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Abstract

A powerful probe of the physics at play in the early universe is the Cosmic Microwave
Background (CMB). Its anisotropies have been measured recently with high precision by
the Planck satellite. These measurements are in agreement with the predictions of inflation,
a theory describing a period of fast and accelerated expansion in the early universe. To
discriminate between the different inflation models, it is important to look for deviations
from Gaussianity of the CMB anisotropies (i.e. non-Gaussianity). This thesis is devoted to
the study of non-Gaussianity of the bispectral type (related to the three-point correlation
functions) parametrized by its amplitude parameters fNL, both from the theoretical and
observational points of view.

After an introductory part on standard cosmology, the second part of the thesis de-
scribes the method of the binned bispectrum estimator, used to extract information about
non-Gaussianity from CMB measurements. In order to recover information about the pri-
mordial universe, one has to clean observational data from the contamination caused by
galactic foregrounds. We verify the results at the bispectral level. Numerical templates
for the temperature bispectra of several galactic foregrounds are determined using data
from the 2015 Planck release. These templates are then used to perform joint analyses on
raw sky and CMB temperature data maps, to improve the determination of the amount of
primordial non-Gaussianity.

In the third part, the level of bispectral non-Gaussianity produced in two-field inflation
models with standard kinetic terms is investigated using the long-wavelength formalism. It
is important to better understand what regions of inflation model space have been ruled
out by Planck. We apply a newly derived expression for fNL to the case of a sum potential
and show that it is very difficult to satisfy simultaneously the conditions for a large fNL

and the observational constraints on the spectral index ns. In the case of the sum of two
monomial potentials and a constant we explicitly show in which small region of parameter
space this is possible, and we show how to construct such a model. Finally, we also use the
new expression for fNL to show that for the sum potential, the explicit expressions remain
valid even beyond the slow-roll approximation.
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Matarrese for reviewing this manuscript, and Christos for accepting to be the president of
the jury. I could not thank enough my advisor Bartjan here. We started to work together
six years ago, a long time before the beginning of my PhD and I appreciated tremendously
this collaboration, which, I think, has been very fruitful. I hope it can continue. My un-
derstanding of the physics at play in the CMB and in the primordial universe would not
have been the same without his guidance and our numerous very useful discussions.
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Je remercie aussi Gaëtan, JL, Jerem, Nathan et Flo, après tous ces moments sur Cryp-
tocat (et pas que) ! Mais aussi Antoine, Johan et Rémi, ainsi que Laure et sa redéfinition
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Chapter 1

Introduction

A hundred years of observations and theoretical works have refined the standard model of
cosmology describing our universe’s history and content. In the very early universe, there is
a period of rapid and accelerated expansion called inflation [179, 96, 132]. It solves several
issues of the pre-inflationary standard cosmology like the horizon and the flatness problems.
More remarkably, inflation gives an explanation for the origin of the primordial cosmological
perturbations which are the seeds of the large-scale structure of the universe observed today.

There is an almost direct observational window on these tiny primordial fluctuations: the
temperature and polarization anisotropies of the Cosmic Microwave Background (CMB), which
is the oldest electromagnetic radiation in the universe emitted when the primordial plasma
became transparent. Multiple missions have mapped the sky in the microwave range and the
most recent results come from the Planck mission [13, 15]. Like its predecessors, Planck found
no disagreement with the basic inflationary predictions: the distribution of primordial density
perturbations is almost but not exactly scale-invariant and is consistent with Gaussianity.
Moreover, the Planck satellite significantly improved the constraints on any potential deviations
from a Gaussian distribution (i.e. on non-Gaussianity) [14].

When determining cosmological parameters of primordial origin using precise CMB mea-
surements, one of the main issues is that several foregrounds of galactic (e.g. dust) or extra-
galactic (e.g. radio point sources) origin also emit in the microwave range. This required the
development of many techniques (see [8, 9, 16] and references therein) to clean the observational
data from these different sources of contamination.

If the CMB were Gaussian, all the information would be encoded in the power spectrum,
which is related to the two-point correlation function of the CMB temperature/polarization
fluctuations. The power spectrum is parametrized by two important observables from the
point of view of inflation: its amplitude As and the spectral index ns that describes its slope,
or in other words the deviation from exact scale invariance. Primordial non-Gaussianity is
generally parametrized by the amplitude parameters fNL of a number of specific bispectrum
shapes that are produced in generic classes of inflation models. The bispectrum is related
to the three-point correlator of the CMB anisotropies. It is known to be unobservably small
[141] for the simplest inflationary model: standard single-field slow-roll inflation. However, this
result is not general, meaning that current observations can in principle be used to constrain
more complicated inflationary models. One popular extension of inflation which can produce
non-Gaussianity is so-called multiple-field inflation, where the expansion is driven by several
scalar fields.

In this thesis, the topic of primordial non-Gaussianity is studied from two different points
of view. The first is the estimation of bispectral non-Gaussianity in observational data of
the CMB anisotropies (Planck). It is a continuation of the work on the binned bispectrum
estimator [43, 42], used for the official Planck analysis [11, 14]. We are interested in studying

2



3 Chapter 1. Introduction

the contamination of the primordial signal due to several galactic foregrounds (mainly the
dust) and determining (numerical) bispectrum templates for them. Even if the bispectrum is
not ideal to describe the non-Gaussianity of the galactic foregrounds because they are very
anisotropic (it would be better to work in pixel space instead of harmonic space), it is exactly
what we need to understand their impact on the determination of the primordial shapes. The
main aim is to verify if it is possible to detect these foregrounds in raw sky observations or
some residual of them in cleaned CMB maps.

The second and main work concerns multiple-field inflation, where local non-Gaussianity
can be produced on super-horizon scales. Its aims are threefold. The first is a continuation
of the work on the long-wavelength formalism [163, 162, 164, 191, 192, 189], used to compute
the non-Gaussianity parameter fNL. We derive a new formulation for the expression of fNL

and discuss its consequences for certain classes of potentials. Since Planck has excluded the
possibility of large local non-Gaussianity (of order 10), the reader might wonder what the
interest is of looking for models with large non-Gaussianity. However, it is very important
in order to understand if Planck actually ruled out any significant parts of the multiple-field
model space, or if these models generically predict small non-Gaussianity. Moreover, an fNL

of order 1, which we will consider as large, has not yet been ruled out by Planck but might be
observable by the next generation of experiments.

The second aim is to understand if it is possible to have large non-Gaussianity while stay-
ing within the slow-roll approximation. We also take into account the constraints from Planck
on the other inflationary observables, in particular ns. And it turns out that satisfying the
observational constraints on ns while having a large fNL and staying within the slow-roll ap-
proximation is very hard. In the case of a sum of two monomial potentials and a constant we
explicitly work out the region of the parameter space (in terms of the powers of the two poten-
tials) where this is possible. Note that we assume everywhere that the isocurvature mode has
disappeared by the end of inflation. Otherwise it would be easy to get large non-Gaussianity
by ending inflation in the middle of a turn of the field trajectory, but we feel that in that case
the results at the end of inflation would be meaningless, since they could not be extrapolated
to the time of recombination and the CMB without properly treating the end of inflation and
the consecutive period of (p)reheating.

Finally, the third aim is to understand the, at first sight very surprising, numerical obser-
vation that even in the case where the slow-roll approximation is broken during the turn of
the field trajectory, the analytical slow-roll expression for fNL is often still a very good ap-
proximation of the final exact result. It turns out that we can understand this using the new
formulation mentioned above. In that formulation fNL is given by a differential equation and
the solution can be written as the sum of a homogeneous and a particular solution. As we will
show, the homogeneous solution can be given analytically in an exact form (without any need
of the slow-roll approximation), while the particular solution is negligible exactly in the regions
where slow roll is broken and we cannot compute it analytically.

The thesis is divided into three main parts. The first part introduces the cosmological
concepts necessary for this thesis. In chapter 2, we review the standard model of cosmology,
discussing the evolution of the homogeneous background and the thermal history of our universe
in the context of the Big Bang theory. The historical motivations for a period of inflation
in the early universe are discussed and finally the basic equations describing inflation are
given. In chapter 3, small fluctuations are added to this homogeneous background. We recall
some basic statistical concepts and we apply them to the Gaussian distribution of the CMB
anisotropies (valid at first order) decomposed using spherical harmonics. We then recall the
main inflationary results of first-order perturbation theory and we link them to the CMB
observations.

The second part focuses on the estimation of bispectral non-Gaussianity using Planck ob-
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servational data. Chapter 4 is an introduction to the topic. The quantities of interest (e.g. bis-
pectrum) are defined. The derivation of the weakly non-Gaussian probability density function
is discussed using the Edgeworth expansion. The method of the binned bispectrum estimator
is also reviewed. In chapters 5 and 6, our data analysis results using the binned bispectrum
estimator on data from the 2015 Planck release are presented. In chapter 5, several galactic
foregrounds are studied at the bispectral level. The newly determined templates from these
foregrounds are then applied to several CMB maps (Gaussian simulations and real data) in
chapter 6.

The third part of this thesis concerns the generation of non-Gaussianity in two-field inflation.
In chapter 7 we define the slow-roll parameters and other quantities used in the rest of the thesis.
It also recalls the main steps of the long-wavelength formalism, in particular the expressions for
the different observables. This chapter is also where we derive the new formulation mentioned
above. In chapter 8, we treat the slow-roll results mentioned in aim two above. It uses
increasing levels of approximation. First, the slow-roll approximation is discussed. Then we
add the hypothesis that the potential is sum-separable to solve the Green’s function equations
and to obtain simple expressions for the observables. Then they are applied to the specific
class of monomial potentials, where the effects of the spectral index constraint on the region of
the parameter space where fNL is large are computed. In chapter 9, we keep the sum-separable
potential hypothesis to compute fNL beyond the slow-roll approximation. Two different types
of generic field trajectories with a turn are discussed. We show that in the end the slow-roll
expression from the previous section also gives a very good approximation of the exact result
for fNL in this case. Chapter 10 contains several specific examples to illustrate the different
results of this part of the thesis. The method to build a monomial potential that produces a
large fNL while satisfying all constraints is detailed, while some examples from the literature
are also discussed. Each time we compare the exact numerical results in the long-wavelength
formalism to the approximated analytic expressions derived in this thesis. Finally we conclude
in chapter 11, while some additional details are treated in the appendices.



Chapter 2

Standard model of cosmology

At the foundations of modern cosmology, there are several important observations:

• The universe is homogeneous and isotropic when viewed on sufficiently large scales (> 100
Mpc).1

• The universe is not static, it is in expansion.

• The universe is filled by a thermal bath of photons at a temperature of around 3K.

• The matter is distributed in a structured way from stars to superclusters containing
thousands of galaxies, each of these galaxies containing themselves billions (or more)
stars. These structures were formed over time by gravitational collapse.

• In the past, the matter distribution was much more homogeneous and isotropic.

In this chapter, we will develop the three first points further to describe the behaviour
of the universe as a whole. General relativity is the usual framework to study its evolution.
We will start by reviewing the background theory of Friedmann-Lemâıtre-Roberston-Walker
(FLRW) universes. This is followed by a discussion about the thermal history of our Universe
in the context of the Big Bang theory motivated by the expansion, with a focus on the cos-
mic microwave background. This will provide several motivations for a period of exponential
expansion in the very early universe, called inflation. In the last section, we recall the main
elements of the theory of inflation with a focus on the background, using the basic equations
of scalar-field cosmology and introducing the notion of slow-roll.

The two last points require to go beyond the description of the universe presented in this
chapter, as they concern local fluctuations in the homogeneous background. The main goal of
this thesis is to study the generation of the tiny primordial inhomogeneities and anisotropies
and the methods to study their observations. This will be developed in detail starting in
chapter 3. However, the formation of structures afterwards, a very rich domain of cosmology,
is beyond the scope of this thesis.

Many lectures and textbooks are available to study modern cosmology. To cite only a few of
them, a great introduction can be found in [128] while for more details, many recent textbooks
like [64, 149, 198, 157] can be consulted by the reader.

1The megaparsec (≈ 3× 106 light-years ≈ 3.1019 km) is the standard unit of distance in cosmology.
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6 Chapter 2. Standard model of cosmology

2.1 Background theory

2.1.1 Some elements of general relativity

General relativity describes the link between the geometry of the universe and its content. We
start by recalling a few formal definitions of geometric quantities.

The invariant square of an infinitesimal line element is given by

ds2 = gµνdxµdxν , (2.1)

where we use the standard summation convention and gµν is the metric tensor, the fundamental
object of study in general relativity. It describes the geometric structure of space-time. We
can then introduce the Christoffel symbols

Γλµν =
1

2
gλα (∂µgνα + ∂νgµα − ∂αgµν) . (2.2)

They are needed to define the covariant derivative Dµ, the correct differentiation operator for
parallel transport on a curved manifold

DµA
ν = ∂µA

ν + ΓνµλA
λ. (2.3)

Another key quantity to characterize a curved manifold is the Riemann tensor

Rµ ναβ = ∂αΓµνβ − ∂βΓµνα + ΓµσαΓανβ − ΓµσβΓσνα (2.4)

and in particular the tensor constructed by contraction of two indices

Rµν = Rλ µλν , (2.5)

known as the Ricci tensor and its trace

R = Rµνg
µν , (2.6)

called the Ricci scalar. They measure the curvature of the manifold, so in general relativity it
corresponds to the change from Minkowski space.

Finally, it is convenient to combine these definitions to form the Einstein tensor

Gµν = Rµν −
1

2
Rgµν , (2.7)

of which the covariant derivative is conserved (Bianchi identities)

DµG
µν = 0. (2.8)

We will now apply these few definitions to discuss the standard model of cosmology.

2.1.2 Cosmological background

An homogeneous and isotropic universe is described by the Friedmann-Lemâıtre-Roberston-
Walker (FLRW) metric [87, 122, 166, 196]

ds2 = −N2(t)dt2 + a2(t)

(
dr2

1−Kr2
+ r2dΩ2

)
, (2.9)

where a(t) is the scale factor of the universe, the lapse function N(t) fixes the choice of time
coordinate (N = 1 for the cosmic time, N = a for the conformal time, etc.) and K is the
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rescaled spatial curvature of the Universe (it can take the values +1, 0 or -1 for a closed, flat
or open universe respectively).

The Einstein equation, which describes the interactions between the geometry (so how a
evolves in (2.9)) and the matter content [68, 69], follows from applying the action principle to

S =

∫
d4x

(
κ−2√−g

(
R

2
− Λ

)
+ Lm

)
, (2.10)

where κ is the inverse Planck mass defined by κ2 ≡ 8πG = 8π/M2
p , g is the determinant of

the metric, Lm is the matter Lagrangian and Λ is the cosmological constant. The Einstein
equation has the usual form

Gµν + Λgµν = κ2Tµν with Tµν ≡ −
2gµλ√
−g

δLm
δgλν

. (2.11)

More can be said about the form of the energy-momentum-stress tensor Tµν from the properties
of isotropy and homogeneity of the matter content. One can show that the most general
expression has to be diagonal

T00 = ρ(t), Tij = p(t)gij and T0i = 0, (2.12)

where ρ and p are the energy density and the pressure of the matter field.
Substituting this energy-momentum tensor and the metric (2.9) in the Einstein equation

(2.11), one obtains the Friedmann equation [87, 88] from the (00) component

H2 ≡ ȧ2

N2a2
=
κ2

3
ρ+

Λ

3
− K

a2
, (2.13)

where we introduced the Hubble parameter H. From the spatial components, we find

1

a

d

dt

(
ȧ

N

)
= −κ

2

6
(ρ+ 3p) +

Λ

3
⇐⇒ Ḣ

N
= −κ

2

2
(p+ ρ) +

K

a2
. (2.14)

Another important equation, not independent from the previous ones, is hidden in the Einstein
equations. It follows from the Bianchi identities (2.8) which imply the conservation of the
energy-momentum tensor DµT

µ
ν = 0. In our case it takes the form

ρ̇+ 3HN(ρ+ p) = 0. (2.15)

As we have only two independent equations for three unknowns (the scale factor, the energy
density and the pressure), it is standard to assume the following equation of state

p = wρ. (2.16)

In the case of a constant w, it is then easy to solve (2.15) to obtain the evolution of the energy
density as a function of the scale factor

ρ ∝ a−3(1+w). (2.17)

The solution of the Friedmann equation (2.13) (with K = 0 and Λ = 0) is then given by

a(t) ∝

{
eHt, if w = −1,

t
2

3(1+w) , otherwise.
(2.18)
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Equation of state Energy density Scale factor

Non-relativistic w = 0 ρ ∝ a−3 a ∝ t2/3

Relativistic w = 1
3 ρ ∝ a−4 a ∝ t1/2

Cosmological constant w = −1 ρ ∝ a0 a ∝ eHt

Curvature w = −1
3 ρ ∝ a−2 a ∝ t

Table 21: Solutions of equations (2.15) and (2.13) in the case K = 0 and Λ = 0 for non-
relativistic (or pressureless) matter, relativistic matter (radiation) and for fluids equivalent to
a cosmological constant or the curvature term.

Table 21 recalls the standard values of w for different types of matter and the associated
solutions for the energy density and the scale factor. As we will see in the next section, the
first three values correspond to the different cosmological eras.

We end this section with a few more useful definitions. Instead of working with the energy
density ρ, it is common to use the dimensionless density parameters Ω defined by

Ω ≡ ρ

ρcrit
, with ρcrit ≡

3H2

κ2
. (2.19)

It is then straightforward to define an ΩX for each type of matter (e.g. baryons, photons, etc.).
Following the same method on the other terms of Friedmann equation (2.13), we can define
similar parameters for the cosmological constant and the curvature

ΩΛ ≡
Λ

3H2
, ΩK ≡

K

(aH)2
, (2.20)

and the Friedmann equation can be rewritten as∑
X

ΩX + ΩΛ = 1 + ΩK . (2.21)

2.2 The Big Bang theory

In the previous section we reviewed the general equations describing the dynamics of FLRW
universes and the link with their matter content. Here we discuss how several different obser-
vations lead to the Big Bang theory.

2.2.1 Expansion and redshift

While the possibility of a universe in expansion was foreseen by Friedmann in the early 1920’s,
it was a few years later that both Lemâıtre [122] and Hubble [105] deduced from observations
that indeed our universe is expanding. They showed that in average other galaxies are moving
away from us with a recessional velocity obeying a simple law. It is proportional to the distance,
and known as Hubble’s law

vr = H0d, (2.22)

where H0 is the current value of the Hubble parameter as indicated by the subscript 0. The
Hubble constant is now measured to be around 70 km s−1 Mpc−1. Different types of observa-
tions can give us constraints on the exact value of H0, but there are currently tensions between
them.
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Observing that galaxies are receding from us was done by measuring the shift of the char-
acteristic lines of their spectra to larger wavelengths. The standard parameter to describe this
effect is the redshift z defined by

z =
λobs − λem

λem
, (2.23)

where λem and λobs are the wavelengths at emission and observation. The redshift is related
to the scale factor by

z + 1 =
a0

a
. (2.24)

Because of the expansion, the further away an observed object is, the more redshifted it will
be. Hence if the redshift is a good scale of distance (except for nearby objects which also have
a non-negligible peculiar velocity compared to their recessional one), it is also a good scale of
time. In cosmology it is common to use z as the time scale of the past events of our universe
as we will see in the next section.

2.2.2 Thermal history of the universe

Extrapolating the current expansion of our universe leads to the idea that in the past everything
was much closer so the universe was much denser and hotter up to a point where the scale factor
is zero and the temperature and the density are infinite. This singularity is called the Big Bang.
The Big bang theory is then the study of the cooling of the universe from that point until now.
In this section, we recall the main events, giving approximate time and energy scales, which
have occurred in the last 13.8 billions years (the estimated time that has elapsed since the Big
Bang). We focus on the early universe whose description is based on our understanding of the
physics at high energy scales, so the standard model of particle physics (for a complete and
recent review see [154]).

Beyond the standard model

Times before the Planck scale (10−43 s, 1019 GeV), are far beyond our scope because they
require a quantum theory of gravity. However, even at the end of the Planck era, the energy
was still orders of magnitude larger than the ones which are produced in the LHC (∼ 104 GeV).
This leaves plenty of time for new physics, like a period of inflation (see section 2.3) which could
have occurred around the GUT scale (10−37 s, 1016 GeV) when the strong interaction is believed
to have decoupled from the electroweak.

Quark era

It is only much later, a few picoseconds after the Big Bang, that we arrive at energy scales which
have been explored in particle accelerators. Heavy leptons and gauge bosons were disappearing
by decaying and annihilating. An important event of that epoch (around 100 GeV) is the sep-
aration of the electroweak interaction into the weak interaction and electromagnetism. At that
time the universe is mostly filled by a quark-gluon plasma where the quarks are asymptotically
free.

Hadron and lepton eras

When the universe was 10−6 s old (∼ 1 GeV), the quarks and the gluons finally bound together
thanks to the strong interaction to form hadrons. Those made up of three quarks like the
protons and the neutrons are called baryons. There were also mesons, which are constituted of
a quark and an antiquark. Most of the hadrons disappeared by annihilation with anti-hadrons
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or by decay and could not be reformed as the universe was still cooling down (the lightest
mesons are pions and have a mass of more than 100 MeV). The leptons started to dominate.

Another important event around that time was the decoupling of the neutrinos which
occurred ∼ 1 s after the Big Bang (1 MeV). This notion of decoupling is very important in the
early universe. Basically, it means that the energy scale of the universe became low enough for
the neutrinos to stop interacting with the rest of the primordial content (the rate of interaction
became smaller than the rate of expansion H). Since that time the neutrino density only
evolved with the expansion. Unfortunately this cosmic neutrino background, with a predicted
temperature of 1.95 K is far beyond the reach of our detectors (the solar neutrinos which have
an energy ∼ 1010 larger are already extremely hard to detect).

After that, the main reactions keeping the other species in equilibrium were the electron-
positron annihilation to and creation from photons. However, ∼ 6 s after the Big Bang (500
keV), the universe became to cold for the creation reaction to occur. Most of the lepton energy
was then transferred to photons and only 1/109 of the electrons survived.

Photon era

After 3 minutes (100 keV), the temperature was finally low enough for the first nuclei to form
from the remaining protons and neutrons. Even if free neutrons are unstable, their mean
lifetime of 900 seconds was several times larger than the age of the universe at that time,
so many neutrons produced during the hadron era were still present. Only light nuclei were
produced, starting with deuterium (1 proton + 1 neutron) and then helium with nothing
heavier than lithium and beryllium. This period is called primordial nucleosynthesis and the
first estimations of the distribution of the different nuclei were given by Gamow [89]. The fact
that we observe the predicted ratio of helium and hydrogen with an homogeneous distribution
on cosmological scales is one of the strong arguments for the Big Bang theory.

For all these energy scales we described (except maybe those beyond the standard model of
particle physics), it was relativistic matter that dominated. This is usually called the radiation
domination era. However, as we have seen in table 21, its energy density decreases like a−4.
Hence after some time, non-relativistic matter for which the energy density is evolving as a−3

will start to dominate.

Matter domination era

Indeed, there is much later a transition to the matter domination era which occurs at the
redshift zeq ∼ 3400, so around 50000 years after the Big Bang.

After that for many thousands of years, the photons were still in thermal equilibrium with
the plasma of ionized matter (light nuclei). This changed when the temperature was low enough
to form neutral atoms of hydrogen. This process is called recombination. Then the scattering
of photons by the free electrons (the main reaction keeping the photons in equilibrium with the
rest) became inefficient. This is called the decoupling of the photons and as the neutrinos earlier
they have since then traveled freely, only affected by the expansion (and also a little by the
different structures of matter that will appear later, as the universe is not fully transparent).
We can now observe these photons in the cosmic microwave background (see section 2.2.3)
which was emitted 380000 years after the Big Bang (zdec ∼ 1100). The surface defined by zdec

is often called the last scattering surface.
At recombination, the universe was still very homogeneous (relative fluctuations of order

10−5). It then took many millions of years to form observable structures by gravitational
collapse. It is in the core of the first stars that heavier elements started to be created by
nuclear fusion reactions (stellar nucleosynthesis). The oldest observed galaxies were formed
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only a few hundred million years after the Big Bang, at a redshift of more than 10. The
structures which are familiar to everyone appeared much later. Our own galaxy, the Milky
Way, acquired its characteristic form less than 10 billion years ago. The solar system was
formed around 4.6 billion years ago hence around the time the universe entered into another
era.

Dark energy domination era

One of the most surprising results of modern cosmology was the observation in 1998 by two
teams [156, 160] that the expansion of our universe is accelerating. The matter domination era
(during which the expansion was slowing) ended when the universe was around 9 billion years
old, at a redshift z ∼ 0.4. The dominant contribution comes from an unknown form of energy
called dark energy, with a negative pressure which could be a cosmological constant.

2.2.3 The Cosmic Microwave Background (CMB)

One of the main predictions of the Big Bang theory, which was first claimed by Alpher and
Herman in 1948 [21], is the presence of a thermal bath of photons at a temperature of a few
Kelvin. It was indeed detected in 1965 by Penzias and Wilson at 3.5 K [155] and they were
helped to make the link with the Big Bang theory [62]. This signal was then called the cosmic
microwave background (CMB). A recent review can be found in [41].

At the time of decoupling, the photons were in thermal equilibrium. That means that they
were distributed according to a Planck or blackbody spectrum whose intensity is given by

Iν =
4π

c2

ν3

e
hν

kBTγ − 1
, (2.25)

where h is Planck’s constant and kB is Boltzmann’s constant. An important property of
this distribution is that it remains a blackbody spectrum in a universe in expansion, with
the difference that the temperature is redshifted so a(t)Tγ(t) = Tγdecadec, meaning that the
current temperature is Tγ0 ≈ Tγdec/1100. Many other observations followed to refine the CMB
temperature measurement. They also found that the CMB is isotropic to a large extent, at the
exception of the dipole due to our relative velocity with respect to the last scattering surface.

Among the most important past missions, we have to mention the COBE satellite which
was launched in 1989, which gave us the most accurate measurements of the CMB blackbody
spectrum [144] characterized by the temperature

Tγ0 = 2.725± 0.001 K. (2.26)

More importantly, COBE went a step further with the first detection of temperature anisotropies
(see section 3.2 for their description) beyond the dipole [178], on large scales. Many models
of the primordial universe were ruled out at that time for predicting the wrong amount of
primordial fluctuations.

The satellite WMAP, which took data for nine years after being launched in 2001, brought
the precision of the measurements to another level by including many more scales [35, 34]. It also
measured the E-polarization of the CMB (more explanations later). WMAP observed the sky
in five different frequency channels (23, 33, 41, 61 and 94 GHz) using detectors passively cooled.
One of the main results of the mission was the detection of a small but statistically significant
deviation from scale-invariance for the spectrum of the anisotropies which was another strong
argument for inflation as we will see in section 3.3.

The most recent and accurate results for temperature and polarization anisotropies come
from the Planck mission [185, 7]. The satellite was launched in 2009, with a two times better
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angular resolution and ten times better sensitivity than WMAP. Planck observed the sky in
nine frequency channels (30, 44, 70, 100, 143, 217, 353, 545 and 857 GHz) with two different
instruments (LFI and HFI). LFI (Low Frequency Instrument) mapped the sky for four years
in the three lowest frequency bands, with a technology similar to WMAP. But HFI (High
Frequency Instrument) used cryogenically cooled (at 0.1 K) bolometers to observe the six other
frequency channels during two and a half years. All the Planck data is now public after the
two releases of 2013 and 2015. A new analysis should arrive soon with a better understanding
of the polarization systematics.

A successor to Planck has been proposed, called CORE (Cosmic Origins Explorer) [40, 83].
In part III, we will use forecasts of error bars on some parameters expected from this type of
experiment.

We mentioned previously the polarization of the CMB and this deserves a few clarifica-
tions. While it appeared unpolarized during the first observations, it also contains very small
fluctuations of polarization (in a similar way to the temperature anisotropies). The physical
origin of the CMB polarization is Thomson scattering of the photons on free electrons still
present before decoupling. There is a standard decomposition of the spin 1 field describing
polarization into the so-called E- and B-modes [110], similarly to the electric and magnetic
fields of electrodynamics. E-polarization is now well-mapped thanks to WMAP and Planck,
however primordial B-modes have not yet been detected and that will be one of the main
objectives of future CMB missions, like LiteBIRD [145] and CORE. In this thesis, we will not
use polarization data in the data analysis part II. Hence, we will not develop it further.

2.2.4 Λ-CDM

The Planck CMB observations, coupled to many other observations of more late-time effects
which we do not have the time to describe here, have refined our knowledge of the current
and past energy content of our universe. In this section, we will briefly describe the different
density parameters given in [13] (error bars correspond to the 68% limits).

Dark energy: ΩΛ0 = 0.6911± 0.0062

As mentioned at the end of section 2.2.2, observations of the recent acceleration of the expansion
of the universe (for a few billion years) indicates that the universe is dominated by dark energy,
which now represents nearly 70 % of its content.

Determining the nature of this unknown form of energy, which has a negative pressure
p ' −ρ, is one of the main challenges of modern physics. At the level of precision of the
observations, it is well described by the cosmological constant Λ (so p = −ρ) of the Einstein
equation (2.11). Quantum field theory even gives an explanation of its origin, it could be the
vacuum energy. However, computations show that the vacuum energy is 10120 times too large
to be the observed cosmological constant.

Several possibilities have been considered to solve the issue like proposing modifications of
general relativity (see the review [56] for example).

Non-relativistic matter: Ωm0 = 0.3089± 0.0062

The remaining 30 % are mostly non-relativistic (pressureless matter), which can themselves be
described into two components: Ωb and Ωc:

• Baryons: Ωb0h
2 = 0.02230± 0.000142

All the observable structures of our universe are made of baryons (protons and neutrons,

2h is the reduced Hubble parameter: H0 = 100h km s−1 Mpc−1.
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but we usually consider the electrons, which are a lot lighter, with them). They only
represent ∼ 5 % of the universe content.

• Cold dark matter: Ωc0h
2 = 0.1188± 0.0010

Plenty of evidence for the existence of an unknown form of matter called dark matter
has been found over the last decades. In 1933, Zwicky observed rapid motions of galaxies
which can not be explained by the luminous matter, he then proposed the existence
of dark matter to solve the problem of missing mass [206]. At the scale of a galaxy,
anomalies were observed in the galactic rotation curves [22, 167]. Dark matter plays a
very important role in the formation of the structures and comparison between the ones
observed today and N-body simulations favors cold dark matter (non-relativistic). Many
possibilities have been studied. For example there is the WIMP (Weakly Interacting
Massive Particle), a heavy particle that would interact with standard matter only via
gravity and weak interaction. Many experiments tried to detect them in the previous
decade, without success (see [85] for example, one of my previous works).

Relativistic Matter Ωr0 < 10−4

• Photons: Ωγ0 ' 5.35× 10−5

The photons which dominate the energy content in the early universe and we can now
observe in the CMB (see previous section) only constitute a tiny fraction of the total
energy density (and those emitted later, by stars for example, even less).

• Neutrinos: Ων0 = 1.25Nν × 10−5 (for massless neutrinos and Nν = 3)
As for the photons, the three known families of neutrinos which constitute the cosmic
neutrino background represent a very small fraction of the content of the universe. The
exact value is unknown as it depends on their mass which has not yet been measured (it
is known to be of order 0.1 eV at most). They have a measurable effect on the CMB
spectrum and on the formation of structures later (see [125, 33] for example).

The results presented in this section constitute the standard model of cosmology, often
called Λ-CDM as these two components contribute 95 % of the energy density of the universe.

2.2.5 Cosmological puzzles

While the Big Bang theory is extremely successful to describe and understand most of the ∼ 14
billion years of evolution of our universe, there are still a few problems. For example, the nature
of dark matter and dark energy, which together constitute most of the content of the universe,
is still unknown. However, here, we will focus on those which provide strong motivations for
inflation, the main topic of this thesis which we will define properly in the next section.

The horizon problem

Since our universe is only 14 billions years old, information from distant places had only a
limited amount of time to travel to us. However, because of the expansion it is not trivial to
find how remote two regions of space can be for causal contact to still have been possible. The
answer to this question is called the particle horizon which is given by

dH(t) = a(t)

∫ t

0

dt′

a(t′)
. (2.27)

Substituting into this the scale factor expressions given in table 21, one can show that in a flat
matter dominated universe we have dH(t) = 2

H(t) and in a a flat radiation dominated universe
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dH(t) = 1
H(t) . Hence, the quantity H−1, which is often called the Hubble scale (or length or

radius) is related to the notion of horizon for these universes. It is a good indication of the
current size of the observable universe.

During the radiation and matter dominated eras, the radius of a part of the universe
increases like a (∝ t1/2 or ∝ t2/3 for radiation and matter domination respectively), while the
particle horizon increases like H−1 (∝ t). So going backwards in time, the size of the now-
observable universe was larger than the particle horizon. There is then no apparent reason for
the universe to be homogeneous on the largest scales because causal contact was established
only recently. This is the horizon problem. At the time of the emission of the CMB, the
particle horizon was much smaller than the size of our now-observable part of the universe was
at that time. To illustrate the horizon problem, it is standard to compute the angular size of
the particle horizon on the last scattering surface, which is given by

θhor,CMB =

∫ trec
0

dt′

a(t′)∫ t0
trec

dt′

a(t′)

, (2.28)

where the numerator is the comoving particle horizon at the time of the emission of the CMB
and the denominator is the comoving distance from the last scattering surface to us. Including
the different matter contents we discussed in the previous section and the observed values
of their density parameters, it is possible to solve the integrals numerically. The well-known
answer is that θhor,CMB ∼ 1°, so the CMB is made of 104 causally disconnected patches. The
Big Bang theory does not provide an explanation for the homogeneity of the CMB on larger
scales.

A good indication of the solution to the horizon problem is that the numerator integral is
divergent if there is a period of accelerated expansion induced by a fluid with w < −1

3 before
the radiation domination epoch3, so in principle it is possible to have the particle horizon as
large as necessary to solve the horizon problem. This period of accelerated expansion, called
inflation, only lasts for a finite amount of time and usually does not start before the energy
scale is below the GUT scale, so we are not concerned with the divergence. In section 2.3.2,
we will compute explicitly the minimum required amount of inflation.

The flatness problem

Observations have shown that the contribution from curvature to the total energy density is
small today: |ΩK0 | < 0.005 [13], so the universe is very flat. Moreover, as we have seen in table
21, the curvature energy density decreases less rapidly than the radiation and matter ones. This
means that in the past, its contribution was even smaller. At the transition from the radiation
to the matter dominated era when non-relativistic matter becomes the main component, we

had |ΩK(zeq)| =
∣∣∣ΩK0

Ωm0

1
zeq

∣∣∣ . 5.10−6. Even earlier at the time of primordial nucleosynthesis

when relativistic matter (radiation) dominates, it was |ΩK(zPNS)| =

∣∣∣∣ΩK0
Ωr0

(
1

zPNS

)2
∣∣∣∣ . 10−18.

At the Planck scale, it should be even smaller than 10−63.
An obvious but fine-tuned solution would be to have a perfectly flat universe. However,

one can show that having a sufficiently long period where the matter content has an equation
of state with w < −1

3 also works. The idea is to have a period of the early universe where the
expansion is accelerated to flatten out any initial curvature of the universe.

3Note that in the case w = −1 (cosmological constant dominated cosmology), the lower bound of the integral
should be −∞ and not 0 to have a = 0 initially.
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Other problems

One other historic issue that led to the theory of inflation is the monopole problem. Grand
unified theories predict phase transitions in the very early universe that produce topological
defects like magnetic monopoles. These topological defects should now dominate the energy
content of our universe (their density evolves like a−3), yet they have never been observed. A
period of accelerated expansion after their production would dilute their distribution and could
explain why we have not detected them.

Another question in the Big Bang theory is how our universe can both be so homogeneous
and isotropic on the largest scales (with relative fluctuations of order 10−5) and still have
structures like galaxies and clusters on smaller scales. Again, the first issue is obviously solved
by a period of inflation that will erase any initial inhomogeneity. But more surprisingly, inflation
also provides an explanation for the origin of the small fluctuations on top of this homogeneous
background (see chapter 3).

As we have seen, many important issues of the Big Bang theory can be solved by a period
of accelerated expansion in the early universe. We will see how to describe inflation in the next
section.

2.3 Inflation

The basic concept of inflation is very simple, it is a period of very fast and very accelerated
expansion occurring in the very early universe. During such a period, the universe’s energy
content is dominated by one (or several) scalar field(s) with an almost constant potential energy
that has the effect of a cosmological constant. Inflation leaves the universe very cold and empty.
It has to be followed by a period of reheating during which standard matter is created from
the potential energy of the scalar field (see [114]).

The cosmology textbooks cited at the beginning of the chapter all contain detailed chapters
about inflation. There are also plenty of other materials purely focused on inflation, see for
example [32, 165, 123, 129, 173, 197].

2.3.1 History

Before recalling the basic equations of inflation, we start by doing a short review of historic
inflationary models.

The first cosmological model describing a period of exponential expansion in the very early
universe was rather complicated and used one-loop quantum corrections to the Einstein equa-
tions. It was proposed by Starobinsky [179] in 1979-1980. In 1981, Guth [96] proposed a simpler
model in which the scalar field is trapped in a local minimum of the potential provoking an
exponential expansion until it reaches the global minimum by quantum tunneling. He also
invented the term inflation and noticed that such a period would solve several remaining issues
of the Big Bang theory (i.e. flatness, horizon, etc., see section 2.2.5). His model known today
as “old inflation” did not provide enough reheating. Hence other models soon followed.

The “new inflation” model due to Linde [131], Albrecht and Steinhardt [19] introduced the
idea of a field slowly rolling down a potential hill inducing a nearly exponential expansion, the
basic idea for many other inflationary models developed later. However, their specific model
based on the SU(5) Coleman-Weinberg potential [57] was shown not to be compatible with
observational constraints. Then Linde noticed that an inflationary period could be produced
with simpler models (for example a quadratic potential) and called it chaotic inflation because
the scalar field has almost arbitrary initial conditions. Many usual standard single-field models
are included in this class of potentials.
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Different possibilities were later introduced like power-law inflation [134] or natural inflation
[86]. In hybrid inflation [133], there are two scalar fields, one responsible for inflation while the
other one plays a role at the end of inflation only.

In this thesis, we focus on two-field potentials and several examples will be provided in
chapter 10. But for now we will keep the simple case of one scalar field to discuss the basics of
inflation.

2.3.2 Scalar-field cosmology

To derive the equations describing inflation, we use again the FLRW metric (2.9) and the action
(2.10), but in a simple case. As inflation has the effect to make the universe flat and the scalar
field dominates the energy content, we can consider that the cosmological constant Λ and the
spatial curvature K are zero. Then the background equations of single-field inflation can be
obtained using the following matter Lagrangean

Lm =
√
−g
(
−1

2
gµν∂µ∂νφ− V (φ)

)
, (2.29)

where φ is the scalar field responsible for inflation (inflaton) and V is its potential. The energy-
momentum-stress tensor is then given by

Tµν = ∂µφ∂νφ− δµν
(

1

2
∂λφ∂λφ+ V (φ)

)
. (2.30)

Here we are discussing the background evolution of the universe, so we consider a scalar
field depending only on time (we will include spatial dependence later in chapter 3.3). In that
case, one can see that the energy density and pressure introduced in (2.12) are

ρ =
1

2

(
φ̇

N

)2

+ V (φ), p =
1

2

(
φ̇

N

)2

− V (φ), (2.31)

and it is straightforward to rewrite the Friedmann equations (2.13) and (2.14)

H2 =
κ2

3

1

2

(
φ̇

N

)2

+ V (φ)

 , Ḣ = −1

2
κ2

(
φ̇

N

)2

. (2.32)

The energy-momentum conservation equation (2.15) gives us the field equation

φ̈+

(
3HN − Ṅ

N

)
φ̇+N2∂V

∂φ
= 0. (2.33)

In general, these equations cannot be solved analytically and this will require using several
approximations as we will detail in part III.

We finish this section by showing how inflation can be used to solve the cosmological issues
introduced in section 2.2.5. For the horizon problem, it is required that a causal region at the
start of inflation is now at least as large as the observable universe so using comoving particle
horizons we have

1

a0H0
<

1

abeginHbegin
. (2.34)

Then the minimal amount of inflation is given by

aend

abegin
=
aend

a0

Hbegin

H0
=

T0

Tend

Hbegin

H0
, (2.35)



17 Chapter 2. Standard model of cosmology

where the first equality follows from (2.34) and the second one use the fact that the temperature
scales as the inverse of the scale factor. To evaluate this expression, some assumptions have
to be made. The typical energy scale for inflation is a bit below the GUT scale so we can use
M ∼ 1016 GeV with Hbegin ∼ κM2. Moreover, we suppose that all the scalar field energy is
used for reheating so Tend ∼ M . Then using the observed values of H0 and T0 given in the
previous section, one obtains

aend

abegin
∼ 1029κM ∼ e60. (2.36)

The minimum amount of inflation needed to solve the horizon problem is around 60 e-folds.
However, if the reheating temperature is lower, this value will vary between 50 - 60 e-folds
[130].

Moreover, the amount of inflation solving the horizon problem is also sufficient for the
flatness problem because ΩK ∝ (aH)−2 so having |ΩKbegin

| > |ΩK0 | gives the same condition
for the minimal amount of inflation

1

(abeginHbegin)2
>

1

(a0H0)2
. (2.37)

2.3.3 Slow roll

If the potential is almost flat and the field slowly rolls down, the kinetic terms are very small.
This means that certain terms in the equations can be neglected. To quantify this we can
introduce a set of slow-roll parameters.

The first parameter we will use is [58]

ε ≡ − Ḣ

NH2
=

κ2φ̇2

2(NH)2
. (2.38)

It is simply a comparison of the kinetic terms with the potential, hence it has to be very
small compared to one for the slow-roll approximation to be valid. However, it is not sufficient
because the field acceleration should also be small compared to the field velocity for the slow-roll
approximation to stay valid. For this, one can introduce the slow-roll parameters [94]

η(n) ≡ N

Hn−1φ̇

(
1

N

d

dt

)n−1
(
φ̇

N

)
, with n > 1. (2.39)

We are particularly interested in the function η ≡ η(2) which in the case of cosmic time (N = 1)
takes the more familiar form η = φ̈/(Hφ̇). It compares the field acceleration to the field velocity,
and in the slow-roll approximation it also has to be very small compared to one.

The parameters η and ε are first-order slow-roll parameters. We will also use later the
second-order parameter ξ ≡ η(3) (depending on

...
φ ) which is expected to be a lot smaller than

the first-order terms. This will be used to perform slow-roll expansions of several equations, in
order to be able to solve them analytically.

One can also take a derivative (2.38) and (2.39) to find

ε̇ = 2NHε(ε+ η), η̇(n) = NH
[
(ε− η)η(n) + η(n+1)

]
, (2.40)

where we can see that the time derivatives of the slow-roll parameters are one order higher
than the parameters themselves.

These definitions will be used in the next chapter, when we go beyond the description of
the homogeneous background during inflation and we add to it the small fluctuations which
are the seeds of the large scale structures we observe today.



Chapter 3

Gaussianity in the primordial
Universe

We observe that the Universe has structure. These structures have been formed over time by
gravitational collapse. This is confirmed by observations of the CMB which show that the
early universe was much more homogeneous and isotropic. More importantly, the very tiny
fluctuations of the CMB have been measured with a great accuracy (see figure 31). Their
statistical study is a gold mine of information about the primordial universe. One of the
main characteristics of these perturbations is that they follow a Gaussian distribution at first
order. Hence, we start the chapter by a short review of some basic elements of statistics which
can describe this property. Then, we apply them to the CMB, recalling its usual expansion
in spherical harmonics. We also explain how these small fluctuations have been generated
during a period of single-field inflation. We end the chapter by discussing the relation between
inflationary perturbations and CMB anisotropies.

-0.00115 0.00055K

Figure 31: Map of the CMB anisotropies from the 2015 Planck release.
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3.1 Some statistics

Statistics are the tool to extract information about a parent population from the properties of
an observed sample. That is why to deduce physical quantities from CMB observations, some
notions of statistics and estimation theory are needed. In this section, we provide the strict
minimum mandatory to follow the next chapters. For those who wish to go further, the book
[137] provides a very nice and complete introduction on the topic.

A random field φ is a set of N real or complex random variables φi, like for example
the harmonic coefficients a`m of the CMB (see section 3.2). With an observed sample, it is
important to have an estimate of the likelihood to get this exact sample. The tool for this job is
the probability density function p(φ) (PDF) of the parent random field. It gives the probability
for the random variables to be in a particular range of values and obviously satisfies∫

p(φ) dNφ = 1, (3.1)

where the integration is over all possible values of φ (dNφ is the Lebesgue measure). The
PDF is a positive function which plays an important role to find the expectation value of any
quantity f(φ)

〈f(φ)〉 =

∫
f(φ)p(φ) dNφ. (3.2)

In particular, 〈φ1〉 is the mean of the random variable φ1. It is also possible to define
correlation functions between two or more variables, for example the second-order correlation
functions between the components of a random field is called its covariance matrix

Cij = 〈(φ1 − 〈φ1〉)(φ2 − 〈φ2〉)〉. (3.3)

In the one-dimensional case, this is simply the well-known variance of the random variable.
A very important PDF, in general but also especially in this thesis, is the Gaussian distri-

bution which takes the following form for a single random variable φ

p(φ) =
1√

2πσ2
e−

(φ−µ)2

2σ2 . (3.4)

It is pretty easy to verify that µ is the mean and σ2 the variance.
Higher order correlations functions are defined similarly to (3.3). However, in the context

of the CMB, we are only really interested in second and third-order correlation functions for
the simple reason that for a Gaussian distribution, every odd order correlation function is zero
while higher even orders can be expressed by the two-point correlation function. The third-
order correlation function is then useful to describe a possible small deviation from Gaussianity,
this will be discussed in section 4.3.1.

In the case of the CMB, we have a lot of observational data and we also have a good idea
of the form of the PDF (close to a Gaussian distribution). We now need the tools to extract
unknown quantities characterizing the PDF. For this we introduce the likelihood p(φ, θ) which
is the probability to get φ for a certain value of the parameter θ. Estimation theory is the
method to deduce the value of θ from observational data and to determine the minimum
reachable error bars.

A first step is to define θ̂, an unbiased estimator of the unknown parameter θ, meaning
that θ̂ is a function of the experimental data set used to determine θ and that its expectation
value is the parameter itself 〈θ̂〉 =

∫
θ̂ p(φ, θ) dNφ = θ. One can then derive this equation with

respect to θ, and after interchanging the order of integration and differentiation one obtains∫
θ̂
∂p(φ, θ)

∂θ
dNφ =

∫
θ̂

1

p

∂p

∂θ
p dNφ =

∫
θ̂
∂ ln p

∂θ
p dNφ = 1. (3.5)
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We also need the very similar computation using the normalization condition (3.1)

θ
∂

∂θ

[∫
p(φ) dNφ

]
= θ

∫
1

p

∂p

∂θ
p dNφ =

∫
θ
∂ ln p

∂θ
p dNφ = 0. (3.6)

Combining these two results gives∫
(θ̂ − θ)∂ ln p

∂θ
p dNφ = 1. (3.7)

One can then apply the Cauchy-Schwarz inequality (u · v)2 ≤ u2v2 where the inner product is
u.v =

∫
uv p dNφ (and u2 = u · u) to verify that

1 ≤
(∫

(θ̂ − θ)2 p dNφ

)
×

(∫ (
∂ ln p

∂θ

)2

p dNφ

)
. (3.8)

It is easy to see that the first term inside parentheses is the variance of θ̂ noted Var(θ̂). The
second term is called the Fisher information F (θ) and is a very important notion of estimation
theory because it gives us a bound on the lower value of the variance possible for an estimator
with a certain PDF. (3.8) can be rewritten as

Var(θ̂) ≥ 1

F (θ)
, (3.9)

and is known as the Cramér-Rao bound. For the optimal estimator (in the sense that it has
the smallest error bars) this inequality becomes an equality.

For example, the Fisher information when determining the variance of a Gaussian distri-
bution is

F (σ2) =

∫ [
∂

∂θ

(
−1

2
ln(2π)− 1

2
ln(σ2)− (φ− µ)2

2σ2

)]2

p dNφ =
1

2σ4
. (3.10)

If the variance is determined from a sample of n independent random variables following the
same Gaussian distribution, this Fisher information becomes n

2σ4 .
In the next section, we will apply these notions to the CMB in the simple case of a Gaussian

distribution of the perturbations.

3.2 Gaussian statistics for the CMB

After this short section on the basics of estimation theory, it is important to introduce the
notation generally used to analyze observed CMB maps. These dimensionless maps gives the
fluctuations of physical quantities like temperature (∆T/T0) or polarization as functions of the
position Ω̂ on the celestial sphere S2. These functions can be decomposed using the spherical
harmonics Y`m

Mp(Ω̂) =

+∞∑
`=0

∑̀
m=−`

ap`mY`m(Ω̂), with Ω̂ = (θ, ϕ), (3.11)

which can be inverted to

ap`m =

∫
S2

dΩ̂Mp(Ω̂)Y ∗`m(Ω̂). (3.12)

The multipole ` is a positive integer while m can take the (2` + 1) values between −` and `.
The index p corresponds to either temperature T or polarization E and B. However, in this
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thesis we do not study the polarization, hence in the following pages we will omit this label
to lighten the notation. However, most analytical expressions given in this thesis concerning
observations of the temperature anisotropies could be at least generalized to E-polarization.

The spherical harmonics Y`m form a set of orthonormal functions on the 2D-sphere and are
given by

Y`m(θ, ϕ) = (−1)m

√
2`+ 1

4π

(`−m)!

(`+m)!
P`m(cos θ)eimϕ, (3.13)

where P`m are associated Legendre polynomials.
Orthonormality is described by the relation∫ π

θ=0

∫ 2π

ϕ=0
Y`m(θ, φ)Y ∗`′m′(θ, φ) sin θ dϕ dθ = δ``′δmm′ . (3.14)

The addition theorem of spherical harmonics states that

∑̀
m=−`

Y`m(Ω̂)Y ∗`m(Ω̂′) =
2`+ 1

4π
P`(Ω̂ · Ω̂′), (3.15)

where P` is a Legendre polynomial (they are linked with associated Legendre polynomials
P` = P`0) and Ω̂.Ω̂′ is a scalar product.

It can be shown that the complex conjugation of spherical harmonics is Y ∗`m = (−1)mY`−m.
As maps are real quantities, using (3.12) the same relation applies to the a`m coefficients

a∗`m = (−1)ma`−m. (3.16)

This means in particular that even if there are N different complex a`m (with N the number
of m and ` summed over), the number of independent real variables is only N . It is then
straightforward to use the general equations for PDF with real random variables.

Another expression will play an important role in part II, it is the Gaunt integral

Gm1m2m3
`1`2`3

=

∫
S2

dΩ̂Y`1m1(Ω̂)Y`2m2(Ω̂)Y`3m3(Ω̂) = h`1`2`3

(
`1 `2 `3

m1 m2 m3

)
, (3.17)

with

h2
`1`2`3 =

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)2

, (3.18)

where the terms inside parentheses are Wigner 3j-symbols. Because of them, the Gaunt integral
is non-zero only if the following conditions are respected

• m1 +m2 +m3 = 0,

• Parity condition: `1 + `2 + `3 is even, (3.19)

• Triangle inequality: |`1 − `2| ≤ `3 ≤ `1 + `2.

Other useful properties of the Wigner 3j-symbols are the identity relation

∑
m1m2m3

(
`1 `2 `3

m1 m2 m3

)2

= 1. (3.20)

and ∑
m

(−1)`−m

(
` ` L

m −m 0

)
=
√

2`+ 1δ`,0. (3.21)
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A main result of CMB observations is that fluctuations follow a Gaussian distribution (mul-
tivariate case of (3.4)) at first order. Hence, the probability density function of the harmonic
coefficients is

P (a) =
e
− 1

2

∑
`m,`′m′

a∗`mC
−1
`m,`′m′a`′m′√

(2π)NdetC
, (3.22)

where C`m,`′m′ = 〈a`ma∗`′m′〉 is the covariance matrix. If we add the hypothesis of statistical
isotropy, which is valid for the CMB itself, the covariance matrix becomes diagonal and the
PDF simplifies to

P (a) =
∏
`,m

1√
2πC`

e
− 1

2

|a`m|
2

C` , (3.23)

where C` is the angular power spectrum is given by

C` = 〈a`ma∗`m〉, C`m,`′m′ = C` δ``′δmm′ . (3.24)

Measuring CMB temperature anisotropies can then be used to determine unknown pa-
rameters in this PDF. One can show that the optimal estimator for the power spectrum is

Ĉ` =
1

2`+ 1

∑̀
m=−`

a`ma
∗
`m. (3.25)

It is obviously unbiased, 〈Ĉ`〉 = C` (sum of 2` + 1 independent variables) and one can show
that it saturates the Cramér-Rao bound (3.9) because the inverse of the Fisher information is
indeed equal to the variance1

Var(Ĉ`) =
2

2`+ 1
C2
` . (3.26)

This is called the cosmic variance as it is a fundamental uncertainty which limits strongly the
precision to which the power spectrum can be measured. It is due to the fact that we only
have one realization of the sky and its effect is stronger for low ` as there are fewer m.

Just describing the Gaussian nature of CMB anisotropies is not sufficient, it is also impor-
tant to understand from where comes this feature of primordial fluctuations. In the following
section, we discuss the standard scenario of single-field inflation which gives an explanation for
their origin.

3.3 Primordial fluctuations from standard single-field inflation

The theory of inflation does not only solve the different cosmological puzzles described in section
2.2.5, it also gives an explanation for the origin of the small fluctuations present in the CMB.
These are in fact quantum fluctuations of the scalar field(s) stretched to macroscopic scales by
the enormous amount of expansion. It is important to verify how they evolve during inflation
and after, until recombination.

A key quantity to discuss the evolution of perturbations is the Hubble scale H−1, describing
the size of the observable universe in later periods, but roughly constant during inflation.

1Following (3.10), the Fisher information is F (C`) = 2`+1
2C2

`
. For the computation of the variance, a simple

proof is to use the fact that 2`+1
C`

Ĉ` =
∑̀

m=−`

∣∣∣∣ a`m√C`

∣∣∣∣2 has a χ2 distribution with 2`+1 degrees of freedom (it is the

sum of the squares of 2`+1 Gaussian independent variables with a unit variance). The variance of this distribution
is a well-known result and is 2(2` + 1). Therefore, the variance of Ĉ` is Var(Ĉ`) = 2(2` + 1)( C`

2`+1
)2 = 2

2`+1
C2
`

and indeed Var(Ĉ`) = F (C`)
−1.
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Perturbations are generated on very small scales, with a wavelength a
k where k is the comoving

scale of the perturbation, initially a lot smaller than the Hubble length. The scale factor a
grows almost exponentially during inflation, which means that after some time, the wavelength
becomes larger than the Hubble scale when k = aH, this is called horizon-crossing. Then,
on super-Hubble scales (also called super-horizon), perturbations become frozen (under some
conditions fulfilled in standard single-field inflation), i.e. they stop to evolve. At later times,
during the radiation and matter dominated eras, it is the opposite situation and progressively
these frozen modes re-enter the horizon. This is why we can observe today these primordial
fluctuations almost directly in the CMB.

In this section, we will detail the generation of perturbations during a period of standard
single-field inflation, linking them with observable parameters. There is a large amount of work
on the topic in the literature, for earlier works see [180, 100, 97, 27] for example. More precise
computations can also be found in [182, 143, 171].

Observing only very small temperature and polarization fluctuations is the CMB is a very
good indication that the perturbations generated during inflation were small. Hence, the
method to study them is perturbation theory.

Fluctuations of the inflaton also have an influence on the metric, that is why one important
step is to find the perturbed version of the metric (3.27). In the literature, many different
formulations can be found. Here, we recall the basics of perturbation theory and give only the
terms we are interested in. The metric being a symmetric 4 × 4 matrix, it has ten degrees
of freedom, corresponding to four scalar functions (4 degrees), two divergenceless vectors (4
degrees) and a symmetric transverse traceless tensor (2 degrees). However, four are in fact gauge
degrees of freedom which are unphysical because they are related to the choice of coordinates.
An important property of this perturbed metric, is that scalar, vector and tensor modes can
be treated separately at linear order. The two degrees of freedom of the tensor perturbations
correspond to the two polarizations of the graviton and thus are present even in an empty
universe, we will discuss them briefly at the end of the section. However, vector and scalar
modes need a source to become physical. In the models of inflation we are interested in there is
no source for the vector modes, thus they will not be further discussed in this thesis (and even if
they were present they would be diluted away by the enormous expansion). That leaves us with
the scalar perturbations as the main focus of the section and they are the main contribution
to the CMB fluctuations.

Keeping only the scalar part of the metric (and the homogeneous background), it is sufficient
to consider the following metric

ds2 = −N2(t,x)dt2 + a2e2α(t,x)dx2. (3.27)

where we made the gauge choice g0i = 0 (there is only one gauge degree of freedom remaining)
and α is the scalar curvature perturbation.

Scalar perturbations during inflation are sourced by the small quantum fluctuations of the
scalar field. In this section, we want to study the power spectrum of these perturbations. This
only requires perturbation theory at first-order, so we write the scalar field as

φ(t,x) = φ(t) + δφ(t,x), (3.28)

where φ(t) is the homogeneous background quantity studied in section 2.3.
The remaining scalar degree of freedom indicates that there is only one scalar quantity to

compute. It is customary to use a gauge-invariant variable [25, 151] like

ζ ≡ α−HN δρ

ρ
= α−HN δφ

φ̇
(3.29)
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which is the first-order adiabatic curvature perturbation. It is a combination of the scalar
curvature perturbation and the variation of energy density (this last part can also be written
as the variation of the scalar field).

The main set-up being fixed, the remaining part is to find the evolution equation of ζ. This
is achieved by perturbing the field equation (2.33) and the Einstein equations (2.11) at first
order. After combining them, one finds

ζ̈ +HN

(
3 + 2ε+ 2η − Ṅ

HN2

)
− N2

a2
∂2ζ = 0, (3.30)

where ∂2 ≡ ∂i∂i. In the rest of the section, we choose to work with the conformal time τ , so
the lapse function is N = a. We use the notation prime for a time derivative with respect to τ .

This equation is easier to study in Fourier space, which is why we will use the Fourier
components ζk defined by

ζ(τ,x) =

∫
d3k

(2π)3/2
ζk(τ)eik.x. (3.31)

Finally it is possible to rewrite the perturbation equation without its first-order derivative
term using the Mukhanov-Sasaki variable originally introduced in [169, 150]

qk = zζk with z = −a
√

2ε

κ
. (3.32)

A direct computation gives

z′

z
= aH (1 + ε+ η) ,

z′′

z
= (aH)2

(
2 + 2ε+ 3η + 2ε2 + 4εη + ξ

)
. (3.33)

Then substituting ζk by q in (3.30), one obtains the well-known Mukhanov-Sasaki equation

q′′k +

(
k2 − z′′

z

)
qk = 0. (3.34)

That is the usual equation for an harmonic oscillator, with a mass depending on time. Solving
analytically this equation is not possible in the general case, but under some approximations
it is possible to obtain the well-known properties of standard inflationary perturbations.

For this, it is helpful to separate the different regimes of interest when studying this equa-
tion:

• Sub-horizon regime: aH � k

• Super-horizon regime: aH � k

• Transition: aH ∼ k

Neglecting the slow-roll parameters, it is possible to solve (3.34) in de Sitter space where z is
proportional to the scale factor a and the expansion is exponential so a = −(Hτ)−1 (with H
constant). The equation becomes

q′′k + (k2 − 2

τ2
)qk = 0, (3.35)

which can be solved exactly

qk = c−
e−ikτ√

2k

(
1− i

kτ

)
+ c+

eikτ√
2k

(
1 +

i

kτ

)
. (3.36)
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Well inside the horizon, where (3.34) takes the simple form q′′k +k2qk = 0, the perturbations
should behave like free field fluctuations in Minkowski space-time (with the Bunch Davies
vacuum as initial condition)

lim
τ→−∞

=
1√
2k
e−ikτ , (3.37)

which imposes c+ = 0 and c− = 1.
Well outside the horizon, we obtain

lim
kτ→−∞

qk =
−i√
2k3τ

=
iaH√

2k3
∝ τ−1. (3.38)

Hence, the curvature perturbation ζk ∝ τqk is constant on super-Hubble scales and one usually
says it is frozen outside the horizon.

As we have a simple solution for qk on super-horizon scales, it is also possible to compute
its two-point correlation function and the power spectrum. However, there is one subtlety,
because we have to take into account the quantum nature of the perturbations here. This is
done with the standard quantization procedure for an harmonic oscillator

q̂k(τ) = qk(τ)âk + q∗k(τ)â†k (3.39)

where âk and â†k are the creation and annihilation operators satisfying the usual commutation
relations

[âk, âk′ ] = 0, [â†k, â
†
k′ ] = 0 and [âk, â

†
k′ ] = δ(3)(k − k′). (3.40)

Note that in the super-horizon limit, the quantum operators q̂k becomes proportional to(
âk + â†k

)
so they commute. Hence the quantum field q̂ =

∫
d3k

(2π)3/2
q̂ke

ik.x corresponds to

a stochastic field with Gaussian statistics (for more details, see [159]). To describe a Gaussian
field, the two-point correlation function is sufficient. One can compute it using the commutation
relations (3.40) and show it is given by

〈q̂kq̂∗k〉 = qkq
∗
kδ

(3)(k − k′) ≡ 2π2

k3
Pq(k)δ(3)(k − k′). (3.41)

Hence the power spectra of q and ζ are

Pq =
(aH)2

4π2
∝ z2 and Pζ =

1

z2
Pq, (3.42)

which are scale-invariant quantities.
In slow-roll inflation, there is a small change from de Sitter space, characterized by ε. This

plays an important role in the transition regime in particular, when perturbations take their
frozen super-horizon value. This means it is important to study carefully the transition regime,
which can be done analytically in the slow-roll approximation. Indeed a is growing almost
exponentially fast while H is roughly a constant and that means that the transition lasts a
very small amount of time. One can then assume that slow-roll parameters like ε and η are
constant during the transition and we denote their values evaluated at horizon-crossing by the
subscript ∗. The main effect on the perturbations is a deviation from scale invariance, which
at leading order is described by the spectral index

nζ − 1 =
d lnPζ
d ln k

, (3.43)

which is equivalent to write

Ps = As

(
k

k∗

)ns−1

. (3.44)
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Here we replaced the subscript ζ by the subscript s (for scalar perturbations) and As is the
amplitude of scalar perturbations, which means it is the scale-invariant power spectrum we
computed above (evaluated at horizon-crossing)

As =
κ2H2

∗
8π2ε∗

. (3.45)

The first step is then to write (3.34) at first-order in a slow-roll function expansion. It is
easy to integrate ε = −H ′/(aH2) substituting ε by the small and constant ε∗ determined at
horizon-crossing to get

aH = −1 + ε∗
τ

. (3.46)

Then, one can rewrite (3.33).

z′

z
= −(1 + 2ε∗ + η∗)

τ
= −

ν − 1
2

τ
and

z′′

z
=

2 + 3(2ε∗ + η∗)

τ2
=
ν2 − 1

4

τ2
, (3.47)

with

ν ≡ 3

2
+ 2ε∗ + η∗. (3.48)

Integrating the first equation gives that z ∝ τ
1
2
−ν . Using the second one in (3.34), one obtains

q′′k +

(
k2 −

ν2 − 1
4

τ2

)
qk = 0, (3.49)

This can be solved analytically and using the Bunch-Davies (3.37) vacuum initial condition,
one can show that the solution is

qk =

√
π

2

√
−τH(1)

ν (−kτ), (3.50)

where H
(1)
ν is a Hankel function of the first type, which has the super-horizon limit

lim
kτ→0

H(1)
ν (−kτ) =

i

π
Γ(ν)

(
−kτ

2

)−ν
. (3.51)

Following the same method as in the de Sitter case, it is then easy to determine the k and τ
dependence of the power spectra

Pq ∝ (−τ)2−νk3−2ν so Ps =
1

z2
Pq ∝ k3−2ν (3.52)

and to compute the spectral index of scalar perturbations

ns − 1 = 3− 2ν = −4ε∗ − 2η∗. (3.53)

In the slow-roll approximation where ε∗ and η∗ are small compared to 1, it is clear that the
difference from scale-invariance is small. The current Planck measurement is ns = 0.968±0.006
[15] which confirms that this difference is small. The possibility to use this observable to
constrain some types of inflation models will be discussed in detail in the last part of the thesis
III.

The tensor perturbations, representing gravity waves, can be studied using the same method.
First, the tensor term in the perturbed metric which should be added to (3.27) has the form
a2hijdx

idxj , where hij is traceless and divergence-free (it has two degrees of freedom). More-
over, the tensor perturbations and the scalar field(s) are not coupled, meaning that the results
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recalled here in the context of single-field inflation will hold in the case of multiple-field in-
flation which is the focus of part III. One interesting property of hij is that it is already a
gauge-invariant quantity, which simplifies the situation compared to the scalar perturbations.
Then, expanding in plane waves, one can find that the polarization mode Γk obeys

Γ′′k +

(
k2 − a′′

a

)
= 0 (3.54)

which is in fact (3.34) in de Sitter space (see [189] for example for the details). The power
spectrum of the tensor perturbations has then a similar form

Pt =
2κ2H2

∗
π2

. (3.55)

It depends only on H∗, meaning that a measurement of Pt would give us the energy scale of
inflation. That could be done by detecting the B-polarization of the CMB, as it depends only
on the tensor primordial fluctuations (and later-time effects). Moreover, it does not depend
on ε∗ like Ps, indicating that its amplitude is a lot smaller because of slow-roll at the time of
horizon-crossing. This is usually expressed into an observable called the tensor-to-scalar ratio
r, simply defined by

r ≡ Pt
Ps

= 16ε∗. (3.56)

The current observational bound is r < 0.07 at 95% CL assuming a pivot scale k∗ = 0.05
Mpc−1 [12] and is already very constraining for some single-field inflation models (which are
not the topic of this thesis).

The spectral index of the tensor perturbations has not exactly the same definition as the
scalar perturbations. Instead of being the shift from 1 in the case of scale-independence, it is
now very close to 0

nt ≡
d lnPt
d ln k

= −2ε∗, (3.57)

which gives the well-known consistency relation

r = −8nt. (3.58)

Verifying observationally this relation is an important objective because it would eliminate
many types of more complicated inflation models (like multiple-field inflation, where the pre-
diction for the power spectrum is not the same as we will see).

3.4 After inflation

We have seen how adiabatic perturbations are generated during standard slow-roll single-field
inflation. Before that we have discussed how to describe the CMB temperatures anisotropies. In
this section we will briefly discuss about the missing step which is how to relate the primordial
fluctuations to observable CMB anisotropies.

One of the most important conclusions of the previous section was that the gauge-invariant
quantity ζ describing the adiabatic mode of the scalar perturbations is frozen on super-horizon
scales during inflation. This is also true at later times if there is no isocurvature mode on these
scales, at least until they re-enter the horizon during the radiation and matter dominated eras.

Then relating the temperature fluctuations ∆T to ζ is not straightforward because many ef-
fects have to be taken into account. The evolution of density perturbations during the radiation
and matter dominated eras (on sub-horizon scales) requires to study the interactions between
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the different components of the content of the universe (photons, baryons, dark matter, etc.).
This is usually done using the perturbed version of the Boltzmann equation in an expanding
space-time. This can be described by introducing the radiation transfer functions ∆` defined
by

∆`(k) =

∫ τ0

0
dτ S(k, τ)p`(k[τ0 − τ ]). (3.59)

In this expression, the function p` describes the geometric projection from Fourier space (k)
to the multipole space (`) while S is the source term corresponding to the different physical
effects affecting the perturbations. Some early computations of these functions can be found
in [39, 26]. The radiation transfer functions can also be computed numerically with freely
available codes like CAMB2 [127, 102] originally based on CMBFAST [172, 205] or CLASS3

[124, 38]. Then the harmonic coefficients are given by

a`m = 4π(−i)`
∫ ∞

0

d3k

(2π)3
∆`(k)ΦkY

∗
`m(Ωk), (3.60)

where Φ is the gravitational potential, which is often used to describe the scalar perturbations.
It takes its name from the fact it can be related to the potential of Newtonian gravity in the
weak field approximation. It is linked to ζ by

Φ = −3 + 3w

5 + 3w
ζ, (3.61)

where we recall that w = p/ρ, therefore the proportionality factor changes at the transition from
a radiation to a matter dominated universe. One can then show that the CMB temperature
power spectrum is

C` =
2

π

∫ ∞
0

k2dk

(
2π2

k3
PΦ(k)

)
∆`(k)2, (3.62)

where PΦ is the power spectrum of the gravitational potential.
One of the main contributions in the transfer functions comes from the Sachs-Wolfe effect

[168] which dominates on large scales. The following equation is a simplified formulation of
this effect

∆T

T
=

1

3
Φ− v.Ω̂ + ISW, (3.63)

where there are three different terms to discuss. The term ISW is the integrated Sachs-Wolfe
effect. It is related to the fact that the gravitational potential changes over time when not in
matter domination. Therefore it has two contributions, the first one occurring at the matter-
radiation transition (it only affects small scales). The second one is a late-time effect, when the
cosmological constant (or dark energy) starts to dominate the energy density of the universe.
Therefore, it operates only on the largest scales. The second term v.Ω̂ is simply the Doppler
effect due to the velocity perturbations of the baryons of the last scattering surface. Finally
the most important term (see [200] for a simple physical explanation) describes the influence
of the gravitational potential on the temperature fluctuations at large scales. It combines the
intrinsic temperature perturbations (denser regions are hotter) and the additional redshift of
the photons emitted in gravitational wells.

Focusing on the largest scales which were super-horizon modes at the time of decoupling and
considering only the first term of (3.63), we can directly link the primordial power spectrum

2http://camb.info/
3http://class-code.net/

http://camb.info/
http://class-code.net/
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Figure 32: Planck CMB power spectrum with the best fit cosmological model [17] and its comic
variance in units of µK2 as function of the multipole ` and the angular scale (180°/`).

with the CMB power spectrum. The geometric projection is a convolution with a spherical
Bessel function j` and then using (3.63) one can show that the power spectrum takes the form

C` ≈
2

9π

∫ ∞
0

k2dk

(
2π2

k3
PΦ(k)

)
j2
` (kτ0). (3.64)

During the matter-dominated era, we have PΦ = 9
25Ps, hence we can substitute the gravita-

tional potential power spectrum by the one we computed in the previous section (3.44) to write

C` ≈
4π

25
As

∫ ∞
0

dk

k
j2
` (kτ0)

(
k

k∗

)ns−1

. (3.65)

Then choosing the pivot scale k∗ = 1/τ0, the integral becomes the known result∫ ∞
0

dx j2
` (x)xn−2 =

π

24−n
Γ(3− n)Γ(`+ n−1

2 )

Γ2(2− n
2 )Γ(`+ 5−n

2 )
, (3.66)

expressed with Euler Γ functions. Then it is easy to derive the power spectrum of the CMB
anisotropies in the scale-invariant case (ns = 1) using Γ(`)/Γ(` + 2) = [`(` + 1)]−1 and
Γ(2)/Γ2(3/2) = 4/π

C` =
2π

`(`+ 1)

As
25
. (3.67)

It is related to the standard convention of plotting `(`+1)
2π C` (often called D` in the literature)

instead of C` alone as in figure 32 which shows the Planck CMB power spectrum.
On this figure, we can see three different regions for which it is interesting to discuss the

physical origin:
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• At large scales (` . 100), the main contribution comes from the Sachs-Wolfe effect we just
described. As expected from (3.67), the power spectrum (with its factor depending on `)
is nearly constant in the region, which is often called the Sachs-Wolfe plateau. Because
these scales re-entered the horizon only after recombination and so were still super-horizon
when the CMB was formed, it is the only part of the CMB power spectrum where we
in fact observe directly the primordial power spectrum (except for the small changes due
to the integrated Sachs-Wolfe effect). However, it is also the region where the cosmic
variance is the strongest.

• At intermediate scales, we can observe several acoustic peaks (with the first around
` ≈ 200). These scales were already inside the horizon. At that time two effects had
opposite influences on the baryon-photon plasma which led to oscillations of this fluid:
matter was falling into gravity wells, while the photons, which were still coupled to the
baryons, resisted (radiation pressure). The position of these peaks depends strongly on
many cosmological parameters, so their measurement is one of the greatest tools for many
aspects of modern cosmology. Hence it is also a long topic to discuss, which is beyond
the scope of this thesis. The interested reader can find more information in [103, 104] for
example.

• The smallest scales ` & 1000 constitute the region called Silk damping [175]. The decou-
pling of baryons and photons was not instantaneous and the mean free path of photons
was not exactly zero before decoupling, so for the scales with a shorter wavelength than
the mean free path of photons, anisotropies were erased (exponential decrease of the
power spectrum).

In this chapter, we have used the theory of cosmological perturbations at first order to
derive the standard predictions of slow-roll single-field inflation. We have also introduced the
spherical harmonic decomposition of the CMB temperature anisotropies and we have recalled
how these anisotropies are linked to the primordial fluctuations. The measurements of these
anisotropies are now so precise thanks to Planck that it is important to go to the second order
to better understand the primordial universe.
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Non-Gaussianity in CMB
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Chapter 4

Estimating non-Gaussianity

While the Gaussian nature of CMB anisotropies at first order is a well established observational
result (with a simple theoretical explanation), it is necessary to go further by looking for so-
called non-Gaussianity to better understand the physics at play in the primordial universe.

In the history of the universe, many different mechanisms can be sources of non-Gaussianity
visible in the CMB. We can differentiate three main types:

• Primordial non-Gaussianity: they are predicted in several very early Universe theories
which are alternatives to the standard single-field inflation of section 3.3 (many reviews
exist [29, 52, 44]). Detecting them is our main objective when studying CMB non-
Gaussianity as this could be used to constrain physics at a very high energy scale.

• Intrinsic non-Gaussianity: they arise from the non-linearities of the equations de-
scribing the evolution of perturbations after horizon reentry when going beyond the first
order. However their effect is small at the Planck accuracy level, so we will not discuss
them further in this thesis (see [158] and references therein for recent works).

• Late-time non-Gaussianity: Every structure present in our observable Universe has
an influence on the CMB we observe today. The closer they are, the more important are
non-linear effects. When the goal is to observe primordial non-Gaussianity, these effects
are contamination we need to deal with. In particular, those of galactic origin are the
main topic of chapter 5.

This chapter summarizes well-known results concerning the estimation of non-Gaussianity
in the CMB anisotropies. In the first part, we recall the definition of the CMB bispectrum, the
non-Gaussian quantity of interest here. Then, we discuss the predictions for different bispectral
configurations, recalling the most common shapes (some of primordial origin, other being late-
time effects). In the next part, we detail the procedure called the Edgeworth expansion, used
to find the probability density function (PDF) describing weakly non-Gaussian statistics. From
this PDF, we discuss the form of the best estimator for non-Gaussianity in the case of CMB
observations in an ideal situation. Finally, we discuss the different issues arising in an actual
experiment and how to adapt this estimator to the kind of data that is available using the
method of the binned bispectrum estimator.

4.1 Angular and reduced bispectrum

The Gaussian distribution of the temperature fluctuations of the CMB is perfectly described
by the angular power spectrum (3.24) (two-point correlation function of the spherical harmonic
coefficients). The first step to investigate non-Gaussianity is therefore to go one order higher,

32
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and to examine triangles in the sky. The equivalent function for the three-point correlation
function is called the bispectrum. In this thesis, we study only non-Gaussianity of the bispectral
type (which is in general the dominant contribution).

Quite similarly to the angular power spectrum defined in (3.24), the angular bispectrum
[136] is given by

Bm1m2m3
`1`2`3

= 〈a`1m1a`2m2a`3m3〉. (4.1)

This function contains all the information about the bispectral non-Gaussianity. However,
it is also easy to understand that in practice, manipulating it is difficult, and not really useful
in the context of our study. Indeed, an experience like Planck has a precision up to ` = 2500,
so O(109) triplets of ` and for each of these ` there are 2`+ 1 values of m, ending up with an
array far too large to be computed.

It is then very useful to find a quantity which can replace the angular bispectrum Bm1m2m3
`1`2`3

in the role of describing the small deviations from Gaussianity of the CMB temperature
anisotropies and there is a perfect candidate. It is the angle-averaged bispectrum which is
rotationally invariant

B`1`2`3 ≡
〈∫

S2

dΩ̂M`1(Ω̂)M`2(Ω̂)M`3(Ω̂)

〉
, (4.2)

where M` = ∆T`/T0 is a map of the temperature fluctuations1 as function of the position on
the sky Ω̂, filtered at the multipole ` in the spherical harmonic decomposition

M`(Ω̂) =
∑̀
m=−`

a`mY`m(Ω̂). (4.4)

As we will see, this angle-averaged bispectrum is sufficient to study important properties
of the non-Gaussianity (see section 4.2). However, information about the localization of non-
Gaussianity in the sky is not kept. This is not an issue when considering primordial non-
Gaussianity introduced in section 4.2 because of the isotropic nature of the CMB. Moreover,
many late-time non-Gaussianity sources also have an isotropic effect. However, to study galactic
non-Gaussianity (which is localized in the sky), a non-Gaussianity estimator in pixel space
would be better because of the non-isotropic character of these foregrounds, but again we are
only interested in the impact of these galactic shapes on the primordial ones.

It is straightforward to rewrite the angle-averaged bispectrum as:

B`1`2`3 =
∑

m1m2m3

〈a`1m1a`2m2a`3m3〉
∫
S2

dΩ̂Y`1m1(Ω̂)Y`2m2(Ω̂)Y`3m3(Ω̂), (4.5)

where one can recognize the Gaunt integral introduced in section 3.2 for which the solution is
given in (3.17). Then we immediately have a useful relation between the bispectrum and the
reduced bispectrum which can be inverted

B`1`2`3 = h`1`2`3
∑

m1m2m3

(
`1 `2 `3

m1 m2 m3

)
Bm1m2m3
`1`2`3

,

Bm1m2m3
`1`2`3

=
1

h`1`2`3

(
`1 `2 `3

m1 m2 m3

)
B`1`2`3 ,

(4.6)

1Similarly, the observed angle-averaged bispectrum of a given map Mobs is

Bobs
`1`2`3 ≡

∫
S2

dΩ̂Mobs
`1 (Ω̂)Mobs

`2 (Ω̂)Mobs
`3 (Ω̂). (4.3)
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where h`1`2`3 is defined in (3.18).
Because of the Wigner 3j-symbols, B`1`2`3 vanishes if both the parity condition (`1 + `2 + `3

even) and the triangle condition (|`1 − `2| ≤ `3 ≤ `1 + `2) are not satisfied (as mentioned in
section 3.2). The quantity B`1`2`3/h

2
`1`2`3

is called the reduced bispectrum in the literature.
After defining the bispectrum, it is important to discuss in detail the different sources of

non-Gaussianity and their known contribution to the CMB signal.

4.2 Theoretical shapes

In this section, we recall the analytical expressions for several common theoretical bispectra.
Very early universe theories like inflation give an explanation for the origin of the CMB

temperature anisotropies. We have seen in section 3.4 the link between the gravitational
potential power spectrum produced during inflation and the angular power spectrum we observe
in the CMB. The same method can be used to express the contribution of the primordial
bispectrum B(k1, k2, k3) of the gravitational potential Φ to the CMB power spectrum and
bispectrum [115]:

Bth
`1`2`3 = h2

`1`2`3

(
2

π

)3 ∫ ∞
0
k2

1dk1

∫ ∞
0
k2

2dk2

∫ ∞
0
k2

3dk3

[
∆`1(k1)∆`2(k2)∆`3(k3)B(k1, k2, k3)

×
∫ ∞

0
r2dr j`1(k1r)j`2(k2r)j`3(k3r)

]
,

(4.7)

where the j` are the spherical Bessel functions and the ∆` are the radiation transfer functions
introduced in (3.59).

Several distinct shapes, or a combination of them, corresponding to the predictions of early
universe models can be considered [24, 82]. The most common ones are:

• Local shape

Blocal(k1, k2, k3) = 2[P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)]. (4.8)

It is related to the local relation Φ(x) = ΦG(x)+f local
NL (ΦG(x)2−〈Φ〉2) (where G indicates

the Gaussian part of the gravitational potential). In Fourier space, the correlations are
between modes of very different k (or ` in multipole space), in particular this bispectrum
peaks in the limit of squeezed triangles, where one of the k is very small compared to the
others.

Local non-Gaussianity can arise from different mechanisms operating on super-horizon
scales, like in multiple-field inflation where isocurvature and adiabatic perturbations in-
teract on these scales.

• Equilateral shape [59]

Bequi(k1, k2, k3) =− 6[P (k1)P (k2) + (2 perms)]− 12P 2/3(k1)P 2/3(k2)P 2/3(k3)

+ 6[P (k1)P 2/3(k2)P 1/3(k3) + (5 perms)].
(4.9)

As its name indicates, this bispectrum peaks in the limit of three equal momenta. Equi-
lateral non-Gaussianity can be produced by adding higher derivative kinetic terms to the
usual inflaton Lagrangian.
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• Orthogonal shape [174]

Bortho(k1, k2, k3) =− 18[P (k1)P (k2) + (2 perms)]− 48P 2/3(k1)P 2/3(k2)P 2/3(k3)

+ 18[P (k1)P 2/3(k2)P 1/3(k3) + (5 perms)].

(4.10)

It is produced in the same conditions as the equilateral shape. The general bispectrum
(approximated) produced in single-field inflation with non-canonical kinetic terms is a
linear combination of these two shapes, which are by definition orthogonal (hence uncor-
related).2

Among the other primordial shapes that are often studied, we can cite bispectra with localized
features or oscillations (see [14] for an overview of several examples). This kind of bispectrum
is produced by inflationary models with a resonance or a step in the potential [53], for a review
see [54] and for recent observational constraints [14, 187].

It is important to take into account that the CMB bispectrum is not entirely of primordial
origin and one has to study the different contaminants. Some late time mechanisms producing
non-Gaussianity can be described by analytical expressions as a function of `.

The matter gravitational potential affects the CMB in several ways, and this becomes
important at low redshift. There is lensing of the CMB due to the structures along the line
of sight, which induces a small-scale shift of the CMB anisotropies. This small-scale effect is
coupled to the integrated-Sachs-Wolfe effect ISW sourced by large-scale gravitational potential
fluctuations. Like for the local shape, correlations between small and large scales induce a
squeezed bispectral signal. In that case, it is strong enough to be detected. The following
lensing-ISW template describes it entirely [90, 177, 126]

BlensISW
`1`2`3 = h2

`1`2`3

[`1(`1 + 1)− `2(`2 + 1) + `3(`3 + 1)

2
CTT`1 CTφ`3 + (5 perms)

]
, (4.11)

where CTT` is the lensed temperature power spectrum, while CTφ` is the temperature-lensing
potential cross power spectrum. There is no unknown amplitude to determine for this template,
which is why it should be considered as a bias in the estimator, see (4.60).

In addition to these secondary anisotropies, different foregrounds also add their own contri-
bution to the observed CMB bispectrum. Some of those of extra-galactic origin admit simple
templates:

• Unclustered point sources (radio and late-type infrared galaxies) can be assumed to be
Poisson distributed which implies a white noise spectrum [115] and hence a very simple
theoretical shape

Bunclust
`1`2`3 = h2

`1`2`3 bps. (4.12)

Here bps plays the role of the unknown parameter to determine (similar to fNL for pri-
mordial shapes).

• Cosmic Infrared Background (constituted of dusty star-forming galaxies) admits the
following template [118]

BCIB
`1`2`3 = h2

`1`2`3 bCIB

[
(1 + `1/`break)(1 + `2/`break)(1 + `3/`break)

(1 + `0/`break)3

]q
, (4.13)

where q = 0.85, `break = 70 and `0 = 320.

It is also possible to examine the correlations between some of these foregrounds. For example,
the bispectrum describing the CIB-lensing correlations has been investigated in [60] where it
has been shown to be small but inducing a bias to detect the orthogonal shape in Planck data.

2However, the local and orthogonal shapes are correlated at the Planck resolution (see Table 41).
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4.3 Non-Gaussian statistics for the CMB

4.3.1 General PDF with weak non-Gaussianity

In this section, we are interested in finding the multivariate probability distribution function
for a random N -dimensional field φ, with the only assumption that non-Gaussianity is small.
For this, we follow the same method as in [186]. First, we recall the link between the PDF and
its characteristic function (Fourier transform) which is expressed as a series of the cumulants
of the PDF. In the general case, it is not possible to to solve these equations. However, with
the approximation of weak non-Gaussianity, we can write the characteristic function as the
Gaussian one with a small correction which can be computed. Then, after a few steps we
obtain a nice expression for the PDF. This procedure is called the Edgeworth expansion and
has been used first in the context of cosmological data in [109, 36].

Writing the previous steps in equation, we first have the general expression for the PDF
p(φ) as the Fourier transform (where we use a capital K to avoid confusions with the k-indices
used below) of the cumulant generating function G also known as the second characteristic
function

p(φ) =

∫
dNK

(2π)N
G(K)e−iK.φ. (4.14)

The cumulant generating function is defined by

lnG(K) =
∑
n

in

n!
〈φj1 ...φjn〉c Kj1 ...Kjn , (4.15)

where 〈φj1 ...φjn〉c is the cumulant of order n and with an implicit summation over the ji indices,
running from 1 to N . Note that the cumulants of order 2 and order 3 are equal to the more
familiar correlation functions of the PDF introduced in section 3.1, but for higher order they
are not the same. In particular, the Gaussian distribution is the only one where cumulants
of order three and higher vanish. Hence, the term n = 2 of the series is the one associated
with the Gaussian distribution, to study deviations we then need to study higher order terms.
In the case of weak non-Gaussianity, a natural assumption is that it will be well described by
the n = 3 term which is small. Expanding the corresponding exponential, the characteristic
function at first order is

G(K) =

(
1− i

6
BijkKiKjKk

)
e−

1
2
KiCijKj (4.16)

with Cij = 〈φiφj〉 and Bijk = 〈φiφjφk〉. Then we inject this expression into (4.14) and we use
the following equality

(−i)3KiKjKk e
iKmφm =

∂3

∂φi∂φj∂φk
e−iKmφm , (4.17)

to rewrite (4.14) as

p(φ) =

∫
dNK

(2π)N
e−

1
2
KiCijKj

(
1− 1

6
Bijk

∂3

∂φi∂φj∂φk

)
e−iKmφm . (4.18)

It is then possible to compute this Gaussian integral

p(φ) =
1√

(2π)NdetC

(
1− 1

6
Bijk

∂3

∂φi∂φj∂φk

)
e−

1
2
φaC

−1
ab φb . (4.19)
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The remaining step is to perform the derivation in this expression. Going step by step and

using the shorthand notation g[φ] = e−
1
2
φaC

−1
ab φb we have

∂g(φ)

∂φk
= −C−1

ka φag(φ),

∂2g(φ)

∂φjφk
=
(
−C−1

jk + C−1
ja C

−1
kb φaφb

)
g(φ),

∂3g(φ)

∂φiφjφk
=
[(
C−1
ij C

−1
ka + C−1

ik C
−1
ja + C−1

jk C
−1
ia

)
φa − C−1

ia C
−1
jb C

−1
kc φaφbφc

]
g(φ).

(4.20)

This gives the final result

p(φ) =

[
1−

Bijk
6

((
C−1
ij C

−1
ka + C−1

ik C
−1
ja + C−1

jk C
−1
ia

)
φa − C−1

ia C
−1
jb C

−1
kc φaφbφc

)] e−
1
2
φaC

−1
ab φb√

(2π)NdetC
,

(4.21)
which contains both linear and cubic terms in φ.

4.3.2 Applying this to the CMB

Using the CMB notations introduced in section 3.2, it is possible to apply the same method of
Edgeworth expansion to find the PDF for the harmonic coefficients, which is

p(a) =

1− 1

6

∑
`imj

〈a`1m1a`2m2a`3m3〉
∂3

∂a`1m1∂a`2m2∂a`3m3

 e
− 1

2

∑
`m,`′m′

a∗`mC
−1
`m,`′m′a`′m′√

(2π)NdetC
. (4.22)

To compute the derivatives, it is possible to use (3.16), which also implies similar relations
for the covariance matrix and its inverse

C`−m,`′−m′ = (−1)m+m′C`′m′,`m,(
C`m,`′m′

)∗
= C`′m′,`m,

C−1
`−m,`′−m′ = (−1)m+m′C−1

`′m′,`m,(
C−1
`−m,`′−m′

)∗
= C−1

`′m′,`m.

(4.23)

Then, one can obtain the derivative of the Gaussian

∂

∂a`1m1

[
e
− 1

2

∑
`m,`′m′

a∗`mC
−1
`m,`′m′a`′m′

]
= −(−1)m1C−1

`1−m1,`m
a`m e

− 1
2

∑
`m,`′m′

a∗`mC
−1
`m,`′m′a`′m′

, (4.24)

which substitued into (4.22) gives

p(a) =
e
− 1

2

∑
`m,`′m′

a∗`mC
−1
`m,`′m′a`′m′√

(2π)NdetC

{
1 +

1

6

∑
`imj

〈a`1m1a`2m2a`3m3〉
[
(−1)m1+m2+m3C−1

`1−m1,l4m4
al4m4

× C−1
`2−m2,l5m5

al5m5C
−1
`3−m3,l6m6

al6m6 − (−1)m1+m3C−1
`1−m1,`2m2

C−1
`3−m3,l4m4

al4m4

− (−1)m2+m3C−1
`3−m3,`1m1

C−1
`2−m2,l4m4

al4m4 − (−1)m1+m2C−1
`2−m2,`3m3

C−1
`1−m1,l4m4

al4m4)

]}
.

(4.25)

The main correction to the Gaussian distribution in the case of weak non-Gaussianity directly
depends on the expectation value of the angular bispectrum 〈Bm1m2m3

`1`2`3
〉 defined in (4.1). In an
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actual experiment, one would want to compare observed data to predictions of his theoretical
model. This transcribes by using the different theoretical bispectrum shapes, described in
section 4.2 and normalized to the case fNL = 1, as the bispectrum expectation value

〈a`1m1a`2m2a`3m3〉 = fNL(Bth)m1m2m3
`1`2`3

. (4.26)

Note that in section 4.2, the introduced theoretical shapes are angle-average bispectra (so no
m) because as it will be clear later, they are those we use in this thesis. However, it is possible
to compute the angular bispectral shapes using (4.6).

Inside the sum of (4.25), the expression above is in factor of the rest which can be decom-
posed into two terms. The first one is cubic in alm (so it has also the form of the bispectrum).
The other one is linear in alm and plays the role of a correction to take into account the different
anisotropies of the observed sky. This will be discussed more clearly in section 4.4.

Unfortunately, equation (4.25) is computationally challenging because of the presence of
the inverse of the covariance matrix. Note that the covariance matrix is also a theoretical
quantity, which does not depend on the bispectral shape of course, but is does depend on the
cosmological parameters. Nevertheless, one can determine the optimal estimator for fNL from
this PDF.

In the case of weak non-Gaussianity, the best estimator for fNL has been introduced in [59].
Using the PDF (4.25), it is possible to show that it saturates the Cramér-Rao bound. This
standard result takes the form

f̂NL =
1

N

∑
`imj

(Bth)m1m2m3
`1`2`3

[
(−1)m1+m2+m3C−1

`1−m1,l4m4
al4m4C

−1
`2−m2,l5m5

al5m5C
−1
`3−m3,l6m6

al6m6

− (−1)m1+m3C−1
`1−m1,`2m2

C−1
`3−m3,l4m4

al4m4 − (−1)m2+m3C−1
`3−m3,`1m1

C−1
`2−m2,l4m4

al4m4

− (−1)m1+m2C−1
`2−m2,`3m3

C−1
`1−m1,l4m4

al4m4)

]
,

(4.27)

where N is the normalization factor:

N =
∑
`imj

(Bth)m1m2m3
`1`2`3

C−1
`1m1,l4m4

C−1
`2m2,l5m5

C−1
`3m3,l6m6

(Bth)m4m5m6
l4l5l6

. (4.28)

Unfortunately, using this optimal estimator directly is computationally too heavy. One would
have to inverse the covariance matrix (which can be achieved through Wiener filtering [74],
but is challenging) and the number of ` and m is too large (` is up to 2500 for Planck data).
In the next section, we show how one can deal with these issues and we introduce the binned
bispectrum estimator.

4.4 The binned bispectrum estimator

This section provides the steps to simplify the previous results to a usable tool to study bis-
pectral non-Gaussianity and to evaluate the parameter fNL. We start by the isotropic case and
then we generalize the result. Finally, we recall the method of the binned bispectrum estimator.

4.4.1 Isotropic case

While the general formulation of the best estimator of fNL is extremely complicated to imple-
ment, it simplifies greatly in the case of an isotropic observed sky.
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As written at the end of section 3.2, the covariance matrix is diagonal C`m,`′m′ = Clδ``′δmm′

in that case and simplifications go even further because there is no m-dependence as we will
check. One can substitute this into (4.27), with the angle-averaged bispectrum defined in the
previous section to obtain a shorter expression for f̂NL.

Going step by step, the normalization factor N after summing over the indices `i and mi

with i = 4, 5, 6 becomes

N =
∑
`1`2`3

(Bth
`1`2`3

)2

h2
`1`2`3

C`1C`2C`3

∑
m1m2m3

(
`1 `2 `3

m1 m2 m3

)2

=
∑
`1`2`3

(Bth
`1`2`3

)2

h2
`1`2`3

C`1C`2C`3
, (4.29)

where we used the Wigner 3j-symbol identity (3.20). Similarly, the estimator is

f̂NL =
1

N

∑
`imj

h−1
`1`2`3

(
`1 `2 `3

m1 m2 m3

)
Bth
`1`2`3×[

(−1)m1+m2+m3
a`1−m1a`2−m2a`3−m3

C`1C`2C`3
− (−1)m1+m3

δ`1`2δ−m1m2

C`1C`3
a`3−m3

− (−1)m2+m3
δ`3`1δ−m3m1

C`3C`2
a`2−m2 − (−1)m1+m2

δ`2`3δ−m2m3

C`2C`1
a`1−m1

]
.

(4.30)

In this expression, the cubic term in a`m corresponds to the observed angular bispectrum, using
(3.16) to eliminate the factor (−1)m1+m2+m3 and the fact the bispectrum is a real quantity.
Then, it can be substituted by the angle-averaged observed bispectrum. Concerning the linear
terms, they are proportional to the monopole because of the different selection rules of the
Gaunt integral (3.19). Combining the rulem1+m2+m3 = 0 with the delta functions, each linear

term is proportional to
∑
m

(
l l L

m −m 0

)
aL0 where we can recognize an expression similar to

(3.21). This implies the only remaining harmonic coefficient is a00 and the contribution of the
linear terms is zero as we subtract the monopole from the maps.

Finally, performing the same steps as for the normalization factor N , the estimator takes
the form

f̂NL =
1

N

∑
`1`2`3

Bth
`1`2`3

Bobs
`1`2`3

h2
`1`2`3

C`1C`2C`3
, (4.31)

which has been shown to be optimal for general theoretical bispectra [23] (in the isotropic case).
We also need to recall the standard computation [135] of the variance of the bispectrum

which is important to evaluate the statistical error of our measurements

Var(Bobs
`1`2`3) = 〈(Bobs

`1`2`3)2〉 − 〈Bobs
`1`2`3〉

2 ≡ V`1`2`3 . (4.32)

In the weak non-Gaussianity regime, the average value of the bispectrum is negligible. This
leaves us with computing the mean value of the product of two bispectra

〈B`1`2`3(Ω̂)B`4`5`6(Ω̂′)〉 =

∫
S2×S2

dΩ̂ dΩ̂′ 〈M`1(Ω̂)M`2(Ω̂)M`3(Ω̂)M`4(Ω̂′)M`5(Ω̂′)M`6(Ω̂′)〉.

(4.33)
One can use Wick’s theorem for Gaussian fields to reduce the six-point correlation function to
the sum of fifteen products of two-point correlation functions

• 6 terms: each ` is paired with an element of the other triplet like in
〈M`1(Ω̂)M`4(Ω̂′)〉〈M`2(Ω̂)M`5(Ω̂′)〉〈M`3(Ω̂)M`6(Ω̂′)〉.
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• 9 terms: the rest (example: 〈M`1(Ω̂)M`2(Ω̂)〉〈M`3(Ω̂)M`4(Ω̂′)〉〈M`5(Ω̂′)M`6(Ω̂′)〉)

We will explicitly compute the contribution of the 6 first terms below. But first, we show that
in the isotropic case, the 9 last terms are zero. For this, we use the addition theorem (3.15)
and the fact that the maps are real to compute the two-point correlation functions

〈M`(Ω̂)M`′(Ω̂
′)〉 =

∑̀
m=−`

`′∑
m′=−`′

〈a`ma∗`′m′〉Y`m(Ω̂)Y ∗`′m′(Ω̂
′)

= C`δ``′
2`+ 1

4π
P`(Ω̂ · Ω̂′).

(4.34)

Then we can perform the integration on our example term (and the eight others follow the
same computation)∫

S2×S2

dΩ̂ dΩ̂′ 〈M`1(Ω̂)M`2(Ω̂)〉〈M`3(Ω̂)M`4(Ω̂′)〉〈M`5(Ω̂′)M`6(Ω̂′)〉

=
(2`1 + 1)(2`3 + 1)(2`5 + 1)

(4π)3
C`1C`3C`5δ`1`2δ`3`4δ`5`6

∫
S2×S2

dΩ̂ dΩ̂′ P`1(1)P`3(Ω̂ · Ω̂′)P`5(1)

(4.35)

This integral can be solved using well-known properties of Legendre polynomials. First, we
have P`(1) = 1 and then we can use the integral∫

S2×S2

dΩ̂ dΩ̂′ P`(Ω̂ · Ω̂′) = 0, (4.36)

and we find the announced result.
Concerning the six first terms, we will also explicitely compute only the given example, but

the correct permutations to obtain the five other terms will be in the final result. Substituting
(4.4) into the integral and using the fact that the maps are real, one obtains∫

S2×S2

dΩ̂ dΩ̂′ 〈M`1(Ω̂)M`4(Ω̂′)〉〈M`2(Ω̂)M`5(Ω̂′)〉〈M`3(Ω̂)M`6(Ω̂′)〉

= C`1C`2C`3δ`1`4δ`2`5δ`3`6
∑

m1,m2,m3

(∫
S2

dΩ̂Y`1m1(Ω̂)Y`2m2(Ω̂)Y`3m3(Ω̂)

)
×
(∫

S2

dΩ̂′ Y ∗`1m1
(Ω̂′)Y ∗`2m2

(Ω̂′)Y ∗`3m3
(Ω̂′)

)
.

(4.37)

where one can recognize the Gaunt integral (3.17). Substituting it here and using the identity
relation (3.20) and the fact that the columns of Wigner 3j-symbols can be permuted when the
parity condition is respected, one can find that the 6 terms give

〈B`1`2`3B`4`5`6〉 = h2
`1`2`3C`1C`2C`3

[
δ`1`4δ`2`5δ`3`6 + δ`1`4δ`2`6δ`3`5 + δ`1`5δ`2`4δ`3`6

+ δ`1`5δ`2`6δ`3`4 + δ`1`6δ`2`4δ`3`5 + δ`1`6δ`2`5δ`3`4

]
.

(4.38)

Hence the variance is
V`1`2`3 = g`1`2`3h

2
`1`2`3C`1C`2C`3 (4.39)

We introduced here the combinatorial factor g`1`2`3 which takes the value 6, 2 or 1 depending
on whether 3, 2 or no `’s are equal respectively.
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This same factor also has another important use because in the temperature only case, the
bispectrum B`1`2`3 is symmetric under the permutations of `’s (the situation would require
more care with the polarization). Hence it is possible to decrease the number of operations by
a factor around 6 by substituting the sum over all `1, `2 and `3 by

1

6

∑
`1`2`3

=
∑

`1≤`2≤`3

1

g`1`2`3
. (4.40)

Substituting this into (4.31), one can then notice that the denominator of each term is in
fact the theoretical prediction for the variance of the bispectrum V`1`2`3 . The optimal estimator
is inverse variance weighted, which is very important in a real experiment where several effects
have to be taken into account (we will discuss this in the following section).

A very convenient notation is the bispectral inner product defined by

〈BA, BB〉 =
∑

`1≤`2≤`3

BA
`1`2`3

BB
`1`2`3

V`1`2`3
(4.41)

where BA and BB are both theoretical bispectral templates, or one theoretical and one obser-
vational bispectra.

Then, one can rewrite the estimator (4.31) in a nice form

f̂NL =
〈Bth, Bobs〉
〈Bth, Bth〉

. (4.42)

A previous demonstration for the form of this estimator using different arguments was
proposed in [115]. The main idea of the demonstration is simple, so we recall it here. One has
to assume that the different bispectrum configurations follow a Gaussian distribution. Then,
finding the estimator requires only to minimize the following χ2 with respect to fNL

χ2 =
∑

`1≤`2≤`3

(
fNLB

th
`1`2`3

−Bobs
`1`2`3

)2
V`1`2`3

, (4.43)

which straightforwardly gives the wanted form for f̂NL.

4.4.2 General case

With actual data from a real experiment, several issues arise from different sources and the
previous equations need to be rewritten to take them properly into account.

One of these sources is simply the instrument itself. We model its angular response by a
beam window function, which is often well approximated by a Gaussian beam

b` = exp

[
−1

2

`(`+ 1)θ2
FWHM

8 ln 2

]
, (4.44)

which is entirely characterized by the full width at half maximum θFWHM (in radians). More-
over, the instrument noise can be described by the noise power spectrum N`. This means that
one has to substitute the CMB power spectrum C` by the one measured by a real experiment
in the previous equations

C` −→ b2`C` +N`. (4.45)

When comparing the observed bispectrum to a theoretical template, we also need to take the
beam into account

Bth
`1`2`3 −→ b`1b`2b`3B

th
`1`2`3 . (4.46)
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While the equations from the previous section assume rotational invariance, real data have
two major sources of anisotropy: the mask and the anisotropic noise. Bright objects in the
microwave domain, of galactic or extragalactic origins, prevent observations of the CMB over
the whole sky. It is often necessary to mask the galactic plane and the strongest point sources in
the sky. Besides the anisotropy induced by the mask, different effects have then to be taken into
account. First, there is a multiplicative bias that needs to be included in the power spectrum
and the bispectrum using the factor fsky where fsky is the unmasked fraction of the sky

Cmasked
` ' fskyC

unmasked
` , Bmasked

`1`2`3 ' fskyB
unmasked
`1`2`3 . (4.47)

It is called the fsky approximation [117] and it is valid for small enough masks. In addition to
that, one has to be careful of different edge effects induced by the mask (see section 4 of [42]
for a discussion of these issues). One effect that is easy to see is the fact that the mask acts as
a step function in real space, so it has an influence over a large range of multipoles in harmonic
space. Here, we will use the standard technique of inpainting: the masked region is filled in
before being filtered in multipole space. For a complete description of the inpainting approach
and a comparison to other possibilities, see [95]. The simplest method to fill in the masked
regions of the map is diffusive filling in and it was used for the Planck non-Gaussianity results
[11, 14]. After filling in the masked part by the average value of the map, diffusive filling in
simply consists in giving to each masked pixel the average value of its neighbouring pixels and
iterating this procedure (2000 times in the case of Planck).

Another source of anisotropy comes from the scanning pattern of the satellite which makes
the noise anisotropic, because some parts of the sky are observed more often than others. This
makes the estimator (4.30) unsuited to describe the non-Gaussianity of the CMB temperature
fluctuations and leads to large error bars. This is easy to see if you go back to the computation
of the bispectrum variance of the previous section. We had nine terms which cancel because of
the integral (4.36) performed over the whole celestial sphere, but now we have to integrate only
over the unmasked part of the sky. Hence, these nine terms give an important contribution to
the variance and so to the error bars too.

We cannot use the general optimal formulation of the estimator (4.27) determined using an
Edgeworth expansion. However, it contains the main ingredient for a simple solution which is
to add a linear correction to the observed bispectrum

Bobs
`1`2`3 ≡

∫
S2\M

dΩ̂ [M`1M`2M`3 −M`1〈M`2M`3〉 −M`2〈M`1M`3〉 −M`3〈M`1M`2〉] , (4.48)

where the integration is performed on the celestial sphere with the masked part denoted by
M excluded. This is in fact the third order Wick product of the maps, and it is a known
result that for a Gaussian variable, it is the cubic statistic with the smallest variance [65]. This
solution was introduced in [59] where it was assumed that the covariance matrix C`m,`′m′ is
still diagonal in the estimator (and it has been verified that this approximation works well for
the CMB) to find the usual cubic term (4.31). Then, the idea was to determine from this cubic
term which linear correction would minimize the variance. Hence, to verify that the bispectrum
(4.48) has the right form, we will derive its variance similarly to the previous section, the main
difference being that integrations are performed over S2 \M instead of S2. Again, in the weak
non-Gaussianity regime, we only have to compute the average of the product of two bispectra
〈Bobs

`1`2`3
(Ω̂)Bobs

`4`5`6
(Ω̂′)〉 and there are three types of terms

• 1 term: product of the two cubic terms: 〈M`1M`2M`3M`4M`5M`6〉 (this is the only term
present in the isotropic case).

• 6 terms: product of a linear term with a cubic term, e.g. 〈−M`1M`2M`3M`4〉〈M`5M`6〉.
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• 9 terms: product of two linear terms, e.g. 〈M`1M`4〉〈M`2M`3〉〈M`5M`6〉.

We have seen how the first term gives 15 contributions if we use Wick’s theorem to transform
the six-point correlation function into a combination of products of three two-point correlation
functions. We have also seen that in the isotropic case, only the six terms where each multipole
among (`1, `2, `3) is coupled with an element of the other triplet (`4, `5, `6) are non-zero.
The same can be done for the four-point correlation function and each combination of a linear
contribution with a cubic term will give three terms, hence a total of eighteen terms. Note also
that each term derived from the linear correction contains necessarily two `’s of the same triplet
that are coupled (it is in the definition of the linear term). Hence, it means that they cannot
cancel the six terms of the isotropic case. The new terms (i.e. the terms that are not present
in the isotropic case) are nine from the six-point correlation function, nine from the product of
two linear terms, and eighteen from the terms with the four-point correlation functions (with
a minus sign) and it is then easy to check that they cancel each other. So finally

〈Bobs
`1`2`3B

obs
`4`5`6〉 =

∫
(S2\M)×(S2\M)

dΩ̂ dΩ̂′ [〈M`1M`4〉〈M`2M`5〉〈M`3M`6〉+ (14)(26)(35)

+(15)(24)(36) + (15)(26)(34) + (16)(24)(35) + (16)(25)(34)] ,

(4.49)

where we use an obvious shorthand notation to indicate the other permutations of filtered maps.
It is important to note that we recover the same variance as in the isotropic case without a
linear term (except for the integration interval). This proves that the estimator with this linear
correction is optimal (with the assumption that C`m,`′m′ is diagonal). Then, performing the
same last steps of the calculation as before, the variance is given by

V`1`2`3 = g`1`2`3
h2
`1`2`3

fsky
(b2`1C`1 +N`1)(b2`2C`2 +N`2)(b2`3C`3 +N`3), (4.50)

when including the effect of the beam and the noise as explained previously. It is immediate to
see that masking a larger part of the sky, which decreases the multiplicative bias fsky, makes
the variance become larger.

In conclusion, we have shown that under the assumption that the covariance matrix C`m,`′m′

is diagonal, the optimal estimator for fNL is given by (4.42) where the inner product is computed
with the variance (4.50). Hence it is evaluated from the theoretical power spectrum taking into
account the characteristics of the experiment, like its beam and noise. Hence, the product of
the two bispectra is weighted by the variance, meaning that for example a very noisy `-triplet
(inducing a large variance) cannot play an important role.

While the original estimator (4.27) has been greatly simplified, some more work is still
required.

4.4.3 Binning

One of the main issues with the different equations above when used with WMAP or Planck
temperature maps is the very high number of valid triplets (up to O(109) in the case of Planck).
Different techniques have been developed to deal with the enormous amount of computations
required, like the KSW [116, 201, 202] and skew-C` [152] estimators using factorisable templates
or the modal estimator [80, 81, 79] decomposing the bispectrum into a sum of uncorrelated
templates. Here we adopt the binned bispectrum estimator, originally introduced in [43] and
further developed in [42]. It relies on the simple idea that the variation with ` of many physically
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motivated bispectral templates is smooth. In that case, instead of having (`max − `min + 1)
maximally filtered maps M` with ` in [`min, `max], it is possible to use broader filters:

Mi(Ω̂) =
∑
`∈∆i

M`(Ω̂), (4.51)

where ∆i = [`i, `i+1 − 1] with i = 0, ..., (Nbins − 1) and `Nbins
= `max + 1 define the binning of

the multipole space.
Similar to (4.48), the binned bispectrum is

Bobs
i1i2i3 ≡

1

Ξi1i2i3

∫
S2\M

dΩ̂ [Mi1Mi2Mi3 −Mi1〈Mi2Mi3〉 −Mi2〈Mi1Mi3〉 −Mi3〈Mi1Mi2〉] ,

(4.52)
where the normalization factor Ξi1i2i3 is the number of ` triplets within the (i1, i2, i3) bin
triplet satisfying the two selection rules (triangle inequality and parity condition). When it
comes to binning the multipole space, it was shown in [42] that another rule of selection is
necessary to avoid numerical inaccuracies when computing the observed bispectrum due to the
pixelization of the celestial sphere. We use here the same selection criterion that the ratio of
valid `-triplets to the ones satisfying only the parity condition (but not the triangle inequality)
in a bin triplet should be at least 1 % It has been shown (see [42]) that the variance has the
same form as (4.50), with an extra factor 1/(Ξi1i2i3)2

Vi1i2i3 =
1

fsky

gi1i2i3
(Ξi1i2i3)2

∑
`1∈∆1

∑
`2∈∆2

∑
`3∈∆3

h2
`1`2`3(b2`1C`1+N`1)(b2`2C`2+N`2)(b2`3C`3+N`3). (4.53)

The same definition of the bispectral inner product (4.41) can be used with i-triplets instead
of multipole parameters so

〈BA, BB〉 =
∑

i1≤i2≤i3

BA
i1i2i3

BB
i1i2i3

Vi1i2i3
. (4.54)

Hence, the binned bispectrum estimator can be written in the usual form

f̂NL =
〈Bth, Bobs〉
〈Bth, Bth〉

, (4.55)

where every bispectrum is taken in its binned form, and we take into account all the experiment
characteristics as described in section 4.4.2 (beam, noise, mask, linear correction). Note that
the error on f̂NL is then given by Var(f̂NL) = 1/〈Bth, Bth〉.

We also use the shorthand notation of the bispectral inner product in several other impor-
tant quantities. We need it to define a simple criterion to verify how optimal the choice of
binning is. As the product takes the same form for i-triplets or `-triplets, it is easy to compare
ideal and binned estimators using the relation

R ≡
Var(f̂ ideal

NL )

Var(f̂binned
NL )

=
〈Bth, Bth〉binned

〈Bth, Bth〉no binning
. (4.56)

This ratio shows by how much binning the multipole space has increased the variance. It has
been proven in [42] that R is a number between 0 and 1. Obviously, R is closer to 1 if the
binning better describes the considered theoretical shape. We have at our disposal several types
of theoretical bispectra to which the binned bispectrum of a map can be compared, see section
4.2. The binning we used has been optimized for the primordial shapes (local (4.8), equilateral
(4.9) and orthogonal (4.10)).
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Local Equil Ortho LensISW UnclustPS CIB

Local 1 0.21 -0.44 0.28 0.002 0.006

Equilateral 1 -0.05 0.003 0.008 0.03

Orthogonal 1 -0.15 -0.003 -0.001

Lensing-ISW 1 -0.005 -0.03

Unclustered point sources 1 0.93

CIB point sources 1

Table 41: Correlation coefficients from [42] between the theoretical templates defined in section
4.2 computed using the characteristics of the Planck experiment (temperature). We see a
correlation between local and orthogonal and between local and lensing-ISW. Equilateral and
orthogonal are mostly uncorrelated, and the correlation between the point source templates
and the primordial ones is negligible.

One issue with these theoretical shapes is that they are not necessarily independent from
each other. Hence it is important to evaluate if one can distinguish them in an experiment. A
natural definition for their correlator is

CIJ =
〈BI , BJ〉√

〈BI , BI〉〈BJ , BJ〉
. (4.57)

The indices I and J label the theoretical shapes. CIJ is between -1 and 1, a value close to 0
indicates that the theoretical bispectra I and J are almost uncorrelated. Note that because the
bispectral inner product depends on the characteristics of the experiment, the shape correlators
do too. In Table 41, we reported those computed in [42] from CMB data maps from the 2015
Planck release.

The formula (4.55) for the estimator f̂NL is used for each shape independently (giving each
time a parameter f INL describing a unique shape). However, in the case where some shapes
are correlated and multiple shapes are present in the data, it means that some part of the
bispectral signal is taken into account several times. It is possible to improve the result using
the inverse of the matrix FIJ

3

FIJ = 〈BI , BJ〉 (4.58)

to define the joint estimator

f̂ INL =
∑
J

(F−1)IJ〈BJ , Bobs〉. (4.59)

The variance of f̂ INL goes from 1/FII for a fully independent estimation to (F−1)II in the case
of a joint analysis. One can show that the variance increases if there are several correlated
templates. However, it is also possible that one of the f INL parameters (or more) is already
known, for example the lensing-ISW template including its amplitude (i.e. fNL parameter) for
the CMB is entirely determined by theory. It is then possible to avoid the increase of variance
due to the joint analysis, treating such a shape as a known bias. In the case of two shapes,

subtracting the known f
(2)
NL from the unknown f

(1)
NL is as simple as

f
(1)
NL =

1

F11
〈B(1), Bobs〉 − F12

F11
f

(2)
NL. (4.60)

3FIJ is the Fisher matrix, a crucial quantity in estimation theory, and the multivariate generalization of the
Fisher information introduced in (3.9).
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The demonstration is straightforward, it is sufficient to use (4.59) for the shapes (1) and (2) to

substitute 〈B(2), Bobs〉 by 〈B(1), Bobs〉 and f
(2)
NL.

We have recalled all the analytical equations concerning the binned bispectrum estimator.
In the next section, we will discuss briefly some numerical aspects.

4.4.4 Binned bispectrum estimator code

The binned bispectrum estimator was implemented numerically in Python and C by Van Tent,
Bucher and Racine (see section 5 of [42] for a complete description). This code was used for the
official 2013 and 2015 Planck releases [11, 14]. We also used it for the different data analyses
presented in this thesis (see chapters 5 and 6).

The maps are read and represented (in Mollweide view) using the package Healpy4. This a
Python wrapper to Healpix5 [92], a code developed to standardize the spherical decomposition
of pixelized CMB data maps. In this thesis, we will use maps with two different resolutions.
The best resolution with Planck data corresponds to maps with nside = 2048 where the number
of pixels is given by Npix = 12n2

side. We will also have a few low resolution maps nside = 256.
With the binned bispectrum estimator, it is possible to separate the computations into

several independent modules

• Theoretical (< 2 hours)6: this part adapts the theoretical shapes introduced in section
4.2 to the analyzed map(s). This means it applies the binning and the beam to the
theoretical templates. Moreover, it computes the theoretical variance where the noise
power spectrum is included.

• Observational - cubic (< 4 hours): this part computes the binned bispectrum (4.2)
of the analyzed map(s) (for example: 1 observed CMB data map + 100 Gaussian CMB
simulations to determine the error bars).

• Observational - linear (< 2 days): this part computes the linear correction to the
binned bispectrum in (4.48). The two-point correlation functions 〈M`1M`2〉 are computed
using Gaussian simulations of the observed data.

• Estimator (< 1 min, after the rest): this part applies the estimator (4.55) and/or the
joint-estimator (4.59) to the results of the previous modules to compute fNL for the
different bispectral shapes, and the associated error bars.

Thanks to this separability of the code, it is then easy and fast to test new theoretical
shapes when the rest has already been computed. This is interesting for a new functionality we
added for the work presented in this thesis, which is to be able to use the binned bispectrum of
a given map (computed by the observational part) as a numerical template for the analysis of
another map. To be more precise, we will use maps of galactic foregrounds and determine their
binned bispectrum (for which there is no analytical expression) in the next chapter. Then, we
will apply these templates to different maps (like the CMB) in chapter 6.

4https://github.com/healpy/healpy
5http://healpix.sf.net
6Estimated runtime at the Planck resolution for temperature only using computers of the Centre de Calcul

de l’Institut de Physique Nucléaire et de Physique des Particules (CC-IN2P3) in Lyon, France https://cc.

in2p3.fr/.

https://github.com/healpy/healpy
http://healpix.sf.net
https://cc.in2p3.fr/
https://cc.in2p3.fr/


Chapter 5

Galactic foregrounds

In this chapter, we study several galactic foregrounds with the binned bispectrum estimator.
As discussed previously, when studying non-Gaussianity in CMB data maps, the usual method
is to compare the observed bispectrum to different theoretical shapes using the inner product
(4.54). The determined parameters fNL simply indicate to what extent these shapes are present
in the data. Section 4.2 recalled some analytical expressions for the main shapes describing
primordial non-Gaussianity (generated during inflation) but also late-time bispectra (generated
after recombination) like extra-galactic foregrounds. However, when observing the CMB, the
main source of contamination is our own galaxy and there is no equivalent theoretical expression
to describe the non-Gaussianity of galactic foregrounds yet. There are many techniques to clean
the maps from the presence of different galactic foregrounds (see [8, 9, 16] for a review) and
CMB analyses at the bispectral level are generally performed on these cleaned maps. In this
chapter, we use the fact that an analytical formulation of theoretical shapes is not mandatory,
allowing us to examine these foregrounds too. Indeed, to use the inner product (4.54), one
only needs the numerical binned theoretical bispectrum.1 This means that in principle, the
binned bispectrum of any map determined numerically could be used as theoretical template
for the analysis of another map under the condition that the binning is the same. In this way
we determine templates using the maps of different galactic foregrounds from the 2015 Planck
release obtained by the Commander separation technique [78, 77].2,3

Before doing so, it is necessary to give a little more context for the different analyses of this
chapter, by keeping in mind their end goal (see chapter 6) which is to use these new numerical
templates on the CMB cleaned maps studied in [14]. To be more precise, we will use the
SMICA [51] CMB map from the 2015 Planck release. We will also study the raw 143 GHz
map, which is the dominant frequency channel in the SMICA map [8]. While it is the best
channel to observe the CMB (best combination of a low noise level and a good resolution), that
is not the case for the different foregrounds (at least if the goal was to study the physics of these
foregrounds). Nevertheless, here we only need to estimate their eventual contamination to the
CMB signal. At that frequency, the CMB dominates the sky after masking the brightest parts
(galactic plane and strong point sources). For this, we use the temperature common mask
of the Planck 2015 release, which is a combination of the masks of the different component
separation methods [9]. In section 5.3, we will discuss the influence of the mask on the different
foregrounds by using a smaller one (Commander mask). Finally, another important choice is

1With the shapes presented in section 4.2, one of the first steps of the binned bispectrum estimator code is
to determine these numerical binned bispectra by summing all values of the analytical expressions for each valid
`-triplet inside the bin-triplets.

2https://pla.esac.esa.int
3Thanks to Ingunn Kathrine Wehus for providing the Commander maps of the different foregrounds at 143

GHz.
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-0.00012 0.03K -3e-05 0.0003K

Figure 51: Unmasked (left) and masked (right) maps of thermal dust at 143 GHz from Com-
mander (Planck 2015), using the common mask. On the left, the map is normalized using
histogram equalization to highlight all the regions containing dust. On the right, the scale is
linear, this shows that most of the signal is coming from the galactic plane near the mask. The
range of the scale is also different.

the binning which was determined using the ratio R defined in (4.56) to be optimal for the
primordial shapes. It is true that this criterion has nothing to do with the galactic foregrounds,
but our ultimate goal is to determine the primordial shapes optimally, not the galactic ones.
To illustrate the method, we start by studying the case of thermal dust.

The work presented in this chapter and the following can be found in [107].

5.1 Thermal dust

Above 100 GHz, the strongest contamination from galactic foregrounds is due to small dust
grains (∼ 1 µm or smaller) present in the interstellar medium. This dust plays an important
role in galactic evolution (chemistry of interstellar gas, etc., see the textbook [67] for example),
but it also has a large influence on astrophysical observations. Indeed dust grains are heated
by the UV starlight they absorb, so they emit a thermal radiation (infrared) in the frequency
range of CMB experiments. This emission is well described by a modified blackbody model
also called greybody (see [10, 2, 9])

I(ν) = AνβdBν(Td), (5.1)

where Bν describes Planck’s law, Td ∼ 20K is the mean temperature and βd ∼ 1.5 is the free
emissivity spectral index.

Figure 51 shows the map of the galactic thermal dust at 143 GHz, before and after ap-
plying the common mask. As mentioned before, we are interested in the contribution of the
foregrounds in a CMB analysis (where a mask is always used to hide the galactic plane). Hence,
the map on the right is the most important here because it is the actual contribution of dust
that could be seen in a CMB analysis. In the following, we will be interested in the power
spectrum and the bispectrum of this map. As expected, most of the signal comes from the
galactic plane, and it is strongest close to the mask. Because of the dust localization, this
emission is very non-Gaussian [146] and anisotropic (and this is also the case for the other
galactic foregrounds studied in section 5.2). As we mentioned in section 4.1, the bispectrum
is not the best tool to describe such a localized non-Gaussianity (an estimator in pixel space
would be better). However, we are only interested in the impact of this galactic foreground on
the primordial shapes. This requires us to be careful with the different expressions of chapter
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Figure 52: This figure shows the dust (at 143 GHz) and the CMB (Planck 2015 best fit) power
spectra (including the beam and the noise for both) as a function of the multipole `.

4.4.2, mostly derived using the weak non-Gaussianity approximation. Concerning the observed
bispectrum of the dust map, which is exactly what we need to make a dust template, it is still
defined by (4.52), but without the linear correction terms which are not justified here.

Before describing the dust bispectrum, it is interesting to examine the power spectra of the
dust and CMB maps shown in figure 52. It is clear that at 143 GHz, the CMB dominates except
for the largest scales (smallest `) where the dust power spectrum has a sawtooth pattern. We
can see that it is smaller (up to an order of magnitude) for each odd ` up to ` ∼ O(20). This
is in fact due to the symmetry of the masked map in figure 51 around the galactic plane when
viewed on the largest scales. Because of this symmetry, the temperature is an even function
of the angle θ (with the usual Ω̂ = (θ, ϕ), where θ describes the latitude position), using the
simple approximation that the mask can be seen as a band with all the dust signal on the
border. The spherical harmonics Y`0 also have a similar symmetry around the galactic plane
so they are the main contribution when decomposing in harmonic space. However, the Y`0 are
even in θ only for ` even and they are odd for ` odd, so the odd terms have to be small. For
the same reasons similar effects are expected in the dust bispectrum as far as large scales are
concerned.

As expected, the situation is different concerning the binned bispectrum. In order to make it
easy to visualize, we use 2D-slices where the multipoles `1 and `2 go from 2 to 2500 but `3 is in a
chosen bin. Figure 53 shows a slice (`3 ∈ [1092, 1149]) of the binned dust bispectrum compared
to the local shape in the case f local

NL = 1.4 If we compare the bispectrum amplitudes, it is clear
that the dust is several orders of magnitude larger than the local shape. Moreover, acoustic
oscillations present in both the CMB power spectrum and the local theoretical bispectrum are
not there in the case of thermal dust (as expected).

However, the plots of figure 53 are not well suited to describe quantitatively the non-
Gaussian nature of these shapes. As in the case of the power spectrum, which peaks at low ` if
we do not multiply by the factor `(`+ 1), the CMB bispectrum as well as the dust bispectrum

4f local
NL = 1 is still well within the observational bounds. In part III, we will call it large non-Gaussianity

because it is very large compared to the predictions of standard slow-roll single-field inflation f local
NL ∼ O(10−2).



50 Chapter 5. Galactic foregrounds

0 500 1000 1500 2000 2500
1

0

500

1000

1500

2000

2500
2

dust, 3 [1092, 1149]

-1e-19

-1e-22

-1e-25

±1e-28

1e-25

1e-22

1e-19

0 500 1000 1500 2000 2500
1

0

500

1000

1500

2000

2500

2

loc, 3 [1092, 1149]

-1e-20

-1e-24

-1e-28

±1e-32

1e-28

1e-24

1e-20

Figure 53: Left: observed binned bispectrum of the thermal dust as a function of the multipoles
`1 and `2 for `3 ∈ [1092, 1149]. Right: theoretical bispectrum for the local shape in the case
f local

NL = 1 for the same bin of `3. Note the difference of colour scale (both for maximal and
minimal values).

have a strong ` dependence. This means that we should use an adapted function of ` to
highlight the true nature of a bispectral signal. A good choice is to use signal-to-noise plots
[42] as shown in figure 54: the bispectrum is divided by the square root of the variance of the
map computed using (4.50). It is important to note that this is different from the correlation
coefficients (4.57) that we discuss later in this chapter where the variance of the CMB map
(the map shown in 31) is used. In this kind of plots, non-Gaussianity is simply represented by
values large compared to O(1).

Figure 54 shows the bispectral signal-to-noise ratio for three different slices of the dust
template (on the left), but also for a cleaned CMB map which we will study in detail in
chapter 6 (on the right). It is now obvious that the dust map is very non-Gaussian and that
indeed its bispectrum peaks in the squeezed configuration. This effect can be seen in the top
plot (low `3) but also on the left (low `1) and on the bottom (low `2) of the other plots. A
squeezed configuration is expected when there are correlations between small-scale and large-
scale effects. There is a simple physical explanation for the origin of these correlations. The
large clouds of dust (i.e. large-scale fluctuations) have the highest intensity where they are
the thickest along the line of sight. Moreover, the brightest parts have stronger fluctuations
(small-scale), see [146] for a discussion, so the small-scale fluctuations are modulated by the
large-scale ones which corresponds to a squeezed bispectrum.

The squeezed signal present in both the dust and the local shapes is a good indication that
they are correlated. This can be verified in table 51 which gives the correlation coefficients
between the dust and the usual shapes of section 4.2 computed using (4.57) in the context of
a CMB analysis (more details in next chapter), so the denominator of the inner product is
the CMB bispectrum variance. There is an anti-correlation between the dust and local shapes
(60 %) because they have opposite signs (this anti-correlation was pointed out in [203]). The
local shape is itself correlated to the other primordial shapes (see table 41). However, this
does not mean that the dust template has to be correlated to them too. And indeed, the
dust and equilateral shapes are uncorrelated because the latter does not peak in the squeezed
configuration. The correlations between local and dust (squeezed) do not come from the same
multipole triplets as the correlations between local and equilateral (acoustic peaks). However,
the orthogonal and dust shapes are a little correlated (around 15 %), because the orthogo-
nal bispectrum in the squeezed limit is large. The dust bispectrum template is very weakly
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Figure 54: Left: bispectral signal-to-noise of the thermal dust as a function of the multipoles
`1 and `2 for three different bins of `3. Right: same for the CMB map studied later in section
6.2 for the same bins of `3. Note the factor 10 difference in colour scale.
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Local Equilateral Orthogonal Lensing-ISW Point sources CIB

Dust -0.6 0.004 0.15 -0.34 0.054 0.083

Table 51: Correlation coefficients between the theoretical templates defined in section 4.2 and
the observed dust bispectrum computed using the characteristics of the Planck experiment
(temperature).

Figure 55: Brightness temperature rms of the CMB and the four galactic foregrounds studied
in this chapter (dust, synchrotron, AME called spinning dust here, free-free) as a function of
frequency. This figure is borrowed from [9] which should be consulted for the details of the
exact parameters used (e.g. masks). The nine frequency channels of Planck are indicated.

correlated to extra-galactic foreground templates like unclustered point sources and CIB, but
anti-correlated to lensing-ISW (which is known to be highly correlated to the local shape). An
alternative representation of the bispectra of the different shapes, which shows in which regions
of multipole space they dominate, is given in appendix A.

5.2 Other foregrounds

Apart from dust, there exist other foregrounds which have a greater effect at low frequencies,
of which we will study three here. In this section we use maps produced by the Commander
method to separate foregrounds, but this time in addition to the Planck data, observations
from WMAP between 23 and 94 GHz [35] and a 408 MHz survey map [99] were also used to
determine them. They have a lower resolution (nside = 256) and a larger beam (60’ FWHM
Gaussian beam). For the sake of comparison of these foregrounds with the dust we discussed
in the previous section, we will also use here a dust map with the same characteristics.

In the case the dust grains rotate rapidly (in addition to their thermal vibrations), they
can produce a microwave emission which probably corresponds to the anomalous microwave
emission (AME) [121, 66], large at low frequencies.

Dust is not the only component responsible for the contamination of the CMB signal; some
interactions of electrons with the interstellar medium can also generate emissions. On the one
hand, ultra-relativistic electrons (cosmic rays) spiraling in the galactic magnetic fields radiate.
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Figure 56: Masked maps of the different galactic foregrounds we consider in this thesis (dust,
free-free, AME, synchrotron) at 143 GHz derived using the Commander method. Note the
different colour scales.

This synchrotron emission can be described by a power law νβ with β ' −3 indicating that
indeed, this radiation is significant at low frequencies [99]. On the other hand, electrons can
be slowed down by scattering off ions. This generates the free-free emission [63], also called
bremsstrahlung.

Figure 55 shows the frequency dependence of the foregrounds and the CMB signals. As
discussed, the synchrotron, the free-free and the spinning dust (AME) emissions dominate at
low frequencies. The dust thermal emission is the main contribution at high frequencies and is
of the same order as the CMB at 143 GHz (this of course depends on the choice of mask).

Figure 56 shows the contributions of all these foregrounds at 143 GHz. Similarly to the dust
in the previous section, they are all localized in the galactic plane. Moreover, we can see that
the dust signal has a higher intensity and therefore is the dominant foreground contribution at
143 GHz, as expected from figure 55. The same hierarchy can be seen in the power spectra,
as shown in figure 57. It is clear that at 143 GHz, the contributions of AME, synchrotron and
free-free are negligible compared to the CMB (remember that the brightest parts of the sky
are masked). Note that because of the low resolution of the map and the 60 arcmin beam, the
range of multipoles is a lot smaller than in the previous section (`max = 300 here). This also
means that we were able to use smaller bins for the binned bispectrum estimator. We simply
took the usual binning, with each bin split into three when possible (two otherwise).

The same behaviour is of course present in the bispectra (i.e. the templates) where the dust
dominates everything. However, as discussed in the previous section, it is more interesting to
study the bispectral signal-to-noise to study the form of these bispectra. Figure 58 shows these
bispectra for three different slices of `3. Free-free, dust and AME peak in the squeezed config-
uration (but for AME, the signal is so low that it could be only noise). An argument similar to
the dust case described in the previous section can explain this bispectral configuration. We can
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Figure 57: The different foregrounds (dust, free-free, synchrotron and AME) and the CMB
power spectra at 143 GHz (including the 60 arcmin beam and the noise) as a function of the
multipole `.

Local Equilateral Orthogonal Lensing-ISW Point sources CIB

Dust (low resolution) -0.14 0.0097 0.087 -0.036 0.0083 0.012

Free-free -0.44 -0.045 0.43 0.043 0.069 0.11

AME -0.23 0.032 0.052 -0.051 0.033 0.037

Synchrotron -0.057 0.33 0.29 0.051 0.44 0.38

Dust (low resolution) Free-free AME Synchrotron

Dust (low resolution) 1 0.24 0.28 0.56

Free-free 1 0.37 0.32

AME 1 0.32

Synchrotron 1

Table 52: Correlation coefficients between the theoretical templates defined in section 4.2 and
the observed foreground templates (low resolution) computed using the characteristics of the
Planck experiment (temperature).

also verify this in table 52 where we have computed the correlation coefficients of these shapes
with the ones previously introduced. As expected, the dust, free-free and AME bispectra are
anti-correlated to the local shape (and for the other shapes see the previous section, the discus-
sion is similar) and are correlated between themselves (they share the squeezed configuration).
For a visual representation that helps to understand the correlations, see appendix A.

The case of synchrotron is different. The signal seems to be larger for three “high” values of
`, so it is similar to the equilateral shape. This is also the typical shape produced by unresolved
point sources and by the CIB. Indeed, the synchrotron is correlated (around 40 %) to the point
sources and CIB shapes as well as to equilateral and orthogonal (around 30 %). However, it
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Figure 58: Bispectral signal-to-noise of the different foregrounds for `3 ∈ [4, 6], `3 ∈ [71, 79]
and `3 ∈ [255, 267]. Note the different color scales
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Figure 59: Bispectral signal-to-noise of the synchrotron after subtracting the unresolved point
sources contamination for `3 ∈ [4, 6], `3 ∈ [71, 79] and `3 ∈ [255, 267]. Note the different colour
scales.

Local Equilateral Orthogonal Lensing-ISW Point sources CIB

Cleaned synchrotron -0.14 0.025 0.13 -0.022 0.059 0.033

Dust (low resolution) Free-free AME Synchrotron

Cleaned synchrotron 0.62 0.32 0.34 0.92

Table 53: Correlation coefficients between the synchrotron bispectrum cleaned from the point
sources contamination and the templates of table 52 computed using the characteristics of the
Planck experiment (temperature).

is also correlated to the other foregrounds (more than 30 %), meaning that the synchrotron
bispectrum also peaks in the squeezed limit, as shown in the bottom left plot of figure 58, even
if it is not at all its dominant part. Physically that makes sense because we expect a squeezed
signal for similar reasons as the other foregrounds. The simplest explanation for the equilateral
shape is a contamination of the map by point sources and this possibility is mentioned in
[9]. To verify it, we performed the simple test of subtracting the unresolved point sources
bispectral template (of which the amplitude was determined using the estimator (4.55)) from
the bispectrum of the synchrotron map. The cleaned bispectrum is shown in figure 59 where
one can see that the left plot (showing the squeezed part of the bispectrum) has not changed
from the one of figure 58, while the other two are much less non-Gaussian (but not perfectly
cleaned either). This is also illustrated in table 53, where the correlation of the synchrotron
bispectrum with the local shape increases (to around 15 %) and becomes of the same order
as for the other foreground bispectra, while the anomalous correlation with the equilateral,
point sources and CIB templates vanishes. From now on, when we mention the synchrotron
bispectrum, it will be the one cleaned from the unresolved point sources contamination.

5.3 Noise and masks

The main source of anisotropy in the foreground maps are the foregrounds themselves as they
are mostly present in the galactic plane, but we still need to examine the influence of the other
sources discussed in section 4.4.2.

We start by the noise, which for the CMB has a large effect at high `. Hence, it is sufficient
to look at the best resolution dust map studied in section 5.1. Figure 510 shows the noise
power spectrum of the dust map evaluated using half-mission maps. Even at high `, it seems
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Figure 510: Dust and noise power spectra for the map studied in section 5.1 as a function of `.

Figure 511: The different masks used in chapters 5 and 6. On the left, the high resolution
versions (nside = 2048) of the Commander mask (fsky = 0.822) in black only and of the
common mask (fsky = 0.776) in black and orange. On the right, the masks have a low resolution
(nside = 256) and have been obtained by degrading the resolution of the masks on the left, in
the process their size has slightly increased (fsky = 0.804 and fsky = 0.745). This effect is easily
visible for the point sources.

that it is small compared to the signal. Hence, we will not discuss it further in this thesis.
The choice of mask should also be examined more carefully. That is why here we compare

our previous results obtained with the common mask (fsky = 0.776) to those obtained with the
Commander mask which is slightly smaller (fsky = 0.822) and of course fully included in the
common mask. Figure 511 shows these two masks in the high and low resolution cases.

Figure 512 shows the power spectra of the different foregrounds with these two masks and
highlights the large difference between the two cases. The reason for this difference is quite
obvious because the masks have been constructed to hide most of the foregrounds, so with a
smaller mask, there is a lot more of the foregrounds to detect. Moreover, as they are anisotropic,
both the amplitude and the form are different depending on the mask, this is especially true
for the synchrotron signal (as we will explain below).
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Figure 512: Power spectra of the different foregrounds using the common mask (solid line,
fsky = 0.776) and the Commander mask (dashed line, fsky = 0.822). On the left, the high
resolution dust map (nside = 2048) and on the right, the low resolution foreground maps
(nside = 256).

Dust Dust (low resolution) Free-free AME Synchrotron

0.90 0.85 0.88 0.91 0.11

Table 54: Correlation coefficients between the bispectral templates determined using the com-
mon mask and the Commander mask for each foreground.

This is also checked for the bispectra as shown in figure 513. With the Commander mask
(the smallest one), all the signals are a lot more non-Gaussian. To verify that is not only a
difference of amplitude, we have at our disposal the perfect tool: the correlation coefficients
defined in (4.57). For each foreground, we have computed the correlation between the templates
determined using the two masks. The results are given in table 54. For the dust, free-free and
AME emissions, the templates are correlated (above 80 %) and indeed we can see that the
bispectra peak in the squeezed configuration as discussed previously. However, the fact that
the correlation is not 100 % shows that the difference is not only the amplitude.

However, for synchrotron the situation is more complicated, like in the power spectrum
case. Indeed the new template is very different from the one in figure 59, and it is confirmed by
the low correlation between the two synchrotron templates determined with the two different
masks. To understand this result, it is interesting to examine directly the data map with the
Commander mask in figure 514. One can see that there are a few pixels where the intensity is
ten times larger than with the common mask (where they are hidden). The influence of this
very small region dominates the power spectrum and the bispectrum because the transition
is so important. It could be modelized as a Heaviside step function, the Fourier transform of
which is a sinc function, meaning that these two pixels have a large influence over the whole
multipole space and we can see oscillations as expected in both the power spectrum (there is a
minimum at ` ≈ 240) and the bispectrum (there are three regions of negative bispectrum with
positive bispectrum around them on the plot for `3 ∈ [255, 267]).

In conclusion, the choice of mask has a large influence on the templates we are determining
because of the localization of the foregrounds in the galactic plane. This means that when we
apply these templates to other maps in the next chapter, it is mandatory to use the same mask
at every step. From now on, we will exclusively use the common mask.
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Figure 513: Bispectral signal-to-noise of the different foregrounds for the same three bins of `3
as figures 53 and 58 using the Commander mask. Note the different colour scales.
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Figure 514: Zoom on the synchrotron map at 143 GHz after application of the masks (left:
common mask, right: Commander mask).



Chapter 6

Data analysis using the galactic
templates

The aims of this chapter are twofold. First, we want to verify that the numerical templates we
just determined can be used in the context of a CMB data analysis. A large part of my work
was to implement this possibility into the binned bispectrum estimator code (see section 4.4.4
for a description of the code). The first basic test to check this is to apply the template to the
map it comes from. The expected answer for the amplitude parameter of this specific shape is
then obviously fNL = 1. Moreover, if we perform a correlated analysis with other shapes like
the primordial ones, their own fNL has to be negligible. Indeed, that is what we observe (see
table 61) and we can now discuss more interesting tests based on CMB maps. It is important
to recall that the galactic foregrounds are highly anisotropic while the shapes introduced in
section 4.2 have an isotropic origin (primordial, lensing-ISW or extra-galactic foregrounds).
These galactic numerical templates also contain mask and noise effects, but we will show that
it is not an issue. For this, we ran a series of tests with the simple idea of artificially adding
dust to the maps containing CMB realizations (simulations, but also the observed data) to
check that we indeed detect the right amount of dust and that it has no impact on the other
shapes.

Then, we will focus on the second aim which is to analyze the CMB map from the 2015
Planck data. We will apply the numerical templates to the cleaned SMICA CMB map [8],
both at low and high resolutions, for which we expect not to detect any galactic foregrounds.
Finally we will perform a similar analysis on raw sky observations at 143 GHz.

Local Equilateral Orthogonal P.S./10−29 CIB/10−27 Dust

Indep −5.3 16.5 15.4 1.76 1.32 1.0

Joint −7× 10−11 2× 10−10 −2× 10−11 −1× 10−13 7× 10−14 1

Table 61: Determination of fNL for the local, equilateral, orthogonal, point sources, CIB and
dust shapes using the dust map studied in section 5.1. The only error bars at our disposal are
Fisher forecasts; they are not indicated because for every case given here, they are several (at
least three) orders of magnitude smaller than the determined values for fNL in the independent
case, which makes them many orders of magnitude larger than the non-dust values in the joint
analysis.

61
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6.1 Gaussian simulations

For the first tests, we constructed a set of 100 Gaussian simulations of the CMB obtained
using the best fit of the CMB power spectrum from the 2015 Planck release [17] (see figure
32) at the resolution nside = 2048. There are several reasons to use these simulations instead
of the observed CMB map. First, it is important to check the validity of this new use of the
binned bispectrum estimator with a large number of maps. Moreover, even the cleaned CMB
map still contains contamination from extra-galactic foregrounds and the ISW-lensing. Here,
these effects are not present. However, we need the Gaussian realizations of the CMB to have
the characteristics of the SMICA CMB map. Hence, we smoothed the maps using a 5 arcmin
FWHM Gaussian beam and we added noise based on the noise power spectrum of the SMICA
CMB map (moreover, our choice of bins is optimal only if this noise is present in the maps,
because it diminishes the weights of the bins at high ` following (4.50)). In this section, we will
discuss two different cases for the noise. First, we will assume it has an isotropic distribution
in pixel space. In the second case we will make it anisotropic by modulating it in pixel space
using the hit-count map corresponding to the scanning pattern of the Planck satellite. Finally,
we add some dust to these maps using the dust map at 143 GHz discussed in section 5.1. Every
analysis presented in this chapter uses the common mask introduced in the previous chapter,
see figure 511.

The determination of the amplitude parameters is performed using the binned bispectrum
estimator, including a linear correction term to the bispectrum as discussed in section 4.4.2.
In practice, the linear correction term is computed using Gaussian simulations of the analyzed
maps with the same characteristics (beam, noise, mask). We use the average power spectrum
of our 100 maps (CMB + dust) to generate the maps necessary for the computation of the
linear correction. Here we use 80 maps for the linear correction. We have verified that this
number is sufficient to detect squeezed bispectra like the local and the dust shapes to high
precision. However, to measure the equilateral shape (which has no reason to be detected here)
with a high precision, it would require more maps. The first analysis is performed with the
same choice of 57 bins as in the 2015 Planck analysis [14] which was shown to be optimal to
determine the primordial shapes, using multipoles from `min = 2 to `max = 2500 (remember
that our analysis is temperature only). We add one times the dust map to the simulations of
the CMB, thus the expected value of the fNL for the dust template is 1. We also determine
the amplitude parameters fNL for the primordial shapes, the point sources and CIB bispectra
in both the independent and the joint case.

Results are given in table 62. First, we see that we detect the expected amount of dust with
a good accuracy. We also observe that the shapes correlated to the dust template (see table 51),
because they also peak in the squeezed configuration, are strongly detected in the independent
case. However, in the joint analysis all the non-Gaussianity of the maps is attributed to the
dust, with only a small impact on the error bars of the primordial shapes, meaning that this test
is successful. However, this choice of bins is only optimized to detect the primordial bispectra
and not the dust. Then, it is important to verify if the results can be improved by adding a
few bins at very low ` (below 30) to better measure the dust contribution. This can be seen
in appendix A where we observe that only the very low `1 are important for the template (it
is more squeezed than the local shape). Figure 61 can also be used to highlight this effect. It
shows the convergence of fNL when using a smaller multipole interval to determine fNL. In
the two top plots, we can see that if we exclude the very low ` (below 30) both the local and
orthogonal fNL are consistent with 0. If we exclude the region of multipole space where the dust
template is the strongest, there is no detection of the primordial shapes, even in an independent
analysis. The two bottom plots are interesting as they show that the determination of fNL for
the dust template is very stable when increasing `min or decreasing `max. Note however that
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Local Equilateral Orthogonal P.S./10−29 CIB/10−27 Dust

Dust 100%, 57 bins (expected fdustNL = 1)

Indep −86± 14 27± 67 103± 38 1.4± 0.9 1.1± 0.5 1.03± 0.20

Joint −6± 14 16± 77 −10± 45 0.1± 2.6 0.0± 1.5 1.00± 0.24

Dust 100%, 70 bins (expected fdustNL = 1)

Indep -67 ± 11 20 ± 68 92 ± 34 1.4 ± 1.0 1.0 ± 0.5 1.00 ± 0.20

Joint 0 ± 14 -5 ± 75 -1 ± 39 0.0 ± 2.6 0.0 ± 1.4 1.01 ± 0.24

Dust 75%, 70 bins (expected fdustNL = 0.42)

Indep -30 ± 8 11 ± 66 41 ± 36 0.6 ± 0.9 0.4 ± 0.5 0.42 ± 0.12

Joint 0 ± 9 1 ± 70 -2 ± 42 0.0 ± 2.6 0.0 ± 1.4 0.42 ± 0.13

Dust 0%, 70 bins (expected fdustNL = 0)

Indep -0.1 ± 0.5 -1.7 ± 6.1 -3.1 ± 3.4 -0.03 ± 0.09 -0.01 ± 0.05 0.001 ± 0.003

Joint -0.3 ± 0.7 -1.6 ± 6.4 -4.2 ± 4.1 -0.15 ± 0.26 0.06 ± 0.13 0.001 ± 0.003

Table 62: Determination of fNL for the local, equilateral, orthogonal, point sources, CIB and
dust shapes using a set of 100 Gaussian simulations of the CMB with isotropic noise to which
we added a known amount of dust (the dust map of section 5.1 multiplied by a factor 1 or 0.75,
or no dust at all). The analysis is performed using 57 bins or 70 bins and the error bars are
given at 1σ. For the reason behind the much smaller error bars in the 0 % dust case, see the
main text.

the error bars on fdust
NL increase a lot if we use `min > 30. This is visible with the dashed blue

lines which correspond to the 68% confidence intervals.
There is another important effect in the dust template when a very large scale (small `) is

concerned: the sawtooth pattern in the dust power spectrum (see figure 52) is also expected
in the dust bispectrum for the same reason (the only large harmonic coefficients describing the
dust at low ` are the a`0 with ` even). In principle, it could be used to differentiate between the
dust and the local shapes, but this effect is hidden if the bins are large because it is averaged
over several `’s, thus providing another motivation to add some bins at low `. One issue when
adding bins is that the memory constraints on the computer system we use limit us to a number
of bins between 50 and 60 at most at the Planck resolution when including the polarization too.
Here we can use 70 bins, because we only look at the temperature data and because we only
add bins for the largest scales, where it is possible to downgrade the resolution of the filtered
maps. With this new binning, the correlation coefficient between the local and dust shapes
becomes −0.48 (instead of −0.60 for 57 bins, see table 51). So indeed adding a few bins at low
` helps to differentiate these squeezed shapes. The results of the same test with 70 bins are
also given in table 62. In the independent analysis, the amount of local non-Gaussianity and
its error bar decreases which is consistent with the fact that the dust and the local templates
are easier to differentiate with the new binning. However, in the joint analysis there is no clear
difference, except that the different central values are now very close to the expected values.

We also have to note that the approximation of weak non-Gaussianity, which is needed for
the validity of the linear correction of the bispectrum to take into account the effects of the
mask here, starts to break down when we observe a local shape at more than 6σ (independent
case). This is why it is important to verify how a similar analysis works with a smaller amount
of dust in the map. Hence, with the same choice of 70 bins, we perform two other tests with
the 100 CMB simulations. For one we multiply the dust map by a factor 0.75 before adding
it to the CMB realizations and the expected value of fNL is then 0.753 ≈ 0.42. For the other
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Figure 61: Convergence of fNL in the independent analysis of the 100 Gaussian CMB simula-
tions + dust map as a function of `min for the local (top left), orthogonal (top right) and dust
(bottom left) shapes, and as a function of `max for the dust shape (bottom right). The blue
dots correspond to the values determined by the binned bispectrum estimator when `min (or
`max for the fourth plot) is inside the corresponding bin. The 68% confidence interval is given
by the blue dashed lines. The horizontal red dashed line corresponds to the determined value
of fNL using the whole multipole interval (from 2 to 2500 with 57 bins).

test, we use the the Gaussian CMB maps without adding dust, to verify that we do not detect
any bispectral shape. These results are also given in table 62 and are exactly as expected.

Note that the error bars for the case of the CMB only are roughly one order of magnitude
smaller than for the rest. The reason is that we made a distinction between the standard
deviation (square root of the variance) and the standard error (standard deviation divided by
the square root of the number of maps, so divided by 10 here). The standard error gives the
expected error on the determination of the mean value of fNL with our sample of 100 Gaussian
maps. The standard deviation gives the 1σ interval in which we would detect fNL if we study
one map. It is clear that the standard error has to be used in the CMB-only analyses because
we determine the mean value of each fNL from a sample of 100 maps. However, when we add
dust to these maps, the situation is different because we only have one realization of the dust
so the standard error cannot be used. We are however very conservative by using the standard
deviation, the real error bars on the mean values of the different fNL are probably between
the standard error and the standard deviation (the more dust in the map, the closer to the
standard deviation it will be). However, the fact that for the two amounts of dust with 70 bins
the central values in the joint analysis are so close to the expected values is an indication that
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Figure 62: Distribution of the ratio of the observed variance over the theoretical prediction for
the three different amounts of dust (0 % in blue, 75 % in green and 100 % in red). On the left,
all the valid `-triplets are included while on the right only very squeezed `-triplets are shown
(one small multipole `1 ≤ 13 and two large ones `2,3 ≥ 742).

the error bars are likely overestimated for these two cases (the results with dust would still be
correct if we divided the standard deviation by 10 to obtain the standard error, which is not
true with 57 bins).

We can illustrate the breakdown of the weak non-Gaussianity approximation using the
variance of the bispectrum. Indeed, we have at our disposal a theoretical prediction for the
variance, given in (4.50), that scales as the power spectrum cubed and for which the derivation
relies on the weak non-Gaussianity approximation. However, we can also directly compute the
variance of the bispectrum from our 100 maps, which we call here observed variance. Figure
62 shows the distribution of the ratio of the observed variance over the theoretical variance
for the three different amounts of dust in two different configurations. First, we examine this
ratio over the whole triplet space (on the left) where there is no difference between the three
cases and the values are distributed around 1 as expected. That is logical because the non-
Gaussianity of the dust is very localized in multipole space; the bispectrum is large only in the
very squeezed configuration. This is why on the right we consider only the triplets where one
` is very small (in the first five bins i.e. ` ≤ 13) and the two others large (in the last 30 bins,
i.e. ` ≥ 742). Adding or removing a few bin triplets here does not change the results. Here we
can see that if there is more dust (in red), there are several values which strongly deviate from
one. This effect is even more obvious when we examine the mean and the standard deviation of
these distributions, which are given in table 63. When considering the full space of multipole
triplets, there is no significant difference between the three cases. However, when we examine
only the squeezed part of the bispectrum, the standard deviation increases slightly with a small
amount of dust (75 %), and is three times larger for 100 % dust compared to the CMB-only
case. Hence, the weak non-Gaussianity approximation stops being valid, but not enough to
invalidate the results (only a few bin-triplets deviate strongly). However, if we were to add
even more dust, we would have to take this effect into account.

In addition to looking at the variance of the bispectrum itself, we can also investigate
the variance of the fNL parameters with regard to the validity of the weak non-Gaussianity
approximation. Every error bar given in table 62 was computed from the observed variance
of the set of 100 maps. However, we can also compute Fisher error bars from the theoretical
prediction of the variance and they are given in table 64 for the three cases studied in this
section for the local and dust shapes. We can see that for both, the more non-Gaussian the
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0 % dust 75 % dust 100 % dust

Full Squeezed Full Squeezed Full Squeezed

Mean 1.09 0.97 1.08 0.97 1.08 1.11

Standard deviation 0.19 0.16 0.19 0.21 0.20 0.51

Table 63: Means and standard deviations of the distributions of the ratio of the observed
variance over the theoretical prediction, shown in figure 62, for the three amounts of dust,
including the full bispectrum or only a very squeezed part of it.

100 % dust 75 % dust 0 % dust

Local

Fisher 6.6 6.4 5.6

Observed 14 7.7 5.2

Dust

Fisher 0.05 0.04 0.031

Observed 0.20 0.12 0.030

Table 64: Fisher and observed standard deviations on f local
NL and fdust

NL (independent analysis)
determined from 100 Gaussian simulations of the CMB with isotropic noise to which we added
a known amount of dust (100 %, 75 % or 0 % of the dust map of figure 51) using 70 bins.

map is, the more important is the difference between Fisher and observed error bars. This
is related to the breakdown of the weak non-Gaussianity approximation. For a local |fNL| of
around 70 (corresponding to 100 % dust), the difference is a factor 2 between the two kinds
of error bars. The difference is larger for the dust template, where for this case the observed
error bars are four times larger than the Fisher forecasts. For both templates, when there is
no dust (so purely Gaussian maps), the observed error bars agree with the Fisher forecasts up
to the expected precision (the relative error in the standard deviation is 1/

√
2(N − 1), which

is 7 % for 100 maps).
As explained before, adding noise realizations with the correct power spectrum to the CMB

simulations is necessary for the optimization of the binning and to make the simulations more
realistic. However, the real instrument noise does not have an isotropic distribution in pixel
space because some parts of the sky are observed more often than others, as shown in figure
63. Without a linear correction, the anisotropic noise also gives a large squeezed contribution
to the bispectrum for the usual reason: small-scale fluctuations are larger (more noise) in the
large-scale regions which are less observed and vice versa. This is why we also verify the
previous results with an anisotropic distribution of the noise following the scanning pattern of
the Planck satellite. The results are given in table 65. Here we use only the best choice of bins
(70 bins) and the results are given for the same three amounts of dust as in table 62. Results
are very similar with isotropic and with anisotropic noise for the three cases; each time

With these different tests, we have proven that the binned bispectrum estimator can be
used to detect a galactic foreground shape that we determined numerically. It works well with
the amount of dust that is expected at 143 GHz, the dominant frequency channel in the cleaned
CMB map. So the next logical step is to use the template on real data.
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Figure 63: Unmasked (left) and masked (right) hit-count map of Planck (number of observation
samples per pixel).

Local Equilateral Orthogonal P.S./10−29 CIB/10−27 Dust

Dust 100% (expected fdustNL = 1)

Indep -67 ± 11 24 ± 65 93 ± 34 1.5 ± 1.1 1.1 ± 0.5 1.00 ± 0.20

Joint -1 ± 14 4 ± 73 -4 ± 40 0.2 ± 2.8 0.0 ± 1.4 1.00 ± 0.24

Dust 75% (expected fdustNL = 0.42)

Indep -30 ± 7 4 ± 62 44 ± 33 0.5 ± 1.1 0.4 ± 0.5 0.42 ± 0.12

Joint 0 ± 10 -5 ± 69 1 ± 38 -0.1 ± 2.8 0.0 ± 1.4 0.42 ± 0.14

Dust 0% (expected fdustNL = 0)

Indep -0.15 ± 0.50 0.3 ± 6.6 -1.4 ± 3.8 -0.08 ± 0.10 -0.05 ± 0.05 0.000 ± 0.003

Joint -0.30 ± 0.64 1.2 ± 6.8 -2.2 ± 4.3 0.08 ± 0.23 -0.08 ± 0.11 0.000 ± 0.004

Table 65: Determination of fNL for the local, equilateral, orthogonal, point sources, CIB and
dust shapes using a set of 100 Gaussian simulations of the CMB with anisotropic noise to which
we added a known amount of dust (the dust map of section 5.1 multiplied by a factor 1 or 0.75,
or no dust at all). The analysis is performed using 70 bins and the error bars are given at 1σ.

6.2 CMB analyses

The previous tests have shown that detecting the dust is possible when there is a large amount
of it. We can now apply the dust template to a real CMB analysis. Here, we follow the analysis
of the Planck 2015 paper [14] (note that we only study the temperature bispectrum, while for
Planck the polarization was also taken into account). We use a set of 160 simulation maps for
the computation of the error bars and the linear correction. The power spectrum is the best fit
cosmological model from the 2015 Planck analysis represented in figure 32. This time, we also
include the ISW-lensing shape in the analysis because it is present in the data. As discussed in
section 4.2, the amplitude of this template is known, so it can be used to subtract the bias (see
equation (4.60)) from the bispectral non-Gaussianity of the map. Results are given in table
66.1 We include the results with and without taking into account the ISW-lensing bias, and we
perform two different joint analyses for comparison, with and without the dust. As expected,
there is no detection of the primordial shapes or the dust. However, it is important to note that

1The difference between the values in this table and those in the Planck paper [14], in particular for equilat-
eral, is mainly due to our use here of a slightly different mask (the preferred temperature mask from [8] instead
of the slightly extended mask used in [14]).



68 Chapter 6. Data analysis using the galactic templates

Local Equilateral Orthogonal P.S./10−29 CIB/10−27 Dust/10−2 Lensing-ISW

No ISW-lensing bias subtraction

Indep 8.7 ± 5.5 8 ± 67 -34 ± 33 9.6 ± 1.0 4.6 ± 0.5 -0.8 ± 3.8 0.59 ± 0.29

Joint 6 ± 8 -21 ± 69 -3 ± 38 7.3 ± 2.7 1.2 ± 1.4 -2.2 ± 5.2 0.57 ± 0.31

Joint \ dust 4.2 ± 6.7 -15 ± 68 -6.6 ± 37 7.2 ± 2.7 1.3 ± 1.4 0.55 ± 0.31

ISW-lensing bias subtracted

Indep 1.2 ± 5.5 6 ± 67 -8 ± 33 9.6 ± 1.0 4.6 ± 0.5 -4.0 ± 3.8

Joint -5 ± 8 -16 ± 69 1 ± 38 7.1 ± 2.7 1.3 ± 1.4 -3.5 ± 5.1

Joint \ dust 1.0 ± 6.3 -7 ± 68 -5 ± 37 7.0 ± 2.7 1.4 ± 1.4

Table 66: Determination of fNL for the local, equilateral, orthogonal, point sources, CIB, dust
and ISW-lensing shapes in the cleaned SMICA CMB map from the 2015 Planck release. In
the three first lines, the ISW-lensing shape is considered as the others. In the last three, the
ISW-lensing bias is subtracted. The joint analysis is performed with and without the dust
template. The binning consists of 57 bins.

Local Equilateral Orthogonal Dust Free-free Synch/105 AME/1010

Indep 13 ± 30 49 ± 155 66 ± 130 -0.01 ± 0.07 -1 ± 32 -0.1 ± 4.4 -10 ± 7

Joint 17 ± 51 281 ± 406 50 ± 287 -0.01 ± 0.10 22 ± 43 2 ± 6 -12 ± 8

Table 67: Determination of fNL of some primordial and all galactic templates in the cleaned
SMICA CMB map at low resolution nside = 256 with a 60 arcmin FWHM Gaussian beam from
the 2015 Planck release. Because of the low `max = 300, the analysis is performed using 39
bins.

the error bars of the local and dust shapes in the joint analysis increase because these shapes
are correlated. Similarly to the previous section, one way to improve the situation would be to
find a binning that is optimal for both shapes.

We also performed a similar analysis on a low resolution cleaned CMB map (nside = 256)
with a 60 arcmin FWHM Gaussian beam to look for the other foreground templates with the
usual choice of bins. Results are given in table 67. Because of the resolution and the beam, we
only analyze multipoles in the interval [2, 300], which is the reason for the very large error bars.
As that would leave only few bins from the original binning, we split all the bins below ` = 300
into three (where possible, two otherwise), which gives 39 bins in total. Moreover, we did not
subtract the ISW-lensing bias as its contribution is small compared to the error bars. The
point sources and the CIB are not given in the table because they were not observed here. The
results are consistent with zero non-Gaussianity in the map. But the new foreground shapes
(AME, free-free and synchrotron) have very large error bars and even if they were present in
the map, it would not be possible to detect them.

6.3 Raw sky

After applying the foreground templates to the cleaned CMB map that is not supposed to
contain any galactic foreground (which we confirmed), it is also interesting to study the raw
143 GHz Planck map. Again, we had to generate Gaussian simulations of this map to compute
the linear correction. For this, we used the power spectrum of the map and we determined the
noise power spectrum using the half-mission maps. The power spectra are shown in figure 64.
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Figure 64: Power spectrum of the raw 143 Ghz map as well as the estimated noise power
spectrum.

The noise is modulated in pixel space using the hit-count map of figure 63 to make it anisotropic.
The beam of this map can be approximated by a 7.3 arcmin FWHM Gaussian beam.

Results are given in tables 68 and 69. We detected the expected amount of dust since
fdust

NL = 1 is within the 1σ error bars in both the independent and joint analyses. For the other
foregrounds, the situation is similar to the previous section: the error bars are far too large for
a detection (the synchrotron and AME shapes are not given here because the error bars are
many orders of magnitude larger than the expected quantity in the map). To determine error
bars, we did not have good simulations of the data map but we had of course Fisher forecasts.
We made the simple but reasonable hypothesis that the factor between the real error bars and
the Fisher ones due to the breakdown of the weak non-Gaussianity approximation is the same
as for the anisotropic case in section 6.1. Then it was easy to determine error bars for the
primordial and the dust shapes that are a bit larger than in table 65. However, for the CIB
and the point sources, which are not the main object of study here, the situation is different
because they were not present in the Gaussian simulations, so we could not apply this method.
Hence we only give Fisher error bars for those two shapes, but because of the strong detection
we know that they are underestimated. This is not an issue because they are uncorrelated to
the local and the dust shapes. For the low-resolution case in table 69 we only have Fisher error
bars for all shapes. In conclusion, the method also works correctly when applied to a raw sky
map.

Here, we have proven that we have successfully implemented the possibility to use numerical
bispectral templates of the galactic foregrounds with the method of the binned bispectrum
estimator using Gaussian simulations of the CMB containing a known amount of dust. Then
we have verified the consistency of the results with observational data of the 2015 Planck
release, both a cleaned CMB map where we observe no dust and the raw sky map where we
detect the full template of the dust.



Local Equilateral Orthogonal P.S./10−29 CIB/10−27 Dust

Indep -61 ± 13 22 ± 71 -12 ± 39 90 ± 4 28 ± 1 1.09 ± 0.25

Joint 13 ± 18 -37 ± 81 -81 ± 47 115 ± 9 -11 ± 3 1.08 ± 0.32

Table 68: Determination of fNL in the raw 143 GHz map at high resolution nside = 2048 from
the 2015 Planck release. The analysis is performed with the usual choice of 57 bins. For the
details on the error bars for the primordial and the dust shapes, see the main text. The CIB
and point sources error bars are Fisher forecasts.

Local Equilateral Orthogonal Dust Free-free

Indep -41 ± 54 232 ± 198 277 ± 177 0.88 ± 0.28 39 ± 50

Joint -33 ± 94 543 ± 536 112 ± 388 0.85 ± 0.39 -9 ± 69

Table 69: Determination of fNL in the raw 143 GHz map at low resolution nside = 256 from
the 2015 Planck release. The analysis is performed with 39 bins. The error bars are all Fisher
forecasts.
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Chapter 7

Definitions and set-up

The Planck satellite significantly improved the constraints on any potential deviation from a
Gaussian distribution of primordial density perturbations generated during inflation (i.e. Non-
Gaussianity) [11, 14]. Is is then important to better understand what regions of inflation model
space have been ruled out. However, it is well-known that the bispectrum produced during a
phase of standard single-field slow-roll inflation is unobservably small [6, 141]. This result does
not hold in more general situations and many extensions of that simple case have been proposed
with different predictions for non-Gaussianity, meaning that observations can in principle be
used to constrain them.1 For example, models with higher derivative operators based on the
Dirac-Born-Infeld action [20, 176, 147, 148, 190] can produce large non-Gaussianity of the
so-called equilateral type. Another possibility is to consider multiple fields during inflation,
which adds isocurvature perturbations to the usual adiabatic perturbation. The isocurvature
perturbations can interact with the adiabatic one on super-Hubble scales (while in single-field
inflation the adiabatic perturbation is constant on super-Hubble scales) which can lead to so-
called local non-Gaussianity. In this case non-Gaussianity can be generated long after inflation
as in the curvaton scenario [140, 30, 113, 76, 46, 194, 98], or directly after inflation during
(p)reheating [204, 138, 37, 28, 75, 106, 73]. However, in this thesis we will be interested in
the case where this local non-Gaussianity is produced on super-Hubble scales during inflation.
Since we will only talk about local non-Gaussianity in this part of the thesis, fNL should always
be understood as f local

NL .
This chapter sets up the basic equations and definitions used in the rest of the thesis, which

is based on our paper [108]. Most of this chapter summarizes results derived in previous papers,
but several new useful relations are given in section 7.4 and the final section 7.6 contains an
important new result.

7.1 Background dynamics

The models we will consider are two-field inflation models with standard kinetic terms and a
potential W (φ, σ) in the framework of general relativity. Here φ(t,x) and σ(t,x) denote the
two fields, which we will often combine into the vector φA with A = 1 for φ and A = 2 for σ.
Since we have standard kinetic terms (trivial field metric), there is no difference between upper
and lower field indices. For the moment we keep W completely general, although in the later

1It has been pointed out [184, 153] that the finite size of the observable universe leads to gauge corrections,
which have to be taken into account to convert the inflationary bispectrum to actual observations. Indeed in
single-field inflation the squeezed limit of the bispectrum vanishes identically for a local observer today. In
multiple-field inflation, on the other hand, these corrections are also of order 1−ns [183] and hence are expected
to be negligible in the case of large fNL.
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chapters we will often have to assume some specific form of the potential in order to solve the
equations. The matter Lagrangian takes the form

Lm =
√
−g
(
−1

2
gµν∂µφA∂νφ

A −W (φA)

)
. (7.1)

As time coordinate t we will use the number of e-folds t ≡ ln a, where a(t) is the scale factor
of the universe, and we denote derivatives with respect to this time coordinate by overdots. The
Hubble parameter of the universe is denoted by H(t). Unlike in the case of cosmic time, where
the expansion information of the universe is encoded in a and H is directly derived from it,
when using the number of e-folds as time coordinate, a is a trivial function, and the expansion
information is encoded in H, which can in this case not be derived from a.

In terms of the number of e-folds the background field equation for φA and the Friedmann
equations for H take the following form:

φ̈A + (3− ε)φ̇A +
WA

H2
= 0, H2 =

κ2W

3− ε
,

Ḣ

H
= −κ

2

2

(
φ̇2 + σ̇2

)
. (7.2)

Here κ2 ≡ 8πG and the index on W denotes a derivative with respect to the fields: we define
WA1...An ≡ ∂nW/(∂φA1 · · · ∂φAn). The quantity ε is a short-hand notation of which the physical
interpretation will be discussed in the next section. It is defined as

ε ≡ −Ḣ
H

=
κ2

2

(
φ̇2 + σ̇2

)
(7.3)

(where the second equality follows from the Friedmann equation for Ḣ).
As we have a two-dimensional field space, we need a basis, and as usual we will define the

basis vectors with respect to the field trajectory [93, 94, 91]:

eA1 = (e1φ, e1σ), eA2 = (e1σ,−e1φ), e1φ =
φ̇√

φ̇2 + σ̇2

, e1σ =
σ̇√

φ̇2 + σ̇2

. (7.4)

So the first basis vector is always along the field trajectory as it is defined as the direction of
the field velocity. The second basis vector is perpendicular to the first, and since we have only
two dimensions it can be completely expressed in terms of the components of the first basis
vector (see appendix A of [191] for some refinements of this basis originally introduced in [93]).

For later use we will define the following quantities:

W̃A1...An =

(√
2ε

κ

)n−2
WA1...An

3H2
, W̃m1...mn = W̃A1...Ane

A1
m1
· · · eAnmn , (7.5)

where the m indices denote the components of the basis and the Einstein summation convention
is implied. In order to distinguish explicit components of these two different quantities, indices
1 and 2 will indicate components in the basis (7.4) (e.g. W̃21), while indices φ and σ will be
used to indicate components in terms of the original fields (e.g. W̃σσ).

7.2 Slow-roll parameters

Similarly to section 2.3.3, we introduce a set of slow-roll parameters. It is important to keep
in mind that the introduction of these parameters is not yet an approximation: the equations
are still completely exact and the slow-roll parameters can be considered as just a short-hand
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notation. It only becomes an approximation (the slow-roll approximation) if we then say that
some of these parameters are small and start neglecting certain terms. We will do that in
certain later sections, but not here.

The first slow-roll parameter is ε defined in (7.3). It will be small if the kinetic energy of the
fields is small compared to their potential energy. The other slow-roll parameters are vectors
in field space and can be defined as follows with n ≥ 2 [94, 191]:

η(n)A ≡ 1

Hn

√
φ̇2 + σ̇2

(
H

d

dt

)n−1 (
Hφ̇A

)
. (7.6)

As usual the most important ones are for n = 2 (simply called ηA) and n = 3 (called ξA). For
example, for ηA the expression above becomes

ηA =
1√

φ̇2 + σ̇2

(
φ̈A − εφ̇A

)
. (7.7)

We will usually consider the parallel and perpendicular components of these as defined in the
basis (7.4):

η‖ ≡ ηAe1A, η⊥ ≡ ηAe2A, ξ‖ ≡ ξAe1A, ξ⊥ ≡ ξAe2A. (7.8)

The parameters η‖ and η⊥ will be small if the components of the field acceleration parallel and
perpendicular to the field velocity, respectively, are small compared to the field velocity.2 The
parameter η⊥ is quite fundamental to anything concerning multiple-field inflation: as long as it
is negligible we are in an effectively single-field situation, but as soon as it becomes significant
we have true multiple-field effects. This will be illustrated quite clearly by the results of this
thesis. The parameters ε and η‖ are the direct generalizations of the ε and η introduced in
section 2.3.3 and describe effectively single-field effects.

In the context of the slow-roll approximation, ε, η‖, η⊥ are called first-order slow-roll pa-
rameters, while ξ‖, ξ⊥ are second-order slow-roll parameters. Now one might wonder about the
fact that we call η⊥ a slow-roll parameter, given that the actual slow-roll approximation (in
the spirit of a field slowly rolling along its trajectory) would only require ε, η‖ and higher-order
parallel slow-roll parameters to be small, and say nothing about the perpendicular parameters.
However, in order to be able to derive the analytical expressions in chapter 8, where we treat
the slow-roll regime, we need to assume a stronger version of the standard slow-roll approxi-
mation where all parameters, including η⊥ and even χ (defined in (7.11)) are small. And as
we will later see, in the models considered in this thesis it is anyway not possible to have a
large η⊥ while η‖ stays small. Hence we will call all these parameters slow-roll parameters,
and assume all of them to be small in the slow-roll approximation (sometimes adding the word
“strong” to be explicit). On the other hand, when talking about breaking the slow-roll regime
in chapter 9, we consider situations where ε or η‖ becomes large during inflation (in addition to
η⊥), which breaks slow roll according to anyone’s definition. In the current section, however,
we are not assuming anything to be small and not making any approximations.

From their definition and using the field equation (7.2) and its derivative, one can show
that

η‖ = −3− 3W̃1, η⊥ = −3W̃2, (7.9)

ξ‖ = −3W̃11 + 3ε− 3η‖, ξ⊥ = −3W̃21 − 3η⊥. (7.10)

2This remark is exact when acceleration in terms of cosmic time is considered. When using the number of
e-folds as time coordinate, as we do here, there is a correction term as seen in (7.7). However, that correction
disappears for η⊥.
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We also introduce the parameter

χ ≡ W̃22 + ε+ η‖. (7.11)

Despite its similarity to the expressions for ξ‖ and ξ⊥, the parameter χ is a first-order slow-roll
parameter and not a second-order one. The reason is that within the slow-roll approximation
cancellations occur in the right-hand sides of (7.9), making the slow-roll parameters on the
left-hand side one order smaller than the individual terms on the right-hand side. However, no
such cancellation occurs in (7.11).

We can compute the time derivatives of the basis vectors and the slow-roll parameters and
find:

ė1φ = η⊥e1σ, ė1σ = −η⊥e1φ, ε̇ = 2ε(ε+ η‖),

η̇‖ = ξ‖ + (η⊥)2 + (ε− η‖)η‖, η̇⊥ = ξ⊥ + (ε− 2η‖)η⊥,

χ̇ = εη‖ + 2εχ− (η‖)2 + 3(η⊥)2 + ξ‖ +
2

3
η⊥ξ⊥ + W̃221,

ξ̇‖ = −3W̃111 + 2η⊥ξ⊥ + (2ε− 3)ξ‖ + 9εη‖ + 3(η‖)2 + 3(η⊥)2,

ξ̇⊥ = −3W̃211 − η⊥ξ‖ + (2ε− 3)ξ⊥ + 9εη⊥ + 6η‖η⊥ − 3η⊥χ.

(7.12)

7.3 Perturbations

We are in this thesis interested in predictions of non-Gaussianity from two-field inflation and
this requires going further than in section 3.3. Concerning non-Gaussianity, we need to consider
not only first-order but also second-order perturbations on top of the homogeneous background.
Moreover, the presence of two scalar fields implies that there are now two scalar perturbation
degrees of freedom. In addition to the adiabatic curvature mode ζ (denoted ζ1 in the following)
that describes the fluctuations of the total energy density (depends on gauge), there is also an
isocurvature mode ζ2 that corresponds to the relative fluctuations between the components.
For their computation we will use the long-wavelength formalism developed in [163, 162, 164,
191, 192, 189], for which we will now recall the main steps.3 To be more precise, in this section
we review the set-up and define the main variable ζim to compute. We then write its evolution
equation and we discuss the different terms of this equation perturbed at first and second-order.
In the next section, we will introduce the method to solve it using Green’s functions, which will
in fact be the main quantities we discuss in this thesis. Finally, in another section we will use
these Green’s functions to compute the observable parameters discussed throughout the thesis.
To lighten the content of these sections, several second-order quantities will be given explicitly
only in appendix B, while their first-order equivalent will be discussed here.

As its name indicates, the long-wavelength formalism is used to study the perturbations on
super-horizon scales. On those scales spatial gradients are typically much smaller than time
derivatives4, meaning that second-order spatial gradient terms will be ignored (like the one in
(3.30)). One additional assumption is required, the slow-roll approximation has to be valid at
the time of horizon-crossing (which is in agreement with observations) for at least a few e-folds,
but can be broken at later times as will be discussed.

The long-wavelength metric has the simple form

ds2 = −N2(t,x)dt2 + a2(t,x)dx2. (7.13)

3The δN formalism is a popular alternative [181, 170, 139] to the long-wavelength formalism.
4It is an expansion in terms of the small parameter O(1/(HL)) where L is the length scale of the perturbation

(so L� 1/H).
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But as we specified in the previous section, we have chosen the number of e-folds as the time
coordinate, meaning that we work in the flat gauge NH = 1 (where H = ∂t ln a/N) in this
part of the thesis.

A consistent definition of gauge-invariant perturbations has been worked out in [142, 161,
119] and corresponds to a generalization of the ζ variable of section 3.3. But in the context of
the long-wavelength formalism, it is better to work with a related gradient quantity [163]. In
this thesis, the key variable for the perturbations is

ζmi = δm1∂i ln a− κ√
2ε
emA∂iφ

A, (7.14)

where the subscript m corresponds either to the adiabatic mode m = 1 or the isocurvature
mode m = 2. Taken at first-order and in the case of single-field inflation, it is simply the
spatial gradient of ζ defined in (3.29). It is important to note that this quantity is not gauge-
invariant at second order. Moreover, in the uniform energy gauge (which we are not using for
the moment), it can be related easily to the proper gauge-invariant quantity, which is needed
to compute observables. This will be an important step of the computation, after solving the
evolution equation of this ζmi in the flat gauge, which can be written in matrix form [164]

v̇ia(t,x) +Aab(t,x)vib(t,x) = 0, (7.15)

where via ≡ (ζ1
i , ζ

2
i , ζ̇

2
i ) (so a, b can be 1, 2, 3). The matrix A is given by

0 −2η⊥ 0

0 0 −1

0 3χ+ 2ε2 + 4εη‖ + 4(η⊥)2 + ξ⊥ 3 + ε+ 2η‖

 . (7.16)

There is one simple equation not included in this system, which illustrates one of the most im-
portant differences between multiple-field and single-field inflation: the curvature perturbation
ζ1 is not necessarily frozen on super-horizon scales, but can evolve under the influence of the
isocurvature mode ζ2. In fact this is described by the very simple but exact equation (that is
why we do not need to include ζ̇1

i in the previous system)

ζ̇1
i = 2η⊥ζ2

i . (7.17)

See [193] for the proof that it is valid at all orders on super-horizon scales. If we have both a
non-zero η⊥ and a non-zero isocurvature mode, then the adiabatic perturbation will still evolve
on super-horizon scales, and not be fully determined at horizon-crossing.

Perturbing (7.15), we find the following equations at first and second-order

v̇
(1)
ia +A

(0)
ab (t)v

(1)
ib = b

(1)(t,x)
ia ,

v̇
(2)
ia +A

(0)
ab (t)v

(2)
ib = −A(1)

ab (t,x)v
(1)
ib + b

(2)
ia (t,x).

(7.18)

Here A
(0)
ab corresponds to the background version of the matrix A, while A

(1)
ab is obtained by

perturbing it at first-order, so A
(1)
ab = Ā

(0)
abcv

(1)
c (t,x) with v

(1)
c (t,x) = ∂−2∂iv

(1)
ic . We also added

the source terms b(1) and b(2) to take into account sub-horizon effects in our super-horizon
equations.

In section 3.3, the continuous generation of perturbations at small scales was seen as an
initial condition for the variable ζ. Here, we work with the long-wavelength variable vab which
should be zero initially. Then the influx of perturbations crossing the horizon has to be incor-
porated. This is achieved using a source term following the perturbations from their generation
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until a short time after they cross the horizon, when they become super-horizon and can be
considered as stochastic classical variables. The source term b(1) can be written as

b
(1)
ia =

∫
d3k

(2π)3/2
Ẇ(k)X(1)

am(k)â†m(k)ikie
ik.x + c.c.. (7.19)

where we used the linear mode function solutions X(am)(k) (more about them later) andW(k)

is a window function separating short and long wavelengths. As in section 3.3, âm and â†m are
the quantum annihilation and creation operators satisfying the usual commutation relations.

The second-order source term b(2) is given explicitly in appendix B. Its contribution to
non-Gaussianity is small but can be computed and will be included.

7.4 Green’s functions

To solve the first-order perturbation equations, we introduce several Green’s functions [164,
162]. They satisfy the following differential equations:

d

dt
G1y(t, t

′) = 2η⊥(t)G2y(t, t
′),

d

dt
G2y(t, t

′) = G3y(t, t
′),

d

dt
G3y(t, t

′) = −A32(t)G2y(t, t
′)−A33(t)G3y(t, t

′),

(7.20)

with
A32 = 3χ+ 2ε2 + 4εη‖ + 4(η⊥)2 + ξ‖, A33 = 3 + ε+ 2η‖, (7.21)

as well as the following differential equations in terms of the time t′:

d

dt′
Gx2(t, t′) = −2η⊥(t′)δx1 +A32(t′)Gx3(t, t′),

d

dt′
Gx3(t, t′) = −Gx2(t, t′) +A33(t′)Gx3(t, t′).

(7.22)

The initial conditions are Gxy(t, t) = δxy. For y = 1, the solutions are: G11 = 1, G21 = G31 = 0.
For y = 2, 3 we need to make some approximations to solve the equations analytically.

We can also combine the equations (7.20) into a second-order differential equation for G2y

in closed form:

d2

dt2
G2y(t, t

′) +A33(t)
d

dt
G2y(t, t

′) +A32(t)G2y(t, t
′) = 0. (7.23)

The first-order solution of (7.18) is

v
(1)
ia (t,x) =

∫
d3k

(2π)3/2
vam(k, t)â†m(k)ikie

ik.x + c.c., (7.24)

with

vam(k, t) =

∫ t

−∞
dt′Gab(t, t

′)Ẇ(k, t′)X
(1)
bm(k, t′). (7.25)

Moreover, the same functions also serve to determine the second-order solution

v
(2)
ia (t,x) = −

∫ t

−∞
dt′Gab(t, t

′)Ābcd(t
′)v

(1)
ic (t′,x)v

(1)
d (t′,x) +

∫ t

−∞
dt′Gab(t, t

′)b
(2)
ib (t′,x). (7.26)
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As discussed previously, the long-wavelength formalism separates the perturbations in short
and long-wavelength modes, the transition occurring a few e-folds after horizon-crossing (de-
noted t∗). As in section 3.3, we suppose that the slow-roll approximation is a good approxima-
tion at that time as motivated by observational results. Hence, at the time of the transition
to super-horizon mode, a few e-folds after horizon-crossing, we can consider that quantities
have changed very little, so that we can use their horizon-crossing values for the following
computations.

Analytical solutions for the linear mode X
(1)
bm at horizon-crossing have been determined in

[94] using the slow-roll approximation. While we will not detail the computation here, it is
quite similar to the one in section 3.3, with the additional equation (7.17) and it also includes
perpendicular slow-roll parameters. The only non-zero components are [164]

X
(1)
11 (t∗) = X

(1)
22 (t∗) = γ∗, X

(1)
32 (t∗) = −χ∗γ∗ with γ∗ ≡

−κH∗
2k3/2√ε∗

. (7.27)

We recall that the asterisk subscript indicates that quantities are evaluated at the time of
horizon crossing t∗.

A good choice of window function is simply a step function [164, 163], so

Ẇ = δ

(
kc

aH
√

2
− 1

)
, (7.28)

where c is of order of a few (this defines a time slightly after horizon-crossing, but as we are in
slow-roll, the exact choice of c is not important). Then one can obtain

v11(t) = γ∗Θ(t− t∗),
v21(t) = v31(t) = 0,

vx2(t) = γ∗Θ(t− t∗)v̄x2(t),

(7.29)

introducing the short-hand notation

v̄x2(t) ≡ Gx2(t, t∗)− χ∗Gx3(t, t∗). (7.30)

This means that v̄12∗ = 0, v̄22∗ = 1 and v̄32∗ = −χ∗. The functions v̄x2 satisfy the same
differential equation (7.20) in terms of t as the Gx2. We will use these solutions for the
computation of observables in the next section.

For now, it is interesting to further discuss the behaviour of these Green’s functions. In the
general case, these equations cannot be solved analytically. Hence, we will focus on the case
t′ = t∗ and we assume again that at horizon-crossing the slow-roll approximation is valid for at
least a few e-folds. This means that during these few e-folds, the different slow-roll parameters,
which evolve slowly, can be considered as constants at the lowest order. Under these conditions,
the differential equation (7.23) takes the form:

g̈(t) +A33ġ(t) +A32g(t) = 0, (7.31)

where g can be either G22, G23 or v̄22, differing only in initial condition. Here, A32 and A33

are now constants. The solution of this equation is:

g(t) =
1

λ− − λ+

[
(λ−g0 − ġ0)eλ+t + (−λ+g0 + ġ0)eλ−t

]
, (7.32)

where λ+ = 1
2

(
−A33 +

√
(A33)2 − 4A32

)
, λ− = 1

2

(
−A33 −

√
(A33)2 − 4A32

)
and g0, ġ0 are

the initial values of g and ġ. In the slow-roll regime, |A32| � 1 while A33 ≈ 3. The direct
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consequence is that |λ+| � 1, which implies that the eλ+t mode does not change much in a
few e-folds, while λ− ≈ −3, which means that the other mode decays exponentially and can be
neglected after a few e-folds (three is sufficient).

For two different sets of initial conditions, the ratio between the solutions becomes:

g1

g2
=
ġ1

ġ2
=
λ−g10 − ġ10

λ−g20 − ġ20

, (7.33)

which is a constant. Hence, G22∗ (defined as G22(t, t∗)), G23∗ and v̄22 become proportional
after a few e-folds of slow-roll. Then, after a few more e-folds of inflation, the approximation
of constant slow-roll parameters stops to be valid and we can no longer consider A32 and A33

to be constants. However, by this time the proportionality between G22∗, G23∗, v̄22 and their
derivatives G32∗, G33∗, v̄32 has been established, and because of the linearity of the differential
equation (7.23), they will stay proportional until the end of inflation.

The case of G12, G13 and v̄12 is a little trickier. With η⊥ being a constant, these functions
are the primitives of G22, G23, v̄22 according to (7.20). However, one does not obtain the same
factor of proportionality (7.33) with a simple integration of (7.32) because of the constant of
integration. On the other hand, from (7.20) we know these functions stay small compared to
one before the turn of the field trajectory, because η⊥ is negligible compared to other slow-roll
parameters. During the turn, while η⊥ is of the same order as other slow-roll parameters or
even larger, they can become large. We will see later that typical and interesting values of v̄12

are larger than order unity. Hence, the only relevant part of the integral is after the beginning
of the turn. To compute it, one can just integrate the first equation of (7.20) starting at the
beginning of the turn instead of at horizon-crossing. Moreover, once the turn has started, we
know that the relations of proportionality between G22∗, G23∗ and v̄22 are already established,
which means that from (7.20) the same relations exist between Ġ12∗, Ġ13∗ and ˙̄v12 on the
only relevant part of the integration interval. Then the common factor is conserved by the
integration. During the turn, (7.33) becomes valid for the Green’s functions G12∗, G13∗ and
v̄12. In particular this is true for the final values of these functions, which will play an important
role in the next sections. If these functions stay negligible during the turn, or vanish at the
end, the result does not hold. However, as already mentioned, this case is not interesting as
multiple-field effects will play no role. To summarize, the explicit proportionality relations are:

G12∗
G13∗

=
G22∗
G23∗

=
G32∗
G33∗

= −λ− ≈ 3 and
v̄12

G12∗
=

v̄22

G22∗
=

v̄32

G32∗
=
λ− + χ∗
λ−

≈ 1. (7.34)

7.5 Observables

We almost have everything needed to compute and discuss observable parameters. But first
one last subtlety must be discussed. The quantity ζmi is not gauge-invariant at second-order
and therefore cannot be linked directly to the proper gauge-invariant quantity ζm which will
be used for the computation of correlation functions. This is investigated in detail in [192].
To summarize the results, one has to change the gauge from flat to uniform energy density
(∂iρ = 0) in which our key quantity is simply the gradient of the gauge-invariant perturbation.
At first-order, there is no difference between the results in the two different gauges. However
at second-order, a correction term is needed and we have to replace the second-order adiabatic

term ζ
1(2)
i by

ζ
1(2)
i −→ ζ

1(2)
i + 2η⊥ζ1(1)ζ

2(1)
i , (7.35)

where ζ1(1) ≡ ∂−2∂iζ
1(1)
i .
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We already introduced some observable parameters in previous chapters. Here we review
the ones we will discuss in this part of the thesis. The most important (potential) observables
predicted by inflation are the amplitude of the scalar power spectrum Ps of the adiabatic
curvature perturbation ζ1, its spectral index ns−1 ≡ d lnPs

d ln k , the tensor-to-scalar ratio r ≡ Pt/Ps
and the non-Gaussianity parameters fNL of a few specific bispectrum shapes (local, equilateral,
orthogonal). The first two have been measured quite accurately by the Planck satellite, while for
the latter two we have so far only upper limits. Of course there are more predicted parameters,
especially in the case of multiple-field inflation, for example the running of the power spectrum,
the spectral index of the tensor power spectrum, the power spectrum of isocurvature modes,
and non-Gaussianity parameters of many more bispectrum shapes, but none of these have
been detected so far. In this thesis we will focus on the local non-Gaussianity parameter fNL

of certain quite general classes of two-field inflation models. We will in particular investigate
if these models can give an fNL of order unity (which is large compared to the prediction of
standard single-field slow-roll inflation of O(10−2)) or even larger. In other words, does the
Planck constraint of fNL = 0.8 ± 5.0 [14] rule out some of the parameter regions of these
models, or is everything still allowed? The observational constraints on ns will turn out to be
an important ingredient of our considerations. The current Planck result is ns = 0.968± 0.006
[15], while the planned next-generation satellite experiment CORE expects to reach error bars
that are about four times smaller, of about 0.0015. On the other hand, it turns out that the
current observational constraint on r does not give any additional information compared to ns
for our purposes, so we will ignore it in the rest of the thesis.5

The explicit expressions for the first three quantities in the case of two-field inflation re-
quires us to compute the two-point correlation function of the Fourier coefficients of ζ1(1)(x, t),
recalling that its spatial gradient is given by (7.24). Hence the Fourier coefficients are

ζ
1(1)
k = v1m(k, t)[â†m(k) + âm(−k)]. (7.36)

It is then straightforward to derive

〈ζ1(1)
k1

ζ
1(1)
k2
〉 = δ3(k1 + k2)v1m(k1, t)v1m(k1, t). (7.37)

Then, using (7.29) the power spectrum of the adiabatic mode defined in (3.41) takes the form

Ps =
κ2H2

∗
8π2ε∗

[
1 + (v̄12)2

]
, (7.38)

and the spectral index up to second-order in slow-roll parameters is

ns − 1 =
d lnPs

dt∗

dt∗
d ln k

=
d lnPs

dt∗

1

1− ε∗

=
1

1− ε∗

[
−4ε∗ − 2η

‖
∗ + 2

v̄12

1 + (v̄12)2

(
−2η⊥∗ + χ∗v̄12

+G13(t, t∗)
(
−W̃221∗ + 2ε2∗ + (η

‖
∗)

2 + (η⊥∗ )2 + 3ε∗(η
‖
∗ − χ∗)− 2η

‖
∗χ∗ + χ2

∗

))]
,

(7.39)

where we used k = aH
√

2/c, the first differential equation in (7.22) and the time derivatives of
slow-roll parameters (7.12).

5The current upper bound r < 0.07 [12] is constraining for some models of single-field inflation. However, as
explained later, we are interested in two-field models where the value of v̄12 in (7.40) is at least around 4, which
makes r easily one order of magnitude smaller than in those single-field models.
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Figure 71: v̄12/(1 + v̄2
12) and v̄2

12/(1 + v̄2
12) as a function of v̄12.

Having two scalar-field degrees of freedom has no effect on the power spectrum of tensor
perturbations (3.55) (there is no interaction between the isocurvature mode and the tensor
modes on super-horizon scales), so the tensor-to-scalar ratio defined in (3.56) is given by

r =
16ε∗

1 + (v̄12)2
. (7.40)

In the above expressions the influence of the isocurvature mode on the adiabatic mode on
super-horizon scales is encoded in v̄12 and G13(t, t∗), which have been defined in section 7.4.
Both these quantities still depend on time and in principle have to be evolved all the way to
recombination in order to compute the CMB observables. However, we will impose on all our
models that the isocurvature modes have disappeared by the end of inflation, so that we have
returned to an effectively single-field situation by then and v̄12 and G13(t, t∗) have become
constant and no longer evolve. In that case we can pick the end of inflation as the time to
evaluate those two quantities and compute the observables without needing to know any details
about the evolution of the universe after inflation.

An important conclusion can be drawn from the expression of the spectral index. Given
that G13(t, t∗) ≈ v̄12/3 as proved in (7.34), the relevant factors to study are v̄12/(1 + v̄2

12) and
v̄2

12/(1 + v̄2
12), which are shown in figure 71. We see that they are never larger than unity in

absolute value and are in fact of order unity unless v̄12 ≈ 0, which is when multiple-field effects
are negligible and which is not interesting from the point of view of this thesis.6 So barring
any fine-tuned cancellations between terms, the observed value of ns allows us to conclude that
slow roll is a good approximation at horizon crossing with all first-order slow-roll parameters at
t∗ at most of order 10−2. However, it is certainly possible for slow roll to be broken afterwards.

The main observable we are interested in here is the local adiabatic bispectral non-Gaussianity
parameter fNL. To be more precise, this is only the part of fNL that comes from the three-
point correlator of two first-order perturbations and one second-order perturbation (expressed

as products of two first-order ones), sometimes called f
(4)
NL in the literature (see e.g. [195]), which

is the only contribution on super-horizon scales. It does not include the so-called intrinsic non-

Gaussianity f
(3)
NL due to interaction terms in the cubic action, which only play a role before and

6The factor v̄12/(1 + v̄212) also goes to zero for |v̄12| → ∞. However, while this term in (7.39) would then be
compatible with a large η⊥∗ , that is forbidden by the other terms.
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at horizon crossing and are necessarily slow-roll suppressed in models with standard kinetic
terms. Combining one Fourier coefficient of second-order perturbations with two first-order
terms without forgetting the correction part introduced in (7.35), one obtains

〈ζ1
k1ζ

1
k1ζ

1
k1〉

(2) = (2π)−3/2δ3(
∑
s

ks)[f(k1, k2) + f(k1, k3) + f(k2, k3)]

= (2π)−3/2δ3(
∑
s

ks)Bs(k1, k2, k3),
(7.41)

where Bs is the bispectrum of the adiabatic perturbations and

f(k, k′) ≡ v1m(k)v1n(k′)

(
η⊥v2m(k)v1n(k′) + F (b(2))− 1

2

∫ t

−∞
dt′G1a(t, t

′)Āabcvbm(k)vcn(k′)

)
+ k ←→ k′.

(7.42)

In this expression, F (b(2)) is the small contribution of the second-order source term, not written
explicitly to lighten the notation (its expression can be found in [191]). As mentioned in
chapter 4.2, the fNL parameter of the local shape is simply the bispectrum divided by the
power spectrum squared

−6

5
fNL ≡

Bs(k1, k2, k3)
2π2

k31
Ps(k1)2π2

k32
Ps(k2) + (k1 ↔ k3) + (k2 ↔ k3)

(7.43)

The factor −6/5 in the definition is a historical artifact due to the way fNL was originally
defined in terms of the gravitational potential Φ and not the adiabatic curvature perturbation
ζ1, see equation (3.61).

Different aspects of the scale dependence of the bispectrum have been studied, like the
computation of the bispectrum in the squeezed limit, the scale-dependence of fNL or the possible
observational effects [47, 48, 111, 49, 112]. Another related subject that has received much
attention in recent years is the study of features in the effective inflaton potential or kinetic
terms (like changes in the sound speed for the inflaton interactions), possibly due to the presence
of massive fields, which lead to correlated oscillations in the power spectrum and the bispectrum
[54, 4, 84, 5, 101, 3]. Here we make the assumption that the momentum dependence of fNL can
be neglected, to compute it in the limit of three equal momenta. The general case has been
investigated in [191, 193] where it has been shown that indeed it is a small effect for the types
of models we are interested in this thesis.

Using several integrations by parts detailed in [191] and the step functions solutions given
in (7.29), the final result from the long-wavelength formalism for the local adiabatic bispectral
non-Gaussianity parameter fNL is

−6

5
fNL =

−2(v̄12)2

(1 + (v̄12)2)2
(giso + gsr + gint) . (7.44)

Here the only approximation (except the equal momenta assumption) made is that slow roll is
a good approximation at horizon crossing (but can be broken afterwards), as we will assume
throughout the thesis and which is motivated by the observed value of the spectral index as
discussed above. The isocurvature, slow-roll, and integral contributions are given by

giso = (ε+ η‖)(v̄22)2 + v̄22v̄32, gsr = −ε∗ + η
‖
∗

2v̄2
12

+
η⊥∗ v̄12

2
− 3

2

(
ε∗ + η

‖
∗ − χ∗ +

η⊥∗
v̄12

)
,

gint = −
∫ t

t∗

dt′
[
2(η⊥)2(v̄22)2 + (ε+ η‖)v̄22v̄32 + (v̄32)2 −G13(t, t′)v̄22(Ξv̄22 + 9η⊥v̄32)

]
,

(7.45)
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where we have defined

Ξ ≡ 12η⊥χ− 6η‖η⊥ + 6(η‖)2η⊥ + 6(η⊥)3 − 2η⊥ξ‖ − 2η‖ξ⊥ − 3

2
(W̃211 + W̃222). (7.46)

The explicit time dependence of all functions has been omitted, except for G13 since it depends
on two times. v̄22 and v̄32 are proportional to the isocurvature mode and hence will go to zero at
the end of inflation by our assumption, so that giso vanishes there. If we relaxed our assumption
of the isocurvature mode going to zero by the end of inflation, it would be easy to get huge
non-Gaussianity at the end of inflation from the giso term, but it would be meaningless since
one would have to follow its evolution explicitly through the rest of the evolution of the universe
to get a prediction for the observable. In the single-field limit, a small, slow-roll suppressed

part of gsr is all that survives and it gives back the f
(4)
NL part of the usual single-field result

of Maldacena [141]. In the two-field case all terms of gsr are also slow-roll suppressed since
they are proportional to slow-roll parameters at horizon crossing. (It is easy to check that the
various functions of v̄12 can never become large, independent of the value of v̄12.) Hence the
only persistent large non-Gaussianity can come from the integrated contribution gint.

7.6 The gint equation

As discussed at the end of the previous section, the only persistent large non-Gaussianity can
come from the integral term gint (7.45), first derived in [191]. So to answer our question if large
non-Gaussianity is at all possible and if so in which models, we need to investigate this term.
Unfortunately, the fact that it is an integral, and that the time dependence is not only in the
upper limit of the integral but also in the t dependence of G13, makes it rather hard to get a
handle analytically on its behaviour in general.

However, as is shown in appendix C, by taking several derivatives of (7.45) it is possible to
derive a second-order differential equation for the derivative of gint(t) in closed form in terms
of t only

(η⊥)2 ...
g int + η⊥

[
3η⊥ − εη⊥ + 6η‖η⊥ − 2ξ⊥

]
g̈int

+
[
(η⊥)2

(
−12ε+ 6χ+ 6(η‖)2 + 6(η⊥)2 + 4ξ‖

)
+ η⊥

(
3W̃211 − 8η‖ξ⊥

)
+ 2(ξ⊥)2

]
ġint

= K22(v̄22)2 +K23v̄22v̄32 +K33(v̄32)2,

(7.47)

where the Kxy are explicit (long) expressions in terms of products of slow-roll parameters and
are defined in (C.2). This differential equation and its general solution discussed below is one
of the central new results of this part of the thesis.

Despite its complicated looks, (7.47) actually admits a completely exact analytical homo-
geneous solution:

ġint(t) = 2Aη⊥(t)G22(t, t∗) + 2B η⊥(t)G23(t, t∗) + P (t), (7.48)

where A and B are integration constants to be determined from the initial conditions and P (t)
is a particular solution of the equation. This expression can then be integrated to give

gint(t) = AG12(t, t∗) +BG13(t, t∗) +

∫ t

t∗

dt′P (t′). (7.49)

Here we used the fact that gint(t∗) = 0 to eliminate the additional integration constant. Note
that instead of 2η⊥G22 we can also use 2η⊥v̄22 as independent homogeneous solution, which
integrates to v̄12.
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Now one might wonder if we have made any progress here, since in (7.49) gint is still
expressed in terms of an integral, and while there is only a single time now, it does involve
an a priori unknown function P (t). However, as we will show in the next section, for certain
classes of potentials and within the slow-roll approximation, we can find an explicit analytical
expression both for P (t) and for its integral. Since slow roll is a good approximation at horizon
crossing, as discussed before, where the initial conditions are given, this then allows us to
determine the constants A and B for those models. Finally we will show in a later section that
in the regions where the slow-roll approximation for η‖ and η⊥ breaks down (with the only
condition that ε remains small) and we do not have an explicit analytical solution for P (t),
we do not actually need it since its contribution is negligible compared to the homogeneous
solution. This will finally allow us to write down the exact analytical result for the observable
fNL in those models, even if slow roll is broken during some part of the inflationary evolution.



Chapter 8

Slow roll

In this chapter, we use several consecutive levels of approximations to simplify the expressions
of the previous chapter. We start by applying only the (strong) slow-roll approximation to
general two-field potentials. As discussed in section 7.2, this means that all slow-roll param-
eters, including η⊥ and χ, are assumed to be small, which is a stronger approximation than
the standard slow-roll approximation where only parallel slow-roll parameters are assumed to
be small. Then, in the two next sections, we focus on product-separable and sum-separable
potentials where the Green’s functions can be computed as well as the different observables.
Finally, in the last two sections, we specialize to the case of monomial sum potentials.

8.1 General case

We apply the slow-roll approximation to the equations of the previous chapter, starting by
the slow-roll parameters. Using the field equation, we obtain explicit expressions for the basis
components. We then perform a first-order slow-roll expansion on the second line of (7.9) to
obtain η‖ and η⊥. For ξ‖ and ξ⊥ we proceed in a similar way on (7.12). The results are:

e1A = −W̃A, η‖ = ε− W̃11, η⊥ = −W̃21,

ξ‖ = 3εη‖ + (η‖)2 + (η⊥)2 − W̃111, ξ⊥ = 3εη⊥ + 2η‖η⊥ − η⊥χ− W̃211.
(8.1)

The same slow-roll expansion applied to the differential equations for the Green’s functions
(7.20) and (7.22) gives:

d

dt
G22(t, t′) + χ(t)G22(t, t′) = 0, (8.2)

G32(t, t′) = −χ(t)G22(t, t′), Gx3(t, t′) =
1

3
Gx2(t, t′). (8.3)

For the observables, from (7.39) we get:

ns − 1 = −4ε∗ − 2η
‖
∗ + 2

v̄12

1 + v̄2
12

(
−2η⊥∗ + v̄12χ∗

)
(8.4)

and for the different terms of fNL in (7.44):

giso = (ε+ η‖ − χ)v̄2
22, gsr = −ε∗ + η

‖
∗

2v̄2
12

+
η⊥∗ v̄12

2
− 3

2

(
ε∗ + η

‖
∗ − χ∗ +

η⊥∗
v̄12

)
. (8.5)

For gint, the slow-roll approximation is not sufficient to compute the integral. However, we can
simplify the differential equation (7.47) to (see appendix C for the details of the computation):

η⊥ g̈int −
[
η⊥(ε− 2η‖ − χ) + ξ⊥

]
ġint = Ksr(v̄22)2, (8.6)
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with

Ksr = η‖η⊥ξ‖ + 3(η‖)2η⊥χ− 3η‖η⊥χ2 − (η‖)3η⊥ + η‖(η⊥)3 − η‖ξ⊥χ− η⊥ξ‖χ− (η⊥)2ξ⊥

+ ξ⊥χ2 + η‖η⊥W̃221 − 2η⊥χW̃221 + εη⊥W̃221 − (η⊥)2W̃222 + 4εη‖η⊥χ+ ε2η‖η⊥

− 4εη⊥χ2 + 3ε2η⊥χ− 2ε(η⊥)3 − εξ⊥χ+ η⊥χ3 + εη⊥ξ‖.

(8.7)

This equation can be solved for certain classes of potentials. We will look at the simple case of
a sum potential, which was solved initially in [195, 31] and discussed in detail in [45, 71, 72].

8.2 Sum potential

A sum potential has the form

W (φ, σ) = U(φ) + V (σ). (8.8)

An immediate consequence of this form is that all mixed derivatives of the potential are
zero. Using this and by writing out W̃11, W̃22, W̃21 (defined in (7.5)) explicitly in terms of
W̃φφ, W̃σσ, W̃φσ and using the normalization of the basis e2

1φ + e2
1σ = 1, one can show that

e1φe1σ(W̃11 − W̃22) = (e2
1φ − e2

1σ)W̃21, (8.9)

which using 7.9 and (7.11) is equivalent to

e1φe1σ(ξ‖ + 3χ− 6ε) = (e2
1φ − e2

1σ)(ξ⊥ + 3η⊥). (8.10)

Similarly for third-order derivatives, we can write:

e1φe1σW̃221 = e1φe1σW̃111 + (e2
1σ − e2

1φ)W̃211,

e1φe1σW̃222 = e1φe1σW̃211 + (e2
1σ − e2

1φ)W̃221.
(8.11)

Using (8.10), they are equivalent to

(ξ⊥ + 3η⊥)W̃221 = (ξ⊥ + 3η⊥)W̃111 − (ξ‖ + 3χ− 6ε)W̃211,

(ξ⊥ + 3η⊥)W̃222 = (ξ⊥ + 3η⊥)W̃211 − (ξ‖ + 3χ− 6ε)W̃221.
(8.12)

Note that these equations are general and not only slow-roll. After a first-order slow-roll
expansion, they become:

η⊥W̃221 = η⊥W̃111 − (χ− 2ε)W̃211,

η⊥W̃222 = η⊥W̃211 − (χ− 2ε)W̃221.
(8.13)

We use this to rewrite the right-hand term of (8.6) as

Ksr = 2ε
(
−3ε2η⊥ + 3(η‖)2η⊥ − 3(η⊥)3 + εη⊥χ− 3η‖η⊥χ+ η⊥ξ‖ + εξ⊥ − η‖ξ⊥

)
. (8.14)

Then, one can show that a particular solution of this equation is ġint = 2ε(ε+η‖−χ)v̄2
22, which

can be integrated into gint = εv̄2
22 − ε∗.

We also know that ġint∗ = −2(η⊥∗ )2 + (ε∗+ η
‖
∗ −χ∗)χ∗ from (C.1) and the initial conditions

of the Green’s functions. Combining this particular solution with the homogeneous solution,
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we get the full solution for ġint and then gint after integration, in agreement with the known
result from [191]:

ġint = 2ε(ε+ η‖ − χ)(v̄22)2 −
e2

1φ∗Ṽσσ∗ − e2
1σ∗Ũφφ∗

e1φ∗e1σ∗
η⊥v̄22,

gint = εv̄2
22 − ε∗ −

[
η⊥∗ −

1

2η⊥∗
(ε∗ + η

‖
∗ − χ∗)(χ∗ − 2ε∗)

]
v̄12,

= εv̄2
22 − ε∗ −

e2
1φ∗Ṽσσ∗ − e2

1σ∗Ũφφ∗

2e1φ∗e1σ∗
v̄12.

(8.15)

Here the first two terms on the last line are the particular solution, and the last term the
homogeneous solution. It is possible to show that the particular solution and the homogeneous
solution are generally of the same order during inflation (this is discussed later in section 9.5).
However, we are only interested in the final values of the observables ns and fNL. As discussed
before, the only large contribution in fNL can come from gint, if we suppose isocurvature modes
vanish before the end of inflation, which means in terms of Green’s functions that v̄22 and v̄32

vanish while v̄12 becomes constant. Hence in that case, the integrated particular solution is
also slow-roll suppressed and only the homogeneous solution matters at the end of inflation.
From now on, the different expressions for the observables are only given at the end of inflation.
For every other parameter (like the Green’s functions and the slow-roll parameters), if they are
evaluated at the end of inflation, it is indicated by the subscript e.

Using the result (8.15) with v̄22e = 0, we can write:

−6

5
fNL =

[
η⊥∗ −

1

2η⊥∗
(ε∗ + η

‖
∗ − χ∗)(χ∗ − 2ε∗)

]
2(v̄12e)

3

(1 + (v̄12e)2)2 +O(10−2)

=
e2

1φ∗Ṽσσ∗ − e2
1σ∗Ũφφ∗

e1φ∗e1σ∗

(v̄12e)
3

(1 + (v̄12e)2)2 +O(10−2).

(8.16)

This depends on the final value of the Green’s function v̄12, which describes the contribution of
the isocurvature mode to the adiabatic mode. Without computing it, it is possible to determine
a necessary condition for fNL to be of order unity or larger. Indeed it is easy to show that, for
any value of v̄12e: ∣∣∣∣ (v̄12e)

3

(1 + (v̄12e)2)2

∣∣∣∣ ≤ 33/2

16
≈ 0.325. (8.17)

If the slow-roll approximation is valid at horizon-crossing, which is the main assumption in the
computation of fNL, we expect that Ṽσσ∗ and Ũφφ∗ are of order slow-roll (small compared to
one). Then, the only possibility to get fNL of order unity is that one of the basis components
is negligible at horizon-crossing. This means one of the fields is dominating at that time, by
definition we choose it to be φ. Hence, at horizon-crossing e2

1φ∗ ≈ 1 and e2
1σ∗ � 1. Using (8.1),

this also implies that |Uφ∗| � |Vσ∗| and we can simplify:

e2
1φ∗Ṽσσ∗ − e2

1σ∗Ũφφ∗

e1φ∗e1σ∗
=
e1φ∗Ṽσσ∗
e1σ∗

=

√
2ε∗
κ

Vσσ∗
Vσ∗

. (8.18)

This has to be large to have fNL non-negligible, which means that the second-order derivative
Vσσ∗ is large compared to the first-order derivative Vσ∗. Hence around σ∗, the potential is very

flat in the σ direction. In terms of slow-roll parameters, this means that |η⊥∗ | . |(ε∗ + η
‖
∗ −

χ∗)(χ∗ − 2ε∗)|. For the usual slow-roll order values of 10−2, η⊥∗ is at most of order 10−4.
Another useful limit is: ∣∣∣∣ v̄3

12e

(1 + (v̄12e)2)2

∣∣∣∣ < ∣∣∣∣ 1

v̄12e

∣∣∣∣ , (8.19)
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Figure 81: (v̄12e)3

((1+(v̄12e)2)2
as a function of v̄12e and its two upper limits 0.325 and 1/v̄12e.

which becomes a very good approximation if |v̄12e| > 4 . These two limits are shown explicitly
in figure 81. From (7.20), if v̄12e is of order unity, this implies that at some time there was a
turn of the field trajectory where both the isocurvature mode and η⊥ are non-negligible. This
turn is then a necessary condition of large non-Gaussianity.

Still using the slow-roll approximation, we can go further by computing the Green’s func-
tions. From (8.10), we get:

χ = 2ε+ η⊥
e2

1φ − e2
1σ

e1φe1σ
= − d

dt
ln
(
H2e1φe1σ

)
. (8.20)

We can then solve (8.2):

G22(t, t′) =
H(t)2e1φ(t)e1σ(t)

H(t′)2e1φ(t′)e1σ(t′)
. (8.21)

Moreover, we have:

η⊥H2e1φe1σ =
κ2

6

dZ

dt
, (8.22)

with Z ≡ V e2
1φ − Ue2

1σ [195, 191], which gives us:

v̄12 =
Z − Z∗

W∗e1φ∗e1σ∗
, v̄22 =

We1φe1σ

W∗e1φ∗e1σ∗
. (8.23)

At the end of inflation, when the fields reach the minimum of the potential, Z tends to zero.
Obviously, this can only happen if there is a turn of the field trajectory at some time after
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horizon-crossing to make both fields evolve. Moreover, if e2
1σ∗ � 1 (necessary condition for fNL

of order unity), Z∗ = V∗e
2
1φ∗. We then obtain, using (8.1):

v̄12e = −
V∗e1φ∗
W∗e1σ∗

= sign(e1φ∗)
√

2ε∗
κV∗
Vσ∗

. (8.24)

With a small enough e1σ∗, it is easy to obtain v̄12e larger than four or five. In figure 81, this

places us on the right where (v̄12e)3

(1+(v̄12e)2)2
≈ 1

v̄12e
. The consequence for the potential V is that

κV∗ � Vσ∗.
Substituted into (8.16), in the case where the slow-roll parameters factor is large, we obtain:

−6

5
fNL ≈

Ṽσσ∗e1φ∗
e1σ∗

1

v̄12e
=
Ṽσσ∗e1φ∗
e1σ∗

W∗e1σ∗
−V∗e1φ∗

= −Vσσ∗
κ2V∗

. (8.25)

This directly shows that fNL is of order unity when the second derivative of V∗ and V∗ itself
are of the same order, while its first-order derivative Vσ∗ is small compared to the two previous
quantities because of (8.18) and (8.24), a result already highlighted in [71, 72]. Larger fNL is a
priori possible, but requires a fine-tuning of the model. Moreover, the sign of fNL is the sign of
Vσσ∗. A negative fNL corresponds to a potential in the form of a ridge at t∗, where σ∗ is very
close to the maximum for the potential to be flat enough in the σ∗ direction, while a positive
fNL corresponds to a valley potential.

In the same limit of large v̄12e, the spectral index takes the form

ns − 1 = −4ε∗ − 2η
‖
∗ + 2χ∗ = −2ε∗ + 2Ṽσσ∗. (8.26)

The spectral index is close to 1, hence Ṽσσ∗ = Vσσ∗
κ2W∗

is at most of order 10−2. If it is smaller,

this requires a fine-tuning of ε∗. If fNL is of order unity, then V∗
W∗

is also of order 10−2.
To summarize, at horizon-crossing, the conditions are U∗ � V∗ and |Uφ∗| � |Vσ∗|. The

second-order derivative Vσσ∗ is not negligible and can be either smaller, equal or larger than
Uφφ∗ but it is not hugely larger or smaller. To be precise, we make a quite general assumption
that |Vσσ∗U2

φ∗| � |Uφφ∗V 2
σ∗| and |Vσσ∗V 2

σ∗| � |Uφφ∗U2
φ∗|. With these different assumptions for

the potential, the expressions for the slow-roll parameters and basis vectors become:

ε =
1

2κ2

(
Uφ
U

)2

, η‖ = −
Uφφ
κ2U

+ ε, η⊥ = −Vσ
Uφ

Uφφ − Vσσ
κ2U

,

e1φ = −sign(Uφ), e1σ = − Vσ

κ
√

2ε U
, χ =

Vσσ
κ2U

+ ε+ η‖ =
Uφ
Vσ
η⊥ + 2ε.

(8.27)

At horizon-crossing, the situation is very close to single-field inflation. In the slow-roll
regime, by definition everything evolves slowly, hence a legitimate question is to ask when these
conditions will stop to be valid. In fact, they will break at the turn of the field trajectory. At
that time Vσ stops to be negligible compared to Uφ (or equivalently, e1σ is not small compared
to one). As already discussed, the turn is mandatory to have v̄12e large enough. However, they
will also break if V stops to be negligible compared to U , this happens when the field φ is near
the minimum of its potential. In this second case, we know the slow-roll approximation will
also stop to be valid because ε is becoming large (similarly to single-field inflation). Hence, if
this happens before the turn, as the slow-roll approximation is not valid anymore, we lose the
analytical results for the Green’s functions and fNL. We have to check if the turn can occur
before the first field reaches the minimum of its potential, or in simple terms, is it possible to
have fNL of order unity without breaking the slow-roll approximation? To be able to make
progress in answering that question, we will consider a specific class of two-field sum potentials,
where both U and V are monomial plus a possible constant in section 8.4.
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8.3 Product potential

In this section, we study the case of product potentials, which take the form W (φ, σ) =
U(φ)V (σ). This case was solved analytically in [55]. Here, we show that the slow-roll ver-
sion of the gint equation (8.6) takes a simple and nice form which is easy to deal with.

As for the sum-separable case, we start by using the specific form of the potential to find
some new relations concerning its derivatives without assuming any approximation. A simple
one is Wφσ =

WφWσ

W which links the second-order mixed derivative of the potential to the

first-order ones. Then using the field equation (7.2) and the definitions of ε, η‖ and η⊥ given
in (7.3) and (7.6), this relation can be rewritten in terms of slow-roll parameters:

(3− ε)W̃φσ =
2

3
ε
[
e1φe1σ

(
(η‖ + 3)2 − (η⊥)2

)
+ η⊥(η‖ + 3)(e2

1φ − e2
1σ)
]
. (8.28)

We also need the generalized version of (8.9), valid for any two-field potential, which is:

e1φe1σ(W̃11 − W̃22) = (e2
1φ − e2

1σ)W̃21 + W̃φσ. (8.29)

Combining the two previous equations and using (7.9), we obtain:

e1φe1σ

[
−3χ− ξ‖ + εχ− 2ε2 − 4εη‖ +

ε

3

(
ξ‖ − 2(η‖)2 + 2(η⊥)2

)]
= (e2

1φ − e2
1σ)
[
3η⊥ + ξ⊥ + εη⊥ − ε

3

(
ξ⊥ + 2η‖η⊥

)]
.

(8.30)

Similar computations can be done for the third-order derivatives Wφφσ =
WφφWσ

W and Wφσσ =
WσσWφ

W to show that:

(3− ε)W̃φφσ = −2ε
[
(η‖ + 3)e1σ − η⊥e1φ

]
W̃φφ,

(3− ε)W̃φσσ = −2ε
[
(η‖ + 3)e1φ + η⊥e1σ

]
W̃σσ.

(8.31)

Finally, using the definitions of W̃221 and W̃222 in terms of third-order derivatives and basis
components, substituting them into (8.30) and (8.31) and performing a first-order expansion
in terms of slow-roll parameters gives:

W̃221 =− εη‖ − εχ+ (η‖)2 − 2η‖χ+ χ2 + (η⊥)2 − ξ‖ +
χ

η⊥
ξ⊥,

W̃222 =− ξ⊥ − η⊥(ε− 2η‖ + 2χ)

− χ

η⊥

(
−2ε2 − 3εη‖ + (η‖)2 − ξ‖ − εχ− 2η‖χ+ χ2

)
−
(
χ

η⊥

)2

ξ⊥.

(8.32)

These equations can then be used to simplify the right-hand side of (8.6), and one easily finds
that in fact the right-hand side completely vanishes. Hence, the slow-roll solution consists only

of the homogeneous solution and using the initial condition ġint∗ = −2(η⊥∗ )2 + (ε∗+ η
‖
∗ −χ∗)χ∗

(from the slow-roll approximation of (C.1)) we find:

gint = −
[
η⊥∗ −

1

2η⊥∗
(ε∗ + η

‖
∗ − χ∗)χ∗

]
v̄12 = −

e2
1φ∗Ṽσσ∗ − e2

1σ∗Ũφφ∗

2e1φ∗e1σ∗
v̄12. (8.33)

The most important thing to note here is that the second expression has exactly the same form
as the homogeneous part of the sum potential case in (8.15), without the particular solution.
As discussed in section 8.2, it is that term which can give a large contribution to fNL. The
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natural question is then if the situation is the same for the product potential. The similarity
of the expressions makes it possible to use exactly the same method to answer this question as
for the treatment of the sum potential.

First, we define:

g̃int =
−2(v̄12)2

(1 + (v̄12)2)2
gint =

e2
1φ∗Ṽσσ∗ − e2

1σ∗Ũφφ∗

e1φ∗e1σ∗

(v̄12)3

(1 + (v̄12)2)2
, (8.34)

which is the entire term depending on gint in fNL (7.44). As for the sum potential (see sec-
tion 8.2), the only possibility of having this expression larger than order slow-roll is to have one
field dominating at horizon crossing: e2

1φ∗ ≈ 1� e2
1σ∗. But at the same time, it is required that

v̄12 is at least of order unity (and at least four to obtain the largest fNL). The main difference
with the sum potential case comes in fact from the expression for v̄12. In the slow-roll approx-
imation, it is possible to solve the Green’s function equations. The computation is similar to
the sum potential case and is detailed in [191] where it is shown that:

v̄12 =
S − S∗

2e1σ∗e1φ∗
, v̄22 =

e1φe1σ

e1φ∗e1σ∗
, (8.35)

with S ≡ e2
1φ − e2

1σ. These expressions are quite different from (8.23) for the sum potential.

At horizon crossing, e2
1φ∗ ≈ 1 meaning S∗ ≈ 1. For the value of S at the end of inflation

there are two different situations. As discussed several times in this thesis, we want that v̄22

goes to zero at the end of inflation to get rid of the isocurvature mode, meaning that the
situation is far closer to single-field inflation at the end of inflation than at horizon crossing.
Hence, if at the end φ also dominates (same direction of the field trajectory), |e1σ| � |e1σ∗|.
This means that S − S∗ ≈ e2

1σ∗, which leads to the fact that v̄12 is small compared to 1. In
that case gint cannot give a large fNL. However, if σ dominates at the end of inflation (different
direction of the field trajectory), we have:

v̄12 =
−1

e1φ∗e1σ∗
, (8.36)

which is large compared to 1. We can then use that (v̄12)3

(1+(v̄12)2)2
≈ 1

v̄12
if |v̄12| � 1 and (8.34) to

write:

g̃int ≈
e2

1φ∗Ṽσσ∗ − e2
1σ∗Ũφφ∗

e1φ∗e1σ∗
×
e1φ∗e1σ∗
−1

≈ −Ṽσσ∗, (8.37)

which is of order slow roll. Hence also in this case fNL is small. This is in agreement with the
known conclusion that a product potential cannot give a large fNL in the slow-roll approxima-
tion with vanishing isocurvature mode at the end of inflation [45, 191].

8.4 Monomial potentials

Using the results of section 8.2, we want to analytically study inflation between horizon-crossing
and the beginning of the turn of the field trajectory. The idea is that the slow-roll approximation
is broken when the dominating field φ gets close to the minimum of its potential, and we want
to verify if the turn can occur before that time. This means that the form of the potential does
not need to describe the end of inflation.

We know that V (σ) has to be very flat around σ∗, hence we can use an expansion in σ
keeping only the largest term to write:

V (σ) = C + β(κσ)m, (8.38)
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where C, m and β are constants. Here m > 1, while β can be either positive or negative.
Because of the expansion in σ, this potential is in fact quite general. Depending on the sign of
β, the potential either corresponds to a ridge where σ∗ is near the local maximum C (β < 0) or
to a valley with σ∗ near the minimum (β > 0). For the potential U , there are many possibilities,
we choose to focus on a monomial potential:

U(φ) = α(κφ)n, (8.39)

with α > 0 and n > 1.
We redefine the fields as being dimensionless: φ̃ = κφ and σ̃ = κσ and we will omit the

tildes in the redefined fields. Using the expressions for the slow-roll parameters (8.27), we have:

ε =
n2

2

1

φ2
, η‖ = −n(n− 2)

2

1

φ2
= −n− 2

n
ε,

η⊥ = −mβ
nα2

σm−1

φ2n−1

(
n(n− 1)αφn−2 −m(m− 1)βσm−2

)
= − mβ

n2nα2
2n−

1
2σm−1

(
nn−1(n− 1)21−n

2 αε
n
2

+ 1
2 −m(m− 1)βσm−2εn−

1
2

)
,

χ =
1

α

1

φn
(
nαφn−2 +m(m− 1)βσm−2

)
=

2ε

n
+
m(m− 1)β

nnα
2n/2εn/2σm−2.

(8.40)

It is useful to express the slow-roll parameters as a function of ε instead of φ because ε increases
after horizon-crossing, at least until the turn, and with ε we know exactly when the slow-roll
approximation stops to be valid. ε and η‖ are of the same order except in the case of n = 2
where η‖ is of order ε2 as can be checked with a second-order calculation.

The next step is to use the conditions that fNL should be of order unity and ns should be
within the observational bounds to constrain the free parameters of this potential. With this
form of V , we have the useful relation:

(m− 1)Vσ = σVσσ. (8.41)

We know that |e1σ∗| � 1 and substituting (8.41) into the expression for e1σ in (8.27), we can
write:

e1σ = − Ṽσσ√
2ε

σ

m− 1
. (8.42)

Combining this with the constraints on the spectral index (8.26) which imply that ε∗ and Ṽσσ∗
are both of order 10−2 at most, this imposes σ∗ to be small compared to 1. Applying these
constraints due to the observables to the potential gives:

Vσσ∗
W∗

=
m(m− 1)βσm−2

∗
αφn∗ + C + βσm∗

∼ O(10−2),
Vσσ∗
V∗

=
m(m− 1)βσm−2

∗
C + βσm∗

∼ O(1). (8.43)

Within the limit σ∗ � 1, we learn from these equations that αφn∗ � m(m−1)βσm−2
∗ ∼ C+βσm∗ .

We also need to determine the slow-roll parameters at t∗, which requires to know φ∗. One
way to determine this is to know the amount of inflation due to each field between horizon-
crossing and the end of inflation. We can start by solving the field equation:

φ̇ = −n
φ
, (8.44)

which integrates immediately to:

φ(t) = φ∗

√
1− t

Nφ
, (8.45)
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n 2 3 4 5 6

103 Ṽσσ∗ −7.7± 3 −3.5± 3 0.7± 3 4.8± 3 9± 3

Table 81: Constraints from the spectral index on Ṽσσ∗ for different n with Nφ = 60.

with Nφ = φ2∗
2n the slow-roll approximation of the number of e-folds due to φ after horizon-

crossing.
The potential is known only before the turn of the field trajectory, especially for V if it is

an expansion of some more complicated function. This means that we do not know the value of
Nφ, however it is in the range of a few to 60 e-folds. We will test different values. Nevertheless,
in the simplest cases Nσ (number of e-folds due to σ) is small compared to Nφ. As a simple
argument here, we consider the case where σ falls off a ridge, so that V∗ ≈ C. If V keeps the
same form almost until the end of inflation, the minimum of the potential (V = 0) corresponds

approximately to σe = (−C/β)1/m ∼ [m(m − 1)]1/mσ
1−2/m
∗ , using the second part of (8.43).

For m = 2, this is of order 1, for larger m it becomes smaller (only m close to 1 is problematic).
In a pure monomial potential like U without the constant term, having φ∗ of order unity would
imply that Nφ is itself of order unity. V is a bit different because of the constant term, however
once σ starts to fall at a non-negligible pace (the turn), it becomes quite similar and σ goes
from σ∗ negligible to σe of order unity. Hence this also corresponds to Nσ of order unity which
can be neglected in the total number of e-folds compared to Nφ. Note this is not a general
proof, just a plausible argument to claim that Nφ is the dominant contribution. We can also
see that σe becomes larger if Vσσ∗/V∗ in (8.43) becomes smaller. Hence the fact that Nσ is
small is linked to having fNL of order unity or more.

The parameter ε∗ is related to the value of Nφ, hence for these models where Nσ � Nφ,
the value of ε∗ is directly fixed by the total number of e-folds after horizon-crossing:

ε∗ =
n

4Nφ
. (8.46)

When ε∗ is fixed, we can use the spectral index formula (8.26) to constrain Ṽσσ∗:

Ṽσσ∗ =
ns − 1

2
+ ε∗. (8.47)

Using ns = 0.968±0.006 from the Planck data, table 81 shows the constraints for integer values
of n. Note that for n ≥ 5, the second-order derivative has to be positive. According to (8.16),
we also know that: ∣∣∣∣−6

5
fNL

∣∣∣∣ < 0.65

∣∣∣∣η⊥∗ − 1

2η⊥∗
(ε∗ + η

‖
∗ − χ∗)(χ∗ − 2ε∗)

∣∣∣∣ , (8.48)

which gave the estimation of η⊥∗ of order 10−4 to get fNL of order unity. We can neglect the
first η⊥∗ which is already a few orders of magnitude smaller than the single-field slow-roll typical
value of fNL. Then we obtain:∣∣∣∣−6

5
fNLη

⊥
∗

∣∣∣∣ < 0.325
∣∣∣(ε∗ + η

‖
∗ − χ∗)(χ∗ − 2ε∗)

∣∣∣ . (8.49)

We can rewrite the right-hand side term:

(ε∗ + η
‖
∗ − χ∗)(χ∗ − 2ε∗) = −Ṽσσ∗

2(1− n)

n
ε∗ − Ṽ 2

σσ∗. (8.50)
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n 2 3 4 5 6∣∣−6
5fNLη

⊥
∗
∣∣ 6.8× 10−5 5.0× 10−5 2.6× 10−5 6.7× 10−5 1.2× 10−4

Table 82: Upper bounds from the spectral index on
∣∣−6

5fNLη
⊥
∗
∣∣ for different n with Nφ = 60.

This is largest for Ṽσσ∗ = n−1
n ε∗, which corresponds to ns = 1 − 1

2Nφ
≥ 0.992 which is outside

of the observed value. The maximum of the absolute value in (8.49) will then be given by the
upper or the lower bound on ns (because in the interval of the observed value for ns it can
change sign). Table 82 gives the numerical constraints on

∣∣−6
5fNLη

⊥
∗
∣∣ for integer values of n.

We observe that the maximum value for η⊥∗ is two orders of magnitude smaller than ε∗ for fNL

of order unity. Moreover this limit is quite strong since the factor 0.325 (8.17) is a limit which
asks some fine tuning to be reached. This factor can easily be ten or a hundred times smaller.
Hence, in most cases η⊥∗ will be a lot smaller than this limit.

To summarize, we know ε∗ once we fix Nφ. We then determine Ṽσσ∗ using ε∗ and the
observational constraints on ns. This leads to an upper bound for |η⊥∗ | by imposing a value for
fNL. However, to see when the turn exactly happens, we need to know the full evolution of η⊥,
not just its initial value. For this, some work needs to be done on the expression for η⊥ given
in (8.40), where we can eliminate unknown quantities (like the parameters of the potential) by
using the expressions for the slow-roll parameters at horizon crossing:

ε∗ =
n2

2

1

φ2
∗
, Ṽσσ∗ =

m(m− 1)βσm−2
∗

αφn∗
. (8.51)

It is then straightforward to compute:

Ṽσσ =
Vσσ
κ2U

= Ṽσσ∗

(
σ

σ∗

)m−2( ε

ε∗

)n/2
,

η⊥ = η⊥∗

(
σ

σ∗

)m−1( ε

ε∗

)n/2 2n−1
n ε1/2 − Ṽσσε−1/2

2n−1
n ε

1/2
∗ − Ṽσσ∗ε−1/2

∗
.

(8.52)

As already discussed, we want to express the time dependence in terms of ε which is directly
related to φ. However, the expression for η⊥ also depends on σ, and while a bound for its
initial value at horizon-crossing can be given using (8.40) and the bounds on Ṽσσ∗ and η⊥∗ , we
need to know how it evolves with time. For this we solve the field equation:

σ̇ = −mβ
α

σm−1

φn
. (8.53)

Inserting the solution (8.45) for φ into the equation for σ we find the following differential
equation:

dσ

σm−1
= −mβ

α

1

φn∗

dt

(1− t/Nφ)n/2
. (8.54)

We see that we need to consider the special cases m = 2 and n = 2 separately. We start with
the most general case m 6= 2 and n 6= 2, where (with σ∗ the initial value of σ):

σ = σ∗

[
1 +

m(2−m)

n(2− n)

β

α

σm−2

φn−2
∗

((
1− t

Nφ

)1−n/2
− 1

)] 1
2−m

= σ∗

[
1 +

1

2

m− 2

m− 1

n

n− 2

Ṽσσ∗

ε
n/2
∗

(
εn/2−1 − εn/2−1

∗

)] 1
2−m

.

(8.55)
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In the case m 6= 2 and n = 2, we have:

σ = σ∗

[
1 +

m(2−m)

4σ2−m
∗

β

α
ln

(
1− t

Nφ

)] 1
2−m

= σ∗

[
1 +

1

2

2−m
m− 1

Ṽσσ∗
ε∗

ln
(ε∗
ε

)] 1
2−m

,

(8.56)

while for m = 2 and n 6= 2:

σ = σ∗ exp

[
2β

α

φ2−n
∗

n(2− n)

((
1− t

Nφ

)1−n/2
− 1

)]

= σ∗ exp

[
n

2(2− n)

Ṽσσ∗

ε
n/2
∗

(
εn/2−1 − εn/2−1

∗

)]
.

(8.57)

Inserting these expressions into (8.52) gives the ratio η⊥/η⊥∗ . In the last case m = 2 and n = 2,
these equations take a nicer form:

σ = σ∗

(
1− t

Nφ

) β
2α

= σ∗

(
1− t

Nφ

) Ṽσσ∗
2ε∗

= σ∗

(
ε

ε∗

)− Ṽσσ∗
2ε∗

,
η⊥

η⊥∗
=

(
ε

ε∗

)− Ṽσσ∗
2ε∗

+ 3
2

. (8.58)

8.5 Discussion

In figure 82, we use the expressions of the previous section to determine the regions of the
parameter space of m and n where a turn of the field trajectory might happen before the end
of the slow-roll regime. For this we want to verify when multiple-field effects start to play a
role or, in terms of slow-roll parameters, we want to find when η⊥ becomes of the same order
as ε. We choose ε and not η‖ because η‖ is of the same order as ε for most cases except if n ≈ 2
when it is much smaller.

First, we choose the maximum value of |η⊥∗ | possible for | − 6
5fNL| = 1 using the range of

values for Ṽσσ∗ determined from the spectral index. Then we compute the maximum value of
|η⊥| when ε = 0.1. We choose this value of ε because this is already close to the end of inflation
and the slow-roll approximation starts to break down after that point. Moreover, if the turn
starts after this time, it is possible that there is not enough time for the isocurvature modes
to decay. Finally, we plot the regions of the parameter space of m and n where η⊥ is at least
as large as ε at that time, meaning there is a turn of the field trajectory. We also assume that
Nφ = 60. These are the default values for the parameters fNL, Nφ and ε. Next we vary them
to test the validity of these choices. We also explore the effects of a future improvement of the
spectral index measurements.

The main conclusion of figure 82 is that for most m and n, the turn cannot happen before
the end of the slow-roll regime, except in the top left part of the figures (small n and large
m). For example, the simple quadratic case m = 2 and n = 2 (indicated by a small cross) is
excluded.

The first figure shows that obviously the space of allowed parameters decreases if we want
fNL to be larger. In fact, imposing a larger fNL is the same as imposing a smaller η⊥∗ . This
does not change the evolution of η⊥, only its initial condition, so that it will be harder to reach
a final value of order ε.

In the second figure, we explore the effects of an improvement of the measurements of
the spectral index by comparing the Planck result at 1σ ns = 0.968 ± 0.006 and 2σ ns =
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0.968± 0.0121, with the accuracy expected with a CORE-like experiment [83] where the error
bar would be of order ∆ns = 0.0015 . We also add the case where the error bar becomes
negligible. We see that the region where fNL is at least of order unity is strongly dependent
on the spectral index. Decreasing the error bars on ns decreases the parameter region where
fNL is of order unity. We will see later that in fact it is the lower bound of ns which matters.
If a more accurate measurement would shift the central value of ns, so that its lower bound
would be slightly smaller than for Planck, then the size of the top-left region in this plot would
increase. This is not indicated in the figure to keep the plot from being too busy, but ns = 0.94
is sufficient to allow most of the parameter region in the figure (m > 2 and n < 7).

The third plot shows the effect of the parameter Nφ. We do not know exactly the total
duration of inflation; the usual value is between 50 and 60 e-folds. Moreover, we cannot be
sure that Nσ can be neglected, which means that Nφ is not necessarily the full duration of
inflation after horizon-crossing. In this figure, we observe that the surface of the top left region
diminishes for smaller Nφ. In fact, for Nφ smaller than 45 e-folds, it vanishes completely. The
smaller Nφ, the harder it will be to build a model where fNL is large.

The last figure is here to help to determine at what time the turn can occur. In the other
figures, the only condition was before the end of the slow-roll regime. However, this regime is
valid for most of the time after horizon-crossing. We can see that simply reducing ε by a factor
two reduces a lot the allowed parameter region. This means that having a turn a few e-folds
after horizon-crossing is extremely hard to have or even impossible. Most of the time the turn
will happen near the end of slow-roll.

To explain these different behaviours, we first need to discuss Ṽσσ∗. It is determined from
the spectral index and ε∗ using equation (8.47) which contains two terms: 1

2(ns − 1) which is
negative and larger in absolute value for the lower bound on the spectral index, and ε∗ which
is positive and can be either smaller or larger than the first term. A small ε∗ corresponds
to small n and/or large Nφ. This means that in each of the four figures, the left (small n)
corresponds to a negative Ṽσσ∗, while Ṽσσ∗ is positive on the right (large n). The transition
happens between n = 4 and n = 5 for Nφ = 60 for example. If we decrease Nφ, this value
decreases and the transition is shifted to the left. The same happens if we increase the lower
bound on the spectral index. In every figure this transition is indicated by a dashed vertical
line. The sign of Ṽσσ∗ is important because this corresponds to the form of the potential V at
horizon-crossing. If it is positive we have a valley, while a negative value describes falling off a
ridge.

Now that we have seen the role of the other parameters on Ṽσσ, we have to explain the
different regions by looking at the equations for the evolution of the ratio η⊥/η⊥∗ for the different
cases. In the valley case (Ṽσσ∗ > 0), σ has to decrease to the minimum at σ = 0. However,
because the potential has to be very flat at horizon-crossing, we start close to the minimum.
Even if σ reaches its minimum before φ, η⊥ does not have the time to become large because
in η⊥, the decrease of σ is opposed by the increase of ε. Hence, there is no allowed parameter
region to the right of the dashed vertical line in the figures.

In the region of negative Ṽσσ∗, the situation is the opposite: σ increases to fall from the
almost flat ridge where it started. Hence in η⊥ we have the effect of both ε and σ increasing.
After inserting σ for the different cases into (8.52), the only dependence on m appears in
the ratio (m − 2)/(m − 1) which tends to 1 when m increases. This explains the asymptotic
behaviour which appears on the right-hand side of the allowed region.

Looking at the different expressions for σ, we also see that the largest Ṽσσ∗ in absolute value
makes σ increase the fastest. This implies that the lower bound on the spectral index is the

1We use the 1σ error bars on ns everywhere else in this chapter because even if it change exact numerical
values, the general conclusion remains the same.
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Figure 82: The regions of the parameter space of m and n where the turn of the field trajectory
can occur before the end of the slow-roll regime. In the top left figure, these regions are
determined for several values of fNL: | − 6

5fNL| larger than 5 (green), 1 (blue) or 0.2 (red). In
the top right figure, we explore different error bars of the spectral index: the Planck constraint
at 1σ ns = 0.968± 0.006 (red) and 2σ ns = 0.968± 0.012 (purple), ns = 0.968± 0.0015 in blue
(CORE-like experiment [83]) and negligible error bars in green. On the bottom left, different
values of Nφ are represented: 50 (green), 55 (blue) and 60 (red). The last plot changes the
constraint on ε to check when the turn can occur: ε = 0.05 (green), 0.075 (blue) and 0.1 (red).
The dashed vertical lines indicate the change of sign of Ṽσσ∗, which depends on n, Nφ and ns:
it is necessarily positive on the right-hand side of this line. The small cross highlights that the
double quadratic potential (m = n = 2) is excluded in all plots.
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most important to obtain Ṽσσ∗. When n decreases, larger (in absolute value) Ṽσσ∗ are possible,
which explains why smaller m are allowed. But in σ there are also terms which decrease when
n becomes smaller and which compensate this effect, which is why for even smaller n the
minimum required value of m starts to increase again.

At the end of section 8.2, the difficulty, or at least the high level of fine-tuning, needed for a
model where fNL is of order unity or more in slow-roll has been highlighted. Here, we showed
explicitly that this is even impossible most of the time for simple monomial potentials. However,
some examples exist, when m > 4 and n < 4 generally. We also showed that Nφ has to be
close to the total number of e-folds after horizon-crossing which should be as large as possible
given other constraints (around 60 e-folds), which implies that the turn of the field trajectory

is quick. This also means that slow-roll parameters like ε∗ and η
‖
∗ are exactly the same as in the

purely single-field case. However, the observables ns and fNL are different. Adding a second
field which is responsible for the non-negligible fNL can help some single-field models which
were not working well given the Planck constraints on ns to go back into the allowed range of
parameters. However, this asks a lot of fine-tuning of the potential of the second field. For fNL

to be of order unity or more, this asks even more fine-tuning as only the lowest spectral index
values will work. This also means that the improvement of the spectral index measurements
expected with a satellite like CORE would seriously constrain the possibility of having a large
fNL, especially if the central value of the spectral index moves closer to the upper bound from
Planck.

We have also seen that in the cases that do work, most of the time the turn is near the end
of the slow-roll period. This means that ε and the other parameters are already of order 0.1
at the start of the turn. Then parameters like η‖ and η⊥ can easily become of order 1 or more
during the turn when things are getting more violent. The slow-roll approximation is then
broken anyway. If the turn happens a bit later, we can expect that isocurvature modes will not
have enough time to vanish before the end of inflation (this does not exclude the existence of
some cases where they vanish in time, but only a numerical study of such examples is possible).
Finally, we can imagine a case where the turn has not started when φ reaches the minimum of
its potential. If this happens, there is a period of large ε (which would be the end of inflation
in the single-field case). Again, during this period the slow-roll approximation is no longer
valid. Therefore, these different situations show the need to understand what happens if the
very useful slow-roll approximation is not sufficient. This is the topic of the next chapter.



Chapter 9

Beyond the slow-roll regime

The previous chapter showed that it is difficult to have fNL not be slow-roll suppressed in the
slow-roll regime. Is the situation the same if we leave this regime for a short period? The case
of potentials with a separable Hubble parameter has been worked out in [50]. Here we discuss
different cases of sum-separable potentials where this can happen and we will show that like
in the slow-roll situation, only the homogeneous part of the solution of (7.47) is relevant once
isocurvature modes have vanished. This means we will use the same quasi-single-field initial
conditions at horizon-crossing as at the end of section 8.2: V∗ � U∗ and |Vσ∗| � |Uφ∗| while
|Vσσ∗U2

φ∗| � |Uφφ∗V 2
σ∗| and |Vσσ∗V 2

σ∗| � |Uφφ∗U2
φ∗|.

9.1 Two kinds of turns

We identified two different cases, illustrated in figure 91, where the slow-roll approximation
stops to be valid during the turn. In figure 91, the main differences of the two situations
are shown. With potentials of a quite similar form, we have the possibility for two different
trajectories depending on the direction before and after the turn. In the previous chapter, the
importance of the parameters ε and η⊥ to study the turn has been highlighted. Graphically
they are useful to determine when the turn occurs and when the slow-roll regime is broken.

The first case is the one studied in the previous chapter. We determined that for a simple
monomial potential, if the turn is possible before φ reaches the minimum of its potential, it
is more likely to happen in the last few e-folds when slow-roll parameters are already of order
10−1, at the limit of the slow-roll approximation. Then, during the turn, η parameters may
become of order unity or more, which completely invalidates the idea of an expansion in terms
of small slow-roll parameters. The turn is still early enough to have η⊥ small again at the
end of inflation to make the isocurvature mode vanish. In this case the direction of the field
trajectory is the same before and after the turn. This is compatible with a monomial potential
where we established that Nσ has to be small compared to Nφ and the turn is then short.

In the second case, perpendicular terms are still negligible when ε becomes of order 10−1.
Then, like in single-field inflation, ε continues to grow. This is the end of the slow-roll regime.
From (7.12) we see that this makes η‖ also become large (in absolute value) and a maximum of
ε is reached when η‖ = −ε. A short time after that point, ε starts to decrease very fast as the
η‖ term dominates in ε̇. A large η‖ also has an effect on the perpendicular parameter η⊥ which
has been negligible until then. It is possible that η⊥ becomes large and that the turn will occur
after a few e-folds at most if fNL is of order unity, see appendix D. Hence, it is possible to have
the turn starting with ε� 1. This is also motivated by the assumption of isocurvature modes
vanishing before the end of inflation. Indeed, this requires a turn not too close to the end of
inflation (ε = 1) which is the case if ε is small compared to one during the turn. In this type of
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Figure 91: Illustrations of the two different types of turn where the slow-roll approximation
is broken. On the left, the field trajectory is displayed in black on the potential while on the
right the slow-roll parameters ε and η⊥ are shown for a typical example. The top correspond
to what we call the first type (see sections 10.3.1 and 10.3.2 for examples), while the plots at
the bottom show the second type (see sections 10.1, 10.4.1 and 10.4.2 for examples).
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turn, the direction is not the same before and after. Before the turn φ is dominating but also
near the minimum of its potential, while σ is still at a local maximum. Inflation ends when φ
is still near its minimum but σ is also evolving towards its own minimum.

In both theses cases, we established that the slow-roll approximation can be broken. We
know that solving the equations without any approximation is not possible, even in the simple
case of a sum potential. However, we have also seen that ε is small at the start of the turn
simply because of the assumption of vanishing isocurvature modes. Moreover, in ε̇ (7.12), there
is a factor ε in front. This means that when ε is small, ε cannot evolve very fast and will
stay small during a short period like the turn, unless the turn is very sharp with η parameters
becoming very large. Hence during the turn, except in the most extreme cases we do not treat,
we still have that ε is small compared to one which will play an important role in this chapter.

In the first type of turn, this hypothesis of small ε has the important consequence that the
slow-roll approximation is in fact broken only for the field σ. Indeed, in the field equation (7.2),
each field can only affect the other through H which evolves slowly if ε � 1. Hence, even if
σ starts to evolve fast, it is only a small perturbation for φ which continues to evolve slowly
during and after the turn until near the end of inflation when ε ≈ κ2φ̇2/2 becomes of order
unity. Hence, the derivatives of φ of order two and more are negligible. This can be used to
simplify the slow-roll parameter expressions from (7.6), keeping only the terms which are larger
than order slow-roll:

η‖ =
σ̈σ̇

φ̇2 + σ̇2
, η⊥ = − σ̈φ̇

φ̇2 + σ̇2
, ξ‖ =

...
σ σ̇

φ̇2 + σ̇2
and ξ⊥ = −

...
σ φ̇

φ̇2 + σ̇2
. (9.1)

Using this, a direct computation gives useful relations between the parallel and perpendicular
parameters of the same order:

e1φη
‖ = −e1ση

⊥ and e1φξ
‖ = −e1σξ

⊥. (9.2)

In the second type of turn, the slow-roll approximation is broken for the two fields, so that
these relations are then not valid. However, there is also an important approximation we can
make in this case. Before the turn, the slow-roll approximation is broken during the period of
large ε. Having ε large for some time also means that H decreases a lot during that period.
This means that during the turn, we have:

H2 � H2
∗ . (9.3)

A brief remark about the end of inflation is necessary. We use the common definition that the
period of inflation finishes when ε = 1. However, in the second type of turn, ε can be larger
than 1 for a very small number of e-folds before the turn. A more complete definition of the
end of inflation is then that ε = 1 with U � U∗ and V � V∗, which ensures that the second
field as well had time to evolve.

The main tool in this chapter is the differential equation (7.47) which we will call the gint

equation. We have already solved it during the period of slow-roll which goes from horizon-
crossing to the turn or to ε of order 1. We also know the exact homogeneous solution of the full
equation. The only remaining work is to understand what happens to the particular solution
beyond the slow-roll approximation. We will each time follow the same method. First we
discuss each equation in the more general case, only supposing that η‖ and η⊥ are large while
ε� 1. Then, when needed to go further, we will study separately each case using (9.2) or (9.3)
depending on the type of turn considered.
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9.2 Green’s functions

Beyond the slow-roll regime, we have to solve the second-order differential equation (7.23) to
compute the Green’s functions (recalling that v̄22(t) and G22(t, t∗) obey the same equation).
We assume that the solution has the form v̄22 ∝ fe1φe1σ, similar to the slow-roll case (8.23).
One motivation is that, during the turn, the dominant term will be (η⊥)2 and this is canceled
by this form of solution. Substituting this into (7.23), we find a differential equation for the
function f :

e1φe1σ f̈ +
[
2η⊥(e2

1σ − e2
1φ) + (3 + ε+ 2η‖)e1φe1σ

]
ḟ

+
[
2εη⊥(e2

1σ − e2
1φ) + (6ε+ 2ε2 + 4εη‖)e1φe1σ

]
f = 0.

(9.4)

In the slow-roll regime, a first-order expansion of this equation gives

e1φe1σ ḟ + 2ε e1φe1σf = 0, (9.5)

and then it is easy to show that f = H2 to find the slow-roll result (8.23). During this initial
period of slow roll, having a first-order equation as a very good approximation means that the
second mode needed to solve the full equation rapidly becomes negligible. Once slow roll is
broken, we only need to study how the remaining mode evolves.

In the general case, an analytical solution cannot be found. However, if we take a solution
of the form f = Hα by inspiration from the slow-roll solution (because that is the form of the
solution until the moment when the slow-roll regime is broken), (9.4) becomes:

e1φe1σ

[
α̈ lnH + α̇2(lnH)2 − αα̇ lnH + α̇

(
−2ε+ (3 + ε+ 2η‖) lnH

)
+(α− 2)(α− 1)ε2 − 4(α− 1)εη‖ − 3(α− 2)ε

]
+ 2η⊥(e2

1σ − e2
1φ) [α̇ lnH + (1− α)ε] = 0.

(9.6)

There are two interesting values for α which are 1 and 2. They can be linked to the two regimes
already discussed previously where the slow-roll approximation is not valid.

We can see directly that the lowest order term in slow-roll is canceled by α = 2 as expected.
Moreover, the ε2 term also vanishes with this value. This means that when ε becomes larger
while the other parameters are still small compared to 1, f = H2 is still a good approximation.
This is exactly what happens at the end of the slow-roll regime just before the second type of
turn, when the first field is near the minimum of its potential. Then, the complete solutions
for the Green’s functions are:

v̄22 =
H2e1φe1σ

H2
∗e1φ∗e1σ∗

, v̄32 =
H2

H2
∗e1φ∗e1σ∗

(
−2εe1φe1σ + η⊥(e2

1σ − e2
1φ)
)
. (9.7)

The same integration as in the slow-roll case works to compute v̄12:

v̄12 =
Z − Z∗

W∗e1φ∗e1σ∗
, (9.8)

with Z previously introduced in (8.22).
The other interesting value α = 1 cancels every second-order term in the equation. Hence,

this is a good solution when η⊥ and η‖ are large but ε is small compared to 1, hence during
the turn. The solutions are then,

v̄22 =
H

N
e1φe1σ, v̄32 =

H

N

(
−εe1φe1σ + η⊥(e2

1σ − e2
1φ)
)
, (9.9)
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where N is a constant used to satisfy the continuity of v̄22. If we call the time when this

solution becomes better than the previous one t0, we have N = H2
∗

H(t0)e1φ∗e1σ∗.
We cannot directly compute v̄12 in this regime. However, ε is supposed to be very small

compared to 1 which means that H is almost a constant. We can then write H(t) = H0 +δH(t)
where δH(t) is only a small correction. Taking the square of this expression and doing a first-

order slow-roll expansion gives δH(t) = 1
2
H2−H2

0
H0

. Then it is easy to deduce H(t) = 1
2
H2+H2

0
H0

.
Substituting this into (9.9), we can perform the integration and we get:

v̄12 = −H
2
0

H2
∗

S − S0

4e1φ∗e1σ∗
+
Z/2 + Z0/2− Z∗
W∗e1φ∗e1σ∗

, (9.10)

with S ≡ e2
1φ − e2

1σ.

9.3 The gint equation during the turn

A first use of the Green’s functions during the turn computed in the previous section is to
insert them into (7.47) to simplify the right-hand side of the equation: r.h.s. ≡ K22(v̄22)2 +
K23v̄22v̄32 + K33(v̄32)2. After this step, every term of r.h.s. has one factor depending on the
basis components: e2

1φe
2
1σ, e1φe1σ(e2

1σ − e2
1φ) or (e2

1σ − e2
1φ)2. We use the relation (e2

1σ − e2
1φ)2 =

1− 4e2
1φe

2
1σ coming from the normalization of the basis to eliminate one of the factors. Having

terms with these factors permits us to use equations (8.10) and (8.11) to eliminate the slow-roll
parameters χ, W̃221 and W̃222. Finally, we obtain:

r.h.s. =ε

(
H

N

)2 {
2(η⊥)4(ε+ 3η‖) + e2

1φe
2
1σ

[
(η⊥)4

(
−18− 14ε− 36η‖

)
− 2(η⊥)3ξ⊥

+ (η⊥)2
(
−3W̃111 − 18ε− 6ε2 − 24εη‖ + 18(η‖)2 + 6ξ‖ + 2ε2η‖ + 10ε(η‖)2 + 12(η‖)3

+2εξ‖ + 12η‖ξ‖
)

+ η⊥ξ⊥
(

6ε− 6η‖ − 2εη‖ − 10(η‖)2 − 2ξ‖
)

+ 2η‖(ξ⊥)2 + 3η⊥η‖W̃211

]
+ e1φe1σ(e2

1σ − e2
1φ)
[
−6(η⊥)5 + (η⊥)3

(
−6ε+ 18η‖ + 2ε2 + 12εη‖ + 18(η‖)2 + 6ξ‖

)
−4η‖(η⊥)2ξ⊥

]}
.

(9.11)

At first sight, this expression does not look simpler than the original one. However, it has an
important new feature which is the ε factor in front of the whole expression. In fact, in the
computation every term without ε cancels. Recalling that the main assumption we made is
that ε is small during the turn, this indicates that r.h.s. might be negligible during the turn,
which means that only the homogeneous solution (which is known) is needed. In the rest of
this section we will show that this is indeed the case.

First we have to figure out compared to what r.h.s. has to be negligible. One way to answer
this question is to use what we already know about the solution: the slow-roll expression given
in (8.15) which we write as ġint = Psr + hsr with:

Psr = 2ε(ε+ η‖)(v̄22)2 + 2εv̄22v̄32, hsr = −
e2

1φ∗Ṽσσ∗ − e2
1σ∗Ũφφ∗

e1φ∗e1σ∗
η⊥v̄22. (9.12)

Here we used that v̄32 = −χv̄22 in the slow-roll regime. Psr corresponds to the particular
solution while hsr is the homogeneous part. We will study these two parts of the solution
in the two next sections to see how they evolve beyond the slow-roll regime. In section 9.6,
we will discuss why they are sufficient to solve the gint equation even beyond the slow-roll
approximation. We start by focusing on this homogeneous solution.
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9.4 Fate of the slow-roll homogeneous solution

As already discussed at the end of chapter 7, the homogeneous slow-roll solution is also a
homogeneous solution of the full second-order equation. Hence, we can use it and substitute
it into (7.47). Then we look at each term (order1 ∝ ḣsr, order2 ∝ ḧsr and order3 ∝

...
h sr)

individually and not at the total sum because that is obviously zero. We want to show that
these terms are large compared to r.h.s., so that, during the turn, r.h.s. is only a small correction
which can be neglected to get a good approximation of gint. To compute the three left-hand
side terms, we use the same steps as in deriving (9.11) to get:

order1 =− H

N
e2

1φ∗Ṽσσ∗ − e2
1σ∗Ũφφ∗

e1φ∗e1σ∗

{
(e2

1σ − e2
1φ)
[
−6(η⊥)4 − 2(η⊥)3ξ⊥

]
+ e1φe1σ

×
[
6(η⊥)5 + (η⊥)3

(
6(η‖)2 + 2ξ‖

)
− 8η‖ξ⊥(η⊥)2 + 2η⊥(ξ⊥)2 + 3(η⊥)2W̃211

]}
order2 =

H

N
e2

1φ∗Ṽσσ∗ − e2
1σ∗Ũφφ∗

e1φ∗e1σ∗

{
(e2

1σ − e2
1φ)
[
(η⊥)4

(
−3 + ε− 6η‖

)
+ 2(η⊥)3ξ⊥

]
+ e1φe1σ

×
[
(η⊥)3

(
6η‖ − 2εη‖ + 12(η‖)2

)
+ (η⊥)2ξ⊥

(
−3 + ε− 10η‖

)
+ 2η⊥(ξ⊥)2

]}
order3 =

H

N
e2

1φ∗Ṽσσ∗ − e2
1σ∗Ũφφ∗

e1φ∗e1σ∗

{
(e2

1σ − e2
1φ)
[
(η⊥)4

(
−3− ε+ 6η‖

)
− 4(η⊥)3ξ⊥

]
+ e1φe1σ

×
[
6(η⊥)5 + (η⊥)3

(
−6η‖ + 2εη‖ − 6(η‖)2 + 2ξ‖

)
+ (η⊥)2ξ⊥

(
3− ε+ 2η‖

)
+ 3(η⊥)2W̃211

]}
.

(9.13)

We separate our equations into parts easier to compare. We start by comparing the factors in
front of the braces of each expression in (9.11) and (9.13) which are:

H

N
e2

1φ∗Ṽσσ∗ − e2
1σ∗Ũφφ∗

e1φ∗e1σ∗
and ε(

H

N
)2. (9.14)

After simplifying the common factor H/ N and inserting N = H2
∗e1φ∗e1σ∗/H0 from (9.9), we

use the quasi single-field initial conditions at horizon-crossing to write (9.14) as

Ṽσσ∗
H2
∗

H2
and ε. (9.15)

The discussion about the spectral index from section 8.2 is still valid, because the only difference
from the slow-roll regime is the value of v̄12e, but for a large enough value (larger than four)
the dependence on v̄12e in (7.39) disappears and (8.26) can be used. Hence, Ṽσσ∗ is typically
of order 10−2, or at least not hugely smaller.

As for the size of ε and H2
∗/H

2, this depends on the type of turn. For the first type, ε is
still of order slow-roll but it can be easily larger than Ṽσσ∗ by an order of magnitude. However
H2
∗/H

2 is also larger than one. Moreover, if ε had enough time to increase since horizon-
crossing, the situation is the same for H2

∗/H
2 because H decreases faster if ε is larger. During

a few dozens of e-folds with ε of order slow-roll, it can also increase by an order of magnitude.
This means that both terms will be of the same order during the turn in this case, or at least
that neither of them is hugely smaller or larger than the other. For the second type of turn,
the situation is different. During the turn, ε is again of order slow-roll so it is not hugely larger
than Ṽσσ∗. However, because of the period of large ε, we know that H2

∗/H
2 � 1 from (9.3).

Hence the factor in front of order1, order2 and order3 is large compared to the one in r.h.s. in
this case.
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Next we focus on the second part of each expression, which is the part inside the braces and
which is a complicated expression depending on basis components and slow-roll parameters.
We start with some comments on the factors e1φe1σ and e2

1σ − e2
1φ. By definition of the basis,

e1φe1σ goes from −1
2 to 1

2 and e2
1σ − e2

1φ from −1 to 1 and when one is at an extremum, the
other one vanishes. When one vanishes, the leftover slow-roll parameter terms are similar in
the different expressions. It is also not possible to have both of them small compared to one at
the same time, hence the term in r.h.s. without a factor depending on the basis is not an issue.
Hence, we can forget about these basis component factors which cannot change the conclusion.

The different expressions depend on all the first and second-order slow-roll parameters,
except χ, W̃221 and W̃222 which have been eliminated using the relations specific to sum po-
tentials (8.10) and (8.11). The first step is to study the cancellations of the left-hand side
terms. An obvious one is when η⊥ vanishes because it multiplies every term in (9.13); the ho-
mogeneous solution vanishes in that case. It also multiplies every term in r.h.s. except the one
term 2η‖(ξ⊥)2. However ξ⊥ is also small when η⊥ becomes small. During the turn of the field
trajectory, it is usual that the slow-roll parameters oscillate, hence η⊥ can vanish several times.
At those times our hypothesis that r.h.s. is much smaller than the other terms is not valid and
we cannot neglect the particular solution. However, we will show in section 9.6 that we have
a way of dealing with this. Apart from this vanishing of η⊥, there is no other possibility to
cancel order1, order2 and order3 simultaneously. Indeed the expressions contain similar terms,
but with opposite signs or different numerical constants.

Once we know there are no cancellations in the left-hand side terms (apart from the moments
when η⊥ = 0), we can compare their expressions to r.h.s. and verify they are of the same order.
As the expressions contain terms up to order five in slow-roll parameters, two cases have to be
differentiated. First, the slow-roll parameters can be of order unity. Then the powers do not
matter and most of the terms have to be taken into account. We remark that the terms are
similar on each side of the equation, and that the numerical constants are also of the same order,
so that r.h.s. cannot be very large compared to the other expressions in this case. However,
the slow-roll parameters can also become larger than order unity and this situation requires
more discussion. An important remark is that when the slow-roll approximation is broken, the
slow-roll cancellations in (7.9) disappear which means that ξ‖ and ξ⊥ are of order a few times
η‖ and η⊥ respectively, and not of order (η‖)2 and (η⊥)2. Using the expressions for η̇‖ and η̇⊥

in (7.12), we can see that when |η‖| is at a maximum, |η⊥| has to be of the same order because
the only possibility to cancel the largest term (η‖)2 in the derivative expression is to have (η⊥)2

of the same order. However, when |η⊥| is at a maximum, we can see in a similar way that |η‖|
must be of the order of a few at most.

Then we can study what happens if the perpendicular parameters are the largest (near the
maximum of |η⊥|). If η‖ is only a few, the dominant terms in r.h.s. and the order1,2,3 are the
ones in (η⊥)5 and (η⊥)4 (or the equivalent (η⊥)3ξ⊥). The same terms exist in all the different
expressions meaning the part inside the braces has to be of the same order in general. If, on
the other hand, the parallel parameters are the largest, there is a term in (η⊥)2(η‖)3 in r.h.s.
which does not exist in the other expressions. However, as discussed a few lines earlier, η⊥

is also of the same order as η‖ at that time. Using this, the dominant terms are actually of
order (η⊥)5. Again we find similar terms inside the braces for the different expressions which
have to be of the same order. Finally, the only term in r.h.s. that has no equivalent in the
other expressions is (η⊥)2W̃111. This term, which is only of order three, can never be dominant
because W̃111 cannot be large enough to make this term a lot larger than the order five ones
because this parameter is also in the derivative of ξ‖ (see (7.12)).

Hence, we have established that the terms inside the braces are of the same order in the
general case for each expression in (9.11) and (9.13). This is exactly the situation for the second
type of turn where the only hypothesis not used (9.3) has no consequence for the terms inside
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the braces. However, for the first type of turn, the relations (9.2) between the parallel and
perpendicular slow-roll parameters of the same order can change the result. To verify this, we
substitute them into (9.11) and (9.13). We also introduce the notation with {} in subscript,
meaning we consider only the terms inside the braces. The computation gives

r.h.s.{} = −e2
1φe

2
1σ

[
(η⊥)2

(
3W̃111 + 6ε2 + 18ε

)
− 6η⊥ξ⊥ε

]
− e1φe

3
1σ

[
3(η⊥)2W̃211 + (η⊥)3

(
−2ε2 − 12ε

)]
− e1φe1σ(η⊥)3

(
2ε2 − 6ε

)
+ 2e2

1φ(η⊥)4ε,

order1{} =
e1σ

e1φ

[
4η⊥(ξ⊥)2 + 12(η⊥)5 + 6(η⊥)2W̃211

]
+
e3

1σ

e1φ

[
−4η⊥(ξ⊥)2 − 6(η⊥)2W̃211

]
+ e2

1σ

[
4(η⊥)3ξ⊥ − 24(η⊥)4

]
+ 4(η⊥)3ξ⊥ + 12(η⊥)4,

order2{} = 12
e1σ

e1φ
(η⊥)5 − 48

e3
1σ

e1φ
(η⊥)5 − 2e1φe1σ

[
2η⊥(ξ⊥)2 + (η⊥)2ξ⊥(ε− 3)

]
− 2e2

1σ

[
14(η⊥)3ξ⊥ + (η⊥)4(4ε− 12)

]
+ 4(η⊥)3ξ⊥ − 6(η⊥)4 + 2(η⊥)4ε,

order3{} =
e1σ

e1φ

[
(η⊥)2(ξ⊥(2ε− 6)− 6W̃211)− 24(η⊥)5

]
+
e3

1σ

e1φ

[
48(η⊥)5 + (η⊥)2(6W̃211 + ξ⊥(6− 2ε))

]
+ e2

1σ

[
24(η⊥)3ξ⊥ + 8(η⊥)4ε

]
− 8(η⊥)3ξ⊥ + (η⊥)4(−2ε− 6).

(9.16)

We can directly see that the higher order terms in r.h.s.{} have disappeared but are still
present in the left-hand side terms. Moreover, most of the remaining terms in r.h.s.{} are
now proportional to ε, which makes them even smaller. Finally, the divisions by the basis
components e1φ and e1σ which are smaller in absolute value than one only appear in order1{},
order2{} and order3{}. All these observations leads to the conclusion that r.h.s.{} is in fact
small compared to left-hand side terms for the first type of turn.

To summarize the results of the section, we have established that r.h.s. is negligible com-
pared to order1, order2 and order3. With the first type of turn, this is due to the cancellations
of the dominant terms in r.h.s. due to the relations between the parallel and the perpendicular
parameters which exist in that case. For the second type of turn, this is simply due to the
factor in front of r.h.s. which is smaller than the one in order1,2,3 because H2 � H2

∗ . This
means that even if the slow-roll approximation is broken, if the initial condition of that period
is the slow-roll homogeneous solution, then the right-hand side of (7.47) can be neglected. This
is illustrated in figure 92 which displays |r.h.s.|, |order1| and |order2| (obviously order3 is not
needed because it is minus the sum of the two others) for the potentials of each type of turn
that are studied in chapter 10. This figure (with a logarithmic scale) shows that r.h.s. is always
several orders of magnitude smaller than the others during the turn (except at the times where
η⊥ crosses zero, which will be discussed in section 9.6).

From this section we learn that the homogeneous solution, which is known, is sufficient to
solve (7.47) during the turn when the slow-roll approximation is broken (large η‖ and η⊥) as
long as ε remains small, since the particular solution is negligible.

9.5 Fate of the slow-roll particular solution

In the previous section, we showed that we only need the homogeneous solution of the gint

equation during the turn when the slow-roll approximation is broken. However, this does not
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Figure 92: This plot displays |r.h.s.| in blue (thick line), |order1| in red and |order2| in green
(dashed) during the turn of the field trajectory for the potentials studied in sections 10.3.1
(on the left) and 10.4.1 (on the right), which correspond to the first and second types of turn,
respectively. Note the logarithmic scale.

mean that we can forget about the particular solution completely. It is still required during
the slow-roll evolution before and after the turn as we will show explicitly in this section (and
potentially during the turn when η⊥ crosses zero, see next section) and hence plays a role in
principle in the determination of the integration constants in the various regions. In fact, to
avoid having to perform an explicit matching at every transition it would be very convenient
if we could just add the slow-roll particular solution to the homogeneous solution everywhere.
We will come back to this point in the next section. As a preliminary we will in this section
investigate the behaviour of the slow-roll particular solution Psr before and during the turn.
We start by comparing Psr to the homogeneous solution in the different regimes.

First, we focus on the slow-roll regime using the Green’s functions determined in (8.23)
when the slow-roll particular solution can be written as:

Psr = −2ε
(
e2

1φṼσσ + e2
1σŨφφ

) H4e2
1φe

2
1σ

H4
∗e

2
1φ∗e

2
1σ∗

=
2

3
ε
(
e2

1φVσσ + e2
1σUφφ

)
e1φe1σ

H2e1φe1σ

H4
∗e

2
1φ∗e

2
1σ∗

. (9.17)

Doing the same for the homogeneous part using the quasi single-field initial conditions discussed
at the end of section 8.2 and recalled at the beginning of this one, as well as (7.9), we get:

hsr = −e2
1φ∗Ṽσσ∗η

⊥ H2e1φe1σ

H2
∗e

2
1φ∗e

2
1σ∗

= −e2
1φ∗ Ṽσσ∗

(
e1φe1σ(Ṽσσ − Ũφφ)− 1

3
ξ⊥
)
H2
∗
H2e1φe1σ

H4
∗e

2
1φ∗e

2
1σ∗

.

(9.18)
In the slow-roll approximation (neglecting the higher-order term ξ⊥ in hsr), we end up with

ε e1φe1σ

(
e2

1φVσσ + e2
1σUφφ

)
and Ṽσσ∗e1φe1σ (Vσσ − Uφφ) H

2
∗

H2 to compare, because e2
1φ∗ ≈ 1 and

by definition Ṽσσ = Vσσ/(3H
2) and Ũφφ = Uφφ/(3H

2). As a reminder, we want to see if Psr can
be negligible compared to hsr during the slow-roll regime. First, we look at the terms inside
the parentheses which both contain second-order derivatives of the potential. Then, for our
models where neither of the derivatives is negligible compared to the other at horizon crossing,
we can expect that in general this remains true later, at least up to the turn (it can change
during the turn, but at that time the slow-roll approximation is broken and these expressions
are not valid as we will discuss later in this section). So we conclude that the terms between
parentheses in the two expressions are in general of a comparable order (the basis components
in Psr can make it smaller, but not a lot smaller). If there is a difference between the two
expressions, it has to come from the remaining factors, which means we have to compare ε to



108 Chapter 9. Beyond the slow-roll regime

Ṽσσ∗
H2
∗

H2 like in the previous section. As discussed there, these have to be of the same order
because in the slow-roll regime H is still of the same order as H∗. There is one exception which
corresponds to models where ε is extremely small compared to η‖ even in the slow-roll regime
(Starobinsky-like inflation for example), so that ε is also small compared to Ṽσσ∗ (in that case,
there would be a similarity with the beyond-slow-roll situation studied in this section where
ε � η‖, η⊥ as well). But apart from those specific models, this leads to the conclusion that
in general both the particular solution and the homogeneous solution have to be taken into
account during the slow-roll regime.

As shown in section 9.2, the slow-roll expressions for the Green’s functions are also valid in
a region of large ε, which occurs just before a turn of the second type. The same expressions
as in the previous paragraph can be used, however ξ⊥ can no longer be neglected in hsr. On
the other hand, there is no reason for ξ⊥ to become much larger than the other term between
the parentheses (which is η⊥) either, given that we are still before the turn, so that in the end
the conclusion about the terms between parentheses from the previous paragraph still holds.
As for the other factors, both the homogeneous and the particular solutions will grow because
ε becomes of order unity, which makes H2

∗/H
2 large compared to 1. However, at the end of

this period ε will decrease and becomes of order slow roll again, but the ratio H2
∗/H

2 will stay
large. This means that the slow-roll particular solution finishes the period of large ε being
small compared to the slow-roll homogeneous solution. We will show below that this is fully
consistent with the result for the second type of turn (the type that has a period of large ε
right before the turn) that the slow-roll particular solution is negligible during the turn.

We continue by considering the behaviour of the slow-roll particular solution during the
different types of turn. Obviously, it is not an actual solution at that time, but we want to
know if it would cause any problems if we were to simply add it to the solution. Again, we
follow the same method using the Green’s function expressions given in (9.9) to write:

Psr = ε
H2H2

0e1φe1σ

H4
∗e

2
1φ∗e

2
1σ∗

(
η‖e1φe1σ + η⊥(e2

1σ − e2
1φ)
)
, hsr = −e2

1φ∗Ṽσσ∗η
⊥HH0e1φe1σ

H2
∗e

2
1φ∗e

2
1σ∗

. (9.19)

This time we end up with HH0
H2
∗
ε
(
η‖e1φe1σ + η⊥(e2

1σ − e2
1φ)
)

and Ṽσσ∗η
⊥ to compare. Again

the two expressions have a similar form, excluding the factor HH0/H
2
∗ . As discussed in the

previous chapter, Ṽσσ∗ is typically of order 10−2 and hence cannot be much smaller than ε
which is of order slow-roll. During the turn, the terms depending on the η parameters are also
of the same order, except in the rare case when η⊥ vanishes. Finally, the only large difference
can come from the factor in front in the slow-roll particular solution. The two types of turn
described in section 9.1 give different results. In the first type where ε is of order slow-roll since
horizon-crossing, H and H0 are not much smaller than H∗. Then the factor is not much smaller
than one. Moreover, the cases where it is the smallest are also the cases where ε has increased
the most (and can then be larger than Ṽσσ∗ by an order of magnitude), so that these two effects
compensate each other. Hence, the slow-roll particular solution is then typically of the same
order as the homogeneous solution during the turn. In the second type of turn, the situation
is different, indeed H and H0 are of the same order and we know that H2 � H2

∗ . This means
that this time Psr is small and negligible during the turn compared to hsr, fully consistent with
the result that Psr has become very small during the period of large ε just before the turn, as
shown above.

More must be said about the slow-roll particular solution during a turn of the first type and
we will now show that it becomes in fact proportional to the homogeneous solution of (7.47).
To show this, we substitute Psr in the left-hand side of (7.47), using the Green’s function
expressions from (9.9), the sum potential relations from (8.10) and (8.11) to eliminate χ, W̃221

and W̃222, and also the relations between parallel and perpendicular parameters (9.2). We



109 Chapter 9. Beyond the slow-roll regime

then compare the three terms of the equation corresponding to the three different orders of
derivative (called term1, term2 and term3)1 to their sum (called l.h.s.):

l.h.s.{} = e2
1φe

2
1σ

[
(η⊥)2

(
−6W̃111 − 12ε2

)
+ 12εη⊥ξ⊥

]
+ e1φe

3
1σ

[
(η⊥)3

(
4ε2 + 24ε

)
− 6(η⊥)2W̃211

]
+ e1φe1σ(η⊥)3

(
12ε− 4ε2

)
+ 4e2

1φ(η⊥)4ε,

term1{} = −12e1φe1σ(η⊥)5 + e3
1φe1σ

[
−4η⊥(ξ⊥)2 − 6(η⊥)2W̃211

]
+ e4

1σ

[
4(η⊥)3ξ⊥ − 24(η⊥)4

]
+ 36e2

1σ(η⊥)4 − 4(η⊥)3ξ⊥ − 12(η⊥)4,

term2{} = −12e1φe1σ(η⊥)5 + e2
1φ

[
(η⊥)4(6− 2ε)− 4(η⊥)3ξ⊥

]
+ e1φe

3
1σ

[
48(η⊥)5 + 36(η⊥)3ε

]
+ e2

1φe
2
1σ

[
28(η⊥)3ξ⊥ + 12η⊥ξ⊥ε+ (η⊥)4(20ε− 24) + (η⊥)2

(
6ε2 − 18ε

)]
+ e3

1φe1σ

[
4η⊥(ξ⊥)2 + (η⊥)2ξ⊥(6ε− 6) + (η⊥)3

(
2ε2 − 6ε

)]
,

term3{} = e1φe
3
1σ

[
−48(η⊥)5 + (η⊥)2(ξ⊥(6ε− 6)− 12W̃211) + (η⊥)3

(
6ε2 − 18ε

)]
+ e1φe1σ

[
24(η⊥)5 + (η⊥)2(6W̃211 + ξ⊥(6− 6ε)) + (η⊥)3

(
18ε− 6ε2

)]
+ e2

1σ

[
−32(η⊥)3ξ⊥ + (η⊥)2

(
−6W̃111 − 18ε2 + 18ε

)
+ (η⊥)4(−26ε− 6)

]
+ e4

1σ

[
24(η⊥)3ξ⊥ + (η⊥)2

(
6W̃111 + 18ε2 − 18ε

)
+ 20(η⊥)4ε

]
+ 8(η⊥)3ξ⊥ + (η⊥)4(6ε+ 6).

(9.20)

The discussion of these expressions is very similar to the one for (9.11) and (9.13). We use
again the subscript {} to indicate that we have left out an overall factor (cf. (9.11) and (9.13)
), which is here the same for all four expressions. We can see that in l.h.s.{} the higher order

terms like (η⊥)5 have disappeared. Moreover, most of the terms in l.h.s. have an extra factor
of ε, which is not the case for the other expressions. This implies that the sum of the three
terms is much smaller than the individual terms of (7.47) with the slow-roll particular solution.
Hence this function is in fact an approximated solution of the homogeneous equation during a
turn of the first type when the slow-roll approximation is broken.

If Psr becomes a homogeneous solution it means that it has to be proportional to a linear
combination of the two previously determined exact independent homogeneous solutions η⊥v̄22

and η⊥G22∗. However, using (7.34), these independent solutions have in fact become propor-
tional before the turn. Hence, we simply have that Psr and hsr are proportional. Using (9.19)
and (9.2), we rewrite the particular solution as:

Psr = −ε
H2H2

0e1φe1σ

H4
∗e

2
1φ∗e

2
1σ∗

η⊥e2
1φ. (9.21)

We find the same factor η⊥ as in the homogeneous solution (9.19), but also another factor
εHe2

1φ. Hence, the proportionality is true only if εHe2
1φ is constant during the turn. This

happens if e2
1φ ≈ 1, in that case φ is dominating meaning that ε and H are purely slow-roll and

are almost constant during a short turn. At first, the idea of φ dominating during the turn
might seem odd. However, we recall that this does not have to be during the whole turn, but
only when η⊥ and η‖ are large enough to break the slow-roll approximation. Looking at the

1These are the same terms we called order1,2,3 before, however now with the particular solution substituted
and not the homogeneous one.
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form of trajectory in the top left plot of figure 91, the only period when φ dominates is in fact
at the end of the turn when σ is oscillating around its minimum. This can also be verified with
the explicit examples of the next section (see figures 102 and 104). Here, we can observe that
η⊥ becomes large only after the period when e1σ was not negligible (the turn).

Different behaviours of the slow-roll particular solution depending on the type of turn have
been highlighted in this section. In the next section we will discuss how these results can be
used to solve the differential equation (7.47) beyond the slow-roll regime.

9.6 Solution of the gint equation

As usual, we will discuss separately the two types of turn, but we start by reminding the reader
about the main result of the previous sections. The solution of (7.47) is known until the end
of the slow-roll regime and it is composed of a homogeneous solution and a particular solution
that both have to be taken into account. When η‖ and η⊥ become large, during the turn, only
the homogeneous solution (which is exact and does not depend on any slow-roll approximation)
is needed to solve the equation. The difficulty is then to ensure the continuity of the solution
at the transition between the two regimes. In fact, after the turn, there may also be another
period of slow-roll before the end of inflation, and during the turn the slow-roll parameters can
oscillate and vanish for a short time, which could lead to a very brief restoration of the slow-roll
conditions. So in the end there might be many transitions and it would be very inconvenient if
we had to perform an explicit matching of the solutions at each of them. Fortunately, there is
another option as we will now show. Finally, we also recall that the slow-roll particular solution
evolves differently depending on the type of turn. In the first type, it becomes proportional to
the homogeneous solution of (7.47), while in the second type it becomes negligible compared
to the homogeneous solution.

It is then easy to see that the case of the first type of turn is most simply treated by
keeping the full slow-roll solution at all times. Indeed, at the moment when the slow-roll
regime ends and the turn starts, the solution should become only homogeneous, and that is
exactly the case because the slow-roll particular solution becomes a homogeneous solution at
that time. Continuity at the transition is then automatic, without the need for any explicit
matching. Then, if later during the turn or at the end of the turn the slow-roll approximation
is re-established, continuity is also ensured since the same solution works on both sides of the
transition. Note that if η⊥ vanishes, from (9.2), η‖ has to be of order slow-roll, meaning that
the slow-roll approximation is indeed restored during these brief moments.

The second type of turn deserves a longer discussion. Indeed, we do not know the full
particular solution during the period of large ε just before the turn but we know two things:
the slow-roll particular solution vanishes (but it is not an exact particular solution at that time)
and the right-hand side of (7.47) can be neglected once this period has finished, because r.h.s.
is negligible at the start of the turn as shown in section 9.4. These two ingredients are sufficient
to prove that the particular solution during the period of large ε vanishes, even without having
its explicit form. To stay general, we write the particular solution P as P = Psr + Ah + P⊥h,
where A is a constant, h the homogeneous solution, and Psr the slow-roll particular solution.
P⊥h is the function that, when inserted into (7.47), gives those right-hand side terms that are
not given by Psr, and which is zero when these terms vanish (in other words, it does not contain
a homogeneous solution). We know that over the course of the period of large ε, Psr vanishes
(see (9.19)). The right-hand side of (7.47) vanishes during that period too, which means that
P⊥h has to vanish by definition. The only remaining term could then be the one proportional
to the homogeneous solution, but it has to be zero because of the matching conditions at the
start of the period of large ε. Indeed at the end of the slow-roll regime, the particular solution
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is simply Psr while P⊥h has to be zero, because the terms of higher order in slow-roll are still
negligible and will grow only later during that period of large ε. The function h is not zero at
the transition, hence A has to be. Without knowing the exact formula for P , we can conclude
that it vanishes during that period of large ε. Hence, at the start of the turn, the solution is
simply the slow-roll homogeneous solution.

During the second type of turn, keeping the slow-roll particular solution, even if it is not
a particular solution of the exact equation at that time, only induces a negligible error, but
it solves any potential issues with matching to later slow-roll periods. When η⊥ vanishes, η‖

can be larger than order slow-roll in this type of turn. This is not an issue because then the
parameters evolve very fast, meaning that a very short time before η⊥ vanishes, the particular
solution is still negligible compared to the homogeneous solution, and the same a very short
time after. Moreover, one can verify that at the exact time when η⊥ = 0, the particular
solution is 1

2Psr and we know that this function is negligible during the rest of the turn. Then
it is possible to add this particular solution to the full solution only for these very short periods
(without using matching conditions, because at the time of the matchings it it is negligible).
It is also important to remember that in the end we are interested in the integrated gint, and
when η⊥ vanishes, the right-hand side of (7.47) is also very small compared to its value a short
time before or after (because every term contains η⊥ except one which also becomes small),
meaning this particular solution is also small at that time compared to its usual value during
the turn. In the integral it is then negligible. In fact, when η⊥ vanishes, the only thing that
happens is that the whole solution almost vanishes (but the particular solution does not vanish
at that exact same time), but because the homogeneous solution is zero, it cannot be large
compared to the particular solution for once.

To summarize, we have shown that for both types of turn, the slow-roll solution of (7.47)
is sufficient to solve this equation even beyond the slow-roll regime, under the condition that ε
stays of order slow-roll during the turn. Of course, knowing the solution ġint which is given in
(9.12) is not sufficient, we also have to integrate it. But the computation is exactly the same
as in the slow-roll case even if the slow-roll approximation is not valid, meaning that gint has
again the same form:

gint = εv̄2
22 − ε∗ −

e2
1φ∗Ṽσσ∗ − e2

1σ∗Ũφφ∗

2e1φ∗e1σ∗
v̄12. (9.22)

9.7 End of inflation and fNL

Once the form of gint is known, it is possible to compute fNL at the end of inflation:

−6

5
fNL =

e2
1φ∗Ṽσσ∗ − e2

1σ∗Ũφφ∗

e1φ∗e1σ∗

(v̄12e)
3

(1 + (v̄12e)2)2 +O(10−2). (9.23)

This expression has the same form as the slow-roll one (8.16), the difference is hidden in
the Green’s functions which have been computed in section 9.2. The same discussion of this
expression as in section 8.2 holds and the conclusions are the same, see (8.18). Like in that
section, we use the limit (8.19) which is a good approximation when |v̄12e| > 4. Then the
only remaining step is to study the value of v̄12 at the end of the turn using (9.10), when the
slow-roll approximation is valid again, which is equal to v̄12e.

As usual, we need to distinguish the two types of turn because they have different initial
and final conditions. In the first case, the turn occurs early which means that U0 � V0 (as
defined before, the subscript 0 indicates that the function is evaluated at t0 when the slow-roll
approximation stops to be valid). However because there is a turn, we cannot neglect e1σ0
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anymore. We can then write S0 = e2
1φ0− e2

1σ0 = 1−2e2
1σ0 and Z0 ≈ −U0e

2
1σ0. Moreover, before

the turn we are still in slow-roll, meaning that ε0 � 1 and we can use the slow-roll expression
H2

0 = κ2U0/3. At the end of the turn, the situation is similar to single-field inflation in the
direction φ meaning that Z ≈ 0 and S ≈ 1. Inserting this into (9.10), we obtain:

v̄12e =
U0

W∗

2e2
1σ0

4e1φ∗e1σ∗
+
−U0e

2
1σ0

2W∗e1φ∗e1σ∗
+

−V∗
W∗e1φ∗e1σ∗

=
−V∗

W∗e1φ∗e1σ∗
. (9.24)

This is exactly the same limit as in the slow-roll situation. Hence for this first type of turn, we
get the same result:

−6

5
fNL = −Vσσ∗

κ2V∗
. (9.25)

The implications of this result were already discussed in section 8.2.
In the second type of turn, the situation is slightly different. Firstly, the slow-roll approxi-

mation is not valid at the time t0, at the end of the period of large ε. Moreover, at that time
we are still in a single-field case (φ dominates), hence S0 ≈ 1 and Z0 ≈ −V0 ≈ V∗ (because even
if U0 is not zero, it cannot be large compared to V0 because we are near the moment when φ
reaches the minimum of U). After the turn, the single-field situation is now in the σ direction,
hence S ≈ −1. At the end of inflation, the situation is:

v̄12e = − H2
0

2H2
∗e1φ∗e1σ∗

+
−Z∗

2W∗e1φ∗e1σ∗
=
− 3
κ2
H2

0 − Z∗
2W∗e1φ∗e1σ∗

. (9.26)

Substituting this into fNL, we obtain:

−6

5
fNL = − 2Vσσ∗

3H2
0 + κ2V∗

. (9.27)

However, we can add that H2
0 > κ2W0/3 because ε is not negligible (equality in the slow-roll

case). Moreover, W0 = U0 + V0 ≈ U0 + V∗ > V∗. We can then write:

|v̄12e| >
∣∣∣∣ −V∗
W∗e1φ∗e1σ∗

∣∣∣∣ , (9.28)

which has an immediate consequence for fNL:∣∣∣∣−6

5
fNL

∣∣∣∣ < ∣∣∣∣−Vσσ∗κ2V∗

∣∣∣∣ . (9.29)

In this case, the value of fNL is smaller than the slow-roll result. However, it is easily of the
same order because U0 and V0 are of the same order while even if ε0 = 1, it only changes the
factor between H2

0 and κ2W0 from 1/3 to 1/2.
So in the end we have derived the rather surprising result that in the class of models consid-

ered (two-field sum potentials), the slow-roll expression for fNL gives a very good approximation
of the exact result, even in the case where the slow-roll approximation breaks down during the
turn. Allowing for the break-down of slow-roll does however increase the region of the param-
eter space where large non-Gaussianity can occur compared to the results shown in figure 82,
because we no longer have the constraint that the turn has to happen before the end of the
slow-roll regime.
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Numerical examples

Here, we provide several explicit examples to illustrate the different results of the previous
chapters. We also show how to explicitly construct a model that produces fNL of order unity
while satisfying all observational constraints.

10.1 Double quadratic potential

The double quadratic potential has the form:

W (φ, σ) =
1

2
m2
φφ

2 +
1

2
m2
σσ

2. (10.1)

It has been studied and discussed in many papers, see e.g. [195, 164, 191]. However, it is always
a good introductory example.

Without taking into account the exact constraints of the monomial potential yet, we keep
the main idea that the second field has a negligible effect at the time of horizon-crossing. This
can be achieved by taking m2

φ � m2
σ and we will use the same values as in [191]: mφ = 20mσ

and mσ = 10−5κ−1. As initial conditions, we use φi = 13κ−1 and σi = 13κ−1, while their
derivatives φ̇i and σ̇i are determined by the slow-roll approximation. In figure 101 we show
how the various relevant quantities evolve during the turn of the field trajectory. First, one
can see clearly when the turn occurs: η⊥ becomes large and e1σ becomes of the same order as
e1φ. We also see that this example corresponds to the second type of turn where φ reaches the
minimum of its potential and ε is of order unity before the turn. Another remark is that the
second-order parameters ξ‖ and ξ⊥ do not give new information compared to the first-order
parameters η‖ and η⊥, at least not by eye.

However, in this model the two most important constraints and goals, concerning the two
observables ns and fNL, are not achieved. The spectral index, which is 0.92, is clearly outside
the bounds from the Planck observations. fNL is slow-roll suppressed and far from the goal
of fNL of order unity. Moreover, v̄12e is only −1.5 which is smaller in absolute value than the
value 4 needed to use the approximations (8.25) and (8.26) for fNL and ns.

The main result of the previous section was the validity of the slow-roll expressions in cases
beyond slow-roll, like this one, at least to give an estimation of the Green’s functions. Hence,
we can use this approximation to compute v̄12e to see how the situation can be improved. Using
dimensionless fields, (8.27), the slow-roll expression for v̄12e given by (8.24) becomes:

v̄12e = − V∗
W∗e1φ∗e1σ∗

= −
√

2ε
V∗
Vσ∗

= −σ∗
φ∗
. (10.2)
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Figure 101: The exact numerical solutions for the different interesting parameters (basis com-
ponents, slow-roll parameters, Green’s functions, the spectral index and fNL) during the turn
for the double quadratic potential (10.1).
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This shows that v̄12e can be increased only by changing the initial conditions. Assuming that
now we have v̄12e large enough, fNL takes the form:

−6

5
fNL = −Vσσ∗

V∗
=

2

σ2
∗
. (10.3)

The value of fNL becomes smaller if we increase σ∗. Hence, it is impossible to increase both
v̄12e and fNL at the same time. One can also verify there is no optimal value of σ∗ where
fNL would be larger than order slow-roll, meaning that this potential cannot produce large
persistent non-Gaussianity.

Instead of looking directly at fNL, we could also have used the conclusion that for a mono-
mial potential Nσ ∝ σ2 has to be of order unity to have fNL large, which requires here to
decrease σ∗ and v̄12e. The solution is then to add an extra parameter in the potential.

10.2 How to build a monomial potential model that produces
fNL of order unity

The form of the potentials we are interested in is:

W (φ, σ) = α(κφ)n + C + β(κσ)m
(

+λ(κσ)m
′
)
, (10.4)

which is the one studied in section 8.4. There is an extra term with m′ > m inside the
parentheses to complete the model (i.e. make sure it has a minimum) and we will choose it
to be negligible until after the turn. Hence this does not change the different expressions
determined for a monomial potential.

A first step it to choose the value of m and n using figure 82 to be in the region where fNL

of order unity is possible. α can be put as an overall factor of the whole potential, hence it
does not count in the number of parameters. φ∗ is given by Nφ∗ ≈ 60 and this also determines
ε∗ because it only depends on φ∗. Once ε∗ is known, it is possible to determine σ∗, β and C
using the three constraints we have (fNL, ns and v̄12e) as follows.

We can start by choosing the value of fNL and (8.25) takes the following form for a monomial
potential:

−6

5
fNL = −Vσσ∗

κ2C
. (10.5)

Using (8.26) and the lower bound on the spectral index ns = 0.962, as this is the easiest way
to get a large fNL, we have:

Vσσ∗ = κ2U∗

(
ns − 1

2
+ ε∗

)
. (10.6)

Finally, we need v̄12e > 4. Using the slow-roll expression for v̄12e in (8.24), (8.27) and (8.41),
we get:

v̄12e = − V∗
W∗e1φ∗e1σ∗

= −
√

2ε∗
κC

Vσ∗
= −
√

2ε∗
m− 1

σ∗

κC

Vσσ∗
. (10.7)

A last step is to determine λ, this is done using the fact that the minimum of the potential has
to be zero. Then it is possible to verify if the last term is really negligible at horizon-crossing,
if not it is possible to increase m′ to decrease it because σ∗ is small compared to one. We will
now apply this to two different potentials with a turn of the first type.
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10.3 First type of turn

10.3.1 First example: n = 2 and m = 4

This first example corresponds to the case where the turn occurs early enough to have a
trajectory with the same direction before and after the turn, see the top right plot of figure 91
for an illustration of the field trajectory. The potential is:

W (φ, σ) = αφ2 + C + βσ4 + λσ6, (10.8)

with α = 1
2κ
−2, C = 4

27
β3

λ2
, β = −12.5, and λ = −4

3βκ
2. The initial conditions are φi = 16κ−1

and σi = 0.09κ−1 and, as usual, φ̇i and σ̇i are determined by the slow-roll approximation.
With this, it is possible to obtain an analytical estimate of the observables. First, we need to

compute φ∗ and σ∗, using the solutions of equations (8.44) and (8.54) determined for monomial
potentials. These solutions were computed assuming that φ∗ and σ∗ were the initial conditions,
one has just to replace them by φi and σi here. This quick computation gives:

φ∗ = 15.2κ−1 and σ∗ = 0.092κ−1. (10.9)

Using these values and the different expressions (10.5), (10.6) and (10.7), we obtain:

v̄12e = − 2

φ∗

3

σ∗

κC

12βσ2
∗

= 3.52, ns = 1− 4

φ2
∗
− 2

12βσ2
∗

κ2αφ2
∗

= 0.961, −6

5
fNL = −12βσ2

∗
κ2C

= 1.2.

(10.10)
In these calculations, there are different approximations. First we use the monomial expressions
to compute φ∗ and σ∗ (we refer the reader to section 8.4 for the details, but they require
the slow-roll approximation and a quasi single-field situation, at least until horizon-crossing).
Second, we use the limit of large v̄12e to compute the observables, the validity of this limit
is explained in detail in section 8.2. Hence, an error of order slow-roll (at horizon-crossing)
is expected compared to the exact numerical results, which can be larger here since v̄12e is a
little smaller than four. Figure 102 contains the same plots as shown for the double quadratic
potential except that we have removed the plot of ξ‖ and ξ⊥ which does not provide any
additional information, and added a plot of gint. The different analytical predictions in (10.10)
are reasonable estimations of the different parameters but the difference is larger than expected,
especially on the new plot concerning gint. This plot displays both the exact numerical g̃int and
its analytical prediction from (9.22) (more precisely, the analytical form of the approximated
solution, with the different parameters determined numerically), using the definition:

g̃int = − 2(v̄12)2

(1 + (v̄12)2)2 gint. (10.11)

As one can see, both curves have a similar form, but there is a difference of around 15%. The
reason is that the turn occurs late with ε ≈ 0.2 when it starts. This value is already too large
to have the slow-roll approximation working perfectly, but not enough for it to totally break
down. In fact, this problem is quite general with the monomial potential because the turn has
to occur late to get fNL of order unity, as shown in the section 8.4.

However, if we forget momentarily about the observational constraint on the spectral index,
only for one example to illustrate the validity of the analytical expressions, it is possible to

have the turn occurring earlier. The second set of values is: α = 1
2κ
−2, C = 4

27
β3

λ2
, β = −2000,

and λ = −40
3 βκ

2 with the initial conditions φi = 16κ−1 and σi = 0.01κ−1. This time, the
analytical predictions are:

φ∗ = 15.3κ−1 and σ∗ = 0.0106κ−1. (10.12)
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which leads to:

v̄12e = 23, ns = 0.914 and − 6

5
fNL = 1.62. (10.13)

Figure 103, which contains the same plots as figure 102 but for the new parameters, shows that
ε is of order 10−2 during the turn, which is in the domain of validity of the main hypothesis
ε � 1. During the turn, η⊥ is of order 10 at most, which shows that the slow-roll regime is
broken. As expected, analytical predictions are now a very good estimation. However, the
spectral index is 0.917, which is outside the observational bounds. This example is also used in
the previous section in figure 92 to illustrate that r.h.s. is several orders of magnitude smaller
than the left-hand side terms of (7.47).

10.3.2 Second example: Axion

The next example is the axion-quartic model originally introduced in [70] and discussed more
recently in [61]. The potential is:

W (φ, σ) =
1

4
gφ4 + Λ4

[
1− cos

(
2πσ

f

)]
, (10.14)

with g = 10−10, Λ4 =
(

25
2π

)2
gκ−4 and f = κ−1. The initial conditions are φi = 23.5κ−1 and

σi = f
2 − 10−3κ−1. Defining σ′ = f

2 − σ, we have σ′ � κ−1. This will stay true until the turn,
hence it is possible to perform an expansion of the potential in terms of this small parameter.

At first order, we have cos
(

2πσ
f

)
= − cos

(
2πσ′

f

)
= −1 + 1

2

(
2πσ′

f

)2
which substituted into the

potential gives:

W (φ, σ′) =
1

4
gφ4 + 2g

(
25

2π

)2

κ−4 − 1

2
g

(
25

f

)2

κ−4(σ′)2. (10.15)

This is a monomial potential with n = 4 and m = 2, hence in the region of parameters where
the spectral index constraints cannot be satisfied. This is verified by computing the analytical
predictions like for the previous example. The fields at horizon-crossing are:

φ∗ = 21.8κ−1 and σ′∗ = −1.1× 10−3κ−1. (10.16)

which leads to:

v̄12e = − 8κ

φ∗σ′∗

(
f

2π

)2

= −8.4, ns = 1− 16

φ2
∗
− 8

252

κ2f2φ4
∗

= 0.944 and − 6

5
fNL = 2π2.

(10.17)
This model gives fNL of order ten, however the spectral index is lower than the Planck con-
straints.

Figure 104 confirms these results. Again in this model the turn occurs very late and there
is a shift between the prediction and the exact result even if ε is still small enough during the
turn. Moreover, η‖ and η⊥ stay smaller than one during the turn, but χ, which is displayed on
the same plot, becomes large. This is another regime than the ones studied in section 9.2. This
has a direct impact on the Green’s functions because χ appears in (7.23) which explains the
difference between the slow-roll prediction for v̄12e and the exact value. However, one interesting
point is that the analytical form of gint stays valid. This case of large χ when other slow-roll
parameters are small is not common and is due here partially to the fact that Ṽσσ∗ is too large

to respect the Planck constraint (because as discussed in section 8.2, χ∗ = ε∗ + η
‖
∗ + Ṽσσ∗).
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Figure 102: The exact numerical solutions for the different interesting parameters (basis com-
ponents, slow-roll parameters, Green’s functions, the spectral index and fNL) during the turn
for the first example of a monomial potential (10.8) with n = 2 and m = 4. The last fig-
ure shows both the exact numerical solution for g̃int and its analytical approximation. The
horizontal purple dash-dot lines are the analytical predictions for v̄12e, ns and fNL.
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Figure 103: Same as figure 102 but for the second example of monomial potential (10.8) with
n = 2 and m = 4 (with the parameter values given just above (10.12))).
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Figure 104: Same as figure 102 but for the quartic-axion potential (10.14).
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10.4 Second type of turn

10.4.1 m = 2 and n = 2

Figure 82 shows that a turn of the first type respecting observational constraints is not possible
for a monomial potential with n = 2 and m = 2. However, if we do not keep the constraint
that the turn must start before the end of the slow-roll regime, this model can have a turn of
the second type. This example was published originally in [191] and is here adapted to be in
agreement with the latest Planck constraints. See the second line of plots in figure 91 for an
illustration of the field trajectory. The potential has the form:

W (φ, σ) = αφ2 + C + βσ2 + λσ4, (10.18)

with α = 20κ−2, C = β2

4λ , β = −9κ−2 and λ = 2. The initial conditions are φi = 18κ−1 and

σi = 0.01κ−1 with φ̇i and σ̇i determined by the slow-roll approximation. At horizon-crossing,
we have:

φ∗ = 14.9κ−1 and σ∗ = 0.011× 10−3κ−1. (10.19)

Substituted into (10.5), (10.6) and (10.7) this gives:

v̄12e = − 2κ

φ∗σ∗

C

2β
= 6.9, ns = 1− 4

φ2
∗

+
4β

κ2αφ2
∗

= 0.974 and − 6

5
fNL = − 2β

κ2C
= 1.8.

(10.20)
Figure 105 confirms that in this example the turn occurs after the field φ reaches the

minimum of its potential. The Green’s function v̄12e is larger than the slow-roll value, hence
fNL is a little smaller than expected. This is in agreement with the discussion of the second type
of turn in section 9.7. However, this does not have any impact on the spectral index because
the dependence on v̄12e disappears when it is larger than 4. Hence, this model is allowed by
the Planck constraints.

10.4.2 A non-monomial example

This last example is in the vein of the previous one in terms of the form of the field trajectory.
However, there are several supplementary terms to show the validity of some analytical results
beyond simple monomial potentials. The model has the following potential:

W (φ, σ) =
1

4
λ
(
φ4 + σ4 +m4 − 2m2φ2 − 2m2σ2

)
+ ν(m− φ)3 +W0, (10.21)

with λ = 1200, ν = 100κ−1, m = 2κ−1 and W0 = 1
4λm

4. The initial conditions are φi = 25κ−1

and σi = 0.05κ−1. We cannot use the monomial potential equations to determine φ∗ and σ∗,
however the slow-roll estimation of fNL does not require them:

−6

5
fNL =

4

κ2m2
= 1. (10.22)

Figure 106 shows a similar behaviour as for the previous example. Again fNL is smaller
than its slow-roll prediction. The reason is still the same, the period of large ε makes v̄12e larger
by a factor of order unity than in the slow-roll approximation and the direct consequence is
that fNL is reduced by the same factor.
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Figure 105: Same as figure 102 but for the monomial potential with n = 2 and m = 2 (10.18).
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Figure 106: Same as figure 105 but for the non-monomial potential (10.21) (without analytical
predictions for ns and v̄12e).



Chapter 11

Conclusion

In this thesis, we worked on the theoretical and observational aspects of primordial non-
Gaussianity of the bispectral type. It is an important observable from the point of view of
inflation because many models that are today compatible with the observations of the power
spectrum (amplitude and scale dependence) predict bispectra with different shapes and ampli-
tude. The Planck satellite has so far not detected any primordial non-Gaussianity but it has
tightened the constraints significantly. Hence it is necessary to better understand what regions
of inflation model space have been ruled out, as well as prepare for the next generation of ex-
periments. In this thesis, we have worked on the case of two-field inflation where the presence
of an isocurvature mode on super-horizon scales can cause the adiabatic mode to evolve, while
it would be frozen on these scales if there were only one field. One of the main consequences is
the presence of a bispectrum of the local type.

For the moment, the main constraints on primordial quantities come from the observations
of the CMB anisotropies. Estimating the amount of primordial non-Gaussianity from the data
is not an easy task as they have been contaminated by many effects. Some, like the intrinsic
bispectrum arising when taking into account second-order terms in the equations describing
the evolution of the primordial fluctuations after horizon re-entry before recombination, have
a small influence compared to the current constraints, but might be an issue later. Others,
due to the presence of many structures along the path of the CMB photons (extra-galactic
foregrounds, ISW-lensing), are strong enough to be detected but are also well understood. The
most non-Gaussian ones are the closest to us: the galactic foregrounds. Many techniques have
been developed to separate them from the rest of the sky observations in the microwave range.
We used temperature maps of several galactic foregrounds (dust, synchrotron, free-free, AME)
which are the results of one of these techniques (Commander).

There are different methods to determine the values of the bispectrum amplitude param-
eters fNL. Here we worked with the binned bispectrum estimator, a method well adapted for
relatively smooth bispectra. It has several advantages, among them is the fact that it can
compute explicitly the binned bispectrum of any data map. Then in principle, it is possible to
use the numerical binned bispectrum of a map as a theoretical template for which we want to
determine a parameter fNL in any other maps. This possibility was mentioned in the original
paper of the binned bispectrum estimator [43] and was indeed one of the motivations for devel-
oping it, but had until now never been worked out. A large part of the work was to implement
it explicitly in the binned bispectrum estimator code. Moreover, that was the basic idea of the
data analysis part of this thesis, where the galactic foregrounds played the role of numerical
templates we applied to the CMB maps. The first step of the procedure was to determine the
binned bispectra of the galactic foregrounds. We found that the dust, the free-free and the
anomalous microwave emissions have very squeezed bispectra (similar to the local shape, but
with an opposite sign). The small-scale fluctuations of the dust radiation are biggest in the
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large-scale dust clouds, so small-scale and large-scale fluctuations are correlated (and a similar
explanation is valid for the other foregrounds). The synchrotron map as provided is different,
as its bispectrum is more similar to the equilateral shape, but we were able to show that at
least a large part of this effect is due to a residual contamination by unresolved extra-galactic
point sources. At 143 GHz (the most important Planck frequency for CMB analysis), only the
dust really contaminates the CMB signal, the other foregrounds giving contributions orders of
magnitude smaller. An issue with the numerical templates we determined is that they also de-
pend on the mask applied to the foregrounds and contain the characteristics of the experiment
like the beam and the noise. We showed that the choice of the mask is very important because
the foregrounds are localized in the galactic plane like the largest part of the mask, so a small
change of mask could give a large difference of bispectrum. This means the same mask should
be used for determining the template as for the final analysis.

We then used these templates on different CMB maps (simulations and observational data).
We performed several tests to confirm the validity of this new usage of the binned bispectrum
estimator. These tests were based on Gaussian realizations of the CMB to which we added
noise simulations and a known amount of dust. We showed that both with an isotropic and
anisotropic noise, we managed to detect the expected amount of dust in our maps. However,
to do a joint analysis with the primordial and the dust shapes, the usual choice of bins, while
acceptable, can be improved. More bins are required at low ` to better discriminate between
the templates that peak in the squeezed configuration (local and dust especially). We also
discussed the effects of the (small) breakdown of the weak non-Gaussianity approximation that
occurs when we add the full dust map to the CMB simulations (so the expected amount of
dust in raw sky observations). The main consequence is that the real error bars become several
times larger than the Fisher forecasts. We then used the numerical templates on the cleaned
CMB SMICA map of the 2015 Planck release. As expected, we did not detect any residual
of the dust. The error bars for the dust and local shapes increase in a joint analysis with the
usual binning, again because of the choice of bins that is not optimal to differentiate them.
Finally, we applied the foreground templates to the raw sky map at 143 GHz and the binned
bispectrum estimator succeeded in detecting the dust in it (the intensities of other foregrounds
at 143 GHz being too small to detect even if they were present in the map).

While the data we analyzed consisted only of temperature maps in this thesis, the additions
to the binned bispectrum estimator code are also compatible with E-polarization. Moreover,
the emissions from several galactic foregrounds like the dust and the synchrotron is also po-
larized. Therefore, it would be interesting to perform a similar study on the polarization to
determine full templates (temperature + polarization) of the galactic foregrounds and to ana-
lyze jointly the CMB temperature and polarization anisotropies. Moreover, a new release from
Planck with a better understanding of the polarization systematics is planned in the coming
months (see [18] for recent results on the dust polarization). Other uses of this new ability
of the binned bispectrum estimator are also envisaged. Instead of determining the numerical
templates from observational data, it would be important to examine the simulations of the
galactic foregrounds that already exist. It could also become a test of the validity of the sim-
ulations to verify that they are consistent with the real foregrounds at the bispectral level.
Building analytical heuristic models of the foreground shapes from the numerical binned bis-
pectra would also be interesting for future analyses, including those using other estimators of
fNL.

In this thesis, we also discussed the levels of non-Gaussianity produced in two-field inflation
with a sum potential W (φ, σ) = U(φ) + V (σ) and standard kinetic terms. We looked both
at the case where the (strong) slow-roll approximation is valid throughout inflation (meaning
that all slow-roll parameters, even the perpendicular ones, are small), and at the case where
slow roll is broken during the turn of the field trajectory. For comparison we also examined



126 Chapter 11. Conclusion

the case of a product potential, but as was shown before, in that case one cannot get large
non-Gaussianity at all in the slow-roll approximation and with a vanishing isocurvature mode
at the end of inflation. An important assumption in our models is that we impose that the
isocurvature mode that is present during inflation (and whose interaction with the adiabatic
mode on super-Hubble scales generates the non-Gaussianity) has disappeared by the end of
inflation. In that case the super-Hubble adiabatic mode is constant after inflation and we
can extrapolate the results at the end of inflation directly to the time of recombination and
observations of the CMB without knowing any details about the evolution of the universe in
between. Without this assumption it would be much easier to create large non-Gaussianity,
simply by ending inflation in the middle of the turn, but the result at the end of inflation would
be meaningless from the point of view of CMB observations without a proper treatment of the
transition at the end of inflation and the consecutive period of (p)reheating.

We use the long-wavelength formalism for our computations of non-Gaussianity. In this
formalism [191], under the assumption mentioned above, any large (meaning order unity or
more, so not slow-roll suppressed) contribution to fNL can only come from an integral expres-
sion called gint. The original formulation of this expression contains an integral over Green’s
functions, which depend on two different times, making it hard to interpret the expression and
see which types of potentials will lead to large non-Gaussianity. In this thesis we have found
another expression for gint, as the solution (7.49) of a differential equation (7.47), which can
be written as the sum of a homogeneous and a particular solution. This expression is very
useful, since for the homogeneous solution we have an exact analytic expression that does not
require any slow-roll approximation, while for the particular solution we have seen (within the
context of the class of models studied) that we can either compute it explicitly, or show that it
is negligible. We also derived some relations of proportionality between the different Green’s
functions which are useful in the computations.

We have highlighted the tension between a large fNL of order unity or more and the current
observational bounds on the spectral index ns, both being linked to the second derivative of
the potential Vσσ, where σ is the sub-dominant field at horizon crossing and until the turn
of the field trajectory. We evaluated these tensions within the slow-roll approximation for
monomial potentials, where it would otherwise be easy, with some fine-tuning, to reach the
requirements for a large fNL. We have shown that a large part of the parameter space for fNL

of order unity is simply forbidden because of the constraints on ns. We have found that these
constraints are very sensitive to the value of ns: if the lower bound were only smaller by 0.02
(ns ≈ 0.94), the situation would be very different and most of the parameter space would be
allowed. This analysis of the monomial potential also revealed that the duration of inflation
after horizon-crossing is important: a value around fifty e-folds is much more constraining than
the usual sixty e-folds. This also indicates that in the rare working models, the turn of the
field trajectory occurs near the end of inflation. This raises several issues, the main one being
that at that time, slow-roll parameters generally stop to be small compared to one and the
slow-roll approximation does not work anymore. Moreover, if the turn occurs too close to the
end of inflation, the isocurvature mode may not have time to vanish. By studying turns where
the slow-roll parameter ε is still small compared to one we avoid this last problem: the time ε
needs to increase to one and end inflation can give enough time for the isocurvature mode to
vanish.

The natural continuation of this study was to consider what would happen if we abandoned
the slow-roll approximation during the turn and allowed the slow-roll parameters η‖ and η⊥

to become large there. On the other hand, we still assume that ε remains small during the
turn, for several reasons: because of the issue regarding the vanishing of the isocurvature mode
mentioned above, because we saw numerically in the models we looked at that this was a good
approximation, and because this approximation allowed us to derive some very interesting
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analytical results (a potential period of large ε right before the turn was taken into account
though). We identified two different types of models where such a turn can happen, shown in
figure 91. Substituting the slow-roll expression for ġint into (7.47), we were able to show (using
simple comparisons of the different terms of the differential equation) that it is also a very
good approximation even if the slow-roll parameters η‖ and η⊥ become large during the turn.
The main idea is the one mentioned above: as long as the slow-roll approximation is valid, we
can compute the particular solution explicitly, while when it is broken, we can show that the
particular solution becomes negligible, even though we cannot compute an analytic expression
for it in that case (the fact that ε remains small is a crucial ingredient in this proof). For the
homogeneous solution we have an analytic expression that is valid everywhere. We were also
able to show that adding the slow-roll particular solution to the homogeneous solution in the
regions where the exact particular solution is negligible does not introduce a significant error,
which means that we do not have to perform an explicit matching of the solutions at each
transition between a slow-roll and a non-slow-roll region.

This led us to the conclusion that, within the context of the models studied and the as-
sumptions mentioned above, the slow-roll expression for fNL is a very good approximation for
the exact value, even in models where η‖ and η⊥ become large during the turn of the field
trajectory and break slow roll. Hence the implications of this expression for having large non-
Gaussianity, discussed in the context of the slow-roll approximation, mostly apply to this case
as well. In particular, the constraints due to the spectral index ns remain very important. A
two-field sum potential with large fNL requires a lot of fine-tuning (and we showed explicitly
in the section with numerical examples how to construct such a model). Reducing the error
bars on the measurements of the spectral index could even shrink the parameter region of these
models where fNL is of order unity more than reducing the error bars on fNL itself.

A large part of the work presented in this thesis is devoted to the treatment of sum poten-
tials, but it would be interesting to examine other classes of potentials. We investigated the
question numerically for other two-field potentials (keeping standard kinetic terms). We ob-
served that in fact it was also difficult to obtain large non-Gaussianity with more complicated
models with the important assumption of a vanishing isocurvature mode at the end of inflation.
More importantly, the few examples we got obeyed the conditions of large non-Gaussianity for
sum potentials. In other words, the few examples we had were always easy to transform into
sum potentials by eliminating the interaction terms, which gave similar (but not exactly the
same) non-Gaussianity predictions. However, we do not yet have enough evidence to state that
this is a general result. Moreover, the question would also have to be studied analytically, using
(7.47) and (7.49) which are general results. The situation is different if inflation ends during
a turn of the field trajectory or soon after because the isocurvature mode does not have the
time to vanish and large non-Gaussianity is easy to obtain. However, in that case the main
contribution does not come from the integral term gint but from the term giso defined in (7.45).
The extrapolation of the inflationary prediction to the CMB anisotropies becomes a lot more
complicated because the adiabatic mode could continue to evolve on super-horizon scales after
inflation. The proper treatment of perturbations during (p)reheating, a complicated topic from
the theoretical and numerical points of view, then becomes necessary.

We conclude this thesis by a brief overview of the future cosmological observations which will
improve our knowledge about the primordial universe. The measurements of the temperature
anisotropies of the CMB are so precise since Planck that they are close to the cosmic variance,
the limit due to the fact we only have one realization of the CMB to observe. However,
there is still a lot of information to recover from the CMB by observing more precisely its
polarization. There is still room for improvements of the measurements of E-polarization, but
the main focus of CMB surveys in the near future is the detection of primordial B-modes.
Observing the tensor modes of the primordial fluctuations, instead of having only an upper
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bound, would give us the energy scale of inflation. The current limit (where r < O(10−1))
is already constraining for classic single-field models. But many inflationary models, like the
two-field models with large non-Gaussianity we discussed in this thesis, predict a tensor-to-
scalar ratio several orders of magnitude smaller. Ground experiments like BICEP and Keck
Array are already underway and improving their accuracy regularly (see [12] for the current
best constraints), and new results are expected in the coming months. For the future ground
experiments, we can cite the ambitious CMB-S4 [1]. Satellite missions are also envisaged, we
mentioned earlier LiteBIRD [145] and CORE [40], this last one being the successor of Planck.
A detection of r down to a value of 0.001 is realistic for the next generation experiments.
An experiment like CORE would also reduce significantly the error bars on the different fNL

parameters, at least by a factor 2 compared to Planck. Moreover, other sources of information
than the CMB anisotropies are now conceivable. Large-scale structure surveys like Euclid [120]
will help to answer major questions of the field of cosmology like the nature of dark energy.
They can also be constraining for primordial non-Gaussianity despite all the non-linear effects
arising during structure formation. It has been shown that reaching the important milestone
of ∆f local

NL = 1 is realistic (see [199] and references therein). This same amplitude for the local
primordial bispectrum can also be detected using precise measurements of the angular power
spectrum of the CIB and a better mapping of the galactic dust [188]. The era of precision
cosmology that started fifteen years ago is still only in its initial stages. The whole field of
cosmology can expect major results and a better understanding of the evolution of our universe
in the coming years. This is especially the case for the early universe and inflation, where our
increasing knowledge of the primordial perturbations and their non-Gaussianity is more and
more constraining, leading to many theoretical challenges.
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Appendix A

Weights of bispectral shapes

In this appendix, we give another representation of the different bispectra discussed in section
4.2 (primordial shapes, ISW-lensing and extra-galactic foregrounds) and chapter 5 (galactic
foregrounds) well-suited to understand the correlation coefficients given in tables 41, 51 and
52.

The weight of a single multipole configuration (`1, `2, `3) of a bispectral shape B`1`2`3 is
defined by [43]

w`1`2`3 =
1

〈B,B〉
(B`1`2`3)2

V`1`2`3
. (A.1)

It is the inverse of the variance of the ratio of the observed and theoretical bispectra divided
by 〈B,B〉 which is the denominator of the estimator for fNL and normalizes the sum of the
weights to one. In other words,

f̂NL =
∑
`1`2`3

w`1`2`3
Bobs
`1`2`3

B`1`2`3
, (A.2)

where Bobs/B can be viewed as an fNL estimator based on just a single `-triplet. These
equations are the same for bin-triplets (i1, i2, i3). Figures A1, A2, and A3 show the weights
of the different theoretical and numerical shapes discussed in this thesis at both high and low
resolution, with the usual choice of 57 bins. Instead of using a few slices of `3 like in chapter 5,
we summed over `3. It has the advantage that now the whole bispectrum is used in one figure,
but of course we lose the information about the variation of the bispectrum as a function of `3.
A larger weight means that the region of multipole space is more important for the template.
Conversely, a large observed non-Gaussianity in that region of multipole space means that it
is more likely to be that particular shape.

In this kind of plot, shapes that peak in squeezed configurations will have a colored band/line
at the bottom of the figure (low `1). As expected it is present for the different foregrounds for
very low `1 (< O(20)), including synchrotron (which was not visible in figure 58). As expected,
the characteristic line of a squeezed bispectrum can be seen for the local and the ISW-lensing
shapes, but also for the orthogonal shape (which explains why it is somewhat correlated to the
foregrounds).

Shapes that peak in equilateral configurations have a large weight along the diagonal black
line of these plots, when the three `’s are of the same order. The primordial equilateral shape is
the strongest for three low `’s, while the point sources and the CIB are more non-Gaussian at
higher multipoles. It is easy to see the correlation between the point sources and the synchrotron
bispectra which peak when the three `’s are over 150. An additional remark is necessary
about the orthogonal shape. Indeed by definition it is orthogonal to the equilateral shape
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(uncorrelated), which is not visible in these figures because they both have similar acoustic
peaks. It is an effect of the sum over `3 which hides the differences of these bispectra.
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Figure A1: Weights of the bispectral shapes discussed in section 4.2 and chapter 5 at high
resolution. Note that the colour scale is logarithmic.
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Figure A2: Weights of the bispectral shapes discussed in section 4.2 and chapter 5 at low
resolution. Note the difference on the axes with the previous figure. The colour scale is the
same, but the weights are normalized to one here over a much reduced region of multipole
space with ` < 300.
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Figure A3: Weights of the foreground bispectral shapes discussed in this thesis at low resolution.



Appendix B

Long-wavelength formalism

In this appendix, we give the expressions of several quantities used in the derivation of second-
order perturbations in the long-wavelength formalism (7.15). First, we need the first-order

perturbation of the matrix A. It is given by A
(1)
ab = Ā

(0)
abcv

(1)
c (t,x) where the matrix elements

of Āabc are zero except [164]

Ā121 = 2εη⊥ − 4η‖η⊥ + 2ξ⊥,

Ā122 =− 6χ− 2εη‖ − 2(η‖)2 − 2(η⊥)2,

Ā123 =− 6− 2η‖,

Ā321 =− 12εη‖ − 12(η⊥)2 − 6εχ− 8ε3 − 20ε2η‖ − 4ε(η‖)2 − 12ε(η⊥)2

+ 16η‖(η⊥)2 − 6εξ‖ − 12η⊥ξ⊥ + 3(W̃111 − W̃221),

Ā322 =− 24εη⊥ − 12η‖η⊥ + 24η⊥χ− 12ε2η⊥ + 8(η‖)2η⊥ + 8(η⊥)3

− 8εξ⊥ − 4η‖ξ⊥ + 3(W̃211 − W̃222),

Ā323 = 12η⊥ − 4εη⊥ + 8η‖η⊥ − 4ξ⊥,

Ā331 =− 2ε2 − 4εη‖ + 2(η‖)2 − 2(η⊥)2 − 2ξ‖,

Ā332 =− 4εη⊥ − 2ξ⊥,

Ā333 =− 2η⊥.

(B.1)

We also need the second-order source term b(2) which was computed in [191] and is con-
tructed similarly to the first-order term (7.19)

b
(2)
ia =

∫
d3k

(2π)3/2

∫
d3k′

(2π)3/2
Ẇ (max(k′, k))

× [Labc(t)X
(1)
bm(k′, t)X(1)

cn (k, t)â†m(k′)â†n(k)i(k′i + ki)e
i(k′+k).x

+Nabc(t)X
(1)
bm(k′, t)X(1)

cn (k, t)â†m(k′)â†n(k)ikie
i(k′+k).x + c.c.],

(B.2)

where the matrices Labc and Nabc are determined at horizon crossing with a slow-roll approxi-
mation. Their only non-zero elements obey the relations:

L111∗ = ε∗ + η
‖
∗, L122∗ = −

(
ε∗ + η

‖
∗ − χ∗

)
,

L211∗ = η⊥∗ , L222∗ = η⊥∗ ,

L112∗ + L121∗ = 2η⊥∗ , N112∗ +N121∗ = −2η⊥∗ ,

L212∗ + L221∗ = 2
(
ε∗ + η

‖
∗ − χ∗

)
, N212∗ +N221∗ = χ∗.

(B.3)
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Appendix C

Derivation of the gint equation

In this appendix we present the derivation of the differential equation (7.47) for ġint. A direct
computation of the first, second, and third derivatives of the definition of gint in (7.45) with
respect to t using (7.12) and (7.20) gives:

ġint =− 2(η⊥)2(v̄22)2 − (ε+ η‖)v̄22v̄32 − (v̄32)2 + 2η⊥
∫ t

t∗

dt′ v̄22G23

(
Ξv̄22 + 9η⊥v̄32

)
,

g̈int =2
(
ξ⊥ + η⊥(ε− 2η‖)

)∫ t

t∗

dt′ v̄22G23

(
Ξv̄22 + 9η⊥v̄32

)
+ 2η⊥

∫ t

t∗

dt′ v̄22G33

(
Ξv̄22 + 9η⊥v̄32

)
+ (v̄22)2

(
3(ε+ η‖)χ+ 2ε3 + 6ε2η‖ + 4ε(η‖)2 + 12η‖(η⊥)2 + (ε+ η‖)ξ‖ − 4η⊥ξ⊥

)
+ v̄22v̄32

(
3ε+ 3η‖ + 6χ+ 3ε2 + 8εη‖ + 3(η‖)2 + 3(η⊥)2 + ξ‖

)
+ (v̄32)2

(
6 + ε+ 3η‖

)
,

...
g int =− (3η⊥ − εη⊥ + 6η‖η⊥ − 2ξ⊥)

∫ t

t∗

dt′ v̄22G33

(
Ξv̄22 + 9η⊥v̄32

)
+
(

9εη⊥ + 6η‖η⊥ − 6η⊥χ− 3ξ⊥ − 3W̃211 + ε2η⊥ − 8εη‖η⊥ + 6(η‖)2η⊥ − 6(η⊥)3

− 4η⊥ξ‖ + (3ε− 2η‖)ξ⊥
)∫ t

t∗

dt′ v̄22G23

(
Ξv̄22 + 9η⊥v̄32

))
+ (v̄22)2

(
32η‖η⊥ξ⊥ − 60(η‖)2(η⊥)2 − 36η‖(η⊥)2 − 4(η‖)2ξ‖ − 3η‖ξ‖ − 12(η‖)2χ− 9η‖χ

+ 6(η⊥)2ξ‖ + 12η⊥ξ⊥ + 6(η⊥)2χ+ 12(η⊥)4 − 6ξ‖χ− 4(ξ⊥)2 − 18χ2 − 3η‖W̃111 − 3εW̃111

+ 9η⊥W̃211 + 3η‖W̃221 + 3εW̃221 − 3η⊥W̃222 + η‖ξ‖ε− 33η‖χε+ 14η‖ε3 − 4(η‖)2ε2 − 6η‖ε2

− 12(η‖)3ε− 8η⊥ξ⊥ε− 12(η⊥)2ε2 − 36(η⊥)2ε+ 5ξ‖ε2 − 3ξ‖ε− 9χε2 − 9χε+ 6ε4 − 6ε3
)

+ v̄22v̄32

(
−12η‖(η⊥)2 − 24η‖χ− 12(η‖)3 − 21(η‖)2 − 9η‖ + 4η⊥ξ⊥ − 15(η⊥)2 − 9ξ‖ − 54χ

− 3W̃111 + 6W̃221 + 14η‖ε2 − 21(η‖)2ε− 57η‖ε+ 3(η⊥)2ε+ 9ξ‖ε+ 6χε+ 9ε3 − 30ε2 − 9ε
)

+ (v̄32)2
(
−12(η‖)2 − 39η‖ + 6(η⊥)2 + 4ξ‖ + 6χ+ 3η‖ε+ 3ε2 − 15ε− 36

)
.

(C.1)
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137 Appendix C. Derivation of the gint equation

Taking the specific combination of the three expressions above that eliminates all the terms
with integrals then gives the differential equation (7.47), with K22,K23,K33 given by

K22 =− 18(η⊥)2χ2 + 2(η‖)2(η⊥)2ξ‖ − 6η‖η⊥ξ⊥χ+ 6(η‖)2(η⊥)2χ− 6(η⊥)2χξ‖ − 2(η⊥)4ξ‖

− 6(η⊥)4χ− 18εη‖(η⊥)2χ+ 12ε2η‖(η⊥)2 + 12ε(η‖)2(η⊥)2 − 6εη⊥ξ⊥χ− 12ε2(η⊥)2χ

− 12ε(η⊥)4 − 3η‖(η⊥)2W̃111 − 3ε(η⊥)2W̃111 + 3(η⊥)3W̃211 + 3η‖(η⊥)2W̃221

+ 3ε(η⊥)2W̃221 − 3(η⊥)3W̃222 − 2η‖η⊥ξ‖ξ⊥ + 6εη‖(η⊥)2ξ‖ − 12ε2η‖η⊥ξ⊥

+ 20ε3η‖(η⊥)2 + 28ε2(η‖)2(η⊥)2 − 12εη‖(η⊥)4 + 12ε(η‖)3(η⊥)2 − 2εη⊥ξ‖ξ⊥

− 8ε(η‖)2η⊥ξ⊥ + 4ε2(η⊥)2ξ‖ − 4ε3η⊥ξ⊥ − 4ε(η⊥)3ξ⊥ + 4ε4(η⊥)2 − 12ε2(η⊥)4,

K23 =− 36(η⊥)2χ− 6εη‖(η⊥)2 − 12ε2(η⊥)2 − 6(η⊥)4 − 6ε(η⊥)2χ+ 6(η‖)2(η⊥)2 − 6η‖η⊥ξ⊥

+ 6η‖(η⊥)2χ− 6(η⊥)2ξ‖ − 6εη⊥ξ⊥ − 12η⊥χξ⊥ − 3(η⊥)2W̃111 − 3η‖η⊥W̃211

− 3η⊥εW̃211 + 6(η⊥)2W̃221 − 2η⊥ξ‖ξ⊥ − 2η‖(ξ⊥)2 + 2(η‖)2η⊥ξ⊥ + 2η‖(η⊥)2ξ‖

− 2(η⊥)3ξ⊥ − 8εη‖η⊥ξ⊥ + 18ε(η‖)2(η⊥)2 + 24ε2η‖(η⊥)2 + 4ε(η⊥)2ξ‖ − 6ε2η⊥ξ⊥

− 6(η⊥)4ε+ 6ε3(η⊥)2 − 2ε(ξ⊥)2,

K33 =− 18(η⊥)2 − 6ε(η⊥)2 + 6η‖(η⊥)2 − 12η⊥ξ⊥ − 3η⊥W̃211 + 6εη‖(η⊥)2 + 2ε2(η⊥)2

+ 2η‖η⊥ξ⊥ − 2εη⊥ξ⊥ − 2(ξ⊥)2.

(C.2)

To obtain (8.6), the slow-roll approximation of (7.47), several steps have to be followed.
First, on the right-hand side of the equation, one can use (8.3) to eliminate v̄32. Then one sees
that the lowest-order terms (the first of each K in (C.2)) cancel each other. The remaining
terms are one or two orders higher than the ones which cancel, so that in the leading-order
slow-roll aproximation we only have to keep those one order higher. On the left-hand side of
the equation, we also use the fact that a time derivative adds an order in slow roll, so that
...
g int is one order higher in slow-rol than g̈int. Hence, we see that the

...
g int term disappears

completely from the equation. Finally, it is possible to substitute the second line of (8.1) into
the two sides of (7.47) to eliminate W̃111 and W̃211, and after simplifying the common factor
3η⊥ the result is given in (8.6).



Appendix D

Influence of the choice of the value
of fNL on the start of a turn of the
second type

In the second type of turn, we supposed that at horizon-crossing the situation was so close to
single-field inflation that it is still quasi single-field at the time when ε becomes large and the
slow-roll approximation breaks down for the first time. That time would have been the end
of inflation in a purely single-field situation, the only difference being that here the potential
goes to W = V∗ instead of W = 0. As we have seen, ε becomes small again soon after, but the
remaining question is how much time is needed to break the quasi single-field situation and
have the turn start? In other words, how much time is there typically between the moment
when ε becomes small again and the start of the turn? We will see that is in particular related
to the value of fNL.

First, for this argument we do not need to know the potential U as it is already supposed
to be almost zero because φ is near the minimum. For σ, we will keep the simple monomial
potential V (8.38) because, as already discussed, it is quite general when seen as an expansion in
terms of σ around its local extremum. As discussed, φ is near the minimum of its potential while
σ has not evolved much since horizon-crossing, hence W is simply C. Moreover, ε decreases
again just before the turn, meaning that the slow-roll regime is back (see figure 91), with only
one exception: η‖ can be large (order unity or more). However, this concerns only the field φ
and the only possible effect on σ is through ε which is small. Then, the field equation for σ is:

dσ

σm−1
= −mβ

C
dt. (D.1)

For m = 2, we have:

σ = σ1 exp

[
−2β

C
(t− t1)

]
, ε ≈ 1

2
σ̇2 = 2

(
σ1β

C

)2

exp

[
−4β

C
(t− t1)

]
, (D.2)

where t1 is the time when ε has become small compared to one again. The factor −2β
C in the

exponential is in fact −6
5fNL in slow-roll (8.25). As we supposed that it is of the same order

as the real value of fNL, it is of order unity and positive because of the form of the potential.
The parameter ε increases exponentially and unless the initial value σ∗ is ridiculously small
compared to one, a very small number of e-folds after t1 will be needed to reach ε = 1, which
is the end of inflation. However, in general the slow-roll regime will be broken again before
that time. But here we are interested in the time when the turn starts, that is to say when
φ̇ and σ̇ are of the same order. As 1

2 φ̇
2 � 1 (because ε � 1 and φ dominates at t1), this will
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occur before the end of inflation when ε = 1. Hence, this period of quasi single-field inflation
between t1 and the start of the turn will only last a very few e-folds at most, because fNL is of
order unity.

For m 6= 2, the solution is

σ = σ1

[
1− (2−m)mβ

Cσ2−m
1

(t− t1)

] 1
2−m

. (D.3)

Then, we obtain:

ε =
1

2

(
mβ

C

)2

σ2m−2
1

[
1− (2−m)mβ

Cσ2−m
1

(t− t1)

] 2m−2
2−m

. (D.4)

When m > 2 and m − 2 not small compared to 1, the end of inflation will be reached when
(2−m)mβ

Cσ2−m
1

(t− t1) ≈ 1 which implies that

te − t1 =
Cσ2−m

1

(2−m)mβ
=

(
Vσσ∗
V∗

)−1(σ1

σ∗

)2−m (m− 1)

(m− 2)
. (D.5)

The first factor is the inverse of −6
5fNL in slow-roll, hence this is of order unity. The two ratios

σ1/σ∗ and (m− 1)/(m− 2) are also of order unity. Hence, te − t1 is small and is of order one.
When m is close to 2, we do an expansion at first order using the small parameter m − 2 to
obtain:

ε =
1

2

(
mβ

C

)2

σ2m−2
1 exp

[
−2

m(m− 1)βσm−2

C

(
σ1

σ∗

)m−2

(t− t1)

]

=
1

2

(
mβ

C

)2

σ2m−2
1 exp

[
−2

(
Vσσ∗
V∗

)(
σ1

σ∗

)m−2

(t− t1)

]
.

(D.6)

This gives back the formula for the m = 2 case. Again, we can see the factor −Vσσ∗
V∗

which is

the slow-roll expression for −6
5fNL, while the whole expression in the exponential is positive

because of the sign of β. It is of order one, for the same reason as in the other cases. Hence,
in a matter of a few e-folds ε is large enough to say that σ̇ is at least of the same order as φ̇
and that the turn has started.

A last important remark is that if fNL is too large (more than order unity), inflation will end
even faster. One has to verify that the turn has enough time to finish so that the isocurvature
mode can vanish before the end of inflation.
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Résumé en français

Contexte général

Lors du dernier siècle, de multiples observations ainsi que de nombreux travaux théoriques ont
permis de construire et d’affiner le modèle standard de la cosmologie qui décrit l’histoire de
notre univers. Dans l’univers primordial, il y a une période d’expansion rapide et accélérée
appelée inflation [179, 96, 132]. Elle résout plusieurs problèmes importants de la théorie du Big
Bang chaud (par exemple les problèmes de l’horizon et de la platitude). De façon encore plus
remarquable, l’inflation explique d’où viennent les perturbations cosmologiques primordiales
qui sont à l’origine des structures à grande échelle présentes dans l’univers observable actuel.

Il existe une fenêtre observationnelle presque directe sur ces petites fluctuations primor-
diales : les anisotropies de température et de polarisation du fond diffus cosmologique (CMB).
Ce rayonnement électromagnétique a été émis lorsque le plasma primordial est devenu trans-
parent, environ 380000 ans après le Big Bang. De nombreuses missions ont observé le ciel dans
le domaine des micro-ondes et les résultats les plus récents proviennent de la mission Planck
[13, 15]. Comme ses prédécesseurs, Planck n’a trouvé aucun désaccord avec les prédictions
basiques de l’inflation : la distribution des perturbations primordiales est cohérente avec la
loi gaussienne et est presque (mais pas exactement) invariante d’échelle. De plus, le satellite
Planck a considérablement amélioré les contraintes sur tout écart potentiel par rapport à une
distribution gaussienne (i.e. les non-gaussianités) [14].

Lors de la détermination des paramètres cosmologiques d’origine primordiale à l’aide de me-
sures précises du CMB, l’un des principaux problèmes est que plusieurs avant-plans d’origine
galactique (comme la poussière interstellaire) ou extra-galactique (par exemple les sources ponc-
tuelles) émettent également dans le domaine des micro-ondes. Cela a nécessité le développement
de nombreuses techniques (voir [8, 9, 9, 16] et les références qui s’y trouvent) pour nettoyer les
données observationnelles de ces différentes sources de contamination.

Si le CMB était gaussien, toutes les informations seraient contenues dans le spectre de puis-
sance, qui est lié à la fonction de corrélation à deux points des fluctuations de température
(ou de polarisation) du CMB. Le spectre de puissance est paramétrisé par deux observables
importantes du point de vue de l’inflation : son amplitude As et l’indice spectral ns qui décrit sa
pente, c’est-à-dire l’écart par rapport à l’invariance d’échelle exacte. Les non-gaussianités pri-
mordiales sont généralement décrites par les paramètres d’amplitude fNL d’un certain nombre
de formes bispectrales spécifiques qui sont produites dans des classes génériques de modèles
d’inflation. Le bispectre est lié à la fonction de corrélation à trois points des anisotropies du
CMB. Il est connu pour être inobservablement petit [141] pour le modèle d’inflation le plus
simple : l’inflation à un champ à roulement lent. Toutefois, ce résultat n’est pas général, ce qui
signifie que les observations actuelles peuvent en principe être utilisées pour contraindre des
modèles d’inflation plus complexes. Une extension populaire de l’inflation qui peut produire des
non-gaussianités est l’inflation à plusieurs champs, où l’expansion est due à plusieurs champs
scalaires.
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Objectifs de la thèse et plan du manuscrit

Dans cette thèse, le sujet des non-gaussianités primordiales est étudié de deux points de vue
différents. Le premier est l’estimation des non-gaussianités bispectrales dans les données d’ob-
servation des anisotropies du CMB (Planck). Il s’agit de la suite des travaux sur l’estimateur du
bispectre binné [43, 42], utilisé pour l’analyse officielle Planck [11, 14]. Nous sommes intéressés
par l’étude de la contamination du signal primordial due à plusieurs avant-plans galactiques
(principalement la poussière) et à la détermination (numérique) de modèles pour leurs bis-
pectres. Même si le bispectre n’est pas idéal pour décrire les non-gaussianités des avant-plans
galactiques parce qu’ils sont très anisotropes (il vaudrait mieux travailler dans l’espace des
pixels plutôt que dans l’espace harmonique), c’est exactement ce dont nous avons besoin pour
comprendre leur impact sur la détermination des formes primordiales. L’objectif principal est
de vérifier si il était possible de détecter ces avant-plans dans les observations de ciel brut ou
certains résidus de ceux-ci sur des cartes nettoyées du CMB.

Le deuxième travail concerne l’inflation à plusieurs champs, où des non-gaussianités de
forme locale peuvent être produites sur des échelles super-horizon. Son objectif est triple. Le
premier est la suite du travail sur le formalisme long-wavelength (grande longueur d’onde)
[163, 162, 164, 191, 192, 189], utilisé pour calculer le paramètre non-gaussien fNL. Nous en
déduisons une nouvelle formulation de l’expression de fNL et discutons de ses conséquences
pour certaines classes de potentiels. Puisque Planck a exclu la possibilité de grandes non-
gaussianités locales (d’ordre 10), le lecteur pourrait se demander quel est l’intérêt de chercher
des modèles à grandes non-gaussianités. Cependant, il est très important de comprendre si
Planck a effectivement exclu des parties significatives de l’espace des modèles d’inflation à
plusieurs champs, ou si ces modèles prédisent en général de faibles non-gaussianités. De plus,
un fNL d’ordre 1, que nous considérerons comme grand, n’a pas encore été exclu par Planck
mais pourrait être observable par la prochaine génération d’expériences.

Le deuxième objectif est de comprendre si il est possible d’avoir des non-gaussianités im-
portantes tout en restant dans les limites de l’approximation de roulement lent. Nous avons
également pris en compte les contraintes de Planck sur les autres observables de l’inflation, en
particulier ns. Et il s’avère qu’il est très difficile de satisfaire les contraintes observationnelles
sur ns tout en ayant un grand fNL et en restant dans l’approximation de roulement lent. Dans
le cas d’une somme de deux potentiels monomiaux et d’une constante, nous calculons explicite-
ment la région de l’espace de paramètres (en termes de puissance des deux potentiels) où cela
est possible. Notez que nous supposons partout que le mode isocourbure a disparu à la fin de
l’inflation. Sinon, il serait facile d’obtenir des non-gaussianités importantes en mettant la fin
de l’inflation au milieu d’un virage de la trajectoire des champs, mais nous pensons que dans
ce cas les résultats à la fin de l’inflation n’auraient aucun sens, puisqu’ils ne pourraient pas être
extrapolés au moment de la recombinaison et de l’émission du CMB sans traiter correctement
la fin de l’inflation et la période consécutive de (p)réchauffement.

Enfin, le troisième objectif est de comprendre l’observation numérique, à première vue très
surprenante, que même dans le cas où l’approximation de roulement lent n’est plus valide
pendant le virage de la trajectoire des champs, l’expression analytique issue du roulement
lent pour fNL est souvent encore une très bonne approximation du résultat final exact. Nous
avons pu le comprendre en utilisant la nouvelle formulation mentionnée ci-dessus. Dans cette
formulation, fNL est donné par une équation différentielle et la solution peut être écrite comme
la somme d’une solution homogène et d’une solution particulière. La solution homogène peut
être donnée analytiquement sous une forme exacte (sans avoir besoin de l’approximation de
roulement lent), alors que la solution particulière est négligeable exactement dans les régions
où le roulement lent ne fonctionne pas et où elle ne peut pas être calculée analytiquement.

Ce manuscrit de thèse est divisée en trois parties principales. La première partie présente
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les concepts cosmologiques nécessaires à cette thèse. Dans le chapitre 2, nous passons en revue
le modèle standard de la cosmologie, en discutant de l’histoire thermique de notre univers dans
le contexte de la théorie du Big Bang. Les motivations historiques pour une période d’inflation
dans l’univers primordial sont discutées et enfin les équations de base décrivant l’inflation
sont données. Dans le chapitre 3, de petites fluctuations sont ajoutées à ce fond homogène.
Nous rappelons quelques concepts statistiques de base et nous les appliquons à la distribution
gaussienne des anisotropies du CMB (valide au premier ordre) décomposées en harmoniques
sphériques. Nous rappelons ensuite les principaux résultats de la théorie des perturbations de
premier ordre appliquée à l’inflation et nous les relions aux observations du CMB.

La deuxième partie se concentre sur l’estimation des non-gaussianités bispectrales à l’aide
des données observationnelles de Planck. Le chapitre 4 est une introduction au sujet. Les
quantités importantes comme le bispectre y sont définies. La dérivation de la densité de proba-
bilité faiblement non-gaussienne est discutée à l’aide de l’expansion d’Edgeworth. La méthode
de l’estimateur du bispectre binné est également examinée. Dans les chapitres 5 et 6, nos
résultats d’analyses des données de Planck (2015) à l’aide de l’estimateur du bispectre binné
sont présentés. Dans le chapitre 5, plusieurs avant-plans galactiques sont étudiés au niveau
bispectral. Les nouveaux modèles déterminés à partir de ces avant-plans sont ensuite appliqués
à plusieurs cartes du CMB (simulations gaussiennes et données réelles) dans le chapitre 6.

La troisième partie de cette thèse concerne la génération de non-gaussianités dans l’in-
flation à deux champs. Dans le chapitre 7 nous définissons les paramètres de roulement lent
et d’autres grandeurs utilisées dans le reste de la thèse. Nous rappellons aussi les principales
étapes du formalisme long-wavelength, en particulier les expressions des différentes observables.
C’est également dans ce chapitre que nous dérivons la nouvelle formulation de fNL mentionnée
précédemment. Dans le chapitre 8, nous traitons les résultats dans le cas du roulement lent
qui sont mentionnés ci-dessus dans le deuxième objectif. Nous avons utilisé différents niveaux
d’approximation. Tout d’abord, nous travaillons dans le cadre de l’approximation de roulement
lent. Nous ajoutons ensuite l’hypothèse que le potentiel est séparable en deux sommes pour
résoudre les équations de fonction de Green et obtenir des expressions simples pour les obser-
vables. Ils sont ensuite appliqués à la classe spécifique des potentiels monomiaux, où les effets
des contraintes observationnelles sur l’indice spectral sur la région de l’espace de paramètres
où fNL est grand sont calculés. Dans le chapitre 9, nous conservons l’hypothèse du potentiel
séparable en somme pour calculer fNL au-delà de l’approximation de roulement lent. Deux
types génériques et différents de trajectoires des champs avec un virage sont discutés. Nous
montrons qu’à la fin l’expression de roulement lent de la section précédente donne également
une très bonne approximation du résultat exact pour fNL dans ce cas. Le chapitre 10 contient
plusieurs exemples spécifiques pour illustrer les différents résultats de cette partie de la thèse.
La méthode pour construire un potentiel monomial qui produit un grand fNL tout en satis-
faisant toutes les contraintes est détaillée, tandis que quelques exemples tirés de la littérature
sont également discutés. Chaque fois, nous comparons les résultats numériques exacts dans
le formalisme long-wavelength aux expressions analytiques approximatives dérivées de cette
thèse. Enfin, nous concluons dans le chapitre 11, tandis que certains détails supplémentaires
sont traités dans les annexes.

Principaux résultats

Il existe différentes méthodes pour déterminer les valeurs des paramètres d’amplitude du bis-
pectre fNL. Ici, nous avons travaillé avec l’estimateur du bispectre binné. Cette méthode a
plusieurs avantages, dont le fait qu’elle peut calculer explicitement le bispectre binné de n’im-
porte quelle carte de données. Ensuite, en principe, il est possible d’utiliser le bispectre binné
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numérique d’une carte comme modèle théorique pour lequel nous voulons déterminer un pa-
ramètre fNL dans n’importe quelle autre carte. Cette possibilité a été mentionnée dans l’article
original de l’estimateur du bispectre binné [43] et était en effet l’une des motivations pour la
développer, ce qui n’avait jamais été fait. Une grande partie du travail consistait à l’implémenter
explicitement dans le code (Python/C) de l’estimateur du bispectre binné. De plus, cela était
la base de la partie de cette thèse consacrée à l’analyse de données, où les avant-plans ga-
lactiques ont joué le rôle de modèles numériques ensuite appliqués à des cartes du CMB. La
première étape de la procédure consistait à déterminer le bispectre binné des avant-plans galac-
tiques. Nous avons constaté que la poussière, l’émission free-free et l’émission anormale ont un
bispectre de type squeezed (semblable à la forme locale, mais avec un signe opposé). Les fluc-
tuations à petite échelle de ces avant-plans sont plus importantes dans les nuages de poussière
(grande échelle), de sorte que les fluctuations à petite échelle et à grande échelle sont corrélées.
Le synchrotron est différent, car son bispectre est plus proche de la forme équilatérale, mais
nous n’excluons pas la possibilité d’une contamination par des sources ponctuelles non résolues.
À 143 GHz (la fréquence que nous avons étudiée), seule la poussière contamine réellement le
signal du CMB. Un problème avec les modèles numériques que nous avons déterminés est qu’ils
dépendent aussi du masque appliqué aux avant-plans et qu’ils contiennent les caractéristiques
de l’expérience comme le faisceau et le bruit. Nous avons montré que le choix du masque est
très important car les avant-plans sont localisés dans le plan galactique comme la plus grande
partie du masque, donc un petit changement de masque pourrait donner une grande différence
de bispectre. Cela signifie qu’il faut utiliser le même masque pour déterminer le modèle que
pour l’analyse finale.

Nous avons ensuite utilisé ces modèles sur différentes cartes CMB (simulations et données
observationnelles). Nous avons effectué plusieurs tests pour confirmer la validité de cette nou-
velle utilisation de l’estimateur du bispectre binné. Ces tests étaient basés sur des réalisations
gaussiennes du CMB auxquelles nous avons ajouté des simulations de bruit et une quantité
connue de poussière. Nous avons montré qu’avec un bruit isotrope et anisotrope, nous avons
réussi à détecter la quantité de poussière attendue sur nos cartes. Cependant, pour faire une
analyse jointe avec les formes primordiales et les formes de poussière, le choix habituel des bins
n’est pas suffisant. Plus de bins sont nécessaires à faible ` pour mieux différencier les bispectres
théoriques qui ont une configuration squeezed (local et poussière en particulier). Nous avons
également discuté des effets de la (petite) brisure de l’approximation de faible non-gaussianités
qui se produit lorsque nous avons ajouté la carte complète de la poussière aux simulations du
CMB (donc la quantité de poussière attendue dans les observations du ciel brut). La prin-
cipale conséquence est que les barres d’erreur réelles deviennent plusieurs fois plus grandes
que les prévisions de Fisher. Nous avons ensuite utilisé les modèles numériques sur la carte
CMB SMICA nettoyée de Planck (2015). Comme prévu, nous n’avons détecté aucun résidu de
poussière (les intensités des autres avant-plans à 143 GHz étant trop faibles pour qu’ils soient
détectés, même si ils étaient présents sur la carte). Les barres d’erreur pour la poussière et la
forme locale augmentent beaucoup dans une analyse jointe avec le binning habituel, encore une
fois à cause du choix des bins qui n’est pas adapté pour les différencier. Enfin, nous avons ap-
pliqué les modèles de avant-plans à la carte du ciel brut à 143 GHz et l’estimateur du bispectre
binné a réussi à détecter la poussière qu’elle contient.

Dans cette thèse, nous avons également discuté du niveau de non-gaussianités produit dans
l’inflation à deux champs avec un potentiel séparable en somme W (φ, σ) = U(φ) + V (σ) et
des termes cinétiques standards. Nous avons examiné à la fois le cas où l’approximation de
roulement lent (forte) est valable tout au long de l’inflation (ce qui signifie que tous les pa-
ramètres de roulement lent, même les paramètres perpendiculaires, sont petits), et le cas où le
roulement lent est cassé pendant le virage de la trajectoire des champs. À titre de comparaison,
nous avons également examiné le cas d’un potentiel séparable en produit, mais comme montré
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précédemment, il n’est pas possible d’obtenir des non-gaussianités importantes dans ce cas dans
l’approximation de roulement lent avec un mode isocourbure qui disparâıt à la fin de l’inflation.

Nous utilisons le formalisme long-wavelength pour nos calculs des non-gaussianités. Dans
ce formalisme [191] et dans le cadre de l’hypothèse mentionnée ci-dessus, toute large (ce qui
signifie d’ordre un ou plus) contribution à fNL ne peut provenir que d’une expression intégrale
appelée gint. La formulation originale de cette expression contient une intégrale sur des fonctions
de Green dépendant de deux temps différents, ce qui rend difficile d’interpréter l’équation et de
voir quels types de potentiels peuvent conduire à des non-gaussianités importantes. Dans cette
thèse, nous avons trouvé une autre expression pour gint, c’est la solution (7.49) d’une équation
différentielle (7.47), qui peut être écrite comme la somme d’une solution homogène et d’une
solution particulière. Cette formulation est très utile, puisque nous avons une expression ana-
lytique exacte de la solution homogène qui ne nécessite pas d’approximation. Pour la solution
particulière, nous avons vu (dans le contexte de la classe de modèles étudiés) que nous pouvons
soit la calculer explicitement, soit montrer qu’elle est négligeable. Nous avons également dérivé
quelques relations de proportionnalité entre les différentes fonctions de Green qui sont utiles
dans les calculs.

Nous avons mis en évidence les tensions entre un grand fNL d’ordre un ou plus et les
contraintes observationnelles actuelles sur l’indice spectral ns, les deux étant liés à la dérivée
de deuxième ordre du potentiel Vσσ, où σ est le champ sous-dominant du franchissement de
l’horizon au virage de la trajectoire des champs. Nous avons évalué ces tensions dans le cadre de
l’approximation de roulement lent pour les potentiels monomiaux, où il serait autrement facile,
avec quelques ajustements, d’atteindre les exigences pour un grand fNL. Nous avons montré
qu’une grande partie de l’espace des paramètres donnant fNL d’ordre un est simplement interdit
à cause des contraintes sur ns. Nous avons constaté que ces contraintes sont très sensibles à la
valeur de ns : si la limite inférieure était plus petite de 0,02 (ns ≈ 0, 94), la situation serait très
différente et la plupart des paramètres seraient autorisés. Cette analyse du potentiel monomial a
également révélé que la durée de l’inflation après le franchissement de l’horizon est importante :
une valeur autour de cinquante e-folds est beaucoup plus contraignante que les soixante e-folds
habituels. Cela indique également que dans les rares modèles qui fonctionnent, le virage de la
trajectoire des champs se produit vers la fin de l’inflation. Cela soulève plusieurs questions, la
principale étant qu’à ce moment-là, les paramètres de roulement lent s’arrêtent généralement
d’être petits par rapport à un et donc que l’approximation de roulement lent ne fonctionne
plus. De plus, si le virage se produit trop près de la fin de l’inflation, le mode isocourbure peut
ne pas avoir le temps de disparâıtre. En étudiant les virages où le paramètre de roulement lent
ε est encore petit par rapport à un, nous évitons ce dernier problème : le temps que ε met
à devenir un et donc terminer l’inflation peut être assez long pour que le mode isocourbure
disparaisse.

La suite naturelle de cette étude était de considérer ce qui se passerait en abandonnant l’ap-
proximation de roulement lent pendant le virage et en permettant aux paramètres de roulement
lent η‖ et η⊥ (décrivant l’accélération des champs) de devenir grands. D’autre part, nous sup-
posons toujours que ε reste petit pendant le virage, pour plusieurs raisons : à cause du problème
concernant la disparition du mode isocourbure mentionné ci-dessus, parce que nous avons vu
numériquement dans plusieurs modèles que c’était une bonne approximation, ebt parce que
cette approximation nous a permis d’obtenir des résultats analytiques très intéressants. Nous
avons identifié deux types différents de modèles où un tel virage peut se produire, comme le
montre la figure 91. En substituant l’expression de roulement lent à ġint dans (7.47), nous
avons pu montrer (en utilisant des comparaisons simples des différents termes de l’équation
différentielle) que c’est aussi une très bonne approximation même si les paramètres de roule-
ment lent η‖ et η⊥ deviennent grands pendant le virage. L’idée principale est celle mentionnée
ci-dessus : tant que l’approximation au ralenti est valide, nous pouvons calculer explicitement
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la solution particulière, tandis que lorsqu’elle est cassée, nous pouvons montrer que la solution
particulière devient négligeable, même si nous ne pouvons pas calculer une expression analy-
tique pour elle dans ce cas (le fait que ε reste petit est un ingrédient crucial dans cette preuve).
Pour la solution homogène, nous avons une expression analytique valable partout. Nous avons
également pu montrer que l’ajout de la solution particulière à roulement lent à la solution
homogène dans les régions où la solution particulière exacte est négligeable n’introduit pas
d’erreur significative, ce qui signifie que nous n’avons pas à effectuer un appariement explicite
des solutions à chaque transition entre une région à roulement lent et une région à roulement
non lent.

Ceci nous a conduit à la conclusion que, dans le contexte des modèles étudiés et des hy-
pothèses mentionnées ci-dessus, l’expression à faible roulement lent pour fNL est une très bonne
approximation pour la valeur exacte, même dans les modèles où η‖ et η⊥ deviennent grands pen-
dant le virage de la trajectoire des champs et cassent le roulement lent. Par conséquent, les im-
plications de cette expression pour avoir des non-gaussianités larges, discutées dans le contexte
de l’approximation de roulement lent, s’appliquent dans un cadre beaucoup plus général. En
particulier, les contraintes dues à l’indice spectral ns restent très importantes. Un potentiel
somme de deux champs avec un grand fNL nécessite beaucoup de fine-tuning (et nous avons
montré explicitement dans la section avec des exemples numériques comment construire un tel
modèle). Réduire les barres d’erreur sur les mesures de l’indice spectral pourrait même être plus
efficace pour contraindre les non-gaussianités dans certaines régions de l’espace des paramètres
des potentiels que de réduire les barres d’erreur sur fNL lui-même.

Ce travail qui a répondu a des questions importantes et ambitieuses sur différents aspects
des non-gaussianités, en apporte également de nouvelles qui mériteraient d’être étudiées lors
de futurs projets. Concernant l’inflation, il serait très important de regarder d’autres classes de
modèles que ceux séparables en somme pour comprendre l’influence d’un terme d’interaction
entre les deux champs sur les conditions de large non-gaussianités. Une continuation directe de
la partie consacrée à l’analyse des observations du CMB serait d’étudier les nouvelles données
de polarisation de Planck, avec une meilleure compréhension des erreurs systématiques, qui
devraient être disponibles dans les mois qui viennent (alors qu’ici seule la température était
considérée). D’un point de vue beaucoup plus général, l’ère de la cosmologie de précision en-
tamée il y a une quinzaine d’années n’en est encore qu’à ses débuts. Une nouvelle génération
d’expériences va observer le CMB (CMB-S4, LiteBIRD, CORE, etc.), mais d’autres sources
d’informations sur l’univers primordial sont maintenant envisageables comme l’étude de la
structure à grande échelle de l’univers (Euclid). Nous pouvons donc nous attendre à une
meilleure compréhension de l’évolution de notre univers dans les années qui viennent, et en par-
ticulier de l’univers primordial et de l’inflation. Cette connaissance croissante des perturbations
primodiales et de leurs non-gaussianités entrâınera également de nombreux défis théoriques.
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Titre : Non-gaussianités inflationnaires : prévisions théoriques et conséquences observationnelles

Mots clefs : Inflation à plusieurs champs, Fond diffus cosmologique, non-gaussianités

Résumé : Le fond diffus cosmologique (CMB) permet
d’étudier la physique à l’œuvre dans l’univers primor-
dial. Ses anisotropies ont été mesurées récemment avec
une haute précision par le satellite Planck. Ces mesures
sont en accord avec les prédictions de l’inflation, la
théorie décrivant une période d’expansion rapide et
accélérée de l’univers primordial. Pour distinguer
les différents modèles d’inflation, il est important de
chercher des déviations de la distribution gaussienne
des anisotropies du CMB, appelées non-gaussianités.
Cette thèse est consacrée à l’étude, à la fois des
points de vue observationnels et théoriques, des non-
gaussianités du type bispectral (liées aux fonctions
de corrélations à trois points), caractérisées par les
paramètres d’amplitude fNL.
Après une partie introductive sur le modèle standard
de la cosmologie et la théorie des perturbations cos-
mologiques, la deuxième partie de ce manuscrit décrit
la méthode de l’estimateur de bispectre binné, utilisée
pour extraire de l’information sur les non-gaussianités
à partir des mesures du CMB. Pour obtenir des infor-
mations sur l’univers primordial, les données doivent
être nettoyées de la contamination dûe aux avant-plans
galactiques. Nous vérifions les résultats au niveau du

bispectre. Des modèles numériques de plusieurs avant-
plans galactiques sont déterminés à partir des données
de Planck. Ces modèles ont été utilisés dans des anal-
yses des cartes de la température du CMB et du ciel
brut, afin d’améliorer la détermination de la quantité
de non-gaussianités primordiales.
La troisième partie de ce manuscrit porte sur l’étude
des non-gaussianités bispectrales produites dans des
modèles d’inflation à deux champs avec des termes
cinétiques standards. Il est important de mieux
comprendre quelles régions de l’espace des modèles
d’inflation ont été éliminées par les résultats de Planck.
Nous appliquons une nouvelle expression de fNL au cas
d’un potentiel somme et nous montrons qu’il est très
difficile de satisfaire en même temps aux conditions per-
mettant fNL grand et la contrainte observationnelle sur
l’indice spectral ns. Pour le cas de la somme de deux
potentiels monomiaux et d’une constante, nous mon-
trons explicitement dans quelles régions de l’espace des
paramètres cela est posible et comment construire un tel
modèle. Finalement, nous utilisons la nouvelle expres-
sion pour fNL pour montrer que dans le cas du potentiel
somme, les résultats analytiques restent valides au-delà
de l’approximation de roulement lent.
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Abstract: A powerful probe of the physics at play in
the early universe is the Cosmic Microwave Background
(CMB). Its anisotropies have been measured recently
with high precision by the Planck satellite. These mea-
surements are in agreement with the predictions of in-
flation, a theory describing a period of fast and accel-
erated expansion in the early universe. To discriminate
between the different inflation models, it is important
to look for deviations from Gaussianity of the CMB
anisotropies (i.e. non-Gaussianity). This thesis is de-
voted to the study of non-Gaussianity of the bispectral
type (related to the three-point correlation functions)
parametrized by its amplitude parameters fNL, both
from the theoretical and observational points of view.
After an introductory part on standard cosmology, the
second part of the thesis describes the method of the
binned bispectrum estimator, used to extract informa-
tion about non-Gaussianity from CMB measurements.
In order to recover information about the primordial
universe, one has to clean observational data from the
contamination caused by galactic foregrounds. We ver-
ify the results at the bispectral level. Numerical tem-

plates for the temperature bispectra of several galactic
foregrounds are determined using data from the 2015
Planck release. These templates are then used to per-
form joint analyses on raw sky and CMB temperature
data maps, to improve the determination of the amount
of primordial non-Gaussianity.
In the third part, the level of bispectral non-Gaussianity
produced in two-field inflation models with standard ki-
netic terms is investigated using the long-wavelength
formalism. It is important to better understand what
regions of inflation model space have been ruled out by
Planck. We apply a newly derived expression for fNL to
the case of a sum potential and show that it is very diffi-
cult to satisfy simultaneously the conditions for a large
fNL and the observational constraints on the spectral
index ns. In the case of the sum of two monomial po-
tentials and a constant we explicitly show in which small
region of parameter space this is possible, and we show
how to construct such a model. Finally, we also use the
new expression for fNL to show that for the sum poten-
tial, the explicit expressions remain valid even beyond
the slow-roll approximation.
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