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Résumé

L’isolement du graphène, une monocouche de graphite composée d’un plan d’atomes de
carbone, a démontré qu’il est possible de séparer un seul plan d’épaisseur atomique, que l’on
appelle materiau bidimensionelle (2D), à partir des solides de Van de Waals (vdW). Grâce à
leur stabilité, différents matériaux 2D peuvent être empilés pour former les hétérostructures
de vdW. L’interaction vdW à l’interface étant suffisamment faible, les propriétés spécifiques
de chaque matériau demeurent globalement inchangées dans l’empilement. En utilisant
une démarche théorique et computationnelle basée sur la théorie de la fonctionnelle de
la densité (DFT) et le formalisme de Keldysh-Green, nous avons étudié l’hétérostructure
graphène/MoS2. Le principal intérêt des propriétés spécifiques du graphène et du MoS2

pour la conception d’un transistor à effet de champ réside dans la mobilité du graphène, à
la base d’un transistor haute performance et dans le gap électronique du MoS2, à la base
de la commutation du dispositif. Tout d’abord, nous avons étudié les effets de la rotation
entre les deux couches sur les propriétés électroniques à l’interface, en démontrant que les
propriétés électroniques globales ne sont pas affectées par l’orientation. En revanche, les
images STM (microscope à effet tunnel) sont différentes pour chaque orientation, en raison
d’un changement de densité de charge locale. Dans un deuxième temps, nous avons utilisé
l’interface graphène/MoS2 en tant que modèle très simple de Transistor à Effet de Champ.
Nous avons analysé le rôle des hétérostructures de vdW sur la performance du transistor,
en ajoutant des couches alternées de graphène et MoS2 sur l’interface graphène/MoS2. Il a
ainsi été démontré que la forme de la DOS au bord du gap est le paramètre le plus important
pour la vitesse de commutation du transistor, alors que si l’on ajoute des couches, il n’y
aura pas d’amélioration du comportement du transistor, en raison de l’indépendance des
interfaces dans les hétérostructures de vdW. Cependant, cela démontre que, dans le cadre
de la DFT, on peut étudier les propriétés de transport des hétérostructures de vdW plus
complexes en séparant chaque interface et en réduisant le temps de calcul. Les matériaux
2D sont également étudiés ici en tant que pointe pour STM et AFM (microscope à force
atomique) : une pointe de graphène testée sur MoS2 avec défauts a été comparée aux
résultats correspondants pour une pointe en cuivre. La résolution atomique a été obtenue
et grâce à l’interaction de vdW entre la pointe et l’échantillon, il est possible d’éviter les
effets de contact responsables du transfert d’atomes entre la pointe et l’échantillon. En
outre, l’analyse des défauts est très utile du fait de la présence de nouveaux pics dans le
gap du MoS2 : ils peuvent ainsi être utilisés pour récupérer un pic de courant et donner
des perspectives pour améliorer la performance des transistors.
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Chapter 1

Introduction: van der Waals
heterostructures and their
applications

In 2004 Novoselov and Geim have isolated for the first time a graphene monolayer, a plane
of carbon atoms representing the in-plane building block of graphite [1].

Graphene properties have already been theoretically studied in three previous papers,
in 1947 by P.R. Wallace [2], in 1956 by J.W. McClure [3] and in 1984 by G.W. Semenoff
[4]. However, the possibility to isolate a monolayer from graphite and perform electrical
measurement on it was not believed to be possible because of thermal instability. Surpris-
ingly, in October 2004, Novoselov, Geim and their collaborators were able to show the first
graphene layer isolated from graphite and then transferred to a silicon substrate by means
of a simple mechanical exfoliation using scotch tape.

Hence, for their success in the isolation, identification and characterization of graphene
sheet, the two scientists were honored by Nobel Prize in Physics 2010. This work represents
a decisive contribution to the development of a new branch of solid state physics: the study
of bidimensional (2D) materials.

Furthermore, graphene is even more than the first 2D material isolated ever. The
honeycomb disposition of carbon atoms (see Fig.1.1 left panel) characterized by sp2 hy-
bridization and the atomic thickness of 0.345 nm enable graphene to break many records
in terms of strength, electricity and heat conduction. The main important property of
graphene related to this work of thesis is given by its electronic structure, characterized by
very special linear dispersion in the six corner of the Brillouin zone (see Fig.1.1 right panel),
forming the well known Dirac cones. This dispersion is the reason why graphene shows very
high electronic mobility with an upper limit of 200 000 cm2V−1s−1 [5]. Graphene can also
be doped with electrons or holes to increase the electronic conductivity, normally reduced
by the zero density of states ad the Dirac points, being potentially better at conducting
electricity than copper at room temperature.

The discovery of Novoselov and Geim regarding the isolation of a single plane of graphite
demonstrates the possibility to separate a stable single layer from a class of layered ma-
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6 1. Introduction: van der Waals heterostructures and their applications

Figure 1.1: Atomic honeycomb configuration (left panel) and three dimensional band
structure (right panel) of graphene characterized by six Dirac cones located at each corner
of the graphene Brillouin zone.

terials called van der Waals (vdW) solids. The exfoliation of layered materials is possible
thanks to the weak vdW attraction between the planes, as well as the stability of the single
layer and the absence of any chemical electronic bond at the interfaces. In fact, the vdW
attraction is not the result of a chemical bond, but is a quantum mechanical effect coming
from the temporal fluctuation of electronic charges which induces dipoles at the interface.
Despite their weak character, vdW interactions play a central role in many physical and
chemical phenomena, and is of fundamental importance in this work of thesis, as we will
see later.
In principle, one can imagine the existence of hundreds of layered materials that can be
produced in monolayer as graphene. However, in isolating 2D crystals, one has to bear in
mind that not the totality of them are stable under ambient conditions.
For example, a graphene monolayer is more reactive than even graphene bilayers and in
general, many 2D crystals imaginable in theory are unlikely to exist in reality because
they would corrode, decompose, segregate and so forth. So far, we count hundreds of 2D
materials, classified in graphene family, 2D chalcogenides and 2D oxides as reported in
Fig.1.2, even though not all of them are stable under ambient condition.

Since 2004, a large part of the scientific community in condensed matter physics have
been involved in the study of graphene and all the possible 2D materials [6] beyond it.
The enormous interest in this topic has to be found in the fascinating fundamental physics
related to the bi-dimensional phase - the dimensionality being one of the most defining
material parameters - and the specific properties coming from different 2D crystals. More-
over, both the common and the specific properties of 2D materials give them an important
role for applications in nanoelectronics.
It is also interesting to notice that a wide range of physical properties can be designed in
vdW materials, like insulator, metals, ferroelectrics, magnetics and superconductor. How-
ever, from 3D to 2D phase, these properties can be modified due to quantum confinement
effects and the reduction of symmetry. Hence, in the low dimensional limit, one system
may show different behaviours with respect to the corresponding bulk phase. Neverthe-
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Figure 1.2: Table of stable 2D materials in the blue section, the probably stable in the
green and those unstable in air but may be stable in inert atmosphere in pink [8].

less, 2D crystals can exhibit unique physical properties that makes them one of the most
extensively studied class of materials.

As well as graphene, one of the most studied category of the layered materials is consti-
tuted by Transition Metal Dichalcogenides (TMDC), in particular MoS2 [7], characterized
by a band gap around 2 eV. The direct gap in monolayer MoS2 represents an important
feature for optics and nanoelectronic applications, nevertheless it reduces and becomes
indirect from bilayer to bulk phase. The semiconducting properties of TMDC have been
largely used in nanoelectronics thanks to the intrinsic band gap, making possible one of
the fundamental operation of electronic devices: the on/off switch of the signal. On the
other hand, the well known problem of using graphene in electronics is related to the lack
of electronic gap, resulting in the impossibility to switch off the devices, and consequently,
to use it in logic circuits. However graphene, thanks to its mobility, is acclaimed as the
perfect material for ultrafast high-performance transistor.

So, how can one combine graphene mobility with the TMDCs band gap and, in general,
is it possible to use 2D crystals to create new materials without modifying the electronic
characteristics of each 2D component?
In order to reply we cite here an expression used by Geim in Ref.[8]: “if one considers
2D crystals to be analogous to Lego blocks, the construction of a huge variety of layered
structures becomes possible”.

In fact, according to the weak interaction keeping together the planes in a vdW solid, it
is possible to make a further step imagining a vdW solid composed by different 2D crystals,
namely the vdW heterostructure. The result is an artificial material assembled in a chosen
sequence with one-atomic-plane precision. One example is provided by MoS2/graphene
interface. However, the great number of 2D crystals can provide a lot of combinations,
increased by the possibility to combine them in a planar way, as well as in a vertical
stacking. So far, many different heterostructures can be synthesized as graphene n-doped
germanium [9–11], or on hexagonal boron nitride (hBN, a graphene like 2D material with
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Figure 1.3: 2D crystals stacking as lego blocks [8].

alternate boron and nitrogen atoms) [12, 13], and in general TMDCs on graphene and so
on [14]. Coming back to our question, the main interest in producing heterostructures lies
in the possibility to keep the electronic properties of each layer as if they were isolated,
thanks to the weakness of vdW interaction at the interface. In graphene/MoS2 interface,
for instance, one can still find the linear dispersion of graphene and the electronic gap
provided by MoS2.

However, this aspect represents one of the important opened question in the field of
vdW heterostructures, since in some experimental and theoretical results the presence of
a different layer on top or even the orientation between the layers is supposed to tune the
electronic feature. It seems that, in some specific cases we will treat in this work of thesis,
the interaction between graphene and MoS2 is able to modify the structural and electronic
properties of both materials according to some specific orientation angle between the lattice
parameter of graphene and MoS2 (like opening of a gap of some meV in graphene [16] or
modification of the MoS2 thickness [17]).

A very important aspect of the 2D materials and vdW heterostructures concerns their
applications in nanoelectronics. The miniaturization of the electronic components requires
structure at the nanometer scale, in which surface effects cannot be disregarded. But on the
contrary, they are predominant and represent an increasingly way to build sophisticated
devices.
One of the most important applications in nanoelectronics is the Field Effect Transistor
(FET), an electronic device representing the basic building block of modern technology
based on semiconductor electronics. It consists in a component of circuit able to amplify
or switch the current, composed by a semiconductor channel connected with two metallic
contacts, where the flowing current can be tuned by applying an electric field. Generally
speaking, the progress of information and communication technology comes from the effort
in improving the performances of this electronic component [18].
Traditionally, FETs are based on bulk or 3D semiconductor channels composed of silicon
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and gallium arsenide (GaAs) semiconductors. Following the Moore’s law, which in 1965
predicted that the density of transistors in a chip will double every two years [19–22],
3D materials have been scaled down to nanoscale dimension over the past five decades.
Of course, there is a limit in the size reduction of 3D Field Effect Transistors (FET)
related to short-channel [23, 24] and surface effects, due to the dangling bonds, causing the
deterioration of transistor performance. The 2D materials, for instance, are characterized
generally by the absence of dangling bonds at the interface, and in principle, the transfer
of 2D crystal on top of the other leave the interfaces pristine. Hence, after the discovery of
graphene, many other graphene-like materials like germanene, silicene and transition metal
dichalcogenides (TMDC), started to be included in electronic devices to overcome some of
the previously cited undesired effects. Many 2D FETs, mostly based on graphene due to
its extraordinary properties, have been built or theoretically modeled in the last years.

In a FET architecture, the 2D materials can play the role of in-plane channel [25, 26]
or electrodes and barrier as in the vertical tunneling transistor [27–30]. However, recently,
a FET fully composed of 2D materials was built with graphene contacts, hBN dielectric
and MoS2 channel, exhibiting good performances [31]. As well as field effect transistor,
even logic transistors, photovoltaic and memory devices are built using TMDC/graphene
[28, 29, 32–37]. Furthermore, with the graphene/TMDC interface, the main problem re-
lated with the metal contacts like Fermi-level pinning, a finite Schottky barrier and large
excessive contact resistance, are minimized. Moreover, the van der Waals coupling at the
interface depends on different parameters like distance, twist angle, and stacking order
of disparate 2D materials [38, 39]. For this reason, the interface interactions in vdW het-
erostructure is very important for their future high-performance device applications [40–43].

So far, we have illustrated the framework of this work of thesis. From this review about
2D materials, in particular, from the open question regarding the vdW interaction, the
electronic and transport properties related to the 2D crystals and their possible applica-
tions, it is evident that the interest in this topic is very important. In fact, the effect of the
vdW interaction is still under debate, the theoretical basis regarding the transport charac-
teristics at the interface and, consequently, the inclusion of 2D materials in nanoelectronics
need to be deeply investigated in order to know the future of 2D materials in nanodevices.
These are the interest points that move this work of thesis devoted to 2D materials and
vdW heterostructures.
In the following, a guideline of the manuscript is presented.

In the next chapter we present the general theoretical frame: Density Functional Theory
approach is treated and the Fireball code we have used for structural, electronic and
transport characterization is illustrated. Specific implementations in the code, as the
inclusion of the vdW forces, the Keldysh-Green formalism for the transport calculation
and the scissor operator for the band alignment, are presented as well.
In chapter 3, after a presentation of the most important characteristics of graphene and
two different TMDC (namely MoS2 and MoSe2), we focus our attention on the rotation
effect on the electronic and structural properties of graphene/MoS2 heterostructures, as a
way to answer to the open question on the possibility to tune the electronic properties by
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the simple rotation. This problem was fully discussed by considering different supercells
composed by graphene and MoS2 rotated by different angles: the structural and electronic
properties are deeply investigated and the effect of the orientation is fully described. The
computational limit in approaching the study of supercells composed by crystals presenting
an important lattice mismatch is also considered by previously studying the strain effects
on the structure and electronic properties of each isolated component layer.

With the analysis of the strain effect on MoS2 we also explain an experimental ob-
servation: changing the rotation angle between MoS2 and graphene, the luminescence
modification of MoS2 was detected, sign of the direct to indirect evolution of the gap. The
existence of a side effect related to the symmetry breaking due to an induced electric field
is also considered in a system composed by SiC substrate on which a few-layer graphene
and MoSe2 are deposited.
In the fourth chapter, we focus on the transport properties at the MoS2-graphene interface:
the transverse current is calculated by applying a bias voltage between graphene and MoS2.
Moreover, different electronic band alignments between the layers, representing the effects
of an external electric gating, are considered in terms of electric current modulation. The
MoS2/graphene heterostructure is treated as a very simple system to model a Field Effect
Transistor.
Then, taking into account the limit regarding the size of the supercells, we considered
the effects of the vertical stacking of alternate graphene and MoS2 layer on the original
graphene-MoS2 interface. The aim is to investigate the role of the additional layer on the
transport properties at the interface and to give a theoretical foundation to chose the best
heterostructures for electronic applications, in particular Field Effect Transistor (FET).
The charge transfer as a function of the gate voltage was analyzed and compared with the
main parameters describing the FET performance.
In the last chapter, we provide an interesting application of the vdW interaction: a
graphene tip for simultaneous Scanning Tunneling Microscope-Atomic Force Microscope
(STM-AFM) measurement is used to theoretically characterize defected MoS2 sample. A
comparison between the copper metal tip, largely used in microscopy, and less reactive
graphene tip, is provided. The vdW interaction is fully exploited in the field of microscopy
application. Moreover, due to the huge impact that defects hold on the performance of the
devices, the study of the MoS2 structure and electronics considering some possible defects
given by substitutional or missing atoms, is suitable in terms of the lost of performance.

In this work of thesis we aim to reply to the open questions regarding the vdW interac-
tion and, in particular, we fully describe the role of the rotation on the electronic properties
in vdW heterostructure, considering graphene/MoS2 system. Furthermore, with the study
of the transport at graphene-MoS2 interface under different conditions, we aim to provide
a new contribution for a further knowledge on the possible use of 2D crystals in electronic
devices.



Chapter 2

Theory and methods

In this chapter we present the theoretical framework we have used along this thesis work,
based on the Density Functional Theory (DFT). We detail the main features of the DFT
Fireball numerical code we used to obtain the results of this work.
In the following parts we present some useful Fireball code tools beyond Density Functional
Theory, like van der Waals interaction implementation, electronic transport, STM images
calculations and scissor operator.

2.1 Density Functional Theory

The Density Functional Theory (DFT) is based on two initial works reported in publica-
tions coming almost 40 years after E. Schrödinger published his first epoch-making paper,
marking the beginning of wave mechanics: the first on 1964 by P. Hohenberg and W. Kohn
and the next by W. Kohn and Lu J. Sham on 1965. DFT is a mean-field approximation
where all the electron-electron interactions are substituted by a mean-field potential act-
ing on each individual electron. Therefore, the many-body (multi-electronic) Schrödinger
equation can be rewritten as an average potential of all the electrons. The main variable
here is the spatial electronic density ρ(r). In addition, DFT is a theory of the fundamental
state, since electronic exitation are not treated in this formalism.

The enormous progress in finding approximate solutions of Schrödinger’s wave equation
using this formalism, for systems with several electrons, was decisively aided by modern
electronic computers.
DFT represents the state of the art in ab initio theories allowing the prediction of the
electronic and structural properties of the system ground state, through the solution of the
quantum mechanical model of the many-body system.
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12 2. Theory and methods

The Hohenberg and Kohn theorems

The foundation of the theory of electronic structure of matter is the nonrelativistic Schrödinger
equation for the many-electron wave function Φ, whose Hamiltonian can be written as:

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj|
(2.1)

Here, the Born-Oppenheimer (or adiabatic) approximation allows us to decouple the
electronic degrees of freedom from the nuclear ones: due to the large difference in the
mass of electrons and nucleons, the electrons follow adiabatically the ions assuming at any
given time their ground state configuration. In this Hamiltonian, we have the electron
kinetic energy, the external potential depending on the position including also the nucleus-
nucleus and the nucleus-ion interactions, and the Coulomb interaction between each pair
of electrons in the positions ri and rj. Even if the adiabatic approximation brings to a
simplified problem, the equation is still not easy to solve: we need another strategy to
facilitate the calculations as that provide by DFT.
The Density Functional Theory is based on two theorems developed by P. Hohenberg and
W. Kohn in 1964 [44, 45]:

• Theorem I: For any systems of interacting particles in an external potential Vext(r),
the potential Vext(r) is determined uniquely, except for a constant, by the ground
state particle density ρ0(r).

Corollary I: Since the external potential Vext(r) is fully determined, also the Hamil-
tonian Ĥ is thus completely determined, except for a constant shift of the energy. It
follows that the many-body wave-functions (wfc) for all states (ground and excited)
are determined. Therefore all properties of the system are completely determined
given only the ground state density ρ0(r).

• Theorem II: Universal functional for the energy in terms of the density can be
defined: E[ρ]. For any Vext(r), the exact ground state energy of the system is the
global minimum value of this functional E[ρ] and the density ρ(r) that minimizes the
functional is the exact ground state density ρ0(r).

Corollary II: The functional E[ρ] alone is sufficient to determine the exact ground
state energy and density.

Thus, it is possible to write the functional E[ρ] as

E[ρ] = FLL[ρ] +

∫
Vext(r)ρ(r)dr (2.2)

where FLL[ρ] is universal functional, meaning that it does not depend on the system
in exam, except for the number of electrons, and also on Vext. E[ρ] minimum value is
represented by the correct ground-state energy associated with Vext(r).

More details and the proof of the theorems can be found in Ref.[45].
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The Kohn-Sham approach

The Hohenberg and Kohn (HK) theorem ensures the existence of a ground state charge
density minimizing the total energy of the system. However, it does not provide any tool
to succeed in calculating, that can be nothing but trivial. Kohn and Sham provide a new
approach to carry out explicitly the variational procedure, based on the substitution of the
original problem with an auxiliary one composed by independent particles that returns the
same charge density of the original system [45].

We start by considering non interacting electrons subject to a local potential VS(r)
determined by imposing that its charge density is the same as the interacting problem
described with 2.1. It is possible to factorize the new Hamiltonian related to the auxiliary
problem in terms of the one electron Hamiltonian:

H = −1

2
∇2 + VS(r). (2.3)

The charge density can be written as

ρ =
occ.∑
i

|ψi|2 (2.4)

where ψi are the wave functions solution of (2.3).
Following the HK theorem, the energy functional can be written as

ES = TS[ρ] +

∫
VS(r)dr. (2.5)

Since the HK theorem applies to any electron system, with or without interaction, we
can say that the kinetic term TS is the analogous of FLL[ρ] in (2.2) for the non interacting
particles.

We then obtain the Kohn-Sham equation, solution of the (2.3):(
− ~2

2m
∇2 + VS(r)

)
ψi(r) = εiψi(r). (2.6)

The new energy functional for interacting electrons in term of non interacting ones is
given by

E[ρ] = FLL[ρ]+

∫
Vext(r)ρ(r)dr = TS[ρ]+

1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|
+

∫
Vext(r)dr+EXC [ρ] (2.7)

where:

• EH [ρ] = (1/2)
∫
drdr′ρ(r)ρ(r′)/|r−r′| is the Hartree term describing classical Coulomb

interactions;
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• EXC [ρ] is the exchange-correlation term which contains the many-body contributions.
In EXC [ρ] are enclosed all terms not included in TS[ρ] and EH [ρ] that we rewrite in
terms of Hohenberg-Kohn’s functionals:

EXC [ρ] = FLL[ρ]− (TS[ρ] + EH [ρ]) (2.8)

from which we can see that also EXC [ρ] is a universal functional.

Now, we can minimize 2.7:

E[ρ+ δρ]− E[ρ] = δTS +

∫
δρ

[
Vext(r) +

∫
ρ(r′)

|r− r′|
dr′ + VXC([ρ0], r)

]
= 0 (2.9)

where VXC([ρ0], r) = δEXC/δρ(r)|ρ0 represents the exchange-correlation potential. This
term has a key feature: it is local, depending only on the position in which we evaluate its
contribution, unlike EXC which may have much more complicated functional form.

Repeating this procedure also for the non interacting particles functional in (2.5) we
have that

δTS +

∫
δρVS(r) = 0 (2.10)

with

VS(r) = Vext(r) +

∫
ρ(r′)

|r− r′|
dr′ + VXC([ρ0], r). (2.11)

We have to remark that no approximation was adopted at this point. The Kohn-Sham
equation must be solved in a self-consistent way to calculate ρ, as shown in the scheme in
Fig.2.1. At the end of each self consistent loop we get the minimum energy state, namely
the ground state, related to a specific electron density ρSC . Due to the relation between
the electron density and the potential, the obtained electron density is used to calculate
the potential of the new loop. In particular, a mix between the new and the old density is
used for the next iteration. The self consistency is reached when both the last potentials
or densities are equal (with a chosen accuracy) to the previous one.

2.1.1 Approximations for exchange and correlation functional

As we said in the previous section, DFT is an exact theory, however the exchange and
correlation term is very difficult to determine. For that reason, it is necessary to use an ap-
proximation. In 1965 Kohn and Sham introduced the Local Density Approximation (LDA)
for the exchange-correlation term [46]. This approximation is largely used in the calcula-
tions of the total energy because it gives good results even though it can be classified as
the simplest approximation. In this picture the exchange-correlation functional EXC [ρ(r)]
and the related potential are written in the following form:

ELDA
XC [ρ(r)] =

∫
εxc(ρ(r))ρ(r)dr (2.12)
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Figure 2.1: Scheme of self-consistent loop for the charge density optimization.
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V LDA
XC (r) =

δELDA
XC

δρ(r)
= εxc(ρ(r)) + ρ(r)

dεxc(ρ(r))

dρ(r)
(2.13)

where εxc(ρ(r)) is the exchange-correlation density per electron evaluated for a uniform
electron gas at the same density ρ(r) of the considered system [47].

There exist different parametrizations of the exchange-correlation term (xc) for the
homogeneous electron gas. For example, different interpolations of the exact calculated
results for extreme cases, namely very high or very low homogeneous electron gas density,
are used.

The LDA approximation has a local character: the xc term in the position r does not
take into account the inhomogeneity of the electron density in the proximity. One improved
approximation, Generalized Gradient Approximation (GGA), takes into account also the
gradient of the charge density [48]:

EGGA
XC [ρ(r)] =

∫
εxc[ρ(r),∇ρ(r)]ρ(r)dr, (2.14)

where the gradient corrections constitute a semi-local approach which, in some way, capture
non-local effects at longer ranges.

LDA gives really good results in many investigated systems despite its simplicity. How-
ever it reveals, together with GGA, documented failure in the description of strongly
correlated system like, for instance, Mott insulator.

In our work we will use the LDA approximation, since it represents a very good ap-
proximation for the studied materials.

2.1.2 Pseudo-potential approximation

The concept of pseudo-potential is based on the separation between the core and valence
electrons: the idea is to include the core electrons together with the atomic nuclei in the
effective potential affecting the valence electrons. The pseudo-potentials are constructed
with the requirement that the valence wave functions calculated by using them are equiv-
alent to the all electron ones beyond a cut-off radius. This approximation is reasonable
since the physical properties of materials mostly depend on the valence electrons.

In general, both empirical or ab initio methods can be used to calculate pseudo-
potentials. The big advantage to use pseudo-potentials is to drastically reduce the cal-
culation time, since the size of the wavefunction basis set and, consequently, the number
of interactions is reduced.

In order to get the pseudo-potential, the Kohn-Sham equation for a single atoms in-
cluding all the atoms has to be solved. It is required that the pseudo-eigenfunctions φα are
equal to the original eigenfunction for a distance larger than a specific radius, rcore, and
smooth functions for smaller distance.

There are different ways to build the pseudo-potentials. Once we consider one method
[49–53], the value of the parameters are chosen and then the pseudo-eigenfunctions and
pseudo-eigenvalues of the pseudo-potential are found following a self-consistent process.
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Figure 2.2: Representation of all electron potential and wave function (pseudo-potential
and pseudo-eigenfunction) in continuous (dashed) lines. RC is the core radius rcore.

The self consistency is reached when the eigenvalues (and eigenfunctions) of the all electron
calculation and the pseudo-eigenvalues (pseudo-eigenfunction) are equal beyond the core
radius.

The obtained pseudo-eigenvalues and pseudo-eigenfunctions, represented in Fig.2.2,
satisfy different conditions like the independence on the n quantum number (related to
the smoothness of pseudo-eigenfunctions): for r = rcore, the radial part of the pseudo-
eigenfunction for each quantum number l has to be equal to the eigenfunction coming
from all-electrons calculations. Furthermore the charge inside rcore calculated from pseudo-
eigenfunctions and from eigenfunctions have to be the same and, of course, the eigenvalues
for the valence state in both cases have to be the same, as well. These conditions allow us
to define a pseudo-potential as norm-conserving pseudo-potential [50, 54]. Outside rcore,
the potential is proportional to Zion/r following the Coulomb law, while inside rcore the
potential is repulsive and depends on angular momentum. A further approximation of
Kleinman and Bylander [55] is used to reduce the computational time.

2.2 Density Functional Theory in Fireball

In the previous sections we have presented the basic functional of the energy given by
Kohn-Sham. However many different expressions of the energy functional can be used in
terms of electronic density. One example is given by the Fireball method: a tight-binding
formalism based on the selfconsistent Harris-Foulkes functional [56]. In order to solve the
one-electron Schrödinger equation (see Eq.2.1), we use a set of numerical atomic-like or-
bitals based on a pseudo-potential formalism. The construction of the pseudopotentials
starts by solving the self-consistent Kohn–Sham equations for all electrons of the free atom,
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by using various parametrizations as LDA or GGA, previously described. Once the sin-
gle particle equation for all electrons of the free atom is solved, the pseudopotential and
pseudo-atomic wavefunctions are generated.
The Fireball localized pseudo-atomic orbitals are expressed as φatomicF ireball(r) = f(r)Ylm(θ, ψ)),
where f(r) is the radial component and Ylm(θ, ψ) is the angular component which are the
spherical harmonic functions. The Fireball orbitals are slightly excited due to the bound-
ary conditions that they vanish at some radius rc, like a particle in the box, having the
effect of raising the electronic energy levels. The rc’s are chosen to preserve the chemical
trends of the atoms, i.e., the relative ionization energies and relative atomic sizes.
Moreover, the fireball orbitals are advantageous from a computational point of view since
beyond the cutoff radius (rci + rcj), where i and j define two atomic orbitals, the matrix
elements Hij and Sij become zero, and a range over which the integrals are evaluated is
defined.
A multi-center approach is used so that all interactions up to three-centers integrals are
computed exactly. In Fireball, the integrals are pre-calculated, their values stored in a
directory and then interpolated when the specific values are needed. This represents an
advantageous point of this code, since the integrals depend only on the atom type, their rc
values, and the type of DFT exchange-correlation functional used. Therefore, it is possible
to generate the integral tables only once for a given number of atomic species, rather than
each step during the simulations.

At the basis of Fireball method there is the replacement of the Kohn-Sham energy
functional by the Harris-Foulkes one given by [57–59]

EHarris
tot =

N∑
i=1

εn + {U ion−ion − U ee[ρ(r)]}+ {Uxcρ(r)− V xcρ(r)}. (2.15)

where εn are the eigenvalues of the one-electron Schrödinger equation, whereas the
second term is the difference between the repulsive interaction of the pseudocores and of the
valence-electron densities (the electron-electron repulsion corrects for the double counting
in the sum of eigenvalues); the last term is the correction of the exchange-correlation, given
by
∫
ρ{εxc[ρ(r)]− µxc[ρ(r)]}.

The important difference with the Kohn-Sham functional is that KS is an equation in terms
of the charge density ρ(r), whereas here we define the functional in terms of occupation
number ni from which the charge density is evaluated:

ρin(r) =
∑
i

ni|φi(r−Ri)|2. (2.16)

The orbitals φi(r−Ri) corresponds to the slightly excited Fireball pseudo-atomic wave-
functions, used as basis functions to solve the one-electron Schrödinger equation. The oc-
cupation number ni, defining the number of electrons occupying each spherically confined
atomic-like densities, is given by ni = noi + δni and it is calculated self-consistently.
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Figure 2.3: An example of the 3p orbital of Si calculated with Fireball, free and confined
cutoff radius.

In this scheme, the total energy has an error that is calculated to be only of the second
order in the errors of the input density.

2.2.1 Fireball orbitals

As it was said previously, the Fireball basis orbitals are the atomic like orbitals {φµ(r)}
with the characteristic to be zero for r > rcutoff (see Fig.2.3). The cutoff radius for each
orbitals (of each element involved in the studied system) are the parameters we need to
adjust in order to get a good basis set. The choice of the good cutoff radius needs the
comparison of some properties with experimental results or with results obtained from
planewave DFT calculations. Some checking can be done for example by comparing the
lattice parameters, bulk modulus, or electronic band structures.

The advantage of the Fireball orbitals, being zero starting from the catoff radius, has
a double effect: first, it gives a finite number of interactions, since a maximum distance of
interaction is introduced, and then it avoids the problems related to the interaction with
many atoms.

2.2.2 Charge density in Fireball

We have already written the equation for the electronic density, however we report it here
for convenience:

ρin(r) =
∑
i

ni|φi(r−Ri)|2 (2.17)

where i runs over all the orbitals. As we said in the previous section, the occupation
numbers ni are calculated within a self-consistent loop, providing an evolution of ni from
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the neutral value (example: ns = 2 and np = 2 for carbon) to the final value nout where a
non-neutral contribution is included. We can define

nouti =
∑
n

|〈ψn|ϕi〉|2 (2.18)

where ψn are the wave functions of the occupied state and ϕi are the orthogonal orbitals
obtained from the atomical orbitals φi thanks to a Löwdin transformation [60], as explicited
here:

ϕi =
∑
j

(S
1
2 )ijφj (2.19a)

(S)ij = 〈φi|φj〉 (2.19b)

If the atomic charge can vary, the charge distribution will be different from the one of
the neutral atom, meaning that long range interactions occur. For this reason we can write
the occupation number as we previously shown

ni = n0
i + δni (2.20)

where n0
i is the occupation number for a neutral atom, whereas δni describes the charge

transfer between the different atoms of the system. The input electron density in eq.2.17
induces a one electron potential which has both long-range (due to δni) and short-range
contributions to the single-particle Hamiltonian matrix element:

hij = 〈φi(r−Ri)|(−
1

2
∇2 + V [ρ])|φj(r−Rj)〉 = hSRij + hLRij (2.21)

where hSRij includes the contribution of the kinetic energy, atomic pseudo-potential, xc
energy and the neutral contribution of the Hartree term (for further detail see [61]). The
LR term includes the Hartree contribution of the non-neutral part (see.[59]).

2.2.3 Total energy minimization

So far we have illustrated the minimization of the electronic part of the system. Once
the optimized electronic structure is reached after the self consistency, the forces acting on
the atoms are calculated and the ions are moved. The total energy is a function of the
ions coordinate {Ri} defined as x in the following, and the direction of the ion motion is
determined from the gradient of the energy

g1 = −δE
δx
|x=x1 = −Gx1 (2.22)
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where E is the total energy function and the superscript 1 refers to the first selfconsistent
loop. In order to minimize the energy function, the ions have to move to the new position
given by

x2 = x1 + b1g1, (2.23)

where b is found to minimize E[x1 + b1g1]. In a range of values of E calculated on
the x1 + b1g1 direction, b1 is the value that corresponds to the minimum of E where that
direction is perpendicular to the gradient of the function given by G(x1 + b1g1). In this
way, it is possible that a big number of iterations is necessary, since we are constraining
the vector xm, being orthogonal to the previous xm−1.

Hence, the best algorithm to minimize the total energy is the following, called conju-
gated gradients:

dm = gm + γmdm−1 (2.24)

γm =
gmġm

gm−1ġm−1
(2.25)

gm = −δE
δx
|x=xm . (2.26)

In this way, the first displacement is given by the gradient of E with opposite sign, the
second direction is the linear combination of the new gradient and the first one and so on.
This method is fast and not expensive in time and memory.

The total energy minimization represents a bigger loop that contains the charge self-
consistency: for each ionic configuration, the charge selfconsistency is calculated until a
convergence is reached; then the ions move following this algorithm and a new charge
selfconsistency loop starts (see scheme in Fig.2.4). This procedure ends when the energy
functional is minimized and the charge selfconsistency is reached.
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Figure 2.4: Scheme of the self-consistent loop included in a bigger loop involving the
energy minimization.
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2.3 Scissor operator

The scissor operator is a tool present in the Fireball code that allows us to move the
eigenvalue of each orbital of a given value. This operator can be used to reach the good
band alignment between different parts of the systems or to simulate the application of a
voltage on a part of it.
We will only give a short description in this paragraph, for more details refer to [62, 63].
In general, the scissor operator is able to move each band εα(k) a value ∆α(k). Taking
advantage of the properties of projectors, it can be written as:

OS =
∑
α,k

∆α(k)|α(k)〉〈α(k)| (2.27)

where |α(k)〉 is the eigenorbital with energy εα(k). We will calculate the matrix ele-
ments of the scissor operator in the Fireball basis set for periodic systems:

|Bµ,i(k)〉 =
1√
N

∑
R

eik(R+ri)|φµ,i〉 (2.28)

where |φµ,i〉 is the numeric atomic orbital of the orbital µ of atom i (at ri). If we expand
|α(k)〉 in this basis set:

|α(k)〉 =
∑
λ,l

bαλ,l(R)|Bλ,l(k)〉 (2.29)

we get that the scissor operator matrix element 〈Bµ,i(k)|OS|Bν,j(k)〉 takes the form:

〈Bµ,i(k)|OS|Bν,j(k)〉 =
∑
α

∆α(k)〈Bµ,i(k)|

(∑
λ,l

bαλ,l(R)|Bλ,l(k)〉

)
× (2.30)

×

(∑
σ,m

bα,∗σ,m(R)〈Bσ,m(k)|

)
|Bν,j(k)〉 = (2.31)∑

α,l,m,λ,σ

∆α(k)bαλ,l(R)bα,∗σ,m(R) 〈Bµ,i(k)|Bλ,l(k)〉︸ ︷︷ ︸
Sµ,i;λ,l(k)

〈Bσ,m(k)|Bν,j(k)〉︸ ︷︷ ︸
Sσ,m;ν,j(k)

(2.32)

where Sµ,i;λ,l(k) is the overlap matrix element between the orbital µ of atom i and the
orbital λ of atom l.
In this work, the scissor operator is used to find the good alignment between graphene and
MoS2 in graphene/MoS2 van der Waals heterostructure, as well as to simulate the appli-
cation of a gate voltage in some specific layer in the Field Effect Transistor modelization.
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2.4 Including weak and van der Waals interactions:

the LCAO-S2+vdW formalism

The van der Waals (vdW) interaction comes from a quantum mechanical effect: the normal
charge fluctuation occurring in the atoms and molecules, provide oscillating dipoles whose
average value in time is zero. However, these dipoles interact leading to the van der Waals
interactions among others. Due to its central importance for many physical, chemical
and biological phenomena, it was important to include it in DFT formalism. However,
this is not a simple task. In fact, the standard approximations used in DFT to model
the exchange-correlation term completely miss the long distance interaction like the vdW
ones. One way to include the vdW interaction is to add to DFT a value coming from a
semiempirical approach: VvdW = −fd(R)C6/R

6, where R is the distance between a pair of
atoms, fd(R) is a damping function going to zero for short distances and the coefficient C6

that depends on the type of atoms. A second way is to add a new functional in DFT that
includes the vdW interaction. However, in complex systems it could be very expensive. A
third method is implemented in Fireball: once the separated single layers are calculated in
DFT, the vdW interaction treated in perturbation theory is included. In the method we
are going to present, the linear combination of atomic orbitals-orbital occupancy (LCAO-
OO), where the energy and potential are expressed in terms of the orbital occupancies, is
used since it gives a connection between the local orbital DFT of Fireball approach and
intermolecular perturbation theory in second quantization formalism [64].

In LCAO-OO method, the eigenfunction are written as the linear combination of atomic
orbitals ψn(r) =

∑(n)
iα c

(n)
iα ϕ(r −Ri) where i and α run over the atoms and their orbitals,

respectively and ϕiα are given by Eq.2.19.
First of all, we write the general Hamiltonian in second quantization formalism, sepa-

rating the one-electron term from the many body part:

Ĥ =
∑
υ,σ

(ευ + V ps
υυ,σ)n̂υ,σ +

∑
µ6=υ,σ

(tµυ + V ps
υµ,σ)ĉ†µω ĉυσ +

1

2

∑
υωσµλσ′

Oυµ
ωλĉ
†
υσ ĉ
†
µσ′ ĉλσ′ ĉωσ (2.33)

where V ps is the pseudopotential, and

ευ =

∫
ϕυ(r)(−1

2
∇2 +

∑
j

Zj
|r−Rj|

)ϕυ(r)dr,

tµυ =

∫
ϕµ(r)(−1

2
∇2 +

∑
j

Zj
|r−Rj|

)ϕυ(r)dr,

Oυµ
ωλ =

∫
ϕυ(r)ϕω(r)

1

r− r′
ϕµ(r′)ϕυ(r

′)drdr′ = (υω|µλ). (2.34)
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The many body contribution can be written as:

∑
υωσµλσ′

Oυµ
ωλĉ
†
υσ ĉ
†
µσ′ ĉλσ′ ĉωσ =

∑
υ

Uυn̂υ↑n̂υ↓ +
1

2

∑
µ 6=υ,σσ′

Iυµnυσn̂υσ′

+
1

2

∑
µ 6=υ,λ,σσ′

hλ,µυn̂λσ′ ĉ†υσ ĉυσ −
∑

υ 6=υ,λ,σ

hxλ,µυ
ˆ

λσĉ†υσ ĉυσ

+
1

2

∑
N.N.

Oµυ
ωλ(ĉ

†
µσ ĉωσ)(ĉ†υσ′ ĉλσ′),

(2.35)

where the terms Uµ, Jµυ, hλ,µυ, and hxλ,µυ are defined by

hλ,µυ =

∫
ϕ2
λ(r)

1

|r− r′|
ϕµ(r′)ϕυ(r

′)drdr′, (2.36)

hxλ,µυ =

∫
ϕλ(r)ϕυ(r)

1

|r− r′|
ϕλ(r

′)ϕµ(r′)drdr′, (2.37)

Uµ =

∫
ϕ2
υ(r)

1

|r− r′|
ϕ2
υ(r
′)drdr′, (2.38)

Jµυ =

∫
ϕ2
υ(r)

1

|r− r′|
ϕ2
µ(r′)drdr′. (2.39)

A Löwdin orthonormal basis set ϕµ (see eq.2.19) is used to define the creation and
annihilation operators, ĉ† and ĉ respectively, with n̂ = c†ĉ.
The Hamiltonian equation is divided in two main parts composed by the first two terms
(ευ + V ps

υυ,σ and tµυ,σ + V ps
υµ,σ) related with the one-electron contribution and the last term

defining the electron-electron ones. In the LCAO-OO formalism, the Hamiltonian 2.33 can
be divided in two parts given by

Ĥ0 + δĤ

where Ĥ0 is composed by one-electron + intratomic + interatomic interaction terms,
whereas the vdW interaction is included in δĤ, which contains all the four-electrons terms.
Ĥ0 can be written in this form:

Ĥ0 =
∑
υσ

(ευ + V ps
υυ,σ)n̂υσ +

∑
υ 6=µ,σ

T̂υµ,σ ĉ
†
υσ ĉµσ +

∑
υ

Uυn̂υ↑n̂υ↓

+
1

2

∑
υ,µ6=υ,σ

[Jυµn̂υσn̂µσ̄ + (Jυµ − Jxυµ)n̂υσn̂µσ̄],
(2.40)

where
T̂υµ,σ = (tυµ + V ps

υµ,σ +
∑
λ,σ′

hλ,υµn̂λ,σ′ −
∑
λ

hxλ,υµn̂λσ),
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Uυ = (υυ|υυ), Jυµ = (υυ|µµ), Jxυµ = (υµ|υµ), hλ,υµ = (λλ|υµ) and hxλ,υµ = (λυ|λµ) as
in eq.2.34.
The first step is to find the DFT solution for each layer independently. For this purpose,
we can use the DFT Fireball code, since it is based on orbital occupancy instead of electron
density, and it is compatible with the LCAO-OO approach.

From this calculation we obtain the following eigenstates:

ϕn(k) =
∑
i

cni(k)ψ0
i =

∑
i

ani(k)φi, (2.41)

where the eigenvalues εn(k) and the occupation numbers {ni,σ} are also obtained from
the DFT calculations for independent layers. A useful definition of the symbol is necessary:
k is the momentum parallel to the planes, n is the band index and ψ0

i are the orthonormal
basis orbitals within each layer obtained from the Löwdin expansion.

The second step concerns the analysis of the intermolecular interaction contributions,
starting from the one-electron contributions: it arises from orthogonalisation, namely the
overlaps Sµυ = 〈φµ|φυ〉, and from the hopping matrix elements T between atomiclike
orbitals in different layers (the eigenfunctions of each layer are orthonormalized). However,
the overlap is small and its effects on the energy can be described by a (S2) expansion [65–
67] that induces a shift in the occupied eigenvalues of each layer. The energy shift for one
layer is written in terms of overlap Snm(k) and hopping Tmn(k) integrals as following:

δSεn(k) = −
∑
m

1

2
[Snm(k)Tmn(k)+Tnm(k)Smn(k)]+

1

4

∑
m

|Smn(k)|2[εn(k)−εm(k)] (2.42)

where n andm define the eigenvectors of both layers. In the other layer, the same expression
for the shift energy δSεm(k) can be obtained from the previous one by inverting n and m.
On the other hand, we have the shift due to the hopping, in molecular perturbation theory,
given by

δT εn(k) =
∑
m

|Tmn(k)|2

εn(k)− εm(k)
(2.43)

where Tmn(k) is the orthogonal hopping terms given by

Tmn(k) = T 0
mn(k)− 1

2
Smn(k)[εm(k)− εn(k)]. (2.44)

Here T 0 is the non orthogonal hopping term and the second term on the right is a correction
due to the small overlap Snm between eigenstates in different layers.
The main important terms on the one-electron energy shift are given by the first repulsive
terms on the right in eq.2.42 and the attractive δT , whereas the S2 term is almost negligible.
An illustration of the behaviour of this terms as a function of the interlayer distance is
shown in Fig.2.5, taken from [64] and calculated between two graphene layers.
Finally, summing the two effects, the one-electron contribution has the following expression:

Eone−el = 2
∑
n=occ

(δSεn + δT εn) +
∑
m=occ

(δSεm + δT εm). (2.45)
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The last part of H0 Hamiltonian we are going to discuss is the main many-body con-
tributions, except vdW interaction that, as we said, is included in δH. For this term the
overlap (S2) expansion is used again: once we get the orthogonalisation within each layer
(yielding {ψ0

i } for the layer 1 and {ψ0
α} for the layer 2) the overlap between different layers

is calculated (Siα = 〈ψ0
i |ψ0

α〉) by means of eq.2.19, and then the S2 expansion is performed.
The Hamiltonian related with the many-body contributions includes the interaction

between the layers and is composed by many terms. Avoiding the three-center interlayer
contribution, the Hamiltonian can be written as following

Ĥint = Hone−el +Hel−el +Hel−ion. (2.46)

The first term is the one electron contribution explained before, written in {ψ} or-
thonormal basis set within the same layer, given by

Ĥone−el =
∑
i,σ

n̂i,σδ
Sεα(k) +

∑
α,σ

n̂α,σδ
Sεi(k) +

∑
(Tiαĉ

†
iσ ĉασ + Tαiĉ

†
ασ ĉiσ)

where i (α) runs through the orbitals of the first (second) layer and the energies ε in δS

(see eq.2.42) and in Tiα are approximately the DFT levels for independent layer corrected
by the electrostatic potential of the other layer (see [66] for details).

The last term, namely the electron-ion interaction, is composed by the sum of two
terms. The first term is∑

i,σ

n̂i,σV
ps,(0)
ii,σ (2) =

∑
γ

I0
ii,γ =

∑
γ

〈ψ0
i |
−Zγ

r−Rγ

|ψ0
i 〉

where Zγ is the pseudonuclear charge in atom γ of the first layer and the sum is extended
to all the atoms in the second layer. The second term is the symmetric one, where the
pseudopotential Zk of the second layer appears and the sum runs over the atoms of the
first layer.
Finally, the terms in the middle collect all the electron-electron interactions:

Ĥel−el =
∑
i,α,σ

[J
(0)
i,α n̂i,σn̂i,σ̄ + (J

(0)
i,α − J

x,(0)
i,α + J

(0)
i,αS

2
i,α)n̂i,σn̂i,σ]

where J
(0)
i,α = (ii|αα) and J

x,(0)
i,α = (iα|iα). The first term on the right gives the Hartree

energy, whereas the second and third terms in the parenthesis give the exchange energy
coming from exchange integral J

x,(0)
i,α . In the parenthesis we also find the first two terms

giving the exchange energy associated with the interaction between charges nµ,σ and their
exchange holes (1−nµ,σ). The assumption in this formalism is that this term only depends
on the intralayer interactions, being negligible the modification due to S2.
To have an idea of the contribution of each term in the interaction energy between the two
layers, we report a plot taken from [64] obtained for two graphene layers (see Fig.2.5).
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Figure 2.5: One electron, exchange-integral and Hartree contribution to the interaction
energy as a function of graphene layers distance. Contribution to the one-electron term
are shown in the inset [64].

Finally, we move to the vdW term included in δH. The vdW Hamiltonian is written
as following:

ĤvdW =
∑

i,j,α,β,σ1,σ2

JvdWi,j;α,β ĉ
†
i,σ1
ĉj,σ1 ĉ

†
α,σ2

ĉβ,σ2 (2.47)

where JvdWi,j;α,β = (ij|αβ), as in eq.2.34. The i, j (α, β) index refers to different orbitals
(also i 6= j and α 6= β) of the first (second) layer. In this picture the atom-atom vdW
approximation is used, requiring that the orbitals i and j (α and β) do belong to the same
atom within the corresponding layer.
For JvdWi,j;α,β calculation, the local atomiclike orbitals {φ} are used and, due to the small
overlap between the orbitals of different layers, the classical dipole-dipole approximation
is applied. In this picture it is possible to write JvdWi,j;α,β as

JvdWi,j;α,β =
1

R3
(〈i|x|j〉〈α|x′|β〉+ 〈i|y|j〉〈α|y′|β〉 − 2〈i|z|j〉〈α|z′|β〉) (2.48)

where R is the distance between atoms along the z direction.
The final vdW energy, with the approximation to not take into account the interactions
among different sites in the same layer, can be written as

EvdW = 4
∑
i,j;α,β

(JvdWi,j;α,β)2

∫
ρi(ε1)ρj(ε2)ρα(ε3)ρβ(ε4)

ε1 − ε2 + ε3 − ε4
dε1dε2dε3dε4 (2.49)

where ρ(ε) are the local density of states per spin on each orbital, and the integrals in
ε1 and ε3 (ε2 and ε4) run through the occupied (unoccupied) states.



2.5. Transport calculations 29

Figure 2.6: Total energy of the system and its main contribution given by the repulsive
chemical interaction and the attractive vdW force.

A further simplification of the vdW energy gives the following expression:

EvdW = 4
∑
i,j;α,β

(JvdWi,j;α,β)2ni(1− nj)nα(1− nβ)

ei − ej + eα − eβ
(2.50)

where ni =
∫
occ
ρi(ε)dε are the orbital occupation number, ei =

∫
occ
ερi(ε)dε and ej =∫

unocc
ερj(ε)dε are the average occupied and unoccupied levels.

It has been found that a minimal basis set, generally used in first-principle calculations
for large systems, is not enough to describe properly the vdW interactions because it does
not well represent the spectrum of excited states (empty state) that are involved in the
vdW calculations. For example it has been found that for graphene the dipole transitions
involving 3s, 3p and 3d excited atomic orbitals are required for a good description of this
interaction [64].

In Fig.2.6 we can find the binding energy between two graphene layers, divided in two
main contributions: the repulsive chemical interaction and the vdW attractive energies.
Consequently, more than half of the vdW interaction involves virtual transitions, namely
transitions with highly excited states (involving d-orbitals for carbon for example). This
feature reinforces the fact that DFT cannot intrinsically take into account vdW interac-
tions.

2.5 Transport calculations

In this work we have performed two kinds of transport calculations. One concerns the
simulation of the Scanning Tunneling Microscope (STM) images, used to characterize the
surfaces of our sample. The other one used in chapter 4 to calculate the tunneling current
between the 2D crystals, in particular at the graphene-MoS2 interface, in order to model a
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Field Effect Transistor composed by van der Waals heterostructures. The latter transport
calculations concern the detection of defects on MoS2 monolayer by means of graphene
tip STM characterization. All the cited systems are characterized by the non equilibrium
state, since a small tension is applied between the two parts involved in the transport
calculation.
The theoretical background is in common for all the applications of the electronic trans-
port calculations and is based on the Keldysh-Green formalism, described in the following
section.

2.5.1 Keldysh-Green formalism

The nonequilibrium Green’s function formalism developed by Keldysh [68] starts from
the description of the three parts characterizing the system: the tip, the sample and the
interactions between them (see Fig.2.7). In this picture the Hamiltonian can be written as
a sum of three terms, one is the Hamiltonian describing the tip, one the sample and HI is
the Hamiltonian of the interaction:

Ĥ = ĤT + ĤS + ĤI . (2.51)

The interactions between the two parts (HI), namely the interaction between the tip
(T) and the sample (S) for STM images simulation, or two separated layers in the transport
calculation for Field Effect Transistor characterization, is described via hopping process.
In particular, the Hamiltonian HI can be written as the coupling between the orbitals
belonging to the two different parts:

ĤI =
∑
αj

[T̂TS(αj)ĉ†T (α)ĉS(j) + T̂ST (jα)ĉ†S(j)ĉT (α)] (2.52)

where T̂TS and T̂ST are the hopping matrices and (ĉ†T , ĉT , ĉ
†
S, ĉS) are creation and anni-

hilation operators associated, where the orbitals α and j are all the orbitals of the tip and
the sample, respectively.
The other two terms of the Hamiltonian can be written as ĤS =

∑
α εαn̂α +

∑
αβ Tαβ ĉ

†
αĉβ

and ĤT =
∑

j εjn̂j +
∑

ji Tjiĉ
†
j ĉi.

Now we can write the total current between the two parts as following [69]

J =
ie

~
∑
αj

[T̂TS(αj)〈ĉ†T (α)ĉS(j)〉 − T̂ST (jα)〈ĉ†S(j)ĉT (α)〉]. (2.53)

We can now substitute the averaged quantities in terms of nonequilibrium Green func-
tions Ĝ+−, then using the Fourier transformation we can write

〈ĉ†T (α)ĉS(j)〉 =
1

i
Ĝ+−
Tα,Sj(t, t+ 0+) =

q

2πi

∫ +∞

−∞
Ĝ+−
Tα,Sj(ω)dω, (2.54)

the same for 〈ĉ†S(j)ĉT (α)〉 with obvious change of index.
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HT

HI

HS

Figure 2.7: Graphic representation of the three parts forming the total hamiltonian
given by the tip (HT ), the sample (HS) and interaction (HI) interaction.

Using these last expressions, it is possible to write the total current J as a function of
the nonequilibrium Green functions as

J =
e

π~
∑
αj

∫ ∞
−∞

[T̂TS(α, j)Ĝ+−
Sj,Tα(ω)− ˆTST (j, α)Ĝ+−

Tα,Sj(ω)]dω (2.55)

and following the trace properties, it becomes

J =
e

π~

∫ ∞
−∞

Tr[T̂TSĜ
+−
ST (ω)− ˆTST Ĝ

+−
TS (ω)]dω. (2.56)

Now we define some quantities we need to write the nonequilibrium Green functions
G+− in terms of the retarded and advanced Green functions of the interacting system, GR

and GA: Σ̂ is the interaction between the two parts, (in particular Σ̂TS = T̂TS, Σ̂ST = T̂ST
and Σ̂SS = Σ̂TT = 0), and ĝ+− as the Green’s function of the noninteracting case, namely
when Σ̂ = 0. We can write the nonequilibrium Green functions as

Ĝ+−(ω) = [Î + ĜR(ω)Σ̂]ĝ+−(ω)[Î + Σ̂ĜA(ω)]. (2.57)

Moreover, the relation between the Green function of the noninteracting case and the
Density of State ρTT,SS can be written as

ĝ+−
TT (ω) = 2πiρ̂TT (ω)fT (ω),

ĝ+−
SS (ω) = 2πiρ̂SS(ω)fS(ω),

ĝ+−
TS (ω) = ĝ+−

ST (ω) = 0

where fT,S(ω) are the Fermi-Dirac distributions for the two parts. From them we can
write the retarded and advanced Green functions for the interacting system:

ĜR = ĝR + ĝRΣ̂ĜR, ĜA = ĝA + ĝAΣ̂ĜA.
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TTSTST

gTT

gSS

TSTTST

Figure 2.8: Graphic representation of the first term (on the left) and successive terms
(on the right) of the hopping describing the multiple scattering effects.

We can now write the total current as a function of the Green function for the uncoupled
parts and the hopping matrix that couples both parts of the systems:

J =
4πe

~

∫ ∞
−∞

Tr[T̂TS ρ̂SS(ω)D̂R
SS(ω)T̂ST ρ̂TT (ω)D̂A

TT (ω)][fT (ω)− fS(ω)]dω (2.58)

where
D̂R
SS(ω) = [Î − T̂ST ĝRTT (ω)T̂TS ĝ

R
SS(ω)]−1

D̂A
TT (ω) = [Î − T̂TS ĝASS(ω)T̂ST ĝ

A
TT (ω)]−1.

These two quantities take into account the multiple scattering effects via the sum-
mation up to infinity order of an expansion on the scattering matrices given by X̂A =
T̂TS ĝ

A
SS(ω)T̂ST ĝ

A
TT (ω) and X̂R = T̂ST ĝ

R
TT (ω)T̂TS ĝ

R
SS(ω), responsible for the saturation of

the tunneling current when the distance between the two parts becomes small [70], see
Fig.2.8.

The equation 2.58 includes temperature effect via the Fermi-Dirac function. The trace
of a multiplication of several matrices in the eq.2.58 can be physically interpreted as a co-
herent superposition of different channels. Moreover, in the Tersoff-Hamann limit, namely
for large distances between the two parts, the terms D̂A

TT (ω) and D̂R
SS(ω) can be approxi-

mated with the identity matrix and the current can be written as

J ∼ 4πe

~

∫ ∞
−∞

Tr[T̂TS ρ̂SS(ω)T̂ST ρ̂TT (ω)[fT (ω)− fS(ω)]]dω

. This approximation is valid when T̂TS is small compared with the hopping interaction in
the sample. Finally, when the voltage is low enough, namely in the linear response regime
and at T = 0K, another simplification can be done and the Tersoff-Hamann expression is
recovered:

J ∼ 4πe2V

~
Tr[T̂TS ρ̂SS(EF )T̂ST ρ̂TT (EF + eV )] (2.59)

where V is the applied voltage and EF is the Fermi level of the sample.
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Finally, we can write the relation between the Green function, density of state and
hamiltonian [71]:

Ga,r
SS(E) = lim

η→0

1

(E ± iη −HS)
(2.60)

DOSSS(r, E) = ρSS(r, E) = ± 1

π
Im{Gr,a(r, r, E)} (2.61)

where HS is the hamiltonian of one of the part. The parameter η is a mathematical
tool able to avoid the zero at the denominator and takes into account the enlargement of
the levels: in this picture, the temperature effect in the experiments is considered. A large
value of η can be not good in the determination of the gap in a semiconductor, whereas
a small η gives high and thin peaks, making impossible the integration with energy steps
larger than η. It is clear that a connection between η and the step of integration exists
and has to be considered.
In the next section we will show the application of this formalism in our work: the STM
images and the electron transport at graphene-MoS2 interface calculation.

2.5.2 Application of the Keldysh-Green formalism

Scanning Tunneling Microscope images simulation

A Scanning Tunneling Microscope (STM) represents a powerful experimental technique to
investigate the structural and electronic properties of surfaces. Since its invention in 1982
[72, 73] STM represents a revolution for the investigation of surfaces and low dimensional
systems. Exploiting the tunnel effect between an extremely sharp tip and the sample
separated by 5 to 10Å, the collected current will be proportional to the filled, or empty,
states at the surface, depending on the applied bias. The result will be a real space current
intensity map with atomic scale resolution. A pictorial diagram of the experimental set up
is reported in Fig.2.9.

In the case of STM images calculations, the two parts forming the system are repre-
sented by the tip and the sample. The tip is supposed to be very thin, ending with a single
atom in order to get an atomic resolution of the sample surface. A voltage between tip and
sample leads to an electric tunneling current between them, thanks to the tunnel effect.
The current will be given by electrons (occupied states) or holes (empty states) from the
tip to the sample, depending on the sign of the applied voltage. The STM images can
be performed in two different ways: constant current or constant height. The first type
of measurements gives a direct information on the corrugation of the surface and can be
realized by fixing the current and let the tip move vertically (perpendicular direction to
the sample surface); in the second case, the constant height gives different current values,
depending on the local electronic distribution on the surface.

In our calculations, due to the temperature T = 0 K and in the case of small voltages
V ' 0, the current is calculated using equation 2.59.
The tip in a STM model can be treated in different ways. A simple approach is to consider
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Figure 2.9: Scheme of Scanning Tunneling Microscope.

the tip as an orbital with spherical s-symmetry. However, in this way, it is obviously not
possible to have informations about the kind of tip used in the experiments. In order
to simulate an accurate STM image, it is necessary to consider and model the chemical
properties of the atom forming the apex. One method to do that is to consider a cluster
formed by a pyramid of 4 or 5 atoms coupled with a system that simulates a volume. In
Fireball, the tip is built as a cluster of 4 or 5 atoms attached to a surface of the same
material of the cluster, or, like in our calculations, as a pyramid composed by 35 atoms.
The Green function related to the tip is given by:

gr,aTT (E) =
1

(E ± iη)Î − Ĥeff
C − Σ̂r,a

B (E))
(2.62)

where Ĥeff
C is the hamiltonian of the cluster of 4 or 5 isolated atoms, whereas Σ̂r,a

B (E) is the
self-energy matrix resulting from the coupling between the surface and the cluster. In this
model, the hopping between the two parts is pre-calculated considering first the interactions
between the dimers formed by one atom of the tip and one atom of the sample. This is
repeated for all the combinations of atomic pairs and for a certain numbers of distances.
All the calculated hoppings are stored and used by means of interpolations during the STM
simulations. One of the first approximations of the interaction between tip and sample is
the Bardeen approximation where the hopping is calculated as follows:

TST (α, j) =
γ

2

∫
σT,S

dS(ψ∗T (α)5 ψS(i)− ψ∗S(i)5 ψT (α)) (2.63)

where γ is a semiempirical parameter with a range of values from 1.3 to 1.5, ψT (α) and
ψS(i) are the orbitals of atomic pairs of the tip and the sample. In this expression, the
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Figure 2.10: Scheme of barrier voltage for voltages V ∼ 0V in a) and for finite voltages
in b).

integral is calculated on the surface σ respecting the following condition:∫
ΩS

ψSψTd
3r =

∫
ΩT

ψSψTd
3r.

In Fireball, the hoppings are calculated by going beyond the Bardeen approximation,
introducing more contributions in the calculations. The first problem is the large distance :
starting from a given distance, the hoppings reveal a non-homogeneous shape, responsible
for the edge effects in the STM images. To solve this problem, the approximation of
parallel planes is used, coming from the fact that at large distances the cluster attached to
the surface and the surface itself can be approximated by a plane. It means that in this
approximation the probability to tunnel through the barrier is given by:

P ∝ e−2
∫ d
0

√
2(U(z)−E)dz ∼= e−2d

√
2φ

where U = φ for 0 < z < d, and V ' 0.
The factor e−2d

√
2φ is the probability of an electron to cross the barrier given by φ for

small voltages V. The total probability amplitude can be written as

TTotal ∝ e−z
√
rφ

where z is the tip-sample distance.
Thus, the hopping between each pair of orbitals of belonging on the tip and the sample

follows the same exponential relation

T ∝ f(z)e−z
√

2φ

where f(z) is a smooth function such as the sum of T for all the pairs gives TTotal. Within
the approximation related to large distances, the total probability can be approximated as

TTotal ∝ f(d)de−d
√

2φ
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and comparing that with the expression of TTotal written before we can conclude that

T ∝ 1

d
e−d
√

2φ

valid for free electrons with bands similar to s orbitals. Finally, the expression for all the
orbitals given by Harrison [74] is

T ∝ 1

dα
e−d
√

2φ (2.64)

where α = l1 + l2 + 1, with l1 and l2 are the quantum number of each orbital of the pair of
atoms. The constant we need to completely define the hopping expression is determined
by connecting it with the expression given by the Bardeen approach. In the point where
the change from one to the other occurs, the value of the two functions and their derivative
is required to be equal.

So far, we have studied the case of small voltages where the electrons close to the
Fermi level (namely with energy in the range [EF ;EF + eV ]) have the same probability
to tunnel. On the other hand, for larger voltages, we want that the electrons close to the
Fermi level have more probability to tunnel than the electrons in the lowest levels since the
latter feel a larger barrier. Starting from the WBK approximation, we can approximate
the triangular barrier as a rectangular one with high ψ = φ + 1

2
V (see Fig.2.10). In this

case, the probability to tunnel from one side to the other is given by

T ∝ e2d
√

2(ψ−E)

and, since the work function φ is large compared to V, we can approximate the exponential
part as follows:

T ∝ e−2d
√

2(φ+ 1
2
eV−E) ≈ e−2d

√
2φe

2d√
2φ

(e− 1
2
eV )

where e−2d
√

2φ corresponds to the hopping related to the large distances.
The new equation for the current is, then, given by:

J =
4πe

~

∫ eV

0

Tr[TTSρSS(E)TSTρTT (E − eV )]e
1

∆E
(E− 1

2
eV )dE (2.65)

where ∆E =
√

2φ/2d. Here, as we required, the electrons with energy close to Fermi have
the maximum probability to tunnel and that with energy 1

2
V have the same probability as

for small voltages.

Electronic Transport at graphene-MoS2 interface

The same formalism is used to calculate the electronic transport at the graphene-MoS2

interface. The difference is that in that case, the tip is given by one of the two planes
(generally, the graphene layer) and all the parts related to the characterization of the tip
are not present here. In particular, here the tip is composed by an extended plane of
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C atoms forming the graphene plane (or Mo and S atoms, for the MoS2 plane), or, in
other words, we can imagine that each C atom is a tip. The hopping terms are calculated
between all the atoms of graphene coupled with each atom of MoS2. In this case we have
not considered the approximation for large distances: here, for each C atoms we have close
and far S and Mo atoms, meaning that the hoppings between one C atom and a sulfur
atom, we call for simplicity S’, far away is negligible with respect to the hopping between
S’ and the closer C atoms.

2.6 Summary

In this chapter we have detailed the theory and methods used in this work of thesis. The
Density Functional Theory is at the basis of this work, allowing the calculation of the
optimized atomic configurations and the electronic properties by mean of Density of State
and electronic band structure. In the framework of Van de Waals heterostructures, the
LCAO-S2+vdW formalism implemented in fireball code, allows us to take into account the
Van der Waals forces, normally missed in the standard DFT, and to calculate the attractive
interaction between the planes and the interplane equilibrium distance in graphene/MoS2

and in other studied interfaces. The electronic transport calculations are based on the
Keldysh-Green formalism that uses the occupation number provided by previous DFT
calculations. It is used in both the Scanning Tunneling Microscope images simulations and
for the analysis and comparison of graphene and copper AFM tip in chapter 5. In the
study of the transistor formed by Van der Waals heterostructure shown in chapter 4, the
scissor operator is used to simulate the gate voltage potential, leading to a shift of the band
structure. Then, once the charges are calculated in DFT for each band alignment, the same
Keldish-Green formalism allows us to calculate the transverse current at the interface, used
to characterize the performance of the transistor model.
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Chapter 3

Graphene/TMDC heterostructure

In this chapter we will present our study on graphene/MoS2 heterostructure, in particular
we focus on the influence of the orientation between the MoS2 and graphene planes on the
structural and electronic properties.
We first introduce separately both free-standing graphene and MoS2 monolayers, then we
discuss their structural and electronic properties, at the equilibrium and under positive
and negative strains.
The second part is related to graphene/MoS2 stacking: after pointing out the computa-
tional challenge related to the lattice mismatch and the periodic boundary conditions in
the building of the supercells, we discuss the role of the rotation angle between graphene
and MoS2 on the global and local electronic properties.
A comparison with the experimental results (provided by the collaborators of Centre de
Nanosciences et de Nanotechnologies, CNRS and Université Paris-Sud, Université Paris-
Saclay and the Department of Physics and Astronomy, from University of Pennsylvania)
is given and the role of the dangling bonds at the edges of MoS2 flake on its structure is
considered.
This chapter ends with the study of a more complex heterostructure composed by MoSe2,
another TMDC similar to MoS2 also presented in the first part, on few-layer graphene
deposited on SiC substrate. Here, our theoretical calculations support the experimental
results provided by the group of CEA Grenoble by stressing the presence of an interplane
interaction able to tune the electronic properties of the graphene planes.

In other words, in this chapter we perform an extensive study of the interactions in
graphene/TMDC heterostructure: we start by a theoretical investigation of the van der
Waals forces at the infinite interface, then we go further by including two other contribu-
tions, as the edges effect on the 2D flake and the interaction with the substrate.

3.1 Graphene: the first 2D material

As we already know, graphene was the first bidimensional material to be isolated ever.
It is a single layer of graphite (Fig.3.1), namely composed by one plane of carbon atoms

39
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Figure 3.1: Image of a piece of graphite from the web ([75]).

organized in a honeycomb structure.
The in-plane stability of graphene, explained by the absence of dangling bond at the

surface, together with the weak van der Waals interaction between the planes in graphite,
allowed Novoselov et al. [1] to isolate a single graphene layer from graphite by means of
mechanical exfoliation.

Due to its peculiar structure, graphene presents many surprising properties like a record
stiffness (0.5 TPa), impermeability to gases, and low resistivity of ∼ 10−6Ωcm. Further-
more, its high mobility makes graphene in a first line in the electronic devices with low
dimension characteristics. However, its unique electronic structure that classifies it as
a zero gap material, or semimetal, limits its applications to logic circuits for low-power
switching. Many efforts have been done to open a gap on graphene, with the results to
affect, at the same time, its fantastic properties. We know that one way to overcome this
problem is to combine the mobility of graphene with the gap of a 2D semiconductor by
means of heterostructures, since thanks to the van der Waals interaction, each layer can
keep its main electronic properties.

Structural and electronic properties

Graphene is characterized by a honeycomb structure. Since it does not belong to the
Bravais lattices, it can be described as a double shifted hexagonal lattice with 2 equivalent
C atoms (black balls in the inset of Fig.3.2) forming the basis. The primitive cell is
represented by the dashed lines and the lattice vectors by the arrow a1 or a2 in Fig.3.2a.

The in-plane lattice constant is a '2.48 Å and the lattice vectors in Cartesian coordi-
nates are

a1 = a

(
1

2
,

√
3

2

)
; a2 = a

(
−1

2
,

√
3

2

)
. (3.1)

The lattice vectors of its hexagonal Brillouin Zone (BZ), defined as primitive cell in the
reciprocal lattice (Fig.3.2b), are given by

b1 =
2π√
3a

(1,
√

3) ; b2 =
2π√
3a

(1,−
√

3). (3.2)
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Figure 3.2: Plot of total energy as a function of lattice parameter in a) and represen-
tation of the lattice parameter in hexagonal structures in the inset. In b) the Brillouin
zone and the reciprocal lattice vectors are shown.

This peculiar geometry, due to the sp2 hybridization of carbon atoms, produces strong
σ in-plane orbitals and unpaired π states. The π states are at the origin of the exceptional
properties of graphene like linear dispersion of electronic bands (Dirac bands) around
the K points of BZ (see Fig.3.3) left panel, with a zero-dimensional Fermi surface (FS)
constituted by a single point (Dirac point). This means that electrons have photons-like
energy dispersion with zero mass exhibiting extraordinary transport properties (described
by a Dirac-like equation) [76]. Due to this peculiar band structure, characterized by linear
dispersion, it exhibits giant mobility and electrons can travel for micrometers without
scattering at room temperature. The corresponding resistivity is less than the resistivity of
silver and it can sustain current densities ∼ 106 times higher than the one of copper[77, 78].

According to the used code and the chosen parameters, we can find slightly different
equilibrium lattice vectors for the same crystals. For this reason, once the pseudopotential
and the atomic orbital radius in Fireball have been chosen, we evaluated the equilibrium
structural parameter by comparing the total energies as a function of different values of
a = a1 = a2. In this work, we have characterized the graphene layer by considering 2
electrons on s and 2 electrons on p orbitals with cut-off radii rs = rp = 4.5 a.u.; a mesh of
2018 k-points in the BZ for the electronic structure calculations was used.

In the case of graphene, the only parameter that can completely describe the structure
is the in-plane lattice vector, while the distance between the C atoms of the same basis is
given by dC−C = 1√

3
a.

About the structural optimization, we have built different primitive cells 1 × 1 char-
acterized by different in-plane dimensions. Since graphene has a bidimensional structure,
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the out of plane dimension is kept at 99.0 Å to simulate an isolated freestanding layer.
Finally, we performed the relaxation of the dC−C internal coordinate. The value of the
total energies for each cell is shown in fig.3.2: the equilibrium is found to be a = 2.48 Å in
good agreement with the values in literature, given by a = 2.46 in [79].
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Figure 3.3: Calculated Band Structure with the Dirac point in the circle and Density
of State of free-standing graphene, using the Fireball code.

.

The electronic properties, namely the calculated Density of State (DOS) and band
structure (BS) are shown in Fig.3.3. The main features of graphene is the well known
Dirac cone at the K point: the linear dispersion between a range of -2V and +2V forms
two cones with the common vertex on the Fermi level. For that peculiar shape of the
BS, graphene is classified as a semimetal, namely a metal (bands crossing the Fermi level)
with a zero DOS at Fermi. Or, if we look at the Fermi Surface (FS), represented by the
intersection point of the conduction and valence band, graphene can be defined also as a
zero gap material. The linear behaviour is clearly represented in the DOS in Fig.3.3.

Strain effect on graphene electronics

In this work, the study of the uniform biaxial tensile strain effects on the electronic prop-
erties of a single crystal is strictly necessary in order to approach the problem related with
the building of the supercells, fully described in Section 3.3.1.

For the moment, we focus on the strain effects on graphene. In order to reproduce the
uniform biaxial tensile strain effect, we considered a standard (1×1) unit cell optimized for
different lattice parameters around the equilibrium. For each value of lattice parameter, the
band structures have been calculated and compared in Fig.3.4. As we can see around the
K point of the BZ, the linear dispersion still characterizes the graphene electronics, except
for a slight change of slope that does not bring any important undesirable contribution or
problem in our work.
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Figure 3.4: Graphene band structure around the Dirac cone for different applied strain.

3.2 MoS2 monolayer: a 2D direct gap semiconductor

Monolayer molybdenum disulfide (MoS2) is a graphene-like material, one of the most stud-
ied of the group of transition metal di-chalcogenide (TMDC). Together with graphite and
hBN (hexagonal Boron Nitride), it was widely used as lubricant at first. MoS2 is also me-
chanically flexible with a Young’s modulus of 0.33 TPa, that makes possible to use it for
transparent and flexible electronic devices as Field Effect Transistors [80]. The same kind
of mechanical exfoliation with scotch tape can be used to isolate a single MoS2 flake from
the bulk (an image of a piece of MoS2 is provided Fig.3.5). In the last years, thanks to its
physical properties, it has an important role in device applications, in particular combined
with graphene [81].

Figure 3.5: Image of a small piece of MoS2, taken from the web [82].

The main interest in MoS2 monolayer comes from its electronic properties: a direct gap
of ∼ 1.8 eV at the K point in the Brillouin zone, classifies this material as a direct gap
semiconductor. It is interesting also to notice the layer dependence of the band structure,
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and in particular of the gap: direct in monolayer phase, indirect from bilayer to bulk.

Structural and electronic properties

More complex in its structure, MoS2 monolayer is composed by two sulfur atoms plane
separated by a molybdenum plane. In the single layer of MoS2 films, Mo (+4) and S (-2)
are arranged to a sandwich structure by covalent bonds in a sequence of S-Mo-S planes
(Fig3.6a on top). From an in-plane view (Fig3.6a on bottom), MoS2 presents a honeycomb
structure, with the basis composed by 3 atoms, S-Mo-S.
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Figure 3.6: In a) the crystal structure of MoS2 from lateral and top view (on the top and
bottom, respectively) with lattice vectors b1,2; in the lateral view other two parameters
defining the structure, θ and dS−Mo, are shown. The blue (yellow) circles represent Mo
(S) atoms. In b) the energetic curve giving the equilibrium lattice parameter.

The parameters describing its structure are represented in Fig3.6a: b1 and b2 (equiva-
lent to a1 and a2 in graphene) define the in-plane structure, whereas dS−Mo = 2.44 Å and
the angle θ = 81.8 deg, defining the S-Mo-S bond, describe the out of plane atomic arrange-
ment. As in the graphene case, the optimization has been done by changing the in-plane
lattice vector of the unit cell, while the two out of plane parameters change according to
the in-plane one. Furthermore, the out of plane dimension of the unit cell will be fixed to
99.0Å, as in graphene, to simulate an isolated free standing MoS2 layer. For MoS2 we used
the following DFT parameters: for Sulfur (Molybdenum) we have 2, 4 and 0 (1, 0 and 5)
e− in s, p and d orbitals respectively with the following radius rs = 3.9 a.u., rp = 4.5 a.u.,
rd = 5.0 a.u. (rs = 5.0 a.u., rp = 4.5 a.u., rd = 4.8 a.u.). As we can see in Fig.3.6b, the
calculated equilibrium lattice parameter is b = b1 = b2 = 3.20 Å, slightly larger than the
experimental lattice parameter (b=3.15Å in [83]) but still in good agreement.

The main electronic characteristic of MoS2 is represented by the electronic gap of ∼
1.83 eV in the monolayer phase (see Fig.3.7). Here, the maximum of valence band (VB)
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Figure 3.7: Calculated band structure and Density of State of free-standing monolayer
MoS2 using the Fireball code. The direct gap is indicated with the vertical arrow in K.

and the minimum of conduction band (CB) fall in K, revealing an important direct gap
largely used in optics, solar cells etc. [84, 85].

The direct gap disappears once the second layer is added and so on until the bulk phase:
here, the relative maximum of the VB in Γ increases and overcomes the one in K, while
the minimum of CB falls in the middle point between K and Γ.

Strain effect on MoS2 electronics

More than in graphene, a small uniform biaxial tensile strain on MoS2 can strongly affect
the electronic properties, in particular the electronic gap. The same procedure we described
in graphene section has been used to study the strain effect on MoS2. Here, once we fix
the value of lattice parameters, the system will find the equilibrium by changing both the
angle θ and dS−Mo.

The tunability of the bandstructure of MoS2 by varying the strain was one of our first
published results in Ref.[86] in collaboration with the experimental group of Abdelkarim
Ouerghi at the C2N, that we will present in the following.
The main feature observed here, in agreement with experimental observations, is related
to the effect of positive strain on the gap type of MoS2. Starting from the equilibrium BS
in Fig.3.8 (black dashed lines) and moving to positive strain values, namely increasing the
lattice parameter, the relative maximum of the valence band (VB) in Γ increases. Already
at 0.6% (green lines), we can see the maximum of VB almost falling in Γ, whereas the
minimum of conduction band (CB) is still in K. It reveals the important change of the gap
type from direct to indirect for very small strain rate. Moreover, as the strain increases,
the gap value is going to reduce. A strong evolution of the BS is also observed by applying
a negative strain: at -0.6% rate the gap is already indirect, in this case from K in the VB
to middle point between Γ and K in the CB, with a reduction of ∼ 0.1 eV of the gap value.
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Figure 3.8: MoS2 band structure for different compression rates showing the change
from direct to indirect gap. The black dashed lines represent the optimized phase. The
arrows underline the band gap type: direct for optimized structure (black arrow), indirect
for positive (light blue) and negative (red) strain.

Therefore, we have shown here that, contrary to graphene, a small change in the structure of
MoS2 given by an applied strain, for instance, can induce an important modification of the
electronic properties, namely the evolution from direct to indirect gap. This result has been
taken into account in the building of the supercells of MoS2/graphene heterostructures, as
we will fully explain in section 3.3.1.

MoSe2, another Transition Metal Dicalchogenide

In this short section we will introduce a second TMDC, the Molybdenum diselenide
(MoSe2), that we will consider at the end of this chapter. MoSe2 is very similar to MoS2,
from both the structural and electronic points of view (see Fig.3.9). In fact, the atomic
structure is the same as in the MoS2, however, since Se is bigger than S, the lattice pa-
rameter of MoSe2 is larger than the lattice parameter of MoS2.
Using the same procedure, namely by comparing the total energy for different sizes of the
unit cell as previously, the lattice vector of MoSe2 is calculated to be a = 3.32 Å.

Regarding the electronic characteristics, we can briefly say that MoSe2 is also a semi-
conductor with direct gap (of ∼ 1.8 eV) at the K of the Brillouin zone. The BS and the
DOS are represented in Fig.3.9b and Fig.3.9c.
In this case, we will not investigate the impact of the applied isotropic strain on the MoSe2

electronics. In fact, in the investigation concerning the interlayer interaction beyond vdW
between few-layer graphene, SiC substrate and MoSe2 itself, the strain effect on MoSe2 is
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not crucial.
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3.3 Graphene/MoS2: different properties for different

orientations?

In the next sections we will analyze graphene/MoS2 interface focusing the attention on
the role of specific rotation angles between the layers on the properties of graphene, MoS2

and the whole heterostructure [15]. So far, the interaction between graphene and MoS2

seems not to be clear yet, since several theoretical and experimental papers exhibit specific
modification of graphene and MoS2 electronic properties, according to specific rotation
angles between the layers.
This topic has been already treated in some previous theoretical and experimental works
[16, 17, 87, 88]: the possibility to tune the electronic features of 2D crystals in a controlled
way by means of different techniques is a fascinating research area from the point of view
of the fundamental physics and in nanoelectronic applications as well.
From a theoretical point of view, DFT calculations require the building of a superstructure,
namely a supercell that is at the same time a multiple of MoS2 and graphene unit cell,
repeated in the whole space by means of the periodic boundary conditions. In most of the
cases, due to the lattice mismatch, the choice of the supercell is a compromise between
the reasonable dimension and the artificial strain on the component materials necessary to
compensate the mismatch. Moreover, as demonstrated in the previous sections, the strain
on MoS2 can have an important effect on the electronic properties, especially affecting the
value and type of the energy band gap [89].

In the following section, we consider different rotation angles between graphene and
MoS2, in order to elucidate the mutual influence between two monolayers. We first discuss
the structural aspects of the graphene/MoS2 interfaces, namely the unit cells for DFT
calculations considered for the different rotation angles and the corresponding interaction
energies. Then we analyze the electronic band structures and Density of States, and
finally we present Scanning Tunneling Microscopy (STM) images calculations which exhibit
different patterns, called Moiré patterns, for the different structures [86].

3.3.1 Lattice mismatch problem: building the supercells

The study of interfaces, involving two crystals with different lattice parameters, as in
the case of graphene/MoS2, leads to a well known problem in DFT calculations: the
design of the supercell. In fact, due to the imposed periodic boundary conditions required
to reproduce an infinite interface, a superstructure with specific basis of lattice vectors
has to be found [90]; the basis of lattice vectors has to be commensurated with both
the graphene and MoS2 parameters. However, a perfect matching of the two structures
is not obvious, and sometimes it can be obtained for very big supercells, making DFT
calculations impractical. As a consequence, the matching of the two structures in the
new superstructure can be obtained inducing necessarily a small error in the optimization
process. It means that, on the way we choose the supercell, the structures relax differently,
which induces an artificial strain on MoS2, on graphene, or on both, depending on the cases.
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This argument is valid for any rotation angle. In principle, to each angle corresponds a
different matching and, consequently, a different strain on the 2D crystals.
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Figure 3.10: Representation of the supercells for θ = 0 deg in a) where a, b and c are
parallel and m(n)=3(4). In b) we consider the case of a generic θ 6= 0deg: c is aligned
with b for an optimization in MoS2 lattice vector. White rhombus defined by c represent
the supercells, whereas the small red (blue) rhombus represent the MoS2 (graphene) 1x1
cell. It is necessary that an integer number of red and blue small rhombus fits in the
supercell.

In the simplest case, when the angle θ = 0 deg, the lattice vectors of supercell (c),
of graphene (a) and MoS2 (b) are parallel (see Fig.3.10a), and they satisfy the following
relation:

c = na = mb,

where n and m are integer numbers. In this case, if we want to avoid the strain on MoS2

we will choose c to be exactly a multiple of b; however, due to the mismatch between MoS2

and graphene of 28%, c will not be at the same time an exact multiple of a, causing an
artificial strain on graphene.

If θ 6= 0, we can choose c being parallel to b (a) and forming an angle defined by θ with
a (b). Depending on the crystal we want to keep at the equilibrium, for example MoS2

(graphene), c will be chosen parallel to b (a). Consequently, c will be an exact multiple
of b, and at the same time a linear combination of a1 and a2 defined in Fig.3.10b. Now,
the relation between a, b and c becomes

c = mb = n1a1 + n2a2,

where n1 and n2 are also integers, a1 and a2 are the two components of vector a.
Now, in order to fix a specific angle, a relation between n1 and n2 is needed; from a simple
geometrical analysis, valid for 0 < θ ≤ 30, we have:

n1 =
sen(60− θ)

senθ
n2.
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angle (deg) 0 10 20 30

lattice vector MoS2 Gr MoS2 Gr MoS2 Gr MoS2 Gr

dC−C (Å) 1.39 1.43 1.41 1.43 1.40 1.43 1.42 1.43

aMoS2 (Å) 3.20 3.30 3.20 3.24 3.20 3.27 3.20 3.22
strain (%) -2.8 +3.1 -1.4 +1.2 -2.1 +2.2 -0.7 +0.5

corrugation (Å) 0.53 0.14 0.11 0.08 0.03 0.03 ≤0.03 ≤0.03

Table 3.1: Evolution of the C-C distance in graphene, the MoS2 lattice parameter, the
strain and the corrugation for 0, 10, 20 and 30 degrees according to the corresponding
lattice vector optimization, either for MoS2 or graphene, respectively, first and second
column. A positive strain corresponds to a compression whereas a negative strain corre-
sponds to an extension of the layer. In the strain row, under the columns defined with
“MoS2” (”graphene”) we write the strain on graphene (MoS2) since MoS2 (graphene)
is optimized. Finally, we always refer to the graphene corrugation since on MoS2 the
corrugation is negligible.

Fig.3.10 provide a visual explanation of this technical part.

3.3.2 Four orientations: structural optimization

In order to study the effects of orientation, we consider 4 different rotation angles θ: 0, 10,
20 and 30 degrees. From the symmetry of the system, every angle θ larger than 30 degrees is
equivalent to 60o−θ. For each case, we have designed a supercell with reasonable numbers
of atoms, favoring the optimization along MoS2 or graphene lattice vector, depending on
the layer we want to keep in the optimized structure. It is important to perform these two
different calculations since, in that manner, we can observe the differences in the electronic
properties induced by the calculation conditions, namely the artificial strain, and remove
them from the possible physical effects at the interface. According to their corresponding
lattice vectors, these different structures have then been optimized and the equilibrium
distance between the two layers is determined, making use of the LCAO-S2+vdW formalism
implemented in the Fireball code and discussed in the second chapter.

The corresponding interaction energy curves as a function of the average carbon-sulfur
planes distance between graphene and MoS2 are represented in Fig.3.11. The geometries of
the unit cell designed for each angle and for graphene or MoS2 lattice vectors are represented
in the insets.

Except for the 0 degree structure, there is no noticeable difference between the interac-
tion energies corresponding to optimization, either with the graphene or the MoS2 lattice
vectors. In all the structures, the interaction energy is around 22 meV/Å. This value is
a bit lower than the one found for the AB stacking of graphene, around 40 meV/Å, cal-
culated using the same formalism. This smaller interaction energy can be explained by
the honeycomb structure of MoS2 composed of an alternance of sulfur and molybdenum
atoms, with the last kind in a lower plane.

Consequently, the molybdenum atoms are located farther from the graphene plane,
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Figure 3.11: Representation of the calculated interaction energies of the
graphene/MoS2 interfaces for a) 0, b) 10, c) 20 and d) 30 degrees, as a function of
the average carbon-sulfur planes distance. The corresponding geometries for graphene
or MoS2 lattice vectors are represented in up and down insets, respectively.

which reduces the overall interaction energy with the graphene sheet. Regarding the 0
degree graphene/MoS2 interface, which is composed of a 3×3 MoS2 and a 4×4 graphene
unit cell, this superstructure presents the most important strain after optimization, either
for graphene, 3.1% in extension with the MoS2 lattice vectors, or for MoS2, 2.8% in com-
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pression with the graphene lattice vectors. As a consequence of this important strain, the
graphene plane presents a larger corrugation which is responsible for the energy difference
between the two lattice vectors optimization. Since there is no significant difference for
the other rotation angles, we can deduce that the interaction energy mainly depends on
the strain and the graphene corrugation. Regarding the equilibrium distance, defined as
an average distance for the corrugated system, in all the cases it remains almost constant
at 3.1 Å, independently of the strain or corrugation. The main structural characteristics
for the different rotation angles are summarized in Table 3.1. The most important result
is related to the corrugation. First of all, the corrugation only affects the graphene layer,
while the MoS2 remains flat even under strain. This is probably related with the three-
layer structure of MoS2 with respect to the monolayer structure of graphene. However, the
corrugation is not only an effect of the in-plane compression of the graphene layer since it
has also been found, with lower rate, even in graphene lattice vector optimization. Fur-
thermore, a complementary test was made by optimizing the isolated graphene layer under
a strain of -2.8%, as we have for 0 deg: in this case the corrugation is negligible, proving
that it is related to the relative position of the S and C atoms, and it is enhanced by the
compression of graphene layer. The maximum value of z displacement of C atoms arises
when the two configurations, C atom on the MoS2 hollow site (shorter distance between
the planes, represented in Fig.3.12a, left panel) and C on S with the C-C and S-Mo bonds
overlap (larger distance between the planes, represented in Fig.3.12a, right panel), are
present in the unit cell. As the angle increases, the probability to find both configurations
is lower, leading to a decrease of the corrugation (see Fig.3.12).

3.3.3 Global electronic properties

Once we have obtained the structural optimization for the four orientations taking into
account the van der Waals forces, we moved to the analysis of the electronic structure
calculation.

Optimization with respect to different lattice vectors leads to rather different results
with respect to the electronic properties even though the unit cells are in principle equiva-
lents. Looking at Fig.3.13, we can observe as at 0 degrees, in graphene lattice vector opti-
mization (left part), the MoS2 band gap is substantially reduced from 1.83 eV to 1.15 eV,
and the bottom of the conduction band is located right at the Fermi level. Furthermore,
in the case of graphene lattice vector optimization, the MoS2 DOS shows a strong modi-
fication with respect to the isolated MoS2 (compare Fig.3.13c black curve and Fig3.7 left
panel), which is not the case when MoS2 is optimized (see Fig3.13d).

Also, we can observe a small p-doping in graphene, as the Dirac point is shifted above
the Fermi level. This is related with the important artificial strain on the MoS2 layer,
favoring a charge transfer from graphene to MoS2. The reduction of the gap, as well as
the switch from direct to indirect gap, is a result we have already discussed in the previous
section concerning the strain effect on MoS2. However, the charge transfer between the
layers, leading to the doping of graphene, is an effect coming from the presence of both
layers. In fact, even if graphene and MoS2 interact by mean of a weak interaction, a small
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Figure 3.12: a) Graphic representation of the position of C atoms with respect to the S
atoms for θ = 0 degrees corresponding to the larger z displacement and, as a consequence,
larger corrugation. On the left panel, the C atoms on the MoS2 hollow can move closer
to the MoS2 plane than for C on S atom case; in fact, for C on S, represented on the
right panel, C feels the repulsive interaction with the lower S atom leading to C moving
farther fromm the MoS2 plane. b) Corrugation of graphene calculated in MoS2 (blue
circles) and graphene (red squares) optimized parameters as a function of the rotation
angle θ. The corrugation is calculated as the difference between the larger and lower z
coordinate of C atoms.

charge transfer is possible of ∼0.0055 el/Å2. Since the same strain on graphene does not
show any important effect on the electronic structure, we will consider the MoS2 lattice
optimization for the rest of the study, in order to avoid any artificial strain effects. In this
way we are able to separate the rotation and the artificial strain, focusing our attention on
the role of the pure orientation on the electronic properties.

The band structure and the DOS for 0, 10, 20, 30 degrees are represented in Fig.3.14.
For each angle, the Dirac point is now located at the Fermi level, as expected for the
isolated graphene layer. Notice that the Dirac cone is mapped at the Γ point for the 10
and 30 degree structures, due to the particular symmetry of the corresponding supercells.
Indeed, as is well-known [31,32], when an n× n supercell is considered, the corresponding
BZ is reduced by a factor of n× n. As a consequence, the k-points are-remapped into the
shrunken BZ by projection. This is the so-called BZ folding effect, shown in Fig.3.15.

While Γ is always located at the center of the BZ, the other symmetry points (K
and M in the hexagonal structure) can be projected in different points depending on the
periodicity and the crystal structure of the supercell. In the specific case of a hexagonal
crystal structure, when n is a multiple of 3, the K symmetry point is projected on Γ, as
happens in our case for the 10 and 30 degree configurations.

Also, the bottom of the MoS2 conduction band is now located at 0.3 eV above the
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Figure 3.13: Calculated band structure and DOS for the 0 degree graphene/MoS2 unit
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On the left, for graphene lattice vector optimization, a small p-doping of graphene is
observed due to the artificial strain induced in MoS2, favoring an important charge
transfer. The red (black) line refers to graphene (MoS2) DOS.

Fermi level and the MoS2 band gap presents the same value for all the considered angles.
Since the 20 and 30 degrees configurations are made with the same number of MoS2 unit
cells, we can do a MoS2 band to band comparison that does not reveal any band structure
dependence on the orientation. The similarity of the DOS for each configuration also
demonstrates that the orientation does not affect the global electronic properties which
results in the simple superposition of the electronic properties of the single system, as
suggested by Geim et al [8]. However, in these initial calculations, there is an electronic
level misalignment that should be corrected. Using the 0 degree cell and comparing the
level positions with respect to the isolated layers, we have defined a unique scissor potential
that will be applied for all the angles considered here. For example, the scissor-corrected
DOS and band structures for 0 and 20 degree are represented in Fig.3.16. It is important
to notice that the MoS2 conduction band is now shifted by 0.7 eV above the Fermi level.

We can thus conclude this paragraph by stating that the global electronic structure of
the graphene/MoS2 interfaces is not affected by the rotation angle. However, small modi-
fications of the local electronic structures may appear, as we will discuss in the following.
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Figure 3.14: Electronic band structures and DOS without the scissor operator for 0
degree a) and e), 10 degree b) and f), 20 degree c) and g), 30degree d) and h) in MoS2

lattice vector optimization. The black (red) lines in DOS corresponds to MoS2 (graphene)
layer.

3.3.4 Local electronic properties: STM calculations

We now consider the modeling of STM images of graphene/MoS2 interfaces. In order to
well analyze the images of the interface, we first take a look at the STM images of the
isolated graphene and MoS2 planes, presented in Fig.3.17 a) and b) respectively. In both
cases, an hexagonal arrangement is obtained, where the maximum corresponds to the C
atoms in graphene for a voltage of -0.1 V while the bright spots are associated to both S
and Mo sites on the MoS2 for V=+0.7 V. Even though the Mo atoms are located more
than 1Å below the S atoms, the much higher electronic contribution compensates the
geometrical effect.

In Fig.3.18 we present the STM images for 0 and 20 degrees, at 0.7 V (i.e. in the
conduction band of MoS2), based on the scissor-corrected electronic structures, the atomic
structure unit cell is superposed. As a first remark, we can deduce that even though the
global electronic properties remain the same, at the local scale different Moiré patterns
can be obtained for the STM images according to the rotation angle. It is important to
notice that the bright spots for 20 degrees are placed on the hollow sites of the graphene
monolayer due to the large contribution of the non-directional d-orbitals in the tip and the
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Figure 3.15: Representation of folding effect in the re-mapped position of the symmetric
points Γ and K in the folded supercell BZ, for 0 deg and 30 deg. In the real space we
find the blue (red) hexagons representing the MoS2 (graphene) 1× 1 cells. The supercell
in the real space is represented with grey hexagon. In the third panel representing the
reciprocal space we find: the supercell BZ represented by the small green hexagons, the
1× 1 MoS2 and graphene BZ represented by the blue and red big hexagons, respectively.
In order to know where the symmetric points of graphene and MoS2 are re-mapping in the
supercell, we will repeat the supercell BZ in the bigger 1× 1 cells of MoS2 and graphene
until the symmetric points match. According to the rotation angle, the symmetric points
can fall in the same position or be re-mapped.
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degree in MoS2 lattice vector optimization with scissor operator.
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Figure 3.17: Calculated STM images of isolated graphene and MoS2 for a) and b),
respectively. The cartoons represent the considered systems, tungsten tip and graphene
or MoS2, for the relative STM images below.

C-C distance reduction due to the graphene compression. Those Moiré patterns have been
already observed in ARPES experiments for example, as mini-gap opening in the global
bandstructure of the interface [91]. As the electronic structure of the C atoms is almost
unaltered, the difference in the brightness of the spots is directly linked to the corrugation
in the graphene sheet. For example, the Moiré pattern for the 0 degree unit cell exhibits
large black area around the C-atoms in the lower position, i.e. the hollow site with a S
atom below, while the brightest sites correspond to the coincident points where a C atom
of the graphene monolayer falls over a S atom of the MoS2 layer. In order to check the
effect of the MoS2 layer in the current, we represent in Fig.3.18 c) and d) the STM image
for an isolated graphene plane in the configuration of the graphene/MoS2 interface for 0
and 20 degrees, respectively (namely keeping the structure and the electronics of graphene
in graphene/MoS2 interface). The main features of the graphene/MoS2 STM image are
caught by the image of the isolated graphene layer, but less defined spots are obtained.
This result means that there is a modulation effect in the image due to the inclusion
of the MoS2 layer. The STM images of the other cells show a less pronounced contrast
between the bright and the dark areas due to the lower corrugation. Hence, the corrugation
decreases as the rotation angle is increased (up to 30 degrees) as we reported in Table 3.1.
Also notice that the corrugation is mainly due to the interaction between graphene and
MoS2 and we found with further calculations that, without MoS2, the graphene monolayer
remains flat even in the most corrugated case, which also corresponds to the most strained
case. On the other hand, the interaction between graphene and MoS2 is reflected in the
change in the STM image, when the MoS2 underlayer is removed (compare Fig.3.18 a) and
b), and 3.18 c) and d) images). In that respect, graphene acts as a grid for MoS2 electronic
structure.
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a)

b)

Figure 3.18: Calculated STM images of graphene/MoS2 for a) 0 degree and b) 20
degrees. In c) and d), STM images calculated on isolated graphene, in the corresponding
graphene/MoS2 configuration, keeping both the structural and electronic modifications
given by MoS2 on graphene. The cartoons represent the considered system for the STM
images under the same column: on the left, tungsten tip on graphene/MoS2 interface;
on the right, same tip on graphene in the corresponding graphene/MoS2 structural and
electronic configuration, namely without considering the contribution of MoS2 on the
tunneling current.
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Summary

Together with the shown results, we have also calculated the charge transfer between the
two layers, which is very small (0.005 el/Å), in agreement with the unaffected electronic
structure with the rotation angle. As a consequence of these results, it appears that the
graphene/MoS2 interfaces will not be affected by the rotation angle between the two layers.
However, their local electronic properties modifications can be exploited through specific
connections on the area with high or low electronic density.

To summarize, this part of the work represents a full study of the influence of the ro-
tation angle on the electronic properties of the graphene/MoS2 interface. As a result, the
global electronic structure remains unaffected by the rotation, even though calculations
have to be conducted with a careful choice of lattice vectors and supercells to avoid arti-
ficial effects. For example, Yandong Ma et al [16] have theoretically demonstrated small
gap angle dependence the graphene/MoS2 interface determined by ab initio calculations.
It resulted in a gap opening in the graphene bandstructure for specific rotation angle at
the graphene/MoS2 interface, which might be due to the strain induced by the choice of
the supercell and the corresponding lattice vectors. The rotation angle has however an
influence on the local electronic properties through the different Moiré patterns observed
in the calculated STM images.
These results, however, present differences with some experimental results as the band
bending [92] observed at such interfaces, able to modify the global electronic properties of
the system.
The discrepancy between the theoretical and experimental results are also illustrated in a
collaboration with the experimental group of Centre de Nanosciences et de Nanotechnolo-
gies, CNRS and Univ. Paris-Sud, Université Paris-Saclay and the Department of Physics
and Astronomy, from University of Pennsylvania, Philadelphia [86]. The results coming
from this collaboration are presented in the next section.

3.4 Oriented MoS2 on graphene: experimental results

By making use of several characterization techniques, the experimental group supervised
by Abdelkarim Ouerghi investigated the impact of the change of orientation between MoS2

and graphene layers on the properties of MoS2 [86].

From the experimental point of view, a high quality substrate is the starting point of
the study of heterostructures, since their properties is strongly affected by the quality of
the interface between the underlying substrate and the top-layer. Epitaxial graphene on
silicon carbide (SiC) was used as a substrate, providing advantages as the highly ordered
crystalline structure favoring the commensurate growth. The obtained MoS2 monolayers
are composed by two MoS2 oriented flake of 33o± 2o for the small flake and 4o± 2o for the
big one, showing equilateral triangle shapes with lateral sizes of ∼ 20 to ∼ 200 µm. The
high quality of the MoS2/graphene heterostructure was ensured, underlined by the uniform
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color within one single flake in the optical image (Fig.3.19a). A schematic presentation of
the sample is provided in Fig.3.19b.
By means of Raman spectroscopy and photoluminescence (PL) measurements, the exper-
imental group was able to explain the evolution observed in MoS2 structural and optical
properties when two different orientations are considered. From the structural point of
view, for the two flakes grown in exactly identical conditions, a variation of strain of
0.6±0.1% is found (larger strain in the bigger flake), justified by the different orientations.
On the other hand, in Fig.3.19c and Fig.3.19d the PL data obtained by the experimental
group, provide the information about the band gap modification. The image in Fig.3.19c
represents the PL map from the single layer MoS2 regions, in which we can easily dis-
tinguish the different PL intensities between the big (darker color) and the small flake
(brighter color). Moreover, from the PL spectra reported in Fig.3.19d, we can notice the
strong peak at around 1.85 eV of the small flake, reflecting the direct bandgap at the K
point of the BZ, whereas the big flake is characterized by a smaller peak displaced at 1.79
eV. The band gap values of 1.85 eV and 1.79 eV for both the small and big flakes respec-
tively (Fig.3.19d) are in agreement with those reported for MoS2 monolayers. Moreover, it
is found that the ratio between the PL intensities of the two flakes of about 3/2 is similar to
what has been observed for monolayer and bilayer MoS2, where the gap becomes indirect.
Even if several hypothesis can be made to understand the origin of this change in MoS2

bandgap, revealed by PL measurement, as the presence of impurities, the most reasonable
explanation is related to the bandgap transition from direct to indirect in MoS2. In fact,
the PL quenching occurred for the flake affected by higher tensile strain which may be
responsible for the transition from direct to indirect bandgap in monolayer MoS2.

Our DFT calculations, already discussed in the previous section 3.2, support this result.
The value of the band gap we found is in agreement with the experimental results (we recall
the Fig.3.8 where the evolution of the band structure under biaxial strain is shown), as
well as the evolution of the band gap type from direct to indirect at 0.6% of strain.
All these results suggest that tuning the interlayer orientation could induce a strain change
in MoS2 which may cause variations of MoS2 bandstructure [93, 94]. Thus, it seems possible
to tune the band structure around the K point via selectively choosing different orientations
of the considered MoS2 flakes.

It is important to underline that these experimental results suggesting the possibility
to tune the band gap of MoS2 by changing the orientation are not in contrast with the
previous theoretical results that the orientation alone does not affect nor the band gap
neither the main feature of band structure.
In fact, this discrepancy can be explained in the following way: in the theoretical approach,
it is possible to isolate the orientation effect from the edge, impurity and strain. Referring
to the strain effect, we chose the supercells keeping the MoS2 in the optimized structure -
whereas the graphene was affected by a small strain - because the MoS2 electronic charac-
teristics are strongly dependent on the strain. In this way, any potential modification of the
band structure, that we did not find in our calculations, had to be referred to the orienta-
tion. Moreover theoretically, the interface is composed of two infinite planes, which implies
a full van der Waals interaction between the two structures. On the other hand, the ex-
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Figure 3.19: a) Optical image of the MoS2 flakes transferred onto the epitaxial graphene
layer, b) 3D schematic structure of single layer MoS2 flakes on a graphene supporting sub-
strate; in c) the map of the photoluminescence intensity of the MoS2 flakes on graphene
is shown and in d) the PL spectra corresponding to the big (blue curve) and small (red
curve) flakes of MoS2 on graphene are characterized [86].

perimental graphene/MoS2 interface is composed of MoS2 triangles deposited on graphene,
which present therefore connections at the border, whose nature is slightly different from
vdW interactions. Indeed, the triangle edges present dangling bonds which are much more
reactive than the π orbitals involved in the weak vertical interaction. We think that the
main difference in structural and electronic behaviour of vdW heterostructures between
experiment and theory comes from those dangling bonds forming lateral heterostructure
between MoS2 and graphene that can be responsible for strain effects and, consequently,
for the band gap modification.

3.5 MoSe2/graphene: beyond van der Waals interac-

tion

In this section we will discuss the results obtained in collaboration with an experimental
group in the CEA Grenoble, recently published in [95]. This project and all the experi-
mental activities we show in this section were led by M. Jamet at Spintec.
The vdW heterostructure MoSe2/few-layers graphene, grown on Silicon carbide (SiC) is
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characterized: the surface analysis gives a complete picture of the atomic structure and
the electronic properties of the heterostructure.

The main result related with our work consists in the band-gap modulation in the
few-layer graphene, well supported by electron spectroscopy data and our DFT calcula-
tions. The most important part of this research is represented by the fact that, in this
heterostructure, the interlayer interaction goes beyond the simple van der Waals leading
to an important charge transfer, that is not present in the graphene/MoS2 case previously
discussed, due to the absence of substrate.

In the following, we will show some results obtained by the experimental group, mostly
focusing on the measurements, then our calculations and the explanation of the opening
of the band gap in K. The experimental group has used different techniques to completely
characterize the MoSe2/few-layer graphene heterostructure: scanning tunneling microscopy
and scanning tunneling spectroscopy at low temperature (STM and STS, respectively),
grazing incidence X-ray diffraction (GIXRD) using synchrotron radiation, and photoemis-
sion electron microscopy imaging in k-space (k-PEEM). These techniques allowed to study
the atomic (STM, GIXRD) and electronic (STS, k-PEEM) structures of the vdW hetero-
junctions. In this work, the large-scale heterostructure was grown by MBE [96] using the
vdW epitaxy of MoSe2 on a graphene/SiC substrate.

In Fig.3.20a and b, we report the measurement performed by the experimental group
of the band dispersion of few-layer graphene, obtained using k-PEEM: the band structure
of MoSe2/few-layer graphene on SiC and the few-layer graphene on SiC (without MoSe2)
are shown in Fig.3.20a and Fig.3.20b, respectively.

In both cases (with or without MoSe2) we find the typical linear dispersion, however,
the two images reveal some differences defining the effect of MoSe2 on the band structure
of few-layer graphene. One effect is the decrease of the photoemission signal close to the
region at 0.3 eV below the Fermi level revealing a band-gap opening when the MoSe2 is on
the few-layer graphene. Another effect we can observe is the broadening of the Dirac linear
dispersion if MoSe2 is placed on the few-layer graphene. This changes of the electronic
states reveals an important interaction between the 2D layers. Furthermore, the plot of
the integrated intensity as a function of the binding energy in the area around k‖=0 of the
heterostructure and bare graphene (Fig.3.20c), confirms this feature: the distinct dip at
0.3 eV below Fermi level for the heterostructure with MoSe2 is assigned to the existence
of a band gap in few-layer graphene.

By means of our theoretical calculations it was possible to provide an interpretation to
what has been found experimentally, namely the increase of the band-gap value in few-layer
graphene of approximately 250 meV.
The origin of the gap opening can be found by analyzing all the possible phenomena at
the interface.
For instance, the opening of the gap can be due to the strong chemical interaction affecting
the chemical configuration of graphene. Hence, the switching from sp2 to sp3 orbitals causes
the destruction of the linear dispersion. However, we know that there is no chemical bond
between graphene and MoSe2, according to the lack of dangling bonds at the surface
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characterizing the vdW heterostructures.
Another phenomena that can have an effect on the electronics of graphene comes from

the relative orientation of lattices: for instance, in MoS2/graphene [91] and hBN/graphene
[97], obtained by mechanical exfoliation and a transfer process, the opening of the minigaps
is a consequence of the superlattice potential associated with a long-range Moiré pattern
or a breaking of inversion symmetry in the graphene sublattices. However, the minigaps
are located far away from the Fermi level, suggesting that the gap opening in this case is
not related to the super potential.

Furthermore, the experimental data from GIXRD and STM did not reveal any Moiré
signature in the heterostructure, that should be seen for a Moiré period of λ = (1/m+1)a ≈
1 nm [98], where m, the lattice mismatch between MoSe2 and graphene, is 36% and a
relative rotation of lattices is 0 degrees.

Consequently, one can deduce that the electronic structure evolution and the opening
of the gap in few-layers graphene is due to the not negligible charge transfer between the
layers, enhanced by the presence of MoSe2. The charge transfer, given by proximity effect
inside the vdW gap through orbitals overlapping, leads to the Fermi level shift and a
consequent hole or electron doping in few-layer graphene. In particular, the high n-type
doped MoSe2 observed in STS measurements gives rise to a significant electron transfer
from graphene to MoSe2. At the end, the larger band gap, increased with the presence of
MoSe2 monolayer, is due to an enhancement of electrostatic potential and a consequent
reinforcement of dipole fields in few-layer graphene [99].

To support this experimental observation, we performed first-principles calculations
taking into account vdW interactions between different layers. As in the experiment,
we considered two different systems, with and without MoSe2, in particular bilayer (BL)
graphene/SiC and MoSe2/BL-graphene/SiC (BL graphene has AB-stacking order). The
corresponding unit cells used for calculations are shown in Fig.3.21a and b, in which we
can recognize the carbon buffer layer between SiC and graphene, as formed during the
silicon sublimation process [100].
Regarding the structure, we found an out of plane contraction (6.5%) of the MoSe2 layer,
from 3.38 Å for a free-standing layer down to 3.16 Å for MoSe2/BL-graphene/SiC, caused
by the electron transfer between the BL-graphene and MoSe2. However, according to the
used LDA-DFT technique known to underestimate lattice parameters by approximately
5%, the calculated value is smaller compared to the layer thickness extracted from X-ray
diffraction of 3.34 Å.

The charge transfer, indicated as numbers in units of elemental charge (e) per unit
cell for each layer, is estimated for both the considered systems and indicated in Fig.3.21a
and b. The presence of MoSe2 increases the charge transfer leading to a n-doped MoSe2,
in agreement with STS measurement where n-type doping in MoSe2 is observed. The
evolution of the charge transfer from BL-graphene/SiC to MoSe2/BL-graphene/SiC is in
agreement with the experimental result and with the explanation of the opening of the gap.
It has also been found that increasing the number of graphene layers in the calculation,
from two to four, leaves almost unchanged the charge distribution between MoSe2 and
graphene, indicating the low impact of the graphene layers on the charge transfer process.
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Figure 3.20: Dispersion of graphene π bands as a function of the kx direction in the case
of the MoSe2/few-layer-graphene heterostructure a) and of the few-layer-graphene/SiC
substrate b). The integrated intensity curves over binding energy from EF to EF + 1.4
eV are reported in c), extracted from the area around k‖ = 0 (white rectangles in a) and
b)). The dip corresponding to the band gap is highlighted by arrows.

The band structure of bilayer graphene shown in 3.21 is highlighted in red and blue,
showing two distinct cones for the conduction and valence bands. We can deduce that the
adjacent graphene layers are electronically decoupled and the nearly independent linearly
dispersing bands at the K point of graphene appear [101].

The difference in the two systems is in the gap value, 158 meV for BL graphene/SiC
and 256 meV for MoSe2/BL graphene/SiC. The opening of the gap can be explained as
following: without MoSe2, a charge transfer from the substrate on the lower graphene is
found, whereas on the upper graphene it is very low. This charge transfer leads to an
electric field responsible for the breaking of sublattice symmetry within graphene sheets
leading to the gap opening [102]. Then, adding the MoSe2 layer, the charge transfer on
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Figure 3.21: Calculation results obtained from heterostructure and MoSe2-free sub-
strate with BL graphene: charge distribution in different layers in the heterostructure
a) and MoSe2-free substrate b). The amounts of transferred charge calculated for each
atomic layer are also displayed (positive or negative signs indicating an excess or a deficit
of electrons, respectively). Band structures of heterostructure and MoSe2-free substrate
are shown in c) and d), respectively.
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the upper graphene drastically increases, and the electric field felt by the first graphene
as well, causing the increase of the gap value as well. The electric field coming from the
charge transfers between the different layers is responsible of the breaking of sublattice
symmetry within graphene sheets leading to the gap opening [102].

However, in the experimental band dispersion data in Fig.3.20, the few-graphene layers
on SiC do not show any gap, but a single cone with very broad branches. This discrepancies
with the theoretical results have to be assigned to the difference of the number of graphene
sheets in the experiment and in the calculations: the estimated seven graphene layers in
the experiment are responsible for the vanishing of the gap.

Summary

The origin of the band-gap opening was interpreted as a result of a significant electron
transfer from graphene sheets to MoSe2. We have to notice that this kind of modification
of the band structure was not found in our theoretical calculations of MoS2/graphene, since
in that case the substrate was not considered and, consequently, no charge transfer from
the substrate was present to break the symmetry and to modify the electronic properties
of the component 2D layers.
In this section, we pointed out that few-layer graphene was subjected to charge transfer
processes from the substrate and the TMDC layer, leading to an enhancement of the band-
gap-induced electric field in the graphene sheets.
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Chapter 4

Graphene and MoS2 for a new Field
Effect Transistor generation

The transistor represents the fundamental building block of modern electronics. Being able
to switch or amplify the signal, it allowed the building of smaller and cheaper electronic
devices, as computers, calculators, radios...

The first transistor (see Fig.4.1) was built in 1947 in USA, in the Bell Telephone Labo-
ratories [103]. Here Shockley, Bardeen and Brattain, already before the second World War,
were convinced that silicon semiconductor, recently discovered to exist in n or p doping
type according to the kind of impurity, was extremely useful to amplify current signals
and, consequently, to become the basis of all electronic devices. The first transistor was
made by a n-doped germanium (base) and two gold contacts (emitter and collector). They
demonstrated that by varying the current to the base, it was possible to obtain a linear
variation of the collector potential. In 1956, the Nobel prize was conferred to Shockley,
Bardeen and Brattain, for the discovery of transistor which was defined as ”probably the
most important invention of the 20th Century”.

In general, the transistor is a three terminal, solid state electronic device able to con-
trol the electric current flowing in the channel region between two contacts (called collec-
tor/emitter or source/drain) by changing the electric current or the voltage using the third
contact (called base or gate). Nowadays, there exist many kinds of different transistors,
and here we will focus on one specific type called Field Effect Transistor (FET), that uses a
potential to control the electric current flowing in the device, by affecting the size and the
shape of the channel. A schematic FET is shown in Fig.4.2. The current flowing between
the source and drain contacts, in the region called channel, is controlled by the gate, placed
on the top.

According to the applied voltage between the gate and the bulk and the source-drain
voltage, the current in the channel presents three different behaviours related to three
states operation of transistor:

• the OFF region, when the channel is not active and no current flows in the transistor;

• the ohmic or linear region, where the transistor behaves as a resistor;

69
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Figure 4.1: First transistor built in 1947 by Shockley, Bardeen and Brattain (picture
taken from the web [104]).

• the saturation region, where the current does not depend on the voltage between the
source and drain (VSD) anymore.

In Fig.4.3 the fundamental operation of a transistor is shown.

As we said in introduction, the transistor can amplify or switch the current. In this
work, we focus on the second operation type FET, namely a logic device. In this case,
a transistor can be found in ON or OFF state, depending on the applied gate voltage,
determined by the largest ION current and by a very low IOFF flowing in the channel,
respectively.
For a logic transistor, the ratio between the ON and OFF current (called ON/OFF ratio),
is a parameter describing its performance, and its value should be between 104 and 107.

Since its birth, the transistor was able to decrease the size of the electronic devices,
however this process becomes a sort of challenge in the next future and so far: the contin-
uous miniaturization of the electronic devices and the increase of circuit complexity is the
results of the Moore’s law [19].

To sustain this process, there is a continuous improvement of the small devices opera-
tions in the last years: faster and less power consumption transistor have been produced,
and the ability to integrate complex function increases. However, the progressive minia-
turization reaches a limit beyond which the performance of a FET starts to decrease.
The main problems are related with the discreteness of matter, short channel [23, 24] and
surface effect, due to dangling bond. They become more important in very small devices
bringing to the knowledge that the scaling of devices and simultaneously good performance
become more and more difficult.
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Figure 4.2: The three terminals source, drain and gate are shown. The source and
drain contacts are connected to the n doped part of the semiconductor, whereas the bulk
(the whole blue area) and the channel (the part of the bulk between the n doped region)
are p doped. The gate, placed on top, tunes the current flowing in the channel.

Figure 4.3: The operation of transistor is shown. The current ISD as a function of
gate voltage VG is presented on the left. On the right we found different ISD curves as a
function of the source-drain voltage VSD, for different gate voltages VG. Vp represents
the threshold voltage, under which the current does not flow (OFF state). The linear
and the saturation region are underlined.
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One of the solutions to this problem has been found in considering new materials able
to satisfy the law of miniaturization. These new materials are represented, for example,
by the class of 2D crystals. The advantages to use 2D materials come from the possibility
to reduce the dimensions of devices, making them flexible and transparent; the fantastic
properties coming from the reduction of the material dimensionality from 3D to 2D as the
Dirac cone in graphene, direct gap of MoS2 and so on, are extremely useful in electronic
devices; furthermore, the problem related with the surface effect due to the presence of
dangling bonds is avoided. However, there are some negative aspects related to the uti-
lization of these 2D crystals. For example, at the beginning, graphene was acclaimed as
the perfect material for high-performance transistors; in fact, already in 2007, only 3 years
after its discovery, it was placed in the Emerging Research Devices chapter of the Inter-
national Technology Roadmap for Semiconductors (ITRS), and the first transistor did not
shrink to be built [105]. However, this euphoria is found to be not sustained in the short
and medium term: graphene conquered the scientific community thanks to its large carrier
mobility, a precondition for fast transistors, however, it does not present any bandgap, and
a FET based on gapless channels can not switch off. Consequently, it is not fully suitable
for logic circuits.
Many efforts have been done to open the gap of graphene, for example forming a narrow
graphene nanoribbons, whose gap values are around 300-400 meV [106–108], meeting the
target of the minimum estimated gap needed between 360 meV and 500 meV. However,
nanoribbons of graphene are difficult to prepare with a defined width that brings at the
good gap value. Also the bilayer graphene was included, but it is related with a reduction
of the mobility [109, 110].

Due to the undesired effects connected to the gap opening of graphene, recently, the
vdW heterostructures were considered to build a transistor. In particular, a vertical tran-
sistor composed by two graphene contacts separated by semiconductor or insulator layers
was considered. The most important example is given by Britnell et. al [28] who built
a transistor composed by two graphene layers separated by a thin Boron Nitride (BN)
tunneling barrier. The current from one graphene layer to the other is a tunnel current
through the BN barrier, led by the voltage between the graphene layers. The tunnel current
is then controlled by the gate voltage applied between the Si wafer where the heterostruc-
ture is deposited and the closer graphene layer. Another important example of vertical
FET is given by Georgiou et al. where the barrier between graphene layer is replaced by
WS2 layers [34]. Due to the smaller bandgap of WS2 with respect to hBN and a specific
position of the Fermi level in the gap, it is possible to have current transport by tunneling
or thermionic emission.

Another kind of FET is given by the band-to-band Tunneling Vertical Transistors [111],
where two semiconductors MoS2 and WSe2 are used in a dual-gate device architecture (two
symmetric gates control independently the carrier concentration and the electric potential
of the interface). In this system, characterized by a weak electrostatic screening, the band
alignment is tuned thanks to a high gate coupling efficiency. Also, the contemporary lat-
eral and vertical band-to-band tunneling in MoS2/WSe2 heterojunction were investigated
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[112]. An interesting 3D-2D semiconductors junction characterized by strong doping given
by substitutional dopants for the 3D component and by field effect in 2D crystal, pro-
vides a very good performance [113]. Finally a transistor completely dominated by vdW
interaction in each part was realized and characterized [31], revealing a good performance
operation. The in-plane transistor with 2D channel was also proposed in the last years,
one for all characterized by MoS2 channel [25] showing a very large mobility of MoS2.

In this chapter we present a very simple model for field effect transistor bases on the
graphene-MoS2 interface, where the two monolayers are used as the source-drain electrodes
[114]. Despite the used approximations and its simplicity, this model is able to reproduce
the transistor operations, allowing the complete investigation of the electronic transport at
the graphene-MoS2 interface. At the center of our investigation there is the modification of
the transport current between the electrodes when additional alternate layers of graphene
and MoS2 are stacked on top of them. In particular, we will focus on the current evaluation
as a function of the gate voltage, for a fix source-drain potential, providing a comparison of
the slope of the current curve and the ON/OFF ratio for all the studied heterostructures.
We believe that this kind of study is necessary to define the possible role of the vertical
van der Waals heterostructures in the new FET generation.

The electronic transport properties at the graphene-MoS2 interface are obtained by
means of Density Functional Theory (DFT) and non equilibrium Green’s function formal-
ism presented in chapter 2.

4.1 Graphene-MoS2 interface for a FET modelization

In the framework of DFT, the study of big systems is limited by the size of the cell and the
number of atoms. In transistor framework, if we imagine to include the metal contacts on
the electrodes and the substrate to reproduce a real transistor with all its single component
parts, the calculations would be too much expensive in time. Furthermore, due to the
periodic boundary conditions in which the DFT code works, more complicated systems
without in plane periodicity would be also too expensive or in some cases, impossible to
calculate. The idea is, hence, to simplify the model, by considering only the interface
where the electronic current is calculated and also an effective gate potential to avoid the
inclusion of the dielectric substrate.

The choice of graphene and MoS2 is explained: graphene is used because of the low DOS,
that led to much greater increase of EF with respect to conventional two-dimensional gas
with parabolic dispersion [115–119] leading to a greater change of extra charge in graphene,
responsible for the current. However, as it can be seen in Ref.[28], the absence of bandgap
in graphene affects the performances of the transistor, due to the low ON/OFF ratio. In our
model, the main idea is to combine the gap of MoS2 with the graphene characteristics, using
these two 2D crystals as electrodes. Therefore, the transverse current between graphene
and MoS2 electrodes, ISD, is allowed by the voltage applied between the two layers, called
the source-drain voltage VSD, and it can be tuned or switched by means of a second
voltage VG on graphene. The gate voltage VG is responsible for the rigid shift of the bands
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of graphene with respect to the gap of MoS2, simulated by applying the scissor operator
on it, which represents the effective gate potential felt by graphene (normally reduced of
∼100 times with respect to the real applied gate potential when a dielectric of 300nm of
SiO2 is placed between the gate and the electrode).

The scissor operator, discussed in 2.3, consists in an extra potential added to the sub-
Hamiltonian written in localized orbital basis set of a system, in order to shift the electronic
levels of the corresponding subsystem with respect to the rest of the system. It can be
seen as an extra electric field applied to one subsystem. In the present case, we shift the
electronic levels of the graphene monolayer with respect to the levels of MoS2, in order
to reproduce the effect of an electrostatic gate applied to the system. Since this operator
is part of the Hamiltonian, the electronic density is correctly recalculated through the
usual self-consistent process, and the charge transfer is correctly taken into account. This
approximation works very well here due to the weak coupling between the 2D materials
through vdW interaction.

In our calculations, the scissor operator has been applied only on graphene, by selecting
the eigenorbitals |α(k)〉 corresponding to carbon atoms. The initial shift given by ∆α(k)
is applied on the selected eigenorbitals (all the carbon orbitals) which build the graphene
sub-Hamiltonian. This sub-Hamiltonian is part of the whole Hamiltonian over which the
self-consistency is performed. Thus, the whole system reacts to the scissor and the whole
electronic density is recalculated. In our specific case, when the selfconsistency is reached,
the energy shift of the graphene eigenvalues with respect to MoS2 is always lower than
the applied ∆α(k), as a consequence of the response of the system. In this work, we refer
to the gate voltage as the value of ∆α(k) applied on the graphene eigenorbitals. Thus,
VG and ∆α(k) are the same value. Moreover, the value of ∆α(k) is the same for all the
eigenorbitals where it is applied.

The choice of MoS2 as electrode has to be further explained: its intrinsic electronic
band gap is here used to switch the current, and consequently, the transistor, from the
OFF to the ON state. In fact, the transverse current ISD occurs only if there are accessible
states on both electrodes: in graphene, due to the Dirac cone, there are always available
electrons (except at the Dirac point) for the current, whereas in MoS2, due to gap, the
current is possible only if we fall into CB or VB. In fact, for a specific range of VG, the
band alignment is such that the Fermi level falls in the gap of MoS2 and the current is
forbidden, in principle. For VG out of this range, we move from the OFF to the ON state
of the device, characterized by the Fermi level approaching the CB or VB of MoS2, where
there are accessible states and the current is allowed. In fact, the Fermi level approaching
VB and CB leads to a charge transfer (Q) between graphene and MoS2, or in other words
to a charge redistribution between the planes, that is found to be at the basis of the device
operation. We found that the Q curve as a function of VG is strongly connected with the
transport characteristics as the slope of ISD(VG). However, there is a difference between
this model and the real vertical tunneling transistors, since here we are considering an
isolated system in which the total charge is zero and the current is given by the flowing
of the charges already inside the system and separated by the gate voltage, whereas in 2D
vertical transistor, extra charges are pumped on the graphene layer by means of the gate
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voltage.
Our bricks to build the different heterostructure is composed by 4 MoS2 and 7 graphene

unit cells mutually rotated by 15 degrees. The choice of the 15 degrees rotation for the
supercell is motivated by our results presented in chapter 3: any oriented supercell is
equivalent from the global electronic transport point of view. The MoS2 is optimized while
graphene presents a small strain that, as we already shown, does not affect the electronic
properties close to the Fermi level. Hence, we will use the smallest possible unit cell in
order to reduce the calculation time, since we know that the orientation between the layers
does not affect the electronic transport properties of the interface.

In the next section we will first analyze the characteristics of the simple graphene/MoS2

heterostructure as a transistor and then, we stack additional layers forming further sys-
tems as graphene/MoS2/graphene with VG applied on the first graphene and on both,
MoS2/graphene/MoS2 and graphene/MoS2/graphene/MoS2.

4.1.1 Band alignment in graphene/MoS2 heterostructure

The effects of scissor on the band alignment in Fig.4.4 are explained below. Starting from
the initial position, namely for VG =0 V, the Dirac point falls in the MoS2 gap (at -0.6
V from the conductance band), and moves towards the conductance band (CB) as the
voltage positively increases, or towards the valence band (VB) when VG is negative. For
positive gate voltages, the graphene bands shift to higher values: the Fermi level defined
by graphene move towards the CB as it can be seen in Fig.4.4b. For more positive voltages
V′G >VG, Fermi level moves on the CB and a migration of electrons from graphene to MoS2

occurs (see Fig.4.4c), providing the accessible states for the current.
In the case of negative VG, we have an opposite shift as it is shown in Fig.4.4d, with the
Fermi level approaching the VB. Then, for more negative gate voltage V′G <VG, the Fermi
level falls on CB and a migration of electrons from MoS2 to graphene occurs. At this point,
we found an almost similar, however symmetric, situation as for positive larger voltages
(compare Fig.4.4c and Fig.4.4e). In the following sections we will refer to this migration
of electrons from graphene to MoS2 as the charge transfer Q on MoS2 and vice versa.

In order to understand the mechanism of our transistor it is necessary to take a look at
the band shift, by means of the DOS alignment for different VG. First of all, we observe
from the DOS that the shift as a function of VG is not linear: when the Fermi level falls
in the MoS2 gap, an increase of the gate voltage of 1 V (from -0.3 V to +0.7 V in Fig.4.5b
and Fig.4.5c) yields a shift of the BS of almost 0.7 V. On the other hand, when the Fermi
level approaches the CB (or VB), the same VG increased by 1 V causes a reduced shift
since a charge transfer from graphene to MoS2 (or from MoS2 to graphene) occurs, which
is more expensive in terms of energy with respect to moving the graphene bands in the
gap. It means that, in order to reach the first electronic states in CB (VB) of MoS2, and
consequently the current saturation, we need an effective VG which is larger than the value
of the gap. This is the reason why we need to calculate the electric current for a range
of VG from -5 V to +5 V (larger that the gap of MoS2). Note that when the Dirac point
is in the gap, it defines the Fermi level, whereas when it is close to CB (VB), the charge
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Figure 4.4: Band diagrams: alignment of graphene and MoS2 Fermi electronic levels
for positive and negative VG, where the Dirac cone falls in the MoS2 gap ( panel b and
c) and for larger absolute values V′G where the the Dirac cone falls in the CB and VB,
in panel d) and e), respectively.

transfer from graphene to MoS2 (from MoS2 to graphene) results in an electronic doping
of graphene causing a displacement of the Fermi level from the Dirac point.

In the next part of this chapter, we will quantify the relative alignment of the bands,
that can be seen as the position of the DOS of each electrode and additional layers with
respect to the Fermi level, by calculating and comparing the evolution of the charge transfer
Q as a function of VG, since Q is proportional to the integral of the DOS.

4.1.2 Graphene/MoS2 electronic transport properties

We now move to the quantitative evaluation of the charge transfer for graphene/MoS2 by
plotting the Q(VG) curve (see Fig.4.6a for the structure). As we said, the approach of the
Fermi level to CB or VB leads to a charge transfer Q between the layers. In Fig.4.6b we
plot Q at the interface as a function of VG. This curve shows three regions characterized
by linear behaviour with two different slopes. The plateau-like part (with smaller slope)
coincides with the Fermi level moving in the MoS2 gap, namely for a range of VG of ∼ 2 V,
corresponding to the OFF state of the transistor (here we can still find finite Q=0.18
el/unit cell, even for VG=0 V, coming from the interaction between the layers). Then,
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Figure 4.5: DOS and relative band alignment for different values of VG. The red (black)
line correspond to graphene (MoS2) DOS.

right out of the OFF range of VG, we found the very important part, called the junction
region, defined as the range of VG where the Q curve changes its slope from the OFF to
the ON linear parts, occupying around 1 V: the change of slope does not suddenly occurs.
For larger VG, we recover the two second linear regions, for positive and negative voltages.
We note that even in the OFF region, we have a charge transfer Q that leads to a non zero
electronic density in the gap of MoS2.

In Fig.4.6b we show the behaviour of ISD(VSD) calculated for a range of VSD between -
0.5V to +0.5V and for different VG. For gate voltage VG=-1.0 V, corresponding to the OFF
state of the transistor, the current is very low, however, when the Dirac cone approaches
VB (CB), for VG < −1.7V (VG > +0.3V), we observe an increase of the positive (negative)
branch of the current curve for positive (negative) VSD; this corresponds to the ON state.

In Fig.4.6d the current ISD(VG) for VSD=-0.1V is shown for a VG range between -
5V and +5V, corresponding to the range where the ON/OFF switch occurs. Again, in
the OFF region around -1.5 and +0.5 V, we found very low current corresponding to the
plateau in Q(VG), whereas in the ON region we can find two important parts: one is the
increase of ISD(VG), related to the change of Q slope, and the other one is the saturation
of the current, for VG > 2.0 V and VG < -3.0 V, corresponding to the second linear region
of Q. The main parameters we want to modify by stacking additional layer is the slope of
ISD(VG) an the ratio between the higher and lower current, called ON/OFF ratio, defining
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Figure 4.6: Graphic representation of the transistor model composed by
graphene/MoS2 heterostructure in a), charge transfer Q on graphene is represented in
b). ISD(VSD) for different VG in c) and ISD(VG) for VSD=-0.1V in d) are shown.

how good the performance of the transistor is. In this work, the slope of ISD(VG) is
defined as the increse of the current curve in the VG range from 0 V to +2 V, wherease
the ON/OFF ratio is the ration between the current at VG = 5 V and the current at VG

= 0 V. In this first configuration we found a slope of ∼2 × 102 and an ON/OFF ration of
∼2.4 × 102.

4.1.3 Adding graphene layer: graphene/MoS2/graphene

Starting from graphene/MoS2 heterostructure, we now stack an additional graphene, ob-
taining graphene1/MoS2/graphene2 where, as previously, graphene1 and MoS2 are the
source and drain electrodes (see Fig.4.7a).
As we know from the previous chapter, the presence of the second graphene does not affect
the electronic properties of the component layers, and so on of the electrodes, however, its
presence modifies the band alignment. Also, the band alignment is strictly connected to the
charge transfer Q, and as we will see, to the current as well. In Fig.4.7b we plot Q for each
layer, in black, red and green lines for graphene1, MoS2 and graphene2, respectively. The
dashed lines correspond to the charge transfer on graphene in the original graphene/MoS2

heterostructure.
We found that the charge transfer for all the three layers are very different from what we

had before. The first difference is that Q varies less with respect to VG than in the previous
graphene/MoS2 device, due to the presence of the second graphene layer. Furthermore,
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Figure 4.7: Graphic representation of the transistor model composed by
graphene1/MoS2/graphene2 heterostructure in a), charge transfer Q on graphene1, MoS2

and graphene in black, red and green, respectively, is plotted in b). In c), ISD(VG) for
VSD=-0.1V is shown together with the current obtained in the first case, in solid and
dashed line, respectively.

here, we do not have the three linear regions as before and Q on graphene1 has almost the
same slope for all the VG range. Looking at Q on MoS2, however, we can recognize two
region from -5 V to +0.5 V and from +0.5 V to +5.0 V characterized by small and very
smooth change of slope.
The second graphene layer, even if it does not modify the electronic properties of the
electrodes, as we demonstrated in chapter 3, is able to affect the band alignment, resulting
in a different charge redistribution on the graphene1-MoS2 interface.

The transverse current calculated at graphene1-MoS2 interface, ISD(VG), is represented
in Fig.4.7c. The change of Q is reflected in the current behaviour: the OFF region seems
to be larger, according to the absence of the third linear region in Q for negative VG, and
also for positive values, the increase of ISD is slower than in the previous transistor, as Q
slower increases.

In this configuration, the presence of the second graphene layer reduce the effect of VG

in the switching of the charge transfer curve from the OFF to the ON region. The junction
region increases and, consequently, the current shows a smoother increase with respect to
graphene/MoS2, clearly visible since here it is necessary to apply a larger value of VG of
1 V to recover the same current as in the previous graphene/MoS2 system. It results in a
worsening of the transistor parameter given by the slope of ISD (∼1.4 × 102). However,
the ON/OFF ratio seems to be larger than in the previous case, being almost 103 (∼2.8
×102).

The idea is to try to increase the velocity of the band shift, that can be analyzed by
looking at Q shape, in particular at the junction between the linear regions that should
be as small as possible to lead to a faster increase of ISD. In other words, we want the
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Fermi level to move as fast as possible towards the CB or VB edges of MoS2. We will
try to achieve it by using the heterostructure and by applying the gate voltage on the two
graphene layers.

Double gate on the two graphene layers

By considering the same heterostructure graphene1/MoS2/graphene2 (Fig.4.8), it is pos-
sible to make something different: we apply the same gate voltage in both graphene layer
in order to use also the second graphene as an active component, by shifting also its band.
This is a symmetric system from the point of view of the band shift, composed by two
distinct and equivalent interfaces: graphene1-MoS2 and MoS2-graphene2, being the first
interface where the VSD is applied and the current calculated. The symmetric configura-
tion ensures that both graphene layers present the same alignment. The analysis of the
charge transfer and the transport characteristics have been repeated in this new configu-
ration and the results are presented in Fig.4.8.
First of all, we take a look at the charge transfer: obviously, we find the same Q curve on
both graphene layers, as we expected from the symmetry of the system. Then, we notice
that the Q curve corresponds to the one found on graphene in the first configuration (com-
pare the black continuous and dashed lines in Fig.4.8b), revealing a kind of independence
between the two graphene1/MoS2 and MoS2/graphene2 interfaces.

Here, the same VG brings to doubled charge transfer on MoS2 electrode, in both ON
and OFF zones. However, the junction region is not tinner than in the previous case,
meaning that the same range of VG as in MoS2/graphene is necessary to move from the
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OFF to the ON part. The consequence is that the increase of the current does not occur
faster than before. For this reason, we do not expect an important improvement of ISD
with respect to the graphene/MoS2 interface, as we can observe comparing the continuous
and dashed lines in Fig.4.8c. We also notice that, as a consequence of the Q doubling
on OFF and ON region, the ratio between the two slopes of Q curve calculated on MoS2

characterizing the ON and OFF regions does not change.

4.1.4 MoS2/graphene/MoS2

According to the previous configurations, here we have another symmetric system com-
posed by an additional layer of MoS2 on the original graphene/MoS2 interface. The com-
plete structure, composed by MoS21/graphene/MoS22, is represented in Fig.4.9a. The
electronic transport calculations have been performed on the second interface defined by
the graphene-MoS22 layers.
This system represents essentially the inverse with respect to the previous one and the
same argument regarding the band alignment and the charge transfer Q can be used here:
hence, we expect to find an almost double charge on graphene electrode (instead of MoS2)
with respect to the first graphene/MoS2 interface, since here it interacts with two MoS2

layers and the interfaces are equivalent.
In Fig.4.9b we report Q on graphene for the first graphene/MoS2 configuration, and

the calculated double value, represented with the dashed and dotted line, respectively.
The two curves are similar, even if here the ON and OFF regions are less clear than
before. However, the slope of ISD is not expected to change. On the other hand, we find
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an improvement of ISD in terms of ON/OFF ratio, probably related to the higher Q on
graphene electrode, resulting in a larger value of the DOS at the Fermi level. With these
last results, we can confirm that the two interfaces act as if they were independent one
from each other, resulting in an almost doubled charge transfer on the electrode placed
between two layers compared with the single graphene/MoS2 interface. Now we just need
the last example, in order to complete our analysis of the mechanism at the basis of the
transport properties between two electrodes when the extra layers are added. In the next
configuration we will double the charge transfer on both electrodes.

4.1.5 MoS2/graphene/MoS2/graphene

Considering the results of the previous cases, we now move to the last configuration:
MoS21/graphene1/MoS22/graphene2 heterostructure with gate voltage applied on two
graphene planes (Fig.4.10a). The electrodes are graphene1 and MoS22.
Following our idea, we do not expect any change of ISD slope with respect to the previ-
ous configuration, except for a possible larger ON/OFF region given by larger Q on both
electrodes and, consequently, a larger DOS at Fermi. Of course, we found the doubled
Q on both electrodes as it can be seen in Fig.4.10b, where Q on graphene (black line)
and Q on MoS2 electrodes are shown and compared to the charge transfer in the simple
graphene/MoS2 configuration (dashed line). We confirm that the charge transfer between
the layers can be evaluated by considering each interface independently from the others.
Also in this last case, we can relate the charge transfer (Fig.4.10b) and ISD (Fig.4.10c). As
we expect from the previous discussions, the slope of the current is not improved with the
additional MoS2 and graphene layers whereas we can find an improvement of the ON/OFF
region.

The case of hBN/graphene/MoS2 mixed heterostructure

In this small section we would like to show the possibility to predict the shape of the
charge transfer Q on the intermediate layer in a mixed heterostructure, by considering
separately the single interfaces and the charge transfer Q between them. Here we consider
MoS2/hBN/graphene heterostructure, that can be decomposed in two different interfaces,
MoS2/hBN and hBN/graphene represented in Fig.4.11a. Here we just compare the sum of
the charge transfer Q on graphene calculated in the separated interfaces, 2) + 3), 2) and
3) in Fig.4.11b (the light and dark green for hBN-graphene and graphene-MoS2, respec-
tively), with Q on graphene calculated directly in the hBN/graphene/MoS2 heterostructure
(labeled with 1) in Fig.4.11b).

Comparing the sum of Q from the separated interfaces and that calculated in the
hBN/graphene/MoS2 heterostructure, 2) + 3) and 1) in Fig.4.11b, we find a good agree-
ment in the shape of the curve, whereas we have a vertical shift of more or less 0.1 electrons.
However, as we illustrated in the previous sections, the shape of Q, in particular the junc-
tion region and the ratio between the slopes in the ON and OFF linear region, are the
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Figure 4.10: Graphic representation of the transistor model composed by
MoS21/graphene1/MoS22/graphene2 is shown in a), the charge transfer Q on graphene1
and MoS2 (black and red line, respectively) is compared with the charge transfer obtained
in the first case (dashed lines) in b). In c), ISD(VG) for VSD=-0.1V is shown together
with the current obtained in the first case, in solid and dashed line, respectively.

most important parameters to characterize the current at the interface. From a compu-
tational point of view, the possibility to succeed in this kind of prevision separating the
single interfaces, is important because it avoids the problem related to the building of the
supercell considering the mismatch between three or more different 2D crystals.
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Figure 4.11: In a) the hBN/graphene/MoS2 heterostructure labeled with 1). The
2) and 3) are the graphic representations of the single interfaces hBN/graphene and
graphene/MoS2. In b) we plot the charge transfer Q on graphene, calculated directly in
1) (red line) and as a sum of the Q calculated on graphene in the 2) and 3) interfaces
(light and dark line respectively). The dashed red line is Q calculated as a sum of the
charge transfer in the single interface 2) and 3).

4.2 hBN/graphene, the charge transfer depends on

the DOS

At this point, after a complete description of the role of the additional layers in the elec-
tronic transport characteristics, we want to focus on the intrinsic parameters affecting the
slope of ISD(VG). We show here that the fundamental role is played by the shape of the
DOS in the CB and VB edges. The way the DOS increases, since we do not have a perfect
sharp band edge, is reflected on the charge transfer curve, in the junction region and then
in the current slope. At the end, the slope ratio between the OFF and the ON Q region is
a consequence of the DOS shape at the gap edges.

A simple test is performed on hBN/graphene heterostructure shown in Fig.4.12a). The
hBN is not suitable in the role of electrode because of its very large band gap. However
it provides a very clear example to demonstrate how the shape of the CB and VB edges
affects the increase of the current. The switch of the charge transfer from the OFF to the
ON linear region of hBN/graphene and graphene/MoS2 (blue and red lines in Fig.4.12b),
respectively) is underlined by the arrows. The slower switch in hBN/graphene leads to a
larger junction region. Thus, we expect a smoother increase of ISD curve compared to the
current in graphene/MoS2 , as it is shown by the blue and the red lines, respectively, in
Fig.4.12c). The slow increase of the charge transfer represented by the blue line in Fig.4.12b
(and compared to the faster charge transfer in graphene/MoS2 in red) determines a large
junction region. Hence, we expect a smoother increase of ISD curve compared to the current
in graphene/MoS2, represented by the blue and the red lines, respectively, in Fig.4.12c.
The very slow increase of the charge and, consequently, of the current with respect to
graphene/MoS2 case, is related to a smoother CB edges of hBN (blue line in Fig.4.12d
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around 1 and 2 eV) with respect to the one of MoS2.
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Figure 4.12: Graphic representation of the graphene/hBN interface is shown in a). In
b) the charge transfer Q calculated on graphene layer for hBN/graphene (blue line) is
compared to the one calculated on graphene in graphene/MoS2 (red line). In c) the
current calculated at the graphene/hBN interface as a function of VG is described by the
blue line, whereas the red line is the current corresponding to graphene/MoS2, already
shown in previous sections. In d) the comparison between the partial DOS of MoS2 (red
solid and dashed lines) and that of hBN (blue line). The CB edges shows different shape,
smoother in hBN than in MoS2 , as shown in the inset.

4.3 Summary

So far, we have studied the mechanism at the basis of the graphene/MoS2 transistor per-
formance by observing and comparing the results coming from four heterostructures of
alternate graphene and MoS2 layers. In all these systems, we have chosen the graphene
and MoS2 electrodes where the electronic transport calculations were performed, and we
have studied the influence of the additional layers on the performance of the transistors.
We have focused our attention on the current modulation as a function of the gate voltage,
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namely ISD(VG), relating its behaviour to the charge transfer Q (and, consequently, to the
band shift): we found that the width of the junction region is strictly related to the slope
of ISD(VG). The more the change of slope of the charge transfer from OFF to ON region
fastly occurs, namely for small VG range, the more ISD(VG) will rapidly increase.

By stacking additional layers, it is possible to tune the effect of the gate voltage on
the band shift and, consequently, on the charge transfer: we have seen that we are able
to reduce the effect of VG on the charge transfer and on the current just by adding an
extra graphene layer non connected to the gate as in the first graphene1/MoS2/graphene2,
worsening the performance of the transistor; on the other hand, we can improve the VG

effect on the charge transfer on the electrodes, connecting also the second graphene to the
gate potential. However, even if Q is doubled on the electrodes, the current does not switch
faster, since nor the velocity of Q curve to move from the OFF to the ON region, neither
the increased ratio of Q, namely the ratio between the ON and OFF region slope, change.
By stacking additional layers, the current can at least show an increase of the ON/OFF
ratio, probably due to more charges at the Fermi level, determining the current.
We found that the heterostructures composed by alternate layers beyond the electrodes
does not represent the way to really improve the transistor performance. Moreover, further
additional planes beyond MoS2/graphene/MoS2/graphene do not affect the charge transfer
on the electrodes, as a consequence of the interface independence. A very simple scheme
of this characteristic is shown in Fig.4.13a.

VG

+Q    +2Q +2Q +Q-2Q ... ...+2Q-2Q

VG

(Q')+Q    +2Q-2Q -Q''-Q+(Q'')-Q'

VSD
a) b)

Figure 4.13: In a) is represented a sequence of alternate graphene-MoS2 interfaces,
with graphene layers connected to a gate voltage; the charge transfer between the lay-
ers is given by a succession of +2Q and -2Q. It demonstrates that the charge trans-
fer on the layers in the middle is affected just by the closer plane and the presence
of the farther layers is negligible. In b) a scheme of the smallest heterostructure
(MoS2/graphene/MoS2/graphene) that can be used to avoid the effect of the undesired
charge transfer given by external layers (the red objects) on the electrodes given, in this
representation, by the graphene and MoS2 in the middle.

However, this kind of independence found in the vdW heterostructures interfaces when
the alternate graphene layers are connected to the gate, can be useful if we want to avoid
the charge dispersion on the electrodes. One possible structure is represented in Fig.4.13b:
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if we add extra vdW layers on top and bottom of MoS21/graphene1/MoS22/graphene2,
as the capper in the transistor, for instance, the charge transfer necessarily present at
the external interfaces does not affect the charge transfer and consequently the electronic
transport between the electrodes.

Moreover, the independence of the interfaces can also be used to study the heterostruc-
tures composed by more than two different crystals like, for example, hBN/graphene/MoS2.
The possibility to separate the two interfaces allows us to avoid the computational prob-
lem of the lattice mismatch between three crystals and to build and analyze even different
supercells with different size for each interface. For example, it can be possible to study,
in the framework of DFT, transistors with a more complex structure, made by vertical
stacking of 2D crystals, just by considering separately each interface.
We can conclude by saying that the mixed vertical heterostructures composed by more than
two different crystals are not useful to improve the performance of transistor, whereas the
choice of the semiconductor with a sharp band edge is more important to increase the
current slope for a fast switching device.
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Chapter 5

Defects on MoS2: detection by
graphene tip

In the previous chapter we modeled a transistor made by vertical stacking of graphene and
MoS2 monolayers, by focusing the attention on the charge transfer between the planes,
resulting from the band alignment modulated by gate voltage. In our model, as already
stressed, we consider infinite planes of graphene and MoS2, without edges or impurities,
and the electronic transport and properties of graphene and MoS2 come from an ideal
system. However, defected crystals are frequently produced in experiments and it is im-
possible to work with defect-free or impurity-free materials: as well as the edges effect
already discussed in Sec.3.4, the presence of impurities and defects in crystals can strongly
modify the properties of each layer and affect the transport characteristics at the interface.
Hence, it is strictly necessary to take into account the role of defects since they can induce,
in the case of electronic devices, worst operation performance or failure. In manufacturing
industry, such as the micro- and nano-electronics, the process of collecting and analyzing
data to determine the causes of failure, called failure analysis, is strictly necessary at every
step of a product life cycle.

5.1 Introduction to defects on MoS2 and their char-

acterization

The characterization of defects goes through the structural deformation analysis and the
study of its effects on the properties of the material. Sometimes the presence of defects can
improve some specific characteristics of the materials thanks to the doping effect coming
from impurity. Defects on graphene were extensively studied and all the recent results are
reported in [120]: the defects, sometimes found to enrich the graphene functionality, are
analyzed taking into account their effects on chemical, electronic, magnetic and mechanical
properties. Defected TMDC have been largely investigated as well [121], as we will see in
the state of art section.

89
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The detection of defects can be done using STM, representing a non-destructive tech-
nique and an efficient tool to explore the electronic structure in each point of the surface.
It gives the possibility to analyze the changes in the images pattern of the ideal substrate
leading to the classification of the more frequent defects. On this respect, many works can
be found in the literature showing STM measurements over a single or several MoS2 layers
[122–129].

As well as STM, another used technique is the Atomic Force Microscopy (AFM). AFM
is characterized by a sharp tip, fixed at the free end of a cantilever, scanning the sample
surface by means of the interaction existing between the probe tip and the sample surface.
This interaction causes the cantilever deflection and by means of a laser beam, focused
on the tip head and scattered toward a photodiode detector, the cantilever displacements
during the scans are continuously monitored and the forces acting between the tip and the
sample are measured.

In this chapter we present the analysis of the defects in MoS2 monolayers by using
graphene tip for both STM and AFM simulations. In particular, the characterization of
some MoS2 point defects is done by analyzing the conductance and force given by STM
and AFM measurement respectively, considering a graphene tip and a standard Cu tip.
The low reactivity of the graphene tip is demonstrated, as a consequence of the weak vdW
forces mediating the tip-MoS2 interaction. In fact, even for short distances where the Cu
tip-sample interaction is characterized by chemical bonds and the risk of tip-sample atomic
transfer appears, the graphene tip ensures a more stable AFM measurement.

The results presented here were obtained in collaboration with Cesar González, from
Department of Theoretical Condensed Matter Physics & Condensed Matter Physics Center
(IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, and published in
Ref.[130]. Here we present an exhaustive ab initio analysis on clean and defective MoS2

in order to fully describe the potential use of a graphene-based tip in non-contact (nc)-
AFM. The detailed overview of the estimated forces is complemented by a full analysis of
electronic transport on each site. For that purpose, the evolution of the conductance with
the tip distance over each site has been simulated, as well as the theoretical STM images.
The results are compared to the values obtained with a standard metallic Cu tip, showing
the potential use of the graphene-based tip for combined STM/AFM measurements.

In the following we provide state of art on the previous experimental and theoretical
studies on defected MoS2 using metal and graphitic-like tips. Then we will detail the used
tips, and the sample given by pristine and defected MoS2 monolayer with four different
defects, and the calculation details in terms of parameters and procedures.

5.1.1 State of art

Initially, the S and Mo vacancies in MoS2 were studied using DFT by Noh et al, [131],
where a careful analysis of Scanning Transmission Electron Microscopy (STEM) measure-
ments, different kind of defects (both vacancies and antisites) were considered in order to
explain the features obtained in the experiments [132, 133]. However, the structural anal-
ysis of defects was insufficient and a subsequent study of the semiconductor or metallic
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character of the defective MoS2 required a systematic STM investigation [124–129]. Re-
cently, González et al. provide an improvement in the characterization of a great collection
of point defects, considering both S and Mo vacancies together with their corresponding
substitutional atoms [134], using a more accurate Keldysh-Green’s functions formalism for
STM images calculations. In parallel, a theoretical investigation of defective MoS2 using
ab initio simulations of AFM was also published [135] providing an analysis of the forces
curve from long distances to the contact regime, calculated over each defect, comparing
the highly reactive copper tip and a less reactive semiconducting silicon tip. The results
are the followings: the attractive force between the tip and the sample strongly depends
on the nature of the tip; the second result concerns the important reactivity of the defec-
tive monolayer (both of them will be discussed in the next section for Cu and graphene
tip comparison). Furthermore, the cited results were confirmed with the physisorption or
dissociation of different molecules on selected defects [136–144].

Regarding the graphitic tips, some years ago, Castellanos-Gomez et al used carbon fiber
tips to form molecular junctions [145, 146], implanted on quartz tuning fork force sensor
able to make simultaneous STM/AFM measurements. In a first step, their potential use on
a gold surface was obtained and later, the carbon-based tip was approached at the contact
regime to an organic molecule previously deposited over a conducting surface.

Then, Dappe et al and González et al proposed a graphitic-like tip for STM simula-
tions as well as an electrode in a molecular contact [147, 148]. The demonstrated atomic
resolution showed its potential use for STM measurements. Moreover, with respect to the
contact formed between the metallic electrodes and the sample, the electronic current for
graphitic-like tip is much lower, making possible the measurement on more fragile sample as
molecules. The absence of chemical bonds between the tip and the sample, reveals the low
reactivity of this tip and prevents the formation of plateaus, characteristic in the metallic
contact. This property justifies the interest for this kind of low interacting contacts.

Contrarily to STM, the MoS2 monolayer has not been deeply studied with the AFM
technique. In most of the measurements, AFM results have been used essentially to test
the quality and the number of layers obtained during the MoS2 synthesis [149–152]. In a
recent work, the atomic resolution was obtained on a similar material, the MoSe2 monolayer
[153], while an analysis of the defects on MoS2 has been performed combining noise-current
analysis with AFM [154].

5.1.2 Calculation parameters

The study here presented on the detection of defects in MoS2 monolayer have been per-
formed within the DFT methodology, by using both Fireball and plane wave Vienna Ab
initio Simulation Package (VASP). The structural optimizations were performed by C.
González with VASP [155–157], using the following calculation parameters: regarding
the exchange and correlation potential, the functional used is GGA within the Perdew,
Burke and Ernzerhof (PBE) approach [158, 159], combined with Projector Augmented
Wave (PAW) method; the k-points in the first BZ and the energy cutoff are 4 and 400
eV, respectively; the force threshold for the convergence used is 0.02 eV/Å. In order to



92 5. Defects on MoS2: detection by graphene tip

Figure 5.1: Lateral view of the atomic structure for a) a Cu tip and b) a graphene-
like tip over a pristine single layer of MoS2. The yellow/blue/brown/grey/white spheres
represent the S/Mo/Cu/C/H atoms, respectively. The initial distance is defined for each
tip.

consider the vdW interactions between the graphene-tip and the sample, the Grimme’s
parametrization implemented in VASP has been used [160].

Here we considered four different defects configuration: a S and Mo vacancy, one Mo
substitutional atom on a single S-vacancy and two Mo atoms occupying a S-divacancy.
For each case, a supercell composed by 6×4 unit cell, formed by 72 atoms, was built.
All the information related to the atomic and electronic structure of these defective MoS2

structures can be found in a previous study provided by González et al. [134].
In order to completely analyze the performance in defect detection of graphene-tip, we

performed the same calculations for a Cu tip as well. The graphene-like tip is formed by
a ribbon of 35 C atoms saturated by 17 H atoms, whereas the Cu tip has a pyramid-like
structure composed by 35 atoms oriented in the (111) direction (the atomic configurations
of both tip are shown in Fig.5.1 a) and b) respectively).

The positions of the tip with respect to the sample are the followings: over S and
Mo atoms for the pristine case, over the defects in the other configurations. For each
configuration, the atomic optimization is done starting from the initial position where the
distance between the last Cu or C and upper S plane is 5.0 Å and 5.5 Å respectively, and
then rigidly approaching the tip of 0.25 Å each time. For all the cases only the first Cu or
C atoms and the lower S plane are fixed.

At the end of the structural optimization, the conductance calculations, the STM im-
ages and the DOS, calculated only in some specific cases, are simulated with the Fireball
code. For MoS2 and graphene, the same basis set as in the rest of this work are used,
while for Cu (H) the cutoff radius are the following: rs=4.50 a.u. rp=5.70 a.u. rd=3.70
a.u. (rs=3.80 a.u.).

Using the Hamiltonian calculated within the Fireball methodology, the electronic cur-
rent can be estimated following the non-equilibrium Green’s functions technique, as dis-
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cussed in the second chapter.

5.2 STM images simulated with the graphene tip

First of all we report the calculated STM images using graphene tip. As we can see
from Fig.5.2, the graphene tip is able to provide atomic resolution in the MoS2 monolayer
sample. Before describing the STM images, we first analyze the structure of graphene-tip
and its peculiar DOS: the last C atom labeled with 1 in Fig.5.1 does not contribute to
the tunneling current since it presents a large gap of 5.0 eV around the Fermi level (see
the peak labeled with 1 in Fig.5.2, left panel), whereas the C atoms labeled with 2 and
2’ are characterized to have a semi-occupied p-like state at the Fermi level perpendicular
to the graphene plane (see the central peak in Fig.5.2, left panel)[148]. In Fig.5.2a we
report the simulated STM images for bias voltage of -0.1 V, corresponding to higher states
in the valence band of p-semiconductor: the maximum of the current is found close to S
atoms, and a triangular pattern is obtained (the position of the tip over a maximum point
has been indicated with grey spheres). At this site, the p-states of the C atoms maximize
the current established with the surrounding S atoms from the monolayer. Additionally,
the corrugation has been estimated at a tip-S distance of 4.0 Å yielding values of 0.15
Å and 0.05 Å using the graphene-based and Cu tips respectively. We can conclude that
the graphene tip provides larger atomic resolution than a conventional metallic Cu tip
on a MoS2 monolayer as obtained before on a graphene sheet [148]. The fact that the S
atoms give more contribution in tunneling current is not surprising since, even if the DOS
related to the S atoms is lower than Mo DOS, the S atoms are located closer to the tip. In
Fig.5.2b the applied bias voltage is +1.9 V, exploring the empty states in the conduction
band of MoS2 sample and the pattern reveals an asymmetric hexagon. The brighter zone
are displaced from the S atom and they have another shape with respect to the previous
case. In panels c) and d), we come back to the bias of -0.1 V, however the orientation of the
tip is modified, with an angle of 15 deg and 30 deg, respectively, with respect to the z axis.
Here we can find the differences between the panel a) and b) of Fig.5.2 directly related
to the different orientations of the p-states of the tip and the changes in the coupling
with the S atoms in the monolayer. For STM standard distances (between 4.0 and 6.0
Å), our simulations show that the first geometry (the so-called 0 degrees) leads to a more
stable configuration. For this reason, the rest of the STM simulations (and even the AFM
calculations of the following subsections) will be performed with this tip orientation.

We turn now our attention to some selected defects: the S vacancy, the Mo vacancy, the
substitutional Mo atom in a S vacancy and two substitutional Mo atoms in a S divacancy.
The simulated STM images are shown in Figure 5.3 for V=+1.9 V in order to include the
effect in the electronic current of all the new states appearing in the MoS2 gap due to the
inclusion of the defects. Using this voltage, a comparison to previous results calculated with
a metallic tip can be again established [134]. The S vacancy (panel a)) breaks the zigzag
symmetry of the pristine monolayer, leading to some brighter spots around it. This result
mimics the depression obtained in previous experimental and theoretical works [122, 127].
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Figure 5.2: On the left panel, the DOS for graphene tip calculated with fireball: the
peak at Fermi energy is given by the lateral C atoms (2 and 2’), whereas the peak at
±2.5 eV are given by the last carbon atom (1). On the right, calculated STM images
on a pristine MoS2 monolayer using a graphene-like tip: a) V=-0.1 V, b) V=+1.9 V, c)
V=-0.1 V with the tip rotated 15 degrees and d) V=-0.1V and the tip rotated 30 degrees.
A ball and stick model is superimposed. The three grey circles correspond to the last
three C atoms of the tip, showing its orientation in the simulation. The STM images
have been graphed using the WSxM software [161] and provided by C. González.

Figure 5.3: Calculated STM images at +1.9 V with a graphene-like tip for a) S
vacancy, b) Mo vacancy, c) one substitutional Mo atom occupying a S vacancy and d)
two substitutional Mo atoms on a S divacancy. The corresponding atomic configurations
of the MoS2 defects are superimposed. The grey spheres in b) indicate the orientation of
the tip. The STM images have been graphed using the WSxM software [161] provided
by C. González.
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Also the asymmetric image is again related to the orientation of the tip which is convoluted
with the electronic density of the atoms around the S vacancy. In the other three cases
(Figures 5.3 b)-d)), the results change from the data previously obtained with a metallic tip
(see the images in reference [134]). In the Mo vacancy, the image shows four asymmetric
maxima at each side of the defect instead of the three very symmetric protrusions, obtained
close to the neighboring S atoms with the metallic tip. Now, with the graphene-like tip, the
current is maximized at the site where the C atoms with the half-filled p state can interact
with the dangling bonds of the S atom originally bonded to the absent Mo atom. In the
left side, both C atoms can be coupled with any state of the surrounding S atoms, while
on the right side the interaction can involve only one C atom. In the two substitutional
cases, the maximum, originally obtained over the topmost Mo atoms with the metallic tip,
has been displaced. In fact, the maximum is splitted in several spots showing the different
sites where the py-orbitals of the C atoms can be coupled to d-orbitals of the substitutional
Mo atoms.

5.3 Tip approach pristine and defected MoS2 mono-

layer

In this section we will analyze the force and conductance results of graphene tip on pristine
and defected MoS2 and we compare them to the Cu tip results. We will start with the
pristine MoS2, then we move to the missing Mo and S atoms, and finally we consider the
substitutional Mo atoms in mono- and di- S vacancy.

5.3.1 Pristine monolayer

Here we consider the pristine MoS2. The results shown in Fig.5.4 have been calculated over
a S atom (green squares) and a Mo atom (blue circles). By looking at the forces minima
(Fig.5.4a and Fig.5.4b for graphene and Cu tips respectively) we can deduce that the
interaction between graphene-tip and the sample is ruled by vdW interaction, their values
are -0.14 nN and -0.19 nN over the S and Mo atom respectively, one order of magnitude
lower than in the Cu-tip case. At the force minimum, no bonds are formed between the
atoms from the graphene tip and the monolayer (see the insets in panels a) and c) for the
case of Mo and S respectively) while several bonds can be formed with the Cu tip (as it is
shown in the insets of panels b) and d)) due to the strong interaction established between
the apex and the S atoms in the monolayer.

The minimum appears at similar last tip atom-S distances for both tips, even if the
force origin between the sample and the two tips presents a great difference. In fact, for
both tips, the force minimum over Mo atoms is located at lower distance with respect to
the S site, due to the lower position of the Mo plane. Regarding the graphene-tip, the non
isotropic shape and the short distance of the second C-layer (only 0.7 Å far away) lead to
a slight increase of the minimum force over the Mo atom than over the S site.
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Figure 5.4: a) Force and c) conductance curves on the S (green squares) and Mo
(blue triangles) atoms calculated with a graphene tip; b) and d) the same for a Cu tip.
The conductance-axis is in logarithmic scale. In the insets the atomic structure of the
minimum force on the four cases. The yellow/blue/brown/grey/white spheres represent
the S/Mo/Cu/C/H atoms.
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Due to the absence of dangling bonds in graphene tip and MoS2 atoms in the attractive
regime, neither the tip nor the MoS2 has been deformed. In the repulsive regime, however,
the tip produces a great deformation on the MoS2 monolayer, suggesting the lower flexibility
of the substrate.

On the other hand, the Cu tip presents a strong deformation at the contact point,
illustrated by the displacement over S and Mo atoms of 0.25 and 0.20 Å, respectively. The
Cu tip results also to be softer than graphene tip. Another consequence of the lack of
dangling bonds in graphene-tip is that the conductance monotonically grows over both
sites (see Figure 5.4 c)) even for distances closer to the force minima. Below the tunneling
regime (see the straight line in the logarithmic scale), the curve evolves to a final saturation
associated to the multiple scattering effect. Notice that no plateau is formed as expected
for metallic contacts. In graphene tip, the conductance at the Mo site is slightly larger
than over the S atom, however it is explained also looking at the STM images where the
maximum current values are displaced from the atomic sites. In general, for graphene tip,
the conductance is lower than for the Cu tip, except for short distances where they become
comparable.

For Cu tip, the conductance grows until the contact, where the plateau is formed, as
we can see in Fig.5.4d. The conductance plateau occurs at around 3.5 Å over the S atom,
meanwhile it still grows for the Mo atom since the contact is formed deeper in the tip
approach (at 2.5 Å). Altibelli et al [162] suggested that at low distances there can be a
contrast change, leading to a larger value over the Mo atom. Our results seem to be in
contradiction with this idea because the conductance is larger over the S atoms at all the
distances evaluated. The different behaviour can be explained with the inclusion of the
atomic relaxation and the electronic reconfiguration that our conductance simulations take
into account.

5.3.2 S and Mo vacancy

The cases of S and Mo vacancies can be approached using the same analysis as in the
pristine MoS2. The force and conductance curves are shown in Fig.5.5 for both graphene
and Cu tips. As in the previous case, the forces between the Cu tip and the sample is
lower than in graphene case, however here the minima on both vacancies are found almost
at the same distance with the Cu tip (at 2.00 Å), contrary to what happens for graphene
where the minimum is obtained at different heights (at 3.00 and 3.75 Å for S and Mo
vacancy, respectively). Again this result is linked to the atomic configuration of the tip:
as previously mentioned, the C2 atoms are only 0.70 Å above the last C atom while the
second layer of Cu is placed at around 2.00 Å above the apex: it means that for graphene
tip, the C2 atoms can interact with S atoms close to the Mo vacancy, whereas in Cu tip
the second Cu layer is too far.

On the S vacancy, the C2 atoms can fall on the Mo sites placed in their sublayer more
than 1.50 Å below, allowing a slightly larger attraction (-0.50 nN) at shorter distances
compared to the Mo vacancy case. Furthermore, the graphene tip leads to a minimum of
-0.31 nN in both S and Mo vacancy sites, which represents a difference with the Cu tip,
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Figure 5.5: a) Force and c) conductance curves on the S (green squares) and Mo (blue
triangles) vacancies calculated with a graphene tip; b) and d) the same for a Cu tip.
The conductance-axis is in logarithmic scale. In the insets the corresponding atomic
structure of the minimum force on the four cases. The yellow/blue/brown/grey/white
spheres represent the S/Mo/Cu/C/H atoms.
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Figure 5.6: Electronic DOS of the S atom indicated with an arrow in the atomic
structure of the inset. The DOS have been calculated at different distances in the Mo
vacancy case contacted by a Cu tip. In each panel, the highlighted line corresponds to
the DOS at the indicated distance: a) black line at 4.00 Å, b) red line at 2.75 Å, c) blue
line at 2.00 Å and d) green line at 1.75 Å.

where the interaction between the tip and the sample gives different force minimum values.
In both graphene and Cu tip there is a force growth, however larger in Cu tip (from -1.50
to -4.30 nN and from -1.50 to -3.00 nN for Mo and S vacancy respectively) due to the
strong covalent bonds formed between the apex and the surrounding atoms, S atoms on
the Mo vacancy and Mo atoms on the S vacancy (see the atomic models in the insets of
Fig.5.5).

As in the previous case, the conductance curves, Fig.5.5c and Fig.5.5d for the graphene
and Cu tips respectively, the values are much larger for the Cu tip. Regarding the graphene
tip, even though we are considering vacancies in MoS2, the behaviour of the conductance
remains very similar, indeed, no bond is formed between the tip and the atoms of the
vacancies and consequently the conductance remains in the tunneling regime, as indicated
in Fig.5.5c. For close distances, the conductance saturates due to the multiple scattering
effect. For all the distances, the value is larger over the Mo vacancy.

Using the Cu tip, the conductance curves show completely different characteristics
(Fig.5.5 d). In the Mo vacancy, we can observe the standard tunneling regime behaviour
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until a tip-MoS2 distance of 2.75 Å, with the beginning of a jump to contact between 3.00
and 2.75 Å. At this point, a sudden decrease, from 1.00 G0 to 0.15 G0 at 2.00 Å, is obtained,
instead of an expected plateau. After the decrease, for shorter distances, the conductance
increases again until about 1.00 G0, yielding finally a plateau. In order to explain this
unexpected beheviour, we perform DOS calculations of a specific atom S close to the Mo
vacancy, underlined by the black arrow in the inset in Fig.5.6. Before the contact, the three
Sulfur atoms around the Mo-vacancy are equivalently decoupled from the Cu tip, showing
one peak associated to the dangling bonds around the vacancy, as reflected in panel a).
At 2.75 Å only one S atom remains unbonded to the Cu apex maintaining the peak at the
Fermi Level, as shown in panel b). At the same time the other two S atoms, connected to
the tip, present a broadened and slightly displaced DOS peak from the Fermi level. When
the tip is approaching to 2.00 Å, the Cu-S bond is formed (see panel c)) and the peak is
reduced. From this point, the apex is contacted to the three S atoms and additional bonds
are formed with the Cu atoms of the second layer, yielding the plateau of conductance
synonymous of the formation of a stable contact.
Hence, the decrease of the conductance between 2.00 and 2.75 Å is justified by the DOS
evolution.

On the other hand, the S-vacancy presents two clearly differentiated regimes: the tun-
neling and the contact regime. A characteristic plateau is formed after the Cu-S bonds
formation at 2.00 Å. In this case, the Cu apex is bonded to the three neighboring Mo atoms
at the same distance, leading to a more conventional curve. The value of the plateau is
larger over the Mo vacancy due to the larger number of atoms contacted by the tip in this
case (see the insets of Fig.5.5b and Fig.5.6).

The similarity between the two tips is related to the greater conductance characterizing
the Mo vacancy, due to the better coupling of the tip-orbitals with the dangling bonds of
the neighboring S atoms with respect to the neighboring Mo atoms in S vacancy.

5.3.3 Mo substitutional atoms

Finally, we will analyze the results on two substitutional cases, namely one Mo atom
occupying a Sulfur vacancy and two Mo atoms on a S divacancy (labeled by subMo and
subMo2, respectively). The results of forces and conductance are presented in Fig.5.7 for
both graphene and Cu tips as previously done. In these two cases the minimum forces fall
at the same distance for both tips, furthermore using graphene tip, the force curves are
almost the same with minima around -0.25 nN. This is not the case of the Cu tip showing
a larger interaction in the substitution of two Mo atoms on a S divacancy (-1.71 nN vs
-1.46 nN). For both tips we found that comparing the forces curves they are larger than in
the pristine layer, confirming the reactivity enhancement of the defective MoS2, however
lower than in the S and Mo vacancies.

Regarding the conductance curves, we can notice that the values are again much larger
for the Cu tip (Fig.5.7c and Fig.5.7d for the graphene and Cu tips respectively). The
typical behaviour associated with the vdW interaction is observed in conductance curve
for graphene tip, characterized by tunneling regime with a saturation at short distances and
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Figure 5.8: The electronic DOS for a) one upmost substitutional Mo atom in the
S divacancy and b) the substitutional Mo atom in the single S vacancy. The atomic
configuration of each defect is included in the insets.

no conductance plateau. However, the conductance associated with the two substitutional
Mo atoms is much larger than in the case of a single substitution, suggesting a better
coupling of the half-occupied py orbitals of the C2 atoms with the states associated to the
substitutional atom.

In the case of the Cu tip, this effect is even stronger: the hybridization of the substi-
tutional Mo atoms can explain the larger conductance. In the double susbstitution case,
the Mo atoms present an important contribution of the dz2 orbital at the Fermi level, as
shown in Fig.5.8a, yielding, therefore, an important contribution in the conductance. In
the single substitution case, the same contribution lies at 0.25 eV away from the Fermi level
(see Fig.5.8b) and it is responsible for the significant reduction of the conductance. In the
conductance related to the Cu tip, we find also two different behaviours related to the two
substitutional configurations : in the double substitutional case we can recognize the stan-
dard tunneling regime and the jump to the contact followed by the conductance plateau,
whereas in the substitutional case, there is a significant decrease in the conductance when
the contact is formed. Then, the conductance increases again as the tip approaches more
the sample. This peculiar conductance drop is associated to the specific configuration of
the Mo substitutional atom : when the contact with the Cu tip is established, the extra
Mo atoms which are rather weakly bounded to the neighboring atom,s is attracted by the
Cu tip and move out of the surface in order to form the bond with the Cu atom, as it can
be seen from Fig.5.9a. The hybridization of this Mo atom with the Cu tip leads to a level
splitting which diminishes the contribution at the Fermi level. The evolution of the Mo
atom DOS and atomic structure for different distances is shown in Fig.5.9b. This peculiar
behaviour results in a strong reduction of the conductance from 4.00 to 3.50 Å. In fact,
when the Cu tip approaches more to the layer, the Mo atom comes back to its original
position in the MoS2 : this causes the change of Mo hybridization and the relocation of the
peak at the Fermi level, leading to an increase of the conductance. This specific substitu-
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tional case, due to this peculiar behaviour related to the sudden increase in the electronic
injection can be interesting from the point of view of electronic devices.

As stressed earlier, both tips present a larger conductance over the defect including
two extra Mo atoms, showing that a more efficient electronic injection can be established
in the larger number of new accessible peaks around the Fermi level. On the contrary, in
the substitutional cases, both tips present a lower attraction than with the neighboring S
atoms of the Mo vacancy.

5.4 Summary

In this chapter, we have reported the characterization of MoS2 defects (S or Mo vacancy,
Mo mono- or di-substitutional in S vacancies) by using two tips, namely the standard Cu tip
and graphene tip. First of all, it was demonstrated that the atomic resolution is obtained
for graphene tip in STM simulations. The calculated STM images represent a useful guide
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in the measurements, as an efficient theoretical technique to assist the experimental groups
in the determination of defects in the sample.

Then, by comparing the conductance and force curves for different sites on pristine and
defected MoS2, it is possible to explore the reactivity of the different defects: it results
that Mo vacancy presents a higher attraction while the two Mo substitutionals on a S
divacancy give a larger conductance for both tips. The main differences in conductance
curves between the two tips is the presence of characteristic plateau linked to the bond
formation between Cu tip and the sample, completely missed with graphene tip, where
the conductance increases monotonically as consequence of the absence of bonds. The
vdW interaction between the graphene tip and the sample is at the basis of conductance
and force behaviour. Because of the vdW interaction, graphene tip is much less reactive
than a standard metallic one, even for very reactive defects in MoS2. A fully non invasive
characterization of defects is possible since there is no bond and no atomic transfer between
tip and sample. On the other hand, the Cu tip leads to strong bonding with the defects,
following a metal-semiconductor junction behaviour, which might even lead to atomic
exchange, altering the correct characterization of the defects. From this point of view, the
use of graphene tip for nc-AFM is of high interest for material spectroscopy. For future
experiments, an instrument as a conductive AFM that can measure simultaneously the
conductance and the short-range force is highly desirable. A graphene-like ribbon can
be included in order to obtain atomic resolution. This kind of microscope can be used
to measure a standard STM or nc-AFM image where the defects are found and then, by
placing the tip over the selected points, a tip-approach can be done to obtain a conductance
curve for each site. The conductance or electronic current can be directly compared to the
theoretical curves presented in the previous figures.

We can conclude by stressing that, in this chapter, another interesting application of a
system characterized by vdW forces, as the tip-sample system, was explored. Furthermore,
the detailed study of specific defects in MoS2 and the deep understanding of their char-
acteristics, is extremely useful for further transport investigation at the graphene/MoS2

interface, where the defects are exploited instead of avoided.
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Titre : Structure électronique et transport dans l'hétérostructure graphène/MoS2 pour la conception d'un 
transistor à effet de champ.                                                                                                                                     
Mots clés : DFT, materiaux 2D, structure électronique, hétérostructure de Van der Waals, transistor, transport 
électronique.

Résumé : L'isolement du graphène, une monocouche de graphite
composée d'un plan d’atomes de carbone,  a  démontré qu'il  est
possible de séparer un seul plan d'épaisseur atomique, que l'on
appelle materiau bidimensionelle (2D), à partir des solides de Van
de Waals (vdW). Grâce à leur stabilité, différents matériaux 2D
peuvent  être  empilés  pour  former les  hétérostructures  de vdW.
L'interaction  vdW  à  l'interface  étant  suffisamment  faible,  les
propriétés spécifiques de chaque matériau demeurent globalement
inchangées  dans  l’empilement.  En  utilisant  une  démarche
théorique  et  computationnelle  basée  sur  la  théorie  de  la
fonctionnelle de la densité (DFT) et le formalisme de Keldysh-
Green,  nous  avons  étudié  l'hétérostructure  graphène/MoS2.  Le
principal  intérêt  des  propriétés  spécifiques  du  graphène  et  du
MoS2 pour la conception d'un transistor à effet de champ réside
dans  la  mobilité  du  graphène,  à  la  base  d'un  transistor  haute
performance et dans le gap électronique du MoS2, à la base de la
commutation du dispositif.  Tout  d'abord,  nous avons étudié les
effets  de  la  rotation  entre  les  deux  couches  sur  les  propriétés
électroniques  à  l'interface,  en  démontrant  que  les  propriétés
électroniques globales ne sont pas affectées par l'orientation. En
revanche,  les  images  STM  (microscope  à  effet  tunnel)  sont
différentes pour chaque orientation, en raison d'un changement de
densité de charge locale. Dans un deuxième temps, nous avons
utilisé l’interface graphène/MoS2 en tant que modèle très simple
de Transistor à Effet de Champ.

Nous avons analysé le rôle des hétérostructures de vdW sur la
performance du transistor, en ajoutant des couches alternées de
graphène et MoS2 sur l'interface graphène/MoS2. Il a ainsi été
démontré  que  la  forme  de  la  DOS  au  bord  du  gap  est  le
paramètre le plus important pour la vitesse de commutation du
transistor, alors que si l’on ajoute des couches, il n’y aura pas
d’amélioration  du  comportement  du  transistor,  en  raison  de
l'indépendance des interfaces dans les hétérostructures de vdW.
Cependant, cela démontre que, dans le cadre de la DFT, on peut
étudier les propriétés de transport des hétérostructures de vdW
plus complexes en séparant chaque interface et en réduisant le
temps de calcul. Les matériaux 2D sont également étudiés ici en
tant  que  pointe  pour  STM  et  AFM  (microscope  à  force
atomique) : une pointe de graphène testée sur MoS2 avec défauts
a été comparée aux résultats correspondants pour une pointe en
cuivre.  La  résolution  atomique  a  été  obtenue  et  grâce  à
l'interaction  de  vdW  entre  la  pointe  et  l’échantillon,  il  est
possible d’éviter les effets de contact responsables du transfert
d'atomes entre la pointe et l'échantillon. En outre, l'analyse des
défauts est très utile du fait de la présence de nouveaux pics dans
le gap du MoS2 : ils peuvent ainsi être utilisés pour récupérer un
pic  de  courant  et  donner  des  perspectives  pour  améliorer  la
performance des transistors.

Title : Electronic structure and transport in the graphene/MoS2 heterostructure for the conception of a field 
effect transistor.                                                                                                                                                      
Keywords : DFT, 2D materials, electronic structure, Van der Waals heterostructure, transistor, electronic 
transport.

Abstract  : The  isolation  of  graphene,  a  single  stable  layer  of
graphite, composed by a plane of carbon atoms, demonstrated the
possibility to separate a single layer of atomic thickness, called
bidimensional  (2D)  material,  from  the  van  der  Waals  (vdW)
solids. Thanks to their stability, 2D materials can be used to form
vdW heterostructures,  a  vertical  stack  of  different  2D crystals
maintained together by the vdW forces. In principle, due to the
weakness of the vdW interaction, each layer keeps its own global
electronic  properties.  Using  a  theoretical  and  computational
approach  based  on  the  Density  Functional  Theory  (DFT)  and
Keldish-Green  formalism,  we  have  studied  graphene/MoS2

heterostructure.  In  this  work,  we  are  interested  in  the  specific
electronic properties of graphene and MoS2 for the conception of
field effect transistor: the high mobility of graphene as a basis for
high performance transistor and the gap of  MoS2 able to switch
the  device.  First,  the  graphene/MoS2  interface  is  electronically
characterized  by  analyzing  the  effects  of  different  orientations
between the layers on the electronic properties. We demonstrated
that the global electronic properties as bandstructure and Density
of State (DOS) are not affected by the orientation, whereas, by
mean  of  Scanning  Tunneling  Microscope  (STM)  images,  we
found that different orientations leads to different local DOS. 

In the second part, graphene/MoS2 is used as a very simple and
efficient model for Field Effect Transistor.  The role of the vdW
heterostructure in the transistor operation is analyzed by stacking
additional and alternate graphene and MoS2 layers on the simple
graphene/MoS2 interface. We demonstrated that the shape of the
DOS at the gap band edge is the fundamental parameter in the
switch velocity of the transistor, whereas the additional layers do
not improve the transistor behavior, because of the independence
of the interfaces in the vdW heterostructures. However, this de-
monstrates the possibility to study, in the framework of DFT, the
transport properties of more complex vdW heterostructures, sepa-
rating the single interfaces and reducing drastically the calcula-
tion time. The 2D materials are also studied in the role of a tip for
STM and Atomic Force Microscopy (AFM). A graphene-like tip,
tested on defected MoS2, is compared with a standard copper tip,
and it is found to provide atomic resolution in STM images. In
addition, due to vdW interaction with the sample, this tip avoids
the contact effect responsible for the transfer of atoms between
the tip and the sample. Furthermore, the analysis of defects can be
very useful since they induce new peaks in the gap of  MoS2: hen-
ce, they can be used to get a peak of current representing an inte-
resting perspective to improve the transistor operation.
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