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Abstract

This thesis aims to design non-asymptotic and robust estimators for a class of frac-
tional order linear systems in noisy environment. It deals with a class of commensur-
ate fractional order linear systems modeled by the so-called pseudo-state space rep-
resentation with unknown initial conditions. It also assumed that linear systems un-
der study can be transformed into the Brunovsky’s observable canonical form. Firstly,
the pseudo-state of the considered systems is estimated. For this purpose, the Brun-
ovsky’s observable canonical form is transformed into a fractional order linear differ-
ential equation involving the initial values of the fractional sequential derivatives of
the output. Then, using the modulating functions method, the former initial values
and the fractional derivatives with commensurate orders of the output are given by al-
gebraic integral formulae in a recursive way. Thereby, they are used to calculate the
pseudo-state in the continuous noise-free case. Moreover, to perform this estimation,
it provides an algorithm to build the required modulating functions. Secondly, inspired
by the modulating functions method developed for pseudo-state estimation, an oper-
ator based algebraic method is introduced to estimate the fractional derivative with an
arbitrary fractional order of the output. This operator is applied to cancel the former
initial values and then enables to estimate the desired fractional derivative by a new
algebraic formula using a recursive way. Thirdly, the pseudo-state estimator and the
fractional order differentiator are studied in discrete noisy case. Each of them con-
tains a numerical error due to the used numerical integration method, and the noise
error contribution due to a class of stochastic processes. In particular, it provides an
analysis to decrease noise contribution by means of an error bound that enables to
select the optimal degrees of the modulating functions at each instant. Then, several
numerical examples are given to highlight the accuracy, the robustness and the non-
asymptotic property of the proposed estimators. Moreover, the comparisons to some
existing methods and a new fractional order .#,-like observer are shown. Finally, con-
clusions are outlined with some perspectives.

Index Terms: Fractional order linear systems, Pseudo-state space representation,
Modulating functions method, Algebraic method, Non-asymptotic and robust estima-
tion, Pseudo-state estimator, Fractional order differentiators, Initial condition estim-
ator, Fractional order Luenberger-like observer, Fractional order .#,-like observer,

Fractional order Legendre differentiator.



Résumé étendu en francais

Cette these vise a concevoir des estimateurs non-asymptotiques et robustes pour les
systemes linéaires d’ordre fractionnaire commensurable dans un environnement bruité.
Elle traite une classe des systemes linéaires d’ordre fractionnaire modélisées par la dite
pseudo représentation d’état avec des conditions initiales inconnues. Elle suppose
également que les systémes étudiés ici peuvent étre transformés sous la forme can-
onique observable de Brunovsky. Pour estimer le pseudo-état, la forme précédente est
transformée en une équation différentielle linéaire d’ordre fractionnaire en prenant en
compte les valeurs initiales des dérivées fractionnaires séquentielles de la sortie. En-
suite, en utilisant la méthode des fonctions modulatrices, les valeurs initiales précédentes
et les dérivées fractionnaires avec des ordres commensurables de la sortie sont don-
nées par des formules algébriques avec des intégrales a I'aide d'une méthode récurs-
ive. Ainsi, ces formules sont utilisées pour calculer le pseudo-état dans le cas continu
sans bruit. En outre, elle fournit un algorithme pour construire les fonctions mod-
ulatrices requises a I'accomplissement de I'estimation. Deuxiémement, inspirée par
la méthode des fonctions modulatrices développée pour I'estimation de pseudo-état,
une méthode algébrique basée sur un opérateur est introduite pour estimer la dérivée
fractionnaire avec un ordre quelconque de la sortie pour les systemes considérés. Cet
opérateur sert a annuler les valeurs initiales non désirées, puis permet d’estimer la
dérivée fractionnaire souhaitée par une nouvelle formule algébrique a I'aide d’'une
méthode récursive. Troisiemement, I'estimateur du pseudo-état et le différenciateur
d’ordre fractionnaire obtenus précédemment sont étudiés respectivement dans le cas
discret et bruité. Chacun d’entre eux contient une erreur numérique due a la méthode
d’intégration numérique utilisée et une autre due au bruit. En particulier, elle fournit
une analyse pour diminuer la contribution du bruit au moyen d’'une majoration d’erreur
qui permet de sélectionner les degrés optimaux des fonctions modulatrices a chaque
instant. Ensuite, des exemples numériques sont donnés pour mettre en évidence la
précision, la robustesse et la propriété non-asymptotique des estimateurs proposés.
En outre, les comparaisons avec certaines méthodes existantes et avec un nouvel ob-
servateur d’ordre fractionnaire de type ., sont montrées. Enfin, elle donne des con-

clusions et des perspectives.

Mots clés : Systemes linéaires d’ordre fractionnaire, Pseudo représentation d’état,
Méthode des fonctions modulatrices, Méthode algébrique, Estimation non-asymptotique
et robuste, Estimateur de pseudo-état, Différentiateurs d’ordre fractionnaire, Estim-
ateur de conditions initiales, Observateur d’ordre fractionnaire de type Leuenberger,
Observateur d’ordre fractionnaire de type de /£, Différentiateur de Legendre d’ordre

fractionnaire.
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Chapter 1

General Introduction

1.1 Getting started

Before starting this thesis, let us briefly answer the following three basic questions.

1.1.1 Whatis fractional calculus?

Fractional calculus is a branch of mathematical analysis, where the integer orders in
the integral and differentiation operators are extended to real numbers or complex
numbers, and which develops the properties of the classical calculus.

1.1.2 Why do we use fractional calculus?

When we try to describe the real world, the fractional characteristic is more conven-
tional and rational than the integer one. The fractional calculus is an extension of the
classical one. Due to the existence of massive non-integer properties in nature, fra-
tional order systems are more suitable to describe them [8, 9, 10, 11].

1.1.3 How can we use fractional calculus?

Thanks to the development of computer science, more and more applications of frac-
tional calculus appear in many science and engineering fields such as economics[12],
physics [9], biology[13, 14, 15], chemistry[16], automatic control [8, 10, 17], etc. Among
theses applications, the classical integral and differentiation operators are usually re-
placed by the fractional order ones, such that the non-standard dynamical behaviors

can be characterized with long memory or with hereditary effects.
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1.2 Introduction

1.2.1 History and applications of fractional calculus

Fractional calculus is an old mathematical subject flowing with young blood. It was
born in 1695 during the communications between L'Hopital and Leibniz. Some inter-

esting questions and answers can be found in their letters:

¢ Leibniz: "Can the meaning of derivatives with integer order be generalized to de-
rivatives with non-integer orders?"

e L'Hopital: "What if the order will be 1/22"

e Leibniz: "It will lead to a paradox, from which one day useful consequences will

be drawn."

Since then, fractional calculus was studied and developed by many famous mathem-
aticians during more than 300 years. Readers can refer to [18, 19, 20] for more details
on the history of fractional calculus. Now, fractional calculus has been becoming very

useful in many scientific and engineering fields, such as:

e automatic control [10, 21, 22],

e robotics [23],

e electrical engineering [24, 25, 26],
* signal and image processing [27],
* physics [9],

e chemistry [28],

e mechanic [29, 30],

* biology [13, 14, 15, 31],

e economics [32],

 rheology [33, 34, 35, 36],

e earthquakes [37],

* etc.

Among all these domains, an important research topic is on fractional order sys-
tems and controllers in automatic control. In the following section, let us recall some
famous groups and their outstanding works in the world. As the list is long, there are

risks to forget some works to cite.
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1.2.2 Some research groups

There are many well-known researchers and research groups in the world, who work
on fraction order systems and controllers, such as Machado [38, 39], Ortigueira [40],
Trigeassou [41, 42]etc. However, we can not enumerate all of them. Here, we introduce
some stars in this domain.

One of the most celebrated group in France is the CRONE team [43, 44]. CRONE is
the French abbreviation for Commande robuste d’ordre non entier with the meaning of
non-integer order robust control. "We live in a 2.3-dimensional world, which is larger
than the surface but smaller than the volume" -Alain Oustaloup. This brilliant sentence
opened my door to fractional palace when I was a Master student at University Bor-
deaux 1. This team is formed by Oustaloup, Sabatier, Melchior, Lanusse, Malti et al.
The CRONE Toolbox is one of the earliest Matlab Toolbox for frational order control
[17]. The book [11] summarizes the work of the CRONE team such as the stability of
frational order systems, different generations of CRONE control and the .#, control.
Further more, some frational order applications have been implemented like suspen-
sion CRONE [29, 30].

The contribution of Igor Podlubny’s group has been widely recognized. The book of
Podlubny [21] is one of the most cited publication in fractional calculus domain. The
proposed fractional order PI*DH controllers are used to improve the performance of
systems [8]. He demonstrated the better response of this type of controllers comparing
to the classical PID controllers. A frequency domain approach using the fractional or-
der PI*DH controllers was also studied [45]. The implementation of these controllers is
presented by an approach to the design of analogue circuits [46].

Yangquan Chen’s group is one of the leading contributors to the research field of
fractional order systems and controllers. Their research interests include both theoret-
ical and practical issues, such as the Impulse Response Invariant Discretization (IRID)
method for approximating the fractional differential operators [47, 48], the flat-phase
tuning rule based on the iso-damping property [49, 50], the control of hard-disc drive
servos [51], and the flight control of unmanned arial vehicles [52]. These monographs

[10, 53] are good tools to be familiar with fractional order systems and controllers.
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1.3 Motivations and objectives of the thesis

During the past decades, fractional order systems and controllers have been applied
to improve performance and robustness properties in control design, for example, to
increase of the stability margin [8, 54, 55, 56].

On the one hand, there exist two linear models for fractional order systems: the
fractional order differential equation model and the one with the pseudo-state space
representation. For the systems which can be transformed into the Brunovsky’s observ-
able canonical form, these two models are equivalent in the case with zero initial con-
ditions [1]. Due to the non-locality of the fractional derivative operator, the real-state
of a fractional order system can be divided into two parts: the pseudo-state and an ini-
tialization function. However, for some applications, the knowledge of pseudo-state is
enough to understand the behavior of a studied fractional order system [55, 57]. As for
integer order linear systems, the design of pseudo-state estimators for fractional order
linear systems is also important in automatic control. Indeed, for cost and technolo-
gical reasons, the pseudo-state can not always be measured. Moreover, the estimation
normally requires the measurements which are usually noisy. Existing pseudo-state
observers for fractional order systems are often extensions of the ones for integer or-
der systems, which usually converge asymptotically. However, estimations with fast
convergence in finite-time are required to achieve the control objective in numerous
applications [58]. Consequently, non-asymptotic and robust pseudo-state estimators
are useful for fractional order systems.

On the other hand, for a studied system whatever integer order or fractional order,
when dealing with the problem of output regulation such as the stabilization of the
output, a fractional order controller can be designed using the fractional derivatives of
the output [59]. For example, when designing a fractional order PI*D* controller, the
fractional derivative of the output needs to be estimated using its discrete noisy obser-
vation, whose order can be arbitrary [21]. Consequently, non-asymptotic and robust
fractional order differentiators are useful for fractional order systems and controllers.

When designing a fractional order differentiator, the accuracy and the robustness to
noise effect need be considered. Based on these criteria, various robust fractional order
differentiators have been proposed in the frequency domain [60, 61, 62, 63] and in the
time domain [62, 64, 65, 66, 67]. They can be divided into two classes: fractional order
model-free differentiators [60, 61, 64, 66] and fractional order model-based differenti-
ators [62, 63, 67]. The first class of fractional order differentiators are obtained by trun-
cating the analytical expression. Hence, they contain truncated errors even in noise
free case, which reduce the accuracy of the differentiators. It was shown in [66] that
the truncated term error can be significantly reduced by admitting a time-delay. The

second class of fractional order differentiators are obtained from the differential equa-
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tions of considered signals. They do not introduce any truncated errors [62, 63, 67].
Recall that the latter model-based differentiators were obtained by applying two recent
non-asymptotic method: the algebraic parametric estimation method working in the
frequency domain [68] and the modulating functions method working in the time do-
main [64, 69, 70], which exhibit good robustness properties with respect to corrupting
noises, even if the statistical properties of the noises are unknown [71, 72]. These dif-
ferentiators were exactly given by algebraic integral formulae which can be considered
as a low-pass filter. Hence, they are non-asymptotic and robust. However, they are not
applicable for the systems modeled by the pseudo-state space representation.

Bearing the previous ideas in mind, the objectives of this thesis are to design non-
asymptotic and robust pseudo-state estimators and fractional order differentiators for
a class of fractional order linear systems modeled by the pseudo-state space represent-
ation with unknown initial conditions.

Finally, remark that most of the modeling and analysis on fractional order systems
and controllers were done in the frequency domain. However, the works in this thesis
will be directly carried out in the time domain.
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1.4 OQOutline

This thesis summarizes my PhD work from 2014-2017, which is organized as follows.

Chapter 2 presents some useful definitions and proprieties on fractional calculus,
and some fundamental results on fractional order systems.

Chapter 3 recalls the ideas of the modulating functions method on parameter iden-
tification and derivative estimation for integer order linear systems via simple examples.
Then, it is explained how to apply the modulating functions method to design frac-
tional order differentiators for integer order linear systems in several cases by constrict-
ing different types of modulating functions.

The main contributions of this thesis are given in Chapter 4 and Chapter 5, where
a class of commensurate fractional order linear systems modeled by the pseudo-state
space representation with unknown initial conditions are considered. It is assumed
that these systems can be transformed into the Brunovsky’s observable canonical form.

Chapter 4 is devoted to estimating the pseudo-state of the considered systems. By
applying the modulating functions method, both the initial values of sequential frac-
tional derivatives and the commensurate fractional order derivatives of the output are
exactly given by algebraic integral formulae using a recursive way, which are used to
calculate the pseudo-state in continuous noise-free case. Moreover, it is shown how to
construct the required modulating functions.

Chapter 5 is inspired by the modulating functions method developed in Chapter 4,
where an operator-based algebraic method is introduced to estimate the fractional de-
rivative with an arbitrary order of the output for the considered systems. The designed
operator is applied to eliminate the undesired initial values and to calculate the desired
fractional derivative by a new algebraic formula using a recursive way.

Both the estimators obtained in Chapter 4 and Chapter 5 are studied in discrete
noisy case. In particular, the noise error contribution is analyzed, where an error bound
useful for the selection of design parameter is provided. Then, numerical examples are
given to illustrate the accuracy, the robustness and the non-asymptotic property of the
proposed estimators, where some comparisons to other methods are shown.

Finally, conclusions are outlined in Chapter 6 with some perspectives.



Chapter 2

Fractional calculus and fractional order

systems

Résumé en francais

Dans ce chapitre, on rappelle quelques éléments importants du calcul fraction-
naire : les différentes définitions de la dérivation fractionnaire dans 1’espace-temps
ainsi qu’a I'aide de la transformée de Laplace. Puis, nous introduisons quelques pro-
priétés fondamentales des systemes d’ordre fractionnaire telles que la stabilité, la pro-
priété de la dimension infinie, I’observabilité et la controlabilité. Enfin, certains con-

troleurs de commande d’ordre fractionnaire sont présentés.

2.1 Some useful functions and Laplace transform

In this section, we will introduce some fundamental functions which play an important

role in fractional calculus.

2.1.1 Gamma Function

Like the factorial operator which plays an indispensable role in the classical calculus,
the Gamma function is one of the most fundamental tools in fractional calculus. It was
first introduced by the famous mathematician Leonhard Euler as a natural extension

of the factorial operator from positive integers to real numbers [73].
Definition 2.1 [74] The Gamma function is defined by: YV xe C*\ Z_,
o0
T(x):f t*le7ldr. (2.1)
0

The variation of the Gamma function is illustrated in Fig. 2.1, where the non-positive
integers represent its poles.

Some useful properties of the Gamma function can be given as follows [74]:
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75]The Beta function is defined by: ¥ x, y € C withR(x) > 0 andR(y) > 0,
1

B(x,y):f " la-nrtas. (2.2)
0

This functions have the following properties:

* B(x,y)=B(y,x),

I'x)I(y)

" By = Ix+y)
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2.1.3 Mittag-Leffler functions

The exponential function is an important function in the classical calculus. There
exist several types of Mittag-Leffler functions in the fractional case [76]. The one-
parameter Mittag-Leffler function is the generalization of the exponential function,

which is defined as follows.

Definition 2.3 [21] Leta € C withR () > 0, then the one-parameter Mittag-Leffler func-
tion defined by: ¥ z € C,

fe's) Zk
Ey(2)=Y — . 2.
(2) ,;)F(ak+1) 2.3)

The two-parameter Mittag-Leffler function introduced by Agarwal [77] is the most

popular and widely applicable in fractional calculus.

Definition 2.4 [77] Let o, € C with R(«a) > 0 and R(P) > 0, then the two-parameter
Mittag-Leffler function defined by: ¥ z € C,

00 k

Eqp(2) = kg TGk p) (2.4)

Some times, a more generalized Mittag-Leffler function with three parameters is

needed.

Definition 2.5 [78] Let a,p,y € C with R(a) > 0, R(B) > 0 and R(y) > 0, then the three-
parameter Mittag-Leffler function defined by: ¥ z € C,

© Ik+y) ZF
E' (2)= :
apl? ,;) T(Yk! Tk +p)

(2.5)

These types Mittag-Leffler functions are sufficient in this thesis. Hence, we do not
need more general functions. In particular, by taking z =0, we get:

1
Eqp(0)=E}4(0) = ot 2.6)

Moreover, by taking some special values to the parameters o and 3, we obtain the fol-

lowing well-known classical functions [21]:
* Ej1(2)=e

Z
-1
* Exi1(2) =%,

Ez,1(2%) = cosh(z) = €3,

2) _ sinh(z) _ e?*—e %

Es»(z ==

Eq,1(2) =Eq(2).
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2.1.4 Laplace transform

Finally, let us introduce the well-known Laplace transform which can be used to ana-

lyze the stability of systems in the frequency domain.

Definition 2.6 [21] The Laplace transform of a function f denoted by F is defined as
follows: VseC,
F(s) ::ff{f(t)}(s):f e’ f(ndt, (2.7)
0

where s is the variable in the frequency domain, and f is a causal function, i.e. ¥ t <0,

f(6)=0.

Then, we give the Laplace transform of some useful functions in the following table.

Frequency domain Time domain
1 l.(xfl
5% ()
1 e—at
s+a -
G Vi S EapFIN)
X I(m+1) ES tk
Y FrorgenT | Baepd=) F—s
im0 L (ka+P)s poar F(k(lf-;ﬁ)
s* X akte
—_— Eo(at®) =) ——
s(s*—a) a(at’) kX:;‘) Iko+1)
oa—1
1
Saﬂ,%(sb IAla Eq,1(£A1%)
SO‘Y_ﬁ
- p-1rY (_ s
1 a)y P B, p(=at®)

Table 2.1: Laplace transform of some useful functions.

10
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2.2 Definitions and properties of fractional calculus

There exist several definitions for fractional derivatives, among which the Riemann-
Liouville one [58, 79, 80, 81] and the Caputo one [82, 83] are usually considered in
control field. There also exists the Griitnwald-Letnikov one [84] which coincides with
the Riemann-Liouville one in many cases[21]. All these fractional derivatives will be
introduced in this section.

Physical and geometric interpretations of fractional derivatives can be found in [85]
and the references cited therein. Moreover, the physical meaning to initial conditions
with the Riemann-Liouville fractional derivative was explained in [86].

Through this section, let I = [a,b] € R, a € Ry, and [ = [a], where [a] (resp. |a])
denotes the smallest (resp. largest) integer greater than or equal to a. Then, all the

definitions given in this section can be found in [21, 87].

2.2.1 Riemann-Liouville fractional integrals and derivatives
Let us begin this subsection by the following definition.

Definition 2.7 The Riemann-Liouville fractional integral of a function f is defined as
follows: V¥ t > a,

DY, f(n) :=f(n),

DAf(1) = o )f (t-1* ! fndr.

(2.8)

Remark that if f is continuous for ¢ = 0, we have lirr(l) D, S f() = Da,tf(t) = f(1) [21].
oa—
By taking integer numbers in (2.8), we can obtain the following Cauchy formula:
VneN*,

Dt f (1) = D f (t—0"' f(vydn, (2.9)

which refers to the n'" order integral from ato .
The Riemann—Liouville fractional integral of f can also be interpreted as the con-
volution product of H-— F and f:Vt>a,

a—1

t
D, S f() = x[a,+oo[m * (1), (2.10)

where * stands for the convolution product, < F is usually called the kernel of frac-
tional integral operator, where X[, +oo[ is indcator functlon oftheinterval [a, +oo[. Thus,
the function is assumed to be 0 for ¢ < a (causality). Thus, the Laplace transform of the
Riemann-Liouville fractional integral can be obtained as follows:

a—1

t 1
ff{D;,“tf(t)}(Shff{ *f(t)}(s):s—aF(s). (2.11)

)

11
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Based on the Riemann-Liouville fractional integrals, the fractional derivatives can
be defined by applying the integer order derivative operator.

Definition 2.8 The Riemann-Liouville fractional derivative of a function f is defined as
follows: Y t > a,

dl
DY f(1):= 7 {DZ,}’f (t)}. (2.12)

Remark 2.1 According to (2.11), if 0 < o < 1, the Riemann-Liouville fractional integ-
rals are defined by improper integrals. Thus, if | # «, the Riemann-Liouville fractional

derivatives are also defined by improper integrals.

Then, some useful properties on Riemann-Liouville fractional integrals and deriv-

atives are recalled in the following lemmas.

Lemma 2.1 [21] The Laplace transform of the Riemann-Liouville fractional derivative
of f is given by:

-1
£L{Dy  f(D}(s)=s"F(s)— )
k=0

R O] (2.13)

Lemma 2.2 [74] Fractional Leibniz formulae: Let a € R, and m € N. Then, the follow-

ing formulas hold:
m
- f.m _ _kmF(OH—k)mk (xk
D, {r f(t)}_Z( 1) (k) T D, f(n), (2.14)
W [ m! p P
DG {t" f(D}= Z it e f o, (2.15)

where o, < m is defined as follows:

a, ifaeN*, anda<m,
Oy = (2.16)

m, else.

Lemma 2.3 [21] Additive index laws: Letx € R.., and 3 € R. Then, the following formu-
lae hold:

5t{D;‘§f(l‘)} D (), 2.17)
Df,  {D%, f(1)} = Dﬁmf(t) Vpa {f (D}, 2.18)

where g o { (1)} is a decreasing function of t and defined as follows:

[a]
Wpa{f(O} =Y cpi(t—a) P [DO‘ ,lf(t)] (2.19)
i=1

12



2.2. Definitions and properties of fractional calculus

with

0, ifpez,
CB,i = (2.20)

1
T p else.

Remark 2.2 According to the behavior of f at t = a, the initial values of the Riemann-
Liouville fractional derivatives of f can be equal to zero, infinity, or a fixed value. (see
[21] for more details).

Now, let us consider the case with zero initial conditions.

Lemma 2.4 [21] Assume that | satisfies the flowing condition:

o (C1): f is(I—1)-times continuously differentiable on1 and f" is integrable on1.
Then, the following two conditions are equivalent:

o (Cy): f(i)(a) =0, fori=0,...,1-1,

« (C9):[DS,f®)],_ =0withl-1<a<l.
Moreover, if (Cy) or (C3) holds, we have: VY € R withy < a,

(D}, f(D)],_,=0. 2.21)

Based on the Riemann-Liouville fractional derivative, we define a new kind of frac-
tional derivatives.

Definition 2.9 Let k € N, the Riemann-Liouville fractional sequential derivative of a
function f is defined as follows: ¥ t > a,

(1), ork=0,
DAL (D) 1= / 4 (2.22)

Dg,t{@g,ct_l)af(t)}; fork=1.

Remark that @5"; f and Df;"; f are two different kinds of derivatives, the relation
between them is given in the following lemma which is the first important result ob-

tained in this thesis.

Lemma 2.5 The Riemann-Liouville fractional integral and derivative of a fractional se-

quential derivative can be given as follows: VP € R, ¥V k € N¥,

D}, {@f.ff'éf (U} =DV (1) — b o {FO}, (2.23)

13
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where

k .
Ppka{F (O} = Y Wprij-naa {2y " F O}, (2.24)
=1

where Wp, (j- 1o« {ngt_j)o‘f(t)} can be given by (2.19).
Moreover, we have: ¥ k = 2,

DR f(£) =DK% £ (1) = Pak-1),0 {F (D} (2.25)

Proof. This lemma is proven by induction.
Step 1. Initial step: According to (2.16), (2.23) holds for k= 1.
Step 2. Inductive step: Assume (2.23) holds for k = 1. Then, we have:

D {2l ri}=0b Aokuns  ron}

B+ka (2.26)
= Da,t {Dg,tf(t)} - q)ﬁ,k,a {Dg,tf(t)} )
where
k (k+1-j)
Ppka{D% F (O} =Y Wprij-naa {Zas O F 0} 2.27)
j:l
By applying (2.18), we get:
D DG, f(0 =D F (0~ Wpskaal (D). (2.28)
From (2.26)-(2.28), we get:
DP {@(kﬂ)afm} _Dﬁ+(k+1)af(t) —
a,t\Za,t =Dy, Bk+1,0{f (D} (2.29)

Thus, (2.23) also holds for k + 1. Consequently, (2.23) holds for any integer larger than
1. Finally, (2.25) can be obtained by substituting § and k by o and k — 1 in (2.23), re-
spectively. |

In order to simplify the presentation of this thesis, D} f (resp. @f“ f) will be referred
to Dy, f (resp. @];"; f) with a =0 in the sequel.

2.2.2 Caputo fractional derivatives

Different from the Riemann-Liouville fractional derivative, the Caputo fractional de-
rivative is defined by taking the the Riemann-Liouville fractional integral of an integer

order derivative.

Definition 2.10 The Caputo fractional derivative of f is defined as follows:

Vtela,+ool,
1

DL 0=

t
f (-0 O an. (2.30)
a

14



2.2. Definitions and properties of fractional calculus

The upper-left index C in CDg’t f is used to distinguish from the Riemann-Liouville
fractional derivative. The relationship between these two fractional derivatives are es-
tablished in the following formulae.

o If-1<a<0,then /=0. We have:

D%, f(1) =D, f(0). (2.31)

e Ifae R, \N, then [ € N*. We have [21]:

CDE, (1) =D f(t)—liwf”)(a) (2.32)
st = Ii+1-a) ' '

Remark that (2.32) can also be obtained by applying the additive index law given in
(2.16).
Then, we have the following property.

Lemma 2.6 [21] The Laplace transform of the Caputo fractional derivative of f is given

by:
-1

LD, (D} ($) =sFB(s) = Y. fP(a)s* (2.33)
k=0
Consequently, different form the Laplace transform of the Riemann-Liouville fractional
derivative, the one of the Caputo fractional derivative contains the integer order deriv-
atives initial values.
In this thesis, the following right-sided Caputo fractional derivative is widely used,
which is different from the Caputo fractional derivative defined in (2.30) by distinguish-
ing the lower and upper limits of the integration.

Definition 2.11 The right-sided Caputo fractional derivative of f is defined as follows:
Vte]—oo, b,

(-1)!
Il -

b
CD(tx,bf(f) = ft (t-plot f(l) (1) dr. (2.34)

Remark that if a € N*, then we have: “D} , (1) = (-1)* £ (z) [87].

Using the right-sided Caputo fractional derivative, the following fractional order
integration by parts formulae are given, which are indispensable tools in this thesis.

Lemma 2.7 [88] For any interval |a, t] <1, the following formulae hold:

t f Ly
f gD f(ndt= f °D, ;g0 f(v)dT, (2.35)

t t -1 T
‘/g(T)Dgny(T)dT:‘/‘ ‘D g0 f(0dT+ Z(—l)k[g(k)(T)D‘;}lfkf(T) " (236)
a a k=0 T=a

15
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2.2.3 Griinwald-Letnikov fractional derivative

Let us introduce the last fractional derivative which is useful in this thesis.

Definition 2.12 The Griinwald-Letnikov fractional derivative of a function f is given
by:Vt>a,

t
54
“lpe . f () :=lim h Z (- l)f(j)f(t—jh), (2.37)
I 1
where 0_( = (a—+),, is the generalized binomial coefficient.
j| Ila+1-j)j!

Then, the relation between the Riemann-Liouville and Griinwald-Letnikov frac-

tional derivatives is given in the following lemma.

Lemma 2.8 [21] If f satisfies the condition (C) given in Lemma 2.3. Then, for every
0 <y < I the Riemann-Liouville fractional derivative DZJ f exists and coincides with the

Griinwald-Letnikov fractional derivative "D} , f.

Thanks to the previous lemma, the Griinwald-Letnikov scheme is usually used to
approximate the Riemann-Liouville fractional integrals and derivatives in discrete case
[10, 21], which is given by Va € R,

= ll'l

— Z w(o‘)y(t iTs), (2.38)
TS ] O

ty(t

where T; is the sampling period of the discrete data, and the binomial coefficients can
be recursively calculated as follows:

w® =1, if j =0,

w® = (1 - "‘—“) w9 else.
j j )Y

(2.39)

The Griinwald-Letnikov scheme is the extension of the finite difference scheme is effi-
cient in noisy free case [10]. However, it is highly sensible to noises.

2.2.4 Fractional derivatives of some usual functions

Different from the integer order derivatives, the fractional derivative of a function usu-
ally can not be analytically calculated. In this subsection, the fractional derivatives of

some usual functions are given.

16



2.2. Definitions and properties of fractional calculus

Fractional derivatives of a constant

According to Definition 2.9, the Caputo fractional derivative of a constant is equal to
0. However, using (2.10) the Riemann-Liouville fractional derivative of a constant C is
given by:

(t—a)™

DY C=C————.
at Il -

(2.40)

Power functions

The Riemann-Liouville fractional derivative of the power function (¢ — a)¥ with v > —1
is given by [21]:
I'v+1)

o _ V=«
F(V—O(+1)(t a)’ . (2.41)

DS, (t—-a)¥ =

Trigonometric functions

The Riemann-Liouville fractional derivatives of the sine and cosine functions are given
by [74]:

. 1-a 1 1 1 ,,
D; sin(w?) :F(Z—(x) 1F» (1;5(2_0‘)’5(3_0‘);_1@ t ), (2.42)
D%cos(wt) = - ng(l'l(l—(x) 1(2—00-—1(»%2) (2.43)
t Il-a) ) ) " q '

where 1 F; is the generalized hypergeometric function.

There exists a second way to calculate the Riemann-Liouville fractional derivatives
of the ordinary trigonometric functions, which is given in the following form with the
aide of rotation matrix [89]:

D%sin(t) cos(af) sin(af) sing (1)

_ 2 : (2.44)

D%cos(?) —sin(a}) cos(af) c08q (1)

where sing(#) and cosq(#) are the generalized trigonometric functions which are given
by [89]:

k—a

. = ) i
sma(t)—l;)msm[(k—a)g] , (2.45)

k-« U
COSa(t):];)mCOS[(k—(X)E] . (246)

It is simple to verify that if a = 1, then they become the sine and cosine functions.

17
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Remark that the characteristics of these generalized trigonometric functions are

different from the traditional ones, since their integer order derivatives are aperiodic

functions:
sin(a)
1. _ _ 2
D sing t=cosq —F(—(x) pravy (2.47)
D!cosy t=—sin I+M (2.48)
t o b= «a F(—O() o+l : )

Right-sided Caputo fractional derivatives of a polynomial

Finally, let us give the right-sided Caputo fractional derivatives of a polynomial as well
as its integral in the following lemma. These results will be very useful in thesis.

Lemma2.9 [6]For—-1<aeR\Nwithl-1<a<1eN, theright-sided Caputo fractional

derivative of a polynomial t" with n € N is given on] — oo, b] by:

0, ifa>n,
CD‘;b{t”}: D! niz n—1\ iy — piti-a l (2.49)
, else,
Il-a) (n-D!'i5 i+1-a

i
Moreover, ifa < n, the following formula holds:

b R S R AL By B
CDO( n —
fa it m—oo(n—l)!;) i kZO e )

a" itk (p— gykritlatlg (e 1 i+ [ —a+ 1)
i+]l—-« ’

(2.50)
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2.3 Commensurate fractional order linear systems

There is an increasing interest in fractional order systems due to not only their novelty
but also their practical applications [90, 91, 92]. This work only invests in the com-
mensurate fractional order linear systems which are modeled by a fractional order lin-
ear differential equation and the pseudo-state space presentation, respectively. In this
section, some important properties are recalled.

In order to simplify the presentation, the notation D% is used in this section to refer
both the Riemann-Liouville fractional derivative Dy, , and the Caputo fractional deriv-
ative CDgyt with a=0.

2.3.1 Fractional order linear differential equation model

A general fractional order linear differential equation has the following form [21]: V ¢ = 0,

axD*Ny()+an- DN y(8) + -+ agD® y (1) =

2.51)
byDPM u(1) + by 1 DPM (1) + -+ + bgDPO w(1).

where a; €R, a; € Ry, for i =0,...,N, bj €R, f; € Ry, for j =0,...,M, u and y are the
input and output, respectively.

If all the orders of the fractional order derivation are integer multiples of a base
order a € R; in (2.51), then the differential equation is called commensurate order, and
defined by: V=0,

N M .
Y a;D*y(1) =Y b;D/%u(s), (2.52)
i=0 j=0
where a; =iafori=0,...,N,andp; = jafor j=0,...,M.
If there is no special statement in this section, the frational order system means

commensurate fractional order linear systems in the sequel.

2.3.2 Pseudo-state space presentation model

Within this framework, the following fractional order linear system is also considered:

D% =Ax+Bu, (2.53)
y=Cx, (2.54)

onIc R, U{0}, where a € B, A e RNVN, Be RN*! C e RN, D% = (D%xy,...,D%nN)"
x € RN is the pseudo-state column vector with unknown initial values, y € R and u € R
are the output and the input, respectively. In order to guarantee the stability of the con-
sidered fractional order system, it is assumed that 0 < a < 2 [93]. For discrete fractional

order state-space systems, some analysis can be found in [94, 95].
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Remark 2.3 Since the fractional derivative is an hereditary operator, i.e. a nonlocal op-
erator, both the knowledge of the vector x at a moment and its past are required to pre-
dict the behavior of a fractional order system. In fact, the real-state of a fractional order
system can be divided into two parts: the pseudo-state and an initialization function
[57, 96, 97, 98]. That is why x is referred to the pseudo-state in the literature.

It will be shown in Chapter 4 that the pseudo-state space presentation model and
the fractional order linear differential equation model are equivalent for a class of frac-

tional order linear systems with zero initial conditions.

2.3.3 Solutions using Laplace transform

In this subsection, we calculate the solution of (2.53) in the case of B = 0 using the
Laplace transform method.

By applying the Laplace transform to (2.53), we get:
ZL{Dx()} (s) = AX(s), (2.55)

where X is the Laplace transform of x. Then, by applying Lemma 2.1 and Lemma 2.5,

the following cases need to be distinguished:
e if0<a<1,then

- in the case with the Riemann-Liouville fractional derivative, we get:
X(s) = (s"T-A) "' DS [x(0)] 1o, (2.56)
- in the case with the Caputo fractional derivative, we obtain:
X(s) = s*7 (s%T—A) " x(0); (2.57)
e ifl1 <a<?2,then
— in the case with the Riemann-Liouville fractional derivative, we get:
X(s) = (s°T=A) 7 (DY [x(0)] =0 + D2 [x(1)] 1=0) , (2.58)
- in the case with the Caputo fractional derivative, we obtain:
X(5) = s (s“T=A) T (s x(0) + s*7* D x(0)). (2.59)

Then, the solutions in each can be computed by using the inverse Laplace trans-

form given in Tab. 2.1:
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¢ in the case with the Riemann-Liouville fractional derivative, we get:
- if0<a<1,then

1
x(1) = t—Ea,(x(t"‘A)D‘;‘—l [x()] =0, (2.60)

1-a
- ifl<a<?2, then

1 a a—1 1 (04 a—2
x(t):ﬁE(x,(x(t A)D; [x(t)]t:O"'ﬁE(x,(x—l(t A)D™ 7 [x()]¢=0. (2.61)

¢ in the case with the Caputo fractional derivative, we get:

- if0<a <1, then
x(1) =Eq(t*A)x(0), (2.62)

where Eq 1 =Eq,

- ifl<a<2,then
x(1) = Eq(t*A) x(0) + tEq 2 (t*A) X(0). (2.63)

Remark 2.4 According to Remark 2.2, the value of D‘t"_1 [x(D)];=0 in (2.60) can be be
equal to zero, infinity, or a fixed value.

o IfDY ! [x(1)] =0 is infinity, then x is also infinity in (2.60).

o IfD‘;‘_1 [x(8)] =0 =0, then x(t) =0 everywhere in (2.60).

o IfD%! [x(9)],-0 = C with C € R*, then using (2.60) and (2.6), we get:

o) ltir%(tl_o‘x(t)) =D% ! [x(£)] 420 = C. (2.64)

Therefore, then behavior of x in the neighbourhood of 0 must be of the form ﬁ L,

2.3.4 Stability of commensurate fractional order linear systems

This subsection deals with stability conditions of frational order linear dynamical sys-
tems. Moreover, it provides examples that show the damping behaviors of such sys-
tems. In order to determine the stability conditions of the system defined in (2.53)-
(2.54), the following definitions and theorems are needed.

Definition 2.13 [99] The zero solution of a fractional order system D*x(t) = f(t,x) is
said to be stable, if for any initial conditions x(0) € R", there exists € R, such that any
solution x(t) of the system satisfies || x(t)|| < d for all t > 0. Further, the zero solution of
the system is said to be asymptotically stable, if in addition to being stable, || x(¢t)|| — 0 as

t — oo.
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Consider the following integer order linear system:
x(1) =Ax(2), (2.65)

whose solution is x(f) = e’*x(0). It is well-known that this system is stable if | arg(eig(A))| = 3.
Further, if |arg(eig(A))| > 7, the system is said to be asymptotically stable.

Before stating the characterization of the frational order stability, let us show the
behavior of a frational order system. Let us consider the following frational order sys-
tem:

D%x(1) = Ax(1), (2.66)

where 0 < a < 1. According to (2.60) and (2.62) , we have:

e for Caputo fractional derivative: x(t) = Eq(¢*A)x(0),

¢ for Riemann-Liouville fractional derivative: x(¢) = IIL_(,E(,(,O((L“"A)D‘t"_1 [x()] =0-

By taking different values of «, the variations of x are shown in Figure 2.2 and Figure
2.3, where A=-1.

It is important to note that for small a, we have a sort of damping. We can chose a
matrix A with A <0 and ||Al| big enough to overcome this phenomena which is shown
in Figure 2.4.

Now, let us introduce the fractional version of the asymptotic stability.

Theorem 2.1 [100] The commensurate fractional order linear system defined in (2.66)
is asymptotic stable if the following condition fulfils:

|arg(eig(A))] > (xg, (2.67)
where eig(A) represents the eigenvalues of the matrix A.

For the integer order linear system defined in (2.65), the condition (2.67) means
that the real parts of all the eigenvalues of A are negative. Hence, as x(f) = e x(0), we
have || x(2)|| < Me Mnint which goes to 0 as t — oo. In this case, the asymptotic stability
is exponential. This kind of exponential stability cannot be used to characterize the
asymptotic stability of fractional systems. Some new definitions should be introduced.

t~% stability
The t~* stability can be used to refer to the asymptotic stability of frational order sys-
tems.

Definition 2.14 [101] The trajectory x(t) = 0 of the system defined in (2.66) is t—* asymp-
totically stable if the system is uniformly asymptotically stable and if there exist N € R,
and b € R such that: ¥V t > 1y,

Ix()l <Nt -Db)~, (2.68)

where ty =0 is the initial time.
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Figure 2.3: Caputo definition case x(#) = Eq(¢*A)x(0) with a =0.1,0.5,0.9, 1.
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Figure 2.4: Caputo definition case: x(#) = Eq(¢*A)x(0) with «=0.1 and A=-0.1,-1, -8, -20.

Mittag-Leffler stability

By using the Lyapunov direct method, the stability of the frational order system defined
in (2.66) can be determined, which is associated with the Mittag-Leffler stability.

Definition 2.15 [102] The solution of the system defined in (2.66) is said to be Mittag-
Leffler stable if there exist A, b € R, and a locally Lipschitz function m such that

Ix(D)]| < (m(xo)Eq (~A (£ = 16)%))", (2.69)

where xy = x(ty) with ty =0 being the initial time, m(0) =0 and m(x) = 0.

Examples: some behaviors of frational order systems

Consider a frational order system with the following transfer function:

G(s) = (2.70)

$20 4+ s+ v’

where a = %, q €N*, y, v eR. s*is amulti-valued function which admits g sheets of the
Riemann surface given by [103]:

s:IsIej‘b, -n+2kn<$<n+2kn, k=0,1,2---,g-1. (2.71)

The case with k = 0 is called the principal sheet that —n < 0 < n. The regions of the

plane w = s* can be defined by:

w:lwleje, —oam+2kan < 6 < am+2kort. (2.72)
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2.3. Commensurate fractional order linear systems

Figure 2.5: Riemann surface for w = s'/4.

In practice, we only work on the principal sheet [10]. Therefore, we only consider
the poles of the equation given in (2.70) (roots of the denominator) that lie with the
principal sheet. Only the roots that are in the principal sheet of the Riemann surface
have influence on the different dynamics: damped oscillation, oscillation of constant

amplitude, oscillation of increasing amplitude with monotonic growth.

For example, consider the following equation:
2%+ ps*+v=0, (2.73)

the solutions are given by

a__“i V H2_4V

w=s 2 (2.74)
If we suppose A = w, then we have:
s=bh = p L 28L T 2K (2.75)
where k € N, and only the roots satisfying the condition:
arg(b) + 2km o (2.76)
(04

are on the principal sheet.
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Example: (2.70) with o = %

By taking a = 3 in (2.70), we get:

1
G(s)=—5 ; . (2.77)
sz(i) +us2+v
If we evaluate the function with A = s%, then we have:
G(A) = ! (2.78)
D CENT) SR '

along the curve [/ which is a simple closed contour oriented in counter clockwise
direction in defined by
F0:F1UF2UF3, (2.79)

where
T
I A)=——,
arg) =
Fg:)\:l)\lej‘b,—g<¢<g, (2.80)

I :arg(A) = g,

with A € R* (see Figure 2.6).

[

Figure 2.6: The evaluation contour [5.
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The roots of the characteristic equation can be obtained from the following poly-

nomial:

PA) =A%+ A+, (2.81)
THEVRAY ”2”2_4\/. Thus,

whose roots are Aj 2 = s1,2 are the roots of the denominator of G(s):

s1.2= (A1.2)°. (2.82)

The transient response depends on the roots of the characteristic equation, which

has several different cases [10].

e There are roots in the Riemann principal sheet, located in R(s) > 0 and 3(s) #O0.
In this case, the response is a oscillatory function with a constant amplitude

when ¢ — oo. For example, as shown in Figure 2.7 with p=-1 and v =0.5.

Figure 2.7: |arg(\)| = %.

e There are roots in the Riemann principal sheet, located in R(s) < 0 and 3(s) #0.
The response is a monotonically increasing function. For example, as showed in

Figure 2.8 withp=1and v=1.

Figure 2.8: |arg(A)| > am.
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¢ There are no roots in the Riemann principal sheet which located in the negative
real axe. In this case, the response is a oscillatory function with a constant amp-

litude when ¢ — oco. For example, as shown in Figure 2.9 with p =2 and v = 1.

Figure 2.9: arg(A) = m.

* There are roots in the Riemann principal sheet, located in R(s) > 0 and 3(s) #O0.
In this case, the response is a oscillatory function with a increasing amplitude.
For example, as shown in Figure 2.10 with p=—+/3 and v =1.

Figure 2.10: |arg(A)| < 0‘2—“

e There are roots in the Riemann principal sheet. In this case, the response is a os-
cillatory function with a decreasing amplitude. For example, as shown in Figure
211withp=—-land v=1.
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Figure 2.11: & <|arg(A)| < am.

2.3.5 Infinite dimension property of fractional order systems

This subsection presents a state space presentation for fractional order systems, which
involves a classical integer order linear model and a model described by a parabolic
equation. This representation is based on the decomposition of the impulse response
of a frational order system into an exponential part and an aperiodic part. The decom-
position of the impulse response appears in the literature since the in [104]. Such rep-
resentation makes it possible to show the real state of a frational order system, which
is of infinite dimension (see [55, 105] for more detail).

The impulse response of a fractional order system with the following transfer func-
tion:

1

G(s) = , (2.83)
sY—a

where v, a € Ry with 0 < y <2, can be written by [106]:

r ] k
yi=| —). pie" " OPiy(t)dt
0 ;:1' . Ceox (284)
+f sin(ym) (f > *e dx|u(t)dr,
0 T 0o a®-—2axYcos(yx)+ x?Y

where u is the input, y is the output, and p; for i = 1,..., k are the poles defined by
pi= Ipilejei with

1
Ipil = (AD7,
arg(A;)) 2im
0= 2oL I (2.85)
n n
_n_arg(Ap cr< arg(?\z)’
2 27 2 27

A; represents the s” poles of G(s).
The difference between a frational order system and an integer order system is the
second part in (2.84), which is caused by the Branch point. Therefore, the equation

in (2.85) provides conditions on the poles to lie with the principal sheet of Riemann
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surface. These poles enable to write the first part of (2.84) as in the integer order case
where sine, cosine and exponential functions are mixed.
If we interchange the integral in the second part of (2.85), then it becomes:

o xYw(t, x)
dx, (2.86)
0o a®-—2axYcos(yx)+ x?Y

where,
t
w(t,x) :f e~ YD dr. (2.87)
0

Then, by taking the time derivative of the w, we obtain:

w(t,x)=—-xwl(t,x)+ u(r). (2.88)
Consequently, the state space representation of system G(s) = SYl_ — can be written as a
diffusive representation [105, 107, 108]:
wy (1) p1 (0) w1 (1) 1
- ' ' +| o, (2.89)
wy (1) Pk wi (1) 1
w(t, x) 0) —-X w(t, x) 1
y(@©) =y1(8) + y2(1)
w (1)
i 00 2.90
S | Loy T
av av ' n 0 a?—2axYcos(yx)+ x2Y
wi (1)

2.3.6 Another explication of infinity dimension property

In this subsection, some demonstration is provided to describe the infinite dimension
property of the fractional order derivative operator in the case of 0 < a < 1 [109].
Let us start with Definition 2.1 of the Gamma function:

o0
o) = f x* e *dx. (2.91)
0
By taking the following change of variables x — z# with ¢ € R, in (2.91), we get:
1 (o]
%= —— f 2 e dz, (2.92)
I Jo

Then, by taking the Laplace transform to the two sides of (2.91) and by interchanging

the order of the integrations with respect to z and ¢, we get:

INi-a) 1 foo z%1 4 2.03)
= Z. .
sl-a Mo Jo s+z
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Hence, we get:

1 00 ~0—1
- f ‘4
[I(1-a)Jo s+z

Finally, by taking the following change of variables z — % with T € R, we obtain:

a—1

z. (2.94)

o TS )ﬂ

1 ©
’ :mfo T (Ts+1 (2.95)

-
Consequently, it can be seen that the fractional integrator s*~! and the fractional
operator s* are expressed in terms of an integral of low-pass filters and high-pass fil-

ters, respectively [15]. Thus, the fractional order operator can be regarded as infinite

dimension.

2.3.7 Observability and controllability of commensurate frational or-

der order linear systems

This subsection reviews two results on the controllability and observability of fractional

order systems.

Theorem 2.2 [110] The system defined by (2.53)-(2.54) is observable if the observability
matrix is of full rank:

CA
rank =N. (2.96)

CAN—I

Theorem 2.3 [110] The system defined by (2.53)-(2.54) is controllable if the controllab-

ility matrix is of full rank:

rank| A AB A%B --- AN-1B |=N. (2.97)
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2.4 Fractional order controllers

This section introduces different types of controllers, where fractional integrals and
derivatives are applied in control design.

2.4.1 Fractional order PI"D* controllers

PID (Proportional-Integral-Derivative) controllers are the most famous and widely ap-
plied controller in industrial production. As the extension of classical PID controllers,
fractional order PID controllers, denoted by PI*D¥, are widely used both for integer

order and fractional order systems [21, 111], which are with the following form:
u(t) =Kpe(r) + K;De(t) + KyD"e(t), (A\,p>0), (2.98)

where K, K; and K, are proportional, integral and derivative gains, respectively, e is
the regulation error, D~ e and DHe are the fractional integral and derivative of e, re-
spectively.
The transfer function of such controllers is with the following form:
Ge(s) = %‘3 =K, +Kis ™M +Kgs¥, (2.99)
which can be realized in Fig. 2.12.

Ge(s)
E(s) .
R(s) Y(s)
—’O< Ks! = ue) H(s) >
X
- Kqs'

Figure 2.12: Block diagram of a closed-loop system with a fractional order PI*DH controller.

Since the fractional order PI*DH controllers have two more parameters A and p than
the classical PID controllers, the use of such controllers can enhance the performance
and the robustness of the controlled system. In particular, by taking A = 4 = 1, we obtain
the classical PID controllers. The relation between them is shown in Fig. 2.13[10].

The parameter tuning of these controllers has been well discussed in the literature
[112, 113, 114], for example, the Ziegler-Nichols method [115, 116].

2.4.2 Other typical fractional order controllers

There also exist other types of fractional order controllers in the literature, such as (see
[10, 11, 117] for detailed introduction):
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oA
PD PID
p=1 .
P _PI
S >
A=1 A

Figure 2.13: Classical PID controllers and fractional order PI*DH controllers.

CRONE controllers [104]: this kind of controllers are developed by the CRONE
group, an exhaustive overview of these controllers can be found in [11] with ex-
amples that can be reworked using the CRONE toolbox.

TID (Tilt-Integral-Derivative) controllers [117, 118, 119]: compared to conven-
tional fractional order PI*DH controllers, the kind of controllers have the follow-
ing advantages: simpler tuning, better disturbance rejection ratio, and smaller

effects of plant parameter variations on closed loop response.

Lead-lag compensators [120, 121]: the objective of this kind of controllers is to

develop a auto-tune method for fractional order PI*"D* controllers.

Observer based fractional order controllers [122, 123, 124]: the pseudo-state
estimated by a fractional order observer is used to design such kind of controllers.
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2.5 Conclusions

In this chapter, some important functions on fractional calculus were firstly recalled,
as well as the Laplace transform. Then, different kinds of fractional derivatives were
introduced with useful properties. Some fundamental properties on fractional order
systems were reviewed, such the stability, the infinity dimension property, observabil-
ity and controllability. Finally, some fractional order controllers were presented.
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Chapter 3

Modulating functions method

Résumé en francais

Dans ce chapitre, nous introduisons tout d’abord I'idée d’estimation des parametres
d'une équation différentielle ainsi que des différentes dérivées entieres de sa sortie a
I'aide des dites fonctions modulatrices. Dans ce travail, nous adaptons cette technique
pour estimer les dérivées fractionnaires de la sortie (la mesure) avec ou sans bruit. Pour
ce faire, nous multiplions I'équation différentielle par des fonctions modulatrices que
nous construisons, puis nous utilisons une intégration par parties d’ordre fractionnaire
pour aboutir au résultat désiré. Enfin, un différentiateur est proposé et appliqué pour
concevoir un PID d’ordre fractionnaire pour un systeme linéaire d’ordre entier dans

des exemples numériques.

3.1 Introduction

In many practical engineering situations, on the one hand, there always exist some
non-measurable variables and parameters for cost and technological reasons, on the
other hand, the measured variables and parameters usually contain noises. In order
to overcome these problems, different kinds of robust estimation methods have been
developed [125, 126, 127, 128, 129, 130]. Moreover, sometimes non-asymptotic estim-
ation with fast convergence in finite-time is required in online applications [58, 59,
131, 132, 133]. Among existing non-asymptotic methods, the modulating functions
method originally introduced by Shinbrot [134] has been widely used to estimate un-
known parameters for linear and non-linear continuous time systems [135, 136, 137],
systems modeled by partial differential equations [138], and noisy sinusoidal signals
(139, 140, 141]. The application on parameter estimation of this method is based on
the linear differential equation of a measurable signal. The idea is to transform the
linear differential equation into a set of algebraic integral equations by applying the

following basic steps:
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* choose a set of modulating functions,
* multiply each modulating function to the linear differential equation,
¢ integrate the obtained equation over an interval with a finite length,

* apply the integration by parts formula to shift the derivative operations from the
measurable signal to the multiplied modulating functions, where the undesired

boundary values are eliminated by the properties of modulating functions,

* replace the measurable signal by its measured observation in the obtained algeb-

raic integral equations,

* solve the linear system of the algebraic integral equations which are linear with
respect to the unknown parameters.

Thus, parameter estimators are exactly given by algebraic integral formulae involving
the measured noisy signal, which can be considered as a low-pass filter. A detailed
example will be given later in this chapter. Consequently, the modulating functions
method has the following advantages:

* exact algebraic formulation using integral formulae of the noisy signal,

* non-asymptotic and fast estimation using a sliding integration window with a

finite length;
¢ no need of initial conditions,
e without calculating the derivatives of the noisy signal,

¢ good robustness with respect to corrupting noises without the need of knowing
in priori their statistical properties (see [71, 72] for more theoretical details).

There also exists another robust and non-asymptotic method which is the algeb-
raic parametric estimation method originally introduced by by Fliess and Sira-Ramirez
for linear identification [68]. Different to the modulating functions method which is
applied in the time domain, the algebraic parametric estimation method is applied in
the frequency domain. However, these two methods have the same previously men-
tioned advantages. Consequently, the algebraic parametric estimation method has
been widely extended to various problems in signal processing [62, 63, 142, 143, 144,
145, 146, 147]. In serval cases, the modulating functions method can be considered as
a generalization of the algebraic parametric estimation method via working in the time

domain [148]. However, when tackling a complex problem, we can first be inspired by

36



3.2. Modulating functions method for integer order linear systems

the algebraic parametric estimation method via working in the frequency domain. In-
deed, the modulating functions method has been extended to fractional order linear
identification [149], integer order and fractional order differentiators for integer order
linear systems [67, 150].

In this chapter, the ideas of the modulating functions method on parameter iden-
tification and derivative estimation for integer order linear systems are recalled via
simple examples. Then, it is shown how to apply the modulating functions method to
design fractional order differentiators for integer order linear systems in several cases
by constructing different types of modulating functions. Moreover, it is shown how to

construct the required modulating functions.

3.2 Modulating functions method for integer order linear

systems

In this section, the idea of the classical modulating functions method for linear iden-
tification is explained via simple examples. Then, it is shown how to generalize this

method to design integer order differentiators for integer order linear systems.

3.2.1 Linear identification

Before introducing the modulating functions method, the definition of the classical
modulating functions is recalled.

Definition 3.1 [135] Let [a,b] c R, N € N*, and g be a function satisfying the following
properties: fork=0,1,...,N—1,

(P1): g€ €N(la, b)),
Py): g (@) =0,
P3): gP ) =0,

Then, g is called aN'™" order modulating function on [a, b].

There exist several kinds of modulating functions in the literature, such as polyno-
mial modulating functions [138, 141], Walsh modulating functions[151], Hermite mod-
ulating functions [152, 153], Fourier modulating functions [136, 154, 155], and spline-
type modulating functions[139, 140, 156, 157]. For example, a N order polynomial
modulating function can be defined on [a, b] as follows: V t € [a, b],

gum(t)=(t—a)N" (- )N, 3.1)
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where 1, m € N. Indeed, it is easy to verify that g,(f%l(a) = gﬁl’fzn(b) =0,fork=0,1,...,N-1.
By taking different values of n and m, the curves of g, ,; is shown in Figure 3.1, where
a=0,b=2,N=3,n=0,m=0,1,2.

OO (T

Figure 3.1: Classic modulating functions

When applying the modulating functions method, the integration by parts formula
is always needed. The fractional order integration by parts formula is introduced in
Lemma 2.7, which can be given in the integer order case as follows:

b b n—1 b
fg(r)f‘”)(t)dtz(—l)"f g(”)(t)f(t)dt+Z(—l)k[g(k)(t)f(”_l_k’(t) o B2)
a a k=0

where f, g € €"(R) with n e N*.
Now, let us explain how to apply the classical modulating functions method for

linear identification in the following example.
Example 3.1 Consider the following third order linear system: ¥V t € [a, b] C R,
azy() +ax () + a1 y(t) + apy (1) = u(1), (3.3)

where y, u are the output, input respectively. It is assumed that as = 1, and ay, a,, a, are
unknown to be estimated using y and u. Then, the following steps are needed.:

Step 1. Modulating functions: Take 3 third order modulating functions on |a, b]: g,, for
n=0,1,2.

Step 2. Multiplication and Integration: By multiplying both sides of (3.3) by g, and in-

tegrating from a to b, we get: forn=0,1,2,

b b
f (gn(OTV (D) + a28n (D () + a1 8,(VJ(1V) + ag gn (D y(1)) dt :f gn(Mu(r)dr.
‘ ¢ (3.4)
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Step 3. Integration by parts: By applying the integration by parts formula given in (3.2)
to (3.4), we obtain: forn=0,1,2,

3 . b b
Sn(b)—Sp(@)+) (-1)'a; f gy dr= f gn(Du(r) dr, (3.5)

i=0

SR : 3 -l .
whereS (@)=Y a; Y (-1 g @y P @ andS, )= a; Y (-D*gP (k) y P )
i=1 k=0 i=1 k=0
contain all the boundary values.

Step 4. Elimination of undesired boundary values: Thanks to the properties of g, we get
Sn(a) =S, (b)=0. Hence, (3.5) becomes: forn=0,1,2,

3 , b b
Z(—l)laij g,g”(r)y(T)dT:f gn(Mu(r)dr. (3.6)
i=0 a a

Thus, 3 algebraic integral equations are obtained, which are linear with respect to ay, a,
and a.
Step 5. Resolution of a linear system: According to (3.6), the following linear system is

obtained:
Pemymdr - [P gmymdr [P gy dr ag
Pamymdt -fPgymdt [Pamymdt [x]| a
Pomymdt [P ey@mdt [P gy de ay

(3.7)
S go@umdrt+ [P &0y dr

= ffgl(T)U(T) dT+f: g1(mymdr
P e@mumdt+ [P gy dr

Consequently, algebraic integral formulae can be obtained for the unknown parameters
by solving (3.10), where y will be replaced by its noisy observation.

Remark 3.1 More modulating functions can be taken in Example 3.1, then more al-
gebraic integral equations will be obtained. Then, the linear system can be solved by
applying the least square method in Step 5.

Remark 3.2 For each t €]a, b], a sliding integration window over [t — h, t] can be used

in Example 3.1 by takinga=t — h and b = t such that [t — h, t] < [a, b].

3.2.2 Integer order differentiators

The classical modulating functions method presented in Subsection 3.2.1 was used for

parameter estimation by many researchers. Recently, it has been originally generalized
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to estimate the derivatives of the output for integer order linear time-varying systems
with unknown inputs in [150]. In this subsection, the idea of this generalized modulat-
ing functions method is explained.

Inspired by Example 3.1 in Subsection 3.2.1, if S,(a) or S, (b) is kept in Step 4, then
the unknown boundary values can be obtained. For this purpose, several kinds of gen-
eralized modulating functions can be introduced.

Definition 3.2 Let [a,b] c R, N e N*. If a function g only satisfies (P,) and (Py) (resp.
(Py) and (P3)), then g is called aN'" order left-sided (resp. right-sided) modulating func-

tion on [a, b].

Thanks to Definition 3.2, the integer order derivatives of the output for the system
given in (3.3) can be estimated.

Example 3.2 Consider the following third order linear system: ¥V t € [a, b] C R,
asy(t)+axj(t) + a1 y(t) + agy(t) = u(r), (3.8)

where y, u are the output, input respectively. It is assumed that asz = 1, and ay, a,, a, are
known. Then, y, y and j can be estimated by applying the following steps:

Steps 1-3.: By replacing the classical modulating functions used in Steps 1-3 in Example
3.1 by 3 third order left-sided modulating functions on [a, t]: g, forn=0,1,2, (3.5) be-
comes: Y t €]a, b],

t
S,(t)-S (a)+Z( 1) a,f g(l)(T)y(T)dT:f gn(Mu(r)dr, 3.9
a

whereS,,(t) = Z a; Z( l)kg(k) (1) y(i_l_k) (1) contains the derivative values of y.
i=1 k=0
Step 4. Elimination of undesired boundary values at t = a: Thanks to the properties of gy,

we get Sy (a) =0. Hence, (3.9) becomes: forn=0,1,2,V t €]a, b],

3 , t t

S, (1) + Z(—l)’a,—f gD (1) y(1)dt :f gn(Du(t)dr. (3.10)
=0 a a

Thus, 3 algebraic integral equations are obtained, which contain y(t), y(t) and j(t).

Step 5. Resolution of a linear system: Let us present all the terms in the double sum in

S, (t) in the following matrix: forn=0,1,2,V t €la, b],

a1gn()y(t) axgn(0) y(t)  aszgn(t) y(1)
M (1) = 0 —agn (DY) —asgn() 1) |- (3.11)

0 0 azgn (1) y(1)
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By regrouping the terms containing y” (t) in (3.11) for i =0,1,2, we get: forn=0,1,2,

2 .
Sa(0)=) Gin(y" (), (3.12)
i=0
where we define:
2-i
Gin(®)=Y (-D*a;11:8% (0. (3.13)
k=0

Then, according to (3.10) and (3.12), the following linear system is obtained: ¥ t €]a, b],

Goo(8) Gio(r) Goo(D) y(t)
Go1(8) G1a(8) Goa(n) | X y(o) |=

Gop2(t) Gip(r) Gop(1) y (1)

3 . t
fath(T)u(T)dT—Z(—l)laif gy dr

i=0

(3.14)

3

. t .
[lamu@dt-)Y (-D'a f g (0 y(r) dr
i=0 a

3 . t .
[fe@u@dt-)Y (-D'a f g (V) y(r) dt
i=0 a

Consequently, if the matrix in (3.14) is invertible, then algebraic integral formulae can
be obtained for the derivative values y(t), y(t) and j(t) by solving (3.14), where y will be
replaced by its noisy observation.

Step 6. Triangular matrix case: Remark that if g, forn=0,1,2, satisfy the following prop-
erty: fork=0,1,2,V t€la,b],

g® ) =, (3.15)

where 8y, is the Kronecker delta function defined as follows: 6y, =1 if k= n, 8y, =0 else,
then the matrix in (3.14) becomes triangular as follows:

ay ay as
-a, —as O ’ (3.16)
as 0 0

with a3 = 1. Then, by solving (3.14) y"™(t) for n = 0,1,2 are given algebraic integral
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formulae using a recursive way: ¥ t €] a, b],

t 3 , ro.
Y= f gOumdT-3(-D'a; f & (Mydr, (3.17)

r
P(t)=— fgl(T)u(T)dT+Z( 1) alf g (M ymdt-ay®), (3.18)
=0

j)(t):f gO(T)u(T)dT—Z(—l)iaif g y@dt-(ay®+ay®).  (3.19)
a i=0 a

Step 7. Identical matrix case: Remark that the matrix in (3.14) can be identical, if g, for
n=0,1,2, satisfy the following property: fori=0,1,2, VY t €]a, b],

Gin()=0;p. (3.20)

Then, y™ (1) for n =0, 1,2 aredirectly given algebraic integral formulae as follows: ¥V t €]a, b),

t 3 )
y(”)(z‘):f gn(T)u(T)dT—Z(—l)’alf gD (nymdr. (3.21)
a i=0

Remark 3.3 Similar to Remark 3.2, Example 3.2 can also be improved by using a sliding
integration window over [t — h, t], where the lower integration bound a is replaced by
t—h.

Remark 3.4 If we take 3 third order right-sided modulating functions on |a, t]: g, for
n=0,1,2 in Example 3.2, then the initial values y"” (a) for n=0,1,2, can also be given
by algebraic integral formulae by two ways.

Recursive estimators: If the modulating functions g, satisfy the following property: for
k=0,1,2,

gP (@) = 8, (3.22)

then y"(a) for n=0,1,2 are given by the following recursive way:

y(a) = fgz(‘f) u(T)dT+Z( 1) alf gél)(T)y(T)dT, (3.23)
y(a)= f g umdr- Z( D'a; f gy dt-aya), (3.24)

ji(a) =— fgo(T)u(T)dT+Z( 1) a,f g My@dt-(amy@+ay@). (3.25)
i=0

Independent estimators: If the modulating functions g, satisfy the following property:
fori=0,1,2,

Gin(a) =8y, (3.26)

where G; ,(a) can be obtained by taking t = a in (3.13), then y(”)(a) forn=0,1,2, are

independently given as follows:

y"(a) = f gn(T)u(T)dT+Z( Dia; f gD (nymdr. 3.27)
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3.2. Modulating functions method for integer order linear systems

Consequently, it can be seen that the core ideas of the derivative estimation method
presented in Example 3.2 are to transform the differential equation into an integral
equation, where conditions are designed for the modulating functions to eliminate the
undesired terms and keep the desired ones. In the next section, these ideas will be

generalized for designing fractional order differentiators.
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3.3. Fractional order differentiator for integer order linear systems

3.3 Fractional order differentiator for integer order lin-

ear systems

In the previous section, it is shown how to generalize the modulating functions method
to design integer order differentiators for integer order linear systems. The method was
also extended to design fractional order differentiators for integer order linear systems
in [67]. In this section, the idea will be explained and developed by considering three

cases, where the contributions of can be summarized as follows:

e Fractional order differentiators are proposed for the output with an unknown

bias in zero initial conditions case [6].

e The Caputo fractional derivatives of the signals satisfying a linear differential
equation are estimated [7].

* The construction of the modulating functions is improved with respect to [67].

3.3.1 Problem formulation

Let us consider the following integer order linear system:

i a; vy (1) = u(t) (3.28)
i=0
onl=[a,b] cR, where N eN*, ay € R*, a; e Rfori=0,---,N—1, are assumed known.
Moreover, y and u are the output and the input, respectively. The objective of this
section is to estimate the fractional order derivative with an arbitrary order of y in noisy
environment. The idea is to generalize the modulating functions method developed in
Example 3.2 to design two kinds of fractional order differentiators: the recursive ones
and the independent ones.
Firstly, we define two new kinds of modulating functions, where the conditions
given in (3.15) and (3.20) are given in a general case, respectively.

Definition 3.3 Let [a,b] cR, Ne N*, n€{0,...,l -1}, and g be a N order left-sided
modulating function satisfying the following property: for k=0,1,...,N -1,

(Py): g (b) =8y
Then, g is called a (N, n) th order modulating function on [a, b].

Definition 3.4 Let [a,b] <R, NeN*, ne{0,...,N-1},a;eR fori=0,1,...,N—-1, and
g be a N'™" order left-sided modulating function satisfying the following property: for
i=0,1,...,N-1,
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3.3. Fractional order differentiator for integer order linear systems

N—1-i
(P5): Gi(b)=8in, whereGi(b)= Y. (~1)*a;11+:8" ().
k=0
Then, g is called a mixed (N, n) th order left-sided modulating function on [a, b].
Secondly, in order to apply the generalized functions method to design fractional
order differentiators, an intuitive idea is to transform the integer order linear differen-
tial equation given in (3.28) into a fractional order one. For this purpose, let us take
D;Bt to (3.28) with  €]0, 1], and then apply the additive index law giving in Lemma 2.3,

the following lemma can be obtained.

Lemma 3.1 [67] Letf €]0, 1], then the integer order linear differential equation given in
(3.28) can be transformed as follows: V t €1,

N ip " N -l
Y aiD, y@) =D um+) a;y w_p;{yw}, (3.29)
i=0 i=1  j=0
wherey _g ;{y(1)} can be given by (2.19).
Now, inspired by the ideas on derivative estimation explained in Example 3.2, al-
gebraic integral formulae will be given in several cases without considering the noise in
the following subsections. Indeed, the corresponding differentiators can be obtained

by replacing y by its noisy observation in the obtained formulae. In the next subsec-
tion, the cases with zero initial conditions are firstly considered.

3.3.2 Fractional order differentiators with zero initial conditions

In this subsection, we assume that the integer order linear system defined in (3.28)

satisfy the following conditions:
y@(a)=0, fori=0,...,N—1. (3.30)
Then, the following theorem is given.

Theorem 3.1 Let y be the output of the linear system defined in (3.28) under the condi-
tions (3.30). For t €]a, b], let g,, be a set of functions satisfying (P1) and (P4) on [a, t], for
n=0,...,.N-1. Leta€]-1,N-1] cR with | = [«], there existsp € [0, 1[ such thatp =[—a.
Then, Dy ,y(t) witha=1—p can be calculated by a recursive way as follows:

¢ if1=0, then

. N
DG, y()=Fg (u(T), y(1), {CDi,tﬁgN_l (T)}i:o) , (3.31)

e ifl=1, then
. N i I-1
D%, y(1)=Fy (u(r), y@ D en-1imf{DG! y(”}i:o) . 632
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3.3. Fractional order differentiator for integer order linear systems

where the operators Fy for k=0,1,...,N —1 are defined by:

. N
Fo (u(‘r), y(1), {CDi,tﬁgN—l(T)}i:O) =

o e N i (3.33)
— f ‘D gn1(Dudt-) a; | °Dy; gN—l(T)y(T)dT)’
an a i=0 a
and fork=1,2,--- ,N-1,
. N -1
Fj (U(T),Y(T)’{CDi,tﬁgN_l_k(T)}i:O { y(t)} ):;
-1 N-1-k t _ k-1
[ epfensoumadr- T EXED By g
aN a ’ i=0 aN
NIk 1)N 1-k N

azf CDTth 1-k(My@dT.

Proof. Similar to Example 3.2, this proof needs the following steps.
Step 1. Multiplication and integration: By multiplying both sides of (3.29) by g, and

integrating from a to ¢, we obtain: for n=0,...,N—-1, VYt €]a, b],

N t . t
> a f g (0D P y(mdt= f g.(OD P u(nydr. (3.35)
= a a

Step 2. Fractional order integration by parts: By applying the fractional order integra-

tion by parts formula given in Lemma 2.7, we get: for n=0,---,N—-1, YVt €]a, b],

f CDT Zn(Mu(tdt= Z ai D gn(T)y(T)dT +S,(1) =Su(a), (3.36)
i=0 a
N 1-k
where S, (1) = Za, Z( l)kgilk) (T)Dl p- y(1) for T = a,t. Then, in order to better

i=1 k=0
illustrate the derivative values in S, (f), they are presented in the following matrices:

forn=0,---,N-1,

(0) (0) N-1-p

agd ODy® aglwbylyw - avgl @Dy, Py
! ~ar g (DD (1) - —aNgiz”(t)DN 2Py
M, (1) = 0 0 (— 1)2aNg(2)(f)DN 3— ﬁy(l’)
0 0 (—I)N laNgn D(f)Da (1)
(3.37)

Step 3. Elimination of all the undesired initial values: Under the zero initial conditions

=0fori=0,..., N—1.
=a

given in (3.30), according Lemma 2.4, we have: [D

Hence, it yields S, (a) =0
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3.3. Fractional order differentiator for integer order linear systems

Step 4. Calculation of the boundary values at T = #: Thanks to (P,), all the rows in (3.37)
are equal to 0, except the (n + )" one. Thus, (3.36) becomes: for n=0,...,N—1,
Y t€la,bl,

i-n-1-p

t . N
fCDT L gn(u(tdt = Za,f CD;jtﬁgn(r)y(r)dr+(—1)” Y aD,, Cy.
i=0 a i=n+1
(3.38)

Hence, according to (3.38), we have: forn=N -1,

(—1)N-!

t .
DAy = — f ‘D g1 (umdt - Zal ‘D Penai(ydt|, (3.39)
N i=0 a
andforn=N-2,N-3,...,0,
_1\n t N-1 X X
D) Py =0 f D fguumdr— Y Lo Py

’ an Ja ’ i=n+1 AN

(3.40)
(= 1)"

f CDT ; En(My(n)dT.
i=0

Finally, this proof can be completed by applying a change of indicesn = N-1—-k. W

Remark 3.5 Ifthe order o of the desired fractional derivative is larger than N—1, then in
order to apply Theorem 3.1 we need to differentiate the equation given in (3.28) ([a]—N+1)

times.

It is previously mentioned there exists several kinds of modulating functions in the
literatures [135]. Unlike classical integer order derivatives, the fractional derivatives
of the existing modulating functions usually cannot be formally calculated. For this
reason, we consider polynomials whose right-sided Caputo fractional derivatives can
be formally calculated using Lemma 2.9. Moreover, inspired by the algebraic paramet-
ric method [158, 159], these polynomials are easy to construct to fulfill the required

properties.

Proposition 3.1 Let[a,t]cR, m,neN,NeN* withn<N-1<m, and g, be a polyno-
mial with the following form:

N-1
gn(0) =) ¢t M (3.41)
i=0
If the coefficient vector (cy,...,cn-1)" is the solution of the following system:

Co

Am : =1p, (3.42)

CN-1
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3.3. Fractional order differentiator for integer order linear systems

where for j=0,...,N-1,1,(j) =8y, and fori, j=0,...,N-1,

A ()= DL (3.43)
O Tk '

then g, satisfies (P,) and (P,) on|a, t].

Proof. Since g, is a polynomial, it satisfies (P1). By calculating the j* order derivative
of g,, for j=0,...,N -1, we obtain:

N-1 +1)! . .
(])(T) Z M phm—iom+i=j (3.44)
) (m+ i—j)!

Hence, we get:

N-1
(]) n—j (m+ i)!
(=t lzo T (3.45)

Finally, if (co,...,cn—1)T is the solution of the system (3.42), then g, also satisfies (Py).
Thus, this proof is completed. |

Remark 3.6 m is a design parameter in the constructed modulating functions. The role
of """ is to make the matrix A,, be independent to t such that the coefficient vector
(Co,...,cn-1)T does not depend on t. Hence, this coefficient vector can be obtained by

solving the linear system (3.42) once for every t.

We can see in Theorem 3.1 that the fractional derivatives of y are simultaneously
calculated in a recursive way. If we use (P5) as done in Example 3.2, these fractional

derivatives can be independently calculated.

Theorem 3.2 Let y be the output of the linear system defined in (3.28) under the condi-
tions (3.30). Leta €]—-1,N—-1] c R with | = [«], thereexistsf € [0, 1] such thatp = |—«. For
t€la,bl, let g be a function satisfying (P1) and (Ps) with I = n on [a, t]. Then, DY ,y()

with o« = | — P can be independently calculated as follows:

t .
D% ,y(1) = f CD”gl(T)u(T dt - Zal CDijtﬁg,(T)y(T)dT. (3.46)

i=0 a
Proof. This proof is similar to the one of Theorem 3.1. Using (3.37), the terms in the

double sum in S;(#) can be regrouped as follows:

N-1 ,
Si0=Y Gju0D] Py, (3.47)
j=0
N-1-j
where Gj () = Z (-1 a]+1+kgl( )(1). Hence, if g satisfies (P5) with [ = n, this proof
k=0
can be completed by using (3.36) where S;(a) =0. |

By using a similar way as done in Proposition 3.1, the required functions in The-

orem 3.2 can be constructed in the following proposition.
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3.3. Fractional order differentiator for integer order linear systems

Proposition 3.2 Let[a,t]cR, m,neN,NeN* withn<N-1< m, and g, be a polyno-

mial with the following form:

N-1 .
gn()=) d;t"". (3.48)
i=0
If the coefficient vector (dy, ...,dx-1)" is the solution of the following system:

dy
Bm =1, (3.49)

dn-1

where for j=0,...,N-1,1,(j)=8;p, and fori, j=0,...,N-1,

N-1-j

+1)!
BuGri)= Y (~DFajppsp—t )

ik 3.50

then g, satisfies the properties (P1) and (Ps) on [a, t].

Polynomial type modulating functions are constructed in Proposition 3.1 (resp. Pro-
position 3.2), according to Lemma 2.9 and the definition domain of m, it can be deduce
that all the integrals involving u and y in (3.33)-(3.34) (resp. in (3.46)) are proper. Con-
sequently, unlike the improper integral in Definition 2.11, the Riemann-Liouville frac-
tional derivatives of y are exactly given by proper integral formulae in Theorem 3.1 and
Theorem 3.2, which do not contain any source of errors in continuous noise free case.

Now, let us assume that the output y of the linear system defined by (3.28) contains

an unknown constant bias: V¢ €],

ys(0) =y(£) +9, (3.51)

where § € R* is the unknown bias. In order to cape with this situation, the following

proposition is given.

Proposition 3.3 Under the same hypotheses given in Theorem 3.1 (resp. Theorem 3.2),

we assume that the used modulating functions g, also satisfy the following property:
N Lo

(Pe): ) a; CDW gn(1)d1=0.
i=0 Ja

Then, by replacing y by ys in (3.33)-(3.34) (resp. (3.46), the algebraic integral formu-
lae for DY, , y (1) still hold.

Proof. This proof can be completed by adding the following step in the proof of The-

orem 3.1 and Theorem 3.2 respectively:
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3.3. Fractional order differentiator for integer order linear systems

New Step. Elimination of the unknown bias: If g, satisfies(Pg), then we get:

N t i-p N t i-p
Yai| °Di gn@ys(dr=Y a; | “D/ga(Dy(m)dr. (3.52)
i=0 Ja i=0 Ja

Hence, the error due to the unknown bias 9 is eliminated. [ |

Let us recall that the modulating functions constructed in Proposition 3.1 (resp.
Proposition 3.2) contain N coefficients which are determined such at the N conditions
required in (P4) (resp. (Ps)) fulfils Thus, since a new condition should be fulfilled in (Pg),
the required modulating functions can be constructed by increasing one coefficient,
i.e. by increasing the degree of the polynomials. Hence, one more 0 is added in I,;, and
the dimension of A, (resp. B,;,) is increased from (N, N) to (N +1,N + 1) where the new
row of A, (resp. B,) is given by: fori =0,...,N,

. N t k .
ApN, i) =t""""1 ) akf CpkPrm+ige, (3.53)
k=0 Ja ’
N - .
BnN,i)= Y ar | D Pum*iar, (3.54)
k=0 a

where /! CD;B {x"™*J} dt can be given by (2.50).
In this subsection, the initial conditions are assumed to be zero. In the next subsec-
tion, unknown initial conditions will be considered, which can be non-zero.

3.3.3 Fractional order differentiators with unknown initial conditions

From now on, the unknown initial conditions yi (a)fori=0,---,N—1will be considered
for the integer order linear system defined in (3.28), which can be non-zero. Sim-
ilar to the previous subsection, the modulating functions method will be applied to
(3.29). Different from the previous subsection, due to the unknown initial conditions,
Y_p,jiy(0)} and S, (a) given in (3.36) should also be eliminated. Then, the following

proposition is given.

Proposition 3.4 [67] Under the same hypotheses given in Theorem 3.1 (resp. Theorem
3.2), we assume that the used modulating functions g, also satisfy (P») and the following
property: fori=1,2,...,N,

t .
(P7): f (1-a)P g, () dT=0.

Then, the algebraic integral formulae for DY, ,y(t) still hold in the case with unknown

initial conditions.
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3.3. Fractional order differentiator for integer order linear systems

Proof. The objective of this proof is to eliminate the undesired terms due to the un-

known initial conditions in the proofs of Theorem 3.1 and Theorem 3.2. Firstly, thanks

to (P;), we obtain: f gn(DW_p, j{y(1)} dT=0. Hence, the equation given in (3.35) holds
in non-zero conditions case. Secondly, thanks to (P»), we get: S, (a) =0 in (3.36). Con-
sequently, the rest of the proofs of Theorem 3.1 and Theorem 3.2 also holds. Thus, this
proof is completed. n

According to Proposition 3.4, a set of (N, n) th order modulating functions (resp. a
mixed (N, 7)""* order modulating function) satisfying (P;) on [a, ] are (resp. is) required
in Theorem 3.1 (resp. Theorem 3.2). Inspired by Proposition 3.1 and Proposition 3.2,
these modulating functions are constructed in the following two propositions.

Proposition 3.5 Let[a,t]cR, m,neN,NeN* withn<N-1< m, and g, be a polyno-
mial with the following form:
2N-1 ) .
gn(M=) clt—a)" " a-a)". (3.55)

i=0

If the coefficient vector (cy, ..., con—1)" is the solution of the following system:

Am . =1y, (3.56)
CoN-1
where for j=0,...,2N-1,1,(j) =85, and fori =0,...,2N -1,

1))
%, fOerO,...,N—l,
Am(j,iy=4 MTETIE (3.57)
forj=N,...,2N -1,

m+i+p-j+N’
then g, is a (N, n)™" order modulating function satisfying (P;) on [a, t].
Proof. Since g, is a polynomial, it satisfies (P;). Then, by calculating the j* order
derivative of g,, for j=0,...,N -1, we obtain:

2N-1 :
(]) (m+ l)! _oNn—m=i_  _\m+i—j
(1) = ; . —( i ] (t—a) (tT—a) . (3.58)

Since m >N —1, g, satisfies (P2). Moreover, we have:

2N-1 1
g n-j M
() =(t—a) ;) ATt (3.59)
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Then, we calculate the following integral: for j=1,...,N,

2N-1 1

t
—_\P-J dt=(t- n+p-j+1 . .
fa(T P gu(ndr=(t-a goclmﬂw_jﬂ

(3.60)

Finally, according to (3.58) and (3.60) if (co,...,Con-1)" is the solution of the system
(3.56), then g, also satisfies (P4) and (P7) on [a, t]. Thus, this proof is completed.

|

Consequently, similar to Proposition 3.1, the coefficient vector (cy, ..., con-1)T isin-

dependent to ¢. Similar to Proposition 3.5, the following proposition can be obtained.

Proposition 3.6 [67] Let [a,t] cR, n,me N, NeN* withn<N-1<m, and g, be a
polynomial with the following form:

2N-1 .
gn(= ) di(t—a)""". (3.61)
i=0

If the coefficient vector (dy, ...,dan-_1)" is the solution of the following system:

Bm : =1Ip, (3.62)
don-1

where for j=0,...,2N-1,1,(j) =85, and fori=0,...,2N -1,

N-1-j

(m+1)! i .
Z (—l)kdj+1+k(m+l. k)'(t—a)m” k forj=0,...,N—1,
Bn(j,1) = k=0 - (3.63)
1 . )
(t— @) PN forj=N,...,2N—1,

m+i+p—-j+N

then g, is a mixed (N, n)"" order modulating function satisfying (P7) on [a, t].
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3.4 Numerical results

In order to illustrate the accuracy and robustness with respect to corrupting noises of
the modulating functions method presented in Section 3.2 and Section 3.3, numerical
examples are given in this section by considering two cases:

* theinitial conditions are assumed to be zero and the output observation contains
an unknown bias [6],

¢ the initial conditions are assumed to be non-zero [7].

For this purpose, the independent differentiators designed in Section 3.3 will be
applied in discrete noisy case, where the output is replaced by its noisy observation
in the integrals in the formula and the trapezoidal numerical integration method is

applied to approximate these integrals.

3.4.1 Case of zero initial conditions and an unknown bias

In this subsection, two third order linear systems with zero initial conditions are con-
sidered by taking N =3 in (3.28) and (3.30). The objective is estimate Dy, ,y by consid-

ering the following noisy output observation: V€1,
YW =y®+o@)+3, (3.64)

where @ is a corrupting noise, and § € R* is an unknown constant bias.

Example 1. Open-loop case In this example, the following linear system is considered:
Vtel0,10],
¥ O +2y? @) +2yM ) + y(0) = ud), (3.65)

where u(f) =sin(37). It is assumed that y(z;) = y(¢;) + ®(¢;) + 0.1, where ¢; = jT; with
Ts = 0.001, and the noise {®(¢;)} is simulated from a zero-mean white Gaussian iid
sequence with Var[®(#;)] = 0.124. The value of the variance is adjusted such that the
signal-to-noise ratio SNR=10log; , (Zzlfg—((é‘))lf) is equal to SNR=15dB (see [160]) for this
well known concept in signal processing). The original output and the biased noisy
output are shown in Figure 3.2(a). D8;§5
the differentiator proposed in Theorem 3.2 and Proposition 3.2 by considering (Pg).

y is estimated in this discrete noisy case by

Moreover, the design parameter m is set to 3 in Proposition 3.2 and (3.54) for the mod-
ulating function. Since the fractional derivatives of y can not be analytically calculated,
the Griinwald-Letnikov scheme given in (2.38)-(2.39) is applied in noise free case to
verify the estimated result. Recall that this scheme is only efficient in noise free case
and is not robust against noises. Hence, the estimation obtained by the Griinwald-
Letnikov scheme is considered as the original one. Finally, the obtained estimation is
shown in Figure 3.2(b).

53



3.4. Numerical results

Example 2. Closed-loop case In this example, the following system is considered [161]:
Y tel0,10],
v +7y@ 0 + 129V (0) = (o), (3.66)

where a PI"D* controller u(t) = Kpe(r) + K,-Day);e(t) + KdDgyte(t) is applied to this sys-
tem. This controller u is realized as follows: K, = 42.458, K; = 87.2733, K, = 53.1352,
A =0.85030, p=0.9623 and e(t) = r(t) — y(t) with r being a reference. It is assumed that
y@(tj) = y(t;) + ®(t;), where T = 1073, and {®(£;)} is simulated from a Poisson iid se-
quence with E(®(%;)) = Var[®(;)] = 0.05. In order to design u, Da’);jy(tj) and Dg,tjy(t]-)
are estimated by applying the same differentiator to the previous example with m =3
and the Griinwald-Letnikov scheme in the noise case, respectively. The obtained out-
puts and the designed controllers are shown in Figure 3.3(a) and Figure 3.3(b), respect-
ively. It can be seen in Figure 3.3(a) that the noise error contribution obtained by the
Griinwald-Letnikov scheme is much larger than the one obtained by the proposed dif-
ferentiator. Moreover, it can be seen in Figure 3.3(b) that the proposed differentiator

can cope with the bias term.

3.4.2 Case of non-zero initial conditions

In this section, it will be shown that the differentiators designed in Section 3.3 can also
be applied to estimate the Caputo fractional derivatives of a signal satisfying a linear
differential equation [7].

Example 3. Sinusoidal signal Let us consider the following sinusoidal signal: Ve Ic R,
y(1) =Asin(wt+ ¢), (3.67)

where A =3, w =5, and ¢ = 0.85. Hence, y satisfies the following harmonic oscillator
equation: Yt el,
V@) + 0’y =0. (3.68)

The Riemann-Liouville fractional derivatives of y can be given using the expansion of
y and the linearity of the Riemann-Liouville fractional derivatives [21]:

D% y(t) =AcosdpD¥sin(w?) + Asinp D cos(wi)

where D sin(w ) and D cos(w?) are given by (2.42)-(2.43). Moreover, the Caputo frac-
tional derivatives of y can be obtained using (2.32).

Assumed that y®(¢;) = y(;) + ®(¢;) is a discrete noisy observation with I=[0,10] and
T =0.001, where the noise {®(#;)} is simulated from a zero-mean white Gaussian iid
sequence, and the variance is adjusted such that SNR=20dB. The discrete signal y and

its noisy observation y® are shown in Figure 3.4(a), where Var[®(t;)] = 0.2152.
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The 0.85" order Caputo fractional derivative of y will be estimated on [0.85,10].
Firstly, according to (2.32) y(0) needs to be estimated. For this, the estimator obtained

in (3.27) is applied. The used modulating function can be constructed using a similar
m+i

way as done in Proposition 3.2 where 1 is replaced by (1t — £)"*i The obtained re-

lative estimation error for y(0) is shown in Figure 3.4(b), where m = 5. Secondly, the
Riemann-Liouville fractional derivative D)%
posed in Theorem 3.2 and Proposition 3.4 by considering (P7). The design parameter

y is estimated by the differentiator pro-

m is set to 5 in Proposition 3.6 for the used modulating function. Finally, the estimated
derivative is shown in Figure 3.4(c).
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Figure 3.2: Example 1: Open-loop case.
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Figure 3.4: Example 3: Sinusoidal signal case
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3.5 Conclusions

In this chapter, the idea of the classical modulating functions on parameter estimation
was explained: we transform the studied differential equation into an integral equa-
tion. Then, it was shown that by changing the properties of the modulating functions,
this method can also be applied to estimate the integer order derivatives and the initial
conditions of the output for a class of integer order linear systems. By transforming
the studied integer order linear differential equation into a fractional order one, and
thanks to the fractional order integration by parts formulae, the modulating functions
method was extended to design two kinds of fractional order differentiators in three
cases. The first case with zero initial conditions was a direct extension of the integer
order case. The unknown bias in the second case was eliminated by an additional prop-
erty on the modulating functions. Hence, the obtained differentiators can cope with a
class of non zero-mean noises. Similarly, by adding more properties, the undesired
terms were eliminated in the third case with non-zero initial conditions case. All the
used properties are listed in Annexe A. In order to construct the required modulating
functions, polynomial were considered which can easily be determined by solving lin-
ear systems. Finally, a proposed differentiator was applied to design a fractional order
PIDH controller for an integer order linear system in numerical examples. Moreover,
the Caputo fractional derivative of a sinusoidal signal was also estimated. Indeed, the
obtained fractional order differentiators can be applied for the signals satisfying an in-
teger order linear differential equation. The basic ideas of the modulating functions
were explained in this chapter, which will be applied in the next chapter for fractional

order linear systems.
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Chapter 4

Non-asymptotic pseudo-state estimator

Résumé en francais

Dans ce chapitre, nous concevons un estimateur non-asymptotique du pseudo-
état pour une classe de systemes linéaires d’ordre fractionnaire commensurable qui
peuvent étre transformés sous la forme canonique observable de Brunovsky avec des
conditions initiales inconnues. Dans un premier temps, cette forme canonique est
exprimée par une équation différentielle entrainant des valeurs initiales de dérivées
fractionnaires séquentielles de la sortie. Ensuite, nous mettons en évidence deux al-
gorithmes récursifs qui donnent des formules algébriques intégrales pour calculer ces
conditions initiales et les dérivées fractionnaires de la sortie a I’aide de deux familles de
fonctions modulatrices. Ces formules permettent d’estimer le pseudo-état en temps
fini. Dans le cas discret et bruité, 'estimateur du pseudo-état contient deux types
d’erreurs : une erreur numérique due a la méthode d’intégration numérique utilisée
et une autre due au bruit. En particulier, une analyse est fournie pour diminuer la con-
tribution du bruit au moyen d’'une majoration d’erreur qui permet de sélectionner les
degrés optimaux des fonctions modulatrices a chaque instant. Enfin, les comparaisons
avec certaines méthodes existantes et avec un nouvel observateur d’ordre fractionnaire

de type #, sont montrées.

4.1 Introduction

Fractional order systems and controllers have been applied to improve performance
and robustness properties in control design [21, 54, 58, 66, 162, 163, 164]. Due to
the nonlocality of the fractional derivative operator, the real-state of a fractional or-
der system can be divided into two parts: the pseudo-state and an initialization func-
tion [57, 96, 97, 98]. However, for some applications, the knowledge of pseudo-state
is enough to understand the behavior of a studied fractional order system [55]. As for

integer order linear systems, the design of pseudo-state estimators for fractional order



4.1. Introduction

linear systems is also important in automatic control. Indeed, for cost and techno-
logical reasons, the pseudo-state can not always be measured. Existing pseudo-state
observers for fractional order systems are often extensions of the ones for integer order
systems [124, 165, 166, 167], which usually converge asymptotically. However, some-
times fast convergence in finite-time is required in online applications, [131, 132, 133].
Consequently, non-asymptotic pseudo-state estimators are useful for fractional order
systems.

The aim of this chapter is to apply the modulating functions method to design a
non-asymptotic (with convergence in finite-time) and robust (against corrupting noises)
pseudo-state estimator for a class of fractional order linear systems which can be trans-
formed into the Brunovsky’s observable canonical form of pseudo-state space repres-
entation with unknown initial conditions. The contributions of this chapter can be

summarized as follows:

1. The transformation between the pseudo-state space representation and the frac-
tional order differential equation is given without the knowledge of initial condi-
tions.

2. The initial values of the fractional sequential derivatives and the fractional de-
rivatives of the output are exactly given by algebraic integral formulae using a

recursive way, which permit us to calculate the pseudo-state of the system.
3. The choice of the design parameter is studied by providing a noise error bound.

4. A new fractional order .#,,-like observer is designed in order to compare with

the proposed non-asymptotic pseudo-state estimator.
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4.2 Problem formulation

From now on, the following fractional order linear system is considered:

Dfx=Ax+Bu, (4.1)

y=Cx, 4.2)

onIcR, U{0}, where 0 <a <2, Ae RN*N Be RN*!, Ce R™*N, D% = (D%;,...,D%xy)"

with a = g, p,q,N € N*, x € RN is the pseudo-state column vector with unknown ini-

tial values, y € R and u € R are the output and the input, respectively. Moreover, the
following conditions are assumed to be fulfilled:

C
CA
(Cy): rank =N,
CAN—I
(C2): CB=CAB=---=CAN2B=0,

(C3): CAN-IB#0.

Remark that it was mentioned in [57] that if the Caputo fractional derivative is used
to describe a fractional system, the infinite dimension property is lost at initial time
but exists elsewhere, which is not physically consistent. For this reason, the Riemann-

Liouville fractional derivative is considered in (4.1)-(4.2).

The objective of this chapter is to estimate the pseudo-state x in noisy environ-
ment. For this purpose, the system defined by (4.1)-(4.2) firstly needs to be transformed
into the well-known Brunovsky’s observable canonical form [10]. Under this form, the
system can be represented by a fractional order differential equation, based on which
the modulating function method will be applied.

Lemma 4.1 By taking the following change of coordinates

z=M; x, (4.3)
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4.2. Problem formulation

where

N-1 )
CAN-1+ Y q;CA™!
i=1

N_l . .
CAN7/+ Y a;,CA'™/
i=j

CA+an_;:C

C

) (4.4)

and a; € R, fori=0,...,N—1, are coefficients of the characteristic polynomial of A, the
system defined by (4.1)-(4.2) satisfying conditions (Cy) — (C3) can be transformed into the
following Brunovsky's observable canonical form of pseudo-state space representation:

D%z =Az+Bu, (4.5)
y=Cz, (4.6)
where B =[CAN"1B,0,...,0]T e RN*1, C=10,...,0,1] e R1*N,
00 --- 00 -—-a
10 --- 00 -0
. o1 - 00 -a
A= 4.7)
00 - 1 0 —an
00 -+ 0 1 —an-
Proof. Using (4.1) and (4.3), we obtain: for j=1,...,N-1,
. N_l . .
D%z;=CAN/D%x+ Y a;CA"/D%x
i=]
. N_l . .
=CAN 7/ (Ax+Buw) + Y a;CA"/ (Ax+Buw)
AR (4.8)
=CAN T x + CAN/Bu + > a;CA =1y
i=]
N-1 o
+ Y a;CA'/Bu,
i=j
and
D%zn =CD$x =C(Ax+Bu) = CAx + CBu. (4.9)
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Thanks to (C»), (4.8) becomes:

e if j=1, then
N-1 )
D%z =CANx+CAN'Bu+ Y a;CA'x, (4.10)
i=1

eif2<j<N-1, then

. N_l . .
DYz;=CAN/*x+ Y a,CA" It x
& (4.11)

=Zj-1— aj_ICx: Zj-1— aj_lzN,
and (4.9) becomes:

D(;ZN =CAx= ZN-1— aN_ICx =ZN-1— ON-1<ZN- (4.12)

N-1

By applying (C3) and the Cayley-Hamilton theorem that states: AN + Z aiA' =0 to
i=0

(4.10), we get:

D%z = CAN"'Bu — ayCx = CAN"'Bu — apz. (4.13)

Finally, since y = Cx = zy, (4.6) is obtained. |

Remark 4.1 The Brunovsky’s observable canonical form given in (4.5)-(4.6), which is
similar to the one of ordinary integer order systems, is only associated to the pseudo-state
space representation. It is not available for the real-state space representation, which is
of infinite dimension (see [11] for more details).

Secondly, the Brunovsky’s observable canonical form of pseudo-state space repres-
entation defined by (4.5)-(4.6) can be expressed by a fractional order linear differential

equation in the following lemma.

Lemma 4.2 The system defined by (4.5)-(4.6) can be written into the following form on
I:

N
Y a; 27 y(t) = CAN " 'Bu(), (4.14)
i=0

wherean =1, ando; =ia= Bi,for i=0,...,N. Moreover, we have:
q

4l y
9%y
=M, ! , (4.15)
ZN-1 :
ZN gN-Day,
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4.2. Problem formulation

where

a) a) dz -+ dN-1 1
M, = (4.16)
an-1 1 0 0 0
1 o o -- 0 0
Proof. Using (4.5)-(4.7), we get: CAN"'Bu=D%z, + agy, and
z1 D%z, +ary
ZN-f DO(ZN_ i+1+an-;y
= . 4.17)
ZN-1 D%zn +an-1y
ZN y
Then, the following equation is proven by induction: for j=1,...,N -1,
(4.18)

. J .
ZN-j = @{O‘y+ Z aN_i@y l)(xy,
i=1
which is equivalent to (4.15) with zy = y.
Step 1. Initial step: According to (4.17), (4.18) holds for j =1.
Step 2. Inductive step: Assume (4.18) holds for j=1,...,k with 1 < k <N —2. Then, we

have: .
Nk =DEy+ Y an_ i 2* %y, (4.19)
Using (4.17) and (4.19), we obtain: .
AN-k-1
=D aN-k + aN-k-1Y
(4.20)

=97 {szo‘y} + é an-i 97 {ng_i)“y} +aN-k-1Y

k+1 .
:@§k+1)ay+ Z aN_i@yC-Fl—l)O(y.
i=1
Hence, (4.18) also holds for k + 1. Consequently, (4.18) holds for all j € {1,...,N —1}.

Thus, we have:

N-1 ,
D%z =D¢ {@;N_Do‘y} + Z an-;D% {@gN_l_’)o‘y}
=1 4.21)

N-1
N (N-Da
=2,%+ ) an-i?, y.
i=1
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Finally, (4.14) can be obtained using CAN"'Bu=D%z; + agy.
[ |
If condition (C,) is fulfilled, the matrix M; defined in (4.4) isinvertible. Consequently,
by applying Lemma 4.1 and Lemma 4.2, the following lemma can be obtained.

Lemma 4.3 The pseudo-state variables of the system defined by (4.1)-(4.2) satisfying
conditions (Cy) — (C3) can be written as linear combinations of the fractional sequen-
tial derivatives of the output y:

2%y
x=M['M, ! , (4.22)

(N-1Da
9, Y

where M) and M, are defined in (4.4) and (4.16), respectively.

Consequently, if the fractional sequential derivatives of the output y are estimated,
the pseudo-state x can be estimated using Lemma 4.3. For this purpose, according
to Lemma 2.2, the fractional derivatives of y and the initial values of the fractional se-
quential derivatives of y should be estimated. Inspired by this idea, a non-asymptotic
pseudo-state estimator is constructed in the next section.

4.3 Main results

In this section, the modulating functions method will be applied to design a non-
asymptotic pseudo-state estimator for the system defined by (4.1)-(4.2) satisfying (Cy)—(Cs).
Before giving this main result, let us explain the originality of the ideas in the following

example.

Example 4.1 Let us assume o = % and N =3 in (4.1)-(4.2). Then, according to Lemma
4.2, we have: V¥V tel,

3
Y ai 2] y(0) =), (4.23)
i=0

where it = CA2Bu. Moreover, according to Lemma 4.3, we have:

y
x=M;'Mao| 9%y |. (4.24)

Py
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By applying the additive index law for fractional sequential derivatives given in Lemma
2.2, weget: Vi€l

[o4 . 1
D*y(t) = (1) - 7

_1
N [thy(t)] . (4.25)
3 =0
1

1 1
Consequently, if y, 2} y=D?;y, y and

1

D,? y(z‘)] are estimated, the pseudo-state x
1=0

can be estimated. Thus, both the fractional derivatives and the o initial values need to

be estimated.

Algebraic integral formulae for fractional order initial values

By applying the modulating functions methods, algebraic integral formulae will be given
for the fractional order initial values.
Step 1. Construction of differential equations: By applying Lemma 2.2, the fractional or-

der differential equation obtained in (4.23) with fractional sequential derivatives is trans-

formed as follows:
3 i T_%
Y. a;D?y(1) = (1) + ——=(apdy + dh), (4.26)
i=0 I(-3
_1 11
where dy = [DT 2y(1) and d; = [DT : { %y(T)}
=0 =0

Remark that (4.26) is not enough to separately calculate dy and d, by the modulating

_1
functions method. Hence, we take D, ?* to (4.23) to construct a new equation. Then, by

applying Lemma 2.2, we get:
172 T
do +
L)

D=

(aq d() + dgdl + dz), 4.27)

3 i-1 _1
Y a;D? y(1)=D.%an) +
i=0

Sl L1
where dy = [DT 2 { 2 {Dﬁy(T)}}
=0
Step 2. Multiplication and intengtion: Let us take two functions hy and hs satisfying the

following property: forn, j=1,3,
t .
f ha() T 2dT=5,;. (4.28)
0

Then, by multiplying h,, to (4.26)-(4.27) and integrating from 0 to t, we get:

3 t i t dn+d
Y a; f h3(DZ y(t)d = f hs (i dr+ L0 (4.29)
i=0 0 0 I(-3)
3 t i-1 t 1
Y ai | h3()D? y(vdt= f h3(t)D; 2 d(t)dT + d"l ) (4.30)
i=0 J0 0 I'-3)
3 t i-1 t 1 d d
Za,f I ()2 y(T)dT:f (0D 2 vy dr + L2 1+ds 4.31)
i=0 J0 0 I(3)
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Step 3. Successive fractional integration by parts: Moreover, if h,, for n=1,3, are second
order modulating functions on [0, t] satisfying (4.28), then by applying the fractional
integration by parts given in Lemma 2.7 to (4.29)-(4.31), we get:

N A ! ardo +d
;)ai fo D2, hy(0)y(1)dt = fo hg(T)a(T)dT+%, (4.32)
= 2
3 Il 1 dO
Y a f D2 h3(y(t)dT = f D2 h3(Da(D)dT + —=, (4.33)
i Jo o -3
3

a dy+ axdy + dz
I

r i r1
Zaifo DT,ZI hl(-r)y(-r)d'r:fo DTjhl(T)l](T)dTﬁL , (4.34)

i=0
where all the boundary conditions are eliminated using (P2)—(P3).

Step 4. Recursive algorithm: Finally, the unknown initial values can be recursively given
by solving the following linear system:

1 1 1
e | bl
Iy Iy I [T 1T lTy =0
1 as D_i Df —
° TP Tep [ T{]Tﬂﬂ}Tﬂ
0 0 ! D’
F(_%) [T Yo =0

3 -1 r 1
Y ai| DF hl(T)y(T)dT—f D im@adr
i=z0 J0 0

3 t t
Y ai i D2 h3(n)y(r)dt - fo h3(v)a(t)dt . (4.35)
i=0

3 roi-1 r 1
Y. ai| DZ hs(my@dt- f D_ 2hs(D)a(r)dt
i=0 Y0 0

Algebraic integral formulae for fractional derivatives

Now, using a similar ways as done in Section 3.3, algebraic integral formulae will be
given for the fractional derivatives by applying the modulating functions methods.

Step 1. Construction of differential equations: Let us consider (4.26)-(4.27). In particu-
lar, according to (4.27), we have:

1 —
2

1 _1
y=—a,DZy(1) —a,y(t) —agD,? y(1) + D, * ii(71)

+T2d+T
1,70 1
=5 1

(4.36)

Nl—

(aldo + dzdl + dg) .

Step 2. Multiplication and integration: Consider two functions g, forn=0, 1, which sat-
isfy the following property: ¥V j € {1,3},

t .
f gt Idt=0. (4.37)
0

69



4.3. Main results

Then, by multiply g, to (4.26)-(4.27) and integrating from 0 to t, we get: forn=0,1,

3 t i t
Za’fo gn(T)DEy(T)dT:fO gn(Mu(n)dr, (4.38)
i=0
3 13 i-1 t -1
Y ai fo gn(0D* y(Ddt= fo gn(0D:* a(Dd. (4.39)
i=0

Step 3. Successive fractional integration by parts: If g,(0) = £,(0) =0 forn=0,1, i.e. g,

satisfy (P2), by applying fractional integration by parts to (4.38)-(4.39), we get:

3 ro t 1 1

Y a D, gn(Dy(mdr :f gn(u(t)dt—gu(t) (D?y(lf) + agy(t)) +gn(0D, * y(1),

i=0 0 0

l (4.40)
3 I r 1 1
Z a; ; D% gn(Dy(mdr :fo D fgn(@a(dt—gu(t) (y(t) +aD, 2y(t)) . (4.41)
i=0

Step 4. Construction of new equations: Furthermore, if g, satisfy (P4) forn=0,1, i.e. g

forn=0,1 are (2, n)""" order modulating functions on [0, t] satisfying (4.37), (4.40)-(4.41)
become:

3 ro t 1

Y ai | D?,gymdt=| go(va(t)dt—DZy(t)—ary(1),
0 ’ 0

i=0

3 —

3

rog r 1
al-fo D%tgl(T)y(T)dT:fo gi(mamdt+D,?y(1),

)3

i=0

1=

rooi-1 ro_1 1
aif() D% gO(T)y(T)dT:f0 D g @a(dt—y(t) —aD, * y(1).
0

Step 5. Recursive algorithm: Finally, the unknown fractional derivative values can be

recursively given by solving the following linear system:

1
-1 —-a, O D; y(1)
0 1 ar J/(t) =

_1
0 0 1 || D2y

3 I t
Y ai ; D?,tgo(T)y(T)dT—fO go(Mu(r)dt
i=0

r i

3 i1 t
> ai| D go@ymadr- f D fgo(Ma(ndr |. (4.42)
i=0 0 0

3 [ t
Y ai ; D?,tgl(T)y(T)dT‘fO gi(a(rdr
i=0

In the next subsection, the ideas explained in the previous example will be de-

veloped in a general case. Before doing so, let us define the following useful set: for
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jef{0,...,g—-1lland0<a <2,

) G eN31si'<fal, 1 sN-1L - ja-i'¢z}, ifj=0, w43)
j= ; '
{(hiNeNE1=i'< (00,0 j < N=-1,4 - ja-i"¢z}, else.

Remark that it can be verify that V j’' € {0,...,N—1},i’ € {1, [al}, 3j € {0,..., g — 1} such
that (j,i") € @;.

4.3.1 Algebraic formulae in continuous noise-free case

Now, we are ready to present the mains results of this chapter. Firstly, the initial values
of the fractional sequential derivatives of y are calculated by algebraic formulae in the

following theorem.

Theorem 4.1 [1] For j € {0,...,q — 1}, (n,k) € ¢}, and for t €1, let hj ;. be a set of
([%])m order modulating functions on [0, t] satisfying the following property: ¥ (j',i") € ¢},

t i - ]-, i (ny k) = ( ./’ i,)r
(Pg) : f hj,n,k(r)ré_] “dt= ! !
0

0, else.

Then, theinitial values of the fractional sequential derivatives of the output of the system
defined by (4.1)-(4.2) satisfying conditions (Cy) — (C3) can be obtained by a recursive way
as follows: for j € {0,...,q -1},

e VIN-1,k)e®j,

k 1 N tC i(x—f;
DY J/(T)]T_():%Zdi D, "hin-1x(D y(DdT
N - +(N-Dayk =0
] ¢ = (4.44)
—+f CDT'fthj,N—l,k(T) a(ndr,
c%’+(N—1)(x,k 0

«V(nk)ed; withne(o,...,N-2},

B o 1 N t jia—L
Dy H@N Ty @} =Y ai [ Dy, i@ y@dr
~ C;cfj+na,k i=0 0
1 tC - N-1 k . 1
- f D/ hj (D a(dt— ) a;|DY” {@g—n— )O‘y(T)H )
C%jﬂm,k i=n+l =0

(4.45)

where

=11+ é — no— k) is given by (2.20).

C_:
7]+n(x,k
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Proof. According to Lemma 4.1 and Lemma 4.2, the system defined by (4.1)-(4.2) can
be transformed into (4.14) using conditions (C;) — (C3), based on which this proof re-
quires the following steps.

=i

Step 1. Construction of equations: By applying D,/ to (4.14), for j=0,...,g — 1, we get:

—j -Jj

N — .
Y ;D {@i"‘ y(‘r)} -DJ a(). (4.46)
i=0

Then, by applying Lemma 2.5 to (4.46), we get: for j =0,

N . N
Y a;DXy(1) = (1) + Y i doi-1,0 {¥(O}, (4.47)
i=0 i=2
andfor j=1,...,g—-1,
N jia—L 7]
> aiD; y(m=D{ (1) +Zalc|> SPMAOLE (4.48)

=0

Step 2. Multiplication and integration: Multiply both sides of (4.47) and (4.48) by h; j, k.,
and integrate from 0 to ¢. It yields: for j =0,

N t
Z fh]nk(T)DmJ/(T)dT fh]nk(T)u(T)dT+Zalf Bjn (Do i—1,a {y (0} dT,

(4.49)
andfor j=1,...,g-1,

N t ;
Zaifo hj,n,k(T)DlT ydt= fh]nk(r)an(r)dHZa, h]nk(T)(p_,a{ (}dr
i=0

(4.50)

Step 3. Successive integration by parts: By applying Lemma 2.7 to (4.49) and (4.50), we

get: for j =0,

N
Z fh]nk(‘l’)(bal Lay@bdt= Zalf CD thjne@y@dt- fh]nk(r)u(T)dT

=0
(4.51)

andfor j=1,...,g—1,
J

N t N t l'()(—l
Za,-fo hinkd-  Ay@tdr=) a; i °D;, “hjni(0 y(dT - f D, hj k(0 A()dT,
i, &

i=1

(4.52)

where all the boundary conditions are eliminated using (P2) — (P3).
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Step 4. Recursive algorithm: By applying Lemma 2.5 and (2.19), we get:

N
Zaiq)cx,i—l,(x {J/(T) Zal Z Y cxcx{ (l = )(X_V(T)}
i=2 i=2 '=1

-1 [a] (4.53)
il [ i-1=]")
ZZZ RO L C il

Then, regrouping terms in (4.53) gives:

N
Zal(pou 1cx{y(T)} Z ZCJO(ZT jra-i’ ( Z
i=j'+1

i'=1j'=1

(4.54)

Similarly, we get: for j=1,...,g -1,

N [a] N=1 ——] "a—i’ N o—i’ (i—j'-Da
Zalq) ] iO({y(T)} Z Z C- j+]o(l’ Z ai DT {@T y(T)}]T—O ’
i=1 i'=1j'=0 i=j'+1 -

(4.55)

Thanks to (4.43) and (Pg), using (4.53) and (4.55), (4.51) and (4.52) become: V (n,k) € P
withn=1,...,N-1land j€{0,...,qg -1},

k [gli-n-1) o ([fenied
C- ]+n(xk Z a; Do‘ {@l " O‘y(T)H —Ozzaifo DT.I th,n,k(T) y(mdrt
i=n+1 i=0 (4.56)

fCD k(D) a(t)dr,

and V (0,k) e ¢ with je{l,...,q -1},

s a—k J g i-Da S ‘et
¢t 2 ai[DS {2 y(r)}]TZO:Za,«fO Dy, "hjo k(D y(x)dr
i=1 i=0 ‘ (457)

t —J
f D/ hjor(T) (v)drT,
0

where according to (2.20), C=i ok #0. Hence, using (4.56) and (4.57), (4.44) and (4.45)
- )

are obtained. Thus, this proof is completed. |
Secondly, algebraic formulae are given in the following theorem to calculate the
fractional derivatives of the output y.

Theorem 4.2 [1]Forje{0,...,q—1}andne€0,..., [Np 111}, thereexistsd =Np—j—nq
withd € {l,...,Np}. Fortel, let g; , beaset of([N’Zl ]],n) " order modulating functions
on [0, t] satisfying the following property:

t P
(Py): V(j, i')e@j,f gj,n(r)ﬁ‘f T gr=0.
0
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d-q
Then, the fractional derivativeD,’ y (1 = d <Np) of the output of the system defined by
(4.1)—(4.2) satisfying conditions (Cy) — (C3) can be obtained by a recursive way as follows:
e ifd=1, then

u -] Np
Ly =Hy | A, y(T),{CD” g]n(T)} ) (4.58)
i'=0
e if2<d <Np, then
u i Np i'—q d-1
Ty =Hg | 0(1), y(1), {CD” g]n(T)} ,{Dt“ y(t)} ) (4.59)
i'=0 i'=1

where the operatorsHy ford =1,...,Np are defined by:

S Np
H,; (ﬁ(T),y(T),{CDTﬂ gj,n('l')}

i'=0

(4.60)
(-1)" fCDT &in(D A dt+ (- 1)”“26;,,[ CD” gin(Mydr,

and ford=2,...,Np,

i Np i'—q d-1
Hy (ﬁ(T),y(T),{CDTﬂ gj,n(T)} ,{Dt” y(t)} ):
i'=0 i'=1

-1)" /CDT & (1) AT dT+ (— 1)”“Za,ff o 7 gamymdr 46D

- Z QirNp- dD y(t)
i'=1

Moreover, it = CAN"'Bu, and a; are defined as follows:

ai, if 3i€{0,...,N} such that i' =ip,
(4.62)

S)
1l

0, else

Proof. This proof is similar to the one of Theorem 4.1, and requires the following steps
based on (4.47) and (4.48). T
Step 1. Multiplication and integration: Multiply both sides of (4.47) and (4.48) by g;»

forn=0,..., er 11-1, and integrate from 0 to 7. It yields: for j =0,

N t ) t N t
Zazfo gjn(MDy(n)dT = ; gj,n(T)ﬁ(T)dT+Zai/(; gin(Mdai-1,a{y(M}dr,
i=0 i=2

(4.63)
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andforj=1,...,g-1,

N t i t -J N t
Z(:)aifo gj,n(T)Dio‘ qy(r)dT:fO gjn(MD{ a(r)dT+Z%aif0 gj,n(T)(b—?j,l.'a {ym}dr.
1= 1=

(4.64)

Step 2. Elimination of undesired terms: According to (4.53), (4.55), and thanks to (Pg),

the orders of the power functions in the integrals containing ¢q,;-1,a {y(T)} and ;. {y(0)}
q &y
in (4.63) and (4.64) can be eliminated. Thus, (4.63) and (4.64) become: for j =0,...,g-1,

N t ia—L t -
Zaz’fo gDy Tymdr= | gD AV dr. (4.65)
i=0

Then, (4.65) can be written into the following form: for j =0,...,q -1,

t i'-j -J

Np i-j t -
Y ayp ) gin(0D ! y(vdt= fo gjn(0D; a(1) d. (4.66)
i'=0

Step 3. Successive integration by parts: By applying Lemma 2.7 to (4.66), we get:

t i Np |
fo “DYgjn(DaMdt=) ay ; ‘D, gjn(0y(mdr

i'=0
i"-j (4.67)
o kb s 1
+ ) ar ) (=Dfg; D, (),
i'=j+1 k=0

where all the initial conditions are eliminated using (P2). Moreover, there is no bound-
ary values when i’ < j.

Step 4. Elimination of undesired boundary values: By regrouping the terms in the double

sum in (4.67), we get:

& e b 1k T N ko) 1k
Y ar Y DfgHmp,’ y= Y Y. an(-D7g;,D,’ y(@).
i'=j+1 k=0 k=0 i'=j+kg+1

(4.68)
Since gj,n satisfies (P4), using (4.67) and (4.68) gives:
tc i Np tC iy Np h—l—n
| epigiamacar=3 ar [ D.F gramymarrnt Y @D, .
0 i'=0 0 i'=j+nq+1

(4.69)

Step 5. Recursive algorithm: According to (4.69), the following recursive algorithm is

obtained:
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eIf j+ng+1=Np,i.e.d=Np—j-nq=1,

_4 -J t i
Jyw=E=nT" fCDT &inmamdt- (17" Zalr A CDT"’I gjin(Mymdr.
i'=0

(4.70)

elfl<j+ng+1<Np-1,i.e.2=<d=<Np,
u i )
S y@m=E=nT" fCDT &Lin(Mamdt—(-1)" ”Za/ | CDT; gin(Mymdr
i'=0
Np-1 i'—j

S S
- Y  asD, y(1)

i'=j+nqg+1

=i ]
:(—1)"f D, gjn (D) BT dT+ (— 1)”“2611 fo ‘D% gjn(Dymdr

i'=0
d-1 i'-q
- Z aj +]+an y(1).
i'=1
(4.71)
Thus, this proof is completed. ]

Finally, the following corollary is deduced from Theorem 4.1 and Theorem 4.2.

Corollary 4.1 Under the same hypotheses given in Theorem 4.1 and Theorem 4.2, the
following fractional derivatives of the output y can be obtained by a recursive way: for

j=1,...,9-1,

Na— ] - -1 _i
D, ‘y®=D,/a®-) a;D "y(r)+2alq> i {y(n}, (4.72)
i=0 o
and
N-1 ) N
DNy (1) = (1) - Z aiDé“y(t)+Za,~¢a,i71,a{y(r)}, (4.73)

N
whereZaiq)_, o {y(0} (resp. Za, Gayi-1,a{¥(D}) can be given by (4.55) (resp. (4.54))

i=2
d-q

and Theorem 4.1, D, T y(1), ford=1,...,Np, are given by Theorem 4.2.

Proof. This proof can be given using (4.47) and (4.48). |
In order to apply the initial value estimator proposed in Theorem 4.1, the following
algorithm is required:

Function [D] = Estimator ([ay,...,ax], p,q,u, ), 1),

T
D= ([D‘T"_ky(T)] g | DITF {@iN_DO‘y(T)H T:O) . This algorithm contains the follow-

ing two steps:
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Step 1. For each n € {0,...,N—1},k € {1, [al}, find j € {0,..., g — 1} such that (n, k) € ;.

Then, the integrals involving u and y obtained in (4.44) and (4.45) are calculated. In

particular, [Dg‘_k y(1)],_, is obtained for n=N—1.
Step 2.Forn=0,...,N-2,
by (4.45).

Similarly, in order to apply the fractional order differentiator proposed in Theorem

D‘%‘_k {@£N—n—l)a y(1) }] T_Ocan be given using a recursive way

4.2 and Corollary 4.1, the following algorithm is required:

Function [D] = Differentiator ([ay,...,ax],p,q, u, y, 1),

1q Np T
whereD=|D,? y(1),...,D/’ y(t)) . It contains the following three steps:

Step 1. In this step, all the integrals involving u and y obtained in (4.60) and (4.61) are

calculated, for j =0,...,gq—1and n=0,..., [%] -1.
d-q
Step 2. In this step, the values of D, ? y(t) are calculated, for d =1,...,Np. Since

d = Np — j — nq, the key point is to find the corresponding j and n. According to
the proof of Theorem 4.2, g equations are constructed in (4.66). For each equation,
the orders of the fractional derivatives of y are given in the first row of Table 4.1, for
j €10,...,q — 1}. Moreover, the orders of all the boundary values obtained in (4.67) are
given in the other rows of Table 4.1, where k + 1 represents the times of integration by
parts applied to each equation. According to the properties of g; ,, only the boundary

values at T = ¢ in the row where n = k are kept. In this row, the value of the fractional de-
d—q

rivative of y, i.e. DtT y(1), whose order is given in the last column, is calculated using

the values of the fractional derivatives of y whose orders are given in the other columns.

Consequently, this step begins with finding a j such that % -1= NPT_j - {NPT_jl.
1-gq d—

1q . d=q
Then, D,? y(t) is given by (4.60) with n = [%] —1.Hence,D,? y(¢)ford=2,...,Np,
can be given using a recursive way by (4.61), where the values of j and n are taken as
follows: if j >0,then j=j—1,else j=g—1and n=n-1.
Np=j
Step 3. In this step, the valuesof D,  y(t) are calculated using (4.72), for j=0,1,...,4-1,
ﬁ

where the valuesof D, ? y(¢) fori’=0,...,Np—1, are previously calculated, (I)—ijl.,o( {y(n}
and ¢y i-1,4{y (1)} can be obtained using the previous algorithm and Lemma 2.5.

Inspired by Proposition 3.5, the modulating functions required in Theorem 4.1 and

Theorem 4.2 are constructed in the following proposition.
Proposition 4.1 Lette€R.,0<a<2,j,m,MeN,q,NeN*,L=Na—1], where0 < j < q-1,
m>N-1Da+ [a] — %, and g; be a polynomial with the following form: ¥V 1 € [0, 1],
N'+L-1 ) )
gj(T): Z ci tM—m—leH’ (4'74)

i=0
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ith : -, 1, 1., Np-j
J " Equation 7] 0 q 1 1+q 7
_ 1_q... 1. Np-j _
k=0 q 1 0 q 7 1
_ 1_ Np-j _
k=1 1 7 2
_Np=jq _ 1_7q...|Np=j_Np=j
k=T q1 1 q 1 7 [ q1

Table 4.1: Orders of the fractional derivatives of y in (4.66) and (4.67).

where N’ = card (45 ]-), P; is defined in (5.22), and the coefficient vector (cy, ..., eN+L-1) T

is the solution of the following system:

Co

Bm : = by, (4.75)
CN'+L-1

where b, € RN *L and B, e RN +DxN'*L) s dofined as follows: fori=0,...,N' +L—1, for
(j',ied;,
(m+1)!
_—, or k'=0,...,L-1,
(m+i-Kk")! f

B, (ki) = 1 (4.76)
" . for k'=L,...N'+L—1.

m+i+%—j’a—i’+1
e Let(n,k)e®j, if M= n(x+k—£—l by, is defined as follows: fork' =0,...,L-1, b, (k') =0,
and fork'=L,...,N'+L—-1, for (j',i') € D},

]., i (.l, i/):(n) k))
b, (k") = U 4.77)

0, else.

Then, gj isa L™ order modulating function on [0, t] satisfying (Pg).
o [fM=nwith0<n<L-1, and by, is defined as follows: for k' =0,...,N' +L—-1,

bk =8y, (4.78)

)th

then g; is a (L, n)"" order modulating function on 0, t] satisfying (Pg).

Proof. Since g; is a polynomial, g; , € € L=1(10, 11, i.e. (Py) is fulfilled. On the one hand,

by calculating the (k)" order derivative of g;, for k' =0,...,L— 1, we obtain: ¥ T € [0, 7],
N'+L-1 M
(k" _ . (m+1)! M-m—i_m+i—k'
g; (0= ; T T 1) T : (4.79)
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Since m > (N-1)a+ [a] — % >L-1, gj(.k,) (0) =0, i.e. (P,) is fulfilled. Moreover, we have:

N'+L-1 N
(k/) _ M_kl (m+l).
g W=t >

T 4.80
& m+i-k)! (4.80)

On the other hand, the definition domain of m guarantees the convergence of the fol-
lowing improper integral. Hence, we get:

N'+L-1 tM+%—j'(x—i'+l

t o
fogj(T)Té_’“_l dt= ) ¢

i=0 m+i+%—j’a—i’+1

(4.81)

Consequently, using (4.80)-(4.81) and by solving the system (4.75), this proof can be
completed. |
Remark that m is a design parameter in (4.74). It will be shown how to choose this

parameter latter.

Remark 4.2 According to (4.76) —(4.78), the coefficient vector c is independent of the
time t. Thus, in order to construct the modulating functions, the system given in (4.75)
only needs to solve once for every t. This result improves the construction of the modu-
lating functions proposed in [1].

Polynomial type modulating functions are constructed in Proposition 4.1, accord-
ing to Lemma 2.9 and the definition domain of m, it can be deduce that all the integrals

involving u and y in (4.44) and (4.45) (resp. in (4.60) and (4.61)) are proper. In this case,
1-q
on the one hand, [D¢ ¥y(1)] _, (resp. D, y(1)) is given by a proper integral formula in
d-q

(4.44) (resp. in (4.60)). Then, [Dg"—k {gNrba y(r)}]T_
ing a recursive way by (4.45) for n=0,...,N—-2 (resp. by (4.61) for d =2,...,Np), are also

Np-j

given by proper integral formulae. On the other hand, D, ? y(¢) for j=0,1,...,4 -1,

i (resp. DLT y(1)) calculated us-

are given by the Riemann-Liouville integrals of u in (4.72), which can be formally or
numerically calculated. Thus, the algebraic integral formulae for the initial values of
the fractional sequential derivatives of the output (resp. for the fractional derivatives

of the output) can be written as follows:
t t
D:f QM) y(1) d‘l’+[ P, u(t)dr, (4.82)
0 0

where D refers to

pa-k {@ﬁN‘”‘”"‘y(T)}]T_O with n€0,...,N—1} and k € {1, [a]} (resp.

A
toD/ y(r) with j € {1-g,...,Np}), Q and P, denote the corresponding functions in the
integrals involving y and u, respectively. Consequently, according to Lemma 2.5, the
fractional sequential derivatives of the output y can be calculated by algebraic integ-

ral formulae. Then, the pseudo-state can also be obtained using Lemma 4.3. Remark
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that these formulae do not contain any source of errors in continuous noise-free case,
and can provide non-asymptotic estimations in finite-time without knowing the initial
conditions of the considered system. Moreover, the proper integrals of y can be con-
sidered as a low-pass filter in noisy cases [71]. In the next subsection, a pseudo-state

estimator is introduced in discrete noisy cases.

4.3.2 Non-asymptotic pseudo-state estimator in discrete noisy case
From now on, let y® be a discrete noisy observation of y on 1= [0, hl:
yOt) = y(t) + @(1), (4.83)

where t; =iTg, fori =0,1,...,M, with an equidistant sampling period T = ﬁ Moreover,
the noise {®(?), ¢ € I} is assumed to be a continuous stochastic process satisfying the

following conditions:
(Cy): forany s, tel, s#t, ®(s) and ®(¢) are independent,
(Cs) : the mean value function of {®(1), ¢ € I} denoted by E[-] is equal to zero,

(Ce) : the variance function of {®(¢), t € I} denoted by Var|[-] is bounded on I,
i.e.A0eR,, Ve, Var[®(t)] < 6.

Note that a zero-mean white Gaussian noise satisfies these conditions.

In order to estimate the fractional sequential derivatives of y using y®, the integral
formulae given in Theorem 4.1 and Theorem 4.2 need to be performed in the discrete
case. For this purpose, a numerical integration method is applied to approximate the
integrals. Denote the integral involving y in (4.82) as follows:

t
I (1) = fo Q(1) y(t)dr. (4.84)

Hence, Ig can be approximated in the discrete case by:
i
o =T Y. wi Q) y(p), (4.85)
j=0

where 0 < w; € Rare the weights for a given numerical integration method. Then, using
the discrete noisy observation y®, we get:

VOt _hti | @0
IQ _IQ +ey (4.86)

i
where e(‘Q)’t" = Tszé w;Q(t;)®(¢;). Thus, the integral Ig is subject to two sources of
]:

€ITorS:
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¢ the numerical error due to the numerical integration method;

* the noise error contribution eg’t".

Similarly, it can be deduced that the integrals involving # in Theorem 4.1 and Theorem
4.2 only contain numerical errors in the discrete case. Consequently, a pseudo-state
estimator is proposed, which contains numerical errors and noise error contributions
in the discrete noisy case. It is well known that the numerical errors due to a numerical
integration method converge to 0 when Ty — 0 [168]. In the following proposition, it
is shown that the convergence in mean square of the noise error contributions when

Ts—0.
Proposition 4.2 [1] Let{®(t;)} be a sequence of {® (1), t € I} with an equidistant sampling
period T, where {®(t),t € 1} is a continuous stochastic process satisfying conditions

(Ca) — (Cg). Assume that Q € £2([0, t]), then we have:

—0, (4.87)

where 68’“ is given by (4.86).

The proof of the previous proposition can be obtained using a similar way to Pro-

position 4 in [62]. In fact, using (Cy), (Cs) and (Cg) we obtain: [E[eg'i] =0and

N2
m,1
(eQ )

Hence, if Q € #?([a, t]), the convergence in (4.87) can be obtained. A similar result has

E

= Var eg"'] < Ts6(TsZ w? Qz(tj)). (4.88)
j=0

been shown using non-standard analysis in [71, 72]. Consequently, both the numerical
errors due to a numerical integration method and the noise error contributions in the
proposed pseudo-state estimator can be reduced by decreasing the sampling period
Ts. However, if the computations are performed on a finite precision numerical ma-
chine, there are also round-off errors [169]. Hence, the infinite reduction of T would
not lead to arbitrary reduction of estimation errors, since the round-off errors would
become too large at some points.

When the sampling period is set, on the one hand the numerical errors can be
bounded by the well-known error bounds for numerical integration methods [168], on
the other hand the noise error contribution e satisfying [E[eg’[i] =0 can be bounded

Q
using the Bienaymé-Chebyshev inequality:

1
| 1 1
VyeR., Pr(‘eg’t" < Y(Var[eg’t’])z) >1-2, (4.89)
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1
i.e. the probability for ‘eg’ti ‘ to be smaller than y (Var[eg’t" ]) * is larger than 1— % Thus,

the following error bound is deduced from (4.88) and (4.89):

P J
eg’fl( YT, (5;0 w]?QZ(tj)) , (4.90)

P
where a < b means that the probability for a real number b to be larger than an other
real number a is equal to py with py > 1 - % Remark that the value of py can be given
by the probability density function of the considered noise ®. In particular, if ® is a

white Gaussian noise, according to the three-sigma rule, we have:

1
1P ¢ 2
01| < v (62 w? Qz(tj)) , (4.91)
=0

where p; =68.26%, p» =95.44% and p3 =99.73%, for y = 1,2, 3, respectively.

Thanks to the probability properties of the mean value and the variance functions,
and the Bienaymé-Chebyshev inequality, the noise error bound obtained in (4.90) is
sharp, especially in white Gaussian noise cases. Since it depends on the design para-
meter m, the study of the influence of m on this error bound is useful to deduce the
influence of m on the noise error contribution. Consequently, at each #; the noise er-
ror contribution can be reduced by choosing the value of m which minimizes the noise
error bound at ¢;.

Remark 4.3 Ifthe parametersN, o and a; fori=0,...,N are known in a studied system,
the selection of the design parameter m can be done offline by fixing the desired initial
value (resp. the desired fractional derivative), T and the used numerical integration
method, without the knowledge on u, y and the noise level 5. Indeed, the idea of setting
m is to choose the value of m which minimizes the noise error bound obtained in (4.90).
Since this bound is linear with respect to Y S%Ts, the optimal value of m is independent
of Y 52T s and only depends on the weights w; and the values of Q. (t;). Hence, if the de-
sired initial value (resp. the desired fractional derivative) is fixed, Q, can be calculated
in an offline work, so is the error bound.

In order to reduce the noise error contributions, the error bound obtained in (4.90)
will be applied to choose the design parameter m for the modulating functions con-
structed in Proposition 4.1.

82



4.4. Simulation results

4.4 Simulation results

In this section, the accuracy and the robustness with respect to corrupting noises of the
proposed non-asymptotic pseudo-state estimator will be shown by comparing with
fractional order observers. For this purpose, the pseudo-state of the system defined
by (4.1)-(4.2) satisfying conditions (C;) — (C3) will be estimated using the noisy output
defined in (4.83). Thus, the following model is considered:

D¢x=Ax+Bu, (4.92)
y®=Cx+Dp®, (4.93)

where Dg = 1. Based on (4.92)-(4.93), two kinds of fractional order observers are de-

signed in the two following subsections.

4.4.1 Fractional order Luenberger-like observer

The well-known Luenberger observer is wildly applied for integer order systems [165].

This observer can be extended for fractional order systems as follows [11]:

DY%=AX+Bu+n, (4.94)
7=C#, (4.95)
N=L(°-9), (.96

where X is the pseudo-state estimation, and L is the observer gain. In order to get a
good compromise between the convergence speed and the sensitivity to noises, L is

set using a classical eigenvalues placement technique in this chapter.

4.4.2 Fractional order /£, -like observer

J€ Observer is another useful integer order observer, where the observer gain is ob-
tained using the #,-optimization technique. In this subsection, the ./, observer
proposed in [170] for lipschitz integer order nonlinear systems is adapted to design a
new ./ ,-like observer for fractional order linear systems.

Firstly, the following fractional order dynamical observer is proposed:

Dt =AX+Bu+n, (4.97)
y=C%, (4.98)
D%e = Ape + Bpv, (4.99)
n=Cge+Drpv, (4.100)

where € is an auxiliary pseudo-state, 1 is obtained by the dynamical system (4.99)-
(4.100) with v = y® — j. It can be seen that if A = Bg = Cg = 0 and Dg = L, (4.94)-(4.96)
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is deduced from (4.97)-(4.100). In this case, a fractional order .#£,,-like observer is de-
signed in [171].
Ar Bg
Secondly, the matrix F = needs to be determined. By subtracting (4.97)-
Cr Dg

(4.98) from (4.92)-(4.93) and using (4.99)-(4.100), the following system is obtained:

DYe e
=AL + B1®, (4.101)
D%e €
e
e=CL, + Do, (4.102)
€
A-DgC —Cp ~DgDg
where e = x— X, A, = , B, = ,CL=(1 0)and D =0.
BrC Ar BrDg

Then, the matrix F is calculated such that:
e the matrix Ay, is stable,

e the error e is robust against the noise @, i.e. the %»-gain of the system (4.101)-
(4.102) is bounded:

IGealloo :=sup 0 (Gep (jw)) <, (4.103)

weR
where G, is the transfer function of the system (4.101)-(4.102), o(-) denotes the

maximum singular value of the matrix G.g, and y € R,.

It is shown in [172] that the two previous conditions are fulfilled if there exists a
symmetric positive definite matrix Xy, such that the following Linear Matrix Inequality
(LMI) holds:

ﬁAEXL + ﬁ*XLAL X1.Br, ﬁCE

* -2 *
B Xy, -1 D} |[<0, (4.104)

B*Cr DL -1
where p = e DJz, B* = ¢1-9JiZ and J* denotes the complex conjugate of a complex
matrix J. Hence, if Xy, is known, F can be obtained by solving (4.104) using LMI tools

[173, 174]. However, X; is unknown and (4.104) is not jointly affine in X} and F. In order

to overcome this problem, a solution is proposed as done in [175].
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_ A O 0 -I 0 I 0 -
By denoting A = ,B= , C= , D= ,C=(1 0),

00 I 0 C o Do
we obtain: Ap = A+ BFC, By = BFD, C = C and Dy, = 0. Thus, (4.104) is transformed into
the following LMI:

Hyx, + Q*F"Px, +Pg FQ <0, (4.105)

where Q = (8*C,D,0), Px, = (B*Xt,0,0), and

ﬁA*XL-Ff)*XLA 0 BC*
Hx, = 0 -1 0 | (4.106)

Finally, using the algorithm proposed in [175], F can be obtained by solving (4.105).

4.4.3 Example: Fractional electrical circuit model

Some numerical results are presented in this subsection by considering a fractional
electrical circuit model introduced in [176]. Other kinds of fractional circuit elements
have been used to model biological tissues in [109].

Let us consider the electrical circuit presented in Figure 4.1(a), where G for k=0, ...,N,
are conductances, C; for j = 1,...,N, are capacitances, and u is a source. Then, this
electorial circuit can be modeled by the following fractional order pseudo-state space
representation (see [176] for more details):

Dfx=Ax+Bu, (4.107)
where
_ G1G-G} GGy L Gi1GN
C:G C:G CG
G2 Gy _ G2G-Gj L GoGN
CoG CoG CoG
A= 2 2 2 (4.108)
GNGy GNGy ... _GNG-GY
CnG CnG CnG

T N
_(GeG1 GoGe ... GoGn . _
andB_(ClG, TG CNG) WlthG—kEOGk.

In this example, the following system is considered:

D?x=Ax+Bu, (4.109)
y=Cx, (4.110)
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where o = %, N=3,C=(-1,0,1),B=(0,1,0)T, and

11 1 -11
A=l 6 0 -6 |. (4.111)
18 1 -17

It can be verified that this system satisfies conditions (C;) — (Cs).

It is mentioned in Remark 2.3 that due to the hereditary property of the fractional
derivative operator, the real-state of a fractional order system depends on not only the
pseudo-state but also an initialization function which is also called a history function
[57, 97]. Without considering the history function, the uniqueness of the state cannot
be guaranteed. Consequently, the initialization problem is an important concept for
fractional order systems [101, 177]. There also exists an approach based on the infin-
ite dimensional representation, which is equivalent to the one based on the history
function [178]. In this example, using a similar way as done in [80, 179, 180], the initial-

ization of the considered fractional order system is realized as follows:
e The system is at rest on | — oo, —2[.

* A constant input u(t) = 0.5 is applied on [-2,0]. Then, a history function of x
is generated by solving (4.109) using the Griinwald-Letnikov scheme given in
(2.38)-(2.39), where we get: x(0) = (0.2362,0.5324, 0.2719)T.

* u(t)=sin(5%) is applied on ]0,5]. Then, the output is obtained by solving (4.109)-

(4.110) using the Griinwald-Letnikov scheme.

Assume that y®(t;) = y(t;)+0®(t;) is the noisy observation of the output y on1=[0, 5],
where t; = iT with T; = 0.0005, the noise {®(#;)} is simulated from a zero-mean white
Gaussian iid sequence, and the value of ¢ is adjusted such that SNR =20dB. The out-
put and the associated noisy output are shown in Figure 4.1(b), where the output is
obtained by solving (4.1)-(4.2) using the Griinwald-Letnikov scheme.

We are going to estimate the pseudo-state x using the discrete noisy output. For
this purpose, the non-asymptotic pseudo-state estimator proposed in Section 4.3.1 is
applied, where the used modulating functions are constructed in Proposition 4.1, and

the trapezoidal numerical integration method is considered.
k
According to Lemma 4.3, 2/ y for k=0, 1,2, need to be estimated. Hence, according

k _1 k
to Lemma 2.5 and Corollary 4.1, D7 y and [Dt 2 {@f y(t)}

,for k=0,1,2, also need
1=0
to be estimated using Theorem 4.1 and Theorem 4.2. Firstly, the choice of the design
parameter m is studied using the noise error bound obtained in (4.91) with y = 3. Ac-

cording to Proposition 4.1, m = 2. Then, by taking different values of m, the variation
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of the noise error bound for D% y is shown in Figure 4.2(a). Hence, the influence of m
on the noise error contribution can be deduced. Thus, in order to reduce the noise
error contribution, the following values of m are chosen: m =2 for ¢; € [T,0.4], and
m =14 for t; € [0.4+ T, 5]. Secondly, the estimated D% y is shown in Figure 4.3(a). Since
the analytical Riemann-Liouville fractional derivatives of the output are unknown, the
estimation obtained by the Griinwald-Letnikov scheme in the noise-free case is also
given to verify the estimation obtained by the proposed method. The associated abso-
lute noise error for D% y is shown in Figure 4.2(b), where the corresponding noise error
D;% {@%y(t)} ,for k=0,1,2,

t=0
can also be estimated. The estimations of the latter are shown in Figure 4.3(b), which

bound is also given. Using a similar way, y, y and

are obtained by taking m = 2. According to the error analysis given in Subsection 4.3.2,

these estimations can be improved by reducing the sampling period. Moreover, since
_1 k
D,? {@f y(t)} becomes

cb_%,k,% {y(} is decreasing with respect to t, the role of
£=0

less important when ¢ becomes larger.

Finally, the obtained estimations of x; are shown in Figure 4.4, where the non-
asymptotic property and the robustness of the proposed estimator can be distinguished
by comparing with the fractional order Luenberger-like observer and the fractional or-
der /£ -like observer designed in Subsection 4.4.2. The initial value X, = 1,2,3)T is
used for these observers. Then, two different gains are chosen for the fractional or-
der Luenberger-like observer. The first gain is chosen by taking the eigenvalues to
be 1.5 times greater than the ones of the system in order to guaranty the robustness
against the noise. The obtained estimation is shown in Figure 4.4(a). The second gain
is chosen by taking the eigenvalues to be 4 times greater than the ones of the system
in order to improve the convergence speed, which produces larger noise error contri-
bution. The absolute error between the obtained estimation and the one calculated by
the Griinwald-Letnikov scheme in noise-free case is shown in Figure 4.4(b), as well as
the ones obtained by the fractional order .#,-like observer and the proposed pseudo-

state estimator.
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X1 1: — G X2 C, X3 Cs

Go

V():O

(a) Fractional electrical circuit model.

Signals
0.04 9

0.03

0.02

0.01

-0.01

-0.02

(b) Output y and its discrete noisy observation.

Figure 4.1: Example: Output of the linear system defined in (4.109)-(4.110), and its discrete

noisy observation corrupted by a zero-mean white Gaussian noise with SNR=20dB.
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(a) Variation of the noise error bound.
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Figure 4.2: Noise error and noise error bound for the estimation of D} y.
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(b) Estimations of the initial values of the fractional sequential derivatives.

1
Figure 4.3: Estimation of D}y obtained by the proposed method (resp. the Griinwald-
Letnikov scheme) in the discrete noisy case (resp. noise-free case), and estimations of

Lk
[Dt ‘ {@f y(t)” ,fork=0,1,2.
t=0
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Pseudo-state estimations

(a) Estimations of x;.

(b) Absolute estimation errors of x;.

Figure 4.4: Estimations of x; obtained by the proposed estimator and the fractional order

Luenberger-like observer and #,-like observer in the discrete noisy case, and the ones ob-

tained by the Griinwald-Letnikov scheme in the discrete noise-free case.
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4.5 Conclusions

In this chapter, a non-asymptotic pseudo-state estimator was constructed for a class
of commensurate fractional order linear systems which can be transformed into the
Brunovsky’s observable canonical form of pseudo-state space representation with un-
known initial conditions. Firstly, this form was expressed by a set of fractional or-
der linear differential equations involving the initial values of the fractional sequen-
tial derivatives of the output, based on which the modulating functions method was
applied. Then, algebraic integral formulae were exactly obtained for the former initial
values and the commensurate fractional order derivatives of the output by a recurs-
ive way, where the required modulating functions were constructed. These formulae
were used to calculate the pseudo-state of the system, which can provide estimations
in finite-time. Secondly, the pseudo-state estimator was studied in discrete noisy case,
which contains the numerical error due to a used numerical integration method, and
the noise error contribution due to a class of stochastic processes. The convergence
in mean square of the noise error contribution was shown when the sampling period
tends to zero. Moreover, a noise error bound was provided, which can help us to choose
the design parameter in order to reduce the noise error contribution. Finally, numer-
ical examples were given to show the efficiency of the proposed pseudo-state estim-
ator, where some comparisons with the fractional order Luenberger-like observer and

a new fractional order /. -like observer were studied.
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Chapter 5

Non-asymptotic fractional order
differentiator

Résumé en francais

Dans ce chapitre, nous introduisons un nouveau différentiateur algébrique et ro-
buste. Il permet d’estimer la dérivée fractionnaire d’ordre quelconque de la sortie a la
fois pour les systemes modélisés par la pseudo représentation d’état et ceux modél-
isés par une équation différentielle d’ordre fractionnaire avec des conditions initiales
inconnues. Comme dans toute cette these, c’est un estimateur non-asymptotique qui
donne des estimations en temps fini. Puis, il est introduit dans le cas discret et bruité.
Enfin, nous donnons des résultats numériques afin de montrer la précision et la ro-

bustesse du différentiateur d’ordre fractionnaire proposé.

5.1 Introduction

Fractional order systems and controllers have been applied to improve performance
and robustness properties in control design [8, 54, 55, 56|, where the fractional deriv-
atives of the output usually need to be estimated from its discrete noisy observation.
An interesting research topic concerns with designing robust fractional order differ-
entiators with convergence in finite-time. In is shown in Chapter 3 how to apply the
modulating functions method to estimate the fractional derivative of the output with
an arbitrary order for a class of integer order linear systems. In Chapter 4, this method
is developed to estimate the commensurate order fractional derivatives of the output
for a class of fractional order linear systems modeled by the pseudo-state space rep-
resentation. In particular, the obtained differentiators can also be applied for the sys-
tems modeled by a fractional order linear differential equation. Recently, the algebraic
parametric estimation method has been applied for the former systems to estimate the

fractional derivative of the output with an arbitrary order [63]. However, the obtained



5.1. Introduction

differentiator is not applicable to the systems modeled by the pseudo-state space rep-
resentation.

Having these ideas in mind, the objective of this chapter is to introduce a new al-
gebraic fractional order differentiator which has the following advantages similar to the
ones designed in Chapter 3, Chapter 4 and [63]:

e itis accurate, robust against corrupting noises, non-asymptotic with estimations

in finite-time, and without knowing the initial conditions.
Moreover, it also has the following advantages:

* it can be applied to estimate the fractional derivative of the output with an arbit-
rary order both for the systems modeled by the pseudo-state space representa-

tion and the ones modeled by a fractional order linear differential equation.

For this purpose, inspired both by the algebraic parametric estimation method and
the modulating functions method, a new operator based algebraic method is intro-
duced. The operator can transform the considered system into a fractional order in-
tegral equation by eliminating all the unknown initial conditions. Then, based on the

obtained equation, the desired fractional derivative can be given using a recursive way.
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5.2 Algebraic fractional order differentiator

The main results of this chapter will be given in this section in continuous noise-free

case and discrete noisy cases, respectively.

5.2.1 Problem formulation

As done in Chapter 4, the following fractional order linear system is considered:

Dfx=Ax+Bu, (5.1)
y=Cx, (5.2)

onlc R, U{0}, where 0 <a <2, Ae RNVN Be RN, Ce RPN, DYy = (D‘;‘xl,...,D‘t"xN)T
with a= Z, p,q,N € N*, x € RN is the pseudo-state column vector with unknown initial
values, y € R and u € R are the output and the input, respectively. Without loss of gen-
erality, p is assumed to be equal to 1 in the sequel. Moreover, the following conditions
are assumed to be fulfilled:

(C;): CB=CAB=---=CAN2B =0,
(Co): CAN-1B #0.

The objective of this chapter is to non-asymptotically estimate the fractional deriv-
ative of the output y with an arbitrary order. As mentioned in Remark 2.1, the Riemann-
Liouville fractional derivatives of y are defined by taking the integer order derivatives of
fractional improper integrals. Unlike Definition 2.8, a new algebraic formula involving
proper integrals of y will be proposed in continuous noise-free case in the next sub-
section. This new formula can cope with the noisy observation of y in discrete noisy
cases.

5.2.2 Algebraic formulas in continuous noise-free case

Before giving the main results of this chapter, the following example is devoted to ex-
plaining the originally of the proposed idea.

Example 5.1 Let us consider the following fractional order linear system:

V=0, D%y(t)+y(t):u(t), (5.3)
y(0) =0. (5.4)

1
We will express D, *

1
¥, ¥, D7y and y by means of proper integrals of y (which are robust
against corrupting noises) and a part involving u, the fractional integrals and derivat-

ives of u. For this purpose, the following steps are required.
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5.2. Algebraic fractional order differentiator

Step 1: Fractional integration. According to Remark 2.1,D,

1
2

y is defined by an improper

integral. Hence, it needs to be calculated. For this, it is enough to apply D} to (5.3) and
use the additive law given in (2.18) with the zero initial condition given in (5.4). Thus,
we obtain:

1
D, ?y()=-D; y(t) + D u(?). (5.5)

Then, successive fractional differentiations will be applied to (5.5).
1

Step 2: Fractional differentiation. By applying D? to (5.5) and using the additive law

given in (2.17), we get:

1 _1
y(t)=-D,2y(1) +D, > u(d). (5.6)

Step 3: Recursive way. Using (5.6) and the express of D,

1
2

y obtained in (5.5), we obtain:

_1
y()=D;'y(®) - D7 u() + D, > u(?). (5.7)
3
Similarly, by applyingD} and D? to (5.5) respectively, we can get using a recursive way:

1 -1
D2y(0)=-D;'y(t) + D' u(t) =D, 2 u(t) + u(1), (5.8)

() =D y(0) =D u(n) +D, T u(t) - u() + D% u(t). (5.9)
Obviously, in order to apply the method proposed in Example 5.1 to the system
defined by (5.1)-(5.2), the following three problems should be solved, where Problem 2
and Problem 3 are due to unknown initial conditions.
Problem 1: System model. As shown in Example 5.1, the proposed method is based
on a fractional order differential equation. Consequently, the pseudo-sate space rep-
resentation given in (5.1)-(5.2) firstly needs to be transformed into a fractional order
differential equation. Thus, the following result is given.

Proposition 5.1 [1] The system defined by (5.1)-(5.2) satisfying conditions (C;)-(Cy) can

be transformed into the following form:
N ' N
Y aiDYy@ =20 +b) a;idia{yn}, (5.10)
i=0 i=2

whereb=1,ax=1, a; €R, fori=0,...,N—1, are coefficients of the characteristic polyno-
mial of A, a; = ia for i =0,...,N, &= CAN"'Bu, and ¢; o {y (1)} is given by (2.24).

Remark 5.1 By taking b =0 in (5.10), the fractional order differential equation model
can be deduced for a class of fractional order linear systems. Consequently, according to
Lemma 2.4 and (2.24) this model is equivalent to the pseudo-state space representation
model defined by (5.1)-(5.2) in the case of zero initial conditions.
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Problem 2: Unknown initial conditions. Inspired by Example 5.1, the fractional order
differential equation obtained in (5.10) should be transformed into a fractional order
integral equation. A simple way is to integrate the equation using the additive index
law given in (2.18). However, if the initial conditions are non-zero, this law can pro-
duce additional undesired terms in the obtained integral equation. Unlike the additive
index law given in (2.18), a formula which does not involve initial conditions will be

introduced in Proposition 5.2. To achieve this, firstly the following definition is given.

Definition 5.1 Letp e R; U {0}, [,m €N, the following operator is defined for a function
f:YteR,,
i1 :=0, P {em p o} (5.11)

Secondly, the following useful function is defined: V n € Z,

P _a N kM LBHE) s na-i-p-k
Im,z,n{f(t)}-—ﬁk;( 1)(k)F(ﬁ+1)t D; f)

(5.12)
l

J

L mo ikt n0—1—p—j—k
oYY )

) AL F(f)+j+k)t
=1 k=0

kKiim—-j—-k)! IB+])
where [p=0if [ =0, [p =1 else.

Proposition 5.2 [2]Let IYE,’ZI be the operator defined by (5.11). Then, Va € R, U {0}, by
taking | = [a] with | < m we have:

s o} =i P p 155 {r o}, (5.13)
where Iz;,l,o {f ()} is given by (5.12) with n=0.

Proof. According to Definition 2.7 and Definition 2.8, we have: V t e R,
B+ ! d' I
D; $*D {mpar(p} :f g0 — {D‘T"_ f(T)} dr, (5.14)
0 dt

where g;(1) = “_});;Z;Tm If x=1=0, (5.13) can be obtained using Lemma 2.2. If « > 0,

by applying / times integration by parts formula to (5.14), we get: V f € R,

3 t -1 ¢
Dt (ﬁ‘f‘l) {tmD(;f(t)} — (_l)lj(; g;l) (T)D(.l)-(_lf(T)dT + Z (_l)k [ggk) (T)D(-l)-‘_l_kf(‘[) 0’
k=0
(5.15)
where for k=0,...,1,

ko (k (=D* T m . .
(k) _ _ \PHI-1-k+j _m—j
& (T)_jzzso(f)F(ﬁ+l_k+j)(m—j)!(t v ! (010
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where o =1ifp+ 11— k=0, 69 =0 else. Then, two cases are considered.
« First case > 0: In this case, since m = [, we get: gik) 0) = gik) ()=0for k=0,...,1-1.
Hence, using (5.15), (5.16) becomes: V€ R,

D, P {mDe £} = (-1) f gD ODY ! f(n)dr

N Cm [ e
()F([3+])(m ])'f (=P H"IDE fdT (5 9)

Dim! e .
( )((m) Z'Dt(ﬁ”){tm_]D%_lf(t)}.

:
:

By applying Lemma 2.3 and the additive law given in (2.17) to (5.17), we get: V t e R,

l . .
CDIml S (m= N DB+ j+K) ik 1Pk
JZ (m— n'z( )( k ) erp - /o

Lmai (1 (~DI**ml TB+j+k) e koI j—k
)3 (')k!(m—j—k)! e+ |~ D AU (5.18)

Jj=0 k=0
e mn I'B+k

L _yk ™

t f()+k§1( )(k ®

+i’" 1) ~1it*km! TG+ j+k
jlkm—-j—k)! IP+]))

m kD(X I-p- kf(t)

tm_j_kD(;_l_ﬁ_j_kf(t).

Jj=1 k=0

e Second case p=0: In this case, gil_”(t) # 0. Hence, using (5.16), (5.15) becomes:
VieR,,

D™D f()} = "D (1) + (-1) f gV (DX fnydr. (5.19)

Finally, similar to the first case, this proof can be completed by applying Lemma 2.3,
the additive law given in (2.17) and using (5.19). |

Remark 5.2 According to (5.15)-(5.16), the role of t™ with | < m is devoted to eliminat-
ing the unknown initial conditions in (5.15). Hence, if the initial conditions are equal to
0, the design parameter m can be set to any positive integer number.

Similar to (5.18), by applying Lemma 2.3, the additive law given in (2.17) and using
(5.12), the following lemma can be obtained.
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Lemmab5.1 /2] Let n €N, we have: ¥y e R, U{0},

{ mln{f(t)}}:
ﬁz(_l)k(m)ﬂﬁ+k) Ym—k+n(Y) (m—k+n)! tm‘k+”‘k'D¥‘k’+°“l‘5‘kf(t)

k) TB+1) Az (K m—k+n—k)!

» i’"z‘f 1\ (1) *m! IB+j+k)
‘S o) km-j—k TG+

Ym-j-k+n _ '_k+ ! . , ey T —R— i —
Z (Y) (m—j n) fm—j—k+n-k D\t( k'+a—1-p—j kf(t),

o \K|m—-j-k+n-Kk')!
(5.20)
whereY 1+ and Ym—j—k+n are given by (2.16).
Remark 5.3 Letng,n; € R and s € Ry, the following set is defined:
Fpnps = {np,np—s,...,n, (5.21)

which contains all real numbers varying from n¢ to n; with a common difference s. Con-
sequently, according to (5.12) and (5.20), it can be verified that the orders of DO‘ Pk f
in1®P {f(0)} belong to Fn_1_p-1,6-1-p-m, and the ones of D}~ Kroml=p=j- kf in

mln

{ m,L,n {f(t)}} belong to #+a—1-p-1,y+a-1-p—m-n,1-

Problem 3: Undesired term. Different from the fractional order differential equation
N

given in (5.3), the one obtained in (5.10) contains the undesired term ) _ a; ¢;  {y(1)}
i=2
involving unknown initial conditions (see (2.19)). It is shown in the following proposi-

tion that by taking a combination of operators given by (5.11), this undesired term can

be annihilated. Before doing this, the following notation is useful:

P:={j'eN;1<j<N-1,j/aeg N} (5.22)

with N’ = card(®).

Proposition 5.3 [2/Letp € Ry U {0}, [, m €N, the following operator is defined: ¥V t € Ry,

(5.23)

mN,. ch N1 Pl

m+i"’

where Hﬁ’llﬂ, isdefined by (5.11). Ifp+ 1 >0 and m > (N — 1)«, we have:

me{Zaz¢za{y(I)}}= (5.24)
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where the coefficient vector ¢ = (cy,...,cx')" is the solution of the following system:
By (Co,-..ren) ' = (0,--,0,1)7, (5.25)

whereB,, € RN +D*N'*D ¢ dofined as follows: fori' =0,...,N' and for j' € D,

ol
F(m+l ]la)/ ) for k,:()!'“)N,_lr
B, (k,i)={ 1B+I+m+i'—ja) (5.26)

1, for K'=N'.

Proof. Using (2.24) and (2.19), we get:

N N
Y aibia{y0}=) a;
i=2

i-1
=2 j'=

— il —
Cj’(x,l ¢ Jjla—1
1

R A O N (5.27)
where o = % and cjiq,1 #0for j’ € . Then, by applying the following change of variables:
T— 1T, we get:
7P {t—j’(x—l} _ 1 i/ e N1 t(t_ ppHi-Lgmti=jla-1 g
mN' TIp+h o 0

tB+l+m+N’—j’(x—1 %’: 1 Biol_mti— a1
= ci | 1-1P" 1 % dT.
I'p+0 = Jo

Hence, if p + />0 and m > (N — 1), by using the Beta function B(-,-) defined in Defini-

(5.28)

tion 2.2, we obtain: for j' € &,

e P

m,N’

tﬁ+l+m+N’—j’a—1 N’

‘IB S
Te+D) igoc, B+l m+i —j

v L (5.29)
_ (Brl+miN'-jlo-1 Z . Iim+i'-ja) .
ST TR+ I+ m i - ja)

Consequently, by taking the vector c as the solution of the system given in (5.25), the
result in (5.24) is fulfilled. Thus, this proofis completed. [ |

Remark 5.4 According to (5.25) and (5.26), the coefficient vector c is independent of the
time t. Thus, in order to construct H’ﬁn lN, the system given in (5.25) only needs to solve

once for every t.

Thanks to Proposition 5.2, the fractional order differential equation obtained in
(5.10) can be transformed into a fractional order integral equation. Then, according
to Remark 2.1 and similar to Example 5.1, the fractional integral of y with an order be-
longingto ] —1,—-1+ %] should first be deduced from the integral equation. Then, by
differentiating this integral equation, the fractional derivative of y with an arbitrary or-
der can be given using a recursive way. Now, we are ready to state the first main result
of this chapter.

100



5.2. Algebraic fractional order differentiator

Theorem 5.1 [2/By applying the operator IYﬁ " deﬁned by (5.23) to the fractional order
differential equation obtained in (5.10), where li=Tai] fori=0,...,N, meN"* is a design
parameter with m = Iy, Pn = [_3+0(N— IN+ 1—% withﬁ € [0, % [, D\t’dy withv,g = —1+%—6
and d € N can be given on 10, h] as follows:

Yoy(1) =D, N 6Nu(t)+Zc, 0PN e

m+l ,0,—m—1i
l/

_ z 4 DY INPY Zo ci Zal [Pl v},

(5.30)

then by induction for d e N*,

D,%y(t)=- ¢ (m+N’—k)!ﬁ (1)

da
(“)mﬂw(%) (MmN 14 kroy—Ix—Py
k=1

(4)
q)mn (4 (m+N) 1 4 k—I1y-p 1 X
N (Z)—_Dg NN 4 +N,ZC,D“{I°""N.”N ot}

= (m+N'—k)! k m+i’,0,N’
N-1 (%)m+N’ i N" d k 1

B Z a Z q (m+N) iDg— +a;— N—ﬁNy(t)
pard = \kJm+N =k tk !

1 ipntin=li
ST Z ci za, bt ),

(5.31)
where (%)W is given by (2.16), Igﬁl\;(lf_m_i, {4(0)} and I%fﬁfﬁ;ﬁ’_ 21y(1)} are given by

d d
(5.12), DI {1 taen} and DI {15 fy(o} ] are given by (5.20)

m+i’,0,N'— m+i’,l;,N’

Proof. This proof requires the following steps.

Step 1: Application of constructed operator. Let us apply the operator Hi?l\?f defined

by (5.23) to (5.10). Then, using Proposition 5.3, we get:

N’ N’ g
Z a; Z Cl N —i' D (ﬁN‘FlN){ m+l D (t)} — Z cir tN’_l Dt(ﬁN+lN){ m+l A(l.)} (5.32)
i=0 i'=0 i'=0

Step 2: Transformation to an integral equation. By applying Proposition 5.2, we get:
fori=0,---,N,and fori'=0,---,N/,

D;(5N+IN—li)—li {tm+l D(le(l.)} m+l Do‘l_lN ﬁNy(t-) + I%f?;il;_li {y([)}, (5.33)
and
D;(BNHN) { m+i' A(t)} pmi D—lN ﬁNu(t) +I(r)nE-I\Il+(§NO{ (D). (5.34)
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5.2. Algebraic fractional order differentiator

Hence, the following fractional order integral equation is obtained using (5.32)-(5.34)
NI

and the relation Z ciy=1:
i'=0

tm+N/aND(:N_lN_|3Ny(t) m+N D lN ﬁN A(t) + Z Cl 06+NZ+(I)NNI ,{ (t)}

(5.35)
fm+N' Z a; Dou INn— ﬁNy(t) z‘bcl Z;,)Glz (:r;fll\}“;lll\i], {y(t)}
i’ I

Thus, (5.30) can be deduced using ay = 1.

d
Step 3: Successive fractional differentiations. By applying D; with d € N* to (5.35),

since ¢/ are constant, we get:

D:{ m+N/ D(xN In— ﬁNJ/(t)} d{ m+N’ D—lN ﬁNu(t)} gci’D? {IO’ﬁN.HN {ﬁ(t)}}

m+i’,0,N'—i’

i=0 i'=0

) I TENR = N Bn+IN—1i
=D N Y @Dy chZaz st o))
(5.36)

Consequently, this proof can be completed by applying Lemma 2.2 and using (5.20). &

Remark 5.5 By taking p = 0 in Theorem 5.1, (5.31) can give the commensurate order
fractional derivatives of the output, as done in Chapter 4. However, the differentiator
proposed in Chapter 4 cannot estimate the fractional derivative of y with an arbitrary
order.

Remark 5.6 According to Remark 5.1, Theorem 5.1 can also be applied for the systems
modeled by a fractional order differential equation. In this case, we can take the coelffi-
cient vector c = 1 with N’ = 0. Consequently, the results obtained in this chapterare more
general than the ones obtained in [62, 181].

Thanks to Theorem 5.1, the Riemann-Liouville fractional derivative of y with an ar-

bitrary order can be given by (5.31). Indeed, ¥V o* € R, there exists d € N* and B € [0, l
such that o* = -1+ % —B=vgel-1+ %,—1 + %], where Drd'y with vgr =vg - d_Td’

ford'=d-1,...,0, needs to be firstly calculated (see Figure 5.1).

Moreover, V d € N, D}y is exactly given by proper integrals of y and a part involving
7 using a recursive way. Indeed, according to Remark 5.3, we have:

e for d =0, on the one hand, the part involving # in (5.30) is a combination of the

fractional integrals of ## whose orders belong to .%, m-N',1 With v —an < —1.

0—QaN,Vo—aN—

On the other hand, szl HIY ;IN { y(1)} contains the fractional integrals of y whose or-

ders belong to yV0+ai_aN_1,V0+ai_aN_m_,r,1. Thus, the part involving y in (5.30) is a com-
bination of the fractional integrals of y whose orders belong to . ~ L vo-an-m-N', 1+

Since vg — 5 =—1-p < -1, according to Remark 2.1, these integrals are proper.
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i 1 ;
= - —_ a
Vv qv vV qv \Y " \'-:
T e = e e Ly
rd
B. 1 B =2 1 B B1 d B d+1
=1 e Eo = 0 = e —ﬁl +— —1B+L
q q q q

Figure 5.1: Repartition of the orders: vy,...,v4.

« for d € N*, on the one hand, the part involving # in (5.31) is a combination of the
fractional integrals and derivatives of it whose orders belong to A, , gy, v, —an—m-N',1,
where three cases should be considered:

1. if vy —ayn < —1, this part only contains proper fractional integrals of i,

2. if -1 < vg—ay < 0, this part contains fractional integrals of i1, which are im-

proper,
3. if vg—ayn = 0, this part contains # and its fractional derivatives.

On the other hand, the part involving y in (5.31) is a combination of the fractional

integrals and derivatives of y whose orders belongto &, | _, _

m L where DZd'y
with vy =vg - d_le ford'=d-1,...,0, are previously given by proper integrals of y and
a part involving .

Thus, by grouping the integrals of y, D}y can be given by an algebraic formula as

follows:

r
D;/dy(t) :fo W, (D y@dt+U,(D, (5.37)

where U, denotes the part involving &, and W, denotes the combination of the asso-
ciated functions in the proper integrals of y. It can be seen that W,,, depends not only

on m, butalsoon ¢, vj, N, a and a; fori =0,...,N.

Consequently, the Riemann-Liouville fractional derivative of y with an arbitrary or-
der is exactly given by a new algebraic formula in Theorem 5.1, i.e. it does not contain
any source of errors in continuous noise-free case, and can provide non-asymptotic
estimations in finite-time without knowing the initial conditions of the considered sys-
tem. Moreover, the proper integrals of y can be considered as a low-pass filter in noisy
cases [71, 72]. In the next subsection, a digital fractional order differentiator is intro-

duced in discrete noisy cases.
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5.2. Algebraic fractional order differentiator

5.2.3 Digital fractional order differentiator in discrete noisy cases

From now on, the framework will be given in a noisy environment. Let y® be a discrete

noisy observation of y onI1=(0, h] cR,:
yOt) = y(t) + @ (1), (5.38)

where t; = iTs, for i =0,1,...,M, with an equidistant sampling period T = ﬁ, and ®isa
noise.

According to (5.37), the formula of DXd y contains two parts: the one given by a
proper integral of y, and the other one involving 7. In order to estimate the Riemann-
Liouville fractional derivatives of y in discrete noisy cases, D\t’d y is approximated by the

following digital fractional order differentiator: fori=1,...,M,

i
Dy y® (1) :=Ts ) wjWin(t) y*(£) + Upn(2), (5.39)
j=0
where w; € R, are the weights of a given numerical integration method. According to
the analysis in previous subsection, U, (#;) is calculated in the following way:

e the fractional integrals of 7 of order larger than 1 are calculated using a numerical
integration method;

* the fractional integrals of #i of order strictly smaller than 1 and the fractional de-
rivatives of #i are numerically calculated using the Griinwald-Letnikov scheme
given in (5.1)-(5.2).

Consequently, the digital fractional order differentiator D\,;;” y®(t;) can be used to
estimate the Riemann-Liouville fractional derivative D}y for any v, € R%, where y is
the output of the fractional order linear system defined by (5.1)-(5.2). It contains three

sources of errors:

 the numerical error due to the numerical integration method used to approxim-
ate the proper integral involving y;

* the noise error contribution of the following form:

e (1) :=Ts Y w;jWp(;) ®(t); (5.40)
Jj=0

e the numerical errors in U,,(¢;), which are due to a numerical integration method

and the Griinwald-Letnikov scheme, respectively.
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5.2. Algebraic fractional order differentiator

Firstly, it is well known that the numerical errors due to the numerical integration
method converge to 0 when Ty — 0 [168]. Secondly, as shown previously, the Griinwald-
Letnikov scheme is used to approximate D% with —1 < ain the calculation of U,,(t;). It
is shown in [92] that in the case of —1 < a < 0 (resp. a > 0), if & is continuous on I (resp. @
is [a]-times continuously differentiable on I), the produced numerical error converges
to 0 when T; — 0. Thirdly, using a similar way as done in Chapter 4, it can be shown
that the noise error contribution e® (¢;) converges to 0 in mean square when T — 0,
if the noise {®(1), t € I} is assumed to be a continuous stochastic process satisfying the
conditions (C4) — (Cg). Consequently, both the numerical errors and the noise error
contribution can be reduced in the proposed digital fractional order differentiator by
decreasing the sampling period Tj.

When the sampling period is set, by applying (C4)-(Cg) and the properties of the

mean value and the variance functions to (5.40), we get:
Elep (£:)] =0, (5.41)

Var [ef), ()] < 8T5 Y wi Wy, (1)). (5.42)
j=0

Hence, similar to Chapter 4, by using the Bienaymé-Chebyshev inequality and (5.42)

the following error bound can be obtained:

p i
| (1)] < Y52 T, (Z wﬁw;(tj)) : (5.43)
=0

where a p<Y b means that the probability for a real number b to be larger than another
real number a is equal to py with 1 - % <py<L

Finally, according to the previous analysis, the following algorithm is required to
realize the proposed differentiator D,¢ y®(t;), which is devoted to applying Proposition
5.3, Theorem 5.1, and contains the following steps:

Step 1. using (5.22), find N/;
Step 2. using N’ and Proposition 5.3, find the coefficient vector c = (cy, ..., )
Step3. findpe [0,%[ and d such that vg=—1+ % —B;

Step 4. using B, N’ and c, calculate D}°y by (5.30), where all the integrals D;*y and
D; %i are proper with a = 1, and calculated using a numerical integration method;

Step 5. usingd, 6, N’ and ¢, calculate D:d' yby (5.31),ford' =1,...,d inaloop. For each
d’, the fractional integrals and derivatives D;*y (resp. D;%u) in the expression of

D:d' y are calculated as follows:
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5.2. Algebraic fractional order differentiator

e ifa = 1, they are calculated using the numerical integration method;
« otherwise they are previously calculated (resp. calculated using the Griinwald-

Letnikov scheme).
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5.3 Simulation results

In order to show the accuracy and the robustness of the proposed fractional order dif-

ferentiator, some numerical results are presented in this section.

Example 5.2 [n most cases, neither the output of a fractional order linear system nor its
fractional derivatives can be analytically calculated. In order to obtain the exact value
of the sought fractional derivative, the following academic model is considered in this
example: ¥V t €]0,30],

4 i
S aD3y(t) =D+ 175 +173, (5.44)
i=0

where a; =1 fori=0,...,4, 4(t) = iaiDtéy(t), y() =y1(8) + y2(0), y1(£) =sin(wy t) and
Y2(t) =cos(waf) withw; =1.2 and l(x_)g =0.6. The analytical Riemann-Liouville fractional
derivatives of y1 and y, can be given by [74] (2.42)-( (2.43)).

Dt%y will be estimated in the discrete noisy case with t; = iT; € 1=10,30], T, = 0.01,
fori=0,...,3000, and y®(t;) = y(t;) + d®(t;), where the noise {®(t;)} is simulated from
a zero-mean white Gaussian iid sequence, and the value of & is adjusted such that
SNR = 15dB. The original output y and the discrete noisy output y® are shown in Fig-
ure 5.2. Then, the fractional order differentiator proposed in (5.39) is applied, where the
trapezoidal numerical integration method is considered.

Firstly, it is shown how to choose the value of the design parameter m using the noise

error bound obtained in (5.43) with y = 2. Since the value of v is set in Theorem 5.1
1
2_1

with vy = % andp = 5 — 3, the expression of D2y can be obtained. Thus, the expression
of W,,, can be deduced in (5.37). Then, by taking different values of m, the values of the
error bound obtained in (5.43) can be calculated at each t; fori=2,...,3000. Using such
a way, the variation with respect to m of the noise error bound can be observed in Figure
5.3. According to Figure 5.3, the influence of m on the noise error contribution can be
deduced. Hence, in order to reduce the noise error contribution, the following values of
m are chosen: m=2 for t; € [2T,13], and m = 10 for t; € [13 + T, 30].

Secondly, in order to compare with the proposed method, the fractional order Le-
gendre differentiator proposed in [62] is applied. The latter is a model-free differentiator
and obtained by a polynomial approximation method. Hence, it contains a truncated
term error which can be significantly reduced by admitting a time-delay. Consequently,
this differentiator depends on two design parameters: the order of the used polynomial
N and the time-delay 9. According to the analysis done in [62], the design parameters
are set in this example as follows: © =0.8, N=6 for t; € [0.9,8], N=12 for t; € [8 + T, 18],
andN =20 for t; € [18+ T, 30].

1
Finally, the obtained estimations of D} y are shown in Figure 5.4(a). It can be seen
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Figure 5.2: Example 5.2 The output and its discrete noisy observation.
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0.1

Figure 5.3: Example 5.2 The variation of the noise error bound given in (5.43) with m=2,...,10.
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3ra
] Analytical derivative
25ry == Proposed Estimator
L = = = |egendre Estimator
L]

1
(a) Estimations of D} y.

----- Proposed Estimator
= = = Shifted Legendre Estimator
n

1
(b) Absolute estimation errors of D y.

Figure 5.4: Example 5.2 Estimations and estimation errors obtained by the proposed method
and the fractional order Legendre differentiator .
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that different from the fractional order Legendre differentiator the proposed differenti-
ator does not produce a time-delay. The reason is that the proposed method is based on
the system model. Moreover, the corresponding absolute estimation errors are shown in
Figure 5.4(b), where the one for the fractional order Legendre differentiator is obtained
by shifting the estimation to avoid the time-delay. The latter principally contains the
amplitude error (in vertical direction) and the noise error contribution.

Example 5.3 In this example, the system defined in (4.109)-(4.110) is considered with
the same initialization.

Assume that y® (t;) = y(t;) +0®(t;) is the noisy observation of the output y onl = [0,5],
where t; = iT; with T = 0.001, and {c®(t;)} is a zero-mean white Gaussian noise with
SNR=22dB. The output and the associated noisy output are shown in Figure 5.5.

Firstly, using a similar way as done in Example 1, the design parameter m needs
10 be set. For this purpose, D%y is considered as an example. Then, the values of the
corresponding error bound are calculated at each t; fori=2,...,5000, and the variation
with respect to m is shown in Figure 5.6. Hence, according to Figure 5.6, the following
values of m are chosen: m =2 for t; € [2T,,0.3], and m =10 for t; € [0.3 + T, 5].

Secondly, since the analytical Riemann-Liouville fractional derivatives of the output
are unknown, the Griinwald-Letnikov scheme is applied in the noise-free case to verify
the efficiency of the proposed fractional order differentiator.

Thirdly, the obtained estimation of D%3y is shown in Figure 5.7(a). Moreover, by
applying the recursive way proposed in Theorem 5.1, D8y is also estimated using the
previous design parameter values. The obtained estimation is shown in Figure 5.7(b).

Finally, recall that the advantages of the proposed differentiator with respect to the
one obtained in Chapter 4 is stated in Remark 5.5. In particular, the latter cannot be used
1o estimate D9y and D9y for the considered system. In order to compare further these
two differentiators, they are both applied to estimate D%y, wherem =2 fort; € [2T5,0.4],
and m =14 for t; € [0.4+Ts, 5]. The obtained results and the related noise error contribu-
tions are shown in Figure 5.8. Consequently, it can be seen that both methods give good
results and the noise error produced by the proposed differentiator is a little smaller. In
fact, the idea of both differentiators is to use an integral involving a designed function
to reduce the noise effect in y. Since these two differentiators are constructed by two dif-
ferent methods, the designed functions are different. As shown previously, the designed
function isW,, for the proposed method. Moreover, since these designed functions can be
calculated offline, as well as the ones associated to u, the algorithm of each differentiator
can be realized only using two scalar products of vectors in online applications.
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Figure 5.5: Example 5.3 The output and its discrete noisy observation of a fractional electrical

circuit model.
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Figure 5.6: Example 5.3 The variation of the noise error bound given in (5.43) with m=2,...,10.
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(a) Estimations of D?'s .
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(b) Estimations of D%8y.

Figure 5.7: Example 5.3 The numerical calculations obtained by the Griinwald-Letnikov
scheme in discrete noise-free case and the estimations obtained by the proposed method in

the discrete noisy case.
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(b) Absolute noise errors of th y.

Figure 5.8: Example 5.3 Estimations and estimation errors obtained by the proposed method

and the modulating functions method [1].
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5.4 Conclusions

In this chapter, a new algebraic and robust fractional order model-based differentiator
was proposed. It can be applied to estimate the fractional derivative of the output with
an arbitrary order both for the systems modeled by the pseudo-state space representa-
tion and the ones modeled by a fractional order differential equation without knowing
the initial conditions. Firstly, by applying a designed operator, the considered system
was transformed into a fractional order integral equation, where all the unknown ini-
tial conditions were eliminated. Then, based on the obtained equation, the desired
fractional derivative was exactly given by a new algebraic formula using a recursive
way. This formula does not contain any source of errors in continuous noise-free case.
Hence, it can provide estimations in finite-time. Secondly, a digital fractional order dif-
ferentiator was introduced in discrete noisy cases. Finally, numerical results were given
to show the accuracy and the robustness of the proposed fractional order differentiator.
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Chapter 6

General conclusions and perspectives

6.1 Conclusions

This PhD thesis was devoted to estimating the pseudo-state and the fractional derivat-
ive of the output with an arbitrary order for a class of commensurate fractional order
linear systems which can be transformed into the Brunovsky’s observable canonical
form of pseudo-state space representation with unknown initial conditions. For this
purpose, two algebraic non-asymptotic methods were developed, which exhibits good
robustness properties with respect to corrupting noises.

Firstly, the ideas of modulating functions method on parameter identification and
derivative estimation for integer order linear systems were recalled in Chapter 3 via
simple examples: we transform the studied differential equation into an integral equa-
tion by applying the integration by parts formula, where the desired boundary values
such as the derivative values or the initial conditions, can be kept thanks to the prop-
erty of the modulating functions and the undesired ones can also be eliminated. Then,
it was explained how to extend the method to estimate the fractional derivatives of the
output of the studied integer order linear system: we transform the studied integer or-
der differential equation into a fractional order one, and we apply the fractional order
integration by parts formulae. By changing the properties of the modulating functions,
it was shown that this method can cope with different situations: the cases of zero ini-
tial conditions with a bias or not, and the case of non-zero initial conditions. All the
used properties are listed in Annexe A. The basic ideas on the construction of the re-
quired modulating functions were also given: we used polynomials and we find the
unknown coefficients by solving linear systems. Finally, a proposed differentiator was
applied to design a fractional order PI*DM controller for an integer order linear system
in numerical examples. Moreover, it was shown that the obtained fractional order dif-
ferentiators can be applied for the signals satisfying an integer order linear differential

equation.
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Secondly, based on the ideas explained in Chapter 3, a non-asymptotic pseudo-
state estimator was constructed for the studied systems. In order to apply the modu-
lating functions method, the studied system was transformed into a set of fractional
order linear differential equations involving the initial values of the fractional sequen-
tial derivatives of the output. Then, algebraic integral formulae were exactly obtained
for the former initial values and the commensurate fractional order derivatives of the
output by a recursive way, where the required modulating functions were constructed.
These formulae were used to calculate the pseudo-state of the system in continuous
noise free case, which can provide estimations with convergence in finite-time. In this
chapter, a new fractional order .#,-like observer was also designed.

Thirdly, inspired by the modulating functions method developed in Chapter 4, an
operator-based algebraic method was introduced in Chapter 5 to estimate the frac-
tional derivative with an arbitrary order of the output for the considered systems. The
designed operator was applied to eliminate the fractional sequential derivative initial
values involved in the obtained fractional order linear differential equation and to cal-
culate the desired fractional derivative by a new algebraic formula using a recursive
way. In particular, this method can also be applied for the fractional order systems
modeled by a commensurate fractional order linear differential equation.

Fourthly, both the estimators obtained in Chapter 4 and Chapter 5 were studied in
discrete noisy case, each of which contains the numerical error due to a used numerical
integration method, and the noise error contribution due to a class of stochastic pro-
cesses. In particular, the noise error contribution was analyzed, where an error bound
useful for the selection of design parameter was provided. Then, numerical examples
were given to illustrate the accuracy, the robustness and the non asymptotic property
of the proposed estimators, where some comparisons to other methods are shown.

Finally, let us outline in the following table the recent works on the applications of

the modulating functions methods in different situations.

y D y| D*y | x | CL

IOLDE | C.I.=0+bias [6] X X
C.I.#0 [150] (62, 67] X | [7]

FOLDE | C.I. = 0+bias (3] X X
C.I.#0 * X | NY

PSSP C.IL=0 [5] NY | [5] | X
C.I.#0 [1] (2,4] | [1] | [1]

where IOLDE (resp. FOLDE) refers to the systems modeled by an integer order (resp.
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a fractional order) linear differential equation, PSSP refers to the systems modeled by
the pseudo-state space representation, C.I. refers to initial conditions, y is the output,
x is the pseudo-state, y is the integer order derivative of y, Dg y is the commensur-
ate fractional order derivative of y, D*y is the fractional derivative of y with an arbit-
rary order, X means the situation is not applicable, and NY means the situation is not
considered yet. * this situation has been considered by the algebraic parametric es-
timation method [63]. Remark that the estimators obtained in the PSSP case can also
be applied for the FOLDE case.

6.2 Future works

Fractional calculus is promising in the domain of automatic control. Based on the res-

ults obtained in this thesis, several perspectives should be considered:

e Extend the modulating functions method to the fractional order systems with

tim-delay.
e Extend the modulating functions method to fractional order nonlinear systems.

* Extend the modulating functions method to fractional order partial differential
equation systems.
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Appendix A

Appendix: different properties of

Modulating functions

Classic modulating function : Let [a, b] c R, N e N*, and g be a function satisfying the
following properties: for k=0,1,...,N—1,

(P1): g€ €N(la,b).

P,): g®(a)=o0.

(P3): g® () =0.

Generalized modulating functions:

Py): gX (b) = 6.
N-1-i

(Ps): Gi(b)=8;nwhere Gi(b)= Y. (~D¥ai1:18® b).
k=0

N fe i
(Pe): ) a; CDW gn(1)dt=0.
i=0

a

t .
(P7): f (T—a)ﬁ_lgn(‘l’)d‘fzo.

t Lot 1) if (ny k):(.,)i,))
(Pg) : f h]',n,k(T)Tif T gy = 7
0

0, else.

t iy
(Py): V(j, i’)edsj,f gin(@ T gr g,
0



Résumé étendu en francais

Cette these a été consacrée a estimer le pseudo-état et la dérivée fractionnaire de la
sortie avec un ordre quelconque pour une classe de systémes linéaires d’ordre fraction-
naire commensurable qui peuvent étre transformés sous la forme canonique observ-
able de Brunovsky avec des conditions initiales inconnues. A cet effet, deux méthodes
algébriques non-asymptotiques ont été développées, qui présentent de bonnes pro-
priétés de robustesse par rapport aux bruits. Premierement, les idées de la méthode
des fonctions modulatrices sur 'identification des parametres etl’estimation des dérivées
pour les systemes linéaires d’ordre entier ont été rappelées au Chapitre 3 al’aide des ex-
emples simples: nous transformons I’équation différentielle étudiée en une équation
intégrale en appliquant la formule d’intégration par parties, ou les valeurs aux bords
souhaitées telles que les valeurs des dérivées ou les conditions initiales, peuvent étre
conservées grace aux propriétés des fonctions modulatrices et des valeurs non désirées
peuvent également étre éliminées. Alors, il a été expliqué comment étendre la méthode
pour estimer les dérivées fractionnaires de la sortie du systeme linéaire d’ordre entier
étudié: nous transformons I'équation différentielle étudiée en une équation différen-
tielle d’ordre fractionnaire, et nous appliquons la formule de 'intégration par parties
d’ordre fractionnaire. En changeant les propriétés des fonctions modulatrices, il a été
montré que cette méthode peut étre appliquée aux situations différentes: les cas de
conditions initiales nulles avec ou sans biais, et le cas avec des conditions initiales non
nulles. Toutes les propriétés utilisées ont été énumérées dans Annexe A. Les idées
de base sur la construction des fonctions modulatrices requises ont également été
données: nous utilisons des polyndmes et nous trouvons les coefficients inconnus en
résolvant des systemes linéaires. Enfin, un différentiateur proposé a été appliqué pour
concevoir un contréleur PID d’ordre fractionnaire pour un systeme linéaire d’ordre
entier dans des exemples numériques. De plus, il a été montré que les différenti-
ateurs d’ordre fractionnaire obtenus peuvent étre appliqués aux signaux satisfaisant

une équation différentielle linéaire d’ordre entier.

Deuxiemement, basé sur les idées exposées au Chapitre 3, un estimateur non-asymp
-totique de pseudo-état a été construit pour les systemes d’ordre fractionnaire étudiés
au Chapitre 4. Afin d’appliquer la méthode des fonctions modulatrices, le systéme
étudié a été transformé en un ensemble des équations différentielles linéaires d’ordre
fractionnaire impliquant les valeurs initiales des dérivées fractionnaires séquentielles
de la sortie. Ensuite, des formules intégrales algébriques ont été obtenues pour les
valeurs initiales précédentes et les dérivées fractionnaires commensurables de la sortie
d’'une maniere récursive, ou les fonctions modulatrices nécessaires ont été construites.

Ces formules ont été utilisées pour calculer le pseudo-état du systéme en continu cas

1\Y



sans bruit, qui peuvent fournir des estimations en temps fini. Dans ce chapitre, un
nouvel observateur d’ordre fractionnaire de type /£, a également été concu.

Troisiemement, inspirée par la méthode des fonctions modulatrices développée
au Chapitre 4, une méthode algébrique basée sur un opérateur a été introduite au
Chapitre 5 pour estimer la dérivée fractionnaire avec un ordre quelconque de la sortie
pour les systemes considérés. Le opérateur congu a été appliqué pour éliminer les
valeurs initiales des dérivées fractionnaires séquentielles impliquées dans I’équation
différentielle linéaire d’ordre fractionnaire obtenu et pour calculer la dérivée fraction-
naire désirée par une nouvelle formule algébrique utilisant un algorithme récursive.
En particulier, cette méthode peut également étre appliquée aux systémes d’ordre frac-
tionnaire modélisés par une équation différentielle linéaire d’ordre fractionnaire com-
mensurable.

Quatriemement, les deux estimateurs obtenus au Chapitre 4 et au Chapitre 5 ont
été étudiés dans le cas discret et bruité, dont chacun contient I'erreur numérique due
a la méthode d’intégration numérique utilisée, et I'erreur de bruit due a une classe de
processus stochastiques. En particulier, I'erreur de bruit a été analysée, ou une major-
ation d’erreur liée pour la sélection du parameétre de conception a été fournie. Ensuite,
des exemples numériques ont été donnés pour illustrer la précision, la robustesse et
la propriété non-asymptotique des estimateurs proposés, ou certaines comparaisons

avec d’autres méthodes sont montrées.
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Méthodes d’estimation non-asymptotiques des systemes d’ordre
fractionnaire et applications

Résumé :

Cette theése vise a concevoir des estimateurs non-asymptotiques et robustes pour les systemes
linéaires d'ordre fractionnaire commensurable dans un environnement bruité. Elle traite une
classe des systemes linéaires d'ordre fractionnaire modélisées par la dite pseudo représentation
d'état avec des conditions initiales inconnues. Elle suppose également que les systemes étudiés
ici peuvent étre transformés sous la forme canonique observable de Brunovsky. Pour estimer
le pseudo-état, la forme précédente est transformée en une équation différentielle linéaire
d'ordre fractionnaire en prenant en compte les valeurs initiales des dérivées fractionnaires
séquentielles de la sortie. Ensuite, en utilisant la méthode des fonctions modulatrices, les
valeurs initiales précédentes et les dérivées fractionnaires avec des ordres commensurables de
la sortie sont données par des formules algébriques avec des intégrales a I'aide d'une méthode
récursive. Ainsi, ces formules sont utilisées pour calculer le pseudo-état dans le cas continu sans
bruit. En outre, elle fournit un algorithme pour construire les fonctions modulatrices requises
a l'accomplissement de I|'estimation. Deuxiemement, inspirée par la méthode des fonctions
modulatrices développée pour I'estimation de pseudo-état, une méthode algébrique basée sur
un opérateur est introduite pour estimer la dérivée fractionnaire avec un ordre quelconque
de la sortie pour les systemes considérés. Cet opérateur sert a annuler les valeurs initiales
non désirées, puis permet d'estimer la dérivée fractionnaire souhaitée par une nouvelle formule
algébrique a |'aide d'une méthode récursive. Troisiemement, |I'estimateur du pseudo-état et le
différenciateur d'ordre fractionnaire obtenus précédemment sont étudiés respectivement dans
le cas discret et bruité. Chacun d’'entre eux contient une erreur numérique due a la méthode
d'intégration numérique utilisée et une autre due au bruit. En particulier, elle fournit une
analyse pour diminuer la contribution du bruit au moyen d’'une majoration d'erreur qui permet
de sélectionner les degrés optimaux des fonctions modulatrices a chaque instant. Ensuite,
des exemples numériques sont donnés pour mettre en évidence la précision, la robustesse et
la propriété non-asymptotique des estimateurs proposés. En outre, les comparaisons avec
certaines méthodes existantes et avec un nouvel observateur d’ordre fractionnaire de type o
sont montrées. Enfin, elle donne des conclusions et des perspectives.

Mots clés : Systemes linéaires d'ordre fractionnaire, Pseudo représentation d'état, Méthode
des fonctions modulatrices, Méthode algébrique, Estimation non-asymptotique et robuste,
Estimateur de pseudo-état, Différentiateurs d'ordre fractionnaire, Estimateur de conditions

initiales, Observateur d'ordre fractionnaire de type Leuenberger, Observateur d'ordre fraction-

naire de type de A, Différentiateur de Legendre d'ordre fractionnaire.




Non-asymptotic method estimation and applications for

fractional order systems

Abstract :

This thesis aims to design non-asymptotic and robust estimators for a class of fractional
order linear systems in noisy environment. It deals with a class of commensurate fractional
order linear systems modeled by the so-called pseudo-state space representation with unknown
initial conditions. It also assumed that linear systems under study can be transformed into the
Brunovsky's observable canonical form. Firstly, the pseudo-state of the considered systems
is estimated. For this purpose, the Brunovsky's observable canonical form is transformed
into a fractional order linear differential equation involving the initial values of the fractional
sequential derivatives of the output. Then, using the modulating functions method, the former
initial values and the fractional derivatives with commensurate orders of the output are given by
algebraic integral formulae in a recursive way. Thereby, they are used to calculate the pseudo-
state in the continuous noise-free case. Moreover, to perform this estimation, it provides an
algorithm to build the required modulating functions. Secondly, inspired by the modulating
functions method developed for pseudo-state estimation, an operator based algebraic method
is introduced to estimate the fractional derivative with an arbitrary fractional order of the
output. This operator is applied to cancel the former initial values and then enables to estimate
the desired fractional derivative by a new algebraic formula using a recursive way. Thirdly, the
pseudo-state estimator and the fractional order differentiator are studied in discrete noisy case.
Each of them contains a numerical error due to the used numerical integration method, and
the noise error contribution due to a class of stochastic processes. In particular, it provides
an analysis to decrease noise contribution by means of an error bound that enables to select
the optimal degrees of the modulating functions at each instant. Then, several numerical
examples are given to highlight the accuracy, the robustness and the non-asymptotic property
of the proposed estimators. Moreover, the comparisons to some existing methods and a new
fractional order #.-like observer are shown. Finally, conclusions are outlined with some
perspectives.

Index Terms: Fractional order linear systems, Pseudo-state space representation, Modu-
lating functions method, Algebraic method, Non-asymptotic and robust estimation, Pseudo-
state estimator, Fractional order differentiators, Initial condition estimator, Fractional order
Luenberger-like observer, Fractional order #,-like observer, Fractional order Legendre differ-
entiator.




