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Approches Paramétriques pour la Modélisation

de Champs de Tenseurs de Structure Locaux et

Applications en Analyse de Texture
- résume étendu -

"Les racines des mots sont-elles carrées?"

—Eugène Ionesco, Dramaturge Roumano-Français

Contexte

Le tenseur de structure local (TSL) [Bigün 1987, Knutsson 1989] est un outil communément uti-

lisé en vision par ordinateur pour décrire la structure locale d’une image. Il peut être utilisé pour

différentes tâches telles que la détection des bords ou des coins d’objets présents sur une image

[Harris 1988] ou le filtrage et le rehaussement d’images [Weickert 2014]. Le tenseur de structure est

principalement utilisé pour décrire la géométrie d’images texturées, en particulier celles présentant

une tendance directionnelle.

Défini en chaque pixel d’une image comme étant la matrice de covariance locale des gradients,

le tenseur de structure permet d’extraire une direction dominante ainsi qu’un degré d’anisotropie

indiquant la cohérence des gradients autour de la direction estimée. Si le tenseur de structure est un

outil couramment employé en analyse [Rousson 2003, Pham 2015b] et parfois en synthèse de texture

[Akl 2015], sa modélisation probabiliste a rarement été abordée dans la littérature. Dans un contexte

d’estimation et de segmentation jointes, une approche reposant sur la modélisation du champ des

orientations locales par des distributions de Von Mises [Mardia 2000] a été précédemment proposée

[Da Costa 2012]. Dans un contexte de segmentation, une autre approche s’appuie conjointement sur

la texture et la couleur [de Luis-García 2008]. Il s’agit d’utiliser la divergence de Kullback-Leibler

entre deux modèles Gaussiens comme mesure de dissimilarité entre tenseurs, considérés comme

étant chacun la matrice de covariance d’une loi normale.

En tant que matrices de covariance, les tenseurs de structure appartiennent à la variété rie-
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Figure 1: Sous-espace occupé par les matrices symmétriques semi-définies positives dans l’espace
vectoriel R3 correspondant aux matrices symétriques de taille 2 × 2.

mannienne des matrices symétriques semi-définies positives. Comme conséquence, l’utilisation

du TSL pose un problème formel de géométrie de l’information et ne peut se faire en s’appuyant

sur les outils classiques de la géométrie euclidienne. Comme dans le cas de tenseurs de diffusion

[Lenglet 2006, Dryden 2009], la manipulation de TSL doit s’appuyer sur des outils et des métri-

ques non-euclidiens, adaptés à la géométrie de la variété Riemannienne. Le sous espace occupé

par les matrices symétriques semi-définies positives dans l’espace de matrices symétriques de forme

générale
( σxx σxy
σxy σyy

)
est illustré dans la Figure 1.

Objectifs

Cette thèse porte sur des méthodes probabilistes pour la modélisation de champs de tenseurs de

structure calculés sur des images texturées. Les outils euclidiens s’avérant inadaptés au calcul ten-

soriel, des alternatives non-euclidiennes sont étudiées. Plus précisément, des espaces métriques

riemanniens sont explorés dans le but de construire des canevas méthodologiques adaptés à la des-

cription statistique de champs de TSL. Des approches pour décrire les lois marginales de tenseurs

de structure sont analysées dans un premier temps. Ensuite, des approches de modélisation de dis-

tributions jointes de TSL sont explorées. Ces dernières permettent la description des dépendances

spatiales et multi-échelles d’un champ de tenseurs de structure. De plus, des mesures de dissimila-

rité sont associées aux modèles statistiques proposés permettant de comparer les champs de tenseurs

de structure calculés sur différentes images texturées.

Les potentialités des méthodes paramétriques proposées sont illustrées dans deux contextes ap-

plicatifs. Dans un premier temps, ces modèles sont employés dans un objectif de reconnaissance

de textures, au travers de schémas d’indexation et de classification d’images. Puis, les capacités

descriptives de ces modèles sont évaluées de façon plus approfondie au travers d’expérimentations
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de synthèse de champs de TSL.

Méthodologie

Deux canevas méthodologiques riemanniens sont explorés pour la manipulation de matrices de co-

variance symétriques définies positives (SDP). Ils reposent respectivement sur les métriques affine-

invariante (AI) et log-euclidienne (LE), disposant des propriétés d’invariance les plus complètes

[Dryden 2009, Jayasumana 2013] parmi toutes les alternatives non-euclidiennes étudiées. Chaque

cadre méthodologique s’articule autour de la définition d’un modèle gaussien. Afin d’enrichir les

capacités descriptives de ces modèles, leurs lois de mélange associées sont également exploitées.

Des solutions pour évaluer la dissimilarité entre les différents modèles estimés sont aussi proposées.

Le modèle affine-invariant de matrices de covariances

Soit P2 l’espace de matrices 2 × 2 réelles et symétriques définies positives. Un modèle Gaussien

Riemannien, proposé par Said et al. [Said 2017], est défini sur l’espace P2. Sa densité de probabilité

est :

p(Y|M, σ) =
1

Z(σ)
exp

[
−

d2(Y,M)
2σ2

]
, (1)

où M ∈ P2 etσ ∈ R∗+ sont le barycentre et la dispersion de la distribution et Z(σ) est une constante de

normalisation dépendant uniquement du paramètre de dispersion σ. La fonction d : P2 × P2 → R+

représente la distance géodésique appelée également distance de Rao [James 1973] :

d2(Y1,Y2) = Tr
[
logm2

(
Y
− 1

2
1 Y2Y

− 1
2

1

)]
, (2)

où logm désigne le logarithme matriciel.

La formulation du maximum de vraisemblance ne permet pas d’aboutir à des expressions analy-

tiques simples pour l’estimation des paramètres. En revanche, des algorithmes d’estimation récur-

sifs sont utilisés. A cet effet, l’algorithme de descente de gradient Riemannien et l’algorithme de

Newton-Raphson sont employés respectivement pour l’estimation du barycentre et de la dispersion

du modèle gaussien riemannien.

Le modèle log-euclidien de matrices de covariances

L’espace log-euclidien [Arsigny 2005] autorise la représentation vectorielle d’une matrice de cova-

riance et sa manipulation dans le domaine des logarithmes matriciels par les outils classiques de la

géométrie euclidienne. En conservant une grande majorité des propriétés d’invariance associées à la

métrique AI, la métrique LE présente l’avantage de mettre en œuvre des algorithmes de complexité

calculatoire bien plus faible.
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Le passage d’une matrice de covariance Y à l’espace log-euclidien repose sur le calcul de son

logarithme matriciel. Le calcul du logarithme matriciel d’une matrice SDP aboutit toujours à une

matrice symétrique dont les trois composantes peuvent être écrites sous la forme vectorielle ~YLE:

YLE = logm(Y) =

yLExx yLExy

yLExy yLEyy

 , ~YLE =
[
yLExx ,

√
2yLExy , yLEyy

]†
, (3)

où † est l’opérateur transposé.

Un modèle gaussien multivarié de dimension 3 est considéré pour caractériser des échantillons

de matrices de covariance de taille 2 × 2 dans l’espace log-euclidien. Ce modèle est paramétré par

une moyenne µ de taille 3 × 1 et une matrice de covariance Σ de taille 2 × 2.

L’estimation des paramètres des lois peut alors se faire au sens du maximum de vraisemblance.

L’utilisation des formes analytiques des estimateurs disponibles pour les lois normales multivariées

permet de réduire de façon significative la complexité calculatoire par rapport aux approches affine-

invariantes évoquées.

Pour les deux modèles gaussiennes associées aux espaces AI et LE, des modèles de mélanges

sont également considérées. Dans ces cas, l’estimation de paramètres repose sur l’algorithme Ex-

pectation Maximisation.

La version symétrique de la divergence de Kullback-Leibler est considérée pour évaluer la dissi-

milarité entre deux modèles statistiques définis sur l’espace AI ou sur l’espace LE. Le modèle Gaus-

sien multivarié est le seul parmi ceux considérés pour lequel la divergence de Kullback Liebler est

disponible sous une forme analytique. Dans toutes les autres cas, des solutions d’estimation basées

sur un échantillonnage de Monte Carlo sont par conséquent proposées pour évaluer les divergences.

Utilisation de modèles pour la description de champs de TSL des images texturées

Les approches méthodologiques proposées sont utilisées pour la modélisation de champs de tenseurs

de structure calculés sur des textures réelles.

Le calcul de tenseur pour une image I repose tout d’abord sur l’estimation de son champ gradient

∇I. Dans ce mémoire le champ gradient est obtenu en convoluant l’image avec des filtres dérivatifs

gaussiens Gx et Gy, d’écart type σG :

∇I =
[
Ix, Iy

]†
=

[
I ∗Gx, I ∗Gy

]†
, (4)

où ∗ désigne l’opération de convolution et Ix et Iy sont respectivement les dérivées partielles hori-

zontales et verticales de l’image I. Ensuite, le tenseur de structure est estimé en chaque point en
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Figure 2: Exemples de textures de cultures de parcs ostréicoles et champs d’orientation associés.

moyennant le produit ∇I∇I† à l’aide d’un filtre convolutif gaussien WT d’écart type σT :

Y = WT ∗∇I∇I† = WT ∗

IxIx IxIy

IxIy IyIy

 (5)

Le lissage spatial confère une certaine robustesse au bruit en permettant simultanément de paramé-

trer l’échelle à laquelle l’analyse de texture est menée. De manière générale, σT est choisi en

fonction de la taille des motifs texturés présents dans l’image à traiter.

L’information géométrique extraite par le tenseur de structure peut être exploitée à travers sa

diagonalisation. Le vecteur propre associé à la valeur propre la plus élevée indique l’orientation

locale θ du gradient. La relation entre les deux valeurs propres fournit une mesure de l’anisotropie

locale. Plus précisément, un large écart entre les valeurs propres est un indice de forte anisotropie

locale. Par contre, dans le cas où les valeurs propres sont proches, l’anisotropie locale est faible.

Une façon usuelle de mesurer l’anisotropie locale est de calculer le rapport entre leur différence et

leur somme.

Les champs de TSL peuvent être représentés à travers des cartes scalaires de paramètres calculés

en chaque point d’une image. Ces paramètres sont l’orientation, les valeurs propres, la mesure de

l’anisotropie ou de l’énergie locale qui est la somme des valeurs propres. Un exemple de champ

d’orientation est illustré dans la Figure 2. Par ailleurs, le champ de TSL peut également être repré-

senté par un champ d’ellipses [Ennis 2006] dont les deux axes sont orientés selon les directions des

vecteurs propres et sont de longueurs égales aux racines carrées des valeurs propres.

Les modèles statistiques définis sur les métriques AI and LE sont tout d’abord utilisés pour

décrire des distributions marginales de TSL. L’ajustement des modèles théoriques aux distributions

observées de TSL est évalué de manière expérimentale sur un ensemble de textures composées
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d’un spectre assez large de motifs structuraux. Cette étude a montré des capacités descriptives

supérieures pour les modèles log-euclidiens. Dans certains cas où des modèles de mélange des

gaussiennes riemanniennes ont été nécessaires pour décrire la distribution observée de champs de

TSL, une seule loi gaussienne multivariée dans l’espace LE s’est avérée suffisante pour caractériser

la complexité d’information géométrique exprimée par le champs de tenseurs de structure. Ces

résultats sont partiellement justifiés par un nombre de degrés de liberté supérieur des modèles LE

par rapport aux modèles AI, pour un ordre de modèle identique dans les deux espaces.

Les modèles LE sont étendus pour décrire des distributions jointes de TSL dans l’objectif de

caractériser à la fois les dépendances spatiales et multi-échelles au sein de champs de tenseurs de

structure. Afin de caractériser les dépendances spatiales, des voisinages de tenseurs de structure sont

considérés. Puis, des tenseurs étendus sont construits en chaque point en concaténant la représenta-

tion vectorielle LE correspondante à tous les tenseurs appartenant au voisinage considéré. Ainsi, en

considérant un voisinage de p pixels, le tenseur étendu dans un point est représenté par un vecteur de

dimension 3× p. Un modèle gaussien multivarié 3× p ou un modèle de mélange de lois gaussiennes

multivariées peuvent être utilisés par la suite pour caractériser le champ de tenseurs étendus. Afin

de caractériser les dépendances multi-échelles, des champs de tenseurs sont tout d’abord calculés

à plusieurs échelles d’analyse. Ceci correspond, en pratique, à calculer des champs de TSL pour

différentes valeurs du paramètre σT . De manière similaire au cas de modélisation des dépendances

spatiales, un TSL étendu est construit en chaque point en concaténant les formes vectorielles LE

de TSL à la position considérée et à toutes les échelles d’analyse. Ensuite, les champs de tenseurs

étendus peuvent être décrits par des modèles LE de dimensions supérieures.

Si les tenseurs étendus sont relativement simples à former, leur modélisation statistique est

non-triviale. L’augmentation de la dimension de l’espace d’observation ainsi qu’un ensemble

d’observation limité par la taille de l’image texturée et les effets de bords associés induisent des

instabilités dans les processus d’inférence statistique.

L’invariance à la rotation est souvent une propriété requise pour les méthodes d’analyse de tex-

tures, notamment dans le cas des applications traitant des images texturées anisotropes. A cet effet,

plusieurs stratégies sont proposées pour les méthodes paramétriques de modélisation de champs

de tenseurs de structure. Ces stratégies s’articulent autour de deux axes : des méthodes basées

sur l’estimation d’une tendance directionnelle globale et des méthodes reposant sur une recherche

exhaustive, pour lesquelles la meilleure ressemblance entre deux modèles statistiques est recherchée

en estimant les modèles statistiques sur des champs de tenseurs préalablement réorientés selon un

ensemble prédéfini d’orientations. La deuxième stratégie est particulièrement adaptée dans les cas

de textures pour lesquelles la notion d’orientation globale est ambiguë.
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Application à l’analyse de textures. Procédés expérimentaux pour éva-

luer les potentialités des approches proposées.

Application en reconnaissance de texture

Les approches basées sur la modélisation statistique de TSL sont appliquées à la reconnaissance

de textures, sur plusieurs bases de données regroupant des images de télédétection très haute ré-

solution et des images de matériaux carbonés issues de la microscopie électronique à transmission

haute résolution. Deux protocoles expérimentaux sont considérés : un protocole d’indexation et un

protocole de classification supervisée.

Les approches LE et AI pour décrire les distributions marginales de TSL sont évaluées, dans un

premier temps, dans un contexte d’indexation sur une base de données de parcs ostréicoles, com-

posée de trois classes : cultures ostréicoles sur table (C1), cultures ostréicoles en friche (C2) et estran

(C3). Les textures dans les différentes classes sont caractérisées par différents degrés d’anisotropie,

allant d’un fort caractère anisotrope (C1) à une anisotropie très faible (C3).

Pour chaque métrique, le champ de TSL est décrit par le barycentre (M - AI et µ - LE), une

loi gaussienne (GAI et GLE) ainsi qu’un mélange de 3 lois gaussiennes (3GAI et 3GLE). Les per-

formances des méthodes reposant sur la modélisation de champs de TSL sont comparées à celles

obtenues par des méthodes de la littérature. A cet effet, des approches invariantes à la rotation de la

matrice de co-occurrence des niveaux de gris [Haralick 1973, Haralick 1979] - GLCM - et du motif

binaire local [Ojala 2002b] - LBP - sont utilisées ainsi que des méthodes basées sur la modélisation

des distributions des coefficients de sous-bande obtenus par décomposition en ondelettes de l’image

[Bombrun 2011b, Regniers 2014b, Regniers 2014c]. La méthode qui donne les meilleurs résultats

est LBP. Les résultat d’indexation afférentes à toutes ces méthodes sont synthétisés dans le Tableau

1.

Pour tous les cas, les approches LE sont plus performantes que les approches AI, en termes de

taux de reconnaissance et également en termes de temps de calcul. De plus, si sur l’espace AI,

un mélange de lois gaussiennes s’avère nécessaire pour la reconnaissance, il en est autrement sur

l’espace LE pour lequel une seule gaussienne est suffisante. De plus, les approches LE basées sur un

modèle gaussien ou sur un modèle de mélange de lois gaussiennes se sont avérées plus performantes

que les méthodes de la littérature testées sur cette base de données. Les mêmes observations ont

été noté également sur d’autres bases de données utilisées pour la reconnaissance de textures. De

plus, les résultats des approches basées sur la modélisation des champs de tenseurs se sont avérées

peu dépendantes de la nature des textures traitées, tandis que les performances des méthodes de la

littérature se sont révélés de qualité variable.

Sur l’espace LE, les modèles joints pour la caractérisation des dépendances spatiales au sein

d’un champ de TSL ont amélioré légèrement les résultats par rapport aux modèles opérant sur des

distributions marginales. La capacité intrinsèque des méthodes basées sur le tenseur de structure à



xii

Table 1: Moyenne et écart type du taux de reconnaissance moyen en indexation, calculés sur 100
répétitions du protocole sur une base de données de parcs ostréicoles, pour l’ensemble des classes
(TC) et pour chaque classe de textures C1, C2, C3.

Méthode TC C1 C2 C3
M 70.9± 3.7 70.1± 5.9 66.8± 4.4 75.7± 4.2

GAI 73.3± 3.2 69.2± 5.4 72.8± 3.7 77.8± 4.8
3GAI 77.1± 2.4 71.0± 4.7 78.8± 2.8 81.5± 4.6

µ 71.3± 3.2 71.1± 4.9 67.3± 4.0 75.6± 4.6
GLE 79.3± 2.9 77.2± 5.8 77.9± 3.3 82.8± 4.6
3GLE 79.8± 3.1 74.4± 5.5 80.9± 3.1 84.1± 4.7

GLCM 68.0± 3.1 52.4± 4.9 74.1± 3.3 77.5± 4.5
LBP 78.2± 2.7 75.6± 4.8 79.7± 3.4 79.2± 4.1
GCG 73.0± 3.1 74.9± 4.5 67.9± 4.0 76.3± 4.8

gérer l’invariance à la rotation a également été démontrés de manière expérimentale.

Application en synthèse de champ de tenseur de structure

Les capacités descriptives des modèles statistiques log-euclidiennes sont ensuite évaluées par des

simulations de synthèse de champs de TSL. A cet effet, des approches mono-échelle ainsi que des

approches pyramidales multi-échelles suivant une hypothèse markovienne sont proposées. Le prin-

cipe d’une approche pyramidale consiste à synthétiser tout d’abord le champ de tenseur à une échelle

basse résolution correspondante à l’étage le plus haut de la pyramide, et à ajouter ensuite, au fur et

à mesure, des détails plus haute résolution en descendant les étages de la pyramide. Le résultat de

synthèse obtenu à un étage donné de la pyramide est utilisé comme initialisation dans le processus

de synthèse pour l’étage suivant. Deux approches multi-échelle sont proposées. Une première ap-

proche repose sur la modélisation de voisinages mono-échelle. Dans une deuxième approche, afin

d’affecter un poids plus fort aux résultats de synthèse basse résolution, la modélisation de voisinages

bi-échelle est proposée.

La synthèse repose sur des algorithmes de relaxation itératifs stochastiques (Metropolis et Me-

tropolis - recuit simulé) et déterministe (ICM - Iterated Conditional Modes). La relaxation est

effectuée pixel par pixel tandis que les parcours classiques lexicographique et aléatoire sont utilisés.

Différents voisinages organisés en deux catégories sont également considérés : causale - lorsque

toutes les positions du voisinage correspondent à des pixels qui ont déjà été synthétisés à l’itération

courante - et non-causale, dans le cas contraire.

Les expériences sont effectuées sur des champs de TSL simulés ainsi que sur de champs de TSL

calculés sur des textures réelles.

Dans le cas de champs de TSL simulés caractérisés par des motifs structuraux de petite taille, la

synthèse aboutit à des résultats satisfaisants. De plus, les configurations des paramètres adaptés au

motif structural étudié est généralement facile à identifier. Les expériences de synthèses menées sur
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Input Texture
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TSL d’entrée

TSL synthétisé

Figure 3: Exemple de résultats de synthèse de champs de TSL (représentés par des cartes
d’orientation) pour une approche pyramidale reposant sur des voisinages mono-échelle.

des champs de TSL simulés, caractérisés par des motifs de taille plus grande, ont montré l’intérêt de

l’utilisation des approches multi-échelle. Si la synthèse à une seule échelle n’aboutit pas, en général,

à des résultats satisfaisants en utilisant des approches pyramidales, des configurations optimales

de paramètres sont relativement simples à trouver pour obtenir une synthèse quasi parfaite de la

structure du champ de TSL d’entrée.

Dans le cas des textures réelles composées de motifs structuraux de taille moyenne, les expé-

riences ont montré un difficulté de synthèse à l’échelle native. Cela peut être dû au fait que des

voisinages de taille large doivent alors être utilisés pour une caractérisation correcte du motif tex-

turé. Étant donné qu’une augmentation de la taille du voisinage implique une augmentation de la

dimension de l’espace d’observation, l’estimation de paramètres des modèles devient instable et,

comme conséquence, les résultats de synthèse sont dégradés. Les approches de synthèse pyramida-

les, permettant à réduire la taille des voisinages utilisés, sont plus adaptés dans ces cas. Un exemple
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de synthèse du champ de TSL d’une texture réelle, reposant sur une approche pyramidale à trois

échelles, est illustré dans la Figure 3. Tout en montrant un potentiel réel de description des mo-

dèles proposées, les expériences menées montrent également une grande sensibilité aux choix de

paramètres et en particulière au choix du voisinage.

Conclusion

Deux canevas paramétriques pour la description de champs de TSL calculés sur des textures réelles

ont été proposés dans ce travail. Les méthodes considérées s’articulent autour de deux métriques

riemanniennes, adaptées à la géométrie de l’espace de matrices symétriques semi-définies positi-

ves. Il s’agit, notamment, des métriques affine-invariante et log-euclidienne. Dans chacun des cas,

un modèle de distribution gaussienne et de mélange associé ont été considérés pour une analyse

statistique. Des méthodes d’estimation de leur paramètres sont proposées ainsi qu’une mesure de

dissimilarité.

Les capacités de description des modèles statistiques proposés ont été évalués à travers deux

applications.

Les approches basées sur la modélisation statistique de TSL ont tout d’abord été appliquées à la

reconnaissance de textures, sur plusieurs bases de données regroupant des images de télédétection et

des images de matériaux carbonés. Dans la plupart de cas, les approches proposées se sont avérées

plus performantes que les méthodes de l’état de l’art. Les modèles LE opérant sur des distribution

marginales ainsi que jointes de TSL se sont montrées les plus performantes en reconnaissance de

textures, dans les contextes expérimentaux considérés . La capacité intrinsèque des approches basées

sur le tenseur de structure à prendre en compte l’invariance à la rotation a également été éprouvée

de manière expérimentale.

Les approches reposant sur la métrique LE ont également été appliquées à la synthèse de champs

de TSL. A cet effet, des méthodes mono-échelle ainsi que des méthodes multi-échelle respectant une

hypothèse markovienne ont été proposées. Les expériences de synthèse menées sur des champs de

TSL à la fois simulés et calculés sur des textures réelles ont démontré un réel potentiel descriptif

des modèles considérés. Ces expériences ont également montré une forte sensibilité au choix des

paramètres qui peut s’expliquer par des instabilités d’estimation associées aux espaces de grandes

dimensions.
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Introduction

"The end is in the beginning and lies far ahead."

— Ralph Ellison, American Novelist

The local structure tensor (LST) [Bigün 1987, Knutsson 1989] is a commonly employed tool

in computer vision for describing the structure of an image. Employed on non-textured images

for tasks such as edge and corner detection [Harris 1988], the structure tensor is mainly used for

describing the underlying geometry of textured images.

Computed in each pixel as the covariance matrix of the neighbouring gradients, the LST yields

an estimation of the local orientation while associating a degree of coherence to the estimated orien-

tation. While the LST has long been used for texture analysis tasks [Rousson 2003, Pham 2015b]

or for texture synthesis [Akl 2015], its statistical modelling has rarely been addressed. For instance,

a Von Mises distribution is proposed for modelling the LST orientations, in a joint segmentation-

estimation context of a texture’s orientation field [Da Costa 2012]. Another approach consists in em-

ploying the Kullback-Leibler divergence between two Gaussians as a dissimilarity measure between

two tensors, considering the tensor as the covariance matrix of a normal law [de Luis-García 2008].

Apart from these few works, to the author’s knowledge no detailed study of LST fields observed

on real textures has been conducted in the literature, nor any experiments of statistical modelling of

LST distributions. The objectives of this work are dual. A first goal is to investigate the mathemati-

cal strategies to model and handle LST distributions. A second goal consists in assessing the ability

of such strategies to address the recognition and the synthesis of LST fields such as those observed

on real textures.

As for mathematical modelling, the approaches must be addapted to the nature of LSTs that are

defined as symmetric non-negative definite matrices. Thus, LSTs form a Riemannian manifold of

particular curved shape. In consequence, as the tools of the Euclidean geometry do not account for

the inherent curvature of the manifold, they are not adapted for handling LSTs. Similarly to the case

of diffusion tensor imaging [Lenglet 2006, Dryden 2009], non-Euclidean tools and metrics adapted

to the geometry of the LST space should be used instead.

Two complete Riemannian statistical frameworks for characterising covariance matrix sample
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sets are thus introduced. They are defined on the affine-invariant (AI) and log-Euclidean (LE) metric

spaces. Gaussian models are considered on both metric spaces, together with their mixture exten-

sions. A Riemannian Gaussian model is considered on the AI space and a multivariate Gaussian

distribution on the LE one. Solutions for parameter estimation are given and parametric dissimila-

rity measures between statistical models are proposed. The descriptive capacities of the two families

of models are assessed and compared on randomly generated sample sets of covariance matrices.

The proposed methodology for LST characterisation relies on statistically modelling marginal

and joint distributions of LSTs. Both AI and LE statistical models can be employed for characteri-

sing marginal distributions of LSTs. The models are evaluated and compared by analysing their fit to

empirical LST fields computed on a set of textures composed of a wide diversity of textural patterns.

Extensions of the LE statistical models are proposed in order to characterise joint distributions of

LSTs thus allowing the characterisation of spatial and multiscale dependencies in LST fields.

Rotation invariance is a real prerequisite in applications dealing with anisotropic textures such

as texture classification. Several strategies for ensuring rotation invariance are proposed for the LST

based methods.

The potentials of AI and LE models are assessed in the context of texture recognition. Content

based image retrieval and supervised classification experiments are performed on several datasets

composed of textured and non textured images including remote sensing data and material images.

The AI and LE statistical models for characterising marginal distributions of structure tensors are

analysed and compared. On the LE metric space, statistical models for describing joint LST dis-

tributions are evaluated too. All the proposed methods are compared with state of the art texture

analysis methods, in terms of classification accuracy, computational expenses and rotation invari-

ance capacities.

The descriptive potential of the LE statistical models is further explored in the context of LST

field synthesis. To this purpose, monoscale and multiscale pyramidal approaches for LST synthe-

sis based on a Markovian hypothesis are developed. For the multiscale pyramidal approach, two

methods are proposed. A first method consists in modelling an LST field’s spatial dependencies at

a single scale of analysis. A second method relies on statistically modelling spatial dependencies

defined at two scales of analysis. All the proposed synthesis methods are tested on LST fields that

are both artificially generated and estimated on real textures.

This thesis is organised in four chapters. The AI and LE statistical frameworks for characterising

covariance matrix sample sets are described and analysed in Chapter 1. The notion of texture is

introduced in Chapter 2, in addition to elements concerning the LST computation, decomposition

and representation. The probabilistic and parametric methodology for characterising LST fields

estimated on textured images is also described in this chapter. In Chapter 3, the performances of

the LST AI and LE statistical modelling based approaches are evaluated in the context of texture

recognition. The potential of the LE models for characterising spatial and multiscale dependencies

in LST fields is further assessed in the context of LST synthesis, in Chapter 4.



Chapter 1
Statistical Modelling on the Space of

Covariance Matrices

"The usual approach to science of constructing a mathematical model cannot

answer the question of why there should be a universe for the model to des-

cribe. Why does the universe go to all the bother of existing ?"

–Stephen Hawking, Theoretical Physicist
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4 Chapter 1. Statistical Modelling on the Space of Covariance Matrices

1.1 Introduction

Covariance matrices are symmetric and positive semi-definite matrices of particular properties. An

m × m real symmetric matrix, Y, is positive semi-definite, if the following equations hold:

Y − Y† = 0 (1.1)

and

x†Yx ≥ 0, (1.2)

where † stands for the matrix transpose and x , 0 is a column vector belonging to Rm. Equation

(1.2) implies that:

det(Y) ≥ 0. (1.3)

Namely, the determinant of Y is positive. In addition, the eigenvalues of Y are positive, as well.

For the special case when m = 2, the matrix Y can be written as follows:

Y =

σxx σxy

σxy σyy

 (1.4)

where the positive diagonal terms represent the variances of the x and y components of a random

vector following a Gaussian distribution of covariance matrix Y. The off diagonal terms are equal

to each other and represent the covariance between the x and y components of the random vector.

Equations (1.3) and (1.4) entail that:

|σxy| ≤ σxxσyy. (1.5)

Considering the afore-mentioned specific properties of a covariance matrix’s elements, namely

the positivity of the diagonal terms and the constraint on the off-diagonal components given by the

inequality (1.5), the symmetric positive semi-definite matrices occupy only a subset of the vector

space of symmetric matrices. The space they form (also referred to as a Riemannian manifold) has

a particular curved shape. For a given matrix size, the space of symmetric positive semi-definite

matrices forms a convex cone, with the inside comprising the symmetric strictly positive-definite

matrices and with the singular positive semi-definite matrices residing on the cone’s boundary, as

illustrated in Figure 1.1, for 2 × 2 matrices. The matrix in this set having all eigenvalues equal to 0

is situated at the cone’s origin.

While the tools of Euclidean geometry are well-suited for the characterisation of mathematical

objects residing on flat spaces, they do not account for the inherent curvature of the geometrical space

defined by the covariance matrices. As a consequence, the tools of the Euclidean geometry are not

adapted for a complete characterisation of these matrices. Alternative Riemannian computation and

statistical modelling frameworks should be used instead, that account for the specific geometry of

the space defined by the symmetric positive matrices and lead, thus, to a faithful characterisation.
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Figure 1.1: The positive semi-definite cone in R3 - the subspace occupied by symmetric positive
semi-definite matrices in the vector space corresponding to 2 × 2 size symmetric matrices.

As previously explained, covariance matrices can be, by nature, either strictly definite positive

(i.e. of strictly positive eigenvalues) or semi definite positive (i.e. of non-negative eigenvalues).

However, to our knowledge, most of the works dealing with metrics and statistics adapted to cova-

riance matrices focus on strictly positive definite matrices. They include the current chapter where

two Riemannian statistical frameworks for covariance matrices characterisation and discrimination

are presented. These statistical frameworks are limited to the case of symmetric positive definite

(SPD) matrices. Adapted to the geometry of the manifold of covariance matrices, they overcome

the inaccuracy and the defects arising from classical Euclidean computations on this space. These

statistical frameworks are based on the affine-invariant and log-Euclidean metric, respectively, intrin-

sic Riemannian metrics with strong invariance properties. For each framework a distance measure

between covariance matrices is proposed in addition to different statistical models for describing

samples of covariance matrices. To be specific, a Gaussian distribution is proposed on each Rie-

mannian statistical framework as well as their corresponding Gaussian mixture models, aimed to

enrich the capabilities of the theoretical models to characterise the variability of experimental data

on this manifold. Tractable parameter estimation algorithms are given for each statistical model. In

addition to characterising covariance matrix distributions, one is often interested in their discrimi-

nation. To this purpose, solutions for measuring the dissimilarity between the estimated probability

distributions of covariance matrix data samples are given for each of the proposed statistical models.

1.2 Related Work

While Euclidean based algorithms are typically successful when used on general symmetric ma-

trices, this is no longer the case when dealing with SPD matrices. Euclidean computations do not

account for the geometry of the SPD matrices manifold and may lead to mathematical discrepan-

cies resulting in information and accuracy loss. A main limitation of the Euclidean framework is in
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terms of its boundary. More precisely, Euclidean calculus on SPD matrices can lead to non-positive

definite matrices as a result, which is a serious defect, as reported in the context of Diffusion Tensor

Magnetic Resonance Imaging (DT-MRI) applications [Arsigny 2005, Arsigny 2006]. Instead, the

computations performed on the Riemannian manifold of SPD matrices never lead to non-positive

definite matrices. In addition, non-positive definite matrices should be at an infinite distance from

the SPD ones.

In DT-MRI applications, the displacement of water molecules in biological tissues is locally

encoded in the form of SPD matrices called diffusion tensors. The determinant of the diffusion

tensors is an indicator of the dispersion associated to the local diffusion process [Arsigny 2006].

Namely, a large determinant is associated to a large dispersion in the local displacement of the

water molecule and thus, to a strong diffusion process. Euclidean computations on diffusion tensors

can give rise to an undesirable phenomenon called tensor swelling, as explained by Arsigny et al. in

[Arsigny 2005, Arsigny 2006]. The tensor swelling phenomenon refers to the fact that the Euclidean

mean between two diffusion tensors can have a grater determinant than the original determinants of

the two tensors being averaged. In other words, the associated diffusion process can be strictly

higher for the mean tensor than the diffusion processes corresponding to the original ones. This

phenomenon is physically impossible. Tensor swelling occurs in tasks such as diffusion tensor

interpolation, restoration or filtering of tensor-valued images.

Non-Euclidean alternatives for appropriate characterisation of SPD matrices are an active re-

search topic in the literature. The statistical frameworks proposed in the different studies rely on

various non-Euclidean metrics. A Riemannian metric specifies the geometry of a manifold M. It

consists of a smooth set of inner products gp on the tangent space TpM at each point p of the

manifold [Lee 1997, Pennec 2006a]. One of the most popular Riemannian metrics is the affine-

invariant one, called also Fisher-Rao [Atkinson 1981, Pennec 2006a]. The curvature of the manifold

is taken into consideration and thus, the SPD space is accurately represented. In spite of provi-

ding precise and robust statistical representation tools on the space of SPD matrices, the curvature

corrections induce very high computational costs. The log-Euclidean metric was proposed by Ar-

signy et al. in [Arsigny 2006], as an interesting alternative to the affine-invariant metric. It relies

on a mapping of the SPD matrices in the logarithm domain. The LE mapping is a two steps pro-

cess. First, the SPD matrices are applied the matrix logarithm yielding a symmetric matrix as a

result. Second, the resulting symmetric matrix is expressed in vector-form. Thus, the manifold-

valued data is transformed into SPD matrix logarithm vector-forms and the classical tools of the

Euclidean geometry can be directly applied. Consequently, the computational burden of the affine-

invariant metric is significantly reduced, while some of its theoretical properties are conserved

[Arsigny 2006]. For both AI and LE metrics, the operations are defined directly on the manifold

and do not rely on tangent space projections and on embedding the manifold into an ambient Eucli-

dean space. AI and LE metrics both define true geodesic distances on the manifold of SPD matrices

[Arsigny 2006, Said 2017, Jayasumana 2013].
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Some other metrics are proposed in the literature on the manifold of SPD matrices [Dryden 2009,

Jayasumana 2013]. In the objective of mean covariance matrix estimation, Dryden et al.

[Dryden 2009] assess the properties of different non-Euclidean metrics in addition to the intrin-

sic Riemannian metrics AI and LE and to the Euclidean metric as well. The invariance properties

of these distances are synthesised in Table 1.1. It shows that Rao’s distance possesses the stron-

gest invariance properties followed by the log-Euclidean one. Let Y1 and Y2 be two SPD matrices

of size m × m and d a distance measure. The different invariance properties of the distance d are

mathematically explained as follows:

• rotation and reflection invariance

d(Y1,Y2) = d(RY1R†,RY2R†), (1.6)

with R - ∈ O(m) a rotation and reflection matrix, where O(m) is the group of real orthogonal

matrices of size m × m and † - the matrix transpose;

• scaling invariance

d(Y1,Y2) = d(αY1, αY2), (1.7)

with α > 0;

• invariance under inversion

d(Y1, Id) = d(Y1
−1, Id), (1.8)

where Id is the m × m identity matrix;

• invariance under affine transformations

d(Y1,Y2) = d(AY1A†,AY2A†), (1.9)

where A denotes a m × m real full rank matrix.

In addition to their invariance properties, the non-Euclidean distances have been analysed as well

in terms of mean covariance matrix estimation for SPD matrix samples. While the mean computa-

tion is straightforward for most of the distances, in the case of Fisher Rao and Procrustes metrics, its

estimation relies on iterative optimization algorithms, namely on the Riemannian gradient descent

algorithm [Lenglet 2006] and on the generalized Procrustes algorithm, respectively [Gower 1975].

The performances of the different non-Euclidean metrics have been assessed in different experi-

mental settings on both real and simulated SPD data samples. The experimental tasks consist of

interpolation, Principal Component Analysis and mean covariance matrix estimation (in the case of

simulated SPD data samples). The non-Euclidean metrics showed, globally, similar performances,

as opposed to the Euclidean metric that performed poorly in all applications. The log-Euclidean,
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Table 1.1: Invariance properties of non-Euclidean distances

Invariance properties
Distance name Rotation and Reflection Scaling Inversion Affine-Invariance

Euclidean X - - -
Log-Euclidean X X X -

Rao X X X X

Root-Euclidean X - - -
Power-Euclidean X - - -

Cholesky - - - -
Procrustes s&s∗ X - - -

Full Procrustes s∗ X X - -

∗Rao stands for the Riemannian distance induced by the Fisher-Rao metric, Procrustes s&s denotes the Procrustes size
and shape distance while Full Procrustes s is the Full Procrustes shape distance.

root-Euclidean and Procrustes size and shape metrics lead to notably robust mean covariance matrix

estimation in the particular case of samples close to rank defficient SPD matrices [Dryden 2009].

Different non-Euclidean metrics were exploited in order to define positive definite kernels on

the Riemannian manifold for mapping SPD matrices to a higher dimensional Hilbert space where

the tools of Euclidean geometry can be directly applied [Jayasumana 2013]. Several kernel based

algorithms, namely Principal Component Analysis, Support Vector Machine, k-means and Multi-

ple Kernel Learning, are extended to manifold-valued data. The superiority of the manifold kernel

based approaches over their Euclidean counterparts as well as to the methods relying on tangent

space projections is proven in several image processing SPD matrices applications such as segmen-

tation, pedestrian detection, texture recognition and visual object categorisation. The non-Euclidean

metrics investigated are: affine-invariant, log-Euclidean, power-Euclidean, Cholesky and root Stein

divergence. The log-Euclidean one is prefered since it is the only one that in addition to defining a

true geodesic distance on the manifold of SPD matrices it defines a positive definite kernel as well.

In addition to its properties, the log-Euclidean metric outperforms all the other metrics in the context

of visual objects categorisation [Jayasumana 2013].

While much attention has been given to appropriate metrics and distance measures on the Rie-

mannian manifold of SPD matrices, fewer studies in the literature address the topic of adapted

statistical models on the manifold of SPD matrices. The Wishart distribution is a well-known model

for characterising SPD matrices [Wishart 1928, Goodman 1963]. Its shortcoming, however, is that

it makes the hypothesis that the SPD matrices are covariance matrices of Gaussian vectors, which

is rarely verified for real-world data applications. Some more recent propositions for covariance

matrix statistical models are derived from the scalar product model. These models are particular in

the sense that the observed covariance matrix is expressed as the product between a scaling factor

τ and a scatter matrix S following a complex Wishart distribution. According to the choice of the

prior probability of the scalar parameter τ, several different statistical models can be obtained. They

include the K [Lee 1994] distribution, where τ follows the Gamma distribution and the KummerU
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[Bombrun 2008] distribution where a Fisher distribution is considered as prior for the parameter

τ. In spite of being successfully employed particularly in the context of SAR (Synthetic Aperture

Radar) applications, their main shortcoming is that they are not adapted to the intrinsic geome-

try of the SPD data [Ilea 2017]. Propositions for alternative statistical models that overcome this

drawback and that take into account the geometry of the space of covariance matrices have more

recently been made in the literature. Gaussian distributions on the manifold of covariance matri-

ces are proposed by Pennec [Pennec 2006a] and Lenglet et al. [Lenglet 2006] as well, both relying

on the affine-invariant metric. While being well-adapted to manifold-valued data characterisation,

these propositions are incomplete. They are based on asymptotic formulae and statistical inference

is possible only in the particular case of compact distributions. These limitations are overcomed by

Said et al. in [Said 2017]. As opposed to the previous propositions, the computation of the normali-

zation constant of the probability density function is achieved, leading thus to an exact and tractable

expression of the Riemannian Gaussian distribution. The distribution is parametrized by its central

value given by the Riemannian center of mass and its dispersion around this central value. While an

efficient indicator of the distribution’s mean element, the Riemannian center of mass is less adapted

for applications dealing with a significant amount of aberrant data due to its sensitivity to outliers

[Bishop 2006]. This issue is addressed in [Hajri 2016], where a Riemannian Laplace distribution is

proposed on the manifold of covariance matrices. Its central element is given by the Riemannian

median [Yang 2010], more robust to the presence of outliers.

SPD matrices are mathematical objects with different physical interpretations, finding a wide

range of applications in computer vision. For instance, the SPD matrices manifold is used in practice

to represent covariance regions descriptors, employed for image processing tasks such as texture

characterisation and classification [Tuzel 2006] or object detection and recognition [Tuzel 2008,

Harandi 2012]. In medical imaging applications the SPD matrices manifold can be used to represent

diffusion tensors that locally estimate the brain water molecules movement and encode the anatomi-

cal structures of cerebral white matter [Basser 1994, Pennec 2006b, Lenglet 2006, Arsigny 2006].

The manifold-valued data can be represented in practice by the structure tensors as well, which

are mathematical tools used for characterising the local structure variations in textured images

[de Luis-García 2008, Akl 2015, Rosu 2015a, Pham 2016a, Rosu 2016, Rosu 2017].

We focus in the following on the affine-invariant and log-Euclidean statistical frameworks. The

choice for these two metric spaces is justified by their intrinsic Riemannian nature and by the strong

invariance properties they possess compared to the non-Euclidean metrics previously reviewed.

Thus, they provide the most faithful representations of manifold-valued data.

1.3 Affine-Invariant Model for Covariance Matrices

The focus of this section is on the affine-invariant models for the characterization of SPD matrix

samples. A brief summary of the main properties of the AI metric space is made. Second, a complete
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statistical framework for modelling SPD matrices is proposed, as an adequate alternative to classical

Euclidean formulations. More precisely, a Riemannian Gaussian distribution defined on the space of

covariance matrices and its corresponding mixture model are introduced. The research related to the

proposition of the Riemannian Gaussian model has been carried out in the same research team and

during the same time as the development of this thesis. The theoretical concepts on the Riemannian

Gaussian model that are presented in this chapter (i.e. definition of the statistical model, parameter

estimation, random sampling) are based on the work conducted by Said et. al [Said 2015, Said 2017,

Said 2018, Rosu 2015a]. Furthermore, this statistical model in addition to its corresponding mixture

model have been applied and assessed for the first time on samples of covariance matrices of real

data in the context of texture discrimination during the development of this thesis [Rosu 2015a,

Rosu 2017]. To this purpose, the problems of dissimilarity measurements between Riemannian

Gaussian distributions and between mixtures of Riemannian Gaussian distributions as well have

been addressed. The proposed solutions are presented at the end of this section.

1.3.1 The Affine-Invariant Metric Space

Let Pm be the space of all m × m real matrices that are symmetric and strictly positive definite. A

matrix Y ∈ Pm, in addition to sharing the symmetry property with the set of symmetric positive

semi-definite matrices, as given by equation (1.1), satisfies the following condition:

x†Yx > 0, (1.10)

∀x ∈ Rmwith x , 0. As a consequence

det Y > 0. (1.11)

Namely, the determinant of an SPD matrix Y is strictly positive. The eigenvalues of Y are strictly

positive as well.

The space Pm is a manifold of dimension m(m + 1)/2. Each matrix Y ∈ Pm can be expressed in

terms of its polar coordinates given by the spectral decomposition:

Y = R†Diag(exp(r))R (1.12)

, where r = {r1, ...rm} ∈ R
m, Diag(exp(r)) is the diagonal matrix with the main diagonal entries

{exp(r1), ... exp(rm)} and R denotes an orthogonal matrix ∈ O(m). For the special case when m = 2,

the spectral decomposition Y can be expressed as a function of the triplet r1, r2 and θ, as follows:

Y = Y(r1, r2, θ) =

 cos(θ) sin(θ)

− sin(θ) cos(θ)


expr1 0

0 expr2


cos(θ) − sin(θ)

sin(θ) cos(θ)

 . (1.13)

The space Pm can be equipped with the Rao-Fisher Riemannian metric [Atkinson 1981]. It

defines the squared length of a small displacement dY attached to the point Y ∈ Pm, as follows:
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ds2(Y) = Tr
(
Y−1dY

)2
, (1.14)

where Tr denotes the trace.

The dissimilarity between two points Y1,Y2 ∈ Pm can be evaluated in terms of the distance

defined by the Rao-Fisher metric. Namely, the geodesic distance or Rao’s distance [Terras 1988].

The geodesic distance is equal to the length of the shortest curve connecting two points on the

manifold Pm. Let Y1,Y2 ∈ Pm and c : [0, 1] → Pm be a differentiable curve, with c(0) = Y1 and

c(1) = Y2. The length L(c) of the curve c is given by:

L(c) =

∫ 1

0
ds(c(t)) =

∫ 1

0

∣∣∣∣∣∣∣∣∣∣dc(t)
dt

∣∣∣∣∣∣∣∣∣∣ dt, (1.15)

where ||.|| denotes the Riemannian norm. Rao’s distance d(Y1,Y2), d : Pm × Pm → R+, is the infi-

mum of the length L(c) with respect to all differentiable curves c. The Rao-Fisher metric transforms

the space Pm into a Riemannian manifold with negative curvature. As a consequence, the infimum

of L(c) is attained by a unique curve γ:

γ(t) = Y1/2
1 (Y−1/2

1 Y2Y−1/2
1 )tY1/2

1 , (1.16)

known as the geodesic connecting the points Y1 and Y2. The length L(γ) of the curve γ is the

geodesic distance d(Y1,Y2) [James 1973]:

d2(Y1,Y2) = Tr
[
logm2

(
Y−1/2

1 Y2Y−1/2
1

)]
=

m∑
i=1

log2(λi), (1.17)

where logm stands for the matrix logarithm function and λi is the i-th eigenvalue of the matrix

Y−1/2
1 Y2Y−1/2

1 ∈ Pm.

The Rao-Fisher metric endows the space Pm with affine-invariance properties [Pennec 2006b].

The most important properties from the perspective of the applications imagined in this work are

recalled in the following.

A particular property of the space Pm is the fact that it is homogeneous under the action of

GL(m), the group of m × m real and non-singular matrices. More precisely, for any Y1,Y2 ∈ Pm,

there exists a matrix A ∈ GL(m) such that Y2 = A†Y1A. In addition, the homogeneity property also

means that Rao-Fisher’s metric and Rao’s distance are invariant under the action of the group GL(m)

on Pm. In light of Rao’s distance invariance properties, the following relations hold:

d(Y1,Y2) = d(A†Y1A,A†Y2A)

= d(Y−1
1 ,Y−1

2 ),
(1.18)

for any A ∈ GL(m). For more details on the geometric properties induced by the Rao-Fisher metric

on the space Pm, see [Said 2017, Said 2018].
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1.3.2 Riemannian Gaussian Model

Said et al. proposed in [Said 2017] a Gaussian distribution on the Riemannian manifold of Pm ma-

trices. A detailed and complete analysis of the statistical inference for the proposed statistical model

is given as well. The generalisation of the Gaussian distribution to the Riemannian manifold has

been considered before in the literature [Pennec 2006a, Lenglet 2006]. However, these propositions

remain incomplete and difficult to apply in practice. They rely on approximations which are valid

only in the particular cases of small variance distributions. These issues are overcome by Said et

al. in [Said 2017], where an exact expression of a Riemannian Gaussian distribution is given for the

first time in the literature.

The probability density of the Riemannian Gaussian distribution as well as the methods for

parameters estimation are given in the following paragraphs. The Riemannian Gaussian model will

later be employed on classification experiments for modelling covariance matrices (structure tensors)

distributions of real-world textured images (see Chapter 3).

1.3.2.1 Definition

On the space Pm of SPD matrices, the probability density function of a Riemannian Gaussian dis-

tribution G(M, σ) with respect to the Riemannian volume element associated to the affine-invariant

metric is given by:

p(Y|M, σ) =
1

Z(σ)
exp

[
−

d2(Y,M)
2σ2

]
, (1.19)

where M ∈ Pm and σ ∈ R∗+ are the distribution’s parameters, namely the central point represented

here by the center of mass and a measure of the dispersion of the observations around this central

point. As for Z(σ), it is a normalizing constant depending uniquely on the dispersion σ and inde-

pendent of the center of mass. Furthermore, d represents the geodesic distance defined in equation

(1.17).

An exact expression of the normalising constant Z(σ) is needed in order to define a Riemannian

Gaussian distribution in terms of the probability density function given by equation (1.19). The

normalising factor is given by:

Z(σ) =

∫
Pm

exp
[
−

d2(Y,M)
2σ2

]
dv(Y), (1.20)

where dv(Y) is the Riemannian volume element. For the case of SPD matrices of size m = 2, its

expression is given in closed form, as follows:

Z(σ) = (2π)3/2σ2 exp
(
σ2

4

)
erf

(
σ

2

)
, (1.21)

where erf stands for the error function. For the case of larger SPD matrices of size m > 2, the

normalising constant can be approximated by means of Monte Carlo integration [Ilea 2017].
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An interesting invariance property of Rao’s distance that will serve when using the Rieman-

nian Gaussian model in later experiments, is the fact that for every Y ∼ G(M, σ), p(Y|M, σ) =

p(Y∗|Id, σ) where Y∗ = M− 1
2 YM− 1

2 ∼ G(Id, σ) and Id ∈ Pm is the identity matrix. G(Id, σ) is cal-

led the centred distribution. For the special case of m = 2, by using the polar coordinates ρ = r1−r2,

t = r1 + r2 and θ, the probability density function of the centered distribution can be expressed as the

product of the probability density functions of the 3 independent variables ρ, t and θ [Rosu 2015a]:

p(Y|I, σ) = p(ρ, t, θ) ∝ exp
(
−
ρ2

4σ2

)
sinh

(
| ρ |

2

)
× exp

(
−

t2

4σ2

)
×

1
2π
, (1.22)

where t is normally distributed and the orientation θ follows a uniform distribution.

1.3.2.2 Parameters Estimation

The two parameters of a Riemannian Gaussian distribution are estimated by means of the MLE

(Maximum Likelihood Estimation) method. Let Y = {Y1, ...YN} be a set of N independent and

identically distributed (i.i.d.) samples of a Riemannian Gaussian distribution G(M, σ). The log-

likelihood function holds:

L(Y|M, σ) = log
N∏

n=1

p(Yn|M, σ) =

= −N log Z(σ) −
1

2σ2

N∑
n=1

d2(Yn,M),

(1.23)

which leads to a maximum-likelihood estimate of M that corresponds to the Riemannian center

of mass. Its estimate is obtained by minimizing the sum of squared distances between M and the

observations Y = {Y1, ...YN}:

M̂ = arg max
M∈Pm

L(Y|M, σ) = arg min
M∈Pm

N∑
n=1

d2(Yn,M), (1.24)

where d(.) stands for the geodesic distance defined by equation (1.17). The solution to this mi-

nimization problem is given by means of a Riemannian gradient descent algorithm detailed in

[Lenglet 2006].

The maximum-likelihood estimate of the dispersion parameter of a Riemannian Gaussian distri-

bution is the solution σ̂ of a non-linear equation:

1
N

N∑
i=1

d2(Yi,M) = σ3 d
dσ

log Z(σ) (1.25)

solved by means of a Newton-Raphson algorithm.
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1.3.3 Riemannian Gaussian Mixture Model

In this paragraph, a family of mixtures of Riemannian Gaussian distributions on the space Pm is

introduced. Mixture models are generally considered in order to enrich the ability of theoretical

statistical models to describe distributions of real data. Thus, if the number of mixture components

is well chosen, the statistical model should normally be well-suited to encompass the variability that

arises in real-world data and to accurately describe its distribution.

The probability density function of a mixture of K Riemannian Gaussian distributions is given

by:

p(Y|(ωk,Mk, σk)k=1,...,K) =

K∑
k=1

ωk p(Y|Mk, σk), (1.26)

where ωk > 0 are the weights of sum 1 associated to each distribution k, k = 1, ...K in the mixture

model. In addition, Mk and σk are the center of mass and, respectively, the dispersion of the k-th

Riemannian Gaussian distribution in the mixture model. The parameters: ωk, Ȳk and σk are estima-

ted by employing an adaptation of the Expectation-Maximization (EM) algorithm to the Riemannian

geometry of the space Pm, proposed by Said et al. in [Said 2015] and applied in [Rosu 2015a]. De-

tails on the algorithm in the specific case of a Riemannian Gaussian mixture model are given in

Appendix C.

1.3.4 Affine-Invariant Model - Random Sampling

A method for sampling from a Riemannian Gaussian distribution of dimension m was developed in

[Said 2017] and previously implemented in [Rosu 2015a]. In the following we will briefly describe

the steps that need to be followed in the special case when m = 2. Given the invariance properties

of the space P2 equipped with the AI metric (see Section 1.4.1), generating a sample set Y =

{Y1, ...YN} of SPD matrices of distribution G(M, σ) can be done by firstly drawing a sample set

Y∗ = {Y∗1, ...Y
∗
N} from the centered distribution G(Id, σ) and by further centering the random data

samples Y∗n, i = 1, ...N around the center of mass, as follows: Yn = M1/2Y∗nM1/2. Sampling from

the distribution G(Id, σ) can be done in two steps:

� Considering the expression of the Riemannian Gaussian distribution in terms of polar coordi-

nates (see equation (1.22)), sampling from G(Id, σ) is equivalent to sampling from the proba-

bility densities of R and r = (r1, r2) (see equations (1.12) and (1.13)). The matrix R is sampled

from a uniform distribution on the space O2 of 2 × 2 orthogonal matrices, i. e. uniform angle

θ ∈ [0, π]. The probability density function of r can be decomposed into the product of the

probability density functions of two independent variables, ρ = r1 + r2 and t = r1 − r2. Con-

sequently, in this specific case, sampling from the density of r can be achieved by sampling

from univariate probability densities, given in equation (1.27):
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p(r) ∝p(t) × p(ρ)

p(ρ) ∝ exp
(
−
ρ2

4σ2

)
sinh

(
| ρ |

2

)
p(t) ∝ exp

(
−

t2

4σ2

)
;

(1.27)

While t appears to be normally distributed and thus easy to sample, ρ can be sampled by

employing the Metropolis-Hastings technique - a Monte Carlo Markov Chain based sampling

method [Metropolis 1953, Hastings 1970].

� The sample set {Y∗1, ...Y
∗
N} is obtained by equation (1.13), starting from the previously gene-

rated sample sets of polar coordinates, namely t = t1, ...tN , ρ = ρ1, ...ρN and θ = θ1, ...θN , as

follows: Y∗n = Y∗n((tn + ρn)/2, (tn − ρn)/2, θn), n = 1, ...N.

When it comes to generating a data sample set of size N from a mixture model of K distributi-

ons, the task breaks down to sampling from each individual distribution in the mixture model. More

precisely, in the case of a Riemannian Gaussian mixture model, for each k = 1, ...K, a sample set of

size Nk = dωkNe is drawn from its corresponding Riemannian Gaussian distribution of parameters

Mk and σk, where de stands for the ceiling operation. The data sample of the mixture model is obtai-

ned by concatenating all the samples thus generated from the K individual Riemannian Gaussian

distributions.

1.3.5 Dissimilarity Measures between AI Models

When dealing with collections of data, in addition to their characterisation by means of different

statistical models, one is often interested in comparing different data sets. This task of data set

discrimination can be done by comparing the statistical models describing them. In this section we

address precisely the topic of dissimilarity measures between the different Riemannian statistical

models proposed so far for describing data samples of SPD matrices.

Let us first consider two samples of data drawn from two probability distributions of unknown

parameters, denoted by p and q. One way of comparing these data samples is to assess the dissi-

milarity between the probability distributions p̂ and q̂ estimated from the respective data samples.

A popular choice for measuring the dissimilarity between two probabilistic models is the Kullback-

Leibler’s divergence [Kullback 1951]:

DKL( p̂, q̂) =

∫
x

p̂(x) log
p̂(x)
q̂(x)

dx. (1.28)

Given the asymmetrical nature of the Kullback-Leibler’s divergence, it is quite common to consider
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its symmetric version, called the Jeffrey divergence, as follows:

DJ( p̂, q̂) = DKL( p̂, q̂) + DKL(q̂, p̂). (1.29)

Kullback-Leibler’s divergence (KLD) is specific to each probability density and it presents the

advantage of versatility. Indeed, it can be employed for every probability model, regardless its

parametrisation. However, for some statistical models there is no analytically tractable formulation

of the divergence, as is the case of the Riemannian Gaussian distributions.

In the absence of an analytical expression of the KLD between two statistical models p̂ and

q̂, the divergence can be estimated by means of Monte Carlo sampling techniques [Hershey 2007,

Kwitt 2009], as follows:

D̂J( p̂, q̂) =
1
N

N∑
n=1

log
p̂(xn)
q̂(xn)

+
1
N

N∑
n=1

log
q̂(yn)
p̂(yn)

, (1.30)

where {x1, ...xN} and {y1, ...yN} represent two data samples generated from the estimated probability

distributions p̂ and q̂. Thus, a firs step when approximating the KLD between two distributions is to

generate a set of N samples from their respective probability densities. Generating random samples

from a Riemannian Gaussian distribution will be done according to the steps previously described

in Section 1.3.4.

Details upon the evaluation of the Jeffrey divergence in the case of each of the affine-invariant

statistical models presented here are given in the following.

1.3.5.1 Riemannian Gaussian Models

When comparing two data samples, each modelled by a Riemannian Gaussian distribution, as the

Kullback-Leibler divergence is not given in analytical form, it will be estimated by Monte Carlo

sampling techniques, as follows.

Let Y1 = {Y11, ...Y1N} and Y2 = {Y21, ...Y2N} be two samples of SPD matrices generated from

2 Riemannian Gaussian distributions, G(M̂1, σ̂1) and G(M̂2, σ̂2), denoted by p̂, q̂. By evaluating

the expression given in equation (1.30), the estimation of the Jeffrey divergence between two SPD

matrix samples issued from two Riemannian Gaussian distributions is of the following form:

D̂J( p̂, q̂) =
1
N

N∑
n=1

d2(Y1n, M̂2)
2σ̂2

2

−
d2(Y1n, M̂1)

2σ̂2
1

+
d2(Y2n, M̂1)

2σ̂2
1

−
d2(Y2n, M̂2)

2σ̂2
2

 , (1.31)

where d denotes the geodesic distance, defined in equation (1.17). As a remark, the normalising fac-

tors Z(σ1) and Z(σ2) simplify during developments. The independence of the approximation of the

Jeffrey divergence given by equation (1.31) between two Riemannian Gaussian models with respect

of the normalising factors of the two distributions has positive consequences on the computation

time.
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1.3.5.2 Riemannian Gaussian Mixture Models

The dissimilarity measure between two mixture models of Gaussian Riemannian distributions, as-

sessed in terms of Jeffrey divergence, is also approximated by means of Monte Carlo sampling.

Further details specific to this particular case are given in the following.

Let Y1 = {Y11, ...Y1N} and Y2 = {Y21, ...Y2N} be two samples of SPD matrices generated from

2 mixture models of K Riemannian Gaussian distributions: p̂ of parameters ω̂1k, M̂1k, Σ̂1k and q̂

of parameters ω̂2k, M̂2k, Σ̂2k, with k = 1...K. The probability density functions for the data in the

sample set Y1 are given by:

p̂(Y1n) =

K∑
k=1

ω̂1k p̂k(M̂1k, σ̂1k)

q̂(Y1n) =

K∑
k=1

ω̂2kq̂k(M̂2k, σ̂2k),

(1.32)

where n = 1, ...N, p̂k ∼ G(M̂1k, σ̂1k) and q̂k ∼ G(M̂2k, σ̂2k). Identical relations hold for the data in

the sample set Y2.

By developing the expression in equation (1.30), the approximation of the Jeffrey divergence

between two Riemannian Gaussian mixture distributions p̂ and q̂ is as follows:

D̂J( p̂, q̂) =
1
N

N∑
n=1

log
K∑

k=1

ω̂1kZ−1(σ̂1k) exp

−d2(Y1n, M̂1k)
2σ̂2

1k

−
− log

K∑
k=1

ω̂2kZ−1(σ̂2k) exp

−d2(Y1n, M̂2k)
2σ̂2

2k

 +

+ log
K∑

k=1

ω̂2kZ−1(σ̂2k) exp

−d2(Y2n, M̂2k)
2σ̂2

2k

−
− log

K∑
k=1

ω̂1kZ−1(σ̂1k) exp

−d2(Y2n, M̂1k)
2σ̂2

1k


 ,

(1.33)

where Z(σ1k) and Z(σ2k) are the normalization constants of the two Riemannian Gaussian distribu-

tions, defined in equation (1.20) and given in closed form in the case when the SPD matrices are of

size 2 × 2 (see equation (1.21)). In addition, d stands for the geodesic distance, given in equation

(1.17).

The affine-invariant metric is an intrinsic Riemannian metric and thus, the statistical models

defined on this metric space are robust and provide an accurate characterisation of SPD matrix sam-

ples. In spite of its strong theoretical properties, this statistical framework relies on complex and

recursive algorithms of high computational burden. This time efficiency problem arises both when

estimating the mean of an SPD matrix sample set and when estimating the parameters of a Rie-

mannian Gaussian distribution or of its corresponding mixture model. In addition, when assessing
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the dissimilarity between two affine-invariant statistical models, the Kullback-Leibler’s divergence

is not available in analytical form. For these cases the Kulback-Leiblers’s divergence is approxima-

ted by means of Monte Carlo sampling which induces significantly higher computational costs as

opposed to the case when its expression is given in closed form. As a consequence, the execution

time in real applications dealing with SPD data characterisation and discrimination becomes almost

prohibitive.

1.4 Log-Euclidean Model for Covariance Matrices

The second Riemannian statistical framework on the space of covariance matrices considered in this

work is based on the log-Euclidean metric. Similar to the AI metric, it aims to overcome the limita-

tions of the Euclidean computation on the space of covariance matrices. A brief introduction to the

LE metric space as well as a distance measure and a complete statistical framework are proposed in

the following paragraphs. A multivariate Gaussian model along with its corresponding multivariate

Gaussian mixture model are proposed for describing samples of covariance matrices on the LE me-

tric space. Solutions for measuring the dissimilarity between LE multivariate Gaussian models and

between mixtures of multivariate Gaussian models are given in the last part of this section.

1.4.1 The Log-Euclidean Metric Space

As previously presented, the affine-invariant metric space is equipped with well-adapted properties

for performing mathematical operations and statistical modelling on the covariance matrices ma-

nifold. In spite of providing a robust and accurate representation and computation framework for

covariance matrices, it relies on complex algorithms inducing a high computational burden. An

interesting alternative to the AI representation and computation tools for covariance matrices, ori-

ginally proposed by Arsigny et al. in [Arsigny 2006] is offered by the log-Euclidean metric space.

As stated in [Arsigny 2006, Arsigny 2005], while the LE metric is endowed with the same excel-

lent theoretical properties as the AI metric, its mathematical operations are much simplified and the

computational cost is significantly reduced as well.

The LE metric provides a vector space representation of covariance matrices by mapping the

covariance matrices in the logarithm domain. The mathematical operations on covariance matri-

ces become, thus, Euclidean in the logarithm domain [Arsigny 2006]. Consequently, the complex-

ity and computational expenses of the algorithms residing on this metric space are significantly

reduced. As opposed to computations based on the AI metric, the LE based ones do not use

curvature corrections. In spite of this consistent simplification, the main properties of the Rie-

mannian geometry represention framework for covariance matrices are preserved by the LE me-

tric [Arsigny 2005, Arsigny 2006]. While the LE metric space does not provide full affine-invarice

properties, it provides similarity-invariance properties [Arsigny 2006] that consist of invariance to

rotation, reflection, scaling and inversion (see Table 1.1). However, this slight loss in the precision
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of representation did not affect the covariance matrix computations and statistical modelling perfor-

med in this work, as it will be lately shown by the different experiments proposed in this report (see

Section 3.5.1).

The LE metric has been tested against the Euclidean and affine-invariant metrics as well, in

different applications. Some examples are regularisation and interpolation [Arsigny 2006] or resam-

pling, dense extrapolation of sparse data and anisotropic filtering [Arsigny 2005] of both synthetic

and clinical 3D Diffusion Tensor Imaging (DTI) data. All these experiments showed that as in the

case of the AI metric, the LE metric based computations successfully overcome the defects of Euc-

lidean calculus. While it yields similar experimental results to the AI metric, the algorithms based

on the LE metric proved to be at least 6 times faster in the applications enlisted before. The only

detectable difference in these applications on tensor data according to [Arsigny 2005], is that the LE

metric space algorithms generate slightly more anisotropic tensors as results.

For yielding the vector space representation of covariance matrices, the later need to be mapped

on the LE space. This mapping consists of computing the matrix logarithm YLE of the covariance

matrix Y:

YLE = logm(Y). (1.34)

As in the scalar case, the matrix logarithm is defined as the inverse of the matrix exponential.

For any square matrix A, the matrix exponential can be computed as follows [Arsigny 2006]:

expm(A) =

∞∑
k=0

Ak

k!
. (1.35)

When it comes to the matrix logarithm, it should be noted that neither its existence nor its uniqueness

is guaranteed in the case of general invertible matrices. Nevertheless, in the case of a matrix A that

is sufficiently close to the identity, its matrix logarithm can be computed by means of an infinite

power series [Stillwell 2008]:

logm(A) =

∞∑
k=1

(−1)k+1 (A − Id)k

k
, (1.36)

whose convergence is guaranteed for ||A − Id|| < 1, where ||.|| stands for the Frobenius matrix norm.

This non-trivial computation is simplified in the case of symmetric matrices. However, this work

concerns uniquely SPD matrices. In consequence, uniquely the matrix logarithm computation of an

SPD matrix Y will be addressed in the following. In this particular case, the matrix logarithm can

be obtained in two simple steps. The first step consists of diagonalizing the matrix, as follows:

Y = RΛR†, (1.37)

where R is a rotation matrix and Λ is the diagonal matrix of the eigenvalues of Y. In the 2 × 2 case

it holds:
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Λ =
( λ1 0

0 λ2

)
, withλ1 ≥ λ2, and λ1, λ2 > 0. (1.38)

The second step consists of computing the matrix logarithm itself:

logm Y = logm(RΛR†). (1.39)

Given the matrix logarithm properties of invertible matrices:

logm(RΛR−1) = R logm(Λ)R−1 (1.40)

and the following property of orthogonal matrices:

R−1 = R†, (1.41)

the expression in equation (1.39) becomes:

logm(Y) = R logm(Λ)R†. (1.42)

Thus, the matrix logarithm is easily computed by taking the scalar logarithm of each eigenvalue in

the matrix Λ and recomposing its equivalent covariance matrix. In the 2 × 2 case:

YLE = R

log λ1 0

0 log λ2

 R† =

yLExx yLExy

yLExy yLEyy

 . (1.43)

It should be noted that the eigenvalues λ1 and λ2 are equal to the terms expr1 and expr2 of the diagonal

matrix given previously by equation (1.12). When expressing a covariance matrix in terms of its

spectral decomposition, the eigenvalues are typically used as parameters for the diagonal matrix. A

different parametrisation has been preferred in the previous case of affine-invariant model in order to

facilitate the presentation of the Riemannian Gaussian distribution. More precisely, its probability

density function can be decomposed into the product of the probability density functions of 3 other

variables out of which two can be expressed in terms of r1 and r2 (see equation (1.22)).

The matrix logarithm of an SPD matrix always results in a symmetric matrix YLE that can be

written as well in vector form, as follows:

~YLE =
[
yLExx ,

√
2yLExy , yLEyy

]†
. (1.44)

Weighting the off-diagonal term with
√

2 ensures that:

||~YLE|| = ||YLE||, (1.45)
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namely that the Euclidean norm of the vector-form representation is equal to the Frobenius norm of

the matrix representation. The matrix logarithm mapping yields, thus, a vector form representation

of the space of SPD matrices in the logarithm domain. The inverse mapping operation from the LE

vector space back to the covariance matrix space is simply done by computing the matrix exponential

[Arsigny 2006]. The matrix exponential of a symmetric matrix always yields an SPD matrix, so

there is a one to one correspondance between symmetric matrices and SPD ones, under the matrix

exponential operation [Arsigny 2005].

Once the covariance matrices mapped on the LE metric space, all the standard mathematical

rules and operations of the classical Euclidean geometry apply, without distorting the covariance

matrix representations. Thus, the computational complexity associated to the affine-invariant metric

space is significantly reduced while the strong invariance properties inherent to a Riemannian metric

are preserved.

Distance between Covariance Matrices

The distance between two covariance matrices mapped on the LE metric space YLE1 and YLE2 can

be assessed in terms of the Frobenius distance:

dF(YLE1 ,YLE2) =

√
Tr((YLE1 − YLE2)(YLE1 − YLE2)†). (1.46)

The Frobenius distance between the matrices YLE1 and YLE2 of size 2×2 is, in fact, equivalent to the

Euclidean distance between their 3 component vector representations ~YLE1 and ~YLE2 (see equation

(1.44)) given by:

d2(~YLE1 ,
~YLE2) =

3∑
i=1

[~YLE1(i) − ~YLE2(i)]2. (1.47)

For simplicity reasons, the vector form representation ~YLE of the covariance matrix will be denoted

from now on by YLE.

1.4.2 Multivariate Gaussian Model

In the following paragraphs, a multivariate Gaussian distribution is proposed for characterising sam-

ples of LE mapped covariance matrices. This statistical model was previously evoked by Arsigny in

[Arsigny 2006] as a potential way to represent LE mapped covariance matrices, but, to our know-

ledge, never really used in practice. The probability density function and the parameter estimates are

given in the following. This model will later be experimentally applied for characterising samples

of covariance matrices of real textured image data in Chapters 3 and 4.
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1.4.2.1 Definition

A multivariate Gaussian distribution of dimension D can be employed for modelling populations of

LE vector space representations of covariance matrices. Its probability density function is given as:

p(YLE|µ,Σ) =
1√

(2π)D|Σ|
exp

{
−

1
2

(YLE − µ)†Σ−1(YLE − µ)
}

(1.48)

where µ stands for the statistical model’s mean of size [D × 1], Σ for its covariance matrix of

dimension [D × D] and |.| denotes the determinant.

1.4.2.2 Parameters Estimation

As in the case of the Riemannian Gaussian distribution defined in the previous paragraphs, the

parameters of a multivariate Gaussian distribution are estimated by the MLE method. Let YLE =

{YLE1 , ...YLEN } be a set of N i.i.d. data drawn from a multivariate Gaussian distribution of dimension

D of parameters µ and Σ. The log-likelihood function holds:

L(YLE|µ,Σ) = log
N∏

n=1

p(YLEn |µ,Σ) =

= −
DN
2

log(2π) −
N
2

log |Σ| −
1
2

N∑
n=1

(YLEn − µ)†Σ−1(YLEn − µ)

(1.49)

and the maximum likelihood estimates of multivariate Gaussian model parameters are:

µ̂ =
1
N

N∑
n=1

YLEn ,

Σ̂ =
1

N − 1

N∑
n=1

(YLEn − µ̂)(YLEn − µ̂)†.

(1.50)

In this case, the parameter estimates are given in closed form, as opposed to the statistical models

defined on the AI metric space where recursive estimation algorithms need to be used for parameter

estimation.

1.4.3 Multivariate Gaussian Mixture Model

Equivalently to the case of the Riemannian Gaussian model previously presented, a mixture model

of multivariate Gaussian distributions is proposed on the LE metric space as well, for characterising

the variability in data sets of LE mapped covariance matrices. The probability density function

corresponding to the mixture model of K multivariate Gaussian distributions consists of the weighted

sum of the probability densities of the K Gaussian models, as given below:
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p(YLE|ωk,µk,Σk)k=1,...,K =

K∑
k=1

ωk p(YLE|µk,Σk). (1.51)

The mixture model is defined by the following parameters: the means µk and the covariance ma-

trices Σk of the K multivariate Gaussian distributions and the set of mixture weights ωk > 0, as-

sociated to each mixture component, with
∑K

k=1 ωk = 1. The model parameters are estimated by

the Expectation-Maximization (EM) algorithm (e.g. [Blume 2002]). Details on the algorithm in the

specific case of a multivariate Gaussian mixture model are given in Appendix D.

The possibility of representing covariance matrices in vector-forms on the LE metric space has

an important practical advantage. It facilitates the characterisation of distributions of n-tuples -

groups of n neighbouring covariance matrices. To this purpose, the vector-form covariance matrices

forming an n-tuple can be concatenated forming, thus, a vector of dimension n × D. The distribu-

tion of the n-tuples can thus be characterised either by a LE multivariate Gaussian model or by its

corresponding mixture model of extended size n × D. The characterisation of neighbouring groups

of covariance matrices is, hence, made possible in a simple and straightforward way by the LE re-

presentation of covariance matrices. On the contrary, this objective is definitely more complex and

difficult to envision on the AI metric space. In addition to the complexity of developing such a met-

hodology on the AI metric space, increasing the dimension of the data to be characterised will lead

to prohibitive computational costs.

1.4.4 Log-Euclidean Models - Random Sampling

Generating a random sample set YLE = {YLE1 , ...YLEN } from a D dimensional LE multivariate Gaus-

sian distribution of meanµ and covariance matrix Σ can be achieved in a straightforward way. More

precisely, every random vector YLEi , i = 1, ...N in the sample set YLE is generated by following a

series of simple steps [Gentle 2009]:

� find a real matrix A so that A†A = Σ. This is generally achieved by means of Cholesky

decomposition;

� generate a vector x of size [D × 1], whose elements are independent samples drawn from the

standard normal distribution;

� compute the random vector YLEi following the multivariate Gaussian distribution of parame-

ters µ and Σ:

YLEi = µ + Ax. (1.52)

As in the case of the affine-invariant models, in order to generate a data sample following a

mixture model of K multivariate Gaussian distributions, one has to generate samples from each of

the K distributions, individually, following the steps previously described. The number of samples
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generated from each individual model in the mixture model is proportional to the mixture weights

ωk, k = 1, ...K. The data samples generated from the individual distributions are further concatenated

in order to form the randomly generated data sample distributed according to the mixture model of

the respective K multivariate Gaussian distributions.

Similar to other operations such as the computation of the center of mass of a sample set of

covariance matrices, the task of drawing randomly distributed data samples of a given statistical

model is significantly less complex and faster on the log-Euclidean metric space than on the affine-

invariant one.

1.4.5 Dissimilarity Measures between LE Models

Jeffrey divergence is employed as dissimilarity measure between two LE statistical models characte-

rising two vector-form samples of LE mapped covariance matrices. Specific details on the evaluation

of the Jeffrey divergence for the multivariate Gaussian and the multivariate Gaussian mixture model,

are given in the following.

1.4.5.1 Multivariate Gaussian Distributions

In the case of data samples generated from two multivariate Gaussian distribution p and q of

unknown parameters, one way to compare them is through a dissimilarity measure between the

probability distributions p̂ and q̂ estimated from those samples. Considering that the parameter esti-

mates of the two probability distributions p̂ and q̂ are µ̂1, Σ̂1 and µ̂2, Σ̂2 respectively, the Kullback-

Leibler divergence is given in closed form, as follows:

DKL( p̂, q̂) =
1
2

[
log
|Σ̂2|

|Σ̂1|
+ Tr

(
Σ̂−1

2 Σ̂1
)

+
(
µ̂2 − µ̂1

)† Σ̂−1
2

(
µ̂2 − µ̂1

)
− D

]
, (1.53)

where D is the dimension of the multivariate Gaussian distribution. The Jeffrey divergence easily

follows from equation (1.53), as DJ( p̂, q̂) = DKL( p̂, q̂) + DKL(q̂, p̂).

1.4.5.2 Gaussian Mixture Models

When it comes to the comparison of data samples on the LE space characterised by two mixture

models of K multivariate Gaussian distributions, the Kullback-Leibler divergence is no longer avai-

lable in analytical form. Thus, it is approximated by means of Monte Carlo sampling techniques,

as previously explained at the beginning of Section 1.3.5. Details on its evaluation, specific to this

case, are given in the following.

Let YLE1 = {YLE11 , ...YLE1N } and YLE2 = {YLE21 , ...YLE2N } be two samples generated from 2

mixture models of K multivariate Gaussian distributions: p̂ of parameters ω̂1k, µ̂1k, Σ̂1k and q̂ of

parameters ω̂2k, µ̂2k, Σ̂2k, for k = 1...K. The probability density functions for the data in the sample
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set YLE1 are given by:

p̂(YLE1n) =

K∑
k=1

ω̂1k p̂k(µ̂1k, Σ̂1k)

q̂(YLE1n) =

K∑
k=1

ω̂2kq̂k(µ̂2k, Σ̂2k),

(1.54)

where n = 1, ...N, p̂k ∼ G(µ̂1k, Σ̂1k) and q̂k ∼ G(µ̂2k, Σ̂2k). The same relations hold for the data in

the sample set YLE2 .

By developing the expression in equation (1.30), the approximation of the Jeffrey divergence

between two multivariate Gaussian mixture distributions p̂ and q̂ is as follows:

D̂J( p̂, q̂) =
1
N

N∑
n=1

log
K∑

k=1

ω̂1k

∣∣∣∣Σ̂∣∣∣∣−1/2

1k
exp

[
−

1
2

(YLE1n − µ̂1k)†Σ̂−1
1k (YLE1n − µ̂1k)

]
−

− log
K∑

k=1

ω̂2k

∣∣∣∣Σ̂∣∣∣∣−1/2

2k
exp

[
−

1
2

(YLE1n − µ̂2k)†Σ̂−1
2k (YLE1n − µ̂2k)

]
+

+ log
K∑

k=1

ω̂2k

∣∣∣∣Σ̂∣∣∣∣−1/2

2k
exp

[
−

1
2

(YLE2n − µ̂2k)†Σ̂−1
2k (YLE2n − µ̂2k)

]
−

− log
K∑

k=1

ω̂1k

∣∣∣∣Σ̂∣∣∣∣−1/2

1k
exp

[
−

1
2

(YLE2n − µ̂1k)†Σ̂−1
1k (YLE2n − µ̂1k)

] .

(1.55)

1.5 AI and LE Models Representations

The descriptive capacities of the Riemannian Gaussian model and of the multivariate Gaussian mo-

del on the LE space are assessed in the following by means of visual representations of randomly

generated SPD matrix sample sets. The Riemannian Gaussian distribution and the multivariate

Gaussian one have a different number of degrees of freedom. As a consequence, they are expected

to have different descriptive capacities.

The number of degrees of freedom of a Riemannian Gaussian distribution of parameters M and

σ, on the space Pm is given as:

DFGAI =
m(m + 1)

2
+ 1, (1.56)

where the first term of the sum corresponds to the number of degrees of freedom of the center of mass

and the second one to the dispersion parameter. The number of degrees of freedom of a multivariate

Gaussian model on the LE metric space, corresponding to the same dimension of the SPD matrices

space, is given by:

DFGLE =
m(m + 1)

2
+

m(m + 1)
2

m(m + 1)
2

+ 1

2
=

=
m(m + 1)

2
+

m(m + 1)[m(m + 1) + 2]
8

,

(1.57)
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with the first term of the sum corresponding to the number of degrees of freedom induced by the

mean value µ and the second one to the number of degrees of freedom induced by the covariance

matrix Σ of the statistical model. In the particular case of m = 2, DFGAI = 4 and DFGLE = 9.

1.5.1 AI - Representations of Various Data Sample Sets Distributions of Specific
Known Parameters

In the following, some statistical distributions of random SPD matrix samples of size 2 × 2 are

represented and analysed. The sample sets are drawn from a Riemannian Gaussian model, according

to the steps described in Section 1.3.4. Several choices are made for the parameters M and σ

of the theoretical distribution, in order to visualise and assess their impact on the empirical data

distributions.

The center of mass M of the Riemannian Gaussian model is composed using the spectral de-

composition given in equation (1.12). The identity matrix Id is chosen for the matrix R. As for

the diagonal matrix D, the exp(r1) and exp(r2) parameters in equation (1.13) correspond to the co-

variance matrix’s eigenvalues λ1 and λ2. Each eigenvalue is associated to one of the 2 orthogonal

eigenvectors. The largest eigenvalue corresponds to the eigenvector pointing in the direction of hig-

hest variability in the data. In the case when one of the two orthogonal directions is dominant, i. e.

λ1 >> λ2, the covariance matrix is said to be anisotropic. On the contrary, when there is no privi-

leged direction, in other words, when the eigenvalues are equal or of similar values, the covariance

matrix is said to be isotropic. A typical way to asses and to quantify the matrix anisotropy, is by

means of the coherence parameter, η, given by:

η =
λ1 − λ2

λ1 + λ2
. (1.58)

Its value ranges between 0 and 1 and it indicates the degree of confidence that can be assigned to the

local orientation estimation. Naturally, a dominant local orientation is associated with a high value

of this indicator. More details about the eigenvalue decomposition and about the different ways of

exploiting the information encompassed by a covariance matrix in the applied context of texture

analysis, are given in Section 2.2.2 of Chapter 2.

Starting from the eigenvalue decomposition, a standard way to visually represent a covariance

matrix is by means of an ellipse [Ennis 2006]. The ellipse has its two axes aligned with the covari-

ance matrix’s eigenvectors and scaled according to its eigenvalues. Typically, the lengths of its two

axes are defined as the square root of the eigenvalues [Ennis 2006, Dryden 2009, Akl 2016].

For randomly generating SPD matrix sample sets following a Riemannian Gaussian model of

specific known parameters, the values of the center of mass M and of the dispersion σ of the the-

oretical model have to be chosen. Several different scenarios are analysed. As far as the center of

mass is concerned, two cases are considered. First, an isotropic choice is made. The eigenvalues are

fixed as follows: λ1 = λ2 = 5. The identity matrix Id is chosen for the matrix R. The covariance
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Isotropic center of mass

Anisotropic center of mass

Figure 1.2: Representation of randomly generated SPD matrix sample sets following a Riemannian Gaus-
sian model. Left column: ellipse-form representation of 100 samples. The theoretical distribution’s central
value is represented in yellow and its variance is assigned a small (first row) and a large value (second row),
respectively. Right column: the distributions of parameters of the randomly generated sample set of size 1
million.

matrix corresponding to the center of mass M of a Riemannian Gaussian distribution is composed,

according to equation (1.13). Second, an anisotropic center of mass is considered, with λ1 = 10,

λ2 = 5 and R = Id, composed according to the steps previously described. For both cases, two

values are considered for the theoretical distribution’s variance, σ2: a small value, i.e. 0.1 and a
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Table 1.2: Random sampling scenarios - choice of parameters for generating SPD matrix samples
following a Riemannian Gaussian distribution of center of mass M and dispersion σ

Parametrisation of the center of mass M Value of the dispersion σ

Isotropic: λ1 = λ2 = 5,R = Id
√

0.1
√

1

Anisotropic: λ1 = 10, λ2 = 5,R = Id
√

0.1
√

1

large value, i.e. 1. The dispersion σ of the Riemannian Gaussian distribution is computed as the

square root of the considered variance. A synthesis of the parametrisation scenarios considered for

generating samples from a a Riemannian Gaussian distribution is made in Table 1.2. A sample set of

size 1 million is generated for each combination of the theoretical distributions’ chosen parameters

(see results in Figure 1.2).

Figure 1.2 illustrates, in ellipse-form, subsets of 100 SPD matrices from the randomly generated

sample sets of the various Riemannian Gaussian distributions of known parameters. The distributi-

ons of the SPD matrices parameters (λ1, λ2, θ and η) for the complete randomly generated sample

sets are represented as well.

In the case of a small value of the variance, fixed at 0.1, the random SPD matrices in the sample

set are naturally more similar to the center of mass of the theoretical distribution, whether it is

isotropic or anisotropic. This aspect is visible in the ellipse form representations and equally on the

empirical distributions of the parameters of the SPD matrices in the sample set. We can observe

that the empirical distributions of the eigenvalues λ1 and λ2 are more compact than in the case of

a large value of the variance (equal to 1). In addition, the empirical distribution of the coherence

parameter, η, has its peak closer to the value that this parameter holds for the center of mass of the

theoretical distribution (η = 0 in the isotropic case and η = 0.33 in the anisotropic case). The angle

θ is differently distributed for the two configurations of the theoretical distribution’s central values:

uniform distribution when the center of mass is isotropic and compact empirical distribution in the

case when the center of mass is anisotropic, having, thus, a privileged orientation.

1.5.2 LE - Representation of Various Data Sample Sets Distributions of Specific
Known Parameters

When it comes to the multivariate Gaussian model on the LE space, when fixing the mean µ and

the covariance matrix Σ of the theoretical model, the same starting values for the parameters are

considered, as in the case of the Riemannian Gaussian distribution. Namely, λ1 = λ2 = 5,R = Id

for the isotropic case and λ1 = 10, λ2 = 5,R = Id for the anisotropic case of the distribution’s

mean value µ. The center of mass corresponding to these parametrisations is composed in the same

way as in the previous case of the Riemannian Gaussian model. An additional step is performed,
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Isotropic center of mass

Anisotropic center of mass

Figure 1.3: Representation of randomly generated SPD matrix sample sets following a LE multivariate
Gaussian model of isotropic covariance matrix. Left column: ellipse-form representation of 100 samples.
The theoretical distribution’s central value is represented in green and its variance is assigned a small (first
row) and a large value (second row), respectively. Right column: the distributions of parameters of the
randomly generated sample set of size 1 million.

namely, the resulting central element is mapped on the LE space and transformed to its vector-

form representation. Thus, the two values considered for the mean µ correspond to the LE vector-

form representations of the values of the center of mass M previously defined for the Riemannian

Gaussian model.
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Figure 1.4: Representation of randomly generated SPD matrix sample sets following a LE multi-
variate Gaussian model of anisotropic covariance matrix. Left column: ellipse-form representation
of 100 SPD matrices. The theoretical distribution’s central value is represented in green. Right co-
lumn: the distributions of parameters of the randomly generated sample set of size 1 million. The
empirical distributions correspond to a large value for the theoretical distribution’s variance.

For both cases, the same two values for the varianceσ2 as in the case of the Riemannian Gaussian

model are considered as starting point for computing the theoretical distribution’s covariance matrix,

namely 0.1 and 1. First of all, a diagonal and isotropic covariance matrix Σ has been composed, of

equal variances in all dimensions (see the first part of Table 1.3). The distributions of the random

samples following the aforementioned parametrisations are displayed in Figure 1.3.

Second, anisotropic covariance matrix configurations have been considered, with different vari-

ance values on the three dimensions and positive covariance between the x and y dimensions of the

LE mapped vector form representation of an SPD matrix (see equation (1.44)). The following con-

figurations are considered for the covariance matrix of the LE multivariate Gaussian model (see last

part of Table 1.3): diagonal anisotropic covariance matrix (see results on the first row of Figure 1.4),

anisotropic covariance matrix, moderately-strong covariance entries between the x and y dimensions

(see results on the second row of Figure 1.4), anisotropic covariance matrix, strong covariance en-
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Table 1.3: Random sampling scenarios - choice of parameters for generating SPD matrix samples
following a multivariate Gaussian distribution of mean µ and covariance matrix Σ

Parametrisation of the mean µ Configuration of the covariance matrix Σ
Isotropic

Isotropic: λ1 = λ2 = 5,R = Id Σ =

(
0.1 0 0
0 0.1 0
0 0 0.1

)
Σ =

(
1 0 0
0 1 0
0 0 1

)
Anisotropic: λ1 = 10, λ2 = 5,R = Id Σ =

(
0.1 0 0
0 0.1 0
0 0 0.1

)
Σ =

(
1 0 0
0 1 0
0 0 1

)
Anisotropic

Anisotropic: λ1 = 20, λ2 = 5,R = Id Σ =

(
1 0 0
0 0.01 0
0 0 1

)
Σ =

(
1 0 0.9
0 0.01 0

0.9 0 1

)
Σ =

(
1 0 1
0 0.01 0
1 0 1

)

tries between the x and y dimensions (see results on the third row of Figure 1.4). For these scenarios,

an anisotropic choice is made for the mean µ of the theoretical model. It is composed starting from

the following parameters’ values: λ1 = 20, λ2 = 5 and θ = 0. Its associated coherence indicator is

equal to 0.6.

As a remark, the sample set is generated on the LE space but its representation is done in the

original SPD matrices space, by performing the matrix exponential of the LE matrix-form data. For

each chosen parametrisation of the LE multivariate Gaussian model, a sample set of size 1 million

has been generated.

The same remarks hold for the randomly generated SPD matrix sample sets drawn from a LE

multivariate Gaussian distribution (see results in Figure 1.3), as in the case of a Riemannian Gaussian

model (see Section 1.5.1, last paragraph).

1.5.3 AI and LE Models Representations - Final Remarks

While the sample sets illustrated in Figures 1.2 and 1.3 are drawn from two different statistical

models, that are, in addition, defined on two different metric spaces, i.e. AI and LE, the empiri-

cal distributions of SPD matrices as well as its parameters distributions are very similar, for the

particular chosen values and configurations of the parameters of the theoretical distributions.

For a finer analysis of these distributions, the empirical cumulative distribution functions of

the coherence parameter η, are illustrated in Figure 1.5, for the AI and LE randomly generated

SPD matrix sample sets. For a small values of the theoretical distribution’s variance (equal to 0.1),

the plots corresponding to the AI and LE are almost identical. However for a higher value of the

theoretical variance (equal to 1), there is a more marked difference in the empirical cumulative

probability densities of the η parameter of the AI and LE drawn samples.
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Isotropic center of mass

Anisotropic center of mass

Figure 1.5: Cumulative distribution functions of the coherence parameter of a sample size of 1
million randomly generated SPD matrices generated on the AI (in blue) and LE (in red) metric
spaces. The plots correspond to a small (left side) and a large value (right side), respectively, of the
theoretical distributions’ variances.

In spite of these similarities for these specific scenarios, the LE multivariate Gaussian model

has a higher number of degrees of freedom compared to the Riemannian Gaussian model. As a

consequence, the choices for the values and configurations of the statistical model’s parameters are

more abundant. This implies a higher descriptive potential for the multivariate Gaussian model

on the LE space as compared to the Riemannian Gaussian distribution defined on the AI metric

space. Some examples of SPD sample sets generated upon certain parameter configurations of the

multivariate Gaussian model on the LE space, that go beyond the parametrisation capacities of the

Riemannian Gaussian model are illustrated in Figure 1.2. An empirical SPD matrix sample set with a

very compact distribution of the coherence parameter, i.e. all SPD matrices in the data samples have

the same value of the coherence parameter or a very similar one, as the coherence corresponding to

the center of mass, is shown in the third row of Figure 1.4. For a characterisation of empirical sample

sets as the examples generated in Figure 1.4 - a Riemannian Gaussian distribution is not enough on

its own and a mixture model would be necessary for a complete characterisation. In contrast, a

single multivariate Gaussian distribution is enough for a complete characterisation of such SPD

matrix sample sets. The representations in Figure 1.4 are given as simple examples for illustrating a

part of the descriptive potential of a multivariate Gaussian model. However, the descriptive potential



1.6. Conclusions 33

of a multivariate Gaussian distribution is higher.

1.6 Conclusions

In this chapter the space of symmetric positive semi-definite matrices has been introduced. Since Eu-

clidean computations have proven to be inaccurate, non-Euclidean alternatives have been considered

for their characterisation. Out of the existing alternatives, the affine-invariant and log-Euclidean me-

trics were noted as being the strongest in terms of their invariance properties. They are both intrinsic

Riemannian metrics defining geodesic distances on the manifold of covariance matrices.

Starting from the proposition of the Riemannian Gaussian model on the affine-invariant metric

space and by the idea previously evoked in the literature that the vector-form LE-mapped covariance

matrices can be modelled by a multivariate Gaussian distribution, two complete Riemannian frame-

works for SPD matrix sample sets characterisation and discrimination have been developed. They

rely on the affine-invariant and log-Euclidean metric spaces. In addition to the LE and AI Gaussian

models, their corresponding mixture models have been considered as well in order to enrich the ca-

pabilities of the theoretical distributions to encompass the variability that arises in real-world data.

The parameter estimation process is detailed for every case.

Besides characterising covariance matrix data samples, a real need in some applications is their

comparison. This task can be achieved by comparing the estimated probability distributions charac-

terising data samples of SPD matrices. To this purpose, Jeffrey divergence is chosen as dissimilarity

measure between probability distributions. Solutions for its computation are given for each statis-

tical model. In the cases when its expression is not available in analytical form, solutions for its

approximation based on Monte Carlo sampling techniques are given.

While the AI metric space is endowed with stronger invariance properties, estimating the para-

meters of the statistical models relies on recursive estimation algorithms, inducing thus high com-

putational expenses. The LE metric is endowed with similar invariance properties as the AI one.

However, as the LE mapping allows the vector-form representation of covariance matrices, the

complexity and computational expenses associated to the algorithms on the LE metric space are

significantly reduced.

The distributions of SPD matrix sample sets following a Riemannian Gaussian model and a LE

multivariate Gaussian model of fixed parameters have been represented and analysed, for various

variances of the theoretical distributions, in order to illustrate the descriptive potential of the statis-

tical models. Justified by a higher number of degrees of freedom for a same order of the theoretical

models, the LE models showed a grater capacity that the AI models to characterise the variability

arising in SPD matrix sample sets.





Chapter 2
Describing Structure in Textures through

LST Field Modelling

"...texture is what makes life beautiful; texture is what makes life interesting

and texture is what makes life possible. Texture is what makes Mozart’s mu-

sic beautiful, the masterpieces of the art of the Renaissance classical and the

facades of Barcelona’s buildings attractive. Variety in detail is what keeps us

going from one day to the next and the roughness of the world is what allows

us to walk, communicate and exist. If surfaces were smooth, friction would not

exist, the Earth would be bombarded with asteroids and life would not have de-

veloped. If surfaces were smooth, pencils would not write, cars would not run,

and feet would not keep us upright."

— Maria Petrou and Pedro García Sevilla, authors of Image Processing:

Dealing with Texture [Petrou 2006]
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2.1 Texture

2.1.1 What is a Texture?

There is no universally agreed upon answer to this question. While recognizing texture is an innate

and automatic task for the human visual perception, defining texture comes less naturally. Its defini-

tion varies from the most simple and general ones "the feel, appearance, or consistency of a surface

or a substance" [Oxf 1992], to the most intricate and even philosophical ones, as the definition in

the epigraph of this chapter. Therefore, the notion of texture is quite complex.

An early scientific definition of textures from the perpective of their visual interpretation and

discrimination is given by Julesz et al. [Julesz 1983]. Textures are viewed as "aggregates of many

small elements. The elements can be either dots of certain colors (e.g. white, black, gray, red)

or simple patterns". Haralick [Haralick 1979] views a texture as a function of its composing tonal

primitives. Namely, a texture is defined by the types and number of primitives along with their

spatial organisation. Textures can generally be seen in the field of computer vision as functions of

spatial variations in the pixels’ intensity values [Conners 1980] or as "images containing repeated

patterns" [Wei 2009], allowing for a certain degree of randomness over these patterns.

2.1.2 Texture in Visual Perception

Texture is at the core of human visual perception. While it comes naturally to the human eye to

identify and discriminate textures, in digital applications these tasks need to be learned. Texture

description and classification are strictly dependent on identifying and extracting those features that

make a texture unique or particular. Understanding the processes involved in the visual perception of

a textured scene and identifying those key texture characteristics that are fundamental to the human

eye when discriminating textures, is a stepping stone for developing algorithms in computer vision

applications.

Pioneering research has been conducted on texture by Julesz et al. [Julesz 1962, Julesz 1978,

Julesz 1983], in an attempt to develop a model for the human visual perception mechanism by

assessing the psycho-physiological processes involved when interpreting and discriminating texture.

A first study [Julesz 1962] revealed that textures differing in their first and second order statistics are

interpreted as being distinct by the human visual perception. This theory was contradicted by Julesz

himself in a later study [Julesz 1978] that showed classes of textures that, while having identical

third order statistics, are easily discriminated by the human brain. In a later study the textons theory

has been developed [Julesz 1983], where a texture is seen as a function of image primitives called

textons. This research shows that the pre-attentive vision discriminates textures when there is a

difference in the densities of textons. The importance of texture in the human visual perception is

reinforced by a different study [Haralick 1973], identifying texture as one of the 3-key elements that

humans use when identifying the regions of a gray-level image, in addition to tone and context.
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Figure 2.1: Texture spectrum in terms of regularity [Hayes 2006]

Inspired by these findings in the field of visual perception, texture becomes a key-element when

processing a digital image. Different databases comprising a large variety of either color (Vis-

Tex [MIT 1995], Outex [Ojala 2002a]) or gray-level (Brodatz [Brodatz 1966]) textures are publicly

made available, for testing and benchmarking new texture analysis algorithms.

2.1.3 Types and Properties

Many attempts have been made in the literature to identify a set of properties that are sufficient for

characterising the variety of a texture’s content.

A core property of textures is the homogeneity [Unser 1984]. In terms of visual perception,

homogeneity can be explained as follows: given an analysis window of fixed size, if one slides the

window over the texture, the visual content through the observation window has the same charac-

teristics, no matter the location of the analysis window over the texture [Unser 1984]. In statistics

term, homogeneity translates as stationarity. If the texture is viewed as the realisation of a random

process, the stationarity refers to the translation invariance of the statistical properties defining the

random process. The same view of a texture in terms of constant or slowly varying local statistic has

previously been suggested by Sklansky in [Sklansky 1977].

Tamura et al. [Tamura 1978] proposed a set of 6 fundamental properties considered to be cha-

racteristic to all textures. A first property is coarseness. It is seen as a central characteristic of

textures by several authors [Hayes 1974, Amadasun 1989]. For coarse textures, the composing pri-

mitives or repeating patterns have a large size, as opposed to fine textures characterised by a small

size of their composing patterns. Contrast is considered to be another basic property shared by all

textures, accounting for the amount of change in the texture’s intensity values. Two other proper-

ties are proposed for describing a texture’s orientation: directionality used as a global indicator and

line-likeliness used to locally describe the shape of the texture’s primitives (line-like vs. blob-like).

A texture can be characterised in terms of its regularity [Efros 1999], on a spectrum going from

highly-structured (regular) to random (irregular) textures, as illustrated in Figure 2.1. Artificially
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Figure 2.2: Examples of pebbles textures from the Brodatz database going from macro-textures to
micro-textures (from left to right).

generated textures can be regular, namely, composed of a perfect repetition of the same unique pat-

tern. However, the majority of natural textures are situated somewhere in between near-regular and

stochastic textures.

Another set of basic properties common to most textures is proposed in [Amadasun 1989]. Three

new texture properties are introduced. They consist of busyness (quantifying the amount of spatial

changes in the intensity levels), complexity (assessing the information diversity of the texture’s

content) and texture strength (measuring the perception intensity of the basic repeating elements, in

terms of clarity and visibility).

Some of the properties proposed by Tamura [Tamura 1978] and Amadasun [Amadasun 1989]

have turned out to be strongly correlated. In an attempt to find the minimum set of texture characte-

ristics that are enough for describing and discriminating textures, Rao et el. [Rao 1993] conducted

an analysis of the feature space of textures. Their experiments concluded that only three of the in-

vestigated features are responsible for most of the data variability (over 96%). These features are

orientation (that can be interpreted as the combination of directionality and line-likeliness features

proposed in [Tamura 1978], that, in reality, are strongly correlated), repetition (that can be viewed

as the degree of regularity) and complexity. An interesting analogy is made between color that on

the RGB (Red, Green, Blue) color space is defined by its 3 primary colors and texture that can

be characterised in terms of its 3 primary properties, namely orientation, repetition and complexity

[Rao 1993].

According to the type of the observed objects or to the scale of observation, textures can be di-

vided in two classes [Galerne 2011]. A first class is represented by micro-textures, that can be seen

as homogeneous, stochastic textures. Natural micro-textures can be represented by sand, water, etc.

The second class is represented by macro-textures, or textures that illustrate small size objects that

are clearly visible on the image. Some examples of macro-texture include pebbles, brick walls or

tiled roofs. In addition to the nature of the observed objects, the distance from the observed scene

dictates the micro or macro character of a texture. For example, a pebbles texture observed from

a close distance will be considered a macro-textures, since the individual pebbles will be clearly

visible on the image. However, if the observation distance overpasses a certain threshold, the indivi-
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dual pebbles will no longer be discernible on the texture. Instead, the texture will have a stochastic

aspect, so it can be considered a micro-texture (see examples in Figure 2.2). Therefore, the nature of

a texture is deeply related to the scale of observation and analysis. As a consequence, it is important

for texture analysis tools used in computer vision to be able to adapt the scale of the analysis window

to the scale that is relevant for the textural content that one wants to describe.

2.1.4 Texture Application Fields

Texture appears in a wide range of application fields in computer vision. Developing algorithms for

analysing texture allows the automation of many tasks otherwise performed by humans. Thus, once

time-consuming tasks are instantly performed with a lower need of resources.

Texture analysis methods are commonly applied for tasks such as segmentation (dividing an

image into different regions, according to their similarity), classification (groping the textures in a

database in classes according to some pre-defined similarity criteria) or they can consist of a stepping

stone for texture synthesis (creating a synthetic texture visually very similar to an input texture, given

as example).

The emerging developments in medical imaging technology create the need of innovating al-

gorithms and tools for the analysis of clinical data [Duncan 2000]. Texture analysis techniques are

used to help clinicians in the diagnosis process, among other clinical procedures [Castellano 2004].

Texture analysis methods can be employed for identifying and extracting target anatomical objects in

medical images. The results of segmentation can further be used by clinicians for extracting different

statistics, such as the size and shape of tumours or other abnormal anatomical structures. Texture

analysis algorithms can be employed as well for tissue analysis in tasks such as lesion detection or

discrimination between normal and pathological tissues.

Texture analysis methods are extensively used in remote sensing for extracting the local geome-

try information characterising the terrain organization and dynamics [Aptoula 2014, Regniers 2016].

The extracted information can further be used for evaluating meaningful statistics or for assessing

and quantifying the impact of human activities and different natural phenomena, such as severe mete-

orological events. The applications are rich and diverse, including forestry and urban remote sensing

data classification [Ruiz 2004], dead vine trees detection in airborne remote sensing vineyard ima-

ges [Chanussot 2005], delineation of vine parcels in VHR remote sensing images [Da Costa 2007],

classification of oyster parks [Regniers 2015b].

Texture analysis methods are used as well in the industrial quality control process for developing

automated inspection systems aimed to replace the otherwise human-performed visual inspection,

that is quite a laborious task. Instead, defects can be automatically detected by analysing the textured

images corresponding to the surfaces of different types of materials, such as: metals, ceramics,

textiles (e.g. [Tomczak 2007]).

Texture is omnipresent in the field of computer graphics, where creating a virtual reality visually
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similar to the actual scenes of the real-world is an ongoing challenge. Texture synthesis algorithms

can be used to this purpose. Different solutions have been proposed in the literature, including

[Efros 1999, Wei 2000, Galerne 2011, Urs 2013, Akl 2015, Gatys 2015].

Document processing is another application field for textures. Texture analysis algorithms can be

used in a segmentation pre-processing step of document images, for identifying regions of interests.

Such regions can be represented by the text blocks in a newspaper, a bar code on a document or the

address on an envelope [Jain 1992]. The segmented data can be used in different purposes, such as

address recognition or restoration of old text.

2.1.5 Texture Analysis

Given the ubiquitous character of a texture, developing texture analysis methods that are easy to ap-

ply, fast and that have a rich descriptive potential is a real need for many applications. A wide range

of texture analysis methods are proposed in the literature. Different categorisations of these methods

have been considered. In this work, the following one is adopted (inspired by [Materka 1998]):

• structural methods - inpired by the texon theory [Julesz 1983], these approaches describe a

texture in terms of its primitives, by analysing their types and the spatial arrangements between

these primitives [Haralick 1979];

• descriptive statistics based methods - inspired as well by the research conducted by Julesz

[Julesz 1962], these texture analysis methods describe the distribution of a texture’s gray levels

by means of second order statistics. In other words, these methods rely on the analysis of the

spatial organisation of a texture’s intensity values. The most popular approach belonging to

this category is represented by the gray level co-ocurrence matrix (GLCM) [Haralick 1973].

Some other texture anlysis methods belonging to this group are: local binary patterns (LBP)

[Ojala 1994], auto features [Tuceryan 1993] and variograms [Curran 1988];

• frequency domain filtering based methods - are inspired by the research conducted on visual

perception, concluding that the visual cortex decomposes an observed image into components

tuned to different frequencies and orientations [Conners 1980]. The texture analysis methods

from this category are based on spectral decomposition methods, such as the Fourier transform

(e.g. [Zhou 2001], the Gabor filter [Turner 1986] and the wavelet transform [Mallat 1989]);

• model based approaches - are describing texture by means of a statistical model, consi-

dering texture as the realisation of a stochastic process. Some examples include Markov

random field (MRFs) models [Cross 1983], or different statistical models applied on previ-

ously extracted texture features. These features can be represented by the wavelet subband

coefficients [Do 2002, Regniers 2014b, Regniers 2014c] or by the response of Gabor filte-

ring [Mathiassen 2002]. The univariate statistical models used to describe distributions of
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spectral coefficients include the generalized Gaussian distribution [Do 2002], Gamma dis-

tributions [Mathiassen 2002], Bessel K forms [Srivastava 2002]. Multivariate models have

been employed as well, such as: multivariate Gaussian distribution [Ilea 2017], multivariate

generalized Gaussian distribution [Verdoolaege 2011], SIRV (Spherically Invariant Random

Vectors) [Regniers 2015a], multivariate Bessel K form distributions [Boubchir 2010], copula

based distribution [Kwitt 2009].

We will briefly describe in the following the state of the art texture analysis methods that will be

later used in the experimental part of Chapter 3 for benchmarking the approaches proposed in this

work. These methods belong to the last 3 categories of texture analysis methods, considering the

previously presented categorization.

2.1.5.1 Descriptive Statistics based Methods

Gray Level Co-occurrence Matrix

Proposed by Haralick et al. [Haralick 1973], the gray level co-occurrence matrix (GLCM) is descri-

bing a texture in terms of its gray levels spatial organisation. It quantifies the number of occurrences

of every pair of gray levels in the texture, according to a specific spatial configuration. The configura-

tion is given by the distance between the pairs of pixels and by a displacement vector of components

dx and dy. For an image I of size w × h with L different intensity values, the co-occurrence matrix

of size L × L is computed as follows:

GLCMdx,dy(i, j) =

w∑
x=1

h∑
y=1


1, if I(x, y) = i and I(x + dx, y + dy) = j

0, otherwise,
(2.1)

where i, j represent the intensity values of the current pixel and of its neighbour pair, respectively.

In general, the GLCM result as given by equation (2.1) is not directly employed. Instead,

the GLCM content is summarised by computing different statistical descriptors [Haralick 1973,

Conners 1984]. Among the proposed GLCM descriptors, Maillard et el. [Maillard 2003] have iden-

tified a set of 5 that are most widely used in the literature. This set consists of the following features:

energy, entropy, contrast, correlation and homogeneity.

Local Binary Patterns

Originally proposed by Ojala et al. [Ojala 1994], this approach consist of encoding the spatial

dependence of the gray levels in the neighbourhood of a pixel by a binary sequence, hence the name

local binary patterns (LBP). In its original version, 3 × 3 neighbourhoods are considered and the

binary sequence in each pixel is obtained by tresholding the intensity values in the neighbourhood

with the intensity value of the central pixel. If the neighbouring pixel has a greater intensity value

than the central one, a value of 1 is assigned and 0 otherwise, resulting thus in an 8 long binary
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sequence. The binary sequence of each pixel is assigned a label out of the 28 = 256 different

possible values and the histogram of these labels is further computed and considered as texture

descriptor.

Different variations from the original descriptor have been proposed, adapted for larger neig-

hbourhoods [Ojala 2002b]. The propositions include multiscale and rotation invariant local binary

patterns.

2.1.5.2 Frequency Domain Filtering based Methods

Gabor Filters

Research has shown that the cells of the visual cortex respond to an observed scene by decomposing

the visual scene into bands of different frequencies and orientations [Marĉelja 1980]. The perception

mechanism can be modelled by Gabor filters [Marĉelja 1980], that perform a multi-resolution and

multi-orientation analysis, when applied on a texture. In the spatial domain, Gabor filters are defined

as Gaussian functions modulated by a sinusoid [Jain 1990]. In the spectral domain, a Gabor filter is

a Gaussian function centered on a frequency f and an orientation θ.

In general, Gabor filter banks are applied for characterising a texture, where each filter is cente-

red on a given frequency and orientation in an attempt to obtain a complete coverage of the spectral

domain [Manjunath 1996]. The response of the filter banks in each pixel of the image are further

combined for obtaining the textural signature. In spite of the capacity of Gabor filters to perform a

multi-resolution and multi-orientation analysis of a texture, the filter response might be correlated,

given the non-orthogonality of the filter-banks.

Orthogonal Wavelet Transform

The orthogonal wavalet transform is another way of performing a multi-resolution analysis of a tex-

ture [Mallat 1989]. By employing a series of discrete wavelet functions, the texture is decomposed

into independent and orthogonal subbands. Some of the limitations of Gabor filtering, such as the

correlation of the extracted textural signatures, are overcome as a result.

The multiscale wavelet analysis of an image is achieved by decomposing the image, at each

scale of analysis, into 4 subbands down-sampled by a factor of 2. The decomposition is performed

by applying separable low-pass (L) and high-pass filter banks (H) along the rows and columns of

the image. The 4 subbands of wavelet coefficients LL, LH, HL, HH are obtained as a result of

the combination of the low-pass and high-pass filters. LL represents an approximation subband as

opposed to the other three that contain the high-frequency details. In consequence, uniquely the

coefficients of the LH, HL, HH subbands are exploited for computing the textural signature. In the

following, we simply employ the terminology wavelet transform when referring to the orthogonal

wavelet transforms.
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2.1.5.3 Model based Methods

Among the model based approaches, the ones that have been chosen for comparison in this

work are statistical models applied for characterising a texture’s wavelet subband coefficients

[Bombrun 2011b, Lasmar 2014, Regniers 2014a, Regniers 2014c].

Multivariate Gaussian Model

A first statistical model that has been used for describing the distribution of a texture’s wavelet

subband coefficients is the multivariate Gaussian model, e.g. [Regniers 2014a].

Spherically Invariant Random Vectors

Introduced by Yao [Yao 1973], spherically invariant random vectors (SIRV) models are a family of

Gaussian non-homogeneous distributions of random variances. An observed vector v is expressed

as:

v =
√
τz (2.2)

where τ > 0 is a random variable and z is a Gaussian random vector of mean 0 and covariance

matrix Σ. The variable τ does not follow a pre-defined statistical model. Consequently, upon the

choice of the statistical model for the variable τ, the SIRV model will have different definitions

[Bombrun 2011a]. A SIRV Gaussian model results in the case when the τ parameter follows a Dirac

distribution.

Copula based Distributions

Several configurations are possible for these statistical models. The one used for comparison in this

work proposed by [Stitou 2009] and applied by Regniers in [Regniers 2014a] is a Gaussian copula

with the marginal distribution following a Gamma model.

2.2 LST - Local Structure Tensor for Texture Analysis

The local structure tensor [Bigün 1987, Knutsson 1989], known in the literature as the second mo-

ment matrix as well, is a commonly employed tool in computer vision for describing the structure of

an image. It is often employed in textured image analysis for extracting the geometric information

that characterises locally a texture’s patterns. The characterisation of the local pattern is achived by

estimating the main directional tendencies in the neighbourhood of a point [Jähne 1993]. The cohe-

rence of the gradients orientations around the estimated main directional tendencies is evaluated as

well.

A common structure tensor application consists of edge and corner detection [Harris 1988,

Arseneau 2006]. Another application example is fault detection in seismic data [Donias 2007].

In this case, the structure tensor is exploited for measuring the disorder of the gradient field, a



44 Chapter 2. Describing Structure in Textures through LST Field Modelling

high value of this measure being associated with the presence of a fault. An LST field regulari-

sation method based on bilateral filtering is proposed by Toujas et al. [Toujas 2010] in the aim

of analysing the structure of seismic images. The LST is also employed for texture segmentation

[Rousson 2003, Pham 2015b]. The second study proposes a covariance matrix method integrating

the intensity levels and the oriented gradients as well. Furthermore, the local structure gradient is

used in addition to polarimetric information for classifying synthetic aperture radar (SAR) images

[Pham 2015a]. In addition to characterisation and identification tasks, the structure tensor method is

used as well for more complex tasks such as texture synthesis [Peyré 2010, Akl 2014, Akl 2015].

2.2.1 LST Computation

There are two families of methods that can be employed for structure tensors estimation

[Aja-Fernández 2009]. They consist of gradient methods [Bigün 1987, Kass 1987, Förstner 1987]

and local-energy methods where quadrature filters are used for locally characterising the image

structure [Knutsson 1989]. In this work the structure tensor is estimated by a gradient based appro-

ach.

Let I be an image of N pixels. The gradient of the image ∇I is firstly computed by convolving

the image with spatial derivative filters:

∇I =
[
Ix, Iy

]†
=

[
I ∗Gx, I ∗Gy

]†
, (2.3)

where Ix and Iy are the horizontal and vertical partial derivative estimates of the image I and ∗ stands

for the convolution operator. Gx and Gy are two filters used for estimating the image gradient in the

horizontal and vertical direction, respectively. They can take the form of basic discrete gradient

estimation filters, such as the Robert [Dav 1975] or Sobel operators [Lyvers 1988] that are fast and

easy to implement. In this work the gradient is estimated by linear convolution with Gaussian spatial

derivative filters given as the first order partial derivatives of a 2 dimensional Gaussian [Perona 1990,

Rao 1991]:

Gx(x, y) = −
x

2πσ4
G

exp

− x2 + y2

2σ2
G

 ,Gy(x, y) = −
y

2πσ4
G

exp

− x2 + y2

2σ2
G

 . (2.4)

These filters allow to adjust the size of the local neighbourhood considered for gradient estimation,

by tuning the value of the standard deviation σG, as opposed to the basic derivative operators that

are of fixed size.

In order to describe the structure at a given pixel in the image, one should analyse the data in

the neighbourhood of that point. To this purpose, the outer product of the gradient is convolved with

a 2 dimensional Gaussian smoothing kernel WT , whose standard deviation, σT , defines the size of

the local neighbourhood. In addition to enabling a local analysis at a tunable scale, the smoothing

kernel increases the robustness of the method to noise or other undesirable image artefacts. Hence,
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Figure 2.3: LST field border effect. The border induced by successive filtering is marked in green
on the input texture. The 3 component LST field before and after truncation are illustrated on the
second and third column.

the local structure tensor field Y is given as:

Y = WT ∗∇I∇I† = WT∗

Ix.Ix Ix.Iy

Ix.Iy Iy.Iy

, (2.5)

where . denotes point-wise multiplication and ∗ denotes convolution. The resulting matrix-valued

LST field has the same size as the image. Thus, every pixel n in the image, n = 1...N, is associated

a local structure tensor in the form of a 2 × 2 symmetric non-negative definite matrix:

Y(n) =

σxx(n) σxy(n)

σxy(n) σyy(n)

 . (2.6)

However, in practice, the LST field is truncated, as illustrated in Figure 2.3, given that there is a

border effect induced by the successive spatial filtering. The size of the image border that needs to

be removed depends on the dimension of the derivative and smoothing Gaussian kernels. Typically,

the derivative Gaussian kernels Gx and Gy and, respectively, the Gaussian weighting kernel WT are

truncated at 3σG and 3σT , respectively, resulting in border effects within margins of size 3σG +3σT

that should be removed.

2.2.2 LST Decomposition and Representation

The LST field describing a textured image is difficult to represent and visualise in raw form. Simpli-

fied representations can be achieved by mapping the tensor values to scalar quantities. A collection

of such scalar-valued descriptors, called tensor invariants is given in the context of DT-MRI for the

diffusion tensors [Papadakis 1999, Ennis 2006]. In contrast, the structure tensor literature lacks such

a study. The structure tensor information is generally quantified in terms of its orientation and ei-

genvalues that can be further exploited for computing different local descriptors, such as the energy



46 Chapter 2. Describing Structure in Textures through LST Field Modelling

Figure 2.4: Examples of textures from Brodatz database (first row) and their corresponding LST
parameters fields (from second to forth row): orientation, coherence and energy. The LST fields
were calculated for the following values of the parameters: σG = 1 for all textures and σT = 4, 5
and 4, respectively (considering the textures from left to right).

and the coherence.

The texture geometry information extracted by the structure tensor mainly consists of the

orientation estimated in the neighbourhood of a point by symmetric non-negative definite matrix

[Knutsson 1989]. However, in addition to the orientation, the structure tensor gives as well a mea-

sure of the certainty associated to the estimated local orientation. This property is sometimes referred

to as anisotropy. In other words, it indicates to which extent the orientation in the neighbourhood of

a point is dominant.

These local indicators of a texture’s geometry are obtained by eigenvalue decomposition. The

eigenvectors at a point n, u1(n) = [u1x(n), u1y(n)]† and u2(n) = [u2x(n), u2y(n)]† can be used to
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characterize the texture’s directional tendency around that point. More precisely, the first eigenvec-

tor u1(n) indicates the direction of strongest intensity variation and is, thus, orthogonal to the local

pattern orientation. It gives an estimation of the gradients’ mean orientation θ(n), in the neighbour-

hood of a point n. The orientation angle is calculated considering a coordinate system with the x

axis pointing to the left and the y axis pointing downwards (typical image coordinate system). The

gradient’s orientation corresponds to the angle the eigenvector makes with the x axis, measured in

the conventional clockwise direction. It takes values in the interval [0, π] (θ(n) = θ(n) + π - the

same angle is considered for eigenvectors having the same orientation but opposite senses). The

second eigenvector u2(n), orthogonal to u1(n), points along the texture pattern and it can be used for

estimating the texture’s orientation, in the neighbourhood of the point n.

In addition to the eigenvectors, their corresponding eigenvalues λ1(n) and λ2(n) can be exploited

to compute local anisotropy or energy indicators in the neighbourhood of the point n. The degree of

anisotropy of a texture is an indicator of its directional character and can be assessed by evaluating

the gap between the two eigenvalues. More precisely, a large gap between their values, λ1(n) �

λ2(n), indicates a preferred gradient orientation in the neighbourhood of the point n and it is a sign of

strong local anisotropy. On the contrary, close valued eigenvalues, λ1(n) ' λ2(n), indicate that there

is no dominant directional tendency of the gradient, meaning that the local texture patterns is roughly

isotropic. The anisotropy indicator, η(n) called also coherence in the literature [Weickert 2014] is

given by:

η(n) =
λ1(n) − λ2(n)
λ1(n) + λ2(n)

. (2.7)

The coherence can be seen as the confidence associated to the local orientation estimation. Its value

varies between 0 and 1. A value close to 0 is an indicator of a low accuracy in the orientation estima-

tion. The textural pattern corresponding to the local analysis window has no privileged orientation.

In other words, the local textural pattern is either homogeneous, either composed of a mixture of

different inter-winding local directional tendencies that define an isotropic character. On the other

hand, a value close to 1 of the coherence parameter, associates a high confidence to the estimated

local orientation.

It should be noted that a texture’s local anisotropy, evaluated by the structure tensor’s η para-

meter, does not imply the texture’s global anisotropic character. More precisely, a texture can have

an anisotropic character at a local analysis scale but at the scale of the whole texture have an iso-

tropic character. Let us imagine an LST field composed uniquely of structure tensors with a strong

difference between their eigenvalues. Although each structure tensor in the LST field can indivi-

dually describe an anisotropic phenomenon, the whole LST field may be isotropic, if the structure

tensors in the field have all different orientations. In this case, although the LST field is composed

uniquely of anisotropic structure tensors, corresponding to locally anisotropic texture patterns, the

global character of the texture is isotropic. Textures composed of circular patterns belong to this

category, such as the cross section of a tree trunk. In this example, the texture is isotropic, although
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Figure 2.5: Ellipse form representation of the LST fields corresponding to the Brodatz database
texture examples in Figure 2.4. The original size textures and zoomed areas are illustrated on the
left and right columns, respectively. For each texture (from top to bottom), a sampling step equal to
28, 32 and 40 pixels, was used for displaying the ellipsoids.

locally, its corresponding structure tensors are anisotropic.

The structure tensor’s eigenvalues can be exploited for assessing a texture’s local energy, too.

Computed as the sum of λ1(n) and λ2(n), it gives a measure of the gray level dynamics, or in other
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words, of the local intensity contrast.

Exploiting the structure tensor information in every point of an image results in a field of pa-

rameters locally characterising a texture’s content. The LST information can be represented by

displaying the different parameters fields, as done in Figure 2.4 that illustrates the orientation, cohe-

rence and energy parameter fields for 3 textures of different degrees of anisotropy. The first texture

is globally anisotropic. In addition to being characterised by high values of the η parameter, a small

variation of the θ parameter value can be observed on the orientation map, except on the wood knot

at the center of the image. The second texture is composed by regions alternating in anisotropy, i. e.

a strongly anisotropic region of circular varying orientation and strong contrast (high values for the

energy parameter) and an isotropic almost uniform region associated to low values for the coherence

and energy parameters. The last example illustrates a globally isotropic texture. It is characterised

by fast variations in the local orientation values, which gives the granular aspect of the orientation

map. The map of the coherence parameter is characterised as well by a granular aspect given by the

mix between isotropic and almost uniform areas inside the plastic bubbles and the anisotropic areas

of circular varying orientation corresponding to the bubbles’ edges. The fast local variation from

low contrast regions particular to the regions inside the bubbles and hight contrast area specific to

the edges of the bubbles is observed on the energy parameter map.

An alternative way of visually representing structure tensors is by means of an ellipse, as pre-

viously showed in Section 1.5 of Chapter 1. Examples of ellipse form representations of the LST

fields are given in Figure 2.5, for the same Brodatz examples previously used for visualising the LST

field’s parameter maps. The ellipse form representation and the parameter maps representation of

the LST field correspond to the same values of the structure tensor parameter’s (σG equal to 1 and

σT equal to 4, 5 and 4 respectively, considering the textures in Figure 2.5 from top to bottom). As it

can be observed, the mainly anisotropic pattern of the first texture is characterised by thin and elon-

gated structure tensors. As for the wood knot in the middle of the image, its isotropic character is

described by close to circular ellipse forms, i.e having similar axes lengths. In addition, the medium

size ellipse forms of the wood knot area are a mark of its low to medium varying energy levels.

The mixture of strongly anisotropic and isotropic patterns of the second texture is well charac-

terised by ellipse forms varying in shapes and sizes. On the anisotropic regions of the texture, the

ellipse form are more thin and elongated than in the case of the first texture, indicating a stronger

degree of local anisotropy. As for the isotropic region, the close to circular ellipse forms are of small

size, mark of the almost uniform pattern, as opposed to the isotropic region of the previous texture,

where the higher level of local variation in the intensity values has been characterised by larger-size

ellipses.

As far as the third texture is concerned, the ellipse form LST field is composed of medium-sized

ellipses of low degrees of asymmetry and small ellipse form, characterising the uniform pattern

inside the plastic bubbles. However, the fast variations in the texture’s local characteristics are

difficult to be visualised by means of ellipse form LST representation. A more dense representation
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of the structure ellipse form would be necessary which would prevent a clear visualisation since

neighbouring ellipses would be superposed.

In conclusion, the LST field information can be exploited by means of eigenvalues decomposi-

tion of the structure tensor computed in every point of the texture. The orientation, anisotropy and

the local energy degree can be visually represented in different ways. The LST parameters maps re-

presentation can provide a dense illustration of the different parameters, in each point of the texture.

However, one map per LST parameter needs to be generated. In contrast, the ellipse form represen-

tation has the advantage that each ellipse encompasses at he same time the orientation, anisotropy

and energy information in the corresponding point. In addition, it can be superposed on the texture

under analysis. On the contrary, due to the 2 dimensional shape of the object, in order to ensure

a clear visualisation, i. e. that neighbouring ellipses are not superposing, a sparse representation

needs to be applied. While for textures presenting slow variations in the local patterns geometry, the

sparse representation (ellipse form LSTs) allows a relatively complete description of the LST field,

in the case of textures with fast varying local characteristics, a dense representation (LST parameters

maps) approach is preferable for a complete description of the texture.

2.2.3 LST for Multiscale Texture Analysis

A texture can be viewed as a scale-dependent data. Analyses conducted at distinct scales generally

emphasize different characteristics. A low scale analysis is adapted for characterising fine details

of the local patterns, while the information relative to the texture’s global structure is lost. On the

other hand, a large scale analysis leads to a more rough characterisation of the texture and gives the

dominant elements of its geometric structure while small details (if present in the original image) are

not characterised. Some of the textures are mono-scale, and their content can be well-characterised at

a single scale of analysis. However, most real textures are characterised by a rich and diverse content

and can be seen as multiscale data. This means that information relative to their characterisation is

available at several different scales.

Given these considerations, a texture analysis method should be able to adjust its scale and

perform the analysis at the texture scale containing the relevant information. This is the case of

the structure tensor, that is a scale adjustable tool. For a same texture, the geometry information

encompassed by the structure tensor at distinct scales will be different.

A first step for an accurate characterisation of the local orientation and anisotropy information

is to identify the scale that is relevant for the texture information one wants to describe. Second, the

size of the structure tensor’s support should be adapted to match the scale of interest. This is easily

done by tuning the 2 parameters of the LST, namely the parameters of the Gaussian derivative and

weighting kernels, σG and σT respectively. The parameter σG should be chosen so that the gradient

vectors capture the orientations of the local patterns. The choice of a small value for σG assures a

local estimation of the gradient while increasing, at the same time, the noise sensitivity. The choice
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Figure 2.6: Analysis of an example texture of carbon material (first row) at four different scales
going from high resolution to low resolution (from left to right). The LST field corresponding
to each scale was computed for σG = 1 and a varying value of the parameter σT : 1, 2, 4 and 8,
respectively. Second to forth rows - LST orientation, coherence and energy fields, respectively.

of σT determines the size of the neighborhood within which the gradient vectors are pooled together

to compute a directional tendency. A large value leads to a low-resolution analysis of the gradient

field while a low value allows a finer scale analysis at the price of an increased noise sensitivity.

As opposed to the σG parameter, a larger value is a better choice for σT . While it increases noise

robustness, it ensures as well the homogeneity of information inside a window. For an accurate

analysis, the size of the weighting window should be approximately the same as the size of the

texture pattern of interest [Toujas 2010, Da Costa 2012, Akl 2015].

Figure 2.6 illustrates a texture at 4 different scales of analysis and the corresponding LST pa-

rameters fields (orientation, coherence and energy) for each scale. It can be seen that the visual

textural information differs from scale to scale, increasing in details as the scale of analysis becomes

finer. In order to adjust the analysis to the texture’s scale of interest, the size of the Gaussian weig-
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hting kernel was varied when computing the structure tensor. It should be noted that a low value for

the structure tensor’s parameter σT corresponds to a high resolution analysis while a high value for

σT corresponds to a low resolution analysis of the textural pattern. As for the Gaussian derivative

kernel, a constant value was chosen for the standard deviation, namely σG = 1.

For a value of the σT parameter equal to 1 (first row of Figure 2.6), we observe low energy

and coherence values for the image areas corresponding to the ridges and valleys (regions of the

image where the intensity level reaches a local extremum in a certain direction) and high values

for the areas corresponding to the edges. This indicates that the analysis is too local and provides

information at a scale that is lower than the size of the patterns of interest. As a consequence, values

of σT larger than 1 should be employed. For larger values of σT , namely 2, 4 and 8 (second to

fourth columns of Figure 2.6), this phenomenon is no longer reproduced. For σT = 2 the LST

yields a local analysis of the texture at a scale corresponding to the pattern size. Fast variations

in the values of the LST parameters are observed on the LST parameters maps, in particular on

the orientation map. An analysis of the fine details of the textural pattern, i.e. a high resolution

analysis is achieved for a small values of σT . For a higher value of the weighting kernel parameter,

namely σT = 4, quasi-uniform areas are observed on the LST parameter maps that correspond to

the compact carbon layers of same orientation that are visible on the input texture. For a higher

scale analysis, namely for σT = 8, corresponding to a lower resolution analysis, the LST field is

smoothed. Neighbouring compact regions, characterised by small differences in their orientations,

coherence and energy levels are merged together. Thus, larger areas characterised by a higher degree

of uniformity are observed on the LST parameter fields. This aspect is in particular marked on the

LST orientation map. Local details of the textural pattern’s structure are lost and the textural pattern

is characterised in terms of its global and most prominent structural traits.

As previously described, the structure tensor is a local texture descriptor relatively easy to com-

pute. Defined in each point as a 2× 2 non-negative definite matrix, it encompasses the local orienta-

tion information as well as an uncertainty measure associated to it. Relying only on two parameters,

σG and σT , it can easily be tuned to the textural content one wants to describe.

2.3 LST Statistical Modelling

In the previous section, it has been shown that the structure tensor allows the extraction and visual

representation of different structural characteristics related to the anisotropy of the local patterns

composing a textured image. In order to provide a quantified description of such a structure tensor

field, statistical methods are considered for characterising distributions of LSTs. To this purpose,

the non-Euclidean statistical models previously presented in Chapter 1 come as natural choices.

The statistical models consist of a Riemannian Gaussian distribution defined on the affine-invariant

metric space and of a multivariate Gaussian model on the log-Euclidean metric space. For both

cases, their corresponding mixture models have been considered as well. These statistical models
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are employed, in a first stage, for characterising marginal distributions of structure tensors. The fit

of the theoretical distribution to the LST field of different textures is analysed in Section 2.3.1, for

single and mixture models as well.

The log-Euclidean model and its corresponding mixture model can easily be extended to cha-

racterise joint distributions of structure tensors as opposed to the affine-invariant model that does

not facilitate such an approach. Given the expansion capacities of the LE model, it enables the

characterisation of neighbouring groups of structure tensors, encompassing thus, a texture’s spatial

information. The LE model and its corresponding mixture model can be adapted as well for charac-

terising LST fields computed at different scales of analysis. A mixed approach encompassing the

characterisation of spatial and multiscale information is proposed as well. The different approaches

for statistically modelling joint LST distributions are described in Section 2.3.2.

As a remark, the LE multivariate Gaussian distribution and the Riemannian Gaussian distribution

are adapted for characterising symmetric strictly positive definite matrices. However, in certain

degenerated cases, at least one of the strucure tensor’s eigenvalues can be equal to 0. In these

cases, the structure tensor is not strictly positive definite. In order to address this issue, a shrinkage

estimation of the structure tensor can be considered [Ledoit 2004], ensuring that it is always positive

definite and well-conditioned.

2.3.1 Statistical Modelling of Marginal LST Distributions

In a first step, the previously presented statistical models are applied for describing marginal LST

distributions of textured images. In order to evaluate how well a theoretical model fits the LST

field of a texture, the model’s parameters are first estimated for the LST field. Second, a synthetic

LST field is randomly generated following a statistical model whose parameters are equal to the

parameter estimates of the real LST field. In this way, the distributions of parameters λ1, λ2, θ and η

corresponding to the synthetic LST field can be represented and compared with the distributions of

parameters of the observed LST field.

A set of textures characterised by various types of patterns and properties has been considered,

on a spectrum going from simple to complex. These textures belong to remote sensing and material

application fields. The size chosen for the empirical LST field varies, according to the size of the

texture and to the values considered for the structure tensor parameters that dictate the border effect,

as previously described in Section 2.2.1. The size of the simulated LST field is chosen as a multiple

of the size of the empirical LST field and it is greater than 1 million.

Before assessing the fit of different statistical models to the empirical LST distribution, one needs

to make sure that the LST field has been computed at a scale that allows a proper characterisation

of the textural pattern. This is done by tuning the structure tensor parameters σG and σT , as briefly

explained in Section 2.2.1.

LST parameter distributions computed at different scales are illustrated in Figure 2.7, for an
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Figure 2.7: Distribution of LST parameters for different scales of analysis, for a remote sensing
maritime pine forest texture. First row - correct scales of analysis for both the gradient and tensor
parameters, namely σG and σT . Second row - variation of the gradient scale, σG. Third row -
variation of the tensor scale, σT .

example remote sensing texture. The texture corresponds to a maritime pine forest stand of age

greater than 20 years old. One can observe that visually, the texture is composed of inter-winding

regions of locally anisotropic patterns - corresponding to the soil between the groups of trees - and
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locally irregular and mostly isotropic patterns, representing groups of pines and the shadows they

form on the ground. However, in spite of being locally isotropic, the trees displacement gives an

average anisotropic character of the patten. Thus, the trees displacement in addition to the shadows

they form on the ground give a first dominant gradient orientation that can be visually identified on

the texture. The orientation’s value ranges from 3π/4 to π radians. A second dominant gradient

orientation can be visually identified. It corresponds to the traces marked on the soil and its values

is around π/4 radians. In addition to the dominant orientation, all the spectrum of orientations can

be locally identified in the texture, as, for example, in the regions corresponding to isolated trees. In

this case, the gradient corresponding to the areas around their crowns will vary in orientation, from

0 to π.

The LST parameters distributions should match the properties of the textural pattern identified

at a visual inspection of the texture. For relatively small values of the parameters, namely σG = 1

and σT = 2, the LST parameters distributions reflect the visually identified properties of the texture.

The two dominant gradient orientations are visible on the empirical orientation distribution that

is bimodal. In addition, significant occurrences for all the values in the orientation spectrum are

observed on the distribution. Furthermore, the average degree of anisotropy of the local pattern is

well reflected by the empirical coherence distribution.

When fixing σT at its optimal value and varying the value of the derivative’s filter standard

deviation σG, it can be observed that the empirical distribution is degrading fast and it does no longer

reflect the texture’s characteristics identified at a visual check. The second dominant orientation of

the gradient is no longer visible on the θ distribution that becomes uni-modal for σG = 3.

As for the standard deviation of the tensor’s weighting filter σT , smaller degradations of the

angle distribution are noticed as opposed to the previous case. However, for a value of σT = 8, the

mode corresponding to the orientation of the soil traces is strongly attenuated. In addition, except

from the gradient’s dominant orientation, almost all the other local orientations are no longer visible

on the empirical distribution. They have been eliminated as a result of a too strong smoothing.

In addition, the coherence parameter takes lower values indicating a decrease in the confidence

associated to the estimation of the local orientation. This is a natural consequence of an increased

weighting window size that, in this case, includes neighbouring patterns that are different in terms

of structure and orientation.

The results illustrated in Figure 2.7, show that the LST field is quite sensitive to the variation of

the σG parameter. As a result, it is preferred to use a small value for the standard deviation of the

derivative filter in order to account for the local variations of the textural pattern. In contrast, the

LST field shows less sensitivity to the variation of the parameter σT . A larger spectrum of values

can be tested in order to tune the weighing kernel to the size of the textural pattern of interest and to

boost the LST’s robustness to noise and other texture artefacts.

Once the LST computed at an accurate scale, the adjustment of the different statistical models

to the empirical LST distributions can be analysed.
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Figure 2.8: Adequacy of AI and LE statistical models for the characterisation of marginal LST
distributions of higly structured anisotropic and mono-orientation textures. Comparison of the em-
pirical distributions of LST parameters and the simulated distributions of LST parameters generated
according to a multivariate Gaussian model on the LE space, a Riemannian Gaussian model on the
AI space and their corresponding 2 and 3 components mixture models.

Figure 2.8 illustrates the distributions of parameters of the empirical and simulated LST fields

of two textures characterised by relatively simple and regular patterns. The textures have a strong

degree of anisotropy and one dominant orientation. The following values of the parameters have
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Figure 2.9: Adequacy of AI and LE statistical models for the characterisation of marginal LST
distributions of anisotropic mono-orientation textures composed of alternating structured and un-
structured regions. Comparison of the empirical distributions of LST parameters and the simulated
distributions of LST parameters generated according to a multivariate Gaussian model on the LE
space, a Riemannian Gaussian model on the AI space and their corresponding 3 components mix-
ture models.

been considered when computing the LST field: σG = 1 and σT = 2.

Pine1 illustrates a young remote sensing maritime pine forest of age less than 10 years old.

It is a homogeneous and strongly anisotropic texture, aspects visible on the distributions of LST

parameters: high values for λ1 and low values for λ2, the distribution of θ centered around π/2

and a high value of the coherence indicator (∼ 0.9). As far as the statistical models are concerned,

we can observe that for Pine1, for a LE multivariate Gaussian model, the theoretical distributions of
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Figure 2.10: Adequacy of AI and LE statistical models for the characterisation of marginal LST
distributions of isotropic textures. Comparison of the empirical distributions of LST parameters
and the simulated distributions of LST parameters generated according to a multivariate Gaussian
model on the LE space, a Riemannian Gaussian model on the AI space and their corresponding 3
components mixture models.

parameters fit well the empirical distributions of the LST field parameters, except for the distribution

of λ1. In addition, a better fit to the empirical data is observed for the LE model over the AI model.

When it comes to the LE mixture model, it can be seen that all the theoretical distributions of LST

parameters fit very well the empirical ones, starting for a number of mixture elements equal to 2. In

the AI case, when employing a mixture model of 2 components, a slight improvement is observed

in the adjustment of the theoretical distributions to the empirical ones, with respect to a single

Gaussian model. However, the theoretical model is not fitting very well the observed data. When
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an AI mixture model of 3 components is employed, a good fit is observed for most LST parameters.

However, in the case of λ1, it can be noticed that the theoretical distribution does not fit very well

the empirical one.

Carbon1 is a globally anisotropic texture, with the mode of the distribution of the coherence

indicator close to 1. It is characterised by a dominant gradient orientation close to π/2 and small

local variations around this value, as it can be observed on the distribution of θ. For this texture,

all empirical distributions of parameters are unimodal and relatively simple. In consequence, both

the LE multivariate Gaussian model and the Riemannian Gaussian one are fitting rather well the

empirical data. Better adjustments are observed when mixture models of 2 and 3 components are

employed, with a finer fit in the case of the LE mixture model. The increase in terms of characteri-

sation precision of the statistical models from 2 mixture components to 3 is marginal.

Figure 2.9 shows the distributions of real and simulated LST field parameters of two textures

composed of alternating anisotropic regions characterised by one dominant orientation and unstruc-

tured isotropic regions. Their LST fields are computed for the following values of the parameters:

σG = 1 and σT = 2.

Oyster1 is an oyster parks remote sensing texture illustrating several groups of cultivated oys-

ter racks. They form regular and anisotropic patterns, of same orientation, alternating with the

inter-racks regions whose pattern is isotropic and almost uniform. The mixture of anisotropic and

isotropic patterns can be noticed on the distribution of λ1 that is bimodal, one mode of very small

values corresponding to the inter-racks regions and the second mode of higher values corresponding

to the regions defined by the oyster racks. The texture’s dominant orientation is given by the orien-

tation of the oyster racks. The empirical distribution of θ is centred around this value and has a low

variance. The texture is characterised by very strong local anisotropy, as indicated by the distribu-

tion of the coherence parameter, whose mode is very close to 1. In the case of a single Gaussian

model, neither LE nor AI models fit well the empirical data. The theoretical distribution of θ adjusts

better the empirical one in the case of the LE model, while the opposite behaviour can be noticed in

the case of the distribution of λ2. However, when employing a mixture of 3 statistical models, both

LE and AI models fit quite well the empirical data, with a slight better adjustment of the LE model,

observed in particular for the distributions of the orientation θ.

Pine2 corresponds to an older forest of age greater than 20 years old. This texture has a lower

degree of homogeneity than Pine1. In addition, it is composed of inter-winding regions of locally

anisotropic patterns - corresponding to the soil between the groups of trees - and locally isotropic

and irregular patterns representing groups of pines and the shadows they form on the ground. The

distribution of local orientations is no longer unimodal. Two dominant local orientations are iden-

tified with relatively high occurrences associated to every value on the orientation spectrum. While

all models provide a good fit for most of the LST parameters distributions, the bimodal empirical

distribution of θ arises fitting difficulties for most models. However, for a mixture of 3 LE multivari-

ate Gaussian distributions, the theoretical distribution of the orientation is well fitting the empirical
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one.

Figure 2.10 illustrates the distributions of parameters of the empirical and simulated LST fields

of two textures of globally isotropic patterns. The LST field was calculated for σG = 1 and σT = 2

for the texture Oyster2 and σT = 1 for the texture Agricultural1.

Oyster2 is an oyster park texture illustrating the foreshore. It is characterised by a relative simple

and regular isotropic pattern. The isotropic character is well illustrated by the distribution of the

parameter θ that is almost uniform. The distributions of the LST parameters show that one LE

multivariate Gaussian model fits very well the observed data. This is not the case for the Riemannian

Gaussian model, where misfits can be observed on the distributions of λ2, θ and η as well. However,

when employing a mixture of 3 Riemannian Gaussian models, the theoretical distributions fit well

the empirical ones, except for the θ distribution that still does not adjust very well. While for this

texture a mixture of Riemannian Gaussian models is necessary for a complete characterisation of its

content, one single model is enough on the LE space. In addition, it seems to adjust even better than

the mixture model on the AI space. This aspect can be observed in particular on the distributions of

θ.

Agricultural1 is a texture from the database Land Use Land Cover of Merced University. Its

content is not specified, but given the shape and the arrangement of the trees in addition to their

crown dimension, it might correspond to a poplar stand at maturity. The textural pattern is isotropic

but the periodic displacement of the local patterns gives a global anisotropic character to the texture.

The locally isotropic character of the patterns is reflected by the distribution of the parameter θ,

characterised by high occurrences for all possible values of the gradient’s orientation. One mode is

observed on this distribution at a value close to 5π/6. This orientation correspond to the shadows in

between the tree crowns and it is interesting to notice that it does not corresponds to the orientation of

the tree ranks that subjectively is perceived as being dominant, at a first visual check of the texture.

As for the statistical models’ abilities to characterise the empirical data, a good fit to the data is

observed for a LE multivariate Gaussian model. In case of a mixture model of 3 components, the

LE model fits almost perfectly the empirical data, with the AI model showing a slightly less precise

fit, noticeable in particular on the orientations distributions.

So far, relatively simple textures composed of isotropic or anisotropic patterns of one dominant

orientation have been considered. In the following, we will analyse the adjustment of the proposed

statistical models for textures characterised by more complex patterns.

In Figure 2.11, the extent to which the LE and AI statistical models are fitting the LST field of

a remote sensing agricultural texture is analysed. The LST field was calculated for the following

parameters values: σG = 1 and σT = 1. The texture Agricultural2 corresponds to a young poplar

stand. It is composed of anisotropic patterns corresponding to the tree ranks and to the shadows

they form on the soil, giving the texture’s main orientation of value slightly below π. The inter-

ranks space corresponds to an almost uniform pattern, i.e. isotropic. This mixture of anisotropic

and isotropic patterns is visible on the distribution of λ1 that is bimodal. The higher complexity
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Figure 2.11: Adequacy of AI and LE statistical models for the characterisation of marginal LST
distributions of a near-regular agricultural texture composed of alternating anisotropic and almost
uniform patterns. Comparison of the empirical distributions of LST parameters and the simulated
distributions of LST parameters generated according to a multivariate Gaussian model on the LE
space, a Riemannian Gaussian model on the AI space and their corresponding 3 components mixture
models.

of the textural pattern of Agricultural2 with respect to the previously considered textures can be

noticed as well on the orientation distribution that has 3 modes. While the multivariate Gaussian

model is a better fit for the empirical data than the Riemannian Gaussian model, aspect observed

in particular on the distributions of θ and η, the theoretical distribution of the λ1 parameter does

not adjust well to the empirical distribution. As a result, one Gaussian is not enough for a precise
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Figure 2.12: Adequacy of AI and LE statistical models for the characterisation of marginal LST distributions
of a carbon material texture globally unstructured but locally anisotropic and structured. Comparison of
the empirical distributions of LST parameters and the simulated distributions of LST parameters generated
according to a multivariate Gaussian model on the LE space, a Riemannian Gaussian model on the AI space
(first row) and their corresponding 3 and 5 components mixture models (second row). LE mixture models of
higher number of components are illustrated on the third row (original and zoomed).

characterisation of the data. For a mixture model of 3 components, the LE theoretical distribution is

fitting well the empirical distribution of λ1. In contrast, in the case of the θ parameter, the theoretical

distribution does not fit very well the empirical one. Since in both LE and AI cases mixture models
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Figure 2.13: Adequacy of AI and LE statistical models for the characterisation of marginal LST distributions
of highly structured texture of Brodatz database of combined isotropic and anisotropic patterns. Comparison
of the empirical distributions of LST parameters and the simulated distributions of LST parameters generated
according to a multivariate Gaussian model on the LE space, a Riemannian Gaussian model on the AI space
(first row) and their corresponding 3 and 5 components mixture models (second row). LE mixture models of
higher number of components are illustrated on the third row (original and zoomed).

of 3 components are not enough for a complete characterisation of the observed data, mixture models

of 5 and 10 components are considered as well. While a very good fit is observed in the case of a

LE mixture model of 10 components, its corresponding mixture model on the AI space adjusts less
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well to the empirical data (aspect visible in particular on the distribution of λ1).

In Figure 2.12, the fit of the proposed statistical models to the LST field of a carbon material

texture is analysed. While being globally unstructured and characterised by a significant degree of

randomness, Carbon2 is characterised by a rich textural pattern that is locally composed of structured

and anisotropic, slightly circular patterns. The diversity of local orientation is observed on the θ

distribution, presenting high occurrences for all the values of the orientation spectrum and 3 modes.

A relatively good fit is observed for the Gaussian models on both LE and AI metric spaces. However,

the empirical distribution of the parameter θ is not well fit by the theoretical distributions. The

mixture models of 3 components adjust slightly better to the empirical data, with the LE model

being a better fit than the AI one. However, even in the LE case misfits can still be noticed, in

particular on the orientation distribution. Slight adjustments of both LE and AI statistical models

are observed for a mixture of 5 Gaussian distributions. Higher numbers of mixture components, i.e.

10 and 20 have been considered in the LE case. In both cases a better fit of the empirical distributions

can be observed. In addition, while a mixture model of 20 components adjusts slightly better to the

observed data than a mixture model of 10 components, the improvement is quite marginal.

Figure 2.13 illustrates the adaptability of the proposed statistical models for characterising the

LST field of a Brodatz database texture. The texture is highly regular, composed of a mixture

of anisotropic (dark vertical stripes) and isotropic patterns (light vertical stripes). Misfits of the

theoretical distributions to the empirical ones are observed for all the theoretical models tested and

illustrated in Figure 2.13, including the LE mixture model of 5 components. These misfits are mostly

pronounced in the case of the θ distribution. Mixture models of 10 and 20 components have been

considered in the LE case. While slight improvements are noticed, the empirical distributions are

not perfectly matched by the theoretical ones. In addition, as in the previous case, the gain in terms

of characterisation precision of the 20 components LE mixture model over the 10 components LE

mixture model is minimal.

2.3.1.1 Study of the Optimal Number of Mixture Models

In the previous experiments we have seen that the complexity of the statistical model employed for

texture characterisation is particular to the textural pattern. One LE Gaussian model showed a good

fit to the observed LST field of textures characterised by simple patterns, as, for example, in the

case of the texture Oyster2 in Figure 2.10. However, for most textures, mixture models of LE or AI

Gaussian distributions are necessary for a precise characterisation. Naturally, as a textural pattern is

more complex and diverse, a higher mixture order is necessary for a good fit of the statistical models

to the observed data. In the previous experiments the number of components of a mixture model was

hand-tuned. However, different methods can be employed in order to automatically find the optimal

value of this parameter for the texture under analysis.

One way of finding the optimal value of the parameter K is by studying the likelihood variation
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Figure 2.14: Variation of the mean likelihood value over all a texture’s pixels for the LE and AI mix-
ture models with respect to the number of mixture components, K. The variation curves correspond
to the maritime pine forest textures illustrated in Figures 2.8 and 2.9 and for the agricultural textures
illustrated in Figures 2.10 and 2.11.

for the considered statistical model according to the number of mixture components. In this section

we analyse the variation of the mean likelihood value computed for all the structure tensors in a

texture’s LST field. The variation curves corresponding to the maritime pine forest textures Pine1

and Pine2 and for the agricultural textures Agricultural1 and Agricultural2 are displayed in Figure

2.14.

A relatively significant increase in the mean likelihood value of a mixture model over one Gaus-

sian model is observed for the texture Pine1, for both AI and LE statistical models. While for the

LE models there is no noticeable increase in the mean likelihood value for values of K greater than

2, an increase is observed for the AI models for a value of K up to 4. The increase of mean likeli-

hood value from a single Gaussian model to a mixture of Gaussian models on the LE and AI metric

spaces is less significant for the texture Pine2. However, it should be noted that a stable value of the

mean likelihood does not imply that the statistical model is perfectly fitting the data. While for the

LE mixture model of 3 components an excellent fit of the empirical distributions has been observed

for the textures Pine1 (Figure 2.8) and Pine2 (Figure 2.9), the AI mixture model of 3 components

is not fitting very well the empirical distributions. In other words, in particular for the AI statistical

model, while increasing the number of mixture models often leads to a good fit of the empirical

distributions of LST parameters, selecting the optimal value for the number of mixture components

does not always guarantee a good fit of the empirical LST distributions.

When it comes to the agricultural texture Agricultural1, the increase in the mean likelihood value

for mixture models of 2 components with respect to a single Gaussian is marginal, for both LE and

AI cases. In addition, for values of K greater than 2 the mean likelihood value is almost constant.

These observations are in accordance with the illustratuins of LST parameters distributions in Figure

2.10 that showed a relativly good fit of both AI and LE theoretical models when one Gaussian was

employed and a slightly better adjustment for a mixture model of 3 components. As for the texture
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Agricultural2 a stronger variation is observed in the mean likelihood value with respect to the number

of mixture components, K. As opposed to the previous cases, a pronounced increase in the mean

likelihood values is noticed for values of K up to 10. This confirms the results previously illustrated

for this texture in Figure 2.11 that showed that mixture models of order higher than 5 are necessary

for a good fit between the theoretical and empirical distributions of the LST field parameters.

Overall, the mean likelihood values for the LE models are greater than those corresponding to

the AI models. However, the AI and LE mean likelihood values are not directly comparable as the

data that is modelled belongs to different metric spaces. While the AI model is applied on the raw

structure tensor data, the LE model is applied after transforming the original structure tensors data.

We remind here that the transformation consists of computing the matrix logarithm of the tensor

data and then vectorising the result. In consequence, if, for instance, one multivariate Gaussian

distribution on the LE space has a higher mean likelihood value than a mixture model of Riemannian

Gaussian distributions, it does not imply that the LE model is better fitting the data. However, the

increase in the mean likelihood value of a mixture model over a single model is more pronounced

for the AI case. In other words, a mixture model on the AI space is expected to provide better fit

to the empirical data than a single Riemannian Gaussian distribution. In contrast, while employing

a mixture model over one single multivariate Gaussian on the LE space improves the adjustment

of the theoretical model to the empirical data, the gain in terms of characterisation precision is less

marked than on the AI space.

In addition to the likelihood variation, BIC (Bayesian Information Criterion), introduced by

Schwartz [Schwarz 1978], is commonly employed in model selection for automatically tuning the

number of mixture components. The optimal value of the K parameter corresponds to the global

minimiser of the BIC criterion:

K̂ = arg min
K

BIC(K). (2.8)

While selecting the number of mixture models according to the likelihood values remain a valu-

able method, this approach might lead to over-fitting. The BIC criterion is based on the likelihood

function as well. However, it attempts to overcome the afore-mentioned limitation of the likelihood

method, by adding a penalty term to the number of degrees of freedom of the model:

BIC(K) = −L +
1
2
× DF × log N, (2.9)

where L and DF stand for the model’s log-likelihood function and for the number of degrees of

freedom, respectively. N corresponds to the sample set size.

In the case of a mixture model of Riemannian Gaussian distributions, the value of the log-

likelihood function is computed according to equations (1.26) and (1.23). In the LE case, the log-

likelihood function is computed by equations (1.51) and (1.49).

The number of degrees of freedom for the AI and LE mixture models are given in the following,

for the case of sample sets of SPD matrices of size m × m. The number of degrees of freedom for a
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Figure 2.15: Variation the BIC criterion of the AI and LE mixture models with respect to the number
of mixture component, K, for the maritime pine forest textures illustrated in Figures 2.8 and 2.9, for
the agricultural textures in Figures 2.10 and 2.11 and for the Brodatz database texture in Figure 2.13.
The BIC criterion variation curves corresponding to the LE statistical model are drawn in red while
those corresponding to the AI statistical model are drawn in yellow.

mixture model of Riemannian Gaussian distributions is given by:

DFMGAI = K ×
m(m + 1)

2
+ K + (K − 1), (2.10)

with the following repartition of the degrees of freedom between the mixture model’s parameters:

the first term is associated to the centers of mass Mk, k = 1, ...K, the second term corresponds to the

dispersion parameters σk, k = 1, ...K and the last term is associated to the mixture model’s weights
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ωk, k = 1, ...K,
∑K

k=1 ωk. The number of degrees of freedom for a mixture model of multivariate

Gaussian distributions on the LE space is given as:

DFMGLE = K ×
m(m + 1)

2
+ K ×

m(m + 1)
4

[
m(m + 1)

2
+ 1

]
+ (K − 1), (2.11)

where the first term of the sum corresponds to the degrees of freedom of the mixture’s models

means µk, k = 1, ...K, the second to the degrees of freedom of the mixture model’s covariance

matrices Σk, k = 1, ...K and the last term is associated to the mixture weights of the statistical

model, ωk, k = 1, ...K,
∑K

k=1 = 1.

The variation curves of the BIC criterion, according to the number of mixture components K, for

both LE and AI models is illustrated in Figure 2.15, for several textures selected from the previous

examples.

For textures characterised by relatively simple patterns, while a significant decrease in the value

of the BIC criterion can be noticed from one Gaussian model to a mixture model of 2 components,

marginal variations are observed for values of K greater than 2 as is the case for the textures Pine1

and Pine2. For these textures, the number of mixture components minimising the BIC criteria are

low: 6 (LE case) and 4 (AI case) for the texture Pine1 and 6 for both LE and AI models for the

texture Pine2.

Naturally, for textures characterised by more complex patterns, a stronger variation is noticed in

the value of the BIC criterion for values of K greater than 2, in particular for the LE models. For

instance, in the case of the texture Agricultural2, the BIC criterion attains its minimum for value of

K equal to 9 in the LE case and equal to 13 in the AI case. These observations are in accordance with

the results illustrated in 2.11 where a good fit of both AI and LE theoretical models to the empirical

data has been observed for a number of 10 mixture components. For textures presenting even more

complex patterns, a more significant variation is observed for the BIC criterion corresponding to the

LE case. This is the case of the texture Brodatz1, for example, where the value of the BIC criterion

is still in decrease for a value of K equal to 20. On the other hand, the value of K minimising the

BIC criterion corresponding to the AI models is equal to 4. However, as previously illustrated in

Figure 2.13, a mixture model of 5 components on the AI space does not provide a good fit of the

empirical LST distribution.

Generally, it has been observed that in the case of the AI mixture models the BIC criterion

attains its minimum for lower values of K than in the case of the LE models. However, in some

cases, employing the optimal value for the number of mixture model components, as indicated by

the BIC criterion, does not necessarily guarantee an excellent fit of the theoretical model to the

empirical data.

The variation of the computation time, according to the variation of the number of mixture

components, K, is displayed in logarithm scale in Figure 2.16. It corresponds to both LE and AI

models applied on the texture Pine1. Greater computation times are observed for the AI statistical
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Figure 2.16: Logarithm scale variation of the computation time corresponding to the LE and AI
mixture models with respect to the number of mixture components, K, for the maritime pine forest
texture Pine1 illustrated in Figure 2.8

models than for their LE counterparts. In addition, the computation time gap between the AI and LE

models becomes more significant with the increase of the number of mixture models. Thus, if in the

case of a single Gaussian distribution, the AI vs. LE computation time ratio is equal to 5.8, in the

case of mixture models of 20 components, the LE model is 34 times faster than the AI one. More

precisely, in this case, the model estimation takes around 50 seconds in the LE space and slightly

more than 27 minutes in the AI case.

Generally, one LE multivariate Gaussian model fits quite well the empirical LST fields of re-

latively simple textures, for which the distributions of parameters are unimodal. A mixture of LE

multivariate Gaussian models is necessary for fitting the LST fields of textures characterised by a

mixture of patterns having different anisotropy and orientation properties. In these cases, the distri-

butions of the LST parameters is, naturally, no longer unimodal. The previous experiments showed

that a mixture of 3 LE multivariate Gaussian models is enough for a precise characterisation of most

of the textures taken as examples in this section. However, in most cases, the improvement in the

adjustment to the empirical data of a mixture model over one Gaussian model is not significant,

on the LE metric space. For textures characterised by more complex patterns, a higher number of

mixture components in necessary for a good fit of the theoretical model to the empirical data. When

it comes to the AI model, the experiments showed that mixture models are necessary for well fitting

the real LST fields of most textures. However, for some textures, even when increasing the order

of the model until a maximum in the likelihood function is attained, the theoretical model is still

mis-fitting the data.

A comparison of the LE and AI statistical models capacities to fit the LST fields of different

textures can be summarised as follows. LE models globally adjust better to the empirical data than

AI model of same orders. In some cases, a single LE multivariate Gaussian distributions showed a
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Figure 2.17: Examples of pixel neighbourhood configurations for an inter-pixel distance (d) equal
to 3 pixels. In black - the current pixel, in gray - its neighbouring pixels. Configuration types, from
left to right: couple, half-cross, cross - size 3, half-square - size 3 and square - size 3.

better fit to the empirical data than a mixture of 3 Riemannian Gaussian distributions, as in the case

of the textures Oyster1 in Figure 2.9 and Pine1 in Figure 2.8. These differences are, on the one hand,

natural, for models of same order, given the difference in the number of degrees of freedom between

the LE and AI models. However, the experiments showed little gain in terms of the log likelihood

function for AI mixture models of order higher than 5. In addition to showing a better characterisa-

tion potential of the LST fields of different textures, the LE statistical models are considerably faster

than the AI models.

2.3.2 Statistical Modelling of Joint LST Distributions

While marginal LST distributions encompass the variability of the textural information in each point,

the information relative to the spatial organisation of the textural pattern is lost. In addition, the

previously presented approaches are performing the texture characterisation at a single scale of ana-

lysis. However, a texture is often composed of patterns defined at different scales. Thus, intuitively,

a multiscale approach should be more adapted for texture characterisation. The Riemannian Gaus-

sian model is not adapted for such an approach that implies modelling data samples of p-tuples of

SPD matrices, where each p-tuple corresponds to a group of p neighbouring LSTs or LSTs com-

puted at different scales. In contrast, the LE mapping, that allows the vector form representation

of covariance matrices, makes possible to envision methods for statistically modelling joint LST

distributions.

Building extended structure tensors encompassing the spatial, multiscale or both spatial and

multiscale information in a given point of the texture can be easily achieved in practice, due to the

LE vector form representation of structure tensors. However, as the dimension of the observed data

increases, statistically modelling samples of extended structure tensors becomes a non-trivial task.

2.3.2.1 Extended LE LST Methods and Data Formatting

Three approaches for characterising p-tuples of structure tensors are proposed. They address the

characterisation of spatial dependencies information, multi-scale information and the mixed des-

cription of spatial dependencies and multi-scale information.
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Figure 2.18: LE LST approach for describing spatial dependencies in an LST field. The border effect
induced by successive filtering is drawn in light green on the input texture. The extended structure
tensor at a point n, n = 1, ...N where N corresponds to the LST field size, is formed by concatenating
the LE vector form LSTs in the current pixel position and each point of the p size neighbourhood
configuration. The countour of the current pixel is drawn in red and the neighbourhing pixels are
marked in green. The same color code is used for the LE mapped structure tensors composing the
extended structure tensor at point n.

Extended LST for describing Spatial Dependencies in LST Fields

In order to characterize the spatial dependencies inside an LST field, neighbouring structure tensors

are grouped together, forming thus an extended structure tensor in each point of the texture. Several

types of pixel neighbourhood configurations are considered with different values for the distance

between the current pixel and its neighbours. Some examples of neighbourhood configuration for

an inter-pixel distance equal to 3 are given in Figure 2.17.

Considering the LE vector form representation of structure tensors, given a neighbourhood con-

figuration of p structure tensors, for each pixel, a vector is created by vertically concatenating the

structure tensor corresponding to the current pixel and those in its neighbourhood, as illustrated in

Figure 2.18. Thus, the size of the extended structure tensors in one point changes from 3 (as in the

case of marginal LST distributions) to 3(p + 1).

The chosen neighbourhood configuration will induce a border effect. Thus, the extended LST

distribution is defined uniquely for those pixels for which all neighbouring pixels’ positions are

defined within the texture’s pixels positions domain.
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Figure 2.19: LE LST approach for describing multiscale dependencies in an LST field. The border
effect corresponding to each scale i, i = 1, ...s, induced by successive filtering is marked on the input
texture - in green for the scale L1 and orange for the scale Ls. The extended structure tensor at a
point n, n = 1, ...N where N corresponds to the LST field size, is formed by concatenating the LE
vector form LSTs at point n, for all scales i, i = 1, ...s. The contour of the current pixel is drawn in
two nuances of red: dark (high resolution, scale L1) and light (low resolution, scale Ls). The same
color code is used for the LE mapped structure tensors composing the extended structure tensor at
the point n.

Extended LST for describing Multiscale Dependencies in LST Fields

In response to a texture’s character, a multiscale LST texture analysis approach is proposed, on the

LE metric space.

First of all, the LST field is computed at different scales of analysis by fixing the value of the

structure tensor’s σG parameter and tuning the σT parameter. Each level of analysis, Li, i = 1, ...s,

where s denotes the numbers of scales considered, is associated a value σTi . As the scale increases,

the values of the σTi parameter increases as well. However, the spatial resolution decreases with

the scale increase. Thus, the scales succeed in decreasing order of spatial resolution from L1 to

Ls. Consequently, the size of the border effect associated to the LST field computation is specific

to the scale and its value is maximal for the highest level Ls. So that a given pixel position has

correspondence in all the levels of the multiscale analysis, the LST fields computed at scales Li, i =

1, ...s − 1 are truncated to the LST field size of level s, as is illustrated in Figure 2.19.
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Figure 2.20: LE LST approach for describing spatial and multiscale dependencies in an LST field.
The extended structure tensor at a point n, n = 1, ...N where N corresponds to the LST field size,
is formed by concatenating the LE vector form LSTs at the current pixel position and each point of
the pi size neighbourghood configuration, for all scales i, i = 1, ...s. The contour of the current pixel
is drawn in two nuances of red: dark (high resolution, scale L1) and light (low resolution, scale Ls).
Different colors are used for the neighbourhood pixels at the two scales of analysis. The same color
code is used for the LE mapped structure tensors composing the extended structure tensor at point
n.

The multiscale approach consists in considering the structure tensors at each scale separately.

Namely, the LE extended structure tensors at the point n, n = 1, ...N, where N is the size of the

LST field, is formed by concatenating the LE structure tensors at the point n, corresponding to all

scales of analysis. In this case, the extended structure tensor is of size 3s. A general scheme for this

approach is illustrated in Figure 2.19.

Extended LST for describing both Spatial and Multiscale Dependencies in LST Fields

The previous approaches can be combined in order to develop an approach encompassing a texture’s

spatial and multiscale dependencies simultaneously.

At each scale, neighbourhoods of structure tensors are considered. Different neighbourhood

sizes and configurations can be considered at each scale. The number of positions in the neighbour-

hood configuration at scale i is denoted by pi. Thus, the extended structure tensor for this approach
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is of size
∑s

i=1 3(pi + 1). The general scheme for this multiscale LE LST based texture characte-

risation approach is illustrated in Figure 2.20. In addition, a mixed approach can be considered

as well, where at some scales of analysis, the intra-scales LST dependencies are characterised by

considering neighbourhoods of structure tensors and at some other scales, only the tensors on the

current position are included when composing the extended structure tensors, without considering a

neighbourhood configuration.

2.3.2.2 Statistical Modelling of Extended LST Distributions

Once the LE extended structure tensors are formed in each point, the resulting LST field is modelled

by a LE multivariate Gaussian distribution or by a mixture of LE multivariate Gaussian distributions.

The LE multivariate Gaussian distribution family is considered for all the afore-mentioned extended

LE LST approaches (spatial, multiscale and the mixed spatial and multiscale approach). Although

the model itself does not change, the dimension M of the LE multivariate Gaussian increases from

3 to 3(p + 1) in case of the mono-scale spatial extended tensors and to
∑s

i=1 3(pi + 1) in the case of

multiscale extended tensors, with i = 1, ...s and s being the number of scales considered.

When the information at a different point (neighbour or different scale) is added to the infor-

mation at the current point, there is an order 3 increase in the size of the extended structure tensor.

Thus, there is a fast increase in the dimension of the observation space. An increase in dimen-

sion induces, on the one hand, a fast increase in the volume of the observation space. The sample

size needed for covering the observation space in all the dimensions grows exponentially with its

dimension [Kanevski 2009]. In consequence, high dimensional spaces tend to be terribly empty

[Tarantola 2004], as the observed data becomes sparse. In addition, an increase in the dimension of

the observation space leads to larger values for the number of degrees of freedom of the statistical

model, i. e. a larger set of parameters that need to be estimated, as illustrated in Figure 2.21. Pre-

viously, we have observed that in 3 dimensional space the LE model has been more adapted than

the AI one for characterising SPD matrices sample sets, in particular due to its higher number of

degrees of freedom (see Section 1.5 of Chapter 1). While generally, a higher number of degrees

of freedom of a statistical model amplifies its characterisation capacities, increasing the degrees of

freedom above a certain limit becomes problematic, as a very large observation set is required for

statistical inference.

The study of the theoretical models fit to randomly generated sample sets of extended structure

tensors will be addressed differently here, as opposed to the previous case of marginal models. In the

case of extended structure tensors, the covariance matrix structure of the structure tensors is lost, as

they are formed by concatenating LE mapped vector form representation of structure tensors. Thus,

the visual comparison of the theoretical and empirical parameters distributions (namely, λ1, λ2, η

and θ), is no longer feasible. For marginal models, the size of typical LST fields corresponding to

real textures allows to estimate the parameters of the 3 dimensional statistical model with a satisfac-
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Figure 2.21: Variation of the number of degrees of freedom of a mixture of multivariate Gaussian
distributions according to the structure tensor tuple’s size and to the number of mixture components.

tory precision for the application purposes considered in this work. Most real textures used in our

experiments are of size 256 × 256 which corresponds to an LST field of size generally higher than

50, 000, depending on the border effects. When modelling extended structure tensors distributions,

as there is a dimensionality increase, the LST field size may not be sufficient for a robust estimation

of the statistical model’s parameters. In addition, considering mixture models further increases the

already problematic dimension of the parameter space. The potential instability issues of the statis-

tical inference process makes the study of the BIC criterion and of the likelihood variation according

to the number of mixture models biased. The problem of statistical inference needs to be analysed

in more detail. More precisely, the impact of the data sample size on the estimation of the statistical

model’s parameters in high-dimensional spaces needs to be assessed.

A test scenario is imagined in the following in order to analyse the impact of the sample set

size on the likelihood function estimation, as the dimension of the observation space increases. To

this purpose, sample sets of different sizes are drawn from a mixture of 3 multivariate Gaussian

models. Four dimensions of the observation space are considered: 3 - corresponding to individual

structure tensors, and 6, 9 and 15 - corresponding to the following 3 structure tensors neighbourhood

configurations: pair, half-cross and cross, respectively. The variation curves of the mean likelihood

function, for sample sets sizes ranging from 500 to 1, 000, 000 are illustrated in Figure 2.22. Na-

turally, the mean likelihood function diverges for small sample sets (N = 500 and N = 1000), no

matter the dimension of the observation space. In a stable estimation case, the value of the likelihood
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Figure 2.22: Variation of the mean likelihood value for simulated data samples of LE multivariate
Gaussian models, according to the number of mixture components, K. The real number of mixture
components of the simulated data is 3. The impact of the sample set size on the likelihood function
estimation is illustrated. Four model dimensions are tested: 3, 6, 9 and 15 corresponding to 1-tuple
structure tensor, and to the following neighbourhood configurations: pair (2-tuple of structure ten-
sors), half-cross (3-tuple of structure tensors) and cross (5-tuple of structure tensors), respectively.
The neighbourhood inter-pixel distance is equal to 8.

function should increase until the real number of mixture components is attained and stabilize its

value afterwards. Some degenerated cases are attained, when the dimension of the space is large

and the number of mixture models is high. They correspond to cases when the number of degrees of

freedom is larger that the sample set size. A relatively stable behaviour of the log likelihood function

is observed for sample sets larger than 10, 000, in the case of observations of dimensions 3 and 6.

When the dimension of the observation space is 9, unstable behaviour of the likelihood function is

observed for larger sample sets, as well. For N = 50, 000 the mean likelihood converges for a num-

ber of mixture components different than the real one (4 instead of 3). For an observation space of

dimension 15, the divergence of the likelihood function for relatively small sample sets (N = 5, 000

and N = 10, 000) is more pronounced than in the previous cases.
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Figure 2.23: Variation of the mean likelihood value over all of a texture’s pixels for the LE mixture
models with respect to the number of mixture components, K. Two model dimensions are tested: 6
and 9 corresponding to the pair (2-tuple of structure tensors) and half-cross neighbourhoods topolo-
gies (3-tuple of structure tensors), respectively. The neighbourhood inter-pixel distance is equal to
8. The variation curves for the Carbon1 and Carbon2 256×256 size texture patches are illustrated on
the first row and for 1024 × 1024 texture patches of the same carbon materials, on the second row.

This test scenario illustrates a relatively simple case, when the data forms 3 well-defined groups

in the space. However, real data is often more scattered. In addition, the real number of mixture

components can be well superior to 3. Thus, in such a case, large sets of data would be necessary so

that each group is well represented and statistical inference can be done with no difficulties.

Figure 2.23 illustrates the mean likelihood variation of the LE multivariate Gaussian mixture

model, with respect to the number of mixture components, K. Statistical models of dimensions 6

and 9 have been considered. They are employed for characterising distributions of extended structure

tensors corresponding to couple and half-cross neighbourhood topologies. The results correspond

to the 256 × 256 large carbon material textures Carbon1 and Carbon2. Larger texture samples of
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1024 × 1024 pixels of the same materials have been considered as well. The considered patch sizes

result in extended structure tensor sample sets of around 50, 000 and 1, 000, 000 samples large. The

number of mixture models is varied between 1 and 100 and a step of 10 is considered between

consecutive likelihood values. The last row of Figure 2.23 illustrated the variation of the number

of degrees of freedom of the 6 and 9 size statistical models, with respect to the number of mixture

components, K. In the case when the sample set size is around 50, 000, the mean log-likelihood

is not converging towards an optimal number of mixture models. The same behaviour is observed

as in the previous case of simulated data, for small sample set sizes (see Figure 2.22). On the

contrary, for larger sample sets, a more stable behaviour of the likelihood function is observed for

both dimensions of the statistical models (second row of Figure 2.23). In addition, a high sensitivity

of the likelihood function to the statistical model’s dimension is observed in the case of real data.

More precisely, in the case of half-cross neighbourhood configuration, the log likelihood curve has a

more unstable character than in the case of couple neighbourhood configuration, and that for sample

sets of around 1, 000, 000 samples large.

The differences in the aspect of the mean likelihood curves, when dealing with an order 3 incre-

ase in the dimension of the statistical model (equivalent to adding one point to the neighbourhood

configuration) are more marked for real than for simulated data. This observation might suggest that

the optimal number of Gaussians in the mixture model necessary for fitting the data is well superior

to 3. Large sample sets are necessary for performing statistical inference on real data of higher di-

mensional spaces, whose repartition in space can be scattered, as opposed to simulated data whose

repartition is space is controlled.

2.4 Dealing with Rotation Invariance

The LST field encompasses the orientation and anisotropy information in each point of a texture.

However, to some applications, the orientation is not informative to the texture’s description, but the

anisotropy alone.

Let us consider a classification application of directional textured images of known class. While

each class is characterized by a particular textural pattern, the texture of interest appears in different

orientations. Given two textures, their similarity should be assessed in terms of the textural pattern,

namely of the anisotropy characteristics and not according to the textures’ orientations. More preci-

sely, given the same texture in two different orientations, one would want the distance between the

two images to be equal to 0. Thus, in such applications, rotation invariance is a real prerequisite of

the texture analysis method employed.

2.4.1 Rotation Invariance for Marginal LST Statistical Models

Two strategies for addressing rotation invariance of marginal LST based methods are proposed in

this work. A first strategy relies on determining the global directional tendency of a texture and then
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imposing orientation corrections to the statistical model describing the texture’s LST field. A second

strategy does not rely on an a priori orientation estimation. Instead, it does an exhaustive search of

the orientation wise best match between two textures.

Global Orientation Estimation based Rotation Invariance

The success of this approach lies upon an accurate estimation of a texture’s dominant orientation, θ.

To this purpose, two techniques are proposed:

• the global texture orientation, θ, is given by the orientation of the LST field’s center of mass.

The center of mass is estimated in terms of the AI or LE metric, according to the LST statistical

model further employed for texture characterisation;

• the global texture orientation, θ, is given by the modal value on the histogram of orientations

of all the structure tensors in the field.

Once a texture’s dominant directional tendency estimated, all the structure tensors in its LST

field are applied a rotation with the rotation matrix R corresponding to the previously estimated

angle, θ. Given the texture’s original LST field Y, its rotated counterpart Yrot is obtained as follows:

Yirot = R†YiR (2.12)

for i = 1, ...N, N being the number of tensors of a texture. Thus, the dominant orientation of the

resulting LST field Yrot will be equal to 0◦. The statistical model’s parameters are further estimated

on the rotated LST field and the approach becomes, thus, rotation invariant.

Exhaustive Search based Rotation Invariance

When comparing two textures, the original LST field of one texture is applied successive rotations

by all the t evenly spaced angle values in the pre-defined interval [θr1 , θr2], as given in equation

2.12. This results in t rotated LST fields for the first texture while the second texture’s LST field is

left unchanged. A statistical model will then be estimated for every LST field and a distance will be

computed between each of the t statistical models corresponding to the first texture and the statistical

model of the second texture. The smallest distance in the set will be considered as the real distance

between the two textures. While the exhaustive search leads to a reliable rotation invariance, it takes

a considerably longer implementation time compared to the methods based on the estimation of a

texture’s main orientation.

An example of two anisotropic textures of maritime pine forest where a rotation invariant texture

analysis approach is necessary in a classification context is given in Figure 2.24. A quick visual

check shows that the textures Pine3 and Pine4 have quite similar patterns and they are different

mainly in terms of their orientations. These aspects are confirmed by the LST parameter maps:
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Figure 2.24: LST parameters maps of two maritime pine forest textures before the rotation of the
LST fields. The LST fields were calculated for the following values of the parameters: σG = 1 and
σT = 3. From top to bottom - original textures, orientation, coherence and energy maps.

similar maps for the coherence and energy parameters and different maps for the parameter θ. The

LST fields of the two textures are rotated with the angle corresponding to the orientation of their

corresponding centers of mass. The LE center of mass was considered in this example. The LST

orientation maps after rotation are given in Figure 2.25. It can be observed that the orientation maps
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Figure 2.25: LST orientation maps of the maritime pine forest textures Pine3 and Pine4 after the
rotation of their LST fields with the orientation angle corresponding to their centers of mass.
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Figure 2.26: The distributions of the LST fields’ parameters of the maritime pine forest textures
Pine3 and Pine4, before and after the rotation of their LST fields with the orientation angle corre-
sponding to their centers of mass.

are globally very similar after rotation. As for the other LST parameters, they are not affected by

the rotation, as it can be noticed on their distributions, illustrated in Figure 2.26. Applying a rotation

to each tensor of a texture’s LST field with a given angle, corresponds to applying a translation to

the LST field’s orientation distribution with a value equal the orientation of the center of mass, as it

can be observed in Figure 2.26. The distribution of the LST fields parameters after rotation are very

similar for the two textures Pine3 and Pine4.

While a rotation invariant approach is well adapted for strongly anisotropic textures having a

dominant global orientation, such an approach is questionable for textures where the notion of global

orientation is ambiguous. An oyster park texture is given as example in Figure 2.27. Its pattern is

composed of oyster racks displaced upon 3 different orientations, visible on the LST orientation

map and on the orientation distribution that has 3 modes. The LST parameters distributions and

the orientation map after applying a rotation to all the structure tensors in the field are given as

well in Figure 2.27. The orientation of the LE center of mass is considered when applying the
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rotation. In this case, the orientation of the center of mass does not well represent the texture’s

global orientation. Instead, it is the weighted mean of the 3 different orientations corresponding to

the oyster racks displacement. As the global orientation of the texture is not well-defined in this case,

the rotation invariance strategies based on the estimation of the LST field’s global orientation are not

well-adapted. For such a case, among the methods proposed here for handling rotation invariance,

the exclusive search one is the most adapted.

The methods for dealing with rotation invariance proposed in this work have been assessed

in a classification context on different textured images databases, the results being repported in

[Noutatiem Guiafaing 2016]. For the exhaustive search method, the angle values are ranged from 1◦

to 180◦ with an incremental step equal to 1◦, resulting thus in 180 LST fields for each texture. The

experiments presented in the report show no sustained overall gain in the classification performances

of one approach over the other. In the absence of a clear winner, we choose to apply in the experi-

mental settings further proposed in this work the least complex rotation invariance strategy amongst

the different propositions. It is based on estimating a texture’s main orientation by the orientation of

its LST field’s center of mass. The center of mass is estimated by the LE or AI metric, according to

the nature of the LST statistical model employed.

2.4.2 Rotation Invariance for Joint LST Statistical Models

When it comes to statistical models for characterising LST neighbourhoods distributions, the ro-

tation invariance approach is slightly different. While the strategy applied for marginal LST dis-

tributions still applies, a supplementary step is implemented. Namely, in addition to rotating the

individual structure tensors composing a texture’s LST field, the pixels’ positions defining a given

neighbourhood configuration are applied as well a rotation with the orientation angle θ correspon-

ding to the estimated center of mass. In this way, the considered pixel neighbourhood configuration

is orthogonal to the textural pattern, as illustrated in Figure 2.28. When the rotated position does

not correspond to an actual pixel position (it is not an integer), the nearest neighbouring position is

considered.

A particularity of the proposed LST statistical modelling based approaches is that rotation inva-

riance is an integrated part, since the orientation estimation is intrinsic to the local texture descriptor.

On the contrary, this is not the case for most of the state of the art texture analysis methods that attain

a rather pseudo rotation invariance. In these cases, rotation invariance is sometimes addressed by

applying additional processing steps to the database, prior to the employment of the texture analysis

approach. The pre-treatment consists of estimating the texture’s global orientation and then rotating

all the textures in the database so that their orientation is equal to 0◦ [Regniers 2014a]. In some

other cases, the rotation invariance is approached by applying different modifications to an original

texture analysis method. For example, for the GLCM approach, the texture descriptors are computed

for several different orientations and then averaged in order to achieve a rotation invariant texture



2.4. Dealing with Rotation Invariance 83

Oyster3

0 100 200 300
0

500

1000
1

0 10 20 30 40
0

500

1000

1500
2

0 /6 /3 /2 2 /35 /6

radians

0

500

1000

0 0.25 0.5 0.75 1
0

500

1000

before rotation
after rotation

Before rotation After rotation

Figure 2.27: The LST field’s parameters of an oyster park texture, before and after rotation of the
LST field with an angle corresponding to the orientation of the center of mass. The LST field was
calculated for the following values pf the parameters:σG = 1 and σT = 2. From top do bottom:
original texture, distributions of the parameters of the LST field and orientation maps before and
after rotation.

descriptor [Haralick 1979, Maillard 2003]. The drawback common to these solutions is an increa-

sed computational time necessary for the additional steps implemented in order to ensure rotation

invariance. These steps are extrinsic to the texture analysis method, as opposed to the LST based

methods where the rotation invariance is intrinsic to the method.

It should be noted that the different strategies for addressing rotation invariance are valid in the
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Figure 2.28: Neighbourhood topology rotation for ensuring an RI characterisation of an anisotropic
texture’s spatial information. Left to right: original and rotated neighbourhood configurations, ac-
cording to the LST’s center of mass orientation, θ. The neighbourhood pixels are represented at a
larger scale than the original one, for visualisation reasons.

limit of directional textures presenting a clearly defined dominant orientation. These methods are

prone to be biased for textures presenting either isotropic patterns either a mixture of differently

oriented anisotropic patterns for which the notion of dominant orientation is rather ambiguous.

2.5 Conclusions

In this chapter, the proposed LST statistical modelling methodology for texture characterisation has

been introduced.

The chapter started with an introduction on textured images. The different definitions in addition

to the role of texture in the visual perception mechanisms have been given first. Second, the main

properties and types of textures have been discussed. The main computer vision application fields

for textured images were identified and a brief synthesis of several commonly employed texture

analysis methods was further made. They are divided into four categories: structural, descriptive

statistics, frequency domain filtering and model based approaches.

The proposed approaches are a combination of structural and model based texture analysis met-

hods. On the one hand, they are structural methods since we employ the local structure tensor tool

for locally characterising a texture in terms of its underlying geometry. The local geometry infor-

mation is extracted in each pixel of an image, which results in a local structure tensor field for the

entire texture. On the other hand, the approach is model based since we fit a statistical model to the

previously estimated LST field.

The local structure tensor was described in Section 2.2. In addition to its computation, different

ways of representation were given, based on eigenvalue decomposition. More precisely, the LST
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can be represented by means of the following parameters: its eigenvalues λ1 and λ2, its orientation θ

and additional parameters computed from the eigenvalues. They consist of the coherence parameter,

indicating the texture’s degree of local anisotropy and of the energy parameter, an indicator of the

local level of contrast. Two representation ways of a texture’s LST field are given, by means of

the LST parameters maps or by means of ellipse fields. The advantages and disadvantages of each

representation approach have been discussed, for several example textures. The adaptability of the

structure tensor tool to the scale of interest of a given texture has been further showed. The scale

of analysis can easily be adjusted, by tuning the standard deviations of the Gaussian derivative and

Gaussian weighting kernels employed when computing the structure tensor.

The proposed LST statistical modelling based approaches for texture characterisation were pre-

sented in Section 2.3. A first method consists of describing marginal distributions of structure ten-

sors. The LE multivariate Gaussian model and the Riemannian Gaussian model defined on the AI

metric space have been considered to this purpose, in addition to their corresponding mixture mo-

dels. The fit of the proposed statistical models to empirical LST distributions of various textures has

been analysed. While one Gaussian (AI or LE) is enough for characterising relatively simple texture

patterns, mixture models are more adapted when the texture is composed of inter-winding patterns

of different characteristics. Naturally, the order of the mixture model increases with the increase in

the complexity of the textural pattern. For a same order of the statistical model, LE models showed a

better fit to the empirical LST field than the AI models. In some cases, one LE Gaussian model sho-

wed a better fit than a mixture of Gaussian models on the AI space. In addition, the LE approaches

are significantly faster than their AI counterparts.

Methods for characterising distributions of p-tuples of structure tensors have further been deve-

loped on the LE metric space, to the purpose of characterising spatial and multiscale dependencies in

LST fields. Multivariate Gaussian and Gaussian mixture models of higher dimensions are considered

for characterising p-tuples structure tensor distributions. While extracting the data encompassing the

spatial and multiscale information is an easy task on the LE metric space, increasing the dimension

of the observation space has shown to induce instability to the statistical inference process.

In the last part of this chapter, different strategies are proposed for ensuring the rotation invari-

ance of the LST statistical modelling methods for texture analysis. The proposed strategies follow

two directions: global orientation methods and exclusive search methods where the best orienta-

tion wise match is searched between the statistical models describing two textures. While the first

methods give satisfying results when dealing with anisotropic textures presenting one dominant

orientation, they are not adapted for textures where the global orientation is ambiguous. The ex-

clusive search method suits best these cases, out of the proposed strategies for dealing with rotation

invariance.
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Recognising Texture with Models of LST

Fields

"The first thing the intellect does with an object is to class it along with so-

mething else. But any object that is infinitely important to us and awakens our

devotion feels to us also as if it must be sui generis and unique. Probably a

crab would be filled with a sense of personal outrage if it could hear us class it

without ado or apology as a crustacean, and thus dispose of it. ’I am no such

thing,’ it would say; ’I am MYSELF, MYSELF alone.’"

–William James, American Philosopher
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3.1 Introduction and Objectives

The main objectives of this chapter consist in assessing the capabilities of all the proposed LST

statistical models of characterising the LST field of textured data and of further recognizing and dis-

criminating these textures. Several experimental settings are considered relative to the classification

of different types of textured images. The applications are content based image retrieval (CBIR)

and supervised classification. They concern two types of textured images, namely very high resolu-

tion (VHR) remote sensing images and carbonaceous material images issued from high resolution

transmission electron microscopy (HRTEM) technology.

A comparison between the efficiency of the statistical models on the two metric spaces, i.e.

affine-invariant and log-Euclidean, is made. In addition, for each metric, the differences between

their corresponding statistical models are analysed. On the log-Euclidean metric space, a framework

for modelling the spatial dependencies of an LST field is assessed as well, in addition to the statistical

models for describing marginal distributions of structure tensors.

All of the proposed methods are further compared with different state of the art texture analysis

methods. The comparison between the different methods is made in terms of classification accuracy,

computation time and rotation invariance capabilities as well, the later being an actual prerequisite

of the texture characterisation methods when dealing with anisotropic texture classification applica-

tions.

3.2 Test Data

The following paragraphs focus on the datasets used for experimentally validating the LST statistical

models for characterising the LST field of a textured image. They consist of real-world data and

concern remote sensing and material imagery.

3.2.1 Oyster Field Textured Patches

The first dataset used in our experiments is composed of VHR remote sensing images of oyster parks

texture patches, that are grouped in 3 classes: cultivated oyster racks, abandoned oyster fields and

foreshore.

There is a high pressure around the oyster production due to some difficulties arising from

different factors. They can be human factors such as some conflict over the land use of coas-

tal areas or ecological factors such as the increasing level of ocean water pollution, the develop-

ment of some toxic plankton species or the spread of different diseases that the oysters are prone to

[Regniers 2014a]. These shortcomings often result in cultivated oyster racks abandonment. These

fields remain interesting for oyster production since they represent potential areas for future farming.

Cleaning abandoned racks and preparing them for cultivation implies some costs that increase with

the time they have been abandoned for - hence the need of identifying and managing these areas
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Figure 3.1: Examples of oyster field textured patches (first row) for classes C1 to C3 (from left to
right) and their corresponding LST parameters fields (from second to fourth row): the orientation θ
and the eigenvalues λ1 and λ2. The color palettes are on the last column. The LST is computed with
the following values for the parameters: σG = 1, σT = 5.

within the shortest delay. Remote sensed images are increasingly used for the automatic manage-

ment of oyster fields [Choe 2012, Regniers 2014c, Le Bris 2016, Pham 2016b]. On the one hand,

they provide information relative to land cover while on the other hand, they represent useful means

for quantifying the oyster production over a given area. Thus, there is a growing need for developing

different strategies and methods for characterising the content of these images.

The oyster parks patches database was built by extracting 128×128 pixels homogeneous patches

from the panchromatic band of a PLEIADES image of spatial resoultion 0.5 m acquired at low

tide on the 25th of April 2013. The satellite image covers a large central part of Arcachon Bay, a

mesotidal lagoon of 180 km2 located on the Atlantic Coast in the South of France [Regniers 2014c].
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The database is composed of 320 patches, divided between the 3 different classes as follows: 171

patches belong to the class of cultivated racks C1, 35 are part of the abandoned fields class C2 and

114 patches belong to the last class C3 of foreshore.

Figure 3.1 shows texture patch examples belonging to each oyster parks class with their corre-

sponding LST parameters field, namely the orientation and the two eigenvalues. The first class is

composed of cultivated oyster racks of length varying from several tens to a hundred meters. Several

racks are generally grouped together (2 to 5) at a distance of 1 to 2 meters [Regniers 2014a]. The

groups of racks can be displaced at different distances and orientations relative to one another. In

addition, some of the oyster racks might be empty, all these inducing, thus, a strong intra-class and

even inter-patch diversity (see Figure A.1 of Appendix A).

In terms of texture information, it can be noticed (see Figure 3.1) that the first two classes are

composed of structured anisotropic patterns while the last class of foreshore is characterised by a

mostly isotropic textured pattern. This class is also more homogeneous. Some more examples of

texture patches belonging to each class are given in the A.1 of Appendix A in order to illustrate the

intra-class diversity that is certainly challenging for the classification.

3.2.2 Maritime Pine Forest Stands

The second VHR remote sensing image collection used in this study in order to validate the capa-

cities of LST statistical models for texture characterisation consists of maritime pine forest stands.

They present different shapes and sizes and are grouped in classes according to their age.

Cultivated forest management follows a series of techniques and land operations that are part

of a well-defined protocol [Regniers 2014a]. Thus, it can be seen as a cyclic process of well-

known phases. This cyclicity enables to make correlations between the underlying forest struc-

ture variables such as: age, crown diameter, trees height, etc. and the spatial distribution of the

trees. Thus, VHR remote sensing images can be seen as a useful tool for characterising and dis-

criminating between different forest populations, by means of texture analysis methods exploi-

ting the spatial pixel organisation. These techniques facilitate the automated generation of fo-

rest structure variables maps - forest inventory tools for biomass estimation or prediction of fu-

ture production. The increased interest in remote sensing textured image analysis as a tool for

forest land management is shown also by the numerous research papers addressing this topic

[Kayitakire 2006, Beguet 2012, Champion 2014, Regniers 2014b].

The study site is the Landes de Gascogne forest, situated in the South West of France. It covers

100 ha of cultivated maritime pines, organized in uniform age stands ranging from 0 (clear cuts) up

to approximately 50 years old. The image database consists of maritime pine forest stands of various

shapes and sizes extracted from a PLEIADES image of spatial resolution 0.5 m, acquired on the 8th

of August 2012. Ground-truth is available, consisting of a priori knowledge of the contour and class

of every stand. The ground-truth consists of 179 forest stands divided between the different classes
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Figure 3.2: Examples of maritime pine forest textured patches (first row) for classes C1 to C4 (from
left to right) and their corresponding LST parameters fields (from second to fourth row): the orienta-
tion θ and the eigenvalues λ1 and λ2. The color palettes are on the last column. The LST is computed
with the following values for the parameters: σG = 1.9, σT = 3.

as follows: 67 belong to C1 (0− 9 years old), 57 to C2 (10− 19 years old), 40 to C3 (> 20 years old)

and 15 to C4. Example patches of size 256× 256 extracted from forest stands of every age class and

their respective LST parameters fields are given in Figure 3.2.

The forest evolution over time (larger tree crowns, wider canopy, lower tree density) translates

into changes in the spatial organisation of the textural pattern. Not only the size of the objects

becomes larger, but the structure becomes less organised meaning that the texture becomes more

isotropic with the ageing of the forest population. Variations in the texture structure might appear

due to some other factors as well, such as storms or other natural phenomena that might significantly

damage the forest [Regniers 2014a].

In the following we briefly present the particularities characterising each forest class. For the

first age class (0− 9 years old) the tree ranks as well as the inter-rank forest floor and understory are

visible on the image, due to a small diameter of the crown size (1 m). This class is thus characterised

by a regular and anisotropic textural pattern that shows on the LST parameters maps as a higher

level of uniformity in the local orientation estimates and higher differences in the range values of λ1

and λ2 - see Figure 3.2.
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For the second forest class, the tree ranks are still visible, although the crown diameter increases,

ranging from 1 to 3 m, resulting in a wider canopy. Thus, the textural content of this class is still

anisotropic - see Figure 3.2.

When it comes to class 3, the tree ranks are no longer visible on the image as tree crowns are

wider than 3 m. There is also more variety in the population density and vegetation holes might

appear in some areas due to thinning operations and natural phenomena [Regniers 2014a]. The

textural pattern characterising this class looses, in this way, its organised and anisotropic properties.

This appears on the LST parameter maps as a mixture of different values for the local orientation

and a lower discrepancy between the range of values of the two eigenvalues - see Figure 3.2.

Finally, the fourth class of clear cuts consists of images of the soil after the removal of all trees.

However, some other small-size vegetation might be visible on this areas. The textures observed in

this class are mostly anisotropic - see Figure 3.2.

3.2.3 Carbon Composite Material Textured Patches

The third database used for experimentally validating the texture characterisation capabilities of the

proposed LST statistical models is composed of carbonaceous material lattice fringe (LF) images is-

sued from high resolution transmission electron microscopy. They are grouped in directional texture

classes with a higher degree of homogeneity than the textures in the VHR databases.

HRTEM is a useful technique for investigating the nanostructure of different carbonaceaous

materials. The effective characterisation of the spatial arrangement of fringes enables to describe,

identify and distinguish between different types of materials. Since LF imaging visual analysis is

prone to human errors and is time consuming, the development of automatic image analysis methods

is a need addressed in many scientific papers [Shim 2000, Rouzaud 2002, Germain 2003, Toth 2013,

Da Costa 2015].

The database consists of texture patches extracted from carbon material snapshots issued from

high resolution transmission electronic microscopy. The patches are grouped in 4 classes (see Figure

3.3): C1 - PAN based carbon fiber, C2 - regenerated laminar PyC (pyrocarbon), C3 - rough laminar

PyC and C4 - smooth laminar PyC (for more details about the materials see [Da Costa 2015]). Each

class contains 16 patches of size 256 × 256 extracted from HRTEM snapshots of size 2048 × 2048

representing the different material nanostructures (see Figure B.1 in Appendix B).

The spatial arrangements of fringes form a textural pattern on the HRTEM images that is specific

to each material. The image of the first class of carbon fiber is composed of layers of folded fringes

disposed in groups. Thus, at a large scale of analysis, it is characterised by an isotropic texture as

there is no global dominant orientation. This spatial organisation is more noticeable on the original

HRTEM snapshot (see image in Subfigure B.1a of appendix B) than on the texture patches.

For the second and third classes of rough and regenerated laminar pyrocarbons, the fringes are

arranges on longitudinal layers, which gives a strong anisotropic textural character. The anisotropy
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Figure 3.3: Examples of HRTEM carbonaceous material textured patches (first row) for classes C1
to C4 (from left to right) and their corresponding LST parameters fields (from second to fourth row):
the orientation θ and the eigenvalues λ1 and λ2. The color palettes are on the last column. The LST
is computed with the following values for the parameters: σG = 1, σT = 3.

shows as a high level of homogeneity on the orientation map, as estimated by the LST (see Figure

3.3). The textural patterns of these two materials are very similar, one of the slight differences being

the fact that the regenerated PyC features a greater deal of structural defects [Da Costa 2015].

As far as the last class of smooth laminar PyC is concerned, the textural pattern is still anisotropic

but to a lower extent compared to the two previous classes, as there is a higher amount of local

variations. This aspect can be noticed as well on the LST orientation map, manifested as a mixture

of different local orientations (see Figure 3.3).

As a global remark, this database is characterized by a higher level of intra-class homogeneity,

as opposed to the other datasets considered in this work.

In order to test the invariance of the proposed methods to the texture’s main orientation in an

image retrieval context, each patch of a class is applied a different rotation with an angle randomly

chosen in the interval [0◦, 180◦]. In addition, all images in the database are imposed the same

dynamic range by standardization to overcome differences due to the manual adjustments of the

microscope.
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3.2.4 Land Use Land Cover Merced University Database

The UC Merced LULC database was formed by extracting homogeneous patches from USGS (Uni-

ted States Geological Survey) National Maps covering different US regions.

As opposed to the previous datasets that are mainly composed of directional textures, LULC

database is far more heterogeneous. It consists of both textured and non-textured LULC orthorecti-

fied aerial images grouped in 21 classes: agricultural, airplane, baseball diamond, beach, buildings,

chaparral, dense residential, forest, freeway, golf course, harbor, intersection, medium residential,

mobile home park, overpass, parking lot, river, runway, sparse residential, storage tank, tennis court.

Each class contains 100 images of size 256×256 and pixel resolution of 30 cm [Yang 2013]. It repre-

sents the largest dataset of this kind publicly made available. Given the large number of samples, this

dataset is more adapted to CBIR applications, compared to the other datasets used for this purpose in

this work. However, given that it is composed of non-textured image patches as well, it is less adap-

ted for testing the capabilities of the proposed LST statistical models as these approaches are texture

specific. However, it has been considered as an interesting choice to test the methods on this dataset

as well, in order to have access to immediate comparison to a broader set of state of the art texture

and non-textured remote sensing image analysis methods [Yang 2013, Aptoula 2014, Özkan 2014].

This gives, thus, the possibility to place the LST statistical modelling methods for texture analysis

on the wider map of remote sensing image analysis approaches.

This database is composed of RGB images. However, in our experiments, only the gray level

information has been exploited. This dataset is characterised by a significantly pronounced class

and inter-class diversity. Example patches of each class are given in the Figure A.3 of Appendix A.

3.3 Texture Recognition Protocols

We are considering two main image classification methods for assessing the capabilities of the pro-

posed statistical models for characterising the LST field of a textured data. They consist of a content

based image retrieval protocol for browsing textured image patches and a supervised classification

protocol for grouping textured image regions into different classes. The main concepts, performance

indicators as well as the algorithms and the classification protocols relative to each classification

method are briefly described in the following paragraphs.

3.3.1 CBIR

Content based image retrieval is an image browsing technique that relies on the existence of an

image or image patches database, where each image or image patch belongs to a pre-defined known

class. Its objective is the automatic retrieval of images from the database, according to different

features characterising the content of an image, such as texture, color, shape, etc. In this work the

image content of interest is texture. Texture information is captured by statistical models fitted to
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the texture’s LST distribution or by other state of the art texture analysis methods.

In this work we apply the CBIR algorithm on collections of image patches. A patch is a smaller

size image of fixed size extracted from a larger image. It contains a homogeneous textural pattern

representative for the class to which it belongs.

The architecture of a CBIR application is illustrated in Figure 3.4. The method is composed of

2 steps. Firstly, a signature is extracted for each image patch in the database. It corresponds to a

set of parameters or image features, specific to the employed texture analysis method. Secondly,

a similarity measurement is performed. More precisely, for each patch, a distance is computed

between its signature and the signature of every other patch in the database. The closest images can

be retrieved as a result [Do 2002].
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Figure 3.4: Ground truth content based image retrieval architecture - with search in the Ni top
matches, where Ni denotes the number of ground-truth patches of same class Ci as the query.

3.3.1.1 Performance Evaluation

Various criteria can be used to evaluate the CBIR performances. In the following we will present

two of the most widely used indicators.

The average retrieval rate (ARR) is commonly employed for assessing the results of a CBIR

method [Müller 2001]. It gives the average percentage of images of the same class as the query,

among the first Ni matches, where Ni is the number of images in class Ci, i = 1, ...NC , NC being the
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number of classes in the database. It is obtained as follows:

ARR =
1

NT

NC∑
i=1

∑
q∈Ci

nq(Ni)
Ni

(3.1)

where NT denotes the total number of patches in the database and nq(Ni) stands for the number of

patches of same class Ci as the query q, in the top Ni matches.

It should be noted that the closest image of the query has the same importance as the image of

rank Ni. Consequently, this criterion is sensitive to the presence of outliers in the database.

Some of the databases used in our experiments hold a class size disparity. As a consequence, the

retrieval results might be biased, the classes being better represented having a stronger influence on

the global result. There are different ways to address this issue. We are presenting in the following

two of the proposed solutions, that have been adopted as well in this work in order to facilitate the

comparison to state of the art texture analysis methods. These methods consist of statistical model-

ling approaches of wavelet subband coefficients [Regniers 2013, Regniers 2014a], specific imple-

mentations of LBP [Aptoula 2014], Gabor filtering [Yang 2013] or the multiscale texture analysis

approach proposed by Aptoula in [Aptoula 2014].

Dealing with class size disparity

The first solution has been proposed by Regniers in [Regniers 2014a] and adopted as well

in this work in order to facilitate the comparison to wavelet based texture analysis methods

[Regniers 2013, Regniers 2014a]. It consists of a slight adjustment to the standard retrieval proto-

col. A new database is formed, containing 25 patches per class, randomly selected from the original

database. The retrieval performances are then computed on the new database and this procedure

is repeated 100 times. The mean ARR and its standard deviation are performed in the end, for all

iterations.

The second solution consists of the computation of another performance indicator, namely of

a modified form of the ARR criterion. It consist of the average normalized modified retrieval rate

(ANMRR) widely used in the MPEG-7 experiments [Manjunath 2001] and in some VHR remote

sensing image indexing studies [Aptoula 2014, Özkan 2014, Yang 2013].

It has been proposed in order to address some of the limitations of the ARR criterion, including

class size sensitivity. Secondly, imposing the number of relevant matches to Ni is considered to

be a hard limiting measure [Manjunath 2001] since a ground-truth patch ranked as Ni + 1 does

not contribute to the retrieval accuracy while it might still be relevant in terms of subjective retrieval

performance. As a remark, in the context of CBIR, the ground-truth consists of the patches belonging

to the same class as the query q.

Given a query q of class Ci, each ground-truth patch is assigned a rank equal to the position

where it has been retrieved. For the ANMRR computation, the rank is modified, so that the ground-
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truth patches retrieved at a position considered too far away for being relevant to retrieval are as-

signed a constant penalty. This is done by establishing for each class a number of relevant ranks

Ki > Ni, where Ni is the size of the class Ci. A commonly used value for this parameter in the case

of relatively large classes (Ni > 20) is Ki = 2Ni [Manjunath 2001, Yang 2013]. The modified rank

holds:

R∗(k) =


R(k),R(k) < Ki

1.25Ki,R(k) > Ki.

The average rank (AR) is computed for each query using the values of the modified ranks:

AR =
1
Ni

Ni∑
k=1

R∗(k). (3.2)

The modified normalized retrieval rate is further computed as follows:

NMRR(q) =
AR(q) − 0.5(1 + Ni)
1.25Ki − 0.5(1 + Ni)

. (3.3)

Its value ranges from 0 (perfect retrieval) to 1 (nothing retrieved) and no longer depends on the value

of Ni. Finally, the average modified retrieval rate is computed for the whole database, as:

ANMRR =
1

NT

NC∑
i=1

∑
q∈Ci

NMRR(q). (3.4)

3.3.2 Supervised Classification

In order to further assess the ability of the proposed statistical models to accurately describe the LST

field of a textured data, a supervised classification scenario is considered as well, in addition to the

CBIR experiments.

Supervised or human-guided classification algorithms are composed of two main steps. A le-

arning step where the textural attributes are extracted from a collection of reference data of known

class, called also training data. The second step consists of the classification itself where the data

to be classified is assigned a class according to the features extracted in the training phase and to

the decision rules of the employed classifier. Therefore, the classifiers requires to dispose of two

datasets. On the one hand, a learning dataset is needed and, on the other hand, a validation data set

is necessary for assessing the classification performances.

3.3.2.1 Supervised Classification Algorithms

Two supervised classification algorithms are employed in this work, namely k Nearest Neighbours

(k-NN) classifier and Support Vector Machine (SVM). Both algorithms are briefly described in the

following paragraphs.
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k-nearest neighbours (k-NN)

One of the supervised classification algorithm employed in this work is the k-NN (k - Nearest Neig-

hbours). According to this algorithm, a sample from the validation set is assigned the majority class

of its k closest samples from the training set. The distances computation is specific to the the texture

analysis method employed, as described in Sections 1.4.5 and 1.3.5 for the LST statistical modelling

based approaches.

The choice of k is crucial to classification. While a classifier with a small value for k might

benefit a higher classification accuracy (it is more probable that the first top matches belong to the

same class as the sample to be classified), it has an increased sensitivity to outliers. This sensitivity

can be lowered by increasing the value of k. On the other hand, this might lead to a decrease in

performance, since it is more probable to find samples belonging to different classes than the actual

class of the sample data to be classified. Thus, when tuning this parameter, a trade-off between

accuracy and sensitivity to outliers should be made. In this work, the value of this parameter is fixed

to 5, as done previously by Regniers in [Regniers 2014a]. This value is mainly imposed by the size

of the lowest represented classes.

Given that originally, all the k closest samples have the same importance, a weighting is applied

here so that the distance hierarchy is respected in the decision process, as previously proposed in

[Regniers 2014a]. Thus, the ith closest neighbour is given the weight, k− i+1, for i = 1, ...k. A score

is computed for every class by simply summing the weights of the k closest samples that belong to

the respective class. Finally, the validation sample is assigned to the class having the greatest score.

SVM

We have secondly employed a more complex classifier, namely the support vector machine (SVM)

[Vapnik 1979, Boser 1992]. It is largely used in the remote sensing image classification literature

[Yang 2013, Regniers 2016], particularly due to its ability to perform well even when limited data is

available - a frequent issue in these applications [Mountrakis 2011].

The SVM belongs to the category of maximum margin classifiers. The idea behind the SVM is

the search of an optimal hyperplane separating any two classes by maximising the margin, namely

the distance between the hyperplane and its closest data point.

The algorithm is implemented in MATLAB using the LIBSVM library [Chang 2011]. It consists

of two steps, namely the training and the classification step itself. Multi-class classification (the

case when the number of classes NC > 2) is addressed from a binary one versus one perspective. An

optimal hyperplane is searched - separating any two couples of classes, leading thus to NC∗(NC−1)/2

decision boundaries.

In most of the cases, the data is not linearly separable on its original space RN . This issue can

be addressed by projecting the data into a higher dimensional space RM,M > N where the data

becomes linearly separable. The optimal hyperplane is searched in RM and then projected back to

the original space. However, projecting the input data into a higher dimensional space might arise
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computational and memory problems, in the case when the dimensionality of the projection space

grows very fast with respect to the one of the original space. This issue is addressed in practice via a

method referred to in the literature as the kernel trick [Scholkopf 2001]. During the training phase,

the hyperplane search is approached as a convex optimization problem. At this point, the training

data is uniquely used for computing pairwise dot products. As a consequence, the explicit projection

of the data on the transformed space RM is not necessary, but only the pairwise dot products results

onRM [Fauvel 2007]. This can be achieved by using the mathematical properties of kernel functions.

Namely, given a couple of data in RN , a kernel implicitly computes their dot product in RM without

the explicit transformation of the data points to RN . As a consequence, non-linear hyperplanes can

be learned by the SVM by simply replacing distances between data point couples by the kernel

function that gives a measure of their mutual influence.

Various choices are available for the kernel definition. A Gaussian kernel (typically called radial

basis function in the machine learning literature) of standard deviation σ is employed in this work.

K(s1, s2) = exp
{
−

distance(s1, s2)2

2σ2

}
, (3.5)

where (s1, s2) denotes a couple of textural signatures. The distances between the image data textural

signatures is specific to the texture analysis method employed, see Sections 1.4.5 and 1.3.5 for the

approaches based on the LST statistical modelling and 3.4 for the state of the art texture analysis

methods used for comparison in this work.

Secondly, the classification step is performed. A degree of belonging to a given class is further

computed according to the distances of the data sample to the NC − 1 hyperplanes separating the

respective class from the other classes. These scores are added for each class and the test data sample

is assigned the class maximizing this score. Similarly to the training phase of the algorithm, the

decision phase is expressed as well in terms of dot product of data points (see detailed equations in

[Fauvel 2007]). Consequently, the distances between data points are replaced by the kernel function,

an explicit projection of the data points into the higher dimensional space being unnecessary.

3.3.2.2 Performance Evaluation

Different criteria can be evaluated in order to assess the performances of a classification method of

remote sensing data [Congalton 1991].

They are computed starting from the confusion matrix, constructed in this study as follows: the

lines represent the real classes of the regions (ground-truth instances) while the columns contain the

instances in different classes, as predicted by the classifier. Thus, n(i, j) stands for the number of

instances of class i assigned to the class j by the classifier.

Firstly, the global classification performance is evaluated. A commonly employed index for

assessing the global probability of correct classification is the Overall Accuracy (OA):
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OA =
1

NT

NC∑
i=1

n(i, i), (3.6)

where NT denotes the total number of regions to be classified, NC is the number of classes and n(i, i)

denotes the confusion matrix entry on the (i, i) position - the number of ground-truth elements in

class i predicted by the classifier as belonging to the class i.

The Kappa index can be computed as well [Cohen 1960]. It is a global indicator of the propor-

tion of correct classifications that did not occur by chance:

κ =
OA − Pe
1 − Pe

, (3.7)

where Pe is the proportion of data expected to be correctly classified by chance:

Pe =
1

N2

NC∑
i=1

n(., i)n(i, .), (3.8)

n(., i) being the sum of the elements on the ith column of the confusion matrix and n(i, .) denoting

the sum of the entries of the ith line of the matrix. It takes values less than or equal to 1, with a

higher value indicating a smaller incidence of correctly classified items due to chance. In rare cases

it can be less than 1, indicating weaker classification performances than those expected if the data

would be randomly split between the different classes.

Secondly, the classification performances for each class can be evaluated. A first statistic is

the Producer’s Accuracy (PA) that describes the probability of a region belonging to a given class

according to the ground-truth to be correctly classified. For the class i, i = 1, ...NC , it is computed as

follows:

PAi =
n(i, i)∑NC

j=1 n(i, j)
. (3.9)

Another statistic for evaluating the classification results for each class, is the User’s Accuracy (UA).

It represents the probability of a region assigned to a certain class by the classification algorithm, to

actually belong to that class, according to the ground-truth. The UA for the class j, j = 1, ...NC is

given by:

UA j =
n( j, j)∑NC
i=1 n(i, j)

. (3.10)

3.3.2.3 Protocol

The first step of the supervised classification protocol consists of extracting the textural signatures

from all the reference data. Secondly, a cross-validation approach is considered as proposed in

[Regniers 2015a] in order to quantify the potentials of the LST statistical modelling for texture
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characterisation and to compare their performances with those obtained by employing different state

of the art texture analysis methods.

For each iteration, the reference data is divided into 50% training data and 50% validation data.

The data samples belonging to one class are equally divided between the training and validation data.

For every sample in the validation set, the distances between its textural signature and the textural

signatures of all the training data samples are computed. The distance measure is particular to the

texture analysis method employed, as described in Sections 1.4.5, 1.3.5 and 3.4. The validation data

sample is assigned a class, according to the decision rules of the supervised classification algorithm

employed. The classification performances are evaluated for each iteration and the procedure is

repeated 100 times. Finally, the mean classification performances are computed for all iterations

[Regniers 2015a].

3.4 State of the Art Texture Analysis Methods

The content based image retrieval and supervised classification performances of the LST based

methods are compared against those obtained by different state of the art texture analysis methods.

This section starts with a reminder of the different LST statistical approaches proposed here for

validation, followed by a brief presentation of the state of the art texture analysis methods considered

for comparison in this context.

When it comes to the LST statistical models, their parameters account for the textural signature

of the analysed textured image or patch. They divide into two main groups. The first one corresponds

to LST statistical models defined on the affine-invariant metric space (see Section 1.3). They consist

of:

→ M - the center of mass, computed in terms of the geodesic distance;

→ GAI - the Riemannian Gaussian distribution of center of mass M and dispersion σ;

→ KGAI - the mixture model of K Riemannian Gaussian distributions of parameters Mk, σk and

ωk, k = 1, ...K.

The second group consists of LST statistical models defined on the log-Euclidean metric space

(see Section 1.4):

→ µ - the center of mass computed as the Euclidean mean on the LE metric space;

→ GLE - the 3 dimensional multivariate Gaussian distribution of mean µ and covariance matrix

Σ;

→ KGLE - the mixture model of K multivariate Gaussian distributions of size 3, of parameters

µk, Σk and ωk, k = 1, ...K.
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All the above statistical models are considered for describing marginal LST distributions. Ho-

wever, on the LE space, another model is defined for describing the spatial dependencies inside a

local structure tensor field. It consists of - GLE_p - the multivariate Gaussian distribution and the

mixture model of K multivariate Gaussian distributions respectively. Its size depends on the size p

of the considered pixel neighbourhood configuration, and is given by: 3 × p (see Section 2.3.2 of

Chapter 2).

All LST statistical modelling based approaches for texture characterisation are rotation invariant.

This property is ensured by applying a transformation to the LST field prior to model parameters

estimation, as described in Section 2.4 of Chapter 2.

Secondly, the state of the art texture analysis methods considered for comparison in the diffe-

rent experimental settings presented in this chapter are enlisted below. They can be divided into

three groups. The first consist of statistical and so called "traditional" texture analysis methods,

widely employed in the literature, with competitive results in spite of a relative low complexity met-

hodology compared to more recent texture analysis approaches. Due to these qualities, they are

considered many times as references when assessing the potential of newly proposed texture analy-

sis methods [Regniers 2013, Regniers 2015a, Regniers 2016, Ilea 2015, Pham 2016a, Pham 2016b,

Aptoula 2014]. The concerned methods are gray level co-occurrence matrices [Haralick 1973] and

local binary patterns [Ojala 1994]:

→ GLCM1 - denotes a rotation invariant version of benchmark GLCM approach [Haralick 1973]

for texture analysis. Rotation invariance (RI) is provided by computing the co-occurrence

matrices corresponding to 4 different orientations (0◦, 45◦, 90◦, 135◦), as previously proposed

in [Haralick 1979]. Descriptors are then extracted for all 4 matrices and further averaged

[Maillard 2003]. The mean values of each descriptor are concatenated in a feature vector

representing the textural signature of the analysed textured image or patch. However, it should

be noted than only a pseudo rotation invariance is achived in this way. This approach has been

previously employed by Regniers et al. in [Regniers 2014a, Regniers 2015a];

→ GLCM2 represents the gray level co-occurrence matrix approach implemented after applying

a rotation to the anisotropic textured images or patches so that they all have the same orien-

tation. The rotation is applied after estimating the main orientation of a textured patch by

structure tensor computation. The estimation of the rotation angle is given by the first ei-

genvector of the covariance matrix of gradients [Regniers 2014a]. GLCM2 is, thus, a fully

rotation invariant approach;

→ LBPri1 - correponds to a rotation invariant implementation of the local binary pattern met-

hod. Originally proposed by by Ojala et al. in [Ojala 2002b] and denoted there as LBPri36
8

it considers 8 pixels circular neighbourhoods. Each binary pattern obtained for a given pixel

neighbourhood is applied a circular bit-wise shift until the minimum of the sequence is attai-
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ned. Consequently, the 256 set of possible codes that correspond to the 8 pixel neighbourhood

can be reduced to a set of 36 rotation invariant codes;

→ LBPri2 - stands for the multiscale, uniform and rotation invariant implementation of the lo-

cal binary pattern approach, originally proposed in [Ojala 2002b] and tested by Aptoula in

[Aptoula 2014], where it is denoted by LBPriu2
8,1+16,2+24,3.

The second set of state of the art texture analysis methods used as a reference in this work

is based on the probabilistic modelling of a texture’s wavelet subband coefficients. These appro-

aches have been proposed in [Bombrun 2011b, Lasmar 2014], adapted and tested by Regniers et

al. [Regniers 2014a, Regniers 2014c] in the same experimental settings as some of those propo-

sed for validation here. Among all the statistical models that have been proposed, we selected for

comparison those yielding the best performances:

→ SCM - represents the multivariate Gaussian model with Sample Covariance Matrix estimator

for the covariance matrix

→ SIRVg - denotes the SIRV (Spherically Invariant Random Vectors) model with a multivariate

Gaussian distribution

→ GCG - stands for the multivariate Gamma distribution on Gaussian copula.

For the methods based on the statistical modelling of a texture’s wavelet subband coefficients,

the rotation invariance is ensured by rotating all the textured image data in a database in order to

impose the same orientation to all textures, prior to model parameter estimation [Regniers 2014a].

Last but not least, the LST statistical modelling based approaches for texture characterisation

are compared against two texture analysis methods based on spectral decomposition:

→ Gabor - represents a method where the textural features are extracted for each image by ap-

plying banks of Gabor filters tuned to different scales and orientations;

→ Aptoula - denotes a rotation invariant multiscale texture analysis approach proposed by Ap-

toula in [Aptoula 2014]. The periodicity of a texture is firstly described by two feature vectors

relying on mathematical morphology methods, namely the circular covariance histogram and

rotation invariant point triplets. In addition, the texture is characterized by its degrees of coar-

seness and directionality. These texture characteristics are each quantified by a feature vector

resulted from applying different operations to the Fourier Power Spectrum (FPS) of an image.

The approach is made multiscale by applying the FPS analysis methods on a quasi flat zone

based multiscale image representation. The resulting 4 feature vectos are further concatenated

in order to obtain the textural signature of the image under analysis [Aptoula 2014].
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The textural signatures are further used by the different classifiers for evaluating the similarity

between different textures. The dissimilarity measure between textural signatures is specific to each

texture analysis method. Details for the LST statistical models defined on both AI and LE space

are given in Sections 1.3.5 and 1.4.5 of Chapter 1. The dissimilarity measure specific to each state

of the art method is given in the Experimental approaches paragraph of each experimental setting

considered in Section 3.5.

3.5 Results

In this section the classification performances of the different LST statistical modelling based ap-

proaches for texture characterisation are given and analysed, for all of the 4 different textured image

datasets presented in Section 3.2. LE and AI statistical models for describing marginal LST distribu-

tions are tested and compared in terms of performances and computation time as well. LE statistical

models applied on joint LST distributions for characterising the spatial dependencies in the LST

field are equally tested. In all of the experimental settings proposed here for validating the poten-

tial of the the proposed statistical models for LST field characterisation, the classification results of

the proposed methods are compared against those corresponding to different state of the art texture

analysis methods.

3.5.1 Comparison of AI and LE LST Statistical Models

This section provides a comparison of AI and LE statistical models for marginal LST distributions

characterisation. The approaches are tested in a CBIR context on the oyster dataset presented in

Section 3.2.1. The retrieval performances of the proposed methods are compared in terms of both

accuracy and computational expense.

3.5.1.1 Experimental Approaches

The experimental approaches tested here consist of all the proposed statistical models for characte-

rising marginal LST distributions, on the two metric spaces considered in this work for tensor field

description, i.e. AI and LE. When mixture models are employed, a number of 3 mixture components

has been considered. This choice is motivated by the study of the theoretical models’ fit to observed

LST distributions performed in Section 2.3.1 of Chapter 2. The analysis conducted on texture pat-

ches belonging to the oyster park dataset showed that, generally, a mixture model of 3 components

fits well the observed LST distributions, in the case of both AI and LE models.

The textural signature of a patch is given by the parameters of the employed statistical model.

The dissimilarity measure used for computing the distance between the textural signatures of two

different patches is specific to the methods employed, as described in Sections 1.3.5 and 1.4.5 of

Chapter 1.
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The following parameter values have been used for estimating the LST field on the textured

patches of this database: σG = 0.6, σT = 1.6. They have been experimentally tuned. More precisely,

systematic retrieval experiments have been performed for different pair values of these parameters

and the couple of values giving the best retrieval results has been retained. The tested values belong

to a range considered as optimal, according to the remarks on the structure tensor parameters choice

from Section 2.2.3 of Chapter 2. These intervals considered in this case are: ([0.4, 2] for σG and

[1, 6] for σT ).

In the following, the content based image retrieval performances obtained on the VHR remote

sensing oyster patch database are given for all methods, in terms of both global and per-class average

retrieval rate (see Table 3.1).

3.5.1.2 Performances

The CBIR performances of the different LST field statistical models for texture analysis proposed

here are assessed in the following paragraphs in terms of retrieval accuracy and computational time

as well.

Retrieval accuracy

We will firstly focus the interpretation of the results in Table 3.1 on the global retrieval performances.

First of all, all log-Euclidean based approaches outperform their affine-invariant equivalents, in terms

of global retrieval accuracy. Secondly, the superiority of the Gaussian model and Gaussian mixture

model to the center of mass approach is shown for both metric spaces. The gap between these

models is even more prominent on the LE metric space, quantifying as an 8% overall gain of the

Gaussian models (GLE and 3GLE) over the center of mass approach µ.

When a 3 component Gaussian mixture model is employed, we can see that on the AI metric

space it leads to higher performances than when a single Gaussian distribution is considered. Ho-

wever, on the LE metric space the Gaussian and Gaussian mixture model yield similar retrieval

performances. Thus, while the use of a Gaussian mixture model is justified on the AI metric space,

on the LE space, a single Gaussian distribution seems to be well adapted and sufficient for charac-

terising a texture’s LST field. This contrast between the Gaussian models defined on the two metric

spaces can be explained by the difference in their numbers of degrees of freedom. Furthermore, these

experiments validated the study performed on simulated covariance matrix sample sets in Chapter

1, where for a same given order of the statistical models, higher characterisation capacities haven

been notices for the LE model. The first observations noted on simulated data have been confirmed

later on in Chapter 2, when the adjustment of the theoretical models to empirical LST distributions

has been analysed. The experiments showed that, generally, one Gaussian distribution fits well the

empirical LST distributions belonging to relatively simple textures. In contrast, when the AI models

have been employed, mixture models have proven to be necessary for a good fit of the empirical

distributions.
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Table 3.1: Oyster parks patches database retrieval results - the mean and standard deviation of the
ARR computed over 100 repetitions of the CBIR protocol on the oyster patches database. Values
are given for all classes (AC) and for each oyster texture class: C1, C2, C3. Comparison of AI and
LE LST statistical models. The best results of each category are marked in dark red.

Method AC C1 C2 C3
M 70.9± 3.7 70.1± 5.9 66.8± 4.4 75.7± 4.2

GAI 73.3± 3.2 69.2± 5.4 72.8± 3.7 77.8± 4.8
3GAI 77.1± 2.4 71.0± 4.7 78.8± 2.8 81.5± 4.6

µ 71.3± 3.2 71.1± 4.9 67.3± 4.0 75.6± 4.6
GLE 79.3± 2.9 77.2± 5.8 77.9± 3.3 82.8± 4.6
3GLE 79.8± 3.1 74.4± 5.5 80.9± 3.1 84.1± 4.7

Table 3.2: CBIR of oyster textured patches - mean confusion matrix corresponding to the LST model
3GLE

Predicted class
C1 C2 C3

Real class
C1 74.4 22.2 3.4
C2 9.4 80.9 9.7
C3 3.5 12.4 84.1

Several remarks will be made in the following regarding the per-class retrieval-performances.

We remind here that C1 stands for the class of cultivated oyster racks, C2 corresponds to abandoned

oyster fields and C3 denotes the foreshore class.

First of all, it can be noticed that for all the LST statistical modelling based approaches, the best

retrieval performances are obtained for class 3. This is the most distinct class in terms of anisotropy.

More precisely it is characterised by a rather isotropic textural pattern as opposed to the first two

classes endowed with a more pronounced anisotropy. This is an experimental proof of the LST

potential in discriminating texture according to its different levels of anisotropy.

The confusion matrix can provide further information for each class concerning the repartition

of the misclassified data between the different classes. To this purpose, the confusion matrix corre-

sponding to the LST LE multivariate Gaussian mixture model is given in Table 3.2.

For the first class of oyster racks, a vast majority of the misclassified textured patches (∼ 22%

out of ∼ 26%) are assigned to the second class of abandoned oyster fields. Regarding the second

class of oyster patches, the misclassified textured patches are equally split between C1 and C3. Last

but not least, most of the misclassified textured patches belonging to C3 are found by the algorithm

as being more similar to the textural characteristics of patches in class C2.

These classification errors can be explained in terms of the anisotropy of the textured patches, as

most of the confusions are a result of similar anisotropy characteristics of textured patches belonging

to different classes. For instance, C1 and C3 are the most distant in terms of anisotropy characteris-

tics, with C1 exhibiting the highest and C3 the lowest degree of anisotropy. As a consequence, only
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Figure 3.5: Examples of texture patches belonging to class C2 of abandoned oyster fields: recently
abandoned racks (left) vs. unstructured abandoned racks (right)

a small number of misclassified patches of one of these two classes is assigned to the other class.

In addition, at a closer look at the database (see Figure A.1 of appendix A), it can be observed that

the second class of abandoned oyster fields is the most heterogeneous in terms of texture anisotropy.

This class could be subdivided in 2 groups. One group of structured textured patches representing

the recently abandoned oyster racks, where the arrangement of the oyster racks is still well marked

on the images [Regniers 2014c]. The second group exhibits less anisotropic and more unstructured

textural patterns, corresponding to oyster racks that have been abandoned for a longer period of time

so that the original alignments of the racks are no longer visible on the image (see Figure 3.5). Thus,

the texture patches belonging to the first group of structured abandoned fields is quite similar in

terms of anisotropy to the texture patches of class C1. On the other hand, the patches belonging to

the second group exhibit a lower degree of anisotropy, resembling, thus, to the textural pattern of the

foreshore class.

Computation time

In this section the different LST statistical modelling methods for texture analysis will be analysed

and compared in terms of computational speed.

The computation times relative to the different AI and LE statistical modelling based approaches

for LST characterisation are given in Table 3.3. They correspond to MATLAB simulations, perfor-

med on a computer of processor Core i7 (3.50 GHz). The given run times include the execution

of all the different steps of the CBIR protocol employed on the oyster parks patches database, as

previously described in Section 3.3.1. We briefly remind here its main steps. It consists of a first

part of signature extraction for all patches in the database followed by 100 iterations of the following

steps: new database creation of 25 patches per class - randomly selected from the original dataset,

dissimilarity measurements between their textural signatures and evaluation of the mean retrieval

performances for the 100 iterations.

There is an important computation time difference between the LST statistical modelling based

approaches belonging to the two metric spaces. Log-Euclidean based methods are significantly
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Table 3.3: Computation times of LST statistical modelling based approaches: AI vs. LE metric

Method Center of mass (M vs. µ) G 3G
Time - LE [min] 0.22 0.35 6
Time - AI [min] 0.43 153 273

Time ratio (AI/LE) 2 437 45.5

faster than those relying on the affine-invariant metric space. This discrepancy is partly due to

differences in the complexity of the mathematical operations performed on the two metric spaces.

While the LE metric space allows in most cases direct computations, on the AI metric space, most

of the mathematical operations are based on recursive estimations.

The simulation time differences between the LE and AI statistical models are specific, naturally,

to the LST method employed. The highest computation time ratio between AI and LE based ap-

proaches is obtained in the case of the single Gaussian model. This aspect can partly be justified

by a difference in the way of measuring the dissimilarity between the textural signatures generated

by the two statistical models. In both cases, the symmetric form of the Kullback Leibler divergence

- Jeffrey divergence - is used as dissimilarity measure. However, on the AI metric space, there is

no analytic form for the Jeffrey divergence and it has to be estimated by means of Monte-Carlo

sampling techniques. On the contrary, there is a closed form of the Jeffrey divergence between two

multivariate Gaussian distributions on the LE metric space, enabling its direct computation. This

difference generates a large gap between the computation times associated to these two statistical

models, as the estimation of Jeffrey-divergence implies quite high computational costs.

As far as the Gaussian mixture models are concerned, the time ratio between the AI and LE

metric spaces decreases as in this case the Jeffrey divergence has to be estimated for both methods.

However, the LE Gaussian mixture model is still significantly faster than its AI homologue, in spite

of the fact that a larger sample set is generated for estimating the Jeffrey divergence on the LE metric

space (5000 - LE vs. 1000 - AI).

Some remarks can be made regarding the computation times on the LE metric space. Firstly,

when modelling the LST field by a single Gaussian distribution, the retrieval protocol is 17 times

faster than when using a mixture model of 3 multivariate Gaussian distributions. Despite this run

time gap, there is no significant difference in the retrieval performances generated by the two models.

This motivates the choice of the multivariate Gaussian distribution as a preferred statistical model

for characterising the LST field of a textured image.

The AI and LE LST statistical models have been tested as well on a dataset of maritime pine

forest patches extracted from the PLEIADES image described in Section 3.2.1. Those experiments

showed an overall 2.5% gain of the LE Gaussian model (see results published in [Rosu 2016])

compared to its AI homologue (see results published in [Rosu 2015a]).

The already long run time required here by the AI Gaussian and Gaussian mixture models would

become almost prohibitive in the next context of forest stand supervised classification. This is be-
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cause the size of a forest stand texture is much larger than the size of the oyster parks patches tested

here. Consequently, the time required for estimating the LST statistical model’s parameters for

characterising a single forest stand would considerably increase.

3.5.2 Comparison of LE LST Statistical Models and State of the Art Texture Analy-
sis Methods

In this section, LST based methods are compared with a number of state of the art methods in the

context of VHR remote sensed image classification. Only the models based on the LE metric are

considered here. The databases under consideration are the oyster parks patches and the maritime

pine forest stands.

3.5.2.1 Experimental Approaches

Out of the range of statistical models proposed in this work, we choose to uniquely focus here on the

capabilities of LE LST statistical models. This choice is justified by the overall gain observed over

the AI statistical models in terms of both classification accuracy and computation time, see Section

3.5.1.

The following parameter values were consider on this dataset for structure tensor computation:

σG = 1.9 and σT = 3. The parameters have been experimentally chosen by performing repeated

experiments around the values considered to be adapted to the textural pattern of the maritime pine

forest images. They correspond to a maximum in the classification performances obtained on this

database [Kaufmann 2015, Noutatiem Guiafaing 2016].

Some remarks should equally be made on the classifiers parameters choice. Firstly, for the

supervised classification algorithm k-NN, all the results presented in Table 3.5 correspond to k = 5.

The choice of this value is connected to the class being the least represented, namely the class C4

of clear-cuts. Given that when applying the cross-validation approach, there are only 7 samples in

the validation set, the number of nearest neighbours considered cannot exceed this value. Secondly,

for the SVM classifier, the standard deviation σ of the Gaussian kernel needs to be adjusted. For

every model proposed here a different value was chosen, corresponding to a maximum in the cross-

validation classification performances.

A few words will be addressed in the following regarding the parametrisation and specificities

of the state of the art texture analysis methods tested for comparison in this experimental context.

For the GLCM1 approach, four textual descriptors have been extracted from the co-occurrence

matrix computed for an interpixel distance equal to 1 - for the oyster parks database and 2 for the

maritime pine forest dataset, respectively. The descriptors consist of: correlation, entropy, homoge-

neity and mean. The inter-pixel distance as well as the combination of these descriptors have been

empirically determined by Regniers [Regniers 2014a] and correspond to a maximum in the retrieval

performances obtained on each of the two databases. Thus, the textural signature of a patch is com-
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posed of a feature vector of size 4. The dissimilarity between textured patches is quantified by the

distance between their corresponding textural signatures. The Mahalanobis distance is employed as

dissimilarity measure [Regniers 2014a].

We remind here that the GLCM2 differs from GLCM1. More precisely, it consists of an approach

that is fully RI. Namely, the co-occurrence matrix has been computed after rotating the anisotropic

textured images in the database so that their main orientation is 0. However, it should be stated that

the quality of the RI character of the database relies on an accurate estimation of the main orientation

of a patch, obtained by structure tensor computation. The orientation of the patch is given by the

first eigenvector of the covariance matrix of gradients [Regniers 2014a]. Only anisotropic patches

have been applied this rotation, given that isotropic ones have no global dominant orientation. As far

as the descriptors are concerned, the same ones as in the case of GLCM1 approach were considered.

They correspond to a single orientation between pixel pairs, namely 0◦, as opposed to their mean

values over 4 orientations, the case of GLCM1.

The textural signature generated by the LBPri1 approach consists of a feature vector of size 36,

corresponding to the discrete occurrence probability density of the rotation invariant binary patterns.

The symmetric version of the Kullback-Leibler divergence is used for assessing the dissimilarity

between the textural signatures of two different patches.

The textural signature of the two Gaussian models, SCM and SIRVg, used for describing a

texture’s wavelet subband coefficients is uniquely defined by their covariance matrix. The geo-

desic distance is used as dissimilarity measure between their textural signatures, given in closed

form [Regniers 2014a]. When it comes to the multivariate Gamma distribution on Gaussian copula

(GCG), the symmetric version of the analytical expression for the Kullack Leibler divergence be-

tween Gaussian copula based multivariate models recently proposed in [Lasmar 2014] is used for

assessing the dissimilarity between the textured patches [Regniers 2014a].

3.5.2.2 Performances - oyster parks patches database

In this section the LE LST statistical models are compared against a set of state of the art texture

analysis methods in terms of their content based image retrieval performances obtained on the oyster

parks textured patches database (see results in Table 3.4). More precisely, the methods chosen for

comparison consist of the statistical approaches GLCM1 and LBPri1 and the following probability

models for describing a texture’s wavelet sub band coefficients [Regniers 2014a]: GCG, SCM and

SIRVg.

When it comes to the comparison of the global retrieval performances between the LST statis-

tical models and state of the art method for texture characterisation, the following remarks can be

made. It can be firstly noticed that all the proposed approaches yield higher performances than all

the other texture analysis methods considered for comparison, except from GCG and LBPri1 that are

outperformed only by the single Gaussian and the Gaussian mixture models. The gain in retrieval
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Table 3.4: Oyster parks patches database retrieval results - the mean and standard deviation of the
ARR computed over 100 repetitions of the CBIR protocol on the oyster patches database. Values
are given for all classes (AC) and for each oyster texture class: C1, C2, C3. Comparison between
methods: upper part of the table - LE LST statistical modelling based approaches, middle part -
state of the art statistical texture analysis techniques, lower part - methods based on the probabilistic
modelling of a texture’s wavelet subband coefficients. The best results of each category are marked
in dark red.

Method AC C1 C2 C3
µ 71.3± 3.2 71.1± 4.9 67.3± 4.0 75.6± 4.6

GLE 79.3± 2.9 77.2± 5.8 77.9± 3.3 82.8± 4.6
3GLE 79.8± 3.1 74.4± 5.5 80.9± 3.1 84.1± 4.7

GLCM1 68.0± 3.1 52.4± 4.9 74.1± 3.3 77.5± 4.5
LBPri1 78.2± 2.7 75.6± 4.8 79.7± 3.4 79.2± 4.1

SCM 69.6± 2.9 65.7± 4.5 65.4± 3.7 77.7± 4.9
SIRVg 69.4± 2.6 74.8± 5.2 62.4± 3.4 71.0± 3.7
GCG 73.0± 3.1 74.9± 4.5 67.9± 4.0 76.3± 4.8

accuracies of the LE Gaussian and Gaussian mixture models are around 1% over LBPri1 and around

7% over GCG.

As far as per class results are concerned, it can be firstly noticed that for all the LST statistical

modelling based approaches, the best retrieval performances are obtained for class 3. In the previous

section, it has been observed as well that all LST statistical modelling based techniques generated

the best retrieval performances for the third class of foreshore. This is the most distinct class in terms

of anisotropy. However, for some of the reference texture analysis methods considered here, C3 is no

longer privileged in terms of retrieval score as these methods characterise a texture in terms of other

properties and are less efficient than LST based methods in describing the anisotropy information of

a texture.

The best retrieval result per-class belongs to LST LE statistical modelling methods, namely

GLE for C1 and 3GLE for C2 and C3. The second best results per class are obtained by the LBPri1

approach. For the first class of cultivated oyster racks the performances of the GLE model for LST

characterisation slightly exceeds those of LBPri1 , GCG and SIRVg (with ∼ 2%) while exhibiting a

gain higher than 20% over the GLCM1 approach. Regarding the class of abandoned oyster fields

(C2), the performance gain of the 3GLE method over LBPri1 is around 1% and substantially higher

(from 6 to 18%) over the other reference methods. As for the foreshore class, the retrieval rate of the

LST LE Gaussian mixture model overpasses with 5 to 13% the retrieval scores of the state of the art

texture analysis methods.

3.5.2.3 Performances - maritime pine forest stands database

The supervised classification performances relative to grouping the maritime pine forest stands in the

different age classes are given in Table 3.5 for all texture analysis methods tested in this experimental
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setting.

The proposed methods are compared against LBPri1 , as this method outperformed all the other

state of the art texture analysis methods in the previous experimental context of oyster parks pathes

retrieval. In addition, the proposed methods are compared against 3 other state of the art approaches,

previously tested in the same experiemental setting (data and classificaion protocol) by Regniers et

al. in [Regniers 2014a, Regniers 2014b, Regniers 2015a]. They consist of: GLCM1, GLCM2 and

the SIRVg statistical model for characterising a texture’s wavelet subband coefficients.

The GLCM methods have been chosen as reference methods here as in all the experimental set-

tings considered in this work for validating the LST statistical modelling capabilities to characterise

texture since the coocurrence matrix can be considered as a benchmark in the texture analysis lite-

rature. As for the SIRVg approach, it has been chosen for comparison since it generated the best

classification performances out of the group of statistical models of wavelent subband coefficients

exploiting uniquely the spatial dependencies of the panchromatic band of a PLEIADES image, re-

gardless of multispectral information (see more details on these methods and the results generated

by other statistical models for wavelet coefficients in [Regniers 2014b]).

For each of the proposed statistical models for LST description a distance measure is proposed

in order to compare the probabilistic models characterising different LST fields. The existence of

a dissimilarity measure between the LST statistical models employed here as signatures for the

forest stands under analysis facilitates the implementation of different classifiers. The k-NN and

SVM supervised classification algorithms have been employed here for classifying the maritime

pine forest stands in the different age classes. The results in Table 3.5 are grouped in two parts, one

corresponding to each of the two classifiers. The SVM classifier yields better performances than k-

NN for all the texture analysis methods tested in this experimental context. The gain in performances

is specific to each method and it ranges from 1 to 3%. In the following, the classification results

generated by the SVM classifier will be analysed in more detail, as the general conclusions that can

be drawn for the two classifiers are quite similar.

A few words will be firstly addressed on the global classification performances, assessed in

terms of OA and kappa index. The LST statistical model performing the best here is the Gaussian

mixture model. The ground-truth and classification maps generated by this method in one iteration

of the cross-validation algorithm are displayed in Figure 3.6. A 2% gain is observed over the mul-

tivariate Gaussian model, as opposed to the previous oyster patches CBIR experiments, where the

two methods generated retrieval results of the same order. However, as in the previously considered

experimental context, both LE Gaussian and mixture of Gaussian models yield considerably better

performances than the LE center of mass. The classification results generated by the 3GLE are of the

same order as those obtained by the SIRVg model, and ∼ 1% higher than those obtained by GLCM2,

the best and second-best performing approaches among the state of the art methods considered here

for comparison. When it comes to the GLCM1 approach, its classification performances are almost

10% lower than those corresponding to the LE Gaussian mixture model. Although the GLCM1 de-
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Table 3.5: Maritime pine forest stands supervised classification results k-NN (upper table) vs. SVM
(downward table) classifiers: mean performances computed for 100 iterations of the cross-validation
algorithm - the global performances given by OA and κ indicators and the per-class resuls asses-
sed by PA and UA criteria. Comparison between methods: upper part of the table - LST sta-
tistical modelling based approaches, middle part - statistical texture analysis techniques (GLCM
[Regniers 2014a] and LBPri1), lower part - probabilistic modelling of wavelet subband coefficients
based methods [Regniers 2015a]. The best results of each category are marked in dark red.

• Results obtained by the k-NN classifier:

Method OA κ C1 C2 C3 C4

µ 67.4 0.53
86.2 49.3 68.8 46.9 PA
60.0 51.7 65.3 91.0 UA

GLE 72.1 0.59
83.6 62.6 76.1 45.3 PA
60.2 62.7 70.3 92.8 UA

3GLE 73.8 0.62
83.9 65.0 80.4 43.0 PA
59.3 68.9 70.7 91.6 UA

GLCM1 64.4 0.57
70.3 61.2 65.9 60.6 PA
77.6 55.9 60.2 73.2 UA

GLCM2 75.3 0.65
82.9 72.3 75 54.6 PA
85.6 72.2 68.9 71.0 UA

LBPri1 68.9 0.56
85.3 64.4 60.2 30.0 PA
63.1 65.9 64.3 82.6 UA

SIRVg 75.2 0.65
83.1 69.0 82.1 47.4 PA
88.8 73.2 73.2 80.1 UA

• Results obtained by the SVM classifier:
Method OA κ C1 C2 C3 C4

µ 69.7 0.56
94.0 51.1 65.6 44.6 PA
59.1 54.5 69.1 86.7 UA

GLE 75.3 0.64
92.6 64.6 80.2 28.3 PA
54.1 72.2 75.6 84.3 UA

3GLE 77.3 0.67
92.9 67.9 84.5 26.5 PA
54.6 77.7 76.1 85.3 UA

GLCM1 68.1 0.53
74.8 71.9 64.9 34.3 PA
76.4 60.0 70.0 61.0 UA

GLCM2 76.0 0.65
89.7 73.3 71.5 39.4 PA
79.3 72.9 77.8 64.2 UA

LBPri1 70.1 0.56
94.9 63.7 57.7 18.6 PA
49.4 63.3 70.8 86.0 UA

SIRVg 77.4 0.67
91.9 79.2 67.2 34.6 PA
81.9 73.2 76.8 86.6 UA

notes a rotation invariant implementation of the co-occurrence matrix approach, it can be observed

that when computing the co-occurrence matrix on the stands of same orientation (GLCM2), a no-

table classification gain is obtained (∼ 8%). This aspect stands as a proof of the shortcomings of

rotation invariant texture analysis methods that, in most cases, can provide only a pseudo rotation

invariance, as opposed to the LST techniques that have an intrinsic way of addressing this need.
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Figure 3.6: Ground-truth (top) and classification maps (bottom) generated in one iteration of the
cross-validation algorithm by the LST statistical model 3GLE; the training stands are emphasised by
marking their contours according to the class color code displayed in the legend while the validation
ones are completely filled with the color of their class.

Last but not least, it is interesting to notice that the state of the art texture analysis methods show a

more unstable behaviour than the methods based on the statistical modelling of a texture’s LST field.

More precisely, SIRVg - the method yielding the best classification performances on the maritime

pine forest stands database - generated one of the lowest retrieval results on the oyster patches

database, around 10% lower than those corresponding to GLE and 3GLE LST models. In addition,

the state of the art method performing the best in the previous experimental context, namely LBPri1 ,

yields a quite weaker classification performance, approximately 7% lower than the 3GLE approach.

Nevertheless, in both experimental contexts presented in this section, the LE multivariate Gaussian

and the mixture of multivariate Gaussian models for characterising LST distributions yield ones of

the most competitive classification and retrieval scores.

The per-class classification performances will be analysed in the following. We remind here that
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the PA criterion indicates the proportion of ground-truth images of a given class that are assigned by

the classification algorithm to the correct class. On the other hand, the UA indicates the percentage

of images among those assigned by the classifier to a given class, that actually do belong to that

class, according to the ground-truth.

The first age class (0 − 9 years old) is the one with the highest attained classification scores

by all methods tested here. The highest score is obtained by the LBPri1 method, followed by the

LST center of mass model. However, both methods yield average UA scores, around ∼ 50% for

the LBP method and moderately higher (∼ 60%) for the µ. While most of the C1 forest stands

have been correctly classified, these scores indicate that many other forest stands assigned by the

classifier to this class actually belong to other classes thus decreasing the confidence the user of the

classification maps can assign to these results. Probably the best classification compromise between

the producer’s and user’s accuracy for this class is provided by the SIRVg model, where the over

90% classification accuracy can be viewed with a significantly higher degree of confidence given

that the UA score is above 80%.

The second-highest classification scores per class for all LST based methods are obtained for C3

(forest stands of age > 20 years old) as opposed to the state of the art methods that all yield their

second-highest scores for the forest class C2 (10 − 19 years old) (see the results generated by the

SVM classifier in Table 3.5). The Gaussian mixture model performs the best on class C3 with a 13%

gain over the second most performant method for this class, namely GLCM2. The classes C1 and

C3 are the most contrasting in terms of the anisotropy characteristics of their textural patterns. As in

the case of the previous experimental context, these high classification scores associated to the most

distant classes in terms of anisotropy, reveal a finer capacity of LST based methods for anisotropy

characterisation, as opposed to the state of the art texture analysis methods.

The best PA score for C2 are generated by the state of the art SIRVg method at an around 11%

accuracy distance from 3GLE - the LST statistical modelling based method yielding the highest

classification scores on this class. However, the classification results generated by 3GLE are a little

more reliable than those corresponding to the SIRVg model, provided the ∼ 4% gain in terms of the

user’s accuracy indicator.

As for the last class of clear-cuts, it presents the lowest classification scores among the 4 mari-

time pine forest stands classes, for all methods. The highest accuracy (∼ 45%) is generated by the

LE center of mass with a user’s accuracy of ∼ 87%. Among the state of the art methods, GLCM2

and SIRVg yield similar performances, with PAs of ∼ 40% and ∼ 35% respectively. However, more

reliability can be given to the SIRVg results, since the UA score is about 87%, more than 20% higher

than the UA corresponding to the GLCM2 approach.

The classification results per class are further investigated in terms of common classification

errors and inter-class confusion. To this purpose, the confusion matrix for the LST statistical model

3GLE is displayed in Table 3.6.

By analysing the confusion matrix results, it can be noticed that the majority of misclassified
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Table 3.6: Supervised classification of maritime pine forest stands - mean confusion matrix corre-
sponding to the LST model 3GLE and generated by the SVM classifier

Predicted class
C1 C2 C3 C4

Real class

C1 92.9 5.4 0.0 1.7
C2 10.3 67.9 21.8 0.0
C3 1.1 14.4 84.5 0.0
C4 67.4 0.6 5.5 26.5

Figure 3.7: Examples of texture patch extracts from maritime pine forest stands of class C1 (left)
and C4 (right)

forest regions belonging to the first age class were assigned to class 2, a few to C4 and none to

C3. This result is easily explained in terms of the anisotropy level of the textured samples. Classes

C1 and C2 are the classes with the most pronounced level of anisotropy, enforcing thus a strong

confusion between the samples belonging to these two classes. In addition, some of the patches in

C4 present as well anisotropic textural patterns. On the contrary, the most distant class from C1 in

terms of anisotropy is C3, explaining thus why none of the misclassified texture samples of C1 were

attributed to C3.

For the second age class, the misclassified regions are divided between the classes C1 and C3,

this results being coherent with the anisotropy considerations previously mentioned. As far as the

third age class (> 20 years old) is concerned, most of the classification errors have been made in the

second age class (10 and 19 years old).

The results corresponding to the clear cuts class are quite particular. There is a higher percentage

of samples assigned to a different class (namely ∼ 67% of the ground-truth data is classified to C1)

than the actual percentage of correctly classified samples (as little as ∼ 27%). These classification

errors can be explained, to some extent, by taking a closer look to the image content in these classes.

There are some regions on the PLEIADES satellite image with no visible vegetation, but with discer-

nible ploughing machines traces on the field. These traces may be seen as a reforestation sign and,

as a consequence, the samples taken from these regions belong to the first age class. However, they

are visually very similar to the clear-cuts samples, inducing thus a high predisposition to confusion
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(see an example of texture patch extracts in Figure 3.7). In addition, the textural information of the

clear cuts class might be difficult to capture in its full complexity, given the quite limited number of

ground-truth samples (7).

Another remark should be made on the nature of this database, that can partly justify the

between-class confusion. To be specific, the age is a continuous variable and its discretization may

be responsible for some of the classification errors, especially for those forest stands of age close to

the border age separating two classes [Regniers 2014a]. Moreover, according to [Regniers 2015a],

15% of the reference data is composed of outliers. As a consequence, the global classification accu-

racy can hardly exceed 85%.

3.5.3 Evaluating Rotation Invariance and the Relevance of Joint LST Statistical Mo-
dels.

The focus of this section is dual. One objective consists of evaluating LE joint statistical models

for characterising the spatial dependencies inside the LST field of a textured image. Moreover, the

intrinsic quality of LST based approaches to deal with rotation invariance is experimentally valida-

ted, as the test database consists of anisotropic textured patches of randomly imposed orientations.

These aspects are investigated in a CBIR context of carbonaceous material patches of snapshots

issued from HRTEM technology.

3.5.3.1 Experimental Approaches

For the LST statistical modelling based methods for texture characterisation, the structure tensor

has been computed with the following parameters values: σG = 1, σT = 3. They correspond to a

maximum in the retrieval performances obtained on this database, after performing systematic tests

for values considered adapted to the textural pattern of these images.

The log-Euclidean LST statistical modelling approaches tested in this experimental context con-

sist of: the center of mass µ, a multivariate Gaussian distribution GLE of size 3 for characterising

marginal LST distributions and a multivariate Gaussian distribution of superior size GLE_p for cha-

racterising distributions of structure tensors p-tuples encompassing the LST field’s spatial depen-

dencies information. Several neighbourhood configurations have been tested, namely pixel couples,

cross and square neighbourhoods of different sizes. The inter-pixel distance has been varied between

1 and 15. The GLE_p model results in Table 3.7 corresponds to the neighbourhood configuration max-

imising the retrieval results: cross-shaped neighbourhood of size 3 and inter-pixel distance equal to

8 (see the neighbourhood topologies illustrated in Figure 2.17 of Chapter 2).

Mixture models of multivariate Gaussian distributions have not been considered here, since in

the previous experimental settings presented in this study (see Tables 3.1 and 3.5) the Gaussian

model proved to be well-adapted and sufficient for characterising the LST information of a textured

image. This aspect has also been observed in some other experiments conducted by the authors



118 Chapter 3. Recognising Texture with Models of LST Fields

on different datasets, that make not the object of this report. In addition, the same observations

have been made when analysing the fit of the theoretical distributions to empirical LST fields (see

Section 2.3.1 of Chapter 2). Moreover, the LE multivariate Gaussian model is 17 times faster than

its corresponding mixture model of 3 multivariate Gaussian distributions, as shown in Section 3.5.1.

The retrieval performances obtained by the proposed approaches are compared against those

obtained by the RI implementation of the gray level co-occurrence matrix method, GLCM1. A

distance of 1 was considered between the pairs of pixels. The textural signature is given by the

mean value of the following descriptors: homogeneity, entropy and correlation, corresponding to

the 4 different orientations chosen for this method.

3.5.3.2 Performances

Table 3.7: Carbonaceous material patches database retrieval results - The ARR values values are
given for all classes (AC) and for each HRTEM carbon material texture class: C1, C2, C3, C4. The
best results are marked in dark red.

Method AC C1 C2 C3 C4
µ 70.8 60.9 90.6 89.1 42.6

GLE 86.0 80.1 100 98.4 65.6
GLE_p 88.4 86.3 100 98.4 68.8

GLCM1 68.2 80.5 65.2 78.5 48.4

As seen in the previous experiments, the retrieval results in Table 3.7 confirm one more time that

the LE multivariate Gaussian model is far more adapted for LST characterisation than the simple

use of the LST field’s center of mass. When including the LST spatial dependencies information, by

the use of an extended multivariate Gaussian distribution that characterises neighbourhoods of LE

structure tensors, there’s a slight improvement in the global retrieval performances (2% gain over

the GLE model). The general trait observed during different experiments on various textured data,

is that the model for describing LST spatial dependencies generally provides same order results as

the GLE model for characterising marginal LST fields. The improvements are really insignificant, as

observed here and in the context of CBIR of maritime pine forest patches, where a 1% gain has been

observed (see results in [Rosu 2016, Noutatiem Guiafaing 2016]). The LE statistical models have

been applied for modelling multiscale dependencies in LST fields as well, with no improvements in

terms of texture recognition performances [Noutatiem Guiafaing 2016].

In terms of retrieval results per class, the best performances of LST statistical modelling based

methods are obtained on this database for C2 and C3, in spite of a quite strong visual similarity of

the textures belonging to these classes. The texture patterns of carbon material patches in classes C1

and C4 might be more accuratly described when employing a larger-scale analysis, as suggested in

[Da Costa 2015].

As far as the rotation invariance is concerned, the LST statistical modelling based techniques

yield relatively high retrieval scores, in spite of the random orientation of the anisotropic textured
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patches in this database. Thus, the intrinsic ability of the LST based techniques to discriminate

textures according to their pattern and anisotropy information no matter their orientations is expe-

rimentally validated by these results. When it comes to the co-occurence matrix global result, it

shows a performance loss of ∼ 20% compared to the GLEn model for LST field description. This

result experimentally highlights the quite limiting abilities of GLCM1 approach of addressing the

rotation invariance need of a classification application of anisotropic textured images.

3.5.4 Benchmarking LST Based Methods in Remote Sensing Literature

The following section deals with the last experimental setting considered for evaluating the potential

of the proposed statistical models for LST field characterisation and considered for presentation

in this report. It consists of a CBIR application of both textured and non-textured remote sensing

patches of the publicly available database LULC of UC Merced [Yang 2013]. LE marginal statistical

models are tested here against other state of the art texture analysis methods previously tested on

this database. The experiments performed on this collection gives access and thus facilitates the

comparison to other image analysis methods used for dealing with remote sensing images. Our

main aim here resides in placing the LST statistical modelling based approaches for texture analysis

on the much wider map of image analysis methods applied in the context of remote sensing imaging.

3.5.4.1 Experimental Approaches

The LST statistical modelling based approaches tested here are those relying on the log-Euclidean

metric space, namely: µ, GLE and 3GLE . The structure tensor has been computed on this dataset

for the following parameter settings: σG = 1.6, σT = 5.1. As for the other databases, they had

been hand-tuned by performing systematic tests in a range of values considered to be adapted to

the dominant textural patterns of the patch collection, according to the considerations explained in

Section 2.2.3.

Among all state of the art image analysis previously tested on this database [Yang 2013,

Aptoula 2014, Özkan 2014], we focus here uniquely on the texture analysis methods, since we con-

sidered they are the only ones making the object of a fair comparison. They consist of the following

approaches: Gabor, LBPri2 , Aptoula. In the following, some details concerning the implementation

of each of these methods in the context of a CBIR application are given.

As far as the texture analysis method relying on Gabor filtering is concerned, banks of filters

tuned to 5 scales and 6 different orientations have been used. The mean and standard deviation is

computed for each filter, resulting, thus, in a feature vector of size 60 [Yang 2013]. The similarity

measure between images is computed by a modified version of the L2 distance function between

their corresponding feature vectors, in order to achieve rotation invariance (for more details, see

[Yang 2013]).

LBPri2 consists of the multiscale, uniform and rotation invariant implementation of local binary
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Table 3.8: Retrieval results on LULC patches database. Global performance indicators are given in
terms of the ANMRR. Left side - LST statistical modelling based approaches, right side - state of
the art texture analysis methods. The best results of each category are marked in dark red.

Method ANMRR Method ANMRR
µ 0.752 Gabor [Yang 2013] 0.630

GLE 0.558 LBPri2 [Aptoula 2014] 0.735
3GLE 0.565 Aptoula [Aptoula 2014] 0.575

pattern approach tested previously on the same database in [Aptoula 2014]. It generates as textural

signature a feature vector of size 54, corresponding to the normalized histogram of the 54 diffe-

rent LBP outputs for this approach. Five different dissimilarity measures are tested by Aptoula in

[Aptoula 2014], namely: the Euclidean, Manhattan, Intersection, χ-square and Bhattacharyya dis-

tance between the textural signatures of 2 patches. The LBPri2 results in Table 3.8 correspond to

Bhattacharyya distance, the one yielding the best retrieval results among this group of 5 different

dissimilarity measures.

The last texture analysis state of the art method considered for comparison in this experimental

setting, denoted by Aptoula, consists of the concatenation of feature vectors resulting from morpho-

logical texture descriptors and two other texture descriptors based on the Fourier power spectrum

image analysis. Two image scales of analysis have been considered and the textural signature of a

patch is given by a feature vector of size 62. The same set of 5 disimilarity measures has been tested

as in the case of the LBPri2 approach. The results given for this method in Table 3.8 correspond to

the χ-square distance, the one maximising the retrieval performances of this method on the LULC

database [Aptoula 2014].

3.5.4.2 Performances

The overall retrieval performances for this database are assessed in terms of the ANMRR and given

in Table 3.8. We remind here that the ANMRR retrieval performance indicator takes values between

0 and 1, with a lower score showing higher retrieval performances. It should be noted that this

indicator was computed while considering 200 images as relevant to retrieval, twice the number of

images per class.

As far as the LST statistical models are concerned, a single multivariate Gaussian distribution

outperforms the mixture model of 3 such distributions. Moreover, both GLE and 3GLE outperform

the state of the art texture analysis methods considered here for comparison, in spite of a lower com-

plexity compared to other approaches such as Aptoula. To the authors’ knowledge, this selection

reunites all the state of the art texture analysis methods that have been tested to this day on this data-

base (see Table 3.8). However, the highest retrieval performances on this database are not generated

by texture analysis approaches but by various image representation and simplification techniques of

local invariant features. Thus, the best retrieval score obtained so far (0.4505) belongs to the image
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simplification tool VLAD-PQ (product-quantized binary version of the vector of locally aggregated

descriptors) applied on SIFT (scale-invariant feature transform) descriptors - [Özkan 2014].

3.6 Conclusions

The main objective of this chapter has been the experimental validation of the LST statistical mo-

dels for LST field characterisation. The proposed methods have been tested in different contexts of

classification of various types of textured data. In addition, content based image image retrieval ex-

periments have been conducted on non-textured data as well. Two main types of imagery have been

concerned, namely VHR remote sensing and material lattice fringe imagery issued from HRTEM

technology.

Several LST statistical modelling based approaches have been tested, defined on the affine-

invariant and log-Euclidean metric spaces. The majority of the proposed methods are adapted to

the description of marginal distribution of tensors. For the AI metric space, the statistical modelling

based methods consist of the center of mass, the AI Gaussian distribution and its corresponding

mixture model. Similarly, the statistical modelling based approaches on the LE metric space are

as follows: the LE center of mass, the multivariate Gaussian distribution and its corresponding

mixture model. In addition, on the LE metric space, the statistical modelling of p-tuples of structure

tensors by a multivariate Gaussian distribution, encompassing as well the LST spatial dependencies

information, has equally been proposed.

The performances of the methods proposed in this work have been compared to those generated

by different state of the art texture analysis methods. They consist of statistical methods, namely dif-

ferent implementations of the co-occurrence matrix and local binary patterns approaches, methods

based on the probabilistic modelling of a texture’s wavelet subband coefficients and on texture ana-

lysis methods based on the spectral decomposition. All proposed methods as well as the reference

ones are rotation invariant.

Among the statistical modelling based approaches proposed here for LST characterisation, the

ones relying on the LE metric space have proved to be the most interesting. Not only that the LE sta-

tistical models are significantly faster than their AI equivalents, but in general they either outperform

or yield similar performances as the AI statistical models. In addition, a multivariate Gaussian mo-

del on the LE space generated better or same order results as its corresponding 3 component mixture

model, while being significantly faster. Thus, the use of a mixture model for LST field characteri-

sation does not present much interest on the LE metric space. In contrast, on the AI metric space,

the use of a mixture model generally improves the performances. However the gain in classification

accuracy comes at a quite high computational expense. Moreover, when modelling neighbourhoods

of structure tensors to describe the spatial dependencies inside the LST field, moderate performance

improvements have been observed with respect to the case when marginal LST distributions are

modelled.
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LST statistical modelling techniques have proved to outperform, in most cases, the state of the

art texture analysis methods proposed for comparison. In addition, they show a much more stable

behaviour, since they produce competitive results in all the experimental settings presented in this

chapter, in spite of the difficulties arising in the different databases. In contrast, the performances

of the state of the art methods vary from one application to the other. Thus, if some methods

yield competitive results in a given experimental context, they showed an important decrease in

performances in other test scenarios. These methods seem to depend more on the nature of the

textured data under analysis, showing thus less versatility than the LST statistical modelling based

approaches.

Finally, the intrinsic ability of LST based approaches to respond to the rotation invariance need

of a classification application of anisotropic textures, has been experimentally proven as well. The

LST statistical modelling based approaches provide high performances even on datasets of patches

of random orientations, as opposed to the rotation invariant implementations of the state of the art

texture analysis methods. The later proved their shortcomings in addressing this need, providing,

thus, a rather pseudo rotation invariance.



Chapter 4
Synthesising LST Fields with LE Models

"When in doubt, smooth."

–Sir Harold Jeffreys, Mathematical Statistician
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4.1 Introduction and Objectives

The statistical models proposed in Chapter 1 have showed promising LST field characterisation

potentials, in the texture recognition experiments presented in Chapter 3. The main objective of this

chapter is to further evaluate the statistical models’ potentials in the case of higher complexity tasks

that require richer characterisation capacities than the task of texture recognition. More precisely,

the potentials of the statistical models to synthesise LST fields is assessed in the following.

The principle of the LST field synthesis approach proposed in this work is illustrated in Figure

4.1. An input LST field is given as starting point. It can be represented by the observed LST field

of a real texture or by a randomly generated LST field, as well. The LST synthesis consists in

reproducing an output LST field very close in characteristics to the input LST field. The similarity

between the input and output LST fields can be visually assessed by comparing the input and output

maps of the LST parameters. While this is not the main objective of the present work, LST field

synthesis could further be used to the purpose of texture synthesis, as it has previously been done by

Akl et al. [Akl 2018]. The goal of texture synthesis is to create an output texture having the same

visual characteristics as the input texture.

The LST synthesis framework proposed in this work is developed on the LE space and is based

on parametric methods. More precisely, the input LST field is described by a LE statistical model

(multivariate Gaussian model or its corresponding mixture model). A Markovian hypothesis is

made and the synthesis of the output LST field is uniquely based on the estimated parameters of the

statistical model chosen for describing the input LST field.

LST field synthesis 

Texture synthesis 

𝜎𝑦𝑦 
𝜎𝑥𝑦 

𝜎𝑥𝑥 

Input LST field 
𝜎𝑦𝑦 
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𝜎𝑥𝑥 

Output LST field 
Input texture Output texture 

Model 
estimation 

Synthesis 
algorithm 

Figure 4.1: LST field statistical modelling based synthesis scheme - stepping stone to texture synt-
hesis.

4.2 Related work

The topic of LST field synthesis has rarely been addressed in the litterature [Akl 2016, Akl 2018].

In these studies, the LST field synthesis is used in a two steps texture synthesis process. More pre-

cisely, the texture’s structure layer is first built, by synthesising an LST field similar to the LST field
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computed on the example texture. The synthesised field is further used to constrain the second step

of texture synthesis. A multiscale non-parametric method is proposed for the LST field synthesis,

inspired by the texture synthesis method proposed by Wei et Levoy [Wei 2000].

The state of the art parametric LST field synthesis approach proposed by Akl et al. [Akl 2016,

Akl 2018] relies on the definition of a neighbourhood of structure tensors, in each point of the image.

The structure tensors neighbourhood is composed of the set of 2× 2 structure tensors corresponding

to the positions in the considered neighbourhood topology. Similarly, for each point in the output

LST field, a neighbourhood of structure tensors is defined. The output LST neighbourhood is com-

pared to all the input LST neighbourhoods (the LST neighbourhoods corresponding to all the points

in the input texture). Different metrics, adapted to the particularities of non-negative definite matri-

ces are considered for measuring the similarity between individual structure tensors. The similarity

between two structure tensor neighbourhoods is evaluated by computing the sum of structure tensors

dissimilarities over the entire neighbourhood. The current position in the output LST field is assig-

ned the structure tensor in the input LST field minimising the sum of structure tensor similarities.

The pixel by pixel synthesis is repeated several times in the aim of obtaining an output LST field

close to the input one.

4.3 LST Synthesis - Principle and Algorithms

We propose in this work a parametric Markov Random Field (MRF) approach for LE LST field

synthesis. A Markovian hypothesis is made by considering neighbourhoods of vector-forms of LE

mapped structure tensors in each point of the LST field, in order to characterise the spatial depen-

dencies. The extended input LE LST field formed in this way is characterised by a statistical model

from the LE family (multivariate Gaussian distribution or multivariate Gaussian mixture model - see

Section 2.3.2.2 of Chapter 2). The section starts with some key theoretical considerations on the

MRF synthesis and on the relaxation algorithms employed. The adaptation of these concepts to LST

field synthesis on the LE metric space is explained at the end of this section.

4.3.1 Markovian Synthesis

Markov Random Fields are largely employed for solving computer vision problems of different

natures. Some examples are image restoration, reconstruction and segmentation, texture analysis

and synthesis, edge detection. The approach relies on describing the underlying image geometry

by modelling the local spatial dependencies. Pioneering research has been conducted since the

70′s, establishing thus the fundamentals of MRFs in image processing [Besag 1974, Geman 1984,

Besag 1986].

The MRF approach in image processing is defined in terms of sites and labels. A site is a point

in the space whereas a label is an event than might happen to a site [Li 2001]. The MRF approach

has been adapted here from images to LE LST fields. Considering the LST field computed in each
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point of an image I of size [w × h], its corresponding set of sites is given by Z = {z1, ...zw×h}. The

vector-form value associated to each site is given by a 3 component vector label xi in the state space

Λ = {λ1, ...λl}, where l corresponds to all possible states of the LE mapped structure tensors. The

labelling process corresponds to assigning a label from the state space Λ, to each site in Z. In

practice, the set of possible states corresponds to the LE LSTs in the input LST field. In some cases

that are detailed later in this work, the original state space is further quantified in order to reduce its

size.

4.3.1.1 Markovian Hypothesis

The MRF approach relies on the characterisation of the inter-relationship between sites which is

defined by considering a neighbourhood system. Different neighbourhood topologies can be defined,

including the examples previously illustrated in Chapter 2 (Figure 2.17).

Let X = {X1, ...Xw×h} be a random field of 3 component vectors (corresponding to vector-forms

of LE mapped structure tensors) defined on Z. Each random vector Xi is associated a state xi in

Λ. The following notations are employed. The event that the random vector Xi receives the label

xi ∈ Λ is denoted by Xi = xi. In addition, the probability associated to the event is denoted by

P(Xi = xi). Similarly, the notations X = x and P(X = x) are employed for the joint event, where

x = {x1, ..., xw×h} is called a configuration of X. It corresponds to a realization of the random field.

If the same label set is associated to each site, the configuration domain (the set of all possible

configurations) is given by: D = Λw×h.

The following two conditions need to be satisfied so that X is a Markov Random Field on Z:

P(x) > 0,∀x ∈ D (positivity) (4.1)

P(Xi = xi|X j = x j, j , i) = P(Xi = xi|X j = x j, j ∈ Vi) (Markovianity) (4.2)

with the conditional probability at the site i being called the Local Conditional Probability Density

Function (LCPDF). The first property states that the probability of a given label configuration is

always positive. The Markovianity property states that the random vector Xi describing the structure

tensor’s state at any site in Z, can take any label xi from Λ, but the probability that Xi = xi uniquely

depends on the labels x j at sites z j neighbouring zi.

The proposed method consists of a site by site LE LST synthesis based on maximising the

likelihood of the label xi at the site zi, in terms of the local conditional probability density function.

To this purpose, relaxation algorithms are employed, so that: xi ← arg max
λ∈Λ

P(λ, zi).
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Algorithm 1 ICM (Iterated Conditional Modes)
Input:

Niter - number of iterations of the relaxation algorithm
Z = {z1, ...zw×h} - set of sites
Λ = {λ1, ...λl} - state space
x0 = {x1, ...xw×h} - initial label configuration for the sites in Z
P - local conditional probability density function

Output:
x = {x1, ...xw×h} - output label configuration for the sites in Z

Begin
1: iter← 1
2: x← x0
3: while iter ≤ Niter do
4: for each site zi in Z do
5: xi ← arg max

λ∈Λ
P(λ, zi, x)

6: end for
7: iter← iter + 1
8: end while

End

4.3.1.2 Relaxation Algorithms

Several relaxation algorithms can be employed for the LST synthesis process. The objective is

to obtain label configurations maximising the joint probability of the MRF. This is achieved in an

iterative way. At each iteration, a site by site synthesis is achieved by maximising the LCPDF in each

site in Z. The relaxation algorithms employed here consist of Iterated Conditional Modes (ICM),

Metropolis and Metropolis Simulated Annealing (Metropolis SA).

ICM

ICM consists of an iterative deterministic relaxation technique [Besag 1986]. In each site, an

exhaustive search is done in the state space Λ and the label maximising the LCPDF is retained. Ge-

nerally, the algorithm converges to a local maximum after a small number of iterations [Won 2004].

However, as for each site all labels are tested, one iteration (corresponding to a complete scan of the

sites) can take quite long, depending, naturally, on the size of the state space. The ICM synthesis

process is given in the Algorithm 1.

Metropolis and Metropolis Simulated Annealing

Metropolis algorithm [Metropolis 1953] is employed as well in this work for LE LST field synthe-

sis. It is an iterative stochastic relaxation algorithm, part of Monte Carlo Markov Chain (MCMC)

techniques. At each iteration, for a given site zi, a label is randomly sampled from the state space Λ.

The ratio between the probabilities of the new label proposition λ and the current label xi is compu-

ted. A random probability value is further sampled in the interval [0, 1]. The new label proposition

λ is retained for the current site, if the ratio between its LCPDF and the LCPDF of xi (current la-
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Algorithm 2 Metropolis Simulated Annealing
Input:

Niter - number of iterations of the relaxation algorithm
ktemp - temperature reduction coefficient
Z = {z1, ...zw×h} - set of sites
Λ = {λ1, ...λl} - state space
x0 = {x1, ...xw×h} - initial label configuration for the sites in Z
P - local conditional probability density function

Output:
x = {x1, ...xw×h} - output label configuration for the sites in Z

Begin
1: Temperature initialisation

t ← 1
2: iter← 1
3: x← x0
4: while iter ≤ Niter do
5: for each site zi do
6: λ ∼ Λ (random sample from the state space Λ)

7: p←
P(λ, zi, x)
P(xi, zi, x)

8: q ∼ [0, 1] (random sample from the interval [0, 1])
9: p← p × t

10: if p > q then
11: xi ← λ

12: end if
13: end for
14: iter← iter + 1
15: t ← t × ktemp

16: end while
End

bel) is greater than the randomly sampled probability. By implementing the last two steps, negative

probability jumps are accepted during the synthesis process. This means that, from time to time,

proposals lowering the LCPDF at the current site with respect to the LCPDF of the current label

are accepted. The purpose of this technique is to explore at best the state space in order to find the

global maximum (and to avoid, thus, getting stuck in a local maximum).

As a single label value is tested for each site, one synthesis iteration (corresponding to a complete

scan of the sites) via Metropolis algorithm is faster than via ICM. However, a more significant

number of iterations is necessary for the Metropolis algorithm to converge.

Metropolis Simulated Annealing is an adaptation of the Metropolis algorithm inspired by the

annealing process in metallurgy [Kirkpatrick 1983]. Likewise Metropolis, Metropolis SA is an ite-

rative and stochastic relaxation technique belonging to the group of MCMC sampling techniques.

The method relies on the introduction of a temperature term t. A high value of the temperature

corresponds to a relaxation in the acceptance criterion for new labels propositions. Thus, bad trades

are accepted in order to allow a wide exploration of the state space Λ. The temperature is gradually
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reduced by a temperature reduction coefficient ktemp, with ktemp < 1. As the temperature decreases

with each iteration, the acceptance criterion becomes more restrictive, up to the point where only

good trades (labels increasing the LCPDF) are allowed. The steps of the Metropolis SA method

are given in Algorithm 2. The algorithm’s steps correspond to Metropolis synthesis process in the

special case when ktemp = 1.

4.3.1.3 LST Synthesis Steps

Learning Phase

The parametric MRF based LST synthesis approach at one scale of analysis is briefly explained

in the following. The first step consists of computing the LE LST field Tin of the input texture

Iin. By choosing a value for the structure tensor’s σT parameter, a scale of analysis is implicitly

fixed. In a second step, for each pixel, all 3 component LE vector-form LSTs in the neighbourhood

are concatenated to the LE vector-form LST of the central pixel (as previously described in Section

2.3.2.1 and illustrated by Figure 2.17 of Chapter 2). Thus, the extended input LE LST field is formed.

The parameters of the statistical model chosen for describing the input extended LE LST field are

further estimated. To this purpose, a multivariate Gaussian distribution or a mixture of multivariate

Gaussian distributions of a priori defined number of mixture components, K, are employed. The

aforementioned steps correspond to the learning phase of the method.

Synthesis Phase

The synthesis phase itself follows the learning phase. In a first step, the output LE LST field Tout

is initialised with LE structure tensors randomly sampled from the input structure tensor field. The

output LST field can have any size, it is not limited by the size of the input LST field. The synthesis

of the output LE LST field is achieved pixel by pixel, in the order given by the a priori chosen

image scan type. At each pixel, the LE extended structure tensor is composed, according to the

considered neighbourhood configuration. A toroidal approach is considered for handling the borders

of the rectangular grid on which the LST field is defined [Wei 2000]. In consequence, each point

in Tout has a corresponding extended tensor. Given the positions x, y on a rectangular grid of size

w × h, the toroidal approach is implemented as follows: Tout(x, y, :) = Tout(x mod w, y mod h, :)
1, where mod stands for the modulo operation and ” : ” denotes the 3 components of the LE

mapped vector-form structure tensor. A decision step follows, where the current position is assigned

a 3 component LE structure tensor from a set of possible entities Λ, according to the rules of the

relaxation algorithm employed. We remind here that the extended LE LST in one point is formed

by the neighbouring LE LSTs and the LE LSTs of the current position. When a new proposition is

made, a new state is tested uniquely for the LE LST corresponding to the current position. All the

other LE vector-forms LST composing the extended LST in the current point (corresponding to the

1The modulo operation holds when considering the following indexing rule for the coordinates of the rectangular grid
of size [w × h]: x = 0, ...w − 1 and y = 0, ...h − 1.
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neighbouring points) are left unchanged.

The decision criterion is based on the LCPDF. The LCPDF in each point is evaluated as the

likelihood of the extended LE LST in the current position to the statistical model estimated on the

input data. The extended LE LST is composed of the 3 component label proposition concatenated

to the neighbouring LE LSTs. The procedure is iterated for several complete scans of the sites, until

the predefined maximum number of iterations is reached.

The state space Λ comprises, in practice, all the vector-form LE LSTs values in the input field.

This is true when Metropolis or Metropolis SA relaxation algorithms are employed. ICM algorithm

does an exhaustive search of the optimum state in a site. Thus, for large sets of labels, the com-

putational time for one site becomes very high, cumulating to a prohibitive computational time for

several iterations of complete scans of the sites. To address this issue, a clustering on the original Λ

set is applied. Thus, the set of labels Λ, composed of all the LE LSTs in the input field, is replaced

by a reduced set, composed of the class centers estimated by the clustering algorithm. To this pur-

pose, K-means clustering algorithm is employed. While the computational time issues are solved,

applying a clustering algorithm on the original state space results in a reduced accuracy. However,

the experiments showed that this loss in accuracy does not have any negative consequence on the

LST synthesis field, from the point of view of visual perception.

4.3.1.4 Neighbourhood Topology and Pixels Scan Type

The neighbourhood topology is often connected to the order in which the pixels are scanned during

the synthesis process. From this point of view, two major neighbourhood topologies are identified,

causal and non-causal.

All positions in a causal neighbourhood configuration correspond to sites for which the synthesis

process at the current iteration of the relaxation algorithm has already been done. The shape of a

causal neighbourhood is connected to the order in which the pixels are scanned. Raster scan order

is a possible choice, where pixels are scanned line by line, from left to right. In this case, a causal

neighbourhood configuration is in the shape of an L rotated by π/2 in the clockwise direction (see

the half-square neighbourhood configuration in Figure 2.17 of Chapter 2).

Raster scan order coupled with a causal neighbourhood configuration is a popular choice when

synthesising texture [Wei 2000]. As the synthesised information is propagated, pixel by pixel, few

iterations of the relaxation process are needed for convergence. However, potential artefacts gene-

rated during the synthesis process will be propagated as well. In addition, for structured textures,

a tendency to yield more regular outcomes has been observed, in the case of raster scan order and

causal neighbourhood configurations [Urs 2012].

A random scan type is adopted in this work as well, during the synthesis process. In this case,

a causal neighbourhood is not particularly needed. In consequence, a non-causal configuration is

chosen. With a random scan order, the regularity and artefact propagation issues evoked for the case
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of raster scan order are overcome. However, the synthesis process can be quite slow, as an important

number of iterations are necessary for the relaxation algorithms to converge.

In addition to the type and size of the neighbourhood, the inter-pixel distance defines as well the

neighbourhood topology. It corresponds to the distance between any two consecutive neighbouring

pixels (see illustration in Figure 2.17 of Chapter 2).

4.3.2 Multiscale Extension

The monosclae LST synthesis approach described previously is extended to a multiscale approach.

The multiscale synthesis method proposed in this work consists of a pyramidal method aiming at

optimising the synthesis process. Several different pyramidal methods can be developed. In this

work, we choose two methods among all possibilities for performing the multiscale synthesis. For

a first proposed method, the synthesis process at a given scale is based solely on the information

corresponding to the respective scale. For the second proposed method, the information at two

scales of analysis is considered during the synthesis process.

4.3.2.1 Pyramidal Synthesis Principle

The synthesis process in one site relies on the information in its neighbouring sites. The size of the

neighbourhood needs to be adapted to the size of the textural pattern, in order to fully characterise

the underlying geometry of the input LE LST field. For LST fields composed of micro-patterns,

neighbourhoods of small sizes are enough for characterising the geometry information. On the

contrary, large size neighbourhoods need to be considered as the size of the LST field’s composing

pattern increases. Two issues arise when increasing the neighbourhood size. First, the dimension

of the observed data (extended input LE LSTs) increases while the number of available sites for the

learning phase diminishes, due to the border effect. This often leads to statistical inference problems,

as previously described in Section 2.3.2.2 of Chapter 2. Second, the synthesis computational time

increases.

To address the aforementioned issues, a pyramidal multiscale approach for LST field synthesis is

proposed. The method consists of building a multiscale pyramid of the LST field. The lowest level

of the pyramid, L1, is associated to the highest resolution, namely to high frequency information

(fine structural details). The highest pyramid level, Ls, corresponds to the lowest resolution, namely

to low frequency information (macro structural information). The pyramidal synthesis principle is

illustrated in Figure 4.3.

The input pyramid is built by computing an LE LST field per scale of analysis. This is achieved

by fixing a value for the standard deviation of the Gaussian derivative kernel σG and tuning the

standard deviation of the Gaussian weighting kernel σT for each of the s scales, with σT1 < σT2 ... <

σTs . Then, a decimation by a factor of 2 is applied in each dimension of the rectangular grid defining

the sites of the LE LST field when passing from a level Li to a level Li+1, i = 1, ..., s − 1.
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A value σT1 is chosen for the standard deviation of the weighting kernel at the highest resolution

pyramid level. Then, the standard deviation at all the lower resolution levels is computed as:

σTi =

√
σ2

T1
+ (i − 1)α2 (4.3)

where α is a scale transition parameter. More details on the computation of the LST pyramid are

given in Appendix E.

While the input pyramid is build from L1 to Ls, the synthesis process starts with the highest

level of the pyramid (lowest resolution), and continues, level by level, until reaching the lowest

pyramid level L1. When passing from a level Li to its inferior level Li−1, i = 2, ..., s, an up-sampling

is performed by a factor of 2. More precisely, each LE LST in Touti is replicated on 4 positions in

Touti−1 . The pyramidal approach consists thus in synthesising the main structural elements of the

underlying geometry of a LE LST field and gradually adding more details while descending on the

pyramid level.

4.3.2.2 Multiscale LST Field Synthesis with Monoscale Neighbourhoods

The main point of the multiscale synthesis approach based on monoscale LST field modelling is

that the synthesis at one scale is based only on the information available at the respective scale. The

only inter-scale transfer of information is done during the initialisation phase of all pyramid levels

inferior to s. In this way, the synthesis at a level i, i = 1, ..., s−1 starts from a low resolution synthesis

result, defining the main structural elements of the LE LST field. The principle consists of adding

finer details to the main structural elements previously synthesised at the lower resolution pyramid

level. However, the influence of the previously synthesised levels is marginal, as the structure can

sometimes be completely lost after one complete scan of the LE LST positions.

The learning phase proceeds by computing an input LE LST field for each level of the pyramid.

Second, according to the pre-defined neighbourhood topologies, the corresponding extended LE

LST field is formed, at each scale of analysis. A different neighbourhood configuration can be

defined for each scale of analysis. The parameters of the statistical models chosen for characterising

the extended LST field at each pyramid level are further estimated. In the case of a multivariate

Gaussian mixture model, the number of mixture components, K, is predefined.

The synthesis starts at the highest level of the pyramid, Ls. The output LE LST field Touts is

initialised with randomly chosen LE structure tensors. Specifically, in each position, LE LSTs are

randomly sampled from the input LE LST field at the scale s, Tins . The synthesis at scale s proceeds.

When a label proposition is made in a given point, the extended structure tensors in that point is build

and its likelihood to the previously estimated model at the sth pyramid level is evaluated. The point

by point synthesis is reiterated until the convergence of the relaxation algorithm employed. The

synthesis result obtained at level s is used for initialising the output LE LST field at the s − 1 level

of the pyramid. An up-sampling by a factor of 2 is also performed. The synthesis proceeds at level
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Algorithm 3 Pyramidal LST synthesis with monoscale neighbourhoods
Input:

I - input image
s - number of scales
σTi , i = 1, ...s - structure tensor parameters
K - number of components of the multivariate Gaussian mixture model
Vi, i = 1, ...s - neighbourhood topologies
Niter - number of iterations of the relaxation algorithm

Output:
Tout_1

Begin
// Learning phase

1: i← 1
2: while i ≤ s do
3: compute input LE LST field Tin_i

4: compose input extended LE LST field Tin_ext_i from Tin_i, according to Vi

5: estimate model Mi on Tin_ext_i

6: i← i + 1
7: end while

// Synthesis phase
8: initialise Tout_s with randomly sampled LSTs from Tin_s
9: i← s

10: while i ≥ 1 do
11: iter← 1
12: while iter ≤ Niter do
13: for each site z j do
14: build output extended LE LST Tout_ext_i(z j) from Tout_i, according to Vi

15: Tout_i(z j)← updated according to the rules of the employed relaxation algorithm applied
on Tout_ext_i(z j) based on Mi, with Λ = Tin_i (or quantified Tin_i - for ICM)

16: end for
17: iter← iter + 1
18: end while
19: Tout_i−1 ← factor 2 upsampled Tout_i

20: i← i − 1
21: end while
End

s − 1. For a new label proposition, the likelihood of its corresponding extended structure tensor to

the model estimated at the current level during the learning phase is evaluated. The aforementioned

steps are applied for every pyramid level transition.

The learning and synthesis steps of the pyramidal approach with monoscale neighbourhoods are

given in Algorithm 3. The scheme of this synthesis approach is illustrated in Figure 4.3.

4.3.2.3 Multiscale LST Field Synthesis with Biscale Neighbourhoods

Biscale neighbourhoods are considered in order to constrain the synthesis process at the current

scale i, i = 1, ..., s − 1 by the previously synthesised low resolution LST field. The purpose of this
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technique is to assign more weight to the lower resolution results during the synthesis process in

order to maximise the resemblance of the synthesised LST field at level L1 to the input LST field

given as example. Also, faster convergence of the relaxation algorithms is expected.

𝜎𝑦𝑦 

𝜎𝑥𝑦 

𝜎𝑥𝑥 

𝜎𝑦𝑦 

𝜎𝑥𝑦 

𝜎𝑥𝑥 

L𝑖+1 L𝑖 

Figure 4.2: Example of biscale neighbourhoods for the pyramid level Li and its neighbouring lowest
resolution level Li+1, with i = 1, ...s − 1, s being the number of pyramid levels.

During the learning phase, for all pyramid levels from 1 to s − 1, extended LE LST fields are

built, comprising LE LST neighbourhoods at the current and the next pyramid level, as well. As

for the highest pyramid level, s, the extended LE LST field is formed only by neighbourhoods

belonging to the current scale. Different neighbourhood topologies can be adopted for each scale

of analysis. For each pyramid level ranging from 1 to s − 1, two neighbourhood topologies are

defined, one for the current scale and one for the previously synthesised scale. For the current

scale, a causal neighbourhood topology is preferred. Given that the level above has already been

synthesised, non-causal neighbourhoods can be employed. An example of biscale neighbourhoods

is illustrated in Figure 4.2. For the pyramid levels ranging from 1 to s − 1, the parameters of the

predefined statistical models will be estimated on biscale extended LE LST fields. On the highest

pyramid level, the statistical model is applied on a monoscale extended LE LST field.

The same considerations hold for the synthesis phase as for the previous approach (Section

4.3.2.2), with few exceptions. For all scales going from 1 to s−1, extended LE LST fields comprising

biscale neighbourhoods are built for the output field as well. In addition, when a label proposal is

made, the likelihood of the extended LE LST in that point to the multiscale estimated model is

evaluated. It should be noted that for biscale neighbourhoods, the LST field at the upper scale

is applied an up-sampling with a factor of 2, so that there is a one to one correspondence for all

positions at the two scales. The scheme of this approach is illustrated in Figure 4.3.
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Figure 4.3: Multiscale LST field statistical modelling based synthesis scheme. Both monoscale and
biscale neighbourhood approaches are illustrated. The following color code is used for the arrows
connecting the scheme: orange for both approaches and purple only for the multiscale neighbour-
hoods approach.

4.3.3 LST Synthesis Algorithm Parameters

For all LE LST synthesis methods, a set of parameters need to be pre-defined by the user for laun-

ching the synthesis process.

In the case when the input LST field belongs to a real texture, the structure tensor parameters

values (σG and σT ) need to be first defined for computing the input LST field of the input texture. If

a multiscale synthesis approach is employed, a value for σTi has to be defined for each level of the

pyramid, i = 1, ...s.

The number of mixture components of the statistical model used for characterising the LST

field at each pyramid level needs to be defined as well. Different values can be chosen for each

pyramid level. A neighbourhood topology associated to each pyramid level and the sites scan order

are pre-defined as well.

For the synthesis process, a relaxation algorithm is chosen and the maximum number of itera-

tions. Then, according to the algorithm, different parameters need to further be tuned. In the case

of the ICM algorithm, as previously explained, the input LST field is reduced to a smaller set, for

optimization purposes. K-means algorithm is used to this purpose and the number of clusters needs

to be defined. The number of clusters corresponds to the size of the reduced input LST field repre-

senting the state space Λ that contains the new label proposals made during the synthesis process.
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For a multiscale approach, a different size of the input LST field can be chosen for each level of the

pyramid. For the Metropolis simulating annealing algorithm, the value of the temperature coefficient

ktemp, used to iteratively cool down the temperature, needs to be chosen as well. The synthesis starts

for a temperature value equal to one and it decreases, iteratively, at a rate given by the multiplicative

coefficient ktemp < 1.

4.4 Results

The monoscale and multiscale synthesis approaches with monoscale neighbourhoods are first tested

on artificially generated LST fields composed of structural patterns of different sizes. In addition

to the aforementioned methods, the multiscale synthesis approach with biscale neighbourhoods is

tested as well on LST fields computed on real textures. The orientation map is chosen in this section

for representing the LST fields.

4.4.1 Toy Examples

4.4.1.1 Monoscale Approach - Sensitivity to Synthesis Parameters

All LST synthesis approaches rely upon a relatively large set of parameters that have to be predefined

by the user. In order to test the synthesis outcome’s sensitivity to the different parameters, ideally,

optimal values should firstly be found. Then, successive testing could be done, where all parameters

are fixed to their optimal value and then, one by one every parameter’s impact is analysed by ranging

its value and analysing its influence on the synthesis results. Naturally, comprehensive testing is

difficult to achieve, the test scenarios that can be imagined being very vast.

A short analysis of this type is done in the following, for a very simple test scenario. It consists

in generating 2 populations of artificial LE LST fields Tin_a1 and Tin_a2 . The LE LST from the

two groups are arranged on a rectangular grid in the form of a checkerboard composed of squares

of size 2 × 2. The input field Tin consists, thus, of the two populations of artificially generated

LE LSTs, following the pre-defined arrangement (see Figure 4.4). Extrapolated to textured data,

this test scenario would correspond to the case of a highly-regular microtexture, composed of small

size structuring patterns. This analysis has illustration purposes, and cannot be generalized to the

case of LST fields of real textures, composed of different types of patterns and characterised, thus,

by a higher complexity information. For this test scenario, the monoscale synthesis approach is

employed.

The rectangular grids of the input and output LE LST fields are of size 128 × 128 and 48 × 48,

respectively. Each LE LST population is built starting from pre-defined values of the LST parameters

(λ1, λ2 and θ), as indicated in Table 4.1. A sample set of same size as the size of each LE LST

population is generated for each parameter. A randomly generated Gaussian noise is added to each

parameter sample set. The following values are chosen for the noise standard deviations: 0.5 for the
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Table 4.1: Parameters of the two populations of artificially generated LE LST fields, Tin_a1 and Tin_a2

λ1 λ2 θ
Tin_a1 100 12 π/3
Tin_a2 5 2 2π/3

eigenvalues sample set and 0.05 for the orientation sample sets. For each parameter triplet (λ1, λ2, θ),

an LST if computed as: RDR†, where D is the diagonal matrix composed of the eigenvalues λ1 and

λ2 and R is the rotation matrix associated to θ. Next, each LST is mapped on the LE space and

further represented as a 3 component vector form.

ICM Algorithm

For the ICM algorithm, the original state space Λ corresponding to the input LE LST field is

reduced by means of clustering to 20 labels (from 16, 384).

A first analysis of the impact that the different parameters have on the synthesis results is done

for a raster scan order and causal neighbourhood of inter-pixel distance equal to 1. The number of

components of the LE multivariate Gaussian model is set to 8. After successive testing, 8 seems an

optimal value for this parameter, for the size 2 square checkerboard LST configuration.

The impact of the neighbourhood size is assessed first. To this purpose, the size was varied from

3 up to 11 and for each case, the learning and synthesis phases have been repeated 10 times. During

the synthesis phase, the ICM relaxation process is iterated 10 times. The results of this analysis are

summarised in Table 4.2. The synthesis results are grouped into 4 types:

� perfect, when the checkerboard arrangement of the input LE LST field is reproduced with no

defects during the synthesis process. An example of this type is illustrated in Figure 4.4;

� original pattern with artefacts, when the original arrangement is synthesised but there are

marginal artefacts on the output LST field. Some examples of this type are illustrated in

Figure 4.5. This phenomenon is common to the raster scan order. When a synthesis defect

occurs, it is propagated during the relaxation process;

� other patterns, when the relaxation algorithm converges to structured solutions of different

spatial arrangements than that of the input LE LST field. Some examples of this type are

illustrated in Figure 4.6;

� constant patterns, when the output LST field is quasi-constant (the output LE LST field is

entirely composed of only one of the two input populations).

Perfect synthesis outcomes are generated for all neighbourhood sizes different than 3. A neig-

hbourhood of size 3 is too small for capturing the structure of the input LST field and the synthesis
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Table 4.2: Synthesis results (occurrences out of 10 repetitions) according to the size of the neig-
hbourhood. The results correspond to the ICM relaxation algorithm with causal neighbourhood and
raster scan order.

Neighbourhood size
Synthesis result 3 5 7 9 11

Perfect − 7 5 6 3
Original pattern with artefacts − 3 4 3 −

Other patterns 10 − 1 − 3
Constant pattern − − − 1 4

process has always converged towards a different spatial arrangement of the output. A causal neig-

hbourhood of size 5 shows the highest number of positive occurrences. More precisely, 7 out of

10 tests yield perfect LE LST field synthesis. In addition, the other 3 outcomes are still converging

towards the original pattern, but marginal artefacts are visible on the output patterns. For neighbour-

hoods of size superior to 5, a perfect synthesis is still achieved, with lower occurrences. However,

the occurrence of perfect synthesis decreases as the size of the neighbourhood increases (> 9). In

addition, for causal neighbourhood sizes larger than 5, the synthesis process becomes unstable (con-

stant patterns or patterns different than the original one are sometimes synthesised). This instability

increases as the size of the neighbourhood overpasses the optimal one. While too large neighbour-

hoods lead to unstable synthesis, too small ones are total deal breakers for the synthesis process.

Secondly, the neighbourhood size was set to 5 and successive testing has been performed for

analysing the impact of the number of Gaussian mixture components, K on the synthesis process.

The value of K has been ranged from 1 to 100. While positive outcomes have been observed for

all values, for K < 4 the synthesis process is unstable. Some examples of synthesis illustrating

this instability are given in Figure 4.7. In addition, as K increases, the estimation of the statistical

model describing the LST field is slower and the relaxation process takes longer to converge. Values

ranging from 8 to 15 are found as optimal in terms of both stability and computational expenses.

Generally, for a raster scan order and causal neighbourhood, the ICM algorithm converges in

less than 10 iterations. For an optimal choice of the parameters (K = 8, ...15, and a neighbourhood

size of 5 or 7), the relaxation process converges in 2 − 3 iterations. The computation time for these

cases is below 30 seconds 2.

The disadvantage of the raster scan order and causal neighbourhood is that when defects are

produced, they are further propagated during the synthesis processe. This phenomeon associated

to raster scan order has been previously observed in the case of texture synthesis, for different ap-

proaches [Wei 2000, Urs 2013, Akl 2016]. To overcome these issues, a random scan order can be

employed during the synthesis process.

For a random scan order, there is no longer a justified reason behind using a causal pixel topo-

2The computation times given in this chapter correspond to MATLAB simulations, performed on a computer of pro-
cessor Core i7 (3.50 GHz).



4.4. Results 139

Tin Tin_quantified (20 centroids)

Tinit Tout

Tinit (zoom) Tout (zoom)

Figure 4.4: Example of a perfect LE LST field synthesis result. The original LST field Tin follows
a checkerboard arrangement of size 128 × 128. The checkerboard squares are of size 2. Tin_quantified
corresponds to the state space Λ of the ICM algorithm, quantified to 20 states. The synthesised LST
field of size 48 × 48 was obtained for a size 5 causal neighbourhood and raster scan order, after 3
iterations of the ICM relaxation algorithm. An 8 component multivariate Gaussian mixture model
is employed.

logy. In consequence, cross and square neighbourhood topologies for an inter-pixel distance equal

to 1 have been tested in this case.

The experimental synthesis results for the cross and square neighbourhood topologies are synt-



140 Chapter 4. Synthesising LST Fields with LE Models

Figure 4.5: Examples of LE LST field synthesis results reproducing the original structure with
artefacts. The results are obtained for causal neighbourhoods of size 5, raster scan order and less
than 10 iterations of the ICM algorithm. An 8 component multivariate Gaussian mixture model is
employed.

example 1
causal - size 3

example 2 example 3
causal - size 7

Figure 4.6: Examples of LE LST field synthesis results converging towards a structure different than
the original one. The results are obtained for causal neighbourhoods of two sizes, raster scan order
and less than 10 iterations of the ICM algorithm. An 8 component multivariate Gaussian mixture
model is employed.

K = 3 K = 4 K = 4

Figure 4.7: Examples of LE LST field synthesis results for a too small value of the number of
Gaussian mixture components, K. The results are obtained for a causal neighbourhood of size 5,
raster scan order and less than 10 iterations of the ICM algorithm.

hesised in the following. A size 3 square neighbourhood leads to unstructured results, a size 5 is

optimal and a size 7 already leads to unstable synthesis results (patterns different than the original

one, constant or unstructured outcomes). In contrast, for a cross neighbourhood topology, good and

relatively stable results are observed for a size ranging from 9 to 13. As the size of the neighbour-

hood increases, the relaxation algorithm takes longer to converge. In addition, it has been observed

that it is more difficult to break "bad patterns". More precisely, if most of the LST field is well
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square - size 5 square - size 7

cross - size 9 cross - size 13

Figure 4.8: Examples of LE LST field synthesis results illustrating region merging artefacts. The
results are obtained for random scan order and 100 iterations of the ICM algorithm. The results
correspond to square and cross neighbourhood topologies of different sizes, as indicated in the title
of each result. An 8 component multivariate Gaussian mixture model is employed.

synthesised, the small regions where patterns different than the original one have been synthesised

take longer to be corrected or sometimes they are not corrected at all. In contrast, for smaller neig-

hbourhoods, generally bad patterns are easily broken when the original pattern is synthesised over

more than 50% of the output LST field (it takes only a few iterations until the original pattern is

perfectly synthesised).

A cross neighbourhood topology associated to a random scan order provides a good compromise

between the size of the data and the synthesis results. When increasing the neighbourhood size from

p to p + 2, and encompassing, thus, structural information from a larger area, there is an increase in

the number of neighbours of only 4 points each time. In contrast, in the case of a square topology,

when increasing the size of the neighbourhood configuration from p to p + 1, 4p + 2 new positions

are added to the neighbouring topology. We remind here that adding a point to the neighbourhood,

corresponds to an order 3 increase in the size of the extended tensor (and, hence, in the dimension

of the observation space). Thus, increasing the size of a square neighbourhood topology can easily

lead to dimensionality problems and to stability issues during the statistical model estimation.

As opposed to the raster scan order when the ICM converges very fast (2−3 iterations), between
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50 iterations 100 iterations 150 iterations

200 iterations 250 iterations 300 iterations

Figure 4.9: LE LST field synthesis results obtained after different number of iterations (as indicated
on the title of each result) of the Metropolis SA algorithm. The results are obtained for a size 5
square neighbourhood topology and a random scan order. An 8 component multivariate Gaussian
mixture model is employed.

50 and 100 iterations are generally needed for the ICM algorithm to converge when a random scan

order is chosen. The computation time is of the order of few minutes, depending, naturally, on the

size of the chosen neighbourhood configuration (e.g. 1 minute for a size 5 square neighbourhood

and 50 iterations of the relaxation process).

In addition to higher computational time, there’s another disadvantage of the random scan order

associated with the ICM algorithms. In this case, the structure is synthesised by regions. Even if

the structure of the input LST field is well synthesised on different regions, often there is a problem

when merging two neighbouring regions. This phenomenon may occur, for instance, if the original

pattern is well synthesised over 2 neighbouring regions but there is a shift by one pixel between the 2

patterns. This issue arises more often in the case of a square neighbourhood topology. To overcome

this effect, a negative jump should be accepted for the relaxation algorithm for breaking the pattern

and merging the neighbouring regions. As ICM algorithm does not allow negative jumps, the relax-

ation process gets stuck in a local maxima and the fusion defect cannot be corrected. Some other

times, different patterns (original and parasite patterns) are synthesised over the different regions of

the LST field. This issues arises more often in the case of a cross neighbourhood topology. Some

examples of this kind are illustrated in Figure 4.8.
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Metropolis and Metropolis Simulated Annealing Algorithms

Metropolis and Metropolis simulated annealing relaxation algorithms converge generally to the

right solution and show stable behaviours for the parameter settings found as optimal, during the

ICM successive testing analysis (raster scan order with size 5 causal neighbourhood, random scan

order with size 5 square neighbourhood or size 9 to 13 cross neighbourhoods and 8 components in

the Gaussian mixture model).

In the case of raster scan order and causal neighbourhood topology of size 5, the experiments

showed that Metropolis algorithm needs generally over 200 iterations to converge. Metropolis SA

accelerates the relaxation process by means of the temperature coefficient. Iteratively decreasing the

temperature, the number of accepted bad trades is reduced over time and the algorithm converges

faster, in consequence. For a raster scan order and size 5 causal neighbourhood and a value of

the temperature coefficient equal to 0.99, Metropolis SA takes generally less than 100 iterations to

converge. However, it can sometimes take up to 400 iterations. The associated computation times

(including the learning and synthesis process) for 100 and 400 iteration of the relaxation algorithm

are ∼ 5 minutes and ∼ 9, respectively. A lower value of the temperature coefficient leads to a

faster convergence. However, as the solution exploration space is limited faster, the algorithm might

converge toward a local maxima.

For a random scan order and a size 5 square neighbourhood topology, Metropolis SA algorithm

takes generally between 300 and 400 iterations to converge (for a temperature coefficient equal to

0.99). The computation time for the learning and synthesis phase for 400 iterations of the relaxation

algorithm is around 15. The advantage of Metropolis or Metropolis SA relaxation algorithms is that

the region merging defects associated to a random scan order, previously observed in the case of the

ICM algorithm (examples illustrated in Figure 4.5), are overcome. As these relaxation algorithms

allow negative jumps, artefacts can be corrected. Synthesis results, at different phases of the Metro-

polis SA relaxation process are illustrated in Figure 4.9. It can be seen that for the first iterations

of the algorithm, the same region merging defects are noticed on the synthesised field, as in the

case of the ICM algorithm. However, as the relaxation process is reiterated, the merging artefacts

are corrected, until a perfect synthesis is achieved (after almost 300 iterations). While Metropo-

lis and Metropolis SA algorithms yield slightly better synthesis results, this comes at a quite high

computational cost.

For the monoscale toy example considered in this section, the best compromise between the

synthesis results and the computation time has been achieved by the ICM algorithm, with raster

scan order and a size 5 causal neighbourhood. The synthesis converges very fast, generally after less

than 5 iterations. The learning and synthesis phase for 10 iterations of the relaxation algorithm take

around 17 seconds. It yields relatively stable solutions, out of all repetitions of the algorithm, the

synthesis always led either to a perfect result, or to a partial reproduction of the original pattern with
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Tin Tin_quantified

Tinit Tout

Figure 4.10: Example of monoscale LE LST field synthesis. The original LST field Tin follows a
checkerboard arrangement of size 128× 128. The checkerboard squares are of size 8. Tin_quantified is
the state space Λ of the ICM algorithm, quantified to 20 states. The synthesised LST field is obtained
for raster scan order, causal neighbourhood of size 17, after 10 iterations of the ICM algorithm. An
8 component multivariate Gaussian mixture model is employed.

small artefacts. However, the raster scan order and causal neighbourhood topology propagate the

potential artefacts arising during the synthesis process. A random scan type overcomes this issue, but

the relaxation process takes longer to converge. In this case, artefacts might appear at the boundary

between two synthesised regions. These artefacts cannot be corrected by ICM. This is because the

ICM algorithm does not allow negative likelihood jumps and, in consequence, it often gets stuck

in local maxima. These issues are overcome by Metropolis and Metropolis SA that, by accepting

negative jumps in the likelihood, allow artefact correction. However, these advantages come at a

very high computational expense. The computation time goes from a few seconds (necessary in the

case of ICM), to several tens of minutes.

While the synthesis method becomes unstable for a wrong parametrisation (excessive size of the

neighbourhood, a too small value for the number of components of the Gaussian mixture model),

this toy example showed that the only deal breaker for a successful synthesis is a too small neig-

hbourhood topology. More precisely, a size 3 neighbourhood proved to be too small to capture the

structure of the input LE LST field, no matter the neighbourhood topology (causal, square or cross).
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Scale3 Scale2 Scale1
Tin_quantified

causal - size 5
Tout

causal - size 5 causal - size 5

causal - size 5 causal - size 5 causal - size 5

causal - size 5 causal - size 9 causal - size 5

Figure 4.11: Examples of 3 scale pyramidal based LE LST field synthesis with monoscale neighbourhoods.
The original LST field follows a checkerboard arrangement of size 128 × 128. The checkerboard squares
are of size 8. Tin_quantified is the state space Λ of the ICM algorithm, quantified to 20 for all scales. The
synthesised LST field at each scale is obtained for raster scan order, after 5 iterations of the ICM algorithm.
The neighbourhood topologies are given in the title of each result. A 6 component multivariate Gaussian
mixture model is employed at each level of the pyramid.

4.4.1.2 Multiscale Approach

If the size of the input LST field’s pattern increases, larger size neighbourhoods are necessary for a

successful synthesis. However, increasing the size of the neighbourhood does not only yield higher
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computational times, but may lead to statistical inference problems in response to the dimensionality

increase of the observation space. For analysing this case, a second test scenario is created where

the 2 populations of artificially generated structure tensors follow a checkerboard arrangement of

squares of size 8.

In this case, the size of the pattern in equal to 16. A natural choice would thus be a size 17

causal neighbourhood. ICM algorithm is employed, with raster scan order. The rectangular grid

of the input and output LST fields are of same size in this example, namely 128 × 128. The result

obtained after 10 iterations are displayed in Figure 4.10. Not only that the synthesis process does

not converge to the correct solution, but the computational time takes up to 19 minutes. A potential

reason of the unsuccessful synthesis stands in the high dimension of the observation space induced

by such a large neighbourhood. Considering the remarks made in Section 2.3.2.2 of Chapter 2, the

dimensionality problem combined with limited-size input LST fields, can lead to model estimation

issues that later manifest as the incapacity of synthesising the original pattern of the LST field.

The multiscale pyramidal synthesis approach based on monoscale neighbourhoods is tested as

well in this case. This allows to gradually build the structure of the LST field, starting from a degra-

ded resolution, up to the original one. In addition, when descending the pyramid levels, the synthesis

at each level is supported by the previously synthesised lower resolution result. The rectangular grids

of the input and output LST fields and the checkerboard squares associated to each scale of analysis

are of the following sizes:

• L3: 32 × 32 and 2 (lowest resolution);

• L2: 64 × 64 and 4;

• L1: 128 × 128 and 8 (highest resolution).

Some synthesis results obtained for a 3 level pyramidal approach are illustrated in Figure 4.11.

In a first case, a size 5 neighbourhood topology has been considered for all scales of analysis.

It should be noted that the LST field at L3 corresponds to the same 2 × 2 squares checkerboard

arrangement as in the example considered previously in Section 4.4.1.1. The experiments conducted

in the previous section showed that in most cases, when a size 5 causal neighbourhood is employed,

perfect synthesis results are achieved. However, in this case, most of the times the synthesis at L3 is

not perfect for a size 5 causal neighbourhood. This difference in results is explained by the size of

the input data on which the statistical model is estimated. In the previous case, the rectangular grid

of the input LST field is of size 128 × 128. Here, the LST filed at L3 is 16 times smaller, as a result

of the successive decimation applied when passing from high to low resolution pyramid levels. As a

result of the decrease of the input data sample size, the model on L3 is not estimated with a sufficient

accuracy for providing a good synthesis of the input pattern.

If during the synthesis process at L3 the original pattern is reproduced over most of the output

LST field (as is the case of the first line of results illustrated in Figure 4.11), the original pattern
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is perfectly reproduced up to the highest resolution. However, as the artefacts take more space

on the synthesised LST field at lowest resolution, the synthesis at the higher resolution levels is

compromised as well (see the second line of results illustrated in Figure 4.11). In such cases, if larger

neighbourhoods are employed at L2, the synthesis can be perfectly achieved, even when starting from

a poor synthesis result obtained at L3 (see the third line of results illustrated in Figure 4.11).

These results show that for a successful synthesis at the scale of origin, L1, the synthesis does

not need to converge to the correct pattern for all the lower-resolution scales. A smaller number of

iterations can be considered at these levels, as a result. Moreover, by relying on the lower resolution

synthesis result, smaller neighbourhoods than the actual size of the pattern can be employed, at most

pyramid levels, without decreasing the synthesis quality. This is the case for all the examples in

Figure 4.11, where a size 5 causal neighbourhood yields a perfect synthesis at scale 1, although the

pattern size is 16. A consequence of reducing the number of iterations and the neighbourhood’s

size is a significant computational gain obtained for the pyramidal approaches. While the monos-

cale synthesis illustrated in Figure 4.10 was unsuccessful and took over 19 minutes, the multiscale

synthesis illustrated in Figure 4.11 was successful and took less than 1 minute.

We emphasise here that the toy examples presented in this section illustrate very simple types

of LST fields. In addition to being composed of only 2 populations, they are highly regular and of

relatively small sizes. However, the LST fields of real textures are far more complex than that. The

actual number of LST populations composing the pattern is in general considerably superior to 2.

In addition, the spatial arrangement is more complex, less regular and composed of details defined

at several scales of analysis. Furthermore, the patterns are substantially larger, requiring larger

size neighbourhoods to be employed in order to fully describe the spatial arrangement of the input

LST field. Nevertheless, as the complexity increases, more iterations are needed for the relaxation

algorithms to converge, implying thus a higher computational time for each synthesis experiment. In

consequence, the successive testing procedure necessary for finding the optimal values of parameters

for one texture, becomes a burdensome task.

4.4.2 Real LST Fields

The synthesis of LE LST fields of two real textures is addressed in the following. A near-regular

texture composed of a relatively simple pattern is tested first. Second, an anisotropic texture, less

regular and composed of a more complex pattern is considered. Monoscale synthesis is tested, in

addition to multiscale pyramidal approaches based on monoscale and biscale LST statistical mo-

dels. For all approaches, ICM relaxation algorithm is employed and raster scan order associated to

different types of neighbourhoods (causal and non-causal).
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Input Texture

Tin Tin_quantified Tinit

causal - size 5

Synthesis Results

causal - size 7 causal - size 9

Figure 4.12: Examples of monoscale LE LST field synthesis of a Broadatz database texture extract.
Tin_quantified is the state space Λ of the ICM algorithm, quantified to 500 states. Different causal
neighbourhood topologies are employed (given in the title of each result). The output LST fields are
obtained for raster scan order, after 5 iterations of the ICM algorithm. An 8 component multivariate
Gaussian mixture model is employed.

4.4.2.1 First Example

The first real LST field synthesis is performed on a highly structured texture corresponding to a

200 × 200 size extract of a Brodatz database texture.

Monoscale Synthesis

Figure 4.12 shows different monoscale synthesis results for the input LST field computed on the

Brodatz database texture extract. The following parameter values have been considered for compu-

ting the LST field: σG = 1 and σT = 1. The results correspond to 5 iteration of the ICM algorithm.

A raster scan order and several causal neighbourhood topologies have been considered. More preci-
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Figure 4.13: Pyramidal synthesis approach with monoscale neighbourhoods of the LE LST field of
the Brodatz database texture extract illustrated in Figure 4.12. The values of the LST parameter σT

at the different scales of analysis going from L3 to L1 are:
√

3,
√

2, 1. Tin_quantified is the state space
Λ of the ICM algorithm, quantified to 500, 1000 and 2000 labels, respectively, for the pyramid levels
going from L3 to L1. The synthesised LST field at each scale is obtained for raster scan order, after
10 iterations of the ICM algorithm. Causal neighbourhoods have been employed: size 5, d = 1 (L3),
size 5, d = 2 (L2), size 9, d = 2 (L1). An 8 component multivariate Gaussian mixture model is
employed at each level of the pyramid.

sely, neighbourhoods of sizes ranging from 5 to 19 have been tested, for two values of the inter-pixel

distance, 1 and 2, respectively. Only the results corresponding to neighbourhood sizes going from 5

to 9 are illustrated here. A number of 8 components have been considered for the Gaussian mixture

model. Tin_quantified is the state space Λ of the ICM algorithm, quantified to 500 in this case.

For all the test scenarios considered, the monoscale LST field synthesis was unsuccessful. The

inability to synthesise at one scale of analysis can be explained by the fact that neighbourhoods

of sizes below the size of the textural pattern are too small and the texture cannot be correctly

characterised. On the other hand, if neighbourhoods of sufficient sizes are employed, the dimension
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Scale3

causal - size 5, d = 1

Scale2

cross - size 9, d = 1

Scale1

causal - size 9, d = 2

Figure 4.14: Representation of the output LE LST field for a 3 scale pyramidal based synthesis
approach with monoscale neighbourhoods. The same Brodatz database texture extract, input, and
quantified LST fields are employed as in the synthesis example illustrated in Figure 4.13. The
synthesised LST field at each scale is obtained for raster scan order, after 5 iterations of the ICM
algorithm. The neighbourhood topology for each scale is given in the title of each result. An 8
component multivariate Gaussian mixture model is employed at each level of the pyramid.

of the observation space becomes very large while the sample size diminishes, due to a larger border

effect. In consequence, the estimated statistical model may provide a poor characterisation of the

input LST field. These results highlight the difficulty of LST synthesis at the original scale of

analysis and the necessity of employing a multiscale approach, in the case of real textures.

Multiscale Synthesis with Monoscale Neighbourhoods

A pyramidal approach on 3 levels is further employed, with monoscale neighbourhoods. The best

two synthesis results obtained on this texture, as a result of successive testing are given in this

section.

The following parameter values have been considered when computing the multiscale input LST

field: σG = 1 and σT = 1,
√

2 and
√

3, respectively, for the analysis scales going from 1 to 3. The

rectangular grids of the input and output fields (displayed in Figure 4.13) are of equal sizes, of

following values, for the 3 levels of the pyramid:

• L3: 46 × 46;

• L2: 92 × 92;

• L1: 184 × 184.

For each level of the pyramid, a different number of centroids was considered for quantifying the

original state space, Λ, namely 2000, 1000 and 500 (from L1 to L3). As a higher resolution is

characterised by finer variations in the structural details, a larger set of labels was considered as a

more adapted choice in response to this richness of information.

The relaxation algorithm was iterated 10 times at each scale. Causal neighbourhood topologies

were considered. Successive testing was performed in order to find the optimal values for the para-
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meters. The experiments showed that a number of Gaussian mixture components above 6 should be

employed in this case. A multivariate Gaussian mixture model of 8 components has been employed

for characterising the LE LST field at each level of the pyramid.

The combination of neighbourhoods topologies that yields the best LST synthesis results in

this case is the following one:

• L3: causal size 5, d = 1;

• L2: causal size 5, d = 2;

• L1: causal size 9, d = 2.

where d represents the inter-pixel distance. For this parameter configuration, the LE LST synthesis

takes around 55 minutes to complete. However, similar synthesis results are obtained for 5 iterations

of the ICM algorithm. In this case, the computation time is reduced to approximately 28 minutes.

The LST field synthesis outcome that is closest in resemblance to its corresponding input LST

field is obtained at the lowest resolution scale of analysis, L3. For the second scale of analysis,

although the previously synthesised pattern is well conserved, little details specific to this scale are

added. This comes naturally, since the same neighbourhood is employed as for the previous scale,

with an inter-pixel distance equal to 2. However, for different neighbourhood sizes or different values

for the inter-pixel distance, the previously synthesised structural pattern is degraded. As for the

highest resolution pyramid level, L1, more details are added and smoother transitions are observed

between the structuring elements of the composing pattern. The synthesis outcome is similar to the

input LE LST field. However, the result is more regular than the input. In addition, while the global

pattern of the input field is well synthesised, local orientation variations that are visible on the input

LST field at L1 are not reproduced.

An extremely high sensitivity of the LST synthesis process to the neighbourhood topology has

been noticed. Not only the neighbourhood size has a critical impact on the synthesis result but the

value of the inter-pixel distance, as well. Actually, any slight modification with respect to the causal

neighbourhood topologies considered in the case illustrated in Figure 4.13, leads to unsuccessful

synthesis results.

The second best synthesis result is obtained when considering for the pyramid level L2 a non-

causal neighbourhood topology. It consists of a size 9 cross neighbourhood, with inter-pixel distance

equal to 1. For L1 and L2, the same neighbourhood topologies have been considered as in the

case that yields the best synthesis result. The results are illustrated in Figure 4.14. As opposed to

the previous example, since the inter-pixel distance equals one, more details specific to the second

scale of analysis are added during the synthesis process at L2. However, some local artefacts are

synthesised as well. The final synthesis result at L1 shows a higher level of regularity than the input

LST field at this level. In addition, an undulation is observed on the synthesised pattern. This is a

consequence of the artefacts synthesised at the lowest resolution level, L3. They consist of a few
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pixel shifts in the synthesised structure that show up as a stair-like effect (visible on the left-bottom

side of the LST orientation map). This artefact is propagated during the synthesis process from

L3 to L1. As L1 is characterised by smoother transitions between the structuring elements and in

response to the toroidal border management, the aforementioned artefacts appear as undulations on

the synthesised LE LST field at this scale.

4.4.2.2 Second Example

A second real texture has been chosen for testing the LE LST field synthesis. It consists of an

anisotropic texture of a carbonaceous material. It is characterised by lower level of regularity and

more complex pattern than the previous texture. The considered image is of size 256 × 256.

Multiscale Synthesis with Biscale Neighbourhoods

A 3 scale pyramidal approach based on modelling biscale LST fields has been employed. Biscale

neighbourhoods are considered in order to assign more weight to the previously synthesised low

resolution scales, during the synthesis process, since synthesising the correct structure gets more

difficult as the resolution increases. The following parameter values have been considered when

computing the multiscale input LST field: σG = 1 and σT = 2,
√

5,
√

6, for the scale of analysis

going from 1 to 3. The input and output LST fields are of equal sizes, at each level of the pyramid.

The size of their respective rectangular grids has the following values:

• L3: 59 × 59;

• L2: 117 × 117;

• L1: 234 × 234.

The original state space Λ is quantified to a different number of labels, for each level of the

pyramid. More precisely, 1000, 500 and 100 labels are considered for the scales ranging from 1

to 3. As in the case of the Brodatz texture and for the same considerations, broader state spaces

are considered as the resolution increases. The input texture and the original and quantified LE

LST fields at the 3 scales of analysis as well as the synthesis results are displayed in Figure 4.15.

ICM relaxation algorithm has been iterated 5 times. Different combinations for the neighbourhood

topologies have been tested. The neighbourhood topologies yielding the best LE LST synthesis

results are as follows:

• L3 - monoscale neighbourhood: causal size 9, d = 1;

• L2 - biscale neighbourhood: causal size 5, d = 1 (current scale) and square size 5, d = 1

(previously synthesised scale, L3);

• L1 - biscale neighbourhood: square size 3, d = 1 (current scale) and square size 5, d = 1

(previously synthesised scale, L2).
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Figure 4.15: Pyramidal synthesis approach with biscale neighbourhoods of the LE LST field of a carbon
material texture. The values of the LST parameter σT at the scales of analysis going from L3 to L1 are:√

6,
√

5, 2. Tin_quantified is the state space Λ of the ICM algorithm, quantified to 100, 500 and 1000 labels, for
the pyramid levels going from L3 to L1. The synthesised LST field at each scale is obtained for raster scan
order, after 5 iterations of ICM. The following neighbourhoods are considered: L3 - size 9 causal, L2 - size
5 causal, L1 - size 3 square and size 5 square (for the scales above L1 and L2). An 8 component multivariate
Gaussian mixture model is employed at each scale.

A mixture model of 8 multivariate Gaussian distributions has been employed for describing the

extended LST field at each pyramid level. The learning and synthesis phases, given the parameter

configuration, take around 21 minutes.
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Scale3

causal - size 9, d = 1

Scale2

causal - size 5, d = 1
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Figure 4.16: Two LST field synthesis results for a 3 scale pyramidal based synthesis approach with
monoscale neighbourhoods. The same material example texture, input, and quantified LST fields are
employed as in the synthesis example illustrated in Figure 4.15. The synthesised LST field at each
scale is obtained for raster scan order, after 5 iterations of the ICM algorithm. The neighbourhood
topology for each scale is given in the title of each result. An 8 component multivariate Gaussian
mixture model is employed at each level of the pyramid.

The synthesised field at the lowest resolution pyramid level, L3, is quite resemblant to its cor-

responding input LST field. As the resolution increases, it can be observed that the synthesised LE

LST field is enriched in details. While this aspect is well marked between the pyramid levels L3

and L2, it is less pronounced between L2 and L1. In addition to adding finer details as the resolution

increases, the structure defined at the lower resolution scale is well conserved, as en effect of the

constraint imposed by employing biscale neighbourhoods.

As in the case of the Brodatz texture previously employed, a significant sensibility of the synt-

hesis process to the size and shape of the neighbourhood has been noticed. For small variations in

the size or shape of one of the neighbourhood topologies employed, the synthesis process degrades.

The multiscale synthesis approach based on biscale neighbourhoods requires tuning not only one

neighbourhood topology per scale, but a neighbourhood topology for the previous lower resolution

scale as well, for all the pyramid levels from L1 to Ls−1. In consequence, finding the optimal combi-

nation of neighbourhood topologies is quite demanding. It should be noted as well that if the set of

values chosen for the σT parameter changes, the neighbourhood topologies yielding the best results

in the previous case are no longer optimal.
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Multiscale Synthesis with Monoscale Neighbourhoods

Figure 4.16 illustrates two synthesis results obtained for the same carbon texture, by applying a 3

scale pyramidal synthesis approach based on monoscale neighbourhoods. In the first case, at each

scale of analysis, the same neighbourhood topologies has been considered as before (neglecting

those defined for the previously synthesised scale). For this parametrisation, the LE LST synthesis

starts degrading at the second scale of analysis. A stronger degradation of the output LST field star-

ting from the second scale of analysis is observed for the second synthesis test, as well. In this case,

a size 9 causal neighbourhood topology is employed at all scales. The synthesis degradation gets to

the point that no structural component of the input LST field can be identified on the synthesised LE

LST field at the highest resolution pyramid level, L1.

The failure of multiscale approaches based on monoscale neighbourhoods to correctly synthe-

sise, in these cases, the LE LST field up to the highest resolution, shows the benefits of employing

biscale neighbourhoods. In this specific case, by employing biscale neighbourhoods, the correctly

synthesised low resolution structure of the LST field is propagated up to the highest resolution,

yielding, thus, a satisfying LE LST field synthesis result.

4.5 Conclusions and Future Work

In this chapter, the potential of the previously proposed LE statistical models has further been inves-

tigated for a task more complex than that of texture recognition. More precisely, their descriptive

capacities have been analysed in the context of LST field synthesis. All the proposed approaches

operate the synthesis on the LE space, but the output LE LST field can easily be mapped to the

original tensor space by applying the matrix exponential to every LE LST in the synthesised field.

Probabilistic and parametric LST synthesis methods have been proposed, relying on a Markovian

hypothesis. The synthesis is performed point by point, in an iterative manner. Several relaxation

algorithms have been employed to this purpose. They consist of a deterministic algorithm, ICM,

and of two stochastic algorithms, Metropolis and Metropolis SA, respectively.

Monoscale and multiscale pyramidal LST synthesis methods have been proposed as well. As

far as the multiscale approaches are concerned, two possibilities have been developed. For a first

multiscale approach, the synthesis at a given scale is based uniquely on the statistical models des-

cribing monoscale LST field spatial dependencies. For a second multiscale approach, the synthesis

at a given scale relies on statistical models describing biscale LST field spatial dependencies.

All approaches have been tested on a small set of LST fields, either artificially generated or

computed on real textures. Monoscale synthesis approaches worked well on the toy example com-

posed of very small and simple structuring elements. However, the tests performed on real textures

showed a significant difficulty to achieve the LST field synthesis at the scale of origin. This is be-

cause, generally, large neighbourhood topologies would be necessary for a correct characterisation

of the input pattern. This would lead to an increase in the dimension of the observation space. In
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addition, the size of the LST field on which the model needs to be estimated diminishes, since larger

neighbourhoods give rise to larger border effects. In consequence, the statistical models are difficult

to learn and the statistical inference process becomes unstable.

Multiscale approaches proved to be more adapted in these cases. In addition, for some textures,

multiscale LST field synthesis based on statistically modelling biscale LST fields proved to be more

adapted. By employing biscale models, more weight is assigned to the low resolution results that

gradually support the synthesis process up to the highest resolution. Thus, new details are added at

each level of the pyramid, while the previously synthesised structure is well preserved.

A main drawback of the proposed LST synthesis process is a very high sensitivity to the synthe-

sis parameters and in particular to the neighbourhood topologies employed. In addition, the values

chosen for the standard deviations of the Gaussian weighting kernels employed for computing the

LST fields at the different scales and the neighbourhood topologies are interconnected. In conse-

quence, for a given input texture, marginal changes on the LST field parameters will impact the

neighbourhood topologies that need to be employed for obtaining a successful LST synthesis.

Neighbourhood tuning in the case of monoscale approaches is a task relatively easy to achieve,

as the options are limited. However, this task becomes burdensome for multiscale models and even

more delicate when biscale neighbourhoods are employed since there’s a significant expansion in

the possible combinations between the neighbourhood topologies chosen at each scale. In addition

to neighbourhood tuning, the neighbourhood size can induce statistical inference issues. Monoscale

synthesis methods for LST fields of large structural patterns are in particular prone to this phenome-

non. In these situations large neighbourhoods should be employed that induce a significant increase

in the dimensionality of the data. In consequence, the size of the input LST field might not be suf-

ficient for an accurate estimation of the statistical model’s parameters. The synthesis outcome is

compromised as a result.

While the optimal neighbourhood topologies are particular to every texture and in some cases

can take serious amounts of testing to find, we are positive that for every texture there is a combina-

tion of parameters leading to a satisfying LE LST field synthesis. While the synthesis itself is not so

computationally expensive, finding the optimal set of parameters is.

The results obtained on both artificial and real texture LST fields show that the statistical models

characterisation capacities go beyond the limit of LST field discrimination and up to the potential of

LST field synthesis. While these first synthesis tests show promising results, the proposed methods

definitely need further work, on different levels.

First of all, the statistical inference should be investigated more deeply on more complex arti-

ficially generated data in order to better understand the connection between the dimensionality of

the input data and the size of the sample set that is necessary for an accurate estimation of the sta-

tistical model’s parameters. Secondly, in order to address the dimensionality issues, solutions for

reducing the dimensionality of the input data prior to model estimation can be imagined. In this

case, the potential redundancy in the data may be eliminated and the associated statistical inference
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issues may be solved, as a result. In addition, constraints can be imposed on the parameters of the

statistical models, in order to reduce the number of degrees of freedom, such as imposing that the

covariance matrix of the multivariate Gaussian model follows a particular pre-defined structure. In

consequence, the covariance matrix could be expressed in terms of fewer parameters.

Another interesting prospect consists in developing a probabilistic but non-parametric ap-

proach based on Parzen windowing [Silverman 1986], as previosly done by several authors

[Paget 1998, Urs 2013] in the case of texture synthesis. The method consists of assigning one Gaus-

sian of predefined parameters to each data point in the input LST field. However, since very large

sets of values would need to be tested during the synthesis process, this approach would be compu-

tationally expensive.





Conclusions and Future Work

"It always seems impossible until it’s done."

— Nelson Mandela, Former President of South Africa

In this work, parametric and probabilistic approaches for modelling LST fields computed on

textured images have been proposed. Since structure tensors are symmetric non-negative definite

matrices that belong to a Riemannian manifold, the classical tools of the Euclidean geometry are

not adapted for their characterisation. Two Riemannian statistical frameworks have been proposed

in this work for modelling and discriminating LST fields. The respective frameworks are based on

the AI and LE metric spaces.

On the AI space, a Riemannian Gaussian distribution is considered for modelling LST fields.

The distribution is defined by a matrix-form center of mass and by a scalar dispersion parameter.

Since the parameter estimates, in the sense of Maximum Likelihood Estimation method are not avai-

lable in closed form, recursive estimation algorithms need to be employed, resulting in significant

computational expenses. The LE mapping allows the representation of covariance matrices as vec-

tors in the matrix logarithm domain. On such a vector space, a multivariate Gaussian model can be

used for the description of LSTs. In this case, the parameter estimates are given in closed form. On

both AI and LE metric spaces mixture models have been considered as well, in order to enrich the

descriptive potential of the theoretical distributions. In these cases, the Expectation Maximization

method has been employed for estimating the parameters of the statistical models.

Jeffrey’s divergence has been considered as dissimilarity measure between statistical models. Its

expression is not available in closed form, except from the case of multivariate Gaussian distributi-

ons. Solutions for its approximations based on Monte Carlo sampling techniques have been given

for all the other cases.

Starting from equivalent values of the parameters, simulated covariance matrix sample sets have

been drawn from the AI and LE statistical models. The randomly generated sample sets have been

represented and analysed in order to evaluate and compare the descriptive potentials of the AI and

LE statistical models. Justified by a higher number of degrees of freedom for a same order of the

statistical model and confirmed by the experiments conducted on simulated data, the LE family of
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statistical models showed higher characterisation capacities than those of the AI ones.

The descriptive capacities of the AI and LE statistical models has further been evaluated by

analysing the fit of the theoretical distributions to empirical distributions of LSTs computed on

textured images. To this purpose, a texture selection has been made comprising a wide diversity of

textural patterns.

The methodology proposed on the AI metric space concerns the description of solely marginal

distributions of structure tensors. On the LE metric space, the methods have been extended to model

joint distributions allowing thus the characterisation of spatial and multiscale dependencies in an

LST field. The spatial dependency information is extracted by considering neighbourhoods of LSTs.

The multiscale information is expressed by LST fields computed for different values of the standard

deviation of the Gaussian weighting kernel. Three joint approaches have been developed, two for

modelling the spatial and multiscale dependencies alone and one for modelling them together.

Building extended structure tensors that encompass spatial and multiscale dependencies can ea-

sily be achieved. This task comes down to concatenating the three component vector-form LSTs

corresponding to each point in the neighbourhood configuration or corresponding to the same point

at the different scales of analysis. In contrast, statistically modelling empirical distributions of ex-

tended LSTs has proven to be a non-trivial task because of the significant increase in the dimension

of the observation space that results in instability issues of the statistical inference process.

Three approaches have been proposed for the LST based methods to address the rotation invari-

ance request that arises for a texture analysis method in many applications dealing with anisotropic

textures. Two methods are based on estimating a texture’s dominant orientation. However, since for

some textures, the notion of global orientation is rather ambiguous, an exhaustive search approach

has been proposed. It consists in searching the best orientation-wise match between the statistical

models characterising the LST fields of two textures.

Both statistical frameworks proposed for LST modelling have been evaluated in the context

of texture recognition. Two experimental frameworks have been developed, a content based image

retrieval and a supervised classification protocol. The experiments have been conducted on very high

resolution remote sensing images and on carbonaceous material images issued from high resolution

transmission electron microscopy technology. While most data are textured, the methods are tested

on non-textured data as well.

The experiments showed better classification performances for the LE statistical models over

the AI ones. Not only that the classification accuracy is higher, but the LE methods are significantly

faster. While on the AI metric space mixture models showed better recogition rates than one single

Riemannian Gaussian distribution, on the LE space, generally, one multivariate Gaussian model

yields the same retrieval rates as a mixture model. In addition, the algorithm is significantly faster

when a single LE Gaussian model is employed. Moreover, on the LE metric space, joint LST

distributions have also been modelled in order to describe the spatial dependencies in LST fields. The

gain in performance with respect to the methods modelling marginal LST distributions is minimal.
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The proposed methods have been compared against state of the art texture analysis methods

as well. In all the conducted experiments, the LE statistical modelling approaches outperformed

or yielded results of same order as the state of the art methods. In addition, the LST approaches

showed to be particularly adapted to discriminate between texture classes encompassing significant

differences in terms of anisotropy. In contrast, the state of the art methods showed to be less sensitive

to the anisotropy level. In addition, the methods proposed in this work showed a constant behaviour

on all datasets, as opposed to the methods used for comparison that, while performing well on some

datasets, showed significantly lower performances on some other databases. These experiments

proved as well the versatility of the LST statistical modelling based approaches that present a lower

bias to the nature of the analysed textured data. Furthermore, when tested on datasets containing

also non-textured data, the LST based methods outperformed all the other texture analysis methods

previously tested on the same database.

The experiments conducted on texture recognition confirmed as well the intrinsic ability of LST

based methods to handle rotation invariance, given the very high recognition rate obtained on the

database composed of anisotropic textures of random orientations. In contrast, most of the state of

the art methods provide a rather pseudo rotation invariance and in some cases, pre-processing of the

texture database needs to be done before applying the methods.

The potential of the proposed statistical models for LST characterisation has further been asses-

sed, beyond the original objective of texture recognition. More precisely, a Markovian hypothesis

based methodology has been developed on the LE statistical framework for LST field synthesis.

Monoscale and multiscale pyramidal synthesis approaches have been considered. Furthermore, two

methods have been proposed for the multiscale approach. For a first method, the synthesis at a

given scale of analysis is uniquely based on a statistical model characterising the LST field at the

respective scale. In the case of the second method, the synthesis at a given scale is based on a mo-

del estimated on biscale LST fields. In this way, the synthesis results at low resolution scales are

gradually supporting the synthesis process up to the original scale of analysis.

The first synthesis experiments performed on artificially generated LST fields showed that the

monoscale synthesis methods are well adapted to the case of LST fields composed of small size

structuring patterns. As the pattern size increases, larger neighbourhoods would be necessary to

be employed for an accurate characterisation. As the dimension of the data increases fast when

increasing the size of the neighbourhood configuration, large size neighbourhoods often lead to

statistical inference problems. When it comes to LST field computed on real textures, multiscale

synthesis approaches proved to be necessary, for all the textures considered in the experiments. For

a good tuning of the parameters, successful LST synthesis results have been obtained.

A main drawback of the proposed methodology for LST field synthesis consists of a strong

sensitivity to the synthesis parameters and in particular to the neighbourhood topologies employed.

If for monoscale synthesis, neighbourhood tuning can be relatively easily achieved, for multiscale

and especially for the approaches considering biscale neighbourhoods, finding the combination of
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neighbourhood topologies adapted to each texture can be a quite burdensome task. However, in

spite of these difficulties, we are positive that optimal parameter configurations leading to satisfying

synthesis results can be found for any texture.

The results obtained so far with the LST statistical modelling based approaches have opened the

way to some prospects for future work.

First of all, it can be interesting to explore more widely the choices of statistical models adapted

for LST characterisation. A possible development can consist in employing a generalized Gaussian

distribution for modelling LST fields on the LE metric space.

Another prospect consists in extending the LE LST to color. This can be achieved by conca-

tenating the LE vector form LST computed at a pixel with the color information available at the

respective pixel. In this way, the LE LST statistical modelling based approaches can be extended to

characterise color textures [Abdelghafour 2018].

Improvements of the LST synthesis methods proposed in this work can also be imagined on

several different levels. In a first step, a more thorough analysis can be conducted in order to eva-

luate the parameter estimation process when increasing the size of the observation space. Further

experiments on simulated data could be performed in order to assess the relationship between the

dimensionality of the observation space and the sample set size that would be necessary for a stable

estimation of the statistical model’s parameters.

A potential solution for avoiding the instability issues arising in large dimensional spaces con-

sists in reducing the dimension of the extended LSTs prior to model estimation. In this way, redun-

dancy in the data will be eliminated, too. Moreover, constraints could be imposed on the covariance

matrix of the multivariate Gaussian model. The number of degrees of freedom of the statistical

model may be reduced, as a result.

Probabilistic but non-parametric approaches based on Parzen windowing [Silverman 1986] can

be imagined as well for LST field synthesis. Such an approach relies on assigning one Gaussian

distribution of predefined parameters to every data point in the input LST field. While the statis-

tical inference issues arising in some cases for the LST methods proposed in this work would be

overcome, some other shortcomings would be faced. Since the input data would be characterised by

a very large mixture of Gaussian distributions, evaluating the local conditional probability density

function for each new label proposition made during the synthesis process would be quite computa-

tionally expensive.

Last but not least, the LST synthesis can be taken a step further and integrate its results in a

texture synthesis framework. More precisely, similar to a the non-parametric approach previoulsy

poposed in the litterature [Akl 2018], a parametric and probabilistic texture synthesis framework can

be imagined were the texture synthesis is constrained by the structure layer synthesised by the LST

field. To this purpose, a statistical model could be considered for characterising a texture’s intensity

values. Thus, new propositions for a pixel’s value would be accepted or rejected on a criterion

encompassing the structure tensor and intensity values likelihoods at that point.



Appendix A
Inter-class Diversity of VHR Remote

Sensing Databases

A.1 Oyster Field Textured Patches Database

In this section, several textured patches examples belonging to each class of the VHR remote sensing

oyster parks database are given (see Figure A.1). They are grouped in 3 classes: cultivated oyster

racks, abandoned oyster fields and foreshore. The textured patches given as example in Figure

A.1 illustrate the intra-class diversity specific to this database that is certainly challenging for the

classification.

Cultivated
oyster racks

Abandoned
oyster fields

Foreshore

Figure A.1: Examples of oyster field textured patches from all 3 classes.

The first class is composed of cultivated oyster racks of lengths varying from several tens to

a hundred meters. Several racks are generally organised together and the formed groups can be

displaced at different distances and orientations relative to one another. Some of the oyster racks

might be empty as well, all these aspects inducing a strong intra-class and even inter-patch diversity,
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as illustrated by the textured patches given as example in Figure A.1.

As far as the textural information is concerned, the first two classes are composed of structu-

red anisotropic patterns while the last class of foreshore is characterised by less structured textural

patterns. This class is also more homogeneous.
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A.2 Maritime Pine Forest Textured Patches Database

In Figure A.2 we illustrate several 256 × 256 textured patch extracts from each class of the VHR

remote sensing maritime pine forest stands database. The forest stands are grouped in 4 age classes:

0 − 9 years old, 10 − 19 years old, > 20 years old and a last class of clear cuts (0 years old).

For the first age class (0 − 9 years old), the tree ranks as well as the inter-rank forest floor and

understory are visible on the image, due to a small diameter of the crown size (1 m) - see Figure A.2.

For the second forest class, the tree ranks are still visible, although the crown diameter increases,

ranging from 1 to 3 m, resulting in a wider canopy. Thus, the textural content of this class is still

anisotropic.

When it comes to class 3, the tree ranks are no longer visible on the image as the tree crowns

are wider than 3 m. There is also a higher variety in terms of the density of population. Vegetation

wholes might appear in some areas as a result of thinning operations and natural phenomena, too

[Regniers 2014a]. In consequence, the textural pattern characterising this class is rather unstructured

and less anisotropic. In addition, this class is characterised by a higher lever of intra-class diversity.

Finally, the fourth class of clear cuts consists of soil images after having removed all trees.

However, some other small-size vegetation might still be visible on this areas. The textural pattern

of this class is mostly isotropic.

C1
(0−9) ye-
ars old

C2
(10 − 19)
years old

C3
(> 20)
years old

Clear cuts

Figure A.2: Examples of maritime pine forest textured patches from all 4 age classes.
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A.3 Land Use Land Cover Merced University Database

The UC Merced LULC database was formed by extracting homogeneous patches from USGS (Uni-

ted States Geological Survey) National Maps covering different US regions.

The database consists of both textured and non-textured LULC orthorectified aerial images grou-

ped in 21 classes. It is composed of RGB images. This dataset is characterised by a significantly

pronounced intra-class and inter-class diversity, as illustrated by the example patches of each class

given in Figure A.3.

Agricultural

Airplane

Baseball
diamond

Beach

Buildings

Chaparral

Dense
residential
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Mobile
homepark

Overpass
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Parkinglot

River

Runway

Sparse
residential

Storagetanks

Tenniscourt

Figure A.3: Examples of UC Merced LULC patches from all 21 aerial image classes.



Appendix B
Original Snapshots of HRTEM

Carbonaceous Material

In this appendix we present the original HRTEM snapshots used for extracting the texture patches

in the carbonaceous material database. Each snapshot of size 2048 × 2048 represents a different

material and is used for extracting all the texture patches of a given class.

(a) PAN based carbon fiber
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(b) regenerated laminar PyC
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(c) rough laminar PyC
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(d) smooth laminar PyC

Figure B.1: Original HRTEM snapshots of the 4 different types of carbonaceous materials



Appendix C
EM algorithm - Riemannian Gaussian

Mixture Model

Let us consider a mixture model of K Riemannian Gaussian distributions of probability density

function equal to the weighted sum of the probability densities of the K individual Riemannian

Gaussian models, as given below:

p(Y|(ωk,Mk, σk)k=1,...,K) =

K∑
k=1

ωk p(Y|Mk, σk). (C.1)

The mixture model’s parameters are: the centers of mass Mk, the dispersions σk and the weights

ωk > 0, of sum equal to one, associated to each distribution k, k = 1, ...K in the mixture model.

Let Pm be the space of all m × m real matrices that are symmetric and strictly positive definite.

Given a data set Y = {Y1, ...YN}, with Yn ∈ Pm, n = 1, ...N, drawn from a Riemannian Gaus-

sian mixture model, the parameters are estimated by employing an adaptation of the Expectation-

Maximization (EM) algorithm to the Riemannian geometry of the space Pm, proposed by Said et al.

in [Said 2017] and applied in [Rosu 2015a]. EM is an iterative algorithm that consists of two steps,

the expectation step where for each data Yn in the set, with n = 1, ...N, a responsibility score denoted

by γk(Yn) is assigned to each distribution k, k = 1, ...K in the mixture model. This score indicates

how much the Riemannian Gaussian distribution k is "responsible" for generating the data Yn. It is

computed as the likelihood of the data sample Yn to the k-th Gaussian distribution divided by the

sum of the likelihoods of Yn to all the K distributions in the mixture model. At the i-th iteration of

the EM algorithm is holds:

γi
k(Yn) =

ω̂(i−1)
k p̂(Yn|M̂(i−1)

k , σ̂(i−1)
k )∑K

j=1 ω̂
(i−1)
j p̂(Yn|M̂(i−1)

j , σ̂(i−1)
j )

. (C.2)

The maximisation step of the EM algorithm follows, where the values of the estimates are re-

computed given the scores obtained in the previous step. Thus, the parameters estimates of the
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component k, k = 1, ...K of the Riemannian Gaussian mixture model at iteration i are given by

[Said 2017]:

M̂i
k = arg min

M

N∑
n=1

γi
kd2(M,Yn) (C.3)

where d(.) stands for the geodesic distance defined in equation 1.17 of Chapter 1;

σ̂i
k = Φ

N−1
k ×

N∑
n=1

γi
k(Yn)d2(M̂i

k,Yn)

 ,where Nk =

N∑
n=1

γi
k(Yn) (C.4)

and Φ stands for the inverse function of σ→ σ3 ×
d

dσ
log Z(σ). For more details, see [Said 2017];

ω̂i
k =

Nk

N
. (C.5)

These steps are reiterated until a given convergence criterion or a number of maximum iterations

is attained. The steps of the EM method for the estimation of the parameters of a Riemannian

Gaussian mixture model are given in the Algorithm 4.

Algorithm 4 Expectation-Maximisation algorithm for a Riemannian Gaussian mixture model
Input: Y1, ...YN ,K,Niter
Output: M̂k, σ̂k, ω̂k, k = 1, ...K
Begin

1: for k = 1 : K do
2: Initialise ωk with

1
K

3: Initialise Mk with a random data sample from the input set Y1, ...YN

4: Initialise σk according to equation C.4, for Nk = N and γk(Yn) = 1
5: end for
6: iter = 1
7: while (iter <= Niter) or (no convergence) do
8: for k = 1 : K do
9: Estimate M̂k according to equation C.3

10: Estimate σ̂k according to equation C.4
11: Estimate ω̂k according to equation C.5
12: iter = iter + 1;
13: end for
14: end while
End



Appendix D
EM algorithm - Multivariate Gaussian

Mixture Model

Let us consider a mixture model of K multivariate Gaussian distributions of probability density

function equal to the weighted sum of the probability densities of the K multivariate Gaussian mo-

dels, as given below:

p(YLE|ωk,µk,Σk)k=1,...,K =

K∑
k=1

ωk p(YLE|µk,Σk). (D.1)

The mixture model’s parameters are: the means µk and the covariance matrices Σk of the K multi-

variate Gaussian distributions and the set of mixture weights ωk > 0, associated to each distribution,

with
∑K

k=1 ωk = 1.

Given a data set YLE = {YLE1 , ...YLEN }, drawn from a multivariate Gaussian mixture mo-

del of size D, the parameters are estimated using the Expectation-Maximization (EM) algorithm

[Blume 2002]. This algorithm consists of two steps, the expectation step where for each data YLEn

in the set, with n = 1, ...N, a responsibility score denoted by γk(YLEn) is assigned to each distribu-

tion k, k = 1, ...K in the mixture model. This score indicates how much the multivariate Gaussian

k is "responsible" for generating the data YLEn . It is computed as the likelihood of the data sample

YLEn to the k-th Gaussian distribution divided by the sum of the likelihoods of YLEn to all the K

distributions in the mixture model. At the iteration i of the EM algorithm it holds:

γi
k(YLEn) =

ω̂(i−1)
k p̂(YLEn |µ̂

(i−1)
k , Σ̂(i−1)

k )∑K
j=1 ω̂

(i−1)
j p̂(YLEn |µ̂

(i−1)
j , Σ̂(i−1)

j )
. (D.2)

The maximisation step of the EM algorithm follows, where the values of the estimates are re-

computed given the scores obtained in the previous step. Thus, the parameter estimates of the
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component k, k = 1, ...K of the multivariate Gaussian mixture model at iteration i are given by:

µ̂i
k =

1
Nk

N∑
n=1

γi
k(YLEn)YLEn , where Nk =

N∑
n=1

γi
k(YLEn) (D.3)

Σ̂i
k =

1
Nk

N∑
n=1

γi
k(YLEn)(YLEn − µ̂

i
k)(YLEn − µ̂

i
k)† (D.4)

ω̂i
k =

Nk

N
. (D.5)

These steps are reiterated until a given convergence criterion or a number of maximum iterations

is attained. The steps of the EM method for the estimation of the parameters of a multivariate

Gaussian mixture model are given in the Algorithm 5.

Algorithm 5 Expectation-Maximisation algorithm for a multivariate Gaussian mixture model
Input: YLE1 , ...YLEN ,K,Niter
Output: µ̂k, Σ̂k, ω̂k, k = 1, ...K
Begin

1: for k = 1 : K do
2: Initialise ωk with

1
K

3: Initialise µk with a random data sample from the input set YLE1 , ...YLEN

4: Initialise Σk according to equation D.4, for Nk = N and γk(YLEn) = 1
5: end for
6: iter = 1
7: while (iter <= Niter) or (no convergence) do
8: for k = 1 : K do
9: Estimate µ̂k according to equation D.3

10: Estimate Σ̂k according to equation D.4
11: Estimate ω̂k according to equation D.5
12: end for
13: iter = iter + 1
14: end while
End



Appendix E
LST Multiscale Pyramid Computation

The multiscale pyramidal approaches proposed in this work rely on building a pyramid of LST fields

computed at s scales of analysis. The lowest level of the pyramid, L1, is associated to the highest

resolution, namely to high frequency information (fine structural details). The highest pyramid level,

Ls, corresponds to the lowest resolution, namely to low frequency information (macro structural

information).

An LST field per scale of analysis is computed. This is achieved by fixing a value for the

standard deviation of the Gaussian derivative kernel σG and tuning the standard deviation of the

Gaussian weighting kernel σT for each of the s scales, with σT1 < σT2 ... < σTs . Then, when

passing from a level Li to a level Li+1, i = 1, ..., s − 1, a decimation by a factor of 2 is applied in

each dimension of the rectangular grid defining the sites of the LE LST field. Thus, at every level

transition the number of points on the rectangular grid is reduced by 4.

When it comes to the LST computation at the different scales of analysis, we consider the fol-

lowing principles. A value σT1 adapted to the size of the textural pattern is chosen for the highest

resolution level, L1. Then, when passing to a lower resolution pyramid level, a new convolution

is applied with a Gaussian weighting kernel of standard deviation α. Thus, for each pyramid level

transition, a weighting kernel of constant standard deviation is applied. Let W1(0, σT1) and Wα(0, α)

be two 0-mean Gaussian weighting kernels corresponding to the first level of the pyramid and to

a pyramid level transition, respectively. Thus, the Gaussian weighting kernel corresponding to the

second pyramid level is given by:

W2 = W1 ∗Wα (E.1)

where ∗ stands for the convolution operator. Then, the following relation holds:

σ2
2 = σ2

T1
+ α2. (E.2)

with σ2 being the standard deviation of W2.

Generalizing the previous relation, the standard deviation of the Gaussian weighting kernel ap-
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plied at a level i, i = 1, ...s of the pyramid is given by:

σi =

√
σ2

T1
+ (i − 1)α2. (E.3)

Hence, in practice, instead of applying successive convolutions, one single convolution is applied at

each pyramid level with a weighting kernel of standard deviation computed according to equation

(E.3).

The value of the pyramid level transition standard deviation α induces the degree of resolution

loss when passing from one pyramid level to the next one. In this work, a value of 1 has been

chosen for the α parameter so that, for each pyramid level transition the structure tensor at a point

is computed by considering mainly the information at the 8 neighbouring pixels, following a similar

principle as the Laplacian pyramid approach [Burt 1987].
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Parametric Approaches for Modelling Local Structure Tensor Fields with
Applications to Texture Analysis

Abstract: This thesis proposes and evaluates parametric frameworks for modelling local struc-
ture tensor (LST) fields computed on textured images.

A texture’s underlying geometry is described in terms of orientation and anisotropy, estimated
in each pixel by the LST. Defined as symmetric non-negative definite matrices, LSTs cannot be
handled using the classical tools of Euclidean geometry. In this work, two complete Riemannian
statistical frameworks are investigated to address the representation of symmetric positive definite
matrices. They rely on the affine-invariant (AI) and log-Euclidean (LE) metric spaces. For each fra-
mework, a Gaussian distribution and its corresponding mixture models are considered for statistical
modelling. Solutions for parameter estimation are provided and parametric dissimilarity measures
between statistical models are proposed as well.

The proposed statistical frameworks are first considered for characterising LST fields computed
on textured images. Both AI and LE models are first employed to handle marginal LST distributions.
Then, LE models are extended to describe joint LST distributions with the purpose of characterising
both spatial and multiscale dependencies. The theoretical models’ fit to empirical LST distributions
is experimentally assessed for a texture set composed of a large diversity of patterns.

The descriptive potential of the proposed statistical models are then assessed in two applications.
A first application consists of texture recognition. It deals with very high resolution remote

sensing images and carbonaceous material images issued from high resolution transmission electron
microscopy technology. The LST statistical modelling based approaches for texture characterisation
outperform, in most cases, the state of the art methods. Competitive texture classification perfor-
mances are obtained when modelling marginal LST distributions on both AI and LE metric spaces.
When modelling joint LST distributions, a slight gain in performance is obtained with respect to the
case when marginal distributions are modelled. In addition, the LST based methods’ intrinsic ability
to address the rotation invariance prerequisite that arises in many classification tasks dealing with
anisotropic textures is experimentally validated as well. In contrast, state of the art methods achieve
a rather pseudo rotation invariance.

A second application concerns LST field synthesis. To this purpose, monoscale and multiscale
pyramidal approaches relying on a Markovian hypothesis are developed. Experiments are carried out
on toy LST field examples and on real texture LST fields. The successful synthesis results obtained
when optimal parameter configurations are employed, are a proof of the real descriptive potential of
the proposed statistical models. However, the experiments have also shown a high sensitivity to the
parameters’ choice, that may be due to statistical inference limitations in high dimensional spaces.
Keywords: local structure tensor, non-Euclidean metrics, covariance matrix statistical models,
texture analysis, texture classification, Markov Random Fields, synthesis.
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Approches Paramétriques pour la Modélisation de Champs de Tenseurs de Structure
Locaux et Applications en Analyse de Texture

Résumé: Cette thèse porte sur des canevas méthodologiques paramétriques pour la modélisa-
tion de champs de tenseurs de structure locaux (TSL) calculés sur des images texturées.

Estimé en chaque pixel, le tenseur de structure permet la caractérisation de la géométrie d’une
image texturée à travers des mesures d’orientation et d’anisotropie locales. Matrices symétriques
semi-définies positives, les tenseurs de structure ne peuvent pas être manipulés avec les outils clas-
siques de la géométrie euclidienne. Deux canevas statistiques riemanniens, reposant respectivement
sur les espaces métriques affine invariant (AI) et log-euclidien (LE), sont étudiés pour leur représen-
tation. Dans chaque cas, un modèle de distribution gaussienne et de mélange associé sont considérés
pour une analyse statistique. Des algorithmes d’estimation de leurs paramètres sont proposés ainsi
qu’une mesure de dissimilarité.

Les modèles statistiques proposés sont tout d’abord considérés pour décrire des champs de TSL
calculés sur des images texturées. Les modèles AI et LE sont utilisés pour décrire des distributions
marginales de TSL tandis que les modèles LE sont étendus afin de décrire des distributions jointes
de TSL et de caractériser des dépendances spatiales et multi-échelles. L’ajustement des modèles
théoriques aux distributions empiriques de TSL est évalué de manière expérimentale sur un ensemble
de textures composées d’un spectre assez large de motifs structuraux.

Les capacités descriptives des modèles statistiques proposés sont ensuite éprouvées à travers
deux applications.

Une première application concerne la reconnaissance de texture sur des images de télédétection
très haute résolution et sur des images de matériaux carbonés issues de la microscopie électronique
à transmission haute résolution. Dans la plupart des cas, les performances des approches proposées
sont supérieures à celles obtenues par les méthodes de l’état de l’art. Sur l’espace LE, les modèles
joints pour la caractérisation des dépendances spatiales au sein d’un champ de TSL améliorent légè-
rement les résultats des modèles opérant uniquement sur les distributions marginales. La capacité
intrinsèque des méthodes basées sur le tenseur de structure à prendre en considération l’invariance à
la rotation, requise dans beaucoup d’applications portant sur des textures anisotropes, est également
démontrée de manière expérimentale.

Une deuxième application concerne la synthèse de champs de TSL. A cet effet, des approches
mono-échelle ainsi que des approches pyramidales multi-échelles respectant une hypothèse marko-
vienne sont proposées. Les expériences sont effectuées à la fois sur des champs de TSL simulés
et sur des champs de TSL calculés sur des textures réelles. Efficientes dans quelques configurati-
ons et démontrant d’un potentiel réel de description des modèles proposés, les expériences menées
montrent également une grande sensibilité aux choix des paramètres qui peut s’expliquer par des
instabilités d’estimation sur des espaces de grande dimension.

Mots clés : tenseur de structure local, métriques non-Euclidiennes, modèles statistiques
de matrices de covariance, analyse de texture, classification de texture, champ aléatoire de
Markov, synthèse
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