
HAL Id: tel-01896325
https://theses.hal.science/tel-01896325

Submitted on 16 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint programming for lot-sizing problems
Grigori German

To cite this version:
Grigori German. Constraint programming for lot-sizing problems. Computer Arithmetic. Université
Grenoble Alpes, 2018. English. �NNT : 2018GREAM015�. �tel-01896325�

https://theses.hal.science/tel-01896325
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ
UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques et Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Grigori GERMAN

Thèse dirigée par
Jean-Philippe GAYON, Professeur à l’Université Clermont Auvergne
et codirigée par
Hadrien CAMBAZARD, Maı̂tre de conférences à l’Institut National Poly-
technique de Grenoble

préparée au sein du laboratoire G-SCOP
et de l’école doctorale MSTII

Programmation par contraintes pour le
dimensionnement de lots de production

Constraint programming for lot-sizing
problems

Thèse soutenue publiquement le 5/03/2018,
devant le jury composé de :

M. Jean-Philippe GAYON
Professeur à l’Université Clermont Auvergne, Directeur de thèse
M. Hadrien CAMBAZARD
Maı̂tre de conférences à l’Institut National Polytechnique de Grenoble, Co-
Encadrant de thèse
M. Christophe LECOUTRE
Professeur à l’Université d’Artois, Président
M. Stéphane DAUZERE-PERES
Professeur à l’Ecole des Mines de Saint-Etienne, Examinateur
Mme Safia KEDAD-SIDHOUM
Maı̂tre de conférences à l’Université Paris 6, Rapporteur
M. Christian ARTIGUES
Directeur de recherche CNRS au LAAS, Rapporteur

Merci à Hadrien, Jean-Philippe, Safia, Christian, Christophe, Stéphane, Bernard,
Olivier, Vincent, Pierre, Lucie, Matthieu, Lisa, Lucas, Sylvain, Alexandre, Tom, Clé-
ment, Nicolas, Hugo, Julien, Florence, mon papa et ma maman.

Contents

Résumé en français 11

1 Introduction 19
1.1 Production planning and lot-sizing . 20
1.2 Constraint Programming . 23

1.2.1 Constraint Satisfaction Problem and definitions 23
1.2.2 The resolution . 25
1.2.3 Global constraints and complexity 25

1.3 Filtering via dynamic programming 26
1.3.1 The example of the Knapsack problem 27
1.3.2 Filtering via the interpretation of DP as a graph 28

1.4 Other optimization tools . 30
1.4.1 Mixed integer linear programming 30
1.4.2 Integrated methods . 30

2 Single-item lot-sizing 31
2.1 Introduction . 31
2.2 Preliminaries . 33

2.2.1 Notations and example . 33
2.2.2 Mixed integer linear formulations 36
2.2.3 Linear relaxation . 37
2.2.4 An equivalent problem without lower bounds 37
2.2.5 Dynamic programming . 39

2.3 A new lower bound for the single-item lot-sizing 40
2.3.1 Lot-sizing sub-problem . 40
2.3.2 Combining disjoint sub-problems provides a lower bound . . 41
2.3.3 Combining lower bounds at best 42
2.3.4 Computing lower bounds for sub-problems 43

5

6| CONTENTS

2.3.5 Adaptation to a lower bound on setup costs 43
2.4 The lot-sizing global constraint . 43

2.4.1 Constraint programming background 43
2.4.2 Definition . 44
2.4.3 Complexity . 44

2.5 Filtering the LOTSIZING constraint . 47
2.5.1 Filtering when the setup variables are instantiated 47
2.5.2 Filtering cost lower bounds . 48
2.5.3 Filtering X and I via dynamic programming 49
2.5.4 Scaling the filtering based on dynamic programming 49
2.5.5 Adaptation to take into account the setup cost 50

2.6 Numerical results on the single-item lot-sizing problem 51
2.6.1 Single-item lot-sizing . 52
2.6.2 Scaling the global constraint . 54

2.7 Single-item lot-sizing with side constraints 55
2.7.1 Disjunctive production constraints 55
2.7.2 Q/R constraints . 56
2.7.3 Disjunctive and Q/R constraints 58

2.8 Conclusion . 58
2.9 Practical use of LOTSIZING and tuning the consistency level 59

3 Multi-item lot-sizing with shared setup costs 61
3.1 Introduction . 61
3.2 Description and models . 63
3.3 Instances and experimental setup . 64
3.4 Differences with the single-item . 66

3.4.1 Branching only on setup variables: the use of a multi-flow
problem . 66

3.4.2 A redundant LOTSIZING . 67
3.4.3 First numerical tests . 69
3.4.4 On the necessity to branch on setup variables 70
3.4.5 Different levels of filtering . 70
3.4.6 Results on the benchmark . 71

3.5 Reasoning on the cardinalities . 72
3.5.1 Extending the dynamic programming 73
3.5.2 Filtering based on cardinalities 74
3.5.3 Numerical results . 75

3.6 More general cost structures . 76
3.6.1 Piece-wise linear production and inventory costs 77
3.6.2 Numerical results . 79

3.7 Conclusion . 80

CONTENTS | 7

4 Filtering via linear programming 81
4.1 Introduction . 81
4.2 Notations . 83
4.3 Traditional filtering using LP: reduced-cost filtering 83
4.4 A new generic filtering algorithm based on LP 85
4.5 Ideal formulations of polynomial global constraints 89

4.5.1 ALLDIFFERENT and GLOBALCARDINALITY 89
4.5.2 The family of SEQUENCE constraints 90

4.6 Numerical results . 92
4.6.1 LP and reduced-cost filtering for the ALLDIFFERENT constraint 92
4.6.2 Filtering one SEQUENCE constraint 93
4.6.3 The Car-sequencing problem 93

4.7 Conclusion and future work . 95
4.8 What if the integrality property is not met? 96

4.8.1 On the validity of the LPF procedure 96
4.8.2 Arc-consistency is not achieved 99

Conclusion and perspectives 101

List of Figures

1 Graphe de flot du lot-sizing mono-produit 14

1.1 The graph of DPKnap . 29

2.1 Flow representation of the single-item lot-sizing problem 32
2.2 A small example . 34
2.3 Minimizing the setup cost . 35
2.4 Minimizing the inventory cost . 35
2.5 An optimal solution . 35
2.6 The linear relaxation of MILP_AGG is a minimum cost network flow

problem . 38
2.7 Sub-problem (Lu,v) . 41
2.8 The constraint network (Lr) and the corresponding intersection graph 46
2.9 Bounds when filtering It with the WISP support filtering 50

3.1 Multi-item lot-sizing problems . 62
3.2 A small example of multi-item . 68
3.3 The view of the redundant LOTSIZING on the example 69
3.4 A step function to model unitary production costs 77
3.5 A step function to model unitary holding costs 78
3.6 A better lower bound with a step function for unitary costs 79

4.1 Sequence . 94
4.2 The function et is convex . 97
4.3 An example with MINIMUMWEIGHTALLDIFFERENT 100

8

List of Tables

1.1 Common extensions to the single-item lot-sizing problem 22
1.2 Three consistency levels . 25
1.3 A small example of the Knapsack problem with four items 27

2.1 Indexing sub-problems . 41
2.2 Single-item instance classes . 53
2.3 Single-item lot-sizing - CP and DPLS 53
2.4 Single-item lot-sizing - MILP . 53
2.5 Instance classes for the scaling of LOTSIZING 54
2.6 Scaling the global constraint . 54
2.7 Instance classes for lot-sizing with disjunctive constraints 55
2.8 Single-item lot-sizing with disjunctions 56
2.9 Single-item lot-sizing with Q/R . 57
2.10 Single-item lot-sizing with disjunctives and Q/R 58

3.1 Classes of instances . 65
3.2 Coefficients of the variables in the multi-flow matrix 67
3.3 Baseline (first 20 instances) . 69
3.4 Baseline (instances 21 to 40) . 70
3.5 With or without a multi-flow? (first 20 instances) 70
3.6 With or without a multi-flow? (instances 21 to 40) 70
3.7 Benefits of the redundant LOTSIZING (first 20 instances) 71
3.8 Benefits of the redundant LOTSIZING (instances 21 to 40) 71
3.9 Results on the first classes of the benchmark 72
3.10 New CP models based on cardinality variables 75
3.11 Redundancy through cardinality variables (first 20 instances) 76
3.12 Redundancy through cardinality variables (instances 21 to 40) 76
3.13 Variable unitary costs (first 20 instances) 79
3.14 Variable unitary costs (instances 21 to 40) 79

9

10| LIST OF TABLES

4.1 QuasiGroup Completion: filtering the ALLDIFFERENT constraint . . 93
4.2 Car-sequencing Sets 1 and 2 . 95

Résumé en français

La planification de production est un domaine riche en problèmes complexes de la
recherche opérationnelle et de l’optimisation combinatoire. En particulier, les prob-
lèmes de dimensionnement de lots (lot-sizing), introduits par [99], ont été largement
étudiés. Beaucoup de ces problèmes sont polynômiaux et abordés par programma-
tion dynamique. En présence de certaines extensions, comme des capacités de pro-
duction variables au cours du temps, ces problèmes peuvent devenir NP-complets.
Ces derniers sont souvent traités par programmation linéaire en nombres entiers et
de nombreuses formulations linéaires ont été proposées [13, 71]. Plus récemment,
des travaux se sont intéressés à la résolution de problèmes de lot-sizing par la pro-
grammation par contraintes [52]. Les auteurs introduisent une contrainte globale
en planification de production qui considère un ensemble de produits à réaliser
avant leurs dates limites de production sur une machine de capacité donnée avec un
coût de stockage limité. L’approche traitée dans [52] relève cependant davantage de
l’ordonnancement (détermination des dates de début des activités) alors que cette
thèse considère un horizon temporel plus tactique (détermination des quantités à
produire sur un horizon discrétisé).

L’objectif de cette thèse est d’étudier la pertinence d’un solveur par contraintes
pour les problèmes de lot-sizing. Nous introduisons une contrainte globale pour un
problème de lot-sizing mono-produit relativement général et le filtrage est réalisé à
partir de techniques de filtrage de ressources sur les graphes d’états d’algorithmes
de programmation dynamique. Nous définissons aussi une nouvelle technique de
filtrage par programmation linéaire qui pourrait permettre d’améliorer le filtrage
de la contrainte globale. Il s’agit d’une technique générique très utile lors de la
conception de nouvelles contraintes globales en programmation par contraintes.

La thèse est structurée en quatre chapitres. Le chapitre 1 définit les notions néces-
saires pour suivre la construction de la contrainte globale et présente un algorithme
de filtrage qui s’appuie sur la programmation dynamique.

Le chapitre 2 introduit la contrainte globale LOTSIZING prenant en compte des

11

12| RÉSUMÉ EN FRANÇAIS

capacités et des coûts variables au cours de l’horizon de planification. Nous consid-
érons à la fois des coûts fixes et des coûts unitaires (par unité de produit) de pro-
duction, des coûts unitaires de stockage, ainsi que des capacités de production et de
stockage. Nous pensons que cette contrainte globale est une brique importante pour
la modélisation et la résolution de nombreuses extensions difficiles (multi-produits,
multi-échelons, etc). Nous posons les bases algorithmiques pour la réalisation du
filtrage qui apporte des informations intéressantes sur les domaines des variables
de décision (production et stockage) ainsi que des bornes inférieures des coûts pris
individuellement (coûts fixes de production, coûts variables de production, coûts de
stockage). Des résultats expérimentaux valident l’approche proposée en comparant
la résolution de différents modèles avec des modèles de programmation linéaire en
nombres entiers.

Le chapitre 3 s’intéresse aux problèmes multi-produits et plus particulièrement
au problème de lot-sizing multi-produits avec capacités et coûts fixes partagés. Nous
analysons comment des problèmes complexes peuvent être abordés grâce à LOT-
SIZING. Dans ce même chapitre la contrainte globale est étendue afin de prendre
en compte des coûts unitaires de production et de stockage linéaires par morceaux.
Le filtrage est lui aussi renforcé par l’utilisation de variables de cardinalités redon-
dantes.

Finalement, le chapitre 4 présente une contribution plus générique de la thèse
avec la définition d’un procédé de filtrage par programmation linéaire. Il s’agit
d’une méthode générique qui peut se révéler précieuse lors de la conception de
contraintes globales. Nous montrons qu’il est possible d’obtenir l’arc cohérence
pour n’importe quel ensemble de contraintes qui a une formulation idéale par une
unique résolution d’un programme linéaire. Nous adaptons ce résultat pour faire
du filtrage partiel dans le cas ou l’ensemble de contraintes considéré n’a pas de re-
striction. Appliquée à la contrainte LOTSIZING, elle peut être utile afin de propager
plus de raisonnements sur les problèmes de flot ou de multi-flot durant la recherche
et de fournir l’arc cohérence pour les contraintes de SEQUENCE définies par les vari-
ables de cardinalité.

Le problème de lot-sizing mono-produit

Le problème de lot-sizing (appelé (L)) consiste à planifier la production d’un
unique type de produit sur un horizon fini de T périodes afin de satisfaire une de-
mande dt à chaque période t. Le coût de production à une période t est constitué
d’un coût unitaire pt (coût payé par produit) et d’un coût fixe st payé si au moins
une unité est produite. Le coût de stockage est un coût unitaire ht payé par produit
en stock à la fin de la période t. De plus, la production (respectivement le stockage)
est limitée par des capacités minimales et maximales αt et αt (respectivement βt et

| 13

βt) à chaque période. L’objectif est de définir un plan de production satisfaisant les
demandes à chaque période, respectant les capacités et minimisant le coût global
du plan de production. Les notations utilisées pour la représentation des données
et pour les variables sont résumées ci-dessous:

Paramètres :

• T : Nombre de périodes.

• pt ∈ R+ : Coût unitaire de production à t.

• ht ∈ R+ : Coût unitaire de stockage entre les périodes t et t + 1.

• st ∈ R+ : Coût fixe à t (payé si au moins une unité a été produite à t).

• dt ∈N: Demande à la période t.

• αt, αt ∈N : Quantités minimales et maximales de production à la période t.

• βt, βt ∈ N : Quantités minimales et maximales de stockage entre les périodes
t et t + 1.

• I0 ∈N : Niveau de stock initial.

Variables :

• Xt ∈N : Quantité produite à t.

• It ∈N : Quantité stockée entre t et t + 1.

• Yt ∈ {0, 1} : Vaut 1 si au moins une unité est produite à t, 0 sinon.

• C ∈ R+ : Coût global du problème.

• Cp ∈ R+ : Somme des coûts unitaires de production.

• Ch ∈ R+ : Somme des coûts unitaires de stockage.

• Cs ∈ R+ : Somme des coûts fixes de production.

La figure 1 présente le problème comme un graphe avec les variables et les
paramètres sur chaque arc. Pour chaque période, les arcs entrants correspondent
à la production (arcs verticaux) et au stockage depuis la période précédente (arcs
horizontaux) potentiels. Les arcs sortants correspondent à la demande (arcs verti-
caux) et au stockage potentiel en fin de période (arcs horizontaux).

14| RÉSUMÉ EN FRANÇAIS

… …𝑡

𝑑𝑡

1

[α1, α1]

𝑑1

𝑇

𝑑𝑇

[α𝑡 , α𝑡] [α𝑇 , α𝑇]

[β1, β1] [β𝑡 , β𝑡] [β𝑇 , β𝑇]

[β𝑡−1, β𝑡−1]

… …𝑡

𝑑𝑡

[𝛼𝑡, 𝛼𝑡]

[𝛽𝑡, 𝛽𝑡]

[𝛽𝑡−1, 𝛽𝑡−1]

𝑡 + 1𝑡 − 1

Figure 1: Graphe de flot du lot-sizing mono-produit

Un modèle mathématique pour le problème (L) peut s’écrire :

minimize C = Cp + Ch + Cs (1)
It−1 + Xt = dt + It ∀ t = 1 . . . T (2)

Xt ≤ αtYt ∀ t = 1 . . . T (3)

Cp =
T

∑
t=1

ptXt (4)

Ch =
T

∑
t=1

ht It (5)

Cs =
T

∑
t=1

stYt (6)

Xt ∈ {αt, . . . , αt} ∀ t = 1 . . . T (7)

It ∈ {βt, . . . , βt} ∀ t = 1 . . . T (8)

Yt ∈ {0, 1} ∀ t = 1 . . . T (9)

où (2) sont les contraintes d’équilibre du flot pour chaque période et (3) sont
les contraintes de coût fixe fixant Yt à 1 si une production est effectivement faite
à la période t ; notons également que le paiement d’un coût fixe à t (i.e Yt = 1)
n’implique pas forcément une production à t (i.e Xt > 0). Finalement, (4), (5) et (6)
sont les expressions des différents coûts.

Une contrainte globale pour le lot-sizing

Nous introduisons formellement la contrainte globale LOTSIZING. Elle porte
sur le vecteur de variables X = 〈X1, . . . , XT〉, I = 〈I1, . . . , IT〉, Y = 〈Y1, . . . , YT〉 et les
quatre variables de coût suivantes Cp, Ch, Cs, C de (L). Les données sont définies
par data = {(pt, ht, st, dt, αt, αt, βt, βt) | t ∈ J1, TK}.

| 15

Définition LOTSIZING(X, I, Y, Cp, Ch, Cs, C, data) a une solution si et seulement si il
existe un plan de production, solution de (L) qui satisfait:

Cp ≤ Cp

Ch ≤ Ch

Cs ≤ Cs

C ≤ C

Cette contrainte globale est NP-difficile car le problème de lot-sizing mono-produit
considéré est NP-difficile. Nous avons analysé la complexité d’obtenir différents
niveaux de cohérences pour LOTSIZING. La borne cohérence de LotSizing peut être
atteinte en temps pseudo-polynomial. Si l’on considère seulement les contraintes
de réalisabilité, c’est-à-dire sans les bornes supérieures des différents coûts, la borne
cohérence se fait en temps polynomial. Finalement, sur ce sous-problème de réalis-
abilité, la borne cohérence est équivalente à la range cohérence.

En définitive, trouver une solution réalisable est facile, ce sont les coûts qui ren-
dent ce problème difficile. C’est pour cela que nous avons orienté les algorithmes
de filtrages développés dans la thèse vers la programmation dynamique. Cette
dernière peut se révéler coûteuse mais fournit des raisonnements forts. La con-
trainte globale LOTSIZING comprend plusieurs éléments.

Règle de dominance. Une fois que les variables de coût fixe sont instanciées, le
problème devient polynomial car il s’agit d’un simple problème de flot. Nous avons
utilisé cette propriété pour éviter de brancher sur les variables de quantités X et I.
Ainsi le branchement ne se fait que sur les variables binaires Y et le problème de
flot est résolu une fois que tous les Y sont instanciés afin de définir les quantités op-
timales. Cette propriété de dominance ne tient pas toujours suivant les contraintes
additionnelles posées par l’utilisateur.

Transformation du problème. Afin de simplifier les algorithmes de filtrage et
d’accélérer les algorithmes de programmation dynamique, une transformation sim-
ple est appliquée pour obtenir un problème équivalent sans bornes inférieures.

Calcul de bornes inférieures. Des bornes inférieures des différents coûts sont cal-
culées en résolvant des problèmes de flot pour Cp, Ch et Cs et par programmation
dynamique pour Cs et C.

Filtrage des variables. Finalement, le filtrage des variables s’opère grâce à un
algorithme de filtrage qui s’appuie sur l’utilisation de ressources dans le graphe
d’états du programme dynamique. Le programme dynamique peut être représenté

16| RÉSUMÉ EN FRANÇAIS

par un graphe où la solution optimale est trouvée en résolvant un problème de plus
court chemin.

La résolution du programme dynamique est un processus lourd et peut ne pas
passer à l’échelle. Dans ce cas, nous utilisons un procédé classique en lot-sizing,
la décomposition en sous-problèmes. Les sous-problèmes de taille "raisonnable"
peuvent alors être résolus par programmation dynamique, les autres sont résolus
sous-optimalement par flot. Une borne inférieure et le filtrage sont alors dérivés de
la résolution d’un problème d’ordonnancement d’intervalles pondérés (Weigthed
Interval Scheduling).

Les résultats numériques montrent d’une part que le modèle décomposé de
programmation par contraintes ne peut pas résoudre le problème mono-produit
alors que le modèle s’appuyant sur LOTSIZING donne des solutions en temps
raisonnable. Les expérimentations avec des contraintes additionnelles combi-
natoires avec lesquelles le modèle PLNE a plus de difficulté, montrent que la
programmation par contraintes peut se révéler plus efficace pour résoudre certains
problèmes de lot-sizing. Nous avons aussi validé numériquement l’adaptation des
algorithmes de filtrage sur des grosses instances pour lesquelles le programme
dynamique ne passe pas à l’échelle.

Vers des problèmes plus complexes

Nous étudions une extension naturelle du problème de lot-sizing mono-produit:
le multi-produits. Il s’agit alors d’optimiser globalement la production de plusieurs
types de produits qui utilisent les mêmes ressources : les coûts fixes et les capacités
peuvent être partagés par tous les produits. Dans ce cas, la propriété de dominance
qui nous permet de brancher seulement sur les variables Y n’est plus valide. Nous
montrons qu’une autre forme de dominance existe et qu’il est tout de même possible
d’éviter de brancher sur les variables de quantités. Il faut considérer le problème
global une fois que toutes les variables binaires sont fixées et en général, soit le
problème est polynomial soit il est rapidement résolu en pratique par PLNE car les
structures des problèmes de lot-sizing sont très proches de problèmes de flot.

Nous étendons LOTSIZING en permettant la modélisation des coûts unitaires de
production et de stockage par des fonctions linéaires par morceaux convexes. Il
s’agit d’une caractéristique qui simplifie énormément la modélisation de certains
problèmes de lot-sizing et ne dégrade pas la complexité du problème.

Nous améliorons la puissance du filtrage en ajoutant des variables de cardinal-
ités redondantes. Le programme dynamique prenant en compte ces variables est
cependant trop coûteux. Le gain pourrait être significatif en développant un algo-
rithme de filtrage plus simple.

Nous explorons les possibilités de modélisation grâce à des contraintes

| 17

LOTSIZING redondantes. Celles ci permettent de capturer la globalité du problème,
de raisonner plus efficacement et de calculer de meilleures bornes inférieures. Les
expérimentations montrent que les modèles de programmation par contraintes ne
sont pas compétitives par rapport à la PLNE pour ces problèmes classiques purs
sans contraintes additionnelles plus combinatoires.

Un nouvel algorithme de filtrage par programmation
linéaire

La programmation par contraintes utilise parfois la programmation linéaire pour
filtrer des variables. Par exemple, le filtrage par coûts réduits vient de la recherche
opérationnelle et des méthodes d’optimisation linéaires et permet de réduire les
domaines des variables grâce aux coûts réduits obtenus après résolution d’un pro-
gramme linéaire. Une autre technique de filtrage consiste à fixer une variable à une
valeur puis de résoudre un programme linéaire afin de vérifier si cette valeur est
cohérente. Cette dernière est assez coûteuse car elle nécessite autant d’appels à un
solveur de programmation linéaire que de couples variable/valeur. Nous avons
développé un nouvel algorithme de filtrage générique qui nécessite une unique ré-
solution de programme linéaire. Dans le cas où la formulation est idéale, c’est-à-
dire que l’ensemble des contraintes a la propriété d’intégralité, le filtrage fait l’arc
cohérence. C’est particulièrement le cas dans le domaine de la planification de pro-
duction qui comporte souvent des sous-problèmes de flots ou multi-flots.

Le principe du théorème général est simple. Prenons un ensemble de contraintes
qui a une formulation idéale avec N variables et M contraintes. L’objectif est de
rechercher un point intérieur x du polytope défini par ces contraintes. Ce point in-
térieur permet de décoller au maximum les variables de leurs bornes. S’il arrive
qu’une variable xt de x soit toujours collée à sa borne, cela signifie que toutes les so-
lutions entières de l’ensemble de contraintes vérifient que xt est collée à cette même
borne. Si on prend une formulation idéale avec une variable 0/1 pour chaque cou-
ple variable/valeur, on obtient l’arc cohérence du réseau de contraintes.

Nous montrons qu’il est possible de trouver un point intérieur grâce à un unique
programme linéaire avec N + M contraintes et 2N variables. La complexité tradi-
tionnellement observée de la résolution d’un programme linéaire étant O(M log N),
notre technique de filtrage a une complexité O((N + M) log N). La complexité de la
technique de filtrage mentionnée plus haut, avec autant d’appel au solveur linéaire
que de couples variable/valeur, a une complexité O(NM log N).

Les résultats numériques valident la procédure sur les contraintes globales
ALLDIFFERENT et la famille des contraintes de SEQUENCE avec une application au
problème d’ordonnancement de voitures (car sequencing).

Ce résultat est adapté au cas où la formulation n’est pas idéale et nous montrons

18| RÉSUMÉ EN FRANÇAIS

que le filtrage est toujours valide mais incomplet, c’est-à-dire que les valeurs qui
sont filtrées sont bien incohérentes mais que toutes les valeurs incohérentes ne sont
pas filtrées.

Chapter 1

Introduction

Lot-sizing problems are crucial in the production planning field and consist in de-
termining quantities to produce each time period to optimize several costs – among
which one can find production, inventory or setup costs. Classical approaches for
academic pure lot-sizing problems, such as mixed integer linear programming or
dynamic programming, are generic and efficient. However, real world problems
with constraints inherent to the industry are often dealt with non generic heuristic
or complex approaches. Constraint programming is a generic optimization frame-
work that allows the modeling of a wide range of problems. It performs very well
on problems with strong combinatorial structures, where a feasible solution is usu-
ally hard to find and where the cost function can give strong inferences, i.e. the
constraints modeling the cost can provide strong reasoning mechanisms. Schedul-
ing problems are one of the most successful applications of constraint programming
with problems such as nurse rostering, task sequencing and job-shop scheduling to
mention a few.

This thesis is a first step to tackle lot-sizing problems using constraint program-
ming. We use and combine some of the huge amount of knowledge on lot-sizing
problems since 1958 to develop a constraint programming framework. We have the
intention to help solve intricate, full of shady side constraints lot-sizing problems
that mixed integer linear programming might have difficulties to handle. In this
thesis, we build a global constraint that embeds a most generic single-item single-
level lot-sizing problem. The basic constraint programming decomposed model
is inefficient as there are no global reasoning on the variables. We claim that this
new global constraint is a useful modeling brick that is a first step to model and
solve complex lot-sizing problems. The propagation and filtering algorithms are
widely based on dynamic programming, linear programming and network flow
well-known techniques.

In order to evaluate the feasibility of building a CP solver for production plan-

19

20| INTRODUCTION

ning problems, the thesis is divided into four chapters that gradually investigate the
construction of a global constraint for lot-sizing.

The goal of this introduction is to provide the reader with some context around
lot-sizing problems and insights on how to solve them using generic and classi-
cal optimization methods. We present an overview of how lot-sizing fits into the
production planning field, then the main optimization method used in the the-
sis, namely constraint programming. We also investigate the power of global con-
straints in constraint programming and the advantages of building NP-hard global
constraints. Finally, we detail a resource-based filtering algorithm derived from the
use of dynamic programming algorithms and show its application on an example.
It is a key filtering algorithm that is applied several times in this work.

Chapter 2 defines the LOTSIZING global constraint as the conjunction of the con-
straints of the single-item single-level lot-sizing problem. We study the complexity
of achieving several consistency levels and describe the propagation and filtering
mechanisms that are mainly based on dynamic programming. We show a way to
tackle scalability problems using a natural and classical decomposition into sub-
problems. Several problems with side constraints are then solved and compared to
other classical models to assess the power of the global constraint.

Chapter 3 is dedicated to the multi-item version. This important extension of the
single-item lot-sizing problem helps us improve the filtering of the global constraint
and we show how to use it on more complex lot-sizing problems. The improve-
ments use redundant cardinality constraints and extend LOTSIZING as we model
the unitary costs as step functions.

Finally, in a more general constraint programming framework, chapter 4 presents
a new generic filtering algorithm based on linear programming. This is an improve-
ment of a naive filtering algorithm that is commonly used in early stages of global
constraints design. We show that arc-consistency can be achieved with a single call
to a linear programming solver if the set of constraints has the integrality property.
We show that the filtering remains correct although incomplete when there is no
restriction on the set of constraints.

1.1 Production planning and lot-sizing
Production planning consists in planning the use of resources to achieve defined
production goals over a time horizon [88]. These goals can be to determine either
the resources that are needed, the production rate, the capacities, the schedule of the
workers, etc. Most of the problems require a lot of data such as costs and demands
that are usually estimated or forecast. We do not consider here how they are ob-
tained. Production planning is divided in three levels depending on the time hori-

1.1 PRODUCTION PLANNING AND LOT-SIZING | 21

zon considered. Long-term planning is the strategic level of production planning
and is generally defined over a few years depending on the product and market.
Its goal is to define the infrastructures (warehouses, factories, products, etc) and ac-
tivities needed to achieve certain goals (manufacture a product, etc). The time unit
of the strategic level is usually the month up to the year. Mid-term planning is the
tactical level and is defined over a few months. The infrastructures being already
fixed by the strategic level, what remains is to define the machines, the quantities to
produce at each period, the production rate and build different production plans.
These production plans allow the decision makers to evaluate alternative solutions,
to define capacity and material requirement and to take informed decisions. The
time unit can be the day or the week up to the month. Short-term planning is the
operational level – scheduling constitutes a great part of it – where infrastructures,
machines, activities/tasks and products are already fixed and the goal is to exploit
them at best. The operational level produces schedules for the machines day by
day: for each day, it finds the best feasible sequence of activities/tasks to optimize
the inventory, the idle times, the setup times, the production costs, etc. The time
unit is the minute up to the hour.

Many pure academic problems can be considered to model each level of pro-
duction planning. The thesis focuses on problems from the tactical level and more
specifically lot-sizing problems. Note that all the problems studied in the thesis
are deterministic problems as opposed to stochastic problems where some data or
decisions can depend on probabilistic laws.

Lot-sizing problems are typically problems from the tactical level and can be
declined in many different forms. A lot is a specified quantity of certain products
that is destined to be produced or sold. The main question asked is how to decide
lot sizes? Given a discrete time horizon – represented by a series of T periods –
, the goal is to decide the quantities to produce at each period while minimizing
a combination of different costs. The optimization is usually a trade-off between
inventory, production and setup costs. Lot-sizing models come from stock opti-
mization with the classical economic order quantity (EOQ) model [47, 100]. The in-
troduction of [64] gives a comprehensive review of litterature on this problem and
on the evolution of inventory management problems in general. The core problem
was defined in 1958 by Wagner and Within: the uncapacitated single-item lot-sizing
problem [99]. Since, many extensions of the original problem have been studied
and a non exhaustive list is presented in table 1.1 [71]. Lot-sizing problems and the
state of the art algorithms have been discussed in several surveys over the years
[26, 28, 34, 44, 54].

The time decomposition, or the definition of the periods, in lot-sizing problems
depends on the product and industry at hand. The size of the buckets – the time
discretization – allows lot-sizing problems to be integrated to a certain extent with
the operational level of production planning. The main goal of lot-sizing is to ex-

22| INTRODUCTION

Extension Description
Backlog Demands can be satisfied later but you must pay for the

late units
Start ups A start up cost is paid at the start of a sequence of setup

costs
Varying capacities The capacities of the resources can be different at each

period
Sales More units than the demand can be sold every period
Multi-level The problem is divided in layers (levels) where the de-

mands of a layer is usually the production of the next
layer. The resources form a network

Multi-item Different types of products flow in the network with con-
straints that link them: they are produced on the same
machine for instance

Piecewise/concave/convex costs Different cost functions can be used
Minimum length setup sequences Each time a production is activated, at least a certain

number of production periods must follow
Lost sales Not satisfying the whole demand is possible but to a cer-

tain cost
Production time windows The demands must be satisfied from a production in a

certain time window (It can be used to model the per-
ishability of products)

Lower bounds If there is a production, a minimum amount must be pro-
duced

Online Demands are not totally known beforehand and are re-
vealed incrementally

Table 1.1: Common extensions to the single-item lot-sizing problem

ploit batch sizing flexibility before the activities are fixed as in scheduling. Dis-
crete or continuous-time horizons can be considered when planning. Long horizons
are more suited for aggregate planning problems with large buckets whereas small
buckets or continuous-time models are fit for very short-term planning problems.
Lot-sizing usually considers a long, discrete time horizon and does not examine the
details of the production but rather deals with the products in lots, and thus can
be seen as an abstraction of scheduling. They have sometimes been integrated with
problems from the operational level as scheduling problems. In scheduling, the
tasks are often derived from the quantities decided by lot-sizing problems. Small
bucket lot-sizing models integrate scheduling as the time decomposition brings the
problems closer to the operational models. Two main examples are the discrete
lot-sizing and scheduling problem [40] and the job-shop lot-sizing and scheduling
problem [59].

In conclusion, lot-sizing is an adaptable and scalable modeling tool for many
production planning problems. Besides very simple lot-sizing models, most of them

1.2 CONSTRAINT PROGRAMMING | 23

are NP-hard. The main problem studied in this thesis is a most generic version of the
single-item single-level lot-sizing problem and will be presented in the next chapter.
It is an NP-Hard problem (knapsack 0/1 is a special case [71]). Some works have
been done with constraint programming [52, 90], but to our knowledge, the results
on lot-sizing for the last 60 years were not exploited to perform filtering.

1.2 Constraint Programming
"Constraint programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming:
the user states the problem, the computer solves it."

Eugene C. Freuder, Constraints, April 1997

Constraint Programming (CP) is a generic exact optimization technique that ap-
peared in the early 1970s and comes mostly from the Artificial Intelligence field. It
is a declarative and model-based method that is widely used to solve mathemati-
cal and combinatorial problems such as scheduling problems. The theoretical basis
of CP solvers are the use of logical inferences to search for feasible solutions: the
constraints reason and make deductions on the domains of the variables to reduce
the search space. The goal is to find feasible assignments of values to variables
in a problem where the relations between variables are modeled as arbitrary con-
straints. As in linear programming, the word "programming" does not refer here
to programming in any computer language but rather to an earlier definition of the
word, a plan or a notice on the set of actions to take to achieve a goal.

1.2.1 Constraint Satisfaction Problem and definitions

A Constraint Satisfaction Problems (CSP) is the problem to find an assignment of
values to the decision variables that satisfies all given constraints [50]. A CSP con-
sists of a set of variables, with a finite domain of values for each variable, and a set
of constraints on these variables. We denote by D(Vi) ∈ Z the domain of variable
Vi and by Vi (resp. Vi) the maximum (resp. minimum) value in D(Vi). CP relies
on the propagation of the constraints and the filtering of the variables during the
search to efficiently prune the search tree and find feasible solutions. These notions
are specified just after, the main idea being that in a node of the search tree, the
constraints reason in turn on their variables to remove inconsistent values and find
contradictions. Objective functions are naturally tackled by CP when only improv-
ing feasible solutions are allowed. CP, just as mixed integer linear programming,

24| INTRODUCTION

uses an intuitive and expressive modeling language. One advantage of CP is that
any type of constraints can be modeled, they are not necessarily linear.

In order to reduce the search space and remove only unfeasible solutions, CP
relies on the notion of consistency. Consistency is a property of the domains of the
variables that implies they do not contain a contradiction to some extent. Enforcing
consistency is a means to reduce the search space by removing inconsistent values
from the domains of the variables, i.e. values that do not belong to a feasible so-
lution. Different levels of consistency can be achieved when removing all or just a
part of inconsistent values. Let us formally define some notions and three levels of
consistency. Let c be a constraint on variables 〈V1, . . . , Vn〉.
Definition 1 A support for c is a tuple of values 〈v1, . . . , vn〉 which satisfies c and such
that vi ∈ D(Vi) for each variable Vi.

Definition 2 A bound support is a tuple of values 〈v1, . . . , vn〉 which satisfies c and such
that Vi ≤ vi ≤ Vi and vi ∈ Z for each Vi.

Note that a value vi that is in a bound support does not necessarily belong to the
domain of the corresponding variable Vi since domains can have holes.

Definition 3 A variable Vi is arc consistent (AC) for constraint c if each value of D(Vi)
belongs to a support for c.

Definition 4 A variable Vi is bound consistent (BC) for constraint c if Vi and Vi belong
to a bound support for c.

Definition 5 A variable Vi is range consistent (RC) for constraint c if each value of D(Vi)
belongs to a bound support for c.

Definition 6 A constraint c is AC (resp. BC, RC) if all its variables are AC (resp. BC,
RC).

Definition 7 A CSP is AC (resp. BC, RC) if each constraint is AC (resp. BC, RC).

The following example illustrates the three notions of AC, BC and RC. Consider
the following linear constraint over two integer variables x and y:

2x = y, x ∈ {1, 2, 4} and y ∈ {4, 5, 6, 7, 8}
The three levels of consistency are applied to the example and showed in table

1.2. The bound consistent domains are {2, 4} and {4, 5, 6, 7, 8} since we just check
if the bounds belong to a bound support: only 1 can be removed from the domain
of x as 〈1, 2〉 is not a bound support. For instance, the bound support for y = 8 is
〈4, 8〉. The range consistent domains are {2, 4} and {4, 6, 8} since values 5 and 7 do
not belong to a bound support. Indeed 〈2.5, 5〉 and 〈3.5, 7〉 are not bound supports
as the values in a bound support must be in Z. The value 6 for y is range consistent
since 〈3, 6〉 is a bound support. Finally the arc consistent domains are {2, 4} and
{4, 8} as we remove all inconsistent values.

1.2 CONSTRAINT PROGRAMMING | 25

Consistency level D(x) D(y)
Initial domains {1, 2, 4} {4, 5, 6, 7, 8}

BC {2, 4} {4, 5, 6, 7, 8}
RC {2, 4} {4, 6, 8}
AC {2, 4} {4, 8}

Table 1.2: Three consistency levels

1.2.2 The resolution

The search in CP is a tree search where at each node a certain level of consistency
is enforced before the solver takes a decision which is an assignment of a variable
to one of the values of its domain. Each constraints c is associated to a filtering
algorithm that may remove some values that are inconsistent with c. At each node
of the search tree, the filtering algorithms of the constraints are called in turn until
a fixed point is reached, i.e. the domains of the variables are no more modified. In
short, all the constraints are propagated one by one (the reasoning mechanisms of
each constraint is activated) and filter their variables (they remove values that are
not consistent with the current states of the variables). If a contradiction is found
(a domain is emptied, a constraint cannot be satisfied, etc) there is a backtrack. CP
solvers are not entirely black box solvers since branching is left to the user although
a lot of effort has been made in recent years to design generic heuristics [25, 46, 61,
66]. A great variety of branching strategies can be implemented to suit the user’s
problem and they usually tremendously impact the resolution.

1.2.3 Global constraints and complexity

Let us now define the main focus of this thesis and one of the main strengths of
Constraint Programming, namely global constraints [17, 77, 79, 81]. A global con-
straint encapsulates a conjunction of constraints that propagate together in order to
filter more efficiently. "Global constraints specify patterns that reoccur in many problems.
There are, however, only a limited number of common constraints which repeatedly occur
in problems. One strategy for developing new global constraints is to identify conjunctions
of constraints that often occur together, and developing constraint propagation algorithm
for their combination" [21]. The – rather intuitive – idea is to not let each constraint
reason on its own but to consider certain groups of constraint as a whole. More-
over global constraints try to regroup constraints for which there is a propagation
algorithm that filters the variables efficiently and that form a logical, specialized
and useful pattern of constraints to model many problems. In addition, global con-
straints are a very interesting modeling tool as well since they allow the user to
easier describe its problems and in an aggregated way. Indeed, it is more practical

26| INTRODUCTION

to set one global constraint than to set each constraint independently.
The global constraint ALLDIFFERENT(X1, . . . , Xn) for instance, states that all the

variables X1 to Xn must take different values and uses matching theory ([77]) to filter
more than the decomposition of all the combination of difference constraints – the set
of constraints where the variables are pairwise different. ALLDIFFERENT(X, Y, Z)
defines the same feasible region as {X 6= Y, X 6= Z, Z 6= Y}, yet the global constraint
propagates stronger reasoning. Take the following example:

X ∈ {1, 2, 3}, Y ∈ {1, 2}, and Z ∈ {1, 2}

When propagating the difference constraints one at a time, no value can be removed:
they are locally consistent. However ALLDIFFERENT(X, Y, Z) can see the three con-
straints together and remove the values 1 and 2 from the domain of X.

A lot of work has been done on global constraints to represent a great variety of
conjunction of constraints. There exists a global constraint catalog that references
some 400 global constraints at that date [16]. One of the main characterizations of
global constraints is the difficulty of the underlying problem defined by the set of
constraints. Some global constraints are polynomial (ALLDIFFERENT [60], ELEMENT
[94], COUNT [30], etc) while others are NP-hard (N-VALUE [20, 69], CUMULATIVE
[6], etc). More details on the general complexity of global constraints are given in
[21]. The main advantage of building polynomial global constraints is that AC is
fast to achieve. In practice, the user tries to solve a problem, let us call it P. Global
constraints allow to find structural properties of P and cluster the constraints. The
user finds a sub-problem Q of P that can be modeled with a global constraint and
thus improves the filtering of Q instead of having the decomposed set of constraints
of Q propagating one by one. If Q is NP-Hard, modeling it with polynomial con-
straints may weaken a lot its propagation and filtering. When creating NP-hard
global constraints, the modeling bricks are often more general and help better cap-
ture the nature of the combinatorial difficulty of the problem. The drawback being
that it is usually very costly to achieve AC, even in practice and that the user may
have to settle for a lesser level of filtering.

1.3 Filtering via dynamic programming
We present now Dynamic Programming (DP) and how we use it in this thesis in
combination with CP to filter the decision variables of a problem. DP is a well-
known and widely used exact optimization method [19,33,35]. In the thesis, we are
going to use and present only deterministic DP; insights and details about stochas-
tic DP can be found in [83]. This technique is based on the decomposition of the

1.3 FILTERING VIA DYNAMIC PROGRAMMING | 27

problem into stages. The problem is decomposed into sub-problems and the opti-
mal solution of a sub-problem is used as input for the next sub-problem. The sub-
problems differ depending on the problem at hand. Their optimization is therefore
not detailed by the generic definition of dynamic programming and depends on the
problem. For the DP algorithms used in this thesis, it usually boils down to the
computation of a minimum or a maximum between several values. Three elements
are needed to define a DP algorithm over a given problem: an initial condition, a
recursion formula and an objective function. The space complexity is usually given
by all the combinations of the state variables.

1.3.1 The example of the Knapsack problem

A classical example is the well-known DP algorithm for the Knapsack problem.
Given a bag of fixed capacity Cmax and N items with sizes (wi) and values (vi),
the Knapsack problem [32, 65] consists in finding the set of items to fit in the bag
that maximizes the sum of their values. The classical integer programming model
writes:

maximize
N

∑
i=1

vixi (1.1)

N

∑
n=1

wixi ≤ Cmax (1.2)

xi ∈ {0, 1} ∀ i = 1 . . . N (1.3)

where the binary variable xi equals to 1 is item i is taken in the bag and 0 other-
wise. The objective function (1.1) tends to maximize the sum of values of the items
taken in the bag and constraint (1.2) models the capacity. Table 1.3 gives a small
example with N = 4 items where the bag capacity is Cmax = 3.

i wi vi
1 1 3
2 2 6
3 1 1
4 1 3

Table 1.3: A small example of the Knapsack problem with four items

We call DPKnap the dynamic programming algorithm that solves the Knapsack
problem. g (i, w) is the maximum value that can be reached using the i first items

28| INTRODUCTION

and using a capacity w of the bag. The recursive formula is the following:

∀ i ∈ J1, NK, ∀ w ∈ J0, CmaxK

g (i, w) =

{
max{g (i− 1, w− wi) + vi, g (i− 1, w)} if w− wi ≥ 0
g (i− 1, w) otherwise

The initial conditions are g (0, ∗) = 0. The optimal solution is given by g (N, Cmax).
In the example, the optimal value is g (4, 3) = 9. The algorithm runs in pseudo-
polynomial time O(NCmax).

There exists another way of implementing the algorithm DPKnap. Forward and
backward recursion are two ways of solving a DP algorithm. In the case of the
Knapsack problem the reverse DP is computed by taking the items in the reverse
order. gr (i, w) is the maximum value that can be reached using the n− i last items
and using a capacity w of the bag. The recursion formula is:

∀ i ∈ J1, NK, ∀ w ∈ J0, CmaxK

gr (i, w) =

{
max{gr (i + 1, w− wi) + vi, gr (i + 1, w)} if w− wi ≥ 0
gr (i + 1, w) otherwise

The initial conditions are gr (N, ∗) = 0. The optimal solution is given by gr (0, Cmax).
In the example, the optimal value is given by gr = (4, 3) = g (0, 3) = 9.

1.3.2 Filtering via the interpretation of DP as a graph

The filtering algorithm that we present uses the interpretation of a DP algorithm as a
graph assuming a finite number of discrete states. A node in this graph corresponds
to a state of the execution of the DP algorithm. The graph with all the states of the
example is shown in figure 1.1. The costs on the arcs are the increase of the objective
function when going from one state to the next. The optimal solution is obtained by
finding a longest path in this graph: the two optimal solutions of the example are
shown in bold in the graph.

We use this graph and the graph of the reverse DP to design a filtering algorithm.
This is based on the principle of resource-based filtering that exploits resource ad-
ditivity. It originates from rules used to simplify big graph instances [9, 14] and
later used in CP to compute shortest path filtering [45]. The two graphs and lower
bound of the objective (upper bound in case of a minimization problem) allow for
the filtering of the decision variables. When representing all the states in a graph,
the optimal solution is found by solving a path problem (finding the longest – short-
est when minimizing – path from the initial state to the final state usually). As the
Knapsack problem is a maximization problem, take a lower bound LB on the objec-
tive – any feasible solution for instance. We filter the variables with the following
rules:

1.3 FILTERING VIA DYNAMIC PROGRAMMING | 29

𝑔(4,3)

𝑔(3,2)

𝑔(3,3)𝑔(2,1)

𝑔(2,2)

𝑔(2,0)

𝑔(2,3)

𝑔(1,1)

𝑔(1,2)

𝑔(1,3)

𝑔(1,0)

𝑔(0,1)

𝑔(0,2)

𝑔(0,3)

𝑔(0,0)

𝟑

𝟑

3

3

𝟔

𝟔
𝟎

0 0 0

0

0

𝟎

0

𝟎

𝟎

1

0

1

1

Figure 1.1: The graph of DPKnap

∀ i ∈ J1, NK

max
w∈J0,CmaxK

g (i− 1, w) + vi + gr (i + 1, w− wi) < LB⇒ item i cannot be taken

max
w∈J0,CmaxK

g (i− 1, w) + gr (i + 1, w) < LB⇒ item i has to be taken

These rules are based on sums of partial upper bounds. For the first one, we add:

• g (i− 1, w): an upper bound of the value of considering the i− 1 first items

• vi: the cost of taking item i

• gr (i + 1, w−wi): an upper bound of the value of considering the n− i + 1 last
items

The resulting sum is the maximum value that can be reached when taking item i in
the bag. We then compare this sum to the global lower bound of the problem and
if it is strictly smaller, this means that item i cannot be taken in an optimal solution.
For the second one, we add:

• g (i− 1, w): an upper bound of the value of considering the i− 1 first items

• gr (i+ 1, w): an upper bound of the value of considering the n− i+ 1 last items

The result is the maximum value that can be reached when not taking item i in the
bag. Again, if this sum is smaller than the lower bound, we can deduce that item i
has to be taken into the bag. Here if we have a lower bound LB = 8, item 3 cannot
be taken in the bag, item 2 has to be taken and items 1 and 4 are not fixed.

30| INTRODUCTION

1.4 Other optimization tools
1.4.1 Mixed integer linear programming
Mixed Integer Linear Programming (MILP) is a very common optimization tech-
nique, widely used in operations research. It is the process of optimizing a linear
function subject to a finite number of linear equality and inequality constraints on
integer and real variables. Generic solvers such as CPLEX get more and more ef-
ficient and are typically used to fast model and solve a lot of production planning
problems. The reader can refer to [31], [101] and [71] to get a more detailed intro-
duction to MILP and its applications to production planning.

1.4.2 Integrated methods

The three optimization methods presented here (CP, DP and MILP) are often used
together to make the most of the advantages of all of the techniques. The filtering
algorithms of global constraints are often derived from OR methods (graph theory,
network flows, dynamic programming, linear programming, etc). Some problems
are also solved using hybrid methods [53, 84] in the case where CP or MILP can
have difficulties on some parts of the problems. Hybridization sometimes happens
by decomposing the problem into a MILP master problem and a CP slave problem.
Having a CP master problem then a MILP slave problem is uncommon since relax-
ations and cuts are both better understood in MILP and feasibility sub-problems,
where inference be very strong, are usually better solved with CP. Other work suc-
cessfully integrate MILP and CP to solve problems that were intractable with only
one of the two methods [3, 24, 91].

Chapter 2

Single-item lot-sizing

2.1 Introduction
The field of production planning addresses numerous complex problems covered
by operations research and combinatorial optimization. In particular, lot-sizing
problems have been broadly studied. The core problem [99] and several variants
have been solved by Dynamic Programming (DP) in polynomial or pseudo-polynomial
time. Other variants (e.g. time varying production capacity and setup costs, multi-
echelon) are NP-hard and are most of the time dealt with Mixed Integer Linear
Programming (MILP) formulations (see e.g. [13, 71]).

State-of-the-art approaches for complex lot-sizing problems are currently based
on polyhedral techniques such as cutting plane algorithms and can handle a large
class of problems with side constraints. Nonetheless theses techniques may even-
tually fail when facing combinatorial additional constraints. In this chapter, we
investigate alternative generic approaches based on combinatorial techniques and
designed within the Constraint Programming (CP) framework. The rationale is that
a lot of algorithmic results have been obtained on the fundamental problems in this
field over the last sixty years. We propose to reuse them as filtering mechanisms
and building blocks of a generic solver for lot-sizing. This thesis is a first step in that
direction: we introduce a new global constraint LOTSIZING embedding the single-
item lot-sizing problem. LOTSIZING appears to be especially generic and suits well
in the modeling of a great variety of lot-sizing problems. The problem being NP-
hard, we prove several complexity results on achieving different consistency levels
for the constraint. We use a time decomposition to propose a new lower bound for
the single-item lot-sizing problem. This time decomposition combined with classi-
cal results, namely DP algorithms, enables us to derive interesting cost-based filter-
ing algorithms for LOTSIZING.

31

32| SINGLE-ITEM LOT-SIZING

The capacitated single-item lot-sizing problem In this chapter, we focus on the
following single-item lot-sizing problem – denoted by (L) – which is used as a build-
ing block to tackle more complex lot-sizing problems. The objective is to plan the
production of a single product over a finite horizon of T periods J1, TK in order to
satisfy a demand dt at each period t, and to minimize the total cost. The (per unit)
production cost at t is pt and a setup cost st is paid if at least one unit is produced at
t. An holding cost ht is paid for each unit stored at the end of period t. Furthermore
the production (resp. the inventory) is bounded by minimal and maximal capacities
αt and αt (resp. βt and βt) at each period t.

Figure 2.1 shows the problem as a graph with the bounds of the variables on
each arc. For each period, the incoming arcs corresponds to the possible production
(vertical arcs) and inventory from the previous period (horizontal arcs). The out-
going arcs correspond to the demand (vertical arcs) and inventory at the end of the
period (horizontal arcs). A mathematical model is given in 2.2.2.

… …𝑡

𝑑𝑡

1

[α1, α1]

𝑑1

𝑇

𝑑𝑇

[α𝑡 , α𝑡] [α𝑇 , α𝑇]

[β1, β1] [β𝑡 , β𝑡] [β𝑇 , β𝑇]

[β𝑡−1, β𝑡−1]

… …𝑡

𝑑𝑡

[𝛼𝑡, 𝛼𝑡]

[𝛽𝑡, 𝛽𝑡]

[𝛽𝑡−1, 𝛽𝑡−1]

𝑡 + 1𝑡 − 1

Figure 2.1: Flow representation of the single-item lot-sizing problem

In the literature, one can found several models with upper bounds on either
production or inventory. It is however unusual to include lower bounds. We make
this assumption to be consistent with the CP framework that states domains for the
variables.

Literature review The CP literature is very limited in the field of lot-sizing prob-
lems. To the best of our knowledge, [52] is the only paper to study a global con-
straint. They consider a production planning problem in which a set of items has to
be produced before their production deadline on a limited capacity machine, with
the objective of minimizing stocking costs. This problem can be solved in poly-
nomial time and is a special case of (L) where production costs are set to zero
(pt = st = 0, ht = h). It can be seen as a scheduling problem with deadlines and
the objective of minimizing the total earliness (1|d̃j, pj = 1|∑ Ej) with Graham no-
tation). In their approach, a decision variable is associated to each item and speci-
fies in which period the item has to be produced. This approach is suitable to deal
with scheduling problems but seems less relevant to address lot-sizing problems for

2.2 PRELIMINARIES | 33

which large quantities of the same item can be produced in the same period. Note
also that CP solvers have been used in the past to solve lot-sizing problems (see e.g.
[90] for a distribution multi-echelon system).

We now focus the literature review on some special cases of problem (L). There
is no paper, to our knowledge, that considers lower bounds on production and in-
ventory. [99] shows that the uncapacitated problem(αt = βt = +∞) can be solved
by DP in O(T2). This complexity has later been improved to O(T log T) [5, 38, 98].
When adding a constant production capacity and a constant setup cost, (st = s,
αt = α), the problem can be solved in O(T4) with concave costs [41] and in O(T3)
with linear costs [95]. When the production capacity varies with time, the problem
is NP-hard [22]. Note that when pt = ht = 0, (L) is equivalent to a knapsack prob-
lem. With time-varying inventory capacities, the problem can be solved in O(T2)
with production and inventory setup costs [11, 62].

The rest of the chapter is organized as follows. Section 2.2 presents algorithms
from the literature that will be re-used latter. Section 2.3 presents a new lower bound
for this problem based on a time decomposition. Section 2.4 presents the LOTSIZ-
ING global constraint and states complexity results for achieving bound and range
consistency. Section 2.5 presents cost-based filtering mechanisms for LOTSIZING.
Section 2.6 compares numerically the performances of LOTSIZING with two MILP
formulations, DP and a basic CP model. Section 2.7 considers two extensions with
side constraints.

2.2 Preliminaries
This section presents classical MILP formulations and DP approaches, that will be
used latter in the chapter. We also show that problem (L) is equivalent to a problem
without lower bounds on production and inventory.

2.2.1 Notations and example

We list below a summary of the main notations.

Parameters

• T ∈N: Number of periods.

• pt ∈N: Unit production cost at t.

• ht ∈N: Unit holding cost between t and t + 1.

• st ∈N: Setup cost at t (paid if at least one item is produced at t).

34| SINGLE-ITEM LOT-SIZING

• dt ∈N: Demand at t.

• αt, αt ∈N: Minimal and maximal production quantities at t.

• βt, βt ∈N: Minimal and maximal inventory at the end of period t.

• I0 ∈N: Initial inventory.

Variables

• Xt ∈N: Quantity produced at t.

• Yt ∈ {0, 1}: Setup variable that equals 1 if at least one item is produced at t, 0
otherwise.

• It ∈N: Inventory at the end of period t.

• C ∈N: Total cost.

• Cp ∈N: Sum of unit production costs.

• Cs ∈N: Sum of setup production costs.

• Ch ∈N: Sum of holding costs.

We denote by X, I and Y the vectors 〈X1, . . . , XT〉, 〈I1, . . . , IT〉 and 〈Y1, . . . , YT〉.
Without loss of generality we consider I0 = 0. We also consider IT = 0. Indeed,
we can compute the minimum mandatory quantity to store at the end of period T
from the production and inventory capacity constraints. If this quantity q is strictly
positive, we add a dummy period T + 1 at the end of the time horizon with pT+1 =
hT+1 = 0, αT+1 = βT+1 = 0 and dT+1 = q.

To better understand the optimization challenges of the problem, take the exam-
ple in figure 2.2. The parameters are directly available on the graph.

21

0,15

3
0

0,9 0,3

0,12 0,9
4 5

0

0,3 0,3

0,6 0,3

3 3 3 3 3

1 3 1 1 1
1 2 2 20 2

2 1 1 1

𝑿𝒕
𝒑𝒕
𝒔𝒕

𝑰𝒕

𝒉𝒕

𝒅𝒕

Figure 2.2: A small example

2.2 PRELIMINARIES | 35

Let us look at three different solutions. Figure 2.3 presents a solution that intends
to minimize the global setup cost: the whole demand is produced at the beginning
of the horizon. The consequence is that the global inventory cost is very high. Fig-
ure 2.4 presents a solution that intends to minimize the global inventory cost: the
demand is produced at each period with the consequence that the global setup cost
is high. Finally, the optimal solution is presented in figure 2.5 the production, in-
ventory and setup costs are optimized while taking into account the production
capacities.

21

15

3
0 12 9

4 5
06 3

3 3 3 3 3

21

3

3
0

3 3

4 5
0

3 3

3 3 3 3 3

21

3

3
0

6 3

3
4 5

0

3

3

3 3 3 3 3

𝐶𝑝 = 15

𝐶ℎ = 42
𝐶𝑠 = 1
𝐶 = 𝟓𝟖

𝐶𝑝 = 21

𝐶ℎ = 0
𝐶𝑠 = 27
𝐶 = 𝟒𝟖

𝐶𝑝 = 27

𝐶ℎ = 6
𝐶𝑠 = 7
𝐶 = 𝟒𝟎

Figure 2.3: Minimizing the setup cost21

15

3
0 12 9

4 5
06 3

3 3 3 3 3

21

3

3
0

3 3

4 5
0

3 3

3 3 3 3 3

21

3

3
0

6 3

3
4 5

0

3

3

3 3 3 3 3

𝐶𝑝 = 15

𝐶ℎ = 42
𝐶𝑠 = 1
𝐶 = 𝟓𝟖

𝐶𝑝 = 21

𝐶ℎ = 0
𝐶𝑠 = 27
𝐶 = 𝟒𝟖

𝐶𝑝 = 27

𝐶ℎ = 6
𝐶𝑠 = 7
𝐶 = 𝟒𝟎

Figure 2.4: Minimizing the inventory cost

21

15

3
0 12 9

4 5
06 3

3 3 3 3 3

21

3

3
0

3 3

4 5
0

3 3

3 3 3 3 3

21

3

3
0

6 3

3
4 5

0

3

3

3 3 3 3 3

𝐶𝑝 = 15

𝐶ℎ = 42
𝐶𝑠 = 1
𝐶 = 𝟓𝟖

𝐶𝑝 = 21

𝐶ℎ = 0
𝐶𝑠 = 27
𝐶 = 𝟒𝟖

𝐶𝑝 = 27

𝐶ℎ = 6
𝐶𝑠 = 7
𝐶 = 𝟒𝟎

Figure 2.5: An optimal solution

36| SINGLE-ITEM LOT-SIZING

2.2.2 Mixed integer linear formulations

Problem (L) can be fomulated with an aggregated MILP model (see e.g. [71]):

minimize C = Cp + Ch + Cs (2.1)
It−1 + Xt = dt + It ∀ t = 1 . . . T (2.2)

Xt ≤ αtYt ∀ t = 1 . . . T (2.3)

Cp =
T

∑
t=1

ptXt (2.4)

(MILP_AGG) Ch =
T

∑
t=1

ht It (2.5)

Cs =
T

∑
t=1

stYt (2.6)

Xt ∈ {αt, . . . , αt} ∀ t = 1 . . . T (2.7)

It ∈ {βt, . . . , βt} ∀ t = 1 . . . T (2.8)

Yt ∈ {0, 1} ∀ t = 1 . . . T (2.9)

where (2.2) are the flow balance constraints for each period and (2.3) are the setup
constraints enforcing Yt to 1 if a production is made at t. Note that paying a setup
cost at t (i.e. Yt = 1) does not necessarily imply a production at t (i.e. Xt > 0), which
will be useful in multi-item problems with shared setup costs. Finally, (2.4), (2.5)
and (2.6) express the various costs. When (L) is solved as a MILP, the variables X
and I can be relaxed and considered real [71].

(L) can also be modeled as a facility location problem [57]: the variables I and X
are channeled to the variables Xtr, where Xtr represents the proportion of demand

2.2 PRELIMINARIES | 37

dr produced in period t and stored from t to r. The model can be written as follows:

(2.1), (2.4), (2.5), (2.6), (2.7), (2.8), (2.9)

Xt =
T

∑
r=t

drXtr ∀ t = 1 . . . T (2.10)

(MILP_UFL) It =
t

∑
q=1

T

∑
r=t+1

drXqr ∀ t = 1 . . . T (2.11)

Xtr ≤ Yt ∀ t = 1 . . . T, r = t . . . T
(2.12)

r

∑
t=1

Xtr = 1 ∀ r = 1 . . . T (2.13)

Xtr ∈ [0, 1] ∀ t = 1 . . . T, r = t . . . T
(2.14)

Though the number of variables is increased, this model has the advantage to tighten
the big M constraints (2.3) of the first formulation by stating constraints (2.12) and is
known to generally provide a better linear relaxation.

2.2.3 Linear relaxation

Solving the linear relaxation of MILP_AGG (i.e. Yt ∈ [0, 1], ∀ t ∈ J1, TK) is equivalent
to a minimum cost network flow problem [7]. The graph of this flow is presented
in Figure 2.6. On each arc, (u, c) represents the capacity (u) and unitary cost (c) of
the arc. The units flow from source node S to sink node W. On each production
arc (S, t), the capacity is the production capacity and the cost is p′t = pt +

st

αt
. On

each inventory arc (t, t + 1), the capacity is the inventory capacity and the cost is ht.
Finally on each demand arc (t, W), there must be exactly dt units and the unitary
cost is 0.

The flow problem can be solved in O(T2) with the successive shortest path algo-
rithm [7].

2.2.4 An equivalent problem without lower bounds

In this subsection, we show that problem (L) is equivalent to a problem without
lower bounds. It will allow us to re-use several classical lot-sizing algorithms and
will also simplify the presentation of some results.

Solving a maximum flow problem on a network with lower bounds on flows is
equivalent to solving a maximum flow problem on a transformed network without

38| SINGLE-ITEM LOT-SIZING

𝑆

1 t T

𝑊

… …

∝𝑡 , 𝑝′𝑡

 𝛽𝑡, ℎ𝑡

𝑑𝑡 , 0

𝑡=1

𝑇

𝑑𝑡

𝑡=1

𝑇

𝑑𝑡

Figure 2.6: The linear relaxation of MILP_AGG is a minimum cost network flow
problem

lower bounds as shown in [7]. We denote by (L′) the resulting problem of that
transformation applied to (L) slightly adapted to take into account setup costs. The
parameters of (L′) are:

X′t = 0 and X′t = Xt − Xt

I′t = 0 and I′t = It − It

p′t = pt

h′t = ht

s′t =
{

0 if Xt > 0
st otherwise

d′t = dt + It − Xt − It−1

(X, I) is a solution of (L) if and only if (X′, I′) is a solution of (L′). The intu-
ition is that the production and inventory lower bounds are considered as manda-
tory quantities. As these quantities must be produced/stored at a precise period,
no decisions have to be made about them and thus they can be removed from the
problem. Note that the demands are also affected by the transformation.

2.2 PRELIMINARIES | 39

The mandatory costs associated to the lower bounds are:

Cpmin =
T

∑
t=1

pt Xt

Chmin =
T

∑
t=1

ht It

Csmin =
T

∑
t=1

st 1Xt>0

Cmin = Cpmin + Chmin + Csmin

and the variables of (L) and (L′) are linked as follows:

Xt = X′t + Xt

It = I′t + It

Cp = Cp′ + Cpmin

Ch = Ch′ + Chmin

Cs = Cs′ + Csmin

C = C′ + Cmin

2.2.5 Dynamic programming

(L) can also be solved via DP [41]. We provide here the algorithm without lower
bounds on production and inventory. The algorithm (called DPLS in the thesis) iter-
ates over the inventory levels. We denote f (t, It) as the minimum cost for producing
the demands from d1 to dt knowing that the stock level at t is It:

∀ t ∈ J1, TK and ∀ It ∈ J0, βtK
f (t, It) = min

It−1=a...b
{f (t− 1, It−1) + 1Xt>0st + ptXt + ht It} (2.15)

where a = max {0, dt + It − αt}, b = min {βt−1, dt + It} and Xt = It + dt − It−1.
We define Imax = max {βt | t ∈ J1, TK}. The initial states are f (0, 0) = 0 and ∀ It ∈
J1, ImaxK , f (0, It) = +∞. The value f (T, 0) gives the optimal cost of (L). This dy-
namic programming algorithm runs in pseudo-polynomial time O(TI2

max).
Note that DPLS consists in finding a shortest path in the graph for which there

is a node for each inventory level at each period. The cost on an arc between two
nodes (t, It) and (t + 1, It+1) corresponds to the cost for satisfying demand dt and
having an inventory level It+1 at the end of period t + 1 knowing that there was an
inventory level It at the end of period t.

40| SINGLE-ITEM LOT-SIZING

DPLS is a DP algorithm referred to as "forward" since it considers the periods in
chronological order. We can also write the reverse (or "backward") DPLS. Let fr(t, It)
be the minimum cost for producing the demands from dt+1 to dT knowing that the
stock level at t is It:

∀ t ∈ J0, T − 1K and ∀ It ∈ J0, βtK
fr(t, It) = min

It+1=c...d
{fr(t + 1, It+1) + 1Xt+1>0st+1 + pt+1Xt+1 + ht+1 It+1}

where c = max {0, It − dt+1}, d = min {βt+1, It − dt+1 + αt+1} and Xt+1 = dt+1 +
It+1 − It. The initial states are fr(T, 0) = 0 and ∀ It ∈ J1, ImaxK , fr(T, It) = +∞. As
described above, fr(t, It) can be seen as the shortest path from the node (t, It) to the
node (T, 0).

2.3 A new lower bound for the single-
item lot-sizing
In this section, we present a new lower bound for the total cost C and how it can
be adapted for the setup cost Cs. The general idea is to decompose (L) into sub-
problems, then to compute a lower bound on each of these sub-problems and finally
combine them at best to find a global lower bound. We suppose here that αt = βt =

0, ∀ t ∈ J1, TK. This assumption is not restrictive as production and inventory lower
bounds can be easily removed in (L) as shown in 2.2.4.

2.3.1 Lot-sizing sub-problem

A sub-problem (Lu,v), with u < v, is defined exactly as (L) except that:

dt = 0 ∀ t /∈ Ju, vK
st = 0 ∀ t /∈ Ju, vK

The cost variables of (Lu,v) are denoted Cuv, Cuv
p , Cuv

h and Cuv
s , corresponding to

the total cost, sum of production costs, sum of holding costs and sum of setup costs
of (Lu,v). Figure 2.7 illustrates the data used in sub-problem (Lu,v).

Sub-problem (L1T) corresponds to the entire problem (L). As there is no de-
mand after period v and no lower bounds of production, the solutions of (Lu,v) are
dominated by solutions with null inventory at the end of period v (Iv = 0). This
means that there exists an optimal solution of (Lu,v) with zero inventory at the end

2.3 A NEW LOWER BOUND FOR THE SINGLE-ITEM LOT-SIZING | 41

… …𝑡

𝑑𝑡

ℎ𝑡ℎ𝑡−1
𝑢

𝑝𝑢
𝑠𝑢

𝑑𝑢

ℎ𝑢

𝑣

𝑑𝑣

ℎ𝑣−1

𝑝𝑡
𝑠𝑡

𝑝𝑣
𝑠𝑣

…

𝑑𝑢−1 = 0

ℎ𝑢−1ℎ𝑢−2
1

𝑝1
𝑠1 = 0

𝑑1 = 0

ℎ1ℎ0

𝑝𝑢−1
𝑠𝑢−1 = 0

𝑢 − 1

Figure 2.7: Sub-problem (Lu,v)

of the last period. Note also that, in (Lu,v), some demands in {du, du+1, . . . , dv} can
be satisfied by a production made without setup costs before period u. Finally, an
optimal solution of (Lu,v) provides a lower bound of the cost for satisfying the set of
demands {du, du+1, . . . , dv} in problem (L). Indeed (Lu,v) is a relaxation of problem
(L).

There are T(T − 1)/2 sub-problems and we order them by increasing end times
first, then by increasing start times (see Table 2.1). Sub-problem (Lui,vi) will be re-
ferred to as sub-problem i.

Index 1 2 3 4 5 6 . . . T(T−1)
2

Sub-problem (L1,2) (L1,3) (L2,3) (L1,4) (L2,4) (L3,4) . . . (LT−1,T)

Table 2.1: Indexing sub-problems

Definition 8 Sub-problems (Lu,v) and (Lu′,v′) are disjoint if

Ju, vK∩ Ju′, v′K = ∅

2.3.2 Combining disjoint sub-problems provides a lower bound
For sub-problem i, we denote by wi a lower bound of its total cost Cuivi . Disjoint
sub-problems can be combined to obtain a lower bound for the total cost of (L).

Theorem 1 For any set S of disjoint sub-problems, we have

∑
i∈S

wi ≤ C.

42| SINGLE-ITEM LOT-SIZING

Proof. Let E∗ be an optimal production plan for (L) of cost C∗ and S be a set of
disjoint sub-problems. We will build from E∗ a feasible solution to each sub-problem
i of S and prove that their costs add up to less than C∗.

Consider a sub-problem i in S. For each demand dt, t ∈ Jui, viK we produce dt at
the same periods as it is produced in E∗ (with a First Come First Served policy). We
obtain by this process a feasible solution to sub-problem i and denote its cost by Ki.

As the sub-problems in S are disjoint and we keep the same production orders,
the sum of setup costs payed in all of these sub-problems is less than or equal to the
sum of setup costs payed in E∗. The production and inventory costs are identical
to the costs payed in E∗ for the demands included in ∪i∈SJui, viK. It follows that
∑i∈S Ki ≤ C∗. Finally, as for each sub-problem i, wi is a lower bound of Cuivi , we
get: ∑i∈S wi ≤ ∑i∈S Ki.

�

2.3.3 Combining lower bounds at best

Given a lower bound for each sub-problem, we wish to find the best lower bound
of C, i.e. to determine the set S of disjoint sub-problems that maximizes ∑i∈S wi.

This problem can be seen as a Weighted Interval Scheduling Problem (WISP)
which can be solved in O(n log(n)) where n is the number of intervals [56]. The
algorithm sorts the intervals in O(n log(n)) and then applies a DP that runs in O(n).
In our case, there are n = T(T − 1)/2 intervals (sub-problems) which are already
sorted and the DP algorithm (called DPWisp in the thesis) runs in O(T2).

We use the indexing of intervals given in Table 2.1 and we denote by wisp(i)
the maximal weight that can be achieved using the i first intervals. The forward DP
writes as

wisp(0) = 0
wisp(i) = max {wisp(i− 1), wisp(preci) + wi}, ∀ i = 1, . . . , n

where preci is the biggest integer, smaller than i (preci < i), such as the intervals
preci and i are disjoint. For each sub-problem i such that u = 1, we define preci = 0.
Hence preci is the first interval before the ith one that is disjoint with it. For instance,
[3, 4] is the 6th interval and prec6 = 1 since [1, 2] and [3, 4] are disjoint while [2, 3]
and [3, 4] are not. The value wisp(n) is then a lower bound of the global cost C.

We can also write the reverse version DPWisp (with the sub-problems consid-
ered backwards). The sub-problems are now sorted by decreasing start times first,
then by decreasing end times.

wispr(n) = 0
wispr(i) = max{wispr(i + 1), wi + wispr(succi)}, ∀ i = 1, . . . , n

2.4 THE LOT-SIZING GLOBAL CONSTRAINT | 43

where succi is the biggest integer, greater than i (succi > i), such as the intervals
succi and i are disjoint.

2.3.4 Computing lower bounds for sub-problems

In our algorithms, we will solve exactly the sub-problem by DP when the size is rea-
sonable and solve the linear relaxation otherwise. The optimal cost of sub-problem
(Lu,v) can be computed with DPLS (see Section 2.2.5) applied to the periods u to v.
We need to pre-compute f (u− 1, qu−1) for qu−1 ∈ J0, min {∑v

t=u dt, βu−1} K. This can
be done with a greedy algorithm which determines the cheapest periods in order to
produce the requested quantity and to store it until u. The DPLS applied to a sub-
problem (Lu,v) runs then in O((v− u+ 1)(Iuv

max)
2) where Iuv

max = max{βt | t ∈ Ju, vK}.
The linear relaxation can be seen as a minimum cost flow problem (see Section

2.2.3) and can be solved in O(T2).

2.3.5 Adaptation to a lower bound on setup costs

We can re-use this previous approach to obtain a lower bound on the setup cost
variable Cs. Sub-problems are defined similarly except that we remove unitary pro-
duction costs and inventory costs (pt = ht = 0, ∀t).

Note that we could use the same approach for Cp and Ch. However, it is not
necessary as (L) is polynomial when removing setup costs.

2.4 The lot-sizing global constraint
In this section, we provide some CP background before presenting the LOTSIZING
global constraint. We also study the complexity of achieving different consistency
levels.

2.4.1 Constraint programming background

A Constraint Satisfaction Problem (CSP) [50] consists of a set of variables, with a
finite domain of values for each variable, and a set of constraints on these variables.
Upper cases are used for variables (e.g. Vi) and lower cases for values (e.g. vi). We
denote by D(Vi) the domain of variable Vi and by Vi (resp. Vi) the minimum (resp.
maximum) value in D(Vi).

Let c a constraint on variables 〈V1, . . . , Vn〉. A support for c is a tuple 〈v1, . . . , vn〉
which satisfies c and such that vi ∈ D(Vi) for each variable Vi. A bound support is a
tuple 〈v1, . . . , vn〉which satisfies c and such that Vi ≤ vi ≤ Vi for each Vi and Vi ∈ Z.

44| SINGLE-ITEM LOT-SIZING

A variable Vi is arc consistent (AC) for constraint c if each value of D(Vi) belongs
to a support for c. A variable Vi is bounds consistent (BC) for constraint c if Vi and Vi
belong to a bound support for c. A variable Vi is range consistent (RC) for constraint
c if each value of D(Vi) belongs to a bound support for c. A constraint c is AC (resp.
BC, RC) if all its variables are AC (resp. BC, RC). A CSP problem is AC (resp. BC,
RC) if each constraint is AC (resp. BC, RC).

2.4.2 Definition

We formally define here the global constraint LOTSIZING. This constraint is stated
on the variable vectors X = 〈X1, . . . , XT〉, I = 〈I1, . . . , IT〉, Y = 〈Y1, . . . , YT〉 and
the four cost variables Cp, Ch, Cs, C of (L). The data of the problem is denoted by
data = {(pt, ht, st, dt, αt, αt, βt, βt) | t ∈ J1, TK}.

Definition 9 LOTSIZING(X, I, Y, Cp, Ch, Cs, C, data) has a solution if and only if there
exists a production plan, solution of (L) that satisfies:

Cp ≤ Cp (2.16)

Ch ≤ Ch (2.17)

Cs ≤ Cs (2.18)

C ≤ C (2.19)

The LOTSIZING global constraint has a solution if and only if the set of con-
straints {(2.2), . . . , (2.9), (2.16), . . . , (2.19)} has a solution.

2.4.3 Complexity

This subsection presents theorems on the complexity of achieving BC, RC or AC on
LOTSIZING and one of its restrictions that does not take into account the costs and
focuses on the flow equations. Let us first give a property on the complexity of (L).

Property. Problem (L) with ht = pt = βt = αt = 0 and βt = +∞ is NP-hard.

Proof. The reduction is made with the knapsack problem:
Input: n objects of weight wi, of values vi. Two integers V and W.
Question: Is there a subset S of the objects such that ∑i∈S vi ≥ V and ∑i∈S wi ≤W ?
We define st = wt, Xt = vt, ∀ t = 1 . . . T and d = {0, .., 0, V}. We look for a pro-
duction plan such that ∑t∈S Xt ≥ V and ∑t∈S|Xt>0 st ≤ W. This transformation
is polynomial. Any solution of the lot-sizing problem is equivalent to a solution
where we produce at full capacity. We can therefore restrain ourselves to this set

2.4 THE LOT-SIZING GLOBAL CONSTRAINT | 45

of solutions. Any solution to the knapsack problem is also a solution of this lot-
sizing problem. Conversely, a solution of the lot-sizing problem is a solution to the
knapsack problem. �

Theorem 2 Achieving BC for LOTSIZING can be done in pseudo-polynomial time.

Proof. BC for LOTSIZING can be achieved by solving a Shortest Path Problem with
Resource Constraints (SPPRC) in the graph of DPLS (see Section 2.2.5). where the
resources are the three intermediate costs of respective capacities Cp, Ch, Cs and the
global cost variable C with capacity C. SPPRC is known to be weakly NP-hard [39].
�

We denote by (Lr) the feasibility problem associated to (L).

It−1 + Xt = dt + It ∀ t = 1 . . . T
Xt ≤ αtYt ∀ t = 1 . . . T

(Lr) Xt ∈ {αt, . . . , αt} ∀ t = 1 . . . T

It ∈ {βt, . . . , βt} ∀ t = 1 . . . T

Yt ∈ {0, 1} ∀ t = 1 . . . T

The constraints of (Lr) describes the dynamics of the problem, i.e. the feasibility of
the problem without considering the upper bounds on the costs.

Theorem 3 Achieving BC on (Lr) can be done in O(T).

Proof. Figure 2.8 represents the constraint network (Lr) as well as the correspond-
ing intersection graph. The rectangular-shaped constraints are the flow balance con-
straints and the dashed oval ones are the setup constraints. The intersection graph
is built as follows: we set a vertex for each constraint and two vertices are linked if
and only if the corresponding constraints have at least one variable in common. As
the intersection graph is acyclic and each pair of constraints has at most one variable
in common, the constraint network is Berge-acyclic. It is known that if we filter each
constraint of a Berge-acyclic constraint network in an appropriate order then each
constraint needs only to be woken twice in order to reach the fix-point [58]. Each
constraint of the network can be filtered in O(1), hence we can achieve BC on (Lr)
in O(T).

�

46| SINGLE-ITEM LOT-SIZING 𝑋1 𝐼1

𝑋2 𝐼2

𝑋3 𝐼3

𝑋𝑇 𝐼𝑇

𝐼0

𝐼𝑇−1

…

𝑌1

𝑌2

𝑌3

𝑌𝑇

…

…

Figure 2.8: The constraint network (Lr) and the corresponding intersection graph

In order to investigate RC for (Lr), we consider (F) the more general problem of
finding an integer flow in a directed graph G = (V, E):

lij ≤ xij ≤ uij ∀ (i, j) ∈ E

(F) ∑
j∈δ+i

xij − ∑
j∈δ−i

xji = bi ∀ i ∈ V

xij ∈N ∀ (i, j) ∈ E

where xij is the flow going from node i to node j, δ+i (resp. δ−i) is the set of successor
(resp. predecessor) nodes of node i and bi ∈ {−1, 0, 1}.

Theorem 4 BC and RC are equivalent for (F).

Proof. By definition, RC implies BC for (F). Conversely, assume BC for (F).
In order to show the converse, we show that if k ∈ Jlij, uijK, then k belongs to a

bound support for (F).
Let i0 be a direct predecessor of j0 in the graph. i0 and j0 are periods in the lot-

sizing problem. BC implies that there exists x′ (resp. x′′) an integer solution of (F)
such that x′i0 j0

= li0 j0 (resp. x′′i0 j0
= ui0 j0). Let γ ∈ [0, 1] such as k = γ li0 j0 +(1−γ)ui0 j0

and k ∈ N. Let’s show that there exists an integer solution of (F) where xi0 j0 = k.
We modify the bounds ∀ (i, j) ∈ E:

l̂ij = bγx′ij + (1−γ)x′′ijc
ûij = dγx′ij + (1−γ)x′′ije

We can then show that ∀ i, j l̂ij ≥ lij and ûij ≤ uij. The constraint matrix of
(F) is totally unimodular since it is a flow problem, hence the application of the
simplex algorithm to (F) with the updated bounds gives an integer solution x′′′

where x
′′′
i0 j0

= k.
�

2.5 FILTERING THE LOTSIZING CONSTRAINT | 47

Since the setup variables Yt are binary, the following result follows.

Corollary 1 Achieving BC on (Lr) is equivalent to achieving RC on (Lr).

When there are no holes in the domains of X and I, RC is equivalent to AC for
(Lr). Note that there may exist holes in lot-sizing problems when considering batch-
ing constraints for instance. Batching constraints force the products to be produced
by batches of given sizes: the domain of Xt is therefore D(Xt) = {0, 10, 20, 30} with
batches of size 10.

2.5 Filtering the LOTSIZING constraint
This section describes the filtering of the LOTSIZING constraint. It also gives some
implementation details to improve the incrementality of the global constraint.

Algorithm 1 gives an overview of the main filtering steps of LOTSIZING. Each
step refers to the corresponding section for detailed explanations. When all setup
variables are instantiated the problem amounts to a minimum cost flow problem
(lines 1-2). If not, the general case is as follows. Firstly, the problem is transformed
by removing all lower bounds (line 4) as LOTSIZING is defined with lower bounds
and these can increase during the search. Secondly production and inventory costs
lower bounds are computed (lines 5-6). Thirdly, when the overall problem is of
reasonable size (lines 7-11) the remaining filtering is performed using dynamic pro-
gramming. If not, the WISP relaxation is used and filtering is performed via the
WISP support (lines 13-17).

2.5.1 Filtering when the setup variables are instantiated

When all the setup variables Y are instantiated, problem (L) becomes polynomial
and amounts to a minimum cost flow problem. Solving a minimum cost flow prob-
lem on the flow graph presented in Figure 2.6 finds a solution to (L) that minimizes
C. This property does not always hold depending on the side constraints. Therefore
we let the user specify if all the production and inventory variables can be instanti-
ated to the optimal solution of the flow problem. For sake of simplicity, Algorithm 1
implements this dominance rule. Note that a minimum cost flow dedicated filtering
algorithm [89] can be used at this stage. Either of these two options allows the user
to branch only on the Y variables.

48| SINGLE-ITEM LOT-SIZING

Algorithm 1 filtering algorithm of LOTSIZING

1: if all the Y are instantiated and dominance is activated (§ 2.5.1) then
2: solve the min flow problem and instantiate X and I
3: else
4: check feasibility (Corollary 1)
5: remove lower bounds (§ 2.2.4)
6: update Cp with flow relaxation restricted to production costs (§ 2.5.2)
7: update Ch with flow relaxation restricted to inventory costs (§ 2.5.2)
8: if the DP is scalable then
9: update C with DPLS (§ 2.5.2)

10: filter variables via DP filtering (§ 2.5.3)
11: update Cs with DP (§ 2.5.2)
12: filter variables via DP filtering (§ 2.5.3)
13: else
14: compute all the Cuv with appropriate relaxations (§ 2.3.4)
15: update C with DPWisp (§ 2.3.2)
16: filter variables via WISP support filtering (§ 2.5.4)
17: update Cs with DPWisp (§ 2.3.5)
18: filter variables via WISP support filtering (§ 2.5.4)
19: end if
20: end if
21: end algorithm

2.5.2 Filtering cost lower bounds

Lower bounds of the cost variables are computed as follows:

• A lower bound on the production cost Cp is computed by solving a minimum
cost flow problem on the graph presented in § 2.2.3 considering only the vari-
able production costs.

• A lower bound on the inventory cost Ch is computed by solving a minimum
cost flow problem on the graph presented in § 2.2.3 considering only the vari-
able inventory costs.

• A lower bound on the global cost C is computed using DPLS. The lower bound
is given by the value f (T, 0).

• A lower bound on the setup cost Cs is computed via dynamic programming
as well. We consider here the problem (L) without production or inventory
costs. As mentioned in the literature review, this problem can be solved using
the traditional knapsack dynamic programming algorithm slightly adapted

2.5 FILTERING THE LOTSIZING CONSTRAINT | 49

to take into account the inventory upper bounds (we call this algorithm DP-
Knap).

2.5.3 Filtering X and I via dynamic programming

DPLS gives a lower bound of the global cost C. In order to filter the variables we use
the tables created by DPLS and reverse DPLS. Remember that in the graph described
in 2.2.5, f (t, It) can be seen as the shortest path from the node (0, 0) to (t, It) and
fr(t, It) is the shortest path from (t, It) to (T, 0). We filter each value it in the domain
of It in O(TImax):

∀ t ∈ J1, TK, it ∈ D(It)

f (t, it) + fr(t, it) > C ⇒ It 6= it (2.20)

We filter each value in the domain of Xt in O(TI2
max):

∀ t ∈ J1, TK, it−1 ∈ D(It−1), it ∈ D(It)

f (t− 1, it−1) + cost(t, it−1, it) + fr(t, it) > C ⇒ Xt 6= xt (2.21)

where xt = dt + it − it−1 and cost(t, it−1, it) = 1Xt>0st + ptxt + htit.

2.5.4 Scaling the filtering based on dynamic programming

In the case where DPLS has memory issues on the overall problem (L), we solve
a WISP (see Section 2.3.2) to find a lower bound on C. We can adapt the filtering
rules (2.20) and (2.21) on the sub-problems of reasonable size. In order to compare
the shortest paths to the global upper bound C, we need to have a lower bound on
the cost of the production outside the sub-problem. We use DPWisp and its reverse
version to do so. We can then define:

• lbBefore(t) = wisp (t(t−1)
2) which is the best bound we can get by combining

the sub-problems ending by at most t. It is a lower bound on the satisfaction
of the demands d1 to dt. We set lbBefore(0) = 0.

• lbAfter(t) = wispr(
(T−t)(T−t+1)

2) which is the best bound we can get by com-
bining the sub-problems starting at t. It is a lower bound of the cost for satis-
fying the demands from dt to dT. We set lbAfter(T + 1) = 0.

Figure 2.9 represents the different lower bounds computed while filtering the
value it for the variable It. It belongs to the sub-problem (Lu,v), lbBe f ore(u− 1) and
lbA f ter(v + 1) are computed via DPWisp outside that sub-problem.

50| SINGLE-ITEM LOT-SIZING

… 𝒗𝒖…1 𝑢 − 1 … 𝑇𝑣 + 1𝑡…

𝐼𝑡 = 𝑖𝑡

𝑡 + 1

𝑙𝑏𝐵𝑒𝑓𝑜𝑟𝑒(𝑢 − 1) 𝑙𝑏𝐴𝑓𝑡𝑒𝑟(𝑣 + 1)𝑓(𝑡, 𝑖𝑡) 𝑓𝑟(𝑡, 𝑖𝑡)

Figure 2.9: Bounds when filtering It with the WISP support filtering

We filter the variables via the two following rules:

∀ t ∈ Ju, vK, it ∈ D(It)

lbBefore(u− 1) + f (t, it) + fr(t, it) + lbAfter(v + 1) > C ⇒ It 6= it

∀ t ∈ Ju, vK, it−1 ∈ D(It−1), it ∈ D(It)

lbBefore(u− 1) + f (t− 1, it−1) + cost(t, it−1, it) + fr(t, it) + lbAfter(v + 1) > C
⇒ Xt 6= xt

For all the sub-problems of the support (or solution) of the WISP, we can com-
pute DPLS and its reverse version. Note that here f (t, it) and fr(t, it) come from
DPLS applied to the sub-problems. Hence when considering sub-problem (Lu,v)
and u ≤ t ≤ v, f (t, it) is a lower bound of the cost for satisfying demands du to dt
with an inventory level It = it at the end of period t. Similarly fr(t, it) is a lower
bound on the cost for satisfying the demands dt+1 to dv and having It = it. More-
over, since the sub-problems consider only the demands du to dv, we cannot filter
values greater than or equal to ∑v

k=t+1 dk for It and Xt. Indeed, greater values might
be used to satisfy demands outside the sub-problem and are not considered when
computing DPLS.

Note that although the scaling may affect the quality of the filtering, it is a prag-
matic rule applied to avoid wakening costly propagation when little filtering is ex-
pected.

2.5.5 Adaptation to take into account the setup cost

In order to adapt the filtering to take into account Cs, we do not take into account
the production and inventory costs. The resulting problem can then be tackled by
dynamic programming with DPKnap. The variables can be filtered via the WISP

2.6 NUMERICAL RESULTS ON THE SINGLE-ITEM LOT-SIZING PROBLEM | 51

support with DPKnap computed on the sub-problems. The filtering rules are ap-
plied with the upper bound of Cs.

2.6 Numerical results on the single-item
lot-sizing problem
This section validates our global constraint and the filtering mechanisms described
above. We compare the performance of LOTSIZING to four other methods on the
single-item lot-sizing problem.

Five methods The five methods that solve the single-item lot-sizing are:

• A basic CP model (CP_Basic), which is a decomposition of the single-item lot-
sizing problem basically equivalent to the MILP model with the implication
constraints Xt > 0⇒ Yt = 1, ∀ t ∈ J1, TK instead of the setup constraints (2.3)

• A CP model with our LOTSIZING global constraint (CP_LS)

• The dynamic programming algorithm presented in 2.2.5 (DPLS)

• The classical aggregated MILP model (MILP_AGG)

• The facility location MILP model (MILP_UFL)

The MILP models were implemented with CPLEX version 12.6 and the CP mod-
els in Choco 3.3 [72].

Branching heuristics for the CP models A default branching heuristic is used to
instantiate the variables to their lower bounds in a lexicographic order (chronologi-
cal order here). The dominance rule described in 2.5.1 is valid for the single-item
lot-sizing problem. For sake of comparison, the same improvement is done for
CP_Basic. The search space is thus restricted to the setup variables (Y) for both
CP models.

Cost upper bound Since we want to assess the quality of the filtering and LOT-
SIZING uses cost-based filtering, we choose to have the best possible upper bound
on the global cost at the start of the resolution: the optimal cost. This means that our
models still has to prove the optimal solution. In a more realistic setting, the model
CP_LS can be used to find upper bounds.

52| SINGLE-ITEM LOT-SIZING

Instance parameters The single-item instances are generated based on the param-
eters davg, e, δ, θ, λ, and T as follows:

• The inventory costs are constant and equal to 1 (i.e. ht = h = 1).

• The setup and the unitary production costs are generated using two parame-
ters: e and θ.

– e represents the overall unitary production cost (i.e. the unitary produc-
tion cost if the production capacity is saturated: pt αt + st divided by αt).
We set e = 10.

– θ ∈ [0, 1] represents the portion of the setup cost to the unitary production
cost. The overall production cost at t (i.e. e αt) will be imputable for θ to
its setup cost and for 1− θ to the unitary production cost at t. For each
period, θ is uniformly randomly set in the interval [0, 1].

• The demands are uniformly generated in the interval [davg − δ, davg + δ].

• The production and inventory capacities are constant and equal to λ davg.

For each problem, we give the set of parameters that were used to generate the
instances. Each class of instances contains 10 instances.

Experimentation setup All the tests are run under Windows 8 on an Intel Core i5
@ 2.5 GHz with 12GB of RAM. We set a time limit of 200s and a memory limit of
4GB of RAM. The indicator NODE is the average number of nodes computed by
each model on the class. CPU corresponds to the average CPU time used by the
models. RNB is the average gap of the root node lower bound to the optimal value.
LR is the average gap of the linear relaxation to optimal. Finally OPT is the number
of solved instances in the class. The means are computed over all the instances of
each class.

2.6.1 Single-item lot-sizing

The five instance classes are defined in table 2.2.

2.6 NUMERICAL RESULTS ON THE SINGLE-ITEM LOT-SIZING PROBLEM | 53

Class davg δ θ λ T
C1LS 1000 100 [0.8, 1] 3 40
C2LS 1000 500 [0.4, 0.6] 3 40
C3LS 1000 100 [0.8, 1] 3 80
C4LS 1000 500 [0.4, 0.6] 3 80
C5LS 1000 50 0.5 3 40

Table 2.2: Single-item instance classes

The results of the five models on these instances are presented in tables 2.3 and
2.4.

CP_Basic CP_LS DPLS
Class NODE CPU RNB OPT NODE CPU RNB OPT CPU OPT
C1LS 8.3E+06 200 100% 0 1 1.1 0% 10 0.2 10
C2LS 1.7E+06 200 65% 0 1 1.0 0% 10 0.2 10
C3LS 6.5E+06 200 100% 0 28 2.1 0% 10 0.4 10
C4LS 3.4E+05 200 64% 0 35 2.2 0% 10 0.4 10
C5LS 8.5E+06 200 56% 0 1 1.1 0% 10 0.2 10

Table 2.3: Single-item lot-sizing - CP and DPLS

MILP_AGG MILP_UFL
Class NODE CPU RNB LR OPT NODE CPU RNB LR OPT
C1LS 580 0.1 1% 10% 10 460 0.6 1% 3% 10
C2LS 1360 0.2 2% 10% 10 1643 1.4 2% 3% 10
C3LS 3213 1.7 2% 11% 10 13109 54.1 3% 3% 10
C4LS 2222 1.6 1% 10% 10 14366 61.6 2% 2% 10
C5LS 1691 0.3 2% 11% 10 9336 4.5 2% 3% 10

Table 2.4: Single-item lot-sizing - MILP

These tables show that:

• As expected, the basic CP model has a very large search space as it does not
propagate any strong reasoning. We therefore did not use CP_Basic for the
following results.

• As the upper bound provided is optimal and there is no upper bound on Cp,Ch
and Cs, CP_LS achieves AC at the root node and branches backtrack-free to-
wards an optimal solution.

54| SINGLE-ITEM LOT-SIZING

• The linear relaxation of MILP_AGG is not as good as the MILP_UFL’s as it was
expected due to the setup constraints (2.3). CPLEX however provides a better
root node lower bound for MILP_AGG. MILP_UFL is not as competitive as
MILP_AGG because of the number of variables and constraints. We therefore
did not use MILP_UFL for the following results.

2.6.2 Scaling the global constraint

We then test the WISP support filtering described in 2.5.4 when the DP has memory
issues. In order to generate memory issues for DPLS, we add high consumption
peaks in the instances. The peaks are added in periods 6 to 9, 12 to 15, 22 to 25 and
32 to 36 and correspond to demands of 50,000. The five instance classes have the
parameters defined in table 2.5.

Class davg δ θ λ T
C1Peaks 100 50 [0.8, 1] 4 40
C2Peaks 100 50 [0.4, 0.6] 4 40
C3Peaks 100 50 0.5 4 40
C4Peaks 100 20 [0.8, 1] 4 40
C5Peaks 100 20 [0.4, 0.6] 4 40

Table 2.5: Instance classes for the scaling of LOTSIZING

The branching heuristic is adapted to select first the setup variables of the high
demand periods. Table 2.6 compares the two models CP_LS, MILP_AGG and the
algorithm DPLS on these big instances.

CP_LS MILP_AGG DPLS
Class NODE CPU RNB OPT NODE CPU RNB LR OPT CPU OPT
C1Peaks 125 1.1 2% 10 0 0.0 0% 13% 10 23.8 10
C2Peaks 468 5.7 2% 10 0 0.0 0% 6% 10 23.4 10
C3Peaks 2784 21.0 3% 10 1 0.0 0% 7% 10 22.6 10
C4Peaks 408 3.7 3% 10 0 0.0 0% 15% 10 23.4 10
C5Peaks 446 5.5 2% 10 0 0.0 0% 7% 10 24.0 10

Table 2.6: Scaling the global constraint

This table shows that the filtering of LOTSIZING is lighter, hence the root node
lower bound gap increases as well as the number of nodes. The resolution using
CP is however faster than DPLS even though some branching is now required. Al-
though the linear relaxation degrades, CPLEX pre-processing behaves very well as
shown by the root node lower bound.

2.7 SINGLE-ITEM LOT-SIZING WITH SIDE CONSTRAINTS | 55

2.7 Single-item lot-sizing with side con-
straints
We consider the single-item lot-sizing problem (L) with three side constraints (do-
main disjunction, limited production rate and a combination of the two). The in-
stances created here are generated the same way as before and we added leveled
production and/or constrained production rate. For the following tests, we com-
pared only CP_LS to MILP_AGG and to DPLS when it is relevant.

2.7.1 Disjunctive production constraints
We consider here that the production is leveled, i.e. some production quantities are
forbidden, which can happen with specific industrial constraints. The domains of
each variable Xt is defined by a disjunction of nt integer intervals Kk = JKk, KkK, ∀ k ∈
J1, ntK:

D(Xt) = {0} ∪ K1 ∪ . . . ∪ Knt

DPLS can take into account the disjunctions without any loss of complexity. We
add the following constraints to the MILP model MILP_AGG:

Xt =
nt

∑
k=1

Xk
t ∀ t = 1 . . . T (2.22)

Yt =
nt

∑
k=1

Yk
t ∀ t = 1 . . . T (2.23)

Xk
t ≤ Yk

t Kk ∀ t = 1 . . . T, k = 1 . . . nt (2.24)

Yk
t Kk ≤ Xk

t ∀ t = 1 . . . T, k = 1 . . . nt (2.25)

The five first classes for this problem are defined in table 2.7.

Class davg δ θ λ T
C1Disj 100 50 [0.8, 1] 5 40
C2Disj 100 60 [0.4, 0.6] 5 40
C3Disj 100 70 [0.3, 0.8] 5 40
C4Disj 100 30 [0.6, 1] 5 40
C5Disj 100 50 [0.9, 1] 5 40

Table 2.7: Instance classes for lot-sizing with disjunctive constraints

We generated C6Disj, C7Disj, C8Disj, C9Disj and C10Disj that have the same pa-
rameters than the five instances above, but with T = 80. The disjunctions are added

56| SINGLE-ITEM LOT-SIZING

as follows: D(Xt) = J0, 30K ∪ J100, 150K ∪ J200, 240K. Table 2.8 gives the numerical
results for the single-item lot-sizing with disjunctions.

CP_LS MILP_AGG DPLS
Class NODE CPU RNB OPT NODE CPU RNB LR OPT CPU OPT
C1Disj 1 0.0 0% 10 6.4E+05 162.1 43% 52% 2 0.0 10
C2Disj 2 0.0 0% 10 1.4E+04 6.0 27% 38% 10 0.0 10
C3Disj 2 0.0 0% 10 1.6E+03 0.5 27% 38% 10 0.0 10
C4Disj 2 0.0 0% 10 2.2E+04 6.3 39% 48% 10 0.0 10
C5Disj 1 0.0 0% 10 9.6E+05 200.0 52% 61% 0 0.0 10
C6Disj 2 0.1 0% 10 3.2E+05 200.0 43% 52% 0 0.0 10
C7Disj 2 0.1 0% 10 5.0E+04 38.3 27% 39% 10 0.0 10
C8Disj 1 0.1 0% 10 5.7E+03 4.5 28% 39% 10 0.0 10
C9Disj 2 0.1 0% 10 3.6E+04 21.9 38% 48% 10 0.0 10
C10Disj 2 0.1 0% 10 3.3E+05 200.0 52% 60% 0 0.0 10

Table 2.8: Single-item lot-sizing with disjunctions

Table 2.8 shows that the CP model and DPLS are very fast to solve these in-
stances. The dominance rule described in 2.5.1 of the setup variables is not valid
for this problem: indeed the flow with disjunctions is not polynomial. However as
LOTSIZING’s filtering uses DPLS, the global constraint can handle disjunctions on
the domains of the production variables. Therefore CP_LS achieves AC at the root
node and branches backtrack free towards an optimal solution. Unsurprisingly we
note that the MILP model does not handle these disjunction constraints well.

2.7.2 Q/R constraints

Q/R constraints are interesting side constraints for single-item lot-sizing problems
[48, 49]. They relate to the production rate and state that, given two integers Q and
R, there must be at least Q and at most R periods between two consecutive produc-
tions. Dynamic programming rapidly gets memory issues here, as the states should
take into account what happened at least R periods before. The Q/R constraints can
be modeled by two SEQUENCE constraints stated as follows:

SEQUENCE(0, 1, Q + 1, [Y1, . . . , YT], {1})
SEQUENCE(1, R + 1, R + 1, [Y1, . . . , YT], {1})

The SEQUENCE constraint is defined as follows [15]: SEQUENCE(l, u, k, [Z1, . . . , Zn], v)
holds if and only if:

∀ 1 ≤ i ≤ n− k + 1 l ≤ |{i | Zi ∈ v}| ≤ u

2.7 SINGLE-ITEM LOT-SIZING WITH SIDE CONSTRAINTS | 57

We add the following constraints to the model MILP_AGG:

v

∑
t=u

Yt ≤ 1 ∀ u, v ∈ J1, TK s.t. v− u + 1 = Q + 1 (2.26)

v

∑
t=u

Yt ≥ 1 ∀ u, v ∈ J1, TK s.t. v− u + 1 = R + 1 (2.27)

We add the #uv variables that count the number of effective production periods be-
tween period u and period v included:

#uv =
v

∑
t=u

Yt ∀ u, v ∈ J1, TK (2.28)

These variables enable us to use the encoding of SEQUENCE presented in [29] to
propagate the Q/R constraints. We also add the useful following redundant con-
straints:

#1t + #t+1T = #1T ∀ t ∈ J2, T − 1K (2.29)
#1t + Yt+1 = #1t+1 ∀ t ∈ J2, T − 1K (2.30)

The ten classes (C1QR, . . ., C10QR) for this problem have the same parameters
than C1Disj, . . ., C10Disj to which we add (Q=2, R=6) for classes 1, 2, 3, 6, 7, 8 and
(Q=3, R=7) for classes 4, 5, 9, 10. Table 2.9 compares CP_LS to MILP_AGG on the
instances with Q/R.

CP_LS MILP_AGG
Class NODE CPU RNB OPT NODE CPU RNB LR OPT
C1QR 2 0.3 0% 10 17 0.0 1% 14% 10
C2QR 22 0.2 1% 10 56 0.1 1% 13% 10
C3QR 84 0.4 1% 10 27 0.0 1% 12% 10
C4QR 1 0.3 0% 10 20 0.0 1% 12% 10
C5QR 1 0.4 0% 10 13 0.0 1% 16% 10
C6QR 772 7.2 1% 10 943 0.5 2% 16% 10
C7QR 6488 42.8 0% 10 601 0.4 1% 14% 10
C8QR 26716 134.1 1% 5 392 0.3 1% 13% 10
C9QR 1 1.1 0% 10 510 0.3 1% 15% 10
C10QR 21 1.9 0% 10 1175 0.5 3% 18% 10

Table 2.9: Single-item lot-sizing with Q/R

The linear relaxation and root node lower bound of MILP_AGG has slightly
worsened without degrading the performance of the model. CP_LS stays competi-
tive on most of the instances.

58| SINGLE-ITEM LOT-SIZING

2.7.3 Disjunctive and Q/R constraints

We add both Q/R and disjunctive production constraints. The problem cannot be
tackled via DP due to the Q/R constraints, hence we compared CP_LS to MILP_AGG.
The instances have the same parameters as before with both the disjunctions and the
Q/R parameters presented for the latter problems. The results are shown in table
2.10.

CP_LS MILP_AGG
Class NODE CPU RNB OPT NODE CPU RNB LR OPT
C1DijsQR 1 0.3 0% 10 1808 0.8 7% 19% 10
C2DijsQR 6 0.2 0% 10 637 0.4 2% 14% 10
C3DijsQR 67 0.4 1% 10 710 0.4 2% 13% 10
C4DijsQR 3 0.4 0% 10 964 0.3 5% 16% 10
C5DijsQR 30 0.5 1% 10 209 0.2 12% 25% 10
C6DijsQR 669 4.7 0% 10 40150 53.4 5% 19% 10
C7DijsQR 3471 17.8 0% 10 4839 9.2 2% 15% 10
C8DijsQR 22386 94.0 1% 7 4618 7.4 3% 14% 10
C9DijsQR 53 1.5 0% 10 5066 8.8 4% 17% 10
C10DijsQR 7 2.6 1% 10 1663 1.7 11% 26% 10

Table 2.10: Single-item lot-sizing with disjunctives and Q/R

On some classes, CP_LS does not solve all the instances yet is often competitive
compared to MILP_AGG and has a near optimal root node lower bound.

2.8 Conclusion
In this chapter, we defined a global constraint LOTSIZING for a capacitated single-
item lot-sizing problem. Firstly, we presented a new lower bound for this problem,
based on a new decomposition of the problem into sub-problems. Secondly, we
formally introduced our constraint and gave some complexity results. Thirdly, we
developed filtering rules for the LOTSIZING global constraint based on dynamic
programming. Finally, we presented a proof of concept for the filtering of the con-
straint via several numerical results. We can conclude that our approach based on
constraint programming can yield interesting and competitive results for lot-sizing
problems with side constraints.

The next step of this work will be to use the LOTSIZING global constraint as a
building block to tackle multi-item and multi-echelon problems.

2.9 PRACTICAL USE OF LOTSIZING AND TUNING THE CONSISTENCY LEVEL
| 59

2.9 Practical use of LOTSIZING and tun-
ing the consistency level
To consider a more practical perspective, we investigate different ways to parametrize
the global constraint and achieve different consistency levels. The DP algorithms
used to filter the LOTSIZING constraint can be very costly to solve depending on the
size of the instance. Note that we have seen that DPLS does not have to be solved
on the global problem but can be solved only on some of the smaller sub-problems
when the instance is too big (see section 2.5.4). This is a way of weakening the filter-
ing – we filter less than with DPLS applied on the whole problem but the algorithm
scales better. The first mode – or setting – of LOTSIZING has been defined in section
2.5 and its speed is bound to the speed of the DP-based algorithms.

We define a new mode for LOTSIZING – a "light" mode – where we totally de-
activate the use of DP algorithms. The level of filtering of LOTSIZING is lowered
thus improving the propagation speed. In this mode, we compute global lower
bounds and use two filtering algorithms without DP. We first compute the linear re-
laxation of the global problem with a flow algorithm to obtain a lower bound on the
global cost. We also compute lower bounds on the intermediate costs Cp, Ch and Cs
with a linear relaxation ignoring the other costs. In order to filter the decision vari-
ables, we use reduced-cost filtering. The principle of the method will be explained
in the next chapter. Reduced-cost filtering is not complete (it does not remove all
inconsistent values) as we will see that the filtered values depend on the dual so-
lution. Different dual solutions can derive different filtering. The second way of
filtering is a resource-based filtering similar to the filtering performed with DPLS
in section 2.5.3. For each period 2 ≤ t ≤ T − 1 we compute the linear relaxation
of sub-problems L1,t−1 and Lt+1,T and use them as partial lower bounds to filter the
decision variables at t. Note that these two ways of filtering are not comparable.

We will see in the next chapter the application and test the performance of the
"light" mode of LOTSIZING.

60| SINGLE-ITEM LOT-SIZING

Chapter 3

Multi-item lot-sizing with shared setup
costs

3.1 Introduction
In this chapter we investigate the behaviour of the LOTSIZING global constraint on
single-level multi-item lot-sizing problems. The case study problem considered in
this chapter is the capacitated multi-item lot-sizing problem with shared setup costs
[93]. We chose a problem with only major setup costs – as opposed to minor setup
costs where each item has its own setup cost – because its the simplest extension of
single-item lot-sizing into a multi-item problem. It is a pure generic multi-item lot-
sizing problem and is usually solved using MILP that is very effective for industrial
size instances.

Multi-item lot-sizing problems are a very natural extension to single-item where
the goal is to optimize the production and storage of a set of items. Figure 3.1 shows
that at each period, production of several items can occur and when the correspond-
ing demand is fully satisfied, the overload of each item is stored until the next pe-
riod. The variables are double indexed and the first index corresponds to the item,
the second to the period. Xn,t is therefore the quantity of item n produced at pe-
riod t.

The optimization usually consists in a trade-off between the different items: the
decision of which item is more worthy to store or produce adds to the difficulty of
deciding which periods to open. The items can be linked either by a shared pro-
duction or storage capacity, by shared setup costs or by many other constraints.
Multi-item problems can also use the lot-sizing extensions that are presented in the
introduction of this thesis (backlog, lost sales, ...). These constraints model the fact
that the items may require the same resources (budget, machines, workers, ...) or

61

62| MULTI-ITEM LOT-SIZING WITH SHARED SETUP COSTS

𝑋1,𝑡
𝑋𝑡
2

…

… …𝑡

𝑑1,𝑡 , 𝑑2,𝑡 ,…

𝑋1,𝑡, 𝑋2,𝑡, …

𝐼1,𝑡,𝐼2,𝑡, …𝐼1,𝑡−1,𝐼2,𝑡−1, …

Figure 3.1: Multi-item lot-sizing problems

that decisions have to be made considering the items altogether. Multi-item prob-
lems are more representative and more realistic models of industrial real life appli-
cations since factories typically deal with the optimization of production plans of
several kinds of products that need the same resources. LOTSIZING allows for an
intuitive modeling of multi-item problems where each item is represented by only
one LOTSIZING with additional constraints linking them.

Multi-item problems faster pose scalability issues and it can be even harder to
tackle additional side constraints. Even though reformulations and valid inequal-
ities derived from the single-item lot-sizing exist and help tackle multi-item prob-
lems [102], generic approaches are uncommon or complicated to implement [36].
Polyhedral results are limited but there are some exceptions [55, 67]. People tend
nowadays to use decomposition or hybrid techniques for their particular multi-item
problems with side constraints [1, 2, 27, 37]. Hence the motivation to build a generic
CP approach for complex lot-sizing problems.

The goal of the chapter is to test and improve the reasoning mechanisms of
LOTSIZING developed in the first chapter on this pure multi-item problem in order
to show that the approach can be used on complex lot-sizing problems with side
constraints. We first describe the problem and the classical MILP model then give
the CP model based on our global constraint and the use of a multi-flow problem.
We show that, as one might expect, the decomposed CP model is totally outper-
formed but also that LOTSIZING helps solving the problem in reasonable time. We
then try to improve the filtering by introducing cardinality variables and extend the
scope of LOTSIZING with piece-wise linear production and holding costs.

3.2 DESCRIPTION AND MODELS | 63

3.2 Description and models
The capacitated multi-item lot-sizing problem with shared setup costs aims at plan-
ning the production of N types of items indexed by n ∈ J1, NK on a single resource,
with a global production capacity λ for each period t, regardless of the item. The
variables introduced in the single-item lot-sizing are now indexed by n. Each item
n is subject to a demand dn,t for t ∈ J1, TK. A setup cost st is paid if at least one
unit of any item is produced at period t. An unitary production cost pn,t is paid for
the production of each unit of item n at period t. Finally, storing one unit of item n
between periods t and t + 1 induces a holding cost hn,t. The set of data of each item
is denoted by datan. We give three models to solve the problem.

A MILP model. An aggregated MILP model can easily be derived from the classi-
cal MILP model for the single-item problem:

min z =
T

∑
t=1

(stYt +
N

∑
n=1

(pn,tXn,t + hn,t In,t)) (3.1)

N

∑
n=1

Xn,t ≤ λ ∀ t = 1 . . . T (3.2)

(MILP) Xn,t + In,t−1 = In,t + dn,t ∀ n = 1, . . . , N, ∀ t = 1, . . . T
(3.3)

Xn,t ≤ Mn,tYt ∀ n = 1, . . . , N, ∀ t = 1, . . . T
(3.4)

Xn,t ∈ {αn,t, . . . , αn,t} ∀ n = 1, . . . , N, ∀ t = 1 . . . T
(3.5)

In,t ∈ {βn,t, . . . , βn,t} ∀ n = 1, . . . , N, ∀ t = 1 . . . T
(3.6)

Yt ∈ {0, 1} ∀ t = 1 . . . T (3.7)

where Mn,t is an upper bound on Xn,t such as αn,t. Constraints (3.2) are the
overall capacity constraints for all the periods. Constraints (3.3) are the flow balance
constraints and constraints (3.4) are the setup activation constraints.

A decomposed CP model. We define a naive decomposed CP model – called DEC
– which basically is the MILP model with the implications Xn,t > 0⇒ Yt = 1, ∀ t ∈
J1, TK, ∀n ∈ J1, NK instead of constraints (3.4).

64| MULTI-ITEM LOT-SIZING WITH SHARED SETUP COSTS

A CP model using the LOTSIZING global constraint. As said earlier, the LOT-
SIZING constraint intuitively models each item. We have to add the capacity side
constraints outside of these global constraints. The CP model based on LOTSIZING
writes:

min z = Cs +
N

∑
n=1

(Cpn + Chn) (3.8)

N

∑
n=1

Xn,t ≤ λ ∀ t = 1 . . . T (3.9)

LOTSIZING(Xn, In, Y, Cpn, Chn, Cs, Cn, datan) ∀ n = 1 . . . N (3.10)

Xn, In ∈NT ∀ n = 1 . . . N (3.11)

Y ∈NT (3.12)
Cs ∈N (3.13)

Cpn, Chn, Cn ∈NN (3.14)

Constraints (3.8) to (3.14) model the capacitated multi-item lot-sizing problem
with shared setup costs. Constraints (3.9) are the overall capacity constraints for all
the periods. Each item is represented by a LOTSIZING constraint (3.10). Note that
the setup variables Y are common to each item hence Cs is the global setup cost.

3.3 Instances and experimental setup
The rest of the chapter aims at comparing different models based on LOTSIZING to
solve the capacitated multi-item lot-sizing problem with shared setup costs. We first
describe the instances that are used and the experimental setup.

Instances. To compare our models, we adapted the instances for the capacitated
multi-item lot-sizing problem with setup times from [93]. The authors introduce
a benchmark of 540 instances that are separated in three classes of 180 instances.
Each class considers a time horizon of 20 periods and has a fixed number of items:
10, 20, or 30. We choose to keep the number of instances and increase the number
of classes. We therefore generated 12 classes of 45 instances spread as explained in
table 3.1.

The same way as it was done in [93], we generate demands uniformly between
75 and 125 for the first half of the class (23 instances out of 45 for each class). For
the instances of the second half (from 24 to 45), demands are generated between 0

3.3 INSTANCES AND EXPERIMENTAL SETUP | 65

T 20 40 60 80
N 10 20 30 10 20 30 10 20 30 10 20 30

Table 3.1: Classes of instances

and 200. Similarly as in the paper, to simulate an increasing trend, we randomly
replaces 25% of the demands in the first four periods of each item by 0.

The capacity is the same as in the instances of [93].
In [93], the cost baseline is pn,t = 1 and hn,t = hn uniformly generated between

0.8 and 1.2. However we intend to have integer costs so our baseline is pn,t = 10
and we generate hn,t = hn uniformly between 8 and 12.

In [93], there are minor setup costs sn,t = sn. To generate our setup costs, we
compute the minimum and maximum ratios RN,min = min

instances with N items
{ sn

hn
} and

RN,max = max
instances with N items

{ sn
hn
}. Then we uniformly generate a ratio RN,n between

RN,min and RN,max for each item. For our instances we compute the setup cost:
sn,t = s = ∑N

n=1 RN,nhn.
Note that in these instances the production cost is constant among the items since

pn,t = 10. The optimization, as usually done in academic problems, is a trade-off
between setup and inventory costs.

Setup. All the tests are run under Windows 8 on an Intel Core i5 @ 2.5 GHz with
12GB of RAM. We set a time limit of 300s and a memory limit of 8GB of RAM.
The indicator NODE is the average number of nodes computed by each model on
the given set of instances. CPU corresponds to the average CPU time used by the
models. RNB is the average gap of the root node lower bound to the optimal value.
LR is the average gap of the linear relaxation to optimal. Finally OPT is the number
of solved instances in the set. The means are computed over all the instances of
each set. As in the previous chapter, since we want to prove optimality, we give the
optimal cost as an upper bound to the CP models.

The MILP models were implemented with CPLEX version 12.6 and the CP mod-
els in Choco 3.3 [72].

Numerical results are presented in the next four sections. The first section de-
scribes how to branch only on the setup variables. The second section compares
different models of the problem. In the third section, we extend the LOTSIZING
constraint by adding cardinality variables that count the number of open periods.
The last section generalizes LOTSIZING further by allowing the production and in-
ventory costs to be modeled with step functions.

66| MULTI-ITEM LOT-SIZING WITH SHARED SETUP COSTS

3.4 Differences with the single-item
Solving the multi-item problem presents some changes with the resolution of the
single-item. We will first see that we need to check if branching can still be per-
formed on the setup variables alone. Then we will show that the basic model based
on LOTSIZING has to be improved with a redundant constraint in order to increase
the communication between the items. In this section we show and compare several
other CP models to distinguish the main issues to focus on when solving multi-item
problems.

3.4.1 Branching only on setup variables: the use of a multi-flow
problem

The dominance rule described in section 2.5.1 does not apply in the case of the
multi-item problem. Indeed once the setup variables are fixed, a single LOTSIZING
constraint can not instantiate all its production and inventory variables (Xn and In)
variables since they are not independent from the other items. However once the
Y variables are fixed, the resulting problem is a multi-flow problem [92] in the flow
graph presented in figure 2.1: each item can flow on each arc with a cost (pn,t if
it is a production arc, hn,t if it is an inventory arc or 0 if it is an arc from a period
node to the sink). The overall capacity of the production arcs – for a period t – is
limited by λ. This problem is NP-hard in the general case. When solving multi-item
lot-sizing problems, if the items are no longer linked when the setup variables Y are
instantiated, the resulting multi-flow problem becomes polynomial as it boils down
to several independent minimum cost maximum flow problems. Here the global
production capacity λ still links the items. However as our graph is very particular,
the constraint matrix of this multi-flow problem appears to be totally unimodular.
The constraints are:

N

∑
n=1

Xn,t ≤ λ ∀ t = 1 . . . T (3.15)

Xn,t + In,t−1 = In,t + dn,t ∀ n = 1, . . . , N, ∀ t = 1, . . . T (3.16)

Xn, In ∈NT ∀ n = 1 . . . N (3.17)
(3.18)

Constraints (3.15) are the capacity constraints – let us call them capa(t) – and
(3.16) are the flow balance constraints – let us call them flow(n, t). Table 3.2 summa-
rizes the coefficients of the production and inventory variables in the constraints at
period t.

3.4 DIFFERENCES WITH THE SINGLE-ITEM | 67

Variable Coefficient Constraint

In,t

+1 flow(n, t + 1)
−1 flow(n, t)
0 Otherwise

Xn,t

+1 flow(n, t)
+1 capa(t)
0 Otherwise

Table 3.2: Coefficients of the variables in the multi-flow matrix

We define L1 = {flow(n, t), ∀ t ∈ J1, TK, n ∈ J1, NK} and L2 = {capa(t), ∀ t ∈
J1, TK}. L1 and L2 partition the lines of the multi-flow matrix and when adding the
coefficients on each column of L1 and of L2, we get the same vector which means
the matrix is totally unimodular [101]. Our resulting multi-flow problem is therefore
polynomial.

Once the setup variables (Y) are all fixed, a LP solver can be called to solve the re-
sulting multi-flow problem and instantiate the production and inventory quantities.
We create a global constraint that solves the multi-flow when the setup variables are
fixed. More specifically, we embed the multi-flow problem resolution in a propaga-
tor – independent from LOTSIZING global constraint – that activates only when the
setup variables are all fixed. This propagator is very generic and can be stated by
the user.

3.4.2 A redundant LOTSIZING

The first CP model presented in section 3.2 considers the items separately since one
item is modeled by one LOTSIZING constraint. These items are linked by the global
capacity and the setup costs. In order to better link the items and reason on the
problem as a whole, we add a redundant LOTSIZING that aggregates the production
and inventory variables. Since LOTSIZING cannot make any difference between the
items, the costs need to be revised. For this redundant constraint, we set the unitary
production (respectively holding) cost to the minimum of the unitary production
(respectively holding) costs of each item. The redundant constraint is therefore a
relaxation of the overall problem and the variables Cp and Ch are lower bounds
of the global production and holding costs, and C is a lower bound of the total
cost z. The goal of this constraint is to help better enforce feasibility and estimate
the different costs, in particular the global setup cost, by considering all the items
together.

68| MULTI-ITEM LOT-SIZING WITH SHARED SETUP COSTS

LOTSIZING(Xagg, Iagg, Y, Cp, Ch, Cs, C, dataagg) (3.19)

Xagg,t =
N

∑
n=1

Xn,t ∀ t = 1 . . . T (3.20)

Iagg,t =
N

∑
n=1

In,t ∀ t = 1 . . . T (3.21)

Xagg, Iagg ∈NT (3.22)
Cp, Ch, C ∈N (3.23)

Constraints (3.8) to (3.14) and (3.19) to (3.23) effectively constitute a model of the
problem. Constraint (3.19) is the redundant LOTSIZING constraint and constraints
(3.20) and (3.21) link the aggregate variables to the real production and inventory
variables of the items. The aggregate data given to the redundant LOTSIZING is

{ min
n∈J1,NK

pn,t, min
n∈J1,NK

hn,t, st,
N

∑
n=1

dn,t,
N

∑
n=1

αn,t, min{λ,
N

∑
n=1

αn,t},
N

∑
n=1

βn,t,
N

∑
n=1

βn,t) | t ∈ J1, TK}

Figure 3.2 is a small example of the problem with 2 periods and 2 items to
demonstrate some extra filtering performed by the redundant constraint. There are
no unitary production or holding costs. Note that since the capacity is λ = 2 we
have to open both periods to satisfy the demands. However no LOTSIZING on the
items can force a period to open since they are locally consistent. Figure 3.3 shows
the view of the redundant LOTSIZING and we can directly see that both periods
have to be open when the two items are considered together.

1

𝑋1,1 ∈ [0,1]

𝑋2,1 ∈ [0,2]

2

𝑑1,1 = 0

𝑑2,1 = 0

𝑋1,2 ∈ [0,1]

𝑋2,2 ∈ [0,2]

𝑑1,2 = 1

𝑑2,2 = 2

λ = 2

1

𝑋𝑎𝑔𝑔,1 ∈ [0,2]

2

𝑑𝑎𝑔𝑔,1 = 0

𝑋𝑎𝑔𝑔,2 ∈ [0,2]

𝑑𝑎𝑔𝑔,2 = 3

λ = 2

Figure 3.2: A small example of multi-item

3.4 DIFFERENCES WITH THE SINGLE-ITEM | 69

1

𝑋1,1 ∈ [0,1]

𝑋2,1 ∈ [0,2]

2

𝑑1,1 = 0

𝑑2,1 = 0

𝑋1,2 ∈ [0,1]

𝑋2,2 ∈ [0,2]

𝑑1,2 = 1

𝑑2,2 = 2

λ = 2

1

𝑋𝑎𝑔𝑔,1 ∈ [0,2]

2

𝑑𝑎𝑔𝑔,1 = 0

𝑋𝑎𝑔𝑔,2 ∈ [0,2]

𝑑𝑎𝑔𝑔,2 = 3

λ = 2

Figure 3.3: The view of the redundant LOTSIZING on the example

3.4.3 First numerical tests

In order to set the baseline for our numerical tests, we first compare three models:

• The model MILP.

• The decomposed model DEC.

• A LOTSIZING based model called CPLS. It is composed of constraints (3.8)
to (3.14) and (3.19) to (3.23). The solver branches on the setup variables and
the multi-flow is solved to set the quantity variables. In this model the re-
dundant constraint uses LOTSIZING to filter the variables and the LOTSIZING
constraints for each item are on "light" mode as explained at the end of chapter
2.

Tables 3.3 and 3.4 show the results for the three models. We choose the compare
our models on the 40 first instances. More results are shown in the end of the section.

Models NODE CPU RNB LR OPT
MILP 0.2 0.0 0.0 % 26.0% 20
CPLS 27.5 1.8 5.9 % NA 20
DEC 1086747.9 300.0 95.8 % NA 0

Table 3.3: Baseline (first 20 instances)

The first observation is that MILP performs very well on these instances for the
problem. We can see that the naive decomposed model DEC cannot even find a
solution, which was expected. CPLS is not very competitive with the MILP but
can at least solve all the instances in a reasonable time. Unsurprisingly CPLS has a
better root node lower bound than the linear relaxation. MILP has however a near
optimal root node lower bound.

70| MULTI-ITEM LOT-SIZING WITH SHARED SETUP COSTS

Models NODE CPU RNB LR OPT
MILP 35.2 0.1 1.6 % 35.4% 20
CPLS 157.8 9.5 7.3 % NA 20
DEC 1745997.0 300.0 95.4 % NA 0

Table 3.4: Baseline (instances 21 to 40)

3.4.4 On the necessity to branch on setup variables
In order to assess the relevance of the use of the multi-flow problem as a way to
avoid branching on the production variables we compare CPLS to CPLS without
the multi-flow. CPLS\MF has the same constraints than CPLS but branches first
on the setup variables then on the production variables X. Note that when the
production variables are fixed, the inventory variables are fixed as well. The results
are presented in tables 3.5 and 3.6.

Models NODE CPU RNB LR OPT
CPLS 27,5 1,8 5,9 % NA 20
CPLS\MF 15132,2 16,6 5,9 % NA 20

Table 3.5: With or without a multi-flow? (first 20 instances)

Models NODE CPU RNB LR OPT
CPLS 157,8 10,5 7,3 % NA 20
CPLS\MF 193351,9 211,1 7,3 % NA 7

Table 3.6: With or without a multi-flow? (instances 21 to 40)

As expected, branching on the quantity variables (X or I) is too costly and is
not a realistic solution. The multi-flow problem tackles this issue and is essential to
reduce the search space. We also tried to solve the linear relaxation of the problem
at each node to compute a global lower bound that could improve the resolution at
small cost. We have however seen in section 3.4.3 that the MILP gives a poor linear
relaxation. We noticed that the search time is the same as for CPLS yet the gain
is negligible when computing the linear relaxation at each node: the lower bound
computed by the redundant LOTSIZING is usually better.

3.4.5 Different levels of filtering
Since the LOTSIZING global constraint can perform more or less filtering, we want
to investigate the trade-off between the level of filtering and the resolution time.

3.4 DIFFERENCES WITH THE SINGLE-ITEM | 71

We define two variations of CPLS that have different strengths and the results are
presented in tables 3.7 and 3.8.

• The model called BASIC is composed of constraints 3.8 to 3.14 and solves the
multi-flow when all the setup variables are instantiated. Note that this is basi-
cally CPLS without the redundant constraint.

• The model called HEAVY is CPLS where all the LOTSIZING constraints on
the items also perform filtering using DPLS. It considerably slows down the
propagation at each node as each item performs a lot of reasoning. As CPLS,
HEAVY solves the multi-flow when all the setup variables are instantiated.

Models NODE CPU RNB LR OPT
CPLS 27.5 1.8 5.9 % NA 20
HEAVY 27.5 9.0 5.9 % NA 20
BASIC 301.4 1.6 6.5 % NA 20

Table 3.7: Benefits of the redundant LOTSIZING (first 20 instances)

Models NODE CPU RNB LR OPT
CPLS 157.8 9.5 7.3 % NA 20
HEAVY 157.8 40.5 7.3 % NA 20
BASIC 2057.6 10.4 8.4 % NA 20

Table 3.8: Benefits of the redundant LOTSIZING (instances 21 to 40)

CPLS and BASIC are similar in time on those instances even though CPLS has
a better root node lower bound. BASIC does many more nodes than CPLS and
we think the model would not scale on bigger instances. HEAVY solves at least
one DP for each item at each node, which explains the big resolution time and we
can see no improvement in the search compared to CPLS. We believe that the best
way to configure the model is CPLS: the redundant constraint that captures most of
the problem performs the heavier computation whereas the LOTSIZING constraints
dedicated to the item are on "light" mode. We also implemented an extension of
DEC where we only add the redundant LOTSIZING constraint and noticed that the
resolution time and branching space are very similar to CPLS.

3.4.6 Results on the benchmark

To better assess the quality of CPLS, we compare CPLS to MILP on the first three
classes of the benchmark. These are the classes with T = 20 and N ∈ {10, 20, 30}

72| MULTI-ITEM LOT-SIZING WITH SHARED SETUP COSTS

with 45 instances each. We did not solve the instances with bigger time-horizons.
The results are presented in table 3.9.

Class Models NODE CPU RNB LR OPT

1 MILP 27,7 0,1 1,1 % 32,6% 45
CPLS 127,5 9,5 7,0 % NA 45

2 MILP 414,2 0,7 4,5 % 63,0% 45
CPLS 620,1 180,6 6,6 % NA 43

3 MILP 71,1 0,4 1,5 % 33,4% 45
CPLS 122,7 68,5 7,2 % NA 40

Table 3.9: Results on the first classes of the benchmark

We can see that the number of nodes is not very big compared to the resolu-
tion time as the filtering via DP can be very costly. A few instances are not proven
optimal by CPLS in the given time limit.

3.5 Reasoning on the cardinalities
Although the redundant LOTSIZING constraint of CPLS filters more than all other
constraints, it is a relaxation of the whole problem. It is known that adding redun-
dant variables and constraints can significantly reduce the search space and increase
the propagation of the other constraints by expressing certain properties of the so-
lutions.

The role of redundancy in CP is that it can provide a more global view of the
problem. To increase the communication between the constraints, one can reformu-
late them or link existing constraints and variables via redundancy. By definition,
the use of redundant constraints and variables does not change the optimal solu-
tion(s) or the feasible region, it may nevertheless imply extra computational effort.

We extend the scope of LOTSIZING with redundant variables to better inform
the other constraints and improve their filtering. Note that LOTSIZING is not ex-
tended to multi-item but the reasoning mechanisms on the single-item problem are
reinforced. The structure of the model inspired us to use cardinality variables. As
the branching occurs on the Y variables only, and that this is the combinatorial part
of the problem, counting open production periods can provide reasonings that are
not done yet. A production period is said to be open if the corresponding setup cost
is paid – if Yt = 1. We think that knowing how many periods are open can give in-
formation on which periods to actually open and thus improve the global setup cost
lower bound and better filter the variables. Reasoning on cardinalities has proven
to be useful in certain cases, for instance when reasoning on the bin-packing global

3.5 REASONING ON THE CARDINALITIES | 73

constraint [85]. We therefore introduce the following redundant cardinality vari-
ables:

card =
T

∑
t=1

Yt (3.24)

cardt,t′ =
t′

∑
i=t

Yi ∀ t < t′ ∈ J1, TK (3.25)

The variable card is the number of actual open periods of production. The addi-
tional variables cardt,t′ count the number of open periods in every sub-plan of size
at least 2. Note that the set of constraints (3.24) and (3.25) has an ideal formulation.
We will see in chapter 4 how to build a propagator for this sub-problem.

3.5.1 Extending the dynamic programming

In order to increase the reasoning power of LOTSIZING, we modify the dynamic
programming algorithm DPLS to include the cardinalities: it boils down to consider
card as a resource and solve a Shortest Path Problem with Resource Constraints
(SPPRC) in the graph of DPLS. We call this DP algorithm DPCard and it runs in
O(T2 I2

max). We denote f] (t, It, card) the minimum cost for producing the demands
from d1 to dt knowing that the stock level at the end of period t is It and that there
are exactly card open periods from 1 to t.

∀ t ∈ J1, TK and ∀ It ∈ J0, βtK
f] (t, It, card) = min

It−1=a...b
{f] (t− 1, It−1, card) + ht It,

f] (t− 1, It−1, card− 1) + st + ht It + ptXt} (3.26)

where a = max {0, dt + It − αt}, b = min {βt−1, dt + It} and Xt = It + dt− It−1. The
initial states are

∀ q ∈ D(card), f] (0, 0, q) = 0 and ∀ It ∈ J1, ImaxK, q ∈ D(card) , f (0, It, q) = +∞

The value minq∈D(card) f] (T, 0, q) gives the optimal cost.
Note that DPCard can be adapted to take into account only the production, the

inventory or the setup costs and thus give lower bounds on Cp, Ch and Cs. This
can be very costly but may allow the user to configure LOTSIZING to tackle more
precisely the costs that seem important.

74| MULTI-ITEM LOT-SIZING WITH SHARED SETUP COSTS

3.5.2 Filtering based on cardinalities
Similarly as for the other DP algorithms presented in this thesis we denote by f],r
the reverse dynamic programming and use it to filter the variables: f],r (t, It, card)
is the minimum cost for producing the demands from dt+1 to dT knowing that the
stock level at the end of period t is It and that there are exactly card open periods
from t + 1 to T.

Filtering the variable card can be done with the following rule:

∀ q ∈ D(card)

f] (T, 0, q) > C ⇒ card 6= q (3.27)

It is however too costly to filter all the cardij variables so we filter only some
of them. We only filter the card1,t, cardt,T and cardt,t+1 variables and only when
the global cardinality variable card is instantiated. Indeed DPCard has one more
dimension than DPLS – the dimension added by the variable card. The filtering
rules are similar to the one we used before:

∀ t ∈ J1, TK, a ∈ D(card1,t),

max
it∈D(It)

(f] (t, it, a) + max
b|a+b=card

(f],r (t + 1, it, b))) > C ⇒ card1,t 6= a (3.28)

∀ t ∈ J1, TK, b ∈ D(cardt,T),

max
it∈D(It)

(max
a|a+b=card

(f] (t− 1, it, a)) + f],r (t, It, b)) > C ⇒ cardt,T 6= b (3.29)

∀ t ∈ J1, TK, it−1 ∈ D(It−1), it ∈ D(It), it+1 ∈ D(It+1)

max
a,b,c|a+b+c=card

(f] (t− 1, it−1, a) + cost (t, it−1, it) + cost (t + 1, it, it+1) + f],r(t + 1, it+1, b))

> C ⇒ cardt,t+1 6= c
(3.30)

where xt = dt + it − it−1

c = 1xt>0 + 1xt+1>0

cost(t, it−1, it) = 1xt>0st + ptxt + htit

We filter the production and inventory variables with the following filtering
rules (when card is instantiated):

3.5 REASONING ON THE CARDINALITIES | 75

∀ t ∈ J1, TK, it ∈ D(It)

max
a,b|a+b=card

(f] (t, it, a) + f],r(t, it, b)) > C ⇒ It 6= it (3.31)

∀ t ∈ J1, TK, it−1 ∈ D(It−1), it ∈ D(It)

max
a,b|a+b+1xt>0=card

(f] (t− 1, it−1, a) + cost(t, it−1, it) + f],r(t, it, b)) > C ⇒ Xt 6= xt

(3.32)

where xt = dt + it − it−1 and cost(t, it−1, it) = 1xt>0st + ptxt + htit.

The variable card is filtered in O(T), each variable card1,t and cardt,T in O(T2 Imax),
each variable cardt,t+1 in O(TI3

max). Each It is filtered in O(TImax) and each Xt is fil-
tered in O(TI2

max).

3.5.3 Numerical results

We implemented DPCard in LOTSIZING along with the card variables and solved
our multi-item instances with different parameters. We implemented six models
using the different options presented in table 3.10. Numerical results are presented
in tables 3.11 and 3.12.

Code Options

Branching 1 Branching on the Yt
2 Branching on card then on the Yt

Reasoning
a Computing lower bounds on all costs with DPCard
b Filtering card, card1,t, cardt,T and cardt,t+1 from DPCard
c Filtering It and Xt from DPCard

Table 3.10: New CP models based on cardinality variables

In conclusion, redundant cardinality variables that count the number of open
production periods reduce the search space and provide a better root node lower
bound than CPLS. However, since dynamic programming algorithms and entailed
filtering take most of the computational effort, the resolution time is bigger. CPLS
is still the fastest model on our instances. It looks better to branch on the card vari-
able first which is intuitive since when the number of open periods is fixed, find-
ing which periods to open should be easier. We can see that models with b and c
are better than just a that cannot even solve all the instances. Indeed, filtering the

76| MULTI-ITEM LOT-SIZING WITH SHARED SETUP COSTS

Models NODE CPU RNB LR OPT
CPLS 27.5 1.7 5.9 % NA 20
CP1a 15.0 41.5 5.8 % NA 20
CP1ab 1.6 11.1 2.4 % NA 20
CP1abc 1.6 11.0 2.4 % NA 20
CP2a 5.5 15.8 5.8 % NA 20
CP2ab 1.6 10.6 2.4 % NA 20
CP2abc 1.6 10.9 2.4 % NA 20

Table 3.11: Redundancy through cardinality variables (first 20 instances)

Models NODE CPU RNB LR OPT
CPLS 157.8 9.8 7.3 % NA 20
CP1a 60.1 102.6 6.4 % NA 17
CP1ab 32.1 52.6 4.6 % NA 20
CP1abc 32.0 51.6 4.6 % NA 20
CP2a 39.9 80.7 6.4 % NA 19
CP2ab 37.8 38.7 4.6 % NA 20
CP2abc 36.9 38.0 4.6 % NA 20

Table 3.12: Redundancy through cardinality variables (instances 21 to 40)

cardinality, production and inventory variables provides contradictions faster. The
number of nodes is similar but the resolution time is better since each node is faster
to compute.

Note that solving a SPPRC can directly give the bound consistency for LOT-
SIZING when considering the four costs as resources. The computation is however
too costly as the upper bounds of the costs variables can be very important. With
DPCard we consider card as a resource, hence the additional dimension is in O(T)
and much smaller in practice.

3.6 More general cost structures
The aggregated/redundant LOTSIZING underestimates the production and holding
costs by construction of the constraint since it deals with the minimum unitary costs
over all the items at each period. This constraint is therefore a relaxation of the
problem. It can be a useful modeling tool to have the LOTSIZING constraint handle
piece-wise linear unitary costs to better capture the individual costs of the items and
extend the generality of the single-item problem modeled by the global constraint
to be able to solve a larger set of problems [8].

3.6 MORE GENERAL COST STRUCTURES | 77

3.6.1 Piece-wise linear production and inventory costs
We define PCt and HCt the paid production and holding costs at a period t. These
costs follow a step function where the steps correspond to the production or storage
capacities of each item. They therefore depend on the quantity produced/stored
at each period. Given a period t, until a certain quantity of units produced – the
first step –, the cost is as if the items were produced using the smallest unitary
production cost. Further units until another greater quantity – the second step –
are produced using the second smallest unitary production cost and so on. Figure
3.4 (respectively 3.5) shows the evolution of PCt (respectively HCt) for each level of
production Xt (respectively stock It) at period t.

𝐼𝑡

𝑋𝑡, 𝑌𝑡

𝐾1 = 𝑥𝑡
1

𝐾2 = 𝑥𝑡
1 + 𝑥𝑡

2

𝐾3 = 𝑥𝑡
1 + 𝑥𝑡

2 + 𝑥𝑡
3

𝑀3𝑀1 𝑀2 𝐼𝑡

𝐻𝐶𝑡

ℎ𝑡
1

ℎ𝑡
2

ℎ𝑡
3

𝐾𝑡
3

𝐾𝑡
1 𝐾𝑡

2 𝑋𝑡

𝑝1,𝑡

𝑝2,𝑡

𝑝3,𝑡

𝑃𝐶𝑡

𝑀𝑡
3

𝑀𝑡
1 𝑀𝑡

2 𝐼𝑡

ℎ1,𝑡

ℎ2,𝑡

ℎ3,𝑡

𝐻𝐶𝑡

Figure 3.4: A step function to model unitary production costs

Consider the case of production costs. Take a period t and sort the unitary pro-
duction costs in ascending order. In this order, for all steps j = 1 . . . L, we denote by
K j

t the production capacity of step j. We define K0
t = 0. The production unitary cost

for units between two consecutive levels Kj and Kj+1 is the jth unitary production
cost. Hence the production cost of Xt that is between two consecutive levels Kj and
Kj+1 is computed by:

PCt =
j−1

∑
l=1

pl,t(Kl
t − Kl−1

t) + pj,t(Xt − K j−1
t)

.
We can apply the same reasoning to the holding costs with Mj

t being the cumu-
lative storage capacity. The holding cost of It that is between two consecutive levels
Mj and Mj+1 is computed by:

HCt =
j−1

∑
l=1

hl,t(Ml
t −Ml−1

t) + hj,t(It −Mj−1
t)

.

78| MULTI-ITEM LOT-SIZING WITH SHARED SETUP COSTS

𝐼𝑡

𝑋𝑡, 𝑌𝑡

𝐾1 = 𝑥𝑡
1

𝐾2 = 𝑥𝑡
1 + 𝑥𝑡

2

𝐾3 = 𝑥𝑡
1 + 𝑥𝑡

2 + 𝑥𝑡
3

𝑀3𝑀1 𝑀2 𝐼𝑡

𝐻𝐶𝑡

ℎ𝑡
1

ℎ𝑡
2

ℎ𝑡
3

𝐾𝑡
3

𝐾𝑡
1 𝐾𝑡

2 𝑋𝑡

𝑝1,𝑡

𝑝2,𝑡

𝑝3,𝑡

𝑃𝐶𝑡

𝑀𝑡
3

𝑀𝑡
1 𝑀𝑡

2 𝐼𝑡

ℎ1,𝑡

ℎ2,𝑡

ℎ3,𝑡

𝐻𝐶𝑡

Figure 3.5: A step function to model unitary holding costs

The global production and inventory costs are now given by Cp = ∑T
t=1 PCt

and Ch = ∑T
t=1 HCt. The scope of LOTSIZING is modified to take into account the

possibility to give a step function. In order to ensure the validity of the costs, we
define PCt and HCt as variables in the model and we add a small propagator for
each of them. In short, when the user adds the LOTSIZING constraint with step
functions in the model, it also sets additional constraints that guaranty the correct
computation of the production and holding costs PCt and HCt. In our multi-item
problem, the step function of the redundant LOTSIZING is defined by the items. For
each period, we sort the items by ascending unitary production/holding cost. In
this order, for all item j, we define K j

t and Mj
t as the cumulative production and

inventory capacity (the upper bounds of Xj,t and Ij,t).
In order to filter using the step functions, we define DPLSUC an extension of

DPLS that takes into account the step functions. The computational complexity of
DPLSUC is the same as for DPLS, indeed when the costs are needed, Xt and It are
fixed hence the value of the corresponding production or holding cost is fixed as
well. The filtering rules defined for DPLS also apply for DPLSUC.

Figure 3.6 shows a small example where the step functions improve the lower
bound computed by DPLS. There are 2 items to produce over 2 periods. The pro-
duction of item 1 is mandatory at period 1. Item 2 should be produced at pe-
riod 1 since the setup cost at period 2 is quite high. The optimal cost is then
s1 + h2,1 x d2,2 = 1 + 2 x 2 = 5. The aggregated problem underestimates the hold-
ing cost between periods 1 and 2 to h1,1 = 1. DPLS then underestimates the overall
cost to s1 + h1,1 x d2,2 = 1 + 1 x 2 = 3. DPLSUC on the other hand takes into ac-
count the fact that only one item can be stored from periods 1 to 2 at cost h1,1 = 1
and returns a cost of s1 + h1,1 + h2,1 = 1 + 1 + 2 = 4 and gives a better lower bound
than DPLS.

Note that this small example displays a multi-item case. The improvement is
made on LOTSIZING as we extend the global constraint to a more generic single-

3.6 MORE GENERAL COST STRUCTURES | 79

1

𝑥1
1 ∈ [0,1]

𝑥1
2 ∈ [0,2]

2

𝑑1
1 = 1

𝑑1
2 = 0

𝑥2
1 ∈ [0,1]

𝑥2
2 ∈ [0,2]

𝑖1
1 ∈ [0,1]
𝑖1
2 ∈ [0,2]

ℎ1
1 = 1

ℎ1
2 = 2

𝑑2
1 = 0

𝑑2
2 = 2

𝑠1 = 1 𝑠2 = 5

1

𝑋1,1 ∈ [0,1]

𝑋2,1 ∈ [0,2]

2

𝑑1,1 = 1

𝑑2,1 = 0

𝑋2,1 ∈ [0,1]

𝑋2,2 ∈ [0,2]

𝐼1,1 ∈ [0,1]

𝐼1,2 ∈ [0,2]

ℎ1,1 = 1

ℎ2,1 = 2

𝑑2,1 = 0

𝑑2,2 = 2

𝑠1 = 1 𝑠2 = 5

Figure 3.6: A better lower bound with a step function for unitary costs

item lot-sizing problem than in the previous chapter, where the unitary costs can
follow a step function.

3.6.2 Numerical results

Tables 3.14 show the results of the resolution of the 40 instances and compares the
model CPUC to CPLS.

Models NODE CPU RNB LR OPT
CPLS 27,5 2,1 5,9 % NA 20
CPUC 27,5 2,0 5,9 % NA 20

Table 3.13: Variable unitary costs (first 20 instances)

Models NODE CPU RNB LR OPT
CPLS 157,8 10.7 7,3% NA 20
CPUC 157,9 10,5 7,3% NA 20

Table 3.14: Variable unitary costs (instances 21 to 40)

The improved LOTSIZING is still a relaxation since no distinction is made be-
tween the products flowing though its network. The steps give only maximum
quantities of products that can be produced/stored at the smaller costs. The draw-
back is that steps being computed at the beginning of the resolution, there are cases

80| MULTI-ITEM LOT-SIZING WITH SHARED SETUP COSTS

where the steps are too high and provide poor or no filtering. Anyway, this im-
provement seems a very useful modeling tool and is free from the point of view
of algorithmic complexity. To avoid having too big steps, it should be possible to
maintain them during the search, thus tightening the reasoning made by DPLSUC.

3.7 Conclusion
In this chapter we have seen that the naive decomposed model cannot deal with the
decisions that have to be made about the quantities to produce and store and thus
cannot solve the instances let alone compete with MILP . Thanks to LOTSIZING, we
have shown that there is a way to tackle multi-item problems using constraint pro-
gramming when the branching is not done on the quantity variables but on the bi-
nary variables and dynamic programming techniques allow us to filter these quanti-
ties during the search. On the capacitated multi-item lot-sizing problem with shared
setup costs, our model using LOTSIZING is not competitive against MILP but this
was expected. We give reasoning mechanisms to help tackle problems with combi-
natorial side constraint, more complex than the pure academic lot-sizing problems.
We also improve the strength and the modularity of LOTSIZING by adding redun-
dant cardinality variables and a way to model piece-wise linear unitary costs. The
latter could be improved using variables steps. Finally, to give some insights on
how to solve lot-sizing problems, we believe that one should not branch on quan-
tity variables. One should instead find where lies the combinatorial difficulty of the
problem and tune the CP model using the different options of the LOTSIZING global
constraint. The key is to find the resulting problem once the 0/1 variables are fixed.
Since the flow graph of lot-sizing problems has usually a very particular structure
that makes it easy for MILP models to solve, the resulting problem is likely to be
polynomial or easily solvable in practice. Finally LOTSIZING can easily be used to
add powerful redundant constraints based on the structure of the problem.

Chapter 4

Filtering via linear programming

4.1 Introduction
Mixed Integer Linear Programming (MILP) and Constraint Programming (CP) have
benefited from each other increasingly in recent years due to the complementary
strengths of the two frameworks. Many approaches have been proposed to combine
their modeling and solving capabilities [4,10,23,76,82]. On one side, CP tailored al-
gorithms for specific constraints take advantage of local combinatorial structures to
reduce the search space efficiently. On the other, MILP techniques usually encom-
pass the whole problem and typically compute lower/upper bounds of the objective
function that propagation through the domains fails to derive. A typical integration
of the two approaches is to use the linear relaxation of the entire problem in addition
to the local consistencies enforced by the CP solver. The relaxation is used to per-
form filtering, in particular by providing a global bound of the objective but also by
filtering the domains using a technique referred to as reduced-cost-based filtering
[50,68]. Constraints can in turn provide specialized linear formulations and cutting
planes.

As opposed to previous work, we investigate in this chapter how linear pro-
gramming (LP) can be used to filter individual constraints and in particular to pro-
vide arc consistency algorithms. Let us suppose that an ideal linear formulation F
over n variables is available for a global constraint. A formulation is referred to as
ideal when it has the integrality property i.e. when the extreme points of the corre-
sponding polytope are integer points. It is easy to come by such formulations for
many global constraints [76] that include 0/1 variables typically encoding whether
an original variable of the constraint is assigned to a given value of its domain. Since
F is supposed ideal, a simple way to achieve arc consistency is to fix, in turn, each
variable to each value and check the consistency by calling a linear solver. This is

81

82| FILTERING VIA LINEAR PROGRAMMING

very similar to the failed literal test mentioned in [12] for achieving arc consistency
with unit propagation over a SAT encoding of the constraint.

In [73, 74], it was briefly remarked that the solution of the LP relaxation of a
MILP obtained by a single call of the interior point algorithm allows domain filter-
ing using the property that the algorithm converges toward an interior point of the
polyhedron if it exists. Hence a variable set to one of its boundary in the relaxed
solution can be fixed to its boundary in any optimal integer solution. It was also
stated (without proof) that in case that the LP matrix of a global constraint is totally
unimodular, i.e. the formulation is ideal, arc consistency is enforced by this pro-
cedure and that a potentially powerful level of consistency can be achieved on an
LP of a global constraint whose matrix can be decomposed into totally unimodular
submatrices.

We show, however, that arc consistency for a set of constraints stated over n
variables can be achieved in this case by solving a single linear program with n ad-
ditional variables and 2n additional constraints. The idea is to look for an interior
point, of the convex hull of F maximizing the number of variables with a slack to
their respective lower and upper bounds. Although this goes against the rationale
explained above for integrating the two frameworks, we believe the advantages
are twofold. First of all, since each solver only provides a handful of the existing
constraints, it is particularly useful to quickly design arc consistency algorithms for
many polynomial constraints. Secondly, it can provide a generic but competitive al-
gorithm for constraints with a quadratic running time such as the GEN-SEQUENCE
[63].

The linear relaxation has been used in the past for filtering and we now review
several closely related works [4, 10, 76, 82] that propose frameworks for combin-
ing the linear relaxation, specialized cutting planes generation and filtering. An
illustrative example is the work of [76] where each constraint is able to provide
its linear relaxation so that a global relaxation of the entire problem is automati-
cally derived from a CP model. Additionally, a constraint is able to add dedicated
cutting planes during search, taking advantage of the corresponding combinatorial
structure to build a stronger relaxation. The linear relaxations of common global
constraints such as ELEMENT, ALLDIFFERENT, CIRCUIT and CUMULATIVE can be
found in [51, 76] and relaxations of global constraints involving costs such as MIN-
IMUMWEIGHTALLDIFFERENT or WEIGHTEDCIRCUIT are described in [43]. The lin-
ear relaxation is directly used for filtering by [4, 10, 43, 75, 76]. It can detect infeasi-
bility, provide a bound for a cost variable and perform filtering using a technique
referred to as reduced-cost based filtering [43, 50]. The latter is a specific case of
cost-based filtering [42] that aims at filtering out values leading to non-improving
solutions.

In the previous chapters, we use LP to deal with several sub-problems of the
lot-sizing problems considered: for instance deciding the quantities when the dom-

4.2 NOTATIONS | 83

inance rule of LOTSIZING applies or solving the polynomial multi-flow of the multi-
item problem. This chapter is a first step to improve the reasoning mechanisms that
LP can provide. Moreover, the cardinality constraints used to strengthen the fil-
tering of LOTSIZING have an ideal formulation. The LOTSIZING constraint might
benefit from having strong filtering algorithms reason on these sub-problems.

Section 4.2 summarizes the key notations. Section 4.3 reviews and explains
reduced-cost based filtering in more details. The main result of this chapter is pre-
sented section 4.4 and its application to ALLDIFFERENT, GLOBALCARDINALITY and
GEN-SEQUENCE constraints is described in section 4.5. Finally experimental results
are reported on three benchmarks in section 4.6.

4.2 Notations
A constraint satisfaction problem is made of a set of variables, each with a given
domain, i.e. a finite set of possible values, and a set of constraints specifying the
allowed combinations of values for subset of variables. In the following, the vari-
ables, e.g. Xi, are denoted with upper case letters for the constraint programming
models as opposed to the variables of linear programming models that are in lower
case. D(Xi) ⊆ Z denotes the domain of Xi. A constraint c over a set of variables
〈X1, . . . , Xn〉 is defined by the allowed combinations of values (tuples) of its vari-
ables. Such tuples of values are also referred to as solutions of the constraint c.
Given a constraint c with a scope 〈X1, . . . , Xn〉, a support for c is a tuple of values
〈v1, . . . , vn〉 that is a solution of c and such that vi ∈ D(Xi) for all variable Xi in
the scope of c. Consider a variable Xi in the scope of c, the domain D(Xi) is said
arc consistent for C if and only if all the values vj ∈ D(Xi) belong to a support for
c. A constraint c is said arc consistent if and only if all its variables are arc consistent.

4.3 Traditional filtering using LP: reduced-
cost filtering
Let us first review how linear programming is traditionally used to perform filter-
ing. Suppose we are dealing with a minimization problem. Cost-based filtering
relies on a known upper bound z of the objective function which is usually the
cost of the best feasible solution found so far. Since there is no need to consider
solutions with a greater cost than z, values of the domains that would necessarily

84| FILTERING VIA LINEAR PROGRAMMING

lead to such non-improving solutions should be filtered. Linear reduced-costs pro-
vide valuable information to perform such reasonings. They are available from an
optimal dual solution of the linear relaxation and give a minimum increase of the
objective function. This increase can be used to detect if a bound of a variable leads
to a non-improving solution. When applied to 0/1 variables, i.e. variables with the
domain {0, 1}, any update of a bound leads to fixing a variable to 0 or 1. It has thus
been known for a long time as variable fixing.

To our knowledge, the best account of this technique in the context of constraint
programming is given in [50]. It is usually presented in textbooks on integer pro-
gramming such as [68, 101] for 0/1 variables. We give a summary of this technique
in the more general case of integer variables. Consider a linear programming formu-
lation (P) where the feasible region is defined by a polytope Q = {x ∈ RT | Ax ≥
b, l ≤ x ≤ u}. Note that each variable xt for all t ∈ {1, . . . , T}, has a given lower and
upper bound i.e. xt ∈ [lt, ut].

(P) z∗ = min{cx : x ∈ Q}
Program (P) is typically the linear relaxation of an integer programming formu-

lation identified for the whole problem or for a single constraint. Let α be the m dual
variables of the constraints Ax ≥ b. Moreover, let x∗ be an optimal solution of (P)
and α∗ a set of optimal values of the α variables. The reduced cost rt of a variable
xt, with respect to α∗, is defined as rt = ct − α∗At where At is the t-th column of
A. Note that the definition of rt ignores the dual variables related to the lower and
upper bounds since xt ≤ ut and xt ≥ lt are usually not added as constraints to the
formulation of (P) but handled directly by the simplex algorithm (see [31] for more
details). The reduced cost rt is typically the quantity returned by linear program-
ming solvers when the bounds are not explicitly stated as constraints in the model
but directly as bounds of the variable’s domains.

Reduced-cost-based filtering removes values necessarily leading to non-improving
solutions i.e. solutions of cost greater than the known upper bound z. The following
rules can be used for filtering a variable xt of (P) from an optimal dual solution.

Proposition 1 (Reduced cost filtering)

If rt > 0 then xt ≤ lt +
(z− z∗)

rt
in any solution of cost less than z (4.1)

If rt < 0 then xt ≥ ut −
(z− z∗)
−rt

in any solution of cost less than z (4.2)

Note that if xt is originally an integer variable, the reasoning can be tightened as
xt ≤ lt + b (z−z∗)

rt
c and xt ≥ ut − b (z−z∗)

−rt
c.

4.4 A NEW GENERIC FILTERING ALGORITHM BASED ON LP | 85

The two rules are a direct consequence of traditional sensitivity analysis and the
reader can refer to [50, 101] for more details.

The filtering obtained from a particular optimal dual solution is usually incom-
plete since rt depends on the specific α∗ found. In other words, considering several
optimal dual solutions may provide more filtering. Let us go through a very simple
example to illustrate this point. We consider a difference constraint X1 6= X2 with
D(X1) = {1, 2} and D(X2) = {1}. Value 1 of D(X1) is thus expected to be filtered.
A simple integer formulation of the feasible solutions can be written with 0/1 vari-
ables x1, x2, x3 respectively encoding whether X1 = 1, X1 = 2 or X2 = 1. The linear
relaxation and its dual problem write as follows:

min 0 max ∑4
i=1 αi + ∑3

i=1 βi
x1 + x2 ≥ 1 α1 + α3 + α4 + β1 ≤ 0
x3 ≥ 1 α1 + α4 + β2 ≤ 0

(P) x1 + x3 ≤ 1 (D) α2 + α3 + β3 ≤ 0
x1 + x2 ≤ 1 α1, α2 ≥ 0
x1, x2, x3 ≥ 0 α3, α4 ≤ 0
x1, x2, x3 ≤ 1 β1, β2, β3 ≤ 0

x∗ = (0, 1, 1) is an optimal solution of (P). It is easy to see that α∗ = (0, 0, 0, 0) or
α∗ = (0, 1,−1, 0) are two vectors of optimal values for α (with β∗ = (0, 0, 0)). The
reduced cost of x1 is r1 = 0− α∗1 − α∗3 − α∗4 . In the first case, r1 = 0 and none of the
rules given in Proposition 1 is triggered. In the second case, r1 = 1 and the first rule
applies with z = 0 enforcing x1 ≤ 0 as expected. In both cases r2 = r3 = 0, therefore
x2 and x3 are not filtered.

Note that this drawback occurs even if the polytopeQ has integer extreme points
which is the case in the example. Moreover, in any case, minimizing 0 in (P) implies
that α∗ = 0 is an optimal vector for α and the linear solver can always return it. To
reduce this phenomenon, it is possible to use another objective function cx as long
as all feasible solutions have the same cost (see Section 4.6 for an example).

An alternative approach to reduced costs is proposed in the next section to per-
form a complete variable fixing.

4.4 A new generic filtering algorithm based
on LP
Let us briefly explain the general idea and its application to filtering global con-
straints before stating the result in detail.

86| FILTERING VIA LINEAR PROGRAMMING

Consider a polytope Q = {x ∈ RT | Ax ≥ b, l ≤ x ≤ u} with integer extreme
points and l, u ∈ ZT. We show in this section that a variable that is fixed to one of its
bound (either lt or ut) in all extreme points of Q can be detected by solving a linear
program with T additional variables and 2T additional constraints. The idea is to
look for an interior point of Q maximizing the number of variables with a slack to
their respective lower and upper bounds. When no slack is possible, the variable is
proved to be fixed to the same value in all extreme points.

For numerous polynomial global constraints, it is possible to give an ideal integer
programming formulation F of the solutions where 0/1 variables xij typically encode
whether an integer variable Xi of the constraint’s scope is assigned to value a vj
of its domain. The linear relaxation of F defines a polytope Q that represents the
convex hull of the supports of the constraint. Each integer point in Q can be seen
as a support of the constraint. The proposed technique identifies all 0/1 variables
that are set to 0 in all extreme points. Since all interior points of Q are a convex
combination of the extreme points, the same variables are thus also set to 0 for all
interior points of Q, i.e. the corresponding values do not belong to any support.
Since complete variable fixing can be performed (all inconsistent values are removed),
the proposed technique gives the arc consistent domains for the constraint.

The main result is stated as Theorem 5. The polytope Q = {x ∈ RT | Ax ≥
b, l ≤ x ≤ u} is assumed to have integer extreme points and l, u ∈ ZT. Let us also
denote by S the set of extreme points of Q.

Theorem 5 Let us define ε =
1

(T + 1)
, and (P′) the following linear program:

min z(x, e) =
T

∑
t=1

et

s.t. xt + et ≥ lt + ε ∀t ∈ {1, ..., T}
xt − et ≤ ut − ε ∀t ∈ {1, ..., T}

et ≥ 0 ∀t ∈ {1, ..., T}
x ∈ Q

For all t ∈ {1, ..., T}, all δ ∈ {lt, ut}, and all optimal solution (x∗, e∗) of (P′) we have:

x∗t = δ ⇔ x̂t = δ ∀x̂ ∈ S

Note that a feasible solution of (P′) with et = 0 indicates that variable xt has a
slack of at least ε to its lower and upper bound. Keep also in mind that the objective
of (P′) is to minimize the sum of the et which tend to create slack. We will show that
any optimal solution of (P′) actually maximizes the number of variables that can be
unstuck from their bounds revealing all the xt that are always instantiated to either
lt or ut. We first make a simple observation:

4.4 A NEW GENERIC FILTERING ALGORITHM BASED ON LP | 87

Remark. If (x∗, e∗) is an optimal solution of (P′), then e∗ = e(x∗) with e : RT → RT

such that e(x) = (e1(x), ..., et(x), ..., eT(x)) and

et(x) = max{0, ε + lt − xt, ε− ut + xt} ∀t ∈ {1, ..., T}

Proof. Each variable et only occurs in three constraints of (P′): et ≥ 0, et ≥ ε+ lt− xt
and et ≥ ε− ut + xt. Given a value of x∗, the minimum possible feasible value for et
is thus max{0, ε + lt − xt, ε− ut + xt}. �

The optimal objective value of (P′) is at least ε times the number of variables that
are necessarily fixed to either lt or ut. The proof given below builds a feasible solu-
tion of (P′) reaching this bound by setting et(x) = 0 for all other variables. Thus,
any optimal solution highlights the fixed variables. We now prove theorem 5.

Proof.
We denote by T l = {t ∈ {1, ..., T} | x̂t = lt, ∀x̂ ∈ S} and T u = {t ∈

{1, ..., T} | x̂t = ut, ∀x̂ ∈ S} the sets of indices referring to variables fixed re-
spectively to their lower or upper bounds, in all extreme points ofQ. As mentioned
above, a valid lower bound (P′) is ε(|T l|+ |T u|).

Let (x̂0, x̂1, x̂2, ..., x̂T) be a series of extreme points of S defined as follows. x̂0 is
chosen arbitrarily in S . Each x̂t such that t /∈ T l ∪ T u is chosen in S so that x̂t

t 6= x̂0
t .

Finally, all remaining x̂t are chosen arbitrarily in S .
Based on this series of points, we can define a feasible solution (x̄, e(x̄)) of (P′)

by considering x̄ as the following convex combination x̄ =
1

T + 1

T

∑
t=0

x̂t.

Firstly, note that x̄t ∈ {lt, ut} if and only if t ∈ T l ∪ T u. Indeed, lt ≤ x̂t ≤ ut

for all x̂ ∈ S , so we have x̄t ∈ {lt, ut} if and only if x̂t′
t = x̄t for all t′ ∈ {0, ..., T}.

Therefore, by construction, x̄t ∈ {lt, ut} if and only if x̂t = x̂0
t for all x̂ ∈ S , i.e.

t ∈ T l ∪ T u.
Secondly, all other x̄t have a slack of at least ε. For all t /∈ T l ∪ T u, we have

x̂t
t 6= x̂0

t , therefore max{x̂t
t, x̂0

t } ≥ lt + 1 and min{x̂t
t, x̂0

t } ≤ ut − 1 since extreme
points of Q are integers. As a result:

x̄t ≥ 1
T + 1

(max{x̂t
t, x̂0

t }+ T lt) ≥ 1
T + 1

(lt + 1 + T lt) = lt + ε

x̄t ≤ 1
T + 1

(min{x̂t
t, x̂0

t }+ T ut) ≤ 1
T + 1

(ut − 1 + T ut) = ut − ε

Hence for all t ∈ {1, ..., T}, we have

et(x̄) =
{

ε if t ∈ T l ∪ T u

0 otherwise

88| FILTERING VIA LINEAR PROGRAMMING

Thus z(x̄, e(x̄)) = ε(|T l|+ |T u|) which proves that the solution (x̄, e(x̄)) is op-
timal. Any optimal solution x∗ must therefore have a cost of ε(|T l|+ |T u|). Since
et(x∗) ≥ 0 for all t and et(x∗) = ε for all t ∈ T l ∪ T u, et(x∗) = 0 for all t /∈ T l ∪ T u.

Conclusion: for all optimal solutions (x∗, e∗) of (P′), all t ∈ {1, ..., T} and all
δ ∈ {lt, ut},

x∗t = δ ⇔ t ∈ T l ∪ T u ⇔ x̂t = δ ∀x̂ ∈ S

�

We now propose a simple application of this result to filtering global constraints.
Consider a polynomial global constraint C over a scope X = 〈X1, . . . , Xn〉 of n inte-
ger variables with their respective domains D(Xi) ∈ Z. The approach proposed to
enforce arc consistency is summarized below:

LP-based filtering for constraint C:
Inputs: A constraint c over the variables X = 〈X1, . . . , Xn〉. An ideal integer formu-
lation F of the solutions of c where a 0/1 variable xij is present for all Xi ∈ X, vj ∈
D(Xi) to encode whether variable Xi takes value vj.
Output: arc consistent domains D(X1), . . . , D(Xn) for constraint c.

1. ConsiderQ as the convex hull ofF by simply relaxing the domain’s constraint
xij ∈ {0, 1} into xij ∈ [0, 1] for all xij

2. Find an optimal solution (x∗, e∗) of (P′) as defined in theorem 5

3. For each Xi ∈ X and each vj ∈ D(Xi), if x∗ij = 0, remove value vj from D(Xi)

The procedure given above computes arc consistent domains as a direct conse-
quence of theorem 5 : indeed x∗ij = 0 means that xij = 0 for any solution of the
LP, hence the corresponding value has to be removed. Furthermore, when x∗ij = 1,
x∗ik = 0 for all k 6= j.

Corollary 1 The procedure LP-based filtering is correct and establishes arc consistency
for constraint c.

Proof. Recall that the integer points of Q represent the supports of c. Since any
interior point can be written as a convex combination of the extreme points, there
exists at least one extreme point x̂ ∈ S such that x̂ij = 1 for any consistent value
vj of a D(Xi). Similarly when all x̂ij = 0 for all x̂ ∈ S , it is the case of all interior
integer points. Keeping that in mind, we simply check that the procedure does not
remove any consistent value (it is correct) and removes all inconsistent values (it is
complete).

4.5 IDEAL FORMULATIONS OF POLYNOMIAL GLOBAL CONSTRAINTS | 89

Correct: consider a consistent value vj in D(Xi). Since it belongs to a support,
there exists at least one x̂ ∈ S such that x̂ij = 1. Therefore, x∗ij 6= 0 according to
theorem 5 and value vj is not removed by the proposed procedure.

Complete: Let us check that all remaining values belong to a support. Consider
a value vj of a domain D(Xi) after the procedure has been called. Since vj has not
been filtered, x∗ij 6= 0 implying by theorem 5 that there exists at least one extreme
point x̂ ∈ S such that x̂ij = 1. Therefore vj belongs to the corresponding support. �

The complexity of LP-based filtering depends on the algorithm used to solve
the LP. In practice, the simplex algorithm is known to have a number of iterations
proportional to m log(n) [31] where n is the number of variables and m the number
of constraints of the LP formulation.

4.5 Ideal formulations of polynomial global
constraints
We now provide an ideal linear integer programming formulation F for a number
of polynomial global constraints. The fact that a variable Xi takes one and one value
only of its domain (Xi ∈ D(Xi)) is typically expressed in F following [76]: ∑

vj∈D(xi)
xij = 1

xij ∈ {0, 1} ∀vj ∈ D(Xi)
(4.3)

4.5.1 ALLDIFFERENT and GLOBALCARDINALITY

The ALLDIFFERENT(X1, . . . , Xn) constraint [78] is satisfied when the variables X1, . . . , Xn
take different values. The formulation given below is the classical formulation for
the matching problem and is known to have the integrality property:

F =

∑

i|vj∈D(Xi)
xij ≤ 1 ∀vj ∈

⋃n
i=1 D(Xi)

∑
vj∈D(xi)

xij = 1 ∀i ∈ {1, . . . , n}

xij ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀vj ∈ D(Xi)

(4.4)

A related global constraint is the GLOBALCARDINALITY constraint [80]. It enforces
the number of occurrences of each value vj to be at least lj and at most uj in the set

90| FILTERING VIA LINEAR PROGRAMMING

X1, . . . , Xn of variables. The formulation F is the following:

F =

∑
i|vj∈D(Xi)

xij ≤ uj ∀vj ∈
⋃n

i=1 D(Xi)

∑
i|vj∈D(Xi)

xij ≥ lj ∀vj ∈
⋃n

i=1 D(Xi)

∑
vj∈D(xi)

xij = 1 ∀i ∈ {1, . . . , n}

xij ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀vj ∈ D(Xi)

(4.5)

F has the integrality property since the matrix can be seen as a specific case of a
network flow matrix. Let us denote by d = maxn

i=1 |D(Xi)|, the maximum cardinal-
ity of the domains and m = |⋃n

i=1 D(Xi)|, the total number of distinct values. Both
formulations given have O(nd) variables and O(n+m) constraints. Arc consistency
can thus be established by solving the program (P′) which has twice the number
of variables and O(nd + m) constraints. Recall that the dedicated algorithms for
each constraint respectively runs in O(n1.5d) for the ALLDIFFERENT, O(n2m) for the
GLOBALCARDINALITY and are incremental down a branch of the search tree.

4.5.2 The family of SEQUENCE constraints

The SEQUENCE constraint restricts the number of occurrences of some given values
in any sequence of k variables. It can be expressed as a conjunction of AMONG
constraints and has been used for car sequencing [18] and nurse rostering [29]. More
precisely, AMONG(l, u, 〈X1, . . . , Xk〉, V) holds if and only if l ≤ |{i|Xi ∈ V}| ≤ u.
In other words, at least l and at most u of the variables take their values in the set
V. The SEQUENCE constraint can be defined as a conjunction of sliding AMONG
constraints over k consecutive variables. SEQUENCE(l, u, k, 〈X1, . . . , Xn〉, V) holds if
and only if ∀i ∈ {1, . . . , n− k + 1} AMONG(l, u, 〈Xi, . . . , Xi+k−1〉, V) holds.

An incomplete filtering algorithm for SEQUENCE is proposed in [15]. Two arc
consistency algorithms are later given in [96, 97] with respective running times of
O(n3) and O(2kn). Additionally, an encoding achieving arc consistency is presented
in [29] and runs in O(n2log(n)) down a branch of a search tree. It is latter improved
in [63] by using the fact that a natural integer programming formulation of the con-
straint has the consecutive ones property on the columns. This is used to build a
network flow graph and derive an arc consistency algorithm. The complexity of
this flow-based propagator to enforce arc consistency is O(n((n − k)(u − l) + u))
when using the Ford-Fulkerson algorithm for finding a maximum flow. The incre-
mental cost when fixing a single variable is only O(n) so that the algorithm runs in
O(n2) down a branch of a search tree.

A generalization of SEQUENCE is known as GEN-SEQUENCE and allows differ-
ent occurrences (l and u) and sizes (k) for an arbitrary set of m AMONG constraints

4.5 IDEAL FORMULATIONS OF POLYNOMIAL GLOBAL CONSTRAINTS | 91

over consecutive variables. GEN-SEQUENCE(p1, . . . , pm, 〈X1, . . . , Xn〉, V) holds if
and only if ∀ 1 ≤ i ≤ m, AMONG(li, ui, 〈Xsi , . . . , Xsi+ki−1〉, V) holds where pi =
{li, ui, ki, si}.

The GEN-SEQUENCE global constraint is defined in [96, 97] and a O(n4) algo-
rithm is proposed to enforce arc consistency. The consecutive one property does
not hold in general for a GEN-SEQUENCE constraint. Although it may sometimes
be possible to re-order the lines of the matrix to have the consecutive one property
on the columns or to find an equivalent network matrix, [63] outlines that not all
GEN-SEQUENCE constraints can be expressed as network flows. The flow-based
algorithm for SEQUENCE can therefore not be reused in general. Nonetheless, the
encoding of SEQUENCE proposed in [29] extends to GEN-SEQUENCE and runs in
O(nm + n2 log n) [63]. Finally, in [12], a filtering method based on unit propagation
over a conjunctive normal form encoding of the constraint is proposed and achieves
arc consistency in O(mn3).

Note that the previous sequence constraints can be encoded with a simple boolean
channeling, without hindering any filtering since the resulting constraint network is
Berge-acyclic. Typically GEN-SEQUENCE(p1, . . . , pm, 〈X1, . . . , Xn〉, V) can be stated
as:

GEN-SEQUENCE(p1, . . . , pm, 〈Y1, . . . , Yn〉, 1)
Yi = 1⇔ Xi ∈ V, ∀i ∈ {1, . . . , n}

Yi ∈ {0, 1}, ∀i ∈ {1, . . . , n}
(4.6)

All previous studies thus focused on the restricted case where V = {1}. The
integer linear formulation for GEN-SEQUENCE(p1, . . . , pm, 〈Y1, . . . , Yn〉, 1) is the fol-
lowing:

F =

si+ki−1
∑

j=si

yj ≤ ui ∀i ∈ {1, . . . , m}

si+ki−1
∑

j=si

yj ≥ li ∀i ∈ {1, . . . , m}

yj ∈ {0, 1} ∀j ∈ {1, . . . , n}

(4.7)

This formulation has the integrality property, as already mentioned in [63]. The
linear program (P′) solved by the proposed LP-based procedure to enforce arc con-
sistency has O(n) variables and O(m + n) constraints. Recall that the best arc con-
sistency algorithm for GEN-SEQUENCE is the encoding of [63] and runs in O(nm +
n2 log n).

92| FILTERING VIA LINEAR PROGRAMMING

4.6 Numerical results
We carried out experiments on the ALLDIFFERENT and SEQUENCE global constraints.
The first set of experiments compares the LP-based filtering to the dedicated filter-
ing algorithm of ALLDIFFERENT (section 4.6.1). It also evaluates in practice the
power of reduced-cost based filtering. The second one (section 4.6.2) compares two
encodings of SEQUENCE to the LP-based filtering on random sequences alone fol-
lowing the experiments reported in [63]. Finally the last one evaluates the LP-based
filtering on the Car-sequencing problem (section 4.6.3).

The experiments were performed with Windows 8 on an Intel Core i5 @ 2.5 GHz
with 12GB of RAM. A memory limit of 4GB of RAM was used. The indicators
shown in the result tables are the average resolution time in seconds (CPU), the
average number of nodes (N) and the average speed of the resolution in node per
second (N/s). The constraint solver used is Choco 3.3 [72].

4.6.1 LP and reduced-cost filtering for the ALLDIFFERENT constraint

The LP-based filtering is implemented for ALLDIFFERENT with the polytope given
in Section 4.5.1. It is referred to as ALLDIFFERENTLPF (for LP Filtering) and com-
pared with three other filtering algorithms: the Choco ALLDIFFERENT constraint,
the decomposition into cliques of difference constraints (DEC) and the reduced-cost
based filtering algorithm in addition to the decomposition (RCF). As mentioned in
section 4.3, when filtering via reduced costs, the use of an objective function of the
form cx can increase the chances of having non null reduced costs. To perturb the
dual, the objective function used is ∑n

i=1 ci(∑j∈D(Xi)
xij), where the ci are randomly

chosen in [−10, 10] at each node. Note that this function guarantees that all feasible
solutions have the same cost.

We solve the QuasiGroup Completion problem [70]. The problem is to fill a n
by n matrix previously filled at k% with numbers from 1 to n such that on each line
and on each column, each number appears only once. We compare four models
and look for the number of nodes needed to find all solutions for small instances
with a lexicographic branching heuristic. Table 4.1 shows the average results on 10
randomly generated instances for each size n ∈ {5, 10, 15}. These three classes of
instances are respectively filled at 10, 40 and 50% to have instances solvable under
3600s.

As expected, ALLDIFFERENTLPF is slower than Choco ALLDIFFERENT that uses
a dedicated algorithm. It is also on average three times slower than RCF. We can
however see that it achieves arc consistency as it explores the same number of nodes
than Choco ALLDIFFERENT. When n = 15, RCF explores approximately twice the
number of nodes of Choco ALLDIFFERENT or ALLDIFFERENTLPF. RCF does not

4.6 NUMERICAL RESULTS | 93
n 5 10 15
Filtering CPU N N/s CPU N N/s CPU N N/s
Choco ALLDIFFERENT 0.1 3190.1 51453.2 1.2 51591.0 41405.3 5.1 87680.6 17244.9
ALLDIFFERENTLPF 2.7 3190.1 1184.6 110.2 51591.0 468.3 478.2 87680.6 183.4
RCF 0.9 3223.0 3679.2 40.7 57679.4 1416.6 292.6 159399.0 544.7
DEC 0.0 3285.6 547600.0 0.8 126613.2 150015.6 161.5 14338395.8 88805.2

Table 4.1: QuasiGroup Completion: filtering the ALLDIFFERENT constraint

achieve arc consistency, yet filters more than the decomposition alone. DEC propa-
gates small constraints and is faster than RCF but can explore up to a 100 times the
number of nodes of RCF for these instances.

4.6.2 Filtering one SEQUENCE constraint

The LP-based filtering is implemented for SEQUENCE with the polytope given in
section 4.5.2. It is referred to as SEQUENCELPF and compared with an encoding
of SEQUENCE: the PS encoding presented in [29] which achieves arc consistency
using a decomposition based on partial sums with O(nk2) constraints. Following
the experimentation of [63] we generated 20 instances of a single sequence for each
combination of n ∈ {500, 1000, 2000, 3000, 4000, 5000}, k ∈ {5, 15, 50, 75} and ∆ =
l − u ∈ {1, 5}. We look for the first solution found with a heuristic that randomly
chooses the variable and the value to branch on. Figure 4.1 shows the evolution of
the resolution time (in s) with the size of the instances.

SEQUENCELPF is slower than the PS encoding on sequences with smaller k.
However, when k = 75, PS runs out of memory due to the number of constraints,
whereas SEQUENCELPF can solve the sequence. Most importantly, as we can see
on Figure 4.1, LP filtering scales better with the problem: it does not seem very
sensitive to the value of k.

4.6.3 The Car-sequencing problem

We evaluate the performance of SEQUENCELPF on the Car-sequencing problem
[87]. The goal is to schedule n cars partitioned in k classes: the demand of a class c is
denoted by dc. Each class requires a subset of options in a set of m options. For each
option j, there must be at most pj cars that require that option in each sub-sequence
of size qj. We consider the two first sets of instances presented in [86]: Set 1 is com-
posed of 70 feasible instances with 200 cars, Set 2 is composed of 4 feasible instances
with 100 cars. All the instances are available in CSPLib. We use the model described
by [86]:

Variables

94| FILTERING VIA LINEAR PROGRAMMING

k = 5

k = 15

Ti
m

e(
s)

k = 50

k = 75

∆ = 1 ∆ = 5

500 1,000 2,000 3,000 4,000 5,000
0

100

200
SEQUENCELPF
PS

500 1,000 2,000 3,000 4,000 5,000
0

100

200

500 1,000 2,000 3,000 4,000 5,000
0

100

200

500 1,000 2,000 3,000 4,000 5,000
0

100

200

500 1,000 2,000 3,000 4,000 5,000
0

100

200

500 1,000 2,000 3,000 4,000 5,000
0

100

200

500 1,000 2,000 3,000 4,000 5,000
0

100

200

Number of variables (n)
500 1,000 2,000 3,000 4,000 5,000

0

100

200

Number of variables (n)

Figure 4.1: Sequence

• The class variables are n integer variables X = {X1, . . . , Xn} taking their value
in {1, . . . , k}. Xi = c means that a car of class c is scheduled in slot i.

• The option variables are nm boolean variables Y = {Y1,1, . . . , Yn,m}. Yi,j = 1
means that the car in slot i has the option j.

Constraints

• The demand constraint states that the demand of each class must be satisfied
and is enforced by GLOBALCARDINALITY(X , {d1, . . . , dk}), meaning that for
each class c ∈ [1, n] the number of variables in X taking the value c should be
exactly dc.

• The capacity constraints: for each option j, in each sub-sequence of cars of size
qj, the number of cars requiring option j is limited by pj. For each option j, we
set: SEQUENCE(0, pj, qj, {Y1,j, . . . , Yn,j})

• The option and class variables are linked using implication constraints. For

4.7 CONCLUSION AND FUTURE WORK | 95

each class c, we define Oc the set of options required by the class. For each slot
i, we set: Xi = c⇒ Yi,j = 1 ∀ j ∈ Oc and Xi = c⇒ Yi,j = 0 ∀ j 6∈ Oc.

The problem is to find a single feasible solution and the search is done with a
branching heuristic defined in [86] denoted by {class, lex, δ,≤∑}. It branches lexi-
cographically on the class variables and chooses the class for which the sum of the
loads of each option is the highest. We set a time limit of 1200s. Table 4.2 compares
a model with the filtering of SEQUENCELPF to a model with the PS encoding. The
columns CST and VAR show the average number of constraints and variables of the
model.

Set 1 (70 instances) Set 2 (4 instances)
MODEL CST VAR SOLV CPU N N/s CST VAR SOLV CPU N N/s
SEQUENCELPF 1006 1212 100 % 0.4 185.4 418.4 506 610 20.0 % 900.0 603588.8 670.7
PS 11872 4786 100 % 0.1 185.4 2948.9 5872 2384 20.0 % 900.0 10666137.5 11850.8

Table 4.2: Car-sequencing Sets 1 and 2

The branching heuristic is very efficient for the first set of instances whereas only
1 instance out of the 4 of Set 2 is solved. The SEQUENCE constraints are not very big
(n ≤ 200 and k ≤ 5), hence PS has no more than 12000 constraints and is faster than
SEQUENCELPF. For this more complex problem, LP filtering is only 20 times slower
than the encoding that achieves arc consistency while for QuasiGroup Completion,
it is 100 times slower than the Choco ALLDIFFERENT constraint.

4.7 Conclusion and future work
Given a formulation of a constraint with the integrality property, we have shown
that arc consistency can be achieved by solving a single linear program. We believe
it is very useful to provide arc consistency algorithms for numerous polynomial
constraints that are not available in solvers. Although it is unlikely to be compet-
itive with dedicated and incremental filtering algorithms, a number of improve-
ments have yet to be investigated. Firstly, the algorithm boils down to the search
for an interior point in a polytope and there might be more efficient techniques,
although maybe more difficult to implement, than the simplex algorithm for that
purpose. Secondly, the result itself is more general than the specific usage done
here to enforce arc consistency since it can be used to detect integer variables neces-
sarily grounded to a bound of their domain. This raises the question whether more
sparse LP formulations that does not necessarily introduce a variable per value of
the original domains can be used. Finally, polynomial constraints with high running

96| FILTERING VIA LINEAR PROGRAMMING

times often have a cost variable, for instance the MINIMUMWEIGHTALLDIFFERENT,
so that a natural extension of this work is to handle an objective function.

4.8 What if the integrality property is
not met?
In perspective of the work we did with LPF, arises the question of the validity of
the LPF procedure when we no longer assume the integrality property. We will
see that our LP filtering technique does not provide arc-consistency anymore but
is still valid. This means that all the values that are filtered are indeed inconsistent
values but all the inconsistent values are not filtered. We define theorem 6 and show
that theorem 5 is a particular case then give two counter examples to show the LPF
procedure is incomplete.

4.8.1 On the validity of the LPF procedure

Theorem 6 is an adaptation of theorem 5 with no restriction on the polytope. We
also show that ε = 1

T is the biggest ε that can be taken.

Theorem 6 LetR = {x ∈ RT | Ax ≥ b, l ≤ x ≤ u} be a polytope of RT, with l, u ∈ ZT.
Let S = R∩ZT be the set of integer points of R. Let (P) be the following linear program
with ε = 1

T ,

min
T

∑
t=1

et

s.t. et ≥ ε + lt − xt ∀ t ∈ {1, ..., T}
et ≥ ε− ut + xt ∀ t ∈ {1, ..., T}

et ≥ 0 ∀ t ∈ {1, ..., T}
x ∈ R

For any (x∗, e∗) optimal solution of (P):

• If lt ≤ x∗t < lt + ε then x̂t = lt for all x̂ ∈ S

• If ut − ε < x∗t ≤ ut then x̂t = ut for all x̂ ∈ S

Remark 1: If (x∗, e∗) is an optimal solution of (P), then e∗ = e(x∗) with e : RT → RT

defined by
∀ t ∈ {1, . . . , T}

e(x) = (e1(x), . . . , et(x), . . . , eT(x)) and et(x) = max{0, ε + lt − xt, ε− ut + xt}

4.8 WHAT IF THE INTEGRALITY PROPERTY IS NOT MET? | 97

Remark 2: For all x ∈ R, (x, e(x)) is a feasible solution of (P).

Remark 3: For all t ∈ {1, . . . , T}, et is a convex function. Figure 4.2 shows the varia-
tions of et.

𝑙𝑡 𝑢𝑡
𝑥𝑡

𝑒𝑡

𝜀

𝑙𝑡 + 𝜀 𝑢𝑡 − 𝜀

Figure 4.2: The function et is convex

We now prove theorem 6.

Proof. The idea of the proof is first to suppose there exists an optimal solution x∗

of (P) with a variable x∗t0
that is in [lt0 , lt0 + ε[and an integer point x̂ of R where x̂t0

is not set to lt0 . We then find another solution x̄ of (P) of cost strictly lower than x∗

which contradicts its optimality and therefore the first assumption. We construct x̄
as a convex combination of x∗ and x̂.

Let us suppose there exists an optimal solution (x∗, e∗) of (P), t0 ∈ {1, . . . , T}
and an integer solution x̂ ∈ S such that lt0 ≤ x∗t0

< lt0 + ε and x̂t0 6= lt0 . We
define α = (lt0 + ε− x∗t0

)/(x̂t0 − x∗t0
). Since x̂t0 ∈ Z and x̂t0 > lt0 , we deduce that

x̂t0 ≥ lt0 + 1 > lt0 + ε > x∗t0
therefore α ∈]0, 1[.

Take x̄ = (1− α)x∗ + αx̂ = x∗ + α(x̂ − x∗). Note that x̄ ∈ R as it is a convex
combination of x∗, x̂ ∈ R. Let us now bound the cost of x̄ by bounding the cost of
each et(x̄).

For all t ∈ {1, . . . , T} \ {t0}, by convexity of et:

et(x̄) ≤ (1− α)et(x∗) + αet(x̂) = e∗t + α(et(x̂)− e∗t) ≤ e∗t + αε

For t = t0 we have

x̄t0 = x∗t0
+ α(x̂t0 − x∗t0

) = lt0 + ε which implies et0(x̄) = 0

Furthermore by definition of e∗ and α: e∗t0
= lt0 + ε− x∗t0

= α(x̂t0 − x∗t0
)

and by definition of t0: x̂t0 − x∗t0
> (lt0 + 1)− (lt0 + ε) = 1− ε

98| FILTERING VIA LINEAR PROGRAMMING

We deduce that

et0(x̄) = 0 = e∗t0
− α(x̂t0 − x∗t0

) < e∗t0
− α(1− ε)

Hence
T

∑
t=1

et(x̄) < ∑
t 6=t0

(e∗t + αε) + e∗t0
− α(1− ε) =

T

∑
t=1

e∗t + α(Tε− 1) =
T

∑
t=1

e∗t

Conclusion: (x∗, e∗) was not optimal since (x̄, e(x̄)) is a feasible solution of (P)
and of better quality hence the contradiction.

To consider the case, ut0 − ε < x∗t0
≤ ut0 we apply a similar reasoning and define

α by α = (ε− ut0 + x∗t0
)/(x∗t0

− x̂t0). �

Corollary 2 Any 0 < ε ≤ 1
T can be taken.

0 < ε ≤ 1
T works since at the end of the proof of theorem 6 we just need that

α(Tε− 1) ≤ 0. Note that we proved theorem 5 with ε = 1
T+1 but thanks to corollary

2 any 0 < ε ≤ 1
T works. From the point of view of numerical analysis, we want to

have the biggest ε to avoid numerical errors when computing the LP with a lot of
variables.

Corollary 3 Theorem 5 is a consequence of theorem 6.

Take the polytope Q = {x ∈ RT | Ax ≥ b, l ≤ x ≤ u} and assume it has integer
extreme points and l, u ∈ ZT. Let us also denote by S the set of integer points of Q.
Corollary 3 is true as if x∗t = lt then lt ≤ x∗t < lt + ε therefore x̂t = lt for all x̂ ∈ S ,
and if x̂t = lt for all x̂ ∈ S then x∗t = lt as x∗ is a convex combination of points of
extreme points of Q that are in S by assumption. The same reasoning applies to ut.

A small example. Let us consider a small example to show the application of the-
orem 6. Take the following set of constraints:

x1 + x2 = x3 (4.8)
x1 + x2 ≤ 1.25 (4.9)
x1 + x2 ≥ 0.75 (4.10)

x1, x2, x3 ∈ {0, 1} (4.11)

It is easy to see that x3 must be equal to 1 and that x1 or x2 must be equal to
1, the other one to 0. We define ε = 1

3 . An optimal solution is { 5
12 , 1

3 , 3
4} and e∗ =

{0, 0, 1/12}. We see that x1 cannot be fixed since l1 + ε ≤ x∗1 ≤ u1 − ε (1
3 ≤

5
12 ≤

2
3)

and that x2 cannot be fixed since l2 + ε ≤ x∗2 ≤ u2− ε (1
3 ≤

1
3 ≤

2
3). x3 has to be fixed

since u3 − ε < x∗3 (2
3 < 3

4).

4.8 WHAT IF THE INTEGRALITY PROPERTY IS NOT MET? | 99

4.8.2 Arc-consistency is not achieved
We show via two counter-examples that the LPF procedure does not necessarily
achieve arc-consistency when the conjunction of constraints does not have the inte-
grality property. We first look at a small feasibility example then consider the case
of MINIMUMWEIGHTALLDIFFERENT, a global constraint with a cost function.

Example 1. Take the following set of constraints:

x1 + x2 = x3 (4.12)
x1 + x2 ≤ 1.5 (4.13)
x1 + x2 ≥ 0.5 (4.14)

x1, x2, x3 ∈ {0, 1} (4.15)

It is easy to see that x3 must be equal to 1 and that x1 or x2 must be equal to 1, the
other one to 0. We define ε = 1

3 and when the LPF procedure is applied, we see
that each of the xi variable can be offset from its bound by at least ε as shown in an
optimal solution {1

3 , 1
3 , 2

3}. This means that one cannot deduce that x3 must be equal
to 1.

Example 2. Consider now an instance of MINIMUMWEIGHTALLDIFFERENT:

MINIMUMWEIGHTALLDIFFERENT(X, Y, Z, {1, 3, 3, 2, 0, 0, 3}, 7) (4.16)
X ∈ {1, 2}, Y ∈ {1, 2}, Z ∈ {1, 2, 3} (4.17)

This constraints forces X, Y and Z to take different values while restraining the
sum of the affectations by an upper bound UB = 7. Affecting value 1 to X costs
1, value 2 for X costs 3, value 1 for Y costs 3 and so on. Figure 4.3 shows a graph
representing the example. To apply the LPF procedure we need to channel X, Y, Z
to the binary variables {x1, x2, y1, y2, z1, z2, z3} and build the LP with ε = 1

7 . For
instance the variable x1 = 1 if and only if X takes the value 1. The constraint on the
objective is 1x1 + 3x2 + 3y1 + 2y2 + 0z1 + 0z2 + 3z3 ≤ 7. An optimal solution of the
LP is { 6

7 , 1
7 , 1

7 , 6
7 , 0, 0, 1}. One can see that variable Z is forced to take value 3 since

z3 is set to 1. The two other variables X and Y on the other hand are not fixed by
the LP since the channeled variables {x1, x2, y1, y2} are unstuck from the bounds of
at least ε. Note that having X = 2 or Y = 1 costs 9 and should be forbidden as it
exceeds UB whereas having X = 1 and Y = 2 costs only 6 and is feasible. The LPF
procedure does not remove all inconsistent values in this case.

100| FILTERING VIA LINEAR PROGRAMMING

𝑿

𝒀

𝒁

1

2

3

1

3

3

2

3

0
0

Figure 4.3: An example with MINIMUMWEIGHTALLDIFFERENT

Conclusion and future work

In this thesis we discuss the use of constraint programming to solve production
planning problems and more precisely lot-sizing problems. We gradually build a
CP framework and apply it on increasingly complex lot-sizing problems. We intro-
duce a global constraint LOTSIZING defined by the conjunction of the constraints of
the single-level single-item lot-sizing problem. The core problem is very generic and
considers time-varying costs and production and inventory bounds. This choice of
global constraint is motivated by the intuitive modeling it allows and by the amount
of work that has been done on the problem for more than sixty years. For each prob-
lem considered in this work, we have endeavored to propose several models and
provide a comparison with relevant existing methods. The contributions made in
this thesis are the following.

A new global constraint LOTSIZING. We define the global constraint LOTSIZING
for the single-level single-item lot-sizing problem. The constraint is equivalent to
finding a feasible production plan that satisfies upper bounds on the overall pro-
duction, inventory, setup and global costs. The global constraint is NP-hard and
we show several consistency results: bound-consistent domains for the feasibility
aspect are easily found but when considering the upper bounds on the costs, it be-
comes exponential. We also show that the filtering algorithms can be simplified as
we transform the problem into an equivalent problem without lower bounds.

Strong filtering algorithms. We derive reasoning mechanisms from existing dy-
namic programming and flow-based algorithms. The idea is to exploit resource-
based filtering in the graphs of the states of the DP algorithms to filter the variables
using the different upper bounds on the costs. LOTSIZING is a NP-hard global con-
straint hence the use of pseudo-polynomial DP algorithms to filter.

101

102| CONCLUSION AND PERSPECTIVES

The adaptation of the filtering when the DP does not scale. As DP algorithms can
rapidly reach their computational and memory limits when the size of the instance
increases, we show a way to adapt the filtering. We decompose the problem into
sub-problems, compute the DP on small enough sub-problems and use an optimal
solution of the weighted interval scheduling problem to filter the variables.

Filtering improvements with redundancy. We improve the strength of the global
constraint with the use of redundant cardinality variables, at the expense of the
resolution speed. Cardinality variables conveniently allow us to count the number
of successive open periods. When branching on the variable card = ∑T

t=1 Yt first,
then on the setup variables Y, the filtering algorithms benefit from the fact that the
number of open periods is fixed.

An extension of LOTSIZING to model unitary costs with step functions. The
structure of LOTSIZING turns out to be generic enough for us to naturally extend
its scope and tackle piece-wise linear unitary production and inventory costs. The
problem modeled remains a single-item lot-sizing but the modeling possibilities are
improved as it allows the user to consider different costs functions. We also show
that these costs are helpful to model a redundant constraint for multi-item prob-
lems.

Numerical tests on different lot-sizing problems. We implemented several CP
models for each problem considered. On single-level single-item lot-sizing prob-
lems, we show that the naive decomposed CP model cannot be used but that the
LOTSIZING-based CP model can solve the problem in reasonable time. We show
that the adaptation of the propagation algorithms of LOTSIZING when the DP is not
scalable is useful on big instances. Finally we study three problems with side con-
straints and show that either the classical DP algorithm or the MILP models can be
less effective whereas the CP model can solve the problem.

On multi-item problems, we show that when the size of the problem is increased,
the LOTSIZING-based models are slowed due to the important computation time
needed for the DP algorithms but that they provide strong reasonings and in partic-
ular a sharp lower bound.

A new generic LP-based filtering algorithm Implementing and testing a lot of
ideas and filtering mechanisms for LOTSIZING for three years, lead to a captivat-
ing improvement of a filtering algorithm using linear programming. We present a
generic filtering algorithm that aims at improving the process of global constraint
design and prototyping reasoning mechanisms. The technique filters the variables
of any conjunction of constraints with a single call to a LP solver. In particular if

| 103

the set of constraints has an ideal formulation, it provides arc-consistent domains.
When applied to the LOTSIZING constraint, it could be useful in order to propagate
more reasoning on the flow or multi-flow problems during the search and provide
arc consistency for the SEQUENCE constraints defined by the cardinality variables.

As a general conclusion, we saw that constraint programming needs a lot of
work to be competitive. Basic decomposed models do not perform well but the
LOTSIZING global constraint we developed is a relevant tool towards a constraint
programming solver for production planning problems. This constraint simplifies
the model description as it can represent each node of a lot-sizing network for which
it computes strong filtering. The extension with variable unitary costs is very useful
to model problems with piece-wise linear costs and to provide global redundant
constraints and relaxations when the network is complex. The DP-based filtering
algorithms perform well on single-level single-item problems with side constraints.
The LOTSIZING-based models provide good lower bounds but are less effective on
pure multi-item problems compared to MILP models.

Thanks to several experiments, we believe that a production planning CP solver
should avoid branching on the quantity variables. The quantities can indeed be
very important and to speed up the search the branching should occur only on
binary variables. Fortunately, we have seen that once the binary variables are fixed,
there are many cases where the resulting problem is quickly solvable. Furthermore,
we think that LOTSIZING-based models should use global redundant constraints
to capture the problem as a whole. The communication between the nodes of the
network is sometimes not enough to provide strong reasoning.

The work on solving production planning problem with CP is still preliminary
but given the results of this thesis, we strongly believe that complex lot-sizing prob-
lems with combinatorial side constraints can be solved using constraint program-
ming.

Finally, the LPF procedure is a very good way to show that linear programming
can successfully be combined with constraint programming to provide powerful
global reasoning mechanisms. We believe that this is the key contribution of this
thesis to CP. It is also very meaningful to the lot-sizing domain where a lot of sub-
problems related to flow and sequences are very well handled by LP.

Future work

As we tackled classical lot-sizing problems in the light of constraint program-
ming, several perspectives of this work arise. We chose to highlight three important
points.

104| CONCLUSION AND PERSPECTIVES

Extension of the scope of LOTSIZING. Abstracting the scope of the global con-
straint can allow the user not only to easily model a complex problem but also to
take into account more features in the propagation of LOTSIZING. Take the example
of multi-level lot-sizing. The fact that multi-level usually represents a network poses
some modeling challenges when trying to model each node with a LOTSIZING con-
straint. In this network, the output of one node is the input of the next. However
only the input of a node is modeled with variables – the quantity variables –, its
output is constant – the demands. We thing that extending the scope of LOTSIZING
to take into account variable demands could improve the communication between
the constraints in a complex network. Similarly, it would be interesting to add the
possibility to model backlogs and lost sales. These constraints are usually modeled
with negative inventory.

We started to study the one warehouse multi-retailers problem which is one of
the simplest multi-level problem. We modeled it with LOTSIZING with constant de-
mands. The first results are not compelling since the MILP models are very effective
on these pure problems without side constraints.

Symmetries in lot-sizing. One of the main ideas that is not presented in the thesis
is that symmetry could be a key factor to solve lot-sizing problems faster. Sym-
metries occur between the items in multi-item for instance: once a period is open,
which item produce? Finding those symmetries and arbitrating them could effi-
ciently reduce the search space. We tried introducing the yt,t′ variables that equal 1
if the demand at t′ is satisfied by a production at t but did not manage to solve the
symmetry problem.

Improving the LP-based filtering. The last point revolves around the linear pro-
gramming filtering technique presented in chapter 4. This is an interesting and
useful improvement for the CP community and should be further analyzed.

First, there might be more efficient techniques, although maybe more difficult to
implement, than the simplex algorithm to find an interior point.

Second, one can look for an encoding of the domains that does not represent
each value for each variable to achieve bound consistency, therefore improving the
speed of the algorithm.

The third step relates to polynomial constraints with an ideal formulation and an
objective function. When building the linear program for LPF, the objective function
is set as a constraint and the global formulation is therefore no longer ideal. Can the
procedure be adapted to achieve arc-consistency in this case?

Finally, on the application to lot-sizing problems, it would be relevant to evaluate
the strength of the filtering of the lot-sizing underlying flow problems at each node
of the search.

Bibliography

[1] Nabil Absi, Boris Detienne, and Stéphane Dauzère-Pérès, Heuristics for the multi-item capacitated
lot-sizing problem with lost sales, Computers & Operations Research 40 (2013), no. 1, 264–272.

[2] Nabil Absi and Safia Kedad-Sidhoum, The multi-item capacitated lot-sizing problem with setup
times and shortage costs, European journal of operational research 185 (2008), no. 3, 1351–1374.

[3] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter, Constraint integer program-
ming: A new approach to integrate cp and mip, Integration of AI and OR techniques in constraint
programming for combinatorial optimization problems (2008), 6–20.

[4] , Constraint integer programming: A new approach to integrate cp and mip (2008), 6–20.

[5] Alok Aggarwal and James K. Park, Improved algorithms for economic lot size problems, Operations
Research 41 (1993), no. 3, 549–571.

[6] Abderrahmane Aggoun and Nicolas Beldiceanu, Extending chip in order to solve complex schedul-
ing and placement problems, Mathematical and computer modelling 17 (1993), no. 7, 57–73.

[7] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin, Network flows: theory, algorithms,
and applications (1993).

[8] Ayse Akbalik and Christophe Rapine, Polynomial time algorithms for the constant capacitated
single-item lot sizing problem with stepwise production cost, Operations Research Letters 40 (2012),
no. 5, 390–397.

[9] Yash P Aneja, Vijay Aggarwal, and Kunhiraman PK Nair, Shortest chain subject to side con-
straints, Networks 13 (1983), no. 2, 295–302.

[10] Ionuţ Aron, John N. Hooker, and Tallys H. Yunes, Simpl: A system for integrating optimization
techniques (2004), 21–36.

[11] Alper Atamtürk and Simge Küçükyavuz, An O(n2) algorithm for lot sizing with inventory bounds
and fixed costs, Operations Research Letters 36 (2008), no. 3, 297–299.

[12] Fahiem Bacchus, Gac via unit propagation, International conference on principles and practice
of constraint programming, 2007, pp. 133–147.

[13] Imre Barany, Tony J. Van Roy, and Laurence A. Wolsey, Strong formulations for multi-item capac-
itated lot sizing, Management Science 30 (1984), no. 10, 1255–1261.

[14] John E Beasley and Nicos Christofides, An algorithm for the resource constrained shortest path
problem, Networks 19 (1989), no. 4, 379–394.

105

106| BIBLIOGRAPHY

[15] Nicolas Beldiceanu and Mats Carlsson, Revisiting the cardinality operator and introducing the
cardinality-pathconstraint family, International conference on logic programming, 2001, pp. 59–
73.

[16] Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon, Global constraint catalog, (revision
a), Swedish Institute of Computer Science, 2012.

[17] Nicolas Beldiceanu and Evelyne Contejean, Introducing global constraints in chip, Mathematical
and computer Modelling 20 (1994), no. 12, 97–123.

[18] , Introducing global constraints in chip, Mathematical and computer Modelling 20 (1994),
no. 12, 97–123.

[19] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas, Dynamic
programming and optimal control, Vol. 1, Athena scientific Belmont, MA, 1995.

[20] Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, and Toby Walsh, Fil-
tering algorithms for the nv alue constraint, Constraints 11 (2006), no. 4, 271–293.

[21] Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, and Toby Walsh, The complexity of global
constraints, Aaai, 2004, pp. 112–117.

[22] Gabriel R. Bitran and Horacio H. Yanasse, Computational complexity of the capacitated lot size
problem, Management Science 28 (1982), no. 10, 1174–1186.

[23] Alexander Bockmayr and Thomas Kasper, Branch and infer: A unifying framework for integer and
finite domain constraint programming, INFORMS Journal on Computing 10 (1998), no. 3, 287–
300.

[24] Alexander Bockmayr and Nicolai Pisaruk, Solving assembly line balancing problems by combining
ip and cp, arXiv preprint cs (2001).

[25] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais, Boosting system-
atic search by weighting constraints, Proceedings of the 16th european conference on artificial
intelligence, 2004, pp. 146–150.

[26] Nadjib Brahimi, Nabil Absi, Stéphane Dauzere-Peres, and Atle Nordli, Single-item dynamic lot-
sizing problems: An updated survey, European Journal of Operational Research (2017).

[27] Nadjib Brahimi, Stéphane Dauzère-Pérès, and Najib M Najid, Capacitated multi-item lot-sizing
problems with time windows, Operations Research 54 (2006), no. 5, 951–967.

[28] Nadjib Brahimi, Stéphane Dauzere-Peres, Najib M Najid, and Atle Nordli, Single item lot sizing
problems, European Journal of Operational Research 168 (2006), no. 1, 1–16.

[29] Sebastian Brand, Nina Narodytska, Claude-Guy Quimper, Peter Stuckey, and Toby Walsh, En-
codings of the sequence constraint, International conference on principles and practice of con-
straint programming, 2007, pp. 210–224.

[30] Mats Carlsson, Johan Widen, Johan Andersson, Stefan Andersson, Kent Boortz, Hans Nilsson,
and Thomas Sjöland, Sicstus prolog user’s manual, Vol. 3, Swedish Institute of Computer Science
Kista, Sweden, 1988.

[31] Vašek Chvátal, Linear programming, Series of books in the mathematical sciences, W.H. Free-
man, 1983.

[32] Tobias Dantzig, Number: The language of science, 1930.

BIBLIOGRAPHY | 107

[33] Eric V Denardo, Dynamic programming: models and applications, Courier Corporation, 2012.

[34] Andreas Drexl and Alf Kimms, Lot sizing and scheduling survey and extensions, European Journal
of Operational Research 99 (1997), no. 2, 221–235.

[35] Stuart E. Dreyfus and Averill M. Law, Art and theory of dynamic programming, Academic Press,
Inc., Orlando, FL, USA, 1977.

[36] Gary D Eppen and R Kipp Martin, Solving multi-item capacitated lot-sizing problems using variable
redefinition, Operations Research 35 (1987), no. 6, 832–848.

[37] Awi Federgruen, Joern Meissner, and Michal Tzur, Progressive interval heuristics for multi-item
capacitated lot-sizing problems, Operations Research 55 (2007), no. 3, 490–502.

[38] Awi Federgruen and Michal Tzur, A simple forward algorithm to solve general dynamic lot sizing
models with n periods in O(n log n) or O(n) time, Management Science 37 (1991), no. 8, 909–925.

[39] Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen, An exact algorithm for
the elementary shortest path problem with resource constraints: Application to some vehicle routing
problems, Networks 44 (2004), no. 3, 216–229.

[40] Bernhard Fleischmann, The discrete lot-sizing and scheduling problem, European Journal of Oper-
ational Research 44 (1990), no. 3, 337–348.

[41] Michael Florian and Morton Klein, Deterministic production planning with concave costs and ca-
pacity constraints, Management Science 18 (1971), no. 1, 12–20.

[42] Filippo Focacci, Andrea Lodi, and Michela Milano, Cost-based domain filtering, Principles and
practice of constraint programming - cp’99, 5th international conference, alexandria, virginia,
usa, october 11-14, 1999, proceedings, 1999, pp. 189–203.

[43] , Embedding relaxations in global constraints for solving tsp and tsptw, Ann. Math. Artif.
Intell. 34 (2002), no. 4, 291–311.

[44] Céline Gicquel, Michel Minoux, and Yves Dallery, Capacitated lot sizing models: a literature review
(2008).

[45] Stefano Gualandi and Federico Malucelli, Resource constrained shortest paths with a super additive
objective function., Cp, 2012, pp. 299–315.

[46] Youssef Hamadi, Eric Monfroy, and Frédéric Saubion, What is autonomous search?, Hybrid op-
timization, 2011, pp. 357–391.

[47] Ford W Harris, How many parts to make at once, Factory, the Magazine of Management 10 (1913),
135–136.

[48] Bertrand Hellion, Fabien Mangione, and Bernard Penz, A polynomial time algorithm for the single-
item lot sizing problem with capacities, minimum order quantities and dynamic time windows, Oper-
ations Research Letters 42 (2014), no. 8, 500–504.

[49] , Stability contracts between supplier and retailer: a new lot sizing model, International Jour-
nal of Production Research 53 (2015), no. 1, 1–12.

[50] John. N. Hooker, Operations research methods in constraint programming, Handbook of constraint
programming, 2006.

[51] John N. Hooker and Hong Yan, A relaxation of the cumulative constraint, Principles and practice
of constraint programming - CP 2002, 8th international conference, CP 2002, ithaca, ny, usa,
september 9-13, 2002, proceedings, 2002, pp. 686–690.

108| BIBLIOGRAPHY

[52] Vinasétan Ratheil Houndji, Pierre Schaus, Laurence A. Wolsey, and Yves Deville, The stocking-
cost constraint, Principles and practice of constraint programming, 2014, pp. 382–397.

[53] Vipul Jain and Ignacio E Grossmann, Algorithms for hybrid milp/cp models for a class of optimiza-
tion problems, INFORMS Journal on computing 13 (2001), no. 4, 258–276.

[54] Behrooz Karimi, SMT Fatemi Ghomi, and JM Wilson, The capacitated lot sizing problem: a review
of models and algorithms, Omega 31 (2003), no. 5, 365–378.

[55] Uday S Karmarkar and Linus Schrage, The deterministic dynamic product cycling problem, Oper-
ations Research 33 (1985), no. 2, 326–345.

[56] Jon Kleinberg and Éva Tardos, Algorithm design, Pearson Education India, 2006.

[57] Jakob Krarup and Ole Bilde, Plant location, set covering and economic lot size: an o (mn)-algorithm
for structured problems, Numerische methoden bei optimierungsaufgaben 3 (1977), 155–180.

[58] Mikael Z Lagerkvist and Christian Schulte, Propagator groups, Principles and practice of con-
straint programming-cp 2009, 2009, pp. 524–538.

[59] Jean-Bernard Lasserre, An integrated model for job-shop planning and scheduling, Management
Science 38 (1992), no. 8, 1201–1211.

[60] Jena-Lonis Lauriere, A language and a program for stating and solving combinatorial problems, Ar-
tificial intelligence 10 (1978), no. 1, 29–127.

[61] Christophe Lecoutre, Lakhdar Saïs, Sébastien Tabary, and Vincent Vidal, Reasoning from last
conflict (s) in constraint programming, Artificial Intelligence 173 (2009), no. 18, 1592–1614.

[62] Stephen F. Love, Bounded production and inventory models with piecewise concave costs, Manage-
ment Science 20 (1973), no. 3, 313–318.

[63] Michael Maher, Nina Narodytska, Claude-Guy Quimper, and Toby Walsh, Flow-based propa-
gators for the sequence and related global constraints, International conference on principles and
practice of constraint programming, 2008, pp. 159–174.

[64] Guillaume Massonnet, Algorithmes d’approximation pour la gestion de stock, Ph.D. Thesis, 2013.

[65] George B Mathews, On the partition of numbers, Proceedings of the London Mathematical Soci-
ety 1 (1896), no. 1, 486–490.

[66] Laurent Michel and Pascal Van Hentenryck, Activity-based search for black-box constraint pro-
gramming solvers, Integration of AI and OR Techniques in Contraint Programming for Combi-
natorial Optimzation Problems (2012), 228–243.

[67] Andrew J Miller and Laurence A Wolsey, Tight mip formulation for multi-item discrete lot-sizing
problems, Operations Research 51 (2003), no. 4, 557–565.

[68] George L. Nemhauser and Laurence A. Wolsey, Integer and combinatorial optimization, Wiley-
Interscience, New York, NY, USA, 1988.

[69] François Pachet and Pierre Roy, Automatic generation of music programs, CP 99 (1999), 331–345.

[70] Gilles Pesant, CSPLib problem 067: Quasigroup completion (Christopher Jefferson, Ian Miguel,
Brahim Hnich, Toby Walsh, and Ian P. Gent, eds.)

[71] Yves Pochet and Laurence A. Wolsey, Production planning by mixed integer programming,
Springer Science & Business Media, 2006.

BIBLIOGRAPHY | 109

[72] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca, Choco documentation, TASC,
INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2016.

[73] Claude-Guy Quimper, Private communication, 2017.

[74] Claude-Guy Quimper and Alejandro López-Ortiz, From linear relaxations to global constraint
propagation, International conference on principles and practice of constraint programming,
2005, pp. 867–867.

[75] Philippe Refalo, Tight cooperation and its application in piecewise linear optimization (1999), 375–
389.

[76] , Linear formulation of constraint programming models and hybrid solvers, Principles and
practice of constraint programming - CP 2000, 6th international conference, singapore, septem-
ber 18-21, 2000, proceedings, 2000, pp. 369–383.

[77] Jean-Charles Régin, A filtering algorithm for constraints of difference in csps, Aaai, 1994, pp. 362–
367.

[78] , A filtering algorithm for constraints of difference in csps, Aaai, 1994, pp. 362–367.

[79] , Generalized arc consistency for global cardinality constraint, Proceedings of the thirteenth
national conference on artificial intelligence-volume 1, 1996, pp. 209–215.

[80] Jean-Charles Régin and Jean-François Puget, A filtering algorithm for global sequencing con-
straints, International conference on principles and practice of constraint programming, 1997,
pp. 32–46.

[81] Jean-Charles Régin and Michel Rueher, A global constraint combining a sum constraint and differ-
ence constraints, Cp, 2000, pp. 384–395.

[82] Robert Rodosek, Mark G. Wallace, and Mozafar T. Hajian, A new approach to integrating mixed
integer programming and constraint logicprogramming, Annals of Operations Research 86 (1999),
no. 0, 63–87.

[83] Sheldon M Ross, Introduction to stochastic dynamic programming, Academic press, 2014.

[84] Domenico Salvagnin and Toby Walsh, A hybrid mip/cp approach for multi-activity shift scheduling,
Principles and practice of constraint programming, 2012, pp. 633–646.

[85] Pierre Schaus, Jean-Charles Régin, Rowan Van Schaeren, Wout Dullaert, and Birger Raa, Cardi-
nality reasoning for bin-packing constraint: Application to a tank allocation problem., CP 7514 (2012),
815–822.

[86] Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet, A study of constraint programming
heuristics for the car-sequencing problem, Engineering Applications of Artificial Intelligence 38
(2015), 34–44.

[87] Barbara Smith, CSPLib problem 001: Car sequencing (Christopher Jefferson, Ian Miguel, Brahim
Hnich, Toby Walsh, and Ian P. Gent, eds.)

[88] Hartmut Stadtler and Christoph Kilger, Supply chain management and advanced planning, Con-
cepts, Models, Software and Case Studies 4 (2008).

[89] Robin Steiger, Willem-Jan van Hoeve, and Radosław Szymanek, An efficient generic network flow
constraint, Proceedings of the 2011 ACM Symposium on Applied Computing, 2011, pp. 893–
900.

110| BIBLIOGRAPHY

[90] Armagan Tarim and Ian Miguel, Echelon stock formulation of arborescent distribution systems: An
application to the wagner-whitin problem, International conference on integration of artificial intel-
ligence (ai) and operations research (or) techniques in constraint programming, 2004, pp. 302–
318.

[91] Christian Timpe, Solving planning and scheduling problems with combined integer and constraint
programming, OR spectrum 24 (2002), no. 4, 431–448.

[92] JA Tomlin, Minimum-cost multicommodity network flows, Operations Research 14 (1966), no. 1,
45–51.

[93] William W Trigeiro, L Joseph Thomas, and John O McClain, Capacitated lot sizing with setup
times, Management science 35 (1989), no. 3, 353–366.

[94] Pascal Van Hentenryck and Jean-Philippe Carillon, Generality versus specificity: An experience
with ai and or techniques., Aaai, 1988, pp. 660–664.

[95] Stan Van Hoesel and Albert Peter Marie Wagelmans, An O(T3) algorithm for the economic lot-
sizing problem with constant capacities, Management Science 42 (1996), no. 1, 142–150.

[96] Willem-Jan van Hoeve, Gilles Pesant, Louis-Martin Rousseau, and Ashish Sabharwal, Revis-
iting the sequence constraint, International conference on principles and practice of constraint
programming, 2006, pp. 620–634.

[97] Willem-Jan Van Hoeve, Gilles Pesant, Louis-Martin Rousseau, and Ashish Sabharwal, New
filtering algorithms for combinations of among constraints, Constraints 14 (2009), no. 2, 273–292.

[98] Albert Wagelmans, Stan Van Hoesel, and Antoon Kolen, Economic lot sizing: an O(n log n) al-
gorithm that runs in linear time in the wagner-whitin case, Operations Research 40 (1992), S145–
S156.

[99] Harvey M. Wagner and Thomson M. Whitin, Dynamic version of the economic lot size model,
Management science 5 (1958), no. 1, 89–96.

[100] RH Wilson, A scientific routine for stock control, Harvard business review 13 (1934), no. 1, 116–
128.

[101] Laurence A. Wolsey, Integer Programming, Wiley-Interscience, 1998.

[102] Laurence A Wolsey, Solving multi-item lot-sizing problems with an mip solver using classification
and reformulation, Management Science 48 (2002), no. 12, 1587–1602.

In this thesis we investigate the potential use of constraint programming to develop a
production planning solver. We focus on lot-sizing problems that are crucial and challeng-
ing problems of the tactical level of production planning and use one of the main strengths
of constraint programming, namely global constraints. The goal of this work is to set the
grounds of a constraint programming framework for solving complex lot-sizing problems.
We define a LOTSIZING global constraint based on a generic single-item, single-level lot-
sizing problem that considers production and inventory capacities, unitary production and
inventory costs and setup costs. This global constraint is an intuitive modeling tool for
complex lot-sizing problems as it can model the nodes of lot-sizing networks. We use clas-
sical dynamic programming techniques of the lot-sizing field to develop powerful filtering
algorithms for the global constraint. Furthermore we model multi-item problems that are
natural extensions of the core problem.

Finally we introduce a new generic filtering algorithm based on linear programming.
We show that arc consistency can be achieved with only one call to a linear programming
solver when the global constraint has an ideal formulation and adapt the result to provide
partial filtering when no restriction is made on the constraints. This technique can be useful
to tackle polynomial lot-sizing underlying flow and sequence sub-problems.

Keywords: constraint programming, production planning, lot-sizing, global constraint, lin-
ear programming

Cette thèse a pour objectif d’étudier l’utilisation de la programmation par contraintes
pour développer un solveur de planification de production. Nous nous concentrons sur
des problèmes de dimensionnement de lots de production (lot-sizing) qui sont des prob-
lèmes majeurs et difficiles de la planification de la production et profitons d’une des prin-
cipales forces de la programmation par contraintes, à savoir les contraintes globales. Nous
définissons une contrainte globale LOTSIZING qui s’appuie sur un problème générique de
lot-sizing mono-produit à un seul niveau, qui tient compte des capacités de production et de
stockage, des coûts unitaires de production et de stockage et des coûts fixes. Cette contrainte
globale est un outil de modélisation intuitif pour les problèmes complexes de lot-sizing car
elle permet de modéliser chaque nœud des réseaux de distribution. Nous utilisons des
techniques de programmation dynamique classiques du lot-sizing pour développer des al-
gorithmes de filtrage pour la contrainte globale. Nous modélisons également des problèmes
multi-produits.

Enfin, nous introduisons un nouvel algorithme de filtrage générique s’appuyant sur la
programmation linéaire. Nous montrons que la cohérence d’arc pour les contraintes con-
sidérées peut être obtenue avec la résolution d’un seul programme linéaire lorsque la con-
trainte a une formulation idéale et nous généralisons le résultat pour faire du filtrage partiel
lorsqu’aucune restriction n’est faite sur ces contraintes. Cette technique peut être pertinente
lors de la résolution de sous-problèmes de flot ou de séquence sous-jacents au lot-sizing.

Mots clés : programmation par contraintes, planification de production, lot-sizing, con-
trainte globale, programmation linéaire

	Résumé en français
	Introduction
	Production planning and lot-sizing
	Constraint Programming
	Constraint Satisfaction Problem and definitions
	The resolution
	Global constraints and complexity

	Filtering via dynamic programming
	The example of the Knapsack problem
	Filtering via the interpretation of DP as a graph

	Other optimization tools
	Mixed integer linear programming
	Integrated methods

	Single-item lot-sizing
	Introduction
	Preliminaries
	Notations and example
	Mixed integer linear formulations
	Linear relaxation
	An equivalent problem without lower bounds
	Dynamic programming

	A new lower bound for the single-item lot-sizing
	Lot-sizing sub-problem
	Combining disjoint sub-problems provides a lower bound
	Combining lower bounds at best
	Computing lower bounds for sub-problems
	Adaptation to a lower bound on setup costs

	The lot-sizing global constraint
	Constraint programming background
	Definition
	Complexity

	Filtering the LotSizing constraint
	Filtering when the setup variables are instantiated
	Filtering cost lower bounds
	Filtering X and I via dynamic programming
	Scaling the filtering based on dynamic programming
	Adaptation to take into account the setup cost

	Numerical results on the single-item lot-sizing problem
	Single-item lot-sizing
	Scaling the global constraint

	Single-item lot-sizing with side constraints
	Disjunctive production constraints
	Q/R constraints
	Disjunctive and Q/R constraints

	Conclusion
	Practical use of LotSizing and tuning the consistency level

	Multi-item lot-sizing with shared setup costs
	Introduction
	Description and models
	Instances and experimental setup
	Differences with the single-item
	Branching only on setup variables: the use of a multi-flow problem
	A redundant LotSizing
	First numerical tests
	On the necessity to branch on setup variables
	Different levels of filtering
	Results on the benchmark

	Reasoning on the cardinalities
	Extending the dynamic programming
	Filtering based on cardinalities
	Numerical results

	More general cost structures
	Piece-wise linear production and inventory costs
	Numerical results

	Conclusion

	Filtering via linear programming
	Introduction
	Notations
	Traditional filtering using LP: reduced-cost filtering
	A new generic filtering algorithm based on LP
	Ideal formulations of polynomial global constraints
	AllDifferent and GlobalCardinality
	 The family of Sequence constraints

	Numerical results
	LP and reduced-cost filtering for the AllDifferent constraint
	Filtering one Sequence constraint
	The Car-sequencing problem

	Conclusion and future work
	What if the integrality property is not met?
	On the validity of the LPF procedure
	Arc-consistency is not achieved

	Conclusion and perspectives

