
HAL Id: tel-01896437
https://theses.hal.science/tel-01896437

Submitted on 16 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lower bounds and reconstruction algorithms for sums of
affine powers
Timothée Pecatte

To cite this version:
Timothée Pecatte. Lower bounds and reconstruction algorithms for sums of affine powers. Computa-
tional Complexity [cs.CC]. Université de Lyon, 2018. English. �NNT : 2018LYSEN029�. �tel-01896437�

https://theses.hal.science/tel-01896437
https://hal.archives-ouvertes.fr

No d’ordre NNT : 2018LYSEN029

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦512
École Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 11/07/2018, par :
Timothée PECATTE

Bornes inférieures et algorithmes de
reconstruction pour des sommes de

puissances affines

Devant le jury composé de :

Alin BOSTAN, INRIA Saclay Île-de-France Rapporteur
Markus BLÄSER, Universität des Saarlandes Rapporteur
Evelyne HUBERT, INRIA Méditerranée Examinatrice
Claire MATHIEU, École normale supérieure Examinatrice
Bruno SALVY, École normale supérieure de Lyon Examinateur

Pascal KOIRAN, École normale supérieure de Lyon Directeur de thèse

2

Titre : Bornes inférieures et algorithmes de reconstruction pour des sommes de
puissances affines

Résumé : Le cadre général de cette thèse est l’étude des polynômes comme objets
de modèles de calcul. Cette approche permet de définir de manière précise la com-
plexité d’évaluation d’un polynôme, puis de classifier des familles de polynômes en
fonction de leur difficulté dans ce modèle. Dans cette thèse, nous nous intéressons
en particulier au modèle AffPow des sommes de puissance de forme linéaire, i.e. les
polynômes qui s’écrivent f =

∑s
i=1 αi`

ei
i , avec deg `i = 1. Ce modèle semble

assez naturel car il étend à la fois le modèle de Waring f =
∑
αi`

d
i et le mod-

èle du décalage creux f =
∑
αi`

ei , mais peu de résultats sont connus pour cette
généralisation. Nous avons pu prouver des résultats structurels pour la version uni-
varié de ce modèle, qui nous ont ensuite permis d’obtenir des bornes inférieures et
des algorithmes de reconstruction, qui répondent au problème suivant : étant donné
f =

∑
αi(x − ai)ei par la liste de ses coefficients, retrouver les αi, ai, ei qui appa-

raissent dans la décomposition optimale de f . Nous avons aussi étudié plus en détails
la version multivarié du modèle, qui avait été laissé ouverte par nos précédents al-
gorithmes de reconstruction, et avons obtenu plusieurs résultats lorsque le nombre
de termes dans une expression optimale est relativement petit devant le nombre de
variables ou devant le degré du polynôme.

Mots-clés : complexité algébrique, théorie de Valiant, bornes inférieures, indépen-
dance linéaire, algorithmes de reconstruction, problème de Waring, décalage creux.

Introduction

Nous demandons fréquemment à nos ordinateurs de résoudre des problèmes pour
nous, comme par exemple : quel est l’itinéraire le plus court, depuis ma position,
pour me rendre à la soutenance de cette thèse ? Quel est le billet d’avion le moins
cher pour partir en vacances une fois cette soutenance terminée ? Nous sommes
en général assez exigeant vis-à-vis de la réponse à notre requête. D’une part, nous
voulons que l’ordinateur réponde rapidement : il serait dommage de louper la sou-
tenance de thèse à cause d’un temps de calcul trop long ! Mais d’autre part, nous
voulons la meilleure solution pour éviter de gaspiller inutilement nos ressources.
Ces deux exigences ne sont pourtant pas toujours compatibles, comme l’indique le
proverbe :

« Mieux vaut bien faire que faire vite. » (Dicton français)

Par exemple, lorsque nous cherchons le meilleur billet, il faut nécessairement
parcourir toutes les possibilités proposées par les différentes compagnies afin de
garantir qu’il s’agit du moins cher (ou du plus rapide) possible. Ainsi, quelque soit la
méthode utilisée pour classer et trier tous ces résultats, nous ne pourrons pas mettre
moins de temps pour trouver le meilleur billet que le temps nécessaire pour collecter
et lister ces données. Ce temps minimal nécessaire pour résoudre notre problème est
communément appelé borne inférieure en informatique théorique. Il est tristement
moins connu que son pendant l’algorithme, qui consiste en une méthode pour ré-
soudre le problème posé. Lorsqu’un algorithme est trouvé, cela montre que le prob-
lème peut être résolu en au plus le temps correspondant, d’où parfois l’appellation
de borne supérieure. A l’inverse, lorsqu’une borne inférieure est prouvée, cela mon-
tre que le problème nécessite au moins le temps correspondant pour être résolu via
n’importe quelle méthode. Ainsi, le travail des chercheurs concernant la résolution
d’un problème est double : trouver des algorithmes de plus en plus efficaces, c’est-à-
dire qui nécessitent de moins en moins de temps ; et prouver des bornes inférieures de
plus en plus grandes, qui permettent d’affiner le temps minimal nécessaire pour ré-
soudre le problème. Dans certains cas, par exemple le tri de données, les algorithmes

Introduction ii

et les bornes inférieures se rejoignent : on dispose alors d’une méthode pour résoudre
notre problème, et on sait qu’on ne pourra pas faire mieux. Dans la terminologie de
l’informatique théorique, on dit alors qu’on a trouvé un algorithme optimal et que
l’on connaît la complexité du problème.

Il est alors assez naturel de classifier les différents problèmes en fonction de leur
complexité. C’est ainsi que dans les années 1960, Cobham et Edmonds ont indépen-
damment défini la classe P des problèmes pour lesquels un algorithme polynomial
existe, c’est-à-dire un algorithme « efficace ». Par exemple, les problèmes de trou-
ver l’itinéraire le plus court ou le billet le moins cher appartiennent tous les deux
à la classe P. On peut alors se demander : y a-t-il des problèmes qui ne sont pas
dans la classe P ? La réponse est positive : il existe une méthode automatique pour
construire des problèmes complexes qui ne sont pas dans P, mais les problèmes
générés ne sont pas très intéressants car ils sont construits pour être difficiles, ce qui
les rend assez artificiels. Cependant, il existe une classe de problèmes naturels qui
pourrait être plus complexe que P : il s’agit de la classe NP des problèmes pour
lesquelles on peut vérifier de manière efficace si une solution donnée est valide. Par
exemple, imaginons le problème du touriste qui arrive en France et qui veut visiter
certaines villes (par exemple Angers, Bordeaux, Caen, Clermont-Ferrand, Greno-
ble, Lille, Lyon, Nancy, Nice, Paris et Rennes) mais qui n’a à sa disposition qu’une
voiture de location avec un forfait de 1500 kilomètres. Peut-il trouver un itinéraire de
moins de 1500km passant par toutes ces villes ? Ce problème, connu sous le nom du
problème du voyageur de commerce, appartient à la classe NP puisque, étant donné
un itinéraire, il est facile de vérifier qu’il passe bien par toutes ces villes et qu’il fait
moins de 1500km. Cependant, aucun algorithme efficace résolvant ce problème n’est
connu à ce jour, donc la question reste ouverte de savoir si ce problème appartient
également à la classe P. Plus généralement, la question de l’égalité des classes P et
NP est souvent connue sous la dénomination « P = NP ? », et sa solution a été mise
à prix à un million de dollars par l’Institut de mathématiques Clay. La plupart des
spécialistes du sujet pensent que ces deux classes sont différentes, mais la solution
semble aujourd’hui encore hors de portée.

Dans cette thèse, les problèmes auxquels nous nous intéresserons seront princi-
palement de nature algébrique. En d’autres termes, nous nous posons la question
suivante : étant donné un polynôme f , quel est le nombre minimal d’opérations
arithmétiques (l’addition, la soustraction ou la multiplication par exemple) néces-
saires pour calculer f ? Ce genre de questions intervient assez naturellement dès le
collège où l’on apprend l’identité remarquable : (a + b)2 = a2 + 2ab + b2. Ainsi,
nous préférerons par exemple représenter le polynôme f(x) = 5x4 + 30x3 + 70x2 +
75x + 31 sous la forme f(x) = (x + 2)5 − (x + 1)5, qu’on appellera somme de
puissances affines dans la suite. En 1979, Valiant introduit un modèle de calcul, au-
jourd’hui connu sous le nom modèle de Valiant pour étudier ce genre de question.
De manière similaire à ce qui précède, il classifie alors les familles de polynômes
en fonction de leur complexité et définit en particulier les classes VP et VNP, ana-
logues des classes P et NP dans le monde algébrique. Intuitivement, la classe VP
est constituée des polynômes qui admettent une représentation de taille polynomiale

iii

tandis que la classe VNP est constituée des polynômes qui admettent une description
(implicite) de taille polynomiale. Il se pose alors la même question « VP = VNP ? »
concernant l’égalité de ces classes que dans le cas booléen. Grâce à la structure riche
des anneaux de polynômes, on espère que cette question soit plus simple à résoudre
que « P = NP ? », et que sa résolution permette d’avoir un éclairage nouveau sur
cette question du millénaire.

Dans cette thèse, nous nous intéresserons en particulier au modèle des sommes
de puissances affines, c’est-à-dire aux représentations de polynômes sous la forme

s∑
i=1

αi(x− ai)ei , avec αi, ai ∈ F, ei ∈ N.

Au travers des six chapitres de ce manuscrit, nous étudierons plusieurs aspects de ce
modèle : résultats structurels, bornes inférieures et algorithmes de reconstruction.

Dans le premier chapitre, nous ferons une petite balade à travers la complexité
algébrique pour expliquer quelles sont les motivations qui nous ont poussées à étudier
ce modèle. Ce sera aussi l’occasion de présenter deux modèles plus classiques et déjà
étudiés, les décompositions de Waring et « sparsest shift », et de montrer en quoi le
modèle principal est une généralisation naturelle de ces deux modèles.

Dans le deuxième chapitre, nous étudierons plus en détails les différences puis-
sances d’expressivité de ces trois modèles. Nous montrerons en particulier que les
modèles de Waring et du sparsest shift sont orthogonaux, au sens où aucun polynôme
non-trivial ne peut admettre une représentation compacte simultanément dans ces
deux modèles. Nous prouverons également des résultats structurels concernant notre
modèle, notamment des conditions suffisantes pour garantir l’unicité de la décom-
position optimale, et une borne supérieure sur les exposants pouvant intervenir dans
une décomposition optimale. Ces résultats serviront par la suite à beaucoup d’autres
endroits : pour les résultats de bornes inférieures, d’indépendance linéaire, et pour
les algorithmes de reconstruction. Le chapitre est organisée en deux parties : une
pour l’étude des polynômes à coefficients réels, qui s’appuie sur des résultats récents
d’interpolation de Birkhoff; et une dans laquelle on cherche à étendre ces résultats à
des polynômes à coefficients dans un corps arbitraire de caractéristique zéro.

Nous introduirons ensuite l’outil principal de cette thèse au chapitre 3 : « les
équations différentielles décalées », qui sont des équations différentielles linéaires
à coefficients polynomiaux, satisfaisant certaines contraintes sur les degrés des co-
efficients. Puis nous utiliserons cet outil pour prouver des bornes inférieures pour
notre modèle, à l’aide de l’argument clé suivant : certaines familles de polynômes ne
peuvent vérifier aucune équation différentielle décalée de petite taille alors que les
puissances affines, et donc leurs sommes, en vérifient. Le reste du chapitre concern-
era l’étude de l’indépendance linéaire des puissances affines, qui intervient naturelle-
ment lorsque l’on cherche à prouver des bornes inférieures pour des polynômes qui
s’écrivent comme sommes de puissances affines. Nous ferons la conjecture suiv-
ante : des puissances affines {(x−ai)ei : i ∈ [[1, s]]} sont linéairement indépendantes
dès lors que ei ≥ as+ b pour certaines constantes a et b. Dans le cas réel, nous mon-
trerons que cette conjecture est vraie avec a = 2, b = −4 à l’aide des résultats

Introduction iv

d’interpolation de Birkhoff, et nous prouverons que c’est optimal. Dans le cas com-
plexe, nous montrerons une version plus faible de cette conjecture, en remplaçant la
borne linéaire as + b par la borne quadratique

(
s
2

)
. Finalement, nous étudierons la

question, plus simple, de borner inférieurement la dimension de l’espace vectoriel
engendré par un ensemble de puissances affines. Dans le cas réel, nous obtiendrons
une borne inférieure optimal en s/2 et dans le cas complexe, nous parviendrons cette
fois à conserver une borne inférieure linéaire en (1 −

√
2)s, sans toutefois savoir si

elle est optimale.
Nous nous concentrerons ensuite sur la conception d’algorithmes de reconstruc-

tion qui répondent au problème suivant : étant donné un polynôme, quelle est sa
décomposition optimale comme somme de puissances affines ? Le chapitre 4 con-
cerne l’étude du cas univarié, pour lequel nous commencerons par considérer le cas
plus simple où les nœuds de la décomposition optimale ne sont pas répétés et où
tous les exposants sont grands. Un premier algorithme sera décrit dans ce cadre, qui
fonctionne avec un nombre polynomial d’opérations, et dont la complexité binaire
est également polynomiale. Nous relâcherons ensuite l’hypothèse sur les exposants
pour obtenir un algorithme plus général, de complexité polynomiale (arithmétique
et binaire) en la taille de la décomposition optimale. Dans la deuxième partie de
ce chapitre, nous étudierons le cas où les nœuds peuvent être répétés et fournirons
des algorithmes pour deux scenarios particuliers : lorsque les exposants correspon-
dant à un même nœud appartiennent à un petit intervalle, ou au contraire lorsque les
exposants d’un même nœuds sont tous éloignés.

Dans le chapitre 5, nous nous intéresserons au cas des polynômes multivariés et
nous concevrons des algorithmes lorsque le nombre de termes dans la décomposi-
tion optimale est petit par rapport au nombre de variable ou au degré. Un premier
algorithme sera présenté pour le cas de base où le nombre de terme dans la décom-
position optimale est égale au nombre de variables essentielles du polynôme. Deux
directions seront ensuite étudiées pour généraliser ce résultat. Dans la première, nous
conserverons la limitation sur le nombre de formes affines pouvant intervenir dans la
décomposition, en autorisant cependant celles-ci à être répétées. Ceci nous conduira
à étudier le problème de décomposition univarié et à concevoir un algorithme pour
résoudre ce dernier. La deuxième direction que nous explorerons sera d’autoriser
plus de formes affines dans la décomposition, en imposant cependant qu’elles ne
se répètent pas. Nous obtiendrons ainsi un algorithme qui peut reconstruire jusqu’à(
s+1

2

)
puissances de formes affines, sous l’hypothèse que les exposants soient plus

grands que 5, et que les coefficients du polynôme considéré soient génériques. Pour
finir ce chapitre, nous proposerons un algorithme qui se ramène au cas univarié du
chapitre 4 en procédant par projections univariées aléatoires, puis qui effectue un
relèvement de ces solutions univariées en une solution du problème multivarié.

Enfin, en guise de conclusion, le chapitre 6 synthétisera les différents résultats
de cette thèse, et listera des problèmes laissés ouverts et des questions qu’il pourrait
être intéressant d’étudier.

Contents

Introduction i

Table of contents vi

1 Prolegomena 1
1.1 Algebraic complexity: an introduction 2

1.1.1 Valiant’s complexity classes 3
1.1.2 Restricted arithmetic circuit classes and depth reduction . . 6
1.1.3 The quest for new techniques 9

1.2 Waring and Sparsest Shift models 10
1.2.1 Waring decompositions . 11
1.2.2 Sparsest Shift . 12

2 Structural results and model comparisons 15
2.1 The real case . 16

2.1.1 Uniqueness and field extension 17
2.1.2 Orthogonality . 19

2.2 Fields of characteristic zero . 20
2.2.1 The Wronskian and linear independence 20
2.2.2 Uniqueness and field extension 23
2.2.3 Largest exponent in optimal expressions 25
2.2.4 Orthogonality . 26

3 Lower bounds and linear independence 29
3.1 Shifted Differential Equations . 31

3.1.1 Definition . 31
3.1.2 Roots of coefficients of a differential equation 33
3.1.3 Smallest SDE . 36

v

Table of contents vi

3.2 Lower bounds . 40
3.2.1 Potential usefulness . 41
3.2.2 Hard polynomials . 43
3.2.3 Extension and limitations 45

3.3 Linear independence . 47
3.3.1 The real case . 49
3.3.2 The complex case . 51
3.3.3 Genericity and linear independence 52

3.4 Dimension lower bounds . 55
3.4.1 The real case . 56
3.4.2 The complex case . 57

4 Reconstruction algorithms 59
4.1 Algorithms for distinct nodes . 61

4.1.1 Big exponents . 61
4.1.2 Low rank . 64

4.2 Algorithms for repeated nodes . 68
4.2.1 Small intervals . 68
4.2.2 Big gaps . 74

5 Multivariate reconstruction algorithms 77
5.1 Preliminaries . 79

5.1.1 Algorithmic preliminaries 79
5.1.2 Essential variables . 80

5.2 From reconstruction to polynomial equivalence 81
5.2.1 Algorithm overview . 81
5.2.2 Quadratic polynomials . 83
5.2.3 Linear terms in an optimal expression 85
5.2.4 Wrapping up : the algorithm 85

5.3 Repeated affine forms . 87
5.3.1 Decomposing a polynomial as sum of univariates 88
5.3.2 The bivariate case . 90

5.4 Allowing more affine forms . 93
5.4.1 Higher order Hessian . 94
5.4.2 The bivariate case . 96
5.4.3 The general case . 97

5.5 Univariate projections . 98
5.5.1 Uniqueness . 99
5.5.2 Univariate projections . 100

6 Conclusion 103

7 Bibliography 107

1
Prolegomena

1. Prolegomena 2

In this chapter, we will introduce the models and the questions investigated in this
work. We will also explain the various motivations that lead to the study of these
models. We begin by giving a quick and abrupt presentation of the main model of
interest: sums of affine powers. Let F be any field of characteristic zero and let
f ∈ F[X] = F[x1, . . . , xn] be a polynomial.

Model 1. We consider expressions of f of the form

s∑
i=1

αi`
ei
i (X)

with `i an affine form, ei ∈ N, αi ∈ F. We denote by AffPowF(f) the minimum value
s such that there exists a representation of the previous form with s terms.

In most of the following chapters, the polynomials we consider are univariate, in
which case Model 1 can be rewritten as follow.

Model 2. We consider expressions of f ∈ F[x] of the form

s∑
i=1

αi(x− ai)ei

with αi, ai ∈ F, ei ∈ N. Since increasing the number of variables does not help, we
also denote by AffPowF(f) the minimum value s of such a representation of f .
We will usually refer to the ei’s as the exponents of the decomposition, and to the
ai’s as the nodes of the decomposition.

Example 1.0.1. The polynomial f = x3 + 5x2 + 14x+ 7 can be written in Model 2
in the following ways:

f = 1× (x− 0)3 + 5× (x− 0)2 + 14× (x+ 1/2)

= 1× (x+ 2)3 − 1× (x− 1)2

The first equality shows that AffPowF(f) ≤ 3, and the second expression shows that
in fact AffPowF(f) ≤ 2. One could easily prove that AffPowF(f) 6= 1, hence we have
AffPowF(f) = 2.

This choice of model may seem arbitrary at first, but we will see in the following that
it has motivations coming from various areas, such as algebraic complexity, algebra
and symbolic computation.

1.1 Algebraic complexity: an introduction

The classical boolean complexity aims to classify languages, i.e. sets of words over
a finite alphabet. Once a model of computation is settled, we associate complexity

1.1. Algebraic complexity: an introduction 3

measures to a language and then group together languages that have a similar com-
plexity. For example, if the computation is done using Turing Machines, a language
is associated with two complexity measures: the time and the memory needed to rec-
ognize this language. There are a lot of boolean complexity classes, the most famous
ones being P and NP, for which we still do not know whether they are equal or not.
In algebraic complexity, the objects that are studied are no longer set of words over
a finite alphabet but families of polynomials over a field F. However, the question
remains the same: how hard is it to compute a polynomial f? More precisely, we
need to define a model of computation for polynomials and the associated complexity
measures. There are many models of computation, the most famous being arithmetic
circuits, an algebraic analogous of boolean circuits, see Figure 1.1 for an example.

x1 x2 x3 x4

+

×

×

+

Figure 1.1: An arithmetic circuit computing (x1 + x2)x3 + x2x3x4, of depth 3 and
of size 4.

In this model, the inputs are variables x1, . . . , xn, and the computation is performed
using arithmetic operations +,×,−, and may involve constants from the underlying
field F. The output of an arithmetic circuit is thus a polynomial (or a set of polyno-
mials) in the input variables. Notice that we do not put any restriction on the fan-in
of a gate which denotes the number of inputs of the gate. The usual complexity
measures associated are size and depth of the circuit which capture the number of
arithmetic operations and the maximal distance between an input gate and an output
gate, respectively. These measures of complexity capture the parallel complexity of
a polynomial P , i.e., how many steps does it take to compute P with an unlimited
amount of processors. As in boolean complexity, we can gather together families of
polynomials that have similar complexities and define algebraic complexity classes.

1.1.1 Valiant’s complexity classes

Arithmetic classes VP and VNP were first defined in work of Valiant [70], in which
he gave analogous definitions for the classes P and NP in the algebraic world, and
exhibited a complete problem for the later class. We now give some definitions
of these classes to give an insight of the motivations for the problem we studied.
More material about basic arithmetic complexity can be found in [17, 16]. The first
complexity class aims to capture “polynomially bounded” families of polynomials.

1. Prolegomena 4

However, it is not enough to require polynomial size circuits, since the polynomial
fn = x2n has O(n) size circuits, as illustrated on Figure 1.2, but its degree is not
polynomial in n. As a consequence, we will say that a family of polynomials {fn :

x

×

×

×

×

Figure 1.2: An arithmetic circuit computing a polynomial that has exponential degree
in the size of the circuit.

n ≥ 1} is a p-family if there exists some polynomial p : N → N such that the
number of variables and the degree of fn are bounded by p(n). The definition of
VP will consist of the p-families that admit arithmetic circuits of polynomial size.
Notice also that the definition of all the algebraic complexity classes depends on the
underlying fields over which we allow computations to take place.

Definition 1.1.1 (VP). A p-family of polynomials {fn} over F is p-computable if
there exists some polynomial p : N → N such that there is an arithmetic circuit of
size at most p(n) computing fn. The class VPF consists of all p-computable families
over F.

Remark 1.1.2. This restriction on the degree makes in fact VP more analogous
to NC2 than to P. Indeed, a depth reduction theorem proved in [71] states that
any polynomial size algebraic circuit computing a n-variate polynomial of degree d
can be turned into an algebraic circuit of polynomial size and depth O(log d log n)
(in fact we even have stronger depth reduction theorems, as we will see in Sec-
tion 1.1.2). If the degree d is polynomially bounded in n, we end up with circuits
of depth O(log2 n), giving the analogy with NC2.

Example 1.1.3. A natural family in VP is the family of determinants:

DETn(X) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

xi,σ(i)

1.1. Algebraic complexity: an introduction 5

An easy way to see that (DETn) ∈ VP is to compute it using Gauss pivot algorithm,
which yields O(n3) size circuits, and then use the method of elimination of divisions
due to Strassen [68]. One could also directly design an efficient parallel algorithm
without division, as in [64].

Similarly to NP, the class VNP is defined as follows from the class VP using some
notion of “definability”.

Definition 1.1.4 (VNP). A p-family of polynomials {fn} over F is p-definable if there
exists a p-family {gn} in VPF and two polynomially bounded functions p, k : N→ N
such that for every n ∈ N:

fn(x1, . . . , xk(n)) =
∑

w∈{0,1}p(n)

gp(n)

(
x1, . . . , xk(n), w1 . . . , wp(n)

)
The class VNPF consists of all p-definable families over F.

Remark 1.1.5. In the definition of VNP, the tuple (w1, . . . , wp(n)) can be seen as
the “witness” and the summation is the algebraic equivalent of the existential quan-
tifier for NP problems, showing the analogy between the two classes. In fact, the
summation is more powerful than a simple existential quantifier, which makes VNP
more analogous to #P than to NP, and indeed they share complete problems (see
Definition 1.1.8 for the definition of p-projection and VNP-complete problems).

Example 1.1.6. A natural family in VNP is the family of permanents:

PERMn(X) =
∑
σ∈Sn

n∏
i=1

xi,σ(i)

To see that (PERMn) ∈ VNP, we follow the proof of [16, Lemma 2.6]: we sum
over all n× n matrices with 0/1 entries and keep only the ones that correspond to a
permutation. In other words, we write:

PERMn(X) =
∑

Y ∈{0,1}n×n
Permutation(Y) ·

n∏
i=1

 n∑
j=1

xi,jYi,j

 ,

where Permutation(Y) is a polynomial that evaluates to 1 if the input matrix is a
permutation matrix, and 0 otherwise. One expression of Permutation(Y) is given
by:

Permutation(Y) =

n∏
i=1

n∑
j=1

Yi,j︸ ︷︷ ︸
at least one 1 in each row

·
n∏
i=1

n∏
j=1

n∏
k=1

k 6=j

(1− Yi,jYi,k)(1− Yj,iYk,i)

︸ ︷︷ ︸
at most one 1 in each row/col

By definition of VP and VNP, it directly follows that VP ⊆ VNP. As an analogue to
the famous P vs. NP question, Valiant conjectured that the inclusion is strict:

1. Prolegomena 6

Conjecture 1.1.7. [70] VP 6= VNP.

One could hope Valiant’s conjecture to be easier than its classical counterpart for
several reasons. Firstly, arithmetic circuits have a lot of structure, which makes them
easier than Turing Machines to work with. Secondly, as discussed before, the classi-
cal counterpart of VP and VNP are NC2 and #P , which are easier to separate than
P and NP. Still, how do we compare families of polynomials? In boolean complex-
ity, we have many-one reductions and Turing reductions for comparing languages;
what is the algebraic analogue? Valiant proposed projections as reductions for two
families of polynomials:

Definition 1.1.8. The family {fn} is a p-projection of {gn} if there exists a polyno-
mially bounded p : N → N such that for all n, fn can be derived from gp(n) by a
substitution of the variables by other variables or constants in F.

As one would expect, both VP and VNP are closed under p-projections. Similarly
to the definition of P-complete and NP-complete problems, we define VP-complete
and VNP-complete families of polynomials. The choice of (PERMn) as an example
of a family in VNP is not arbitrary: Valiant showed in [70] PERM is complete for
VNP. In particular, this implies that Conjecture 1.1.7 is equivalent to proving a
super-polynomial lower bound on the size of the circuits computing the permanent.

1.1.2 Restricted arithmetic circuit classes and depth reduction

As an intermediate step to obtain lower bounds for general circuits, people usually
first prove lower bounds for restricted circuit classes. We focus here on depth restric-
tion, defined as follows:

Definition 1.1.9 (Bounded-depth circuits). A family of circuits {Ci} is of bounded
depth if there exists a constant d ∈ N such that for any n, Cn has depth at most d.

Remark 1.1.10. These algebraic constant depth circuits are the algebraic counter-
part of the class AC0 which denotes the set of boolean circuits of fixed depth. To
obtain interesting circuits, it is crucial that the fan-in (number of inputs) of the gates
is unbounded, as there would be only finitely many circuits of depth d otherwise.

In the following, we will consider the case of depth-4 circuits, also known as ΣΠΣΠ
circuits (we will explain this choice later on). A ΣΠΣΠ circuit is a depth-4 circuit
with an addition gate at the bottom (output) then a layer of multiplication gates, then
a layer of addition gates, then multiplication gates at top, as illustrated in Figure 1.3.

In other words, it computes a polynomial of the form:

k∑
i=1

m∏
j=1

t∑
l=1

∏
p∈Si,j,l

xp

1.1. Algebraic complexity: an introduction 7

x1 3 x2 x4 -1

× × × ×

+ +

× × ×

+

Figure 1.3: A depth-4 arithmetic circuit.

where xp is either an input variable or a constant in F. We will also use the notation
ΣΠ[a]ΣΠ[b] to denote a ΣΠΣΠ circuits with m = a and |Si,j,l| ≤ b for all i, j, k.
Notice that each product gate at top defines a monomial, so that we usually define

fi,j(x1, . . . , xn) =
def

t∑
l=1

∏
p∈Si,j,l

xp,

and we set r = maxi,j deg(fi,j). Therefore, ΣΠΣΠ circuits compute polynomials of

the form
k∑
i=1

m∏
j=1

fi,j(x1, . . . , xn), where the fi,j’s are multivariate polynomials such

that deg(fi,j) ≤ r, and the fi,j are given as sum of monomials.

Remark 1.1.11. The choice of ΣΠΣΠ rather than ΠΣΠΣ isn’t arbitrary: when we
consider depth-d circuits, it’s usually more interesting to consider circuits with an
additive output gate. Indeed, if a polynomial f is computed by a circuit of depth
d with a multiplicative output gate, we can always consider sub-circuits of depth
d − 1 which computes the factors of f . In the case of the additive output gate, it’s
more difficult to do the same because of possible cancellations: the sub-circuits of
depths d − 1 may compute polynomials of degree > deg(f) and the final addition
may cancel the term of higher degrees.

The importance of ΣΠΣΠ circuit comes from the following result: Agrawal and
Vinay [1] and subsequent strengthenings of Koiran [50] and Tavenas [69] showed
that depth-4 circuits are as interesting as general circuits:

Theorem 1.1.12 ([1] [50] [69] Depth-reduction). Let f be an n-variate polyno-
mial computed by a circuit of size s and of degree d. Then f is computed by

1. Prolegomena 8

a ΣΠ[O(α)]ΣΠ[β] circuit C of size 2
O
(√

d log(ds) logn
)

where α =
√
d logn

log ds and

β =
√
d log ds

logn .

In particular when s, d = nO(1), then f is computed by a ΣΠ[O(
√
d)]ΣΠ[O(

√
d)]

circuit C of size nO(
√
d).

This depth-reduction theorem implies that lower bounds for the depth-4 arithmetic
circuit model will give lower bounds for general arithmetic circuits. Recent results
of [36, 46, 28] gave lower bound that comes very close to the required threshold
for different polynomial. For instance, Gupta, Kamath, Kayal and Saptharishi [36]
showed the following lower bound for DET and PERM:

Theorem 1.1.13 ([36]). Any ΣΠ[O(
√
n)]ΣΠ[

√
n] circuit computing DETn or PERMn

has bottom fan-in 2Ω(
√
n).

Using the following formula due to Fischer [26], we can replace the product gate
with a powering gate:

x1 · . . . · xd =
1

d!

∑
ε∈{−1,1}d−1

(x1 + ε1x2 + . . .+ εd−1xd)
d.

As a consequence of this formula and Theorem 1.1.12, one could proved the follow-
ing result that we first stated in [42].

Proposition 1.1.14. Let {fn(X) : n ≥ 1} be a family of n-variate polynomials of
degree d = d(n) over an underlying field F which is algebraically closed and has
characteristic zero. If this family is in VP then fn(X) admits a representation of the
form

fn(X) =

s∑
i=1

Qi(X)ei where deg(Qi) ≤
√
d

and where the number of summands s is at most nO(
√
d).

This proposition motivates the investigation of the following model of sum of powers
of bounded degree polynomials:

Model 3. We consider expressions of f ∈ F[X] of the form

s∑
i=1

Qi(X)ei with deg(Qi) ≤ r.

As a consequence, similarly to ΣΠΣΠ circuits, strong enough lower bounds for
Model 3 imply general circuit lower bound. In particular, the contrapositive ver-
sion of Proposition 1.1.14 means that a strong enough (at least nw(

√
d)) lower bound

for representing an explicit family of polynomials {fn(X) : n ≥ 1} ∈ VNP in

1.1. Algebraic complexity: an introduction 9

Model 3 will imply that this family is not in VP, thereby separating VP and VNP.
Promising progress along this direction has been recently obtained. In [41], Kayal
already investigated Model 3 and proved a 2Ω(

√
d) lower bound in this model, using a

complexity measure called dimension of shifted partials (see Chapter 3 for more de-
tails). Follow up work [36, 46] obtained an nΩ(

√
d) lower bound for Model 3, thereby

coming tantalizingly close to the threshold required for obtaining superpolynomial
lower bounds for general circuits. Since then, these techniques have been intensely
investigated and followup work by [27, 53, 45] have used these techniques to obtain
optimality of the known depth reduction results in many interesting cases. Some of
these works also suggest that the dimension of shifted partials in itself might not be
strong enough to separate VP from VNP, and indeed this result was proved a bit later
in [24]. In a very recent paper [23], the authors generalized this result to most the
“rank methods”, emphasizing the need for new lower bounds techniques.

1.1.3 The quest for new techniques

This was the starting point of this work: try to find new methods to prove lower
bounds for Model 3. The angle of attack we chose was to first to focus on the uni-
variate case:

Model 4. We consider expressions of f ∈ F[x] of the form

s∑
i=1

Qi(x)ei with deg(Qi) ≤ r.

We denote by sr(f) the minimum value s such that there exists a representation of
the previous form with s terms.

The main advantage of the univariate approach is that univariate polynomials are
well-known objects, and one could hope to use e.g. some real or complex analysis
tools to obtain lower bounds for this model. Our underlying hope is that some such
improved proof technique or proof idea might admit a suitable generalization to the
multivariate case as well. This could be one potential way to attack the VP versus
VNP problem. Moreover, there are also formal results essentially following from
the work of Koiran [51] which imply that seemingly mild lower bounds for a slight
variant of Model 4 directly implies a separation of VP from VNP.

Proposition 1.1.15 (Implicit in [51]). If there is an explicit family of univariate
polynomials {fd(x) : d ≥ 1} over an underlying field F which is algebraically
closed and has characteristic zero such that any representation of the form fd(x) =∑s

i=1Qi(x)ei , where Sparsity(Qi) ≤ t, requires the number of summands s to be

at least
(
d
t

)Ω(1)
, then VP 6= VNP.

This means that proving relatively mild lower bounds on a similar model (but with
the degree bound replaced by the corresponding sparsity bound) already implies that
VP is different from VNP. In fact, in the same paper, Koiran already proposed a proof

1. Prolegomena 10

technique quite different from all the “rank methods” which relies on the number of
real roots of polynomial. He made the following τ -conjecture, which directly implies
that VP 6= VNP:

Conjecture 1.1.16. Consider a nonzero polynomial of the form:

k∑
i=1

m∏
j=1

fi,j(x)

where each fi,j has at most t monomials. Then the number of real roots of f is
bounded by a polynomial function of kmt.

In [42], we also proposed a new proof technique to prove lower bounds for Model 4
that uses the Wronskian. We managed to find two families of (explicit) polynomials
such that the minimal number of summands to find a decomposition in Model 4 is

Ω

(√
d
r

)
(the proofs are detailed in Section 3.2.3). This should be compared to the

fact that for a random polynomial f(x) of degree d, it is almost surely the case that
sr(f) ≥ d+1

r+1 (an even stronger result is proven in Corollary 2.2.14). To this day, this
is still the best lower bound for Model 4, and even for the case r = 1 no Ω(d) lower
bound is known, except in the case when F = R where Garcìa-Marco and Koiran
[29] proved an optimal Ω(d) lower bound, using Birkhoff interpolation techniques.
This was one of the main motivations to study Model 2 and its multivariate counter-
part, Model 1. An interesting fact is that the generic case is also the worst case, and
we have a simple explicit construction for such cases. More precisely, we have the
following constructive upper bound (stated for the case r = 1, but can be generalized
to arbitrary r), already mentioned in [29, Proposition 18].

Proposition 1.1.17. For all polynomials f ∈ F[x] of degree d, we have

AffPowF(f) ≤
⌈
d+ 1

2

⌉
.

Proof. We use induction on d. Since the result is obvious for d = 0, 1 we consider a
polynomial f =

∑d
i=0 aix

i of degree d ≥ 2, and we assume that the result holds for
polynomials of degree d − 2. We observe that g := f − ad(x + (ad−1/dad))

d has
degree ≤ d − 2. Applying the induction hypothesis to g we get that AffPowF(g) ≤
d(d− 1)/2e, proving that AffPowF(f) ≤ d(d− 1)/2e+ 1 = d(d+ 1)/2e.

1.2 Waring and Sparsest Shift models

Model 2 extends two already well-studied models: Waring and Sparsest Shift. The
decompositions allowed in these models must satisfy additional constraints on either
the exponents or the nodes, making Model 2 more general.

1.2. Waring and Sparsest Shift models 11

1.2.1 Waring decompositions

In a Waring decomposition, all the exponents are equal to the degree of the polyno-
mial, i.e., ei = deg(f) for all i.

Model 5. For a polynomial f of degree d, we consider expressions of f of the form:
s∑
i=1

αi(x− ai)d

with αi, ai ∈ F. We denote by WaringF(f) the Waring rank of f , which is the mini-
mum value s such that there exists a representation of the previous form with s terms.

Usually, the Waring rank is studied for homogeneous multivariate polynomials, that
is, a polynomial whose nonzero terms all have the same degree. In this context, the
study of Model 5 is reduced via homogenization to the study of bivariate homoge-
neous polynomials for the following model.

Model 6. For a n-variate homogeneous polynomial f ∈ F[X] of degree d, we con-
sider expressions of f of the form:

s∑
i=1

αi`
d
i (X)

with αi ∈ F and `i a linear form. Since there is no ambiguity, we will also denote by
WaringF(f) the Waring rank of f in this model.

Waring rank has been studied by algebraists and geometers since the 19th cen-
tury. The algorithmic study of Model 5 (bivariate Model 6) is usually attributed
to Sylvester. We refer to [38] for the historical background and to section 1.3 of
that book for a description of the algorithm (see also Kleppe [48] and Proposition 46
of Kayal [41]). Most of the subsequent work was devoted to the general case of
Model 6 (that is, for ≥ 3 variables) with much of the 20th century work focused
on the determination of the Waring rank of generic polynomials [2, 14, 38]. A few
recent papers [55, 8] have begun to investigate the Waring rank of specific poly-
nomials such as monomials, sums of co-prime monomials, the permanent and the
determinant. Model 6 has also been studied from an algorithmic point of view, see
e.g. [43, 44, 13, 62].

At the moment, the best upper bound we have for Model 1 are the ones given by
the Waring model. For a homogeneous polynomial f ∈ F[X] of degree d with
n variables, we have the trivial upper bound WaringF(f) ≤

(
n+d
d

)
by a dimension

argument, but several recent works proved non trivial improvements on the maximum
value of WaringF(f), see e.g. [7, 39]. As a consequence, we have the following upper
bound on AffPowFF (f):

Proposition 1.2.1. Let f ∈ F[X] be a polynomials of degree d with n variables.
Then

AffPowF ≤
(
n+ d− 1

d− 1

)
−
(
n+ d− 5

d− 3

)

1. Prolegomena 12

Proof. Homogenize f and apply results of [39].

Remark 1.2.2. One could define an interesting intermediate model between Model 5
and Model 2 by only asking all the exponents to be equal, i.e. ei = ej for all i, j
instead of ei = deg(f) for all i. For e ∈ N, define Waring(f, e) as the minimum
number of terms needed to express f as a sum of e-th powers of affine forms, and de-
fine the generalized Waring rank of f as GWaring(f) =

def
mine∈N Waring(f, e). The

interesting part of this “generalized Waring model” is that it allows higher order
cancellations. For instance, the polynomial Hd(x) = (x+ 1)d+1 − xd has a gener-
alized Waring rank of 2, but we will prove in Proposition 3.3.5 that it has maximal
Waring rank with WaringF(Hd) = dd+1

2 e. A natural question to ask is whether there
is a bound on the common value of the exponent of an optimal generalized Waring
expression. We will answer this question in Corollary 2.2.10 by optimal bound on the
maximum exponent in an optimal expression in Model 2. Another interesting object
that we did not investigate is the sequence (Waring(f, e))e∈N: is it monotonous? If
two consecutive values are equal, can we deduce that they are equal to the general-
ized Waring rank?

1.2.2 Sparsest Shift

The second model that we generalize is the Sparsest Shift model, where all the shifts
ai are required to be equal.

Model 7. For a univariate polynomial f ∈ F[x], we consider expressions of f of the
form:

s∑
i=1

αi(x− a)ei

with αi, a ∈ F, ei ∈ N. We denote by SparsestF(f) the minimum value s such that
there exists a representation of the previous form with s terms.

This model and its variations have been studied in the computer science literature
at least since Borodin and Tiwari [9]. Some of these papers deal with multivariate
generalizations [35, 60], with “supersparse” polynomials1 [33] or establish condition
for the uniqueness of the sparsest shift [54]. It is suggested at the end of [60] to allow
“multiple shifts” instead of a single shift, and this is just what we did in this thesis.
More precisely, as is apparent from Model 2, we do not place any constraint on the
number of distinct shifts: it can be as high as the number s of affine powers.

Remark 1.2.3. As for the Waring model, one could define an intermediate model
by placing an upper bound k on the number of distinct shifts. This would provide a
smooth interpolation between the sparsest shift model (where k = 1) and Model 2,
where k = s.

1In that model, the size of the monomial xd is defined to be log d instead of d as in the usual dense
encoding.

1.2. Waring and Sparsest Shift models 13

This model is deeply linked with the notion of sparse representations of polynomi-
als: instead of encoding a polynomial in a dense way, i.e. by giving the list of all
its coefficients, one could encode only the nonzero coefficients along with their as-
sociated exponent. This representation is efficient for sparse polynomials, that is,
polynomials that have a few nonzero terms. However, if we take the polynomial
f(x) = (x − 2)d, both its dense and its sparse representation are large. Yet, the
“shifted version” f(x+ 2) of f is 1-sparse and thus one could encode f as the shift,
which is 2, and then the sparse representation of f(x + 2). The optimal decom-
position in Model 7 yields the smallest such representation, that is, a shift a such
that f(x + a) is the sparsest possible, and hence such a shift a is usually called a
sparsest shift. As such, algorithms for computing a sparsest shift could therefore be
considered simplification tools.

Remark 1.2.4. The values of the sparsest shifts of a polynomial f ∈ F[x] are linked
with the roots of f and its derivatives. Indeed, if f admits the following decomposi-
tion in Model 7:

f(x) =

s∑
i=1

αi(x− a)ei

with αi, a ∈ F, ei ∈ N, then for all k 6∈ {ei : i ∈ [[1, s]]}, we have f (k)(a) = 0. In
other words, the Taylor expansion of f about a is s-sparse. As a consequence, for a
random polynomial f ∈ F[x], we have SparsestF(f) = d with high-probability.

1. Prolegomena 14

2
Structural results and model comparisons

2. Structural results and model comparisons 16

In this chapter we compare the expressive power of our 3 models: sums of affine
powers, sparsest shift and the Waring decomposition. We will see in Section 2.2 that
some polynomials have a much smaller expression as a sum of affine powers than in
the sparsest shift or Waring models. Moreover, we show that Model 5 and Model 7
are “orthogonal” in the sense that (except in one trivial case) no polynomial can have
a small representation in both models at the same time.
We begin this investigation of structural properties with the field of real numbers,
where an especially strong version of orthogonality holds true. We also show that
some real polynomials have a short expression as a sum of affine powers over the
field of complex numbers, but not over the field of real numbers. This observation
has algorithmic implications: given a polynomial f ∈ F[x], we may have to work in
a field extension of F to find the optimal representation for f . These “real” results
can be derived fairly quickly from results in [29]. We then move to arbitrary fields
of characteristic zero in Section 2.2. In both cases, we also study the uniqueness
of optimal representations. These results about uniqueness have a lot of non-trivial
implications in the remaining chapters, e.g. lower bounds, reconstruction algorithms,
linear independence.

Let us introduce an equality that we will use to obtain several extremal examples
throughout this chapter. It is a generalization of the famous equality (x+ 1)2− (x−
1)2 = 4x, where we replace 1 and −1 by the successive powers of a primitive root
of unity.

Example 2.0.1. One can slightly modify [29, Proposition 19] to obtain the following
equality of complex polynomials of degree d:

k∑
j=1

ξλj(x+ ξj)d =
∑
0≤i≤d

i≡λ (mod k)

k

(
d

i

)
xd−i

where k, λ ∈ N and ξ ∈ C is a k-th primitive root of unity.

2.1 The real case

In [29] the authors considered polynomials with real coefficients and proved the fol-
lowing result, which can be seen as a linear independence result for affine powers.

Theorem 2.1.1. [29, Theorem 13] Consider a polynomial identity of the form:

k∑
i=1

αi(x− ai)d =

l∑
i=1

βi(x− bi)ei

where the ai ∈ R are distinct constants, the constants αi ∈ R are not all zero, the
βi ∈ R and bi ∈ R are arbitrary constants, and ei < d for every i. Then, we must
have k + l ≥ d(d+ 3)/2e.

2.1. The real case 17

Theorem 2.1.1 will be our main tool in Section 2.1, and in Section 2.2 we will prove
a similar result for fields of characteristic zero which will also be the main tool of
Section 2.2.

2.1.1 Uniqueness and field extension

As a consequence of Theorem 2.1.1, we obtain a sufficient condition for a polynomial
to have a unique optimal expression in Model 5 over the reals. We first introduce
some notation that we will reuse throughout this thesis: given a polynomial of the
form f =

∑s
i=1 αi(x − ai)

ei , for any e ∈ N, we denote by ne the number of
exponents smaller than e, i.e., ne =

def
#{i : ei < e}. It is natural to enforce some

conditions on the ne’s in order to guarantee optimality or uniqueness of expression.
Indeed, if f has an expression with ne = e + 1 for some e ∈ N, then f could be
rewritten with less terms since the affine powers with exponents smaller than e are
linearly dependent.

Corollary 2.1.2. Let f ∈ R[x] be a polynomial of the form:

f =

s∑
i=1

αi(x− ai)ei (2.1)

with αi 6= 0. If 2ne ≤ d(e+ 2)/2e for all e ∈ N, then AffPowR(f) = s. Moreover, if
2ne < d(e+ 2)/2e for all e ∈ N then (2.1) is the unique optimal expression for f .

Proof. Suppose that f can be written in another way

f =

p∑
j=1

βj(x− bj)fj (2.2)

with p ≤ s. Set d = max ((ei)1≤i≤s ∪ (fj)1≤j≤p) and denote by s′ (respectively,
p′) the index such that d = e1 = · · · = es′ > es′+1 ≥ · · · ≥ es (respectively,
d = f1 = · · · = fp′ > fp′+1 ≥ · · · ≥ fp). Note that one of the two indices s′, p′

will be equal to 0 if the exponent d appears only in one of the two expressions (2.1)
and (2.2).
Combining equations (2.1) and (2.2), we obtain the following equality:

s′∑
i=1

αi(x− ai)d −
p′∑
j=1

βj(x− bj)d = −
s∑

i=s′+1

αi(x− ai)ei +

p∑
j=p′+1

βj(x− bj)fj

We can rewrite this as

k∑
i=1

α′i(x− a′i)d =

l∑
i=1

β′i(x− b′i)e
′
i

with α′i 6= 0, k ≤ s′ + p′ and l ≤ (s− s′) + (p− p′).
To prove the first assertion, let us assume that 2ne ≤ d(e + 2)/2e for all e. Assume

2. Structural results and model comparisons 18

also for contradiction that p < s and k > 0. By Theorem 2.1.1, we must have k+l ≥
d(d+ 3)/2e. The upper bounds on k and l imply 2s > s+ p ≥ k+ l ≥ d(d+ 3)/2e.
However we have from our assumption that 2s = 2nd+1 ≤ 2d(d + 3)/2e, which
contradicts the previous inequality. This shows that p < s ⇒ k = 0, i.e., if p < s
then the highest degree terms are the same. Continuing by induction, we find that
all the terms in the two expressions are equal. In particular we would have p = s, a
contradiction. This shows that p ≥ s, i.e., that AffPowR(f) = s.
To prove the second assertion, let us now assume further that 2ne < d(e+ 2)/2e for
all e. Assume also that p = s. By Theorem 2.1.1, either k = 0 or k+l ≥ d(d+3)/2e.
In the second case, the upper bounds on k and l imply that 2s = s + p ≥ k + l ≥
d(d+ 3)/2e. This is in contradiction with the assumption that 2nd+1 < d(d+ 3)/2e.
We conclude that k must be equal to 0, i.e., the highest degree terms are the same.
Continuing by induction, we obtain that all the terms of the two decompositions
are equal, thus showing that (2.1) is the unique optimal expression for f in this
model.

Remark 2.1.3. Consider the degree d ≥ 2 polynomial

f =
def

(x+ 1)d + (x− 1)d =
∑
i even

0≤i≤d

2

(
d

i

)
xd−i.

This polynomial has an expression in Model 2 with ne ≤ e+1
2 but this expression

is not optimal since AffPowR(f) = 2. Hence, the inequality in Corollary 2.1.2 is
optimal up to a factor 2.

As a consequence, we obtain an explicit polynomial such that AffPowR(f) is arbi-
trarily larger than AffPowC(f).

Example 2.1.4. For every d ∈ N, we consider the polynomial

fd :=
∑

j≡3 (mod 4)

0≤j≤d

4

(
d

j

)
xd−j ∈ R[x]. (2.3)

We can express fd as fd = (x + 1)d − (x − 1)d + i(x + i)d − i(x − i)d, which
proves that AffPowC(fd) ≤ 4. Moreover, in expression (2.3) we have ne ≤ de/4e
for all e ∈ N. Since 2de/4e ≤ d(e + 2)/2e, it follows from Corollary 2.1.2 that this
expression for fd is optimal over the reals, i.e., AffPowR(fd) = b(d+ 1)/4c.

This should be compared with the following result about sparsest shift on a field
F and a field extension K of F. Theorem 1 in [54] shows that whenever the value
SparsestK(f) is "small", then it is equal to SparsestF(f); more precisely, if we have
SparsestK(f) ≤ (d+ 1)/2 then SparsestK(f) = SparsestF(f). This is no longer the
case for the Affine Power model as the previous example shows.

2.1. The real case 19

2.1.2 Orthogonality

As a consequence of Theorem 2.1.1 we can easily derive the following result about
the orthogonality of Waring and sparsest shift models over the reals.

Corollary 2.1.5. Let f ∈ R[x] be a polynomial of degree d. Either f = α(x − a)d

for some α, a ∈ R (and WaringR(f) = SparsestR(f) = 1), or the following holds:

WaringR(f) + SparsestR(f) ≥ d+ 3

2

Proof. We set k = WaringR(f) and l = SparsestR(f) and assume that l ≥ 2. We
write f in two different ways:

f =

k∑
i=1

αi(x− ai)d =

l∑
j=1

βi(x− a)ei ,

where the aj ∈ R are all distinct, and e1 < · · · < el = d. Let us move the term
βl(x− a)d to the left hand side of the equation. We then have two cases to consider:

• if a 6= ai for all i, we have k+1 terms on the left hand side of the equation and
l−1 terms on the right hand side. Theorem 2.1.1 shows that (k+1)+(l−1) ≥
(d+ 3)/2.

• If a = ai for some i, we have k or k − 1 terms on the left hand side of the
equation and l−1 terms on the right hand side. By Theorem 2.1.1, k+(l−1) ≥
(d+ 3)/2.

Remark 2.1.6. Consider the same polynomial as in Remark 2.1.3:

f = (x+ 1)d + (x− 1)d =
∑
i even

0≤i≤d

2

(
d

i

)
xd−i.

We observe that WaringR(f) = 2 and SparsestR(f) ≤ d(d + 1)/2e. Hence, the
inequality in Corollary 2.1.5 is optimal up to one unit.

A similar proof to that of Corollary 2.1.5 yields the following result about orthogo-
nality of Waring decompositions and sums of affine powers over the reals:

Corollary 2.1.7. Let f ∈ R[x] be a real polynomial of degree d. Then, either
AffPowR(f) = WaringR(f) or the following inequality holds:

WaringR(f) + AffPowR(f) ≥ d+ 3

2

2. Structural results and model comparisons 20

2.2 Fields of characteristic zero

We now switch from the real field to an arbitrary field F of characteristic zero. We
first prove a similar result to Theorem 2.1.1 by using the Wronskian, which will be
the main tool of this section. We then derive some sufficient conditions to ensure
uniqueness of optimal expression, and we show they are best possible. Finally, we
give a comparison of the power of the different models and prove that they are again
orthogonal, even though the results we obtain for a arbitrary field are weaker than in
Section 2.1.

2.2.1 The Wronskian and linear independence

In mathematics, the Wronskian is a tool mainly used in the study of differential equa-
tions, where it can be used to show that a set of solutions is linearly independent.

Definition 2.2.1 (Wronskian). For n univariate functions f1, . . . , fn, which are n−1
times differentiable, the Wronskian Wr(f1, . . . , fn) is defined as

Wr(f1, . . . , fn)(x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) . . . fn(x)
f ′1(x) f ′2(x) . . . f ′n(x)

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣
The basic relation of the Wronskian to linear independence is that for any linearly de-
pendent functions f1, . . . , fn, the Wronskian Wr(f1, . . . , fn) vanishes everywhere.
The converse is false in general, first Peano and then Bôcher found counterexamples
(see [25] for a history of these results). However, several sufficient conditions to en-
sure that the vanishing of the Wronskian everywhere implies linear dependence were
found. For instance, Bôcher proved [15] that if the fi’s are analytic, then the converse
holds. In particular, the Wronskian captures the linear dependence of polynomials in
F[x].

Proposition 2.2.2. [12] For f1, . . . , fn ∈ F[x], the functions are linearly dependent
if and only if the Wronskian Wr(f1, . . . , fn) vanishes everywhere.

Let us illustrate an example of linear independence that can be proved using the
Wronskian.

Proposition 2.2.3 (Folklore). For any integer d, for any distinct (ai) ∈ Fd+1, the set
S = {(x− a0)d, . . . , (x− ad)d} is a basis of Fd[x], where Fd[x] denotes the vector
space of polynomials of degree at most d.

Proof. Since dimFd[x] = d + 1 = |S|, we only have to show that S is linearly
independent. Consider the Wronskian of the polynomials in S:

Wr(x) = Wr((x− a0)d, . . . , (x− ad)d) =

∣∣∣∣∣∣∣∣∣
(x− a0)d . . . (x− ad)d

d(x− a0)d−1 . . . d(x− ad)d−1

...
. . .

...
d! . . . d!

∣∣∣∣∣∣∣∣∣

2.2. Fields of characteristic zero 21

It’s enough to show that the Wronskian is not the null polynomial. In fact, we will
show that it’s a (non-zero) constant polynomial. For any z ∈ F, define bi = z − ai
and we have:

Wr(z) =

∣∣∣∣∣∣∣∣∣
bd0 . . . bdd

d · bd−1
0 . . . d · bd−1

d
...

. . .
...

d! . . . d!

∣∣∣∣∣∣∣∣∣ = c ·

∣∣∣∣∣∣∣∣∣
bd0 . . . bdd
bd−1
0 . . . bd−1

d
...

. . .
...

1 . . . 1

∣∣∣∣∣∣∣∣∣
for some non-zero c ∈ N∗ which only depends on d. The last matrix is a Vander-
monde matrix, so its determinant is equal to the product

∏
i<j(bi−bj) =

∏
i<j(aj−

ai), which is a non-zero constant since all the ai’s are distinct. The determinant is
hence non-zero and so we have Wr(z) 6= 0, thus the family S is linearly indepen-
dent.

In algebraic complexity, this tool was already used to establish a bound in [52] for
sums of products of powers of sparse polynomials. The authors used some results
from [72] that give a link between the number of roots of polynomials of the form
f =

∑n
i=1 fi and the Wronskian Wr(f1, . . . , fn). In the following, we will use

the fact that the Wronskian is a determinant and therefore inherits its properties. In
particular, it can be factorized along its columns or rows. As the following result
shows, this will be useful in our model where we have polynomials with factors of
high multiplicity.

Proposition 2.2.4. Let f1, . . . , fn ∈ F[x] be linearly independent polynomials and
let a ∈ F. If fj = Q

ej
j gj with Qj , gj ∈ F[x], then Q =

def ∏n
j=1Q

dj
j divides

Wr(f1, . . . , fn), with dj = max(0, ej−n+1). Moreover, we have Wr(f1, . . . , fn) =
Q(X)P (X) with P ∈ F[x] such that

deg(P) ≤
n∑
j=1

[
deg(gj) + (n− 1)deg(Qj)

]
−
(
n

2

)
.

Proof. Consider the n × n Wronskian matrix W whose (i, j)-th entry is f (i−1)
j (x)

with i, j ∈ [[1, n]]. Let i ∈ [[1, n]] such that ej ≥ n. Since Qejj divides fj , then

f
(i)
j = Q

ej−i
j gi,j = Q

ej−n+1
j Qn−1−i

j gi,j , for some gi,j ∈ F[x] of degree deg(gj) +

i deg(Qj) − i. Since Qej−n+1
j divides every element in the j-th column of W , we

can factor it out from the Wronskian. This proves that Q divides Wr(f1, . . . , fn).
Once we have factored out Qej−n+1

j for all j, we observe that Wr(f1, . . . , fn) =

Q(x)P (x), where h(x) is the determinant of a matrix whose (i, j)-th entry has de-
gree deg(gj) + (n − 1)deg(Qj) − (i + 1) for all i, j ∈ [[1, n]]. Hence, deg(h) ≤∑n

j=1 [deg(gj) + (n− 1)deg(Qj)]−
(
n
2

)
.

The following result is an analogue of Theorem 2.1.1 that holds for polynomials with
coefficients over any field F of characteristic zero, yet with a bound weaker than the
one in Theorem 2.1.1.

2. Structural results and model comparisons 22

Theorem 2.2.5. Consider a polynomial identity of the form:

k∑
i=1

αi(x− ai)d =

l∑
i=1

βi(x− bi)ei

where the ai ∈ F are distinct, the αi ∈ F are not all zero, βi, bi ∈ F are arbitrary,
and ei < d for every i. Then we must have k + l >

√
2(d+ 1).

Proof. We assume α1 6= 0 and we have the following equality:

α1(x− a1)d = −
k∑
i=2

αi(x− ai)d +

l∑
i=1

βi(x− bi)ei

Consider an independent subfamily on the right hand side of this equality. We obtain
a new identity of the form:

g =

p∑
i=1

λi`
ri
i

with g(x) = α1(x − a1)d, and p ≤ k + l − 1. Since deg(g) = d, then there exists
i such that ri = d. Moreover, since ej < d for all j, we assume without loss of
generality that `1 = x− a2 and r1 = d. By properties of the determinant, we have:

0 6= Wr(λ1`
r1
1 , ` r22 , . . . , ` rpp) = Wr(g, ` r22 , . . . , ` rpp)

We define ∆ = {i : 2 ≤ i ≤ p, ri ≥ p} and, following Proposition 2.2.4, we
factorise the Wronskians:{

Wr(g, ` r22 , . . . , `
rp
p) = (x− a1)d−(p−1)

∏
i∈∆ `

ri−(p−1)
i ·W1

Wr(λ1`
r1
1 , ` r22 , . . . , `

rp
p) = (x− a2)d−(p−1)

∏
i∈∆ `

ri−(p−1)
i ·W2

where W1,W2 ∈ F[x] are the remaining determinants whose degrees are upper
bounded by p(p − 1)/2 according to Proposition 2.2.4. After some simplifications,
we obtain the following identity:

(x− a2)d−(p−1)W2 = (x− a1)d−(p−1)W1

Since a1 6= a2, then (x− a1)d−(p−1) must divide W2 and therefore we should have

d− (p− 1) ≤ p(p− 1)

2

Finally, we set s = l + k and we use the fact that p ≤ s − 1 to obtain the desired
lower bound:

d ≤ (p+ 2)(p− 1)

2
≤ (s+ 1)(s− 2)

2
,

and finally, 2(d+ 1) < s2.

2.2. Fields of characteristic zero 23

Remark 2.2.6. Example 2.0.1 shows that the order of this bound is tight when F =
C, the field of complex numbers. Indeed, choosing k =

√
d+ 1 leads to the equality

k∑
i=1

(x+ ξi)d =

k−1∑
j=0

k

(
d

jk

)
xd−jk

which has 2k = 2
√
d+ 1 terms.

2.2.2 Uniqueness and field extension

As a consequence of Theorem 2.2.5 we obtain that whenever AffPowF(f) is suf-
ficiently small, the terms of highest degree in an optimal expression of f as f =∑s

i=1 αi(x− ai)ei are uniquely determined.

Corollary 2.2.7. Let f ∈ F[x] be a polynomial of the form :

f =

k∑
i=1

αi(x− ai)d +

l∑
j=1

βj(x− bj)ej

with ej < d. If k + l ≤
√

d+1
2 , then the highest degree terms are unique. In other

words, for every expression of f as

f =

k′∑
i=1

α′i(x− a′i)d +

l′∑
j=1

β′j(x− b′j)e
′
j

with e′j < d and k′+ l′ ≤
√

d+1
2 , then k = k′ and there exists a permutation π ∈ Sk

such that αi = α′π(i) and ai = a′π(i) for all i ∈ [[1, k]].

Proof. Let us assume that we have another different decomposition for f :

f =

k′∑
i=1

α′i(x− a′i)d +

l′∑
j=1

β′j(x− b′j)e
′
j

with k′ + l′ ≤
√

(d+ 1)/2. Hence, we have the following equality:

k∑
i=1

αi(x− ai)d −
k′∑
i=1

α′i(x− a′i)d =

l∑
j=1

βj(x− bj)ej −
l′∑
j=1

β′j(x− b′j)e
′
j

Since k + k′ + l + l′ ≤
√

2(d+ 1), the result follows from Theorem 2.2.5.

Finally, as a direct consequence of Corollary 2.2.7, we obtain a sufficient condition
for a polynomial to have a unique optimal expression in Model 2.

2. Structural results and model comparisons 24

Corollary 2.2.8. Let f ∈ F[x] be a polynomial of the form:

f =

s∑
i=1

αi(x− ai)ei

If ne =
def

#{i : ei < e} ≤
√

e
2 for all e ∈ N, then AffPowF(f) = s and the optimal

representation of f is unique.

Whenever f ∈ R[x] satisfies the hypotheses of Corollary 2.2.8 and one term in the
expression of f is of the form αi(x− ai)ei with ai ∈ C− R, then there exists j 6= i
such that αj = αi, aj = ai and ej = ei. Indeed, if we have a decomposition for f ,
taking the conjugate of αi and ai for all i gives another decomposition of f , but by
Corollary 2.2.8 these two decompositions must be identical. We now prove a more
general version of this fact.

Proposition 2.2.9. Let K be a subfield of F. Let f ∈ K[x] be a polynomial that can
be expressed in the AffPowF model as

f =

s∑
i=1

αi(x− ai)ei with αi, ai ∈ F,

and ne ≤
√

e
2 for all e ∈ N. Then, for all e ∈ N, the truncated expression

f̃ =
∑
ei=e

αi(x− ai)ei

belongs to K[x].

Proof. By Corollary 2.2.8, we know that AffPowF(f) = s and, hence, αi, ai are
algebraic over K. We denote by T the splitting field of the minimal polynomials of
all the αi, ai over K (i.e., the smallest field T such that K(αi, ai) ⊂ T and K ⊂ T is
normal). Since K is of characteristic 0 (and, thus, the extension K ⊂ T is separable),
then K ⊂ T is a Galois extension.
Take now σ any element of the Galois group of the extension K ⊂ T. Since
f ∈ K[x], if we apply σ to f we obtain that f = σ(f) =

∑s
i=1 σ(αi)(x −

σ(ai))
ei . Moreover, by Corollary 2.2.8, we know that AffPowT(f) = s and f has a

unique optimal expression in the AffPowT model, then {(αi, ai, ei) | 1 ≤ i ≤ s} =
{(σ(αi), σ(ai), ei) | 1 ≤ i ≤ s}. In particular, for every e ∈ N, we have that

{(αi, ai, ei) | ei = e} = {(σ(αi), σ(ai), ei) | ei = e}. (2.4)

Now, we consider f̃ =
∑

ei=e
αi(x− ai)ei , by (2.4) we get that

σ(f̃) =
∑
ei=e

σ(αi)(x− σ(ai))
ei =

∑
ei=e

αi(x− ai)ei = f̃ .

Summarizing, if we denote f̃ =
∑e

i=0 fix
i ∈ T[x], we have proved that σ(fi) = fi

for every i ∈ [[0, e]] and every σ in the Galois group of the extension K ⊂ T. This
proves (see, e.g., [21, Theorem 7.1.1]) that fi ∈ K for all i ∈ [[0, e]] and therefore
f̃ ∈ K[x].

2.2. Fields of characteristic zero 25

2.2.3 Largest exponent in optimal expressions

It is not clear at first that the exponents involved in an optimal expression of f in
Model 2 are bounded. Indeed, even though the trivial decomposition (see Proposi-
tion 1.1.17) involves only exponents smaller or equal than the degree of the polyno-
mial, some polynomials require larger exponents in their optimal expressions, such
as f = (x + 1)d+1 − xd+1 which is optimal by Corollary 2.2.8. We now prove,
using Theorem 2.2.5, that the exponents in an optimal expression are upper bounded
in terms of d.

Corollary 2.2.10. Let f ∈ F[x] be a polynomial of degree d written as

f =

s∑
i=1

αi(x− ai)ei

with αi, ai ∈ F, ei ∈ N. We set e =
def

max{ei : i ∈ [[1, s]]}. Then we have that

e < d+
s2

2

In particular, if s = AffPowF(f), then e < d+ (d+2)2

8 .

Proof. If e = d, then the result is trivial. Assume therefore that e > d. Now, we
differentiate d+ 1 times the expression for f to obtain the identity:

0 = f (d+1) =
∑
ei>d

αi
ei!

(ei − d− 1)!
(x− ai)ei−d−1.

By Theorem 2.2.5 we have s >
√

2(e− d) and we conclude that e < d + s2

2 . To
finish the proof it suffices to recall that s = AffPowF(f) ≤ d(d+ 1)/2e ≤ (d+ 2)/2
by Proposition 1.1.17.

Remark 2.2.11. When F = R, we can use Theorem 2.1.1 to obtain a better upper
bound on e: we have ⌈

d+ 1

2

⌉
≥ s ≥

⌈
e− d+ 2

2

⌉
,

and therefore e ≤ 2d.

Remark 2.2.12. One can find examples that are close to the bound obtained in
Corollary 2.2.10. Indeed, if we take k =

√
d+ 1 in Example 2.0.1, we get an expres-

sion of the 0 polynomial with 2k terms, namely:

k∑
j=1

(x+ ξj)d −
∑
0≤i≤d

i≡0 (mod k)

k

(
d

i

)
xd−i = 0

2. Structural results and model comparisons 26

If we integrate this expression 7(d+ 1) times we get a polynomial

f :=
d!

(8d+ 7)!

k∑
j=1

(x+ ξj)8d+7 −
∑
0≤i≤d

i≡0 (mod k)

k

(
d

i

)
(d− i)!

(8d+ 7− i)!
x8d+7−i,

of degree < 7(d + 1) with s := AffPowF(f) = 2k (by Corollary 2.2.8) and whose
maximum exponent in the optimal expression is 8d+ 7 = 7(d+ 1) + d > deg(f) +
(s2 − 4)/4.

Remark 2.2.13. As a consequence of Corollary 2.2.10, we obtain a naive brute force
algorithm to find one optimal expression for any polynomial f . Indeed, for a fixed
integer s, there are only a finite number of sequences of exponents (e1, . . . , es) with
ei ≤ d + s2/2. For one sequence, one can try to find an expression with these
exponents by solving a system of polynomial equations in 2s variables. The smallest
s with a solution gives the value of AffPowF(f).

Also, as a byproduct of Corollary 2.2.10, we obtain the exact value of AffPowF(f)
for a generic polynomial f of degree d. It turns out to be equal to the worst case
value of AffPowF(f), obtained in [29, Proposition 18].

Corollary 2.2.14. For a generic polynomial f ∈ F[x] of degree d, we have that
AffPowF(f) = dd+1

2 e.

Proof. The set of polynomials of degree ≤ d can be seen as a linear space W of
dimension d+1. Given f ∈ F[x] a polynomial of degree d, by Proposition 1.1.17 we
have AffPowF(f) ≤ dd+1

2 e. For k < dd+1
2 e, let us show that the set of polynomials

g of degree d such that AffPowF(g) ≤ k is contained in a variety of dimension
2k < d + 1. For every e1, . . . , ek ∈ N the set of polynomials that can be written as∑k

i=1 αi(x− ai)ei with ai, αi ∈ F is contained in a variety Ve1,...,ek of dimension 2k

If we set M := d+ (d+2)2

8 , Corollary 2.2.10 proves that in every optimal expression
of a polynomial of degree d, the exponents ei are ≤ M ; thus the set of polynomials
with AffPowF(f) ≤ k and degree d is contained in

⋃
ei≤M Ve1,...,ek , which is a

variety of dimension ≤ 2k (it is a finite union of varieties of dimension ≤ 2k).

2.2.4 Orthogonality

By definition of the three models, we directly have AffPowF(f) ≤ WaringF(f) and
AffPowF(f) ≤ SparsestF(f) for any polynomial f ∈ F[x]. We now exhibit some
polynomials f such that AffPowF(f) is much smaller than both WaringF(f) and
SparsestF(f).

Example 2.2.15. For every d ∈ N, we consider the polynomial fd ∈ C[x] given by
fd =

def
(x + 1)d − dxd−1. It is easy to check that AffPow(fd) = 2 for all d ≥ 2. By

[8, Proposition 3.1] we have that if xd−1 =
∑s

i=1 αi(x− ai)d with αi, ai ∈ C, then
s ≥ d; and thus we get that WaringC(fd) ≥ d− 1.

2.2. Fields of characteristic zero 27

One can easily check that for every i ∈ [[0, d− 1]], the polynomials f (i)
d = d!

(d−i)!fd−i

and f (i+1)
d = d!

(d−i−1)!fd−i−1 do not share a common root. Consider a decomposi-
tion of f in the sparsest shift model. By Remark 1.2.4, for any pair of consecutive
coefficients in this decomposition at least one of the 2 coefficients is nonzero. This
implies that SparsestC(f) ≥ d(d+ 1)/2e.

We now give (in Proposition 2.2.17) a weaker version of Corollary 2.1.5 that works
for any field of characteristic zero. Moreover, for F = C we provide a family of
polynomials showing that the bound from Proposition 2.2.17 is sharp. We will use
Jordan’s lemma [34] (see [38, Lemma 1.35] for a recent reference), which can be
restated as follows.

Lemma 2.2.16 (Jordan’s lemma). Let d ∈ Z+, e1, . . . , et ∈ {1, . . . , d}, and let
a1, . . . , at ∈ F be distinct constants. If

∑t
i=1(d + 1 − ei) ≤ d + 1, then the set of

polynomials
t⋃
i=1

{(x− ai)e : ei ≤ e ≤ d}

is linearly independent.

Proposition 2.2.17. Let f ∈ F[x] be a polynomial of degree d. Either f = α(x−a)d

for some α, a ∈ F (and WaringF(f) = SparsestF(f) = 1), or the following holds:

WaringF(f) · SparsestF(f) ≥ d+ 1

Proof. We set k = WaringF(f) and l = SparsestF(f) and assume that k, l ≥ 2. We
express f in two different ways:

f =

k∑
i=1

αi(x− ai)d =

l∑
j=1

βj(x− a)ej ,

with aj ∈ F all distinct and e0 := −1 < e1 < · · · < el = d. First, we are going to
prove that ei+1 − ei ≤ k for all i ∈ [[0, l − 1]]. Indeed, if there exists t ∈ [[0, l − 1]]
such that et+1 − et ≥ k + 1, then we set r := et + 1 and differentiate the previous
equality r times to obtain

f (r) =

k∑
i=1

αi
d!

(d− r)!
(x− ai)d−r =

l∑
j=t+1

βj
ej !

(ej − r)!
(x− a)ej−r,

where ej − r = ej − et − 1 ≥ et+1 − et − 1 ≥ k for all j ∈ {t + 1, . . . , l}. From
this equality, we deduce that the set

B := {(x− ai)d−r | 1 ≤ i ≤ k} ∪ {(x− a)ei−r | t+ 1 ≤ i ≤ l}

is linearly dependent. However,

B ⊆ {(x− ai)d−r | 1 ≤ i ≤ k} ∪ {(x− a)i | k ≤ i ≤ d− r}.

2. Structural results and model comparisons 28

By Lemma 2.2.16, the d − r + 1 polynomials on the right-hand side are linearly
independent. This is a contradiction since B is linearly dependent. We have proved
that ei+1 − ei ≤ k for all i ∈ [[0, l − 1]], and we conclude that

d+ 1 = el − e0 =

l∑
i=1

(ei − ei−1) ≤ kl.

Remark 2.2.18. Example 2.0.1 shows that there are polynomials of degree d such
that WaringC(g) ≤ k and SparsestC(g) ≤ d(d + 1)/ke and, thus the bound from
Proposition 2.2.17 is tight.

3
Lower bounds and linear independence

3. Lower bounds and linear independence 30

Circuit lower bounds against a class of circuits C are often obtained following the
same pattern of “natural” proof (outlined in [47]):

Step 1: (normal form) For every circuit in the circuit class C of interest, express the
polynomial computed as a small sum of simple building blocks.

Step 2: (complexity measure) Build a map Γ : F[x] → Z+ that is sub-additive, i.e.
Γ(f + g) ≤ Γ(f) + Γ(g).

Step 3: (potential usefulness) Show that if B is a simple building block, then Γ(B)
is small. Further, check that Γ(f) is large for a random polynomial f .

Step 4: (explicit lower bound) Find an explicit polynomial f for which Γ(f) is large.

For arithmetic circuits, one of the most successful complexity measures is based on
partial derivatives. One takes as complexity measure dim ∂=kf , where ∂=kf denotes
the linear space of polynomials spanned by the partial derivatives of f of order k.
This method already yields lower bounds for Model 1. Indeed, the derivatives of
order k of a d-th power of an affine form `(x1, . . . , xn) are constant multiples of
`d−k for all k ≤ d. Therefore, by linearity of derivatives we have for any k the lower
bound AffPow(f) ≥ dim ∂=kf on the AffPow rank of f . By taking a polynomial
with big partial derivatives space, we obtain the following lower bound.

Theorem 3.0.1. Let f =
∏n
i=1 xi. Then AffPow(f) ≥ 2n−1

n

Proof. For any k ∈ [[1, n]], all the non-zero derivatives of f of order k are linearly
independent, we therefore have dim ∂=kf =

(
n
k

)
. Summing this equality for k =

1, . . . , n, then dividing by n, gives the lower bound.

The method of partial derivatives was introduced in the complexity theory litterature
by Nisan and Wigderson [61], where lower bounds were given for more powerful
models than Model 2 such as e.g. depth 3 arithmetic circuits. In such a circuit, the
powers in Model 2 are replaced by products of d affine functions. We then have [61]
the lower bound r ≥ (dim ∂∗f)/2d, where r denotes as in Model 2 the fan-in of
the circuit’s output gate and ∂∗f denotes the space spanned by partial derivatives of
all order. More recently, a number of new lower bound results were obtained using
a refinement of the method of partial derivatives. These new results are based on
“shifted partial derivatives”, introduced first in [41] to prove an exponential lower
bound for sums of powers of bounded degree polynomials. More precisely, for a set
S ⊆ F[x1, . . . , xn], let x≤l · S denote the F-span of products QR with deg(Q) ≤ l
and R ∈ S. The complexity measure of a polynomial f is then defined as the
dimension of the vector space spanned by x≤l · ∂≤kf .

In a attempt to find an univariate version of this method to prove lower bounds for
our univariate settings, we defined in [42] the following space of shifted derivatives:〈

x≤i+l · f (i)
〉
i≤k

=
def F-span

{
xj · f (i)(x) : i ≤ k, j ≤ i+ l

}

3.1. Shifted Differential Equations 31

Using the complexity measure given by the dimension of this space, we proved in
[42, Theorem 2] a lower bound for Model 4. In the following we will first give a
simpler proof for Model 2 by exhibiting some polynomials that have a full shifted
derivatives space. To do so, we relate the dimension of this space to some differential
equations that f must satisfy.

3.1 Shifted Differential Equations

3.1.1 Definition

In this section, we introduce the main tool of this thesis: linear homogeneous dif-
ferential equations with polynomial coefficients that satisfy some degree constraints.
Although general solutions to these equations are known are D-finite functions, we
will focus here on polynomial solutions. Throughout our papers [42, 30, 31, 32], we
used several definitions of this notion depending on the properties we need them to
satisfy. In the following, we give the most general version and discuss a few choices
of interest of the parameters.

Definition 3.1.1. A Shifted Differential Equation (SDE) of parameters t, k, l ∈ N,
with t ≤ k + 1, is a differential equation of the form

k∑
i=0

Pi(x)f (i)(x) = 0 (3.1)

where f is the unknown function and the Pi are polynomials in F[x] with deg(Pi) ≤
i+ l for all i ∈ [[0, t− 1]], deg(Pi) ≤ l for all i ∈ [[t, k]] and Pk 6= 0. We refer to the
polynomials Pi as the coefficients of the SDE.
The quantity k is called the order of the equation, and the quantity l is called the
shift. We will usually denote such a differential equation by SDE(t, k, l).

For conciseness, we also define a few other notations. Given a differential equation
of the form (3.1) that satisfies the same conditions except that Pk might be 0, if one
sets k′ =

def
max{i|Pi 6= 0} and t′ =

def
min(t, k′ + 1), then this differential equation is

an SDE(t′, k′, l). In the following, we will use the notation SDE≤(t, k, l) to describe
such a differential equation. We will denote by D(t, k, l) the set of pairs (i, j) ∈ N2

such that i < t and j ≤ i+ l, or t ≤ i ≤ k and j ≤ l (see Figure 3.1 for an example).

Remark 3.1.2. A polynomial f satisfies a SDE≤(t, k, l) if and only if the polynomi-
als (xjf (i)(x))(i,j)∈D(t,k,l) are linearly dependent over F. The existence of such a
SDE can therefore be decided efficiently by linear algebra, and when a SDE≤(t, k, l)
exists it can be found explicitly by solving the corresponding linear system (see, e.g.,
[65, Corollary 3.3a] for an analysis of linear system solving in the bit model of
computation). We use this fact repeatedly to design the reconstruction algorithms of
Chapter 4.

3. Lower bounds and linear independence 32

t k

l

D(5, 8, 3)

Figure 3.1: Domain D(5, 8, 3)

As an example, the affine power (x− a)e satisfies the SDE:

(x− a)f ′ − e.f = 0,

of order 1 and shift 1 with either t = 0 or t = 1 (this differential equation can also
be seen as a SDE of order 1 and shift 0 with t = 2). We generalize this observation
to several affine powers in the following result, which is one of the main motivations
for defining such differential equations.

Proposition 3.1.3. Let F = {(x − ai)ei : ai ∈ F, ei ∈ N, 1 ≤ i ≤ s}. Then for
any choice of parameters (t, k, l) such that

s(l + k + 1) < (k + 1)(l + 1) +

(
t

2

)
= |D(t, k, l)| (3.2)

there exists a SDE≤(t, k, l) satisfied simultaneously by the fi(x) = (x − ai)ei for
i = 1, . . . , s.

Proof. The existence of this common SDE is equivalent to the existence of a com-
mon nonzero solution for the following equations (Er)1≤r≤s in the unknowns λi,j :

t−1∑
i=0

 i+l∑
j=0

λi,jx
j

 f (i)
r (x) +

k∑
i=t

 l∑
j=0

λi,jx
j

 f (i)
r (x) = 0 (Er)

Therefore, there are (k + 1)(l + 1) + t(t−1)
2 unknowns, so we need to show that the

matrix of this linear system has rank smaller than (k + 1)(l + 1) + t(t−1)
2 . We are

going to show that for each fixed value of r ∈ {1, . . . , s}, the subsystem (Er) has
a matrix of rank ≤ l + k + 1. In other words, we have to show that the subspace
Vr has dimension less than l + k + 1, where Vr is the linear space spanned by the

3.1. Shifted Differential Equations 33

polynomials xjf (i)
r (x), with (i, j) ∈ D(t, k, l). But Vr is included in the subspace

spanned by the polynomials

{(x− ar)er+j ; −k ≤ j ≤ l, er + j ≥ 0}.

This is due to the fact that the polynomials xi belong to the span of the polynomials
{(x− ar)` : 0 ≤ ` ≤ i}. Hence, we have that dimVr ≤ l + k + 1. Since the (Er)
subsystem has a matrix of rank≤ l+k+1, the whole system has rank≤ s(l+k+1).
Thus, there exists a nonzero solution if (k + 1)(l + 1) + t(t−1)

2 > s(l + k + 1).

As an SDE is a particular case of a linear homogeneous differential equation, it
inherits the following property.

Lemma 3.1.4. The set of polynomial solutions of a SDE of order k is a vector space
of dimension at most k.

As a consequence, if we assume that the elements of F are linearly independent,
then they cannot be part of the solution set of a differential equation of order strictly
less than s. Thus the differential equation we obtain from the previous proposition
is a SDE(t, k′, l) with s ≤ k′ ≤ k. Notice also that the order and the shift play a
symmetric role for the existence of a SDE as Equation (3.2) is symmetric in k and
l. Depending on the application, we will usually set the parameter t to the following
values.

t = k + 1: when designing algorithms, we will look out for small SDEs in terms
of order and shift. To lower the constraints on k and l in the inequality of Proposi-
tion 3.1.3, we better take t as large as possible. We will therefore choose t = k + 1
to rewrite Equation (3.2) as

s(l + k + 1) < (k + 1)

(
l +

k

2
+ 1

)
.

In particular, the choice of parameters l = 0, k = 2s − 1 ensures the existence of a
SDE of order k′ ≤ k with deg(Pi) ≤ i for all i, that is satisfied simultaneously by
all the elements of F . For conciseness, we will use the notation SDE(k, l) to denote
a SDE(k + 1, k, l) throughout this thesis (mostly in Chapter 4).

t = s: to prove the linear independence results of Section 3.3, we will need to con-
trol the degree of the last coefficient Pk′ . Whenever the set F is linearly independent,
then we have s ≤ k′ ≤ k and thus choosing t = s ensures that deg(Pk′) ≤ l.

3.1.2 Roots of coefficients of a differential equation

We now proceed to one of the main tools of the results of this chapter. We show that
a differential equation with polynomial coefficients satisfied by every element of a
family F of shifted powers must have some structure in the roots of its coefficients.
In this section we will use the convenient notation:

xi = x(x− 1). · · · .(x− i+ 1)

3. Lower bounds and linear independence 34

where i is a positive integer (for i = 0 we set xi = 1). When x is a nonnegative
integer, we have xi = x!/(x − i)! for x ≥ i and xi = 0 for x < i. This notation
allows us to write the i-th derivative of a shifted power f(x) = (x− a)e in a concise
way: f (i) = ei (x− a)e−i.

We first make the following remark, which was the starting point for the study of the
roots of the coefficients of a differential equation with polynomial coefficients.

Proposition 3.1.5. Consider the following differential equation with polynomial co-
efficients:

k∑
i=0

Pi(x)f (i)(x) = 0.

Assume that (x− a)e satisfies this equation, with e ≥ k. Then we have Pk(a) = 0.

Proof. Since (x− a)e is a solution, we have

k∑
i=0

Pi(x)ei (x− a)e−i = 0.

We deduce that there exists q ∈ F[x] such that Pk(x)(x−a)e−k = (x−a)e−k+1q(x),
from which we deduce that Pk(a) = 0.

As a direct consequence, if (x − a)e and (x − b)f with a 6= b and e, f ≥ k both
satisfy the same equation, then both a and b are roots of Pk. However, if (x − a)e

and (x− a)f both satisfy the same equation, can we say more than just Pk(a) = 0?
We will answer positively this question thanks to the following proposition:

Proposition 3.1.6. Let (∗) be the following differential equation with polynomial
coefficients:

k∑
i=0

Pi(x)f (i)(x) = 0 (∗)

If (∗) is satisfied simultaneously by xe1 , . . . , xen where n ≤ k and e1 > e2 > · · · >
en ≥ k − n+ 1, then for all m = 0 . . . n− 1, xn−m divides Pk−m.

Proof. By injecting xej into (∗), we get the following equation:

min(ej ,k)∑
i=0

Pi(x) eij x
ej−i = 0

If ej ≤ k, we multiply the equation by xk−ej , and otherwise, we factor out xej−k. In
both cases, we obtain:

k∑
i=0

eij · Pi(x)xk−i = 0 (Ej)

3.1. Shifted Differential Equations 35

We have n such equations (Ej)1≤j≤n and we will now take a "good" linear combi-
nation to deduce the result.
Fix an integer 0 ≤ m < n, and consider the n-tuple ~um ∈ Kn such that (~um)i = 0
for all i 6= n − m and (~um)n−m = 1. A "good" linear combination is a n-tuple
(α1, . . . , αn) such that there exists (b0, . . . , bk−n) satisfying

e0

1 . . . e0

n

e1

1 . . . e1

n
...

. . .
...

e
k−1

1 . . . e
k−1

n

ek1 . . . ekn

 ·
α1

...
αn

 =


b0
...

bk−n
~um


 k − n+ 1 rows

}
n rows

We claim that it is always possible to find such a tuple. Assuming this fact, we then
compute the following equation:

0 =

n∑
j=1

αj(Ej) =

k−n∑
i=0

bi Pi(x)xk−i + Pk−m(x)xm

This directly implies that xn−m divides Pk−m(x).
To prove the claim, we will use the proof technique of Lemma 2 from [54] to show
that the following square submatrix is invertible:e

k−n+1

1 . . . e
k−n+1

n
...

. . .
...

ek1 . . . ekn

 .

We first factorize its determinant using the fact that ab+c = ab · (a− b)c to obtain∣∣∣∣∣∣∣
e
k−n+1

1 . . . e
k−n+1

n
...

. . .
...

ek1 . . . ekn

∣∣∣∣∣∣∣ =

n∏
i=1

e
k−n+1

i ·

∣∣∣∣∣∣∣
d0

1 . . . d0

n
...

. . .
...

d
n−1

1 . . . d
n−1

n

∣∣∣∣∣∣∣
where di = ei − k + n− 1. Notice that the constant we have factorized is non-zero,
since ei ≥ k−n+ 1. Assume for contradiction that the rows are linearly dependent.
This implies that there exists a nonzero tuple (αi) such that for all j = 1, . . . , n,
we have

∑n−1
i=0 αid

i

j = 0. In other words, if we consider the polynomial P (x) =∑n−1
i=0 αix

i , then P (dj) = 0 for all j. However, all the dj’s are distinct and P is of
degree at most n− 1, a contradiction.

As a consequence, we obtain the following refinement of Proposition 3.1.5.

Corollary 3.1.7. Let (∗) be the following differential equation with polynomial co-
efficients of order k > 0:

k∑
i=0

Pi(x)f (i)(x) = 0 (∗)

3. Lower bounds and linear independence 36

Consider a family F = {(x − ai)ei : 1 ≤ i ≤ s, ei ≥ k} such that (∗) is satisfied
simultaneously by all the elements of F . Then

∏s
i=1(x− ai) divides Pk.

In other words, each node ai is a root of Pk of multiplicity at least equal to the
number of occurrences of this node in the family F .

Proof. We partition F in subfamilies along the values of the ai’s: F =]ti=1Fi
where Fi = {(x − bi)

εi,j : 1 ≤ j ≤ si}, such that bi 6= bj for i 6= j. Notice
that

∏s
i=1(x − ai) =

∏t
i=1(x − bi)si , and since bi 6= bj , it is enough to show that

for i = 1 . . . t, we have (x − bi)
si divides Pk. This is obtained directly by using

Proposition 3.1.6 with m = 0.

We now remove the hypothesis of “big exponents” (ei ≥ k) and prove that every
node in the family should appear as a root of one of the coefficients of the differential
equation.

Corollary 3.1.8. Let (∗) be the following differential equation with polynomial co-
efficients:

k∑
i=0

Pi(x)f (i)(x) = 0. (∗)

with P0 6= 0. Define I = {i : Pi(x) 6= 0}. Consider a family F = {(x − ai)ei :
1 ≤ i ≤ s} such that (∗) is satisfied simultaneously by all the elements of F . Then∏s
i=1(x− ai) divides

∏
i∈I Pi and, for a given index i, (x− ai) will divide Pj with

j = max{p : p ∈ I, p ≤ ei}.

Proof. Without loss of generality, we can assume that e1 ≥ e2 ≥ · · · ≥ es, and we
write F = {f1, . . . fs} where fi = (x− ai)ei . We consider the last index p such that
ep ≥ k and partition F into two sets: F = {f1, . . . , fp} ∪ {fp+1, . . . , fs}. Using
Corollary 3.1.7, we get that

∏p
i=1(x−ai) divides Pk. We now consider the following

equation:
k−1∑
i=0

Pi(x)f (i)(x) = 0 (∗′)

Notice that for i > p, fi satisfies (∗′). Since the order of the equation has decreased,
and since 0 ∈ I , we can proceed by induction to obtain that

∏s
i=p+1(x− ai) divides∏

i∈I\{k} Pi. The combination of these two facts yields the desired result.

3.1.3 Smallest SDE

We now make a small parenthesis to ask the following question: does there exist a
“canonical smallest” SDE satisfied by a set of affine powers S = {(x − ai)ei : 1 ≤
i ≤ s}? This question has a direct algorithmic implication: if one can show that the
“smallest” SDE satisfied by a polynomial f ∈ 〈S〉 is the “canonical” one satisfied by
S, then one could just compute this SDE and find the solutions that are affine powers
to find back the decomposition of f . In order to define a notion of “canonical”

3.1. Shifted Differential Equations 37

equation, we first have to define an equivalence relation on SDE, as multiplying a
SDE by a polynomial does not change its space of solutions.

Definition 3.1.9. Given two differential equations with polynomial coefficients:

k∑
i=0

pi(x)g(i)(x) = 0 and
k′∑
i=0

qi(x)g(i)(x) = 0,

we say that they are equivalent if piqj = qipj for all i, j ∈ N with the convention
pi = 0 whenever i > k, and qi = 0 whenever i > k′.

Notice first that in order for two differential equations to be equivalent, they must
have the same order as pi = 0 ⇔ qi = 0 for all i ∈ N. As a consequence, given
two differential equations of order k, it is enough to test whether piqk = qipk for
all i ∈ [[0, k]] to prove that they are equivalent. The following result can be found in
[63, Property 61], and we include a short proof. It states that there is a unique (up
to equivalence) differential equation of minimal order satisfied by a set of linearly
independent polynomials.

Lemma 3.1.10. For any set of F-linearly independent polynomials f1, . . . , fk ∈
F[x], there exists a unique differential equation with polynomial coefficients (up to
equivalence) of order k satisfied simultaneously by all the fi’s.

Proof. Suppose first that there exist two different differential equations with polyno-
mial coefficients of order k satisfied by f1, . . . , fk, namely:

k∑
i=0

pi(x)g(i)(x) = 0 and
k∑
i=0

qi(x)g(i)(x) = 0.

Then, we set ri := pkqi − qkpi for all i ∈ [[0, k]]. By definition we have that rk = 0
and we aim at proving that ri = 0 for all i. By linearity, the following SDE

k−1∑
i=0

ri(x) g(i)(x) = 0

is satisfied by f1, . . . , fk and has order ≤ k − 1. By Lemma 3.1.4, we must have
rj(x) = 0 for all j ∈ [[0, k − 1]], proving that the two differential equations are
equivalent.

To prove that such an equation always exists, it is enough to show that the following
one is suitable:

Wr(g, f1, . . . , fk) = 0, (3.3)

where g is the unknown. By definition of the Wronskian, this equation has order at
most k. By properties of the Wronskian, all the fi’s are solution of Equation (3.3),
proving by Lemma 3.1.4 that the order is precisely k, showing the result.

3. Lower bounds and linear independence 38

Remark 3.1.11. In particular, given a set of affine powers of size s, the previous
construction yields a SDE(s,

(
s
2

)
) satisfied by all the elements of the set by factorizing

the Wronskian following Proposition 2.2.4. Notice that this is also a consequence of
Proposition 3.1.3, as the choice of parameters t = k + 1, k = s, l =

(
s
2

)
satisfies

Equation (3.2). In fact, it was this SDE that was used in the first version of [30]
because, as already pointed out, the fact that this is the unique SDE of order s yields
simple reconstruction algorithms. However, as we will see in Proposition 3.2.4, this
choice of parameters gives worse bound for algorithms that the ones we are going to
provide in Chapter 4 (using the choice of parameters t = k + 1, k = 2s− 1, l = 0),
even though these algorithms will require more work to ensure their correctness.

Remark 3.1.12. By Lemma 3.1.10 and Remark 3.1.11, the minimal shift one can
hope in general for a SDE of minimal order s satisfied by a set of s affine powers
is
(
s
2

)
. However, as already pointed out, if we allow the order to be slightly larger

(k = 2s − 1), then the shift drops to 0. Similar results are proved in [11] for uni-
variate algebraic functions: the authors proved that the linear differential equation
of minimal order has coefficients with cubic degree and that there exists a linear
differential equation of linear order whose coefficients only have quadratic degrees.

As already pointed out in the two previous remarks, given a linearly independent
set S = {(x − ai)

ei : 1 ≤ i ≤ s}, there always exists a SDE≤(2s − 1, 0) and
a SDE(s,

(
s
2

)
) satisfied by all the elements of S, and this is the best one can hope

in general. Yet, we now prove that if S is either a “Waring set” (all the ei’s are
equal) or a “Sparsest-shift set” (all the ai’s are equal), then in fact there exists a
SDE(s, 0) satisfied by all the elements of S, which is unique up to equivalence by
Lemma 3.1.10. Moreover, following the ideas of Section 3.1.2, we will show that in
fact in both cases this SDE is “completely unique” (i.e. up to scalar multiplication)
by describing more precisely the coefficients in term of S.

Proposition 3.1.13. Let S be a linearly independent set of the form

S = {(x− ai)d : 1 ≤ i ≤ s},

with ai ∈ F, d ∈ N. Then there exists a unique (up to scalar multiplication)
SDE(s, 0) satisfied by all the elements of S.

Proof. By Lemma 3.1.10, we consider the only candidate (up to equivalence) which
is the SDE in the unknown g given by the Wronskian:

Wr(g, (x− a1)d, . . . , (x− as)d)(x) = 0. (3.4)

We have to show that this equation can be factored so that the remaining i-th coeffi-
cient has degree bounded by i. After factoring out (x − ai)d−s for all i, we get the
reduced SDE:

s∑
i=0

Ri(x)g(i)(x) = 0,

3.1. Shifted Differential Equations 39

where

Ri =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x− a1)s . . . (x− as)s
d1(x− a1)s−1 . . . d1(x− as)s−1

...
. . .

...
di−1(x− a1)s−i+1 . . . di−1(x− as)s−i+1

di+1(x− a1)s−i−1 . . . di+1(x− as)s−i−1

...
. . .

...
ds . . . ds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Because of the nice structure induced by all the exponents being equal to d, we have
that R′i+1 = 1

(d−i)(s−i)Ri, and hence deg(Ri) = deg(Rs)− (s− i). If we factor out
the constants on each row in Rs we get that

Rs =

s∏
i=1

di ·

∣∣∣∣∣∣∣∣∣
(x− a1)s . . . (x− as)s

(x− a1)s−1 . . . (x− as)s−1

...
. . .

...
(x− a1) . . . (x− as)

∣∣∣∣∣∣∣∣∣
We factor (x− ai) on each row and use the known formula for the determinant of a
Vandermonde matrix to obtain:

Rs =

s∏
i=1

di ·
s∏
i=1

(x− ai) ·
∏
i<j

(ai − aj)

We have deg(Rs) = s, and hence deg(Ri) = i, which shows that the reduced SDE
has in fact a zero shift.
To show that this SDE is unique, notice first that d > s because S is linearly indepen-
dent. As a consequence, for any SDE(s, 0) satisfied by all the elements of S, then ai
is a root of the last coefficient of the SDE by Proposition 3.1.5. In particular, the last
coefficient must be a scalar multiple of

∏s
i=1(x − ai)ei , proving that the SDE(s, 0)

is unique up to scalar multiplication.

Proposition 3.1.14. Let S be a linearly independent set of the form

S = {(x− a)ei : 1 ≤ i ≤ s},

with a ∈ F, ei ∈ N∗. Then there exists a unique (up to scalar multiplication)
SDE(s, 0) satisfied by all the elements of S.

Proof. Again, we consider the only candidate (up to equivalence) which is the SDE
in the unknown g given by the Wronskian:

Wr(g, (x− a)e1 , . . . , (x− a)es)(x) =

s∑
i=0

Pi(x) g(i)(x) = 0. (3.5)

3. Lower bounds and linear independence 40

Because of the stepped sequence of degrees in the determinant defining Pi, there
exists an integer ∆i such that every permutation σ corresponds to a term cσ(x−a)∆i

in the computation of Pi. More precisely, we have

∆i =

 s∑
j=1

ej

− (s+ 1

2

)
+ i

Thus Pi is either 0, or some constant times (x − a)∆i . Moreover, we have ∆i+1 =
∆i + 1 and hence we can rewrite the SDE as

s∑
i=0

ci(x− a)∆0+ig(i)(x) = 0

with ci ∈ F. We factorize this equation by (x−a)∆0 to obtain an SDE(s, 0) satisfied
by all the elements of S.

Assume now that all the elements of S satisfies the following SDE:

s∑
i=0

Qi(x)g(i)(x) = 0.

Since the set S∪{1} is linearly independent (stepped degree sequence), then 1 is not a
solution of this SDE by Lemma 3.1.4, proving that Q0 ∈ F\{0}. By Lemma 3.1.10,
we have PiQs = PsQi for all i ∈ [[0, s]] and in particular P0Qs = c(x− a)sQ0 with
c ∈ F \ {0}. Therefore, we have Qs = cQ0

P0
(x− a)s, proving that this SDE is just a

scalar multiple of the previous one.

3.2 Lower bounds

As announced before, we will use a variant of the space of shifted derivatives that
has an additional parameter:〈

xj · f (i)
〉
D(t,k,l)

=
def F-span

{
xj · f (i)(x) : (i, j) ∈ D(t, k, l)

}
We then define the complexity measure associated to this space: for a polynomial
f ∈ F[x],

Ct,k,l(f) =
def

dim
〈
xj · f (i)

〉
D(t,k,l)

. (3.6)

Notice that the original version we used in [42] corresponds to the case where t is
set to k + 1. As already pointed out in Remark 3.1.2, this complexity measure is
deeply interconnected with the differential equations defined in previous section by
the following result.

3.2. Lower bounds 41

Proposition 3.2.1. For any f ∈ F[x], if f doesn’t satisfy any SDE≤(t, k, l), then〈
xj · f (i)

〉
D(t,k,l)

is full, i.e. we have

Ct,k,l(f) = |D(t, k, l)| = (k + 1)(l + 1) +

(
t

2

)
.

In the following, we will first prove that this complexity measure is small on simple
building blocks of our model. Then, to obtain a lower bound, it will be enough to
find an explicit polynomial f that doesn’t satisfy any “small” SDE.

3.2.1 Potential usefulness

Using a similar argument to the proof of Proposition 3.1.3, we obtain the following
upper bound on Ct,k,l(f) for an affine power f .

Lemma 3.2.2. Let f(x) = (x− a)e. Then Ct,k,l(f) ≤ k + l + 1.

Proof. Notice that all the polynomials in
〈
xj · f (i)

〉
D(t,k,l)

are multiple of (x−a)e−k

and have degree bounded by e+ l. Therefore, we have〈
xj · f (i)

〉
D(t,k,l)

⊆ F-span{xj · (x− a)e−k : 0 ≤ j ≤ k + l},

and hence the dimension is upper bounded by k + l + 1.

As a consequence, we derive an upper bound for an element that has a decomposition
in Model 2 with s terms.

Proposition 3.2.3. Let f ∈ F[x] be a polynomial such that f can be written as
f(x) =

∑s
i=1 αi(x− ai)ei . Then Ct,k,l(f) ≤ s(k + l + 1).

Proof. The complexity measure Ct,k,l(f) is sub-additive since the dimension is sub-
additive and since we have〈

xj · (f + g)(i)
〉
D(t,k,l)

⊆
〈
xj · f (i)

〉
D(t,k,l)

+
〈
xj · g(i)

〉
D(t,k,l)

.

Therefore, using Lemma 3.2.2, we directly obtain the bound.

Using this upper bound, we can obtain a weak version of Proposition 3.1.3: given
a polynomial f(x) =

∑s
i=1 αi(x − ai)ei and parameters (t, k, l) that satisfy equa-

tion 3.2, then f satisfies an SDE≤(t, k, l). Indeed, by Proposition 3.2.3, we have

Ct,k,l(f) ≤ s(l + k + 1) < |D(t, k, l)|

and therefore the generating family of
〈
xj · f (i)

〉
D(t,k,l)

is linearly dependent, which
implies the existence of an SDE≤(t, k, l) using Remark 3.1.2. This result is weaker
than Proposition 3.1.3 since we have no guarantee that the SDE obtained this way

3. Lower bounds and linear independence 42

is also satisfied by the affine powers (x − ai)ei for all i ∈ [[1, s]]. However, in the
case where all the ai’s are distinct, we will now derive some conditions on the ei’s
that will ensure this property, using the Wronskian. This result will be one of the
main tools to design reconstruction algorithms of Chapter 4. Roughly speaking, this
result says that if f satisfies a SDE, then every term in the optimal expression of f
with exponent ei big enough also satisfies the same SDE. It is interesting to notice
that there is no dependency in the parameter t, which explain why we always take
t = k + 1 in Chapter 4.

Proposition 3.2.4. Let f ∈ F[x] be written as

f =

s∑
i=1

αi(x− ai)ei ,

with αi ∈ F nonzero, the ai ∈ F all distinct, and ei ∈ N. Whenever f satisfies a
SDE(t, k, l), then for all ei ≥ k+(k+ l)(s−1)+

(
s
2

)
we have that (x−ai)ei satisfies

the same SDE.

Proof. Suppose that f satisfies the following SDE(t, k, l):
k∑
i=0

Pi(x) g(i)(x) = 0,

with deg(Pi) ≤ i+ l for all i ∈ [[0, t− 1]], deg(Pi) ≤ l for all i ∈ [[t, k]]. We assume
that (x−a1)e1 does not satisfy this equation, and prove that it implies that e1 is small.
For every j ∈ [[1, s]], we denote by fj and Rj the polynomials such that

fj =

k∑
i=0

Pi(x) (αj(x− aj)ej)(i) = Rj(x) (x− aj)dj ,

where dj := max{ej−k, 0}. We observe that deg(fj) ≤ ej + l, so deg(Rj) ≤ k+ l,
and that −f1 =

∑s
j=2 fj 6= 0. We consider a linearly independent subfamily of

f2, . . . , fs, namely {fj | j ∈ J} with J = {j1, . . . , jp} ⊆ {2, . . . , s}. We write
f1 =

∑p
i=1 αifji , and, by properties of the determinant, we have

0 6= Wr(α1fj1 , fj2 , . . . , fjp) = Wr(f1, fj2 , . . . , fjp).

Following Proposition 2.2.4, we factor the Wronskians to obtain{
Wr(α1fj1 , fj2 , . . . , fjp) =

∏
di≥p−1(x− ai)dk−(p−1) ·W1

Wr(f1, fj2 , . . . , fjp) = (x− a1)d1−(p−1) ·W2

with deg(W1) ≤
∑p

i=1[deg(Rj)+p−1]−
(
p
2

)
. Since a1 is distinct from aj1 , . . . , ajp ,

then (x− a1)d1−(p−1) must divide W1 and therefore we have

e1 − k − (p− 1) ≤ deg(W1) ≤ (k + l)p+

(
p

2

)
.

Since p ≤ s− 1, we get that e1 ≤ k + s− 2 + (k + l)(s− 1) +
(
s−1

2

)
< k + (k +

l)(s− 1) +
(
s
2

)
, proving the result.

3.2. Lower bounds 43

3.2.2 Hard polynomials

In this section, we will prove lower bounds in Model 2 for two families of polyno-
mials: when f(x) =

∏s
i=1(x − ai)d/s and when f(x) =

∑s
i=1(x − ai)d. In both

cases we will obtain a Ω(
√
d) lower bound by proving that these polynomials don’t

satisfy any “small” SDE. More precisely, the conjunction of Proposition 3.2.1 and
Proposition 3.2.3 gives the following result.

Proposition 3.2.5. For any f ∈ F[x], if f doesn’t satisfy any SDE≤(t, k, l), then we
have

AffPowF(f) ≥
(k + 1)(l + 1) +

(
t
2

)
l + k + 1

.

Proof. By Proposition 3.2.1, we have

Ct,k,l(f) = (k + 1)(l + 1) +

(
t

2

)
.

Now, if there exists a decomposition of f in Model 2 with m terms, we have by
Proposition 3.2.3 the following upper bound, which proves the result:

Ct,k,l(f) ≤ m(l + k + 1).

For the first family of polynomials, the proof of the lower bound is quite straightfor-
ward and relies on the following lemma.

Lemma 3.2.6. Let s, e ∈ N be integers. Let f(x) =
∏s
i=1(x−ai)e with a1, . . . , as ∈

F distinct. If f satisfies a SDE(0, k, l), then either k > e, or l ≥ s.

Proof. We will prove the results by showing that if f satisfies a SDE and k ≤ e, then
l ≥ s must hold. Assume that f satisfies a SDE(0, k, l) of the following form:

k∑
i=0

Pi(x)f (i)(x) = 0,

with k ≤ e. We use a similar argument to Proposition 3.1.5: set Q =
∏s
i=1(x− ai)

so that f = Qe. Now, since Q ∧ Q′ = 1, one can show by recurrence that Q(i) ∧
Qe = Qe−i for all i ≤ e. As a consequence, we must have Q|Pk and therefore
s = deg(Q) ≤ deg(Pk) ≤ l, proving the result.

As a consequence, we obtain our first lower bound by choosing the best values for s
and e, which is s = e =

√
d because of the symmetry between k and l in the bound

of Proposition 3.2.5.

Proposition 3.2.7. Let d ∈ N be a perfect square and s =
√
d. Let f(x) =

∏s
i=1(x−

ai)
s with a1, . . . , as ∈ F distinct. Then AffPowF(f) = Ω(

√
d).

3. Lower bounds and linear independence 44

Proof. We choose t = 0, k = s and l = s − 1 so that f doesn’t satisfy any
SDE≤(t, k, l) by Lemma 3.2.6. By Proposition 3.2.5, we therefore have

AffPowF(f) ≥
(k + 1)(l + 1) +

(
t
2

)
l + k + 1

=
s(s+ 1)

2s
=

√
d+ 1

2
.

The second family of polynomials, when f(x) =
∑s

i=1(x − ai)d, is interesting for
several reasons. Firstly, we proved in Section 3.2.1 that such a polynomial should
have a small complexity, however we will now prove that this complexity is in fact
not too small. In particular, the order of the lower bound we will obtain is optimal
since we will get that AffPowF(f) = Ω(s) for s = Θ(

√
d). Secondly, we will show

that k and l are orthogonal for f in the following sense: if one of them is small, the
other one must be large if an SDE is satisfied by f . This property is captured in the
two following symmetric lemmas.

Lemma 3.2.8. Let s, d ∈ N be integers such that s ≤ d+ 1. Let f(x) =
∑s

i=1(x−
ai)

d with a1, . . . , as ∈ F distinct. If f satisfies a SDE(0, k, l), then at least one of the
two following conditions holds:

i) l ≥ s, ii) k >
d

s
− 3

2
(s− 1).

Proof. Assume that f satisfies a SDE(0, k, l) of the following form:

k∑
i=0

Pi(x)f (i)(x) = 0,

with l < s. Since deg(Pk) ≤ l < s and the ai’s are distinct, at least one of the ai is
not a root of Pk and therefore Proposition 3.1.5 implies that the corresponding affine
power (x − ai)d doesn’t satisfy the SDE. By Proposition 3.2.4, we therefore must
have

d < k + (k + l)(s− 1) +

(
s

2

)
.

Using the fact that l ≤ s− 1, we obtain the lower bound on k.

Lemma 3.2.9. Let s, d ∈ N be integers such that s ≤ d+ 1. Let f(x) =
∑s

i=1(x−
ai)

d with a1, . . . , as ∈ F distinct. If f satisfies a SDE(t, k, l), then at least one of the
two following conditions holds:

i) k ≥ s, ii) l >
d

s− 1
− 3

2
s.

Proof. Assume that f satisfies a SDE(t, k, l) of the following form:

k∑
i=0

Pi(x)f (i)(x) = 0,

3.2. Lower bounds 45

with k < s. By Proposition 2.2.3, the fi =
def

(x − ai)d’s are linearly independent,
and therefore by Lemma 3.1.4 at least of one the fi’s is not solution of this SDE. By
Proposition 3.2.4, we therefore must have

d < k + (k + l)(s− 1) +

(
s

2

)
.

Using the fact that k ≤ s− 1, we obtain the lower bound on l.

Notice that Lemma 3.2.9 is more powerful than Lemma 3.2.8 to prove a lower bound
because it makes no assumption on the value of t. Therefore, we only give a proof of
a lower bound using Lemma 3.2.9 as the one obtained using Lemma 3.2.8 is slightly
worse (same order, but worse constant).

Proposition 3.2.10. Let d ∈ N, α ∈]0;
√

2/3[, and let s = α
√
d. Let f(x) =∑s

i=1(x− ai)d with a1, . . . , as ∈ F distinct. Then AffPowF(f) = Ω(
√
d).

Proof. We set the parameters to the following values:

• k = s− 1,

• t = k + 1 = s,

• l = (1
α −

3α
2)
√
d > 0,

and apply Lemma 3.2.9: f doesn’t satisfy any SDE≤(t, k, l). By Proposition 3.2.5,
we therefore have

AffPowF(f) ≥
(k + 1)(l + 1) +

(
t
2

)
l + k + 1

≥ 2(α2 − 1)α

α2 − 2

√
d,

proving that AffPowF(f) ≥ c
√
d with c > 0.

Remark 3.2.11. One could also obtain this lower bound as a consequence of Corol-
lary 2.2.8. Indeed, if we take f(x) =

∑s
i=1(x−ai)d with s =

√
(d+ 1)/2, then this

expression is the unique optimal one by Corollary 2.2.8, proving that AffPow(f) =
s = Θ(

√
d). This idea is the main motivation to the study of linear independence

results in Section 3.3.

3.2.3 Extension and limitations

In this section, we will see how this method of shifted derivatives can be used to
obtain lower bounds for Model 4 and see the limitations of this method. In particular,
the limitations will also hold true for the simpler Model 2. The only difference
with the previous part is the “simple blocks” of this model which have the following
complexity:

Lemma 3.2.12. Let f(x) = Q(x)e with deg(Q) ≤ r. Then Ct,k,l(f) ≤ l + kr + 1.

3. Lower bounds and linear independence 46

Proof. All the polynomials in
〈
xj · f (i)

〉
D(t,k,l)

are multiple of Q(x)e−k and have
degree bounded by re+ l. Therefore, we have〈

xj · f (i)
〉
D(t,k,l)

⊆ F-span{xj ·Q(x)e−k : 0 ≤ j ≤ kr + l}.

As a byproduct, we obtain this new version of Proposition 3.2.5.

Proposition 3.2.13. For any f ∈ F[x], if f doesn’t satisfy any SDE≤(t, k, l), then
we have

SmallPowF(f) ≥
(k + 1)(l + 1) +

(
t
2

)
l + kr + 1

.

Notice that if we set r = 1 we recover the results of previous sections, but the
parameter r breaks the symmetry between k and l in the previous expression, and
this will motivate the following choices of parameters to obtain lower bounds.

Proposition 3.2.14. Let d, r ∈ N. Let f(x) =
∏√dr
i=1 (x − ai)

√
d/r ∈ F[x], with

a1, . . . , a√dr ∈ F distinct. Then SmallPowF(f) = Ω(
√
d/r).

Proof. We choose t = 0, k =
√
d/r and l =

√
dr − 1 so that f doesn’t satisfy any

SDE≤(t, k, l) by Lemma 3.2.6. By Proposition 3.2.13, we therefore have

SmallPowF(f) ≥
(k + 1)(l + 1) +

(
t
2

)
l + kr + 1

= Ω

(√
d

r

)
.

Proposition 3.2.15. Let d ∈ N and let s =
√
d/r. Let f(x) =

∑s
i=1(x− ai)d with

a1, . . . , as ∈ F distinct. Then SmallPowF(f) = Ω(
√
d/r).

Proof. We take k = s − 1, t = k + 1 and l = d
s −

3
2s so that f doesn’t satisfy any

SDE≤(t, k, l) by Lemma 3.2.9. By Proposition 3.2.13, we therefore have

SmallPowF(f) ≥
(k + 1)(l + 1) +

(
t
2

)
l + kr + 1

= Ω

(√
d

r

)
.

Unfortunately, these lower bounds are the best one can get using the method of
shifted derivatives. Indeed, the trivial upper bound on the dimension is:

Ct,k,l(f) ≤ min

(
d+ l + 1, (k + 1)(l + 1) +

(
t

2

))

3.3. Linear independence 47

This upper bound is tight since we just proved that the equality holds for two exam-
ples. Moreover, following Proposition 3.2.13 and since t ≤ k + 1, the best possible
lower bound on the number of summands in Model 4 we can obtain is:

s ≥
min

(
d+ l + 1, (k + 1)(l + 1) +

(
k+1

2

))
l + kr + 1

As seen before, the choice of parameters k = O(
√
d/r) and l = O(

√
dr) yields a

Ω(
√
d/r) lower bound, and we claim that this is optimal with this methods.

Lemma 3.2.16. For all k, l ∈ N, we have

min

(
d+ l + 1, (k + 1)(l + 1) +

(
t

2

))
≤
√
d

r
+ 1

Proof. Denote

f(k, l) = min

(
d+ l + 1

l + kr + 1
,

(k + 1)(l + 1) +
(
k+1

2

)
l + kr + 1

)
= min(f1, f2)

We distinguish two cases:

• k ≥
√
d/r : the function g : l 7→ f1(k, l) is monotonous on [0; +∞[. More-

over we have g(+∞) = 1 and g(0) = d+1
kr+1 <

√
d/r + 1. Therefore, for any

l ∈ N, we have g(l) <
√
d/r + 1.

• k ≤
√
d/r : the function h : l 7→ f2(k, l) is monotonous on [0; +∞[. More-

over we have h(+∞) = k + 1 ≤
√
d/r + 1 and h(0) = (k+2)(k+1)

2(kr+1) ≤ k+2
r <√

d/r. Thus we have h(l) <
√
d/r + 1 for any l ∈ N.

3.3 Linear independence

Studying the linear independence of shifted powers is a natural and challenging prob-
lem in its own right, but it also has a motivation coming from the search for lower
bounds. The connection between these two problems arises when the “hard polyno-
mial” f itself is defined as a linear combination of shifted powers, such as in Propo-
sition 3.2.10. In this case, another decomposition of f in Model 2 can be rewritten
as a linear dependence relation between shifted powers (those in the decomposition
and those occurring in the definition of f). If we can show that such a linear depen-
dence is impossible for small enough s, we have a lower bound on s, as illustrated in
Remark 3.2.11. This was also the way that the lower bounds in [29] were obtained.
The goal of this section is to prove sufficient conditions for the linear independence
of a family of shifted powers. One trivial such condition is when the degrees of

3. Lower bounds and linear independence 48

the polynomials in the family are all distinct. Other well-known independent linear
families of F[x] are the ones pictured in Proposition 2.2.3: for any distinct (ai) ∈
Fd+1, the polynomials (x − ai)d are linearly independent. As already pointed out
in Section 2.2.1, nullity of the Wronskian is a necessary and sufficient condition for
the linear independence of polynomials, so our problem always reduces in principle
to the verification that the Wronskian of F is nonzero. Unfortunately, the resulting
determinant looks hardly manageable in general. As a result, little seems to be known
in the case of unequal exponents (the case of equal exponents is tractable because the
Wronskian determinant becomes a Vandermonde matrix after multiplication of rows
by constants). One exception is the so-called Jordan’s lemma (Lemma 2.2.16), which
provides a generalization of Proposition 2.2.3.
So far, we have only discussed sufficient conditions for linear independence. The
following “Pólya condition” is an obvious necessary condition:

Definition 3.3.1. For a sequence e = (e1, . . . , es) of integers, we define again ni =
def

|{j : ej < i}|. We say that e satisfies the Pólya condition if ni ≤ i for all i ∈ N.
For a family F = {(x − ai)

ei : 1 ≤ i ≤ s}, we say that F satisfies the Pólya
condition if e = (e1, . . . , es) does.

The name Pólya condition is borrowed from the theory of Birkhoff interpolation [58,
29]. This necessary condition for linear independence is not sufficient: for instance
we have the linear dependence relation (x+1)2−(x−1)2−4x = 0. As we shall see
in Section 3.3.3, the Pólya condition turns out to be sufficient in a probabilistic sense:
if the shifts ai are taken uniformly at random, the resulting family is linearly indepen-
dent with high probability. As pointed out above, little is known about deterministic
sufficient conditions for linear independence. But there is an exception when F is
the field of real numbers: in this case, some recent progress was made in [29] thanks
to a connection between Birkhoff interpolation and linear independence of shifted
powers. In particular, the authors showed that the Pólya condition is only a factor of
2 away from being also a sufficient condition for linear independence:

Theorem 3.3.2 (Theorem 3 in [29]). Let F and the ni’s be as in Definition 3.3.1,
and let d = max ei. If all the ai’s are real, and n1 ≤ 1, nj + nj+1 ≤ j + 1 for all
j = 1, . . . , d, then the elements of F are linearly independent.

They also gave an example of linear dependence that violates only one of the in-
equalities of Theorem 3.3.2, showing that this result is essentially optimal. However,
Theorem 3.3.2 fails badly over the field of complex numbers, as shown by Exam-
ple 2.0.1. Indeed, if we take k =

√
d in Example 2.0.1, we have that the 2k = 2

√
d

shifted powers in the set

{(x+ ξj)d | 1 ≤ j ≤ k} ∪ {xd−i | i ≡ −1 (mod k), 0 ≤ i ≤ d}

are linearly dependent; and the exponents of these shifted powers clearly satisfy the
hypothesis of Theorem 3.3.2. The question of finding a “good” sufficient condition
for linear independence over C was left open in [29], and in [31] we proposed the
following conjecture.

3.3. Linear independence 49

Conjecture 3.3.3. There are absolute constants a and b such that for all large
enough integers s, the elements in any family F = {(x − ai)

ei : 1 ≤ i ≤ s} of
s complex shifted powers are linearly independent if ei ≥ as+ b for all i ∈ [[1, s]].

If this conjecture holds true, one must have a ≥ 1. Indeed, a family where ei ≤ s−2
for all i will violate the Pólya condition. One can say more. Indeed, we will see in
Proposition 3.3.4 that the counterpart of Conjecture 3.3.3 for the field of real numbers
holds true, and that one may take a = 2, b = −4. We will also show that this result is
best possible over R: one cannot take a = 2, b = −5. Therefore, if Conjecture 3.3.3
holds true one must in fact have a ≥ 2. In Section 3.3.2, we will show that a weak
version of Conjecture 3.3.3 holds true: it suffices to replace the hypothesis ei ≥ as+b
by the stronger assumption ei ≥ s(s− 1)/2.

3.3.1 The real case

In the following we derive from Theorem 3.3.2 another sufficient condition for the
linear independence of families without small exponents, and show that the result is
tight.

Proposition 3.3.4. For any family

F = {(x− ai)ei : ai ∈ R, ei ≥ max(1, 2s− 4), 1 ≤ i ≤ s},

the elements of F are linearly independent.

Proof. Assume without loss of generality that d = e1 ≥ e2 ≥ · · · ≥ es. We first
eliminate a few trivial cases:

• s = 1 : the elements of F are linearly independent.
• s = 2 : two affine powers are linearly dependent if and only if they are equal,

thus the elements of F are linearly independent.
• e1 = e2 = · · · = es. Then all the ai are distinct because all (ei, ai) are distinct.

Since d ≥ 2s − 4 and s ≥ 3, we have s ≤ d + 1 and the elements of F are
linearly independent by Proposition 2.2.3.
• e1 > e2 : no linear dependence could involve (x − a1)e1 , hence it is enough

to show that the elements of the subfamily F ′ = {(x− ai)ei : 2 ≤ i ≤ s} are
linearly independent. Since F ′ satisfies the hypotheses of the Proposition, we
can deal with this case by induction on s.

We now have e1 = e2 > es and s ≥ 3 which implies that d ≥ 2s − 3 and that
nd ≤ s− 2. Such a family satisfies the hypotheses of Theorem 3.3.2, which directly
yields the result. Indeed:

• For i = 0, we have n1 = 0 ≤ 1.
• For i ≤ 2s− 5, we have ni + ni+1 = 0.
• For 2s− 5 < i < d, we have ni + ni+1 ≤ 2(s− 2) ≤ i+ 1.

3. Lower bounds and linear independence 50

• For i = d, we have nd + nd+1 ≤ 2s− 2 ≤ d+ 1.

In order to show that the bound ei ≥ 2s − 4 in the above result is tight, we will
consider the real polynomial H2d+1(x) = (x+ 1)2d+2 − x2d+2 and show that it has
a large Waring rank (see Section 1.2.1).

Proposition 3.3.5. We have WaringR(H2d+1) = WaringC(H2d+1) = d+ 1.

Proof. We will use the algorithmic result in [20, Section 3] to compute the complex
Waring rank of H2d+1 and then prove that it coincides with its real Waring rank. We
consider P (x, y) the homogenization of H2d+1 with respect to the variable y:

P (x, y) =

2d+1∑
i=0

(
2d+ 2

i

)
xiy2d+1−i =

2d+1∑
i=0

(
2d+ 2

i+ 1

)
x2d+1−iyi.

We extract the coefficients

Zi =
coeff(P, x2d+1−iyi)(

2d+1
i

) =

(
2d+2
i+1

)(
2d+1
i

) =
2d+ 2

i+ 1

and, following [20], we construct the matrix

M =


Z0 Z1 · · · Zd
Z1 Z2 · · · Zd+1
...

...
. . .

...
Zd+1 Zd+2 · · · Z2d+1

 = (2d+ 2) ·


1
1

1
2 · · · 1

d+1

1
2

1
3 · · · 1

d+2
...

...
. . .

...
1
d+2

1
d+3 · · · 1

2d+2


The last matrix is a Hilbert matrix with an additional row. Hilbert matrices are known
to be invertible, as special cases of Cauchy matrices, therefore we have rank(M) =
d+ 1, which implies, according to [20] that the complex Waring rank is either d+ 1
or d+ 2. In order to show that it is in fact d+ 1, we have to find a vector f ∈ Cd+2

in the kernel of M t (which is unique up to scalar multiplication) and prove that the
corresponding polynomial F (x) =

∑d+1
i=0 fix

i does not have multiple roots.
Notice that the ith row of M tf can be rewritten as

(M tf)i =

d+1∑
j=0

1

i+ j + 1
fj =

d+1∑
j=0

∫ 1

0
xi · fj xjdx =

∫ 1

0
xiF (x)dx

The equality M tf = 0 can thus be restated as 〈F, xi〉 = 0 for i = 0 . . . d, with the
corresponding scalar product 〈f, g〉 =

∫ 1
0 f(x)g(x)dx. Such a polynomial can be

obtained by the Gram-Schmidt process to {1, x, . . . xd+1} and is classically known
as the shifted Legendre polynomial: it can be obtained from the Legendre polynomial

3.3. Linear independence 51

by the affine transformation x 7→ 2x− 1. A classical result (see, e.g., [4]) is that the
Legendre polynomial of degree d + 1 has d + 1 distinct real roots in the interval
(−1, 1). Therefore our polynomial F has d + 1 distinct real roots in the interval
(0, 1). This shows that WaringC(H) = d+ 1.
Moreover, if we denote by (ai) the roots of F , there exist coefficients (αi) such
that P (x, y) =

∑d+1
i=1 αi(x − aiy)2d+1. Since the ai are real, if we take the real

part of this equality, we obtain P (x, y) =
∑d+1

i=1 <(αi)(x − aiy)2d+1 proving that
WaringR(P) = WaringC(P) = d + 1. Since ai 6= 0 for all i, we conclude that
WaringR(H2d+1) = WaringC(H2d+1) = d+ 1.

Remark 3.3.6. Up to multiplication of rows and columns by constants, the matrixM
in the above proof is nothing but the matrix of d-th order partial derivatives of P .
This explains why the Waring rank of P is at least equal to the rank of M . Again,
we refer to [20] for a proof that the Waring rank is in fact equal to rank(M) or
d+ 2− rank(M).

Remark 3.3.7. A similar proof shows that WaringR(H2d) = d + 1, proving that in
general WaringR(Hd) = dd+1

2 e.

By this result, there exist α1, . . . , αd+1 ∈ R and a1, . . . , ad+1 ∈ (0, 1) such that

(x+ 1)2d+2 − x2d+2 =

d+1∑
i=1

αi(x− ai)2d+1

This equality is a linear dependence of d + 3 terms of degree at least 2d + 1 =
2(d+ 3)− 5, showing the optimality of the bound ei ≥ 2s− 4.

3.3.2 The complex case

In the complex case, we can prove a similar sufficient condition for linear indepen-
dence:

Proposition 3.3.8. For any family

F = {(x− ai)ei : ai ∈ C, ei ≥ (s− 1)s/2, 1 ≤ i ≤ s},

the elements of F are linearly independent.

Proof. Take G ⊆ F a minimal generating subfamily of F and assume by contradic-
tion that |G| = t < s. Using Proposition 3.1.3, there exists a SDE(t, k, t) for some
k ≤ (t+ 1)t/2 satisfied simultaneously by every element of G:

k∑
i=0

Pi(x)f (i)(x) = 0

Moreover, since 〈G〉 = 〈F 〉, we have that every elements of F satisfies this SDE.
Using Corollary 3.1.7, since ei ≥ (s − 1)s/2 ≥ t(t + 1)/2 ≥ k, we thus have that∏s
i=1(x− ai) divides Pk. This yields s ≤ degPk ≤ t < s− 1, a contradiction.

3. Lower bounds and linear independence 52

We do not know if the bound ei ≥ (s− 1)s/2 is tight. The best example we know is
the one provided in the real case that achieves a linear dependence of s affine powers
with ei ≥ 2s− 5.

3.3.3 Genericity and linear independence

Let Ps denote the set of sequences e = (e1, . . . , es) ∈ Ns satisfying the Pólya
condition. The goal of this section is to study two different random processes for
generating a family of affine powers, and to bound the probability that the elements
of the generated family are linearly independent. In Corollary 3.3.11, we study the
case where the sequence e ∈ Ps is fixed, and the ai’s are taken uniformly and in-
dependently from a set S. In Theorem 3.3.15, we study the case where we take the
ai’s uniformly and independently from a set S and we want them to give indepen-
dent families for any e ∈ Ps. Notice that Corollary 3.3.11 does not directly implies
Theorem 3.3.15 as the number of sequences in Ps is infinite.
We will repeatedly use the notation 〈F 〉 to denote the vector space spanned by the
elements of F . We first prove that given a family F of s shifted powers such that
1 6∈ 〈F 〉, the number of shifted powers in 〈F 〉 of degree d is upper bounded by a
linear expression in s. The condition 1 6∈ 〈F 〉 is satisfied if the elements of the set of
derivatives F ′ = {f ′ : f ∈ F} are linearly independent.

Proposition 3.3.9. Consider a family F = {(x − ai)
ei : 1 ≤ i ≤ s} such that

1 /∈ 〈F 〉. Let S(d) = {(x− a)d ∈ 〈F 〉}.
Then for any e ∈ N, we have |S(e)| ≤ 2s− 1.

Proof. Notice first that for any e ∈ N, we must have |S(e)| ≤ e. Otherwise, it would
contain a basis of Fe[x] and we could obtain 1 as a linear combination of elements of
F , which contradicts the hypothesis. Therefore we are done if e ≤ 2s− 1.
Otherwise, Proposition 3.1.3 ensures that there exists a SDE(0, k, l) with k = l =
2s− 1 of order k′ ≤ k satisfied by all the elements of F :

k′∑
i=0

Pi(x)f (i)(x) = 0 (∗)

Since this equation is satisfied by all the elements of S(e), we use Corollary 3.1.7 to
obtain: |S(e)| ≤ degPk′ ≤ l ≤ 2s− 1.

Given a sequence e ∈ Ps, we can take the ai’s uniformly and independently in an
iterative way and use the previous result to lower bound the probability that the ele-
ments of the resulting family of shifted powers are linearly independent at each step.
The resulting bound is given in Corollary 3.3.11. Its proof requires the following
technical lemma.

Lemma 3.3.10. Let e = (e1, . . . , es+1) ∈ Ps+1, then f = (e1−1, . . . , es−1) ∈ Ps.

3.3. Linear independence 53

Proof. We set ni := |{j : ej < i, 1 ≤ j ≤ s+ 1}| and n′i := |{j : ej − 1 < i, 1 ≤
j ≤ s}|. Since e satisfies the Pólya condition we have that ni ≤ i for all i. Moreover,
since e is non-increasing, we have that

• n′i = 0 if i ≤ es+1,

• n′i = ni+1 − 1 ≤ i if i > es+1;

hence, f also satisfies the Pólya condition.

Corollary 3.3.11. Let e = (e1, . . . , es) ∈ Ps and let S be a finite subset of F. Let
a1, . . . , as be selected at random independently and uniformly from S. Then

Pr
[
{(x− ai)ei : 1 ≤ i ≤ s} is linearly independent

]
≥ 1− s(s− 1)

|S|

Proof. We will prove this by induction on s: for s = 1, we always obtain a linearly
independent family. We now consider e = (e1, . . . , es+1) ∈ Ps+1, and we define the
following events on possible outcomes (a1, . . . , as+1):

A = {{(x− ai)ei : 1 ≤ i ≤ s+ 1} is linearly independent}
B = {{(x− ai)ei : 1 ≤ i ≤ s} is linearly independent}
C = {{(x− ai)ei−1 : 1 ≤ i ≤ s} is linearly independent}

Notice that C ⊆ B ⊆ A. Using Lemma 3.3.10 and the induction hypothesis we
obtain Pr(C) ≥ 1 − s(s−1)

|S| . From Proposition 3.3.9 we have Pr(A|C) ≥ 1 − 2s
|S| .

Since Pr(A) = Pr(C) · Pr(A|C) we obtain the inequality

Pr(A) ≥
(

1− s(s− 1)

|S|

)
·
(

1− 2s

|S|

)
≥ 1− s(s+ 1)

|S|
.

In the remainder of this section, our goal is to prove Theorem 3.3.15 which states
the following: if a1, . . . , as ∈ F are selected independently and uniformly at random
from a big enough finite set S, then with high probability (x− ai)ei : 1 ≤ i ≤ s are
linearly independent for all e = (e1, . . . , es) ∈ Ps. A key ingredient of this proof
is to have a bound on max(ei) for a sequence e ∈ Ps such that the elements of the
family might be linearly dependent. This bound is obtained from Corollary 2.2.10,
and we therefore naturally define the bounded version of Ps: P ′s = {e ∈ Ps :

max(ei) ≤ s2

2 − 2}. The next Corollary ensures that if an outcome (a1, . . . , as)
yields a linearly independent family for any e ∈ P ′s, then it also yields a linearly
independent family for any e ∈ Ps.

Lemma 3.3.12. Let e = (e1, . . . , es) ∈ Ps for s ≥ 2. It we take fi such that
min{ei, s

2

2 − s} ≤ fi ≤
s2

2 − 2 for all i, then f = (f1, . . . , fs) ∈ P ′s.

3. Lower bounds and linear independence 54

Proof. We have n′i = ni for i ≤ s2

2 − s+ 1, and n′i ≤ s ≤ i for i ≥ s2

2 − s+ 2.

Corollary 3.3.13. We define the following events on possible outcomes (a1, . . . , as):

A = {
∧
e∈Ps {(x− ai)

ei : 1 ≤ i ≤ s} is linearly independent}
B = {

∧
e∈P ′s {(x− ai)

ei : 1 ≤ i ≤ s} is linearly independent}

Then A = B.

Proof. We first observe that if a1 = · · · = as, then A = B trivially because {(x −
ai)

ei : 1 ≤ i ≤ s} is linearly independent for every e1, . . . , es, so let us assume that
they are not all equal.
Since P ′s ⊆ Ps, we have A ⊆ B. Given an outcome a = (a1, . . . , as) ∈ B and
a sequence e ∈ Ps, we can distinguish two cases. If e ∈ P ′s, then the s shifted
powers (x− a1)e1 , . . . , (x− as)es are linearly independent since a ∈ B. Otherwise,
assume there exists αi such that

∑s
i=1 αi(x − ai)ei = 0. We denote by I = {i :

ei > s2/2 − 2}, and, using Corollary 2.2.10, we have that αi = 0 for i ∈ I . We
therefore rewrite the equality as

∑s
i=1 αi(x − ai)fi = 0, where fi := ei for i /∈ I;

otherwise, fi is chosen in {s2/2 − s, . . . , s2/2 − 2} in such a way that there are no
two equal (ai, fi) (we observe that we can always choose fi in this interval since
there are s − 1 possible values to choose from and there are at least two different
ai’s). Using Lemma 3.3.12, we have that f ∈ P ′s and thus (x − ai)fi : 1 ≤ i ≤ s
are linearly independent since a ∈ B, proving that all the αi’s are zero.

Now that we have restricted our attention to a finite set P ′s, we can directly use the
union bound on all possible sequences e ∈ P ′s to obtain the result using Corol-
lary 3.3.11 for a fixed sequence. We only need to obtain a upper bound on |P ′s|;
this is done in following proposition. More precisely, we will compute exactly |Ps,d|
where Ps,d = {e ∈ Ps : max(ei) < d}.

Proposition 3.3.14. Let s ≤ d be integers. Then

|Ps,d| =
(
s+ d

s

)
d+ 1− s
d+ 1

Proof. Notice first that a sequence e ∈ Ps,d can be represented by the d-tuple
(m1, . . .md), where mi = |{j : ej = i − 1}|. Therefore, there is a bijection be-
tween Ps,d and the following set:

Qs,d =

{
(m1, . . . ,md) ∈ Nd : ∀j ≤ d,

j∑
i=1

mi ≤ j
∧ d∑

i=1

mi = s

}

For each m ∈ Qs,d, we associate a lattice path on the Cartesian plane as follows:
start the path at (0, 0), and at the i-th step move right 1 unit then go up mi units.
The resulting path ends at position (d, s), and never goes above the diagonal y = x.
In fact, there is a bijection between Qs,d and the monotonic lattice paths starting at

3.4. Dimension lower bounds 55

position (0, 0), ending at position (d, s), and not passing above the diagonal y = x.
These numbers are usually called ballot numbers, and have been studied since de
Moivre (1711). The analytic expression can be found in [49, p. 451], proving the
result.

In the Birkhoff interpolation paper [57] a similar proof technique was used to count
the number of Pólya matrices.

Theorem 3.3.15. Let S be a finite subset of F. Let a1, . . . , as be selected at random
independently and uniformly from S. Then

Pr

[∧
e∈Ps

{
{(x− ai)ei : 1 ≤ i ≤ s} is linearly independent

}]
≥ 1− f(s)

|S|

where f(s) =
(
s+ s2

2
−1

s

)
(s− 1)(s− 2).

Proof. Following the notation of Corollary 3.3.13, we have Pr(A) = Pr(B). We
compute Pr(B) using the union bound:

Pr(B) ≥ 1−
∑
e∈P ′s

Pr ({(x− ai)ei : 1 ≤ i ≤ s} is linearly dependent)

By Corollary 3.3.11 we have Pr(B) ≥ 1 − |P ′s| ·
s(s−1)
|S| . Using Proposition 3.3.14

with d = s2

2 − 1, we obtain

Pr(B) ≥ 1−
(
s+ s2

2 − 1

s

)
·
s2

2 − s
s2

2

· s(s− 1)

|S|
.

Remark 3.3.16. One can improve the previous lower bound by noticing that for
some sequences e ∈ P ′s, we have Pr({(x − ai)} is linearly dependent) = 0. This is
the case for instance for any sequence e with distinct ei’s, thus we have

Pr(B) ≥ 1−
(
|P ′s| −

(
s2/2

s

))
· s(s− 1)

|S|
.

3.4 Dimension lower bounds

As sufficient conditions for linear independence are hard to find, we now try to lower
bound the dimension of the span of families of affine powers instead. Of course,
this can only be easier since linear independence implies full dimension of the cor-
responding space. We mostly investigate two different cases: when all the exponents
are big and when small exponents are allowed. In the latter case, we will require
that the family F satisfies the Pólya condition (see Definition 3.3.1). Under this
condition, we first prove an easy lower bound which holds over any field.

3. Lower bounds and linear independence 56

Proposition 3.4.1. Consider any family F = {(x − ai)ei : 1 ≤ i ≤ s} satisfying
the Pólya condition. Then we have dim〈F 〉 ≥

√
s.

Proof. We partition F according to the values of the exponents: F = ∪ti=1Fi with
Fi = {(x−ai,j)di : 1 ≤ j ≤ ti}, and di 6= dj for i 6= j. The fact that F satisfies the
Pólya condition implies that di ≥ ti−1, and therefore that every Fi is an independent
family, using Proposition 2.2.3.
Therefore, if there exists k ∈ [|1; t|] such that Fk contains at least

√
s elements

we have directly dim〈F 〉 ≥ dim〈Fk〉 = |Fk| ≥
√
s. Otherwise, we must have

t ≥
√
s. We consider a family G obtained by taking one element in each Fi. Since

the di’s are distinct, the elements of G are linearly independent. This proves that
dim〈F 〉 ≥ |G| = t ≥

√
s.

In the following, we will show that we can achieve a linear lower bound for both real
and complex field.

3.4.1 The real case

The following result is a consequence of Proposition 3.3.4

Proposition 3.4.2. Consider any family F = {(x−ai)ei : 1 ≤ i ≤ s}, with ai ∈ R
satisfying the Pólya condition.
Then we have dim〈F 〉 ≥ b s+4

3 c.

Proof. Assume that e1 ≥ e2 ≥ · · · ≥ es and consider the family G := {(x− ai)ei :
1 ≤ i ≤ t} ⊂ F with t := b s+4

3 c. Since F satisfies the Pólya condition, we have that
es−i ≥ i and, hence, ei ≥ s− t for all i ∈ {1, . . . , t}. The inequality s− t ≥ 2t− 4
holds, thus we conclude by Proposition 3.3.4 that the elements of G are linearly
independent and dim〈F 〉 ≥ dim〈G〉 = |G| = t.

With more work and additional techniques from Birkhoff interpolation, we can in fact
achieve an even better lower bound. Consider a family F = {(x−ai)ei : 1 ≤ i ≤ s}.
By a sequence in the node a ∈ R we mean a maximal interval of integers O such
that for all e ∈ O, the element (x − a)e belongs to F . A sequence O with an odd
size is naturally called an odd sequence. The following result is just a restatement of
[29, Corollary 9.(ii)]; this result was obtained by transforming the problem of linear
independence of shifted powers into an equivalent problem in Birkhoff interpolation,
and then applying a celebrated result of Atkinson and Sharma [5] concerning real
Birkhoff interpolation (see [58, Theorem 1.5]).

Corollary 3.4.3. Consider a family F = {(x − ai)ei : 1 ≤ i ≤ s}, with ai ∈ R
satisfying the Pólya condition and set d := max(ei). If every odd sequence O in any
node ai satisfies that max(O) = d, then the elements of F are linearly independent.

Proposition 3.4.4. Consider any family F = {(x−ai)ei : 1 ≤ i ≤ s}, with ai ∈ R
satisfying the Pólya condition.
Then we have dim〈F 〉 ≥ b s2c+ 1.

3.4. Dimension lower bounds 57

Proof. Let us denote d = max(ei). If there is only one i such that d = ei we have
dim〈F 〉 = dim〈F \ {(x−ai)ei}〉+ 1. So, without loss of generality we assume that
there are at least two ei’s equal to d. Let O1, . . . , Ok be all the odd sequences such
that d /∈ Oi; notice that k ≤ s − 2. We denote mi = min(Oi), Mi = max(Oi) and
call bi the corresponding node; we order O1, . . . , Ok so that m1 ≤ . . . ≤ mk. We
claim that F ′ := F \ {(x − bi)mi : 1 ≤ i ≤ dk/2e} yields a linearly independent
family. Since the size of F ′ is s − dk/2e ≥ s − d(s − 2)/2e = b s2c + 1, this will
prove that dim〈F 〉 ≥ dim〈F ′〉 ≥ b s2c+ 1.
More precisely, we are going to prove that the family F ′ ∪{(x− bi)Mi+1 : dk/2e+
1 ≤ i ≤ k} is linearly independent. Indeed, by construction of F ′, every odd
sequence O in this family satisfies max(O) = d; this is because we have removed
an element from O1, . . . , Odk/2e and added one to Odk/2e+1, . . . , Ok, which converts
all these odd sequences into even sequences. Moreover, the new set also satisfies the
Pólya condition since for every 1 ≤ i < j ≤ k, we have mi ≤ mj ≤ Mj + 1, so
removing a shifted power of exponent mi and adding one of exponent Mj + 1 can
never cause a violation of the Pólya condition. By Corollary 3.4.3 we are done.

It is worth pointing out that this result does not only bound the dimension of 〈F 〉
but also shows how to explicitly obtain a linearly independent subset of F of size at
least b s2c+ 1. This will not be the case in the complex setting, where we will obtain
a lower bound on the dimension of 〈F 〉 but we will not provide an explicit linearly
independent subset of F of size Ω(s).

We do not know if the above bound is sharp. In the following example we exhibit
a family F of s shifted powers that satisfy the Pólya condition and we prove that
dim〈F 〉 = (3s− 1)/4.

Lemma 3.4.5. Let d ∈ Z+ such that d ≡ 2 (mod 4) and consider F1 := {xi : i
odd and i < d} and F2 := {(x + 1)i, (x − 1)i : i even and (d + 2)/2 ≤ i ≤ d}.
The family F := F1 ∪ F2 has d + 1 elements, satisfies the Pólya condition and
dim〈F 〉 = (3d+ 2)/4.

Proof. It is easy to see that |F1| = d/2, |F2| = (d + 2)/2 and that F satis-
fies the Pólya condition. We remark that F has an element of degree i for all
i ∈ {1, 3, . . . , d/2, (d/2)+1, . . . , d}. This implies dim〈F 〉 ≥ (3d+2)/4. Moreover,
for every i even such that (d+ 2)/2 ≤ i ≤ d we observe that (x+ 1)i − (x− 1)i =∑

j<i

j odd

2
(
i
j

)
xj ∈ 〈F1〉. Hence, we can combine every pair elements of F2 of the

same degree so that the combination can be expressed as a linear combination of the
elements of F1. This proves that dim〈F 〉 ≤ |F | − |F2|

2 = d+ 1− d+2
4 = 3d+2

4 .

3.4.2 The complex case

In the complex case, our results rely on Corollary 3.1.7 and on a good choice of
parameters in Proposition 3.1.3.

3. Lower bounds and linear independence 58

Proposition 3.4.6. Fix an integer p ∈ N and α > 0 and consider any family F =
{(x− ai)ei : 1 ≤ i ≤ p} with ei ≥ αp for all i.
Then we have dim〈F 〉 > (1 + α−

√
α2 + 1)p.

Proof. We extract a basis G ⊆ F of 〈F 〉. We set s := |G|, γ := (1+α−
√
α2 + 1)p

and we assume for contradiction that s ≤ γ. We take t = s, k = αp and l = p − 1,
we claim that the inequality in Proposition 3.1.3 is satisfied. Indeed, according to
Proposition 3.1.3, it suffices to prove that the polynomial function

p(S) = S2 − (2l + 2k + 3)S + 2(k + 1)(l + 1)
= S2 − (2p+ 2αp+ 1)S + 2p(αp+ 1)

is positive for S = s. We will prove that p(S) > 0 for all S ∈ [0, γ]. For this
purpose, we consider

q(S) := p(S) + S − 2p = S2 − (2p+ 2αp)S + 2αp2;

it is straightforward to check that q(S) ≥ 0 for all S ∈ [0, γ] since γ is the smallest
root of q. We conclude that p(S) > 0 in [0, γ] because the following inequalities
hold for every S ∈ [0, γ]:

p(S) = q(S)− S + 2p ≥ q(S)− γ + 2p = q(S) + (
√
α2 + 1− α+ 1)p > q(S).

Hence, by Proposition 3.1.3, there exists an SDE(s, k′, p − 1) with s ≤ k′ ≤ αp
satisfied by all the elements of G. Since G is a basis of 〈F 〉, it follows that not
only the elements of G are solutions of this SDE, but also the elements of F . Since
for any i ∈ [|1; p|] we have ei ≥ αp ≥ k′, it follows from Corollary 3.1.7 that
p ≤ degPk′ ≤ p− 1, a contradiction.

Corollary 3.4.7. Fix an integer s ∈ N and consider any family F = {(x − ai)ei :
1 ≤ i ≤ s} with ei ≥ s for all i.
Then we have dim〈F 〉 > (2−

√
2)s.

We now extend Proposition 3.4.6 by allowing small exponents.

Theorem 3.4.8. For any family F = {(x− ai)ei : 1 ≤ i ≤ s} satisfying the Pólya
condition, we have dim〈F 〉 ≥ (1−

√
2

2)(s− 1).

Proof. We start by dropping the d s2e terms with least exponents and call F ′ the re-
sulting family. By construction we have |F ′| = s − d s2e = b s2c, and because F sat-
isfies the Pólya condition, every element (x − a)e ∈ F ′ must verify e ≥ d s2e. Thus
the family F ′ satisfies the hypothesis of Corollary 3.4.7, implying that dim〈F ′〉 ≥
(2−

√
2)b s2c. The result follows since 〈F ′〉 is a subset of 〈F 〉.

4
Reconstruction algorithms

4. Reconstruction algorithms 60

In this chapter, we design algorithms that reconstruct the optimal representation of
polynomials in Model 2, i.e., algorithms that receive as input f ∈ F[x] and compute
the exact value s = AffPowF(f) and a set of triplets of coefficients, nodes and
exponents {(αi, ai, ei) | 1 ≤ i ≤ s} ⊆ F× F× N such that f =

∑s
i=1 αi(x− ai)ei .

We assume that f is given in dense representation, i.e. as a tuple of deg(f) + 1
elements of F, and, unless specified otherwise, we will measure the complexity in
term of arithmetic operations in the underlying field: addition, multiplication and
root finding. We will not be able to solve the problem in all its generality but under
certain hypotheses. One typical result is as follows (see Theorem 4.1.4 in Section 4.1
for a more detailed statement which includes a description of the algorithm).

Theorem 4.0.1. Let f ∈ F[x] be a polynomial that can be written as

f =

s∑
i=1

αi(x− ai)ei ,

where the constants ai ∈ F are all distinct, αi ∈ F \ {0}, and ei ∈ N. Assume
moreover that ni+1 ≤ (3i/4)1/3 − 1 for all i ≥ 2, where ni =

def
#{j : ej < i}.

Then, AffPowF(f) = s. Moreover, there is a polynomial time algorithm that receives
f =

∑d
i=0 fix

i ∈ F[x] as input and computes the s-tuples of coefficients C(f) =
(α1, . . . , αs), of nodes N(f) = (a1, . . . , as) and exponents E(f) = (e1, . . . , es).

As already pointed out in Section 2.1, it is quite natural to assume an upper bound
on the numbers ni from the point of view of the optimality of representations. It
would nonetheless be interesting to relax the assumption ni+1 ≤ (3i/4)1/3 − 1 in
this theorem. Another restriction is the assumption that the shifts ai are all distinct.
We relax that assumption in Section 4.2 but we still need to assume that all the
exponents ei corresponding to a given shift ai = a belong to a “small” interval (see
Theorem 4.2.6 for a precise statement). Alternatively, we can assume instead that
there is a large gap between the exponents in two consecutive occurrences of the
same shift as in Theorem 4.2.11.

It turns out that our reconstruction algorithms only work in a regime where the
uniqueness of optimal representations is guaranteed. As such, we will repeatedly
use the results from Section 2.2.2 to ensure that this is the case. For conciseness,
we will usually talk about “the” optimal expression of f even before ensuring the
uniqueness of the optimal expressions. It would be interesting to devise algorithms
that don’t require the uniqueness of optimal representations, but this seems out of
reach with the current techniques.

The main tools of this chapter are the SDEs, defined in Section 3.1.1. As we will al-
ways take t = k+1 in the following, we will constantly use the notation SDE(k, l) to
denote a SDE(k+1, k, l) for conciseness. When f is a polynomial with an expression
of size s in Model 2, we proved in Proposition 3.1.3 that f satisfies a SDE≤(2s−1, 0).
The basic idea behind our algorithms is to look for one of these “small” SDEs sat-
isfied by f , and hope that the powers (x − ai)ei in an optimal decomposition of f

4.1. Algorithms for distinct nodes 61

satisfy the same SDE. This isn’t just wishful thinking because the SDE from Propo-
sition 3.1.3 is satisfied not only by f but also by the powers (x− ai)ei .
Unfortunately, this basic idea by itself does not yield efficient algorithms. The main
difficulty is that f could satisfy several SDE of order 2s − 1 and shift 0. By Re-
mark 3.1.2 we can efficiently find such a SDE, but what if we don’t find the “right”
SDE, i.e., the SDE which (by Proposition 3.1.3) is guaranteed to be satisfied by f
and by the powers (x − ai)ei? Proposition 3.2.4 will be our main tool to overcome
this difficulty as it gives some sufficient conditions on the exponents to ensure that
the powers also satisfy a given SDE.

4.1 Algorithms for distinct nodes

This section concerns the case where the ai in the optimal expression of f are all
distinct. In this setting, our main result is Theorem 4.1.4 where we solve the problem
when the number ne of exponents in the optimal expression that are < e is “small”.
We first study the simpler case where all the exponents are large enough and give a
bitsize analysis of the devised algorithm, before moving to more general settings.

4.1.1 Big exponents

As a consequence of Proposition 3.2.4, we get Corollary 4.1.1 and Theorem 4.1.2.
They provide an effective method to obtain the optimal expression of a polynomial
f in Model 2 whenever all the terms involved have big exponents and all the nodes
are different.

Corollary 4.1.1. Let f ∈ F[x] be written as f =
∑s

i=1 αi(x − ai)
ei , with αi ∈

F \ {0}, ai ∈ F all distinct, and ei ≥ 5s2/2 for all i. Then,

a) {(x− ai)ei | 1 ≤ i ≤ s} are linearly independent,

b) If f =
∑t

i=1 βi(x − bi)
di with t ≤ s, then t = s and we have the equal-

ity {(αi, ai, ei) | 1 ≤ i ≤ s} = {(βi, bi, di) | 1 ≤ i ≤ s}; in particular,
AffPowF(f) = s,

c) f satisfies a SDE(2s− 1, 0),

d) if f satisfies a SDE(k, 0) with k ≤ 2s − 1 then (x − ai)ei also satisfies it for
all i ∈ {1, . . . , s}, and

e) f does not satisfy any SDE(k, 0) with k < s.

Proof. Notice first that (b) implies (a). Assume now that (b) does not hold, then
there is another expression of f as f =

∑t
i=1 βi(x − bi)di with t ≤ s. Hence, by

Theorem 2.2.5, we get that

2s ≥ t+ s >
√

2(min({e1, . . . , es}) + 1) ≥
√

5s2,

4. Reconstruction algorithms 62

a contradiction. From Proposition 3.1.3 we get (c). Assume f satisfies a SDE(k, 0)
with k ≤ 2s− 1. For all i ∈ {1, . . . , s} we have that

ei ≥ 5s2/2 ≥ (2s− 1)s+

(
s

2

)
≥ ks+

(
s

2

)
,

and therefore Proposition 3.2.4 yields that (x−ai)ei is also a solution of this equation
for all i, proving (d). Finally, f cannot satisfy a SDE(k, 0) with k < s; otherwise by
(a) and (d), the vector space of solutions to this equation has dimension ≥ s, which
contradicts Lemma 3.1.4.

Theorem 4.1.2 (Big exponents). Let f ∈ F[x] be a polynomial that can be written
as

f =

s∑
i=1

αi(x− ai)ei ,

where the constants ai ∈ F are all distinct, αi ∈ F \ {0} and ei > 5s2/2. Then,
AffPowF(f) = s. Moreover, there is a polynomial time algorithm Build(f) that
receives the polynomial f =

∑d
i=0 fix

i ∈ F[x] as input and computes the s-tuples
of coefficients C(f) = (α1, . . . , αs), of nodes N(f) = (a1, . . . , as) and exponents
E(f) = (e1, . . . , es). The algorithm Build(f) works as follows:

Step 1. Take r the minimum value such that f satisfies a SDE(r, 0) and compute
explicitly one of these SDE.

Step 2. Compute B = {(x − bi)di | 1 ≤ i ≤ l}, the set of all the solutions of the
SDE of the form (x− b)e with (r + 1)2/2 ≤ e ≤ deg(f) + (r2/2).

Step 3. Determine β1, . . . , βl such that f =
∑l

i=1 βi(x− bi)di

Step 4. Set I := {i |βi 6= 0} and output the sets C(f) = (βi | i ∈ I), N(f) =
(bi | i ∈ I) and E(f) = (di | i ∈ I).

Proof. Corollary 4.1.1 proves the correctness of this algorithm. Indeed, by Corol-
lary 4.1.1.(c) and (e), the value r computed in Step 1 satisfies that s ≤ r ≤ 2s − 1.
We claim that the set B computed in Step 2 satisfies that:

(1) it contains the set {(x− ai)ei | 1 ≤ i ≤ s)},

(2) it has at most r elements, and

(3) all its elements are F-linearly independent.

The first claim follows from Corollary 4.1.1.(d), the fact that (r+1)2/2 ≤ (2s)2/2 <
5s2/2, and from Corollary 2.2.10, since ei ≤ deg(f) + (s2/2) ≤ deg(f) + (r2/2)
for all i. To prove the second claim assume that B has more than r elements, then
we take t1, . . . , tr+1 ∈ B. To reach a contradiction, by Lemma 3.1.4 it suffices
to prove that t1, . . . , tr+1 are linearly independent. If this were not the case, by

4.1. Algorithms for distinct nodes 63

Theorem 2.2.5, we would have that r + 1 >
√

(r + 1)2 + 2, which is not possible.
A similar argument and the fact that B has at most r elements proves the third claim.
By (1) and (3), the expression of f as a combination of the elements of B is unique
and is the desired one.
Finally, the four steps can be performed in polynomial time. Only the first two
steps require a justification. See Remark 3.1.2 in Section 3.1.1 regarding Step 1. In
Step 2 we substitute for each value of e the polynomial (x − b)e in the SDE. This
yields a polynomial g(x) whose coefficients are polynomials in b of degree at most
r ≤ 2s − 1. We are looking for the values of b which make g identically 0, so we
find b as a root of the gcd of the coefficients of g.

In the following result we are going to analyze the bitsize complexity of the algorithm
proposed; for this purpose we assume that the output (and, hence, the input) have
integer coefficients. With this analysis we intend to show a rough overestimate on the
number of bitsize operations showing the polynomial time nature of the algorithm.

We recall that by the dense size of a polynomial f =
∑d

i=0 fix
i ∈ Z[x] we mean

size(f) :=
∑d

i=0[1+log2(1+|fi|)]. Also for an n×mmatrixM with rational entries
pij/qij where pij ∈ Z, qij ∈ Z+, the bit size of M is size(M) :=

∑n
i=1

∑m
j=1[1 +

log2(1+ |pij |)+log2(1+qij)]. The notation f(n) = O(g(n)) means that there exists
a k ∈ N such that f(n) = O(g(n) logk(max(|g(n)|, 2))).

Proposition 4.1.3. Let f be a polynomial of degree d that can be written as

f =

s∑
i=1

αi(x− ai)ei ,

where the constants ai ∈ Z are all distinct, αi ∈ Z \ {0} and ei > 5s2/2. The
algorithm Build(f) in Theorem 4.1.2 outputs the optimal expression of f in Model 2
in O(d 6.5size(f) + d 8) bit size operations.

Proof. A first observation is that the value r computed in Step 1 of the algorithm
is upper bounded in terms of d. Indeed, by hypothesis 5s2/2 ≤ max(ei) and, by
Corollary 2.2.10, max(ei) ≤ d + (s2/2), which implies that d ≥ 2s2. Moreover,
in Corollary 4.1.1 we show that r ≤ 2s − 1; this gives r = O(

√
d). Also by

Corollary 4.1.1, we have that s ≤ r and then max(ei) = O(d).
Let us study now the number of bit size operations needed to obtain a SDE(r, 0) satis-
fied by f assuming that we know in advance the value of r in Step 1 of the algorithm.
We propose to follow the idea of Remark 3.1.2 and find the SDE by computing a vec-
tor in the kernel of the matrixM whose entries are the coefficients of the polynomials
xjf (i) with 0 ≤ j ≤ i ≤ r. We have that M has 1 + · · ·+ r+ (r+ 1) = (r+ 1)r/2
rows and d+1 columns. Since size(xjf (i)) = O(size(f)+ id log(d)), we have that
size(M) = O(

∑r
i=0(i + 1)(size(f) + id log(d))) = O(r2(size(f) + rd log(d))),

which isO(d size(f)+d 2.5). Now, we can obtain the required SDE by means of the
Gauss pivoting method on M . Let E be the matrix in echelon form obtained by the

4. Reconstruction algorithms 64

Gauss method. By [65, Theorem 3.3], to compute E one needs O(r4d) arithmetic
operations, which is O(d 3), and the biggest size of a coefficient appearing during
the process of elimination by pivoting is O(size(M)). Thus, the number of bit size
operations needed to obtain the SDE(r, 0) is O(d3 size(M)). Also, the biggest size
of a coefficient appearing in the SDE(r, 0) found is O(size(M)). After multiplying
by an appropriate integer, we can assume that each of these coefficients are integers
of size O(size(M)).
We now lift the assumption that r is known in advance. To perform Step 1 we follow
Remark 3.1.2 and we check whether f satisfies a SDE(`, 0) starting from ` = 0 and
increasing `. We observe that at each step, we can check if f satisfies a SDE(`, 0) by
checking if the matrix M` whose rows are the coefficients of the polynomials xif (j)

with 0 ≤ i ≤ j ≤ ` has full row rank. This can be easily checked from the matrix
E` in echelon form obtained by applying the Gauss method to M`. Since M` and
E` are respectively submatrices of M`+1 and E`+1, the procedure of computing the
SDE of smallest order satisfied by f can be done incrementally. Moreover, all the
matrices M` and E` are submatrices of the matrices M and E described above. So,
it is interesting to notice that knowing the exact value of r in advance does not give
any advantage and Step 1 can be performed in O(d3size(M)) bit size operations.
To perform Step 2 we propose the following strategy. Assume that the SDE obtained
in Step 1 is

∑r
i=0 Pi(x)f (i)(x) = 0. For each value e such that (r + 1)2/2 ≤

e ≤ d + (r2/2), we input in the SDE the polynomial (x − Y)e, where Y is a new
variable; we obtain an equation of the form g(x, Y) = 0. We first observe that
g(x, Y) = (x− Y)e−rh(x, Y), where h(x, Y) ∈ Z[x, Y] has degree ≤ r. We write
h =

∑r
i=0 hix

i, where hi ∈ Z[Y] is of degree ≤ r − i.
The bit size of any coefficient of hi is O(r2 size(M)), which is O(d size(M)).
Moreover, since every hi ∈ Z[Y] has degree ≤ r, by [10, Proposition 21.22], the
cost of computing the integer roots of each hi is O(d 2 size(M)). Since we have
to solve r + 1 equations and take the common roots, this makes O(d 2.5size(M))
bit size operations and since we have to do it for at most d values of e, this gives
O(d 3.5size(M)) bit operations overall. Moreover, the bj’s computed divide the in-
dependent term of all the hi and, hence, the bit size of each bi is O(d size(M)).
In Step 3, the corresponding matrix has at most d + 1 + (r2/2) rows, at most r
columns (see the proof of Theorem 4.1.2), and its size isO(d 3.5size(M)). Since the
rank of this matrix is≤ r (indeed, as we proved in Theorem 4.1.2, this matrix has full
column rank), when we are performing Gaussian elimination and treating a new row
we have at most r already treated nonzero rows. As a consequence of this, we have to
perform O(r2d) arithmetic operations to solve the system of equations by Gaussian
elimination through pivoting. Hence the cost of this step is O(d 5.5size(M)), giving
a total cost of O(d 6.5size(f) + d 8) bit size operations.

4.1.2 Low rank

We now lift the assumption on all the exponents being large and proceed with the
main result of this section:

4.1. Algorithms for distinct nodes 65

Theorem 4.1.4 (Different nodes). Let f ∈ F[x] be a polynomial that can be written
as

f =

s∑
i=1

αi(x− ai)ei ,

where the constants ai ∈ F are all distinct, αi ∈ F \ {0}, and ei ∈ N. Assume
moreover that ni+1 ≤ (3i/4)1/3 − 1 for all i ≥ 2, where ni =

def
#{j : ej < i}.

Then, AffPowF(f) = s. Moreover, there is a polynomial time algorithm Build(f)

that receives f =
∑d

i=0 fix
i ∈ F[x] as input and computes the s-tuples of coeffi-

cients C(f) = (α1, . . . , αs), of nodes N(f) = (a1, . . . , as) and exponents E(f) =
(e1, . . . , es). The algorithm Build(f) works as follows:

Step 1. We take t the minimum value such that f satisfies a SDE(t, 0) and compute
explicitly one of these SDE.

Step 2. Consider B := {(x − bi)di | 1 ≤ i ≤ l}, the set of all the solutions of the
SDE of the form (x− b)e with (t+ 1)2/2 ≤ e ≤ deg(f) + (deg(f)+2)2

8 and
assume that d1 ≥ d2 ≥ · · · ≥ dl ≥ dl+1 := (t+ 1)2/2.

Step 3. We take r ∈ {1, . . . , l} such that dr − dr+1 > r2/2 and dr+1 < deg(f).

Step 4. We set j := dr − (r2/2) and express f (j) as f (j) =
∑r

i=1 βi
di!

(di−j)!(x −
bi)

di−j with β1, . . . , βr ∈ F. We set I := {i |βi 6= 0}.

Step 5. We set f̃ :=
∑r

i=1 βi(x− bi)di and h := f − f̃ .

If h = 0, then C(f) = (βi | i ∈ I), N(f) = (bi | i ∈ I) and E(f) =
(di | i ∈ I).

Otherwise, we set h := f − f̃ and we have that C(f) = (βi | i ∈ I) ∪
C(h), N(f) = (bi | i ∈ I) ∪ N(h) and E(f) = (di | i ∈ I) ∪ E(h),
where the triplet (C(h), N(h), E(h)) is the output of Build(h).

Proof. By Corollary 2.2.8 we have that AffPowF(f) = s. Concerning the algorithm,
first we observe that the value t computed in Step 1 is≤ 2s−1 by Proposition 3.1.3.
Moreover, we claim that the setB computed in Step 2 has l ≤ t elements. Otherwise,
by Lemma 3.1.4, there exists a set I ⊆ [[1, l]] of size ≤ t+ 1 and there exist {γi | i ∈
I} ⊆ F \ {0} such that we have

∑
i∈I γi(x− bi)di = 0. Setting m := max{di | i ∈

I} ≥ (t + 1)2/2, Theorem 2.2.5 yields that t + 1 ≥ |I| >
√

2(m+ 1) > t + 1, a
contradiction.
Now we set L := 5s2/2 and consider the set C := {(x − ai)ei | ei ≥ L} where the
ai’s are the nodes in the optimal expression of f . We have that C 6= ∅; indeed, if
we set emax := max{ei | 1 ≤ i ≤ s}, then s = nemax+1 ≤ (3emax/4)1/3 − 1 and
therefore L ≤ 4(s+ 1)3/3 ≤ emax.
By Corollary 2.2.10 we know that ei ≤ deg(f) + (deg(f)+2)2

8 for all i ∈ [[1, s]], and
Proposition 3.2.4 yields that all the elements of C are solution of the SDE since

ts+

(
s

2

)
≤ (2s− 1)s+

(
s

2

)
≤ 5s2/2.

4. Reconstruction algorithms 66

Therefore, we have C ⊆ B and in particular, there exists τ ∈ [[1, l]] such that d1 ≥
dτ = emax ≥ 4

3(s+ 1)3.
Now we take k := max{i | di > L} (we have that 1 ≤ k ≤ l ≤ t ≤ 2s− 1) and we
are going to prove that

• there exists r ∈ {τ, . . . , k − 1} such that dr − dr+1 > r2/2, or

• dk − L > k2/2.

Indeed, if this is not the case, then we get the following contradiction:

4s3

3 ≤
4(s+1)3

3 − L ≤ emax − L = dτ − L =
∑k−1

i=τ (di − di+1) + dk − L ≤

≤ 1
2

∑k
i=τ i

2 ≤ 1
2

∑k
i=1 i

2 = k(k+1)(2k+1)
12 ≤ (2s−1)2s(4s−1)

12 < 4s3

3 .

We take r ∈ {1, . . . , k − 1} such that dr − dr+1 > r2/2, or r = k if such a
value does not exist (and dk − L > k2/2). We claim that emax ≥ dr if and only if
dr+1 < deg(f) and, thus, the r described in Step 3 always exists. If dr+1 < deg(f),
since deg(f) ≤ e and C ⊆ B, then dr ≤ emax (since emax = dτ , it cannot be
sandwiched between two consecutive elements dr, dr+1 of this sequence).
Conversely, assume now that emax ≥ dr and let us prove that dr+1 < deg(f). To
prove this we first observe that setting j := dr − (r2/2), then f (j) can be uniquely
expressed as a linear combination of B′ := {(x − bi)di−j | 1 ≤ j ≤ r} . Indeed,
f (j) =

∑
ei≥j αi

ei!
(ei−j)!(x−ai)

ei−j with αi 6= 0 and (x−ai)ei−j ∈ B′ for all ei ≥ j,
and if there is another way of expressing f (j) as a linear combination of B′, then by
Theorem 2.2.5 we get that r >

√
2(min{di | 1 ≤ i ≤ r} − j + 1) ≥

√
r2 + 2 > r,

a contradiction. So, if dr+1 ≥ deg(f), then f (j) = 0 and the only expression of
f (j) as a linear combination of B′ would be the one in which every coefficient is 0, a
contradiction. Hence, the value r computed in Step 3 exists.
We have seen that f (j) can be uniquely expressed as a linear combination of B′ as
f (j) =

∑
ei≥j αi

ei!
(ei−j)!(x − ai)

ei−j . Hence, in Step 4, one finds all the (αi, ai, ei)

such that ei ≥ j. In Step 5, either the polynomial h is 0 and we have finished or
h =

∑
ei<j

αi(x − ai)
ei is written as a linear combination of strictly less than s

terms and satisfies the hypotheses of the Theorem, so by induction we are done.

Note that in Step 2 of this algorithm we need to compute polynomial roots, just
as in the corresponding step of Theorem 4.1.2 (see the proof of Theorem 4.1.2 for
details). One difference, however, is that we do not use the roots bi only to output
the coefficients of the optimal decomposition: we also use the bi in the subsequent
iterations of the algorithm since the polynomials f̃ and h of Step 5 are defined in
terms of the bi, and we call the algorithm recursively on input h. From this discussion
one might be lead to think that if f has its coefficients in a subfield F of K, the
coefficients of f̃ and h may lie outside F. Proposition 2.2.9 implies that this is not
the case: in the last paragraph of the proof of Theorem 4.1.4, we proved that for all
e ∈ N, either all the affine powers with exponents e of the optimal expression are in
f̃ or none of them are, proving that f̃ and therefore h = f − f̃ always lie in F[x].

4.1. Algorithms for distinct nodes 67

However, we do not know if f̃ can be computed from f with a polynomial number
of arithmetic operations and comparisons.

We define the size of the set of triplets {(αi, ai, ei) | 1 ≤ i ≤ s} ⊂ Z × Z × N as∑s
i=1[1 + log2(1 + |ai|) + log2(1 + |αi|) + ei]. It is not clear that the size of the

output of the algorithm proposed in Theorem 4.1.4 is polynomially bounded in the
input size (i.e., in the bit size of f given as a sum of monomials) because it is an
iterative algorithm. Indeed, at each step of the iteration, we have to compute roots
of polynomials (which may lie outside F), and we keep computing with these roots
in the subsequent iterations. Since the number of iterations can be a priori as large
as s, a naive analysis will only give an exponential upper bound on the bit size of
the output. It is in fact not clear that there exists a solution of size polynomially
bounded in the input size (i.e., in the bit size of f given as a sum of monomials).
More precisely, we ask the following question.

Question 4.1.5. We define the dense size of a polynomial f =
∑d

i=0 fix
i ∈ Z[x] as∑d

i=0[1 + log2(1 + |fi|)]. Assume that f can be written as

f =

s∑
i=1

αi(x− ai)ei ,

with ai ∈ Z, αi ∈ Z \ {0}, and that this decomposition satisfies the conditions of
Theorem 4.0.1: the constants ai are all distinct, and ni+1 ≤ (3i/4)1/3 − 1 for all
i ≥ 2.
Is it possible to bound the bit size of the constants αi, ai by a polynomial function of
the dense size of f ?

Yet, it is straightforward to check that the input size is polynomially bounded by the
output size. Indeed, the degree of f is upper bounded by the maximum value of the
ei and every coefficient of f can be seen as the evaluation of a small polynomial in
the αi, ai’s. In the following result we prove that the algorithm works in polynomial
time in the size of the output. Hence, a positive answer to Question 4.1.5 together
with Corollary 2.2.10 would directly yield that the algorithm works in polynomial
time (in the size of the input).

Proposition 4.1.6. Let f ∈ Z[x] be written as

f =

s∑
i=1

αi(x− ai)ei ,

with ai ∈ Z, αi ∈ Z \ {0}, ei ∈ N and assume that this decomposition satis-
fies the conditions of Theorem 4.1.4: the constants ai are all distinct, and ni+1 ≤
(3i/4)1/3 − 1 for all i ≥ 2.
Then, the algorithm in Theorem 4.1.4 works in polynomial time in the size of the
output.

4. Reconstruction algorithms 68

Proof. We write f =
∑d

j=0 fjx
j with fj ∈ Z and d = deg(f) ≤ max{e1, . . . , es}.

We have that fj =
∑

ei≥j αi
(
ei
j

)
aei−ji for all j ∈ {0, . . . , d}. Thus, the size of f

is polynomially bounded by the size of the output. To perform Step 1 we follow
Remark 3.1.2. We note that the coefficients of the polynomials appearing in the
SDE are polynomially bounded by the size of f . In Step 2 we have to compute the
integral roots of polynomials of degree t ≤ s with integral coefficients, which can
also be done in polynomial time (see, e.g., [56]). Step 4 can also be performed in
polynomial time by solving a linear system of equations (see, e.g., [65, Corollary
3.3a]). The result follows from the fact that the polynomial h defined in Step 5 can
be written as h =

∑
j∈J αj(x− aj)ej for some set J ⊂ {1, . . . , s} of at most s− 1

elements. After the first iteration, the algorithm is therefore called recursively on
polynomials h with an output size bounded by the output size of the original f .

4.2 Algorithms for repeated nodes

This section concerns the case where the nodes ai in the optimal expression of f in
Model 2 are not necessarily different. This case is more involved since we can no
longer apply Proposition 3.2.4. As a consequence, we don’t know if an analogue
of Corollary 4.1.1 holds for repeated nodes, even with a bigger lower bound on the
exponents. To overcome this difficulty, we consider two scenarios with additional
constraints, whose study naturally divides this section in two parts. In the first sub-
section we provide algorithms when all the exponents corresponding to a repeated
node appear in a small interval. The second one handles the case where the differ-
ence between two consecutive exponents corresponding to the same node is always
large.

4.2.1 Small intervals

The following scenario is motivated by Jordan’s Lemma (Lemma 2.2.16): for each
distinct node a, we allow several affine powers with this node but all the correspond-
ing exponents must lie in a “small” interval. In the first version of this work [31], we
studied the more constrained case where we have a “uniform” bound on the size of
each interval, but in the following we will rather impose an upper bound on the sum
of the degrees, which is more similar to Jordan’s Lemma hypothesis. More precisely,
we consider polynomials f having an expression in Model 2 of the following form:

Model 8.

f =

r∑
i=1

Qi(x) (x− ai)ei =

r∑
i=1

si∑
j=1

αi,j(x− ai)ei+εi,j (4.1)

with distinct ai ∈ F, αi,j ∈ F, Qi ∈ F[x], ei, εi,j ∈ N.
We will usually set δi =

def
deg(Qi) = maxj{εi,j}, and ∆ =

def ∑r
i=1 δi, and we will say

that Equation (4.1) is a ∆-decomposition of f . We will also set s =
def ∑r

i=1 si ≤ r+∆
so that if f admits a ∆-decomposition, then we have AffPowF(f) ≤ s.

4.2. Algorithms for repeated nodes 69

Notice that the results of Section 4.1 correspond to the case where ∆ = 0 and in-
deed most of them can be re-obtained as particular cases of the results of this sec-
tion. The definition of ∆-decompositions is also motivated by an analysis of the
proof of Proposition 3.1.3 in the case of repeated nodes: two affine powers (x− a)e

and (x − a)d with same node can be gathered to decrease the number of terms,
with an extra-cost of |d − e| in the left-hand side of the inequality. More precisely,
we prove the following refinement of Proposition 3.1.3 that is more suitable for ∆-
decompositions.

Proposition 4.2.1. Let F =
⋃r
i=1 {(x− ai)ei+εi,j : j ∈ [[1, si]]} with ai ∈ F, and

ei, εi,j ∈ N. Define δi =
def

max{ εi,j : j ∈ [[1, si]]} and ∆ =
def ∑r

i=1 δi. Then for any
choice of parameters (t, k, l) such that

r(l + k + 1) + ∆ < (k + 1)(l + 1) +

(
t

2

)
= |D(t, k, l)| (4.2)

there exists a SDE≤(t, k, l) satisfied simultaneously by all the polynomials fi,j(x) =
(x− ai)ei+εi,j for i = 1, . . . , s, j = 1, . . . , si.

Proof. Again, the existence of this common SDE is equivalent to the existence of a
common nonzero solution for a system of linear equations with (k+ 1)(l+ 1) +

(
t
2

)
unknowns, so we need to show that the rank of the corresponding matrix is smaller.
For all u ∈ [[1, r]], we will show that the subspace Vu has dimension less than l +

k+ 1 + δu, where Vu is the linear space spanned by the polynomials xjf (i)
u,v(x), with

(i, j) ∈ D(t, k, l), v ∈ [[1, su]]. Notice again that Vu is included in the subspace
spanned by the polynomials

{(x− au)eu+j ; −k ≤ j ≤ l + δu, eu + j ≥ 0}.

Hence, we have that dimVr ≤ l + k + 1 + δu and, since the rank is subadditive, the
whole system has rank ≤ r(l + k + 1) +

∑r
i=1 δi, proving the result.

Remark 4.2.2. If we have si = 1 for all i ∈ [[1, r]], then ∆ = 0 and we obtain the
same result as Proposition 3.1.3, proving that Proposition 4.2.1 is indeed a refine-
ment. Notice also that the following choice of parameters satisfies Equation (4.2):
t = k + 1, k = 2r − 1 and l = ∆/r ; which is again a generalization of the choice
of parameters of Section 4.1 (k = 2s− 1, l = 0).

In order to prove the correctness of our algorithms, we will need to generalize the
ingredients we used in Section 4.1 to Model 8. We begin by proving that Proposi-
tions 3.2.4 and 3.1.5 can be extended for ∆-decompositions.

Proposition 4.2.3. Let f ∈ F[x] be a polynomial that admits the following ∆-
decomposition:

f =

r∑
i=1

Qi(x) (x− ai)ei .

Whenever f satisfies a SDE(t, k, l), then for all ei ≥ k+(k+l)(r−1)+
(
r
2

)
+(∆−δi),

we have that Qi(x) (x− ai)ei satisfies the same SDE.

4. Reconstruction algorithms 70

Proof. We suppose that Q1(x)(x − a1)e1 does not satisfy this equation, and we are
going to prove that it implies that e1 is small. For every j ∈ [[1, r]], we denote by gj
and Rj the polynomials such that

gj =

k∑
i=0

Pi(x) (Qj(x)(x− aj)ej)(i) = Rj(x)(x− aj)dj

where dj := max{0, ej − k} for all j, and with degRj ≤ k + l + δj ; so that∑r
j=1 gj = 0 with g1 6= 0 by hypothesis. We consider a linearly independent sub-

family of g2, . . . , gr, namely {gj | j ∈ J} with J = {j1, . . . , jp} ⊆ {2, . . . , r}.
There exists (αi) ∈ Fp such that g1 =

∑p
i=1 αjgji and we can assume without loss

of generality that α1 6= 0. By properties of the determinant, we have

0 6= Wr(α1gj1 , gj2 , . . . , gjp) = Wr(g1, gj2 , . . . , gjp).

Following Proposition 2.2.4, we factor the Wronskians to obtain{
Wr(α1gj1 , gj2 , . . . , gjp) =

∏
dji≥p−1(x− aji)dji−(p−1) ·W1

Wr(g1, gj2 , . . . , gjp) = (x− a1)d1−(p−1) ·W2

with deg(W1) ≤
∑p

i=1[deg(Ri)+p−1]−
(
p
2

)
. Since a1 is distinct from aj1 , . . . , ajp ,

then (x− a1)d1−(p−1) must divide W1 and therefore we have

e1 − k − (p− 1) ≤ deg(W1) ≤ (k + l)p+
(
p
2

)
+ (∆− δ1).

Since p ≤ r− 1, we get that e1 ≤ k− 1 + (k+ l)(r− 1) +
(
r
2

)
+ (∆− δ1), proving

the result.

Proposition 4.2.4. Consider the following differential equation with polynomial co-
efficients:

k∑
i=0

Pi(x)f (i)(x) = 0.

Assume thatQ(x)(x−a)e satisfies this equation, with e ≥ k. Then we have Pk(a) =
0.

Proof. We take d ≥ e and R ∈ F[x] such that (x − a)dR(x) = (x − a)eQ(x) and
R(a) 6= 0. Since (x− a)dR(x) is a solution of the SDE, we have that:

k∑
i=0

Pi(x) ((x− a)dR(x))(i) = 0,

we deduce that there exists q ∈ F[x] such that Pk(x)(x − a)d−kh(x) = (x −
a)d−k+1q(x), from where we deduce that Pk(a) = 0.

4.2. Algorithms for repeated nodes 71

From Proposition 4.2.3 we shall now derive Corollary 4.2.5 and Theorem 4.2.6. Un-
der reasonable hypotheses, a ∆-decomposition of f is also the optimal decomposi-
tion of f in Model 2 and we have AffPowF(f) = s =

def ∑r
i=1 si. Since our algorithms

only work in the regime of uniqueness, the following results will provide sufficient
conditions to ensure this is the case.

Corollary 4.2.5. Let f ∈ F[x] be a polynomial with the following ∆-decomposition:

f =

r∑
i=1

Qi(x) (x− ai)ei ,

with ei ≥ 5
2r

2 + 2∆r for all i. Then,

a) the set of polynomials {Qi(x) (x− ai)ei | 1 ≤ i ≤ r} is linearly independent,

b) AffPowF(f) =
∑r

i=1 si (see 8 for the definition of the si’s) and the optimal
representation of f is unique,

c) f satisfies a SDE(2r − 1,∆/r),

d) if f satisfies the SDE(k, 2∆/(k + 1))

k∑
i=0

Pi(x)f (i)(x) = 0

and k ≤ 2r − 1; then Qi(x)(x − ai)ei also satisfies it and Pk(ai) = 0 for all
i ∈ [[1, r]], and

e) f does not satisfy any SDE(k, 2∆/(k + 1)) with k < r.

Proof. Notice that (b) implies (a). To prove (b), we observe that a ∆-decomposition
of f gives an expression in Model 2 with s =

∑r
i=1 si terms. Now assume that f

can also be expressed as f =
∑u

i=1 βi(x − bi)di with βi ∈ F and u ≤ s ≤ r + ∆.
By Theorem 2.2.5 we get that either both expressions are the same, or

2(r + ∆) ≥ u+ s ≥
√

2(min{e1, . . . , er}+ 1) >
√

5(r + ∆)2,

which is not possible. Thus AffPowF(f) = s and the optimal representation of f is
unique.
From Proposition 4.2.1 we get (c) (see Remark 4.2.2). Assume that f satisfies a
SDE(k, 2∆/(k + 1)) with k ≤ 2r − 1. For all i ∈ [[1, r]] we have that

ei ≥ 5
2r

2 + 2∆r > 5
2r

2 + (2∆− 3
2)r −∆

= 2r − 1 + (r − 1)(2r − 1 + 2∆) +
(
r
2

)
+ ∆

≥ k + (r − 1)
(
k + 2∆

k+1

)
+
(
r
2

)
+ ∆.

(4.3)

Hence, Proposition 4.2.3 yields thatQi(x)(x−ai)ei is also a solution of this equation
for all i, proving (d) by Proposition 4.2.4. Finally, notice that f cannot satisfy a
SDE(k, 2∆/(k + 1)) with k < r; otherwise by (a) and (d), the vector space of
solutions to this equation has dimension ≥ r, which contradicts Lemma 3.1.4.

4. Reconstruction algorithms 72

Theorem 4.2.6. Let f ∈ F[x] be a polynomial with the following ∆-decomposition:

f =

r∑
i=1

Qi(x) (x− ai)ei ,

with ei ≥ 5
2r

2 + 2∆r for all i. Then AffPowF(f) =
∑r

i=1 si. Moreover, there is a
polynomial time algorithm Build(f,∆) that receives f =

∑d
i=0 fix

i ∈ F[x] and
∆ as input and computes the r-tuples of nodes N(f) = (a1, . . . , ar), the values
s1, . . . , sr and the tuple of coefficients C(f) = (γi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ si), and
exponents E(f) = (ei+εi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ si). The algorithm Build(f,∆)
works as follows:

Step 1. Take u the minimum value such that f satisfies a SDE(u, 2∆/(u + 1)).
Compute explicitly one of these SDE, i.e., compute P0, . . . , Pu ∈ F[x] such
that

∑u
i=0 Pi(x)f (i)(x) = 0 and deg(Pi) ≤ i+ 2∆/(u+ 1).

Step 2. Compute R = {c1, . . . , cp} ⊆ F the set of roots of Pu. For each i ∈
{1, . . . , p}, consider the F-vector space Vi spanned by the solutions of the
SDE of the formR(x)(x−ci)e, with 5

8(u+1)2+∆(u+1) < e < d+ (u+∆)2

2
and R(x) a polynomial of degree ≤ ∆.

We take Bi = {gi,1, . . . , gi,li} a base of Vi, where gi,j = R(x)(x − ci)e.
with 5

8(u+ 1)2 + ∆(u+ 1) < e < d+ (u+∆)2

2 and R(x) a polynomial of
degree ≤ ∆. We set B := ∪pi=1Bi.

Step 3. Express f as a linear combination of the elements of B, namely, f =∑p
i=1

∑li
j=1 λi,j gi,j with λi,j ∈ F.

Step 4. Denote fi =
∑li

j=1 λi,j gi,j , for all i ∈ {1, . . . , p}. Write fi in the shift ci,
i.e., fi =

∑ri
j=1 βi,j(x− ci)µi,j with βi,j ∈ F \ {0}.

Step 5. Output N(f) = (c1, . . . , cp), r1, . . . , rp ∈ N, C(f) = (βi,j | 1 ≤ i ≤
p, 1 ≤ j ≤ ri) and E(f) = (µi,j | 1 ≤ i ≤ p, 1 ≤ j ≤ ri).

Proof. We observe that f satisfies the hypotheses of Corollary 4.2.5; then, by Corol-
lary 4.2.5.(b), we have that AffPowF(f) =

∑r
i=1 si and that there is a unique optimal

expression of f in the AffPow model.
Let us prove the correctness of the algorithm Build(f,∆). By Corollary 4.2.5.(c)
and (e), the value u computed in Step 1 satisfies that r ≤ u ≤ 2r − 1. By Corol-
lary 4.2.5.(d), for all i ∈ [[1, r]] we have that

• ai ∈ R, and

• Qi(x) (x− ai)ei is a solution of the SDE computed in Step 1

Moreover, the input polynomial f can be expressed as a linear combination of the
elements of B, because:

4.2. Algorithms for repeated nodes 73

• f can be written as a combination of Qi(x) (x− ai)ei .

• Since AffPowF(f) =
∑r

i=1 si ≤ r + ∆ ≤ u + ∆, using Corollary 2.2.10 we
have max{ei} < d+ (u+∆)2

2 . On the other hand, we have ei ≥ 5
2r

2 + 2∆r ≥
5
2(u+1

2)2 + 2∆u+1
2 . This implies that Qi(x) (x− ai)ei belongs to Vi and thus

can be written as a linear combination of the elements of Bi.

So, let us assume (we will prove it later) that all the elements of B are linearly inde-
pendent. Then, in Step 3 there is a unique way of writing of f as a linear combination
of the elements of B. Finally, it suffices to write fi = Ri(x)(x− ci)di and consider
the Taylor expansion of Ri(x) with respect to ci for every i ∈ [[1, p]] as in Step 4 to
get the desired sets of nodes, coefficients and exponents.
To prove the correctness of the algorithm, it only remains to prove that the elements
of B are linearly independent. To prove this we will follow a similar argument to
that of Theorem 2.2.5. Assume that the elements of B are not linearly independent,
and take W = {Pi(x)(x − bi)di | 1 ≤ i ≤ w} ⊂ B a minimal F-linearly dependent
set: there exist λ2, . . . , λw ∈ F∗ such that

f1(x) =

w∑
i=2

λifi(x)

with fi(x) := Pi(x)(x−bi)di . By Lemma 3.1.4, the size of this set isw ≤ u+1 ≤ 2r.
Moreover, since the set Bi is linearly independent for all i, we can assume without
loss of generality that b1 6= b2. By properties of the determinant:

0 6= Wr(f1, f3, . . . , fw) = Wr(λ2f2, f3, . . . , fw)

We define Z = {i : 3 ≤ i ≤ w, di ≥ w} and, following Proposition 2.2.4, we
factorise the Wronskians:{

Wr(f1, f3, . . . , fw) = (x− b1)d1−(w−1)
∏
i∈Z(x− bi) di−(w−1) ·W1

Wr(λ2f2, f3, . . . , fw) = (x− b2)d2−(w−1)
∏
i∈Z(x− bi) di−(w−1) ·W2

where W1,W2 ∈ F[x] are the remaining determinants whose degrees are upper
bounded by (w − 1)∆ +

(
w−1

2

)
according to Proposition 2.2.4. Since b1 6= b2,

then (x− b1)d1−(w−1) must divide W2 and therefore we should have

d1 − (w − 1) ≤ (w − 1)(w − 2)

2
+ (w − 1)∆

By hypothesis, we have d1 ≥ 5
8(u + 1)2 + ∆(u + 1) and since w ≤ u + 1, we

therefore have

5

8
(u+ 1)2 + ∆(u+ 1) ≤ u(u− 1)

2
+ ∆u+ u,

a contradiction.

4. Reconstruction algorithms 74

Remark 4.2.7. The algorithm Build(f,∆) described above can be slightly modified
to not receive ∆ as input as long as f satisfies the hypotheses of Theorem 4.2.6 for
some r,∆ ∈ N. That is, we only need to assume that there exists a ∆-decomposition
of f with all the exponents greater than 5

2r
2 + 2∆r. Indeed, it suffices to start with

∆ = 0 and execute Build(f,∆) with increasing values of ∆ until the reconstruction
of f succeeds. The correctness of this algorithm is justified by Corollary 4.2.5.(b). In
fact, once we find ∆ such that the reconstruction is possible, we obtain the optimal
expression of f in the Affine Power model.

4.2.2 Big gaps

This subsection deals with polynomials f such that whenever the terms (x − a)e

and (x− a)d appear in the optimal expression of f in the Affine Power model, then
the difference between d and e is “large”. Similarly to Section 4.2.1, we begin with
the proof of an extension of Proposition 3.2.4 for this specific scenario. The desired
algorithm then follows as a consequence.

Proposition 4.2.8. Let f ∈ F[x] be written as

f = (x− a)mg(x) +

s∑
i=1

αi(x− a)ei +

p∑
i=1

βi(x− ai)di ,

with g ∈ F[x], a, ai, αi, βi ∈ F, m, ei, di ∈ N and ai 6= a for all i. We set e :=
max{e1, . . . , es} if s ≥ 1 or e := −1 if s = 0. Whenever f satisfies a SDE(k, l) with
m− e > (k + l)(p+ 1) +

(
p+1

2

)
, then (x− a)mg satisfies the same SDE.

Proof. Assume that f satisfies a SDE(k, l)

k∑
i=1

Pi(x)f (i)(x) = 0

By contradiction, we assume that (x− a)mg(x) does not satisfy this equation. Thus,
there exists T (x) ∈ F[x] nonzero such that

∑k
i=0 Pi(x) ((x− a)mg)(i) = T (x)(x−

a)m−k. For every j ∈ [[1, s]] and every j ∈ [[1, p]], we denote by hj and gj the
polynomials such that

hj =

k∑
i=0

Pi(x) ((x− a)ej)(i) and gj =

k∑
i=0

Pi(x) ((x− aj)dj)(i).

We observe that deg(hj) ≤ ej + l ≤ e + l and deg(gj) ≤ dj + l. Since f satisfies
the already mentioned SDE, we get that

T (x)(x− a)m−k =

s∑
i=1

αihi +

p∑
i=1

βigi.

4.2. Algorithms for repeated nodes 75

If we differentiate (e+ l+ 1) times on both sides of the previous equation, we obtain
an equality of the following form

U(x)(x− a)m−k−e−l−1 =

p∑
i=1

βig
(e+l+1)
i =

p∑
i=1

Ui(x)(x− ai)ri

with ri := max{0, di− k− e− l− 1} and deg(Ui(x)) ≤ k+ l. If we take a linearly
independent family {g(e+l+1)

i : i ∈ I} ⊆ {g(e+l+1)
i : i ∈ [[1, p]]}, then factorize

the corresponding Wronskians following Proposition 2.2.4 as before, we obtain the
following inequality:

m− k − e− l − 1− (p− 1) ≤ (k + l)p+ (p− 1)p−
(
p

2

)
,

which yields that

m− e ≤ (k + l)(p+ 1) +

(
p+ 1

2

)
,

a contradiction.

The following result is a generalization of Proposition 3.2.4 where we allow repeated
nodes provided their corresponding exponents are far enough.

Corollary 4.2.9. Let f ∈ F[x] be written as

f =

s∑
i=1

αi(x− a)ei +

p∑
i=1

βi(x− ai)di ,

with a, ai, αi, βi ∈ F, m, ei, di ∈ N, ai 6= a for all i and es > · · · > e1 > e0 := −1.
Assume that f satisfies a SDE(k, l) and that ei+1 − ei > (k + l)(p+ 1) +

(
p+1

2

)
for

all i, then (x− a)ei satisfies the same SDE for all i ∈ {1, . . . , s}.

Proof. Assume that there exists an ei such that (x−a)ei does not satisfy the SDE(k, l)
and we take e the maximum of such ei. Then, we can write f(x) = g(x)(x− a)e +∑

ei<e
αi(x−a)ei +

∑p
i=1 βi(x−ai)di . By means of Proposition 4.2.8 we have that

g(x)(x− a)e is a solution of the same SDE. Moreover, for all ei > e, then (x− a)ei

is also a solution of the SDE. But this is not possible since the set of solutions is a
vector space, and, hence, (x− a)e would also be a solution to the same SDE.

The proof of the following Corollary is similar to that of Corollary 4.1.1 but makes
use of Corollary 4.2.9 instead of Proposition 3.2.4.

Corollary 4.2.10. Let f ∈ F[x] be a polynomial that can be written as

f =

s∑
i=1

αi(x− ai)ei

with ai, αi ∈ F, ei > 5s2/2 and, whenever ai = aj for some 1 ≤ i < j ≤ s, then
|ei − ej | > 5s2/2.

4. Reconstruction algorithms 76

a) {(x− ai)ei | 1 ≤ i ≤ s} are linearly independent,

b) If f =
∑t

i=1 βi(x − bi)
di with t ≤ s, then t = s and we have the equal-

ity {(αi, ai, ei) | 1 ≤ i ≤ s} = {(βi, bi, di) | 1 ≤ i ≤ s}; in particular,
AffPowF(f) = s,

c) f satisfies a SDE(2s− 1, 0),

d) if f satisfies a SDE(k, 0) with k ≤ 2s − 1, then (x − ai)ei also satisfies it for
all i ∈ {1, . . . , s}, and

e) f does not satisfy any SDE(k, 0) with k < s.

From this corollary we get the following result whose proof is similar to that of
Theorem 4.1.2.

Theorem 4.2.11 (Big gaps). Let f ∈ F[x] be a polynomial that can be written as

f =

s∑
i=1

αi(x− ai)ei

with ai, αi ∈ F, ei > 5s2/2 and whenever ai = aj for some 1 ≤ i < j ≤ s, then
|ei − ej | > 5s2/2. Then, AffPowF(f) = s. Moreover, there is a polynomial time
algorithm Build(f) that receives f =

∑d
i=0 fix

i ∈ F[x] as input and computes
the s-tuples of nodes N(f) = (a1, . . . , as), coefficients C(f) = (α1, . . . , αs) and
exponents E(f) = (e1, . . . , es). The algorithm Build(f) works as follows:

Step 1. Take r the minimum value such that f satisfies a SDE(r, 0) and compute
explicitly one of these SDE.

Step 2. Compute B = {(x − bi)di | 1 ≤ i ≤ t}, the set of all the solutions of the
SDE of the form (x− b)d with (r + 1)2/2 ≤ e ≤ deg(f) + (r2/2).

Step 3. Determine α1, . . . , αr such that f =
∑r

i=1 αi(x− bi)di

Step 4. Output the sets C(f) = (α1, . . . , αr), N(f) = (b1, . . . , br) and E(f) =
(d1, . . . , dr).

5
Multivariate reconstruction algorithms

5. Multivariate reconstruction algorithms 78

Let F[X] = F[x1, . . . , xn] be a ring of polynomials in n variables over a character-
istic 0 field. This chapter concerns Model 1 (the multivariate analogue of Model 2),
i.e., we study expressions of a polynomial f ∈ F[X] as

f =

s∑
i=1

αi`
ei
i , (5.1)

where ei ∈ N, αi ∈ F and `i is a (non constant) affine form for all i. Whenever F is
an algebraically closed field, we may assume without loss of generality that all the
αi’s equal 1. For the sake of conciseness, we assume this is the case. However, one
can restate all the results in this chapter for a non algebraically closed field by just
adding the αi’s.
The main goal of this chapter is to design algorithms that reconstruct the optimal
representation of polynomials in this model, i.e., algorithms that receive as input
f ∈ F[X] and compute the exact value s = AffPowF(f) and a set of triplets of
coefficients, affine forms and exponents {(αi, `i, ei) | 1 ≤ i ≤ s} ⊆ F × F[X] ×
N such that f =

∑s
i=1 αi`

ei
i . In the following, we devise algorithms for finding

optimal representations of a polynomial f ∈ F[X] in Model 1, provided the value of
AffPow(f) is small compared to the number of variables or to the degree of f .
Let us denote by EssVar(f) the number of essential variables of f . This is roughly
speaking the number of variables on which f “truly depends” up to a linear change
of variables [18, 43]. A first easy remark is that the value AffPow(f) is at least equal
to EssVar(f). In Section 5.2 we investigate when this is an equality and provide
an algorithm that decides whether AffPow(f) = EssVar(f) and, if so, provides an
optimal expression in the model.
In Section 5.3, we generalize the previous results to characterize by means of an
algorithm when a polynomial f ∈ F[X] can be written as a sum of univariates after
an affine change of coordinates. It is plausible that when this is a case, an optimal
expression of f can be built by putting together the optimal expressions of all the
univariate polynomials involved. We believe this is true and we give a proof for
n = 2. The general case (n ≥ 3) is left as an open problem.
In Section 5.4, we focus on the reconstruction problem when AffPow(f) ≤

(
n+1

2

)
.

In the main result of this section, we provide a randomized algorithm that works
when, in the optimal decomposition, all the e′is are ≥ 5 and the coefficients of the
`i’s are taken uniformly at random from a finite set. In particular, this provides a
new algorithm for computing Waring decompositions of “generic polynomials with
Waring(f) ≤

(
n+1

2

)
". For comparison, note that the algorithm from [43] can only

find Waring decompositions up to size n, and that the Waring decomposition algo-
rithm from [44] is only interesting when d is relatively large compared to s (see
Theorem 5 and Remark 6 in that paper). Our main tool in this section is a “4th order
Hessian” inspired from the ordinary Hessian determinant used in [43].
Finally, in Section 5.5 we propose an algorithm that performs random univariate
projections, calls our univariate algorithms for sums of affine powers from Chapter 4
and reconstructs f from this univariate information.

5.1. Preliminaries 79

5.1 Preliminaries

5.1.1 Algorithmic preliminaries

In the rest of this chapter, we will design algorithms that work in the “blackbox”
setting: they have access to the input polynomial only through an oracle so that for
any point a ∈ Fn, we can obtain f(a) in a single step by querying this oracle. This
representation of an input polynomial is in some sense the weakest representation for
which one can hope to have efficient algorithms and it subsumes all other represen-
tations such as arithmetic circuits. This very general model is standard for the study
of many problems about multivariate polynomials such as, e.g., factorization [40],
sparse interpolation [6, 59], sparsest shift [60] or Waring decomposition [41]. In this
section, we describe some useful blackbox subroutines that our algorithms will use.

Change of basis

In the following, given a polynomial f(X) ∈ F[X], we will often want to consider
h = f(A · X + b) with A ∈ Mn(F) and b ∈ Fn. It is straightforward to obtain a
blackbox access to h given a blackbox access to f .

Solving linear systems

Using evaluation at random points, one could prove the following proposition using
similar ideas to [44, Lemma 14]

Proposition 5.1.1. Let f, h1, . . . , hp ∈ F[X] be polynomials. Given blackbox ac-
cesses to f, h1, . . . , hp, we can test if f can be written as a linear combination of the
hi’s, and output one such combination if it exists, in randomized polynomial time.

Polynomial Identity Testing

Given a blackbox access to a polynomial f ∈ F[X] of degree d, the Zippel-Schwartz
lemma [73, 66] ensures that evaluating f at random points yields a randomized poly-
nomial time algorithm that tests whether f is equal to the zero polynomial.

Obtaining the derivatives

Proposition 5.1.2. [44, Proposition 18] Let f(X) ∈ F[X] be an n-variate polyno-
mial of degree d. Given blackbox access to f , in time poly(dn), we obtain blackbox
access to any derivative ∂f

∂x of f .

Obtaining the homogeneous components

For a polynomial f(X) ∈ F[X] we will denote by [f]k its homogeneous component
of degree k. We will also sometimes use the notation [f]≥k defined as [f]≥k :=∑

i≥k [f]i.

5. Multivariate reconstruction algorithms 80

Proposition 5.1.3. [44, Proposition 19] Let f(X) =
∑d

i=0[f]i(X) be a polynomial
of degree d. Given blackbox access to f and a point a ∈ Fn, we can compute [f]i(a)
for each i ∈ [[0, d]] in polynomial time.

Factorization

To factorize a polynomial, we will use the randomized polynomial time algorithm
described in [40]: given a blackbox access to f(X) =

∏r
i=1 hi(X)ei , it outputs

the ei’s and yields a blackbox access to the hi’s. This algorithm needs an effective
polynomial factorization algorithm for F[x] in order to work, so we will assume to
have such an algorithm throughout this chapter. In the following, given a polynomial
f , we will often need to reconstruct the coefficients of a factor h of degree 1 of f .
This can be done using an additional randomized step in poly(n) time: we evaluate
h in n+ 1 random points, interpolate the coefficients and then evaluate in one more
point to ensure with high probability that the other coefficients (of higher degree
monomials) are zero.

5.1.2 Essential variables

We first clarify what we mean by “small in term of n” because a polynomial f with
n variables x1, . . . , xn can also be seen as a polynomial with n + 1 variables even
though it does not depend on the last one. We say that a polynomial f(X) ∈ F[X]
depends on a variable if it appears in at least one of the monomials of f(X). The
number of essential variables of a polynomial f(X), denoted by EssVar(f), is the
least integer t ∈ [[0, n]] such that there exists an invertible linear transformation A ∈
GLn(F) such that f(A·X) depends on t variables. The number of essential variables
of a polynomial is given by the following result due to Carlini [18, Proposition 1].

Proposition 5.1.4. The number of essential variables of f(X) ∈ F[X] equals the
dimension of the F-vector space spanned by the first partial derivatives of f(X). In
other words,

EssVar(f) = dimF

〈
∂f

∂xi

∣∣∣ 1 ≤ i ≤ n〉 .
A first easy observation is that if f(X) =

∑s
i=1 `

ei
i with `i affine forms and ei ∈

N; then
〈
∂f
∂xi
| 1 ≤ i ≤ n

〉
⊆
〈
` ei−1
i | 1 ≤ i ≤ s

〉
and, hence, EssVar(f) ≤ s. In

particular, EssVar(f) ≤ AffPow(f).
A polynomial f ∈ F[x1, . . . , xn] is said regular if it has n essential variables. From
now on we always assume that the input polynomial f ∈ F[x1, . . . , xn] is regular.
This can be achieved through a preliminary step consisting of eliminating the redun-
dant variables using a randomized polynomial time algorithm (see, e.g., [44, Lemma
17] and [43, Theorem 4.1]).

5.2. From reconstruction to polynomial equivalence 81

5.2 From reconstruction to polynomial equivalence

Let us first consider f ∈ F[X] a regular polynomial such that AffPow(f) = n, i.e.
there exists a decomposition f(X) =

∑n
i=1 `

ei
i . We construct the matrix A from the

linear parts of the `i’s and the vector b from the constant terms. Since f is regular,
we have that A ∈ GLn(F). This implies that f(A−1X − A−1b) =

∑n
i=1 x

ei
i and

motivates the following definitions.

Definition 5.2.1. [44] We will say that two n-variate polynomials f and g are equiv-
alent, denoted f ∼ g, if there exists an invertible linear transformation A ∈ GLn(F)
such that f(X) = g(A ·X). Moreover, we will say that f and g are affine equivalent,
denoted f ≡ g if there exists a vector b ∈ Fn such that f(X+b) ∼ g, or equivalently
if f = g(A ·X + c) with A ∈ GLn(F), c ∈ Fn.

With these notations, for a regular polynomial f , we have that AffPow(f) = n if and
only if f ≡ g where g =

∑n
i=1 x

ei
i for some (ei) ∈ Nn. This restates the problem of

checking whether AffPow(f) = n into a problem of testing affine equivalence. The
affine equivalence problem was already investigated in [44]. One major difference of
our situation with respect to [44] is that instead of testing affine equivalence to one
target polynomial g, we test affine equivalence to a family of polynomials. Another
difference is that its author used [44, Theorem 28] as a preliminary step to reduce
the affine equivalence problem to an equivalence problem, which cannot be used
here since the polynomials we consider are not homogeneous in general. Yet, the
techniques used to solve some special cases of the equivalence problem in [43] have
been a source of inspiration to design the algorithms of this chapter.

5.2.1 Algorithm overview

Let us fix some notations: unless stated otherwise, f will always denote the input
polynomial and g one target polynomial. Whenever f ≡ g, we will usually denote by
A and b the matrices such that f(X) = g(A ·X + b), with A ∈ GLn(F). Moreover,
we will define the associated affine and linear forms: `i =

∑n
j=1Ai,jxj + bi and

[`i] = `i − bi. The main tool of the algorithms is the Hessian Matrix, whose entries
are the second order derivatives of the polynomial.

Definition 5.2.2. For a polynomial f ∈ F[X], the Hessian Matrix Hf (X) is defined
as follows.

Hf (X) =


∂2f

∂x1∂x1
. . . ∂2f

∂x1∂xn
...

. . .
...

∂2f
∂xn∂x1

. . . ∂2f
∂xn∂xn

 ∈Mn(F[X]).

In the following, the most useful property of the Hessian matrix is how affine trans-
formations change the matrix. This lemma is an affine analogue of [43, Lemma 5.1]
and can be proved similarly.

5. Multivariate reconstruction algorithms 82

Lemma 5.2.3. Let g ∈ F[X] be an n-variate polynomial. Let A ∈ Mn(F) be a
linear transformation, and let b ∈ Fn. Let f(X) = g(A ·X + b). Then,

Hf (X) = AT ·Hg(A ·X + b) ·A.

In particular,
det(Hf (X)) = det(A)2 det(Hg(A ·X + b)).

Proof. By the chain rule for differentiation we have for all 1 ≤ i ≤ n:

∂f

∂xi
=

n∑
k=1

aki
∂g

∂xk
(A ·X + b).

Therefore, for second-order derivatives, we can write

∂2f

∂xi · ∂xj
=

n∑
k=1

aki

(
n∑
`=1

a`j
∂2g

∂xk · ∂x`
(A ·X + b)

)

=

n∑
k=1

n∑
`=1

aki
∂2g

∂xk · ∂x`
(A ·X + b) a`j .

Putting these equations into matrix form immediately gives us the lemma.

In particular when f ≡ g, the matrix A is invertible and hence the determinant of the
Hessian matrix of f can be understood by studying an affine transformation of the
determinant of the Hessian matrix of g. For instance, when g =

∑n
i=1 x

ei
i , observe

that
∂2g

∂xi · ∂xj
=

{
0 if i 6= j,

ei(ei − 1)xei−2
i if i = j

The matrix Hg is therefore diagonal and we have

det(Hg(X)) =

n∏
i=1

ei(ei − 1)xei−2
i .

In particular, Lemma 5.2.3 implies that

Lemma 5.2.4. Let f be a regular polynomial such that f(X) =
∑n

i=1 `i(X)ei where
`1(X), . . . , `n(X) are affine forms and ei ≥ 2. Then we have

det(Hf (X)) = c ·
n∏
i=1

`i(X)ei−2

where c ∈ F is a nonzero constant.

5.2. From reconstruction to polynomial equivalence 83

This result yields a blueprint for an algorithm to find a decomposition of f when
AffPow(f) = n: factorize det(Hf (X)) to obtain candidates for the affine forms and
associated exponents, then try to express f as a linear combination of these affine
powers. However, if AffPowF(f) = n and one ei is ≤ 1 then det(Hf (x)) = 0 ; and
if some of the ei’s are equal to 2 then `i is not a factor of det(Hf (X)). This makes
this idea fail on such scenarios. Therefore, in order to have an algorithm that decides
whether AffPowF(f) = EssVar(f), one also needs to handle the case when some of
the (ei)’s are smaller than 3. In the next section, we start tackling this problem by
studying the case where f is a quadratic polynomial.

5.2.2 Quadratic polynomials

The goal of this subsection is to describe how to obtain an optimal expression in the
Affine Powers model for every polynomial of degree 2. In particular, we are going
to generalize the following classical result concerning homogeneous polynomials of
degree 2.

Proposition 5.2.5. Let F be an algebraically closed field of characteristic different
from 2 and let f, g ∈ F[X] be homogeneous quadratic polynomials. Then,

f ∼ g ⇐⇒ EssVar(f) = EssVar(g).

In particular, from this result we deduce that if f is a quadratic homogeneous poly-
nomial, then f ∼

∑t
i=1 x

2
i with t = EssVar(f). Thus, for every quadratic homoge-

neous polynomial we have AffPow(f) = EssVar(f) = n. Now we can proceed with
the classification of degree 2 polynomials.

Theorem 5.2.6. Let F be an algebraically closed field of characteristic different from
2 and let f ∈ F[X] be a polynomial of degree at most 2. Then, there exists a unique
r ∈ [[0, n]] such that

i) f ≡
∑r

i=1 x
2
i ,

ii) f ≡
∑r

i=1 x
2
i + c with c ∈ F \ {0}, or

iii) f ≡
∑r−1

i=1 x
2
i + xr.

Moreover, only one of these three scenarios can hold and r = EssVar(f).

Proof. After a linear change of coordinates we may assume that f has n essential
variables. We begin by proposing a greedy algorithm that shows how to write any
polynomial f of degree at most 2 as either

(a)
∑s

i=1 `
2
i ,

(b)
∑s

i=1 `
2
i + c with c ∈ F \ {0}, or

(c)
∑s−1

i=1 `
2
i + `s,

5. Multivariate reconstruction algorithms 84

for some s ≤ n, where `i = li + ci are affine forms whose linear parts l1, . . . , ls are
linearly independent, and c1, . . . , cs ∈ F.
We proceed by induction on the number of variables of f . If f has 0 or 1 variables
or f has degree one, it is trivial to write f in one of the desired forms. Assume
now that f has n ≥ 2 variables and that f has degree 2. If there exists a variable
x such that the monomial x2 appears in f , then after multiplying f by a constant if
necessary, we write f = x2 + xt+ g, where t is a linear form in n− 1 variables and
g is a polynomial of degree ≤ 2 in n − 1 variables. Thus setting `1 = x + (t/2),
we have that f = ` 2

1 + g − (t2/4) and proceeding by induction on g − (t2/4) we
are done. If for every variable there is no monomial of the form x2 in f , then we
take two variables x, y such that the monomial xy appears in f . After multiplying
f by a constant if necessary, we have that f = xy + xt1 + yt2 + g, where t1, t2
are linear forms in n − 2 variables and g is a polynomial of degree ≤ 2 in n − 2
variables. So we set `1 = (x + y + t1 + t2)/2 and `2 = (x − y − t1 + t2)/2 and
we have that f = ` 2

1 − ` 2
2 + g − t1t2 and we proceed by induction on g − t1t2. We

also observe that by construction the linear parts of the affine forms `1, . . . , `s we
obtain are linearly independent. If f has n essential variables, then the integer s in
the above construction has to be equal to n.
To prove now that these scenario are disjoint we assume that f is regular and, thus,
s = n. First, if f can be written as in (a) or (b), then det(Hf (X)) 6= 0 whereas if
f can be written as in (c), then det(Hf (X)) = 0. As a consequence, the case (c) is
disjoint from the cases (a) and (b). For any polynomial g, we denote by gh ∈ F[X, z]
the homogenized polynomial of g with respect to a new variable z. If f can be
written as in (a), then fh =

∑n
i=1(`hi) 2, whereas if f can be written as in (b), then∑n−1

i=1 `
2
i +cz2. By Proposition 5.2.5, in (a) we have that EssVar(fh) = nwhereas in

(b) we have that EssVar(fh) = n+ 1; thus both cannot happen at the same time.

As a consequence of this result we have the following one, which provides an effec-
tive method to compute the exact value of AffPow(f) for any degree 2 polynomial
f . In particular, it implies that a quadratic polynomial always has an optimal decom-
position in the AffPow model with exponents at most 2, showing that cancellations
don’t help for degree 2.

Corollary 5.2.7. Let f ∈ F[X] be a regular polynomial of degree at most 2. Then,
AffPow(f) = n+ 1 if we have f ≡

∑n
i=1 x

2
i + c; and AffPow(f) = n otherwise.

Proof. If f ≡
∑n

i=1 x
2
i or f ≡

∑n−1
i=1 x

2
i + xn, then AffPow(f) ≤ n and equality

holds because AffPow(f) ≥ EssVar(f) = n.
By Theorem 5.2.6, it only remains to consider the case when f ≡

∑n
i=1 x

2
i + c

with c ∈ F∗. In this case we clearly have that AffPow(f) ≤ n + 1, hence to prove
equality we just need to prove that AffPow(f) 6= n. Assume for contradiction that
f =

∑n
i=1 `

ei
i for some affine forms `i and some ei ∈ N. Since we have neither

f ≡
∑n

i=1 x
2
i nor f ≡

∑n−1
i=1 x

2
i + xn, there exists some exponent ei ≥ 3. By

Lemma 5.2.4, we have that det(Hf) is a non-constant polynomial or zero, a contra-
diction.

5.2. From reconstruction to polynomial equivalence 85

5.2.3 Linear terms in an optimal expression

We now investigate the case where f ≡ g with g =
∑n

i=1 x
ei
i and min(ei) = 1. The

algorithm presented in Section 5.2.1 fails on this scenario since det(Hg) = 0 and
therefore det(Hf) = 0 by Lemma 5.2.3. Notice first that ei = 1 can only hold for
one i ∈ [[1, n]] since otherwise EssVar(f) = EssVar(g) < n. Up to renaming the
variables, we can therefore write g as g =

∑n−1
i=1 x

ei
i + xn. Notice that the Hessian

of g can be written as

Hg(X) =

(
Hh(X) 0

0 0

)
with h = g − xn.

Let A ∈ GLn(F) and b ∈ Fn be such that f(X) = g(A ·X + b) and decompose A

along its last line A =

(
B
l

)
, so that the equality of Lemma 5.2.3 can be rewritten as

Hf (X) = (BT lT) ·
(
Hh(A ·X + b) 0

0 0

)
·
(
B
l

)
If we denote by [Hf]k,k the submatrix of Hf obtained by deleting the kth row and
the kth column of Hf , and by [B]k the square submatrix of B obtained by deleting
the kth column, then we have:

[Hf (X)]k,k = ([B]k)
T ·Hh(A ·X + b) · [B]k

Since A ∈ GLn(F), we have rankB = n − 1 and therefore there exists k ∈ [[1, n]]
such that [B]k ∈ GLn−1(F). In particular, for such a k, we have

det([Hf (X)]k,k) = (det([B]k))
2 · det(Hh(A ·X + b))

Finally, since det(Hh(X)) =
∏n−1
i=1 ei(ei − 1)xei−2

i , we get the following result.

Lemma 5.2.8. Let f be a regular polynomial such that f(X) =
∑n−1

i=1 `i(X)ei +
`n(X) where `1, . . . , `n are affine forms. Then there exists an integer k ∈ [[1, n]] and
such that

det([Hf (X)]k,k) = c ·
n−1∏
i=1

`i(X)ei−2

where c ∈ F is a nonzero constant.

5.2.4 Wrapping up : the algorithm

The goal of this subsection is to design a polynomial-time randomized algorithm that
receives as input a blackbox access to a polynomial f ∈ F[X], and decides whether
AffPowF(f) = EssVar(f) = n and, in such a case, provides an optimal expression
of f in Model 1. Before presenting the algorithm, we are going to prove some results
about uniqueness that follow from previous sections.

5. Multivariate reconstruction algorithms 86

Let s ∈ N∗ and denote by En := {e = (e1, . . . , en) ∈ (N∗)n | e1 ≥ · · · ≥ en} the
set of non increasing integer sequences of size n. For each sequence e ∈ En, we
consider the associated polynomial pe :=

∑n
i=1 x

ei
i . It is easy to check by means of

Proposition 5.1.4 that pe has n essential variables if and only if en−1 > 1. If e ∈ En
with en−1 > 1 and f ≡ pe, then it is clear that AffPowF(f) = n.

Proposition 5.2.9. Let f ∈ F[X] be a regular polynomial. If AffPowF(f) = n, then
there exists a unique e = (e1, . . . , en) ∈ En with en−1 > 1 such that f ≡ pe.

Proof. If AffPowF(f) = n, then f =
∑n

i=1 `
ei
i for some e = (e1, . . . , en) ∈ En.

Since f has n essential variables, then en−1 > 1 and `1, . . . , `n are linearly inde-
pendent. Hence, f ≡ pe. To conclude the result it suffices to prove that if pe ≡ pd
for some d, e ∈ En, then d = e. Assume that there exist linearly independent linear
forms `1, . . . , `n such that pe =

∑n
i=1 `

di
i . First we observe that det(Hpe) = 0 if and

only if en = 1 and, by Lemma 5.2.4, that det(H∑s
i=1 `

di
i

) = 0 if and only if dn = 1.
Hence, en = 1 if and only if dn = 1.
Assume first that en > 1. By Lemma 5.2.4 we have that

det(Hpe) = c

n∏
i=1

x ei−2
i = b

n∏
i=1

` di−2
i ,

with b, c ∈ F nonzero constants. This implies in particular e = d and that whenever
ei ≥ 3 there exists `j proportional with xi such that dj = ei.
If es = 1 we obtain the same result using Lemma 5.2.8 instead of Lemma 5.2.4.

It is easy to obtain examples of degree 2 polynomials such that AffPowF(f) = n and
the optimal expression in Model 1 is not essentially unique (see Proposition 5.2.5).
However, as we have seen in Proposition 5.2.9, when AffPowF(f) = n every optimal
expression in the Affine Powers model uses the same sequence of exponents. In the
following result we are going to prove that the terms corresponding to exponents
greater or equal to 3 are also essentially unique.

Proposition 5.2.10. Let f ∈ F[X] be a regular polynomial. If

f =

n∑
i=1

αi`
ei
i =

n∑
i=1

βit
di
i

with `i, ti linear forms and e = (e1, . . . , en), d = (d1, . . . , dn) ∈ En, then, ei = di
for all i, and there exists a permutation σ ∈ Sn such that αi` eii = βσ(i)t

dσ(i)
σ(i) if

ei ≥ 3.

Proof. By Proposition 5.2.9 we have that ei = di for all i. Assume first that es > 1.
By Lemma 5.2.4 we have that det(Hf) = c

∏
ei≥3 `

ei−2
i = b

∏
ei≥3 t

ei−2
i and the

result follows. If en = 1 we obtain the same result by using Lemma 5.2.8 instead of
Lemma 5.2.4.

5.3. Repeated affine forms 87

Theorem 5.2.11. There exists a polynomial-time randomized algorithm Build1
that receives as input a blackbox access to a regular polynomial f ∈ F[X] and finds
an optimal decomposition of f in the Affine Powers model if AffPow(f) = n, or
rejects otherwise.

Proof. We compute a blackbox for D(X) = det(Hg(X)) and distinguish two cases
depending on whether it vanishes or not.
Case D 6= 0: if D does not split into degree 1 factors, we reject. Otherwise we
write D = c ·

∏t
i=1 `

mi

i with c ∈ F∗ and `1, . . . , `t affine forms. If t > n, we
reject. Consider the t × s matrix A whose rows are the [`i]’s, and the matrix b
whose entries are the constant terms. If the system A ·X = −b has no solution, we
reject. Otherwise, let X0 be one solution, and consider h(X) = g(X + X0) so that
(`i(X −X0))mi+2 = [`i]

mi+2 is a homogeneous polynomial of degree mi + 2 ≥ 3.
By Lemma 5.2.4, these are the only terms of degree ≥ 3 in an expression of f
as a combination of n affine powers. Therefore, if [h]≥3 6∈

〈
[`i]

mi+2
〉
, then we

reject. Otherwise, let (αi) be such that h =
∑t

i=1 αi[`i]
mi+2 + [h]≤2. We express

[h]≤2 =
∑r

i=1 βit
ei
i as in Theorem 5.2.6. If r+ t 6= n, then reject. Otherwise output

the optimal expression of f(X) = g(B−1 ·X) = h(B−1 ·X −X0).
Case D = 0: for all k such that det([Hf (X)]k,k) 6= 0, we repeat the previous
procedure. If no such k exists, or if we reject for all such k, then we reject; otherwise
we output the optimal expression.
Correctness of the algorithm is justified by Lemma 5.2.4 and Lemma 5.2.8.

In Sections 5.3 and 5.4, we try to generalize this algorithm in two natural ways:
by allowing the affine forms to be repeated, or by allowing more than EssVar(f)
different affine forms.

5.3 Repeated affine forms

In this section, we investigate the case where there exists a decomposition of a reg-
ular polynomial f with n different affine forms that can be used possibly several
times in the decomposition. Since f is regular, the n affine forms are necessar-
ily linearly independent. In other words, we want to test if f ≡ g with g =∑n

i=1

∑ti
j=1 αi,j x

ei,j
i . In such a scenario, we can write f as a sum of univariate

polynomials: f =
∑n

i=1 gi(`i(X)) with gi(x) =
∑ti

j=1 αi,j x
ei,j and `i an affine

form. Conversely, if f can be written in this way, we can obtain a decomposition
with n linearly independent affine forms by taking a decomposition for each univari-
ate polynomial gi. This motivates the study of the following problem of univariate
decomposition:

Problem 5.3.1. Given f ∈ F[X], is f ≡ g with g =
∑n

i=1 gi(xi)?

Yet, this problem does not completely capture the problem of finding an optimal
decomposition in the AffPow model: indeed, even if a polynomial has a univariate

5. Multivariate reconstruction algorithms 88

decomposition f(X) =
∑n

i=1 gi(`i(X)), we have no guarantee that taking an opti-
mal AffPow decomposition for each gi will yield an optimal decomposition of f in
Model 1. In the following, we first study Problem 5.3.1 on its own, and then solve the
bivariate case by proving that indeed an optimal univariate decomposition is optimal
in Model 1.

5.3.1 Decomposing a polynomial as sum of univariates

The goal of this section is to design an algorithm in Theorem 5.3.4 that receives as
input a regular polynomial f and computes a univariate decomposition if there is
one. Notice first that Problem 5.3.1 is equivalent to testing if there exist univariate
polynomials (gi(x)) such that f ∼ g1(x1) + · · · + gn(xn). A more general version
of this problem has been already studied in Appendix C of [43] where the following
result is proved:

Theorem 5.3.2. [43, Theorem C.2] Given an n-variate polynomial f(X) ∈ F[X],
there exists an algorithm that finds a decomposition of f as

f(A ·X) = p(x1, . . . , xt) + q(xt+1, . . . , xn),

with A invertible, if it exists, in randomized polynomial time provided det(Hf) is a
regular polynomial, i.e. it has n essential variables.

In the following, we will see how to find a univariate decomposition even if the
determinant of the Hessian is not regular. The following result both provides the
main ideas and justifies the correctness of the algorithm we propose.

Proposition 5.3.3. Let f ∈ F[X], and let the gi’s be univariate polynomials sorted
by decreasing degree. Let di := deg(gi) and k := max{i : di ≥ 3}. Let `1, . . . , `n
be linear forms such that f =

∑n
i=1 gi(`i). Then,

det(Hf (X)) = c ·
k∏
i=1

di−2∏
j=1

(`i − αi,j),

where c ∈ F, and αi,j are the roots of g′′i (x) for 1 ≤ i ≤ k.
Moreover, if `1, . . . , `n are linearly independent, for any solution X0 ∈ Fn to the
system B ·X0 = (α1,1, . . . , αk,1)T , where B is the k × n matrix whose rows are the
coefficients of the `1, . . . , `k, we have that

(a) [f(X +X0)]≥3 =
∑k

i=1 hi(`i) for some unique hi ∈ F[x], and

(b) EssVar([f(X +X0)]2) = |{i | deg(gi) = 2}|.

Proof. By Lemma 5.2.3, det(Hf (X)) = (det(A))2
∏n
i=1 g

′′
i (`i), where A is the

matrix whose i-th row corresponds to the coefficients of `i. It suffices to write
g′′i (x) = ci

∏di−2
i=1 (x− αi,j) for all i ∈ [[1, k]] to get the first part of the result.

5.3. Repeated affine forms 89

We assume now that `1, . . . , `n are linearly independent. To prove (a), we observe
that

[f(X +X0)]≥3 =

k∑
i=1

[gi(`i(X +X0))]≥3 =

k∑
i=1

[gi(`i + αi,1)]≥3;

so it suffices to take hi(x) := [gi(x + αi,1)]≥3 for i = 1, . . . , k. Uniqueness of hi
comes directly from the fact that `1, . . . , `k are linearly independent.
To prove (b) we observe first that [gi(x + αi,1)]2 = 0 because g′′i (αi,1) = 0 for
i = 1, . . . k. Since `i is a linear form this implies that [gi(`i + αi,1)]2 = 0 for all
i ∈ [[1, k]], and then

[f(X +X0)]2 =
∑
di=2

[gi(`i(X +X0))]2 =
∑
di=2

γi`
2
i ,

for some γi 6= 0 and, thus, (b) follows from Proposition 5.2.5.

Theorem 5.3.4. There exists a polynomial-time randomized algorithm that receives
as input a blackbox access to a regular polynomial f ∈ F[X] and finds a univariate
decomposition of f if such a decomposition exists, or rejects otherwise.

Proof. The algorithm works as follows. We first compute D(X) = det(Hf (X))
and separate two cases.
Case D 6= 0: if D(X) does not split into polynomials of degree 1, we reject. Other-
wise we take `1, . . . , `k all the non-proportional linear parts of the factors and build
the associated k × n matrix B. If rank(B) 6= k, we reject. Otherwise, we gather the
factors to write

D(X) = c′ ·
k∏
i=1

pi(`i(X)) with pi(x) = ci

di∏
j=1

(x− αij)

where c1, . . . , ck, c
′ are nonzero constants. Now we take X0 a solution of B ·X0 =

(α1,1, . . . , αk,1)T and consider g(X) = f(X + X0). Let h1, . . . , hk ∈ F[x] be the
only polynomials so that [g]≥3 =

∑k
i=1 hi(`i) (or reject if they do not exist). Then

we use the greedy algorithm of Section 5.2.2 to write [g]2 as
∑m

i=k+1 γi`
2
i for some

new linear forms `k+1, . . . , `m. If m 6= n or `1, . . . , `n are not linearly independent,
we reject. Otherwise, we express [g]≤1 =

∑n
i=1 δi`i + b for some δ1, . . . , δn, b ∈

F. Putting all together we have that g can be written as
∑k

i=1 (hi(`i) + δi`i) +∑n
i=k+1

(
γi`

2
i + δi`i

)
+ b, and we finally get an univariate decomposition of f as

f(X) =
∑n

i=1 qi(ti) with

qi(x) :=


h1(x) + δ1x+ b for i = 1

hi(x) + δix for i = 2, . . . , k

γix
2 + δix for i = k + 1, . . . , n

5. Multivariate reconstruction algorithms 90

and ti(X) := `i(X −X0) an affine form for all i ∈ [[1, n]].

Case D = 0: this case happens whenever f is a sum of univariate polynomials
where one of the gi’s is of degree 1. To handle this situation we proceed similarly
to Section 5.2.3. Again we can have at most one gi of degree 1 since otherwise the
number of essential variables of f would not be n. In this case we use the following
more general version of Lemma 5.2.8 which can be proved using similar techniques.

Lemma 5.3.5. Let f ∈ F[X] be a regular polynomial that can be written as f(X) =∑n−1
i=1 gi(`i(X)) + `n(X) where `1, . . . , `n are affine forms, and gi is a univariate

polynomial of degree ≥ 2 for all i. Then there exists an integer k ∈ [[1, n]] and c 6= 0
such that

det([Hf (X)]k,k) = c ·
n−1∏
i=1

g′′i (`i(X))

Hence, for all k such that Dk := det([Hf (X)]k,k) 6= 0, we proceed as before with
Dk and try to express [f]≥2 as [

∑n−1
i=1 qi(ti)]≥2. If we succeed, we set tn := f −∑n−1

i=1 qi(ti), qn := x and output the optimal expression. If there is no k with Dk 6=
0, or if we reject for all such k, then we reject.

5.3.2 The bivariate case

Let f ∈ F[x1, x2] be a bivariate polynomial that admits a univariate decomposition
f = f1(`1) + f2(`2). In this case, we are going to describe how the optimal ex-
pression of f can be obtained from the (univariate) optimal expressions of f1 and
f2, by putting together, if possible, the terms of degree ≤ 1 in one bivariate poly-
nomial. To prove that this gives the optimal expression we are going to define the
UnivAffPow(f) as the number of terms obtained in this procedure and we are going
to prove that UnivAffPow(f) = AffPow(f).
More precisely, set si =

def AffPow(fi) and write

fi =

si∑
j=1

αi,j(xi + ai,j)
ei,j ,

with ei,1 ≤ · · · ≤ ei,si . We separate two cases: if there exist optimal expressions
of f1 and f2 with e1,1 ≤ 1 and e2,1 ≤ 1; we consider them, we set ` := α1,1(x1 +
a1,1)e1,1 + α2,1(x2 + a2,1)e2,1 , and observe that

f =

s1∑
j=2

α1,j(x1 + a1,j)
e1,j +

s2∑
j=2

α2,j(x2 + a2,j)
e2,j + `.

In this case we define UnivAffPow(f) := s1 + s2 − 1. Otherwise, we define
UnivAffPow(f) := s1 + s2.
We prove in Proposition 5.3.9 that AffPow(f) = UnivAffPow(f). This result is a
consequence of the some lemmas. Before proving the first of this lemmas, recall

5.3. Repeated affine forms 91

from Proposition 1.1.17 that every univariate polynomial g of degree d satisfies that
AffPow(g) ≤ r =

def dd+1
2 e. Moreover, if AffPow(g) = r, then g admits and expres-

sion as
∑r

i=1 αi(x+ ai)
ei with d = e1 > e2 > · · · > er with ei − ei+1 ≥ 2 for all i

and, thus, er ∈ {0, 1} (see [29, Proposition 18] and its proof).

Lemma 5.3.6. Let fi ∈ F[xi] polynomials of degree di for i = 1, 2. Then,

UnivAffPow(f1 + f2) ≤
⌈
d1 + 1

2

⌉
+

⌈
d2 + 1

2

⌉
− 1.

Proof. Let si := AffPow(fi) for i = 1, 2. If si <
⌈
d1+1

2

⌉
for some i, the result

follows directly since UnivAffPow(f1 + f2) ≤ s1 + s2. Otherwise, si =
⌈
d1+1

2

⌉
for i = 1, 2; in this case both fi can be written in an optimal way by using terms of
degree ≤ 1; hence, UnivAffPow(f1 + f2) = s1 + s2 − 1, proving the result

Lemma 5.3.7. Let s, d ∈ Z+ and b1, . . . , bs different nonzero elements of F. If

λ1x
d
1 + λ2x

d
2 =

s∑
i=1

γi(x1 + bix2)d,

with λ1, λ2 ∈ F and γi ∈ F not all zero, then s ≥ d. Moreover, if λ1 = 0 or λ2 = 0
then s ≥ d+ 1; and if λ1 = λ2 = 0, then s ≥ d+ 2.

Proof. Consider the evaluation map ϕ induced by x1 7→ x, x2 7→ x + 1. Then,
ϕ(x1 + bi x2) = (1 + bi)x+ bi = (1 + bi)(x+ bi

1+bi
). Thus, the linear dependency of

{xd1, xd2, (x1 + bix2)d | 1 ≤ i ≤ s} implies linear dependency of {xd, (x+ 1)d, (x+
bi

1+bi
)d | 1 ≤ i ≤ s}. Hence, the result follows from Proposition 2.2.3.

Lemma 5.3.8. Let f =
∑s

i=1 αi(x1 + bix2 + ci)
ei ∈ F[x1, x2] be a polynomial of

degree ≥ 2, with αi ∈ F and bi 6= 0 for all i ∈ [[1, s]]. If f = f1 + f2 with fi ∈ F[xi],
then s ≥ UnivAffPow(f1 + f2).

Proof. We assume without loss of generality that αi 6= 0 for all i. Let `i :=
x1 + bix2 + ci for i = 1, . . . , s, and dj := deg(fj) for j = 1, 2. We know that
si := AffPow(fi) ≤ d(di + 1)/2e. For all e ∈ N, consider [f]e the homogeneous
component of degree e of f . We have:

[f1]e + [f2]e =
∑
ei≥e

αi[`
ei
i]e ∈ 〈(x1 + bix2)e | ei ≥ e〉.

We assume that d1 ≥ d2 and separate two cases:
Case 1: d1 > d2. We have that 0 6= [f1]d1 =

∑
ei≥d1 γi(x1 + bix2)d1 for some

γi ∈ F, hence by Lemma 5.3.7 there are at least d1 + 1 exponents ei that are ≥ d1.
As a consequence, by Lemma 5.3.6 we get that if d2 = d1 − 1, then

s ≥ d1 + 1 =
d1 + d2 + 3

2
=

⌈
d1 + 1

2

⌉
+

⌈
d2 + 1

2

⌉
> UnivAffPow(f1 + f2);

5. Multivariate reconstruction algorithms 92

and if d2 < d1 − 1, then

s ≥ d1 + 1 ≥ d1 + d2 + 4

2
≥
⌈
d1 + 1

2

⌉
+

⌈
d2 + 1

2

⌉
> UnivAffPow(f1 + f2).

Case 2: d1 = d2. We have that [f1]d1 + [f2]d2 =
∑

ei≥d1 γi(x1 + bix2)d1 for some
γi ∈ F, hence by Lemma 5.3.7 we have that there are at least d1 exponents bigger
than or equal to d1. As a consequence, by Lemma 5.3.6:

s ≥ |{bi | ei ≥ d1}| ≥ d1 ≥ 2

⌈
d1 + 1

2

⌉
− 2 ≥ UnivAffPow(f1 + f2)− 1.

If one of these inequalities is strict, the result is proved; so it only remains to prove
that they all cannot be equalities at the same time.
Let us assume by contradiction that they are all equalities. In particular, we have that
then bi 6= bj for all 1 ≤ i < j ≤ s. We claim that ei = d1 for all i. Otherwise, taking
e := max(ei) > d1 and observing the homogeneous component of degree e, we get
that

0 =
∑
ei=e

αi (x1 + bix2)e;

but again by Lemma 5.3.7, this implies that the number of `i with ei = e is at least
e+ 2 ≥ d1 + 3 > s, a contradiction. Hence,

f1 + f2 =

s∑
i=1

αi(x1 + bix2 + ci)
d1 .

Now set βi ∈ F the (only) root of the derivative of order d1 − 1 of fi and consider
gi(xi) := fi(xi +βi). We have that g1 + g2 =

∑s
i=1 αi(x1 + bix2 + c′i)

d1 . However,
the homogeneous component of degree d1 − 1 of g1 and g2 is zero; therefore if we
observe the homogeneous component of degree d1− 1 in this expression we get that

0 =

s∑
i=1

d1αic
′
i(x1 + bix2)d1−1.

Since s < d1+2, Lemma 5.3.7 yields that c′i = 0 for all i. Since f1(x1+β1), f2(x2+

β2) are univariate polynomials, we have that f1(x1 + β1) + f2(x2 + β2) = γ1x
d1
1 +

γ2x
d2
2 . However, this implies that AffPow(f1) = AffPow(f2) = 1 and, then, 1 ≥

UnivAffPow(f)− 1 = d1 = d2, a contradiction.

As a consequence of Lemma 5.3.8, we obtain the main result of this subsection:

Proposition 5.3.9. Let f1 ∈ F[x1] and f2 ∈ F[x2], then

AffPow(f1 + f2) = UnivAffPow(f1 + f2).

5.4. Allowing more affine forms 93

Proof. It is obvious that AffPow(f1 + f2) ≤ UnivAffPow(f1 + f2). Let s :=
AffPow(f1 + f2) and consider f1 + f2 =

∑s
i=1 `

ei
i an optimal expression of f1 + f2

in Model 1. We write `i = aix1 + bix2 + ci with ai, bi, ci ∈ F. Set g := f1 + f2 −∑
bi=0

or ci=0

`eii . Clearly, g is a sum of two univariate polynomials and it can be written
as

g =
∑
ai 6=0

bi 6=0

` eii =
∑
ai 6=0

bi 6=0

aeii

(
x1 +

bi
ai
x2 +

ci
bi

)ei
.

Setting r := |{i | ai 6= 0 and bi 6= 0}|, we have that UnivAffPow(g) ≤ r by
Lemma 5.3.8. Hence we can rewrite g as g =

∑r′

i=1(αix + βiy + γi)
di with either

αi = 0, βi = 0 or di = 1, and r′ ≤ r. As a consequence, f =
∑r′

i=1(αix + βiy +
γi)

di +
∑

bi=0

or ci=0

`eii is an expression of f with s− r+ r′ terms. Since s− r+ r′ ≤ s,
this shows that UnivAffPow(f1 + f2) ≤ s = AffPow(f1 + f2).

5.4 Allowing more affine forms

In what follows we investigate the case where the number of affine forms used to
express f in Model 1 is greater than the number of essential variables. The most
basic such case is when f ≡ g with g =

∑n
i=1 x

ei
i + `e, where ` is an affine form and

e ∈ N∗. Let us first see why the algorithm of Section 5.2 cannot be straightforwardly
generalised to recover the optimal expression of f . We set h := g−`e so that we have
Hg = Hh+H`e by linearity of differentiation. Notice thatH`e = e2 `e−2ββT , where
β is the column vector associated to the coefficients of ` and ei := e · · · (e−i+1). In
order to compute det(Hg), we use the matrix determinant lemma that we first recall.

Lemma 5.4.1. Let A ∈Mn(F) and u, v ∈ Fn two column vectors. Then,

det(A+ uvT) = det(A) + vT adj(A)u,

where adj(A) denotes the adjugate matrix of A.

We therefore have det(Hg) = det(Hh) + e2 `e−2βT adj(Hh)β. Hence, if f = g(A ·
X + b), Lemma 5.2.4 implies that

det(Hf) = det(A)2

(
n∏
i=1

e2

i `i(X)ei−2 + e2 `(A ·X + b)e−2 P (X)

)

with P (X) =
∑n

i=1 β
2
i

(∏
j 6=i e

2

j `j(X)ei−2
)
∈ F[X]. In most cases neither the `i’s

nor ` are factors of det(Hf), which makes the (straightforward generalization of)
algorithm of Section 5.2 fail.

5. Multivariate reconstruction algorithms 94

5.4.1 Higher order Hessian

The main idea we propose to generalize the algorithm is to consider an extension
of the Hessian by looking at higher order derivatives. We therefore consider all
monomials xixj of degree 2, and we build the 4-th order Hessian H̃f ∈Mn2(F[X])
whose entries are:

(H̃f)(a,b),(i,j) =
∂4f

∂xa∂xb∂xi∂xj

This extension is quite natural and the following analogue of Lemma 5.2.3 shows that
it also behaves well with a change of basis. For two matrices A = (Aij), B = (Bkl)
of sizesm1×n1 andm2×n2, respectively, we denote byA⊗B its Kronecker product.
That is, A⊗B = (C(i,k),(j,l)) is the m1m2×n1n2 matrix with C(i,k),(j,l) = Ai,jBk,l
(see [37] for a further study of Kronecker product).

Lemma 5.4.2. Let g ∈ F[X] be an n-variate polynomial. Let A ∈ Mn(F) be a
linear transformation, and let b ∈ Fn. Let f(X) = g(A ·X + b). Then,

H̃f (X) = (A⊗A)T · H̃g(A ·X + b) · (A⊗A)

Proof. By the chain rule for differentiation we have for all 1 ≤ a, b, c, d ≤ n:

∂4f

∂xa∂xb∂xc∂xd
=

∑
i,j,k,l∈[n]

Ai,aAj,bAk,cAl,d ·
∂4g

∂xi∂xj∂xk∂xl
(A ·X + b)

We set E = H̃f and H = H̃g(A ·X + b) so that we have

E(a,b),(c,d) =
∑

(i,j),(k,l)∈[n]2

((A⊗A)T)(a,b),(i,j)H(i,j),(k,l)(A⊗A)(k,l),(c,d).

This result, along with the fact that det(A⊗ A) = det(A)2n, could seem promising
at first, but in fact we always have det(H̃f) = 0 since Schwarz theorem (symmetry
of second derivatives) implies that lines (a, b) and (b, a) of H̃f are equal. We will
therefore consider the symmetric 4-th order Hessian Hf , which is the submatrix of
H̃f where we remove the rows (a, b) with a > b and the columns (i, j) with i > j.
In other words, Hf ∈M(n+1

2)(F[X]) and its entries are:

∀a ≤ b, i ≤ j, (Hf)(a,b),(i,j) =
∂4f

∂xa∂xb∂xi∂xj

Again, we can prove an analogue of Lemma 5.2.3 regarding a change of basis.

5.4. Allowing more affine forms 95

Lemma 5.4.3. Let g ∈ F[X] be an n-variate polynomial. Let A ∈ Mn(F) be a
linear transformation, and let b ∈ Fn. Let f(X) = g(A ·X + b). Then,

Hf (X) = (A�A)T ·Hg(A ·X + b) · (A�A)

where the matrix A�A is defined as follows: for all a ≤ b and i ≤ j

(A�A)(a,b),(i,j) =

{
Aa,iAb,j +Aa,jAb,i if a 6= b

Aa,iAa,j otherwise

Proof. We set E = Hf and H = Hg(A · X + b), and we use again the chain rule
for differentiation for a ≤ b, c ≤ d:

E(a,b),(c,d) =
∑

i,j,k,l∈[n]

Ai,aAj,bAk,cAl,d ·H(i,j),(k,l)

=
∑

i,j,k<l∈[n]

Ai,aAj,b ·H(i,j),(k,l) · (Ak,cAl,d +Al,cAk,d)

+
∑

i,j,k=l∈[n]

Ai,aAj,b ·H(i,j),(k,k) ·Ak,cAk,d

=
∑

i,j,k≤l∈[n]

Ai,aAj,b ·H(i,j),(k,l) · (A�A)(k,l),(c,d)

=
∑

i≤j,k≤l∈[n]

(A�A)(i,j),(a,b) ·H(i,j),(k,l) · (A�A)(k,l),(c,d)

We now prove that given a regular matrix A, the matrix A � A is also regular. As a
consequence, if f = g(A ·X + b) then det(Hf (X)) = c · det(Hg(A ·X + b)) with
c a nonzero constant. To do so, we will relate A � A with the symmetric Kronecker
product (see e.g. [22]) which is a

(
n+1

2

)
×
(
n+1

2

)
matrix defined asA⊗SB = 1

2Q(A⊗
B +B ⊗A)QT with

∀i ≤ j, k, l, Q(i,j),(k,l) =


1 if i = j = k = l

1√
2

if i = k 6= j = l, or i = l 6= j = k

0 otherwise

In particular, we will use the following result that can be easily derived from the
properties of ⊗S described in [3].

Lemma 5.4.4. We have det(A⊗S A) = det(A)n+1.

Proof. We will prove this result for a diagonalizable matrix and conclude by density.
Let (λi) be the eigenvalues of A, repeated with multiplicity. Then the eigenvalues
of A ⊗S A are given by 1

2(λiλj + λjλi) = λiλj for i ≤ j. We therefore have
det(A⊗S A) =

∏
i≤j λiλj =

∏n
i=1 λ

n+1
i = det(A)n+1.

5. Multivariate reconstruction algorithms 96

Lemma 5.4.5. We have det(A�A) = det(A)n+1.

Proof. Consider the matrix Q := D ·Q where D is a diagonal matrix defined as

D(i,j),(i,j) =

{√
2 if i = j

1 otherwise

Then the coefficients of the matrix B = Q(A ⊗ A)Q
T are given by B(i,j),(k,l) =

Ai,kAj,l+Ai,lAj,k. In particular, we have det(B) = 2n det(A�A). Moreover, since
Q = D ·Q, we also have det(B) = det(D)2 det(Q(A⊗A)QT) = 2n det(A⊗SA).
Finally, we have det(A�A) = det(A⊗S A) = det(A)n+1.

Corollary 5.4.6. Let g ∈ F[X] be an n-variate polynomial. Let A ∈ GLn(FF) be
a linear transformation, and let b ∈ Fn. Let f(X) = g(A ·X + b). Then,

det(Hf (X)) = c · det(Hg(A ·X + b))

where c ∈ F is a nonzero constant.

5.4.2 The bivariate case

For f ∈ F[x, y], the preceding results directly allow us to detect if f(x, y) ≡
g(x, y) = xe1 + ye2 + `e3 where ` = α1x + α2y + α0 is an affine form with
α1, α2 6= 0, and ei ≥ 5 for all i. For this purpose, we build the symmetric 4-th order
Hessian Hf :

Hf =


xy x2 y2

xy
∂4f

∂x2∂y2
∂4f
∂x3∂y

∂4f
∂x∂y3

x2 ∂4f
∂x3∂y

∂4f
∂x4

∂4f
∂x2∂y2

y2
∂4f
∂x∂y3

∂4f
∂x2∂y2

∂4f
∂y4


Let us compute the determinant of Hg:

Hg =

0 0 0
0 e4

1 x
e1−4 0

0 0 e4

2 y
e2−4


︸ ︷︷ ︸

=B

+e4

3 `
e3−4uuT where u =

α1α2

α2
1

α2
2



By Lemma 5.4.1, we therefore have det(Hg) = e4

3 `
e3−4uT adj(B)u. In this case,

the adjugate matrix of B is easy to compute:

adj(B) =

e4

1 e
4

2 x
e1−4ye2−4 0 0
0 0 0
0 0 0


We thus have det(Hg)(x, y) = c · xe1−4ye2−4`e3−4 with c = e4

1 e
4

2 e
4

3 α
2
1α

2
2 6= 0. By

Corollary 5.4.6, we obtain the following result.

5.4. Allowing more affine forms 97

Lemma 5.4.7. Let f(x, y) be a polynomial such that f = `e11 + `e22 + `e33 where
`1, `2, `3 are affine forms whose linear parts are not proportional, and ei ≥ 4 for all
i. Then we have

det(Hf (X)) = c ·
3∏
i=1

`i(x, y)ei−4

where c ∈ F is a nonzero constant.

This result directly yields an algorithm for the case when all the ei’s are greater than
4, as one just has to factorize the symmetric 4-th order Hessian to recover the ei’s
and the `i’s.

5.4.3 The general case

In this section, we will design a randomized algorithm that can reconstruct a decom-
position in Model 1 that uses up to

(
n+1

2

)
distinct affine forms. However, it will not

work for all input polynomials of such type. Indeed, it will work whenever all the
exponents involved in the optimal expression of f are ≥ 5 and a certain matrix U ,
which depends on the affine forms involved, is invertible. We will conduct a ran-
domized analysis to show that our method is correct with high probability (over the
choice of the input polynomial and of the internal coin tosses of the algorithm). We
begin by proving an analogue of Lemma 5.2.4 for the symmetric 4-th order Hessian.

Proposition 5.4.8. Let n ∈ N∗, m :=
(
n+1

2

)
, and let f =

∑m
i=1 `

ei
i with `i =∑n

j=1 bi,jxj + bi,0 affine forms and ei ≥ 4 for all i. Let U be the square m × m
matrix with entries U(i,j),k := bk,i bk,j for all 1 ≤ k ≤ m, 1 ≤ i ≤ j ≤ n. If
det(U) 6= 0, there exists c 6= 0 such that

det(Hf (X)) = c ·
m∏
i=1

`ei−4
i ,

Proof. By linearity of the symmetric 4-th order Hessian, we have

Hf (X) =

m∑
k=1

H`k(X) =

m∑
k=1

e4

k `
ek−4
k (uk · uTk) = U ·D · UT ,

whereD = Diag(e4

1 `
e1−4
1 , . . . , e4

m `
em−4
m), and uk is the column vector whose (i, j)-

th entry is bk,ibk,j with 1 ≤ i ≤ j ≤ n. Thus,

det(Hf (X)) = det(U)2
m∏
k=1

e4

k `
ek−4
k .

Now, we are going to prove that if the coefficients of the `i are chosen uniformly at
random, then with a high probability we have det(U) 6= 0. Thus, whenever ei ≥ 5
for all i, one can find `i as a factor of det(Hf (X)) of multiplicity ei − 4.

5. Multivariate reconstruction algorithms 98

Lemma 5.4.9. Let n ∈ N∗ and m :=
(
n+1

2

)
, and consider the set of variables

V := {y(k,l),i | 1 ≤ k ≤ l ≤ n, 1 ≤ i ≤ n}. Let U be the m×m square matrix with
entries U(i,j),(k,l) := y(k,l),i y(k,l),j , where 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ l ≤ n. Then,
det(U) ∈ Z[V] is a nonzero polynomial of degree 2m.

Proof. Since all the entries of the matrix are homogeneous polynomials of degree
2, it is clear that det(U) is either zero or a polynomial of degree 2m. To prove that
det(U) 6= 0 it suffices to exhibit a nonzero evaluation of det(U). We consider the
matrix Ũ given by the evaluation y(k,l),i 7→ 1 if i ∈ {k, l}; or y(k,l),i 7→ 0 otherwise.
By ordering pairs (i, j) with i = j first, we obtain the following shape

Ũ =

(k=l k<l

i=j Idn (∗)
i<j 0 Idm−n

)
,

proving that det(Ũ) = 1 and therefore that det(U) 6= 0.

Theorem 5.4.10. Let n ≥ 2 and m :=
(
n+1

2

)
. Let `i =

∑n
j=1 bi,jxj + bi,0 : 1 ≤

i ≤ m whose coefficients bi,j are taken uniformly at random from a finite set S and
take f :=

∑m
i=1 `

ei
i ∈ F[X] with ei ≥ 4 for all i. Then, det(Hf (X)) 6= 0 with

probability at least 1− 2m
|S| .

Proof. By Proposition 5.4.8, it is enough to show that det(U) 6= 0, where U is
the matrix defined by U(i,j),k = bk,ibk,j . By Lemma 5.4.9 and the Schwartz-Zippel
lemma, the probability that det(U) 6= 0 is at least 1− 2m

|S| .

This theorem suggests a polynomial time algorithm for finding an optimal expression
of a polynomial f with high probability when AffPow(f) ≤ m =

(
n+1

2

)
, the affine

forms in optimal expression of f are chosen at random from a finite set and all the
exponents involved are ≥ 5. It is enough to start with k = m− 1, choose randomly
k affine forms t1, . . . , tk with exponents di = 4 and denote g := f +

∑k
i=1 t

di
i .

If D := det(Hf (X)) = 0, we decrease the value of k by one unit and repeat the
argument, or we reject if k = 0. If D 6= 0, we factorize it. If D splits into linear
factors l1, . . . , lm−k of multiplicities r1, . . . , rm−k and f ∈ 〈lri+4

i | 1 ≤ i ≤ m− k〉,
then AffPow(f) = m − k and we output the optimal expression. Otherwise, we
reject.

5.5 Univariate projections

In this section, we will proceed by reduction to the univariate case: we solve n
univariate projections of the multivariate problem using algorithms from Chapter 4,
and then “lift” them to a solution of the multivariate problem. The main result of this
section will be an algorithm that finds the optimal reconstruction (it works only in
the regime of uniqueness) under the condition on ne being small, where ne denotes
the number of exponents smaller than e as in previous chapters.

5.5. Univariate projections 99

5.5.1 Uniqueness

Strictly speaking the optimal expressions in Model 1 are never unique since for all
e ≥ 2 and ` an affine form, we have that ` e = (λ`) e for λ an e-th root of unity.
To deal with this ambiguity, we use the notion of essentially equal expressions, as
introduced in [44]. Given f ∈ F[X], we say that two expressions of f =

∑s
i=1 `

ei
i =∑r

i=1 t
di
i are essentially equal if r = s and there exists a permutation σ of {1, . . . , s}

such that ` eii = t
dσ(i)
σ(i) for all i ∈ [[1, s]]. Likewise, we say that f has an essentially

unique optimal decomposition in Model 1 if two optimal decompositions of f are
always essentially equal.
The following result provides a sufficient condition for f to have an essentially
unique optimal decomposition. It is an extension to the multivariate setting of Corol-
lary 2.2.8.

Proposition 5.5.1. Let f ∈ F[X] be a polynomial of the form:

f =

s∑
i=1

` eii

where the `i are non constant affine forms, and `i is not proportional to `j when-
ever ei = ej . If ne ≤

√
e
2 for all e ∈ N, then AffPowF(f) = s and the optimal

representation of f is essentially unique.

Proof. Let r := AffPowF(f) ≤ s and let f =
∑s+r

i=s+1 `
ei
i be an optimal rep-

resentation of f . We write `i =
∑n

j=1 aijxj + ai0 for all i ∈ [[1, s + r]]. Con-
sider the ring homomorphism ϕ : F[X] → F[x] induced by xi 7→ ωix + λi where
ω = (ω1, . . . , ωn), λ = (λ1, . . . , λn) ∈ Fn. We choose ω and λ so that

(1.a) ϕ(`i)
ei = ϕ(`j)

ej if and only if ` eii = `
ej
j , and

(1.b) whenever ei = ej with 1 ≤ i < j ≤ s, then ci/bi 6= cj/bj

It is important to observe that a generic choice of ω, λ ∈ Fn fulfills these two condi-
tions. Then

ϕ(f) =
∑s

i=1 ϕ(`i)
ei =

∑s
i=1 b

ei
i (x+ ci/bi)

ei

=
∑s+r

i=s+1 ϕ(`i)
ei =

∑s+r
i=s+1 b

ei
i (x+ ci/bi)

ei .

We consider the expression ϕ(f) =
∑s

i=1 b
ei
i (x + ci/bi)

ei in the univariate Affine
Power model. Since (1.b) holds and ne ≤

√
e
2 for all e ∈ N, by Corollary 2.2.8 we

get that r ≥ AffPowF(ϕ(f)) = s ≥ r and that both expressions for ϕ(f) are the
same. By (1.a) we conclude the result.

Notice that this method of random univariate projections also allow to obtain the
following upper bound on the maximum exponent in a expression, using Corol-
lary 2.2.10.

5. Multivariate reconstruction algorithms 100

Proposition 5.5.2. Let f ∈ F[X] be a polynomial of degree d written as

f =

s∑
i=1

`eii

with `i affine form, ei ∈ N. We set e =
def

max{ei : i ∈ [[1, s]]}. Then we have that

e < d+
s2

2
.

In particular, since we have the upper bound AffPowF(f) ≤
(
d+n−1
d−1

)
(see Propo-

sition 1.2.1), this yields an upper bound on the maximum exponent in an optimal
expression. However, this bound on the maximum exponent is way too large to be
used in efficient algorithms. We do not know if the bound is optimal, and it would
be interesting to try to improve it by using other techniques or to find families of
polynomials that requires large exponents in their optimal expressions.

5.5.2 Univariate projections

Our goal is to provide an algorithm that, given blackbox access to f ∈ F[X], com-
putes s = AffPow(f) and an optimal expression for f . It is a multivariate analogue
of Theorem 4.1.4 where the condition of "distinct nodes" is replaced by "the `i’s in
the decomposition are not proportional". The idea of the algorithm is to perform
a random change of coordinates and then project to n univariate problems that we
solve using Theorem 4.1.4. The same strategy applies to obtain similar results for all
the algorithms of Chapter 4. One minor difficulty is that the univariate algorithms
of [30] are presented for polynomials given in dense representation rather than in
blackbox representation, but we can obtain the dense representation of a univariate
polynomial by random evaluations and, then, interpolation.

Theorem 5.5.3. Let f ∈ F[X] be a polynomial that can be written as

f =

s∑
i=1

` eii ,

where the `i’s are pairwise non-proportional linear forms, and ei ∈ N. Assume that
ni+1 ≤ (3i/4)1/3 − 1 for all i ≥ 2. Then, AffPow(f) = s. Moreover, there is a ran-
domized algorithm MultiBuild(f) that, given access to a blackbox for f , com-
putes the set of terms T (f) = {` eii : 1 ≤ i ≤ s}. The algorithm MultiBuild(f)
runs in time polynomial in n and d, and works as follows:

Step 1. We define g := φ(f) where φ is a random affine change of coordinates
(xi 7→

∑n
j=1 λijxj + λi for all i).

Step 2. For each j ∈ [[1, n]], we set gj := πj(g) where πj : F[X] −→ F[x] is
induced by xk 7→ 0 if k 6= j and xj 7→ x.

5.5. Univariate projections 101

Step 3. Apply the algorithm Build(gj) from Theorem 4.1.4 to obtain the value
sj := AffPow(gj) and the triplets (βij , bij , eij) ∈ F × F × N such that
gj =

∑sj
i=1 βij(x+ bij)

eij .

Step 4. We define Pj := {(cij , 1/bij , eij) | cij := βijb
eij
ij , 1 ≤ i ≤ si}.

Step 5. We reorder the elements of P2, . . . , Pn so that ci := ci1 = ci2 = · · · = cin
and ei := ei1 = ei2 = · · · = ein for all i ∈ [[1, s1]].

Step 6. If g =
∑s

i=1 ci(1 +
∑n

j=1 xj/bij)
ei , we output f = φ−1(g).

Or we reject if any of these steps is not feasible.
If the λi’s and the λij’s needed to define φ are chosen uniformly at random from a
finite set S, then the probability of success of the algorithm is at least

1− d2/3(2n+ d)

|S|
.

Proof. Since the input polynomial f satisfies the hypotheses of Proposition 5.5.1, we
therefore have that AffPowF(f) = s and the optimal representation of f is essentially
unique.
After applying a random φ as described in Step 1, with high probability1 we have that
φ is invertible and g =

∑s
i=1 t

ei
i with ti =

∑n
j=1 aijxj + ai0 satisfies the following

properties:

(i) aij 6= 0 for all i, j.

(ii) for all j 6= 0, then aij/ai0 6= ai′j/ai′0 for all i, i′, and

(iii) aeii0 6= aei′i′0 for all i 6= i′.

It is important to observe that for a generic choice of the λi’s and λij’s involved in
the definition of φ, these conditions will be fulfilled, as this will guarantee in the
probabilistic analysis that the polynomial encoding these conditions is nonzero. The
goal of the algorithm is to recover f via the following expression of g:

g =

s∑
i=1

aeii0

1 +

n∑
j=1

aij
ai0

xj

ei

;

so we are interested in computing the values

• aeii0 for all i

• aij/ai0 for all i, j

• ei for all i
1A detailed probabilistic analysis is performed at the end of this proof.

5. Multivariate reconstruction algorithms 102

In Step 2, for all j ∈ [[1, n]] we consider

πj(g) =

s∑
i=1

aeii0

(
1 +

aij
ai0

x

)ei
=

s∑
i=1

aeiij

(
x+

ai0
aij

)ei
.

Since πj(g) satisfies the hypotheses of Theorem 4.1.4 Build(πj(g)) outputs the
values {

(aeiij ,
ai0
aij

, ei) : 1 ≤ i ≤ s
}
.

From these values we obtain in the sets

Pj =

{
(aeii0,

aij
ai0

, ei) : 1 ≤ i ≤ s
}
.

The uniqueness of the expression of gj for all j and to (iii) guarantee that we recover
g in Step 6.

We now give a probabilistic analysis of the algorithm. If we see the values of λi, λij
as variables, the invertibility of φ is equivalent to the nonvanishing of a degree n
polynomial. Moreover, the aij are degree one polynomials in these variables. Thus,
the conditions aij 6= 0 consist in the nonvanishing of s(n+1) polynomials of degree
1. The conditions aij/ai0 6= ai′j/ai′0 for all i, i′, j with j 6= 0 can be seen as the
nonvanishing of s(s − 1)n/2 polynomials of degree 2. The conditions aeii0 6= aei′i′0
can be seen as the nonvanishing of s(s − 1)/2 polynomials of degree at most e :=
max(ei), which, by Corollary 2.2.10, is upper bounded by d+(s2/2). Hence, all the
conditions to be satisfied can be codified in a nonzero polynomial ψ of degree

n+ s(n+ 1) + s(s− 1)n+ (s(s− 1)(2d+ s2)/4) ≤ 8s2n+ 2s2d+ s4

4
.

Moreover, e ≤ d + (s2/2), and s = ne ≤ (3e/4)1/3; from where we deduce that
s ≤ d1/3 and the degree of ψ is upper bounded by d2/3(2n+ d). The result follows
from the Schwartz-Zippel lemma.

6
Conclusion

In this final chapter, we give a brief overview of the results of this work and give
several directions in which one could try to extend them.

Lower bounds. In Chapter 3, we exhibited two families of polynomials with large
AffPow rank. More precisely, for both

fn =

n∑
i=1

(x− ai)d and gn =

n∏
i=1

(x− ai)d/n,

with distinct ai’s, we proved in Propositions 3.2.7 and 3.2.10 that for some value of
c ∈ [0; 1], taking n = c ·

√
d yields AffPowF(fn) = Ω(

√
d) and AffPowF(gn) =

Ω(
√
d). As explained in Chapter 1, the goal is to obtain a linear lower bound, that

is, an explicit polynomial f such that AffPowF(f) = Ω(d), with d = deg(f). For
F = R, this problem is solved in [29] with one of the two families above: we have
AffPowR(fd/4) = d/4. However, for F = C this problem is left open. Yet, we
know that this family of polynomials fn will not directly yield a linear lower bound
as Remark 2.2.6 shows that Theorem 2.2.5 is optimal, that is, we know a choice of
n =
√
d+ 1 + 1 distinct ai’s such that the corresponding polynomial fn is such that

AffPow(fn) < n. This does not completely eliminate the family fn, but rather shows
that in order to obtain a linear lower bound, one will have to choose precise values
for the ai’s. For the other family of polynomials, we do not have any non-trivial
upper bound for n ≥ 2 and hence one could try to further investigate this family to
determine its AffPow rank.

Linear independence. We have proposed Conjecture 3.3.3 concerning linear in-
dependence of shifted powers; we have proved in Proposition 3.3.4 its counterpart
for the field of real numbers and have given some steps towards potential proofs over
C by proving a weaker version in Proposition 3.3.8. Studying linear independence
of shifted powers, apart from being interesting by itself, has nice consequences in

6. Conclusion 104

arithmetic complexity as it can imply a lower bound on the number of shifted powers
needed to represent a polynomial of degree d. We believe that the conjecture is true;
however, we have the feeling that a tool different from shifted differential equations
should be used to prove them.
We have also provided bounds on the dimension of the vector space spanned by a
family F of shifted powers that satisfy the Pólya condition. The lower bounds for
the field of complex numbers given in Section 3.4.2 are nonconstructive in the sense
that they do not pinpoint a linearly independent subset of F of cardinality equal to
our lower bound on dimF (but they of course imply the existence of such a subset).
It would be interesting to obtain a constructive proof. This may be related to the
problem of obtaining a “good” sufficient condition for the linear independence of
shifted powers over C.
To our knowledge, the family F of real or complex polynomials that satisfies the
Pólya condition and that spans a vector space with the least dimension is the one we
provide in Lemma 3.4.5 It would be interesting to improve the bounds we provide or
to show that they are tight.

Univariate algorithms. We designed univariate algorithms that, given a polyno-
mial f in its dense form, find the optimal representation of f in Model 2. We achieved
this goal in several cases, but we do not solve the problem in its full generality. The
algorithm described in Theorem 4.1.4 whenever f admits an expression with distinct
nodes and such that ni+1 ≤ (3i/4)1/3 − 1 for all i, where ni denotes the number of
exponents < i in the expression. As already pointed out, it is quite natural to assume
that ni ≤ i (Polya’s condition) from the point of view of the optimality, but it would
be interesting to relax the assumption ni+1 ≤ (3i/4)1/3 − 1 in this theorem. When
the nodes are not distinct, we provided algorithms for two special cases: when all the
exponents with common node lie in a small interval (Section 4.2.1), and when two
consecutive exponents with same node are far apart (Section 4.2.2). It would be very
interesting to weaken these assumptions, or even to remove them entirely. All these
algorithms only work in the regime of uniqueness of the optimal decomposition, and
almost nothing is known when this is not the case.
Another issue that we have only begun to address is the analysis of the bit complexity
of our algorithms. We give an explicit polynomial bound on the bit complexity of the
algorithm of Theorem 4.1.2, but this issue seems to be more subtle for Theorem 4.1.4
due to the iterative nature of our algorithm. It is in fact not clear that there exists a
solution of size polynomially bounded in the input size (i.e., in the bit size of f given
as a sum of monomials). More precisely, we ask the following question.

Question 6.0.1. We define the dense size of a polynomial f =
∑d

i=0 fix
i ∈ Z[X] as∑d

i=0[1 + log2(1 + |fi|)]. Assume that f can be written as

f =

s∑
i=1

αi(x− ai)ei

105

with ai ∈ Z, αi ∈ Z \ {0}, and that this decomposition satisfies the conditions of
Theorem 4.1.4: the constants ai are all distinct, and ni+1 ≤ (3i/4)1/3 − 1.
Is it possible to bound the bit size of the constants αi, ai by a polynomial function of
the dense size of f ?

As explained in Proposition 4.1.6, under the same conditions we have a decomposi-
tion algorithm that runs in time polynomial in the bit size of the output. It follows
that the above question has a positive answer if and only if there is a decomposi-
tion algorithm that runs in time polynomial in the bit size of the input (i.e., in time
polynomial in the dense size of f).
One could also ask similar questions in the case where the conditions of Theo-
rem 4.1.4 do not hold. For instance, assuming that f has an optimal decomposition
with integer coefficients, is there such a decomposition where the coefficients αi, ai
are of size polynomial in the size of f ?

Multivariate algorithms. For the problem of multivariate reconstruction, we de-
scribed two strategies in Chapter 5: univariate projections when AffPow(f) is small
in terms of the degree, and Hessian methods when AffPow(f) is small in term of the
number of variables. In Section 5.4, we provided an algorithm that can reconstruct
decomposition in Model 1 with up to

(
n+1

2

)
distinct affine forms. This algorithm

relies on a random choice of the affine forms involved in the optimal expression and
on the assumption that all the exponents are greater than 4. It would be very inter-
esting to weaken these assumptions, or even to remove them entirely, even though
the recent NP-hardness result of Waring decomposition [67] indicates that it might
be hard to do so.
Even if we do not state it explicitly, whenever our algorithms succeed then we have
some sort of uniqueness for all the affine forms involved with exponent≥ 3. It would
be interesting to characterize under which conditions the forms with exponent ≥ 3
in the optimal expressions are unique.
When f is a univariate polynomial of degree d, then AffPow(f) ≤ dd+1

2 e and we the
inequality is strict for a generic f . In the multivariate setting, it would be interesting
to obtain upper bounds for AffPow(f) (different from those that can be directly de-
rived from upper bounds for Waring(f) as in Proposition 1.2.1) and to determine the
value(s) of AffPow(f) for generic polynomials.
We prove in Proposition 5.3.9 that whenever a bivariate polynomial f(x1, x2) is a
sum of two univariate ones g1(x1), g2(x2), one can construct an optimal expression
of f in Model 1 by gathering the (univariate) optimal expressions of f1 and f2 and
putting together the terms of degree 1. We do not know if this phenomenon is also
true for polynomials in more than two variables that can be written as a sum of
univariates. Even more generally, we wonder if whenever f(X) ∈ F[X] can be
expressed as a sum of two polynomials g1, g2 in disjoints set of variables, then an
optimal expression for f in Model 1 can be built up from the optimal expressions of
g1 and g2 by just putting together the terms of degree 1. This could be seen as an
analog of Strassen’s conjecture for the symmetric tensor rank, which can be stated as

6. Conclusion 106

follows: rank is additive on the sum of forms in different sets of variables (see [68]).
Our result should be compared with [19, Theorem 5.6], where the authors prove the
conjecture for homogeneous polynomials in four variables that can be written as a
sum of two bivariate ones.

Intermediate models. As pointed out in Section 1.2, one could study simpler mod-
els as an intermediate step. Although there are already open problems for the Waring
and Sparsest Shift models, it could be interesting to study intermediate models be-
tween these models and the affine power model. In Remark 1.2.2, we introduced the
notions of generalized Waring expression and gave several interesting open questions
that we did not investigate in this work. Similarly, one could define an intermediate
model by placing an upper bound k on the number of distinct shifts. This would
provide a smooth interpolation between the Sparsest Shift model (where k = 1) and
Model 2, where k = s.

7
Bibliography

[1] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four.
In Foundations of Computer Science (FOCS), pages 67–75, 2008.

[2] James Alexander and André Hirschowitz. Polynomial interpolation in several
variables. Journal of Algebraic Geometry, 4(2):201–222, 1995.

[3] Farid Alizadeh, Jean-Pierre A. Haeberly, and Michael L. Overton. Primal-
dual interior-point methods for semidefinite programming: Convergence rates,
stability and numerical results. SIAM Journal on Optimization, 8(3):746–768,
1998.

[4] Vladimir Arnold. Lectures on Partial Differential Equations. Springer, 2004.

[5] K Atkinson and A Sharma. A partial characterization of poised Hermite-
Birkhoff interpolation problems. SIAM Journal on Numerical Analysis,
6(2):230–235, 1969.

[6] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proc. 20th annual ACM Symposium on Theory of
Computing, pages 301–309, 1988.

[7] A. Białynicki-Birula and A. Schinzel. Representations of multivariate polyno-
mials by sums of univariate polynomials in linear forms. Colloquium Mathe-
maticum, 112(2):201–233, 2008.

[8] Mats Boij, Enrico Carlini, and A Geramita. Monomials as sums of pow-
ers: the real binary case. Proceedings of the American Mathematical Society,
139(9):3039–3043, 2011.

[9] A. Borodin and P. Tiwari. On the decidability of sparse univariate polynomial
interpolation. In Proceedings of the Twenty-second Annual ACM Symposium
on Theory of Computing, STOC ’90, pages 535–545, New York, NY, USA,
1990. ACM.

107

7. Bibliography 108

[10] Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Grégoire Lecerf,
Bruno Salvy, and Eric Schost. Algorithmes Efficaces en Calcul Formel.
published by the Authors, 2017. Open access book on https://hal.
archives-ouvertes.fr/AECF/.

[11] Alin Bostan, Frédéric Chyzak, Grégoire Lecerf, Bruno Salvy, and Éric Schost.
Differential equations for algebraic functions. In Proceedings of the 2007 In-
ternational Symposium on Symbolic and Algebraic Computation, ISSAC ’07,
pages 25–32, New York, NY, USA, 2007. ACM.

[12] Alin Bostan and Philippe Dumas. Wronskians and linear independence. The
American Mathematical Monthly, 117(8):722–727, 2010.

[13] Jerome Brachat, Pierre Comon, Bernard Mourrain, and Elias Tsigaridas.
Symmetric tensor decomposition. Linear Algebra and its Applications,
433(11):1851 – 1872, 2010.

[14] Maria Chiara Brambilla and Giorgio Ottaviani. On the Alexander –Hirschowitz
theorem. Journal of Pure and Applied Algebra, 212(5):1229–1251, 2008.

[15] M. Bôcher. The theory of linear dependence. The Annals of Mathematics,
2:81–96, 1900.

[16] P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory.
Springer, 2000.

[17] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory.
Springer, 1997.

[18] Enrico Carlini. Reducing the number of variables of a polynomial. In Alge-
braic geometry and geometric modeling, Math. Vis., pages 237–247. Springer,
Berlin, 2006.

[19] Enrico Carlini, Maria Virginia Catalisano, and Luca Chiantini. Progress on
the symmetric Strassen conjecture. J. Pure Appl. Algebra, 219(8):3149–3157,
2015.

[20] Gonzalo Comas and Malena Seiguer. On the rank of a binary form. Foundations
of Computational Mathematics, 11(1):65–78, 2011.

[21] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Undergrad-
uate Texts in Mathematics. Springer, 1992.

[22] E. de Klerk. Aspects of Semidefinite Programming. Kluwer Academic Publish-
ers, The Netherlands, 2002.

[23] K. Efremenko, A. Garg R. de Oliveira, and A. Wigderson. Barriers for rank
methods in arithmetic complexity. arXiv preprint arXiv:1710.09502 [cs.CC],
2017.

https://hal.archives-ouvertes.fr/AECF/
https://hal.archives-ouvertes.fr/AECF/

109

[24] Klim Efremenko, J M. Landsberg, Hal Schenck, and Jerzy Weyman. The
method of shifted partial derivatives cannot separate the permanent from the
determinant. Mathematics of Computation, 87(312):2037–2045, 2018.

[25] S.M. Engdahl and A.E. Parker. Peano on wronskians: A trans-
lation. http://www.maa.org/publications/periodicals/convergence/peano-on-
wronskians-a-translation-introduction.

[26] I. Fischer. Mathematics Magazine, volume 67, chapter Sums of like powers of
multivariate linear forms, pages 59–61. Taylor & Francis, Ltd. on behalf of the
Mathematical Association of America, 1994.

[27] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan.
Lower bounds for depth 4 formulas computing iterated matrix multiplication.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
pages 128–135. ACM, 2014.

[28] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinievasan.
Lower bounds for depth 4 formulas computing iterated matrix multiplication.
SIAM J. Comput, 44(5):1173–1201, 2015.

[29] Ignacio García-Marco and Pascal Koiran. Lower bounds by Birkhoff interpo-
lation. Journal of Complexity, 39, 07 2015.

[30] Ignacio García-Marco, Pascal Koiran, and Timothée Pecatte. Reconstruction
algorithms for sums of affine powers. arXiv preprint arXiv:1607.05420, 2016.
Conference version in: Proceedings of the 2017 ACM on International Sym-
posium on Symbolic and Algebraic Computation, ISSAC ’17, pages 317–324,
2017.

[31] Ignacio García-Marco, Pascal Koiran, and Timothée Pecatte. On the linear
independence of shifted powers. Journal of Complexity, 45:67–82, 04 2018.

[32] Ignacio García-Marco, Pascal Koiran, and Timothée Pecatte. Polynomial
equivalence problems for sums of affine powers. accepted at ISSAC’ 18, 2018.

[33] Mark Giesbrecht and Daniel S. Roche. Interpolation of shifted-lacunary poly-
nomials. Comput. Complex., 19(3):333–354, September 2010.

[34] John Hilton Grace and Alfred Young. The algebra of invariants. Cambridge
Library Collection. Cambridge University Press, Cambridge, 2010. Reprint of
the 1903 original.

[35] Dima Grigoriev and Marek Karpinski. A zero-test and an interpolation algo-
rithm for the shifted sparse polynomials. In Gérard Cohen, Teo Mora, and Oscar
Moreno, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes, pages 162–169, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

7. Bibliography 110

[36] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Ap-
proaching the chasm at depth four. In Proceedings of the Conference on Com-
putational Complexity (CCC), 2013.

[37] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, 1991.

[38] Anthony Iarrobino and Vassil Kanev. Power Sums, Gorenstein Algebras, and
Determinantal Loci. Springer, 1999.

[39] Joachim Jelisiejew. An upper bound for the Waring rank of a form. Archiv der
Mathematik, 102(4):329–336, Apr 2014.

[40] E. Kaltofen and B. Trager. Computing with polynomials given by black boxes
for their evaluations: Greatest common divisors, factorization, separation of
numerators and denominators. Journal of Symbolic Computation, 9(3):301–
320, 1990.

[41] N. Kayal. An exponential lower bound for the sum of powers of bounded degree
polynomials. Electronic Colloquium on Computational Complexity (ECCC),
2012.

[42] N. Kayal, P. Koiran, T. Pecatte, and C. Saha. Lower bounds for sums of pow-
ers of low degree univariates. In Proc. 42nd International Colloquium on Au-
tomata, Languages and Programming (ICALP 2015), part I, LNCS 9134, pages
810–821. Springer, 2015. Available from http://perso.ens-lyon.fr/
pascal.koiran.

[43] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial
equivalence problem. In Symposium on Discrete Algorithms (SODA), pages
1409–1421. Society for Industrial and Applied Mathematics, January 2011.

[44] Neeraj Kayal. Affine projections of polynomials. In Proceedings of the 44th
Annual ACM Symposium on Theory of Computing, pages 643–662. ACM,
2012.

[45] Neeraj Kayal and Chandan Saha. Lower bounds for depth three arithmetic
circuits with small bottom fanin. In Proceedings of the 30th Conference on
Computational Complexity, pages 158–182, 2015.

[46] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial
lower bound for regular arithmetic formulas. In Proceedings of the forty-sixth
annual ACM symposium on Theory of computing, pages 146–153, 2014. STOC
’14.

[47] Neeraj Kayal and Ramprasad Saptharishi. A Selection of Lower Bounds for
Arithmetic Circuits, pages 77–115. Springer International Publishing, Cham,
2014.

http://perso.ens-lyon.fr/pascal.koiran
http://perso.ens-lyon.fr/pascal.koiran

111

[48] J. Kleppe. Representing a homogeneous polynomial as a sum of powers
of linear forms. Thesis for the degree of Candidatus Scientarum (Univer-
sity of Oslo), 1999. Available at http://folk.uio.no/johannkl/
kleppe-master.pdf.

[49] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 4:
Generating All Trees–History of Combinatorial Generation (Art of Computer
Programming). Addison-Wesley Professional, 2006.

[50] P. Koiran. Arithmetic circuits: the chasm at depth four gets wider. Theoretical
Computer Science, 448:56–65, 2012. arxiv.org/abs/1006.4700.

[51] Pascal Koiran. Shallow circuits with high-powered inputs. CoRR,
abs/1004.4960, 2010. Innovations in Computer Science.

[52] Pascal Koiran, Natacha Portier, and Sébastien Tavenas. A Wronskian approach
to the real τ -conjecture. Journal of Symbolic Computation, 68(2):195–214, 05
2015.

[53] Mrinal Kumar and Shubhangi Saraf. The limits of depth reduction for arith-
metic formulas: It’s all about the top fan-in. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, pages 136–145. ACM, 2014.

[54] Y. N. Lakshman and B. David Saunders. Sparse shifts for univariate polyno-
mials. Applicable Algebra in Engineering, Communication and Computing,
7(5):351–364, 1996.

[55] Joseph M Landsberg and Zach Teitler. On the ranks and border ranks of sym-
metric tensors. Foundations of Computational Mathematics, 10(3):339–366,
2010.

[56] H.W.. Lenstra, A.K. Lenstra, and L. Lovász. Factoring polynomials with ratio-
nal coefficients. Mathematische Annalen, 261:515–534, 1982.

[57] G. Lorentz and S. Riemenschneider. Probabilistic approach to Schoenberg’s
problem in Birkhoff interpolation. Acta Mathematica Hungarica, 33(1-2):127–
135, 1979.

[58] George G Lorentz, Kurt Jetter, and Sherman D Riemenschneider. Birkhoff in-
terpolation, volume 19 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 1984.

[59] G. Labahn M. Giesbrecht and W.-S. Lee. Symbolic-numeric sparse interpola-
tion of multivariate polynomials. Journal of Symbolic Computation, 44(8):943–
959, 2009.

[60] W. Lee M. Giesbrecht, E. Kaltofen. Algorithms for computing sparsest shifts of
polynomials in power, chebyshev and pochhammer bases. Journal of Symbolic
Computation, 36(3-4):401–424, 2003.

http://folk.uio.no/johannkl/kleppe-master.pdf
http://folk.uio.no/johannkl/kleppe-master.pdf
http://arxiv.org/abs/1006.4700

7. Bibliography 112

[61] N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via partial
derivatives. Computational Complexity, 6(3):217–234, 1996. Conference ver-
sion in FOCS’95.

[62] Luke Oeding and Giorgio Ottaviani. Eigenvectors of tensors and algorithms for
waring decomposition. Journal of Symbolic Computation, 54:9 – 35, 2013.

[63] G. Polya and G. Szego. Problems and Theorems in Analysis, volume II.
Springer, 1976.

[64] Berkowitz S. On computing the determinant in small parallel time using a small
number of processors. Information Processing Letters, 18:147–150, 1984.

[65] Alexander Schrijver. Theory of linear and integer programming. Wiley-
Interscience Series in Discrete Mathematics. John Wiley & Sons, Ltd., Chich-
ester, 1986. A Wiley-Interscience Publication.

[66] J. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the ACM, 27(4):701–717, 1980.

[67] Yaroslav Shitov. How hard is the tensor rank? arXiv preprint
arXiv:1611.01559, 2016.

[68] Volker Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., 264:184–
202, 1973.

[69] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth
3. Mathematical Foundations of Computer Science (MFCS), pages 813–824,
2013.

[70] L. G. Valiant. Completeness classes in algebra. In Proceedings of the 11th
Annual STOC, pages 249–261, 1979.

[71] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computa-
tion of polynomials using few processors. SIAM, 12(4):641––644, 1983.

[72] M Voorhoeve and A.J Van Der Poorten. Wronskian determinants and the zeros
of certain functions. Indagationes Mathematicae (Proceedings), 78(5):417 –
424, 1975.

[73] R. Zippel. Probabilistic algorithms for sparse polynomials. Symbolic and Al-
gebraic Computation, pages 216–226, 1979.

	Introduction
	Table of contents
	Prolegomena
	Algebraic complexity: an introduction
	Valiant's complexity classes
	Restricted arithmetic circuit classes and depth reduction
	The quest for new techniques

	Waring and Sparsest Shift models
	Waring decompositions
	Sparsest Shift

	Structural results and model comparisons
	The real case
	Uniqueness and field extension
	Orthogonality

	Fields of characteristic zero
	The Wronskian and linear independence
	Uniqueness and field extension
	Largest exponent in optimal expressions
	Orthogonality

	Lower bounds and linear independence
	Shifted Differential Equations
	Definition
	Roots of coefficients of a differential equation
	Smallest SDE

	Lower bounds
	Potential usefulness
	Hard polynomials
	Extension and limitations

	Linear independence
	The real case
	The complex case
	Genericity and linear independence

	Dimension lower bounds
	The real case
	The complex case

	Reconstruction algorithms
	Algorithms for distinct nodes
	Big exponents
	Low rank

	Algorithms for repeated nodes
	Small intervals
	Big gaps

	Multivariate reconstruction algorithms
	Preliminaries
	Algorithmic preliminaries
	Essential variables

	From reconstruction to polynomial equivalence
	Algorithm overview
	Quadratic polynomials
	Linear terms in an optimal expression
	Wrapping up : the algorithm

	Repeated affine forms
	Decomposing a polynomial as sum of univariates
	The bivariate case

	Allowing more affine forms
	Higher order Hessian
	The bivariate case
	The general case

	Univariate projections
	Uniqueness
	Univariate projections

	Conclusion
	Bibliography

