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Résumé

Dans cette thèse, nous présentons des applications de la réécriture à l’étude de problèmes issus

de la catégorification et de la théorie des représentations. En particulier, nous appliquons les

méthodes de réécriture aux problèmes de cohérence dans les catégories linéaires et au calcul de

décatégorifications. Des méthodes de réécriture ont été développées pour obtenir des résultats

de cohérence dans les monoïdes et les catégories monoïdales présentés par des systèmes de

réécriture nommés polygraphes. Ces constructions basées sur des résultats de Squier permettent

en particulier de calculer des présentations cohérentes de catégories de dimension supérieure

à partir des diagrammes de confluence de polygraphes convergents. Dans ce mémoire, nous

étendons ces constructions pour obtenir des résultats de cohérence dans les catégories linéaires de

dimension supérieure. Nous introduisons les polygraphes linéaires afin de présenter les catégories

linéaires de dimension supérieure par des systèmes de réécriture. Nous étudions ensuite les

propriétés de réécriture de ces systèmes. Nous donnons une description polygraphique du calcul

de décatégorification de Grothendieck. Nous généralisons également la procédure de Knuth-

Bendix appliquée aux polygraphes de dimension supérieure. Cette procédure permet de compléter

des présentations de catégories de dimension supérieure n’admettant pas nécessairement d’ordre

de terminaison induit par une orientation des règles. De plus, nous étudions des problèmes de

cohérence dans les catégories de dimension supérieure. Étant donné un polygraphe confluent

et quasi-terminant, nous introduisons une notion de complétion de Squier de ce polygraphe

composée de diagrammes de décroissance. Nous prouvons que cette complétion rend asphérique

la catégorie de dimension supérieure libre sur ce polygraphe. Ce résultat généralise un résultat

de Squier au cas des présentations quasi-terminantes. Nous présentons enfin les applications des

propriétés des polygraphes linéaire à l’étude de la catégorie AOB définie par Brundan, Comes,

Nash et Reynolds. Nous retrouvons par des méthodes de rééciture les bases des espaces de

morphismes de AOB exhibées par Brundan, Comes, Nash and Reynolds.
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Abstract

In this thesis, we study applications of rewriting theory to categorification problems and repre-

sentation theory. We apply rewriting methods to coherence problems in linear categories and

computation of decategorifications.

Proofs of coherence results for monoids and monoidal categories by rewriting methods are

well known. In particular, several constructions based on Squier’s results lead to the computation

of coherent presentations of higher-dimensional categories from the confluence diagrams of

convergent rewriting systems. In this memoir, we extend those constructions to coherence results

for higher-dimensional linear categories.

We introduce linear polygraphs to present higher-dimensional linear categories by rewriting

systems. We then develop the main rewriting properties of these systems. We focus next

on the applications of those properties to the study of categorification problems such that

the computation of Grothendieck decategorification by rewriting methods. Another result we

obtain on higher-dimensional polygraphs is a generalization of the Knuth-Bendix procedure

to higher-dimensional polygraphs. This new procedure allows us to complete presentations of

higher-dimensional categories which do not necessarily admit a termination order induced by

any orientation of rules.

We also study general coherence problems. Given a confluent and quasi-terminating poly-

graph, we define a globular extension of this polygraph called decreasing Squier’s completion.

We prove that this extension makes aspherical the free higher-dimensional category over the given

polygraph. This result generalizes a result of Squier to the case of non terminating presentations.

Finally, we focus on the applications of those properties to higher-dimensional linear cate-

gories such that the category AOB defined by Brundan, Comes, Nash and Reynolds. We find by

rewriting methods the bases of the morphisms spaces of AOB that Brundan, Comes, Nash and

Reynolds exhibited.
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Chapter 1
Introduction

1.1. AN OVERVIEW OF REWRITING THEORY

1.1.1. Abstract rewriting. In 1914, Thue [?] introduced rewriting to study the word problem

in semi-groups. Thue’s method consists in orienting the relations of a semi-group to study the

properties of normal forms, or irreducible expressions. Explicitly, a rewriting system is a data

made of objects and transformation rules on these objects. Given an equational structure and

two expressions in this structure, the word problem is the question of whether or not those two

expressions are equal modulo the relations of the structure. An instance of the word problem

appears for monoids. In a monoid generated by an alphabet, the word problem is the question of

whether or not two strings in the alphabet are equal in the monoid.

Beyond the word problem, rewriting theory finds applications in computer science. Those

applications led to multiple variants of rewriting systems such that term rewriting, graph rewriting

or tree rewriting. Other applications of rewriting theory appear in algebra with Gröbner bases.

Abstract rewriting is a model of computation on a set of objects and a relation on this set called

the rewrite relation encompassing all other variants of rewriting. This model is also Turing

complete.

Two important properties of rewriting systems are termination, which ensures that all compu-

tations end, and confluence, which ensures that all computations from a same expression

b

a

∗ ��

∗ �� c
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CHAPTER 1. INTRODUCTION

lead to a same result.

b ∗
��

a

∗ ��

∗ ��

d

c ∗
��

A rewriting system which is both terminating and confluent is called convergent. Other properties

like local confluence, a property weaker than confluence and easier to decide are also studied.

The conjunction of termination and confluence is called convergence. In 1942, Newman [?]

introduced a criterion linking local confluence to confluence under termination hypothesis. He

proved that local confluence and confluence are equivalent in a terminating rewriting system.

This result is called Newman’s Lemma [?]. Newman’s Lemma is also called diamond’s Lemma

due to its proof. Another important result of abstract rewriting is Church-Rosser’s Theorem [?]

stating that confluence is equivalent to a property called Church-Rosser property. All results of

abstract rewriting are valid for the other variants of rewriting.

1.1.2. Word rewriting and polygraphs. In the context of higher-dimensional categories,

rewriting is formalized by the notion of polygraph. Polygraphs were introduced in 1987 by

Street [?] under the name of computads and independently by Burroni in 1993 [?] as systems

of generators and oriented relations, for higher-dimensional categories. Those oriented rela-

tions are called rewriting rules. Polygraphs find applications in algebra to study structures like

monoids or monoidal categories by rewriting [?]. Thus, a polygraph is a rewriting system on a

higher-dimensional category.

Polygraphs are defined by induction on their dimension using the notion of globular extension.

A 0-polygraph is a set. For n > 0, an n-polygraph is a data made of an (n− 1)-polygraph Σ and

a globular extension of the free (n− 1)-category over Σ. This globular extension makes a set of

rewriting rules over the (n−1)-cells of a free (n−1)-category. Quotienting an (n+1)-polygraph

by the congruence relation generated by its (n+1)-cells, one obtains an n-category which is said

to be presented by the (n+1)-polygraph. In particular, a 2-polygraph is a string rewriting system

and a 3-polygraph is a rewriting system on the 2-cells of a 2-category. Another particular case of

3-polygraphs are rewriting systems on monoidal categories. In computer science, polygraphs are

used to study rewriting on Petri nets [?].

1.1.3. Confluence and decreasingness. In a rewriting system, a conflict between two rewriting

rules is called a local branching. Local confluence of a polygraph Σ can be decided by examining

some local branchings of Σ which are called the critical branchings. More explicitly, if all

critical branchings of a polygraph are confluent, then all its local branchings are confluent. We

thus get local confluence from the confluence of a family of local branchings. This result is

called critical pairs Lemma [?]. The main confluence problem for rewriting systems is to decide

confluence from local confluence and supplementary conditions. Since Newman’s work, this is

10



1.1. AN OVERVIEW OF REWRITING THEORY

a well-studied problem in rewriting. Newman’s Lemma states that in a terminating rewriting

system, local confluence and confluence are equivalent properties. A whole series of works [?]

led to criteria dropping the termination condition of Newman’s Lemma in favor of the properties

of the local branchings to prove confluence from local confluence. For example, an abstract

rewriting system in which all local branching are confluent by using only one rewriting step is

confluent. In 1994, van Oostrom defined decreasingess, a criterion used to prove confluence

from local confluence. Decreasingness is a refinement of an unpublished earlier criterion, weak

diamond property, defined by de Bruijn. We refer the reader to [?] for the links between those

properties. Then, van Oostrom proves the following result:

Theorem [?,Theorem 2.3.5.] Any decreasing abstract rewriting system is conflu-
ent.

This result is stronger than Newman’s Lemma because any terminating rewriting system is

decreasing. Furthermore, decreasingness is a universal criterion to decide confluence of countable

rewriting systems. Any confluent countable rewriting system is indeed decreasing.

1.1.4. Knuth-Bendix’s procedure. A completion procedure is a procedure adding generators

and rewriting rules to a presentation to obtain a presentation of the same structure. The redundant

generators and rules are expected to give a confluent rewriting system.

A general procedure to find a convergent, a fortiori confluent, term rewriting system given an

equational presentation has been introduced by Knuth and Bendix in [?]. We will develop Knuth-

Bendix’s procedure for (n + 1)-polygraphs. Given Σ an (n + 1)-polygraph, Knuth-Bendix’s

procedure applied to Σ uses an order on the set of n-cells of Σ which is compatible with the

rewrite relation. The procedure is based on the critical pairs Lemma and adds (n+ 1)-cells to

an (n+ 1)-polygraph. For each non confluent critical pair leading to two chosen normal forms u

and v, we add an (n + 1)-cell from u to v if v ≺ u or from v to u if u ≺ v. Knuth-Bendix’s

procedure either terminates in the case where all critical pairs are made confluent, creates an

infinite increasing sequence of (n+ 1)-polygraphs or fails. In the first two cases, we obtain a

convergent (n+ 1)-polygraph in a finite or infinite number of steps. The procedure fails when

we encounter two n-cells which cannot be compared. If the order we use is total, we call it a

total termination order.

1.1.5. Coherence. A coherent presentation of an n-category C is a data made of an (n + 1)-
polygraph Σ presenting C and a family of (n + 2)-cells Σn+2 such that the quotient of the

free (n + 1, n)-category over Σ, or (n + 1)-category of congruences generated by Σ, by the

congruence generated by Σn+2 is aspherical, that is for any ordered pair (α,β) of (n+ 1)-cells,

there exists an (n+ 2)-cell from α to β.

The syzygies problem was first introduced by Hilbert [?]. A syzygy in a moduleM over a

ring R generated by a family of n elements (g1, · · · , gn) is a n-uple (a1, · · · , an) of elements

11



CHAPTER 1. INTRODUCTION

of R such that

a1g1 + · · ·+ angn = 0

The set of all syzygies ofM forms a module called the module of syzygies. Multiple methods

have been developed to compute the moduleof syzygies by rewriting. Coherence problems in

higher-dimensional categories have been studied in [?] and lead to the notion of polygraphic
resolution, a generalization of the module of syzygies. A polygraphic resolution of an n-category

is a cofibrant approximation of this n-category in the category of (∞, n)-categories. The

construction of polygraphic resolutions is a problem arising in the context of Squier’s theory,

which has been developed in a different context than the one of the study of polygraphs.

1.1.6. Squier’s theory. Some properties of a higher-dimensional category can be derived from

a presentation of this higher-dimensional category by a polygraph. In 1987, Squier proved [?]

that all finitely presented monoids do not admit a presentation by a finite convergent rewriting

system. In Squier’s work, the notion of presentation of monoids is extended into the notion

of coherent presentation [?]. A coherent presentation of a monoid M is a data Σ made of a

2-polygraph (Σ0, Σ1, Σ2) presenting M and a globular extension Σ3 of the free (2, 1)-category

over (Σ0, Σ1, Σ2). The 3-cells of Σ3 are relations between the relations of M, or coherence
rules. Given a coherent presentation Σ of a monoid M, we can construct a resolution of the ZM-

modules, where ZM denotes the ring generated by the elements of M and whose multiplication

is induced by the monoid law of M:

ZM[Σ3]
d3

�� ZM[Σ2]
d2

�� ZM[Σ1]
d1

�� ZM ε
�� Z −→ 0

where for any k, ZM[Σk] denotes the free ZM-module over Σk. In particular, a monoid with a

finite coherent presentation is of homological type left-FP3 and a finitely presented monoid is

of homological type left-FP2. Furthermore, from a convergent presentation of a monoid, it is

possible to construct a coherent presentation of this monoid. For each critical branching (f, g) of

this monoid we choose a confluence diagram (f · f ′, g · g ′) for this branching and a 3-cell filling

this diagram.

v f ′
��

u

f ��

g
��

u ′

w
g ′

��D
ψ
f,g��

This process is called Squier’s completion.

Theorem [?,Theorem 5.2.] Let C be a category and Σ a convergent presentation
of C. Squier’s completion of Σ is a coherent presentation of C.

12



1.1. AN OVERVIEW OF REWRITING THEORY

We say that a monoid has finite derivation type if it admits a finite coherent presentation.

Moreover, if a monoid admits a finite convergent presentation, Squier’s completion of this

monoid is finite. This implies the following result linking a combinatorial property of monoids

to a homological one.

Theorem [?,Theorem 4.1.] If a monoid admits a finite convergent presentation, it
is of finite derivation type.

Finite derivation type can be generalized to higher dimensions. A monoid admitting a finite

convergent presentation admits a finite coherent presentation. In the same way, we say that a

higher-dimensional category is of finite derivation type if it admits a coherent presentation.

1.1.7. Linear rewriting. In parallel to Squier’s theory, rewriting was developed in a linear

context for the case of algebras presented by generators and relations. A first instance of linear

rewriting was introduced in 1965 by Buchberger under the name of Gröbner bases. A Gröbner

basis for an ideal I of a commutative algebra A endowed with a monomial order< is a generating

set G for the ideal I such that the rewrite relation on A defined by G and < is confluent. The

notion of Gröbner basis was then generalized by Mora [?] for two-sided ideal of non commutative

algebras.

Gröbner bases find applications in homological algebra like the study of the koszulity property.

It is proved in [?] that an algebra with a quadratic Gröbner basis is Koszul. Another application

of Gröbner bases to homological algebra is the construction of Anick’s resolutions [?]. Indeed,

the free modules appearing in this resolution are generated by the critical pairs arising from a

Gröbner basis.

Gröbner bases make use of monomial orders. However multiple finitely presented algebras

do not admit a finite Gröbner basis whichever monomial order is chosen. The algebra on three

generators x, y and z and verifying the relation

xyz = x3 + y3 + z3

is such an example [?, Example 3.4.7.]. Two-dimensional linear polygraphs were introduced in

[?] as a generalization of non commutative Gröbner bases. In particular, linear polygraphs do

not use monomial orders. In particular, the above algebra can be presented by a linear polygraph

with only one 2-cell

xyz⇒ x3 + y3 + z3

whose orientation does not correspond to any monomial order. We will develop in this work the

notion of linear polygraph for any dimension.

Extending a presentation of a monoid by coherence rules returns a polygraphic resolution

of this monoid, see [?]. Extending a coherent presentation of a monoid also returns a cofibrant

replacement of this monoid in the category of (∞, 1)-categories [?, ?]. Finding a linear structure

for polygraphs would enable us to find polygraphic resolutions for algebras.
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CHAPTER 1. INTRODUCTION

1.2. CATEGORIFICATION IN REPRESENTATION THEORY

1.2.1. Grothendieck decategorification. The terminology "categorification" was introduced

in 1995 by Crane. Categorification is a process giving from an algebra A a linear monoidal

category C whose Grothendieck group is isomorphic to the algebra A [?, ?]. We say that C is a

categorification of A or, categorifies A. The Grothendieck group of a linear category C is the

abelian group generated by the isomorphism classes of C and subject to the relation [a] =
[b] + [c] whenever an object a is direct sum of two objects b and c, that is there are 1-

cells a
pb

�� b, a
pc

�� c, b
ib

�� a and c
ic

�� a such that:

− pb �0 ib + pc �0 ic = 1a,

− ib �0 pb = 1b,

− ic �0 pc = 1c.

The process of constructing the Grothendieck group of a linear category is a case of decate-
gorification. This process can be generalized to any higher-dimensional linear category and is

called Grothendieck decategorification.

Categorification finds many applications in algebra. An example of a categorification is the

Khovanov homology [?], a categorification of the Jones polynomials. This categorification was

used to give a new proof of Milnor’s conjecture [?]. A classical categorification problem is to

exhibit from a ring A a categorification of A with properties such that having all its idempotents

split.

1.2.2. The category of Bott-Samelson bimodules. In 1979, Kazhdan and Lusztig constructed

a basis for the Hecke algebra and conjectured that the base change polynomials from this

basis to the classical basis had positive coefficients. This conjecture was proved in 1981 by

Beilinson and Bernstein, and independently by Brylinski and Kashiwara, in the case of Hecke

algebras of Weyl groups. The conjecture was proved in the general case in 2013 by Elias and

Williamson [?] using categorification methods. Inspired by categorification, Elias and Williamson

categorified the Hecke algebra by a category called the category of Soergel bimodules, which is

the idempotent-complete grading shift closure of a category called category of Bott-Samelson
bimodules. Then, from the properties of the category of Soergel bimodules, Elias and Williamson

proved Kazhdan-Lusztig’s conjecture.

Elias and Williamson category of Bott-Samelson bimodules is defined diagrammatically

by generators and relations and can be studied from a combinatorial point of view. An open

problem on this category is the study of its syzygies. This problem is a coherence problem for

the category Bott-Samelson bimodules.

14



1.3. THESIS SUMMARY AND MAIN CONTRIBUTIONS

1.2.3. Brauer algebras and the affine oriented Brauer category. Schur-Weyl duality [?] is

a result stating that there is an isomorphism between the C-representation of the symmetric

group Sk and the endomorphism algebra of the gln(C)-algebra (Cn)⊗k whenever the integers k

and n satisfy n � k. In 1989, Turaev [?] and Koike [?] introduced independently the walled

Brauer algebraBr,s(δ), an algebra having a Schur-Weyl duality with the tensor productV⊗r⊗W⊗s

where V is the natural representation of GLn(C) andW is the dual of V .

Another variation of Schur-Weyl duality for superalgebras was studied by Rui and Su [?], and

independently by Sartori [?], and led to the introduction of affine walled Brauer algebras. They

proved that there is a Schur-Weyl duality between general Lie superalgebras and affine walled

Brauer algebras. Those algebras are further studied in [?]. A linear monoidal category, the affine

oriented Brauer category AOB was introduced in [?] to encode each walled Brauer algebra as

one of its morphism spaces. The category AOB is presented by generators and relations using

dotted oriented string diagrams. Brundan and al prove that a given family of those diagrams

provides a basis for each morphism space of AOB.

1.3. THESIS SUMMARY AND MAIN CONTRIBUTIONS

1.3.1. Applications of rewriting to representation theory. In this work, we use rewriting to

study higher-dimensional linear categories appearing in representation theory.

We first define linear polygraphs. A first definition of two-dimensional linear polygraphs was

given by Guiraud, Hoffbeck and Malbos [?]. We generalize their definition to all dimensions. A

linear (2, 1)-polygraph is a data Σ made of a directed graph (Σ0, Σ1) and a globular extension Σ2
of the free linear category over (Σ0, Σ1). In particular, if Σ0 is made of only one 0-cell, the

directed graph (Σ0, Σ1) generates a free algebra over the 1-cells of Σ1 and the set of 2-cells Σ2 is

a set of oriented relations for the quotient of this algebra by Σ2. We say that the linear (2, 1)-
polygraph Σ is a presentation of an algebra A if A is isomorphic to the quotient of the free

algebra over (Σ0, Σ1) by Σ2.

In this thesis, we generalize the notion of coherent presentation to higher-dimensional

linear categories. Then, we generalize Squier’s theory to linear polygraphs. This leads to the

construction of coherent presentations of higher-dimensional linear categories and Squier’s

completion of higher-dimensional linear polygraphs. Coherent presentations in the linear case

can be used to construct for an algebra A a resolution

A[Σ3]
d3

�� A[Σ2]
d2

�� A[Σ1]
d1

�� A ε
�� Z −→ 0

where Σ is a coherent presentation of A and for any k, A[Σk] denotes the free A-module over Σk.

A first result in the context of higher-dimensional linear polygraph is that Squier’s completion

of a convergent linear polygraph yields a coherent presentation of a higher-dimensional linear
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CHAPTER 1. INTRODUCTION

category. We call this result linear Squier’s Theorem. Furthermore, it is proved in [?] that

any convergent presentation of an algebra can be extended into a free infinite resolution of this

algebra. Such a resolution is called a polygraphic resolution.

Another combinatorial result obtained from the construction of convergent presentations for

higher-dimensional linear categories is the construction of bases for the morphism spaces of this

higher-dimensional linear category. More precisely, a higher-dimensional linear category with

a confluent and normalizing presentation has a basis for each of its morphism spaces indexed

by the normal forms of this presentation. This result is motivated by the bases computation

problems appearing in representation theory such that the study of the affine oriented Brauer

category AOB presented in [?]. We study this problem from a rewriting point of view. For

this, we use the notion of decreasingness defined by van Oostrom [?]. More precisely, we give

a decreasing and quasi-terminating presentation for AOB and use van Oostrom’s Theorem.

This leads to a confluent and quasi-terminating presentation of AOB. Then, we prove that

the equivalence classes of the quasi-normal forms for this presentation index a basis for each

morphism spaces of AOB.

Another part of this memoir is the use of decreasingness techniques in Squier’s theory. We

prove in [?] that a decreasing and quasi-terminating presentation of a monoid yields a coherent

presentation of this monoid when some other properties are verified. It is also shown by Yudin in

[?] that the geometric proof of van Oostrom’s Theorem presented in [?] leads to a version of

Squier’s Theorem with quasi-termination. Yudin’s result uses stronger hypotheses than [?] on

the Peiffer confluences and the compatibility between the product and the decreasing labelling.

This result leads to the construction of a coherent presentation of the 0-Hecke monoid.

Finally, we use rewriting methods to study categorification problems. For this, we first

define the notion of Karoubi envelope for polygraphs. This leads to the construction of Karoubi

envelope for (coherent) presentations of higher-dimensional linear categories. We prove that for

any higher-dimensional linear category C, the Karoubi envelope of a (coherent) presentation of C
is a (coherent) presentation of the Karoubi envelope of C. Another important remark in linear

polygraph is that rewriting paths and their inverses generate equality proofs in the presented

higher-dimensional linear category. This leads us to define isomorphisms proofs and direct sum
proofs in the free higher-dimensional linear category over a linear polygraph. Isomorphism

proofs and direct sum proofs are then used to construct Grothendieck decategorifications of

higher-dimensional linear categories.

1.3.2. Higher-dimensional linear categories and rewriting. In the first chapter, before we

introduce the rewriting tools used to study higher-dimensional linear categories, we present the

classical theory of rewriting. In particular, we state and prove Church-Rosser’s Theorem and

Newman’s Lemma.

Next, after having presented polygraphs, we generalize the families of local branchings

appearing in word rewriting. Those families are aspherical, Peiffer and overlapping branchings.
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Among the overlapping branchings, we can define critical branching as in the case of word

rewriting. Then, we recall the critical pairs Lemma for polygraphs. This lemma links local

confluence of a polygraph to the confluence of its critical pairs. This result allows us to use

Newman’s Lemma [?], stating that in a terminating abstract rewriting system, local confluence

and confluence are equivalent, to decide the convergence of a terminating polygraph by examining

all its critical pairs.

1.3.3. Computing bases with linear polygraphs. In the second chapter, we present linear

polygraphs and their rewriting theory. A first definition of 2-polygraphs was given in [?]. We

present in this memoir the notion of linear polygraph introduced in [?]. For n and p two integers

such that n � p, we define the category of linear (n, p)-polygraphs. This category is constructed

by induction by first defining the category of linear (n,n)-polygraphs, and then by defining the

category of linear (n+ 1, p)-polygraphs from the category of linear (n, p)-polygraphs.

Adding a linear structure to polygraphs creates multiple rewriting problems which do not

appear in the set-theoretic setting. The first of those problems is the definition of rewriting

steps. Indeed, in a linear (n+ 1, n)-category, all (n+ 1)-cells are invertible. As a consequence

defining rewriting steps as (n+ 1)-cells in this free linear (n+ 1, n)-category requires to find

some conditions to ensure that the inverse of a rewriting step is not always a rewriting step.

Furthermore, if a linear (n+ 1, n)-polygraph contains two (n+ 1)-cells with respective sources

of the form u+ v and v+w, defining rewriting steps on this (n+ 1, n)-polygraph would lead to

overlapping branchings with source of the form u+ v+w. We will thus define rewriting steps

of linear polygraphs only when the sources of the rewriting rules are monomials.

The local branchings of linear polygraphs are also more complex. They belong to four fami-

lies: aspherical branchings, Peiffer branchings, additive branchings and overlapping branchings.

Contrarily to the set-theoretical case, local branchings other than overlapping branchings are not

always confluent. Examples of this fact are given in [?]. As a consequence, the critical pairs

Lemma for linear polygraphs needs more conditions than in the set-theoretical case. The new

critical pairs Lemma becomes:

Theorem ?? Let Σ be a quasi-terminating exponentiation free left-monomial linear

polygraph. If all critical branchings of Σ are confluent, all local branchings of Σ are

confluent.

See Chapter 3 for the context of this statement.

Defining the rewriting theory associated to linear polygraphs allows us to construct bases for

the morphism spaces of higher-dimensional linear categories. This problem appears in [?] for

the affine oriented Brauer category AOB. We propose to compute bases of morphisms spaces

by constructive methods. Linear rewriting links the elements of the bases to normal forms in a

linear polygraph. More precisely, we have the following result:

17



CHAPTER 1. INTRODUCTION

Proposition ?? Let Σ be a left-monomial linear (n + 1, n)-polygraph presenting
an (n,n)-linear category C. Let us assume that Σ is confluent and normalizing.
Then, for all parallel (n− 1)-cells u and v of C, a basis of Cn(u, v) is given by the
set of equivalence classes of monomials in normal form of Σ�n(u, v).

The constructive part of this result is the explicit computation which can be used to find

the elements of the bases. Indeed, given a confluent and normalizing rewriting system with an

enumerable set of rewriting rules, it is possible to determine algorithmically all normal forms.

1.3.4. Completion procedure in quasi-terminating polygraphs. Many rewriting problems

as the word problem can be solved by giving for a higher-dimensional category a polygraph

presenting this higher-dimensional category. For the word problem, such a presentation would

lead to apply the normal form procedure to decide the question of whether or not two n-cells

of an n-category presented by generators and relations are equal. If Σ is a convergent (n+ 1)-
polygraph, two n-cells of Σ∗ are equal in the n-category presented by Σ if and only if they have

the same normal form. The normal form procedure consists in computing the normal forms of

the two n-cells we wish to compare and checking if the two normal forms are equal or not.

Given an n-category presented by an (n + 1)-polygraph, we study in the third chapter

of this memoir how to compute a confluent presentation of this n-category. Given a non

confluent (n + 1)-polygraph, this problem can be solved by constructing a Tietze-equivalent

confluent (n+ 1)-polygraph, that is a polygraph presenting the same n-category. This approach

is taken by Knuth and Bendix in [?] for term rewriting systems. They give a procedure to add

generators and rewriting rules to a presentation of an equational structure to obtain a confluent

presentation of the same structure. This procedure is thus called Knuth-Bendix’s completion
procedure, or Knuth-Bendix’s procedure. If a well-founded order on the terms compatible with

the rewrite relation is given, we can guarantee the existence of the constructed presentation, that

is the procedure does not fail, see [?]. Such an order is called a total termination order.

In the case of n-categories, Knuth-Bendix’s procedure is applied to (n + 1)-polygraphs.

Given Σ an (n+ 1)-polygraph, Knuth-Bendix’s procedure applied to Σ uses an order on the set

of n-cells of the free (n+ 1)-category over Σ which is compatible with the rewrite relation. The

procedure is based on the critical pairs Lemma.

Lemma [?, 4.1.5.]) An n-polygraph Σ is locally confluent if and only if all critical
branchings of Σ are confluent.

Knuth-Bendix’s procedure adds (n+ 1)-cells to an (n+ 1)-polygraph. For each non confluent

critical pair leading to two chosen normal forms u and v, we add an (n + 1)-cell from u to v

if v ≺ u or from v to u if u ≺ v. Knuth-Bendix’s procedure either terminates in the case where

all critical pairs are made confluent, creates an infinite increasing sequence of (n+1)-polygraphs

or fails. In the first two cases, we obtain a convergent (n+ 1)-polygraph in a finite or infinite
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number of steps. The procedure fails when we encounter two n-cells which cannot be compared.

If the order we use is total, we call it a total termination order and Knuth-Bendix’s procedure

does not fail. In this case, we construct a confluent polygraph in a finite number of steps if

the procedure terminates or we obtain a confluent polygraph as an infinite increasing union of

polygraph if the the procedure does not terminate.

Knuth-Bendix’s procedure for (n + 1)-polygraphs gives a convergent (n + 1)-polygraph

from an (n+ 1)-polygraph with a total termination order. However, note that in general not all

terminating (n+ 1)-polygraphs have a total termination order, see ??. This raises the problem

of finding another completion procedure for terminating (n+ 1)-polygraphs. We introduce such

a procedure, the generalized Knuth-Bendix’s procedure on (n+ 1)-polygraphs. This procedure

takes for input an (n+ 1)-polygraph Σ and an order on the n-cells of the free (n+ 1)-category

over Σ. We then define quasi-termination orders and maximal quasi-termination orders which

are generalizations of termination orders. We then prove the following result:

Proposition ?? Let Σ be an (n + 1)-polygraph and let ≺ be a maximal quasi-
termination order on Σ. Then, the application of the generalized Knuth-Bendix’s
procedure on (Σ,≺) does not fail.

Finally, we prove that generalized Knuth-Bendix’s procedure returns a confluent, not neces-

sarily terminating, polygraphs.

Proposition ?? Let Σ be an (n+ 1)-polygraph and ≺ a maximal quasi-termination
order on Σ. Let us assume that for each congruent n-cells f and g of Σ∗

n such
that f ≺ g, the n-cell g rewrites into f. Then, the (n+ 1)-polygraph Σ is confluent.

1.3.5. Coherence by decreasingess. In the fourth chapter, we present the applications of

decreasingness to the construction of coherent presentations using quasi-termination. Decreas-

ingness is criterion introduced by van Oostrom to prove confluence of abstract rewriting systems.

Van Oostrom’s Theorem can be applied to terminating rewriting systems by labelling all rewriting

steps by the distance of its target to a normal form. On the other hand, Squier’s Theorem is a

coherence result using Newman’s Lemma to prove that a family of confluence diagrams for each

critical pair of a convergent (n+ 1)-polygraph gives a coherent presentation of an n-category.

The question we study is the generalization of Squier’s Theorem to non terminating polygraphs

using decreasingness.

Given an n-category C and a convergent (n+ 1)-polygraph Σ presenting C, the homotopy

basis given by Squier’s Theorem is indexed by the critical branchings of Σ. For each critical

branching of Σ, we chose a confluence diagram for this branching and fill this diagram by

an (n+ 2)-cell to obtain a coherent presentation. Such a family of confluence diagrams is called

a family of generating confluences. In [?], we weaken the termination hypothesis to proves that

for confluent quasi-terminating polygraphs verifying some hypotheses, a homotopy basis can be
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constructed from a family of generating confluences and a family of elementary loops, which

can be non empty since we work with quasi-terminating polygraphs.

Our result uses decreasingness as one of its conditions. We can define multiple notions of

decreasingness for polygraphs. We say that a polygraph is (strictly) decreasing if it is (strictly)

decreasing as an abstract rewriting system. Decreasingness being a property defined on a

labelling of the rewriting steps of an abstract rewriting system, we can refine the notion of

decreasingness for polygraph. We say that a labelling is compatible with contexts if applying

any context to a decreasing diagram also gives a decreasing diagram. Another compatibility

condition between decreasingness and the structure of polygraph is Peiffer compatibility. Indeed,

in a polygraph, all Peiffer branchings are decreasing by using confluence diagrams called Peiffer

confluences. But, in a decreasing polygraph, Peiffer confluences are not decreasing. We say that

a polygraph is Peiffer decreasing if all its Peiffer confluences are homotopically equivalent to a

decreasing diagram. Other compatibility conditions appear in Yudin’s work, see [?]. The result

we prove in [?] is:

Theorem ?? Let (Σ,ψ) be a strictly decreasing n-polygraph. Let Ssd(Σ,ψ) be
a strictly decreasing Squier’s completion of Σ. If ψ is compatible with con-
texts and (Σ,ψ) is Peiffer decreasing with respect to the extension Ssd(Σ,ψ),
then Ssd(Σ,ψ) is a coherent presentation of the category presented by Σ.

1.3.6. Rewriting applied to categorification. In the fifth chapter of this thesis, we present

applications of rewriting to categorification. We will present two main questions. First, we want

to define polygraphs presenting Karoubi envelopes of higher-dimensional categories. Algebras

like Hecke algebras [?] can be categorified by the Karoubi envelope of a monoidal category.

Khovanov conjectured that the Karoubi envelope of some diagrammatic category [?] categorifies

the Heisenberg algebra. Categorifications of algebras are generally defined as Karoubi envelopes

of explicit categories.

The Karoubi envelope of a 1-category C contains the objects of C plus one object for each

non identity idempotent of C and is generated by the morphisms of C plus a family of injections

and projections morphisms verifying relations splitting all idempotents. In particular, if all

idempotents of the category C are split, the category Kar(C) is equivalent to C. First, we extend

the notion of Karoubi envelope to higher-dimensional categories. This higher-dimensional notion

is consistent with the classical notion of Karoubi envelope and the definitions of Karoubi envelope

of a monoidal category considered either as a 1-category or a 2-category with only one 0-cell

are equivalent. This leads to define Karoubi envelopes for polygraphs. Given an n-category C
presented by an (n + 1)-polygraph Σ, we define an (n + 1)-polygraph Kar(Σ) presenting the

Karoubi envelope of C by universal construction.

Theorem ?? Let C be an n-category presented by an (n + 1)-polygraph Σ. The
Karoubi envelope of C is presented by the (n+ 1)-polygraph Kar(Σ).
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Furthermore, we extend this result by defining Karoubi envelopes of globular extension to

treat coherence problems in Karoubi envelopes. We prove the following result:

Theorem ?? Let C be an n-category and let (Σ, Σn+2) be a coherent presentation
of C. The (n+ 2, n)-polygraph (Kar(Σ),Kar(Σn+2)) is a coherent presentation of
the Karoubi envelope of C.

As a consequence of this result, we have a computation of coherent presentation of a higher-

dimensional category which does not appeal to a confluent or terminating presentation.

The second question we study is the construction of decategorifications by rewriting methods.

The decategorification process for higher-dimensional linear categories, is called Grothendieck
decategorification. This process creates a linear (n− 1, n− 1)-category from a linear (n,n)-
category. Isomorphisms proofs and direct sum proofs in a linear (n,n)-category C presented by

an (n+1, n)-polygraph Σ can be interpreted as (n+1)-cells in the free linear (n+1, n)-category

over Σ. This allows us to define Grothendieck decategorification for linear polygraphs. We

finally prove the following result:

Theorem ?? Let C be a linear (n,n)-category presented by a linear (n + 1, n)-
polygraphΣ. The Grothendieck decategorificationK(Σ) ofΣ presents the Grothendieck
decategorification K(C) of C.

1.3.7. A confluent presentation of the affine oriented Brauer category. In the last chapter,

we give an application of decreasingness to the study of the affine oriented Brauer category AOB.

The basis theorem of [?] uses an intermediate result on cyclotomic quotients of AOB. For

each of those quotients, a basis is given. With these multiple bases, each morphism space

of AOB is given a generating family which is proved to be linearly independent. This result is

not constructive in AOB. A constructive proof of this result by rewriting can however be given.

For this, we use the results of Section ?? of and give a confluent presentation of AOB. This

presentation is a linear (3, 2)-polygraph that we call AOB.

Theorem ?? The linear (3, 2)-polygraph AOB is a confluent presentation of AOB.

The linear (3, 2)-polygraph AOB is not terminating. This will prevent us to prove that AOB

is confluent by using Newman’s Lemma. To prove that AOB is confluent, we will use the

decreasingness property We will prove that AOB is decreasing and use van Oostrom’s Theorem

to prove that AOB is confluent. We first prove that AOB is quasi-terminating by expliciting

monomials we call quasi-reduced and we prove them to be quasi-normal forms. Then, we

prove that AOB is a presentation of the linear monoidal category AOB. Using decreasingness,

we finally prove that all monomials of AOB can be rewritten into a linear combination of

quasi-reduced monomials.
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Chapter 2
Rewriting, polygraphs and coherence

In this chapter, we introduce the rewriting and categorical notions used in the rest of this thesis.

The notion of rewriting system was introduced in 1914 by Thue [?] for the study of the word

problem in combinatorial structures. Rewriting is a computation model in which calculus is

expressed as a sequence of elementary transformations called rewriting steps. Each rewriting

step comes from a rewriting rule. The set of rewriting rules defines a rewriting system. Two

important properties of rewriting systems are termination, which ensures that all computations

end, and confluence, which ensures that all computations from a same expression lead to a same

result. The conjunction of termination and confluence is called convergence.

In the case of a monoid presented by generators and relations, the word problem amounts to

deciding if two words correspond to the same element of the monoid. Rewriting can be used

to decide this problem by presenting the monoid by a finite convergent rewriting system. The

decision algorithm using such a rewriting system is called the normal form algorithm. Rewriting

also has applications in computer science. In particular, rewriting appear in operational semantic,

formal calculus or automatic theorem proving.

In the context of higher-dimensional categories, rewriting is formalized by the notion of

polygraph. Polygraphs were introduced in 1987 by Street [?] under the name of computads and

independently by Burroni in 1993 [?] as systems of generators and oriented relations, or rewriting

rules, for higher-dimensional categories. For n � 1, an (n + 1)-polygraph is a presentation

of an n-category by generators and relations. Polygraphs find applications in algebra to study

structures like monoids or monoidal categories by rewriting.

In 1987, Squier proved [?] that all finitely presented monoids do not admit a presentation by

a finite convergent rewriting system. Thus, the normal form algorithm is not a universal decision

procedure for the word problem. He linked the existence of a finite convergent presentation for

a finitely presented monoid to a homological property by showing that the critical branchings

of a convergent string rewriting system generate the module of the 2-homological syzygies of
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the presentation. A combinatorial approach is then presented in [?] to the question of whether

or not a finitely presented monoid admits a finite convergent presentation. The existence of

such a presentation is linked to a finiteness condition of finitely presented monoids, called finite
derivation type, that extends the properties of being finitely generated and finitely presented. He

then gives an example of finitely presented monoid which does not have finite derivation type. In

term of higher-dimensional rewriting, a monoid admitting a finite convergent presentation admits

a finite coherent presentation. A coherent presentation of an n-category C is a data made of

an (n+ 1)-polygraph Σ presenting C and a family of (n+ 2)-cells Σn+2 such that the quotient of

the free (n+ 1, n)-category over Σ, of (n+ 1)-category of congruences generated by Σ, by the

congruence generated by Σn+2 is aspherical, that is for any ordered pair (α,β) of (n+ 1)-cells,

there exists an (n+ 1)-cell from α to β.

Plan of Chapter. In Section ??, we begin by introducing the notions of abstract rewriting

used and the main properties of abstract rewriting systems. Those notions can also be found in

[?, ?]. In Section ??, we present n-polygraphs and their associated rewriting systems. Rewriting

properties of n-polygraphs are given by exhibiting the families of local branchings in an n-

polygraph. This chapter ends by an introduction of coherence for n-categories and by the

statement of Squier’s Theorem ??.

2.1. ABSTRACT REWRITING

We recall in this section the classical notions of abstract rewriting. Abstract rewriting is treated

in many references such as [?].

2.1.1. Abstract rewriting systems. An abstract rewriting system is a data made of a set S and

a relation → on S. For all x and y in S, we denote x→ y if (x, y) is in →.

In the rest of this section, we fix (S,→) an abstract rewriting system.

2.1.2. Rewriting sequences. The transitive closure of → will be denoted by
+→. The transitive

reflexive closure of → will be denoted by
∗→. The symmetric transitive closure of → will be

denoted by
∗↔. We recall that for all x and y in S, we have

− x
+→ y if and only if there exists n � 1 and a family (xk)k∈�0,n� of elements of S such

that x = x1, y = xn and xk → xk+1 for any 0 � k � n,

− x
∗→ y if and only if x = y or x

+→ y,

− x
∗↔ y if and only if x

∗→ y or y
∗→ x.
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We say that x rewrites into y if x
+→ y. We say that there is a rewriting sequence from x to y

if x
∗→ y.

2.1.3. Confluence. We say that the relation → is confluent, or that (S,→) is confluent, if for

any triple (a, b, c) of elements of S such that a
∗→ b and a

∗→ c

b

a

∗ ��

∗ �� c

there exists d in S such that b
∗→ d and c

∗→ d.

b ∗
��

a

∗ ��

∗ ��

d

c ∗
��

2.1.4. Church-Rosser’s property. We say that (S,→) verifies Church-Rosser’s property, or

is Church-Rosser, if for any pair (a, b) of elements of S such that a
∗↔ b, there exists c in S

such that a
∗→ c and b

∗→ c.

2.1.5. Theorem (Church-Rosser’s Theorem [?]). An abstract rewriting system is confluent if
and only if it is Church-Rosser.

Proof. Let us assume that (S,→) is Church-Rosser. Let a, b and c in S such that a
∗→ b

and a
∗→ c. So, we have b

∗↔ c, which implies the existence of an element d in S such

that b
∗→ d and c

∗→ d. Thus, the abstract rewriting system (S,→) is confluent.

Let us assume that (S,→) is confluent. Let a and b be in S. We prove by induction on the

smallest n which makes exist a family (xk)k∈�0,n� of elements of S such that a = x1, b = xn

and xk → xk+1 for tout 0 � k � n that there exists c ∈ S verifying a
∗→ c and b

∗→ c. If n = 0,

we have a = b and we can choose c = a = b. If n > 0, there exists by induction hypothesis c ′

in S such that a
∗→ c ′ and xn−1

∗→ c ′. If b rewrites into xn−1, we can chose c = c ′ to prove

that (S,→) is Church-Rosser. Else, we have xn−1
∗→ c ′ and xn−1

∗→ b, which allows us to

construct cby confluence.

2.1.6. Normal forms and quasi-normal forms. We say that a ∈ S is in normal form (or is a

normal form) if there does not exist b in S such that a → b. A normal form of a is a normal

form a ′ ∈ S such that a rewrites into a ′. We say that (S,→) is normalizing if all elements of S

have a normal form.
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We say that a ∈ S is in quasi-normal form (or is a quasi-normal form) if for all a and b

in S such that a→ b, we have b
∗→ a. A quasi-normal form of a is a normal form a ′ ∈ S such

that a rewrites into a ′. We say that (S,→) is quasi-normalizing, see [?], if all elements of S

have a quasi-normal form.

2.1.7. Termination and quasi-termination. We say that (S,→) is terminating if there does

not exist any sequence (uk)k∈N of elements of S such that uk → uk+1 for all k.

u0 → u1 → · · ·un → · · ·

The terminologies strongly normalizing and noetherian are also used in literature.

We say that (S,→) is quasi-terminating, see [?], if any sequence (uk)k∈N of elements of S

such that uk → uk+1 for all k contains infinitely many occurrences of the same element of S.

2.1.8. Noetherian induction. Let us assume that (S,→) is terminating. The relation
+→ is thus

well-founded, that is there does not exist any infinite decreasing sequence for the relation
+→. An

induction on this relation is called a noetherian induction.

2.1.9. Lemma. Any terminating abstract rewriting system is normalizing.

Proof. We prove this lemma by noetherian induction. Let us assume that (S,→) is terminating

and let a ∈ S. If a is a normal form, a is normal form of a. If there exists a ′ such that a
+→ a ′

and a ′ has a normal form, then any normal form of a ′ is a normal form of a. This concludes the

proof.

2.1.10. Lemma [?, Lemma 2.6.]. Let (S,→) be an normalizing abstract rewriting system.
Then, (S,→) is confluent if and only if all elements of S have a unique normal form.

Proof. Let us assume that (S,→) is normalizing. Let a ∈ S. If a has two distinct normal

forms a ′ and a ′′, we have a
∗→ a ′ and a

∗→ a ′′. By definition of a normal form, there does not

exist any b ∈ S such that a ′ ∗→ b and a ′′ ∗→ b. Thus, (S,→) is not confluent.

Let us now assume that any element of S has a unique normal form. Let a, b and c in S such

that a
∗→ b and a

∗→ c. Let d be the unique normal form of a. The unique normal form of b and

the unique normal form of c are then necessarily equal to d. Then, we have b
∗→ d and c

∗→ d,

which proves the confluence of (S,→).

2.1.11. Convergence. We say that (S,→) is convergent, or converges, if (S,→) is both conflu-

ent and terminating.
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2.1.12. Lemma. Let (S,→) be a convergent abstract rewriting system. Any element of S has a
unique normal form. Moreover, any pair (a, b) of elements of S verifies a ∗↔ b if and only if a
and b have the same normal form.

Proof. The system (S,→) being convergent, it is in particular terminating and normalizing by

Lemma ??. Moreover, (S,→) is confluent. By Lemma ??, any element of S has a unique normal

form. Let now a and b be in S.

Let us assume that the unique normal form of a is equal to the unique normal form of b, and

let c be this normal form. Then, we have a
∗→ c and b

∗→ c, which implies a
∗↔ b.

If a
∗↔ b, by Theorem ??, there exists c ∈ S such that a

∗→ c and b
∗→ c because (S,→) is

confluent. The unique normal form of a is then equal to the unique normal form of c, which is

equal to the unique normal form of b.

2.1.13. Local confluence. We say that the relation → is locally confluent, or that (S,→) is

locally confluent, if for all triple (a, b, c) of elements of S such that a → b and a → c, there

exists d ∈ S such that b
∗→ d and c

∗→ d.

b ∗
��

a

��

��

d

c ∗
��

2.1.14. Lemma (Newman’s Lemma [?, Theorem 3]). A terminating abstract rewriting system
is confluent if and only if it is locally confluent.

Proof. Let (S,→) be a terminating abstract rewriting system. If (S,→) is confluent, then (S,→)
is locally confluent.

Let us now assume that (S,→) is locally confluent. We prove by noetherian induction

that (S,→) is confluent. Let a ∈ S. If a is a normal form, then the only pair (b, c) such

that a
∗→ b and a

∗→ c is (a, a). If a is not a normal form, we can consider a pair (b, c) of

elements of S verifying a
+→ b and a

+→ c. Then, there exists b ′ and c ′ such that a→ b ′ ∗→ b

and a → c ′ ∗→ c. By local confluence of (S,→), there exists d ∈ S such that b ′ ∗→ d

and c ′ ∗→ d. By induction hypothesis, there exists d ′ ∈ S such that b
∗→ d ′ and d

∗→ d ′. By

applying the induction hypothesis a second time, there exists d ′′ such that c
∗→ d ′′ and d ′ ∗→ d ′′,

which allows to conclude that c
∗→ d ′′ and b

∗→ d ′′.

2.1.15. Example. Let us give an example of locally confluent abstract rewriting system which

is not confluent. By Newman’s Lemma, such an abstract rewriting system is not terminating.

The following abstract rewriting system

a b
��

�� c��
�� d
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has two local branchings a ← b → c and b ← c → d. Both are confluent. However, the

branching

a← b→ c→ d

is not confluent.

2.2. POLYGRAPHS

In this section, we recall the definition of polygraphs. We also recall for any n � 1 the

presentation of an n-category by generators and relation by an (n+ 1)-polygraph.

2.2.1. Categorical notations. We will denote by Set the category of sets. For n ∈ N, we will

denote by Catn the category of small n-categories. All n-categories will be considered small in

this document. An (n + 1)-category will then be a small category enriched in Catn, that is a

small category whose morphism spaces have a structure of n-category and whose composition

is n-bifunctorial.

In an n-category, for any integer 0 � k < n − 1, we will denote the k-composition

in diagrammatic order by �k. We will also denote by 1u the (k + 1)-cell identity of u for

any 0 � k < n − 1 and k-cell u. If u is a k-cell and α is a (k + 1)-cell such that the

composition 1u �j α (respectively α �j 1u) is defined for an integer 0 � j � k, we use the

notation u �j α (respectively α �j u) for 1u �j α (respectively α �j 1u).

2.2.2. Spheres. A 0-sphere in an n-category is a pair of 0-cells. For any integer k > 0, a

k-sphere in an n-category is a pair of parallel k-cells.

2.2.3. n-graphs. An n-graph in a category C is a diagram in C

G0

s0

t0

G1

s1

t1

· · ·
sn−2

tn−2

Gn−1

sn−1

tn−1

Gn

such that for all 1 � k � n− 1, we have sk−1 ◦ sk = sk−1 ◦ tk and tk−1 ◦ sk = tk−1 ◦ tk. These

relations are called the globular relations. We just call n-graph an n-graph in Set. The maps sk
and tk are respectively called k-source and k-target maps.

A morphism of n-graphs F from G to G ′ is a collection (Fk : Gk → G ′
k) of maps such that
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for all 0 < k � n, the following diagrams commute:

Gk−1

sk−1
Gk

Fk−1 Fk

G ′
k−1 s ′k−1

G ′
k

Gk−1

tk−1
Gk

Fk−1 Fk

G ′
k−1 t ′k−1

G ′
k

We denote by Grphn the category of n-graphs. There exists forgetful functor Un : Catn →
Grphn.

2.2.4. Globular extensions. The category Cat+n the n-categories with a globular extension is

defined by the following pullback diagram:

Cat+n Grphn+1

GrphnCatn GrphnUn

UGn

A globular extension of an n-category C is thus a data made of a set Γ and of two applications sn
and tn from Γ to Cn making the diagram

C0
s0

t0

C1
s1

t1

· · ·
sn−2

tn−2

Cn−1
sn−1

tn−1

Cn
sn

tn
Γ

an n-graph. Consequently, there exists a forgetful functor from Catn+1 to Cat+n . This functor

has a left adjoint. This left adjoint, constructed in [?], is the free functor from Cat+n to Catn+1
and we denote this functor by FW

n+1.

2.2.5. The category of polygraphs. We define the category Poln of n-polygraphs and the free
functor Fn from Poln to Catn by induction on n. We define first Pol0 = Set and define F0 as

the identity functor. Let us assume then that Poln and Fn are defined for some n. We define
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then Poln+1 by the following pullback diagram:

Poln+1 Grphn+1

GrphnPoln Catn
UnFn

UGnUPn

UGPn+1

To define Fn+1, we set first FP
n+1 the unique functor making the following diagram commutative:

Poln+1

Poln
Fn

FP
n+1

Cat+n Grphn+1

GrphnCatn GrphnUn

UGn

UPn

UGPn+1

The functor Fn+1 is then the composition

Poln+1 Cat+n Catn+1
FP
n+1 FW

n+1

Given an n-polygraph Σ, we call free n-category on Σ the n-category Fn(Σ). We denote by Σ∗

this n-category.

For n > 0, an n-polygraph can be defined as a data of an (n−1)-polygraph Π and a globular

extension of Π. For all n-polygraph Σ and all 0 � k � n, we will denote by Σk the set of k-cells

of Σ.

We now consider Σ an n-polygraph with n > 0 for the rest of this section.

2.2.6. Example. A 3-polygraph is a data made of a generating set of 0-cells, 1-cells and 2-cells

of a free 2-category and a globular extension of this 2-category. A set made of only one 0-cell,

one 1-cell and two 2-cells represented by:

,
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generates a free 2-category. Let C be this free 2-category. We denote the 2-cells by planar

diagrams with an upper boundary and a lower boundary. The upper boundary corresponds to the

1-source of the 2-cell and the lower boundary corresponds to its 1-target. The 0-composition is

represented by the horizontal concatenation and the 1-composition is represented by the vertical

concatenation. An example of globular extension of C is given by the 3-cell

�

2.2.7. Rewriting steps. A rewriting step of Σ is an n-cell of the n-category Σ∗ of the form

u1 �n−2 · · · (un−1 �0 α �0 un) · · · �n−2 u2n−2

where α is an n-cell of Σ and ui is an (n− 1)-cell of Σ∗ for 0 � i � 2n− 2.

2.2.8. Interpretation of n-polygraphs as rewriting systems. The rewriting system defined
by Σ is the abstract rewriting system (Σ∗

n−1,→) where we have u→ v if and only if there exists

a rewriting step from u to v. This abstract rewriting system will be confused with Σ.

2.2.9. Remark. In the n-category Σ∗
n, any n-cell can be written as an (n− 1)-composition of

rewriting steps. So, the relation
∗→ of the system (Σ∗

n−1,→) is defined by u
∗→ v if and only if

there exists an n-cell from u to v in Σ∗
n.

2.2.10. Branchings. A branching of Σ is a pair of n-cells of Σ∗
n with the same (n − 1)-

source. A local branching of Σ is a pair of rewriting steps of Σn with the same (n − 1)-
source. A branching (α,β) is said to be confluent if there exists two n-cells α ′ and β ′ of Σ∗

n

such that α �n−1 α
′ and β �n−1 β

′ have the same (n − 1)-target. We then say that the n-

sphere (α �n−1 α
′, β �n−1 β

′) is a confluence of (α,β).

2.2.11. Branchings of an abstract rewriting system. An abstract rewriting system (S,→)
can be seen as a 1-polygraph whose 0-cells are the elements of S and whose 1-cells have source x

and target y for each (x, y) in S× S such that x→ y. The branchings of an abstract rewriting

system are then defined as its branchings when seen as a 1-polygraph.

2.2.12. Remark. As an abstract rewriting system, the n-polygraph Σ is (locally) confluent if

and only if all its (local) branchings are confluent.
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2.2.13. Classification of local branchings. The local branchings of Σ can be classified into

three families.

i) An aspherical branching of Σ is a local branching of Σ made of two identical rewriting

steps.

v

u

α ��

α �� v

ii) A Peiffer branching is a local branching of Σ of the form (α �n−2 v, u �n−2 β) where u

and v are (n− 1)-cells and α and β are rewriting steps.

u ′ �n−2 v

u �n−2 v

α �n−2 v ��

u �n−2 β
�� u �n−2 v

′

iii) An overlapping branching is a local branching of Σ which is neither aspherical nor Peiffer.

Let � be the order relation on Σ∗
n−1 defined by u � v if there exists an integer 0 � k � n−2

and an (n − 1)-cell w of Σ∗
n−1 such that u �k w � v or w �k u � v. A critical branching, or

critical pair, of Σ is an overlapping branching of Σ of source u such that no (n − 1)-cell v

of Σ∗
n−1 verifying v � u is the source of an overlapping branching.

2.2.14. Lemma [?, 4.1.5.] (Critical pairs Lemma). An n-polygraph Σ is locally confluent if
and only if all critical branchings of Σ are confluent.

Proof. If Σ is locally confluent, then the critical branchings of Σ are confluent. Let us now

assume that all critical branchings of Σ are confluent and let (α,β) be a local branching of Σ.

If (α,β) is an aspherical branching, we have sn−1(α �n−1 1sn−1(α)) = sn−1(β �n−1 1sn−1(β)).
The branching (α,β) is then confluent.

If (α,β) is a Peiffer branching, we can assume without loss of generality that there exists two

rewriting steps α ′ and β ′ and two (n−1)-cells u and v such that α = α ′�n−2v and β = u�n−2β
′.

We have then (α ′ �n−2 v) �n−1 (u �n−2 β
′) = α ′ �n−2 β ′ = (u �n−2 β

′) �n−1 (α ′ �n−2 v). The

branching (α,β) is then confluent.

If (α,β) is an overlapping branching, there exists a critical branching (α ′, β ′) and two

families (uk)k∈�1,2n� and (vk)k∈�1,2n� of (n− 1)-cells of Σ∗
n such that

α = u1 �n−1 (u2 �n−2 (· · ·un �0 α ′ �0 un) · · · �n−2 u2n−1) �n−1 u2n,
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β = u1 �n−1 (u2 �n−2 (· · ·un �0 β ′ �0 un) · · · �n−2 u2n−1) �n−1 u2n.

Let α ′′ and β ′′ be two n-cells of Σ∗
n such that tn−1(α

′ �n−1 α ′′) = tn−1(β ′ �n−1 β ′′). We have

then

tn−1(u1 �n−1 (u2 �n−2 (· · ·un �0 α ′′ �0 un) · · · �n−2 u2n−1) �n−1 u2n)

= tn−1(u1 �n−1 (u2 �n−2 (· · ·un �0 β ′′ �0 un) · · · �n−2 u2n−1) �n−1 u2n).

Thus, the branching (α,β) is confluent. This proves that Σ is locally confluent.

2.3. COHERENCE

In this section, we define the notion of coherence which will be used in Chapter 3. This notion is

based on (n, p)-polygraphs.

2.3.1. (n, p)-categories. Let p � n. An (n, p)-category is an n-category having all its k-

cells invertible for any k > p. The category of (n, p)-categories will be denoted by Catn,p.
The forgetful functor from Catn,p to Grphn will be denoted by Un,p. The category Cat+n,p
of (n, p)-categories with a globular extension will be defined by the following pullback diagram:

Cat+n,p Grphn+1

GrphnCatn,p GrphnUn

UGn

The free functor from Cat+n,p to Catn,p, restriction of the functor FW
n+1, will finally be denoted

by FW
n+1,p.

2.3.2. (n, p)-polygraphs. We define the category Poln,p of (n, p)-polygraphs and the free

functor Fn,p from Poln to Catn by induction on n � p. We define first Poln,n = Poln and

Fn,n = Fn. Let us now assume that Poln,p and Fn,p are defined for a certain pair of oriented
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integers (n, p) verifying n � p. We define then Poln+1,p by the following pullback diagram:

Poln+1,p Grphn+1

GrphnPoln,p Catn,p
Un,pFn,p

UGnUPn,p

UGPn+1,p

To define Fn+1,p, we set first FP
n+1,p the unique functor making the following diagram commuta-

tive:

Poln+1,p

Poln,p
Fn,p

FP
n+1,p

Cat+n,p Grphn+1

GrphnCatn,p GrphnUn,p

UGn

UPn,p

UGPn+1,p

The functor Fn+1,p is then the composition

Poln+1,p Cat+n,p Catn+1,p
FP
n+1,p FW

n+1,p

Given an (n, p)-polygraph Σ, we call free (n, p)-category over Σ the (n, p)-category Fn,p(Σ).
The functor Fn,p is called the free functor from Poln,p to Catn,p. The fact that this functor is

free is proven in [?]. We denote by Σ� this (n, p)-category.

For n > p, an (n, p)-polygraph can be defined as a data made of an (n− 1, p)-polygraph Π

and a globular extension of Π. Any (n, p)-polygraph is in particulier an n-polygraph.

We now fix C an n-category for the rest of this section.

2.3.3. Homotopy bases. A homotopy basis of C is a globular extension Γ of C such that for

any ordered pair (α,β) of parallel n-cells of C, there exists an (n+ 1)-cell from α to β in the

free (n+ 1)-category over (C, Γ).
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2.3.4. Presentation of an n-category. Let Σ be an (n + 1)-polygraph. We say that Σ is a

presentation of C, or that Σ presents C, if the quotient of the n-category Σ∗
n by the globular

extension Σn+1 is isomorphic to C, by this, we mean the quotient of the set Σ∗
n by the equivalence

relation spanned by Σn+1.

2.3.5. Coherent presentation of an n-category. Let Σ be an (n + 2, n)-polygraph. We say

that Σ is a coherent presentation of C, if the underlying (n+ 1)-polygraph of Σ presents C and

the globular extension Σn+2 is a homotopy basis of the (n+ 1, n)-category Σ�
n+1.

2.3.6. Squier’completion. Let Σ be an (n + 1)-polygraph. A Squier’s completion of Σ is

an (n+ 2, n)-polygraph S(Σ) defined by

− S(Σ) has the same k-cells than Σ for 0 � k � n+ 1,

− for each critical branching (α,β) of Σ, there exists a unique confluence (α �n α
′, β �n β

′)
of (α,β) and a unique (n+ 2)-cell A from α �n α

′ to β �n β
′ such that A ∈ Σn+2.

We recall Squier’s Theorem for (n+ 1)-polygraphs.

2.3.7. Theorem [?, Theorem 5.2]. Let Σ be an (n+ 1)-convergent polygraph presenting an n-
category C. Let S(Σ) be a Squier’s completion of C. The (n+ 2, n)-polygraph S(Σ) is then a
coherent presentation of C.

Proof. We prove this theorem in three steps.

Step 1. Let (α,β) be a local branching of Σ. We prove that there exists a confluence

(α �n α
′, β �n β

′) of (α,β) such that S(Σ)� contains an (n+ 2)-cell from α �n α
′ to β �n β

′.
If (α,β) is an aspherical branching, the branching (α,β) is an n-sphere and the wanted

(n+ 2)-cell is an identity.

If (α,β) is a Peiffer branching, we can write (α,β) = (α ′ �n−1 v, u �n−1 β
′) where u and v

are n-cells and α and β are rewriting steps. The n-sphere (α ′ �n−1 β ′, α ′ �n−1 β ′) is then a

confluence of (α,β) and the wanted (n+ 2)-cell is an identity.

If (α,β) is an overlapping branching, we can write

α = u1 �n−1 (u2 �n−2 (· · ·un �0 α ′ �0 un+1) · · · �1 u2n+1) �n−1 u2n,
β = u1 �n−1 (u2 �n−2 (· · ·un �0 β ′ �0 un+1) · · · �1 u2n+1) �n−1 u2n

where (α ′, β ′) is a critical branching. Let (α ′ �n α ′′, β ′ �n β ′′) be the confluence of (α ′, β ′)
such that the (n+ 2, n)-polygraph S(Σ) contains an (n+ 2)-cell A from α ′ �n α ′′ to β ′ �n β ′′

or from β ′ �n β ′′ to α ′ �n α ′′. The (n+ 2)-cell

u1 �n−1 (u2 �n−2 (· · ·un �0 A �0 un+1) · · · �1 u2n+1) �n−1 u2n

35



CHAPTER 2. REWRITING, POLYGRAPHS AND COHERENCE

or

u1 �n−1 (u2 �n−2 (· · ·un �0 A−1 �0 un+1) · · · �1 u2n+1) �n−1 u2n
is thus an (n+ 2)-cell from α to β in S(Σ)�.

Step 2. Let (α,β) be an (n + 1)-sphere of Σ�. We prove by noetherian induction that there

exists an (n+ 2)-cell from α to β. If the source of (α,β) is a normal form, we have α = β and

the wanted (n + 2) cell is an identity. If the source of (α,β) is not a normal form and that α

and β are not identities, we can consider two decompositions α = α1 �n α
′ and β = β1 �n β

′

where α1 and β1 are rewriting steps. By step 1, there exists then a confluence (α1 �nα2, β1 �nβ2)
of (α1, β1) such that S(Σ)� contains an (n + 2)-cell A from α1 �n α2 to β1 �n β2. Let u be

the target of (α1 �n α2, β1 �n β2) and u ′ be the target of (α,β). Let u be the common normal

form of u and u ′. Let γ be an (n + 1)-cell from u to u and γ ′ be an (n + 1)-cell of u ′ to u.

By induction hypothesis, S(Σ)� contains an (n + 2)-cell B ′ from α ′ �n γ ′ to α2 �n γ and

an (n + 2)-cell C ′ from β2 �n γ to β ′ �n γ ′. Let us pose B = B ′ �n γ ′−1 and C = C ′ �n γ ′−1.
The (n+ 2)-cell (α1 �n B) �n+1 (A �n γ

′−1) �n+1 (β1 �n C) of S(Σ)� is thus an (n+ 2)-cell of

source α and of target β.

Step 3. Let (α,β) be an (n + 1)-sphere of S(Σ)�. We prove that there exists an (n + 2)-cell

from α to β. On can write for a certain odd integer k

α = α1 �n α
−1
2 �n · · · �n α−1

k−1 �n αk,

β = β1 �n β
−1
2 �n · · · �n β−1

k−1 �n βk

where αi and βi are (n+ 1)-cells, possibly identities, of Σ� for tout 0 � i � k. By convergence

of Σ, there exists a normal form u of Σ and a family (σi)i∈�1,k+1� of (n+ 1)-cells of Σ∗ such that

− sn(σi) = sn(αi) for for all odd i of �1, k+ 1�,

− sn(σi) = tn(αi) for for all even i of �1, k+ 1�,

− tn(σk+1) = u for tout i ∈ �1, k+ 1�.

By step 2, S(Σ)� contains a family (Ai)i∈�1,k� of (n+ 2)-cells of S(Σ)� such that

− sn+1(Ai) = αi for for all odd i of �1, k+ 1�,

− sn+1(Ai) = α
−1
i for for all even i of �1, k+ 1�,

− tn+1(Ai) = σi �n σ
−1
i+1 for tout i ∈ �1, k+ 1�.

The composition

A = (A1 �n α
−1
2 �n · · · �n αk) �n+1 · · · (σ1 �n σ−1

k �n Ak)

is then an (n + 2)-cell from α to σ1 �n σ
−1
k+1. Moreover, the convergence of Σ implies the

existence of a family (γi)i∈�1,k+1� of (n+ 1)-cells of Σ∗ such that
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− γ1 = σ1 and γk+1 = σk+1,

− sn(γi) = sn(βi) for for all odd i of �1, k+ 1�,

− sn(γi) = tn(βi) for for all even i of �1, k+ 1�,

− tn(γk+1) = u for tout i ∈ �1, k+ 1�.

By step 2, S(Σ)� contains a family (Bi)i∈�1,k� of (n+ 2)-cells of S(Σ)� such that

− sn+1(Bi) = γi �n γ
−1
i+1 for tout i ∈ �1, k+ 1�,

− tn+1(Bi) = βi for for all odd i of �1, k+ 1�,

− tn+1(Bi) = β
−1
i for for all even i of �1, k+ 1�.

The composition

B = (B1 �n γ2 �n γ
−1
k+1) �n+1 · · · (β1 �n β−1

2 �n · · · �n β−1
k−1 �n Bk)

is then an (n + 2)-cell of σ1 �n σ
−1
k+1 to β. The (n + 2, n)-category S(Σ)� contains then

the (n+ 2)-cell A �n+1 B from α to β. This concludes the proof.
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Chapter 3
Higher-dimensional linear rewriting

As seen in Chapter 2, the structure of polygraph is a model for higher-dimensional rewriting.

This model can be used to study the relations in a higher-dimensional category. The rewriting

paths arising from an (n+ 1)-polygraph are the (n+ 1)-cells of a free (n+ 1)-category. The

congruences arising from an (n+ 1)-polygraph are the (n+ 1)-cells of a free (n+ 1, n− 1)-
category. Those higher-dimensional cells give us relations between relations, also called syzygies,

and are used to compute coherent presentations of higher-dimensional categories. A coherent

presentation of a monoid is the first step to construct a resolution of this monoid. Finding a linear

structure for polygraphs would enable us to find polygraphic resolutions for algebras.

A linear version of 2-polygraphs was defined in [?]. In this chapter, we present the notion

of linear polygraph we introduced in [?], which is slightly more general than the one in [?].

Adding a linear structure to polygraphs creates multiple rewriting problems which do not appear

in the set-theoretic setting. First, rewriting steps of linear polygraphs are only defined when

the sources of the rewriting rules are monomial. The local branchings of linear polygraphs are

also more complex. They belong to four families: aspherical branchings, Peiffer branchings,

additive branchings and overlapping branchings. Contrarily to the set-theoretical case, local

branchings other than overlapping branchings are not always confluent. As a consequence, as

pointed out in [?] the critical pairs Lemma for linear polygraphs needs more conditions than in

the set-theoretical case.

Plan of Chapter. We begin in Section ?? by defining linear (n, p)-categories. Then, we

introduce linear (n, p)-polygraphs. The main rewriting properties of linear (n, p)-polygraphs

are also given. Finally, in Section ??, we present a criterion allowing to give bases for the n-cells

spaces of an (n,n)-linear category using some linear (n+ 1, n)-polygraphs.
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3.1. LINEAR POLYGRAPHS

3.1.1. Internal n-categories. Let C be a category with pullbacks. An n-category internal to C
is a data made of an n-graph in C

G0

s0

t0

G1

s1

t1

· · ·
sn−2

tn−2

Gn−1

sn−1

tn−1

Gn

and an identity morphism x �→ 1x from Gi to Gi+1 for all i ∈ �0, n − 1�, and a composition

morphism �k of Gk ×Gl
Gk for all k ∈ �0, n� and l ∈ �0, n − 1� such that the identity and

composition morphisms verify the axioms of n-category.

3.1.2. Linear (n, p)-categories. Let us fix k a commutative ring and let kMod be the category

of k-modules. We define the category LinCatn,p of linear (n, p)-categories by induction

on n � p.

The category LinCatn,0 is the category of n-categories internal to kMod.

Let us assume that the category LinCatn,p is defined for two integersn and p verifyingn � p.

Then, an object of LinCatn,p is defined by a data made of a set C0 and

− for all a and b of C0, a linear (n, p)-category C(a, b),

− for all a of C0, an identity morphism ia from the terminal n-category In to C(a, a),

− for all a, b and c in C0, a composition morphism �a,b,c from C(a, b)× C(b, c) to C(a, c)
which is bilinear in each morphisms space of C(a, b)× C(b, c) internal to kMod.

such that

− �a,c,d ◦ (�a,b,c × idC(c,d)) = �a,b,d ◦ (idC(a,b) × �b,c,d),

− �a,a,b ◦ (ia × idC(a,b)) ◦ isl = idC(a,b) = �a,b,b ◦ (idC(a,b) × iq) ◦ isr where isl and isr
respectively correspond to the canonical isomorphism from C(a, b) to In × C(a, b) and

from C(a, b) to C(a, b)× In.

In particular, a linear (n+ 1, p)-category has a structure of (n+ 1)-category. A morphism

in LinCatn+1,p is then an (n+ 1)-functor which is linear in each internal part to kMod.

40



3.1. LINEAR POLYGRAPHS

The category LinCatn,p of linear (n, p)-categories with a globular extension is defined by

the following pullback diagram:

LinCat+n,p Grphn+1

GrphnLinCatn,p GrphnU �n,p

UGn

where U �n,p is the forgetful functor from LinCatn,p to Grphn.

3.1.3. Notation. For p � k < n, if u is a k-cell of a linear (n, p)-category C and α is

a (k+ 1)-cell of C, we denote by α+ u the (n+ 1)-cell α+ 1u.

3.1.4. Free construction of linear (n, p)-categories. Let us define the free functor F c
n,p

from Catn to LinCatn,p. Let C be an n-category. We define first F c
n,0(C) to be the linear (n, 0)-

category such that for any 0 � k � n, the module F c
n,0(C)k is the free module over Ck. Let us

now assume that p 	= 0. We define F c
n,p(C) to be the linear (n, p)-category such that:

− for any 0 � k < p, the linear (n, p)-category F c
n,p(C) has the same k-cells than C,

− for any parallel (p− 1)-cells a and b of C and any p � k < n, the module F c
n,p(C)k(a, b)

is the free module over Ck(a, b).

The compositions of F c
n,p(C) are defined by:

− for any 0 � k < n, the compositions of k-cells of C remain unchanged,

− for any 0 � k < p, the composition �k is bilinear.

− for any parallel (p−1)-cells a and b of C, for any p � i < n, any i < j � n, any scalars λ

and μ, any i-composable j-cells f and f ′ of Cj(a, b) and any i-composable j-cells g and g ′

of Cj(a, b), we have

(λf+ μg) �i (λf
′ + μg ′) = λ(f �i f ′) + μ(g �i g ′).

The composition �i is linear on Cj(a, b)×Ci Cj(a, b).
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Note that the compositions still verify the exchange relations. Indeed, for any 0 � i < p− 1 and

any i < j � p− 1, we have

((
∑
x∈X

λxfx) �i (
∑
y∈Y

μygy)) �j ((
∑
x ′∈X ′

λ ′
x ′f

′
x ′) �i (

∑
y ′∈Y ′

μ ′
y ′g

′
y ′))

= (
∑

x∈X,y∈Y
λxμyfx �i gy) �j (

∑
x ′∈X ′,y ′∈Y ′

λ ′
x ′μ

′
y ′f

′
x ′ �i g

′
y ′)

=
∑

x∈X,y∈Y,x ′∈X ′,y ′∈Y ′
λxμyλ

′
x ′μ

′
y ′(fx �i gy) �j (f

′
x ′ �i g

′
y ′)

=
∑

x∈X,y∈Y,x ′∈X ′,y ′∈Y ′
λxμyλ

′
x ′μ

′
y ′(fx �j f

′
x ′) �i (gy �j g

′
y ′)

= ((
∑
x∈X

λxfx) �j (
∑
x ′∈X ′

λ ′
x ′f

′
x ′)) �i ((

∑
y∈Y

μygy) �j (
∑
y ′∈Y ′

μ ′
y ′g

′
y ′)).

For any 0 � i < p− 1 and any p− 1 < j � n− 1, we have

((
∑
x∈X

λxfx) �i (
∑
y∈Y

μygy)) �j ((
∑
x∈X

λxf
′
x) �i (

∑
y∈Y

μyg
′
y))

= (
∑

x∈X,y∈Y
λxμyfx �i gy) �j (

∑
x∈X,y∈Y

λxμyf
′
x �i g

′
y)

=
∑

x∈X,y∈Y
λxμy(fx �i gy) �j (f

′
x �i g

′
y)

=
∑

x∈X,y∈Y
λxμy(fx �j f

′
x) �i (gy �j g

′
y)

= ((
∑
x∈X

λxfx) �j (
∑
x∈X

λxf
′
x)) �i ((

∑
y∈Y

μygy) �j (
∑
y∈Y

μyg
′
y)).

For any p− 1 < i < n− 1 and any i < j � n− 1, we have

((
∑
x∈X

λxfx) �i (
∑
x∈X

λxgx)) �j ((
∑
x∈X

λxf
′
x) �i (

∑
x∈X

λxg
′
x))

= (
∑
x∈X

λx(fx �i gx)) �j (
∑
x∈X

λx(f
′
x �i g

′
x))

=
∑
x∈X

λx(fx �i gx) �j (f
′
x �i g

′
x)

= ((
∑
x∈X

λxfx) �j (
∑
x∈X

λxf
′
x)) �i ((

∑
x∈X

λxgx) �i (
∑
x∈X

λxg
′
x)).

The functor F c
n,p extends all n-functors between n-categories by linearity into morphisms of

linear (n, p)-categories.
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3.1.5. Remark. Each linear (n, p)-category has a structure of (n, p)-category. Let p < k � n
and let α be a k-cell of a linear (n, p)-category C. The k-cell α is then invertible for the (k− 1)-
composition and its inverse is sk−1(α) + tk−1(α) − α.

3.1.6. Linear (n, p)-polygraphs. We define the category LinPoln,p of linear (n, p)-polygraphs
and the free functor F �

n,p from LinPoln,p to LinCatn,p by induction on n � p. We define

first LinPoln,n = Poln and F �
n,n as the composition of the functor Fn defined in ?? with the free

functor F c
n,n from Catn to LinCatn,n.

LinPoln,n Catn LinCatn,n
F �
n,n

F c
n,n

Let us assume then that LinPoln,p and F �
n,p are defined for an ordered pair of integers (n, p)

verifying n � p. We define then LinPoln+1,p by the following pullback diagram:

LinPoln+1,p Grphn+1

GrphnLinPoln,p LinCatn,p
U �n,pF �

n,p

UGnUP�n,p

UGP�n+1,p

To define F �
n+1,p, we set first FP�

n+1,p the unique functor making the following diagram commuta-

tive:

LinCat+n,p Grphn+1

GrphnLinCatn,p GrphnU �n,p

UGn

LinPoln+1,p

LinPoln,p

FP
n+1,p

F �
n,p

UP�n,p

UGP�n+1,p
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The functor F �
n+1,p is then the composition

LinPoln+1,p LinCat+n,p LinCatn+1,p
FP
n+1,p FW

n+1,p

Given a linear (n, p)-polygraph Σ, we call free linear (n, p)-category over Σ the linear (n, p)-
category F �

n,p(Σ). We denote by Σ� this linear (n, p)-category.

For n > p, a linear (n, p)-polygraph can be defined as a data made of an (n− 1, p)-linear

polygraph Π and a globular extension of Π�.

3.1.7. Remark. By Remark ??, any linear (n, p)-polygraph is also an (n, p)-polygraph.

3.1.8. Presentation of a linear (n, p)-category. Let n � p and let Σ be a linear (n + 1, p)-
polygraph. We say that Σ is a presentation of a linear (n, p)-category C, or that Σ presents C, if

the quotient of the linear (n, p)-category Σ�n by the globular extension Σn+1 is isomorphic to C.

3.1.9. Coherent presentation of a linear (n, p)-category. Let n � p and let Σ be

an (n + 2, p)-linear polygraph. We say that Σ is a coherent presentation of C if the under-

lying linear (n+ 1, p)-polygraph to Σ presents C and the globular extension Σn+2 is a homotopy

basis of the linear (n+ 1, p)-category Σ�n+1.

3.2. REWRITING PROPERTIES OF LINEAR POLYGRAPHS

For the rest of this section, n will be a non negative integer and Σ a linear (n+ 1, n)-polygraph.

3.2.1. Monomials. A monomial of Σ is an n-cell of the (n+ 1)-category Σ∗. We say that Σ is

left-monomial if all (n+ 1)-cells of the linear (n+ 1, n)-polygraph Σ have a monomial source.

3.2.2. Remark. Any n-cell of Σ� has a unique decomposition as a linear combination of

monomials.

For the rest of this section, we assume that Σ is left-monomial.

3.2.3. Rewriting steps of a linear (n+ 1, n)-polygraph. A rewriting step of Σ is an (n+ 1)-
cell of Σ� of the form

λu1 �n−1 · · · (un �0 α �0 un+1) · · · �n−1 u2n + h
where λ is a non zero scalar, α is an (n + 1)-cell of Σ, ui is a monomial of Σ for 1 � i � 2n

and h is an n-cell of Σ� such that u1 �n−1 · · · (un �0 α �0 un+1) · · · �n−1 u2n does not appear in

the monomial decomposition of h.
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3.2.4. Local branchings of a linear (n+ 1, n)-polygraph. The local branchings of Σ can be

classified into five families.

i) An aspherical branching of Σ is a local branching of Σ made of two identical rewriting

steps.

v

u

α ��

α �� v

ii) A Peiffer branching is a local branching of Σ of the form (α �n−1 v + h, u �n−1 β + h)
where u and v are monomials, α and β are rewriting steps and h is an n-cell of Σ�.

u ′ �n−1 v+ h

u �n−1 v+ h

α �n−1 v+ h 		

u �n−1 β+ h
�� u �n−1 v

′ + h

iii) An additive branching of Σ is a local branching of Σ of the form (α+ v, u+ β) where α

and β are rewriting steps and u and v are n-cells of Σ�.

u ′ + v

u+ v+ h

α+ v 



u+ β
�� u+ v ′

iv) An overlapping branching is a local branching of Σ which is not aspherical, Peiffer or

additive.

Let � be the order relation on the monomials of Σ defined in ??. A critical branching, or

critical pair, of Σ is an overlapping branching of Σ with a monomial source u such that no

monomial v of Σ verifying v � u is source of an overlapping branching.

3.2.5. Elementary (n+ 1)-cells. An (n+ 1)-cell of Σ� is said to be elementary if it is of the

form

λu1 �n−1 · · · (un �0 α �0 un+1) · · · �n−1 u2n + h
where λ is a non zero scalar, α is an (n + 1)-cell of Σ, ui is a monomial of Σ for 1 � i � 2n

and h is an n-cell of Σ�.
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3.2.6. Lemma. Let α an elementary (n+ 1)-cell of Σ�. Then, there exist two (n+ 1)-cells β

and γ of Σ� such that α = β �2 γ
−1 and β and γ are either identities or rewriting steps.

Proof. Let us write α = α ′ + w where α ′ is a rewriting step from an n-cell u to an n-cell v

and w is an n-cell. Let us write w = λu + h where v does not appear in the monomial

decomposition of h. Then, (λ + 1)u + h rewrites into (λ + 1)v + h by a rewriting step

if (λ + 1)u + h 	= (λ + 1)v + h. Moreover, u + v rewrites into (λ + 1)u + h by a rewriting

step if u+ v 	= (λ+ 1)u+ h.

3.2.7. Rewrite orders. The rewrite order of the linear (n+1, n)-polygraph Σ is the relation �Σ

on Σ�n defined by

− if u and v are monomials, then v �Σ u is u = v or u rewrites into v,

− if for any monomial y of v not appearing in u, there is a monomial x of u not appearing

in v such that y �Σ x, then v �Σ u.

The strict rewrite order of Σ is the strict order relation ≺Σ on Σ�n defined by v ≺Σ u if we

have v �Σ u but not u �Σ v.

3.2.8. Remark. The relation �Σ is not necessarily an order relation. In particular if two

distinct n-cells of Σ� rewrite into each other, the antisymmetry is not satisfied.

3.2.9. Exponentiation freedom. We say that Σ is (scalar) exponentiation free if no mono-

mial m of Σ� can be rewritten into λm + f for some scalar λ other than 0 or 1 and some non

zero n-cell f which does not contain m in its monomial decomposition. Note that if Σ is

quasi-terminating, exponentiation freedom is equivalent to the fact that for every monomialm

rewriting into a n-cell f containing m in its monomial decomposition, we have f = m. With the

terminology of Dershowitz, see [?, Definition 2., Definition 3.], the conjunction of exponentiation

freedom and quasi-termination means that in the associated rewriting system, all loops are cycles.

The following lemma is needed to prove the critical pairs Lemma for linear polygraph. Note

that there is a gap in [?] which does not make use of this lemma. Indeed, exponentiation freedom

hypothesis is not mentioned although it is necessary.

3.2.10. Lemma. Let Σ be a quasi-terminating exponentiation free left-monomial linear poly-

graph. All additive branchings of Σ are confluent.

Proof. Let α be a rewriting step of monomial source u, β be a rewriting step of monomial

source v, λ and μ non zero scalars and h a n-cell of Σ� which does not contain u or v in its

monomial decomposition. Let us denote a = t1(α) and b = t1(β). We prove that the additive

branching (λα+ μv+ h, λu+ μβ+ h) is confluent by considering four cases.
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Case 1. If u does not appear in the monomial decomposition of b and v does not appear in the

monomial decomposition of a, the 2-cells λa+ μβ+ h and λα+ μb+ h are rewriting steps

and make the branching (λα+ μv+ h, λu+ μβ+ h) confluent.

λa+ μv+ h λa+ μβ+ h
��

λu+ μv+ h

λα+ μv+ h 		

λu+ μβ+ h
��

λa+ μb+ h

λu+ μb+ h λα+ μb+ h





Case 2. If u appears in the monomial decomposition of b and v does not appear in the monomial

decomposition of a, we consider the n-cell f and the scalar γ such that μb+λu = γu+ f and u

does not appear in the monomial decomposition of f. If γ = 0, the n-cell λa+ μv+ h rewrites

into f+ h, using the rewriting step λa+ μβ+ h.

λa+ μv+ h λa+ μβ+ h
��

λu+ μv+ h

λα+ μv+ h 		

λu+ μβ+ h
��

λ(a− u) + f+ h

λ(a− α) + f+ h
��f+ h

Else, λa + μv + h rewrites into λa + (γ − λ)u + f + h, which rewrites into γa + f + h
and γu+ f+h rewrites into γa+ f+h. This makes the branching (λα+μv+h, λu+μβ+h)
confluent.

λa+ μv+ h �� λa+ (γ− λ)u+ f+ h
λa+ (γ− λ)α+ f+ h

��λu+ μv+ h

λα+ μv+ h ��

λu+ μβ+ h
��

γa+ f+ h

γu+ f+ h λα+ μβ+ h

		

Case 3. If u does not appear in the monomial decomposition of b and v appears in the monomial

decomposition of a, we are in a case symmetric to Case 2.

Case 4. If u appears in the monomial decomposition of b and v appears in the monomial

decomposition of a, we can write

a = γuu+ γvv+ f,

b = σuu+ σvv+ g
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where f and g are n-cells which do not contain u or v in their monomial decompositions, γv
and σu are non zero scalars, and γu and σv are scalars in {0, 1} because Σ is exponentiation free.

Because Σ is quasi-terminating, we also have γu = σv = 0. By quasi-termination hypothesis,

we also have f = g = 0. This implies γv = σu = 1. Thus, we have

a = v,

b = u.

The targets of the branching (λα+μv+h, λu+μβ+h) are thus (λ+μ)u+h and (λ+μ)v+h.

Then, the banching (λα+ μv+ h, λu+ μβ+ h) is confluent because u rewrites into v.

(λ+ μ)u+ h

λu+ μv+ h

λα+ μv+ h 		

λu+ μβ+ h
�� (λ+ μ)v+ h

(λ+ μ)α+ h

��

This concludes the proof.

In this way, we prove the following theorem by well-founded induction on the order ≺Σ.

3.2.11. Example. Let us give an example of quasi-terminating left-monomial linear (2, 2)-
polygraph which is not locally confluent. By Lemma ??, such a linear (2, 2)-polygraph is not

exponentiation free. Let us consider the left-monomial linear (2, 2)-polygraph Σ with

− only 0-cell and two 1-cells x and y,

− two 2-cells x⇒ y and y⇒ −x.

It has a non confluent local branching of source x + y. Indeed, the 2-cell x + y rewrites both

into 0 and 2y and 2y does not rewrite into 0. Because of the rewriting sequence

x⇒ y⇒ −x

the linear (2, 2)-polygraph Σ does not satisfy the conditions of Lemma ??.

3.2.12. Theorem. Let Σ be a quasi-terminating exponentiation free left-monomial linear poly-

graph. If all critical branchings of Σ are confluent, all local branchings of Σ are confluent.

Proof. By Lemma ??, all additive branchings of Σ are confluent. Because aspherical branchings

are always confluent, all that remains to prove is that Peiffer and overlapping branchings of Σ

are confluent. Let (α,β) be a branching of Σ that is aspherical or Peiffer. We proceed by

well-founded induction on the order ≺Σ.
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If (α,β) is an overlapping branching, we can write f = λu+h where u is a monomial which

is the source of an overlapping branching (α ′, β ′) and λ is a nonzero scalar. The overlapping

branching can be (α,β) written (λα ′ +h, λβ ′ +h) where (λα ′, λβ ′) is confluent by hypothesis

to a common target g. If tn(λα
′) = tn(λβ

′) or if we do not have f ≺Σ g + h, we have

either tn(λα
′) �Σ tn(λβ

′) + h or tn(λβ
′) + h �Σ tn(λα

′) + h, and the overlapping branching

is confluent. Else, because ≺Σ is well-founded, there is a monomial m of tn(λα
′) − tn(λβ ′)

such that:

− m can be rewritten into a linear combination of the others monomials of tn(λα
′)−tn(λβ ′),

− m only appears in tn(λα
′) or t2(β).

This makes all overlapping branchings confluent.

If (α,β) is a Peiffer branching, we can write f = λu �n−1 v+h with u and v two monomials.

Let α ′ and β ′ be the rewriting steps such that α = λα ′ �n−1 v+h and β = λu�n−1 β
′+h. If we

do not have λtn(α
′)�n−1 v+h ≺Σ f or λu�n−1 tn(β

′)+h ≺Σ f, then λtn(α
′)�n−1 v+h rewrites

into f or λu �n−1 tn(β
′) + h rewrites into f because Σ is quasi-terminating and exponentiation

free. Let us now assume without that λtn(α
′) �n−1 v + h ≺Σ f and λu �n−1 tn(β

′) + h ≺Σ f.

Then, we have a confluence diagram of the form

λtn(α
′) �n−1 v+ h γ

��

�� f ′

��
f

��

��
λtn(α

′) �n−1 tn(β ′) + h

		

��

g

λu �n−1 tn(β
′) + h

σ




�� f ′′
��

where the (n+1)-cells γ and σ are elementary, the two (n+1)-cells of sources λtn(α
′)�n−1v+h

and λu �n−1 tn(β
′) + h are rewriting steps and the others (n + 1)-cells are compositions of

rewriting steps. The branching of source λtn(α
′) �n−1 tn(β ′) + h is confluent by induction

hypothesis.

This makes the branching (α,β) confluent and concludes the last case of local branching.

3.3. BASES IN HIGHER-DIMENSIONAL LINEAR CATEGORIES

In this section, we set n > 0 . Given an (n,n)-linear category C, we study the question of how

to explicit a basis for each n-cells module of C. In particular, from a presentation C, we want to

compute a basis for the module Cn(u, v) for any parallel (n− 1)-cells u and v. We give a result,

Theorem ??, using rewriting to exhibit such bases. This result is proved using the following

lemma.
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3.3.1. Lemma [?, Lemma 4.2.14.]. Let Σ be a left-monomial linear (n + 1, n)-polygraph

presenting an (n,n)-linear category C. Let us assume that Σ is confluent. Then, for all paral-

lel (n−1)-cells u and v of C, the linear map sending each element of Σ�n(u, v) on its equivalence

class in Cn(u, v) has for kernel the submodule of Σ�n(u, v) made of the n-cells having 0 as a

normal form.

Proof. Let τ be the canonical surjection of Σ�n(u, v) into Cn(u, v). If an element of Σ�n(u, v)
rewrites into 0, then this element has the same equivalence class as 0 and is in Ker(τ). Let

now A be an element of Ker(τ). Because 0 is a normal form and Church-Rosser’s property is

equivalent to confluence, A rewrites into 0. This concludes the proof.

3.3.2. Theorem [?, Proposition 4.2.15.]. Let Σ a be left-monomial linear (n+1, n)-polygraph

presenting an (n,n)-linear category C. Let us assume that Σ is confluent and normalizing. Then,

for all parallel (n− 1)-cells u and v of C, a basis of Cn(u, v) is given by the set of equivalence

classes of monomials in normal form of Σ�n(u, v).

Proof. Let τ be the canonical surjection of Σ�n(u, v) into Cn(u, v). All elements of Σ�n(u, v)
have a normal form because Σ is normalizing. Then, the image of the set of monomials in normal

form of Σ�n(u, v) by τ is a generating family. The confluence of Σ allows us to use Lemma ?? to

conclude that this family is free.
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Chapter 4
Completion of higher-dimensional

polygraphs

As we have seen in chapter 2, higher-dimensional categories can be presented by generators

and relations using the structure of polygraphs, and rewriting is a tool to study those presenta-

tions. When a polygraph presenting a higher-dimensional category satisfies properties such that

termination and confluence, we can use results like Squier’s Theorem to compute a coherent

presentation or Theorem ?? to compute bases. Given a higher-dimensional category presented

by generators and relations, one problem is the computation of a confluent presentation of this

higher-dimensional category. Given a non confluent polygraph, this problem can be solved by

constructing a Tietze-equivalent confluent polygraph. This can be done by adding cells to a

polygraph.

In this chapter, we present a completion method for higher-dimensional categories. A

completion procedure is a procedure adding generators and rewriting rules to a presentation

to obtain a presentation of the same structure. The redundant generators and rules we add are

expected to give us a confluent rewriting system. A general procedure to find a convergent, a

fortiori confluent, rewriting system given an equational presentation has been introduced by

Knuth and Bendix in [?]. In the case of n-categories, Knuth-Bendix’s procedure is applied

to (n+ 1)-polygraphs. Given Σ an (n+ 1)-polygraph, Knuth-Bendix’s procedure applied to Σ

uses an order on the set of n-cells of Σ∗ which is compatible with the rewrite relation. The

procedure is based on the critical pairs Lemma and adds (n+1)-cells to an (n+1)-polygraph. For

each non confluent critical pair leading to two chosen normal forms u and v, we add an (n+ 1)-
cell from u to v if v ≺ u or from v to u if u ≺ v. Knuth-Bendix’s procedure and either terminates

in the case where all critical pairs are made confluent, creates an infinite increasing sequence

of (n+ 1)-polygraphs or fails. In the first two cases, we obtain a convergent (n+ 1)-polygraph

in a finite or infinite number of steps. The procedure fails when we encounter two n-cells which
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cannot be compared. If the order we use is total, we call it a total termination order.

Note that to effectively apply Knuth-Bendix’s procedure, one must be able to compute the

set of critical pairs of the (n + 1)-polygraph Σ. If Σ is a finite 2-polygraphs, this can be done

algorithmically by enumerating all the 2-cells of Σ. The set of critical pairs is always finite in this

case. However, there is no known algorithm to compute this set in the case of (n+1)-polygraphs

if n � 2. Even in the case of finite 3-polygraphs, the set of critical pairs can be infinite, see [?].

Knuth-Bendix completion procedure for (n + 1)-polygraphs gives a convergent (n + 1)-
polygraph from an (n+ 1)-polygraph with a total termination order, meaning the procedure does

not fail if a total termination order is used, see [?]. Not all terminating (n+ 1)-polygraphs have

a total termination order. This raises the problem of finding another completion procedure. For

finite terminating (n + 1)-polygraphs, we introduce a completion procedure, the generalized

Knuth-Bendix’s procedure which gives us local confluence.

Plan of Chapter. We will recall first in Section ?? the notion of total termination order and give

an example of 3-polygraph which does not admit such an order. We also recall Knuth-Bendix’s

procedure for polygraphs. Then, in Section ?? we introduce quasi-termination orders, they

are generalizations of total termination orders to all terminating (n + 1)-polygraphs. Next,

we introduce the generalized Knuth-Bendix’s procedure. We prove this procedure produces a

locally confluent (n+ 1)-polygraph when it does not fail. Moreover, we give a criterion on the

used quasi-termination order guaranteeing the procedure does not fail. We discuss after when

the produced locally confluent (n + 1)-polygraph is confluent. We finally give a criterion to

guarantee confluence.

4.1. KNUTH-BENDIX’S PROCEDURE FOR POLYGRAPHS

Suppose n > 1. We set Σ a finite (n+ 1)-polygraph. In this section, we recall Knuth-Bendix’s

procedure for polygraphs. This procedure takes the set of critical pairs of the (n+ 1)-polygraph

as an input. Computing this set is not part of the procedure. In the case of 2-polygraphs,

algorithms are known to compute the critical pairs. If n > 2, we do not know general algorithms

to compute the set of critical pairs of Σ, even if this set can be given in the cases we will study.

4.1.1. Total termination orders. A total termination order on the (n + 1)-polygraph Σ is a

strict order relation ≺ on Σ∗
n such that:

i) for each parallel (n − 1)-cells u and v of Σ∗
n−1, the restriction of ≺ to Σ∗

n(u, v) is a

well-founded total order,

ii) for any n-cells f and g of Σ∗
n such that g rewrites into f, we have f ≺ g,
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iii) for any parallel n-cells f and g such that f ≺ g, for every integer 0 � i < n and

every n-cell h such that f �i h is defined, we have f �i h ≺ g �i h,

iv) for any parallel n-cells f and g such that f ≺ g, for every integer 0 � i < n and

every n-cell h such that h �i f is defined, we have h �i f ≺ h �i g.

Even if the (n+ 1)-polygraph Σ is terminating, it does not always have a total termination

order.

4.1.2. Example. Let Σex be the 3-polygraph with only one 0-cell, one 1-cell and two 2-cells

represented by:

,

If there is a total termination order ≺ on Σex, we have one of the following inequalities:

≺ or ≺

Let us assume that the first inequality is true, the other case being symmetric. Then, we have:

≺ = ≺

which contradicts the existence of a total termination order Σex because a total termination order

is strict.

Knuth-Bendix’s procedure [?] is a completion procedure used in term rewriting to com-

plete non confluent terminating term rewriting systems into convergent ones. We present the

application of this procedure for (n+ 1)-polygraphs.

4.1.3. Knuth-Bendix’s procedure for (n + 1)-polygraphs. We give on the set Σ∗
n a well-

founded order ≺ compatible with the rewrite relation, that is for all n-cells f and g such that g

rewrites into f, we have f ≺ g. Knuth-Bendix’s procedure can then complete the (n + 1)-
polygraph Σ into a convergent (n+ 1)-polygraph KB(Σ) or fail. Knuth-Bendix’s procedure is

defined as follows

Input: Σ a terminating (n+ 1)-polygraph

Attribute to CP the set of non confluent critical branchings of Σ

Attribute to KB(Σ) the (n+ 1)-polygraph Σ
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while CP 	= ∅ do
Choose (α,β) in CP where α is a rewriting step with target a and β is a rewriting step with

target b

Attribute to A the set {a ′ ∈ Σ∗
n|a rewrites into a ′}

Choose in A a minimal element uα with respect to ≺
Attribute to B the set {b ′ ∈ Σ∗

n|b rewrites into b ′}
Choose in B a minimal element uβ with respect to ≺
if uα ≺ uβ then

Add to KB(Σ) an (n+ 1)-cell from uβ to uα
end if
if uβ ≺ uα then

Add to KB(Σ) an (n+ 1)-cell from uα to uβ
end if
if we do not have uα ≺ uβ or uβ ≺ uα then

Return "Fail"

end if
Attribute to CP the set of non confluent critical branchings of KB(Σ)

end while
Return KB(Σ)

The minimal elements for A and B exist because ≺ is well-founded. More precisely, by uα
minimal, we mean no element a ′ of A verifies a ′ ≺ uα. This procedure is indeed a completion

procedure of the critical branchings because a rewrites into uα and b rewrites into uβ. We also

remark uα and uβ are normal forms because Σ is terminating. Comparing uα and uβ and adding

an (n+ 1)-cell from the greatest of those n-cells to the lowest has for goal to keep termination

and ensure convergence of the obtained (n+ 1)-polygraph.

4.1.4. Correctness of the Knuth-Bendix’s procedure. To guarantee that Knuth-Bendix’s

procedure does not fail, ≺ must be a total termination order, see [?]. What remains to prove is

that KB(Σ) is confluent if ≺ is a total termination order.

If Knuth-Bendix’s procedure ends in a finite number of steps, then all critical branchings

of KB(Σ) are confluent, which implies that KB(Σ) is locally confluent by the critical pairs

Lemma, and confluent by Newman’s Lemma.

4.2. GENERALIZED KNUTH-BENDIX’S PROCEDURE

4.2.1. Quasi-termination orders. A quasi-termination order on an (n+ 1)-polygraph Σ is a

strict order relation ≺ on Σ∗
n such that:
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i) for each parallel (n − 1)-cells u and v of Σ∗
n−1, the restriction of ≺ to Σ∗

n(u, v) is a

well-founded order,

ii) for any n-cells f and g of Σ∗
n such that g rewrites into f and f does not rewrite into g, we

have f ≺ g,

iii) for any parallel n-cells f and g such that f ≺ g, for every integer 0 � i < n and

every n-cell h such that f �i h is defined, we do not have g �i h ≺ f �i h,

iv) for any parallel n-cells f and g such that f ≺ g, for every integer 0 � i < n and

every n-cell h such that h �i f is defined, we do not have h �i g ≺ h �i f.

A quasi-termination order can also be defined as a strict order contained into a well-founded

quasi-order compatible with the rewrite relation, see [?]. We say the order ≺ is maximal if for

every congruent n-cells f and g of Σ∗
n relatively to Σn+1, one of the following properties holds:

− f ≺ g,

− g ≺ f,
− there is no quasi-termination order ≺ ′ on Σ such that f ≺ ′ g or g ≺ ′ f.

4.2.2. Generalized Knuth-Bendix’s procedure for (n + 1)-polygraphs. We give on the

set Σ∗
n a quasi-termination order ≺. Generalized Knuth-Bendix’s procedure is defined by

the same procedure as Knuth-Bendix’s procedure where the termination order is replaced by

the quasi-termination order ≺. Like in the case of Knuth-Bendix’s procedure, we note that the

minimal elements for A and B exist because ≺ is well-founded.

4.2.3. Proposition. Let Σ be an (n+ 1)-polygraph and let ≺ be a maximal quasi-termination

order on Σ. Then, the application of the generalized Knuth-Bendix’s procedure on (Σ,≺) does

not fail.

Proof. Let us assume that the generalized Knuth-Bendix’s procedure fails on (Σ,≺). This

implies the existence of a branching of Σ leading to n-cells f and g of Σ∗
n such that:

− there is no n-cell f ′ such that f ′ ≺ f and f rewrites into f ′,

− there is no n-cell g ′ such that g ′ ≺ g and f rewrites into g ′,

− f does not rewrite into g,

− g does not rewrite into f,
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− we have neither f ≺ g nor g ≺ f.
Because ≺ is maximal, this implies no quasi-termination order ≺ ′ on Σ verifies f ≺ ′ g or g ≺ ′ f.
Let Σ ′ be the union of the (n+ 1)-polygraph Σ and an (n+ 1)-cell from f to g. So, f rewrites

into g relatively to Σ ′. Besides, ≺ is also a quasi-termination order on Σ ′. And because we do

not have g ≺ f, this implies the n-cells f and g rewrite into each other relatively to the (n+ 1)-
polygraph Σ ′. Thus, we can rewrite g into f only by using (n+1)-cells of Σ∗

n+1. This contradicts

the failure of the generalized Knuth-Bendix’s procedure.

4.2.4. Proposition. Let Σ be an (n+ 1)-polygraph and ≺ a maximal quasi-termination order

on Σ. Let us assume that for each congruent n-cells f and g of Σ∗
n such that f ≺ g, the n-cell g

rewrites into f. Then, the (n+ 1)-polygraph Σ is confluent.

Proof. Let (α,β) be a branching of Σ such that tn(α) = f and tn(β) = g. If f ≺ g or g ≺ f,

the branching (α,β) is confluent by hypothesis. If we do not have f ≺ g or g ≺ f, the n-cells f

and g rewrite into each other because ≺ is maximal. We conclude that the branching (α,β) is

confluent.
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Chapter 5
Coherence by decreasingness

Proving confluence of rewriting systems from their local confluence and some supplementary

conditions is a problem treated in [?]. We recall from chapter 2 that Newman’s Lemma states

that in a terminating rewriting system, local confluence and confluence are equivalent properties.

Some criteria drop the termination condition of Newman’s Lemma in favor of the properties

of the local branchings to prove confluence from local confluence. For example, an abstract

rewriting system in which all local branching are confluent by using only one rewriting step

is confluent. In 1994, inspired by an unpublished work of de Bruijn, see [?], van Ostroom

defined decreasingness [?], a criterion used to prove confluence from local confluence. Any

decreasing rewriting system is confluent. This result is stronger than Newman’s Lemma because

any terminating rewriting system is decreasing. Furthermore, decreasingness is a universal

criterion to decide confluence of countable rewriting systems. Indeed, any confluent countable

rewriting system is decreasing.

We recall from chapter 2 that Squier showed that there are finitely presented monoids with a

decidable word problem that cannot be presented by a finite convergent string rewriting system,

[?]. Beyond the questions of decidability of the word problem and of the existence of finite

convergent presentations, the graph-theoretical tools associated to convergent presentations of

monoids developped in [?] were applied to question of coherence problems for monoids such

that Artin monoids [?] or plactic monoids [?] and monoidal categories [?]. In particular, one of

the problems is to compute a coherent presentation of a monoid presented by a string rewriting

system. A method is given in [?] to solve this problem from a convergent string rewriting system.

However, in some situations it is difficult to get both confluence and termination on a finite set of

generators and a finite set of rules. This leads to the goal of weakening the Squier’s termination

condition to construct coherent presentations.
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Plan of Chapter. In this chapter, we present the applications of decreasingness, a property

defined by van Oostrom [?], to the construction of coherent presentations introduced in [?] using

quasi-termination. We begin in Section ?? by recalling the notion of decreasingness in abstract

rewriting. We also recall van Oostrom’s main result stating decreasingness implies confluence. In

Section ??, we introduce labelled polygraphs. Multiple notions of decreasing polygraphs follow.

We will present those notions. In Section ??, we generalize Squier’s Theorem to some confluent,

non terminating, polygraphs. Finally, in Section ??, we give a coherence result confluent, non

terminating, linear polygraphs.

5.1. DECREASINGNESS IN ABSTRACT REWRITING

5.1.1. Labellings. Let (S,→) be an abstract rewriting system. A labelling of (S,→) is a data

made of

− a partition of → indexed by a setW,

− a well-founded order ≺ onW.

We call the data (S,→,W,≺) a labelled rewriting system. We denote for each rewriting step f

a→ b

the label of f by ψ(f).

We denote for each rewriting sequence f

u0 → u1 → · · · → un

the set of labels of f by LW(f).

5.1.2. Distance. Let (S,→) be an abstract rewriting system. Let a and b be elements of S such

that a rewrites into b. The distance from a to b, denoted by d(a, b) is the length of the shortest

rewriting sequence from a to b.
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5.1.3. Decreasingness. A local branching of (S,→,W,≺) is said to be decreasing (resp.

strictly decreasing) if there is a confluence diagram of the following form

f
��

g

		

f ′
		

g ′′
		

h1
		

g ′
��

f ′′
��

h2
��

(resp.

f
��

g

		

f ′

		

g ′
��

).

such that the following properties hold

− k ≺ ψ(f), for all k in LW(f ′),

− k ≺ ψ(g), for all k in LW(g ′),

− f ′′ is an identity or a rewriting step labelled by ψ(f),

− g ′′ is an identity or a rewriting step labelled by ψ(g),

− k ≺ ψ(f) or k ≺ ψ(g), for all k in LW(h1) ∪ LW(h2).
Such a diagram is then called a decreasing confluence diagram (resp. strictly decreasing conflu-
ence diagram). A labelled rewriting system (S,→,W,≺) is decreasing if all its local branchings

decreasing. An abstract rewriting system (S,→) is decreasing if it admits a labelling (W,≺)
making all its local branchings decreasing.

5.1.4. Measure of a branching [?, Definition 3.1]. Let (S,→,W,≺) be a well-founded la-

belled rewriting system. Let w = w1 . . .wn and w ′ = w ′
1 . . . w

′
m be 1-cells in the free

monoid W∗ with wi and w ′
j in W. We denote by w(w ′) the 1-cell w1 . . .wn such that for

every 0 � k � n, the 1-cell wk is defined by

wk =

{
1 if wk ≺ w ′

j for some 1 � j � m,

wk otherwise.

Following [?, Definition 3.1], we consider the measure | · | from the free monoidW∗ to the

set of multisets overW and defined as follows:

i) for every i inW, the multiset |i| is the singleton {i},
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ii) for every i inW and every 1-cell w inW∗, we have |iw| = |i| ∪ |w(i)|.

The measure | · | is extended to the set of finite rewriting sequences of S by setting, for every

rewriting sequence f1 · . . . · fn, with fi labelled by ki for all i,

|f1 · . . . · fn| = |k1 . . . kn|,

where k1 . . . kn is a product in the monoidW∗. Finally, the measure | · | is extended to the set of

finite branchings (f, g) of Σ, by setting

|(f, g)| = |f| ∪ |g|.

Recall from [?, Lemma 3.2], that for every 1-cells w1, w2 inW∗, we have

|w1w2| = |w1| ∪ |w
(w1)
2 |.

As a consequence, for any rewriting sequences f and g of Σ the following relation holds

|f · g| = |f| ∪ |g(f)|,

where |g(f)| is defined by

|g(f)| = |k1 . . . k
(l1...ln)
m |,

with f = f1 · . . . · fn and g = g1 · . . . · gm and fi labelled by li and gj labelled by kj.

5.1.5. Multiset order [?, ?]. Given a well-founded set of labels (W,≺), we consider the partial

order ≺mult on the multisets overW defined as follows. For any multisetsM andN overW, we

setM ≺mult N if there exist multisets X, Y and Z such that:

i) M = Z ∪ X, N = Z ∪ Y and Y is not empty,

ii) for every i inW such that X(i) 	= 0, there exists j inW such that Y(j) 	= 0 and i ≺ j.
The order ≺mult is well-founded because ≺ is. We call �mult the symmetric closure of ≺mult.

5.1.6. Lemma. Let (S,→,W,≺) be a decreasing labelled rewriting system. For every diagram

in (S,→,W,≺) of the following form

f ′1




f2
��f1 ��

g1
��

g ′
1





where f1 is a non empty rewriting sequences, f2 and g1 are rewriting sequence and the confluence

diagram (f1 · f ′1, g1 · g ′
1) is decreasing, the inequality |(f ′1, f2)| �mult |(g1, f1 · f2)| holds.
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Proof. We use the inequalities

|(f ′1, f2)| �mult |f1|+ |(f ′1
(f1), f2

(f1))| = |f1�0f
′
1|+ |f2

(f1)| �mult |(g1, f1)|+ |f2
(f1)| = |(g1, f1�0f2)|.

5.1.7. Proposition. Let (S,→,W,≺) a labelled rewriting system. Then (S,→,W,≺) is strictly

decreasing if and only if any branching of (S,→,W,≺) is strictly decreasing.

Proof. One implication is trivial. Let us assume that (S,→,W,≺) is strictly decreasing and

let (f, g) be a branching of (S,→,W,≺). We prove by induction on |(f, g)| that (f, g) is strictly

decreasing. If f or g is an empty rewriting sequence, the strict decreasingness of (f, g) is trivial.

Else, we can write

f ′
��

f ′′
��

f1
��

g1 ��

g ′′
��

g ′ ��

such that the confluence diagram (f1 · f ′′, g1 · g ′′) is strictly decreasing. By Lemma ??, we

have |(f ′, f ′′)| �mult |(f1, g)|. Thus, we have |(f ′, f ′′)| �mult |(f, g)| and we can use the induction

hypothesis to construct a strictly decreasing confluence diagram (f ′ · k1, f ′′ · k2). By using

again Lemma ??, we have |(g ′′ · k2, g ′)| �mult |(f, g)|. Thus, by applying again the induction

hypothesis, we have a diagram

f ′
��

f ′′
��

k1

��

f1
��

g1 ��

k2 ��

l1

��

g ′′
��

g ′ ��

l2

��

where the diagram (f · k1 · l1, g · l2) is strictly decreasing.
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5.1.8. Lemma (Pasting property [?, Lemma 2.3.17.]). Let (S,→,W,≺) be a decreasing
labelled rewriting system. For every diagram of the form:

δ0

γ1

δ1

τ1

γ2

δ2

τ2

such that:

− |δ0 �0 τ1| �mult |(δ0, γ1)| and |γ1 �0 δ1| �mult |(δ0, γ1)|,

− |δ1 �0 τ2| �mult |(δ1, γ2)| and |γ2 �0 δ2| �mult |(δ1, γ2)|.

We have |δ0 �0 τ1 �0 τ2| �mult |(δ0, γ1 �0 γ2)| and |γ1 �0 γ2 �0 δ2| �mult |(δ0, γ1 �0 γ2)|.

Proof. We use the inequalities

|δ0 �0 τ1 �0 τ2| = |δ0 �0 τ1|+ |τ
(δ0�0τ1)
2 | �mult |(δ0, γ1)|+ |τ

(δ0�0τ1)(γ1)
2 | �mult |(δ0, γ1 �0 γ2)|,

|γ1 �0 γ2 �0 δ2| = |γ1 �0 γ2|+ |δ
(γ1)(γ2)
2 | �mult |γ1 �0 γ2|+ |δ

(γ2)
2 | �mult |(δ0, γ1 �0 γ2)|.

5.1.9. van Oostrom’s Theorem [?, Theorem 2.3.5.]. Any decreasing abstract rewriting sys-

tem is confluent.

Proof. Let (S,→,W,≺) be a decreasing labelled rewriting system. Let (f, g) be a branching

of (S,→,W,≺) such that f and g are not empty. We prove by well-founded induction that (f, g)
can be completed into a confluence diagram (f · f ′, g · g ′) such that

|f · f ′| �mult |(f, g)|, (5.1)

|g · g ′| �mult |(f, g)|. (5.2)

Let us consider f0 the first rewriting step of f and g0 the first rewriting step of g. We have a
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confluence diagram

IH1
f0

t(f)

g0

t(g)

D

IH2

where D verifies (??) and (??) by decreasingness of (S,→,W,≺). The diagram IH1 exists

because of the induction hypothesis and verifies (??) and (??) by the pasting property. Finally,

the induction hypothesis allows us to construct IH2. The pasting property proves that all the

diagram verifies (??) and (??). This proves in particular by well-founded induction that Σ is

confluent.

5.2. DECREASING POLYGRAPHS

In this subsection, we introduce decreasing polygraphs. The notions of decreasingness and strict

decreasingness for polygraphs will be the same as in the case of abstract rewriting systems by

viewing polygraphs as abstract rewriting systems, see ??.

5.2.1. Labelled polygraphs. A labelled n-polygraph is a data (Σ,W,≺, ψ) made of an n-

polygraph Σ, a setW, a well-founded order ≺ onW and a map ψ : Σstp −→W where Σstp is

the set of rewriting steps of Σ. The map ψ is called a well-founded labelling of Σ and associates

to a rewriting step f a label ψ(f). In particular, labelled n-polygraphs are also labelled rewriting

systems.

5.2.2. Labelling to the quasi-normal form. Let n > 0. Let Σ be an n-polygraph (respec-

tively a linear (n,n − 1)-polygraph). If Σ is quasi-terminating, any (n − 1)-cell u of Σ∗
n−1

(respectively Σ�n−1) admits a quasi-normal form. Let us fix a family of quasi-normal forms Q

such that any (n− 1)-cell u in Σ∗
n−1 (respectively Σ�n−1) rewrites into an (n− 1)-cell in Q. For

each (n− 1)-cell u in Σ∗
n−1 (respectively Σ�n−1), let us choose ũ a quasi-normal form of u in Q
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such that d(u, ũ) is minimal. The labelling to the quasi-normal form, labelling QNF for short,

is the map ψ : Σstp −→ N defined by

ψ(f) = d(tn−1(f), t̃n−1(f)),

for any rewriting step f of Σ. Note that if Σ is confluent, then any labelling QNF of Σ is

decreasing.

5.2.3. Remark. If Σ is confluent, any two congruent (n− 1)-cells of Σ∗
n−1 (respectively Σ�n−1)

can be rewritten into a same quasi-normal form.

5.2.4. Theorem. Let n > 0. Let Σ a decreasing left-monomial linear (n,n − 1)-polygraph.

Then, Σ is confluent.

Proof. By van Oostrom’s Theorem, any decreasing abstract is confluent. Thus, any decreasing

left-monomial linear (n,n− 1)-polygraph is confluent.

5.2.5. Theorem. Let n be a non negative integer. Let Σ be an exponentiation free linear (n,n−
1)-polygraph and ψ a labelling to the quasi-normal form on Σ. If all critical branchings of Σ are

decreasing with respect to ψ, then Σ is decreasing.

Proof. Σ, having a labelling QNF, is quasi-terminating. By Theorem ??, this implies that Σ is

locally confluent because Σ is also exponentiation free. Let (α,β) be a local branching of Σ. Let

us prove that the branching (α,β) is decreasing with respect to ψ. Let us set f = sn−1(α) =
sn−1(β). By local confluence of Σ, we have a diagram

tn−1(α)

��

�� ˜tn−1(α)

��

f

α ��

β ��

g g̃

tn−1(β)

��

�� ˜tn−1(β)

��

where we have either f̃ = ˜tn−1(α) or f̃ = ˜tn−1(β) and the confluence diagrams of sources tn−1(α)

and tn−1(β) exist because all overlapping branchings of Σ are confluent. Because ˜tn−1(α)

and ˜tn−1(β) are quasi-normal forms, they rewrite into each other. This implies the existence of a

decreasing diagram

tn−1(α)

��

f

α ��

β ��

f̃

tn−1(β)

��
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and conclude the proof.

5.2.6. Stability by contexts. Let n > 0. A context in an n-category C is an application C

from Cn(a, b) for some (n− 1)-cells a and b to Cn defined by

C(x) = u1 �n−1 (u2 �n−2 (· · ·un �0 x �0 un) · · · �n−2 u2n−1) �n−1 u2n
for some family (ui)i∈�1,2n� of n-cells and for any x in Cn(a, b).

Let (Σ,ψ) be a labelled n-polygraph. The labelling ψ is compatible with contexts if for any

decreasing (resp. strictly decreasing) confluence diagram (f · f ′, g · g ′), where (f, g) is a local

branching, and any context C of the free n-category Σ∗ such that (C(f) · C(f ′), C(g) · C(g ′)) is

defined, the diagram (C(f) · C(f ′), C(g) · C(g ′)) is decreasing (resp. strictly decreasing).

5.2.7. Peiffer decreasingness. A decreasing (resp. strictly decreasing) n-polygraph (Σ,ψ) is

Peiffer decreasing with respect to a globular extension Γ of the free (n,n − 1)-category Σ�
n

over Σ if, for any Peiffer branching (fv, ug) : uv⇒ (u ′v, uv ′), there exists a decreasing (resp.

strictly decreasing) confluence diagram (fv · f ′, ug · g ′):

u ′v u ′g
��

f ′

��

uv

fv ��

ug ��

u ′v ′ u ′′

uv ′
fv ′

��

g ′

��

such that u ′g �n−1 (fv ′)− ≡Γ f
′ �n−1 (g ′)−. Here we denote for any n-cell x of Σ�

n , the inverse

of x by x−.

5.3. SQUIER’S DECREASING COMPLETION

5.3.1. Loops in an n-polygraph. An n-loop in the n-category Σ∗
n is an n-cell f of Σ∗

n such

that s1(f) = t1(f). Two n-loops f and g in Σ∗
n are equivalent if there exist a decomposition

f = f1 �n−1 . . . �n−1 fp

where fi is a rewriting step of Σ for any 1 � i � p, and a circular permutation σ such that

g = fσ(1) �n−1 . . . �n−1 fσ(p).

This defines an equivalence relation on n-cells of Σ∗
n. We will denote by L(f) the equivalence

class of an n-loop f in Σ∗
n for this relation.
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5.3.2. Support of an n-cell. Any n-cell f in Σ∗
n can be written as a composite of finitely many

rewriting steps C1(ϕ1), . . . , Ck(ϕk), where the Ci are contexts and the ϕi are n-cell of Σn. We

define the support of the n-cell f as the multiset, denoted by Supp(f), consisting of the n-cellsϕi
occurring in this decomposition. The support is well-defined because any decomposition of f

in Σ∗
n into a composite of rewriting steps involves the same elements of Σn. Note also that

any such a decomposition is finite and thus the support of an n-cell is a finite multiset. As a

consequence, the multiset inclusion is a well-founded order on supports, allowing us to prove

some properties by induction on the support of n2-cells.

5.3.3. Minimal and elementary loops. We say that an n-loop f in Σ∗
n is

i) minimal with respect to (n − 1)-composition, if any decomposition f = g �n−1 h �n−1 k
in Σ∗

n with h an n-loop implies that h is either an identity or equal to f,

ii) minimal by context, if there is no decomposition f = C(g), where C is a context and g is a

loop in Σ∗
n.

An n-loop f in Σ∗
n is elementary if it is minimal both with respect to (n− 1)-composition

and by context. As an immediate consequence of these definitions, any n-loop f minimal

for (n − 1)-composition can be written f = C(g), where g is an elementary loop and C is a

context.

5.3.4. Lemma. For any equivalent n-loops f and g in Σ∗
n, there exist n-cells h and k of Σ�

n

such that f = h �n−1 g �n−1 k.

Proof. Let us decompose f into a sequence f = f1 �n−1 . . . �n−1 fp of rewriting steps and

let σ be a circular permutation such that g = fσ(1) �n−1 . . . �n−1 fσ(p). Let i be the integer such

that σ(i) = 1. Let k be the n-cell fσ(1) �n−1 . . . �n−1 fσ(i−1). Let h = k− be the inverse of k for

the (n− 1)-composition. Then, we have f = h �n−1 g �n−1 k.

5.3.5. Lemma. Let f be a nonidentity n-loop in Σ∗
n. Then, there exists a decomposition

f = f1 �n−1 f
′ �n−1 f2

in Σ∗
n, where f ′ is an n-loop minimal with respect to (n−1)-composition and f1 and f2 are n-cells

such that f1 �n−1 f2 is an n-loop.

Proof. Let f be a nonidentity n-loop in Σ∗
n. The proof is by induction on the support Supp(f).

If the n-loop f is minimal for (n − 1)-composition, we can write f = 1s1(f) �n−1 f �n−1 1s1(f).
If f is not minimal for (n− 1)-composition, there exists a decomposition f = g �n−1 h �n−1 k,

where h is an n-loop that is neither an identity nor equal to f. Hence, Supp(h) is strictly included

in Supp(f). This proves the decomposition.
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5.3.6. Lemma. Let L(Σ) be a loop extension of Σ. For any n-loop f in Σ∗
n, there exists

an (n+ 1)-cell from f to 1s1(f) in the free (n+ 1, n− 1)-category L(Σ)� generated by the (n+
1, n− 1)-polygraph (Σ,L(Σ)).

Proof. Let us fix a loop extension L(Σ). Let f be n-loop in Σ∗
n. We proceed by induction on the

support Supp(f).
Step 1. Suppose that f is elementary. By definition of L(Σ), the equivalence class L(f)
contains an elementary n-loop e such that L(Σ) contains an (n + 1)-cell Ae from e to 1s1(e).

The n-loop e being equivalent to f, by Lemma ?? there exist two n-cells h and k of Σ�
n such

that f = h�n−1 e�n−1 k. Thus, the (n+1)-cell h�n−1Ae�n−1 k in L(Σ)� goes from f to h�n−1 k.

By construction the n-cell h �n−1 k is equal 1s1(f). In this way we construct an (n + 1)-cell

in L(Σ)� from f to 1s1(f).

Step 2. Suppose that f is minimal with respect to (n − 1)-composition. Then, there is a

decomposition f = ugv, where u and v are (n− 1)-cells in Σ∗
n−1 and g is an elementary n-loop

in Σ∗
n. By Step 1, there exists an (n + 1)-cell Ag from g to 1s1(g) in L(Σ)�. Thus, uAgv is

an (n+ 1)-cell in L(Σ)� from f to 1s1(f).

Step 3. Suppose that f is a nonidentity n-loop. By Lemma ??, the n-loop f can be written

as f1 �n−1 f
′ �n−1 f2 where f ′ is an n-loop minimal for (n − 1)-composition and f1 and f2

are n-cells such that f1 �n−1 f2 is an n-loop. By Step 2, there exists an (n+ 1)-cell Af ′ in L(Σ)�

from f ′ to 1s1(f ′). Hence, the (n − 1)-composite f1 �n−1 Af ′ �n−1 f2 is an (n + 1)-cell from f

to f1 �n−1 f2 in L(Σ)�. The support of f1 �n−1 f2 being strictly included in the support of f, this

proves the lemma by induction on the support of f.

5.3.7. Loop extension. We will denote by E(Σ) the set of equivalence classes of elementary n-

loops of Σ∗
n. A loop extension of Σ is a globular extension of the (n,n− 1)-category Σ�

n made

of a family of (n+ 1)-cells Aα : α� 1s1(α) indexed by exactly one α for each equivalence class

in E(Σ).

5.3.8. Generating decreasing confluences. A family of generating decreasing confluences
of Σ with respect to ψ is a globular extension of the (n,n− 1)-category Σ�

n that contains, for

every critical branching (f, g) : u⇒ (v,w) of Σ, exactly one (n+ 1)-cell Dψ
f,g of the following

form

v f ′
��

u

f ��

g
��

u ′

w
g ′

��D
ψ
f,g��

and where the confluence diagram (f · f ′, g · g ′) is decreasing with respect to ψ. We denote here

the n-cells by 1-arrows and the (n+ k)-cells by (n+ k)-arrows for any positive integer k. Any

decreasing n-polygraph admits such a family of generating decreasing confluences. Indeed, any
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critical branching is local and thus confluent by decreasingness hypothesis. However, such a

family is not unique in general.

5.3.9. Squier’s decreasing completion. Let (Σ,ψ) be a decreasing n-polygraph. A Squier’s
decreasing completion of Σ with respect to ψ is an (n + 1, n − 1)-polygraph that extends

the n-polygraph Σ by a globular extension

O(Σ,ψ) ∪ L(Σ)

where O(Σ,ψ) is a chosen family of generating decreasing confluences with respect to ψ

and L(Σ) is a loop extension of Σ. If (Σ,ψ) is a strictly decreasing n-polygraph, a strictly
decreasing Squier’s completion is a Squier’s decreasing completion, whose generating decreasing

confluences are required to be strict.

5.3.10. Lemma. Let (Σ,ψ) be a strictly decreasing n-polygraph. Let Ssd(Σ,ψ) be a strictly

decreasing Squier’s completion of Σ. Suppose that ψ is compatible with contexts and that (Σ,ψ)
is Peiffer decreasing with respect to the extension Ssd(Σ,ψ). Then, for any n-sphere (f, g) in Σ∗

n,

there exists an (n+ 1)-cell from f to g in the (n+ 1, n− 1)-category Ssd(Σ,ψ)�.

Proof. We proceed in two steps.

Step 1. We prove that, for every local branching (f, g) : u ⇒ (v,w) of Σ, there exists

a confluence (f ′, g ′) : (v,w) ⇒ u ′ of Σ and an (n + 1)-cell A : f �n−1 f
′ � g �n−1 g

′

in Ssd(Σ,ψ)� such that the confluence diagram (f · f ′, g · g ′) is strictly decreasing.

In the case of an aspherical branching, we can choose f ′ and g ′ to be identity n-cells, A to

be an identity (n+ 1)-cell and the confluence diagram (f, f) is trivially strictly decreasing.

Suppose that (f, g) is a Peiffer branching (f1v1, u1g1) : u1v1 ⇒ (u ′
1v1, u1v

′
1). By hypothesis,

the Peiffer confluence (f1v1 · u ′
1g1, u1g1 · f1v ′1) is equivalent to a strictly decreasing confluence

diagram (f1v1 · f ′1, u1g1 ·g ′
1). Hence, there exists an (n+1)-cellA : f1v1 �n−1 f

′
1 � u1g1 �n−1 g

′
1

in the (n+ 1, n− 1)-category Ssd(Σ,ψ)�.

If (f, g) is an overlapping branching, we have (f, g) = (C(h), C(k)) with (h, k) a critical

branching and C a context. We consider the (n+1)-cellDψ
h,k : h�n−1 h

′ � k�n−1 k
′ of O(Σ,ψ)

corresponding to the strict generating decreasing confluence of the critical branching (h, k) with

respect to the labellingψ, or its inverse. Let us define the n-cells f ′ = C(h ′) and g ′ = C(k ′) and

the (n+ 1)-cell A = C(Dψ
h,k). The labelling ψ being compatible with contexts, the confluence

diagram corresponding to the (n+ 1)-cell A is strictly decreasing.

Step 2. Let (f, g) be an n-sphere in Σ∗
n. This n-sphere defines a branching with

source sn−1(f) = sn−1(g). The n-polygraph Σ being strictly decreasing, we prove the lemma

by well-founded induction on the measure |(f, g)| of the branching (f, g). If f or g is an iden-

tity n-cell, say g = 1, the n-cell f is an n-loop. By Lemma ??, there exists an (n+ 1)-cell E :
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f� 1s1(f) in the (n+ 1, n− 1)-category L(Σ)�. Else, we have decompositions f = f1 �n−1 f2
and g = g1 �n−1 g2 in Σ∗

n where (f1, g1) is a local branching. Note that f2 or g2 can be equal to an

identity n-cell. The local branching (f1, g1) is confluent by decreasingness. Moreover, by Step 1,

there exists an (n+1)-cellA : f1 �n−1 f
′
1 � g1 �n−1 g

′
1 in the (n+1, n−1)-category Ssd(Σ,ψ)�,

where the confluence diagram (f1 · f ′1, g1 · g ′
1) is strictly decreasing.

The branching (f ′1, f2) is confluent by decreasingness. Moreover, the n-polygraph Σ being

strictly decreasing, by Proposition ??, there exist rewriting sequences h and k as indicated in the

following diagram:

u1

f ′1
��

f2

��

A

		

u

f1
��

g1 ��

u ′
h �� ûk��

v1

g ′
1

��

g2





B
  

C !!

such that the confluence diagrams (f ′1 · h, f2 · k) is strictly decreasing.

Consider the multiset order �mult associated to the order ≺. The confluence

diagram (f1 · f ′1, g1 · g ′
1) being strictly decreasing, for any k in LW(f ′1) and any l in LW(g ′

1),
we have k ≺ ψ(f1) and l ≺ ψ(g1). Thus |f1 · f ′1| = |f1| and |g1 · g ′

1| = |g1|. This implies the

following equality

|(f1, g1)| = |(f, g)|.

The confluence diagram (f ′1 · h, f2 · k) being strictly decreasing, by the same argument, we have

|(f ′1 · h, f2 · k)| = |(f ′1, f2)|.

Moreover, by Lemma ??, we have |(f ′1, f2)| �mult |(f, g1)|. It follows that

|(f ′1 · h, f2 · k)| �mult |(f, g)|.

By induction hypothesis, we deduce that there exists an (n+ 1)-cell B : f2 �n−1 k� f ′1 �n−1 h
in Ssd(Σ,ψ)�.

Finally, let us prove that there exists an (n+1)-cell C : g ′
1 �n−1 h� g2 �n−1 k in Ssd(Σ,ψ)�.

We have

|(g ′
1 · h, g2 · k)| = |g ′

1| ∪ |h(g ′
1)| ∪ |g2| ∪ |k(g2)|.

On the other hand, we have

|(f, g)| = |f| ∪ |g| = |f| ∪ |g1| ∪ |g
(g1)
2 |.
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Furthermore, there exists a multiset R, possibly empty, such that |g2| = |g
(g1)
2 | ∪ R. Hence

|(g ′
1 · h, g2 · k)| = |g

(g1)
2 | ∪ X and |(f, g)| = |g

(g1)
2 | ∪ Y.

where X = |g ′
1|∪ |h(g ′

1)|∪R∪ |k(g2)| and Y = |f|∪ |g1|. Moreover, we check that for every i inW

such that X(i) 	= 0, there exists j inW such that Y(j) 	= 0 and i ≺ j. Hence, we have

|(g ′
1 · h, g2 · k)| �mult |(f, g)|.

The existence of the (n + 1)-cell C follows by induction hypothesis. In this way, we have

constructed an (n+ 1)-cell in Ssd(Σ,ψ)� from f to g obtained by composition of the (n+ 1)-
cells A, B and C.

5.3.11. Theorem. Let (Σ,ψ) be a strictly decreasing n-polygraph. Let Ssd(Σ,ψ) be a strictly
decreasing Squier’s completion of Σ. If ψ is compatible with contexts and (Σ,ψ) is Peiffer
decreasing with respect to the extension Ssd(Σ,ψ), then Ssd(Σ,ψ) is a coherent presentation of
the (n− 1)-category presented by Σ.

Proof. Let (f, g) be an n-sphere of the (n,n − 1)-category Σ�
n . By definition of Σ�

n , the n-

cell f �n−1 g
− can be decomposed into a zigzag

f1
��

f2
�� · · · fk−2

��
fk−1

��

g0 ""

f0
##

gl$$

fk
%%

g1
��

g2
�� · · · gl−2

��

gl−1
��

where the n-cells f0, . . . , fk and g0, . . . , gl are n-cells of the n-category Σ∗
n. Note that some

of those n-cells can be identities. By confluence of the n-polygraph Σ, there exist families

of n-spheres of Σ∗
n

f ′i
��

fi ��

fi−1
��

f ′i−1

&&

g ′
j

��

gj ��

gj−1
��

g ′
j−1

&&

f ′1
��

f0 ��

g0
��

g ′
1

&&

f ′k−1
��

fk ��

gl
��

g ′
l−1

&&

with same (n − 1)-target, for all 2 � i � k − 1 and 2 � j � l − 1. Note that some of

these n-spheres can be trivial. Then the n-sphere (f, g) can be filled up by these n-spheres as
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follows:

f ′1
��

f1
��

f2
�� · · ·

f ′2
��

f ′k−2
''

fk−2
��

fk−1
��

f ′k−1
((

g0 ��

f0
��

gl((

fk
))

g ′
1

��

g1
��

g2
�� · · ·

g ′
2

��

g ′
l−2

**

gl−2
��

gl−1
��

g ′
l−1

))

By Lemma ??, these n-spheres can be filled up by (n + 1)-cells of the (n + 1, n − 1)-
category Ssd(Σ,ψ)�. Finally, the composition of these (n + 1)-cells gives an (n + 1)-cell

of Ssd(Σ,ψ)� from f to g.

5.4. COHERENCE BY DECREASINGNESS

We fix in this section Σ a left-monomial linear (n,n − 1)-polygraph. We will also denote

ψ : Σstp −→W a well-founded labelling of Σ whereW is a set endowed with a well-founded

order ≺. We first state the following result:

5.4.1. Linear contexts. A context in a linear (n,n)-category C is an applicationC from Cn(a, b)
for some (n− 1)-cells a and b to Cn defined by

C(x) = λu1 �n−1 (u2 �n−2 (· · ·un �0 x �0 un) · · · �n−2 u2n−1) �n−1 u2n + h

for some family (ui)i∈�1,2n� of n-cells, n-cell h, scalar λ and for any x in Cn(a, b).

5.4.2. Minimal and elementary loops in linear polygraphs. A loop f of Σ� is minimal by

context if there is no decomposition f = C(g), where C is a context of Σ� and g is a loop in Σ∗
n.

An elementary loop in Σ� is a loop which is both minimal with respect to (n− 1)-composition

and by context.

5.4.3. Stability by contexts in labelled linear polygraph. The well-founded labelling ψ is

compatible with contexts if for any decreasing (resp. strictly decreasing) confluence

diagram (f·f ′, g·g ′), where (f, g) is a local branching, and any contextC of the freen-categoryΣ�

such that (C(f) · C(f ′), C(g) · C(g ′)) is defined, the diagram (C(f) · C(f ′), C(g) · C(g ′)) is

decreasing (resp. strictly decreasing).
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5.4.4. Peiffer decreasingness in linear polygraphs. Let Γ be a globular extension of the

linear (n,n)-category Σ�. The labelled (n,n)-linear polygraph (Σ,ψ) is (strictly) Peiffer de-
creasing with respect to Γ if the following conditions hold

i) Σ is decreasing with respect to the labelling (W,≺, ψ),

ii) for any Peiffer branching (w+λfv,w+λug), there exists a (strictly) decreasing confluence

diagram:

w+ λu ′v w+ λu ′g
��

f ′

++

w+ λuv

w+ λfv ��

w+ λug
��

w+ λu ′v ′ u ′′

w+ λuv ′ w+ λfv ′
,,

g ′

��

such that (w+ λfv) �n−1 f
′ ≡Γ (w+ λug) �n−1 g

′.

iii) for any additive branching (f + v, u + g), there exists a (strictly) decreasing confluence

diagram:

u ′ + v u ′g
--

f ′

��

u+ v

f+ v ��

u+ g
��

u ′ + v ′ u ′′

u+ v ′ f+ v ′
..

g ′

&&

such that (f+ v) �n−1 f
′ ≡Γ (u+ g) �n−1 g

′.

5.4.5. Proposition. Let Σ be a strictly decreasing left-monomial linear (n,n− 1)-polygraph

with respect to a strict well-founded labelling (W,ψ,≺). Let D(Σ,ψ) be a strict decreasing

Squier’s completion of Σ. If the following conditions hold

i) ψ is whisker compatible,

ii) ψ is strictly Peiffer decreasing with respect to D(Σ,ψ),

then the strict decreasing Squier’s completion D(Σ,ψ) is a coherent presentation of the lin-

ear (n− 1, n− 1)-category presented by Σ.
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Proof. To prove this Proposition, we need to prove that any local branching ofΣ can be completed

into a strict decreasing diagram. Step 2 of the proof of Lemma [?, Lemma 3.1.4.] is the same.

The cases of aspherical, Peiffer and overlapping branchings are treated in Step 1 of the proof

of Lemma [?, Lemma 3.1.4.]. By strict Peiffer decreasingness of the linear polygraph Σ, we

conclude the proof.
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Chapter 6
Categorification of linear categories

Categorification. The terminology "categorification" was introduced in 1995 by Crane. Cat-

egorification is a process giving from an (associative) algebra A a linear monoidal category C
whose Grothendieck group is isomorphic to A [?, ?]. We say that C is a categorification of A or,

categorifies A. An example of a categorification is the Khovanov homology [?], a categorification

of the Jones polynomials. More precisely, Khovanov defines a family of chain complexes whose

homologies have the Jones polynomials as Euler’s characteristics. This categorification was used

to give a new proof of Milnor’s conjecture [?]. A classical categorification problem is to exhibit

from a ring A a categorification of A with properties such that having all its idempotents split.

Algebras like Hecke algebras [?] can be categorified by the Karoubi envelope of a diagrammatic

category, that is a monoidal category in which the morphism spaces are depicted by string

diagrams, the 0-composition by horizontal concatenation and the 1-composition by vertical

concatenation. Khovanov conjectured that the Karoubi envelope of some diagrammatic category

[?] categorifies the Heisenberg algebra [?]. More applications of categorification can be found in

[?].

Karoubi envelopes. Categorifications of algebras are generally defined as Karoubi envelopes

of explicit categories. Karoubi envelopes of categories were introduced as a way to classify the

idempotents of a category [?]. The Karoubi envelope of a category C is a completion Kar(C)
of C splitting all idempotents. More precisely, the Karoubi envelope of C contains the objects

of C plus one object for each non identity idempotent of C and is generated by the morphisms

of C plus a family of injections and projections morphisms verifying relations splitting all

idempotents. In particular, if all idempotents of the category C are split, the category Kar(C) is

equivalent to C. Karoubi envelopes also find applications in topology when considering some

enriched categories [?, ?]. The construction of Karoubi envelopes can also be defined for higher-

dimensional categories. We wish to present Karoubi envelopes of higher-dimensional categories
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by generators and relations. Karoubi envelopes being used to construct categorifications of

algebras, computing a presentation of Kar(C) from a presentation of C is the first step to present

categorification of algebras presented by generators and relations.

Higher-dimensional categorification. The categorification process can be defined for higher-

dimensional linear categories, a case that generalizes the one of algebras. This definition

uses a generalization of the Grothendieck group we present in this chapter: Grothendieck
decategorification. The process we present in this chapter to compute Karoubi envelopes and

Grothendieck decategorification can be generalized to any dimension.

Plan of chapter. In this chapter, we present the applications of rewriting to categorification

we introduced in [?]. We begin in Section ?? by recalling the notion of Karoubi envelope

for 1-categories from [?]. We also introduce notion of Karoubi envelope for n-categories and

linear (n,n)-categories given in [?]. In Section ??, we recall the definitions of Grothendieck

group and Grothendieck decategorification from [?]. In Section ??, we introduce the notions

of Karoubi envelope and decategorification for polygraphs. We also prove that those notions

respectively present the Karoubi envelope ?? and the Grothendieck decategorification ?? of

higher-dimensional categories. This chapter ends in ?? by a presentation of a categorification of

the Hecke algebra given in [?], the category of Soergel bimodules.

6.1. KAROUBI ENVELOPES

6.1.1. Idempotents. Let n � 1 be an integer and C be an n-category. An idempotent of C is

an n-cell e of C such that e �n−1 e = e. Note that the (n − 1)-source and the (n − 1)-target

of an idempotent are necessarily equal. If there are no integer k < n − 1 and non identities

idempotents e ′ and e ′′ such that, e = e ′ �k e ′′ 	= e ′ �n−1 e ′′, we say that the idempotent e is

minimal. We say that the idempotent e is split if there exists an (n− 1)-cell A of C, an n-cell p

from sn−1(e) to A and an n-cell p from A to sn−1(e) such that:

− p �n−1 i = e,

− i �n−1 p = 1A.

6.1.2. Karoubi envelope of an n-category. The Karoubi envelope of the n-category C is

the n-category Kar(C) such that:

− Kar(C) has the same k-cells as C for k < n− 1,

− Kar(C) has an (n− 1)-cell Ae from sn−2(e) to tn−2(e) for each idempotent e of C,
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− for k < n− 1, for each k-composable idempotents e and e ′ of C, we have

Ae �k Ae ′ = Ae�ke ′ ,

− Kar(C) has an n-cell α(e, f, e ′) from Ae to Ae ′ for each triple (e, f, e ′) of n-cells of C
such that e and e ′ are idempotents verifying f = e �n−1 f �n−1 e

′,

− for k < n − 1, for each pairs of k-composable idempotents (e1, e2) and (e ′1, e
′
2) of C

and each k-composable n-cells f1 and f2 of C such that α(e1, f1, e
′
1) and α(e2, f2, e

′
2) are

defined, we have

α(e1, f1, e
′
1) �k α(e2, f2, e

′
2) = α(e1 �k e2, f1 �k f2, e

′
1 �k e

′
2),

− for each (n−1)-composable n-cells f and g of C and each triple (e, e ′, e ′′) of idempotents

of C such that f = e �n−1 f �n−1 e
′ and g = e ′ �n−1 g �n−1 e ′′, we have

α(e, f, e ′) �n−1 α(e ′, g, e ′′) = α(e, f �n−1 g, e ′′).

6.1.3. The surjectiven-functor CS. Let C be ann-category. There is a surjectiven-functor CS

from Kar(C) to C defined by:

− the restriction of CS to C is an identity,

− CSn−1(Ae) = sn−1(e) for any idempotent e of C,

− CSn(α(e, f, e
′)) = f for each triple (e, f, e ′) of n-cells of C such that e and e ′ are

idempotents verifying f = e �n−1 f �n−1 e
′.

We call this n-functor the canonical surjection n-functor from Kar(C) to C.

6.1.4. Karoubi envelope of a linear (n,n)-category. Let C be a linear (n,n)-category. In

particular, C is an n-category. Let us denote by Kar(C) its Karoubi envelope. There is a structure

of linear (n,n)-category on Kar(C) defined by α(e, λf + g, e ′) = λα(e, f, e ′) + α(e, g, e ′)
for each scalar λ, each parallel n-cells f and g of C and each idempotents e and e ′ of C such

that f = e �n−1 f �n−1 e
′ and g = e �n−1 g �n−1 e

′.

6.2. DECATEGORIFICATION

6.2.1. Direct sums. Let n > 1 be an integer and C be a linear (n,n)-category. Let a, b and c

be (n − 1)-cells of C. We say that a is direct sum of b and c if there exist n-cells a
pb

�� b,

a
pc

�� c, b
ib

�� a and c
ic

�� a such that:

77



CHAPTER 6. CATEGORIFICATION OF LINEAR CATEGORIES

− pb �n−1 ib + pc �n−1 ic = 1a,

− ib �n−1 pb = 1b,

− ic �n−1 pc = 1c.

In this case, we denote a � b⊕ c.

6.2.2. Grothendieck decategorification. The Grothendieck decategorification, or Grothendieck
group, of a linear category C is the group generated by the isomorphism classes of C and subject

to the relation [a] = [b] + [c] whenever an object a is direct sum of two objects b and c. If the

category C is monoidal, this case corresponding to a linear (2, 2)-category the Grothendieck

decategorification of C is also a ring with a product defined by [a ⊗ b] = [a][b] for any ob-

jects a and b of C. In this section, we extend the definition of Grothendieck decategorification

to arbitrary linear (n,n)-categories and give a construction for presenting such Grothendieck

decategorifications.

6.2.3. Grothendieck decategorification of a linear (n,n)-category. Let n > 1 be an integer

and C be a linear (n,n)-category. Two (n− 1)-cells u and v of C are isomorphic if there is an n-

cell from u to v which is invertible for the n-composition. We will call [u] the isomorphism class

of the (n−1)-cell u. The Grothendieck decategorification of C is the linear Z-linear (n−1, n−1)-
category K(C) defined by:

− for k < n − 1, the linear Z-linear (n − 1, n − 1)-category K(C) has the same k-cells

than C,

− for any parallel (n− 2)-cells x and y of K(C), the Z-module K(C)n−1[x, y] is the abelian

group generated by the isomorphisms classes of Cn−1[x, y] and subject to the relation [a] =
[b] + [c] for each (n− 1)-cells a, b and c such that a � b⊕ c,

− for any 0 � k � n − 2 and any k-composable (n − 1)-cells u and v of Cn−1, we

have [u] �k [v] = [u �k v].

If the spaces of (n − 1)-cells of C are Z-graded, K(C) has a structure of Z[q, q−1]-linear

(n− 1, n− 1)-category where for any (n− 1)-cell u of C, we have [u[1]] = q[u].
We say that C categorifies K(C), or is a categorification of K(C).

6.3. CATEGORIFICATION AND REWRITING

6.3.1. Karoubi envelope of an (n + 1)-polygraph. Let Σ be an (n + 1)-polygraph. The

Karoubi envelope of Σ is the (n+ 1)-polygraph Kar(Σ) defined by:
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− Kar(Σ)k = Σk for k < n− 1,

− Kar(Σ)n−1 = Σn−1 ∪ {Ae| e is a minimal idempotent of C},
− for each minimal idempotent e of C, we have sn−2(Ae) = sn−2(e) and tn−2(Ae) =
tn−2(e),

− Kar(Σ)n = Σn ∪ {pe, ie| e is a minimal idempotent of C},
− for each minimal idempotent e of C, we have sn−1(pe) = sn−1(e) and tn−1(pe) = Ae,

− for each minimal idempotent e of C, we have sn−1(ie) = Ae and tn−1(ie) = tn−1(e),

− Kar(Σ)n+1 = Σn+1 ∪ {πe, ιe| e is a minimal idempotent of C},
− for each minimal idempotent e of C, we have sn(πe) = e and tn(πe) = pe �n ie,

− for each minimal idempotent e of C, we have sn(ιe) = ie �n pe and tn(ιe) = 1Ae .

6.3.2. Proposition [?, Proposition 3.1.2.]. Let C be an n-category presented by an (n + 1)-
polygraph Σ. The Karoubi envelope of C is presented by the (n+ 1)-polygraph Kar(Σ).

Proof. Let Kar(C) be the Karoubi envelope of the n-category C. For k < n − 1, the n-

category Kar(C) has the same k-cells than C and Kar(Σ)k = Σk. Then, the (n+1)-polygraph Kar(Σ)
presents an n-category with the same k-cells than Kar(C). Let us now prove that Kar(Σ) presents

an n-category with the same (n− 1)-cells than Kar(C). Let e be an idempotent of C and let us

write for some implied bracketing:

e = e0 �k1 e1 �k2 · · · �km em
where all ei are minimal idempotents or identities and all ki are integer smaller than n− 1. By

denoting Aei = 1ei if ei is an identity, we can write for some implied bracketing:

Ae = Ae0 �k1 Ae1 �k2 · · · �km Aem
which corresponds to an (n− 1)-cell in the n-category presented by Kar(Σ). What remains to

prove is that the n-category Kar(Σ)∗/Kar(Σ)n+1 has the same n-cells and relations on n-cells

than Kar(C). There is an injective n-functor F from Kar(Σ)∗/Kar(Σ)n+1 to Kar(C) defined by:

− for k � n− 1, F sends each k-cell of Kar(Σ)k onto its representative in Kar(C),
− for each minimal idempotent e of C, then-functor F sends then-cell pe ontoα(1sn−1(e), e, e),

− for each minimal idempotent e of C, then-functor F sends then-cell ie ontoα(e, e, 1sn−1(e)).
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Let us prove that the n-functor F is surjective. Let e be an idempotent of C and let us write again

the decomposition into minimal idempotents:

e = e0 �k1 e1 �k2 · · · �km em.

We then have the decompositions:

α(1sn−1(e), e, e) = α(1sn−1(e0), e0, e0) �k1 α(1sn−1(e1), e1, e1) �k2 · · · �km α(1sn−1(em), em, em),

α(e, e, 1sn−1(e)) = α(e0, e0, 1sn−1(e0)) �k1 α(e1, e1, 1sn−1(e1)) �k2 · · · �km α(em, em, 1sn−1(em)).

Thus, the n-cells α(1sn−1(e), e, e) and α(e, e, 1sn−1(e)) are images by F of n-cells

of Kar(Σ)∗/Kar(Σ)n+1. Let now α(e, f, e ′) be an n-cell of the Kar(C) such that e and e ′

are idempotents of C. We have:

α(e, f, e ′) = α(e, e, 1sn−1(e)) �n−1 α(1sn−1(e), f, 1sn−1(e)) �n−1 α(1sn−1(e), e
′, e ′).

Thus, the n-cell α(e, f, e ′) is the image by F of an n-cell of Kar(Σ)∗/Kar(Σ)n+1. This concludes

the proof.

Let us remark that, because of this proposition, the construction of Karoubi envelope of a

polygraph verifies a universal property. If two polygraphs are Tietze-equivalent, their Karoubi

envelopes are also Tietze-equivalent.

6.3.3. Karoubi envelope of a globular extension. Let C be an n-category presented by

an (n + 1)-polygraph Σ. Let Γ be a globular extension of Σ�. We define a globular exten-

sion Kar(Γ) of Kar(Σ)� as follows. For each (n + 2)-cell A of Γ with n-source f and n-

target g, let P(f, g) be the set of parallel (n+ 1)-cells f ′ and g ′ of Kar(C) such that CS(f ′) = f
and CS(g ′) = g with CS being the canonical surjection (n + 1)-functor from Kar(Σ)� to Σ�.

We fix for each (f ′, g ′) in P(f, g) an (n+ 2)-cell Af ′,g ′ from f ′ to g ′. Then, we define

CS−1(A) =
⋃

(f ′,g ′)∈P(f,g)
Af ′,g ′ .

The Karoubi envelope of the globular extension Γ is the globular extension of Kar(Σ)� defined

by

Kar(Γ) =
⋃
A∈Γ

CS−1(A).
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6.3.4. Theorem [?, Theorem 3.1.5.]. Let C be an n-category and let (Σ, Σn+2) be a coherent
presentation of C. The (n+ 2, n)-polygraph (Kar(Σ),Kar(Σn+2)) is a coherent presentation of
the Karoubi envelope of C.

Proof. We proceed in four steps.

Step 1. Let f and g be parallel (n + 1)-cells of Kar(Σ)� such that there is an (n + 2)-cell A

from CS(f) to CS(g) in Σn+2. We prove that there is an (n+ 2)-cell from g to f in Kar(Σn+2)
�.

There is an (n+ 2)-cell of CS−1(A) from f to g. The inverse of this (n+ 2)-cell is in Kar(Σ)�.

Step 2. Let f and g be parallel (n + 1)-cells of Kar(Σ)� such that there is an (n + 2)-cell A

from CS(f) to CS(g) in Σn+2. Let f ′ and g ′ be parallel (n+ 1)-cells of Kar(Σ)� such that there

is an (n+ 2)-cell A ′ from CS(f ′) to CS(g ′) in Σn+2. Let us assume that the (n+ 1)-cells f �k f
′

and g �k g
′ are defined for an integer k < n. We prove that there is an (n+ 2)-cell from f �k f

′

to g �k g
′ in Kar(Σn+2)

�. There is an (n+ 2)-cell of CS−1(A) from f to g and an (n+ 2)-cell

of CS−1(A ′) from f ′ to g ′. Their k-composition is in Kar(Σ)�.

Step 3. Let f, g and h be parallel (n+ 1)-cells of Kar(Σ)� such that there is an (n+ 2)-cell A

from CS(f) to CS(g) in Σn+2 and an (n + 2)-cell B from CS(g) to CS(h) in Σn+2. We prove

that there is an (n + 2)-cell from f to h in Kar(Σn+2)
�. There is an (n + 2)-cell of CS−1(A)

from f to g and an (n+ 2)-cell of CS−1(B) from g to h. Their n-composition is in Kar(Σ)�.

Step 4. Let f and g be parallel (n+ 1)-cells of Kar(Σ)�. We prove that there is an (n+ 2)-cell

from f to g in Kar(Σn+2)
�. Because Σn+2 is a homotopy basis of Σ�, there is an (n + 2)-cell

from CS(f) to CS(g) obtained by compositions and inversions of (n + 2)-cells of Σn+2 and

identities (n+ 2)-cells. By steps 1, 2 and 3, this allows us to construct an (n+ 2)-cell from f

to g in Kar(Σn+2)
�.

6.3.5. Remark. The free (n+1)-category over the Karoubi envelope of an (n+1)-polygraph Σ

is not the Karoubi envelope of the free (n+ 1)-category Σ∗. Indeed, the only idempotents of Σ∗

are the identities (n + 1)-cells. Thus, Kar(Σ∗) is isomorphic to Σ∗ and not to Kar(Σ)∗. This

implies a homotopy basis of Kar(Σ∗) is not a homotopy basis of Kar(Σ)∗ in general.

6.3.6. Coherent presentation of the Karoubi envelope of a linear (n,n)-category. Let C be

a linear (n,n)-category and let (Σ, Σn+2) be a coherent presentation of C. Let Kar(Σn+2) be the

globular extension of Kar(Σ) defined as in ??. The (n+ 2, n)-polygraph (Kar(Σ),Kar(Σn+2))
is a coherent presentation of the Karoubi envelope of C.

Proof. To prove this proposition, we just have to prove that for each paralell (n + 1)-cells f

and g and each paralell (n + 1)-cells f ′ and g ′ of Kar(Σ)� and each scalar λ such that λf + f ′

and λg+ g ′ are defined, we can construct an (n+ 2)-cell from λf+ f ′ to λg+ g ′ in Kar(Σn+2)
�

if there is an (n+ 2)-cell A from CS(f) to CS(g) and an (n+ 2)-cell A ′ from CS(f ′) to CS(g ′)
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in Σn+2. There is an (n+ 2)-cells B from f to g in CS−1(A) and is an (n+ 2)-cells B ′ from f ′

to g ′ in CS−1(A ′). Then, Kar(Σn+2)
� contains the (n+ 2)-cell λB+B ′ from λf+ f ′ to λg+ g ′.

This concludes the proof.

6.3.7. Isomorphism proofs. Let Σ be a linear (n + 1, n)-polygraph. Let u and v be dis-

tinct (n− 1)-cells of the free linear (n+ 1, n)-category Σ�. An isomorphism proof between u

and v is a data (αu, αv) made of two (n+ 1)-cells in Σ� such that there exist n-cells u
au

�� v

and v
av

�� u verifying:

− αu is an (n+ 1)-cell from au �n−1 av to 1u,

− αv is an (n+ 1)-cell from av �n−1 au to 1v.

An isomorphism proof (αu, αv) is minimal if there is no (n− 1)-cell w, no integer k < n− 1
and no isomorphism proof (αu ′ , αv ′) other than (αu, αv) such that

(αu, αv) = (w �n−1 αu ′ , w �n−1 αv ′)

or

(αu, αv) = (αu ′ �n−1 w, αv ′ �n−1 w).

6.3.8. Direct sum proofs. LetΣ be a linear (n+1, n)-polygraph. Let a, b and c be (n−1)-cells

of the free linear (n+ 1, n)-category Σ�. A direct sum proof of a � b⊕ c is a data (αa, αb, αc)

made of three (n + 1)-cells in Σ� such that there exist n-cells a
pb

�� b, a
pc

�� c, b
ib

�� a

and c
ic

�� a in Σ� verifying:

− αa is an (n+ 1)-cell from pb �n−1 ib + pc �n−1 ic to 1a,

− αb is an (n+ 1)-cell from ib �n−1 pb to 1b,

− αc is an (n+ 1)-cell from ic �n−1 pc to 1c.

A direct sum proof (αa, αb, αc) is said to be minimal if there are no (n − 1)-cell u, no

integer k < n− 1 and no direct sum proof (αa ′ , αb ′ , αc ′) other than (αa, αb, αc) such that

(αa, αb, αc) = (u �n−1 αa ′ , u �n−1 αb ′ , u �n−1 αc ′)

or

(αa, αb, αc) = (αa ′ �n−1 u, αb ′ �n−1 u, αc ′ �n−1 u).
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6.3.9. Grothendieck decategorification of a linear (n + 1, n)-polygraph. Let C be a lin-

ear (n,n)-category presented by a linear (n+ 1, n)-polygraph Σ. The Grothendieck decategori-
fication of Σ is the linear Z-linear (n,n− 1)-polygraph K(Σ) defined by:

− for k � n− 1, the linear Z-linear (n,n− 1)-polygraph K(Σ) has the same k-cells than Σ,

− for each (n−1)-cells u and v of Σ�n−1 such that u 	= v and there is a minimal isomorphism

proof between u and v, there is an n-cell in K(Σ) from u to v.

− for each (n − 1)-cells a, b and c of Σ�n−1 such that there is a minimal direct sum proof

of a � b⊕ c, there is an n-cell in K(Σ) from a to b+ c.

6.3.10. Theorem [?, Theorem 4.1.8.]. Let C be a linear (n,n)-category presented by a lin-
ear (n + 1, n)-polygraph Σ. The Grothendieck decategorification K(Σ) of Σ presents the
Grothendieck decategorification K(C) of C.

Proof. By definition, the (n−1, n−1)-category presented by K(Σ) has the same k-cells as K(C)
for k < n− 1. This linear (n− 1, n− 1)-category is also generated by the same (n− 1)-cells

as K(C). Each relation verified by the (n − 1)-cells of the (n − 1, n − 1)-category presented

by K(Σ) is also verified by the (n−1)-cells of K(C). Let us now prove that each relation verified

by the (n − 1)-cells of K(C) is verified by the (n − 1)-cells of the (n − 1, n − 1)-category

presented by K(Σ).
Let a � b⊕ c be a direct sum in C. If there is a minimal proof of this direct sum, then there

is an n-cell in K(Σ)�n from [a] to [b] + [c]. Else, there are decompositions:

− a = u1 �n−2 (u2 �n−3 (· · · (un−1 �0 a ′ �0 un) · · · ) �n−3 u2n−3) �n−2 u2n−2,
− b = u1 �n−2 (u2 �n−3 (· · · (un−1 �0 b ′ �0 un) · · · ) �n−3 u2n−3) �n−2 u2n−2,
− c = u1 �n−2 (u2 �n−3 (· · · (un−1 �0 c ′ �0 un) · · · ) �n−3 u2n−3) �n−2 u2n−2

where all ui are (n− 1)-cells of C and the direct sum a ′ � b ′ ⊕ c ′ has a minimal proof. Hence,

by distributivity of the compositions there is an n-cell in K(Σ)�n from [a] to [b] + [c]. This

concludes the proof.

6.4. CATEGORY OF SOERGEL BIMODULES

6.4.1. Coxeter groups. A Coxeter group is a groupW generated by a finite set S and, for any s

and t in S, subject to the relations

(st)mst = 1

where eachmst is an element of N�2 ∪ {∞} such that
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− for each s in S, we havemss = 2,

− for each s in S and each t in S, we havemst = mts.

Ifmst = ∞, there is no relation between s and t. The data made of such a set S and the groupW

it generates is called a Coxeter system.

In the rest of this section, we fix (W,S) a Coxeter system.

6.4.2. Hecke algebras. The Hecke algebra associated to (W,S) is the Z[q, q−1]-algebra gener-

ated by the set {Ts|s ∈ S} and, for any s in S subject to the relations

T2s = (q−1)Ts + q,

and, for all s 	= t, the relations

TsTt · · ·︸ ︷︷ ︸
mst

= TtTs · · ·︸ ︷︷ ︸
mst

.

This algebra is denoted by H(W,S).

6.4.3. Category of Bott-Samelson bimodules. Let h be a vector space with basis {α∨
s |s ∈ S}.

Let us consider a subset {αs|s ∈ S} of h∗ verifying the following properties:

− for each s in S, we have αs(α
∨
s ) = 2,

− for each s in S and each t in S, we have αs(α
∨
t )αt(α

∨
s ) = 4(cos(

π
mst

))2 .

Let B be a basis of h∗. For each s in S, the Demazure operator associated to s is the linear

form ∂s of h∗ sending each element f of h∗ to f(α∨
s ). The category of Bott-Samelson bimodules,

denoted by DW,S or D if not ambiguous, is the linear (2, 2) category defined by:

− D has only one 0-cell,

− D has S as a set of generating 1-cells,

− the elements of B are generating 2-cells of D
− for each s ∈ S, D has the generating 2-cells:

, , , .

− for each s ∈ S and each f ∈ h∗, D is subject to the relations

= 0 = =

= = = =

= αs f = s.f + ∂sf
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− for each (s, t) of S× S such that s 	= t andms,t 	= ∞, we have a 2-cell

st · · ·︸ ︷︷ ︸
mst

⇒ ts · · ·︸ ︷︷ ︸
mst

represented by

· · ·
· · ·

− for each (s, t) of S× S such that s 	= t andms,t 	= ∞, we have the relation

· · ·
· · · = · · ·

· · ·
· · ·

− for each (s, t) of S× S such that s 	= t andms,t 	= ∞, we have the relation

· · ·
· · ·

=
· · ·
· · ·

− for each (s, t) of S× S such that s 	= t andms,t 	= ∞, we have the relation

· · ·
· · · = · · ·

· · ·

where

· · ·
· · ·

is the only idempotent of D such that the 2-cells

· · ·

· · ·
, · · ·

· · ·
, · · ·

are zero,
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− for each triple (s, t, u) of distinct elements of S such thatms,u = mt,u = 2, we have the

relation

· · ·
· · ·
· · ·

=

· · ·
· · ·

· · ·

− for each triple (s, t, u) of distinct elements of S such thatms,t = mt,u = 3 andms,u = 2,
we have the relation

=

− for each triple (s, t, u) of distinct elements of S such thatms,t = 3,ms,u = 2 andmt,u = 4,
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we have the relation

=

− for each triple (s, t, u) of distinct elements of S such thatms,t = 3,ms,u = 2 andmt,u = 5,
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we have the relation

− = X

whereX is a 2-cell which factors through some 1-cellw forw a subword of stutsututsututu,

see [?].

6.4.4. Category of Soergel bimodules. The category of Soergel bimodules associated to (W,S),
denoted by SBimW,S or SBim if not ambiguous, is the closure of the linear (2, 2)-category Kar(D)
by grading shift. This linear (2, 2)-category categorifies the Hecke algebra H(W,S).

6.4.5. A confluent presentation of D. In the linear (2, 2)-category D, all identity 2-cells can be

written as a sum of orthogonal non trivial idempotents, that is two of such distinct idempotents e1
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and e2 verify e1 �1 e2 = 0. All non identity idempotents of D appear in such a decomposition.

Let us consider the linear (3, 2)-polygraph Σ defined by:

− Σ has only one 0-cell,

− Σ1 = S,

− for each s ∈ S, Σ contains the 2-cells:

, , , .

− for each (s, t) of S× S such that s 	= t andms,t 	= ∞, Σ contains the 2-cells

st · · ·︸ ︷︷ ︸
mst

⇒ ts · · ·︸ ︷︷ ︸
mst

represented by

· · ·
· · ·

− for each (s, t) of S× S such that s 	= t andms,t 	= ∞, Σ contains the 3-cell

· · ·
· · · � · · ·

· · ·
· · ·

− for each (s, t) of S× S such that s 	= t andms,t 	= ∞, Σ contains the 3-cells

· · ·
· · · �

· · ·
· · · ,

· · ·
· · · � · · ·

· · ·

− for each (s, t) of S× S such that s 	= t andms,t 	= ∞, Σ contains the 3-cell

· · ·
· · · � · · ·

· · ·
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− for each triple (s, t, u) of distinct elements of S such that ms,u = mt,u = 2, Σ contains

the 3-cell

· · ·
· · ·
· · ·

�

· · ·
· · ·

· · ·

− for each triple (s, t, u) of distinct elements of S such thatms,t = mt,u = 3 andms,u = 2, Σ

contains the 3-cell

�

− for each triple (s, t, u) of distinct elements of S such thatms,t = 3,ms,u = 2 andmt,u = 4,
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Σ contains the 3-cell

�

− for each triple (s, t, u) of distinct elements of S such thatms,t = 3,ms,u = 2 andmt,u = 5,
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Σ contains the 3-cell

� + X

− for each 1-cell w of Σ�, Σ contains the 3-cell

1w �
n∑
k=1

ek

for a maximal integer n such that each ek is a non trivial idempotent.
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The linear (3, 2)-polygraph Σ is a presentation of D. Because of the last family of 3-cells, we

have rewriting sequences of the form

1w �
n∑
k=1

ek � (

n∑
k=1

ek) �1 (

n∑
k=1

ek) � · · ·

and Σ is not terminating. However, Σ is confluent. Indeed, each 2-cell of Σ� can be rewritten into

a unique linear combination of 2-cells whose class in D form a basis of each space of 2-cells.

Those bases are called light-leaves bases, see [?].
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Chapter 7
Affine oriented Brauer category and rewriting

Affine walled Brauer algebras were introduced by Rui and Su [?], and independenly by Sartori

[?], in the study of super Schur-Weyl duality. They show the Schur-Weyl duality between general

Lie superalgebras and affine walled Brauer algebras. The affine oriented Brauer category AOB
is a linear monoidal category introduced in [?] to encode walled Brauer algebras. Each walled

Brauer algebra is expressed as a morphism space of AOB. In particular, the category AOB is

used to prove basis theorems for the affine walled Brauer algebras given in [?]. More precisely,

Brundan, Comes, Nash and Reynolds provide an explicit basis for each affine walled Brauer

algebra. The proof of this theorem uses an intermediate result on the cyclotomic quotients of

AOB. A basis is then given for each morphism space of those quotients. Brundan, Comes, Nash

and Reynolds finally use those bases to construct a basis for each morphism space of AOB.

In this memoir, we give a constructive proof of the mentioned basis result. We study the

linear monoidal category AOB by rewriting methods. For this, we use the result from Section

?? of Chapter 4 and give a confluent presentation of AOB. This presentation is a linear (3, 2)-
polygraph denoted by AOB. The confluence property of this linear (3, 2)-polygraph gives us the

bases of the morphisms spaces of AOB explicited in [?]. The linear (3, 2)-polygraph AOB will

not be terminating, which will prevent us to prove that AOB is confluent by using Newman’s

Lemma, see Lemma ??. To prove that AOB is confluent, we will use the decreasingness property

introduced by van Ostroom in [?], see also [?]. We will prove that AOB is decreasing and then

use the theorem from [?] stating that decreasingness implies confluence.

Plan of Chapter. In Section ??, we recall from [?] the definition of the linear monoidal category

AOB using dotted oriented Brauer diagrams. Then, in Section ??, we define the linear (3, 2)-
polygraph AOB. We first prove that AOB is quasi-terminating by expliciting monomials we call

quasi-reduced. Then, we prove that AOB is a presentation of the linear monoidal category AOB.

We finally prove in ?? that AOB is confluent.
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7.1. THE CATEGORY AOB
7.1.1. Dotted oriented Brauer diagrams with bubbles. A dotted oriented Brauer diagram
with bubbles is a planar diagram such that:

− edges are oriented,

− edges are either bubbles or have a boundary as source and target,

− each edge is decorated with an arbitrary number of dots not allowed to pass through the

crossings.

A dotted oriented Brauer diagram is normally ordered if:

− all bubbles are clockwise,

− all bubbles are in the leftmost side region,

− all dots are either on a bubble or a segment pointing toward a boundary.

7.1.2. Equivalence of dotted oriented Brauer diagrams with bubbles. Two dotted oriented

Brauer diagrams are equivalent if one can be transformed into the other with isotopies and

Reidemeister moves. A description of those moves can be found in [?, Chapter I, Section 4]. An

isotopy can move a dot along an edge but cannot make a dot go through a crossing.

7.1.3. Definition of AOB. The affine oriented Brauer category AOB is the linear (2, 2)-
category with one 0-cell, two generating 1-cells and with 2-cells from a to b given by linear

combinations of dotted oriented Brauer diagrams with bubbles with source a and target b subject

to the following relations:

− invariance by equivalence given in ??,

−

= + .
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7.1.4. Presentation of AOB. Let us recall the presentation of AOB given by Brundan, Comes,

Nash and Reynolds in [?]. The generators of this presentation are:

i) only one 0-cell,

ii) two generating 1-cells denoted by ∧ and ∨,

iii) five generating 2-cells

1
c �� ∧∨, ∨∧

d �� 1, ∧∧
s �� ∧∧, ∧∨

t �� ∨∧, ∧
x �� ∧

respectively represented by:

, , , , .

The relations are:

= =

= = = +

= = .

7.1.5. Polygraphic presentation of AOB. Let us define the linear (3, 2)-polygraph AOB with

only one 0-cell and:

− AOB1 = {∧,∨},

− AOB2 =
{

, , , ,
}

,
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− AOB3 is made of the following 3-cells:

� �

� � � +

� �

7.1.6. Remark. The linear (3, 2)-polygraph AOB presents the linear (2, 2)-category AOB but

is not confluent. For example, the following critical branching is not confluent:

� � + .

Note that AOB verifies the relations

= , = .

Because of those relations, finding a terminating, a fortiori convergent presentation of AOB
with a finite number of 2-cells is not possible. We have indeed seen in ?? that such relations

cannot be oriented to make a terminating presentation. We will thus search for a confluent and

quasi-terminating presentation of AOB.

7.2. A QUASI-CONVERGENT PRESENTATION OF AOB
In this section, we define another presentation of AOB. We will call this presentation AOB. Then,

we will prove that AOB is a confluent and quasi-terminating presentation of the linear (2, 2)-
category AOB.
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7.2.1. Definition of AOB. We define the linear (3, 2)-polygraph AOB by:

− AOB has the same 0-cells and 1-cells than the linear (3, 2)-polygraph AOB,

− AOB2 = AOB2 ∪
{

, , , ,
}

,

− AOB3 is made of the following four families of 3-cells:

Isotopy 3-cells, ∀(•, •) ∈ {(∧,∨), (∨,∧)}, we have the following 3-cells

i0•
�

i1•
�

i21
�

i22
�

i23
�

i24
�

Reidemeister 3-cells, ∀(•, •) ∈ {(∧,∨), (∨,∧)},∀(•, •) ∈ {(∧,∨), (∨,∧)},∀• ∈ {∧,∨},

we have the following 3-cells

r1•,•
�

r2•,•,•
�

r3•,•
�

r4•,•
�

r5•,•
�

r6•,•
�

r7•
�

r8•
�

r9•
�

Ordering 3-cells
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o01
� +

o02
� −

o03
� −

o04
� +

o05
� −

o06
� +

o07
� +

o08
� −

o10
�

o11
� − 2

o12
� 2 − 2 + · · ·

Sliding 3-cells

s00
�

s01
� + 2

s02
� 2 + 2 + · · ·

s10
�

s11
� − 2

s12
� 2 − 2 − · · ·

where the last three families of 3-cells correspond to infinite families of relations which can

be calculated by induction. The first induction formula is given in [?]. If we denote the
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counterclockwise bubble with n dots

n

as un,0 and by expressing the clockwise bubbles withm dots

m

as u0,m, we have for any n andm of N:

un+1,m = un,m+1 − un,0 �1 u0,m.

Which can be used to rewrite un,0 as a linear combination of the family (uj0,i)0�i�n,j∈N. The

others induction formulas are:

vn+1,m = vn,m+1 +wn+m +

n−1∑
k=0

wm+n−k �1 vk,0,

v ′n+1,m = v ′n,m+1 +w
′
n+m −

m−1∑
k=0

v ′0,k �1 w
′
m+n−k

where vn,0, v0,m, v ′n,0 and v ′0,m respectively denote:

n , m , n , m

and where wn and w ′
n respectively denote:

n , n .

Let us first expand on the first chapter of [?]. This chapter defines first ribbon categories as

braided monoidal categories with duals and twist. The twist is a natural transformation θ from

the identity functor to itself satisfying:

θV⊗W = bW,V ◦ (θV ⊗ θW) ◦ bV,W
for each objects V andW, where b denotes the braiding. A ribbon category satisfies the axiom

θ∗ = θ.

An example of ribbon category is the category of ribbon tangles on a set S of colors. This

strict monoidal category RIBS is defined by:
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− the objects of RIBS are the words of the free monoid on S× {∨,∧},

− the morphisms of RIBS from a word u to a word v are the oriented tangles of colored

ribbons such that the word u is on the upper boundary and the word v is on the lower

boundary,

− two isotopic tangles are equal.

In this category, each object the twist corresponds to transversally twisting a ribbon by 360

degrees. Turaev then gives a presentation by generators and relations of RIBS. The generators

are the cups, caps, crossings and twistings of each ribbon colors and directions. The relations are

invariance by multiple moves Turaev describes as elementary isotopies and Reidemeister moves.

From this presentation of RIBS by generators and relations, we can present the category

RIB of ribbon tangles with only one color by generators and relations. Because RIB is a

monoidal category, we can describe it as a 2-category with only one 0-cell. The linearization

of RIB is thus a linear (2, 2)-category with the same 0-cell and 1-cells than RIB. We will

call RIBK this linear (2, 2)-category, where K is our fixed field. Let OB be the subcategory of

AOB defined by:

− OB0 = AOB0 and OB1 = AOB1,

− OB2 is made of the oriented Brauer diagrams with bubbles (without dots).

The linear 2-functor from RIBK to OB sending each ribbon to a string with the same direction

and ignoring the twists is full as noted in [?]. We derive from this fact a description of elementary

isotopies and Reidemeister moves first described in [?] for the linear (2, 2)-category AOB.

7.2.2. Proposition. The linear (3, 2)-polygraph AOB is a presentation of the linear (2, 2)-
category AOB.

Proof. All 3-cells of AOB correspond to a relation verified in the linear (2, 2)-category AOB by

Definition ??. Moreover, the set of 3-cells of type i0∗, r0∗, r1∗, r2∗, r4∗, and r5∗ contains all elementary

isotopies and Reidemeister moves given in [?] (Chapter 1, Section 4), and thus generates the

equivalence of dotted oriented Brauer diagram with bubbles. As a consequence, the 3-cells

of AOB are sufficient to find any relation verified in AOB.

Then, we define some particular 2-cells of AOB
�

2.
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7.2.3. Quasi-reduced monomials. We call a monomial of AOB quasi-reduced if the only

3-cells we can apply to it are of the form:

i � i − 1

� � +

2

� 2 + 2 + · · ·

� � −

2

� 2 + 2 + · · ·

� � −

2
� 2 + 2 + · · ·

� � +

2
� 2 + 2 + · · ·
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We call a 2-cell of the linear (2, 2)-category AOB
�

quasi-reduced if all monomials in its monomial

decomposition are quasi-reduced.

7.2.4. Lemma. The linear (3, 2)-polygraph AOB is locally confluent.

Proof. The linear (3, 2)-polygraph AOB is quasi-terminating by the fact that all quasi-reduced

monomials are quasi-normal forms. The linear (3, 2)-polygraph AOB is exponentiation free

because no quasi-reduced monomial m can be rewritten into λm for λ a scalar other than 1. We

will deduce local confluence of AOB by Lemma ??. We have to check that all critical branchings

of AOB are confluent.

We enumerate first the sources of the critical branchings which do not involve dotted bubbles,

starting with the overlapping of the isotopy 3-cells and continuing in the order in which the

3-cells are given. The final enumeration is given in the first section of the appendix ??. By doing

this, we remark we can eliminate multiple critical branchings similar to others. First, we can

ignore the directions of the ups and downs for each of the following interactions:

− all critical branchings involving two isotopy 3-cells other than i2k for some 1 � k � 4,

− all critical branchings involving an isotopy 3-cell other than i2k for some 1 � k � 4 and a

Reidemeister 3-cell,

− all critical branchings involving two Reidemeister 3-cells.

Indeed, the above 3-cells correspond to the relations verified by the category OB defined in [?].

Those relations do not depend on the up or down directions. Those relations are also invariant

by axial symmetry. Those facts allow us to withdraw multiple critical branchings from our

enumeration. In the same way, any critical branchings involving two isotopy 3-cells can be

studied up to axial symmetry.

The interactions between an ordering 3-cell and a Reidemeister 3-cell are not invariant by

symmetry. But, when a critical branching involving an ordering 3-cell and a Reidemeister 3-cell

rkl is confluent, all critical branchings involving an ordering 3-cell and a 3-cell of the form rk∗ or

a 3-cell whose source has an axial symmetry with the source of rk∗ are confluent. This fact allows

us to treat multiple cases of critical branching simultaneously.

We now verify each critical branching is confluent. In the second section of the appendix ??,

we give the source of each critical branching and a target attained by a confluence diagram for

this critical branching.

The sliding 3-cells can be seen as making a bubble going through an identity and creating

some additive residues. For each n of N, the only bubbles created by the 3-cells s0n and s1n have

less than n dots. Thus, treating the confluence of the critical branchings involving no sliding

3-cell other than s00 and s10 shows by induction on n all critical branchings involving sliding

3-cells are confluent. This deals with the totality of the critical branchings.
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7.2.5. Weight functions. Let C be a linear (2, 2)-category. A weight function on C is a func-

tion τ from C2 to N such that:

− for each 0-composable monomials a and b we have τ(a �0 b) = τ(a) + τ(b),

− for each 1-composable monomials a and b we have τ(a �1 b) = τ(a) + τ(b),

− for each 2-cell x, we have τ(x) = max{τ(a)|a appears in the monomial decomposition of x}.

7.2.6. Lemma. Each 2-cell of the linear (2, 2)-category AOB
�

can be rewritten into a quasi-
reduced 2-cell.

Proof. To prove that each 2-cell of AOB
�

2 rewrites into a normally dotted oriented Brauer

diagram, we give first a weight function τ on AOB
�

2 defined by:

τ = τ = τ = τ = 1

τ = τ = τ = τ = 3

τ = τ = 0

Then, we give the following procedure taking a monomialm as an entry:

− Whilem can be rewritten into a 2-cellm ′ such that τ(m ′) < τ(m) do:

– assignm tom ′
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− Whilem can be rewritten into a 2-cellm ′ without applying a 3-cell of the form:

i j � i − 1 j + 1 i j � i − 1 j + 1

� � +

2

� 2 + 2 + · · ·

� � −

2

� 2 + 2 + · · ·

� � −

2
� 2 + 2 + · · ·

� � +

2
� 2 + 2 + · · ·

do:
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– assignm tom ′

This procedure terminates because Σ is terminating without the sliding 3-cells and the isotopy 3-

cells that do not decrease the weight. This results in rewriting any 2-cell into a linear combination

of normally ordered Brauer diagrams. For each equivalence class of dotted oriented Brauer

diagram with bubbles, exactly one representative of this class can appear in a 2-cell attained by

the given procedure because there is no isotopy or Reidemeister 3-cell to apply anymore. Those

are the quasi-reduced monomials.

7.2.7. Lemma. The linear (3, 2)-polygraph AOB is decreasing.

Proof. We define the labelling to the quasi-normal form (N, <,ψ) on AOB where for each

rewriting step α of AOB, the integer ψ(α) is the distance from t2(α) to a quasi-reduced 2-cell.

By Lemma ??, every 2-cell of AOB
�

2 can be rewritten into a quasi-reduced one. This makes the

map ψ well-defined because rewriting sequences leading to a quasi-reduced 2-cell always exist.

The branchings of AOB are decreasing for this well-founded labelling. The decreasing diagrams

for the critical branchings of AOB are given in the third section of the appendix ??.

All critical branchings of AOB, by Theorem ??, all local branchings of AOB are decreasing

because AOB is exponentiation free.

As an immediate consequence of Theorem ??, Lemma ?? implies the following result:

7.2.8. Theorem. The linear (3, 2)-polygraph AOB is a confluent presentation of AOB.

7.3. BASES OF THE 2-CELLS SPACES OF AOB
Let Σ be a left-monomial linear (3, 2)-polygraph presenting the linear (2, 2)-category AOB
verifying the two following properties:

i) each monomial of the free linear (2, 2)-category Σ�2 corresponds to a dotted oriented Brauer

diagram with bubbles,

ii) each 2-cell of Σ�2 is congruent to a linear combination of normally ordered dotted oriented

Brauer diagrams.

Then, for any a and b in AOB1, any element of AOB2(a, b) is equal to a linear combination of

normally ordered dotted oriented Brauer diagrams. The vector space AOB2(a, b) has then a

generating family given by the equivalence classes of normally ordered dotted oriented Brauer

diagrams with bubbles with source a and target b

Let Σ be a left-monomial linear (3, 2)-polygraph presenting the linear (2, 2)-category AOB
verifying the two following properties:
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i) each monomial of the free linear (2, 2)-category Σ�2 corresponds to a dotted oriented Brauer

diagram with bubbles,

ii) a normally ordered dotted oriented Brauer is not congruent to a linear combination of

non-equivalent others.

The vector space AOB2(a, b) has then a free family given by the equivalence classes of normally

ordered dotted oriented Brauer diagrams with bubbles with source a and target b. Note that, by

Church-Rosser Theorem ??, the second property is implied by the following two properties:

i) Σ is confluent,

ii) a normally ordered dotted oriented Brauer does not rewrite into a linear combination of

non-equivalent others.

The linear (3, 2)-polygraph AOB is a presentation of AOB verying:

i) each monomial of the free linear (2, 2)-category AOB
�

2 corresponds to a dotted oriented

Brauer diagram with bubbles,

ii) each 2-cell of AOB
�

2 is congruent to a linear combination of normally ordered dotted

oriented Brauer diagrams.

iii) AOB is confluent,

iv) a normally ordered dotted oriented Brauer does not rewrite into a linear combination of

non-equivalent others.

Property i) is a direct consequence of the definition of AOB. Property ii) is a consequence of

Lemma ??. Property iii) is a consequence of ??. Let us now prove Property iv).

7.3.1. Lemma. In the free linear (2, 2)-category AOB
�

2, no normally ordered dotted oriented

Brauer can be rewritten into a linear combination of non-equivalent others.

Proof. To prove this Lemma, it is sufficient to show that a quasi-reduced 2-cell does not rewrite

into another quasi-reduced 2-cell. The only way to rewrite a quasi-reduced monomial is to apply

sliding 3-cells or isotopy 3-cells that do not decrease the weight. So, the only way to rewrite

a quasi-reduced monomial into a linear combination of others is to use rewriting paths of the

forms:

� � � � · · ·
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� � � + � · · ·

� � � − � · · ·

� � � − � · · ·

� � � + � · · ·

Then, a quasi-reduced 2-cell does not rewrite into a linear combination of others.

Thus, we get the following result as a consequence of Theorem ??:

7.3.2. Corollary [?, Theorem 1.2.]. Let a and b be two 1-cells of the linear (2, 2)-category AOB.
Then, the vector space AOB2(a, b) has a basis given by the equivalence classes of normally
ordered dotted oriented Brauer diagrams with bubbles with source a and target b.
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Chapter 8
Appendix

8.1. CRITICAL BRANCHINGS OF AOB

We give the enumeration of the critical branchings of the linear (3, 2)-polygraph AOB. This

enumeration is used in the proof of Lemma ??.

i) Critical branchings involving an isotopy 3-cell:

(i0•, i
1
•), (i

0
∧, i

2
2), (i

0
∨, i

2
3), (i

1
∧, i

2
1), (i

1
∨, i

2
4), (i

0
•, r

3
•,•), (i

1
•, r

4
•,•)

(i1∧, i
2
4), (i

1
∧, r

4
•,•), (i

1
∧, i

2
1), (i

2
1, r

3
∨,∧), (i

2
1, r

3
∨,∨), (i

2
3, r

4
∧,∨), (i

2
3, r

4
∧,∧)

ii) Other critical branchings involving a Reidemeister 3-cell:

(r1•,•, r
1
•,•), (r

1
•,•, r

2
•,•,•), (r

1
•,•, r

2
•,•,•), (r

1
•,•, r

4
•,•,•),

(r1•,•, r
5
•,•), (r

1
•,•, r

6
•,•), (r

1
•,•, r

7
•), (r

1
•,•, r

8
•), (r

1
∨,∧, o

0
6), (r

1
∨,∧, o

0
7), (r

1
∧,∨, o

0
5), (r

1
∧,∨, o

0
8),

(r1∨,∨, o
0
4), (r

1
∨,∨, o

0
7), (r

2
•,•,•, r

2
•,•,•), (r

2
∧,∧,∧, o

0
1), (r

2
∧,∧,∧, o

0
2), (r

2
∨,∧,∧, o

0
5), (r

2
∨,∧,∧, o

0
7),

(r2∧,∨,∧, o
0
5), (r

2
∧,∨,∧, o

0
6), (r

2
∧,∨,∧, o

0
7), (r

2
∧,∧,∨, o

0
1), (r

2
∧,∧,∨, o

0
2), (r

2
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iii) Other critical branchings involving a sliding 3-cell:

(o1∗, s∗), (s∗, s∗).

8.2. CONFLUENCE DIAGRAMS OF AOB

We give a confluence diagram for each critical branching of the linear (3, 2)-polygraph AOB we

need to check in the proof of Lemma ??.

� � � �

� + � �

112



8.2. CONFLUENCE DIAGRAMS OF AOB

� � � �

� � �

� + + � �

� � � �

� � +

113



CHAPTER 8. APPENDIX

� �
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� �

� �

� �

8.3. DECREASINGNESS OF AOB

We give a decreasing diagram for each critical branching of the linear (3, 2)-polygraph AOB we

need to check in the proof of Lemma ??.
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