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A B S T R A C T

En imagerie par transmission de rayons X, les mesures effectuées relèvent
d’un opérateur intégral : la transformée de Radon en géométrie parallèle
et la transformée conique en géométrie divergente. La caractérisation de
l’image de ces opérateurs par des conditions de rang permet de quanti-
fier l’incohérence des données mesurées par rapport au modèle intégral.
Le premier volet de ce travail de thèse étudie les conditions de rang en
géométrie conique : nous proposons de nouvelles conditions pour une
trajectoire planaire et mettons à jour des relations non triviales entre des
conditions 2D et des conditions basées sur le théorème de Grangeat. Le
second volet porte sur l’auto-étalonnage géométrique des systèmes tomo-
graphiques à géométrie conique. L’analyse des conditions de rang couplée
au modèle géométrique des projections radiographiques permet la déter-
mination de la géométrie d’acquisition du système.

In X-ray transmission imaging, the collected measurements correspond
to an integral operator: the Radon transform in parallel geometry and the
divergent beam transform in divergent geometry. The range of these opera-
tors is characterized by conditions, which help to quantify the consistency
of the measured data with the forward integral model. The first pillar of
this PhD work studies range conditions in cone-beam acquisition geome-
try: we derive new conditions for a planar trajectory and establish a new
relation between 2D fanbeam conditions and Grangeat-based conditions.
The second pillar is related to the self-calibration of cone-beam systems.
The acquisition geometry of the system is determined from range condi-
tions and a parametric model of the projection geometry.
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N O TAT I O N

I have tried to keep consistent notation throughout this thesis manuscript.
It has been difficult and I probably failed some times. I give hereunder a
list of symbols that I use. Most of them are very standard. But some may be
specific. I also give some notation guidelines.

Symbol Meaning

N,R,C The sets of numbers: natural numbers, real numbers,
complex numbers.

Rn The canonical n-dimensional real vector space.

Sn−1 The set of unit-vectors in Rn (it has dimension (n −1)).

S (Rn) The Schwartz space of Rn . The space of C∞ rapidly de-
creasing functions.

D(Rn) The space of C∞ functions on Rn with compact support.

Supp( f ) The support of a function f .

R, X , D The Radon, X-ray and Divergent transform respectively.

imR Range of the operator R.

nullR Null space of the operator R.

f̂ , F f The Fourier transform of f .

ǧ , F−1g The inverse Fourier transform of g .

~u ·~v or~uT~v The scalar product of two vectors~u,~v ∈Rn .

~u ×~v The cross product of two vectors~u,~v ∈R3.

In The n-dimensional identity matrix.

∆i j The (i , j )−cofactor of a matrix.

f ∗ g The convolution of f and g .

H~β,s In a 3D space, the plane orthogonal to ~β at signed dis-
tance s to the origin.

Eθ An epipolar plane.

b The line connecting two source positions (the baseline).

A vector is denoted with an little arrow on top of a letter and in bold face
(eg.~x ,~sλ or~eo

x ). For unit vectors, we use greek letters (eg.~α,~θ).
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A C R O N Y M S

PCS Patient Coordinate System. (O,~ex ,~e y ,~ez ).

OCS Oriented Coordinate System. (O,~eo
x ,~eo

y ,~eo
z ). Given a projection

matrix P = K R[I |~t ], the OCS is obtained by rotating the PCS by the
rotation R.

ECS Epipolar Coordinate System. (O,~ee
x ,~ee

y ,~ee
z ). Applies to a pair of

projections.

DCS Detector Coordinate System. (Od ,~u,~v ). The coordinate system in the
same unit as the PCS, with origin at the centre of the detector and
axes in the same direction as the x- and y-axes of the OCS.

3DCS 3D Detector Coordinate System. (Od ,~u,~v ,~w ). It is a DCS turned into
a 3D Coordinate system by adding a unit vector orthogonal to the
plane of the detector.

RHS Right hand-side (of an equation).

LHS Left hand-side (of an equation).
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I N T R O D U C T I O N

Radiology is the medical science that uses the three main modalities of
medical imaging: radiation, magnetic resonance and ultra-sound. This
work’s main interest is on radiation imaging. The radiation imaging field
itself is divided into two main categories: transmission imaging and emis-
sion imaging. In emission imaging, a radioactive product is injected into
the patient. The interaction of the product with the potentially abnormal
cells of the patient’s organ leads to the emission of photons. Here, we focus
on transmission imaging (though some theoretical concepts presented in
this work remain valid in emission imaging). In such devices, a beam of
X-rays is emitted from a X-ray generator and traverses the body of a pa-
tient. As photons go through the tissues of the body, they interact with
matter and are attenuated. The outgoing attenuated X-rays are collected
on a detector. One single image is called a radiograph. When the process
is repeated several times at different view angles, the attenuation map of
the patient’s organ can be numerically reconstructed from the set of all ra-
diographs. This reconstruction process is called computerized tomography
(CT). The basics of CT will be presented in Part I, Chapter I-1.

There are several types of CT devices. The most widely used is the usual
CT scanner (see Figure 1a). A CT scan is installed in a dedicated room. Such
scanners are exclusively used for diagnostic. They are mechanically very ro-
bust. The gantry rotates at a fairly high frequency (up to a few rotations per
second) with very high stability. Cormack and Hounsfield, who built the
first CT scanner in 19711 were granted the Nobel Prize in medicine for this 1 More precisely,

Hounsfield built the
first scanner in 1971,
based on the
theoretical works of
Cormack, published
in the 1950s.

achievement. In parallel, radiological systems have been designed to enter
the Operating Room (OR) and help the clinician not only for the diagnostic
but during the treatment. This field is called interventional radiology. The
first devices in this direction were mobile C-arms (illustrated in Figure 1b),
which were only capable of conventional radiography or fluoroscopy (con-
tinuous illumination and visualization of the patient). Thanks to this new
technology, diseases which required an open surgery could be treated in
a mini invasive way, by the use of image guided catheters. With progress
in robotics, manufacturers developed robotic C-arms (see Figure 1c) with
3D CT capability and hospitals have implemented dedicated IR operating
rooms. The 3D imaging capabilities of robotic C-arms were made possible
by many factors (large flat panel detectors, new reconstruction algorithms,
etc.) but one of the challenges was to be able to accurately know the ac-
quisition geometry of each shot. This problem of estimating the geometry
is called calibration. It is explained in Part I, Chapter I-2 and a review of
existing methods is presented in Part I, Chapter I-4.

The reason why mobile C-arms were not equipped with 3D CT feature
is mostly related to the calibration problem. Robotic C-arms or CT scan-
ners are mechanically designed so that the deformations of the system are

1



2 A C R O N Y M S

(a) A CT Scanner (b) A mobile C-arm (c) A robotic C-arm

Figure 1: Three X-ray systems.

negligible. A geometric calibration is only necessary periodically (about
every six months) to account for the mechanical wear of parts. This cal-
ibration relies on the crucial assumption that the acquisition geometry
is reproducible over time. On the contrary, mobile C-arms are subject to
unpredictable and non-reproducible vibrations and deformations due to
their light-weight design. Hence the need for calibration procedures which
can be carried at each production scan. As explained in Chapter I-4, one
possible way of achieving this is to place fiducial markers in the scene
with known respective positions. To avoid cluttering the medical scene, the
ideal solution would rely only on the analysis of the projection data. Data
Consistency Conditions (DCC) are mathematical conditions which quan-
tify the gap between the measurements (the projection data) and the theo-
retical forward line integral model. A poor estimation of the geometry leads
to a poor consistency of the data. This observation paves the way to on-line
calibration.

This PhD work is twofold. On one hand, we deeply studied the mathe-
matical aspects of DCC, derived new cone-beam DCC and established the
unknown relation between two known sets of DCC. On the other hand, we
applied DCC to the calibration of a micro-CT system. This calibration pro-
cedure is - hopefully - a first step towards pure on-line calibration of a mo-
bile C-arm.

The manuscript is organized as follows. Part I presents all the scientific
background which the reader should know before reading the contribu-
tions. Chapter I-1 presents the mathematics of tomography. In Chapter I-2,
we describe the acquisition geometry, introduce the calibration problem
and define the projection matrix. Chapters I-4 and I-3 present a review of
the literature on DCC and geometric calibration respectively. In Part II, we
gather the three contributions of this work. Chapter II-1 presents new cone-
beam DCC. This contribution partially relies on the theory of distributions
whose basics are presented in Appendix 1.1. Chapter II-2 presents a new
on-line DCC-based calibration method for a circular cone-beam turntable
CT system. Finally, Chapter II-3 establishes the relation between the fan-
beam DCC used in our second contribution and Grangeat-based DCC.



Part I

S C I E N T I F I C B A C KG R O U N D

This part gathers all the scientific knowledge that a non-
specialist reader needs for a smooth reading of the contribu-
tions. It also places the contributions in their scientific context
and defines the notation.





I1
T O M O G R A P H Y: A N O V E R V I E W

The aim of tomography is to reconstruct a function of interest from data
(called projections), whose formation process is known and precisely mod-
elled. This model is called the forward model. Such a problem is called an
inverse problem. In this chapter, we introduce the various forward mod-
els that are used in this work. We also introduce their dual operators and
briefly describe some basic reconstruction methods. The last section gives
a proof of the Grangeat theorem. This theorem plays a central role in the
work and its proof gently introduces the mathematical methods involved
in the contributions.

1.1 T H E B E E R - L A M B E R T L AW

In transmission imaging, X-rays are emitted by an external point X-ray
source, traverse the patient modelled by its density map µ, and are col-
lected on a 2D flat-panel detector. The image output is a radiograph. The
aim of tomography is to recover the density map µ from radiographs. The
density map µ may be defined on R2 (single slice reconstruction) or R3.
The correct assumption to make on µ would be: bounded with compact
support. Many of the mathematical results presented in this work would
remain valid with such µ. Nevertheless, the presentation would be slightly
more tedious. So we simply assume that µ ∈ D(R), the space of com-
pactly supported smooth functions2, which itself is contained in S (Rn) 2 Compactly

supported bounded
functions are in
L1(Rn ) and D(Rn ) is
dense in L1(Rn )

(n ∈ {2,3}). When an object µ is irradiated with X-rays with initial intensity
I0, the outgoing X-ray (which is in practice being collected by a detector)
has intensity I . The Beer-Lambert law links the measured intensity I to the
density map µ as

I = I0 exp

(
−

∫
L
µ(~x)d~x

)
, (1)

where photons have travelled along the line L (from the emitting source
to the detector’s pixel). Since I0 is a characteristic feature of the scanner
(X-ray source and detector) and does not depend on the object µ, the re-
construction problem boils down to recovering µ from integral of µ along
lines. Given a line L, the collected data will be modelled in this work by the
negative log transform of the physically collected data:

− log I /I0 =
∫

L
µ (~x)d~x . (2)

Different scanning geometries correspond to different ways of collecting
line integrals. This is discussed in the next section.

5



6 T O M O G R A P H Y : A N O V E R V I E W

O ~e y
~e y

~ez

Od

~u

~v

~w
O

~eo
y

~eo
x~eo

z

Figure 2: A C-arm with its flat-panel detector (dark rectangle, top left) and the X-
ray source on the opposite side of the C. The C-arm rotates around the
patient bed. Left: The Patient Coordinate System (PCS). Middle: The De-
tector Coordinate System (DCS) and the corresponding 3D Detector Co-
ordinate System (3DCS). ~w =~u ×~v . Right: The Oriented Coordinate Sys-
tem (OCS) only differs from the 3DCS by the origin (O instead of Od ).

Unfortunately, the line integral model is ideal in the sense that the col-
lected data on real devices are in practice always degraded with systematic
effects such as beam hardening or scattering amongst others, which intro-
duce artefacts in the reconstructed image. This work only addresses one of
these problems: the geometric calibration. The general idea in this work is
to carry out these two steps:

1. quantify the gap between the collected data and the ideal model (see
Data Consistency Conditions in Chapter I-3),

2. minimize this gap by adjusting the geometric parameters which are
responsible for this deviation from the ideal model (see Calibration
in Chapter I-4).

1.2 S O M E C O O R D I N AT E C O N V E N T I O N S

Throughout this document, we will often switch between different coor-
dinate systems. All coordinate systems are illustrated in Figure 2. See also
[66].

• The Patient Coordinate System (PCS) is the generic 3D coordinate
system. Its origin is O and the unit vectors are (~ex ,~e y ,~ez ). The associ-
ated coordinates are denoted (x, y , z).

• The Detector Coordinate System (DCS). Given a detector (e. g. a flat-
panel pixel grid), the origin of the DCS is Od , the centre of the rect-
angular panel. The unit vectors are (~eu ,~ev ). They coincide with the
detector rows and columns respectively. The associated coordinates
are usually denoted (u, v).

• The 3D Detector Coordinate System (3DCS) is an orthonormal ex-
tension of 2D DCS to a 3D right-handed coordinate system. More



1.3 F O R W A R D O P E R AT O R S 7

precisely, if (Od ,~eu ,~ev ) is a DCS. We set~ew =~eu ×~ev ). The 3DCS is
(Od ,~eu ,~ev ,~ew ).

• The Oriented Coordinate System (OCS). Its origin is O and the unit
vectors are (~eo

x ,~eo
y ,~eo

z ). The associated coordinates are (xo , yo , zo). In
general terms, it is a rotated version of the PCS. It is associated to a
rotation matrix R such that (xo , yo , zo)T = R(x, y , z)T . In practice, it is
related to a DCS in the following way: a 3DCS and an OCS have the
exact same triple of unit vectors. They only differ by the origin.

1.3 F O R W A R D O P E R AT O R S

We introduce several integral transforms which model the variety of possi-
ble scanning geometries. The Radon transform maps a density function µ

to the set of its integrals over hyperplanes.

Definition 1 (The Radon transform). Let µ ∈S (Rn). The Radon transform
of µ is defined by

Rµ(~θ, s) =
∫
~x ·~θ=s

µ(~x)d~x =
∫
Rn
δ

(
~x ·~θ− s

)
µ (~x)d~x , ~θ ∈ Sn−1, s ∈R. (3)

In the last integral, δ denotes the Dirac δ distribution (see Appendix 1.1
for an introduction to δ and some of its properties). There is alternative
notation for the integral in Equation 3,

Rµ(~θ, s) =
∫
~θ

⊥ µ
(
s~θ+~y

)
d~y , ~θ ∈ Sn−1, s ∈R, (4)

and another, in the particular 2D case:

R2µ(~θ, s) =
∫
R
µ

(
s~θ+ l~ζ

⊥)
dl , ~θ,~ζ ∈ S1 such that ,~θ ·~ζ= 0. (5)

Note that the variables of the Radon transform identify one hyperplane:

s

~θ

φ

Figure 4

~θ is the normal unit vector to the hyperplane and s is its signed distance
to the origin (see Figure 4). Note that this identification is not unique.
We denote H~θ,s such hyperplanes. In 2D, a hyperplane is a line and in

3D, it is a plane. Note also that in the 2D case, the unit vector ~θ can be
easily parametrized by the angle that the ray makes with the x−axis. Let
φ ∈ [0,2π[ denote that angle. Then, we have~θ = (−sinφ,cosφ) and we will
use interchangeably~θ and φ as the first parameter. Finally, in the 2D case,
the Radon transform describes the physical reality of X-ray measurements.
In 3D, the Radon transform does not model the X-ray acquisition. We need
to introduce the X-ray transform.

Definition 2 (The X-ray transform). Let µ ∈S (R3). The X-ray transform of
µ is defined by

Xµ(~θ,~y) =
∫
R
µ

(
~y + l~θ

)
dl , ~θ ∈ Sn−1,~y ∈~θ⊥, (6)

where~θ
⊥ = {

~y ∈Rn / ~y ·~θ = 0
}
.



8 T O M O G R A P H Y : A N O V E R V I E W

These two transforms - R and X - are relevant with parallel acquisition
geometries: within one projection, all rays are parallel. In the case of X-rays
diverging from a point source, we define the divergent transform:

Definition 3 (The divergent-beam transform). Let µ ∈ S (Rn). Let

(~sλ)λ∈Λ⊂R denote the 1D trajectory of a X-ray source. The divergent-beam
transform is defined by:

Dµ
(
λ,~α

)= ∫ ∞

0
µ

(
~sλ+ t~α

)
dt , λ ∈Λ,~α ∈ Sn−1. (7)

We suppose that for all λ ∈ Λ, the source is outside the convex hull of
the support of µ, so that the integration could equivalently be over the
entire real line R. For the applications, the circular trajectory is of partic-
ular importance. Without loss of generality, we consider the circular tra-
jectory centred on the origin of the PCS and in the plane y = 0 in the 3D
case. The parameter λ thus reduces to the polar angle of the source with
respect to the x−axis in the trajectory plane. In the 3D case, referred to as
cone-beam, the unit vector ~α is parametrized using spherical coordinates.
Such parametrization will be seen extensively in the next sections. In the
2D case, referred to as fanbeam, the unit vector~α is parametrized with the
angle made by the ray with respect to a reference axis. Two common situa-
tions are:

• The reference axis is the x-axis of the PCS as for the 2D Radon trans-
form. The angle is denoted φ. See Figure 5

λ

φγ

O

~sλ

Figure 5

.

• The reference axis is the central ray (joining the source position and
the origin of the PCS). The angle is denoted γ. See Figure 5.

S O M E N O TAT I O N T I P S We consistently use the first variable to identify
one single projection. The second variable identifies one ray or hyperplane
in that projection. When considering one single projection, we may use
some specific notation. For example, p is usually used to denote the Radon
transform of a function µ. The projection at fixed~θ is denoted p~θ. For di-
vergent data, we use the letter g . One projection along the trajectory is de-
noted gλ. We have

p~θ(s) = p
(
~θ, s

)
=Rµ

(
~θ, s

)
(8)

gλ
(
~α

)= g
(
λ,~α

)=Dµ
(
λ,~α

)
. (9)

We call re-binning the operation that maps divergent-beam data to
parallel-beam data. More specifically, in the two particular ray parametriza-
tions in fanbeam geometry described above, the re-binning operations are
given by

g
(
λ,φ

)= p
(
φ,R sin

(
λ−φ))

(10)

g
(
λ,γ

)= p
(
λ−γ,R sinγ

)
, (11)

where g and p are divergent-beam and parallel-beam data respectively.
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The reader is referred to the textbook of Natterer [53] for a complete pre-
sentation of these operators and their properties. We just mention the ob-
vious fact that the transforms are linear operators (because the integral is
linear). They are defined in terms of direction of the integration line, re-
gardless of any physical detector. In the applications, a detector will be
considered and the second variable will be substituted with the detector’s
variables.

1.4 T H E F O U R I E R S L I C E T H E O R E M

In view of this major (though very simple) theorem, we will need the
Fourier transform, which is extensively used in this work. For our purpose,
it will be sufficient to introduce the Fourier transform on the Schwartz
spaces S (Rn) of C∞ rapidly decreasing functions3, which conveniently 3 A C∞ function f is

said rapidly
decreasing if all
derivatives decrease
to zero more rapidly
than any negative
power of the
variable. With
multi-index
notation:
∀k ∈Zn+, l ∈
Zn+, xk ∂|l | f

∂xl → 0 as
|x|→∞

maps onto itself. See e. g. [33] for a comprehensive treatment of the Fourier
transform. Let f ∈S (Rn). Since f is integrable on Rn , the functions

f̂
(
~ξ

)
=

∫
Rn

f (~x)e−2iπ~ξ·~x d~x (12)

f̌ (~x) =
∫
Rn

f
(
~ξ

)
e2iπ~ξ·~x d~ξ (13)

are well defined. A key theorem in Fourier analysis (which we do not prove)
is

Theorem 1 (Fourier Inversion formula). For f ∈S (Rn),

ˆ̌f
(
~ξ

)
= f

(
~ξ

)
∀~ξ ∈Rn (14)

ˇ̂f (~x) = f (~x) ∀~ξ ∈Rn . (15)

(16)

We can now define the Fourier transform and its inverse

Definition 4 (The Fourier transform). Let f ∈ S (Rn). The Fourier trans-
form of f is defined over Rn by

F f
(
~ξ

)
= f̂

(
~ξ

)
=

∫
Rn

f (~x)e−2iπ~ξ·~x d~x . (17)

Its inverse is

F−1 f (~x) = f̌ (~x) =
∫
Rn

f
(
~ξ

)
e2iπ~ξ·~x d~ξ. (18)

We gather in the next Proposition, which we do not prove, the properties
of the Fourier transform which we will need in the sequel. For a multi-index
k ∈Zn+ = (k1, ...,kn), |k| = k1+...+kn ,~xk = xk1

1 ...xkn
n and f (k) = ∂k1

1 ...∂kn
n f . The

standard convolution product is denoted f ∗ g and defined as f ∗ g
(
~y

) =∫
Rn f (~y −~x)g (~x)d~x = ∫

Rn f (~x)g (~y −~x)d~x .
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Proposition 2 (Properties of the Fourier transform). Let f , g ∈S (Rn).

F f (k) (ξ) =
(
2iπ)|k|~ξ

)k
F f

(
~ξ

)
(19)

F
(
~xk f

)(
~ξ

)
= (2iπ)|k|

(
F f

)(k)
(
~ξ

)
(20)�f ∗ g = f̂ ĝ (21)

f̂ g = f̂ ∗ ĝ . (22)

Most of the time in this work, when applied to projection functions, the
Fourier transform acts on the second variable. The next theorem is a cor-
nerstone in image reconstruction.

Theorem 3 (The Fourier slice theorem). Let~θ ∈ Sn−1 and let p~θ(s) denote
the Radon transform of a function µ in the direction~θ. Then:

p̂~θ(σ) = µ̂
(
σ~θ

)
(23)

Proof. By definition of the Fourier transform

p̂~θ(σ) =
∫
R

p~θ(s)e−2iπsσds (24)

=
∫
R

∫
~θ

⊥ µ
(
s~θ+~y

)
e−2iπsσd~y ds (25)

=
∫
Rn
µ (~x)e

−2iπ
(
~x ·~θ

)
σ

d~x (26)

=
∫
Rn
µ (~x)e

−2iπ~x ·
(
σ~θ

)
d~x , (27)

where we applied the unit Jacobian change of variables~x = s~θ+~y and no-
ticed that s =~x ·~θ.

The Fourier slice theorem is the basis of many reconstruction techniques.
In particular, the Filtered Backprojection (FBP) is directly derived from this
theorem (see Section 1.6). Before moving onto reconstruction, it is neces-
sary to introduce the backprojection operators.

1.5 T H E D U A L O P E R AT O R S : T H E B A C K P R O J E C T I O N

We quickly give (with no proof, see [53]) the dual operators of the forward
operators defined in the previous section.

Proposition 4. For µ ∈ S (Rn), the dual operators of R, X and D, denoted
R∗, X ∗ and D∗ respectively are

for g ∈S (Si−1 ×R), R∗g (~x) =
∫

Si−1
g

(
~θ,~x ·~θ

)
d~θ (28)

for g ∈S (S2 ×R2), X ∗g (~x) =
∫

S2
g

(
~θ,~x −

(
~x ·~θ

)
~θ

)
d~θ (29)

for g ∈S (Λ×S2), D∗g (~x) =
∫
Λ

g

(
λ,

~x −~sλ
‖~x −~sλ‖

)
dλ

‖~x −~sλ‖n−1 . (30)
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These operators are called backprojection operators because they cor-
respond to the smearing of the projection values back along the lines
(or planes) of integration. After the backprojection is complete, one voxel
value will be the sum of all projection values stemming from lines passing
through that voxel. The backprojection is not an inverse operator. It will be
seen in the next section that projections need to be pre-processed before
being back projected. For now, we simply illustrate the fact that the pure
backprojection of the projection data leads to a blurred reconstructed im-
age, as shown in Figure 6.

1.6 T H E B A S I C S O F R E C O N S T R U C T I O N

In this section, we gather the basic facts about reconstruction. Especially,
we derive the so-called filtered backprojection formulas in 2D and 3D, di-
rectly from the Fourier Slice theorem. Again, the reader is referred to [53]
for a comprehensive treatment of the inversion of the Radon transform and
a family of inversion formulas based on the Riesz potential. For computer
implementation of these reconstruction methods, a useful reference would
be the book of Kak and Slaney [35]. The textbook of Deans [18] is also an
excellent introduction to the topic.

1.6.1 Inversion of the Radon transform

We begin with

Theorem 5 (Filtered backprojection). Let p ∈S (Sn−1 ×R). If p =Rµ then

µ(~x) = 1

2

∫
Sn−1

(∫ +∞

−∞
|σ|n−1p̂~θ (σ)e2iπ~x ·σ~θ dσ

)
d~θ. (31)

Proof. Starting from the inverse Fourier transform, changing from Carte-
sian to polar coordinates and applying the Fourier Slice Theorem, we have

µ(~x) =
∫
Rn
µ̂

(
~ξ

)
e2iπ~x ·~ξdξ (32)

=
∫

Sn−1

∫ +∞

0
|σ|n−1µ̂

(
σ~θ

)
e2iπ~x ·σ~θ dσd~θ (33)

=
∫

Sn−1

∫ +∞

0
|σ|n−1p̂~θ (σ)e2iπ~x ·σ~θ dσd~θ, (34)

where p̂~θ denote the (1D) Fourier transform of the projection at fixed direc-
tion~θ with respect to the spatial variable s. Note that the use of the modu-
lus in the inner integral is not necessary since σ> 0 but is intended in view
of computing the integral:∫

Sn−1

∫ 0

−∞
|σ|n−1p̂~θ (σ)e2iπ~x ·σ~θ dσd~θ (35)

By substituting (σ,~θ) with (−σ,−~θ) in this integral, and using the even-
ness of the Radon transform (p−~θ(−σ) = p~θ(σ))4, we get that this integral 4 This relation just

says that the pairs of
parameters (~θ,σ)
and (−~θ,−σ) define
the same hyperplane
in Rn .
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Figure 6: Top left: The central slice of a spherical object µ. Top right: The profile
corresponding to the dotted red line. Middle: Backprojection of 3 (left)
and 5 (right) projections. Bottom left: The central slice of the complete
backprojection image (computed from 180 equally spaced projections).
The sphere edges are blurred. Bottom right: The corresponding profile.
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is equal to the integral in the RHS of Equation 34. By adding the two terms,
we finally obtain the desired result.

Equation 31 gives a complete method for the recovery of the object func-
tion µ in two steps:

1. Modify the projections by multiplying their Fourier transforms by
|σ|n−1,

2. Back-project the modified projections.

It is necessary to further study the modification operations in the 2D and
the 3D cases. In the 3D case (n = 3), Equation 31 can be re-written

µ(~x) =− 1

8π2

∫
S2

∫ +∞

−∞
(2iπσ)2 p̂~θ (σ)e2iπ~x ·σ~θ dσd~θ (36)

=− 1

8π2

∫
S2

∂2

∂s2 p~θ(s)
∣∣∣

s=~x ·~θ
d~θ, (37)

so that the modification operation is actually a differentiation with respect
to the second variable.

To examine the 2D case, we need the following

Definition 5 (The Hilbert transform). For f ∈ S (R), the Hilbert transform
of f , denoted H f , is defined by5 5 The integral must

be understood as a
Cauchy Principal
Value integral. See
Appendix 1.1 for the
definition.

H f (s) =
∫ +∞

−∞
f (s′)

π(s − s′)
ds′ (38)

Let us denote h(s) = 1/(πs) the convolution kernel in the above defini-
tion. It can be shown that the Hilbert transform in the spatial domain is
equivalent to multiplying in the Fourier domain by (−i sign(σ)), where the
sign function is defined by

sign(σ) =

σ/|σ| if σ 6= 0

0 otherwise.
(39)

We are now ready to address the 2D FBP. Starting again from Equation 31
with n = 2, we have

µ(~x) = 1

4π

∫
S1

∫ +∞

−∞
(2iπσ)

(−i sign(σ)
)

p̂~θ (σ)e2iπσ~x ·~θ dσd~θ, (40)

= 1

4π

∫
S1

∂

∂s
H p~θ

(
~x ·~θ

)
d~θ. (41)

We can now pinpoint the critical difference between the 2D and the 3D
cases. In the 3D case, the filtering step is a simple differentiation, which is
a local operation (it only involves a small neighbourhood around the value
of interest). Consequently, reconstructing the function at a point~x only re-
quires the knowledge of the projection data over planes traversing a small
neighbourhood of~x . On the other hand, in the 2D case, the Hilbert trans-
form is a convolution of the projection data with a convolution kernel h
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x

y

O

~sλ

λ

r
~x

~u

~w u~x

~α(u)

Figure 7: The fanbeam geometry of one projection. The ray passing through~x in-
tersects the detector at u = r~x ·~u/(r −~x ·~w ).

which is nowhere zero. Hence, the computation of H p~θ requires all the
projection data. Truncated data cannot be handled using a direct imple-
mentation of FBP. The problem of reconstructing an image from truncated
data is of major interest. It has long been considered that incomplete data
necessarily introduced artefacts in the whole reconstructed image. A break-
through was proposed in [55]: a region of interest could be exactly recon-
structed from incomplete data. See [10] for a historical review.

Note that we have described the modification of the projection in the 2D
case as a convolution with the Hilbert kernel followed by a differentiation.
We could have condensed both into one filtering (convolution) operation
by using the so-called ramp filter, defined in the Fourier space by

ρ(s) =
∫

|σ|e2iπσs dσ. (42)

The modification step∫ +∞

−∞
|σ|p̂~θ (σ)e2iπ~x ·σ~θ dσ (43)

can then be rewritten in the form of a convolution ρ∗p~θ

(
~x ·~θ

)
, hence the

name of filtered backprojection.

1.6.2 Fan-beam filtered backprojection and the FDK algorithm

In this section, we focus on the two-dimensional case and derive an FBP
formula for fanbeam projections acquired along a circular trajectory. The
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general idea is to apply the FBP inversion formula of Equation 31 - valid
for parallel projections - to the fanbeam data after a change from fanbeam
variables to the Radon space variables. We assume a circular trajectory of
the source, with radius r and let λ denote the angle made by the source
with respect to the y−axis. Therefore,~sλ = (−sinλ,cosλ). For convenience
of the derivation, the 1D detector is aligned6 and placed at the origin O 6 By aligned, we

mean that 1. the
principal ray passes
through the centre of
the trajectory O and
the detector origin
Od and 2. the
direction of the
detector is parallel
to the x−axis when
λ= 0.

of the PCS. A pixel’s position on the detector is identified with its abscissa
u. If ~α(u) denotes the unit vector originating at~sλ in the direction of the
detector position u (see Figure 7), we have

g (λ,u) =
∫ +∞

0
µ(~sλ+ t~α(u))dt . (44)

In the 2D Radon space, we identify the direction of a projection~θ with the
angle φ that ~θ makes with the y−axis. We have the following re-binning
formula from fanbeam coordinates to Radon space coordinates:

s = r up
r 2 +u2

(45)

θ =λ+ tan−1 u

r
(46)

Applying this change of variables in Equation 31 yields the following in-
version formula:

Theorem 6 (Fan-beam FBP).

µ(~x) =
∫ 2π

0

1

M 2

∫ +∞

−∞
g (λ,~α(u))

rp
r 2 +u2

ρ (u~x −u)du dλ, (47)

where M is the magnification factor M = r−~x ·~w
r , u~x = ~x ·~u

M and ρ the ramp
filter defined in Equation 42.

The fully detailed derivation of the previous fanbeam FBP formula can
be found in [35]. We simply outline here the physical meaning of each term
in the formula. First, the projection data are weighted with the cosine of the
incidence angle of the ray (the r /

p
r 2 +u2 term). The weighted projections

are then ramp-filtered. Finally the filtered projections are backprojected
with a 1/M 2 weight.

1.6.3 From fanbeam FBP to FDK

Though this thesis’s main interest is on 3D, the 2D fanbeam FBP reconstruc-
tion formula is of major importance because it is the basis for the most pop-
ular analytic7 reconstruction algorithm for 3D reconstruction from cone- 7 The qualifier

analytic here means
that it is an explicit
inversion formula. It
does not mean that
the algorithm is
exact.

beam projections: the Feldkamp-Davis-Kress (FDK) algorithm [21].
A concise presentation of the FDK algorithm can be found in [64], from

which we extract the following outline. The cone-beam data are acquired
along a circular trajectory in the y = 0 plane (the axis of rotation is (O y)),
with radius r . At each projectionλ, the 2D flat-panel detector is aligned and
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placed at the origin O. Heuristically, the FDK algorithm considers detector
rows which are not in the plane of the trajectory as 1D fanbeam projections
in the plane of a another (virtual) circular trajectory. Of course, this has
to be compensated for in the treatment of the corresponding line integral
values. Using the notation of PCS and 3DCS of the detector, the algorithm
numerically implements the following formula:

Definition 6 (The FDK reconstruction formula).

µF DK (~x) = 1

2

∫ 2π

0

1

M 2

∫ +∞

−∞
gλ(u, v̄)

rp
r 2 +u2 + v̄2

ρ(ū −u)du dλ, (48)

where (ū, v̄) are the coordinates of the intersection of the detector with the
ray from~sλ passing through~x . Explicitly, we have:

ū = r
~x ·~u

r −~x ·~w (49)

v̄ = r
~x ·~v

r −~x ·~w (50)

The FDK algorithm is very similar to the fanbeam FBP algorithm. We em-
phasize the main steps:

• Weight the projections with the cosine of the incidence angle,

• Ramp-filter each detector row (see Theorem 6 for the definition of
the ramp filter),

• Weight the filtered projections with the square of the inverse of the
magnification factor,

• Back-project the obtained filtered and weighted projection data.

We emphasize that the FDK algorithm is exact in the plane of the trajectory
(this means that if g =Dµ, then µFDK = µ for y = 0) but only approximates
the sought function µ outside this plane. More can be said on the accuracy
of FDK, see for example [64].

1.6.4 Cone-beam reconstruction

The FDK algorithm described in the previous section falls in the category
of cone-beam reconstruction but is essentially a heuristic extension of the
2D FBP algorithm to the 3D case. In this section, we address the challeng-
ing question of recovering a 3D object function µ from 2D cone-beam pro-
jections. We assume that each 2D projection is not truncated (the support
of the object function µ is fully contained in the field-of-view of the scan-
ner) and that the source trajectory is complete in the sense of Tuy [72]:
each plane crossing the support of the object function µ intersects non-
tangentially the trajectory of the source. This condition roughly guaran-
tees that for each point~x to be reconstructed, all planes passing through a
neighbourhood of~x are measured so that the 3D Radon inversion formula
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of Equation 37 can be applied. A two-orthogonal circles trajectory satis-
fies Tuy’s condition. On the other hand, the single circle trajectory does
not, since planes parallel to the trajectory have no intersection with the
trajectory. The completeness conditions are not discussed here. We sim-
ply mention that most clinical CT scanners (with helical trajectory) satisfy
Tuy’s condition but C-arm (circular trajectory) do not.

Instead of sequentially presenting the various cone-beam inversion
methods of Tuy [72], Smith [68] and Grangeat [25, 26], we adopt the uni-
fying framework of [12] and [8]. It will give us the opportunity to intro-
duce some intermediate functions, which will play a major role in the con-
tributions of this PhD work. The theoretical framework encompasses the
three aforementioned cone-beam inversion methods. All these methods
are based on the 3D Radon inversion formula of Equation 37. They differ in
the pre-processing of the projection data before backprojection. As usual,
the projection data are denoted g (λ,~α) where λ ∈ Λ parametrizes the tra-
jectory of the source and ~α ∈ S2 is the direction of one ray. The method is
two-step:

• For each projection, evaluate an intermediate function G(λ,~β) which
links the cone-beam data to the Radon transform of the object func-
tion µ,

• Back-project a convolved and re-sampled version of the intermedi-
ate function.

In view of mathematically deriving the procedure, it is necessary to intro-
duce four real functions (actually, distributions)8: the Dirac δ distribution 8 We call these

distributions filters
in the manuscript
because they are
used as convolution
kernels. But one
must keep in mind
their true nature:
distributions. Some
advanced properties
of the Dirac δ
distribution are also
given in
Appendix 1.1.5.

and its derivative (as a distribution) δ′, the ramp filter ρ and the Hilbert fil-
ter h. Though these functions were already introduced elsewhere, we give
a uniform (though not rigorous, see Appendix 1.1) definition in terms of
their Fourier transform. For all s ∈R,

δ(s) =
∫ +∞

−∞
e2iπσs dσ, (51)

δ′(s) = 2iπ
∫ +∞

−∞
σe2iπσs dσ, (52)

ρ(s) =
∫ +∞

−∞
|σ|e2iπσs dσ, (53)

h(s) =−i
∫ +∞

−∞
sign(σ)e2iπσs dσ. (54)

These functions have interesting properties: δ and h are homogeneous9 9 A function f is
said homogeneous
of degree k ∈Z if for
all a > 0,
f (ax) = ak f (x) for
all x.

of degree −1 while δ′ and ρ are homogeneous of degree −2. Also, ρ and
δ are even ( f (−x) = f (x), ∀x) while h and δ′ are odd functions ( f (−x) =
− f (x), ∀x). The Table 1 summarizes these properties. It is easy to prove
(see Appendix ??)that the set of 1D functions, homogeneous of degree -2,
form a vector space, that this space has dimension 2, and it is spanned by
δ′ and ρ.
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Hom. deg.-1 Hom. deg. -2

Even δ ρ

Odd h δ′

Table 1: Properties of the filters.

We now introduce the intermediate function

Gτ(λ,~β) =
∫

S2
ετ

(
~α ·~β

)
g

(
λ,~α

)
d~α, (55)

where ετ is a convex combination (0 ≤ τ≤ 1) of δ′ and ρ:

ετ(s) = (1−τ)δ′(s)+τρ(s). (56)

Gτ relates the cone-beam projection to the 3D Radon transform of the
object function µ through the following derivation, which essentially in-
volves the polar-to-Cartesian change of variables~x =~sλ+t~α, with jacobian
t 2 = ‖~x −~sλ‖2.

Gτ(λ,~β) =
∫

S2
ετ

(
~α ·~β

)∫ +∞

0
µ

(
~sλ+ t~α

)
dt d~α, (57)

=
∫
R3
ετ

(
~x −~sλ
‖~x −~sλ‖

·~β
)
µ (~x)

d~x

‖~x −~sλ‖2 , (58)

=
∫
R3
ετ

(
~x ·~β−~sλ ·~β

)
µ (~x)d~x , (59)

=
∫
R3

(∫ +∞

−∞
ετ

(
s −~sλ ·~β

)
δ

(
~x ·~β− s

)
ds

)
µ (~x)d~x , (60)

=
∫ +∞

−∞
ετ

(
s −~sλ ·~β

)(∫
R3
δ

(
~x ·~β− s

)
µ (~x)d~x

)
ds, (61)

=
∫ +∞

−∞
(
(1−τ)δ′+τρ)(

s −~sλ ·~β
)
Rµ

(
~β, s

)
ds, (62)

= τ(
ρ∗Rµ

)(
~sλ ·~β

)
− (1−τ)

(
δ′∗Rµ

)(
~sλ ·~β

)
(63)

Thanks to the symmetry properties of δ′ and ρ, the intermediate func-
tion takes clearly the form of a filtering of the Radon transform of the object
over the plane H~β,~β·~sλ .

Following [12], we introduce the function Fτ(~β, s) = Gτ(λ,~β) where λ is
such that~sλ ·~β= s. The latter condition means that the plane H~β,s contains
the source position~sλ. The reconstruction formula is finally given by

fr (~x) = 1

2(2τ2 −2τ+1)

∫
S2

(∫ +∞

−∞
ετ

(
~x ·~β− s

)
Fτ

(
~β, s

)
ds

)
d~β. (64)

Note that the outer integration is not a backprojection since it does not
integrate over the source trajectory. The integrand function is a filtered ver-
sion of the function Fτ.

Each value of τ provides a reconstruction method. We emphasize here
two specific values. For τ = 0, ε0 = δ′ and the corresponding reconstruc-
tion method is that proposed by Grangeat in [25, 26]. The related interme-
diate function G0 will be denoted Gg in the sequel. For τ = 1, ε1 = ρ and
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the reconstruction method is that of Smith [68] (also derived in [39]). The
corresponding intermediate function G1 will be denoted Gs . Moreover, it
is shown in [12] that the method of Tuy [72] is mathematically equivalent
to Grangeat’s method and fits the case τ= 0. Though similar in their math-
ematical treatment, the two methods are very different in practice. As al-
ready encountered in the inversion of the Radon transform, the ramp filter
ε1 has infinite support and evaluation of Gs requires that the whole projec-
tion of the object is available. On the other hand, convolving with δ′ acts as
a differentiation and is thus a local operation. The consequences of these
differences will be studied in Chapter II-1.

Though of theoretical importance, these methods have not been widely
used in tomographic systems. One of the reasons is that the final step - the
outer integral in Equation 64 - is not a backprojection. Instead, it scans all
planes passing through the point being reconstructed, find a source posi-
tion inside that plane, and add the corresponding contribution to the re-
construction. So methods following this approach require that all projec-
tion data must be available before reconstructing. In a (filtered) backprojec-
tion, each projection can be treated as it is acquired. FBP-like cone-beam
reconstruction methods have been proposed, for example in [20, 36, 39].

Much more could be said about tomographic reconstruction. Specifi-
cally, the question of dealing with incomplete data (limited angle, trun-
cated data) has not been addressed. The reader is referred to [53] for a
mathematical treatment of these questions. Also, we did not mention he-
lical trajectories. They are used in most of the diagnostic CT systems today.

1.7 T H E G R A N G E AT T H E O R E M A N D I T S P R O O F

The previous section introduced the intermediate functions of Equation 55
as they will play a important role in the contributions presented in Part II.
In this section, we give the Grangeat theorem (central to Chapters II-1 and
II-3) in its original form. The proof starts from the intermediate function
Gg of Equation 55, with τ= 1. The proof relies essentially on the change of
variables from spherical coordinates to Cartesian coordinates of the detec-
tor, which we derive completely here and which will be used several times
in the sequel.

We consider a cone-beam projection gλ acquired on a detector, denoted
D . For ~β ∈ S2 we let H~β,~sλ·~β denote the plane orthogonal to ~β and con-
taining ~sλ. Without loss of generality, the DCS origin is at the principal
point10 and the u−axis is parallel to D

⋂
H~β,~sλ·~β. The 2D DCS is extended to 10 The principal

point is the
orthogonal
projection of the
source position onto
the detector.

a 3D coordinate system by including the unit vector ~w . In the 3DCS, we
use (θ,φ) to denote the spherical coordinates, so defined that ~α(θ,φ) =
(sinφ, sinθcosφ,−cosθcosφ), as illustrated in Figure 8 right. We also de-
fine θ̄ so that ~β = (0,sin θ̄,cos θ̄). Finally, f denotes the distance from the
source to the detector. Then we have
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Theorem 7 (Grangeat’s Theorem).

1

cos2 θ̄

∂

∂v

∫ +∞

−∞
gλ(u, v) f√
u2 + v2 + f 2

du

∣∣∣∣
v= f tan θ̄

= ∂

∂s
Rµ

(
~β, s

)∣∣∣∣
s=~sλ·~β

(65)

In the original work of Grangeat, the theorem was expressed in the form
of Equation 65. The computation of the LHS from the projection image
gλ(u, v) follows the following four steps:

1. Weight the projection with the cosine of the incidence angle,

2. Compute line integrals in the u-direction,

3. Differentiate the obtained 1D signal with respect to v ,

4. Divide by cos2 θ̄.

Proof. The proof proceeds by proving that both the LHS and the RHS are

equal to the intermediate function Gg

(
λ,~β

)
. From Equation 62, we already

have

Gg (λ,~β) =
∫ +∞

−∞
δ′

(
s −~sλ ·~β

)
Rµ

(
~β, s

)
ds. (66)

The right-hand side (RHS) of Equation 66 is exactly the RHS of Equation 65.

O

~u
~v

~w

~sλ

~β
~α

θ
φ

(u, v)

Figure 8: Left: The 3D Detector coordinate system. Right: the spherical coordi-
nates of the vector ~α. Note the unusual orientation: the polar axis is hor-
izontal. The vector~β has spherical coordinates (β̄,0).

We will now prove that

Gg

(
λ,~β

)
= 1

cos2 θ̄

∂

∂v

∫ +∞

−∞
gλ(u, v) f√
u2 + v2 + f 2

du

∣∣∣∣
v= f tan θ̄

(67)

by changing the integration over the sphere S2 in Gg to the integration over
the detector’s (u, v) coordinates. The first step consists in parametrizing
the sphere S2 with spherical coordinates. In the 3DCS (O,~u,~v ,~w ) defined
above, we have

~α= (sinφ, sinθcosφ,−cosθcosφ) (68)

d~α= cosφdφdθ (69)

(θ,φ) ∈ [−π,π[× ]−π/2,π/2] (70)
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We do not re-write the integral for now since we are not interested in hav-
ing it in terms of spherical coordinates but keep in mind the cosφ term that
arises from the parametrization. Instead, we move forward to the (u, v) co-
ordinates with the following change of variables:

v = f tanθ (71)

u =
√

v2 + f 2 tanφ (72)

The three following facts hold:

dθdφ = f

(u2 + v2 + f 2)
√

v2 + f 2
du d v , (73)

cosφ =
√

v2 + f 2√
u2 + v2 + f 2

, (74)

~α(θ,φ) = u~u + v~v −~sλ√
u2 + v2 + f 2

(75)

Equation 73 results from differentiating Equations 71 and 72. Equa-
tion 74 results from simple trigonometry. Equation 75 results from the
choice of the coordinate system (~u,~v ,~w ) (see Figures. 8 and 9). Putting all
this together, slightly simplifying and using the homogeneity of δ′ (of de-
gree −2), we have :

Gg

(
λ,~β

)
=

Ï
δ′

(
u~u + v~v −~sλ√

u2 + v2 + f 2
·~β

)
gλ (u, v) f du dv

(u2 + v2 + f 2)
√

u2 + v2 + f 2
(76)

=
Ï

δ′
(
(u~u + v~v −~sλ) ·~β

) gλ (u, v) f√
u2 + v2 + f 2

du dv (77)

Note that the remaining weight in the integral is the usual cosine of the
incidence angle. We denote g̃ the cosine weighted projection (this notation
will be used in the rest of the document):

g̃λ(u, v) = f√
u2 + v2 + f 2

g (λ,u, v). (78)

and remark that ~u ·~β = 0 by definition of ~u, that ~v ·~β = cos θ̄, and since
~sλ = f ~w ,~sλ ·~β= f sin θ̄ (see Figure 9). We then have:

Gg

(
λ,~β

)
=

∫
R2
δ′

(
v cos θ̄− f sin θ̄

)
g̃λ(u, v)du dv , (79)

=
∫
R2

1

cos2 θ̄
δ′

(
v − f tan θ̄

)
g̃λ (u, v)du dv , (80)

= 1

cos2 θ̄

∂

∂v

∫
g̃λ (u, v)du

∣∣∣∣
v= f tan θ̄

, (81)

which completes the proof.
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O
~w

~v

~sλ
θ̄

~β

f

Figure 9: View of the plane u = 0.
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This chapter focusses on the cone-beam geometry and presents a paramet-
ric model for the accurate description of the geometry of one conic projec-
tion. By geometry of one projection, we mean position and orientation of
the gantry, i. e. the system made of the X-ray source and the 2D flat detec-
tor. Mapping 3D space points to 2D detector’s pixels relies on the geometry
hence the importance of this geometric description. We make the follow-
ing hypotheses, which correspond to the physical devices that this work is
addressing:

• The X-ray source is infinitesimally small,

• The surface of the detector is a rectangle, with length l and width w
(expressed in millimetres),

• The pixels are squares (the grid is orthogonal and the size of the pix-
els is the same in both directions).

• The detector is equipped with a detector coordinate system (DCS),
denoted (Od ,~u,~v ). Od is the centre of the detector, the u− and
v−axes coincide with detector rows and columns respectively.

2.1 N I N E G E O M E T R I C PA R A M E T E R S

With the above assumptions, a complete description of the geometry
of one projection requires nine geometric parameters. We adopt the
parametrization of the Computer Vision community to model a pinhole
camera. In that convention, extrinsic parameters are distinguished from
intrinsic parameters. The former describe the position and the orientation
of the device. The latter describe the relative position of the two compo-
nents (the X-ray source and the detector). Given a 3D patient coordinate
system (PCS) (O,~x ,~y ,~z), the source position is described by three parame-
ters (xλ, yλ, zλ) (where λ ∈Λ is a scalar which parametrizes the trajectory)
and the orientation of the detector axes is determined by three Euler angles
(η,θ,φ) (see Figure 11 and below). Note that (θ,φ) alone, if seen as spheri-
cal coordinates as in Section 1.7, define a unit vector normal to the detec-
tor plane. The angle η finally rotates the detector axes within this plane. We
now place the detector in space so that in the 3D detector coordinate sys-
tem (3DCS), the source has coordinates (u0, v0, f ). Figure 10 recapitulates
all the parameters.

O N E U L E R A N G L E S A N D R O TAT I O N M AT R I C E S Defining the 3D orien-
tation of the detector is a problem of convention. Intuitively, it requires

23
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~sλ =


xλ

yλ

zλ

OOd

v0

u0

~ez

~ex

~e y

~v

~u

~w

Figure 10: Given the PCS (O,~ex ,~e y ,~ez ); the source~sλ has coordinates (xλ, yλ, zλ).
In the 3DCS (Od ,~u,~v ,~w ), the source has coordinates (u0, v0, f ).

three degrees of freedom: two parameters define the normal direction of
the detector. The third parameter rotates the detector into the plane de-
fined by the normal. In summary, orienting the detector is equivalent to
applying a 3D rotation to the axes of the PCS. A 3D rotation can be decom-
posed into the product of three elemental rotations11. There are 24 possible11 We call elemental

rotation a rotation
about one axis of a
coordinate system.

conventions for this decomposition1. One usually refers to such a conven-
tion as Euler angles. The convention which is used in this work is the Tait-
Bryan convention with the sequence zxy. It is described in Figure 11. Any
3D rotation, denoted Rη,θ,φ can be decomposed as Rη,0,0R0,θ0R0,0,φ where
each rotation is about the z−, x− and y−axis of each intermediate rotated
coordinate system12. In matrix notation, we have:12 Note that the

rotations are defined
by their action on

the coordinates
rather than with

their action on
affine points.

Rη,θ,φ =


cosη −sinη 0

sinη cosη 0

0 0 1




1 0 0

0 cosθ −sinθ

0 sinθ cosθ




cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ

 (82)

This parametrization describes the acquisition geometry of one pro-
jection. The modification of one intrinsic parameter u0, v0 or f without
changing the eight other parameters results in the modification of the 3D
position of the detector, without affecting the source position, nor the ori-
entation of the detector. The modification of one of the source parame-
ters xλ, yλ or zλ without changing the eight other parameters results in
the modification of the whole system (source and detector). Regarding the
three Euler angles, there is an ambiguity in what should be the state of the
system after one of these angles is modified (without changing the eight

1 See https://en.wikipedia.org/wiki/Euler_angles for detailed presentation of Euler
angles.

https://en.wikipedia.org/wiki/Euler_angles
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φ

z
z ′

x
x ′

y , y ′

θ

y ′y ′′

z ′

z ′′

x ′, x ′′

η

x ′′

xo

y ′′

yo

z ′′, zo

Figure 11: The zxy Tait-Bryan angles convention. First, a rotation of φ about the
y world axis is applied (left). Then, a rotation of θ about the rotated x
axis (middle). Finally, a rotation of η about the rotated z axis (right). The
final coordinates are the OCS coordinates (xo , yo , zo).

xλ : x −coordinate of the source

yλ : y −coordinate of the source

zλ : z −coordinate of the source

η : in-plane angle

θ : out-of-plane angle

φ : out-of-plane angle

f : focal distance ( f > 0)

u0 : u −coordinate of principal point

v0 : v −coordinate of principal point

Table 2: The nine geometric parameters of one projection.

others). In the Computer Vision world, this would result in a displacement
of the detector (both in orientation AND position). But the mechanical ef-
fect of a deforming C-arm that we want to model does not fit this Com-
puter Graphics convention. When the detector is tilted, we mean to change
the orientation of the detector but not its position. The ambiguity is: what
point of the detector is the reference point for its 3D position?

2.2 T H E P R O J E C T I O N M AT R I X

The acquisition geometry is a key input to the tomographic reconstruction.
In CT software, the geometry may be defined by an end-user using geo-
metric parameters as described above. This information is then encoded
in the system as a mapping from 3D point in world (homogeneous) coor-
dinates to the 2D (homogeneous) coordinates of the central projection of
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O ~x

~z

x

z

Od u

O
~z

~y

y

z
Od

v

Figure 12: The intrinsic matrix. The 3D point (x, y , z) is projected at the position
(u, v) on the detector.Left: Top view (y = 0). Right: Side view (x = 0).

that point on the detector, e. g. the intersection of the detector and the line
passing through the source and the point. It is usual to encode this map-
ping as a matrix, called the projection matrix. This section explains how
the projection matrix is built from a set of parameters.

The reader who is not acquainted to projective geometry will find the ba-
sics in Appendix 1.3. The projection matrix is a projective mapping from a
3D-real projective space to the 2D-real projective plane of a detector. The
size of the matrix is 3 × 4 (points are expressed in homogeneous coordi-
nates).

2.2.1 The intrinsic matrix

Let us, for now, make the following assumptions on the geometry:

• The source is at the origin O of the PCS.

• The detector lies in the plane z =− f ( f > 0).

• The origin Od of the detector is at (0,0,− f ).

• The u− and v− axes are parallel to and have same direction as the
x− and y− axes respectively.

With these assumptions, it easily seen (see Figure 12) that a 3D point
(x, y , z) projects on a point (u, v) satisfying the relations

u =− f
x

z
(83)

v =− f
y

z
, (84)

which can be written in a matrix form:
u

v

1

'


− f 0 0

0 − f 0

0 0 1




x

y

z

 , (85)
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where ' means equality up to a non-zero multiplicative constant. If the
detector is translated within the plane z = − f by a vector (−u0,−v0) (the
principal point now has coordinates (u0, v0) in the detector’s coordinates),
this relation becomes:

u

v

1

=


− f 0 u0

0 − f v0

0 0 1




x

y

z

 (86)

The matrix in Eq 86 is called internal matrix or intrinsic matrix. It is usually
denoted K in the rest of the manuscript. Let us now suppose that the whole
system (source and detector) is translated by~s = (xλ, yλ, zλ) and rotated by
Rη,θ,φ. The projection matrix P is then obtained by right-multiplying K by
the matrix corresponding to the rigid motion

P = K Rη,θ,φ


1 0 0 −xλ

0 1 0 −yλ

0 0 1 −zλ

 . (87)

If unambiguous, the rotation matrix is simply denoted R instead of Rη,θ,φ

for ease of notation. In the computer vision literature, the decomposition
of a projection matrix can take several forms, each of which conveys spe-
cific information.

P = K R
[
I3|−~s

]
(88)

= K
[
R|−~t]

(89)

= [
A|P·4

]
, (90)

where P· j denotes the j -th column of the matrix P . Similarly, P T
i · will be

used to denote the i -th row of the matrix P . In Equation 88, I3 denotes the
identity matrix of R3 and~s the source position in the PCS. In Equation 89,
~t denotes the coordinates of the source in the oriented coordinate system
(OCS). The matrix R is the orthogonal matrix which converts PCS coordi-
nates to OCS coordinates

R =


− ~eo

x −
− ~eo

y −
− ~eo

z −

 , (91)

so that~t = R~s. In Equation 90, the matrix A plays a significant role in the se-
quel. In the cone-beam context of this thesis, the matrix A is non-singular.
The matrix A is singular if and only if the source position is at a point at
infinity (in the 3D-real projective space), which corresponds to a parallel
beam geometry.

2.3 F R O M T H E P R O J E C T I O N M AT R I X T O T H E G E O M E T R I C PA R A M E -
T E R S

In the previous section, we described how to build up the projection matrix
from the geometric description of the system. In this section, we do the



28 D E S C R I B I N G T H E G E O M E T R Y O F O N E P R O J E C T I O N

reverse. Given a projection matrix, how are the geometric parameters de-
rived? The main mathematical tool is the so-called QR-decomposition. But
some non-uniqueness issues in this decomposition would add irrelevant
complexity to the presentation. Thus we derive the parameters manually.

It is easily seen that P·4 =−A~s, hence the immediate identification of xλ,
yλ and zλ:

xλ

yλ

zλ

=−A−1P·4. (92)

Note that A is a 3×3 non-singular matrix whose inversion is not problem-
atic in terms of computational load.

We now focus on the intrinsic parameters u0, v0 and f . The rows of the
matrix R are~eo

x ,~eo
y and~eo

z respectively. From the definition of A, we have

A =


− f 0 u0

0 − f v0

0 0 1



− ~eo

x −
− ~eo

y −
− ~eo

z −

 (93)

=


− − f~eo

x +u0~e
o
z −

− − f~eo
y + v0~e

o
z −

− ~eo
z −

 . (94)

Using the orthogonality of the rows of R, we obtain

u0 = AT
1·A3· (95)

v0 = AT
2·A3· (96)

Recalling that we assumed f > 0, we also get

f =
√

AT
1·A1·−u2

0 =
√

AT
2·A2·− v2

0 (97)

At this stage, the matrix K is fully determined. It follows that R = K −1 A.
The last step is the derivation of the three Euler angles from the rotation
matrix R. According to the zxy Tait-Bryan convention given in Equation 82,
R is decomposed as

R =


cosηcosφ− sinηsinφsinθ −sinηcosθ cosηsinφ+ sinηcosφsinθ

sinηcosφ+cosηsinφsinθ cosηcosθ sinηsinφ−cosηcosφsinθ

−sinφcosθ sinθ cosφcosθ

 .

(98)

By choosing θ ∈ [−π/2;π/2] and the other two angles in [−π,π[, we have

θ = arcsinR32 (99)

φ= arctan2(R33,R31) (100)

η= arctan2(R22,−R12) , (101)

where the function arctan2(x, y) returns the polar angle (in [−π,π[) of the
point (x, y).
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In this section, we give a general overview of the literature on data consis-
tency conditions. From a very general perspective, let us consider a linear
operator M : E −→ F which model the acquisition system (the measures).
If f ∈ E , the collected measures are g =M f . We address the following ques-
tion: given g ∈ F , does g belong to the image (the range) of M ? DCC are
conditions that the measured data must fulfill to belong to the range of
the forward operator. Heuristically, if a function g does not belong to the
image of M , the reconstruction process is doomed to failure, i. e. the recon-
structed object function will be degraded by artefacts.

Artefacts in image reconstruction from X-ray projections stem from
physical effects (beam hardening, scattering...) which usually break the
consistency of the measured data. A general roadmap for DCC-based arte-
fact reduction is three-step:

1. Design a parametric model of the phenomenon (beam hardening,
scatter, motion, misalignment...),

2. build a cost function which depends on the model parameters and
quantifies the inconsistency of the data and,

3. minimize the cost function with respect to the model parameters.

3.1 T H E R A N G E O F T H E R A D O N T R A N S F O R M

The Helgason Ludwig characterization is the most important. It provides a
set of conditions which are necessary and sufficient. In short, these condi-
tions give a complete answer to the problem of characterizing the range of
the operator.

After stating the main theorem and giving a partial proof, we give a geo-
metrical interpretation of these conditions, which was proposed in [16]. I
spend some space here to describe this approach for several reasons: first,
I find the approach mathematically appealing and quite elegant. Second,
this could provide a systematic roadmap for the derivation of geometrically
driven DCC. I spent sporadic time on that topic over my PhD period and
unfortunately was not able to elaborate such roadmap. It remains in the
background of my to-do list.

3.1.1 The Helgason-Ludwig Consistency Conditions (HLCC)

The characterization of the range of the Radon transform has been given a
complete solution in the mid 1960’s by Ludwig [46] and Helgason [30]. This

29
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characterization is now well known under the name of Helgason-Ludwig
Consistency Conditions (HLCC).

Theorem 8 (Helgason-Ludwig Consistency Conditions). A function p is the
Radon transform of a function µ ∈S (Rn) if and only if:

1. p ∈S
(
Sn−1 ×R)

,

2. p is even in s and~θ: ∀(~θ, s) ∈ Sn−1 ×R, p
(
−~θ,−s

)
= p

(
~θ, s

)
,

3. For all integers m ≥ 0,

Jm

(
~θ

)
=

∫
R

p
(
~θ, s

)
sm ds (102)

is a homogeneous polynomial13 in the coordinates of ~θ of degree at13 A polynomial
P (X ,Y , Z ) is said
homogeneous of
degree m if it is a

linear combination
of monomials

X i Y j Z k such that
i + j +k = m.

most m.

Proof. Most of the proof is omitted. Especially the sufficiency of conditions
1., 2. and 3.. We will not spend too much time on the first condition, which
is technical. Our general assumption that the functions we are dealing with
are in the Schwartz spaces is enough to guarantee the validity of most of the
theorems covered in this work. The necessity of the second condition sim-

ply states that the Radon coordinates
(
~θ, s

)
and

(
−~θ,−s

)
define the same

hyperplane: H~β,s = H−~β,−s . Finally, only the necessity of condition 3. re-

mains. We simply substitute the definition of p
(
~θ, s

)
in the definition of

Jm and apply the (unit-jacobian) change of variables~x = s~θ+~y .

Jm

(
~θ

)
=

∫
R

∫
~θ

⊥ µ
(
s~θ+~y

)
sm d~y ds (103)

=
∫
Rn
µ (~x)

(
~x ·~θ

)m
d~x (104)

The RHS of the last line is clearly14 a homogeneous polynomial in the coor-14 In 2D at least:
write

~θ = (cosφ, sinφ)
and expand the(
~x ·~θ

)m
term.

dinates of~θ.

In dimension two, the condition 3. is called in projection form. An expres-
sion will be said in projection form when its computation only involves one
single projection. The condition 3. in projection form is equivalent to the
scalar-product form:

∀0 ≤ m < |k|,
∫ 2π

0

∫
R

p
(
~θφ, s

)
sm ei kφds dφ= 0, (105)

where~θφ = (−sinφ,cosφ)15. This condition is not in projection form since15 This result
generalizes to higher

dimensions with
spherical harmonics.
See [53] for instance.

all projections p(~θφ, ·) are incorporated.
In the applications, the projection form will be preferred because the

consistency of one projection can be checked as soon as it is acquired. On
the other hand, the scalar-product form requires that all the projections
are available to check their global consistency (see [9] for more details and
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the section below). The reader is referred to the paper of Ludwig [46] for
the original, complete, and general proof of Theorem 8. The proof of the
sufficiency is quite involved and omitted here.

We now very briefly illustrate the polynomial nature of Jm numerically.
We simulated the 2D Radon transform of the 2D Shepp-Logan phantom
over 180 degrees. The phantom and the corresponding sinogram are pre-
sented in Figure 13. We computed the functions Jm(φ) for m = 0,1,2,3. Re-
sults are reported in Figure 14.

φ

s

Figure 13: The 2D Shepp-Logan phantom (left) and its sinogram over 180 degrees
(right).

3.1.2 A geometrical interpretation of the HLCC

This section is independent from the rest of the manuscript. It can be
skipped without hindering comprehension of the following sections. It is
directly inspired by [16]. In this paper, the authors present a geometrical
approach for deriving DCC.

For ease of notation, we set E = S (R2) and F = S (S1 ×R). E is called
the object space and F is called the data space or Radon space. Elements
of E are denoted µ (the object functions) and elements of F are denoted
p (the projection functions). Both spaces are equipped with their standard
inner-product

〈µ1,µ2〉E =
∫
R2
µ1 (~x)µ2 (~x)d~x , (106)

〈p1, p2〉F =
∫ 2π

0

∫
R

p1
(
φ, s

)
p2

(
φ, s

)
ds dφ. (107)

If~θφ = (−sinφ,cosφ), we consider the 2D Radon transform

R :

{
E → F

µ 7→Rµ
(108)
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0 60 120 180 0 60 120 180

0 60 120 180 0 60 120 180

n = 0 n = 1

n = 2 n = 3

Figure 14: The Helgason-Ludwig consistency conditions. For each m = 0,1,2,3,
the corresponding figure plots the moments Jm(φ). The trigonometric
nature of Jm appears for each m. Note though that for the case m = 0,
whether J0 is a constant or not very much depends on the y-scale of the
graphic.

such that

Rµ
(
~θφ, s

)
=

∫
R
δ

(
s −~θφ ·~x

)
µ (~x)d~x . (109)

T H E R A N G E O F R A N D T H E N U L L S PA C E O F R∗ The range of R is
denoted imR: imR = {

Rµ,µ ∈ E
}
. It is a closed [32] subspace of F . We let

(imR)⊥ be the orthogonal supplement of imR

(imR)⊥ = {
p ∈ F such that 〈p,Rµ〉F = 0 ∀µ ∈ E

}
(110)

and nullR∗ = {
p ∈ F such that R∗p = 0

}
be the null space of the adjoint

operator R∗ (nullR∗ is a subspace of F ). We have the following

Proposition 9. Let
(
p̃i

)
i∈I be a basis of the null-space nullR∗. Then, p ∈

imR if and only if:

〈p̃i , p〉F = 0 ∀i ∈ I (111)

Before the proof, we have two lemmas. First,

Lemma 1.

p ∈ imR ⇐⇒ 〈p, p̃〉F = 0 ∀p̃ ∈ (imR)⊥ (112)
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Proof. The necessity of the condition is exactly the definition of (imR)⊥.

Suppose now that 〈p, p̃〉F = 0 for all p̃ ∈ (imR)⊥. Since F = imR
⊥⊕ (imR)⊥,

one can decompose p as pR+p(imR)⊥ with pR ∈ imR and p(imR)⊥ ∈ (imR)⊥.
The condition hence writes 〈p(imR)⊥ , p̃〉F = 0 for all p̃ ∈ (imR)⊥ which is
equivalent to p(imR)⊥ = 0. Hence p = pR and the proof is complete.

The following easy lemma relates (imR)⊥ to the adjoint of R.

Lemma 2.

(imR)⊥ = nullR∗. (113)

Proof. By definition of (imR)⊥, p̃ ∈ (imR)⊥ if and only if 〈Rµ, p̃〉F = 0 for
all µ ∈ E , i. e. if and only if 〈µ,R∗p̃〉E = 0 for all µ ∈ E , hence R∗p̃ = 0 and
p̃ ∈ nullR∗.

Proof of Proposition 9. If
(
p̃i

)
i∈I is a basis of nullR∗ and p ∈ F (say, a stack

of projections). From Lemma 1, p ∈ imR if and only if p is orthogonal to

(imR)⊥. And from Lemma 2, being orthogonal to (imR)⊥ is equivalent to
being orthogonal to nullR∗ hence the desired result by linearity.

T H E G R O U P O F D I R E C T S I M I L A R I T I E S S We now introduce the gen-
eral framework of [16]. We consider the set S of direct similarities of the
plane R2. Elements of S are denoted s and are represented by the triple(
r ,θ,~b

)
where r > 0, θ ∈ [0,2π[ and~b ∈ R2. The non-negative real r is the

scaling factor, θ is the rotation angle and~b is the translation. The compo-
sition of two direct similarities is also a similarity. If Rθ denote the rotation
with angle θ, the transformation s = (r ,θ,~b) transforms~x in s(~x) with

s(~x) = r Rθ~x +~b (114)

The composition of s =
(
r ,θ,~b

)
(first) and s′ =

(
r ′,θ′,~b

′)
(second), de-

noted ss′, is easily found to be the similarity (r r ′,θ + θ′,r ′Rθ′~b +~b′
). Of

course, the identity I belongs to S (the corresponding triple is (1,0,~0)) and
for s = (r ,θ,~b) ∈ S, the reciprocal transformation is

s−1 = (1/r ,−θ,−r−1R−θ~b). (115)

Equipped with this internal law, S is a group.

G R O U P R E P R E S E N TAT I O N A N D S Y M M E T R Y G R O U P A representation
of S on E (or F or any vector space) is a linear group action of S on E , i. e. a
map {

S ×E → E

(s,µ) 7→ s ·µ
, (116)

satisfying

1. ∀µ ∈ E , I ·µ=µ



34 D ATA C O N S I S T E N C Y C O N D I T I O N S : A R E V I E W

2. ∀(s, s′) ∈ S ×S, s · (s′ ·µ)= (
ss′

) ·µ
3. for λ ∈R and µ,µ′ ∈ E , s ∈ S, s · (µ+λµ′) = s ·µ+λs ·µ′.

For (s,µ) ∈ S ×E , we define the representation of S on E by(
s ·µ)

(~x) =µ(
s−1(~x)

)
(117)

where s−1(~x) is defined by Equations 114 and 115. It is easy to verify that
Equation 117 defines a representation of S on E . In other words, for all s ∈ S,
the map µ 7→ s ·µ, denoted πs , is an automorphism of E i. e. πs ∈ GL(E).
We denote π this representation. The representation π has the important
property that 〈πsµ,πsµ

′〉E = a(s)〈µ,µ′〉E for some non-zero a(s), for all s ∈ S
and all µ,µ′ ∈ E . Such a representation is called a conformal representation.

Suppose now that we have two representations π and ρ of S on E and F
respectively. In [16], S is called a symmetry group for R if R is an equivari-
ant map, i. e. is such that the following diagram commutes

E F

E F

R

πs ρs

R

, (118)

which is equivalent to

R
(
πs

(
µ
))= ρs

(
Rµ

)
, ∀s ∈ S,∀µ ∈ E . (119)

The representationπ has already been defined. In order for S to be a sym-
metry group, for s = (r ,θ,~b) ∈ S, ρs is defined by

ρs(p)
(
~θφ, s

)
= p

(
~θφ−θ,

s −~θ ·~b
r

)
. (120)

It is also easily checked that 〈ρs(p),ρs(p ′)〉F = r 〈p, p ′〉E so that ρ is also a
conformal representation.

So far, we have introduced two representations of the group S of direct
similarities, which are compatible with the Radon transform R in the sense
that Equation 119 is satisfied. Before moving forward to the derivation of
the HLCC through this geometric machinery, it is necessary to emphasize
an important property of (imR)⊥, the nullspace of R∗ (i. e. the orthogonal
complement of imR):

Lemma 3. (imR)⊥ is S-invariant:

∀s ∈ S,∀p̃ ∈ (imR)⊥ ,ρs(p̃) ∈ (imR)⊥ . (121)

Proof. Let s ∈ S and p̃ ∈ (imR)⊥. Let µ ∈ E . One has

〈Rµ,ρs(p̃)〉F = 〈ρsρs−1Rµ,ρs(p̃)〉F (122)

= r 〈ρ−1
s Rµ, p̃〉F (123)

= r 〈R (
πs−1 (µ)

)
, p̃〉F (124)

= 0. (125)

The second line is obtained with the conformality of ρ, the third one is
Equation 119 and the last one is the hypothesis p̃ ∈ (imR)⊥.
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I N VA R I A N T S U B S PA C E A N D H L C C Representation theory states that
if a subspace is S-invariant, there must be a basis with functions of the
form16: 16 This is the tricky

part of the paper,
which I -
unfortunately - did
not completely
elucidate.

p(m,k)
(
~θφ, s

)
= sm e2iπkφ, (126)

so that we recover the HLCC from Proposition 9.
The nice thing about this framework is that each part of the HLCC finds a

nice geometric interpretation. The sm term in the basis functions is related
to the scaling of the similarities. The exponential part is related to the rota-
tion. And finally, the constraints on k and m in Equation 105 (0 ≤ m < |k|)
result from a close analysis of translations. For other transform (and for 3D
cone-beam in particular), the authors also derive DCC. We will mention
them quickly at the end of Chapter II-1.

3.2 I N D I V E R G E N T B E A M G E O M E T R Y

The HLCC are a complete answer to the consistency problem. Moreover,
they are very useful in practice thanks to their projection form. When deal-
ing with the divergent-beam geometry, it is a general rule that things get
more complicated. As was already mentioned for the reconstruction meth-
ods, the first intuitive way of addressing a divergent-beam problem is to
rearrange the divergent data into parallel-beam data. Of course, deriving
DCC in divergent-beam geometry is no exception. We develop this ap-
proach in the first subsection, in dimension two. But the re-binning ap-
proach is not free from problems and fully divergent complete DCC were
sought for. To the best of our knowledge, no complete DCC have been
found so far for general acquisition geometry (without any restriction on
the source trajectory). Even worse, no such set exist for the very useful ac-
quisition geometry: an X-ray source orbiting around the object. Two situ-
ations can be found in the literature. First, necessary and sufficient DCC
were derived at the price of quite severe restriction on the source trajectory.
This will be addressed in the second subsection. Second, DCC were pub-
lished for general trajectory, but with no information on their sufficiency.
Some examples of such DCC will be presented in the third subsection.

The questions of sufficiency and independence of two sets of consis-
tency conditions are of great interest though, in view of the applications. In
the perspective of the general DCC-based artefact reduction method that
we quickly sketched in the introduction of this chapter, a cost function is
built by incorporating consistency conditions. The more independent in-
formation is incorporated in the cost function, the more parameters can
be identified. If two sets of DCC are available, one would like to be able
to determine whether the two sets of conditions are independent or not,
in the sense that the information they each convey is independent from
the other. If they are, exploiting both sets may increase the number of un-
known parameters which can be recovered or increase the robustness of
the method by enforcing extra independent constrains. If they are not, the
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evaluation of one set is useless. This problem is more precisely addressed
in the third contribution of this work. We prove that two sets of DCC (the
Grangeat Consistency Conditions [3, 19] and Fan-beam DCC presented in
[45] and applied to the calibration problem in Chapter II-2), very different
from each other in their theoretical derivations, are in fact closely related
and not independent.

3.2.1 Rebinning fanbeam data on a circle to derive fanbeam DCC from
HLCC

We recall the divergent beam transform D of an object function µ

Dµ
(
λ,~α

)= g
(
λ,~α

)= ∫ ∞

0
µ

(
~sλ+ t~α

)
dt . (127)

The work by Finch and Solmon [22] is an early attempt to rebin divergent-
beam data to Radon data. In this work, they apply HLCC to the re-binned
data to characterize the range of D. The essential practical limit of this work
is the assumption on the source locus: projection data is assumed available
for all source position on a sphere which contains the compact support of
the object. This assumption guarantees that the re-binning operation will
yield the complete Radon space data. Of course, it is extremely difficult to
fullfill this requirement in a practical situation.

Closer to the practical constraints, we now restrict to fanbeam data and
consider a circular trajectory of the source: λ ∈ [0,2π[ denotes the angle
that the source makes with the x−axis of the PCS,~sλ = (cosλ, sinλ) (the
radius of the trajectory is 1). Let g (λ,~α) denote the divergent projection
data of an object µ (whose support is assumed, without loss of generality,
to be fully contained inside the trajectory of the source) acquired along
that trajectory, with ~α ∈ S1. Remember that ~α can be parametrized in two
common ways: 1. withφ, the angle made by~α and the x−axis of the PCS. 2.
with γ the angle made by~αwith the central ray. See Figure 15. We have the

λ

φγ

O

~sλ

Figure 15

following re-binning formulas (see Section I-1)

g
(
λ,φ

)= p
(
φ, sin

(
λ−φ))

, (128)

g
(
λ,γ

)= p
(
λ−γ, sinγ

)
, (129)

where p = Rµ is the Radon transform of µ. Applying the corresponding
changes of variables

s = sin
(
λ−φ)

, (130)

s = sinγ (131)

in the integral of the HLCC Jm

(
~θφ

)
= ∫

R sm p
(
~θφ, s

)
ds, we get respectively

Jm

(
~θφ

)
=

∫
g

(
λ,φ

)
cos(λ−φ)sinm(λ−φ)dλ, (132)

Jm

(
~θφ

)
=

∫
g

(
φ+γ,γ

)
cosγsinm γdγ. (133)
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Though appealing at first glance, the fanbeam to parallel-beam re-
binning methods do not provide the nice feature of the HLCC that each
newly acquired projection can be immediately checked for consistency17. 17 These remarks are

extracted from [9],
II.B.

In the first case (Equation 132), the integration variable is the projection in-
dex, so that all projections are required. In the second case (Equation 133),
the integration variable is the ray angle γ (which is convenient) but for each
ray angle, the value to integrate should be picked up from a different pro-
jection (the projection g (φ+γ, ·)).

Despite these drawbacks, the method was used in [58] to monitor defec-
tive detectors or in [37, 58] to reduce the scattering artefacts in the recon-
structed volumes. It was also used in [77, 78] to estimate (and correct for) a
rigid-motion of the patient in a fanbeam scan.

3.2.2 Necessary and sufficient consistency conditions for divergent-beam
projections

The extension of HLCC in their projection form has been extended to the
divergent beam geometries in two articles [9, 13]. In the first one [9], nec-
essary and sufficient conditions are derived in the particular case of 2D
fanbeam projections acquired from a source moving along a line. To some
extent, the second paper [13] is a generalization of the first one to 3D cone-
beam projections. In this extension, the X-ray source may vary within a
plane instead of along a line.

We start with the 2D case. The following 2D fanbeam DCC are crucial for
the Chapters II-2 and II-3. The X-ray source moves along the line x = 0 in
the (O,~ex ,~e y ) PCS, so that~sλ = (0,λ). We consider fanbeam projections of
an object µ whose compact support is supposed to be strictly contained in
the half-plane x > 0 (in particular, the support of µ does not intersect the
source trajectory). Each ray is parametrized by the angle it makes with the
x−axis (see Figure 17), so that the line integrals can be rewritten

Dµ
(
λ,φ

)= ∫ +∞

0
µ

(
t cosφ,λ+ t sinφ

)
dt ∀φ ∈

]
−π

2
,
π

2

]
. (134)

The following theorem is published in [9]

Theorem 10 (Full fanbeam DCC for sources on a line). A function g (λ,φ)
is the fanbeam projection of an object µ (g =Dµ) if and only if, for all m ∈N
the integral:

Jm(λ) =
∫ π/2

−π/2

g
(
λ,φ

)
cosφ

tanmφdφ (135)

is a polynomial in λ of degree at most m.

Proof. The proof of the sufficiency is based on a theorem by Edholm and is
beyond the scope of this work. We focus on the proof of the necessity. We
suppose g =Dµ for some object function µ and form the expression Jm(λ).
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~sλ = (0,λ)•

O

~α

φ

~x•

x

y

Figure 17: Fan-beam projections acquired along a line. The source is displaced on
the vertical line x = 0. One ray is identified with the unit vector ~α or
equivalently by the angle φ it makes with the horizontal axis (Ox).

Jm(λ) =
∫ π/2

−π/2

g
(
λ,φ

)
cosφ

tanmφdφ, (136)

=
∫ π/2

−π/2

∫ +∞

0
µ

(
t cosφ,λ+ t sinφ

)
dt

tanmφ

cosφ
dφ. (137)

(138)

Polar coordinates (t ,φ) are then changed to Cartesian coordinates accord-
ing to (x, y) = (t cosφ,λ+ t sinφ). The following easy facts hold:

t dt dφ= dx dy (139)

tanφ= y −λ
x

. (140)

Hence,

Jm(λ) =
Ï

µ
(
x, y

) (y −λ)m

xm

dx dy

x
, (141)

=
m∑

k=0
cm,kλ

k , (142)

with:

cm,k = (−1)k

(
m

k

)Ï
µ(x, y)

ym−k

xm+1 dx dy . (143)
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Since the support of µ is contained in the half-plane x > 0, there exists
ε > 0 such that g (λ,φ) = 0 for |φ| > π/2 − ε. Hence, dividing by cosφ in
Equation 135 does not introduce any singularity. The support condition,
though, cannot be relaxed.

The conditions take the form of a polynomial in the projection index
λ. The whole set of conditions are proved to be necessary and sufficient
and this was the major contribution of the paper. The order-0 condition
(J0 is constant over the trajectory), on the other hand, had been known
for decades and extensively exploited in many papers, along with other
flavours of the same invariant integral conditions (see Section 3.2.3). The
order-0 condition alone is of course not sufficient, but can be extended
to more general trajectory, via pairwise DCC. Given a pair of projections
acquired along any generic source trajectory, the order-0 can always be ap-
plied to the pair by considering the virtual linear trajectory that connects
the two source positions. This remark is central in Chapters II-2 and II-3.

We now turn to the 3D cone-beam geometry. The same authors have ex-
tended their fanbeam result to the cone-beam acquisition geometry. In this
3D context, the source is constrained to lie in a plane (instead of a line) and
the support of the object is assumed to not intersect this plane. The condi-
tions take the same projection form, similar to HLCC. Let~sλ = (xλ, yλ,0)
be the coordinates of the source in the PCS (the source trajectory is con-
tained in the z = 0 plane). The object is supposed to be fully supported in
the half-space z > 0. The projection data is the usual line integral

g
(
λ,~α

)= ∫ +∞

0
µ

(
~sλ+ t~α

)
dt (144)

With spherical coordinates (θ,φ), ~α = (cosφsinθ, sinφsinθ,cosθ) and for
(X ,Y ) ∈R2, we define

Jm(λ,U ,V ) =
Ï

g
(
λ,θ,φ

)(
U cosφ+V sinφ

)m tanm+1θ

cosθ
dφdθ (145)

Theorem 11 (Full cone-beam DCC for sources on a plane). A function
g

(
λ,θ,φ

)
is the cone-beam projections of a compactly supported (in z > 0)

object µ if and only if

• g has compact support for all λ,

• Jm(λ,U ,V ) = Kn(U ,V ,−xλU − yλV ) for some homogeneous polyno-
mial Km(X ,Y , Z ) of degree m.

No proof is given here. For the proof, for the physical detector version
of the theorem, and for linogram and planogram versions, the reader is
referred to the original paper [13]. Again, the support condition cannot be
relaxed because the cosθ term in the denominator of the integrand of Jm

would introduce a singularity.
It should be noted that these conditions are truly cone-beam conditions

in the sense that all the data of one projection is incorporated in the com-
putation of Jm . In this PhD work, I have not investigated the application
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Figure 18: Cone-beam projections acquired from a source in a plane. The
source is displaced in the plane z = 0. One ray is identified with
the unit vector ~α with spherical coordinates (θ,φ) such that ~α =
(cosφsinθ, sinφsinθ,cosθ).

of these DCC to the calibration problem addressed in Chapter II-2. The
main reason is that they cannot handle truncated data (see condition 1 in
Theorem 11), which is a typical situation in human body imaging. This lim-
itation is also true for the linear fanbeam DCC of Theorem 10. But from the
point of view of handling truncated data, fanbeam DCC extended to cone-
beam data allow to check the consistency of a limited, un-truncated subset
of the fanbeam projection (typically those in the trans-axial direction).

3.2.3 Necessary only conditions in general acquisition geometries: the in-
variant integrals

The previous complete fanbeam DCC in Theorem 10 are an extension to
any degrees m of some zero-order necessary conditions which have been
known for much longer time. These conditions state the fact that the in-
tegral of a projection (weighted by some appropriate weight function) is
independent of the projection index.

The first version of the invariant integral version of the divergent-beam
DCC dates back to the John’s ultra-hyperbolic equation[34] in a paper from
1938. In this section, the notation is borrowed from Patch’s and Levine’s
paper [45, 59] on the derivation of Consistency Conditions from John’s
equation [34]. We let~η= (η1,η2,0) and~ξ= (ξ1,ξ2,1) denote coordinates of
points in the planes Π0 : z = 0 and Π1 : z = 1 respectively. Points in Π0 can
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be thought of as source positions and Π1 as the detector plane. We denote
g̃ the weighted projection data with this parametrization of lines

g̃
(
~ξ,~η

)
=

∫
R
µ

(
~ξ+ t

(
~η−~ξ

))
dt . (146)

We have the following relation with the usual divergent projection data

g̃
(
~ξ,~η

)
= 1

‖~η−~ξ‖
g

(
~ξ,

~η−~ξ
‖~η−~ξ‖

)
. (147)

Note that the term 1/‖~η−~ξ‖ is the cosine if the incidence angle. The pro-
jections g̃ satisfy the John’s ultra-hyperbolic equation18 18 See [59] for a

proof.(
∂2

∂η1∂ξ2
− ∂2

∂η2∂ξ1

)
g̃

(
~ξ,~η

)
= 0. (148)

The original idea of using John’s equation is to use the measured data
as boundary conditions to infer non-measured data, in order to improve
reconstruction quality. Instead, we are interested here in using John’s equa-
tion to derive DCC. Taking the Fourier transform of Equation 148 with re-
spect to~η yields

~κ⊥ ·∇~ξ ˆ̃g
(
~ξ,~κ

)
= 0, (149)

where ~κ denotes the Fourier dual variable of~η and ˆ̃g denotes the Fourier
transform of g̃ with respect to the~η variable. Assuming now (without loss
of generality) that the coordinates are such that ~ξ = (ξ,0,1) and ~κ⊥ =
(κ,0,0), the following consistency condition is derived from Equation 149:∫

R
g̃

(
ξ,η

)
dη=

∫
R

g̃
(
ξ+ t ,η

)
dη (150)

The last equation is a data consistency condition. The situation is depicted
in Figure 19. Given two cone-beam projections with source positions on
a line l , the integral of the projections weighted by the cosine of the inci-
dence angle and restricted to a line parallel to l are equal.

We now quickly establish the link between John’s consistency condition
of Equation 150 and the m = 0 case of the fanbeam DCC on a line of
Theorem 10. In Figure 20, we represent the plane of interest of Figure 19
in the same configuration as in Figure 17. We then simply change the
projection index ξ to the usual λ and turn the detector’s coordinate η to
the usual angular variable φ with: η = ξ+ d tanφ. Further noticing that
‖~ξ−~η‖ = ‖(0,ξ)− (d ,η)‖ = d/cosφ, we obtain∫

R
g̃

(
ξ,η

)
dη=

∫ π
2

− π
2

g̃
(
λ,φ

) d

cos2φ
dφ, (151)

=
∫ π

2

− π
2

g
(
λ,φ

)
cosφ

dφ, (152)
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ξ+ t
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Source trajectory

•η

Figure 19: The integral of the weighted projections along lines parallel to the line
between two source positions are equal.

(0,ξ)•

O

φ

(d ,η)
•

d

Figure 20: The X-ray source is in position (0,ξ) on the y = 0 line. The detector is at
distance d from the source trajectory. One projection bin is in position
(d ,η).

which is exactly the m = 0 case of the fanbeam DCC. In the rest of the
manuscript, the acronym FBCC will refer to these particular zero-order fan-
beam DCC.

The same DCC have been published in various guises and derived
through different routes.

• From a general formula established by Hamaker et al. [28], Noo es-
tablished a re-binning formula: the Hilbert projection equality (see
Equation 10 in [55] and Equation 15 in [10]), from which an integral
invariant DCC is easily derived.
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• In [74], the authors use a homogeneous function along with its group
of symmetries to derive DCC in the same form of invariant integrals.

• Chen and Leng [6] obtained a similar equality, but their derivation
was carried out essentially in the Fourier space.

In [71], all these invariant integral DCC were proved to be mathemati-
cally equivalent.

3.2.4 Grangeat-based DCC

The DCC presented in the previous section are essentially fanbeam consis-
tency conditions. Even in a cone-beam geometry, the DCC of Theorem 10
are obtained by restricting the projection data to planes which contain a
subset of source positions. In this section, we introduce Grangeat Consis-
tency Conditions (GCC). They are based on the theorem of Grangeat (see
Section 1.7 and [25, 26]) and were introduced in the context of jitter correc-
tion for cone-beam CT in [19]. The original idea was extended in [3].

Let g
(
λ,~α

)
be a set of cone-beam projections with source positions~sλ,

forλ ∈Λ. Let~β ∈ S2 a unit vector and H~β,s a plane orthogonal to~β at signed
distance s from the origin of the PCS. For a given projection, we define de-
tector coordinates and spherical coordinates as described in Section 1.7
and recalled in Figure 21. We denote l the line of intersection of the plane
H~β,s with the detector. The Grangeat theorem states that

1

cos2 θ̄

∂

∂v

∫ +∞

−∞
gλ(u, v) f√
u2 + v2 + f 2

du

∣∣∣∣
v= f tan θ̄

= ∂

∂s
Rµ

(
~β, s

)∣∣∣∣
s=~sλ·~β
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a. b.

Figure 21: a. Left: The 3D Detector coordinate system. a. Right: the spherical coor-
dinates of the vector ~α. Note the unusual orientation: the polar axis is
horizontal. The vector~β has spherical coordinates (β̄,0). b. View of the
u = 0 plane.

In Section 1.7, Equation 67, we proved that the LHS of Equation 153 is
equal to the intermediate function Gg

(
λ,~β

)
. The Grangeat-based consis-

tency condition relies on the simple fact that if H~β,s contains two source

positions~sλ1 and~sλ2 , then the LHS must equate: Gg

(
λ1,~β

)
= Gg

(
λ2,~β

)
,
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because the RHS do. The 1/cos2 θ̄ can be dropped, which yields the follow-
ing equivalent consistency condition:

Proposition 12 (Grangeat Consistency Conditions (GCC)). For all~β ∈ S2, if
~sλ2 ·~β=~sλ2 ·~β, then

∂

∂v

∫ +∞

−∞
gλ1 (u, v) f√
u2 + v2 + f 2

du

∣∣∣∣
v= f tan θ̄

= ∂

∂v

∫ +∞

−∞
gλ2 (u, v) f√
u2 + v2 + f 2

du

∣∣∣∣
v= f tan θ̄

(154)

The GCC differ from the invariant integrals presented in the previous sec-
tion in that they are truly cone-beam. The differentiation step will require
the projection data not only along the line l but also along another line l ε,
close and parallel to l .

Another important remark is in order. The computation of the GCC is
three steps: weight the projections with the cosine of the incidence angle,
integrate on the u−direction and differentiate in the v−direction. It is nec-
essary to emphasize that the direction of the derivative is orthogonal to the
line of intersection of the plane H~β,s with the detector. Since all the com-
putation steps are independent of the particular epipolar geometry, things
can be pre-computed once for each projection. This point will be discussed
in the Chapter II-3.

3.2.5 Applications of DCC

DCC are applied to various artefact correction methods. In Chapter I-4, we
present geometric calibration methods in general and consistency-based
methods [4, 5, 19, 47] in particular. DCC are also used in beam-hardening
correction [1, 2, 51, 70] and attenuation correction in PET [75] and SPECT
[50].

Another possible application of the DCC is the extrapolation of missing
projection data by enforcing a consistency constrain on the extrapolated
data set. This is proposed in [73] and [40] for instance, with the HLCC.
Though, truncated data is a major issue regarding DCC. All the DCC pre-
sented in this chapter assume un-truncated data19. And in most clinical19 In Chapter II-2

we explain that this
constraint can be

slightly relaxed in
the case of invariant
integrals like FBCC.

applications, projection data are truncated. An attempt in this direction is
[14] but the extension of all the above artefact correction methods to trun-
cated projections is still pending.
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G E O M E T R I C C A L I B R AT I O N O F T O M O G R A P H I C S Y S T E M

The sections 4.1 and 4.2 contain paragraphs extracted from our publication
[43], Section II.C.

A computer implementation of any of the reconstruction algorithms de-
scribed in the previous section requires a precise mapping of the 3D coor-
dinates of the patient coordinate system to 2D coordinates of the detector
coordinate system, in order to back-project pixel values of the projections
to the correct voxels in the reconstructed volume. This mapping usually
takes the form of a projection matrix (see Section 2.2), for each acquired
image. The geometric calibration of a tomographic system is the process
which determines the projection matrices of each projection of a scan.

Much work has been done on the calibration of CT systems. We give
a quick review of the methods and briefly summarize the relative impor-
tance of each parameter with respect to their impact on the reconstruction
quality. The design of the system is the first answer to the misalignment
problem: it may guarantee that the nominal geometric parameters of the
system are kept - during a scan - within margins which do not impact the re-
construction quality. To account for mechanical shift overt time, it is neces-
sary to periodically update the calibration, by performing new calibration
procedures. These procedures may be sensor-based or imaging-based. A
sensor-based calibration is completely out-of-scope of this thesis. It relies
on the use of a Coordinate Measuring Machine (CMM) which physically
senses various points of the CT system to determine their locations and
derive the whole geometry. Of course, it is dependant on a proper calibra-
tion of the CMM itself. The imaging-based methods, far more popular in all
CT devices, rely on the analysis of the images of the system itself. Imaging-
based calibration methods fall into two broad categories: off-line and on-
line methods, which are described in the following sections.

P R O J E C T I O N M AT R I C E S C A L I B R AT I O N V S . G E O M E T R I C PA R A M E T E R S

C A L I B R AT I O N The final product of the calibration process is the stack
of projection matrices (one for each projection). A brute force method con-
sists in estimating each of these matrices, i. e. 11 degrees of freedom 20. 20 Remember that a

projection matrix is
a 3×4 matrix
defined up to a
scaling constant due
to its projective
nature. Hence
12-1=11 degrees of
freedom.

We call this method brute force because it does not take advantage of cer-
tain geometric characteristics of the system which may simplify the pro-
cess. For instance, when a numeric flat-panel detector is used, the pixel
grid is known to be orthogonal with square pixels. This simple fact kills two
degrees of freedom in the calibration problem but not two coefficients in
the projection matrix. Another important example is that of a turning ta-
ble micro-CT system like the one which is calibrated in Chapter II-2. The
source and the detector are fixed during the scan of an object. Their posi-
tion and orientation are independent of the projection. This reduces the

45



46 G E O M E T R I C C A L I B R AT I O N O F T O M O G R A P H I C S Y S T E M

number of parameters of the calibration problem from 9N (N is the num-
ber of projections) to 7+N (see Chapter II-2 for details). Hence the need
to use a parametric model of the geometry. This model was described in
Section 2.1.

4.1 O F F - L I N E G E O M E T R I C C A L I B R AT I O N M E T H O D S

Off-line calibration techniques encompasses all the techniques which re-
quire the scan of a dedicated calibration phantom prior to the produc-
tion scan. The outcome of such techniques has a limited lifetime, depend-
ing on the mechanical stability of the system. The calibration procedure
is launched periodically (typically once a year for a conventional medical
scanner). Such methods rely on a major assumption that the geometric
configuration is reproducible over time: the geometric configuration at the
time of the calibration scan is the geometric configuration at the time of
a future production scan. Various methods have been proposed [7, 17, 27,
49, 54, 63, 67, 76]: they all require pre-scanning of a calibration phantom,
usually made up of small radio-opaque markers whose relative positions
are accurately known. The theoretical projections of the markers (which
depend on the geometric parameters) are afterwards compared with their
actual projections to derive - iteratively [27, 63] or analytically [7, 17, 49,
54, 67, 76] - the calibration parameters. In [49], they solve the complete
calibration problem and analytically derive all nine parameters for each
projection.

4.2 O N - L I N E G E O M E T R I C C A L I B R AT I O N M E T H O D S

The other group of techniques consists of on-line techniques. All methods
in this category solve the calibration problem without a specific calibration
scan of a calibration object. They only use the data from the projections of
the imaged object. Beyond this common feature, this group encompasses
substantially different techniques. In [38, 41, 52], they minimize a cost func-
tion, whose evaluation requires the reconstruction of the object from the
current estimate of the geometric parameters. The metric is based on en-
tropy in [41], the L2-norm of the image gradient in [38] or the mutual infor-
mation between re-projected image and projection data in [52]. The limita-
tion of such methods is the computational load, which may not fit clinical
workflow (though [38] limits this drawback by only reconstructing a frac-
tion of the volume). In [56], they use the 3D reconstruction of a planning
CT and compute projection-specific geometric parameters by registering
the actual projections with the re-projected CT image.

Other works in this category utilize the redundancy of the projection
data (i. e. the DCC). In the 2D parallel beam case, Basu and Bresler [4,
5] solve uniquely and efficiently the problem of unknown projection an-
gles and shifts with the Helgason-Ludwig DCC. Some works use the triv-
ial “opposite-ray” condition [48, 57, 60]. In [57], this DCC, which normally
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only applies in the central plane (the plane of the trajectory), is extended
to cone-beam projections of a particular class of symmetric 3D object func-
tions and shows accurate calibration results when approximated in a cen-
tral region of a generic object. More closely related to our work is a series of
publications on epipolar consistency conditions [3, 19, 47]. These DCC are
based on the Grangeat theorem and relate the derivative of the 2D Radon
transform of the projections to the derivative of the 3D Radon transform of
the imaged object.

The comparison of previous works is not easy due to the parametriza-
tion which may differ with authors. Nevertheless, it is widely documented
that the detector shift u0 and the in-plane angle η are of crucial importance
[17, 54, 67, 76]. On the other hand, [52, 76] demonstrated that the two out-
of-plane angles (φ and θ) may be set to zero without affecting the image
quality if their true values are kept below 2◦ (which is a reasonable man-
ufacturing accuracy requirement). Finally, miscalibration of the source-to-
centre and source-to-detector distances does not introduce artefacts in the
reconstructed volume and are therefore not calibrated. However, these two
parameters affect the magnification of the reconstructed volume, which
would not be acceptable in some cases, such as a metrology-oriented ap-
plication.





Part II

C O N T R I B U T I O N S

This part gathers the contributions of this PhD work. We
present three contributions. We first introduce new zero-order
cone-beam DCC for a circular trajectory (published in [42])
and present our contribution to their generalization to higher
orders [15]. The second contribution is the calibration of a
micro-CT system based on integral invariant fanbeam DCC
(FBCC). This contribution was published in [43]. The third con-
tribution, not yet published, is an implementation of the inte-
gral invariant DCC in a physical flat-panel detector. This allows
a theoretical comparison of FBCC and Grangeat-based DCC
which seems to be new.





II1
C O N E - B E A M D C C F O R C I R C U L A R T R A J E C T O RY

In the review of existing DCC (Chapter I-3, page 29), we mentioned essen-
tially two cone-beam DCC: the Theorem 11 of Section 3.2.2 page 37 and
the invariant integrals DCC (Section 3.2.3, page 40). The former addresses
the special case of a planar trajectory with a planar detector parallel to the
plane of the trajectory and the object placed in between these two planes
(and in particular, not intersecting the trajectory plane). The latter are nec-
essary conditions only. They can be used in a circular orbit cone-beam ge-
ometry but only in a pairwise fashion. This contribution introduces a new
set of cone-beam consistency conditions for the very useful and common
circular trajectory. The DCC are presented as they have been introduced
(i. e. published): I was the first author of an abstract to the Fourth CT Meet-
ing in Bamberg (Germany) in 2016 [42], which presented two modalities
of a new zero-order DCC. Then, I contributed to the generalization of this
result to higher degrees, which was published in the Signal Processing Let-
ters in December 2016 [15]. I essentially contributed to the final version of
the proof of the main result.

In this chapter, the X-ray source traverses a circle in the y = 0 plane,
centred in O, with radius r , so that the source ~sλ has coordinates
(−r sinλ,0,r cosλ) in the PCS. Without loss of generality, we assume that
the support of the object µ is fully contained in a sphere of radius r −ε for
some ε> 0, so that the trajectory of the source never intersects the support
of µ21. The detector is at distance f from the source and is aligned, i. e. the 21 Note that this

assumption allows
the object to
intersect the plane of
the trajectory.

principal ray passes through O (the origin of the PCS) and Od (the origin of
the DCS) and the v−axis of the DCS coincides with the y−axis of the PCS
(the axis of rotation). The Figure 22 illustrates the situation.

1.1 N E W Z E R O - O R D E R C O N E - B E A M D C C F O R A C I R C U L A R T R A J E C -
T O R Y

The results presented in this section were published in

J. Lesaint et al. “Two cone-beam consistency conditions for a circular
trajectory.” In: Proceedings of the fourfth international conference on
image formation in x-ray computed tomography. Bamberg, Germany,
2016, pp. 431–434.

We recall the intermediate function Gτ introduced in Equation 55, Chap-
ter I-1, for 0 ≤ τ≤ 1,

Gτ

(
λ,~β

)
=

∫
S2
ετ

(
~α ·~β

)
g

(
λ,~α

)
d~α, (155)

where ετ(s) = (1−τ)δ′(s)+τρ(s)22. We consider in this section the two ex- 22 The “functions” δ′
and ρ were defined
in Chapter I-1
page 5.
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Figure 22: Circular cone-beam geometry. For each projection, the detector is
aligned: the source, the origin of the PCS and the origin of the DCS are
aligned and the vertical axis of the detector coincides with the axis of
rotation y .

tremal cases: G0 and G1, which we denoted Gg and Gs respectively. Gs is the
intermediate function proposed by Smith [68]. Gg was used by Grangeat
[25]. The functions Gg and Gs are related to the 3D Radon transform of the
object function via the relations2323 See Section 1.6.4.

Gs

(
λ,~β

)
=

(
ρ∗R~β

µ
)(
~sλ ·~β

)
(156)

Gg

(
λ,~β

)
=−

(
δ′∗R~β

µ
)(
~sλ ·~β

)
. (157)

Consistency conditions can be inferred from any plane H~β,s which con-

tains at least two source positions~sλ1 and~sλ2 . In this case~sλ ·~β=~sλ′ ·~β so
that (see Chapter I-3)

Gs

(
λ,~β

)
=Gs

(
λ′,~β

)
, (158)

Gg

(
λ,~β

)
=Gg

(
λ′,~β

)
. (159)

By setting ~β =~e y , considering the particular trajectory plane H~e y ,0, and
denoting Ḡ the corresponding functions of the projection index λ (Ḡs(λ) =
Gs(λ,~y) and Ḡg (λ) =Gg (λ,~y)), the pairwise consistency conditions propa-
gate to the whole trajectory. We obtain the following cone-beam DCC:

Proposition 13. The functions Ḡs(λ) and Ḡg (λ) are constant. They do not
depend on the projection index.

We now turn to the practical implementation of these DCC and the re-
spective expected behaviour of each filter ρ and δ′. The computation of the
Grangeat intermediate function with a physical detector has already been
derived in Section 1.7, page 20, which in our particular case, becomes

Ḡg (λ) = ∂

∂v

∫ +∞

−∞
f gλ(u, v)√
u2 + v2 + f 2

du

∣∣∣∣
v=0

. (160)
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As for the computation of the Smith intermediate function, a similar
derivation leads to

Ḡs(λ) =
∫ +∞

−∞
ρ(v)

(∫ +∞

−∞
f gλ(u, v)√
u2 + v2 + f 2

du

)
dv . (161)

A few remarks are in order:

• The particular choice of the plane H~y ,0 allows a relatively simple eval-
uation of the function because the integration and convolution di-
rections (u and v respectively) coincide with the pixel grid. On the
contrary, a plane in general position will require some interpolation
in the projection to compute the line integral.

• These DCC are truly cone-beam since their computation requires
more projection data than the restriction of the projection to a sin-
gle plane.

• Nevertheless, ρ and δ′ acts very differently with respect to the
amount of cone-beam data incorporated in the functions Ḡ . The dif-
ferentiation in Ḡg is local, whereas the convolution with ρ in Ḡs en-
compasses the entire projection because the support of the ramp fil-
ter is infinite. We will discuss this point below with the numerical
simulations.

• The derivation of the link between Gτ and the Radon transform
(Equations 156 and 157 or Equation 62 and its derivation page 18)
makes an essential use of the homogeneity of the distributions ρ and
δ′. Furthermore, any function with this homogeneity property must
be a linear combination of ρ and δ′.

• Any value of τ ∈ ]0,1[ would have produced equally valid DCC. By
mitigating ρ and δ′, one would loose their specificity in terms of abil-
ity to detect inconsistencies (see below) and one would gain noth-
ing since the DCC derived from such τ would not be independent of
those derived from ρ and δ′.

In order to numerically validate the Proposition 13 and to test the ability
of the newly proposed DCC to detect inconsistencies of the projection data,
we simulated the projections of a 3D Shepp-Logan phantom24 with the Re- 24 The definition of

the 3D Shepp-Logan
phantom can be
found in Kak and
Slaney textbook [35],
on page 102.

construction Toolkit (RTK) [62] software package 25. We simulated 72 pro-

25 All numerical
experiements in this
PhD work have been
implemented with
the RTK software
package and its
Python wrapping
SimpleRTK.

jections, equally spaced over a 360° angular range. The source-to-isocenter
distance was set to r = 100 mm and the focal distance to f = 200 mm. The
3D Shepp-Logan phantom was scaled to semi-axes of (55.2,73.6,72) mm.
The simulated projections were 1024 × 1024 pixels with a pixel size of
0.5 mm.

We focussed our experiments on two sources of inconsistencies: data
truncation and motion of an object.
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Projection #0 Projection #10

Projection #40 Projection #55

Figure 23: Simulated truncated data. Three projections out of 72 were truncated
as indicated. The dotted line is the intersection of the trajectory plane
with the detector. Truncation of projection 10 (top right) is an axial trun-
cation, away from the line. Truncation of projection 40 (bottom left) im-
pacts the line. In projection 55 (bottom right), an interior truncation is
simulated.

S I M U L AT I O N O F T R U N C AT E D D ATA In this experiment, we severely
truncated 3 projections out of the 72 projections. Figure 23 illustrates the
scenario. The projection 10 is truncated axially, but the projection data is
complete around the central line. This situation is very common in a med-
ical context where the entire patient body cannot fit the field-of-view of
the scanner. The projection 40, on the other hand, is truncated on the right
side. This kind of truncation impacts the central line. This corresponds to
a large patient. Finally, an interior square of projection 55 was set to zero.
Such truncation simulates a (massive) default in the detector or an occlu-
sion. Truncating the projections in different positions with respect to the
central line v = 0 allows for a better understanding of the respective re-
sponse of the ramp- and derivative-based DCC.

S I M U L AT I O N O F A N O N - R I G I D M O T I O N In the second experiment,
one of the ellipsoids (a sphere of radius 4 mm) of the Shepp-Logan phan-
tom was undergoing a vertical motion. The displacement started at projec-
tion index 20 and terminated at projection index 65. The trajectory of the
displaced sphere intersected the central line. See Figure 24.
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i=0 i=35 i=71

Figure 24: Simulation of a non-rigid motion. A sphere of radius 4 mm is displaced,
starting in projection 47, traversing the central line, and ending at pro-
jection 65.

For each scenario, we evaluated both functions Ḡs(λ) and Ḡg (λ) at
each projection index λ. Integrals were computed with a simple trapezoid
quadrature rule. The derivative was implemented with a central finite dif-
ference. For the unmodified version of the projection data, i. e. for consis-
tent data, we expected a constant signal for both functions. It would not be
relevant to plot such signals with consistent data since the signals cannot
be rigorously constant (due to numerical errors, essentially stemming from
the quadrature and differential quadrature rules used in the evaluation of
Ḡ). The constantness of the functions must be evaluated against an incon-
sistency which theoretically breaks the constant, as done in the following.

R E S U LT S We analyse the results presented in Figure 25. We notice that
the signals are not strictly constant. For example, between projections 11
and 39, the plots are slightly bumpy while the data are consistent. This
point was mentioned above. We now examine the first experiment with
truncated data (left column of Figure 25). The lateral truncation of pro-
jection 40 triggers a significant spike in both plots, which is higher in am-
plitude than the background noise. This enables the automatic detection
of the inconsistency (by simply thresholding the signal for instance). The
main difference between both functions Ḡg and Ḡs is revealed by observing
projections 10 and 55. The simulated truncation in these two projections
is not detected by Ḡg (no spike in the plot) while it is by Ḡs . The reason is
that Ḡg only checks data which are close to the central line, while Ḡs scans
the whole projection. In the first case, an inconsistency (truncation) which
is away from the central line does not break the particular Grangeat con-
dition. In the second case, the convolution with the ramp filter at v = 0
involves data over the support of the ramp, which is infinite.

The same kind of comment remains valid for the motion scenario. The
Grangeat conditions detects motion inconsistency no sooner than one pro-
jection before the moving object intersects the central line, due to the cen-
tral finite difference scheme to compute the derivative. The inconsistency
introduces a sharp discontinuity in the consistency function. On the other
hand, the DCC based on the ramp filter presents a smoother detection of
the motion. Theoretically, the motion-induced inconsistency is detected as
soon as it originates. In practice, the plot visibly deviates from the constant
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Figure 25: |Plots of the function Ḡ (top) and Ḡs (bottom) vs. the projection index
in the case of truncation (left) and motion (right). The dotted line in
the plot of the right column indicates the mean of Ḡ over the consistent
projections. It helps appreciating the inconsistency (though it has no
physical or theoretical significance).

value not before projection index 40. The ramp filter decreases rapidly to-
wards zero, so the amplitude of the response to the motion reduces as the
moving object gets farther from the central line and it is mitigated with the
background numerical noise.

Depending on the problem which is being addressed, the use of the ramp
filter or the derivative will be preferred. For instance, if the data are known
to be axially truncated, the use of Ḡg seems more relevant since it will not
be sensitive to structural inconsistency. On the contrary, if data are known
to be un-truncated, the use of Ḡs will act as a finer comb as any inconsis-
tency will be detected, regardless to where it originates.

One limitation is the background noise, which prevents detection of
events of small amplitude (with respect to the two consistency metrics).
To address this limitation, we applied a smoothing filter to the line inte-
gral signals of each projection. More precisely, the line integrals signals
l (vk ) = ∫

g̃ (u, vk )du were smoothed with the formula

l (vk ) = 1

210

k+5∑
i=k−5

(
10

i

)
l (vi ), (162)

for those k for which the formula makes sense. This filter consists
in applying five times consecutively a three-point smoothing filter
l (vk ) = (l (vk−1) + 2l (vk ) + l (vk+1))/4. The rationale for smoothing in the
v−direction is that the quadrature rule is the source of numerical errors26.26

[][-2cm]Smoothing
directly the signal Ḡ

would make no
sense, as it would

mitigate data from
different projections.

Both filters were applied to the smoothed signals and the results are pre-
sented in Figure 26. The effect of the smoothing kernel in the v−direction
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Figure 26: Same simulations as Figure 25 except that the line integral signals were
smoothed with a smoothing kernel of size 11. See Equation 162.

is a smoothing of the signals Ḡg and Ḡs . The benefit is hardly visible for
the truncation experiment. But the effect on the motion scenario with the
ramp filter is significant: the deviation from the “nominal” value starts at
projection index 30, instead of 40 in the non-smoothed experiment (see
bottom right of Figure 26). The counterpart is that the Grangeat consis-
tency function Ḡg detects the motion-induced inconsistency as of projec-
tion index 42 approximately. At this point of the scan, the moving ellipsoid
has not yet reached the central line (nor the one just before). The smooth-
ing kernel has augmented the very limited support of the derivative filter.

D I S C U S S I O N We have introduced two new DCC for a circular orbit
cone-beam CT. These DCC are a rewording, in terms of DCC, of the inter-
mediate functions introduced by Grangeat or Smith in their reconstruction
algorithms. Though truly cone-beam, these DCC only apply in the central
plane (i. e. the plane of the trajectory). We investigated the pros and cons of
each of the DCC with respect to two sources of inconsistency - motion and
truncation. The size of the support of each filter plays a major role and may
serve differently the problem of interest. Finally, these DCC are only nec-
essary conditions and certainly not sufficient. For instance, the Grangeat
DCC cannot be sufficient as the projection data in a small neighbourhood
of the central plane cannot determine uniquely the whole object. They can
be thought of as zero-order DCC, which are extended to higher orders in
the next section (though the sufficiency is still not addressed there).
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The results presented in this section were published in

R. Clackdoyle et al. “Data Consistency Conditions for Cone-Beam
Projections on a Circular Trajectory.” In: IEEE Signal Processing Letters
23.12 (2016), pp. 1746–1750.

I was a coauthor of this paper and do not claim the original ideas therein. I
essentially contributed to the proof of the main result of the paper and to
some numerical validation. For self-completeness, a complete overview of
the paper is given.

In this paper, we propose new cone-beam consistency conditions, which
extend the Smith version of the DCC of Proposition 13 to higher orders. The
acquisition geometry we consider here is exactly the same as in the previ-
ous section: a circular orbit of the source in the y = 0 plane and a detec-
tor undergoing the same trajectory, in opposite direction. The detector is
perfectly aligned: in the PCS, the vectors (~eo

x ,~eo
y ,~eo

z ) of the OCS have coor-
dinates (−sinλ,0,cosλ), (0,1,0) and (cosλ,0,sinλ) respectively. As will be
described in the following, the proposed DCC involve singular integrals if
the object intersects the plane of the trajectory. We will explain how this
singularity can be handled by the use of distributions and smart numerical
implementation.

We start from a modified version of the function Ḡs

Ḡm (λ) =
∫

S2
gλ(~α)ρm

(
~α ·~eo

y

)(
~α ·~eo

x

)m d~α, (163)

where ρm is a generalized version of the ramp filter ρ, which we define by
its Fourier transform2727 Again, this

definition must be
understood in the

sense of
distributions.

ρm(s) =
∫
R

(−2iπ)m+2

2(m +2)!
|σ|σm e2iπσs dσ. (164)

Up to the (−π2) multiplicative constant, ρ0 is the usual ramp filter. A sim-
ple interpretation ofρm can be given in terms of derivatives. The ramp filter
ρ0 is the successive application of a Hilbert transform (Fourier transform:
−i sign(σ)) and one single derivative (Fourier transform: 2iπσ). In a way,
ρm continues the process by further differentiating the relation n+1 times
(see below for the formal derivations and for a rigorous way of handling
potential singularity which may arise). We already emphasized the impor-
tance of the homogeneity property of ρ. The distribution ρm is also homo-
geneous, with degree −(m+2). This is easily seen by performing the change
of variables σ′ = aσ in the expression ρm (as), for a > 0.

The main result of the paper is two-fold. First, we prove that Ḡm is con-
strained to be a polynomial (the DCC) and second, we give the details for a
numerical implementation of Ḡm in the detector.
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Proposition 14 (Cone-beam DCC). If g is the projection data of some object
µ, then Ḡm(λ) is a homogeneous polynomial of degree m in (cosλ, sinλ), i. e.

Ḡm(λ) =
m∑

k=0
am,k sink λcosm−k λ, (165)

for some coefficients am,k , k = 0, ...,m to be determined.

Proof. Substituting gλ with its definition, changing from polar coordinates
(t ,~α) centred in~sλ to Cartesian coordinates~x centred in O (i. e.~x =~sλ+ t~α
with t 2 dt d~α= d~x) and using the homogeneity of ρm , we have

Ḡm(λ) =
∫

S2
gλ(~α)ρm

(
~α ·~eo

y

)(
~α ·~eo

x

)m d~α (166)

=
∫

S2

∫ +∞

0
µ

(
~sλ+ t~α

)
ρm

(
~α ·~eo

y

)(
~α ·~eo

x

)m d~αdt (167)

=
Ñ

R3
µ(~x)ρm

(
~x −~sλ
‖~x −~sλ‖

·~eo
y

)(
~x −~sλ
‖~x −~sλ‖

·~eo
x

)m d~x

‖~x −~sλ‖2

(168)

=
Ñ

R3
µ(~x)ρm

(
(~x −~sλ) ·~eo

y

)(
(~x −~sλ) ·~eo

x

)m d~x . (169)

It is clear that~sλ ·~eo
y = 0 =~sλ ·~eo

x , so that

Ḡm(λ) =
Ñ

R3
µ(~x)ρm

(
~x ·~eo

y

)(
~x ·~eo

x

)m d~x (170)

=
m∑

k=0

(
m

k

)
(−1)k

(∫
R3
µ(~x)ρm(~x ·~eo

y )xk zm−k d~x
)

sink λcosm−k λ.

(171)

The last expression is the desired polynomial form of Ḡm with

am,k = (−1)k

(
m

k

)∫
R3
µ (~x)ρm

(
y
)

xk zm−k d~x . (172)

We now turn to the implementation of Ḡm in the physical detector, i. e.
we change from the variable ~α to the (u, v) coordinates: ~α = (u~eo

x + v~eo
y −

f~eo
z )/

√
u2 + v2 + f 2. We already did that change several times (see page 20),

we just remind here the general formula, for any generic function b and
with the usual notation∫

S2
b(~α)d~α=

Ï
b(u, v)

f

(u2 + v2 + f 2)3/2
du dv . (173)

Applied to the function Ḡm , we obtain

Ḡm(λ) =
Ï

ρm

(
u~eo

x + v~eo
y − f~eo

z√
u2 + v2 + f 2

·~eo
y

)(
u~eo

x + v~eo
y − f~eo

z√
u2 + v2 + f 2

·~eo
x

)m
gλ(u, v) f du dv

(u2 + v2 + f 2)3/2
,

(174)

=
Ï

g̃λ(u, v)ρm(v)um du dv . (175)



60 C O N E - B E A M D C C F O R C I R C U L A R T R A J E C T O R Y

where again the homogeneity of ρm plays a major role. Very similar to the
previous zero-order case, the computation consists in a pre-weighting of
the projections, an integration in the u−direction followed by a filtering in
the v−direction.

F O C U S O N T H E F I LT E R ρm All the derivations below are formal. They
are legal when the object’s support does not intersect the trajectory plane.
If it does, we will explain how they can be justified. We start from the Hilbert
kernel:

π

∫ (−i sign(σ)
)

e2iπσs dσ= 1

s
, (176)

and iteratively differentiate both sides of the equality (usual differentiation
in the RHS, multiplication by 2iπσ in the Fourier space LHS). We obtain:

−1

2
(2iπ)2

∫
σsign(σ)e2iπσs dσ=− 1

s2 , (177)

−1

2
(2iπ)3

∫
σ2sign(σ)e2iπσs dσ= 2

s3 , (178)

−1

2
(2iπ)4

∫
σ3sign(σ)e2iπσs dσ=− 6

s4 , (179)

... (180)

−1

2
(2iπ)m+2

∫
σm+1sign(σ)e2iπσs dσ= (−1)m+1 (m +1)!

sm+2 . (181)

All these computations can be summarized in the following: ρm(s) =
1/sm+2. Of course, this is misleadingly simple since the Hilbert relation of
Equation 176 is only valid for |s| > 0.

T H E O B J E C T D O E S N O T I N T E R S E C T T H E T R A J E C T O R Y P L A N E We as-
sume that µ(~x) = 0 for all~x = (x, y , z) such that |y | < ε, with ε > 0. In this
case, gλ(u, v) = 0 for all |v | < ε. The integral in the definition of Ḡm(λ) can
be decomposed as

Ḡm(λ) =
∫
|v |<ε

(∫
g̃λ(u, v)um du

)
ρm(v)dv+

∫
|v |≥ε

(∫
g̃λ(u, v)um du

)
ρm(v)dv .

(182)

The first term in the RHS vanishes. In the second term, ρm(v) can be substi-
tuted by 1/vm+2, thanks to the derivations above, which become valid on
|v | ≥ ε. We finally obtain the singularity-free DCC

Proposition 15.

Ḡm(λ) =
Ï

g̃λ(u, v)
um

vm+2 du dv (183)

is a polynomial in (cosλ, sinλ) of degree m.
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Figure 27: Evaluation of Ḡm(λ) for m = 0, ...,5 for 50 projections, equally-spaced
over a 360° scan. The black solid line corresponds to the trigonometric
polynomial fitting of the data. The fitting problem was solved using a
elementary least-squares approach. The outliers in projection indices
20 and 40 correspond to the inconsistency induced by the truncation of
the data.

The integral in Equation 183 is easily implemented with two consecutive
trapezoid quadratures.

I implemented this limited version of the DCC on 50 projections of a
Shepp-Logan phantom, vertically offset so that the support of the phantom
does not intersect the y = 0 plane. The projection with index 20 was axially
truncated and half of the projection with index 40 was set to zero. The re-
sults28 are reported in Figure 27. The trigonometric polynomial nature of 28 These simplified

version of the DCC
was not presented in
the reference paper
[15].

Ḡm is very well illustrated on the plots. The inconsistency introduced in
projections 20 and 40 are clearly materialized as outliers. Though, the am-
plitude of the deviation from the consistent Ḡm is attenuated with higher
m.

T H E O B J E C T D O E S I N T E R S E C T T H E T R A J E C T O R Y P L A N E In the case
where the support of the object intersects the y = 0 plane, the derivation
above are not valid any more (because Equation 176 is not). The definition
of Ḡm should be understood in the sense of distributions. In this frame-
work, ρm is the finite part fp

(
1/sm+2

)
distribution 29. Its implementation 29 See Appendix1.1.

is done in the Fourier space by band-limiting the distribution ρm and in-
fer samples of ρm in the direct space, before calculating the convolution in
zero (see [35], Section 3.3.3 for an implementation of the ramp filter ρ = ρ0,
which can be generalized to ρm). The first naive implementation of the
DCC was very unstable. The simulations presented in the paper were done
by heavily regularizing the filter ρm (by apodizing with a triangular window
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Figure 28: The function Ḡm(λ) for m = 0,1,2 for 50 projections, equally-spaced
over a 360° scan. The black solid line is a trigonometric polynomial,
which bets fits the data in a least-squares sense.

instead of a simple window function), and applying the same smoothing
filter as the one described in Equation 162.

The simulations are illustrated in Figure 28. The theoretical trigonomet-
ric behaviour of Ḡm(λ) is graphically confirmed. However, this has been
obtained at the price of heavy regularization and smoothing. This has two
consequences. First, the singularity in the y = 0 plane seems difficult to
handle properly. Second, the sensitivity of the DCC to an inconsistency will
be accordingly lowered. And the previous experiment has shown that mas-
sive truncation is hardly detected in higher order DCC (without regulariza-
tion nor smoothing). This instability limits the practical use of these DCC
and explains why we did not push investigations further with the DCC.

A F U T U R E R E S E A R C H D I R E C T I O N The DCC of Proposition 14 com-
bined with its detector form of Equation 183 are in projection form. But
they can easily and equivalently be rewritten as a scalar product. Indeed,
being a homogeneous polynomial of degree m is equivalent to being or-
thogonal to the Fourier basis functions ei lλ with |l | > m, which we can
write ∫ 2π

0

Ï
g̃λ(u, v)ρm(v)um ei lλdu dv dλ= 0, |l | > m (184)

or, by changing from the (u, v)−coordinates to the spherical coordinates in
the 2D inner integral∫ 2π

0

(Ï gλ
(
~αθ,φ

)
cosφ

ρm (sinθ) tanmφdφdθ

)
e±i lλdλ= 0, l > m ≥ 0. (185)
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On the other hand, in Chapter I-3 (page 29), we described a geometrical
framework inspired by a research article from 1997 [16], which used the
symmetry group of the forward operator to derive consistency conditions.
The paper applies this principle to several forward operators (the case of
the 2D Radon transform was presented in Chapter I-3), among which the
circular orbit cone-beam transform. In the paper, the axis of rotation is (Oz)
and the elements of the unit sphere are parametrized by longitude and co-
latitude

~α= (sinϕcosθ, sinϕsinθ,cosϕ) (186)

with ϕ ∈ [0,2π[ and θ ∈ [0,π[. The resulting consistency conditions assert
that ∫ 2π

0

(∫ 2π

0

∫ 2π

0
gλ

(
~αθ,ϕ

) 1

sin2q ϕ
e±2i nθ sinϕdϕdθ

)
e±i lλdλ= 0, (187)

where l , q ,m are integer indices satisfying 1 ≤ q ≤ m and l +m ≥ 0.
Whether the consistency given in Equations 185 and 187 are related to

each other remains to be investigated. Of course, in Equation 185, we have
m = q hence a much smaller number of equations/conditions.
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This section reproduces the full version of our published paper

J. Lesaint et al. “Calibration for Circular Cone-Beam CT Based on
Consistency Conditions.” In: IEEE Transactions on Radiation and Plasma
Medical Sciences 1.6 (2017), pp. 517–526. ISSN: 2469-7311

The Section 2.3.3 is the review of existing calibration methods. It is com-
pletely redundant with Chapter I-4, so it can be skipped with no arm for
further understanding.

Sometimes, notation of the paper may conflict with notation previ-
ously established in this work. Nevertheless, the reading of this chapter
is completely independent of the rest of the dissertation and entirely self-
contained.

The final section was not in the original paper. It is an addendum which
further investigates the valley-shaped cost function in the plane of the pa-
rameters θ and v0.

2.1 A B S T R A C T

In cone-beam computed tomography (CT), imprecise knowledge of the ac-
quisition geometry can severely impact the quality of the reconstructed im-
age. This work investigates geometric calibration using data consistency
conditions (DCCs). Unlike the usual marker-based off-line methods, the
proposed method does not require the extra-scan of a calibration phantom.
It is based on the minimization of a cost function, which measures the in-
consistency between pairs of projections. The method has been applied to
both simulated and real data. The latter were acquired from a micro-CT sys-
tem with circular trajectory, for which the problem reduces to identifying
global misalignments of the system. When compared to uncorrected recon-
struction, the method significantly improved the image quality. When com-
pared to marker-based calibration method, the image quality was similar
but no calibration scan was required. Finally the method can handle axially
truncated data. Axial truncation is very common in the medical context
but often considered intractable for DCC-based methods. We also demon-
strate DCC calibration from real data with axial truncation.

2.2 I N T R O D U C T I O N

In cone-beam computed tomography (CBCT), a 3D image is reconstructed
from a set of 2D projections acquired from a point-like X-ray source. Poor

65
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reconstructed image quality can arise due to many possible causes. One of
these causes is an inaccurate calibration of the system. Calibration is the
process through which the geometry of acquisition of the projections is
accurately determined. By geometry of acquisition, we mean the position
and orientation of the detector and the position of the X-ray source in a
fixed reference frame.

Calibration of a CBCT system has been studied for a long time. Early
works used the scan of a dedicated phantom to estimate the geometric pa-
rameters. These are known as off-line methods, to emphasize the need for
a preliminary scan. The calibration scan provides accurate geometry infor-
mation as long as the misalignments that were estimated are reproducible
over time. In the extreme case where mechanical flexibility of the system
makes the reproducibility assumption false, these methods become in-
valid. More recently, on-line (or self-) calibration methods have been de-
veloped. For each acquisition, and before reconstruction, the calibration is
computed directly from the projections.

This work presents an on-line method based on the minimization of a
cost function, that quantifies the inconsistency of the set of measured pro-
jections. The data consistency conditions (DCCs) that are incorporated
in the cost function have been described in many different works (see
Sec. 2.3.3). They are essentially fanbeam consistency conditions for a linear
trajectory. They have been adapted to a circular trajectory CBCT system by
re-sampling each pair of projections into a virtual detector parallel to the
line connecting pairs of source positions. This idea was already proposed
in [45] but, to the best of our knowledge, never implemented or applied
to any CT reconstruction problem. Our work is very similar in its geomet-
ric approach to other recent works [3, 19] but differs fundamentally in the
DCCs which are used. The proposed method was applied to simulated and
real data, and compared with a robust off-line method.

2.3 N O TAT I O N A N D B A C K G R O U N D

The micro-CT system to which the calibration method was applied is made
of a 2D flat detector and a fixed X-ray source. A turntable placed between
the two allowed a full 360◦ rotation of the object (see Figure29), so the ac-
quisition geometry was equivalent to a circular trajectory of the source and
detector. We will describe the geometry in detail, together with the calibra-
tion parameters that we are trying to estimate.

2.3.1 Description of the geometry

We use the same geometric description as that given in [54]. The detector
cells are perfect squares (same width and height, arranged on a Cartesian
grid). Let (x, y , z) be a fixed reference frame, defined as follows: the y-axis is
the axis of rotation of the turntable. The origin is set so that the source lies
in the y = 0 plane. The z-axis contains the source at rotation angle 0 and
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Figure 29: Picture of the CT system. Source (left) is fixed. Turntable (middle) and
detector (right) are adjustable. Detector size: 35x35 mm. Pixel size:
17.09 µm.

points in the direction of the source. The x-axis is defined so that (x, y , z) is
a right-handed coordinate system. The flat panel detector is equipped with
a direct (u, v) coordinate system whose origin is the center of the detector
and whose axes coincide with the pixel rows and columns respectively. The
geometry of one projection can be unambiguously described with eight
parameters (see Figure 30):

• The rotation angle λ, taken from the z-axis,

• The radius of the source trajectory R,

• Three orientation angles of the detector (φ,θ,η),

• The source to detector distance D (or focal distance),

• The coordinates (u0, v0) of the principal point (orthogonal projection
of the source onto the detector plane).

With this parametrization, for λ ∈ [0;2π[, the source position is given by
~sλ = (R sinλ,0,R cosλ). The orientation of the detector is described with
three Euler angles η, θ and φ (called yaw, pitch, roll respectively in [17] and
skew, tilt, slant in [67]) applied in this order (respective axes of rotations are
illustrated in Figure 30). The normal to the detector is defined with two out-
of-plane angles θ and φ about the u- and v-axes respectively. The in-plane
rotation (about the focal axis) is given by η. The circular geometry thus con-
sists of 8 degrees-of-freedom, unless the relative position and orientation
of the source and detector can vary across projections. In our micro-CT sys-
tem, the source and the detector are fixed, so the only projection-specific
parameter is the rotation angle. The other seven parameters remain con-
stant through the acquisition cycle. We call these parameters global mis-
alignment parameters or global geometric parameters and refer to the corre-
sponding geometry as true geometry. The system is perfectly aligned when
(1) the principal axis (orthogonal to the detector plane and passing through
the source) contains both the world origin and the detector origin and (2)
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Figure 30: Illustration of the eight geometric parameters. The detector orientation
is defined by three Euler angles. η is the in-plane angle. φ and θ are out-
of-plane rotations about the v-axis and the u-axis respectively.

the u and v axes of the detector are parallel to the x and y axes of the world
frame at rotation angle λ= 0. In terms of the geometric parameters, these
two conditions are equivalent to θ = φ = η = u0 = v0 = 0. We refer to the
corresponding geometry as nominal geometry.

2.3.2 The X-ray line-integral model

If f (~x) = f (x, y , z) denotes the object density function, the projection g (λ, ·)
is defined by the usual line integral model:

g (λ,~α) =
∫ ∞

0
f (~sλ+ t~α)dt , ∀~α ∈ S2, (188)

where S2 denotes the unit-sphere of R3. The projection g (λ, ·) vanishes for
all~α such that the line originating at~sλ and directed by~α does not intersect
the support of f (see Figure31).

2.3.3 Review of existing calibration methods

Much work has been done on the calibration of CT systems. We give a quick
review of the methods and briefly summarize the relative importance of
each parameter with respect to their impact on the reconstruction quality.
If N denotes the number of acquired projections, the most general cali-
bration problem consists of estimating - for each projection - the eleven
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Figure 31: Cone-beam geometry with circular trajectory. For a given scalar λ (typ-
ically in [0,2π]), ~sλ denotes the position of the source. ~α is a unit 3D
vector (∈ S2) that gives the direction of one X-ray. Note here that the
system is perfectly aligned: the v-axis is parallel to the rotation y-axis
(θ = η = 0). The u-axis is perpendicular to the direction of the source
(φ= 0) and the detector is not shifted (u0 = v0 = 0).

independent coefficients of the 3 × 4 projection matrix in homogeneous
coordinates (see e.g. [29]). If the detector rows and columns are known to
be perpendicular with the same sampling in both directions (i.e. square
pixels) then two degrees of freedom are eliminated and the task reduces
to estimating nine projection-specific geometric parameters (three for the
source position, three for the detector position and another three for the
orientation of the gantry). As described in the previous section, the circu-
lar trajectory we are considering in this work is completely described by
7 global geometric parameters. The only projection-specific parameter is
the rotation angle.

Imaging-based calibration methods fall into two broad categories. One
category consists of the off-line methods [7, 17, 27, 49, 54, 63, 67, 76]:
they all require pre-scanning of a calibration phantom, usually made up
of small ball bearings (BB) whose relative positions are accurately known.
Then the theoretical projections of the BBs (which depend on the geomet-
ric parameters) are compared with their actual projections to derive - iter-
atively [27, 63] or analytically [7, 17, 49, 54, 67, 76] - the calibration param-
eters. In [49], they solve the complete calibration problem and analytically
derive all nine parameters for each projection.

The other group of techniques consists of on-line techniques. All meth-
ods in this category solve the calibration problem without a specific cali-
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bration scan of a calibration object. They only use the data from the pro-
jections of the imaged object. Beyond this common feature, this group en-
compasses substantially different techniques. In [38, 41, 52], they minimize
a cost function, whose evaluation requires the reconstruction of the object
from the current estimate of the geometric parameters. The metric is based
on entropy in [41], the L2-norm of the image gradient in [38] or the mu-
tual information between re-projected image and projection data in [52].
The limitation of such methods is the computational load, which may not
fit clinical workflow (though [38] limits this drawback by only reconstruct-
ing a fraction of the volume). In [56], they use the 3D reconstruction of
a planning CT and compute projection-specific geometric parameters by
registering the actual projections with the re-projected CT image. Other
works in this category utilize the redundancy of the projection data (ie. the
DCCs). In the 2D parallel beam case, Basu and Bresler [4, 5] solve uniquely
and efficiently the problem of unknown projection angles and shifts with
the Helgason-Ludwig DCCs. Some works use the trivial “opposite-ray” con-
dition [48, 57, 60]. In [57], this DCC, which normally only applies in the
central plane (the plane of the trajectory), is extended to cone-beam pro-
jections of a particular class of symmetric 3D object functions and shows
accurate calibration results when approximated in a central region of a
generic object. More closely related to our work is a series of publications
on epipolar consistency conditions [3, 19, 47]. These DCCs are based on the
Grangeat theorem and relate the derivative of the 2D Radon transform of
the projections to the derivative of the 3D Radon transform of the imaged
object.

The comparison of previous works is not easy due to the parametriza-
tion which may differ with authors. Nevertheless, it is widely documented
that the detector shift u0 and the in-plane angle η are of crucial importance
[17, 54, 67, 76]. On the other hand, [52, 76] demonstrated that the two out-
of-plane angles (φ and θ) may be set to zero without affecting the image
quality if their true values are kept below 2◦ (which is a reasonable man-
ufacturing accuracy requirement). Finally, miscalibration of the source-to-
center and source-to-detector distances does not introduce artifacts in the
reconstructed volume and are therefore not calibrated. However, these two
parameters affect the magnification of the reconstructed volume, which
would not be acceptable in some cases, such as a metrology-oriented ap-
plication.

2.4 M E T H O D S

2.4.1 Cone-beam DCCs for a linear trajectory

Data consistency conditions are conditions which must be satisfied by the
projection data in order for them to be the image of an object function
through the forward projection model described in Equation 188. DCCs
have been applied to various CT artefact correction techniques, e.g. mo-
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tion compensation [11, 24, 78] and beam hardening correction [70]. The
simplest condition is the “opposite-ray condition”. In parallel projection ge-
ometry, it states that the projections must be even: R f (~α, s) =R f (−~α,−s),
where R f denotes the 2D Radon transform of an object function f . This
condition was applied to the calibration problem in [57]. Still in the parallel
geometry, there exists a complete set of DCCs, known as Helgason-Ludwig
DCCs (see [31, 46] and standard textbooks on the Radon transform, e.g. [18,
53]), which relates the n-th order moments of each projection to a homo-
geneous polynomial of order n. In the 2D divergent geometry (fanbeam
projections), complete DCCs, similar to Helgason-Ludwig polynomial con-
ditions, were derived in [9] for the particular case of an X-ray source moving
along a line. We will be using the order-0 case, which was known much ear-
lier than the latter work (see their various guises in [6, 23, 55, 74] and [71]
for a review).

The description of cone-beam pair-wise consistency conditions follows
[45]. Let~sλi and~sλ j be two source positions and Li , j be the line connecting
them. Suppose that both projections are acquired with one common flat
detector, parallel to Li , j . Any plane containing Li , j intersects - if it does -
the detector on a row, parallel to Li , j , which we will index with k. We will
denote that plane Pi , j ,k . The situation in Pi , j ,k reduces to a pair of fanbeam
projections along the virtual linear trajectory Li , j and with the k-th detec-
tor row playing the role of the 1D fanbeam detector. The order-0 DCCs state
that:

Lemma 4. For any pair of projection indices i , j and any integer k, let:

Gi , j ,k =
∫ π

2

− π
2

g
(
λi ,~αk

φ

)
cosφ

dφ, (189)

where~αk
φ denotes a unit vector in Pi , j ,k ,φ denotes the angle between~αk

φ and
the perpendicular to Li , j in that plane. Furthermore, the line Li , j is assumed
to not intersect the support of the object function f . See Fig 32 and 33.

If the data are consistent, then:

Gi , j ,k −G j ,i ,k = 0, (190)

Let ci , j ,k denote the square difference of the LHS of Equation 190. The
sum Ci , j =∑

k ci , j ,k is a measure of the pair-wise consistency between two
cone-beam projections g (λi , ·) and g (λ j , ·).

2.4.2 Re-sampling in a virtual detector

These DCCs only apply if the detector is parallel to the virtual linear tra-
jectory Li , j connecting two source positions. In the circular trajectory we
are considering in this work, this detector condition is obviously not ful-
filled. To remedy this problem, each pair of projections is re-sampled onto
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Figure 32: View of one plane Pi , j ,k . Order-0 fanbeam DCCs state that the integral
of the cosine-weighted projections are equal.

a virtual detector Vi , j by means of a backprojection. The virtual detector
is placed at the origin of the world system of coordinates and oriented in
such a way that the rows and columns of Vi , j are parallel to Li , j and the axis
of rotation, respectively. The situation is illustrated in Figure 33.

The orientation of the virtual detector allows a simple evaluation of the
integral Gi , j ,k in Equation (189) by changing the φ-variable to the u-pixel
coordinate of the virtual detector with:

u =
√

v2
k +D2

virt tanφ,

where vk is the intercept of the plane Pi , j ,k with the virtual detector’s v-
axis and Dvirt denotes the distance from the source to the virtual detector.
Applying this change of variables leads to:

Gi , j ,k = 1√
v2

k +D2
virt

∫
R

g (λi ,u)

√
v2

k +D2
virt√

u2 + v2
k +D2

du. (191)

Note that the weight inside the integral is exactly cosφ. The change of
variables has moved this cosine term from the denominator to the numer-
ator.

When applying these DCCs to the calibration problem, we note that the
backprojection onto the virtual detector will use the projection geometry
as input. Hence the dependency of the cost function (described in the next
section) on the calibration parameters via this backprojection.
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Figure 33: Two sources on a circular trajectory. Both projections are backprojected
in a virtual detector, parallel to the line connecting~sλi and~sλ j .

2.4.3 The consistency metric

Estimation of the geometric calibration parameters is achieved by mini-
mizing a cost function based on the pairwise consistency conditions de-
scribed above. Let p = (φ,θ,η,u0, v0,R,D) denote the 7-uple of sought pa-
rameters (remember that the rotation angle λ is accurately known). We de-
fine the cost function C (p) as follows:

C (p) = ∑
(i , j )∈Ω

Ci , j =
∑

(i , j )∈Ω

∑
k

ci , j ,k , (192)

where Ci , j was defined above with the dependence on p buried in the back-
projection onto the virtual detector, Ω is the chosen subset of pairs of pro-
jections to which the DCCs are applied.

The size of the virtual detector Vi , j is computed to account for the distor-
tion resulting from the backprojection step (see details is Section 2.6.3.1).
For each pair of projections, the cost function is evaluated over all rows k
of Vi , j .

The computation of the cost function can be summarized in the follow-
ing algorithm:

1: procedure COST(p)
2: Initalize C = 0
3: for Each pair of sources (i , j ) ∈Ω: do
4: Backproject projections onto Vi , j .
5: Pre-weight the virtual projections acc. to Equation 191.
6: for Each row k: do
7: Compute the line integrals Gi , j ,k and G j ,i ,k .
8: Compute the squared difference ci , j ,k .
9: Add to C .

10: end for
11: end for
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12: end procedure

2.5 N U M E R I C A L E X P E R I M E N T S O N S I M U L AT E D D ATA

We first studied the properties of our cost function on simulated projec-
tions of a Shepp-Logan phantom and estimated the accuracy that can be
expected from our method. All simulated projection data were generated
with the RTK software package [62]. All reconstructions were computed
with the FDK algorithm [21] available in RTK.

In all our experiments, the set Ω was composed of 27 projections pairs,
constructed as follows: nine equally spaced projections (spaced by 40◦)
were selected and all possible pairs were included inΩ, except those sepa-
rated by ±160◦. This particular choice forΩ arose from a trade-off between
the computational load and the amount of data we inject in the cost func-
tion for robust parameter estimation. Pairs separated by ±160◦ were re-
moved because they are too close to the limit situation where the line Li , j

(hence the virtual detector) would be perpendicular to the physical detec-
tors. Also, the maximum separation of the remaining pairs was 120◦ which
eliminated any risk of the connecting line intersecting the scanned object.

2.5.1 Cost function study

We first studied the behaviour of our cost function on the simulated projec-
tions of a 3D Shepp-Logan phantom [35]. Projections were simulated with
a perfectly aligned system (R = 100, D = 200 and all other geometric param-
eters set to zero). Then, we computed the cost function as a 1D-function of
each separate parameter, over a symmetric interval [−2,2] (in degrees for
η, θ and φ and in millimeters for u0, v0, R and D). Figure 34 shows corre-
sponding plots. Note that the cost function has very low dependence on
the two distances R and D . For this reason, these two parameters will not
be optimized in our calibration method. Our procedure focuses on the re-
maining 5 global parameters. The plots in Figure 34 indicate that the cost
function is locally convex with respect to each of them. The convexity of the
1D-functions does not guarantee the convexity of the multi-dimensional
cost function but is still encouraging for the optimization procedure to find
a suitable minimum. Of the five parameters, the vertical shift v0 shows the
least sensitivity to the DCCs. This fact has a direct effect on the errors we
obtained with simulated data (see section below).

2.5.2 Calibration on simulated data

We applied our calibration method to simulated projections of a 3D Shepp-
Logan phantom. The data were generated using the misalignment param-
eter values indicated in the first row of Table 3. The simulated projections
were 256×256 pixels, with pixel size set to 0.25mm. The source-to-center
and source-to-detector distances were set to 100 mm and 160 mm respec-
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Figure 34: The cost function as a 1D function of each estimated parameter, evalu-
ated on the simulated projection data of a standard Shepp-Logan phan-
tom. 90 equally spaced projections were simulated over a full 360◦ cir-
cular acquisition. For each parameter, the cost function is evaluated at
50 equally-spaced parameter values, ranging from -2 to 2. Note that the
minimum function value is not zero due to numerical errors.

tively. The larger half-length of the outer ellipsoïd of the Shepp-Logan
phantom was 15 mm. We used the Numpy implementation of the order-
0 minimization method from Powell [61]. Results are recorded in Table 3.

In the first experiment (see Exp. 1 in Table 3), the calibration procedure
was initialized with a nominal geometry (all five parameters equal to 0).
This initialization corresponds to the best guess we could make on the
real µCT system, which is designed to be perfectly aligned. In Figure 35,
we present one frontal slice of the 3D numerical Shepp Logan phantom
(top left). We reconstructed the 3D volume from the simulated projections
data using three different geometries: 1) the true geometry, 2) the DCC-
calibrated geometry (resulting from our minimization procedure) and 3)
the nominal geometry. The reconstructions are shown in Figure 35. The re-
construction with the nominal geometry shows severe artifacts (see middle
left in Figure 35) with a RMSE of 0.311 when compared to the 3D numer-
ical phantom (top left). No visible difference between the two reconstruc-
tions with the true geometry (top right) and with DCC-calibrated geometry
(middle right) is apparent. In both cases, the quality of the reconstruction
is significantly improved, with RMSE of 0.107 and 0.106 respectively. Note
also that the procedure can easily be extended to a short scan trajectory.
In the bottom row of Figure 35, we present a 220◦ short-scan reconstruc-
tions with the nominal geometry (left) and the DCC-calibrated geometry
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Table 3: Results on Simulated data

η θ φ u0 v0

in deg. in deg. in deg. in mm. in mm.

True geometry 0.1 0.2 0.3 0.4 0.5

Exp. 1 (init.: nominal geom.)

Estimated geometry 0.1040 0.5279 0.3168 0.3540 1.4037

Absolute error 0.0039 0.3279 0.0168 0.0460 0.9037

Exp. 2 (random init.)

Mean 0.0975 1.4801 0.2934 0.4198 2.6613

Std 0.0040 1.4834 0.0360 0.1030 4.1100

Absolute mean error 0.0025 1.2801 0.0066 0.0198 2.1613

Exp. 3 (random init. with fixed θ = 0.2)

Mean 0.1013 - 0.2862 0.4389 0.4907

Std 0.0008 - 0.0870 0.2471 0.0006

Absolute mean error 0.0013 - 0.0138 0.0389 0.009

Exp. 4 (random init. with fixed v0 = 0.5)

Mean 0.1010 0.2022 0.2857 0.4391 -

Std 0.0009 0.0002 0.0736 0.2101 -

Absolute mean error 0.0010 0.0022 0.0143 0.0391 -

(right). The set Ω was built with nine equally spaced projections over the
220◦ angular range.

The second experiment focuses on the dependency of the cost function
on the initial guess. We ran the procedure with 100 random initial values
taken from a normal distribution and computed the mean and standard de-
viation of each geometric parameters. The results are presented in Table 3,
Exp. 2. We noticed that the out-of-plane angle θ and the vertical shift of the
detector v0 deviated significantly from their true values (mean errors: 1.28
and 2.16 respectively), with large variability (standard deviations: 1.48 and
4.11 respectively). But this does not affect the quality of the reconstruction
as shown in Figure 35. We observed that the imaged object was well recon-
structed but possibly at a slightly different place in space and the recon-
struction with DCC-calibrated geometry had to be manually registered on
the reference Shepp-Logan by a small translation in the v direction. On the
other hand, when one of these two parameters was fixed to its true value,
the optimized value of the other was estimated with a high precision and
with very low variance (see Table 3, Exp. 3 and Exp. 4). This reveals the
difficulty of evaluating the quality of a calibration procedure. To better il-
lustrate this compensation phenomenon, we computed the cost function
value as a function of θ and v0 (the other 3 parameters being fixed to their
true values). The plot in Figure 36 reveals a long flat valley in a direction
which is a linear (for small θ) combination of θ and v0 directions. All the
values of θ and v0 along this valley minimize the cost function and visual
inspection of the resulting reconstruction suggested equally good quality.
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Figure 35: Top and middle rows : Full-scan results. Top left: The 3D Shepp-Logan
phantom. Top right: Reconstruction with true geometry. Middle left: Re-
construction with nominal geometry. Middle right: Reconstruction with
DCC-calibrated geometry. Bottom left: Short scan reconstruction with
nominal geometry. Bottom right: Short scan reconstruction with DCC-
calibrated geometry.

2.6 N U M E R I C A L E X P E R I M E N T S O N O U R µ- C T S Y S T E M

2.6.1 Description of the experimental set-up

We applied our method to real data acquired on the micro-CT system de-
picted in Figure 29. The X-ray source is fixed. The imaging object is placed
on a turntable. The distance between the source and the turntable can
be manually adjusted. The source to detector distance can also be man-
ually adjusted, but both distances remain fixed during one complete 360◦

scan. The detector size is 2048× 2048 pixels with pixel size of 17.092µm2.
The X-ray tube voltage was set to 30 kV, the current was set to 0.25 mA
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Figure 36: Consistency metric as a function of θ and v0 (Top: 3D plot of the func-
tion. Bottom: gray-value 2D map and contour lines). All 3 others geo-
metric parameters were set to their true values. The white solid line
shows the valley along which inconsistency is minimal.

and exposure time was set to 2 s. To reduce the computational burden,
the projections were down-sampled by a factor of 8 to 256 × 256 pixels.
In each experiment, 360 equally-spaced projections were acquired. Dark-
field and flat-field corrections were applied to raw-data. The negative-log
transform was then applied so that the projection data correspond to the
line-integral model described in Equation 188. We report results on three
different datasets: the first one is the projection data of the plastic cap from
a tube of glue, approximately 1 centimeter wide. The rotating support plat-
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form was in the flat-field images and therefore subtracted from the pro-
jection of the glue-cap. The glue-cap was small enough to be completely
contained in the projections. Consequently, no projections were truncated.
The values of R and D were physically measured to be 219 mm and 295
mm. The second dataset was acquired from a sample of concrete foam. All
projections were truncated in the direction of the rotation axis (axial trun-
cation). Measures of R and D were 114 mm and 137 mm respectively. For
this sample, a 0.4 mm aluminum filter was placed in front of the X-ray tube
to harden the X-ray beam to make the projection data better fit the line in-
tegral model. The third data consisted in a piece of sponge placed into a
plastic syringe. Projections were also axially truncated. Measures of R and
D were 195 mm and 259 mm respectively. See pictures and sample projec-
tions of the three objects in Figure 37.

a) Glue cap b) Concrete sample c) Sponge sample

Figure 37: Top row: Pictures of the imaged objects. Bottom row: One projection of
each object.

2.6.2 Reconstruction with complete data

The calibration method was applied to the projections acquired from each
scan, using the nominal geometry as first guess. The output values are in-
dicated in Table 4. Each of the eight row in this table corresponds to a dif-
ferent subset of projections, from which the cost function was computed.
The first one was composed of nine equally spaced projections, starting
with projections at angle 0. Each subsequent subset was shifted by 5 pro-
jections (5 degrees). Figure 38 shows coronal and transverse slices from the
reconstructed images with the nominal geometry and compares them to
reconstructions with a geometry estimated using an off-line marker-based
method and our DCC-calibrated geometry. The alignment problem de-
scribed in Section 2.5.2 was encountered here too and the two calibrated
reconstructions were registered manually in the y direction for compari-
son. Note first that sub-degree angular misalignments and sub-millimeter
detector shifts lead to severe artifacts in the reconstruction, especially at
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Table 4: Calibration using different subsetsΩ of projections

η θ φ u0 v0

in deg. in deg. in deg. in mm. in mm.

DCC-based #1 0.9301 0.2032 -0.1107 -0.0016 0.2912

DCC-based #2 0.926 0.2198 -0.1091 -0.0013 0.2754

DCC-based #3 0.9092 0.2439 -0.104 -0.0024 0.2846

DCC-based #4 0.8844 0.2476 -0.1061 -0.0047 0.2997

DCC-based #5 0.8567 0.2406 -0.1137 -0.0087 0.3108

DCC-based #6 0.8542 0.2237 -0.1014 -0.0083 0.26

DCC-based #7 0.8501 0.2075 -0.1099 -0.0025 0.2535

DCC-based #8 0.8485 0.2159 -0.1097 -0.0005 0.3015

SD 0.035 0.017 -0.004 -0.003 0.020

the edges of the object (see top-row of Figure 38). Second, the image qual-
ity was significantly improved when reconstruction was computed with
the DCC-calibrated geometry. The edges are sharp as illustrated by the pro-
files in Figure 38. Of course, the calibration procedure does not correct for
other CT artifacts which degrade both un-calibrated and calibrated recon-
structed images (e.g. cupping, probably due to beam hardening, and ring
artifacts).

2.6.3 Reconstruction with axially truncated data

This section explains how our calibration procedure can deal with axially
truncated data with application to the truncated data acquired on the same
µ-CT system (Figure 37 middle and right).

2.6.3.1 Handling axial truncation

Our cost function is the sum of square differences between integral over
rows of the virtual detector. For that reason, truncation in the v-direction
does not cause any difficulty as long as there is no truncation in the u-
direction. This feature is specific to the nature of the DCCs used in the cost
function. In our implementation, care must be taken at the backprojection
level because the square physical detector is backprojected to a trapezoidal
shape on the virtual detector, with horizontal pixel rows backprojected to
oblique pixel rows of varying angle (except for the central line, which re-
mains horizontal). The situation is depicted in Figure 39. The virtual projec-
tion can therefore be limited to those horizontal rows of the virtual detec-
tor that are not truncated (rows between the two dashed lines on Figure 39
right).
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2.6.3.2 Results

The calibration procedure was applied to the concrete and the sponge
datasets. The nominal geometry served as initial guess. For the concrete
sample, the scanning distances R and D were set to 114 mm and 137 mm re-
spectively. The resulting cone-angle was approximately 14◦. For the sponge
sample, R = 195 mm and D = 259 mm. Axial and transverse slices of the re-
constructed volumes are shown in Figure 40 and 41. In the uncalibrated re-
constructions, small structures of the object are barely distinguishable. In
the calibrated reconstruction of the concrete sample, though cone-beam
and beam-hardening artifacts are still present, the detailed structures (air
bubbles in the concrete foam) are much more sharply reconstructed.

2.7 C O N C L U S I O N A N D F U T U R E W O R K

We proposed an on-line calibration method to estimate five geometric pa-
rameters of a µ-CT system. The method is based only on consistency of
the “production” scan. It requires no prior (off-line) calibration scan. The
quality of the reconstructed images in the experiments compares with the
robust “classical” marker-based calibration method. Furthermore, the cal-
ibration method can correctly handle axially-truncated data, which is an
untypical feature for DCC-based application.

The design of our cost function can probably be refined. A short study
on the individual contribution of a pair of projections revealed that pairs
angularly separated by more than 90 degrees contributed more than close
pairs. Hence, a cost function built from such pairs may convey more inde-
pendent information and hence lead to more robust estimation. Another
question is related to the dependency of the cost function on the object.
We have carried out some simulations (similar to those in Figure 34 and
Figure 36) on objects with sharp edges (a simplex-like simulated object) or
plate-like objects (very small extent in the v-direction). In all cases, the cost
function behaved similarly to the Shepp-Logan study, with regards to each
individual parameter or with regards to the (θ, v0) pair. However, the cost
function behaved differently when the plate-like object was placed in the
central plane (containing the source trajectory). But, in this case, the geom-
etry collapses to fanbeam, with its own geometric parameters (for example,
θ plays no role).

The investigation of the interplay between geometric parameters is a
possible future direction of research. Figure 36 reveals that a large error on
one parameter can be compensated by a large error on the second in terms
of consistency. We are also extending this work in two directions. The first
one applies the same principles to estimate projection-specific calibration
parameters, by using a similar cost function for each projection. Second,
the comparison of our method with the work in [19], later described as
Epipolar Consistency Conditions [3]. ECCs are also applied to pairs of pro-
jections and use a similar geometry of lines on the two detectors (as shown
in Figure 33). However, the theoretical foundations are different because
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the ECCs are based on Grangeat’s formula and require the computation
of a derivative. Whether these conditions are equivalent to the conditions
used in our work still needs to be understood and is ongoing work.

2.8 I N V E S T I G AT I O N O F T H E VA L L E Y- S H A P E D C O S T F U N C T I O N

This section is an addendum. It was not published in the original paper
[43]. We investigate the behaviour of the cost function in the 2D plane of
the parameters θ and v0. Figure 36 revealed a flat valley around the nom-
inal position (θ, v0) = (0.2,0.5). At any point along that valley, the consis-
tency is minimal. In other words, an error on - say - θ is compensated (in
terms of consistency) by an error on v0. More precisely, we prove that the
consistency cost function is insensitive to small (to be clarified) errors on
θ.

To draw Figure 36, we sampled the cost function C over the parameters
θ and v0 for θ ∈ 0.2+ [−2,2] and v0 = 0.5+ [−2,2]. For each v i

0, we denoted

θi = argmin
θ

C (θ, v i
0). (193)

This value was just extracted from the samples of C (no minimization pro-
cedure was launched). The obtained points lie along the valley. We then fit
these points by linear regression. The equation we obtained was

v0 ≈ 159.352×θ−0.064, (194)

with very strong correlation (r > 0.999). This linear relation must be true
only for small values of θ since we anticipate a trigonometric relation be-
tween these two variables. A study of the cost function along the valley for
larger values of θ (θ ∈ 0.5±10◦) also shows that this compensation does not
occur for too large errors (see Figure 42).

To derive the geometric relation between θ and v0, we consider (with-
out loss of generality) one single projection at rotation angle λ = 0, with
a detector aligned in the x− direction, i. e. η = φ = 0 = u0. The focal dis-
tance is f . The nominal values of θ and v0 are 0.2◦ and 0.5 mm respectively.
When changing the value of θ without affecting the other parameters (θ′

denotes the modified value), the detector is rotated around the position of
the source (see Figure 43). This rotation introduces inconsistency. E. g. , the
ray from the source to the detector’s centre is significantly displaced. We
define v ′

0 to be the detector’s offset such that the ray through the displaced
detector’s centre coincide with the same ray in the nominal position. We
have

v0 = f tanθ, (195)

v ′
0 = f tanθ′, (196)

so that

v ′
0 = f tanθ′+ v0 − f tanθ. (197)



2.8 I N V E S T I G AT I O N O F T H E VA L L E Y- S H A P E D C O S T F U N C T I O N 83

With the numerical values of our simulations ( f = 160mm, v0 = 0.5 and
θ = 0.2◦) one gets

v ′
0 = 160tanθ′−0.0585, (198)

which is close to Equation 194 (with the approximation tanθ′ ≈ θ′ valid for
small values of θ′).

This short study illustrates that the consistency-based cost function is
insensitive to small variations of the out-of-plane angle θ (at least for errors
of less than 0.7◦ in amplitude, see Figure 36), provided that the detector is
offset accordingly to realign at least one ray.
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Figure 38: Coronal (left) and transverse (right) slices of the reconstructed image
without calibration (top row), with DCC-based calibration (second row)
and with marker-based calibration (third row). The intersection of both
slices is represented by the white line. The corresponding intensity pro-
files are plotted on the bottom figure.
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Figure 39: Axial truncation management: only those rows between the two dashed
lines are retained in the virtual projection.

Figure 40: Concrete sample. Coronal (left) and transverse (right) slices of the re-
constructed volume without calibration (top row) and with our DCC-
based calibration (bottom row).
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Figure 41: Sponge sample. Coronal (left) and transverse (right) slices of the recon-
structed volume without calibration (top row) and with our DCC-based
calibration (bottom row).
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Figure 42: The cost function along the valley line for θ = 0.2±10 degrees.
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~sλ O
θ

θ′

f

f v0

v ′
0

Figure 43: Side view of the (y , z)-plane. The black thick lines represent the detec-
tors. In its nominal position, the detector makes an angle θ with the
rotation axis (O y). The centre of the detector Od , the origin O, and the
source are on the same line. This corresponds to a detector offset v0. If
the out-of-plane angle is modified to θ′, the ray from~sλ to the centre
of the detector is displaced accordingly, introducing inconsistency. The
inconsistency is counteracted by adjusting v ′

0 so that the ray returns to
its original position.
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F B C C A N D G C C : A C O M PA R AT I V E S T U DY

In this chapter, we carry out a comparative study between FBCC presented
in Chapter II-2 and the Grangeat Consistency Conditions (GCC) first intro-
duced in [19]30. The main result of this chapter establishes the intrinsic 30 For a reason that

will become clear
later in this chapter,
the name of
Epipolar
Consistency
Conditions, used in
[3] is not used here.
We prefer to use
Grangeat
Consistency
Conditions to
emphasize that the
DCC essentially rely
on Grangeat’s result.
In fact, FBCC are as
epipolar as the GCC
since the word
epipolar only refers
to the geometry of
lines in the detectors.
In both FBCC and
GCC, the same set of
epipolar lines are
incorporated in the
conditions.

connection between the GCC and FBCC (Proposition 16). By intrinsic, we
mean that this relation is independent of any detector. Then, for practical
implementation of both conditions, we establish the same result for pairs
of source and detector in general positions. To this end, we derive the im-
plementation of FBCC in the physical detector (Proposition 18) and estab-
lish an epipolar version of Grangeat’s result (Proposition 20). We then verify
that the intrinsic relation is also satisfied by the expressions in the physical
detector. Finally, we illustrate this relationship with numerical simulations.

The reading of this chapter may be facilitated by the prior reading of the
Appendix 1.3, which introduces the concepts of the projective geometry,
homogeneous coordinates and homography.

3.1 T H E E P I P O L A R G E O M E T R Y O F O N E PA I R O F P R O J E C T I O N S

We consider an object function µ whose support contains the origin O of
the PCS. The source trajectory never intersects the support of µ (in par-
ticular, the source is never in O). Let gλ1 and gλ2 be a pair of projections.
The source positions are denoted~s1 and~s2, with coordinates in the PCS
(xλ1 , yλ1 , zλ1 ) and (xλ2 , yλ2 , zλ2 ) respectively. The line connecting these two
points is called the baseline and is denoted b. Two cone-beam projections
define an epipolar coordinate system (ECS) (O,~ee

x ,~ee
y ,~ee

z ) illustrated in Fig-
ure 44 and defined by

• ~ee
x = ~s2−~s1

‖~s2−~s1‖ is the direction of the baseline b,

• ~ee
y = ~s1×~s2

‖~s1×~s2‖ is the unit normal to the plane containing both source
positions and the origin O,

• ~ee
z =~ee

x ×~ee
y is such that the ECS is a right-handed coordinate system.

We let R12 = [
~ee

x ~e
e
y ~e

e
z

]
denote the rotation matrix from ECS coordi-

nates to PCS coordinates and d > 0 denotes the distance from the ori-
gin O to the baseline b. Note that in the ECS, every point on the base-
line has coordinates (x,0,d) for some x ∈ R. In particular, we define the
scalars α1 and α2 so that the source positions~s1 and~s2 have coordinates
(α1,0,d) and (α2,0,d) respectively in the ECS (Figure 45). Note that we have
(xλi , yλi , zλi ) = R12(αi ,0,d).

89
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~s1

~s2

~ee
x

~ee
y

~ee
z

b

Figure 44: A pair of projections in general positions. The unmarked black arrows
are the unit vectors of the PCS. The resulting epipolar geometry is char-
acterized by the ECS (O,~ee

x ,~ee
y ,~ee

z ).~ee
x is parallel to the baseline b. The

vector~ee
y is the normal to the plane containing O and the two source

positions~s1 and~s2.

We also define spherical coordinates (θ,φ) so that a unit vector ~α ∈ S2

has coordinates, in the ECS (see Figure 45),

~α(θ,φ) = (sinφ, sinθcosφ,−cosθcosφ). (199)

We call epipolar plane any plane which contains the baseline b. The 1D
family of epipolar planes can be parametrized by the angle θ ∈ ]−π/2,π/2]
that a particular plane makes with the plane (O,~ee

x ,~ee
z ). We let Eθ denote

an epipolar plane. Each of these planes has a normal unit vector denoted
~β(θ), whose coordinates in the ECS are

~β(θ) = (0,cosθ, sinθ). (200)

A plane Eθ intersects each physical detector in one epipolar line, denoted
lθ,i (i = 1,2). All epipolar lines lθ,i in one detector meet in one point, called
the epipole and denoted~εi . The epipole~ε1 is the projection of~s2 through
the source~s1 (and conversely for~ε2). The situation is depicted in Figure 46.

3.2 A D E T E C T O R - L E S S V E R S I O N O F PA I R - W I S E D C C

3.2.1 Grangeat Consistency Conditions (GCC)

In this section, we briefly recall Grangeat Consistency Conditions. The the-
orem of Grangeat was introduced in Section 1.7 with the use of the inter-
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~s1

~s2

~ee
x

~ee
y

~ee
z

b~α

φθ d

α1

α2

(u, v)
•

Figure 45: Spherical coordinates (θ,φ) are defined with respect to the epipolar ge-
ometry of the pair of projections. The baseline is the polar axis. The
positions of the source in the ECS are (α1,0,d) and (α2,0,d) respec-
tively. The point (u, v) lies on the virtual detector. We have the relations
v = d tanθ and u =α1 +d tanφ/cosθ.

~s1
~s2

~ε1

~ε2

Eθ

lθ,1

lθ,2

Figure 46: The epipolar geometry of one pair of projections. All epipolar planes
Eθ intersect the detectors in epipolar lines lθ,i with i = 1,2. All epipolar
lines meet in the epipoles~εi .

mediate function Gg , defined for any projection gλ and for all ~β ∈ S2 by

Gg

(
λ,~β

)
=

∫
S2
δ′

(
~α ·~β

)
gλ

(
~α

)
d~α. (201)

Grangeat theorem relates Gg

(
λ,~β

)
to the 3D Radon transform of the object

function µ

Gg

(
λ,~β

)
= ∂

∂s
Rµ

(
~β, s

)∣∣∣
~sλ·~β

. (202)



92 F B C C A N D G C C : A C O M PA R AT I V E S T U D Y

Let us consider an epipolar plane Eθ which contains both sources~s1 and
~s2. Since~sλ1 ·~β(θ) =~sλ2 ·~β(θ), one has the Grangeat consistency condition∫

S2
δ′

(
~α ·~β(θ)

)
gλ1

(
~α

)
d~α=

∫
S2
δ′

(
~α ·~β(θ)

)
gλ2

(
~α

)
d~α. (203)

Of course, in some particular cases, a plane Eθ may contain more than
two source positions. This is the case in Chapter II-1: the source trajectory
is assumed planar. The plane E0 (it is denoted H~e y ,0 in Chapter II-1) con-
tains all source positions, so the equality of Equation 203 propagates to the
whole trajectory. It is also the case when the trajectory of the source is lin-
ear as in [9] and in [44], in the case of linear tomosynthesis.

3.2.2 Fan-Beam Consistency Conditions (FBCC)

The second set of DCC that we are considering in this chapter is the FBCC,
which were applied to the calibration problem in Chapter II-2. With the
spherical coordinates defined in Equation 199 and for a particular plane
Eθ, the pairwise FBCC can be formulated as∫ π

2

− π
2

gλ1

(
~α(θ,φ)

)
cosφ

dφ=
∫ π

2

− π
2

gλ2

(
~α(θ,φ)

)
cosφ

dφ. (204)

We denote G f

(
λ,~β(θ)

)
the integral involved in this equation.

3.2.3 The intrinsic relation between Gg and G f

We can now establish the main result of this section, which relates FBCC
and GCC.

Proposition 16. For all θ̄ ∈ ]−π
2 , π2

[
,

Gg

(
λ,~β(θ̄)

)
= ∂

∂θ
G f

(
λ,~β(θ)

)∣∣∣∣
θ=θ̄

. (205)

The relation in Equation 205 is independent of the detectors. Saying that
the pair of projections satisfy the FBCC means that the functions G f (λ1, ·)
and G f (λ2, ·), as functions of the angle θ, are equal for all θ. Their deriva-
tives (with respect to θ) must also be equal and the projections satisfy the
GCC. We proved the

Corollary 17. If a pair of projections satisfies the FBCC, then it must also
satisfy the GCC.

To the best of our knowledge, this result is new.

Proof of Proposition 16. We start with the expression of Gg in terms of the
spherical coordinates (θ,φ). We obtain

Gg

(
λ,~β(θ̄)

)
=

∫ + π
2

− π
2

∫ +π

−π
δ′

(
cosφsin(θ− θ̄)

)
gλ

(
~α(θ,φ)

)
cosφdθdφ. (206)
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Again, the homogeneity property of δ′ plays an important role by moving
the cosφ from the numerator to the denominator, yielding

Gg

(
λ,~β(θ̄)

)
=

∫ +π

−π
δ′(sin(θ− θ̄))

(∫ + π
2

− π
2

gλ(~α(θ,φ))

cosφ
dφ

)
dθ (207)

= ∂

∂θ
G f

(
λ,~β(θ)

)∣∣∣∣
θ=θ̄

, (208)

where we obtained the last line by applying the Proposition 24 of Ap-
pendix 1.1 (page 124).

The result of Proposition 16 is of theoretical interest. It states that the
FBCC are stronger conditions than GCC, in the sense that if FBCC are satis-
fied by a pair of projections, the GCC are necessarily also satisfied. Whether
they are strictly stronger (i. e. we could find a pair of projections which are
consistent with respect to the GCC but inconsistent with respect to FBCC)
is still unclear. It is true in the particular tomosynthesis geometry. We de-
rived such an example in [44]. In view of applications, we will now establish
the same relation in terms of the detector coordinates. To do so, we need
first to derive a formula for G f on the detector. This is the purpose of the
next section.

3.3 F A N - B E A M D C C I N T H E P H Y S I C A L D E T E C T O R

In this section, we derive the algorithm to compute the FBCC in the physi-
cal detector. The situation is as above except that we now add physical de-
tectors, whose positions and orientations are entirely encoded in the pro-
jection matrices P1 and P2. Both projections are assumed in very general
position. We only assume that the baseline b does not intersect the support
of the object31. In particular, the baseline never passes through the origin 31 This assumption

is not too restrictive
with respect to a
circular trajectory
for instance. If
projections are
acquired at a
reasonable
sampling rate (say
every five degrees at
least), there will be
sufficiently many
pairs which fulfil
the condition.

O. We also assume that neither detector is parallel to the baseline.
From now until the end of this chapter, we focus on one projection only

and drop the subscript i = 1 or 2 for ease of notation. Of course, the epipo-
lar geometry of the pair is still ubiquitous, through the rotation matrix R12

and the ECS. For a particular epipolar plane Eθ making an angle θ with
the reference plane (O,~ee

x ,~ee
z )32, the FBCC require the computation of the

32 Note that θ is also
the angle between
~β(θ) and~ee

y .

function G f defined by

G f (θ) =G f

(
λ,~β(θ)

)
=

∫ π
2

− π
2

gλ
(
~α(θ,φ)

)
cosφ

dφ. (209)

In Chapter II-2, the computation of G f is implemented on a virtual de-
tector whose axes coincide with the~ee

x and~ee
y directions of the ECS. The

epipolar plane Eθ intersects the virtual detector in a line parallel to the u-
axis with a vertical offset which we denote vθ. Note that we have the re-
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lation vθ = d tanθ. By changing the φ variable in Equation 209 for the u
variable (see Figure 45), with

u =α+ d

cosθ
tanφ (210)

dφ=
√

v2
θ
+d 2

(u −α)2 + v2
θ
+d 2

du (211)

cosφ=
√

v2
θ
+d 2√

(u −α)2 + v2
θ
+d 2

, (212)

we obtain

G f (θ) =
∫ +∞

−∞
gλ(u, vθ)√

(u −α)2 + v2
θ
+d 2

du. (213)

The integral involved in Equation 213 is a 1D integral over a line paral-
lel to the u-axis of the virtual detector. When projected onto the physical
detector, the line of integration will not be parallel to one of the axes (see
Figure 47). To address this issue, we turn the 1D integral into a 2D integral,
using the Dirac δ distribution

G f (θ) =
Ï

δ(v − vθ)
gλ(u, v)√

(u −α)2 + v2 +d 2
du dv . (214)

In view of implementing this function in the physical detector, we will
change the (u, v) variables of the virtual detector to the coordinates of the
physical detector, which we denote with capital letters (U ,V ). The final re-
sult of this change of variables is

Proposition 18 (FBCC in physical detector).

G f (θ) = 1∣∣cos
(
~eo

z ,~ee
x

)∣∣
∫

lθ

f√
(U −u0)2 + (V − v0)2 + f 2

gλ (U ,V )√
(U −U~ε)2 + (V −V~ε)2

dσ

(215)

where lθ is the epipolar line and (U~ε,V~ε) are the coordinates of the epipole~ε.
The integral over lθ must be understood in the sense of curve integral33.33 Let C be a

differentiable curve
parametrized with
~x(t ) for t ∈ T . We

have
∫

C f (~x)dσ=∫
T f (~x(t )) |~x ′(t )|dt .

R E M A R K S : The term before the integral is the cosine of the angle made
by the normal of the physical detector and the baseline. It does not depend
on (U ,V ) (but it is projection dependent, because~eo

z is). The first weighting
term inside the integral is the usual cosine of the incidence angle. Note that
in the virtual detector, the projection values were also weighted by the co-
sine of the incidence angle (up to the multiplicative constant d), but this
incidence angle was with respect to the virtual detector. Shifting to the
physical detector substitutes the cosine of the virtual incidence angle to
the cosine of the physical incidence angle. The second weighting term is
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~s

~ee
x /~u

~ee
y /~v

v = vθ

~e(U~ε,V~ε)

epipolar line lθ epipolar plane Eθ

baseline b

Figure 47: For an epipolar plane, the line v = vθ on the virtual plane (red) is pro-
jected on the physical detector to the epipolar line lθ .

the inverse of the distance of the pixel (U ,V ) to the epipole. This weighting
term was unexpected. It plays a major role in the derivation of the relation
with the GCC. Heuristically, let t denote this distance. When changing from
cartesian coordinates to polar coordinates (centred on the epipole) in the
2D integral of GCC, t−2 comes out due to the homogeneity of δ′. It is only
partially compensated by the jacobian t . Hence the weighting term in t−1.

C O H E R E N C E W I T H P R E V I O U S P U B L I C AT I O N S : In the particular case
of a circular trajectory and restricting the cone-beam projections to the
central plane, it is easily seen (see Figure 49) that

~si~εi

(U ,V )

b

~eo
z

~ee
x

Figure 49

cos
(
~eo

z ,~ee
x

)√(
U −U~εi

)2 + (
V −V~εi

)2 (216)

is actually the distance from the pixel to the baseline b. It corresponds to
Equation (7) in [11]. The correspondence is not immediate but the denom-
inator in their equation is precisely the distance of the pixel to the line con-
necting the source positions.

Proof of Proposition 18. The rest of this section is dedicated to the proof of
the Proposition 18. It consists in the following four steps:

• Compute the projection matrices from ECS coordinates to the virtual
(u, v) coordinates and physical (U ,V ) coordinates.

• Derive the homography that leads to the change of variables.

• Change the variables.

• Properly handle the composition of the Dirac δ distribution with the
change of variables.

At every stage of the proof, we try to work out the geometric meaning of the
expressions, instead of simply deriving weighting terms which would ob-
scurely depend on the parameters of an homography H (see below). Most
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calculations will be done in the ECS. The first step consists in deriving the
projection matrix from ECS coordinates to the virtual and physical DCS.

S T E P 1 : P R O J E C T I O N M AT R I C E S F R O M E C S C O O R D I N AT E S T O V I R -
T U A L A N D P H Y S I C A L D E T E C T O R S . The position and orientation of the
source and the (physical) detector is encoded in the projection matrix P ,
which can be be written in several forms (see Chapter I-2): P = K R

[
I3|−~s

]=[
A|− A~s

]
with

K =


− f 0 u0

0 − f v0

0 0 1

 (217)

R =


− ~eo

x −
− ~eo

y −
− ~eo

z −

 (218)

~s =


xλ

yλ

zλ

 (219)

A = K R. (220)

The matrix P converts the 3D coordinates in the PCS to the 2D coordi-
nates in the (physical) detector. We let Pp denote the projection matrix
from the ECS coordinates to the physical detector coordinates. We let R̃12

be the rotation matrix from the ECS to the PCS, in homogeneous coordi-
nates.

R̃12 =


| | | 0

~ee
x ~ee

y ~ee
z 0

| | | 0

0 0 0 1

=
[

R12 0

0 1

]
. (221)

The matrix Pp is obtained by right-multiplying P by R̃12.

Pp = PR̃12 (222)

= K R
[
I3|−~s

][
R12 0

0 1

]
(223)

= K R
[
R12|−~s

]
(224)

= K RR12
[
I3|−RT

12~s
]
. (225)
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The matrix Pp can be decomposed as Pp = Kp Rp
[
I3|−~sp

]= [
Ap |−Ap~sp

]
with

Kp = K (226)

Rp = RR12 (227)

Ap = K RR12 (228)

~sp = RT
12~s. (229)

We now derive the projection matrices from ECS coordinates to the vir-
tual detector, denoted Pv . We built the matrix from the geometrical descrip-
tion of the source and virtual detector (see Chapter I-2). The source posi-
tion in the ECS is~sv = (α,0,d), where α=~s ·~ee

x . See Figure 45. The orienta-
tion of the virtual detector in the ECS is characterized by the Euler angles
θ = φ = η = 0, i. e. the rotation matrix is the Identity matrix I3. Finally, the
(virtual) focal distance is d , the vertical offset of the detector is zero and
the horizontal offset is α. We can build the projection matrix Pv from this
geometrical description.

Pv = Kv Rv
[
I3|−~sv

]
(230)

with

Kv =


−d 0 α

0 −d 0

0 0 1

 , (231)

Rv = I3, (232)

~sv =


α

0

d

 . (233)

We also let Av = Kv Rv so that Pv = [
Av | − Av~sv

]
. Note that~sp =~sv . We

keep the subscripts for consistency of notation but both are the triple of
coordinates of the source in the ECS.

S T E P 2 : T H E H O M O G R A P H I C C H A N G E O F VA R I A B L E S . To derive the
change of variables, we start from one point (u, v) and denote r the ray
joining the point (u, v) and the source. We search for an expression of (u, v)
in terms of the coordinates (U ,V ) of the point of intersection of r with the
physical detector. See Figure 50. In homogeneous coordinates, the point is
(u, v ,1) (see Appendix 1.3). Any 3D point M in ECS coordinates on the ray
r (joining the pixel (u, v) to the source~sv ) can be written

M =~sv +κA−1
v


u

v

1

 , κ ∈R. (234)
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~s1

~s2

~ee
x /~u

~ee
y /~v

~ee
z

b

(u, v)

(U ,V )

Figure 50: One projection and the virtual detector. The orientation of the virtual
detector is determined by the epipolar geometry, characterized by the
baseline b (red). In Chapter II-2, FBCC were computed from projection
data re-sampled on the virtual detector (red), with coordinates (u, v).
In order to implement FBCC directly in the physical detector (blue),
with (U ,V ) coordinates, we derive the change of variables from (U ,V )
to (u, v).

This relation is checked by re-projecting M onto the virtual detector:

Pv

[
M

1

]
= [

Av |− Av~sv
]

~sv +κA−1

v


u

v

1


1

 (235)

= Av~sv +κ


u

v

1

− Av~sv (236)

= κ


u

v

1

'


u

v

1

 . (237)

The last line confirms that M projects onto (u, v) on the virtual detector.
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Let us assume for now that the same ray r intersects the physical detector
in coordinates (U ,V ) (with homogeneous coordinates (U ,V ,1)). We must
have

M =~sp +κ′A−1
p


U

V

1

 , κ′ ∈R. (238)

By identification (and recalling that~sv =~sp ), we have
u

v

1

' Av A−1
p


U

V

1

= H


U

V

1

 , (239)

where we defined the homography H = Av A−1
p . Note that the previous

equality is only valid up to a multiplicative constant since it is an equality
of homogeneous coordinates. The homography H establishes a correspon-
dence between finite points (U ,V ,1) of the physical detector with finite
points (u, v ,1) of the virtual detector. It is more precisely given by

H = Av A−1
p (240)

=


−d 0 α

0 −d 0

0 0 1



− ~ee

x −
− ~ee

y −
− ~ee

z −




| | |
~eo

x ~eo
y ~eo

z

| | |



− 1

f 0 u0
f

0 − 1
f

v0
f

0 0 1

 .

(241)

We define some further notation related to H . The (i , j )−coefficient of
H is Hi j . For j = 1,2,3, H· j is the (column) vector

[
H1 j H2 j H3 j

]T . For i =
1,2,3, Hi · is the (column) vector

[
Hi 1 Hi 2 Hi 3

]T . In the following, we restrict
our attention to the finite points (U ,V ) on the physical detector which we
note

X =


U

V

1

 . (242)

The scalar product of X with the i -th line of H is denoted H T
i · X = Hi 1U +

Hi 2V +Hi 3. We have

H X =


H T

1·X

H T
2·X

H T
3·X

'


u

v

1

 . (243)

To express G f in terms of physical coordinates (U ,V ), we would like to
express u and v in terms of U and V . Provided that H T

3·X 6= 0, the above
equation provides the desired change of variables
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u = H T
1·X

H T
3·X

, (244)

v = H T
2·X

H T
3·X

. (245)

Before proceeding to the actual change of variables, we need to check if
the condition H T

3·X 6= 0 is compatible with our assumptions. To this end,
let Σ denotes the set of points X such that H T

3·X = 0. This condition means
that the point (U ,V ) is mapped to a point at infinity in the virtual detector,
i. e. the ray from the source to (U ,V ) is parallel to the virtual detector. The
set Σ is the intersection of the physical detector and the plane parallel to
the virtual detector and containing the baseline b (we call this plane the
baseplane). The epipole~ε belongs to Σ. But we assumed that the baseline
b does not intersect the support of the object so that the epipole is out-
side the support of the projection. In the next paragraph, we implement
the change of variables in the integral expression G f (θ) of Equation 214
(subscript i is dropped), which we recall here:

G f (θ) =
Ï

δ(v − vθ)
gλ(u, v)√

(u −α)2 + v2 +d 2
du dv . (246)

S T E P 3 : T H E C H A N G E O F VA R I A B L E S . We prove in Appendix 2.2 that
the jacobian of the change of variables of Equations 244 and 245 is

du dv = |Jac|dU dV = |det H |
|H T

3·X |3 dU dV . (247)

By definition of H , we have det H = d 2/ f 2. For further simplification, we
now prove the

Lemma 5.

H T
3·X = cosβv

cosβp , (248)

where βv and βp are the incidence angles of the ray from~s to X with respect
to the virtual and physical detector respectively34.34 The notation βp

and βv for the
incidence angles is
only a short-cut. It

depends on the
detector’s variables

(U ,V ) and (u, v)
respectively.
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Proof. From Equation 241, we have

H T
3·X =~ee

z ·




| | |
~eo

x ~eo
y ~eo

z

| | |



− 1

f 0 u0
f

0 − 1
f

v0
f

0 0 1




U

V

1


 (249)

=~ee
z ·

RT


−U−u0

f

−V −v0
f

1


 (250)

=− 1

f
~ee

z ·

RT


U −u0

V − v0

− f


 . (251)

(252)

Let us denote ~α the unit direction of the ray from the source position
to the pixel (U ,V ). Since the source has coordinates (u0, v0, f ) in the 3DCS
(Od ,~u,~v ,~w ), the vector from the source to the point (U ,V ) is l~αwhere

l =
√

(U −u0)2 + (V − v0)2 + f 2. (253)

Its coordinates in the 3DCS (and in the OCS) are (U −u0,V − v0,− f ). Left
multiplying these coordinates by RT , which is the rotation matrix from
OCS coordinates to PCS coordinates, yields the PCS coordinates so that

− 1

f
~ee

z ·

RT


U −u0

V − v0

− f


=− 1

f
~ee

z · l~α (254)

= l

f
cos

(−~ee
z ,~α

)
. (255)

The proof is complete since

• the angle made by the vectors −~ee
z and ~α is the incidence angle with

respect to the virtual detector, namely βv ,

• f /l is the cosine of the incidence angle with respect to the physical
detector, namely cosβp .

For geometrical reasons, we note that both cosines are positive.

For reasons that will become clear later, we split the jacobian in two sep-
arate pieces

du dv = |Jac|dU dV = |det H |
|H T

3·X |2
|cosβp |
|cosβv | dU dV . (256)

Before plugging the new variables in the integral, we note that the weight-
ing factor in Equation 246 satisfies

1√
(u −α)2 + v2 +d 2

= cosβv

d
. (257)
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Symmetrically on the physical detector

cosβp = f√
(U −u0)2 + (V − v0)2 + f 2

. (258)

After some rearrangement, we obtain

du dv√
(u −αi )2 + v2 +d 2

= |det H |
|H T

3·X |2
f√

(U −u0)2 + (V − v0)2 + f 2

dU dV

d
(259)

and finally substitute (u, v) variables with their expression in terms of
(U ,V ) coordinates in the expression of G f :

G f (θ) =
Ï

δ

(
H T

2·X
H T

3·X
− vθ

)
f gλ(U ,V )√

(U −u0)2 + (V − v0)2 + f 2

|det H |
|H T

3·X |2
dU dV

d
.

(260)

Note that gλ(u, v) is replaced by gλ(U ,V ) because gλ(u, v) refers to the pro-
jection image on the virtual detector whereas gλ(U ,V ) refers to the projec-
tion image on the physical detector. As announced, the cosine of the inci-
dence angle with respect to the virtual detector is now substituted with the
cosine of the incidence angle with respect to the physical detector.

S T E P 3 : H A N D L I N G T H E D I R A C δ D I S T R I B U T I O N . The term in G f

with the Dirac function requires a particular treatment. It has the form
δ (m(U ,V )) with

m(U ,V ) = H T
2·X

H T
3·X

− vθ. (261)

The function m(U ,V ) is smooth for all (U ,V ) on the physical detector (re-
call that we assumed that the set Σ of singular points does not intersect the
physical detector). We use the following theorem (which is presented in the
Appendix 1.1, Theorem 23 in a slightly more general version)35.35 This theorem is

not a contribution
of this work. Theorem 19 (Composition of δ with a smooth function.). Let m be a

smooth function on R2 and φ a test function. Let Γ = {
~x : m(~x) = 0

}
. We as-

sume that ‖∇m(~x)‖ 6= 0 for all x ∈ Γ.Then:∫
R2
δ (m(~x))φ(~x)d~x =

∫
Γ

φ(~x)

‖∇m(~x)‖ dσ, (262)

where the integral must be understood in the sense of curve integral.

In view of applying Theorem 19 to our expression, we prove in Ap-
pendix 2.3 that

‖∇m (U ,V )‖ =
√

(∆13U −∆11)2 + (∆13V −∆12)2(
H T

3·X
)2 , (263)

where ∆i j is the cofactor of the entry (i , j ) of the matrix H . E. g. ∆13 =
H21H32−H22H31. In order to factor out |∆13| in the above equation, we shall



3.3 F A N - B E A M D C C I N T H E P H Y S I C A L D E T E C T O R 103

prove that ∆13 6= 0. By a well-known property of the inverse of a matrix, we
have ∆13 = det H

(
H−1

)
31. The matrix H is easily inverted as

H−1 =


− f 0 u0

0 − f v0

0 0 1



− ~eo

x −
− ~eo

y −
− ~eo

z −




| | |
~ee

x ~ee
y ~ee

z

| | |



− 1

d 0 −α
d

0 − 1
d 0

0 0 1

 ,

(264)

so that

∆13 = (det H)
(
H−1)

31 (265)

= (det H)~eo
z ·

(
−~e

e
x

d

)
(266)

=− d

f 2
~eo

z ·~ee
x (267)

which vanishes if and only if the baseline is parallel to the physical detector.
We excluded this eventuality so ∆13 6= 0. Equation 263 becomes

‖∇m (U ,V )‖ =
√(

U − ∆11

∆13

)2

+
(
V − ∆12

∆13

)2 |∆13|(
H T

3·X
)2 . (268)

The geometrical meaning of the offsets in the square root expression is elu-
cidated in the following

Lemma 6 (Epipole coordinates). The coordinates of the epipole~ε in the DCS

are (U~ε,V~ε) =
(
∆11
∆13

, ∆12
∆13

)
.

Proof. The ray from the epipole through the source (the baseline) is paral-
lel to the virtual detector in the direction of~ee

x . In terms of homogeneous
coordinates, this means that the finite point

[
U~ε,V~ε,1

]T in the physical de-
tector is mapped to the point at infinity

[
1,0,0

]T in the virtual detector. In
matrix form, this is written

H


U~ε

V~ε

1

'


1

0

0

 , or


U~ε

V~ε

1

' H−1


1

0

0

 . (269)

The inverse of H is given by

H−1 = 1

det H


∆11 ∆12 ∆13

∆21 ∆22 ∆23

∆31 ∆32 ∆33


T

(270)

so that (recall that ∆13 6= 0)
U~ε

V~ε

1

' 1

det H


∆11

∆12

∆13

'


∆11/∆13

∆12/∆13

1

 , (271)

which ends the proof of the lemma.
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Together with Lemma 6, we can apply Theorem 19 to the integral in Equa-
tion 260. The |H T

3·X |2 terms cancel out and we finally obtain

G f (θ) =
∫

{m(U ,V )=0}

f gλ(U ,V )√
(U −u0)2 + (V − v0)2 + f 2

|det H |
d |∆13|

dσ√
(U −U~ε)2 + (V −V~ε)2

(272)

We are two more rearrangements away from the announced result:

• We shall prove that the integration set {m(U ,V ) = 0} is precisely the
epipolar line lθ. Since we assumed that H T

3·X 6= 0 for all (U ,V ) in the
physical detector, we have

m(U ,V ) = 0 ⇔ H T
2·X − vθH T

3·X = 0 (273)

⇔ [
0 1 − vθ

]T H


U

V

1

= 0 (274)

⇔ l T X = 0, (275)

where we put l = H T (0,1,−vθ)T . As explained in Appendix 1.3,
Proposition 27, the line H T (0,1,−vθ)T is the image of the line v = vθ
through the homography H−1, i. e. the epipolar line lθ.

• From Equation 267, the remaining term |det H |/(d |∆13|) is easily
found to be 1/|cos(~eo

z ,~ee
x )|.

The final result is

G f (θ) = 1∣∣cos
(
~eo

z ,~ee
x

)∣∣
∫

lθ

f gλ(U ,V )√
(U −u0)2 + (V − v0)2 + f 2

dσ√
(U −UE )2 + (V −VE )2

(276)

which ends the proof of Theorem 18.

The integral in Equation 276 integrates the (physical) projection gλ
weighted by the cosine of the (physical) incidence angle and by the inverse
of the distance to the epipole, along the epipolar line lθ. By parametriz-
ing the 2D unit vectors on the physical detector plane with their angle
γ ∈ [

0,2π
[

with the U−axis, we have ~α(γ) = (cosγ, sinγ) in the DCS. We de-
fine γθ so that ~α(γθ) is the unit vector in the direction of lθ. Equation 276
can be rewritten in the more compact form

G f (θ) = 1

cos
(
~eo

z ,~ee
x

) ∫ ∞

0

g̃λ
(
~ε+ t~α(γθ)

)
t

dt , (277)

where g̃λ denotes the cosine-weighted projection. This form of G f will be
useful for the comparison with GCC proposed in the next section.
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3.4 G R A N G E AT B A S E D C O N S I S T E N C Y C O N D I T I O N S A N D T H E A N G U -
L A R F O R M

We remind the Grangeat intermediate function (see Equation 67 in page 20
and Figure 51 left)

Gg (λ,~β) =
∫

S2
δ′

(
~α ·~β

)
g̃λ

(
~α

)
d~α, (278)

whose calculation consists in the following four steps:

• Weight the projection with the cosine of the incidence angle on the
detector,

• Compute the 2D Radon transform of the weighted image in the
u−direction.

• Differentiate in the v−direction.

• Post-weight the result with the squared cosine.

The original paper of Grangeat focussed on reconstruction. Projections
were considered independently from each other. When considering a in-
finitesimal change in the plane Eθ, Grangeat considered planes whose in-
tersections with the detector were parallel (this corresponds to an epipole
at infinity) and opted for a differentiation in the orthogonal v direction.
When considering a pair of projections, the epipoles become finite points
in the detectors’ planes. An infinitesimal change in the plane Eθ results in
a epipolar line on the detectors. It seems more natural to differentiate with
respect to the angle of the epipolar line (see Figure 51 right) rather than the
v-direction. The next proposition addresses this idea.

The same set-up applies: We consider an epipolar geometry, character-
ized by the baseline is b and an ECS. We restrict our attention to one pro-
jection gλ. An epipolar plane Eθ intersects the detector in an epipolar line
lθ. The normal to Eθ is denoted ~β(θ). The cosine-weighted projection is
denoted g̃λ. As above, unit vectors in the detector plane are denoted ~α(γ)
where γ is the polar angle with respect to the u−axis of the DCS. With this
notation, ~α(γθ) denotes the unit direction of the epipolar line lθ. We intro-

duce the shorter notation Gg (θ) =Gg

(
λ,~β(θ)

)
. We can now state the follow-

ing

Proposition 20 (Epipolar Grangeat theorem). For all θ

Gg (θ) = 1

cos2θ

∂

∂γ

(∫ ∞

0

g̃
(
~ε+ t~α(γ)

)
t

dt

)∣∣∣
γ=γθ

(279)

Compared to the previous 4-step procedure, we note the following
changes:

• An extra weighting by the distance to the epipole must be added.
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u
v

~e
~sλ

u

v

~εi

~sλi

γ0

γ

Figure 51: Two ways of computing Gg ,i

(
~β

)
. Left: The u−axis is parallel to

the line of intersection. The weighted-projection is integrated in the
u−direction, then differentiated in the v−direction. This is the origi-
nal method, introduced by Grangeat. Right: The differentiation with re-
spect to the angle of the epipolar line on the detector reflects the epipo-
lar nature of a projection pair.

• Instead of computing the Radon transform, a fanbeam parametriza-
tion (centred in~ε) of the line lθ is used,

• The differentiation step is now with respect to the epipolar angle (i. e.
the angle of the fanbeam parametrization).

Proof. We start from Equation 77 in Section 1.7 (with (U ,V ) coordinates),
replace U~u+V~v with~x for ease of notation, and note that~sλ ·~β(θ) =~ε·~β(θ).
We obtain

Gg (θ) =
Ï

δ′
(
(U~u +V~v −~s) ·~β(θ)

)
g̃ (U ,V )dU dV (280)

=
Ï

δ′
(
~x ·~β(θ)−~sλ ·~β(θ)

)
g̃ (~x)d~x , (281)

=
Ï

δ′
(
~x ·~β(θ)−~ε ·~β(θ)

)
g̃ (~x)d~x . (282)

We substitute~x with polar coordinates centred in the epipole~ε, i. e.

~x =~ε+ t~α(γ) t ≥ 0, γ ∈ [
0,2π

[
. (283)

The Jacobian determinant of this change of variables is t . Using the homo-
geneity property of δ′, we obtain

Gg (θ) =
∫ 2π

0

∫ ∞

0
δ′

(
t~α(γ) ·~β(θ)

)
g̃λ

(
~e + t~α(γ)

)
t dt dγ (284)

=
∫ 2π

0
δ′

(
~α(γ) ·~β(θ)

)(∫ ∞

0

g̃λ
(
~e + t~α(γ)

)
t

dt

)
dγ (285)

The inner integral is the integral of the projection weighted by the cosine
of the incidence angle and the inverse of the distance to the epipole. We let
~βD denote the orthogonal projection of~β(θ) onto the detector plane:~βD =
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~β(θ)−
(
~β(θ) ·~w

)
~w . We have~α(γ) ·~β(θ) =~α(γ) ·~βD . Let γθ denote the angle

of the epipolar line lθ. The vector ~α(γθ) is perpendicular to~β(θ) (because
it lies on the epipolar plane Eθ) and to ~w (because it lies on the detector
plane). We then have~βD ·~α(γθ) = 0. Since~α(γθ) = (cosγθ, sinγθ), we have

~βD =±
∥∥∥~βD

∥∥∥ (−sinγθ,cosγθ) and (286)

~βD ·~α(γ) =±
∥∥∥~βD

∥∥∥sin(γ−γθ). (287)

We use the homogeneity of δ′ and apply Proposition 24 of Appendix 1.1 to
obtain

Gg (θ) = 1∥∥∥~βD

∥∥∥2

∂

∂γ

(∫ +∞

0

g̃λ
(
~ε+ t~α(γ)

)
t

dt

)∣∣∣∣
γ=γθ

(288)

We finally examine
∥∥∥~βD

∥∥∥. Since~β(θ) =~βD +
(
~β(θ) ·~w

)
~w , we have

1 =
∥∥∥~β(θ)

∥∥∥2 =
∥∥∥~βD

∥∥∥2 +
(
~β(θ) ·~w

)2 ‖~w‖ =
∥∥∥~βD

∥∥∥2 +cos2
(
~β(θ),~w

)
(289)

and thus∥∥∥~βD

∥∥∥2 = sin2
(
~β(θ),~w

)
. (290)

It is easily seen that sin2
(
~β(θ),~w

)
= cos2

(
~β

∗
(θ),~w

)
where~β

∗
(θ) is a unit

vector orthogonal to~β(θ) (whatever the direction, the cosine is squared) in
the plane spanned by~β(θ) and ~w . This is precisely the definition of θ (see
Figure 53) and

θ

~β(θ)

~β
∗

(θ)

~w

Figure 53

∥∥∥~βD

∥∥∥2 = cos2θ. (291)

The proof is complete.

The Equation 279 is simply another way of evaluating Gg (β). The output
is exactly the same as with Equation 67. In fact, there are as many ways of
computing Gg (β) as points on the epipolar line lθ. Each point on lθ can be
considered as the epipole of some epipolar pair, and the same approach
applies.

One of the objectives of this chapter was to translate the intrinsic rela-
tion between FBCC and GCC of Proposition 16 in the physical detector.
In Proposition 16, G f was differentiated with respect to the angle θ of the
epipolar plane. In the expression of Gg in the physical detector of Propo-
sition 20, the derivative is taken with respect to the angle γθ made by the
epipolar line in the physical detector. These two angles are obviously con-
nected to each other. In the next section, we investigate this connection
and complete this study.
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3.5 T H E I N T R I N S I C R E L AT I O N B E T W E E N F B C C A N D G C C O N T H E

P H Y S I C A L D E T E C T O R

We recall the Proposition 16 which relates G f and Gg in spherical coordi-
nates (with slight change in notation). For all θ̄ ∈ ]−π

2 , π2
[
,

Gg
(
θ̄
)= ∂

∂θ
G f (θ)

∣∣∣∣
θ=θ̄

. (292)

This relation must be true if the expression of Gg and G f are replaced with
their equivalent expressions on the physical detector (Proposition 20 and
Equation 277 respectively). We start from the RHS of Equation 292, use the
expression of G f (θ) in the physical detector (Equation 277), and apply the
chain rule:

∂

∂θ
G f (θ)

∣∣∣∣
θ=θ̄

= ∂γθ̄
∂θ

∂

∂γ

(
1

|cos(~eo
z ,~ee

x )|
∫ ∞

0

g̃
(
~ε+ t~α(γ)

)
t

dt

)∣∣∣∣
γ=γθ̄

. (293)

We then have the following

Lemma 7.

∂γθ

∂θ
= cos(~eo

z ,~ee
x )

cos2θ
. (294)

The proof can be found in Appendix 2.4. Finally, Equation 293 becomes

∂

∂θ
G f (θ) =± 1

cos2θ

∂

∂γ

∫ ∞

0

g̃
(
~ε+ t~α(γ)

)
t

dt

∣∣∣∣
γ=γθ

, (295)

which is precisely (up to the sign) the expression of Gg in the physical de-
tector, derived in Proposition 20. The sign is related to the individual pro-
jection from the pair. The cosine term cos(~eo

z ,~ee
x ) will be positive for one

and negative for the other, hence the sign flip.

3.6 N U M E R I C A L S I M U L AT I O N

This section presents preliminary results, which validate numerically the
theoretical results presented above. We simulated one pair of projections.
The angular gap between the projections was set to 30◦. The detector was
placed at 200 mm in both cases. It was perfectly aligned in the first projec-
tion and tilted around its v-axis by 3◦ in the second projection. The size of
the detector was 256mm×256mm with a pixel size of 0.25 mm (512×512
pixels). The resulting half cone-angle was 18◦ approximately.

We simulated the projections of a thorax Forbild phantom, which was
placed at the origin O of the PCS, at equal distance from the source and the
detector. The two projection images are presented in Figure 54. They were
computed analytically from the definition of the phantom.

For each projections i = 1,2, we computed

• G f ,i (θ) with Equation 277,
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Figure 54: The two projection images of the thorax Forbild phantom.

• Gg ,i (θ) with Equation 279,

• The derivative of G f with respect to the angle of the epipolar plane
θ.

The two analytic noise free projections, along with their respective projec-
tion matrices are consistent, so that the functions G f ,1(θ) and G f ,2(θ) must
be equal. Discrepancy between the two signals would necessarily stem
from the implementation.

N U M E R I C A L VA L I D AT I O N O F T H E F B C C I N T H E P H Y S I C A L D E T E C -
T O R We sampled the function G f ,i (θ) (i = 1,2), for a regular sampling of
θ ∈ [−36◦,36◦] (the extreme values were manually chosen so that the whole
support of the projection images was scanned). The Figure 55 presents the
plots. Both curves match perfectly, which confirms the expression of G f in
the physical detectors. For comparison purposes, we also present in Fig-
ure 55 the same plots with Gg ,i .

In order to evaluate the robustness of the implementation to noise, we
degraded the projections with Poisson noise, according to the following
procedure. The number of photons received by a pixel when no object is
placed was set to I0 = 104. The densities of the phantom were multiplied by
the attenuation coefficient of water (0.01879mm−1 at 75 keV). Then a Pois-
son distribution was drawn from the computed intensities. The results are
presented in Figure 56. Both curves still strongly agree in the case of FBCC.
The matching is less tight in the case of GCC. The differentiation step in Gg

is more sensitive to noise. This explains the higher discrepancies.

T H E R E L AT I O N B E T W E E N F B C C A N D G C C In Figure 57, we illustrate
the relation

Gg (θ) = ∂

∂θ
G f (θ) (296)

by plotting Gg (θ) on one hand and ∂/∂θG f (θ) (according to Equation 293)
on the other hand, computed on one projection of the pair (in this case, the
first one).
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Figure 55: Top: The functions G f ,1(θ) (green curve) and G f ,2(θ) (blue curve) for θ ∈
[−36◦,36◦] (left). A zoom on the dashed box (right). Bottom: The same
curves with Gg ,i (θ) with i = 1,2.
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Figure 56: Same plots as Figure 55 with noisy projections.
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Figure 57: The plot on the right is a zoom on the dashed box of the plot on the left.
Both curves coincide with very high accuracy.





C O N C L U S I O N A N D F U T U R E W O R K

S U M M A R Y O F A C H I E V E M E N T S This work has achieved some signifi-
cant results, both theoretical and practical. On the theoretical side, we
introduced in Chapter II-1 new consistency conditions for circular cone-
beam projections. These conditions were derived by revisiting the Radon
intermediate functions from the perspective of consistency. We also fo-
cussed on pre-existing fanbeam consistency conditions and used them in
a pairwise cone-beam context. This has lead us to a thorough comparison
of these DCC and previously published Grangeat based consistency condi-
tions. On the practical side, we applied the fanbeam DCC to the geometric
calibration problem and proposed a fully on-line calibration of a micro-CT
system.

F U T U R E W O R K The end of a PhD period is quite frustrating because one
has to spend several months writing a manuscript and in doing so, realizes
how much is left to be done with no time for doing it! Here are a few re-
search directions which may be worth investigating. First, on the DCC side,
general necessary and sufficient conditions for cone-beam data are still de-
fying the CT community. I keep thinking that a geometrical approach as the
one presented in [16] and summarized in Section I-2 could be promising.
Also, necessary and sufficient conditions exist for cone-beam projections
with the extra assumption that the support of the object does not intersect
the plane of the trajectory of the source. This kind of assumption is typi-
cally to avoid division by zero, which the projective geometry can handle.
Revisiting the conditions with the projective geometry toolbox may prove
to be effective.

In terms of applications, and specifically of geometric calibration, this
work proposed a proof-of-concept but the fully on-line calibration of a C-
arm is still on-going research. The extension of the proposed method to
projection-specific calibration is, in theory, possible. The resulting high di-
mension of the optimization problem may, in practice, be difficult to han-
dle. A first step would consist in geometrically registering a pair of pro-
jections (i. e. determining the geometry of one projection with respect to
the other, based on pair-wise consistency). Finally, the field of computer
vision has proposed numerous geometric calibration methods, including
self-calibration of the intrinsic matrix. These methods are usually based on
the analysis of sharp points in the images. Natural images essentially differ
from X-ray projections images because the line integral forward model is
regularizing the object function. Nevertheless, a human eye can see sharp
edges in a radiograph. The design of hybrid calibration methods, mixing
computer vision algorithms with consistency analysis may be worth inves-
tigating.
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A P P E N D I X A : A M AT H E M AT I C A L T O O L B O X

1.1 A S H O R T I N T R O D U C T I O N T O D I S T R I B U T I O N S

In this section, we give a brief overview of distributions. Exhaustiveness is
out of reach in the appendix of a PhD dissertation. Nevertheless, it is nec-
essary for the sake of completion, to introduce the properties of very com-
mon distributions, which are extensively used in this manuscript. These
distributions are the Dirac delta distribution δ, its derivative δ′, the Cauchy
principal value of 1/s and the Hadamard’s finite part of 1/sn . These dis-
tributions play a central role in tomography and many of the integrals in-
volved are only defined in the sense of distributions (though this is not al-
ways clearly mentioned in the literature or in this manuscript). The the-
ory of distribution has this particularity that everything goes as usual while
the object being studied are simply not defined in the usual world. When
we defined the ramp filter (as the inverse Fourier transform of the func-
tion |σ|) or the Hilbert filter (as the inverse Fourier transform of −i sign(σ))
and carry out complex calculations as usual, we omitted that in the usual
world (i. e. the world of functions), the functions |σ| and sign(σ) are not in-
tegrable and have no inverse Fourier transform. The theory of distributions
was precisely designed by Laurent Schwartz36 to mathematically guaran- 36 Laurent

Schwartz, French
mathematician
(1915-2002) who
pioneered the theory
of distributions. He
was awarded a
Fields medal in 1950
for this work.

tee that all these formal derivations remain valid. The DCC derived in the
first contribution are essentially a generalization of the ramp filter (seen as
the derivative of the Hilbert kernel) to higher order of differentiation. Fi-
nally, the third contribution relies crucially on a theorem which rigorously
defines the composition of the δ distribution with smooth functions.

This introduction to distributions was written with the help of various
sources of information, mostly [69], lecture notes from the web, wikipedia,
etc...

1.1.1 The space of test functions D

We focus our presentation on the one-dimensional case. We start with the
following

Definition 7. A test function is a C∞ function defined onRwhose support37 37 The support of a
function φ is the
smallest closed set
containing all x ∈R
such that φ(x) 6= 0.

is compact. The set of test functions is denoted D(R) or simply D.

The first non-trivial fact about D is that it is not restricted to the null
function. The function φ defined by

φ : x 7→
{

e−
1

1−x2 for |x| < 1

0 for |x| ≥ 1
(297)
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is a test function. Indeed, φ is compactly supported on [−1,1]. The deriva-
tives of exp

(− 1
1−x2

)
are obtained by multiplying exp

(− 1
1−x2

)
by a rational

function. As |x|→ 1, such product tends to 0, hence the smoothness of φ.
Applying any translation or dilation to φ yields infinitely many other ex-

amples of test functions. It is very easy to prove that D is a vector space.
One finally wants to define a topology on this vector space. This point is
the key of the whole theory and is a bit difficult. We limit our presentation
to the characterization of the sequential convergence in D.

Definition 8 (Sequential convergence in D). For
(
φk

)
k∈N ,φ ∈D, φk

D−→φ if
there exists a compact set K ⊂R such that

Supp
(
φk

)⊂ K ∀k ∈N, (298)∥∥∥ ∂m

∂xm

(
φk −φ

)∥∥∥
∞

k−→ 0 for all m ∈N. (299)

The algebraic dual space of D is the set of all linear forms on D. Distri-
butions are the linear forms on D which are continuous for the topology
induced by the convergence defined above. It is well known that the con-
tinuity of a linear form is equivalent to the local continuity in 0 and that
the continuity is equivalent to the sequential continuity. We then have the
following characterization of continuous linear forms.

Proposition 21. Let T be a linear form on D. T is continuous if and only if

φk
D−→ 0 ⇒ T (φk ) → 0. (300)

1.1.2 The space of distributions D′

By definition, a distribution is an element of the topological dual space of
D i. e. the set of all continuous linear forms on D. This set is denoted D′.

We say that the concept of distribution is an extension of the concept of
usual functions because usual functions can be identified with elements
of D′. More precisely, we denote Lloc

1 the set of locally integrable functions,
i. e. integrable on every compact set38. For every f ∈ Lloc

1 , we define T f on38 In this space, we
identify two

functions which
agree almost

everywhere.

D by

∀φ ∈D, T f
(
φ

)= ∫
f (x)φ(x)dx. (301)

The mapping T f is clearly linear. To prove the continuity, we consider a

sequence φk
D−→ 0 and the compact K as in Definition 8. We have

|T f (φk )| =
∣∣∣∫

K
f (x)φk (x)dx

∣∣∣≤ ‖φk‖∞
∫

K
| f (x)|dx. (302)

In the last expression, ‖φk‖∞ → 0 by assumption and the integral is well
defined because f is locally integrable. Finally |T f (φk )|→ 0.

Consider now two functions f and g ∈ Lloc
1 such that T f = Tg i. e. ∀φ ∈

D, T f (φ) = Tg (φ). We then have∫
( f − g )(x)φ(x)dx = 0 ∀φ ∈D, (303)
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so that f = g almost everywhere, i. e. f = g in Lloc
1 . The mapping from Lloc

1
to D′ is injective. The distributions T f stemming from Lloc

1 functions are
called regular distributions. We give important examples of such regular
distributions.

• TH where H is the Heavyside function i. e. the indicator function of
R+.

• Tsign where sign is the signum function i. e. sign(x) = H(x)−H(−x).

• T1 where 1 is the constant function, which is one (almost) every-
where.

Of course, there are distributions which are not regular (they are called
singular). We now give some examples of such singular distributions and
focus on those of interest in this work. In the following T (φ) will be denoted
< T ,φ> to fit the conventional distribution notation.

T H E D I R A C D I S T R I B U T I O N The first example is the Dirac δ distribu-
tion, defined by < δ,φ>=φ(0). It cannot be a regular distribution since as
a function, it would be zero everywhere but in zero, so it would be the zero
function in Lloc

1 and would satisfy
∫
δ(x)dx = 1 (take any φ ∈ D such that

φ(0) = 1), which is impossible. We will say more about the Dirac distribu-
tion in Section 1.1.5.

P R I N C I PA L VA L U E O F 1/x : pv(1/x ) The second example is what we
called the Hilbert kernel. The function 1/x has a singularity in zero so is not
locally integrable. It can not be a regular distribution. Nevertheless, one
would desire to have an equivalent to the function 1/x. That is the purpose
of the distribution pv

( 1
x

)
.

Proposition 22 (The principal value). For all φ ∈D, the map

< pv

(
1

x

)
,φ>= lim

ε→0+

(∫ −ε

−∞
φ(x)

x
dx +

∫ +∞

ε

φ(x)

x
dx

)
. (304)

is a distribution.

Proof. Provided, the limit exists, it is clear the the above equation defines
a linear map. Since the support of φ is compact, the integral in ±∞ is not a
problem. We write∫ −ε

−∞
φ(x)

x
dx +

∫ +∞

ε

φ(x)

x
dx =

∫ +∞

ε

φ(x)−φ(−x)

x
dx (305)

The integrand in the RHS integral can be continuously extended in 0 since
its limit in zero is 2φ′(0). Hence the existence of the limit. To prove the con-
tinuity, we consider a sequence (φk ) and a compact K like in Definition 8.
From the Taylor expansion of φ, we have φ(x)−φ(−x)

x = 2φ′(x̄) for some x̄.
Thus ∣∣∣∫ +∞

0

φk (x)−φk (−x)

x
dx

∣∣∣≤ ‖φ′
k‖∞

∫
K

1dx
k−−−−→ 0 (306)
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F I N I T E PA R T O F 1/x n , n ≥ 2 : fp(1/x n ) We want to generalize the
distribution pv(1/x) to function of the form 1/xn for n ≥ 2. The problem is
that the nice behaviour with 1/x does not hold any more. Let fε denote the
function 1R\[−ε,ε](x)/x2 and T fε the corresponding regular distribution. For
all ε> 0 and |x| > ε one can write

φ(x) =φ(0)+xφ′(0)+x2φ′′(0)/2+ .... (307)

Let A > 0 such that Suppφ⊂ [−A, A] and let K = [−A,−ε]
⋃

[ε, A]. We have∫
K

φ(x)

x2 dx =
∫

K

φ(0)

x2 dx +
∫

K

φ′(0)

x
dx +

∫
K

φ′′(0)

2
dx + ..., (308)

The terms of order 2 and higher are no problem since they integrate a poly-
nomial over a bounded set. The term of order 1 is zero (it is the integral of
an odd function on a symmetric domain). The term of order zero is∫

K

φ(0)

x2 dx =−2φ(0)

A
+2

φ(0)

ε
. (309)

The term 2φ(0)
ε is obviously diverging. So we define the finite part distribu-

tion by subtracting the divergent part. More precisely, we have the

Definition 9 (Finite part of 1/x2 : fp(1/x2)).

< fp

(
1

x2

)
,φ>= lim

ε→0

(∫
|x|>ε

φ(x)

x2 dx −2
φ(0)

ε

)
. (310)

We define similarly the distribution fp(1/xn). For instance,

Definition 10 (Finite part of 1/x3 : fp(1/x3)).

< fp

(
1

x3

)
,φ>= lim

ε→0

(∫
|x|>ε

φ(x)

x3 dx −2
φ′(0)

ε

)
. (311)

1.1.3 Derivative of a distribution

One of the nice features of distributions is that we can define a differen-
tiation which is not restricted to differentiable functions. All distributions
have a derivative, which itself is a distribution, so that all distributions are
infinitely differentiable.

Definition 11. Let T ∈D′ a distribution. The derivative of T , denoted DT is,
by definition

< DT ,φ>=−< T ,φ′ > . (312)

It is clear that DT is a linear form on D. Again, let φk
k−→ 0 and a compact

K as in Definition 8. By definition of convergence in D, the convergence of
φk to zero induces the convergence of the sequence φ′

k to zero. Note that
Suppφ′

k ⊂ Suppφk ⊂ K . Finally∣∣< DT ,φk >∣∣= ∣∣< T ,φ′
k >∣∣ k−−−−→ 0. (313)
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T DT

DTH = δ

DTsign = 2δ

DT1 = 0

< Dδ,φ> = −φ′(0)

< Dnδ,φ> = (−1)nφ(n)(0)

< Dpv
( 1

x

)
,φ> = −fp

( 1
x2

)
< Dfp

( 1
x2

)
,φ> = −fp

( 1
x3

)
Table 5: Derivatives of usual distributions.

The definition given above coincides with the usual differentiation for
the differentiable function. Let f be a differentiable function. A simple in-
tegration by parts gives

< T f ′ ,φ>=
∫

f ′(x)φ(x)dx (314)

=
[

f (x)φ(x)
]+∞
−∞

−
∫

f (x)φ′(x)dx. (315)

The first term vanishes due to the compact support of φ. Hence, the dis-
tributional derivative of a regular distribution is the regular distribution
associated to the derivative of the function: DT f = T f ′ .

We give the derivatives of usual distributions in Table 5.

1.1.4 Tempered distributions and Fourier transform

We would like to define the Fourier transform of a distribution as we de-
fined the differentiation, i. e. for φ ∈D

<FT ,φ>=< T ,Fφ> . (316)

Unfortunately, the Fourier transform of a compactly supported C∞ func-
tion is not compactly supported, so that the RHS of the above equation
does not make sense. We need to extend the space of test functions to a
space which is stable under the Fourier transform. This is precisely the in-
teresting feature of the Schwartz space S (R). The Fourier transform is a
bijective bi-continuous mapping of S (R). We call tempered distribution, a
continuous linear form on S . The vector space of tempered distributions
is denoted S ′. Since D ⊂ S , we have S ′ ⊂ D′. By extending the space of
test functions, we can now define the Fourier transform.

Definition 12. Let T ∈S ′ be a tempered distribution. The Fourier transform
of T is given, for all φ ∈S ,

<FT ,φ>=< T ,Fφ> . (317)
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Once again, the definition is compatible with the standard Fourier trans-
form on functions. Let T f be a regular distribution, with f ∈ L1.

<FT f ,φ>=< T f ,Fφ> (318)

=
∫

f (x)

(∫
φ(y)e−2iπx y dy

)
dx (319)

=
∫
φ(y)

(∫
f (x)e−2iπx y dx

)
dy (320)

=< TF f ,φ>, (321)

where the inversion of
∫

signs is an application of Fubini’s theorem, legal
because

Ï ∣∣ f (x)φ(y)
∣∣dx dy =

(∫ ∣∣ f (x)
∣∣dx

)(∫ ∣∣φ(y)
∣∣dy

)
<∞ (322)

Before giving the Fourier transform of some usual distributions, we for-
mally derive, as an illustrative example, the Fourier transform of the Dirac
distribution.

<Fδ,φ>=< δ,Fφ>, (323)

= (
Fφ

)
(0), (324)

=
∫
φ(x)dx, (325)

=< 1,φ> . (326)

Finally, Fδ= 1.
The Fourier transforms of some common distributions are given in Ta-

ble 6. No proof is given, due to some technicalities which would make the
presentation too long.

We complete this section with the Fourier transform of δ′ and fp
( 1

x2

)
. To

this end, it is necessary to say of few words about multiplication of distri-
butions. Strictly speaking, the multiplication of two distributions cannot
be defined. We can though define the multiplication of a distribution T by
a smooth functionϕ by, again, transferring the operation from the distribu-
tion to the test function. More precisely

<ϕT ,φ>=< T ,ϕφ>, (327)

T FT

Fδ = 1

FTH = δ
2 − i

2πpv
( 1

x

)
FTsign = i

πpv
( 1

x

)
FT1 = δ

Fpv
( 1

x

) = −iπsign(x)

Table 6: Fourier transform of usual distributions
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where ϕφ ∈D. In particular, one can define the multiplication by the iden-
tity function x:

< xT ,φ>=< T , xφ> . (328)

Remembering that the derivative of the Fourier transform (Fφ)′(x) is −2iπ
times the Fourier transform of xφ(x), we derive the Fourier transform of δ′

as

<Fδ′,φ>=< δ′,Fφ> (329)

=−< δ,
(
Fφ

)′ > (330)

= 2iπ< δ,F (xφ(x)) > (331)

=<Fδ,2iπxφ> (332)

=< 2iπx,φ> . (333)

Similarly, we derive the Fourier transform of fp
( 1

x2

)
:

<F fp

(
1

x2

)
,φ>=< fp

(
1

x2

)
,Fφ> (334)

=−< Dpv

(
1

x

)
,Fφ> (335)

=< pv

(
1

x

)
,
(
Fφ

)′ > (336)

=−2iπ< pv

(
1

x

)
,F (xφ(x)) > (337)

=−2iπ<F

(
pv

(
1

x

))
, xφ> (338)

=−2iπ<−iπsign(x), xφ> (339)

=−< 2π2|x|,φ> . (340)

Finally, we can now gather the main results which justify the definitions
of the four distributions introduced in Chapter I-1: δ, δ′, the Hilbert kernel
h and the ramp filter ρ. They were simply defined as the inverse Fourier
transform of some functions which ... had no inverse Fourier transform, in
the usual sense. With the distribution theory, we may rigorously write

δ(x) =
∫

e2iπxσdσ (341)

δ′(x) =
∫

2iπσe2iπxσdσ (342)

h(x) =
∫

(−i sign(x))e2iπxσdσ (343)

ρ(x) =
∫

|σ|e2iπxσdσ. (344)

1.1.5 Focus on the Dirac δ distribution

The Dirac distribution was defined in the previous section, and its most im-
portant properties (derivative, Fourier transform, etc.) were derived. Never-
theless, we give two more important results which are needed in Chapter II-
3. They are both related to the composition of δ with smooth maps.
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By a simple change of variable in the definition above of δ, one can easily
prove that, for all a > 0

δ(ax) = δ(x)

a
. (345)

This must be understood in the sense of distribution. For all φ ∈D∫
δ(ax)φ(x)dx = φ(0)

a
. (346)

The composition of δ can be generalized to more complex C∞(Rn) func-
tions, with the following theorem, whose proof is not presented (see [33])

Theorem 23 (Composition of the Dirac δ distribution with smooth func-
tion.). Let m be a smooth function on Rn and φ a test function. Let Γ ={
~x : m(~x) = 0

}
. We assume that ‖∇m(~x)‖ 6= 0 for all x ∈ Γ.Then:∫

Rn
δ (m(~x))φ(~x)d~x =

∫
Γ

φ(~x)

‖∇m(~x)‖ dσ, (347)

where dσ is the Euclidean surface measure on Γ.

Of course, Equation 345 is a particular case of the theorem, with m(x) =
ax. The proof of this theorem is difficult and out of scope of this Appendix.
We prove the theorem in the particular case of a one-dimensional function
m which has only one root in zero (i. e. m(x) = 0 ⇔ x = 0). We also assume
this root is simple: m′(0) 6= 0. By assumption, we first note that the function
τ(x) = m(x)/x, x 6= 0 can be continuously extended in 0 with τ(0) = m′(0).
Writing δ as the inverse Fourier transform of 1 and changing the Fourier
variable, one obtains∫

R
δ (m(x))φ(x)dx =

∫
R

(∫
R

e2iπσxτ(x) dσ

)
φ(x)dx (348)

=
∫
R

(∫
R

e2iπσ′x dσ′

|τ(x)|
)
φ(x)dx (349)

=
∫
R
δ(x)

φ(x)

|τ(x)| dx (350)

= φ(0)

|m′(0)| (351)

The same kind of calculations leads to the following proposition, which is
needed in Chapter II-3.

Proposition 24 (Composition of δ′ with a smooth function). Let m be a
smooth 1D function, with one simple root: m(x) = 0 if and only if x = 0 and
m′(0) 6= 0. Let φ a test function. Then∫

δ′ (m(x))φ(x)dx = m′′(0)φ(0)−m′(0)φ′(0)

m′(0)2|m′(0)| . (352)
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Proof. We only sketch the proof.∫
δ′ (m(x))φ(x)dx =

∫
m′(x)δ′ (m(x))

φ(x)

m′(x)
dx (353)

=< (δ◦m)′,
φ

m′ > (354)

=−< δ◦m,

(
φ

m′

)′
> (355)

=−
∫
δ (m(x))

φ′(x)m′(x)−φ(x)m′′(x)

m′(x)2 dx (356)

(357)

Applying the Theorem 23, we finally obtain∫
δ′ (m(x))φ(x)dx =−φ

′(0)m′(0)−φ(0)m′′(0)

m′(0)2|m′(0)| (358)

In the particular case of a function m satisfying m(0) = 0 and m′(0) = 1,
one gets∫

δ′ (m(x))φ(x)dx =−φ′(0), (359)

which is conform to intuition.

1.2 I N T E G R AT I O N O V E R S P H E R E S

Though there is a general theory on the integration of a function over unit
spheres, we only give the formula for S1 and S2. The goal is to compute the
integral of a function f defined on R (resp. R2) on the sphere S1 (resp. S2).

Proposition 25 (Integration over S1).∫
S1

f
(
~α

)
d~α=

∫ 2π

0
f (cosθ, sinθ)dθ, (360)

where θ is the angle on the unit-circle.

The proof of this proposition is trivial.

Proposition 26 (Integration over S2). With latitude-longitude spherical co-
ordinates (θ,ϕ) ∈ [0,2π[× [−π/2,π/2[ of the sphere:

x

y

z

θ

ϕ

∫
S2

f
(
~α

)
d~α=

∫ π
2

− π
2

∫ 2π

0
f
(
cosθcosϕ, sinθcosϕ, sinϕ

)
cosϕdθdϕ, (361)

With colatitude-longitude coordinates (θ,ϕ) ∈ [0,2π[× [0,π[ of the sphere:

x

y

z

θ

ϕ

∫
S2

f
(
~α

)
d~α=

∫ π

0

∫ 2π

0
f
(
cosθ sinϕ, sinθ sinϕ,cosϕ

)
sinϕdθdϕ, (362)
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Proof. This is an immediate consequence of the general formula for sur-
face integral:∫

S
f (~x)d~x =

Ï
f (~x(x1, x2))

∥∥∥∥ ∂~x∂x1
× ∂~x

∂x2

∥∥∥∥dx1 dx2, (363)

where~x(x1, x2) is a parametrization of the surface S2, × denotes the cross-
product of two 3D-vectors and ‖ ·‖ is the standard 2-norm on R3. Here, the
parametrizations of the sphere is given by:

~α(θ,ϕ) = (cosθ sinϕ, sinθ sinϕ,cosϕ), (364)

~α(θ,ϕ) = (cosθcosϕ, sinθcosϕ, sinϕ), (365)

for the latitude-longitude and colatitude-longitude cases respectively. The

computation of the surface element
∥∥∥ ∂~x
∂x1

× ∂~x
∂x2

∥∥∥ is straight-forward.

1.3 T H E B A S I C S O F P R O J E C T I V E G E O M E T R Y

In the CT community, projection matrices are very commonly used. But
the underlying concepts of the projective geometry seem to be less famil-
iar (at least, few research articles use these concepts). When considering
nice acquisition geometries (circular orbit of the source, detector perfectly
aligned), elementary geometry may perfectly do the job and projective ge-
ometry is not necessary. If the trajectory and the respective position of the
detector and the source are more general, computations with elementary
geometry become intractable. The concise shape of linear algebra tools to
describe one projection (the projection matrix) or transformation between
a pair of projections is worth the journey in the projective geometry.

Projective geometry is the geometry that best describes human vision.
Heuristically, the human eye which looks at railways sees lines converging
at the horizon. Projective geometry gives a rigorous sense to such state-
ments as “parallel lines meet at infinity”. This introduction is concise and
focuses on the concepts needed in the course of the text. We give a formal
definition of projective space and a geometric interpretation, in relation
with the concept of homogeneous coordinates. Then we introduce homo-
graphies. They are the equivalent for projective spaces of non singular lin-
ear maps for vector spaces. In particular, we illustrate this with the compu-
tation of images of lines through homography in the projective 2D plane.

1.3.1 Projective spaces

The following definition is the true definition of a general (real) projective
space.

Definition 13 (Projective space). The real projective space of dimension n ∈
N is the quotient

P n(R) =Rn+1 −{
~0

}/
' (366)
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O

xy

z

(x, y ,1)

(x ′, y ′,0)

Figure 58: A projective plane is the set of lines passing through the origin of a 3D
vector space. By fixing a coordinate system, it is an affine plane plus
points at infinity. The set of points at infinity (the horizon) are in a 1-1
correspondence with points on the semi-unit-circle inΠ0.

where ' denotes the equivalence relation (x0, ..., xn) ' (x ′
0, ..., z ′

n) iif ∃λ 6= 0
such that (x0, ..., xn) = (λx ′

0, ...,λx ′
n).

A rephrasing of the definition is that a n-dimensional real projective
space is the set of all lines in Rn+1 through the origin O. Indeed, two points
on such a line are equivalent. The problem with this formulation (an ele-
ment of P n(R) is a line) is that we want to define lines in a projective space
just as we do in a affine space. We would then define lines made of... lines.
To avoid confusion, we need another interpretation of the definition, closer
to the usual geometry. For the sake of clarity, we concentrate on the real
projective plane (i. e. P 2(R)). We start from the 3D space R3, endowed with
the canonical coordinate system. The situation is illustrated in Figure 58.
We let Π1 and Π0 denote the affine planes with equation z = 1 and z = 0
respectively. The origin O may be seen as the X-ray source and the plane
Π1 as the plane of the detector. A line through the origin (an X-ray) may or
may not intersect Π1. If it does, a 3D point on such a line have coordinates
(x, y , z) with z 6= 0 and the line intersects Π1 in (x/z, y/z,1). We then have
a one-to-one mapping between these lines and the points of the plane Π1.
We then conclude that the projective plane contains the affine plane Π1.
We now turn to those lines passing through the origin and not intersecting
Π1. They are precisely the lines contained in Π0. Points in Π0 have coordi-
nates (x, y ,0). They can be associated to the points of the semi-unit-circle
(x/

√
x2 + y2, y/

√
x2 + y2,0) with x > 0 for example.

With the above representation, a triple (x, y , z) ∈R3 can be seen as a point
of the projective plane. If z 6= 0, this point is finite and belongs an affine
plane. The point is said at infinity if z = 0. There is a one-to-one map-
ping between points at infinity and half of a unit circle in Π0. Finally, we
have described the projective plane as an affine plane (finite points) plus a
half-circle of points at infinity. This interpretation may be more familiar to
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a non-mathematician reader. Nevertheless, one should keep in mind that
the nature of one particular point (finite or at infinity) is not intrinsic but
very much depends on the choice of a coordinate system. E. g. , interchang-
ing the roles of z and x would send the point (0,1,1) at infinity.

1.3.2 Points and lines in the projective plane

The equation of a line in an affine space with coordinates (x, y) can always
be written

ax +by + c = 0, (367)

for some l = (a,b,c) ∈ R3 with
p

a2 +b2 = 1 and c ≥ 0. We use l to denote
the line. The vector (a,b) is the unit normal to the line and c is its distance
to the origin. We now consider the affine points (x, y) as points x of the
projective plane x = (x, y ,1), so that Equation 367 can be written in scalar
product form

(a,b,c) · (x, y ,1) = 0 or l · x = 0. (368)

Of course, the equation above characterizes the fact that x belongs to the
line l if the relation is independent of the representative in the equivalence
class of x . In other words, if one has (a,b,c) · (x, y ,1) = 0, then for all λ 6= 0,
one must also have (λa,λb,λc) · (x, y ,1) = 0, which is obviously true. We
can now ask if the line l , seen as a line in the projective plane, has a point
at infinity. Such point has its third coordinate z = 0. We solve the equation

ax +by + c ×0 = 0, (369)

up to a multiplicative constant. The set of solutions is of course R(−b, a,0).
This is the projective point at infinity (−b, a,0), which corresponds to the
direction of the line l . The situation is illustrated in Figure 59. This is inde-
pendent of c, so that all lines parallel to l meet at the same point at infinity.
And this is why we say that parallel lines meet at infinity.

I M P O R TA N T R E M A R K The careful reader may have noticed that lines
can be represented in the exact same way as points are, i. e. with a triple
of real numbers, up to a multiplicative constant. This remark is the basis
of a very fruitful correspondence between points and lines in a projective
plane, called duality. The duality generalizes to higher dimensions (lines
being hyperplanes in higher dimensions).

1.3.3 Illustration with a projection matrix

Let P = K R
[
I |−~s]

be the projection matrix associated to a tomographic de-
vice in a 3D Patient coordinate system.~s is the position of the X-ray source.
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x

y

ax +by + c1 = 0
ax +by + c2 = 0

ax +by + c3 = 0

Figure 59: A representation of the projective plane. The bold line represents the
points at infinity. All parallel lines (in the affine plane) meet at the same
point at infinity.

By construction, if a 3D point (X ,Y , Z ) is projected onto a 2D point (u, v)
on the detector, we have the relation


u

v

w

= K R
[
I |−~s]


X

Y

Z

1

 (370)

Let us search for points of the 3D space M = (X ,Y , Z ), different from the
source position~s, which project to points at infinity in the detector projec-
tive plane. For such points, we have w = 0. From Chapter I-2, we know that
the rows of R are the coordinates of the vectors~eo

x ,~eo
y and~eo

z in the PCS
and that K has the form

K =


f 0 u0

0 f v0

0 0 1

 . (371)

From Equation 370, we have

w = RT
3·(M −~s), (372)

which vanishes if and only if39 M −~s is orthogonal to the focal axis (O,~eo
z ). 39 Remember we

excluded the source
position~s.

Points M which satisfies this condition are precisely the points in the plane
parallel to the detector plane and containing the source position. In other
words, ray that are parallel to the detector are not detected. All other points
in space satisfy w 6= 0 and project to a point (u, v , w) ' (u/w , v/w ,1). The
situation is depicted in Figure 60.
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O
~eo

z

~s

M ′

M

(u′, v ′,0)( u
w , v

w ,1)

~u

~v

Figure 60: Geometry of one projection. The green rectangle on the left is the de-
tector. The source position is~s. All 3D points in the plane parallel to the
detector and containing the source~s are projected on points at infinity.
On the contrary, any point which is not in this plane is projected on a
finite point of the detector.

1.3.4 Plane homography

In this section, we introduce homographies between two projective planes.
Mathematically, homographies (or projective applications) are the geomet-
ric transforms which preserve the projective structure, i. e. which maps
lines to lines. A complete introduction to projective applications is use-
less here (see [29] for a complete treatment from a Computer Vision per-
spective or [65] for an abstract mathematical treatment). We simply define
a homography as a transformation which maps homogeneous coordinate
triples (see Figure 61). It is represented by a 3×3 matrix H so that

u

v

w

=


H11 H11 H11

H21 H22 H23

H31 H32 H33




u′

v ′

w ′

 (373)

which we briefly write

x = H x ′. (374)

Note that the matrix is defined up to a multiplicative constant (as one
is now familiar with). It is necessary that H is non-singular, for otherwise,
some point x ∈ null H would project to H x = 0 which is not a triple of ho-
mogeneous coordinates40. Re-sampling projection data into a virtual de-40 Remember that

the equivalence
relation is defined

on the non-zero
vectors of R3.
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~s

(u, v , w)

(U ,V ,W )

Figure 61: The operation of resampling a projection into a virtual detector geo-
metrically consists in a homography.

tector, as was done in Chapter II-2 provides with a nice archetypal example
of homography. This is illustrated in Figure 61. The value of the projection
at pixel (U ,V ) should be transferred to the pixel (u, v) of the virtual detec-
tor.

The following easy proposition is needed in Chapter II-3.

Proposition 27 (Image of a line through an homography). Let H be a 2D
homography and l = (a,b,c)T be the representation of a line. Then, the im-
age of l through the homography H is the line l ′ = H−T l .

Proof. By definition, l ′ = {
H x ,∀x s.t. l T x = 0(i. e. x ∈ l )

}
. Let H x ∈ l ′,

then: (
H−T l

)T
H x = l T H−1H x = l x = 0 (375)

Conversely, if
(
H−T l

)T
y = 0, then l T (

H−1 y
) = 0 and H−1 y ∈ l so that y =

H x for some x ∈ l .
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2.1 H O M O G E N E O U S F U N C T I O N S O F D E G R E E −2

In this appendix, we prove the following

Proposition 28. The set of 1D distributions which are homogeneous of de-
gree −2 form a vector space of dimension 2, spanned by δ′ and ρ.

Proof. Let H2 =
{

f ∈D(R)s.t. ∀a > 0, x ∈R, f (ax) = f (x)/a2
}

and f ∈ H2. By
taking the Fourier transform, we have, for a > 0,

f̂ (aσ) =
∫

f (s)e−2iπ(aσ)s ds (376)

=
∫

f (s′/a)e−2iπσs′ ds/a (377)

=
∫

a2 f (s′)e−2iπσs′ ds/a (378)

= a f̂ (σ), (379)

so that the Fourier transform f̂ is homogeneous of degree 1 (note that f̂ is
not strictly linear but piecewise linear since the constraint is only for a > 0).
For all a > 0, one has

f̂ (a) = a f̂ (1) (380)

f̂ (−a) =−(−a) f̂ (−1) (381)

and thus

f̂ (σ) = f̂ (1)+ f̂ (−1)

4iπ
2iπσ+ f̂ (1)− f̂ (−1)

2
|σ|. (382)

By linearity of the inverse Fourier transform, one finally gets that f is a
linear combination of δ′ and ρ.

Finally, δ′ and ρ are clearly linearly independent, which ends the proof.

2.2 C O M P U TAT I O N O F T H E J A C O B I A N

In this section, we prove Equation 247

|Jac| = |det H |
|H T

3·X |3 (383)

Proof. From the definition of the change of variables, we have

∂u
∂U = H11(H T

3· X )−H31(H T
1· X )

(H T
3· X )2

∂v
∂U = H21(H T

3· X )−H31(H T
2· X )

(H T
3· X )2

∂u
∂V = H12(H T

3· X )−H32(H T
1· X )

(H T
3· X )2

∂v
∂V = H22(H T

3· X )−H32(H T
2· X )

(H T
3· X )2 .

(384)

133
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The Jacobian determinant is Jac = ∂u
∂U

∂v
∂V − ∂u

∂V
∂v
∂U . Easy calculations give

Jac = 1(
H T

3·X
)4

[(
H11H T

3·X −H31H T
1·X

)(
H22H T

3·X −H32H T
2·X

)−
(
H21H T

3·X −H31H T
2·X

)(
H12H T

3·X −H32H T
1·X

)]
(385)

= 1(
H T

3·X
)4

[(
H T

3·X
)2

(H11H22 −H21H12)+ (
H T

1·X
)(

H T
3·X

)
(−H31H22 +H21H32)+

(
H T

2·X
)(

H T
3·X

)
(−H11H32 +H31H12)

]
(386)

= 1(
H T

3·X
)3

[(
H T

3·X
)

(H11H22 −H21H12)+ (
H T

2·X
)

(−H11H32 +H31H12)+

(
H T

1·X
)

(−H31H22 +H21H32)

]
(387)

= 1(
H T

3·X
)3 det


H11 H12 H T

1·X

H21 H22 H T
2·X

H31 H32 H T
3·X

 (388)

= 1(
H T

3·X
)3 det


H11 H12 H11U +H12V +H13

H21 H22 H21U +H22V +H23

H31 H32 H31U +H32V +H33

 (389)

= 1(
H T

3·X
)3 det H . (390)

2.3 C O M P U TAT I O N O F T H E G R A D I E N T O F φ

In this section, we prove Equation 263∥∥∇φ (U ,V )
∥∥=

p
(∆13U −∆11)+ (∆13V −∆12)(

H T
3·X

)2 . (391)

From the definition of φ, we have

∂φ

∂U
= H21H T

3·X −H31H T
2·X(

H T
3·X

)2 (392)

∂φ

∂V
= H22H T

3·X −H32H T
2·X(

H T
3·X

)2 . (393)

Hence∥∥∇φ(U ,V )
∥∥2 = 1(

H T
3·X

)2

[
H 2

21

(
H T

3·X
)2 −2H21H31

(
H T

3·X
)(

H T
2·X

)+H 2
31

(
H T

2·X
)2+

H 2
22

(
H T

3·X
)2 −2H22H32

(
H T

3·X
)(

H T
2·X

)+H 2
32

(
H T

2·X
)2

]
.

(394)
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After expanding all the terms in the denominator and expressing the ob-
tained expression as a polynomial in (U ,V ), we easily obtain:

‖∇φ(U ,V )‖2 = 1(
H T

3·X
)4

[(
∆13U −∆11

)2
+

(
∆13V −∆12

)2
]

. (395)

Taking the square root of that final equation yields the desired result.

2.4 C O M P U TAT I O N O F ∂γ/∂θ .

We use the notation and the mathematical context of Section 3.5, where
the Lemma 7 was introduced. We prove that

∂γ

∂θ
= cos(~eo

z ,~ee
x )

cos2θ
(396)

In order to derive this relation between the angle θ (angle of the epipolar
plane Eθ with the plane (O,~ee

x ,~ee
z )) and the angle γ (angle of the epipolar

line lθ with the U−direction), we write that the line v = vθ in the virtual
detector is the image of the line lθ in the physical detector, which in matrix
form reads

H T


0

1

−vθ

=


a

b

c

 , (397)

where (a,b,c) is the representation of the line lθ and vθ = d tanθ. In such
line representation, (a,b) are the coordinates of a vector orthogonal to the
epipolar line lθ. We first prove that

Lemma 8. a2 +b2 is a constant: for all θ,

a2 +b2 = d 2

f 2 . (398)

Proof. Note that d 2/ f 2 = det H for further references. By writing

H T = K −T
p Rp R12K T

v , (399)

we have

[
a

b

]
=

− 1
f 0 0

0 − 1
f 0

Rp R12


−d 0 0

0 −d 0

α 0 1




0

1

−vθ

 (400)

= d

f cosθ

[
1 0 0

0 1 0

]
Rp R12


0

cosθ

sinθ

 (401)

By definition, (0,cosθ, sinθ)T are the coordinates of ~β(θ) in the ECS. Left
multiplying by R12 gives the coordinates in the PCS. Left multiplying by Rp
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gives the coordinates in the OCS and left multiplying by

[
1 0 0

0 1 0

]
projects

onto the first two components of the OCS. Finally, we have

[
1 0 0

0 1 0

]
Rp R12


0

cosθ

sinθ

=~βD , (402)

where ~βD denotes the orthogonal projection of ~β(θ) onto the physical de-
tector, i. e. onto the first two components of the OCS~eo

x and~eo
y . Taking the

squared norm and using Equation 290 and the explanation thereafter, we
finally obtain

a2 +b2 = d 2

f 2 cos2θ
cos2θ = d 2

f 2 . (403)

The proof is complete.

The angle γθ of the epipolar line lθ is given by

tanγθ =
−a

b
= −H21 + vθH31

H22 − vθH32
. (404)

Straight forward computations lead to

∂

∂θ
tanγθ =

d

cos2θ

−∆13

(H22 − vθH32)2 . (405)

Using Equation 267, we obtain

∂

∂θ
tanγθ =

d 2

f 2 cos2θ

cos(~eo
z ,~ee

x )

(H22 − vθH32)2 = cos(~eo
z ,~ee

x )

cos2θ

a2 +b2

b2 . (406)

Finally,

∂

∂θ
tanγθ =

∂γθ

∂θ
× ∂

∂γ
tanγθ (407)

= ∂γθ

∂θ
× 1

cos2γθ
. (408)

Since cos2γθ = b2/(a2 +b2), one finally gets

∂γ

∂θ
= cos(~eo

z ,~ee
x )

cos2θ
, (409)

which ends the proof.
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