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Résumé en français

Remark: The thesis is written in english, this part is dedicated for a small summary in
french.

Remarque: La thèse est rédigée en anglais, cette partie est dédiée à un petit résumé en
français.

Nous allons présenter brievement le contexte, la motivation, l’état de l’art et les contribu-
tions de cette thèse. L’organisation de cette thèse est également présentée, qui introduit le
contenu et les contributions de chaque chapitre.

Contexte et motivations

L’estimation d’état joue un rôle très important dans le contrôle, le diagnostic et la supervision
des systèmes dynamiques. Dans de nombreux cas, l’état n’est pas complètement mesurable et
/ ou les capteurs sont très coûteux. Nous devons donc l’estimer en utilisant des observateurs
d’état. Le rôle de l’observateur est de fournir une estimation de l’état en utilisant les mesures
disponibles (mesures de sortie et d’entrée) et de fournir un modèle mathématique du système.

L’observateur d’état des systèmes linéaires a été introduit pour la première fois par [Kal60].
On peut distinguer deux types d’approches d’estimation:

1. Les approches stochastiques [Kal60], [Lue71] Ces approches supposent que les per-
turbations et les bruits de mesure ont une distribution explicite (distribution générale-
ment gaussienne), le problème de l’estimation est résolu en minimisant la variance de
l’erreur d’estimation. Pour les systèmes linéaires, des bornes stochastiques raisonnables
pour l’erreur d’estimation peuvent être obtenues si l’observateur fonctionne correcte-
ment, c’est-à-dire en fournissant des erreurs d’estimation moyenne et blanche et en
fournissant des covariances d’innovation compatibles avec les innovations. Sinon, pour
les systèmes non linéaires et / ou dans les cas où les observateurs ne respectent pas la
cohérence de la covariance d’innovation, les bornes ne sont pas utiles dans la pratique.

Les approches stochastiques sont utilisées dans divers domaines (contrôle [Bat08],
économie et environnement [May82], biologie [UW11] ... etc).

2. Les approches déterministes [Sch68] Dans plusieurs applications, il est plus naturel
de supposer que les perturbations et les bruits de mesure sont inconnus mais bornés,
qu’aucune information statistique sur des variables incertaines n’est requise, la seule
hypothèse est que le bruit de perturbation et de mesure est inconnu mais appartient
à un ensemble connu. Dans ce contexte, les approches d’estimation ensemblistes ont
été introduites [Sch68], [Wis68], [DPBO03], [Fog79]. Dans ces approches, l’idée est de

1



2 Résumé en français

construire un ensemble compact comprenant de manière garantie tous les états possibles
compatibles avec le modèle, les incertitudes, les mesures et les perturbations bornées et
les bruits de mesure [MMW96], [AGV99].

Dans cette thèse, nous nous intéressons au second type d’approches qui sont les approches
déterministes. Nous proposons ici de nouvelles approches ensemblistes pour l’estimation
d’état, dans lesquelles des ensembles invariants et l’analyse d’intervalle sont utilisés pour
calculer les bornes de l’erreur d’estimation et prendre en compte les bornes des incertitudes.

Dans la littérature, nous pouvons trouver plusieurs approches pour résoudre le prob-
lème d’encadrement d’état. D’une part, i) les techniques d’observateur intervalle basées
sur la théorie du système coopératif. D’autre part, ii) les observateurs basé sur la théorie
des ensembles. Pour implémenter des approches d’estimation d’état ensemblistes, différentes
formes d’ensembles sont utilisées:les ellipsoïdes [DWP01], [KV96], [Pol+04], les parallélotopes
[CGZ96] , les zonotopes [Com03], [Le+13], [Le+12], les intervalles [Moo66], [Jau+01] ... etc.

L’encadrement d’état à l’aide d’ellipsoïdes a été proposée à la fin des années 1960 [Sch68],
[DPBO03], [Wis68]. L’application des ensembles ellipsoïdaux aux problèmes d’estimation de
l’état a été étudiée dans [KV96], [DWP01], [Pol+04], [DKV06] [DK12]. Ces approches sont
basées sur la prédiction / correction des ensembles. L’idée de base ici est de calculer des
ensembles ellipsoïdaux garantis contenant le vecteur à estimer en fonction des bornes sur les
perturbations et le bruit, le but est de minimiser, à chaque itération, la taille de l’ensemble
ellipsoïdal d’estimation. Il existe dans la littérature différent critères de minimisation: le pre-
mier critère est la minimisation du déterminant de la matrice de forme de l’ellipsoïde [DWP01]
ce qui équivaut à la minimisation du volume de l’ensemble ellipsoïdal, le second critère est la
minimisation de la trace de la matrice de forme de l’ellipsoïde [DWP01] qui équivaut à la min-
imisation de la somme des carrés des demi-longueurs des axes de l’ellipsoïde. Troisièmement,
dans [Ben+14a] les auteurs ont proposé une approche basée sur la minimisation du rayon de
l’estimation ellipsoïdale en considérant une matrice de gain constant obtenue en résolvant un
problème d’inégalité linéaire matriciel ( textbf LMI) , alors ce gain est mis à jour en ligne à
chaque itération en résolvant un problème d’optimisation LMI à chaque itération. La résolu-
tion de la LMI à chaque itération conduit à augmenter le temps de calcul en ligne, les auteurs
ont également proposé une technique de mise à l’échelle afin de réduire le temps de calcul
en ligne tout en conservant une précision acceptable de l’estimation d’état. Les ensembles
ellipsoïdaux sont souvent utilisés car, mathématiquement parlant, ils sont faciles à manipuler
donc la simplicité de la formulation. Pour obtenir des ellipsoïdes contenant l’état de manière
précise, il faut minimiser la taille des ellipsoïdes. Le processus de minimisation peut conduire
à de très gros ellipsoïdes correspondant à de très grandes incertitudes dans certains états, ce
qui conduit à une perte de précision.

L’utilisation des parallélotopes a été proposée par [CGZ96] et [CAGZ98], les auteurs ont
abordé ici le problème de l’estimation récursif de l’état basé sur les parallélotopes en min-
imisant le volume.

Les zonotopes ont été introduits par [She74], [Mon89]. L’estimation d’état à l’aide de



Résumé en français 3

zonotopes a été proposée par [PQE02] et [Com03]. Dans la littérature, il existe différentes
méthodes pour minimiser la taille de l’estimation zonotopique: dans [Com03] une décompo-
sition en valeur singulière est utilisée pour ajouter une étape de correction afin d’obtenir une
approximation externe zonotopique cohérente avec la trajectoire incertaine et mesurée . Alors
que [ABC05] présentait une autre méthode basée sur la minimisation des segments et du vol-
ume du zonotope, cette méthode est plus rapide mais conduit à une perte de précision par
rapport à la minimisation du volume de zonotope. dans cite Le: 13, les auteurs ont proposé
une estimation d’état zonotopique basée sur la minimisation d’un critère basé sur le rayon P
afin de diminuer la taille du zonotope à chaque temps d’échantillon. Récemment, ont proposé
un filtre de Kalman zonotopique (ZKF) qui calcule des ensembles zonotopiques minimaux
renfermant tous les états admissibles en minimisant une norme de matrice servant de critère
de taille de zonotope appelé F-rayon. Les liens explicites entre l’appartenance à l’ensemble et
les paradigmes stochastiques pour le filtrage de Kalman sont donnés.

Dans [Ben+14b], les auteurs ont présenté une méthode d’estimation d’appartenance à
un ensemble (prédiction / correction) combinant des zonotopes et des ellipsoïdes. L’approche
proposée commence par une approximation zonotopique et se poursuit avec une approximation
ellipsoïdale; cela permet de gérer le compromis entre la précision de l’estimation zonotopique et
la complexité réduite de l’estimation ellipsoïdale, un critère basé sur le P-rayon d’un zonotope
est proposé pour effectuer la transition de l’estimation zonotopique à l’estimation ellipsoïdale.

L’analyse par intervalles est également utilisée dans les travaux de Jaulin02 et [KW02]
pour synthétiser un intervalle d’observateurs d’état. Un certain nombre de résultats ont été
présentés dans [RRC04], [JLGHS00], [MR11], [Com], [MDN13], pour améliorer la précision
de la méthode, des techniques de consistance ont été considérées (approche prédiction / cor-
rection) en étudiant la consistance entre le domaine atteignable de la sortie réelle et celui
de la sortie du modèle [KW02], [RRC04], [MRC10]. Dans [TRZ12], les auteurs ont pro-
posé une approche intéressante pour concevoir des observateurs intervalles pour des systèmes
linéaires discrets où le gain de l’observateur est calculé de telle sorte que la matrice d’état de
l’observateur intervalle proposé soit stable et non négative. est restrictive dans la pratique, en
ce sens que l’observabilité du système ne garantit pas l’existence d’un tel gain d’observateur.
dans [Che+13], les auteurs ont proposé un observateur intervalle basé sur la transformation
de similarité qui relie une matrice à sa représentation non négative assurant la positivité de
l’erreur d’estimation, le gain correspondant pouvant être une solution d’une LMI formulée. Un
inconvénient des observateurs basés sur l’intervalle est le conservatisme dû aux phénomènes
de dépendance et à l’effet d’enveloppement.

Les méthodes mentionnées ci-dessus sont des approches en-ligne et traitent le problème
d’estimation ensembliste d’état en présence de perturbations inconnues mais bornées et de
bruit de mesure borné. Dans ce type d’approches, on caractérise à chaque instant l’ensemble
garanti contenant tous les états compatibles avec les incertitudes du modèle, la mesure et
les perturbations bornées et les bruits de mesure. La plupart de ces approches sont basées
sur la prédiction / correction, c’est-à-dire à chaque itération, on calcule l’ensemble prédit et
on prend en compte la mise à jour de la mesure. tous les états possibles consistantes avec
le modèle, les incertitudes, la mesure et les perturbations bornées et les bruits de mesure,
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cela peut conduire à une augmentation significative du temps de calcul, d’où la nécessité de
plus en plus de supports de stockage mémoire et il y a certains critères (volume, segments
... etc) a minimisé en ligne à chaque itération, cette minimisation nécessite la résolution des
problèmes d’optimisation et des inégalités matricielles, ceci peut augmenter la complexité de
ces approches.

Contributions de la thèse

Dans ce travail, nous proposons deux nouvelles approches ensemblistes pour l’estimation d’état
basées sur la caractérisation explicite des bornes d’erreur d’estimation. Ces approches peuvent
être vues comme la combinaison entre un observateur ponctuel et une caractérisation ensem-
bliste de l’erreur d’estimation. L’objectif est de réduire la complexité de leur implémentation,
de réduire le temps de calcul en temps réel et d’améliorer la précision et des encadrements des
vecteurs d’état.
La première approche propose un observateur ensembliste basé sur des ensembles invariants el-
lipsoïdaux pour des systèmes linéaires à temps-discret et aussi des systèmes à paramètres vari-
ables. L’approche proposée fournit un intervalle d’état déterministe qui est construit comme
une somme entre le vecteur état estimé du système et les bornes de l’erreur d’estimation.
L’avantage de cette approche est qu’elle ne nécessite pas la propagation des ensemble d’état
dans le temps.
La deuxième approche est une version intervalle de l’observateur d’état de Luenberger, pour
les systèmes linéaires incertains à temps-discret, basés sur le calcul d’intervalle et les ensem-
bles invariants. Ici, le problème d’estimation ensembliste est considéré comme un problème
d’estimation d’état ponctuel couplé à une caractérisation intervalle de l’erreur d’estimation.

Organisation de la thèse

Dans cette section, une brève description des principaux chapitres de la thèse est donnée avec
les points importants s sur les principales contributions:

• Le premier chapitre présente les notions de base et les principes de l’analyse par inter-
valles et des ensembles invariants et leur importance dans la description des incertitudes.
Il commence par quelques définitions et propriétés relatives aux intervalles. Après cela,
les opérations sur des intervalles sont expliquées afin de se familiariser avec l’arithmétique
d’intervalles. Une section est dédiée à l’explication du pessimisme que l’on peut rencon-
trer lors de la manipulation des intervalles dus aux phénomènes de dépendance et à l’effet
d’enveloppement. La dernière partie du premier chapitre est consacrée à l’introduction
de la notion d’ensemble invariant minimale et fournit un algorithme permettant de cal-
culer les approximations de minimal invariant Robuste Positive Invariant ( textbf mRPI)
pour le système linéaire. L’algorithme est basé sur le calcul d’ensembles invariants en
utilisant le lemme réel borné ( textbf BRL) et une nouvelle procédure de réduction.
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• Dans le deuxième chapitre, la première contribution est présentée, qui est une nou-
velle méthode pour concevoir des observateurs ensembliste pour des systèmes linéaires
discrets basés sur des ensembles ellipsoïdaux robuste positive invariants ( textbf RPI).
L’observateur proposé fournit les bornes de toutes les trajectoires d’état possibles. La
conception de l’observateur est basée sur le calcul d’un observateur H∞ à l’aide d’LMI
et d’une formulation BRL modifiée.

• Dans le troisième chapitre, nous présenterons l’extension de l’observateur ensembliste
invariant ellipsoïdale, présentés dans le deuxième chapitre, dans le cas des systèmes
linéaires a paramètres variant (LPV). Des exemples numériques de systèmes LPV seront
présentés pour montrer les performances de l’approche proposée.

• Dans le quatrième chapitre, nous présenterons la deuxième contribution principale qui
est un observateur intervalle pour les systèmes linéaires à temps discret, considéré comme
un problème d’estimation d’état ponctuel couplé à une caractérisation intervalle de
l’erreur d’estimation avec un schéma numérique non pessimiste pour calculer les bornes
de l’erreur d’estimation est proposée.

Nous finirons ce rapport par une conclusion générale qui résume les contributions de ce
travail. Certaines perspectives seront présentées pour étendre l’approche proposée à un sys-
tème de grande taille et ses applications possibles pour la détection de défauts, les problèmes
de commandes tolérants aux défauts et les problèmes de commande prédictif.





Introduction

This chapter addresses the context, motivation, state of the art of the research area and
contributions of this thesis. The organization of this thesis is also presented, which introduces
the contents and contributions of each chapter.

0.1 Context and motivations

The state estimation plays a very important role in control, diagnosis and supervision of
dynamical systems. In many cases, state is not completely measurable and/or the sensors
are very expensive, so we need to estimate it using state observers. The role of observer is
to provide an estimation of the state using the available measurements (output and input
measurements) and given a mathematical model of the system.

The state observer for linear systems was first introduced by [Kal60]. We can distinguish
two types of estimation approaches:

1. The stochastic approaches [Kal60], [Lue71] These approaches assume that the per-
turbations and the measurement noises have an explicit distribution (commonly Gaus-
sian distribution), the estimation problem is solved by minimizing the variance of the
estimation error. For linear systems, reasonable stochastic bounds for the estimation
error can be obtained if the observer is working correctly, i.e. providing zero mean and
white estimation errors and providing innovation covariances that are consistent with
the innovations. Otherwise, for non-linear systems and/or in cases where the observers
do not respect the consistency of the innovation covariance, the bounds are not useful
in practice. The stochastic approaches are used in various domains (control [Bat08] ,
economy and environment [May82], biology [UW11]...etc).

2. The deterministic approaches [Sch68] In several applications it is more natural to
assume that the perturbations and measurement noises are unknown but bounded, no
statistical information on uncertain variables is required, the only assumption we have is
that the perturbation and measurement noise are unknown but belong to a known set.
In this context, set-membership estimation approaches were introduced [Sch68], [Wis68],
[DPBO03], [Fog79]. In these approaches, the idea is to construct a compact set that
includes, in guaranteed way, all possible states consistent with the model,uncertainties,
the measurements and the bounded perturbations and measurement noises [MMW96],
[AGV99].

In this thesis, we are interested to the second type of approaches which are the determin-
istic approaches. Here we propose new set-membership state estimation approaches, where
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invariant sets and interval analysis are used for solving the estimation-error bounds and dealing
with bounded uncertainties.

In the literature, we can find several approaches for solving the state bounding problem.
One one hand, i) interval observer techniques based on the cooperative system theory. On
the other hand, ii) set-membership observers based on set theory. In order to implement set
membership state estimation approaches, different shape of sets are used: ellipsoids [DWP01],
[KV96], [Pol+04], parallelotopes [CGZ96], zonotopes [Com03], [Le+13], [Le+12], intervals
[Moo66], [Jau+01] ...etc.

State bounding using ellipsoidal sets was proposed at the end of 1960s [Sch68], [DPBO03],
[Wis68]. The application of ellipsoidal sets to the state estimation problems has been studied in
[KV96], [DWP01], [Pol+04], [DKV06] [DK12]. Those approaches are based on set prediction /
correction. The basic idea here is to compute ellipsoidal sets guaranteed to contain the vector
to be estimated given bounds on the perturbations and noise, the aim is to minimize, at each
iteration, the size of the estimation ellipsoidal set, to do that, different criteria are considered
in the literature: first criterion is the minimization of the determinant of the shape matrix of
the ellipsoid [DWP01] which is equivalent to the minimization of the volume of the ellipsoidal
set, second criterion is the minimization of the the trace of the shape matrix of the ellipsoid
[DWP01] which is equivalent to the minimization of the sum of squares of the half lengths
of the axes of the ellipsoid. Third, in [Ben+14a] the authors proposed an approach based
on the minimization of the the radius of the ellipsoidal estimation by considering a constant
gain matrix which is obtained by solving an Linear Matrix Inequality (LMI) problem, then
this gain is updated on-line at each iteration by solving an LMI optimization problem at each
iteration. Solving LMIs at each iteration leads to increasing the online computation time,
the authors also proposed a scaling technique in order to reduce the online computation time
while keeping an acceptable accuracy of the state estimation. The ellipsoidal sets are often
used because, mathematically speaking, they are easy to manipulate therefore simplicity of
formulation. In order to obtain ellipsoids containing the state in a precise manner, we need to
minimize the size of the ellipsoids. The minimization process can lead to very large ellipsoids
corresponding to very large uncertainties in some states which leads to a loss of accuracy.

The use of parallelotopes was proposed by [CGZ96] and [CAGZ98], the authors here ad-
dressed the problem of recursive state estimation based on minimum-volume bounding paral-
lelotopes.

The zonotopes were introduced by [She74], [Mon89].The state estimation using zonotopes
was proposed by [PQE02] and [Com03]. In literature there exist different methods to minimize
the size of the zonotopic estimation: in [Com03] a singular-value decomposition is used to add
a correction step to obtain a zonotopic outer approximation consistent with the uncertain
trajectory and the measured output. While, [ABC05] presented another method based on
the minimization of the segments and the volume of the zonotope, this method is faster but
leads to loss of accuracy than the minimization of the volume of zonotope. in [Le+13], the
authors proposed a zonotopic state estimation based on minimizing a P-radius-based criterion
in order to decrease the size of the zonotope at each sample time. Recently, [10] proposed
a Zonotopic Kalman Filter (ZKF) which computes minimal zonotopic sets enclosing all the
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admissible states by minimizing a matrix norm serving as a zonotope size criterion named F
-radius. Explicit links between the set-membership and the stochastic paradigms for Kalman
filtering are given.

In [Ben+14b], the authors presented a set membership estimation (prediction / correction)
approach combining zonotopes and ellipsoids. The proposed approach starts with a zonotopic
approximation and continues with an ellipsoidal approximation; this allows to manage the
trade-off between the accuracy of the zonotopic estimation and the reduced complexity of the
ellipsoidal estimation, a criterion based on the P-radius of a zonotope is proposed to make the
transition from the zonotopic estimation to the ellipsoidal estimation.

Interval analysis is also used in the works of citeJaulin02 and [KW02] to synthesize an
interval state observers. A number of results have been presented in [RRC04], [JLGHS00],
[MR11], [Com], [MDN13], to improve the accuracy of the method, consistency techniques were
considered (prediction/correction approach) by studying the consistency between the feasible
domain for actual output and the feasible one for model output [KW02], [RRC04], [MRC10].
In [TRZ12], the authors proposed an interesting approach to design interval observers for
linear discrete-time systems where the observer gain is tuned such that the state matrix of the
proposed interval observer is both Schur stable and nonnegative, this condition is restrictive in
practice, in the sense that the observability of the system does not guarantee the existence of
such observer gain. in [Che+13], the authors proposed an interval observer based on similarity
transformation synthesis which connects a matrix to its non negative representation ensuring
the positivity of the estimation error, the corresponding gain can be found as a solution of a
formulated LMI. One drawback of the interval based observers is the conservatism due to the
dependence phenomena and the wrapping effect.

The methods mentioned above are on-line approaches and deal with set-membership state
estimation problem in presence of unknown but bounded perturbation and measurement
noise, in these methods we characterize at each instant the set guaranteed to contain all
possible states consistent with the model, uncertainties, the measurement and the bounded
perturbations and measurement noises. Most of those approaches are based on the predic-
tion/correction i.e at each iteration, we calculate the predicted set and take into account
the update of measurement, after that in the correction step a consistency test is made in
order to obtain the set guaranteed to contain all possible states consistent with the model,
uncertainties, the measurement and the bounded perturbations and measurement noises, this
lead to a significant increase of the computation time, hence the necessity of more and more
memory storage media and cost increasing, and in some approaches, there is some criterions
(volume,segments...etc) are minimized on-line at each iteration, this minimization requires
resolution of optimization problems and Linear Matrix inequalities, this can increase the com-
plexity of these approaches.
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0.2 Contributions of the thesis

In this work, we propose two new approaches for set membership state estimation based on
the explicit characterization of the estimation error bounds. These approaches can be seen as
the combination between a punctual observer and a set-membership characterization of the
observation error. The objective is to reduce the complexity, reduce the computation time
ameliorate the precision and deals with the trade-off between complexity, time and precision.

The first approach is a set-membership observer based on ellipsoidal invariant sets for
discrete-time linear systems and also Linear Parameter Varying (LPV) systems, the proposed
approach provides a guaranteed interval that is build as the sum of the estimated system
states and its corresponding estimation errors bounds. The important feature of the proposed
approach is that does not require propagation of sets.

The second approach is an interval version of the Luenberger state observer for uncertain
discrete-time linear systems based on both intervals and invariant sets computation. The
set-membership state estimation problem is considered as a punctual state estimation issue
coupled with an interval characterization of the estimation error.

0.3 Organization of the thesis

In this section, a short description of the main chapters is given with highlights on the main
contributions:

• The first chapter presents the basic notions and principles of interval analysis and invari-
ant sets and their importance in describing uncertainties. It starts with some definitions
and properties related to intervals. After that operations on intervals are explained
in order to be familiar with interval arithmetic. A section is dedicated to explain the
pessimism that can be encountered when manipulating intervals due to dependency phe-
nomena and wrapping effect. The last part of the first chapter is dedicated to introduce
the notion of invariant set and gives an algorithm for computing approximations of the
minimal Robustly Positive Invariant (mRPI) set for linear system. The algorithm is
based on the computation of invariant sets using the Bounded Real Lemma (BRL) and
a novel shrinking procedure.

• In the second chapter, the first contribution is presented which is a new method for
designing state set-membership observers for linear discrete-time systems based on El-
lipsoidal Robustly Invariant (RPI) sets. The proposed observer provides the bounds of
the all possible state trajectories. The observer design is based on the computation of
an H∞ observer using LMIs and including a modified BRL formulation.

• In the third chapter, we will present the extension of the set-membership observer based
on ellipsoidal invariant sets, presented in the second chapter, in the case of Linear Pa-
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rameter Varying systems. Numerical examples of LPV systems will be presented to show
the performance of the proposed approach.

• In the fourth chapter, we will present the second main contribution which is an interval
observer for discrete-time linear systems which considered as a punctual state estima-
tion issue coupled with an interval characterization of the estimation error with a non
pessimistic numerical scheme to compute a rigorous enclosure of the estimation error is
proposed.

We conclude this thesis with a general conclusion which summarizes the contributions of
this work. Some perspectives will be presented such that extending the proposed approach to
a large systems and its possible applications for fault detection, fault tolerant control issues
and model predictive control problems.

0.4 Publications

The work in this thesis has resulted in several accepted/submitted publications to international
conferences and journals:

Conference papers:

• N. Loukkas, N. Meslem and JJ. Martinez. Set-membership tests to evaluate the
performance of nominal feedback control laws. IEEE Conference on Control Applications
(CCA). Part of 2016 IEEE Multi-Conference on Systems and Control, Buenos Aires,
Argentina, pp. 1300—1305, September 2016.

• N. Loukkas, N. Meslem and JJ. Martinez. Set-membership observer design based
on ellipsoidal invariant sets. IFAC World Congress, Toulouse, France, July 2017.

• N. Meslem, N. Loukkas and JJ. Martinez. A Luenberger-like Interval Observer
for a Class of Nonlinear Discrete-time Systems. Asian control conference, Gold coast,
Australia, 2017.

Journal papers:

• N. Loukkas, N. Meslem and JJ. Martinez. Using set invariance to design robust
interval observers for discrete-time linear systems. International Journal of Robust and
Nonlinear Control 2018;1–17. https://doi.org/10.1002/rnc.4103 . (Accepted)

• JJ. Martinez, N. Loukkas and N. Meslem. H∞ set-membership observer design
for LPV Systems. International Journal of Control. (Second submission)

Oral presentation:
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• N. Loukkas, N. Meslem and JJ. Martinez. An Interval Technique to Check the
Performance of Control Laws Applied to Wind Turbines. 9th Summer Workshop on
Interval Methods, Lyon, France, June 2016.
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Notions about interval analysis and
invariant sets computation
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1.1 Introduction

In general, physical systems are frequently described by mathematical models. These mathe-
matical models allow us to analyze the behavior of the system and to design controllers. Thus,
it is very important to obtain a mathematical model that describes as much as possible the
behavior of the system to be controlled.

Commonly, the mathematical models developed using only theoretical physical principles
can not represent accurately the real behavior of the system, this can be due to the lack
of information, complexity of the system or the presence of unknown phenomena that have
not be considered into the mathematical model. In order to build a more realistic model, a
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description of the uncertainties can be added to the original mathematical model. This kind
of models are called uncertain models, where the domain of the uncertainties is assumed to be
known a priori. The concept of uncertain models is very important in system design, control
and supervision, see for instance [AP06] [AK06].

There exist two ways to model uncertainties:

1. The stochastic approaches: [Kal60], [Lue71] where the uncertainties are represented
by a random variables with known probability distribution and co-variance, the stochas-
tic approach is used in various domains (control design, economy and environment
[May82] , biology [UW11] ... etc). But in many applications, the probability distri-
bution and co-variance of the uncertain parameters and perturbations are not known,
only bounds of these uncertainties can be fixed.

2. The deterministic approaches: [Sch68] where the uncertainties are supposed un-
known but bounded and no statistical information on uncertain variables is required.
In general, these uncertainties are supposed belonging to a convex sets. There exists
different shape of sets used to represent the uncertainties. The choice of the shape of
sets depends on their accuracy and their complexity for solving a given problem.

There exists a various set shapes to represent the uncertainties: intervals, ellipsoids, poly-
topes, zonotopes, parallelotopes ... etc. In the context of this thesis, we are mainly interested
in ellipsoidal sets and intervals. We also explore a very important concept which is the set
invariance.

To be self-contained, this chapter introduces the basic notions and definitions on which the
contributions of this thesis are based on. Section 1.2 addresses several basic definitions and
properties about interval analysis. In the Section 1.3, we present definitions and properties of
ellipsoids. In the same section we also present the concept of set invariance and an efficient
method to characterize the minimal robustly positive invariant set for discrete-time linear
systems [Mar15].

1.2 Interval analysis

Interval analysis initially developed to quantify numerical errors due to the finite representation
of real numbers on a computer. The idea is to manipulate intervals of reals numbers rather than
point values. After that, several algorithms based on interval analysis have been developed in
several domains [Sun58] [Moo66] [Jau+01] with the aim of solving, in a rigorous way, some
mathematical problems and to evaluate the impact of uncertainties.
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1.2.1 Definitions

A real interval, denoted by [x], is a bounded convex set of R defined by:

[x] = [x, x] = {x ∈ R : x ≤ x ≤ x} (1.1)

where the real numbers x and x are respectively the lower and the upper bounds of [x]. The
set of real intervals is noted by IR. An interval is said degenerate if x = x.

Example 1.1
According to the definition above, [−1, 2], [5, 8],3 , [−∞, 2], [0,+∞] and R , are intervals
because they satisfy the required properties of intervals.
On another hand, [4, 1], ]− 1, 6], ]π, 4[ and [0,+∞[ are not intervals because they don’t satisfy
the required properties of intervals.

For a given interval [x] ∈ IR, one can associate the following definitions:

• Lower bound:
inf([x]) = x (1.2)

• Upper bound:
sup([x]) = x (1.3)

• Center or medium:
m([x]) =

(x+ x)

2
(1.4)

• Width:
w([x]) = x− x (1.5)

• Radius:
r([x]) =

(x− x)

2
(1.6)

• Amplitude:
|[x]| = max{|x|, |x|} (1.7)

1.2.2 Interval vector

An interval vector [x] in Rn also called box, is the cartesian product of n intervals. It can be
written in the following form:

[x] = [x,x] = [x1, x1]× [x2, x2]× ....× [xn, xn] (1.8)

Where x = (x1, x2, ...., xn)T and x = (x1, x2, ...., xn)T . The set of all boxes in Rn will be noted
by IRn.
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Similarly to the scalar interval case, one can associate to an interval vector the following
definitions:

• Lower bound of an interval vector:

inf([x]) = (x1, x2, ...., xn)T (1.9)

• Upper bound of an interval vector:

sup([x]) = (x1, x2, ...., xn)T (1.10)

• Center or medium of an interval vector:

m([x]) = (m([x1]),m([x2]), ....,m([xn]))T (1.11)

• Width of an interval vector:

w([x]) = max
1≤i≤n

(xi − xi) (1.12)

• Element-wise width of an interval vector:

W([x]) =
(
w([x1]), w([x2]), ....w([xn])

)T (1.13)

• Radius of an interval vector:

r([x]) = max
1≤i≤n

(r([xi])) (1.14)

Moreover, any interval vector [x] ∈ IRn can be rewritten as follows

[x] = m([x]) + [∆x] (1.15)

where
[∆x] =

1

2
[−1 1]W

(
[x]
)

(1.16)

• Volume of interval vector:

vol([x]) =

n∏
i=1

w([xi]) = (x1 − x1)(x2 − x2)...(xn − xn) (1.17)

Example 1.2
Let’s consider the interval vectors [x], [y] of dimension 2 and 3 respectively: [x] = [2, 6]× [2, 4]

is a box in IR2 and [y] = [1, 3]× [0, 2]× [0, 1/2] is a box in IR3. The Figure (1.1) illustrates the
graphical representation of the two boxes [x] and [y] plotted in 2D and 3D plan respectively.
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Figure 1.1: Graphical representation of boxes [x] (in blue) and [y] (in red)

1.2.3 Interval matrix

The same reasoning on interval vectors is extended to interval matrices. An interval matrix
[A] ∈ IRn×m is a matrix whose elements are intervals.

[A] =

[a1,1] · · · [a1,m]
...

. . .
...

[an,1] · · · [an,m]

 = [A,A] (1.18)

WhereA =

a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m

 andA =

a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m

 are the lower and upper matrices

of the interval matrix [A]

For example, consider the following 2× 2 interval matrix

[A] =

(
[−1, 1] [0, 3]

[2, 6] [−2, 0]

)
(1.19)

where it’s lower and upper real matrices are:

A =

(
−1 0

2 −2

)
and A =

(
1 3

6 0

)
Remark 1.1
Similarly to the interval vector case, one can associate to a matrix vector the previous defini-
tions (center, width, radius volume...) using the same reasoning.

• Center or medium of an interval matrix:

m([A]) =

m1,1 · · · m1,m
...

. . .
...

mn,1 · · · mn,m

 (1.20)
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where mi,j =
ai,j+ai,j

2 ; 1 ≤ i ≤ n , 1 ≤ j ≤ m

• Width of an interval matrix:

w([A]) = A−A (1.21)

• Radius of an interval matrix:

r([A]) =
(A−A)

2
(1.22)

1.2.4 Interval arithmetic

The elementary arithmetic operations on real numbers ◦ ∈ {+,−, ∗,÷} can be extended to
intervals over IR, according to the following principle

∀[x], [y] ∈ IR [x] ◦ [y] = {a ◦ b | a ∈ [x], b ∈ [y]} (1.23)

Given two intervals [x] and [y] in IR the result of the interval operation [x]◦[y] can be obtained
by:

• Addition
[x] + [y] = [x+ y, x+ y] (1.24)

• Subtraction
[x]− [y] = [x− y, x− y] (1.25)

• Multiplication

[x] ∗ [y] = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}] (1.26)

α[x] =

 [αx, αx] if α ≥ 0

[αx, αx] if α < 0
(1.27)

• Division

1

[x]
=



∅ if [x] = [0, 0]

[ 1
x ,

1
x ] if 0 /∈ [x]

[ 1
x ,+∞] if x = 0, x > 0

[−∞, 1
x ] if x < 0, x = 0

[−∞,+∞] if x < 0, x > 0

(1.28)

[x]

[y]
= [x]

1

[y]
(1.29)

The below interval operations illustrate the application of the interval arithmetic.
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• Addition: [−2, 4] + [1, 3] = [−1, 7]

• Subtraction: [0, 7]− [1, 2] = [−2, 6]

• Multiplication: [−2, 1] ∗ [3, 4] = [−8, 4]

• Division: [6,12]
[2,3] = [2, 6]

We extend the same rules to the case of interval vectors (or boxes). Let’s consider two
boxes [x] = [x1]× [x2]× ....× [xn] and [y] = [y1]× [y2]× ....× [yn], the arithmetic operation
◦ ∈ {+,−} on two boxes [x] and [y] give a box defined as follow:

∀[x], [y] ∈ IRn [x] ◦ [y] = ([x1] ◦ [y1])× ([x2] ◦ [y2])× ....× ([xn] ◦ [yn]) (1.30)

For example, let’s consider some elementary arithmetic operation on interval vectors

[0, 1]× [1, 3] + [−2, 4]× [5, 6] = [−2, 5]× [6, 9]

[0, 1]× [2, 3]− [−2, 0]× [−3,−1] = [0, 3]× [3, 6]

Remark 1.2
If [A] ∈ IRn×n is an interval matrix and its elements are [ai,j ] and [b] ∈ IRn is an interval
vector and its elements are [bk], then the elements of [c] = [A] ∗ [b] is given by its elements
[ci] given by:

[ci] =
n∑
k=1

[ai,k] ∗ [bk]

For example, consider the matrices : [A] =

(
[0, 1] [2, 3]

[1, 2] [−1, 4]

)
, [b] =

(
[1, 2]

[0, 3]

)
, the product

[c] = [A] ∗ [b] is given as follow

[c] = [A] ∗ [b] =

(
[0, 1] [2, 3]

[1, 2] [−1, 4]

)(
[1, 2]

[0, 3]

)
=

(
[0, 1][1, 2] + [2, 3][0, 3]

[1, 2][1, 2] + [−1, 4][0, 3]

)
=

(
[0, 11]

[−2, 16]

)

1.2.5 Intervals and operations on sets

Since intervals are considered as sets, set operations like equality (=), belonging (∈), strict
inclusion (⊂), wide inclusion (⊆), intersection (∩) and union (∪) can be easily defined for
intervals. For example, the intersection between two intervals is defined as follow:

[x] ∩ |y] =

 [max{x, y},min{x, y}] if max{x, y} ≤ min{x, y}
∅ else

(1.31)

Example: The intersection of two intervals is given by:

[−1, 2] ∩ [0, 4] = [0, 2]
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In the case of interval vectors [x] and [y] in IRn, the intersection of two interval vectors is
applied element-wise as follows:

[x] ∩ [y] =

 ∅ if [xi] ∩ [yi] = ∅
[xi] ∩ [yi] Otherwise

(1.32)

Example: The intersection of two interval vectors [x] = [0, 5]×[1, 3] and [y] = [3, 4]×[2, 6]

is:
[x] ∩ [y] = ([0, 5]× [1, 3]) ∩ ([3, 4]× [2, 6]) = [3, 4]× [2, 3]

The Figure (1.2) illustrates the intersection of two boxes: [x] in yellow, [y] in red, the result
of the intersection is the box plotted in red.

Figure 1.2: Intersection of two interval vectors: [x] in yellow, [y] in red, [x] ∩ [y] in blue

The union (∪) of two intervals is not generally an interval. The notion of convex-hull union
(t) of two intervals is introduced. It corresponds to the smallest interval containing the union
of these two intervals.

[x] t [y] = [min{x, y},max{x, y}] (1.33)

For example, consider two intervals [−2, 1] and [−2, 6], the union of these two intervals is given
by:

[−2, 1] t [2, 6] = [−2, 6]

In the case of interval vectors, the union of two interval vectors [x] and [y] in IRn is:

[x] t [y] = ([x1] t [y1]× [x2] t [y2]× .....× [xn] t [yn]) (1.34)

For example, consider two interval vectors [x] = [−2, 1] × [0, 3] and [y] = [2, 6] × [1, 4, the
union of these two interval vectors is given by:

[x] t [y] = [−2, 1]× [0, 3] t [2, 6]× [1, 4] = [−2, 6]× [0, 4]
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Figure (1.3) illustrates the union of tow disjoint intervals [x] (in yellow) and [y] (in red). The
convex-hull union is plotted in green

Figure 1.3: Union of two interval vectors: [x] in yellow, [y] in red, [x] ∪ [y] in green

1.2.6 Interval norm

1.2.6.1 Interval vector norm

A vector norm of an interval vector is any application : ‖ . ‖: IRn −→ R satisfying the
following properties:

•
‖ [x] ‖≥ 0, ∀[x] ∈ IRn

•
‖ [x] ‖= 0⇐⇒ [x] = 0

•
‖ [α][x] ‖= |[α]| ‖ [x] ‖,∀[x] ∈ IRn, ∀[α] ∈ IR

•
‖ [x] + [y] ‖≤‖ [x] ‖ + ‖ [y] ‖, ∀[x], [y] ∈ IRn

So, the maximum norm of given interval vector [b] is defined as

‖ [b] ‖= max
1≤i≤n

{|[bi]|}

.
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1.2.6.2 Interval matrix norm

Let’s consider the interval matrices [A], [B] ∈ Mn×n. The application : ‖ . ‖: M −→ R is a
matrix norm if it satisfies the following properties:

•
‖ [A] ‖≥ 0, ∀[A] ∈M

•
‖ [A] ‖= 0⇐⇒ [A] = 0

•
‖ [α][A] ‖=‖ [α] ‖‖ [A] ‖,∀[A] ∈M, ∀[α] ∈ IR

•
‖ [A] + [B] ‖≤‖ [A] ‖ + ‖ [B] ‖, ∀[A], [B] ∈M

•
‖ [A][B] ‖≤‖ [A] ‖‖ [B] ‖, ∀[A], [B] ∈M

We can define maximum norm of a given interval matrix [A] as follow

‖ [A] ‖= max
1≤i≤n

n∑
j=1

|[aij ]|

1.2.7 Conservatism

The result of a series of operations between two intervals or more may be pessimist. This
pessimism is due to two major reasons: dependency phenomena and wrapping effect.

1.2.7.1 Dependency phenomena

Consider the interval [x] = [x, x] and elementary operations ◦ ∈ {+,−, ∗,÷}. From the
definition (1.23), we can compute the result of an operation ◦ between [x] and [x] as follows:

∀[x] ∈ IR [x] ◦ [x] = {a ◦ b | a ∈ [x], b ∈ [x]} (1.35)

Although we manipulate the same interval [x], the variables a and b are considered as dif-
ferent variables and there is no information that a = b. This problem is called dependency
phenomena which can be illustrated in the following points:
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• Non existence of zero in subtraction
In the case of real scalars, the subtraction of two identical terms gives zero. But in the
case of intervals, the subtraction of two identical intervals does not give zero, except for
degenerated intervals.

For example, consider an interval [x] = [3, 8], then

[x]− [x] = [3, 8]− [3, 8] = [3, 8] + [−8,−3] = [−5, 5] 3 0

• Non existence of unity in division
In the case of real scalars, the division of two identical terms gives unity. But in the
case of intervals, the division of two identical intervals does not give unity, except for
degenerated intervals.

For instance, given an interval [x] = [1, 2] then

[x]/[x] = [x] ∗ 1

[x]
= [

1

2
, 2] 6= 1

1.2.7.2 Wrapping effect

The wrapping effect is one major source of conservatism. The wrapping effect is caused by
the iterative computation on interval vectors (or interval matrices). One can always use the
rotation operator [Moo66] to explain this phenomenon.

Consider successive rotations of a box [x] = [x1]× [x2] using a rotation matrix R.

x(θ) = R(θ)x0

with

R(θ) =

(
cosθ sinθ

−sinθ cosθ

)
where x0 ∈ [x0]. The evolution of the initial box [x0] is governed by the punctual rotation
in the plane with respect to the origin gives a rectangle of the same size but with a different
orientation. As shown in the Figure (1.4), the representation of this rectangle by a box gives
a new bigger rectangle. This phenomena is due to the over-approximation of real solution
sets which are parallelepipeds by boxes aligned with the axes of the original mark. Thus, the
accumulation of errors related to this over-approximation leads to the explosion of the size of
these boxes (see Figure (1.4)).

1.2.8 Inclusion function

Consider a function f from Rn to Rm as follows:

f : x ∈ Rn −→ f(x) ∈ Rm (1.36)
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Figure 1.4: Wrapping effect (θ = π
4 )

The image of a box [x] ∈ IRn by the function f is the set defined as follows:

f([x]) = {f(x),∀x ∈ [x]} (1.37)

note that f([x]) is not necessarily a box of IRn, so we introduce the notion of "inclusion
function". An inclusion function of f is an interval function denoted by [f ] : IRn ←→ IRm

that returns a box enclosing f([x]):

[f ]([x]) = [f(x)],x ∈ [x] (1.38)

[f ] is an inclusion function if and only if:

∀[x] ∈ IRn : f([x]) ⊆ [f ]([x])

This means that whatever the form of the image f([x]), the inclusion function [f ] provides a
box [f ]([x]) that contains, in a guaranteed way, the image of [x] by f (see Figure 1.5).

The inclusion function is not unique. There exists an infinity inclusion functions for a given
function f depending on how f is written and evaluated in the interval arithmetic framework.
The aim is to find a minimal inclusion function [f∗] that provides the smallest box containing
f([x]) (see Figure 1.5).

For example, consider the function f(x) = x2 − x. In the case of real numbers the two
expressions x2− x and x(x− 1) provides the same results for any real number x. However, in
the case of real intervals , it is possible that the image will be different when we change the
expression. For example for [x] = [2, 4] we have:
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Figure 1.5: Inclusion function

 [x]2 − [x] = [2, 4]2 − [2, 4] = [0, 14]

[x]([x]− 1) = [2, 4]([2, 4]− 1) = [2, 12]

This is due to the dependency phenomena presented previously.

1.2.8.1 Properties of inclusion function

1.2.8.2 Monotonicity

An inclusion function [f ] is said monotone (in sens of inclusion) if:

∀[x], ∀[y] : [x] ⊂ [y]⇒ [f ]([x]) ⊂ [f ]([y])

1.2.8.3 Convergence

An inclusion function [f ] is said convergent if for any sequence of boxes [xk] ∈ IRn, we have:

lim
k→+∞

w([xk]) = 0⇒ lim
k→+∞

w([f ]([xk])) = 0
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1.2.8.4 Natural inclusion function

The natural inclusion function consists in replacing all the input variables of the function by
the corresponding intervals and all the operators and the elementary functions defining the
function by the interval operators and interval functions.

This inclusion function is said convergent if the function f contains only continuous ele-
mentary functions as well as continuous operations. The natural inclusion function is minimal
if f is continuous and each variable appears only once.

A natural inclusion function is rarely minimal. Pessimism is often introduced when each
variable appears multiple times in the expression of f . To explain this lets consider the
following function f written in different equivalent expressions f1, f2, f3, f4:

f1(x) = x2 + x

f2(x) = x ∗ (x+ 2)

f3(x) = x ∗ x+ 2 ∗ x

f4(x) = (x+ 1)2 − 1

For [x] = [−1, 1], the natural inclusion function for each expression is obtained as follows:

[f1]([x]) = [x]2 + [x] = [−2, 3]

[f2]([x]) = [x] ∗ ([x] + 1) = [−3, 3]

[f3]([x]) = [x] ∗ [x] + [x] = [−3, 3]

[f4]([x]) = ([x] + 1)2 − 1 = [−1, 3]

We note that the size of the intervals obtained by these four inclusion functions depends
on how f is written, This is due to the dependency phenomenon explained above. In this
example, the natural inclusion function [f4]([x]) is minimal inclusion function, it allows to
find the smallest interval containing the image of [x] by f .

1.2.8.5 Centered inclusion function

Let’s consider the function:
f : Rn −→ R

To avoid the pessimism due to the dependency phenomenon, the centered inclusion function
was introduced [Jau+01]. Using the mean value theorem [Neu90], we obtain:

∀x ∈ [x],∃ξ ∈ [x] : f(x) = f(m([x]) + J(ξ)(x−m([x]))

where J is the Jacobean of the function f . Thus we can say that:

∀x ∈ [x] : f(x) ∈ f(m([x]) + [J ]([x])(x−m([x]))
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where [J ] is the inclusion function of J , so we obtain:

f([x]) ⊆ f(m([x]) + [J ]([x])([x]−m([x]))

Then, the centered inclusion function [fc]([x]) can be defined as:

[fc]([x]) ≡ f(m([x])) + [J ]([x])([x]−m([x]))

In general, [fc]([x]) gives a less pessimistic result compared to the natural inclusion function
when the width of intervals is quite small.

1.2.8.6 Taylor inclusion function

Let’s consider the function:
f : Rn −→ R

The Taylor inclusion function is based on high order Taylor expansion. In our context, we
use the order 2 Taylor expansion. The Taylor inclusion function noted [fT ]([x]) is defined as
follows:

[fT ]([x]) = f(m([x])) + J(m([x]))([x]−m([x])) +
1

2
([x]−m([x]))T [H]([x])([x]−m([x]))

where J is the gradient of f , [H]([x]) is the Hessian interval matrix of f and m([x]) is the
center of the interval [x].

The advantage of such an inclusion function is to use interval arithmetic only at the higher
order, usually over a reduced number of operations, and thus greatly reduces the dependency
effect.

For example, consider a function f(x) = x2 + sin(x), and an interval [x] = [2π
3 ,

4π
3 ], let’s

compare the natural inclusion function [fn]([x]), the centered inclusion function [fc]([x]) and
the Taylor inclusion function [fT ]([x]).

[fn]([x]) = [x]2 + sin([x]) = [3.52046, 18.41199]

[fc]([x]) = f(c) + [f
′
]([x])([x]− c) = [1.62022, 18.11899]

[fT ]([x]) = f(c) + [f
′
](π)([x]− c) +

([x]− c)2

2
[f
′′
]([x]) = [4.33706, 16.97362]

where c = m([x]) is the center of [x].

For this example, since f is increasing in the interval [x], one can determine the minimal
inclusion function [f∗]:

[f∗]([x]) = [x2 + sin(x), x2 + sin(x)] = [5.25251, 16.67994]

The most precise interval inclusion is the Taylor inclusion function [fT ]([x]) which is close to
the minimal inclusion function [f∗]([x]).
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1.3 Invariant sets

Set invariance is a very important concept in control and estimation problems. The notion of
invariant sets can be found in [Bla99]. In the literature, techniques for computing invariant
sets are mostly related to the computation of levels sets of a Lyapunov function [Bla95] [SG05]
or, in others cases, just by the computation of some norm of the system state for describing
the boundaries of an invariant set [BC98] [Bla99] [LA03].

Définition 1.1
A set S is a Positive Invariant (PI) set for the dynamic system xk+1 = Axk if

∀x ∈ S : Axk+1 ∈ S

Définition 1.2
A set S is a Robustly Positive Invariant (RPI) set for the dynamic perturbed system
xk+1 = Axk + Fwk if

∀wk ∈ W,∀x ∈ S : f(S,W) ∈ S

Définition 1.3
The minimal Robustly Positive Invariant (mRPI) is defined as the RPI set contained
in all possible RPI sets.

1.3.1 Ellipsoidal sets

Ellipsoidal sets are widely used in many applications, as identification and estimation and
diagnosis, due to their interesting characteristics and the simplicity of their computation. In
the context of set-membership estimation, Ellipsoids are frequently used [KV96] [DWP01]
[Pol+04].

Définition 1.4 (Ellipsoidal set)
Given a symmetric positive definite matrix P := PT � 0, a real vector c ∈ Rn and a strictly
positive real scalar ρ ∈ R∗+, the bounded ellipsoid Ψ is defined by the set

Ψ = {x ∈ Rn : (x− c)TP(x− c) ≤ ρ} (1.39)

where P is the shape matrix of the ellipsoid, c its center and ρ its radius.

Example 1.3
Figure 1.6 illustrates an example of an ellipsoidal set in a two-dimension space with c =[
0 0

]T , P =

[
1 1

1 4

]
and ρ = 1.

Définition 1.5 (Projection of an ellipsoid)
Here, what we mean by projection of an ellipsoid is the computation of upper and lower bounds
of an ellipsoid. The projection of an ellipsoid is the hypercube which includes this ellipsoid, it
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Figure 1.6: Ellipsoidal set

corresponds to the box which its extreme values are the projection on the orthogonal coordinates
of the ellipsoidal. As stated in [KV96], the projection of an ellipsoid Ψ can be obtained as
follows: 

F(Ψ)u = c+ diag

((
P
ρ

)−1/2
)

F(Ψ)l = c− diag
((

P
ρ

)−1/2
)
,

(1.40)

where F(Ψ)u and F(Ψ)l are the upper and the lower bounds respectively. The notation
diag(M) corresponds to the diagonal elements of the matrix M.

Remark
In this thesis in particular, we note that for any symmetric positive definite matrixM ∈ Rn×n,
the matrix M−1/2 is the elementwise square-roots of the matrix M−1.

Example 1.4

Let’s go back to the previous example where c =
[
0 0

]T , P =

[
1 1

1 4

]
and ρ = 1. The

projection of the ellipsoid Ψ = {x ∈ Rn : (x− c)TP(x− c) ≤ ρ} is given as follows:


F(Ψ)u = c+ diag

((
P
ρ

)−1/2
)

=

[
1

2

]
F(Ψ)l = c− diag

((
P
ρ

)−1/2
)

=

[
−1

−2

] (1.41)

The Figure (1.7) illustrates the projection of the ellipsoidal set, where the red lines represent
the lower bounds and the green lines represent the upper bounds of the ellipsoidal set.
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Figure 1.7: Projection of an ellipsoidal set.

1.3.2 Polyhedral sets

The polyhedral set is one of the geometrical forms often used in control and estimation prob-
lems. A polyhedral set can be bounded or not, a bounded polyhedral set is called a polytope.
There exists two ways to represent geometrically a polyhedral set: (i) half-space representation
(definition 1.6), (ii) vertex representation (definition 1.7).

Définition 1.6 (Half-space representation)
A polyhedral set P ∈ Rn can be represented as the intersection of a finite number of closed
half-spaces as follows

P = {x ∈ Rn : Ax ≤ b} A ∈ Rm×n, b ∈ Rn (1.42)

In figure (1.8), the half-space representation of a polyhedral set defined by (1.42) where :

A =


−1 0

0 −1

1 1

−1 1

 and b =


1

1

1

1



Définition 1.7 (Vertex representation)
A polyhedral set can be represented using it’s vertices V = {v1, v2, v3, ..., vn} ∈ Rn. Then, a
polytope P can be be defined as the convex hull of the set V

P = conv(V) = {α1v1, α2v2, ...αnvn} (1.43)

where αi are positive scalars and 0 < αi < 1,
∑n

i=1 αi = 1.
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Figure 1.8: Half space representation of a polytope

For example, the Figure (1.9) shows the vertex representation a polytope defined by V =

{
(

0

−1

)
,

(
0

2

)
,

(
1.5

1.5

)
,

(
2

0.5

)
}.

Figure 1.9: Vertex representation of a polytope.

The choice of the polyhedral set representation depends on the context of the problem.

1.3.3 Polyhedral mRPI set computation

Since the theory of Lyapunov has been introduced, the notion of invariant set has been used in
many problems concerning the analysis and control of dynamic systems. An important moti-
vation for introducing the invariant sets was the need to analyze the influence of uncertainties
on dynamic systems [BM08].

Invariant set is one of the very important tools employed in control system design [Bla99].
In fact, invariant sets are very advantageous because they are defined by the property that
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any trajectory starting in such a set will remain in it in the future.

The concept of minimal Robustly Positive Invariant sets (mRPI sets) is a very strong
concept used in control, because mRPI sets provide an exact information about the behavior
of systems. In practice, it is difficult to compute exactly the mRPI set, except for restrictif
classes of systems. In general mRPI sets are approximated, in fact there exists in the literature
a number of approaches allowing to characterize the mRPI set for discrete-time linear systems,
see for instance [Ola+09] [Ola+10]. Recently [Mar15] proposed an approach to characterize
the mRPI set for discrete-time linear systems assumed to be stable with unknown but bounded
disturbances. The approach is based on the computation of "ellipsoidal" invariant sets which
are obtained by using the Bounded Real Lemma, After that, a RPI outer-approximation of
the minimal "polyhedral" RPI set for the system is obtained by applying a shrinking process.

In the rest of this Section we will summarize the mRPI sets computation method presented
in [Mar15].

Let’s consider a discrete-time linear system

xk+1 = Axk + Ewk (1.44)

where xk ∈ Rn is the current state vector and wk ∈ Rm is an unknown disturbance vector
which can be bounded as follow: |wk| ≤ w where w = sup{|w|}. One assume that the
eigenvalues of A ∈ Rn×n are inside the unit circle.

1.3.3.1 Computing an ellipsoidal RPI set

To compute an RPI set for the system 1.44, we use the Lyapunov theory (see for instance
[Bla99]). Let’s consider a Lyapunov function V (x) of the system (1.44):

V (xk) = xTkPxk ≥ 0 (1.45)

Suppose there exists a positive definite matrix P = PT > 0 and a scalar γ > 0 verifying the
following dissipation inequality (Bounded Real Lemma):

V (xk)− V (xk+1) ≤ γ2wT
kwk − xTk xk (1.46)

Replacing (1.45) in (1.46) and by using the dynamics (1.44), we find

xTk (ATPA−P + I)xk + xTk (ATPE)wk + wT
k (ETPA)xk + wT

k (ETPE− γ2I)wk ≤ 0 (1.47)

The inequality (1.47) can be re-written as the following Linear Matrix Inequality (LMI):(
xk
wk

)T (
ATPA−P + I ATPE

ETPA ETPE− γ2I

)(
xk
wk

)
≤ 0 (1.48)

Before, let’s remind the principle of Schur complement
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Définition 1.8
Schur complement [Boy+94]. Consider the following LMI:[

Q(x) S(x)

ST (x) R(x)

]
� 0, (1.49)

where Q(x), R(x) are symmetric matrices and Q(x), R(x) and S(x) are affine in x. Then
this LMI is equivalent to: {

Q(x) � 0,

Q(x)− S(x)R−1(x)ST (x) � 0,
(1.50)

or {
R(x) � 0,

R(x)− ST (x)Q−1(x)S(x) � 0.
(1.51)

Thus, using the Schur complement, the equation (1.48) can be expressed as follows

ATPA−P + I−ATPE(ETPE− γ2I)−1ETPA ≤ 0 (1.52)

Knowing that wTw ≤ wTw, from the dissipation inequality (1.46) we get:

V (xk)− V (xk+1) ≤ γ2wTw− xTx (1.53)

Let’s consider a ball
Bw = {x ∈ Rn : xTx ≤ γ2wTw} (1.54)

If xTx ≥ γ2wTw , then outside the ball Bw the increment of the Lyapunov function is
negative, which implies that a level set of the Lyapunov function Ωc = {x : V (x) = xTPx ≤
γ2wTw} that contains the set Bw is an attractive invariant set.

We put r2 = γ2wTw. Since xTx ≤ r2 =⇒ xTPx ≤ λmax(P)r2 which means that the set
Ωc contains the ball Br where Br = {x : xTx ≤ r2}, this implies that the ellipsoidal set Ψ:

Ψ = {x ∈ Rn : xTPx ≤ λmax(P)γ2wTw} (1.55)

contains the ball Bw and we can deduct that the ellipsoidal set Ψ is an attractive invariant
set.

1.3.3.2 Polyhedral RPI sets from Ellipsoidal RPI sets

Once an ellipsoidal RPI set of the system 1.44 is computed, for a computational considerations
we are interested to compute polyhedral RPI sets from ellipsoidal ones. to do that we proceed
as follows:
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A polyhedral RPI set Φv with v vertices is computed, using the fact that if Φv is between
the initial RPI set Ψ and and its one-step ahead RPI set Ψ

+ then Φv is an RPI set.

Ψ
+ ⊆ Φv ⊆ Ψ (1.56)

An interesting method to compute a polyhedral set, which verifies the inclusion condition
(1.56), is proposed in [Ale+07]. Here, it is possible to use the invariant set (1.55) to compute
an ellipsoidal set Ψ as follows:

Ψ = {x ∈ Rn : xTPx ≤ λmax(P)γ2µwTw} (1.57)

For a given µ ≥ 1, using (1.53) we can compute the one-step ahead ellipsoidal RPI set:

Ψ
+

= {x ∈ Rn : xTPx ≤ (µλmax(P)− µ+ 1)γ2wTw} (1.58)

Figure 1.10: Computation of polyhedral RPI set from ellipsoidal ones

1.3.3.3 Shrinking polyhedral RPI sets

We assume that ∀k ≥ 0,wk ∈ ∆. A sequence of polyhedral RPI sets can be recursively built
starting with an initial invariant set Φv as follows:

Φk+1 = AΦk ⊕E∆, Φ0 = Φv (1.59)

where ⊕ is the Minkowski sum of sets, Φk+1 corresponds to the image of Φk. Φk+1 corresponds
to a new RPI set included into the initial RPI set. Since the set Φ0 is a contractive invariant,
we can conclude that for any iteration k the following relation is verified:

Ω∞ ⊆ Φk+1 ⊆ Φk ⊆ Φ0 (1.60)

if k −→∞ then Φk −→ Ω∞. Ω∞ is the exact mRPI set for (1.44).
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To simplify the computation, the recursion (1.59) can be written as follows:

Φk = AkΦ0 ⊕
( k∑
i=1

Ai−1
)
E∆, Φ0 = Φv (1.61)

Putting Ωk =
(∑k

i=1 A
i−1
)
E∆, and taken the fact that

Ω∞ = lim
k→+∞

Ωk =
∞∑
i=1

Ai−1E∆⊕ Ωk (1.62)

Ω∞ = lim
k→+∞

Ωk =
( ∞∑
i=k+1

Ai−1
)
E∆⊕ Ωk (1.63)

We conclude that
Ωk ⊂ Ω∞ (1.64)

Using the equations (1.61) and (1.62) we have:

Φk = AkΦ0 ⊕ Ωk ⊂ AkΦ0 ⊕ Ω∞ (1.65)

Since the eigenvalues of A are strictly inside the unit circle then lim
k→+∞

AkΦ0 = 0, we can

conclude that the set Ω∞ is the smallest RPI set for the dynamic system (1.44).

Note that the recursion (1.59) can be stopped when there exists k∗ such that

Ak∗Φ0 ⊆ Bn(ε) (1.66)

For a given ball Bn(ε) = {x ∈ Rn : xTx ≤ ε}.

The stopping condition (1.66) can not be evaluated easily because of the unknown size of
the set AkΦ0. So, we can use the bound of this set as follows:

Ak∗Φ0 ⊆ ρ(k∗)Φ0 (1.67)

Then, the stop criteria if the recursion (1.59) becomes

ρ(k∗)Φ0 ⊆ Bn(ε) (1.68)

where ρ(k) = βk, with 0 < β < 1 is a scalar satisfying the following inequality:

ATPA− β2P ≤ 0 (1.69)

Remind that the matrix P is the one obtained by solving the LMI (1.48). Using the equation
(1.65), we conclude that the set Φk∗ is an outer approximation of the mRPI set with a precision
Bn(ε).
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1.3.3.4 Shrinking Index

It is more interesting to measure the relative error of the outer-approximation of the mRPI set
Φk∗ with respect to the theoretical mRPI set Ω∞. To do this we introduce a relative shrinking
index to estimate this relative error.

Consider that there exists a constant µ ≥ 1 such that the mRPI set Ω∞ is included in the
ball Bw:

Bw = {x ∈ Rn : xTx ≤ µγ2wTw} (1.70)

We can estimate the upper-bound of the outer-approximation error, at any iteration k > 0

and for a given initial RPI ser Φ0 = Φv verifying the inclusion condition (1.56) :

βkΦv ⊂ βk
√
µλmax(P)

λmin(P)
Ω∞ (1.71)

The term ρk defined as follow, represents the shrinking index that characterizes the precision
of the mRPI outer-approximation:

ρk = βk

√
µλmax(P)

λmin(P)
(1.72)

We can summarize the procedure of computing an outer approximation of mRPI set in
the following algorithm:

Algorithm 1 Computation of the outer-approximation of the mRPI set
Require: Matrices A, E,∆. The desired precision ε.
1: Find matrix P and the minimum γ satisfying the LMI (1.48)
2: Compute the polyhedral RPI Φv satisfying the inclusion condition (1.56).
3: Set k = 0.
4: Set Φ0 = Φv

5: repeat.
6: Increment k by 1.
7: Compute Φk using the equation (1.59).
8: Until the condition (1.66) is satisfied.
9: return The mRPI set approximation Φk∗ .

Example 1.5
Let us consider the following stable discrete-time linear system,

xk+1 =

(
0.2 0.2

−0.2 0.5

)
xk +

(
0

1

)
wk (1.73)

The state disturbance is assumed completely unknown but bounded ∀k, | wk |≤ 1. By solving
the LMI (1.48) we obtain the minimum γ = 1.8741 and the positive matrix

P =

(
3.0264 −0.9271

−0.9271 2.1636

)
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.

In the Figure (1.11), the blue and red ellipsoids show the initial RPI set Ψ and its one-step
ahead RPI set Ψ

+ respectively. The polyhedral RPI set Φv satisfying the inclusion condition
(1.56) is depicted in black, it has 12 vertices.

The figure (1.11) illustrates the shrinking process starting by the initial polyhedral RPI
set Φ0 = Φv according to the dynamics (1.59), the shrinking process is stopped at k∗ = 8

to guarantee that the outer estimation of the mRPI set is achieved with a shrinking index
ρk ≤ 4.4e−3 (with β = 0.473 and ε = 4.4e−3). The outer-approximation of the mRPI set Φk∗

is represented by the green polyhedron.

The Figure (1.12) represents the shrinking index, as a function of the number of iterations.

Figure 1.11: Shrinking an initial polyhedral RPI set Φ0 to get an RPI outer-approximation
Φk∗ of the mRPI

1.4 Conclusion

This chapter has been devoted to introduce the basic notions and principles on which the
contributions of this thesis are based on. First, several basic definitions and properties about
interval analysis are addressed. We highlighted the importance of using intervals and also the
main problems encountered while manipulating the intervals such as dependency phenomena
and wrapping effect. Secondly, some definitions and properties of ellipsoidal set are addressed.

In addition, we have introduced, the definition of invariant sets and illustrated an algorithm
for computing approximations of the minimal Robustly Positive Invariant set for discrete-time
linear systems. The algorithm is based on the computation of invariant sets using the Bounded
Real Lemma and a suitable shrinking procedure.
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Figure 1.12: Shrinking index with respect to the number of iterations k

The next chapter focuses on the design of a set-membership observer design based on
ellipsoidal RPI sets for discrete-time linear systems.
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invariant sets for linear systems
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2.1 Introduction

The concept of set invariance has already applied to design state observers. The work presented
in [DP05] proposes a state observer based on polyhedral invariant sets for discrete-time linear
systems subject to unknown but bounded persistent disturbances and measurement noise, it
has been shown that the estimation error can be forced to remain inside a polyhedral set by
means of a suitable output injection. Recently, [TLW17] proposed a robust actuator fault
estimation approach for dynamic systems combining the unknown input observer and the
invariant sets. These approaches characterize only a unique invariant set, non necessarily the
minimal RPI set, and does not characterize its possible evolution for any time-instant.

It is of great interest to design set invariant based observers with low complexity and
less computational cost and making possible the characterization of the state bounds over the
whole time horizon. This will be the core idea of this chapter and one of the main contributions
of this thesis.

In this chapter, we explore the concept of Robustly Positive Invariant (RPI) sets to design
a set-membership observer for discrete-time linear systems perturbed by unkown but bounded

39
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disturbances. In particular, we explore the use of RPI sets with ellipsoidal form to frame the
estimation error. We use the ellipsoidal invariant sets for two main reasons:

1. Invariant sets allow to provide state bounds in a deterministic and guaranteed way, while
keeping the invariance property;

2. Ellipsoidal sets have an interesting geometry which make them easy to manipulate, the
characterestics of ellipsoidal sets can be exploited to obtain more simple implementable
solutions.

The proposed set-membership observer provides deterministic state bounds that are build
as the sum of the punctual estimated system states and its corresponding estimation errors
bounds. The design of the proposed observer is based on the solutions of a few number
of Linear Matrix Inequalities that are suitable modified to provide both the observer gain
and ellipsoidal RPI sets. The obtained RPI sets are used to frame the estimation error in a
very simple and accurate way. The observer synthesis process can includes an a posteriori

steady-state covariance matrix for the estimation errors. This covariance matrix is used to
enhance the precision on the computation of the estimation error bounds and to obtain less
conservative dissipation inequality used in the Bounded real lemma formulation.

Some of the most important advantages of the proposed observer are:

X The proposed approach is based on an explicit solution of the estimation-bounding
problem, this allow to reduce the on-line computation costs compared to set-membership
observers that exist in literature ;

X For an n−order systems, the order of set-membership observer is reduced to n+1 instead
of 2n order in the case of interval observers. This allows to implement this observer for
high order systems in industrial applications;

X The set-membership observer design can be considered as an extension of the H∞ ob-
server synthesis, this facilitate its eligibility for solving engineering problems ;

X The observer design require as data problem the knowledge of only the bounds of the
disturbance. Moreover, the observer design could include additional information about
the disturbance nature. Here, we propose to use the variance of the disturbance together
with their bounds to design the observer ;

X The proposed approach allows us to combine computation of stochastic sets (based
on the information about the disturbance variance) together with the computation of
deterministic sets (based on the knowledge of the disturbance bounds);

X The proposed observer is very simple and easy to implement compared to set-
membership observers available in the literature, since it uses a simple explicit solution
for computing the estimation error bounds.
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This chapter is organized as follows: Section 2.2 presents the class of linear systems used in
this chapter and formulates the state estimation problem. The design of the proposed observer
is presented in the Section 2.3, this section is divided into four subsections: a first subsection
dedicated to H∞ observer gain design, a second subsection devoted to computing ellipsoidal
RPI sets, the third and fourth subsections are dedicated to characterize the evolution of the
ellipsoidal RPI sets. Section 2.4 is then dedicated to the observer implementation. A numerical
example is studied in order to show the performance of the proposed observer. This chapter
ends with a conclusion.

2.2 Problem statement

The class of systems addressed in this chapter is that of discrete-time linear systems assumed
to be perturbed by unknown but bounded disturbances: xk+1 = Axk + Buk + Fdk

yk = Cxk + Zvk
(2.1)

where xk ∈ Rn is the state vector, uk ∈ Rnu is the input vector and yk ∈ Rny is the measured
output vector. The vectors dk ∈ Rnd and vk ∈ Rnv are unknown state disturbances and
unknown measurement noises, respectively. The vector of total disturbances regrouping state
disturbances and measurement noise, i.e. [dk vk]T . is assumed to belong to a bounded set
which includes the zero, even if this assumption is not satisfied an appropriate translation can
be used. The matrices A,B,F,C,Z have appropriated dimensions. We assume that the pair
(A,C) is observable. The considered problem is to compute at each time-instant the state
bounds containing, in a guaranteed way, all possible state vectors of the system (2.1).

Suppose one can design a Luenberger observer:

x̂k+1 = (A− LC)x̂k + Buk + Lyk (2.2)

where x̂k is the state estimation vector and L is the observer gain matrix that assures the
Schur stability of the matrix (A− LC).

The estimation error at a given instant k can be defined as follows:

ek := xk − x̂k (2.3)

From (2.1) and (2.2) one can obtain the dynamics of the estimation error as follows:

ek+1 = Aoek + Ewk (2.4)

where Ao = (A− LC), E = [F − LZ] and wk ∈ Rm, defined as wk :=

(
dk
vk

)
.

From the equation (2.4), we notice that on one hand, the observer gain L assures the
stability of estimation error dynamics and on another hand, the observer gain intervenes on the
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Figure 2.1: Principle of the proposed approach

amplification or on the attenuation of the disturbances wk. Hence, the choice of an adequate
gain is paramount to solve the trade-off between convergence speed and error amplification.

Let’s assume that the estimation error is bounded and the bound of the estimation error,
denoted ek is known. At each time-instant, the real state vector is included between a lower
and upper bounds defined as follows:

x̂k − ek ≤ xk ≤ x̂k + ek (2.5)

In other words, at every time-instant we can guarantee that the system state belongs to a set
defined by the vectors xk := x̂k − ek and xk := x̂k + ek i.e:

xk ≤ xk ≤ xk (2.6)

In this case, a set-membership observer could be implemented as follows:

x̂k+1 = (A− LC)x̂k + Buk + Lyk (2.7)

xk = x̂k + ek (2.8)

xk = x̂k − ek (2.9)

The set-membership state estimation can be reduced to a computation of the vectors xk
and xk as the sum the estimation state x̂k and a bound of the estimation error ek and
−ek, respectively. The principle of the proposed approach is illustrated in Figure (2.1). The
first part of the proposed set-membership observer (2.7) which provides the punctual state
estimation x̂ can be designed like any other punctual observer, where the gain L is computed
such that (A− LC) is Schur stable.

In (2.8) and (2.9), computing the state bounds xk (respectively xk) returns to compute the
error bound ek. To do that we propose a new method based on the computation of ellipsoidal
Robustly Positive Invariant (RPI) sets. Such sets are used to compute suitable deterministic
bounds of the estimation error ek.

2.3 Set-membership observer design

In this Section, we will describe the proposed method for:
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• Computing the observer gain L by using an H∞ design approach.

• Characterizing the evolution of the estimation error bounds by using RPI sets.

2.3.1 H∞ Observer gain design

Proposition 2.1
Consider the system (2.1). The observer gain L, allowing to attenuate the effect of the
disturbances on the estimation error (i.e the H∞ norm of the system (2.4) is lower than
γ > 0), exists if there exists a symmetric positive definite matrix P and a matrix U satisfying
the following LMI (with dimension m = nd + nv): −P + In 0n×m ATP−CTUT

0m×n −γ2Im [PF −UZ]T

PA−UC [PF −UZ] −P

 4 0 (2.10)

Moreover, the observer gain L will be:

L = P−1U (2.11)

Proof. Consider the estimation error dynamics (2.4). AnH∞ observer is intended to attenuate
the effect of the system’s disturbances wk on the estimation error ek.

min
L∈Rnx×ny

γ2 subject to
‖ ek ‖22
‖ wk ‖22

≤ γ2 (2.12)

Let’s consider a Lyapunov function V(ek) = eTkPek of the system (2.4) where P is a
symmetric positive definite matrix and γ a positive scalar verifying the following dissipation
inequality:

V(ek+1)−V(ek) ≤ −eTk ek + γ2wT
kwk (2.13)

then
eTk+1Pek+1 − eTkPek + eTk ek − γ2wT

kwk ≤ 0 (2.14)

we replace (2.4) in (2.14) we obtain

(Aoek + Ewk)
TP(Aoek + Ewk)− eTkPek + eTk ek − γ2wT

kwk ≤ 0 (2.15)

eTk (AT
oPAo−P+In)ek+eTk (AT

oPE)wk+wT
k (ETPAo)ek+wT

k (ETPE−γ2Im)wk ≤ 0 (2.16)(
ek
wk

)T (
AT
oPAo −P + In AT

oPE
ETPAo ETPE− γ2Im

)(
ek
wk

)
≤ 0 (2.17)

The gain L intervenes implicitly in the previous inequality because A0 = A−LC. To find L,
the matrix P and the minimum scalar γ satisfying the following inequality:(

AT
oPAo −P + In AT

oPE
ETPAo ETPE− γ2Im

)
4 0 (2.18)



44 Chapter 2. Observers based on ellipsoidal invariant sets for linear systems

The equation (2.18) can not be solved as an LMI because it contains non linear terms, we
are going to transform it in order to obtain an LMI that can be resolved using the classical
existent tools. First, one can rewrite (2.18) as follows:(

−P + In 0n×m
0m×n −γ2Im

)
+

(
AT
oPAo AT

oPE
ETPAo ETPE

)
4 0 (2.19)

Then, we apply the Schur complement (Definition 1.8) for the inequality (2.19), we obtain: −P + In 0n×m AT
oP

0m×n −γ2Im ETP
PAo PE −P

 4 0 (2.20)

Replacing Ao = (A− LC) and E = [F − LZ] in (2.20), we get: −P + In 0n×m ATP−CTLTP
0m×n −γ2Im [PF −PLZ]T

PA−PLC [PF −PLZ] −P

 4 0 (2.21)

by performing a suitable change of variable in (2.21), i.e. U := PL, we obtain the following
LMI:  −P + In 0n×m ATP−CTUT

0m×n −γ2Im [PF −UZ]T

PA−UC [PF −UZ] −P

 4 0 (2.22)

Once the matrices P, U and the minimum scalar γ are found, the observer gain L can be
computed as:

L = P−1U (2.23)

Thus, the first part of the set-membership state observer, equation (2.7), is completely
defined. The problem now is to compute suitable bounds of the estimation error (i.e ek) in
order to implement (2.8) and (2.9). This will be the objective of the next subsection.

2.3.2 Computing ellipsoidal RPI sets

Proposition 2.2
Consider the system (2.4) with bounded disturbances ∀k ≥ 0, wTw ≤ wTw, where wTw =

sup{wTw}. If there exists a symmetric definite matrix P and a scalar γ ≥ 0 verifying the
condition (2.20), then the ellipsoidal set Φ defined below is a robustly invariant set for the
system (2.4):

Φ := {e ∈ Rn : eTPe ≤ λmax(P)γ2wTw} (2.24)

where λmax(P) is the maximum eigenvalue of the matrix P



2.3. Set-membership observer design 45

Furthermore, the steady-state bounds of the estimation error, denoted by e∞ can be
obtained as follows:

e∞ = diag

((
P

λmax(P)γ2wTw

)−1/2
)

(2.25)

Proof. Considering that the norm-2 of the disturbances can be bounded as wTw ≤ wTw.
Then, from (2.13) we have:

V(ek+1)−V(ek) ≤ −eTk ek + γ2wTw ≤ 0 (2.26)

if eTk ek ≥ wTw, that means that outside the ball

Bw := {ek ∈ Rn : eTe ≤ γ2wTw} (2.27)

the increment of the Lyapunov function, i.e. V(ek+1) −V(ek), is negative, this implies that
any level set of the Lyapunov function Ω := {e ∈ Rn : eTPe ≤ c} that contains the ball Bw
is an attractive invariant set. A value of c which guarantees that the ball Bw is included into
the set Ω can be calculated as c = γ2wTw . Thus, the set Φ defined below is an attractive
invariant set for the system (2.4):

Φ := {e ∈ Rn : eTPe ≤ λmax(P)γ2wTw} (2.28)

Now, using the projection of the ellipsoidal sets (definition 1.5), steady-state bounds on
ek (i.e. for k →∞) can be computed by:

e∞ = diag

((
P

λmax(P)γ2w̄T w̄

)−1/2
)

(2.29)

Remark 2.1
The set Ω defined as follows:

Ω := {e ∈ Rn : −e∞ ≤ e ≤ e∞} (2.30)

is an hypercube which includes the ellipsoidal RPI set (2.24) The Figure (2.2) shows the
ellipsoidal RPI set defined in (2.24) and the hypercube defined in (2.30) which includes the
ellipsoidal RPI set (2.24).

Remark 2.2
The above bounds on ek presents two drawbacks:

(i) Those bounds only characterize the steady-state regime of the estimation error;

(ii) The used ellipsoidal RPI set could present an important volume, providing very conser-
vative bounds of the estimation error.
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Figure 2.2: The hypercube Ω (in dashed black lines) including the ellipsoidal RPI set Φ (in
red) in steady-state regime

In the next section, we will propose a method to reduce the size (the volume) of the
obtained RPI sets to enhance the precision of the obtained bounds. In addition to this, we
will use the evolution of the Lyapunov level sets, describing the RPI sets, for finding suitable
bounds of the estimation error for any instant-time k > 0.

2.3.3 Shrinking of ellipsoidal RPI sets

2.3.3.1 Suitable modification of the dissipation matrix

The condition (2.20) can be modified in order to obtain a more general LMI by considering a
dissipation matrix Q.

Proposition 2.3
For a given symmetric definite matrix P and a scalar γ ≥ 0 verifying the condition (2.20), and
considering the existence of a symmetric positive definite matrix Q such that the following
LMI holds:  −P + Q 0n×m AT

oP
0m×n −γ2Im ETP
PAo PE −P

 4 0 (2.31)

Then, a smaller (minimal volume) ellipsoidal RPI set can be obtained as follows:

Ψ :=

{
e ∈ Rn : eTPe ≤ 1

λ
γ2w̄T w̄

}
(2.32)

where, for all vector e different to zero, the scalar λ satisfy

λ ≤ eTQe
eTPe

≤ 1 (2.33)

Proof. It is possible to shrink the ellipsoidal RPI set (2.28) by finding a novel condition of the
negative increments of the Lyapunov function. That is, assuming the existence of a symmetric
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positive definite matrix Q, we can modify (2.26) to obtain the following less conservative
dissipation inequality:

V(ek+1)−V(ek) ≤ −eTkQek + γ2w̄T w̄ ≤ 0 (2.34)

which holds if eTkQek ≥ γ2w̄T w̄.

Thus the LMI (2.22), used to compute observer gain, can be transformed into a more
general LMI which consider any dissipation matrix Q, that is: −P + Q 0n×m ATP−CTUT

0m×n −γ2Im [PF −UZ]T

PA−UC [PF −UZ] −P

 4 0 (2.35)

Once the matrix P and the minimum scalar γ have been computed from (2.35) for any initial
dissipation matrix Q. A new and refined matrix Q can be obtained, in a second time, by
minimizing the volume of the ellipsoid defined by this matrix. That is, find Q which minimizes
− ln det(Q) and verifies the following LMI:(

AT
oPAo −P + Q AT

oPE
ETPA ETPE− γ2Im

)
4 0 (2.36)

In this way, a smaller ellipsoidal RPI set can be obtained as follows:

Ψ :=

{
e ∈ Rn : eTPe ≤ 1

λ
γ2w̄T w̄

}
(2.37)

where, for all vector e, the scalar λ satisfy

λ ≤ eTQe
eTPe

≤ 1 (2.38)

which is known as the Rayleigh quotient (see [Par74] for instance). The scalar λ satisfying
(2.38) can be obtained as the minimum generalized eigenvalue of the pair (Q,P).

The ellipsoid (2.37) represents the smallest level set of the Lyapunov function which in-
cludes the set:

B∗w := {e ∈ Rn : eTQe ≤ γ2wTw} (2.39)

The new steady-state bounds is given as follows:

e∞ = diag

( P
1
λγ

2w̄T w̄

)−1/2
 (2.40)

Remark 2.3
The choice of the dissipation matrix Q is a degree of freedom that can be used to find small
volume RPI sets, and in addition, as we will present later, it allows for including information
about the a posteriori estimated state covariance.
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If the information about the covariance of the disturbances is available, the approach can
exploit this information in order to improve the precision of the estimation error bounds. This
will be the object of the next subsection.

2.3.3.2 Using the a posteriori steady-state covariance matrix

If the co-variance matrix of the disturbance var(Ewk) is known, it is possible to obtain
a steady-state bounds e∞ smaller than the one computed in (2.29). Considering that the
expected value of ek ∈ Rn in (2.4) is equal to zero, its steady-state covariance matrix is V .
For any real number t > 0, we can use the multidimensional Chebyshev’s inequality:

Pr(eTk V
−1ek > t2) ≤ n

t2
(2.41)

for computing a stochastic ellipsoidal set. Even if this set could have very small volume, this
set is not an invariant set because there is a probability that some trajectories of the estimation
error e go out this set. However, its shape matrix can be used to update the dissipation matrix
Q during the observer design.

Remember that the Lyapunov function in (2.34) only decreases if the following condition
holds:

eTkQek > γ2w̄T
k w̄k (2.42)

Remark that this deterministic condition has the same shape than the inequality (2.41), if we
get Q = V −1.

Hence, the problem now is to calculate the matrix V . The steady-state covariance matrix
of the estimation error can be obtained by solving the following Lyapunov equation [KDS12]:

AoVAT
o − V = −W (2.43)

whereW represents the covariance matrix for disturbances Ewk in (2.4). In practical applica-
tions where the co-variance matrix for disturbances is not available, we can assume that every
element of the disturbance vector wk is uniform distributed but bounded in a given interval
[a, b]. In this case, its variance can be computed as

W = var(Ewk) = (1/12)(b− a)2EET (2.44)

with wk ∈ [a, b]

Remark 2.4
Remark that the computation of V is possible once the matrix Ao is available, i.e. an a
priori observer matrix gain L has to be calculated using an initial and arbitrary matrix Q, for
instance Q = In. After that, a significant reduction of the RPI set volume could be obtained
by re-starting the observer design process with the new computed matrix Q = V −1.

The complete observer design process is summarizing in Algorithm 1.
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Algorithm 2 set-membership observer design based on ellipsoidal invariant sets.
Require: Matrices A,B,C,F and Z describing system (2.1). Initialization of Q = In and

i = 0.
1: Increment i by one
2: Find matrices P, U and the minimum γ who satisfy the LMI (2.35).
3: Compute L = P−1U.
4: Compute Ao = A− LC.
5: Compute E = [F − LZ]

6: Using P and γ, find a new matrix Q which satisfies the LMI (2.36) which minimizes the
volume of the ellipsoid xTQx ≤ 1.

7: Compute the minimum λ which satisfies (2.38)
8: if i < 2 then
9: Compute the disturbance variance W using (2.44).

10: Obtain the covariance matrix V using (2.43).
11: Do Q = V −1.
12: Go to step 1.
13: end if
14: return The observer parameters L, P, γ and λ.

Once the Algorithm 2 returns P , γ and λ, a smaller steady-state bounds on ek can be
obtained as follows:

e∞ = diag

( P
1
λγ

2w̄T w̄

)−1/2
 (2.45)

In the next Section, we will use the evolution of the Lyapunov level sets, describing the RPI
sets, for finding suitable bounds during the whole running i.e. ∀k > 0.

2.3.4 Characterizing the evolution of the RPI sets

Proposition 2.4
This proposition allows to characterize at every time instant k, The ellipsoidal RPI set Ψk

which is given as follows:
Ψk := {e ∈ Rn : eTPe ≤ µk c̄} (2.46)

where c̄ := 1
λγ

2wTw and µ is the shrinking index given by:

µk+1 = (1− λ)µk + λ (2.47)

Moreover, the estimation error bound, denoted ek is obtained as follows:

ek = diag

((
P
µk c̄

)−1/2
)

(2.48)

Proof. Suppose that the initial estimation error, denoted e0, is unknown but belongs to an
initial bounded set E0 ⊂ Rn.
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There exists a scalar µ ≥ 1 such that the following condition holds:

E0 ⊂ Ψ (2.49)

with

Ψ :=

{
e ∈ Rn : eTPe ≤ 1

λ
µγ2wTw

}
(2.50)

Then,

eTkPek ≤
1

λ
µγ2w̄T w̄ (2.51)

Remark that the set (2.50) corresponds to an expansion of the invariant set (2.37). For
this reason the set (2.50) is also an invariant set.

From the inequality (2.34), using the relation (2.38) and the fact that 0 < λ ≤ 1, we have:

V(ek+1) ≤ V(ek)− eTkQek + γ2w̄T w̄ (2.52)

eTk+1Pek+1 ≤ eTkPek − eTkQek + γ2w̄T w̄ (2.53)

≤ eTkPek − λeTkPek + γ2w̄T w̄ (2.54)

≤ (1− λ)eTkPek + γ2w̄T w̄ (2.55)

≤ (1− λ)
1

λ
µγ2w̄T w̄ + γ2w̄T w̄ (2.56)

≤
(

1

λ
µ− µ+ 1

)
γ2w̄T w̄ (2.57)

which describes the set containing the one-step ahead estimation error ek+1. We can now
explicitly compute the one-step ahead RPI set, denoted Ψ

+, as follows:

Ψ
+

:=

{
e ∈ Rn : eTPe ≤

(
1

λ
µ− µ+ 1

)
γ2w̄T w̄

}
(2.58)

By defining c̄ := 1
λγ

2wTw we have a more compact expression of the expanded invariant set
(2.50) and its one-step ahead invariant set evolution (2.58), that is

Ψ := {eTPe ≤ µ c̄}

Ψ
+

:= {eTPe ≤ ((1− λ)µ+ λ)︸ ︷︷ ︸
µ+

c̄} (2.59)

These expressions can be used to infer a recursive relationship between µ and its one-step
ahead value, denoted µ+ in (2.59). Thus, for a given initial condition µ0 ≥ 1 the dynamics of
this scalar, at every time-instant k, obeys:

µk+1 = (1− λ)µk + λ (2.60)

This dynamics is necessarily stable because it characterizes the contraction of the invariant
set (2.50). In addition, µk asymptotically converges to 1 as long as the time-instant k →∞.
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Hence, at every time instant, the invariant sets obeys the following dynamics:

Ψk := {e ∈ Rn : eTPe ≤ µk c̄} (2.61)

and its ellipsoidal shape matrix can be used to compute a more accuracy bounds for the
estimation error. That is,

ek = diag

((
P
µk c̄

)−1/2
)

(2.62)

equivalently,
ek = e∞µ

1/2
k (2.63)

with e∞ a known constant column vector defined as

e∞ := diag

((
P
c̄

)−1/2
)

(2.64)

It only remains to compute an appropriated initial value for the scalar µ. To do this,
suppose that the initial condition for the estimation error verifies e(0) ∈ E0 ⊆ B0, where, for
a given scalar γε ≥ 0, the ball B0 defined as follows

B0 := {e ∈ Rn : eTe ≤ γ2
ε } (2.65)

will be included into the invariant set

Ψ0 := {e ∈ Rn : eTPe ≤ λmax(P)γ2
ε } (2.66)

Thus, using (2.61) and (2.66) a suitable initial value of µ verifies:

µ0c̄ = λmax(P)γ2
ε (2.67)

and then, we can chose µ0 = λmax(P)γ2
ε /c̄.

2.4 The set-membership observer implementation

Once the Algorithm 1 returns the observer parameters L, P, γ and λ, and after to initialize
the scalar µ in a suitable way. The dynamical equations of the set-membership observer will
be implemented as follows:

x̂k+1 = (A− LC)x̂k + Buk + Lyk (2.68)

µk+1 = (1− λ)µk + λ (2.69)

xk = x̂k + e∞ µ
1/2
k (2.70)

xk = x̂k − e∞ µ
1/2
k (2.71)
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where e∞ is a known constant column vector defined in (2.64).

The initial condition for the scalar µ can be obtained as:

µ0 =
λmax(P)

c̄
(2.72)

For any initial estimation error insides a given ball with radius γε > 0, i.e.

eT0 e0 ≤ γε

with e0 := x0 − x̂0.

Recall that we assume that the initial estimation error is bound, and its bound is known,
that is γε is known. This value allows to properly initialize the scalar µ using (2.72).

The implementation of the proposed set-membership observer is relatively simple, since
it only requires to extend the punctual observer dynamics by including a scalar dynamical
equation. Thus, the order of the set-membership state observer will be only of n+ 1, for any
n-order system.

2.5 A numerical example

Consider a second order linear discrete-time system (2.1) with matrices:

A =

(
0.2 0.2

0 0.5

)
, B =

(
1

1

)
, F =

(
0

0.1

)
, C =

(
1 0

)
and Z = 0.1.

After applying the Algorithm 2, the obtained matrices which describe the set-membership
state observer are:

L =

(
0.5453

0.8919

)
, P = 1e3

(
2.5084 −0.8209

−0.8209 0.4749

)
and the scalars: γ = 2.3223 and λ = 0.6289.

We suppose that for all k, the disturbances wk are random variables with uniform distri-
bution but bounded by the vector w = (1 1)T . That is, ∀k > 0,−w ≤ wk ≤ w.

In this example, we consider a constant system input uk = 1 for time-instants k < 9. After
the time-instant k ≥ 9 the system input vanishes.

The set-membership state observer has been implemented using equations (3.63)-(3.66).
The initial conditions for the observer states x̂ and the scalar µ are: x̂0 = (0 0)T and µ0 =
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Figure 2.3: Set-membership estimation. The dashed lines correspond to the bounds obtained
from the set-membership state observer. For comparison, the solid lines corresponds to the
real system state.

163.17, respectively. The latter has been computed using (2.72) by considering (−1 0)T ≤
x0 ≤ (1 0)T and then γε = 1.

Figure 3.3 illustrates the state enclosures. The dashed lines correspond to the bounds
obtained from the set-membership state observer. For comparison, we have included the solid
lines which corresponds to the real system state. Remark that the obtained bounds are very
accuracy for both transient and steady-state periods.

Figure 3.5 depicts the behavior of the scalar µk during the whole period of the estimation.
Remark that even if its value starts at 163.17, it converges asymptotically to 1 with a behavior
compatible with the estimation error dynamics.

In Figure 3.6, the solid-line ellipsoid corresponds to the obtained RPI set used for com-
puting deterministic bounds of the estimation error (for µ = 1). The dashed-line corresponds
to the stochastic ellipsoidal defined by (2.41) with t = 3. Remark that the obtained RPI set
has taken a shape that is very close to that characterizing the states covariances. The latter
set represents the set of possible values of the estimation error with a probability greater than
77.78%. Thus, according to the Chebyshev’s inequality (2.41) there is a probability of obtain-
ing estimation errors outside this set with a probability less or equal to 22.22%. However, for
initial conditions starting inside the RPI set (solid-line ellipsoid), it is possible to conclude
that, for all k > 0, the estimation error always remains inside this set.
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Figure 2.4: Evolution of the scalar µk. This scalar characterizes the contraction of the initial
RPI set. The value of µk converges to 1 as k →∞.

2.6 Conclusion

This chapter has presented a new set-membership observer design method based on ellipsoidal
robustly invariant sets for discrete-time linear systems perturbed by unknown but bounded
disturbances. The set-membership observer provides a deterministic state interval that is build
as the sum of the estimated system states and its corresponding estimation error bounds. The
proposed approach is based on the solutions of a few number of Linear Matrix Inequalities that
are suitable modified to provide both observer parameters and ellipsoidal Robustly Positive
Invariant sets. The latter are used to frame the estimation error in a very simple and accurate
way.

The enhanced precision on the computation of the estimation error bounds has been possi-
ble thanks to the use of the a posteriori calculated covariance matrix that allows, in a second
time, to better describe the dissipation equation used in the Bounded-real lemma formulation.
A numerical example illustrates the behavior of such set-membership observer and shows its
easy implementation.
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Figure 2.5: Invariant set and states covariances. The solid line corresponds to the obtained
RPI set used for computing deterministic bounds of the estimation error. The dashed line
corresponds to the stochastic ellipsoidal defined by (2.41) with t = 3.
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3.1 Introduction

The set-membership observer presented in the Chapter 2 was addressed for the class of linear
systems. It is interesting to be able to apply this observer to a large class of systems such
non linear systems and switched systems. It has been shown that a Linear Parameter Vary-
ing (LPV) equivalent representation can be an appealing alternative to deal with non linear
systems and switched systems.
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It exists in the literature some interval observers for LPV systems, for example: the work
of [WBR15] developed an interval observer design methodology for linear parameter varying
discrete-time systems with parametric uncertainty, the observer gain that ensures the stability
and cooperativity of the estimation error is computed as a convex semi-definite programming
problem. In the context of continuous systems, [Che+13] proposed an interval observers design
for continuous-time LPV and non-negative systems where the cooperativity and stability are
expressed in terms of matrix inequalities.

In this chapter we present the extension of the set-membership observer based on ellipsoidal
invariant sets presented in the Chapter 2 for the Linear Parameters Varying (LPV) discrete-
time systems.

This chapter is organized as follows: Section 3.2 is devoted to the problem statement.
The section 3.3 presents the set-membership observer design for LPV systems, this Section
is composed of three subsections: a first subsection presents the H∞ observer gain design,
a second subsection shows how to compute ellipsoidal RPI sets and the third subsection
dedicated to characterize the evolution of ellipsoidal RPI sets bounding the estimation error
at each time-instant. Section 3.4 summarize the set-membership design via an algorithm.
The Section 3.5 is devoted to the implementation of the proposed observer. In Section 3.6,
an example of LPV system is addressed in order to show the performance of the proposed
observer. We finish this chapter with a conclusion.

Before addressing the design and implementation of the observer, let’s start with a small
reminder about the LPV systems and their importance.

3.1.1 Linear Parameter Varying systems

LPV modeling is one of the major tools used in modeling and control of a large class of
systems. LPV systems are more representative for real systems taking into consideration more
dynamics and more information on varying parameters. In fact, LPV systems ensure a good
approximation of a non linear model by using a state space varying parameters representation
that is close to the real dynamical behavior. The Figure (3.1) shows the importance of LPV
systems as a bridge between the Non Linear (NL) systems and Linear Time Invariant (LTI)
systems. The LPV systems can be seen as a combination of several LTI systems each time the
varying parameters takes values in the set of variations. The advantage of the LPV system is
that it keeps a linear structure which allows to use several synthesis and analysis mathematical
tools for linear systems.

Définition 3.1
In general, a discrete-time LPV system can be represented by the following space-state repre-
sentation:  xk+1 = A (ρ(.)) xk + B(ρ(.))uk + F(ρ(.))dk

yk = C(ρ(.))xk + Z(ρ(.))vk
(3.1)

where at least one of the matrices A(ρ(.)), B(ρ(.)), F(ρ(.)), C(ρ(.)), Z(ρ(.)) depend on the
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Figure 3.1: Relation between the different classes of systems

parameter vector ρ = ρk. The scheduling parameter vector ρ(.) ∈ RL is a time-varying mea-
surable parameter vector, where L is the number of varying parameters.

The systems of the type (3.1) can be modeled by different class of systems:

• if ρ(.) = ρ = constant, then the system (3.1) is a Linear Time Invariant (LTI) system.

• if ρ(.) = ρ(t) where the time dependency is explicit, then the system (3.1) is a Linear
Time Varying (LTV) system.

• if ρ(.) = θ(t) with θ(t) being an external measurable parameter, then the system (3.1) is
a Linear Parameter Varying (LPV) system.

• if ρ(.) = θ(t) with θ(t) being an uncertain and non measurable parameter, then the
system (3.1) is an uncertain (LTI or LTV) system.

• if ρ(.) = ρ(x(t)) depends on the state vector, then the system (3.1) is a quasi-Linear
Parameter Varying (qLPV) system.

Several representations of the LPV systems are available in the literature:

• Polynomial representation [Rug81]

• Linear Fractional Transformation (LFT) representation [BSL07]

• Polytopic decomposition [MAB05]

In our context, we are going to use the polytopic decomposition.
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3.1.2 Polytopic decomposition of a LPV model

Polytopic decomposition of a LPV model is one of the most useful model transformation
allowing a LPV model to be written in terms of a convex hull of linear models. In particular,
the LPV system matrices can be modeled as convex hulls of linear matrices. Those linear
matrices are obtained using all possible extreme values of the scheduling parameter. The
polytopic decomposition, see for instance [MAB05], can be formulated as follows:

Proposition 3.1
(See [CDD08]) Consider the LPV system (3.1)), for a given scheduling parameter ρ ∈ Ωρ, there
exist a column vector α ∈ RN , formed by positive scalar elements αi ≥ 0, i = {1, · · · , N},
such that [

θT1 θT2 · · · θTN
1 1 · · · 1

]
α =

[
ρ

1

]
(3.2)

where the row vectors θi ∈ R1×L, i = {1, · · · , N}, are the a priori known vertices of the
polytopic set Ωρ ⊂ RL.

Notice that the vector α is formed by elements satisfying: αi ≥ 0 and
∑N

i=1 αi = 1.
Therefore the state-space matrices can be written in a polytopic form as follows:

M(ρ) =

N∑
i=1

αiMi (3.3)

where each matrix Mi can be obtained using its corresponding vertex θi, as follows: Mi =

M(θi), for i = {1, · · · , N}. Remark that all matrices Mi can be computed offline. These
matrices together with α, solution of (3.2), can be used online for computing the matrix
M(ρ).

Example 3.1
Let’s consider an LPV system with 2 varying parameters ρ1 ∈ [ρ

1
, ρ1] and ρ2 ∈ [ρ

2
, ρ2]. The

polytope Ωρ is formed of 4 vertices θ1, θ2, θ3 and θ4. The polytope can be obtained as follows:

Ωρ = convexhull{θ1, θ2, θ3, θ4} (3.4)

where
θ1 = (ρ

1
, ρ

2
)

θ2 = (ρ1, ρ2
)

θ3 = (ρ1, ρ2)

θ4 = (ρ
1
, ρ2)

with L = 2 and N = 4. The figure 3.2 illustrates the polytope Ωρ used for polytopic represen-
tation of an LPV system with 2 parameters.
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Figure 3.2: Example of a polytope Ωρ for polytopic representation of an LPV system with 2
varying parameters.

3.2 Problem statement

Let’s consider the LPV discrete-time system represented by the following dynamic equations: xk+1 = A(ρk)xk + B(ρk)uk + F(ρk)dk
yk = Cxk + Zvk

(3.5)

where xk ∈ Rn is the state vector, uk ∈ Rnu is the input vector and yk ∈ Rny is the
measured output vector. The vectors wk and vk are unknown state disturbances and unknown
measurement noises assumed to be unknown but bounded with known bounds. The matrices
C, Z are constant matrices with appropriated dimensions. In the case where C and Z depends
on ρ, it is possible to rewrite the system (3.5) by including an output filter to assure new
matrices C∗ and Z∗ independent on ρ.

The matrices A(ρk),B(ρk),F(ρk) are state-space matrices parameterized by the schedul-
ing parameter vector ρk, we assume that these matrices are affinely dependent on ρk. The
scheduling parameter vector ρ is a time-varying measurable parameter vector. In this work,
it is assumed that all possible values of ρk belong to a given bounded polytopic set Ωρ. The
pair (A(ρk),C) is assumed detectable for all values of ρk ∈ Ωρ

Suppose now we can design the following LPV observer:

x̂k+1 = Ã(ρk)x̂k + B(ρk)uk + L(ρk)yk (3.6)

Where Ã(ρk) = A(ρk)− L(ρk)C. The estimation error is given ek := xk − x̂k, the dynamics
of the estimation error can be obtained from (3.5) and (3.6), as follows:

ek+1 = Ã(ρk)ek + E(ρk)wk (3.7)
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where E(ρk) = [F(ρk) − L(ρk)Z] and wk ∈ Rm, defined as wk :=

(
dk
vk

)
.

The disturbance vector wk is assumed to belong to a bounded i.e wk ∈ W ⊂ Rm. We
assume that the disturbance wk can be bounded as follows wT

kwk ≤ wTw for all k ≥ 0, where
w = sup{wk}.

The reasoning is the same as in Chapter 2, we suppose that we know exactly the bounds
of the estimation error, denoted ek. At each time-instant, the real state is included between
a lower and upper bounds defined as follows:

x̂k − ek ≤ xk ≤ x̂k + ek (3.8)

Then, at every time-instant we can guarantee that the system state belongs an hypercube
defined by the vectors xk := x̂k − ek and xk := x̂k + ek i.e :

xk ≤ xk ≤ xk (3.9)

Then, a set-membership observer for the LPV system (3.5) can be implemented as follows:

x̂k+1 = (A(ρk)− L(ρk)C)x̂k + B(ρk)uk + L(ρk)yk (3.10)

xk = x̂k + ek (3.11)

xk = x̂k − ek (3.12)

The set-membership observer problem returns to compute the punctual state estimation x̂k
and the estimation error bounds ek. Once this task is performed, we just have to compute
the vectors xk and xk as the sum of both state estimation and its corresponding estimation
error bounds. These aspect will be illustrated in the next sections.

3.3 Set-membership design for LPV systems

3.3.1 H∞ Observer gain design

The punctual state estimation x̂k is given by (3.10) where the observer gain matrix L(ρk) can
be written in a polytopic form, i.e. L(ρk) =

∑N
i=1 αiLi. The H∞ gain synthesis is quite similar

to the one presented in the previous chapter ( see (2.22)) where the H∞ gain is intended to
minimize the impact of the system disturbances wk on the estimation error. Theorem 3.1
allows the computation of the H∞ observer gain.

Theorem 3.1
Consider the system (3.7) and a given matrix Q > 0. The observer gains Li which minimize
the H∞ norm of the system (3.7) are found if there exist symmetric positive definite matrices
P , a positive scalar γ > 0 and matrices Ui satisfying the following condition:

for i = {1, · · · , N}

 −P + Q 0n×m AT
i P−CTUT

i

? −γ2Im [PFi −UiZ]T

? ? −P

 � 0 (3.13)
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Moreover, the observer gain matrices can be obtained as

Li = P−1Ui

observer gain matrix L(ρ) can be written in a polytopic form:

L(ρk) =

N∑
i=1

αiLi

Proof. The proof is obtained by performing the same reasoning as in the Proposition 2.1.
Let’s consider the following candidate Lyapunov function for the system (3.7):

V (ek) = eTkPek ≥ 0 (3.14)

Suppose the existence of of semi positive definite matrix P and a positive scalar γ verifying
the following dissipation inequality:

V (ek+1)− V (ek) ≤ −eTkQek + γ2wT
kwk (3.15)

by replacing (3.14) in (3.15) and using the estimation error dynamics (3.7), we obtain:

eTk (Ã(ρk)
TPÃ(ρk)−P + Q)ek + eTk (Ã(ρk)

TPE(ρk))wk

+ wT
k (E(ρk)

TPÃ(ρk))ek + wT
k (E(ρk)

TPE(ρk)− γ2Im)wk ≤ 0 (3.16)

For any
(

ek
wk

)
6= 0, this inequality can be written in the following matrix form:

(
Ã(ρk)

TPÃ(ρk)−P + Q Ã(ρk)
TPE(ρk)

E(ρk)
TPÃ(ρk) E(ρk)

TPE(ρk)− γ2Im

)
� 0 (3.17)

Let’s write this condition as follows:(
−P + Q 0n×m

0m×n −γ2Im

)
+

(
Ã(ρk)

TPÃ(ρk) Ã(ρk)
TPE(ρk)

E(ρk)
TPÃ(ρk) E(ρk)

TPE(ρk)

)
� 0 (3.18)

then, by using the Schur complement we obtain: −P + Q 0n×m Ã(ρk)
TP

0m×n −γ2Im E(ρk)
TP

PÃ(ρk) PE(ρk) −P

 � 0 (3.19)

We can rewrite condition (3.19) at every vertex of the polytopic model (see for instance
[AGB95]), as follows:

For i = 1, ..., N ;

 −P + Q 0n×m Ã
T
i P

0m×n −γ2Im ETi P
PÃi PEi −P

 � 0 (3.20)

where Ãi := (Ai − LiC) and Ei = [Fi − LiZ].
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Notice that the existence of P means that the family of systems, described by matrices Ãi

and Ei, for i = {1, · · · , N}, share the common Lyapunov function V (ek) = eTkPek −P + Q 0n×m AT
i P−CTLTi P

? −γ2Im [PFi −PLiZ]T

? ? −P

 � 0 (3.21)

. By substitution, we have Now by performing a change of variable in (3.21), i.e. Ui := PLi,
to transforming this condition in a LMI, we obtain the following condition: −P + Q 0n×m AT

i P−CTUT
i

? −γ2Im [PFi −UiZ]T

? ? −P

 � 0 (3.22)

which corresponds to that proposed in (3.13).

Once the matrices P, Ui and the minimum scalar γ are found, the state observer gain
matrices Li can be obtained as Li = P−1Ui because Ui := PLi.

The problem now is to compute suitable bounds of the estimation error ek. Here, the
presented synthesis allows to design the observer gain and in the same time allows to compute
ellipsoidal RPI sets bounding the estimation error at every instant time. This aspect is one
the main novelties of this contribution. The next section is dedicated to the computation of
ellipsoidal RPI sets bounding the estimation error.

3.3.2 Computing ellipsoidal RPI sets

The statement of the following theorem allows to compute the ellipsoidal RPI sets used later
to bound the estimation errors.

Theorem 3.2
Consider the system (3.7) with bounded disturbances. If there exist a common symmetric
positive definite matrix P and a scalar γ > 0, for a given matrix Q verifying the condition
(3.20), then the following set Ψ is an RPI set for system (3.7):

Ψ :=

{
e ∈ Rn : eTPe ≤ 1

λ
γ2w̄T w̄

}
(3.23)

where, for a given non-zero vector e, the scalar λ > 0 satisfies

λ ≤ eTQe
eTPe

≤ 1 (3.24)

Proof. Suppose at a given instant k, ek belongs to the set (3.23):

eTkPek ≤
1

λ
γ2w̄T w̄ (3.25)
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From the dissipation inequality (3.15) and relation (3.24), we can write:

V (ek+1) ≤ V (ek)− eTkQek + γ2w̄T w̄ (3.26)

eTk+1Pek+1 ≤ eTkPek − eTkQek + γ2w̄T w̄ (3.27)

≤ eTkPek − λeTkPek + γ2w̄T w̄ (3.28)

≤ (1− λ)eTkPek + γ2w̄T w̄ (3.29)

Since 0 < λ ≤ 1 i.e |(1− λ)| < 1, then by replacing (3.25) into the previous inequality (3.29)
we have:

eTk+1Pek+1 ≤ (1− λ)
1

λ
γ2w̄T w̄ + γ2w̄T w̄ (3.30)

≤ 1

λ
γ2w̄T w̄ (3.31)

This means that ek+1 belongs to the set (3.23):

ek+1 ∈ Ψ (3.32)

From (3.25) and (3.32) we conclude that the set (3.23) is a RPI set for the system dynamics
(3.7).

Furthermore, the RPI set (3.23) belongs to the hypercube Ω defined as follows:

Ω := {e ∈ Rn : −e∞ ≤ e ≤ e∞} (3.33)

with e∞ a column vector defined as

e∞ := diag

( P
1
λγ

2w̄T w̄

)−1/2
 (3.34)

Remark 3.1
Consider the dissipation equation (3.15). Remark that the Lyapunov function decreases outside
the set BQ:

BQ := {e ∈ Rn : eTQe ≤ γ2wTw} (3.35)

Then, from condition (3.24) we have

λeTPe ≤ eTQe ≤ γ2wTw (3.36)

which means that the RPI set (3.23) includes the set (3.35).

In the next Section, we will compute the bounds of the estimation error at each time-
instant k ≥ 0 thanks to the evolution of the Lyapunov level sets, describing the evolution of
RPI sets at each time-instant.
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3.3.3 Evolution of ellipsoidal RPI sets

The following theorem allow to characterize the evolution of the estimation error bounds ek.

Theorem 3.3
Consider the system (3.7) satisfying the condition (3.20), suppose there exist a scalar µk ≥ 1,
such that the estimation error ek, at the time-instant k, belongs to the RPI set Ψk:

Ψk :=
{
e ∈ Rn : eTPe ≤ µk c̄

}
(3.37)

Then, the one-step ahead estimation error ek+1 belongs to the RPI set Ψk+1:

Ψk+1 :=
{
e ∈ Rn : eTPe ≤ µk+1 c̄

}
(3.38)

where the µk-dynamics obeys:
µk+1 = (1− λ)µk + λ (3.39)

with λ a scalar satisfying (3.24) and c̄ := 1
λγ

2wTw.

Proof. Suppose that, the initial estimation error, denoted e0, is unknown but belongs to an
initial bounded set E0 ⊂ Rn. There exist a scalar µ ≥ 1 such that the following condition
holds:

E0 ⊂ Ψ (3.40)

with
Ψ := {e ∈ Rn : eTPe ≤ 1

λ
µγ2wTw} (3.41)

Then,

eTkPek ≤
1

λ
µγ2w̄T w̄ (3.42)

Remark that the set (3.41) corresponds to an expansion of the invariant set (3.23). For
this reason the set (3.41) is also an invariant set. From the inequality (3.15) and using the
relation (3.24), we have:

V (ek+1) ≤ V (ek)− eTkQek + γ2w̄T w̄ (3.43)

eTk+1Pek+1 ≤ eTkPek − eTkQek + γ2w̄T w̄ (3.44)

≤ eTkPek − λeTkPek + γ2w̄T w̄ (3.45)

≤ (1− λ)eTkPek + γ2w̄T w̄ (3.46)

≤ (1− λ)
1

λ
µγ2w̄T w̄ + γ2w̄T w̄ (3.47)

≤
(

1

λ
µ− µ+ 1

)
γ2w̄T w̄ (3.48)

which describes the set containing the one-step ahead estimation error ek+1. Thus, it is
possible now explicitly compute the one-step ahead RPI set, denoted Ψ

+, as follows:

Ψ
+

:=

{
e ∈ Rn : eTPe ≤

(
1

λ
µ− µ+ 1

)
γ2wTw

}
(3.49)
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By defining c̄ := 1
λγ

2wTw we have a more compact expression of the expanded invariant set
(3.41) and its one-step ahead invariant set evolution (3.49). That is,

Ψ : eTPe ≤ µ c̄

Ψ
+

: eTPe ≤ ((1− λ)µ+ λ)︸ ︷︷ ︸
µ+

c̄ (3.50)

These expressions can be used to infer a recursive relationship between µ and its one-step
ahead value, denoted µ+ in (3.50). Thus, for a given initial condition µ0 ≥ 1 the dynamics of
this scalar, at every time-instant k, obeys:

µk+1 = (1− λ)µk + λ (3.51)

and hence the invariant sets obeys the following dynamics:

Ψk :=
{
e ∈ Rn : eTPe ≤ µk c̄

}
(3.52)

which completes the proof.

The dynamical equation (3.51) is stable because 0 < λ ≤ 1. This dynamical equation
characterizes the contraction of the invariant set (3.41). Remark that µk asymptotically
converges to 1 as long as the time-instant k →∞.

Corollary 3.1
Consider the system (3.7) and suppose that the initial estimation error e0 (i.e. for k = 0) is
unknown but belongs to an initial bounded set E0. In addition, suppose that there exist µ0 > 1

such that E0 ⊂ Ψ0, Ψ0 defined in (3.37). Then, at every time-instant k > 0, the estimation
error ek belongs to the hypercube:

Ωk := {e ∈ Rn : −ek ≤ ek ≤ ek} (3.53)

with ek a column vector defined as
ek := e∞µ

1/2
k (3.54)

where e∞ is a known constant column vector defined in (3.34), and µk ≥ 1 obeys:

µk+1 = (1− λ)µk + λ (3.55)

Proof. Consider the RPI set (3.37). Because we assume that the initial estimation error
belongs to this set, then, at every time instant, the estimation error belongs to the hypercube
defined by the column vector

ek = diag

((
P
µk c̄

)−1/2
)

(3.56)

equivalently,
ek = e∞µ

1/2
k (3.57)

that can be obtained by replacing (3.34) into (3.56)
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Algorithm 3 H∞ set-membership observer design for LPV systems.
Require: Matrices Ai,Bi,Fi, for i = {1, · · · , N}, C and Z describing system (3.5). Distur-

bance covariance matrix W. Initialization of Q = In.
1: for i from 1 to 2 do
2: Find matrices P, Ui and the minimum γ who satisfy the LMI (2.22).
3: Compute Li = P−1Ui.
4: Compute Ãi = Ai − LiC.
5: Compute Ei = [Fi − LiZ]

6: Using P and γ, find a new matrix Q which satisfies the LMI (3.20) and minimizes
(− log(det(Q)))

7: Compute λ as the minimum generalized eigenvalue of the pair (Q,P).
8: if i = 1 then
9: Estimate the expected covariance matrix V using (3.61)-(2.43).

10: Do Q = V−1.
11: end if
12: end for
13: return observer parameters Li, P, γ and λ.

3.4 Set-membership observer design algorithm for LPV systems

The previous results can be used to perform a set-membership observer synthesis. Remark
that the implementation of the observer (7)-(9) can be possible by using the system matrices
A(ρk), B(ρk) and C together with matrices L(ρk), P, and the scalars γ and λ. In particular,
the observer outputs (8)-(9) can use the estimation-error bounds (3.54) which are function of
the matrix P, the scalars γ and λ and the disturbance bounds w. Hence, the observer design
process has to provide such necessary information. The complete proposed observer design
process is summarized in Algorithm 1. The main steps will be explained in the following
subsections.

3.4.1 Two iterations-based observer synthesis

The first part of the proposed algorithm uses Theorem 3.1 to compute P, Ui and the minimum
γ which satisfy the LMI (3.13). Condition (3.13) requires the initialization of the matrix Q.
This matrix can be initialized as Q = In, where In is an n-dimensional identity matrix.

Once P and γ are found we can use condition (3.20) , to find a more suitable matrix
Q. Thus, the matrix Q becomes the only decision variable in condition (3.20), and can be
chosen in order to minimize the volume of the ellipsoid (3.35). This is possible by minimizing
(− log(det(Q))) as proposed in [Hin06]. This minimization assures that this set is smaller or
equal than that defined by the initial matrix Q.

Now, it is possible to obtain a first version of the scalar λ satisfying (24) by computing λ
as the minimum generalized eigenvalue of the pair (Q,P). Remark that this scalar intervenes
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into the computation of the estimation error bounds in steady state (3.34) but also intervenes
into the computation of the evolution of such bounds, equation (3.54).

At this point, a first version of the matrices Li, for i = {1, · · · , N} P, and the scalars γ
and λ are available.

The design process can be restarted by using a new initial matrix Q. Here, the second part
of the Algorithm 1 proposes a suitable choice of Q. This choice is based on an a posteriori
estimated steady-state covariance matrix for system (3.7). The next subsection explains the
main motivation of this choice.

3.4.2 Using the a posteriori steady-state covariance matrix

Considering that the expected value of ek ∈ Rn in (3.7) is equal to zero, its steady-state
covariance equal to V and for any real number t > 0, we can use the multidimensional
Chebyshev’s inequality:

Pr(eTkV
−1ek > t2) ≤ n

t2
(3.58)

for computing a stochastic ellipsoidal set, where the symbol Pr(·) stands for a probability
measure on the probability space Rn. This set is not an invariant set because there is a
probability that some trajectories of the estimation error e go out this set. However, its shape
matrix can be used to update the dissipation matrix Q during the observer design. Remember
that matrix Q is a symmetric positive definite matrix that can be arbitrarily chosen.

Remember also that the Lyapunov function only decreases if the following condition holds:

eTkQek > γ2w̄T
k w̄k (3.59)

Remark that this deterministic condition has the same shape than the inequality (3.58), if we
get Q = V−1. In addition, the number of standard deviations, the real number t in (3.58),

can be computed as t =
√
γ2w̄T

k w̄k providing a probability less or equal than n/t2 that the
estimation trajectories can leaves this set (if we assume that the probability distribution of e
is unknown).

Therefore, the ellipsoidal set (3.35) can now be interpreted in an stochastic way.

Here, we propose to calculate the steady-state covariance matrix for system trajectories
(3.7) as

V :=
1

N

N∑
i=1

Vi (3.60)

which supposes identical probability of every vertex of the polytopic model. Of course, other
possible ways to compute V for system (3.7) can be used. The steady-state covariance of the
estimation error of individual subsystems, denoted here Vi, i = {1, · · · , N}, can be obtained
by solving the following Lyapunov equation:

ÃiViÃ
T
i −Vi = −EiWETi (3.61)
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where the symbol W represents the covariance matrix for disturbances wk in (3.7), which is
assumed to be known.

In practical applications where the covariance matrix for disturbances is not available,
we can assume that every element of the disturbance vector wk is uniform distributed but
bounded in a given interval [a b]. In this case, its variance can be computed as

W = var(wk) =
1

12
(b− a)2Im (3.62)

Remark that the computation of V is possible once the matrices Ãi and Ei are available.
For this reason, Algorithm 1 iterates one more time using a new initial matrix Q = V−1.

The synthesis of the set-membership observer is thus carry out in offline way using a two-
iterations-based synthesis as it is explained in Section 3.4.1. The next Section presents the
main issues concerning the observer implementation.

3.5 Set-membership observer implementation for LPV systems

3.5.1 Observer dynamical equations

Once the Algorithm 1 returns the observer parameters Li, P, γ and λ, and after to initialize
the scalar µ in a suitable way. The dynamical equations of the set-membership observer will
be implemented as follows:

x̂k+1 = (A(ρk)− L(ρk)C)x̂k + B(ρk)uk + L(ρk)yk (3.63)

µk+1 = (1− λ)µk + λ (3.64)

xk = x̂k + e∞ µ
1/2
k (3.65)

xk = x̂k − e∞ µ
1/2
k (3.66)

with a constant column vector:

e∞ = diag

((
P
c̄

)−1/2
)

(3.67)

where c̄ = 1
λγ

2wTw.

The matrix L(ρ) can be computed online as follows

L(ρk) =

N∑
i=1

αiLi (3.68)

where αi ≥ 0, for i = {1, · · · , N}, are the elements of the vector α ∈ RN which satisfies (3.2).
That is, the vector α = αk can be obtained online, at every time-instant, as a solution of a
linear programming problem.
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The initial condition for the scalar µ can be obtained using the procedure proposed in
Section 3.5.2.

The implementation of the proposed set-membership observer is relatively simple, since
it only requires to extend its dynamics by including a scalar dynamical equation. Thus, the
order of the set-membership state observer will be only of n+ 1, for any n-order system, i.e.
for x ∈ Rn.

3.5.2 Initialization of the scalar µ

3.5.2.1 Initial estimation error into a known ball

Now we are interesting in computing an appropriated initial value for the scalar µ. To do this,
suppose that the initial condition for the estimation error verifies e(0) ∈ E0 ⊆ B0, where, for
a given scalar δ ≥ 0, the ball B0 defined as follows:

B0 := {e ∈ Rn : eTe ≤ δ2} (3.69)

will be included into the set

Ψ0 := e ∈ Rn :
{
eTPe ≤ λmax(P)δ2

}
(3.70)

Thus, using (3.37) and (3.70) a suitable initial value of µ verifies:

µ0c̄ ≥ λmax(P)δ2 (3.71)

and then, we can chose any µ0 ≥ 1 such that

µ0 ≥ λmax(P)δ2/c̄ (3.72)

3.5.2.2 Initial estimation error inside a known polytope

Suppose that the initial estimation error set E0 is a polytope whose vertices are described by
the vectors vj , j = {1, · · · , p}, where p is the number of vertices.

In this case the vertices of the set E0 have to verify vTj Pvj ≤ µ0c̄, for all j = {1, · · · , p}, to
guarantee that the set E0 is inside a RPI set of the form (3.37). Thus, we can chose µ0 which
solves the following problem:

minimize µ0

subject to

µ0 ≥ 1 (3.73)

vTj Pvj ≤ µ0c̄ (3.74)

for all j = {1, · · · , p}.
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3.6 A numerical examples

3.6.1 Example 1

Consider a second order discrete-time LPV system (3.5) with matrices:

A(ρk) =

(
1 ρk
0 1

)
, B(ρk) =

(
0

ρk

)
, F(ρk) =

(
0

ρk

)
, C =

(
1 0

)
and Z = 0.01, where the scheduling parameter ρk can vary into the interval (0.050, 0.100),

as it is depicted in Figure 3.4, i.e. the vertices of the polytopic set Ωρ will be ρ = 0.050 and
ρ = 0.100.

After applying the Algorithm 3, the obtained matrices which describe the set-membership
state observer are:

L1 =

(
1.4649

9.2965

)
, L2 =

(
1.9299

9.2990

)
P = 1e4

(
3.2498 −0.3381

−0.3381 0.0428

)
and the scalars: γ = 2.5720 and λ = 0.4586.

We suppose that for all k, the disturbances wk are random variables with uniform distri-
bution but bounded by the vector w = [1 1]T . That is, −w ≤ wk ≤ w.

In this example, we consider a constant system input uk = 10 for time-instants k < 10.
After the time-instant k ≥ 10 the system input is uk = 0. The set-membership state observer
has been implemented using equations (3.63)-(3.66). The initial conditions for the observer
states x̂ and the scalar µ are: x̂0 = (0 0)T and µ0 = 117.4504, respectively. The latter has
been computed by solving (3.73)-(3.74) by considering (−0.1 − 2)T ≤ x0 ≤ (0.1 2)T .

Figure 3.3 illustrates the behavior of the observer. The dashed lines correspond to the
bounds obtained from the set-membership state observer. For comparison, we have included
the solid lines which corresponds to the real system state. Remark that the obtained bounds
are very accurate for both during the transient and during the steady-state periods.

Figure 3.5 depicts the behavior of the scalar µk during the whole period of the estimation.
Remark that even if its value starts at 117.4504, it converges asymptotically to 1 with a
behavior compatible with the estimation error dynamics.

In Figure 3.6, the solid-line ellipsoid corresponds to the obtained RPI set used for com-
puting deterministic bounds of the estimation error (for µ = 1). The dashed-line corresponds
to the stochastic ellipsoidal defined by (3.58) with t = 3.6374. Remark that the obtained RPI
set has taken a shape that is very close to that characterizing the states covariances.
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Figure 3.3: Set-membership estimation. The dashed lines correspond to the bounds obtained
from the set-membership state observer. For comparison, the solid lines corresponds to the
real system state.

Figure 3.4: The scheduling parameter ρk.

3.6.2 Example 2

Consider the following discrete-time Lorenz model, as proposed in [Che+13], written in a LPV
form (3.5), with matrices:

A(ρk) =

 1− Tsσ Tsσ 0

0 1− Tsη −Tsρk(1)

0 Tsρk(1) 1− Tsρk(2)

, B(ρk) =

 0

Tsρk(1)

0

, F(ρk) =

 0

Tsρk(1)

0

, C =
(

1 0 0
)

and Z = 0. The constant parameters are σ = 1, η = 10 and Ts = 0.08. The scheduling
parameter ρk = [ρk(1) ρk(2)]T can vary into the following interval(

−1

9

)
≤
(
ρk(1)

ρk(2)

)
≤
(

1

11

)
(3.75)
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Figure 3.5: Evolution of the scalar µk. This scalar characterizes the contraction of the initial
RPI set. The value of µk converges to 1 as k →∞.

Figure 3.6: Minimal ellipsoidal RPI set and steady-state covariance for the estimation error
dynamics. The solid line corresponds to the obtained RPI set used for computing deterministic
bounds of the estimation error. The dashed line corresponds to the stochastic ellipsoidal
defined by (3.58) with a number of standard deviation t equal to 3.6374.

That is, the 4 vertices of the polytopic set Ωρk will be θ1 = [−1 9], θ2 = [−1 11], θ3 = [1 9]

and θ4 = [1 11].

After applying the Algorithm 2, the obtained matrices which describe the set-membership
state observer are, for i = {1, 2, 3, 4}:

L1 =

 1.0984

0.4460

−0.1783

, L2 =

 1.0983

0.4458

−0.1783

, L3 =

 1.0984

0.4460

0.1783

, L4 =

 1.0983

0.4458

0.1783



P = 1e3

 6.7285 −0.5728 0

−0.5728 0.2397 0

0 0 9.9395


and the scalars: γ = 1.2391 and λ = 0.4884. These observer parameters have been obtained
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by using the following matrix Q:

Q = 1e3

 6.1199 −0.2997 0

−0.2997 0.1172 0

0 0 7.1422

 (3.76)

which corresponds to the inverse of the estimation-error covariance matrix V, as proposed in
Section 3.4.2.

In order to compare the results with respect to those presented in Efimov2013 in this
simulation we consider ρk(1) = xk(1) and ρk(2) = β with β = 10. In addition, we suppose
that for all time-instants k, the system input uk = 10 and, the disturbances wk are:

wk =

(
2 sin(0.5Tsk)

0

)
(3.77)

That is, −w ≤ wk ≤ w, with w = [2 0]T . The set-membership state observer has been
implemented using equations (3.63)-(3.66). The initial conditions for the observer states x̂
and the scalar µ are: x̂0 = (0.5 0 0)T and µ0 = 197.59, respectively. The latter has been
computed by solving (3.73)-(3.74) by considering (0.5 0 0.5)T ≤ x0 ≤ (0.5 0 − 0.5)T .

Figure 3.7, 3.8 and 3.9 illustrate the behavior of the observer. The dashed lines correspond
to the bounds obtained from the set-membership state observer. For comparison, we have
included the solid lines which corresponds to the real system state. Remark that the obtained
bounds are very accurate for both during the transient and during the steady-state periods.

Figure 3.10 depicts the behavior of the scalar µk during the whole period of the estimation.
Remark that even if its value starts at 197.59, it converges asymptotically to 1 with a behavior
compatible with the estimation error dynamics.

In Figure 3.11, the yellow ellipsoid corresponds to the obtained RPI set used for computing
deterministic bounds of the estimation error (for µ = 1). The green one corresponds to the
stochastic ellipsoidal defined by (2.41) with t =

√
γ2wTw = 2.478. Remark that the obtained

RPI set has taken a shape that is very close to that characterizing the states covariances.

In this example the obtained steady state estimation-error bounds are:

e∞ =

 0.0484

0.2567

0.0356

 (3.78)

which are clearly less conservative than that presented in [Che+13]. The complexity of the
proposed observer here mainly depends on the number of vertices describing the polytopic set
Ωρ, see Section 3.1.2. The complexity is then similar to any polytopic LPV observers, see for
instance [HMD13].
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Figure 3.7: Estimated bounds for system state xk(1).

3.7 Conclusion

In this chapter we have presented an extension of the set-membership observer based on el-
lipsoidal invariant sets for the more general case of LPV systems. Thanks to the polytopic
decomposition of LPV systems, we can transform it into a family of N linear systems (describ-
ing a polytopic system). It is shown that the implementation of the observer is very simple,
and it is comparable to the implementation of standard state observers.
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Figure 3.8: Estimated bounds for system state xk(2).
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Figure 3.9: Estimated bounds for system state xk(3).
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Figure 3.10: Evolution of the scalar µk for the second example. This scalar characterizes the
contraction of the initial RPI set. The initial value of µk guarantee the inclusion of the initial
estimation-error set. The value of µk converges to 1 as k →∞. Remark the fast convergence.

Figure 3.11: Steady state ellipsoidal RPI set, for the estimation error dynamics, which includes
an stochastic set with a scalar t = 2.478.
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4.1 Introduction

During the last decades, various approaches based on interval analysis have been developed
to design interval observers. These approaches provide a guaranteed enclosure of all possible
state trajectories of the system which are consistent with the mathematical model, the state
disturbances and the measurement noises.

We propose in this chapter a new approach to design an interval observer for uncertain
linear discrete-time systems, simple to implement, with less computation time and reduced
complexity. The set-membership state estimation problem is considered as a punctual state
estimation issue coupled with an interval characterization of the estimation error. A non pes-
simistic numerical scheme to compute a rigorous enclosure of the estimation error is proposed.

This chapter is organized as follows: the problem statement is introduced in Section 4.2,
after that Section 4.3 shows the first main contribution of this chapter which is the design of
the fully interval observer for uncertain linear discrete-time systems. Section 4.4 is devoted to

79



80 Chapter 4. Observers based on interval characterization of the estimation error

the second contribution of this chapter which is combining set invariance theory and interval
analysis to design an observer allowing to enhance the precision at the steady-state regime
and reducing the on-line computation time. Illustrative examples are presented in the Section
4.5 to show the performance of the proposed observer. An extension of this approach to a
class of nonlinear uncertain systems is presented in the Section 4.6. This chapter ends with a
conclusion.

4.2 Problem statement

Let’s consider again a discrete-time linear system described by (4.1) xk+1 = Axk + Buk + Fdk
yk = Cxk + Zvk

(4.1)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the input vector and yk ∈ Rny is the
measured output vector and the pair (A,C) is assumed observable. The vectors dk and vk
are respectively the state perturbation and the measurement noise which are assumed unknown
but bounded with known bounds, i.e:

∀k ≥ 0, dk ∈ [d, d] ⊂ Rnd

∀k ≥ 0, vk ∈ [v, v] ⊂ Rnv
(4.2)

where the real vectors d and d (resp. v, v) are the lower and upper bounds of the box [d]

(resp. [v]).

Suppose that we can design a Luenberger observer (4.3) for the system (4.1)

x̂k+1 = (A− LC)x̂k + Buk + Lyk (4.3)

where L ∈ Rnx×ny is the observation gain that guarantees the stability of the dynamics of the
estimation error.

The estimation error at a given instant k can be calculated as follows:

ek = xk − x̂k (4.4)

From (4.1) and (4.3) and using (4.4), the dynamics of the estimation error can be obtained as
follows:

ek+1 = Aoek + Ewk (4.5)

where Ao = (A− LC), E = [F − LZ] and wk =

(
dk
vk

)
with wk ∈ Rm and m = nd + nv.

Now suppose that we know at every time-instant a box, denoted by [ek], which includes
in a guaranteed way all possible estimation error ek, i.e:

∀k ≥ 0, ek ∈ [ek] (4.6)
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with [ek] = [ek, ek], where ek and ek are the lower and upper bounds of the box [ek].

So, at every time-instant, we can guarantee that the real system state xk belongs to a box
denoted [xk] defined as follows: [xk] = x̂k + [ek].

In this case, an interval observer can be designed as follows:

x̂k+1 = Aox̂k + Buk + Lyk (4.7)

[xk] = x̂k + [ek] (4.8)

Therefore the set-membership estimation problem is considered as a punctual state estimation
issue coupled with an interval characterization of the estimation error. On other words, the
proposed interval observer provides at every time-instant an estimated state vector x̂k and a
bounded box [ek] of the estimation error such that the real state vector is included in the box
[xk] defined by (4.8).

We will present two versions of the proposed observer:

(i) A fully interval version which requires an on-line characterization of the estimation error
boxes.

(ii) A second version which combines interval analysis with invariant set computation to
improve the accuracy of the estimated state enclosure and to allow an off-line charac-
terization of the set of the estimation error.

4.3 Observers design based on interval analysis

In this section we will present the first version of the proposed observer which is a fully interval
observer, where the characterization of the boxes including all possible estimation errors is
done on-line. The following proposition states the first result.

Proposition 4.1
If the pair (A,C) is detectable, then the punctual-interval dynamical system (4.9) - (4.12) is
an interval observer for the uncertain system (4.1).

x̂k+1 = Aox̂k + Buk + Lyk (4.9)

[ek+1] = Ak+1
o [e0] + [gk] (4.10)

[gk+1] = Ak+1
o [g0] + [gk] (4.11)

[xk+1] = x̂k+1 + [ek+1] (4.12)

where
Ao = (A− LC)
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E = (F − LZ), [w] =
(
[d], [v]

)T
, [g0] = E[w]

The initial condition x̂0 of the punctual dynamics (4.9) belongs into the initial box [x0]

of the uncertain system (4.1). Thus, the interval dynamics (4.10),(4.11) is initialized with
[e0] = [x0]− x̂0.

The punctual Luenberger observer (4.9) generates a nominal state trajectory where the
system’s uncertainties are neglected. Then, the effect of these uncertainties on the quality
of the estimated nominal state trajectory is characterized by the interval dynamics (4.10).
Finally, a tight outer-enclosure of all the possible state trajectories of the uncertain system
(4.1) is given by the output equation (4.12).

The proof of this Proposition will be presented step by step in the next Subsections 4.3.1,
4.3.2, 4.3.3 and 4.3.4.

4.3.1 H∞ observer gain design

Let’s consider the discrete-time linear system described by (4.1). The observer (4.9) provides
the punctual state estimation x̂ where the observer gain L has to attenuate the effect of the
disturbances on the estimation error. To ensure that, an H∞ observer synthesis similar to the
one introduced in the Subsection 2.1 of Chapter 2 is applied. Let’s recall the statement of the
H∞ observer gain synthesis:

Proposition 4.2
Considering the estimation error dynamics (4.5). The observer gain L which allows to atten-
uate the impact of the disturbances on the estimation error exists if there exists a symmetric
positive definite matrices P and U satisfying the following LMI: −P + In 0nx×m ATP−CTUT

0m×nx −γ2Im [PF −UZ]T

PA−UC [PF −UZ] −P

 4 0 (4.13)

Moreover,the observer gain is obtained as follow:

L = P−1U (4.14)

Proof. See the Proposition 2.1 and it’s proof 2.3.1.

4.3.2 Characterization of all possible estimation errors

This subsection is dedicated to the interval characterization of the estimation error given by
the equation (4.10,4.11). The novelty here is that we propose a non pessimistic scheme to
compute a tight enclosure of the estimation error. This result is presented in the following
proposition:



4.3. Observers design based on interval analysis 83

Proposition 4.3
For all e0 ∈ [e0] and for all wk ∈ [w] , k = 1, ..., n, the interval dynamic defined by the
equation ((4.10),4.11) provides a non pessimistic outer enclosure of the estimation error [ek]
which includes all possible estimation errors generated from the initial set.

Proof. Considering the estimation error given by (4.5). All the possible evolution of this
estimation error can be framed by applying interval analysis [Moo66]; [Jau+01],

[ek+1] = Ao[ek] + [g0] (4.15)

As shown in Figure (4.1), due to the wrapping effect the direct interval iteration (4.15) is
too pessimistic [Moo66]; [Jau+01]. In fact, at each iteration a pessimism is introduced and
propagated to the next iteration. Consequently, the accumulation of this pessimism on a long
period leads to too large enclosures and maybe numerical unstable behavior.

Figure 4.1: Over-estimation linked to the wrapping effect. Usually, framing at each iteration
the set of the solutions by an axis-aligned box led to too pessimistic enclosures of the solutions
for the large values of k.

To cope with this undesirable wrapping effect, we propose a new expression for (4.15). By
definition, any sequence of size k+1 generated by (4.15) from [e0] can be presented as follows:

e1 = Aoe0 + Ew0 ∈ Ao[e0] + [g0]

e2 = Aoe1 + Ew1 = A2
oe0 + AoEw0 + Ew1

∈ A2
o[e0] + Ao[g0] + [g0]

∈ A2
o[e0] + [g1]

(4.16)
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where [g1] = Ao[g0] + [g0]. Now, for the next iteration one gets,

e3 = Aoe2 + Ew2 = A3
oe0 + A2

oEw0 + AoEw1 + Ew2

∈ A3
o[e0] + A2

o[g0] + Ao[g0] + [g0]

∈ A3
o[e0] + A2

o[g0] + [g1]

∈ A3
o[e0] + [g2]

(4.17)

where [g2] = A2
o[g0]+[g1]. Thus, in the same way, for each iteration k+1 one can characterize

the estimation error by:

ek+1 = Aoek + Ewk ∈ Ak+1
o [e0] + [gk] (4.18)

where [gk] = Ak
o [g0] + [gk−1].

Hence, it is clear that the equation (4.18) is exactly the interval dynamics (4.10)-(4.11)
of the proposed interval observer. In this way one can compute a tight enclosure of all the
possible estimation errors without wrapping effect. As illustrated in Figure 4.2, thanks to this
new formula one can compute at each time instant tk, k ∈ {0, . . . N} the minimal inclusion
function of the set of the estimation error. In other terms, there is no dependency phenomenon
or wrapping effect in (4.10)-(4.11), which describes the error propagation on the observation
horizon. Notice that, the recursive equation (4.11) does not generate conservatism because
the vectors wk are not the same at each time instant k.

Remark 4.1
In order to reduce the on-line computation, the matrices Ak+1

o , k = 0, . . . N are computed in
an iterative way Ak+1

o = Ak
oAo.

Figure 4.2: Minimal inclusion function, at each time instant k, of the estimation error. No
wrapping effect nor the dependency phenomenon in the proposed numerical scheme (4.10).
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4.3.3 Convergence towards an outer-approximation of the ultimate-bound

The steady state of the interval dynamics (4.10)-(4.11) is bounded by the following limit

lim
k→+∞

[ek+1] = lim
k→+∞

Ak+1
o [e0] + lim

k→+∞
[gk] (4.19)

Since the pair (A, C) is observable, the observer gain L is chosen such that the eigenvalues
λi of the matrix Ao satisfy

|λi| < 1, ∀i = 1, . . . , nx (4.20)

Then, based on (4.20) and the properties of Schur stable matrices, one can state that

lim
k→+∞

Ak+1
o = 0 (4.21)

Now, using (4.21) one can show that at the steady state the box generated by (4.11) is bouned

[gk+1] = lim
k→+∞

Ak+1
o [g0] + [gk] = [gk] = [g] (4.22)

and the ultimate-bound of the estimation error (4.10) converges towards the same box

lim
k→+∞

[ek+1] = lim
k→+∞

Ak+1
o [e0] + lim

k→+∞
[gk] = [g] (4.23)

which shows the practical stability of the interval observer introduced in Proposition 4.1.
This completes the proof of this proposition.

4.3.4 Guaranteed framing of the real state vector

The output of the observer [xk+1] described by the equation (4.12) is guaranteed to contain
all the possible state trajectories consistent with the mathematical model, the bounds of the
state disturbances and the bounds of the measurement noises. For an unknown but bounded
initial condition ∀x0 ∈ [x0], at each iteration all the possible states are included in [xk]:

∀k : xk ∈ [xk] (4.24)

where [xk] = x̂k + [ek]

We have
xk = x̂k + ek (4.25)

The punctual observer (4.9) is initialized at x̂0 ∈ [x0], then the initial box of the dynamics of
the estimation error (4.10) is [e0] = [x0]− x̂0. At each iteration, the interval [ek] contains all
possible estimation errors. Since, by definition xk − x̂k ∈ [ek], we can easily deduce that:

∀k,xk ∈ [xk] = x̂k + [ek] (4.26)
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4.4 Observers design based on intervals and invariant sets

In practice, reducing the on-line computation is required to face with both constraints on the
computational resources and the swiftness of the monitored systems. In this subsection, an
interval observer with less on-line computation, with respect to the first proposed observer,
is introduced. To do that, we propose an off-line method to characterize the set of all the
possible estimation errors.

Figure 4.3: Thanks to interval and invariant set computations all the possible estimation
errors, for all k ≥ 0, are characterized by a small finite number k∗ of boxes.

As shown in Figure (4.3), this method combines interval and invariant set computations
to generate an interval sequence {[sk]}k=0,...,k∗ with finite number of values k∗ such that:

∀k ≥ 0, ∀wk ∈ [w] ek ∈ [sk] =

{
[ek] if k ≤ k∗

[sk∗+1] = [sk∗ ] if k > k∗
(4.27)

where k∗ is a positive integer. More formally, for k = 1, 2, . . . k∗ − 1 the outer-approximation
of the estimation error is computed by:

[sk+1] = Ak+1
o [e0] + [gk]

[gk+1] = Ak+1
o [g0] + [gk]

(4.28)

where [g0] = E[∆w] and E =
(
F −LZ

)
and the box [∆w] is computed from [w] as in (1.15)

and (1.16).
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(a) inflation (b) shrinking

Figure 4.4: The inflation and shrinking procedures used to get the time instant k∗ and an
outer-approximation [Φk∗ ] of the theoretical mRPI set Ω∞ of the estimation error at the steady
state.

For k ≥ k∗ we have:

[sk] = [Φk∗ ] = [Bnx(ε)⊕ Ω∞] (4.29)

where [Φk∗ ] is the smallest box which contains a RPI outer-approximation of the theoretical
mRPI set denoted by Ω∞ of the discrete-time linear system (4.5) with a desired precision de-
fined by the positive real number ε. The relative error of the outer-approximation with respect
to the set Ω∞ can be measured by the following shrinking index ρ(k) which characterizes the
precision of the outer-approximation of the mRPI set:

ρ(k) = βk

√
µλmax(P)

λmin(P)
(4.30)

where µ > 1 and β ∈ [0, 1] and P is a symmetric positive definite matrix solution to the LMI
(4.13).

Now, to determine the positive integer k∗, let λ be a positive real number such that:

[e0] ⊆ λΦ0 (4.31)

where Φ0 is the initial polyhedral RPI set defind in (1.56) and λ represents the inflation
factor. The set Φ0 is inflated in order to include the initial esstimation error set. The inflation
procedure is illustrated in Figure 4.4a. Then, based on the stop criterion (4.33), for a given
precision ε the integer k∗ has to satisfy following inclusion:

λβk
∗
Φ0 ⊆ Bnx(ε) (4.32)
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Remark 4.2
Since the polyhedron Φ0 and the ball Bnx(ε) contain the origin, k∗ can be lower bounded by

k∗ ≥
log
(

ε
λ‖Φ0‖

)
log(β)

(4.33)

where ‖.‖ denotes the maximal distance of the extreme values of a set from its origin.

Figure 4.3 shows the interval sequence {[sk]}k=0,...,k∗ , where the first elements of this se-
quence are obtained by interval computation (4.11) and the last one is an outer-approximation
of the mRPI set Φk∗ of the dynamics of the estimation error.

The second version of the proposed interval observer is stated in the following proposition
4.4.

Proposition 4.4
If the pair (A,C) is observable then there exists an observer gain matrix L, and a positive
integer k∗ such that the Luenberger-like observer

x̂k+1 = Aox̂k + Buk + Lyk + Ewc

xk+1 = x̂k+1 + sk+1

xk+1 = x̂k+1 + sk+1

(4.34)

is an interval observer for (4.1). In addition, the vector width of the outer-approximation of
the ultimate-bound of the estimation error is lower than

W
(
[sk∗ ]

)
≤W

(
[Φk∗ ]

)
(4.35)

where wc is the midpoint of the box [w] where [∆w] = 1
2 [−1 1]W

(
[w]
)
and [w] = wc + [∆w]

.

Note that, all the values of the finite sequences k = 1, . . . k∗, sk+1 and sk+1 are avialable
off-line.

Proof. By direct computation one can define the dynamics of the estimation error ek+1 =

xk+1 − x̂k+1 as follows

ek+1 = Aoek + E
(
wk −wc

)
= Aoek + E∆wk (4.36)

Since, the pair (A, C) is observable there exists an observer gain L such that the matrix
Ao is Schur stable. In addition, by definition the box [∆w] = [w] −wc contains the origin.
Thus, all the required assumptions to find the positive integer k∗ and to compute an RPI
outer-approximation Φk∗ of the mRPI set Ω∞ of (4.36) are satisfied. Hence, one can claim
that for all k ≥ k∗ one can set [sk] = [Φk∗ ].

Now, to get tight enclosures [sk] of the estimation error for k = 1, . . . , k∗− 1 one compute
the reachable set of (4.36) as follows:

[sk+1] = Ak+1
o [s0] + [gk]

[gk+1] = Ak+1
o [g0] + [gk]

(4.37)
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where [s0] = [e0] and [g0] = E[∆w]. This completes the proof.

4.5 Illustrative examples

4.5.1 Example 1

To show the performance of the proposed robust interval observer, let us consider the following
observable discrete-time linear system,

xk+1 =

(
−1.1267 −1.3503

1.1095 1.2673

)
xk +

(
0.0951 −0.1977

−0.2894 0.1099

)
uk +

(
−0.1606

0.1254

)
dk

yk =
(
−0.2512 0.1723

)
xk − 0.1542vk

(4.38)

where the input vector is defined by uk =
(
12 + sin(0.5k), 10 + cos(0.6k)

)T and the initial
state vector x0 is unknown but belongs into a bounded set with perfectly known bounds
[x0] = [−3, +3] × [−3, +3]. The punctual observer is initialized at x̂0 = (0, 0)T and the
real system is initialized at x0 = (1, 1)T . The state disturbance and measurement noise are
assumed completely unknown but bounded:

∀k, | vk |≤ 1 and | dk |≤ 1

Figure 4.5: The supposed behaviors of the state disturbance and the output noise.

As introduced in Subsection 4.3.1, to attenuate the effect of both state disturbance and
measurement noise on the estimation error at the steady state, the optimal observer gain L

has to be computed through the solution of the LMI (4.13). For this example one gets,

γ = 0.2108, L =
(
0.0889, −0.2167

)T
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(a) inflation (b) shrinking

Figure 4.6: Shrinking procedure to get an outer-approximation of the mRPI set of the esti-
mation error at the steady state.

for the positive definite matrix,

P =

[
54.3612 65.9833

65.9833 82.5909

]
With this value of γ one can affirm that at the steady state the effect of the uncertainties
(dk,vk) on the estimation error are well attenuated.

Now, to implement the interval observer (4.34), we need to construct the off-line interval
sequence (4.27) of the estimation error. First, we have to determine the positive integer k∗

and then to compute the box [Φk∗ ]. For this example, the origin is considered as the initial
condition of the punctual part of the proposed interval observer x̂0 = (0, 0)T . Thus, the
initial box of the estimation error is [e0] = [x0] and then to get the inclusion [e0] ⊂ λΦ0 the
considered inflation factor is λ = 11.

The inflation procedure is illustrated in Figure 4.6(a), where the polyhedral Φ0, confined
between the two ellipsoids Ψ, Ψ

+ established for µ = 2, is depicted by the black lines and the
box of initial estimation error is plotted by the dashed blue lines. Now, according to (4.33),
for ε = 0.01 and β = 0.2884, one gets k∗ = 7. Then, as shown in Figure 4.6(b), the polyhedral
invariant set Φk∗ is computing by the shrinking procedure defined in Subsection 1.3.3 of the
Chapter 1. On Figure 4.6, the outer-approximation Φk∗ of the mRPI set of the estimation
error at the steady state Ω∞, is presented by the green surface and the blue rectangle stands
for the minimal box [Φk∗ ] which frames the set Φk∗ = Bnx ⊕ Ω∞.

Table 4.1 shows the entries of the finite interval sequence (4.27). Here, it is worth pointing
out that all of these entries are off-line computed. Moreover, only these seven interval elements
are required to characterize the bounds of the estimation error on the whole simulation period.
On the Figures 4.7a and 4.7b, the punctual estimated state variables x̂1, x̂2 provided by the
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Figure 4.7: (a) and (b) show the time evolution of the estimated and the real state trajectories.
(c) and (d) plot the guaranteed enclosure of the estimation error. (e) and (f) represent the
outer-approximation of all the possible state trajectories
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Table 4.1: A finite interval sequence of the time evolution of the estimation error.

[sk], k = 0, . . . , 7 Box of the off-line estimation error
[s0] = [e0] [−3,+3]× [−3,+3]

[s1] [−7.5843,+7.5843]× [−7.2379,+7.2379]

[s2] [−2.0676,+− 2.0676]× [−1.9675,+1.9675]

[s3] [−1.6003,+1.6003]× [−1.1008,+1.1008]

[s4] [−1.0056,+1.0056]× [−0.9530,+0.9530]

[s5] [−0.9762,+0.9762]× [−0.9249,+0.9249]

[s6] [−0.9704,+0.9704]× [−0.9194,+0.9194]

[s7] = [Φ7] [−0.2053,+0.2053]× [−0.1884,+0.1884]

punctual part of the interval Luenberger-like observer (4.34) are shown by the continuous
curves and the real state variables of the system (4.38) are depicted by the dashed lines. Note
that, for these simulation results the time evolution of the state disturbance and the output
noise are presented in Figure 4.5. In addition, Figures 4.7c and 4.7d show the enclosure of all
the possible estimation error over the whole simulation period. Finally, Figures 4.7e and 4.7f
plot the guaranteed outer-approximation of all the possible state trajectories of the uncertain
system (4.38), generated by the interval observer (4.34). Note that, in this simulation test
the elapsed CPU time is 0.428 ms (for a processor: Intel Core i3 CPU @ 2.30 GHz). This
low computation time is the fruit of the off-line characterization of the feasible set of the
estimation error.

4.5.2 Example 2

Now, consider a system of order four described by xk+1 = Axk + Buk + Fdk
yk = Cxk + Zvk

(4.39)

where the system’s matrices are defined as follows:

A =


−0.1321 1.1732 −0.1794 0.1522

−0.8148 0.1689 0.3771 0.9308

−0.0871 0.4465 −0.0722 −0.3125

0.0804 0.2929 −0.1056 −0.0631


,

B =


0.2598

−0.6342

0.3125

−0.7458

 , F =


0.1264 0 0 −0.1267

0 0.09321 0 0

0.0958 0 0.1325 0

0.1052 0 0 0.2189


C =

(
0.3502 0 0.9298 0.2398

)
, Z = 0.2905
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and the considered input is

uk =
π

8
(sin(0.5k) + cos(2k)) +

π

4

The feasible bounded domain of the initial state is defined by a box:

[x0] = [−3,+3]× [−3,+3]× [−3,+3]× [−3,+3]

The vector of the state perturbations dk is unknown but belongs to the box:

∀k ≥ 0, dk ∈ [d] = [−2,+2]× [−2,+2]× [−2,+2]× [−2,+2]

Also the measurement noise vk is unknown but evolves in a bounded set:

vk ∈ [vk] = [−1,+1]

For this example the considered time evolution of the state disturbances and the output noise
are plotted in Figure 4.8. The observer gain L is computed through the solution to the LMI

Figure 4.8: Profiles of state disturbances and the measurement noise.

(4.13). So, the obtained optimal gain is,

L =
(
− 0.2946, −0.4998, −0.2811, −0.0008

)T for γ = 0.6831

and for the following positive definite matrix

P =


3.8087 −0.8918 −6.6369 0.0963

−0.8918 3.1209 2.1267 0.3579

−6.6369 2.1267 19.3054 −4.4521

0.0963 0.3579 −4.4521 7.9044
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The other parameters used to characterize off-line the set of all the possible estimation error
error are:

ε = 5 10 e−2, λ = 2, µ = 2, β = 0.8781, k∗ = 51

The initial state of the system is assumed x0 = (2.5,−2.5, 2.5,−2.5)T and that of the punctual
part of the interval observer is set at x̂0 = (−2.5, 2.5,−2.5, 2.5)T ∈ [x0].
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Figure 4.9: Punctual state estimations

The simulation results are shown in the Figures (4.9), (4.10) and (4.11).

In Figure (4.9), each picture shows the punctual estimation (in black) of the four states,
this estimation is obtained using the punctual observer (4.9), the red dashed lines represents
the real states.

The Figure (4.10) represents the enclosure of all possible estimation errors where the upper
and lower bounds (in black) are obtained using the interval sequence (4.27).

The Figure (4.11) shows the enclosures of the state variables (in black), and the real state
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Figure 4.10: Enclosure of the estimation errors
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Figure 4.11: The enclosure of all the possible state trajectories of the system
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variables are depicted by the red dashed line. Note that, the used computation time in this
simulation is 1.606 ms (for a processor: Intel Core i3 CPU @ 2.30 GHz). As aforementioned,
this weak demand of the computation time is linked to the fact that the characterization of
the estimation error is carried off-line. This presents an other important advantage of the
proposed interval observer with respect to the existing approaches in the literature.

4.6 Extension to a class of nonlinear systems

The interval observer presented till now is devoted to uncertain linear discrete-time systems.
In this section, we will extend the interval observer for a class of uncertain nonlinear systems.

The class of nonlinear system considered in this section can be seen as the sum of a linear
term and a nonlinear uncertain term assumed to be bounded. The systems are described by: xk+1 = Axk + h(p,xk) + Buk

yk = Cxk + Zvk
(4.40)

xk ∈ Rnx is the state vector, uk ∈ Rnu is the input vector and yk ∈ Rny is the measured
output vector. The initial state is unknown but belongs to initial box x0 ∈ [x0] = [x0,x0].

The parameter vector p ∈ Rnp is uncertain but belongs to a box [p] = [p,p]. The function
h(p,xk) stands for the uncertain nonlinear part of the system and it is assumed to be bounded,
i.e:

∀xk ∈ [xk], ∀pk ∈ [pk], ∀k ≥ 0 : h(p,xk) ∈ [h] = [h,h]

The proposed interval observer for the system (4.40) is introduced in the following propo-
sition.

Proposition 4.5
Consider the nonlinear uncertain system (4.40) and assuming that the pair (A,C) is de-
tectable, The interval observer for (4.40) is defined by the punctual-interval dynamical system
(4.41), (4.42) and (4.44):

x̂k+1 = Ãx̂k + ĥ + Buk + Lyk (4.41)

[ek+1] = Ak+1
o [e0] + [gk] (4.42)

[gk+1] = Ak+1
o [g0] + [gk] (4.43)

[xk+1] = x̂k+1 + [ek+1] (4.44)

where
ĥ = m([h])

Ao = (A− LC)

E = [Inx − LZ]

[g0] = E
([
h− ĥ,h− ĥ

]
, [v]

)T (4.45)
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The initial state x̂0 of the punctual dynamics (4.41) belongs to the box [x0], the interval
dynamics (4.42),(4.43) is initialized by the box [e0] = [x0]− x̂0.

4.6.1 H∞ observer gain design

The H∞ observer gain synthesis is similar to that one presented in Subsection 2.1 of Chapter
2, The only difference is that we replace the matrix F by an identity matrix.

Proposition 4.6
Consider the system (4.40). The observer gain L exists if there exists a symmetric positive
definite matrices P and U satisfying the following LMI: −P + In 0nx×m ATP−CTUT

0m×nx −γ2Im [P −UZ]T

PA−UC [P −UZ] −P

 4 0 (4.46)

Moreover,the observer gain is obtained as follow:

L = P−1U (4.47)

4.6.2 Interval characterization of the estimation errors

The estimation error is defined as follows:

ek = xk − x̂k (4.48)

From (4.40) and (4.41) and using (4.48), we obtain the dynamics of the estimation error as
follows:

ek+1 = Aoek + h(p,xk, k)− ĥ− LZvk (4.49)

By taking into account all the system’s uncertainties we obtain, in a guaranteed way, the
following interval equation:

[ek+1] = Ao[ek] + [h]([p], [x], k)− ĥ− LZ[v]

⊆ Ao[ek] + [go]
(4.50)

Then, one can outer-approximate (4.49) by the following set equality:

[ek+1] = Ao[ek] + [g0] (4.51)

Subsequently, starting from an initial box [e0], we can compute [ek+1] as follows:

[ek+1] = Ak+1
o [e0] + [gk]

[gk+1] = Ak+1
o [g0] + [gk]

(4.52)

Note that, the observer gain L is computed such that the matrix Ao is stable i.e all the
eigenvalues λi of the matrix Ao satisfy the following condition:

|λi| < 1, ∀ i = 1, ...., n (4.53)
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From the condition (4.53), we can conclude that

lim
k→+∞

[ek+1] = lim
k→+∞

Ak+1
o [e0] + lim

k→+∞
[gk] = [g] (4.54)

which proves that the box of the estimated error is bounded at the steady state.

4.6.3 Illustrative example

Let’s consider the system described by the following dynamics: xk+1 = Axk + h(δ,xk) + Buk
yk = Cxk + Zvk

(4.55)

where

A =

(
0.3 −0.7

0.6 −0.5

)
, B =

(
1 0

0 1

)
, C =

(
1 0

)
, Z = 1

and

h(δ,x) = δ

(
sin
(
0.5kx2(k)

)
sin
(
0.3k

) )
, uk =

(
sin
(
0.1k

)
cos
(
0.2k

))

δ is unknown but belongs to a bounded interval [−0.8, 0.8]. The unknown initial box of
the state is taken sufficiently large in order to include the initial real state of the system, i.e
x0 ∈ [−3, 3]× [−3, 3]. The measurement noise vk is unknown but bounded i.e vk ∈ [−0.2, 0.2],
and it can be deterministic or random.

In the equation (4.55), The uncertain non linear term h(δ,xk, k) is bounded:

∀k ≥ 0 , ∀xk , ∀δ : h(δ,xk, k) ∈
(

[−0.8, 0.8]

[−0.8, 0.8]

)

The observer gain is computed by resolving the LMI (4.46) and it’s numerical value is:

L =

(
0.0074

0.3312

)

For this simulation the initial state of the system is taken x0 = (2,−2)T and that of the
punctual Luenberger-like observer is set to x0 = (−2, 2)T . The additive output noise vk is
randomly generated.

The interval observer described by (4.41), (4.42),(4.43) and (4.44) is applied to compute
on-line an outer-approximation of the real state of the uncertain system. The Figure (4.12)
shows an estimation of the state trajectory plotted in dashed blue line and an guaranteed
enclosure of the real state of the system depicted by the green thick curves. In this figure the
real state of the system is presented with the continuous red lines.
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Figure 4.12: The estimated states enclosure

Figure (4.13) shows the enclosure of the estimation error over the whole simulation period.
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Figure 4.13: The enclosures of the estimation errors

4.7 Conclusion

In this chapter an interval observer for uncertain discrete-time systems has been proposed.
The set-membership state estimation problem has been considered as classical punctual state
estimation issue combined with a rigorous characterization of all the possible propagation of
the estimation error, a non pessimistic numerical scheme to compute a rigorous enclosure of
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the estimation error has been proposed. Then, based in the set invariance theory we have
shown that a guaranteed bound of the estimation error can be off-line computed. Moreover,
we have proposed an H∞ observer gain design method to reduce the effect of the uncertainties
on the size of the estimated state enclosure at the steady state. An extension of the interval
observer for a class of uncertain nonlinear discrete-time system has been proposed in this
chapter.





General conclusion and perspectives

This chapter recapitulates the contributions of this thesis and gives remarks for the future
works. First, the main contributions and conclusions of this thesis will be summarized. Second,
future work of this topic will be addressed.

4.8 Main conclusions

The main objective of this dissertation is to propose set-membership state estimation ap-
proaches for linear uncertain discrete-time systems with bounded perturbations and bounded
measurement noises with explicit characterization of the estimation error bounds. These ap-
proaches can be seen as the combination between a punctual observer and a set-membership
characterization of the observation error.

The contributions of this thesis can be listed into two main parts:

• The first main contribution is a set-membership observer based on ellipsoidal invariant
sets for linear discrete-time systems and also Linear Parameter Varying systems. The
proposed approach provides a deterministic state interval that is build as the sum of the
estimated system states and its corresponding estimation errors bounds;

• The second main contribution is an interval version of the Luenberger state observer
for uncertain discrete-time linear systems based on interval and invariant set computa-
tion. The set-membership state estimation problem is considered as a punctual state
estimation issue coupled with an interval characterization of the estimation error.

In the first contribution, the proposed set-membership observer provides a deterministic
state bounds that are build as the sum of the punctual estimated system states and its cor-
responding estimation error bounds. The design of the proposed observer is based on the
solutions of a few number of Linear Matrix Inequalities that are suitable modified to provide
both observer gain and ellipsoidal RPI sets. The obtained RPI sets are used to frame the es-
timation error in a very simple and accurate way. The observer synthesis process can includes
an a posteriori steady-state covariance matrix for the estimation errors. This covariance ma-
trix is used to enhance the precision on the computation of the estimation error bounds and
to obtain less conservative dissipation inequality used in the Bounded real lemma formulation.
Some of the most important advantages of the proposed observer is the fact that this is based
on an explicit solution of the estimation-bounding problem. This allows to reduce the on-line
computation costs. The proposed observer is very simple and easy to implement compared to
set-membership observers available in the literature.

In the second contribution, we have proposed a new approach to design an interval observer
for uncertain linear discrete-time systems, simple to implement, with less computation time
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and reduced complexity. The set-membership state estimation problem is considered as a
punctual state estimation issue coupled with an interval characterization of the estimation
error. A non pessimistic numerical scheme to compute a rigorous enclosure of the estimation
error is proposed. The advantage of such approaches is to reduce the complexity of the on-
line implimentation and the on-line computation time and to improve the precision of the
estimated state enclosure. An extension for a class of uncertain non-linear systems is also
proposed.

4.9 Future works

Several mid-term and long term future works are proposed are proposed for future develop-
ments of this thesis:

• Extend the proposed approaches to the case of systems with parametric uncertainty.
In practice, some parameters of the real systems are poorly-known. So, it is of great
interest to able to design set-membership state estimator where the system’s matrices
are uncertain and modeled by interval matrices.

• Adapt these approaches to deal with the state and parameters estimation problems in
the same time. In fact, based on the Kalman filtering principle, this extension is possible.

• Deal with the case of switched linear discrete-time systems. Based in this approaches we
do not need to use similarity transformations to design a positive interval observer for
each subsystem. So, the impulsive behavior induced by these similarity transformations
can be avoided.

• Based on these approaches a guaranteed threshold on the estimation error can be com-
puted. This threshold avoids generating false alarm linked to the modeling errors and
the inaccuracy of the available measurements.

• Combine these robust state estimation methods with the methods dedicated to solve
the fault detection issues and fault tolerant control problems. This will allow designing
robust and guaranteed new methods.

• Apply these approaches to real-word applications. In fact, since the proposed estimation
approaches are simple to implement and do not demand a huge on-lime time computa-
tion, its application to industrial systems is possible.
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Abstract — In This work, we propose two main new approaches for the set-membership
state estimation problem based on explicit characterization of the estimation error bounds.
These approaches can be seen as a combination between a punctual observer and a set-
membership characterization of the observation error. The objective is to reduce the com-
plexity of the on-line implementation, reduce the on-line computation time and improve the
accuracy of the estimated state enclosure.
The first approach is a set-membership observer based on ellipsoidal invariant sets for linear
discrete-time systems and also for Linear Parameter Varying systems. The proposed approach
provides a deterministic state interval that is build as the sum of the estimated system states
and its corresponding estimation error bounds. The important feature of the proposed ap-
proach is that the proposed approach does not require propagation of sets.
The second approach is an interval version of the Luenberger state observer for uncertain
discrete-time linear systems based on interval and invariant set computation. The set-
membership state estimation problem is considered as a punctual state estimation issue cou-
pled with an interval characterization of the estimation error.

Key words : Set-membership state estimation, ellipsoidal sets, invariant sets, interval
analysis, discrete-time, discrete-time LPV systems, State estimation in bounded error context,
unknown-but-bounded uncertainties.

Abstract — Dans ce travail, nous proposons deux nouvelles approches ensemblistes pour
l’estimation d’état basées sur la caractérisation explicite des bornes d’erreur d’estimation. Ces
approches peuvent être vues comme la combinaison entre un observateur ponctuel et une car-
actérisation ensembliste de l’erreur d’estimation. L’objectif est de réduire la complexité de
leur implémentation, de réduire le temps de calcul en temps réel et d’améliorer la précision et
des encadrements des vecteurs d’état.
La première approche propose un observateur ensembliste basé sur des ensembles invariants el-
lipsoïdaux pour des systèmes linéaires à temps-discret et aussi des systèmes à paramètres vari-
ables. L’approche proposée fournit un intervalle d’état déterministe qui est construit comme
une somme entre le vecteur état estimé du système et les bornes de l’erreur d’estimation.
L’avantage de cette approche est qu’elle ne nécessite pas la propagation des ensemble d’état
dans le temps.
La deuxième approche est une version intervalle de l’observateur d’état de Luenberger, pour
les systèmes linéaires incertains à temps-discret, basés sur le calcul d’intervalle et les ensem-
bles invariants. Ici, le problème d’estimation ensembliste est considéré comme un problème
d’estimation d’état ponctuel couplé à une caractérisation intervalle de l’erreur d’estimation.

Mots clés: Estimation d’état ensembliste, ensembles ellipsoïdaux, ensembles invariants,
analyse pas intervalle, systèmes linears à temps-discret, systèmes LPV à temps-discret , esti-
mation dans un contexte à erreur bornée, incertitudes inconnues mais bornées.
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