between the resistive layer and the 
readout track by capacitive coupling: the charge signal is split between the two 
readout layers, and each layer has a different behavior that must be balanced by 
adapting the geometry of the elements to get a similar output from the two readout 
planes. 

Recently, other advanced techniques to reduce the number of 
instrumented channels in MPGDs have emerged based on channel multiplexing, 
such as the Micromegas genetic multiplexing [Procureur,2013]x.  

The readout granularity is the most important factor in determining the 
reachable spatial resolution of a MPGD detector. To determine the density and 
distribution of tracks necessary to achieve a minimal spatial resolution of 1 mm, 
two factors are taken into consideration: the large active area of the detector and 
the number of channels read by the selected electronics. With these in mind, the 
selected configuration (seen in Figure 5.4 (Up)) allows grouping the channels into 
groups of 128 tracks, which is the most convenient interface for the master-slave 
APV25 hybrid cards (see Section 5.7 for more details about the electronics).  

The total number of instrumented channels per detector, 1.537, can be 
read by a single standard combination of analog-to-digital converter (ADC) and 
front-end concentrator (FEC) from the CERN’s RD51 Scalable Readout System 
(SRS). 

Regarding the track geometry, readout tracks perform two basic functions: 
collect the signal related to the muon passage and route it to the interface 
connector in the outer part of the detector. As seen in Figure 5.4 (Down), the 
section of the readout tracks is not equal between the two planes nor constant 
along their length.  

As for the variable section and geometry of the readout track along its path, 
once it exceeds the active surface of detection, the track acts as an electrical 
nexus with the front-end electronics and its path is defined by its position and the 
shape of the 128-pin Panasonic interface connector. 
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5.2.2 Production process 

A key component of the MUST2 detector is its resistive bulk-Micromegas 
readout plane. This anode board carries the two superimposed layers of readout 
tracks produced by workshops using photo-lithographic etching, the protective 
resistive layer and the built-in amplification gap delimited by the micromesh 
embedded in the support pillars. The schematic cross-section view of the readout 
plane is shown in Figure 5.5 (Up) the values in parentheses correspond to the 
height of the layer.  

 

 
Figure 5. 5(Up) Schematic cross-section view of the Micromegas readout plane. (Down) Magnified view of 

the active surface of the MUST2 with the micromesh partially removed. 

 
Figure 5.5 (Down) shows a magnified view of the readout plane with the 

micromesh partially removed, in which it is possible to identify: the stainless-steel 
micromesh (grey weave in the left half), the support pillars, the resistive layer 
made by screen printing and the X readout plane (vertical stripes below the 
resistive layer). The Y readout plane is not visible in the picture because it of its 
alignment with the resistive layer. 

Resistive layer (~20"m) 

Y readout tracks (17"m) 

X Readout tracks (17"m) 

PCB support in FR4 (16mm) 

Copper layer (~30"m) 

Pillars (~150 "m)  

Micromesh (30 "m) 

Kapton® foil (50"m) 

Coverlay (25"m) 

1mm 
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The production process of the Micromegas plane used by the MUST2 
detector is presented in the figure 5.6. 

Figure 5. 6(Left) Diagram of the production process of the MUST2 readout plane. (Right) Images of the 
readout plane during different stage. 
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The production process follows a multi-step work-flow analogue to the 
fabrication process of standard bulk-Micromegas detectors, described in detail 
by [Kuger, 2018]xi and [Delbart, 2010]xii.  

1. Readout strips and connector pads. Production starts with a fiber glass 
epoxy (FR4, 1,6mm thick) panel, which acts as a support for the copper readout 
pattern. The Y lower readout plane is etched into the 17 μm thin copper layer 
previously deposited on the FR4 board via classical photo-lithographic methods. 
Then, a coverlay layer is placed over the Y readout plane and the procedure is 
repeated to etch the X higher readout plane. The process takes place within a 
temperature- and humidity-controlled environment. The expansion of the base 
material due to the temperature and humidity changes is taken into account while 
designing the mask’s pattern so the final product will match the specifications.  
For the connector pads, to guarantee the conductivity between them and the 
elements such as the resistive layer or the micromesh (see Figure 5.4 (Up)), the 
copper pad is covered with a noble metal material, such as silver paste. At this 
point the detection board has the appearance shown in Figure 5.6 (A). 

2. Resistive layer. During this work two different resistive layer techniques 
have been tested: one produced by DLC coating, the other by screen printing.  
Screen printing is the conventional technique for making resistive electrodes with 
patterns requiring sub-100 μm accuracy. It uses carbon-doped black-loaded 
paste, mostly made from graphite, resin and solvent. A negative mask is placed 
over the substrate foil, the paste is distributed with a squeegee and the excess 
removed. The targeted resistivity of the layer and its thickness is achieved by 
adjusting the composition and viscosity of the paste, the permeability of mask, 
and the pressure and speed applied by the squeegee during the paste 
application. The drawback of this method is due to the liquid nature of the paste: 
the resulting pattern has a bump-like cross section and the boundaries of the 
stripes are not sharp. 

On the other hand, the DLC technique consists of a vacuum deposition of 
carbon particles of molecular size with an amorphous structure over the substrate 
foil with a negative mask. The surface resistivity and thickness can be controlled 
by determining the exposure time to the carbon atoms. This technique presents 
some convenient advantages for Micromegas applications, such as better 
accuracy of the tracks (< 10 μm) and absence of surface irregularities. In return, 
the production of DLC patterns is quite complex and expensive. 

In both cases, a ladder pattern1 is applied over a 50 μm thick layer of 
Kapton® foil: the thickness of the resistive material is ~10-15 μm in the case of 
screen printing, and ~70 nm for DLC. Once the paste is hardened the pattern 
mask is removed and only the exposed areas remain coated. Afterwards, the 
Kapton® foil is glued (with a precission of ~10 μm) on the readout side of the 
PCB with a 25 μm thick Akaflex® glue layer under high pressure and heat.  

                                            
1 The ladder patter consists of long tracks of 0,8 mm tick, superimposed 

on the Y readout strips and with side connections every 2 cm to allow the 
interconnexion of resistive strips and minimize the apparition of dead zones in 
case of or damage or not enough accuracy during the construction. 



Ignacio Lázaro Roche 

 108 

The surface resistivity is 100 MΩ/□2 for the two different layers. At this 
point the detection board has the appearance shown in Figure 5.6 (B). 

3. Bulk Micromegas mesh integration. Once the resistive layer is fixed, the 
micromesh is embedded on top of the Micromegas plane. During the lamination 
process, the micromesh is held in place by an external frame with a tension of 
~10 N/m.  

First, two layers of 64 μm photoresist coverlay, like Varcel® or Pyralux®, 
are placed over the resistive layer with µm precision. This guarantees the flatness 
of the micromesh, and leads to a uniform micromegas amplification gap of 128 
μm. Then the micromesh is laminated on top and covered with an additional layer 
of coverlay. This material is the precursor of the pillars that attach and keep the 
micromesh in place. The supports are about 1 mm diameter, and spaced of 6 mm 
apart, creating a triangular pattern over the active surface. The loss of active 
surface of detection due to the presence of pillars is 2,5%. 

In order to fill the holes of the micromesh and fuse the coverlay layers, the 
lamination is made at high pressure and temperatures of 90ºC to provoke the 
partial melt of the coverlay. The full stack is then hardened at the pillars’ positions 
using a mask and UV light, and the entire anode is developed with NaOH to 
remove all non-hardened material. The micromesh then is held by a 15 mm 
coverlay border surrounding the detector's active area to harden, after which it’s 
is cut to its final 55 × 115 cm2 dimensions. At this point the detection board has 
the appearance shown in Figure 5.6 (C). 

The micromesh chosen for the micromegas readout plane is made of 
stainless-steel with a plain weave pattern as shown in Figure 5.7. The height is 
30 μm, the pitch distance p = 63,5 μm and the wire diameter is d = 18 μm, which 
leads to an aperture a = 45,5 μm. 

   
Figure 5. 7 Schematic of the plain weave pattern and the geometrical parameters required to 

define its unit cell. Image from [ISO9044:1999]xiii 

This micromesh is actually a commercial woven wired mesh, and has 
proven to be an affordable and technologically viable choice for large area 
Micromegas with a good performance in terms of electron transparency. 

                                            
2 The resistivity measured between two opposite sides of a square does 

not depend on the square size. Sheet resistance is a special case of resistivity 
for a uniform sheet thickness, its unit (ohms per square, Ω/□) is dimensionally 
equal to an ohm but exclusively used for sheet resistance. 
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5.2.3 Spatial resolution 

The simplest hit position reconstruction can be made when the signal of a 
single strip exceeds an established threshold level. Nevertheless, in a 
Micromegas-like readout, this case is mostly applicable in a situation when an 
event is induced by a single electron and with no transverse diffusion.  

As seen in Section 4.4, the ionization induced by a muon usually produces 
a higher number of signal electrons. Moreover, these signal electrons undergo 
scattering processes along their drift in the TPC, resulting in a shift of their 
position before triggering the avalanche in the amplification zone. In 
consequence, the charge induced on the readout tracks by the muon passage is 
often distributed over several strips. This effect can be used to improve the 
achievable spatial resolution for hit reconstruction; with a sufficient charge 
sensitivity and adequate temporal sampling of the readout electronics, the 
charge-over-position-over-time information of a hit can be used for a centroid 
reconstruction method.  

Numerical simulations of the detector charge dispersion made with the 
Garfield++ software can help to estimate the spatial resolution. Since a full 
simulation of the detector physics would be excessively time consuming, electron 
drifts are not fully simulated. Instead, the results from the gas simulation 
presented in Section 5.3 are used to characterize the electrons after their drift in 
the TPC. Gaussian distributions are used with mean and variance depending on 
the drift length, gas nature and electric field; only then is amplification fully 
simulated. Regarding the geometry of the simulation, only a finite zone containing 
20 strips of 1mm pitch in the upper readout plane is considered. The results of 
the charge dispersion along the X direction during the electron drift are shown in 
Figure 5.8. The dispersion depends on the square root of the drift distance of the 
electron [Ferbel, 1991]xiv. The simulated dispersion shows good agreement with 
the required spatial resolution for the MUST2 micromegas readout, with value of 
~0,4 mm. 

 
Figure 5. 8 Simulation of signal dispersion along the X axis as a function of the square root of the electron 

drift distance (√)). 
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5.3. Gas characterization 

As seen in the previous chapter, the choice of gas has important 
implications in the detector’s physical processes leading to the creation of an 
exploitable signal associated with a muon passage. 

Simulations provide valuable predictions of important gas characteristics 
such as:   

- Mean longitudinal diffusion. This affects the duration of propagation of
the electron, and thus the TPC capabilities of the detector. 

- Mean transverse diffusion. This measures the shift of the electron
between the original nadir at the beginning of its displacement and the actual 
arrival point at the amplification plane. 

- Mean drift velocity.  Despite the fact that muons travel close to the speed
of light, the drift velocity of the primary electrons produced by the gas ionization 
after its passage in the time projection chamber allows controlling the speed of 
the process. This drift speed (*+,,,,⃗ ) is dependent upon the gas blend and the
electric field. 

Ideally, the gas selected for the current application, Ar:CF4:iC4H10 
(88:10:2), should present low diffusion values to improve the precision of the 
TPC, and a high drift speed for the signal to fit completely whithin the electronics 
sampling. Simulation of the electron drift has been made with MAGBOLTZ [Biagi, 
1999]. This software solves the transport equations for electrons in gas mixtures 
under the influence of electric and magnetic fields, and calculates drift, diffusion, 
gain and attachment of electrons in gases. 

When working with non-standard gas mixtures, the suppliers are required 
to prepare tailor-made blends, and might be unable to guarantee the exact 
composition required. Once the gas mixture is created, it undergoes a precise 
chemical analysis to determine the true composition of the mixture. Deviations of 
up to 1% in composition are usual.  

For this reason, several similar gas mixture compositions have been 
simulated for a range of 100 V/cm ≤ .+/012  ≤ 1.000 V/cm, the environmental
parameters have been set to 20ºC and 1 atm. In real-life conditions, the variation 
of these parameters leads to changes in the drift speed and diffusion. The 
dependence of electron diffusion (D) of pressure (P) and temperature (T), is 
characterized by the following equation: 
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where FG is the cross section of the electron-gas interaction, kB is the Boltzmann
constant and me is the mass of the electron. The results of the simulation for the 
three aforementioned characteristics are presented in Figures 5.9 and 5.10. The 
error on the integration of MAGBOLTZ scales with the square root of the number 
of collisions. This parameter has been set to 10 for better than 0.5 % accuracy. 
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The data highlighted in red represents values for the targeted gas 
composition. The rest of the series allows estimation of and correction for the drift 
speed and diffusion of electrons as a function of the real gas composition. 

Figure 5. 9 Simulation results for longitudinal (Down) and transverse diffusion (Up) as a function of the 
drift electric field. 
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Figure 5. 10 Simulation results the electron mean drift velocity speed as a function of the drift electric field. 

The longitudinal and transverse mean drift distances for the operational 
.+/012	= 600 V/cm are reasonably low (better than 0,5 mm, half of the pitch�
distance) and in good agreement with the detector spatial resolution.  

Another interesting feature of this gas blend is that the drift speed near 600 
V/cm is nearly constant. Small fluctuations of .+/012 during the detector operation�
should have little-to-no effect in the mean electron drift speed, which eases the 
data analysis while reconstructing the muon track. 

The gas mixture presents a high mean drift velocity, 10,7 cm/μs under 
standard operational conditions. This means that the most distant electrons 
(generated at the top of the TPC 5 cm away) will take ~467 ns to reach the 
amplification gap.  

Since the SRS readout electronics, used for most of the project (see 
6ection 5.7.2), is capable of recording data during 675 ns for a single event, the 
drift speed meets the requirements for this configuration.  
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To quantify the length of the signal generated in the TPC, Figure 5.11 
shows the distribution of the number of time bins containing signal over the 
stablished threshold in the X and Y coordinates during an acquisition of 144.973 
events with Ar:CF4:iC4H10 (88:10:2) and .+/012 	= 600 V/cm. 
 

  
 
 

 
The signal length duration is homogeneous in the two coordinates, the 

amplitude in the Y coordinate is however lower due to the induced charge 
difference between the readout planes. The value of 17,114±3,129 time slots 
corresponds to 427,85±78,22 ns, which is in good agreement with the above 
estimated value. 
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Time bin 

Figure 5. 11 Number of time bins with signal over threshold. 
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5.4. Gas management 

The performance of the detector is dictated by the quality of the gas and 
its homogeneous distribution inside the detection volume. Gas parameters (e.g., 
fine composition, flow, contaminants, pressure, etc.) affect directly the physical 
processes that lead to the signal creation. More specifically, as seen in Section 
4.7, the presence of contaminants such as O2 and H20 produces an attenuation 
of the signal strength. 

To minimize the undesirable effects associated with the gas management, 
an auxiliary system coupled to the detector has been designed. The Gas 
Conditioner system (GC) consists mainly of a regulable system of gas filtering 
and recirculation; it also keeps the pressure inside the detection volume steady 
in order to compensate for possible gas leaks along the system, or the gas 
expansion/contraction due to temperature changes. The GC, as seen in Figure 
5.12 (Right), has been designed to fit inside a sturdy trolley to be deployed along 
with the detector in harsh environments. 

The GC is controlled by a logic controller that allows the device to be 
operated both locally and remotely via an ethernet connection. This logic 
controller retrieves the temperature and gas flow values at two different points of 
the gas circuit, and adjusts the pump speed to regulate the gas flow. 

Thus, the GC components shown in Figure 5.12 (Left) can be divided into 
two subgroups according to their function: 

- Gas transport. 
- Flow control and monitoring. 

 

  
 

Figure 5. 12(Left) 3D model of the GC with its components identified. (Right) View of the GC trolley without 
the cover. 
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5.4.1 Gas circuit 

The schematized gas transport process is presented in Figure 5.13. The 
dark blue line shows the gas path, while the light blue line indicates the gas 
release from the recirculation loop. 

 

 
Figure 5. 13 Flow diagram of the gas circuit. 

 
The gas circuit begins with the gas source, in this case a high-pressure 

gas bottle. The gas passes through a pressure reducer, where the pressure is 
set to the desired level, usually ~100 mbar. Just afterwards is a first 22 μm particle 
filter, coupled to the pressure reducer to prevent the entry of fine particles into 
the circuit. 

The filter is connected to the gas conditioner box (seen in Figure 5.12 
Right) through a Teflon PFA 6mm tube with Swagelok quick connectors. This 
kind of connector allows its connection/disconnection as many times as 
necessary while ensuring the gas tightness of the line. Their dead volume is 
extremely low, and air inclusion can be neglected.  

The first component inside the GC case is an analog flow meter, to provide 
a direct read of the gas input, and to permit adjustment of the input flow manually. 
Afterwards, there is a digital flow meter connected to the logic controller that 
regulates the pump speed. The pump generates a pressure gradient that drives 
the gas recirculation.Following the pump, the gas enters into the contaminant 
filter section. Two in-line consumable cartridges filter the water vapor and oxygen 
present in the gas. A series of valves allows bypassing the gas path, and the 
servicing of these elements without exposing the entire gas line. 

Afterwards is a second 22 μm particle filter. This redundant element is 
included inside the gas loop to capture the particles that might enter into the 
circuit from the granular nature of the filter cartridges, or after their substitution. 
Next to the filter, there is a manometer to monitor the pressure of the system. At 
this point the gas line goes directly to the detector, so if we consider negligible 
the pressure drop due to the short length of the Teflon tube, the manometer 
provides a measure of the pressure inside the detector. 
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The direction of the gas feed to the detector is interchangeable: both sides 
can act equally as input/output just by switching the gas tubes. To enhance the 
gas distribution inside the detector, the gas input/output connectors located in the 
metallic frame of the TPC have been split into two points evenly separated from 
the frame’s border and the other connector respectively. Figure 5.14 (Up) 
illustrates the position of the gas connectors with respect to the TPC frame. 

Once the gas crosses the TPC frame, it enters into the gap between the 
metallic frame and the electric field homogenizer cage (see Section 5.5). A 
pattern of 1mm diameter holes has been made in the two PCBs located in front 
of the input/output faces to increase the gas diffusion towards the drift volume. 
Figure 5.14 (Down) shows a magnified view of the holes in the electric field 
homogenizer PCB. 
 

 

 
Figure 5. 14(Up) Gas input/output connections in the frame of the PTC (Down) Detail of the gas diffusion 

hole pattern. 
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After the detector, the gas line splits into two. The first one, dedicated to 
release the overpressure of the detector, contains a check valve with an opening 
pressure of ~60 mbar, followed by a bubbler. The bubbler, filled with paraffin oil, 
has the double function of enabling the visual detection of the released gas, and 
avoiding the air backflow into the gas circuit. 

The second line after the detector conducts the gas to the second digital 
flow meter, which quantifies the amount of gas recirculated and closes the gas 
loop. A check valve with an opening pressure of ~20 mbar controls the direction 
of the gas. 
 

5.4.2 Flow control and monitoring 

Management of the gas flow is made by a Crouzet XD26 logic controller 
with two extension modules to respectively provide ethernet access and produce 
analog output signals. This setup is shown in Figure 5.15.  

 

 
Figure 5. 15 View of the GC’s logic controller. 

 
The program of the logic controller has been made with the M3 software, 

and provides two operation modes -manual and automatic- that can be used 
locally and remotely. 

The manual mode enables the operator to adjust in situ and directly the 
pump speed from the logic controller interface, as well as visualize all data 
monitored by the GC. The automatic mode adjusts automatically the pump speed 
to maintain the gas flow within the preset limits. 

This logic controller is not capable of recording the environmental data: it 
uses the measured values to control the gas flow. The environmental parameters 
during the data acquisition are recorded with another detector. 
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Figure 5.16 shows the PCB specially designed to host, feed and control 
the pump, and to gather all connections between the logic controller and the 
sensors. The connectivity chosen for the GC is based on 8P8C modular 
connectors due to their availability and proven performance with Category 5e 
cables and custom pinout configuration. 

The circuit contains 9 ports for the following purposes: 
- Two to power and control up to two pumps (1 operational and 1 spare). 
- Two to power and control the flow meters. 
- One to power and control the thermocouple. 
- One to power and control the pressure sensor. 
- One to gather all inputs from the power source and logic controller.  
- One to gather all outputs with signals to the logic controller. 
- One, in reserve: it can be used for any of the previous functions. 
 
The PCB also contains the following elements: 
- One LED light which remains on as long as the board is powered. 
- Two aluminum capacitors (105deg 1000uF 25V) for electrical protection. 
- One voltage transformer (TO220 12V 1,5A) to convert from 24VDC to 

12VDC, as necessary to power the sensors. 
- Two pads to solder the Molex connector (Molex 0526100672 FFC/FPC) 

necessary to connect the pumps. 
- One resistor for the voltage transformer GND connection. 

 

 
Figure 5. 16 Printed circuit board for pump support and control. 
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5.5. Time projection chamber design 

The TPC covers the space between the drift cathode and the micromesh. 
It provides information about the time component, also called longitudinal 
coordinate. It permits the identification of spatial points along a particle trajectory: 
X-Y coordinates are obtained from the readout plane and the Z coordinate from 
the drift time. The measurement of the third coordinate requires a precise 
knowledge of the drift velocity as seen in the previous section. 

The TPC walls must provide a gas-tight envelope, and insure appropriate 
electrical isolation of the detection volume from the rest of the detector. 

The design of the time projection chamber requires a balance between 
angular resolution and technical convenience. 

On the one hand, taller chambers provide better angular resolutions, but 
present some disadvantages in return: 

- The voltage required to reach the operational .+/012 increases 
proportionally with the height of the chamber. 

- The shape of .,⃗ +/012 deviates in absence of an auxiliary field cage. This 
deflects the drifting electrons from the desired orthogonal trajectories. 

- The spatial resolution decreases due to electron diffusion. 
 
A TPC height of 5 cm has been chosen in view of the following factors: 
- The voltage necessary for the drift cathode in order to achieve .+/012= 

600 V/cm is -3.000 V, which is within the standard range of commercial high 
voltage power supplies. 

- As seen in Section 5.3, the electron mean drift time from the most 
unfavorable part of the TPC remains compatible with the electronics acquisition 
time window. 

- The spatial resolution degradation due to diffusion is acceptable (the 
same order as the resolution). 

- The expected angular resolution of the detector is better than 1,1º for 
muons with incident angles to the readout plane larger than 10º, which matches 
the values required to perform muon imaging. In turn, the angular constraint can 
be diminished with a correct positioning of the detector towards the target. 

- The volume and weight of the detector remains in good agreement with 
the desired values for field transportability. 

 
The drawbacks associated with this choice are: 
-The need to integrate an electric field homogenizer within the TPC. 
-The gas volume of the MUST detector is ~29,5 L, resulting in long filling 

times prior to operation. 
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5.5.1 TPC frame 

The material chosen for the mechanical part of the TPC is aluminum, due 
to its light weight, low price, ease of machinability, good anti-corrosion properties 
and good conductivity. 

The frame is composed of 4 elements made of 2 different pieces. The 
pieces are aligned thanks to a central flat guide bolt, and then attached by two 
conical head screws as seen in Figure 5.17. Once the frame is assembled, it has 
a rectangular shape with 1.155 mm x 555 mm external perimeter, 50 mm height 
and 15 mm thickness. 

 

 
Figure 5. 17 Detail of the corner of the TPC frame. 

 
The frame contains a pattern of thru-holes along its perimeter to let pass 

the screws that will secure the stack of elements defining the detector. There are 
also some high-density polyethylene (HDPE) spacers. The role of these 
components is to attach the PCB elements from the electric field homogenizer 
and to maintain them parallel to the metallic frame. 

To reinforce the gas-tightness of the frame the following measures have 
been taken: 

- Incorporation of Loctite 518 joint paste at the corner joint surfaces 
between frame pieces. 

- The gas in/out connectors’ thread is covered with Teflon tape to lubricate 
and seal the contact between parts. 

- The frame has a groove loop in both up and down faces to host a 
cylindrical joint. This joint is responsible for the gas-tightness along the detector’s 
perimeter. The upper face of the frame is in contact with the drift cathode, while 
the lower face is in contact with the Micromegas readout plane. 

Conical head screw 

Guide bolt 

Joint’s groove 

Gas in/out 

HDPE spacer 

Thru-hole 
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5.5.2 Drift cathode board 

The MUST2 drift cathode board has the following features: 
- A polarized surface on the inner side of the TPC, to induce the electric 

field necessary for the electron drift. 
- An external face completely covered with copper, to ground all external 

surfaces of the detector. 
- This board, along with the metallic frame and the micromegas detector, 

defines the gas-thigh detection volume. 
- Makes possible the electrical contact between the high voltage power 

supply and the drift cathode. 
The drift cathode board consist in a 1,6 mm thick FR4 panel with 30 μm 

copper depositions on both faces. The perimeter of the board contains a pattern 
of holes for the assembly of the piece. The drift electrode of the inner face, seen 
in Figure 5.18, has the same shape as the active area of the Micromegas readout 
plane and is placed directly above it. 

 

 
Figure 5. 18 Drift cathode of the time projection chamber. 

 
The theoretical distance between the drift cathode and the metallic frame 

is 1 cm. Nevertheless, while operating at -3.000 V, sparks between the two 
elements have been noticed, due to their proximity once the detector is 
assembled. This design flaw has been resolved by placing Kapton® tape on the 
three sides of the cathode that are next to the frame. 

The external face of the board contains a copper pad isolated from the 
remainder of this surface. The pad is connected to the drift cathode through the 
board, and acts as the entry point for the high voltage line, which polarizes the 
electrode. The electrical connection is made by means of a passive, second order 
low-pass RC filter in order to reduce the instrumental noise.  



Ignacio Lázaro Roche 

 122 

5.5.3 Electric field 

Field homogeneity is of major importance in obtaining a straight projection 
of the particle path during TPC operation. The shape of the electric field inside 
the TPC has been simulated with two different software packages -QuickField 
and COMSOL multiphysics®- both yielding equivalent results. The first scenario 
considers a TPC without electric field homogenizers, a drift cathode polarized at 
-3.000 V and a grounded Micromesh. Figure 5.19 shows the result of the 
simulation made with COMSOL multiphysics®: the field lines allow visualizition 
of the shape of .,⃗ +/012 , and represent the most probable path of the electrons 
generated inside the drift volume. 

 
 

Figure 5. 19 Electric field lines inside the TPC without field homogenizer. 

 
Figure 5.20 shows the results of 3 simulations obtained with the QuickField 

software. The three images present a zoom of the TPC near the metallic frame. 
The color indicates the voltage ranging from 0 to -3.000 V. The purple lines 
illustrate the path of 10 electrons released at different points of the TPC. 

 
Figure 5. 20 Electron path simulation inside the TPC without field homogenizer. 

The figures reveal important electric field distortions near the TPC frame. 
The non-orthogonality of the field lines to the detection plane cannot be neglected 
in the first 60 mm around the metallic frame3, which results in an alteration of over 
16% of the active surface. 

                                            
3 The horizontal deviation of the field lines for from the top to the bottom of 

the TPC is bigger than 1 mm, the readout pitch distance. 
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To minimize the electric field distortions predicted by the simulations, it is 
necessary to include an electric field cage inside the TPC. The role of this element 
is to define a uniform electrostatic field in the gas volume. To do so, a series of 
polarized conductors was placed along the frame perimeter to produce a 
progressive reduction of the voltage from the drift cathode to the micromesh. 

The system based on printed circuit boards has been chosen because of 
the following factors: 

- The PCB provides a self-supporting element in which the conductive 
elements remain immutable. 

- Their mechanical stability enables the fixation to the metallic frame and 
reduces the need of servicing. 

- PCBs are easy to design and fabricate, allowing custom design. 
The PCB contains a series of equal, evenly-spaced copper tracks 

interconnected via resistors to create a polarized cage around the drift volume.  
Three different track configurations have been simulated with COMSOL 

Multiphysics® to assess the effect of the number and size of the copper tracks. 
Figure 5.21 shows the electric field with no electric field homogenizer, and a PCB 
containing 6 tracks, 12 tracks and 24 tracks. 

 

 
Figure 5. 21 Electric field simulation of three different PCB configurations. 

6 tracks 

12 tracks 24 tracks 

No field cage 
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As seen in Figure 5.21, incrementing the of number of copper tracks 
beyond a certain threshold yields no significant improvement in the electric field 
homogeneity. Therefore, a PCB with 6 copper tracks has been chosen for 
practical reasons. Fewer tracks implies less resistors to connect them, easing the 
soldering and layout of the components due to the lager tack size. Nevertheless, 
for devices below 6 divisions the electric field is not homogeneous enough. All 
resistors used for the track connections are the same, creating a uniformly-
decreasing polarizing cascade. The high value of the resistors, 300 MΩ each and 
2,1 GΩ in total, provides a current consumption on the order of 1,4 mA.   

Figure 5.22, analogue to 5.19, represents the TPC with the electric field 
homogenizer. The path of the simulated electrons reveals a reduction of the 
deviation due to the electric field heterogeneities in the zones near the frame. 

 

 
Figure 5. 22 Electron path simulation inside the TPC with the field homogenizer. 

 
5.5.4 Angular resolution 

The angular resolution provides an estimation of the error made in 
calculating the incident angle of the particle to the readout plane. It is influenced 
by the gas properties, which affect the temporal resolution and geometric 
parameters, such as the spatial resolution of the Micromegas readout plane (as 
seen in Section 5.2.3) and the height of the TPC. The reconstruction of the muon 
trajectory requires a minimum number of points in order to provide a reliable 
outcome.  

This number is a parameter for the data reconstruction algorithm 
presented in the Chapter 6. The choice of this parameter influences the 
reconstruction efficiency and the robustness of the reconstruction. Nevertheless, 
a hard limit of 3 points is required in a less demanding scenario.  

A B C 
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The angular resolution of the detector is dependent on the length of the 
projection of the muon trajectory over the readout plane. This length is in turn 
dependent of the muon incident angle of arrival. Figure 5.23 shows the maximal 
theoretical number of readout channels (considering the X and Y readout planes) 
intersected by the projection of the muon trajectory within the TPC as a function 
of its zenith and azimuth angles. The azimuth 0º represents the axis of the Y 
readout tracks. 

 

 
Figure 5. 23 Maximal number of readout channels intersecting the muon trajectory projection as a function 

of its zenith and azimuth arrival angles. 

 
The figure shows that muons with trajectories with I<~10º and azimuths 

near multiples of 90º, intersect less readout tracks so that the angle 
reconstruction is more difficult. Figure 5.24 shows the simulated detector’s 
angular resolution as a function of the distance between the most distant hit 
channels associated with the same muon passage, which is in turn dependent of 
the incident angle of the muon arrival to the readout plane. The angular resolution 
increases with tilted tracks as more strips are hit.  

 

 
Figure 5. 24 Angular resolution of the MUST2 detector as a function of the muon’s trajectory projection 

over the readout plane. 
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5.6. Assembly 

The Micromegas readout plane performance can be compromised by the 
presence of small particles, such as dust, in the amplification gap. Foreign bodies 
boost the discharges between the micromesh and the resistive anode, and trigger 
current leaks with annoying consequences. To minimize this, the Micromegas 
readout plane is protected with a melamine plate immediately following its 
production, and the assembly of the MUST2 detector is made in the clean room 
of the Low Background Noise Laboratory. 

The assembly of the detector is made in a series of steps to minimize the 
exposure of the readout plane to contaminants. 

- Time projection chamber. The time projection chamber is composed of 
the drift cathode, the metallic frame and the electric field homogenizer. 

The metallic frame is the first element to be assembled as it hosts the 
electric field homogenizer. The short sides of the metallic frame, as seen in Figure 
5.25, contain the brass gas connectors and a diffusion plate. On top of it, the 
plastic spacers are attached with nylon screws, as also the long side pieces. 

 

 
Figure 5. 25 Components of the short side of the metallic frame. 

  
 The next step is to assemble the four sides of the TPC frame. Loctite 518 
is added in to the contact surfaces between metallic parts to improve the gas-
tightness of the joint, and the excess removed. The result is seen in Figure 5.26.  

The metallic frame is now ready to host the electric field homogenizer. Due 
to the PCB size limitations and given the large size of the detector, it has been 
impossible to create one single PCB board for the entire drift cage. Two different 
male/female pieces (see Figure 5.27 (A)) have been created so they can be 
combined in groups of 6 to obtain a board frame that fits perfectly inside the drift 
cage. The PCBs are mechanically attached to the TPC metallic frame by plastic 
spacers. 
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Figure 5. 26 TPC metallic frame. 

 

 

 
Figure 5. 27 Electric field cage PCB components. 
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Figure 5.27 (A) provides a global view of the corner connection of the 
different boards; the bare copper pads on the bands are for soldering the resistors 
and the boards between them. Figure 5.27 (B) shows the detail of the junction 
between the two boards which form the long side of the detector. Both pieces 
have the same geometry and they can be assembled together. The zig-zag 
design has been chosen to avoid mechanical stress on the soldered connection. 

Figure 5.27 (C) shows the long frames already soldered and with the 
resistors. A complete view of the frame with the electric field cage can be found 
in Figure 5.14. (Up). 

- Micromegas readout preparation. While most of the groups using this 
kind of readout plane try to make a good ground connection of the micromesh, 
the MUST2 aims at being able to recover the mesh signal to provide a trigger 
signal for the electronics associated with the muon passage. Due to the 
fabrication process, the Micromegas detector presents some particularities that 
require being addressed. 

After the fixation of the micromesh via the coverlay frame, the micromesh 
is cut all along the external perimeter and around the thru-holes for the screws 
that hold the detector together. Sometimes, microscopic 18 μm stainless-steel 
wires from the tore micromesh remain near these zones. These wires, in contact 
with the grounded aluminum TPC frame, reduce the amplitude of the signal 
collected in the dedicated micromesh pad. To avoid this, the contact zone 
between the fame and the coverlay is covered with Kapton® foil as seen in Figure 
5.28. A similar effect is observed in the field cage pad, the current from the electric 
field homogenizer partially leaing to the micromesh because of the excess of tin 
when soldering the resistor. A small patch of Kapton prevents the electrical 
leakage.  

 

 
Figure 5. 28 Detail of the Kapton® foil added to isolate the micromesh. 
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Micromesh pad 
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In the same spirit, the base of the inox screws has been covered with 
insulating material as seen in Figure 5.29. 

A steel auxiliary frame of 1 cm is placed below the Micromegas readout 
plane, in order to evenly distribute the pressure of the screws, increasing the gas-
tightness and adding some rigidity to the structure. 

 

 
Figure 5. 29 Modified screws with insulating material. 

 
- Assembly. The next step is the covering of the Micromegas readout plane 

with the drift cage. A toric rubber joint of 3,5 mm diameter is placed in the groove 
in both faces of the metallic frame. Until this moment, the readout plane has 
remained protected by the melamine plate; the protection is removed just before 
the incorporation of the metallic frame, and the covering process speed should 
be adapted to the grade of the clean room. 

Once the metallic frame is in place, the lowest resistor of the field 
homogenizer element is soldered to the dedicated pad of the Micromegas 
detector, as seen in Figure 5.30 (A). The drift cathode board is then placed on 
top of the metallic frame. The contact of the electric field cage with the drift 
cathode is made thanks to a openable connector soldered in the upper resistor 
and the drift electrode as seen in figure 5.30 (B). 

The upper auxiliary frame is seated, and the nuts are tightened following 
a star-pattern sequence. In this process, the screws must be kept immobile and 
only the nuts turned in order to avoid damaging the insulator in the base of the 
screws. 
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Figure 5. 30 Electrical connections of the electric field homogenizer. 

 
The tightening process of the nuts is delicate due to the slight deformation 

of the readout plane resulting from the pressure applied by the frames. To monitor 
possible faults, the external surface of the detector and the resistive layer are 
grounded, the floating micromesh is polarized and the current monitored (see 
Figure 5.31). Current leaks indicate unwanted contacts to the ground (most of the 
time through the screws or the metallic frame), or leaks to the resistive layer due 
to the local distortion of the amplification gap near the external perimeter. A 
compromise must be reached between the gas-tightness and the electrical 
leakages. 

Once the detector is closed, a passive, second order low-pass RC filter is 
applied to the high voltage line which polarizes the drift cathode, as seen in Figure 
5.32. A copper protection cage has been added to avoid sparks while 
manipulating the detector, and to prevent accidental discharges. 

 
  

A 

B 
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Figure 5. 31 Current monitoring while closing the detector. 

 

 
Figure 5. 32 Filter for the drift electric field cage and copper protection. 

 
- Boxing up. The detector is placed inside a protection box for its transport 

and operation, as seen in Figure 5.33. Two gas quick-connectors are attached to 
the box and the connection is made with a stainless-steel tube of 6 mm diameter. 
To power the detector, a series of panel connectors is also placed: two SHV for 
the high voltage (drift cathode and resistive layer) and one BNC for the 
micromesh output. The electronics front-end cards are installed inside the box, 
and their wires enter the box via cable glands. 
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Figure 5. 33 MUST2 fully assembled. 

 
5.7. Instrumentation 

During the present work, the data has been acquired with the CERN 
Scalable Readout System (SRS) and an external trigger provided by two 
scintillators in coincidence. A second data acquisition electronics, developed by 
the CEA’s Irfu4, has also been successfully tested, along with different trigger 
configurations. 

 
5.7.1 CERN readout electronics: Scalable Readout System 

The SRS, developed in the framework of the RD51 collaboration at CERN 
[Pinto, 2010]xv, aims at providing an easy-to-use, portable readout system for 
micropattern gaseous detectors. 

Figure 5.34 represents a simplified version of all elements of the 
acquisition chain, consisting of APV25 front-end hybrid5 cards, an ADC converter, 
a Frontend Concentrator (FEC), the Scalable Readout unit (SRU, only for 
network configurations) and the Data Acquisition Computer. 

The interface of the APV25 hybrid card with the micromegas readout plane 
is made through a 130 pin Panasonic connector with two gold coated-connectors 
for the ground connection and mechanical fixation. 

The hybrid cards are based on the custom-designed APV25 chip [Martoiu, 
2013]xvi, which contains 128 channels of preamplifier and shaper which drive an 
analogue memory into which samples are written at 40MHz. All channels are AC 
coupled and protected against discharges via fast diodes.  

                                            
4 Institute of Research into the Fundamental laws of Universe. 
5 The term hybrid makes reference to the mixed analog and digital signals 

on the front-end boards. 



Chapter 5. Technology description and developments. 

 133 

 
Figure 5. 34 Schema of SRS electronics. Source: RD51 collaboration. 

 
The front-end boards operate in master/slave tandems and are connected 

between them via a flat cable. The so-called master card, additionally contains 
the PLL25 Application-Specific Integrated Circuit (ASIC), which unties the 40 
MHz bunch clock and the trigger signals, which are fed to the hybrid board over 
a single differential line pair.  The trigger signal is provided by a missing clock 
tick. The control and parallel readout of the two front-end hybrid cards is made 
with a single HDMI. The maximal length of the HDMI cable between the APV25 
and the ADC converter is 25m. 

The ADC converter, with a capacity of 8 HDMI ports (up to 2.048 
instrumented channels), contains two octal 12-bit 40 MHz ADCs for digitization 
of the raw analog data. The ADC-card is coupled via PCI connectors to the FEC 
card. This field-programmable gate array (FPGA), provides readout flow control, 
as well as digital baseline suppression and data preprocessing. The combination 
of ADC and FEC cards is called a SRS combo and both components are hosted 
and powered by a crate. The external trigger signal is provided with a LEMO 00 
coaxial connector carrying a NIM pulse and sent downstream to the APV25 cards. 

The interface to the Data Acquisition (DAQ) Computer is realized via optic 
fiber (up to 100 Gb) or copper-based (up to 10 Gb) Gigabit Ethernet, according 
to the transceiver chosen. For readout of systems with more than 2048 channels, 
a switch-like unit can be added to synchronize clock and trigger between different 
FEC cards. In our case, with a detector of 1.536 channels in standalone 
operation, this has not been necessary.  

<<Due to the synchronous transmission of the asynchronous trigger to the 
APV25 hybrid cards, the recorded time-resolved charge signals are afflicted with 
a 25 ns jitter. Nevertheless, in applications where the absolute signal timing is 
needed, the jitter can be corrected>> [Bortfeldt, 2014]xvii. 

Instrumentation & DAQ

Scalable Readout System (SRS) 

 

 

Overview 

 

Characteristics  

 Links instead of buses: more reliable, longer distance, more bandwidth, system immunity to 
single point failure. 

 Scalable: small system = few links directly from FEC to readout PC via GBE, medium sized system 
up to 36 FEC cards require one SRU readout controller and DTC multiplexer, large system 
require multiple SRUs 



Ignacio Lázaro Roche 

 134 

5.7.2 CEA Readout electronics 

In the last stage of the project, and with to the partnership between IRIS 
Instruments and the CEA’s IRFU, a compatibility test between the electronics 
developed by the CEA  for the CLAS12 experiment and the MUST2 has been 
performed. The compatibility between detectors and electronics is not 
straightforward in some cases. The different behavior of Micromegas detectors 
with unlike layout results into the heterogeneity of signal parameters, such as 
width of the signal or its charge. 

The tested electronics consisted of a Front-End Unit (FEU) containing 
eight Dead-time less REadout ASIC for Micromegas (DREAM) chips, each being 
capable of reading 64 electronic channels, resulting in up to 512 channels per 
FEU. 

Unlike the SRS, where the front-end electronics is located next to the 
Micromegas plane, connection with the DREAM chips is made through non-
standard micro-coaxial cables with 64 channels each. As seen in Figure 5.35, an 
adapter (green card) was used between the Panasonic 130 pin connector and 
two 64 channel wires (divided into 4 flat blue cables with 32 channels each). The 
length of the micro-coax cable has been tested up to 2,2 m, beyond this point the, 
high capacitance of the readout tracks plus wire (over 200 pF) can become a 
problem [Bouteille, 2017]xviii. 

 
Figure 5. 35 MUST2 detector instrumented with CEA electronics. 
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Each channel is connected to a programable charge sensitive amplifier 
(CSA), where the signal output is filtered and shaped. The chip contains prior the 
CSA a decoupling capacitor as circuit protection to avoid spark damage. The 
CSA gain has a dynamic range going of 50 - 600 fC (4 values), which has been 
key in overcoming the capacitance differences due to different track geometries 
or layouts. 

The resulting amplitude is continuously stored in a circular buffer: when 
the trigger occurs, the analog memory is read and digitalized by an external 12-
bit ADC, and then sent for storage at a frequency of up to 20 MHz. 

 
5.7.3 Data acquisition trigger 

The creation of a reliable trigger associated with the muon passage 
through the detector plays a major role in the electronics performance. During the 
present work, the four kinds of trigger presented in Figure 5.36 have been tested. 

 
Figure 5. 36 Flow chart of data triggering. 
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- External trigger. The external trigger consists of the creation of a 
standardized signal pulse (NIM in case of the SRS FEC, TTL for the CEA’s FEU) 
to prompt the FPGA to perform the data logging by means of two auxiliary 
scintillators aligned with the MUST2 detector.  

The scintillators used during the tests have roughly the same surface as 
the MUST2 detector (1000 x 500 x 10 mm) and they are made of polystyrene-
based plastic (UPS-923A) covered with light reflecting film and black vinyl. Each 
has a Hamamatsu R6094 PMT mounted on its short side; each, as seen in Figure 
5.37, is encased by a protection box of the same surface as the MUST2, one and 
in the same position to ease the material stacking. 

 

 
Figure 5. 37 Scintillators used for external trigger. 

 
Both scintillators are powered with a two-channel high voltage power 

supply iseg NHQ 214M at ~ -1.100 V. The output of the scintillator is sent to an 
Ortec 584 discriminator module, which produces a NIM pulse of ~50 ns each time 
that the input signal exceeds the stablished threshold value. This NIM pulses are 
collected by a LeCroy 465 coincidence module which generates the NIM signal 
to trigger the FPGA. 

- Internal trigger from micromesh. The main difference compared with the 
previous trigger chain is the absence of auxiliary detectors. This mode of 
operation theoretically permits a standalone acquisition.  

Two experimental setups have been tested. In the first, the mesh signal is 
recovered with an Ortec 142C preamplifier, then amplified with an Ortec 474 
timing filter amplifier. The amplified signal is sent to an oscilloscope triggered by 
the scintillators.  
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Nevertheless, the low signal-to-noise ratio retrieved from the mesh, and 
high instrumental noise during the tests have hampered the creation of a steady 
trigger with this setup. 

The second experimental setup relies on a CERN pickup box seen in 
Figure 5.38. This preamplifier-shaper tool has been specifically designed to 
trigger the SRS readout on passage of particles though MPGD detectors. This 
test was performed at the RD51 workshop and a different gas mixture, Ar:CO2 
(93:7) was tested due to the lack of the regular blend in these facilities.  

 

 
Figure 5. 38 CERN pickup box. 

  
Figure 5.39 shows two captures from the oscilloscope used to monitor the 

experiment during runs of 5 minutes. The oscilloscope is triggered with a 
coincidence signal of two scintillators placed below and above the MUST2 
detector. The upper half shows a histogram of maximum signal amplitude, while 
the bottom half shows the signal from the pickup box and the trigger pulse.  

The resistive layer is polarized to 560 V in both cases. Figure 5.39 (A) 
shows the signal when the drift voltage is off (meaning signal amplification but no 
electron drift in the TPC). On the other hand, Figure 5.39 (B) shows the signal 
when for .+/012= 600 V/cm. 

It is possible to see the instrumental noise peak around 204 mV in both 
images, and the signal appearance once the TPC is active. This test validates 
the physical origin of the recorded data. 
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Figure 5. 39 Signal recovered from the micromesh with the drift voltage off (A) and on (B). 

A 

B 
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Figure 5.40 shows the good agreement between the mesh signal as the 
voltage of the resistive layer increases. This parameter presents a direct 
influence in the gain of the detector, the amplitude of the signal and the number 
of events recorded increases. These tests have demonstrated the potential 
feasibility of the self-trigger operation. Nevertheless, the drift speed of the gas 
used for the experiment is slower than our preferred mixture, and the signal 
exceeds the acquisition time-window. Therefore, the data analysis of this dataset 
is hence inconclusive. Further complementary testing is required in order to fully 
validate this approach. 
 

 

 

 
Figure 5. 40 Signal recovered from the micromesh for .+/012= 600 V/cm and a resistive layer voltage of 

510 V (A), 530 V (B) and 560V (C). 
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- Internal trigger from readout tracks with CEA electronics. An interesting 
feature of this electronics is the self-trigger capability.  

The filtered signal of each readout channel is compared to a 
programmable threshold value. The outputs are summed to obtain multiplicity 
information: if the multiplicity exceeds a programmable threshold, the differential 
output is triggered. This signal can be used to elaborate, outside the chip, a signal 
which can be used as a trigger for DREAM, furnishing a custom trigger 
configuration with no auxiliary detectors. 

- Internal trigger from readout tracks with SRS electronics. This kind of 
trigger is not currently possible with the selected APV25 front-end electronics. 
Nevertheless, the new family of boards soon available, VMM3, allows this feature 
[Muller, 2018]xix. 

 
5.8. Servicing 

5.8.1 Contamination symptoms 

As mentioned previously, Micromegas readout planes are prone to 
contamination in the amplification gap. If the detector starts losing performance, 
either locally or in general, it may suffer from contamination issues. This effect 
may be caused by several sources and appear at the outset or during operation. 
The first case is related to pollution during the assembly of the TPC, whereas the 
second one occurs as a consequence of the presence of humidity and/or particles 
in suspension smaller than 20 µm in the gas flow. The contaminants decrease 
the resistance between the micromesh and the resistive layer, which ideally 
should be infinite and in fact ranges from 10 to 100 GΩ. The resistance drop 
discharges the polarized resistive area through the grounded micromesh, 
reducing drastically the electric field and hence reducing the signal amplification. 
To prevent permanent damage to the readout plane, it is good practice to set a 
low current limitation in the resistive layer power supply (150-200 nA). 

A recognizable symptom associated with a serious contamination problem 
is the vanishing of events in the affected area due to the drop of the amplification 
field and the rise of the current to feed the resistive layer. Figure 5.41 shows the 
2D histogram of 5.000 detected events in a partially contaminated detector. The 
lower half of the detector is not able to detect the passage of particles due to the 
loss of gain in this section. If the current leakage is due to the presence of a small 
particle, such as dust, it might disappear without a user interaction; the current 
leaks produced in the contaminated point come to vaporize the contaminant in 
some cases by electric pyrolysis and self-regulate the leakage problem.  

This scenario is illustrated in Figure 5.42. Both images represent a 2D 
histogram of the detected points in an acquisition immediately following the 
closing of the TPC. This dataset corresponds to the experiment for validating the 
self-trigger from the micromesh described in Section 5.7.3. The active zone of 
the detector was limited to the zone between Y channels 128 to 256 and X 
channels 1 to 1.024.  
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Figure 5. 41 Characteristic behavior from a detector presenting a current leakage in the lower half. 

 

 
Figure 5. 42 Current leak points(A) disappear after 3h of operation (B) due to the self-cleaning of the 

detector by electric pyrolysis 

A 

B
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Figure 5.42 (A) presents 3 points with abnormally high detection rates 
located near the detector frame, probably due to the presence of particles after a 
service operation in this zone (exchange of the gas line). After 3 h, Figure 5.42 
(B) shows that the high detection rates at the same points has drastically 
decreased to the average. 

 
5.8.2 Cleaning protocol 

Once the lack of performance has been established and related to the 
presence of impurities in the amplification gap, the cleaning protocol to follow is 
the one shown in Figure 5.43. 

 

 
Figure 5. 43 Flow diagram of the Micromegas cleaning protocol. 
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The first step is to identify the affected area using different means. The 2D 
histograms such as in Figures 5.41 and 5.42 give hints as to the position of the 
contaminated zone. Another technique is to measure the leak current between 
the resistive layer by sectors (phase) and the micromesh (ground): typical values 
of the leak current should not exceed 20 nA in air for 650 V in air. In some cases, 
a direct observation with a microscope can be made to identify the cause of the 
problem. 

It is not always possible to identify the cause and position of the problem, 
especially with humidity. In this case it is possible to proceed directly with the 
cleaning. The procedure for cleaning the detector includes different stages 
depending on the contaminant, and the steps should be conducted in order of 
increasing roughness to avoid damaging the detector as much as possible. 

The first and less invasive technique is to try removing the contaminants 
by rinsing with pressurized water. The servicing must be done in a wet area with 
a source of deionized water and a pumping system to provide the pressure 
necessary to clean beneath the micromesh.  

As seen in Figure 5.44 (A), a superficial cleaning is made to move all the 
contaminants settled over the mesh. This is performed from a distance of at least 
1 m. Keeping a threshold distance is important to not apply too much pressure, 
which could push more contaminants inside the amplification gap. The sweep 
should be done in downwards movements to help the water stream in removing 
the impurities. Once completed, a horizontal sweep is convenient to concentrate 
in a single corner. After the superficial cleaning, comes the cleaning of the 
amplification gap. The threshold distance to the detector should be reduced to 20 
cm to penetrate the micromesh and push the particles downwards. Afterwards, 
the Micromegas readout plane is placed into an oven at ~80º C for about 30 
minutes, as see in Figure 5.44 (B).  

At this point and after a visual inspection it is possible to proceed to a 
manual extraction of the identified contaminants. To do so, a small incision is 
performed in the micromesh and the foreign body is withdrawn. The affected zone 
is then covered with resin in order to avoid the connection between the ripped 
micromesh and the resistive layer. The result of this process can be seen in 
Figure 5.45. 

Another technique is to submerge the detection plane into cleaning baths 
made of (per order of increasing roughness): soapy water, solvents (alcohol or 
ketone), sodium permanganate or solution of NaOH at 15% and 60ºC (same as 
for removing the coverlay). The bath facility of the CERN MPGD workshop can 
be seen in Figure 5.46. 
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Figure 5. 44 Cleaning of the Micromegas readout plane with pressurized water and drying. 

 

 
Figure 5. 45 Micromesh consolidated after body extraction. 

 
Figure 5. 46 Cleaning baths at MPGD workshop. 
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Once the cleaning is completed, it is possible to run a high voltage test. 
This examination consists of monitoring the breakdown voltage between the 
resistive layer and the micromesh at its four different sections. This test is done 
in a clean room with air. The theoretical maximal breakdown value is given by the 
Paschen’s law as explained in Section 4.9.3, and must be remembered that the 
amplification gap height ranges from 100 to 128 μm. In general, breakdown 
voltages over 900 V are considered excellent. 

Table 5.2 provides the measured breakdown voltages after the assembly 
of two detectors as a reference, one made by CERN and the second made 
partially by Elvia and finished by the CERN. 

 
Table 5.2. Breakdown voltages for two different detectors. 

 Zone #1 Zone #2 Zone #3 Zone #4 

CERN made 
detector 850 V 780 V 925 V 925V 

Elvia/CERN 
detector 

783 V 850 V 852 V 830 V 
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Chapter 6 abstract 
Chapter 6 describes the different software tools used for recording the data 

and its subsequent analysis, with the aim of providing an overall comprehension 
of the data management process including: acquisition, preanalysis, analysis and 
data filtering techniques. 

The data acquisition and preanalysis were made with software developed 
for the electronics used during most of the present work, the CERN Scalable 
Readout System electronics. 

On the other hand, the muon trajectory reconstruction is made via the 
algorithm created by T. Serre. This algorithm is capable of retrieving the time, 2D 
position, zenith (q) and azimuth (j) angles for most of the muons traversing the 
detector. A detailed description of its functioning is presented and its limitations 
discussed. 

As a result of the conditions required to reconstruct the trajectory, the 
MUST2 presents some “blind zones” where the trajectories cannot be calculated, 
yet, their influence on the muon flux measurement can be minimized with a 
detector correctly positioned towards the target. 

The track reconstruction algorithm still has room for improvement, such as 
the fine tuning the development of the centroid technique to reduce the blind 
zone. The analysis of further data will help in order to enhance the robustness of 
the results. 

Lastly, the current analysis chain represents a bottleneck in terms of 
computing time. One possible solution is presented to partially overcome this 
limitation.  
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6.1. Introduction 

Once the passage of the muon is established by the trigger, as seen in the 
previous chapter, the data logging begins. Figure 6.1 presents a flow diagram of 
the data management. This process has been subdivided into three consecutive 
stages according to the software used: data acquisition, preanalysis and analysis. 

 

 
Figure 6. 1 Flowchart of the data analysis process. 
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The existence of preliminary software associated with the selected SRS 
electronics conditions the data acquisition (DAQ) and analysis process. The 
electronics offers a set of firmware, slow control and DAQ tools ready to use with 
no further development required. 

Nevertheless, the limited scope of these tools (originally meant for different 
applications), and the impossibility to withdraw directly the required information, 
has motivated the creation of new data analysis algorithms for trajectory 
reconstruction. 

Figure 6.2 shows the different software used in each stage and its function, 
as well as the format of the data file. 

 
Figure 6. 2 Files created during the data analysis process. 

 
6.2. Data acquisition 

6.2.1 Slow control 

The electronics slow control is in charge of setting all the configurable 
parameters of the electronics, such as the trigger source, data window length or 
latency. The slow control configuration of the SRS electronics can be done with 
different tools provided by the RD51 collaboration or directly through the ALICE 
Data Acquisition and Test Environment (DATE) software. 

 
6.2.2 Pedestal noise 

The pedestal level represents the intrinsic noise of every acquisition 
channel. As these values can evolve with time, it is good practice to redo pedestal 
runs frequently or after hardware modifications. 

During this work, the pedestal runs have been made with all equipment 
on, but with a high latency1. This offset prevents the signal from being logged, 
which would artificially increase the pedestal level and decrease the detection 
efficiency. This run allows reproduction of the noise conditions during the 
acquisition in a reliable way. A limited number of events (500-1.000) is enough to 
provide a robust statistic of the channel instrumental noise.  

                                            
1 Time interval between the trigger signal arrival and the signal logging. 

See Section 7.2.2 for more details. 
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Figure 6.3 shows a typical view of the pedestal root mean square (RMS) 
noise of one APV25; generally values below 10 ADC counts2 represent a low 
noise level. Figure 6.4 shows the pedestal RMS values of all channels of the 
detector. The noise in the Y plane is slightly higher, consistent with the longer 
track lengths. 

 

 
Figure 6. 3 Pedestal RMS noise values for the 128 channels of a given APV25 card. 

 
 

 
Figure 6. 4 Pedestal RMS noise values for all the detector channels. Each figure represents a readout plane. 

 
 

  

                                            
2 ADC counts are the digital number output by the ADC, proportional to the 

measured charge. 



Ignacio Lázaro Roche 

 152 

6.2.3 Experimental data 

The software chosen to acquire data is the DATE framework, developed 
by the ALICE collaboration [ALICE collaboration, 2008]i. The software has been 
designed to run on UNIX platforms connected by an IP-capable network, and 
sharing a common file system such as NFS. DATE performs different functions: 
- The local data concentrator collects event fragments transferred by the detector 
data links into its main memory and reassembles these event fragments into 
subevents. It also does local data recording if used in a standalone mode, as in 
the present work. 
- The global data collector puts together all the sub-events from the same event, 
builds the full event and archives it to the mass storage system. 
- The DATE run-control manages and synchronizes the processes running in the 
local data concentrator and the global data collector. 

These features weren’t used in the present work, but present interest for 
networks of detectors where the data requires synchronization. 

The monitoring programs, such as AMORE (detailed in the next section) 
receive streaming data. They can be executed on any machine accessible via 
the network.  

DATE offers a graphic interface to configure the slow control of the SRS 
electronics in an acquisition and store the data. It allows the simultaneous 
operation of several detectors, and also gives basic information on the current 
run such as event rate and total number of recorded events.  

The data stored locally in the DAQ machine is a ROOT file that contains 
all raw information (i.e. 27 samples for all instrumented channels, regardless of 
the channel threshold level and the instrumental noise). 

 

6.3. Preanalysis 

The preanalysis is the first stage of the data analysis process. It removes 
all unnecessary information from the raw ROOT file created by DATE. 

This process is done by the AMORE code, a data monitoring software 
system developed for ALICE experiments [Haller, 2009]ii. It is based on the data 
analysis framework ROOT, developed by CERN and uses the DATE monitoring 
library [ROOT]iii. Amore executes topology-dependent processes for detector-
specific decoding, and analysis of raw data samples, called agents. These agents 
allow to: 
- Process the raw data of pedestal run. The file so generated is a pedestal ROOT 
file that contains the pedestal RMS noise and offset for each APV25 channel in 
form of a histogram. 
- Visualize both live and stored raw data acquired with DATE. 
- Filter the raw data by comparing it against the pedestal file to withdraw the 
APV25 instrumental noise. 
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Unfortunately, the agents are not configured for multicore processing, so 
the speed of the preanalysis is limited by the frequency of the processor. 

 The ROOT file created by the AMORE agent contains all relevant hit 
information prior to the track reconstruction, i.e. the time stamp, card ID, and 27 
samples of the signal for each channel. A hit is defined as a readout track with a 
reading, whose mean ADC count value over the 27 samples, larger than the 
product of the threshold parameter σ and the pedestal RMS noise; the σ 
parameter can be tuned by the user, with typical values during this work being σ 
∈ [15-20]. 

Figure 6.5 shows an example of the data after preanalysis, where void 
events are removed. The two figures represent the signal evolution associated 
with the same event recorded two different APV25 cards, one in the X plane and 
the other in the Y plane. The signal is divided into 27 time bins of 25 ns that 
contain the information of all 128 channels of the card. The vertical bars act as 
time-bin spacers. From the figure, it is possible to appreciate the signal amplitude 
difference between the X and Y readout planes. 

 
Figure 6. 5 Signal from one event recorded by two APV25 cards in the X and Y plane respectively. 
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6.4. Analysis 

The Muon Trajectory Reconstruction Algorithm (MTRA), developed by T. 
Serre with the reconstruction parameters tuned by the author, aims at retrieving 
the muon trajectory with the highest precision on its trajectory, and to reject 
backgrounds such as ambient radioactivity and electronical noise.  

6.4.1 Hit determination 

The hit determination, made in the first instance by AMORE, is checked 
by the MTRA. The hits are discarded in two scenarios: 
- Presence of two maximums during the 27 time samples, as seen in Figure 6.6. 
Hits with one bin with an ADC counts greater than 0,5 X the maximum bin, and 
distant by at least 7 bins are rejected.  
- Signal saturation: when more than 5 contiguous bins are higher than 1.500 ADC 
counts (the maximal measurable value is 1.750 ADC counts) during 5 bins, as 
seen in Figure 6.7. 

 
Figure 6. 6 Example of a rejected event due to a double maximum. 

 
Figure 6. 7 Example of a rejected event due signal saturation. 
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6.4.2 Clusterization 

Muons crossing the MUST2 detector will create tens of electrons per cm 
travelled, which causes many hits on neighboring readout tracks. This effect can 
be used to implement a clustering algorithm in order to reduce the position 
incertitude.  

The hit strips located next to each other are assembled in clusters. 
Nevertheless, it is possible that clusters present holes due to the presence of 
untouched readout tracks. This effect arises for several reasons: the strip might 
misfunction temporarily, or permanently (too noisy during the pedestal run or 
track cut), or due to transverse diffusion. Thus, a tolerance gap of two strips is 
allowed during the cluster formation. 

On the other hand, even near-vertical muons cause several hits. Thus, a 
threshold number of hits is required to form a cluster. Figure 6.8 shows the 
number of hits per cluster on X and Y axis: the threshold value of hits is 2.  

 

 
Figure 6. 8 Distribution of number of hits inside clusters per readout plane. 

  
The number of hits per cluster decreases progressively, which is 

correlated with the zenith angle arrival distribution of muons seen in Figure 2.18. 
On the other hand, the anisotropy in the number of hits between X and Y readout 
planes is due to (i) the different number of total tracks per plane and (ii) to the 
ladder pattern layout of the resistive layer (detailed in Section 5.2.2), which 
creates an uneven charge spread along the X and Y axis. 

6.4.3 Point determination 

The clusters are generated in both axes. To retrieve the muon information, 
X and Y clusters must be associated. If there is only one cluster on each axis 
within the 675 ns, the association is trivial.  However, in a multiple-cluster 
scenario, some criteria are required. 
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The total charge ratio between X and Y clusters for the MUST2 
Micromegas readout plane is distributed as shown in Figure 6.9. By comparing 
plane-to-plane the charge of each cluster, the clusters can be associated. 
Another useful parameter is the time of the signal formation. Time information 
can also be used to combine clusters. 

Once X and Y clusters are associated, they form a 2D point in the readout 
plane. Each point corresponds to a muon. This permits constructing 2D 
histograms representing the position distribution of the muons traversing the 
detector. 

 
Figure 6. 9 Charge ratio between X and Y clusters. Charge is computed as the total sum of all ADC counts 

during 675 ns. 

 
6.4.4 Trajectory reconstruction 

Two different algorithms are used to determine the trajectory of the muon. 
The first is based on fitting the rising part of the signal. Different fitting models 
have been tested, with the one giving better results being the sigmoid fit following 
the logistic equation: 

 

"#(%) = ( · *1 + -.(/./0) 1234 5
.6
	+ 	8   (6.1) 
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where: 
- K is a scale factor. 
- t0 corresponds to the time when the signal starts to rise. 
- σFD: is the spread of the function. 
- B corresponds to the zero level. 

An example of the fit is shown in Figure 6.10. The time interval considered 
comprises from the first time bin with a significant signal rise to the maximum. 
The same analysis made on each hit from a cluster; the characteristic time, t0, is 
calculated from each fit. By knowing the electron drift velocity, the height of the 
initial electron production (Z) can be retrieved.  

 
Figure 6. 10 Example of a signal fit with a logistic function for one channel. 

 
For each X and Y cluster, there is a set of (X, Z) or (Y, Z) coordinates, 

respectively. Finally, a linear fit is performed to get angles in the (XOZ) and (YOZ) 
planes. An example of this linear fit is shown in Figure 6.11. 

 
Figure 6. 11 Example of the linear fit of the coordinates in the (XOZ) plane. 
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It is possible to obtain a fit from at least two hits on each axis, but for a 
good precision at least three hits are required.  

The reconstruction efficiency of this algorithm is thus very limited for near-
vertical particles and trajectories parallel to the X and Y axes. This results in the 
creation of blind zones in the Zenith-Azimuth maps in trajectories with |qX| and 
|qY|3 < 5º deg, or j multiple of 90º± 5º. 

In order to retrieve additional information, a second algorithm is used to 
establish the XY position of near-vertical events by fitting each cluster with a 
weighted mean of its hits, according to Equation (6.2). 

 

(9, ;) = ∑ =#>(9?, ;?) · (9?, ;?)@?/A
?B6

∑ =#>(9?, ;?)@?/A
?B6

C   (6.2) 

 
Hence, the evolution of the X and Y position over time obtained from the 

centroid fit provides information on the trajectory. Analogous to the rise fit 
algorithm, a linear fit is performed to retrieve the track angle. An example of this 
fit is shown in Figure 6.12. 

 
Figure 6. 12 Example of the linear fit of the coordinates in the (YOZ) plane with the centroid method. 

 
The performance of the second technique has however proven not to be 

strong enough, and the reconstructed events via the centroid algorithm seems to 
be quite random. Therefore, the information derived from this source will not be 
considered for imaging purposes until a proper validation. 

The data resulting from the MTRA is stored in a ROOT file with a TTree 
structure, designed for storing large numbers of same-class objects. The data is 
sorted in different “leaves” and contains the information relative to the passage 
of muons, as well as the results from intermediary calculations that has been 

                                            
3 qX and qY are the reconstructed incident angles to the readout plane in X 

and Y axes respectively. 
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preserved for debugging purposes. An example of the output file organization is 
shown in Figure 6.13. 

 
Figure 6. 13 View of all data included in ROOT file created by the MTRA. 

 
6.5. Post analysis 

The post analysis process covers the data visualization and filtering 
following completion of the track reconstruction. 

The ROOT file created by the MTRA might prove a bit clumsy for managing 
the data relative to the muon passage. Instead, some variables of interest are 
extracted to a lighter text file. The Matlab® [MathWorks®, 2018]iv based program 
called Muon Analysis Interface for Data files (MAID) has been specifically created 
perform this task. 

The parameters exported to the text file are the following: 
- Starting time of the event, divided into two components; UNIX time in seconds 
and microseconds. 
- 2D position of the event, in X and Y coordinates. 
- Zenith and azimuth coordinates of event. 
- Number of readout tracks triggered during the passage of the muon. 

This multiplatform software can be installed with the support of the freely 
available Matlab® runtime engine, and allows direct visualization of the file 
content, the comparison between .dat files, and some simple data filtering. 
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6.5.1 Data filtering 

The analysis algorithm which reconstructs the muon trajectories has 
problems to reconstruct some tracks, and creates some points that are not 
associated with the passage of the particle. These points have no physical 
meaning and require filtering. Some recognizable characteristics of these points 
are: 

- Reconstructed 2D coordinates outside of the detector boundaries. 
- Several consecutive points reconstructed in the same 2D position within 

a short time interval and with different zenith and azimuth. The algorithm is not 
able to fully reconstruct the one track (for instance due to the excessive distance 
between its points), and creates a series of dummy consecutive points. 

- Excessive number of tracks touched: On some occasions, the 
instrumental noise produces signals above the threshold level in all channels at 
the same time. As seen in Figure 5.12, the muons with zenith angles below 80º 
should not intersect more than ~500 channels. One way to avoid this kind of “false 
positives”, is to establish a cutoff between 500 and 1.536 channels depending on 
the desired range of angle acceptance.  

 Figure 6.14 shows an example of the data filtering. It presents a 2D 
histogram with the reconstructed passage points above the surface detector 
before (Figure 6.14 (A)) and after the filtering (Figure 6.14 (B)). 

 

 
Figure 6. 14 Histogram of muon position distribution from an acquisition (A) before and (B) after filtering. 

A 

B 
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6.6. Other considerations 
6.6.1 Data size 

Data acquisition with the current configuration generates quickly large 
volumes of data. Figure 6.15 illustrates the size distribution of the files created 
during one acquisition (corresponding to the campaign of measurements at the 
dam of Saint-Saturnin-les-Apt presented in Chapter 8). It contains ~4 TB of 
information with 27.466.100 events recorded by 1.536 channels. 

 
Figure 6. 15 Distribution of the different file sizes created during data analysis. 

 
The smallest file contains the raw data acquired to calculate the pedestals, 

due to the low number of events considered (1.000). Once this data is analyzed 
to produce the pedestal file (containing only the pedestal values and its 
variances), its size drops to a few tens of kB. 

The raw file generated during the data acquisition by DATE is by far the 
largest file, representing almost ¾ of the total size. Nevertheless, this file contains 
potentially useless information such as void events or instrumental noise. A good 
way to improve the efficiency of the data acquisition is to replace the FEC 
firmware, including the zero-suppression capability. This enables suppressing 
non-useful (empty) data locally in the FPGA, so the data to be transferred from 
the SRS to the Data Acquisition PC is optimized. The selection is based on 
comparing the integral of the pedestal-corrected signal from a given channel with 
the pedestal variation (s) in each channel. This reduces the presence of false 
positive events associated with noise peaks. The data of the pedestal has been 
previously stored in the FPGA to compare the signal measured and the s value. 
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The file generated by the preanalysis with AMORE SRS after comparison 
with the pedestal noise file, reduces the size of the file by 3 and includes all the 
relevant information for the muon flux trajectory reconstruction. 

6.6.2 Computing time 

Figure 6.16 presents the time elapsed during the different stages of the 
data acquisition and analysis. The required computing time with the current 
analysis chain is problematic for long data acquisitions. Since the zero-
suppression of the data isn’t implemented, the volume of data to reanalyze 
produces a bottleneck, and requires four times the acquisition time. On the other 
hand, the data analysis process requires only ¼ of the acquisition time: for 
example, more than 17 days were required to fully analyze the data acquired 
during less than 4 days of measurements. 

 

 
Figure 6. 16 Time elapsed during the different analysis stages. 

 
A recently-released tool compatible with the current APV25 and FEC 

cards, named SCRIBE, includes on-line pedestal calculation and zero-
suppression [Colafranceschi, 2016]v. This software could be a great leap forward 
for the MUST2 operation in terms of volume of data stored and especially in 
computing time, as it effects the preanalysis live in the FPGA. 
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Chapter 7 abstract 
Chapter 7 presents the results of the measurements made towards the 

detector’s performance characterization in controlled environments. 
Section 2 details the tests done in the test beam facilities at CERN that 

has led to the acquisition-chain latency optimization, detector’s gain 
characterization, detection efficiency determination and the calculus of the ratio 
of charge between planes. The importance of having a proper trigger and its 
influence in the data reconstruction are discussed as well. 

Section 3 is dedicated to the open sky measurements, where the 
measurements performed on the top of the mountain hosting the LSBB gave us 
information about the experimental angular acceptance of the detector when 
triggered by plastic scintillators. A comparison of the experimentally measured 
muon flux against the predicted value provided by the model is shown and 
commented. 

Section 4, dedicated to underground measurements, covers the tests with 
a first comparison between apparent opacity and measured muon flux. It also 
assesses the effect of the detection plane tilt angle in the measurement, and the 
amount of gas necessary to operate properly the detector. 

Section 5 explains the procedure to obtain a measurement of the muon 
flux attenuation at the entry of the LSBB by comparing the in situ and open sky 
measurements. The damage caused by a storm in the experiment during the 
acquisition is presented as well. 

Lastly, Section 6 shows the comparison between two different 
instrumentation electronics in the MUST2 detector: the CEA’s IRFU CLAS12 and 
the CERN’s SRS. The muon detection was successfully tested with both 
technologies and different trigger configurations. The different format of the data 
produced with the CEA electronics prevented however the data from being 
reconstructed with the MTRA.  
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7.1. Introduction 

A series of experiments have been carried out with the MUST2 in order to 
find the best operational parameters, characterize the detector performance and 
to validate the technology. 

These experiments were conducted in different controlled environments 
according to the specific test needs: 

-CERN SPS test beam facilities (Prévessin, France). 
-LSBB underground galleries and surface facilities (Rustrel, France). 
-IRIS Instruments headquarters (Orléans, France). 
 

7.2. Test beam 

The membership of T2DM2 in RD51 has allowed the project to carry out 
some characterization tests at CERN’s Super Proton Synchrotron (SPS). This 
particle accelerator provides mono-energetic beams of muons or pions in their 
test-beam facilities. 

The setup during the experiment is shown in Figure 7.1. The MUST2 
detector was located immediately following the SPS beam line; the detector, SRS 
electronics and scintillators to provide a trigger were located inside the beam 
zone. The gas bottle used during the experiment was stored in a designated area 
outside of the beam zone, and a new gas circuit was specifically created for the 
test. The rest of the equipment, high voltage power supply and data acquisition 
computer were operated remotely from the control room. The gas used during 
the experiment was Ar:CF4:iC4H10 (88:10:2), and the drift field was !"#$%&= 600 
V/cm. Due to the narrow active surface affected by the beam (~100 cm2), only 
the central part of the detector was active during the tests (X channels ∈ [1,1024]	 
and Y channels ∈ [129,385]) to minimize the instrumental noise. 

 
Figure 7. 1 Latency scan setup within the SPS’ beam test facilities. 

SPS beam line 

MUST2 detector Scintillators 
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7.2.1 Trigger 

The trigger signal planned for the experiment was provided by the 
coincidence signal of two superimposed plastic scintillators of 100 x 20 cm (see 
Figure 7.2 (A)).  
 

 
After the analysis of the data acquired in the first run however, the 

presence of instrumental noise was evident.  
Figure 7.3 (A) represents a 2D histogram with the position distribution of 

the detected muons, in which the acquisition was triggered with the built-in 
scintillators and the test beam centered in the coordinates (X channel 256, Y 
channel 325). It is possible to see the instrumental noise induced by a faulty 
trigger, which randomly distributed and specially concentrated in the zone with 
channels X	∈ [600,800] and Y > 200.  

After verification of the SRS electronics noise levels, its contribution to the 
measured noise was considered negligible. Different configurations of 
scintillators (changing their relative position, orientation and emplacement) were 
tested in order to eliminate this noise - yet, the problem persisted.  

At this point a decision was made to change the trigger chain from the 
built-in scintillators to the plastic scintillators integrated in the tracking device at 
the end of the beam line. The coincident surface of these two scintillators, seen 
in Figure 7.2. (B), is 7 x 10 cm2. Their reduced dimension and vertical 
configuration reduced the number of trigger events associated to cosmic muons, 
which are statistically neglectable given the rate of the muon beam (~5 to 9 kHz). 

On the other hand, Figure 7.3 (B) derivates from an acquisition triggered 
by the tracker scintillators, with the test beam centered at the position (X channel 
850, Y channel 325). 

 
 

A B 

Figure 7. 2 (A) built-in MUST2 scintillators and (B) tracker scintillators. 
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Figure 7. 3 2D histogram of the detected points with a trigger provided by (A) built-in MUST2 

scintillators, and (B) tracker scintillators. 

 
The new acquisition chain reduced the instrumental noise. About 50% of 

the events detected in Figure 7.3 (A) were located outside the beam-triggered 
influence zone, whereas in in Figure 7.3 (B) the shape of the intersection between 
the beam and the trigger scintillators is clearly recognizable and well delimited. 
  

A 

B 
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7.2.2 Latency 

The system’s latency is the time interval between the passage of the muon 
(stimulation) and the signal detection by the electronics (response). This 
parameter depends on factors such as the physical processes described in 
Chapter 4, as well as on the delay inherent to the electronic components and the 
signal transmission through the wires. Therefore, the latency value is a function 
of the experimental setup. 

 The SRS APV25 front-end electronics has a time buffer of 4 μs, yet can 
record a maximum of 27 samples every 25 ns yielding a time window of 675 ns. 
It is important that the signal is centered in this time window, in order to enable a 
proper fit of the data in retrieving the correct time information for the trajectory 
reconstruction. The slow control of the electronics permits to customizing the 
offset of the data logging within the buffer time. 

A scan of offsets is necessary to determine the acquisition chain latency 
with the best value for operation. A series of 8 measures with 5.000 events each 
was made by changing the offset in increments of 125 ns (5 time bins of 25 ns). 

Figure 7.4 shows the bin position of the reconstructed time when the signal 
starts to rise, t0. Negative time bins derive from the extrapolation of the sigmoid 
fit function, and are not reliable since the rise information of the signal is biased. 
On the other hand, reconstructed t0 values greater than 20 bins also derive from 
biased signals. Nevertheless, the loss of information is produced in the signal 
end. Considering that the data fit interval ends at the signal maximum, the impact 
in the t0 calculation is smaller. 

The selected offset value is 112 time bins (2,8 µs), since the reconstructed 
t0 is predominantly within the positive values (no extrapolation from incomplete 
data) in the first 8 time bins (signal bias minimized), which enables the 
reconstruction of a higher number of events. 

 
Figure 7. 4 Time bin containing the beginning of the signal for different offsets. 

OFFSET 
(Time bins) 
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dark green: 102 
pink: 107  
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7.2.3 Gain 

The gain of the detector is a key performance parameter as it plays a major 
role in the signal amplitude. As seen in Section 4.9.1, the gain for a given 
temperature and pressure depends mostly on the electric field of the amplification 
zone (!456), which is controlled by the difference in voltage between the 
grounded micromesh and the polarized resistive layer. 

The gain of the detector has been calculated as the ratio of (charge 
supplied to the amplification zone) to the (charge generated by the incoming 
muons) according to the following equation: 

 

7 = 	 ∆:
;<·"·> ?@ ·ABC

     (7.1) 

 
where:  
- G is the gain of the detector for a given temperature and resistive layer voltage, 
and qe- is the charge of the electron.  
- ΔI is the average variation of the current consumption between spills1 and 
breaks (nA). The voltage and intensity of the HV power supply that polarizes the 
resistive layer is monitored, as shown in Figure 7.5. It is possible to identify 
periodic current peaks associated with the injection of muons through the 
detector. ΔI has been calculated as the difference between the average peak 
current with a spill, and the average bottom current between spills for 10 samples 
once the current is stabilized after changing the voltage. 
- NT= 161,3 ± 12,7 is the number of electron-ion pairs per cm generated in the 
TPC by ionization of a traversing muon (detailed in Section 4.4). 
- d is the distance travelled by the muon inside the TPC. Two tests have been 
conducted, one with the detector perpendicular to the beam (D=0º, 5,00 cm of 
path within the TPC), and the other with the detector shifted from the orthogonal 
plane (D=20º, 5,32 cm of path within the TPC). 
- μ/s is the number of muons per second during the measurement (muons per 
spill/spill length). The number of muons emitted per spill and the spill length are 
known via the wire chamber placed in the beam line that characterizes the beam 
profile. 

The environmental data of the beam zone was monitored. The thermic 
amplitude during the gain determination acquisitions was smaller than 1ºC, and 
any temperature effect was neglected. 

The results of the calculated gain are shown in Figure 7.6. where the gain 
of the detector increases with !456 up to a peak in 465 V, then decreases slightly. 
The gain calculated with the two incidental angles shows a good consistency. 
The tests could not go beyond 485 V (for D=0º) and 490 V (for D=20º) because 

                                            
1 The SPS facility provides a discontinuous muon beam consisting of spills 

with a muon rate of 4,5·103-9,5·103 µ/s of length ~5 s at intervals of 14-30s 
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of the detector instability and loss of amplification due to current leaks and the 
high event rate. This experimental breakdown voltage is in good agreement with 
its predicted value in Section 4.9.3. 

 

 
Figure 7. 5 Current and voltage of the resistive layer during the test beam. 

 
Figure 7. 6 Calculated gain of the MUST2 detector as a function of the resistive layer voltage. 
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As mentioned above, the gain influences signal amplitude. Figure 7.7 
shows the maximal measured voltage in ADC counts in the X and Y readout 
strips, (the Y results are shifted 1 V for better visualization). The figure shows a 
good correlation between the exponential regression slopes of the calculated 
detector gain and the amplitude of the signal measured in the readout tracks. 
Moreover, it is possible to see a difference of amplitude in the induced charge on 
the two readout planes illustrated in Figure 6.9. A good gain value should provide 
a compromise between a strong enough signal in the lower readout plane with 
less induced charge, and a signal without saturation on the X readout tracks. 

 
Figure 7. 7 Signal amplitude of the MUST2 detector as a function of the resistive layer voltage. 

 
The amplitude below 425 V is too low, and the signal fails to significantly 

doesn’t surpass the threshold level. On the other hand, for voltages above 465 
V, the APV25 reached saturation at 1.750 ADC counts, which the signal should 
not exceed to avoid the loss of information. The calculated gain values are in 
good agreement with other experiments using resistive Micromegas [Kuger, 
2017] i. 
 

7.2.4 Detection efficiency 

The detection efficiency is defined as the ratio between the events that 
contain X-Y correlated hits over threshold and the triggered events. Therefore, 
the efficiency of detection relies upon the choice of a cutoff value for the chosen 
pedestal noise. 
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As seen in Section 6.2.2., the pedestal noise determination provides the 
offset and RMS noise in ADC counts for every channel of the system. A hit is 
defined as a readout track that contains a signal with a mean ADC counts value 
larger than σ times the rms noise. 

To improve the determination of the pedestal cut, a geometric factor was 
included. The S/N ratio represents the relation between the number of points 
reconstructed whithin the projection of the scintillator used for triggering (S) and 
the reconstructed points outside the expected zone times a normalisation factor, 
which compensates for the difference of surface (N). 

Figure 7.8 shows the value of detection efficiency vs the S/N ratio for 
different σ values. 

 

 
Figure 7. 8 Detection efficiency of the MUST2 detector vs S/N ratio. 

 
From the figure, it is seen that for σ = 20 (in the red circle) the S/N ratio is 

still in the plateau at around 39, and it has a detection efficiency of  97,2 ± 0,55%. 
This value is consistent with the loss of active detection surface due to the 
presence of pillars, 2,5%. 

 
7.2.5 Ratio of charges between planes 

As mentioned in Chapter 5, the superimposed readout layers of the 
Micromegas detection plane present a heterogeneity in terms of charge induced 
in the X and Y coordinates. 

Figure 7.9 shows a histogram with the maximal ADC counts sorted by 
coordinate. It is possible to see how the layer closer to the resistive anode (X) 
presents a larger signal amplitude, despite its smaller section and shorter length, 
and due to the screening mentioned in Section 5.2.1. 
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Figure 7. 9 Maximal signal amplitude in both planes. 

 

To quantify the difference in charge induced between the two readout 
coordinates, the signal has been integrated over the 675 ns, and compared as 
shown in Figure 6.9. The charge induced on the X coordinate is 1,6 ± 0,28 times 
larger than that of the Y coordinate. 
 

7.3. Open sky measurements 

This campaign of measurements aimed at assessing the track 
reconstruction efficiency by comparing the experimental results of an acquisition 
in open-sky conditions (no massive obstacles within the angular acceptance field 
of view of the detector) to the number of muons predicted by the theoretical 
model. This campaign was carried out on the top of the mountain hosting the 
LSBB facilities, the Vestale site seen in Figure 7.10 (latitude 43,942122ºN, 
longitude 5,48551ºE, 1.017m above sea level). 

 

 
Figure 7. 10(A) View of Vestale site (B) and detector setup. 
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B 
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7.3.1 Experimental acceptance angles 

The experimental setup consists of two liquid scintillators, of 93 x 93 x 5 
m3 each, stacked with the MUST2 on top of them. The angular acceptance of this 
setup is 80º ± 2º depending on the azimuth angle. Due to size constraints, the 
MUST2 could not be perfectly centred over the scintillators, and the middle point 
of the scintillator was shifted 90 mm towards the high values of X channel 
(approximately over X channel 600). 

Figure 7.11 (A) shows the distribution of the azimuth angle along the X 
axis. The zones near the perimeter present a selective screening of azimuth 
angles according to their position. For channels X < 200, angles between -90º 
and 90º (towards the center of the detector) are accepted with the rest appearing 
progressively as the distance to the border increases. The opposite effect is 
verified for channels X > 800. Figure 7.11 (B) shows the zenith angle distribution 
along the X axis. The progressive detection of near-perpendicular angles to the 
detection plane towards the center of the detector can be explained by the relative 
position of the MUST2 detector and the scintillators. The same effect has been 
observed for the Y axis. 

 

 

 
 

Figure 7. 11(A) Azimuth and (B) zenith arrival angles of muons as a function of the position along the X axis. 
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7.3.2 Theoretical muon flux vs measurement. 

To quantify the flux drop for imaging purposes, it is necessary to obtain a 
precise muon flux characterization at ground level as a reference input for the 
tomography. The empirical model used in this work was explained in Section 
2.4.1 and described by Equation (2.19). The four charts of Figure 7.12 illustrate 
the muon arrival distribution in a polar chart.  

 

 
Figure 7. 12 Polar chart of the muon arrival distribution for the Tang model and experimental 

measurements. 

A B 

C D 
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The red concentric lines represent the zenith angle (q, 0º=zenith, 
90º=horizon), and the black arrow the azimuth (j, Phi=0º stands for the reference 
azimuth of the detector, which during the acquisition was aligned to 63º of 
geographic north). Figure 7.12 (A) shows the theoretical muon arrival distribution 
for particles with energies over 105 MeV, integrated over 204 min (length of 
acquisition) to 0,52 m2 (active surface of detection). Figure 7.12 (B), shows the 
successfully reconstructed events, which can be used as a reference for the 
detector’s acceptance to correct the measured muon distribution for imaging 
purposes. 

As seen in Chapter 6, the MTRA is today unable to track muons with 
trajectories aligned with the X and Y micromegas readout tracks. The 
reconstruction artefact in the zones with q ∈	[80º,90º] and j near 0º, 90º, 180º 
and 270º is a side effect of the reconstruction algorithm. This zone, recognisable 
in yellow in the Figure 7.12 (C), should have no effect on the inversion results if 
the detector is correctly positioned towards the target. Figure 7. 12 (C) might be 
interpreted as an efficiency distribution of the muon trajectory reconstruction, and 
as in Figure 7.12 (B) may help to correct the muon distribution. The drawback of 
this technique is that, in this case, the influence of the empirical muon arrival 
model is included. 

Lastly, Figure 7. 12 (D) represent in the same figure the theoretical muon 
arrival distribution (translucent surface) and the experimental measurement 
(opaque surface underneath). 

 
7.3.3 Hits vs zenith angle. 

The total number of hit tracks (tracks on both X and Y coordinates) 
depends on the zenith and azimuth arrival angles of the particle. Figure 7.13 (A) 
shows the experimental distribution of zenith angle against the number of stripes 
hit. The figure is in good agreement with Figure 7.13 (B) in which the theoretical 
number of hits2 was calculated.  

 
 

 
  

                                            
2 The theoretical number of hits has been calculated as the number of 

tracks in X and Y coordinates that intersect the projection of the muon trajectory 
within the TPC for arrival angles q ∈	[0º,90º] and j ∈	[-180º,180º]. 
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Figure 7. 13 Number of hit tracks as a function of the zenith angle measured (A) and calculated theoretically 

(B). 
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7.4. Underground measurements 

Underground measurements at 62 m depth were performed in the LSBB’s 
galleries. The experimental setup consists of the rack structure seen in Figure 
7.14, where three liquid scintillators, analogues to the ones of the open sky 
experiment, have been stacked and placed in coincidence mode. The angular 
acceptance of this setup is ~54º. The temperature of the room has been 
monitored, and remained steady at ~15ºC during the entire experiment. 

 
Figure 7. 14 Experimental setup with MUST2 detectors and liquid scintillators. 

 
Figure 7.15 shows the location of the detector relative to the LSBB 

galleries. The red square symbolizes the intersection of the acceptance angle of 
the detector and a horizonal plane distant of 62 m, the vertical distance from the 
detector to the surface. 

  
Figure 7. 15 Terrain over the detector. The red square indicates the approximate surface monitored within 

the acceptance angle. 

Detector location 

200m 

MUST2 location 

Scintillators 



Ignacio Lázaro Roche 

 178 

7.4.1 Effect of the gas filling. 

A data acquisition was launched while the detector still contained some air 
in the TPC volume (first acquisition). It permits to assess the performance of the 
detector during the gas filling process and to stablish the amount of gas 
introduced before steady operation. The data logging began ~24 h after starting 
flushing the gas with a 4 L/h flux. The gas flux remained constant during the 
acquisition. Figure 7.16 shows the temporal evolution of one detector’s gain-
dependent parameter, the average signal amplitude of the X readout plane in 
ADC counts. 

 
Figure 7. 16 Temporal evolution of the average signal amplitude of the X coordinates during the gas filling 

process. 

 
One observes how at the beginning of the acquisition the gain of the 

detector increases until it reaches a plateau value. The steady gain value was 
achieved when the introduced gas blend was approximately ten times the volume 
of the TPC (~250 L of gas blend). 

7.4.2 Tilted acquisition. 

To verify the independence of the zenith angle reconstruction from the 
detector tilt, two measurements were made; one with the detector parallel to the 
ground, and another with the detector tilted 30º along the Y axis. The distribution 
of reconstructed zenith angles in the XZ and YZ planes is presented in Figure 
7.17.  
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Figure 7. 17 Distribution of measured zenith angles on the XZ and YZ planes with (A) the detector parallel 
to the ground and (B) tilted 30º over the Y axis. 

 
 One sees that the data on the XZ plane has barely changed, whereas the 
center of gravity of the YZ data has shifted of 26,35º ± 9,4º. Which is consistent 
with the experimental setup modification. 

7.4.3 Muon flux measured vs apparent opacity. 

The elevation information of the terrain over the MUST2 detector, seen in 
Figure 7.18 (A), was downloaded from the French National Institute of 
Geographic and Forest Information (IGN) with a 1 m resolution. Considering a 
rock density of 2.600 ±130 kg/m3 obtained from a direct measurement, the map 
of apparent opacity shown in Figure 7.18 (B) was calculated. 

Zenith angle D (rad)  

Zenith angle D (rad)  

No
rm

al
ize

d 
co

un
ts

 
No

rm
al

ize
d 

co
un

ts
 

A 

B 

YZ plane 
XZ plane 
 

YZ plane 
XZ plane 
 



Ignacio Lázaro Roche 

 180 

 
Figure 7. 18 (A) Topography of the terrain over the detector and (B) apparent opacity of the medium. 

 
 Figure 7.19 shows a polar representation of the angular distribution for all 
the muons reconstructed after ~3 days of acquisition (2.000.000 events). The 
acquisition length was conditioned to the availability of the experimental site. The 
closure of the site for maintenance works motivated the displacement of the 
experimental setup to the external entry of the laboratory.  

Figure 7.19 (A) shows the normalizes raw angular distribution of 
reconstructed events, whereas in Figure 7.19 (B) the angular distribution is 
corrected via the open sky measurement to minimize the effect of the detector 
acceptance in the measurement. The values of Figure 7.19 (B) are calculated by 
dividing the normalized arrival probability of arrival from the underground 
measurement by one from the open sky. Hight ratio values indicate an opacity 
diminution in the monitored direction. 

The reconstructed muon flux distribution presents in both cases an 
asymmetry, with the larger number of muons coming from the azimuth angle 
where the apparent opacity of the volume over the detector is smaller, as one 
should expect. Most of the reconstructed muons fall within the acceptance region 
established by the scintillators configuration. It is also possible to observe a 
reconstruction artifact (an unusual group of reconstructed events) created by the 
MTRA in the zones with zenith angles near 90º and azimuth 0º, 90º, 180º and 
270º. 

The high ratio values of Figure 7.19 (B) for zenith angles larger than 54º 
(experimental angular acceptance) lack of physical meaning and are a product of 
the instrumental noise. 

A B 
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Figure 7. 19 Polar representation of the angular distribution of reconstructed muons: (A) direct 

measurement and (B) corrected with the open sky measurement. The red circle indicates the acceptance 
of the scintillators. 
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7.5. Valley measurements 

The laboratory main entrance is located, as seen in Figure 7.15, at the 
lowest point of a narrow valley. Figure 7.20 (A) shows a 360º panoramic view 
with the location of the detector, inside the white modular building. An 
experimental measurement was carried out at the entry platform of the LSBB with 
the same experimental setup as for the open sky measurements. A dataset 
corresponding to 3h of acquisition was been compared by means of the ratio 
shown in Equation (7.2). The elements of the ratio are inversed compared to the 
previous section to highlight the zones with larger attenuations. 

 

HIJKL = MNOP?	6Q#	RS$5N&T	"QU#QQVWBX	YZ[	\B]Y^_B\BX`
MNOP?	6Q#	RS$5N&T	"QU#QQa]bbB[	\B]Y^_B\BX`

   (7.2) 

 

 
 

 
Figure 7. 20 (A) 360º panoramic view of the LSBB’s entry for illustrative purposes, (B) the ratio between 

this and the open sky acquisitions as a function of azimuth angle. 

 
Figures (A) and (B) present the same azimuth angle alignment. The high 

ratio values are due to the attenuation of the muon flux because of the medium’s 
opacity. It is possible to see how the skyline of the valley is reflected in the Figure 
(B). The data in the orange is from the blind spots of the detector, and is caused 
by MTRA. Therefore, it has no physical meaning and should be ignored. 

Another representation of the same ratio is shown in Figure 7.21 (A), this 
time considering the zenith and azimuth angles. The number of muons measured 
has been distributed into a 90 x 90 matrix, with the color scale indicating the ratio 
value in a given bin. It is possible to see that Figure 7.21 (A) presents two zones 
with high attenuation, corresponding well with the position of the two sides of the 
massif seen in Figure 7.21 (B). 
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The yellowish ring in the high zenith values represents a zone with low 
statistics due to the angular acceptance of the experimental setup (80º ±2º). The 
blank spots indicate zones where not enough muons were collected for the ratio 
comparison. The four zones marked with the blue boxes indicate the artifacts 
made by the MTRA and have no physical meaning. 

 
Figure 7. 21 (A) Representation of the ratio between the measurements at open sky and valley with the 

bins sorted by zenith and azimuth angles. (B) Spherical picture for illustrative purposes only. 
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The experimental data shown above comes from a preliminary run made 
for the fine tuning of the operational parameters prior to a longer acquisition. 
During this second acquisition, the experimental site was affected during the night 
by a storm with lightnings and severe precipitation. The amount of precipitation 
was approximately 25L per m2 in few hours, but the exact values are unknown 
because the laboratory environmental station was temporarily out of service due 
to the blackout caused by the storm. 

The ceiling of the modular building, where the detector was installed, 
presented important water leaks and the experimental setup was flooded. Figure 
7.22 shows the aspect of the detector and the DAQ machine the morning after 
the storm. 

 

 
Figure 7.22 (A) Presence of water in the experimental setup after the storm, (B) damaged acquisition 

computer, and (C) presence of water inside the protection box. 

 
The computer used for the data acquisition was found off and soaked. 

After a complete disassemble and drying the machine was irrecoverable and the 
data stored in the hard drive couldn’t be retrieved. On the other hand, the 
protection box of the detector allowed water entrance, and the detector and its 
electronics were in direct contact with water. The servicing tasks were successful 
in this case and the detector was recovered. Due to schedule constraints, the 
detector was installed into a new emplacement in the dam of Saint-Saturnin-les-
Apt and the experiments in the entry of the LSBB postponed. 

B 

C  

A  
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7.6. SRS vs DREAM electronics 

A comparison of two different electronics was made at IRIS Instruments 
headquarters. The two families of technologies have been introduced in Section 
5.7; the CERN’s SRS and the CEA’s FEU. 

The experimental setup consisted of a stack of 4 detectors: from bottom 
to the top, two scintillators, one MUST2 detector with the SRS electronics and a 
second MUST2 detector with the CEA electronics. Figure 7.23 shows the two 
MUST2 detectors with the cases open before being stacked. 

 

 
Figure 7. 23 Experimental setup overview for the electronics comparison. 

 
The experiments were performed with a single trigger signal from the 

coincidence pulse of the two scintillators, then converted to NIM and TTL to 
trigger the SRS and DREAM electronics respectively. Both MUST2 detectors 
have been operated under the same gas blend and similar voltage parameters. 

Due to the limitation in the number of instrumented channels because of 
the available hardware, only the central section of 256 x 256 channels was 
monitored. This corresponds to 4X and 4Y DREAM chips and 2X and 2Y APV25 
cards with CEA’s and SRS systems respectively.  

Figure 7.24 shows a typical signal recorded during the experiment by the 
two different systems. It is seen that both systems succeeded in identing the 
muon passage through the detector. The slight saturation in the CEA’s 
electronics is a result of the operational parameters having been optimized for 
the SRS electronics, and that this configuration was applied directly without 
performing a fine tuning.  
 
 

CEA electronics SRS electronics 
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Figure 7. 24 Typical events of the MUST2 detector measured with the (A) SRS system and (B) CEA 

electronics. 

 
A second data acquisition was made done with the two systems triggered 

independently: the SRS with the signal from the scintillators, and the CEA with its 
self-trigger by track. In the second case, a topology condition has been set: only 
events with correspondence between X and Y planes were recorded. 

A third trigger option was also tested, with the SRS electronics having 
successfully acquired data with a signal created by the FEU card self-trigger. 

Unfortunately, a deep data analysis has not been possible due to the 
different structures of the acquired data by the two acquisition systems. A tool to 
convert the data format in order to use the MTRA with the data from the CEA 
electronics is being developed to continue with a proper performance 
comparison.  

 

A 

B 
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Chapter 8 abstract 
Chapter 8 describes the full field test of the MUST2 detector. It begins with 

presenting in Section 1 the interest in the experimental location at Saint-Saturnin-
les-Apt, as well as its characteristics. It also describes in Section 2 the actions 
taken to overcome the technical challenges found while adapting the experiment 
site at the foot of the dam to host the detector and to monitor the environmental 
conditions. 

Section 3 explains the motivations of building a digital terrain model of the 
targeted volume, and presents the results of the simulations of apparent 
thickness and opacity of the medium from the point of view of the detector. 

Section 4 describes the experimental results obtained during the 
campaign, and analyzes factors such as the detector intrinsic performance and 
muon reconstruction algorithm efficiency. The result of the muon reconstruction 
is compared with the simulated apparent opacity. 

 The influence of the temperature, on the gain, and subsequently in the 
efficiency of the track reconstruction algorithm, is also discussed. Temperature 
has an effect on the measurement of the water level as well. 

Lastly, the effect of the Earth tide has been assessed in order to see its 
influence on the daily fluctuations measured water level. 
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8.1. Introduction 

After the characterization of the detector in a controlled environment, the 
first acquisition test under actual field conditions aimed at imaging a water 
reservoir in the village of Saint-Saturnin-les-Apt, Southeast of France (see Figure 
8.1). The interest in this site lay in its combination of different monitoring aspects: 

- Geophysics: host rock body of the reservoir.
- Civil engineering: two aligned dams.
- Temporal monitoring: water level variations of the reservoir.
- Risk surveillance: The dam prevents the water reservoir from flooding the

village downstream. 
- Cultural heritage: the narrow rock strip that separates the eastern side of

the water reservoir from the village hosts castle remains (with at least one known 
tunnel that crosses the rocky volume). 

Nowadays the reservoir has a maximal capacity of ~11.500 m3 of water, 
with depths ranging from 0 to 14 m. 

Figure 8. 1. Satellite view of the water reservoir with respect to the village. Source: Google maps. 

Water 
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Castle 
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8.1.1 Dams 

The experimental site includes two dams made at different times, for 
different reasons. 

The oldest structure dates back to 1763 and was located near the end of 
a narrow valley overlooking the village. This valley is the result of the erosion 
caused by the water from a larger drainage basin. The concentration of water 
during heavy rainfalls produced flash floods in the village. The city archive, as 
seen in Figure 8.2, still conserves all the documents related with its construction, 
including plans and materials  

A 

B 

Figure 8. 2 (A) Plan of the old dam and (B) construction budget with details of the materials used. 
Source: City archive of Saint-Saturnin-les-Apt. 



 193 

&KDSWHU����6WXG\�VLW\��GDP�

After its construction, the water (non-potable) was collected by the village’s 
supply network to supply the parks and fountains. The hydraulic head was 
however not high enough to reach the entire village, and construction of a second 
higher structure a few meters downstream, as seen in Figure 8.3, was concluded 
in 1855. 

Figure 8. 3 View of the two dams. 

The reservoir is filled exclusively by water from precipitations and surface 
runoff, and today the village does not collect water from the reservoir. The 
reservoir is however emptied for servicing approximately once every ten years. 
To control the water level, a drain valve is located at the foot of the dam inside a 
valve house (seen in Figure 8.4). 

The topography of the site, seen in Figure 8.5, is well known due to the 
periodic maintenance made by the company Société du canal de Provence. 

Figure 8. 4 View of the main dam and the valve house. 
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Figure 8. 5 Topographic map of the water reservoir and the dams’ structures. Source: Société du canal de 
Provence. 
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8.2. Experimental setup 

The valve house presents an excellent detector emplacement site due to 
its location at the foot of the dam, and dimensions (seen in Figure 8.6). 
Nevertheless, it presents some drawbacks: 

-A lack of electricity.
-The wall contiguous to the dam present constant water leaks, due to the

proximity to the dam, and the fact that the lower half of the room is underground. 

Figure 8. 6 360º panoramic view of the valve house. 

8.2.1 Bringing electricity 

To address the lack of electricity inside the valve house, a new electric line 
was created. The starting point was a previously-existent electrical cabinet 
installed by the city 20 m away. 

The line is composed of a 30m R2V-3G2,5 cable that was partially buried 
and ends inside the valve house. At this point two protections were included: 

-A 30 mA ground fault circuit interrupter, to quickly and automatically
disconnect the circuit when it detects a current leakage 

-A 16 A circuit breaker, to protect from excess current damage from an
overload or short circuit. 

These protections are particularly important due to the presence of water 
in the walls and ground. 

To conclude, an uninterruptible power supply (UPS) protects the system 
from overcurrent and blackout events, and to power the instruments. 

2 m 3 m 
1,8 m 
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8.2.2 Humidity control 

Different methods have been tested to minimize the presence of water 
inside the valve house and reduce the humidity, which could harm the electronics 
as the components are not protected against humidity. 

The floor of the room is made of concrete, except for a central trench 
containing the drainage pipe of the dam and refilled with gravel. To avoid puddles 
in the concrete, a small 5 cm trench was dug along the wall contiguous to dam, 
where the water leaks are more important; this trench collects the water and 
conveys it into the central gravel trench. 

Also, as the room floor is ~30 cm below ground level, a wood barrier was 
been installed next to the door and fixed with silicone cement to avoid the entry 
of rain water through the door gap. 

The temperature and relative humidity inside the valve house were 
monitored, and are presented in Figure 8.7. When opening the door to access 
the valve house, a significant and fast increase of the temperature and relative 
humidity drop are recorded, which is seen several times in the figure. 

Figure 8. 7 Temperature and humidity inside the valve house. 

Despite the elimination of the water puddles, the humidity remained over 
90% and the water condenses on all metallic surfaces. The first approach to 
reduce this was to install a dehumidifier, but after 4 days it seemed ineffective. 
The next step was installation of a ventilation grill on the door; due to the poor 
natural convection of the room, the improvement was not as significant as 
anticipated. Finally, a fan was installed next to the door grid to force air convection 
and renewal. At this point the condensation finally disappeared and the MUST2 
detector was installed. 
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In the last stage of the experiment, the temperature rise associated with 
the working electronics in the room produced a temperature increase (with peaks 
at 30ºC) and reduction in the humidity. No humidity-related issue was detected 
during the data acquisition. 

8.2.3 Environment monitoring 

A series of sensors to monitor the environmental parameters during the 
experiment were installed at the points seen in Figure 8.8: 

-A USB environmental sensor (Yocto-Meteo), located inside the valve
house near the MUST2 detector, which monitored atmospheric pressure, 
temperature and relative humidity each minute. 

-A CTD-Diver DI 27 located at the Point A inside the water near the dam's
wall, which monitored pressure, temperature and water conductivity each 2 
minutes. 

-A Micro-Diver DI 605 located at Point B inside the water on the opposite
side of the reservoir, which monitored pressure and temperature each 2 minutes. 

-A Baro-Diver located inside the valve house and hung from the ceiling,
which monitored atmospheric pressure and temperature each 2 minutes. This 
detector is provided with the CTD-Diver and permits compensating directly for 
the effect of the atmospheric pressure on the water level calculation. 

Figure 8. 8 Satellite view of the water reservoir and instrumented points. Source: Google maps. 
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The barometer used for pressure compensation should ideally be at same 
level as the water, but was kept inside the valve house to secure it. The deviation 
of pressure change due to the 10 m height difference between the water surface 
and the cabin was corrected thanks using the isothermal atmosphere model 
equation recommended by the detector provider: 

!" = !$ · &'(·)·" (+·,)⁄ (8.1) 

where: PH is the atmospheric pressure at elevation height H, P0 is the 
atmospheric pressure at the reference height, M is the molecular mass of air, g 
is the standard gravity, R is the ideal gas constant and T the temperature in 
Kelvin. For reference, the difference at H=10 m and 20ºC is ~0.22%. 

The two diver detectors located underwater were placed inside custom-
made concrete blocks (such as the one seen in Figure 8.9), and deployed at the 
bottom of the reservoir. This block prevents the detector for moving in the bottom 
and screens the fast water pressure and temperature fluctuations due to currents. 

The data was stored locally and recovered at the end of the experiment. 
The drift time of the inner clock was verified, and neglected (less than 1 s 
deviation). 

Figure 8. 9(C) Concrete block hosting the diver detector before its deployment. (A) During its fabrication. 
(B) Diver inside the block.

A B

C 
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8.3. Digital model of terrain 

A digital elevation model (DEM) of the terrain was made with the 
topographic information from Figure 8.5. and is shown in Figure 8.10 (A). 

In parallel, a second DEM (see Figure 8.10 (B)) was made to include the 
water content of the reservoir at the beginning of the data acquisition, 414 meters 
above the sea level (m.a.s.l.). The second model is superimposed on the first, 
and covers the volume between the ground level inside the reservoir zone and a 
selectable height ranging from 404 m (minimum level) to 414,6 m (maximum level 
of water before overflow). The red dot locates the position of the detector. The 
north axis is parallel to the Y axis of the figure and corresponds to /=0 in Figure 
8.11 (A) and (B). 

Figure 8. 10(A) DEM of the empty water reservoir and (B) with water at 414 m.a.s.l. 

A 

B 
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8.3.1 Apparent thickness 

The usefulness of the DEM in muography is helping to estimating the 
muon flux attenuation due to the target topography. The first stage is to calculate 
the distance travelled by the muon through each medium.  

A Matlab® code, originally developed by K. Jourde and subsequently 
adapted by the author, computes the apparent medium thickness. In other words, 
it calculates the underground distance between the detector location and the 
open sky without taking into consideration of the muon scattering. 

Figure 8.11 was been calculated using this code, and shows the apparent 
thickness of the targeted volume from the point of view of the detector in two 
different scenarios: Figure 8.11 (A) assumes there is no water in the reservoir, 
while Figure 8.11 (B) assumes a water level of 414 m. 

 
Figure 8. 11(A) Apparent thickness of the dam without water and (B) with a water level of 414 m.a.s.l. 
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It is possible to identify in Figure 8.11 (A) some structural elements, such 
as: 

- Black dot-dashed line: limestone bed beneath the reservoir
- Red dotted line: near-vertical rock cliff of the castle’s hill.
- Green long dashed line: summit of the main dam.
- Orange dashed line: summit of the ancient dam.

The blank parts of Figure 8.11 have three different explanations: 
i.The muon does not interact with the target volume; its flux attenuation is due
to the atmosphere, and can therefore be neglected at this level.

ii.The angular values exceed the limited reach of the DEM, and the apparent
thickness cannot be calculated.

iii.The calculated value of apparent thickness exceeds the established calculus
cut-off of 70 m. Beyond this distance, the apparent thickness calculated by
the code cannot be considered representative of the real muon’s path, as
most of its trajectory takes place outside of the DEM’s reach.

Figure 8.12 provides an approximated of the view of the targeted volume 
as seen by the detector. 

15m 

0 = 12° 

0 = 45° 

Figure 8. 12 Targeted volume as seen by the detector. 

40m 

-60° 60° 
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8.3.2 Apparent opacity 

As seen in Chapter 3, the medium opacity better describes the muon flux 
attenuation though matter. The apparent opacity can be computed by integrating 
the density over the path length. 

 The terrain was described with two different, superimposed models 
corresponding to:  

1) the water in the reservoir: its height was set to the water level at the
moment of the beginning of the acquisition, 414 m.a.s.l.
2) the limestone of the valley and concrete/rock structure of the dam.

Each volume was characterized with a representative density of the
medium. For (1) the density is set to r=1·103 kg⁄m3, which corresponds to fresh 
water. For (2) the density is set to r=2,4·103 kg⁄m3. This value represents a 
compromise between the densities of regular concrete (r=2,4·103 kg⁄m3) and 
limestone (2,3·103 kg⁄m3 – 2,7·103 kg⁄m3). 

Figure 8.13 shows the result of the computed apparent opacity in meters 
water equivalent1 (mwe) of the targeted volume from the point of view of the 
detector. 

Figure 8. 13 Apparent opacity of the targeted volume with a water level of 414 m.a.s.l. 

1 1 mwe = 100 g/cm2 
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8.4. Experimental results 
8.4.1 Data acquisition 

The detector setup during the acquisition is shown in Figure 8.14. Three 
protection boxes containing two plastic scintillators and the MUST2 detector 
respectively were stacked at the nearest wall to the dam. The stack was placed 
over a pallet to avoid direct contact with the wet floor. Due to the narrow space 
and ground heterogeneities the detectors couldn’t be leveled perfectly. The 
angular deviations from horizontal in X and Y coordinates are shown in Figure 
8.14 (A). 

Figure 8. 14 Detector setup during the data acquisition at the valve house. 

Prior to the data acquisition, a pedestal run and a reconstruction efficiency 
scan were performed to tune the operational parameters. A series of 12 short 
acquisitions were made by varying the resistive voltage in 10 V intervals from 300 
V to 420 V. Figure 8.15 shows the number of recorded events in blue and the 
number of tracks reconstructed in orange. When examining the signal, some 
saturation was seen in acquisitions beyond 415 V, and the 	789: for the long run
hence chosen was 410 V. 

Scintillator #| 

Scintillator #2 

MUST2 

A 

B 
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Figure 8. 15 Reconstruction efficiency scan prior to data acquisition. 

The instrumental parameters during the acquisition were as follows: gas 
mixture Ar:CF4:iC4H10 (88:10:2), gas flow 4 L/h, 7;<=>?= -3.000 V/cm, 	789:= 420
V. 

The trigger signal was provided by two plastic scintillators in coincidence 
mode and aligned with the MUST2 detector, as seen in Figure 8.14. 

The data acquisition was continuously active from of 27th of July at 17h15 
to the 31th of July at 10h24. The end of the acquisition was conditioned by the 
size of the 4 TB external hard drive used to locally store the raw data. During the 
more than 89 hours acquisition, the detector recorded 27.466.111 events with an 
average trigger rate of 85,6 Hz. 

After the data analysis, the distribution of events according to the trajectory 
reconstruction is shown in Figure 8.16. 

Figure 8. 16 Distribution of recorded events according to track reconstruction. 
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Figure 8.16 reveals two issues: the low efficiency of the trigger and 
efficiency of reconstruction. The first issue may be explained by different factors; 
such as (i) a bad alignment of the detectors with the scintillators during the 
experience, (ii) a threshold excessively low of the scintillators, which leads to an 
increase of random coincidences, and mostly due to (iii) the lack of recorded 
signal in almost 1/4th of the detector, as seen in Figure 8.17. On the other hand, 
only ~28% of non-void events have been reconstructed. Besides the electronics 
misfunction  aforementioned; the position of the detector, inside the valve house 
and surrounded by massive bodies, has increased the relative arrival of near-
vertical muons (harder to reconstruct), penalizing the efficiency of the algorithm. 

Figure 8.17 shows a 2D histogram of the position of the reconstructed 
events for trajectories with a zenithal angle different from 0º. The bin size is 2 x 2 
mm2. 

Figure 8. 17 Position of the detected events with zenith angle different of 0º. 

The figure reflects a malfunction of one fourth of the detection surface., i.e. 
zone with Y channel ∈ [0 127]. It seems that the resistive layer underwent current 
leaks which made the signal amplification insufficient for track reconstruction 
(possibly as a consequence of the water intrusion a few weeks before, as seen 
in Section 7.5). The zone with events near Y channel 100 is certainly associated 
with instrumental noise. It also seems that the APV25 card instrumenting the X 
channels 769 - 896 had problems after the pedestal run. The same behavior was 
noticed in previous testing and appeared with a random frequency. The main 
disadvantage of this malfunction is that it cannot be easily identified during data 
acquisition, but in the data analysis after the acquisition. To overcome this 
problem, it is necessary to perform a cold restart of the FEC card and reboot the 
APV25 cards.  

A progressive increase in the number of detected events is also noticeable 
in the zone of X channel < 150. This effect is due to the combination of geometric 
acceptancy loss near the perimeter of the detector, and a slight misaligning of the 
trigger scintillators with the MUST2 detector as a result of the size constraints 
inside the valve house.  
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The effect is more visible in Figure 8.18, which shows the reconstructed 
zenith angle as a function of the position in the detector along the X axis. The 
same geometric effect is seen in Figure 8.19.  

The X channels close to the perimeter (near 0 and 1.024) indicate a 
distribution of muon arrivals of influenced by the shape of the detector. 

Figure 8.20 shows the angular distribution of all reconstructed events. The 
data has been filtered with a zenith angle cut-off of 80º due to the lack of physical 
meaning beyond this point. 

Figure 8. 18 Distribution of reconstructed zenith angle along the X position. 

Figure 8. 19 Distribution of reconstructed azimuth angle along the X position. 
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Figure 8. 20(A) Polar chart of the angular distribution of the reconstructed events. (B) Spherical picture for 
illustrative purposes only. 

Phi=0º

A 

B 



Ignacio Lázaro Roche 

 208 

8.4.2 Muon flux vs opacity  

Figure 8.21 shows the experimental muon flux measurement integrated 
over ~90h. The azimuth angle has been corrected with an offset of 96º to align 
the axis /=0º of the detector with the geographic North, easing the comparison 
of the data with the model, the corrected zenith values are renamed to j*. In the 
same spirit, the azimuth limits of the image are set from -60º to 60º. 

 

 
 

 
 
Figure 8. 21 (A) Muons measured coming from the direction of the target volume and (B) apparent opacity 
of the targeted volume with a water level of 414 m.a.s.l. with the deviation from the horizontal corrected. 

* 

A 

B 
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The high values of attenuation for muons with near horizonal trajectories 
create data blanks at some points of Figure 8.21 (A). As explained in Chapter 6, 
the blank near j=0º and q<10°, and the artefact near j=0º and q=80°, and are 
due to the reconstruction algorithm failures. 

The following structural elements, detailed in 6ection 8.3.1,�
are superimposed to Figure 8.21 (A) as a reference:  

- Black dot-dashed line: bed of limestone beneath the reservoir
- Red dotted line: near-vertical rock cliff in the castle’s hill.
- Green long dashed line: summit of the main dam.
- Orange dashed line: summit of the ancient dam.

A good correlation between the image of measured muon flux and the 
apparent opacity simulation of the target volume is observed. 

8.4.3 Temporal monitoring and temperature influence 

The rate of recorded and reconstructed events per minute is shown in 
Figure 8.22. This figure represents a frequency density plot, with the flux values 
grouped in 60 min bins. While the recorded rate is exclusively dependent on the 
scintillator coincidence, the reconstructed rate depends on the performance of 
the MUST2 detector and the reconstruction algorithm. 

Figure 8. 22 Rates of recorded events and reconstructed events. 

The sine-wave form of the reconstructed data is caused by the influence 
of the detector temperature, which has a direct effect on the detector’s gain as 
explained in Chapter 4. The voltage of the resistive layer was chosen in a test 
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with a temperature of 25ºC. Nevertheless, the thermal amplitude of ~6ºC during 
the acquisition has caused noticeable affects in the detector gain that have 
modified the trajectory reconstruction performance. Figure 8.23 (A) shows the 
evolution of the measured amplification current (current used to polarize the 
resistive layers) and the environmental temperature, without a significant 
correlation.  

Figure 8.23 (B) shows the effect of the temperature on the trajectory 
reconstruction performance. The Pearson correlation coefficient is -0,49, 
indicating a moderate inverse lineal correlation between the two variables. On 
the one hand, the gain decrease associated with a rise of temperature reduces 
the signal amplitude to a value below the detection threshold level. On the other, 
the gain increase leads to signal saturation and hence a drop of efficiency in 
trajectory reconstruction. 

Figure 8. 23 (A) Amplification current and (B) rate of reconstructed events as a function of the temperature. 
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The effect of temperature was also noticed in the measurement of the 
water level (see Figure 8.24). The barometer, used for pressure compensation, 
was in the valve house near the detector with daily fluctuations of temperature of 
~10º, while the diver detector was underwater at a nearly constant temperature. 

Figure 8. 24 Graphic of measured water level of the dam and inverse of temperature. 

The water level was measured manually at the beginning and at end of the 
experiment. The level drop was 33±1 mm during the data acquisition, and is in 
good agreement with the value calculated with a linear fit of the data seen in 
Figure 8.25, which presents the temporal evolution of the water level of the dam 
and the recorded muon flux. The origin value of water level stands for the 
reference height of the water at the beginning of the experiment, 16 days before 
the data acquisition. The slow emptying trend of the water reservoir is clearly 
indicated. The calculated value of the Pearson correlation coefficient between the 
de-trended water level and temperature is -0,62, confirming the inverse relation 
between the variables. 

The effect of the temperature, in both the barometer used to determine the 
water level and the MUST2 detector, explains why when the measured water level 
increases locally, the measured muon flux increases as well contrary to what’s 
expected: in normal conditions, a water level rise should result in a flux drop and 
vice versa. Nevertheless, when performing a linear regression of the entire data, 
the emptying trend of the dam is clearly translated into a rise of the muon flux. A 
Welch’s t-test was performed between the initial and final halves of the muon flux 
data series (corresponding to 45h of data for each subseries): the p-
value=1,77·10-43 allows rejection of the null hypothesis, and quantifies the rise of 
the reconstructed muon flux in 46,8±6,6 particles per square meter and per 
minute (95% confidence level). This implies an average increase of the muon flux 
of 1,88±0,2%, which is in consistent with the 0,94% of the simulated apparent 
opacity decrease in the targeted volume, seen in Figure 8.26. 
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Figure 8. 25 Temporal evolution of (blue) water level of the dam and (orange) recorded muon flux. 

Figure 8.26 presents the difference of apparent opacity of the targeted 
volume during a 3,3 cm water drop between the beginning and end of the data 
acquisition.  

Figure 8. 26 Difference of apparent opacity between the beginning and the end of the data acquisition. 

With the aim of  performing a directional analysis of the reconstructed 
muon flux fluctuation, the hemisphere above the detector is divided into 2 zones: 
the zone with q<25º (aiming to the sky), and the zone with q>25º (aiming to the 
target volume). Figure 8.27 shows the normalized reconstructed muon flux for 
the two zones as a function of time. 

*

Meters water equivalent 
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Figure 8. 27. Normalized reconstructed muon flux for muons with q<25º and q>25º as a function of time. 

The fluctuations in the rate of reconstructed events are in the same order 
of magnitude in the two cases, with a slightly bigger amplitude in the case of the 
muons coming from the open sky. 

Despite that all the aforementioned measured values are in good 
agreement with the simulated values, it is not possible to directly validate the 
sensitivity of the detector because of the following factors:  
- The gain of the detector was not constant during the experiment
- The variation of the water level during the experiment was too small to be
statistically significant against the natural variations of over 3% in the muon flux
[Jourde, 2016]i.

Additional data should be collected with constant gain and a larger opacity 
contrast to fully validate the temporal sensitivity of the detector. 

8.4.4 Effect of the Earth tides in the water level 

At first moment, when looking at the periodic fluctuations of the water level 
variation, it was thought that the water level could be somehow affected by a 
thermal effect of dilatation of the water. Nevertheless, this effect was discarded 
because of the small daily variation of the water temperature (on the order of few 
tenths of ºC). 

A second, longer campaign of measurements was made to verify possible 
the influence of tides in the measurement. The data recorded in this second 
campaign is shown in Figure 8.28.  
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Figure 8. 28 Water level in the reservoir measured in two points and precipitations. 

One again observes emptying trend of the dam with a constant slope of 
~0.3 cm/day and a daily fluctuation of ~2,5 cm in amplitude per day. 

Due to the small size of the reservoir and the signal synchronisation 
between the two detectors at two opposite locations, the presence of classic tides 
(caused by gravitational forces) was rejected. The effect of the wind was also 
discarded due to the accurate periodicity of the phenomena.  

A Fast Fourier Transform (FFT) analysis with a of the water level data 
revealed two peaks of periods of 23,96h and 11,98h. These values, quite similar 
to the values of some Earth tidal constituents, motivated a data comparison. 

The software ETERNA34 [Wenzel, 1997]ii was used to simulate the Earth 
tide behaviour, providing values of strain in μm/m at the desired location and 
during the data acquisition. 

Figure 8.29 shows the FFTs of the Earth tide simulated signal and the 
water level at two different points of the dam. One observes that the two 
measurements of water level present peaks at the same frequency, but with 
slightly different amplitudes. This might be caused by the difference of depth 
between the two divers: diver A was located at about 3 meters depth, while diver 
B was under about 1,5 meters of water. 

On the other hand, the comparison between the Earth tide and the water 
level results indicates that despite some of the constituents being shared 
between datasets, not all appear in the two series. 
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Figure 8. 29 FFT of the Earth tide simulated signal and water level at two different points of the dam. 

This reinforces the hypothesis that the daily fluctuations are caused by the 
temperature of the barometer use for compensating both divers’ pressure data. 

8.5. References 

i Jourde, K. et al. (2016). Monitoring temporal opacity fluctuations of large 
structures with muon radiography: a calibration experiment using a water tower. 
Sci. Rep. 6. 23054 

ii Wenzel, H.G. (1997). ETERNA34 Manual of versión 3.40. 
http://www.eas.slu.edu/GGP/ETERNA34/MANUAL/ETERNA34.pdf 





Chapter 9. Conclusions 

 217 

Chapter 9. Conclusions 

Transmission muography is an expanding technique based on the 
attenuation of the natural-occurring cosmic-muon flux due to the opacity of the 
material they traverse. With a reach up to a few hundreds of meters, it allows 
estimating density distribution around the detector. This non-destructive, passive 
technique provides original information to ease the resolution of the inverse 
problem.  

The usefulness of muography is proven in applications that include the 
characterization and monitoring of volcanoes or cultural heritage study or the 
analysis of hydrodynamics in natural or man-made bodies. 

This thesis was dedicated towards the creation of a new direction-sensitive 
tool for muon flux measurement based on a thin time projection chamber with a 
Micromegas readout, to achieve a compact detector with an angular resolution 
compatible with civil engineering and geophysics applications. The main 
motivation was to conceive a detector capable to fill the technological gap for 
applications with compactness and transportability constraints. 

The principal phases of design of the detector were: (i) the design of a 
Micromegas readout layout with good spatial resolution and a balanced charge 
distribution in the two coordinates, (ii) the choice of a gas with low diffusion for 
better resolution and an electron drift speed compatible with the time projection 
chamber operation, (iii) the conception of a field homogenizer to minimize the 
deflection of the electron trajectories in the drift zone towards the readout plane, 
(iv) the choice of the electronics instrumentation and its trigger signal to be able
to reconstruct the muon flux and trajectories, and (v) the creation of an auxiliary
system to manage the gas flow and prevent impurities and contaminants from
entering into the detection volume.

The data acquisition and preanalysis were made with software developed 
for the CERN Scalable Readout System electronics (i.e. DATE and AMORE SRS 
respectively). Nevertheless, the muon trajectory reconstruction was made via the 
algorithm created by T. Serre. This algorithm retrieves the time, 2D position, 
zenith (q) and azimuth (j) angles of the muons traversing the detector. 

The downside of this algorithm, as it currently stands, is the impossibility 
to correctly reconstruct trajectories with less than 3 activated readout tracks per 
coordinate. This leads to a blind zone of detection near the j multiples of 90º±5º 
and the creation of a few dummy events without physical meaning concentrated 
in the zone q=85º±5º in these azimuth angles. The influence of the two effects 
aforementioned on the inversion results can be minimized if the detector is 
correctly positioned towards the target. 

The track reconstruction algorithm still has room for improvement, such as 
the development of the centroid technique to reduce the blind zone. The analysis 
of further data will help in order to enhance the robustness of the results. 
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The presented characterization tests represent a mandatory stage for the 
fine tuning of the operational parameters of detector and assessing its 
performance. The access to the CERN beam facilities allowed the fine tuning of 
the latency of the acquisition chain, estimate the gain of the detector at different 
voltages (a key parameter for signal formation), and detection efficiency. The 
obtained values are found to be in good agreement with other Micromegas-based 
detectors. The tests highlighted also the importance of a reliable trigger source. 

The second campaign was dedicated to the open sky measurements, 
which permits comparison between the theoretical model described in Chapter 2 
and experimental data. This test allows to estimate the acceptance of the 
experimental setup (useful to correct the tomographic images) and enhance their 
fidelity, and to assess the efficiency of the muon trajectory reconstruction 
algorithm. 

The tests made both in underground and at the entry of the LSBB served 
as preliminary measures of muon flux attenuation in a controlled environment. In 
both cases, and despite the weak statistics, the images have shown a good 
correlation with the target volume. 

The collaboration with the CEA’s IRFU made possible a series of 
comparative tests between their CLAS12 electronics and the CERN’s SRS 
electronics. Both systems have succeeded to log data from the MUST2 with an 
external trigger provided by plastic scintillators in coincidence mode. Moreover, 
CEA electronics was compatible with the self-trigger operation mode and capable 
to propagate the signal to the SRS electronics. Nevertheless, a thorough 
performance comparison was not possible due to the different data format from 
both systems, which prevent from doing a muon trajectory reconstruction of the 
data acquired with the FEU card. 

The implementation of digital models of allows simulating the apparent 
thickness of the target volume. This is helpful in order to adapt and dimension the 
experiment before the data acquisition, and to analyze the outcome of the 
measurements. 

During the campaign of measurements in the Saint-Saturnin-les-Apt dam, 
the field transportability and the capability to perform long-term out-of-lab 
measurements have been demonstrated. In view of the promising results 
presented, the successful proof-of-concept trial allows to validate the MUST2 
camera for transmission muography purposes. On the other hand, temperature 
had a non-neglectable influence during the data acquisition in the MUST2 
detector, inducing variations of the reconstructed muon flux of the same order as 
the natural variations of the muon flux. A system for adapting the amplification 
voltage as a function of the environmental temperature, to keep the detector gain 
constant, could and must be envisaged for experimental sites with variable 
temperatures. 

Further data analysis development and experimental data is required to 
improve the reconstruction efficiency, especially in the blind zones, and to 
validate the sensitivity of the detector to small opacity variations. 






